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Abstract 

Carbonate formations are a type of sedimentary rock primarily composed of carbonate 

minerals, such as calcite and dolomite. These formations are highly significant in the 

hydrocarbon industry as they frequently host substantial reservoirs of oil and gas. Beyond 

their economic importance, carbonate formations also play a crucial role in geology and 

ecology, forming structures like coral reefs and underground caves. 

However, carbonate formations are prone to collapses and fractures due to their porous 

nature and overburden. The porosity and permeability of these rocks, along with factors 

such as chemical dissolution and recrystallization, can significantly influence their structural 

integrity. These collapses not only affect hydrocarbon production but also compromise well 

stability and operational safety. 

Wellbore instability is one of the significant challenges in the drilling engineering and during 

the development of carbonate reservoirs, especially with open-hole completions during 

depletion can cause a reduction in permeability, damage to the equipment, solids 

production, and wellbore failure, interrupting production and affecting the reservoir's ultimate 

recovery. 

Solids production from poorly consolidated carbonate reservoir rocks is a common factor in 

wells during production stages, especially in the reservoir's later life under depletion 

conditions. While there are several well-established techniques to predict sand production 

in sandstone reservoirs, there are not many field-proven case studies on the applicability of 

these techniques for solids production assessment in carbonate rocks (Asadi, 2017). 

For this reason, advanced predictive methods are essential to describe the flow of fluids and 

solids from a friable formation into a producing well and anticipate the collapse of the rock 

near the well. A geomechanical model that combines geological and mechanical knowledge 

will be developed. This model will be based on a deep understanding of the geological 

history of carbonate formations, their internal structure, porosity, permeability, and the 

stresses acting upon them. The integration of field data, numerical simulations, and 

laboratory analyses will optimize hydrocarbon production and minimize the risks associated 

with the exploitation of carbonate formations. In this study, we present a case study on 

applying a sand evaluation model in a carbonate oil reservoir in Indiana, USA. 
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1. Introduction 
 

Carbonates are naturally found as sediments and reefs in tropical and temperate oceans, 

as well as in ancient rock formations and economically significant mineral deposits. These 

deposits contain over 60% of conventional oil fields and 40% of global gas reserves. More 

than 90% of the oil in Mexico is extracted from these fields. (Francisco Garaicochea P., 

1988) 

In recent decades, geomechanics has gained significant importance in the oil industry, 

especially during well drilling operations, development, and exploitation stages. This 

discipline plays a fundamental role in petroleum engineering, of comprehensively 

understanding how rocks respond to forces and pressures in hydrocarbon reservoirs. This 

discipline is crucial in processes such as wellbore stability, completion designs, hydraulic 

fracturing, production optimization, pressure control, reserve estimation, and prevention of 

formation damage. Due to the complexity of the lithology, reservoir configuration, and 

genesis, wellbore instability is frequently encountered during drilling and extraction in 

carbonate reservoirs. 

If the rock fails, the well will not produce it unless there is sufficient drag force to transport it 

to the surface through the production tubing. The pressure difference between the reservoir 

and the well is the main factor controlling solids production, as it determines the drag force 

necessary for the disintegrated rock to be transported to the well. Therefore, it is essential 

to understand the stresses, rock strength, and well and reservoir pressures to predict 

formation failure. 

Wellbore instability is one of the significant challenges in drilling engineering and during the 

development of carbonate reservoirs, especially with open-hole completions during 

depletion; it can cause a reduction in permeability, damage to the equipment, solids 

production, and wellbore failure, interrupting production and affecting the reservoir's ultimate 

recovery. Therefore, it is essential to have a numerical tool to predict the conditions that may 

cause major solids production problems to prevent collapse. 
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Solids production from poorly consolidated carbonate reservoir rocks is a common factor in 

many wells during production stages, especially in the reservoir's later life under depletion 

conditions. While there are several well-established techniques to predict sand production 

in sandstone reservoirs, there are not many field-proven case studies on the applicability of 

these techniques for solids production assessment in carbonate rocks (Asadi, 2017). In this 

study, we present a case study on applying a sand evaluation model in a carbonate 

reservoir. 

There are case studies in the literature where sand control and prediction methods are 

applied to carbonate formations due to the limited information available for the latter. In this 

work, the prediction method using a hydromechanical model for sands (Stavropoulou, 

Papanastasiou, & Vardoulakis, 1998) evaluating its reliability in carbonates formations. 

 

1.1 Objectives 
 

➢ To integrate this tool into a carbonate formation and evaluate its reliability. 

➢ To use this tool to explain solids production problems in various production 

scenarios. 

➢ To develop a Time-Implicit numerical tool that allows predicting, according to 

different production schemes, the flow of solids in oil-producing formations and the 

collapse of the formation. 

➢ To facilitate decision-making and reservoir management more efficiently and safely. 

➢ To use porosity as a coupling parameter between erosion and rock mechanics. 
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2. Literature Review 
 

2.1 Introduction to carbonate rocks 

Carbonate reservoirs gained importance for the oil industry after World War I, when 

exploratory drilling led to one of the most significant discoveries of oil reserves in carbonates 

in the Middle East. As the demand for oil and gas increases, exploration and production 

efforts of these resources have been extended to ever greater depths. Carbonate reservoirs 

hold a crucial place in worldwide hydrocarbon resources with their highly developed 

fractures and microfractures, which enhance the storage capacity and percolation 

performance, while also posing exponentially more potential risks to extraction safety. (Bo 

Zhou, 2024) 

Carbonates comprise at least 50% carbonate minerals, primarily calcite and dolomite. They 

form in depositional environments through biological, chemical, and detrital processes. 

Unlike other types of rocks, their mineralogical composition does not originate from erosion, 

and their textures are not the result of transport by streams and rivers. Carbonate minerals 

are susceptible to rapid processes of dissolution, cementation, and recrystallization. 

2.2 Fundamental Properties of Rock and Classification of 

Carbonate Rocks 

Rocks, essential elements of the Earth's crust, possess fundamental properties that allow 

us to understand their formation, evolution, and behavior in different geological 

environments. Among these properties are fabric, texture, composition, and sedimentary 

structures, each providing crucial information about the history and conditions under which 

they formed. 

2.2.1 Texture 

Texture is defined as the size, shape, and arrangement of grains in a sedimentary rock; in 

the case of carbonates, is often considered in the context as of depositional texture, which 

forms the basis for various carbonate classification systems. The most common scale for 

classifying grain size is the Wentworth scale, measured in millimeters. According to this 

scale, a grain with a diameter greater than 2 mm is considered gravel; between 2 mm and 

1/16 mm (62 μm), sand; and with a diameter less than 62 μm, mud. 

Grain sorting and size are important textural attributes for the study of carbonates, as they 

influence the rock's porosity and permeability. When the grains are ideal spheres, porosity 

is independent of grain size; however, permeability varies with particle size, as smaller 

grains have smaller intergranular pores and, consequently, narrower pore throats. 
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2.2.2 Fabric 

Fabric or structural characteristics refer to the spatial arrangement and orientation of grains 

in a sedimentary rock, which can be depositional, diagenetic, or biogenic. Carbonates are 

primarily formed by chemical precipitation, which occurs when calcium, magnesium, 

bicarbonate, and carbonate ions are present in an aqueous solution and combine to form 

solid carbonate minerals. This precipitation can result from the evaporation of water, 

changes in the water's temperature or pH, or biological activity. 

Once formed, carbonate deposits can undergo diagenetic processes, including compaction 

and cementation of sediments to form sedimentary rocks. This process can occur in marine 

environments, such as coral reefs, lagoons, or continental shelves, where carbonates 

accumulate slowly over time.  

Under certain conditions, carbonate rocks may experience metamorphism, which involves 

changes in their texture, composition, and structure due to elevated pressure and 

temperature. This process can lead to the formation of metamorphic rocks such as marbles, 

which are derived from preexisting these rocks. 

2.2.3 Composition and Sedimentary Structures 

 

The composition of a carbonate generally refers to the types of grains that constitute it, 

rather than its mineral content. These grains are classified into skeletal and non-skeletal 

components. Skeletal components include whole and fragmented remains of calcareous 

plants and animals, such as mollusks, corals, calcified algae, brachiopods, arthropods, and 

echinoderms. On the other hand, non-skeletal grains comprise ooids, pisoids, peloids, and 

clasts. 

Sedimentary structures are essential for interpreting depositional environments. Their 

internal fabric, which is often oriented and exhibits regular patterns of change in grain type, 

influences reservoir characteristics. These structures, visible in sedimentary rocks, reflect 

depositional and sedimentation processes such as stratification, grading, lamination, and 

deformation. Sedimentary structures provide valuable clues about depositional 

environments and variations in environmental conditions over geological time. 

2.2.4 Classification of Carbonate Rocks 

The literature contains various classifications of limestones and dolomites based on different 

criteria. Limestones can be classified according to their mineral composition, textural 

components, and genetic origin. On the other hand, Dolomites can be classified according 

to their marine origin, types of textures present, depositional environments, geochemical 

characteristics, and the timing of dolomitization. 
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However, the most popular and commonly used classification is that of Dunham (1962), Fig 

2.1. This classification includes detrital carbonates ranging from mudstone to grainstone, 

biogenic carbonates such as boundstone, and diagenetically altered carbonates, known as 

crystalline carbonates. There are also classifications based on porosity, but these do not 

consider the origin of the rock, making it difficult to distinguish between pore types formed 

by depositional processes and those modified or created by post-depositional diagenesis or 

fracturing. 

 

Figure 2. 1 Dunham’s classification (Wayne, 2008) 

 

2.3 Petrophysical Properties of the Rock 

Essential properties such as texture, mineralogy, composition, and structure determine 

porosity, permeability, and grain density. Porosity and permeability are crucial variables for 

evaluating the quality of a reservoir. Comprehensive reservoir descriptions are based on the 

identification and analysis of the relationship between the matrix and pore characteristics. 

2.3.1 Porosity 

Porosity is defined as the ratio between the pore volume (Vp) and the total volume of the 

rock (Vb). This property varies according to the texture, structure, and geometry of the 

fractures in the reservoir rock. In detrital rocks, grain shape, sorting, and packing influence 

porosity. In biogenic rocks, skeletal structure and microstructure affect both inter- and intra-

particle porosity. In the case of fractured rocks, porosity depends on the width and spacing 

of the fractures, as well as the presence or absence of minerals. Additionally, diagenetic 

processes can modify porosity: they can fill pores with cement, close pores through 

compaction, open them through dissolution, or create new pores through recrystallization or 

replacement. 
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Carbonates are characterized by having multiple porosity, unlike sands. This porosity ranges 

from primary, which forms at the time of deposition, to secondary, which results from 

diagenetic processes. This diversity is due to the variety of sizes, shapes, and origins of 

pores in carbonates. 

Porosity in carbonate reservoirs ranges from 5% to 15%, while in sands it ranges from 15% 

to 30%. Table 2.1 presents a qualitative description of the reservoir based on its porosity 

percentage. 

Porosity range Qualitative Description 

5% or less Poor 

10% Fair 

15% Good 

20% or more Excellent 

Table 2. 1 Porosity in carbonate reservoirs (Wayne, 2008) 

Porosity measurements should be conducted under in situ stress conditions, as carbonates 

are compressible, and their porosity decreases with increased effective stress. The most 

common laboratory method involves increasing the confining pressure while maintaining a 

constant pore pressure.  

2.3.1.1 Porosity Classifications 

Classifications are useful tools for organizing materials effectively. A simple classification of 

porosity can designate three categories of pores: inter-particle, vuggy, and fracture porosity. 

On the other hand, a tiered classification group pores according to their average size, shape, 

petrophysical characteristics, and origin. 

The comparison of data on pores and rock with petrophysical characteristics allows for the 

identification and mapping of reservoir flow units. Although traditional classifications of 

carbonate porosity were not designed for this purpose, the schemes proposed by Archie 

(1952), Choquette and Pray (1970), and Lucia (1983) are valuable for illustrating the 

evolution of pore systems in carbonate reservoirs. 

2.3.1.2 The Archie Classification 

Archie's classification (1952) is based on textural descriptions of reservoir rocks and consists 

of three textural categories: Type I, II, and III.  

➢ Type I: Described carbonates as crystalline, hard, dense, with sharp edges and smooth 

faces on breaking. 

➢ Type II: These are described as “earthy” or “chalky” with grains not more significant than 

about 50 μm in diameter, and they are composed of fine granules or sea organisms. 

➢ Type III: Includes granular carbonates as grainstones and packstones. 



 
 

16 
 

Archie's goal in developing this classification was to highlight pore structure, fluid flow 

characteristics, fluid distribution, and the flow's electrical conductivity. He avoided using 

terms related to rock composition or the geological origin of the porosity. 

2.3.1.3 The Choquette-Pray Classification 

Choquette and Pray (1970) recognized the need to incorporate the factor of time and mode 

of origin in their classification. Their system, represented in Fig 2.2, is practical and the 

authors identify 15 basic types of pores, organizing them into three classes according to 

their relationship with the rock fabric: 

1. Fabric-selective pores: These pores can have a depositional, diagenetic, or a 

combination of both origins. 

2. Non-fabric-selective pores include fractures or dissolution cavities of diverse sizes 

that cut across the entire rock. 

3. Pores that may or may not be fabric-selective: This category encompasses pores 

with intermediate characteristics between the two previous types. 

Choquette and Pray's classification is valuable for its focus on the origin and temporal 

development of pores, which allows for a more detailed understanding of reservoirs' 

petrophysical and structural characteristics. 

The abundance of pores in the Choquette-Pray classification is given as a percentage, 

expressed as a ratio of pore categories, or as a ratio of pore types plus a percentage. The 

pore size categories are termed 'megapore, mesopore, and micropore,' with size limits like 

those of the Wentworth grain size scale (1922). 

 

Figure 2. 2 Choquette-Pray Porosity Classification (Wayne, 2008) 

2.3.1.4 The Lucia Classification 

Lucia divides the types of carbonate pores into vuggy and interparticle. The author 

emphasizes a relationship between porosity, permeability, displacement capillary pressure, 

as particle size and the petrophysical importance of separating or touching vugs. Vugs are 

pores larger than the grains of the structure; they can have moldic, interparticle, intraparticle, 

or intercrystalline origins but were enlarged by dissolution to become vugs. The flow 

between separate vugs must pass through the matrix porosity and permeability to drain the 

vugs. For this reason, the contribution of separate vugs to the total porosity and permeability 

of the reservoir can only be estimated if the matrix characteristics and total porosity are 

known. Additionally, there is a possibility that they communicate through fractures that 

connect the vugs, thereby increasing their porosity and permeability. 
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2.3.2 Permeability 

Permeability is essential because it is a property of the rock that relates to the rate at which 

hydrocarbons can be recovered. In carbonates, permeability varies, with values ranging 

from 0.1 md in tight and mudstone-type reservoirs to as high as 20 Darcies in reservoirs with 

connected fracture or vug systems. Table 2.2 provides a way to qualitatively categorize 

permeability values. 

Permeability (md) Qualitative Description 

<1.0-15 Poor to fair 

15-50 Moderate 

50-250 Good 

250-1,000 Very Good 

>1,000 Excellent 

Table 2. 2 Permeability in carbonate reservoirs (Wayne, 2008) 

Geoscientific studies indicate that 80% of common sedimentary rocks have permeabilities 

in the range of 1.0-10-3 md, 13% are in the range of 10-3-1.0 md, 5% in the range of 1.0-

1,000 md, and only 2% have permeabilities greater than 1,000 md. Permeability can be 

divided into absolute, effective, and relative, depending on the amount of fluids present in 

the porous medium. Permeability, like porosity, is sensitive to variations in the texture and 

fabric of reservoir rocks. Unlike porosity, permeability varies with grain size, packing, sorting, 

and fabric. 

2.3.3 Pore Size  

Pore size is the common factor between permeability and hydrocarbon saturation. Different 

permeability models have described the pore space of the radii of a series of capillary tubes. 

The number of capillary tubes is equal to the porosity, so permeability is a function of 

porosity and the square of the pore radius. Kozeny (1927) replaced the surface area of the 

pore space with the pore radius and developed the well-known Kozeny equation, which 

relates permeability to porosity, surface area, and the Kozeny constant. 

However, these equations demonstrate that pore size and pore size distribution are 

important. In carbonates. There is no relationship between porosity and permeability unless 

pore size is included. 
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2.4 Introduction to Geomechanics 

Geomechanics role in petroleum engineering, providing a comprehensive understanding of 

how rocks respond to forces and pressures in hydrocarbon reservoirs. This discipline is 

crucial in processes such as wellbore stability, completion designs, hydraulic fracturing, 

production optimization, pressure control, reserve estimation, and formation damage 

prevention. 

Most materials possess the ability to resist and recover from deformations induced by 

various external forces, a property known as elasticity. When the changes in external forces 

are small, the deformation response is usually linear, which gives rise to the theory of 

elasticity. This theory is based on two main concepts: stress and strain. The key components 

in a Geomechanical model include the stress system and the deformations caused by this 

system. 

Since the decline in production causes changes in formation stresses, it is necessary to 

determine the magnitude of this alteration throughout the reservoir's life and manage it 

optimally. In the initial stages, solids production can be managed without significantly 

affecting production, but in the long term, well collapse could occur. This chapter will address 

the terms necessary to develop a Geomechanical model in a well and derive the equations 

that will model the behavior when solids production occurs. 

2.4.1 Stress 

A stress is defined as the force acting perpendicularly on a certain area. In the International 

System of Units, the units for stress are Pa (Pascals = N/m2), but in the oil industry, the psi 

units are used. Compared to the concept of pressure, stress is a tensor that describes the 

density of forces acting on all surfaces of a body through a given point. The mathematical 

form to represent it is as follows: 

𝜎𝑖𝑗 =
𝐹𝑖

𝐴𝑗
, (2. 4. 1) 

where σij will be the force acting in the i direction on an area oriented perpendicularly to the 

j direction. It is important to note that although the forces applied to an object are equal, the 

stresses will vary depending on the cross-sectional area; where the area (A) is smaller, the 

stress (σ) will be greater.  

It is also important to mention that when the force is not applied in the direction of the normal 

to the surface, the force must be decomposed (F) into a normal force (Fn) and a parallel 

force (Fp) to the surface, as shown in Fig 2.3, and thus two new equations are obtained: 

𝜎 =
𝐹𝑛

𝐴
, (2. 4. 2) 
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𝜏 =
𝐹𝑝

𝐴
. (2. 4. 3) 

where σ will be called normal stress and 𝜏 the shear stress. 

 

Figure 2. 3 Decomposition of forces (Fjaer, 2008) 

 

2.4.2 The stress tensor 

Stresses related to a normal surface in the x-axis are denoted as σx, τxy y τxz, which represent 

the normal stress, the shear stress related to a force in the direction of the y-axis, and the 

shear stress related to a force in the direction of the z-axis, respectively. Similarly, with 

stresses related to a normal surface in the y-axis, σy, τyx y τyz and the stresses related to a 

normal surface in the z-axis are denoted as σz, τzx y τzy. These nine components generate 

the stress tensor: 

𝜎 = (

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧

). (2. 4. 4) 

However, the notation used in the Eq. 2.4.4 is not very convenient for theoretical 

calculations. In Eq. 2.4.5, the subscripts i and j were changed to numbers 1, 2, and 3, which 

represent the x, y, and z axes, respectively. The first subscript i identifies the direction in 

which the stress tensor acts, while the second subscript j, represents a direction 

perpendicular to the plane. where σ11 = σx, σ23 = τyz, etc. 

𝜎 = (

𝜎11 𝜎12 𝜎13
𝜎12 𝜎22 𝜎23
𝜎13 𝜎23 𝜎33

). (2. 4. 5) 
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2.4.3 Equations of Equilibrium 

In addition to the forces acting on a body's surface, called contact forces, there are other 

forces acting on every part of the body, known as body forces. In geomechanics, the contact 

forces are the shear and normal stresses, or the stress tensor represented in Eq. 2.4.5. 

Body forces are produced by a force field around the body and depend on size and distance; 

an example of this is gravity. 

Body forces generate stress gradients. For example, an element in a formation is not only 

subject to the force of gravity but also bears the weight of the formation above it. Therefore, 

the total stress increases with depth. According to Fjaer (2008), the components of the body 

force per unit mass acting at a point x, y, and z of a body are denoted as fx, fy y fz. To continue 

with the stress tensor notation, the subscripts will be changed x, y, and z for 1, 2, and 3. 

To establish a balance of forces acting on a body, Newton's Second Law is used, which 

states that the sum of all forces acting on a body must produce a resultant force equal to the 

mass of the object multiplied by the acceleration the body experiences. In geomechanics, 

the accelerations are so small that they are set to zero. The equilibrium equations in three 

dimensions that describe this balance of forces are as follows: 

𝜕𝜎11

𝜕𝑥1
+
𝜕𝜎12

𝜕𝑥2
+
𝜕𝜎13

𝜕𝑥3
+ 𝜌𝑓1 = 0, (2. 4. 6) 

             
𝜕𝜎21

𝜕𝑥1
+
𝜕𝜎22

𝜕𝑥2
+
𝜕𝜎23

𝜕𝑥3
+ 𝜌𝑓2 = 0, (2. 4. 7) 

             
𝜕𝜎11

𝜕𝑥1
+
𝜕𝜎32

𝜕𝑥2
+
𝜕𝜎33

𝜕𝑥3
+ 𝜌𝑓3 = 0. (2. 4. 8) 

  

2.4.4 Strain 

Strain is defined as deformation due to stress (Wayne, 2008). The deformation of a body 

will result in a change in length per unit of original length. Like stresses, there are two types 

of deformations that a structure experiences: normal deformation and shear deformation. 

The goal of solving this problem in geomechanics is to calculate the displacement at any 

point in the rock based on the knowledge of the forces applied to the rock body. (Téllez, 

2021) 

2.4.4.1 Strain in one dimension 

Considering a cylindrical body in a state of uniaxial tension, where a normal stress is acting 

(σx), the body undergoes elongation. For geomechanics, it is necessary to establish a 

relationship between the deformation (ε) and the displacement (ux) caused by the presence 

of stress on the cylinder. If a linear relationship between displacement and deformation 
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distance is assumed, as shown in Fig. 2.4, the slope would be the deformation (ε) and the 

following equation is obtained: 

𝑢1 = 𝜀 (𝑥1 − 𝑥0) + 𝑢0. (2. 4. 9) 

If we consider that h = x1 – x0, then Eq. 2.4.9 becomes: 

𝑢1 = 𝜀ℎ + 𝑢0. (2. 4. 10) 

If the displacement is expressed as a function of the distances traveled, Eq. 2.4.10 changes 

to: 

𝑢(𝑥0 + ℎ) = 𝜀ℎ − 𝑢(𝑥0). (2. 4. 11) 

Solving the deformation (ε): 

ε =
𝑢(𝑥0+ℎ)−𝑢(𝑥0)

ℎ
. (2. 4. 12) 

Considering the limit of h approaches zero, Eq. 2.4.12 transforms to: 

𝜀 =
𝜕𝑢

𝜕𝑥
. (2. 4. 13) 

This last equation represents the relationship between the displacement between two points 

and the original length. This type of deformation is normal since a normal stress act on the 

plane perpendicular to the x-direction. It is important to mention that Eq. 2.4.13 is valid only 

when there is a compressive stress; in the case of a tensile stress, it would change to a 

negative sign. 

As mentioned earlier, there is another type of deformation that can be expressed as the 

change in the angle ψ between two directions that were initially orthogonal, as shown in Fig. 

2.5. This is shear deformation and is mathematically defined as follows: 

𝛾 =
1

2
 tan𝜓. 

(2. 4. 14) 
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Figure 2. 4 Plot of the relationship between displacement and distance (Téllez, 2021) 

 

 

 

 

Figure 2. 5 Shear deformation (Fjaer, 2008) 
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2.4.4.2 Strain in two dimensions 

For many applications, only infinitesimal deformations are considered, which implies that 

both normal and shear deformations are so small that their products and squares can be 

ignored. Considering deformations in two dimensions as shown in Fig. 2.6 and assuming 

these are small, the corresponding shear deformation in the x-direction is found to be the 

following: 

𝛾𝑥𝑦 =
1

2
 𝑡𝑎𝑛𝜓 ≈

1 

2
𝑠𝑒𝑛𝜓 = −

1

2
𝑐𝑜𝑠 (

𝜋

2
+ 𝜓) = −

1

2

𝑃′1⃗⃗ ⃗⃗ ⃗⃗   ∙ 𝑃′2⃗⃗ ⃗⃗ ⃗⃗   

|𝑃1⃗⃗⃗⃗ | ∙ |𝑃2⃗⃗⃗⃗ |
 

(2. 4. 15) 
 

 

The vectors 𝑃1⃗⃗  ⃗, 𝑃′1⃗⃗ ⃗⃗  ⃗ , 𝑃2⃗⃗⃗⃗   𝑦 𝑃′2⃗⃗ ⃗⃗  ⃗  are found in Fig. 2.6. When Δ x→ 0, Δ y→ 0 ,and squares and 

products of the strains are neglected, we find that: 

𝛾𝑥𝑦 =
1

2
 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
). 

(2. 4. 16) 
 

To give a better description of the state of deformations at a point in a three-dimensional 

body, the elongations and shear deformations corresponding to the 3 axes are defined as 

follows:  

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
, 

   
(2. 4. 17) 

 

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
, (2. 4. 18) 

 

𝜀𝑧 =
𝜕𝑤

𝜕𝑧
, (2. 4. 19) 

 

𝛾𝑥𝑦 = 𝛾𝑦𝑥 =
1

2
 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
), (2. 4. 20) 

 

𝛾𝑥𝑧 = 𝛾𝑧𝑥 =
1

2
 (
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
), (2. 4. 21) 

 

𝛾𝑦𝑧 = 𝛾𝑧𝑦 =
1

2
 (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
). (2. 4. 22) 

 

In Fig. 2.6, the notations used are u,v and w, using the equivalences, it is assumed that 

u=ux, v=uy y w=uz. 
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Figure 2. 6 Parameterization of shear deformation  (Fjaer, 2008) 

 

2.4.5 Strain Tensor 

Just like the stress tensor, it is possible to create a strain tensor by organizing Eqs. 2.4.17 - 

2.4.22, where the diagonal elements contribute to volumetric deformation, while the others 

contribute to shear deformation. 

 

𝜀 = (

𝜀𝑥 𝛾𝑥𝑦 𝛾𝑥𝑧
𝛾𝑥𝑦 𝜀𝑦 𝛾𝑦𝑧
𝛾𝑥𝑧 𝛾𝑦𝑧 𝜀𝑧

). 
(2. 4. 23) 

 

 

From Eq. 2.4.23, the volumetric strain is obtained, which is the relative decrease in volume. 

Volumetric strain is independent of the coordinate axes, making it an invariant; so, if the 

coordinate system changes, the trace of the tensor in the new coordinate system still has 

the same value. 

𝜀𝑣𝑜𝑙 = 𝜀𝑥 + 𝜀𝑥 + 𝜀𝑥. 
(2. 4. 24) 

 

There is also another mathematical notation for strains, in which strains are defined as 

follows: 

𝜀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
). 

(2. 4. 25) 
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2.4.6 Elastic Moduli 

The theory of linear elasticity deals with situations where there are linear relationships 

between the applied stresses and the resulting strain. Many rocks behave non-linearly when 

subjected to large stresses; however, their behavior is described by linear relationships due 

to slight changes in stress. Considering an object of length L and a cross-sectional area 

A=D2, like in Fig. 2.7, when the force F is applied on its end surface, the length of the sample 

is reduced to L’. The applied stress is then σx = F/A and the corresponding elongation is εx 

= (L – L’) / L. If the sample behaves linearly, there is a linear relation between σx and εx, 

which is Hooke´s Law (Fjaer, 2008). 

𝜀𝑥 =
1

𝐸
 𝜎𝑥. 

(2. 4. 26) 
 

While the coefficient E is called Young´s modulus, which is defined as the relationship 

between the applied stress and the resulting strain in the direction of that stress. Eq. 2.4.26 

represents this modulus, which measures the stiffness of a material or the resistance of the 

object to being compressed by uniaxial stress. From the mathematical relationship, it can 

be noted that if the stress value is kept constant and the strain is varied, high strain values 

will result in low Young's Modulus values, meaning less stress is required to achieve these 

strains. Conversely, when low strain values create high Young's Modulus values, it is 

interpreted that the solid requires greater stress to deform. 

𝐸 =
𝜎

𝜀
. 

(2. 4. 27) 
 

It is also important to mention the erosion process. Stavropoulou et al. (1998) established 

that the rock will experience an erosion phenomenon, causing the rock to start losing solids 

from the matrix. Consequently, its geomechanical properties will begin to have less impact 

on the medium, which modifies the Young's Modulus, taking erosion and porosity into 

account, 0 < 𝜙 < 1: 

𝐸 = �̅�(1 − 𝜙) 
(2. 4. 28) 

 

where �̅� is the Young´s Modulus of the matrix and E is the Young´s Modulus of the porous 

medium. Another consequence of the applied stress σx in Fig. 2.7, is an increase in the width 

D of the sample. The lateral elongation is εy = εz = (D – D’) / D. In general D’>D, thus εy and 

εz become negative. The ratio is defined as: 

𝜈 = −
𝜀𝑦

𝜀𝑥
. (2. 4. 29) 
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Eq. 2.4.29 is another elastic parameter known as Poisson's ratio, which is defined as the 

negative ratio of the strain perpendicular to the applied stress to the strain in the direction of 

the applied stress. In other words, it is the measure of lateral expansion relative to 

longitudinal contraction. The range of values that exist for Poisson's ratio in rocks is between 

0.15 and 0.25. 

 

Figure 2. 7 Deformation induced by uniaxial stress (Fjaer, 2008) 

Isotropic materials are materials whose response is independent of the orientation of the 

applied stress; for these materials, the principal axes of stress and strain always coincide. 

Within the relationships between stress and strain for isotropic materials, there are other 

important elastic parameters known as Lamé parameters, which include λ, which completely 

characterizes the linear elastic behavior of an isotropic solid under small deformations, and 

G, known as the shear or rigidity modulus, which is the measure of an object's resistance to 

shear deformation. It is analogous to Young's modulus, with the only difference being that 

the former is for shear stresses and Young's modulus is for normal stresses. The Lamé 

parameters are defined as follows: 

𝜆 =
𝑣𝐸

(1+𝑣)(1−2𝑣)
, 

(2. 4. 30) 
 

 

𝐺 =
1

2
(
𝜎12

𝜀12
), 

(2. 4. 31) 
 

or 

𝐺 =
𝐸

2(1+𝑣)
. (2. 4. 32) 
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Another important term is the bulk modulus K, which is defined as the ratio of a hydrostatic 

stress σp relative to the volumetric strain εvol. It can also be defined as the measure of an 

object's resistance to hydrostatic compression. 

𝐾 =
𝜎𝑝

𝜀𝑣𝑜𝑙
= 𝜆

2

3
𝐺. (2. 4. 33) 

 

Each of these moduli E, v, λ, K y G, as long as two are defined, the remaining ones can be 

determined since the constants are related to each other, and the moduli are measured in 

the same units as the stresses: Pascals, psi, or bars. 

2.4.7 Constitutive Equation: Stress-Strain Relationship 

A constitutive equation is a mathematical relationship that describes how the physical 

properties of a material change in response to changes in environmental or loading 

conditions. These equations are fundamental in engineering and physics for modeling the 

behavior of materials in various situations. For example, in the field of solid mechanics, a 

constitutive equation can describe how stress in a material varies as a function of the applied 

strain.  

Eqs. 2.4.25 and 2.4.28 relate a stress component to a strain component. In general terms, 

each component of a strain is a linear function of all the stress components. With the 

parameters defined in the previous section, it is possible to formulate a constitutive equation 

that relates strain and stress in three dimensions. Considering an isotropic medium 

simplifies these equations, leaving only one Young's modulus and one Poisson's ratio for 

the three axes. Additionally, by assuming that the rock's behavior is elastic, the following 

simplified form is obtained: 

𝐸 =
𝜎11

𝜖11
=

𝜎22

𝜖22
=

𝜎33

𝜖33
. (2. 4. 34) 

 

 

  and 

𝑣 = −
𝜀11

𝜀22
= −

𝜀11

𝜀33
. (2. 4. 35) 

 

 

The Strain in the direction ε11 due to the stresses in the three principal directions: 

𝜀11 = 𝜀11𝜎11 + 𝜀11𝜎22 + 𝜀11𝜎33 . (2. 4. 36) 
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Substituting the Eqs. 2.4.31 and 2.4.32 in the Eq. 2.4.33: 

𝜀11 =
𝜎11

𝐸
−
𝜎22𝑣

𝐸
−
𝜎33𝑣

𝐸
. 

(2. 4. 37) 

 

With the previous equation, the generalization of Young's modulus equations and Poisson's 

ratios in all directions will give the following result: 

{
 

 
𝜀11 =

𝜎11

𝐸
−
𝜎22𝑣

𝐸
−
𝜎33𝑣

𝐸

𝜀22 =
𝜎22

𝐸
−
𝜎11𝑣

𝐸
−
𝜎33𝑣

𝐸

𝜀33 =
𝜎33

𝐸
−
𝜎11𝑣

𝐸
−
𝜎22𝑣

𝐸

. 
(2. 4. 38) 

 

 

For shear stresses, the definition of the Shear Modulus is used in Eq. 2.4.30, arriving at: 

{
 

 
𝜀12 =

𝜎12

2𝐺

𝜀13 =
𝜎13

2𝐺

𝜀23 =
𝜎23

2𝐺

. 
(2. 4. 39) 

 

 

Eq. 2.4.31 is substituted into Eq. 2.4.37: 

{
 
 

 
 𝜀12 =

𝜎12(1+𝑣)

𝐸

𝜀13 =
𝜎13(1+𝑣)

𝐸

𝜀23 =
𝜎23(1+𝑣)

𝐸

. 
(2. 4. 40) 

 

Eqs. 2.4.36 and 2.4.38 will be represented in matrix form, using Voigt notation: 

[
 
 
 
 
 
𝜀11
𝜀22
𝜀33
2𝜀12
2𝜀13
2𝜀23]

 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
1

𝐸
−

𝑣

𝐸
−
𝑣

𝐸
0 0 0

−
𝑣

𝐸

1

𝐸
−
𝑣

𝐸
0 0 0

−
𝑣

𝐸
−

𝑣

𝐸

1

𝐸
0 0 0

0 0 0
2(1+𝑣)

𝐸
0 0

0 0 0 0
2(1+𝑣)

𝐸
0

0 0 0 0 0
2(1+𝑣)

𝐸 ]
 
 
 
 
 
 
 
 
 

  

[
 
 
 
 
 
𝜎11
𝜎22
𝜎33
𝜎12
𝜎13
𝜎23]

 
 
 
 
 

 . 
(2. 4. 41) 

 

 



 
 

29 
 

In matrix form, it is represented as follows: ε = Dσ; if one wishes to express Eqs. 2.4.36 and 

2.4.38 with stress as the dependent variable, then the inverse of D is obtained: 

[
 
 
 
 
𝜎11
𝜎22
𝜎33
𝜎12
𝜎13
𝜎23]

 
 
 
 

=
𝐸

(1+𝑣)(1−2𝑣)

[
 
 
 
 
 
 
 
1 − 𝑣 𝑣 𝑣 0 0 0
𝑣 1 − 𝑣 𝑣 0 0 0
𝑣 𝑣 1 − 𝑣 0 0 0

0 0 0
(1−2𝑣)

2
0 0

0 0 0 0
(1−2𝑣)

2
0

0 0 0 0 0
(1−2𝑣)

2 ]
 
 
 
 
 
 
 

  

[
 
 
 
 
 
𝜀11
𝜀22
𝜀33
2𝜀12
2𝜀13
2𝜀23]

 
 
 
 
 

. 
(2. 4. 42) 

 

 

Substituting Eqs. 2.4.29 and 2.4.31 into 2.4.40 yields the following relationships: 

{
 
 

 
 
𝜎11 = (𝜆 + 2𝐺)𝜀11 + 𝜆𝜀22 + 𝜆𝜀33
𝜎22 = (𝜆 + 2𝐺)𝜀22 + 𝜆𝜀11 + 𝜆𝜀33
𝜎33 = (𝜆 + 2𝐺)𝜀33 + 𝜆𝜀22 + 𝜆𝜀11

𝜎12 = 2𝐺𝜀12
𝜎13 = 2𝐺𝜀13
𝜎23 = 2𝐺𝜀23

. 
                                                         (2. 4. 43) 

 

 

The relationships from Eq. 2.4.42 can be written in a more compact form using Eq 2.4.25: 

𝜎𝑖𝑗 = 𝜆𝜀𝑣𝑜𝑙𝛿𝑖𝑗 + 2𝐺𝜀𝑖𝑗. 
(2. 4. 44) 

 

where 𝛿𝑖𝑗 is the Kronecker delta, which is a function of two variables: 

𝛿𝑖𝑗 = {
1 𝑠𝑖 𝑖 = 𝑗
0 𝑠𝑖 𝑖 ≠ 𝑗

. 
(2. 4. 45) 

 

  

2.4.8 Poroelasticity 

Is the way rocks react to elastic responses, stresses, etc., mostly depends on the non-solid 

parts of the materials. The pore space is not only important for producing hydrocarbons from 

reservoirs but also plays an important role in the mechanical behavior of rocks. An approach 

based on Biot's theory considers a macroscopic description of the porous and permeable 

medium, idealizing it as homogeneous and isotropic, allowing the study of static and 

dynamic mechanical properties. This approach is known as the Gassmann limit. 
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2.4.8.1 Suspension of Solid Particles in a Fluid 

Assuming a simple, porous medium, in which the solids and fluid deform independently of 

one another, where there is a suspension of solid particles in the fluid or a completely water-

saturated unconsolidated sand. If such a mixture is placed in a container, the volumetric 

deformation due to an external pressure σp: 

𝜀𝑣𝑜𝑙 =
𝜎𝑝

𝐾𝑒𝑓𝑓
. (2. 4. 46) 

 

where Keff is the bulk modulus of the mixture; the total deformation must be equal to the sum 

of the deformations of each component, weighted by the volume fraction of each component. 

𝜀𝑣𝑜𝑙 =
𝑉𝑠

𝑉𝑡𝑜𝑡
𝜀𝑣𝑜𝑙,𝑠 +

𝑉𝑓

𝑉𝑡𝑜𝑡
𝜀𝑣𝑜𝑙,𝑓. 

(2. 4. 47) 

 

 

where the subscripts s and f mean solid and fluid, respectively, and Vtot is the total volume. 

We define porosity as the volume occupied by the fluid relative to the total volume: 

𝜙 =
𝑉𝑓

𝑉𝑡𝑜𝑡
. 

(2. 4. 48) 
 

 

𝑉𝑠

𝑉𝑡𝑜𝑡
= 1 − 𝜙. (2. 4. 49) 

 

The volumetric deformations of the solid and the fluid are given by the bulk modulus, using 

Eqs.2.4.33 and rewriting Eq. 2.4.47: 

𝜀𝑣𝑜𝑙 = (1 − 𝜙)
𝜎𝑝

𝐾𝑠
+ 𝜙

𝜎𝑝

𝐾𝑓
. (2. 4. 50) 

 

 

Combining Eqs. 2.4.46 and 2.4.50, the effective modulus of the suspension can be defined: 

1

𝐾𝑒𝑓𝑓
=

1−𝜙

𝐾𝑠
+

𝜙

𝐾𝑠
. (2. 4. 51) 
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2.4.8.2 Effective stress 

As mentioned before, which rocks react to mechanical stresses and deformations do not 

depend solely on the solid parts; the fluids within the rock also exert pressure on it. The fluid 

in the pores affects the way rocks fail due to pore pressure and the chemical interaction 

between the rock and fluid. For the purposes of this work, only the influence of the 

mechanical effect generated by pore pressure will be discussed, Pp. Such mechanical 

stress, a pressure that acts perpendicularly, can be considered a tensile stress. However, 

in the case of a rock with isotropic behavior, the effect will be the same in any of the three 

orthogonal directions. Terzaghi (1923) defined the concept of effective stress, using the 

following considerations: 

1. Increasing the external hydrostatic pressure produces the same change in the 

material's volume as decreasing the pore pressure by the same amount. 

2. The shear stress depends only on the difference between a normal stress and the 

pore pressure. 

3. The soil is homogeneous and isotropic. 

4. The soil is fully saturated with a fluid. 

5. The solid particles are incompressible. 

6. Compression and flow occur in one direction. 

7. Darcy's Law is valid for all hydraulic gradients. 

The mathematical form to express it is as follows: 

𝜎′ = 𝜎𝑖𝑗 − 𝛿𝑖𝑗𝑃𝑝. 
(2. 4. 52) 

 

This means that the pore pressure only exerts normal stresses on the stress tensor, as the 

fluid pressure does not act in a shear manner (Zoback, 2007). One way to express the pore 

pressure is as follows: 

𝑃𝑝 = [

𝑃𝑝 0 0

0 𝑃𝑝 0

0 0 𝑃𝑝

]. 
(2. 4. 53) 

 

 

The difference between the stress tensor and the pore pressure will result in the effective 

stress, which is the stress the rock grains support themselves. Using Eqs. 2.4.52 and 2.4.53, 

we obtain: 

𝜎′ = [

𝜎11 𝜎12 𝜎13
𝜎12 𝜎22 𝜎23
𝜎13 𝜎23 𝜎33

] − [

𝑃𝑝 0 0

0 𝑃𝑝 0

0 0 𝑃𝑝

] = [

𝜎11 − 𝑃𝑝 𝜎12 𝜎13
𝜎12 𝜎22 − 𝑃𝑝 𝜎23
𝜎13 𝜎23 𝜎33 − 𝑃𝑝

]. 
(2. 4. 54) 
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Just like Young's modulus, the geomechanical parameters begin to lose value as the rock 

starts to erode, leading to the following equation: 

𝜎′ = (1 − 𝜙) 𝜎′̅̅̅̅ = (1 − 𝜙) [

𝜎11 − 𝑃𝑝 𝜎12 𝜎13
𝜎12 𝜎22 − 𝑃𝑝 𝜎23
𝜎13 𝜎23 𝜎33 − 𝑃𝑝

]. 
(2. 4. 55) 

 

  

2.4.9 Mohr´s Circles 

Mohr's circles are a 2-D geometric representation of stresses, which is very useful for 

making quick and efficient estimates to visualize the relationship between normal and shear 

stresses at a point on different planes. Fig. 2.8 shows a triaxial test in which two stresses 

act on an object. When the compressive force of the stresses exceeds the rock's 

compressive strength, the rock fractures and creates a failure plane. Therefore, Mohr's 

circles decompose the compressive force into a normal stress and a shear stress acting on 

the failure plane. (Téllez, 2021) 

 

 

Figure 2.8 Stress Diagram of a Triaxial Tests (Zoback, 2007) 

 

A diagram like Fig. 2.9 shows a body subjected to a situation like a triaxial test. According 

to Newton's fundamental law of dynamics, it is stipulated that the resultant set of forces 

acting on a body is equal to the mass of the body multiplied by its acceleration: 

∑ 𝐹�̅� = 𝑚𝑎 
𝑛
𝑖=1 . 

(2. 4. 56) 
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Suppose it is necessary to obtain the relationship between the stresses generated in the 

areas Ax y Ay, considering very small deformations. In that case, the acceleration is 

approximated to zero, setting equation (2.4.56) to zero. The force balance in the x-axis is as 

follows: 

∑ 𝐹�̅� = −𝜎𝑥𝐴𝑥 − 𝜏𝑛𝐴𝑛𝑠𝑒𝑛(𝜃) + 𝜎𝑛𝐴𝑛cos (𝜃)
𝑛
𝑖=1 = 0. 

(2. 4. 57) 

 

 

 

And for the force balance in the y-axis: 

∑ 𝐹�̅� = −𝜎𝑦𝐴𝑦 + 𝜏𝑛𝐴𝑛𝑐𝑜𝑠(𝜃) + 𝜎𝑛𝐴𝑛sen (𝜃)
𝑛
𝑖=1 = 0. 

 

(2. 4. 58) 
 

where An is the normal area where the normal stress acts (σn) on the inclined plane at θ 

degrees. Considering that Ax = An cos(θ) and Ay = An sen(θ), rewriting Eqs. 2.4.57 and 2.4.58 

and solving for An: 

−𝜎𝑥cos (𝜃) − 𝜏𝑛𝑠𝑒𝑛(𝜃) + 𝜎𝑛cos (𝜃) = 0, 
(2. 4. 59) 

 

 

−𝜎𝑦 sen(𝜃) + 𝜏𝑛𝑐𝑜𝑠(𝜃) + 𝜎𝑛sen (𝜃) = 0. 
(2. 4. 60) 

 

If equation (2.4.59) is multiplied by cos(θ), Eq. 2.4.60 by sen(θ) and both are added, we 

obtain: 

−𝜎𝑥𝑐𝑜𝑠
2(𝜃) − 𝜏𝑛 cos(𝜃) 𝑠𝑒𝑛(𝜃) + 𝜎𝑛 = 0. (2. 4. 61) 

 

Considering the following trigonometric relationships:  

𝑐𝑜𝑠2(𝜃) =
1+cos (2𝜃)

2
, 

(2. 4. 62) 

 

 

𝑠𝑒𝑛2(𝜃) =
1−cos (2𝜃)

2
. 

(2. 4. 63) 

 

and substituting into Eq. 2.4.61 we obtain: 

𝜎𝑛 =
(𝜎𝑥+𝜎𝑦)

2
+
(𝜎𝑥−𝜎𝑦)

2
cos (2𝜃). 

(2. 4. 64) 
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To obtain the shear stress on the plane from equations (2.4.59) and (2.4.60), they should 

be multiplied by sen(θ) and cos(θ) respectively to subtract them and obtain the following: 

𝜏𝑛 = −
(𝜎𝑥−𝜎𝑦)

2
𝑠𝑒𝑛(2𝜃). 

(2. 4. 65) 
 

 

Equations (2.6.64) and (2.6.65) represent parametric equations to create Mohr's circles. In 

Fig 2.10 the coordinates are σn y τn whereas 2θ is the parameter: 

[𝜎𝑛 −
(𝜎𝑥+𝜎𝑥)

2
]
2

+ 𝜏𝑛
2 = [

(𝜎𝑥−𝜎𝑥)

2
]
2

. 
(2. 4. 66) 

 

 

 

Figure 2. 9 Object Subject to Normal and Shear Stresses (Téllez, 2021) 

 

 

Figure 2.10 Mohr's Circle in Two Dimensions 
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2.4.10 The Mohr-Coulomb criterion 

The Mohr-Coulomb failure criterion, first introduced by Coulomb in 1973, through his 

experimental studies, found that soil failure place occurs along the plane due to shear stress 

(τ). He found two phenomena: firstly, resistance to failure is observed due to a frictional 

force, which is proportional to the normal stress (σ) acting on the plane and multiplied by a 

constant (µf). Secondly, material failure does not manifest until an initial force, or an internal 

cohesive force of the material is overcome (C). As a result, a mathematical model was 

developed that combines the values of shear and normal stresses to predict the occurrence 

of failure in the material. 

The Mohr-Coulomb criterion is represented in Fig. 2.11 and is obtained through triaxial or 

shear tests. These tests provide the angles of the failure plane and the cohesion of the 

material. By plotting these data, a diagram similar to Fig. 2.11 is obtained, where the points 

of Mohr's circle can be visualized. If a straight line touches the circle, it is considered that 

the material will fail. From the relationship between these parameters, the following equation 

is obtained: 

𝜏 = 𝜎 tan(𝜙) + 𝐶. 
(2. 4. 67) 

 

In Eq. 2.4.67, the parameter C, representing cohesion, describes a linear relationship 

between shear stress and normal stress. This parameter intercepts the y-axis at a point that 

reflects that, in the absence of normal stress, a minimum shear stress is needed to initiate 

failure in the material. In other words, cohesion indicates the intrinsic resistance of the 

material to deformation and failure, even when no normal stress is applied. Another way to 

describe the Mohr-Coulomb criterion is as follows: 

𝜏 = 𝜎𝜇 + 𝐶. 
(2. 4. 68) 

 

where μ represents the coefficient of friction, which depends on the slope of the graph. The 

criterion indicates that a state of stress below the straight line in Fig. 2.11 will not generate 

failure on any plane. If the stresses reach the failure line, then the rock will fail in shear. 

Mathematically, rock failure will occur when: 

𝜏 > 𝜎𝜇 + 𝐶. (2. 4. 69) 

 

Another form to represent Eq. 2.4.67 is observed in Fig. 2.11, where it is shown that |CP| = 

(|AO| + |OC|) sen(𝜙) and considering that σx y σy are replaced by σ1 y σ3: 

1

2
(𝜎1 − 𝜎3) = [𝑐𝑜𝑡(𝜙) 𝐶 +

1

2
(𝜎1 + 𝜎3)] 𝑠𝑒𝑛(𝜙), (2. 4. 70) 
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1

2
(𝜎1 − 𝜎3) = [𝑐𝑜𝑠(𝜙) 𝐶 +

1

2
(𝜎1 + 𝜎3)] 𝑠𝑒𝑛(𝜙). (2. 4. 71) 

 

 

If the following terms are considered: 

𝜎𝑚 =
1

2
(𝜎1 + 𝜎3), 𝜏𝑚 =

1

2
(𝜎1 − 𝜎3) 

and they are substituted into Eq. 2.4.71, the failure criterion would be represented as: 

𝜏𝑚 = cos(𝜙) 𝐶 + 𝜎𝑚𝑠𝑒𝑛(𝜙). (2. 4. 72) 

 

 

Figure 2.11 Mohr-Coulomb Failure Criterion with fault curve with AL line. Failure will occur 

on this specific plane at an angle β, marked by the CP line (Jaeger, 2007) 

 

2.4.11 Cohesion 

Cohesion in rocks refers to the internal resistance of a rock to being fractured or displaced 

by external forces. It measures the ability of the individual particles or grains of the rock to 

stay bonded together. This property is influenced by several factors, such as mineralogical 

composition, rock texture, porosity, fractures, and fluids in the rock's pores.   

Cohesion is one of the two main components of rock strength, along with friction. Together, 

cohesion and friction determine the overall resistance of the rock to fracture or deformation 

when subjected to external forces, such as soil load or underground fluid pressure. The 

grains are tightly bonded in more cohesive rocks, making the rock more resistant to fracture 

and deformation. On the other hand, in less cohesive rocks, the grains may be less bonded 

and more prone to separation under load. 
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Plumb et al. (1994) found a relationship between cohesion and porosity, stating that lower 

porosity tends to result in higher cohesion, meaning the rock is highly compacted. 

Conversely, rocks with high porosity tend not to be well compacted. Rumpf et al. (1995) 

describe a simple damage law, which outlines the relationship between cohesion and 

porosity, considering the phenomenon of erosion: 

𝐶 = 𝐶̅(1 − 𝜙) (2. 4. 73) 

 

 

If we apply Eq. 2.4.73 to the Mohr-Coulomb failure criterion, we obtain the following: 

𝜏 = 𝜎𝜇 + 𝐶̅(1 − 𝜙) (2. 4. 74) 

 

Eq 2.4.74 refers to the Mohr-Coulomb failure criterion, taking into consideration the erosion 

of the rock, increased porosity, and decreased cohesion. 

 

2.4.12 Local stresses 

This theory describes a reservoir under an in-situ stress system (vertical stress (σv), 

maximum horizontal stress (σH), and minimum horizontal stress (σh)). However, this stress 

system does not match the stress system that develops during the drilling of a well, as drilling 

physically, chemically, thermodynamically, and hydraulically alters the stress system around 

the reservoir, and the in-situ stress system redistributes to a local stress system. The new 

local stress system is shown in Fig. 2.12, where the stresses around the wellbore wall are 

described by the radial stress (σr), tangential stress (σθ), and axial stress (σa). 

According to Pasic et al. (2007), the local stresses result from the combination of in-situ 

stresses and hydraulic effects on the wellbore wall (r=rw), and are described as follows: 

𝜎𝑟 = 𝑝𝑤𝑓, (2. 4. 75) 
 

𝜎𝜃 = (𝜎𝑥 − 𝜎𝑦) − (𝜎𝑥 − 𝜎ℎ) cos(2𝜃) − 𝑝𝑤𝑓. (2. 4. 76) 
 

With the previous equations and Fig 2.12, it can be observed that the radial stress (σr) acts 

in all directions perpendicular to the well and depends on the flowing bottomhole pressure 

(pwf), while the tangential stress (σθ) is a combination of stresses surrounding the well and 

is the most disturbed during production. 
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Figure 2. 12 Local Stress System Around a Well (Pasic, 2007) 

 

2.5 Solids Production 

When hydrocarbons are extracted from the reservoir, sometimes eroded solid particles 

accompany the fluid to the well, an unwanted byproduct known as solids production. 

Produced solids can vary from a few grams per cubic meter of fluid, representing a minor 

issue, to catastrophic amounts that can completely fill the borehole. It is estimated that 70% 

of the world's hydrocarbon reserves are found in reservoirs where solids production is a 

significant probability at some point. This phenomenon is common in sand reservoirs but 

also in carbonate and coal reservoirs. 

The main cause of solids production is the mechanical failure of the formation near the well 

due to the effective stresses acting on the borehole walls and flow conditions that exceed 

the mechanical strength of the reservoir rocks. The collapse and disintegration of carbonate 

formations in oil wells can occur under certain circumstances, but their frequency depends 

on various geological, operational, and environmental factors. Some carbonate formations 

may be more prone to collapse and disintegration than others, depending on factors such 

as mineralogical composition, porosity, fractures, and geological history. For example, 

carbonate formations with high porosity and weaker structure may be more susceptible to 

these issues. 

The extraction of hydrocarbons can affect the stability of the carbonate formation. Fluid 

extraction can reduce reservoir pressure and alter stress conditions in the formation, 

increasing the risk of collapse and disintegration. Additionally, the techniques used during 
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drilling and well completion can influence the stability of the carbonate formation. For 

example, applying high drilling pressures or using inadequate drilling fluids can increase the 

risk of formation collapse and disintegration. 

Although the collapse and disintegration of carbonate formations can occur in oil wells, they 

are not common events in all operations. However, it is crucial that well operators are aware 

of the factors that can increase the risk of these issues and adopt appropriate preventive 

and mitigation measures to ensure the safety and efficiency of operations. 

Solid’s production in carbonate reservoirs is a common factor in many wells during 

production stages and especially under depletion conditions. Many well-established 

techniques for predicting sand production exist, while for carbonates, there are only a few 

case studies of these techniques (Asadi, 2017). 

2.5.1 Well Completion and Solids Control 

A well-completion method that does not include specific equipment to prevent or reduce the 

consequences of solids production is an open hole or natural completion. This technique 

leaves the hole without casing and cement, allowing hydrocarbons to flow into the well 

through its walls. The flow area is calculated as the hole's circumference multiplied by the 

length of the open hole section within the reservoir. This simple completion requires the 

formation to be relatively strong and stable. Otherwise, support can be added through gravel 

packing, which acts as a filter for solids while allowing hydrocarbon production through the 

gravel. However, gravel packing increases costs and can reduce well productivity due to 

potential clogging of these filters. 

In weak or unconsolidated formations, casings are installed and cemented in the formation 

to stabilize the hole. Subsequently, perforations are made in the casings in the reservoir 

zones to allow hydrocarbons to flow into the well, creating cylindrical holes of 1-2 cm in 

diameter and 20-50 cm in length. The size and shape of these perforations vary considerably 

depending on the type of charge used, the properties of the formation, and the well pressure 

relative to the pore pressure in the formation during the creation of the perforations. 

A third well-completion alternative is to create a fracture in the formation and fill it with 

proppant. This technique creates a highly permeable channel in the formation, facilitating 

hydrocarbon production. It is widely used in low-permeability and unconsolidated formations. 

Each technique has advantages and disadvantages, and the choice of the most suitable 

one depends on the reservoir's specific characteristics and operational objectives. 

2.5.2 Solids Production in Limestone Reservoirs 

Solid’s production can be a significant problem in limestone reservoirs. Predicting and 

controlling limestone production can be more problematic than sand production (Fjaer, 

2008). In some cases, limestone is produced slowly at a relatively constant rate. Similarly, 

there are occasions when large amounts of limestone enter the well, which are sufficient to 

kill the well.  
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Fjaer (2008) believes that the mechanisms causing sand production can also cause 

limestone production under certain conditions and effects related to the type of rock. First, 

the matrix permeability in limestones is low, on the order of 1 md. This implies that tensile 

failure conditions are more likely to occur in limestones. Second, the collapse pressure for 

high-porosity limestones is low, so this type of failure should be considered along with shear 

and tensile failure.  

When a rock collapses, the pore volume is significantly reduced. This induces a sudden 

increase in pore pressure, which takes time to dissipate in a low-permeability material like 

limestone. The result can be a significant increase in pore pressure, leading to an effective 

mean tensile stress and liquefaction conditions.  

2.5.3 Sand Control Method Applied in Carbonate Reservoirs 

The methods for in-situ stress and rock strength characterization are well-defined, and there 

are many publications for predicting sand production experimentally, analytically, and 

numerically. However, there are few of these techniques for solids production in carbonate 

reservoirs.  

Asadi and Khaksar (2017) presented a field case study applying an analytical sand 

evaluation technique to predict solids production in a carbonate gas reservoir in the Vietnam 

Sea. The method consists of a poroelastic solution, which considers stresses, rock strength, 

reservoir, and well pressures, as well as the trajectory of the perforations and the well to 

predict the occurrence of solids. The properties of the carbonate reservoir in the Nam Con 

Son (NCS) block are relatively constant; however, the carbonates in the reservoir interval 

are highly heterogeneous, with poorly sorted grains, mostly limestones and dolomites. The 

reservoir has an average permeability of 1.0 Darcy, a porosity of 36%, reservoir pressure 

between 2000 and 2050 psi, and a formation temperature of 70 to 80 °C. 

The analytical sand prediction method was proposed by Wilson (2002) and Rahman (2008). 

It assumes that the rock surrounding a well or a perforation with arbitrary orientation fails in 

shear when the maximum effective compressive stress exceeds the effective strength of the 

formation. The effective strength of the formation (U) is determined from a calibrated core 

applied to a Thick-Walled Cylinder test (TWC). U is multiplied by an empirical factor called 

the Effective Strength Factor (ESF), which relates to sanding data from production data or 

well tests. Observations of solids production during a formation test, formation fluid testing 

and sampling, and production data are ideal for calibrating the ESF value for reservoir and 

completion types.  

All producing wells in the field are completed in open holes with gravel packing and a screen, 

where no solids production has been observed at the surface, making it difficult to calibrate 

the solids production model. However, due to the decline in production of two observation 

wells after a significant pressure drawdown, it is believed that production-induced rock 

failure has caused clogging in the screen by fine-grained solids, reducing production.  
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3. Hydromechanical Model 

This section addresses the hydromechanical aspects of solids production when carbonates 

disintegrate from the matrix and from the fluids in collapse situations. The processes 

involved in this phenomenon are associated with the transport of solids and fluids, rock/fluid 

interaction, and rock deformation. In this section, only the first and third phenomena are 

described. 

Hydromechanical instability is caused by the internal erosion of the rock caused by erosive 

agents such as water. The friction of this fluid generates the decoupling and movement of 

solid particles. Most carbonates tend to present fractures, which facilitate the erosion of the 

rock matrix by fluids. 

(Vardoulakis, Stavropoulou, & Papanastasiou, 1996) They developed a proposal that 

presents a deterministic method based on the three-phase mixture theory for a continuous 

medium, composed of solids, movable solids, and fluids. This method considers rock 

deformation under radial flow, and radial symmetry around the wellbore axis is assumed. 

These conditions imply that the deformation in the well is analyzed in a plane normal to its 

axis.  

The three-phase mixture approach allows for more accurate modeling of hydromechanical 

phenomena, considering the interaction between fixed solids, movable solids, and fluids 

within the formation. This method considers how the stress field induces deformations in the 

solid skeleton, and how these deformations can influence the transport of solids and fluids. 

However, it is assumed that the deformation does not significantly alter the flow conditions. 

This methodological approach is useful for addressing hydromechanical instability and 

internal erosion in carbonate formations, providing a more detailed understanding of the 

processes that lead to solids production and their impact on well integrity. 

 

3.1 Mathematical Model 

Consider a volume element dV of a saturated porous medium. The volume consists of the 

following components: solid (s), fluid (ff), and movable solids (fs) with their respective mass 

dMs, dMff, dMfs, and volume dVs, dVff, dVfs. In Fig 3.1 the symbol dVv is used to indicate the 

volume of interconnected pores in the medium, which is occupied by a mixture of fluids and 

movable particles: 

𝑑𝑉𝑣 = 𝑑𝑉𝑓𝑓 + 𝑑𝑉𝑓𝑠. (3. 1. 1) 
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Figure 3. 1 Phase Diagram of a Porous Medium Saturated with a Fluid and Movable 
Particles. (Vardoulakis, Stavropoulou, & Papanastasiou, 1996) 

The movable particles are in suspension and move along with the fluid. Any other particle 

that is trapped within the pore space will be regarded part of the solid phase. It is also 

assumed that the fluid and the movable particles have the same velocity at any given instant. 

Similarly, it is considered that the solid phase refers only to the flow of the solid part of the 

rock moving as a continuous medium, as shown in Fig. 3.2. According to this, the velocities 

of the different components are defined as follows: 

𝑣𝑖
𝑓𝑠
= 𝑣𝑖

𝑓𝑓
= 𝑣�̅�, (3. 1. 2) 

 

𝑣𝑖
𝑠 = 0. (3. 1. 3) 

 
The previous expressions explain that solid particles can have negligible movement and be 

considered part of the solid phase, or they can have the velocity of the fluid and be 

considered part of the mixture occupying the pore space. 
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Figure 3. 2 Pore Channel with Movable Particles (Vardoulakis, Stavropoulou, & 
Papanastasiou, 1996) 

The volume fraction of the pores is expressed as absolute porosity: 

𝜙 =
𝑑𝑉𝑣

𝑑𝑉
 (3. 1. 4) 

 
The concentration of movable solids is indicated as follows: 

𝑐 =
𝑑𝑉𝑓𝑠

𝑑𝑉𝑣
 (3. 1. 5) 

 
The variables c y 𝜙 are a function of space (xi) and time (t). The fluid densities ρff and of the 

movable fluids ρfs are define as follows: 

𝜌𝑓 =
𝑑𝑀𝑓𝑓

𝑑𝑉𝑓𝑓
, (3. 1. 6) 

 

𝜌𝑠 =
𝑑𝑀𝑓𝑠

𝑑𝑉𝑓𝑠
=

𝑑𝑀𝑠

𝑑𝑉𝑠
. (3. 1. 7) 

 
The partial density of the mixture is: 

�̅� =
𝑑𝑀𝑓𝑓+𝑑𝑀𝑓𝑠

𝑑𝑉𝑓𝑓+𝑑𝑉𝑓𝑠
. (3. 1. 8) 

 
 

Taking into consideration Eqs. 3.1.5, 3.1.6, 3.1.7, and substituting into Eq. 3.1.8: 

�̅� = (1 − 𝑐)𝜌𝑓 + 𝑐𝜌𝑠. (3. 1. 9) 
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Eq. 3.1.9 defines the density of the mixture, where it can be understood that a higher 

concentration results in a more significant influence of the solid. The partial density of the 

movable solid phase can be defined as follows: 

�̅�𝑓𝑠 =
𝑑𝑀𝑓𝑠

𝑑𝑉
= 𝑐𝜙𝜌𝑠. (3. 1. 10) 

 
The discharge velocity of the mixture is defined as: 

𝑣𝐷 =
𝑑𝑉

𝑑𝑆 𝑑𝑡
. (3. 1. 11) 

 

where dV is the flow volume through the cross-sectional area dS in each time dt. The 

variable vDrefers to Darcy's velocity, representing fluid flow velocity through the porous 

medium. 

3.2 Law of Conservation of Mass 

This section will present the mass conservation equations to describe the movement of the 

solid phase, which includes moving particles and fluid. The principle of mass conservation 

states that the matter within a closed system remains constant in quantity; this implies that 

the amounts of mass at different times and places within the system must remain constant. 

3.2.1 Relation of Mass with a Control Volume 

The control volume is defined by the symbol Ω and is bounded by a surface ∂Ω. According 

to the law of conservation of mass, the change in mass within Ω is equal to the difference 

between the amount of mass entering the system Ω and the amount of mass leaving it. In 

this context, the control volume Ω represents a porous rock saturated with fluid and movable 

solids and is characterized by having a fixed volume and position.  

Density, which relates mass and volume, is a property of the solid and the fluid. 

𝜌 =
𝑚

𝑉Ω
. (3. 2. 1) 

 
Density is an intensive property defined in any region of the system Ω; in the case of a large 

reservoir, density, and porosity may vary. If Ω is divided into very small parts, this would 

approximate the problem such that: 

Mi=ρi Vi for i=1, 2,N 

If the total mass of the system is calculated, we obtain: 

𝑚 = ∑ 𝑀𝑖 =
𝑁
𝑖=1 ∑ 𝜌𝑖𝑉𝑖

𝑁
𝑖=1 . (3. 2. 2) 
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To represent a continuous medium, the system must be divided into the maximum known 

number of parts, when N→ꝏ, rewriting the previous equation: 

𝑚 = 𝑙𝑖𝑚
𝑁→∞

∑ 𝜌𝑖𝑉𝑖
𝑁
𝑖=1 . (3. 2. 3) 

 

Eq. 3.2.3 is the definition of a volume integral, so the equation for the mass contained in the 

entire system is defined as follows: 

𝑚 = ∫ 𝜌(𝑥, 𝑡)𝑑𝑉
Ω

. (3. 2. 4) 
 

The subscript Ω in Eq. 3.2.4 indicates that the integral is defined with respect to the control 

volume, and dV represents a differential element of the system volume. Eq. 3.2.4 is modified 

when heterogeneity in properties is introduced, it turns out that mass does not vary as a 

function of space, given that it was initially mentioned that Ω it is a fixed control volume, and 

the mass in Eq. 3.2.4 represents that of the entire system. In conclusion, mass only varies 

as a function of time. Taking this into account, it can be concluded that: 

𝑚(𝑡) = ∫ 𝜌(𝑥, 𝑡)𝑑𝑉
Ω

. (3. 2. 5) 
 

It can be observed that in Eq. 3.2.5 porosity is not involved, because this equation serves to 

model the fluid, the movable solid, and the fixed solid. 

 

3.2.2 Mass flow 

The fluid and the movable solids will flow through the porous medium, with fluid and movable 

solid entering and leaving over a certain time interval. Therefore, it is important to quantify 

how much mass enters and leaves through the boundaries of the control volume. 

Considering that the fluid and the movable solids travel at a certain velocity (v) through a 

certain area (A), we can obtain: 

𝐹𝑚 = 𝜌𝑣𝐴. (3. 2. 6) 
 

In Eq. 3.2.6, Fm refers to the mass flux and is represented as a scalar quantity, which is not 

general in a flow system. In a flow system, velocity is represented as a vector quantity and 

the area is a plane through which the mass flux passes. If one wants to quantify the amount 

of mass passing through this plane, a coordinate system must first be established as shown 

in Fig. 3.3, where the plane is aligned with the y and z-axes. In this configuration, the velocity 

vector manifests only in the x direction and aligns with the positive direction opposite to the 

x-axis. Therefore, the correct expression would be: 

𝐹𝑚 = −𝜌(𝑣 ∙ 𝑖 )𝐴𝑝 = −𝜌𝑣𝑥𝐴𝑝. (3. 2. 7) 
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The difference between Eqs. 3.2.6 and 3.2.7 lies in the fact that in Eq. 3.2.7 the velocity 

variable is formulated in a vectorial form. However, it is important to note that in this case it 

is assumed that the plane through which the mass flux passes is perpendicular to the x-axis. 

This may not always be correct, as the plane can have any arbitrary shape. Therefore, if 

one wants to calculate the mass flux, the velocity vector must be decomposed into directions 

different from the one in this case. If we consider that the projection of the velocity vector 𝑣 , 
which passes through an area perpendicular (Ap), with respect to the normal is obtained with 

the dot product between them, we get: 

𝐹𝑚 = −𝜌(𝑣 ∙ �⃗� )𝐴𝑝. (3. 2. 8) 
 

Equation (3.2.8) states that the velocity vector shown in Fig. 3.3 can enter in any direction, 

and by projecting the dot product of the normal vector (�⃗� ), the final value of the velocity 

vector with respect to the YZ plane will be obtained. Additionally, to adjust the direction, a 

negative sign is introduced to indicate that Eq. 3.2.8 refers to a flow going from outside to 

inside. Therefore, the normal vector outward and −�⃗�  points inward. Dividing the surface of 

the plane into N elements of small areas where the flux is calculated through each element, 

Eq. 3.2.8 transforms into: 

Fmi=−(𝑣𝑖⃗⃗  ⃗ ∙ 𝑛𝑖⃗⃗  ⃗)𝜌𝑖𝐴𝑝𝑖 for i=1, 2, N 

Since this equation will model the total flux, the fluxes of each subdivision of elements are 

summed in ∂Ω and the net flux is calculated as: 

𝐹𝑚 = ∑ 𝐹𝑚𝑖 = ∑ −(𝑣𝑖⃗⃗⃗  ∙ 𝑛𝑖⃗⃗  ⃗)𝜌𝑖𝐴𝑝𝑖
𝑁
𝑖=1

𝑁
𝑖=1 . (3. 2. 9) 

 

Therefore, assuming the sum of the limit of elements to calculate the net flux, we have: 

𝐹𝑚 = 𝑙𝑖𝑚
𝑁→∞

∑ 𝐹𝑚𝑖
𝑁
𝑖=1 = 𝑙𝑖𝑚

𝑁→∞
∑ −(𝑣𝑖⃗⃗⃗  ∙
𝑁
𝑖=1

𝑛𝑖⃗⃗  ⃗)𝜌𝑖𝐴𝑝𝑖. 
(3. 2. 10) 

 

Since we are discussing the total flux of the system, it only varies with respect to time, and 

equation (3.2.10) becomes: 

𝐹𝑚(𝑡) = −∫ 𝜌(𝑣 ∙ �⃗� )𝑑𝐴𝑝𝜕Ω
. (3. 2. 11) 

 

Eq. 3.2.11 expresses the mass flux through the surface ∂Ω of a control volume Ω at a certain 

time t. It is important to consider that 𝑣  refers to the velocity of the fluid considering the entire 

plane. Therefore, when it is necessary to know the velocity through porous media, it is 

essential to take porosity into account and convert it to Darcy velocity.  
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3.2.3 Source and/or Sink Term 

In the previous subsection, an equation representing the mass flux was obtained, but it does 

not yet address the problem of solids production, as it does not calculate the movable solids 

generated from the rock matrix. These movable solids lose cohesion strength as erosion 

and porosity increase. This suggests that a certain amount of mass must appear over time 

as an injected volume of solids, while at the same time, an amount of rock matrix (fixed) is 

eroded. The parameter that addresses this phenomenon is the source/sink term, which 

considers the external mass flux of the system and includes the generation and production 

of movable solids (𝑝). This term is defined as follows: 

𝑞𝑚 = 𝑝𝑞. (3. 2. 12) 
 

Eq. 3.2.12 describes the amount of mass entering a system, but it does not explicitly specify 

that the system into which it will be injected or from which it will be produced is the control 

volume Ω. Therefore, the �̅� is introduced, which characterizes the amount of volume 

produced from fluid or movable solids per unit of time and unit of rock volume (control 

volume). This variable allows Eq. 3.2.12 to explicitly relate to the control volume system Ω, 

and thus we obtain: 

𝑞𝑚 = ∫ 𝑝�̅�𝑑𝑉
Ω

. 
(3. 2. 13) 

 

 

 

Figure 3. 3 Vector Flow through a YZ Plane. 
(Téllez, 2021) 
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Eq. 3.2.13 only varies with respect to time, as spatially it represents the entire control 

volume, which is fixed: 

𝑞𝑚(𝑡) = ∫ 𝑝�̅�𝑑𝑉
Ω

. (3. 2. 14) 
 

3.2.4 Integral Form of Mass Conservation 

The control volume will be analyzed Ω over a certain time range [t0, t], where t0 is constant 

and t variable. The mass at a certain moment in time is represented by Eq. 3.2.5, so m(t) – 

m(t0) determines the change in mass over a time range. The amount of mass entering at an 

instant is: 

𝐹𝑚(𝑡) = −∫ 𝜌(𝑣 ∙ �̅�)𝑑𝐴𝑝𝜕Ω
. (3. 2. 15) 

 

Since the goal is to determine the amount of mass that has entered the control volume over 

the time range [t0, t] and considering that during this time range the mass flux remained 

constant, the total amount of mass that has entered the system is as follows: 

𝑚(𝑡) − 𝑚(𝑡0) = (𝑡 − 𝑡0) ∙ 𝐹𝑚. (3. 2. 16) 
 

In the case of variable mass flux, the range of [t0, t] into N intervals, the number of which will 

depend on the duration of the different fluxes, and summing the total, we get the following: 

∑ 𝐹𝑚(𝑡𝑖)(𝑡𝑖 − 𝑡𝑖−1)
𝑁
𝑖=1 . (3. 2. 17) 

 

Approximating the sum of N intervals to infinity (𝑁 → ∞) we obtain: 

𝑚(𝑡) − 𝑚(𝑡0) = ∫ 𝐹𝑚(𝑇)𝑑𝑇
𝑡

𝑡0
. (3. 2. 18) 

 

The equation only includes the mass flux of the mixture that exists in the porous medium, 

but it lacks the additional flux term in the system. Adjusting Eqs. 3.2.18 and 3.2.14, the 

following expression is obtained: 

𝑚(𝑡) − 𝑚(𝑡0) = ∫ 𝐹𝑚(𝑇)𝑑𝑇
𝑡

𝑡0
+

∫ 𝑞𝑚(𝑇)𝑑𝑇
𝑡

𝑡0
. 

(3. 2. 19) 
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Substituting the definitions of each variable, or Eqs. 3.2.5, 3.2.11, and 3.2.14, and isolating 

the term on the left side that includes the initial time, we obtain: 

∫ 𝜌(𝑥, 𝑡)𝑑𝑉
Ω

= ∫ 𝜌(𝑥, 𝑡0)𝑑𝑉Ω
+ ∫ ∫ 𝜌(𝑥, 𝑇)�̅�(𝑥, 𝑇)𝑑𝑉𝑑𝑇 − ∫ ∫ 𝜌(𝑥, 𝑇)(𝑣(𝑥, 𝑇) ∙

Ω

𝑡

𝑡0Ω

𝑡

𝑡0

�̅�(𝑥))𝑑𝐴𝑝𝑑𝑇. 

    (3. 2. 20) 
 

Eq. 3.2.20 explicitly expresses the dependence of the variables with respect to distance and 

time. In this equation, the amount of mass at different times is calculated, considering the 

amount of mass that enters due to the flow of fluids and movable solids in the reservoir, as 

well as the amount of mass that enters due to the source term. 

3.2.5 Differential Form of Mass Conservation 

To discretize in finite differences and develop the mathematical model of the simulator, it is 

necessary to obtain equations in their differential form. Eq. 3.2.20 is in its integral form, but 

by deriving it with respect to the dependent variables, its differential form can be obtained. 

This process involves applying the Fundamental Theorem of Calculus and the appropriate 

differentiation rules to obtain the partial derivatives of the equation with respect to the 

dependent variables. Once these derivatives are obtained, they can be discretized using 

finite difference methods to approximate the solution to the problem numerically. For the 

mass terms, we obtain: 

𝑑

𝑑𝑡
𝑚(𝑡0) = 0,                                          (3. 2. 21) 

 

𝑑

𝑑𝑡
𝑚(𝑡) =

𝑑

𝑑𝑡
∫ 𝜌(𝑥, 𝑡)𝑑𝑉 = ∫

𝜕

𝜕𝑡
(𝜌(𝑥, 𝑡))𝑑𝑉

ΩΩ
.                        (3. 2. 22) 

 

For the mass flux integrals and the source term, the Fundamental Theorem of Calculus will 

be applied: 

𝑓(𝑡) =
𝑑

𝑑𝑡
∫ 𝑓(𝑇)𝑑𝑇
𝑡

𝑡0
.                                           (3. 2. 23) 

 

Applying Eq. 3.2.23 to 3.2.11 and 3.2.14: 

𝑑

𝑑𝑡
∫ 𝐹𝑚(𝑇)𝑑𝑇 = 𝐹𝑚(𝑡)
𝑡

𝑡0
, (3. 2. 24) 

 

𝑑

𝑑𝑡
∫ 𝑞𝑚(𝑇)𝑑𝑇 = 𝑞𝑚(𝑡)
𝑡

𝑡0
. (3. 2. 25) 

 

The material balance equation in its differential form is: 
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𝑑

𝑑𝑡
𝑚(𝑡) = 𝐹𝑚(𝑡) + 𝑞𝑚(𝑡). (3. 2. 26) 

 

Eq. 3.2.26 can be written explicitly as follows: 

∫
𝜕

𝜕𝑡
(𝜌(𝑥, 𝑡))𝑑𝑉 =

Ω
∫ 𝜌(𝑥, 𝑇)�̅�(𝑥, 𝑇)𝑑𝑉 − ∫ 𝜌(𝑥, 𝑇)(𝑣(𝑥, 𝑇) ∙ �̅�(𝑥))𝑑𝐴𝑝ΩΩ

. (3. 2.27) 
 

It can be observed that Eq. 3.2.2 operates through volume and surface integrals. To 

homogenize the surface terms to volume, Gauss's Theorem, also known as the Divergence 

Theorem, is used. This theorem relates the flux of a vector field through a closed surface to 

the integral of its divergence over the volume bounded by that surface. Mathematically, 

Gauss's Theorem is expressed as follows: 

∬ 𝐹 ∙ �⃗� 𝑑𝐴
𝜕Ω

=∭ 𝛻 ∙ 𝐹𝑑𝑉
Ω

. (3. 2. 28) 
 

Using Eq. 3.2.27 for the mass flux term, we obtain: 

∫ 𝜌(𝑥, 𝑇)(�̅�(𝑥, 𝑇) ∙ �̅�(𝑥))𝑑𝐴𝑝 = ∫ 𝛻 ∙ (𝜌(𝑥, 𝑇)(𝑣(𝑥, 𝑇))𝑑𝑉
Ω𝜕Ω

. (3. 2. 29) 
 

Substituting Eq. 3.2.29 into Eq. 3.2.27 and rearranging it, we obtain: 

∫
𝜕

𝜕𝑡
(𝜌(𝑥, 𝑡))𝑑𝑉 − ∫ 𝜌(𝑥, 𝑇)�̅�(𝑥, 𝑇)𝑑𝑉 + ∫ 𝛻 ∙

ΩΩΩ

(𝜌(𝑥, 𝑇)(𝑣(𝑥, 𝑇))𝑑𝑉 = 0. 

(3. 2. 30) 
 

or 

∫ (
𝜕

𝜕𝑡
(𝜌(𝑥, 𝑡)) − 𝜌(𝑥, 𝑇)�̅�(𝑥, 𝑇) + 𝛻 ∙ (𝜌(𝑥, 𝑇)(�̅�(𝑥, 𝑇))))𝑑𝑉 = 0

Ω
. (3. 2. 31) 

 

Eq. 3.2.31 demonstrates that, regardless of the shape, size, and position of the control 

volume the integral must be zero, thus the integrand must be exactly zero. Therefore, we 

can remove the volume integral as follows: 

𝜕

𝜕𝑡
(𝜌(𝑥, 𝑡)) = 𝜌(𝑥, 𝑇)�̅�(𝑥, 𝑇) − 𝛻 ∙ (𝜌(𝑥, 𝑇)�̅�(𝑥, 𝑇)). (3. 2. 32) 

 

Eq. 3.2.32 expresses mass conservation in its differential form and is the equation that will 

be used as the basis for deriving the following sections. It is important to remember that this 

equation not only models the flow of fluids and movable solids but also the behavior of the 
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solid itself. In the next section, additional considerations will be made to adapt Eq. 3.2.32 to 

obtain equations that describe the general behavior of the solids production phenomenon. 

It is important to note that Eq. 3.2.32 is weaker than Eq. 3.2.20 because in the differential 

form we need functions to be at least differentiable meanwhile the integral form requires 

integrability. For example, discontinuous functions can be integrated but their derivative is 

undefined at the discontinuities. If the properties of the medium, such as porosity and 

density, are heterogeneous with abrupt changes, then the differential equation may cease 

to make sense. Consequently, in the simulator that is going to be developed, it is proposed 

that the medium be initially homogeneous and that changes in properties are not abrupt. 

3.2.6 Material Balance Equation of the Phases 

In this section, the mass equation for the solid, fluid, and movable solids will be developed 

using Eq. 3.2.32 and considering that: 

𝜌(𝑥, 𝑡) = (1 − 𝜙)𝜌𝑠. 
(3. 2. 33) 

 
It is considered that the porosity (𝜙) is dependent on space and time, just like density. If 

Eq.3.2.33 is substituted into Eq. 3.2.32, we obtain the following: 

𝜕

𝜕𝑡
(𝜌𝑠(1 − 𝜙)) = 𝜌𝑠�̅� − 𝛻 ∙ (𝜌𝑠(1 − 𝜙)(�̅�𝑥)).                                            (3. 2. 34) 

 

From Eq. 3.2.34, it can be observed that the density and porosity variables vary with respect 

to distance and time, and these are substituted only in the mass flux terms as a function of 

time. Considering that the velocity of the solid (�̅�𝑥) is zero, Eq. 3.1.3 can be substituted into 

Eq. 3.2.34, and thus we obtain: 

𝜕

𝜕𝑡
(𝜌𝑠(1 − 𝜙)) = 𝜌𝑠�̅�. (3. 2. 35) 

 

In the phenomenon of solids production, movable solids are generated when the rock matrix 

loses cohesion and solid begins to detach from this medium. Therefore, Eq. 3.2.35 indicates 

that the fixed rock matrix will be losing solid and producing movable solids. The parameter 

�̅� represents the volume of solid that the matrix loses per unit of time. Mathematically, the 

right side of Eq. 3.2.35 becomes negative because it is desired that �̅� be a positive quantity 

that determines the losses of solids, and this lost part will appear in the system of movable 

solids: 

𝜕

𝜕𝑡
(𝜌𝑠(1 − 𝜙)) = −𝜌𝑠�̅�. (3. 2. 36) 
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Considering that 𝜌𝑠 is constant over time: 

𝜕

𝜕𝑡
((1 − 𝜙)) = −�̅�, (3. 2. 37) 

 
 

𝜕𝜙

𝜕𝑡
= �̅�. (3. 2. 38) 

 

From now on, it will be considered that: 

𝐹𝑚 = �̅�𝜌𝑠. (3. 2. 39) 
 

Eq. 3.2.39 refers to the amount of mass that the matrix loses in a unit of time per unit volume. 

Combining Eqs. 3.2.38 and 3.2.39: 

𝜕𝜙

𝜕𝑡
=

𝐹𝑚

𝜌𝑠
. (3. 2. 40) 

 

Eq. 3.2.40 represents the continuity equation of the solid, which determines the change in 

porosity concerning time when the rock is eroding due to mass flow. With the equation 

governing the solid, the aim is to obtain the equation for movable solids. For this equation, 

density is considered, which is the mass of the movable solids per unit volume of the rock. 

𝜌2 = 𝑐𝜙𝜌𝑓𝑠 = 𝑐𝜙𝜌𝑠. (3. 2. 41) 
 

Eq. 3.2.41 defines the density of the movable solid. Substituting Eq. 3.2.41 into Eq. 3.2.32, 

we obtain the following: 

𝜕

𝜕𝑡
(𝑐𝜌𝑠𝜙) = 𝜌𝑠�̅� − 𝛻 ∙ (𝑐𝜌𝑠𝜙(�̅�𝑥)). (3. 2. 42) 

 

Eq. 3.2.42 considers that density and porosity vary with respect to distance and time. The 

sink/source term is considered positive since the solid detaching from the rock matrix is 

accumulating in the control volume. 

𝜕

𝜕𝑡
(𝑐𝜌𝑠𝜙) + 𝛻 ∙ (𝑐𝜌𝑠𝜙(�̅�𝑥)) = 𝐹𝑚, (3. 2. 43) 

 

𝜕(𝑐𝜙)

𝜕𝑡
+ 𝛻 ∙ (𝑐𝜙�̅�𝑥) =

𝐹𝑚

𝜌𝑠
. (3. 2. 44) 
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It is observed that the unit of �̅�𝑥 refers to the interstitial velocity or the fluid flow within the 

rock. This term is not defined through a porous medium, so it needs to be transformed into 

Darcy velocity with the following relationship: 

�̅�𝑥 =
𝑣𝐷

𝜙
. (3. 2. 45) 

 

Substituting Eq. 3.2.45 into Eq. 3.2.44 we obtain the following: 

𝜕(𝑐𝜙)

𝜕𝑡
+ 𝛻 ∙ (𝑐𝑣𝐷) =

𝐹𝑚

𝜌𝑠
. (3. 2. 46) 

 

Eq. 3.2.46 establishes the relationship between the flow of movable solids, the degradation 

of porosity over time, and the amount of solid produced in the system due to the solids 

detaching from the rock. If Eqs. 3.2.46 and 3.2.40 are combined, we obtain: 

𝜕(𝑐𝜙)

𝜕𝑡
+ 𝛻 ∙ (𝑐𝑣𝐷) =

𝜕𝜙

𝜕𝑡
. (3. 2. 47) 

 

To describe the fluid, the definition of fluid mass per unit volume of rock is used, and the 

following definition of density is considered: 

𝜌3 = (1 − 𝑐)𝜙𝜌𝑓. (3. 2. 48) 
 

Eq. 3.2.48 represents the density of the fluid that will be in the fluid flow through the porous 

medium. Substituting Eq. 3.2.48 into Eq. 3.2.32, we obtain: 

𝜕

𝜕𝑡
((1 − 𝑐)𝜌𝑓𝜙) = 𝜌𝑓�̅� − 𝛻 ∙ ((1 − 𝑐)𝜌𝑓𝜙(�̅�𝑥)).                                  (3. 2. 49) 

 

The sink/source term will be removed from Eq. 3.2.49, so Eq. 3.2.49 transforms to: 

𝜕

𝜕𝑡
((1 − 𝑐)𝜌𝑓𝜙) = −𝛻 ∙ ((1 − 𝑐)𝜌𝑓𝜙(�̅�𝑥)).                                           (3. 2. 50) 

 

Substituting interstitial velocity with its relationship to Darcy velocity, we obtain: 

𝜕

𝜕𝑡
((1 − 𝑐)𝜌𝑓𝜙) = −𝛻 ∙ ((1 − 𝑐)𝜌𝑓𝑣𝐷). (3. 2. 51) 

 

If the density of the fluid (𝜌𝑓) is constant: 
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𝜕

𝜕𝑡
((1 − 𝑐)𝜙) = −𝛻 ∙ ((1 − 𝑐)𝑣𝐷). (3. 2. 52) 

 

Combining Eqs. 3.2.47 and 3.2.52, the following equation is obtained: 

𝜕

𝜕𝑡
((1 − 𝑐)𝜙) + 𝛻 ∙ ((1 − 𝑐)𝑣𝐷) +

𝜕(𝑐𝜙)

𝜕𝑡
+ 𝛻 ∙ (𝑐𝑣𝐷) =

𝜕𝜙

𝜕𝑡
. (3. 2. 53) 

 

Reducing Eq. 3.2.53: 

𝛻 ∙ 𝑣𝐷 = 0. (3. 2. 54) 
 

Eq. 3.2.54 is the continuity equation that refers to the fluid flow through the porous medium, 

where �̅� is equivalent to Darcy's velocity (𝑣𝐷). This equation requires Darcy's Law to obtain 

the physical parameters for the flow through the porous medium and to define the pressure 

explicitly. Eqs. 3.2.40, 3.2.47, and 3.2.54 constitute the set of mass balance equations for 

the proposed problem. These equations are not sufficient to solve the problem, as a term 

representing the generation of solids and the rate at which solid is being introduced into the 

mixture is needed. This term is obtained in the following section. 

 

3.3 Constitutive Law of Mass Generation 

H. A. Einstein conducted extensive theoretical and experimental studies related to the 

filtration of non-colloidal particles in porous media. For the problem under analysis, a 

constitutive law is needed to describe the rate of mass eroded from the rock matrix and the 

rate at which new movable solids enter the mixture in the flow of the porous medium. This 

constitutive law is fundamental for understanding and adequately modeling the behavior of 

the system under study. 

�̇�𝑒𝑟 = 𝜆
′ ‖𝑚𝑖

𝑓𝑠
‖. (3. 3. 1) 

 
where �̇�𝑒𝑟 = 𝐹𝑚 

Eq. 3.3.1 shows that the erosion phenomenon is governed by the flow of the movable solids 

(𝑚𝑖
𝑓𝑠

). If this parameter increases, then erosion increases due to the kinetic forces in the 

system. The other variable that affects Eq. 3.3.1 is the ratio (𝜆′ ), which relates to spatial 

frequency of the erosion potential. This coefficient reflects the frequency of points with 

erosion potential in the system; therefore, if the coefficient increases, the rock becomes 

weaker. The coefficient has dimensions of inverse length 𝜆′ = [𝐿−1].  
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In the coupling of the erosion process and the rock's geomechanics, 𝜆′ is expected to 

increase as a function of rock damage or when there is an increase in porosity, which is 

implicitly related inversely to cohesion. (Vardoulakis, Stavropoulou, & Papanastasiou, 1996) 

They mention that the erosion process will be more active in intact zones (characterized by 

small pore channels), so they assume that: 

𝜆′ = 𝜆(1 − 𝜙). (3. 3. 2) 
 

The variable ‖𝑚𝑖
𝑓𝑠
‖ refers to the norm of the mass velocity of the movable solid, which 

represents the magnitude of the mass velocity vector. This variable is represented as: 

𝑚𝑖
𝑓𝑠
= 𝜌𝑠𝑐̅𝑣𝐷. (3. 3. 3) 

 
Combining Eqs. 3.3.1, 3.3.2, and 3.3.3, the mass flux is obtained: 

�̇�𝑒𝑟 = 𝜆(1 − 𝜙)‖𝜌𝑠𝑐̅𝑣𝐷‖. (3. 3. 4) 
 

Because 𝜌𝑠 and c are scalar variables, Eq. 3.3.4 converts to: 

�̇�𝑒𝑟 = 𝜆(1 − 𝜙)𝜌𝑠𝑐̅‖𝑣𝐷‖. 
(3. 3. 5) 

 

Eq. 3.3.5 offers an intuitive interpretation of the erosion phenomenon. It indicates that the 

rate of erosion is proportional to the concentration of movable solids in the system, to the 

coefficient 𝜆 which represents the frequency of erosion potential, and to Darcy's velocity 

present in the system. As for (1 −𝜙), the equation indicates that if there is porosity, the 

erosion process will occur in the system. If porosity is 1 (there is no rock in the system), the 

equation becomes zero, indicating that there will no longer be any erosion potential. 

The counterpart of Eq. 3.3.5 is the term 𝑐̅, which lacks physical meaning when the balance 

between erosion and deposition of movable solids is not considered. This means that a 

critical concentration of movable solids is required, at which these solids deposit and clog 

the pore space. This balance is obtained as follows: 

�̅� = 𝑐 −
𝑐2

𝑐𝑐𝑟
. (3. 3. 6) 

 

Eq. 3.3.36 represents the concentration at which the balance between deposition and 

erosion is found. When c and cr have the same value, Eq. 3.3.6 will give a value of zero, 

which will indicate that the porous medium is clogged by the movable solids and, therefore, 

new solids cannot be generated until the concentration value decreases. This depends on 

the petrophysical properties of the rock, such as porosity, permeability, or rock fabric. By 

substituting Eq. 3.3.6 into 3.3.5, we obtain: 
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�̇�𝑒𝑟 = 𝜆(1 − 𝜙)𝜌𝑠 (𝑐 −
𝑐2

𝑐𝑐𝑟
) ‖𝑣𝐷‖ = 𝐹𝑚. (3. 3. 7) 

 

 

By combining Eq. 3.3.7 with 3.2.40, the following equation is obtained: 

𝜕𝜙

𝜕𝑡
= 𝜆(1 − 𝜙) (𝑐 −

𝑐2

𝑐𝑐𝑟
) ‖𝑣𝐷‖. (3. 3. 8) 

 
 

3.4 Darcy's Law 

Darcy's law is used to describe the flow of fluids through porous media. This law was 

established by Henry Philibert Darcy in 1856 when he was studying the flow of water through 

a sand pack. Later, Muskat (1931) adapted Darcy's law for the oil industry, allowing the 

modeling of oil flow. Darcy's law establishes a proportional relationship between the flow 

rate (𝑞) through a porous medium of a certain permeability (𝑘), the dynamic viscosity of the 

fluid (𝜇), and the pressure drop (
𝑑𝑝

𝑑𝑙
) along a homogeneous medium. 

𝑞 = −
𝑘𝐴 𝑑𝑝

𝜇 𝑑𝑙
. (3. 4. 1) 

 

Eq. 3.4.1 has a negative sign because the fluid flows from the high-pressure zone to the 

low-pressure zone. This equation does not consider gravitational effects. Since it is 

necessary to know Darcy's velocity (𝑣𝐷) and the previous equation is in terms of flow rate 

(𝑞), therefore equation (3.4.1) will be divided by the area (𝐴): 

𝑣𝐷 = −
𝑘 𝑑𝑝

𝜇 𝑑𝑙
. (3. 4. 2) 

 

Changes in porosity due to the phenomenon of formation collapse affect the system's 

permeability. Therefore, it is necessary to relate permeability to porosity, so that each time 

porosity changes, permeability changes simultaneously.  

One aspect to consider in Eq. 3.4.2 is that dynamic viscosity does not consider the density 

of the mixture and, therefore, does not calculate the variation as the concentration of 

movable solids changes. Due to this, the variable is modified by introducing the concept of 

kinematic viscosity through Eq. 3.1.9, which is of high importance in the study of solids 

production. Kinematic viscosity is defined as follows: 
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𝜂𝑘 =
𝜇

�̅�
. (3. 4. 3) 

 

Eq. 3.4.3 describes kinematic viscosity, which represents the resistance of a fluid to flow 

when there are no external forces other than gravity and likewise considers the density of 

the mixture (�̅�). Substituting Eq. 3.4.3 into 3.4.2 we obtain: 

𝑣𝐷 = −
𝑘 𝑑𝑝

𝜂𝑘�̅� 𝑑𝑙
. (3. 4. 4) 

 

Substituting Eq. 3.1.9 into Eq. 3.4.4, we obtain the following equation: 

𝑣𝐷 = −
𝑘 𝑑𝑝

𝜂𝑘((1−𝑐)𝜌𝑓+𝑐𝜌𝑠) 𝑑𝑙
. (3. 4. 5) 

 

 

3.5 Kozeny-Carman Equation 

In this section, we will discuss an equation that considers the modification of permeability so 

that the variable included in Eq. 3.4.5 changes with porosity. If porosity increases, it is more 

likely that there will be more flow channels, and the permeability value will increase. The 

mathematical relationship that relates the change in permeability with porosity is the Kozeny-

Carman equation: 

𝑘 = 𝑘0
𝜙3

(1−𝜙)2
. (3. 5. 1) 

 
Where 𝑘0 is a constant that represents the initial permeability. 

3.6 Continuity Equation 

Eqs. 3.2.47 and 3.3.8 are considered, where the first models the mass balance between the 

concentration of solids and the effect that porosity has, and the second models the change 

in porosity with respect to time. Additionally, Eqs. 3.4.5 and 3.5.1 are considered, which 

models the fluid flow and the variation of permeability in relation to porosity. However, an 

equation that describes the relationship between all these equations and models the fluid 

flow and the movable solids is needed. To achieve this, Eqs. 3.4.5 and 3.5.1 will be 

combined: 

𝑣𝐷 = −
𝑘0𝜙

3

(1−𝜙)2[𝜂𝑘((1−𝑐)𝜌𝑓+𝑐𝜌𝑠)]

𝑑𝑝

𝑑𝑟
. (3. 6. 1) 
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Substituting Eq. 3.6.1 into Eq. 3.2.54: 

𝜕2𝑝

𝜕𝑟2
+
𝜕𝑝

𝜕𝑟
[
1

𝑟
+ 𝛼𝑐

𝜕𝜙

𝜕𝑟
+ 𝛽𝑐

𝜕𝑐

𝜕𝑟
] = 0. (3. 6. 2) 

 

where: 

𝛼𝑐 =
3 −𝜙

𝜙(1 −𝜙)
, 𝛽𝑐 = −

𝜌𝑠 − 𝜌𝑓

(1 − 𝑐)𝜌𝑓 + 𝑐𝜌𝑠
 

 

3.7 Borehole stresses, deformation and failure 

To understand the effect generated by local stresses near the well, it is necessary to create 

a mechanical model that calculates the moment when the rock will collapse. For this 

problem, an axisymmetric deformation analysis in the plane is considered, as shown in Fig 

3.4. The regional stresses are transformed into three new local stresses: radial stress (σr), 

tangential stress (σθ) and axial stress (σa). For the proposed simulator, which is one-

dimensional, the axial stress will not influence the numerical value. Under these conditions, 

the deformations are expressed only in terms of radial displacement 𝑢𝑟 = 𝑢(𝑟, 𝑡), therefore: 

𝜀𝑟 =
𝜕𝑢

𝜕𝑟
,                                             (3. 7. 1) 

 
 

    𝜀𝜃 =
𝑢

𝑟
. (3. 7. 2) 

 

Considering Eqs. 2.4.42, 2.4.55, and 2.4.75, the elastic constitutive relationships between 

stress and total strain are obtained: 

𝜎𝑟 =
�̅�(1−𝜙)

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)𝜀𝑟 + 𝑣𝜀𝜃], (3. 7. 3) 

 
 

𝜎𝜃 =
�̅�(1−𝜙)

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)𝜀𝜃 + 𝑣𝜀𝑟]. (3. 7. 4) 

 

Where the equilibrium Eq. 2.4.6 in an axisymmetric plane transforms to: 

𝜕𝜎𝑟

𝜕𝑟
+
𝜎𝑟−𝜎𝜃

𝑟
= 0. (3. 7. 5) 
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Substituting Eqs. 3.7.1 - 3.7.4 into Eq. 3.7.5, we obtain the following: 

𝜕2𝑢

𝜕𝑟2
+ 𝑔1

𝜕𝑢

𝜕𝑟
− 𝑔2𝑢 = 𝑔3

𝜕(𝜙𝑝)

𝜕𝑟
. (3. 7. 6) 

 

where: 

𝑔1(𝑟) =
1

𝑟
−

1

1−𝜙

𝜕𝜙

𝜕𝑟
, (3. 7. 7) 

 
 

𝑔2(𝑟) =
1

𝑟2
+
1

𝑟

𝑣

1−𝑣

1

1−𝜙

𝜕𝜙

𝜕𝑟
. (3. 7. 8) 

 
 

𝑔3(𝑟) =
(1+𝑣)(1−2𝑣)

�̅�(1−𝜙)(1−𝑣)
. (3. 7. 9) 

 

Eq. 3.7.6 describes the behavior of displacement as the variables of porosity, concentration, 

pressure, and geomechanical properties change. Knowing the behavior of displacement will 

help determine the behavior of effective stress and thereby calculate when the rock will 

collapse. 
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4. Simulator Model 
 

4.1 Introduction 

A cylindrical structure is considered for the development of the simulation model, as shown 

in Fig. 4.1. This model contemplates the flow in the radial direction towards the well, an 

isotropic reservoir with constant thickness, and a vertical cylindrical well located in the 

center, which will produce at a constant pressure. The simulator is based on the following 

principles: 

1. Hydromechanical Model. - This consists of the mass balance equation and the 

porosity evolution equation governing erosion. The first equation describes the 

behavior of the concentration variable (𝑐), while the second describes the behavior 

of the porosity variable (𝜙). 

2. Darcy’s Law. - It describes the flow movement through a porous medium where the 

porosity is variable. As the effective porosity increases, the permeability also 

increases. Consequently, Darcy's Law was coupled with the Kozeny-Carman 

equation to relate the change in permeability concerning porosity. 

3. Continuity Equation. This equation integrates all the changes and interactions of the 

variables of porosity, concentration, and pressure to calculate the flow of the mixture. 

4. Geomechanical Equation. - This equation integrates the variables of porosity and 

cohesion with geomechanical parameters. The decrease in cohesion due to 

increased porosity is considered to predict rock collapse using the Mohr-Coulomb 

criterion. 

With the four characteristics combined, a numerical simulation is conducted in which the 

primary variables, such as porosity, concentration, pressure, and displacement, change with 

time and space. The effect of mechanical damage is implicitly incorporated, using the values 

of effective stress to predict the mechanical failure of the rock and the near-well collapse. 

Radial Displacement (𝑢𝑟) is determined by numerically solving the differential Eq. 3.7.6 with 

the boundary conditions presented in this chapter. Once the variables 𝑢 and 
𝜕𝑢

𝜕𝑟
  are 

determined, the stress is calculated by substituting the results into Eqs. 3.7.3 and 3.7.4. Due 

to the lack of dependence of Eqs. 4.2.1, 4.2.2, and 4.2.3 on the variable 𝑢, it is possible to 

solve for the variable in parallel over the same time interval. 
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Figure 4. 1 Cylindrical Model of the Simulator 

 

4.2 Simulator Equations 

As mentioned earlier, this simulator is based on four fundamental principles, which are 

described in the following equations: 

𝜕(𝑐𝜙)

𝜕𝑡
+ 𝑣𝐷

𝜕𝑐

𝜕𝑟
=

𝜕𝜙

𝜕𝑡
, (4. 2. 1) 

 

𝜕𝜙

𝜕𝑡
= 𝜆(1 − 𝜙) (𝑐 −

𝑐2

𝑐𝑐𝑟
) ‖𝑣𝐷‖. (4. 2. 2) 

In Eq. 4.2.1 𝑣𝐷 comes out of the derivative because its divergence is 0 and Eq. 4.2.2 

represent the equations of the hydromechanical model. 

𝜕2𝑝

𝜕𝑟2
+

𝜕𝑝

𝜕𝑟
[
1

𝑟
+ 𝛼𝑐

𝜕𝜑

𝜕𝑟
+ 𝛽𝑐

𝜕𝑐

𝜕𝑟
] = 0. (4. 2. 3) 

Eq. 4.2.3 represents the continuity equation for the flow of the mixture. Essentially, Eqs. 

4.2.1, 4.2.2, and 4.2.3 represent the equations that model the phenomenon of solids 

production. However, it is important to note that they depend on the variable 𝑣𝐷, which can 

be represented as follows: 
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𝑣𝐷 = −
𝑘0𝜙

3

(1−𝜙)2𝜂𝑘[(1−𝑐)𝜌𝑓+𝑐𝜌𝑠]

𝜕𝑝

𝜕𝑟
. (4. 2. 4) 

From Eqs. 4.2.1 - 4.2.4, the main variables are: 𝑐, 𝜙 and 𝑝; while the other parameters are 

constants. The three mentioned variables change at each time step, making the equations 

nonlinear and consequently difficult to solve, where Eq. 4.2.4 is responsible for most of the 

nonlinearity among the equations. 

4.2.1 Initial and Boundary Conditions 

Eqs. 4.2.1, 4.2.2, and 4.2.3 are differential equations with solutions for a continuous medium. 

However, for the simulator to provide a valid computational solution, this medium must be 

finite and have boundary conditions. 

For an initial time (𝑡0), it is considered that the rock-fluid system is in equilibrium. Therefore, 

the reservoir is at the same initial pressure (𝑝0), and there is no fluid and solids flow (𝑣𝐷 =

0). Additionally, it is assumed that there is an initial concentration (𝑐) of movable solids 

throughout the reservoir and that the porosity (𝜙) is homogeneous throughout the formation. 

A boundary condition with a constant external pressure is established at the reservoir's outer 

boundary. The initial and boundary conditions for the pressure are as follows: 

𝑝(𝑟𝑤 ≤ 𝑟 ≤ 𝑟𝑒 , 𝑡0) = 𝑝0, (4. 2. 5) 

 

𝑝𝑒 = 𝑝𝑐𝑡𝑒1, (4. 2. 6) 

 

𝑝𝑤𝑓 = 𝑝𝑐𝑡𝑒2. (4. 2. 7) 

The initial and boundary conditions for porosity are: 

𝜙(𝑟𝑤 ≤ 𝑟 ≤ 𝑟𝑒 , 𝑡0) = 𝜙0, (4. 2. 8) 

 

𝜙𝑒 = 𝜙0. (4. 2. 9) 

The initial and boundary conditions for concentration are: 

𝑐(𝑟𝑤 ≤ 𝑟 ≤ 𝑟𝑒 , 𝑡0) = 𝑐0, (4. 2. 10) 

 

𝑐𝑐 = 𝑐0. (4. 2. 11) 
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Eqs. 4.2.5 - 4.2.11 establish the necessary conditions to solve the solids production problem. 

These equations represent the initial and boundary conditions of the hydromechanical 

model. On the other hand, for the geomechanical model, the following boundary conditions 

are obtained: 

𝜎𝑟(𝑟𝑤, 𝑡) = −𝑝𝑤𝑓, (4. 2. 12) 

 

𝜎𝑟(𝑟𝑒, 𝑡) = −𝜎𝑒. (4. 2. 13) 

where Eqs. 4.2.12 and 4.2.13 in terms of displacement become: 

𝜕𝑢

𝜕𝑟
|
𝑟=𝑟𝑤

= −
𝑣

1−𝑣

𝑢(𝑟𝑤)

𝑟𝑤
− 𝑔3(𝑟𝑤, 𝑡)[𝜙(𝑟𝑤, 𝑡)𝑝𝑤𝑓 − 𝑝𝑤𝑓], (4. 2. 14) 

 

𝜕𝑢

𝜕𝑟
|
𝑟=𝑟𝑒

= −
𝑣

1−𝑣

𝑢(𝑟𝑒)

𝑟𝑒
+ 𝑔3(𝑟𝑒 , 𝑡)[𝜙(𝑟𝑒 , 𝑡)𝑝𝑒 − 𝜎𝑒]. (4. 2. 15) 

 

4.3 Finite Differences 

The equations that describe the flow of the mixture of solids and fluids are in differential form 

and are nonlinear, making their analytical solution difficult. It is necessary to simplify these 

equations to consider all changes simultaneously in space and time. The variables 𝑐,𝜙, 

𝑝 𝑎𝑛𝑑 𝑢 are the most relevant, so we will call them the main variables. 

The finite difference method is based on approximating a continuous medium by a discrete 

medium. This transformation facilitates calculations, although it introduces an associated 

error due to the medium's discontinuity. It is crucial to divide this set of discrete spaces into 

a finite number of points throughout the reservoir. This set is called a mesh and will have an 

arrangement like the one shown in Fig. 4.2. 

Essentially, the finite difference method replaces differential equations with sets of algebraic 

equations that relate the four main variables. Discretization is also applied to the 

displacement variable (𝑢), but in this case, the equation is discretized in parallel. 
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Figure 4. 2 Spatially Discretized Mesh with Centered and Uniform Nodes. 

 

4.3.1 Spatial Discretization 

Spatial discretization approximates the derivatives that depend on space using a derivative 

approximation. For the first-order spatial derivative, a central scheme is used (see 

Appendix A). This approach is adopted because these terms are related to diffusion 

processes that act in all directions. The central scheme for the first order is formulated as 

follows: 

𝑑𝑓

𝑑𝑥
≈

𝑓𝑖+1−𝑓𝑖−1

2∆𝑥
. (4. 3. 1) 

For a second-order central scheme, we obtain the following: 

𝑑2𝑦

𝑑𝑥2
≈

𝑓𝑖+1−2𝑓𝑖+𝑓𝑖−1

∆𝑥2
. (4. 3. 2) 

When using Darcy's velocity, the first-order derivative is used and discretized in the central 

scheme: 

𝑑𝑓

𝑑𝑥
≈

𝑓𝑖+1−𝑓𝑖−1

2∆𝑥
. (4. 3. 3) 

where f is the main variable, x represents the space, and i is the node where the main 

variable is located. In this case, the four main variables will be represented in the same way 

as f. It is important to remember the truncation error that exists in each scheme. Spatially 

discretizing Eqs. 4.2.1 - 4.2.4 and substituting 4.2.4 into 4.2.1, 4.2.2, and 4.2.3: 

𝜕(𝑐𝑖𝜙𝑖)

𝜕𝑡
+ (−

𝑘0𝜙𝑖
3

(1−𝜙𝑖)
2𝜂𝑘[(1−𝑐𝑖)𝜌𝑓+𝑐𝑖𝜌𝑠]

𝑝𝑖+1−𝑝𝑖−1

∆𝑟𝑖
)
𝑐𝑖+1−𝑐𝑖−1

∆𝑟𝑖
=

𝜕𝜙𝑖

𝜕𝑡
, (4. 3. 4) 
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𝜕𝜑

𝜕𝑡
= 𝜆(1 − 𝜙𝑖) (𝑐𝑖 −

𝑐𝑖
2

𝑐𝑐𝑟𝑖
) (

𝑘0𝜙
3

(1−𝜙𝑖)
2𝜂𝑘[(1−𝑐𝑖)𝜌𝑓+𝑐𝑖𝜌𝑠]

𝑝𝑖+1−𝑝𝑖−1

∆𝑟𝑖
), (4. 3. 5) 

 

𝑝𝑖+1−2𝑝𝑖+𝑝𝑖−1

∆𝑟𝑖
2 . +

𝑝𝑖+1−𝑝𝑖−1

2∆𝑟𝑖
[
1

𝑟𝑖
+ (

3−𝜙𝑖

𝜙𝑖(1−𝜑𝑖)
)
𝜙𝑖+1−𝜙𝑖−1

2∆𝑟𝑖
+

(
𝜌𝑓−𝜌𝑠

(1−𝑐𝑖)𝜌𝑓+𝑐𝑖𝜌𝑠
)
𝑐𝑖+1−𝑐𝑖−1

2∆𝑟𝑖
] = 0. 

(4. 3. 6) 

where: 
∆𝑟𝑖 = 𝑟𝑖+1 − 𝑟𝑖 

Eqs. 4.3.4 – 4.3.6 represent the spatially discretized equations. 

4.3.2 Temporal Discretization 

Temporal discretization is necessary because it makes the main variables present in the 

current time. The two ways to discretize an equation temporally are: 

1. Explicit Method: This is when the variables are evaluated at the known time (n), and 

the variable at the unknown time (n + 1) in the temporal derivative. 

2. Implicit Method: This is when the variables are evaluated at the unknown time (n + 

1), and the variable at the known time (n) in the temporal derivative. 

The explicit method is simpler because there will only be one unknown per variable, but this 

ease generates more errors due to instability. Due to this problem, the implicit method will 

be used as it is unconditionally stable (see Appendix B). The Time-Implicit method is 

described as follows: 

𝑦𝑛+1 = 𝑦𝑛 + 𝑓(𝑡𝑛+1, 𝑦𝑛+1)∆𝑡 (4. 3. 7) 

In equation (4.3.7), y represents the main variable, n the current time, n+1 the next time, t 

the time, and ∆𝑡 the time increment. Applying the implicit method to Eqs. 4.3.4 – 4.3.6: 

𝑐𝑖
𝑛+1𝜙𝑖

𝑛+1
−𝑐𝑖

𝑛𝜙𝑖
𝑛

∆𝑡
+ (−

𝑘0𝜙𝑖
𝑛+13

(1−𝜙𝑖
𝑛+1

)
2
𝜂𝑘[(1−𝑐𝑖

𝑛+1)𝜌𝑓+𝑐𝑖
𝑛+1𝜌𝑠]

𝑝𝑖+1
𝑛+1−𝑝𝑖+1

𝑛+1

∆𝑟𝑖
)
𝑐𝑖+1
𝑛+1−𝑐𝑖

𝑛+1

∆𝑟𝑖
=

𝜙𝑖
𝑛+1

−𝜙𝑖
𝑛

∆𝑡
, 

(4. 3. 8) 
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𝜙𝑖
𝑛+1−𝜙𝑖

𝑛

∆𝑡
= 𝜆(1 − 𝜙𝑖

𝑛+1) (𝑐𝑖
𝑛+1 −

𝑐𝑖
𝑛+12

𝑐𝑐𝑟𝑖
)(

𝑘0𝜙𝑖
𝑛+13

(1−𝜙𝑖
𝑛+1)

2
𝜂𝑘[(1−𝑐𝑖

𝑛+1)𝜌𝑓+𝑐𝑖
𝑛+1𝜌𝑠]

𝑝𝑖+1
𝑛+1−𝑝𝑖

𝑛+1

∆𝑟𝑖
), (4. 3. 9) 

 

 
 

𝑝𝑖+1
𝑛+1−2𝑝𝑖

𝑛+1+𝑝𝑖−1
𝑛+1

∆𝑟𝑖
2 +.

𝑝𝑖+1
𝑛+1−𝑝𝑖−1

𝑛+1

2∆𝑟𝑖
[
1

𝑟𝑖
+. (

3−𝜙
𝑖

𝑛+1

𝜙
𝑖

𝑛+1
(1−𝜙

𝑖

𝑛+1
)
)
𝜑𝑖+1
𝑛+1−𝜑𝑖−1

𝑛+1

2∆𝑟𝑖
+. (

𝜌𝑓−𝜌𝑠

(1−𝑐𝑖
𝑛+1)𝜌𝑓+𝑐𝑖

𝑛+1𝜌𝑠
)
𝑐𝑖+1
𝑛+1−𝑐𝑖−1

𝑛+1

2∆𝑟𝑖
] =

0  

(4. 3. 10) 

Eqs. 4.3.8 - 4.3.10 represent the equations for all internal nodes incorporated into the mesh; 

the boundary conditions will be applied to the external nodes. 

4.4 Coupling of Boundary Conditions 

Eqs. 4.3.8, 4.3.9, and 4.3.10 represent the equations to describe the solids production 

problem for internal nodes. For a specific simulation, boundary conditions are needed to 

provide a unique solution to the system of differential equations. These boundary conditions 

must be adapted to the mesh, as shown in Fig. 4.3. The system of discretized equations is 

divided into three groups: the initial node i=1, the internal nodes i=2, Nr−1, and the final node 

i=Nr. This also applies to equation (4.3.8): 

i = 1 

𝑐1
𝑛+1𝜙1

𝑛+1
−𝑐1

𝑛𝜙1
𝑛

∆𝑡
+ (−

𝑘0𝜙1
𝑛+13

(1−𝜙1
𝑛+1

)
2
𝜂𝑘[(1−𝑐1

𝑛+1)𝜌𝑓+𝑐1
𝑛+1𝜌𝑠]

𝑝2
𝑛+1−𝑝1

𝑛+1

∆𝑟1
)
𝑐2
𝑛+1−𝑐1

𝑛+1

∆𝑟1
=

𝜙1
𝑛+1

−𝜙1
𝑛

∆𝑡
, 

(4. 4. 1) 

i = 2, Nr - 1 

𝑐𝑖
𝑛+1𝜙𝑖

𝑛+1
−𝑐𝑖

𝑛𝜙𝑖
𝑛

∆𝑡
+ (−

𝑘0𝜙𝑖
𝑛+13

(1−𝜙𝑖
𝑛+1

)
2
𝜂𝑘[(1−𝑐𝑖

𝑛+1)𝜌𝑓+𝑐𝑖
𝑛+1𝜌𝑠]

𝑝𝑖+1
𝑛+1−𝑝𝑖

𝑛+1

∆𝑟𝑖
)
𝑐𝑖+1
𝑛+1−𝑐𝑖

𝑛+1

∆𝑟𝑖
=

𝜙𝑖
𝑛+1

−𝜙𝑖
𝑛

∆𝑡
, 

(4. 4. 2) 

i = Nr 

𝑐𝑁𝑟
𝑛+1𝜙𝑁𝑟

𝑛+1
−𝑐𝑁𝑟

𝑛 𝜙𝑁𝑟
𝑛

∆𝑡
+ (−

𝑘0𝜙𝑁𝑟
𝑛+13

(1−𝜙𝑁𝑟
𝑛+1

)
2
𝜂𝑘[(1−𝑐𝑁𝑟

𝑛+1)𝜌𝑓+𝑐𝑁𝑟
𝑛+1𝜌𝑠]

𝑝𝑁𝑟+1
𝑛+1 −𝑝𝑁𝑟

𝑛+1

∆𝑟𝑁𝑟
)
𝑐𝑁𝑟+1
𝑛+1 −𝑐𝑁𝑟

𝑛+1

∆𝑟𝑁𝑟
=

𝜙𝑁𝑟
𝑛+1

−𝜙𝑁𝑟
𝑛

∆𝑡
 . 

(4. 4. 3) 
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For Eq. 4.3.9, we obtain: 

i = 1 

𝜙1
𝑛+1−𝜙

∆𝑡
= 𝜆(1 − 𝜙1

𝑛+1) (𝑐1
𝑛+1 −

𝑐1
𝑛+12

𝑐𝑐𝑟1
) (

𝑘0𝜙1
𝑛+13

(1−𝜙1
𝑛+1)

2
𝜂𝑘[(1−𝑐1

𝑛+1)𝜌𝑓+𝑐1
𝑛+1𝜌𝑠]

𝑝2
𝑛+1−𝑝1

𝑛+1

∆𝑟1
). 

(4. 4. 4) 

i = 2, Nr- 1 

𝜙𝑖
𝑛+1−𝜙𝑖

𝑛

∆𝑡
= 𝜆(1 − 𝜙𝑖

𝑛+1) (𝑐𝑖
𝑛+1 −

𝑐𝑖
𝑛+12

𝑐𝑐𝑟𝑖
)(

𝑘0𝜙𝑖
𝑛+13

(1−𝜙𝑖
𝑛+1)

2
𝜂𝑘[(1−𝑐𝑖

𝑛+1)𝜌𝑓+𝑐𝑖
𝑛+1𝜌𝑠]

𝑝𝑖+1
𝑛+1−𝑝𝑖

𝑛+1

∆𝑟𝑖
). 

(4. 4. 5) 

i = Nr 

𝜙𝑁𝑟
𝑛+1−𝜙𝑁𝑟

𝑛

∆𝑡
=

𝜆(1. −𝜙𝑁𝑟
𝑛+1) (𝑐𝑁𝑟

𝑛+1. −
𝑐𝑁𝑟
𝑛+12

𝑐𝑐𝑟𝑁𝑟
) (

𝑘0𝜙𝑁𝑟
𝑛+13

(1−𝜙𝑁𝑟
𝑛+1)

2
𝜂𝑘[(1−𝑐𝑁𝑟

𝑛+1)𝜌𝑓+𝑐𝑁𝑟
𝑛+1𝜌𝑠]

𝑝𝑁𝑟+1
𝑛+1 −𝑝𝑁𝑟

𝑛+1

∆𝑟𝑁𝑟
). 

(4. 4. 6) 

And finally with equation (4.3.10): 

i = 1 

𝑝2
𝑛+1−2𝑝1

𝑛+1+𝑝0
𝑛+1

∆𝑟1
2 +.

𝑝2
𝑛+1−𝑝0

𝑛+1

2∆𝑟1
[
1

𝑟1
+. (

3−𝜙
1

𝑛+1

𝜙
1

𝑛+1
(1−𝜙

1

𝑛+1
)
)
𝜙
2

𝑛+1
−𝜙

0

𝑛+1

2∆𝑟1
+. (

𝜌𝑓−𝜌𝑠

(1−𝑐1
𝑛+1)𝜌𝑓+𝑐1

𝑛+1𝜌𝑠
)
𝑐2
𝑛+1−𝑐0

𝑛+1

2∆𝑟1
] =

0,  

(4. 4. 7) 

i = 2, Nr- 1 

𝑝𝑖+1
𝑛+1−2𝑝𝑖

𝑛+1+𝑝𝑖−1
𝑛+1

∆𝑟𝑖
2 +.

𝑝𝑖+1
𝑛+1−𝑝𝑖−1

𝑛+1

2∆𝑟𝑖
[
1

𝑟𝑖
+. (

3−𝜙𝑖
𝑛+1

𝜙𝑖
𝑛+1(1−𝜙𝑖

𝑛+1)
)
𝜙𝑖+1
𝑛+1−𝜙𝑖−1

𝑛+1

2∆𝑟𝑖
+. (

𝜌𝑓−𝜌𝑠

(1−𝑐𝑖
𝑛+1)𝜌𝑓+𝑐𝑖

𝑛+1𝜌𝑠
)
𝑐𝑖+1
𝑛+1−𝑐𝑖−1

𝑛+1

2∆𝑟𝑖
] = 0,  (4. 4. 8) 

i = Nr 

𝑝𝑁𝑟+1
𝑛+1 −2𝑝𝑁𝑟

𝑛+1+𝑝𝑁𝑟−1
𝑛+1

∆𝑟𝑁𝑟
2 +.

𝑝𝑁𝑟+1
𝑛+1 −𝑝𝑁𝑟−1

𝑛+1

2∆𝑟𝑁𝑟
[
1

𝑟𝑁𝑟
+. (

3−𝜙𝑁𝑟
𝑛+1

𝜙𝑁𝑟
𝑛+1(1−𝜙𝑁𝑟

𝑛+1)
)
𝜙𝑁𝑟+1
𝑛+1 −𝜙𝑁𝑟−1

𝑛+1

2∆𝑟𝑁𝑟
+. (

𝜌𝑓−𝜌𝑠

(1−𝑐𝑁𝑟
𝑛+1)𝜌𝑓+𝑐𝑁𝑟

𝑛+1𝜌𝑠
)
𝑐𝑁𝑟+1
𝑛+1 −𝑐𝑁𝑟−1

𝑛+1

2∆𝑟𝑁𝑟
] =

0. 
(4. 4. 9) 
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Figure 4. 3 Simulator Configuration with Boundary Conditions. 

 

In Eqs. 4.4.1 - 4.4.9, there are variables that correspond to nodes not defined in the mesh, 

such as the nodes labeled i=0 or 𝑁𝑟 + 1. Therefore, it is necessary to apply the boundary 

conditions and rewrite the equations that contain these variables. Applying the boundary 

conditions 4.2.5 - 4.2.11 to equations 4.4.1 - 4.4.9, we obtain the following: 

i = 1 

𝑐1
𝑛+1𝜙1

𝑛+1
−𝑐1

𝑛𝜙1
𝑛

∆𝑡
+ (−

𝑘0𝜙1
𝑛+13

(1−𝜙1
𝑛+1

)
2
𝜂𝑘[(1−𝑐1

𝑛+1)𝜌𝑓+𝑐1
𝑛+1𝜌𝑠]

𝑝2
𝑛+1−𝑝1

𝑛+1

∆𝑟1
)
𝑐2
𝑛+1−𝑐1

𝑛+1

∆𝑟1
=

𝜙1
𝑛+1

−𝜙1
𝑛

∆𝑡
,  

(4. 4.10) 

 

i = Nr 

𝑐𝑁𝑟
𝑛+1𝜙𝑁𝑟

𝑛+1
−𝑐𝑁𝑟

𝑛 𝜙𝑁𝑟
𝑛

∆𝑡
+ (−

𝑘0𝜙𝑁𝑟
𝑛+13

(1−𝜙
𝑁𝑟

𝑛+1
)
2
𝜂𝑘[(1−𝑐𝑁𝑟

𝑛+1)𝜌𝑓+𝑐𝑁𝑟
𝑛+1𝜌𝑠]

𝑝𝑁𝑟+1
𝑛+1 −𝑝𝑁𝑟

𝑛+1

∆𝑟𝑁𝑟
)
𝑐𝑁𝑟+1
𝑛+1 −𝑐𝑁𝑟

𝑛+1

∆𝑟𝑁𝑟
=

𝜙𝑁𝑟
𝑛+1

−𝜙𝑁𝑟
𝑛

∆𝑡
 . 

 (4. 4.11) 
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For equation (4.3.9), we obtain: 

i = 1 

𝜙1
𝑛+1−𝜙1

𝑛

∆𝑡
= 𝜆(1 − 𝜙1

𝑛+1) (𝑐1
𝑛+1 −

𝑐1
𝑛+12

𝑐𝑐𝑟1
)(

𝑘0𝜙1
𝑛+13

(1−𝜙1
𝑛+1)

2
𝜂𝑘[(1−𝑐1

𝑛+1)𝜌𝑓+𝑐1
𝑛+1𝜌𝑠]

𝑝2
𝑛+1−𝑝1

𝑛+1

∆𝑟1
), 

(4. 4. 12) 

i = Nr 

𝜙𝑁𝑟
𝑛+1−𝜙𝑁𝑟

𝑛

∆𝑡
= 𝜆(1 − 𝜙𝑁𝑟

𝑛+1) (𝑐𝑁𝑟
𝑛+1 −

𝑐𝑁𝑟
𝑛+12

𝑐𝑐𝑟𝑁𝑟
)(

𝑘0𝜙𝑁𝑟
𝑛+13

(1−𝜙𝑁𝑟
𝑛+1)

2
𝜂𝑘[(1−𝑐𝑁𝑟

𝑛+1)𝜌𝑓+𝑐𝑁𝑟
𝑛+1𝜌𝑠]

𝑝𝑁𝑟+1
𝑛+1 −𝑝𝑁𝑟

𝑛+1

∆𝑟𝑁𝑟
). 

(4. 4. 13) 

And finally with equation (4.3.10) 

i = 1 

𝑝2
𝑛+1−2𝑝1

𝑛+1+𝑝𝑤𝑓

∆𝑟1
2 +

𝑝2
𝑛+1−𝑝𝑤𝑓

2∆𝑟1
[
1

𝑟1
+ (

3−𝜙1
𝑛+1

𝜙1
𝑛+1

(1−𝜙1
𝑛+1

)
)
𝜙2
𝑛+1

−1

2∆𝑟1
+ (

𝜌𝑓−𝜌𝑠

(1−𝑐1
𝑛+1)𝜌𝑓+𝑐1

𝑛+1𝜌𝑠
)
𝑐2
𝑛+1−𝑐1

2∆𝑟1
] =

0, 

 (4. 4. 14) 

i = Nr 

𝑝𝑒−2𝑝𝑁𝑟
𝑛+1+𝑝𝑁𝑟−1

𝑛+1

∆𝑟𝑁𝑟
2 +

𝑝𝑒−𝑝𝑁𝑟−1
𝑛+1

2∆𝑟𝑁𝑟
[
1

𝑟𝑁𝑟
+ (

3−𝜙𝑁𝑟
𝑛+1

𝜙𝑁𝑟
𝑛+1(1−𝜙𝑁𝑟

𝑛+1)
)
𝜙𝑁𝑟−𝜙𝑁𝑟−1

𝑛+1

2∆𝑟𝑁𝑟
+

(
𝜌𝑓−𝜌𝑠

(1−𝑐𝑁𝑟
𝑛+1)𝜌𝑓+𝑐𝑁𝑟

𝑛+1𝜌𝑠
)
𝑐0−𝑐𝑁𝑟−1

𝑛+1

2∆𝑟𝑁𝑟
] = 0. 

(4. 4. 15) 

It should be noted that Eqs. 4.4.10 - 4.4.15 already consider the boundary conditions, and it 

should also be noted that, in general, we have three equations and three unknowns, which 

are  𝑝𝑛+1, 𝜙𝑛+1 and 𝑐𝑛+1; so, this system is solvable. The variable 𝑢𝑛+1 will be added in 

parallel in section 4.6. 

4.5 Newton-Raphson Method 

In the previous section, a system of nonlinear algebraic equations was obtained in Eqs. 

4.4.10 - 4.4.15. The nonlinearity exists in the product of the main variables that multiply each 

other and are at the same time step (n + 1). This represents a problem because it is 

impossible to adapt a linear equation-solving algorithm. There are multiple ways to linearize 

a system of nonlinear equations, each with a specific stability criterion. In this case, the 

Newton-Raphson method will be used to linearize the system of equations, as it is the most 

efficient and straightforward method for solving nonlinear equations. This method will obtain 

all the unknowns at the time step (n + 1). Let's consider a general system of nonlinear 

differential equations: 
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𝐿𝑚{𝐹𝑚[𝑤(𝑥)]} = 𝑓𝑚(𝑥) (4. 5. 1) 

where 𝑚 = 1,2,… ,𝑀, 𝑥 ∈ Ω and 𝐿𝑚 denotes a linear differential operator, Fm (∙) is a nonlinear 

function, 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑚)
𝑇 is the vector of dependent variables (in our example it is p, 𝜙, 

c, u), 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑚)
𝑇 is a given vector, M is the total number of equations, and T denotes 

the transpose of a vector. The Newton-Raphson method for solving equation (4.5.1) 

establishes an iterative equation system. The Taylor series expansion is: 

𝐹𝑚(𝑤 + 𝛿𝑤) = 𝐹𝑚(𝑤) + ∇𝐹𝑚(𝑤) ∙ 𝛿𝑤 + 𝑂(|𝛿𝑤|
2) (4. 5. 2) 

Where |𝛿𝑤| is the Euclidean norm of 𝛿𝑤. If the term 𝑂(|𝛿𝑤|2) is truncated, then 𝐹𝑚(𝑤 + 𝛿𝑥) 

approximates to: 

𝐹𝑚(𝑤 + 𝛿𝑥) ≈ 𝐹𝑚(𝑤) + ∇𝐹𝑚(𝑤) ∙ 𝛿𝑤 (4. 5. 3) 

If we substitute Eq. 4.5.3 into 4.5.1, we obtain the following iterative equations: 

𝐿𝑚{𝐹𝑚(𝑤
𝑙) + ∇𝐹𝑚(𝑤

𝑙) ∙ 𝛿𝑤𝑙+1} = 𝑓𝑚(𝑥) (4. 5. 4) 

where 𝑤𝑙 is the l-th iterative solution of w and ∇𝐹𝑚(𝑤
𝑙) is ∇𝐹𝑚(𝑤) when 𝑤 = 𝑤𝑙 with an initial 

solution 𝑤0. In the iterative equation system (4.5.4), the correction vector 𝛿𝑤𝑙+1 is the 

unknown. This system can be rewritten as follows: 

𝐿𝑚{∇𝐹𝑚(𝑤
𝑙) ∙ 𝛿𝑤𝑙+1} = 𝑔𝑚(𝑥) (4. 5. 5) 

where 𝑔𝑚(𝑥) = 𝑓𝑚(𝑥) − 𝐿𝑚{𝐹𝑚(𝑤
𝑙)}, 𝐹𝑚(𝑤

𝑙) and ∇𝐹𝑚(𝑤
𝑙) are fixed. Now Eq. 4.5.5 is a linear 

system for 𝛿𝑤𝑙+1. Note that ∇𝐹𝑚(𝑤
𝑙) is the Jacobian matrix of 𝐹𝑚, and that 𝑔𝑚 is the residual 

of Eq. 4.5.1 at 𝑤𝑙. Consider 𝑔𝑚(𝑥) = 𝑅𝑖,  where i will be equal to the number of main 

variables. An updated solution vector 𝑤𝑙+1 is obtained by adding the correction vector 𝛿𝑤𝑙+1 

to the previous iteration of the solution vector 𝑤𝑙: 

𝑤𝑙+1 = 𝑤𝑙 + 𝛿𝑤𝑙+1    (4. 5. 6) 

This iterative process continues until the Euclidean norm of 𝛿𝑤𝑙+1 is very small, being a 

number close to 0. This number must be a prescribed value and is usually called tolerance 

described by the equation |𝑤𝑙+1 −𝑤𝑙| < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒. Defining the residuals 𝑅𝑖 for the 

following Eqs. 4.3.8 – 4.3.10: 

𝑅𝑖
1 =

𝑐𝑖
𝑛+1𝜙𝑖

𝑛+1−𝑐𝑖
𝑛𝜙𝑖

𝑛

∆𝑡
+ (−

𝑘0𝜙𝑖
𝑛+13

(1−𝜙𝑖
𝑛+1)

2
𝜂𝑘[(1−𝑐𝑖

𝑛+1)𝜌𝑓+𝑐𝑖
𝑛+1𝜌𝑠]

𝑝𝑖+1
𝑛+1−𝑝𝑖+1

𝑛+1

∆𝑟𝑖
)
𝑐𝑖+1
𝑛+1−𝑐𝑖

𝑛+1

∆𝑟𝑖
−
𝜙𝑖
𝑛+1−𝜙𝑖

𝑛

∆𝑡
= 0,    (4. 5. 7) 

 

𝑅𝑖
2 =

𝜙𝑖
𝑛+1−𝜙𝑖

𝑛

∆𝑡
− 𝜆(1 − 𝜙𝑖

𝑛+1) (𝑐𝑖
𝑛+1 −

𝑐𝑖
𝑛+12

𝑐𝑐𝑟𝑖
)(

𝑘0𝜙𝑖
𝑛+13

(1−𝜙𝑖
𝑛+1)

2
𝜂𝑘[(1−𝑐𝑖

𝑛+1)𝜌𝑓+𝑐𝑖
𝑛+1𝜌𝑠]

𝑝𝑖+1
𝑛+1−𝑝𝑖

𝑛+1

∆𝑟𝑖
),     (4. 5. 8) 
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𝑅𝑖
3 =

𝑝𝑖+1
𝑛+1−2𝑝𝑖

𝑛+1+𝑝𝑖−1
𝑛+1

∆𝑟𝑖
2 +

𝑝𝑖+1
𝑛+1−𝑝𝑖−1

𝑛+1

2∆𝑟𝑖
[
1

𝑟𝑖
+ (

3−𝜙𝑖
𝑛+1

𝜙𝑖
𝑛+1(1−𝜙𝑖

𝑛+1)
)
𝜙𝑖+1
𝑛+1−𝜙𝑖−1

𝑛+1

2∆𝑟𝑖
+

(
𝜌𝑓−𝜌𝑠

(1−𝑐𝑖
𝑛+1)𝜌𝑓+𝑐𝑖

𝑛+1𝜌𝑠
)
𝑐𝑖+1
𝑛+1−𝑐𝑖−1

𝑛+1

2∆𝑟𝑖
] = 0.  

(4. 5. 9) 

If we derive the residual with respect to each node of the main variable, we obtain the 

Jacobian matrix ∇𝐹𝑚(𝑤
𝑙), which is formed by the first-order partial derivatives. If we apply 

the residual Eq. 4.5.5 concerning the main variables and considering that 𝑙 = 𝑛, we will have 

the following for the variable p: 

𝜕𝑅𝑖
𝑘𝑛

𝜕𝑝𝑗+1
𝛿𝑝𝑖+1

𝑛+1 +
𝜕𝑅𝑖

𝑘𝑛

𝜕𝑝𝑗
𝛿𝑝𝑖

𝑛+1 +
𝜕𝑅𝑖

𝑘𝑛

𝜕𝑝𝑗−1
𝛿𝑝𝑖−1

𝑛+1 = −𝑅𝑖
𝑘𝑛. (4. 5. 10) 

For the variable c: 

𝜕𝑅𝑖
𝑘𝑛

𝜕𝑐𝑗+1
𝛿𝑐𝑖+1

𝑛+1 +
𝜕𝑅𝑖

𝑘𝑛

𝜕𝑐𝑗
𝛿𝑐𝑖

𝑛+1 +
𝜕𝑅𝑖

𝑘𝑛

𝜕𝑐𝑗−1
𝛿𝑐𝑖−1

𝑛+1 = −𝑅𝑖
𝑘𝑛. (4. 5. 11) 

And for the variable 𝜙: 

𝜕𝑅𝑖
𝑘𝑛

𝜕𝜙𝑗+1
𝛿𝜙𝑖+1

𝑛+1 +
𝜕𝑅𝑖

𝑘𝑛

𝜕𝜙𝑗
𝛿𝜙𝑖

𝑛+1 +
𝜕𝑅𝑖

𝑘𝑛

𝜕𝜑𝑗−1
𝛿𝜙𝑖−1

𝑛+1 = −𝑅𝑖
𝑘𝑛. (4. 5. 12) 

where 𝑘 = 1,2,3, 𝑖 = 1,… ,𝑁𝑟 and 𝑗 = 1,… ,𝑁 

 

Eqs. 4.5.10 – 4.5.12 can be represented in matrix form, a matrix with nine sub-matrices for 

each Jacobian, so the number of unknowns would be 3Nr. Eqs. 4.5.10 – 4.5.12 are 

represented in matrix form as follows: 

[
 
 
 
 
 
 [
𝜕𝑅𝑖

1𝑛

𝜕𝜑𝑗
] [

𝜕𝑅𝑖
1𝑛

𝜕𝑐𝑗
] [

𝜕𝑅𝑖
1𝑛

𝜕𝑝𝑗
]

[
𝜕𝑅𝑖

2𝑛

𝜕𝜑𝑗
] [

𝜕𝑅𝑖
2𝑛

𝜕𝑐𝑗
] [

𝜕𝑅𝑖
2𝑛

𝜕𝑝𝑗
]

[
𝜕𝑅𝑖

3𝑛

𝜕𝜑𝑗
] [

𝜕𝑅𝑖
3𝑛

𝜕𝑐𝑗
] [

𝜕𝑅𝑖
3𝑛

𝜕𝑝𝑗
]
]
 
 
 
 
 
 
𝑛

 [

𝛿𝜑𝑖
𝛿𝑐𝑖
𝛿𝑝𝑖

]

𝑛+1

= −[

[𝑅𝑖
1]

[𝑅𝑖
2]

[𝑅𝑖
3]

]

𝑛

. (4. 5. 13) 

If we analyze the system of linear equations in the form [𝐴]{𝑥 } = {�⃗� }, we can deduce that 

the solution is found using a solution algorithm for systems of linear equations. In Eqs. 

4.5.13, the matrix is at time n, while the deltas are at time n + 1, which suggests that the 

only unknowns are at time n + 1 and will be calculated using Eq. 4.5.6. The Jacobians and 

residuals of Eqs. 4.5.10 - 4.5.12 can be found in Appendix C. To find the variables 

𝑝𝑛+1, 𝜙𝑛+1 and 𝑐𝑛+1, the following equations will simply be used: 
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𝑝𝑛+1 = 𝑝𝑛 + 𝛿𝑝𝑛+1, (4. 5. 14) 

 

𝜙𝑛+1 = 𝜙𝑛 + 𝛿𝜙𝑛+1, (4. 5. 15) 

 

𝑐𝑛+1 = 𝑐𝑛 + 𝛿𝑐𝑛+1. (4. 5. 16) 

 

4.6 Coupling of Mechanical Deformation 

Since the parameters 𝜙, c, and p of each node and time are calculated at the time (n+1), 

the partial differential Eq. 3.7.6 is solved using a finite difference scheme. The unknown 

variable will be the displacement function (u) at the nodes. Eq. 3.7.6 with the boundary 

conditions 4.2.12 and 4.2.13 are spatially discretized to obtain the following matrix 

arrangement: 

[𝐴]{�⃗� } = {�⃗� }. (4. 6. 1) 

It is important to mention that to arrive at Eq. 4.6.1, the temporal discretization will be implicit, 

which implies updating the displacement variable with respect to the three main variables. 

This is possible because the coupling of Eq. 4.6.2 is a weak coupling, that is, the variable u 

depends on the three main variables 𝜑, 𝑐 and 𝑝, while these three main variables do not 

depend on the displacement variable u. So, by spatially discretizing Eq. 3.7.6, we arrive at: 

𝑢𝑖+1−2𝑢𝑖+𝑢𝑖−1

∆𝑟𝑖
2 + 𝑔1𝑖

𝑢𝑖+1−𝑢𝑖−1

2∆𝑟𝑖
− 𝑔2𝑖𝑢𝑖 = 𝑔3

(𝜙𝑝)𝑖+1−(𝜙𝑝)𝑖

∆𝑟𝑖
. (4. 6. 2) 

where: 

𝑔1𝑖 =
1

𝑟𝑖
−

1

1−𝜙𝑖

𝜙𝑖+1−𝜙𝑖

∆𝑟𝑖
, (4. 6. 3) 

 

𝑔2𝑖 =
1

𝑟𝑖
2 +

1

𝑟𝑖

𝑣

1−𝑣

1

1−𝜑𝑖

𝜙𝑖+1−𝜙𝑖

∆𝑟𝑖
, (4. 6. 4) 

 

𝑔3𝑖 =
(1+𝑣)(1−2𝑣)

�̅�(1−𝜑𝑖)(1−𝑣)
. (4. 6. 5) 

Temporally discretizing the deformation variable at level k+1, while for the main variables 

n+1 is still used, we obtain: 
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𝑢𝑖+1
𝑘+1−2𝑢𝑖

𝑘+1+𝑢𝑖−1
𝑘+1

∆𝑟𝑖
2 + 𝑔1𝑖

𝑛+1 𝑢𝑖+1
𝑘+1−𝑢𝑖−1

𝑘+1

2∆𝑟𝑖
− 𝑔2𝑖

𝑛+1𝑢𝑖
𝑘+1 = 𝑔3𝑖

𝑛+1 (𝜙𝑝)𝑖+1
𝑛+1−(𝜙𝑝)𝑖

𝑛+1

∆𝑟𝑖
 . (4. 6. 6) 

For each node, we obtain the following: 

Node 𝑖 = 1 

𝑢2
𝑘+1−2𝑢1

𝑘+1+𝑢0
𝑘+1

∆𝑟1
2 + 𝑔11

𝑛+1 𝑢2
𝑘+1−𝑢0

𝑘+1

2∆𝑟1
− 𝑔21

𝑛+1𝑢1
𝑘+1 = 𝑔31

𝑛+1 (𝜙𝑝)2
𝑛+1−(𝜙𝑝)1

𝑛+1

∆𝑟1
 , (4. 6. 7) 

Node 𝑖 = 1,… , 𝑁𝑟 − 1 

𝑢𝑖+1
𝑘+1−2𝑢𝑖

𝑘+1+𝑢𝑖−1
𝑘+1

∆𝑟𝑖
2 + 𝑔1𝑖

𝑛+1 𝑢𝑖+1
𝑘+1−𝑢𝑖−1

𝑘+1

2∆𝑟𝑖
− 𝑔2𝑖

𝑛+1𝑢𝑖
𝑘+1 = 𝑔3𝑖

𝑛+1 (𝜙𝑝)𝑖+1
𝑛+1−(𝜙𝑝)𝑖

𝑛+1

∆𝑟𝑖
 ,  (4. 6. 8) 

Node 𝑖 = 𝑁𝑟 

𝑢𝑁𝑟+1
𝑘+1 −2𝑢𝑁𝑟

𝑘+1+𝑢𝑁𝑟−1
𝑘+1

∆𝑟𝑁𝑟
2 + 𝑔1𝑁𝑟

𝑛+1 𝑢𝑁𝑟+1
𝑘+1 −𝑢𝑁𝑟−1

𝑘+1

2∆𝑟𝑁𝑟
− 𝑔2𝑁𝑟

𝑛+1𝑢𝑁𝑟
𝑘+1 = 𝑔3𝑁𝑟

𝑛+1 (𝜙𝑝)𝑁𝑟+1
𝑛+1 −(𝜙𝑝)𝑁𝑟

𝑛+1

∆𝑟𝑁𝑟
 .  (4. 6. 9) 

Applying the boundary conditions to the equation found in Appendix D: 

Node 𝑖 = 1 

𝑢2
𝑘+1−2𝑢1

𝑘+1

∆𝑟1
2 +. 𝑔11

𝑛+1 𝑢2
𝑘+1

2∆𝑟1
+. (

1

∆𝑟1
2−.

𝑔11
𝑛+1

2∆𝑟1
) (𝑢2

𝑘+1+. 2∆𝑟1 (
𝑣

1−𝑣

𝑢1
𝑘+1

𝑟1
+. 𝑔31

𝑛+1[𝜙
1
𝑝1−. 𝑝1]))−.  𝑔21

𝑛+1𝑢1
𝑘+1 =

𝑔31
𝑛+1 (𝜙𝑝)2

𝑛+1−(𝜙𝑝)1
𝑛+1

∆𝑟1
.  

 (4. 6. 10) 

Eq. 4.6.10 can be simplified as follows: 

2𝑢2
𝑘+1−2𝑢1

𝑘+1

∆𝑟1
2 − 𝑔21

𝑛+1𝑢1
𝑘+1 + (

2

∆𝑟1
2 − 𝑔11

𝑛+1) (
𝑣

1−𝑣

𝑢1
𝑘+1

𝑟1
) = 𝑔31

𝑛+1 (𝜙𝑝)2
𝑛+1−(𝜙𝑝)1

𝑛+1

∆𝑟1
+

(𝑔31
𝑛+1𝑔11

𝑛+1−.
2𝑔31

𝑛+1

∆𝑟1
) + [𝜙1𝑝1 − 𝑝1] . 

 (4. 6.11) 

In the same way for the node 𝑖 = 𝑁𝑟 − 1 

−2𝑢𝑁𝑟
𝑘+1+2𝑢𝑁𝑟−1

𝑘+1

∆𝑟𝑁𝑟
2 + (

2

∆𝑟𝑁𝑟−1
2 − 𝑔1𝑁𝑟−1

𝑛+1 ) (
𝑣

1−𝑣

𝑢𝑁𝑟−1
𝑘+1

𝑟𝑁𝑟−1
) − 𝑔2𝑁𝑟−1

𝑛+1 𝑢𝑁𝑟−1
𝑘+1 =

⋯𝑔3𝑁𝑟−1
𝑛+1 (𝜙𝑝)𝑁𝑟

𝑛+1−(𝜙𝑝)𝑁𝑟−1
𝑛+1

∆𝑟𝑁𝑟
+⋯(𝑔3𝑁𝑟−1

𝑛+1 𝑔1𝑁𝑟−1
𝑛+1 −

2𝑔3𝑁𝑟−1
𝑛+1

∆𝑟𝑁𝑟−1
) + [𝜙𝑒𝑝𝑒 − 𝑆𝑒]. 

(4. 6. 12) 
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Once the boundary conditions have been coupled, Eqs. 4.6.8, 4.6.10, and 4.6.12 are 

adapted into the following matrix arrangement: 

{�⃗� } =

{
 
 

 
 
𝑢1
𝑢2
⋮
𝑢𝑖
⋮
𝑢𝑁𝑟}

 
 

 
 
𝑘+1

, (4. 6. 13) 

 

{�⃗� } =

{
 
 
 
 

 
 
 
 𝑔31

𝑛 (𝜙𝑝)2
𝑛−(𝜙𝑝)1

𝑛

∆𝑟𝑁𝑟
+ (𝑔31

𝑛 𝑔11
𝑛 −

2𝑔31
𝑛

∆𝑟1
) + [𝜙1𝑝1 − 𝑝1]

𝑔32
𝑛 (𝜙𝑝)3

𝑛−(𝜙𝑝)2
𝑛

∆𝑟2

⋮

𝑔3𝑖
𝑛 (𝜙𝑝)𝑖+1

𝑛 −(𝜙𝑝)𝑖
𝑛

∆𝑟𝑖

⋮

𝑔3𝑁𝑟−1
𝑛 (𝜙𝑝)𝑁𝑟

𝑛 −(𝜙𝑝)𝑁𝑟−1
𝑛

∆𝑟𝑁𝑟−1
+ (𝑔3𝑁𝑟−1

𝑛 𝑔1𝑁𝑟−1
𝑛 −

2𝑔3𝑁𝑟−1
𝑛

∆𝑟𝑁𝑟−1
) + [𝜙𝑒𝑝𝑒 − 𝑆𝑒]}

 
 
 
 

 
 
 
 
𝑛+1

 . 

(4. 6. 
14) 

The matrix arrangement now has the following form: 

[𝐴]𝑛+1{�⃗� }𝑘+1 = {�⃗� }
𝑛+1

 (4. 6. 15) 

The system of Eqs. 4.6.15 is solved using conventional methods for solving systems of linear 

equations, which allows us to obtain the values of the displacement vector (�⃗� ). In this way, 

the deformation is updated in the same time step as the main variables 𝜙, 𝑐 and 𝑝. 
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4.7 Solution Algorithm 

Algorithm 4.1 General Solution Algorithm 
1: Start. 
2: Input initial values. 
3: Define simulation mesh. 
4: Define time increment, delta time, and total time. 
5: Define tolerance. 
6: While 𝑡𝑖𝑚𝑒 < 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 do: 
7:      While ∆𝑁𝑜𝑟𝑚 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 do: 
8:       Obtain Jacobian matrix of residuals and residual vector (as in Eq. 4.5.13). 
9:         Solve the system of equations. 
10:         Calculate ∆𝑁𝑜𝑟𝑚. 
11:         If ∆𝑁𝑜𝑟𝑚 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ∶ 
12:                Find the main variables with Eqs. 4.5.14 – 4.5.16. 
13:                The solutions are 𝑝𝑛+1, 𝜑𝑛+1 y 𝑐𝑛+1. 
14:         If Not ∆𝑁𝑜𝑟𝑚 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑖𝑒 ∶ 
15:                Return to step 1 and check for possible errors. 
16:  Substitute the main variables at time 𝑛 + 1 into Eq. 4.6.15 to obtain the displacement 
vector. 
17:     The solution is 𝑢𝑛+1. 
18: Find effective stresses with the result of 𝑢𝑘+1. 
19: Print graphs and results. 
20: End. 

 

4.8 Simulator Validation 

To validate and verify the simulator's operation, multiple runs were conducted using the 

Python programming language, version 3, to replicate the results of the work by 

Stavropoulou et al. (1998). The data from Table 1 proposed by Stavropoulou were used, 

and they are presented in Table 4.1 of this section. 

Figs. 3 and 4 from Stavropoulou's work are reproduced, showing the alteration of porosity 

with respect to distance at different times and the alteration of pressure with respect to 

distance at different times. Figs. 4.4a and 4.4b represent Figs. 3 and 4 of the original work. 

Figs. 4.5a and 4.5b are those generated by the proposed simulator.  

It is important to note that the main difference lies in the fact that the original article used the 

finite element method, while the simulator in this work was based on the finite difference 

method. The difference between having a finite difference scheme lies in the fact that the 

error can be more pronounced because the approximation of the derivatives is based on a 

Taylor series, which can lead to significant errors, especially in cases where a Taylor series 

do not easily represent the function. On the other hand, in finite element methods, the error 

tends to be minimized. This is because the discretization is performed using a continuous 

integral scheme instead of direct derivatives.  
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Physical Parameters Value 

Well radius 𝑟𝑤𝑓 = 0.1 [𝑚] 

External radius 𝑟𝑒 = 5 [𝑚] 

Initial Porosity 𝜑0 = 0.25 

Initial Concentration 𝑐0 = 10
−3 

Critical Concentration 𝑐𝑐𝑟 = 0.3 

Inital Permeability 𝑘 = 373 [𝑚𝑑] 

Young Modulus 𝐸 = 2 [𝐺𝑃𝑎] 

Poisson’s Ratio 𝑣 = 0.3 

Kinematic Viscosity of the Fluid 𝜂𝑘 = 5𝑥10
−6 [𝑚2𝑠−1] 

Fluid Density 𝑝𝑓 = 840 [𝑘𝑔𝑚
−3] 

Densidad of the Rock 𝑝𝑠 = 2,650 [𝑘𝑔𝑚
−3] 

pwf 𝑝𝑤𝑓 = 5 [𝑀𝑃𝑎] (725 psi) 

External Pressure 𝑝𝑒 = 8 [𝑀𝑃𝑎] (1160 psi) 

External Stress 𝜎𝑒 = 20 [𝑀𝑃𝑎] (2900 psi) 

Erosion Coefficient 𝜆 = 5[𝑚−1] 

Initial Cohesion 𝐶𝑜 = 7.5 [𝑀𝑃𝑎] (1088 psi) 

Internal Friction Angle 𝜃 = 37 ° 

Number of Nodes 𝑁𝑟 = 100 

Final Time 𝑡𝑓 = 10,000 [𝑠] 

Time Delta 𝑑𝑡 = 10 [𝑠] 

Radius Delta 𝑑𝑟 = 0.5 

Newton-Raphson Epsilon 𝜀𝑁𝑅 = 1𝑥10
−5 

Table 4. 1 Input Data for the Simulator (Stavropoulou, Papanastasiou, & Vardoulakis, 
1998) 
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Figs. 5 and 6 show how porosity and transport concentration at the first node vary over time. 

These figures are represented in Figs. 4.6a and 4.6b. The results obtained from the 

simulator of this study are compared with those in Figs. 4.7a and 4.7b. A rapid increase in 

porosity and concentration is observed after a specific time. In Fig. 4.7a, it is noted how the 

value approaches 1, which is the maximum porosity or a free surface. Fig. 4.7b shows that 

the concentration converges to the asymptotic value of 0.3, corresponding to the critical 

concentration. 

 

 

 

Figure 4. 4: a) Spatial Profile of Porosity at Various Times. b) Spatial Profile of Pressure at 
Various Times. (Stavropoulou, Papanastasiou, & Vardoulakis, 1998) 

Figure 4. 5 At Various Simulation Times:  a) Spatial Profile of Porosity b) Spatial 
Profile of Pressure. 
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Deformation is first determined for the geomechanical parameters to calculate the effective 

stresses. Figs. 4.8 and 4.9 of the paper are compared using Figs. 4.8a and 4.9b. The figures 

are reproduced with the simulator, resulting in Figs. 4.9, 4.10a, and 4.10b. It should be noted 

that erosion in the vicinity of the well induces a mechanical alteration of the medium. Fig. 

4.9 presents the spatial profiles of radial displacement at different times. Figs. 4.10a and 

4.10b show the temporal variation of radial displacement and its derivative at the well face. 

 

Figure 4. 6 a) Porosity Variation with Respect to Time at the Initial Node. b) Variation of 
Transport Concentration with Respect to Time at the First Node. (Stavropoulou, 

Papanastasiou, & Vardoulakis, 1998) 

Figure 4. 7 a) Variation of Porosity with Respect to Time at the First Node of the Simulator. b) 
Variation of Transport Concentration with Respect to Time at the First Node of the Simulator. 
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Figure 4. 9 Distribution of Radial Displacement Simulated at Various Times. 

 

 

 

 

 

 

 

Figure 4. 8 a) Distribution of Radial Displacement Simulated at Various Times. b) Variation of Radial 
Displacement and Strain with Respect to Time, Evaluated at the Well Radius. (Stavropoulou, 

Papanastasiou, & Vardoulakis, 1998) 
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For the effective stresses, Figs. 10 and 11 of the article are obtained, represented by Figs. 

4.11a and 4.11b. These figures are compared with Figs. 4.12a and 4.12b, respectively. As 

observed earlier, there is an increase in the absolute value of radial displacement and its 

slope. These increases cause a decrease in the gradient of radial effective stress, as shown 

in Fig. 4.12a, and in turn a decrease in tangential effective stress, as seen in Fig. 4.12b. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 10 a) Temporal Variation of Radial Displacement at the Wellbore Wall Obtained by 
the Simulator. b) Temporal Variation of the Strain Derivative at the Wellbore Wall Obtained 

by the Simulator. 

Figure 4. 11 Various Times Distribution of a) Radial Effective Stress. b) Tangential Effective 
Stress. (Stavropoulou, Papanastasiou, & Vardoulakis, 1998) 
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Considering the solution of the elastic stress problem, a well failure analysis is performed 

using the modified Mohr-Coulomb criterion. The results of the article are shown in Fig. 4.13, 

while the simulator results are presented in Fig. 4.14a and in more detail in Fig. 4.14b. In 

Fig. 4.14a, continuous observation of how the failure envelope reaches the stress field 

indicates rock collapse at that point. Additionally, it is noted that in Fig. 4.14b, the failure 

envelope intersects the stress field around 3,500-time units, causing the formation node to 

collapse at that moment. 

 

Figure 4. 13 Failure Envelopes and Critical Stresses Corresponding to the Inner Boundary 

𝑟 = 𝑟𝑤, at Different Times (𝜃 = 37°, 𝐶̅ = 7.5 [𝑀𝑝𝑎]) (Stavropoulou, Papanastasiou, & 
Vardoulakis, 1998) 

 

Figura 4. 12 Various Time Distribution of a) Radial Effective Stress from the Simulator. b) 
Tangential Effective Stress obtained by the Simulator. 
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Figure 4. 14 a) Failure Envelopes and Critical Stresses Corresponding to the Inner Boundary 𝑟 = 𝑟𝑤, 

at Different Times (𝜃 = 37°, 𝐶̅ = 7.5 [𝑀𝑝𝑎]) Obtained by the Simulator. b) Variation of the Failure 

Envelope and Stress Field at the Inner Boundary 𝑟 = 𝑟𝑤, at Different Times (𝜃 = 37°, 𝐶̅ = 7.5 [𝑀𝑝𝑎]) 
Obtained by the Simulator. 
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4.9 Case Study Analysis 

The main objective of this analysis is to adapt the explicit model of Stavropoulou (1998) to 

a carbonate reservoir in an implicit scheme, as there is not much information in the literature 

about prediction models for the collapse of such formations. In this section, a case study 

was conducted with characteristics of a real carbonate reservoir located in the state of 

Indiana, United States, which are represented with data from Table 4.2.  

One important aspect to consider is that the model only applies within the investigation 

radius where the in-situ stress system has been modified to a local stress system. As the 

distance increases, the formation's geomechanical behavior begins to show deviations and 

errors. 

 

Physical Parameters Values 

Well Radius 𝑟𝑤𝑓 = 0.1 [𝑚] 

External Radius 𝑟𝑒 = 5 [𝑚] 

Initial Porosity 𝜑0 =0.15 

Initial Concentration 𝑐0 = 10
−3 

Critical Concentration 𝑐𝑐𝑟 = 0.3 

Initial Permeability 𝑘 =  5.0[𝑚𝑑] 

Young’s Modulus 𝐸 =  29 [𝐺𝑃𝑎] 

Poisson’s Ratio 𝑣 =0.18 

Kinematic Viscosity of the Fluid 𝜂𝑘 = 4.0𝑥10
−6 [𝑚2𝑠−1] 

Fluid Density 𝑝𝑓 = 834 [𝑘𝑔𝑚
−3] 

Density of the Solids 𝑝𝑠 =  2250 [𝑘𝑔𝑚
−3] 

pwf 𝑝𝑤𝑓 = 10 [𝑀𝑃𝑎] (1450 psi) 

External Pressure 𝑝𝑒 = 15 [𝑀𝑃𝑎] (2175 psi) 

External Stress 𝜎𝑒 = 20 [𝑀𝑃𝑎] (2900 psi) 

Erosion Coefficient 𝜆 = 5 [𝑚−1] 

Initial Cohesion 𝐶𝑜 = 10 [𝑀𝑃𝑎] (1450 psi) 

Internal Friction Angle 𝜃 =  35° 

Number of Nodes 𝑁𝑟 = 200 
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Final Time 𝑡𝑓 = 40 [ℎ𝑟𝑠] 

Time Delta 𝑑𝑡 = 100 [𝑠] 

Radius Delta 𝑑𝑟 = 0.5 

Newton-Raphson Epsilon 𝜀𝑁𝑅 = 1𝑥10
−5 

 

Table 4. 2 Input Data for the Case Simulator 

 

4.9.1 Physical Analysis 

To validate a simulator, it is necessary to vary the parameters. For this work, the parameter 

varied are permeability, cohesion, Poisson's ratio, and the internal friction angle. From the 

values in Table 4.2, Fig. 4.16 is obtained. It can be observed in Fig. 4.16a that the rock will 

begin to fail at a porosity close to 0.6; from then on, the slope gradually decreases, which 

means that the rock continues to erode but at a slower rate From Fig. 4.16c, we can see 

that at approximately 32 hours, the failure envelope reaches the stress field.  

Also, it can be observed that by applying the explicit model in an implicit scheme, instability 

problems arose for extended periods. This occurs because the Newton-Raphson algorithm 

tends to minimize errors. As a result, it was necessary to perform multiple simulations using 

different time delta values to determine the optimal value that stabilized the model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 15 Variation of Porosity with Respect to Time at the Initial Node. b) Variation of Transport 
Concentration at the Initial Node. c) Variation of the Failure Envelope and Stress Field at the Inner Boundary 

𝑟 = 𝑟𝑤 , at Different Times. 
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4.9.2 Physical Effect of Permeability 

Permeability is one of the most important parameters when analyzing fluid flow; if the 

permeability increases, the flow rate will be higher, and if the flow rate is higher, the erosion 

forces will also be greater, and the rock failure will be faster. Fig. 4.17 demonstrates that 

with higher permeability, the porosity and concentration reach their critical value more 

quickly, and this can be confirmed with Fig. 4.17c, where the formation fails at approximately 

8 hours. 

 

 

 

 

 

 

 

 

 

 

4.9.3 Physical Effect of Cohesion 

Cohesion is one of the main geomechanical parameters highlighted in this flow model 

adapted to movable solids. When the rock's cohesion decreases, the formation erodes 

earlier. As can be seen in Fig 4.18, if we increase the cohesion value to 20 MPa, the rock 

will take longer to collapse. A higher cohesion mean that the rock has greater compaction; 

this is why the collapse takes longer to occur. 

Figure 4. 16 a) Variation of Porosity, Figure a), transport concentration, Figure b) and Failure Envelope 
and Stress Field at the Inner Boundary 𝑟 = 𝑟𝑤 ,  Concerning Time at the Initial Node at Two Different 

Permeabilities.  
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Figure 4. 17 Variation of the Failure Envelope and Stress Field at the Inner Boundary 𝑟 =
𝑟𝑤, at Different Times Obtained by the Simulator at Two Different Cohesion Values. 

 

4.9.3 Physical Effect of Poisson's Ratio 

Poisson's ratio is an equation that measures the hardness of a rock and is a critical property 

related to fracture closure stress. As for its influence on rock failure, it is not very significant, 

Fig. 4.19 shows that the change indicates how easily the rock can fail. However, by 

increasing Poisson's ratio, the generation of the stress field is affected, causing a shift 

between the two curves to higher values. However, the rock collapses almost 

simultaneously. 

 

 

Figure 4. 18 Variation of the Failure Envelope and Stress Field at the Inner Boundary 𝑟 =
𝑟𝑤, at Different Times Obtained by the Simulator, at Two Different Poisson's Ratios. 
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4.9.4 Physical Effect of Internal Friction Angle 

The internal friction angle is generally obtained from triaxial tests, although the term 

originates from Eq. 2.4.68. Savage et al. (1996) argued that this effect is due to friction forces 

that occur by sliding along the micro-scale portions of the fault surface that are not intact. 

Fig. 4.20 shows that when the angle is larger, the failure lines are further away from the 

stress fields, delaying failure. It can be observed that at an angle of 43°, collapse does not 

occur within the first 40 hours. 

 

 

Figure 4. 19 Variation of the failure envelope and the stress field at the inner boundary 𝑟 =
𝑟𝑤, at different times obtained through the simulator at two different internal friction angles. 
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5. Conclusions  
 

The collapse of the formation and the potential production of solids in carbonate reservoirs 

depend on the rock's physical and mechanical properties. The interaction between these 

two aspects generates uncertainty regarding the time of rock failure. However, accurately 

predicting these events is complex due to the nature of rock formations, especially in 

carbonate formations. 

In the existing literature, no specific models predict the collapse in carbonate formations, 

which led to the adaptation of a model designed initially for sands in an explicit scheme. 

However, when attempting to apply this model in an implicit scheme, instability problems 

arose for extended periods. This occurs because the Newton-Raphson algorithm tends to 

minimize errors, but the speed at which information is transmitted between neighboring 

nodes introduces errors, especially when the physical information is not generated 

adequately. As a result, it was necessary to perform multiple simulations using different time 

delta values to determine the optimal value that stabilized the model. 

The developed numerical model finds its main application in wells located in mature 

reservoirs with open-hole completion, where the formation has been exposed to prolonged 

fluid production, causing erosion and weakening of the rock. Additionally, this model is useful 

when detailed geomechanical data or fluid tests are available. However, it is important to 

note that the current model only contemplates oil production. To improve its scope, it is 

suggested that the model be extended to consider multiphase flow, as the presence of gas 

and water can significantly alter the conditions that lead to the collapse of the formation. 

Similarly, the mesh could be discretized logarithmically to work with larger models over long 

time periods. 

Another crucial aspect to consider is that the model only applies within the investigation 

radius where the in-situ stress system has been modified to a local stress system. As the 

distance increases, the formation's geomechanical behavior begins to show deviations and 

errors. 

Accurately obtaining geomechanical data is essential to improving prediction accuracy. 

Therefore, it is highly recommended to collect cores during the drilling stage, which will allow 

obtaining the rock's static parameters. Additionally, the acquisition of geophysical logs is 

essential to determining the formation's dynamic parameters, which will contribute to 

generating more robust and reliable models. 

Although the current model represents a significant advance in predicting the collapse of 

carbonate formations under depletion conditions, its accuracy largely depends on the correct 

collection and analysis of geomechanical data and the future inclusion of multiphase flows 

to better represent the actual reservoir conditions. 

 



 
 

89 
 

Nomenclature 

�̅� Aceleration [ft/s2] 

𝐴 Area [ft2] 

𝐴𝑝 Perpendicular area of the YZ plane YZ [ft2] 

𝐴𝑛 Normal area [ft2] 

𝑏𝑖 Body force [lbf] 

𝑐 Concentration of mobile solids [] 

𝑐𝑐𝑟 Critical Concentration [-] 

𝐶𝑜 Initial Cohesión with damage [psi] 

𝐶 Cohesion [psi] 

𝑑𝑆𝑖 Sectional Area [ft2] 

𝑒𝑖 Axis direction in i [-] 

𝐸 Young’s Modulus [psi] 

𝐹 Force [lbf] 

𝐹𝑚 Mass Flow rate [lb/s] 

𝐺 Shear Modulus [psi] 

ℎ𝑤 Well height [ft] 

𝑘 Permeability [mD] 

𝑘0 Initial Permeability [md| 

𝑙 System length [ft] 

𝑚 Mass [lb] 

�̇�𝑐𝑟 Critical mass flow rate [lb/s] 
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𝑀𝑠 Solid mass [lb] 

𝑀𝑓𝑓 Fluid mass [lb] 

𝑀𝑓𝑠 Movable solid mass [lb] 

�̅� Vector norm [-] 

𝑝 Pressure [psi] 

𝑝𝑝 Poro Pressure [psi] 

𝑞 Darcy’s flow rate [ft/s] 

𝑞𝑚 Sink/Source term [1/s] 

𝑟𝑤 Well radius [ft] 

𝑅 Plastic zone radius [ft] 

𝑆 Stress tensor [psi] 

𝑆𝑖𝑗 Stress in the ij direction [psi] 

𝑡 Time [hours] 

𝑡0 Initial Time [hours] 

𝑡̅ Traction vector [psi] 

𝑢𝑖 Displacement in the i direction [ft] 

�̅� Projection vector [adim] 

�̅�𝑥 Interstitial velocity [ft/s] 

𝑣 Material velocity [ft/s] 

𝑣𝐷 Darcy velocity [ft/s] 

𝑣𝑖
𝑓𝑓

 Fluid velocity [ft/s] 

𝑣𝑖
𝑓𝑠

 Movable solids velocity [ft/s] 
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𝑣𝑖
𝑠 Solids velocity [ft/s] 

�̅� Mixture velocity [ft/s] 

𝑣𝑝 Poisson’s ratio [-] 

𝑉 Total volume [ft3] 

𝑉𝑠 Solid volume [ft3] 

𝑉𝑓𝑠 Movable solids volume [ft3] 

𝑉𝑓𝑓 Fluid volume [ft3] 

𝑉𝑣 Porous space volume [ft3] 

𝑉Ω Control system volume Ω [ft3] 

𝑤 Displacement in the y direction [ft] 

                                             Greek Letters 

𝛼, 𝛽, Angle between two lines [°] 

𝜀𝑖 Strain in the i direction [-] 

𝜀𝑣𝑜𝑙 Volumetric strain [-] 

𝜂𝑘 Kinematic viscosity [Poise] 

𝜃 Internal friction angle [°] 

𝜆𝑙 Lamé’s constant [-] 

𝜆 Erosión coefficient [1/ft] 

𝜇 Dynamic viscosity [St] 

𝜇𝑓 Friction coefficient [-] 

𝜌 Density [lb/ft3] 

𝜌𝑠 Solid density [lb/ft3] 
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𝜌𝑓𝑓 Fluid density [lb/ft3] 

𝜌𝑓𝑠 Movable solid density [lb/ft3] 

�̅� Mixture density [lb/ft3] 

𝜎1 Maximum vertical stress [psi] 

𝜎3
′ Minimum horizontal stress [psi] 

𝜎𝑖
′ Efective stress [psi] 

𝜎ℎ Hydrostatic stress [psi] 

𝜎𝑛 Normal stress [psi] 

𝜎𝑟 Radial stress [psi] 

𝜎𝜃 Tangential stress [psi] 

𝜎𝑖𝑗 Stress in the i j direction [psi] 

𝜑 Porosity [-] 

𝜏𝑖𝑗 Shear stresses on the i j plane [psi] 

𝜏𝑚 Average shear stress [psi] 

𝜏𝑛 Normal shear stress [psi] 

Ω Control volume [ft3] 

𝛿 Ω Control surface [ft3] 

Γ𝑥𝑦 Strain in the xy direction [-] 
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Appendix A 

Formulation of Spatial Discretization 

For the binary operations handled by computers, only additions and subtractions exist. Other 

operations, such as multiplication, powers, division, etc., are derived from iterations of these 

two operations. Similarly, to obtain the derivative, a method is required to approximate the 

derivative in a computable way, ensuring that the approximate solution is as close as 

possible to the solution of the original function. The definition of the derivative is: 

𝑑𝑓

𝑑𝑥
= 𝑙𝑖𝑚ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

(A. 1) 

 

If the function is approximated by considering that h will be sufficiently small to 

approximate Eq. A.1: 

𝑑𝑓

𝑑𝑥
≈
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

(A. 2) 

 

Eq. A.2 is in a format that is computable, but the error generated by this approximation is 

not known. In general, the error represents the difference between the real and the 

measured value, so if the derivative is approximated at a point and the approximation is 

denoted as: 

𝑓´(𝑥𝑖) ≈
𝛿𝑓

𝛿𝑥
(𝑥𝑖) 

(A. 3) 

 

Therefore, the approximation error is: 

𝜖(𝑥𝑖) = 𝑓´(𝑥𝑖) −
𝛿𝑓

𝛿𝑥
(𝑥𝑖) 

(A. 4) 

 

The goal is to quantify the error generated if Eq. A.2 is used. To do this, the derivative of the 

function f is approximated using a series of continuous equations. The Taylor series is used 

to approximate functions based on polynomials. The Taylor series is expressed as follows: 

𝑓(𝑥) = 𝑓𝑖 + 𝑓´𝑖(𝑥 − 𝑥𝑖) +
𝑓𝑖
(2)

2
(𝑥 − 𝑥𝑖)

2 +⋯+
𝑓𝑖
(𝑛)

𝑛!
(𝑥 − 𝑥𝑖)

2 
(A. 5) 

 

In Eq. A.5, fi denotes the function evaluated at the point xi and similarly with the derivatives. 

If Eq. A.5 is used to calculate fi+1 and is considered that ℎ = 𝑥𝑖+1 − 𝑥𝑖 we have: 

𝑓𝑖+1 = 𝑓𝑖 + 𝑓´𝑖(𝑥 − 𝑥𝑖) +
𝑓𝑖
(2)

2
(𝑥 − 𝑥𝑖)

2 +⋯+
𝑓𝑖
(𝑛)

𝑛!
(𝑥 − 𝑥𝑖)

2 
(A. 6) 

 

Solving for the derivative from Eq. A.6, we have: 
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𝑓´𝑖 =
𝑓𝑖+1 − 𝑓𝑖

ℎ
−
𝑓𝑖
2

2
ℎ −⋯

𝑓𝑖
𝑛

2
ℎ𝑛−1 

(A. 7) 

 

If the error definition A.4 is used for Eqs. A.2 and A.7, we obtain the following: 

𝜖 −
𝑓𝑖
2

2
ℎ −⋯

𝑓𝑖
𝑛

2
ℎ𝑛−1 

(A. 8) 

 

Note from Eq. A.8 that, since there is no control over the coefficients, the error depends on 

h, and the highest value will be h, as if it is a term less than 1, the powers will only make it 

smaller. That said, the dominant term will be the h term, and the error will be of the order of 

h: 

𝜖 = 𝑂(ℎ) (A. 9) 

 

And this new Eq. A.9 will be the truncation error obtained, and Eq. A.7 becomes: 

𝑓´𝑖 =
𝑓𝑖+1 − 𝑓𝑖

ℎ
+ 𝑂(ℎ) 

(A. 10) 
 

𝑓´𝑖 ≈
𝑓𝑖+1 − 𝑓𝑖

ℎ
 

(A. 11) 
 

Eq. A.11 is known as the forward finite difference approximation. Similarly, the centered 

difference equation, which is established in Eq. 4.3.1, can be obtained. Therefore, the 

approximation for 𝑓𝑖−1 is sought, we have: 

𝑓𝑖−1 = 𝑓𝑖 + 𝑓´𝑖ℎ +
𝑓𝑖
2

2
ℎ2 +⋯+

𝑓𝑖
𝑛

𝑛!
ℎ𝑛 

(A. 12) 

 

If eq. A.7 and A.12 are combined, we have: 

𝑓𝑖+1 − 𝑓𝑖−1 = 2ℎ𝑓´𝑖 + 2
𝑓𝑖
3

6
ℎ3 +⋯ 

(A. 13) 

 

Solving for 𝑓´𝑖 from Eq. A.12, we have: 

𝑓´𝑖 ≈
𝑓𝑖+1 − 𝑓𝑖−1

2ℎ
+ 𝑂(ℎ2) 

(A. 14) 

 

Eq. A.14 represents Eq. 4.31. For this scheme, known as centered differences, the 

approximation error is ℎ2, so this scheme has less error compared to forward differences. 

Schemes A.11 and A.14 are used to discretize the main variable with respect to space, so 

that the partial derivatives of a main variable with respect to space are solved using these 

schemes. 

The finite difference method converts derivatives into a series of discrete operations such 

as additions, subtractions, multiplications, and divisions. This allows the equations to be 

computable and solvable numerically. 
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Appendix B 

Formulation of Temporal Discretization 

Just like the partial derivatives with respect to space, the partial derivatives with respect to 

time must also be discretized. The mathematical operation is similar, but the variables 

considered are different. It is worth noting that in Appendix A, the variables considered to 

solve the problem are of the same type but at different spatial nodes; in this case, they will 

be considered at discrete time intervals. Suppose we have the following differential equation: 

𝑑𝑦

𝑑𝑡
= 𝑓(𝑡, 𝑦); 𝑦(𝑡0) = 𝑦0; 𝑡 ∈ [𝑡0, 𝑡𝑓] 

(B. 1) 

 

The function 𝑦(𝑡) must be found such that 𝑦(𝑡0) = 𝑡0, which satisfies the condition of the 

ordinary differential equation for time in the interval 𝑡 ∈ [𝑡0, 𝑡𝑓]. If the continuous variable t is 

discretized into intervals where all times are considered, where 𝑡𝑁𝑡 = 𝑡𝑓: 

𝑦 = [𝑦(𝑡0), 𝑦(𝑡1)… 𝑦(𝑡𝑁𝑡−1), 𝑦(𝑡𝑁𝑡)] (B. 2) 

 

Then, considering vector B.0.2 and considering the following notation 𝑦𝑗 = 𝑦(𝑡𝑗) where 𝑗 =

1,2,… ,𝑁𝑡. 

B.1. Explicit Euler  

The explicit Euler method is the simplest method.: 

∫
𝑑𝑦

𝑑𝑡
𝑑𝑡 = ∫ 𝑓(𝑡, 𝑦(𝑡))𝑑𝑡

𝑡𝑗+1

𝑡𝑗

𝑡𝑗+1

𝑡𝑗

 (B. 1. 1) 
 

 

𝑦𝑗+1 − 𝑦𝑗 = ∫ 𝑓(𝑡, 𝑦(𝑡))𝑑𝑡
𝑡𝑗+1

𝑡𝑗

 (B. 1. 2) 
 

 

he explicit Euler method is the simplest method. It involves integrating the right-hand side of 

equation B.1.2 in a discrete form: 

∫ 𝑓(𝑡, 𝑦(𝑡))𝑑𝑡
𝑡𝑗+1

𝑡𝑗

≈ 𝑓(𝑡𝑗, 𝑦𝑗)∆𝑡𝑗 
(B. 1. 3) 
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where ∆𝑡𝑗 = 𝑡𝑗+1 − 𝑡𝑗. If it is necessary to determine the error associated with using equation 

(B.1.3), the function 𝑦(𝑡) is expanded using Taylor series as follows: 

𝑦(𝑡) = 𝑦(𝑡𝑗) + (𝑡 − 𝑡𝑗)
𝑑𝑦

𝑑𝑡
(𝑡𝑗) +

(𝑡 − 𝑡𝑗)
2

2

𝑑2𝑦

𝑑𝑡2
(𝑡𝑗) + ⋯ 

(B. 1. 4) 

 

Solving 𝑦(𝑡) from equation (B.1.4) and substituting it into equation (B.1.3) yields the 

following: 

𝑦(𝑡) ≈ 𝑦(𝑡𝑗) + (𝑡 − 𝑡𝑗)𝑓(𝑡𝑗, 𝑦𝑗) (B. 1. 5) 

 
Finding the solution for time 𝑡𝑗+1, we have: 

𝑦(𝑡𝑗+1) = 𝑦(𝑡𝑗) + 𝑓(𝑡𝑗, 𝑦𝑗)∆𝑡𝑗 (B. 1. 6) 

 
Where ∆𝑡𝑗 = 𝑡𝑗+1 − 𝑡𝑗 

Note that on the right-hand side of Eq. (B.1.6), no terms from the next time step are included; 

practically all terms are at the same time step, which are known when the first-time step is 

proposed. Although this method is very simple to solve, it tends to be conditionally stable, 

meaning that the method is stable only for certain values of ∆𝑡. 

B.2. Implicit Euler  

The implicit Euler method is like the explicit method, but the change it introduces is quite 

radical and significantly influences the numerical stability of the solution. Thus, Eq. B.1.3 

becomes: 

∫ 𝑓(𝑡, 𝑦(𝑡))𝑑𝑡
𝑡𝑗+1

𝑡𝑗

≈ 𝑓(𝑡𝑗+1, 𝑦𝑗+1)∆𝑡𝑗 
(B. 2. 1) 

 

Note that now the function variables are at time j + 1. This suggests that the Taylor series 

expansion changes to: 

𝑦(𝑡) = 𝑦(𝑡𝑗+1) + (𝑡 − 𝑡𝑗−1)
𝑑𝑦

𝑑𝑡
(𝑡𝑗+1) +

(𝑡 − 𝑡𝑗+1)
2

2

𝑑2𝑦

𝑑𝑡2
(𝑡𝑗+1)

+ ⋯ 

(B. 2. 2) 

 

 

Truncating the series B.2.2 and evaluating it at 𝑡 = 𝑡𝑗 yields the following: 

𝑦(𝑡𝑗) = 𝑦(𝑡𝑗+1) + (𝑡𝑗 − 𝑡𝑗+1)
𝑑𝑦

𝑑𝑡
(𝑡𝑗+1) 

(B. 2. 3) 
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Alternatively, in a similar manner to Eq. B.1.6, we have: 

𝑦(𝑡𝑗+1) = 𝑦(𝑡𝑗) + 𝑓(𝑡𝑗+1, 𝑦𝑗+1)∆𝑡𝑗 (B. 2. 4) 

 

Note that on the right-hand side of Eq. B.2.4, the variables 𝑡𝑗+1 and 𝑦𝑗+1 are at the next time 

step. This presents a problem, especially when the equation is nonlinear, due to algebraic 

manipulation and the fact that the variables at the next time step are unknowns. The great 

advantage of this method is its stability. Unlike the explicit Euler method, this method is 

unconditionally stable, which means that its behavior does not change with different values 

of ∆𝑡𝑗. It is only necessary to ensure that the values of ∆𝑡𝑗 are small enough to achieve 

convergence. The fact that there are three nonlinear equations with three main variables 

indicates that this method is suitable for this problem, as it helps to avoid stability issues 

when choosing the time step values. 
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Appendix C 

Jacobian Matrix 

Observing Eq. 4.5.13, it is noted that we have an equation of the form [𝐴]{�⃗� } = {𝑥 }; It is 

necessary to determine the value of the elements of Matrix A and vector 𝑥  to obtain the 

result of vector �⃗� , where i represents rows and j represents columns. 

Derivative 
𝜕𝑅𝑖

1𝑛

𝜕𝜑𝑗
: 

Node 𝑖 = 1, 𝑗 = 1 

𝜕𝑅1
1𝑛

𝜕𝜑1
=
𝑐1
𝑛+1 − 𝑐1

𝑛

∆𝑡
 + (−

𝑘0

𝜂𝑘[(1 − 𝑐𝑖
𝑛+1)𝜌𝑓 + 𝑐𝑖

𝑛+1𝜌𝑠]

𝑝𝑖+1
𝑛+1 − 𝑝𝑖

𝑛+1

∆𝑟𝑖
)(
(𝜑1

𝑛+1 − 3)𝜑1
𝑛+12

(𝜑1
𝑛+1 − 1)3

)…
𝑐2
𝑛+1 − 𝑐1

𝑛+1

∆𝑟𝑖

−
1

∆𝑡
 

 (C. 1) 

 

Node 𝑖 = 1, 𝑗 = 2 

𝜕𝑅1
1𝑛

𝜕𝜑2
= 0 

                                                         (C. 2) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 − 1 

𝜕𝑅1
1𝑛

𝜕𝜑𝑖−1
= 0 

                                                        (C. 3) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 

𝜕𝑅𝑖
1𝑛

𝜕𝜑𝑖
=
𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
 + (−

𝑘0

𝜂𝑘[(1 − 𝑐𝑖
𝑛+1)𝜌𝑓 + 𝑐𝑖

𝑛+1𝜌𝑠]

𝑝𝑖+1
𝑛+1 − 𝑝𝑖

𝑛+1

∆𝑟𝑖
)(
(𝜑𝑖

𝑛+1 − 3)𝜑𝑖
𝑛+12

(𝜑𝑖
𝑛+1 − 1)3

)…
𝑐𝑖+1
𝑛+1 − 𝑐𝑖

𝑛+1

∆𝑟𝑖

−
1

∆𝑡
 

 (C.4) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 + 1 

𝜕𝑅𝑖
1𝑛

𝜕𝜑𝑖+1
= 0 

                                                      (C. 5) 

 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 − 1 

𝜕𝑅𝑁𝑟
1𝑛

𝜕𝜑𝑁𝑟
= 0 

                                                       (C. 6) 
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Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 

𝜕𝑅𝑁𝑟
1𝑛

𝜕𝜑𝑁𝑟
=

𝑐𝑁𝑟
𝑛+1−𝑐𝑁𝑟

𝑛

∆𝑡
 +

(−
𝑘0

𝜂𝑘[(1−𝑐𝑁𝑟
𝑛+1)𝜌𝑓+𝑐𝑁𝑟

𝑛+1𝜌𝑠]

𝑝𝑒−𝑝𝑁𝑟
𝑛+1

∆𝑟𝑁𝑟
) (

(𝜑𝑁𝑟
𝑛+1−3)𝜑𝑁𝑟

𝑛+12

(𝜑𝑁𝑟
𝑛+1−1)3

)…
𝑐𝑒−𝑐𝑁𝑟

𝑛+1

∆𝑟𝑁𝑟
−

1

∆𝑡
  

(C. 7) 

 

Derivative 
𝜕𝑅𝑖

1𝑛

𝜕𝑐𝑖
: 

Node 𝑖 = 1, 𝑗 = 1 

𝜕𝑅1
1𝑛

𝜕𝑐1
=
𝜑1
𝑛+1 − 𝜑1

𝑛

∆𝑡
 + (

𝑘0𝜑1
𝑛+13

(1 − 𝜑1
𝑛+1)2𝜂𝑘

𝑝2
𝑛+1 − 𝑝1

𝑛+1

∆𝑟1
)(

𝜌𝑓 − 𝜌𝑠

((𝜌𝑠 − 𝜌𝑓)𝑐1
𝑛+1 + 𝜌𝑓)

2)
1

∆𝑟1
 

   (C. 8) 

 

Node 𝑖 = 1, 𝑗 = 2 

𝜕𝑅1
1𝑛

𝜕𝑐2
= (−

𝑘0𝜑1
𝑛+13

(1 − 𝜑1
𝑛+1)2𝜂𝑘[(1 − 𝑐1

𝑛+1)𝜌𝑓 + 𝑐1
𝑛+1𝜌𝑠]

𝑝2
𝑛+1 − 𝑝1

𝑛+1

∆𝑟1
)
1

∆𝑟1
 

   (C. 9) 

 

Node 𝑖 = 2,…𝑁𝑟 − 1, 𝑗 = 𝑖 − 1 

𝜕𝑅𝑖
1𝑛

𝜕𝑐𝑖−1
= 0 

      (C. 10) 

 

Node 𝑖 = 2,…𝑁𝑟 − 1, 𝑗 = 𝑖 

𝜕𝑅𝑖
1𝑛

𝜕𝑐𝑖
=
𝜑𝑖
𝑛+1 − 𝜑𝑖

𝑛

∆𝑡
 + (

𝑘0𝜑𝑖
𝑛+13

(1 − 𝜑1
𝑛+1)2𝜂𝑘

𝑝𝑖+1
𝑛+1 − 𝑝𝑖

𝑛+1

∆𝑟1
)(

𝜌𝑓 − 𝜌𝑠

((𝜌𝑠 − 𝜌𝑓)𝑐𝑖
𝑛+1 + 𝜌𝑓)

2)
1

∆𝑟𝑖
 

(C. 11) 

 

Node 𝑖 = 2,…𝑁𝑟 − 1, 𝑗 = 𝑖 + 1 

𝜕𝑅𝑖
1𝑛

𝜕𝑐𝑖+1
= (−

𝑘0𝜑𝑖
𝑛+13

(1 − 𝜑1
𝑛+1)2𝜂𝑘[(1 − 𝑐𝑖

𝑛+1)𝜌𝑓 + 𝑐𝑖
𝑛+1𝜌𝑠]

𝑝𝑖+1
𝑛+1 − 𝑝𝑖

𝑛+1

∆𝑟𝑖
)
1

∆𝑟𝑖
 

(C. 12) 

 

Node 𝑖 = 𝑁𝑟 − 1 

𝜕𝑅𝑖
1𝑛

𝜕𝑐𝑁𝑟−1
= 0 

(C. 13) 
 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 

𝜕𝑅𝑁𝑟
1𝑛

𝜕𝑐𝑁𝑟
=
𝜑𝑁𝑟
𝑛+1 − 𝜑𝑁𝑟

𝑛

∆𝑡
 + (

𝑘0𝜑𝑁𝑟
𝑛+13

(1 − 𝜑1
𝑛+1)2𝜂𝑘

𝑝𝑒 − 𝑝𝑁𝑟
𝑛+1

∆𝑟𝑁𝑟
)(

𝜌𝑓 − 𝜌𝑠

((𝜌𝑠 − 𝜌𝑓)𝑐𝑁𝑟
𝑛+1 + 𝜌𝑓)

2)
1

∆𝑟𝑁𝑟
 

(C. 14) 
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Derivative 
𝜕𝑅𝑖

1𝑛

𝜕𝑝𝑖
: 

Node 𝑖 = 1, 𝑗 = 1 

𝜕𝑅1
1𝑛

𝜕𝑝1
= (

𝑘0𝜑1
𝑛+13

(1 − 𝜑1
𝑛+1)2𝜂𝑘[(1 − 𝑐1

𝑛+1)𝜌𝑓 + 𝑐1
𝑛+1𝜌𝑠]

1

∆𝑟1
)
𝑐2
𝑛+1 − 𝑐1

𝑛+1

∆𝑟1
 

(C. 15) 

 

Node 𝑖 = 1, 𝑗 = 2 

𝜕𝑅1
1𝑛

𝜕𝑝2
= (−

𝑘0𝜑1
𝑛+13

(1 − 𝜑1
𝑛+1)2𝜂𝑘[(1 − 𝑐1

𝑛+1)𝜌𝑓 + 𝑐1
𝑛+1𝜌𝑠]

)
𝑐2
𝑛+1 − 𝑐1

𝑛+1

∆𝑟1
 

(C. 16) 
 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 − 1 

𝜕𝑅𝑖
1𝑛

𝜕𝑝𝑖−1
= 0 

(C. 17) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 

𝜕𝑅𝑖
1𝑛

𝜕𝑝𝑖
= (−

𝑘0𝜑𝑖
𝑛+13

(1 − 𝜑𝑖
𝑛+1)2𝜂𝑘[(1 − 𝑐𝑖

𝑛+1)𝜌𝑓 + 𝑐𝑖
𝑛+1𝜌𝑠]

1

∆𝑟𝑖
)
𝑐𝑖+1
𝑛+1 − 𝑐𝑖

𝑛+1

∆𝑟𝑖
 

(C. 18) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 + 1 

𝜕𝑅𝑖
1𝑛

𝜕𝑝𝑖+1
= (−

𝑘0𝜑𝑖
𝑛+13

(1 − 𝜑𝑖
𝑛+1)2𝜂𝑘[(1 − 𝑐𝑖

𝑛+1)𝜌𝑓 + 𝑐𝑖
𝑛+1𝜌𝑠]

1

∆𝑟𝑖
)
𝑐𝑖+1
𝑛+1 − 𝑐𝑖

𝑛+1

∆𝑟𝑖
 

(C. 19) 

 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 − 1 

𝜕𝑅𝑁𝑟
1𝑛

𝜕𝑝𝑁𝑟
= 0 

(C. 20) 

 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 

𝜕𝑅𝑁𝑟
1𝑛

𝜕𝑝𝑁𝑟
= (−

𝑘0𝜑𝑁𝑟
𝑛+13

(1 − 𝜑𝑁𝑟
𝑛+1)2𝜂𝑘[(1 − 𝑐𝑁𝑟

𝑛+1)𝜌𝑓 + 𝑐𝑁𝑟
𝑛+1𝜌𝑠]

1

∆𝑟𝑁𝑟
)
𝑐𝑒 − 𝑐𝑁𝑟

𝑛+1

∆𝑟𝑁𝑟
 

(C. 21) 

 

Derivative 
𝜕𝑅𝑖

2𝑛

𝜕𝜑𝑖
: 

Node 𝑖 = 1, 𝑗 = 1 

𝜕𝑅1
2𝑛

𝜕𝜑1
=

1

∆𝑡
+ 𝜆 (𝑐1

𝑛+1 −
𝑐1
𝑛+12

𝑐𝑐𝑟1
) (

𝑘0𝜑1
𝑛+13

(1−𝜑1
𝑛+1)

2
𝜂𝑘[(1−𝑐1

𝑛+1)𝜌𝑓+𝑐1
𝑛+1𝜌𝑠]

𝑝2
𝑛+1−𝑝1

𝑛+1

∆𝑟1
) −

𝜆(1 − 𝜑1
𝑛+1) (𝑐1

𝑛+1 −
𝑐1
𝑛+12

𝑐𝑐𝑟1
)(

(𝜑1
𝑛+1−3)𝜑1

𝑛+12

(𝜑1
𝑛+1−1)3

) (
𝑘0

𝜂𝑘[(1−𝑐1
𝑛+1)𝜌𝑓+𝑐1

𝑛+1𝜌𝑠]

𝑝2
𝑛+1−𝑝1

𝑛+1

∆𝑟1
)  

(C. 22) 

 

Node 𝑖 = 1, 𝑗 = 2 

𝜕𝑅1
2𝑛

𝜕𝜑2
= 0 

(C. 23) 

 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 − 1 
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𝜕𝑅𝑖
2𝑛

𝜕𝜑𝑖−1
= 0 

(C. 24) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 

𝑝2
𝑛+1−2𝑝1

𝑛+1+𝑝𝑤𝑓

∆𝑟1
2 +

𝑝2
𝑛+1−𝑝𝑤𝑓

2∆𝑟1
[
1

𝑟1
+ (

3−𝜑1
𝑛+1

𝜑1
𝑛+1(1−𝜑1

𝑛+1)
)
𝜑2
𝑛+1−1

2∆𝑟1
+

(
𝜌𝑓−𝜌𝑠

(1−𝑐1
𝑛+1)𝜌𝑓+𝑐1

𝑛+1𝜌𝑠
)
𝑐2
𝑛+1−1

2∆𝑟1
] = 0  

𝜕𝑅𝑖
2𝑛

𝜕𝜑𝑖
=

1

∆𝑡
+ 𝜆(𝑐𝑖

𝑛+1 −
𝑐𝑖
𝑛+12

𝑐𝑐𝑟𝑖
)(

𝑘0𝜑𝑖
𝑛+13

(1−𝜑𝑖
𝑛+1)

2
𝜂𝑘[(1−𝑐𝑖

𝑛+1)𝜌𝑓+𝑐𝑖
𝑛+1𝜌𝑠]

𝑝𝑖+1
𝑛+1−𝑝𝑖

𝑛+1

∆𝑟𝑖
) −

𝜆(1 − 𝜑𝑖
𝑛+1) (𝑐𝑖

𝑛+1 −
𝑐𝑖
𝑛+12

𝑐𝑐𝑟𝑖
)(

(𝜑𝑖
𝑛+1−3)𝜑𝑖

𝑛+12

(𝜑𝑖
𝑛+1−1)3

) (
𝑘0

𝜂𝑘[(1−𝑐𝑖
𝑛+1)𝜌𝑓+𝑐𝑖

𝑛+1𝜌𝑠]

𝑝𝑖+1
𝑛+1−𝑝𝑖

𝑛+1

∆𝑟𝑖
)  

(C. 25) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 + 1 

𝜕𝑅𝑖
2𝑛

𝜕𝜑𝑖+1
= 0 

(C. 26) 

 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 − 1 

𝜕𝑅𝑁𝑟
2𝑛

𝜕𝜑𝑁𝑟−1
= 0 

(C. 27) 

 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 

𝜕𝑅𝑁𝑟
2𝑛

𝜕𝜑𝑁𝑟
=

1

∆𝑡
+ 𝜆 (𝑐𝑁𝑟

𝑛+1 −
𝑐𝑁𝑟
𝑛+12

𝑐𝑐𝑟𝑁𝑟
) (

𝑘0𝜑𝑁𝑟
𝑛+13

(1−𝜑𝑁𝑟
𝑛+1)

2
𝜂𝑘[(1−𝑐𝑁𝑟

𝑛+1)𝜌𝑓+𝑐𝑁𝑟
𝑛+1𝜌𝑠]

𝑝𝑒−𝑝𝑁𝑟
𝑛+1

∆𝑟𝑁𝑟
) −

𝜆(1 − 𝜑𝑁𝑟
𝑛+1) (𝑐𝑁𝑟

𝑛+1 −
𝑐𝑁𝑟
𝑛+12

𝑐𝑐𝑟𝑁𝑟
)(

(𝜑𝑁𝑟
𝑛+1−3)𝜑𝑁𝑟

𝑛+12

(𝜑𝑁𝑟
𝑛+1−1)3

) (
𝑘0

𝜂𝑘[(1−𝑐𝑁𝑟
𝑛+1)𝜌𝑓+𝑐𝑁𝑟

𝑛+1𝜌𝑠]

𝑝𝑒−𝑝𝑁𝑟
𝑛+1

∆𝑟𝑁𝑟
)   

(C. 28) 

 

 

Derivative 
𝜕𝑅𝑖

2𝑛

𝜕𝑐𝑖
 

Node 𝑖 = 1, 𝑗 = 1 

𝜕𝑅1
2𝑛

𝜕𝑐1
= −𝜆(1 − 𝜑1

𝑛+1)(1 −
2𝑐1

𝑛+1

𝑐𝑐𝑟1
) (

𝑘0𝜑1
𝑛+13

(1−𝜑1
𝑛+1)

2
𝜂𝑘[(1−𝑐1

𝑛+1)𝜌𝑓+𝑐1
𝑛+1𝜌𝑠]

𝑝2
𝑛+1−𝑝1

𝑛+1

∆𝑟1
) −

𝜆(1 − 𝜑1
𝑛+1) (𝑐1

𝑛+1 −
𝑐1
𝑛+12

𝑐𝑐𝑟1
) (

𝜌𝑓−𝜌𝑠

((𝜌𝑠−𝜌𝑓)𝑐1
𝑛+1+𝜌𝑓)

2) (
𝑘0𝜑1

𝑛+13

𝜂𝑘(1−𝜑1
𝑛+1)

𝑝2
𝑛+1−𝑝1

𝑛+1

∆𝑟1
)  

(C. 29) 

 

Node 𝑖 = 1, 𝑗 = 2 

𝜕𝑅1
2𝑛

𝜕𝑐2
= 0 

(C. 30) 

 

 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 − 1 
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𝜕𝑅1
2𝑛

𝜕𝑐𝑖−1
= 0 

(C. 31) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 

𝜕𝑅1
2𝑛

𝜕𝑐𝑖
= −𝜆(1 − 𝜑𝑖

𝑛+1)(1 −
2𝑐𝑖

𝑛+1

𝑐𝑐𝑟𝑖
) (

𝑘0𝜑𝑖
𝑛+13

(1−𝜑𝑖
𝑛+1)

2
𝜂𝑘[(1−𝑐𝑖

𝑛+1)𝜌𝑓+𝑐𝑖
𝑛+1𝜌𝑠]

𝑝𝑖+1
𝑛+1−𝑝𝑖

𝑛+1

∆𝑟𝑖
) −

𝜆(1 − 𝜑𝑖
𝑛+1) (𝑐𝑖

𝑛+1 −
𝑐𝑖
𝑛+12

𝑐𝑐𝑟𝑖
)(

𝜌𝑓−𝜌𝑠

((𝜌𝑠−𝜌𝑓)𝑐𝑖
𝑛+1+𝜌𝑓)

2)(
𝑘0𝜑𝑖

𝑛+13

𝜂𝑘(1−𝜑𝑖
𝑛+1)

𝑝𝑖+1
𝑛+1−𝑝𝑖

𝑛+1

∆𝑟𝑖
)  

(C. 32) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 + 1 

𝜕𝑅1
2𝑛

𝜕𝑐𝑖+1
= 0 

(C. 33) 

 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 − 1 

𝜕𝑅𝑁𝑟
2𝑛

𝜕𝑐𝑁𝑟
= 0 

(C. 34) 

 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 

𝜕𝑅𝑁𝑟
2𝑛

𝜕𝑐𝑁𝑟
= −𝜆(1 − 𝜑𝑁𝑟

𝑛+1)(1 −
2𝑐𝑁𝑟

𝑛+1

𝑐𝑐𝑟𝑁𝑟
) (

𝑘0𝜑𝑁𝑟
𝑛+13

(1−𝜑𝑁𝑟
𝑛+1)

2
𝜂𝑘[(1−𝑐𝑁𝑟

𝑛+1)𝜌𝑓+𝑐𝑁𝑟
𝑛+1𝜌𝑠]

𝑝𝑒−𝑝𝑁𝑟
𝑛+1

∆𝑟𝑁𝑟
) −

𝜆(1 − 𝜑𝑁𝑟
𝑛+1) (𝑐𝑁𝑟

𝑛+1 −
𝑐𝑁𝑟
𝑛+12

𝑐𝑐𝑟𝑁𝑟
) (

𝜌𝑓−𝜌𝑠

((𝜌𝑠−𝜌𝑓)𝑐𝑁𝑟
𝑛+1+𝜌𝑓)

2)(
𝑘0𝜑𝑁𝑟

𝑛+13

𝜂𝑘(1−𝜑𝑁𝑟
𝑛+1)

𝑝𝑒−𝑝𝑁𝑟
𝑛+1

∆𝑟𝑁𝑟
)  

(C. 35) 

 

Derivative 
𝜕𝑅𝑖

2𝑛

𝜕𝑝𝑖
 

Node 𝑖 = 1, 𝑗 = 1 

𝜕𝑅1
2𝑛

𝜕𝑝1
= 𝜆(1 − 𝜑1

𝑛+1)(𝑐1
𝑛+1

−
𝑐𝑖
𝑛+12

𝑐𝑐𝑟1
) (

𝑘0𝜑1
𝑛+13

(1 − 𝜑1
𝑛+1)2𝜂𝑘[(1 − 𝑐1

𝑛+1)𝜌𝑓 + 𝑐1
𝑛+1𝜌𝑠]

1

∆𝑟1
)  

(C. 36) 

 

 

Node 𝑖 = 1, 𝑗 = 2 

𝜕𝑅1
2𝑛

𝜕𝑝2
= −𝜆(1 − 𝜑1

𝑛+1)(𝑐1
𝑛+1

−
𝑐𝑖
𝑛+12

𝑐𝑐𝑟1
) (

𝑘0𝜑1
𝑛+13

(1 − 𝜑1
𝑛+1)2𝜂𝑘[(1 − 𝑐1

𝑛+1)𝜌𝑓 + 𝑐1
𝑛+1𝜌𝑠]

1

∆𝑟1
) 

(C. 37) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 − 1 

𝜕𝑅𝑖
2𝑛

𝜕𝑝𝑖−1
= 0 

(C. 38) 
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Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 

𝜕𝑅𝑖
2𝑛

𝜕𝑝𝑖
= 𝜆(1 − 𝜑𝑖

𝑛+1)(𝑐𝑖
𝑛+1

−
𝑐𝑖
𝑛+12

𝑐𝑐𝑟𝑖
)(

𝑘0𝜑𝑖
𝑛+13

(1 − 𝜑𝑖
𝑛+1)

2
𝜂𝑘[(1 − 𝑐𝑖

𝑛+1)𝜌𝑓 + 𝑐𝑖
𝑛+1𝜌𝑠]

1

∆𝑟𝑖
) 

(C. 39) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 + 1 

𝜕𝑅𝑖
2𝑛

𝜕𝑝𝑖+1
= −𝜆(1 − 𝜑𝑖

𝑛+1)(𝑐𝑖
𝑛+1

−
𝑐𝑖
𝑛+12

𝑐𝑐𝑟𝑖
)(

𝑘0𝜑𝑖
𝑛+13

(1 − 𝜑𝑖
𝑛+1)

2
𝜂𝑘[(1 − 𝑐𝑖

𝑛+1)𝜌𝑓 + 𝑐𝑖
𝑛+1𝜌𝑠]

1

∆𝑟𝑖
) 

(C. 40) 

 

Node 𝑖 = 𝑁𝑟 𝑗 = 𝑁𝑟 − 1 

𝜕𝑅𝑁𝑟
2𝑛

𝜕𝑝𝑁𝑟−1
= 0 

(C. 41) 

 

Node 𝑖 = 𝑁𝑟 𝑗 = 𝑁𝑟 

𝜕𝑅𝑁𝑟
2𝑛

𝜕𝑝𝑁𝑟
= 𝜆(1 − 𝜑𝑁𝑟

𝑛+1)(𝑐𝑁𝑟
𝑛+1

−
𝑐𝑁𝑟
𝑛+12

𝑐𝑐𝑟𝑁𝑟
) (

𝑘0𝜑𝑁𝑟
𝑛+13

(1 − 𝜑𝑁𝑟
𝑛+1)2𝜂𝑘[(1 − 𝑐𝑁𝑟

𝑛+1)𝜌𝑓 + 𝑐𝑁𝑟
𝑛+1𝜌𝑠]

1

∆𝑟𝑁𝑟
) 

(C. 42) 

 

Derivative 
𝜕𝑅𝑖

3𝑛

𝜕𝜑𝑖
 

Node 𝑖 = 1, 𝑗 = 1 

𝜕𝑅1
3𝑛

𝜕𝜑1
= −

𝑝2
𝑛+1 − 𝑝𝑤𝑓

𝑛+1

2∆𝑟𝑖
[(
𝜑1
𝑛+12 − 6𝜑1

𝑛+1 + 3

(1 − 𝜑1
𝑛+1)2𝜑1

𝑛+12
)
𝜑2
𝑛+1 − 𝜑0

𝑛+1

2∆𝑟𝑖
] 

  (C. 43) 

 

Node 𝑖 = 1, 𝑗 = 2 

𝜕𝑅1
3𝑛

𝜕𝜑2
= −

𝑝2
𝑛+1 − 𝑝𝑤𝑓

2∆𝑟𝑖
[(

3 − 𝜑1
𝑛+1

𝜑1
𝑛+1(1 − 𝜑1

𝑛+1)
)
1

2∆𝑟𝑖
] 

(C. 44) 

 

Node 𝑖 = 2,…𝑁𝑟 − 1, 𝑗 = 𝑖 − 1 

𝜕𝑅𝑖
3𝑛

𝜕𝜑𝑖−1
= −

𝑝2
𝑛+1 − 𝑝𝑤𝑓

2∆𝑟𝑖
[(
𝜑1
𝑛+12 − 6𝜑1

𝑛+1 + 3

(1 − 𝜑1
𝑛+1)2𝜑1

𝑛+12
)
1

2∆𝑟𝑖
] 

(C. 45) 

 

Node 𝑖 = 2,…𝑁𝑟 − 1, 𝑗 = 𝑖 
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𝜕𝑅𝑖
3𝑛

𝜕𝜑𝑖
= −

𝑝𝑖+1
𝑛+1 − 𝑝𝑖−1

𝑛+1

2∆𝑟𝑖
[(
𝜑𝑖
𝑛+12 − 6𝜑𝑖

𝑛+1 + 3

(1 − 𝜑𝑖
𝑛+1)2𝜑𝑖

𝑛+12
)
𝜑𝑖+1
𝑛+1 − 𝜑𝑖−1

𝑛+1

2∆𝑟𝑖
] 

(C. 46) 

 

Node 𝑖 = 2,…𝑁𝑟 − 1, 𝑗 = 𝑖 + 1 

𝜕𝑅𝑖
3𝑛

𝜕𝜑𝑖+1
= −

𝑝𝑖+1
𝑛+1 − 𝑝𝑖−1

𝑛+1

2∆𝑟𝑖
[(

3 − 𝜑𝑖
𝑛+1

𝜑𝑖
𝑛+1(1 − 𝜑𝑖

𝑛+1)
)
1

2∆𝑟𝑖
] 

(C. 47) 

 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 − 1 

𝜕𝑅𝑁𝑟
3𝑛

𝜕𝜑𝑁𝑟−1
= −

𝑝𝑒 − 𝑝𝑁𝑟−1
𝑛+1

2∆𝑟𝑁𝑟
[(
𝜑𝑁𝑟
𝑛+12 − 6𝜑𝑁𝑟

𝑛+1 + 3

(1 − 𝜑𝑁𝑟
𝑛+1)2𝜑𝑁𝑟

𝑛+12
)

1

2∆𝑟𝑁𝑟
] 

(C. 48) 

 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 

𝜕𝑅𝑁𝑟
3𝑛

𝜕𝜑𝑁𝑟
= −

𝑝𝑒 − 𝑝𝑁𝑟
𝑛+1

2∆𝑟𝑁𝑟
[(
𝜑𝑁𝑟
𝑛+12 − 6𝜑𝑁𝑟

𝑛+1 + 3

(1 − 𝜑𝑁𝑟
𝑛+1)2𝜑𝑁𝑟

𝑛+12
)
𝜑𝑒 − 𝜑𝑁𝑟−1

𝑛+1

2∆𝑟𝑁𝑟
] 

(C. 49) 

 

Derivative 
𝜕𝑅𝑖

3𝑛

𝜕𝑐𝑖
 

Node 𝑖 = 1, 𝑗 = 1 

𝜕𝑅1
3𝑛

𝜕𝑐1
= −

𝑝2
𝑛+1 − 𝑝𝑤𝑓

2∆𝑟1
[(

(𝜌𝑠 − 𝜌𝑓)
2

((𝜌𝑠 − 𝜌𝑓)𝑐1
𝑛+1 + 𝜌𝑓)  

2
)
𝑐2
𝑛+1 − 𝑐0

𝑛+1

2∆𝑟𝑖
] 

(C. 50) 

 

Node 𝑖 = 1, 𝑗 = 2 

𝜕𝑅1
3𝑛

𝜕𝑐2
= −

𝑝2
𝑛+1 − 𝑝𝑒
2∆𝑟1

[(
𝜌𝑠 − 𝜌𝑓

(1 − 𝑐1
𝑛+1)𝜌𝑓 + 𝑐1

𝑛+1𝜌𝑠)
)

1

2∆𝑟1
] 

(C. 51) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 − 1 

𝜕𝑅1
3𝑛

𝜕𝑐𝑖−1
= −

𝑝𝑖+1
𝑛+1 − 𝑝𝑖−1

𝑛+1

2∆𝑟𝑖
[(

𝜌𝑠 − 𝜌𝑓

(1 − 𝑐𝑖
𝑛+1)𝜌𝑓 + 𝑐𝑖

𝑛+1𝜌𝑠)
)
1

2∆𝑟𝑖
] 

(C. 52) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 

𝜕𝑅𝑖
3𝑛

𝜕𝑐𝑖
= −

𝑝𝑖+1
𝑛+1 − 𝑝𝑖−1

𝑛+1

2∆𝑟𝑖
[(

(𝜌𝑠 − 𝜌𝑓)
2

((𝜌𝑠 − 𝜌𝑓)𝑐𝑖
𝑛+1 + 𝜌𝑓)  

2
)
𝑐𝑖+1
𝑛+1 − 𝑐𝑖−1

𝑛+1

2∆𝑟𝑖
] 

(C. 53) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 + 1 

𝜕𝑅𝑖
3𝑛

𝜕𝑐𝑖−1
= −

𝑝𝑖+1
𝑛+1 − 𝑝𝑖−1

𝑛+1

2∆𝑟𝑖
[(

𝜌𝑠 − 𝜌𝑓

(1 − 𝑐𝑖
𝑛+1)𝜌𝑓 + 𝑐𝑖

𝑛+1𝜌𝑠)
)
1

2∆𝑟𝑖
] 

(C. 54) 

 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 − 1 

𝜕𝑅𝑁𝑟
3𝑛

𝜕𝑐𝑁𝑟−1
= −

𝑝𝑒 − 𝑝𝑁𝑟−1
𝑛+1

2∆𝑟𝑁𝑟
[(

𝜌𝑠 − 𝜌𝑓

(1 − 𝑐𝑁𝑟
𝑛+1)𝜌𝑓 + 𝑐𝑁𝑟

𝑛+1𝜌𝑠)
)

1

2∆𝑟𝑁𝑟
] 

(C. 55) 
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Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 

𝜕𝑅𝑁𝑟
3𝑛

𝜕𝑐𝑁𝑟
= −

𝑝𝑒 − 𝑝𝑁𝑟
𝑛+1

2∆𝑟𝑁𝑟
[(

(𝜌𝑠 − 𝜌𝑓)
2

((𝜌𝑠 − 𝜌𝑓)𝑐𝑁𝑟
𝑛+1 + 𝜌𝑓)  

2
)
𝑐𝑒 − 𝑐𝑁𝑟−1

𝑛+1

2∆𝑟𝑁𝑟
] 

(C. 56) 

 

 

Derivative 
𝜕𝑅𝑖

3𝑛

𝜕𝑝𝑖
 

𝑝𝑖+1
𝑛+1−2𝑝𝑖

𝑛+1+𝑝𝑖−1
𝑛+1

∆𝑟𝑖
2 +

𝑝𝑖+1
𝑛+1−𝑝𝑖−1

𝑛+1

2∆𝑟𝑖
[
1

𝑟𝑖
+ (

3−𝜑𝑖
𝑛+1

𝜑𝑖
𝑛+1(1−𝜑𝑖

𝑛+1)
)
𝜑𝑖+1
𝑛+1−𝜑𝑖−1

𝑛+1

2∆𝑟𝑖
+ (

𝜌𝑓−𝜌𝑠

(1−𝑐𝑖
𝑛+1)𝜌𝑓+𝑐𝑖

𝑛+1𝜌𝑠)
)
𝑐𝑖−1
𝑛+1−𝑐𝑖−1

𝑛+1

2∆𝑟𝑖
]  (C. 57) 

 

 

Node 𝑖 = 1, 𝑗 = 1 

𝜕𝑅1
3𝑛

𝜕𝑝1
=
−2

∆𝑟𝑖
2 

(C. 58) 

 

Node 𝑖 = 1, 𝑗 = 2 

𝜕𝑅1
3𝑛

𝜕𝑝1
=

1

∆𝑟𝑖
2 +

1

2∆𝑟1
[
1

𝑟1
+ (

3−𝜑1
𝑛+1

𝜑1
𝑛+1(1−𝜑1

𝑛+1)
)
𝜑2
𝑛+1−𝜑0

𝑛+1

2∆𝑟1
+

(
𝜌𝑓−𝜌𝑠

(1−𝑐𝑖
𝑛+1)𝜌𝑓+𝑐𝑖

𝑛+1𝜌𝑠)
)
𝑐2
𝑛+1−𝑐0

𝑛+1

2∆𝑟𝑖
]  

(C. 59) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 − 1 

𝜕𝑅𝑖
3𝑛

𝜕𝑝𝑖−1
=

1

∆𝑟𝑖
2 +

1

2∆𝑟𝑖
[
1

𝑟𝑖
+ (

3−𝜑𝑖
𝑛+1

𝜑𝑖
𝑛+1(1−𝜑𝑖

𝑛+1)
)
𝜑𝑖+1
𝑛+1−𝜑𝑖−1

𝑛+1

2∆𝑟𝑖
+

(
𝜌𝑓−𝜌𝑠

(1−𝑐𝑖
𝑛+1)𝜌𝑓+𝑐𝑖

𝑛+1𝜌𝑠)
)
𝑐𝑖+1
𝑛+1−𝑐𝑖−1

𝑛+1

2∆𝑟𝑖
]  

(C. 60) 

 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 

𝜕𝑅𝑖
3𝑛

𝜕𝑝𝑖
=
−2

∆𝑟𝑖
2 

(C. 61) 
 

Node 𝑖 = 2,… ,𝑁𝑟 − 1, 𝑗 = 𝑖 + 1 

𝜕𝑅𝑖
3𝑛

𝜕𝑝𝑖+1
=

1

∆𝑟𝑖
2 +

1

2∆𝑟𝑖
[
1

𝑟𝑖
+ (

3−𝜑𝑖
𝑛+1

𝜑𝑖
𝑛+1(1−𝜑𝑖

𝑛+1)
)
𝜑𝑖+1
𝑛+1−𝜑𝑖−1

𝑛+1

2∆𝑟𝑖
+ (

𝜌𝑓−𝜌𝑠

(1−𝑐𝑖
𝑛+1)𝜌𝑓+𝑐𝑖

𝑛+1𝜌𝑠)
)
𝑐𝑖+1
𝑛+1−𝑐𝑖−1

𝑛+1

2∆𝑟𝑖
]  

(C. 62) 
 
 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 − 1 

𝜕𝑅𝑁𝑟
3𝑛

𝜕𝑝𝑁𝑟−1
=

1

∆𝑟𝑁𝑟
2 +

1

2∆𝑟𝑁𝑟
[
1

𝑟𝑁𝑟
+ (

3−𝜑𝑁𝑟
𝑛+1

𝜑𝑁𝑟
𝑛+1(1−𝜑𝑁𝑟

𝑛+1)
)
𝜑𝑒−𝜑𝑁𝑟−1

𝑛+1

2∆𝑟𝑁𝑟
+

(
𝜌𝑓−𝜌𝑠

(1−𝑐𝑁𝑟
𝑛+1)𝜌𝑓+𝑐𝑁𝑟

𝑛+1𝜌𝑠)
)
𝑐𝑒−𝑐𝑁𝑟−1

𝑛+1

2∆𝑟𝑁𝑟
]  

(C. 63) 

 

Node 𝑖 = 𝑁𝑟, 𝑗 = 𝑁𝑟 
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𝜕𝑅𝑁𝑟
3𝑛

𝜕𝑝𝑁𝑟
=
−2

∆𝑟𝑁𝑟
2  

(C. 64) 
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Appendix D 

Geomechanical Boundary Conditions 
 

Using the boundary Eqs. 4.2.14 and 4.2.15: 

𝜕𝑢

𝜕𝑟
|
𝑟=𝑟𝑤

= −
𝑣

1 − 𝑣

𝑢(𝑟𝑤)

𝑟𝑤
− 𝑔3(𝑟𝑤, 𝑡)[𝜑(𝑟𝑤 , 𝑡)𝑝𝑤𝑓 − 𝑝𝑤𝑓] 

(D. 1) 
 

𝜕𝑢

𝜕𝑟
|
𝑟=𝑟𝑒

= −
𝑣

1 − 𝑣

𝑢(𝑟𝑒)

𝑟𝑒
+ 𝑔3(𝑟𝑒 , 𝑡)[𝜑(𝑟𝑒 , 𝑡)𝑝𝑒 − 𝜎𝑒] 

(D. 2) 
 
 

If they are spatially (centered) and temporally D.0.1 discretized: 

𝑢2
𝑘+1 − 𝑢0

𝑘+1

2∆𝑟1
=

𝑣

1 − 𝑣

𝑢1
𝑘+1

1
− 𝑔3𝑟𝑤[𝜑1𝑝1 − 𝑝1] 

(D. 3) 

 

Solving for 𝑢0
𝑛+1 from equation D.0.3: 

𝑢0
𝑛+1 = 𝑢2

𝑛+1 + 2∆𝑟1(
𝑣

1 − 𝑣

𝑢1
𝑘+1

𝑟1
+ 𝑔31[𝜑1𝑝1 − 𝑝1] 

(D. 4) 

 

Now, if it is spatially and temporally discretized D.0.2, the following is obtained: 

𝑢𝑁𝑟+1
𝑘+1 − 𝑢𝑁𝑟−1

𝑘+1

2∆𝑟𝑁𝑟
=

𝑣

1 − 𝑣

𝑢(𝑟𝑁𝑟)

𝑟𝑁𝑟
+ 𝑔3(𝑟𝑁𝑟, 𝑡)[𝜑(𝑟𝑁𝑟, 𝑡)𝑝𝑁𝑟 − 𝜎𝑁𝑟] 

(D. 5) 

 

Solving for 𝑢𝑁𝑟 from equation D.0.5: 

𝑢𝑁𝑟+1
𝑘+1 = 𝑢𝑁𝑟−1

𝑘+1 + 2∆𝑟𝑁𝑟 (−
𝑣

1 − 𝑣

𝑢(𝑟𝑁𝑟)

𝑟𝑁𝑟

+ 𝑔3(𝑟𝑁𝑟 , 𝑡)[𝜑(𝑟𝑁𝑟, 𝑡)𝑝𝑒 − 𝜎𝑒]) 

 
(D. 6) 
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Appendix E 

Effective Well Stress Criterion 

Discretization 

Once the displacement vector (u) that the rock is experiencing is obtained, it is possible to 

determine the geomechanical behavior as the reservoir produces fluid and formation solids. 

The discretization of the geomechanical behavior is straightforward, as it only requires 

spatial discretization. Since a symmetric deformation analysis in an axial deformation plane 

is considered, Eqs. 3.7.1 and 3.7.2 are calculated and discretized: 

For the nodes 𝑖 = 2,… ,𝑁𝑟 − 1 

𝜀𝑟𝑖 =
𝑢𝑖+1 − 𝑢𝑖−1

2∆𝑟𝑖
 (E. 1) 

 

𝜀𝜃𝑖 =
𝑢𝑖
𝑟𝑖

 (E. 2) 
 

For the boundaries: 

𝑖 = 1 

𝜀𝑟𝑖 = −
𝑣

1 − 𝑣

𝑢1
1
− 𝑔3𝑟𝑤[𝜑1𝑝1 − 𝑝1] 

(E. 3) 
 

𝜀𝜃1 =
𝑢1
𝑟1

 (E. 4) 
 

𝑖 = 𝑁𝑟 

𝜀𝑟𝑁𝑟 = −
𝑣

1 − 𝑣

𝑢(𝑟𝑁𝑟)

𝑟𝑁𝑟
+ 𝑔3(𝑟𝑁𝑟, 𝑡)[𝜑(𝑟𝑁𝑟, 𝑡)𝑝𝑁𝑟 − 𝜎𝑁𝑟] 

(E. 5) 

 

With the vectors from Eqs. E.0.1 - E.0.5, Eqs. E.0.6 and E.0.7 are determined, which in turn 

are discretized, yielding the following: 

For the Nodes 𝑖 = 1,… ,𝑁𝑟 

𝜎𝑟𝑖 =
�̅�(1 − 𝜑𝑖)

(1 + 𝑣)(1 − 2𝑣)
[(1 − 𝑣)𝜀𝑟𝑖 + 𝑣𝜀𝜃𝑖] 

(E. 6) 
 

𝜎𝑟𝑖 =
�̅�(1 − 𝜑𝑖)

(1 + 𝑣)(1 − 2𝑣)
[(1 − 𝑣)𝜀𝜃𝑖 + 𝑣𝜀𝑟𝑖] 

(E. 7) 
 

With Eqs. E.0.6 and E.0.7, it is possible to obtain the parameters 𝜏𝑚 and 𝜎𝑚 to generate 

Figs. 4.14a and 4.14b.  
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