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A B S T R A C T   

Due to their location in tropical latitudes, mangrove forests are susceptible to the impact of hurricanes and can be 
vastly damaged by their high-speed winds. Given the logistic difficulties regarding field surveys in mangroves, 
remote sensing approaches have been considered a reliable alternative. We quantified trends in damage and 
early signs of canopy recovery in a fringe Rhizophora mangle area of Marismas Nacionales, Mexico, following the 
landfall of Hurricane Willa in October 2018. We monitored (2016–2021) broad canopy defoliation using 21 
vegetation indices (VI) from the Google Earth Engine tool (GEE). We also mapped a detailed canopy fragmen-
tation and developed digital surface models (DSM) during five study periods (2018–2021) with a consumer-grade 
unmanned aerial vehicle (UAV) over an area of 100 ha. Based on optical data from the GEE time series, results 
indicated an abrupt decline in the overall mangrove canopy. The VARI index was the most reliable VI for the 
mangrove canopy classification from a standard RGB sensor. The impact of the hurricane caused an overall 
canopy defoliation of 79%. The series of UAV orthomosaics indicate a gradual recovery in the mangrove canopy, 
while the linear model predicts at least 8.5 years to reach pre-impact mangrove cover conditions. However, the 
sequence of DSM estimates that the vertical canopy configuration will require a longer time to achieve its 
original structure.   

1. Introduction 

Mangrove forests thrive in the littoral zone of coastal lagoons and 
estuaries at tropical latitudes, and are thus subject to periodic damage 
caused by both the high-speed winds of hurricanes and the massive in-
undations resulting from storm surges (Kennedy et al., 2020). Although, 
different mangroves species have evolved with physiognomic adapta-
tions to cope with these extreme events, they may present individual 
tree mortality or even some degree of canopy defoliation (broken 
branches and trunks) which can aggravate the overall canopy structure 

by creating gaps in the forest configuration (Krauss and Osland, 2020). 
Thereby it has been suggested that the extent of the damage to the 
mangrove forests depends on wind speed, duration, and direction 
(Simard et al., 2019). Moreover, and according to the severity of the 
hurricane, the subsequent recovery of the mangrove forest canopy may 
depend on species, forest structure (height, density, basal area), and 
possible hydrodynamic modifications (Serrano et al., 2020). 

There are approximately 54 mangrove species worldwide, and each 
one presents specific responses to the damage caused by hurricanes. For 
instance, the black mangrove Avicennia germinans and the white 
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mangrove Laguncularia racemosa typically grow epicormic sprouts in 
response to canopy defoliation (Flores-Verdugo et al., 1992). Conse-
quently, both species show lower mortality rates following high-speed 
wind damage (Tomlinson, 1994). On the contrary, the red mangrove, 
Rhizophora mangle, does not present epicormic growth because it lacks 
viable dormant buds in mature trunks and branches and is thus strongly 
susceptible to high degrees of mortality after hurricane impacts 
(Saenger, 2002). However, as Rhizophora mangle forests tend to present a 
high-density tree configuration in the understory (Arreola-Lizárraga 
et al., 2004), seedlings exhibit a rapid growth response when gaps are 
created by canopy defoliation (Krauss and Osland, 2020). 

Considering the vast number of hurricanes that have impacted 
coastal areas worldwide during the last century (Krauss and Osland, 
2020), it is surprising that only a few studies have examined the damage 
to mangroves and their overall recovery, for which a myriad of ap-
proaches have been used, such as field transects (Doyle et al., 1995; 
Imbert, 2018; Walcker et al., 2019; Fickert, 2020; Radabaugh et al., 
2020), Google Earth images (Bashan et al., 2013), numerical models (Liu 
et al., 2013), in situ leaf area index (Feller et al., 2015), propagule 
dispersal (Kennedy et al., 2020), multi-proxy dataset (Yao et al., 2021), 
satellite-derived multispectral data (Han et al., 2018; Rivera-Monroy 
et al., 2019; George et al., 2021; McCarthy et al., 2021; Peereman et al., 
2022), LiDAR (Gao and Yu, 2022), as well as unmanned aerial vehicles 
(Pennings et al., 2021; Serrano-Rubio et al., 2021). In summary, it has 
been suggested that mangrove trees may follow subsequent trajectories 
after a hurricane impact: regrowth of the surviving trees, recruitment of 
propagules, growth of seedlings in the understory, or complete degra-
dation of the mangrove community caused by hydrological 
modifications. 

In the Americas, mangrove forests are characterized by low diversity 
and are dominated by three species, which are distributed according to 
the hydroperiod (or flood regime) and microtopographic profile (Flor-
es-Verdugo et al., 2018). This would make it unlikely for a damaged 
single-species mangrove community to be colonized by another species 
during the recovery stage (Félix-Pico et al., 2006). In theory, the re-
covery of a mangrove canopy will largely depend upon the growth of the 
same species, which may include new seedlings or seedlings that sur-
vived the wind damage at the understory (Doyle et al., 1995). As sug-
gested by Ávila-Flores et al. (2020) and previously by Bashan et al. 
(2013), this situation is of utmost importance in mangroves of arid and 
semi-arid environments, which are under constant stress and have dif-
ficulty regenerating after disruptions by hurricanes. 

The consequences of climate change, with special emphasis on the 
increase in sea surface temperature, have caused a ubiquitous trend 
towards atmospheric events globally (Nóbrega et al., 2016). This has 
made tropical coastal systems more prone to extreme flooding and 
high-speed wind damage from frequent hurricane impacts. Conse-
quently, there has been an increasing need to monitor the early recovery 
of the mangrove canopy following the landfall of tropical storms and 
hurricanes worldwide. To this end, remote sensing techniques constitute 
a cost-effective approach (Kovacs et al., 2001). 

Historically, the most common source of remote sensing data has 
been from spaceborne sensors with medium to high spatial resolution, 
such as the Landsat and Sentinel missions, which have been adapted for 
certain applications (Han et al., 2018). However, persistent cloud cover 
may be a hindrance when using passive data at tropical latitudes. In this 
respect, the use of modern technologies, such as unmanned aerial ve-
hicles (UAV), has provided a suitable approach for target-specific 
environmental assessments due to their ultra-high spatial resolution 
(Flores-de-Santiago et al., 2020). Therefore, more robust and repeatable 
detection techniques must be developed using UAVs to improve the 
accuracy of mangrove species discrimination. We evaluated the hy-
pothesis that canopy damage by high-speed winds and its subsequent 
early recovery rate will depend on the location and tree height of the 
mangrove species. The objective of this study was to quantify trends in 
canopy damage and signs of early recovery following the direct impact 

of Hurricane Willa by means of time series of satellite data and detailed 
canopy classification, combining orthomosaics and digital surface 
models (DSM) from a consumer-grade UAV. 

2. Materials and methods 

2.1. Study area 

The Teacapán-Agua Brava-Las Haciendas estuarine mangrove com-
plex, also known as Marismas Nacionales, is the most extensive estua-
rine system (170,000 ha) on the Eastern Pacific coast (Fig. 1a). It 
presents two direct connections to the adjacent Pacific Ocean: Teacapán, 
a natural channel at the north, and the Cuautla Canal at the south, which 
was constructed in 1972 and caused severe hydrological modifications 
(Serrano et al., 2020), which resulted in irreversible damage to the 
mangroves (Kovacs et al., 2013). Additionally, Isla La Palma, a large 
island, is located between the Teacapán channel and the Agua Grande 
lagoon (Fig. 1b) (Valderrama-Landeros et al., 2020). There are three 
dominant mangrove species throughout the estuarine system: Avicennia 
germinans, Laguncularia racemosa, and Rhizophora mangle (Kovacs et al., 
2009). Rhizophora mangle is commonly found along main tidal channels 
and lagoons in narrow/dense clusters, while fragmented and dense 
stands of Laguncularia racemosa predominate in the south. Unlike the 
other two mangrove species, Avicennia germinans stands typically pre-
sent a shrub (<2-m high) and dense configuration at the north section of 
the study site (Kovacs et al., 2013). Overall, the mangroves of this 
estuarine system present some degree of degradation due to hydrolog-
ical modifications resulting from the construction of the Cuautla Canal 
(Kovacs et al., 2011; Serrano et al., 2020) and hydroelectric infrastruc-
ture throughout the 12 rivers (Valderrama-Landeros and 
Flores-de-Santiago, 2019). 

The mangrove forest for our research is located along the edge of the 
estuary that surrounds the island of Isla La Palma (Fig. 1c). Kovacs et al. 
(2009) mapped the extent of mangrove conditions of this island using 
optical QuickBird satellite data and field data collected within the 
mangrove forests. They found that 40% of the 3040 ha were classified as 
dead stands, and only 8% were in pristine condition (i.e., fringe Rhizo-
phora mangle). The remaining 52% was classified as an Avicennia ger-
minans shrub, which is no more than 2-m height. Although mangrove 
services are harder to evaluate and thus tend to be underpriced, pub-
lished quantitative data indicates that mangroves in this coastal system 
are of utmost importance for the food web structure and trophic dy-
namics of fish communities (Muro-Torres et al., 2019). 

Hurricane Willa originated in the south coast of Mexico on October 
19, 2018. On October 22 it reached category 5, the maximum category 
recorded on the Saffir-Simpson hurricane wind scale, as it crossed the 
Pacific Ocean at a wind speed of 259 km h− 1 (https://coast.noaa.gov/). 
However, on October 23 it weakened into a category 3 and made 
landfall at Marismas Nacionales on the morning of October 24 with an 
average wind of ~100 km h− 1 and maximum wind gusts of 185 km h− 1. 
The combined storm surge and a spring tide of 145 cm of amplitude at 
the time of impact (http://predmar.cicese.mx/calendarios/) resulted in 
unprecedented inundation levels for Marismas Nacionales. For example, 
we observed a clear change in the flooding regime between the two 
enhanced false-color Sentinel-2 composites (Near-infrared, Red, and 
Green) five days before the hurricane on October 18, 2018, and four 
days after the impact on October 28, 2018 (Fig. 2). Moreover, time- 
series satellite data (NOAA) recorded maximum precipitation of 70 
mm during the landfall of Hurricane Willa. At the same time, the Aca-
poneta river gauge station showed a water level of 4 m (Fig. 2). 

Following is a list in chronological order of the tropical storms and 
hurricanes in a 50-km radius that have made landfall at the north section 
of Marismas Nacionales: tropical storm Norman in September 2000, 
with a maximum wind speed of 50 km h− 1; hurricane category 2 Rosa in 
October 1994 (167 km h− 1), hurricane category 3 Tico on October 1983 
(203 km h− 1), tropical storm Adolph on May 1983 (65 km h− 1), tropical 
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Fig. 1. (a) Digital elevation model (m) of the north-
western coast of Mexico based on freely available 
TOPEX data (https://topex.ucsd.edu/cgi-bin/get_dat 
a.cgi). The black rectangle indicates the Location of 
Marismas Nacionales. The magenta vector shows the 
center of Hurricane Willa’s path on October 23–24, 
2018. The green and red vectors indicate the track of 
Hurricanes Nora and Pamela in late 2021, respec-
tively. (b) The Isla Palma location between the Agua 
Grande lagoon and the Teacapán mouth at the North 
section of the Marismas Nacionales wetland system 
(Enhanced Near-infrared, Red, Green of Sentinel-2 
dated November 22, 2019). The yellow circle in-
dicates the location of the surveyed area by the UAV 
(c). The yellow, black, and red squares show the po-
sitions of the Google Earth Engine pixels extracted for 
the Rhizophora mangle fringe, Avicennia germinans 
shrub, and Rhizophora mangle basin, respectively. 
Large squares represent the Landsat-8 area, while 
small squares indicate the Sentinel-2. The red lines 
depict the path of the two vertical transects (T2 and 
T5). (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web 
version of this article.)   

Fig. 2. (a) Enhanced false-color Sentinel-2 composite 
(Near-infrared, Red, and Green) acquired five days 
before hurricane Willa’s landfall on October 18, 2018, 
and (b) four days after on October 28, 2018. Time 
series of the precipitation (NOAA) and the Acaponeta 
river water level (CONAGUA) from January 2017 to 
December 2021. The date of the impact of major 
tropical storms and hurricanes is indicated within the 
graph. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web 
version of this article.)   

D.A. Vizcaya-Martínez et al.                                                                                                                                                                                                                 

https://topex.ucsd.edu/cgi-bin/get_data.cgi
https://topex.ucsd.edu/cgi-bin/get_data.cgi


Journal of Environmental Management 320 (2022) 115830

4

storm Otis on October 1981 (100 km h− 1), hurricane category 3 Olivia 
on October 1975 (185 km h− 1), tropical storm Eileen on June 1970 (65 
km h− 1), and tropical storm Hazel on September 1965 (80 km h− 1) (htt 
ps://coast.noaa.go/). Hence, the estuarine complex of Marismas 
Nacionales tends to experience the impact of at least one major hurri-
cane every decade. 

2.2. Wind speed data 

We extracted and plotted the vector time series V→(u, v) and the wind 
speed magnitude 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2 + v2

√
with the sole purpose of analyzing the at-

mospheric conditions before the impact of Hurricane Willa. Specifically, 
we obtained and modeled the wind components u and v every 6 h at an 
altitude of 20 m from the ground at 22◦ N and 106◦ W from January 
2018 to December 2021 according to the Navy Global Environmental 
Model (NAVGEM) through the NOAA server (https://coastwatch.pfeg. 
noaa.gov/erddap/griddap/index.html?page=1&itemsPerPage=1000). 

2.3. Google Earth Engine time series 

We selected a total of 23 field locations representing the Rhizophora 
mangle fringe condition (10 pixels), the Avicennia germinans shrub con-
dition (10 pixels), and the Rhizophora mangle basin condition (3 pixels). 
We recorded the central location of each sampling point using a global 
positioning system (GPS), with an error of less than 1 m. On each 
location, we extracted bands 2 (blue), 3 (green), 4 (red), and 5 (near- 
infrared) of the Landsat-8 (OLI) over six years (3 pre- and 3 post-Willa). 
In addition to the previously mentioned satellite bands, we obtained 
bands 5 (Red Edge 1), 6 (Red Edge 2), 7 (Red Edge 3), 11 (SWIR1), and 
12 (SWIR2) from the Sentinel-2 data collection over four years (1 pre- 
and 3 post-Willa). We performed the overall analysis using the built-in 
Google Earth Engine (GEE) tool installed on the Quantum GIS V. 
3.16.13 software. Detailed information on the principle of this approach 
can be found in Valderrama-Landeros et al. (2021). There is a consid-
erable number of vegetation indices (VI) that have used RGB, red edge 
(RE), and near-infrared (NIR) data (e.g., Hatfield and Prueger, 2010; 
Neupane et al., 2019; Stary et al., 2020; Zhou et al., 2021). However, 
and based on phenological studies of mangroves (Zhu et al., 2017; 
Mafi-Gholami et al., 2019; Valderrama-Landeros et al., 2021), we 
selected 13 RGB and 8 NIR-RE indices, including three VI exclusively 
developed for mangrove assessments (Table 1). 

2.4. UAV flight missions, data collection, and analysis 

We acquired sequences of UAV images in October 2018 (before the 
impact) and November 2018, 2019, 2020, and 2021, utilizing a rotary- 
wing DJI Phantom series quadcopter and its built-in visible camera. We 
configured flight missions using the autopilot software Map Pilot V. 
2.0.1 over an area of 100 ha, following the criteria by Flores-de-Santiago 
et al. (2020). The inexpensive navigation system triggered the UAV 
camera (nadir view) at a specific time interval of 2 s per image and 
recorded the UAV location at the center of the instant field-of-view. 
Image-capture orientation and altitude were automatically recorded 
and stored in the flight log file (.csv) by the onboard internal measure-
ment unit (IMU) and GPS. 

We radiometrically calibrated all individual images using pre-flight 
white and black targets deployed at the control base station. Once the 
acquired images were saved on the computer, we used Agisoft Meta-
shape software V. 1.5.2 (http://www.agisoft.com/) to generated 
orthorectified images and DSM. Although there are several available 
photogrammetric programs, Agisoft has provided the best results in 
terms of quality and photogrammetric products (Sona et al., 2014). 
Overall, the whole automatic process involved three main stages: (1) 
image alignment, (2) dense cloud construction, and (3) orthoima-
ge/DSM generation. We measured the height of the mangrove classes in 

the field with a portable Vertex Laser VL400 hypsometer as described by 
Flores-de-Santiago et al. (2020). We performed all the computer pro-
cessing on the same workstation, an ASUS G751J with an Intel 8 Core i7 
(2.6 GHz), 32 GB of RAM, and an NVIDIA GeForce GTX 980M graphic 
card. 

Based on the GEE time series results, we selected the most suitable 
RGB VI to discriminate between Rhizophora mangle and Avicennia ger-
minans. RGB VI is the only available option because the UAV consumer- 
grade camera does not provide a full multispectral data range. However, 
RGB VI has been used for this type of spatial data with promising results 
regarding precision agriculture (Zhang et al., 2019) and overall 
mangrove phenology trends (Valderrama-Landeros et al., 2021). 
Following the selection of the optimal VI, we performed a decision tree 
analysis for the classification of Rhizophora mangle, Avicennia germinans, 
open water, and saltpan on ArcMap software V. 10.2.2 following the 
recommendations by Flores-de-Santiago et al. (2013a) and Zhou et al. 
(2021). We performed an automatic vectorization with the pixel values 
selected for the Rhizophora mangle and Avicennia germinans classes. In 

Table 1 
Equations for visible (RGB), red edge (RE), near-infrared (NIR), and short-wave 
infrared (SWIR) vegetation indices used in this study.  

Type Vegetation Index Equation Reference 

NIR 
RE 

Normalized Difference 
Vegetation Index 
(NDVI) 

NIR-R/NIR + R Rouse et al. (1973) 

Red Edge Normalized 
Difference Vegetation 
Index (NDVIre) 

NIR-RE1/NIR + RE1 Gitelson and 
Merzlyak (1994) 

Chlorophyll Index Red 
Edge (CIg-re1) 

RE1/G-1 Gitelson et al. 
(2003) 

Chlorophyll Index Red 
Edge (CIg-re2) 

RE2/G-1 Gitelson et al. 
(2003) 

Chlorophyll Index Red 
Edge (CIg-re3) 

RE3/G-1 Gitelson et al. 
(2003) 

Combined Mangrove 
Recognition Index 
(CMRI) 

NDVI-(G-NIR/G + NIR) Gupta et al. (2018) 

Normalized Difference 
Mangrove Index 
(NDMI) 

SWIR2-G/SWIR2+G Shi et al. (2016) 

Modular Mangrove 
Recognition Index 
(MMRI) 

ǀG-SWIR1/G + SWIR2ǀ- 
ǀNDVIǀ/ǀG-SWIR1/G +
SWIR2ǀ+ǀNDVIǀ 

Diniz et al. (2019) 

RGB Visual Atmospheric 
Resistance Index 
(VARI) 

G-R/G + R–B Gitelson et al. 
(2002) 

Triangular Greenness 
Index (TGI) 

(G-0.39) (R-0.61) B Hunt et al. (2011) 

Excess Green Index 
(ExG) 

2G-R-B Woebbecke et al. 
(1995) 

Vegetation Index 
(VEG) 

G/R0.67B0.33 Torres-Sanchez 
et al. (2014) 

Color Index Vegetation 
(CIVE) 

0.44R-0.88G+0.39B +
18.79 

Guerrero et al. 
(2012) 

Normalized Green-Red 
Difference Index 
(NGRDI) 

G-R/G + R Torres-Sanchez 
et al. (2014) 

Normalized Green-Blue 
Difference Index 
(NGBDI) 

G-B/G + B Du et al. (2017) 

Visible-Band 
Difference Vegetation 
Index (VDVI) 

2G-R-B/2G + R + B Du et al. (2017) 

Red-Green Ratio Index 
(RGRI) 

R/G Wan et al. (2018) 

Blue-Green Ratio Index 
(BGRI) 

B/G Calderon et al. 
(2013) 

Woebbecke Index (WI) G-B/R-G Woebbecke et al. 
(1995) 

Red-Green-Blue Ratio 
Index (RGBRI) 

R + B/2G Xie et al. (2020) 

Red-Green-Blue 
Vegetation (RGBVI) 

G2-(R*B)/G2+(R*B) Bendig et al. 
(2015)  
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the absence of NIR data, we applied manual elimination in case some 
vectors represented shadows (Flores-de-Santiago et al., 2018). We 
quantified the individual vectors (i.e., objects) and the overall canopy 
area for each of the five orthomosaics. 

3. Results 

3.1. Wind impact on Marismas Nacionales 

The wind magnitude and direction between 2018 and 2021 show an 
abrupt increase in wind speed during tropical storms and hurricanes 
(Fig. 3), in which Hurricane Willa recorded the strongest wind gusts and 
an averaged wind speed of 104 km h− 1. The mangroves were under the 
influence of these maximum wind gusts for 31 h, followed by 23 h of 
wind speeds twice the average recorded under no-hurricane conditions. 

The seven recorded tropical storms and hurricanes showed a similar 
NNE-NNW wind direction. Specifically, hurricane category 1 Pamela in 
October 2021 (120 km h− 1), hurricane category 1 Nora in August 2021 
(140 km h− 1), hurricane category 1 Enrique in June 2021 (150 km h− 1), 

tropical storm Hernan in August 2020 (75 km h− 1), hurricane category 4 
Genevive in October 2020 (215 km h− 1) –although this hurricane was 
located at 249 km from the study site and thus the wind speed recorded 
in Fig. 3 is ~30 km h− 1–, and Hurricane category 1 Lorena in September 
2019 (140 km h− 1). The average wind speed and maximum wind 
magnitude between 2018 and 2021 were 12.7 km h− 1 and 35.5 km h− 1, 
respectively. 

3.2. VI time series from Landsat-8 and Sentinel-2 data 

The Landsat-8 VI time series extracted from the GEE for the fringe 
Rhizophora mangle, Avicennia germinans shrub, and Rhizophora mangle 
basin classes are shown in Fig. 4. We could not use RE information for 
the Landsat-8 series because such a sensor lacks an RE band. Among the 
remaining 18 VIs, the NDVI continues to be the most useful index in 
terms of the overall mangrove trend, showing an abrupt negative change 
in their tendency after the impact of Hurricane Willa. While there was a 
clear difference in the NDVI trend between the Rhizophora mangle (fringe 
and basin) and the Avicennia germinans before the hurricane landfall, the 

Fig. 3. Time series of the wind speed (blue) and wind direction (black vectors) from January 2018 to December 2021. Data was acquired from the Navy Global 
Environmental Model. The date of the impact of major tropical storms and hurricanes is indicated within the graph. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 
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difference after the impact between the fringe Rhizophora mangle and 
basin conditions is now substantial, with the basin class presenting 
higher index values. 

On the other hand, the lowest NDVI corresponds to the Rhizophora 
mangle fringe class, which is now similar to the overall Avicennia ger-
minans pattern. Surprisingly, the mangrove index (NDMI) did not show a 
clear tendency. Among the eight RGB VIs, only the NGRDI, RGBVI, TGI, 
and VARI showed a similar trend when compared to the VIs that used a 
multispectral NIR band. Among the most useful RGB indices, the VARI 
index was capable of separating Avicennia germinans from the rest of the 
Rhizophora mangle classes. Furthermore, the VARI index was able to 
discriminate between both Rhizophora mangle classes throughout the 
year 2021, even though the separation between these two mangrove 
classes was not as good as the NDVI. 

As expected, the Sentinel-2 time series, which now incorporates new 
RE indices, showed similar results compared to the Landsat-8 data 
(Fig. 5). For instance, the NDVI depicted the same pattern, with the 
Rhizophora mangle basin higher than both the fringe Rhizophora mangle 
and the Avicennia germinans classes. Therefore, it appears that the Rhi-
zophora mangle fringe class was the one most affected by the impact of 
the hurricane. However, there has been an apparent recovery of the 
mangrove cover area, at least for the Rhizophora mangle classes. Inter-
estingly, we did not observe a difference between the NDVI, the NDVI 
Red Edge, and the Cig-re2 indices. The same situation was found between 
the CMRI mangrove index and the RE indices. Regarding the latter, the 
VARI and NGRDI showed a similar trend compared to the NDVI; how-
ever, unlike the NGRDI, the VARI was able to separate the two classes of 
Rhizophora mangle. 

3.3. Orthomosaics and DSM from the UAV data 

According to the trends depicted in Figs. 4 and 5, we selected the 
VARI index as the most suitable one to classify mangrove species with 
RGB data from the UAV. As previously found, there are some caveats 
that concern the validity of the assessment results regarding discrimi-
nation between both Rhizophora mangle classes using RGB data. In this 
sense, and based on the overall VARI index trend, we decided to merge 
both red mangrove classes into a single Rhizophora mangle group. Fig. 6 
shows a representative area of the 100-ha surveyed site during the five 
UAV missions at Isla Palma. From left to right, true color orthomosaic, 
decision tree classification using the VARI index, and modeled DSM. The 
mapped area represents a typical semi-arid intertidal environment 
where Rhizophora mangle trees are distributed adjacent to the coastal 
lagoon and along the small tidal channels through the interior of the 
island. Avicennia germinans shrubs are distributed in more inland areas 
where the hydroperiod is less intense and where they are thus under 
considerable hydric stress. 

All five orthomosaics present similar light conditions because they 
were recorded at practically the same hour of the day and during the 
same month. The VARI index was able to separate Rhizophora mangle 
(red coloration) from Avicennia germinans (orange coloration) and other 
land features, such as open water and saltpan (white coloration) (Fig. 6). 
The ultra-high spatial resolution of the UAV provided the possibility of 
determining the defoliated areas. Moreover, it was possible to capture 
the location of the fallen trees after the hurricane’s landfall and quantify 
early signs of mangrove recovery, a situation that is not that feasible 
with conventional satellite images (e.g., Landsat-8 and Sentinel-2). 

Fig. 4. Time series of vegetation indices extracted from the Google Earth Engine platform for the Landsat-8 data. The green arrows indicate the date of the impact of 
Hurricane Willa. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Regarding the DSM, the Rhizophora mangle depicted a monospecific 
configuration before the hurricane’s impact (October 16, 2018). 
Although some trees had survived on November 16, 2018 —three weeks 
after the landfall— there were many recorded defoliated 8 to 12-m high 
trunks. These dead trunks were rapidly lost two years after the event, as 
seen in November 2020. Many new trees/seedlings have been colonizing 
the area, as shown on the orthomosaic and DSM in November 2021. 
Overall, the RGB mosaic and the corresponding VARI index classifica-
tion show a positive recovery of what looks like mangrove leaf growth; 
nevertheless, the DSM shows that the surviving trees are relatively short 
compared to the original canopy configuration. There was confirmation 
in the field that most of the fringe Rhizophora mangle trees presented 
some inclination and thus less height. 

The vertical DSM profile of transect T2 illustrates an area that has 
been under constant recovery since the impact, while transect T5 depicts 
permanent damage (Fig. 7). Both transects present a similar canopy 
profile before the impact of Hurricane Willa with a maximum tree height 
of 13 m for the Rhizophora mangle fringe class. The Avicennia germinans 
stands showed a typical shrub configuration (2–4 m high) before the 
event. Following the hurricane’s high-speed winds, both locations 
exhibited massive damage regarding the vertical canopy profile. In 
essence, most of the tallest trees (9–13 m) were defoliated, and only a 
few trees with a height of less than 8 m survived. For example, a few 
trees survived and started growing through transect T2, while we found 
considerable open areas within the canopy and several remnants of dead 
trunks through transect T5. The photographs in the field were taken in 
November 2021, three years after the hurricane’s impact. Specifically, 
many trees presented some inclination towards the open water, and it 

became common to see a relatively recovered Rhizophora mangle fringe 
community (7.9–11.6 m high) in front of transect T2 with some dead 
trunks in the back (8.7–10.9 m high). It was also common to find indi-
vidual trees that had lost the original thick canopy configuration and 
that had started to develop leaves through the trunk, as seen in the 
photograph at T2. On the other hand, no apparent recovered area was 
depicted in the field photographs in front of transect T5. Although this 
situation has not been commonly found through the study site, we 
believe the T5 transect depicts an unsuccessful natural recovery stage for 
reasons that must be investigated. We found only a few remnants of 
Rhizophora mangle between 2.8 and 4.4 m; however, there were also a 
considerable number of dead trunks of this species (6.1–12.6 m height). 

The overall accuracy achieved for the vectorized clusters of the 
Rhizophora mangle class within the five orthomosaics fluctuated between 
92 and 95%. These results had been expected because the analysis was 
based on a single mangrove thematic class. The original orthomosaic 
from October 2018 showed a total area of 10.9 ha distributed in 60 in-
dividual clusters (Fig. 8). From these polygons, only 2.4 ha of canopy 
remained after the hurricane landfall, distributed into 683 sparse clus-
ters and representing an approximately canopy loss of 78%. Subse-
quently, the recorded canopy recovery areas were 4.1 ha in 2019, 4.9 ha 
in 2020, and 5.8 ha in 2021. After three years, the overall Rhizophora 
mangle cover area was 53% compared to the original condition. Using 
linear analysis, we contrasted the last four years of canopy structure and 
found the following linear equation: canopy area = 1.1 (years)+1.55 
with an R2 of 0.96. Therefore, although it may be predicted that it will 
take approximately 8.5 years to reach an original area of 10.9 ha, there 
are still some remaining gaps within the canopy that may take more time 

Fig. 5. Time series of vegetation indices extracted from the Google Earth Engine platform for the Sentinel-2 data. The green arrows indicate the date of the impact of 
Hurricane Willa. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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for it to fully achieve its pre-hurricane condition. 

4. Discussion 

The synergy between freely available time series of VI from the GEE 
platform and the spatial and vertical variability assessed with ultra-high 
spatial resolution orthomosaics/DSM from UAV was successful in 

analyzing the temporal, spatial, and vertical distribution of the 
mangrove canopy after the landfall of massive Hurricane Willa in 
October 2018. Despite the tropical storms and hurricanes that have 
traveled close to the study site after Hurricane Willa, such atmospheric 
events have been less intense, as their landfall has been at a relative 
distance from the study site. Hence, the probability of further mangrove 
canopy damage to the same assessed area has been minimal. 

Fig. 6. Characteristics portrayals of the Rhizophora mangle and Avicennia germinans vegetation for the five UAV data collections. From left to right: the original UAV 
orthomosaic (RGB), the Visible Atmospherically Resistant Index (VARI), and the digital surface model (m). 
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4.1. Satellite data time series 

The three mangrove classes (Rhizophora mangle fringe, basin, and 
Avicennia germinans shrub) presented a notable change in canopy defo-
liation after the impact of Hurricane Willa. For example, both Landsat-8 
and Sentinel-2 series showed that the less affected class, in terms of 
canopy changes, was the Avicennia germinans shrub. We expected this 
pattern because of its 2–4 m height, given that large trees, such as the 
fringe Rhizophora mangle (8.5–13 m), are often more susceptible to 
damage during adverse wind events (Doyle et al., 1995). Moreover, only 
those Rhizophora mangle trees with a height of less than 8 m survived 
within the fringe community. Radabaugh et al. (2020) found that larger 
trees are more vulnerable to damage than mangrove shrubs during 
storm events because of the strong wind intensity. These authors also 
consider that the degree of branch damage in trees is a key factor in 
explaining delayed mortality, as such alterations in defoliation and loss 
of branches may increase stress and eventual mortality. Another study 
by Kovacs et al. (2001) in the same study site points out that approxi-
mately 80% of the taller trees with a diameter greater than 20 cm were 
dead, in contrast to only 16% of the shrub mangroves (diameter of 2.5–5 
cm). In 2019 we also found a considerable number of established Rhi-
zophora mangle seedlings. There is the possibility that the 13-m high 
fringe Rhizophora mangle acted as a shield and protected both the un-
derstory Rhizophora mangle saplings and the adjacent Avicennia germi-
nans from the wind gusts. Previous studies, such as those by Fickert 
(2020) and Serrano-Rubio et al. (2021), have shown that direct planting 
after a hurricane is not necessary for a mangrove forest to recover 
naturally if the hydrological conditions have not changed since the 
impact. However, it has been suggested that the broken branches and 
dead trunks could uproot the newly established seedlings, thus extend-
ing the period of considerable colonization of the understory to more 
than four years in some locations (Flores-Verdugo et al., 1987). The 
temporal pattern in the mangrove canopy is expected because, as 
mentioned, the severity of hurricane impacts to the mangrove forest 
canopy and structure depends primarily on the maximum sustained 
wind speed (Imbert, 2018). 

Marismas Nacionales is considered an impacted estuarine system 

because of hydrological modifications during the last decades (Serrano 
et al., 2020). Such adverse environmental conditions have caused a 
non-optimal development of the mangroves throughout the lagoons and 
tidal channels (Kovacs et al., 2013). The fringe Rhizophora mangle forest 
located at the northern section, where the hurricane made landfall, is 
considered a less vigorous forest compared to the same species at the 
Agua Brava lagoon in the south. Valderrama-Landeros et al. (2020) used 
Sentinel-2 images and observed a considerable decrease in the NIR 
wavebands at locations near Isla Palma. Hence, damage and defoliation 
to the mangrove canopy in other species, such as Laguncularia racemosa, 
can be expected to differ from the overall trend in the VI time series. 

4.2. Visible UAV data 

Regarding UAV limitations, it is well known that expensive multi-
spectral cameras, the impossibility of obtaining digital elevation models 
(DEM) from passive sensors throughout the canopy, and minimal flight 
time are the main hindrance for wetland vegetation assessments (Flor-
es-de-Santiago et al., 2020). Regarding the DSM from the UAV, we ex-
pected to find some discrepancy between the DSM obtained in our 
analysis and the actual DEM when using an active sensor such as LiDAR. 
However, the profiles revealed that the saltpan, which does not present 
vegetation, showed a similar height among the DSM models. Moreover, 
a relatively flat terrain within the fringe Rhizophora mangle is to be ex-
pected. Flores-Verdugo et al. (2018) used micro-topographic profiles 
and found that the difference between the Avicennia germinans and 
Rhizophora mangle was about 40 cm, which is relatively irrelevant when 
compared to a 13-m high canopy. 

Not surprisingly, most mangrove studies have only focused on small 
areas when assessing environmental data with UAV platforms. Specif-
ically, the assessed areas have been from 1 to 10 ha (Cao et al., 2019; 
Otero et al., 2018; Ruwaimana et al., 2018; Wang et al., 2020) to 30–85 
ha (Guo et al., 2017; Li et al., 2019; Liu and Wang, 2018), with only two 
studies having encompassed relatively larger areas of 138 ha (Yu et al., 
2017) and 260 ha (Zhu et al., 2019). One alternative could be to use 
fixed-wing UAVs, but such platforms are not easily deployed on small 
boats, especially during landing operations within coastal lagoons with 

Fig. 7. Vertical profiles of the two representatives 
transect at Isla Palma extracted from the UAV digital 
surface models. The colored lines indicate the vertical 
profiles before the impact (October 2018), after the 
impact (November 2018), and three years post- 
hurricane (November 2021). Examples of field 
photos taken in November 2021. From left to right: 
recovered Rhizophora mangle fringe condition in front 
of transect T2, a single Rhizophora mangle tree that 
survived the hurricane impact, degraded Rhizophora 
mangle in front of transect T5, and Avicennia germinans 
shrub condition.   
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saltwater. However, new UAV developments of hybrid tail-sitter plat-
forms, such as the Wingtra One (Wingtra AG, Zurich), enable image 
collection of areas up to 400 ha in a single flight (Oldeland et al., 2020), 
although the cost of this platform is expensive with respect to the 
traditional Phantom series. For example, the cost of the Phantom is only 
~10% compared to the base cost of the Wingtra One after importation 
and taxes fees in Mexico. 

To understand which VI could be feasible for mangrove canopy 
discrimination, we must keep in mind that we are using the inexpensive 
built-in RGB sensor that does not provide multispectral data, and that 
neither RE nor NIR bands are available in our orthomosaics. Hence, in 
the absence of validation data, such as spectroradiometers deployed in 
the field (e.g., Zhang et al., 2014; Flores-de-Santiago et al., 2013b), we 
use multispectral satellite VI-based data from the GEE time series for 
mangrove canopy assessments (Valderrama-Landeros et al., 2021). Even 
though this could be considered a heuristic approach, we believe that 
the positive and similar trend between the multispectral and RGB VIs 
from both Landsat-8 and Sentinel-2 time series could help us determine 
if the RGB VI from the UAV is suitable for mangrove classification 
purposes. 

Despite the large availability of newly developed VI, the NDVI is by 
far the most widely used index regarding mangrove assessments and has 

provided reliable results concerning mangrove phenology (Valderra-
ma-Landeros et al., 2021) and degradation (Valderrama-Landeros et al., 
2018). Given the similarity between the VARI and the NDVI trends for 
both satellite platforms, we believe that the use of the VARI index could 
be a reliable alternative to sophisticated and expensive multispectral 
sensors installed in UAVs for overall mangrove canopy assessments. The 
discrimination between the two mangrove species is possible with a 
simple decision tree analysis among the UAV-VARI intervals extracted 
from the GEE-VARI series. For instance, we found that Rhizophora 
mangle leaves appear in dark green, whereas Avicennia germinans emerge 
with bright and grayish-green colors. This color pattern was also found 
by Krause et al. (2004) in mangroves of northern Brazil. Although there 
is no published work on the use of the VARI index for mangrove forest 
classification, the feasibility of such data is not surprising because results 
from studies in precision agriculture have already published useful 
findings by means of a similar platform, sensor, and analysis (e.g., Zhang 
et al., 2019). 

4.3. Mangrove forest canopy recovery 

As to Rhizophora mangle defoliation and early signs of recovery, the 
results of our study indicated that only 21% of the original fringe canopy 

Fig. 8. The Rhizophora mangle canopy areas (ha) and the number of objects (continuous clusters) extracted from the five orthoimages using the Visible Atmo-
spherically Resistant Index (VARI). 
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remained one month after the landfall of Hurricane Willa. However, 
there was a 1.7-fold increase between 2018 and 2019, and a 1.2-fold in 
2020, reaching an overall 53% of the original canopy cover in 2021. This 
pattern is relatively similar to that found by Kennedy et al. (2020), who 
recorded a substantial number of seedlings established five weeks after 
the landfall of a hurricane. Despite this initial recovery, several more 
years will perhaps be required to determine if the mangrove system is 
similar to conditions before the hurricane struck. In this sense, Rada-
baugh et al. (2020) found that after an initial increase from 40% canopy 
in the first two months following Hurricane Irma’s landfall, there was an 
additional 60% canopy cover after six months post-storm in mangroves 
of Florida. Nevertheless, the authors indicated that there was mortality 
post-storm after nine months. Jamaluddin et al. (2021) analyzed the 
same hurricane category 3 (Irma) and, using Sentinel-2 data, found that 
only ~27% of the mangrove was degraded, while the rest remained 
intact. McCarthy et al. (2021) analyzed the same hurricane with 91 
WorldView-2 images encompassing seven years before and one year 
after the impact and found that only 17% of the mangrove was degraded 
and, from this percentage, 35% recovered one year after Hurricane 
Irma’s landfall. Imbert (2018) mentions that the fringe and shrub 
mangrove stands had not recovered to pre-hurricane conditions after 23 
years from the impact of Hurricane Hugo. Han et al. (2018) mention that 
the decreased mangrove area recovered to a pre-hurricane condition in 
3–4 years. According to Rivera-Monroy et al. (2019), it took almost ten 
years for a mangrove forest to recover after the impact of Hurricane 
Wilma in Florida. The extension of the mangrove defoliation damage 
and rate of re-establishment thus seemingly depends on local environ-
mental conditions. Hence, our results indicate that the semi-arid man-
groves of Marismas Nacionales were more severely damaged by a similar 
category 3 hurricane. 

4.4. Environmental implications 

The results of the time series analysis show a tendency towards the 
recovery of the mangrove cover area. This pattern agrees with the results 
found in the orthomosaics, which, unlike satellite images, can determine 
the fragmentation of the mangrove canopy to a greater degree (Fraser 
and Congalton, 2018) and thus predict how long it would take for it to 
recover. Based on the linear tendency, it will take at least 8.5 years for 
the mangrove cover area to reach its original size. However, this does 
not mean that the vertical canopy structure will recuperate in that time. 
It should be kept in mind that a mangrove tree takes longer to develop 
large and long branches compared to the initial leaf growth on branches 
that survived after a hurricane impact (Jamaluddin et al., 2021). Since 
the growth meristem is destroyed in thin branches compared to thick 
trunks, the early sign of recovery means that mangroves tend to develop 
leaves on the lower part of the trunk when they are under stressful 
conditions (Flores-de-Santiago et al., 2012). Imbert (2018) observed 
that the mechanism of regrowth from damaged trees is common in 
Avicennia germinans and Laguncularia racemosa, but not in Rhizophora 
mangle. This is a direct defense mechanism of mangroves because the 
frequency of hurricanes is one of the main factors limiting mangrove 
growth and contributing to mangrove canopy height configuration 
(Radabaugh et al., 2020). These mechanisms have severe implications 
regarding post-storm assessments. For instance, Kovacs et al. (2009) 
mention that a classification misconception occurs when authors only 
focus on change detection techniques within the overall mangrove cover 
area rather than analyzing the variability in the vertical composition. In 
this sense, some defoliated trees could have 13-m heights, although they 
started developing leaves in the understory, which could be quantified 
using satellite images and confused as restoration, even if the height of 
the original canopy had not been nearly as close to its pre-hurricane 
configuration. Flores-de-Santiago et al. (2017) indicated that stressed 
Rhizophora mangle seedlings needed nine years to reach their maximum 
height of only 4 m in an area north of the study site. Therefore, the 
overall change in the vertical canopy configuration will depend on local 

conditions. Environmental conditions are another factor to consider. For 
example, the 13-m high pre-storm fringe Rhizophora mangle trees of 
Marismas Nacionales are diminutive compared to riverine mangroves 
located in more favorable conditions, allowing them to reach heights of 
up to 60 m (Simard et al., 2019). Ultimately, the effects of defoliation 
and degradation of the vertical structure of the canopy and the time 
required to recover will depend on the specific location, mangrove 
species, and the intensity of the hurricane. 

5. Conclusions 

In October 2018, Hurricane category 3 Willa made landfall on the 
coastal zone of Marismas Nacionales, Mexico, and caused substantial 
mangrove defoliation and fragmentation. We examined the feasibility of 
quantifying mangrove canopy damage and early signs of recovery by 
using time series analysis of VI from the GEE platform and a consumer- 
grade UAV. Our approach was relatively simple: it was based on freely 
available satellite data, using built-in cameras of commercial UAVs. This 
was thus a relatively inexpensive complementary method for ground- 
based mangrove assessments. Although this study demonstrates the 
feasibility of the VARI index on mangrove forest discrimination, addi-
tional research is needed to evaluate our findings at various sites 
worldwide and with different mangrove species. The advantage of using 
UAVs relies on their capacity to assess detailed canopy damage and 
vertical canopy configuration due to their ultra-high spatial resolution 
(cm/pixel). Results from this study provide the first quantitative evi-
dence that the use of the VARI index and decision tree classification is a 
particularly important advantage over previous approaches that have 
utilized manual classification, which is a time-consuming approach. 
Overall, there was a 78% canopy loss of the Rhizophora mangle one 
month after the landfall of Hurricane Willa. However, there was also a 
1.7-fold increase in the canopy after one-year post-storm, which even-
tually reached 53% of the original canopy three years after the impact. 
The linear model shows a prediction of at least 8.5 years to reach pre- 
impact mangrove cover conditions. Nevertheless, the sequence of DSM 
estimates that the vertical canopy configuration will require a longer 
time to achieve its original structure. Importantly, we suggest that not 
all sites of Marismas Nacionales may recover into a similar mangrove 
forest because of differences in environmental conditions and mangrove 
species composition. In addition to a methodological summary, this 
study sheds light on various challenges and opportunities associated 
with the further development of UAV-based mangrove monitoring. We 
thus hope that this study will contribute to complementary approaches 
for environmental assessments of mangrove forests in other parts of the 
world. 
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