UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE INGENIERIA

Modernizacion de software
heredado: Redisefo y
desarrollo nativo de una app
de salud en iOS

INFORME DE ACTIVIDADES PROFESIONALES
Que para obtener el titulo de

Ingeniero Mecatronico

PRESENTA
Marcos Uriel Martinez Ortiz

ASESOR DE INFORME
M.A. Luis Yair Bautista Blanco

Ciudad Universitaria, Cd. Mx., 2025

NOCIONAL AUTONONY
o4
.

e ?’1‘

)
31_‘
| j’

PROTESTA UNIVERSITARIA DE INTEGRIDAD Y
HONESTIDAD ACADEMICA Y PROFESIONAL
(Titulacion con trabajo escrito)

S

i

De conformidad con lo dispuesto en los articulos 87, fraccién V, del Estatuto General, 68, primer
parrafo, del Reglamento General de Estudios Universitarios y 26, fraccion I, y 35 del Reglamento
General de Exdmenes, me comprometo en todo tiempo a honrar a la institucién y a cumplir con los
principios establecidos en el Cédigo de Etica de la Universidad Nacional Auténoma de México,
especialmente con los de integridad y honestidad académica.

De acuerdo con lo anterior, manifiesto que el trabajo escrito titulado MODERNIZACION DE
SOFTWARE HEREDADO: REDISENO Y DESARROLLO NATIVO DE UNA APP DE SALUD
EN I0S que presenté para obtener el titulo de INGENIERO MECATRONICO es original, de mi
autoria y lo realicé con el rigor metodolégico exigido por mi Entidad Académica, citando las fuentes
de ideas, textos, imdgenes, graficos u otro tipo de obras empleadas para su desarrollo.

En consecuencia, acepto que la falta de cumplimiento de las disposiciones reglamentarias y
normativas de la Universidad, en particular las ya referidas en el Cédigo de Etica, llevard a la nulidad
de los actos de caracter académico administrativo del proceso de titulacion.

W

MARCOS URIEL MARTINEZ ORTIZ
Numero de cuenta: 313090325

http://www.tcpdf.org

Resumen

Palabras clave

Abstract
Keywords
Introduccion
Antecedentes
Planteamiento del problema
Objetivo general
Obijetivos especificos
Metodologia
Contenido
Capitulo 1 - Descripcion del sistema
Ubicacion geografica
Ubicacion sectorial
Comparativa sectorial en LATAM (2023)
Ubicacion temporal
Dinamica de trabajo y estructura del proyecto
Antecedentes técnicos del sistema

Descripcion del sistema

Capitulo 2 - Propuesta técnica y estrategia de reestructuracion
Estado inicial del proyecto y diagndstico técnico
Propuestas y cambios realizados en el sistema
Enfoque general de la solucion
Propuesta: MVC mejorado
Estandares visuales y disefio modular
Integracion segura y conectividad robusta

Pruebas, despliegue y mantenimiento

—_ bk

0 00 N N O O o 606 o0~ M W W WOLWDNDDD

4 a4 a4 a4 a = a -
N NN =2 a2 a4 O 0

Planificacion técnica y fases
Capacitacion y fortalecimiento del equipo (version final)
Capacitacién técnica aplicada al desarrollo iOS
Fundamentos del lenguaje Swift moderno
Tipado seguro, opcionales y manejo de errores
Sintaxis concisa y expresiva
Inferencia de tipos
Organizacion y nomenclatura del codigo
Convenciones para nombrar variables y estructuras
Comentarios, claridad de intencién y legibilidad
Organizacion de carpetas, archivos y grupos en Xcode
Arquitectura MVC con controladores auxiliares
Separacion de responsabilidades en Model, View y Controller
Uso de ModelControllers y HelperControllers
Comparativa con MVVM vy justificacién de eleccién
Patrones de comunicacion entre componentes
Delegados, closures, inyeccion de dependencias
Uso de Combine, tuplas y callbacks
Flujo de eventos y control de dependencias
Consumo de servicios REST y asincronia
Uso avanzado de URLSession
Comparativa entre URLSession y Alamofire
Programacion con GCD y async/await
Gestidn segura y eficiente del almacenamiento local
UserDefaults, Keychain, FileManager y Core Data
Estrategias para persistencia segura y sincronizacion
Disefio de interfaces en UIKit
Principios de disefio con Storyboards y Auto Layout
Patrones de navegacion en UIKit

Control de versiones y flujo de trabajo con GitFlow

13
14
14
14
14
15
15
16
16
17
17
18
18
19
19
20
20
22
23
24
24
25
26
27
27
28
29
29
31
32

Tipos de ramas: main, develop, feature, release y hotfix
Buenas practicas para mantenimiento, integracion y revision
Uso de etiquetas, CI/CD y pruebas automatizadas con XCTest
Capitulo 3 - Implementacion practica y validacion funcional
Despliegue inicial del proyecto y aplicacion de arquitectura modular
Punto de entrada y arquitectura de entorno en el inicio de sesion
Modularizacion de interfaces con Storyboard References
¢, Qué es una Storyboard Reference?
Ventajas de usar Storyboard References
Ventajas frente al disefio 100% programatico
Aplicacién en el proyecto Wee 3.0
Implementacion de multiples métodos de almacenamiento local
Peticiones de red seguras y manejo de errores
Seguridad en la conexién con URLSession

Disefio genérico y controlado de respuestas de red
Controlador genérico con compatibilidad total con Codable
Uso de Result<T, Error> y propagacion explicita de fallos
Modelo de error personalizado con semantica descriptiva
URLSession y su delegado para control avanzado de red

Separacion de légica con controladores auxiliares de errores
Integracion de Compositional Layout y Diffable Data Source
¢, Qué es Compositional Layout?
¢, Qué es Diffable Data Source?
Aplicacién en el proyecto Wee 3.0
Capitulo 4 - Cierre técnico y profesional del proyecto
Aplicacion integral de conocimientos de ingenieria
Toma de decisiones tecnoldgicas y liderazgo técnico

Crecimiento profesional en entorno real

32
34
35

36

36

39

43
43
43
43
44

45

47
47

48
48
48
49
50
50

51
51
52
52
55
55
55
56

Condiciones del cierre del proyecto

Bibliografia

57
58

Resumen

Durante una estancia profesional de seis meses en WeeCompany®, empresa del sector tecnoldgico
especializada en Insurtech y salud digital, participé en el redisefio e implementacién de una nueva
aplicacién movil nativa para plataformas Apple. El problema principal que enfrentaba la organizacién era
una aplicacién existente con un alto grado de deuda técnica: ausencia de una arquitectura clara, codigo
obsoleto, practicas inconsistentes de comunicacion entre vistas y una estructura de proyecto
desorganizada, lo que dificultaba el desarrollo agil de nuevas funcionalidades y comprometia la
mantenibilidad del sistema.

Ante este panorama, mi labor se centrd en disefiar y construir una nueva solucién mévil desde cero,
aplicando conocimientos actualizados de desarrollo nativo en iOS. Aunque no ocupé el rol formal de lider
técnico, se me asigno la responsabilidad principal del proyecto. Entre mis funciones se incluyeron la
creacién del repositorio en Azure DevOps, el disefio de una arquitectura modular con separacién de
responsabilidades, la configuracion de esquemas para distinguir entre ambientes de desarrollo y
produccion, la capacitacién del equipo en practicas modernas con UIKit y Storyboards, y la integracion de
herramientas como URLSession, Keychain y FileManager para la gestion segura de la informacion. También
implementé flujos de trabajo con GitFlow y revisiones mediante Pull Requests para elevar el estandar de
calidad del cédigo.

El resultado fue una aplicacién estructurada con una arquitectura limpia, fluida en su funcionamiento y
preparada para multiples plataformas (iOS, iPadOS y macOS mediante Catalyst). Se alcanzé un disefio
adaptable a distintas resoluciones gracias a Auto Layout, y se optimizé la comunicacidn con el backend
mediante una capa robusta de red y manejo centralizado de errores. Aunque mi participacién concluyé
antes del cierre definitivo del desarrollo, el avance entregado consolidé las bases de una solucion moderna
y sostenible que posiciona a la empresa para escalar sus servicios moviles con mayor eficiencia.

Palabras clave

Desarrollo nativo, Swift, SwiftUl, UIKit, arquitectura moévil, MVC, iOS, Xcode, Keychain, seguridad en
aplicaciones maviles, Apple Developer, APl REST, JSON, URLSession, patrén de disefio, re-ingenieria de
software, refactorizacidn, optimizacion de rendimiento, experiencia de usuario (UX), control de versiones,
Git, integracion continua, salud digital, aplicacién médica, servicios de salud, videollamadas médicas,
gestion de medicamentos, telemedicina, aseguradoras médicas, expediente clinico electrénico, bienestar
emocional, salud mental, experiencia profesional, desarrollo de software, analisis de requerimientos,
resolucion de problemas técnicos, trabajo en equipo, liderazgo técnico, comunicacién efectiva.

Abstract

During a six-month professional residency at WeeCompany®, a technology firm specialized in Insurtech
and digital health, | participated in the redesign and implementation of a new native mobile application for
Apple platforms. The main issue the organization faced was a legacy app with a high level of technical
debt: lack of a clear architecture, obsolete code, inconsistent view-to-view communication practices, and a
disorganized project structure, which hindered the agile development of new features and compromised
the system’s maintainability.

Given this scenario, my work focused on designing and building a new mobile solution from scratch,
applying up-to-date knowledge of native iOS development. Although | did not formally hold the role of
technical lead, | was assigned the primary responsibility for the project. My tasks included setting up the
repository in Azure DevOps, designing a modular architecture with clear separation of concerns,
configuring schemes to distinguish between development and production environments, training the team
in modern practices using UIKit and Storyboards, and integrating tools such as URLSession, Keychain, and
FileManager for secure data management. | also implemented GitFlow workflows and code review
processes through Pull Requests to raise the overall code quality.

The result was a well-structured application with a clean architecture, fluid performance, and readiness for
deployment across multiple platforms (iOS, iPadOS, and macOS via Catalyst). The interface was designed
to be responsive across various screen sizes using Auto Layout, and the backend communication was
optimized through a robust networking layer and centralized error handling. Although my participation
concluded before the final release, the work delivered established a solid foundation for a modern and
sustainable solution, enabling the company to scale its mobile services more efficiently.

Keywords

Native development, Swift, SwiftUl, UIKit, mobile architecture, MVC, iOS, Xcode, Keychain, mobile app
security, Apple Developer, REST API, JSON, URLSession, design patterns, software re-engineering,
refactoring, performance optimization, user experience (UX), version control, Git, continuous integration,
digital health, medical application, healthcare services, medical video calls, medication management,
telemedicine, health insurance providers, electronic health records, emotional wellness, mental health,
professional experience, software development, requirements analysis, technical problem solving,
teamwork, technical leadership, effective communication.

Introduccion

Antecedentes

En el contexto de la transformacién digital en el sector salud, WeeCompany® se posiciona como una
empresa lider en Latinoamérica en el dmbito Insurtech, con un enfoque en el desarrollo de soluciones
tecnoldgicas para la gestion de servicios médicos y seguros de gastos médicos y vida. Fundada en 2016, su
objetivo principal es ofrecer una plataforma que interconecte a aseguradoras, financiadoras y proveedores
de salud (hospitales, farmacias, laboratorios, clinicas, etc.) mediante herramientas digitales que mejoren la
eficiencia operativa y la experiencia del usuario.

Al momento de mi incorporacién a la empresa, el equipo contaba con una aplicacion mévil funcional pero
altamente limitada en términos de arquitectura, mantenibilidad y escalabilidad. El proyecto presentaba
una profunda deuda técnica y una estructura organizativa inconsistente, lo que comprometia su capacidad
para incorporar nuevas funcionalidades y para posicionarse como un producto de tipo software as a
service (SaaS). Esta situacidn representd una oportunidad para intervenir desde una perspectiva de re-
ingenieria, aplicando conocimientos actualizados del ecosistema Apple para el redisefio completo del
producto movil.

Planteamiento del problema

El estado inicial de la aplicacién incluia una mezcla incorrecta de patrones arquitecténicos (MVP y MVVM),
uso programatico de UIKit sin aprovechamiento de Storyboards ni Auto Layout, comunicacién
inconsistente entre vistas, y un sistema de dependencias basado en herramientas obsoletas como
CocoaPods. Ademas, existia un desconocimiento generalizado dentro del equipo sobre las buenas
practicas de desarrollo nativo, arquitectura de software movil, y lineamientos de diseiio de Apple, lo cual
limitaba su capacidad de evolucién. A nivel organizacional, tampoco existia un sistema de versionado ni un
control efectivo de calidad sobre el cédigo.

Objetivo general

Desarrollar una nueva version de la aplicacion movil de WeeCompany®, denominada Wee 3.0, que
resolviera los problemas técnicos existentes y permitiera su escalabilidad, adaptabilidad y comercializacién
como un software personalizable tipo software as a service para distintos clientes.

Objetivos especificos

¢ Reestructurar la arquitectura de la aplicacion bajo principios modernos de modularidad y separacion de
responsabilidades.

¢ Capacitar al equipo de desarrollo en el uso actualizado de UIKit, SwiftUl, y disefio multiplataforma para
i0S, iPadOS y macOS.

¢ Implementar una capa de comunicacién de red robusta, concurrente y segura, manejo de errores
centralizado y control de estados.

e Capacitar al equipo de UI/UX en los lineamientos de disefio nativo de Apple (Apple Human Interface
Guidelines) para mejorar la experiencia de usuario.

e Establecer un sistema de versionado y revisién de cddigo con GitFlow y Pull Requests para asegurar la
calidad técnica del desarrollo.

¢ Desarrollar estrategias de solucién agil de problemas en entornos productivos.
Metodologia

El desarrollo del proyecto se realizé bajo un enfoque agil, concretamente mediante la metodologia Scrum,
con el acompafamiento de un Scrum Master y una Product Owner (PO). El trabajo se organizé en sprints
de dos semanas, durante los cuales se asignaban historias de usuario desde un backlog centralizado. Estas
historias eran discutidas, puntuadas y refinadas por el equipo, y cada desarrollador estimaba el esfuerzo
requerido y registraba las horas destinadas a su desarrollo. Las decisiones técnicas, dificultades y avances
se discutian en sesiones de planeacién y retrospectiva.

El proceso fue completamente iterativo, con validacidn continua mediante revisiones de cédigo, pruebas
funcionales y entregas parciales orientadas a negocio. Las tareas y métricas fueron gestionadas desde la
plataforma Azure DevOps, la cual permitia un seguimiento puntual del cumplimiento de los objetivos
planteados en cada sprint.

Contenido

Este trabajo se estructura en tres capitulos, ademds de la introduccién, el resumen, las conclusiones,
referencias y anexos.

e Capitulo 1 — Descripcion del sistema

¢ Se presenta el entorno técnico y organizacional previo al rediseio de la aplicacidn. Se describe el
sistema heredado en produccidn, incluyendo su estructura, problematicas, deuda técnica
acumulada y deficiencias arquitectdnicas. Se contextualiza también mi incorporacion al equipo, el
organigrama de la empresa y las responsabilidades asignadas.

¢ Capitulo 2 — Propuesta técnica y estrategia de reestructuracion

¢ Se detalla el anadlisis realizado y las decisiones técnicas adoptadas para desarrollar una nueva
versién de la aplicacidn. Se expone la arquitectura seleccionada, las herramientas utilizadas, la
estructura modular, los principios de seguridad y pruebas, asi como el enfoque formativo aplicado
para estandarizar conocimientos dentro del equipo de desarrollo.

e Capitulo 3 — Implementacidn practica y validacién funcional

¢ Se documenta el desarrollo efectivo del sistema, ilustrado mediante evidencia visual y analisis del
comportamiento de la aplicacién en diferentes dispositivos y flujos. Se explican los resultados
obtenidos a nivel de cédigo, estructura, experiencia de usuario, navegacién y adaptabilidad
multiplataforma. Esta seccion integra la visidn técnica con los resultados tangibles alcanzados
durante el proceso.

e Capitulo 4 - Cierre técnico y profesional del proyecto

* Se reflexiona sobre el aprendizaje adquirido a lo largo del proyecto, el rol asumido en la toma de
decisiones, y la aplicacidon integral de conocimientos de ingenieria. Ademas, se describe el estado
en que se entregd el sistema, la continuidad propuesta para su evolucion y el impacto profesional
gue esta experiencia representa en el desarrollo de una carrera en software dentro del campo de
la ingenieria mecatronica.

Capitulo 1 - Descripcion del
sistema

Ubicacion geografica

El proyecto Wee 3.0 se desarrolld en la Ciudad de México, en modalidad 100 % presencial, dentro de las
oficinas corporativas de WeeCompany®. Esta ubicacion representa un punto estratégico dentro del pais, ya
que la capital concentra a las principales sedes de aseguradoras, instituciones financieras, hospitales
privados y empresas tecnoldgicas que lideran la transformacidn digital en sus respectivos sectores.

El entorno profesional en la CDMX es altamente competitivo; existe una abundante oferta de talento
técnico y una exigencia constante por la excelencia profesional. Este contexto favorecié una cultura
organizacional orientada al rendimiento, la innovacién continua y el trabajo colaborativo. Dentro de este
ecosistema, WeeCompany® se posiciona como un actor con una vision clara: simplificar la relacién entre
pacientes, prestadores de salud y aseguradoras mediante soluciones digitales integrales (WeeCompany,
s.f).

Ubicacion sectorial

Fundada en 2016, WeeCompany® es reconocida como la primera empresa InsurTech en América Latina
con un enfoque centrado especificamente en el sector salud. Su misién es mejorar la experiencia de todos
los actores involucrados en el sistema médico y asegurador, con énfasis en el bienestar del paciente. Su
vision es consolidarse como el sistema operativo lider para la gestidn del sector salud y seguros en LATAM
(WeeCompany, s.f.).

Para ello, ha construido un ecosistema digital robusto que conecta aseguradoras, financiadoras de
servicios médicos y una amplia red de proveedores de salud, incluyendo farmacias, laboratorios,
hospitales, clinicas, consultorios y profesionales independientes. A través de plataformas digitales
automatizadas, busca optimizar procesos como la gestidén de reclamos, la administracién de casos clinicos,
el control de gastos, la prescripcién médica digital y la atencidn remota por telemedicina (WeeCompany,
s.f).

Comparativa sectorial en LATAM (2023)

Durante 2023, el ecosistema InsurTech y HealthTech en América Latina experimentd un crecimiento
acelerado. México se posiciond como el segundo mercado mas grande de la regidn en insurtech, solo
detrds de Brasil, con mds de 120 startups activas en este sector (MAPFRE, 2024). Ademas, el mercado

healthtech mexicano alcanzé un valor estimado de 1,930 millones de délares, siendo uno de los
ecosistemas mas dindmicos y diversificados de la regidn, con mas de 100 empresas clasificadas en areas
como telemedicina, prescripcién digital y gestiéon de enfermedades crénicas (ICEX, 2024).

En este contexto, el enfoque de WeeCompany® sobresale por su caracter modular, integrado y centrado
en el usuario final. A diferencia de startups como Betterfly (Chile), que combina seguros de vida con
habitos saludables enfocados en beneficios corporativos (Endeavor Hub, 2022), o Diagnostikare (México),
centrada en atencién médica primaria virtual (Diagnostikare, s.f.), WeeCompany® articula todo un ciclo de
valor que va desde la contratacién de seguros, la validacion de pdlizas, la consulta médica y el seguimiento
emocional del paciente, hasta la gestién de pagos, documentos y tramites administrativos con
aseguradoras. Esta integracion vertical le otorga una ventaja competitiva Unica en la region.

Ubicacion temporal

Mi estancia profesional en WeeCompany® se desarrollé entre el 28 de febrero y septiembre/octubre de
2024, aunque el proyecto Wee 3.0 fue conceptualizado y planificado en 2023, durante una etapa critica de
evaluacién interna. En ese afio, la compaiiia enfrentaba una situacién de estancamiento técnico con su
aplicacién anterior (Wee 2.0), la cual no cumplia con los estandares de estabilidad, escalabilidad ni
usabilidad necesarios para su evolucion como producto comercial.

Este contexto coincidié con la necesidad de consolidar un producto digital tipo Software as a Service (Saa$)
que pudiera ser personalizado por aseguradoras y licenciado como solucidn integral para gestionar sus
usuarios, coberturas, gastos y servicios. La presion de contratos vigentes, clientes con requerimientos
especificos y objetivos de expansidn regional generaron un entorno donde era indispensable acelerar el
redisefio de la aplicacion.

Durante este periodo, se adoptaron practicas agiles mediante el uso de Scrum, se establecieron sprints de
15 dias para gestionar la entrega continua de valor, y se programaron sesiones trimestrales de demo con
stakeholders de negocio. Estas condiciones temporales definieron el ritmo del desarrollo y marcaron el
inicio de un proceso de transformacion estructural a nivel técnico y organizacional dentro de la empresa.

Dinamica de trabajo y estructura del proyecto

El desarrollo del proyecto se llevé a cabo dentro de un entorno colaborativo bien estructurado, que
combinaba herramientas tecnoldgicas modernas con una metodologia agil orientada a resultados. Para la
implementacién del sistema se conté con el equipo necesario, incluyendo dispositivos Apple como una
MacBook Pro M1, varios modelos de iPhone, iPad y Apple Watch, todos esenciales para asegurar
compatibilidad y rendimiento multiplataforma. A nivel organizativo, se utilizé la suite Microsoft 365, con
Azure DevOps como plataforma central de coordinacion. Desde ahi se gestionaban los repositorios de
cddigo, el control de versiones, los tableros de tareas y la documentacion técnica; mientras que
herramientas como Microsoft Teams y OneDrive facilitaban la comunicacién y el trabajo compartido.

El equipo adoptd la metodologia Scrum, con sprints quincenales que iniciaban con sesiones de planeacidn
lideradas por la Product Owner y el Scrum Master. Durante estas reuniones se revisaban las historias de
usuario, se discutia su alcance y se estimaban los esfuerzos técnicos requeridos. Las tareas se dividian en
subtareas especificas en el tablero de Azure y se realizaba un seguimiento constante de su avance. Una vez
completadas, se realizaban revisiones cruzadas mediante pull requests, promoviendo un entorno
horizontal, sin jerarquias técnicas impuestas, donde cada desarrollador podia aportar a la mejora del
codigo.

Las entregas se hacian de forma iterativa: cada quince dias se distribuian versiones menores mediante
Firebase, dirigidas principalmente a validaciones internas de producto; mientras que cada trimestre se
generaban versiones mayores que se presentaban al area de negocio, con funcionalidades mas robustas,
documentacién completa y pruebas visuales en todos los dispositivos objetivo. En este proceso, la Product
Owner validaba el cumplimiento funcional y el Scrum Master velaba por la eficiencia del equipo vy el
equilibrio en la carga de trabajo.

El equipo técnico estaba conformado por desarrolladores iOS y Android, mientras que las decisiones de
producto y prioridades eran coordinadas por la PO. Esta estructura permitié mantener una dindmica agil,
iterativa y medible, con resultados funcionales tangibles al cierre de cada sprint.

Antecedentes técnicos del sistema

Antes del inicio del proyecto Wee 3.0, la empresa operaba con una versién anterior de su aplicacién movil,
conocida como Wee 2.0, la cual presentaba multiples limitaciones que comprometian su rendimiento,
estabilidad y escalabilidad. Esta versidon acumulaba una importante deuda técnica producto de decisiones
arquitectdnicas inconsistentes, falta de documentacién y una estructura de cédigo dificil de mantener.

Durante mis primeras semanas en la empresa, se me asigno la tarea de realizar un diagnéstico del sistema
en produccioén. El ana
servicios backend que la soportaban. Estas observaciones iniciales fueron presentadas al equipo de
desarrollo y direccidn técnica, sirviendo como base para definir la necesidad de rediseiiar la plataforma
desde sus fundamentos, lo cual dio origen al proyecto Wee 3.0, abordado en detalle en el siguiente
capitulo.

isis evidencié deficiencias significativas tanto en la aplicacion mévil como en los

Descripcion del sistema

La aplicacion movil desarrollada por WeeCompany®, en su versién anterior (Wee 2.0), constituia una
solucién digital integral dirigida principalmente a usuarios con pélizas de seguro médico, aunque también
ofrecia funcionalidades abiertas al publico general a través de un modelo basado en membresias. Su
objetivo era centralizar y facilitar el acceso a diversos servicios de salud y de seguros, mediante una
plataforma tecnolégica que automatizara procesos que tradicionalmente eran fragmentados, lentos o
dependientes de multiples intermediarios.

Las funcionalidades principales de la aplicaciéon incluian la consulta médica en linea, la localizacién de
especialistas por geolocalizacion, la gestion y visualizacidn de pdlizas, el surtido digital de recetas médicas
y la recepcidn de notificaciones o recordatorios de salud. Estas acciones se complementaban con servicios
auxiliares como el registro de estado emocional mediante un diario personal, el acceso a una biblioteca de
videos educativos sobre salud y un asistente conversacional basado en inteligencia artificial (ChatGPT),
orientado a resolver dudas generales de salud.

La app estaba disefiada para cubrir tanto necesidades basicas como complejas del usuario asegurado. Por
ejemplo, permitia solicitar atencién médica inmediata o programada, registrar su péliza de seguro, subir
documentacion en caso de requerimientos administrativos y consultar su historial médico. Esta integracion
simplificada de servicios hacia que el usuario solo tuviera que interactuar con la app movil, mientras que
WeeCompany gestionaba internamente toda la operacién con las aseguradoras, médicos y farmacias
afiliadas.

En el plano organizativo, la aplicacidn se dividia en mddulos internos conectados a través de servicios REST,
comunicandose exclusivamente con un backend privado desarrollado por la misma empresa. La
interaccién con aseguradoras y prestadores de servicios no ocurria directamente desde la app, sino a
través de una plataforma web empresarial donde dichas entidades gestionaban la informacién de sus
clientes y configuraban sus permisos. Esta arquitectura centralizada aseguraba que la app operara como
un nodo cliente, accediendo a recursos ya preprocesados por el entorno administrativo corporativo.

Cabe destacar que muchas de las funcionalidades avanzadas, como las consultas médicas virtuales, la
emisidn de recetas, y la conexidn con la red médica profesional, eran provistas por una empresa hermana:
Wee Medic. Aunque operativamente separadas, ambas plataformas estaban integradas a nivel funcional,
lo que permitia ofrecer una experiencia fluida y coherente al usuario final.

Gracias a su enfoque holistico, Wee 2.0 se convirtié en una de las aplicaciones mas completas en el
mercado mexicano en términos de servicios médicos moviles. Su principal valor diferencial radicaba en su
capacidad de automatizar procesos médicos y administrativos complejos, permitiendo al usuario gestionar
integralmente su salud desde una sola interfaz digital.

Capitulo 2 - Propuesta técnicay
estrategia de reestructuracion

Estado inicial del proyecto y diagnostico técnico

Al momento de mi incorporacién a WeeCompany®, la aplicaciéon en uso era conocida como Wee 2.0,
aunque internamente existian versiones incrementales como 2.5.4, sin cambios funcionales sustanciales.
Esta versidn alun estaba en produccién, lo que representaba una dificultad adicional: cualquier
modificacién o correccién debia realizarse sin comprometer los servicios activos para usuarios reales, ya
que existian compromisos contractuales con aseguradoras y clientes empresariales.

Durante mi primer sprint, se me asigné como prioridad la elaboracién de un diagnéstico técnico detallado,
gue permitiera evaluar la viabilidad de continuar con la app actual o iniciar un redisefo total. El analisis
incluyd una revision del cédigo fuente, la estructura arquitectdnica, los flujos de navegacion, las
herramientas utilizadas y la experiencia de usuario.

Los hallazgos fueron contundentes: la aplicacién sufria una acumulacion critica de deuda técnica, carecia
de una arquitectura clara y utilizaba patrones hibridos mal implementados, como una mezcla fallida entre
MVP y MVVM. El proyecto presentaba una organizaciéon desordenada en sus carpetas, archivos y médulos.
Se identificé cddigo obsoleto, sin uso, duplicado y sin pruebas unitarias, lo cual hacia extremadamente
costosa cualquier intervencion o ampliacion funcional.

La integracion de dependencias se realizaba mediante CocoaPods, sin control de versiones, y en algunos
casos con librerias sin mantenimiento. La comunicacidén entre componentes carecia de un patrén
unificado: en distintos puntos del proyecto se utilizaban closures, RxSwift o incluso acceso directo a
tisimo acoplamiento y rompia el principio de separacién de

objetos sin encapsulacidn, lo que generaba a
responsabilidades.

En cuanto al backend, se observé una situacidén similar: muchos servicios carecian de documentacién, no
existia una coleccién actualizada en Postman ni una especificacion clara en Swagger. Las respuestas del
servidor eran poco robustas, con cédigos HTTP 200 incluso en operaciones fallidas, y la deteccién de
errores dependia de la interpretacion de textos embebidos en campos anidados del JSON. Esto
imposibilitaba establecer una politica clara y predecible de manejo de errores en la app cliente.

El entorno de desarrollo tampoco contemplaba estructuras diferenciadas para ambientes de pruebas,
desarrollo o produccién. No existia un sistema de control de calidad automatizado ni lineamientos
compartidos entre el equipo de desarrollo. La falta de documentacion interna agravaba esta situacion,
generando una dependencia excesiva del conocimiento tacito entre los miembros del equipo.

10

Ante esta situacion, y considerando las necesidades urgentes de escalabilidad y estabilidad del producto,
propuse formalmente la construccién de una nueva version de la aplicacion, bajo una estructura
arquitectdnica moderna, clara y adaptable, con énfasis en: modularidad, personalizacién por cliente,
experiencia de usuario coherente con las Human Interface Guidelines, uso eficiente de tecnologias nativas
de Apple y buenas practicas de ingenieria de software.

Propuestas y cambios realizados en el sistema

A partir del diagndstico inicial, y en alineacion con los objetivos estratégicos de WeeCompany®, propuse el
desarrollo de una nueva versién de la aplicacidn, estructurada como un producto minimo viable (MVP)
gue sentara las bases de una plataforma escalable, personalizable y sostenible a largo plazo. Este nuevo
sistema, denominado Wee 3.0, debia resolver no solo las deficiencias técnicas de Wee 2.0, sino también
responder a las expectativas del mercado insurtech y healthtech con una solucién flexible adaptable a
distintos clientes y aseguradoras.

Enfoque general de la solucion

El nuevo disefio partia de la creacidon de un MVP con una arquitectura documentada y modular, que
permitiera incorporar o remover funcionalidades segln el contrato o configuracién de cada cliente. Esto
implicaba separar la légica por médulos funcionales reutilizables, definir estilos visuales como clases y
estructuras en Swift, y asegurar una navegacion fluida mediante estructuras compatibles con UIKit, pero
abiertas a migraciones progresivas hacia SwiftUl.

Propuesta: MVC mejorado

Aungue inicialmente se considerd adoptar el patrén MVVM para la nueva aplicacién Wee 3.0, tras una
evaluacion profunda de las caracteristicas del proyecto, la madurez del equipo y los objetivos de corto y
mediano plazo, se optd por implementar una versién mejorada del patron Model-View-Controller (MVC).

Esta decision se alined con las practicas recomendadas por Apple para aplicaciones basadas en UIKit, y
respondid a tres factores clave:

e La estructura nativa de UIKit estd optimizada para MVC, lo que reduce fricciones y facilita la
integracion con herramientas del ecosistema Apple.

* El equipo contaba con mayor experiencia en este patrdn, lo que garantizaba una curva de
adopcidon mas rapida y una mejor colaboracién entre miembros con distintos niveles de
experiencia.

¢ La implementacion de ModelControllers y HelperControllers permitié modularizar el cédigo y
distribuir responsabilidades, evitando el problema comun del Massive View Controller.

11

El uso de ModelControllers permitio aislar la l6gica de negocio y operaciones complejas fuera de los
controladores de vista, mientras que los HelperControllers facilitaron la consolidacidn de servicios
auxiliares como red, almacenamiento seguro y utilerias compartidas. Esta adaptacion hizo posible
mantener los principios de separacion de responsabilidades y reusabilidad propios de MVVM, sin
comprometer la simplicidad y fluidez operativa de MVC.

Esta decision no solo facilitéd el mantenimiento y la escalabilidad del proyecto, sino que también mejoré su
capacidad de prueba, al permitir aislar unidades funcionales independientes, como el manejo de datos o
servicios de red, con una estructura clara y controlada.

Estandares visuales y disefio modular

Se definieron nuevos lineamientos de disefio centrados en el cumplimiento estricto de las Human
Interface Guidelines de Apple, incluyendo adaptabilidad con Auto Layout y soporte para diferentes
tamafios de pantalla. La personalizacion visual se logré mediante estructuras y clases que centralizaban
estilos, colores, fuentes y componentes visuales. Se utilizd Interface Builder con storyboard references
para mantener independencia de vistas y reducir el acoplamiento visual.

Integracion segura y conectividad robusta

La comunicacién con servicios backend se implementd usando URLSession, con manejo avanzado de
estados y errores. Para garantizar la proteccion de los datos del usuario, se incorporaron practicas de
cifrado modernas utilizando Keychain y CryptoKit, asi como las politicas recomendadas por Apple
mediante App Transport Security. Esta estructura permitié asegurar los datos en transito y en reposo,
cumpliendo con estandares de seguridad de nivel empresarial.

Pruebas, despliegue y mantenimiento

Desde las primeras fases del proyecto se reconocio la necesidad de contar con una estrategia formal de
pruebas y despliegue continuo. Sin embargo, a diferencia de lo inicialmente planteado, no se conté con un
equipo DevOps especializado, por lo que los propios desarrolladores asumimos la responsabilidad de
investigar, implementar e integrar los mecanismos necesarios dentro del ecosistema de Azure DevOps.

El proceso de aprendizaje incluyd la exploracidon de herramientas como pipelines de Azure, gestion de
ramas con politicas de revision, automatizacion de compilaciones y pruebas basicas antes de cada entrega.
Esta fase de formacion fue parte del proceso de capacitacién técnica transversal, y se abordd
colaborativamente entre los miembros del equipo, en sesiones conjuntas y pruebas iterativas de
implementacion.

12

Las validaciones funcionales se realizaban al cierre de cada sprint quincenal, bajo el marco de trabajo
Scrum, utilizando un sistema de versiones distribuidas mediante Firebase para pruebas internas. La
validacidn de historias de usuario quedaba a cargo de la Product Owner, mientras que entre
desarrolladores se mantenia una politica de revision cruzada del cdodigo (pull requests) como mecanismo
informal de control de calidad.

Si bien el pipeline de CI/CD aln estaba en construccidn al finalizar mi estancia, se sentaron las bases para
una implementacién futura sostenible, con principios claros de control de versiones, automatizacién y
revision continua

Planificacion técnica y fases

El desarrollo de Wee 3.0 fue concebido como un proyecto completamente independiente, iniciado desde
cero, sin aprovechar componentes del cddigo heredado debido al alto grado de deuda técnica e
incompatibilidad estructural detectado en Wee 2.0. Esta decisidn se tomo tras una auditoria inicial que
reveld que ningun maédulo del sistema anterior era reutilizable sin comprometer los estandares de calidad,
rendimiento y seguridad que se buscaban establecer.

El proyecto se disend para ejecutarse de manera paralela al mantenimiento de la versién anterior, la cual
debia permanecer activa y funcional para cumplir con contratos vigentes y compromisos con aseguradoras
ya firmados. Esta doble exigencia obligd a una division estratégica del equipo: por un lado, garantizar la
estabilidad minima de Wee 2.0; por otro, avanzar con el disefio, desarrollo y validacién progresiva de Wee
3.0.

La planificacidn técnica se estructurd en cinco fases:
1. Separacion operativa de ambientes para evitar interferencias entre versiones.

2. Definicién de arquitectura base y creacidon de médulos funcionales desde cero, organizados
bajo el patron MVC mejorado.

3. Establecimiento de estandares de codificacidn y control de versiones, con ramas separadas
para desarrollo, pruebas y produccién.

4. Implementacion iterativa de funcionalidades en sprints, priorizando componentes reutilizables
y aislados.

5. Preparacidn para la transicién gradual, disefiando rutas de sustitucién funcional sin interrumpir
servicios criticos.

El cronograma original estimaba entre 6 y 8 meses de desarrollo activo para una versidn estable del MVP,
sujeto a ajustes segun la disponibilidad de personal, avances en capacitacién y soporte requerido por la
version anterior.

13

Capacitacion y fortalecimiento del equipo (version final)

Uno de los componentes mas importantes del proyecto Wee 3.0 fue la formacidn técnica interna,
impulsada por la necesidad de estandarizar criterios de desarrollo, elevar el nivel técnico del equipo, y
facilitar la adopcién de nuevas practicas orientadas a la calidad y seguridad del software. Esta
responsabilidad fue asumida directamente por mi como parte de mi participacion activa en el proyecto.

Se disefid y entregd un programa de capacitacion intensiva, estructurado en torno a las buenas practicas
del desarrollo iOS moderno, centrado en el lenguaje Swift, el uso adecuado de UIKit y su arquitectura
MVC, y herramientas esenciales como URLSession, Keychain, GCD y GitFlow. También se abordaron
patrones de comunicacién en Swift (delegados, closures, inyeccion de dependencias), disefio de flujos con
navegacion programatica, estructura modular y consumo seguro de servicios backend.

A diferencia de una capacitacion tedrica, el enfoque fue aplicado y practico, integrando cada contenido en
tareas reales dentro del ciclo de desarrollo. Esto incluyé documentacion, presentaciones, revisiéon de
codigo, ejemplos funcionales y resolucion colaborativa de problemas. La retroalimentacién fue continua y
la transferencia de conocimiento quedd asentada como parte del valor técnico duradero del proyecto.

Capacitacion técnica aplicada al desarrollo iOS

Esta seccidn profundizard en los contenidos especificos impartidos al equipo, incluyendo fundamentos de
Swift, patrones de disefio, control de versiones, seguridad, asincronia y principios de arquitectura limpia
adaptados a MVC.

Fundamentos del lenguaje Swift moderno

Tipado seguro, opcionales y manejo de errores

Uno de los elementos clave de la formacion impartida al equipo fue la comprensién del modelo de
seguridad de tipos que define la base del lenguaje Swift. A diferencia de lenguajes mas flexibles pero
propensos a errores en tiempo de ejecucién, Swift obliga a que cada variable, constante y expresidn tenga
un tipo bien definido. Esta caracteristica reduce sustancialmente el margen de error y permite al
compilador detectar incongruencias en tiempo de compilacién, favoreciendo un desarrollo mas confiable y
mantenible.

El concepto de opcionalidad en Swift se abordé como una de las principales diferencias frente a otros
lenguajes. Los opcionales permiten representar explicitamente la posibilidad de que un valor esté ausente,
usando el tipo T?. Se trabajaron técnicas de desempaquetado seguro mediante if let y guard let, el uso de
optional chaining para evitar cascadas de validaciones innecesarias, y el operador ?? como forma clara de
definir valores predeterminados. También se explicé detalladamente por qué el uso de ! (force unwrap)

14

debe considerarse una mala practica en produccion, dado que puede conducir a fallos severos en tiempo
de ejecucion si el valor resulta ser nil.

Complementariamente, se introdujo el sistema de manejo de errores de Swift, basado en el protocolo
Error y las instrucciones do, try, catch. Se discutié cémo Swift obliga al desarrollador a declarar qué
funciones pueden lanzar errores y a tratarlos explicitamente, reforzando el principio de responsabilidad y
previsidn. Esta combinacion entre opcionales y manejo de errores estructurado refuerza la filosofia de
seguridad y claridad que caracteriza a Swift como lenguaje moderno.

Sintaxis concisa y expresiva

Swift fue disefiado con un objetivo claro: facilitar la escritura de cdédigo que sea expresivo, legible y
cercano al lenguaje natural. Esta cualidad fue una de las que mas se enfatizd durante la capacitacion,
particularmente para ayudar al equipo a escribir cddigo mas limpio, comprensible y mantenible.

Se analizaron ejemplos concretos de cémo la sintaxis clara de Swift permite evitar redundancias, reducir el
uso de estructuras verbosas y construir funciones que se explican por si mismas. Un caso ilustrativo fue el
uso de etiquetas de parametros en funciones (sayHello(to:and:)), lo que mejora radicalmente la
comprension del propdsito de cada argumento sin necesidad de documentacidn adicional.

También se practico el uso de closures en linea, la estructura compacta de expresiones como map, filter,
reduce, y el uso elegante de inicializadores, métodos encadenados y control de flujo simplificado con
guard. Todos estos elementos contribuyen a construir un cédigo que no solo es mas rapido de escribir, sino
también mas facil de leer y revisar, lo cual es vital en proyectos colaborativos de mediano y largo plazo.

Esta claridad estructural fue reforzada como parte de una practica transversal: escribir cédigo para
humanos, no solo para la maquina, asegurando que cualquier miembro del equipo pudiera leer,
comprender y continuar trabajando sobre una base comun, sin necesidad de depender del contexto tacito
del autor original del cddigo.

Inferencia de tipos

La inferencia de tipos es una de las caracteristicas que distingue a Swift de otros lenguajes de
programacién fuertemente tipados. Gracias a esta funcionalidad, el compilador puede deducir el tipo de
una variable a partir del valor que se le asigna, permitiendo escribir menos cédigo sin comprometer la
seguridad del sistema de tipos.

Durante la capacitacion, se explicé como esta funcionalidad mejora la fluidez del desarrollo, haciendo que
el cddigo sea mas conciso, sin necesidad de repetir tipos evidentes (let edad = 28 infiere que edad es un
Int). Sin embargo, se hizo énfasis en que esta facilidad no debe llevar al abuso: en contextos donde la
semantica del tipo no es evidente, es preferible especificar el tipo explicitamente, por claridad y para
evitar errores sutiles.

15

Un ejemplo practico abordado fue el caso de opcionales declarados sin valor inicial, donde la inferencia no
es capaz de determinar el tipo sin una anotacion explicita (var mensaje: String?). Este caso sirvio para
ilustrar cdmo la inferencia tiene limites y cdmo el desarrollador debe complementar al compilador cuando
el contexto no es suficiente.

El equipo aprendié a combinar la inferencia con la declaracién explicita como una herramienta de
equilibrio: usarla para acelerar el desarrollo cuando el tipo es evidente y recurrir a anotaciones claras
cuando el tipo o su propdsito no lo son. Esta estrategia no solo mantiene la legibilidad del cédigo, sino que
potencia el sistema de tipos de Swift como una forma activa de prevenir errores y comunicar intencion.

Organizacion y nomenclatura del cédigo

Convenciones para nombrar variables y estructuras

Durante la capacitacion, se enfatizo la importancia de seguir las convenciones de nomenclatura
establecidas por Swift para garantizar la coherencia, escalabilidad y legibilidad del cédigo. Estas
convenciones, alineadas con las Swift APl Design Guidelines (Apple, s.f.-a), son fundamentales para
mantener un cédigo profesional y facilitar su mantenimiento colaborativo en equipos multidisciplinarios.

Las principales convenciones abordadas incluyeron:

e Tipos (clases, estructuras, enumeraciones y protocolos): Uso de UpperCamelCase, es decir, cada palabra
comienza con mayuscula y no se emplean guiones bajos. Ejemplos: UserProfile, NetworkManager,
DataParser.

e Variables y constantes: Uso de lowerCamelCase, iniciando con minuscula y capitalizando las palabras
subsiguientes. Ejemplos: userName, maxRetries, apiEndpoint.

¢ Funciones y métodos: Mismo formato lowerCamelCase, con nombres que describan con claridad la
accion que realizan. Ejemplos: calculateScore(), fetchData(), updateUserProfile().

¢ Enumeraciones (casos): También en lowerCamelCase, asegurando que cada caso sea claroy
representativo del estado. Ejemplo:

e Pardmetros genéricos: Letras mayusculas simples como T, U, V, o nombres en UpperCamelCase para
mayor expresividad:

Figura 1. Definicidn de una estructura genérica Stack en Swift.

También se abordd el uso de prefijos semanticos para variables booleanas como is, has, o should

16

(isUserLoggedIn, hasAccess, shouldDisplayAlert) para mejorar la semantica del cédigo (Apple, s.f.-a). Estas
convenciones ayudan a que el compilador proporcione asistencia contextual, a que el cédigo sea auto-
explicativo, y a facilitar la integracidon con herramientas de analisis estatico.

Comentarios, claridad de intencion y legibilidad

La documentacidn interna del cédigo es una herramienta critica para mantener la claridad, robustez y
escalabilidad de una base de cédigo compartida. Durante la formacidn, se abordaron las buenas practicas
para documentar cédigo en Swift, con énfasis en el uso de Swift Markup, un conjunto de convenciones de
marcado adoptadas por Apple para generar documentacion directamente desde el codigo fuente (Apple,
2023a; Apple, 2021a).

Se ensefid a utilizar tanto comentarios informativos (//, /* */) como comentarios de documentacién (///, /
** */), que permiten a Xcode mostrar documentacién estructurada mediante Quick Help.

Ejemplo:

/l/ Calcula el area de un rectangulo.
/Il - Parameters:

/Il - width: Ancho del rectangulo.
/Il - height: Altura del rectangulo.
/Il - Returns: El area calculada.

Figura 2. Funcion calculateArea documentada con comentarios estructurados en Swift para
calcular el area de un rectangulo.

Ademas, se introdujo la herramienta DocC, lanzada por Apple para permitir a los desarrolladores generar
documentacion de sus proyectos de forma automatica, incluyendo encabezados, listas, ejemplos,
imagenes y enlaces interactivos (Apple, 2021a; Apple, 2021b). Se explicd cémo estructurar los comentarios
para integrarse con DocC y generar documentacion navegable en Xcode o exportarla como documentacion
web.

Este enfoque favorece el desarrollo de sistemas sostenibles, donde el conocimiento se transmite dentro
del propio cddigo y no solo mediante documentacion externa. También mejora la comunicacién entre
equipos, el onboarding de nuevos desarrolladores y la transparencia del disefio técnico.

Organizacion de carpetas, archivos y grupos en Xcode

17

Una estructura de proyecto clara es indispensable para cualquier equipo de desarrollo. Incluso
aplicaciones de mediana escala pueden acumular decenas o cientos de archivos. Por ello, durante la
capacitacion se abordaron las mejores practicas para organizar un proyecto en Xcode de forma légica y
escalable (Apple, s.f.-b).

Se recomendé utilizar nombres de archivo descriptivos, como ProductListTableViewController.swift en
lugar de abreviaciones como MainVC.swift, para facilitar la navegacion. Asimismo, se sugirié mantener una
estructura modular, separando las definiciones de tipo en archivos independientes (Car.swift, Driver.swift,
RaceTrack.swift en lugar de Model.swift combinado), lo cual favorece la reutilizacidn y el aislamiento de
responsabilidades.

Xcode permite agrupar archivos de forma visual, a través de groups, sin necesidad de reflejar esa
estructura en el sistema de archivos (indicados por el icono de carpeta con sombra). Se discutié cémo usar
estos grupos para mantener organizado el navegador de archivos, incluso si no coinciden exactamente con
las carpetas fisicas del proyecto.

Se propusieron estructuras légicas comunes de organizacién como:
» ViewControllers

* Views

Models

Extensions

Storyboards

Protocols

También se enfatizd la necesidad de escribir el cddigo pensando en la claridad y mantenimiento futuro:
usando nombres explicitos, funciones pequefias, firmas claras y comentarios utiles, pensando en que otras
personas —o uno mismo en el futuro— deberdan trabajar sobre esa base.

Arquitectura MVC con controladores auxiliares

Separacion de responsabilidades en Model, View y Controller

El patron Model-View-Controller (MVC) es uno de los pilares de la arquitectura de aplicaciones en UIKit.
Este patrén establece una separacidn clara de responsabilidades entre sus componentes principales, lo
que permite un disefio mas mantenible, reusable y escalable (Apple, s.f.-c).

18

¢ Model: Encapsula los datos y la Iégica de negocio de la aplicacién. Representa el estado del
sistema y puede incluir estructuras, clases o servicios de red. Es independiente de cualquier
interfaz de usuario.

¢ View: Representa visualmente la informacién al usuario y capta su interaccién. No contiene légica
de negocio, y su funcién es limitarse a la presentacién.

e Controller: Actua como intermediario entre la vista y el modelo. Controla el flujo de datos y
actualiza la interfaz en respuesta a eventos del modelo o del usuario.

Esta separacion permite desarrollar componentes desacoplados, facilitando las pruebas, el mantenimiento
y la reutilizacién del cddigo (Apple, s.f.-d). También mejora la colaboracidn entre desarrolladores, ya que
cada elemento puede ser trabajado de forma independiente bajo responsabilidades bien definidas.

Uso de ModelControllers y HelperControllers

Para superar las limitaciones del MVC clasico, en aplicaciones complejas es comun implementar
extensiones de esta arquitectura como ModelControllers y HelperControllers, con el fin de mantener la
separacion de responsabilidades y evitar la sobrecarga del controlador de vista (Apple, s.f.-e).

¢ ModelControllers: Son componentes responsables de gestionar la légica de negocio, la
persistencia local y la comunicacion con el backend. Actian como puentes entre el modelo y el
controlador principal.

e HelperControllers: Se utilizan para encapsular ldgica secundaria o auxiliar, como validaciones,
formateo de datos o servicios de red. Esto permite mantener los controladores de vista enfocados
Unicamente en la presentacion.

El uso de estas capas intermedias fue fundamental para evitar el problema conocido como Massive View
Controller y lograr una arquitectura MVC modular, mantenible y alineada con las necesidades del
proyecto. Esta estructura también permitié una mayor flexibilidad para el trabajo en equipo y la
implementacién gradual de nuevas funcionalidades.

Comparativa con MVVM vy justificacion de eleccion

El patron Model-View-ViewModel (MVVM) ha ganado popularidad en el desarrollo con SwiftUl debido a
su capacidad para manejar el enlace de datos bidireccional y separar mejor la Iégica de presentacion de la
vista. Sin embargo, su implementacién con UIKit requiere un esfuerzo adicional en términos de
infraestructura y curva de aprendizaje (Apple, s.f-f).

Entre las ventajas de MVVM se destacan:

19

¢ Aislamiento mds claro de la ldgica de presentacién mediante el uso de un ViewModel.
* Mejor escalabilidad en proyectos reactivos con herramientas como Combine o RxSwift.
¢ Reduccién del acoplamiento entre vista y modelo.

No obstante, en este proyecto se optdé por mantener el patrén MVC debido a varias razones técnicas y
organizativas:

¢ UIKit fue el framework base, y su disefio esta directamente alineado con MVC, facilitando la
integracion con herramientas nativas y simplificando la estructura general (Apple, s.f.-e).

* El equipo contaba con experiencia previa en este patrén, lo que permitié una curva de adopcién
mas rapida sin comprometer la calidad del desarrollo.

e La incorporacion de ModelControllers y HelperControllers permitié extender las ventajas de
MVVM sin necesidad de abandonar MVC, conservando la claridad estructural y reduciendo la
complejidad técnica del sistema.

En resumen, MVC mejorado fue la solucion mas adecuada al contexto, permitiendo mantener la claridad,
escalabilidad y estabilidad del sistema, alineado con las capacidades del equipo y los objetivos del
producto.

Patrones de comunicacidon entre componentes

Delegados, closures, inyeccion de dependencias

Durante la capacitacién, se profundizé en las técnicas cldsicas de comunicacién entre componentes en el
desarrollo con UIKit, especialmente el uso de delegados, closures e inyeccion de dependencias, todas ellas
esenciales para mantener bajo acoplamiento y alta cohesidn entre objetos en arquitectura MVC.

El patrén de delegacion, ampliamente utilizado en UIKit, permite que un objeto notifique a otro sobre
ciertos eventos o decisiones mediante la implementacién de un protocolo. Este patron es comun en vistas
como UlTableView o UlCollectionView, y se implementa a través de cuatro pasos: definicién del protocolo,
declaracién de una propiedad de tipo delegado, implementacion del protocolo por parte del objeto
receptor, y asignacion del delegado (Apple, s.f.-g). Esta técnica fue aplicada en casos practicos de
interaccién entre vistas y controladores para manejar eventos de usuario, navegacion y comunicacion de
estados internos.

20

Figura 3. Implementacion del patron delegado en Swift mediante un protocolo y una clase con
referencia débil.

Por su parte, los closures ofrecen una forma moderna y concisa de pasar bloques de ejecucién como
argumentos, facilitando el manejo de tareas asincrdnicas, callbacks y actualizaciones de Ul. En el contexto
de MVC, los closures resultaron utiles para encapsular la légica de presentacion desacoplada del modelo.
Se abordaron ejemplos donde el modelo devolvia datos a través de closures para que el controlador
pudiera actualizar la interfaz sin conocer los detalles de implementacidon (Apple, s.f.-e).

/I Simulacion de obtencién de datos

Figura 4. Uso de closures para la devolucion de datos de forma asincrona en una clase de
proveedor de datos.

Finalmente, se introdujo la técnica de inyeccién de dependencias, orientada a mejorar la testabilidad y la
modularidad del sistema. Se explicé cdmo inyectar instancias directamente entre controladores para
compartir informacién de forma explicita, evitando referencias globales o patrones singleton. Esta practica
no solo mejora la legibilidad del flujo de datos, sino que permite el uso de mocks durante pruebas
unitarias o integracion.

21

A

Figura 5. Inyeccion de dependencias mediante inicializador para mejorar la modularidad y
testabilidad.

Uso de Combine, tuplas y callbacks

El curso también abordd técnicas de comunicacién mds modernas e integradas en las arquitecturas
reactivas, como el uso del framework Combine, las tuplas y los callbacks como mecanismos eficientes para
transmitir datos entre componentes desacoplados.

Combine, introducido en i0S 13, permite trabajar con flujos de datos de manera declarativa y reactiva. Se
presentd su uso mediante propiedades @Published en ModelControllers, a las cuales los ViewControllers
se suscriben con sink para recibir actualizaciones en tiempo real. Esta estrategia facilitd la implementacion
de légica reactiva sin recurrir a librerias externas como RxSwift, manteniendo la compatibilidad nativa y
reduciendo la complejidad del sistema (Apple, s.f.-i).

Figura 6. Observacion de cambios en propiedades publicadas usando Combine y @Published.

Por otro lado, se revisé el uso de tuplas como estructuras ligeras para agrupar y transmitir multiples
valores entre funciones o componentes, sin necesidad de definir una estructura adicional.

Figura 7. Funcion que retorna una tupla nombrada con los datos de un usuario.

22

Los callbacks con closures también se presentaron como una alternativa comun para enviar informacion
de un controlador a otro, especialmente en flujos donde una accién debe desencadenar un resultado
posterior (por ejemplo, al seleccionar un item y retornar la seleccién). Esta practica resulté util para evitar
referencias circulares y reforzar el control del flujo de datos.

Figura 8. Uso de una closure opcional para notificar la finalizacién de una accion desde un
controlador.

Flujo de eventos y control de dependencias

Finalmente, se abordé el disefio de un flujo de eventos desacoplado y el manejo controlado de
dependencias internas. Estas dos dimensiones son esenciales para lograr un sistema modular, escalable y
facil de probar, especialmente en una arquitectura como MVC extendido con controladores auxiliares.

Durante la formacidn se enfatizé la importancia de centralizar la légica de control en controladores
especializados (ModelControllers), donde se produce y administra el flujo de datos, dejando a los
ViewControllers Unicamente la responsabilidad de presentar la informacidn. Las herramientas revisadas,
como Combine, closures y delegados, se combinaron para establecer canales de comunicacién seguros y
predecibles.

En cuanto a control de dependencias, se mostré como abstraer servicios mediante protocolos e inyectar
instancias concretas en el punto de configuracidn de la aplicacion. Este enfoque permitié reemplazar
implementaciones reales por versiones simuladas o controladas durante el desarrollo y testing. En
paralelo, se desaconsejo el uso de dependencias implicitas o globales que pudieran dificultar el
mantenimiento y prueba del sistema.

Figura 9. Implementacion de un protocolo para definir un servicio de almacenamiento con una

clase que representa un almacenamiento en archivo.

23

Esta visidn integrada de eventos, dependencias y separacion de responsabilidades sentd las bases para
una arquitectura sélida y sostenible a mediano y largo plazo.

Consumo de servicios REST y asincronia

Uso avanzado de URLSession

URLSession es la clase nativa de Apple para gestionar transferencias de datos en red. Disponible desde iOS
7.0, su API ha evolucionado para incluir soporte nativo para HTTP/1.1, HTTP/2 y HTTP/3, asi como tareas
de descarga en segundo plano, comunicacién con WebSockets y manejo seguro con politicas como ATS
(App Transport Security). Es altamente configurable y adecuada para proyectos que requieren un control
granular sobre las conexiones, incluyendo personalizacién de caché, cookies, headers, certificados y tareas
en segundo plano (Apple, s.f.-j).

Se distinguieron durante la capacitacién cuatro tipos principales de configuracién de sesiones:
e Compartida (shared): Para solicitudes basicas sin configuracién.
¢ Predeterminada (default): Permite delegados y configuraciones personalizadas.
¢ Efimera (ephemeral): No deja rastros (cookies, caché) en disco.

¢ Fondo (background): Permite que operaciones largas se completen aun con la app suspendida.

https://api.ejemplo.com/user

Figura 10. Ejemplo de solicitud HTTP con URLSession y decodificacién de datos usando
JSONDecoder en Swift.

24

https://api.ejemplo.com/user

https://api.ejemplo.com/user

Figura 11. Solicitud de red moderna usando async/await y decodificacion con JSONDecoder en
Swift.

Asimismo, se revisaron las principales tareas de red que URLSession puede ejecutar:
¢ DataTask: Para envios y respuestas simples.
¢ UploadTask: Para subir archivos grandes o en segundo plano.
¢ DownloadTask: Para gestionar grandes descargas con seguimiento.
¢ WebSocketTask: Para comunicacién bidireccional en tiempo real.

El uso de delegados para URLSession permite interceptar eventos como autenticacién, recepcién de datos
incremental, manejo de caché y reintentos, sin bloquear la interfaz. Esto es especialmente util en flujos
donde se requiere responder a eventos asincrénicos desde multiples capas del sistema.

Figura 12. Uso de un delegado personalizado (URLSessionDelegate) para manejar eventos de
invalidacion en sesiones de red.

Comparativa entre URLSession y Alamofire

Durante la formacidn, también se analizé la biblioteca de terceros Alamofire, ampliamente utilizada en
proyectos iOS para simplificar la interaccidn con APIs RESTful. Alamofire esta construido sobre URLSession,
pero ofrece una interfaz mas declarativa, funcionalidades integradas de serializacién, interceptores,
validacién de certificados y control de errores mas compacto (Apple, s.f-j).

25

https://api.ejemplo.com/user

API nativa de Apple Biblioteca externa construida
sobre URLSession

Maximo control, requiere mas Simplicidad, menor control de
codigo bajo nivel

Manual (usualmente con Automatica con métodos
JSONDecoder) integrados (responseDecodable)

Requiere configuracion propia Integrados para headers,
autenticacion, logging

Proyectos que requieren control Proyectos que privilegian

detallado velocidad y simplicidad de
desarrollo

Oficial de Apple Comunidad activa de codigo
abierto

Tabla 1. Comparativa entre URLSession y Alamofire en proyectos iOS.

Ambas opciones son vdlidas y potentes. La eleccién depende del contexto: si se necesita una soluciéon
liviana, segura, nativa y sin dependencias externas, URLSession es preferible. En cambio, si se prioriza la
velocidad de desarrollo, legibilidad del cddigo y modularidad, Alamofire ofrece ventajas inmediatas.

AF https://api.ejemplo.com/user
User.self in
switch
case let
case let

\(error)

Figura 13. Ejemplo de uso de Alamofire para realizar una peticion HTTP y decodificar
automaticamente la respuesta utilizando responseDecodable.

Programacion con GCD y async/await

Para aprovechar el comportamiento asincrono de URLSession y otras operaciones intensivas, se
capacitaron dos enfoques esenciales: Grand Central Dispatch (GCD) y el nuevo modelo de concurrencia
basado en async/await, introducido en Swift 5.5.

GCD fue presentado como una solucidon madura para gestionar tareas concurrentes mediante colas de
ejecucion (DispatchQueue). Se diferenciaron las colas seriales (una tarea a la vez) y colas concurrentes

26

https://api.ejemplo.com/user

(varias tareas en paralelo), y se destacd la importancia de enviar actualizaciones de Ul al hilo principal
(DispatchQueue.main.async) tras completar operaciones en segundo plano.

Figura 14. Ejecucion de una tarea en segundo plano con DispatchQueue y actualizacion
posterior en el hilo principal.

Async/await, por su parte, ofrece una sintaxis declarativa y lineal para manejar cddigo asincrénico,
eliminando el uso excesivo de closures o callbacks anidados. En combinacién con
URLSession.shared.data(for:delegate:), es posible realizar peticiones de red que se leen y se controlan
como si fueran secuenciales. Este modelo mejora la legibilidad, permite una mejor propagacién de errores
mediante do/try/catch, y se considera una practica recomendada para proyectos modernos (Apple, 2021c;
Apple, 2021d).

https://api.ejemplo.com/data

Figura 15. Peticion asincronica utilizando async/await con URLSession y decodificacion de
respuesta usando JSONDecoder.

A modo de conclusidn, se recomendo el uso de async/await como estandar para proyectos modernos en
iOS 15+, manteniendo GCD como una herramienta util para flujos mds bajos, como sincronizacién de
procesos o ejecucion paralela.

Gestion segura y eficiente del almacenamiento local

UserDefaults, Keychain, FileManager y Core Data

Apple ofrece una serie de tecnologias nativas para la persistencia local de datos en aplicaciones
desarrolladas con UIKit. Cada herramienta tiene ventajas especificas segun el tipo de informacidn que se
desea almacenar, la frecuencia de acceso, los requisitos de seguridad y la necesidad de sincronizacion
entre dispositivos.

27

https://api.ejemplo.com/data

UserDefaults: La clase UserDefaults permite almacenar de forma sencilla datos como preferencias de
usuario, configuraciones o banderas booleanas. Es ideal para persistencia ligera y se sincroniza
automaticamente entre ejecuciones de la aplicacidn. Estd disponible en todas las plataformas del
ecosistema Apple. Sin embargo, su uso no es recomendable para datos sensibles ni para estructuras
complejas o grandes volumenes de informacién (Apple, s.f--k).

Keychain: Para informacidn sensible, como contrasefias o tokens de sesion, la herramienta mas segura es
el Keychain. Su cifrado estd integrado en el sistema y los datos persisten incluso después de que la
aplicacién sea desinstalada. Aunque su APl es mas compleja y de bajo nivel, permite compartir datos entre
apps del mismo desarrollador cuando se configura adecuadamente (Apple, s.f-l).

FileManager: FileManager proporciona una interfaz para leer y escribir directamente en el sistema de
archivos del dispositivo. Es Util para el manejo de documentos, imagenes, videos u otros archivos
generados por el usuario o descargados. Permite definir estructuras de carpetas personalizadas, pero
requiere una gestién manual y cuidadosa de rutas, permisos y buenas practicas, como evitar almacenar
datos temporales en el directorio Documents (Apple, s.f.-m).

Core Data: Core Data es el framework de persistencia mas robusto del ecosistema Apple. Se trata de un
ORM (Obiject Relational Mapping) que permite gestionar modelos de datos complejos y relaciones entre
entidades. Incluye herramientas para migracion de esquemas, versionado y sincronizacion mediante
iCloud. Su curva de aprendizaje es mds pronunciada, pero es ideal para aplicaciones que manejan grandes
volumenes de informacidn o estructuras relacionales sofisticadas (Apple, s.f.-n).

Estrategias para persistencia segura y sincronizacién

Durante el desarrollo profesional y la capacitacidn técnica, se resaltd la importancia de seleccionar el
mecanismo de almacenamiento apropiado para cada tipo de dato. En general, se establecieron las
siguientes directrices:

e Usar UserDefaults para almacenar configuraciones simples no sensibles.

Emplear Keychain para datos que involucren seguridad, autenticacion o identidad.

Utilizar FileManager para archivos grandes o estructuras personalizadas de documentos del
usuario.

Implementar Core Data o, en su caso, SQLite, para modelos complejos con relaciones y
operaciones frecuentes.

Integrar iCloud Documents cuando sea necesario mantener sincronizacién entre dispositivos
Apple sin intervencion manual.

Estas estrategias aseguran un equilibrio entre seguridad, eficiencia, escalabilidad y compatibilidad
multiplataforma. A lo largo del proceso de desarrollo, se hizo énfasis en seguir las guias de

28

almacenamiento seguro de Apple y en disefiar flujos que prevengan pérdidas de informacién, corrupcién
de archivos o duplicidad de datos.

Diseno de interfaces en UIKit

Principios de disefio con Storyboards y Auto Layout

UIKit continuda siendo el framework mas maduro y ampliamente adoptado para el disefio de interfaces
graficas en aplicaciones iOS, iPadOS y macOS. A diferencia de SwiftUl, su paradigma imperativo
proporciona control detallado sobre el ciclo de vida de los controladores de vista y su integracion con
UlViewController, UINavigationController y UlTabBarController.

Durante la capacitacidn se abordaron principios fundamentales del disefio en UIKit, haciendo énfasis en el
uso de Storyboards y Auto Layout. Storyboards permiten construir visualmente la estructura de
navegacion y las relaciones entre pantallas, mientras que Auto Layout facilita la creacion de interfaces
responsivas, adaptables a distintas resoluciones y dispositivos, respetando margenes seguros y
comportamientos dindmicos (Apple, s.f.-e).

Este enfoque visual no solo mejora la legibilidad del flujo de pantallas, sino que permite reutilizar
componentes y establecer constraints precisas sin tener que escribir cddigo adicional, algo especialmente
util en proyectos con multiples desarrolladores o iteraciones rapidas.

Countries-Macocrasi Count X Main) X Main (£) @ All Col . All Cor &8 Table V) B Count B Conte Constraints trailingMargin = Stack View.trailing A

v {@ All Countries Scene
v . All Countries

&8 Table View
v & CountryCell
v |l Content View
v Il Stack View
& country Im...
v & Stack View
L Commo...
L Official...
L Capital L...
L Currenc...

L Location...

v [0 Constraints

trailingMarg... -—
Stack View....
bottomMar...
Stack View....
All Countries
. First Responder > 0
B Exit
<) Show segue “showDetail" t...
v il Details Country Scene
. Details Country
v [l View

] Safe Area
v &8 Stack View I
& country Image Vi... ‘ ‘ ‘ ‘ ‘ T .l ‘—‘ M [] D D
L Common Name L... J L) L L L) 7‘ D
L Official Name Label iPhone 16 iPad
L Canital | abal

Fiaura 16. Eiemplo Storvboard con Auto Lavout v distintos dispositivos.

29

eeeee Carrier & 9:41 AM (" sla
1

First Name ' —®

&
Middle Name 1

I {11) i
Last Name e .

@' Firstname label 1@ —| First name text field | @
i l

©

[
—®—

@' Middle name label 1@ —| First name text field | @

l

@' |Lastnamelabel =@ Lastnametextfield | @
1

— t ®

—o———

Figura 17. Ejemplo de vista con contenido intrinseco usando Auto Layout - Fuente:

Apple (s.f.-0)

Nota: Para la Figura 17, las siguientes reglas de Auto Layout fueron aplicadas a los elementos
visuales enumerados en la imagen de la derecha:

1.

© ® N ® O s ® N

First Name Label.Leading = Superview.LeadingMargin

. Middle Name Label.Leading = Superview.LeadingMargin
. Last Name Label.Leading = Superview.LeadingMargin

. First Name Text Field.Leading = First Name Label.Trailing + Standard

Middle Name Text Field.Leading = Middle Name Label.Trailing + Standard
Last Name Text Field.Leading = Last Name Label.Trailing + Standard

First Name Text Field.Trailing = Superview.TrailingMargin

Middle Name Text Field.Trailing = Superview.TrailingMargin

Last Name Text Field.Trailing = Superview.TrailingMargin

10.First Name Label.Baseline = First Name Text Field.Baseline

11.Middle Name Label.Baseline = Middle Name Text Field.Baseline

12.Last Name Label.Baseline = Last Name Text Field.Baseline

13.First Name Text Field.Width = Middle Name Text Field.Width

14.First Name Text Field.Width = Last Name Text Field.Width

15.First Name Text Field.Top = Top Layout Guide.Bottom + 20.0

16.Middle Name Text Field.Top = First Name Text Field.Bottom + Standard

17.Last Name Text Field.Top = Middle Name Text Field.Bottom + Standard

30

Patrones de navegacion en UIKit

UIKit proporciona multiples mecanismos de navegacién entre controladores de vista que permiten
construir flujos de trabajo coherentes, escalables y adaptables a distintas plataformas del ecosistema
Apple. Durante la capacitacion, se abordaron tres pilares fundamentales: navegacion programatica,
navegacion mediante Storyboards con segues, y navegacion estructurada por secciones utilizando
UlTabBarController.

Uno de los patrones mas comunes en aplicaciones iOS es la navegacion en pila (push), gestionada a través
de un UINavigationController. Este controlador permite apilar vistas de forma jerarquica y presentar
nuevos controladores mediante el método pushViewController(_:animated:). Se explicé también el uso de
transiciones modales para presentar vistas fuera del flujo jerarquico, asi como la combinacién de ambas
estrategias para manejar flujos dependientes y flujos paralelos.

En el contexto visual, los segues definen conexiones entre pantallas dentro de Storyboards. Se revisaron
en detalle los métodos prepare(for:sender:), performSegue(withldentifier:sender:) y
shouldPerformSegue(withldentifier:sender:), esenciales para pasar datos entre vistas, condicionar
transiciones y asegurar la integridad del flujo.

Complementariamente, se profundizé en el uso de la barra de navegacién (UINavigationBar), sus
elementos (navigationltem, UIBarButtonltem), y los patrones de apariencia global mediante
UINavigationBar.appearance() para mantener consistencia visual. Esta personalizacion es especialmente
importante en aplicaciones que demandan una identidad grafica propia o integracién con flujos
administrativos y herramientas empresariales.

Otro componente clave revisado fue el UlTabBarController, utilizado para organizar multiples secciones de
la aplicacidon en una estructura horizontal. Su implementacidn fue abordada tanto desde el Storyboard
como desde cddigo, utilizando arreglos de controladores e iconos personalizados (UITabBarltem). Esta
interfaz es comun en aplicaciones que agrupan contenido por dominios funcionales: inicio, servicios,
configuracion, etc.

Asimismo, se revisé el protocolo UlTabBarControllerDelegate para gestionar cambios de pestafia y detectar
el comportamiento activo del usuario. Este nivel de control permite ejecutar operaciones asincrénicas o
cambiar el estado de la aplicacién de forma dindmica al detectar la pestaiia seleccionada (Apple, s.f.-f).

Finalmente, se explord la implementacidn de transiciones unwind, las cuales permiten regresar desde una
vista secundaria a una anterior de manera controlada. Estas transiciones son utiles cuando no se desea
desapilar vistas manualmente ni depender exclusivamente de botones de navegacion.

Al integrar storyboards visuales, navegacion programatica y componentes estandar como barras y tab
bars, se logra una experiencia de usuario clara y predecible. Estos patrones permiten separar la légica de
flujo, mantener estructuras mantenibles, y asegurar que las aplicaciones respondan tanto a criterios de
usabilidad como a necesidades empresariales.

31

il ® 9:41 AM wl 9:41 AM 9:41 AM

Edit World Clock + Ediit Alarm Stopwatch
Cupeftino /IO:ZSAM 1r9:28AM

0O hours 0 min

New York 1:28em OO OOOO

When Timer Ends

Figura 18. Ejemplo del uso de UlTabBarController con multiples secciones en una aplicacion
de reloj. Fuente: Apple (s.f.-p)

Settings < Settings General < General Auto-Lock
Siri
9— Airplane Mode Spotlight Search 1 Minute v
= Wi-Fi AppleWi Text Size 2 Minutes
X Bluetooth Or Accessibilty 3 Minutes
4 Minutes
U Notification Center Usage 5 Minutes
e Control Center
«© Background App Refresh Never
t Do Not Disturb
Auto-Lock 1 Minute
{é} General Passcode Lock Of
")D Sounds Restrictions Off

O Brightness & Wallpaper

Figura 19. Ejemplo de navegacion jerarquica con UINavigationController en la app de
Configuracién. Fuente: Apple (s.f.-q)

Control de versiones y flujo de trabajo con GitFlow

Tipos de ramas: main, develop, feature, release y hotfix

32

Git Flow es una estrategia de control de versiones que organiza el desarrollo de software mediante una
estructura clara y jerdrquica de ramas. Fue introducida en 2010 por Vincent Driessen y ha sido
ampliamente adoptada por equipos de desarrollo que requieren flujos controlados para entornos
colaborativos, con multiples fases de desarrollo, pruebas y lanzamiento.

El flujo se basa en cinco tipos de ramas:

¢ main: Esta rama contiene siempre el cédigo estable que esta listo para produccién. Cada commit
en main debe representar una versidon que pueda ser desplegada en cualquier momento. Por
convencion, se mantiene libre de errores y solo recibe cédigo probado y validado.

¢ develop: Es la rama base para el desarrollo de nuevas funcionalidades. Aqui se integran las ramas
de feature y representa el estado pre-produccién de la aplicaciéon. Aunque es menos estable que
main, debe mantener un nivel funcional suficiente para pruebas de integracion.

o feature: Se crean ramas de feature a partir de develop para trabajar en nuevas funcionalidades de
forma aislada. Una vez implementada y revisada, la rama se fusiona nuevamente en develop. Esta
separacion evita contaminar el cédigo base con cambios incompletos o experimentales.

¢ release: Estas ramas se derivan de develop cuando se desea preparar una nueva version estable.
En ellas se realizan ajustes menores, correccion de errores y documentacion final antes del
despliegue. Al concluir, la rama se fusiona tanto en main como en develop.

¢ hotfix: Son ramas temporales que se crean directamente desde main para resolver errores criticos
en produccién. Posteriormente se integran en main y develop para mantener la coherencia de la
base de cddigo en todas las ramas activas.

Esta estructura permite un control riguroso sobre qué tipo de cddigo se encuentra en cada fase del ciclo
de desarrollo, minimizando errores en produccion y facilitando la gestidn de versiones.

Main Hotfix Release Develop Feature Feature
V0.1 v0.2 v1.0
O O
\

O O

Figura 20. Diagrama GitFlow

33

Nota: La Figura 20 ilustra el modelo GitFlow aplicado, donde cada tipo de rama cumple una
funcion especifica dentro del flujo de trabajo. Se observa cémo las ramas feature se originan
desde develop, y posteriormente se integran para formar versiones candidatas en release,
antes de pasar a main. Las ramas hotfix se desprenden directamente de main para corregir
errores criticos y se reintegran tanto a main como a develop, asegurando la consistencia del
historial. Las etiquetas v0.1, v0.2 y v1.0 muestran ejemplos de versionado semantico aplicado
durante el ciclo de vida del desarrollo.

Fuente: Sergio Humberto. (s.f.)

Buenas practicas para mantenimiento, integracion y revisién

Implementar Git Flow eficazmente requiere adoptar una serie de buenas practicas que aseguren la
calidad, estabilidad y trazabilidad del cédigo.

La rama main debe mantenerse limpia y Unicamente contener cddigo validado y probado. Se
recomienda que las fusiones hacia esta rama estén sujetas a revisiones estrictas y pruebas
automatizadas.

La rama develop debe ser la Unica base para nuevas funcionalidades. Esto garantiza una separacion clara
entre el cédigo en desarrollo y el cddigo estable. Cada feature debe desarrollarse en una rama
independiente, preferentemente con nombres descriptivos y relacionados al objetivo de la tarea.

Las ramas de feature y release deben ser eliminadas una vez fusionadas para evitar confusiény
mantener el repositorio limpio. Asimismo, se aconseja que las ramas de feature nunca se fusionen
directamente en main.

En el caso de hotfix, su uso debe reservarse exclusivamente para incidentes urgentes que requieran
atencién inmediata en produccion. Su correcta integracién en develop evita que se pierdan correcciones
en futuras versiones.

Se recomienda llevar un proceso de revision de cédigo formal antes de cualquier fusidon importante. Esta
revision puede realizarse mediante pull requests, y debe incluir comentarios técnicos, validaciones de
estilo y pruebas de funcionamiento.

Una comunicacién efectiva dentro del equipo es esencial. Todos los miembros deben estar al tanto del
estado de las ramas, cambios estructurales y convenciones adoptadas.

Finalmente, es fundamental documentar tanto en los mensajes de commit como en el repositorio
principal cualquier decision técnica o cambio relevante en el flujo de trabajo. Esto facilita el seguimiento
histérico del proyecto.

34

Uso de etiquetas, CI/CD y pruebas automatizadas con XCTest

Para complementar el flujo de trabajo de Git Flow y asegurar la calidad del software en cada etapa, se
recomienda integrar herramientas de etiquetado, pruebas automatizadas y despliegue continuo.

e Las etiquetas (tags) son utilizadas para marcar versiones especificas en ramas de release y main. Esto
permite identificar y rastrear versiones distribuidas, generar changelogs, o realizar rollbacks en caso de
ser necesario.

 En paralelo, se fomenta la implementacion de procesos de Integracion Continua / Despliegue Continuo
(CI/CD). Este enfoque permite que cada commit en ramas criticas dispare automaticamente procesos de
construccién, validaciéon y despliegue en entornos de pruebas o produccion.

¢ En el contexto de desarrollo iOS, se utilizaron pruebas unitarias mediante el framework XCTest,
integradas dentro del pipeline de Cl. Estas pruebas permiten detectar errores tempranamente, asegurar
el funcionamiento de nuevos médulos, y evitar regresiones en funcionalidades existentes.

¢ Se establecidé un sistema donde cada pull request debia ejecutar satisfactoriamente una bateria de
pruebas automatizadas antes de ser integrado en develop o main. Esto ayudd a mantener la integridad
del proyecto, incluso con multiples desarrolladores trabajando en paralelo.

La combinacién de etiquetado semdntico, pruebas automatizadas y validacion continua refuerza el
objetivo principal de Git Flow: garantizar que el cédigo en produccién sea siempre estable, reproducible y
confiable.

35

Capitulo 3 - Implementacion
practica y validacion funcional

Despliegue inicial del proyecto y aplicacion de
arquitectura modular

La puesta en marcha del proyecto Wee 3.0 comenzo con el establecimiento de un repositorio centralizado
en Azure DevOps, utilizando una metodologia GitFlow para gestionar las ramas, versionar los cambios y
facilitar las revisiones colaborativas dentro del equipo. Esta configuracion se complementd con el uso de
GitKraken, una herramienta grafica que permitié organizar el flujo de trabajo de manera visual y
estructurada, integrando practicas como feature branching, pull requests y release tracking.

€J Azure DevOps MetaTFSOnLine |/ 10SWee | Repos | Files | 4i0SWee3.0 v/
@ roswee + 4 i0SWee3.0 g & | Type tofind afile or folder...
...) .
E Overview ? pees0 Files
> Wee3.0.xcodep Contents History
B Boards
> Wee3.0Tests
Repos Name T Last change
p > Wee3.0UITests 9
| DO .gitignore Wee3.0 4h ago
¢ Commits Ml README.md Wee3.0.xcodeproj 4h ago
~—
Q
i PSS Wee3.0Tests 4h ago
% Branches
Wee3.0UITests 4h ago
Q Tags
O .gitignore 5h ago

29 Pull requests

Ml README.md Yesterday
O Advanced Security

Figura 21. Estructura inicial del repositorio del proyecto Wee 3.0 en Azure DevOps, rama
principal main.

Una vez creado el repositorio, se inicid la conexidn entre Azure DevOps y GitKraken, generando las
credenciales necesarias para la autenticacion mediante tokens de acceso personal. Se configuraron las
ramas principales (main y develop) y se habilitaron las politicas de proteccion de ramas, incluyendo:

® Revision obligatoria por un miembro del equipo antes de fusionar.
¢ Asociacion de cambios con work items (historias de usuario).

® Resolucion documentada de comentarios antes del merge.

36

Branch Policies

Note: If any required policy is enabled, this branch cannot be deleted and changes must be
made via pull request.

@ on Require a minimum number of reviewers
Require approval from a specified number of reviewers on pull
requests.

Minimum number of reviewers
[

() Allow requestors to approve their own changes

(0) Prohibit the most recent pusher from approving their own changes
(O) Allow completion even if some reviewers vote to wait or reject

() When new changes are pushed:

@ on Check for linked work items
Encourage traceability by checking for linked work items on pull
requests.

() Required
Block pull requests from being completed unless they have
at least one linked work item

@ Optional
Warn if there are no linked work items, but allow pull
requests to be completed

D On Check for comment resolution
Check to see that all comments have been resolved on pull
requests

@ Required

Block pull requests from being completed while any

Figura 22. Politicas de proteccién configuradas para la rama main en Azure DevOps: revision
obligatoria, trazabilidad de historias y resoluciéon de comentarios antes del merge.

0 Viewing 4/4
v develop O @ - +1 GItﬂOW

GITFLOW Open Gitflow

develop St a I’t

main

Feature Release

LOCAL Finish

 develop

main

v REMOTE
3 origin
develop

main

Figura 23. Vista de ramas main y develop Figura 24. MenU de creacion de ramas de tipo
gestionadas mediante GitFlow en la interfaz de feature, release y hotfix en GitKraken mediante
GitKraken. flujo GitFlow.

37

Update Project Files

Completed) !8776 ™Mo Marcos Uriel Martinez Ortiz proposes to merge feature/Setup-Project into develop All comments resolved

Overview Files Updates Commits

¥ Marcos Uriel Martinez Ortiz completed this pull request Just now Cherry-pick Revert

Merged PR 8776: Update Project Files
€402f246 Marcos Uriel Martinez Ortiz Just now

Show details

Required check succeeded
Optional check succeeded

¥ Comments must be resolved

View 2 checks ©®

& 1reviewer approved

No merge conflicts
Last checked Just now

Figura 25. Pull Request completado exitosamente en Azure DevOps, mostrando la integracion
de la rama feature/Setup-Project a develop con validaciones aprobadas y sin conflictos.

Con estas politicas activas, se creé el proyecto Wee 3.0 en Xcode, utilizando Storyboard como sistema de
interfaz grafica, e incluyendo archivos de pruebas automatizadas (XCTest) desde la fase inicial. El proyecto
fue estructurado con una jerarquia clara de carpetas, siguiendo un enfoque modular:

v [Wee3.0
v & Wee3.0
3 AppDelegate
3 SceneDelegate
Assets
X LaunchScreen
E3 Info
v Global Archives
v Storyboards
Storyboard Main
X Main
View Controllers
3 ViewController
Storyboard <name>
View controllers
Views
Models
Model controllers

Helper controllers

Protocols

Extensions
Wee3.0Tests
3 Wee3_0Tests
Wee3.0UITests
3 Wee3_OUITests
3 Wee3_0UITestsLaunchTests

Figura 26. Estructura modular del proyecto Wee 3.0 en Xcode, organizada por Storyboards,
controladores, modelos y pruebas.

Ademads, se incorpord una carpeta de uso global denominada Global Archives, la cual contenia plantillas y
componentes reutilizables compartidos entre médulos.

38

La carga inicial del proyecto se realizé siguiendo los principios de GitFlow: creacién de rama feature,
subida de archivos mediante push local, y solicitud de pull request revisada y aprobada por otro integrante
del equipo. Posteriormente, se realizd6 un merge hacia develop, y una vez consolidada la arquitectura base,
se cred una rama release que fue integrada finalmente en main, completando el despliegue oficial del
proyecto.

O Vviewing 5/5 Show All

Q main ¢J Merged PR 8780: Merged From Developer Setup Files
v release/Se... L - +1 Merged PR 8776: Update Project Files Update Project
GITFLOW

develop Update Project Files

main main &} Merged PR 8771: Added .gitignore to Develop

release Added .gitignore to Develop

¥ Setup-Project-Arqu... Added README.md

LOCAL
develop
main
release

¥ Setup-Project-Arqu...

REMOTE
=] origin
develop

main

Figura 27. Flujo de ramas y confirmaciones en GitKraken durante la fase inicial del proyecto
Wee 3.0: integracion de la arquitectura base desde Setup-Project-Arquitecture hacia develop,
release y main.

Este proceso, ademds de garantizar la trazabilidad y validacion del cédigo, senté las bases para un flujo de
trabajo sostenible, con ciclos de integracidn continua, mantenimiento simplificado y colaboracién efectiva
en equipo.

Punto de entrada y arquitectura de entorno en el inicio
de sesion

El nuevo inicio de sesidon se establecié como el punto de entrada fundamental de la aplicacion dentro del
Storyboard Main. A diferencia de versiones anteriores, esta pantalla no solo marca el acceso del usuario,
sino que representa un cambio estructural clave en la arquitectura general del proyecto Wee 3.0. Desde su

39

implementacioén, se incorpord un sistema de archivos de configuracidn segmentados por entorno, con
esquemas independientes para desarrollo y produccién. Esto permitié centralizar variables criticas como
URLs del backend, claves de API, y credenciales de autenticacidn, facilitando el cambio de ambiente sin
modificar el cddigo fuente.

w- Wee3.0(Dev) ¥ || marcos's

maps
Y Main (Base)

— Wee3.0 Scheme
v 58 Wee3.0 w Wee3.0

v Wee3.0 v w= Wee3.0(Dev)
Scheme Configuration w Wee3.0(Prod)

‘ Wee3.0Tests

3 AppDelegate is_development_build | Edit Scheme...

3 SceneDelegate New Scheme...

app_name = Wee 3.0
9 app_bundle_identifier

C et Manage Schemes...

Figura 28. Configuracién de esquemas de entorno (Dev y Prod) en Xcode para la aplicaciéon
Wee 3.0.

Nota: Esta configuracién permite alternar facilmente entre ambientes de desarrollo y
produccién desde el entorno de ejecucion en Xcode, utilizando archivos .xcconfig para definir
variables globales como el identificador del bundle, nombre de la app y URLs del backend.

Gracias a esta arquitectura, los procesos de prueba por parte de la Product Owner (PO), quien también
desempenaba funciones de QA, se simplificaron significativamente. Ya no era necesario generar multiples
versiones de la aplicacion para cada entorno: bastaba con ejecutar el proyecto bajo el esquema deseado
para realizar pruebas completas y consistentes desde el flujo de inicio de sesion.

Resiliencia®

DESARROLLO
PREQP

QA

DEPLOY

PRODUCTION

Figura 29. Pantalla de inicio de sesion con selector oculto de entorno en Wee 3.0.

40

Nota: Al realizar una presién prolongada sobre el boton “Iniciar sesién”, se despliega un menu
oculto que permite seleccionar el entorno (Desarrollo, QA, Produccion, etc.). Esta funcionalidad
esta restringida mediante archivos de configuracion (.xcconfig) para que no se active en la
version de produccion, y fue disefiada para facilitar las pruebas manuales sin necesidad de
multiples versiones de la app.

Adicionalmente, el disefio de esta pantalla —y del proyecto en general— se concibid desde el inicio como
multidispositivo y adaptable, compatible con todos los tamarios y orientaciones de pantalla en iOS, iPadOS
y macOS mediante Catalyst. El uso de Auto Layout y un sistema visual desacoplado a través de Storyboard
References garantizd que esta primera vista pudiera escalar correctamente, sin distorsiones, en cualquier
dispositivo del ecosistema Apple.

Y iPhone 16 Pro Max

DESARROLLO
PRECP

QA

Iniciar sasién

Figur 30. Compatibilidad visual del login en iPhone y iPad usando un Unico storyboard
adaptado.

Nota: La misma pantalla de inicio de sesion se muestra correctamente tanto en un iPhone 16
Pro Max en orientacion horizontal como en un iPad Pro de 13 pulgadas con modo oscuro
activado. Esta adaptabilidad se logré exclusivamente mediante Auto Layout y el uso de
componentes nativos, sin necesidad de duplicar vistas ni condicionar el flujo para cada
plataforma.

41

Storyboard Main) » Main Y Main (Base)) No Selection

Storyboards Storyboard Main) X Main) X Main (Base)) No Selection

Figura 31. Visualizacién del flujo de inicio de sesién desde Storyboard en iPhone 16 Pro Max y
iPad Pro 13”.

Nota: La parte superior muestra el flujo renderizado en un iPhone 16 Pro Max, mientras que la
parte inferior corresponde a un iPad Pro de 13” (M4). Esta visualizacion, tomada directamente
desde el Storyboard de Xcode, permite verificar en tiempo real la correcta adaptacion de los
elementos a distintas resoluciones y orientaciones, lo cual agiliza las pruebas de interfaz sin
necesidad de ejecutar la app.

42

Modularizacion de interfaces con Storyboard
References

En el desarrollo de Wee 3.0, uno de los mayores desafios fue mantener la modularidad visual, el orden
jerdrquico de navegacion y la colaboracion fluida entre desarrolladores sin perder los beneficios del disefio
visual proporcionado por Interface Builder. Para resolver esta problematica de forma elegante y nativa, se
optd por un enfoque basado en Storyboard References, una funcionalidad introducida en iOS 9 que
permite dividir un storyboard principal en varios storyboards secundarios, sin renunciar a la capacidad de
enlazar escenas visualmente mediante segues.

¢ Qué es una Storyboard Reference?

III

Una Storyboard Reference funciona como un “puente visual” entre archivos storyboard distintos. Actta
como un placeholder dentro del storyboard principal, apuntando a un ViewController que vive en otro
archivo storyboard del mismo proyecto. Esta estructura permite que Xcode compile y valide los enlaces
como si formaran parte del mismo documento, pero internamente estdn separados a nivel de archivo.
Esto habilita una arquitectura limpia, visual y escalable sin necesidad de transiciones programaticas entre

controladores.

Ventajas de usar Storyboard References

1. Modularidad y escalabilidad: Dividir la interfaz en multiples storyboards facilita el
mantenimiento y la navegacion entre flujos complejos. Por ejemplo, en Wee 3.0 se aislaron
flujos como autenticacién, recuperacidn de contrasefia y panel de usuario.

2. Colaboracidn sin conflictos: En lugar de que dos desarrolladores editen el mismo storyboard
(archivo XML), cada quien puede trabajar sobre su storyboard independiente, evitando
conflictos en Git, uno de los mayores problemas de los storyboards monoliticos.

3. Reutilizacidn y testeo independiente: Al separar vistas o flujos reutilizables (por ejemplo, un
formulario de contacto o un verificador de sesidn), estos se pueden mantener, probar y
versionar de forma independiente.

4. Navegacion fluida y validacion de vinculos: Los segues entre storyboards son totalmente
compatibles con Interface Builder, y si hay errores en los IDs o enlaces mal configurados, Xcode
los detectard en tiempo de compilacidn, evitando errores en tiempo de ejecucidn.

Ventajas frente al diseno 100% programatico

Aungque crear interfaces mediante cddigo (con NSLayoutConstraint, UlView(), etc.) permite control
absoluto sobre la ldgica visual, este enfoque tiene costos importantes en tiempo, legibilidad y
mantenibilidad. En contraste, el uso de Storyboards, reforzado con Storyboard References, ofrece:

43

¢ Visualizacién inmediata de flujos completos sin necesidad de compilar.

e Compatibilidad con multiples dispositivos y orientaciones gracias a Auto Layout y Size Classes.
¢ Reutilizacién de interfaces sin duplicar cddigo.

 Transiciones visuales configurables, sin necesidad de légica adicional.

Esta estrategia también permitié que disefiadores visuales o ingenieros sin conocimientos profundos de
programacion pudieran colaborar directamente sobre la interfaz, algo imposible en disefio 100%
programatico.

Aplicacion en el proyecto Wee 3.0

En Wee 3.0, la adopcidn de esta técnica fue decisiva para mantener la organizacidn del proyecto conforme
crecia en funcionalidades. Se cred un storyboard principal donde vivian flujos criticos como el login, y
multiples Storyboard References enlazaban a flujos independientes como:

* Onboarding y registro de usuario

e Perfil del asegurado

e Seccidn de videos de bienestar

e Administracion de pdlizas y documentos

Este esquema facilitd el desarrollo paralelo, el aislamiento de bugs visuales, y permitié escalar a mas
pantallas sin comprometer la estabilidad del sistema de navegacion.

Storyboard Wellness) X Wellness) No Selection Storyboards Storyboard Profile) > Profile) No Selection

Figura 32. Storyboards independientes conectados mediante referencias visuales en Xcode

44

Nota: A la izquierda se muestra el Storyboard Wellness, encargado de la navegacion entre el
listado de videos, retos y secciones de bienestar emocional. A la derecha se encuentra el
Storyboard Profile, que administra las vistas asociadas al perfil del usuario, edicion de datos y
configuracién avanzada. Ambos storyboards funcionan de forma desacoplada en el proyecto,
pero se conectan entre si mediante Storyboard References.

Implementacion de miultiples métodos de
almacenamiento local

Durante la implementacién del mddulo de inicio de sesidn, se disefid una arquitectura orientada a la
demostracion, validacidon y comparacion de distintas estrategias de almacenamiento local en iOS. Esto
permitié evaluar su idoneidad técnica antes de su aplicacion definitiva a otros médulos mds sensibles
dentro de la aplicacién.

Se implementaron tres controladores independientes, cada uno responsable de encapsular un enfoque
especifico: UserDefaults, Keychain, y archivos plist mediante FileManager. Esta modularidad no solo
permitié abstraer el acceso a los datos de sesidon del usuario, sino que habilitd pruebas automatizadas e
independientes para cada estrategia, garantizando su comportamiento sin acoplarlos al flujo de vistas.

¢ UserDefaults: Se empled inicialmente para almacenar las credenciales del usuario como ejercicio
practico. Si bien su uso fue limitado exclusivamente a las primeras versiones del login con datos
de ejemplo, permitié mostrar como serializar objetos simples y recuperarlos facilmente al
reiniciar la app. Sin embargo, debido a la falta de cifrado y su exposicién directa, esta opcion fue
descartada en etapas posteriores por motivos de seguridad.

¢ Keychain: El controlador KeychainController fue disefiado para almacenar de manera segura
informacion sensible como tokens de acceso y contraseias. Utilizando la APl de Keychain Services
de Apple, se serializé un diccionario con los datos de sesidn y se protegié mediante los atributos
adecuados (kSecAttrAccessible, kSecAttrService, kSecAttrAccount). Esta solucion garantiza
persistencia tras reinstalacidn, asi como cifrado por hardware del dispositivo.

¢ Plist con FileManager: A modo de demostracidn y respaldo técnico, se implementd un
controlador adicional para almacenar datos en archivos plist internos. Esta estrategia se basoé en
la escritura directa de archivos codificados en el sistema de archivos de la aplicacién, organizados
por nombre y ubicados dentro del sandbox correspondiente. Se utilizé FileManager junto con
PropertyListEncoder y Decoder para asegurar compatibilidad nativa y facilidad de inspeccién. Este
método fue especialmente util para almacenar informacidn estructurada no sensible durante el
proceso de desarrollo.

La arquitectura adoptada permite intercambiar facilmente entre estos métodos en funcidn del entorno
(desarrollo o produccion), gracias a la inyeccion de dependencias desde un UserSessionController superior.
Este controlador coordina la légica de almacenamiento, lo que a su vez facilita las pruebas unitarias y la
adaptacion a nuevas politicas de seguridad sin alterar el flujo de la aplicacion.

45

/Il Controlador para almacenamiento de sesién con UserDefaults.
/Il Usado Unicamente con datos de ejemplo en etapas tempranas del login.
final class

/Il Guarda el email actual del usuario.
func _ String

/Il Recupera el email almacenado.
func String

/Il Elimina cualquier dato relacionado con el usuario.
func

Figura 33. Firma del controlador de sesién UserSessionUserDefaultsController, disefiado para
almacenar datos temporales de login utilizando UserDefaults de forma segura y controlada en
etapas tempranas del flujo.

/Il Controlador para almacenamiento estructurado con archivos plist.
final class

/Il Guarda un objeto codificable como plist en el sistema de archivos.
func T: Codable>(_ T, String) throws

/Il Recupera un objeto plist desde un archivo.
func T: Codable>(_ T.Type String) throws -> T

/l/ Elimina un archivo plist del sistema.
func String) throws

Figura 34. Firma del controlador PlistFileManagerController, encargado del almacenamiento
estructurado mediante archivos plist, permitiendo guardar, recuperar y eliminar objetos
codificables del sistema de archivos.

/Il Controlador para almacenamiento seguro con Keychain.
final class

/Il Guarda datos codificados en el llavero para el email especificado.
func _ Data String) throws

/Il Recupera datos del llavero usando el email como clave.
func String) throws -> Data

/Il Elimina datos del llavero para un email determinado.
func String) throws

Figura 35. Firma del controlador KeychainController, utilizado para el almacenamiento seguro
de datos codificados mediante Keychain, asociado a identificadores como el correo electrénico
del usuario.

46

Peticiones de red seguras y manejo de errores

Seguridad en la conexion con URLSession

Durante la implementacion del médulo de autenticacidn, se incorpord un mecanismo de cifrado de datos
sensibles mediante el algoritmo RSA (Rivest—Shamir—Adleman), utilizando una clave publica proporcionada
por el servidor. Esta decision respondié a la necesidad de proteger credenciales y tokens del usuario desde
el origen, incluso antes de que fueran transmitidos por la red, afiadiendo una capa de seguridad adicional
a la conexion HTTPS.

Para encapsular esta légica, se disefid una clase RSAController, responsable de gestionar el ciclo de vida de
la clave publica y realizar el cifrado de cadenas de texto. Su disefio modular permite que cualquier otro
maodulo del sistema pueda reutilizarla sin conocer su implementacién interna, respetando los principios de
responsabilidad Unica y encapsulamiento.

/I Cifra una cadena utilizando la clave publica RSA.

//l Establece una nueva clave publica proporcionada por el servidor.

Figura 36. Firma del controlador RSAController, empleado para establecer una clave publica
RSAy cifrar datos sensibles mediante dicho esquema de encriptacion.

La clase opera sobre datos tipo String, asegurando la compatibilidad con los flujos comunes de entrada de
usuario y transmisién JSON. Antes de cada solicitud critica (como login), la contrasefa es cifrada usando
este controlador, de forma que su representacion cifrada viaje como parte del cuerpo de la peticion.

Para fortalecer el control de errores, se definiéd un enumerador RSAError que agrupa los fallos mas
comunes durante el proceso de cifrado, como claves mal formateadas, errores al convertir cadenas a datos
binarios, o fallos en el propio proceso criptografico.

Figura 37. Enumeracion RSAError para el manejo especifico de errores en procesos de cifrado
con RSA. Define casos como clave publica invalida, fallo de cifrado y error en la conversion de
cadena a datos.

47

Este enfoque permitié una trazabilidad precisa y localizada de errores relacionados con el cifrado,
mejorando el soporte en QA y facilitando el aislamiento de fallos durante pruebas integradas. Asimismo, al
implementar este controlador como una unidad desacoplada, se sentaron las bases para su futura
extension o migracién a tecnologias como Secure Enclave si se desease incrementar el nivel de protecciéon
a nivel de hardware.

Diseno genérico y controlado de respuestas de red

Una de las piezas arquitectdnicas mads sdlidas y refinadas del proyecto Wee 3.0 fue la construccién de una
capa de red personalizada, segura, extensible y orientada a la reutilizacién de componentes. Este médulo,
centrado en la clase RequestController, fue disefiado para encapsular por completo la légica de peticiones
HTTP usando URLSession, tipado genérico adaptable con Codable, y un sistema propio de manejo de
errores con semantica precisa, mediante la adopcién del protocolo LocalizedError.

Controlador genérico con compatibilidad total con Codable

La clase RequestController permite realizar solicitudes POST, GET y PUT de manera genérica, recibiendo
cualquier tipo de cuerpo que conforme a Encodable, y esperando una respuesta de tipo Decodable. Esto
fue posible gracias a la declaracién del método principal con parametros tipados como genéricos:

Figura 38. Firma de la funcion post genérica para realizar peticiones de red tipo POST. Utiliza
tipos Encodable para el cuerpo de la solicitud y Decodable para la respuesta esperada,
retornando un Result que encapsula éxito o error del tipo FetchError.

Con esta firma, el mismo método puede utilizarse para autenticar usuarios, enviar formularios o recuperar
configuraciones, sin duplicar ldgica ni comprometer el tipo de respuesta esperada. La conversién de
objetos a Data y viceversa se realiza mediante JSONEncoder y JSONDecoder, lo cual garantiza
compatibilidad total con los estandares RESTful modernos.

Uso de Result<T, Error> y propagacion explicita de fallos

A diferencia del enfoque tradicional basado en try/catch, el método post() retorna un Result<U,
FetchError>, encapsulando tanto la respuesta esperada como cualquier posible error de red, codificacién o
del servidor. Esto promueve un flujo de control explicito y funcional, donde los estados de éxito y fallo
pueden ser evaluados directamente, simplificando las operaciones aguas abajo.

48

/I manejar respuesta
/I mostrar alerta o logear

Figura 39. Manejo de una peticién de red con tipado genérico y Result. Esta estructura permite
desacoplar el cuerpo (body), el tipo esperado (expecting) y el endpoint, facilitando pruebas,
mantenimiento y lectura del codigo.

Modelo de error personalizado con semantica descriptiva

Para mejorar la trazabilidad y legibilidad de fallos, se disefiéd un enum especializado llamado FetchError,
gue implementa el protocolo LocalizedError. Cada caso del enumerador representa un tipo de error con
contexto técnico claro: desde ausencia de conexidn (nolnternet) hasta errores de decodificacidn, falta de
autorizacion o respuestas mal estructuradas del servidor.

Figura 40. Definicion del enumerador FetchError con conformidad a LocalizedError. Esta
estructura permite representar errores de red de forma clara, semantica y personalizada,
facilitando tanto el manejo interno como la presentacion al usuario.

Esta estructura permite generar alertas informativas y contextualizadas durante desarrollo (Dev) o pruebas
(QA), manteniendo un mensaje técnico pero claro para el equipo. En entornos de produccién, se puede
sustituir facilmente por mensajes genéricos o notificaciones silenciosas.

49

URLSession y su delegado para control avanzado de red

Para complementar la seguridad y la trazabilidad, se creé un objeto URLSessionDelegateHandler,
responsable de interceptar eventos del sistema de red en tiempo real. Esto permitié monitorear
respuestas de bajo nivel como errores de TLS, problemas de certificados, reintentos automaticos ante
caidas momentdneas de red, y establecer politicas explicitas para eventos de conectividad.

Figura 41. Definicion de URLSessionDelegateHandler. Este delegado personalizado permite
interceptar desafios de autenticacion durante conexiones seguras, habilitando validacion de
certificados o politicas avanzadas de seguridad en URLSession.

Al delegar estas responsabilidades, se consiguid instrumentar un URLSession completamente
personalizado y seguro, capaz de adaptarse a distintos entornos sin modificar el controlador de red
principal.

Separacion de ldgica con controladores auxiliares de errores

Esta interfaz muestra como el controlador se encarga de capturar errores del sistema (URLError,
DecodingError, POSIXError), mapearlos a una representacion interna uniforme (FetchError) y, en entornos
de desarrollo, presentar una alerta informativa detallada para el programador o el equipo de QA.

El uso de withCheckedContinuation permite suspender la ejecucidon asincrénica hasta que el usuario
interactue con la alerta, retornando un Result<T, FetchError> junto con un indicador Bool sobre si se debe
reintentar la operacion, fomentando decisiones dindmicas desde la capa de vista.

Esta estructura desacoplada, elegante y robusta facilitd significativamente la validacidn de errores durante
el desarrollo, elevando la calidad del sistema y mejorando la experiencia del equipo técnico en procesos

50

de debugging y prueba.

/Il Controlador auxiliar para interpretar errores de red y mostrar alertas informativas en desarrollo.

/Il Maneja el error de red y presenta una alerta si es necesario.

/Il - Parameters:

/Il - error: El error técnico capturado (URLError, DecodingError, etc.).

/Il - moduleError: Error contextual propio del méddulo llamador.

/Il - viewController: Vista actual para mostrar la alerta.

/Il - Returns: Resultado con el error traducido, y un booleano que indica si el usuario desea reintentar.

/Il Traduce errores genéricos del sistema a errores del dominio ("FetchError’).
/Il Evalla si un error corresponde al cliente (tiempo, red, etc.).

/Il Evalla si un error proviene del servidor (SSL, DNS, caida).

Figura 42. Firma de funciones del RequestErrorController. Este controlador centraliza la
interpretacion de errores de red y permite mostrar alertas personalizadas al usuario durante el
desarrollo, facilitando el diagnostico y manteniendo el principio de separacion de
responsabilidades.

Integracion de Compositional Layout y Diffable Data
Source

La introduccién de UlCollectionViewCompositionalLayout y UlCollectionViewDiffableDataSource en UIKit
representd un cambio radical en la forma de construir interfaces dindmicas y altamente personalizables.
Estas tecnologias, implementadas a partir de iOS 13, resolvieron muchos de los desafios histéricos del uso
de UlCollectionView, permitiendo una construccidn declarativa, flexible y escalable de layouts complejos y
fuentes de datos altamente eficientes.

¢ Qué es Compositional Layout?

UlCollectionViewCompositionalLayout es un sistema de disefio modular que permite componer
visualmente secciones con diferentes estructuras dentro de una misma coleccidn. Cada seccion puede
tener su propio disefio independiente (layout section), con elementos (items), grupos (groups), y
configuraciones de espaciado y scroll completamente personalizados. Esto habilita:

51

e Vistas de mosaico, listas, carruseles y disefios asimétricos, todo desde un solo componente.
e Interfaz adaptable a iPhone, iPad y Mac sin necesidad de multiples layouts.

¢ Layouts declarativos y reutilizables definidos en cddigo, sin necesidad de multiples clases
delegadas.

¢Qué es Diffable Data Source?

UlCollectionViewDiffableDataSource reemplaza al tradicional UlCollectionViewDataSource con un enfoque
moderno basado en snapshots. Utiliza identificadores Unicos y estructuras de datos inmutables que
permiten:

¢ Actualizacion automatica y animada del contenido sin necesidad de performBatchUpdates.
¢ Seguridad en concurrencia gracias a su disefio inmutable.

e Separacion clara entre modelo y vista, simplificando el mantenimiento.

Section
Group

Item

Section ———————— m———

Group———

Figura 43. Composicion visual de una interfaz con secciones heterogéneas mediante
UlCollectionViewCompositionalLayout
Nota: Esta imagen, tomada de la documentacion oficial de Apple, ilustra como multiples
secciones pueden coexistir dentro de una misma UlCollectionView, cada una con una
estructura independiente definida por un NSCollectionLayoutSection.

Aplicacion en el proyecto Wee 3.0

Durante el desarrollo de Wee 3.0, estas herramientas se integraron para construir flujos de contenido
complejos como el de Bienestar emocional y Desafios diarios, en los cuales:

¢ Cada seccidn representaba una categoria distinta de contenido, con un layout y comportamiento
propio.

52

¢ Se usaron UlCollectionViewCompositionalLayout para definir vistas jerarquicas con distintos
tamanos de celdas y headers reutilizables.

e DiffableDataSource permitié actualizar el contenido en tiempo real tras consultas a la API, sin
afectar el rendimiento ni la estructura visual.

Gracias a esto, fue posible disefiar interfaces multiplataforma, reutilizables y completamente
desacopladas, facilitando pruebas, desarrollo paralelo y escalabilidad modular.

@ © iPhone SE (3rd generation) - i0S 18.3
& ® b

@ Tubienestar

@ Tu bienestar

@ Tubienestar

53

Nota: En esta imagen se ejemplifica la implementacién de un disefio modular y adaptable
utilizando UlCollectionViewCompositionalLayout en conjunto con
UlCollectionViewDiffableDataSource. Se observa cémo, mediante el uso de layouts especificos
para cada seccioén, se consigue que la interfaz se ajuste dinamicamente a diferentes
dispositivos y orientaciones. Cada seccion —representando tematicas como bienestar, videos
y retos— dispone de un comportamiento de desplazamiento y dimensiones calculadas en
funcion del entorno, lo que permite mantener una estructura visual coherente y escalable. Esta
aproximacion refuerza las ventajas de los Storyboards y Auto Layout en UIKit, facilitando el
mantenimiento y la ampliacién del cédigo, en linea con las directrices de disefio de Apple.

54

Capitulo 4 - Cierre técnico y
profesional del proyecto

Aplicacion integral de conocimientos de ingenieria

A lo largo del proyecto, pude constatar cémo mi formacidn como ingeniero mecatrénico me permitio
enfrentar los desafios técnicos y organizativos con una perspectiva estructurada, analitica y orientada a
soluciones sostenibles. Si bien el desarrollo de software no es el eje central de la carrera, la |6gica de
control, el pensamiento modular y el disefio de sistemas complejos forman parte esencial del perfil
profesional, y fueron fundamentales para abordar la construccidn de una aplicacién robusta y flexible
desde sus cimientos.

Mas alla de los conocimientos técnicos, lo que mas influyé fue la capacidad de andlisis, la habilidad para
descomponer un problema grande en componentes funcionales, y la toma de decisiones con base en
criterios de eficiencia, mantenibilidad y escalabilidad. Estas competencias se reflejaron en la eleccién y
estructuracién de la arquitectura de la app, en la organizacién del trabajo por mdédulos, y en la definicidn
de estrategias que facilitaran el mantenimiento a largo plazo.

Otro aspecto clave fue la comunicacién del conocimiento. Durante el proyecto, asumi un rol activo en la
capacitacion del equipo, promoviendo una cultura de documentacidn clara y decisiones compartidas. Mas
qgue imponer soluciones, me enfoqué en generar entendimiento comun, ofrecer contexto y crear
herramientas que facilitaran la colaboracién. Esta actitud fue clave para mantener la coherencia técnica
del proyecto, especialmente considerando que la app debia escalarse y adaptarse al paso del tiempo y la
integracion de nuevos ingenieros al equipo.

Finalmente, esta experiencia me permitié integrar de forma natural lo aprendido en la carrera con lo
exigido en un entorno profesional real. La capacidad de adaptacion, el pensamiento sistémico, el trabajo
en equipo y la responsabilidad técnica fueron elementos que me acompafaron desde los primeros sprints
hasta la Ultima entrega, confirmando que el enfoque ingenieril trasciende plataformas o lenguajes: se
trata, en esencia, de resolver problemas complejos con soluciones estructuradas, claras y sostenibles.

Toma de decisiones tecnologicas y liderazgo técnico

Desde el inicio del proyecto tuve claro que una aplicacion exitosa no solo se construye con herramientas
modernas, sino con un equipo que entienda lo que hace, que se sienta comodo con su entorno de
desarrollo y que pueda crecer técnicamente a lo largo del camino. Por eso, muchas de las decisiones que
tomé durante el disefio y la implementacién no solo respondian a necesidades técnicas inmediatas, sino a

55

una vision a mediano plazo: formar un equipo sdlido, capacitado y capaz de construir software
verdaderamente nativo y sostenible.

El primer paso fue hacer un diagndstico honesto de la situacién inicial. Encontré una aplicacién con
problemas estructurales graves, falta de claridad en la arquitectura y un uso fragmentado de tecnologias.
A partir de ese andlisis, propuse una reestructuracion completa del proyecto, donde cada decisién
respondiera a principios de estabilidad, claridad y escalabilidad.

Opté por una arquitectura clara y conocida por el equipo, con el fin de reducir fricciones innecesarias y
permitir que cada integrante pudiera enfocarse en construir y comprender, no solo en implementar. La
prioridad era crear una base que permitiera avanzar de forma segura, y que sirviera como punto de
partida para evolucionar hacia nuevas tecnologias, como SwiftUl, de manera gradual y natural, sin huecos
en el conocimiento.

Ademas, impulsé activamente el uso de herramientas que facilitaran el trabajo en equipo, como la
separacion de entornos para pruebas y produccion, la documentacion clara, y una organizacion visual que
permitiera entender los flujos sin necesidad de adentrarse en detalles técnicos. Todo esto con el objetivo
de que el desarrollo fuera colaborativo, mantenible y alineado con una cultura de aprendizaje continuo.

Mi rol no fue solo técnico, sino también formativo. Asumi con responsabilidad |a tarea de guiar, ensefiar y
proponer, creando un entorno donde el conocimiento se compartiera y se multiplicara. Esa fue, desde el
principio, la base sobre la que debia construirse la aplicacidn: un equipo fuerte, unificado, que entiende lo
qgue hace y por qué lo hace.

Crecimiento profesional en entorno real

Este proyecto representd una experiencia formativa profunda, no solo por los retos técnicos, sino por el
entorno profesional en el que se desarrollé. El trabajo no se limité al desarrollo de cddigo, sino que exigid
una coordinacion constante con distintas dreas como QA, backend y producto. Participé activamente en

las validaciones funcionales al cierre de cada sprint, colaborando estrechamente con el equipo de calidad y
la Product Owner para asegurar que los entregables fueran funcionales, probados y alineados con los
objetivos del negocio.

También me adapté rapidamente a un entorno de trabajo agil, con entregas quincenales y una dindmica
constante de revision, priorizacion y redefinicion de objetivos. Esto me permitié consolidar habilidades de
planificacién y seguimiento, asi como aprender a mantener un ritmo de trabajo sostenible y realista, con
metas claras en cada iteracion.

Uno de los aspectos mads valiosos de esta experiencia fue la autonomia con la que pude trabajar. Desde el
principio asumi la responsabilidad técnica del proyecto, tomando decisiones criticas en cuanto a
arquitectura, seguridad, patrones de disefio y organizacion del cédigo, todo ello sin una supervision directa
constante. Esto implicé un compromiso alto con la calidad y la sostenibilidad del sistema.

56

En varios momentos fue necesario resolver problemas complejos bajo presidn, ya fuera por fechas limite,
por regresiones inesperadas o por requerimientos urgentes. Esta presidon no fue un obstdculo, sino un
catalizador para afianzar mi criterio técnico, fortalecer mi autonomia y mejorar mi capacidad para tomar
decisiones informadas en tiempo real. En resumen, esta experiencia me permitié desarrollarme como
profesional completo, con una visidn técnica sdlida y una capacidad real para liderar proyectos dentro de
un equipo multidisciplinario.

Condiciones del cierre del proyecto

Mi salida del proyecto se dio en agosto de 2023, aproximadamente seis meses antes de la entrega formal
estimada, la cual estaba planeada para principios de febrero de 2024. Aunque no presencié el despliegue
final de la aplicacion, entregué un MVP funcional con bases sdlidas para su evolucién y consolidacién.

Al momento de mi salida, la aplicacién aln no habia sido liberada a usuarios reales, ya que la versién
anterior —Wee 2.0— continuaba operando en produccién para cumplir con compromisos previamente
adquiridos con clientes. La nueva versidon permanecia en etapa de desarrollo activo, resguardada en el
repositorio privado de la empresa.

No se designd un responsable técnico Unico para continuar el proyecto, por lo cual enfoqué mi liderazgo
en formar un equipo capacitado y auténomo. Esta estrategia asegurd que, ante mi ausencia o la de
cualquier otro integrante, el equipo tuviera los conocimientos necesarios para continuar el desarrollo sin
interrupciones.

Entregué recomendaciones claras para futuras decisiones técnicas, especialmente en torno a una eventual
migracion hacia SwiftUl. Expliqué que el uso inicial de UIKit permitiria comprender a fondo la arquitectura
de informacién y los flujos internos de la app. Con esta base, el equipo podria planear una transicion
gradual hacia SwiftUl, con una vision clara de qué estructuras serian mas eficientes bajo el nuevo
paradigma declarativo.

Los mddulos que dejé implementados —principalmente inicio de sesidn, seccién Wellness, DocAl y la
arquitectura base de la aplicacion— incluian una arquitectura desacoplada, modular, y extensible,
comunicacién robusta con el backend, manejo de errores avanzado, layouts adaptativos con
UlCollectionViewCompositionalLayout, y compatibilidad completa con iPhone, iPad y Mac (a través de
Catalyst).

Si bien no se alcanzoé a implementar CI/CD ni pruebas automatizadas formales, el cddigo entregado era
estable, limpio y documentado, con enfoque en calidad y buenas practicas. Mas alld de una entrega
técnica, el legado del proyecto quedo reflejado en la estandarizacién del trabajo, la capacitacion del
equipo y la construccion de una base sélida para su evolucién futura.

57

Bibliografia

1. Direccién General de Bibliotecas y Servicios Digitales de Informacién, UNAM. (s.f.). Cmo hacer citas y
referencias en formato APA. https://bibliotecas.unam.mx/index.php/desarrollo-de-habilidades-
informativas/como-hacer-citas-y-referencias-en-formato-apa

2. Diagnostikare. (s.f.). El primer paso para sentirte mejor. https://www.diagnostikare.com/

3. Endeavor Hub. (2022). El nuevo modelo de negocio de Betterfly. https://endeavor-hub.com/hub-article-
estrategia-el-nuevo-modelo-de-negocio-de-betterfly/

4. ICEX. (2024). Healthtech en México 2024. https://www.icex.es/content/dam/es/icex/oficinas/077/
documentos/2024/05/anexos/FS_HealthTech%20en%20M%C3%A9xic0%202024 REV.pdf

5. MAPFRE. (2024). El sector insurtech latinoamericano cierra 2024 con mas de 500 insurtech en un
contexto adverso. https://www.mapfre.com/comunicacion/innovacion-comunicacion/insurtech-
latinoamericano/

6. WeeCompany. (s.f.). Acerca de nosotros. https://www.weecompany.net/acerca_de.html

7. Apple. (s.f.-a). APl Design Guidelines. Swift.org. Recuperado de https://www.swift.org/documentation/
api-design-guidelines/

8. Apple. (s.f.-b). Organizing Files in Your Xcode Project. Apple Developer Documentation. Recuperado de
https://developer.apple.com/documentation/xcode/organizing-your-project-s-files/

9. Apple. (2021a). Discover DocC documentation in Xcode. WWDC21 — Session 10166. Recuperado de
https://developer.apple.com/videos/play/wwdc2021/10166/

10. Apple. (2021b). Create documentation in Xcode. WWDC21 — Session 10235. Recuperado de https://
developer.apple.com/videos/play/wwdc2021/10235/

11. Apple. (2023a). What’s new in Swift documentation. WWDC23 — Session 10244. Recuperado de
https://developer.apple.com/videos/play/wwdc2023/10244/

12. Apple. (s.f.-c). Model-View-Controller. Apple Developer Documentation. Recuperado de https://
developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/
MVC.html

13. Apple. (s.f.-d). View Controller Programming Guide for iOS. Apple Developer Documentation.
Recuperado de https://developer.apple.com/library/archive/featuredarticles/
ViewControllerPGforiPhoneQS/

14. Apple. (s.f.-e). About App Development with UIKit. Apple Developer Documentation. Recuperado de
https://developer.apple.com/documentation/uikit/about-app-development-with-uikit

58

https://bibliotecas.unam.mx/index.php/desarrollo-de-habilidades-informativas/como-hacer-citas-y-referencias-en-formato-apa
https://bibliotecas.unam.mx/index.php/desarrollo-de-habilidades-informativas/como-hacer-citas-y-referencias-en-formato-apa
https://bibliotecas.unam.mx/index.php/desarrollo-de-habilidades-informativas/como-hacer-citas-y-referencias-en-formato-apa
https://www.diagnostikare.com/
https://endeavor-hub.com/hub-article-estrategia-el-nuevo-modelo-de-negocio-de-betterfly/
https://endeavor-hub.com/hub-article-estrategia-el-nuevo-modelo-de-negocio-de-betterfly/
https://www.icex.es/content/dam/es/icex/oficinas/077/documentos/2024/05/anexos/FS_HealthTech%20en%20M%C3%A9xico%202024_REV.pdf
https://www.icex.es/content/dam/es/icex/oficinas/077/documentos/2024/05/anexos/FS_HealthTech%20en%20M%C3%A9xico%202024_REV.pdf
https://www.icex.es/content/dam/es/icex/oficinas/077/documentos/2024/05/anexos/FS_HealthTech%20en%20M%C3%A9xico%202024_REV.pdf
https://www.mapfre.com/comunicacion/innovacion-comunicacion/insurtech-latinoamericano/
https://www.mapfre.com/comunicacion/innovacion-comunicacion/insurtech-latinoamericano/
https://www.weecompany.net/acerca_de.html
https://www.swift.org/documentation/api-design-guidelines/
https://www.swift.org/documentation/api-design-guidelines/
https://developer.apple.com/documentation/xcode/organizing-your-project-s-files/
https://developer.apple.com/videos/play/wwdc2021/10166/
https://developer.apple.com/videos/play/wwdc2021/10235/
https://developer.apple.com/videos/play/wwdc2021/10235/
https://developer.apple.com/videos/play/wwdc2023/10244/
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/archive/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/documentation/uikit/about-app-development-with-uikit

15. Apple. (s.f.-f). View Controllers. Apple Developer Documentation. Recuperado de https://
developer.apple.com/documentation/uikit/view-controllers

16. Apple. (s.f.-g). View Controller Programming Guide for iOS. Apple Developer Documentation.
Recuperado de https://developer.apple.com/library/archive/featuredarticles/
ViewControllerPGforiPhoneQS/

17. Apple. (s.f.-i). Combine. Apple Developer Documentation. Recuperado de https://developer.apple.com/
documentation/combine/

18. Apple. (s.f-j). URLSession. Apple Developer Documentation. Recuperado de https://
developer.apple.com/documentation/foundation/urlsession/

19. Apple. (2021c). Meet async/await in Swift. WWDC21 — Session 10132. Recuperado de https://
developer.apple.com/videos/play/wwdc2021/10132/

20. Apple. (2021d). Explore structured concurrency in Swift. WWDC21 — Session 10095. Recuperado de
https://developer.apple.com/videos/play/wwdc2021/10095/

21. Apple. (s.f-k). UserDefaults. Apple Developer Documentation. Recuperado de https://
developer.apple.com/documentation/foundation/userdefaults/

22. Apple. (s.f-I). Keychain Services. Apple Developer Documentation. Recuperado de https://
developer.apple.com/documentation/security/keychain-services/

23. Apple. (s.f-m). FileManager. Apple Developer Documentation. Recuperado de https://
developer.apple.com/documentation/foundation/filemanager/

24. Apple. (s.f.-n). Core Data. Apple Developer Documentation. Recuperado de https://
developer.apple.com/documentation/coredata/

25. Apple. (s.f-0). Views with Intrinsic Content Size. Apple Developer Documentation. Recuperado de
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/
AutolayoutPG/ViewswithlIntrinsicContentSize.html

26. Apple. (s.f.-p). UlTabBarController. Apple Developer Documentation. Recuperado de https://
developer.apple.com/documentation/uikit/uitabbarcontroller

27. Apple. (s.f.-g). UINavigationController. Apple Developer Documentation. Recuperado de https://
developer.apple.com/documentation/uikit/uinavigationcontroller

28. Sergio Humberto. (s.f.). Conociendo GitFlow. Medium. Recuperado de https://medium.com/
@sergiohumberto27/conociendo-gitflow-a588716fbc28

29. Hudson, P. (s.f.). How to use storyboard references to simplify your storyboards. Hacking with Swift.
Recuperado de https://www.hackingwithswift.com/example-code/xcode/how-to-use-storyboard-
references-to-simplify-your-storyboards

59

https://developer.apple.com/documentation/uikit/view-controllers
https://developer.apple.com/documentation/uikit/view-controllers
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/library/archive/featuredarticles/ViewControllerPGforiPhoneOS/
https://developer.apple.com/documentation/combine/
https://developer.apple.com/documentation/combine/
https://developer.apple.com/documentation/foundation/urlsession/
https://developer.apple.com/documentation/foundation/urlsession/
https://developer.apple.com/videos/play/wwdc2021/10132/
https://developer.apple.com/videos/play/wwdc2021/10132/
https://developer.apple.com/videos/play/wwdc2021/10095/
https://developer.apple.com/documentation/foundation/userdefaults/
https://developer.apple.com/documentation/foundation/userdefaults/
https://developer.apple.com/documentation/security/keychain-services/
https://developer.apple.com/documentation/security/keychain-services/
https://developer.apple.com/documentation/foundation/filemanager/
https://developer.apple.com/documentation/foundation/filemanager/
https://developer.apple.com/documentation/coredata/
https://developer.apple.com/documentation/coredata/
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/AutolayoutPG/ViewswithIntrinsicContentSize.html
https://developer.apple.com/library/archive/documentation/UserExperience/Conceptual/AutolayoutPG/ViewswithIntrinsicContentSize.html
https://developer.apple.com/documentation/uikit/uitabbarcontroller
https://developer.apple.com/documentation/uikit/uitabbarcontroller
https://developer.apple.com/documentation/uikit/uinavigationcontroller
https://developer.apple.com/documentation/uikit/uinavigationcontroller
https://medium.com/@sergiohumberto27/conociendo-gitflow-a588716fbc28
https://medium.com/@sergiohumberto27/conociendo-gitflow-a588716fbc28
https://www.hackingwithswift.com/example-code/xcode/how-to-use-storyboard-references-to-simplify-your-storyboards
https://www.hackingwithswift.com/example-code/xcode/how-to-use-storyboard-references-to-simplify-your-storyboards
https://www.hackingwithswift.com/example-code/xcode/how-to-use-storyboard-references-to-simplify-your-storyboards

30. Apple. (s.f-r). UlCollectionViewCompositionalLayout. Apple Developer Documentation. Recuperado de
https://developer.apple.com/documentation/uikit/uicollectionviewcompositionallayout

31. Apple. (s.f-s). UlCollectionViewDiffableDataSource. Apple Developer Documentation. Recuperado de
https://developer.apple.com/documentation/uikit/uicollectionviewdiffabledatasource-9tgpa

60

https://developer.apple.com/documentation/uikit/uicollectionviewcompositionallayout
https://developer.apple.com/documentation/uikit/uicollectionviewdiffabledatasource-9tqpa

	Resumen
	Palabras clave
	Abstract
	Keywords
	Introducción
	Antecedentes
	Planteamiento del problema
	Objetivo general
	Objetivos específicos
	Metodología
	Contenido
	Capítulo 1 - Descripción del sistema
	Ubicación geográfica
	Ubicación sectorial
	Comparativa sectorial en LATAM (2023)
	Ubicación temporal
	Dinámica de trabajo y estructura del proyecto
	Antecedentes técnicos del sistema
	Descripción del sistema
	Capítulo 2 - Propuesta técnica y estrategia de reestructuración
	Estado inicial del proyecto y diagnóstico técnico
	Propuestas y cambios realizados en el sistema
	Enfoque general de la solución
	Propuesta: MVC mejorado
	Estándares visuales y diseño modular
	Integración segura y conectividad robusta
	Pruebas, despliegue y mantenimiento
	Planificación técnica y fases
	Capacitación y fortalecimiento del equipo (versión final)

	Capacitación técnica aplicada al desarrollo iOS
	Fundamentos del lenguaje Swift moderno

	Tipado seguro, opcionales y manejo de errores
	Sintaxis concisa y expresiva
	Inferencia de tipos
	Organización y nomenclatura del código

	Convenciones para nombrar variables y estructuras
	Comentarios, claridad de intención y legibilidad
	Organización de carpetas, archivos y grupos en Xcode
	Arquitectura MVC con controladores auxiliares

	Separación de responsabilidades en Model, View y Controller
	Uso de ModelControllers y HelperControllers
	Comparativa con MVVM y justificación de elección
	Patrones de comunicación entre componentes

	Delegados, closures, inyección de dependencias
	Uso de Combine, tuplas y callbacks
	Flujo de eventos y control de dependencias
	Consumo de servicios REST y asincronía

	Uso avanzado de URLSession
	Comparativa entre URLSession y Alamofire
	Programación con GCD y async/await
	Gestión segura y eficiente del almacenamiento local

	UserDefaults, Keychain, FileManager y Core Data
	Estrategias para persistencia segura y sincronización
	Diseño de interfaces en UIKit

	Principios de diseño con Storyboards y Auto Layout
	Patrones de navegación en UIKit
	Control de versiones y flujo de trabajo con GitFlow

	Tipos de ramas: main, develop, feature, release y hotfix
	Buenas prácticas para mantenimiento, integración y revisión
	Uso de etiquetas, CI/CD y pruebas automatizadas con XCTest
	Capítulo 3 - Implementación práctica y validación funcional
	Despliegue inicial del proyecto y aplicación de arquitectura modular
	Punto de entrada y arquitectura de entorno en el inicio de sesión
	Modularización de interfaces con Storyboard References
	¿Qué es una Storyboard Reference?
	Ventajas de usar Storyboard References
	Ventajas frente al diseño 100% programático
	Aplicación en el proyecto Wee 3.0

	Implementación de múltiples métodos de almacenamiento local
	Peticiones de red seguras y manejo de errores
	Seguridad en la conexión con URLSession
	Diseño genérico y controlado de respuestas de red

	Controlador genérico con compatibilidad total con Codable
	Uso de Result<T, Error> y propagación explícita de fallos
	Modelo de error personalizado con semántica descriptiva
	URLSession y su delegado para control avanzado de red
	Separación de lógica con controladores auxiliares de errores
	Integración de Compositional Layout y Diffable Data Source
	¿Qué es Compositional Layout?
	¿Qué es Diffable Data Source?
	Aplicación en el proyecto Wee 3.0

	Capítulo 4 – Cierre técnico y profesional del proyecto
	Aplicación integral de conocimientos de ingeniería
	Toma de decisiones tecnológicas y liderazgo técnico
	Crecimiento profesional en entorno real
	Condiciones del cierre del proyecto
	Bibliografía

