

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

Implementación de un sistema de calefacción, ventilación y aire acondicionado (HVAC) para un área limpia

INFORME DE ACTIVIDADES PROFESIONALES

Que para obtener el título de

Ingeniero Mecánico

PRESENTA

Iván Ulises Sánchez Cruz

ASESOR DE INFORME

Dr. José Melesio Sánchez Huerta

PROTESTA UNIVERSITARIA DE INTEGRIDAD Y HONESTIDAD ACADÉMICA Y PROFESIONAL (Titulación con trabajo escrito)

De conformidad con lo dispuesto en los artículos 87, fracción V, del Estatuto General, 68, primer párrafo, del Reglamento General de Estudios Universitarios y 26, fracción I, y 35 del Reglamento General de Exámenes, me comprometo en todo tiempo a honrar a la institución y a cumplir con los principios establecidos en el Código de Ética de la Universidad Nacional Autónoma de México, especialmente con los de integridad y honestidad académica.

De acuerdo con lo anterior, manifiesto que el trabajo escrito titulado <u>IMPLEMENTACION DE UN SISTEMA DE CALEFACCION, VENTILACION Y AIRE ACONDICIONADO (HVAC) PARA UN AREA LIMPIA.</u> que presenté para obtener el titulo de <u>INGENIERO MECÁNICO</u> es original, de mi autoría y lo realicé con el rigor metodológico exigido por mi Entidad Académica, citando las fuentes de ideas, textos, imágenes, gráficos u otro tipo de obras empleadas para su desarrollo.

En consecuencia, acepto que la falta de cumplimiento de las disposiciones reglamentarias y normativas de la Universidad, en particular las ya referidas en el Código de Ética, llevará a la nulidad de los actos de carácter académico administrativo del proceso de titulación.

IVAN ULISES SANCHEZ CRUZ Número de cuenta: 312029575

Contenido

1.	PERFIL DE LA EMPRESA	1
1.1	Giro de la empresa	1
1.2	Historia de la empresa	1
1.3	Productos que ofrece	1
1.4	Organigrama de la empresa	2
1.5	Perfil del puesto	3
2.	INTRODUCCIÓN	3
3.	JUSTIFICACIÓN DEL PROYECTO	4
4.	OBJETIVOS	4
4.1	OBJETIVO GENERAL.	4
4.2	OBJETIVOS ESPECÍFICOS.	4
5.	BUENAS PRÁCTICAS DE INGENIERÍA EN SISTEMAS HVAC	4
5.1	ETAPAS DEL PROYECTO	5
5.1.1	Calificación de Diseño: planificación y diseño	5
5.1.2	Calificación de Instalación: construcción e instalación	5
5.1.3	Calificación de Operación: puesta en marcha	5
5.1.4	Calificación de Desempeño: validación, evaluación y mejora continu	ıa. 5
6.	DESCRIPCIÓN DEL SISTEMA HVAC	6
7.	METODOLOGÍA Y RESULTADOS	10
7.1	Requerimiento de Usuario	10
7.2	Clasificación y distribución de áreas.	14
7.2.1	Clasificación de Salas Limpias según la Norma ISO 14644-1	14
7.3	Unidades Manejadoras de Aire	16
7.4	Memoria de Cálculo	17
7.5	CALIFICACIÓN DE DISEÑO	19
7.5.1	Revisión de especificaciones	19
7.6	CALIFICACIÓN DE INSTALACIÓN	22
7.6.1	Pruebas de presión y estanqueidad	22
7.6.2	Preparación de la prueba de fugas	22
7.6.3	B Establecimiento de la presión de prueba	23
7.6.4	Medición de la tasa de fuga	23
7.6.5	Comparación de resultados con los criterios de SMACNA	23

7.7	Verificación de los componentes y materiales	24
7.8	Instalación y verificación de filtros HEPA	26
7.9	CALIFICACIÓN DE OPERACIÓN	28
7.10	Pruebas de sistemas de control	28
7.11	Balanceo del sistema	28
7.12	Caudales de aire de inyección y extracción	28
7.13	Ajustes térmicos	32
7.14	CALIFICACIÓN DE DESEMPEÑO	32
7.15	Conteo de partículas totales	32
7.16	Medición de Partículas en el Aire	32
7.17	Establecimiento de Puntos de Muestreo	32
7.18	Cálculo del Número Máximo de Partículas Permitidas	33
7.19	Realización de Pruebas en Condiciones estáticas y dinámicas	33
7.20	Evaluación y Comparación de Resultados	33
7.21	Resultados de los conteos de partículas	34
7.22	Conteo de partículas viables	37
7.23	Flujo de aire	41
7.24	Cambios de aire	42
7.25	. ,	
7.26	Presiones diferenciales	43
7.27	Condiciones ambientales	45
8.	Conclusiones	49
9.	Recomendaciones	50
10.	Bibliografía	51
11.	Anexos	51

1. PERFIL DE LA EMPRESA

1.1 Giro de la empresa

La compañía se especializa en el desarrollo, producción y comercialización de medicamentos de alta calidad en diversas formas farmacéuticas. La gama de productos que ofrece incluye sólidos orales, líquidos orales, inyectables, semisólidos, productos hormonales e inhalados, todos elaborados bajo rigurosos estándares de calidad y seguridad para satisfacer las necesidades terapéuticas del sector salud. Comprometida con la innovación y el cumplimiento normativo, proporcionando soluciones de salud confiables y accesibles para mejorar la calidad de vida de los pacientes.

1.2 Historia de la empresa

La empresa comenzó como un modesto laboratorio que, en sus primeros años, operaba mediante asociaciones locales, enfocándose en la elaboración y comercialización de productos de origen extranjero en territorio mexicano.

Fundada en los años 30, su crecimiento sostenido y la incorporación de nuevas líneas de productos le permitieron consolidarse como una organización estable y de gran proyección. Durante las décadas posteriores, la compañía logró ampliar y modernizar su planta de producción, lo que facilitó su incursión en nuevos mercados, extendiendo sus exportaciones hacia el extranjero.

La calidad de sus instalaciones, el desarrollo técnico y su capacidad para competir de manera efectiva con corporaciones internacionales, la empresa se posicionó como un laboratorio de reconocimiento nacional.

La farmacéutica con nueva sede se equipa con instalaciones de vanguardia y una planta de gran capacidad que le permitió fortalecer su presencia internacional. Además, consolidó una red de profesionales comprometidos, quienes respaldan su prestigio, y promueven una filosofía centrada en la mejora continua de la calidad de vida.

1.3 Productos que ofrece

El laboratorio ofrece una amplia gama de productos diseñados para la prevención, el tratamiento y el alivio de diversas afecciones respiratorias. Estos productos abarcan desde medicamentos de prescripción hasta soluciones de venta libre, adaptados a las necesidades de pacientes de todas las edades.

1.4 Organigrama de la empresa

El puesto que desempeño es el de Especialista de Calificación, en la industria farmacéutica es responsable de asegurar mediante pruebas específicas basadas en conocimiento científico que todos los equipos, sistemas críticos e instalaciones cumplan con las normativas de calidad y regulaciones aplicables. Este rol es fundamental para garantizar que los productos farmacéuticos se desarrollen, produzcan y distribuyan de acuerdo con los estándares más altos de seguridad y eficacia.

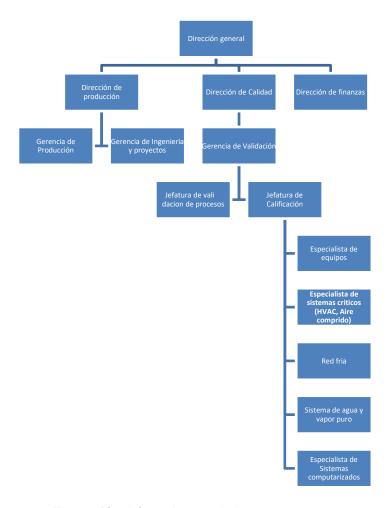


Ilustración 1 Organigrama de la empresa

1.5 Perfil del puesto

Dentro del laboratorio he laborado por un año y seis meses como especialista de Calificación, en el puesto soy encargado de la calificación y monitoreo de los sistemas críticos que dan servicio a la planta de producción.

Dentro del puesto de Especialista de Calificación realizo las siguientes funciones:

- Me aseguro de la operación en campo de los sistemas basado en el conocimiento, habilidad y especialización, de acuerdo con las Normas vigentes.
- Evaluó y doy seguimiento al desempeño de los sistemas críticos
- Verifico que los parámetros de operación críticos se encuentren dentro de los criterios de aceptación de acuerdo con las Normas vigentes.
- Identifico nuevas necesidades y elaboro propuestas de solución a problemas específicos.
- Participo en el desarrollo, diseño, implementación de nuevos sistemas
- Desarrollo pruebas específicas que sean requeridas para asegurar parámetros de los sistemas críticos como HVAC, aire comprimido y nitrógeno.

2. INTRODUCCIÓN

En la industria farmacéutica, la calidad y seguridad de los productos dependen en gran medida del entorno en el que se fabrican. Los productos farmacéuticos requieren estrictos controles ambientales para evitar contaminaciones que puedan comprometer su efectividad y la salud del consumidor final. En este contexto, los sistemas de calefacción, ventilación y aire acondicionado (HVAC) desempeñan un papel fundamental, ya que permiten mantener condiciones controladas de temperatura, humedad, flujo de aire, y presión en las áreas limpias dedicadas a la producción.

Las áreas limpias en la industria farmacéutica son entornos regulados donde el control de la calidad del aire es crucial para reducir la concentración de partículas y microorganismos que podrían contaminar productos críticos. Un sistema HVAC bien diseñado y calibrado permite alcanzar y mantener los parámetros establecidos en las Buenas Prácticas de Manufactura (GMP, por sus siglas en inglés) y las normativas de calidad como las ISO 14644, que especifican los requisitos para la clasificación de salas limpias. Esto incluye la eliminación de partículas a través de filtración HEPA, la regulación de la presión diferencial para evitar la entrada de contaminantes y el control de temperatura y humedad para evitar condiciones que favorezcan la proliferación microbiana.

Además de proteger los productos y garantizar la seguridad del consumidor, el sistema HVAC en áreas limpias protege al personal que trabaja en estos entornos controlados. La adecuada filtración y renovación del aire no solo minimiza los riesgos de contaminación cruzada, sino que también asegura un ambiente de trabajo seguro y confortable para los operadores, especialmente en salas donde se manejan compuestos activos y sustancias potencialmente peligrosas.

El sistema HVAC es una infraestructura esencial en la industria farmacéutica para asegurar que las áreas limpias mantengan condiciones óptimas de operación, cumpliendo con normativas y garantizando la calidad, seguridad y eficacia de los productos farmacéuticos.

3. JUSTIFICACIÓN DEL PROYECTO

El área de Asuntos Regulatorios del laboratorio propuso la necesidad de implementar acciones de mejora para cumplir con las diferentes normativas que lo regulan. En ese contexto, se propuso la remodelación de un área limpia, lo que resultó en la redistribución de los espacios, el incremento de la superficie de operación, la instalación de equipos y de servicios críticos.

Estos cambios incluyeron la implementación de un sistema de calefacción, ventilación y aire acondicionado (HVAC), con capacidad para satisfacer la demanda de aire en las áreas y cumplir con los parámetros críticos para la fabricación de medicamentos.

4. OBJETIVOS

4.1 OBJETIVO GENERAL.

Implementar un sistema de calefacción, ventilación y aire acondicionado (HVAC) para un área limpia de fabricación de medicamentos que cumpla con las normativas aplicables, como la ISO 14644 (norma para salas limpias y entornos controlados) y las Buenas Prácticas de Manufactura (GMP) para la industria farmacéutica Norma Oficial Mexicana NOM-059-SSA1-2015 "Buenas prácticas de fabricación de medicamentos".

4.2 OBJETIVOS ESPECÍFICOS.

- Asegurar que el sistema cumple con los requisitos específicos del área limpia para la fabricación de medicamentos, de acuerdo con los principios de las Buenas Prácticas de Ingeniería (GEP). Cada etapa de calificación permitirá verificar y documentar que el diseño, la instalación, la operación y el desempeño del sistema HVAC son adecuados para mantener las condiciones ambientales establecidas.
- Verificar la calibración de todos los sensores y equipos de monitoreo, tales como termostatos, higrómetros, manómetros y anemómetros, para garantizar que las mediciones de temperatura, humedad, presión y flujo de aire sean precisas y confiables. Esta calibración asegura la integridad de los datos y la estabilidad del ambiente controlado.
- Verificar que el sistema HVAC cumpla con las Buenas Prácticas de Manufactura (GMP), la norma ISO 14644 para clasificación de salas limpias y otros estándares reguladores aplicables en la industria farmacéutica.
- Verificar que los filtros HEPA estén correctamente instalados y funcionando sin fugas mediante pruebas de integridad, de modo que el sistema HVAC pueda retener partículas y mantener la calidad del aire en niveles adecuados para áreas de fabricación de medicamentos.
- Generar una documentación completa y estructurada de todas las actividades de validación, calibración y pruebas realizadas durante la puesta en marcha del sistema HVAC, de acuerdo con las Buenas Prácticas de Ingeniería.

5. BUENAS PRÁCTICAS DE INGENIERÍA EN SISTEMAS HVAC

La metodología utilizada para el desarrollo del proyecto se basa en las Buenas Prácticas de Ingeniería un conjunto de principios, métodos y procedimientos aplicados a lo largo del ciclo de vida de los sistemas y procesos en la ingeniería para asegurar que los proyectos y actividades se realicen de manera eficiente, segura, y conforme a las regulaciones aplicables.

Las Buenas Prácticas de Ingeniería están diseñados para garantizar que los procesos de ingeniería cumplan con estándares de calidad, seguridad y eficacia, minimizando riesgos y optimizando recursos.

5.1 ETAPAS DEL PROYECTO

5.1.1 Calificación de Diseño: planificación y diseño.

- Requisitos del Usuario (URS): Establecer los requisitos específicos de operación para el sistema HVAC, incluyendo control de temperatura, humedad, presión diferencial y calidad del aire, según la aplicación en áreas limpias.
- Calificación de Diseño (DQ): Asegurar que el diseño cumple con los requisitos de URS, normativas aplicables y las Buenas Prácticas de Ingeniería. Esto incluye la revisión de planos, diagramas y especificaciones técnicas.

5.1.2 Calificación de Instalación: construcción e instalación.

- Instalación de Equipos y Componentes: Montaje de unidades de manejo de aire, ductos, filtros HEPA, sensores, y sistemas de control y monitoreo.
- Calificación de Instalación (IQ): Verificación de que la instalación cumple con el diseño aprobado y las especificaciones técnicas, incluyendo inspecciones de montaje, pruebas de integridad y verificación de conexiones.

5.1.3 Calificación de Operación: puesta en marcha.

 Calificación de Operación (OQ): Realización de pruebas de funcionamiento para confirmar que el sistema HVAC puede operar dentro de los parámetros especificados, tales como temperatura, presión y flujo de aire.

5.1.4 Calificación de Desempeño: validación, evaluación y mejora continua.

- Calificación de Desempeño (PQ): Pruebas en condiciones operativas reales para asegurar que el sistema puede mantener las condiciones ambientales requeridas en el tiempo y en todas las áreas controladas.
- Operación Regular: Monitorización continua de los parámetros ambientales y ajuste de controladores para mantener las condiciones específicas del área limpia.
- Revisión del Desempeño del Sistema: Evaluaciones periódicas del sistema para confirmar que continúa cumpliendo con los requisitos operativos y de calidad.
- Actualización y Optimización: Incorporación de mejoras tecnológicas, ajustes de parámetros y, si es necesario, actualizaciones del sistema para cumplir con nuevas normativas o requisitos de calidad.

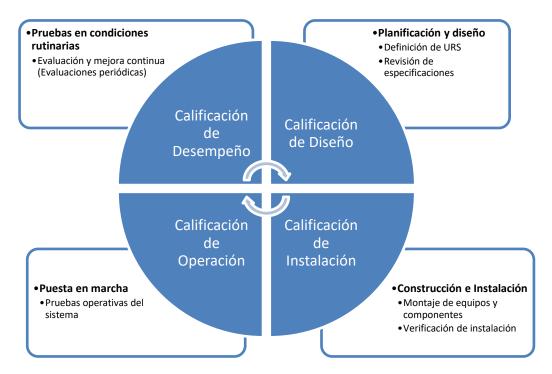


Ilustración 2 Diagrama de Metodología de las Buenas Prácticas de Ingeniería

6. DESCRIPCIÓN DEL SISTEMA HVAC

Una unidad manejadora de aire (AHU, por sus siglas en inglés de Air Handling Unit) es un componente fundamental de los sistemas HVAC (calefacción, ventilación y aire acondicionado) que se encarga de acondicionar y distribuir el aire en un edificio o instalación. La AHU toma el aire del exterior o del interior, lo trata según las necesidades específicas (filtración, calentamiento, enfriamiento, humidificación o deshumidificación) y luego lo distribuye a través de los conductos hacia diferentes áreas. En entornos sensibles, como áreas limpias, laboratorios o salas de operaciones, las AHU son especialmente importantes para controlar la calidad del aire.

Los componentes principales de una Unidad Manejadora de Aire son los siguientes:

• Filtros de Aire:

Los filtros son esenciales para capturar partículas y contaminantes en el aire, mejorando la calidad del aire y protegiendo el equipo y el entorno.

Existen varios tipos de filtros, incluidos los filtros de partículas gruesas (para partículas grandes como polvo), filtros HEPA (para áreas limpias y entornos estériles).

Ventilador de inyección:

El ventilador es el componente que impulsa el flujo de aire a través de la AHU y hacia el sistema de conductos para su distribución.

Intercambiadores de Calor:

Los serpentines son componentes donde circula un fluido caliente o frío (agua, vapor o refrigerante) para calentar o enfriar el aire que pasa a través de ellas.

El serpentín de enfriamiento reduce la temperatura y, en muchos casos, también deshumidifica el aire al condensar la humedad.

El serpentín de calentamiento, por otro lado, aumenta la temperatura del aire cuando es necesario.

Humidificador:

El humidificador se utiliza para aumentar la humedad relativa del aire, especialmente en climas fríos o en entornos donde el aire seco puede afectar procesos o materiales.

Los humidificadores pueden funcionar mediante agua caliente, vapor o atomización de agua, según los requisitos de la aplicación.

• Compuertas o Dampers de Control:

Las compuertas controlan la cantidad de aire que entra y sale de la AHU, permitiendo la mezcla adecuada de aire exterior y aire de recirculación.

Estas compuertas pueden ajustarse automáticamente para equilibrar las proporciones de aire fresco y recirculado según las necesidades de ventilación, calidad del aire y eficiencia energética.

Cámara de Mezcla:

La cámara de mezcla permite mezclar el aire de retorno (aire recirculado) con el aire exterior antes de que pase a través de los filtros y los serpentines.

Este componente es esencial para optimizar el uso de energía, ya que el aire recirculado suele estar más cerca de la temperatura deseada que el aire exterior.

Sistema de Control y Sensores:

Las AHU están equipadas con sensores para monitorear la temperatura, la humedad, la presión y la calidad del aire, que envían datos a un sistema de control para ajustar el funcionamiento del equipo.

Los controles automáticos permiten regular la velocidad del ventilador, la posición de las compuertas, la operación de las bobinas y otros parámetros, de acuerdo con las condiciones ambientales y las necesidades del edificio o instalación.

Bandeja de Drenaje y Tuberías de Drenaje:

La bandeja de drenaje recoge el agua condensada de los serpentines de enfriamiento y la dirige a través de tuberías hacia un sistema de drenaje.

Es esencial que estas bandejas y tuberías se mantengan limpias para evitar la acumulación de agua y la proliferación de microorganismos, que podrían contaminar el aire en la AHU.

Ductos

Los ductos de aire en sistemas HVAC son conductos diseñados para transportar el aire tratado desde la unidad manejadora de aire (AHU) hacia las distintas áreas de un edificio o instalación y, en algunos casos, recircularlo de vuelta.

Ductos Rectangulares:

Son comunes en edificios comerciales e industriales debido a su facilidad para instalarse en espacios con limitaciones de altura.

Se adaptan bien a espacios reducidos, pero presentan mayores pérdidas de presión debido a las esquinas.

Fabricados generalmente de acero galvanizado, aluminio o materiales flexibles.

• Ductos Flexibles:

Generalmente fabricados de materiales como aluminio, plástico o fibra de vidrio y recubiertos con una capa aislante.

Son muy flexibles y se utilizan para conectar tramos finales de ductos rígidos a rejillas o difusores.

Su instalación es sencilla, pero deben instalarse correctamente para evitar que se plieguen, ya que esto aumenta la resistencia y reduce el flujo de aire.

Configuraciones de ductos de aire en Sistemas HVAC:

Sistema de Ductos en Serie o "Single-Zone":

En este sistema, un solo conducto transporta aire desde la AHU a todas las áreas servidas sin divisiones en zonas.

Sistema de Ductos Horizontal de Retorno:

Los ductos de aire de retorno recogen el aire de diferentes puntos del espacio y lo llevan de vuelta a la AHU para su recirculación o expulsión.

Un sistema de retorno horizontal permite la recolección del aire a nivel del techo o del piso, dependiendo del diseño.

Es importante para mantener una circulación de aire equilibrada y para cumplir con los requisitos de ventilación y calidad del aire.

• Sistema de Ductos con Presurización Positiva/Negativa:

En instalaciones donde es necesario mantener diferencias de presión entre áreas (como en áreas limpias o laboratorios), los ductos se diseñan para proporcionar presurización positiva o negativa en determinadas zonas.

Los ductos con presurización positiva ayudan a evitar la entrada de contaminantes del exterior, mientras que los de presurización negativa evitan la salida de partículas potencialmente peligrosas hacia otras áreas.

Estos sistemas son críticos en instalaciones reguladas y con control ambiental estricto.

Esclusas

En los sistemas HVAC, especialmente en entornos controlados como áreas limpias, laboratorios y hospitales, las esclusas y la direccionalidad del aire son fundamentales para evitar la contaminación cruzada y asegurar que cada área mantenga sus condiciones específicas de limpieza y presión. Las esclusas son espacios de transición entre dos áreas con diferentes condiciones ambientales, y la direccionalidad del aire se diseña para controlar el flujo de aire y la presión entre estas áreas.

Tipos de Configuración de Esclusas

• Esclusa de Aire (Airlock)

Es una pequeña sala intermedia que se utiliza para separar dos áreas con diferentes niveles de limpieza o presión. El objetivo es evitar la mezcla directa de aire entre dos áreas y permitir el paso controlado de personas o materiales sin comprometer la calidad del aire, lo que evita la contaminación cruzada.

La esclusa tiene dos puertas (una hacia cada área), que generalmente están interconectadas para que solo una de ellas pueda estar abierta a la vez. Esto permite mantener una barrera entre las dos áreas.

Esclusa de Materiales (Pass-Through)

Es una esclusa especializada para el paso de materiales entre áreas de diferentes condiciones de limpieza o presión, sin que el personal tenga que ingresar de una zona a otra.

Esta esclusa cuenta con dos puertas o ventanas de paso, y puede estar equipada con sistemas de ventilación y filtros HEPA para asegurar la limpieza del aire.

• Esclusa de Personal (Gowning Room o Cleanroom Entry)

Es un espacio donde el personal se prepara antes de ingresar a un área limpia. En la esclusa, los ocupantes pueden colocarse la indumentaria adecuada (batas, guantes, mascarillas) y reducir la carga de partículas que llevan al interior.

Tipos de Direccionalidad del Aire en Esclusas

La direccionalidad del aire se define en función de la presión diferencial entre áreas, controlando el flujo de aire para mantener la calidad ambiental en cada espacio. Los principales tipos de configuración de direccionalidad del aire son:

Presión Positiva

En un sistema de presión positiva, el área tiene una presión de aire más alta que las áreas adyacentes. Esto hace que el aire fluya hacia el exterior cuando se abren las puertas, evitando que entren contaminantes.

El sistema HVAC mantiene un flujo de aire constante hacia el área de mayor presión, y el aire se filtra antes de ser expulsado.

Presión Negativa

En un sistema de presión negativa, la presión dentro de la habitación es menor que en las áreas adyacentes. Esto hace que el aire fluya hacia el interior cuando se abren las puertas, evitando que el aire contaminado salga al exterior.

El aire que ingresa se filtra antes de ser recirculado o expulsado, y no se permite que el aire escape sin ser tratado.

Direccionalidad de Flujo Secuencial

En un sistema de flujo secuencial, el aire fluye de áreas con alta presión hacia áreas con baja presión a través de múltiples esclusas. Cada esclusa actúa como una barrera adicional que evita la mezcla directa entre áreas con diferentes requisitos de limpieza.

Cada área se configura con una presión ligeramente menor que la anterior, lo que asegura que el aire fluya de la zona más limpia a la menos limpia en un gradiente controlado.

• Flujo de Aire Uni-direccional (Flujo Laminar) en Esclusas

En esta configuración, el aire fluye de manera unidireccional a través de la esclusa, generalmente en un flujo descendente o horizontal, para minimizar la turbulencia y asegurar que cualquier contaminante sea arrastrado fuera de la esclusa.

Se emplean sistemas de filtros HEPA y flujo de aire controlado para dirigir el aire en una sola dirección, de la zona más limpia a la menos limpia.

7. METODOLOGÍA Y RESULTADOS

7.1 Requerimiento de Usuario

En esta etapa se lleva a cabo la planeación del proyecto en donde se definieron y organizaron los elementos esenciales para llevar a cabo el proyecto de manera exitosa. Durante esta etapa, se establecieron los objetivos, recursos, tiempos y actividades necesarias, así como los riesgos y estrategias de comunicación, para asegurar que el proyecto se desarrollara de acuerdo con las expectativas y dentro de los límites de tiempo y presupuesto establecidos.

En conjunto con el usuario final y los especialistas de cada área, se definieron los URS del área, los cuales reflejan las expectativas y necesidades específicas del proyecto.

Dentro del documento URS, se contemplan los siguientes requerimientos que están relacionados con la implementación del sistema HVAC.

Tabla 1. Requerimientos de Usuario

# RU	Clasificación	Descripción
RU-4.1-001	Obligatorio de construcción	Se debe contar con una línea de acondicionamiento primario las cuales contarán con flujos laminares que brinden clase A (ISO-Clase 5) y las áreas de entorno clase B.
RU-4.1-002	Obligatorio de construcción	Se debe contar con una línea de manufactura, las cuales deben considerar el desarrollo de operaciones de manufactura NO asépticas en entorno clase C (ISO-Clase 7).
RU-4.1-003	Obligatorio de construcción	Se debe contar con áreas de soporte Clase B para el desarrollo de las siguientes actividades: -Esclusa de ingreso y egreso a áreas de asépticasÁreas de recepción de materiales estérilesTransfers o esclusas para el ingreso de materiales pre esterilizados o bajo procesos de sanitización.
RU-4.1-004	Obligatorio de construcción	Se debe contar con áreas de manufactura y soporte clase C para el desarrollo de las siguientes actividades: -Esclusas de ingreso y egreso de insumos y personal a áreas de manufactura NO aséptica -Área de carga de materiales para esterilizarÁreas de ingreso y egreso de materiales y/o producto semielaborado de áreas asépticasÁreas de fabricaciónLavado de accesorios y material.
RU-4.1-005	Obligatorio de construcción	Se debe contar con áreas de soporte ISO-Clase 8 (clase D) para el desarrollo de las siguientes actividades: -Esclusas ingreso de personal -Esclusas de insumos -Pasillos interiores de las áreas.

# RU	Clasificación	Descripción
RU-4.1-006	Obligatorio Regulatorio	La producción debe realizarse en áreas controladas conforme al apéndice A normativos de la norma NOM059-2015-SSA1. • Conteo de partículas totales: Clase A (ISO-Clase 5) Estáticas: ≥ 0.5 μm ≤ 3 520 ≥ 5.0 μm ≤ 20 Dinámicas: ≥ 0.5 μm ≤ 3 520 ≥ 5.0 μm ≤ 29 Clase B Estáticas: ≥ 0.5 μm ≤ 3520 ≥ 5.0 μm ≤ 29 Dinámicas: ≥ 0.5 μm ≤ 352 000 ≥ 5.0 μm ≤ 2 900 Clase C (ISO-Clase 7) Estáticas: ≥ 0.5 μm ≤ 2 900 Dinámicas: ≥ 0.5 μm ≤ 2 900 Clase D (ISO-Clase 8) Estáticas: ≥ 0.5 μm ≤ 29 000 Clase D (ISO-Clase 8) Estáticas: ≥ 0.5 μm ≤ 29 000 Dinámicas: NA • Conteo de partículas viables: Clase A (ISO-Clase 5) <1 UFC/m3 <1 UFC/m3 <1 UFC/guante Clase B <5 UFC/placa <1 UFC/m3 <5 UFC/placa <10 UFC/placa <10 UFC/m3 <5 UFC/placa

# RU	Clasificación	Descripción
RU-4.1-006	Obligatorio Regulatorio	La producción debe realizarse en áreas controladas conforme al apéndice A normativos de la norma NOM059-2015-SSA1. Clase D (ISO-Clase 8): 10-20 CAH Clase C (ISO-Clase 7) 20-50 CAH Clase B: 20-50 CAH Presiones diferenciales y flujos de aire > 5 Pa (0.02 in H2O) entre áreas de clase B > 15 Pa (0.06 in H2O) con respecto a áreas no asépticas > 5 Pa (0.02 in H2O) entre áreas de clase C > 10 Pa (0.04 in H2O) con respecto a cuartos adyacentes > 5 Pa (0.02 in H2O) entre áreas de clase D > 5 Pa (0.02 in H2O) áreas de menor clase Temperatura y humedad relativa Clase B Temperatura: 18.0 – 25.0 °C %Humedad relativa: 30% - 65 % Clase C (ISO-Clase 7) Temperatura: 18.0 – 25.0 °C %Humedad relativa: 30% - 65 % Clase D (ISO-Clase 8) Temperatura: 18.0 – 25.0 °C

7.2 Clasificación y distribución de áreas.

La clasificación de salas limpias según la norma ISO 14644-1 se basa en la concentración de partículas suspendidas en el aire, medidas en partículas por metro cúbico de aire, y clasifica las áreas en función de la cantidad de partículas de diferentes tamaños (expresadas en micras, µm). Los estándares de limpieza van desde ISO Clase 1 (la más limpia) hasta ISO Clase 9 (la menos limpia).

Antes de realizar la clasificación, se deben determinar los requisitos de limpieza del aire para el entorno específico, considerando factores como el tipo de actividad, la sensibilidad del proceso a contaminantes y el tamaño de las partículas a controlar.

La norma ISO 14644 establece varias clases de limpieza en función de la cantidad máxima de partículas permitidas en el aire:

- ISO Clase 1 a ISO Clase 3: Para aplicaciones ultra limpias, como en la fabricación de microchips o semiconductores.
- ISO Clase 4 a ISO Clase 5: Para la industria farmacéutica y biotecnológica, especialmente en la fabricación de productos estériles.
- ISO Clase 6 a ISO Clase 8: Para aplicaciones menos rigurosas, como la fabricación de dispositivos médicos y áreas de preparación en hospitales.
- ISO Clase 9: Equivalente a ambientes no controlados o condiciones normales del aire en interiores.

7.2.1 Clasificación de Salas Limpias según la Norma ISO 14644-1

La siguiente tabla presenta un resumen de la cantidad máxima de partículas permitidas para algunas clases ISO en un metro cúbico de aire, según el tamaño de las partículas:

Tabla 2. Concentración de partículas por clase ISO

Class ICO	Tamaño de partícula										
Clase ISO	≤ 0.1 µm	≤ 0.3 µm	≤ 0.5 µm	≤ 1.0 µm	≤ 5.0 μm						
ISO 1	10	2	N/A	N/A	N/A						
ISO 2	100	24	10	N/A	N/A						
ISO 3	1,000	237	102	35	N/A						
ISO 4	10,000	2,370	1,020	352	N/A						
ISO 5	100,000	23,700	3,520	832	29						
ISO 6	N/A	237,000	35,200	8,320	293						
ISO 7	N/A	N/A	352,000	83,200	2,930						
ISO 8	N/A	N/A	3,520,000	832,000	29,300						
ISO 9	N/A	N/A	N/A	8,320,000	293,000						

De acuerdo con los requerimientos de usuario mencionados anteriormente se realizó la propuesta de la distribución y dimensiones de las áreas. Como se muestran en el siguiente plano.

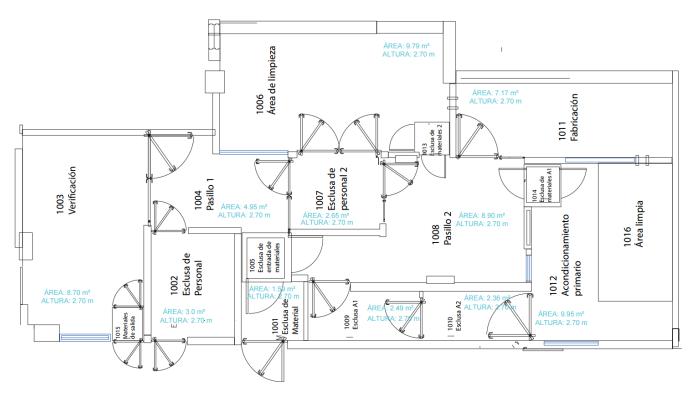
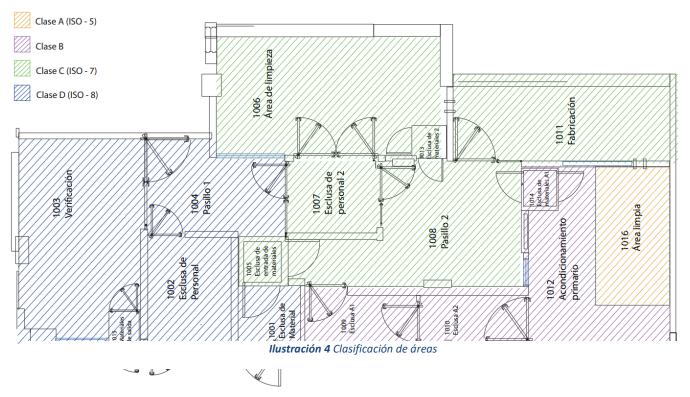



Ilustración 3 Plano de dimensiones y distribución de las áreas de fabricación

De acuerdo con la ISO-14644, la clasificación de áreas se muestra en el siguiente plano.

Ilustración 4 Zonificación por Unidad Manejadora de aire

7.3 Unidades Manejadoras de Aire

Se propone la instalación de dos unidades manejadoras de aire para suministrar condiciones ambientales de acuerdo a la clasificación del área:

- UMA01: Suministra a las áreas Clase C, Clase B y Clase A.
- UMA02: Suministra a las áreas Clase D.

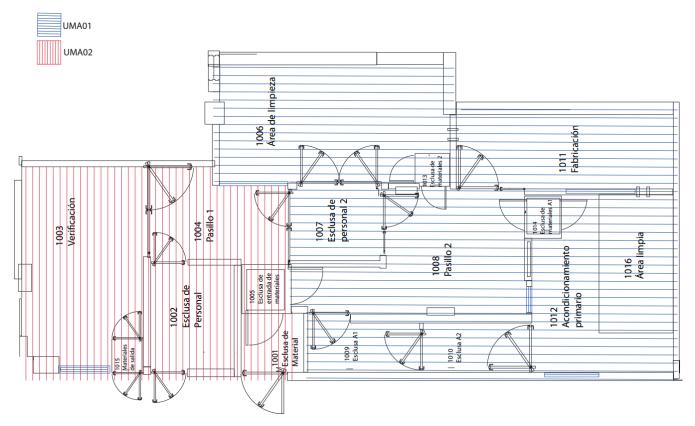


Ilustración 5 Zonificación por Unidad Manejadora de aire

7.4 Memoria de Cálculo

Con base en estos requerimientos se realiza la memoria de cálculo para determinar las especificaciones técnicas de las unidades manejadoras de aire.

Tabla 3. Memoria de cálculo para UMA001

								Inyecciór	1	CAH	Flujo p	ositivo de a	ire		F	lujo negativ	0	
No.	Nombre del área	Clase	Altura [m]	Área [m]	Volumen [m³]	c/h	c/h Con carga térm.	Inyección Requerida (PCM)	Inyección Corregida UMA-01	c/h Corregido	Corregida	Por puerta (+)	Total	Extracción	Retorno	Flujo negativo puertas	Colección Polvos	Flujo negativo Total
1012	ACONDICIONAMIENTO PRIMARIO	ISO- CLASE 06	2.7	9.9	26.7	38	1016	1016	1019	38	1019		1019	-	365	654	=	1019
1010	ESCLUSA A2	ISO- CLASE 06	2.7	2.4	6.4	26	167	167	170	27	170	314	484		170	314	-	484
1009	ESCLUSA A1	ISO- CLASE 07	2.7	2.5	6.7	25	168	168	170	25	170	314	484		255	229	-	484
1008	PASILLO 2	ISO- CLASE 07	2.7	8.8	23.8	71	1692	1692	1699	72	1699	850	2549		1529	1019	-	2549
1011	FABRICACIÓN	ISO- CLASE 07	2.7	7.2	19.4	25	484	484	484	25	484	85	569		119	450	-	569
1006	ÁREA DE LIMPIEZA	ISO- CLASE 07	2.7	10.8	29.1	40	1166	1166	1206	41	1206	688	1894	1894	-		-	
1007	ESCLUSA DE PERSONAL 2	ISO- CLASE 07	2.7	2.6	7.1	75	535	535	535	75	535	357	892		170	722	-	892

Tabla 4. Memoria de cálculo para UMA002

	Nombre		Altura	Área	Volumen			Inyección		CAH	Flujo	positivo de a	ire			Flujo nega	ativo	
No.	del área	Clase	[m]	[m]	[m³]	c/h	c/h Con carga térm.	Inyección Requerida	Inyección Corregida UMA-02	c/h Corregido	Corregi da	Por puerta (+)	Tolt al	Extracci ón	Retor no	Flujo negativo puertas	Colección Polvos	Flujo negativo Total
1009	PASILLO 1	ISO Clase 8	2.7	4.88	13.176	20	259	259	267	21	259	567	826	476		359	-	835
1002	ESLCUSA DE PERSONAL	ISO Clase 8	2.7	3.05	8.235	61	494	494	501	62	494	0	494	33		467	-	501
1003	REVISIÓN	ISO Clase 8	2.7	8.97	24.219	20	476	476	484	20	476	159	634	526		117	-	643
1001	ESCLUSA DE MATERIAL	ISO Clase 8	2.7	1.53	4.131	20	82	82	83	21	82	234	315	159		159	=	317

7.5 CALIFICACIÓN DE DISEÑO

El objetivo de la DQ es documentar y verificar que los componentes y equipos cumplan con las especificaciones de diseño del sistema HVAC y cumplir con los requisitos específicos del área limpia en cuanto a temperatura, humedad, presión diferencial y control de partículas.

7.5.1 Revisión de especificaciones

En esta primera etapa de calificación realice la verificación documental de las especificaciones técnicas de los equipos y componentes que conforman el sistema HVAC, así como la verificación de planos.

Especificaciones técnicas de la manejadora de aire UMA01

Componente	Especificación
Motor de inyección	Capacidad de inyección de 3150 CFM
Wotor de Inyección	Motor Campos & CIA 10HP
	Primera etapa: Filtro tipo bolsa trypack de 65%
	de eficiencia
	Segunda etapa: Filtros
Etapas de filtración	Tercera etapa:
	Cuarta etapa: La última etapa de filtración se realiza a nivel del plafón del área con filtros de alta Eficiencia HEPA.
Sistema de calefacción	

Especificaciones técnicas de la manejadora de aire UMA02

Componente	Especificación
	Ficha técnica del motor de inyección de la
Motor de inyección	manejadora UMA02 S&P 5 HP, capacidad de
	inyección de 1031 CFM.
	Primera etapa: Filtro tipo bolsa trypack de 65%
	de eficiencia
Etapas de filtración	Segunda etapa: Filtros de 85%
	Tercera etapa: 98%
Sistema de calefacción	

Especificaciones del sistema de control:

Tablero de fuerza

Componente	Especificación
	Modelo FC-101 (10HP)
	Características principales: Voltaje de suministro
Variador de frecuencia UMA01	200-240 V ± 10%, frecuencia de suministro 50/60 Hz,
	factor de potencia de desplazamiento (cos φ): > 0.98
	Voltaje de salida: 0 – 100% del voltaje suministrado.
	Modelo FC-101 (5HP)
	Características principales: Voltaje de suministro
Variador de frecuencia UMA02	200-240 V ± 10%, frecuencia de suministro 50/60 Hz,
	factor de potencia de desplazamiento (cos φ): > 0.98
	Voltaje de salida: 0 – 100% del voltaje suministrado.
	Modelo FC-101 (2HP)
	Características principales: Voltaje de suministro
Variador de frecuencia UEX134	200-240 V ± 10%, frecuencia de suministro 50/60 Hz,
	factor de potencia de desplazamiento (cos φ): > 0.98
	Voltaje de salida: 0 – 100% del voltaje suministrado.

PLC:

Componente	Especificación
PLC SIEMENS	CPU 1214C, CPU compacta, DC/DC/DC, E/S integradas: 14 DI 24 V DC; 10 DO 24 V DC; 2 AI 0-10 V DC, alimentación: DC 20,4-28,8 V DC, memoria de programas/datos 150 KB.
SIEMENS SIMATIC S7-1200	módulo de entradas analógicas, SM 1231, 8 AI, +/- 10V, +/-5V, +/-2,5V, o 0-20 mA/4-20 mA, 12 bits + signo o (13 bits ADC).
SIEMENS SIMATIC S7-1200	Salida analógica, SM 1232, 4 AO +/- 10V, Resolución de 14 bits, o 0-20 mA/4-20 mA. Resolución de 13 bits.
Fuente de alimentación	Entrada; Consumo CA 1.23ª, 230 V AC / 2.47 A, 110 V AC, frecuencia de entrada 47-63 Hz, fusible de entrada sí 4A, Varistor protector de sobretensión. Salida; conmutado paralelo, corriente de salida continua U _{nominal} 10A @ 55°C, 2.5 A @ 70°C, potencia de salida 240 W.
UPS	Entrada 127 V, 1 Fase, intervalo de 95 – 140V, frecuencia nominal 60Hz ± 5%, corriente 3.8 A. Salida 120 V, 60 Hz ± 0.1, capacidad nominal 480 VA / 300 W. Tiempo de reserva hasta 40 minutos

Sensores:

Componente	Especificación
Sensor de baja presión	Precisión*: ±1 % FS Sobrepresión: 10 PSID Voltaje de suministro: 12-40 VCC 12-35 VCA (solo unidades de salida de VCC)
Transmisor de humedad relativa y temperatura	Rango de medición de 0 a 50 °C modelo ambiental y estándar y de 5 a 95% HR. Precisión: ±0.4% de la lectura ±0.3 °C modelo ambiental, ±1.8% HR (si 15 °C ≤ T ≤ 25 °C) modelo ambiental.
Sensor de velocidad de aire	Especificaciones: 0 a 20 m/s Precisión de 0,2 m/s, a 20 °C (68 °F), 45 % de humedad relativa y 1013 hPa (14,7 psi) Fuente de alimentación: 24V DC ±20%
Transmisor de temperatura y presión diferencial	Precisiones CP211/212: ±0,5 % de la lectura ±2 Pa. Resolución CP211/212: 1 Pa; 0,1 mmH2O; 0,01 mbar; 0,01 inWG; 0,01 mmHG; 0,1 daPa; 0,001 kPa; 0,01 hPa Alimentación 24 V CA/V CC ±10 %, 100-240 V CA, 50-60 Hz

Panel de control:

Componente	Especificación					
Pantalla de control SIEMENS	SIMATIC HMI TP700 Comfort Características principales: Comfort Panel, mando táctil, pantalla panorámica TFT 7", 16 millones de colores, interfaz PROFINET, interfaz MPI/PROFIBUS DP, memoria de configuración de 12 MB, Windows CE 6.0, configurable a partir de WinCC Comfort V11. Dimensiones: Anchura 214 mm, altura: 158 mm, profundidad 63 mm.					

Planos de ductos de aire, se adjunta evidencia en el anexo 1.

Plano de flujos de aire, se adjunta evidencia en el anexo 1.

Diagrama unifilar del sistema HVAC, se adjunta evidencia en el anexo 1.

7.6 CALIFICACIÓN DE INSTALACIÓN

La calificación de instalación tiene como objetivo verificar que todos los componentes y equipos del sistema se hayan instalado correctamente y de acuerdo con las especificaciones y los requisitos de diseño. En esta fase revise que la instalación cumpla con las normas y regulaciones aplicables, asegurando que el sistema esté preparado para operar correctamente en las fases de calificación de operación (OQ) y de desempeño (PQ).

Durante esta etapa realice las siguientes actividades para confirmar la correcta instalación del sistema HVAC de acuerdo con los planos y especificaciones.

7.6.1 Pruebas de presión y estanqueidad.

Para garantizar que el sistema no presente fugas realice pruebas de presión y estanqueidad en los ductos y conductos. Para asegurar que el aire no escape ni entre en el sistema de forma no controlada, lo cual es crítico para mantener la integridad del flujo de aire y la presión en áreas controladas.

Utilice la metodología propuesta por SMACNA (Sheet Metal and Air Conditioning Contractors' National Association) para realizar las pruebas de fugas en conductos de sistemas HVAC. Esta metodología clasifica los sistemas de conductos según sus características y especifica procedimientos detallados para verificar la presencia de fugas.

A continuación, se describe la metodología de SMACNA para realizar pruebas de fugas en conductos de sistemas HVAC:

La metodología SMACNA clasifica los conductos en diferentes clases de presión (Clase A, B, C, etc.), según la presión máxima de operación del sistema. Cada clase tiene requisitos específicos de tolerancia de fugas y métodos de prueba adecuados.

Clase A: Baja presión (generalmente menor a 2 in. wg).

Clase B: Presión media (hasta 3 in. wg).

Clase C: Alta presión (generalmente mayor a 3 in. wg).

Esta clasificación permite adaptar la prueba según el tipo de conducto y el uso específico del sistema HVAC.

7.6.2 Preparación de la prueba de fugas

- 1. Selección de la sección de prueba: Se identifican las secciones de conducto que serán probadas.
- Cálculo de la tasa de fuga permitida: SMACNA establece una tasa de fuga máxima permitida para cada clase de presión, que se mide en pies cúbicos por minuto por pie cuadrado de superficie de conducto (CFM/ft²). Este valor límite es calculado en función de la clase de presión y el área total del conducto.
- Sellado de las aperturas: Se sellan todas las entradas, salidas y puntos de conexión en la sección de prueba. Esto permite medir exclusivamente la fuga de aire a través de las paredes del conducto y sus uniones.

7.6.3 Establecimiento de la presión de prueba

- Determinación de la presión de prueba: Según la clase de presión del conducto, se elige una presión de prueba específica en conformidad con los valores estipulados por SMACNA. Esta presión es generalmente igual o un poco superior a la presión operativa del sistema HVAC.
- 2. Presurización del conducto: Se utiliza un equipo de presurización, como un ventilador de prueba, para inyectar aire en el conducto hasta alcanzar la presión deseada. La presión debe mantenerse constante para medir con precisión la fuga.

7.6.4 Medición de la tasa de fuga

- Medición de fugas: La tasa de fuga se mide utilizando un medidor de flujo o un dispositivo similar que cuantifica el volumen de aire que se necesita para mantener la presión de prueba estable en el conducto. Este flujo adicional representa la cantidad de aire que está escapando del conducto, y su valor se expresa en CFM.
- Cálculo de la tasa de fuga por unidad de área: La tasa de fuga medida se ajusta por unidad de área del conducto, permitiendo comparar el resultado con los límites permitidos por SMACNA para la clase de presión correspondiente.

7.6.5 Comparación de resultados con los criterios de SMACNA

- Verificación de cumplimiento: La tasa de fuga obtenida se compara con los límites de aceptación establecidos por SMACNA para la clase de presión del conducto. Si la tasa de fuga está dentro del límite permitido, la sección de conducto se considera conforme a los estándares de estanqueidad de SMACNA.
- Detección de fugas mayores: En caso de que la tasa de fuga supere los límites permitidos, SMACNA recomienda realizar una inspección más detallada para identificar puntos específicos de fuga y realizar reparaciones.

A continuación, se presentan los resultados obtenidos de esta prueba:

Tabla 3. Resultados de la prueba de presión y estanqueidad

rabia 3. Resultados	s de la prueba de pre	esion y estanqueidad	a									
	Sistema de extracción ramal de ISO Clase-08											
Nombre reporte: Calculo de fuga Cabezal ductos ISO-8 (UEX)												
Fecha de ejecución:	21DIC24											
Superficie total de du	ıctos: 49.99 m²											
Factor de fuga permi	tida en litros por segui	ndo por m² de ductos (500 Pa Clase A: 1.53 I	t/s m²								
Total de fuga permiti	da = Superficie total de	e ducto x factor de fug	a.									
Total de fuga permiti	da = 76.49 lt/s											
Lectura	Minuto	Pascales	Fuga It/s	Cumple								
1	1 14:28 521 2.38 Si											
2	14:37	545	2.43	Si								

Nota: el resultado se expresa en unidades de caudal lt/s, lo que equivale a 1 CFM = 0.47 lt/s.

Banco para filtros (UEX)

Nombre reporte: Calculo de fuga Banco para filtros ISO-8

Fecha de ejecución: 16NOV24 Superficie total de ductos: 4.49 m²

Factor de fuga permitida en litros por segundo por m2 de equipos para 1000 Pa Clase B: 0.8 lt/s m2

Total de fuga permitida = Superficie total de ducto x factor de fuga.

Total de fuga permitida = 3.59 lt/s

Total de laga perilina				
Lectura	Minuto	Pascales	Fuga It/s	Cumple
1	01:14	1205	1.15	Si
2	01:25	1185	1.65	Si
3	01:34	1165	1.9	Si

Cabezal salida de UMA01

Nombre reporte: Calculo de fuga ductos de invección

Fecha de ejecución: 20JUN23 Superficie total de ductos: 8.26 m²

Factor de fuga permitida en litros por segundo por m2 de equipos para 500 Pa Clase A: 1.53 lt/s m2

Total de fuga permitida = Superficie total de ducto x factor de fuga.

Total de fuga permitida = 12.63 lt/s

Total ac laga perifiti	da - 12.00 103					
Lectura	Minuto	Pascales	Fuga It/s	Cumple		
1	10:51	568	0	Si		
2	10:59	564	0	Si		
3	11:06	552	0	Si		

Cabezal salida de UMA02

Nombre reporte: Calculo de fuga ductos de inyección

Fecha de ejecución: 08JUL23 Superficie total de ductos: 17.94 m²

Factor de fuga permitida en litros por segundo por m2 de equipos para 500 Pa Clase A: 1.53 lt/s m2

Total de fuga permitida = Superficie total de ducto x factor de fuga.

Total de fuga permitida = 27.46 lt/s

Total uc luga permit	ida – 21. 4 0 103			
Lectura	Minuto	Pascales	Fuga It/s	Cumple
1	01:14	571	3.01	Si
2	01:25	565	3.25	Si
3	01:34	561	3.2	Si

7.7 Verificación de los componentes y materiales.

Se realizó la verificación de los componentes revisando y documentando que todos los componentes del sistema HVAC coincidan con las especificaciones de diseño.

Se verificó que las unidades de manejo de aire, compresores, ventiladores, filtros, ductos y demás equipos son los indicados en los planos.

El sistema se construyó de acuerdo con el plano Diagrama unifilar del sistema HVAC, se adjunta evidencia en el anexo 1.

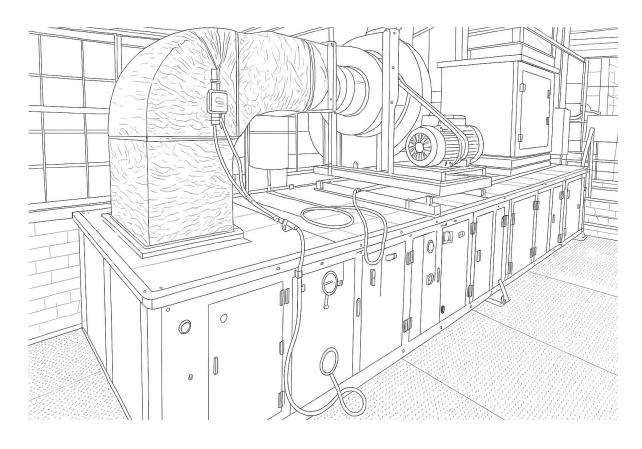


Ilustración 6 Ejemplo de Unidad manejadora de aire instalada

1. Verificación de la instalación de los filtros.

Se realizó la instalación de los filtros de alta eficiencia HEPA (High Efficiency Particulate Air), los cuales son componentes críticos en áreas limpias.

La instalación de los filtros HEPA lo llevo a cabo utilizando los procedimientos de instalación adecuados para evitar fugas de aire o fallos en la eficiencia de filtración.

Para detectar fugas de aire no filtrado se utilizó el método de la prueba de desafío de aerosol PAO (Polyalphaolefin) que consiste en introducir aguas arriba del filtro (en el lado de entrada de aire) un aerosol de partículas de tamaño conocido y medir su concentración después de pasar por el filtro.

Si la concentración de partículas aguas abajo es menor al 0.01% de la concentración aguas arriba (es decir, el filtro retiene al menos el 99.99% de las partículas de 0.3 micras), el filtro se considera íntegro.

7.8 Instalación y verificación de filtros HEPA

Realice la instalación de los filtros de alta eficiencia HEPA (High Efficiency Particulate Air) que son componentes críticos en áreas limpias.

La instalación de los filtros HEPA lo realice utilizando los procedimientos de instalación adecuados para evitar fugas de aire o fallos en la eficiencia de filtración.

Para detectar fugas de aire no filtrado utilice el método de la prueba de desafío de aerosol PAO (Polyalphaolefin) que consiste en introducir aguas arriba del filtro (en el lado de entrada de aire) un aerosol de partículas de tamaño conocido y medir su concentración después de pasar por el filtro.

Si la concentración de partículas aguas abajo es menor al 0.01% de la concentración aguas arriba (es decir, el filtro retiene al menos el 99.99% de las partículas de 0.3 micras), el filtro se considera íntegro.

A continuación, se muestran los resultados obtenidos de la evaluación de los filtros instalados:

Tabla 4. Resultados de la integridad de filtros HEPA

Clave				Resulta	ados obtenidos	de illitos filli A					
del cuarto / Equipo	Clase	Nivel	No	Zona del filtro	Criterio de Aceptación	Integridad de Filtros HEPA (% máximo de penetración)	Cumple Sí/No				
				Media filtrante		0.0001	SI				
			1	Periferia del filtro		0.0001	SI				
				Unión media filtrante con marco		0.0006	SI				
				Media filtrante		0.0003	SI				
		2	Periferia del filtro		0.0002	SI					
				Unión media filtrante con marco		0.0006	SI				
	Clase A			Media filtrante		0.0002	SI				
1016	I -		3	Periferia del filtro	≤ 0.01 % de la	0.0037	SI				
				Unión media filtrante con marco		0.0002	SI				
				Media filtrante		0.0000	SI				
		FT	4	Periferia del filtro	concentración	0.0014	SI				
				Unión media filtrante con marco	del aerosol (PAO)	0.0066	SI				
				Media filtrante		0.0001	SI				
			5	Periferia del filtro		0.0002	SI				
				Unión media filtrante con marco		0.0006	SI				
				Media filtrante		0.0031	SI				
			2	Periferia del filtro		0.0000	SI				
1008	Clase B		Unión media filtrante con marco		0.0026	SI					
1000	Olase B			Media filtrante						0.0009	SI
			3	Periferia del filtro		0.0005	SI				
				Unión media filtrante con marco		0.0015	SI				

Tabla 4. Resultados de la integridad de filtros HEPA (Continuación)

Clave			JIG 4. 1		ados obtenidos	HEPA (Continuacion	,				
del cuarto / Equipo	Clase	Nivel	No	Zona del filtro	Criterio de Aceptación	Integridad de Filtros HEPA (% máximo de penetración)	Cumple Sí/No				
				Media filtrante		0.0002	SI				
1010			4	Periferia del filtro	10.04.0/	0.0003	SI				
	Clase B	FT		Unión media filtrante con marco	≤ 0.01 % de la concentración	0.0009	SI				
	Clase D	"		Media filtrante	del aerosol	0.0006	SI				
1009			5	Periferia del filtro	(PAO)	0.0024	SI				
1003				Unión media filtrante con marco	-	0.0004	SI				
				Media filtrante		0.0017	SI				
1011			1	Periferia del filtro		0.0014	SI				
				Unión media filtrante con marco		0.0012	SI				
	Clase C FT			Media filtrante	≤ 0.01 % de la	0.0004	SI				
		FT	6	Periferia del filtro	de la concentración	0.0004	SI				
1008				Unión media filtrante con marco	del aerosol (PAO)	0.0004	SI				
1006									Media filtrante		0.0005
			7	Periferia del filtro		0.0005	SI				
			-	Unión media filtrante con marco		0.0010	SI				
				Media filtrante		0.0001	SI				
1007			8	Periferia del filtro		0.0007	SI				
				Unión media filtrante con marco		0.0004	SI				
				Media filtrante	≤ 0.01 % de la	0.0002	SI				
	Clase C	FT	9	Periferia del filtro	concentración	0.0003	SI				
1006				Unión media filtrante con marco	del aerosol (PAO)	0.0002	SI				
1000				Media filtrante		0.0006	SI				
			10	Periferia del filtro		0.0006	SI				
				Unión media filtrante con marco		0.0011	SI				

7.9 CALIFICACIÓN DE OPERACIÓN

Durante la etapa de Calificación de Operación se realizan pruebas al sistema con el objetivo de verificar que el sistema de calefacción, ventilación y aire acondicionado (HVAC) opere de acuerdo con las especificaciones y requisitos funcionales previsto en el diseño.

En esta etapa realice una serie de actividades para garantizar que el sistema es capaz de mantener un entorno controlado.

7.10 Pruebas de sistemas de control

Verifique por medio de un plan de pruebas el funcionamiento de los controles automáticos y manuales del sistema HVAC en las cuales se reta el funcionamiento de los componentes, equipos e instrumentos que integran el sistema.

Verifique que los sistemas de monitoreo operaran adecuadamente y que los datos obtenidos demuestren el correcto funcionamiento de los elementos que componen el sistema.

Verifique que las alarmas respondieran adecuadamente a cualquier desviación de los parámetros establecidos.

Verifique que el arranque y paro del sistema HVAC correspondiera con los requerimientos de usuario, garantizando el suministro de aire en primera estancia a las áreas de mayor clasificación y en cascada hacia las áreas de menor clasificación.

7.11 Balanceo del sistema

Para el balanceo del sistema de calefacción, ventilación y aire acondicionado (HVAC) se ajustaron los flujos de aire dentro del área de fabricación garantizando que todas las áreas reciban la cantidad adecuada de aire según los requerimientos de diseño. El objetivo principal es asegurar que el sistema funcione de manera eficiente y que mantenga un ambiente controlado en todos los espacios.

Para realizar el balanceo se utilizaron instrumentos de medición calibrados como anemómetros, bolómetros y manómetros para medir la velocidad del aire, el flujo y la presión en diferentes puntos del sistema. Los resultados se comparan con los valores diseñados en la memoria de cálculo.

Se realizó el balanceo del sistema en conjunto con el personal contratista el cual consistió en realizar los ajustes en:

7.12 Caudales de aire de inyección y extracción.

Durante el balanceo se realizaron ajustes en dampers con el objetivo de adecuar el caudal de aire en los ductos, filtros terminales, difusores y rejillas de retorno y extracción.

Se verificaron durante los ajustes de caudal las presiones diferenciales entre áreas, obteniendo los siguientes resultados:

Tabla 5. Resultados de balanceo de inyección UMA01

	Francis	FO										Frecuencia 50 Hz													
	Frecuencia	50	ПZ							Total de	Total	Total de	Total de	Cambios											
No.	Nombre del Área	No.	Tipo	Dimensión	c/h	Lectura 1	Lectura 2	Lectura 3	Promedio	aire en Campo CFM	de aire en Campo MCH	aire en Proyecto CFM	aire en Proyecto MCH	de aire por Hora (Campo)											
1012	ACONDICIONAMIENTO PRIMARIO	1	GF	48"x24"	38	404	396	356	385	642	1091	600	1019	41											
1012	ACONDICIONAIMIENTO PRIMARIO	2	GF	24"x24"	252	262	252	255																	
1006	ÁREA DE LIMPIEZA	1	GF	48"x24"	44	565	562	560	562	747	1269	710	1269	44											
1000	AREA DE LIMPIEZA	2	GF	24"x24"	24"x24" 41	178	184	192	185																
1008	PASILLO 2	1	GF	48"x24"		606	599	610	605	1094	1859	1000	1859	78											
1006	PASILLO 2	2	GF	48"x24"	72	492	485	490	489																
1007	ESCLUSA DE PERSONAL 2	1	GF	48"x24"	75	378	309	335	341	341	579	315	535	81											
1011	FABRICACIÓN	1	GF	24"x24"	25	292	295	290	292	292	497	285	484	26											
1010	ESCLUSA A2	1	GF	12"x12"	27	104	112	108	108	108	183	100	170	29											
1009	ESCLUSA A1	1	GF	12"x12"	25	111	115	111	112	112	191	100	170	28											
									Total	3336	5669	3110	5506												

Tabla 6. Resultados de balanceo de inyección UMA02

	Frecuencia	45	Hz										
No.	Nombre del Área	No. Tipo	Dimensión	c/h	Lectura 1	Lectura 2	Lectura 3	Promedio	Total de aire en Campo CFM	Total de aire en Campo MCH	Total de aire en Proyecto CFM	Total de aire en Proyecto MCH	Cambios p Hora (Campo)
1004	PASILLO 1	1 DI-3V	9"X6"	21	175	182	182	180	180	306	160	272	23
1002	ESCLUSA DE PERSONAL	2 DI-4V	9"X9"	61	315	325	318	319.33	319	542	300	510	66
1001	ESCLUSA DE MATERIAL	3 DI-3V	6"X6"	21	185	198	183	189	189	321	50	85	78
1003	VERIFICACIÓN	4 DI-3V	12"X9"	20	333	345	355	344.33	344	584	290	493	24
								Total	1032	1753	800	1359	

 Tabla 7. Resultados de balanceo de aire de retorno y extracción UMA01

No.	Nombre del Área	No. Tipo	Dimensión	Flujo	Lectura 1	Lectura 2	Lectura 3	Promedio	Total de aire en Campo	Total de aire en Proyecto	
4000			14"X10"	450	400	398	345	381	765	000	
1008	PASILLO 2	PASILLO 2	2 RR	14"X10"	450	380	385	387	384	765	900
1012	ACONDICIONAMIENTO PRIMARIO	3 RB	8"X10"	205	180	165	170	172	172	205	
1010	ESCLUSA ÁREAS ASÉPTICAS	3 RR	8"X6"	100	65	55	50	57	57	100	
1009	ESCLUSA PERSONAL	3 RR	8"X6"	150	92	92	88	91	91	150	
1011	ÁREA DE FABRICACIÓN	3 RR	8"X6"	70	82	75	73	77	77	70	
1007	ESCLUSA PERSONAL DE FABRICACIÓN	3 RR	8"X6"	100	90	92	92	91	91	100	
,				•				Total	1253	1525	

 Tabla 8. Resultados de balanceo de aire de retorno y extracción UMA02

No.	Nombre del Área	No. Tipo	Dimensión	Flujo	Lectura 1	Lectura 2	Lectura 3	Promedio	Total de aire en Campo	Total de aire en Proyecto
1006	ÁREA DE LIMPIEZA	1 REB	8X4"	1115	715	765	745	742	742	1115
1004	PASILLO 1	2 RE	12X8"	255	150	145	167	154	154	255
1002	ESCLUSA DE PERSONAL	3 RE	8"X6"	100	35	40	38	38	38	100
1003	VERIFICACIÓN	1 RE	14X10"	315	215	225	220	220	220	315
1001	ESCLUSA DE MAT. MP.	1 RE	8"X6"	95	86	80	85	84	84	95
								Total	1238	1880

Tabla 9. Resultados de presiones diferenciales entre áreas del balanceo

Tablero de presiones diferenciales No.	No. de cuarto (Alta presión)	Lado de alta presión	VS No. de cuarto (Baja presión)	Lado de baja presión	DP Proyecto (Pa)	DP 1er.	DP 2da.	DP 3er.	DP PROMEDIO	LECTURA EN MANÓMETRO (Pa)
MAD597	1012	ACONDICIONAMIENTO PRIMARIO	1008	ESCLUSA 1	32.5	33.33	32.9	32.91	32.91	33.5
MAD645	1012	ACONDICIONAMIENTO PRIMARIO	1010	ESCLUSA 02 ÁREA ASÉPTICA	40.71	41.13	40.72	40.853	40.853	38.936
MAD607	1012	ACONDICIONAMIENTO PRIMARIO	1011	ÁREA DE FABRICACIÓN	38.97	38.75	37.42	38.38	38.38	22.072
MAD647	1010	ESCLUSA 02 ÁREA ASÉPTICA	1009	ESCLUSA 01 ÁREA ASÉPTICA	14.75	15.09	15.23	15.023	15.023	11.16
MAD640	1011	ÁREA DE FABRICACIÓN	1008	PASILLO 02	54.26	54.4	54.87	54.51	54.51	48.608
MAD643	1011	ÁREA DE FABRICACIÓN	1006	ÁREA DE LIMPIEZA	82.32	82.29	81.25	81.953	81.953	76.136
MAD648	1009	ESCLUSA 01 ÁREA ASÉPTICA	1008	ESCLUSA 1	13.06	14.12	13.54	13.573	13.573	12.152
MAD641	1008	ESCLUSA 1	1007	ESCLUSA FABRICACIÓN	14.76	15.2	15.56	15.173	15.173	12.648
MAD602	1007	ESCLUSA FABRICACIÓN	1004	PASILLO 01	18.72	18.43	18.67	18.607	18.607	20.584
MAD600	1007	ESCLUSA FABRICACIÓN	1006	ÁREA DE LIMPIEZA	14.69	13.36	14.3	14.117	14.117	13.888

Tabla 10. Resultados de presiones diferenciales entre áreas del balanceo

Tablero de presiones diferenciales No.	No. de cuarto (Alta presión)	Lado de alta presión	VS No. de cuarto (Baja presión)	Lado de baja presión	DP Proyecto (C.A.)	DP 1er.	DP 2da.	DP 3er.	DP PROMEDIO	LECTURA EN MANÓMETRO (Pa)
MAD425	1004	PASILLO 01	1003	VERIFICACIÓN	6.0	11.69	12.49	12.24	12.14	12.4
MAD429	1002	ESCLUSA DE PERSONAL	1004	PASILLO 01	6.0	32.06	31.95	32.33	32.113	31
MAD417	1002	ESCLUSA DE PERSONAL	PASILLO EXTERIOR	PASILLO EXTERIOR	12.0	51.55	51.68	50.5	51.243	52.08
MAD433	1001	ESCLUSA DE MAT. MP.	PASILLO EXTERIOR	PASILLO EXTERIOR	6.0	22.15	28.55	28.88	26.527	33.48
MAD430	1003	VERIFICACIÓN	PASILLO EXTERIOR	PASILLO EXTERIOR	6.0	3.92	4.07	6.76	4.917	8.68

7.13 Ajustes térmicos

Se verificó que las condiciones ambientales de temperatura y humedad relativa se mantuvieran dentro del rango de operación propuesto tras los ajustes realizados en el sistema de control.

7.14 CALIFICACIÓN DE DESEMPEÑO

La etapa de desempeño es la última fase de calificación del sistema antes de su liberación, el propósito es confirmar que el sistema puede mantener los parámetros de operación especificados desde el diseño de manera consistente y bajo condiciones reales de uso durante el ciclo de vida del sistema.

Concluida la etapa de anterior, programé las actividades para que en conjunto con las áreas de producción se retara el sistema HVAC bajo condiciones rutinarias de operación.

La calificación de desempeño del sistema HVAC consistió en la evaluación de los siguientes parámetros:

- Partículas no viables.
- Partículas viables.
- Presiones diferenciales.
- Patrones de flujo.
- Cambios de aire por hora.
- Temperatura
- Humedad Relativa

7.15 Conteo de partículas totales

De acuerdo con la Norma ISO 14644, realice el conteo de partículas totales durante tres días consecutivos en las áreas de fabricación en condiciones estáticas y condiciones dinámicas. Para evaluar la clasificación propuesta de áreas Clase A (ISO-Clase 5), Clase B, Clase C (ISO-Clase 7) y Clase D (ISO-Clase 8).

7.16 Medición de Partículas en el Aire

Se realizan mediciones de partículas en el aire utilizando contadores de partículas en varias ubicaciones dentro del área a clasificar para asegurar una evaluación representativa del área, según el tamaño del espacio y las recomendaciones de la norma.

El tamaño de partículas más comúnmente evaluado es de 0.1 μm, 0.3 μm, 0.5 μm, 1 μm y 5 μm, dependiendo de la clase ISO objetivo, en este caso se consideran tamaños de partículas de 0.5 μm y 5.0 μm.

7.17 Establecimiento de Puntos de Muestreo

Según el tamaño del área, la norma ISO 14644-1 especifica el número mínimo de puntos de muestreo necesarios. Esto se calcula en función de la raíz cuadrada del área en metros cuadrados.

En cada punto de muestreo se toma una muestra de aire y se mide la cantidad de partículas presentes, asegurando que los valores cumplan con los límites de la clase deseada.

7.18 Cálculo del Número Máximo de Partículas Permitidas

La norma ISO 14644 define el número máximo de partículas permitidas para cada clase, en la siguiente tabla se especifican los límites máximos permitidos para los tamaños de partículas evaluados.

Tabla 11. Criterios de aceptación para partículas totales

Clasificación del	Condicione	es estáticas	Condiciones dinámicas			
área	≥ 0.5 µm	≥ 5.0 µm	≥ 0.5 µm	≥ 5.0 µm		
Clase A (ISO-Clase 5)	≤ 3 520 partículas /m³	≤ 20 partículas /m³	≤ 3 520 partículas /m³	≤ 20 partículas /m³		
Clase B	≤ 3 520 partículas /m³	≤ 29 partículas /m³	≤ 352 000 partículas /m³	≤ 2 900 partículas /m³		
Clase C	≤ 352 000 partículas	≤ 2 900 partículas	≤ 3 520 000	≤ 29 000 partículas		
(ISO-Clase 7)	/m ³	/m ³	partículas /m³	/m ³		
Clase D (ISO-Clase 8)	≤ 3 520 000 partículas /m³	≤ 29 000 partículas /m³	NA	NA		

7.19 Realización de Pruebas en Condiciones estáticas y dinámicas

Las áreas deben ser evaluadas en condiciones operativas (con equipos en funcionamiento y personal presente) y en condiciones de reposo (sin actividad o con equipos apagados).

Esto asegura que el ambiente cumpla con los requisitos de limpieza tanto durante la operación como cuando no se utiliza.

7.20 Evaluación y Comparación de Resultados

Los resultados de cada punto de muestreo se comparan con los valores máximos permitidos según la clase de limpieza especificada.

Si los resultados cumplen con los límites, el área se clasifica como adecuada para esa clase de limpieza. Si no cumplen, se deberán tomar medidas correctivas, como mejorar la filtración del aire o ajustar la ventilación.

7.21 Resultados de los conteos de partículas

A continuación, se muestran los resultados obtenidos de los conteos de partículas por cada área evaluada.

Tabla 12. Resultados de los conteos de partículas totales

					Itados promed	<u> </u>			
Clase	Clave	Ubicación	Monitore	o día 1	Monitore	o día 2	Monitore	o día 3	Cumple
Clase	Clave	Obicación	Tama	iño	Tama	ño	Tama	ño	Cumple
			≥ 0.5 µm	≥ 5.0 µm	≥ 0.5 µm	≥ 5.0 µm	≥ 0.5 µm	≥ 5.0 µm	
		Loc 1	1	0	0	0	0	0	SI
		Loc 2	0	0	0	0	0	0	SI
Ψ QQ	FT 1	1	0	1	0	0	0	SI	
Clase A (ISO-5)	1016	FT 2	0	0	0	0	0	0	SI
5≝		FT 3	0	0	0	0	0	0	SI
		FT 4	0	0	0	0	0	0	SI
		FT 5	0	0	0	0	0	0	SI
		Loc 1	98	10	68.9	0	36.2	3.3	SI
		Loc 2	157	10	16.6	0	3.5	0	SI
		Loc 3	6	0	16.6	0	13.3	0	SI
	1008	Loc 4	6	0	6.8	0	13.3	0	SI
		Loc 5	42	0	26.4	0	6.8	0	SI
Ф		FT 2	39	0	0	0	10.1	3.3	SI
Clase B		FT 3	6	0	0	0	0	0	SI
Ö		Loc 1	264.7	3.3	89	3	59	7	SI
	1010	Loc 2	166.6	0	43	3	89	10	SI
		FT 4	9.6	3.3	0	0	0	0	SI
		Loc 1	186.4	3.3	259	10	91.8	16.3	SI
	1009	Loc 2	484.3	0	145	10	421	3	SI
		FT 5	42.4	0	6.9	3.3	0	0	SI
1		Loc 1	7054.5	1707.9	7593.1	1007.1	2827.1	526.8	SI
S C		Loc 2	10294.4	546.1	5541.8	637.5	1893.7	346.6	SI
ase Cľ	1011	Loc 3	1324.7	176.5	7807.7	954.3	2626	529.7	SI
Clase C (ISO Clase - 7)		Loc 4	725.9	169.9	3737.5	389.1	2675.5	608.3	SI
=		FT 1	6.3	0	0	0	0	0	SI

				Result	ados promedio) (partículas	/m³)		
			Monitore	o día 1	Monitore	o día 2	Monitore	o día 3	
Clase	Clave	Ubicación	Tama	año	Tama	ño	Tama	ño	Cumple
			≥ 0.5 µm	≥ 5.0 µm	≥ 0.5 µm	≥ 5.0 µm	≥ 0.5 µm	≥ 5.0 µm	
		Loc 1	320	71.3	689.2	71.2	506.5	90.9	SI
		Loc 2	332.9	45.1	662.7	45	489.3	51.9	SI
		Loc 3	987	139.9	735	18.9	473.9	84.4	SI
	1008	Loc 4	362.4	18.9	349	18.9	912.2	107.3	SI
		Loc 5	1396	284	2163.1	355.5	768	103.9	SI
		FT 6	5.8	5.8	0	0	0	0	SI
		FT 7	25.5	18.9	0	0	0	0	SI
- 7		Loc 1	343	41.8	493	25.4	48.3	2.5	SI
Clase C (ISO Clase - 7)	1007	Loc 2	932.3	61.5	179.1	5.8	853.2	110.5	SI
Clas		FT 8	0	0	0	0	0	0	SI
SC		Loc 1	2375.5	467.3	1492.3	163	5564.5	859.7	SI
		Loc 2	6935.1	765.6	1910.1	71.3	4585.6	862.9	SI
		Loc 3	3707.6	356	908.8	64.7	774.7	136.7	SI
	1006	Loc 4	6462.8	804.3	4176.9	431.1	486.8	45.1	SI
	1000	Loc 5	529.7	107.3	2743.3	221.7	2459.8	287.2	SI
		Loc 6	1269.2	133.5	1807.7	117	1036.6	120.4	SI
		FT 9	0	0	0	0	0	0	SI
		FT 10	0	0	0	0	0	0	SI
	1001	Loc 1	192249	608.1	100937.1	725.8	94156.7	360.9	SI
	1001	Dif 14H	164061.8	313.8	97252.6	349.1	132249.4	8942.4	SI
		Loc 1	161819.6	266.7	108682.8	631.7	90095.5	360.9	SI
	1002	Loc 2	167093.2	90.2	100007.1	302.1	85657.6	396.2	SI
		Dif 13H	181124.9	207.9	102679.3	561	77888.4	255	SI
		Loc 1	144515.4	2044.2	97040.7	1667.6	56746.7	655.2	SI
Clase D (ISO Clase - 8)	1009	Loc 2	127258.3	1008.4	82585.2	926	70648.9	1396.8	SI
se [1009	Loc 3	115298.4	761.2	84633.5	2032.5	67658.9	820	SI
Clas		Dif 11H	201301.3	149	102455.6	149	96169.6	219.7	SI
SCI		Loc 1	186940.1	1867.7	105151.3	749.4	81984.9	725.8	SI
		Loc 2	181124.9	1338	107187.8	761.2	97346.7	1031.9	SI
	1003	Loc 3	172696.5	737.6	115910.5	1232	95157.2	1455.7	SI
	1003	Loc 4	176439.8	1338	105645.7	561	88306.2	878.9	SI
		Loc 5	166186.8	619.9	101690.4	643.4	86717	843.6	SI
		Dif 12H	171990.2	502.2	116051.7	1502.8	51249.3	1867.7	SI
	1015	Loc 1	178570.5	796.5	110954.7	1491	81431.6	2267.9	SI

				Resultados promedio (partículas/m³)									
01	01	111.1	Monitore	o día 1	Monitore	o día 2	Monitore	o día 3	0				
Clase	Clave	Ubicación	Tama	año	Tama	ıño	Tama	ño	Cumple				
			≥ 0.5 µm	≥ 5.0 µm	≥ 0.5 µm	≥ 5.0 µm	≥ 0.5 µm	≥ 5.0 µm					
		Loc 1	0	0	0	0	8.8	5.9	SI				
		Loc 2	0	0	2	2	0	0	SI				
₹ (2) Þ		FT 1	0	0	3.3	0	6.6	0	SI				
Clase A (ISO-5)	1016	FT 2	0	0	3.3	0	0	0	SI				
38		FT 3	0	0	0	0	0	0	SI				
		FT 4	0	0	0	0	0	0	SI				
		FT 5	0	0	0	0	0	0	SI				
		Loc 1	280.5	41.8	156	9	9	0	SI				
		Loc 2	542	71.2	785	81	500	78	SI				
	1008	Loc 3	440.7	25.4	346	42	199	19	SI				
		Loc 4	182.3	51.6	245	6	134	19	SI				
		Loc 5	202	9.1	170	16	150	9	SI				
		FT 2	87.8	2.6	-0.7	0	78	0	SI				
В		FT 3	0	0	0	0	0	0	SI				
Clase B		Loc 1	1565.4	202	1544.7	152.8	1389	134	SI				
ö	1010	Loc 2	6851.5	640	1019	101	1908	153	SI				
		FT 4	0	0	0	0	3	0	SI				
	1014	Loc 1	989	65	1093	98	1201.3	74.4	SI				
	1014	Loc 2	173	16	484	35	417.5	9.1	SI				
		Loc 1	2752.3	117	2718	247.6	1496	124	SI				
	1009	Loc 2	2493.8	378.5	3544.5	296.6	2322	173	SI				
		FT 5	2.6	0	0	0	0	0	SI				
		Loc 1	1291	169.3	4967	677	349	45	SI				
		Loc 2	774.2	117	2045	215	3355.4	724.8	SI				
		Loc 3	1853.5	110.4	1552	137	5716.9	1064.4	SI				
	1008	Loc 4	4978.4	764.8	7944	1145	9403.5	2325.8	SI				
		Loc 5	1477.1	146.4	13375	1862	10562.5	2542	SI				
		FT 6	0	0	0	0	0	0	SI				
		FT 7	0	0	0	0	0	0	SI				
0-		Loc 1	3119.1	578.1	2643	332	9794.1	2096.7	SI				
se (ase	1007	Loc 2	4817.2	682.9	577	89	13546.9	3103.6	SI				
Clas		FT 8	0	0	0	0	0	0	SI				
Clase C (ISO Clase - 7)		Loc 1	5789.1	1251.4	470	59	6173.5	1158.4	SI				
		Loc 2	2406.6	637.1	374	60	18849.3	3072.3	SI				
		Loc 3	4035.4	705.8	3491	337	8406.4	1445.6	SI				
	1006	Loc 4	4204.9	735.1	1168	177	2461.9	551.2	SI				
	1000	Loc 5	14401.9	4009.7	684	94	433.8	100.5	SI				
		Loc 6	126	10	1949	287	554.8	113.6	SI				
		FT 9	0	0	0	0	0	0	SI				
			FT 10	0	0	0	0	0	0	SI			

				Resu	Itados promed	dio (partícula	ıs/m³)			
Clase	Clave	Ubicación	Monitore	o día 1	Monitore	o día 2	Monitore	o día 3	Cumple	
Oluse	Ciavo	Obloadion	Tamaño		Tamaño		Tamaño		Gumple	
			≥ 0.5 µm	≥ 5.0 µm	≥ 0.5 µm	≥ 5.0 µm	≥ 0.5 µm	≥ 5.0 µm		
		Loc 1	4034.6	460.4	2008	455	17069	4440	SI	
	1011		Loc 2	1902	329.5	126	20	708.1	129.9	SI
. 7		Loc 3	1373	166.1	446	80	1260.2	417.4	SI	
ပမ္မ		Loc 4	1500.3	61.4	1581	266	6832.6	1799.9	SI	
Clase O Clase		FT 1	0	0	0	0	3.3	0	SI	
00	1005	Loc 1	15624.4	2416.2	7163	916	28959.9	1879.3	SI	
(IS	1005	Loc 1	17365.6	2536.7	10251	988	40441.7	3662.2	SI	
	1013	Loc 1	10591	1367	1608	202	40152.5	2375.7	SI	
	1013	Loc 1	36715	3322	755	90	45219.2	2933.7	SI	

7.22 Conteo de partículas viables

Con el apoyo del área de Control Microbiológico se realizaron los monitoreos de partículas viables el cual consiste en medir la cantidad de microorganismos presentes en el aire o en superficies del área. Estas partículas viables son microorganismos, como bacterias, hongos y esporas, que pueden crecer y multiplicarse bajo condiciones adecuadas. El propósito de este monitoreo es garantizar que el ambiente controlado cumpla con los estándares de limpieza microbiológica necesarios para evitar la contaminación del producto.

En la siguiente tabla, se muestran los criterios de aceptación para las partículas viables en cada clase.

Tabla 13. Criterios de aceptación para conteo de partículas viables

		raision pana sontos as pantisan	
Clase / Área	Aire por impacto (UFC/m³)	Aire por sedimentación. Placa de 90 mm de diámetro (UFC/4h placa)	Superficies. Placa de contacto de 55 mm de diámetro (UFC/placa)
	Especificación	Especificación	Especificación
Clase A (ISO-Clase 5)	< 1	<1	<1
Clase B	< 10	< 5	< 5
Clase C (ISO-Clase 7)	<100	<50	<25
Clase D (ISO-Clase 8)	<200	<100	<50

A continuación, se muestran los resultados obtenidos del muestreo de aire por impacto.

Tabla 14. Resultados de partículas viables de aire por impacto

	CLAVE ÁREA			o do partio			R IMPACTO					
CLASIFICACIÓN DE ÁREA	Y/O EQUIPO	NÚM. DE	Мо	nitoreo día	1	М	Monitoreo día 2			Monitoreo día 3		
	LQ0II O	ID	н	В	Т	н	В	Т	н	В	Т	
CLASE A	1016	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	
(ISO- Clase 5)	1010	2	<1	<1	<1	<1	<1	<1	<1	<1	<1	
	1008	3	<1	<1	<1	<1	<1	<1	<1	<1	<1	
	1006	4	<1	<1	<1	<1	<1	<1	<1	<1	<1	
01 405 5	1010	5	<1	<1	<1	<1	<1	<1	<1	1	1	
CLASE B	1009	6	<1	1	1	<1	<1	<1	<1	3	3	
	1014 T.Entrada	7	<1	<1	<1	<1	<1	<1	<1	<1	<1	
	1011	9	<1	<1	<1	<1	<1	<1	<1	1	1	
	1008	10	<1	<1	<1	<1	<1	<1	<1	<1	<1	
CLASE C		11	<1	<1	<1	<1	<1	<1	<1	<1	<1	
(ISO- Clase 7)	1006	12	<1	1	1	<1	<1	<1	<1	2	2	
	1013 T. Entrada	13	<1	<1	<1	<1	<1	<1	<1	<1	<1	
	1007	15	<1	<1	<1	<1	<1	<1	<1	<1	<1	
	1009	16	<1	<1	<1	<1	<1	<1	<1	2	2	
		17	<1	<1	<1	<1	<1	<1	<1	1	1	
	1003	18	<1	1	1	<1	<1	<1	<1	<1	<1	
CLASE D (ISO- Clase 8)	1005 T.Entrada	19	<1	1	1	<1	1	1	<1	<1	<1	
	1002	21	<1	1	1	<1	<1	<1	<1	1	1	
	1001	22	<1	1	1	<1	1	1	<1	<1	<1	
	1015	23	<1	<1	<1	<1	<1	<1	<1	<1	<1	

A continuación, se muestran los resultados obtenidos del muestreo de aire por sedimentación.

Tabla 15. Resultados de partículas viables de aire por sedimentación

	CLAVE ÁREA			•	AIRE P	OR SEDIM	MENTACIÓN	UFC/ PLA	CA		
CLASIFICACIÓN DE ÁREA	Y/O EQUIPO	NÚM. DE ID	Мо	nitoreo día	1	Monitoreo día 2			Monitoreo día 3		
	2400		н	В	Т	Н	В	Т	Н	В	Т
CLASE A	1016	1	<1	<1	<1	<1	<1	<1	<1	<1	<1
(ISO- Clase 5)	1010	2	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1008	3	<1	<1	<1	<1	<1	<1	<1	<1	<1
CLASE B	1006	4	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1010	5	<1	<1	<1	<1	<1	<1	<1	<1	<1
CLASE B	1009	6	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1014 T.Entrada	7	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1011	9	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1008	10	<1	<1	<1	<1	<1	<1	<1	<1	<1
CLASE C		11	<1	<1	<1	<1	<1	<1	<1	1	1
(ISO- Clase 7)	1006	12	<1	<1	<1	<1	<1	<1	<1	5	5
	1013 T. Entrada	13	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1007	15	<1	<1	<1	<1	<1	<1	<1	2	2
	1009	16	<1	<1	<1	<1	<1	<1	<1	<1	<1
	4000	17	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1003	18	<1	<1	<1	<1	<1	<1	<1	<1	<1
CLASE D (ISO- Clase 8)	1005 T.Entrada	19	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1002	21	<1	1	1	<1	12	12	<1	<1	<1
	1001	22	<1	<1	<1	<1	<1	<1	<1	1	1
	1015	23	<1	<1	<1	<1	1	1	<1	<1	<1

A continuación, se muestran los resultados obtenidos del muestreo de superficies.

Tabla 16. Resultados de partículas viables de aire por impacto

			Zona			S	SUPERFI	CIES UF	C/ PLAC	A		
CLASIFICACIÓN DE ÁREA	CLAVE ÁREA Y/O EQUIPO	NÚM. DE ID	de muestreo	Moi	nitoreo	día 1	Monitoreo día 2			Monitoreo día 3		
			muodado	Н	В	Т	н	В	Т	н	В	Т
CLASE A	1016	1	HAWAIANA	<1	<1	<1	<1	<1	<1	<1	<1	<1
(ISO- Clase 5)	1016	2	HAWAIANA	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1008	3	PARED	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1000	4	PARED	<1	<1	<1	<1	<1	<1	<1	<1	<1
01.405.5	1010	5	ANAQUEL	<1	<1	<1	<1	<1	<1	<1	<1	<1
CLASE B	1009	6	PARED	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1014 T.Entrada	7	PARED	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1011	9	ANAQUEL	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1008	10	PARED	<1	<1	<1	<1	<1	<1	<1	<1	<1
CLASE C		11	PARED	<1	<1	<1	<1	<1	<1	<1	<1	<1
(ISO- Clase 7)	1006	12	ANAQUEL	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1013 T. Entrada	13	PUERTA (INTERIOR)	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1007	15	PUERTA	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1009	16	PARED	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1003	17	PARED	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1003	18	VENTANA	<1	<1	<1	<1	<1	<1	<1	<1	<1
CLASE D (ISO- Clase 8)	1005 T.Entrada	19	PUERTA (INTERIOR)	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1002	21	PARED	<1	<1	<1	<1	<1	<1	<1	<1	<1
	1001	22	PARED	<1	<1	<1	<1	<1	<1	<1	1	1
	1015	23	PARED	<1	<1	<1	<1	<1	<1	<1	<1	<1

7.23 Flujo de aire

El principal objetivo del flujo de aire en un área limpia es controlar y reducir la concentración de partículas en el aire, tales como polvo o microorganismos, que podrían comprometer los productos o procesos sensibles. Realice la verificación de los flujos de aire dentro de las áreas con ayuda de un Generador de Humo que Permite visualizar el flujo de aire y la dirección en el espacio.

Observar el movimiento del humo para confirmar que el aire fluye en la dirección correcta (por ejemplo, de áreas limpias hacia áreas menos limpias o hacia zonas de menor presión).

Documentar visualmente el resultado de la prueba

Criterio de aceptación

- Filtros terminales de equipos: Flujo de aire unidireccional.
- Flujo de aire en filtros terminales: Flujo unidireccional.
- Flujo de aire en difusores: Flujo turbulento.
- Flujo de aire entre áreas: Entre el área más limpia y presión más alta hacia la de presión más baja.

A continuación, se muestran los resultados obtenidos de los flujos de aire.

Tabla 17. Resultados de flujos de aire

Tabla 17. Nesullados de lidjos de alle										
Área de mayor presión	vs	Área de menor presión	Criterio de aceptación	Dirección del flujo de aire	Cumple					
1012	VS	1011		→	SI					
1012	VS	1010		→	SI					
1012	VS	1008		→	SI					
1010	VS	1009		→	SI					
1009	VS	1008		→	SI					
1008 (Por 1005)	VS	1001		→	SI					
1008	VS	1004 (Por 1005)		→	SI					
1008	VS	1007	Entre el área	→	SI					
1008	VS	1006 (Por 1013)	más limpia y presión más	→	SI					
1011	VS	1008	alta hacia la	→	SI					
1011	VS	1006	de presión más baja.	→	SI					
1007	VS	1006		→	SI					
1007	VS	1004		→	SI					
1004	VS	1001 (Por INH114/INH115)		→	SI					
1004	VS	1003		→	SI					
1002	VS	1004		→	SI					
1002	VS	(Exterior)		→	SI					
1003	VS	Exterior (Por 1015)		→	SI					
1001	VS	(Exterior)		→	SI					

Tabla 18. Resultados de flujos de aire

Clase	Clave	Ubicación	Criterio de aceptación	Resultado	Cumple
		FT 1		Unidireccional	SI
Clase A		FT 2		Unidireccional	SI
(ISO-Clase	1016	FT 3		Unidireccional	SI
5)		FT 4		Unidireccional	SI
		FT 5		Unidireccional	SI
	1000	1008 FT 2		Unidireccional	SI
Clase B	1006	FT 3		Unidireccional	SI
Clase b	1010	FT 4	Filtros terminales de equipos: Flujo	Unidireccional	SI
	1009	FT 5	de aire unidireccional.	Unidireccional	SI
	1011	FT1	Flujo de aire en difusores: Flujo turbulento.	Unidireccional	SI
	1008	FT6	Flujo de aire en filtros terminales:	Unidireccional	SI
Clase C	1006	FT7	Flujo unidireccional.	Unidireccional	SI
(ISO Clase - 7)	1007	FT8		Unidireccional	SI
, ,	4000	FT9		Unidireccional	SI
	1006	FT10		Unidireccional	SI
	1001	DIF 14H		Turbulento	SI
Clase D	1002	DIF 13H		Turbulento	SI
(ISO Clase - 8)	1009	DIF 11H		Turbulento	SI
٥,	1003	DIF 12H		Turbulento	SI

7.24 Cambios de aire

La verificación de los cambios de aire por hora (ACH, Air Changes per Hour) en un sistema HVAC es fundamental para asegurar que el aire en una sala o área específica sea renovado con la frecuencia necesaria para mantener la calidad ambiental requerida. El valor de ACH indica cuántas veces se renueva completamente el volumen de aire en una sala cada hora.

Utilice un balómetro calibrado para medir el flujo de aire en los difusores y filtros terminales. Identifique todos los puntos de suministro de aire en el área, como difusores y filtro terminales. Coloque el balómetro en cada difusor y filtro para medir el caudal de aire en metros cúbicos por minuto (m³/min).

7.25 Cálculo de los Cambios de Aire por Hora (ACH)

Calcular el ACH dividiendo el caudal total en m³/h entre el volumen de la sala en m³:

$$ACH = \frac{Caudal\ total\ m3/h}{Volumen\ de\ la\ sala\ m3}$$

El valor obtenido indica cuántas veces se renueva el aire en la sala cada hora.

El criterio de aceptación de acuerdo con la clasificación de área, es el siguiente:

Clase B: 20 a 50 CAH.

Clase C (ISO-Clase 7): 20 a 50 CAH
 Clase D (ISO-Clase 8): 10 a 20 CAH

A continuación, se muestran los resultados obtenidos de los cambios de aire por hora.

Tabla 19. Resultados de cambios de aire por hora

		Nivel	Volumen	Cauda	l de inyecció	n (m³/h)	Re	sultados de (CA/H	
Cuarto	Clase	No.	del área (m³)	Monitoreo día 1	Monitoreo día 2	Monitoreo día 3	Monitoreo día 1	Monitoreo día 2	Monitoreo día 3	CUMPLE
1012		2	26.865	211	195.77	215	27	26	27	SI
1012	SE B	3	20.000	518	509.21	502	21	20	21	51
1010	CLASE	4	6.372	188	182.99	183	30	29	29	SI
1009		5	6.723	179	177.13	173	27	26	26	SI
1011		1	19.359	599	612	620	31	32	32	SI
1008	(ISO-7)	6	24.03	883	922	918	77	74	78	SI
1006	C (IS	7	24.03	971	851	962	77	74	70	31
1007	SE (8	7.155	366	568	616	51	79	86	SI
1006	CLASE	9	26.433	302	303	354	35	37	38	SI
1000		10	20.433	636	671	655	33	31	30	31
1004	(180-8)	11H	13.365	325	306	258	24	23	19	SI
1003	D (IS	12H	23.49	702	710	712	30	30	30	SI
1002	SE	13H	8.1	482	486	491	60	60	61	SI
1001	CLASE	14H	4.293	362	301	273	84	70	64	SI

7.26 Presiones diferenciales

La verificación de presiones diferenciales entre áreas en un sistema HVAC es fundamental para controlar el flujo de aire entre zonas y prevenir la contaminación cruzada. La presión diferencial asegura que el aire fluya desde áreas más limpias hacia áreas menos limpias o desde zonas seguras hacia zonas de riesgo, según sea necesario.

Utilicé un micromanómetro para medir la diferencia de presión entre dos áreas, las unidades de medida son pascales (Pa).

Consulté los planos y el diseño del sistema HVAC para identificar las presiones diferenciales especificadas entre las áreas que se deben verificar, asegurandome de conocer los valores específicos de presión para cada área y la dirección del flujo de aire que se espera entre ellas (por ejemplo, presión positiva en áreas limpias, presión negativa en áreas de contención).

Las áreas están en condiciones normales de operación, con las puertas y ventanas cerradas, ya que abrirlas puede alterar las mediciones.

Al final, se registra la lectura del micromanómetro, que refleja la presión diferencial en pascales (Pa) entre las dos áreas.

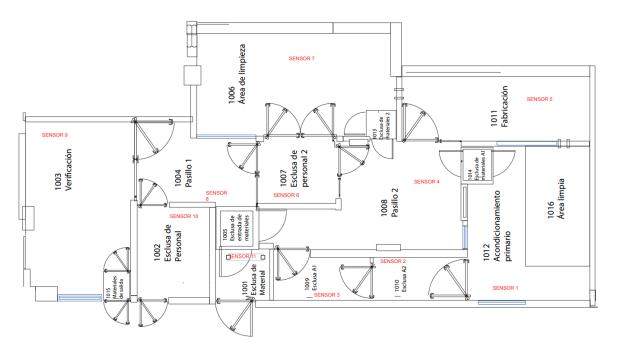
Para asegurar una lectura precisa, es recomendable realizar varias mediciones y promediar los resultados. También se deben evitar corrientes de aire que puedan influir en la precisión de la lectura.

De acuerdo con la clasificación de área, se tienen los siguientes criterios de aceptación:

- > 5 Pa (0.02 in H₂O) entre áreas de clase B
- > 5 Pa (0.02 in H₂O) entre áreas de clase C
- > 5 Pa (0.02 in H₂O) entre áreas de clase D
- > 15 Pa (0.06 in H₂O) entre área de clase B contra áreas clase C
- > 10 Pa (0.06 in H₂O) entre área de clase C contra áreas clase D
- > 5 Pa (0.06 in H₂O) entre área de clase D contra áreas clase ISO-Clase 9

A continuación, se muestran los resultados obtenidos de las presiones diferenciales entre áreas.

Tabla 20. Resultados de presiones diferenciales entre áreas


Área de		Áma da manar	Criterio de	Resultade	Commis		
mayor presión	vs	Área de menor presión	aceptación Pa / inH2O	Monitoreo día 1	Monitoreo día 2	Monitoreo día 3	Cumple SI/NO
1012	VS	1011		38.752	38.514	38.6	SI
1012	VS	1010	> 15 / 0.06	64.706	64.042	63.774	SI
1012	VS	1008		15.845	15.911	16.437	SI
1010	VS	1009		38.895	36.431	32.932	SI
1009	VS	1008	> 10 / 0.04	31.093	24.375	24.72	SI
1008 (Por 1005)	vs	1001	10,000	17.436	17.943	15.763	SI
1008	vs	1004 (Por 1005)		33.433	25.975	35.864	SI
1008	VS	1007		19.67	23.723	21.871	SI
1008	vs	1006 (Por 1013)		15.615	16.606	16.852	SI
1011	VS	1008		25.995	25.119	24.724	SI
1011	VS	1006		32.807	20.973	21.231	SI
1007	VS	1006		63.834	64.152	63.738	SI
1007	VS	1004	> 5 / 0.02	16.869	16.507	16.644	SI
1004	vs	1001 (Por 1005)		10.797	13.282	10.848	SI
1004	VS	1003		16.99	13.573	15.546	SI
1002	VS	1004		12.746	13.226	12.699	SI
1002	VS	(Exterior)	1	46.612	47.976	44.1	SI
1003	vs	Exterior (Por 1015)		5.606	11.655	11.701	SI
1001	VS	(Exterior)		13.262	13.241	11.656	SI

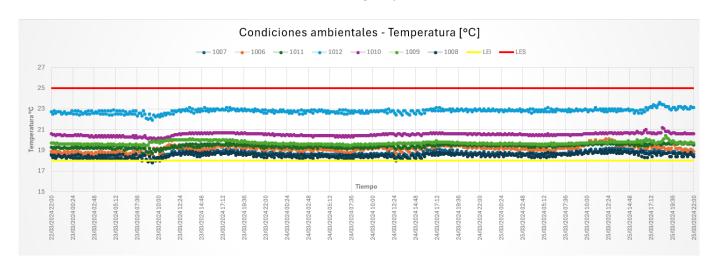
7.27 Condiciones ambientales

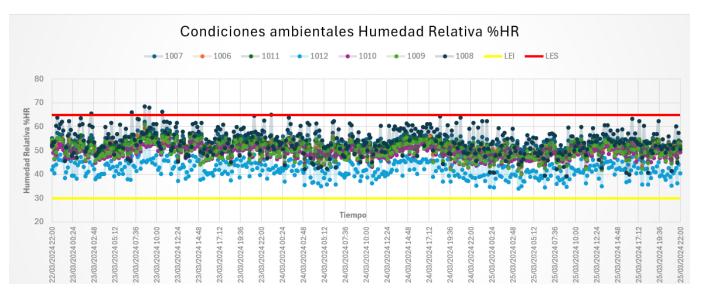
La verificación de las condiciones ambientales de temperatura y humedad relativa en áreas de un sistema HVAC es esencial para garantizar que estos parámetros cumplan con los requisitos de diseño y normativas, asegurando un ambiente controlado adecuado para el personal, los procesos y los productos.

Utilicé data loggers calibrados para el monitoreo de condiciones de temperatura y humedad relativa en el área durante tres días, con registros de datos cada 10 minutos.

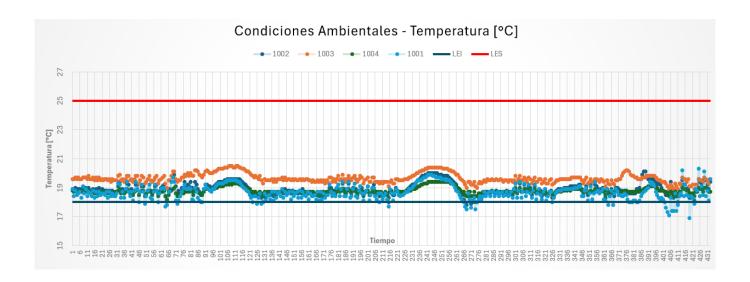
Los puntos donde se colocaron los data loggers, se establecieron de acuerdo con el siguiente plano.

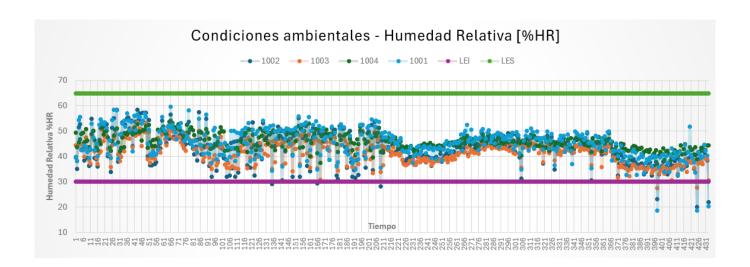
De acuerdo con el diseño del sistema y clasificación de las áreas, se tienen los siguientes criterios de Ilustración 7 Diagrama de colocación de dataloggers


aceptación:


Tabla 21. Criterios de aceptación para temperatura y humedad relativa

Clase B							
Temperatura:	%Humedad relativa:						
18.0 – 25.0 °C	30% - 65 %						
Clase C (ISO-Clase 7)							
Temperatura:	%Humedad relativa:						
18.0 – 25.0 °C	30% - 65 %						
Clase D (ISO-Clase 8)							
Temperatura:	%Humedad relativa:						
18.0 – 25.0 °C	30% - 65 %						


A continuación, se muestran los resultados obtenidos del monitoreo de condiciones ambientales (Temperatura y Humedad Relativa) en el área.


UMA01

• UMA02

A continuación, se muestran los resultados finales del monitoreo de condiciones ambientales en las áreas.

Tabla 22. Resultados de temperatura y humedad relativa

			Unidad manejadora de aire	Resultados de condiciones ambientales					
Clase	Clave del área	Código de instrumento		Temperatura (°C)			Humedad Relativa (%H.R.)		
				Mínima	Máxima	Promedio	Mínima	Máxima	Promedio
Clase B	1012	SENSOR 1		21.9	23.6	22.79	33.9	52.7	42.05
	1010	SENSOR 2	UMA01	20.0	21.2	20.51	40.3	55.3	48.78
	1009	SENSOR 3		19.4	20.4	19.70	39.8	60.9	50.11
6.7)	1006	SENSOR 7		18.5	20.1	19.18	43.1	59.3	51.07
Clase C (ISO-Clase 7)	1007	SENSOR 6		17.8*	19.2	18.69	44.9	62.1	52.99
	1008	SENSOR 4		17.8*	19.0	18.52	39.1	68.4*	54.02
	1011	SENSOR 5		18.7	19.8	19.42	43.6	61.1	51.31
Clase D (ISO-Clase 8)	1001	SENSOR 11		16.9*	20.3	18.67	18.6*	59.6	45.34
	1002	SENSOR 10	UMA02	17.8*	20.1	18.90	20.2*	58.5	43.16
	1004	SENSOR 8	UIVIAUZ	18.2	19.4	18.78	37.0	54.2	45.87
	1003	SENSOR 9		18.9	20.5	19.65	27.5*	53.4	41.59

8. Conclusiones

Los resultados de las pruebas de control de tamaño de partículas y conteo de partículas viables indican que el sistema HVAC mantiene un control efectivo sobre el tamaño de partículas de 0.5 µm y 5.0 µm en cada una de las áreas, cumpliendo con las especificaciones para cada clasificación de área. Asimismo, el conteo de partículas viables en cada una de las clases de áreas cumple con los límites establecidos, asegurando la reducción efectiva de contaminantes biológicos y el mantenimiento de condiciones estériles en el área de fabricación de medicamentos.

La verificación de los diferentes flujos de aire en el sistema HVAC, se encontraron dentro de los límites especificados para asegurar un ambiente controlado y estéril.

Los resultados obtenidos de cambios de aire aseguran la renovación constante y controlada del aire dentro de las áreas, asegurando el abatimiento de la carga térmica en las áreas y mantener las presiones diferenciales necesarias para el cumplimiento de las normativas vigentes.

Las presiones diferenciales entre áreas contiguas cumplen con los valores de aceptación:

- >5 Pa (0.02 in H2O) entre áreas de clase B
- >5 Pa (0.02 in H2O) entre áreas de clase C
- >5 Pa (0.02 in H2O) entre áreas de clase D
- >15 Pa (0.06 in H2O) entre el área de clase B y áreas de clase C

Estos valores aseguran que el flujo de aire se dirija siempre desde áreas de mayor limpieza hacia áreas de menor limpieza, minimizando los riesgos de contaminación cruzada.

Las condiciones ambientales de temperatura y humedad relativa cumplen con el criterio de aceptación establecido de temperatura mantenida entre 18 °C y 25 °C y humedad relativa entre 30 %HR y 65 %HR, lo cual es esencial para la estabilidad de los productos farmacéuticos y el confort del personal en el área de producción.

El análisis de los resultaos demuestra que el sistema HVAC es capaz de mantener de manera confiable las condiciones controladas necesarias en el área limpia de fabricación de medicamentos. Estos resultados aseguran que el ambiente controlado es adecuado para la producción segura y conforme a normativa de productos farmacéuticos, destacando la capacidad del sistema HVAC para operar eficientemente en condiciones críticas.

Las Buenas Prácticas de Ingeniería (GEP) fueron fundamentales para el éxito del proyecto de puesta en marcha del sistema HVAC en el área limpia de fabricación de medicamentos. Desde la planificación hasta la ejecución y la validación, el enfoque en las GEP proporcionó una estructura sólida que permitió asegurar la calidad y la conformidad con los estrictos requisitos regulatorios de la industria farmacéutica.

Trabajar en un proyecto de HVAC para áreas limpias implico el cumplimiento de normativas estrictas de la industria farmacéutica, como ISO 14644 para salas limpias, Buenas Prácticas de Manufactura como la Norma Oficial Mexicana NOM-059-SSA1-2015, y normativas de seguridad de la secretaria del trabajo y prevención social STPS me permitió conocer y aplicar estándares de calidad, seguridad y eficiencia, así como aprender a interpretar y traducir estos requisitos en criterios técnicos específicos.

Me obligo a planificar detalladamente y realizar una gestión cuidadosa del tiempo, recursos y equipos. Realizar la asignación de tareas y coordinar actividades, aspectos esenciales para cumplir con los objetivos en cada etapa del proyecto y asegurar que las entregas sean puntuales y de calidad.

Durante el proyecto se involucra la colaboración con otros ingenieros, técnicos y especialistas. desarrolle mis habilidades para trabajar en equipo y comunicar ideas y resultados de manera clara y efectiva. Esto incluye la capacidad de presentar informes técnicos, documentar procesos y coordinar acciones con otros miembros del proyecto para asegurar una ejecución fluida.

Durante el diseño y la implementación de un sistema HVAC, surgen retos técnicos relacionados con la integración de sistemas de filtrado, flujos de aire, control de temperatura y presiones diferenciales. Pude poner en práctica mis habilidades analíticas para diagnosticar y resolver problemas, aplicando el conocimiento teórico en situaciones prácticas y tomando decisiones fundamentadas para superar obstáculos.

Durante el desarrollo del proyecto aprendí a realizar pruebas de calificación de diseño (DQ), instalación (IQ), operación (OQ) y desempeño (PQ), lo que implico aprender a utilizar instrumentación y equipos que son fundamentales para garantizar las condiciones ambientales y asegurar que el sistema opere dentro de los límites establecidos.

9. Recomendaciones

Después de la puesta en marcha del sistema HVAC en un área limpia de fabricación de medicamentos, es fundamental implementar un conjunto de prácticas de mantenimiento y control para garantizar el funcionamiento continuo y la estabilidad de las condiciones ambientales controladas.

Es necesario tener un programa de mantenimiento preventivo para identificar y corregir problemas antes de que afecten el rendimiento del sistema. El mantenimiento preventivo debe ser documentado y seguir un programa regular para maximizar la eficiencia del sistema.

Los filtros, especialmente los HEPA (High-Efficiency Particulate Air) y otros filtros de alta eficiencia, deben ser revisados y reemplazados según las recomendaciones de proveedor o cuando se observe una caída de presión significativa. Esto es crucial para mantener el control de partículas y la calidad del aire en el área limpia. Es importante utilizar únicamente filtros que cumplan con las especificaciones técnicas y de calidad requeridas.

Los sensores de temperatura, humedad, presión y calidad del aire deben ser calibrados regularmente para asegurar que las lecturas y los controles automáticos del sistema HVAC sean precisos.

Se deben realizar pruebas de validación periódica en el sistema HVAC asegura que continúa operando dentro de los parámetros de diseño y las especificaciones de control. Las revisiones deben incluir pruebas de partículas, verificación de flujos de aire, presiones diferenciales y condiciones ambientales. Esto ayuda a confirmar que el sistema sigue cumpliendo con los estándares de calidad y requisitos regulatorios de la industria farmacéutica.

Es importante que el personal encargado de la operación y el mantenimiento del sistema HVAC reciba capacitación continua en las buenas prácticas de mantenimiento y en los procedimientos de control del sistema.

Mantener la documentación del sistema actualizada y completa es fundamental. Esto incluye registros de mantenimiento, calibraciones, validaciones y monitoreo continuo. Esta documentación es fundamental para demostrar ante entidades regulatorias el funcionamiento del sistema dentro de los parámetros críticos exigidos en las normativas.

10. Bibliografía

- International Organization for Standardization. (2015). ISO 14644-1:2015 Cleanrooms and associated controlled environments — Part 1: Classification of air cleanliness by particle concentration.
- International Organization for Standardization. (2019). ISO 14644-3:2019 Cleanrooms and associated controlled environments — Part 3: Test methods.
- International Society for Pharmaceutical Engineering. (2024). Good Practice Guide: Heating, Ventilation, and Air Conditioning (2nd ed.).
- Secretaría de Salud. (2015). Norma Oficial Mexicana NOM-059-SSA1-2015, Buenas prácticas de fabricación de medicamentos.
- Secretaría de Salud. (2022). Farmacopea de los Estados Unidos Mexicanos (13ª ed.).
- International Society for Pharmaceutical Engineering. (2021). Good Practice Guide: Good Engineering Practice (2nd ed.).
- Building Services Research and Information Association. (2000). DW/143: A practical guide to ductwork leakage testing.
- Sheet Metal and Air Conditioning Contractors' National Association. (1985). HVAC Air Duct Leakage Test Manual (1st ed.).
- International Organization for Standardization. (2017). ISO 29463-1:2017 High efficiency filters and filter media for removing particles from air Part 1: Classification, performance, testing and marking.

11. Anexos

- Diagramas y planos del sistema HVAC.