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NONLINEAR DYNAMIC AND CREEP BUCKLING OF ELLIPTICAL 

PARABOLOIDAL CONCRETE SHELLS 

By 

Porfirio Ballesteros1 

SUMMARY 

The collapse of sorne elliptical paraboloidal concrete shells at 

sorne country is studied considering nonlinearity in geometry, 

material, and creep response. In the shell geometry the effect of 

the imperfections on the critical pressure is taken into account. 

From the theoretical considerations, and the data obtained from 

the collapse of this kind of shell, important design recomendations 

are proposed. 

INTRODUCTION 

Last september, 1975, the author was consulted from sorne country 

to study the motive of the collapse of elliptical paraboloidal 

concrete shells whose geometry is shown in Figs 2 and 3. 

The following information from the prototype was obtained: 

a) The collapse happened in-between ninety and one hundred hours 

after the concrete forwork was removed, figs 9 and 10. 

b) The unconfined compressive strength of the concrete in the 

2 
structure was f~ ~ 150 kg/cm (2000 psi). 

c) Very significant geometric imperfections of the formwork were 

observed, Fig 11. 

1 Chairman Structural Mechanics, Graduate Division, School of 

Engineering, · National University of Mexico. 
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d) An earthquake with considerable vertical component happene<l 

during the collapse. 

e) The day-laborers of th~ construction reported deflections at 

the apex of an order of magnitude of 15.00cm (6 inches), before 

the collapse. 

f) The deflection at the apex, measured in the existing shells, 

one day after removing the formwork, was of an order of magnitude 

of 9.00cm (3.5 inches). So the author's instructions were to 

shore immediately the shells which had not collapsed yet, to 

avoid possible problems. 

Based on this information, the collapse of course was originated 

by an elastic-plastic dynamic buckling with creep response. 

~RACTICAL CONSIDERATIONS 

The problem of giving a practica! solution with the objective of 

saving the existing shells and to be able to continue the construc 

tion, was studied and, so, the following computation and solution 

was presented. 

a) BueWng eapawy 06 the -0heíh. 

The buckling pressure pcr' of this kind of shells is given by Q..9] 

where for concrete shells, O.OS 2 C ~ 0.15, and from Fig.2. In 

our case we have R1 = 32.90m, R2 = 33.57m, t = 0.06m, and 

E~ 150 000 kg/cm2 . Substituting in (a) for the lower limit of e, 

we have 
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= 2-14.5 ~ 
2 

m 

The dead weight and live load of the shell were: 

w - yt = 0.06 X 2400 = 144.00 kg/m2 

and the live load; 2 p = 100 kg/m 

comparing (c) and (d) with (b) we have 

= 244.5 < 1, 
144 + 100 

Pcr = 244.5 < 1 _7 
w 144 

So the shells hada very low buckling capacity 

(b) 

(c) 

(d) 

(e) 

b 1 I nCJte.M,Ú'l.g the. bu..c.k.Ung c.a.pa.c.);ty 06 the. e.wting f.i hei.1.,6 by a.dd,¿t¿ona.1. aJLc.hu 

The buckling of a circular arch is given by [20] 

1) (f) 

2 2 4 using an arch of, f'= 300 kg/cm, E= 260 000 kg/cm, I = 106 000cm, c z 

r = 33.00m, anda= O.SS radians, from (f) we obtain, qcr=2400 kg/m. 

The arches were connected to the shells in the wav shown in Fiqs 

12,13,14,15,16,17,18 and 19. The increase of the tension in the 

perimetral ties was 7.4 Ton, and it was not necessary to put any 

additional reinforcement. 

c.l Fi.,e.ld loa.d tut. 

After the arches were connected to the shells, a static field load 
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test was carried on two of the shells applying a load of 

2.4 (w+p) = 585.6 kg/m2 ; the shell was loaded in 24 hours and 

stayed during 360 hours, the deflection at the apex reaching 

maximum value of 3.8cm (1.5 inches) in 48 hours with respect to 

time in which the loading manoeuvre started. After 360 hours the 

shell was unloaded and the deflection at the apex recovered its 

100%. The reinforcement details of the arches is shown in Fig. 13, 

and 14. 

THEORETICAL CONSIDERATIONS 

a) U.ne.a!t.ly Ela-6:U.c. -pla.6:U.c. ¿,tJuún haJr..de.nlng-{!ta.c.:á.Vte. . ma.:tVLlai. 

The analytical constitutive relation of concrete under general 

three-dimensional stress state has already been proposed Q.,2]. 

In the formulation, the concrete is assumed to be a continuous, 

isotropic, and linearly elastic-plastic strain hardening-fracture 

material. The elastic-plastic stress-strain incremental relation­

ships, based on the initial discontinuous surface, loading sur­

faces, and failure surface of concrete are derived using the 

classical theory of plasticity. For the special case of a biaxial 

stress-strain relationship for a concrete shell under aplane 

stress condition, the constitutive relationships are 
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dN 
X -w<P13 

dN y -w<P23 ( 1) 

dN 
xy 

1 - \) 
2 - w<P33 

where we have denoted 

+ H (1 - \) 2) a ✓2J2+2p 2 (1 - 3 Il) E 

<P =~1 -11 v)S11 - vs33 + (1 + v) PJ 2 

<P12=fc1 - v)S11 - vs33 + (1 + v) p] 1(1 - v)S -22 vs33 ,+ (1 + v)p] ( 2) 

<P13= Q 1 - v)s11 - vs22 + (1 + v) p] Q1 - V) T li] 
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in which v = Poisson's ratio; E= Young' s modulus; S . . ~a . . -ó . . I 1/3 
• • l.) l.J l.J 

the stress deviator tensor; T .. = 
l. J 

material constant; and p = n I
1 

+ 

(a+BT~.) 
+ 2 l.J ,in which n=O when stress state is lying in the compre-

ssion zone and -1/3 in the tension zone; a and B are parameters, 

I 1 is the first invariant of the stress tensor, H is the strain­

hardening rate function, and J 2 is the second invariant of S ... 
1) 

b) Lé.neaJl1.y vi/2c.oef..MUc. ma-tvúai.. 

The theory of linear viscoelasticity for infinitesimal deformations 

is well known and has been applied to several boundary-value pro-

blems. The response a . . to a given history E .. (t) is given in [ 4] 
l.J l.) 

by the convolution integral 

= Gijkl (t) Ekl (O) + f
t' 

o 

where E .. anda .. are the infinitesimal strain and the stress, 
l.) l.J 

respectively. The integrating function Gijkl reduces it to two 

independent components for isotropic materials and exhibits its 

fading memory. 

( 3) 

The most general nonlinear theory gives the free energy as a func 

tional of the strain history and derives the stress response from 

it, which its numerical solution increases the computational time. 

Equation (3) was derived for the case for a linear constitutive 

equation; however, the kinematics of the deformation is nonlinear. 

In [s] a generalization of Eq. (3) is given but computationally 

it is not convenient, so in (§,7] an alternative formulation using 

convected coordinates has been used in this problem. 

I n order to avoid transformation to physical tensor components, in 
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[4] is given apure Lagrangian generalization of (3) where the 

symmetric stress and strain tensors are used, and (3) is inter­

preted as a functional relationship between their physical comp~ 

nents, and it becomes 

where 'SrJ is the stress configuration in the current configuration 

v1 at time t 1 , and EKL(t') is the total Lagrangian strain at time 

t', but here the material characterization is done by a double po­

wer law [3], in which the dependence of creep on load duration 

(t-t') as well as age at loading- t' is described by the law 

(5) 

in which m, n, ~l and E
0 

are material parameters determined from 

test data by optimization techniques. The law is limited to basic 

creep, but with different values of material parameters it can al- -

so describe drying creep up to a certain time. 

J(t,t') represents strain in time t caused by a constant unit 

stress that has been acting since time t'. Time t' is measured 

from various tests which are listed in table I, where only 

short-time creep data up to one month duration is available. 
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TABLE I (Ref. 3) 

Data from m 

1. L'Hermite et al. (in water) 0.221 

2. Dworshak Dam (sealed) 0.355 

3. Ross Dam (sealed) 0.457 

4. Shasta Dam (sealed) 0.536 

5. Canyon Ferry Dam (sealed) 0.295 

6. Gamble and Thomas (RH 94%) 0.450 

7. A.D. Ross (RH 93%) 0.238 

8. L'Hermite et al (BH 50%) 0.213 

From table I we may consider 

. 1 m 3' n ~ 1/8 

n 

0.094 

0.056 

0.130 

0.134 

0.119 

0.081 

0.126 

0.131 

3.74 

17.51 

2.80 

5.38 

4.02 

4.87 

1.97 

11.26 

0.0788 

0.0844 

0.1885 

0.1806 

0.1000 

0.1800 

0.1030 

0.0521 

It has been shown previously in [3] that the creep analysis of 

large finite element systems is simplified by expanding J(t,t'} 

into Dirichlet series, or exponentials series of the following 

form: 

J(t,t') = __ 1_ + , ~ 1 (l-e-lJt-t') /-r;]) 
E(t') l r,. 

µ-1 Eµ (t') 

,. 
where {-r} are chosen retardation times and {E } are material µ µ 

coefficients. This series approximates very closely the double 

(6) 

(7) 

power law in the time interval 0,3-r1 2 t-t' 2 0.5 TN when one sets 

µ-1 -rµ = 10 -r 1 (µ=1,2, ... ,N) and uses the following expressions: 

,._ 
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T cj, 

__ 1_ = _!_ + a (n} ( 1 }n El (t°')m 
E(t'} E

0 
0.002 

0 

( 8} 

For µ<N 

1 = b ( } ( T 1 } n cp 1 10n ( µ -1} _ - m 
~-- n 0.002 E Ct'> 
E (t'} o µ 

( 9} 

For µ = N 

(10} 

in which T 1 and t' rnust be substituted in days, and a(n} and b(n} 

are coefficients given by Table II. The values of a(n} and b(n} 

have been obtained by a nonlinear optirnization technique (Marquardt 

algorithrn} for surn-of-squares problems. 

TABLE II 

DIRICHLET SERIES EXPANSION COEFFICIENTS 

-

N a(n} b(n} 

o.os 0.6700 0.0819 

0.10 0.4456 O .. 1161 

0.15 0.2929 0.1229 

0.20 0.1885 , 0.1152 

0.25 0.1154 0.1007 

0.30 0.0611 0.0842 

0.35 0.0156 0.6810 

' 
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The basic equations for nonlinear finite element analysis are well 

known for the nonlinear dynamic case. From the principle of virtual 

work in terms of the initial configuration, one obtains 

f [N]T[P] [N] {µ}dV
0 

= -f [B] {cr}dVO + {P} (11) 

VO V
O 

where [N] is an interpolation function that transforms displace­

ments at the nodes to displacements at ahy point within 

the element. 

[B] is the transformation matrix that transforms displace­

ment rates at the nodes to strain rates at any point in 

an element 

{ cr } is the generalized stress vector 

[P] is the density matrix (the _density takes on its matrix 

form in problema of shells) 

The equation may now be linearized writing it in its incremental 

form: 

IV [N]T [P] [N]dVO/J.{µ} = 

o 
f /J. [B] {cr}dV 

V o 
o 

J V [B]/J.{cr}dV + /J.{P} 

o 

(12) 

In the above Eq, /J.{P} should be understood to include the effects 

. of following loads. The two error terms O(tm) and O(I) are also 
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included to show that the solution in incremental form contains a 

discretization error dueto the current incrementas well asan 

inherited error dueto all previous increments. The error dueto 

discretization in time is shown as a function of time raised to 

the power m. 

We now make use of the linearized incremental stress-strain rela­

tions which are written as 

ll{a}-:: ¡D]ll{e} (13) 

This equation is appropriate for elastic-plastic behavior and has 

been outlined for small strain in l}OJ and for large strains in 

Q.1]. 

Substituting (13) in (12) results in a linearized incremental 

equation 

(14) 

This equation can be specialized to the static case by neglecting 

the term on the left. In the static case convergence to the true 

solution may be achieved by applying the load in increasingly 

smaller increments. A parallel procedure was investigated for the 

dynamic case where the rate of convergence with decrease in time 

step was examined. 

We now consider the error term O(I) called the residual load corree 

tion, thatconsists of writing the residual equation for (11) 

O (I) = - [M] {i.i} - f ,[B] {a}dV
0 

+ {p} 

Vo 

(15) 
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It is noted that this error term consists in evaluating the terms 

at the state before the _current increment and that if no numerical 

errors had been introduced by previous increments the error would 

be equal to zero. 

It was shown in [4] that, including the residual load correction 

in the dynamic equations, one may obtain convergent solutions 

using time increments relatively large in comparison with the 

solutions obtained without the correction. 

The selection of an integration scheme for the solution of the in 

crernental equations in the time domain is critical with respect 

to computational efficiency. A suitable solution scheme, which 

allows a large time step and yet gives an accurate solution is 

that developed by Houbolt [I2]. The Houbolt scheme is based on 

the backwards difference expression 

/). { .. } µ n 

Applying this to the condition for incremental equilibrium (4) 

yields 

2 
!).{Pn+l}!).t 

+ [M] (51).{µ } - 41).{µ 
1

} + t.{µ 
2

}) + O(I )!).t 2 
n n- n- n 

where n, is a subscript denoting the time at which the increment 

is taken. This equation is solved for the displacement increment 

!).{µn+l} at each step except for the first, where a special starting 

p.rocedure must be employed (J2] . 
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di Sofuüon ConveJtgenee 

Haisler et al. Q.3] have reportea on studies of numerical integra 

tion schemes and their convergence properties in the nonlinear 

static case. It was shown there that the incremental finite ele­

ment formulation gave statisfactory results when the load incre­

ments used were small as compared to those adopted in the solutions 

using the residual load correction term. The nature of the corree 

tion procedure was illustrated in [8], where the order of the 

error for the corrected and uncorrected equations are examined. 

The result was given for a ene-dimensional model and serves to 

give an order of magnitude estimate of the error. 

In the static case for the solution without the residual load 

correction anda slowly varying stiffness K, the total discretiz~ 

tion error is the sum of the truncation errors for each increment 

of the incremental approximation. This error may be expressed as 

µ - µ* N N (16) 

where µ is the correct total displacement after N load increments n 

and µÑ is the displacement obtairted by the incremental approach. 

It is noted that the error is 0(6µ
3
) in the displacement increment. 

When the residual load correction is included, we find that, 

µ _µe__ 1 I'N'-1 
N N - -2 -1 

N + 
2 

I 
n=2 

where,for N even,l = m - 1, k = m, and,for N odd, l = m, k=m+l, 

m being equal to 2( 2n; 1 ), and fractions are discarded in the 

computation of the indexes.Eq. (17} may be described by stating 

(17) 
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that for even N only terms involvi~g even displacement increments 

remain in the series and likewise for odd N and odd displacement. 

In comparing (16) and (17) we see that the inclusion of the resi­

dual load correction reduces the number of terms in the series by 

a half. One could state that, approximately speaking, the error 

is halved in the corrected equations except for the fact that the 

stiffness quantity is inside the summation sign in [16]. The 

assumption of a slowly varying stiffness K in [6] means the ne­

glection of errors caused by the inherited error terms. 

In the dynamic case the expressions for the discretization errors 

of the uncorrected and corrected equations at time Ntt are, res­

pectively, 

tt2 -1 { N dKn-1 
~-~ = - -4- M I l!n-1 du 

n-2 

and 

t.t
2 

-1 { 
-4- M ~-1 

tt2 -1 where Rn = (1 - - 2- M Kn). In the above equations E* and Ec 

are the truncation errors inherited from the inertia terms and, 

for the integration scheme in time, do not appear to be expre­

ssible in a general forro. However, they are of the same order as 

the first terms in brackets in (18) and (19), and it is interes­

ting to speculate that a similar reduction in the error occurs 

in Ec as compared with E*. 

It has been demonstrated in (1.3] that the static solutions given 

by the corrected and uncorrected equations, tend to converge as 

(19) 
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the number of load increments in the uncorrected case are increased. 

A particular example given in l}.3] is a spherical shell cap under 

a point load at the apex where the uncorrected solution converged 

using an increment one eighth of that which was required for con­

vergence in the corrected solution. One would expect that judging 

from (18} and (19), the convergence rate in the dynamic case would 

be more rapid both for the corrected and uncorrected solutions 

considering the presence· of the factor ~t 2 , and the fact that the 

truncation errors for the static and dynamic solutions are 

approximately of the same order. In the sample problems, mentioned 

later, it has been shown for the example of a beam under a half­

sine wave impulse over the span, that the uncorrected solution 

converges rapidly as time increment is varied. On the other hand, 

the corrected solution changes very little overa range of time 

increments. It appears that with the reduced truncation error of 

the corrected equations the effect of ~t
2 

on the solution is 

diminished. 

The advantage in using the corrected dynamic equations is that one 

may obtain practically convergent results with large time incre­

ments. In the numerical examples mentioned later it was shown that 

convergent solutions to dynamic problems using the corrected incre 

mental equations may be obtained using time increments of an order 

of magnitude greater than those used by other investigators. The 

other solutions wer~ obtained by using the Houbolt scheme and the 

total forro of the finite element equations, so the comparisons 

are direct. This fact has important consequences in terms of 

solving nonlinear problems economically, 
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COMPUTER PROGRAM 

The system of equations for the dynamic elastic-plastic analysis 

with large displacement have been incorporated to a general pur­

pose computer program. A program previously developed at Marc 

Analysis Research Corporation, Palo Alto, California called MARC 

program was used as the basic. Figure 1 gives a flow diagram of 

the procedure. 

CASE STUV1ES 

Several examples were selected by Marcal f rom [8, 9] in order 

a) to make comparisons with results in the literature, b) to inves 

tigate the limits of numerical approximations in terms of the fre­

quency of reassembly and residual load correction, and c) to 

observe the effect of geometric imperfections in a dynamically 

loaded sphere. 

The one-dimensional element used in this examples is of the iso­

parametric type and has a rapid rate of convergence even for small 

numbers of elements. This is dueto the fact that it can repre- . 

sent exactly all the rigid body modes of the interpolated surface 

which is arbitrarily close to the actual structural shape. It has 

proved to be a very accurate and economic element for use in the 

analysis of dynamic problems. 

The chosen examples are, 

1. Shallow ~phe11.ical cap ande11. a. Jtep p.11.e~~a.11.e load 

2. Nonlinúu. ela~tic _a.naly~i~ 06 a ~imply-~uppo.11.ted beam ande11. 

a hal6-~ine initial velocity diJttr.ibation 

3. Nonlinea11. ela~tic analy~i~ 06 a Jphe.11.ica.l ~hell cap ande11. a 

point load at the a.pex 

4. Ela~tic-pla~tic bea.m ande.11. a. an~6o~m initial velocity ove11. a 
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pontion on the Span 

5. Ela-0tie-pla-0tie buekling 06 an impen6eet -0phene anden a uninonm 

NUMERICAL RESLJLTS 

a) Po-0t-buekling behavion 06 the -0hallow eonenete elliptieal pana-

boloidal -0hell with an elliptieal impen6eetion. 

The geometry of this shell is shown in Figs 2 and 3 where the 

imperfection is given as a flat elliptical section of the shell of 

radius r 1 and r 2 , which are the mean radiusof the oblate portien of 

the elliptical paraboloidal surface. 

For the simplest elements, where only displacement continuity is 

required at the nodes, as in 1}4] and 1}5] , the intersection between 

the imperfection and the shell is nota problem. But for the higher 

order isoparametric element, the displacements and their first 

derivates, were obtaíned by applying a constraint relating displa­

cements at two hypotetical nodes, in the manner of Hibbitt and 

Marcal I}~. 

The shell was analysed first under elastic-plastic behavior; the 

results for imperfection parameters A=2 and A=3 are presented in 

Fig. 4 and 5, where we consider three pressure parameters p=0.3, 

2 
0.4 and 0.5 related to a critical value pcr = 0.15(t /R1R2), and 

the deflection parameter at the apex u 3/t is plotted against time. 

The shell is seen to have buckled when the deflection profile 

increases drastically for a small increment of pressure. It is 

important _ to mention that buckling occurs after the fir,st maximum 

and not after a number of oscilations. 

The problem of the externally pressurized imperfect hemisphere for 
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the aluminum alloy (7075-T6) was first solved by Bushnell 1}7] 

for the estatic case, and by Marca! 1}8] for the elastic plastic 

case, and also by Marca! [9] for the elastic and elastic -plastic 

dynamic case, whose results are compared in Fig. 7. Based on these 

previous resul ts; ·for the Concrete Elliptical Paraboloidal Shell, 

only the elastic-plastic dynamic case has been studied in this 

paper. Values of pressure parameters p which initia~e buckling 

are plotted against the geometric parameter A. For 1.5, the 

buckling pressure is governed very strongly by inestability of 

the material itself; so, for these values of A any analysis neglec 

ting nonlinear material and geometric behavior would be incorrect. 

The results are shown in Fig. 7a. 

In computing the foregoing results, the equations were reassembled 

every ten increments, and corrected every second increment; this 

selection is based on the numerical experimentation presented by 

Marcal [9]. 

b} C1te.e.p buc.kllng 06 the. eilip:tlcal pa,w.boloi.túli. .6he.U 

The objective of this study is to find the creep buckling load 

for a life expectancy of 9.6 days, when subjected to various 

pressure levels. 

The geometry of the shell is shown in Figs 2 and 3 with 

f 1 = 2.75m, f 2 = 2.8m a= 13.70m, b = 13.45m, t = 0.06m, R1=32.90m, 

R = 33.57m and A= 3. 
2 

The material is concrete with a compressive strength level 

f' = 150kg/cm2 anda Poisson Ratio v=0.15, which is assumed to c 
be time independent for this study. The relaxation data were ob-

tained from the creep test just mentioned. 
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The creep analysis has been done with pressurelevels of 30%, 40% 

2 
and 50% of the upper critical load of 0.15E(t /R1 R2 ). 

The pressure was applied instantaneously using 10 load increments 

and then, sustained durint the creep process (fig. 8). In about 

40 hr it was observed that the use of the out-of-balance force in 

the load vector makes the shell to approach the critical configu­

ration; this force also cause over-corrections of equilibrium, 

and, at the end of the time step the stresses obtained were very 

small; when combined with the fading memory of the concrete the 

oscillations are set up; and for a given data of 96 hours the 

cri tical pressure parameter was found to be equal to O. 35. 

CONCLUSIONS 

a) The uppen limit oó the enitieal pne-0-0une óon the elliptieal 
2 panaboloidal eonenete -0hell i-0 Pen = 0.15(t /R 1R2), and óon the 

-0phenieal aluminum alloy (7075-T6J, on -0tnuetunal -0teel -0hell i-0 
• 

Pen =0.312E(t2!R 2), [9]. It .6hould not be 1.16 E(t2/R 2
J (}.9]. 

b) The mínimum uneonóined eompne-0-0ive -0tnength oó the eonenete 

-0hould be in the -0tnuetune above on equal to 250 ~; /em 2 (3500 p-0i). 

el In de-0igning the elliptieal panaboloidal eonenete -0hell, one 

may -0ee ónom Fig 7a that óon value-6 oó A between 1.5 and 3.5, 

• the pne-0.6une panameten i-6, p 1 0.35, ·and the lowen limit oó the 
2 2 enitieal load i-6 (pen}L = 0.35 x 0.15 E(t /R 1R2J = 0.053E(t !R 1R2); 

theneóone the de-0ign load .6hould be a-0 .6mallen a-6 po.6.6ible with 

ne.6peet to (pen) Lº 
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d] In dehign.ing the hphe1r.ieal aluminum alloy (7075-¡6}, 011. -0t1r.ue­

tu1r.al hteel hhell, the lowe1r. limit oó the e1r.itieal load (pe,,_lL 

hhould be taken. 6011. the elahtie-plahtie dyn.amie eahe 611.om Fig 7. 

Fo1r. in.htan.ee, 6011. A= 3, one obtainh p=0.49, 611.om whieh (pe,,_lL=0.49 

x0.312E(t/Rl 1 =0.15E(t/RJ 2. 

el 100 houlr.h aótelr. having 11.emoved the 601r.mwo1r.k, the de6leetion at 

the apex 06 the elliptieal pa1r.aboloidal eone1r.ete hhell hhould be 

hmalle1r. than 2 timeh ith thieknehh t. 

ól In the elliptieal pa1r.aboloidal eone1r.ete hhell, 6011. valueh 06 

the geomet1r.ie pa1r.amete1r. A<1.5, the buekling p!r.ehhulr.e ih gove1r.ned 

ve1r.y htJr.on.gly by the unhtable behavioJr. oó the mate1r.ial; ha, 6011. 

thehe valueh 06 A, any analyhih negleeting nonlinea1r. mate1r.ial and 

geomet1r.ie behavio1r. would be ineo1r.1r.eet; thih eould have been the 

g] The e1r.eep-bud2.l.lng analyl>ih wah pe1r.601r.med 6011. >.=3, and ith 

bueklin.g plr.ehhulr.e wah o 6 the hame 01r.de1r. o 6 ma.gnltu.de than the 

elahtie-plahtie dynamie eahe. 

hl It ih impo1r.tant to note that the p1r.aetieal eonhide1r.ation. gave 

al1r.eady the holution 06 the p1r.oblem, but it ih ve1r.y impo1r.tan.t to 

know ah deep ah pohhible the theo1r.y, beeauhe, ah the autho1r. may 

htate: "A good p1r.aetiee hhould be bahed in. a ve1r.y good and elea1r. 

kn.owledg e o 6 the theo1r.y". 
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CORE ALLOCATION ANO VARIABLE DIMENSIONING 
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INITIALIZE CONTROL VARIABLES 
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INPUT MATERIAL DATA ANO GEOMETRIC DATA 
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NO 
IS PROBLEM RESTARTE O ? 1 BEING . 1 

1 
YES 

' 

1 READ RESTART TAPE 1 
1 
1 

READ BOUNDARY CONDITIONS ANO LOAOS -
ANO CONVERT TO CONSISTENT LOAOS 

1 
NO 

? 1 ARE EQUATIONS BEING REASSEMBLED 

1 
YES ,, 

ASSEMBLE MASS ANO STIFFNESS MATRICES 

[M], [K] = [Ko] + [K 1] + ~2], ([M] FIRST TIME ONLY ) 
-.r ~ ELEMENT 

LIBRARY 

1 
1 

APPLY BOUNOARY CONDITIONS 
1 

SOLVE FOR OISPLACEMENTS 
1 

-CALCULATE STRAINS ANO STRESSES ~ 

-
1 1 

NO 
ARE EQUATIONS BEING CORRECTED ? CONSTITUTIVE 

1 
YES STRESS - STRAIN 

'' 
COMPUTE UNBALANCED NOOAL FORCES RELATIONS 

1 
1 

1 OUTPUT 1 
1 

1 HAS FINAL TIME BEEN REACHEO ? 1 NO 
1 

. 
YES 

WRITE INFORMATION ON TAPE IF 

SOLUTION IS TO BE RESTARTE O 
1 

1 STOP 1 

Fig 1 Flow chort for computer program 
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Fig 6 Externo II y pressuriied imperfect hemisphere a nd 
material constants , for aluminum alloy ( 7075 T-6) 
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FI.g 9 

Collapse of the elliptical paraboloidal concrete shells 
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Collapse of the elliptical paraboloidal concrete shells 
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Fig,,. ¡1 

Geometric Imperfect:ion for the elliptical parabo l oidal concrete 

shells 
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Fig 14 Connection between the arch and the existing shell 
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Fig 15 

A view from the interior of the connection between additional 

arches and shell 
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The additional arches, for increasing the buckling capacity of 

the shell. 
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The additional arches, for increasing the buckling capacity of 

the shell. 
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Fig· 18 

The additional arches, for increasing the buckling capacity of 

the shell. 
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Fig 19 The additional arches, to increase the buckling capacity of the shell. 
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