

Modernización de software

heredado: Rediseño y

desarrollo nativo de una app

de salud en iOS

Que para obtener el título de

P R E S E N T A

Marcos Uriel Martinez Ortiz

ASESOR DE INFORME

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

M.A. Luis Yair Bautista Blanco

INFORME DE ACTIVIDADES PROFESIONALES

Ingeniero Mecatrónico

Ciudad Universitaria, Cd. Mx., 2025

'H FRQIRUPLGDG FRQ OR GLVSXHVWR HQ ORV DUW¯FXORV ��� IUDFFLµQ 9� GHO (VWDWXWR *HQHUDO� ��� SULPHU
S£UUDIR� GHO 5HJODPHQWR *HQHUDO GH (VWXGLRV 8QLYHUVLWDULRV \ ��� IUDFFLµQ ,� \ �� GHO 5HJODPHQWR
*HQHUDO GH ([£PHQHV� PH FRPSURPHWR HQ WRGR WLHPSR D KRQUDU D OD LQVWLWXFLµQ \ D FXPSOLU FRQ ORV
SULQFLSLRV HVWDEOHFLGRV HQ HO &µGLJR GH �WLFD GH OD 8QLYHUVLGDG 1DFLRQDO $XWµQRPD GH 0«[LFR�
HVSHFLDOPHQWH�FRQ�ORV�GH�LQWHJULGDG�\�KRQHVWLGDG�DFDG«PLFD�
�
'H DFXHUGR FRQ OR DQWHULRU� PDQLILHVWR TXH HO WUDEDMR HVFULWR WLWXODGR 02'(51,=$&,21 '(
62)7:$5(+(5('$'2� 5(',6(�2 < '(6$552//2 1$7,92 '(81$ $33 '(6$/8'
(1 ,26 TXH SUHVHQW« SDUD REWHQHU HO WLWXOR GH ,1*(1,(52 0(&$75�1,&2 HV RULJLQDO� GH PL
DXWRU¯D \ OR UHDOLF« FRQ HO ULJRU PHWRGROµJLFR H[LJLGR SRU PL (QWLGDG $FDG«PLFD� FLWDQGR ODV IXHQWHV
GH�LGHDV��WH[WRV��LP£JHQHV��JU£ILFRV�X�RWUR�WLSR�GH�REUDV�HPSOHDGDV�SDUD�VX�GHVDUUROOR�
�
(Q FRQVHFXHQFLD� DFHSWR TXH OD IDOWD GH FXPSOLPLHQWR GH ODV GLVSRVLFLRQHV UHJODPHQWDULDV \
QRUPDWLYDV GH OD 8QLYHUVLGDG� HQ SDUWLFXODU ODV \D UHIHULGDV HQ HO &µGLJR GH �WLFD� OOHYDU£ D OD QXOLGDG
GH�ORV�DFWRV�GH�FDU£FWHU�DFDG«PLFR�DGPLQLVWUDWLYR�GHO�SURFHVR�GH�WLWXODFLµQ�
�
�
�
�
�
���

BB
0$5&26�85,(/�0$57,1(=�257,=

1¼PHUR�GH�FXHQWD�����������

3527(67$�81,9(56,7$5,$�'(�,17(*5,'$'�<
�+21(67,'$'�$&$'�0,&$�<�352)(6,21$/

��7LWXODFLµQ�FRQ�WUDEDMR�HVFULWR�

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Resumen 1
Palabras clave	
1

Abstract 2
Keywords	
2

Introducción 3
Antecedentes	
3
Planteamiento del problema	
3
Objetivo general	
3
Objetivos específicos	
4
Metodología	
4
Contenido	
5

Capítulo 1 - Descripción del sistema 6
Ubicación geográfica	
6
Ubicación sectorial	
6
Comparativa sectorial en LATAM (2023)	
6
Ubicación temporal	
7
Dinámica de trabajo y estructura del proyecto	
7
Antecedentes técnicos del sistema	
8
Descripción del sistema	
8

Capítulo 2 - Propuesta técnica y estrategia de reestructuración 10
Estado inicial del proyecto y diagnóstico técnico	
10
Propuestas y cambios realizados en el sistema	
11

Enfoque general de la solución	
11

Propuesta: MVC mejorado	
11

Estándares visuales y diseño modular	
12

Integración segura y conectividad robusta	
12

Pruebas, despliegue y mantenimiento	
12

Planificación técnica y fases	
13

Capacitación y fortalecimiento del equipo (versión final)	
14

Capacitación técnica aplicada al desarrollo iOS	
14
Fundamentos del lenguaje Swift moderno	
14

Tipado seguro, opcionales y manejo de errores	
14

Sintaxis concisa y expresiva	
15

Inferencia de tipos	
15

Organización y nomenclatura del código	
16
Convenciones para nombrar variables y estructuras	
16

Comentarios, claridad de intención y legibilidad	
17

Organización de carpetas, archivos y grupos en Xcode	
17

Arquitectura MVC con controladores auxiliares	
18
Separación de responsabilidades en Model, View y Controller	
18

Uso de ModelControllers y HelperControllers	
19

Comparativa con MVVM y justificación de elección	
19

Patrones de comunicación entre componentes	
20
Delegados, closures, inyección de dependencias	
20

Uso de Combine, tuplas y callbacks	
22

Flujo de eventos y control de dependencias	
23

Consumo de servicios REST y asincronía	
24
Uso avanzado de URLSession	
24

Comparativa entre URLSession y Alamofire	
25

Programación con GCD y async/await	
26

Gestión segura y eficiente del almacenamiento local	
27
UserDefaults, Keychain, FileManager y Core Data	
27

Estrategias para persistencia segura y sincronización	
28

Diseño de interfaces en UIKit	
29
Principios de diseño con Storyboards y Auto Layout	
29

Patrones de navegación en UIKit	
31

Control de versiones y flujo de trabajo con GitFlow	
32

Tipos de ramas: main, develop, feature, release y hotfix	
32

Buenas prácticas para mantenimiento, integración y revisión	
34

Uso de etiquetas, CI/CD y pruebas automatizadas con XCTest	
35

Capítulo 3 - Implementación práctica y validación funcional 36
Despliegue inicial del proyecto y aplicación de arquitectura modular	
36
Punto de entrada y arquitectura de entorno en el inicio de sesión	
39
Modularización de interfaces con Storyboard References	
43

¿Qué es una Storyboard Reference?	
43

Ventajas de usar Storyboard References	
43

Ventajas frente al diseño 100% programático	
43

Aplicación en el proyecto Wee 3.0	
44

Implementación de múltiples métodos de almacenamiento local	
45
Peticiones de red seguras y manejo de errores	
47

Seguridad en la conexión con URLSession	
47

Diseño genérico y controlado de respuestas de red	
48
Controlador genérico con compatibilidad total con Codable	
48

Uso de Result<T, Error> y propagación explícita de fallos	
48

Modelo de error personalizado con semántica descriptiva	
49

URLSession y su delegado para control avanzado de red	
50

Separación de lógica con controladores auxiliares de errores	
50

Integración de Compositional Layout y Diffable Data Source	
51
¿Qué es Compositional Layout?	
51

¿Qué es Diffable Data Source?	
52

Aplicación en el proyecto Wee 3.0	
52

Capítulo 4 – Cierre técnico y profesional del proyecto 55
Aplicación integral de conocimientos de ingeniería	
55
Toma de decisiones tecnológicas y liderazgo técnico	
55
Crecimiento profesional en entorno real	
56

Condiciones del cierre del proyecto	
57

Bibliografía 58

Resumen
Durante una estancia profesional de seis meses en WeeCompany®, empresa del sector tecnológico
especializada en Insurtech y salud digital, par<cipé en el rediseño e implementación de una nueva
aplicación móvil na<va para plataformas Apple. El problema principal que enfrentaba la organización era
una aplicación existente con un alto grado de deuda técnica: ausencia de una arquitectura clara, código
obsoleto, prác<cas inconsistentes de comunicación entre vistas y una estructura de proyecto
desorganizada, lo que dificultaba el desarrollo ágil de nuevas funcionalidades y compromeIa la
mantenibilidad del sistema.

Ante este panorama, mi labor se centró en diseñar y construir una nueva solución móvil desde cero,
aplicando conocimientos actualizados de desarrollo na<vo en iOS. Aunque no ocupé el rol formal de líder
técnico, se me asignó la responsabilidad principal del proyecto. Entre mis funciones se incluyeron la
creación del repositorio en Azure DevOps, el diseño de una arquitectura modular con separación de
responsabilidades, la configuración de esquemas para dis<nguir entre ambientes de desarrollo y
producción, la capacitación del equipo en prác<cas modernas con UIKit y Storyboards, y la integración de
herramientas como URLSession, Keychain y FileManager para la ges<ón segura de la información. También
implementé flujos de trabajo con GitFlow y revisiones mediante Pull Requests para elevar el estándar de
calidad del código.

El resultado fue una aplicación estructurada con una arquitectura limpia, fluida en su funcionamiento y
preparada para múl<ples plataformas (iOS, iPadOS y macOS mediante Catalyst). Se alcanzó un diseño
adaptable a dis<ntas resoluciones gracias a Auto Layout, y se op<mizó la comunicación con el backend
mediante una capa robusta de red y manejo centralizado de errores. Aunque mi par<cipación concluyó
antes del cierre defini<vo del desarrollo, el avance entregado consolidó las bases de una solución moderna
y sostenible que posiciona a la empresa para escalar sus servicios móviles con mayor eficiencia.

Palabras clave

Desarrollo na<vo, Swi], Swi]UI, UIKit, arquitectura móvil, MVC, iOS, Xcode, Keychain, seguridad en
aplicaciones móviles, Apple Developer, API REST, JSON, URLSession, patrón de diseño, re-ingeniería de
so]ware, refactorización, op<mización de rendimiento, experiencia de usuario (UX), control de versiones,
Git, integración con<nua, salud digital, aplicación médica, servicios de salud, videollamadas médicas,
ges<ón de medicamentos, telemedicina, aseguradoras médicas, expediente clínico electrónico, bienestar
emocional, salud mental, experiencia profesional, desarrollo de so]ware, análisis de requerimientos,
resolución de problemas técnicos, trabajo en equipo, liderazgo técnico, comunicación efec<va.

1

Abstract
During a six-month professional residency at WeeCompany®, a technology firm specialized in Insurtech
and digital health, I par<cipated in the redesign and implementa<on of a new na<ve mobile applica<on for
Apple placorms. The main issue the organiza<on faced was a legacy app with a high level of technical
debt: lack of a clear architecture, obsolete code, inconsistent view-to-view communica<on prac<ces, and a
disorganized project structure, which hindered the agile development of new features and compromised
the system’s maintainability.

Given this scenario, my work focused on designing and building a new mobile solu<on from scratch,
applying up-to-date knowledge of na<ve iOS development. Although I did not formally hold the role of
technical lead, I was assigned the primary responsibility for the project. My tasks included seeng up the
repository in Azure DevOps, designing a modular architecture with clear separa<on of concerns,
configuring schemes to dis<nguish between development and produc<on environments, training the team
in modern prac<ces using UIKit and Storyboards, and integra<ng tools such as URLSession, Keychain, and
FileManager for secure data management. I also implemented GitFlow workflows and code review
processes through Pull Requests to raise the overall code quality.

The result was a well-structured applica<on with a clean architecture, fluid performance, and readiness for
deployment across mul<ple placorms (iOS, iPadOS, and macOS via Catalyst). The interface was designed
to be responsive across various screen sizes using Auto Layout, and the backend communica<on was
op<mized through a robust networking layer and centralized error handling. Although my par<cipa<on
concluded before the final release, the work delivered established a solid founda<on for a modern and
sustainable solu<on, enabling the company to scale its mobile services more efficiently.

Keywords

Na<ve development, Swi], Swi]UI, UIKit, mobile architecture, MVC, iOS, Xcode, Keychain, mobile app
security, Apple Developer, REST API, JSON, URLSession, design pagerns, so]ware re-engineering,
refactoring, performance op<miza<on, user experience (UX), version control, Git, con<nuous integra<on,
digital health, medical applica<on, healthcare services, medical video calls, medica<on management,
telemedicine, health insurance providers, electronic health records, emo<onal wellness, mental health,
professional experience, so]ware development, requirements analysis, technical problem solving,
teamwork, technical leadership, effec<ve communica<on.

2

Introducción
Antecedentes

En el contexto de la transformación digital en el sector salud, WeeCompany® se posiciona como una
empresa líder en La<noamérica en el ámbito Insurtech, con un enfoque en el desarrollo de soluciones
tecnológicas para la ges<ón de servicios médicos y seguros de gastos médicos y vida. Fundada en 2016, su
obje<vo principal es ofrecer una plataforma que interconecte a aseguradoras, financiadoras y proveedores
de salud (hospitales, farmacias, laboratorios, clínicas, etc.) mediante herramientas digitales que mejoren la
eficiencia opera<va y la experiencia del usuario.

Al momento de mi incorporación a la empresa, el equipo contaba con una aplicación móvil funcional pero
altamente limitada en términos de arquitectura, mantenibilidad y escalabilidad. El proyecto presentaba
una profunda deuda técnica y una estructura organiza<va inconsistente, lo que compromeIa su capacidad
para incorporar nuevas funcionalidades y para posicionarse como un producto de <po so]ware as a
service (SaaS). Esta situación representó una oportunidad para intervenir desde una perspec<va de re-
ingeniería, aplicando conocimientos actualizados del ecosistema Apple para el rediseño completo del
producto móvil.

Planteamiento del problema

El estado inicial de la aplicación incluía una mezcla incorrecta de patrones arquitectónicos (MVP y MVVM),
uso programá<co de UIKit sin aprovechamiento de Storyboards ni Auto Layout, comunicación
inconsistente entre vistas, y un sistema de dependencias basado en herramientas obsoletas como
CocoaPods. Además, exisIa un desconocimiento generalizado dentro del equipo sobre las buenas
prác<cas de desarrollo na<vo, arquitectura de so]ware móvil, y lineamientos de diseño de Apple, lo cual
limitaba su capacidad de evolución. A nivel organizacional, tampoco exisIa un sistema de versionado ni un
control efec<vo de calidad sobre el código.

Objetivo general

Desarrollar una nueva versión de la aplicación móvil de WeeCompany®, denominada Wee 3.0, que
resolviera los problemas técnicos existentes y permi<era su escalabilidad, adaptabilidad y comercialización
como un so]ware personalizable <po so]ware as a service para dis<ntos clientes.

3

Objetivos específicos

• Reestructurar la arquitectura de la aplicación bajo principios modernos de modularidad y separación de
responsabilidades.

• Capacitar al equipo de desarrollo en el uso actualizado de UIKit, Swi]UI, y diseño mul<plataforma para
iOS, iPadOS y macOS.

• Implementar una capa de comunicación de red robusta, concurrente y segura, manejo de errores
centralizado y control de estados.

• Capacitar al equipo de UI/UX en los lineamientos de diseño na<vo de Apple (Apple Human Interface
Guidelines) para mejorar la experiencia de usuario.

• Establecer un sistema de versionado y revisión de código con GitFlow y Pull Requests para asegurar la
calidad técnica del desarrollo.

• Desarrollar estrategias de solución ágil de problemas en entornos produc<vos.

Metodología

El desarrollo del proyecto se realizó bajo un enfoque ágil, concretamente mediante la metodología Scrum,
con el acompañamiento de un Scrum Master y una Product Owner (PO). El trabajo se organizó en sprints
de dos semanas, durante los cuales se asignaban historias de usuario desde un backlog centralizado. Estas
historias eran discu<das, puntuadas y refinadas por el equipo, y cada desarrollador es<maba el esfuerzo
requerido y registraba las horas des<nadas a su desarrollo. Las decisiones técnicas, dificultades y avances
se discuIan en sesiones de planeación y retrospec<va.

El proceso fue completamente itera<vo, con validación con<nua mediante revisiones de código, pruebas
funcionales y entregas parciales orientadas a negocio. Las tareas y métricas fueron ges<onadas desde la
plataforma Azure DevOps, la cual permiIa un seguimiento puntual del cumplimiento de los obje<vos
planteados en cada sprint.

4

Contenido

Este trabajo se estructura en tres capítulos, además de la introducción, el resumen, las conclusiones,
referencias y anexos.

• Capítulo 1 – Descripción del sistema

• Se presenta el entorno técnico y organizacional previo al rediseño de la aplicación. Se describe el
sistema heredado en producción, incluyendo su estructura, problemá<cas, deuda técnica
acumulada y deficiencias arquitectónicas. Se contextualiza también mi incorporación al equipo, el
organigrama de la empresa y las responsabilidades asignadas.

• Capítulo 2 – Propuesta técnica y estrategia de reestructuración

• Se detalla el análisis realizado y las decisiones técnicas adoptadas para desarrollar una nueva
versión de la aplicación. Se expone la arquitectura seleccionada, las herramientas u<lizadas, la
estructura modular, los principios de seguridad y pruebas, así como el enfoque forma<vo aplicado
para estandarizar conocimientos dentro del equipo de desarrollo.

• Capítulo 3 – Implementación prác?ca y validación funcional

• Se documenta el desarrollo efec<vo del sistema, ilustrado mediante evidencia visual y análisis del
comportamiento de la aplicación en diferentes disposi<vos y flujos. Se explican los resultados
obtenidos a nivel de código, estructura, experiencia de usuario, navegación y adaptabilidad
mul<plataforma. Esta sección integra la visión técnica con los resultados tangibles alcanzados
durante el proceso.

• Capítulo 4 – Cierre técnico y profesional del proyecto

• Se reflexiona sobre el aprendizaje adquirido a lo largo del proyecto, el rol asumido en la toma de
decisiones, y la aplicación integral de conocimientos de ingeniería. Además, se describe el estado
en que se entregó el sistema, la con<nuidad propuesta para su evolución y el impacto profesional
que esta experiencia representa en el desarrollo de una carrera en so]ware dentro del campo de
la ingeniería mecatrónica.

5

Capítulo 1 - Descripción del
sistema
Ubicación geográfica

El proyecto Wee 3.0 se desarrolló en la Ciudad de México, en modalidad 100 % presencial, dentro de las
oficinas corpora<vas de WeeCompany®. Esta ubicación representa un punto estratégico dentro del país, ya
que la capital concentra a las principales sedes de aseguradoras, ins<tuciones financieras, hospitales
privados y empresas tecnológicas que lideran la transformación digital en sus respec<vos sectores.

El entorno profesional en la CDMX es altamente compe<<vo; existe una abundante oferta de talento
técnico y una exigencia constante por la excelencia profesional. Este contexto favoreció una cultura
organizacional orientada al rendimiento, la innovación con<nua y el trabajo colabora<vo. Dentro de este
ecosistema, WeeCompany® se posiciona como un actor con una visión clara: simplificar la relación entre
pacientes, prestadores de salud y aseguradoras mediante soluciones digitales integrales (WeeCompany,
s.f.).

Ubicación sectorial

Fundada en 2016, WeeCompany® es reconocida como la primera empresa InsurTech en América La<na
con un enfoque centrado específicamente en el sector salud. Su misión es mejorar la experiencia de todos
los actores involucrados en el sistema médico y asegurador, con énfasis en el bienestar del paciente. Su
visión es consolidarse como el sistema opera<vo líder para la ges<ón del sector salud y seguros en LATAM
(WeeCompany, s.f.).

Para ello, ha construido un ecosistema digital robusto que conecta aseguradoras, financiadoras de
servicios médicos y una amplia red de proveedores de salud, incluyendo farmacias, laboratorios,
hospitales, clínicas, consultorios y profesionales independientes. A través de plataformas digitales
automa<zadas, busca op<mizar procesos como la ges<ón de reclamos, la administración de casos clínicos,
el control de gastos, la prescripción médica digital y la atención remota por telemedicina (WeeCompany,
s.f.).

Comparativa sectorial en LATAM (2023)

Durante 2023, el ecosistema InsurTech y HealthTech en América La<na experimentó un crecimiento
acelerado. México se posicionó como el segundo mercado más grande de la región en insurtech, solo
detrás de Brasil, con más de 120 startups ac<vas en este sector (MAPFRE, 2024). Además, el mercado

6

healthtech mexicano alcanzó un valor es<mado de 1,930 millones de dólares, siendo uno de los
ecosistemas más dinámicos y diversificados de la región, con más de 100 empresas clasificadas en áreas
como telemedicina, prescripción digital y ges<ón de enfermedades crónicas (ICEX, 2024).

En este contexto, el enfoque de WeeCompany® sobresale por su carácter modular, integrado y centrado
en el usuario final. A diferencia de startups como Begerfly (Chile), que combina seguros de vida con
hábitos saludables enfocados en beneficios corpora<vos (Endeavor Hub, 2022), o Diagnos<kare (México),
centrada en atención médica primaria virtual (Diagnos<kare, s.f.), WeeCompany® ar<cula todo un ciclo de
valor que va desde la contratación de seguros, la validación de pólizas, la consulta médica y el seguimiento
emocional del paciente, hasta la ges<ón de pagos, documentos y trámites administra<vos con
aseguradoras. Esta integración ver<cal le otorga una ventaja compe<<va única en la región.

Ubicación temporal

Mi estancia profesional en WeeCompany® se desarrolló entre el 28 de febrero y sep<embre/octubre de
2024, aunque el proyecto Wee 3.0 fue conceptualizado y planificado en 2023, durante una etapa crí<ca de
evaluación interna. En ese año, la compañía enfrentaba una situación de estancamiento técnico con su
aplicación anterior (Wee 2.0), la cual no cumplía con los estándares de estabilidad, escalabilidad ni
usabilidad necesarios para su evolución como producto comercial.

Este contexto coincidió con la necesidad de consolidar un producto digital <po So]ware as a Service (SaaS)
que pudiera ser personalizado por aseguradoras y licenciado como solución integral para ges<onar sus
usuarios, coberturas, gastos y servicios. La presión de contratos vigentes, clientes con requerimientos
específicos y obje<vos de expansión regional generaron un entorno donde era indispensable acelerar el
rediseño de la aplicación.

Durante este periodo, se adoptaron prác<cas ágiles mediante el uso de Scrum, se establecieron sprints de
15 días para ges<onar la entrega con<nua de valor, y se programaron sesiones trimestrales de demo con
stakeholders de negocio. Estas condiciones temporales definieron el ritmo del desarrollo y marcaron el
inicio de un proceso de transformación estructural a nivel técnico y organizacional dentro de la empresa.

Dinámica de trabajo y estructura del proyecto

El desarrollo del proyecto se llevó a cabo dentro de un entorno colabora<vo bien estructurado, que
combinaba herramientas tecnológicas modernas con una metodología ágil orientada a resultados. Para la
implementación del sistema se contó con el equipo necesario, incluyendo disposi<vos Apple como una
MacBook Pro M1, varios modelos de iPhone, iPad y Apple Watch, todos esenciales para asegurar
compa<bilidad y rendimiento mul<plataforma. A nivel organiza<vo, se u<lizó la suite Microso] 365, con
Azure DevOps como plataforma central de coordinación. Desde ahí se ges<onaban los repositorios de
código, el control de versiones, los tableros de tareas y la documentación técnica; mientras que
herramientas como Microso] Teams y OneDrive facilitaban la comunicación y el trabajo compar<do.

7

El equipo adoptó la metodología Scrum, con sprints quincenales que iniciaban con sesiones de planeación
lideradas por la Product Owner y el Scrum Master. Durante estas reuniones se revisaban las historias de
usuario, se discuIa su alcance y se es<maban los esfuerzos técnicos requeridos. Las tareas se dividían en
subtareas específicas en el tablero de Azure y se realizaba un seguimiento constante de su avance. Una vez
completadas, se realizaban revisiones cruzadas mediante pull requests, promoviendo un entorno
horizontal, sin jerarquías técnicas impuestas, donde cada desarrollador podía aportar a la mejora del
código.

Las entregas se hacían de forma itera<va: cada quince días se distribuían versiones menores mediante
Firebase, dirigidas principalmente a validaciones internas de producto; mientras que cada trimestre se
generaban versiones mayores que se presentaban al área de negocio, con funcionalidades más robustas,
documentación completa y pruebas visuales en todos los disposi<vos obje<vo. En este proceso, la Product
Owner validaba el cumplimiento funcional y el Scrum Master velaba por la eficiencia del equipo y el
equilibrio en la carga de trabajo.

El equipo técnico estaba conformado por desarrolladores iOS y Android, mientras que las decisiones de
producto y prioridades eran coordinadas por la PO. Esta estructura permi<ó mantener una dinámica ágil,
itera<va y medible, con resultados funcionales tangibles al cierre de cada sprint.

Antecedentes técnicos del sistema

Antes del inicio del proyecto Wee 3.0, la empresa operaba con una versión anterior de su aplicación móvil,
conocida como Wee 2.0, la cual presentaba múl<ples limitaciones que compromeIan su rendimiento,
estabilidad y escalabilidad. Esta versión acumulaba una importante deuda técnica producto de decisiones
arquitectónicas inconsistentes, falta de documentación y una estructura de código diycil de mantener.

Durante mis primeras semanas en la empresa, se me asignó la tarea de realizar un diagnós<co del sistema
en producción. El análisis evidenció deficiencias significa<vas tanto en la aplicación móvil como en los
servicios backend que la soportaban. Estas observaciones iniciales fueron presentadas al equipo de
desarrollo y dirección técnica, sirviendo como base para definir la necesidad de rediseñar la plataforma
desde sus fundamentos, lo cual dio origen al proyecto Wee 3.0, abordado en detalle en el siguiente
capítulo.

Descripción del sistema

La aplicación móvil desarrollada por WeeCompany®, en su versión anterior (Wee 2.0), cons<tuía una
solución digital integral dirigida principalmente a usuarios con pólizas de seguro médico, aunque también
ofrecía funcionalidades abiertas al público general a través de un modelo basado en membresías. Su
obje<vo era centralizar y facilitar el acceso a diversos servicios de salud y de seguros, mediante una
plataforma tecnológica que automa<zara procesos que tradicionalmente eran fragmentados, lentos o
dependientes de múl<ples intermediarios.

8

Las funcionalidades principales de la aplicación incluían la consulta médica en línea, la localización de
especialistas por geolocalización, la ges<ón y visualización de pólizas, el sur<do digital de recetas médicas
y la recepción de no<ficaciones o recordatorios de salud. Estas acciones se complementaban con servicios
auxiliares como el registro de estado emocional mediante un diario personal, el acceso a una biblioteca de
videos educa<vos sobre salud y un asistente conversacional basado en inteligencia ar<ficial (ChatGPT),
orientado a resolver dudas generales de salud.

La app estaba diseñada para cubrir tanto necesidades básicas como complejas del usuario asegurado. Por
ejemplo, permiIa solicitar atención médica inmediata o programada, registrar su póliza de seguro, subir
documentación en caso de requerimientos administra<vos y consultar su historial médico. Esta integración
simplificada de servicios hacía que el usuario solo tuviera que interactuar con la app móvil, mientras que
WeeCompany ges<onaba internamente toda la operación con las aseguradoras, médicos y farmacias
afiliadas.

En el plano organiza<vo, la aplicación se dividía en módulos internos conectados a través de servicios REST,
comunicándose exclusivamente con un backend privado desarrollado por la misma empresa. La
interacción con aseguradoras y prestadores de servicios no ocurría directamente desde la app, sino a
través de una plataforma web empresarial donde dichas en<dades ges<onaban la información de sus
clientes y configuraban sus permisos. Esta arquitectura centralizada aseguraba que la app operara como
un nodo cliente, accediendo a recursos ya preprocesados por el entorno administra<vo corpora<vo.

Cabe destacar que muchas de las funcionalidades avanzadas, como las consultas médicas virtuales, la
emisión de recetas, y la conexión con la red médica profesional, eran provistas por una empresa hermana:
Wee Medic. Aunque opera<vamente separadas, ambas plataformas estaban integradas a nivel funcional,
lo que permiIa ofrecer una experiencia fluida y coherente al usuario final.

Gracias a su enfoque holís<co, Wee 2.0 se convir<ó en una de las aplicaciones más completas en el
mercado mexicano en términos de servicios médicos móviles. Su principal valor diferencial radicaba en su
capacidad de automa<zar procesos médicos y administra<vos complejos, permi<endo al usuario ges<onar
integralmente su salud desde una sola interfaz digital.

9

Capítulo 2 - Propuesta técnica y
estrategia de reestructuración
Estado inicial del proyecto y diagnóstico técnico

Al momento de mi incorporación a WeeCompany®, la aplicación en uso era conocida como Wee 2.0,
aunque internamente exisIan versiones incrementales como 2.5.4, sin cambios funcionales sustanciales.
Esta versión aún estaba en producción, lo que representaba una dificultad adicional: cualquier
modificación o corrección debía realizarse sin comprometer los servicios ac<vos para usuarios reales, ya
que exisIan compromisos contractuales con aseguradoras y clientes empresariales.

Durante mi primer sprint, se me asignó como prioridad la elaboración de un diagnós<co técnico detallado,
que permi<era evaluar la viabilidad de con<nuar con la app actual o iniciar un rediseño total. El análisis
incluyó una revisión del código fuente, la estructura arquitectónica, los flujos de navegación, las
herramientas u<lizadas y la experiencia de usuario.

Los hallazgos fueron contundentes: la aplicación sufría una acumulación crí<ca de deuda técnica, carecía
de una arquitectura clara y u<lizaba patrones híbridos mal implementados, como una mezcla fallida entre
MVP y MVVM. El proyecto presentaba una organización desordenada en sus carpetas, archivos y módulos.
Se iden<ficó código obsoleto, sin uso, duplicado y sin pruebas unitarias, lo cual hacía extremadamente
costosa cualquier intervención o ampliación funcional.

La integración de dependencias se realizaba mediante CocoaPods, sin control de versiones, y en algunos
casos con librerías sin mantenimiento. La comunicación entre componentes carecía de un patrón
unificado: en dis<ntos puntos del proyecto se u<lizaban closures, RxSwi] o incluso acceso directo a
objetos sin encapsulación, lo que generaba alIsimo acoplamiento y rompía el principio de separación de
responsabilidades.

En cuanto al backend, se observó una situación similar: muchos servicios carecían de documentación, no
exisIa una colección actualizada en Postman ni una especificación clara en Swagger. Las respuestas del
servidor eran poco robustas, con códigos HTTP 200 incluso en operaciones fallidas, y la detección de
errores dependía de la interpretación de textos embebidos en campos anidados del JSON. Esto
imposibilitaba establecer una polí<ca clara y predecible de manejo de errores en la app cliente.

El entorno de desarrollo tampoco contemplaba estructuras diferenciadas para ambientes de pruebas,
desarrollo o producción. No exisIa un sistema de control de calidad automa<zado ni lineamientos
compar<dos entre el equipo de desarrollo. La falta de documentación interna agravaba esta situación,
generando una dependencia excesiva del conocimiento tácito entre los miembros del equipo.

10

Ante esta situación, y considerando las necesidades urgentes de escalabilidad y estabilidad del producto,
propuse formalmente la construcción de una nueva versión de la aplicación, bajo una estructura
arquitectónica moderna, clara y adaptable, con énfasis en: modularidad, personalización por cliente,
experiencia de usuario coherente con las Human Interface Guidelines, uso eficiente de tecnologías na<vas
de Apple y buenas prác<cas de ingeniería de so]ware.

Propuestas y cambios realizados en el sistema 
A par<r del diagnós<co inicial, y en alineación con los obje<vos estratégicos de WeeCompany®, propuse el
desarrollo de una nueva versión de la aplicación, estructurada como un producto mínimo viable (MVP)
que sentara las bases de una plataforma escalable, personalizable y sostenible a largo plazo. Este nuevo
sistema, denominado Wee 3.0, debía resolver no solo las deficiencias técnicas de Wee 2.0, sino también
responder a las expecta<vas del mercado insurtech y healthtech con una solución flexible adaptable a
dis<ntos clientes y aseguradoras.

Enfoque general de la solución

El nuevo diseño parIa de la creación de un MVP con una arquitectura documentada y modular, que
permi<era incorporar o remover funcionalidades según el contrato o configuración de cada cliente. Esto
implicaba separar la lógica por módulos funcionales reu<lizables, definir es<los visuales como clases y
estructuras en Swi], y asegurar una navegación fluida mediante estructuras compa<bles con UIKit, pero
abiertas a migraciones progresivas hacia Swi]UI.

Propuesta: MVC mejorado

Aunque inicialmente se consideró adoptar el patrón MVVM para la nueva aplicación Wee 3.0, tras una
evaluación profunda de las caracterís<cas del proyecto, la madurez del equipo y los obje<vos de corto y
mediano plazo, se optó por implementar una versión mejorada del patrón Model-View-Controller (MVC).

Esta decisión se alineó con las prác<cas recomendadas por Apple para aplicaciones basadas en UIKit, y
respondió a tres factores clave:

• La estructura na<va de UIKit está op<mizada para MVC, lo que reduce fricciones y facilita la
integración con herramientas del ecosistema Apple.

• El equipo contaba con mayor experiencia en este patrón, lo que garan<zaba una curva de
adopción más rápida y una mejor colaboración entre miembros con dis<ntos niveles de
experiencia.

• La implementación de ModelControllers y HelperControllers permi<ó modularizar el código y
distribuir responsabilidades, evitando el problema común del Massive View Controller.

11

El uso de ModelControllers permi<ó aislar la lógica de negocio y operaciones complejas fuera de los
controladores de vista, mientras que los HelperControllers facilitaron la consolidación de servicios
auxiliares como red, almacenamiento seguro y u<lerías compar<das. Esta adaptación hizo posible
mantener los principios de separación de responsabilidades y reusabilidad propios de MVVM, sin
comprometer la simplicidad y fluidez opera<va de MVC.

Esta decisión no solo facilitó el mantenimiento y la escalabilidad del proyecto, sino que también mejoró su
capacidad de prueba, al permi<r aislar unidades funcionales independientes, como el manejo de datos o
servicios de red, con una estructura clara y controlada.

Estándares visuales y diseño modular

Se definieron nuevos lineamientos de diseño centrados en el cumplimiento estricto de las Human
Interface Guidelines de Apple, incluyendo adaptabilidad con Auto Layout y soporte para diferentes
tamaños de pantalla. La personalización visual se logró mediante estructuras y clases que centralizaban
es<los, colores, fuentes y componentes visuales. Se u<lizó Interface Builder con storyboard references
para mantener independencia de vistas y reducir el acoplamiento visual.

Integración segura y conectividad robusta

La comunicación con servicios backend se implementó usando URLSession, con manejo avanzado de
estados y errores. Para garan<zar la protección de los datos del usuario, se incorporaron prác<cas de
cifrado modernas u<lizando Keychain y CryptoKit, así como las polí<cas recomendadas por Apple
mediante App Transport Security. Esta estructura permi<ó asegurar los datos en tránsito y en reposo,
cumpliendo con estándares de seguridad de nivel empresarial.

Pruebas, despliegue y mantenimiento

Desde las primeras fases del proyecto se reconoció la necesidad de contar con una estrategia formal de
pruebas y despliegue con<nuo. Sin embargo, a diferencia de lo inicialmente planteado, no se contó con un
equipo DevOps especializado, por lo que los propios desarrolladores asumimos la responsabilidad de
inves<gar, implementar e integrar los mecanismos necesarios dentro del ecosistema de Azure DevOps.

El proceso de aprendizaje incluyó la exploración de herramientas como pipelines de Azure, ges<ón de
ramas con polí<cas de revisión, automa<zación de compilaciones y pruebas básicas antes de cada entrega.
Esta fase de formación fue parte del proceso de capacitación técnica transversal, y se abordó
colabora<vamente entre los miembros del equipo, en sesiones conjuntas y pruebas itera<vas de
implementación.

12

Las validaciones funcionales se realizaban al cierre de cada sprint quincenal, bajo el marco de trabajo
Scrum, u<lizando un sistema de versiones distribuidas mediante Firebase para pruebas internas. La
validación de historias de usuario quedaba a cargo de la Product Owner, mientras que entre
desarrolladores se mantenía una polí<ca de revisión cruzada del código (pull requests) como mecanismo
informal de control de calidad.

Si bien el pipeline de CI/CD aún estaba en construcción al finalizar mi estancia, se sentaron las bases para
una implementación futura sostenible, con principios claros de control de versiones, automa<zación y
revisión con<nua

Planificación técnica y fases

El desarrollo de Wee 3.0 fue concebido como un proyecto completamente independiente, iniciado desde
cero, sin aprovechar componentes del código heredado debido al alto grado de deuda técnica e
incompa<bilidad estructural detectado en Wee 2.0. Esta decisión se tomó tras una auditoría inicial que
reveló que ningún módulo del sistema anterior era reu<lizable sin comprometer los estándares de calidad,
rendimiento y seguridad que se buscaban establecer.

El proyecto se diseñó para ejecutarse de manera paralela al mantenimiento de la versión anterior, la cual
debía permanecer ac<va y funcional para cumplir con contratos vigentes y compromisos con aseguradoras
ya firmados. Esta doble exigencia obligó a una división estratégica del equipo: por un lado, garan<zar la
estabilidad mínima de Wee 2.0; por otro, avanzar con el diseño, desarrollo y validación progresiva de Wee
3.0.

La planificación técnica se estructuró en cinco fases:

1. Separación opera<va de ambientes para evitar interferencias entre versiones.

2. Definición de arquitectura base y creación de módulos funcionales desde cero, organizados
bajo el patrón MVC mejorado.

3. Establecimiento de estándares de codificación y control de versiones, con ramas separadas
para desarrollo, pruebas y producción.

4. Implementación itera<va de funcionalidades en sprints, priorizando componentes reu<lizables
y aislados.

5. Preparación para la transición gradual, diseñando rutas de sus<tución funcional sin interrumpir
servicios crí<cos.

El cronograma original es<maba entre 6 y 8 meses de desarrollo ac<vo para una versión estable del MVP,
sujeto a ajustes según la disponibilidad de personal, avances en capacitación y soporte requerido por la
versión anterior.

13

Capacitación y fortalecimiento del equipo (versión final)

Uno de los componentes más importantes del proyecto Wee 3.0 fue la formación técnica interna,
impulsada por la necesidad de estandarizar criterios de desarrollo, elevar el nivel técnico del equipo, y
facilitar la adopción de nuevas prác<cas orientadas a la calidad y seguridad del so]ware. Esta
responsabilidad fue asumida directamente por mí como parte de mi par<cipación ac<va en el proyecto.

Se diseñó y entregó un programa de capacitación intensiva, estructurado en torno a las buenas prác<cas
del desarrollo iOS moderno, centrado en el lenguaje Swi], el uso adecuado de UIKit y su arquitectura
MVC, y herramientas esenciales como URLSession, Keychain, GCD y GitFlow. También se abordaron
patrones de comunicación en Swi] (delegados, closures, inyección de dependencias), diseño de flujos con
navegación programá<ca, estructura modular y consumo seguro de servicios backend.

A diferencia de una capacitación teórica, el enfoque fue aplicado y prác<co, integrando cada contenido en
tareas reales dentro del ciclo de desarrollo. Esto incluyó documentación, presentaciones, revisión de
código, ejemplos funcionales y resolución colabora<va de problemas. La retroalimentación fue con<nua y
la transferencia de conocimiento quedó asentada como parte del valor técnico duradero del proyecto.

Capacitación técnica aplicada al desarrollo iOS

Esta sección profundizará en los contenidos específicos impar<dos al equipo, incluyendo fundamentos de
Swi], patrones de diseño, control de versiones, seguridad, asincronía y principios de arquitectura limpia
adaptados a MVC.

Fundamentos del lenguaje Swift moderno

Tipado seguro, opcionales y manejo de errores

Uno de los elementos clave de la formación impar<da al equipo fue la comprensión del modelo de
seguridad de <pos que define la base del lenguaje Swi]. A diferencia de lenguajes más flexibles pero
propensos a errores en <empo de ejecución, Swi] obliga a que cada variable, constante y expresión tenga
un <po bien definido. Esta caracterís<ca reduce sustancialmente el margen de error y permite al
compilador detectar incongruencias en <empo de compilación, favoreciendo un desarrollo más confiable y
mantenible.

El concepto de opcionalidad en Swi] se abordó como una de las principales diferencias frente a otros
lenguajes. Los opcionales permiten representar explícitamente la posibilidad de que un valor esté ausente,
usando el <po T?. Se trabajaron técnicas de desempaquetado seguro mediante if let y guard let, el uso de
op<onal chaining para evitar cascadas de validaciones innecesarias, y el operador ?? como forma clara de
definir valores predeterminados. También se explicó detalladamente por qué el uso de ! (force unwrap)

14

debe considerarse una mala prác<ca en producción, dado que puede conducir a fallos severos en <empo
de ejecución si el valor resulta ser nil.

Complementariamente, se introdujo el sistema de manejo de errores de Swi], basado en el protocolo
Error y las instrucciones do, try, catch. Se discu<ó cómo Swi] obliga al desarrollador a declarar qué
funciones pueden lanzar errores y a tratarlos explícitamente, reforzando el principio de responsabilidad y
previsión. Esta combinación entre opcionales y manejo de errores estructurado refuerza la filosoya de
seguridad y claridad que caracteriza a Swi] como lenguaje moderno.

Sintaxis concisa y expresiva

Swi] fue diseñado con un obje<vo claro: facilitar la escritura de código que sea expresivo, legible y
cercano al lenguaje natural. Esta cualidad fue una de las que más se enfa<zó durante la capacitación,
par<cularmente para ayudar al equipo a escribir código más limpio, comprensible y mantenible.

Se analizaron ejemplos concretos de cómo la sintaxis clara de Swi] permite evitar redundancias, reducir el
uso de estructuras verbosas y construir funciones que se explican por sí mismas. Un caso ilustra<vo fue el
uso de e<quetas de parámetros en funciones (sayHello(to:and:)), lo que mejora radicalmente la
comprensión del propósito de cada argumento sin necesidad de documentación adicional.

También se prac<có el uso de closures en línea, la estructura compacta de expresiones como map, filter,
reduce, y el uso elegante de inicializadores, métodos encadenados y control de flujo simplificado con
guard. Todos estos elementos contribuyen a construir un código que no solo es más rápido de escribir, sino
también más fácil de leer y revisar, lo cual es vital en proyectos colabora<vos de mediano y largo plazo.

Esta claridad estructural fue reforzada como parte de una prác<ca transversal: escribir código para
humanos, no solo para la máquina, asegurando que cualquier miembro del equipo pudiera leer,
comprender y con<nuar trabajando sobre una base común, sin necesidad de depender del contexto tácito
del autor original del código.

Inferencia de tipos

La inferencia de <pos es una de las caracterís<cas que dis<ngue a Swi] de otros lenguajes de
programación fuertemente <pados. Gracias a esta funcionalidad, el compilador puede deducir el <po de
una variable a par<r del valor que se le asigna, permi<endo escribir menos código sin comprometer la
seguridad del sistema de <pos.

Durante la capacitación, se explicó cómo esta funcionalidad mejora la fluidez del desarrollo, haciendo que
el código sea más conciso, sin necesidad de repe<r <pos evidentes (let edad = 28 infiere que edad es un
Int). Sin embargo, se hizo énfasis en que esta facilidad no debe llevar al abuso: en contextos donde la
semán<ca del <po no es evidente, es preferible especificar el <po explícitamente, por claridad y para
evitar errores su<les.

15

Un ejemplo prác<co abordado fue el caso de opcionales declarados sin valor inicial, donde la inferencia no
es capaz de determinar el <po sin una anotación explícita (var mensaje: String?). Este caso sirvió para
ilustrar cómo la inferencia <ene límites y cómo el desarrollador debe complementar al compilador cuando
el contexto no es suficiente.

El equipo aprendió a combinar la inferencia con la declaración explícita como una herramienta de
equilibrio: usarla para acelerar el desarrollo cuando el <po es evidente y recurrir a anotaciones claras
cuando el <po o su propósito no lo son. Esta estrategia no solo man<ene la legibilidad del código, sino que
potencia el sistema de <pos de Swi] como una forma ac<va de prevenir errores y comunicar intención.

Organización y nomenclatura del código

Convenciones para nombrar variables y estructuras

Durante la capacitación, se enfa<zó la importancia de seguir las convenciones de nomenclatura
establecidas por Swi] para garan<zar la coherencia, escalabilidad y legibilidad del código. Estas
convenciones, alineadas con las Swi] API Design Guidelines (Apple, s.f.-a), son fundamentales para
mantener un código profesional y facilitar su mantenimiento colabora<vo en equipos mul<disciplinarios.

Las principales convenciones abordadas incluyeron:

• Tipos (clases, estructuras, enumeraciones y protocolos): Uso de UpperCamelCase, es decir, cada palabra
comienza con mayúscula y no se emplean guiones bajos. Ejemplos: UserProfile, NetworkManager,
DataParser.

• Variables y constantes: Uso de lowerCamelCase, iniciando con minúscula y capitalizando las palabras
subsiguientes. Ejemplos: userName, maxRetries, apiEndpoint.

• Funciones y métodos: Mismo formato lowerCamelCase, con nombres que describan con claridad la
acción que realizan. Ejemplos: calculateScore(), fetchData(), updateUserProfile().

• Enumeraciones (casos): También en lowerCamelCase, asegurando que cada caso sea claro y
representa<vo del estado. Ejemplo:

• Parámetros genéricos: Letras mayúsculas simples como T, U, V, o nombres en UpperCamelCase para
mayor expresividad:

También se abordó el uso de prefijos semán<cos para variables booleanas como is, has, o should

struct Stack<Element> {
 var items: [Element] = []
}

Figura 1. Definición de una estructura genérica Stack en Swift.

16

(isUserLoggedIn, hasAccess, shouldDisplayAlert) para mejorar la semán<ca del código (Apple, s.f.-a). Estas
convenciones ayudan a que el compilador proporcione asistencia contextual, a que el código sea auto-
explica<vo, y a facilitar la integración con herramientas de análisis está<co.

Comentarios, claridad de intención y legibilidad

La documentación interna del código es una herramienta crí<ca para mantener la claridad, robustez y
escalabilidad de una base de código compar<da. Durante la formación, se abordaron las buenas prác<cas
para documentar código en Swi], con énfasis en el uso de Swi] Markup, un conjunto de convenciones de
marcado adoptadas por Apple para generar documentación directamente desde el código fuente (Apple,
2023a; Apple, 2021a).

Se enseñó a u<lizar tanto comentarios informa<vos (//, /* */) como comentarios de documentación (///, /
** */), que permiten a Xcode mostrar documentación estructurada mediante Quick Help.

Ejemplo:

Además, se introdujo la herramienta DocC, lanzada por Apple para permi<r a los desarrolladores generar
documentación de sus proyectos de forma automá<ca, incluyendo encabezados, listas, ejemplos,
imágenes y enlaces interac<vos (Apple, 2021a; Apple, 2021b). Se explicó cómo estructurar los comentarios
para integrarse con DocC y generar documentación navegable en Xcode o exportarla como documentación
web.

Este enfoque favorece el desarrollo de sistemas sostenibles, donde el conocimiento se transmite dentro
del propio código y no solo mediante documentación externa. También mejora la comunicación entre
equipos, el onboarding de nuevos desarrolladores y la transparencia del diseño técnico.

Organización de carpetas, archivos y grupos en Xcode

/// Calcula el área de un rectángulo.
/// - Parameters:
/// - width: Ancho del rectángulo.
/// - height: Altura del rectángulo.
/// - Returns: El área calculada.
func calculateArea(width: Double, height: Double) -> Double {
 return width * height
}

Figura 2. Función calculateArea documentada con comentarios estructurados en Swift para
calcular el área de un rectángulo.

17

Una estructura de proyecto clara es indispensable para cualquier equipo de desarrollo. Incluso
aplicaciones de mediana escala pueden acumular decenas o cientos de archivos. Por ello, durante la
capacitación se abordaron las mejores prác<cas para organizar un proyecto en Xcode de forma lógica y
escalable (Apple, s.f.-b).

Se recomendó u<lizar nombres de archivo descrip<vos, como ProductListTableViewController.swi] en
lugar de abreviaciones como MainVC.swi], para facilitar la navegación. Asimismo, se sugirió mantener una
estructura modular, separando las definiciones de <po en archivos independientes (Car.swi], Driver.swi],
RaceTrack.swi] en lugar de Model.swi] combinado), lo cual favorece la reu<lización y el aislamiento de
responsabilidades.

Xcode permite agrupar archivos de forma visual, a través de groups, sin necesidad de reflejar esa
estructura en el sistema de archivos (indicados por el icono de carpeta con sombra). Se discu<ó cómo usar
estos grupos para mantener organizado el navegador de archivos, incluso si no coinciden exactamente con
las carpetas ysicas del proyecto.

Se propusieron estructuras lógicas comunes de organización como:

• ViewControllers

• Views

• Models

• Extensions

• Storyboards

• Protocols

También se enfa<zó la necesidad de escribir el código pensando en la claridad y mantenimiento futuro:
usando nombres explícitos, funciones pequeñas, firmas claras y comentarios ú<les, pensando en que otras
personas —o uno mismo en el futuro— deberán trabajar sobre esa base.

Arquitectura MVC con controladores auxiliares

Separación de responsabilidades en Model, View y Controller

El patrón Model-View-Controller (MVC) es uno de los pilares de la arquitectura de aplicaciones en UIKit.
Este patrón establece una separación clara de responsabilidades entre sus componentes principales, lo
que permite un diseño más mantenible, reusable y escalable (Apple, s.f.-c).

18

• Model: Encapsula los datos y la lógica de negocio de la aplicación. Representa el estado del
sistema y puede incluir estructuras, clases o servicios de red. Es independiente de cualquier
interfaz de usuario.

• View: Representa visualmente la información al usuario y capta su interacción. No con<ene lógica
de negocio, y su función es limitarse a la presentación.

• Controller: Actúa como intermediario entre la vista y el modelo. Controla el flujo de datos y
actualiza la interfaz en respuesta a eventos del modelo o del usuario.

Esta separación permite desarrollar componentes desacoplados, facilitando las pruebas, el mantenimiento
y la reu<lización del código (Apple, s.f.-d). También mejora la colaboración entre desarrolladores, ya que
cada elemento puede ser trabajado de forma independiente bajo responsabilidades bien definidas.

Uso de ModelControllers y HelperControllers

Para superar las limitaciones del MVC clásico, en aplicaciones complejas es común implementar
extensiones de esta arquitectura como ModelControllers y HelperControllers, con el fin de mantener la
separación de responsabilidades y evitar la sobrecarga del controlador de vista (Apple, s.f.-e).

• ModelControllers: Son componentes responsables de ges<onar la lógica de negocio, la
persistencia local y la comunicación con el backend. Actúan como puentes entre el modelo y el
controlador principal.

• HelperControllers: Se u<lizan para encapsular lógica secundaria o auxiliar, como validaciones,
formateo de datos o servicios de red. Esto permite mantener los controladores de vista enfocados
únicamente en la presentación.

El uso de estas capas intermedias fue fundamental para evitar el problema conocido como Massive View
Controller y lograr una arquitectura MVC modular, mantenible y alineada con las necesidades del
proyecto. Esta estructura también permi<ó una mayor flexibilidad para el trabajo en equipo y la
implementación gradual de nuevas funcionalidades.

Comparativa con MVVM y justificación de elección

El patrón Model-View-ViewModel (MVVM) ha ganado popularidad en el desarrollo con Swi]UI debido a
su capacidad para manejar el enlace de datos bidireccional y separar mejor la lógica de presentación de la
vista. Sin embargo, su implementación con UIKit requiere un esfuerzo adicional en términos de
infraestructura y curva de aprendizaje (Apple, s.f.-f).

Entre las ventajas de MVVM se destacan:

19

• Aislamiento más claro de la lógica de presentación mediante el uso de un ViewModel.

• Mejor escalabilidad en proyectos reac<vos con herramientas como Combine o RxSwi].

• Reducción del acoplamiento entre vista y modelo.

No obstante, en este proyecto se optó por mantener el patrón MVC debido a varias razones técnicas y
organiza<vas:

• UIKit fue el framework base, y su diseño está directamente alineado con MVC, facilitando la
integración con herramientas na<vas y simplificando la estructura general (Apple, s.f.-e).

• El equipo contaba con experiencia previa en este patrón, lo que permi<ó una curva de adopción
más rápida sin comprometer la calidad del desarrollo.

• La incorporación de ModelControllers y HelperControllers permi<ó extender las ventajas de
MVVM sin necesidad de abandonar MVC, conservando la claridad estructural y reduciendo la
complejidad técnica del sistema.

En resumen, MVC mejorado fue la solución más adecuada al contexto, permi<endo mantener la claridad,
escalabilidad y estabilidad del sistema, alineado con las capacidades del equipo y los obje<vos del
producto.

Patrones de comunicación entre componentes

Delegados, closures, inyección de dependencias

Durante la capacitación, se profundizó en las técnicas clásicas de comunicación entre componentes en el
desarrollo con UIKit, especialmente el uso de delegados, closures e inyección de dependencias, todas ellas
esenciales para mantener bajo acoplamiento y alta cohesión entre objetos en arquitectura MVC.

El patrón de delegación, ampliamente u<lizado en UIKit, permite que un objeto no<fique a otro sobre
ciertos eventos o decisiones mediante la implementación de un protocolo. Este patrón es común en vistas
como UITableView o UICollec<onView, y se implementa a través de cuatro pasos: definición del protocolo,
declaración de una propiedad de <po delegado, implementación del protocolo por parte del objeto
receptor, y asignación del delegado (Apple, s.f.-g). Esta técnica fue aplicada en casos prác<cos de
interacción entre vistas y controladores para manejar eventos de usuario, navegación y comunicación de
estados internos.

20

Por su parte, los closures ofrecen una forma moderna y concisa de pasar bloques de ejecución como
argumentos, facilitando el manejo de tareas asincrónicas, callbacks y actualizaciones de UI. En el contexto
de MVC, los closures resultaron ú<les para encapsular la lógica de presentación desacoplada del modelo.
Se abordaron ejemplos donde el modelo devolvía datos a través de closures para que el controlador
pudiera actualizar la interfaz sin conocer los detalles de implementación (Apple, s.f.-e).

Finalmente, se introdujo la técnica de inyección de dependencias, orientada a mejorar la testabilidad y la
modularidad del sistema. Se explicó cómo inyectar instancias directamente entre controladores para
compar<r información de forma explícita, evitando referencias globales o patrones singleton. Esta prác<ca
no solo mejora la legibilidad del flujo de datos, sino que permite el uso de mocks durante pruebas
unitarias o integración.

protocol MyDelegate: AnyObject {
 func didTapButton()
}

class ChildViewController: UIViewController {
 weak var delegate: MyDelegate?

 @IBAction func buttonTapped(_ sender: UIButton) {
 delegate?.didTapButton()
 }
}

Figura 3. Implementación del patrón delegado en Swift mediante un protocolo y una clase con
referencia débil.

class DataProvider {
 var onDataReady: ((String) -> Void)?

 func fetch() {
 // Simulación de obtención de datos
 onDataReady?("Datos listos")
 }
}

Figura 4. Uso de closures para la devolución de datos de forma asíncrona en una clase de
proveedor de datos.

21

Uso de Combine, tuplas y callbacks

El curso también abordó técnicas de comunicación más modernas e integradas en las arquitecturas
reac<vas, como el uso del framework Combine, las tuplas y los callbacks como mecanismos eficientes para
transmi<r datos entre componentes desacoplados.

Combine, introducido en iOS 13, permite trabajar con flujos de datos de manera declara<va y reac<va. Se
presentó su uso mediante propiedades @Published en ModelControllers, a las cuales los ViewControllers
se suscriben con sink para recibir actualizaciones en <empo real. Esta estrategia facilitó la implementación
de lógica reac<va sin recurrir a librerías externas como RxSwi], manteniendo la compa<bilidad na<va y
reduciendo la complejidad del sistema (Apple, s.f.-i).

Por otro lado, se revisó el uso de tuplas como estructuras ligeras para agrupar y transmi<r múl<ples
valores entre funciones o componentes, sin necesidad de definir una estructura adicional.

class LoginService {
 func authenticate() { /* ... */ }
}

class LoginViewController: UIViewController {
 let service: LoginService

 init(service: LoginService) {
 self.service = service
 super.init(nibName: nil, bundle: nil)
 }
}

Figura 5. Inyección de dependencias mediante inicializador para mejorar la modularidad y
testabilidad.

class ViewModel: ObservableObject {
 @Published var message: String = ""
}

let viewModel = ViewModel()
viewModel.$message.sink { print("Nuevo mensaje: \($0)") }

Figura 6. Observación de cambios en propiedades publicadas usando Combine y @Published.

func fetchUserData() -> (name: String, age: Int) {
 return ("Ana", 30)
}

Figura 7. Función que retorna una tupla nombrada con los datos de un usuario.

22

Los callbacks con closures también se presentaron como una alterna<va común para enviar información
de un controlador a otro, especialmente en flujos donde una acción debe desencadenar un resultado
posterior (por ejemplo, al seleccionar un ítem y retornar la selección). Esta prác<ca resultó ú<l para evitar
referencias circulares y reforzar el control del flujo de datos.

Flujo de eventos y control de dependencias

Finalmente, se abordó el diseño de un flujo de eventos desacoplado y el manejo controlado de
dependencias internas. Estas dos dimensiones son esenciales para lograr un sistema modular, escalable y
fácil de probar, especialmente en una arquitectura como MVC extendido con controladores auxiliares.

Durante la formación se enfa<zó la importancia de centralizar la lógica de control en controladores
especializados (ModelControllers), donde se produce y administra el flujo de datos, dejando a los
ViewControllers únicamente la responsabilidad de presentar la información. Las herramientas revisadas,
como Combine, closures y delegados, se combinaron para establecer canales de comunicación seguros y
predecibles.

En cuanto a control de dependencias, se mostró cómo abstraer servicios mediante protocolos e inyectar
instancias concretas en el punto de configuración de la aplicación. Este enfoque permi<ó reemplazar
implementaciones reales por versiones simuladas o controladas durante el desarrollo y tes<ng. En
paralelo, se desaconsejó el uso de dependencias implícitas o globales que pudieran dificultar el
mantenimiento y prueba del sistema.

class DetailViewController: UIViewController {
 var onFinish: ((Bool) -> Void)?

 func done() {
 onFinish?(true)
 }
}

Figura 8. Uso de una closure opcional para notificar la finalización de una acción desde un
controlador.

protocol StorageService {
 func save(_ value: String)
}

class FileStorage: StorageService {
 func save(_ value: String) {
 print("Guardado en archivo")
 }
}

Figura 9. Implementación de un protocolo para definir un servicio de almacenamiento con una
clase que representa un almacenamiento en archivo.

23

Esta visión integrada de eventos, dependencias y separación de responsabilidades sentó las bases para
una arquitectura sólida y sostenible a mediano y largo plazo.

Consumo de servicios REST y asincronía

Uso avanzado de URLSession

URLSession es la clase na<va de Apple para ges<onar transferencias de datos en red. Disponible desde iOS
7.0, su API ha evolucionado para incluir soporte na<vo para HTTP/1.1, HTTP/2 y HTTP/3, así como tareas
de descarga en segundo plano, comunicación con WebSockets y manejo seguro con polí<cas como ATS
(App Transport Security). Es altamente configurable y adecuada para proyectos que requieren un control
granular sobre las conexiones, incluyendo personalización de caché, cookies, headers, cer<ficados y tareas
en segundo plano (Apple, s.f.-j).

Se dis<nguieron durante la capacitación cuatro <pos principales de configuración de sesiones:

• Compar<da (shared): Para solicitudes básicas sin configuración.

• Predeterminada (default): Permite delegados y configuraciones personalizadas.

• Eymera (ephemeral): No deja rastros (cookies, caché) en disco.

• Fondo (background): Permite que operaciones largas se completen aun con la app suspendida.

let url = URL(string: "https://api.ejemplo.com/user")!
let task = URLSession.shared.dataTask(with: url) { data, response, error in
 guard let data = data else { return }
 do {
 let user = try JSONDecoder().decode(User.self, from: data)
 print(user.name)
 } catch {
 print("Error al decodificar: \(error)")
 }
}
task.resume()

Figura 10. Ejemplo de solicitud HTTP con URLSession y decodificación de datos usando
JSONDecoder en Swift.

24

https://api.ejemplo.com/user

Asimismo, se revisaron las principales tareas de red que URLSession puede ejecutar:

• DataTask: Para envíos y respuestas simples.

• UploadTask: Para subir archivos grandes o en segundo plano.

• DownloadTask: Para ges<onar grandes descargas con seguimiento.

• WebSocketTask: Para comunicación bidireccional en <empo real.

El uso de delegados para URLSession permite interceptar eventos como auten<cación, recepción de datos
incremental, manejo de caché y reintentos, sin bloquear la interfaz. Esto es especialmente ú<l en flujos
donde se requiere responder a eventos asincrónicos desde múl<ples capas del sistema.

Comparativa entre URLSession y Alamofire

Durante la formación, también se analizó la biblioteca de terceros Alamofire, ampliamente u<lizada en
proyectos iOS para simplificar la interacción con APIs RESTful. Alamofire está construido sobre URLSession,
pero ofrece una interfaz más declara<va, funcionalidades integradas de serialización, interceptores,
validación de cer<ficados y control de errores más compacto (Apple, s.f.-j).

func fetchUser() async {
 let url = URL(string: "https://api.ejemplo.com/user")!
 do {
 let (data, _) = try await URLSession.shared.data(from: url)
 let user = try JSONDecoder().decode(User.self, from: data)
 print(user.name)
 } catch {
 print("Error: \(error)")
 }
}

Figura 11. Solicitud de red moderna usando async/await y decodificación con JSONDecoder en
Swift.

class NetworkDelegate: NSObject, URLSessionDelegate {
 func urlSession(_ session: URLSession, didBecomeInvalidWithError error: Error?) {
 print("Sesión inválida: \(error?.localizedDescription ?? "Sin error")")
 }
}

let session = URLSession(configuration: .default, delegate: NetworkDelegate(), delegateQueue: nil)
Figura 12. Uso de un delegado personalizado (URLSessionDelegate) para manejar eventos de

invalidación en sesiones de red.

25

https://api.ejemplo.com/user

Tabla 1. Compara<va entre URLSession y Alamofire en proyectos iOS.

Ambas opciones son válidas y potentes. La elección depende del contexto: si se necesita una solución
liviana, segura, na<va y sin dependencias externas, URLSession es preferible. En cambio, si se prioriza la
velocidad de desarrollo, legibilidad del código y modularidad, Alamofire ofrece ventajas inmediatas.

Programación con GCD y async/await

Para aprovechar el comportamiento asíncrono de URLSession y otras operaciones intensivas, se
capacitaron dos enfoques esenciales: Grand Central Dispatch (GCD) y el nuevo modelo de concurrencia
basado en async/await, introducido en Swi] 5.5.

GCD fue presentado como una solución madura para ges<onar tareas concurrentes mediante colas de
ejecución (DispatchQueue). Se diferenciaron las colas seriales (una tarea a la vez) y colas concurrentes

Criterio URLSession Alamofire
Naturaleza API nativa de Apple Biblioteca externa construida

sobre URLSession

Flexibilidad Máximo control, requiere más
código

Simplicidad, menor control de
bajo nivel

Serialización Manual (usualmente con
JSONDecoder)

Automática con métodos
integrados (responseDecodable)

Interceptores Requiere configuración propia Integrados para headers,
autenticación, logging

Casos de uso ideal Proyectos que requieren control
detallado

Proyectos que privilegian
velocidad y simplicidad de
desarrollo

Comunidad y soporte Oficial de Apple Comunidad activa de código
abierto

AF.request("https://api.ejemplo.com/user")
 .validate()
 .responseDecodable(of: User.self) { response in
 switch response.result {
 case .success(let user):
 print(user.name)
 case .failure(let error):
 print("Error: \(error)")
 }
 }

Figura 13. Ejemplo de uso de Alamofire para realizar una petición HTTP y decodificar
automáticamente la respuesta utilizando responseDecodable.

26

https://api.ejemplo.com/user

(varias tareas en paralelo), y se destacó la importancia de enviar actualizaciones de UI al hilo principal
(DispatchQueue.main.async) tras completar operaciones en segundo plano.

Async/await, por su parte, ofrece una sintaxis declara<va y lineal para manejar código asincrónico,
eliminando el uso excesivo de closures o callbacks anidados. En combinación con
URLSession.shared.data(for:delegate:), es posible realizar pe<ciones de red que se leen y se controlan
como si fueran secuenciales. Este modelo mejora la legibilidad, permite una mejor propagación de errores
mediante do/try/catch, y se considera una prác<ca recomendada para proyectos modernos (Apple, 2021c;
Apple, 2021d).

A modo de conclusión, se recomendó el uso de async/await como estándar para proyectos modernos en
iOS 15+, manteniendo GCD como una herramienta ú<l para flujos más bajos, como sincronización de
procesos o ejecución paralela.

Gestión segura y eficiente del almacenamiento local

UserDefaults, Keychain, FileManager y Core Data

Apple ofrece una serie de tecnologías na<vas para la persistencia local de datos en aplicaciones
desarrolladas con UIKit. Cada herramienta <ene ventajas específicas según el <po de información que se
desea almacenar, la frecuencia de acceso, los requisitos de seguridad y la necesidad de sincronización
entre disposi<vos.

DispatchQueue.global(qos: .background).async {
 let result = longRunningTask()
 DispatchQueue.main.async {
 self.label.text = result
 }
}

Figura 14. Ejecución de una tarea en segundo plano con DispatchQueue y actualización
posterior en el hilo principal.

func loadData() async {
 do {
 let (data, _) = try await URLSession.shared.data(from: URL(string: "https://api.ejemplo.com/data")!)
 let result = try JSONDecoder().decode(MyModel.self, from: data)
 print(result)
 } catch {
 print("Falló la solicitud: \(error)")
 }
}

Figura 15. Petición asincrónica utilizando async/await con URLSession y decodificación de
respuesta usando JSONDecoder.

27

https://api.ejemplo.com/data

UserDefaults: La clase UserDefaults permite almacenar de forma sencilla datos como preferencias de
usuario, configuraciones o banderas booleanas. Es ideal para persistencia ligera y se sincroniza
automá<camente entre ejecuciones de la aplicación. Está disponible en todas las plataformas del
ecosistema Apple. Sin embargo, su uso no es recomendable para datos sensibles ni para estructuras
complejas o grandes volúmenes de información (Apple, s.f.-k).

Keychain: Para información sensible, como contraseñas o tokens de sesión, la herramienta más segura es
el Keychain. Su cifrado está integrado en el sistema y los datos persisten incluso después de que la
aplicación sea desinstalada. Aunque su API es más compleja y de bajo nivel, permite compar<r datos entre
apps del mismo desarrollador cuando se configura adecuadamente (Apple, s.f.-l).

FileManager: FileManager proporciona una interfaz para leer y escribir directamente en el sistema de
archivos del disposi<vo. Es ú<l para el manejo de documentos, imágenes, vídeos u otros archivos
generados por el usuario o descargados. Permite definir estructuras de carpetas personalizadas, pero
requiere una ges<ón manual y cuidadosa de rutas, permisos y buenas prác<cas, como evitar almacenar
datos temporales en el directorio Documents (Apple, s.f.-m).

Core Data: Core Data es el framework de persistencia más robusto del ecosistema Apple. Se trata de un
ORM (Object Rela<onal Mapping) que permite ges<onar modelos de datos complejos y relaciones entre
en<dades. Incluye herramientas para migración de esquemas, versionado y sincronización mediante
iCloud. Su curva de aprendizaje es más pronunciada, pero es ideal para aplicaciones que manejan grandes
volúmenes de información o estructuras relacionales sofis<cadas (Apple, s.f.-n).

Estrategias para persistencia segura y sincronización

Durante el desarrollo profesional y la capacitación técnica, se resaltó la importancia de seleccionar el
mecanismo de almacenamiento apropiado para cada <po de dato. En general, se establecieron las
siguientes directrices:

• Usar UserDefaults para almacenar configuraciones simples no sensibles.

• Emplear Keychain para datos que involucren seguridad, auten<cación o iden<dad.

• U<lizar FileManager para archivos grandes o estructuras personalizadas de documentos del
usuario.

• Implementar Core Data o, en su caso, SQLite, para modelos complejos con relaciones y
operaciones frecuentes.

• Integrar iCloud Documents cuando sea necesario mantener sincronización entre disposi<vos
Apple sin intervención manual.

Estas estrategias aseguran un equilibrio entre seguridad, eficiencia, escalabilidad y compa<bilidad
mul<plataforma. A lo largo del proceso de desarrollo, se hizo énfasis en seguir las guías de

28

almacenamiento seguro de Apple y en diseñar flujos que prevengan pérdidas de información, corrupción
de archivos o duplicidad de datos.

Diseño de interfaces en UIKit

Principios de diseño con Storyboards y Auto Layout

UIKit con<núa siendo el framework más maduro y ampliamente adoptado para el diseño de interfaces
gráficas en aplicaciones iOS, iPadOS y macOS. A diferencia de Swi]UI, su paradigma impera<vo
proporciona control detallado sobre el ciclo de vida de los controladores de vista y su integración con
UIViewController, UINaviga<onController y UITabBarController.

Durante la capacitación se abordaron principios fundamentales del diseño en UIKit, haciendo énfasis en el
uso de Storyboards y Auto Layout. Storyboards permiten construir visualmente la estructura de
navegación y las relaciones entre pantallas, mientras que Auto Layout facilita la creación de interfaces
responsivas, adaptables a dis<ntas resoluciones y disposi<vos, respetando márgenes seguros y
comportamientos dinámicos (Apple, s.f.-e).

Este enfoque visual no solo mejora la legibilidad del flujo de pantallas, sino que permite reu<lizar
componentes y establecer constraints precisas sin tener que escribir código adicional, algo especialmente
ú<l en proyectos con múl<ples desarrolladores o iteraciones rápidas.

Figura 16. Ejemplo Storyboard con Auto Layout y distintos dispositivos.

29

Figura 17. Ejemplo de vista con contenido intrínseco usando Auto Layout - Fuente:

Apple (s.f.-o)
Nota: Para la Figura 17, las siguientes reglas de Auto Layout fueron aplicadas a los elementos
visuales enumerados en la imagen de la derecha:

1. First Name Label.Leading = Superview.LeadingMargin

2. Middle Name Label.Leading = Superview.LeadingMargin

3. Last Name Label.Leading = Superview.LeadingMargin

4. First Name Text Field.Leading = First Name Label.Trailing + Standard

5. Middle Name Text Field.Leading = Middle Name Label.Trailing + Standard

6. Last Name Text Field.Leading = Last Name Label.Trailing + Standard

7. First Name Text Field.Trailing = Superview.TrailingMargin

8. Middle Name Text Field.Trailing = Superview.TrailingMargin

9. Last Name Text Field.Trailing = Superview.TrailingMargin

10.First Name Label.Baseline = First Name Text Field.Baseline

11.Middle Name Label.Baseline = Middle Name Text Field.Baseline

12.Last Name Label.Baseline = Last Name Text Field.Baseline

13.First Name Text Field.Width = Middle Name Text Field.Width

14.First Name Text Field.Width = Last Name Text Field.Width

15.First Name Text Field.Top = Top Layout Guide.Bottom + 20.0

16.Middle Name Text Field.Top = First Name Text Field.Bottom + Standard

17.Last Name Text Field.Top = Middle Name Text Field.Bottom + Standard

30

Patrones de navegación en UIKit

UIKit proporciona múl<ples mecanismos de navegación entre controladores de vista que permiten
construir flujos de trabajo coherentes, escalables y adaptables a dis<ntas plataformas del ecosistema
Apple. Durante la capacitación, se abordaron tres pilares fundamentales: navegación programá<ca,
navegación mediante Storyboards con segues, y navegación estructurada por secciones u<lizando
UITabBarController.

Uno de los patrones más comunes en aplicaciones iOS es la navegación en pila (push), ges<onada a través
de un UINaviga<onController. Este controlador permite apilar vistas de forma jerárquica y presentar
nuevos controladores mediante el método pushViewController(_:animated:). Se explicó también el uso de
transiciones modales para presentar vistas fuera del flujo jerárquico, así como la combinación de ambas
estrategias para manejar flujos dependientes y flujos paralelos.

En el contexto visual, los segues definen conexiones entre pantallas dentro de Storyboards. Se revisaron
en detalle los métodos prepare(for:sender:), performSegue(withIden<fier:sender:) y
shouldPerformSegue(withIden<fier:sender:), esenciales para pasar datos entre vistas, condicionar
transiciones y asegurar la integridad del flujo.

Complementariamente, se profundizó en el uso de la barra de navegación (UINaviga<onBar), sus
elementos (naviga<onItem, UIBarBugonItem), y los patrones de apariencia global mediante
UINaviga<onBar.appearance() para mantener consistencia visual. Esta personalización es especialmente
importante en aplicaciones que demandan una iden<dad gráfica propia o integración con flujos
administra<vos y herramientas empresariales.

Otro componente clave revisado fue el UITabBarController, u<lizado para organizar múl<ples secciones de
la aplicación en una estructura horizontal. Su implementación fue abordada tanto desde el Storyboard
como desde código, u<lizando arreglos de controladores e íconos personalizados (UITabBarItem). Esta
interfaz es común en aplicaciones que agrupan contenido por dominios funcionales: inicio, servicios,
configuración, etc.

Asimismo, se revisó el protocolo UITabBarControllerDelegate para ges<onar cambios de pestaña y detectar
el comportamiento ac<vo del usuario. Este nivel de control permite ejecutar operaciones asincrónicas o
cambiar el estado de la aplicación de forma dinámica al detectar la pestaña seleccionada (Apple, s.f.-f).

Finalmente, se exploró la implementación de transiciones unwind, las cuales permiten regresar desde una
vista secundaria a una anterior de manera controlada. Estas transiciones son ú<les cuando no se desea
desapilar vistas manualmente ni depender exclusivamente de botones de navegación.

Al integrar storyboards visuales, navegación programá<ca y componentes estándar como barras y tab
bars, se logra una experiencia de usuario clara y predecible. Estos patrones permiten separar la lógica de
flujo, mantener estructuras mantenibles, y asegurar que las aplicaciones respondan tanto a criterios de
usabilidad como a necesidades empresariales.

31

Control de versiones y flujo de trabajo con GitFlow

Tipos de ramas: main, develop, feature, release y hotfix

Figura 18. Ejemplo del uso de UITabBarController con múltiples secciones en una aplicación
de reloj. Fuente: Apple (s.f.-p)

Figura 19. Ejemplo de navegación jerárquica con UINavigationController en la app de
Configuración. Fuente: Apple (s.f.-q)

32

Git Flow es una estrategia de control de versiones que organiza el desarrollo de so]ware mediante una
estructura clara y jerárquica de ramas. Fue introducida en 2010 por Vincent Driessen y ha sido
ampliamente adoptada por equipos de desarrollo que requieren flujos controlados para entornos
colabora<vos, con múl<ples fases de desarrollo, pruebas y lanzamiento.

El flujo se basa en cinco <pos de ramas:

• main: Esta rama con<ene siempre el código estable que está listo para producción. Cada commit
en main debe representar una versión que pueda ser desplegada en cualquier momento. Por
convención, se man<ene libre de errores y solo recibe código probado y validado.

• develop: Es la rama base para el desarrollo de nuevas funcionalidades. Aquí se integran las ramas
de feature y representa el estado pre-producción de la aplicación. Aunque es menos estable que
main, debe mantener un nivel funcional suficiente para pruebas de integración.

• feature: Se crean ramas de feature a par<r de develop para trabajar en nuevas funcionalidades de
forma aislada. Una vez implementada y revisada, la rama se fusiona nuevamente en develop. Esta
separación evita contaminar el código base con cambios incompletos o experimentales.

• release: Estas ramas se derivan de develop cuando se desea preparar una nueva versión estable.
En ellas se realizan ajustes menores, corrección de errores y documentación final antes del
despliegue. Al concluir, la rama se fusiona tanto en main como en develop.

• hoLix: Son ramas temporales que se crean directamente desde main para resolver errores crí<cos
en producción. Posteriormente se integran en main y develop para mantener la coherencia de la
base de código en todas las ramas ac<vas.

Esta estructura permite un control riguroso sobre qué <po de código se encuentra en cada fase del ciclo
de desarrollo, minimizando errores en producción y facilitando la ges<ón de versiones.

Figura 20. Diagrama GitFlow

33

Buenas prácticas para mantenimiento, integración y revisión

Implementar Git Flow eficazmente requiere adoptar una serie de buenas prác<cas que aseguren la
calidad, estabilidad y trazabilidad del código.

• La rama main debe mantenerse limpia y únicamente contener código validado y probado. Se
recomienda que las fusiones hacia esta rama estén sujetas a revisiones estrictas y pruebas
automa<zadas.

• La rama develop debe ser la única base para nuevas funcionalidades. Esto garan<za una separación clara
entre el código en desarrollo y el código estable. Cada feature debe desarrollarse en una rama
independiente, preferentemente con nombres descrip<vos y relacionados al obje<vo de la tarea.

• Las ramas de feature y release deben ser eliminadas una vez fusionadas para evitar confusión y
mantener el repositorio limpio. Asimismo, se aconseja que las ramas de feature nunca se fusionen
directamente en main.

• En el caso de hocix, su uso debe reservarse exclusivamente para incidentes urgentes que requieran
atención inmediata en producción. Su correcta integración en develop evita que se pierdan correcciones
en futuras versiones.

• Se recomienda llevar un proceso de revisión de código formal antes de cualquier fusión importante. Esta
revisión puede realizarse mediante pull requests, y debe incluir comentarios técnicos, validaciones de
es<lo y pruebas de funcionamiento.

• Una comunicación efec<va dentro del equipo es esencial. Todos los miembros deben estar al tanto del
estado de las ramas, cambios estructurales y convenciones adoptadas.

• Finalmente, es fundamental documentar tanto en los mensajes de commit como en el repositorio
principal cualquier decisión técnica o cambio relevante en el flujo de trabajo. Esto facilita el seguimiento
histórico del proyecto.

Nota: La Figura 20 ilustra el modelo GitFlow aplicado, donde cada tipo de rama cumple una
función específica dentro del flujo de trabajo. Se observa cómo las ramas feature se originan
desde develop, y posteriormente se integran para formar versiones candidatas en release,
antes de pasar a main. Las ramas hotfix se desprenden directamente de main para corregir
errores críticos y se reintegran tanto a main como a develop, asegurando la consistencia del

historial. Las etiquetas v0.1, v0.2 y v1.0 muestran ejemplos de versionado semántico aplicado
durante el ciclo de vida del desarrollo. 

Fuente: Sergio Humberto. (s.f.)

34

Uso de etiquetas, CI/CD y pruebas automatizadas con XCTest

Para complementar el flujo de trabajo de Git Flow y asegurar la calidad del so]ware en cada etapa, se
recomienda integrar herramientas de e<quetado, pruebas automa<zadas y despliegue con<nuo.

• Las e<quetas (tags) son u<lizadas para marcar versiones específicas en ramas de release y main. Esto
permite iden<ficar y rastrear versiones distribuidas, generar changelogs, o realizar rollbacks en caso de
ser necesario.

• En paralelo, se fomenta la implementación de procesos de Integración Con<nua / Despliegue Con<nuo
(CI/CD). Este enfoque permite que cada commit en ramas crí<cas dispare automá<camente procesos de
construcción, validación y despliegue en entornos de pruebas o producción.

• En el contexto de desarrollo iOS, se u<lizaron pruebas unitarias mediante el framework XCTest,
integradas dentro del pipeline de CI. Estas pruebas permiten detectar errores tempranamente, asegurar
el funcionamiento de nuevos módulos, y evitar regresiones en funcionalidades existentes.

• Se estableció un sistema donde cada pull request debía ejecutar sa<sfactoriamente una batería de
pruebas automa<zadas antes de ser integrado en develop o main. Esto ayudó a mantener la integridad
del proyecto, incluso con múl<ples desarrolladores trabajando en paralelo.

La combinación de e<quetado semán<co, pruebas automa<zadas y validación con<nua refuerza el
obje<vo principal de Git Flow: garan<zar que el código en producción sea siempre estable, reproducible y
confiable.

35

Capítulo 3 - Implementación
práctica y validación funcional
Despliegue inicial del proyecto y aplicación de
arquitectura modular

La puesta en marcha del proyecto Wee 3.0 comenzó con el establecimiento de un repositorio centralizado
en Azure DevOps, u<lizando una metodología GitFlow para ges<onar las ramas, versionar los cambios y
facilitar las revisiones colabora<vas dentro del equipo. Esta configuración se complementó con el uso de
GitKraken, una herramienta gráfica que permi<ó organizar el flujo de trabajo de manera visual y
estructurada, integrando prác<cas como feature branching, pull requests y release tracking.

Una vez creado el repositorio, se inició la conexión entre Azure DevOps y GitKraken, generando las
credenciales necesarias para la auten<cación mediante tokens de acceso personal. Se configuraron las
ramas principales (main y develop) y se habilitaron las polí<cas de protección de ramas, incluyendo:

• Revisión obligatoria por un miembro del equipo antes de fusionar.

• Asociación de cambios con work items (historias de usuario).

• Resolución documentada de comentarios antes del merge.

Figura 21. Estructura inicial del repositorio del proyecto Wee 3.0 en Azure DevOps, rama
principal main.

36

Figura 22. Políticas de protección configuradas para la rama main en Azure DevOps: revisión
obligatoria, trazabilidad de historias y resolución de comentarios antes del merge.

Figura 23. Vista de ramas main y develop
gestionadas mediante GitFlow en la interfaz de

GitKraken.

Figura 24. Menú de creación de ramas de tipo
feature, release y hotfix en GitKraken mediante

flujo GitFlow.

37

Con estas polí<cas ac<vas, se creó el proyecto Wee 3.0 en Xcode, u<lizando Storyboard como sistema de
interfaz gráfica, e incluyendo archivos de pruebas automa<zadas (XCTest) desde la fase inicial. El proyecto
fue estructurado con una jerarquía clara de carpetas, siguiendo un enfoque modular:

Además, se incorporó una carpeta de uso global denominada Global Archives, la cual contenía plan<llas y
componentes reu<lizables compar<dos entre módulos.

Figura 25. Pull Request completado exitosamente en Azure DevOps, mostrando la integración
de la rama feature/Setup-Project a develop con validaciones aprobadas y sin conflictos.

Figura 26. Estructura modular del proyecto Wee 3.0 en Xcode, organizada por Storyboards,
controladores, modelos y pruebas.

38

La carga inicial del proyecto se realizó siguiendo los principios de GitFlow: creación de rama feature,
subida de archivos mediante push local, y solicitud de pull request revisada y aprobada por otro integrante
del equipo. Posteriormente, se realizó un merge hacia develop, y una vez consolidada la arquitectura base,
se creó una rama release que fue integrada finalmente en main, completando el despliegue oficial del
proyecto.

Este proceso, además de garan<zar la trazabilidad y validación del código, sentó las bases para un flujo de
trabajo sostenible, con ciclos de integración con<nua, mantenimiento simplificado y colaboración efec<va
en equipo.

Punto de entrada y arquitectura de entorno en el inicio
de sesión

El nuevo inicio de sesión se estableció como el punto de entrada fundamental de la aplicación dentro del
Storyboard Main. A diferencia de versiones anteriores, esta pantalla no solo marca el acceso del usuario,
sino que representa un cambio estructural clave en la arquitectura general del proyecto Wee 3.0. Desde su

Figura 27. Flujo de ramas y confirmaciones en GitKraken durante la fase inicial del proyecto
Wee 3.0: integración de la arquitectura base desde Setup-Project-Arquitecture hacia develop,

release y main.

39

implementación, se incorporó un sistema de archivos de configuración segmentados por entorno, con
esquemas independientes para desarrollo y producción. Esto permi<ó centralizar variables crí<cas como
URLs del backend, claves de API, y credenciales de auten<cación, facilitando el cambio de ambiente sin
modificar el código fuente.

Gracias a esta arquitectura, los procesos de prueba por parte de la Product Owner (PO), quien también
desempeñaba funciones de QA, se simplificaron significa<vamente. Ya no era necesario generar múl<ples
versiones de la aplicación para cada entorno: bastaba con ejecutar el proyecto bajo el esquema deseado
para realizar pruebas completas y consistentes desde el flujo de inicio de sesión.

Figura 28. Configuración de esquemas de entorno (Dev y Prod) en Xcode para la aplicación
Wee 3.0.

Nota: Esta configuración permite alternar fácilmente entre ambientes de desarrollo y
producción desde el entorno de ejecución en Xcode, utilizando archivos .xcconfig para definir

variables globales como el identificador del bundle, nombre de la app y URLs del backend.

Figura 29. Pantalla de inicio de sesión con selector oculto de entorno en Wee 3.0.

40

Adicionalmente, el diseño de esta pantalla —y del proyecto en general— se concibió desde el inicio como
mul<disposi<vo y adaptable, compa<ble con todos los tamaños y orientaciones de pantalla en iOS, iPadOS
y macOS mediante Catalyst. El uso de Auto Layout y un sistema visual desacoplado a través de Storyboard
References garan<zó que esta primera vista pudiera escalar correctamente, sin distorsiones, en cualquier
disposi<vo del ecosistema Apple.

Nota: Al realizar una presión prolongada sobre el botón “Iniciar sesión”, se despliega un menú
oculto que permite seleccionar el entorno (Desarrollo, QA, Producción, etc.). Esta funcionalidad

está restringida mediante archivos de configuración (.xcconfig) para que no se active en la
versión de producción, y fue diseñada para facilitar las pruebas manuales sin necesidad de

múltiples versiones de la app.

Figura 30. Compatibilidad visual del login en iPhone y iPad usando un único storyboard
adaptado.

Nota: La misma pantalla de inicio de sesión se muestra correctamente tanto en un iPhone 16
Pro Max en orientación horizontal como en un iPad Pro de 13 pulgadas con modo oscuro
activado. Esta adaptabilidad se logró exclusivamente mediante Auto Layout y el uso de
componentes nativos, sin necesidad de duplicar vistas ni condicionar el flujo para cada

plataforma.

41

Figura 31. Visualización del flujo de inicio de sesión desde Storyboard en iPhone 16 Pro Max y
iPad Pro 13”.

Nota: La parte superior muestra el flujo renderizado en un iPhone 16 Pro Max, mientras que la
parte inferior corresponde a un iPad Pro de 13” (M4). Esta visualización, tomada directamente
desde el Storyboard de Xcode, permite verificar en tiempo real la correcta adaptación de los
elementos a distintas resoluciones y orientaciones, lo cual agiliza las pruebas de interfaz sin

necesidad de ejecutar la app.

42

Modularización de interfaces con Storyboard
References

En el desarrollo de Wee 3.0, uno de los mayores desayos fue mantener la modularidad visual, el orden
jerárquico de navegación y la colaboración fluida entre desarrolladores sin perder los beneficios del diseño
visual proporcionado por Interface Builder. Para resolver esta problemá<ca de forma elegante y na<va, se
optó por un enfoque basado en Storyboard References, una funcionalidad introducida en iOS 9 que
permite dividir un storyboard principal en varios storyboards secundarios, sin renunciar a la capacidad de
enlazar escenas visualmente mediante segues.

¿Qué es una Storyboard Reference?
Una Storyboard Reference funciona como un “puente visual” entre archivos storyboard dis<ntos. Actúa
como un placeholder dentro del storyboard principal, apuntando a un ViewController que vive en otro
archivo storyboard del mismo proyecto. Esta estructura permite que Xcode compile y valide los enlaces
como si formaran parte del mismo documento, pero internamente están separados a nivel de archivo.
Esto habilita una arquitectura limpia, visual y escalable sin necesidad de transiciones programá<cas entre
controladores.

Ventajas de usar Storyboard References
1. Modularidad y escalabilidad: Dividir la interfaz en múl<ples storyboards facilita el

mantenimiento y la navegación entre flujos complejos. Por ejemplo, en Wee 3.0 se aislaron
flujos como auten<cación, recuperación de contraseña y panel de usuario.

2. Colaboración sin conflictos: En lugar de que dos desarrolladores editen el mismo storyboard
(archivo XML), cada quien puede trabajar sobre su storyboard independiente, evitando
conflictos en Git, uno de los mayores problemas de los storyboards monolí<cos.

3. Reu?lización y testeo independiente: Al separar vistas o flujos reu<lizables (por ejemplo, un
formulario de contacto o un verificador de sesión), estos se pueden mantener, probar y
versionar de forma independiente.

4. Navegación fluida y validación de vínculos: Los segues entre storyboards son totalmente
compa<bles con Interface Builder, y si hay errores en los IDs o enlaces mal configurados, Xcode
los detectará en <empo de compilación, evitando errores en <empo de ejecución.

Ventajas frente al diseño 100% programático
Aunque crear interfaces mediante código (con NSLayoutConstraint, UIView(), etc.) permite control
absoluto sobre la lógica visual, este enfoque <ene costos importantes en <empo, legibilidad y
mantenibilidad. En contraste, el uso de Storyboards, reforzado con Storyboard References, ofrece:

43

• Visualización inmediata de flujos completos sin necesidad de compilar.

• Compa<bilidad con múl<ples disposi<vos y orientaciones gracias a Auto Layout y Size Classes.

• Reu<lización de interfaces sin duplicar código.

• Transiciones visuales configurables, sin necesidad de lógica adicional.

Esta estrategia también permi<ó que diseñadores visuales o ingenieros sin conocimientos profundos de
programación pudieran colaborar directamente sobre la interfaz, algo imposible en diseño 100%
programá<co.

Aplicación en el proyecto Wee 3.0
En Wee 3.0, la adopción de esta técnica fue decisiva para mantener la organización del proyecto conforme
crecía en funcionalidades. Se creó un storyboard principal donde vivían flujos crí<cos como el login, y
múl<ples Storyboard References enlazaban a flujos independientes como:

• Onboarding y registro de usuario

• Perfil del asegurado

• Sección de videos de bienestar

• Administración de pólizas y documentos

Este esquema facilitó el desarrollo paralelo, el aislamiento de bugs visuales, y permi<ó escalar a más
pantallas sin comprometer la estabilidad del sistema de navegación.

Figura 32. Storyboards independientes conectados mediante referencias visuales en Xcode

44

Implementación de múltiples métodos de
almacenamiento local 
Durante la implementación del módulo de inicio de sesión, se diseñó una arquitectura orientada a la
demostración, validación y comparación de dis<ntas estrategias de almacenamiento local en iOS. Esto
permi<ó evaluar su idoneidad técnica antes de su aplicación defini<va a otros módulos más sensibles
dentro de la aplicación.

Se implementaron tres controladores independientes, cada uno responsable de encapsular un enfoque
específico: UserDefaults, Keychain, y archivos plist mediante FileManager. Esta modularidad no solo
permi<ó abstraer el acceso a los datos de sesión del usuario, sino que habilitó pruebas automa<zadas e
independientes para cada estrategia, garan<zando su comportamiento sin acoplarlos al flujo de vistas.

• UserDefaults: Se empleó inicialmente para almacenar las credenciales del usuario como ejercicio
prác<co. Si bien su uso fue limitado exclusivamente a las primeras versiones del login con datos
de ejemplo, permi<ó mostrar cómo serializar objetos simples y recuperarlos fácilmente al
reiniciar la app. Sin embargo, debido a la falta de cifrado y su exposición directa, esta opción fue
descartada en etapas posteriores por mo<vos de seguridad.

• Keychain: El controlador KeychainController fue diseñado para almacenar de manera segura
información sensible como tokens de acceso y contraseñas. U<lizando la API de Keychain Services
de Apple, se serializó un diccionario con los datos de sesión y se protegió mediante los atributos
adecuados (kSecAgrAccessible, kSecAgrService, kSecAgrAccount). Esta solución garan<za
persistencia tras reinstalación, así como cifrado por hardware del disposi<vo.

• Plist con FileManager: A modo de demostración y respaldo técnico, se implementó un
controlador adicional para almacenar datos en archivos plist internos. Esta estrategia se basó en
la escritura directa de archivos codificados en el sistema de archivos de la aplicación, organizados
por nombre y ubicados dentro del sandbox correspondiente. Se u<lizó FileManager junto con
PropertyListEncoder y Decoder para asegurar compa<bilidad na<va y facilidad de inspección. Este
método fue especialmente ú<l para almacenar información estructurada no sensible durante el
proceso de desarrollo.

La arquitectura adoptada permite intercambiar fácilmente entre estos métodos en función del entorno
(desarrollo o producción), gracias a la inyección de dependencias desde un UserSessionController superior.
Este controlador coordina la lógica de almacenamiento, lo que a su vez facilita las pruebas unitarias y la
adaptación a nuevas polí<cas de seguridad sin alterar el flujo de la aplicación.

Nota: A la izquierda se muestra el Storyboard Wellness, encargado de la navegación entre el
listado de videos, retos y secciones de bienestar emocional. A la derecha se encuentra el

Storyboard Profile, que administra las vistas asociadas al perfil del usuario, edición de datos y
configuración avanzada. Ambos storyboards funcionan de forma desacoplada en el proyecto,

pero se conectan entre sí mediante Storyboard References.

45

/// Controlador para almacenamiento de sesión con UserDefaults.
/// Usado únicamente con datos de ejemplo en etapas tempranas del login.
final class UserSessionUserDefaultsController {

 /// Guarda el email actual del usuario.
 func saveEmail(_ email: String)

 /// Recupera el email almacenado.
 func retrieveEmail() -> String?

 /// Elimina cualquier dato relacionado con el usuario.
 func clear()
}

Figura 33. Firma del controlador de sesión UserSessionUserDefaultsController, diseñado para
almacenar datos temporales de login utilizando UserDefaults de forma segura y controlada en

etapas tempranas del flujo.

/// Controlador para almacenamiento estructurado con archivos plist.
final class PlistFileManagerController {

 /// Guarda un objeto codificable como plist en el sistema de archivos.
 func save<T: Codable>(_ object: T, to fileName: String) throws

 /// Recupera un objeto plist desde un archivo.
 func retrieve<T: Codable>(_ type: T.Type, from fileName: String) throws -> T?

 /// Elimina un archivo plist del sistema.
 func delete(fileName: String) throws
}

Figura 34. Firma del controlador PlistFileManagerController, encargado del almacenamiento
estructurado mediante archivos plist, permitiendo guardar, recuperar y eliminar objetos

codificables del sistema de archivos.

/// Controlador para almacenamiento seguro con Keychain.
final class KeychainController {

 /// Guarda datos codificados en el llavero para el email especificado.
 func save(_ data: Data, for email: String) throws

 /// Recupera datos del llavero usando el email como clave.
 func retrieve(for email: String) throws -> Data?

 /// Elimina datos del llavero para un email determinado.
 func delete(for email: String) throws
}

Figura 35. Firma del controlador KeychainController, utilizado para el almacenamiento seguro
de datos codificados mediante Keychain, asociado a identificadores como el correo electrónico

del usuario.

46

Peticiones de red seguras y manejo de errores

Seguridad en la conexión con URLSession

Durante la implementación del módulo de auten<cación, se incorporó un mecanismo de cifrado de datos
sensibles mediante el algoritmo RSA (Rivest–Shamir–Adleman), u<lizando una clave pública proporcionada
por el servidor. Esta decisión respondió a la necesidad de proteger credenciales y tokens del usuario desde
el origen, incluso antes de que fueran transmi<dos por la red, añadiendo una capa de seguridad adicional
a la conexión HTTPS.

Para encapsular esta lógica, se diseñó una clase RSAController, responsable de ges<onar el ciclo de vida de
la clave pública y realizar el cifrado de cadenas de texto. Su diseño modular permite que cualquier otro
módulo del sistema pueda reu<lizarla sin conocer su implementación interna, respetando los principios de
responsabilidad única y encapsulamiento.

La clase opera sobre datos <po String, asegurando la compa<bilidad con los flujos comunes de entrada de
usuario y transmisión JSON. Antes de cada solicitud crí<ca (como login), la contraseña es cifrada usando
este controlador, de forma que su representación cifrada viaje como parte del cuerpo de la pe<ción.

Para fortalecer el control de errores, se definió un enumerador RSAError que agrupa los fallos más
comunes durante el proceso de cifrado, como claves mal formateadas, errores al conver<r cadenas a datos
binarios, o fallos en el propio proceso criptográfico.

final class RSAController {

 /// Cifra una cadena utilizando la clave pública RSA.
 func encrypt(_ string: String) throws -> String

 /// Establece una nueva clave pública proporcionada por el servidor.
 func setPublicKey(_ key: String)
}

Figura 36. Firma del controlador RSAController, empleado para establecer una clave pública
RSA y cifrar datos sensibles mediante dicho esquema de encriptación.

enum RSAError: Error {
 case invalidPublicKey
 case encryptionFailed
 case stringToDataConversionFailed
}

Figura 37. Enumeración RSAError para el manejo específico de errores en procesos de cifrado
con RSA. Define casos como clave pública inválida, fallo de cifrado y error en la conversión de

cadena a datos.

47

Este enfoque permi<ó una trazabilidad precisa y localizada de errores relacionados con el cifrado,
mejorando el soporte en QA y facilitando el aislamiento de fallos durante pruebas integradas. Asimismo, al
implementar este controlador como una unidad desacoplada, se sentaron las bases para su futura
extensión o migración a tecnologías como Secure Enclave si se desease incrementar el nivel de protección
a nivel de hardware.

Diseño genérico y controlado de respuestas de red
Una de las piezas arquitectónicas más sólidas y refinadas del proyecto Wee 3.0 fue la construcción de una
capa de red personalizada, segura, extensible y orientada a la reu<lización de componentes. Este módulo,
centrado en la clase RequestController, fue diseñado para encapsular por completo la lógica de pe<ciones
HTTP usando URLSession, <pado genérico adaptable con Codable, y un sistema propio de manejo de
errores con semán<ca precisa, mediante la adopción del protocolo LocalizedError.

Controlador genérico con compatibilidad total con Codable

La clase RequestController permite realizar solicitudes POST, GET y PUT de manera genérica, recibiendo
cualquier <po de cuerpo que conforme a Encodable, y esperando una respuesta de <po Decodable. Esto
fue posible gracias a la declaración del método principal con parámetros <pados como genéricos:

Con esta firma, el mismo método puede u<lizarse para auten<car usuarios, enviar formularios o recuperar
configuraciones, sin duplicar lógica ni comprometer el <po de respuesta esperada. La conversión de
objetos a Data y viceversa se realiza mediante JSONEncoder y JSONDecoder, lo cual garan<za
compa<bilidad total con los estándares RESTful modernos.

Uso de Result<T, Error> y propagación explícita de fallos

A diferencia del enfoque tradicional basado en try/catch, el método post() retorna un Result<U,
FetchError>, encapsulando tanto la respuesta esperada como cualquier posible error de red, codificación o
del servidor. Esto promueve un flujo de control explícito y funcional, donde los estados de éxito y fallo
pueden ser evaluados directamente, simplificando las operaciones aguas abajo.

func post<T: Encodable, U: Decodable>(
 body: T,
 endpoint: String,
 expecting: U.Type
) async -> Result<U, FetchError>

Figura 38. Firma de la función post genérica para realizar peticiones de red tipo POST. Utiliza
tipos Encodable para el cuerpo de la solicitud y Decodable para la respuesta esperada,

retornando un Result que encapsula éxito o error del tipo FetchError.

48

Modelo de error personalizado con semántica descriptiva

Para mejorar la trazabilidad y legibilidad de fallos, se diseñó un enum especializado llamado FetchError,
que implementa el protocolo LocalizedError. Cada caso del enumerador representa un <po de error con
contexto técnico claro: desde ausencia de conexión (noInternet) hasta errores de decodificación, falta de
autorización o respuestas mal estructuradas del servidor.

Esta estructura permite generar alertas informa<vas y contextualizadas durante desarrollo (Dev) o pruebas
(QA), manteniendo un mensaje técnico pero claro para el equipo. En entornos de producción, se puede
sus<tuir fácilmente por mensajes genéricos o no<ficaciones silenciosas.

let result = await requestController.post(body: request, endpoint: url, expecting: AuthResponse.self)

switch result {
case .success(let response):
 // manejar respuesta
case .failure(let error):
 // mostrar alerta o logear
}
Figura 39. Manejo de una petición de red con tipado genérico y Result. Esta estructura permite

desacoplar el cuerpo (body), el tipo esperado (expecting) y el endpoint, facilitando pruebas,
mantenimiento y lectura del código.

enum FetchError: LocalizedError {
 case noInternet
 case invalidStatusCode(Int)
 case decodingError
 case timeout
 case custom(String)

 var errorDescription: String? {
 switch self {
 case .noInternet: return "No hay conexión a Internet."
 case .invalidStatusCode(let code): return "Error del servidor. Código: \(code)."
 case .decodingError: return "No se pudo interpretar la respuesta del servidor."
 case .timeout: return "La petición ha tardado demasiado."
 case .custom(let message): return message
 }
 }
}

Figura 40. Definición del enumerador FetchError con conformidad a LocalizedError. Esta
estructura permite representar errores de red de forma clara, semántica y personalizada,

facilitando tanto el manejo interno como la presentación al usuario.

49

URLSession y su delegado para control avanzado de red

Para complementar la seguridad y la trazabilidad, se creó un objeto URLSessionDelegateHandler,
responsable de interceptar eventos del sistema de red en <empo real. Esto permi<ó monitorear
respuestas de bajo nivel como errores de TLS, problemas de cer<ficados, reintentos automá<cos ante
caídas momentáneas de red, y establecer polí<cas explícitas para eventos de conec<vidad.

Al delegar estas responsabilidades, se consiguió instrumentar un URLSession completamente
personalizado y seguro, capaz de adaptarse a dis<ntos entornos sin modificar el controlador de red
principal.

Separación de lógica con controladores auxiliares de errores

Esta interfaz muestra cómo el controlador se encarga de capturar errores del sistema (URLError,
DecodingError, POSIXError), mapearlos a una representación interna uniforme (FetchError) y, en entornos
de desarrollo, presentar una alerta informa<va detallada para el programador o el equipo de QA.

El uso de withCheckedCon<nua<on permite suspender la ejecución asincrónica hasta que el usuario
interactúe con la alerta, retornando un Result<T, FetchError> junto con un indicador Bool sobre si se debe
reintentar la operación, fomentando decisiones dinámicas desde la capa de vista.

Esta estructura desacoplada, elegante y robusta facilitó significa<vamente la validación de errores durante
el desarrollo, elevando la calidad del sistema y mejorando la experiencia del equipo técnico en procesos

final class URLSessionDelegateHandler: NSObject, URLSessionDelegate {
 func urlSession(
 _ session: URLSession,
 didReceive challenge: URLAuthenticationChallenge,
 completionHandler: @escaping (URLSession.AuthChallengeDisposition, URLCredential?) -> Void
)
}

Figura 41. Definición de URLSessionDelegateHandler. Este delegado personalizado permite
interceptar desafíos de autenticación durante conexiones seguras, habilitando validación de

certificados o políticas avanzadas de seguridad en URLSession.

50

de debugging y prueba.

Integración de Compositional Layout y Diffable Data
Source

La introducción de UICollec<onViewComposi<onalLayout y UICollec<onViewDiffableDataSource en UIKit
representó un cambio radical en la forma de construir interfaces dinámicas y altamente personalizables.
Estas tecnologías, implementadas a par<r de iOS 13, resolvieron muchos de los desayos históricos del uso
de UICollec<onView, permi<endo una construcción declara<va, flexible y escalable de layouts complejos y
fuentes de datos altamente eficientes.

¿Qué es Compositional Layout?
UICollec<onViewComposi<onalLayout es un sistema de diseño modular que permite componer
visualmente secciones con diferentes estructuras dentro de una misma colección. Cada sección puede
tener su propio diseño independiente (layout sec<on), con elementos (items), grupos (groups), y
configuraciones de espaciado y scroll completamente personalizados. Esto habilita:

/// Controlador auxiliar para interpretar errores de red y mostrar alertas informativas en desarrollo.
struct RequestErrorController {

 /// Maneja el error de red y presenta una alerta si es necesario.
 /// - Parameters:
 /// - error: El error técnico capturado (URLError, DecodingError, etc.).
 /// - moduleError: Error contextual propio del módulo llamador.
 /// - viewController: Vista actual para mostrar la alerta.
 /// - Returns: Resultado con el error traducido, y un booleano que indica si el usuario desea reintentar.
 static func handleRequestErrorAndShowAlert<T>(
 _ error: Error,
 moduleError: LocalizedError?,
 viewController: UIViewController?
) async -> (Result<T, FetchError>, Bool)

 /// Traduce errores genéricos del sistema a errores del dominio (`FetchError`).
 static func handleRequestError(_ error: Error) -> FetchError

 /// Evalúa si un error corresponde al cliente (tiempo, red, etc.).
 static func isClientError(_ error: Error) -> Bool

 /// Evalúa si un error proviene del servidor (SSL, DNS, caída).
 static func isServerError(_ error: Error) -> Bool
}

Figura 42. Firma de funciones del RequestErrorController. Este controlador centraliza la
interpretación de errores de red y permite mostrar alertas personalizadas al usuario durante el

desarrollo, facilitando el diagnóstico y manteniendo el principio de separación de
responsabilidades.

51

• Vistas de mosaico, listas, carruseles y diseños asimétricos, todo desde un solo componente.

• Interfaz adaptable a iPhone, iPad y Mac sin necesidad de múl<ples layouts.

• Layouts declara<vos y reu<lizables definidos en código, sin necesidad de múl<ples clases
delegadas.

¿Qué es Diffable Data Source?
UICollec<onViewDiffableDataSource reemplaza al tradicional UICollec<onViewDataSource con un enfoque
moderno basado en snapshots. U<liza iden<ficadores únicos y estructuras de datos inmutables que
permiten:

• Actualización automá<ca y animada del contenido sin necesidad de performBatchUpdates.

• Seguridad en concurrencia gracias a su diseño inmutable.

• Separación clara entre modelo y vista, simplificando el mantenimiento.

Aplicación en el proyecto Wee 3.0
Durante el desarrollo de Wee 3.0, estas herramientas se integraron para construir flujos de contenido
complejos como el de Bienestar emocional y Desayos diarios, en los cuales:

• Cada sección representaba una categoría dis<nta de contenido, con un layout y comportamiento
propio.

Figura 43. Composición visual de una interfaz con secciones heterogéneas mediante
UICollectionViewCompositionalLayout

Nota: Esta imagen, tomada de la documentación oficial de Apple, ilustra cómo múltiples
secciones pueden coexistir dentro de una misma UICollectionView, cada una con una

estructura independiente definida por un NSCollectionLayoutSection.

52

• Se usaron UICollec<onViewComposi<onalLayout para definir vistas jerárquicas con dis<ntos
tamaños de celdas y headers reu<lizables.

• DiffableDataSource permi<ó actualizar el contenido en <empo real tras consultas a la API, sin
afectar el rendimiento ni la estructura visual.

Gracias a esto, fue posible diseñar interfaces mul<plataforma, reu<lizables y completamente
desacopladas, facilitando pruebas, desarrollo paralelo y escalabilidad modular.

Figura 44. Diseño Modular con UICollectionViewCompositionalLayout

53

Nota: En esta imagen se ejemplifica la implementación de un diseño modular y adaptable
utilizando UICollectionViewCompositionalLayout en conjunto con

UICollectionViewDiffableDataSource. Se observa cómo, mediante el uso de layouts específicos
para cada sección, se consigue que la interfaz se ajuste dinámicamente a diferentes

dispositivos y orientaciones. Cada sección —representando temáticas como bienestar, videos
y retos— dispone de un comportamiento de desplazamiento y dimensiones calculadas en

función del entorno, lo que permite mantener una estructura visual coherente y escalable. Esta
aproximación refuerza las ventajas de los Storyboards y Auto Layout en UIKit, facilitando el
mantenimiento y la ampliación del código, en línea con las directrices de diseño de Apple.

54

Capítulo 4 – Cierre técnico y
profesional del proyecto
Aplicación integral de conocimientos de ingeniería

A lo largo del proyecto, pude constatar cómo mi formación como ingeniero mecatrónico me permi<ó
enfrentar los desayos técnicos y organiza<vos con una perspec<va estructurada, analí<ca y orientada a
soluciones sostenibles. Si bien el desarrollo de so]ware no es el eje central de la carrera, la lógica de
control, el pensamiento modular y el diseño de sistemas complejos forman parte esencial del perfil
profesional, y fueron fundamentales para abordar la construcción de una aplicación robusta y flexible
desde sus cimientos.

Más allá de los conocimientos técnicos, lo que más influyó fue la capacidad de análisis, la habilidad para
descomponer un problema grande en componentes funcionales, y la toma de decisiones con base en
criterios de eficiencia, mantenibilidad y escalabilidad. Estas competencias se reflejaron en la elección y
estructuración de la arquitectura de la app, en la organización del trabajo por módulos, y en la definición
de estrategias que facilitaran el mantenimiento a largo plazo.

Otro aspecto clave fue la comunicación del conocimiento. Durante el proyecto, asumí un rol ac<vo en la
capacitación del equipo, promoviendo una cultura de documentación clara y decisiones compar<das. Más
que imponer soluciones, me enfoqué en generar entendimiento común, ofrecer contexto y crear
herramientas que facilitaran la colaboración. Esta ac<tud fue clave para mantener la coherencia técnica
del proyecto, especialmente considerando que la app debía escalarse y adaptarse al paso del <empo y la
integración de nuevos ingenieros al equipo.

Finalmente, esta experiencia me permi<ó integrar de forma natural lo aprendido en la carrera con lo
exigido en un entorno profesional real. La capacidad de adaptación, el pensamiento sistémico, el trabajo
en equipo y la responsabilidad técnica fueron elementos que me acompañaron desde los primeros sprints
hasta la úl<ma entrega, confirmando que el enfoque ingenieril trasciende plataformas o lenguajes: se
trata, en esencia, de resolver problemas complejos con soluciones estructuradas, claras y sostenibles.

Toma de decisiones tecnológicas y liderazgo técnico

Desde el inicio del proyecto tuve claro que una aplicación exitosa no solo se construye con herramientas
modernas, sino con un equipo que en<enda lo que hace, que se sienta cómodo con su entorno de
desarrollo y que pueda crecer técnicamente a lo largo del camino. Por eso, muchas de las decisiones que
tomé durante el diseño y la implementación no solo respondían a necesidades técnicas inmediatas, sino a

55

una visión a mediano plazo: formar un equipo sólido, capacitado y capaz de construir so]ware
verdaderamente na<vo y sostenible.

El primer paso fue hacer un diagnós<co honesto de la situación inicial. Encontré una aplicación con
problemas estructurales graves, falta de claridad en la arquitectura y un uso fragmentado de tecnologías.
A par<r de ese análisis, propuse una reestructuración completa del proyecto, donde cada decisión
respondiera a principios de estabilidad, claridad y escalabilidad.

Opté por una arquitectura clara y conocida por el equipo, con el fin de reducir fricciones innecesarias y
permi<r que cada integrante pudiera enfocarse en construir y comprender, no solo en implementar. La
prioridad era crear una base que permi<era avanzar de forma segura, y que sirviera como punto de
par<da para evolucionar hacia nuevas tecnologías, como Swi]UI, de manera gradual y natural, sin huecos
en el conocimiento.

Además, impulsé ac<vamente el uso de herramientas que facilitaran el trabajo en equipo, como la
separación de entornos para pruebas y producción, la documentación clara, y una organización visual que
permi<era entender los flujos sin necesidad de adentrarse en detalles técnicos. Todo esto con el obje<vo
de que el desarrollo fuera colabora<vo, mantenible y alineado con una cultura de aprendizaje con<nuo.

Mi rol no fue solo técnico, sino también forma<vo. Asumí con responsabilidad la tarea de guiar, enseñar y
proponer, creando un entorno donde el conocimiento se compar<era y se mul<plicara. Esa fue, desde el
principio, la base sobre la que debía construirse la aplicación: un equipo fuerte, unificado, que en<ende lo
que hace y por qué lo hace.

Crecimiento profesional en entorno real

Este proyecto representó una experiencia forma<va profunda, no solo por los retos técnicos, sino por el
entorno profesional en el que se desarrolló. El trabajo no se limitó al desarrollo de código, sino que exigió
una coordinación constante con dis<ntas áreas como QA, backend y producto. Par<cipé ac<vamente en
las validaciones funcionales al cierre de cada sprint, colaborando estrechamente con el equipo de calidad y
la Product Owner para asegurar que los entregables fueran funcionales, probados y alineados con los
obje<vos del negocio.

También me adapté rápidamente a un entorno de trabajo ágil, con entregas quincenales y una dinámica
constante de revisión, priorización y redefinición de obje<vos. Esto me permi<ó consolidar habilidades de
planificación y seguimiento, así como aprender a mantener un ritmo de trabajo sostenible y realista, con
metas claras en cada iteración.

Uno de los aspectos más valiosos de esta experiencia fue la autonomía con la que pude trabajar. Desde el
principio asumí la responsabilidad técnica del proyecto, tomando decisiones crí<cas en cuanto a
arquitectura, seguridad, patrones de diseño y organización del código, todo ello sin una supervisión directa
constante. Esto implicó un compromiso alto con la calidad y la sostenibilidad del sistema.

56

En varios momentos fue necesario resolver problemas complejos bajo presión, ya fuera por fechas límite,
por regresiones inesperadas o por requerimientos urgentes. Esta presión no fue un obstáculo, sino un
catalizador para afianzar mi criterio técnico, fortalecer mi autonomía y mejorar mi capacidad para tomar
decisiones informadas en <empo real. En resumen, esta experiencia me permi<ó desarrollarme como
profesional completo, con una visión técnica sólida y una capacidad real para liderar proyectos dentro de
un equipo mul<disciplinario.

Condiciones del cierre del proyecto

Mi salida del proyecto se dio en agosto de 2023, aproximadamente seis meses antes de la entrega formal
es<mada, la cual estaba planeada para principios de febrero de 2024. Aunque no presencié el despliegue
final de la aplicación, entregué un MVP funcional con bases sólidas para su evolución y consolidación.

Al momento de mi salida, la aplicación aún no había sido liberada a usuarios reales, ya que la versión
anterior —Wee 2.0— con<nuaba operando en producción para cumplir con compromisos previamente
adquiridos con clientes. La nueva versión permanecía en etapa de desarrollo ac<vo, resguardada en el
repositorio privado de la empresa.

No se designó un responsable técnico único para con<nuar el proyecto, por lo cual enfoqué mi liderazgo
en formar un equipo capacitado y autónomo. Esta estrategia aseguró que, ante mi ausencia o la de
cualquier otro integrante, el equipo tuviera los conocimientos necesarios para con<nuar el desarrollo sin
interrupciones.

Entregué recomendaciones claras para futuras decisiones técnicas, especialmente en torno a una eventual
migración hacia Swi]UI. Expliqué que el uso inicial de UIKit permi<ría comprender a fondo la arquitectura
de información y los flujos internos de la app. Con esta base, el equipo podría planear una transición
gradual hacia Swi]UI, con una visión clara de qué estructuras serían más eficientes bajo el nuevo
paradigma declara<vo.

Los módulos que dejé implementados —principalmente inicio de sesión, sección Wellness, DocAI y la
arquitectura base de la aplicación— incluían una arquitectura desacoplada, modular, y extensible,
comunicación robusta con el backend, manejo de errores avanzado, layouts adapta<vos con
UICollec<onViewComposi<onalLayout, y compa<bilidad completa con iPhone, iPad y Mac (a través de
Catalyst).

Si bien no se alcanzó a implementar CI/CD ni pruebas automa<zadas formales, el código entregado era
estable, limpio y documentado, con enfoque en calidad y buenas prác<cas. Más allá de una entrega
técnica, el legado del proyecto quedó reflejado en la estandarización del trabajo, la capacitación del
equipo y la construcción de una base sólida para su evolución futura.

57

Bibliografía
1. Dirección General de Bibliotecas y Servicios Digitales de Información, UNAM. (s.f.). Cómo hacer citas y

referencias en formato APA. hgps://bibliotecas.unam.mx/index.php/desarrollo-de-habilidades-
informa<vas/como-hacer-citas-y-referencias-en-formato-apa

2. Diagnos<kare. (s.f.). El primer paso para sen<rte mejor. hgps://www.diagnos<kare.com/

3. Endeavor Hub. (2022). El nuevo modelo de negocio de Begerfly. hgps://endeavor-hub.com/hub-ar<cle-
estrategia-el-nuevo-modelo-de-negocio-de-begerfly/

4. ICEX. (2024). Healthtech en México 2024. hgps://www.icex.es/content/dam/es/icex/oficinas/077/
documentos/2024/05/anexos/FS_HealthTech%20en%20M%C3%A9xico%202024_REV.pdf

5. MAPFRE. (2024). El sector insurtech la<noamericano cierra 2024 con más de 500 insurtech en un
contexto adverso. hgps://www.mapfre.com/comunicacion/innovacion-comunicacion/insurtech-
la<noamericano/

6. WeeCompany. (s.f.). Acerca de nosotros. hgps://www.weecompany.net/acerca_de.html

7. Apple. (s.f.-a). API Design Guidelines. Swi].org. Recuperado de hgps://www.swi].org/documenta<on/
api-design-guidelines/

8. Apple. (s.f.-b). Organizing Files in Your Xcode Project. Apple Developer Documenta<on. Recuperado de
hgps://developer.apple.com/documenta<on/xcode/organizing-your-project-s-files/

9. Apple. (2021a). Discover DocC documenta<on in Xcode. WWDC21 – Session 10166. Recuperado de
hgps://developer.apple.com/videos/play/wwdc2021/10166/

10. Apple. (2021b). Create documenta<on in Xcode. WWDC21 – Session 10235. Recuperado de hgps://
developer.apple.com/videos/play/wwdc2021/10235/

11. Apple. (2023a). What’s new in Swi] documenta<on. WWDC23 – Session 10244. Recuperado de
hgps://developer.apple.com/videos/play/wwdc2023/10244/

12. Apple. (s.f.-c). Model-View-Controller. Apple Developer Documenta<on. Recuperado de hgps://
developer.apple.com/library/archive/documenta<on/General/Conceptual/DevPedia-CocoaCore/
MVC.html

13. Apple. (s.f.-d). View Controller Programming Guide for iOS. Apple Developer Documenta<on.
Recuperado de hgps://developer.apple.com/library/archive/featuredar<cles/
ViewControllerPGforiPhoneOS/

14. Apple. (s.f.-e). About App Development with UIKit. Apple Developer Documenta<on. Recuperado de
hgps://developer.apple.com/documenta<on/uikit/about-app-development-with-uikit

58

https://bibliotecas.unam.mx/index.php/desarrollo-de-habilidades-informativas/como-hacer-citas-y-referencias-en-formato-apa
https://bibliotecas.unam.mx/index.php/desarrollo-de-habilidades-informativas/como-hacer-citas-y-referencias-en-formato-apa
https://bibliotecas.unam.mx/index.php/desarrollo-de-habilidades-informativas/como-hacer-citas-y-referencias-en-formato-apa
https://www.diagnostikare.com/
https://endeavor-hub.com/hub-article-estrategia-el-nuevo-modelo-de-negocio-de-betterfly/
https://endeavor-hub.com/hub-article-estrategia-el-nuevo-modelo-de-negocio-de-betterfly/
https://www.icex.es/content/dam/es/icex/oficinas/077/documentos/2024/05/anexos/FS_HealthTech%20en%20M%C3%A9xico%202024_REV.pdf
https://www.icex.es/content/dam/es/icex/oficinas/077/documentos/2024/05/anexos/FS_HealthTech%20en%20M%C3%A9xico%202024_REV.pdf
https://www.icex.es/content/dam/es/icex/oficinas/077/documentos/2024/05/anexos/FS_HealthTech%20en%20M%C3%A9xico%202024_REV.pdf
https://www.mapfre.com/comunicacion/innovacion-comunicacion/insurtech-latinoamericano/
https://www.mapfre.com/comunicacion/innovacion-comunicacion/insurtech-latinoamericano/
https://www.weecompany.net/acerca_de.html
https://www.swift.org/documentation/api-design-guidelines/
https://www.swift.org/documentation/api-design-guidelines/
https://developer.apple.com/documentation/xcode/organizing-your-project-s-files/
https://developer.apple.com/videos/play/wwdc2021/10166/
https://developer.apple.com/videos/play/wwdc2021/10235/
https://developer.apple.com/videos/play/wwdc2021/10235/
https://developer.apple.com/videos/play/wwdc2023/10244/
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/documentation/uikit/about-app-development-with-uikit

15. Apple. (s.f.-f). View Controllers. Apple Developer Documenta<on. Recuperado de hgps://
developer.apple.com/documenta<on/uikit/view-controllers

16. Apple. (s.f.-g). View Controller Programming Guide for iOS. Apple Developer Documenta<on.
Recuperado de hgps://developer.apple.com/library/archive/featuredar<cles/
ViewControllerPGforiPhoneOS/

17. Apple. (s.f.-i). Combine. Apple Developer Documenta<on. Recuperado de hgps://developer.apple.com/
documenta<on/combine/

18. Apple. (s.f.-j). URLSession. Apple Developer Documenta<on. Recuperado de hgps://
developer.apple.com/documenta<on/founda<on/urlsession/

19. Apple. (2021c). Meet async/await in Swi]. WWDC21 – Session 10132. Recuperado de hgps://
developer.apple.com/videos/play/wwdc2021/10132/

20. Apple. (2021d). Explore structured concurrency in Swi]. WWDC21 – Session 10095. Recuperado de
hgps://developer.apple.com/videos/play/wwdc2021/10095/

21. Apple. (s.f.-k). UserDefaults. Apple Developer Documenta<on. Recuperado de hgps://
developer.apple.com/documenta<on/founda<on/userdefaults/

22. Apple. (s.f.-l). Keychain Services. Apple Developer Documenta<on. Recuperado de hgps://
developer.apple.com/documenta<on/security/keychain-services/

23. Apple. (s.f.-m). FileManager. Apple Developer Documenta<on. Recuperado de hgps://
developer.apple.com/documenta<on/founda<on/filemanager/

24. Apple. (s.f.-n). Core Data. Apple Developer Documenta<on. Recuperado de hgps://
developer.apple.com/documenta<on/coredata/

25. Apple. (s.f.-o). Views with Intrinsic Content Size. Apple Developer Documenta<on. Recuperado de
hgps://developer.apple.com/library/archive/documenta<on/UserExperience/Conceptual/
AutolayoutPG/ViewswithIntrinsicContentSize.html

26. Apple. (s.f.-p). UITabBarController. Apple Developer Documenta<on. Recuperado de hgps://
developer.apple.com/documenta<on/uikit/uitabbarcontroller

27. Apple. (s.f.-q). UINaviga<onController. Apple Developer Documenta<on. Recuperado de hgps://
developer.apple.com/documenta<on/uikit/uinaviga<oncontroller

28. Sergio Humberto. (s.f.). Conociendo GitFlow. Medium. Recuperado de hgps://medium.com/
@sergiohumberto27/conociendo-giclow-a588716äc28

29. Hudson, P. (s.f.). How to use storyboard references to simplify your storyboards. Hacking with Swi].
Recuperado de hgps://www.hackingwithswi].com/example-code/xcode/how-to-use-storyboard-
references-to-simplify-your-storyboards

59

https://developer.apple.com/documentation/uikit/view-controllers
https://developer.apple.com/documentation/uikit/view-controllers
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/documentation/combine/
https://developer.apple.com/documentation/combine/
https://developer.apple.com/documentation/foundation/urlsession/
https://developer.apple.com/documentation/foundation/urlsession/
https://developer.apple.com/videos/play/wwdc2021/10132/
https://developer.apple.com/videos/play/wwdc2021/10132/
https://developer.apple.com/videos/play/wwdc2021/10095/
https://developer.apple.com/documentation/foundation/userdefaults/
https://developer.apple.com/documentation/foundation/userdefaults/
https://developer.apple.com/documentation/security/keychain-services/
https://developer.apple.com/documentation/security/keychain-services/
https://developer.apple.com/documentation/foundation/filemanager/
https://developer.apple.com/documentation/foundation/filemanager/
https://developer.apple.com/documentation/coredata/
https://developer.apple.com/documentation/coredata/
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/AutolayoutPG/ViewswithIntrinsicContentSize.html
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/AutolayoutPG/ViewswithIntrinsicContentSize.html
https://developer.apple.com/documentation/uikit/uitabbarcontroller
https://developer.apple.com/documentation/uikit/uitabbarcontroller
https://developer.apple.com/documentation/uikit/uinavigationcontroller
https://developer.apple.com/documentation/uikit/uinavigationcontroller
https://medium.com/@sergiohumberto27/conociendo-gitflow-a588716fbc28
https://medium.com/@sergiohumberto27/conociendo-gitflow-a588716fbc28
https://www.hackingwithswift.com/example-code/xcode/how-to-use-storyboard-references-to-simplify-your-storyboards
https://www.hackingwithswift.com/example-code/xcode/how-to-use-storyboard-references-to-simplify-your-storyboards
https://www.hackingwithswift.com/example-code/xcode/how-to-use-storyboard-references-to-simplify-your-storyboards

30. Apple. (s.f.-r). UICollec<onViewComposi<onalLayout. Apple Developer Documenta<on. Recuperado de
hgps://developer.apple.com/documenta<on/uikit/uicollec<onviewcomposi<onallayout

31. Apple. (s.f.-s). UICollec<onViewDiffableDataSource. Apple Developer Documenta<on. Recuperado de
hgps://developer.apple.com/documenta<on/uikit/uicollec<onviewdiffabledatasource-9tqpa

60

https://developer.apple.com/documentation/uikit/uicollectionviewcompositionallayout
https://developer.apple.com/documentation/uikit/uicollectionviewdiffabledatasource-9tqpa

	Resumen
	Palabras clave
	Abstract
	Keywords
	Introducción
	Antecedentes
	Planteamiento del problema
	Objetivo general
	Objetivos específicos
	Metodología
	Contenido
	Capítulo 1 - Descripción del sistema
	Ubicación geográfica
	Ubicación sectorial
	Comparativa sectorial en LATAM (2023)
	Ubicación temporal
	Dinámica de trabajo y estructura del proyecto
	Antecedentes técnicos del sistema
	Descripción del sistema
	Capítulo 2 - Propuesta técnica y estrategia de reestructuración
	Estado inicial del proyecto y diagnóstico técnico
	Propuestas y cambios realizados en el sistema
	Enfoque general de la solución
	Propuesta: MVC mejorado
	Estándares visuales y diseño modular
	Integración segura y conectividad robusta
	Pruebas, despliegue y mantenimiento
	Planificación técnica y fases
	Capacitación y fortalecimiento del equipo (versión final)

	Capacitación técnica aplicada al desarrollo iOS
	Fundamentos del lenguaje Swift moderno

	Tipado seguro, opcionales y manejo de errores
	Sintaxis concisa y expresiva
	Inferencia de tipos
	Organización y nomenclatura del código

	Convenciones para nombrar variables y estructuras
	Comentarios, claridad de intención y legibilidad
	Organización de carpetas, archivos y grupos en Xcode
	Arquitectura MVC con controladores auxiliares

	Separación de responsabilidades en Model, View y Controller
	Uso de ModelControllers y HelperControllers
	Comparativa con MVVM y justificación de elección
	Patrones de comunicación entre componentes

	Delegados, closures, inyección de dependencias
	Uso de Combine, tuplas y callbacks
	Flujo de eventos y control de dependencias
	Consumo de servicios REST y asincronía

	Uso avanzado de URLSession
	Comparativa entre URLSession y Alamofire
	Programación con GCD y async/await
	Gestión segura y eficiente del almacenamiento local

	UserDefaults, Keychain, FileManager y Core Data
	Estrategias para persistencia segura y sincronización
	Diseño de interfaces en UIKit

	Principios de diseño con Storyboards y Auto Layout
	Patrones de navegación en UIKit
	Control de versiones y flujo de trabajo con GitFlow

	Tipos de ramas: main, develop, feature, release y hotfix
	Buenas prácticas para mantenimiento, integración y revisión
	Uso de etiquetas, CI/CD y pruebas automatizadas con XCTest
	Capítulo 3 - Implementación práctica y validación funcional
	Despliegue inicial del proyecto y aplicación de arquitectura modular
	Punto de entrada y arquitectura de entorno en el inicio de sesión
	Modularización de interfaces con Storyboard References
	¿Qué es una Storyboard Reference?
	Ventajas de usar Storyboard References
	Ventajas frente al diseño 100% programático
	Aplicación en el proyecto Wee 3.0

	Implementación de múltiples métodos de almacenamiento local
	Peticiones de red seguras y manejo de errores
	Seguridad en la conexión con URLSession
	Diseño genérico y controlado de respuestas de red

	Controlador genérico con compatibilidad total con Codable
	Uso de Result<T, Error> y propagación explícita de fallos
	Modelo de error personalizado con semántica descriptiva
	URLSession y su delegado para control avanzado de red
	Separación de lógica con controladores auxiliares de errores
	Integración de Compositional Layout y Diffable Data Source
	¿Qué es Compositional Layout?
	¿Qué es Diffable Data Source?
	Aplicación en el proyecto Wee 3.0

	Capítulo 4 – Cierre técnico y profesional del proyecto
	Aplicación integral de conocimientos de ingeniería
	Toma de decisiones tecnológicas y liderazgo técnico
	Crecimiento profesional en entorno real
	Condiciones del cierre del proyecto
	Bibliografía

