

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

ANÁLISIS DE COSTOS, FRAGMENTACIÓN Y PARÁMETROS DE VOLADURAS A CIELO ABIERTO

INFORME DE ACTIVIDADES PROFESIONALES

Que para obtener el título de

Ingeniero de Minas y Metalurgista

PRESENTA

Olaf Olivos García

ASESOR DE INFORME

Lic. Carlos Aurelio Bernal Esponda

Ciudad Universitaria, Cd. Mx., 2023

ÍNDICE

\mathbf{D}	CCI	I IN/	IEN -	1
1	1 'A 7 I	UIV	II VIN	

1. INTRODUCCIÓN	2
1.1 OBJETIVO	3
1.2 METODOLOGÍA	3
1.3 JUSTIFICACIÓN	4
2. VOLADURAS EN UNA MINA A CIELO ABIERTO	5
2.1 GENERALIDADES DEL SITIO	5
2.2 PARÁMETROS DE VOLADURA	5
2.3 VOLADURAS EN MINERAL ANALIZADAS FASE 1ª	7
2.3.1 Voladura F1A-326	7
2.3.2 Voladura F1A-446	9
2.3.3 Voladura F1A-455	10
2.4 VOLADURAS EN MINERAL-ESTERIL ANALIZADAS FASE 1A	12
2.4.1 Voladura F1A-452	12
2.4.2 Voladura F1A-451	13
2.4.3 Voladura F1A-450	14
2.4.4 Voladura F1A-380	16
2.4.5 Voladura F1A-448	17
2.4.6 Voladura F1A-447	19
2.4.7 Voladura F1A-442	20
2.5 VOLADURAS EN ESTÉRIL ANALIZADAS FASE 1A	21
2.5.1 Voladura F1A-449	21
2.5.2 Voladura F1 A - 458	23

2.5.3 Voladura F1A-470	25
2.5.4 Voladura F1A-468	26
2.5.5 Voladura F1A-462	28
2.6 VOLADURAS EN MINERAL ANALIZADAS FASE 2C	29
2.6.1 Voladura F2C-546	29
2.6.2 Voladura F2C-553	31
2.6.3 Voladura F2C-554	32
2.6.4 Voladura F2C-541.	34
2.6.5 Voladura F2C-557	35
2.6.6 Voladura F2C-550.	37
2.6.7 Voladura F2C-571.	38
2.6.8 Voladura F2C-573	40
2.7 VOLADURAS ANÁLIZADAS EN MINERAL-ESTÉRIL FASE 2C	41
2.7.1 Voladura F2C-529	41
2.7.2 Voladura F2C-542 y F2C-544	43
2.7.3 Voladura F2C-558.	44
2.7.4 Voladura F2C-538.	45
2.8 VOLADURAS ANALIZADAS DE LAS FASES 4AY 6B	47
2.8.1 Voladura F4A-001	47
2.8.2 Voladura F4A-006	48
2.8.3 Voladura F6B-015.	50
3. RESULTADOS.	52
3.1 FRAGMENTACIÓN.	52
3.1.1 Fase 1A	53
3.1.2 Fase 2C	65

	3.1.3 Fase A4	78
	3.1.4 Resumen de la fragmentación obtenida	80
	3.2 VOD (Velocidad de Detonación)	82
	3.2.1 Fase 1A	83
	3.2.2 Fase 2C	90
	3.2.3 Resumen y Punto de Comparación	91
	3.3 COSTOS DE VOLADURA.	92
4	. ANÁLISIS DE RESULTADOS	96
5	. PROPUESTAS DE MEJORA	99
	5.1 SOFTWARE UTILIZADO.	99
	5.2 CONFIGURACIÓN DE LA VOLADURA.	100
	5.3 RESULTADOS ESPERADOS.	102
	5.3.1Mineral diseminado.	102
	5.3.2Mineral diseminado/hornfels	104
	5.3.3 Mineral brecha/masiva.	106
	5.3.4 Estéril Caliza-Hornfels.	108
	5.3.5 Estéril Caliza-Arenisca	111
	5.3.6 Estéril Conglomerado.	113
6	. CONCLUSIONES Y RECOMENDACIONES.	116
7	. ANEXOS 118	
	a. anexo i: "Pruebas de VOD. Booster vs EMULEX."	118
	b. Anexo ii: "Certificados de calidad de los camiones mezcladores de ANFO pa	ıra el
	cargado de explosivo. Austin Powers."	120
	c. Anexo iii: "Equipo y software utilizado".	127

RESUMEN

Este escrito tiene como finalidad exponer una forma de analizar las voladuras de una mina a cielo abierto e identificar áreas de oportunidad que permitan mejorar los resultados que se obtienen a través de estas en cuanto a fragmentación de la roca, tonelaje tumbado, costo del explosivo por tonelada volada, seguridad en las voladuras, aprovechamiento de la energía del explosivo, vibración generada en el terreno a causa de la voladura entre otros.

El estudio se desarrolló en una mina a cielo abierto ubicada en el estado de Colima, México, en dicha mina se administra el yacimiento mediante fases y se tienen tres tipos de mineralización diferente: mineral diseminado, brecha masiva y diseminado-hornfels.

De las voladuras realizadas en las diferentes fases mineralizadas se analizaron los siguientes parámetros de voladura: tipo de material explosivo utilizado en la carga de fondo y en la carga de columna, configuración de la plantilla de barrenación, es decir el número de barrenos totales (barrenos cargados y barrenos vacíos) el bordo y espaciamiento de la plantilla, así como el esquema o croquis de amarre y los resultados obtenidos en la fragmentación. Con base en esos datos fue posible identificar que sustituyendo la EMULEX 1 por el Booster de 1 lb en la carga de columna e implementado la E-Star como sistema de iniciación se pueden obtener mejores resultados en la fragmentación de la roca además de optimizar costos, esto debido a un mayor aprovechamiento de la energía del explosivo evitando fugas con un sistema de iniciación más exacto que permite un flujo continuo de la energía del explosivo.

Finalmente, con apoyo de software fue posible simular que sucedería si se aplicaran cambios a las plantillas de barrenación y el tipo de material explosivo usado en la voladura finalizando con una propuesta de una configuración específica para cada tipo de material.

Hacer ingeniería se trata de siempre buscar la forma de mejorar los procesos, optimizar los recursos y elevar los estándares de calidad y seguridad en el trabajo, por esta razón es importante que un ingeniero de cualquier ramo tenga las habilidades que se exponen de manera implícita a lo largo de este escrito.

1. INTRODUCCIÓN

La industria minera se ha visto obligada a evolucionar con el paso del tiempo, perfeccionando así sus técnicas extractivas, herramientas y equipos utilizados en su labor para poder continuar con la explotación de los yacimientos minerales del mundo que han ido cambiando sus condiciones. La minería superficial es una práctica bastante común en la actualidad debido a que permite la explotación de yacimientos minerales de baja ley, compensando la poca concentración mineral con el volumen de material movido por día. El uso de explosivos como método de fragmentación de la roca en la minería a cielo abierto se ha tornado indispensable pues permite obtener una mayor cantidad de material fragmentado en un corto periodo de tiempo, aspecto que se vuelve fundamental si se busca rentabilidad en una operación minera.

Las bajas concentraciones de mineral que se explotan en una mina a cielo abierto hacen que deba optimizarse la operación en todos sus aspectos para que sea económicamente atractiva a inversionistas. Dentro de un equipo multidisciplinario de trabajo los ingenieros de minas son los responsables directos de hacer las mejoras pertinentes que permitan optimizar los recursos y maximizar los resultados de la operación, incrementando la vida útil de las minas así como sus reservas probadas o de interés, dichos planteamientos de mejora surgen del estudio y análisis que permiten un panorama más amplio identificando las áreas de oportunidad; una de las más comunes es el área de voladura, al ser el explosivo un material bastante costoso se busca siempre aprovecharlo de la mejor manera, desde el punto de vista que visualiza un yacimiento mineral como un negocio debe buscarse siempre la mayor utilidad y esto surge de un correcto uso y manejo de los insumos adecuados.

Cuando se desea maximizar los resultados obtenidos en una voladura se deben analizar diferentes aspectos entre los que destacan el bordo, el espaciamiento entre barrenos y la distribución espacial de estos sobre el terreno, esto debido a que alargar o acortar las distancias entre barrenos influye directamente en la fragmentación obtenida en la voladura, a mayores distancias menor fragmentación habrá y entre más cercano este un barreno de otra mayor fragmentación sufrirá la roca. Estudios realizados afirman que emplear un sistema de iniciación electrónico (mayor exactitud) y un explosivo de alta velocidad de detonación (Booster) en una voladura permite aprovechar una mayor cantidad de energía de trabajo del material explosivo

como consecuencia se obtiene resultados más favorables en cuanto a desplazamiento, fragmentación esperada, bajos niveles de vibración, toneladas molidas por encima de la expectativa, además de incrementar la seguridad del personal en voladuras al tener mayor control en la detonación y más certeza de los tiempos de explosión.

Durante el presente estudio se analizaron los parámetros e insumos de voladura en una mina a cielo abierto del estado de Colima, México lo cual permitió identificar áreas de mejora, dando origen así a una propuesta de parámetros de barrenación e insumos explosivos con el objetivo de mejorar resultados y optimizar recursos.

1.1 OBJETIVO

Los objetivos que persigue el estudio realizado son los siguientes:

- Corroborar que la configuración propuesta para las voladuras resulta más eficiente, garantizando un P80 (que el 80 % del material se encuentre por debajo del tamaño designado) inferior a 70 cm. y un tamaño máximo de partícula de 1 m.
- 2. Realizar el diseño de las diferentes fases que se tienen como extracción de la mina.
- 3. Optimizar los recursos que se proveen en las voladuras.
- 4. Incrementar los niveles de seguridad y control, antes, durante y después de los eventos de voladura.

1.2 METODOLOGÍA

El informe redactado exhibe el trabajo realizado en campo el cual se ejecutó de la siguiente manera:

1. Se realizaron voladuras en bancos de trabajo de una mina a cielo abierto con condiciones establecidas (parámetros establecidos por la mina y algunos ajustes sugeridos por Austin) y con condiciones propuestas, posteriormente se estudiaron y evaluaron los resultados obtenidos con la finalidad de determinar los factores clave que permitieron mejorar los resultados obtenidos y optimizar los recursos utilizados.

- Se hicieron alrededor de 30 pruebas en las cuales fue posible variar los tiempos de iniciación en los barrenos, el explosivo usado en la carga de fondo y los parámetros de barrenación (bordo y espaciamiento).
- 3. Se registro y archivó la mayor cantidad de datos utilizados en las voladuras mediante los reportes de las mismas además capturar fotografías que permitieron analizar el tamaño de fragmentación de la roca después de los eventos.
- 4. Durante las voladuras y pruebas hechas se utilizó un sismógrafo para determinar los niveles de vibración generados por estas para concluir que cumplen con un amplio margen de seguridad de acuerdo a las normas del Buro de Minas de los Estados Unidos (niveles menores a las 2.0 [in/s]).
- 5. Con apoyo de software se propusieron mejorar y se estimaron los resultados con la finalidad de continuar afinando la voladura.

1.3 JUSTIFICACIÓN

El egresado de la carrera de ingeniería de minas y metalurgia debe poseer los conocimientos y habilidades necesarias para incursionar en todas y cada una de las etapas de la vida útil de una mina, así como en sus diferentes operaciones unitarias, además debe contar con la capacidad de analizar áreas de oportunidad en busca de propuestas que permitan mejorar los resultados obtenidos optimizando recursos y personal de la mina. La voladura es una operación unitaria indispensable que permite fragmentar la roca, al usar material explosivo resulta indispensable un liderazgo ingenieril y conocimientos técnicos en el área para garantizar la seguridad y los resultados de la operación.

Por esta razón, debido a que a lo largo de mi ejercicio profesional con la empresa Austin Powers me he especializado en el área de voladura, me permito presentar este escrito que contiene un análisis exhaustivo de voladuras realizadas en una mina a cielo abierto , luego de evaluar dichos eventos, he sido capaz de identificar áreas de oportunidad y plantear posibles alternativas que tienen como objetivo incrementar los resultados de las voladuras, es decir mejorar la fragmentación de la roca reduciendo costos en la operación, para ello he hecho uso de las habilidades y conocimientos que se exige posea un ingeniero de Minas y Metalurgista egresado de la Facultad de Ingeniería de UNAM.

2. VOLADURAS EN UNA MINA A CIELO ABIERTO

2.1 GENERALIDADES DEL SITIO

La mina estudiada extrae mineral de hierro y basa su mineralización en tres cuerpos principalmente, brechas masivas (cuerpos de forma tabular), un depósito tipo skarn con rocas mineralizadas tipo hornfels, y un cuerpo mineral diseminado; se localiza en el extremo noroccidental de la provincia fisiográfica de la Sierra Madre del Sur, en la Sierra del Mamey, cerca de la población de Minatitlán. Como método de fragmentación de la roca se utiliza perforación y voladura con explosivo, servicio a cargo de los contratistas de Austin Powers.

Las áreas de trabajo son administradas con la nomenclatura de fases, durante este escrito se estudiaron las fases 1A, 2C y 4A.

2.2 PARÁMETROS DE VOLADURA

Como ya se mencionó para poder clasificar las voladuras se usan fases y número de evento, las tablas 1,2 y 3 muestran a manera de resumen los parámetros que fueron utilizados en las voladuras analizadas, posteriormente se detalla cada una de ellas, la información que se incluyó fue: aspectos básicos (número de barrenos vacíos y cargados), parámetros de voladura (diámetro de barrenación, taco, bordo y espaciamiento), croquis de cargado del barreno (carga de fondo y columna), condiciones climatológicas y fecha del evento, estimación geométrica, insumos (explosivos) utilizados en la voladura, factor de carga y distribución geométrica-espacial de los barrenos en el terreno (plantilla de barrenación con croquis de amarre).

Voladura	Diáme tro [in]	Planti lla [m]	Altura de banco [m]	Taco [m] (promedi o)	Número de barrenos	Densidad de la roca [g/cm]	Sistema de iniciación	Carga de fondo	Carga de columna [Kg] (promedio)	Toneladas fragmentadas
					MINERAL I	DISEMINADO				
F1A 326	9	4.0 X 5.0	14	4.5	93	3.2	DD 42/500	Emulex 1 (1Kg)	375	102,218
F1A 446	9	4.0 X 5.0	14	5.0	90	3.2	DD 17/500	Booster (1.0 lb)	430	102,585
F1A 455	9	5.0 X 5.0	14	4.0	67	3.2	E-Star	Booster (1.0 lb)	380	81,317
	N	MINERAL	– ESTÉRI	L (HORNFI	ELS/MINERA	L DISEMINAD	O/MINERAL I	BRECHA/M	(ASIVO)	
F1A 452	9	5.0 X 6.0	14	4.5	53	3.0	E-Star	Booster (1.0 lb)	350	86,779
F1A 451	9	5.0 X 5.0	14	5.5	62	3.0	DD 42/500	Emulex 1 (1Kg)	366	95,044
F1A 450	9	4.5 X 6.5	14	4.5	82	3.0	E-Star	Booster (1.0 lb)	374	111,706
F1A 380	9	5.0 X 7.0	14	6.0	88	3.0	DD 42/500	Emulex 1 (1Kg)	352	92,514

F1A 448	12 1/4	6.0 X 7.0	14	7.5	144	3.0	DD 42/500	Emulex 1 (1Kg)	552	266,566
F1A 447	9	4.0 X 5.0	14	4.0	44	3.0	DD 17/500	Booster (1.0 lb)	402	55,593
F1A 442	9	4.0 X 5.0	14	4.5	83	3.0	E-Star	Booster (1.0 lb)	374	106,791
			EST	ΓÉRIL (CA	LIZA/HORN	NFELS/CONG	LOMERADO))		
F1A 449	9 y 12 ¼	6.0 X 7.0	14	7.0	128	2.6	DD 42/500	Emulex 1 (1Kg) Booster (1.01b)	571	228,782
F1A 458	12 1/4	6.0 X 7.0	14	6.0	194	2.6	E-Star	Booster (1.0 lb)	590	343,632
F1A 470	12 1/4	7.0 X 8.0	14	7.0	107	2.6	E-Star	Emulex 1 (1Kg)	537	213,124
F1A 468	12 1/4	7.0 X 8.0	14	7.0	93	2.6	E-Star	Booster (1.0 lb)	540	235,476
F1A 462	12 1/4	6.0 X 7.0	14	7.0	211	2.6	DD 42/500	Emulex 1(1Kg) Booster (1.0lb)	576	414,839

Tabla 1 Parámetros de barrenación. Plantillas de la Fase 1A

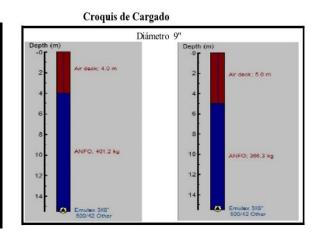
Voladura	Diámetro [in]	Plantilla [m]	Altura de banco [m]	Taco [m] (promedio)	Número de barrenos	Densidad de la roca [g/cm]	Sistema de iniciación	Carga de fondo	Carga de columna [Kg] (promedio)	Toneladas fragmentadas		
MINERAL DISEMINADO												
F2C 546	9	4.0 X 5.0	14	4.5	51	4.0	DD 42/500	Emulex 1 (1Kg)	377	64,119		
F2C 553	12	5.5 X 5.5	14	5.5	89	4.0	DD 42/500	Emulex 1 (1Kg)	572	129,403		
F2C 554	9	4.0 X 5.0	14	4.0	36	4.0	DD 42/500	Booster (1.0 lb)	438	49,517		
F2C 541	9	4.0 X 5.0	14	4.0	96	4.0	DD 17/500	Emulex 1 (1Kg)	434	112,731		
F2C 557	12	6.0 X 7.0	14	6.0	38	4.0	DD 17/500	Booster (1.0 lb)	549	65,687		
F2C 550	5 3/8 Y 9	5.0 X 5.0	14	3.0 / 4.5	105	4.0	E-Star	Booster (1.0 lb)	37 / 357	82,338		
F2C 571	9	5.0 X 5.0	14	4.5	42	4.0	E-Star	Booster (1.0 lb)	413	54,809		
F2C 573	9	5.0 X 5.0	14	4.5	54	4.0	E-Star	Booster (1.0 lb)	411	72,387		
			MI	NERAL – EST	TÉRIL (DISI	EMINADO/HO	RNFELS)					
F2C 529	12	6.0 X 7.0	14	6.0	47	3.2	DD 42/500	Emulex 1 (1Kg)	532	87,787		
F2C 542	9	4.0 X 5.0	14	4.0	34	3.2	DD 42/500	Emulex 1 (1Kg)	406	52,443		
F2C 544	9	4.0 X 5.0	14	4.0	64	3.2	DD 42/500	Emulex 1 (1Kg)	406	74,502		
F2C 558	9	5.0 X 5.0	14	4.5	72	3.2	E-Star	Booster (1.0 lb)	399	86,086		
					ESTÉR	IL.						
F2C 538	12	6.0 X 7.0	16	7.0	42	2.8	DD 42/500	Emulex 1 (1Kg)	624	66,679		

Tabla 2 Parámetros de barrenación. Plantillas de la Fase 2C

Voladura	Diámetro [in]	Plantilla [m]	Altura de banco [m]	Taco [m] (promedio)	Número de barrenos	Densidad de la roca [g/cm]	Sistema de iniciación	Carga de fondo	Carga de columna [Kg] (promedio)	Toneladas fragmentadas	
	ESTÉRIL (CALIZA/CONGLOMERADO)										
F4A 001	12	6.0 X 7.0	16	7	107	2.6	DD 42/500	Booster (1.0 lb)	686	204,164	
F4A 006	12	6.0 X 7.0	16	7	61	2.6	DD 42/500	Emulex 1 (1Kg)	635	135,099	
F6B 015	12	6.0 X 7.0	14	6.0	132	2.6	DD 42/500	Emulex 1 (1Kg)	593	225,707	

Tabla 3 Parámetros de barrenación. Plantillas de las Fases 4A y 6B

2.3 VOLADURAS EN MINERAL ANALIZADAS FASE 1^a


A continuación se detallan las voladuras que fueron analizadas, se incluye una tabla que describe las características generales de la zona volada (tipo de voladura, altura del banco, densidad de la roca y material con el que se rellenó el taco), también un croquis del cargado de los barrenos (tipo y cantidad de explosivo utilizado en la carga de fondo y de columna), las características climáticas bajo las que se llevó a cabo el evento, una tabla que explica la configuración de la plantilla de barrenación (bordo y espaciamiento) además de una estimación del material a tumbar, una tabla que describe los insumos explosivos totales utilizados en la voladura con el respectivo cálculo del factor de carga, una tabla de observaciones y un esquema (croquis de amarre) que muestra la configuración espacial de los barrenos para poder observar la secuencia de disparo.

Todo esto se hace con la finalidad de exponer con el mayor detalle posible las condiciones de las voladuras y contextualizar al lector de las condiciones y especificaciones de cada evento.

2.3.1 Voladura F1A-326

Tajo	Mina XYZ
Banco	896
Tipo de voladura	MINERAL
Plantilla	F1A-326
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la roca(gr/cm ³)	3.2
Barrenos rehabilitados	0
Barrenos amortiguados	0
Barrenos comunicados	0
Material de taco	Gravilla

Nublado Despejado Viento Distancia a estructura más cercana Metros

Fecha: 01/11/2016 Hora: 15:10 horas

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)		M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
93	4	5	14	26040	102218	9
		TOTAL		26040	102218	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	5	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	93	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	33,000	Kg.	33,000
Diésel	2200.000	Litros	1,815.00
Booster Spartand 450 gr.	0	Pzas.	0.00
Emulsión 3 X 8	93	Pzas.	93.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
-	TOTAL		34,908.00

	Factor	de Carga		
			Kg/m³	Kg/ton
$f_c =$		4908.00 6,040 =	1.341	0.342

Observaciones

Se apoyó en el cargado de la plantilla
F1A-326. El diseño y cargado de la
plantilla está a cargo del personal de la
"mina XYZ"

F1A-326: Barrenos Totales 93; Configuración (BxS) 4x5 m; Retardos de 42 ms; Tonelaje a mover 102218 Ton.; Área del banco (Aprox.) 1860 m².

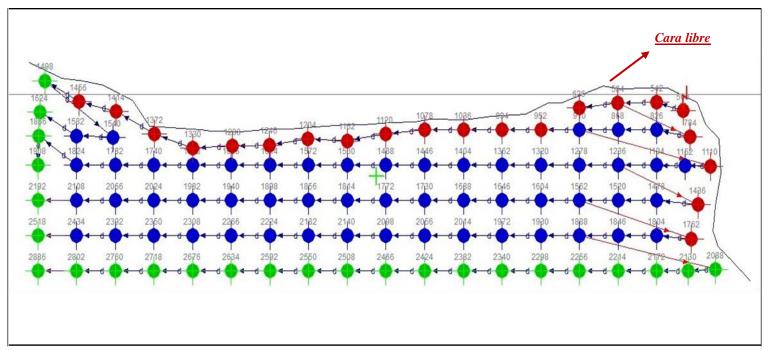


Diagrama 1 Diseño de la voladura F1A-326. Croquis de amarre

2.3.2 Voladura F1A-446

Tajo	Mina XYZ
Banco	
Tipo de voladura	MINERAL
Plantilla	F1A-446
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm ³)	3.2
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	GRAVA

		0	Diámetro 9"		
Depth (m)		Depth (m)		Depth (m)	
2	Stemming: 6.0 m	2	Stemming: 5.0 m	2	Stemming: 4.0 m
4-		4-		4	
6		0-		6	
8		3-		0	
10	ANFO: 348 9 kg	10	ANFO; 182.8 kg	10	ANFO: 418.0 kg
12	entrological establishment	12-		12-	
14-		14		14	
16	Booster 450 g 500/17 Other	16	Booster 450 g 500/17 Other	16	Booster 450 g 500/17 Other

Croquis de Cargado

Nublado Despejado Viento Distancia a estructura más cercana Metros

Fecha: 19/11/2016 Hora:

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
90	4	5	14	25200	102585	9
		TOTAL		25200	102585	

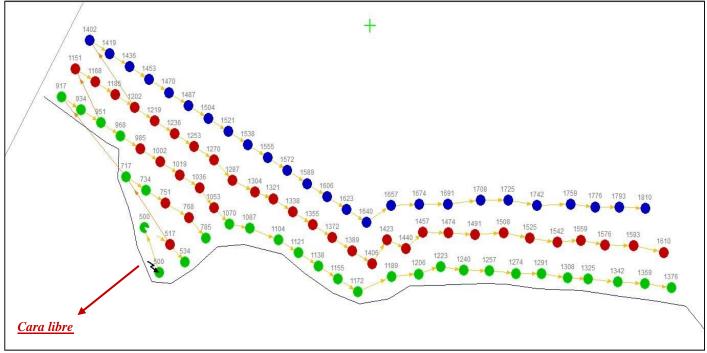
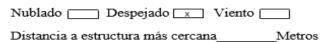
Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	5	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	0	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de amonio	36,675	Kg.	36,675
Diésel	2445.000	Litros	2,017.13
Booster Spartand 450 gr.	90	Pzas.	40.50
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 17/500 80 ft	90	Pzas.	
Iniciadores Electrónicos E*Star	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
TOTA	38,732.63		

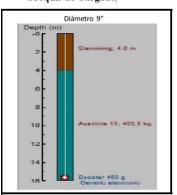
Factor de Carga							
f _c =	Kg Explo.	=	38732.63 25,200	=	Kg/m³ 1.537	Kg/ton 0.378	

Observaciones:

Voladura en mineral, plantilla en donde no se cumplen los parámetros de diseño (bordo-espaciamiento), se le da buen tiempo entre líneas (mayor a 200 ms), al momento del disparo.
Se observó que se sopletearon 2 barrenos en la salida, pero en general fue una buena voladura, con buena fragmentación en la parte del taco, un tamaño y desplazamiento uniforme de las partículas

F1A-446: Barrenos totales 90; Configuración (BxS) 4x5 retardos 17 ms; Tonelaje a mover 102585 Ton.; Área del banco (aprox.) 1789 m².


Diagrama 2 Diseño de la voladura F1A-446. Croquis de amarre.

2.3.3 Voladura F1A-455

Tajo:	Mina XYZ
Banco:	870
Tipo de voladura	MINERAL
Plantilla	F1A-455
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm ³)	3.2
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco:	Gravilla

Croquis de Cargado

Fecha: 23/12/2016 Hora: 16:00 horas

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
67	5	5	14	23450	81317	9
		TOTAL		23450	81317	

Producto	Cantidad	Unidad	Kg. Expl
Quick Relay 200 MS	0	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	0	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	23,850	Kg.	23,850
Diésel	2004.000	Litros	1,653.30
Booster Spartand 450 gr.	67	Pzas.	30.15
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	67	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	0	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	0	Mts.	
	TOTAL		25,533.45

		Factor de Ca	rga	
$f_c =$	Kg Explo. =	$\frac{25533.45}{23,450} =$	Kg/m ³ 1.089	Kg/ton 0.314

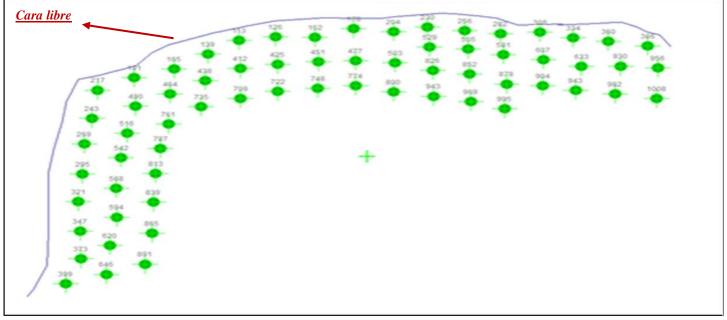
Observaciones:

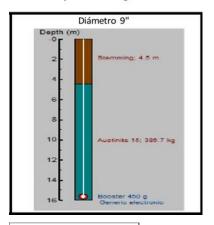
Se emplean los tres camiones mezcladores en el cargado de esta voladura, presentó buena cara libre, se revisa la profundidad de cada uno de los barrenos antes del cargado de la plantilla, se detectan dos barrenos cortos los cuales se profundizaron para cargarlos.

Al momento de estar trabajando el camión mezclador 876 se observa que siempre está goteando diésel por el tubo de descarga del ANFO al barreno, lo cual es un indicativo que las mezclas no tienen los porcentajes adecuados de diésel-nitrato de amonio.

El resultado del evento fue bueno, se detectó buena fragmentación en la parte alta de la voladura, además esta voladura fue monitoreada con el sismógrafo.

F1A-455: Barrenos totales 67; Configuración (BxS) 5x5 m; Retardos 26 ms; Tonelaje a mover 81317 Ton.; Área del banco (aprox.) 1677 m²




Diagrama 3 Diseño de la voladura F1A-455. Croquis de amarre.

2.4 VOLADURAS EN MINERAL-ESTERIL ANALIZADAS FASE 1A

2.4.1 Voladura F1A-452

Tajo	Mina XYZ
Banco	870
Tipo de voladura	MINERAL-ESTERIL
Plantilla	F1A-452
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca(gr/cm ³)	3.0
Barrenos Rehabilitados:	0
Barrenos Amortiguados:	0
Barrenos Comunicados:	0
Material de Taco:	Gravilla

Croquis de Cargado

Fecha: 26/12/2016 Hora: 14:00 horas

Nublado 🚃 🗆	Despejado 🔣	Viento
-------------	-------------	--------

Distancia a estructura más cercana Metros

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
53	5	6	14	22260	86779	9
		TOTAL		22260	86779	

Producto	Cantidad	Unidad	Kg. Expl
Quick Relay 200 MS	0	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	0	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	17,600	Kg.	17,600
Diésel	1243.000	Litros	1,025.48
Booster Spartand 450 gr.	53	Pzas.	23.85
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	53	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	0	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	0	Mts.	
Γ	OTAL		18,649.33

Factor de Carga	
www.r.a	
K g/m ³	

			Kg/m³	Kg/ton
$f_c =$	$\frac{\text{Kg Explo.}}{\text{m3}} =$	$\frac{18649.33}{22,260} =$	0.838	0.215

Observaciones:

Plantilla en mineral-estéril, se corta el cable del sexto barreno de la primera línea indicado en color rojo en el croquis de diseño esto por el material tan grueso empleado para taquear.

Se observa una buena fragmentación de la voladura, se apoya con sismógrafo para monitorear las vibraciones del evento.

F1A-452:
Barrenos totales 53; Configuración (BxS) 5x6 m; Retardos 14 ms; Tonelaje a mover 86779 Ton.; Área del banco (aprox.)1587 m².

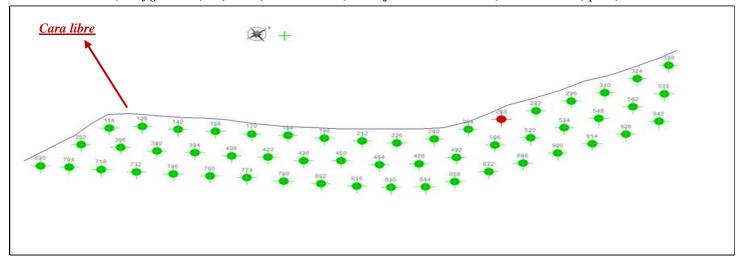
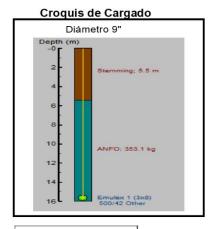



Diagrama 4 Diseño de la voladura F1A-452. Croquis de amarre.

2.4.2 *Voladura F1A-451*

Tajo	Mina XYZ
Banco	870
Tipo de voladura	MINERAL-ESTERIL
Plantilla	F1A-451
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca(gr/cm ³)	3.2
Barrenos Rehabilitados:	0
Barrenos Amortiguados:	0
Barrenos Comunicados:	0
Material de Taco:	Gravilla

Nublado Despejado Viento Distancia a estructura más cercana Metros

Fecha: 18/01/2017 Hora: 13:47 Horas

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
62	5	5	14	21700	95044	9
		TOTAL		21700	95044	

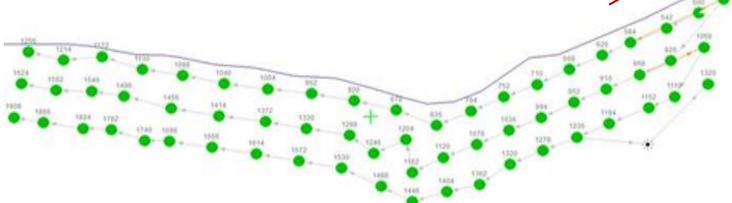
Factor de Carga							
$\mathbf{f}_{\mathrm{c}} =$	Kg Explo. m3	$=\frac{2156}{21,}$		Kg/m³ 0.994	Kg/ton 0.227		

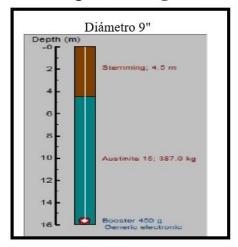
Observaciones:
Se colocó un sismógrafo en la pila de agua a un costado de la torre de control.
Se realizó una prueba de VOD a bombillo cebado con EMULEX 1 E iniciado con DUAL DELAY de 42 MS/ 500MS.
Una parte de la plantilla no tiene cara libre, después de la voladura se observa un pateo excesivo en un costado de la parte trasera de la voladura debido a la ausencia de una salida.

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	2	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	62	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de amonio	21,500	Kg.	21,500
Diésel	0	Litros	0.00
Booster Spartand 450 gr.	0	Pzas.	40.50
Emulsión 3 X 8	62	Pzas.	62.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 17/500 80 ft	0	Pzas.	
Iniciadores Electrónicos E*Star	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
TOTA	AL		21,562.00

F1A-451: Barrenos totales 62; Configuración (BxS) 5x5 m; Retardos 42 ms; Tonelaje a mover 95044 Ton.; Área del banco (aprox.) 1550 m²

Cara libre




Diagrama 5 Diseño de la voladura F1A-451. Croquis de amarre.

2.4.3 Voladura F1A-450

Tajo	Mina XYZ
Banco	
Tipo de voladura	MINERAL-ESTÉRIL
Plantilla	F1A-450
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm³)	3.0
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	Gravilla-Detritus

Nublado Despejado Viento Distancia a estructura más cercana Metros

Croquis de Cargado

Fecha: 02/12/2016 Hora: 17:00 Horas

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
82	4.5	6.5	14	33579	111706	9
		TOTAL		33579	111706	

Producto	Cantidad	Unidad	Kg. Expl
Quick Relay 200 MS	0	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	0	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	28,950	Kg.	28,950
Diésel	2044.000	Litros	1,686.30
Booster Spartand 450 gr.	82	Pzas.	36.90
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	0	Pzas.	
Iniciadores no Eléctricos	82	Pzas.	
Fulminante #8	0	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	0	Mts.	
	TOTAL		30,673.20

	Factor de Carga							
				Kg/m³	Kg/ton			
$\mathbf{f_c} =$	Kg Explo. m3	=	$\frac{30673.20}{33,579} =$	0.913	0.275			

Observaciones:

No se cumple con los parámetros bordo-espaciamiento, la profundidad de los barrenos fue muy irregular aun cuando se nivelaron a 16m, gran parte de los barrenos eran menores a esa longitud de barreno.

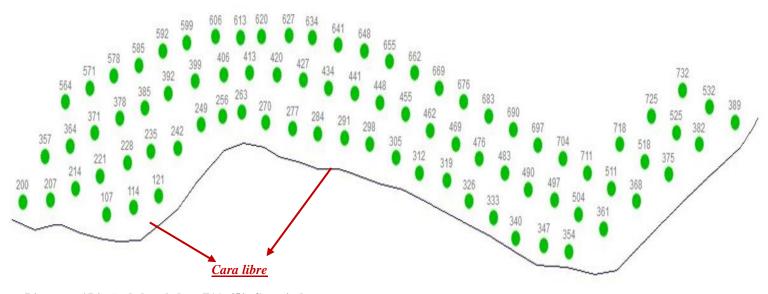
Se dio como resultado del evento roca de gran tamaño sobre todo en la cara libre de la plantilla, se colocaron 2 sismógrafos, uno en la entrada al almacén de mineral y otro en la F6B

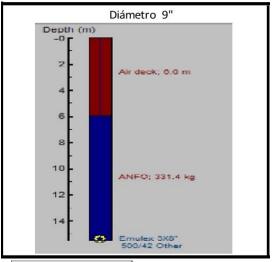
Se observó muy notoriamente que los parámetros Bordoespaciamiento estaban invertidos, y muy irregulares las profundidades de la barrenación.

Queda un barreno vivo en la segunda línea de la plantilla (el último de la línea) ya que al estar taqueando no se utilizó el material adecuado para dicha actividad, se reporta a los supervisores de voladuras (Amador Anguiano y Jesús Mendoza) para tener especial cuidado y acordonar la zona para evitar cualquier accidente, ubicar el barreno para detonarlo.

F1A-450:

Barrenos totales 82; Configuración (BxS) 4.5x6.5 m; Retardos 7 ms; Tonelaje a mover 111706Ton.; Área del banco (aprox.) 2398 m²




Diagrama 6 Diseño de la voladura F1A-450. Croquis de amarre.

2.4.4 Voladura F1A-380

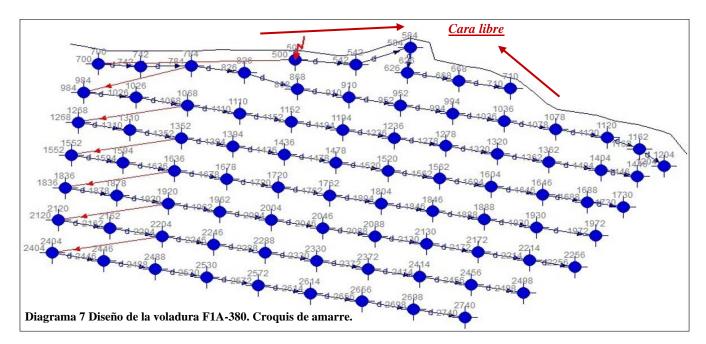
Тајо	Mina XYZ
Banco	898
Tipo de voladura	MINERAL-ESTERIL
Plantilla	F1A-380
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca(gr/cm ³)	3.0
Barrenos Rehabilitados:	0
Barrenos Amortiguados:	0
Barrenos Comunicados:	0
Material de Taco:	Gravilla

Nublado Despejado X Viento Distancia a estructura más cercana Metros

Croquis de Cargado

Fecha: 11/10/2016 Hora:

Estimación Geométrica

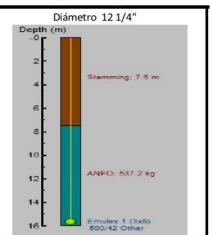

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)		Toneladas Fragmentadas	Diámetro del Barreno (in)
88	5	7	14	43120	92514	9
		TOTAL		43120	92514	

Producto	Cantidad	Unida d	Kgs. Expl
Quick Relay 200 MS	8	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	88	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	29,350	Kg.	29,350
Diésel	1956.67	Litros	1,614
Booster Spartand 450 gr.	0	Pzas.	0.00
Emulsión 3 X 8	88	Pzas.	88.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordon	0	Pzas.	
Mecha	4	Mts.	
	TOTAL		31,052.25

Factor de Carga

	Kg/m³	Kg/ton
$\mathbf{f}_{c} = \frac{\text{Kg Explo.}}{\text{m3}} = \frac{31}{4}$	$\frac{052.25}{3,120} = 0.720$	0.336

Observaciones Diseño y cargado de la plantilla a cargo de "mina XYZ" sin intervención de Austin



2.4.5 *Voladura F1A-448*

Tajo	Mina XYZ
Banco	842
Tipo de voladura	MINERAL-ESTERIL
Plantilla	F1A-448
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca(gr/cm ³)	3.0
Barrenos Rehabilitados:	0
Barrenos Amortiguados:	0
Barrenos Comunicados:	0
Material de Taco:	Gravilla

Nublado Despejado Viento Distancia a estructura más cercana Metro

Croquis de Cargado

Fecha: 12/11/2016 Hora:

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
144	6	7	14	84672	266566	12 1/4
		TOTAL		84672	266566	

Producto	Cantidad	Unida d	Kg. Expl
Quick Relay 200 MS	0	Pzas.	
Quick Relay 42 MS	9	Pzas.	
Dual Delay 42/500 100 ft	146	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	75,300	Kg.	75,300
Diésel	5020.000	Litros	4,141.50
Booster Spartand 450 gr.	0	Pzas.	0.00
Emulsión 3 X 8	144	Pzas.	144.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
Т	79,585.50		

_	Factor de Carga							
$\mathbf{f}_{\mathrm{c}} =$	Kg Explo. m3	$=\frac{79585.50}{84,672}$	=	Kg/m³ 0.940	Kg/ton 0.299			

Observaciones
Se llevo a cabo el cargado como lo determinó
el personal de "mina XYZ". El personal de
Austin solicitó un encadenado en diagonales
para pegar de forma perpendicular a la
estructura de la roca.

F1A-448: Barrenos totales 144; Configuración (BxS) 6x7 m; Retardos 42 ms; Tonelaje a mover 266566 Ton.; Áreal del banco (aprox.) 60491 m²

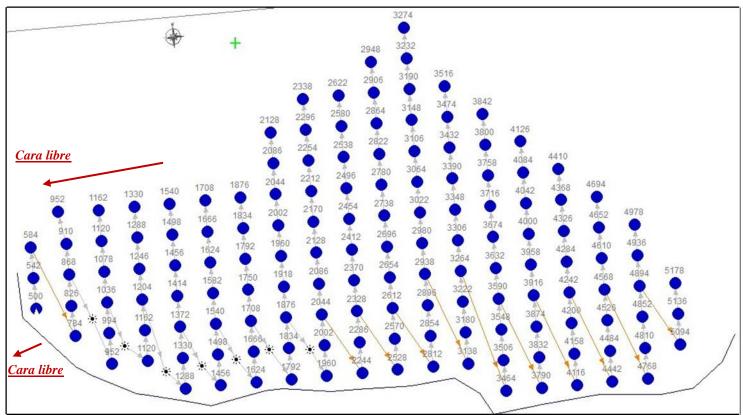
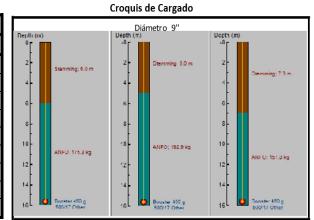



Diagrama 8 Diseño de la voladura F1A-448. Croquis de amarre.

2.4.6 Voladura F1A-447

Toio	Mina VV7
Tajo	Mina XYZ
Banco	
Tipo de voladura	MINERAL/ESTERIL
Plantilla	F1A-447
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm ³)	3.0
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	Detritus

Nublado Despejado Viento Distancia a estructura más cercana Metros

Fecha: 19/11/2016 Hora:

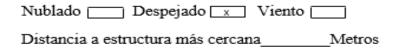
Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
44	4	5	14	12320	55593	9"
		TOTAL		12320	55593	

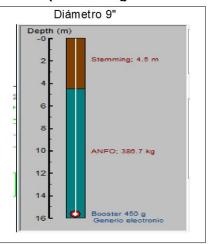

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	2	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	44	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	16,775	Kg.	16,775
Diésel	1118.330	Litros	922.62
Booster Spartand 450 gr.	44	Pzas.	19.80
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
TC	17,717.42		

Factor de Carga

$$\mathbf{f}_{c} = \frac{\text{Kg Explo.}}{\text{m3}} = \frac{17717.42}{12,320} = \frac{\text{Kg/m}^{3}}{1.438} \frac{\text{Kg/ton}}{0.319}$$


Observaciones Voladura en mineral-estéril, barrenos secos y cargados con ANFO ensacado. Cara libre en toda la línea frontal. Al momento del disparo se observa que la voladura se desplazó 9 metros desde la cresta de rezaga hasta la cresta del talud Buena fragmentación de la roca sin agrietamiento trasero (talud sano). Fragmentación uniforme en la parte del taco de la voladura.

F1A-447: Barrenos totales 44; Configuración (BxS) 4x5 m; Retardos 17 ms; Tonelaje a mover 55593 Ton.; Área del banco (aprox.) 883 m².



2.4.7 Voladura F1A-442

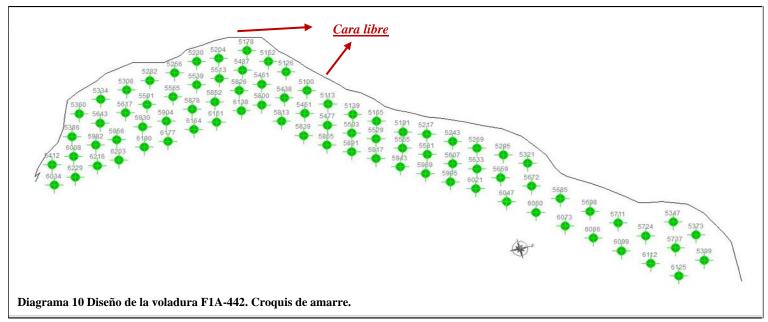
	-
Tajo	Mina XYZ
Banco	884
Tipo de voladura	MINERAL-ESTERIL
Plantilla	F1A-442
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca(gr/cm ³)	3.0
Barrenos Rehabilitados:	0
Barrenos Amortiguados:	0
Barrenos Comunicados:	0
Material de Taco:	Gravilla

Croquis de Cargado

Fecha: 23/12/2016 Hora: 16:00

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
83	4	5	14	23240	106791	9
		TOTAL		23240	106791	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	0	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	0	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	29,450	Kg.	29,450
Diésel	1963.330	Litros	1963.330
Booster Spartand 450 gr.	83	Pzas.	0.00
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	0	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	0	Mts.	
TO	31,107.10		

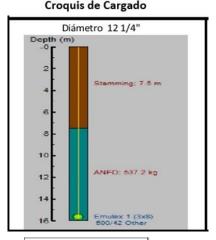

		Factor de C	arga	
\mathbf{f}_{c} =	Kg Explo. m3	$=\frac{31107.10}{23,240} =$	Kg/m³ 1.339	Kg/ton 0.291

Observaciones:

Esta voladura se disparó con una parte de la voladura sin cara libre además de un barreno corto (6m) por lo que se esperaba un pateo excesivo en ciertas zonas marcadas en la plantilla durante el evento además de que algunos barrenos escopetearon durante el mismo

Se observó una buena fragmentación de la roca tanto en la parte alta como en la baja y se monitoreo el evento con apoyo de un sismógrafo.

F1A-442: Barrenos totales 83; Configuración (BxS) 4x5 m; Retardos 26 ms; Tonelaje a mover 106791 Ton.; Área del banco (aprox.) 1660 m²


2.5 VOLADURAS EN ESTÉRIL ANALIZADAS FASE 1A

2.5.1 Voladura F1A-449

Tajo	Mina XYZ
Banco	
Tipo de voladura	ESTERIL
Plantilla	F1A-449
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm³)	2.6
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	Detritus

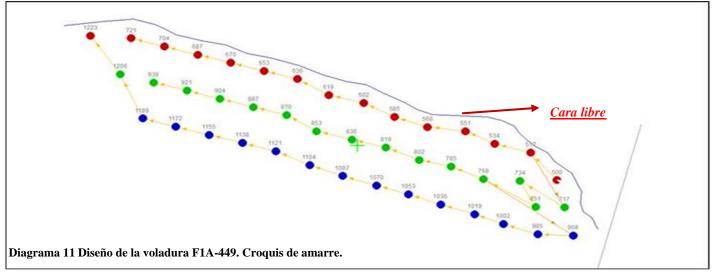
Nublado Despejado X Viento	
Distancia a estructura más cercana	_Metros

Croquis de Cargado

Fecha: 05/12/2016 Hora:

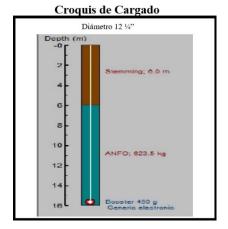
Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
128	6	7	14	75264	228782	9 y 12 1/4
		TOTAL		75264	228782	


Producto	Cantidad	Unida d	Kgs. Expl
Quick Relay 200 MS	7	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	0	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	69,250	Kg.	69,250
Diésel	4616.670	Litros	3,808.75
Booster Spartand 450 gr.	22	Pzas.	9.90
Emulsión 3 X 8	106	Pzas.	106.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
T	73,174.65		

Factor de Carga

$$\mathbf{f_c} = \frac{\text{Kg Explo.}}{\text{m3}} = \frac{73174.65}{75,264} = \frac{0.972}{0.320}$$


Observaciones					
Voladura diseñada y cargada exclusivamente					
por el personal de la "mina XYZ" sin					
intervención de Austin					

F1A-449: Barrenos totales 128; Configuración (BxS) 6x7 m; Retardos 17 ms; Tonelaje a mover 228782 Ton.; Área del banco (aprox.) 5673 m².

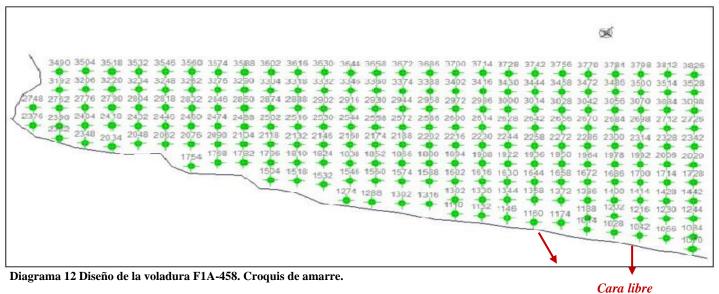
2.5.2 Voladura F1A-458

Tajo	Mina XYZ
Banco	856
Tipo de voladura	ESTERIL
Plantilla	F1A-458
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm ³)	2.6
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	Gravilla

Nublado Despejado Viento Distancia a estructura más cercana Metros

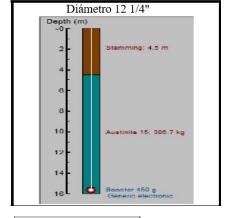
Fecha: 28/12/2016 Hora: 21:00

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
194	6	7	14	114072	343632	12 1/4
		TOTAL		114072	343632	


Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	0	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	0	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	108,450	Kg.	108,450
Diésel	7230.000	Litros	5,964.75
Booster Spartand 450 gr.	194	Pzas.	87.30
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	194	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	0	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	0	Mts.	
ТО	TAL		114,502.05

	Factor de Car	ga	
$\mathbf{f}_{c} = \frac{\text{Kg Explo.}}{\text{m3}} =$	$\frac{114502.05}{114,072} =$	Kg/m³ 1.004	Kg/ton 0.333

Observaciones Voladura en estéril, se programaron los tiempos a modo de minimizar la vibración de la voladura. Se colocó un sismógrafo en la parte trasera de la voladura, este es un punto crítico debido a un incidente en días pasados en uno de los terrenos de esta zona de la mina. Las lecturas del sismógrafo fueron por debajo de los límites permitidos por el burío de minas de USA (usado como referencia) Se afinaron cuidadosamente los tiempos en las


últimas líneas a modo de minimizar el pateo de la voladura para poder dejar en un talud sano.

F1A-458:
Barrenos totales 194; Configuración (BxS) 6x7 m; Retardos 14 ms; Tonelaje a mover 343632 Ton.; Área del banco (aprox.) 8148 m².

2.5.3 Voladura F1A-470

Tajo	Mina XYZ
Banco	842
Tipo de voladura	ESTÉRIL
Plantilla	F1A-470
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm ³)	2.6
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	Detritus

Croquis de Cargado

Fecha: 21/01/2017 Hora: 13:36

Nublado Despejado _x Viento _	
Distancia a estructura más cercana	Metros

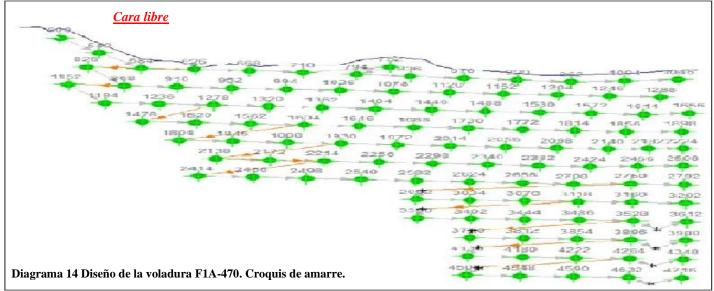
Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
108	7	8	14	84672	213124	12 1/4
		TOTAL		84672	213124	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	7	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	53	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	54,950	Kg.	54,950
Diésel	3663.330	Litros	3,022.25
Booster Spartand 450 gr.	1	Pzas.	0.45
Emulsión 3 X 8	107	Pzas.	107.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	194	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	0	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	0	Mts.	
ТО	57,079.70		

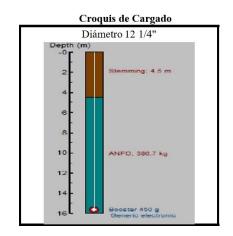
Factor de Carga

					Kg/m³	Kg/ton
$\mathbf{f}_{\mathbf{c}} = -$	Kg Explo. m3	=	58079.70 84,672	=	0.686	0.273


Observaciones

Se colocó un sismógrafo en la torre de control.

Se realizó una prueba de VOD en el barreno cebado con Booster de 1 lb y DUAL DELAY, el barreno se cargó con ANFO mezclado con diésel-aceite con una proporción de diésel 60%-aceite 40%.


Se utilizó una plantilla con parámetros muy irregulares de bordo-espaciamiento (espaciamiento de hasta 9m) Buena fragmentación (tamaños máximos de 60 cm aprox.)

F1A-470: Barrenos totales 108; Configuración (BxS) 7x8 m; Retardos 42 ms; Tonelaje a mover 213124 Ton.; Área del banco (aprox.) 6048 m².

2.5.4 Voladura F1A-468

Tajo	Mina XYZ
Banco	842
Tipo de voladura	ESTERIL
Plantilla	F1A-468
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm ³)	2.6
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	Gravilla

Nublado Despejado Viento Distancia a estructura más cercana Metros

Fecha: 17/01/2017 Hora: 17:25

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
93	7	8	14	72912	235476	12 1/4
		TOTAL		72912	235476	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	0	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	0	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	47,600	Kg.	47,600
Diésel	3173.330	Litros	2,618.00
Booster Spartand 450 gr.	93	Pzas.	41.85
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	93	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	0	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	0	Mts.	
TO	TAL		50,259.85

Factor de Carga						
$\mathbf{f_c} = \frac{\text{Kg Explo.}}{\text{m3}}$	$= \frac{50259.85}{72,912} =$	Kg/m³ 0.689	Kg/ton 0.213			

Observaciones Se colocó un sismógrafo en el guamuchilito a un costado del terreno. EL barreno señalado en rojo indica el inicio de la voladura y el barreno señalado en azul marca cuando se hizo la prueba de VOD. Se tienen parámetros muy irregulares en la plantilla (bordo-espaciamiento) debido a las condiciones irregulares del terreno por lo que se adaptaron los tiempos de iniciación lo mejor posible.

F1A-468:
Barrenos totales 93; Configuración (BxS) 7x8 m; Retardos 13 ms; Tonelaje a mover 235476 Ton.; Área del banco (aprox.)52088 m².

Cara libre

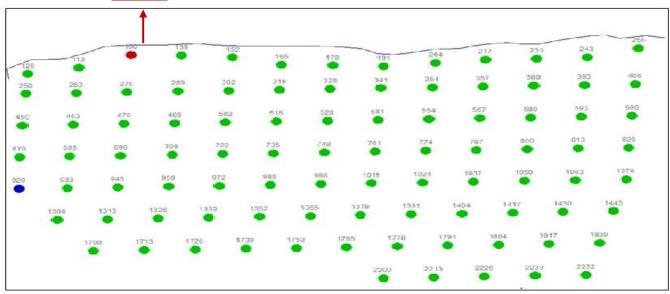


Diagrama 15 Diseño de la voladura F1A-468. Croquis de amarre.

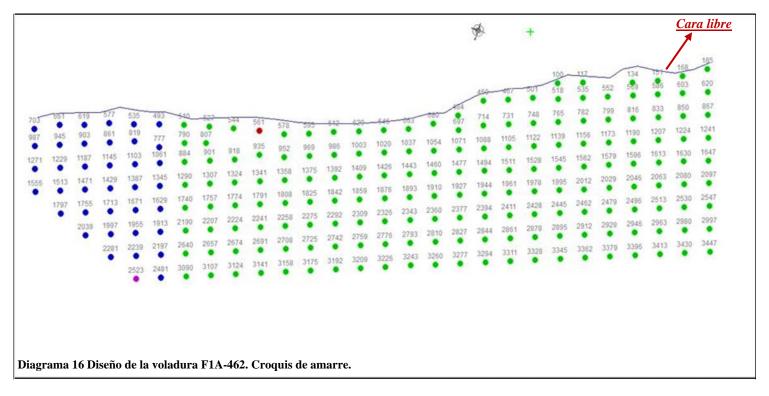
2.5.5 Voladura F1A-462

Tajo	Mina XYZ
Banco	828
Tipo de voladura	ESTERIL
Plantilla	F1A-462
Altura de banco (m)	14
Sub-barrenación(m)	1.5
Densidad de la Roca(gr/cm ³)	2.7
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco:	Gravilla

Γ	0iámetro 12 1/4"
oepth (m)	
2	
4	Stemming, 7.0 m
6	
8	
10	
12	ANFO; 319.7 kg
14	
16	Booster 450 g Generio electronio

Nublado Despejado Viento Distancia a estructura más cercana Metros

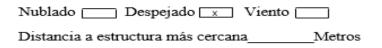
Fecha: 19/01/2017 Hora: 17:58

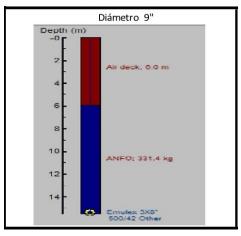

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M ³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
211	6	7	14	124068	414839	12 1/4
		TOTAL		124068	414839	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	7	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100	38	Pzas.	
ft			
Austinite 15	0	Sacos	0
Nitrato de Amonio	115,100	Kg.	115,100
Diésel		Litros	0.00
Booster Spartand 450 gr.	173	Pzas.	77.85
Emulsión 3 X 8	38	Pzas.	38.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
E*STAR	173	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	0	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	0	Mts.	
T	OTAL		115,215.85

Factor de Carga					
			Kg/m³	Kg/ton	
$\mathbf{f_c} =$	Kg Explo.	$=\frac{115215.85}{}$	0.929	0.278	
-c	m3	124,068			

Observaciones
Se colocó un sismógrafo en el guamuchilito a un
costado del terreno para monitorear las vibraciones.
Se cargaron 173 barrenos con iniciador electrónico E-
Star y 38 barrenos con Dual Delay 42 ms/500 ms.
El barreno señalado en rojo es un barreno quedado, se
rompió el cable al taquear y no fue posible recuperar
el cebo.
El barreno señalado en magenta o morado es donde se
tomó la prueba de VOD, esta cebado con Booster de 1
lb e iniciador electrónico.


F1A-468:
Barrenos totales 93; Configuración (BxS) 7x8 m; Retardos 13 ms; Tonelaje a mover 235476 Ton.; Área del banco (aprox.)52088 m².


2.6 VOLADURAS EN MINERAL ANALIZADAS FASE 2C

2.6.1 Voladura F2C-546

Tajo	Mina XYZ
Banco	926
Tipo de voladura	MINERAL
Plantilla	F2C-546
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm³)	4.0
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco:	Gravilla

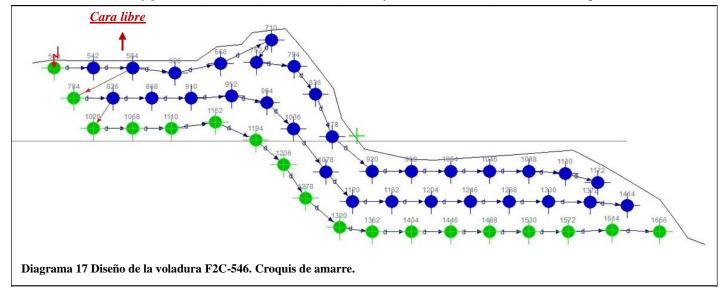
Croquis de Cargado

Fecha: 11/10/2016 Hora:

Estimación Geométrica

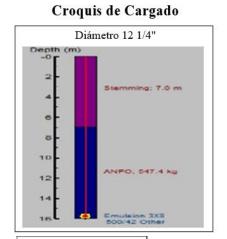
Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
51	4	5	14	14280	64119	9
		TOTAL		14280	64119	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	2	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 17/500 100 ft	51	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	18,228	Kg.	18,228
Diesel	1215.200	Litros	1,003
Booster Spartand 450 gr.	0	Pzas.	0.00
Emulsión 3 X 8	51	Pzas.	51.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
ТО	19,281.54		


Factor de Carga $f_c = \frac{\text{Kg Explo.}}{\text{m3}} = \frac{19281.54}{14,280} = \frac{1.350}{1.350} = 0.301$

Observaciones:

Se realizó el cargado de la plantilla F2C-546 con un camión mezclador tipo Blend utilizando una mezcla de 30/70 con una densidad de 1.18 gr/cm³.


En el resultado obtenido se observa buen corte y una posible buena fragmentación.

F2C-546:
Barrenos totales 51; Configuración (BxS) 4x5 m; Retardos 42 ms; Tonelaje a mover 64119 Ton.; Área del banco (aprox.) 1020 m².

2.6.2 *Voladura F2C-553*

Тајо	Mina XYZ
Banco	912
Tipo de voladura	MINERAL
Plantilla	F2C-553
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm ³)	4.0
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	Detritus

Fecha: 07/11/2016 Hora:

Nublado Despejado X Viento	
Distancia a estructura más cercana	_Metros

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
89	5.5	5.5	14	37692	129403	12 1/4
		TOTAL		37692	129403	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	6	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	89	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	48,250	Kg.	48,250
Diésel	3216.670	Litros	2,653.75
Booster Spartand 450 gr.	0	Pzas.	0.00
Emulsión 3 X 8	89	Pzas.	89.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	0	Pzas.	
Iniciadores Electrónicos E*Star	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
TOTA	50,992.75		

		ractor de Car	ga	Kg/m³	Kg/ton
$\mathbf{f_c} =$	Kg Explo.	$=\frac{50992.75}{}$	=	1.353	0.394
- c	m3	37,692			
		•			

Observaciones:				

F2C-553: Barrenos totales 89; Configuración (BxS) 5.5x5.5 m; Retardos 42 ms; Tonelaje a mover 129403 Ton.; Área del banco (aprox.) 2693 m².

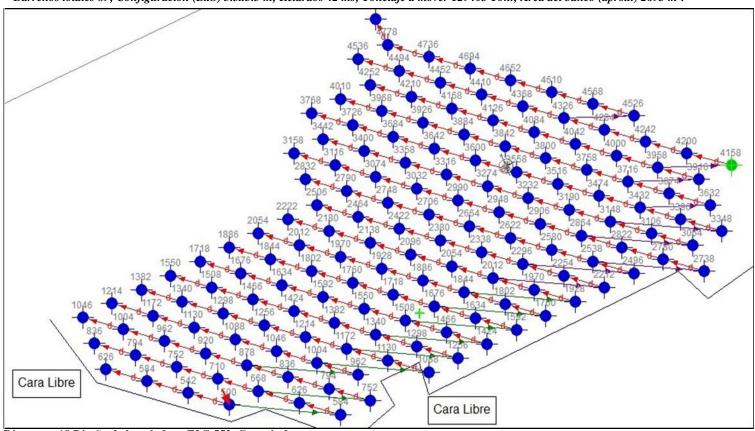
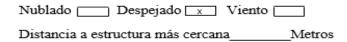
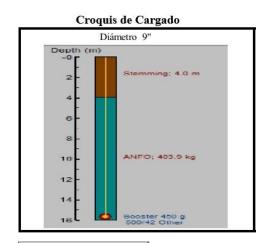




Diagrama 18 Diseño de la voladura F2C-553. Croquis de amarre.

2.6.3 Voladura F2C-554

Тајо	Mina XYZ		
Banco	912		
Tipo de voladura	MINERAL		
Plantilla	F2C-554		
Altura de banco (m)	14		
Sub-barrenación (m)	1.5		
Densidad de la Roca (gr/cm ³)	4.0		
Barrenos Rehabilitados	0		
Barrenos Amortiguados	0		
Barrenos Comunicados	0		
Material de Taco	Detritus		

Fecha: 07/11/2016 Hora:

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
36	4	5	14	10080	49517	9
		TOTAL		10080	49517	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	1	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	36	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	14,950	Kg.	14,950
Diésel	996.670	Litros	822.25
Booster Spartand 450 gr.	36	Pzas.	16.20
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	0	Pzas.	
Iniciadores Electrónicos E*Star	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordon	0	Pzas.	
Mecha	4	Mts.	
TOTA	L		15,788.45

	Factor de Carga					
f _c =	Kg Explo. m3	=	$\frac{15788.45}{10,080} =$	Kg/m³ 1.566	Kg/ton 0.319	

Observaciones:

F2C-554:

Barrenos totales 36; Configuración (BxS) 4x5 m; Retardos 42 ms; Tonelaje a mover 49517 Ton.; Área del banco (aprox.) 721 m².

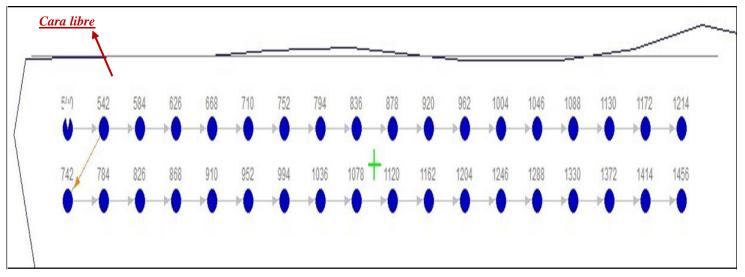


Diagrama 19 Diseño de la voladura F2C-554. Croquis de amarre.

2.6.4 Voladura F2C-541.

Tajo	Mina XYZ
Banco	926
Tipo de voladura	MINERAL
Plantilla	F2C-541
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm ³)	4.0
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	Detritus

Nublado Despejado X Viento	
Distancia a estructura más cercana	_Metros

Croquis de Cargado Diámetro 9" Depth (m) One of the control of

Fecha: 17/11/2016 Hora:

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
96	4	5	14	26880	112731	9
		TOTAL		26880	112731	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	0	Pzas.	
Quick Relay 42 MS	6	Pzas.	
Dual Delay 17/500 100 ft	96	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	39,050	Kg.	39,050
Diesel	2603.330	Litros	2,603.33
Booster Spartand 450 gr.	0	Pzas.	0.00
Emulsión 3 X 8	96	Pzas.	96.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
ТО	TAL		41,749.33

Factor de Carga						
				Kg/m³	Kg/ton	
$\mathbf{f_c} =$	Kg Explo.	=	$\frac{41749.33}{}$	1.553	0.370	
	m3		26,880			
-0	m3		26,880			

Observaciones					
Se apoyó al personal de la "mina XYZ" en el diseño y					
carga de la plantilla con ANFO ensacado.					
Terreno muy quebrado en mineral.					
Se observa mala fragmentación (roca muy grande) en					
la parte del taco, pero debajo de esta zona el tamaño					
comienza a volverse muy fino					

F2C-541: Barrenos totales 96; Configuración (BxS) 4x5 m; Retardos 42 ms; Tonelaje a mover 112731 Ton.; Área del banco (aprox.) 1921 m².

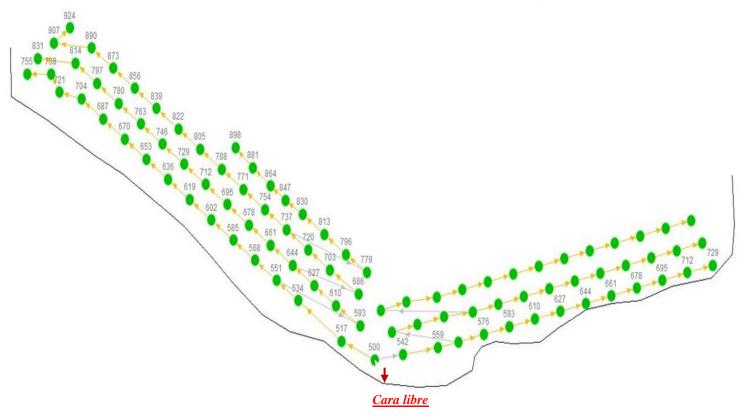
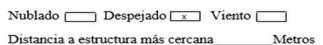
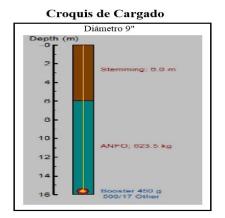
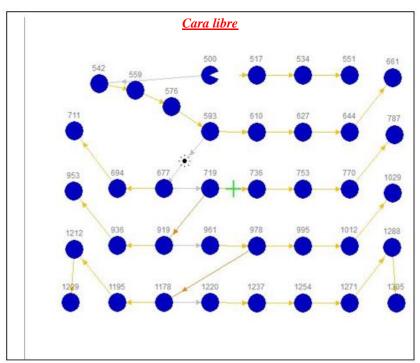




Diagrama 20 Diseño de la voladura F2C-541. Croquis de amarre.

2.6.5 Voladura F2C-557

Tajo	Mina XYZ
Banco	912
Tipo de voladura	MINERAL
Plantilla	F2C-557
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm ³)	4.0
Barrenos Rehabilitados:	0
Barrenos Amortiguados:	10
Barrenos Comunicados:	0
Material de Taco:	Detritus

Fecha: 24/11/2016 Hora:

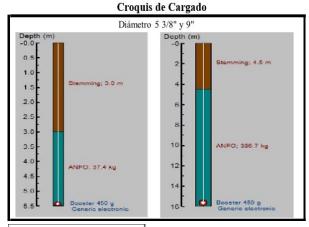

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
38	6	7	14	22344	65687	9
		TOTAL		22344	65687	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	2	Pzas.	
Quick Relay 42 MS	8	Pzas.	
Dual Delay 42/500 100 ft	38	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	19,750	Kg.	19,750
Diésel	1394.000	Litros	1,184.90
Booster Spartand 450 gr.	38	Pzas.	17.10
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	0	Pzas.	
Iniciadores Electrónicos E*Star	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
TOTA	L		20,952.00

		Fac	tor de Carga			
				Kg/m³	Kg/ton	
c=	Kg Explo.	=	$\frac{20952.00}{}$ =	0.938	0.319	
•	m3		22,344			

Observaciones
Plantilla en caliza, se propone cargado y amarre de la
misma, cabe señalar que no se cumplen los parámetros
de diseño (bordo-espaciamiento) y el 50% (aprox.) de
la plantilla tenía presencia de agua.
Se observa una parte de la fragmentación de la
voladura de gran tamaño en la zona de salida, que son
bloques de roca que ya estaban sueltos y con la acción
del explosivo solo se deslizaron.


F2C-557:

Barrenos totales 38; Configuración (BxS) 6x7 m; Retardos 17 ms; Tonelaje a mover 65687 Ton.; Área del banco (aprox.) 1596 m².

Diagrama 21 Diseño de la voladura F2C-557. Croquis de amarre.

2.6.6 Voladura F2C-550.

Tajo	Mina XYZ
Banco	926
Tipo de voladura	MINERAL
Plantilla	F2C-550
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm ³)	4.0
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	Gravilla

Fecha: 28/11/2016 Hora:

Nublado Despejado X Viento [
Distancia a estructura más cercana	Metro

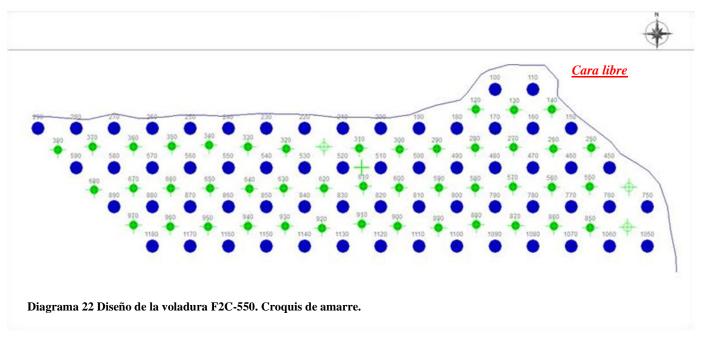
Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)		Toneladas Fragmentadas	Diámetro del Barreno (in)
61	5	6	14	25620	82338	9
44	5	6	5.5			5 3/8
		TOTAL		25620	82338	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	0	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	0	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	22,200	Kg.	22,200
Diésel	1567.000	Litros	1,292.78
Booster Spartand 450 gr.	105	Pzas.	47.25
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	0	Pzas.	
Iniciadores Electrónicos E*Star	105	Pzas.	
Fulminante #8	0	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	0	Mts.	
TOT	AL		23,540.03

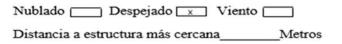
Observaciones			
Plantilla en mineral, no se cumple con			
los parámetros de diseño (bordo-			
espaciamiento).			

En una parte de la salida de la plantilla se presentaron bloques flojos que se desprendieron por la acción del explosivo, pero la energía generada por la detonación no les afectó generando sobre tamaño de la roca en esta zona.

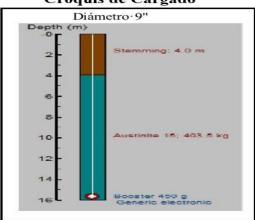

Omitiendo la zona de sobre tamaño por lo ya explicado hubo buena fragmentación en el resto de la plantilla.

Se emplearon barrenos satélites a una profundidad de 5 m con bloca de 5 3/8" e iniciados con Booster de 1 lb y se dejó un taco de 3m.

Factor de Carga


$$\mathbf{f_c} = \frac{\text{Kg Explo.}}{\text{m3}} = \frac{23540.03}{25,620} = \frac{\text{Kg/m}^3}{0.919}$$
 Kg/ton 0.286

F2C-550: Barrenos totales 105; Configuración (BxS) 5x6 m; Retardos 10 ms; Tonelaje a mover 82338 Ton.; Área del banco (aprox.) 1830 m².



2.6.7 Voladura F2C-571.

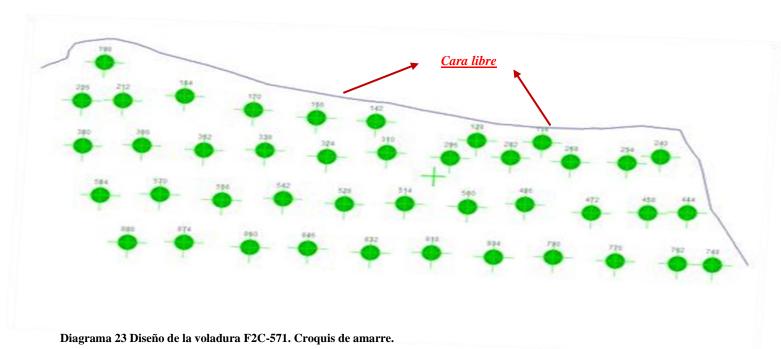
Tajo	Mina XYZ
Banco	926
Tipo de voladura	MINERAL
Plantilla	F2C-571
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm³)	4
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco:	Gravilla

Croquis de Cargado

Fecha: 22/12/2016 Hora: 14:00

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
42	5	5	14	14700	54809	9
		TOTAL		14700	54809	

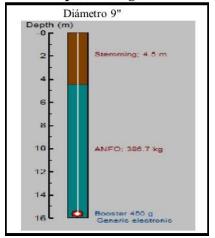

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	0	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	0	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	16,450	Kg.	16,450
Diésel	1161.000	Litros	957.83
Booster Spartand 450 gr.	42	Pzas.	18.90
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 17/500 80 ft	42	Pzas.	
Inicidores Electrónicos E*Star	0	Pzas.	
Fulminante #8	0	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	0	Mts.	
TOT	TAL		17,426.73

	Observaciones:		
Voladui	ra diseñada por Austin Powd	er	
	, se carga con Booster	e	
iniciado	ores electrónicos más ANF	O	
mezclad	lo con el camión 914.		
Al term	inarse una de las tolvas de nitra	to	
del camión, sale una parte del nitrato por			
el tubo de descarga sin diésel, luego al			
abrirle a una válvula manualmente sale			
el nitrat	o con exceso de diésel.		
Salen a	lgunos barrenos con agua a lo	S	
cuales s	se les drena el agua para pode	er	
cargarlo	os, no fue necesario el empleo o	le	
bolsa ya	a que se secaron al 100 %.		
Se obtie	ene un buen resultado del event	ο,	
muy bu	ena fragmentación uniforme e	n	
la parte	alta de la voladura.		

Factor de Carga

$$\mathbf{f_c} = \frac{\text{Kg Explo.}}{\text{m3}} = \frac{17426.73}{14,700} = \frac{\text{Kg/m}^3}{1.185}$$
 Kg/ton 0.318

F2C-571: Barrenos totales 42; Configuración (BxS) 5x5 m; Retardos 14 ms; Tonelaje a mover 54809 Ton.; Área del banco (aprox.) 1057 m².



2.6.8 *Voladura F2C-573*

Tajo:	Mina XYZ
Banco:	912
Tipo de voladura	MINERAL
Plantilla	F2C-573
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm³)	4
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco:	Gravilla

Nublado Despejado X Viento Distancia a estructura más cercana Metros

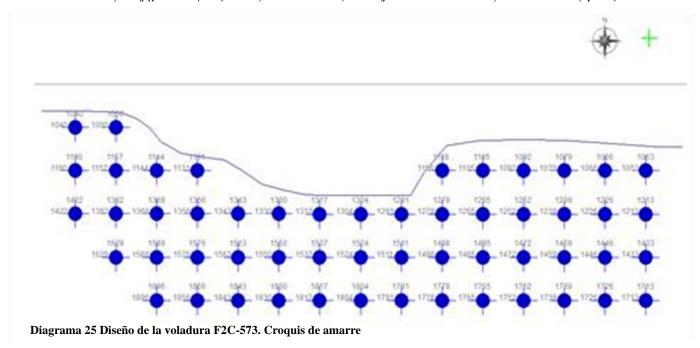
Croquis de Cargado

Fecha: 29/12/2016 Hora: 14:00

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
54	5	5	14	18900	72387	9
		TOTAL		18900	72387	

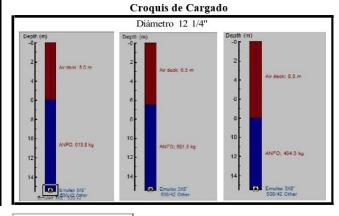
Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	0	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	0	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	29,550	Kg.	29,550
Diésel	2086.000	Litros	1,720.95
Booster Spartand 450 gr.	54	Pzas.	24.30
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	54	Pzas.	
Iniciadores Electrónicos E*Star	0	Pzas.	
Fulminante #8	0	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	0	Mts.	
TO	OTAL		31,295.25


Observaciones:

Voladura en material que resulto estéril, con la toda la parte de la cara libre muy fracturada, 18 barrenos presentaron agua que fue drenada para poder cargarlos, solo tres barrenos requirieron bolsa para proteger al ANFO del agua,

Se utilizaron los camiones mezcladores 876 y 914 para cargar la plantilla.

Se observa en el tubo de descarga del camión 876 un goteo constante de diésel, lo cual indica una mala mezcla de nitrato-diésel, como consecuencia se tuvo una mezcla con desempeño pobre.


Como resultado se obtuvieron tamaños de roca grande, en la parte donde los bloques ya estaban desprendidos, pero en la parte trasera de la voladura se tuvo una mejor fragmentación.

2.7 VOLADURAS ANÁLIZADAS EN MINERAL-ESTÉRIL FASE 2C.

2.7.1 Voladura F2C-529.

Tajo:	Mina XYZ
Banco:	940
Tipo de voladura:	MINERAL/ESTERIL
Plantilla:	F2C-529
Altura de banco:	14
Sub-barrenación:	1.5
Densidad de la Roca:	3.2 gr/cm ³
Barrenos Rehabilitados:	0
Barrenos Amortiguados:	0
Barrenos Comunicados:	0
Material de Taco:	Detritus

Nublado Despejado X Viento

Distancia a estructura más cercana Metros

Fecha: 15/10/2016 Hora:

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
47	6	7	14	27636	87787	12 1/4
·		TOTAL		27636	87787	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	4	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 17/500 100 ft	47	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	23,700	Kg.	23,700
ANFO	1580.000	Litros	1,304
Booster Spartand 450 gr.	0	Pzas.	0.00
Emulsión 3 X 8	47	Pzas.	47.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
TO	TAL		25,050.50

Observaciones:
Se lleva a cabo el cargado como lo tenía determinado el personal de "Peña Colorada" pero el personal de Austin solicitó el encadenado en diagonales para pegar de forma perpendicular a la estructura.

Factor de Carga

$$\mathbf{f_c} = \frac{\text{Kg Explo.}}{\text{m3}} = \frac{25050.50}{27,636} = \frac{\text{Kg/m}^3}{0.906} = \frac{\text{Kg/ton}}{0.285}$$

F2C-529: Barrenos totales 47; Configuración (BxS) 6x7 m; Retardos 42 ms; Tonelaje a mover 87787 Ton.; Área del banco (aprox.) 1974 m².

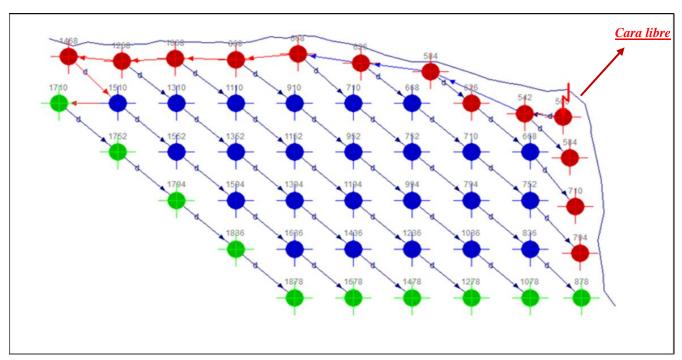


Diagrama 26 Diseño de la voladura F2C-529. Croquis de amarre.

2.7.2 Voladura F2C-542 y F2C-544.

Tajo:	Mina XYZ	
Banco:	926	
Tipo de voladura	MINERAL/ESTERIL	
Plantilla	F2C-544 Y F2C542	
Altura de banco (m)	14	
Sub-barrenación (m)	1.5	
Pensidad de la Roca (gr/cm³) 3.2		
Barrenos Rehabilitados	0	
Barrenos Amortiguados	0	
Barrenos Comunicados	0	
Material de Taco	Gravilla	

Diá	metro 9"	
Depth (m)	Depth (m)	
Air deck; 4.0 m	2	Air deck; 5.0 m
4	4	
6 -	6	
8-	8	
10 - ANFO; 401.2 kg	10 -	ANFO; 366.3 kg
12	12	
14 -	14 -	Emulex 3X8"
Emulex 3X8" 500/42 Other		500/42 Other

Nublado Despejado X Viento Distancia a estructura más cercana Metros

Fecha: 01/11/2016 Hora: 15:10

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
98	4	5	14	27440	126945	9
		TOTAL		27440	126945	

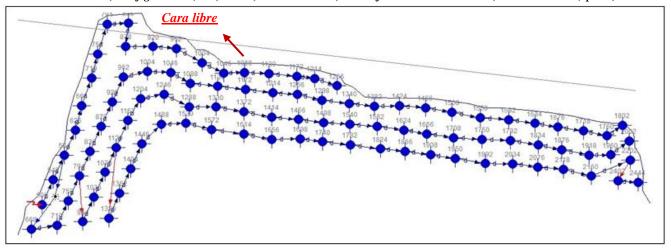
Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	4	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	98	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	37,750	Kg.	37,750
Diésel	2516.67	Litros	2,076
Booster Spartand 450 gr.	0	Pzas.	0.00
Emulsión 3 X 8	98	Pzas.	98.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	0	Pzas.	
Iniciadores Electrónicos E*Star	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	

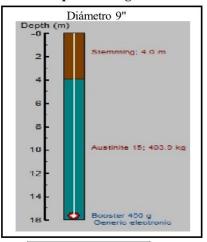
		Fac	tor de Carga		
$f_c =$	Kg Explo. m3	=	$\frac{39924.25}{27,440} =$	Kg/m³ 1.455	Kg/ton 0.315

Observaciones
Se cargaron las plantillas F2C-544 y F2C- 542 en una sola voladura. El diseño de salida lo realizó el personal de la "mina XYZ"
Cargado con ANFO solamente y con una salida por líneas donde una de las plantillas es en estéril y la otra en mineral con el mismo patrón de barrenación.

F2C-542 y F2C-544:

Barrenos totales 98; Configuración (BxS) 4x5 m; Retardos 42 ms; Tonelaje a mover 126945 Ton.; Área del banco (aprox.) 1967 m².




Diagrama 27 Diseño de las voladuras F2C-542 y F2C-544. Croquis de amarre.

2.7.3 Voladura F2C-558.

Tajo	Mina XYZ
Banco	926
Tipo de voladura	MINERAL/ESTERIL
Plantilla	F2C-558
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm ³)	4.0
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	Detritus

Nublado Despejado Viento Distancia a estructura más cercana Metros

Croquis de Cargado

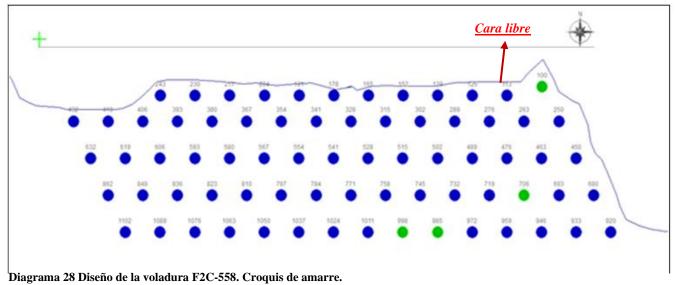
Fecha: 08/12/2016 Hora: 14:00

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
72	5	5	14	25200	86086	9
		TOTAL		25200	86086	

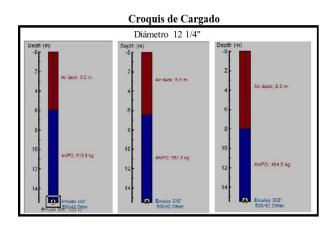
Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	0	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	0	Pzas.	

Factor de Carga					
f _c =	Kg Explo. m3	=	$\frac{28897.40}{22,200} =$	Kg/m³ 1.447	Kg/ton 0.336
$\mathbf{f_c} =$		=		1.447	0.336


Austinite 15	0	Sacos	0
Nitrato de Amonio	27,250	Kg.	27,250
Diésel	1900.000	Litros	1,615.00
Booster Spartand 450 gr.	72	Pzas.	32.40
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 17/500 80 ft	72	Pzas.	
Iniciadores Electrónicos E*Star	0	Pzas.	
Fulminante #8	0	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	0	Mts.	
TOT	28,897.40		

Observaciones					
Voladura en mineral, plantilla 5x5					
tres bolillo, con diá	met	ro de	9",	se	
utilizó Booster	de	1	lb	e	
iniciadores elect	róni	cos	pa	ıra	
iniciar la columna de explosivo y					
se empleó un taco o	de 41	n			

El resultado del evento aceptable, se observa una buena fragmentación con una parte de gruesos en la zona del taco, en esta parte de la voladura se observó que estaba el terreno fracturado antes del disparo. este evento se comparó con la voladura F2C-550 en mineral.


F2C-558:

Barrenos totales 72; Configuración (BxS) 5x5 m; Retardos 13 ms; Tonelaje a mover 86086 Ton.; Área del banco (aprox.) 1803 m².

2.7.4 Voladura F2C-538.

Tajo	Mina XYZ
Banco	926
Tipo de voladura	ESTERIL
Plantilla	F2C-538
Altura de banco (m)	14
Sub-barrenación(m)	1.5
Densidad de la Roca /gr/cm ³)	2.8
Barrenos Rehabilitados:	0
Barrenos Amortiguados:	0
Barrenos Comunicados:	0
Material de Taco:	Detritus

Nublado Despejado X Viento	
Distancia a estructura más cercana	Metros

Fecha: 16/10/2016 Hora:

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
42	6	7	14	24696	66679	12 1/4
		TOTAL		24696	66679	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	5	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 17/500 100 ft	42	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	24,850	Kg.	24,850
Diesel	1656.670	Litros	1,367
Booster Spartand 450 gr.	0	Pzas.	0.00
Emulsión 3 X 8	42	Pzas.	42.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
TC	26,258.75		

Observaciones
El personal de la "mina XYZ" llevó a
cabo el cargado de la plantilla F2C-
538 así como el diseño de la misma.

Factor de Carga

$$f_c = \frac{\text{Kg Explo.}}{\text{m3}} = \frac{26258.75}{24,696} = \frac{\text{Kg/m}^3}{1.063}$$
 0.394

F2C-538: Barrenos totales 42; Configuración (BxS) 6x7 m; Retardos 42 ms; Tonelaje a mover 66679 Ton.; Área del banco (aprox.) 1762 m².

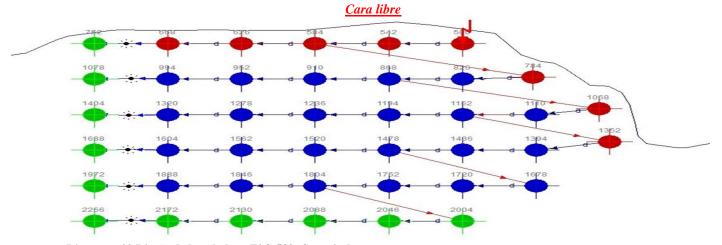
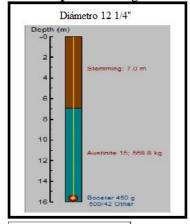


Diagrama 29 Diseño de la voladura F2C-538. Croquis de amarre.


2.8 VOLADURAS ANALIZADAS DE LAS FASES 4AY 6B

2.8.1 Voladura F4A-001

Tajo	Mina XYZ
Banco	
Tipo de voladura	ESTERIL
Plantilla	F4A-001
Altura de banco (m)	14
Sub-barrenación (m)	1.5
Densidad de la Roca (gr/cm³)	2.8
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco:	Detritus

Nublado Despejado Viento Distancia a estructura más cercana Metros

Croquis de Cargado

Fecha: 16/11/2016 Hora:

Estimación Geométrica

Número de	Bordo	Espaciamiento	Altura de	\mathbf{M}^3	Toneladas	Diámetro del
Barrenos	(m)	(m)	Banco (m)	Fragmentados	Fragmentadas	Barreno (in)
107	6	7	18	80892	204164	12 1/4
		TOTAL		80892	204164	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	9	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	107	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	36300.00	Kg.	36,300
ANFO	32500.00	Litros	32,500.00
Booster Spartand 450 gr.	107	Pzas.	48.15
Emulsión 3 X 8	0	Pzas.	0.00
Emulsión a Granel	1172	Kg.	1,172.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
T	OTAL	·	70,020.15

Factor de Carga

$$f_c = \frac{\text{Kg Explo.}}{\text{m3}} = \frac{70020.15}{80,892} = \frac{\text{Kg/m}^3}{0.866} = \frac{\text{Kg/m}^3}{0.343}$$

Observaciones:
Se apoyó a la mina con el diseño
de salida y cargado de la voladura,
usando Booster de 1 lb como carga
de columna.
Se observaron gases amarillos y
ocres por el exceso de agua en los
barrenos.

F4A-001: Barrenos totales 107; Configuración (BxS) 6x7 m; Retardos 42 ms; Tonelaje a mover 204164 Ton.; Área del banco (aprox.) 5776 m².

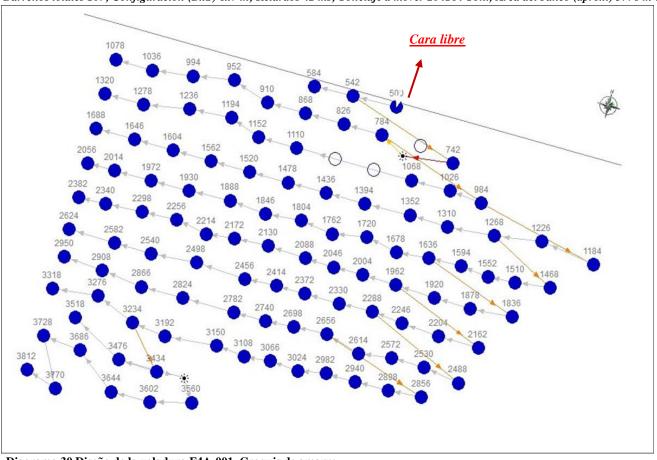
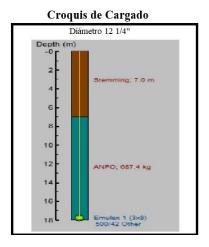



Diagrama 30 Diseño de la voladura F4A-001. Croquis de amarre.

2.8.2 Voladura F4A-006.

Tajo	Mina XYZ
Banco	1094
Tipo de voladura	ESTERIL
Plantilla	F4A-006
Altura de banco (m)	14
Sub-barrenación(m)	1.5
Densidad de la Roca (gr/cm ³)	2.8
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	Detritus

Nublado Despejado Viento Distancia a estructura más cercana Metros

Fecha: 29/11/2016 Hora:

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
61	6	7	16	40992	135099	12 1/4
		TOTAL		40992	135099	

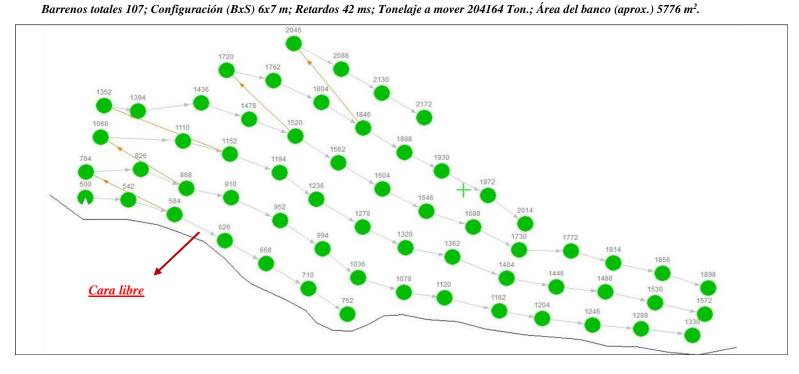
Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	5	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	61	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	36,700	Kg.	36,700
Diesel	2591	Litros	2,137.58
Booster Spartand 450 gr.	0	Pzas.	0.00
Emulsión 3 X 8	61	Pzas.	61.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
TO	OTAL		38,898.58

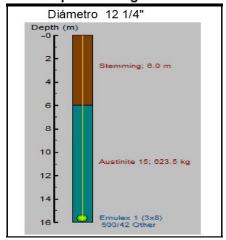
Observaciones
Plantilla cargada por el personal de "mina
XYZ". No se cumplieron los parámetros de
diseño (bordo-espaciamiento).

Factor de Carga

$$f_c = \frac{\text{Kg Explo.}}{\text{m3}} = \frac{38898.59}{40,992} = \frac{\text{Kg/m}^3}{0.949} = \frac{\text{Kg/mo}}{0.288}$$

F4A-006:




Diagrama 31 Diseño de la voladura F4A-006. Croquis de amarre.

2.8.3 Voladura F6B-015.

Тајо	Mina XYZ
Banco	912
Tipo de voladura	ESTERIL
Plantilla	F6B-015
Altura de banco (m)	14
Sub-barrenación(m)	1.5
Densidad de la Roca (gr/cm³)	2.6
Barrenos Rehabilitados	0
Barrenos Amortiguados	0
Barrenos Comunicados	0
Material de Taco	Detritus

Nublado Despejado Viento Distancia a estructura más cercana Metros

Croquis de Cargado

Fecha: 01/12/2016 Hora:

Estimación Geométrica

Número de Barrenos	Bordo (m)	Espaciamiento (m)	Altura de Banco (m)	M³ Fragmentados	Toneladas Fragmentadas	Diámetro del Barreno (in)
132	6	7	14	77616	209563	12 1/4"
		TOTAL		77616	209563	

Producto	Cantidad	Unidad	Kgs. Expl
Quick Relay 200 MS	70	Pzas.	
Quick Relay 42 MS	0	Pzas.	
Dual Delay 42/500 100 ft	132	Pzas.	
Austinite 15	0	Sacos	0
Nitrato de Amonio	74,200	Kg.	74,200
Diesel	5239.00	Litros	4,322.18
Booster Spartand 450 gr.	0	Pzas.	0.00
Emulsión 3 X 8	132	Pzas.	132.00
Emulsión a Granel	0	Kg.	0.00
Tubo de Choque	0	Pzas.	
Dual Delay 25/700 80 ft	0	Pzas.	
Iniciadores no Eléctricos	0	Pzas.	
Fulminante #8	2	Pzas.	
Conector para Cordón	0	Pzas.	
Mecha	4	Mts.	
T	OTAL		78,654.18

	Observaciones						
Pla	ntilla carga	ada	por '	'mina XYZ"	, no		
se	cumple of	con	los	parámetros	de		
bar	renación (ł	ord	o-esp	aciamiento).			
Se	colocó un	sism	iógra	fo a espaldas	de		
	la voladu	ıra p	ara n	nonitorearla			

Factor de Carga

$$\mathbf{f_c} = \frac{\text{Kg Explo.}}{\text{m3}} = \frac{78654.18}{77,616} = \frac{\text{Kg/m}^3}{1.013}$$
 Kg/ton 0.375

F6B-015: Barrenos totales 132; Configuración (BxS) 6x7 m; Retardos 42 ms; Tonelaje a mover 209563 Ton.; Área del banco (aprox.) 5547 m².

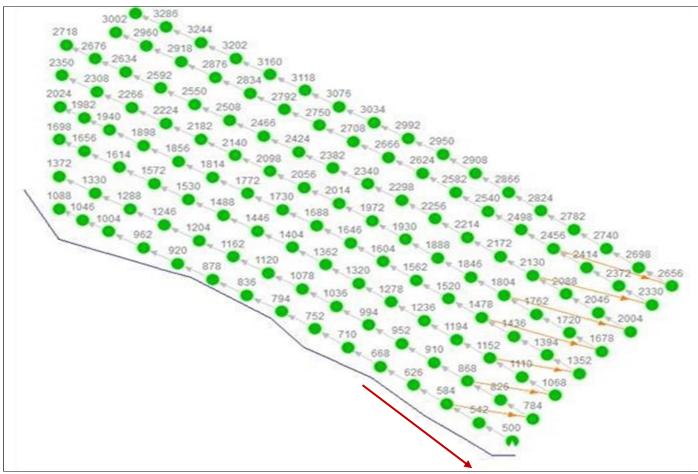
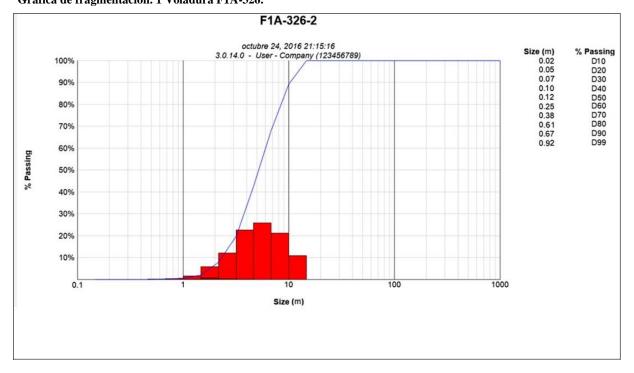
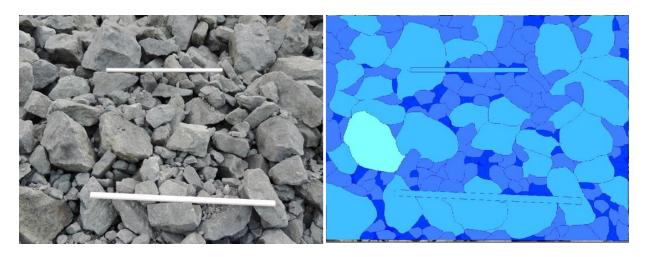


Diagrama 32 Diseño de la voladura F6B-015. Croquis de amarre.

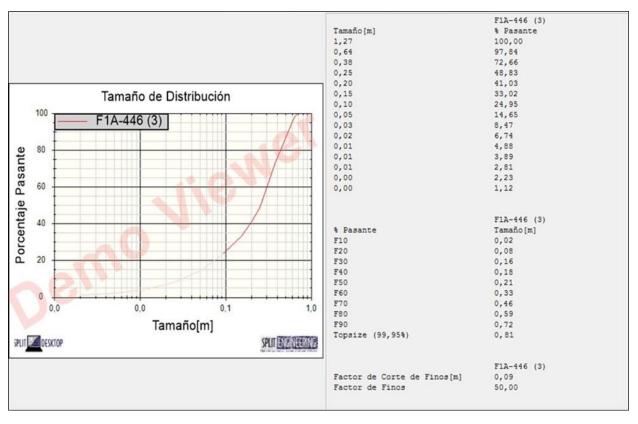
Cara libre

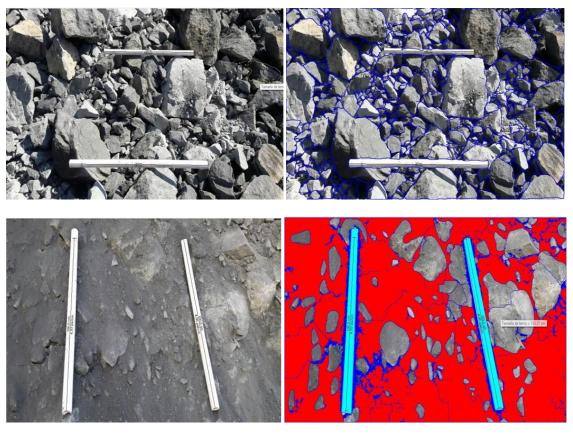
3. RESULTADOS.

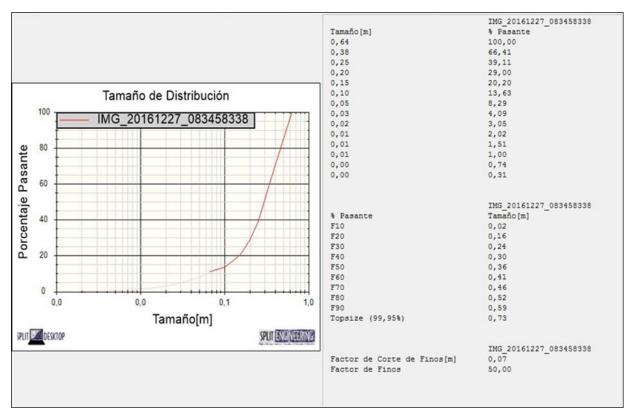

3.1 FRAGMENTACIÓN.

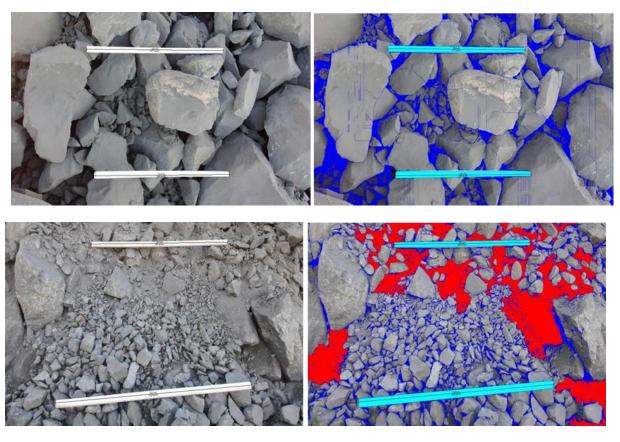

Se tomaron muestras in situ después de cada voladura, las imágenes tienen la finalidad de una evaluación visual rápida y con apoyo del software "Wip-Frag 3.0" y "Split-Desktop 3.0 V" se obtiene la distribución granulométrica. En el anexo iii se explica el equipo y software utilizados en este estudio.

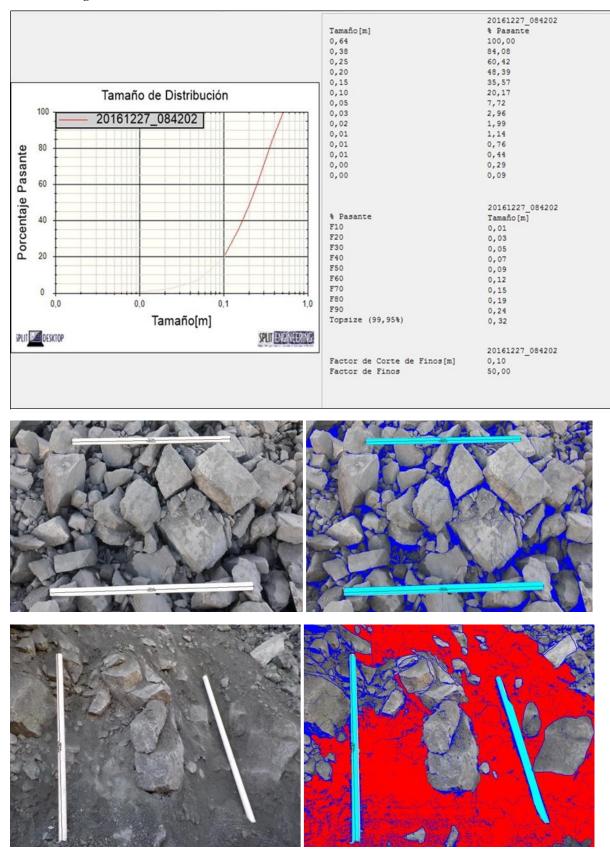
A continuación se desglosan los resultados obtenidos en cada una de las voladuras analizadas, primero se observa un esquema que grafica el tamaño de la partícula (abscisas) contra el porcentaje de material que ha adquirido ese tamaño después de la voladura (ordenadas), de esta manera se obtiene una aproximación de la curva granulométrica del material volado (es una aproximación ya que para ser exacto se debe cribar y tamizar) y se observa si hubo o no buena fragmentación (comparando el P80 obtenido contra el P80 esperado), recordando que tamaños muy grandes de roca son de difícil manejo y consumen más tiempo y energía en la planta de beneficio mineral. Al costado derecho del gráfico se describe lo que muestra el esquema ya que por la escala no es posible apreciarlo con ese grado de detalle, enlistando desde el F10 (10 % del material por debajo de ese tamaño) hasta el tamaño máximo (topsize) de partícula que se obtuvo; estos datos se comparan con el tamaño promedio esperado durante el diseño de la voladura y se determina si es necesario hacer ajustes.


Después del gráfico se muestran fotos tomadas en los sitios de las voladuras ya que los softwares utilizados trabajan con dichas imágenes para realizar las estimaciones granulométricas, del lado izquierdo se muestra la foto original y del lado derecho se muestra la manera en la que el programa la procesa para determinar la distribución de los diferentes tamaños que ha adquirido la roca. Los bastones de plástico que se pueden ver en todas las fotos (del lado izquierdo) sirven como escala o referencia para el observador.

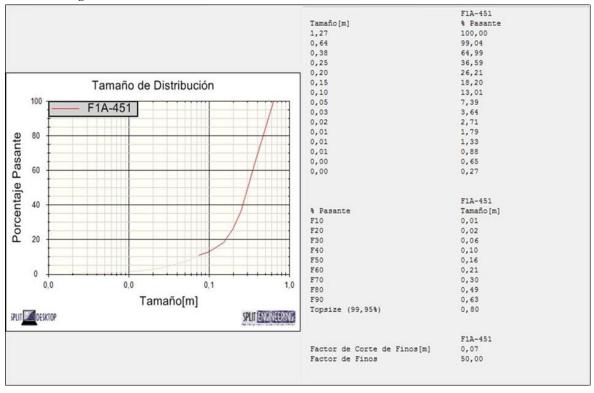

3.1.1 Fase 1A Gráfica de fragmentación. 1 Voladura F1A-326.

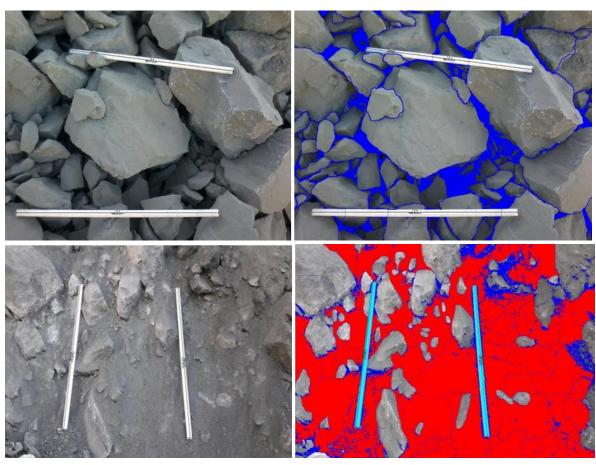



Gráfica de fragmentación. 2 Voladura F1A-446.

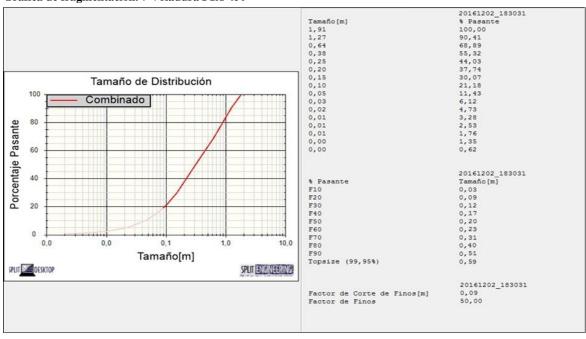


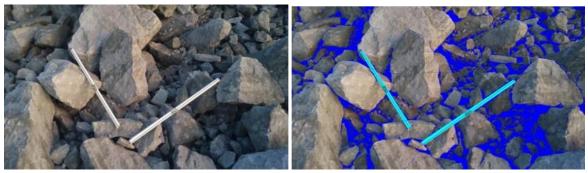
Gráfica de fragmentación. 3 Voladura F1A-455.

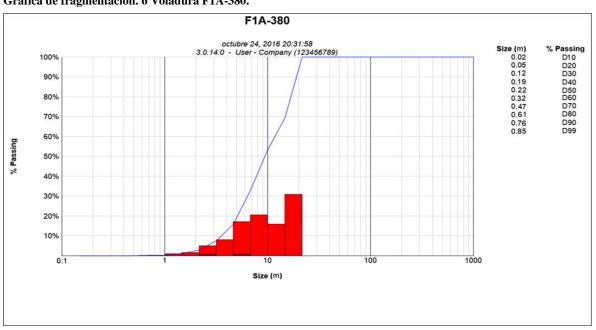


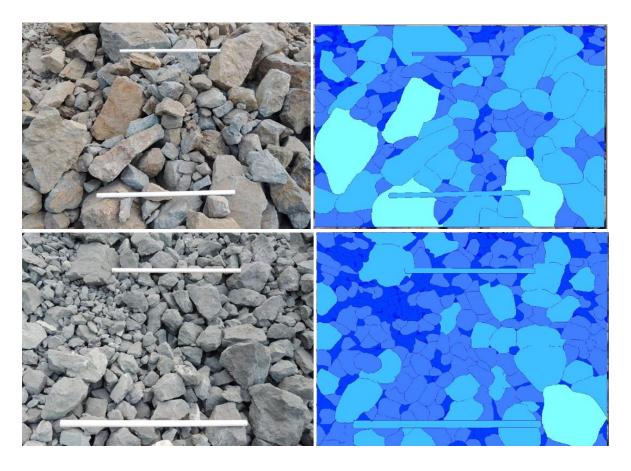


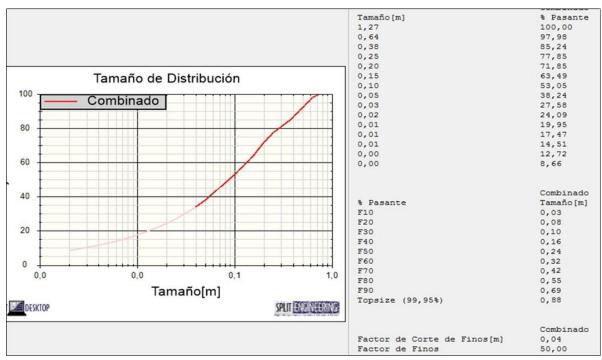
Gráfica de fragmentación. 4 Voladura F1A-452.

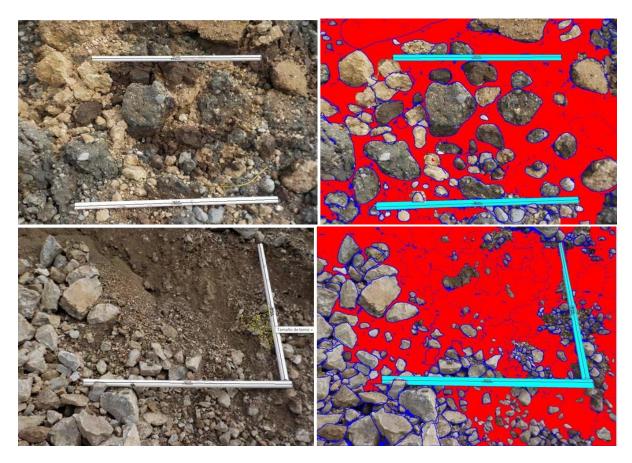


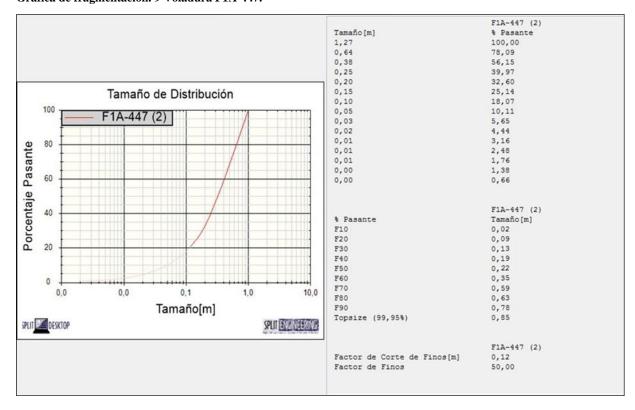

Gráfica de fragmentación. 5 Voladura F1A-451.

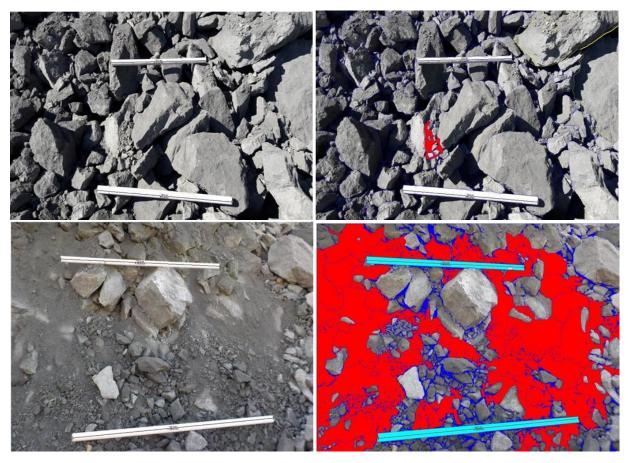


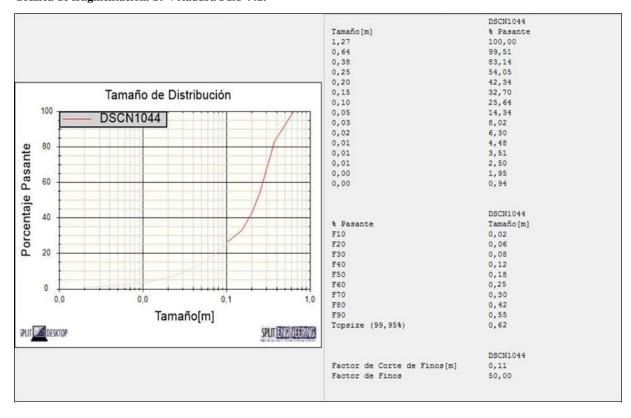

Gráfica de fragmentación. 7 Voladura F1A-450

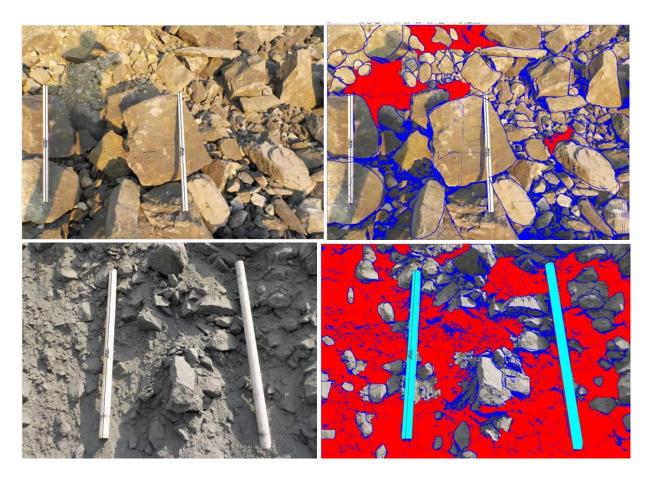


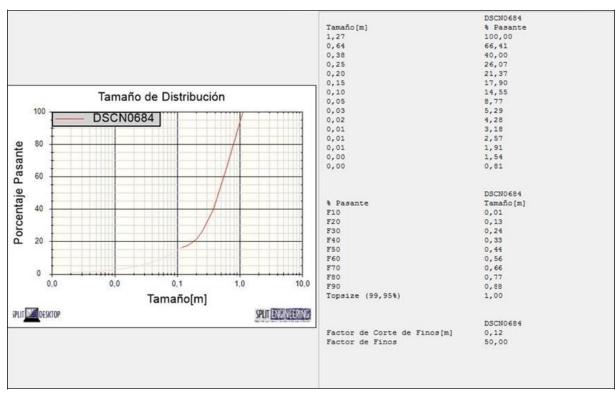

Gráfica de fragmentación. 6 Voladura F1A-380.

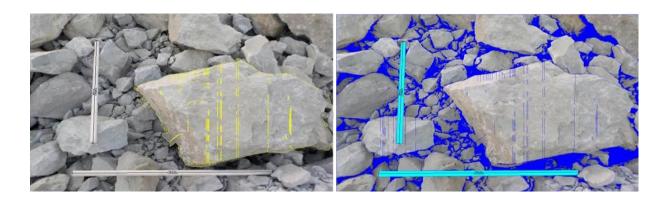


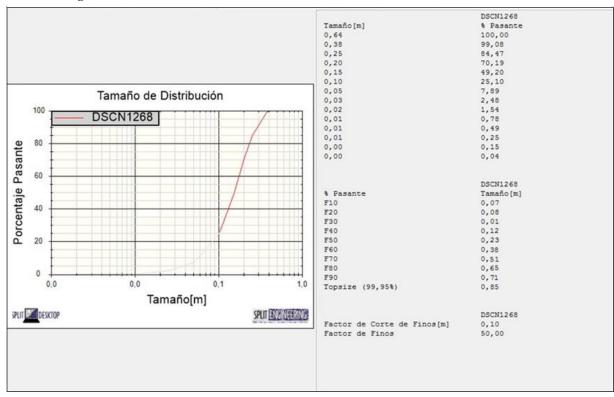

Gráfica de fragmentación. 8 Voladura F1A-448.

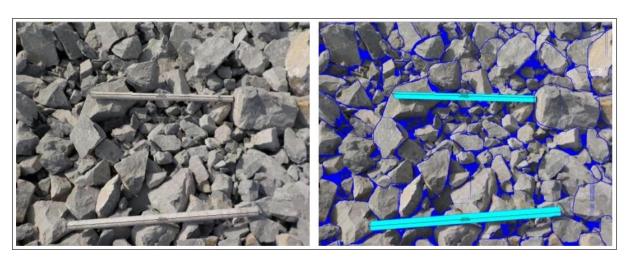


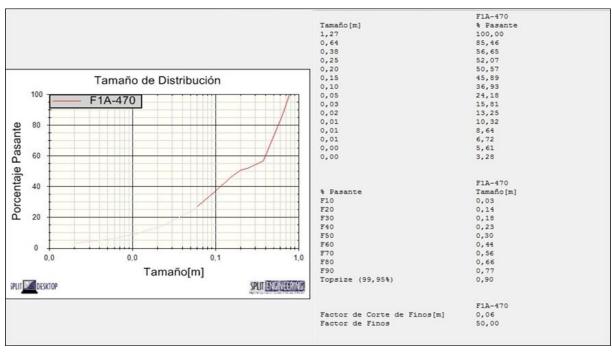

Gráfica de fragmentación. 9 Voladura F1A-447.



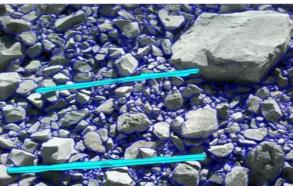

Gráfica de fragmentación. 10 Voladura F1A-442.

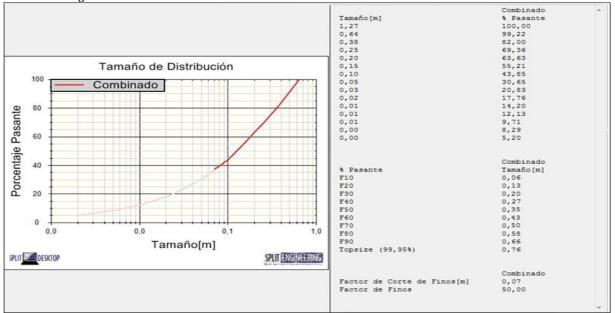


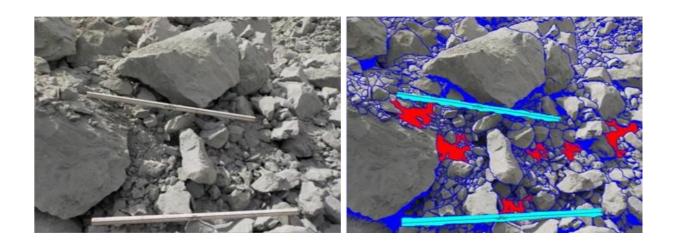

Gráfica de fragmentación. 11 Voladura F1A-449.

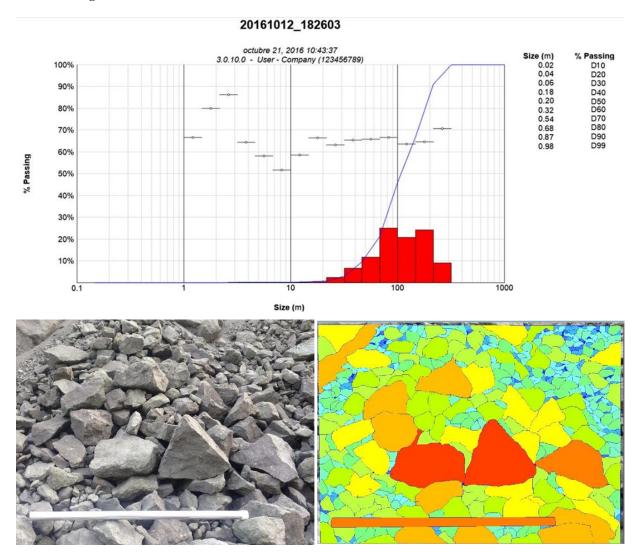


Gráfica de fragmentación. 12 Voladura F1A-458.

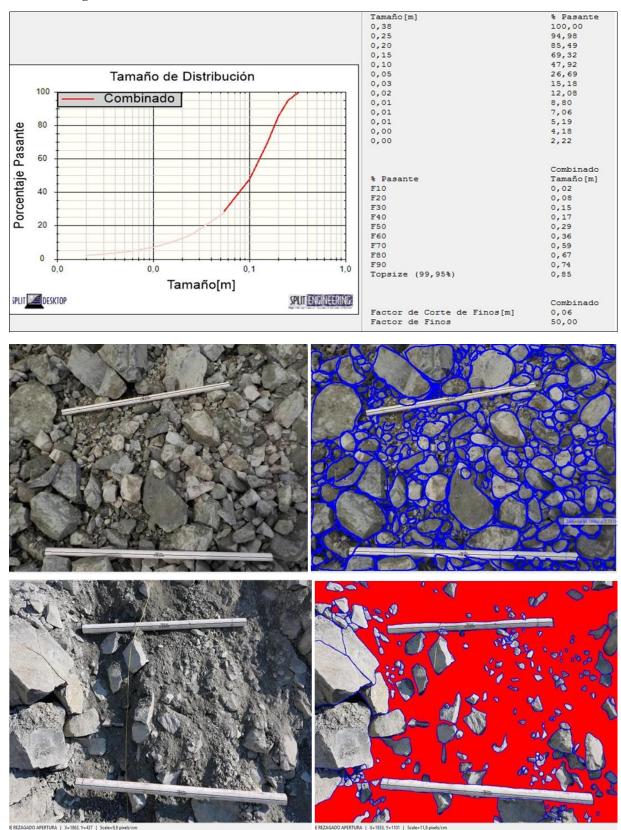



Gráfica de fragmentación. 14 voladura F1A-470.

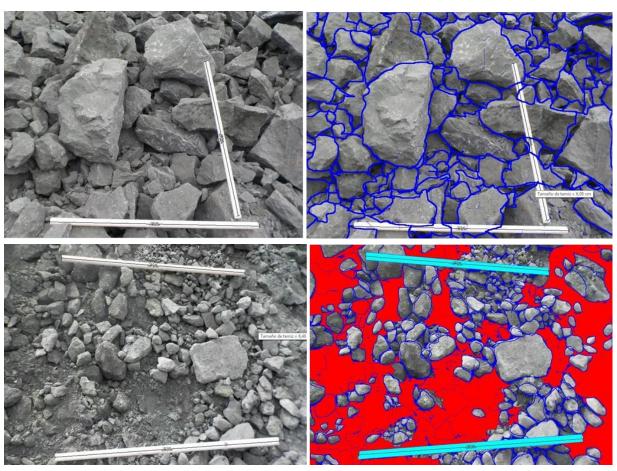




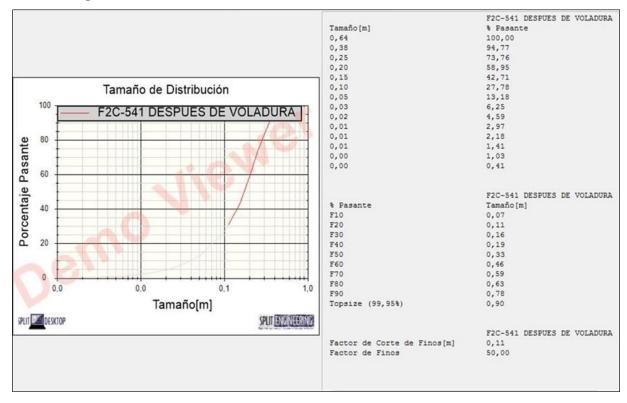
Gráfica de fragmentación. 13 Voladura F1A-468.

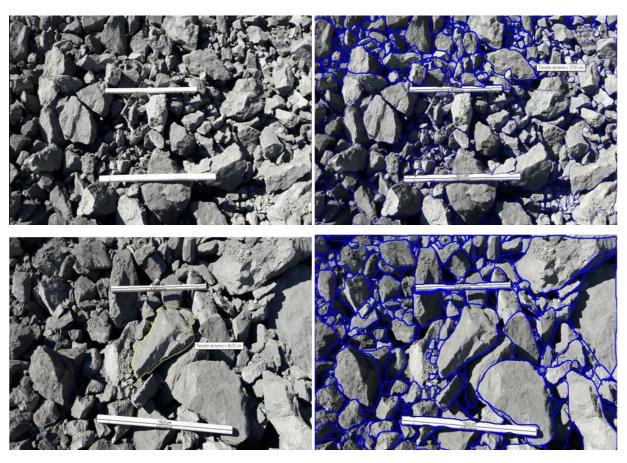


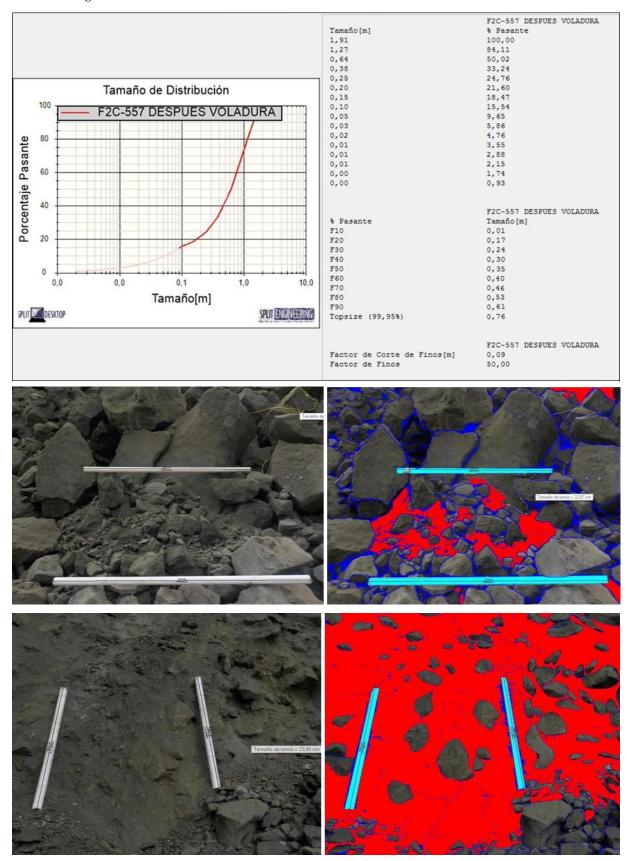

3.1.2 Fase 2C Gráfica de fragmentación. 15 Voladura F2C-546.



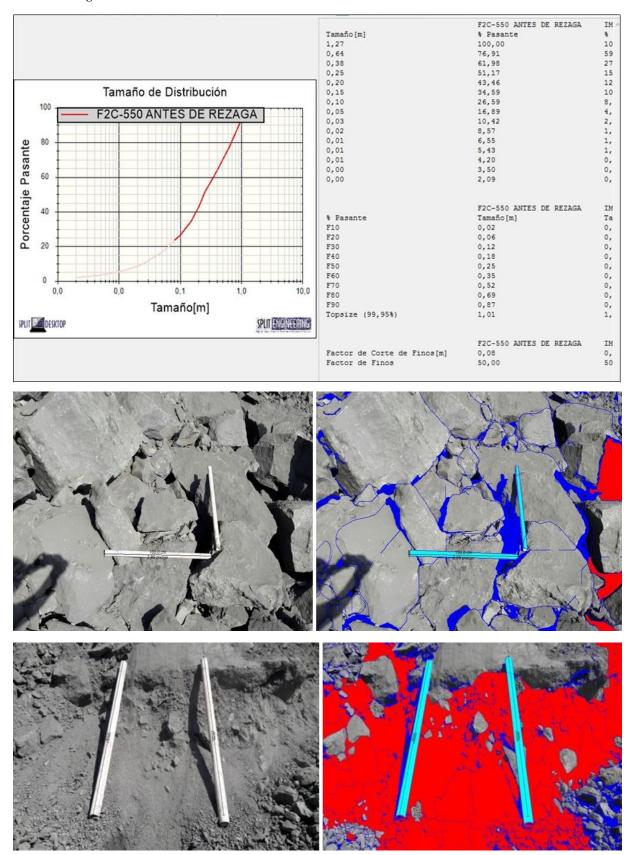
Gráfica de fragmentación. 16 Voladura F2C-553.

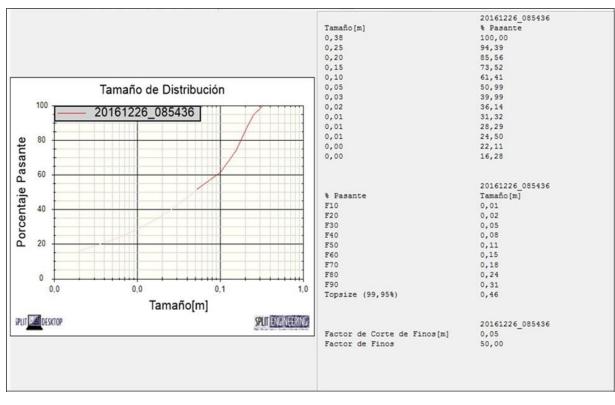


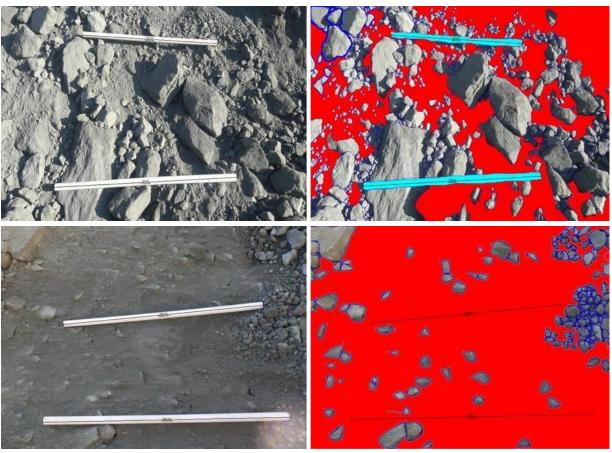

Gráfica de fragmentación. 17 Voladura F2C-554.



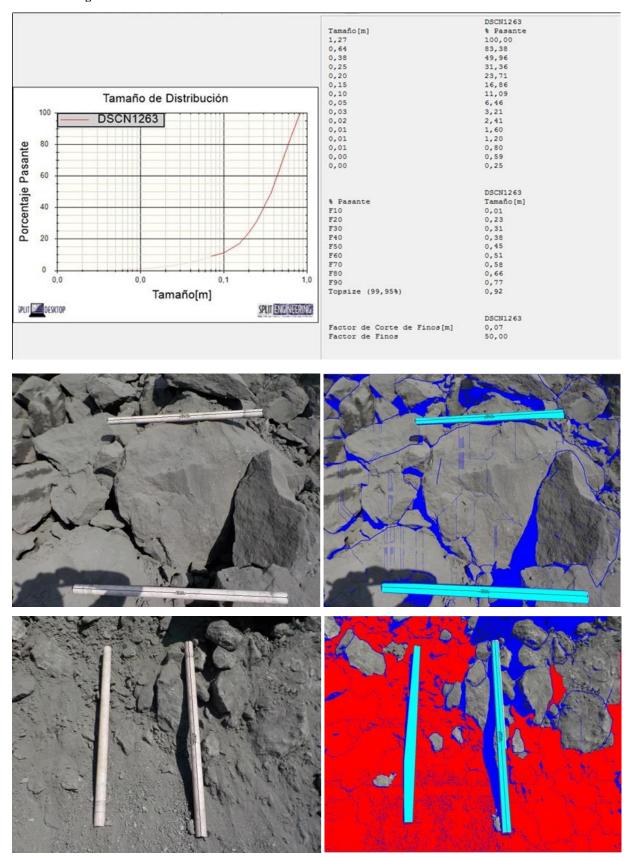
Gráfica de fragmentación. 18 Voladura F2C-541.

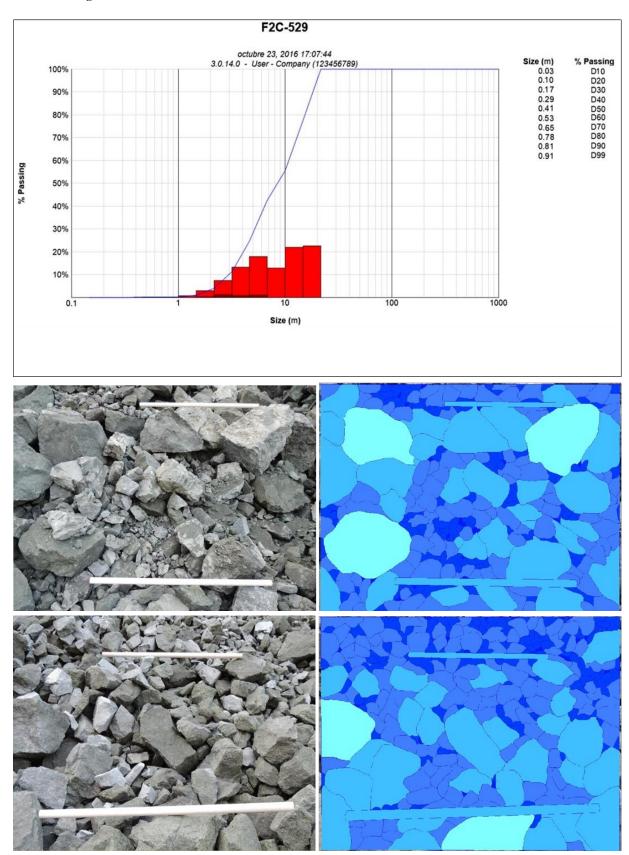


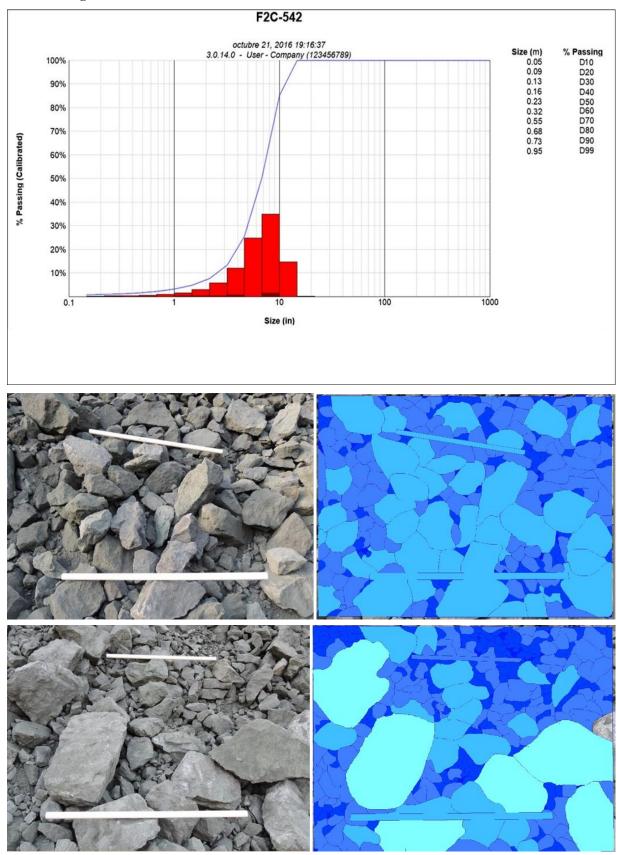

Gráfica de fragmentación. 19 Voladura F2C-557.



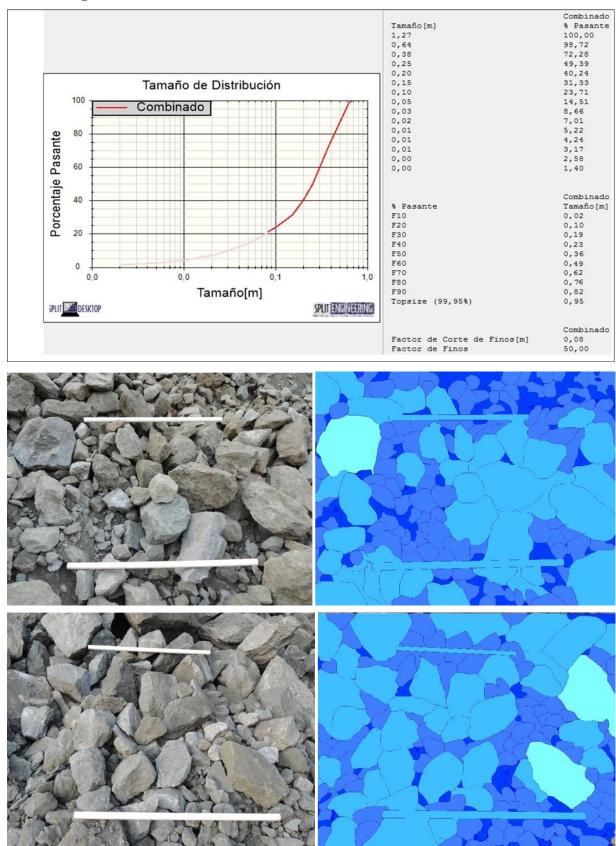
Gráfica de fragmentación. 20 Voladura F2C-550.

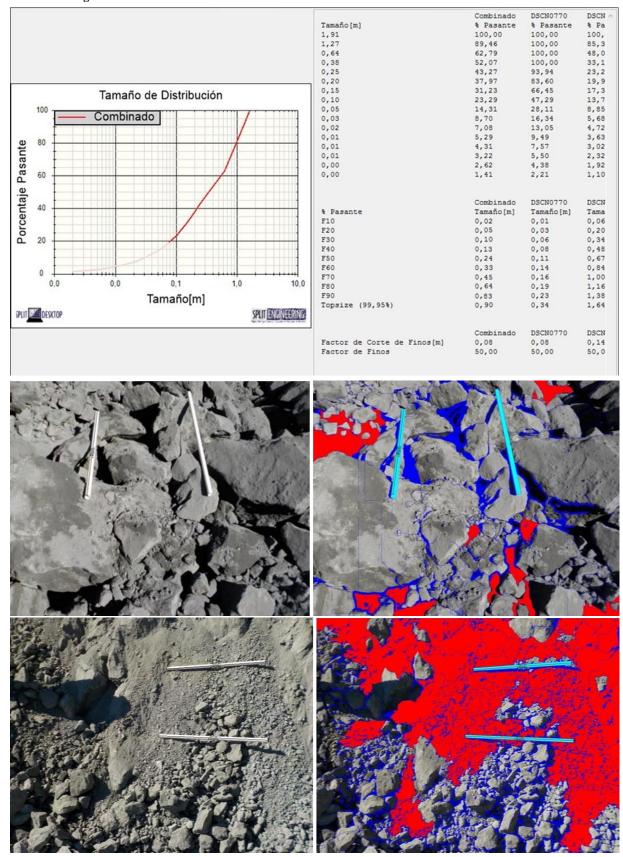


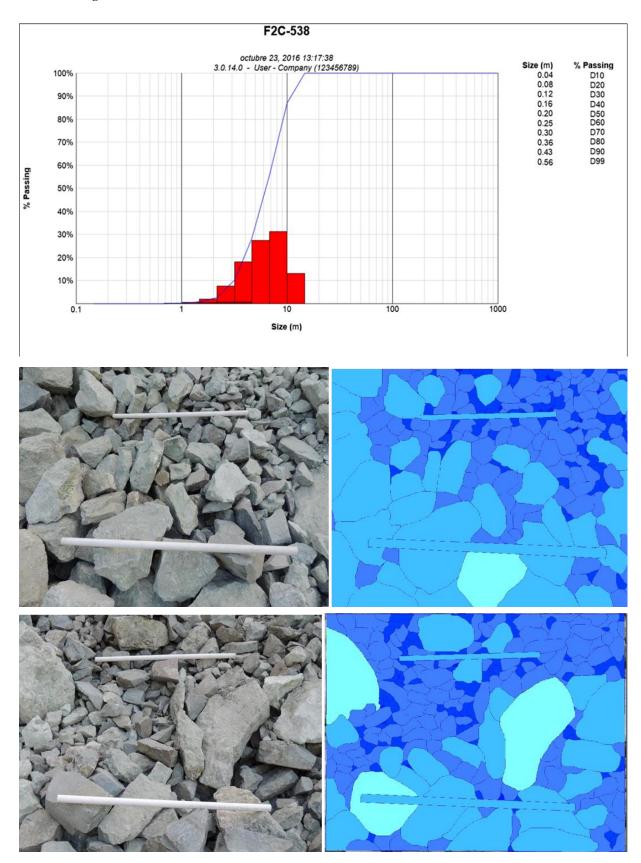

Gráfica de fragmentación. 21 Voladura F2C-571.



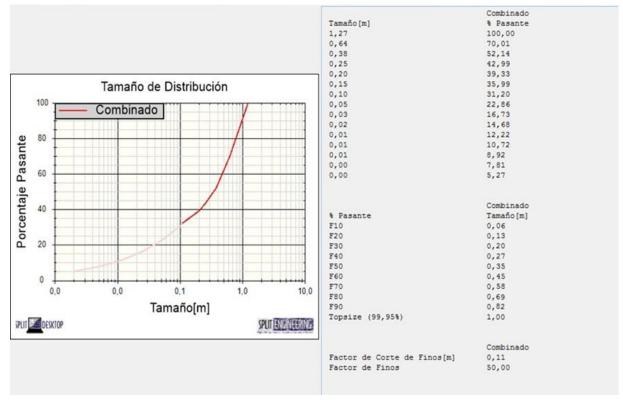
Gráfica de fragmentación. 22 Voladura F2C-573.

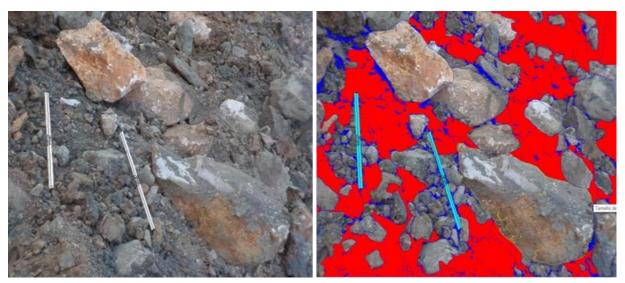


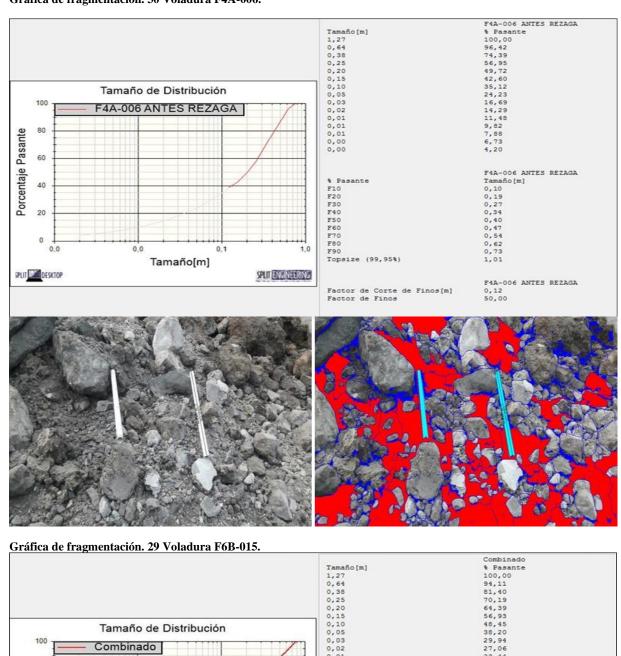

Gráfica de fragmentación. 24 Voladura F2C-542.

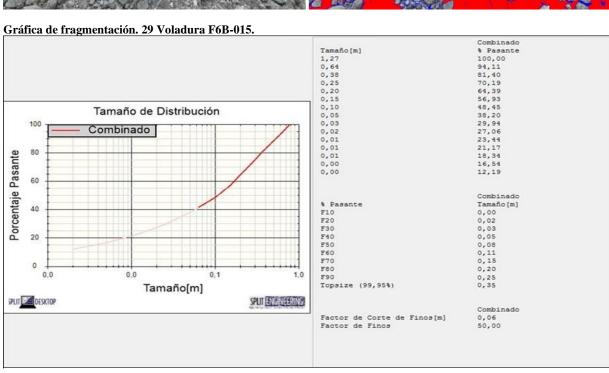


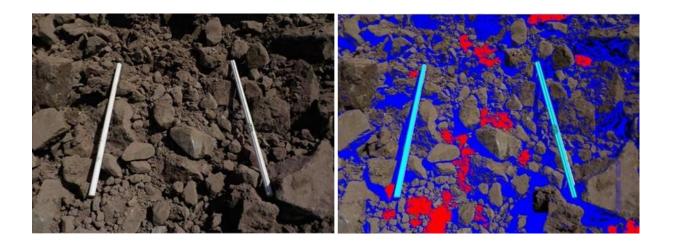
Gráfica de fragmentación. 25 Voladura F2C-544.


Gráfica de fragmentación. 26 Voladura F2C-558.




3.1.3 Fase A4


Gráfica de fragmentación. 28 Voladura F4A-001.



Gráfica de fragmentación. 30 Voladura F4A-006.

3.1.4 Resumen de la fragmentación obtenida.

A continuación las tablas 4,5 y 6 resumen los resultado obtenidos en las voladuras analizadas, se dividen en 3 tablas, la primera de ellas (tabla 4) corresponde a la fase 1A, la segunda (tabla 5) a la fase 2C y al tener muy pocos datos en las fases 4A y 6B estos se conmbinaron en la tabla 6. Los datos a los que se debe poner mayor atención son: ¿quién diseñó y cargó la plantilla?, ¿qué F80 se obtuvo? y ¿qué factor de carga se empleo en la voladura?. Las tablas deben leerse de izquierda a derecha y se conforman de la siguiente manera:

- a) ¿Dónde se realizó la voladura? Mineral (¿qué cuerpo mineral?), estéril, mineral-estéril etc.
- b) ¿Con que datos se registró la voladura? Marcaje de control.
- c) ¿Quién diseño y cargó la plantilla? El diseño de la plantilla corresponde a AP (Austin Podwers) o PM (Personal de Mina XYZ).
- d) El tamaño en metros y despues una secuencia del F10 al F90 (porcentaje de roca que adquirió cierto tamaño despues de la voladura) y el "topsize" se refiere al tamaño máximo o mas grande registrado de la roca despues de la voladura.
- e) Factor de carga utilizado: Kilogramos de explosivo utilizados por cada tonelada de material a romper.

Ejemplo: En el mineral diseminado, la voladura F1A-326 presenta tamaños pequeños (menores a 0.1m) hasta el F40 (40% del mineral fragmentado), se obtuvo un F80 de 0.61 metros y un tamaño máximo de particula de 0.92 metros. Se usó un factor de carga (kg de explosivo/toneladas de material volado) de 0.342 kg/ton para cargar esta plantilla.

	DATOS	Diseño	% pasante	F10	F20	F30	F40	F50	F60	F70	F80	F90	Topsize (99,95%)	Factor de Carga [Kg/Ton]
OQ 7	F1A 326	PM	Tamaño (m)	0.02	0.05	0.07	0.1	0.12	0.25	0.38	0.61	0.67	0.92	0.342
MINERAL DISEMINADO	F1A 446	PM	Tamaño (m)	0.02	0.08	0.16	0.18	0.21	0.33	0.46	0.59	0.72	0.81	0.378
M DISI	F1A 455	AP	Tamaño (m)	0.02	0.16	0.24	0.3	0.36	0.41	0.46	0.52	0.59	0.73	0.314
AL	F1A 452	AP	Tamaño (m)	0.01	0.03	0.05	0.07	0.09	0.12	0.15	0.19	0.24	0.32	0.214
MINER	F1A 451	AP	Tamaño (m)	0.01	0.02	0.06	0.1	0.16	0.21	0.3	0.49	0.63	0.8	0.239
MINERAL-ESTÉRIL (HORNFELS/MINERALDISEMINADO/MINERAL BRECHA /(MASIVO)	F1A 450	AP	Tamaño (m)	0.03	0.09	0.12	0.17	0.20	0.23	0.31	0.40	0.51	0.69	0.274
-ESTÉR SISEMI (MASIV	F1A 380	PM	Tamaño (m)	0.02	0.05	0.12	0.19	0.22	0.32	0.47	0.61	0.76	0.85	0.336
MINERAL-ESTÉRIL AINERALDISEMINA BRECHA /(MASIVO)	F1A 448	PM	Tamaño (m)	0.03	0.08	0.1	0.16	0.24	0.32	0.42	0.55	0.69	0.88	0.299
MI LS/MIN BRI	F1A 447	PM	Tamaño (m)	0.02	0.09	0.13	0.19	0.22	0.35	0.59	0.63	0.78	0.85	0.319
ORNFE	F1A 442	AP	Tamaño (m)	0.02	0.06	0.08	0.12	0.18	0.25	0.3	0.42	0.55	0.62	0.291
ЭН)	F1A 449	AP	Tamaño (m)	0.01	0.13	0.24	0.33	0.44	0.56	0.66	0.77	0.88	1	0.319
ALIZ LS/C RAD	F1A 458	AP	Tamaño (m)	0.07	0.08	0.1	0.12	0.23	0.38	0.51	0.65	0.71	0.85	0.333
ESTÉRIL(CALIZ A/HORNFELS/C ONGLOMERAD	F1A 470	AP	Tamaño (m)	0.03	0.14	0.18	0.23	0.3	0.44	0.56	0.66	0.77	0.9	0.392
EST! A/HC	F1A 468	AP	Tamaño (m)	0.06	0.13	0.2	0.27	0.35	0.43	0.5	0.58	0.66	0.76	0.306

Tabla 4. Análisis de fragmentación Fase 1A.

	DATOS	Diseño	% pasante	F10	F20	F30	F40	F50	F60	F70	F80	F90	Topsize (99,95%)	Factor de Carga [Kg/Ton]
	F2C 544	PM	Tamaño (m)	0.02	0.1	0.19	0.23	0.36	0.49	0.62	0.76	0.82	0.95	0.273
	F2C 546	PM	Tamaño (m)	0.02	0.04	0.06	0.18	0.2	0.32	0.54	0.68	0.87	0.98	0.301
0	F2C 553	PM	Tamaño (m)	0.02	0.08	0.15	0.17	0.29	0.36	0.59	0.67	0.74	0.85	0.394
MINERAL DISEMINADO	F2C 554	PM	Tamaño (m)	0.03	0.1	0.34	0.51	0.62	0.7	0.78	0.85	0.92	1	0.319
L DISE	F2C 541	PM	Tamaño (m)	0.07	0.11	0.16	0.19	0.33	0.46	0.59	0.63	0.78	0.9	0.366
INERA	F2C 557	AP	Tamaño (m)	0.01	0.17	0.24	0.30	0.35	0.40	0.46	0.53	0.61	0.76	0.317
M	F2C 550	AP	Tamaño (m)	0.02	0.06	0.12	0.18	0.25	0.35	0.52	0.69	0.87	1.01	0.285
	F2C 571	AP	Tamaño (m)	0.01	0.02	0.05	0.08	0.11	0.15	0.18	0.24	0.31	0.46	0.317
	F2C 573	AP	Tamaño (m)	0.01	0.23	0.31	0.38	0.45	0.51	0.58	0.66	0.77	0.92	0.307

	F2C 529	PM	Tamaño (m)	0.03	0.1	0.17	0.29	0.41	0.53	0.65	0.78	0.81	0.91	0.285
MINERAL	F2C 542	PM	Tamaño (m)	0.05	0.09	0.13	0.16	0.23	0.32	0.55	0.68	0.73	0.95	0.374
M	F2C 558	AP	Tamaño (m)	0.02	0.05	0.1	0.13	0.24	0.33	0.45	0.64	0.83	0.9	0.334
ESTÉ RIL	F2C 538	PM	Tamaño (m)	0.04	0.08	0.12	0.16	0.2	0.25	0.3	0.36	0.43	0.56	0.394

Tabla 5 Análisis de fragmentación Fase 2C.

	DATOS	Diseño	% pasante	F10	F20	F30	F40	F50	F60	F70	F80	F90	Topsize (99,95%)	Factor de Carga [Kg/Ton]
-1	F4A 006	AP	Tamaño (m)	0.1	0.19	0.27	0.34	0.4	0.47	0.54	0.62	0.73	1.01	0.287
ESTÉRIL	F4A 001	PM	Tamaño (m)	0.06	0.13	0.20	0.27	0.35	0.45	0.58	0.69	0.82	1.00	0.356
E	F6B 015	AP	Tamaño (m)	0	0.02	0.03	0.05	0.08	0.11	0.15	0.2	0.25	0.35	0.347

Tabla 6 Análisis de fragmentación Fases 4A y 6B.

3.2 VOD (Velocidad de Detonación)

Se realizaron pruebas de VOD para determinar la velocidad de particula de algunas voladuras con la finalidad de establecer que estas son seguras con base en los criterios del buro de minas de los Estados Unidos de América. Dichas pruebas no se realizaron en todos los eventos, solamente en aquellos que se consideraban criticos o presentaban alguna particularidad como peligrosidad , poca estabilidad, necesidad de un talúd sano, cercanía con comunidades (a menos de 10 km), entre otras situaciones.

El personal que trabaja en la mina estudiada contrinubuyó bastante en esta parte del trabajo al facilitar los datos registrados por sus sismografos fijos y los estudios que ellos realizan en paralelo con los contratistas siempre con la finalidad de garantizar la máxima seguridad en el área de trabajo para evitar incidentes y mejorar la operación.

A continuación se muestran los resultados de estas pruebas registradas en los simógramos utilizados en las voladuras colocados de manera estratégica.

3.2.1 Fase 1A

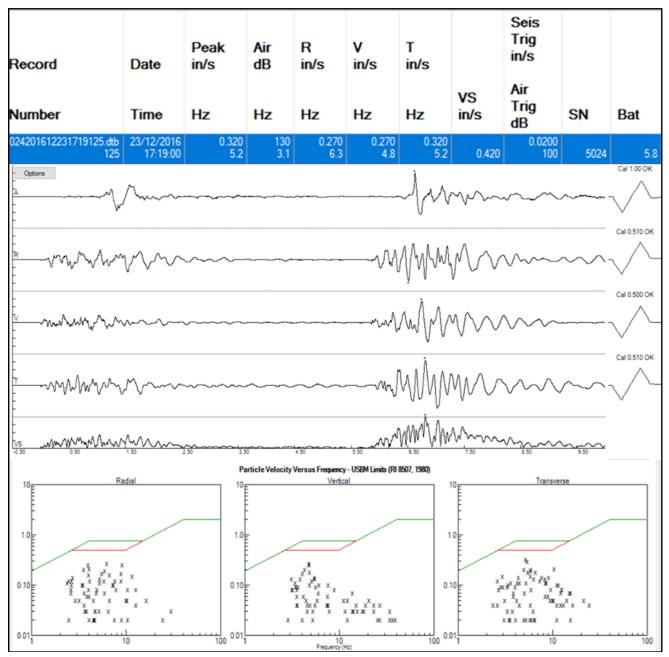


Ilustración 1 Sismograma. Voladura F1A-455

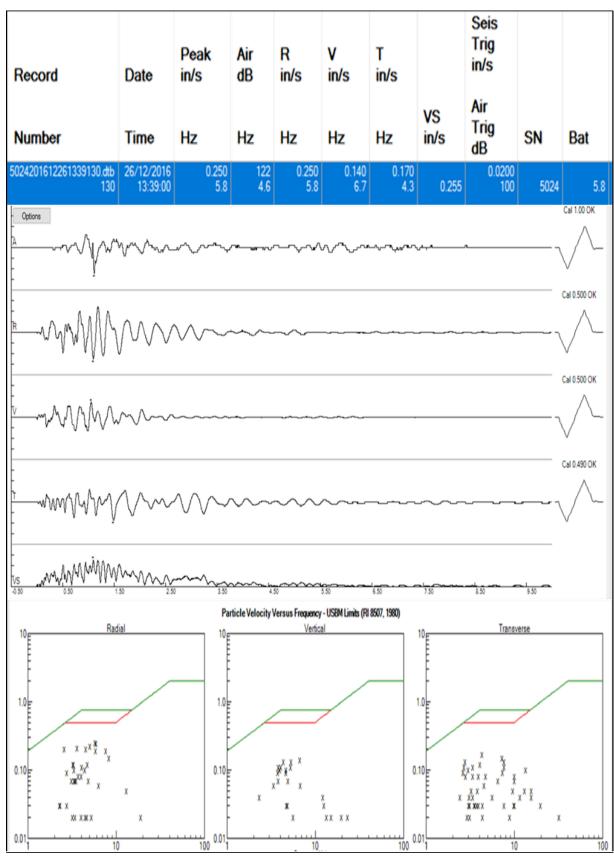


Ilustración 2 Sismograma. Voladura F1A-452.

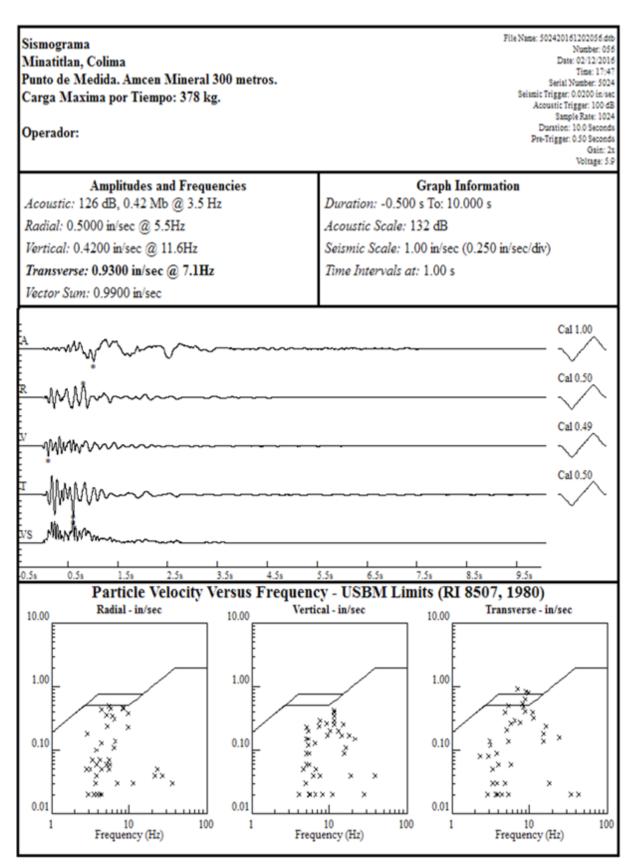


Ilustración 3 Sismograma. Voladura F1A-450.

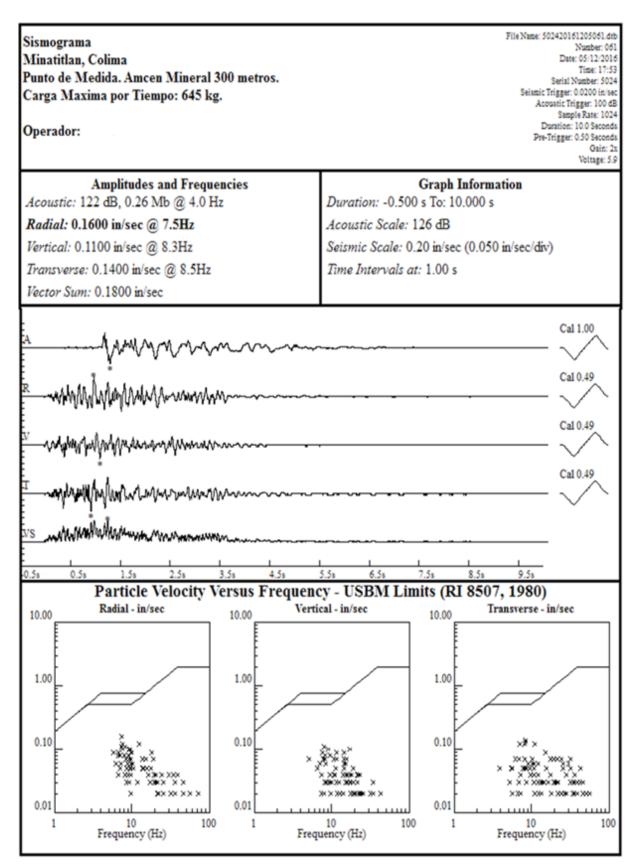


Ilustración 4 Sismograma. Voladura F1A-442.

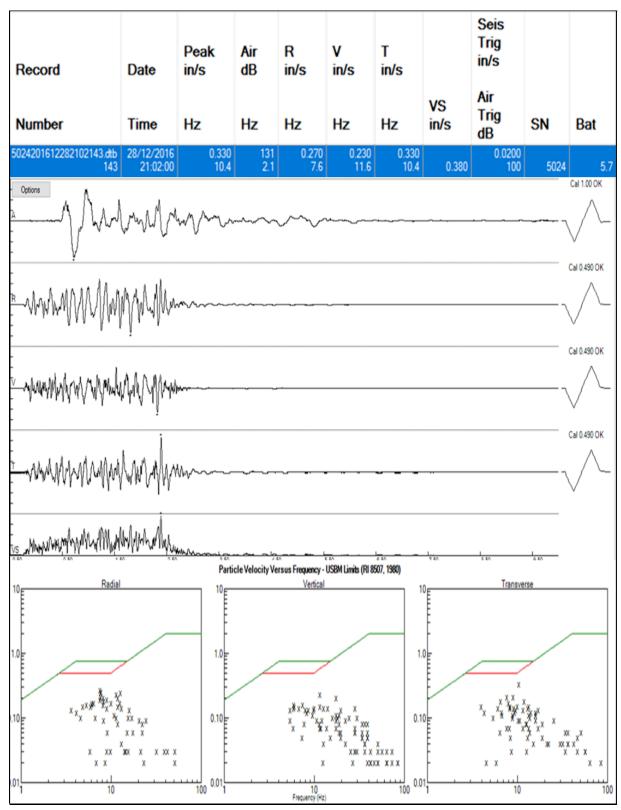


Ilustración 5 Sismograma. Voladura F1A-449.

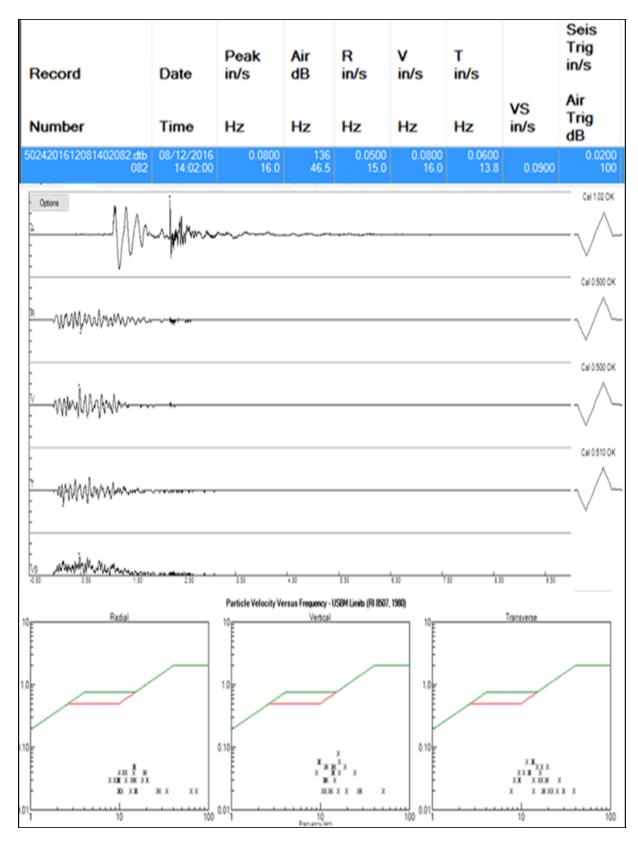


Ilustración 6 Sismograma. Voladura F1A-458.

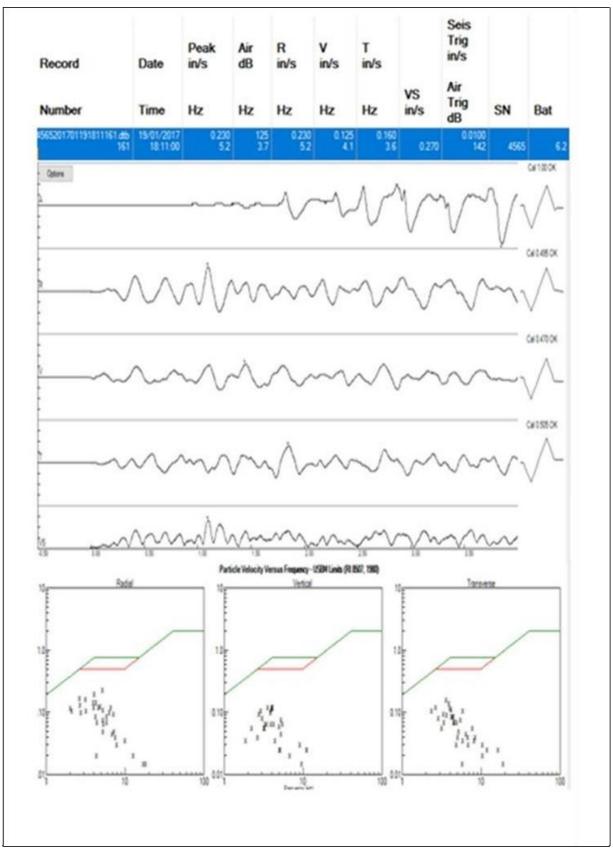


Ilustración 7 Sismograma. Voladura F1A-470.

3.2.2 Fase 2C

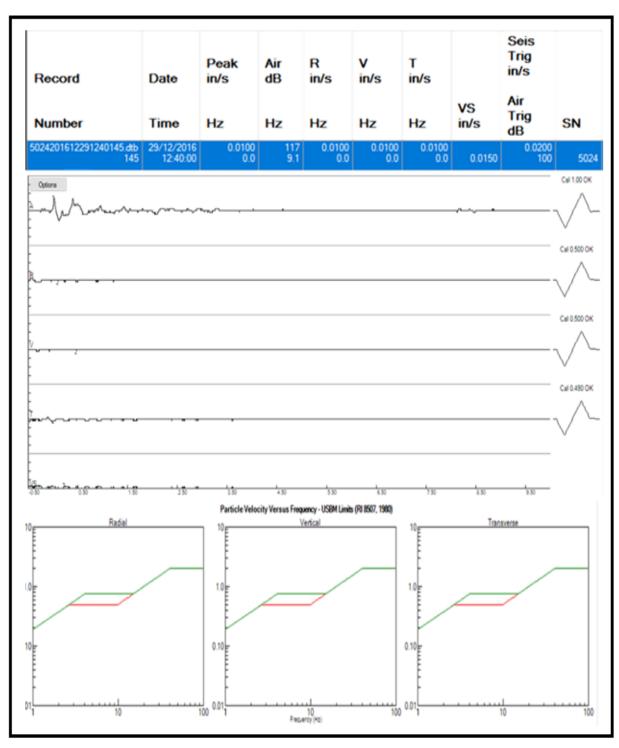


Ilustración 8 Sismograma F2C-573.

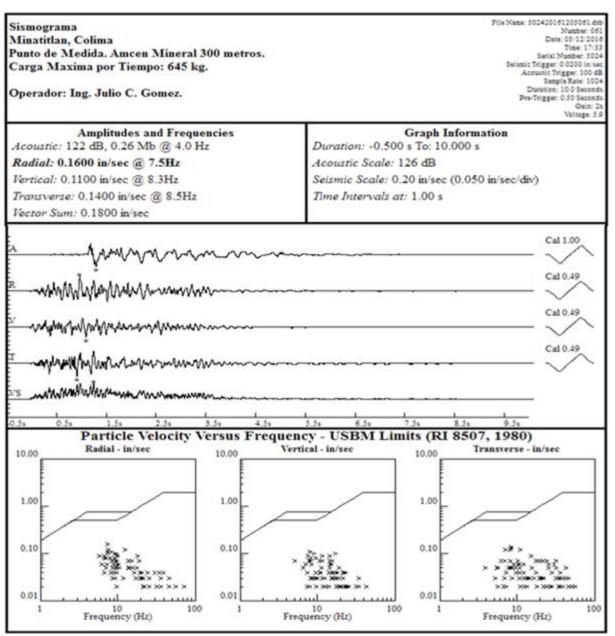


Ilustración 9 Sismograma. Voladura F2C-558.

3.2.3 Resumen y Punto de Comparación.

La siguiente tabla (tabla 7) muestra el resumen de las hojas presentadas resaltando los datos más relevantes para el objetivo de este escrito además se adjunta una tabla (tabla 8) con los valores del buro de minas de los Estados Unidos de América que son valores sugeridos y se toman como punto de partida para poder declarar que las voladuras operan con un margen de seguridad satisfactorio reduciendo el riesgo de incidentes al mínimo.

Voladura	Explosivo por barreno	Distancia al sismógrafo	Velocidad de partícula
	(kg.)	(m).	(in/s)
F1A 455	403	443	0.420
F1A 450	378	213	0.990
F1A 442	386	288	0.420
F1A 458	637	169	0.380
F1A 470	386	932	0.090
F2C 571	403	601	0.195
F2C 573	386	894	0.015
F2C 558	403	725	0.090

Tabla 7 Velocidad de partícula generada en las voladuras analizadas.

BURO DE MINAS	S DE LOS ESTADOS UNIDOS (U.S.B.M.)
Velocidad de la partícula [in/s]	Naturaleza del daño
12	Se cae roca en túneles sin revestimiento
7.6	50% probabilidad de daño mayor en el ensayo
5.4	50% probabilidad de daño menor en el ensayo
2.8-3.3	Umbral de daño por voladuras cercanas
2.0	Criterio de seguridad de voladuras para estructuras residenciales

Tabla 8 Criterio para determinar el daño en la roca (Boletín 656, 1971).

3.3 COSTOS DE VOLADURA.

Como parte de los resultados obtenidos se analiza el costo de cada voladura realizada (USD Dollar) ya que es bien sabido que lo económico es un aspecto fundamental y que debe tenerse bien monitoreado dentro de una operación minera. A continuación las tablas mostradas indican el tipo de material explosivo, cantidad y costo del mismo asi como las toneladas de material movidas en cada voladura permitiendo estimar el costo de explosivo por tonelada.

VOLADURA	TUMBE [TON]	NITRATO [KG]	DIÉSEL [LITROS]	ANFO [KG]	FACTOR DE CARGA [KG/TON]	EMULEX 13 X 8 [1 KG]	BOOSTER [1 LB]	DD 42/500MS [PZA]	Q. R. 200MS [PZA]	E * STAR [PZA]	DD 17/500MS [PZA]	Q. R. 42MS [PZA]	ALAMBRE DE CONEXIÓN [PZA]	COSTO	NOL/GSD
							MINER	AL DISEMI	NADO						
F1A 326	102,218	33,000	2,200.00	34,815.00	0.3415	93	0	93	5	0	0	0	0	\$17,094.930	\$0.1672
F1A 446	102,585	36,675	2,445.00	38,692.13	0.378	0	90	0	5	0	90	0	0	\$18,988.050	\$0.1851
F1A 455	81,317	24,150	1,610.00	25,478.25	0.314	0	67	0	0	67	0	0	2	\$14,648.350	\$0.1801
433				MINER	AL – ESTÉRI	L (HORNF	ELS/MINE	RAL DISE	MINADO/MI	INERAL BRI	ECHA/MAS	IVO)			
F1A 452	86,779	17,600	1,173.33	18,568.00	0.214	0	53	0	0	53	0	0	2	\$11,381.350	\$0.1312
F1A 451	95,044	21,500	1,433.33	22,682.50	0.239	62	0	62	2	0	0	0	0	\$11,993.480	\$0.1262
F1A 450	111,706	28,950	1,930.00	30,542.25	0.274	0	82	0	0	82	0	0	2	\$17,203.900	\$0.1540
F1A 380	92,514	29,350	1,956.67	30,964.25	0.336	88	0	88	8	0	0	0	0	\$15,496.120	\$0.1675
F1A 448	266,566	75,300	5,020.00	79,441.50	0.299	144	0	144	9	0	0	0	0	\$35,748.760	\$0.1341
F1A 447	55,593	16,775	1,118.33	17,697.63	0.319	0	44	0	2	0	44	0	0	\$9,756.210	\$0.1755
F1A 442	106,791	29,450	1,963.33	31,069.75	0.291	0	83	0	0	83	0	0	2	\$17,450.950	\$0.1634
						ESTÉRIL (CALIZA/H	ORNFELS	CONGLOM	ERADO					
F1A 449	228,782	69,250	4,616.67	73,058.75	0.319	106	22	128	7	0	0	0	0	\$33,057.420	\$0.1445
F1A 458	343,632	108,450	7,230.00	114,414.75	0.333	0	194	0	0	194	0	0	2	\$54,884.500	\$0.1597
F1A 470	213,124	54,950	3,663.33	57,972.25	0.273	107	1	55	2	53	0	0	2	\$27,753.680	\$0.1302
F1A 468	235,476	47,600	3,173.33	50,218.00	0.213	0	93	0	0	93	0	0	2	\$25,523.350	\$0.1084
F1A 462	414,839	115,100	7,673.33	121,430.50	0.293	38	173	38	7	173	0	0	0	\$52,825.390	\$0.1273

Tabla 9 Costos del material explosivo Fase 1A.

VOLADURA	TUMBE [TON]	NITRATO [KG]	DIESEL [LITROS]	ANFO [KG]	FACTOR DE CARGA [KG/TON]	EMULEX 1	2 X8	[1 KG]	BOOSTER [1 LB]	DD 42/500MS [PZA]	Q.R.	E * STAR [PZA]	DD 17/500MS [PZA]	Q. R. 42MS [PZA]	ALAMBRE	COSTO VOLADUR A	USD/ION
					M	INER	AL D	ISEN	IINAD	O							
F2C 546	64,119	18,228	1,215.20	19,230.54	0.301		51		0	51	2	0	0	0	0	\$10,281.498	\$0.1604
F2C 553	129,403	48,250	3,216.67	50,903.75	0.394		89		0	89	7	0	0	0	0	\$23,554.150	\$0.1820
F2C 554	49,517	14,950	996.67	15,772.25	0.319		0		36	36	1	0	0	0	0	\$8,844.980	\$0.1786
F2C 541	112,731	39,050	2,603.33	41,197.75	0.366		96		0	0	0	0	96	6	0	\$19,713.640	\$0.1749
F2C 557	65,687	19,750	1,316.67	20,836.25	0.317		0		38	0	2	0	38	8	0	\$10,970.300	\$0.1670
F2C 550	82,338	22,200	1,480.00	23,421.00	0.285		0		105	0	0	105	0	0	2	\$15,111.550	\$0.1835
F2C 571	54,809	16,450	1,096.67	17,354.75	0.317		0		42	0	0	42	0	0	2	\$10,516.900	\$0.1919
F2C 573	72,387	21,050	1,403.33	22,207.75	0.307		0		54	0	0	54	0	0	2	\$12,885.100	\$0.1780
				MINI	ERAL – ES	TÉRI	L (DI	SEN	IINAD	О/НО	RNF	ELS)					
F2C 529	87,787	23,700	1,580.00	25,003.50	0.285		47		0	47	4	0	0	0	0	\$12,575.290	\$0.1432
F2C 542	52,443	18,550	1,236.67	19,570.25	0.374		34		0	34	1	0	0	0	0	\$10,209.120	\$0.1947
F2C 544	74,502	19,200	1,280.00	20,256.00	0.273		64		0	64	2	0	0	0	0	\$10,851.700	\$0.1457
F2C 558	86,086	27,250	1,816.67	28,748.75	0.334		0		72	0	0	72	0	0	2	\$16,139.200	\$0.1875
							ESTÉ	ÉRIL	,								
F2C 538	66,679	24,850	1,656.67	26,216.75	0.394		42		0	42	5	0	0	0	0	\$13,010.520	\$0.1951

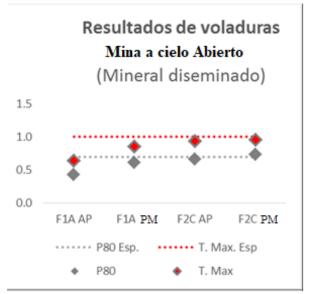
Tabla 10 Costos del material explosivo Fase 2C.

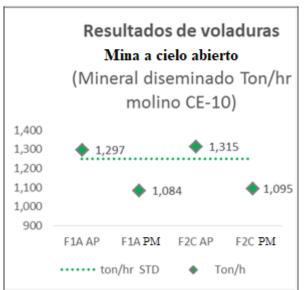
Voladura	Tumbe [Ton]	Nitrato [Kg]	Diesel [litros]	ANFO [kg]	Factor de Carga [kg/Ton]	Emulex 13 x 8 [1 kg]	Booster [1 lb]	DD 42/50ms [pza.]	Q.R. 200ms [Pza.]	Costo Voladura	USD/Fon
				ESTÍ	ÉRIL (CALIZA	A/CONGL	OMERAD	O)			
F4A 001	204,16 4	68,800	4,586.6 7	72,584.0 0	0.356	0	107	107	9	\$32,967.67 0	\$0.1615
F4A 006	135,09 9	36,700	2,446.6 7	38,718.5 0	0.287	61	0	61	5	\$18,286.81 0	\$0.1354
F6B 015	225,70 7	74,200	4,946.6 7	78,281.0 0	0.347	132	0	132	7	\$35,125.28 0	\$0.1556

Tabla 11 Costos del material explosivo ases 4A y 6B.

Para hacer una estimación del costo de cada voladura se realizó un conteo minucioso del material que se uso en cada evento y posteriormente se hizó el calculo con los datos proporcionados por una empresa dedicada al comercio de explosivos con la cual el escritor ha tenido contacto. Los precios que se usaron son los siguientes.

MATERIAL	Cantidad	Costo [USD]
Nitrato de Amonio	1 kg.	\$0.43
Dual Delay	100 ft	\$9.00
Quick Relay	100ft	\$5.38
Emulex 1	1 pza.	\$3.01
Precio Booster	1 pza.	\$7.05
E* Star	65 ft	\$27.00
Alambre de Conexión	200 ft	\$93.00
Precio Diesel	1 L	\$0.86

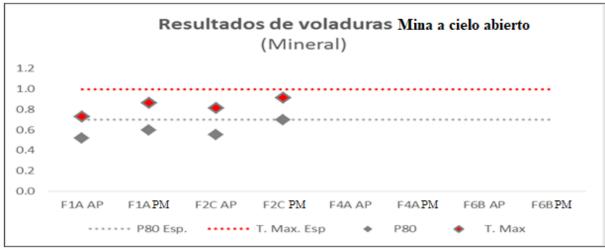

Tabla 12 Precios de referencia.


4. ANÁLISIS DE RESULTADOS.

Con base en los resultados obtenidos podemos realizar las siguientes comparativas de las diferentes fases estudiadas. AP (Austin Podwers) y PM (Personal de Mina XYZ).

DATOS	Fa	se 1A	Fase 2C			
Diseño	AP	PM	AP	PM		
P80 (m)	0.43	0.61	0.66	0.73		
Tamaño máximo (m)	0.64	0.86	0.94	0.96		
P80 Esperado (m)	0.7	0.7	0.7	0.7		
Tamaño máximo esperado (m)	1	1	1	1		
M³/Ton	373	353	241	301		
Ton/hr.	1,297	1,084	1,315	1,095		
ton/hr. Esperado	1,250	1,250	1,250	1,250		
Kwh/ton	4.90	5.13	3.92	6.20		
%Ton	51%	49%	44%	56%		
Voladuras	4	4	3	4		
Evaluación	*	*	•	♦		

Tabla 13 Evaluación y comparativa de las voladuras en mineral diseminado.

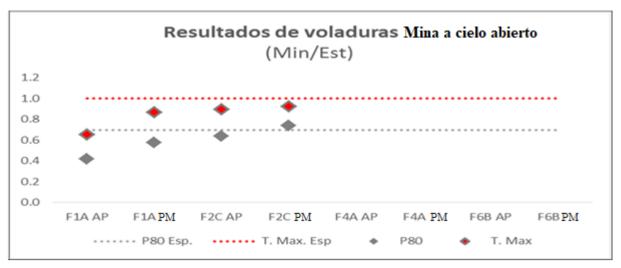


Gráfica comparativa 1 Mineral diseminado.

Las voladuras diseñadas por Austin tienen un semáforo verde que indican resultados aceptables, sin embargo, las del personal de la mina a cielo abierto estudiada con semáforo amarillo indican que se puede mejorar.

DATOS	Fa	ase 1A	Fase 2C		
Diseño	AP	PM	AP	PM	
P80 (m)	0.52	0.60	0.55	0.70	
Tamaño máximo (m)	0.73	0.86	0.82	0.92	
P80 Esperado (m)	0.7	0.7	0.7	0.7	
Tamaño máximo esperado (m)	1	1	1	1	
M ³ /ton	81	205	275	430	
%Ton	28%	72%	39%	61%	
Voladuras	1	2	4	6	
Evaluación	•	•	•	\	

Tabla 14 Evaluación y comparativa de las voladuras en mineral.



Gráfica comparativa 2 Mineral de brecha masiva.

Resultados bastante favorables, aunque aún por debajo de lo ideal.

DATOS	Fase 1A		\mathbf{F}	Fase 2C	
Diseño	AP	PM	AP	PM	
P80 (m)	0.42	0.57	0.64	0.74	
Tamaño máximo (m)	0.66	0.87	0.90	0.92	
P80 Esperado (m)	0.7	0.7	0.7	0.7	
Tamaño máximo esperado (m)	1	1	1	1	
M³/ton	400	415	86	140	
%Ton	49%	51%	38%	62%	
Voladuras	4	3	1	2	
Evaluación	•	•	•	\rightarrow	


Tabla 15 Evaluación y comparativa de las voladuras en mineral-estéril.

Gráfica comparativa 3 Mineral-Estéril.

DATOS	Fase 1A	Fase 2C	Fase	e 4A	Fase 6B
Diseño	AP	PC	AP	PC	AP
P80 (m)	0.66	0.36	0.62	0.69	0.20
Tamaño máximo (m)	0.88	0.56	1.01	1.00	0.35
P80 Esperado (m)	0.7	0.7	0.7	0.7	0.7
Tamaño. Máximo esperado (m)	1	1	1	1	1
M ³ /ton	1,021	140	135	204	226
%Ton	100%	100%	40%	60%	100%
Voladuras	4	1	1	1	1
Evaluación		•	•	•	•

Tabla 16 Evaluación y comparativa de las voladuras en estéril.

Gráfica comparativa 4 Estéril.

5. PROPUESTAS DE MEJORA.

Después de analizar las voladuras e interpretar los resultados que éstas arrojaron se presentan las siguientes propuestas que permitan una mejora en los resultados de las voladuras, debido a que no es posible experimentar directamente en campo abierto pues implica costos para la empresa además de la incertidumbre del comportamiento del macizo rocoso se utilizó la ayuda del software para simular voladuras bajo los parámetros propuestos y para predecir el comportamiento del macizo rocoso durante los eventos.

5.1 SOFTWARE UTILIZADO.

QED- Plus: Un software de segunda generación que permite editar el diseño y simular virtualmente una voladura, perteneciente a la empresa Austin Powder. Fue desarrollado para brindar apoyo a los ingenieros encargados de preparar y analizar los diseños de voladura, prediciendo el comportamiento del material rocoso y explosivo hace posible ejercer precaución y juicio ingenieril experimentado cuando se interpretan las predicciones del modelo para evitar incidentes y maximizar los resultados antes de hacer las pruebas de campo, al ser un software no representa un costo directo para la empresa modificar parámetros y simular eventos ya que todo es virtual.

QED Plus también es una herramienta de capacitación muy valiosa, la cual puede ser usada por los técnicos de Austin para investigar varias opciones con el objetivo de mejorar el desempeño de la voladura, en muchos casos, los cambios propuestos para las prácticas pueden ser investigados en el computador antes de hacerlos en terreno, para conocer los probables efectos de aquellos cambios razonablemente evaluados y determinar si es conveniente o no realizarlos.

Como su predecesor, QED Plus fue desarrollado conjuntamente con Blastronics, Earth Technology, y la compañía Austin Powder, y provee las siguientes funciones primarias para los usuarios:

 Especificación completa del diseño para voladura de superficie, incluyendo el trazo del barreno, la carga del barreno, y el tiempo de retardo, usando productos estándar de Austin y especificaciones del producto.

- La capacidad para generar reportes profesionales ilustrando el trazado del barreno y los amarres de retardo, junto con un resumen de los factores importantes, los cuales pueden ser elegidos por los usuarios para ajustarse a las necesidades particulares de sus clientes.
- Simulación y modelamiento para permitir la evaluación de los diseños propuestos en términos de comportamiento esperado y desempeño.

Importante: QED Plus no apunta a decirle como diseñar una voladura, su meta es ayudarlo a preparar diseños y dibujos de alta calidad y comparar diferentes opciones de diseño en términos de probables resultados con respecto al costo, la fragmentación, la vibración, y otros criterios importantes comúnmente usados para evaluar la calidad de una voladura, al hacerse estas comparaciones QED Plus usa la mejor tecnología disponible en la literatura técnica abierta integrada dentro de un solo paquete del software.

5.2 CONFIGURACIÓN DE LA VOLADURA.

Todo ingeniero de minas sabe que el resultado de una voladura se ve directamente afectado por los parámetros de la plantilla de barrenación (bordo, espaciamiento y taco), así como de la configuración de salida de ésta (tiempo entre barrenos, tiempo entre líneas, cara libre y configuración espacial) y del material explosivo que se use como carga de fondo y carga de columna. Las tablas que se exhiben a continuación muestran la propuesta que se plantea para mejorar las voladuras en la "mina XYZ" atendiendo a todos los factores que influyen en los resultados de las mismas, dichas propuestas han sido clasificadas en aquellas pensadas para voladuras sobre mineral y las que se harán sobre estéril, y debido a que las condiciones geológicas no son las mismas en ningún caso también se ha tomado en cuenta el tipo de roca para clasificar las propuestas de voladura, para zona mineralizada se tiene el diseminado, hornfels y la brecha masiva mientras que en estéril se tiene caliza arcillosa, caliza hornfels y conglomerado. Para poder determinar la carga de fondo se realizaron pruebas VOD con cebado de EMULEX y Booster para observar la diferencia entre ambas y seleccionar al más adecuado, dichas pruebas se encuentran en el Anexo 1. Las propuestas hechas consideran que el ANFO está fabricado con una relación nitrato-diésel del 95%-5% como mínimo y 96%-4% como máximo, la densidad alcanzada debe ser 0.85 g/cm³. Así mismo, es importante mencionar que para que las simulaciones se acerquen a la realidad es importante respetar los patrones de perforación establecidos en el diseño. Para garantizar que las proporciones de la mezcla de ANFO se cumplan se certificaron los camiones mezcladores con los cuales se realizó el cargado de explosivo, dichos certificados se encuentran en el apartado del anexo ii.

DATOS	DISEMINADO	DISEMINADO / HORNFELS	BREC HA / MASIVO
Diámetro [in]	9	9	9
Bordo [m]	4.5	5.0	5.5
Espaciamiento [m]	5.0	6.0	6.5
Taco [m]	4.0	4.5	5.0
Patrón de perforación	Tres bolillo	Tres bolillo	Tres bolillo
Carga de Fondo	Booster 11b	Booster 11b	Booster 11b
Carga de Columna [Kg] (ANFO)	ANFO (400.5	ANFO (383.1	ANFO
	kg)	kg)	(363.2 kg)
Líneas por voladura	4	4	4
Tiempo entre barrenos [ms]	13	13	13
Tiempo entre líneas [ms]	260	260	260
Factor de Carga [Kg/Ton]	0.318	0.269	0.242
Costo Esperado [USD/Ton]	\$0.1918	\$0.1565	\$0.1351
P80 Previsto [cm]	60.3 - 66.0	60.0 - 65.7	59.6 - 65.4
% Tamaño a 70 cm	84.2	84.5	84.8

Tabla 18 Resumen de las plantillas propuestas para mineral.

DATOS	CALIZA / HORNFELS	CALIZA / ARCILLA	CONGLOMERADO
Diámetro [in]	12 1/4	12 1/4	12 1/4
Bordo [m]	7.0	7.0	7.0
Espaciamiento [m]	8.0	7.0	8.0
Taco [m]	7.0	7.0	7.0
Patrón de perforación	Tres bolillo	Tres bolillos	Tres bolillos
Carga de Fondo	Booster 11b	Booster 11b	Booster 11b
Carga de Columna	ANFO (577.8 kg)	ANFO (577.8 kg)	ANFO (577.8 kg)
Líneas por voladura	5	5	5
Tiempo entre barrenos [ms]	15	15	15
Tiempo entre líneas [ms]	300	300	300
Factor de Carga [Kg/Ton]	0.263	0.281	0.263
Costo Esperado [USD/Ton]	\$0.1370	\$0.1461	\$0.1370
P80 Previsto [cm]	53.6 - 62.9	58.4 - 64.1	54.0 - 63.1
% Tamaño a 70 cm	87.2	86	87

Tabla 17 Resumen de las plantillas propuestas para estéril.

5.3 RESULTADOS ESPERADOS.

Utilizando el software QED-plus de Austin Podwers se lograron predecir los resultados de dichos cambios.

5.3.1Mineral diseminado.

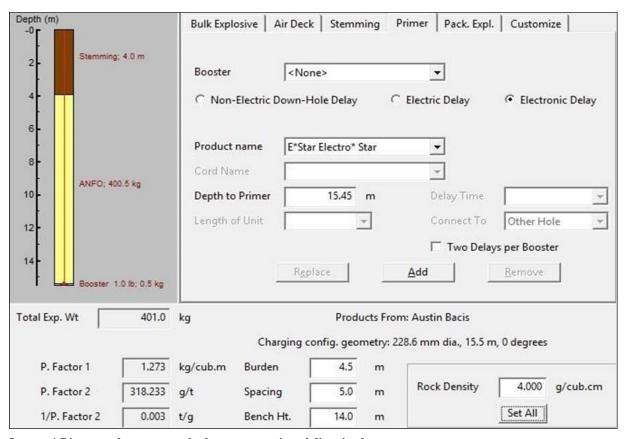


Imagen 1 Diagrama de carga para los barrenos en mineral diseminado.

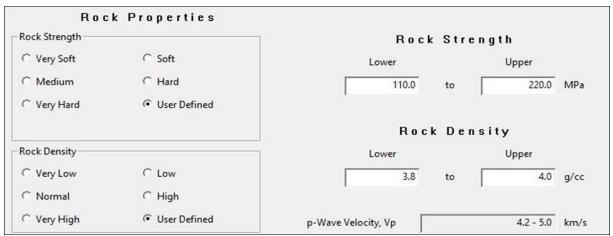


Imagen 2 Densidad y resistencia a la compresión del mineral diseminado.

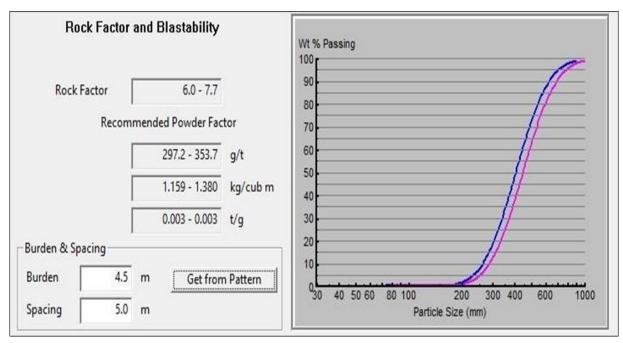


Imagen 4 Factor de carga recomendado. Mineral diseminado.

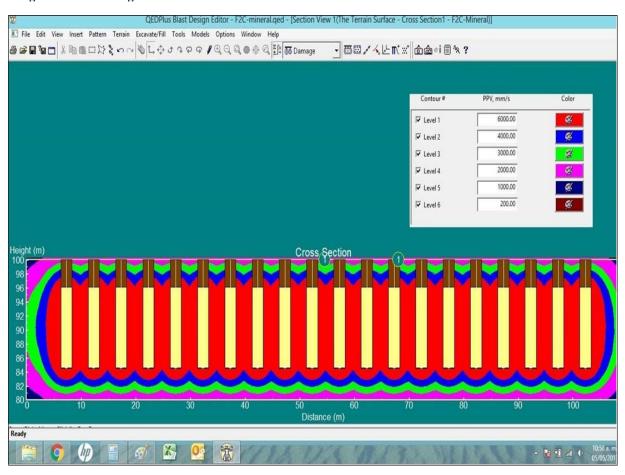


Imagen 3 Contorno de energía al aplicar los parámetros anteriores. Mineral diseminado.

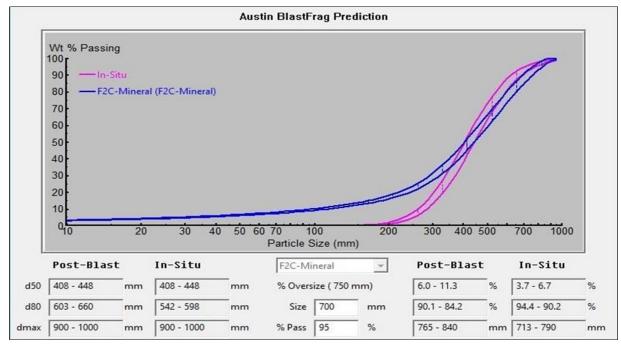


Imagen 5 Predicción de la fragmentación del mineral. Fase 2C.

5.3.2Mineral diseminado/hornfels

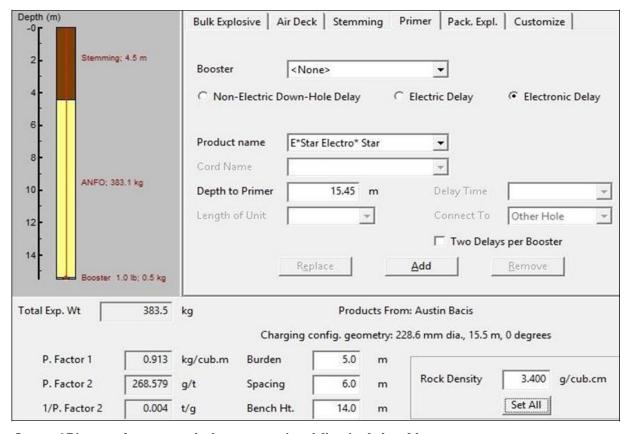


Imagen 6 Diagrama de carga para los barrenos en mineral diseminado-hornfels.

Roc	k Properties				
Rock Strength		Roc	k Stre	ngth	
C Very Soft	○ Soft	Lower		Upper	
C Medium	○ Hard	110	to	165.0	MP
C Very Hard	← User Defined			,	
		Roc	k Den	sity	
Rock Density		Lower		Upper	
C Very Low	C Low	3.2	to	3.4	g/c
C Normal	← High	,			

Imagen 7. Densidad y resistencia a la compresión en mineral diseminado-hornfels

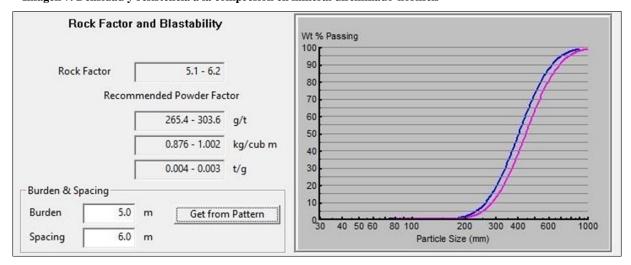


Imagen 8 Factor de carga recomendado. Mineral diseminado- hornfels.

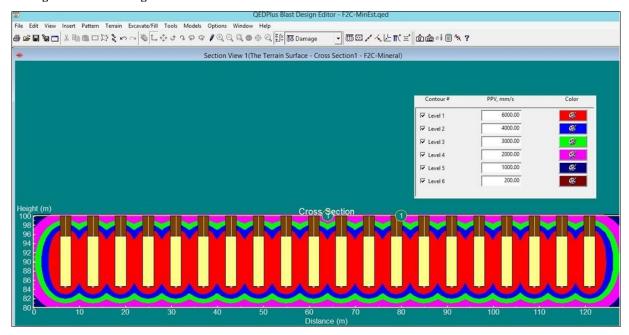


Imagen 9 Contorno de energía al aplicar los parámetros anteriores. Mineral diseminado-hornfels.

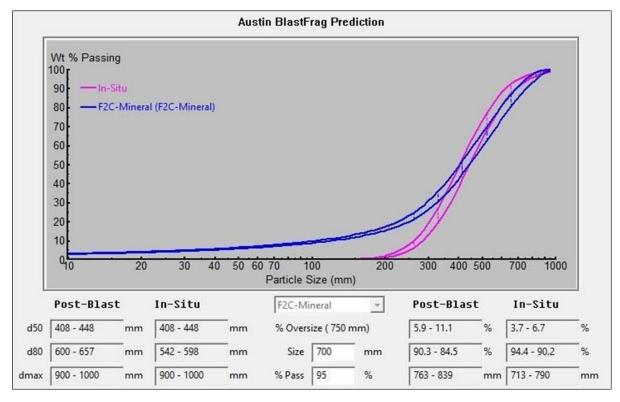


Imagen 10 Prediccción de la fragmentación. Mineral diseminado-hornfels.

5.3.3 Mineral brecha/masiva.

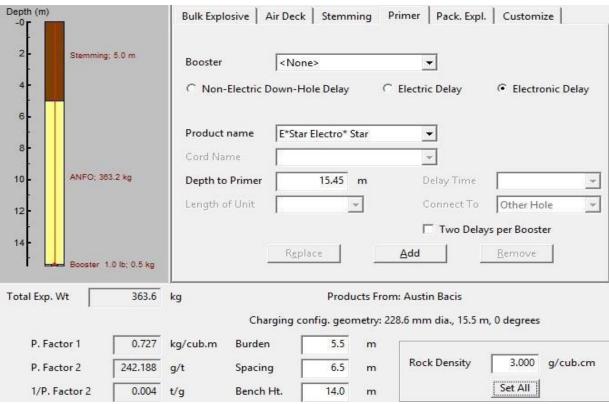


Imagen 11 Diagrama de carga para los barrenos en mineral de brecha masiva.

Roc	k Properties				
Rock Strength		Roc	k Stre	ngth	
C Very Soft	○ Soft	Lower		Upper	
C Medium	○ Hard	110.0	to	138.0	MP
C Very Hard	← User Defined			,	
		Roc	k Den	sity	
Rock Density		Lower		Upper	
C Very Low	C Low	2.8	to	3.0	g/c
C Normal	C High	,			
C Very High	⊕ User Defined	p-Wave Velocity, Vp		4.2 - 4.5	km

Imagen 13 Densidad y resistencia a la compresión del mineral de brecha masiva

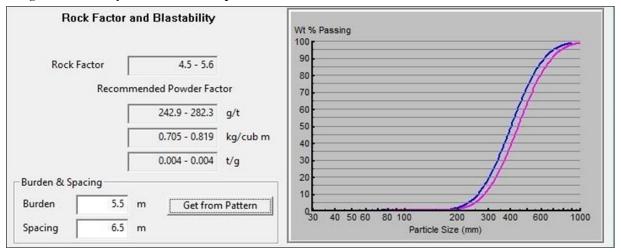


Imagen 14. Factor de carga recomendado. Mineral de brecha masiva.

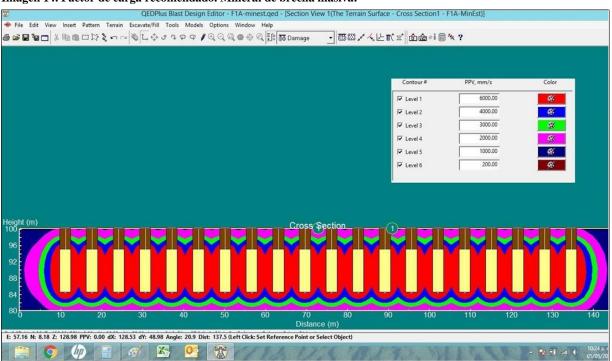


Imagen 12 Contorno de energía al aplicar los parámetros anteriores. Mineral de brecha masiva.

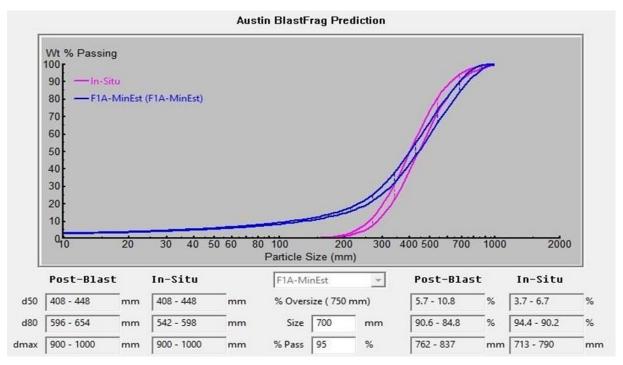


Imagen 15 Predicción de la fragmentación del mineral de brecha masiva.

5.3.4 Estéril Caliza-Hornfels.

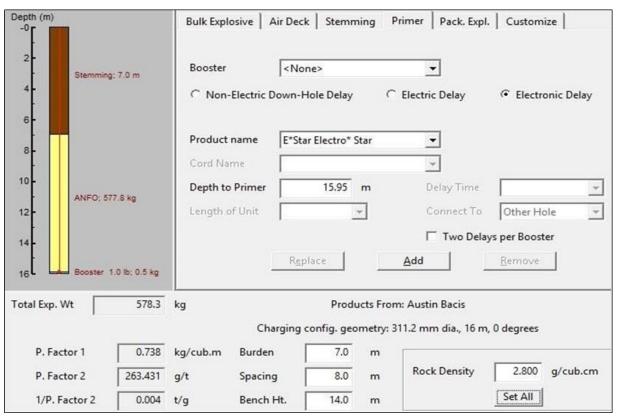


Imagen 16Disgrama de carga para los barrenos en estéril de caliza-hornfels.

意										QI	DPlus	Blast	Desig	ın Edit	or - F	A-ES	STERIL	.qed - [Terra	in Vie	N 1(F1)	A ESTE	RIL)]					
							n Excav									elay	•	《※	√ ₫	o •.	. 11 Œ	a∰r E	a	<u></u> de •i	*	?		
3	385)	355	32	5 .	295	265	235	20	5	175	145		115	100		130	160		190	220	25	0	280	31	0	340	370
685		655		625	595	565	53	5	505	475	44	5	415	40	0	430	4	60	490	52	0	550	580	6	10	640	67	0
	985	,	955	92	5	895	865	835	80	5	775	745		715	700		730	760	7	90	820	85	0	880	91)	940	970
128	5	1258	5	1225	1195	1165	113	5	1105	1075	104	45	1015	100	10	1030	10	60	090	112	0 1	150	1180	1	210	1240	12	70
	1588	5	1555	152	25 1	495	1465	1435	140	5 1	375	1345	1	315	1300		1330	1360	1	390	1420	145	50	1480	151	0	1540	1570

Imagen 17 Secuencia de disparo en estéril. Caliza-hornfels.

Roc	k Properties				
Rock Strength		Roc	k Strei	ngth	
C Very Soft	○ Soft	Lower		Upper	
C Medium	C Hard	69.0	to	110.0	MPa
C Very Hard	 User Defined 				
		Roc	k Den	sity	
Rock Density		Lower		Upper	
C Very Low	C Low	2.5	to	2.8	g/cc
C Normal	C High	· ·			
C Very High	User Defined	p-Wave Velocity, Vp		3.7 - 4.2	km/s

Imagen 18 Densidad y resistencia a la compresión. Estéril caliza-hornfels.

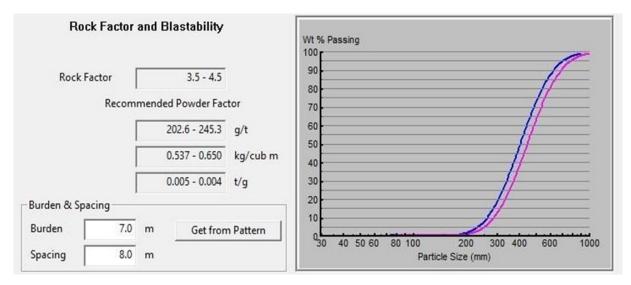


Imagen 19 Factor de carga recomendado. Estéril caliza-hornfels.

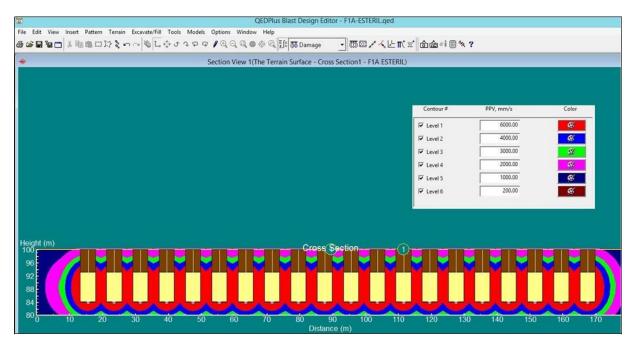


Imagen 20 Contorno de energía al aplicar los parámetros anteriores. Estéril caliza-hornfels.

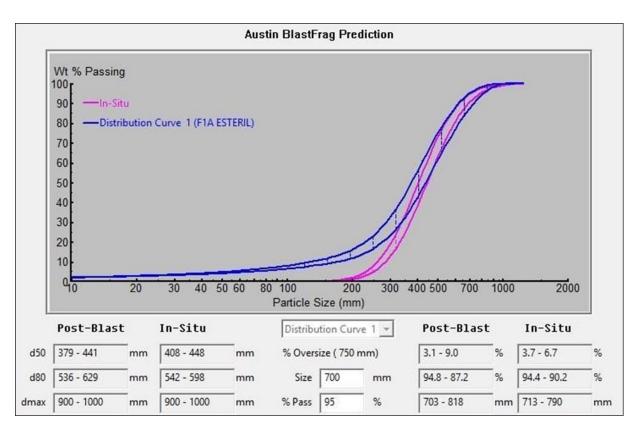


Imagen 21 Predicción de la fragmentación. Estéril caliza-hornfels.

5.3.5 Estéril Caliza-Arenisca

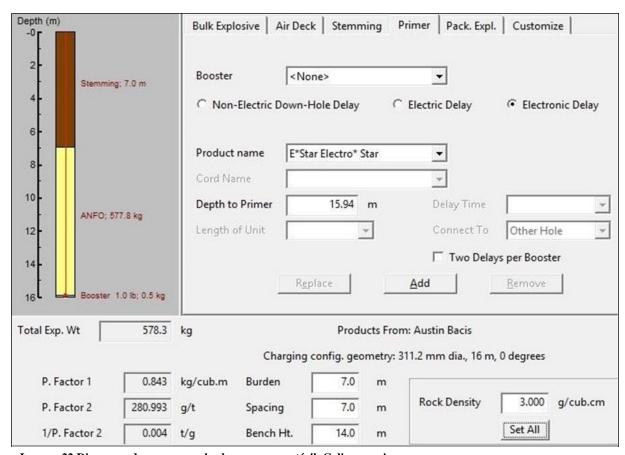


Imagen 22 Diagrama de carga para los barrenos en estéril. Caliza-arenisca.

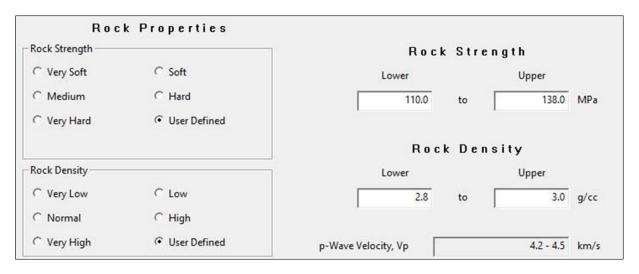


Imagen 23Densidad y resistencia a la compresión. Estéril caliza-arenisca.

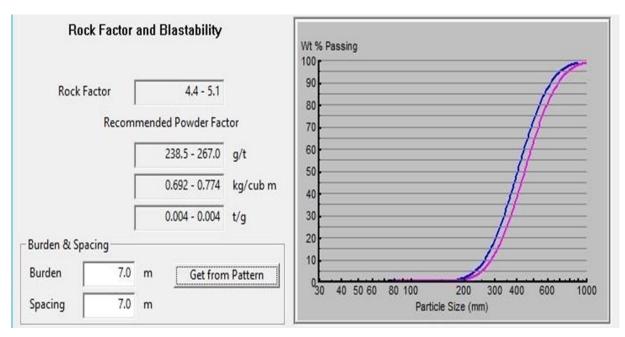


Imagen 24 Factor de carga recomendado. Estéril caliza-arenisca.

Imagen 25 Contorno de energía al aplicar los parámetros anteriores. Estéril caliza-arenisca.

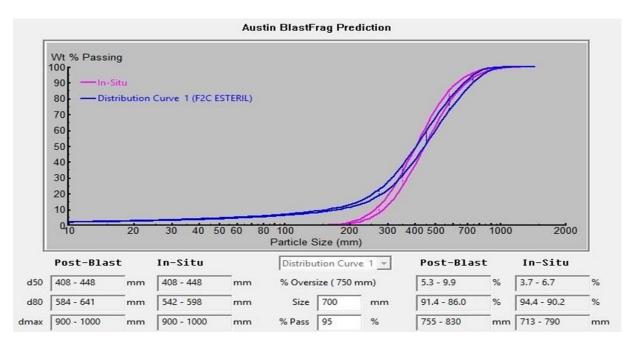


Imagen 26 Predicción de la fragmentación en estéril de caliza-arenisca.

5.3.6 Estéril Conglomerado.

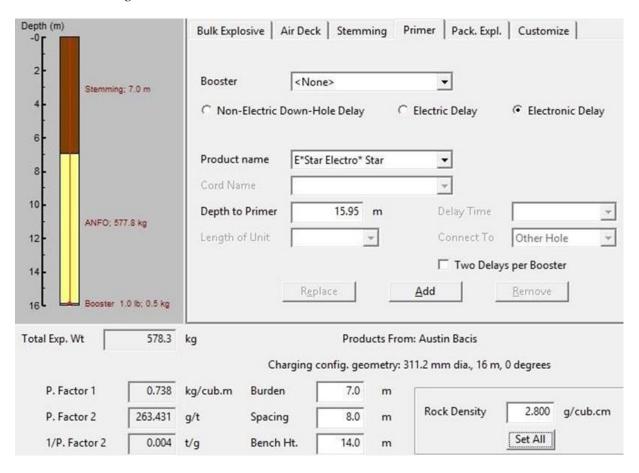


Imagen 27 Diagrama de carga para barrenos en esteril-conglomerado.

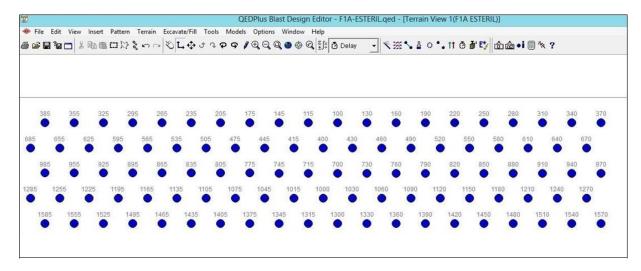


Imagen 28 Secuencia de disparo en estéril. Conglomerado.

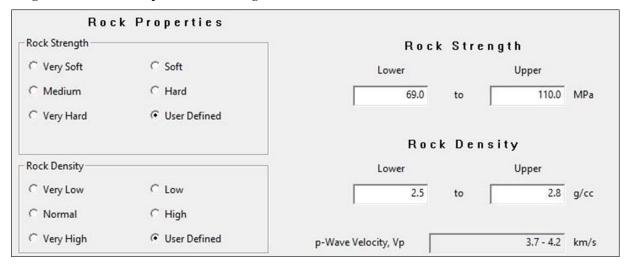


Imagen 29 Densidad y resistencia a la compresión. Estéril conglomerado.

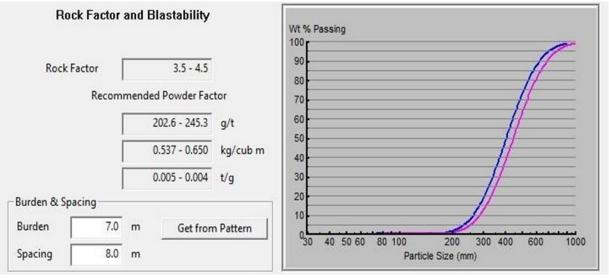


Imagen 30 Factor de carga recomendado en estéril. Conglomerado.

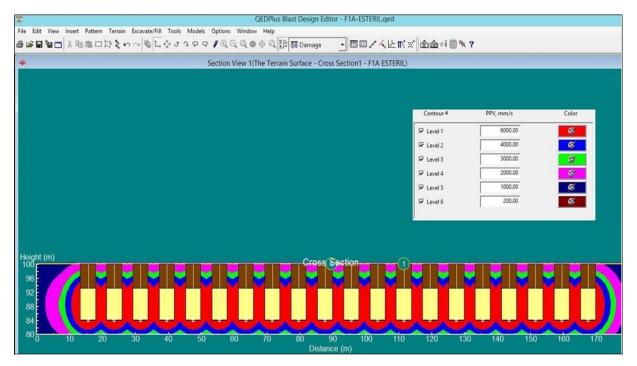


Imagen 31 Energía de contorno al aplicar los parámetros anteriores. Estéril de conglomerado.

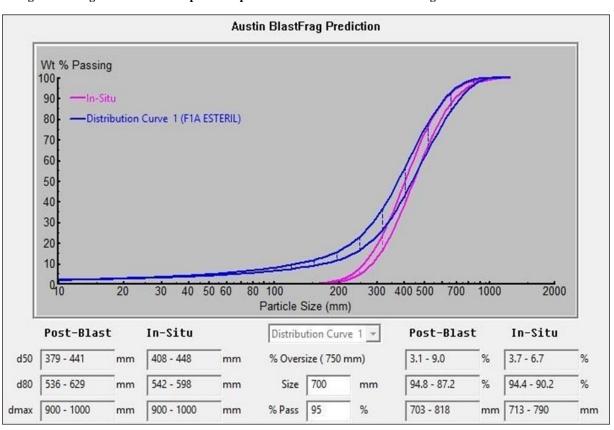


Imagen 32 Predicción de la fragmentación en estéril de conglomerado.

6. CONCLUSIONES Y RECOMENDACIONES.

Con base en el análisis de los resultados del capítulo 4 y la experiencia en campo al realizar las mediciones en las voladuras se puede concluir que, un sistema de iniciación más exacto así como una carga de columna con mayor velocidad de detonación nos dará mejores resultados en cuanto a fragmentación ya que se aprovecha una mayor cantidad de energía del material explosivo, además la exactitud en los tiempos de iniciación permite un flujo constante de energía, tal cual se considera en el diseño evitando fugas.

Cuando nos referimos a un sistema de iniciación más exacto se habla de la precisión y el control que se tiene sobre los iniciadores. Los iniciadores pirotécnicos al ser fabricados traen un retardo predeterminado sin embargo no es 100% confiable que el iniciador detone en ese tiempo debido a diversas cosas y circunstancias que están fuera del control humano, sin embargo al utilizar un iniciador electrónico es posible programar exactamente el tiempo en el que se desea que este detone iniciando el barreno, al hablar de exactitud es importante hacer referencia a la certidumbre que se puede tener en los productos. Recordando que la velocidad de detonación de un explosivo es la velocidad con la que se propaga la onda explosiva a través de este y por tanto es lo que marca el ritmo de la liberación de la energía, en otras palabras es la velocidad a la que ocurre la reacción química que transforma los componentes del explosivo en una masa de gases a presión y temperatura elevadas, una mayor velocidad de detonación en la carga de columna nos dice que tardará menor tiempo en detonar el explosivo al ser iniciado, esta es la razón de que tener un sistema de iniciación más exacto (con mayor control y certidumbre de que se respetará los tiempos dados al máximo) y carga de columna con alta velocidad de detonación nos garanticen mejores resultados en la fragmentación de la roca, pues al tener precisión en los tiempos de iniciación de los barrenos estos respetarán la secuencia de diseño y al tener una velocidad de detonación elevada se podrá formar un flujo de energía continuo evitando fugas (como ya se había mencionado) y replicando de manera más estricta el comportamiento esperado durante el diseño de la voladura.

Con base en lo ya mencionado se recomienda:

- 1) Respetar en la medida de lo posible los parámetros de barrenación (profundidad de barrenación y configuración espacial) esto permitirá que la energía del explosivo se distribuya eficientemente tal y como se contempló al diseñar la plantilla.
- 2) Considerar la implementación de iniciadores electrónicos E-Star como sistema de iniciación en las voladuras, la exactitud de estos permitirá un flujo constante de la energía de la detonación por lo que se aprovechará una mayor cantidad.
- 3) Evaluar la posibilidad de sustituir la carga de fondo por Booster de 1 lb (o de la capacidad necesaria) para concentrar una mayor energía dentro del barrenos con esto se pueden ampliar los parámetros de bordo y espaciamiento dando como resultad final una mayor producción de material fragmentado por barreno.
- 4) Se debería descontinuar el uso de la mecha ensamblada como sistema de iniciación de la voladura.
- 5) Calibrar y certificar periódicamente los camiones mezcladores usados en el cargado de explosivo para garantizar que las mezclas tengan los porcentajes adecuados.
- 6) Realizar pruebas con emulsión a granel para determinar su efectividad en el tipo de roca que se tiene en el terreno y determinar si es conveniente su uso.
- 7) Sustituir la maquinaria utilizada para el llenado del taco por una más pequeña (bobcat), esto permitirá tener un mejor control en el ciclo de cargado disminuyendo incidentes como la ruptura del iniciador.

Finalmente, la base de este escrito es la propuesta de establecer plantillas de barrenación con base en el tipo de material (mineral: diseminado, brecha masiva y hornfels; Estéril: caliza, caliza arenisca y hornfels) y la fase tal como se describe en el capítulo anterior, con base en los resultados que devuelve el programa QED-Plus dichos cambios pueden resultar bastante favorables.

Únicamente como comentario final cabe mencionar que dichos cambios propuestos en este escrito en la actualidad se han estado estudiando a detalle, evaluando y en algunos casos hasta aplicando por lo que es ideal destacar que este tipo de trabajos ingenieriles es a lo que se debe aspirar al egresar de la carrera de ingeniería de minas y metalurgia, aplicar los conocimientos para detectar áreas de oportunidad y mediante el método científico y con bases teóricas bien cimentadas hacer ingeniería, es decir proponer para mejorar.

7. ANEXOS

a. anexo i: "Pruebas de VOD. Booster vs EMULEX."

Prueba 1:

Voladura: F1A-470Material: Estéril


• Diámetro de Barreno: 12 1/4"

Profundidad: 16 mCebo: Booster 1 lbIniciador: Electrónico

Resultados

VOD inicial: 6962 m/ sVOD Columnar: 3764 m/s

• Observaciones: La VOD se mantiene constante a lo largo del barreno

Prueba 2:

• Voladura: F1A 451

• Material: Mineral / Estéril

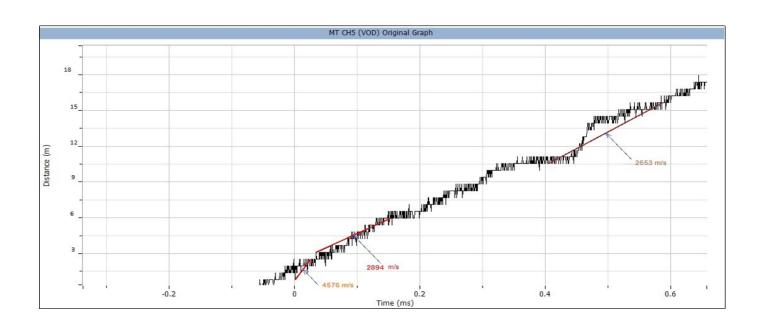
• Diámetro de Barreno: 9"

• Profundidad: 16 m

• Cebo: Emulex 1 3" x 8"

• Iniciador: Dual Delay

42/500 ms


Resultados:

• VOD inicial: 4576 m/s

VOD columnar: 2894 -2653 m/s

• Observaciones: La VOD de columna disminuye a lo

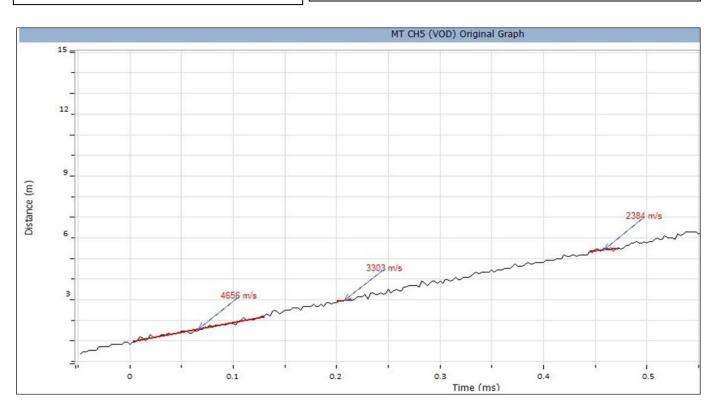
largo del barreno

Prueba 3:

Voladura: F1A 462Material: Estéril

• Diámetro de Barreno: 12 ¹/₄"

Profundidad: 16 mCebo: Emulex 1 3" x 8"


• Iniciador: Dual Delay 42/500 ms

Resultados:

VOD inicial: 4656 m/s

• VOD columnar: 3304 -2384 m/s

• Observaciones: La VOD de columna disminuye a lo largo del barreno

b. Anexo ii: "Certificados de calidad de los camiones mezcladores de ANFO para el cargado de explosivo. Austin Powers."

AUSTIN BACIS, S.A. DE C.V. PLANTA SIDNEY W. FRENCH

CERTIFICADO DE CALIDAD

15 DE DICIEMBRE DE 2016

CLIENTE: Consorcio Minero Benito Juárez Peña Colorada, S.A. de C.V.

FECHA DE PRUEBA: 14 DE DICIEMBRE DE 2016

DESCRIPCION DEL PRODUCTO: AGENTE EXPLOSIVO

MEZCLADOR No: 876 Al inicio de la carga

CARACTERISTICAS	RESULTADO	ESPECIFICACION
DENSIDAD	0.820	0.800 - 0.850
% ABSORCION DE DIESEL	6.3%	5.5 - 6.5 %

Este material cumple con todas las especificaciones anotadas y cubre las pruebas de absorción y densidad que tenemos dentro de nuestros Estándares de Proceso.

Para cualquier duda o aclaración sobre la calidad o diferencia en peso del material favor de comunicarse al Tel. (341) 4141906 o 4140377.

ANTONIO RIOS GUTIERREZ.

AUSTIN BACIS, S.A. DE C.V. PLANTA SIDNEY W. FRENCH

CERTIFICADO DE CALIDAD

15 DE DICIEMBRE DE 2016

CLIENTE: Consorcio Minero Benito Juárez Peña Colorada, S.A. de C.V.

FECHA DE PRUEBA: 14 DE DICIEMBRE DE 2016

DESCRIPCION DEL PRODUCTO: AGENTE EXPLOSIVO

MEZCLADOR No: 914 Al inicio de la carga

CARACTERISTICAS	RESULTADO	ESPECIFICACION
DENSIDAD	0.788	0.800 - 0.850
% ABSORCION DE DIESEL	5.5%	5.5 - 6.5 %

Este material cumple con todas las especificaciones anotadas y cubre las pruebas de absorción que tenemos dentro de nuestros Estándares de Proceso, pero las pruebas de densidad salieron bajas.

Para cualquier duda o aclaración sobre la calidad o diferencia en peso del material favor de comunicarse al/Tel. (341) 4141906 o 4140377.

ANTONIO RIOS GUTIERREZ.

AUSTIN BACIS, S.A. DE C.V. PLANTA SIDNEY W. FRENCH

CERTIFICADO DE CALIDAD

15 DE DICIEMBRE DE 2016

CLIENTE: Consorcio Minero Benito Juárez Peña Colorada, S.A. de C.V.

FECHA DE PRUEBA: 14 DE DICIEMBRE DE 2016

DESCRIPCION DEL PRODUCTO: AGENTE EXPLOSIVO

MEZCLADOR No: 952 Al inicio de la carga

CARACTERISTICAS	RESULTADO	ESPECIFICACION
DENSIDAD	0.790	0.800 - 0.850
% ABSORCION DE DIESEL	6.2%	5.5 - 6.5 %

Este material cumple con las especificaciones anotadas y cubre las pruebas de absorción que tenemos dentro de nuestros Estándares de Proceso, pero las pruebas de densidad salieron bajas.

Para cualquier duda o aclaración sobre la calidad o diferencia en peso del material favor de comunicarse al Tel. (341) 4141906 o 4140377.

ANTONIO RIOS GUTIERREZ.

AUSTIN BACIS, S.A. DE C.V. PLANTA SIDNEY W. FRENCH

CERTIFICADO DE CALIDAD

15 DE DICIEMBRE DE 2016

CLIENTE: Consorcio Minero Benito Juárez Peña Colorada, S.A. de C.V.

FECHA DE PRUEBA: 14 DE DICIEMBRE DE 2016

DESCRIPCION DEL PRODUCTO: AGENTE EXPLOSIVO

MEZCLADOR No: 876 A la mitad de la carga prueba # 1

CARACTERISTICAS	RESULTADO	ESPECIFICACION
DENSIDAD	0.783	0.800 - 0.850
% ABSORCION DE DIESEL	3.0%	5.5 – 6.5 %

Este material NO CUMPLE las especificaciones anotadas y NO CUBRE las pruebas de absorción y densidad que tenemos dentro de nuestros Estándares de Proceso.

Para cualquier duda o aclaración sobre la calidad o diferencia en peso del material favor de comunicarse al Tel. (341) 4141906 o 4140377.

ANTONIO RIOS GUTIERREZ.

AUSTIN BACIS, S.A. DE C.V. PLANTA SIDNEY W. FRENCH

CERTIFICADO DE CALIDAD

15 DE DICIEMBRE DE 2016

CLIENTE: Consorcio Minero Benito Juárez Peña Colorada, S.A. de C.V.

FECHA DE PRUEBA: 14 DE DICIEMBRE DE 2016

DESCRIPCION DEL PRODUCTO: AGENTE EXPLOSIVO

MEZCLADOR No: 914 A la mitad de la carga

CARACTERISTICAS	RESULTADO	ESPECIFICACION
DENSIDAD	0.785	0.800 - 0.850
% ABSORCION DE DIESEL	5.6%	5.5 - 6.5 %

Este material cumple con todas las especificaciones anotadas y cubre las pruebas de absorción que tenemos dentro de nuestros Estándares de Proceso, pero las pruebas de densidad salieron bajas.

Para cualquier duda o aclaración sobre la calidad o diferencia en peso del material favor de comunicarse al Tel. (341) 4141906 o 4140377.

ANTONIO RIOS GUTIERREZ.

AUSTIN BACIS, S.A. DE C.V. PLANTA SIDNEY W. FRENCH

CERTIFICADO DE CALIDAD

15 DE DICIEMBRE DE 2016

CLIENTE: Consorcio Minero Benito Juárez Peña Colorada, S.A. de C.V.

FECHA DE PRUEBA: 14 DE DICIEMBRE DE 2016

DESCRIPCION DEL PRODUCTO: AGENTE EXPLOSIVO

MEZCLADOR No: 952 A la mitad de la carga

CARACTERISTICAS	RESULTADO	ESPECIFICACION
DENSIDAD	0.814	0.800 - 0.850
% ABSORCION DE DIESEL	7.3%	5.5 - 6.5 %

Este material NO CUMPLE con las especificaciones anotadas y no cubre las pruebas de absorción que tenemos dentro de nuestros Estándares de Proceso, pero las pruebas de densidad cumplen con las especificaciones.

Para cualquier duda o aclaración sobre la calidad o diferencia en peso del material favor de comunicarse al Tel. (341) 4141906 o 4140377.

ANTONIO RIOS GUTIERREZ.

AUSTIN BACIS, S.A. DE C.V. PLANTA SIDNEY W. FRENCH

CERTIFICADO DE CALIDAD

15 DE DICIEMBRE DE 2016

CLIENTE: Consorcio Minero Benito Juárez Peña Colorada, S.A. de C.V.

FECHA DE PRUEBA: 14 DE DICIEMBRE DE 2016

DESCRIPCION DEL PRODUCTO: AGENTE EXPLOSIVO

MEZCLADOR No: 876 A la mitad de la carga prueba # 2

CARACTERISTICAS	RESULTADO	ESPECIFICACION
DENSIDAD	0.787	0.800 - 0.850
% ABSORCION DE DIESEL	5.6%	5.5 - 6.5 %

Este material cumple con las especificaciones anotadas y cubre las pruebas de absorción que tenemos dentro de nuestros Estándares de Proceso, pero las pruebas de densidad salieron bajas.

Para cualquier duda o aclaración sobre la calidad o diferencia en peso del material favor de comunicarse al Tel. (341)/4141906 o 41/40377.

ANTONIO RIOS GUTIERREZ.

c. Anexo iii: "Equipo y software utilizado".

Sismógrafo White MiniSeis II: Es un sismógrafo de monitoreo para voladuras, ideal para el continuo monitoreo de vibraciones en voladuras, demoliciones, construcción y demás proyectos. Su función es medir y registrar la vibración y el golpe de aire que se genera de una voladura. En términos generales se compone de: un receptor (geófono y micrófono) que es un captador electrodinámico o piezoeléctrico que se instala en forma solidaria a la roca, sistema de cables los cuales son los encargados de llevar la señal captada por los receptores y un equipo de monitoreo que amplifica las señales que vienen de los receptores, generalmente acoplado a un sistema de registro que permiten visualizar y tratar los datos para su interpretación, denominados sismógrafos para voladuras.

Características: El registro sísmico de las voladuras se realizó con un sismógrafo marca WHITE, el cual fue configurado para registrar una

sobrepresión de hasta 142 (dB), en un tiempo de registro de 0.5 seg. y velocidades de partícula mayores a 0.040 in/seg respectivamente.

Este modelo de sismógrafo cuenta con un procesador integrado que cuantifica parámetros de la dinámica de partícula, tales como: la frecuencia (Hz), velocidad máxima de la partícula (in/seg), tiempo (en ms) y sobre- presión de la onda de choque (dB), parámetros indispensables para la aplicación de los criterios de seguridad.

MicroTrap: Es un instrumento que se caracteriza por lograr un registro de alta resolución, ser portátil y accesible, ya que ofrece un manejo sencillo. El MicroTrap es el resultado de la fusión y el mejoramiento de las características más importantes de los equipos de medición de VOD más populares de mundo. El registrador MicroTrap ha demostrado su confiabilidad bajo condiciones extremas de temperatura, clima, polvo.

El Software Analítico Avanzado de MicroTrap permite al operador analizar las señales de voltaje DC registradas por el cable de medición (PROBECABLE) y convertirlas en lecturas de VOD.

Características: El MicroTrap es un equipo capaz de monitorear continuamente el perfil de velocidad de detonación a lo largo de una columna de explosivo. Este equipo se basa en la medición de la resistencia lineal conocida del cable o

sonda; el PROBECABLE cuya resistencia es de 10.80 ohms/m, se introduce en la columna de explosivo y el equipo registra la resistencia del sistema (PROBECABLE y cable coaxial RG-58) y lo guarda en memoria en un periodo total aproximado de 2,000 ms una vez que empieza la medición. A medida que avanza la detonación se destruye el PROBECABLE, esto se refleja en una disminución de la longitud del cable y de la resistencia total del sistema, todo monitoreado y registrado por el MicroTrap; una vez que los datos son exportados a la computadora, el software transforma los datos de resistencia vs tiempo a un gráfico de longitud vs tiempo; la velocidad se obtiene al hallar la tangente del grafico en la sección deseada (tangente = velocidad = longitud/tiempo).

Split-Desktop V 3.0 y WipFrag 3: Son softwares para la determinación de tamaño de fragmentación de rocas gruesas. El análisis se hace por medio de imágenes digitales adquiridas en el campo para determinar la distribución del tamaño de partícula de su roca fragmentada en cualquier etapa del proceso de trituración. La fuente de estas imágenes puede ser de la rezaga, camión, o cualquier otra situación donde se puedan obtener imágenes claras de fragmentos de roca.

Das Data: El Data Adquisition Suite DAS permite al usuario, descargar datos y analizar toda la información registrada por el sismógrafo White MiniSeis. Se trata de un software que permite al usuario procesar y analizar los datos de forma rápida y eficiente. Permite la presentación de resultados en otros programas como Word o PowerPoint. El software permitirá la aplicación