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ON THE MODIFICATION OF THE LOCAL GEOMETRIC PROPERTIES OF PLANE
'CURVES

Jorge ANGELES1

ABSTRACT

If the coordinates of the points of a given curve are approximated

by spline functions, then the local gecmetric properties (slope,
i curvature, etc.) of the curve can be regarded as functions of a

finite set of independent variables, the coordinates of the support-

ing points. Formulae are derived for the computation of the der-
ivatives of these functions with respect to the aforementioned
coordinates. An example is included to show how these formulae

can be applied to synthesize a plane closed curve with a prescribed

curvature distribution.
INTRODUCTION

In the design of structural elements with notches or borigns,
henceforth generally}referred to as "openings", stress concentra-
tions [_—_ﬂzat these o’ﬁ#enings freguently occur,which could be avoided by a
proper determination of the shape of the opening. In this respect,
such shapes have been‘fohnd by application of optimization technigues

in connection with the finite-element method (FEM) [2,i]. Schnacki{]

has solved similar optimization problems by introducing the monotony
relationship between the magnitude of the stress at the opening at a
given point and the curvature of the opening at this point; this

relation was first established by Neuber Eﬂ.. In [{1 it was shown how

a proper correction of the curvature of the contour, namely diminishing
of the curvature at points with high stress and vice versa, can lead to
optimal shapes. This way the original mechanical problem can be handled é

as a purely geometrical one, i.e. given a profile with a known stress

distribution, determine a new profile with a "better" stress distributic
by correcting the curvature of the profile according to the known stress
distribution. What is meant by a "better" stress distribution is one

3 with a lower difference between the highest and the lowest stress

1 3 3 3 - - .
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magnitudes at the profile. In [4] the curvature was approximated
by a finite-difference formula ét the FEM network nodes lying at
the profile. Furthermore, the curvature was assumed to have a
linear distribution between the nodes with the highest and the
lowest stress magnitude, and a FEM computation was performed

at each iteration of the optimization procedure. The curvature
corrections were specified as "small" changes, which led to

"small" changes in the coordinates of the involved nodes.

In this paper it is shown how,by introducing spline-functions (SF),
the curvature and its derivatives, fbr a given curve, can be comput-
ed accurately at arbitrary points of the curve. Furthermore, know-
ledge of the derivatives of the curvature with respect to the
coordinates of the supporting points (SP) allows the use of Newton-
Raphson's method to determine the coordinates of the supporting
points of a curve to meet specifications on its curvature distribk-
ution. This way, "relatively large" curvature corrections can be

carried out.

DERIVATION OF THE SLOPE AND CURVATURE DERIVATIVES

Let the(x, y)carﬁesian coordinates of an arbitrary point P of a
curve ' be approximated by spline functions after the introduc-

tion of a parameter t, i.e. Dﬂ

3 2
x(t)=axk(t-—tk) +bxk(t-tk) +cxk(t--tk)+dxk (1)

3 2
- - + - + - + <t< 2
y(t)—a ] (t t]) b ] (t t] ) (o} ] (t t]) d ] ’t t t] 1 ( )

where the set t., for k=1,...,n, is defined as

X
£,=0, t =t +bt k=1,...,n' (=n=1) (3)
e =/tx =% ) P4y -y )P, k=T, (4)

the set:&.%d for k=1,...,n beinqg the cartesian coordinates of
the given supporting points_Pk. This paper ‘is concerned

only with closed curves, for which reason the sr




;ﬁ are periodic. The coefficients axk,bxk,...,cyk,dyk,k=1,...,n'

g are then defined as [5]
A= Ry qm%y ) /6 (5a)

§ b =%, /2 (5b)
c  TX /0t ~AE (X 2% ) /6=x (5¢)
dxk=xk (54)

with similar expressions for the y-coefficients. In therforegoing

g formulae ik' ?k, ik and §k represent first and second derivatives i
of the cartesian coordinates with respect to t, computed at tk. k
Next, the following n'-dimensional vectors and n'x n' -matrices are
g defined:
T . . . T o v v T
§=[x1,...,xn,1_,5=[x1,...,xn,1 r X= 51,...,xn,] (6)

with similar definitions for the vectors y, ¥y and y.
2(A§n'+At1) Atj ‘ Atn,
‘ At1 (2At1+At2) At2
; al e,  2(Me,+Aty) Aty | (7)
1 . . .
. . . t
At | At 2 (Ot +At_,) '
n n n n
- .

where n"=n'-1=n-2
§=diag(At1,At2,...;Atn,) (8)
I=diag{(1,1,...,1)= the n'xn' identity matrix (9)

g
]

(K=J+31 (10)

| ’ - :-‘
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Thus, the second derivatives are conputed from [b] as;:

AX=-63TH"10x,ay=-63TH 13y (11)

Néit; "small" changes in % and g for correspondingly "small"
changes in X and Xhare computed. From the expressions so obtained,
formulae for the derivatives 8%/35, 3%/32, ag/af and 9dy/9dy are
Vderived. In fact, let § denote a "small" change of the variable

it preceeds. Thus,

VsT s ox-6a" ot Tasx (12)

~

s%=-6(5A 1) gTe" Tox-6a"

. -1 - . .
By equating 8§ (A 'A) to zero the following expressions are obtained:

1 1

A~ =-A-1(6§)§_

~

(13)

- -1 -1 -2
SH 1=—H (6H)H '=-y &y 4 (14)
where the latter equation holds due to the diagonality of matrix H.
This way, eq. (11) is transformed into
\

1 "1— T "1 - .e

sX=A" |60 H (u 1GH.Jx—Jéx)—GA.x] (15)
where the point between two variables is meant to indicate that
the variation § does not involve the variables after the point.
To obtain expressions for the variations of A and H, which
depend only on the set Atk, the variation of this set is first

derived. From definitions (4),

=§/8x%2 2 = A At (16)
GAtk—6 Axk+Ayk = (Axk GAxki-Ayk § yk)/ X

where Axk and Ayk,for k=t,...,n', are defined similarly to

Atk. Let

ck=Axk/Atk,sk-éAyk/Atk (17)




Thus:

H.JIx=A _J ’
where A11'and A12 are diagonal matrices defined as
511=d1ag (Ax1c1,...,Axh.cn,),§12=d1ag (AXJS1""'Axn'Sn') (19)
Similarly,

SH.Jy=2,,J3x+2,,I8y (20)

where
= i A PR ) = i e

521 diag( Y,C s ,Ayn,cn'), 522 dlag(Ay1s1, ,Ayn'sn,) (21)

To compute §A.X, only the Atk terms in AX are varied, i.e.
o +2% + 3
fn'GAtn' 2x,8 (At +At ) xZGAt1
e + L1 ’ + +l'

- x,88¢t, 2x26\At1 At,) x,80t,

) (22)

\

.. 12

x_ .00t ,+2%  S(At_,+At_,)+x%_ SAt
n n n n n 1 n'

e -

Substituting (16) and (17) into the latter expression,

e - .
6A.x=B  J&x +B,,Jdy (23a)
Similarly,
'= J '.+ ew
6A.y=B,,J6x+B,, I8y (23b)

where matrices B, ,, for i,3j=1, 2 are defined as

~ij




. 0 0 i
11 BJ,n'
B21 B22 © ©
° B3x  Bij °
B,.= o
~l:’ 4 - Y
"‘\ - -
N
O 0 0 - . . Bn"n“ nl'n!
= = — . +
i=1,5 1'&k,k—1 (xk__1 2xk)ck 1
3k,k_(2xk+xk+1)ck
i=1,3=2, B 4 =X, _*2x )8,
C (0% e
By, k™ (2¥y ¥y Sy
s . - .o + [
122,321, By o™ W g P20 0y

- ‘e +..
By = (2Yy Yyrq) Cx
l=2’3=2’\Bk,k~-1=(yk—1+2yk)Sk-1

oo
By k= L2Y Y pq) Sy

where K-1=n' for k=1

(24)

(25a)

(25b)

(25c¢)

(254)

Substituting then egs. (18), (20) and (23) into egqg. (12) one

obtains
w =17 T -1, =1 - -1, _.T -2
= — - + -

s%=2" [6g7n™ (1 A, -D1)-B  138x+A " (637H “A,,-B,,) I8y
w -1, T -2 -1 T -1, =1

6§=2" (63 17"y, -8, ) 38x+a” [oaTH (17 8,,-1)-B,, ]38y

from which the formulae

(26a)

(26Db)

(27a)




(1) "1 » T "'2

0x/dy=A (60 H A12*B1q)J (27b)
. -1 T ~2

az/3§=§ (6J°H 521—321)2 (27¢)
(1] "‘1 T "1 '—1 - -

3§/8y=a"" [6a 0™ (' '8, 1)-B,,l3 (274)

follow immediately.

Next, formulae for the ag/af,ag/ag,ag/af and 32/32 derivatives
are derived. From eq. (5c), vector % can be written as

Jx-HKR (28)

A "small" variation §x, for given "small" variations of x and

y is obtained from the latter equation as

~

Sx=H"V36x-n"'éu.u""

~ ~ ~ o~

JIx-HKS8X/6-6H.KX/6 (29)

Making use of the diagonality of H and of egs. (18) and (26a),
eq. (29) is transformed into

\ ’
6i=H'1J6x-H'2A11J6x-H'2A12J6y—HK(a§/ax)6x/6
—HK (9X%/9y) 5y/6-5§.§%/6 (30)

An expression for S8H.K¥X can be obtained by varying only the

Atk terms in HKX. Thus,

~ o~ o~

o, 1

(2x]+x2)6At1 (2x1+x2)(c16Ax1+s16Ay1)

(2x2+x3)6At2 (2x2+x3)(026Ax2+526A72)

SH.KX= . = . =

~ e~

(2x ,+x,) 60t , (2% ,+%,) (c ,88x ,+s 88y ,

L. - R i

= Jéx+C_ _J§ (31a)
€,y J6x+C, 50y
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Similarly

H.K§=C, 30x4C, 76y (310)

where

C;y=diag(d, ..., ) (32)

with the dk elements defined as

i=1 and j=1,dk=(2§k+§k+1)ck (33a)
§=1 and j=2,dk=(2§k+§k+])sk (33b)
i=2 and j=1,dk=(2§k+§k+1)ck (33c)
i=2 and j=2,dk=(23}k+'§'k+1)sk : (334)

where k+1=1 for k=n'

Substituting egs. (27a,b), and (31a) into eq. (30) one obtains

§x=-{[u"" (,H_"A1 R SR 1/6:| J+HK (3%/2x) /6}8x

~Fn™2a, 54, ,/6) J+HK (3%/0y) T 6y (342)

Similarly \

. -2 . . -
GZ—*[XE 521+921/6)fr§§(a{/af)/QJGf

_{rh—1(H—]ézz-l)+922]g+§§(8§/3x)/6}52 (34b)

from which the sought formulae

3s</ax=-_[§” (5_151 1"D*C 1/6]f'§§(3§/3")*/6 (35a)
ai/ax=-(5'2512+c12/6)J—§§(a§/a¥)/6 (35b)
39/3x=-(H‘2A21+c21/6)J-Hx(ag/af)/e (35¢)

T (17 T, ,m 1) 4G, ,/613-HK (2§ /3y) /6 (354)

3 follow directly.




Formulae (35) express the sensitiyity of the slope or, correspond-
ingly, of the-unit tangential and noxmal vectors of the curve to
cﬁanges in the coordinates of the supporting points, thus allowing
the synthesis of curves having a prescribed slope. These formulae,
however, require the evaluation of the derivatives of formulae
(27), for which reason these were derived first. The said eight
formulae can now beapplied to compute the derivatives of the

curvature at the SP. Let K be the curvature at point Pk' i.e.

k
K -xkyk Y (36)
"k (§2+'2)3/2
k Yk
and then define
T
E=[‘—'-K1'K2'°”'Kn'] (37)

Applying the" chain rule" the following formulae are obtained:

9k 9k dx Bk Jdy K 3x 9K 3y
9%~3% 3x ' 39 9x ' 3% 3% * 3% 9= (38a)
9K 3K 3% 9K 3y 9K ¥ 5K 3y
T AT oo
where 3K/ x,...,3K/3y are diagonal matrices defined as
3K/3?=diag(D1,...,Dnl) (39a)
dk/dy=fiag(E ,...,E ) (39b)
9K/dxk=diag(F,, .- ,F ) (40a)
BK/8§=diag(G1,...,Gn,) (40b)
with
2 2.5/2
D —[(y 2x )yk+3xky xé]/(xk+yk) / (41a)
22 oe20 2 ,.2.5/2
E, == [-(_xk 29, ) %, +3%, 9, 9,1/ (G +70) (41b)
* *2 2. 3/2
= 42
F ==y, /(x +y,) (42a)
G =%, /(§<2+§2)3/2 (42b)
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So far, the cartesian coordinates of the SP were regarded as in-
dependent variables. In many applications, howeyer, the sought
curves contain symmetries, thus turning a set of such coordinates
to depend upon the remaining ones. Moreover, by selecting a point
enclosed by the'curve as the origin of polar coordinates, p,¢,
and by fixing the angles ¢k' the only independént variables are
pk, for k=1,...,m, where, due to possible symmetries, m<n', and
m=n' only if the curve possesses no symmetries. Storing the
independent variables in the m-dimensional vector z, then, the
dependence of the cartesian coordinates of the SP upon the in-

dependent variables 2z, can be written as
X =Vz 4+ a, vy =Wz + b (43)

where V and W are constant n'xm matrices, whereas a and b are
constant n-dimensional vectors, accounting for those coordinates
which remain fixed throughout a particular problem. The formulae

for the total derivatives with respect to =z

dx  ox 3% 3y 3y 3y

BE TR A AR Fi SR A A
90X X 39X Y 8y 3y
IR T AR IR TR T AR T (45)
3K IK oK _
32 " 5x Yt Ay ¥ ' (46)

follow directly.

ERROR IN THE APPROXIMATION OF THE CURVATURE AND ITS DERIVATIVES

A series of subroutines were written, which compute the foregoing
derivatives and the curvature Bﬂ. These subroutines were used to
establish the dependence of the error in the approximation upon

the number of SP. Tests were carried on a circle of radius =1.




The double symmetry of the curve was cxploited and so, the results
comprise only the first quadrant. The error in the approximation
was recorded for 2,3,5,7 and 10 SP defined on the first quadrant.
?he corresponding approximating curves and their error distrib-
ution in the approximation of the curvature are shown in Figs i-5.
Defining as the error in the approximation the greatest absolute
value of the error over the whole quadrant, this is recorded vs.

the number of SP in Table 1.

The foregoing "computations contain not only an error of approximation,
but also a round-off error; this was, however, disregarded because
the only critical computation in the formulae derived above is the
inversion of matrix A, as defined in eq. (7). This matrix,
nevertheless, is very well conditioned, for it is positive definite,
tridiagonal and diagonally dominant Eﬂ”. Furthermore, the matrix
was not explicitly inverted, but LU-decomposed Bﬂ(ﬁme and for all
and later on its factors, % and H, were used repeatedly in the back-
substitution stage of Gauss' algorithm Bﬂ to compute successively
the different columns of the matrices appearing in eqs. (27). For
this purpose, the subroutines DECOMP and SOLVE, due to Moler Bﬂ,
were applied.

\
An example is next included, which can be computed with zero round-

off error, to illustrate the procedure.

EXAMPLE 1. COMPUTATION OF THE CURVATURE OF A CIRCLE AND OF ITS
DERIVATIVE WITH RESPECT TO THE RADIUS, USING TWO INDEPENDENT VAR-
IABLES

A circle is approximated with spline functions using the following

SSP:P](1,0),P2(O,1),P (—1,0),P4(o,-1),P (1,O)=P1. The involved

3
vectors and matrices are

5

§=[Lo,—1mﬂT , Z:BL1,0,41T
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4 1 0 1] 7 -2 1
1 4 1 0 -2 7 -2
A=Y/2 0 1 4 1 A'1='z§- 1 -2 7
1.0 1 4] -2 1 =2
- - b
H = /2 diag (1,1,1,1), I=diag(1,1,1,1)
-1 1 0 O 2 1 0
- 0-1 1 0 0 2 1
=10 o0-1 1 == o o
1 0 0 -1 1.0 0
Sglving for X and ¥ in egs.
. 3 T . 3 -
X = 5[-1.0,1,0] Y =3 [0,-1,0,1]

Similarly, from

obtains

. 3/— T -
X = —_;_— [Or_1lor1] 4
~ 5 <

Moreover,

A =/51/2,A12=/5 diag(-1,1,

~11

Substitution of the above matrices in egs.

eqg. (28) and an analogous one for y, which is not shown, one

2 0
1 -1
0 -2
0 O
1 0
2

0 1
0 O

\

b

-1,1)/2,A

3V2
= —= [1,0,-
52

~21

B 3/2
~12° 2

1,0]"

=/2 diag(-1,1,-1,1)/2

-

-2 0 O
-1 -1 0
0 -2 -2
0o 0 -1

1
%
8]
o

(27) yields




-2 2
4 -7
y.a 3
X/ Xal-2 2

4 -1
fo 1
.- 3{4 O

By/axrjz

-4 0

In order to compute the derivatives of formulae (35), the Cij

(32) and (33) should be first computed.

matrices of formulae

These are:

11

2
c,,=3v2 diag(1,2,1,2)/2", ¢

Thus, ~
0 3
6 0
Con.l2 |
9x/3x="—%¢ 0 -3
2
| 6 ©
-8 2
By/axﬁcz- e
Y 5 4 2
2
-8 -1

2
¢..=3/2 diag(2,-1,2,-1)/2°,cC

-2 2
4 -1
23 /dy=—>
“'2 2 ' -~ -~ 4
2

4 -7
0 -17
-4 0 .

, o0y/oy=—>
0 1 ~ o~ 4
4 0

1

22
0 -3 -17 8 1 &
6 0 . —1 =2 8 -2 -4
3x/3y=i—
0 3|7 °< 50 1 8-17 8
-6 0, -2 -4 -2 8]
4 2] e 6 0 -6
-8 -1 -3 0 3 0O
35//3y={z
-8 2 z 25 0 -6 0 6
-8 17 3 0 -3 O

0 4 0
1 0 -1
0-4 0

-1 0 1

=7 4 -1
2 -2 2

-1 4 -7

L2-2 2

The partial derivatives of the curvature are:

4
-2

4
-2

2
2=3/§diag(-—2,-1,—2,-1)/2

=3/§-diag(-1,2,-—1,2)/22

. =4 2 : A
ax/8%=/3x2 d1ag(0,1,0,-1 /3% 06By=/50% diag(-1,0,1,0)/3°

e 3 . . R
sk /3%=23aiag(-1,0,1,0)/3%,9x/3y=23d1iag(0,-1,0,1) /3>

13
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The partial derivatives of formulae (38) are then

11 =5 =1 =5] FTo -12 0o 12]
, |-12 0 12 o0 ; -5  11.-5 -1
35/3§=—3—5 1 5 -11  5]|¢ af.f,/al’:? 0 -12 0 12
-12 0 12 o] ' 5 1 5 -11
g Considering the abscissa of P.1 and the ordinate of P2 as the

independent variables and assuming that the supporting points

are variable, but restricted to remain in the coordinate axes,

matrices V and W appearing in formulae (43) are then obtained

as

<
]
O O O O
-
=
It

. . =T . .
Thus, the total derivative of 5=[K1,K2J with respect to z 1is

vl -2
4

K/0z=—

3~/ ~ 3

»

-2 1

If z, and z, are set equal to the radius of the circle, the

number of independent variables reduces to 1 and so the

derivative of the curvature with respect to the radius can be

computed. The values found for the curvature and its derivative
were

K=4/3,0K/dr=-4/3

which approximate the true values, 1 and -1 with an error of 33%.
The elements of the matrix BK/BE also contain an error of 33%., To
compute the true values of these elements, the circle is regarded
as a particular case of an ellipse of semiaxes a and b. The cur- t
vature at the point where the ellipse intersects the x-axis, K1, i

is

K1=a/b2
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Regarding a and b as the independent yariables z] and 22, and
setting z&=22=1, one obtains

0K /0z =J/b2=1,BK /%z =—2a/b2=—2
1 1 1 2
which are the true values of these components.

The next example is included to illustrate how arbitrary values
of the curvature of a curve can be synthesized by properly
assigning the ctoordinates of the SP, which is done with the aid

of Newton-Raphson's method.

EXAMPLE 2. SYNTHESIS OF A PLANE CLOSED CURVE TO MEET PRESCRIBED
CONDITIONS IMPOSED ON ITS CURVATURE

From the foregoing analysis it follows that the curvature at every
point of a curve approximated with spline functions is a function
of the coordinates of the involved supporting points. If these co-
ordinates are dependent upon a certain set of free parameters z,

like the ones introduced in eq. (43), then

where z is an m-dimensional vector, with m<n', n' having been
previously defined as the number of SP minus 1. Numbering the SP
in such a way that the first m are independent, then K is an
m-dimensional vector containing the curvature at the first m SP.
Assuming that it is intended to synthesize a double symmetrical
curve, the m free SP are located in the first guadrant of the
X~y plane. The curvature distribution is then assigned through

- 1’ 2' rot

. . .th .
and c,l is the prescribed curvature at the i— SP, i.e. at the

point with polar coordinates p=zi,¢=¢i-

.. |
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The unknown yariables z, can now be computed as the solution of

the m-dimensional system of nonlinear equations

£(z)=X(z)-c=0

The best known method to solve this cystemis that of Newton-

IhpM’m [uﬂ, which only requires‘the computation of the Jacobian

matrdix of £ with respect to z, which is

f'(Z)=af/3z

as given by formula (46). In the above Jacobian, the derivative

; of ¢ vanishes since this is a constant prescribed value.

Fig 6 shows the successive curves which were obtained during the
Newton-Raphson's iterations to synthesize a curve with the follow-

ing curvature distribution

- T
e=1,1,1,1,1

i.e. a circle. The 5 SP were equally distributed over the first
quadrant, the initial "guess" of z was assigned so as to represent
an ellipse with semiaxes a =2, b=1. The number of iterations needed until

convergence was reached was 7, and the procedure was stopped when

[ 3
the correction to the unknown vector attained a -maximal-norm
4

smaller than 10

CONCLUSIONS . E

The advantages of introducing splines in synthesis or optimization

problems involving the determination of curves to meet prescribed

geometrical conditions are many-fold, some of which are:

- The number of independent variables which have to be handled is E

relatively low.

§ ' — Derivatives with respect to the free parameters can be efficiently

computed, which helps in iterative methodseither to solve equa-

tions or to optimize objective functions- since the introduction
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of gradients,normally accclerates the conyergence of the method.
- The equations appearing in spline computationé are linear and
well conditioned, which allows computations with small round-off
errors.
- The analysis of errors -which was not the subject of this paper-
can be performed systematically, for spline analyses have been

extensively carried out D1,1ﬂ.

Further research in this direction should involve the introduction

of spline functions in the solution of classical problems of the
calculus of variations [tﬂ , thus reducing such problems to the
search of the solution over a finite-dimensional space, instead

of over a Hilbert space.
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Fig. 1 Spline-approximation to a circle of radius 1. a) Approximating curve
with 2 equally distributed SP in the first quadrant. b) Error distribution
of the curvature approximation.
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with 3 equally distributed SP in the first quadrant. b) Error distribution
of the curvature approximation.
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with 5 equally distributed SP in the first quadrant. b) Error distribution
of the curvature approximation.
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Fig. 4 Spline-approximation to circle of radius 1. a) Approximating
curve with 7 equally distributed SP in the first quadrant.
b) Error distribution of the curvature approximation.
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TABLE 1 Curyature error depending upon the number of

supporting points in the first gquadrant

Numbexr of SP

Exrror %

33

3.6

0.58

Ol N v Wl N

0.25
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