
EVALUACION DEL PERSONAL DOCENTE

CURSO : Microsoft Visual C + +
Oel19 al 30 Junio, 1995

Conferencista : lng. Noe Alvarez Manínez

Marque con una 11X11
, su respuesta.

Los conocimientos del profesor sobre el curso son:

L..--...IIExcelentes '---..JI Buenos '---..JI Regulares

Las preguntas de los alumnos las contestan con :

'---..JI Mucha seguridad .___--JISeguridad '----'~Inseguridad

La clase se desarrolla en forma :

'---..JI Muy interesante '---..JI Interesante .._ _ __.!Aburrida

El método de enseñanza del profesor conduce a un aprendizaje :

'---..ti Excelente .__ _ __.!Bueno ._ __ _.!Regular

La organización y desarrollo del curso es :

'---..JIAdecuada .__ _ __.!Malo

La calidad del material utilizado es :

L..--.JIExcelenle .._ _ __.!Bueno L-_ _,IRegular

Le agrado su estancia en la División de Educación Continua :

._ __ _.!No, Diga porque!

Recomendaría el curso a otras personas :

.__ _ __,lsi '---..JINo, Diga porque!

Medio del cual se entero de este curso

L----JIMalos

L----IIMalo

FACUL TAO DE INGENIEAIA U.N.A.M.
DIVISION DE EDUCACION CONTINUA

lmCROSOFT VISUAL C ++

DIRECTORIO DE PROFESORES

19 de julio al 3 de julio de 1995

ING. NOE ALVAREZ IUARTINEZ

ADMINISTRADOR DE LA RED

UNIDAD DE COMPUTO ACADEMICO

FACULTAD DE INGENIERIA, U N A M

CIUDAD UNIVERSITARIA

C.P. 0~510 MEXICO, D.F.

TEL: 622 09 51

'pmc.

Palac1o de Mmena Calle de Tacuba S Pr1mer p1so Deleg Cuauhtemoc C6000 Méx1co, D F. APDO. Postal M-2235
Telelonos 512-8955 512·5121 521"-7335 521·19137 Fax 510·0573 521-4020 AL 26

n n. n n u n JI ~Ji
FACULTAD DE INGENIERIA U.N.A.M.

DIVISION DE EDUCACION CONTINUA

MATERIAL DIDACTICO

MICROSOFT VISUAL C++

JUNIO 1995

Palacio de Mineria. Calle de Tacuba 5, primer piso, Delegación Cuauhtimoc. 06000 Mi1ico, D.F. Tel. 521·4022 y 23, Fal 510.(1573 Apdo. Postal M·2285

,;;::contehts v 111

(-_.) '·"•. , , ... - ·-·· 50
lntroducflon .. ,~ 1

' . Introductions :: ... : ~:"::.3
Course Outline ... : ó.'..4

Course Outline .. 5
·· Cou~s~ oúiliri~ -;.-~ i! _: .. :·: ;_ ~~: :~ }: ~ -~ ~. ;:· -~:. -~-::: ~ ~~. ~~:..t. ~;; _:::-.: . f.:~,~!.-~. :7;.: ~ :::1 ~9 J_g_~ f!: .. ; .. ;; } . 6
· Coiírse Malerials ::: :.: ... ::.':.7
Curiicula :· .. :.x:!:.~~!~-1.:: ••• • : ••• .'. --~:~¡~!:.: ~-~; -~-~- ::~: -: .. ::~ ; .. ; ; .8

'· Facilities·.::.:.::·.'.; .. ::::: ... ; : ... : .. 9
,-.:..·• 1 -.t[', ;;!.I.H:I~J/1bU ·.·';;rut!e::..
·I\A~ll.l~,1: What ls ()bJect-.Orlented Analysls? 11
Overyiew ; .. : ,_. .. : 13
Approaches lO S.~ftware [)esign .. 14

Fea[llres of the Objecl-Oriented Paradigm ... 15
Abstr11Clion :: .. :.: .. :.·16
Encapsulation:0 : ::.: .. 17
Classes ... :.:: ... : .. : .. : ... ::18
lnherilance ; ... :.:".:: : ... 19
Polymorphisf!! ::.: .. ;·.;· .. :.20
Strucrured.vs: Objecl-Oriel)led N0 ... : :.21
Struclured Approach lo Design ... "22

Ct)
Objec1-0riented Approach lo Design .. 23
.-:C:':'i;-+~~ ~: t::>.·-.:¡,,tr:": ·· ::-:nd ·t,r ·~:; · ,-_ · .. --1-j -_ -· • , J,\'·

Module.2: A General ApprÓOch to Object"Oriented Analysls
and,Design ... 25

. Overview,.~ .. , ... ::.: ... ::.27
Major Sl~ps in 00 Analysis and Design ... :::28
Class Index Cards :::: .. :::29

. Understanding the·Problem .. :::30
Identifying the Classes ., .. ·:.31
Assignihg Behavior 10 0~ ... :::32

-Idemifying Conununications.Belween Objects ... : .. 33
· Identifying Class RelaÍiof!Ships .. ::.34

Implemen_ting Classes .: , ... : .. 35
·oass Activity ... : .. 36
Lab ·¡: Fundarnenlals of O~jecl ,Oriented Design ... :.~41

L ·_ .-¡, ,. . . ',:··· ·• •: ·:..·. ~·-~·· ., ,.:,._ • ..:··,r:-.:¡;_ --· .. · ... ~
Module 3: Ttie Baslcs ... :. 43
[ovemew ·:.·: .. ~~~ .:: .. : -~ ~::-. ~ .' :~.: ::: .1.·;:. : .. • :.~: .. -~ -~-. ~ ~.:.! .¡; :-.. !::! .1.; : .. -; .. : : }. !!.:~45 . .
, The Roots of.C/C++ ~ : ... ~:.:46
"Anatomy:or a Simple C+.+ Progiarn: ... ,:-::47
, Fundamenlals ·or Ediung S~ure~ FÚes ... ~:!:48

dam. . ··• f Edi . .F. :1 · ' é49 'Fun en s o ung 1 es ... • .. · ..
Contexl-&'nsitive Help' .'5·!.L' .. ' .. 50

S · e ·1 0p · · ,· ·. ,. • · ·· · "·s¡ ewng ornp1 e. uons:.,:~:~.,: ... '.::
Cornpiling Building, and Re~uilding Prograrns : ... ' .. '-:52

- ' . "•)

,.
>
' !·

r.

' ,,

f

'¡

1

1

'· •,'

·,
.,
'j

'

,,

-·~

1
'

' '

Ct·

~!:; ~· \; . .~-~::r,r:-m

b!.r:~·~:,, i'.!tiliUIC\¡;'• -.,

·¡t'!.'r.l'J•.J ~~ ~·ury t<r.tr•n.- :' ·~;n~":.:

e,m~na !>O~]f.:t_,_GI.j¡!¡l~· ~ •

f:,l.OtQ!)· tu:··: '""1 1-iG'lG',\ ,;·

//<JJ~f lfU; t·ll1J:o:'{IDU<, ...
()ActAIGM.

fl\lO<llii0 ¡¡:: ¡wb¡GW<'JIJ~!J,IC O ?,!WIO;o l:llUq\<JIJ

~u:. ¡miJ ... · .. · ···

-¿,.,.,!í1-:¡J G(3fnl~-u ... ~···,

.L.:.;~¡']]), ob.;LSt·lt .i: ·

1t ... , , ~ 21~rr.w<;un ..

I:!C•r. COUllO[' O""L'I~II'.

V Y. V :nrq O o ()iXO>SIOt< ·

ro R re 91 (\IJ!;to :út 2

l{'>lf!l~OmlJ ()t..'í.i:ffil".2

e .-,u,lo¡·-- · _ · -· -.... -.. -

; :.

" •• ; 1 ,; '

''"!\);..'
. J(Ü

J03
............. " .. lo:i

.. roo
""'il8
. "3Q

"/)·;

···al

~¡{¡

íL\
"'·.¡Q

. : ' .. ;{ 2
. . ":-:~

:-'10<11115 r:: !'í•"'i!Jb!OUO! OUQ fOC!CO: QD~).\Ci¡CJ!': •::•.¡q !:!OM

.VJ:IG (0UACl21r1H::. ~ -- ..

g:~:~:~iJJ:.UT S'LJQ DGCI;;.UJ~llt (}b;Lorru~ ..

-. .., ;~¡;:utu;;u¡ ()b&UlG!i'l''"''''.··--·--.-~·····--·-·

V?.~~fur.'m;,u¡ m1 JUH!'Sitl'\''lqow .. :
"/U!}iUJ~rK: Ql.X:;UJlOlé

J).bf¡~ Dt C-H· ubr.tsrnn.· 'Jll ()1-.r:Lr.:t~it\

if\3l~U~ r,ouJ\aJ~mr,¿· :'
21lJirll<..,

rynocrc.1 D•t1 ,!)-.llm
J.V{;. 1:rm21 ((C/vt-OLQ

cou¿¡m1r1 suq ¡¡w.¡¡= -- ·
[)Ct'~~uit guq p.lti!!I}l~!!J~~ ;\Sll!:ip¡r.:·

r.mtr"!WJGUiil D':.fr.J J,f.bc(...... .

FJbtC'?.'!Olf.l:' 2f3fCU!'Gtl:-:::" gnq (OU![;c>-r.l;r~ ·~r·¡¡.;1~ ,-;.rr! ·

....... _\g

. ... ,_\

.. . ., .l ,,

~¿

_\)

..l j
......... .10

........... """'Q(l

. QS
................................ '<;Q

.... ·········· ·········Q~

!f\joqfl¡G <1: f:I021C C·H· 2ÁUlC~' n-:·qo l•\bon' Cl'·Q om:,a¡CL~'" Q'J

~~ ~: .Lvc n:r~w~;: ·,-:¡

21/1 k-~,\~},h ·\:¡,

bll;t;.~(V:f;.U'Jt D~CCf!J..~

(H ::c).t·,Wfl""'"'""""'""
-~.

~·11 ~ ::.::~ .. :~::::::::::.~ ... ?!:~!;.~;~-.!.':: ... :::::::::::::::~~~::.:~.~-:::!:~;..~·; .. ;_:·:_.... ' ·_:·
N' l"• , ¡<>•·, ¡pr. am¡q ~ Oó:,---- Ss:l:Y.lV-Jil:xl']-'SA JllQOID ·

JÁÍ

1

vlll Contents

Lab 9: Containment and Embedded Objects ... 191

Module 2: Using lnheritance ... 193
Overvie"' ... 195 \)
Designing Classcs for lnheritance : ... l96
Why Use lnhcritance? ... 197
Syntax and Usage ... 198
Relationships Between Objects in a Hierarchy ... 202
Overriding and Qualification .. 203
lnheritance and lmplicit Call Order .. 204
Control Flow During Construction .. 205
Access to Base Class Members .. 20Q
Lab 10: Inheritance ... 207

Modul~ 3: Managing Complex Projects Uslng the
Integra : Development Environment : 209

. Overvie"' .. 211
Mulitple ~,-rce-File Prograrns ... 212
.MAK Files ... 213
Editing a Project File .. : 214
Header Files .. : 215
Using !he extem Keyword .. 216
Lab 11: Managing Projects ... 217

Module 14: Using Arrays ... 219
Overview .. 221
Creating an lnteger Array ... 222
Accessing Individual Array Elements ... 224
Initializing lnteger and Character Arrays .. 226
Arrays an,; Jle sizeof Operator ... , 228
Diffen;nces with Olaracter Arrays ... 230
Olaracter Arrays As Function Arguments .. 233
Functions That Conven 10 and from Strings .. 235
Lab 12: Manipulating Arrays .. 236

Module 15: Worklng wlth References and Polnters 237
Overview .. 239
References: An Overview ... 240
References as Aliases ... 241
Initializing a Reference ... 243
References as Function Arguments ... 244
Reference.< and SWAP.CPP .. 246
Pointers: ."n Overview .. 247
Creating "cJinters .. 248
Pointers (.mtain Addresses .. 249
Using Pomters ... 250
Oiffering Uses of • ... 252
Other Uses of Pointers .. 254

Y111 Conlents

Lab 9: Contlinment and Embedded ObjeciS ... 191

Module 2: Using lnheritance ... 193
Overview .. : 195 ')
Designing Classcs for Inheritance ... _. l96
Why Use Inheritance? ... 197
Syntax and Usage ... 198
Relalionships Between ObjeciS in a Hierarchy" : ... 202
Overriding and Qualificalion ... : 203
lnheritance and Implicit Cal! Order .. 204
Control Aow During Construction .. 205
Access to Base Class Members .. 20~
Lab 10: Inheritance ... 207

Module- 3: Manoging Complex Projects Uslng the
. Integro : D~velopment Environment 209

Overview .. 211
Mulitple ~'·"rce-File Programs ... 212
.MAK Files ... 213
Ediling a Project File .. 214
Header Files .. 215
Using lhe extem Keyword .. 216
Lab 11: Managing ProjeciS ... 217

Module 14: Uslng Arrays ... 219
Overview .. 221
Crealing an Integer Array ... 222
Accessing Individual Arra y ElemeniS ... 224
Inilializing lnteger and Character Arrays ... : .. 226
Arrays.an.; ¡J¡e sizeof Operator : ... 228
Differences wilh Character Arrays ... 230
Character Arrays As Funclion ArgwneniS : 233
Funclions That Convert ro and from Slrings .. 235
Lab 12: Manipulaling Arrays .. 236

Module 15: Worklng wlth References and Polnters 237
Overview ... :.: 239
References: An Overview ... 240
References as Aliases .. : 241
Initializing a Reference ... 243
References as Fwx:tion ArgumeniS ... 244
References and SWAP.CPP .. 246
Pointers: .'n Overview .. 247
Crealing Q"inters ... : .. 248
Pointers t.mlain Addresses .. : 249
Using Pomters ... : 250
Differing Uses of • ... 252
Olher Uses of Pointers .. 254

Contenls lx

Contrasting References and Poimers ... 257
References and Pointcrs .. 259
Advantages of References Over Poiruers .. 260
Lab 13: Using Poimers to Manipulate Strings .. 261

Module 16: Using the Debugger .. 263
Overview .. 265
A Bug Typology .. 266
Thc Visual Workbench Imegrated Debugger .. 268
Using Debug Windows ... 269

Module 17: Using CString .. 281
Overview .. 283
CString: A Microsoft FoWldation Class .. 284
What Is a CString Object? .. 286
Creating a CString Object. .. 287
Manipulating Data in a CString Object ... 288
Using a CString Object Asan Array ... 289. .•
How You Get Data Out of a CString Object .. 292
Lab 14: Using Commercially Available Oasses ... 293

Module 18: FormaHing and File 1/0 295
Overvtew .. 297
Streams and Buffering .. 298 -.

cin and What You Can Do wilh ll ... 299
cout and What Y ou Can Do wilh 1!... .. 300
Working wilh Files: Overview .. 302
Cbecking for Success .. 303
Using Tcxt-Mode File Streams .. .305
U sin¡¡ Binary-Mode File Streams .. 308
Managing File-Positioning .. 310
Lab 15: Formatting and File 1/0 ... 311

Module 19: Memory Management 313
Overview .. 315
Understanding Code and Data Separation ... 316
Storage Oasses ... 317
static Storage Oass .. : .. 318
Using Dynamic Memory ... 320
Dynamic Objects and Arrays of Objects .. .-.... 327
Dynamic Memory Issues ... 330
Lab 16: Dynamic Memory .. 331

x Contents

Module 20: Converslons 333
Overview' c ... 335
Siandard Type Conversions .. 336
Conversion Constructors ... 337

)

Copy Constructors .. 338
Conversion Operators ... 339
Conversion Order and Arnbiguity ... 342

Lab 17: Building Strearns in the Heap .. 345

Appendlx A: Hungarfan Notatfon Table 1

. Appendlx 8: Operator Precedence Chart 1

Appendlx C: Memory Management 1
How the Stack Works .. 4
Recursion .. 6
Memory Models and Se~emation ... 7
lnsufficient Memory Conditions .. 8

Appendix O: Readlng List .. 1

Module 1: What Is Object-Oriented
Analysis?

Module 1: Whatls ObJect·Orlented Anatysls? 13

L Overview
Sllde
Objeclive
Provide en
overview of !he
module
contents.
Estoblish the
importance of
understonding
the new
problem
opprooch ond
new
terminology.

......................... ·· ···

• AA:roa:hes to Scttv.tie Desig¡

• Fedues d lhe~:O!ErtEdPaa:fgn

• N:Íitrcdlcn, Encx:psudtm, Ocsses, lrila1tcnce,
cndPd)mr¡:tism

• Stnx:h.r«<vs. ~-oieied.6roysis crdoésig¡

This is the fust of two introductory modules. In this module and the next, you will
examine the general concepts that are the framework for object-oriented software
design and implementation.

These concepts serve to clarify the content Óf the course and help you detennine
your expectations. At the sarne time, the modules will provide exarnples and
activities that contri bu te to your unden;tanding of the overall picturc. Once this
foundation is laid, you willlcarn to actually read and use object-oriented codc.

Module Summary
This module offen; a description of object-oriented analysis and design (OOAD).
The riext one presents a general approach 10 OOAD. In both cases. thc stage is
being set for subsequcnt modules, in which you will develop and apply your sk.ills.

As you go tluough this module, be think.ing of an application design problem. As
you begin to get a feel for what objects are. try 10 apply an object-oriented
perspective to that design.

Objectives
At the end of this module, you will be ablc to:

. • Discuss key software design approaches and issues.

• List metbods for achieving software design goals.

• Discuss essential object-oriented analysis and design.

• Differentiate between the attributes of an object and its behavion;.

• Contras! procedural and object-oriented analysis.

14 Module 1: Whalls Object-Orfented Analysls?

Approaches to Software Design
,. ". •' -~· . ' '

Slide
Objeclive
Briefly cover
vorious
opproaches to
software design
and analysis
noting that
each is valid for
vorious types of
problems.

• Sln.du'a:J hlcl>tsls cnd Deslgl

•. Ddoorive1 kdysls cndDeslgl

• REidicrd Dctcl:x:seMctysis cndDESig1

• Rua,flEidicnBaedAnc:l)$is cndDesig~

• Q:fed-Oia1edkdysls cndDesi{Jl

Analysis and Design (A/0)
Before any coding occurs, lhe nrst phase of software construction should be an
analysis and design phase. This phase defmes lhe logical problem domain-lhe
problem lhat must be solved or lhe service lhat mus! be perionned. The problem
mus! be defmed (analyzed) and modeled (designed) in 1erms lhat are transferable to
a prograrn coding style.

There are a number of generally accepted broad approaches or melhodologies for
analysis and design. Each is suited 10 a particular class of problem:

Structured AID uses functional decomposition 10 arrive at a procedure-oriented
approach to solving a problem. This is probably lhe most commonly used and
flexible of all melhodologies.

Da1a-driven AID centers on records as lhey originale, change, and pass lhrough a
system. This approach is oflen used to model record-keeping, inventory, and
material control sys1ems. It is lhe olher side of !he coin to lhe structured approach.

Relati.on database AID seeks 10 apply relatioos between atuibuleS in a syslem to
fonn a multi-dimensionaltable of values and connections.

Rules- and re/a1i.on-based AID seeks to set up a series of logical relalionships or
rules 10 govern or describe a system behavior or strucrure. This is most commonly
used in artificial imelligence (Al) and expen syslem applicalions.

Object-oriemed AID (abbrevialed OOAD) identifies "actors" in lhe problem
. domain, !he abililies or responsibilities of each actor, !he relationships between !he
actors, and fmally, lhe main script for lhe actors.

Compuler languages are often designed (and betler suiled) for use wilh only one or
a few of lhese ND melhodologies. Microsof~ Visual C++N is a very flexible
language, but it is best suited to !he strucrured (procedural) and object-<Jrienled
approaches.

)

Module 1: What ls Object-Orlented Analysls? 15

Features of the Object-Oriented Paradigm
Slide
Objective
To opproach o
O
programming,
introduce these
4 high-level
features as
characteristics
of the 0-0
programming
paradigm.

Delivery Tips
Introduce each
item briefly to
set terminology.
Eachwillbe
coveredon a
following page.

• Abstra:tial

.• Prcmiid d:slra:I!01

• D::tact:s1ra:l!m.

• E ncq::&Udkn d DctaO'ld Prooecüa;

• D::taHdrg

• lrha'italo9

• SirgecrdmJti¡:leir 1 silo m

• Pdyrra'¡;tism

What Are Objects?
As the phrase irnplies, objec!S are the basis for object-Qriented programming. The
notion of an object is familiar to all of us, and ittransla!es wellto the world of
programming,

For our purposes, an object has an identity. It is defmed by i!S atlributes (data
elemen!S) and behaviors (functions). An objeci's atlribuleS and behaviors make it
distinct from other objec!S. In the language of object-Qrienled programming, objec!S
representlhings such as rectangles, ellipses, and triangles, as well as money. part
numbers, and ilems in inventory .

.
The Object-Oriented Paradigm
Although there is no hard defmition of what the object-Qrienled paradigm enwls,
most people agree that it encompasses atleast four general concep!S:

• Abstraclion allows users 10 ignore the irnplementation dewls and conce.ntrale on
a higher-level view of an entity. That is, object-Qrienled programming
encourages the prograrruner to design in abstractterrns.

• Encapsulation provides a grouping mechanism that describes the bundling of
data and functions together within an object so that access to the data is
perrniued only through the object's own functions.

• W!eritance is a mechanism for automatically sharing functions and data arnong
classes, subclasses. and objec!S.

• Polymorphism allows relaled objec!S to respond differently (but appropriately)
when responding 10 úle sarne message.

Importan! This course does not anemptto cover multiple inheritance or
polymorphism as supponed by Visual C-H-.

16 Modula 1: What ls ObJecf·Orlantad Analysls?

Abstraction
S lid e
Objeclive
Definetwo
types of
abstraction:
Procedural
provides
behaviors while
Data provides
attributes for
objects.

Dellvery Tlps
Challenge
students to
achieve
abstrae! ion
within all the
problem
domains
presented
during the
week.
Abstraction is a
paradigm shitt
tor procedural
programmers.

• ProoeciJ'd Abitrc:dlm .

.• DdaAtstrcdlal

- ,_;

Absttacunn is !he capability 10 represent, denote and handle information al a ltigher
levellhan 1s inherentto a computer or base language. For example, il is easier 10

work wilh records and processes !han il is 10 work wilh a collection of integers,
floating poim nurnbers, and executable inslrllctions. Allltigh-level modem,
languages suppon absuaction.

Procedural abstraction proV!des us wilh !he behaviors of a system or entity. Global
functions and member functions provide for procedural abstraction in C++.

Data absuaction provides us wilh !he altribwes of an entity. The ltigher-level dala
lypes challenge srudents 10 work 10ward acltieving abstraction wilh alllhe problem
domains :resenled in !he course. Absttaction is a major shift for procedural
progranuners.rays, pointers, structures, and classes panicular !y support data
absttactic•¡ in C++.

Reference
Referto ··Fundarnemals of Object-Orienled Design" in lhe C ++ Tworia/.

Module 1: What ls ObJeci·Orlenled Analysls? 17

Encapsulation
SUde
Objecllve ·
Staying high·
leve l.
encapsulation
groups related
"information &
processes" into
a unit.
Introduce a
rectangle.
descnbing its
attnbutes and
behaviors.

Rectangle

lO aJlOIÍlCf

Fncapsulalion is !he ability to group related pieces of infonnalion and processes
into a self-comained uniL In many éases, it also allows data-implcmcmalion dctails
to be hidden. (lñe software industry has learned !he costly lesson that dcpendencc
on specific data-implememalion schemes often harnpers maintenance.)
Fncapsulation groups infonnation and processes in !he fonn of aunbutes and
behaviors.

The mrribures of a rectangle include its width, height, and location. and perhaps its
color. Notice that other auributes, such as !he perimeter and area, are redundan!
becausc they can be calculatcd by lrnowing !he height and width, and knowledge of
!he fundamental nature of rectangles.

The behaviors of a rectangle largely depend on !he problem domain, but might
likely includedraw, move, resize, rotate, reflect, and·compare a 'rectangle to another.
shapé.

.. .

• .

18 Module 1: Whatls Objec:I·O~ented Analysls?

Classes
Sllde
Objeclive
lnterject the
definition of a
"class" to
descnbe a
category ot
related entrties.
Define an
·instan ce· as
one object
from the
category
Rectangle.

Delivery Tlps
OOAandOOD
typically don't
use the "Ciass·
terminology
the implement
ation ot the
design doesl

'=="""'d .. .J
rect2 .

.What Are Classes?
A class names a category of relaled enlilies or objects. Each of !hose enlilies is
called·an object or instance of lhat class. Each object in a class is a particular
example of a more general category.

The class Rectangle includes any object lhat euctly meets the basic requirements
of lhe rectangle category. The illustration shows lhree different rectangles. In
object-oriented terms, rect 1, rect2, and rect3 are objects of lhe class Rectangle.

Classes are recognized as a useful and widely used consuuct, even lhough they are
not strictly required for OOAD or object-orienled language irnplementalion. C ++
directly uses lhe class consuuct for abslraclion, encapsulalion, inheritance and
polymorphism. . .

..
. ...

4' .. ·

Module 1: Whalls ObJeci-Ortented Anolysls? 19

lnheritance
Slide
Objeclive
The third majar
choracteristic
ot OOP.
• inheritance:
allowsa ·
generalized
grouping to
show "ls a type
of"
relationships.

Geometrlc Shspe 1

What ls lnheritance?
Inheritance is a means for creating a new, more specific type from an existing. more
gener3.I type. lltis is done by staung ihe difference between the two typcs.
lnheritance defmcs onc type as a subcategory of anothcr.

The general class is referred toas thc base or parent class. A more specüic class is
referred to as the derived or child class.

The derived classes gain or inherit both attributes and behaviors from the base
class.

The exact mechanism for inheritance will be covered in a later module.

20 Module 1: Whatls ObJeci-Or1ented Analysls?

Polymorphism
Slide
Objective
The fourth
eharaeteristie
ot OOP is
Polymorphism.
Define only -

, eourse does not
· eover the tapie.

Dellvery Tips
As a shift for
proeedural
programmers.
!he abstrae!
viewpainl says
-eaeh objeet
knows howto
draw itself."

..
r········-········----------·-······························-······--····--------------------·-··········

Rectangle Elllpse Trlangle
draw() draw() draw()

' --,,.,,,-.-,,w.,,,.,...,,__.,,_,.,,,,,,,' •'•'• "'~ '·' :.¡t

' ' '
What ls Polymorphism?
For our purpo&e.'l, polymorpltism may be defmed as the abilily of relaled objccts lO
respond lo the same message with different, bul appropriate,- actions.

In the example above, each shape class h.as its own vcrsion of the draw func1ion
thal provides the appropria1e ac1ion for an objecl of thal class. A Rectangle objccl's
draw fWlction displays a reclangle, an Ellipse draw fWlction displays an ellipse.
and so on.

Whal this means lo the programmer is a simpler, more flexible interface 10 a group
of related objects.

Polymorpltism is implemented in C++ through vinual functions. (An explanation of
vinual fWlctions falls outside the scope of this course.)

(

Module 1: What ls ObJeci·Orlented Analysls? 21

Structured vs. Object-Oriented A/D
Slide
Objeclive
Contras!
Procedural or
Structured
Design
techniques vs.
0-0 Analysis
and Design.
Both are valid.

Delivery Tips
Relate the third
andfourth
points. Objects
are modular
and reusable
andtheysend
messages to
other objects.

Objeci-Orlented Slructured

Q.: ([~o~b~jec~~~·~C~.~~-~~.~~~e~d~},~:¡. t---_.••11-P~. '~.o~ce;,,~,;:;-C;e~n;;;te;;·~,;;;~~;-!J;

Ql

Q r¡-__ Ñ_""'~_<lJ;; ... ;;;~~.;-,_-__ -__ 1¡, -___. .. 1¡:_-,-; __ ""',..,.:;;;_;~,.~;;;-~...,.i;th5i~,..-.]_ ~-"

Q; r¡-.-."-"RRo.~;..~~-~;.m¡;¡~;.-.. -11';.1 4t----li•~I[=~O:n:•...,·:JT~ime;~~U~se~;.,.!ll
Nonordered

Message-Based
Ordered

Algorithm

Structured vs. Object-Oriented Design
Since most progranuners are traincd in the structured, proccdural approach, it
behooves us to compare objected-oriemed approaches with structured approaches..

The flCSt poinl is that OOAD focuses on objects that have cenain behaviors and
attributes; structured ND focuses on a hierarchy of processes.

Secondly, object-oriented implementations hide data, showing orúy behaviors. The
structured approach leaves this decision up to the implementar.

The ne•t two points are closely related. Since objects are by defmition modular in
their construction (that is, they are complete in and of themselves). they tend to be
highly reusable. Structured processes may or may not be reusable, again depending
on the implementation.

Finally, object-oriented applications are constructed on a message-based or event·
driven paradigm where objects send messages to other objects. Structured
approaches with processes iend to result in linear. algoritlun-bascd
implementations.

22 Module 1: What ls Ob)eci·Orfented Analysls?

Structured Approach to Design
Slide
Objeclive
Contras!
approaches:
Part 1 of 2.
Tends to
disassociate
processes from
data.
Leads lo
increasing
complexily.

Functlons .Data

OrawR..ct { ...) reatl
(- heiqht
} w.1dth
Mo-..Aeat(...) aea.ter
(

) r•at2
Rlooi&a!Wat (...) heiqht
(wiclth
} oeDter
Rotat.a.at. (...)
(reat3
} ba.iabt

w1.:--:.l.

ca~· .. er

,. '···:·'•"• ··-·""'"·"·'" -.-.~

The uaditional suucrured approach to design tends to disassociate logical processes
(functions) from the infonnation (data) they work on. As the nwnber and
complexity of the processes and information increase. a very real danger exists that .
the picrured relationship nerwork becomes too complex to be managed by mere·
monals.

(

Module 1: What ls ObJeci-Orlented Analysls? 23

Object-Oriented Approach to Design
Slide
Objeclive
Contras!
approaches:
Part 2 of 2.
Tightly joins
processes with
data.
Reduces
complexity,
increases
modularity.

... , ·······························-···-·-·······-······-························

raen rect2

The object-oriemed paradigm groups processes and information together as a urtit
(classes and their objects). The information in these units is typically hidden, being
revealed by an imerface or set of behaviors.

A Final Word
After sorne practice. most people fmd the OOAD approach much more natural than
other methodologies. This is because it meshes very well with the way people
naturally interpret the world Human understanding largely rests on identification
and generalization (objects and classes), finding relationships between groups
(comairunem and inheritance), and interacting through the normal interface of an
entity (behaviors).

•. , ~.-·._¡ - ·--'

-; ;; '

~-----·

Module 2: A Geúerar Approach to .
Object-Oriented Analysis and Design

Module 2: A General Appraach lo ObJect-Orlented Analysls and Deslgn 27

:L Overview
Sil de
Objective
Provide an
oveNiew ot the
module
contents.

• rvt¡a Step; ln~-Qia1eclkldysis cndDesigt

• Ocas lndeK Cl:rdl

• UnderstaldrgthePrd:km

• ld:rtifyirgtheOasa

• kslgirgBEflo.¡(a toOC&Ses

.. • ld:rlifyirgOmn.riccflcn; BEfv.8n~

• ld:rlifyirg O as REldlcn;llp¡

·· • IITfiST'B'"tlrgtheOases

Module Summary
In this module, we examine a general approach 10 OOAD by looking al many of i!S
elemen!S. You will be imroduced lo basic sleps and melhodologies, as well as !he
concep!S of class behaviors and relalionships.

Much of this informalion is presenr.ed in para! le! wilh a class aclivir.y: implementing
a simple graphics program. As you go lhrough lhis module, remember !ha!
desigrting and implemenling classes is rcally crcating user-defined abs!racl data
l.ypes.

Objectives
Atlhe end of lhis module, you will be able lo:

• Characlerize objec!S in design 1erminology.

• Describe !he objecl-orienr.ed design process.

• Describe messaging be1wecn objec!S.

• Defme inherilance.

Lab
Fundamemals of Objecl-Oricmed Design

Reference
Refer lo "Fundamemals of Objecl-Oriemed Design" in !he C ++ Tworia/.

28 Module 2: A General Appr~h to ObJect-Ortented Analysts and Destgn

Mejor Steps in 00 Analysis and Design
Slide
Objeclive
Provide an
overview of !he
general steps in
!he OOAD
process.

Oellvery Tips
Don'! go too
deep into each
orea. An
upcaming
paga covars
each block.

Key Polnts
Design is an
iterativa
process; ~ is no!
linear steps.

·····-·······--·--··-··································:···-··-----------.. ~

lkldorsland tho Problom

ldontity Objocts (Ciassos)

Assign Behavior to Classes ~

ldontify Communication Bolwaan Classas

ldontity Class Ralationshlpa

Allhough lhere are a number of fonnal object-oriemed analysis and design
melhodologies being developed, most share a common flavor in their approach to
OOAD. In this module, we wiU follow a general. high-level approach. (In the
standard developmem cycle of software, irnplementation is nota pan of NO.) 1lle
last phase of lhe cycle, testing, is n01 shown or considered in this course.

Allhough lhe steps are shown in a linear order, lhey represen! an iterative,
overlapping process of constan! refinement. In comrast to lhe structured approach,
the analysis and design phases of OOAD tend to consume a greater portion of the
developrnent cycle.

When Visual C++ is used, lhe result of this process, sbould be a set of classes lhat
describe the actor.; or objects in the original prllblem ~mi~ÍJL Siru;e w;b dass
should completely er.capsillate an actor,' the ideill is for each to "stand on its own,"
and lhus be ponable.

(

Module 2: A General Approach lo Objeci-Orlented Anatysla and Oeslgn 29

Class 1 ndex Cards
Slide
Objeclive
Introduce o
voriotion of
Wirfs-Brock. el
al. CRC cords
os o tool used
during the
design process.

Class Name:

Parenl:
0\ildren:

Abstract 1 Concrete

b--:-------y-::---,---,:-----li
Behavior: Communication:

Embeddad Objocts:

Class index cards are a useful device for aiding lhe A/D process. They have sloiS
for lhe following information:

Class name: lhe name of lhe class. By convention lhe firs1leuer of each word is
capilalized.

Absrracr/C oncrere oprion: lf objcciS of a class are lo be created, a class is said to
be concrete; if no objeciS of lhat type are to be created, the class is abstraer. Base
classes are sometimes abstract.

Parent: lhe name of lhe parent class, if any

Children: lhe name of child classes. if any

Behavior: a list of interface functions

CommunicaJion: a list of al! dlher classes on whose behaviors this class relics

.. Embed~dpbjects:.a list of al! user-<lefmefl.objeciS lhat are contain_ed in objcciS of ·'·' -
this'élass · · · • · ·

The concept of class index cards is a sligh~y altered form of CRC cards,
cliampioned by Wirfs-Brock, Wilkerson, and Wicner in Designing Objecr
Orienred Software.

-··

30 Module 2: A General Approoch lo Ob)eci-Ortenled Analylls and Deslgn

Understanding the Problem
Sil de
Objeclive
Majar Step #1:
Define the
problem
domain in terms
ofwhat (and
perhaps why).

r·····-······--·--········-······-······-··········--···············-·······--·········· -·----······--·-·············--········-·----···········

• Dálringthelogoo Pr~anOardn

• Cmla;k
l"o.vbsd-.elt"e pcijen
a
W'8i 1osd\e lt .

• D:>a;k
W'd'!t"era:l pdiEmis,
a ¡:al q::¡¡
Wyltlsqpcijen

The ftrSt and foremost step in any analysis process is to identify the problem that
must be sol ved or the servtce that is needed. The problem should be conceprualized
in logical space, since tts solution will be implemented on a computer. The question
is not yet how or whcn to sol ve the problem. lnstcad, ask what the real problem is,
or pcrhaps why it is a problem.

Impropcr definition is the ftrSt slep on the road to ruin, regardless of whcther it is
caused by deftning a problem too narrowly, too broadly, or missing the wget
altogcther.

lf lhere is more !han one pcrson on a developmeottcam, all must agree on the
problcm definition.

Module 2: A General Approach la ObJeci-Orlenled Analysls and Deslgn 31

ldentifying the Classes
Slide
Objective
Step 112: ldentily
the actors br
items in the
problem
domain using
nouns.

For Vour
lnformallon
This process is
Part 1 in the
upcaming
exercises.

• lctrtllytheMúlhtas lnlhePrctKmDaTdn

• Gala'dlzetoFamacsses

Basic Steps in ldentifying Classes
Once the dimensions of a problem are Wlderstood, the next stcp is to idcntify what
imponant actors (objccts) are involved. Good candidates usually have the following
characteristics: ·

• NoWl (or verb that can be made into a noWl-spooler, for exarnple)

• They serve severa! useful purposes in the problem domain.

• They represent a discrete, stand-alone conccpt.

Perhaps the best way to start this process is to list all likely nouns on a blank sheet
of paper. Then use the criteria above to qualify likely candidates.

Even though the proccss described above is for specific actors or instancc objects. il
is normally a shon trip lo identify the general classes thesc actors belong 10. For
exarnple, if a problem domain calls for a small pink rectangle, a large blue
rectangle, anda medium gray rectangle, obviously the class Rectangle is required.

32 Module 2: A General Approach lo ObJect-Orlenled Anclysls and oes!Qn

Assigning Behavior to Classes
Slide
Objective
Majar Step #3:
Answer these
three questions
to define an
objecrs
behavior.

Delivery Tlps
A possible
approach:
Imagine
holding the
object in your
hand and
havinga
conversation
about rts
behavior in !he
problem
doma in.

-- , .. '""':.. ••• ">... '

·····--···-···························-·-·······································

• 'lttd MBsc:vas ShoJden Q:Jed Res¡xndT ól

• 'lttd Ra;pc:nslt:illtles Does en~ Ha.e?

• 'lttd ktlcns Does en~ Peta~

The answers to all three of these questioñs comribute equally to the assignment of
class behaviors. (All objects of the same class have the same possible behaviors.)
Nonnally aU object behavior is directed at maintaining itself.

For example, what behaviors does a rectangle have? Again it depends on the
problem domain, but asswning that we are working on a graphics display
application, a rectangle would probably be expected to perform the following
actions on itself: to draw, move, re5ize, rotate, reflect, orto compare itself to
another object.

There may be many processes that affect the object that are not direct behaviors of
that object. For example, although video mo¡le cenainly affects the way a rectangle
is displayed, this behavior more properly beloogs to the class (video) Screen.

\

Module 2: A General Approach lo ObJeci·Orlented Analysls and Deslgn 33

ldentifying Communications Between
Objects
Slide
Objeclive
Majar Slep #4:
ldentity the
requests an
object might
receive from (or
make to)
another object.

Key Points
A
communicatlon
is a request for .
an objectto
perform a
behavior.

For Your
lnformation
Spoot: Ask not
whatyou can
do foryour
object. but
what your
object can do
foryou.

• Q:jeds CtnlrM:I<eBSla.1as In Oh« Q:jeds

• M:ssqj"g

Draw

Meaaage Rectangla

Communication
In an objecl~rienled application, objects commonly invoke behaviors in other
objects. The requesl for action thal is directed al an objecl is called "scnding a
message." In C++, il is also called "invoking a member function."

As pan of doing so, il mighl send a message to an on screen rectangle (by invoking
the Draw function) so thal the rectangle redraws itself.

For example, in our graphics application, the screen objecl mighl be required 10 ·
refresb itself. As pan of doing so, il mighl send the Draw message 10 an on-screen
rectangle 10 draw itself.

Note again thal although objects are the actual ac1ors in a C ++ application. this
message-passing association is acrually encoded into the respective classes.

34 Module 2: A General Approach lo ObJeci-Ortenled Anatysls ald Deslgn

ldentifying Class Relationships
/:~ ,'" ,, . ·~ --~· ~

Slide
Objeclive
Mojar Slep #5:
Use these
phroses to
determine
relotionships
between
objects.

.. _ ~

• Q:rld11T8"1 = "a:rtdns d'

• lrtsltcnoa="ls atpc:f'

a>ntalninent lnherilanca

-- .

Containment and lnheritance
Comainmem is also called composuion or embedding. Containmem is where one
objecl contains, is composed of, or owns an objecl of anolher class. For exarnple.
each reclallgle comains a cemer poinl.

By contras!, inherilallce is where one class is a type of ora kind of anolher class.
For exarnple, a reclallgle is a type of geomettic shape.

A class hierarchy may forro a tree of relationships. In !he previous module, we saw ·
lhal Reclallgle hada parem (Geomelric Shape) and two siblings (EIIipse and
Triangle).

As yc .. will see. one (or more !han one) level of comainmenl or inherilance is
possi,·.~. For exarnple, a square is a type of reclallgle, which is a type of geomelric
shape.

Tip ll is a common mislake for beginners 10 confuse lhese two relationships,
lhereby creating interface problems later in lhe design and implemenl.ation phases.

Module 2: A General Approach lo Object-Orlentect Analysts and Deslgn

lmplementing Classes
Slide
Objective
Majar Step #6:
Leaving the
OOADarena.
implementation
enters the OOP
field.
Use these steps
to gel started.
top-down.

Key Points
Design is an
iterative
process.
Behaviors might
be tuned.
New
communication
needs are
frequently
added.

····-·····································-····--········ ································· ··································-······-········

. • lnp&'T'S"ddlmls Eaily OlCnged::le

• Prd~Flrsf: DesaibeltlelrpicncÍQJp.tda
FUldlm · ·

.· • 51\bMnbr FU'Idlcn In aas toOleck.M!sscge
.. Flo.v . . · . ·· ·

The last concem in OOAD is choosing an implementation for the various classes.
including a data represemation for each ctass. lt is possible to dclay implememation
choices beca use U!e objecHJriemed approach concentrates on behaviors while
hiding data. Therefore, as long as U!e interface does not change, implememation .
remains flexible and mutable. Another way of stating this is to say U!at each actor
represents a black box: its behavior is known, but its interna! workings (perhaps
including state) remain a mystery.

Often at this phase (or any previous phase), shoncomings will be noted from
previous phases, and U!e OOAD cycle will repeat itself. This is natural and should
be expected and encouraged. Rarely is a complete and elegant design accomplished
on U!e first pass.

Prototyping the inteñaces for a class involves writing U!e protO!ypeS for each
member function. This emails naming and defllling each one, and specifying U!e
t:ype of data it takes and returns. (This tapie will be dealt with more fu U y in U!e
modules on functions and classes.) Next, in order to check U!e message flow
between classes, it is useful to srub each function. This entails adding a simple
"message out" stau:mem for U!e body of each member function.

After an acceptable class design is conceptualized, U! e foUowing phases must still
be compleu:d:

• Full class irnplementation

• Overall prograrn implememation (scripting for actors)

• Testing and documentation

Note U!at U!ese phases may be carried out in overlap or in parallel.

36 Module 2: A General Approach lo Ob)eci·Orlented Anatylls and Deslgn

Class Activity
" - .

Slide
Objeclive
Instructor Leed
Walkthrough:
Describe use of
cards to define
GeoShape
classes.

• llsaas Oe&s lndllc Q:rd; fa aSirrpeQq:tics
ln,::fe'nndtm . · . . · · ·

• UselheSIEps rutlneciPre.iasvlnTiis MxUe

Class Activity
This activity applies the steps you have leamed. You will solve a problem by
developing the clements of a simple object-oriented design.

Step 1 : Understand the Problem
You will develop a set of classes to implementa simple graphics program. 1lle
program must be able 10 display three different kinds of geometric objects on the
video screen: ellipses, rectangles, and triangles. Also, it must allow the objects to be
moved, resized, and have their color changed.

In addition, objects need to be managed somehow. For example, objects may be
partially or fuUy moved off the physical video screen and may need 10 be clipped.
At a later date, it might be desirable to change the video mode resolution and other
screen attributes. For that purpose, we suggest a video screen class.

Use the class index cards on the following pages 10 design a set of classes that will
meet the requirements stated above.

Step 2: ldentify the Classes
To identify the actors in the problem domain, it is ofle:: nelpful 10 swt with a blank
sheet and quickly write down the likely candidates:

Triangle

Point

Keybomd

Screen

Ellipse

Arra y

Rectangle

Colcr

Line

Draw

From this po1entiallist, eliminate unlikely candidates and promete likely ones. Here
Keyboard and Arra y can be elintinaled from the mitial design because they
represent physical and data type implementation classes. 1lley are implementation
details. Draw is acrually a behavior or function of a group of objects, and is not a
class. Line, Point, and Color are attributes of the geornetric shapes. At the mornent,
it is hard 10 say which of these are useful enough and complex enough w qualify as
classes. For now, we think of Point as a likely candidate.

Module 2: A General Approach lo Ob)ect-Orlented AnolySls Q"'d Deslgn 37

Based on lhe problem, it seerns thatlhe remaining four-Triangle, Ellipse.
Rectangle, and Screen-are strong class candidates.

Step 3: Assign Behavior to Classes
Our problem description prescribes most of the required behaviors for thc geomelric
shapes: Draw, Move, Size, SetColor, and so on.

The Scrcen class is uscful for severa! purposes. First, shapes must be drawn on
sorne surface, and this surface itself might ha ve attributes and behavior: color,
dimensions, ratio, et cctera. Also, a common problem associated with drawing
individual objects is keeping track of interactions between shapes. For exarnple,
when one shape moves, it might uncover another that will ha veto be redrawn. You
might choose to put this knowledge at the Screen class level.

The Point class has a vcry simple interface composed of gel and set functions.

Steps 4 and 5: ldentify Communication
Between Objects and ldentify Class
Relationships
Which objects of which classes need cooperation from other classes? Well, each
shape has a center (contains Point), so when a shape moves, that center must be
changed (commurtication). And if the screen is 10 manage shapes, it must be
informed when a shape is created or when it changes position or size. lf that is the
case, it would be beneficia! lo be able to update the view by having the Screen class
senda message to all current shape objects so that they draw lhernselves.

Note that for all commurtications, the corresponding class must have that invoked
behavior.

Al this point, you also factor out the common behaviors and allributes ofTriangle,
Ellipse, and Rectangle, and place lhem in a common base class, Geomettic Shape.

38 Module 2: A General Approoch lo Ob)ect·Orlented Analysls and Deslgn

Step 6: lmplement the Classes.
Using !he approach ou!lined atiove, !he cards m1ght look like thi~:

Class Name: Geometric Shape ~oncrete¡
Paren!: 1
Children: Rectangle, Ellipse, Triangle ' l

j

!
Behavior: Communication: 1

Draw() Setx() => Point
M ove() Sety() => Point
Size() Register() => Screen
SetColor() UpDate() => Screen
(etc.)

Embedded Objects:
Center Point (lor object center)

- ' :&-.<' :1'-Z'

Class Name: Rectangle Abstra~~
~

Paren!: Geometric Shape
Children:

'
Behavior: Communication: -

(see Geometric Shape) (see Geometric Shape)
SetHeight()
SetWidth()

Embedded Objects: "

(see Geometric Shape) ¡

-~< ::::.«=-:......»• ;.t::;.~~"':....>;«· ,;.,~-w ;....<..,-,---~ w: ;..w.,.-,....:,.;.,..;.,.,.¡..,.:«o< '

40 Module 2: A General Approach lo Oblect-Orlented Anotysls and Deslgn

Class Name: Screen _Abstrae~~
...

Paren!: -1 •
Children:

;
\

- . - l
<
i

Behavior: ' Communication: ' 1
Register() ' j

'
Update() Draw() => Geometric Shape " j
Refresh() ¡

j

l
Embedded Objects:

\

1
~

.._ "'' ._.., ,.;".:.;...,.~~~<-.~,.; ~&;.:¡:¡:;:¡:-¡..~.;.;,:;:,::~~;.:;:o&_'il.;....,.:, :.:.;,c. , , ;.., y._.,-~:,·_(<.';!., :.; ;,.;,., <~ ;:.:o;;~(..:..-~- ,, 1<0:..1 ,...,...,:,.,_,y "' :w:, >.',<w ''Y '-. ..,_ :,•,{w, , ,..,, .;,, <l

Module 2: A General App!'aach fa Objecf·Orlented Anatysls and Deslgn 39

Class Name: Ellipse Abstrae~~
Paren!: Geometrie Shape l Children: ' %

1 Behavior: Communieation: ·~

'
(see Geometrie Shape) (see Geometrie Shape) i ¡
SetMajorDia() ' j
SetMinorDia() ' ;

' ~
j

Embedded Objeets: l
'

(see Geometrie Shape) j
~

- " ~· ,,,w, "«- =:..><•' -..-. '-"' :..'~·~,1<· <:.«::-. .-''ú .,., v~: :-, , . , "'•''' ,,.3

Class Name: Point Abstrae~ ·~

l ¡
Paren!: J

' Children: %

1
"

Behavior: Communieation: .
' Setx(), Getx() ' ·t
' Sety(), Gety() l

Delta() ·~
., ,.
'

l Embedded Objeets: ¡

~
...:~ ... ~ .. ~ ' 'l;.;:;;$;.;..,:<~

~
'-:':;:.;;:>,~ :<~'«-,' ¡>,:-,<:.:.:-\-:<Nl':<@..)->~·.;..'<'»'1;~;;:>:.~.;.,, •' •:-:-:·: ;¡<',->:;~~~~::::;!:::OAAI:><~' ;:.,.;:::$;:<,'»>'-:-'.:..::0::·._:...;<.,.;:-.•:-.':«-:-. ~

Module 2: A General Approach lo ObJect-Orlented Analysls a1d Deslgn 41

Lab 1 : Fundamentals of Object-Oriented
Design
Slide
Objective
Introduce !he
practice
exercises.
Query !he
students lo find
experience with
lnventory, MRP,
Purchas1ng or
Sales Order.
Depending on
responses.
group students
into small
design teams.

Module 3: The Basics

Modula 3: Tha Baslcs 45

L. Overview
Slide
Objeclive
Provide on
oveNiew of lhe
module
conlents.

Move quickly,
remoin high
level.

Key Polnts
Cover
objecttves to
level-set
student
expectations.

Dellvery Tips
Module covers
lhree mejor
oreas:
• Anatomy of a
C++ source file
'VC++
Development
Environment at
ahighlevel
• C++
Statements and
keywords

• Sirfl:leC++ ProganSiruc:.tu'e ·

• Cbq:oe is

• Prae;s d aedírgmecenid:Je

• EdlingFila;

• Usirg1t"esa..rceax:eedlcr

• Wl::t ls oQid<Wn e<aJJt:tle?

• Settirgpqro c::mpleq:jlcrs

This is the fust of four modules that explain the fundamemals ofthe Visual e++
language. ·

Module Summary
In this module you'll build your fust program. This module will form the foundation
for most of the rest of this course, as well as al! the Visual e++ programming you
will do from this poim forward.

Objectives
At the end of the module, you will be able to:

• Edit source code.

• Build a simple QuickWin executable.

• Use comext-sensitive Help to obtain information about the e++ language.

• Write preprocessor directives.

• Create a main function.

Lab
The Basics

46 Module 3: The Baslcs

The Roots of C/C++
Slide
Objeclive
Cover quickly
to set history ot
language.

Key Poinls
Cover
language
features briefly
-nodetail.
Most
terminology is
newto
students.

. '
.. ,

• KErligxn& RltctleC AMcH.6YEI LCJ"QJCge

• »61 eStO'ld:rdzdkn

• e-w. AS!.pi'SEf d' »61 e

• "e++ ls aBEitEr e
• Slrida"~rg

• N:wpa:a:i.rd a:p:1:ili1eÍ

• Cl:je:kjjeiWa::t:tlicr6

The C language was developed by Brian Kemighan and Dermis Ritchie at AT &T
Bell Labs in the early 1970s. Their goal was to produce a penable, efficient,
flexible language, that would maintain the capabilities of a high-level, proccdural
language like Pascal, but still aUow sorne of the "clase to the machioe" capabilities
of assembly language. This original version, now known as K&R C, was later
standardized, with slight modification by the American National Standards lnstitute
(ANSI) Committee X3Jll. C was first used as a systems language- UNIX~.
Microsoft Windows, Windows NTN, OS/'21a, and the Maceoperating system are
largely written in C-but it later became popular asan applications language also ..
Today it is the most portable of all computer languages.

In the early 1980s, Bjarne Strousoup at AT&T BeU Labs used C as the bedrock of
a new language that carne to be known as C+t-. C+t- is largely a superset of ANSI
C, with additional features at both the procedural and object-oriented leve!:

• Stricter type-<:hecking guards against inadverteru errors caused by badly
mismatched data types. C+t- is stricter than ANSI C.

• C +t- adds powerful new proCedural capabilities such as inlinc functions,
function overloading, and default argument values.

• C +t- suppons the 00 paradigm mainly through the class coliStruct, which is an
extension of the structure consouct in C.

C+t- is still a new language. While there is a standing Intemational Standards
Orgartizations ANSI committee (X3Jl6) in the process of standardizing C++, the
current reference work on C+t- is The Annotmed Reference Manual, by Bjarne
Strousoup and Margaret El lis. As of this writing, the newest version of the
language is AT&T release 3.0.

Module 3: The Boslcs 47

Anatomy of a Simple C++ Program
Sllde
Objeclive
ldentify mejor
characteristics
of program
code.

í
fine lude <iost rearn. h> ,.._ A Preprocessor Directiva

i<it .;ain L V<>ld) . · ' . /&\ ~
'r1irl~\~: .il~lo; ~~l<l~~;;j- Tha main LcHon

' ' ~

Commenls //HELLO. CPP found in \demos \mod3

In C++, code is annotated wilh commems like lhis one. Two stylcs can be used.
Comniems lhat occupy multiple lines are r.ypically enclosed wilhin forward slashes
and asterisks: t• <comment> •t. Single-line comments begin wilh double slashes •
and continue to lhe end of lhe physicalline: //<comment>.

1 * This is a comment! a 1
.; //This is a comment, too!

Tip Comment your code liberally.

Preprocessor Dlrecllves tinclude <iostream.h>

These are insuuctions for lhe preprocessor, which reads a U of lhe source code
befare !he compiler starts to crea te binary code. 1! performs a number of editorial
tasks, such as slripping out comments, scarching and replacing tokens, and adding
code from olher files. In lhe #include statemcm abovc,lhe preprocessor is adding
information aboutlhe cout objcct used in !he body of !he main function. (This
module will cover preprocessor directives in more detail.)

The main Funcllon
The main function is !he emry poim in a C ++ program. It is lhe first section of cOde
to be execuled. When lhe main function rerums. your prograrn terminales exccution
and control passes back 10 !he operating system. Every C++ prograrn mus! have one
and only one main function. In lhis prograrn. !he main function requires no
arguments (void) and returns an imeger. For that reason, lhe lastline in lhc prograrn
is rerum O.

Module 3: The Besica

Fundamentals of Editing Source Files
Slide
Objeclive
Cover bosic
'Interface of
Visual
Workbench.
Depth depends
upon student
experience wrth
Windows
interface.

<:• ,.-' ' '"".

oout << "Hello. •orld,o".
rcturn a.

The Visual Workbench is an integrated source editor, compiler, and debugger. It is
a Windows~-hosted application that behaves according to the Microsoft Windows
Application U ser Interface Guidelines: It uses the multiple-<locument interface,
which means that more !han one source file can be 6pen at a time.

The Visual Workbench main application menu encompasses the entire functionality
of the editor, compiler and debugger.

The Visual Workbench toolbar provides shoncuts to commonly uscd fearures .

. The Visual Workbench status bar provides messages and information, including
compiler and linker errors, process status, and so fonh.

Module 3: lhe llask:s 49

Fundamentals of Editing Files
SUde
Objeclive
Assure students
that VINB has
the standard
editing features
they are
accustamed ta
using.

Delivery Tips
Watch students
and assist any
inactive
students
immediately
befare they ask
far help.

cout « "Helio. vorld'n";
rcturn .3,

Use !he File Menu in Visual C++ to:

l. Start a New source file.

2. Open (and locate) an existing source file.

3. Save and renarne (Save As) an existing source file.

4. Print out a source file.

Use !he Edit menu to:

l. Cut, Copy and Paste ponions of source code. You can also use !he "shoncut · •
. keys". ·

2. Find and replace text.

Student Activity
Enter, but do MI compile, build, or execute 1-IELLO.CPP.

Reference
Refer to "Using !he Editor," in !he Vis~UJI Workbench U ser' s Cuide

. .. .,

50 Module 3: The Bask:s

Context-Sensitive H,elp
Sllde
Objective
All of the
longuage.
library. and
tools
documentation
is cross
referenced and
available online
vio the Help
system.

For Your
lnformation
·cout• is an
object. Help is
available for
C/C++
keywords. data
fypes. classes.
syntax, and
more- not
objects.

Fl

Context-Sensitive Help
Whenever you ha ve question about a ponion of the Visual C++ producl, you need
only press Fl to gel Help on the topic. Not only does the Fl key invoke Help, but il
is comext-sens•tive as well. Suppose you don't remember what #include doesc You
can look it up in the paper-based documemation. or you could place the cursor over
the word #include and press FI. A second overlapped window would appear on
your display with #include information from the Visual Workbench Help system.
Try il.

Module 3: The Baslcs 51

SeHing Compile Options
Slide
Objective
Simple. quick
activity to set
VWB toe reate
aQuickWin
Application
(.EXE)

Demo
Sel basic compiler oplions by following these s1eps:

l. From the Visual C++ window, choose the Options menu.

2. Choose Project.

3. The Projecl Options dialog box appears.

4. Úl the Projecll'ype lis1 box, selecl QuickWin Application (.EXE).

5. Move 10 the Cuslomize Build Options field and choose the Compiler button.

6. This displays the Compiler Options d.ialog box.

7. Úl the Calegory lisl box, sclecl the Cuslom Options option and change the
. Warning Leve! from 3 lo 4. Then selecl the Listing Files option. Uncheck the

Browser Wormation option by clicking iL Verify thal the X is removed.

8. Choose the OK bulton 10 d.ismiss the Compiler Options dialog box.

9. Choose the OK bu11on lo d.ismiss the Projecl Options d.ialog box.

..
,

Slide
ObjectivB
lntroductorY
tour of the
Project ment.J·
Onty need to
cover Build·
Rebuild and
Execute.

Delivery TlpS
Students are
familiar w~h
Compile. Unk ..
and Execute.
Defer questions
on those topiCS
for the second
page
<following).

You can compile, build, and rebuild all source files in your application from either
the menus or from lhree buuons on the loolbar.

Compile Bu lid Rebulld Al!

• Compiling a source file results only in an .OBJ file.

• Build auempiS 10 generate an .EXE file by compiling and linking. This operation
only occurs when cbanges ha ve been made lo the source file.

• Rebuild All fon:es a compile and link thal generaleS an .EXE file.

These lopics will be covered more completely.

\

Module 3: The Baslcs

What ls a QuickWin Executable?
Slide
Objective
Quickly define
QuickWin as a
character
mode
application that
receives a
typical.
Windows
application
interface. No
coding is
required to
receive the
menus.
windows. etc.

Key Polnts
This course only
uses the File
menu Exit
command or
CTRL+C to
clase.

Purpose for QuicJ<Win Executables
QuickWin offers a set of translation libraries and compiler options that allow you to
produce a Windows prograrn with a minimwn of Windows coding.

QuickWin User Interface
• File: Exit

• Edit: Mark. Paste. Copy Tabs, Copy, Sclect All

• View: Size to Fit, Full Screen

• State: Pause, Reswne

• Window: Cascade, Tile, Arrange Icons, Input. Clear Paste, Status Bar

• Help: lndex, Using Help, About

Reference
Refer to "QuickWin Prograrns,'' in the Programming Techniques manual.

,,

'.:~

54 Module 3: The Boslcs

What Does the Build Process Do?
Sllde
Objeclive
Familiar to
programmers in
alllanguages.
Cover quickly.
Ask for
questions.

Delivery Tips
Ask tor
questions. End
of big-picture
focus. Moving
to statement
focus.

- ' ..

heUo.axa

The Process of Building a Program
The fma step in !he process is creating !he C++ source files. When you invoke !he
cornpiler, !he preprocessor runs; then !he cornpiler runs, crcating an object (binary
code). Finally, !he linker supplies alllhe statically linked code that your prograrn
has asked for.

What Does the Preprocessor Do?
The C/C++ preprocessor makes !he fust pass through !he source code. As it does
lhis. it strips out commems, adds in !he .H header files, and makes replacements as
defmed.

What Does the Compiler Do? .
The compiler takes !he preprocessed ftle and convens !he source code into an object
module that contains rnachine-language insuuctioos. In order ID be comp~able and
linkable, a C++ prograrn must have a function called main, which serves as !he
prograrn's entry poinL Typically, main serves as a "driver" function-the real
work is done by !he functions lhat are called by main. While main isn 'ttechnically
a reserved word in !he C++ language, it should never be used anywhere but as !he
narne of !he entry-point function.

A progr'arn•s actual code must be placed between a function's braces. U !he example
above were coded, it would show oruy one function: main ().

What Does the Linker Do?
The linker forrns .EXE files by combining object files. The linker can locate !hese
files from compiled modules, existing object files. and from wilhin libraries.

Module 3: The Boslcs 55

Statements
Slide
Objeclive
Change focus
to statement
level. Def1ne
statements with
: syntax.

¡---~--~~.~~~~~-~~~~~~~~·;·~~~~;·~-~-~= -- -
1 - Progan

• TiPcJjly m crelire, bJ rrqtsp:n rn.Jt¡:lelire;

• Cl::rrl:o.rdSide 1 e •s

• Erdcsedln { }

• Exe::Uejlns~wttintte(txn<}

- • Sfda¡a• Flo.vQ:rlrd

S!atements are 1ennina1ed by a semicolon_

A null slatemem

!

is pennissible in C++. The prcsence of wmeccssary s1a1ements will no1 cause
compile-lime errors_ You will rerum 10 !he srudy of Slalements in !he nex1 module.

S!a!ements, by dcfauh, are exccuted sequenlially wilhin !he body of a funclion.
There are flow control s1a1emcnts (such as if, if ... else, and while) lhal cause
exccution of s1a1emcnts 10 fotlow olher rules. This subjccl will be revisiled in an .

· upcoming module.

Note Compound suuemems are similar 10 a COBOL paragraph.

56 Module 3: The Baslcs

C++ Keyv rds
Slide
Objeclive
Looking ata
lower leve!.
many
statements will
use a C++
keyword.

Color Codlng In Visual Workbench Source Coda

C Keywords Blu"

C++ Keyworda Red

Comments Green

C++ Keywords
Delivery Tips

The following keywords are reserved for C ++:

HELLO.CPP as m float signed
used two C++

ror slzeol keywords: auto

int main break rrtend statlc

case golo struct

catch ir switch

char In Une templa te

class lnt thls

const long throw

continue new try

default operator typedel

delete private union

do prvtected unslgned

double publlc virtual

else register void

enum return volatlle

extern short while

Module 3: The Bask:a 57

The following keywords are reserved for bolh 16- and 32 bit Microsoft compilers:

_asm

_based

_cded

_ .. port

_rastcall

_loadds

The following keywords are legal for only 16-bit targets:

_rar

_rortran

_huge

_interrupt

_pascal

_saveregs

_near
_segname

_segment

_se Ir

58 Module 3: The Bailes

Preprocessor Directives
S lid e
Obieclive
These are not
C++ language
statements.
They are
standard
instructions lar
the C/C++
compHers.

~--··················-···· ····················-·····················- ···--··························

··lllndliB
finclude <iostream.h>

tinclude •mylib.h~

tinclude "mine\include\mylib.h"

• III::Wine
ldefine PI 3.14159

Jdefine TAX_RATE 0.0135

What Are #includes?
An include directive tells lhe preprocessor to include lhe coruents of the specified
file at that point in the program. Path names must eilher be enclosed by double
quotes or angle brackets.

In the ftrSt example above. lhe <> tell the preprocessor to search for the included
file in a spec1al known \INCLUDE directory or directories. From lhe cornmand line.
this directory is specified by lhe INCLUDE= environment string (usually set in
AUTOEXEC.BAT). In lhe C++ environment. this directory is specified in an
lnclude Files Pallt text box. (You gain access to that text box from the Options
menu. Choose Directories to display the appropriate dialog box.)

In the second example, the double quotes ("") indicate that the curren! directory
should be cbecked for lhe header file fust. lf it is not found. the special directory (or
directories) should be checked, as detailed above. The third example is similar, but
lhe narned relative directory \MINE\INCLUDE is checked for the header file.
MYLIB.H.

Relative paths can also be preceded by lhe .\ or . .\ nOialion; absolute paths always
begin with a\

Header Files (.H)
Header files contain declaration inforrnation for functions or constants that are
referred to in programs. They are used to keep source-file size to a minimum and to
reduce lhe amoum of redundan! information that must be coded.

Dellvery Tips
Ask for
questions.
Prepore to
move to next
topic within
module:

Module 3: lhellallca 59

What Are Manifest Constants?
The #define directive is u sed to telllhe preprocessor 10 peñonn a search-and
replace operation. In !he first example above. lhe preprocessor will search lhrough
!he source file and re place every instance of !he token PI wilh 3.14159.

After jleñorrning !he search-and-replace operation, lhe preprocessor removes !he
#define line.

There are rwo purposes for defming and using manifest constants:

• They improve source-<:ode readability.

• J They facilitate program maimenance.

Module 3: lhe llallc:s

SIMPLE.CPP
Sil de
Objectlve
Examine coda
and 1dent1fy
elements listed.

Oellvery Tlpt
In addition to
the detinition of
main() ...
students should
be able to
locate these
items.

use VWBto
open the file.
bu11d. and
execute.

11 S!MPLE.CPP found in \demos\mod03
tinclude <Lostre4m.h>
tdefLne KBY1ES 1024

int mal.n (void)
{

int nMemory;
nMemory ~ KBYTES * 4:
cout << nMemory << " bytes is not enouqh.";
return O;

The sample application on the slide comains the foUowing 'elements:

• acomment

• an include

• a manifest constant

• a variable

• four statements

Lab 2: The Basics
Sil de
Objeclive
Introduce the
lob instructions.
Run the
executable in
the \ student
directory. Hove
student read
the Scenario
and lab
introductions.

Delivery Tlps
Be proactive.
Don'! wait for
questions. Help
any student
that appears
apprehensive.

Module 3: lhe llalk:s 61

Module 4: Basic C++ Syntax, Data
Types, an.d Operators

Module 4: llalk: C++ Syntax, Dala Typea, and Operalorl 66

L. Overview
Sil de
Objeclive
Provide an
overview ot the
module
contents.

······················ ················· ·······················-···························-.. ·--···--······-·----..

• Exp'e&sla-s, Sldaials a'dOlrrpc:uldSictai&ls

• FuJCbiB~d DáaTypes

• Dlllringa'dtritldizing'l.trlcties .

• Q:ntan a'dRcdc:es

• Thec::mst Ke¡MJ"d

• Olcrat. DáaTypes

• Slrlngl

·~ngO:nwrlkre

• Types d C++Q:&das

Module Summary
In Module 3, you created a simple program without much knowledge of its pans. In
this module you '11 explore !he fundamental program unii, expressions.

Though the compact syntax of !he C++ language may be a bit different from what
you are used 10. you will fmd that the underlying logic of express10ns is similar to
what you have seen before in other languages. AH the data type.s and operators that
the C++ language suppons will be tisted, bu t. you will be focusing on only a few
that will be irnponant for !he prograrns you ·u code in upcoming modules. Y ou may
want to mark the data types and operator precedence pages for future reference.

You will need to be able to write expressions in arder 10 implement functions, the
subject of the next module.

Objectives
U pon cornpletion of this module you will be able to:

• Write simple expressions.

• Create and use variables to hold data.

• Use sorne operators 10 manipulate variables withir ;xpressions.

• Use literals to initialize variables.

66 Module 4: Baile C++ Syntax, Data Typet, and Operalorl

Expressions, Statements, and Compound
Statements
Sllde
Objeclive
The audience
knows
expression ond
statements.
Introduce the
C++
differences.

• ElCp'SSIO'lS.

• Tl"esillPEstfom \OictleCR liSd

• Onrrcnfom 81p'aslalqlll'c:tcr81p'asia"l

• Sldai&ils

• Tl"esrrdlesteellctlell'lt

• T~OSEr'l'lcdal

• Q:n'J:nrdskJI:t; e¡¡ aeg~ntkldcs sEtdf
b;b'<XES{ }.

Expressions and Statements
To relate these two concepts 10 the English ianguage, ex¡:ressions are like clauses
and statemems are like sentences. Expressions are not executable on their own;
statements are. Statemems can be made up of expressions. Tbey are terminated by
semicolons.

Many expressions are data manipulations.

The simples! expressions are just a variable or literal. lñey involve no
manipulatioo:

nUpperLimit

5

All expressions result in a value (including the simple examples ciled above).

More commonly, however. expressions are made up of operands and operators.
Operands are the data, represenled either by variables or Iilerals. (You will examine
the predefmed C++ data types in the next few foils.)Operators can be unary,
binary, or temary. A unary operator requires only ooe operand. a binary operator
two, and a temary operatcr three. Y ou can fcnn complex, nesled expressions.

(nLowerLimit + lO)*(nUpperLimit - 20)

You can fmd a Iist of all the C++ operalDrs and the prea:dence with which they are
evalualed in Appendix B.

Key Polnls
Use ot broces
to denote e
stctement
block is e new
concept. Similar
toCOBOL
pcragrcph (just
somewhct like
e COBOL
function).

Module 4: Baslc C++ Syntax, Dala Typet, and Operatora 67

Statemems. as memioned earlier, are lhe smallest unit of execution in C++
programs.

Null statements are allowed.

//Null statement

"Do-nothing" statements will not generate compile-time errors.

S; //do-nothing

Statements serve a number of different purposes in C++ programs. for exarnple:

nUpperLimit ~ 200; //assignment
return O; 1 /return statement

You will examine a number of olher types of statements in later modules.

Statements can be_grouped into sequences using curly braces. These are called
compound suuemenzs or bloc/cs. A compound statement can be used in place of a
simple statemem.

C++ is a block-structured language, mearting that groups of statements are executed
as an indivisible unit. In fact. lhe body of a function like main is nothing more !han
a block. This imponant concep¡ forrns lhe cornerstone of lhe next few modules.

68 Module 4: Baile C++ Syntax, Dala l'¡pes, anc1 Operatora

Fundamental Data Types
Slide
Objective
Expla1n the
(inverted)
hierarchy af
data types
offered by C++.
Students only
need char. int.
and long to get
started!

Dellvery Tips
Note: 16-bit
target. For other
machina
targets. you
can determine
ranges by
examining the
contents of the
include files:
UMIT.Hand
FLOAT.H

··· ········-·-·-······ ···-··············-·-··············-~

c:Ur
UD•.1qned cbar
.~.~~~ .. <>l!l!~ ...
•hort
UD.•1c¡ned •l:aort
ai'11'..:1 l.Dt

un.iQDecl i.D.t.

•ivaed loa;
UllaiQil..:i lOAq
float

16 bit irnplemenlalion

Type

char

unsllfted char

slped char

short

unsllfted short

int

unsltpled lnt

lon1

unsltpled long

noat
double

lon1double

Slu Ran1e

1 byte -128 to 127

1 byte Oto 255

1 byte -128 to 127

2 bytes -32,768 to 32,767

2 bytes o to65535

2 bytes -32.768 to 32,767

2 bytes oto 65535

4 bytes ± 2.1 biltion

4 bytes Oto 4.2 billion

4 bytes ± 3.4. 10" ± 23

8 bytes ± 1.1. 10" ± 308

10 bytes ± 3.4. 10'-4932 to
1.2. 10"4932

Currently !he lhree cbar dala ¡ypes are guaranteed to be l byte in lenglh, bu! the
odler dala ¡ypes are machine-architecrure.QependenL

Module 4: llalk: C++ Syntax, Dala Typea, and Operatora 69

Defining and lnitializing Variables
SUde
Obieclive
Declaring o
vorioble orders
the compiler to
creote spoce
ot run-time.
Declaring ond
in1t1olizing o
vorioble defines
o volue tor thot
spoce.
C++ supports
three styles:

Key Polnls
Exomple 1:
declares spoce.
Exomples 2 ond
3:
declare spoce
ond set the
volue.

Exomple3 is
onologous to
using o
constructor on
on int.

····--····--····························· ·························-··················-······

1.Dt z; ·

illt X • 200;
i.Dt x(200);

Before a variable can be used in a program. it has to be defmed. A defmition is a
nonexecutable statemem that consists of the following pans:

• A data type

• A variable name

• An optional initializer

• 1lle semicolon

A!; is shown in the foil, the initial value can be coded in two differem ways.

70 Module 4: llaslc C++ Symax, Dala l'fpes. anc1 Opera!<: '
·----

Constants and Redices
Sil de
Objecllve
The in1t1alization
values and
other constants
use a prefix '0
denote the
redices (bCc'c'·
base-1 O. etc.;
and a suffix to
denote data
type (delault is
int).

• SJ3jftasQ:rskrls .. :l-crds)talhefww•a•d
DdaTWB

• lrhlgd Dctaoasra•s CtnBeSpedftedlnDediTd,
Cdd, a Haddecin'tl Rcdca.

Integral cons1a111S (or literals) may be represenred in decimal (base 10), hexidecimal
(16), or octal (8) radices.

The Ox or OX prefLX specifies a hexidecimal conslllliL

17 decimal is Ox 11

The zero prefix specifies an oc!al constan!.

17 decimal is 021

By defaull, an integral numeric consllllll is of 1ype signed integer.

The 1 or. L suffLX Corees an int w a 1ype 1o1111.

0xA49COL

The u or U suftix Corees an int w 1ype unsigned.

SOOOOG

Any conswu conlllining a decimal poin1 or an exponeru is a double ftoalillll point
1ype by defaull Floating poinl numbers may only be represenred in base 10.

The f or F suftix Corees a value 10 1ype ftoat.

3.2345e3F

Module 4: llalk: C++ Syntax, Data Typea, and Operatcn 71

The const Keyword
Slide
Objectlve
Explain the
·const"
modifier in !he
arena of read·
only variables
(no! !he sama
as a man ifest
constan!).

Dellvery Tlps
const is a type
modifler (like
unsigned and
long).

···························· ··

• S¡:ajlla Thd a'lald:le's VdwQmct Be Ola ¡gecl- .

• S~ fa lrílldlzlrgaa::nst DdaTp

• a::nst cl:lQ_~ \O'Id:1e =: irild \d\..e

• const float PI = 3 .14159f;

The const keyword provides a way 10 provide data lo your program symbolically
wilhoul allowing your program 10 change il. In lhe example above. you may wam lo
provide lhe universal value Pito functions making geomebic calculations. 11 is
cumbersome 10 have 10 use lhe literal value if lhere are lots of places lhal il is
needed. Funher. if anolher programmer looks al your code,lhe symbol PI is
inunediately identifiable.

Recall from lhe las! module lhal you can use a lldefme preprocessor directive 10
creare a martifesl conslanl-or an unchanging value. The difference between a
const variable anda martifesl consl311l is lhallhe #defme causes lhe preprocessor lo
do a search-and-replace operation lhroughoul your cede. This sprinkles lhe literal
(s~ified in lhe #defme) lhroughout your cede wherever il is used. On lhe olher
hand. a const variable allows lhe compiler 10 optimize iiS use. (Compiler
optimization is ou!Side lhe scope of lhis course.) This makes your cede run faster.

-·'

72 Module 4: Baile C++ Syntax, Data Types, and Opetalar1

Character Data Types
············-·--·--·············-·········-·············-··········-····-·········

S lid e
Objective
Typically half
the siZe af an
integer. the
char data type
represents a
character Car
byte ar ward) af
infarmatian.

• Adlcr ls Julf aSrrdllrngd E1~d aSirve
Olcra:ftr Wue? .

• ~Olla aStcnctrdEncxxfrgSc:tamla Srrdl
Q:rrpln. .

• Hadfo.Tw:&OICia:ln lleCJia1REp'escrtedbf
EscxpeSeq.&IDIII.

Check the documemation for the ASen lable.

Escape Sequen<e Character

'n newline

\¡ horizorual tab

\v venical tab

lb bacl<space

... cazria¡e re111m
'(fonnfeed

la aten

" backslash

\1 question mar1< ,. single q1101e , .. double quoce

'ooo ocral number

\<hh hexidccimal number
'(} null chara:ter

ASCO Value

10

9

11

8

13

12

7

92

63

39

34

any

any

o

Strings
Sllde
Obiecllve
Cover string
literals and NULL
characters.
C++ daes not
hove a string
data type.

Dellvery Tlps
Eschew arrays
tapie.

Module 4: llaalc: C++ Syntax, Dato typea, ond Operotora 73

• Slrlr9 AreaSales d QJ1igJCUS Oua:tas

• C++SIQXIfs llta'd Slrii"Qi Sudl.fe
"This is a literal string."

• C++Sirl19 AreT&rrlncta:lv.ithaNJLL Olcra:fe'

• 'bld:les Tl'd O::n QJ'Idn Oua:t. Slrl19 Are
l<n:Mnas d1cr ~

Arrays of strings are an advanced topic.

The data type of a string literal is a char pointer. You will explore arrays and
pointers in a later module.

74 Module 4: Baile C++ Syntax, Dala l'ypes, and Operatora

Naming CC'nventions
Sllde
Obieclive
Explain !he
benefits af
encading
variable nemes
wilh a char ar
twa that
denote !he
data type ar
majar usage af
!he variable.

Key Points
Takes very llttle
time to coda.
Saves haurs of
maintenance
lime IOOking
back ovar
pagesand
pagas la look
up a variable' s
defimtian.
Self-
documenting
variables!

···························------·····-··---·--·······---··································-~

• Vhfs lnaNcmt

•L~nJes

• rvteroicrepaErR::1!0"1

• lrdcdl\eP'EIIx

Naming Conventions
There are a few rules that you should keep in mind when naming variables:

l. You can 't use reserved words.

2. The fust character must be a letter or an underscore.

3. Other characters can be letters, nwnbers. or underscores.

4. Only the first 31 characters are signilicanL

Naming conventions exist for all identi.liers in the language: variables, functions,
structs, and classes.

For information about Hungarian nowion. refer to Appendix A. lt is a naming
converuion that Microsoft supports and encourages.

Typical preftxes include:

Prenx Meanlng

r flag

eh characler

sz zero-rerminaled saing

index

n nwnber (usually an iruege:)

long

u unsigned long

p poinler

Module 4: llask: C++ Syntax, Data l'ype1, and Operatora 75

Types of C++ Operators: An Overview
Slide
Objective
Introduce final
tapies ot the
module.
Explain unary.
binary, and
ternary in terms
ot the~r
operands.

Delfvery Tlps
Hove students
locate the
Operator
Precedence
Chart in
Appendix A or
in the
dacumentation

·························--·············· ····--······································-···----· .. ---· ················-·······················

• Unay, Blnay, Taray

• Mltmflc:Q:xrda's

• Assiguel Q:xrda's

• Assiglt&~ cndlrilldlzdlal

• hcatel cndDeaateiQBdas

• TW»OJ'MirsiOlS

Definitions
Unary operators take one operand.

Binary operators take two operands.

Temary operators take three operands.

Several of the opera10rs in C++ are covered in this module. The relational and
logical operators are covered in the next module. Bitwise operators are n01 covered
at all. They are an advanced topic.

Note See Appendix B for the Operator Precedence chan.

76 Module 4: llaslc C++ Syntax, Data Type1, and Operalors

Arithmetic Operators
Slide
Objecllve
Quickly explain
these binary,
arrthmetic
operators.

Key Polnta
C++ arithmetic
operators are
NOT the same
as COBOL. The
exception is the
FROMverb
usad in
subtractlon and
division.
Examplein
COBOL:
SUBTRACT A
FROM B GIVING
c.
lnC++code:
C = B·A:
e is assigned
the value of B
tess A.

·················--·········-······· ···-,

+ Addltlon
Subtractlon

• Mu~lpllcatlon

1 Dlvlalon
% Modulua

In C++. arithmelic operalions are consisten! with thc way thcy are peñonned
mathemalically: multiplicalion and division take precedence over addilion and
subttaction. and so on. Expressions enclosed in parentheses are evaluated ftrSt. 1ñe
rules for associativity and commutivity are maintained.

lt is possible to generate numbers that overflow the size of tbe data types to which
thcy are assigned. fnors Óf this son do not generate run-lime errors. C++ will not
round off values.

The compiler will reconcile mismau:bed data types auumatically through prornolion
and ttUncatioJL These two concepts will be covered in a later foil.

Module 4: Baalc C++ Syntax, Data Typet, and Operatora n

Assignment and lnitialization

Dellvery nps
rvolue ond
lvolue ore
defined next
paga.

• lntldlzdlm

The foUowing cede fragment shows you a coople of methods for declaring and
initializing variables.

tinclude <iostream.h>

int main(void}

int x;
int y • 25;
int z(26);
X • 24;
return 0;

When a variable is created, it can be given an initial value:

int x • 3:

This is n01 considered an executable statement; it is a defmition.

Once a variable has been created, it can be assigned a value as an executable
insuuction in your program:

X - S;

The left side of the assignmem operator must be a variable or Olher modifiable
entity, known collectively as lvalues.

An rvalue is any expression that resol ves toa value.

78 Module 4: IICIIIc: C++ Syntax, Data Typea, and Operatora

Assignment Operators
~--·····················-··························-·--··············· .. ·········· .. -·- ·-·-················-~

• SlrrpeAsslg11a•

• L·\tiUBcndR·VdUIII

• OJrt:,a.ndAssig 11 a •

• MJftPY O'd CSSig1

•D\ld!O'daslg1

• Mxi.Jl.S O'daSlg1

• .Ad1o"daslql

• S~O'daslg'l

=

'=

....

An assignment operalion writes !re value of the right-hand expression or operand to
the storage locauon named by the left-hand operand-an L-value. After the
assignment occurs, the assignment expression has the value of the left operand.

A conunon prograrnming praclice is to add a value toa variable, as in x= x + 3. A
shortcut notalion. compound assignmen~ allows this statement to be expressed as
x += 3. Any operalions that use the L-value and R-value propenies of a variable
written as <L-value> = <R-value> <operazor> <variable> may be rewriuen as <L
value> <operazor> =<variable>.

Module 4: Baslc: C++ Syntax, Data Types, and Operatora 79

lncrement and Decrement Operators

Key Point
y is assigned 11
befare !he
postfix makes x
a 12.

1++
++i
1-
--1

Postlix lncrement
Prelix lncrement
Postflx Decrement
Preflx lncrement

Prefix and poslfix operators increment and decremeru their operands according to
lhese rules:

• They o bey lhe rules of unary operators.

• Prefixed increment and decrement operators add or sublract 1 frorn lheir
operands prior to the operand being used. The R-value of the expression is !he
result.

• Posllixed incremem and decremem operators add or subtract 1 frorn their
operands only after the value of the operand has been used wilhin the
expresston.

For example, given

int y. x -
y - ++x;

Y - x++;

10; // y is undefined and x is 10
/1 with prefix increment
11 with postfix increment

y is 11 and.t is 12.

.. ,

80 Module 4: llaslc C++ Syntax, Data Typel, anc1 OpeRI!cn

Type Conversions
Slide
Objeclive
Explain
automatic
translations of
standard data
types through
truncation and
promotion.
Contras! lo
user- controlled
use of type
casting.

Key Points
Use Operator
Precedence
Chart to explain
why (in! 1 char)
occurs first.

•· Prcrrdlm
• Tnnx:ficn

• Tp<l:lnrg

In C++. mO!t binary operators require that operands be of the same data type. lf
they are not, the compiler unplicitly changes the data type of one operand to maoch
the other.

NormaUy the compiler seeks to promote the smaller data type operand to the same
data type as the larger operand. For e.umple:

3.14+7/'p'

This is seen by the compiler as:

double + (int/ char)

ll resolv!IS the expression within the parentheses by promoting the char 10 an int
(an int 1 an int = an int):

double + (int)

To resolve the double + an inl, the compiler must promor.e the int10 a double.

Occasionally lhe compiler will need 10 specify lnlllCation. During assignment. the
rvalue must be the same data type as the lvalue (variable). lf there is a misma!Ch,
the rvalue will be truncated:

int x;

X • 3.14:

lf you were 10 display .t, you would fmd it has the value 3!

Truncation and prornotion occur without generating run-time enor messages.

Type casting variables 10 another type is the most effective way 10 control the
effects of promotion and truncatioo.

Module 5: Relational and Logical
Operators and Flow Control

MOdule 5: Relatlonal mld Loglcal Operalora mld Flow Control

L. Overview
Slide
Objeclive
Provide an
overview of the
module
contents.

Dellvery Tips
Coverthe
objectives te
set
expectations
for the module.
COBOL
programmers
already know
90% of this. go
very fastl

• REidfald Q:Bdcrs

• Loga:t Q:actas
• Flow<lnrdStda•a•s

Module Summary
By default, C++ statemeots within a function are executed in a sequential manner.
There are a number of ways to alter this flow. As we have seen, a return statement
executed by main will pass control back to the operating system. In this module.
you willlearn how 10 code conditional and looping statements.

Objectives
At the end of this module, you will be able to:

• Use logical and comparison operators.

• . Use relational and equality operators.

• Use if.-el.se statements.

• Use while and do. •• wbile loops.

• Use for loops.

• Use switcb, ctlotinue, and break-siatements.

Lab
Using Statements and Expressions

84 Module 5: lletallonal and Loglcal Operatora and Flow Conlral

Relational Operators
SUde
Obieclive ·
COBOL
supports all
these relation
condition
operators.
Spoof: C++
does not
support the
word
equivalents of
GREATER THAN.
etc.

Detlvery Tlps
Quickly explain
that given x. a
two-way test is
not logical.
The next page
explains the use
ot logical
operators to
join relation
condrtions.

Dellvery Til)l
A third warning
concerns
insertlng a
space between
the characters.
·= =· isa
syntax error.

·············-··························· ····-················-··-······················--···--·

• EqJdTo =
• NcfEqJdTo , ..
elasThcn <

• QedvThcn >

• lasThcnaEqJdTo <=

• QedvThcnaEqJdTo >=

.>

Features of Relational Operators
Associativity is from leftto right 1be left and riglu operands are evaluated, and
lhen lhe operator is applied 10 give a resull.

lf lhe expression is determined 10 be fals~. lhe resolved value of lhe expression is O
(zero) of data type int. A true expression resolves 10 sorne non-zero value, ty¡Hcally
l. As you will see in a mamen[, relational expressiOIIS are often used as conditional
or looping test expressiCR!S.

How would lhe compiler evaluare lhe ioUowing:

int x - 20:
10 < X < 5

It is evalualed from leftto riglll, testing lhe f~rs1logical pair (1 O<x) 10 determine an
oulCorne. In lhis case, lhe cornpiler relllmS TRUE (man compilers value TRUE as a
1 or sorne olher non-zero nwnber). Nexl. it evaluates tbai result againstlhe next
operand (TRUE < 5). Ulogically, given x=20,lhe two-way test 10<20<5 would be
TRUE. The next page shows how 10 implemeru Ibis test carectly.

Warning
Typograpbical errors bappen frequently when lhese opera!Ors are used:

• Equalto is represenled by lhe opera10r = (two equal signs). Equai!O is easily
confused wilh assignmeru = (a single equal sign).

• Inequality is represenled by !he operator != (an exclarnation point followed by
an equal sign). It is easily ttansposed 10 =!, wbich is an invalid character
sequence.

Module 5: Relallonal and Loglcal Operatora and Row Control 86

Logical Operators
SUde
Oblecllve
Use these
logical
operators to
join logical
expressions in a
meaningful
wcry.

• lcgc:dND

• lcgc:dCR

• lcgc:d NCJ .

&Bt:

u

• GJCrcrleedQdrr d Evduákrl

• Shat-Oro.illng

Features of Logical ANO, OR, and NOT
The fll'St two operators are used to combine multiple relational expressions to fonil
a compound test.

X > 10 && X < 5

The logical NOT is a unary operator that rerurns the inverse logical value of its • ·
operand-from rrue tofalse or fromfalse to true.

Compound logical expressions using && and 11 are guaranteed to be evaluared from
left to right. Funhermore, the compiler will consuuct your code so that at the time
when the value of the entire compound expression is known. the appropriate action·
is taken and pan of the expression may not be evaluated. 1ñis is known as shon
circuiting. For exarnple,

int x - O:
i f (x ! • O && x < lOO)
do something:

Since the fll'St expression evaluates to fa/se. the rest of the expression is not
evaluated since fa/se AND any Olher value always resolves to fa/se. The dependen!
expression is slapped.

Conversely, in a compound that uses the OR operator. when tbe fll'St expression
evaluates as true, the result of the entire compound expression must be true. For
that reason, tbe tra.iling expressions are not evaluated. but the dependen! expression
is evaluared.

86 Module S: llelatlonal and Loglcal Operaloq a'ld Flow Contfal

ANO and OR Operators
Sllde
Obiecttve
Walk through
the various true
table parhs
showing the
difference
between
logical AND
and IOQICCI QR.

Key Polnts
Loglcal ANO:
Requires bcth
sides of the &&
to be True to
return an
overall Trua.
1! !O!l l!ltt ¡¡s;~¡¡ e!
8t::ll:l !lllglugt¡¡¡
te Falsa, toe
dgO! ¡js;le j¡ cQ!
!ill1!;11Uc!!ls::1.
Loglcal 011:
Only requires
erther sida of
the 1 1 to be
T rue ta return
en overall Trua.
lf th¡¡ l!ltt ¡¡s;~¡¡ e!
Q[l !lliCIUc!!l¡ !e
Trut, !Oe ¡jgtJl
¡¡g~ i~ DQÍ
!ill1C1Uc!!ls::l.

Oelivery Tlps
End of
operarors.
Moving to Flow
Control
subsection.

TRUE
FALSE "'A" 1----6

FALSE

Module 5: Relallonal cn:t Loglcal Operator1 cn:t Row Control 87

Flow Control: Overview
Slide
Objective
Neme the
variaus
constructs and
prepare lo
move quickly
lhrough lhe resl
of lhe module.

Dellvery Tips
Prepare
students to look
atdemocode
(online or in
lheir books).
Gel lhem set to
move quickly.
COBOL
programmers
already know
lhese
constructs.

• Qndllclld Q:nshu:ls

• tLcaeslde11e'
• TerayQ:B'dcr?:

• swtd'ls1de•ei
• locp~Stdeiels

• v.tlilela:p

• c:b..v.tlilelccp

• ~to:p

• antiUiclldtra:kSidai&ils

Now that you are familiar with wriling simple and compound condilionaltesl
expressions, you are ready lo examine the condilional and looping construclions
available in C++. Many of lhese should already be familiar from your past
experience with other modem languages.

In the following discussions, wherever a stalemenl is required in the symax. it can
be either a null swemem, a simple swemem, or a block of code (a compound
statemem).

Condilional and looping statemems can be nesled toan arbitrary depth in C++.

C ++ also has a goto statemenL Because its use encourages nonstruclUred coding
also known as spaghetti coding-il will nol be covered in this course.

88 Module 5: Relaltonal anc:l Loglc:CII Opetalorl anc:1 Row Confral

if...else Statements

For Your
lnformatlon
COBOL
ditferences:
• Expression in (
)'s
• No THEN
clause
• "else
statement:· is

optional.

··-····························-·············-···-················~

TRUE

FALSE

do Actlon2

Syntax
if (expression)

statement; // Actionl
el se

statement; // Action2

do Actlon1

Given inteqer variables x. y, and max:
if (x >• y)

rnax • x;
el se

max • y;
cout << "maximum value is " << max;

The entire else portien of !he starement is oplional.

MOdule 5: llelattonal md loglcal Operatora md Flow Control 89

De me
ELSE.CP'. , foWid in \DEMOS\MOD05. This demonstration shows use of !he
if ... else CO!lSirUCl.

1 // ELSE.CPP found in \demos\mod05
2 ¡.¡ Demonstrate if and if-else condltional flow.
3 // The expresslon should be encasad by parentheses.
4 // preprocessor directlve
5 finclude <iostream.h>
6 // manifest constants
1 tcafine B_KEY 'b'
B tdefine CAPITAL B 'B'
9

10 int main (va id)

11
12
13

14
15
16
17
lB
19
20
21
22
23

char eh;
cout <<. "Enter the 'b' key for a. beep: ":
ClO >> eh;
if (eh •• B_KEY) // teot

cout << ''Beep!''; //
eloe //

if (eh •• CAPITAL_B)
cout << "BEEP! !'';

el .se

equivalence char vs char
true
false

/1 a.nother test
1/ true

cout << "Bye

return O;
bye"; // falsa again
11 Reqardless of the input,
11 return success (0 errors)

90 Module 5: Relatronar a!d Loglcal Operaton a!d FloW Contrcl

Ternary Operator ?:
Sllde
Objective
Quickly explain
cana1tional
operator within
if-else
terminology.

Key Polnts
Ternary
operatar of:
<exp)? sl : s2:
is analogous to:
(exp) THEN s 1

ELSE s2:

• Simia tolheiLEfseStdelat Bli lt Fcrm at
E¡q::rasiat

• Preoaca mJust .táM!IheMig 11 a H~:ada

The temary or conditional operator dosel y mimics !he function of the ;r __ else
statemem in C ++. hs main advantage is that it forms an expression, and expressions
can be used in many places where statements are not allowed.

cout << "maximum value i!l " << (x >• y ? x : y);

np Avoid !he temptation of over-using !he temary operator. Use it only where
C++ syntax forces or suggests the use of an expression.

ModUle 5: Relaltonal and loglcal Operatora and Row Control 91

switch Statements
S lid e
Objeclive
Explain SWITCH
statement
processing.

Dellvery Tlps
This ls a new
construct. slow
down for this
page.

· 1 switch 1; Integral

{

.1 r casal 11

1

Syntax

~· braak 1
1 caae2 lí
¡·· ~

1 braak [\

switch (integral expression)

1
case IVALl:
statement; // case 1
break;
case IVAL2:
statement; // case 2
break;

default:
statement;
break;

C++ switch swemerus, also called case stalements, ha ve !he foUowing limilations
and catsidetations:

• Only in1egral expressions may be leSted.

• Each case swement may only leSl against a compile-time imegral constan!.

• Wilhout !he break at !he end of each case portion, fall-through execution will
occur.

The switch stalement should be used in preference toa nesled if ... else whenever
these conditions can be met.

np Case logic is more efficiem than nesled iLelse. lltis consuuct works well for
setting up a decision framework.

.l.

92 Module 5: Relallonal a1d Loglcal Operalora a'ld Flow Control

1

2
3

4

5

6

7

8

9

10
11

12
13
14
15
16
17
18
19
20

21
22
23

24
25

26

27

28
29

JO
31
32

33

34

35

36

37

38

39

40
41
42

Demos
POWERI.CPP is located in \DEMOS\MOD05. lt demonstrates use of switch
st.aremems w¡lh breaks.

11 POWERl.CPP found in \demos\modOS
11 A typical use for the sw1tch statement.
f1nclude <lostream.h>

int main () 11 definition for main

long lNumber, lResult;
int iPower;

cout << "En ter a number: ";
c1.n >> lNumber;

cout << "What power do you want it raised ''
« "to? (1-5) ":

cin >> iPoWer;
sw1.tch (1Power)

{

11 basad on the user's input,
11 perform a case section

case 5: // only if usar enterad 'S'
lResult • lNumber * lNumber * lNumber *

lNumber * lNumber;
break;

case 4: // statement(s) for '4'
lResult • lNumber * lNumber'• lNumber *

lNumber;
break; 11 break jumps flov out of switch

case 3:
lResult • lNumber * lNumber * lNumber;
break;

ca:!! e 2: 11 notice ":" for eacb case
lResult • lNumber * lNumber;
break;

case 1: // Any number raised to first
lResult • lNumber; // power is itself.
break;

default: 1/ "default" catches all other cases
cout << "Only powers of 1 to· 5 are "

<< "val id. \n"; 11 Show error to u ser.
return 1; // Prematura return from proqram!

cout << lNumber << "raised to the power"
<< iPower << "is" << lReeult << ".\n";

return 0; // normal return from program

Module 5: Relallonal ald Loglc:al Operatora ald Flow Control 93

POWER2.CPP is located in \DEMOS\M0005. lt dernonsuates use of switch
statements with fall-through execution.

1 11 POWER2. CPP found in \demos\mod05
2 // A non-standard use for the sw1tch statement
3 // allows cases to fall through te the next case
4 tinclude <iostream.h>
S

6 lnt ma1n()

7

8 long lNumber, lResult;
9 1.nt iPower;

10
11
12
13

14
15

16

17
lB
10

20

21
22
23
24

25
26
27
28

29
30
31

32
33

34
35

36

37

38

39

40

cout << "Entera number:";
c1n >> lNumber;
cout << ''What power do you want it raised"

« "to? (l-5) ·•·
e in >> iPower;

/1 optimistically, set lResult
lResult • lNumber; // to "first power"

switch (iPower)

case 5:
lResult

ca3e 4:

11 depending on user's input ...
// enter at the appropriate
11 case location in the switch ...

*• lNumber;
11 and fall from one case ...

lRe.sult •- lNumber;
case 3: 11 into the next ...

lResult *• lNumber;
case 2:

lResult
ca3e 1:

break;
default:

11 again ...
*• lNumber;

11 finally,
11 a break! 1-5 all break here.

cout << "Only powers of 1 to 5 are"
<< "valid.\n";

return 1; // Error return (still no break)
11 but the program is done.

cout << lNumber << "rai3ed to the power"
<< iPower << "is'' << lResult << ''.\n'';

return O;

94 Module 5: Relatlonal anc:t loglcal Operators a1d F1ow Control

while Loops
Slide
Objectlve
AC+-<-while
statement is
COBOL's
"PERFORM nl
WITH TEST
BEFORE .. "

TRUE

FALSE

Syntax
wh~le (expression)

statement; // loop body

do Body J

Note that there is no semicolon at the end of the test expression line. The possible
number of iteralions of a while loop is between zero and infmity.

Module 5: RelaHonal and Loglcal Operalora and Flaw Control 95

Demo
WHlLE.CPP is located in 'DEMOS\MOD05. ll shows lhe use of lhe while loop
consuuct.

1 // WHILE.CPP found in \demo~\modOS
2 // A while loop is processed zero or more times because
3 1/ the test happens first - befare the body of the loop.
4 finclude <lostream.h>
5
6 tdefine B KEY 'b'
7

e vo1d main()
9 // Local variables (undefined contents)

10 char eh • ' '; 11 must be initlalized or preset with
11 11 a value befo re entering the "wh1le. ''
12 cout << "Enter a 'b' for a beep: ",·
13 while (eh !• B_KEY) // while loop (conditional)
14 // Body of the loop
15 e in >> eh; 11 get input
16 if (eh •• B_KEY) // another test (expression)
17

18

19

20

21

22

cout << "Beep!";
el se

11 true
11 false

cout << ''Please, enter the 'b' key.'';
11 End of loop. Loop continuas while the expression
11 is Trua (non-zero}, but stop at False ...
1/ Notice the test used in the while is a !~ test.

Module 5: Relatlonal anc:lloglcal Operalors anc:1 Row Control

do ... while Loop
SUde
Objeclive
AC+-+-while
statement is
COBOL's
"PERFORM nl
WITH TEST
AFTER .. ."
The body
exec· s one or
more times.

!
.. i"' ¡

FALSE

Syntax
do
statement; // loop body
wh~le (expression);

TRUE

Nme that there is a semicolon at the end of the test expression line. The possible
nwnber of iterations of a do. .. while loop is between one and inftnity.

Module 5: Relattonat a1d Logteal Operators a1d Flow Control 97

De m o
DOWHILE.CPP is loca1ed in \DEMOS\MOD05. 11 shows lhe use of !he do ... while
loop consll1JCI.

1 // DOWHILE.CPP found in \demos\modQS
2 // The body of a do-while is processed one or
3 1/ more t~mes.
4 tinclude <iostream.h>
S // manifest constant
6 tdefine B KEY 'b'
7

a
•

10
11

12
13

14

15
16
17
19
19
20
21
22

int ma1n (vold) 11 definition for main func

char eh; 11 eh has undefined contents

cout << ''Enter tne 'b' key for a beep:'';
do

cin.>> eh; //eh has user's character
if (eh •• B_KEY)

cout << ''Beep!";
el se

cout << "Plea.se, enter the 'b' key.";
while (eh !• B_KEY); // loop reiterates while

11 user's eh !• 'b'
return O; I/ (Note: single quotes)

98 Module S: Relattonal and loglcal Operalora and F1ow Control

for Loop
Sil de
Objecllve
A C++ 'for"
statement is
COBOL's
PERFORM using
QJJ the options.

Key Polnts
• initialiZation • is
VARYINGvl
FROM

·test· is WITH
TEST BEFORE

• statement" is
PROCEDURE·
NAME

• modificallon •
is VARYING vl
UNTll

¡
lnitlalize 1; ¡,

do Body

FALSE~

Syntax
for (initializat.ion; test; modificat.ion)
statement;

Note tha1 exaclly 1wo semicolons are needed inside the ror's parentheses. 11le
possible nurnber of iterations of a ror loop is be!ween zero and infmily.

A ror loop is equivalen! 10 the foUowing whUe loop:

initialization;
while. (expreasion)
1

statement:
modificat.ion;

l

Module 5: Relatlonal and Lcglcal Operalaq and Raw Control 99

Demo
FORLOOP.CPP is located in \DEMOS\VLODOS. lt shows lhe use of lhe for loop
consuuct.

!! FORLOOP.CPP found in \demos\mod05
2 J.! A for loop has four phases of execution.
3 tinclude <ios~ream.h>
4

S

6

7

8

9

lO
11

12

13
14

15
16

void main ()

int iLCV;

e out « ··The

for (iLCV -
if ((72

cout

factors

1; iLCV

\ iLCV)
« 1LCV

11 definition for ma1n func

11 integer Loop Control Value

of 72 are: \n";

11 initialization; test; increment

<- 72; iLCV++)
/1 body

0) /1 of
« endl; 11 the

/1 loop

100 Module 5: Relatlonal and loglcal Operators and FloW Control

... continue and ... break Statements
Sil de
Obfeclive
Explain
cont1nue and
break in
context of the
laoping
constructs just
cave red.

······························· ·······-······················ ---······················· -----······-················· ···················•

while (expression) fi

statement;

i f (express ion) l
1

~ :::::~ue; '
¡ r=te~nt;

1

You have seen that the break staternent is used in a switch consuuction 10 prevent
fall-through execution of the case portions.

The now of loops in e++ can also be modified with break and continue
statements. When executed. break causes control to pass immediately after the
loop; conlinue causes now to pass 10 just after the last dependent statement in the
loop body.

Module 5: Relallonal ancl Loglcal Operatoq ancl Row Control l01

Demo
CONTBRK.CPP is localed in \DEMOS\MODOS. l! shows !he use of continue and
break s1a1emen1S.

1 // CONTBRK.CPP found in \demo.s\mod05
2 !1 Contrast flow control differences:
3 11 continua v.s. break
4 tinclude <iostream.h>
5
6

7

9

•
10

11

12
13

14

15
16
17
19

19

20

21
22

vo.1d main (void)

int nNumber;

11 definition of maln func

/1 the followinq ''while~ is
11 an infinita loop -- cout
/1 always is a positiva value

while (cout << "Enteran e•ren number:")
{

cin· >> nNumber;
if .¡ {nNumber \ 2)

{

l)

cout << "I said, "·
continua; 11 "continua" restart loop!

break; !1 ''break'' exits loop!

cout << "Thanks. I needed that! \n";
11 Note: A "vold" main cannot return a value.

102 Module 5: Relallonal a1d logk:al Opera!OII a1d F1ow Control

Lab 3: Using Statements and Expressions
S lid e
Objecllve
Execute the lab
salut1an.
Explain the
purpase ot the
lab.
Ask students to
read the
scenario.

·····················-········ ····-·-···········---- ··································-·······-····--·········· .. ········-·····--

Module 6: Implementing a Simple
Function

Module 6: lmplem~ a Simple Functton 1011

L. Overview
SUde
Obiecllve
Provide en
overview of the
module
contents.

• 'MldArefuaJials?

• Prc:tavPe& aldlla:x&s

• O:u p:s a b ct Fl.lldkrs ·

• Arg.l\"aft CJid REiun \tluas

• PCBSingAr9JI'IIi$ aldRtNr\ \tluas.

• S!rrpeC++ Prc:iganSirud\re

• ad:iJ w. Laxt k:Dss

Module Summary
In the lasl few modules, you leamed how 10 create a program by using variables and
basic operators 10 form simple swemems. You also used looping and condilional
slatements. As you will see, these statements, are also used 10 fonn the body of
funclions Olher !han main. Thal is the subjecl of this module.

Remember thal Visual C++ is a hybrid language thal supporu both the procedural
and objecHlrieru.ed approaches. In fact, mosl C++ programs are not striclly objecl
orienled. They musl contain the global funclion main, and they nonnally contain
other functions tha! exist outside of classes.

Objectives
U pon completion of this module, you will be able 10:

• Create protol)'Jles for simple functions.

____ • __ Imp~ ñmctions.-

• Specify the visibility of a program's variables.

Lab
Implemenling Simple FWJCtions

106 MOdule 6: lmplementtng a Simple Functlon

What Are Functions?
Sil de
Obieclive
Describe the
purposes.
features and
sources for
functions.
Remnd
students that a
function will
perform an o-o
'behOVIOr."

~... -------------·-·-·--································ ----·-·······-··············

• The''Bia:kBafa"dC++PityUii

• Peas lrlc:rrrdlm toCJ'ICI Rehm lrlcmdlm rran
FU'Idla'e

• v.ttteYcu O>.na UselltrayFllldknl

• All AleE(Jd tran Js M:reEq.d)

•ITdn ls QiciFirst, CJ'Idlt ls ata"t lhalcst toExeclle

Essential Features of Functions
Functions representlhe slalldard procedural black boxes of a C++ program. (From
!he object-oriemed perspective. classes representlhe majar black boxes.) From a
user's perspective. !he im¡lonant cbaracrenslics of a function are !he information
lhat a function receives (!he argumems), !he information rerumed (!he rerumed
val u e), and any si de effeciS !he function may cause.

Functions originale from two sources: eilher !he user explicilly creates lhem, or lhey
are "borrowed" from commercially writlen libraries. The main function 15 an
example of !he former. whereas !he ANSI-slalldard C and ioslream libraries are
examples of !he latter.

Though all functions are slrUCrurally and mechanico': ; equivalem, !he main
function happens 10 be a linle more equai Lban use: ·men functions. It is !he first
function called from the operaling sySiem, and ofte•. ille last one executing when
your program terminates. The maiD function also aciS as !he highest-level function.
directing logic llow by calling olher funclions, prescribing !he imponam leSt and
looping conditions, and creating and sending messages 10 objeciS.

Module 6: lmplementlng a Simple Funetton 107

Prototypes and Headers
Slide
Objeclive
Define
prototypes and
their purposes.

Dellvery Tipa
Don·t add too
much detail
about
arguments or
return values.
Wart a few
pages.

De ter
explanation of
• if any· for 3
pages.

• v..ld ls aPrdc:lype?

• Act:so1¡:jlcn d1te irp.l O"da.Jip..t d aflrdla1

• t\tt 1te fl.rdlcn ifself

• v..ld ls oHa:da?

Prototypes and Header Files
Before each function is used or defllled in C++, the compiler must see a description
or dec/aralion of each function. Declarations do not aUocate any storage or produce
code. A function declaration is also called a pro1o1ype.

Cautlon In older pre-ANSI C prograrns, prototypes were not supponed.

In C++, functions take arguments and retum values of very specific data types. An
importan! pan of designing a function is specifying this inteñace. A prototype
describes this inteñace by providing three pieces of information:

• 1ñe function narne

• The data types of any arguments

• The retum data type, if any

Prototypes for commercially written functions in libraries are supplied in header
files that are then included in prograrns.

More Facts About Prototypes
• They allow you 10 place functiorts in any order in !he program.

• Pro!otypes don't malee the prograrn bigger.

• They permit checlting for argument and retum-type consistency al compile time.

• They don 't place source code or defme variables in headers.

108 Module 6: lmplementtng a Simple Functton

Demos
RECTVOLI.CPP is found in\DEMOS\MOD06.

11 REC:VOLl.CPP found 1n \demos\mod06
2 /1 Shcws use of user-supplied functions
3 // Preprocessor dtrective to include
4 // llbrary-supplied func protocypes
5 finclude <lostream.h>
6 // Prototype user-supplied func
7 long rectVol(int, int); //denotes return-type, func-name
8 // and data-type of arguments.
9

10 int main (void) // main func is special - "va id''
11 // denotes lack o'f arguments
12 int nWidth, nHeight;
13 cout << "En ter the ·,., :ith, in inches, of rectangle:
14 cin >> nWidth;
15 cout << ''Enter the ;ht, in inches, of rectangle: '';

16

l7

lB
19
20
21
22

cin >> nHeight;
cout << ''\nThe vol·- is " 11 within a cout statement,

<< rectVol(nW~ ~. nHe1ght) // embedded func call
<< " square incnes.":

return O:

23 1- rectVol function definition.
24 Note: cast to long required to avoid truncation.
25
26 long rectVol (int nW, int nH}
27 {

29 return ((long) nW * (long) nH);

29

ModUle 6: Jmplementlng a Simple Funcnon 109

RECfVOL2.CPP is found in \OEMOS\MOD06.

1 // RECTVOL2.CPP found in \demo~\mod06
2 11 Show3 use of user-supplied functions
3 iinclude <iostream.h>
4

S

6

7

I/ coarse conversion
ldefine MM_PER_INCH

from inches to milltmeters
25

8 // prototypes user-supplied func
9 int convert(tnc);

10 long rectVol(tnt, int);
11
12 int rnatn ()
13

14

15
16

17
18
19

20

21
22

23

24

25
26

27
28

29

int nWidth, nReight;

cout cc·"enter the width, in inches, of rectangle: '';
cin >> ·nW1.dth;
cout << "Enter the height, in inches, of rectangle: "·
cin >> nHeight;

cout << "\nThe vol ume is "
<< rectVol(nWidth, nHeight}
<< '' square inches.";

cout << "\n or about "
<< rectVol(convert(nWidth}, convert(nHeight))
<< " .square millimeters.";

return 0;

30 int convert(int ninches)
31
32 return ninches * MM_PER_INCH;
33

34
35 ·long rectVol (int nW, int nH)
36 {
37 return { {lonq) nW • {lonq) nH);

38

•

110 Module 6: lmplementrng a Simple Funellon

Function lmplementation
S lid e
Objective
Summarize use
ot prototypes.
introduce more
detarl with args
and return
values.

·······--·····················-·······-··············· ··············· ··-·····················-···· ·····-······

iretum_type tuneA (para meter typea); •··- t-- Prototna-
r;·¡;¡·¡;;-¡¡¡·¡¡··¡;;iiiiij"···························· .. ··-··············-········ .
¡ (

luncA(actual argumenta); /lcallluncA ~- ,_ ___ lnvocallon

jretum_type luncA(Iormal argumenta) ..o-f--1¡:--Hnder

J!
local variables; 11 dadarelocal vare ... ·¡ ,
etatemtr~t; fl do aomething:

j variable = expraaalon; 11 calculo te) r >-- Body
¡ ratum value: lf raiUm value ta main

ll. ---- ·····-········ ··-········---- --------·-·····-·····

A function represents a general logical process. lts implemeruation requires four
general steps:

l. Design !he interface. Choose a narne. !he parameter types, and !he type of !he
rerum value.

2. Implemem !he function. First. write !he header of !he function from !he
information generaled in step l. Then write !he body of !he function as required
10 perform !he logical process. Keep !he following in mind:

• The function body is delimited by a pair of curly braces.

• Mosl functions wiU probably defme local variables and conlain a number of
assigrunent and flow<OIIlrOI swemerus.

• Normally a functioo will also conlain atleast one statementlhat calculates
and rerums a value.

• Most swemerus are terminaled by a semicoloo.
3. Pro101ype !he function. Create a declaration swement for your new function at

!he 10p of your source file. The easiest way lo do lhis is 10 cut and paste !he
header. tben add a terminaling semicolon.

4. Test !he function by using typical and limiting values for acwal argumems .

•

\

Module 6: lmplemen~ng a Simple Functlon 111

Arguments and Return Values
Slide
Objective
Detail the "use
af" and "lack
of" arguments
and/or return
type

Key Points
Explain • if any"
within context
of the two uses
for "void":
1 : void func();
No return type
2: int func(void);
No arguments

• FllldiO'lS Ctn T ckeZeo a M:rekg.Jnris

, • FllldiO'lS CtnREI\rnZeoa OleWue

• Thevcid Ke,-.o.trd

In C++, you can create functions that take zero or more arguments, and retum zero
or one value.

The void keyword in a function prototype can be interpreted as '"nothing'"; either no
arguments are required, or no retumed value is generated.

Tip The void keyword was added in ANSI C. In K& R. all functions wcre required
to retum a value.

Examples
Here is a sqrt function that takes a doub1e asan argument and rctums a value of
type double.

double sqrt(double);

The srand function takes an unsigned int asan argument and retums no '!alu~. __

void srand(unsigned int);

The rand function takes no arguments and retums a value of type in t.

int rand (void);

The tzset (time zone set) function takes no arguments and retums no values.

void tzset(void);

.•

- J

112 Module 6: lmplemenflng a Simple FuncflOn

Passing Arguments and 'RetUrn Values
Slide
Objeclive
Complete
argument and
return values
detail.
Summarize use
of functions.

, ···-·--------·················· ······-··-··-····· ··································--························

• A F LR:fiooll1it'CXdloo a Q:ll Alhrs Prcgan F ION

• Adud kgomns (O' Paérrse-s)M:tdl toFarrd
Ñg..rrais

• R&u'nVd~.eOt rdYCict rqja::a; Q:ll toFl.lldlm

• Q'ly(l:pes d Vdues kePc:ssa::lb¡DEtaJt

A function invocation or call is an expression !hat drastically allers !he normal
linear prograrn tlow. When a cal! is executed, 1wo irnponanl events occur:

• The values of !he actual arguments in !he function cal! are copied into !he formal
arguments.

• Control passes lo !he ftrsl executable line in !he function.

Tip The function cal! opera1or is in Appendix B, !he Operator Precedence chan.

The stalements inside a function continue to execule until one of !he following
occurs:.

• A return s1a1ement is executed.

• The ending curly brace of !he function is encoun1ered. This is cquivalem to
relurning no value.

Al this poinl, control passes back lo !he cal! !hal involced !he function. U a value is
rerumed, !hal value replaces !he emire function-call expression. The function cal! is
said lo reso/ve ro rhar value. Prograrn execution continues from !hal pomt.

Tip Calls lo functions !hat return void are !he only expressions in C++ !hat do no1
resol veto a value.

The defaull mechartism whereby values are passed to and from functions is termed
cal/ by value. Wi!h this mechanism, only copies of values are passed around. Each
function still only has access 10 its formal pararnelers, local variables. and global
variables.

' '-·.

Module 6: lmplemenllng a Simple Funcllon 113

Stack Architecture
Slide
Objeclive
Begin a new
subtopic
detailing how
arguments are
passed toa
function on the
stock. Sub-tapie
includes a
contras! of auto
variables and
globals.

1

2
3

4

5-
6"

7

8

9
10

11

12

13

14

15

16
17
lB
19
20

21

22

23

24

25

26

X ·rn y 1 o_ • ;

a a: b

nTemp · ..,.,1 .,...,_.1;

De m o
SW AP.CPP is found in \DEMOS\MOD06.

// SWAP.CPP found in \demos\mod06
/1 Demonstrates the default calling conventions for
/1 function.s.
finclude <iostream.h>

11 function prototype
void swap(int, int); 11 .swap is a function that

11 takes two arguments
void main ()

11 two local variables X and
int X (5)' y (10) : 11 Note: equivalent to:

11 int X ~ 5, y - 1 0;

cout « "X is « x;
cout « " and y is " « y « endl;
.:swap (x, y): 11 function cal!
cout « "X is " « x;
e out « " and y is " « y « endl;

void swap(int a, int b) // function definition

int nTemp;

nTemp • a;

a "" b;
11 nTemp assigned the S
// a assigned the 10 from b

.:

y

b - nTemp; 11 b assigned the 5 from nTemp

L

':~

114 Module 6: lmplementlng a Simple Functlon

Global vs. Local Access
S lid e
Objective
Complete the
sub-tapie on
variables by
dealing
differences
between auto
(local) and
global
variables.

Delivery Tips
COBOL
programmers
are used to -all
global"
variables. Be
sure they
understand the
concept or
locals and
lim~ed scope
visibMy.

~ -

'¡,¡ ,¡ ·' .• :: J • :· o1

J.nt. nGlobal,·
main ()
{

}

int nLoca l;
nLocal ... 5:
nGlobal • 14;

funcA ()
{

nLocal • 10; //error
nGlobal ... 16;

Facts About Local and Global Variables
• Globals are lypically defmed allhe top of lhe program.

• Globals come into exislence befare main and ex.isl for lhe duralion of lhe enlire
program.

• Globals can be used by any funclion in lhe program.

• Locals can be defmed anywhere wilhin a funclion, bul are lypically defined al
lhe beginning of a funclion.

• Locals ex.isl for lhe duralion of lhe function invocalion only, lhen lhey die or go
oUJ of scope.

• Locals can only be used wilhin lhe funclion in which lhey are defmed.

• In lhe absence of an explicil inilializer, global variables are inilialized lO zero.
By defaull, local variables are inilialized 10 an unknown value-oflen referred
lo as "garbage."

As a rule of lhwnb. you should minirrlize lhe use of global variables lo aid program
modularity.

The tapie of s1orage class and lifetime will be revisiled in a fururemodule.

1
2
3
4
S

6
7

8
9

10
11

12
13
14

15
16
17

lB
19
20

21
22
23
24

25
26
27

' 28 ' 29
30

31
32

33

34
35

36
37

38
39

40
41

42

43

44

45
46

47
48

Module 6: lmplemenHng a Simple Functlon 115

De m o
SCOPE.CPP is found in \DEMOS\MOD06. lt demonstrates thc local and global
scope of vanables.

1/ SCOPE.CPP found in \demos\mod06
/1 Th~s program demonstrates variable scope:
11 Two identically named var~ables are decla~ed
11 and used in this proqram. This is legal because
1/ the variables have a~ .ferent scope.

tinclude <iostream.h>

11 user-supplied function prototypes. Read prototypes as:
/1 funcA is a function that takes

int funcA (void);
int funcB(void);

11 global variables
int nTemp • 5;

int main ()

e out « "Call1ng
cout « funcA ()
e out « funcA ()

cout « funcA ()
e out « funcA ()

cout « funcA ()

cout « endl;
cout « "Calling
e out « funcB ()
e out « funcB ()
cout « funcB ()

cout « funcB ()

cout « funcB ()

return 0;

int funcA ()

I/ no argumenta and returns an ~nt

11 nTemp has global scope

funcA ... " « endl;
« endl;
« endl;

« endl;
« endl;
« endl;

funcB ... " « endl;
« endl;
« endl;
« endl;
« endl;
« endl;

JI The return value from funcA is the global nTemp.

;,,

JI nTem~ 1s incr~mented by 5 each_ time_funcA is called.

nTemp +• 5;
return nTemp;

int funcB ()
JI The return value from funcB is a local callad nTemp.
/1 nTemp is created each time funcB is called
int nTemp • 5; // and initialized with a value of S.
nTemp +• 5; 11 nTemp is incrementad to 10. Due to
return nTemp; // local scope the value is not retained.
/1 A local scope value may be returned-not retained.

"i

..

.,

116 Module 6: lmplementlng a Simple Functlon

Simple C++ Prograrh Strucfure
Slide
Objeclive
Summorize lhe
use of functions
and
recommend
that global.
user-written
functions be
placed
alphabetically
atter mainO. return O;

Oaer-Writtao Funation•

A nontrivial C++ application typically has six general portions 10 il:

#includes 10 declare cornmercially wri11en functions. Header files also lypicaily
comain olher declarations and preprocessor d1rectives nol yel covered in Llus course.

#defines 10 create manifesl constants.

User-Supplled Prolotypes declare lhe user-wriuen functions ac1uaily defmed
laler in lhe source file.

Global Variable Dellnillons create global variables.

The maln Funcllon: Every application has one and only one. 11 serves as lhe
entry poim lo lhe apptication. By convention, il is befare all Olher functions m lhe
source file.

User-WrtHen Funcllons: Divide lhe application inlo logical procedural units and
factor ou1 cornmonly used code 10 elirninate repetition.

Module 6: lmplementlng a Simple Functlon 117

Lab 4: lmplementing Simple Functions
S lid e
Objeclive
Execute the lab
solution.
Explain the
purpose of the
lab.
Ask students to
read the
scenario.

Module 7: Using Structures to
Encapsulate Data

Module 7: Uslng Slructures lo Encop¡ulale Dato 121

I Overview
Sil de
Objeclive
Provide an
oveNiew ot !he
module
contenls.

Delivery Tips
COBOL
programmers
are familiar wrth
DATA DIVISION
andWORKING
STORAGE
contructs that
are very similar
to ·structs·.
Expect lo move
quickly.

• ln¡:IEr\"B""f~ostruct

• Qe:fi~O'l~ctT'IP!Sirud

• Dlsp~~mQ:jed's Vdue

Module Summary
At tlús point you ha ve explorcd the fundamental concepts of eoding. In tlús module,
you will integra te what you know about variables, datatypes, and f unctions 10 e reate
your own custom data-suuctures.

Objectives
U pon completion of tlús module, you will be able to:

• lmplement a struct (a custom data suucture).

• Create objects of your data suucture's type.

• Access the values contained in your data suucrure.

Lab
Using Structures lo Encapsulate Data

122 Module 7: Uslng Structures to Encopsulafe Dato

What ls a struct?
Slide
Objective
Provide a
simple definition
for structures.

Key Points
This structure
definition is
analogous to a
function
prototype: it
has no cost and
takes no space.

Creating
YourRect
defines a
memoryarea
for the
Rectangle
variable.

-' "' .. ··
····--····-············ ······················· ..

• M Jnil C Q:nstru:t T hc:t PrOJtdls E ncq;&UctiCJ'l

• ByCI::nYErllcn, struc:b AreUsedtoEncq;&UdeDdo
Q'ly

• lnC++, slruds PrOJtdellffeai FlridkrditylranC

struct StructureName

) ;

d.ata_type Mern.berNamel;
data_type MemberName2;
data_type MemberNameJ;

What ls a struct?
The keyword struct is used to create a data structure. A data structure is created by
the programmer and combines existing heterogencous data types (integers, noating
point numbers. characters. and so on) into an indivisible uniL The individual data
tields m a struct are caBed members. A struct m C++ is similar toa record in
other languages.

Operationally. to use a struct in a prograrn, you must flrst declare the new struct
data type. By this declaration .. you are eff·::ctively making a new variable type. Li.ke
all dcclarations, a struct dcclaration prr .les informa !ion 10 the compiler. but does
not allocate memory for data or code.

struct Rectangle
{

int nLength;
int nWidth;
short int Color;
) ;

Once a struct is declared as above, variables of type Rcctangle can be defmed.

Rectangle YourRect;

Module 7: Uslng Slruclures lo Encopsulale Data 123

struct Operations
Slide
Objective
Using
lerminology
similar to lhe
inilializalion and
assignmenl of
standard dala
type variables.
explain
initialization and
assignment of
slructs. Cover
ways lhe two
are idenlical.

Key Paints
Using the dot
operatar lo
access struct
members.

• ~lgw•a•

• Dct "."a M:rrts ,4c:a¡s

lnitialization and Assignment
Recall from an earlier module lhat lhcre are IWO ways to providc actual values for.
variables: initialization and assigruncnt. There is a subtle difference between
initializauon and assigrunent. Initialization is done when a variable is defined. YoÜr
prograrn does not consider lhis an cxecutable statcment:

Rectangle YourRect • {3,4};

·. Notice lhat a literal initializer is provided for every data member (!he 3 and !he 4
above).

Assigrunent can only be pcñormed on existing variables. It is an executable
statemenL Assigrunent can also be used 10 provide values 10 your data members.

MyBox • YourRect;

Member Access
-- -- -- ~ :::::........_~-- _--

To rerum or assign values of individual data members, use the "." operator as
follows:

YourRect.nLength • 3;
YourRect.nWidth ~ 4;

124 Module 7: Uslng Structures lo Encopsulale Data

De m o
STRUCf.CPP is found m \DEM0:>\.\110007.

1 11 STRUCT.CPP found in \demos\mod07
2 // This program demonstrates how to create and use a
3 11 user-def~ned data structure using the struct keyword.
4 flnclude <iostream.h>
S // A user-def~ned data structure for Rectangle
6 struct Rectangle
7 (

a
9

10

11

12

} ;

int x, y;
int nHeight;
int nWidth;

11 .x and y denote the center point

13 // function prototype for GetArea funct~on~
14 // tha~ takes a Rectangle argument and returns
15 // a long data-type value
16 long GetArea (Rectangle r);

17
18 lnt main ()

19

20
21
22
23

24

25
26
27

28

29

30
31
32

33

34

35

36

37

38

39

40
41

long lArea;
!1 An ~nstance of a struct can get data through
/1 initialization. rl's is initialized below:

Rectangle rl -. (0, O, 100, 200};

/1 An instance of a struct can get data through
/1 assignment. r2's members get assigned below:

Rectangle r2;
r2.x • 100;
r2.y- lOO;

r2.nHeight - 300;
r2.nWidth - 300;

11
·lArea - GetArea, ::::1);

cout « "rl's area ,.
11

lArea - GetArea (r2) ;
cout « "r2'.s area i•

return O;

Call GetArea pa.ssing rl

" « lArea « endl;

Call GetArea pa,:,:~ing r2

.. « lArea « endl;

42 f/ GetArea function definition
43 long GetArea(Rectangle r) // takes a Rectangle struct as an
44 { // arg, calc's area (cast as a
45 return ((long) r,--Ielght * r.nWidth); //long to avoid·
46 // truncation)

Module 7: Uslng Structures to Encapsulote Data 125

lntroduction to the sizeof Operator
Slide
Objeclive
Familiariza
students with
use of the sizeof
operator to
determine
space
requirements
for structs.

Key Poinls
Always let the
compilar count
the space
needed.
Adds to
portability of
source code
across
platforms.
Padding may
be changed by
compilar
options.
Compilar never
miscounts.

How blg ls it?

' ' '
' ' • ¡' :::

. strucl · "•

. . '~ ' ',' :t' '
1 ' '?' ,,,,,,,;

The sizeof opera10r yields the size of its operand in bytes. lltis operand can be
either a type name (in which case the name must be enclosed in parentheses). oran
expression. When the sizeof operator is apphed toan object of type char, it yields 1
(byte). When it is applied toa struct. it yields the total number of bytes in that
struct. This size is the sum of the s1zc of all of the members plus any padding.
UnJike other operators. sizeof is a compile-time operator; 'me compiler resol ves the
expression, replacing it with an mtegral constan!.

Example
Rectangle yourRect;
int nByte~ • sizeof(float);

nBytes • sizeof(yourRect);

126 Module 7: Uslng Slruclures lo Encopsulale Dc!a

What ls a Union?
Slide
Objective
Unions are
included for
completeness.
Analogous to
the COBOL
'reGle fines·
clause.
Major problem:
Unions are
conlrary to
OODviews of
black-box
pgmg. Requires
oulside code
with knowledge
ot some
variable lo tell
w a peo
data is inside.

··· ···················•

• A O:nilrud Ttd ProA des 01 E lttla'-Q QCJ.Png el
Dcfa.

union UnionName

} ;

data_typo MemberNamel;
data_typc McmberName2;
data_type HemberNameJ;

What Are Unions?
A union populates only one of ilS members al a time. Y ou mighl waru 10 use a
union in lieu of a struct if lhe slrucl is very large and you only need access 10 a
small ponion of ilS dala members. In a union, dala members ovcrlap, saving
memory, bul only one dala member is populaled wilh valid dala al any given
inslanl. A union can also be used 10 provide a generalized approach 10 sorne
problems.

union Salary

float fHourly;
un~igned long ulSalary;
};

Module 7: Uslng Slructures to Encapsulate Data 127

Lab 5: Using Structures to Encapsulate Data
Slide
Objeclive
Execute the lab
solution.
Explain the
purpose of the
lab.
Ask students to
read the
scenario.

Module 8: Writing a Simple Class

\

----- -- - --- -- --- - ---- -
----- ~--- - ------ - -------- --

- ~----

Module 8: Wrlllng a Simple Class 131

L. Overview
Slide
Objective
Provide on
overview of !he
module
contents.

• aase;: C>.vviEw

• OedingcnO::jec:t'MneDctaetn'tBe.Accssse:l

• Oas Mnbr Fllldims OldlheScq:e.Re;duticn
Q;a'da

• UslnghX&s S¡:ajf18's

• Q.s);ngcnd Mxff};ngtheSided en O::jec:t

• UsingOnmudas OldDestrudas

• UslngO:IO'llrilldizdlal

Titis is !he flfst of five modules on classes. 11le features of classes lhat you leam in
lhis module will be extended in !he next four modules, culminating in your ability to
derive new classes lhrough inheritance.

Module Summary
You are about to see lhat structs and classes are intimately related. In this module,
you 'JI actually crea te a class using !he sarne information contained in !he struct.

A class is !he central 00 construct lhat you will be prograrnming wilh in lhis
course. You will explore !he entire process-from declaring !he class to creating an
object of lhat class type in a prograrn.

Objectives
U pon completion of this module. you will be able to:

--- • Declare a class.

• Create data members for your class.

• Create member functions for your class.

• Use access specifiers to proteet data.

• Create constructors and destructors.

• Use colon irtitialization.

Lab
Creating Oasses and Member Functions

132 Module 8: Wrltlng a Simple Clasa

Classes: Overview
Slide
Objective
Introduce the
tapie of C++
ctasses. The
fottowing pages
havethe
detaits.

Dellvery Tips
Cover the next
4 pages.
detaiting to
students how
much they
atready know
about ctasses.

• 'Mld AreOcssa?

• TheS}'I"tcxdacss Dedadi<Jl

• aas Dedadi<JlO'ldDáiringfnsiO'loas

The next couple of pages cover the fwHiamentals of classes.

MOdule 8: Wrltlng a Simple Class 133

What Are Classes?
Slide
Objective
Remind
students of
facts they
already know
about classes
to put all the
details in arder.

······························ ----·················---·····················

• Case; O'ldO:je:ls

• Use--ctñre::íd:s1ra:t cí:to1yp;s

• ExleoiO"s d Cstruds

• Ce;ai¡jioo dct:!oa-dasádq:gdioo
miisctro

• \Uid:lEs d O'fl,f:e cEsai too~ odas

• Ctrmuiycdlecfln;tcrca; dooos·

• f\Oreslcr<g;¡aoo

Objects
Wilhoul reviewing lhc earlier discussion of 00 progranuning, here 's a review of ·
!he imponant poims aboul ObJeciS. 00 programs are designcd in terms of objcciS
ralher !han fWlctions. Tiús has !he helpful side effecl of making your programs more
closely resemble real-world systems, lhus making lhem easier lo design. ObjcciS
comain data and fWlctions. Classes of objec!S are related by !he types of data and
functions lhey comain, lhough each objecl (being an individual instance of a class)
has iiS own data. In fact, !he relationship bctwecn an objecl anda class is much !he
sarne as between a variable and a dala type.

Classes
Classes. like suuciS, provide user-defined data suucrures 10 your programs. Classes
specify bolh data members and !he fWlctions !ha! manipulate !he data members.
Once a class has been declared, your prograrn can instantiate many objeciS lhal

-- _-=: ~-- : ~ ~-=- -~~ass type._.?as~~ are _ge~erally decl~ ~[~~~2':~~~:.....:::.:~ -- · .. -~:~--c--.. -
Access to Class Members
Data and fWlctions can be hidden from !he res! of your prograrn by !he use of
keywords. This is an imponam fearure of classes, !he details of which will be
discussed later in lhis module.

Typical Member Functions
Every class has atleast one consUUclOr fWlction used 10 instantiale iiS objeciS.

Every class has a desuuctor fWlction used 10 destroy iiS objeciS.

Typically a class will also have one or more membcr functions 10 gel and se! dala
members, display information to !he user, and marupulate iiS data according 10 !he
needs of !he prograrn.

',;'< - -

134 Module 8: Wrltlng a Simple Class

The Syntax of Class Declaration
. ,\ . . ; .. '! ' ~; . ·~ i·': (\--

S lid e
Objeclive
Detail
similorities: The
class depicted
has 3 changes
from a struct:

Uses 'class"
instead of
'struct"

Uses 'public:·
which is defau~
for a struct

Uses a member
function (which
is legal in a C++
s ruc

1 c~ss l' 1
• w ,·'

class_name t

1 data _typa ~ J member_name ~ []:
,,,: '·•'~ '" "'"'''"''''''''''':~· '·'•'''•'"' .: .. >

Class Declarations
A class declaration begins with !he class keyword. followed by !he class narne,
followed by an open curly brace. Within !he curly braces. data members are
declared and member functions are prmmyped. Though !he body of member
functions can be defmed within a class declaration. !he convennon is to define !he
body of member functions outside the class declaration. You will examine mcmber
function defmitions later in this module.

After !he open curly brace of a class declaration, and prior to declaring any data
members or functions, an access-specifier keyword followed by a colon must
appear:

public:

There are three ¡ypes of access that can be specified: public, privare. and protected.
Access limiw.ions that these keywords provide will be discussed later in this
module. Access specifiers can appear in any order, oras often as you like (one
keyword per member if you wish).

· Following the access specifier, data members or function prototypes are listed. For
data members, variable narnes and their data type are added much !he sarne as you
saw in earlier prograrns. Remember [()terminare the declaration with a semicolon.
Member functions are also pro[()typed similar! y to functions that appear in !he body
of a prograrn (outside a class declaration). The funcnon 's return type appears to
!he lefl. The function 's narne anda list of its arguments enclo>ed in parentheses
appear 10 !he right. The statemem is terminated with a semicolon.

The class declaration is ended with a closing curly brace followed by a sernicolon.

Module 8: Wr1Nng a Simple Cla" 135

Class Declaration and Definition
Slide
Objective
Using lhe same
lerminology as
!he Slruclures
modt.!~.
descn~ e lhe
declaration
and definilion
ot Classes.

Dellvery Tips
Walch usage ot
lerminology:
Don'l declare
classes.
DO
"inslanliate"
objecls.
Don'l inilialize
classes.

·······-··················
class Reccangle {

public:

void SetHeight(int);

void SetWidth(int);

long GetVolume(void};

private:

int m_nHeight, m_nWidth;

1 ;

void main () ~'

~
Rectangle rl;

'" ,.~,.,~, '" ''''" ''' "-~--~~,- _, "W"''"J '

The code fragment shown in !he foil is from a demo program lhat you will examine
in a moment. Notice !he last line:

Rectangle rl;

This is a definition for an objcct of type Rectangle. It creates an instance of a
rectangle for your program to use.

DO initialize
objecls.

- --- ~=====1 DO·access ---~- -- ==~==
member data.
DO refer lo
"data
members.·
DO re ter lo
·member
functions:

136 Module 8: Wrlllng a Simple Clasa

De m o
MEMBER.CPP is located in \DEMOSI.\-!:)008.

1 // MEMBER.CPP found in \DEMOS\~0008
2 11 Us~ng access spec~fiers and accessor member functions
3 HincllJde <ic-::ream.h>

' S /************ Rectangle Class Oeclaration ***************/
6 // Interface to x and y coordinates not yet ~mplemented.
7 class Rectangle
8 { // Interface LS public
9 public: // Sometimes called mutators,

10 void SetHeight(int); // Set and Get func's allow class
11 vo1d SetWidth(int); // users to access attributes
12 long GetVolume(void);// of an object
13 private: 11 Data members are pr1vate
14 int m_nHeight, m_nWidth;
15) :

16
17 /************** Rectangle Hember Functions ******R*******/
18 void Rectangle::SetHeight(int h)
19 (

20
21
22

m_nHeight • h;

23 void Rectangle::SetWidth(int w)
24
25
26
27

m nWidth .. w;

28 long Rectangle::GetVolume(void)
29 (

30 return (long)m_nWidth • m_nHeight;
31

32
3: /*********•••******* Small Te~t Program ••·~*************/
3<
35 int main ()
36
37 Rectangle rl; // Declare a Rectangle object, rl
38 rl.SetHeight(l5);
39 rl.SetWidth(lO);
40 // Note: Un-comment the following line to reveal
u
<2
o
<4

<5
<6

// an error me~sage concerning private access!
11 cout << ''width i~ '' << rl.m nW~dth;
cout << "The volume of rectangle rl is

<< rl.GetVolume () << '.' << endl;
return O;

Module 8: Wrttlng a Simple Class , 137

Class Member Functions and the Scope
Resolution Operator
S lid e
Objective
Explain the use
of the scope
resolution
operator, '::",
used in previous
De m o
example.

long Rectangle: :GetVolume (void)
{

return (long)m_nWidth * m_nHeight;

By convemion you will defme the body of your member functions outside the class
declarauon. This is done to enhancc thc readability of class declarations. Followmg
the declaration, you defme the member funclions as shown on the foil.

The Scope Resolution Operator
As usual, the function's retum value appears to the left followed by the narne of the
class to which the function is a member. The :: which follows the class narnc tells
the compiler that the function 's scope is at the leve! of that particular class. The
actual code !hat forms !he body of the function is defined within curly braces. In the
exarnple above, the GetVolume function merely retums the valuc of !he data
member m_nWidth. Notice that there is no terrninating semicolon following a
member function definition as there was following a class declarauon.

K 1' .
1

In short, the scope-resolution_ operator ~es- a :lassnaJTI: l~ i~ left ~d a -~<:~ber of _
"""~=~====:j~Z,ey~olns_ =marclass"to"its"n""t. · -Scope - ·--"'' -

resolution
operator is:
class::member.
Dot operator is:
object.member

So ·scope' is
used for the
class. 'dat" for
the object.

The Dot Operator
To access a member (usually a function) for an objec~ you use !he dot operator. In
the following exarnple, thc dot operator precedes the GetVolume function.

cout << "Volume is : << rl.GetVolume() << \n";

138 Module 8: Wrltlng a Simple Class

Using Access Specifiers
S lid e
Objeclive
Explain the uses
for Access
Spec,fiers
based on OOD
terminology:
data-hiding
black-box
hidden
implementation
class-defined
interface.

Delivery Tips
This graphic
was presented
inthe OOD
module.

·······································-··························

.------.¡ ____ ~
Outslde : -···- ..__,..,. ..
World l...._____,.,...,~~

L...,-..,.--.,..,_.,.!. __ i ---- ~~

roen

Public members are accessiblc to evcryt.hing in your program. Private mcmbers
are accessible only 10 class member functions. (There are cxcepuons 10 this rule
which fall outside !he scope of this course. Seca C++ reference manual for a
description of t'riends.) Protected members are accessible to class member
functions and member functions of classes relatcd through inheritance. (lnhcritance
wJII be cxamincd in an upconung module.)

Tip The following general advice General advice applies to access specifiers.

• Declare member functions as public.

• Declare data members as private.

• Provide access member functiorts to set and retricve values for data.

Module 8: Wrltlng a Simple Class 139

Querying and Modifying the State of an
Object
Slide
Objective
Explain benefits
ot controlling
user access to
the data
members
through
·accessor" and
"mutator"
functions.

a gEt Mnbr FITdiO'lS PrO/ida

• .Aa:e;s lo\dLES.

• Sdedíei ams W1h roctm:ed if"'Cl:W1ei
<trrg::s.

• T~ .Aie~so KJ"lCMf'l As h:alssas, Selectas
aGStes

• sllt IIA:rrts FITdiO'lS Prc:Mda

• Prc:te::Jimdnatte cl:jaWiledlo,..Jrgd o g:s.

• Ch:rg:s toinpa-rentdim WttnJ <ta-Qrgit da ru:e
• The'p'.Aie~oKÍ"'M''As Midas, MripJdas,

aSEftEJS.

Disadvantages of set and get Functions
lf there are a lot of data members. the interface can become cumbersome because of
a large number of functions. In a case like this, it might be wise to mar k the data
members as pubtic and allow drrecl access. .,

140 Module 8: Wrltlng a Simple Class

Demo
SETGET.CPP is found in\DE¡;!OS\.\16008.

l // SETGET.CPP found in \DEMOS\MOD08
2 11 Demonstratlon of accessor/manlpulator pairs.
3 // Note: Many commerc1al class packages refer to these
4 //as functions that access object attributes.
5 finclude <iostream.h>
6

7

8

9

lO
ll
12

lJ

14
15
16

17

18

19

/************* Rectangle Class Oeclaration *•************/
11 Interface to x and y coordinates not yet implemented.
clas.s Rectangle
(

publ1.c:
void SetHeight(int);
void SetWldth(int);
int GetHeiqht(void);
int GetWidth(void);

private:

/1 Set member funct1ons:
JI ta~e an arg as a new value
11 Get member functions:
11 take no args, return a value

int m_nHeight, m....~nW1dth;

} ;

20 !************** Rectangle Member Functions *************•/
21 vo1d Rectangle::SetHeight(int h)
22 {

23

24

25

m_nHeight ,. h;

26 void Rectangle::SetWidth(int w)

27

28

29

30

m nW1dth ., w;

31 int Rectangle::GetHeight(void)
32
33 · return m_nHeight;
34
35
36 int Rectangle::GetWidth(void)

37
38 return m_nWidth;

39

40
41 /••••••******••••• Small Test Program •••••••************/
42

43 int main (}
44
45
46

47

48

49

so
51
52

Rectangle rl;
rl.SetHeight(l51;
rl.SetWidth{lO);

/1 Declare a rectangle object, rl
/1 Set height attribute
/1 Set wicith attribute

/1 cout << ''width is '' << rl.m nWidth; // access!!
cout << "The volume of rectangle rl is 11

<< (long) rl.GetHeight () * rl.GetW1dth (} << 11
• \nll;

return O;

MOdule 8: Wrltlng a Simple Clasa 141

Constructors
Slide
Objeclive
We hove
intenlionally
avoided the
topic of
initialization.
Introduce
• construction •
as the method
for building
objects.

····························-······························-··-·············-·················

cla.ss Rectanglc
1
public:

Rectangle();

Rectangle :: Rectanglc()
1

cout << "\nin Rectangle
m_nHeight ... O;
m_nWwl.dth =- O;

Constructors

c'tor.'';

A consuuctor is called at the poim the object is created. The purpose of a
consuuctor is 10 sel the mitial stale of an object-that is, to assign appropriale
values 10 an object's data mcmbers (and perhaps other related values).

Every class has atleast one member function called a consuuctor. lt is nm
mandatory thal you creale a consuuctor. lf you do nm supply one, the compiler will
creale one for you. A consll1lctor always has the same name as the class. Defaull
consllUctors mus! be called with no argumenlS.

A conslructor executes any code provided in ilS body, but cannot rerurn a valuc.
CorlSlruclors must be protolyped as reruming no value; void is not allowed. A
conslructor is somelimes abbrevialed as e 'lar.

142 Module 8: Wrlllng a Simple Ciass

Destructors
Slide
Objective
1 ntroduce topic
of object
destruction.
Don't go too
deep
students won't
know any valid
reasons or
features for a
destructor for
some time.

For Your
Informal Ion
Stuck for an
example?
lf pushec 'oran
example of a
valid C'tor and
D'tor. propase
a datobase
object where
the C'tor
handles login
anddbopen.
the D'tor does
signoff and
dbclose.

········-··-·························-·--·····-----·························· ····························-·········--··················

class Rectangle

1
public:

Rectangle();
-Rectangle();

Rectangle :: ~Rectangle()

1
cout << "\nin Rectangle d'tor.";

Destructors
Every class has exactly one destructor. lts purpose is todo any "clean-up" work. A
destructor always has the same name as the class, but it is disunguished from the
constructor by a tilda(-) prefix:

Rectangle :: -Rectangle()

lt is nO! mandatory ID supply a destructor: the compiler wiU do it for you.
Destructors cannot retum a value. They are called at the poim the object is
destroyed. A destructor is sometimes abbreviated as d'tor.

Destructors are caUed when a local object with block scope goes out of scope. or
when a program ends and global objects exist.

1

2
)

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

', 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Module 8: Wrltlng a Simple Class 143

Demo
crORDTOR.CPP is loca1ed in \DEMOSI.\10008. 11 shows Lhc use of a
consUUCIOr and a dcsUUCIOL

11 CTORDTOR.CPP found in \DEMOS\MOD08
f.J Inclt:de.9 default constructor and destructor
finclude <~ostream.h>

/*~*********** Rectangle Class Declaration **************/
/1 Interface to x and y coord~nates not yet implemented.
cla.ss Rectangle
{

public: // Construction section:
Rectangle (); 11 constructor (no return value)
-Rectangle(); //destructor (no args, no ret)
vo1d SetHeight(int); /1 Attributes sectlon:
void SetWidth(int);
long GetVolume(Vold);

private: // Implementation section:
int m_nHeight, m nWidth;

1 ;

/************* Rectangle
Rectangle: :Rectangle()

Member Functions ~~~••~~··~~••~~~

JI Definition of constructor

{

cout << ''Rectangle

m_nHeight "" 0;
m nWidth - O,·

Rectangle: :-Rectangle()

1

/1 name matches class name
c'tor.\n";

JI free access to data members

/1 never return a value!

JI Def~nition of destructor
JI - and class name

cout << ''Rectangle d'tor.\n'';

void Rectangle: :SetHeight(int h)

m_ nHeight "" h;

void Rectangle~:SetWidth(int w)

m nWidth =- w;

long Rectangle::GetVolume(void)

{

return (long)m_nWidth * m_nHeight;

(continued)

144 Module 8: Wnllng a Simple Class

4? /****************** Small Test Program ******************/
48

49 int main ()
50

51
52

53

54

55
56

57

58

59

60

61
o2

Rectangle rl;

11 Rectangle r2 () ;

//"Declarlng a class object (the
/1 constructor is called)
/1 This is a function prototype!

cout << "The initial volume of rectangle rl i.s
<< rl.GetVolume() << endl;

rl.SetHeight(lS); // Set attr1butes for rl
rl.SetWidth(lO);
cout << ''The volume of rectangle rl is

<< rl.GetVolume() << endl;
return O; /1 Note: A call to the d'tor

/1 i.:s not ceded!

Module 8: Wrltlng a Simple Cla~ 145

Default Class Operations
Slide
Objective
Staying very
high-level.
explain the
'defaults' given
to each class.

Delivery Tips
Cover detoult
c'tor and d'tor.

Simply define
the default
copy e· tor and
assignment
operator. but
stay clear of
details!

• OéaJt Cl:nilrl.da

• OéaJt DE6trl.da

• OéaJt~Cl:nifrl.da

• OéaJt Assigw • a 1

ln the absence of user-supplied versions of the following member functions, the
compiler will supply a simple built-in dcfault version.

A dcfault constructor is a constructor lhat takes no arguments. The compiler will
supply a default c'tor only if no consrrucror is suppliedfor rhe class. The dcfault
c'tor supplies the same functionalicy as for standard types like int, giving global
objects an mitial val u e of zero and local objects and unlcnown (garbage) value.
Note that the defauh constructor is essentially what you used when you built struct
data instances.

U no destructor is supplied for a class, the compiler supplies a dcfault destructor.
which, from the user's perspective, does notlung.

As with a struct. objects can be created from an existing object of the same type:

Rectangle rectl;
rectl.SetHeight(lS);

rectl. SetWidth (20).;======================
RBCtangl;--recmr~ctl); //copy c'tor

This operation is techrtically known as a copy consrrucrion: here it is provided
automatically by the compiler. [n the module on convemons, you wlll see how to
supply your own version.

Assignmem frorn one object to another object of the same 1ype is inherently
supponed by a default assignmem operator:

rectl • rect2;

Supplying your own version by using the operator-overloading capability of C++ is
beyond the scope of this coursc.

146 Module 8: Wrttlng o Simple Closs

Colon lnitialization
Slide
Objeclive
Explain colon
initialization
syntax. Defer
discussion of
why it is a
preferred
method te
initialize
memberdata
in c·tors until
later.

cla.ss Rect.=r.ngle

1
pub! ic:

Rect ang le () ;
-Rectangle();

prl.vate:

································-····································

int m_nHeight, m_nWidth;
};

Rectanqle: :Rectanglc()

1
~_nHel.ght(O), m_nWiCth(O)

In an earlier module, a distinction was drawn between initialization and assignment.
lnitialization happens when an object is created and assignment takes place during
its normallife. Since neither of these conditions is rrue at the lime a class
declaration is made, initialization and :JSsignment are illegal within class
declarations. Data members, therefore, are initialized by constructors, using the
colon syntax shown above.

A discussion of why colon initialization 1s preferred will be put off until a later
module. As a rule of thumb, though use the colon-initialization syntax in preference
to assigomem of data members in the constructor whenever possible.

Module 8: Wrltlng a Simple Class 147

Demo
COLONINI.CPP is found in \DEMOSI.\10008.

1 // COLON!Nl.CPP found in \DEMOS\MOD08
2 /! Shows a constructor us~ng colon in~tial~zation.
3 finclude <ioscream.h>
4

5 /****~••••~•· Rectangle Class Declarat~on **************/
6 // Interface to x and y coord1nates not yet implemented.
7 class Rectangle
8 1
9 public:

lO Rectangle (); 11 construction
11 ... Rectangle ();
12 void SetHeight(int); // attributes
lJ void SetWidth (int);
14 long GctVolume (void);

15 prívate: 11 1mplementation
16 int m_ nHeight, m nW1dth;

17 1;
18
19 /************** Rectangle Member Functions **************/
20 Rectangle::Rectangle() //Constructora may use
21 : m_nHeight(O), m_nWidth(O) //colon initialization.
22 //Data members are set befare the c'tor body runs.

23 cout << "Rectangle c'tor. \n";

24
25 Rectangle: :--Rectangle()
26 {

27 cout << "Rectangle d'tor.\n";

28

29
JO void Rectangle: :SetHeight(int h)

31

32
33

34

m_nHeight - h;

35 void Rectangle::SetWidth(int w)
36

37 m nWidth • w·

38 ---~~--~~~------~-o~--~~--~~~~ ... -~=-=-'=--=---:-::~oc---::---:----3 g- • . - .• -

40 lon9---Rectangle: :GetVoluma (void)

41 1
42 return (long) m_nWidth * m_nHeight;

43

44

(con ti n ued)

148 Module 8: WriNng a Simple Class

45 /•· -~••••••••••••• Small Test Program ******************/
46 1n-:. :-.ain()

47

48

49

50

51
52

53

54
55

56
57

Rectangle rl; /1 The contructor assigns values
11 to avo1d undef1ned contents

cout << ''The init1al volume of rectangle rl is
<< rl.GetVolume() << endl;

rl.SetHeight(lS); // Set attributes for rl
rl.SetWidth(lO);
cout << "The set volume of rectangle rl is

<< rl.GetVolume() << endl;
return O;

Module 8: Wrlllng a Simple Class 149

lab 6: Creating Classes and Member
Functions
Slide
Objective
Execute the lab
solution.
Explain the
purpose of the
lab.
Ask the
students to
read the
scenario.

Module 9: Tuning Member and
Global Functions

Module 9: Tunlng Member ond Global Functlons 153

I Overview
S lid e
Objective
Provide an
aveNiew of the
module
cantents.

For Your
lnformation
The lab far this
module builds
uponthe
previous
solution. lt's not
pretty, but you
maywantto
execute the lab
solution here ta
show students
where we're
going.

11 DltaJt Atg..mrts

• FllldiaH'ttreCNa'locdng

• hiiring Fi..rdia"s

• Q:n;la~ M!TtB FllldialS

• O:nstat Q:iec:ts

Module Summary
In !he lasi module you created a simple class-lhe most importan! !hing you 've
done so far. In this module you will explore ways to add efficiency to your class's
member fwlctions.

You will be introduced to sorne new class features !hat will allow you to reduce !he
number of instructions a PC executes to employ your functions. You will al so be
streamlining !he way in which argurnents are passed.

Though !hese concepts are not direct building blocks for following modules, !hey
will none!heless be unportant as you retum to !he workplace and use !hese new
coding skills.

Objectives
U pon completion of this mod1Jie, you will be_ able to: _

• Usedefault arguments.

• Overload fwlction narnes.

• Create inline function bodies.

• Create constan! member f unctions and constan! objects.

Lab
Tuning Your Member Functions

154 Module 9: Tunlng Member and Global Functlons

Default Arguments '" .. , · ...

Slide
Objeclive
Define !he uses
tor default
argumenrs.

Key Poinl
Defau~

arguments
simplify
programming
tor the class
users. !hose
programmers
that are using a
well-defined
class.

Key Poinl
Detau~s are
specitied in the
prototype!
Never in the
formal
definrtion.

Delivery Tip
Detining
additional
detau~
argument(s) ter
a tunction is an
advanced
tapie. Rules:
Never redefine.
Always right to
left.

• AYddi R~HveT.,.Png

• ~ICM6 Le.tBs d Kro.·Acqp Reg:rdng~ Strudlre

Many functions lhattake multiple actual arguments may have default values for one
10 all pararneters. A function lhal accep!S Monlh, Day, and Year argumems would
expectto be called hundreds of times wilh !he samc year value. A function to opcn
files might expect various filenarnes, but most text files will probably be opcned in
read-write mcxle.

Functions may specify a default value for one or more argumems using a special
assignmem symax wilhin lhe signature. Always beginning wilh !he righunost
argumem, lhe default value is specified following an equal sign. ln a prototype, it
might appear lilce lhis:

void t;uncB(int, char, int • 94) ;

Default argumems are specified in ti- Jrototype ralher lhan in !he function
definition.

void funcB(int nC, char chA, int nD • 94);

Typically, you will be creating header files for your classes and prototypCS. Given
lhe preceding prolotype exarnple, a source file lhat includes lhat function
declaration could extend defaull values for lhat function as long as !he function has
not yet been def med.

Given lhe following header file,

va id funcB (int, char, ~nt - 94) ;

a source fue lhat intends 10 use function funcB in a specific manner may redeclare
lhe function as

void funcB(int, char"" 't' :.nt);

_-

Module 9: Tunlng Member and Global FuncHons 155

Importan! Using lhc rule of rightmost definition fiiSt, lhe third argumem was
assigncd a default value of 94. It is illegal to rcdefmc lhat assigruncm (orto
rcspccify lhe samc valuc). The lhird argument retains lhc original assigruncnt and
lhe sccond argument gams lhc default.

156 Module 9: Tunlng Member and Global Functlons

De m o
DEFAULT.CPP is found in \DEMOS\MOD09.

1 // DEFAULT.CPP found ~n \demos\mod09
2 11 Funct~ons that def1ne default values for selected
3 // arguments st~eaml1ne the 1nter:ace and allow

1/ class users multiple var~ations
5 #1nclude <iostream.h>
6

7 /~••••••••••• Rectangle Class Declaration ***************/
a class Rectangle
9 [

10 public:
11 // This c'tor is equivalent to threc c'tors
12 Rectangle(i~t h, int w, ::..nt x-0, int y,.O);

13 -Rectangle ();
14 void Set.Cent.er (int, int);
15 vo1d Size (int, in t.);

16 void Oraw {);

17 pr1vat.e:
18 1nt. m_x, m_y;
19 1nt m_nHeight, m nWidth;

20) ;

21
22 /********* Rectangle Mew~er Function Defin1tions ********/

23 Rectangle: :Rectangle(int h, int w, int x, int y)

24 : m_nHe~ght (h), m_nWidth (w), m x (x), m_y (y)

25
26 cout << ''Rect c'tor\n'';
27

2B
29 Rectangle:: -Rectangle ()
30 [
31 cout << ''Rect d'tor\n'';

32

33
34 void Rectangle::SetCenter(int x, int y)
35
36 m X • X'

37 m_y .. y;

38

39
40 void Rectangle::Size(int nh, int nw)

41

42

43

44

45

m_nHe~ght "' nh;
m nWidth .. nw;

46 vo1.d Rectangle:: Oraw (void)
47 // Currently ju~t a di~play function
48 cout << "Rectangle at x:'' << m_x << " y:" << m_y;
49 cout <<" height:" << m_nHeight <<" width:" <<
so m nWidth;

51

52
(con ti n ued)

Module 9: Tunlng Member and Global FuncHons 157

53 /**************** Small Test Function *******************/
54 int main ()
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69
70

71
72

73
74

75

76
77

78

79

80

Rectangle rl (1, 2),
r2 (5, 6, 8),
r3 (10, 10, 100,

11 Rectangle r4;
11 Rectangle rS (9, 9,, 40);

cout << ''Displaying rl~\n'';

rl. Draw ();
cout << endl;
rl.Size(l1, 12);
rl.SetCenter(-10, -10);

11 default x and y as O
/1 default y as O

100); //no defaults

/1 Error: no default c'tor
/1 Er'ror: improper .:Jyntax

cout << "Di.splaying rl aftcr manipulation:\n";
rl. Dra ... () ;
cout << endl;

cout << ''Oisplaying r2:\n'';
r2. Draw (};
cout << endl:

cout << ''Displaying r3:\n'';
r3.Draw();

cout << endl;
return O;

158 Module 9: Tunlng Member and Global Functlons

Function-Name Overloading
Slide
Objeclive
Explain functian
na me
averlaading as
·a variatian an
argument type
ar number."
Note: Expect ta
cantrast
between
default
arguments.

Key Points
Overlaaded
functic .. - -nay
differ C:
11 af arguments
and data type
af args.

Natdueta
functian return
type.

.... .. ,

1
return_type functian_name(int arg1)

'"'' "''- "" - •'•'•-·-- ''""

1 return_type lunctian_name(int arg1, int arg2) :
•,,,,,,,

''"' ... ' 1

1 return_type function_name(int arg1, flaat arg2) ' ',,., "., .. .- , "·W o V" Co'C~" '''' , - .. ,_, ...

..
Features
Function overloading occurs when there are two or more functions in the sarne
scope that ha ve the sarne narne. C ++ allows this when the prototypes differ in the
number and!or types of arguments. (Function-narne overloading may vary by
consmess. This tapie wlll be deferrcd untillater.) Ovcrloading is made possiblc by
function-narne encoding (al so known as name-<lccoration or narne-mangling).

Overloaded functions cannot differ on return type only. The compiler knows how
to generate promotion and truncauon of return values, so variauons on just return
type would be arnbiguous.

Functioo-narne encoding is implemented by appending class-name and argument
type inforrnation. The encoding scheme is implementa.tion-<lependent.

Although any global functions can also be overloaded, multiple consuuctors are the
most common example of function-name overloading.

Reference
Refer to "Overloading," in the C + + Language Reference ..

Module 9: Tunlng Member and Global Functlons 159

De m o
OVERLOAD.CPP is located in \DEMOS\\10009.

1 // OVERLOAD.CPP found in \demos\mod09
2 // Functions with the same name and different argument
3 11 data-types and/or argumenc counts are overloaded.
4 iinclude <iostream.h>
S

6 !•~~********** Rectangle Class Declaration **************/
7 class Rectangle
8 1
9 public:

10
11

12

13

14

15

16

/! The following c'tors aro overloaded
Rectangle();
Rectangle (int h, int w, int x•O, int y-0);

--Rectangle ();
void SetCenter (int, int);
void Size(int,int);
void Draw(void);

17 private:
18 int m_x, m_y;
19 int m_nHeight, m_nWidth;
20);

21

22

23

24

25

/******** Rectangle Member Function Definitions
Rectangle: :Rectangle()

26

27

28

: m_nHeight (0}, m_nWidth (0), m_x (0), m_y (0)

cout << ''Rect default c'tor\n'';

29 Rectangle: :Rectangle(int h, int w, int x, int y)

30 : m_nV.eight(h), m_nWidth(w), m_x(x), m_y(y)

31
32 cout << "Rect(int,int,int,int) c'tor\n";

33 .1
34

35 Rectangle: :-Rectangle()

36 (

37 cout << "Rect d'tor\n";

38
---:---=-:--=-(COnt-:.iñliBd)~--

"""fl***/

--~------~ ·----

160 Module 9: Tunlng Member and Global Functlons

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
• ¡"o•. 62 '·•

63
64 . ¡ .

65

66

67

68

69(... . ,.
70 .,
71

72

73

74

75

76

77

78

79

so
Bl
82

83

84

85

86

87

BB
89

90

91

92

93

94

95

96

void Rectangle::SetCenter(ínt x, ~nt y)
{

m_x = x;
m_y "" y:

void Rectangle:: Si ze (~nt nh, int nw)

m_nHe~ght ,. nh;
m nWidth • m.t;

11 Currently just a display function
void Rectangle::Draw(vo~d)
{

cout << "Rectanqle at x:" << m_x << " y:" << m_y;
cout << " heíght:" << m_nHeight << " width:" <<

m nWidth;

11 funct ion prototype_s_

void Goodbye (in t X - l); 11 Goodbye with default, int arg

void Goodbye(Rectangle); 1/ Good.bye Wl.t~ Re;:t,ang~e arg
_r,

ll.Ot main () 11 Cannot overloa-d main function!

Rectangle rl (1, 2),
r2 {5, 6, 8),
r3 {10, 10, 100, 100);

Rec~angle r4; /1 legal with default c'tor

cout << ''Displaying rl:\n'';
rl. Draw ();
cout << ''\nDisplaying r2:\n'';
r2. Draw ();
cout << ''\nOisplaying rJ:\~··;·
r3. Draw ();
cout << ''\nOisplaying r4:\~'';
r4. Draw () ;
cout << endl;
Goodbye {);

·"

//Note destruction of temporary Rectangle object
Goodbye (r4);

cout << endl;
return O;

void Goodbye(int x)

cout << "Hello from Goodbye(int x ~ "
<< x << "\n";

void Goodbye(Rectangle r)

cout << "Hello from Goodbye(Rectangle)\n";

: !_

Module 9: Tunlng Member and Global Funcl1ons 161

lnlining Functions
Slide
Objeclive
Explain the
benefits of
inlining
functions. The
syntax is
e ove red in the
Demo program.

Delivery Tip
Remind
students of the
overhead
associated with
a function call
(recall the
graphic
depicting the
stock frame for
the SWAP
program).

.................... ·································· ··

• Dáined'Mitin lheOas

• DálnedUsinglheililneKe¡v.ad

lnline Member Functions
lt has already becn establishcd that manifcst constants can be useful to thc
document values your program uses. The compiler would substitute thc valuc
specified m the #define linc before generating code. Thc second use of thc
#define is to create a codc fragrncm (typically an cquation) callcd a macro.
Although macros add to program rcadability and are treated like inline functlons.
the arguments toa macro do not bcncfit from type-checking, and thercforc suffer
sidc effects.

Thc inline keyword is a suggestion to thc compiler that the body of the following
function should be substirutcd at the location where the function is invokcd. A
function can be labeled as inline in either its deftrtition or declaration. The inline
and static kcywords have simtlar cffects on a function's vistbility-both liJmt
linkage to the local file or class (translation unit). Also. thc compilcr necds thc C++
code of an inline function to cxpand a call to it. Thercforc, inline functions that are

. -:-used in multiplc files shoulct·bc dcfined·in~H·mes ..

Inline functions avoid the overhcad associated wtth a function call. Data hidden
through prívate keywords, but accesstble through Get functions. is readily
available. The tradeoff is repeating me function body within program codc. This can
increase code size.

A class member function may be iJnplicitly dcfined as inline by including thc body
of the function within the class. Accessor functions, such as thc Get and Set
mcmbers discussed m the class module are good candidates for inline functions. A
good rule 1s shon functions of fivc statemcnts or less.

162 Module 9: Tunlng Member cnd Global Funct1ons --------------------------
Demos
!MPUCIT.CPP is located in \DEM · "\10009. lt demonstrates a member funclion
defmed wilhin a class.

1 // IMPLICIT.CPP found 1: \demo.s\mod09
2 // Implic1tly ''inline'' f~ :tions have the func~1.on body
3 !1 defined within the cla;s definition.
4 finclude <iostream.h>
S

6 /************** Money Clas.s Oefinition ******************/
7 class Money
8 (

9 public:
10 Mane y (long 10, int nC)
11 : lDollar.s (lO), nCent.s (nC)
12 { }

13

14

15
16

vo1d Display() { cout << "$" << lDollar.s << " " <<
nCents; }

pr1vatc:
long lOe . ,' J;

17 int nCen::..j;

18 } ;

19
20 /**************** Small Test Function *******************/
21 ir.t main ()
22

23

24
25
26

27

28

29

30

Money PocketChange (1, 50);
Money MoneyCl1p (12, 0);
PocketChange.Di.splay();
cout << endl;
MoneyClip.Oisplay();
e out << endl;
return O;

Module 9: Tunlng Member and Global Funcllons 163

EXPUCIT.CPP is localcd in 'DEMOS\MOD09. ll dcmonsttales inlinc
implememation of a class mcmber function.

1 // EXPLICIT.CPP found in \demos\mod09
2 // Using the "inline" keyword, function.s are .sugqested

J // for inl1n1ng regardless of the locat1on of body.
4 ~lnclude <1ostream.h>
S

6 /****~********** Money Class Definit1on *****************/
7 class Money
8 1
9 public:

10 inline Money (long lO, int nC);
11 inline void Display();
12 priva te:
13 s1gned long m_lOollar.s;
14

15

16

} ;

int m_nCent.s;

17 /************ Money Class Member Functions **************/
18 Money::Money(long,lD, int nC)
19 m lDollars (lO), m nCents (oC)

20 1 }
21

22 void Money: :Display()
23

24
25

26

cout << ''$'' << m lDollars << << m nCents;

27 /**""••*t**~~""'***** Small Test Function ***********•.*~~""'****/
28 int main ()

29

30

31

32

33

34

35

36

37

Money PocketChange (1, 50);
Money MoneyClip (12, 0);
PocketChange.Display();
cout << endl;
MoneyClip.O~splay();

cout << endl;
return 0;

164 Module 9: Tunlng Member and Global Functlons

Constant Member Functions
Slide
Objeclive
lnlining may
add efficrencies
to the progrom
code: ·const"
member
functions may
also.

Key Poinls
Func doesn·t
change data.
Func doesn't
call another
member func
to change
data.
Func is not c'tor
or d'tor.

• anst Mn1:lEr F\rdfali M:keaPrarlsel'kt to(l)cnge
lhe \tlued lhe DctaMnta's.

• .Ad.<aicges

• S de' eísig"ladirrpe-raid\m

• 1-'ep; arr¡::ile q:llrrtzeco::e

Member functions oflen do nm change any of !he values of !he data members; that
is, they do not change the state of the currem object. For example, you ha ve seen
this constant behavior in accessor and display member functions. C ++ supports this
conccpt by mark:ing a membcr function as const in both its declaration and
defmiuon:

class Rectangle {
public:
void Display(void) con5t;

} ;

void Rectangle::Display(void} const

Now if Display tries 10 change one of the data members, the compiler will issuc an
error. The compilcr also tracks calls that Display makes, even disallowing Display
10 indirectly changc a data membcr. Therefore, a const member funclion cannor
cal/ non-const member /UIICllons wirhrnrhe same class.

Constructors and destructors should nm be labeled const.

Module 9: Tunlng Member and Global Funct~ 166

Constant Objects
Slide
Obieclive
·const" may
olso be used os
o type·modifier
in lhe
declarotion of
on object.
Rule: Objecl
must be
initiolized ot
declorotion.

• Slnila loOr&krt StcnctrdType¡

• QnQiyll?ld<eOr&tat IVsTta' Fllldla'IS

Constam objects can be created:

const Rectangle rectunit(l,l,O,O);

When a constan! object is created, il must be assigned corree! values by invoking ·
lhe logically proper constructor. After creation, a constan! object may nm be
changed. According 10 lhis rule, bolh of lhe following statements are illcgal:

rectunit = rectl;
rectunit.SetWidth(lO);

11 error!
11 error!

Only constan! member functions may be invoked for a const objecl. Assuming lhat
Display is now constan!, you could code as foUows:

rectun~t.Display(); 11 okay

This introduces a lhird reason 10 use constan! member functions: 10 allow class
users 10 create and properly martipulate constant objects of lhat type.- -

166 Module 9: Tunlng Member and Global Functlons

De m o
CONST.CPP is found in \DEMOS\.\10009.

1 // CONST.CPP found in \demos\mod09
2 11 Oemonstrates const member functions and
3 // const Rectangle objects.

t~nclude <iostream.h>
S

6 /************ Rectangle Class Oeclarat¡on ***************/
7 class Rectangle
8 1
9 public: // con.st~uction

10

11

Rectangle(int h, int w, int x~o, int y-0);
-Rectangle (l;

12 // operations
13 void SetCenter (int, int);
14 void Size (int, 1nt);

15 vo1d Draw() const; // "const" member function
16 private: // implementatlon

17 int m_x, m_y;
18 int m nHeight, m_ñWidth;

19 1 ;
20
21 /********* Rectangle Member Function Defin1tions ********/
22 Rectanqle: :Rectangle(int h, int w, int x, int y)

23 ~ m_nHeight (h), m_nWidth (w), m x (x), m_y (y)

24
25 cout << ''Rect c'tor\n'';
26

27
28 Rectangle::~Rectangle()

2 9 {
30 cout << "Rect d'tor\n";
31
32
33 void Rectangle::SetCenter(int x, int y)
34

35 m x - x;
36 m_y • y;
37

38
39 void Rectangle: :Size(int nh, int nw)
40

41
42

43

44

m_nHeight • nh;
m nWidth • nw;

45 // Function definition must also be ''const''!
46 void Rectangle::Draw(void) const
4 7 {

48 // m_nHeight- O; //illegal
49 // SetCenter {0,0); //illegal
SO cout << "Rectangle at x:'' << m_x << " y:" << m_y;
51 cout << height:" << m_nHeight
52 << " w1dth:" << m_nWidth;

53

54
(continued)

\ __

Module 9: Tunlng Member ond Global Funcllons 167

55 /*~************** Small Test Function *******************/
56 int main()
57
58
59

60

61
62

63

64

65

66

67

68

69

70
71

72

11
11

JI modifiable object
Rectangle rl (1, 2, 3, 4);

11 con.stant ob)ects
con.st Rectangle rcl (10, 10), rc2 (rl);
cout << ''\nDisplay1ng rcl:\n'';
rcl.Draw();
cout << endl;
cout << ''Displaying rc2:\n'';
rc2. Draw () ;
cout << "\n\n";

rl - rc2; 11 o k to
rc2 . ;l; 1/ error:
rcl.Sl.ZO (20, 20); 11 error:
return O;

modify rl
U3l09 rc2
con3t arg

as lvalue
misrnatch

168 Module 9: Tunlr19 Member and Global Functlons

Lab 7: Tuning Your Member Functions
Slide
Objeclive
Execute the lab
solut1on.
Exp!a1n the
purpose of the
lab.
Ask students to
read the
scenario.

······················ ······················•

Module 10: Sta tic Members

- ---

Module 1 O: Slatlc Members 171

L, Overview
Siide
Objective
Provide on
oveNiew of !he
module
contents.
lt"s
recommended
thot you run !he
lob solution
prior lo
delivering !he
module. The
topicol crea is
the same
(Dote), bu! !he
program
automatically
determines

Delivery Tip
Static members
were not
discussed in the
OOAD
modules. They
can be viewed
as either
1) representing
invariant
attributes and
behavior for all
class objects, or
2) alternately as
attributes and
behaviors of
entire classes.
(That extends
the class as a
limited actor in
rts own right.)

. • acss-WiseStctes C'ld8á1Gias

• S!dfc DctaM:rrbers

• S !dfc M:rrber F ll"ldtms

· • 'MlaltoUseS!dfcMitrLes

Module Summary
A static member suppons lhe concepl of class-wise or objecl-mvruiam behaviors or
sutes. When used properly, stalic members help creale more robusl and efficiem
class implemenuuons. They eliminale WIIICCCSSary dupticalion in evcry ObJCCl,
while slill ensuring proper encapsulalion.

Objectives
U pon complelion of lhis module, you will be able lo:

• Create and inilialize stalic data members;

• Creal.e and invoke sulic member funclions;

• Undersland lhe limilalions and benefilS of sulic members;

.Lab -
Using Sulic·oau and Memt>ers

172 Module 10: Stallc Members

Class-Wise States and Behaviors
·' ' . . . ,,

Slide
Objective
Define the
purpose.
features and
benefits of the
'static" type
modifier for lhe
class from 1)
data member
and 2) member
function
viewpoints.

Key Poinf
From class view

Key Point
Frommember
dataview

Key Point
From member
function view

• Sidas a Ddalnva'icri to.PJI Ocss ~

• Bdlotia lrM:rlcri fo.PJI ~

The static keyword may be used wilh a local variable to implemem pcrsistence of
an assigned value, or used wtlh a global variable to hide lhe variable from functions
in olher source files. Similar use wilh a static global function sets lhc function's
visibility to be callable only from olhcr funcuons in lhe sarne source file. Within
C++ classcs. the static keyword may be used to modify the attnbutcs of etther a
data member of a mcmber function.

The static attribute indicatcs that a member generally acts at lhe class leve! and is
not differem for each object of that class's typc.

Sometimcs a class will have an awibute lhat must have lhe sarne value for all of its
objects. For cxarnple, a Character class might havc an ASCII/EBCDIC/ Unicodc
translation table. Although it is possible to allocate a new instance of this table for
each Character object created, 11 would be very inefficiem todo so. Such a table
would be a prime candidate for becoming a static data member. As sucl1, only one
copy is created for the entire class.

Mcmber functions can also be static. Thcse functions do not martipulate any of the
object's data members-ralher, lhcy act at !he class leve!. often martipulating static
data member(s). For exarnplc, an ASCIItoEBCDIC function would probably be
static. Static member functions are also often used to pcrform ltigh-lcvel actions
connected wilh a class.

Our Screen class also contains static members. lf we assume lhat although thcre
may be multiple logical display spaccs there will be just onc actual hardware
monitor displaying the objects, thcn the members concemed wilh the morutor will
be static beca use therc is JUSt one-pcr -dass instance o! u.

Tip Do not confuse static mcmbers with constant members.

Modute 1 O: S talle Members 173

Static Data Members
Slide
Objective
Concentrate
on static data
member needs:
• static"
keyword.
initialization.
and access.

Key Points
Use ·static"
keyward when
defining !he
data member.
lnitialize
vanable at file
seo pe to some
benign value
(outside any
class or func

·"· . . ' _

1T -h . it: '·¡'at ·~--e In la 1Z IOn

syntax does not
actually break

• Pre:e te tb¡Ke(MJ'dstdlc

• O:n BekaissEd b¡stdtc Oldl'bl51dtc M:rrts
FllldiO'lS

Static data mcmbers can be an improvemem over global variables. A slatic data
member has ihe same lifclime as a global variable (ihc enurc program) and ihere is,
only one instance of Lhe variable-but its use is reslricted lo (encapsulaicd in) ihe
class.

Static dala members are dcclarcd by prepending Lheir dcclaration wilh ihe keyword
static as in:

static int bVidState;

Boih non-static and static mcmber functions can acccss static dala members.

Each static data member must be initialized once and only once befare Lhe main
function, for example:

int s'creen:: bVidState • OFF;

the prívate 1be static keyword must not be repealed in Lhe.initialization statcmenl. The.-
access ofth-e - -iiiitialization statemeru ffi'~st ~ outside Lhe class-definition·and at file séopc~I(
class member. causes Lhe s10rage space to be allocated.

174 Module 1 0: Slatlc Members

Demo
STATICI.CPP is found in\OE.\105\.\10010.

1 // STATICl.CPP found 1n \demo\modlO
2 11 Demonstrates use of stat1c data member. Note: fgc is
3 11 ForeGround Color, brc 1s BackGround Color.
4 finclude <iostream.h>
5

6

7

8

9

lO
11

12

13

14

ldefine
i"def1ne
fdef1ne
tdefine
tdefine

tdefine
tdefine

BLACK 1
WHITE 2
RED 4
GREEN 8
BLUE 16

ON
OFF o

15 /********************* Screen Class **********************
16 Haps the log1cal display space onto the video
17 monitor. The class ~llows mult1ple logical screen
18 objects to be creaced. It only supports one
19 physical video monitor through static members.

20 ··!
21 clas.:s Screen
22

23 public: // construction
24 Screen (short fgc,..WHITE, short. brc•BLACK}
25 : m_FGC(fgc), m_BRC(brc)
26 (; 1
27 void Graphics (int bstate)
28 {

29 bVidState ~ bstate;
30

31

32

33
34

35

36

37

int Update(void);
private: // one instance

static int bVidState;
short m_BRC;
short m_FGC;

1 ;

1/ implementation
of static data shared
1/ video OFF•O, ON•1
11 background color
11 foreground color

by objects

38 /*•************ Screen Member Functions *****************/
39 int Screen::Update(void)
40

41
42
43

44
45
46

47

48

49

if (bVidState •• OFF)

cerr << "Error: mon1tor 1s not in video mode.";
return O;

cout << "Monitor updated: FGC is "
<<m FGC << ", BRC is " <<m BRC << "\n";

return 1;

50 // NOTE: Static data members must be init.1alized to a
51 // value at file scope prior to any execution.
52 int Screen:: bV1dState - OFF; 11 As sume in1tial :state: Or'F

53
(con ti n ued)

Module 1 0: S falle Membeu 175

54 /*************** Small Test Function *********************/
55 int ma~n ()
56
57

58

59
60

61

62
63

64

Screen sl (BLUE);

sl.Update():
cout << endl;
sl.Graphic.s(ON);
sl.Update():
return O;

JI fails because mode is OFF

JI succeeds now

--~ --~--.---

176 Module 10: Slat1c Members

Static Member Functions
Slide
Objeclive
RhetoricaiO{:
Howcould
static members
help initialize
!he screen?
Answer: ·sta!ic"
member
functions hove
special
properties.

Key Points
Static member
functions may
be invoked by
1) an object
using !he • ."
dot operator. or
2) !he class
using the ·:
scope
resolution
operaror
(regardless of
whether any
objects exist.)

,¡ Oa;s II'M7ia1 Prcx:as

• Preoe 191 ¡;,. Ke¡y.ad stdic

• o:n baii"M:ka::t'Miho.l en~ ¡;,. Usirg theCdoo
ResdlilalQ:s'da ::

• LlrritedOdala:as Rlgls: Q:nQiyMripJctestdic
OdaMirrtlErs

Static member functions can be an improvemem over global (non member)
functions. A static member function can be invoked in the absence of an objcc~ but
it is still encapsulated willun a class.

Static member functions are declared by prepending lheir declaration (but notlhe
definition) wtlh lhe keyword static, as in:

static int InitVideo(void);

Access toa static mcmber function can be achicved lhrough two mechartisms:

l. Using lhe standard dot operator on an object:

.:~l.InitVideo();

2. Using lhe class narne and the colon resolution operator:

Screen::InitVideo();

Static member functions may be invoked. even if lhere is no currem object of lhat
class. by using lhe class narne and :: operator.

However, static member functions are lirnited in lhatlhey cannot access non-static
member data. That is because lhis information is comarned wilhin objects. and
static mcmber functions work at lhc class level. 1ñerefore. rnost prograrnrncrs
prefer to use !he class narnc and :: operator symax, because 11 is more suggestive.

Module 1 0: S talle Members 177

Demo
STATIC2.CPP is found in\DEM0\.\10010.

1 // STATIC2.CPP Found 1n \demo\modlO
2 // Demonstrates use of stat1c data and funct1on. Note:
3 // fgc is ForeGround Color, brc 1s BackGround Color.
4

S iinclude <iostream.h>
6

7

8

9

10

11

12
lJ

14

15
16

17

idefine
ldefine
ltdefine
tdefine
idefine

idefine
idef1ne
idefine
tdefine

BLACK 1
1'/H !TE 2
RED 4
GREEN 8
BLUE 16

ON 1
OFF o
TRUE 1
FALSE o

18 /•*•••• 11 •***"t*••••••~~"• Screen Class *"•**••••••"'•*"'"""'•••••
19

20
21
22
23
24
25
26

27

28

29
)0

31

32
3)

.34

35
)6

37

38

39
40

Maps the logical display space anta the v1deo
monitor. The class allows mult1ple logical screen
obJects to be created. It only supports one
physical video monitor through static members.

•• ""*****"'"'. *"' ••• * * 11." ••• * ** *. "'* "* * * * ••• "'"'"' •• ** "*. *. ** * •••• 1
class Screen

public: // construction
Screen(short fgc-WHITE, short brc-BLACK)

: m_FGCifgcl, m_BRCibrcl
1 ; 1

void Graphics(int bstate)

1
bVidState d bstate;

int Update(void); /1 implementation
11 "static" member funct1on has normal scope

static int InitVideo(void);
private: // one instance o~ stat1c data shared

_static int bVidState; __ .;¡_ video_ OFF•O, QN ... l
3hoit m_BRC; TI background colo~-
short m_FGC; // foreground color

by objects

41 1;
42

(cont ínued)

'- ------=-.---:-:--:----

178 Module 1 O: Stattc Members

43 /" •"' .. .,, * """ • *** Sc:-een Mem.ber, Function.s * ••"' ~~"*'Ir* •"' ""* * "• *•/
44 int S creen:: Update {voidl '
45
46

47

48

49

50

51
52
53

54

~f (bVidState -~ OFF)

cerr <<"Error: mon.:..tor i,:, not: in v1.deo mode.\n";
return O;

cout << "Monitor updated: FGC i.s ·•
<< m FGC << '', BRC is '' << m BRC << endl;

return 1;

55 11 ::~tatic member function
56 int Screen::InitVideo(void)
57

58 int succe.ss • TRUE;
59 cout << "(Re) Inl.tializ.i ::¡ Monitor: ";

60 11
61 // Magic here: try to 1.nit ·.lize mom.tor to graphic::~ mode.

62 11
63

64

65

66

67

68

69

70

71

72
73

74

75

if (succe.s.s)

1
cout << 11 5UCCeeded. ~~~.

/1 cout << 1
' in BR col~r 11 <<m BRC; // Illegal:

11 attempting to display member data before any
11 object exist.s! Typically static func.s only modify
11 statl.C data!

bVidState ,. ON; 11 Only ".static" data may be set.
return TRUE;

cout << 11 failed.\n' 1
;

return FALSE;

76 // NOTE: Static data tr.f•-nber.s mu.:st be initiali:ted to a
77 // value at f:.le scope Jrior to any execut1on.
78 int S,Creen: :bVidState =- OF~ // A:s.sume initial ,:,tate: OFF
79

80 /"****"******"** Small Te:st Function *"'""**"**••••*"**•••*/
81 int main ()
82 11 Sta tic function may be accessed
83 Screen:: InitVideo (); 11 without an object (using ::)

84

as
86

87

••
89

90

Scrcen sl (BLUE l ;
sl. InitVideo ();
sl.Graphics(ON);
•l. Update () :

return 0;

11 access v1a object, success

Module 1 0: S talle Members 179

When to Use Static Members

• Gctx1 \bictja; cildFUldiCJlS

• sldlc Mm::lEI's

• Ncn-StdicMm::lEI's

Whcn you wam 10 access infonnation or implemem a behavior willl respectto an
objecl ora class, you really have Lhree chmces: global funclions and vanables,
static class members. and non-static class members.

Global variables and functions should be used when information or processes mus!
be shared lhroughoul an entire program, bullhey do notlogically belong in any of
lhe recognized classes. Remcmber two points: 1) lhatlhc number of global
variables should be kcpl al a mínimum, and 2) as a prograrn devclops, new
candidate classes are often d1scovered.

Non-static members rcpresem lhe state of each objecl and lhe behaviors lhat affecl
lhose stales.

Static members represem class invarianl slates and processes lhal affectlhose
invarianl stales. Someumes, static member funclions also perform global aclions
not direcliy affecting static data members. We can see lhal static members
represen! a nice middle ground between slalldard members and globals.

Nme lhal each global and mcmber function can also comain local variables lhat are
encapsulated wilhin lhal funclion. These variables are imponant when
implementing a function, bul like data members. lhey should be mostly invisible 10

lile user.

1 BO Module 1 0: S talle Members

Lab 8: Using Static Dc;:Jta.anp Members
Slide
Objective
Execute the lab
salutian.
Explain the
purpose of the
lab.
Explain MFC
AFX .H (se e Del
Tip).
Ask the
students to
read the
se enana.

Module 11: Embedded Objects

\,

--- -- -- . ----·-

Module 11: Embedded ObJecls 183

I, Overview
Slide
Objeclive
Provide an
oveNiew of the
module
contents.

r.···
• 'MlyUseEuleH•IQ:4eds?

• Oedingaacss Vtlth Eui"BI B:IQ:feds

• GJacnteedQcir d Q::nstn.dicnC'ldDestru::tkrt

• .MExmpeUslngRe::tcngeC'ldPdri

Module Summary
In the last two modules, you creatcd and performcd sorne oplimization on simple
classes. In this module, you willleam how Lo create classes lhat contain objects or
instances of olher classes.

Embedding objects is an importam LCChnique for extending your class. In effect, you
use code that olher prograrruners have wnuen. Remember. code reuse is an
importan! reason why you are malGng lhe shift LO 00 prograrrunmg in lhe first
place.

· The mechanism for embedding an object is straighúorward. In lhe surrounding
class's declaration, simply declare an object of anolher class as a data member. The
C++ language guarantees that lhe embcddcd objects within a class will be
constructed and desuoycd at the appropriate times.

In this module, you will uansform lhc simple Rectangle class to co_mai~ a Poi m
objectlhatts a cemer poim.

You will use embedded objects lhroughoutlhe rest of lhis course.

Objectives
U pon cornpletion of the module, you will be able Lo:

184 Module 11: Embedded ObJects

Key Poinls
Explain !he
module
objectives in
OOD terms.
Execute the lab
solution to show
a problem
doma in.
Sight examples:
lnventory
·contains a"
PartiD.
A Sales Order
"contains"
lnventory.

• Add an object of a different class as a data member of a new class.

• Test your class by creating a program lo instantiate objects.

Lab
Contammcnt and Embeddcd Objects

Module 11: Embedded Objecls 185

Why Use Embedded Objects?
Slide
Objeclive
Provide an
overview of the
features and
benefits af
using
containment.

• ~S a"O::rltdns," 11
1S O::rryx:&Edd ,''a ''Ot.ns''

Redi<rt5tip

..J

Remember from ihe flrsllwo modules on OOAD lhal comainmcm or cmbedding
rcpresents a "conlains." "is composed of," or "owns" rclalionship. In lhis example.
evcry rec1angle comains a cenlcr poim.

!1 is importanllo conuas1 comainrnem wilh inhcrilance; lhe lauer implies a "is a
type of' relationship. lnhcntancc w¡ll be discussed in lhe nexl module.

Oass relationships are irlilially de1enrlined during lhe AJD phase. During lhis
phase. il may be noticed lhal sorne more complicaled classes actual! y are composed
of olher logical emities-an asscmbly, so 10 spcak. These componem portions m ay
be rich enough in lheir own righllo deservc being modcled by classes. This is
especial! y uue if lhe componcnts wi!l be rcused or rcplaced in furure projects.

Siilce embedded objects are data mcmbers. lhey normally have priva1e access
specification. Because of lhis, users of a class wilh embedded objects m il may be
unaware of lhal fac1 bccause they only use the public interface for lhe surrounding
class. For example, as a user of lhe Rec1angle class, you may nol be able 10 1ell

. _______ (wilhoulloolcing.allhe class source code) if lhe location of a rectangle is
implememed as a cemcr poim .• as ccnter x and y coordina1es stored as inlegcrs, oras
a pair of upper-righl/lowcr-lefl coordina1es. Nor should you care.

186 Module 11: Embedded Obiecls

Creating a Class wit h .Err.)edded Objects
Si id e
Objective
Pro pose the
following high
level steps to
implement
closses where o
surrounding
closs ·contoins"
ob¡ects of
onother closs.

Key Point
Make on effort
to create o full.
useful interface
for both closses.

Key Point
Only the
surrounding
closs • knows· rt
contoins
onother object.

• Daanine the Plt:fic lrte'fa::es d Swardng OC&S
endEnte • e:racss Sq::ac::tay

• irrt:le"r'B"t !he E" 1 e • w acss
• lrrpann theSllra..ndngCk&s

After the need for an embedded ObJeCl has been determined. the next step is lO
specify the required imeñace for its class. Since it is embedded, that intcñace is
largely determined by !he surround1ng class. Bul sincc an embedded objccl may
ha ve fmure use in olher prOJCCts, sorne cffon should be made w unplemcnl itas a
complete. self-supponing class.

The surrounding class's inteñace must also be lleshed out. After lhese two
imeñaces have been specified. it should become apparem if !he original
comairunem relationsh1p is suU val id.

Next, separately implemem both e! ·Ses to at leas! irtitiallevel:

• Create srub member fWJCtions.

• Embed an object into !he surrou,,ding class.

• Make initial connect;,;ns betwec~ !he containing class's member functions and
!he embedded objcct.

• Test implememation.

Typically the commurtication betwcen lhem will be one-way from the surrounding
class 10 !he embedded objcct.

Module ll:EmbeddedObjects 187

Guaranteed Order of Construction and
Destruction
Slide
Objective
The compiler
automatically
handles c'tor
and d'tor
executian in the
arder depicted

Delivery Tips
Present the
c'tor/d'tor
process as
easy, effortless.
and automatic.

• O:nstruc:ticn: First E lile 1 A IQ:tejs, Then
SUTardngQ:jed

• Deslrudlcn: First SllrardngQ:jed, Tha'l Ente k a 1
Q:tejs

Owner Object
Embedded Object

/nnermosl Emb8ddad Object

Onim Analogy:
c'tor ordor: E2, E1, W
d'torordor: W, El, E2

¡

L---~~~--~----~~~~--~~~~·

The C++ language guaramees that when an object is inslantiatcd, all embcdded
ponions of that object will be built ftrst, followed by the surrounding object.
Converse! y, when an object is destroycd, thc surrounding or awning ObJCCl is
dcsuoycd first, then thc embcddcd objects are dcstroycd.

Embcdding can be ncstcd lo any leve!. The arder of consuucuon and dcsuuclion IS

extended, and lS analogous 10 buildmg and ripping apan an onion.

-- ----- ------ ----------- -~ --- -" -----

188 Module 11: Embedded ObJects

An Example Using R.ec.tangle and Point
Slide
Objeclive
Highlight the
pnvate "Poinl"
data member.
then show how
the c'tor builds
it and
Se!Center
mulates the
m_Center.

Key Poinl
Rectangle
"knows" about
Point and
implements
Point as
·m Center. •

cla::~.s Po.:.nt {. . , } ;

class Rectangle
public:

Rectanqle(int h•O, int w-0, Point p-Point(O,O));
Rectangle(~nt h, 1nt w, int x, 1nt y);
-Rectangle ();
vo1d SetCenter(Point p);
Point GetCenter(vo¡d);

private:
Po1nt m_Center;
int m_nHeight, m_nWLdth;

1; .
..::

In !he demo program, we have replaced !he x and y imegcr dala membcrs wtlh an
embedded object oi !he class PoinL Note !he following lines in !he so urce:

• Declaration of member m_ Center wilhin !he class Rectangle

• The use of !he colon initialization synlaX in !he constructor for Rcctangle

• lmplemenlationoflhe GetCenter and SetCenter member functions.

Bccause we have factored out a concise entity from our original Rectangle
implememation, we now have a vcry usable, modular second class called Point.

Also note lhatlhe interface to our Reclangle class is now ata slightly higher level,
having moved away from x and y integer coordinates to Pomt coor:unates. Allhough
it is often true lhatlhe surrounding class's interface "matures" aftcr ·:mbedding
objects. from an unplememation standpoint. Rectanglc 's mterface does not dcpend
on how we tmplemcm coordinates as dala. We rnainlain dala indcpendencc.

1

2

3

'
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
' 29 ' ' ', 30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Module 11: Embedded Objects 189

Demo
CONTAIN.CPP is found in \DEMOS\.\110011.

1/ CONTAIN.CPP found 1n \demos\modll
11 Classes that contain classes use embedd1ng.
~include <tostream.h>

Oeclaration and def1nition s1.nce the Point class has only
implicttly inline member funct1ons.

"'*" "'*" "'"'"'"'"'"'" ••• "". "'""*" "'**•." Jt. "'"'"'"' ... "'"'*"'""' "'** •• "'*"' •!
class Point

public: 1/ construction
Point (int X""'Ú, tnt y"'O)

: m_x(x), m_y(y)
1 cout << ''Point c'tor\n'';

--Point ()
{ cout << ''Point d'tor\n'';

int Getx (void)·
1.nt Gety(void)
void Setx(int x)
void Sety(int y)

11 attributes
return m_x;}
return m_y;}
1 m_x • x;

1 m_y ~ y;
private: 11 tmplementation

int m_x, m_y;
} ;

/***"**"'***"'** Rectanqle Class Declaration "'****"'*"'"*"'**"'/
cla!35 Rectangle

1
public: 11 con.,truction

11 Default c'tor create!3 ''point'' rectangle" at 0,0
Rectangle ();

11 3-arg c'tor (default arg) may 1nvoke Point
11 c'tor (and it-' default copy c'tor) to build
11 a Point object at 50,50

Rectangle (int h, int w, Point p-Point (50, 50));
Rectangle(int h, int w, int x, int y);

-Rectangle();
11 attributc"

void SetCenter(Point p);
Point GetCenter(void);

11 implementation
void Size(int nh, int nw);
void Draw (void);

private:
Point m Center;
int m_nHeight, m nWidth;

} ;

(continuad)

190 Module 11: Embedded ObJects

~8 /**"* 1'*~~<* Rectangle ·Member Function Definition.s ***U**"'/
49 1nline Rectangle: :Rectangle ()
50 : m_nHe1ght(O), m_níohdth(O), m_Cente~(O,O)

51

52
53

54

cout << ''Rectangle default c'tor\n'';

55 inl1ne Rectangle:: Rectangle (int h, int ·.t, Po1nt p)
56 : m_nHeight(h), m_nWidth(w), m_Center(p)
57

se
59

60

cout << ''Rectangle c'tor: 3 args (int,int,point)\n'';

61 inline Rectangle: :Rectangle(lnt h, int w, int x, int y)

62 : m_nHeight(h), m_nWJ.dth(w), m_Center(x,y)

63

64

65

66

cout << "Rectangle c'tor: 4 args (int,J.nt,int,int)\n";

67 1nline Rectangle: : ... ReCtangle ()

6B

69

70

7l

cout << ''Rectangle d'tor\n'';

72 inline void Rectangle: :SetCenter(Point p)
73

74

75

76

m Center ., p;

77 inline Point Rectangle::GetCenter(void)
1B
79 return m_Center;
90

Bl
82 void Rectangle: :Size{int nh. int nw)
SJ

84 m_nHeight • nh;
as
B6
B1

m nW~dth "" nw;

88 // Currently justa di~play function
89 void Rectangle::Draw(void)
90 {

91

92

93

94

95

cout << "Rectangle at x~" << m_Center.Getx()
<< " y:" << m_Ccnter.Gety();

cout << height:" << m_nHeight
<< width~·· << m nWidth;

(continuad)

Module 11: Embedded ObJects 191

96 /*~**************** Simple Test Function ***************/
97 ~nt main ()
98

99 cout << "Crea te pl: ''; 11
100 Po1nt pl (25, 35); 1/
101 cout << endl;

102 cout << "Crea te rl: "; 11
103 Rectangle rl: 11
104 cout << endl;

cout << ''Create r2:'';
Rectangle r2 (L 2, pl);
cout << endl;

Crea te a Point, pl, at
coordina tes 25,35

Creating rl crea tes a Point

with default center 0,0

11 Creatc r2 us1ng pl ObJ
JI for ccnter at 25,35

105
106
107
108
109
110
111

112

113

114
115

cout << ''Create r3:'';
Rectangle r3 (8, 8, 9,

/1 Create rJ. Rectangle
9); /1 c'tor creates Polnt (9, 9)

cout <<"\nNow leaving main():";

//Note~ destruction arder of non-embedded objects
//with respect to each other is not guaranteed.
return O;

192 Module 11: Embedded ObJecls

Lab 9: Containment and Embedded Objects
. Slide
Objective
Ex e e u te the lab
solution.
Set the lab
objectives.
Ask stucenrs to
read the
scenario.

For Your
lntormation
This version of
the lnventory
class has
prívate data
including:

int
m_nQuantily

and three
objects:

Par! ID
pPar!Nbr
Money mCost
Dale dOrig

Module 12: Using Inheritance

\.

Module 12: Uslng lnherltance 195

:¿ Overview
Slide
Objective
Provide on
oveNiew of the
module
contents.

• DesigingOcsses fa lrtsitcnce

• 'Mly Use lrtsita-ce?

• S}flcxcrdUs~

• RediO'lSt'i¡::s BEtv.eEn O:jeds In oHie'ac:hy

• O.Vrid ng C1d Qxliflcx:licn

• lrtlEJ'itcncscrd lrrpldt Qll Qd!r

• O:rtrd Flo.vi:UingCl:listruclicn

a hx::E&s lo Bae OOIS M!rt:Ers

This is !he last of five modules on implementing simple classes.

Module Summary
In !he lasl module, you srudied one possible relationship between classes and lheir
objects-comammem. In lhis module you will srudy anolher importan! relauonship:
inheritance. Remember lhat inherilanCe unplies "a lypc of' relauonship. (A lhird
relationship, templates or parameterized lypcs, is beyond !he scope of lhis coursc.)

A more formal definition for inheritancc is !he capacity lO define ncw lypcs by
stating !he differenccs from a more generaltypc. lnheritancc is !he mechanism for
developing class hierarchies. Oass hierarchy is an imponant concepllhat undcrlies
commercial class libraries.

Objectives

196 Module 12: Uslng lnherllonce

Key Points
Cover the
objectives ond
propase o
problem to be
soived in the
lob. ISM does
business
internationally
and receives
inventory from
various places.
Rather than
creote a class
tor every
country and
currency,
encapsulate
the problem
into o single
class that
"knows" how to
handle
exchange
rotes.

U pon completion of lhis module, you will be able to:
'•'

a Crea le a base class.

a Creale a derived class.

a Add a member function toa dcrived class.

a Propcrly pass initializers along thc construction chain.

a Test a dcrived class by instanuating objccts from it.

Lab
lnhentance

Module 12: Uslng lnhernance 197

Designing Classes for lnheritance
Slide
Objective
Explain the
graphical
representatian
ot inhemonce.
Show the big
picture
concept. Note:
Arrows go UP to
lhe base class.

Delivery Tips
Keep it simple.

Key Points
Stress
terminology:
Base
Derived
General->
specific
-kind of"

Geometrlc Shape

Remember lhal in lhe original class design from lhe fus11wo modules, geomelric
shapes fonned a natural hierarchy, as depicled above. This hierarchy has lhe
following fea1urcs:

• A base class: Geomeuic Shape

• Three derived classes: Rectangle, Ellipse, and Triangle

• Progression from general lo specific. where lhe derived classes havc a "kind of'
relalionship 10 lhe base class.

As noled in an earlier module, lhe base class is also called lhe parem class or
somelimes lhe superclass; lhe derived classes are also called child classes or
subclasses (super/subclass tenninology is from Small Talk®).

Reference
Refer 10 "Derived Classes," in lhe C++ Language Reference.

198 Module 12: Uslng lnherltance

Why Use lnheritance? .
Slide
Objective
Explain the
purpose and
benems of
inheritonce
using 000
terminology.

.• Hie'adlcx:l Oaity

• O:xl&fa:krlrgcndRa.ae

• c:trrrrmcttad:sait:Edoiycrm

• c:trrrrm " e 1 te fl.rd1ao v.aidrgm a:1111 01 ctto
wtt1m oiy erre

• fledlje Jtilily fo Exhrld Exlstlrg CJasa

• f>ctjrmectjan e t tes (d1tibJes) adn e 1 te
f\rd!ao (t:Eta.ias)

• o.ence(~)ltetl:toAas dltetcsedas

As no!ed before. a language support of inheritance is imponantto model real-world
relationships. You will see that since C++ syntax denotes inheritance concisely, the
design intenúon is conveyed WJth authority.

Beca use derived classes are a typc of the base class. derived class objects
autornaucally gain most of the member funcúons and data members of the base
class. This alleviates much of the repeúúve coding or data-type tricks necessary to
mimic an inheritance relationship in a procedurallanguage like C

However. a derived class (object) is obviously different from its parent. Therefore,
C++ allows you to extend the denved class by two means:

• Creaúng additional members in the derived class.

• Changing the mcaning of an interface inhented from the base class by
overriding it.

When applied properly. these fearures make inheritance a very powerful concept.

~--

Module 12: Uslng lnherl!ance 199

Syntax and Usage
Slide
Objective •
Show the syntox
ond detoil
public
inheritance.
Eschew
protected ond
privote.

• hl lrtle'iiCllCBSpedficdicn ls Req.irEd

class der~ved_class_name : publlc base_class_name
(

public:
{addicional and overr~dden funct~ons]

private:
[additional data members]

} ;

' '"-"' '''"' •' ,, ' .,.,,~·"' ,, . ''"'" ,,.,•

The class declaralion symax for showing inheritance is straightforward. For
exarnple:

class Rectangle : public GeoShape

1
public:

) :

In the foil, nme the use of the keyword public. In the firstline, it denotes
inheritarice specification.ln the third, it denotes access specificaüon (which you
should be farruliar with).

The vast majority of designs in C++ use public derivation. The use of private and
protected derivation is beyond the scope of this course.

200 Module 12: Uslng lnherHance

De m o
INHERIT.CPP is in \DEMOS\MOD 12.

1 11 INHERIT.CPP found in \demos\modl2 •
2 // GeoShape has an embedded Point. Rectangle inherits
3 11 from GeoShape and calls base member functions.
4 iinclude <iostream.h>
S

6 /******* Declaration and Definiton of Point Class ••••~•;

7 class Point
8

public:
Point(int x::aQ, ~nt y=O)

: m_x(x), m_y(y)

/1 con:;~truction 9

10

11

12

13

14

15
16

17

18

19

20

{ cout << ''Point c'tor\n'';
-Point ()

(cout « "Point d'tor\n"; }

int Getx (va id) return m x;} 11 att.:-ibutes
int Gety (vo.ld) ret u rn m_y; 1
void Setx(int X) m X x; } -
VO.ld Sety(int y) m y - y; } -

prl.vate: 11 implementation
int m_x, m_y;

21) ;

22
23 /************ GeoShape Class Declaration *****************
24 • Base class for the 2-D geometrical classes Rectangle,
25 • Ell.1pse, and Triangle. D1mensions do not make sense
26 "" for a generic shape, but a center po:;.nt does.
27 ll'•ll'll'll'll'•ll'll'tll'••ll'!l'tll'll'!l'!l'!l'!l'!l'tll'll'll't!l'tll'tll'•tii'•II'I!I'!I'II't!l'tll't••ll'll'*!l'tll'•ll'/

28 class GeoShape
2 9 (

30 public: // construction
31 GeoShape(Point p-Po1nt(O,O));
32

33

34
35

GeoShape(int x. 1nt y);
-GeoShape();
void SetCenter(Point p);
Point GetCenter(void);

11 attribute.s

36 void Oraw(void); // operations
37 private: 11 implementation
38 Point m_Center; // Point is "embedded" in GeoShape

39 1;
40

41

42
43

/""""•""***""**""** Rectangle

class Rectangle : public
(

GeoShape /1 publ1c inher1tance

44 publ1c: // construction
45 Rectangle();
46 Rectangle(int h, int w, Point p-Point (50,50));
47 Rectangle (int h, int w, int x, 1nt y);

48 -Rectangle ();
49

so
51
52

void Size(int nh, int nw);
void 0~3w(vo1d);

private:
· int m_~rie1ght, m nWidth;

S 3 1 ;
54

(continuad)

11 operations

/1 implementat1on

Module 12: Uslng lnherllance 201

55 !•••••••• GeoShape Member Function Definitions *********•/
56 inline GeoShape: :GeoShape(Point p}
57

58
59

60
61

: m_ Center (p)

cout << ''GeoShape c'tor: 1 arg\n'';

62 inline GeoShape: :GeoShüpe (1nt x, int y)

63 : rn_Center (x, y)

64

65
66
67

caut << ''GeoShape c'tor: 2 arg\n'';

68 inline GeoShape: : -GeoShape ()

69

70
7l
72

cout << ''GcoShapc d'tor\n'';

7J inl1ne void GeoShape: :SetCenter(Point p)
74
75
76

77

m Center ,. p;

78 inline Point GeoShape: :GetCenter(void)

79

80 return m Center;

Sl

S2
83 /* Currently Just a display function •/
84 void GeoShape: :Oraw(vol.d)
SS {

S6

S7

SS
S9

cout << "Center at x:" << m_Center.Getx()

<< " y:" << m_Center.Gety() << endl;

9C /******** Rectangle Me~er Functl.on Oefinitions ••••••***/
91 inline Rectangle: :Rectangle()
92 : m_nHeight (0), m_nWidth (0), GeoShape (0, 0)

93

94
95

96

cout << ''Rectangle default c'tor\n'':

97 inline Rectangle: :Rectangle(inc h. int w, Point p)

98 : m_nHeight(h), m_nWidth(w), GeoShape(p)

99
100 cout << "Rectangle c'tor: 3 arg (int,int,Point)\n";

101
102
103 inline Rectangle: :Rectangle{int h, 1nt w, int x, int y)

104 : m_nHeight(h), m_nWidth(w), GeoShape(x,y)

lOS

106
107
lOS

cout << "Rectangle c'tor: 4 arg (int,int,int,int)\n";

109 (concinued)

202 Module 12: Uslng lnherllcnce

109 inline Rectanqle: : Rec::Jngle()
110 (

111 ccut << .. - :ctangle d'tor\n";

112

113
114 void RectaP-gle: :Size(int nh, int m1)

115

116 m_nHeiqht ""' nh;
117

118

119

m_nWidth "' nw;

120 /* Currently :ust a display funct~on •/

121 vo1d Rectangle: :Draw(vo1d)
122 (
123
124
125

126
127

GeoShape::Draw(); // :: used for qualification
cout << height: ·• << m_nHe1ght

<< '' width:'' <<m nWidth:

128 /************* Small T~st Program *****••••**************/

129 vo1d main ()

130
131 cout << "Create p: ":
132 Po>nt p (55, -55):
133 // Although it's poss•~le to tag a class to
134 // enforce 1ts abstra~~ness, the method is
135 // beyond the scope o: th1s course.
136 cout << ''Creating two gener1c objects:\n'';
137 GeoShape gl, g2 (12, -12);
138 cout << "Creat1ng three rectangle!!: \n";

139 Rectangle rl (2, 4, 150, 150),

140 r2 (10, lO, p),
141 r3 (55, 55):

142

143
144

14 S

146
147

148
149

cout<<''\n\''Oraw\'' two object!!:\n'';
cout <<"gl draws ': \n";
gl.Draw();
cout <<"r2 draws
r2. Oraw ();

1: \n";

cout << "\nEndinc; main ()" << endl;

Module 12: Uslng lnherltance 203

Relationships Between Objects in a Hierarchy
Slide
Objective
Quickly. confirm
student
understanding
that Rectangle
inherits the
base
functionality of
GeoShape and
adds its own
behaviors.

Dellvery Tips
Don· t explain
details
concern1ng the
Draw functions.
Save for next
page.

r

1 ¡
GeoShapo geo1;
Rectanglo rect1;

geot

SoiCenler()
GeiCenlerO
Draw()

rect1

SizoQ
Drow()
m_nHeighl
m_nWidlh

SeiConlar()
GeiCenlor()
GeoShape::DrawO

· Porl!on
: added lrom
. Roctangle

· Porl!on
'added from
· GeoShope

In inherüance, it is critically tmponantto differcntiate bctween objeclS and classcs
and how lhey are related.

The base class shown here, GeoShape. declares a set of membcr funclions and data
members. An object of lhis type, such as geol. coma1ns !hose data members and
has access 10 lhe membcr funcuons. ·

np Each object. of course. docs nm comain membcr functions.

Allhough lhe derived class. Rectangle, docs nm explicilly declare lhc members
Draw, GetCenter, SetCenter, and m Center, it gams lhese membcrs from thc
base class. GeoShape. lt declares three ñew members. Size, m_ nHeight, and
m_nWidth, and ovemdes the Draw function.

Therefore, an object of typc Rectangle, such as rcctl, comains alllhe mcntioned
members of the base class as well as !hose declared in the derived class.

lf we look atan object from each class. such as geol and rectl. therc is a strong
rescmblance. To bcginncrs. this is somctimcs misintcrpreted. Allhough tltclf classcs
are related,lhc objeclS geol and rectl are not relatcd, m lhc scnsc that mampulaling
onc will nm have an effect on the olher.

204 Module 12: Uslng lnherllance

Overriding and Qualificqtion
·\ 1. • •

S lid e
Objeclive
Complete the
details
concerning the
derived class.
Rectangle.
·ovemding" the
Draw function
in the base
class.
GeoShape.

class GeoShape {
public:

vo~d Draw(void);

};

class Rec~angle : publ~c GeoShape {
public:

void Draw(vol.d);

} ;

voi.d Rectangle:: Draw (void)
GeoSh.a.pe: :Draw (); 11:: used to quali fy

Although the Draw function is inherilcd by Reclangle, its base implementa !ion is
inadcquale-we wanl a reclanglc objectto display dimensional information also.
C++ allows us lO supply a ncw dcfuution for a function in a den ved class; this is
callcd overriding.

To override a function in the derived class, il musl ooly have the same name.
Ovcmdden functions gencrally have the samc protmypc also. When you invokc the
funcuon using a derived objec~ for cxample,

rect l. Draw ();

the derived class's version of Draw is invokcd by default. U you wish 10 invoke the
base class's version, qualification can be used:

rectl.GeoShape: :Draw();

Note tha1 in INHERIT.CPP, the defmition of Draw for Rectangle uses qualification
10 mvoke its parem's version. Then il does sorne addmonal work.

Tip Overriding should nollo be confused with overloading. Ovcrloading occurs in
the same scope. and the compilcr differenuates functions by argurnem typc and
number. Overriding occurs across inheritance scopes, and the base function is
normally hidden in the derived class.

Module 12: U&lng lnherllance 205

lnheritance and lmplicit Call Order

11 'Mld ls lrYlEJitm?

• Cdane1tas

a M:!it /1 e 1 te ftrdiao

" 'Mld ls rd lrhaitedi'

• Qrs1n..das

• Cei1n..das

In Lhis module, the subjecl of conslruclOrs and dcstruclors has bccn avoided umil
now. Bccause they are speC!al membcr funclions thal relale 10 the life and dcath of
class objeciS, thcy are nOl inheriled as other membcrs are.

The convenience of conslruclars and dcslruclors IS nol forfeiled, however. Since a
derived objecl has a ·ponían thal il gains from the base class, C++ au10maucally
mvokes the base class consln!Clor and dcslruclor for thal porlion. And as w1th
cmbedded objeciS, C++ guaranlecs an arder of conslruclion and dcslnlction.

Construction Thal arder is prcsemed on the nexl page.
Grophic is NEXT
PAGE

206 Module 12: Uslng lnher11ance

Control Flow During Construction
~ ' '

Slide
Objeclive
Trace through
the diagram to
build an
understanding
of the c'tor
arder.

'-"=="''""""""'"'"""'""""" '""""""""'"""""o:.·;;_--"'""'"'-'"""''""'""""'' ======="i''''' r
a.at.anqle rl (2, 4, lSO, 150); ¡o,

Po.int(i.at :.e, i.nt y)

(···) Q"
•_z(z), ID_,Y(Y)

Construction call arder: 1. Base class ponion

1 a. Embedded objcciS, if any

1 b. Surrounding ponion

2. Denved ponion

2a. Embedded objeciS, if any

2b. Surrounding ponion

Destructors are called in reverse arder.

Whcn the Rectangle objcct rectl in !NHERIT.CPP is defmed, thc following
occurs:

l. The Rectangle constructor is invoked when rect 1 is defmed.

2. Since the base class ponion of rect 1 must be built ftrSt, the constructor for the
base class is called and passed x and y.

3. 'The GeoShape constructor invokes the embedded objcct m_ Center
constructor.

4. The body of the Point constructor is exccuted.

5. 'The body of the GeoShape constructor is executed.

6. The body of the Rectangle constructor IS executed.

Remember that befare the body of a constructor function is emered, C++ guarantces
that the colon-initialized data membcrs w¡ll have their proper values. For the
standard data type membcrs, this has not been expliCilly shown m the diagram
abo ve.

During destruction of an object, the arder of destructor calls is reversed. lt is
considerably simpler bccause therc are no argumeniS bemg passed around.

Proper use of colon initialization is especially irnponant w1thin classes that ha ve
inheritance or contained objeciS.

Module 12: Uslng lnherllance 207

Access to Base Class Members
Slide
Objective
Present lhis
tableas a
summary af
inhentance.
deta1ling ways
to access the
base class.

Aceess Rlghts?

public: yes y os

protect.ci: yo o no

privat•: no no

Under public dcrivalion. lhcrc are strict rules of acccss to base class mcmbcrs, bolh
wilh rcspect to !he derived class mcmber functions. and wilh rcspect to !he outsidc
world (global functions and olher, unrelated classes).

The public members of a base class can be accessed anywhere.

Thc private mcmbcrs can only be directly accessed by mcmbcr fWJctions of !he
current (base) class. Even irs child class cannoc access chese direccly' This is
analogous to your interna! organs; lhey are a part of you, but can only be accessed
indirectly.

A base class 's protected mcmbcrs are midway betwccn public and private. They
are inaccesstble outstde !he class hierarchy. but are acccsstble to any chtld classcs.

208 Module 12: Uslng lnherllance

Lab 1 O: lnheritahce
Slide
Objeclive
Execute the lob
solut1an (ogoin).
Set the lob
ob¡ectives.
As k students to
read the lab
scenario.

"""""----------------~

r "' • • ' l ~. _- ·~

Module 13: Managing Complex
Projects U sing the lntegrated
Development Environment

Module 13: Managlng Complex ProJecls UsJng the lntegroted Development EnVIronment
211

:L Overview
Slide
Objeclive
Provide on
oveNiew of the
module
contents.

Delivery Tips
Present

• MJHpeSwc:efllePrcgctr5

a .MAl< F lle;

• EdllngaPrcjed File

• HecDlr File;

• Usingtheectun Ke,y.ad

Module Summary
Up lo now. your programs cxislcd in a single file. ll is comrnon, howcver, for rcal
world projccts lo cxlend over many source files. You'll crea1e aproject to manage
the various de pendencies thal multiple files entail. Projecl information is mainta.mcd
in malu files (.MAK exlension).

Visual Workbench provides imponanl tools for managing projects. In this module.
you '11 explore the process of creating and mamta.mmg a proJCCl file.

Objectives
U pon completion of this module, you will be ablc to:

• Use the Project Manager to spccify options.

• Create header files.

fh~e~~~~~~~ _e • _U_s_e_the exter~ ke~word t_()_pr()_vi~e cross-modulc_data. acccss. __ e ____ •

set the
direction.

Don't bother to
execute any
lab solutions.
No changes
are evident.

Lab
Mana.ging Projccts

212 Module 13: Manoglng Complex Projects Uslng lhe lntegrated Development
Envlronmenl

Mulitple Source-File Programs
Slide
Objeclive
Set a real-world
expectation for
the processes
that are
encountered
developing
large
applications.

• MilipeScuceFIIes heREQ.irEd'MlEn ~Files
he lag~~ Thcn 64K

• OhEr Reascns fa WllpeSo..rceFiles:

• Mdra:o-rp¡irge.ey!Hrgo.e- O"do.e-

• Failitdelq;icd dnJ q::o;l1!m d pqran

• Pkre recta:lw lf:O e ils tt:g:l! e

A pan from llus 16-bitlimitation, you will commonly encoumer olher siruations
wherc mulliple sourcc files are efficiem and practical.

Visual Workbench suppons an incremental bu lid fearure lhat allows you to rebuild
only lhose source files lhat you have changed smce lhe last build. U all of your
source code is in one big f•le, you will always rebuild everythmg. But if you split
lhings up as you work on various pans of lhe prograrn, lhe compiier only has to
touch a few files, and lhe build process is sped up significanlly.

Splitting files as lhey grow in complexiry also enhances lheir readabiliry. There are
conventions for splining monolilhic source files. As you have seen in earlier
modules, C++ programs have a defirtite strucrure to lhem. Preprocessor directives,
declarations. and function protO!ypCS are placee in header (.H) files. Associated
function definitions are segregated imo lheir own source files (.CPP). Depending
upon lhe rype of prograrn you are creating (MS-005®, Windows, QuiclcWin, and
so on), lhere will be olher files as well.

In lhe lab for lhis module you will split up a single source file and create a project.

Module 13: Mcnag¡ng Comp1ex Prolecls Uslng !he lntegrc1ed Developmenl Envlronmenl
213

.MAK Files
Slide
Objeclive
Presenl a high
level overview
of !he purpose
and benefils of
Project .MAK
files.

Cover -what
andWhy·
later pages
cover How.

Make Files (.MAK)
When you build a program, the Malee u1ili1y invokes lhe compilcr and linker with
specific insrructions you want. Malee files comain other imponanl information aboul
your projccliOO: its path, the 1ypc of exccutable thal you are building (Windows,
r,JuickWin. MS-DOS, and so on), whethcr il uses MFC libraries, anda lisl of lhc
vurcc files 10 mclude. ll also conu-ols thc hbraries thal your program wJIIIink to

ior thc code lhat is nccded 10 exccute run-time functions.

np Under Visual Workbcnch. malee files are u-ansparent.

Projcct information has been sct for yo u in the examples you 've seen up 10 now.
You will, however, nccd toknow how 10 set options for furure progranuning
projects as you rerum to your Workplacc. You '11 go through lhe process in lhe next
few folls.

· OI:>Efriing -Projects
You have three choices for opcning a projcct usiog a .MAK file. From the Projccl
menu, you can:

1". Use !he New command to crcate a new projecl.

2. Use lhe Open command to browse for an already created projecl.

3. Sclect from thc last four projects you worked on listed at !he bottom of the mcnu.

Opening Files Within a Project
No matter what method you use to s1an a projcct, thc casiest way 10 navigalc among
lhe files in lhe project is using the Project Files bulton on the extreme left cnd of lhe
toolbar

214 Module 13: Managlng Complex ProJects Uslng the lntegrated Development
Envtronment

Editing a Project File. . . ~, '

Slide
Objeclive
Continue to
prOVIC8 O high
level oveNie•,.;
of the opt1or.s
to deal with
.MAK files and
Projects.

Delivery Tips
Move quickly!
The lab
instructions
contain step
by-step
instructions for
these
procedures.

·····-·········-················-·········-····································· ······-························ ,

Editing a Project
Whether you use the New conunand or the Open command from the Project menu,
you end up at the Edil dialog txn. This dialog atlows you to edil the .MAK file. lt is
from this dialog that you can either add or delete files from your projecL

Editing an Existing Project File
Open Visual Workbench. From the Project menu. choose EdiL ThJS displays the
Edil dialog box.

Use the Orives and Directories boxes 10 fmd the files you want m add 10 your
projecL

Select the individual files from File Name dialog box and choose the Add bunon.

When you 're fmished, choose Oose.

Dependencies
During the discussion of preprocessor directives, you learned that you can specify
dependencies with llincludes. Visual Workbench automatically scans for all these
dependencies when you edil your project file. As you include new source files imo
your project you should force a rescan of dependenc1es. The Sean All Dependencies
option on the Project menu regenerates the dependency list for the entire projecL
The Sean Dependencies AcliveFi/ename will sean jusi the acuve file.

Module 13: Managlng Complex Projects Uslng the lntegrated Development Envlronment
215 1

Header Files
Slide
Objective
Add details to
the purpose
ond use of
heoder files.

r .. m YOJS~a~~il~~~: ~rd~ ·······

1

! • He:da' Files Ctn Ortdn:

1

/

linclude (other headar files)

lde fine

• F Lrdim p-Cl'ctyp:s

• Ocss d3:ladi0'6

• Gd;:d ct1ad3:ladlm;

Hcadcr files (cxtension .H) eontain information mat must be available globally. [n
your earlicr prograrns, you ineludcd !OSTREAM.H, whieh eomaincd informauon
about ein and eout. You spccúicd the strcarns headcr file wim an #include:

fincludc<io~tream.h>

Now mat you are scuing up multiplc sourec-file projccts, you should extraet any
informalion mat you want al! me files to sce into a header file. Then inelude it. Onc
ruee feature of Visual Workbeneh is that it w111 recursJvely sean al! me source files
mat ha ve bccn addcd to your projcct file for include depcndeneies. [f. however, you
ercate any #ineludes in your source files aftcr the files are addcd to your project,
you must force a sean. You '11 sce how to do mis Iater in me module.

Declarations and prototypes usually go in header files. For exarnplc. funetion
protmypes should go in header files but, in general, meir definüions do not. Class
declarations dcfmitcly go in headcr files, but meir mcmber funclion defmitions
belong in a separate source file (.CPP).

-- ------ ----

Rccall from an earlicr discussion mat an #include tclls me prcprocessor to go out
and find a file and place its eoments at this pomt in me codc. Ths is a shormand
way to place me sarne 1nformauon at me top of eaeh of your source files. Why is
this imponant? In C ++, al! functions must be protmypcd befare me y are callcd. U a
function JS used in more man one of your source files. it must be prmmypcd at me
stan of each file. An #include statcmem at me top of me file takes carc of mis.

216 Module 13: Manoglng Complex ProJecls Us/ng the lntegrated Development
Envlronment

Using the extern Keywor,., .. ,
Slide
Obieclive
Introduce the
· extern"
keyword os o
type·modifier in
the declorotion
of variables,

11 f~lel.cpp 1 1 file2. cpp ' ' 1nt i; extern in t. ,,
float J~~ funcB () i

~nt -~~~n (v di
(:

... ' ' ; ' 1 :

ret.urn 1;

~ 1 funcC ()

:

"" ex t. e rn
¡

funcA () ' float J;
' ' (1 ... , ~ 1 ¡) i

1 1 l

' '' ""' .1

What the extern Keyword Does
The extern keyword is a s!orage-dass specificr. l! makes ano!her file's global
variables visible 10 one oral! functions in a source file. In esscnce, i! says 10 !he
compiler !ha! s10rage will be found for !he variable a! link lime.

In !he foil, !he extern int i statemem in file2 references !he int dcclarcd
in file 1 and makes !ha! variable available 10 all funclions in file 2. The
extern float j sta!ememmakes!hevariabledefl11cdin filel visibleonly
10 !he sta!emems wi!hin funcC.

Tip In 'sorne computer languages, al! data is global. One of !he advantages of C ++
is !ha! data can be encapsulated WI!hin objec!S. This adds modularity 10 your
programs-it makes !hem easier 10 reuse and maimain. As a programmcr, you
should begin !aking more advantage of !his feature of !he language by rcducmg your
dcpendcnce on global data.

Module 13: Monaglng Complex Projects .Uslng lhe'lntegroted Development Envlronment
217

Lab 11: Managing Projects
Slide
Objective
Provide an
OV8N18W Of fhe
labs.

Module 14: Using Arrays

-- ----- --::-

Module 14: Uslng Arrays 221

L Overview
Slide
Objeclive
Provide on
0V8N18W Of the
module
contents.

r
J" • Odnghrq-s

• Pa:Essl ng lndvfd..d HIO(E IEI'T'Sis

• lritidlzinglrleg;r a-dOlcra::IQ' krq-s

• hrq-s a-dlhesized Q:Jerda

• Fllldicns Thd T cke krO(Arg.J'Tl!is

Module Summary
This module bcgins a Lhrec-module sequence on arrays, poimers, references, and
objects Lhal comain arrays of dala-Lhal is, strings of characlers. From Lhe firsl
module on, you have bcen using dala in your prograrns. Wilhoul excepuon,
however, your variables have comamed smgle values. From your expcrience, you
already lmow Lhal il is import:lnllO creale variables Lhal comain more Lhan one dala
elemenl. ll is al so imponan110 be able lo index and examine Lhem mdiv¡dually. and

0c able 10 manipulale Lhcm as a whole. In C++, such a variable is declared asan
_ca y.

Allhough arrays (parücularly suings) will be used Lhroughoul Lhe remainder of Lhis
course, Lhe primary value of an arra y will be realized once you 've relumed 10 your
workplace. 11 is hard 10 imagine solving many real-world problems wilhoul arrays
and suings.

In Lhe nexl modules. you willlearn lo manipulale arrays_us_!ng pointers, andyou ~ilL
see·how objects-of a corruñerciai'suiñg classlanlleusCd lo -síinpllfy Lhe
manipulations you learned in dus module.

Objectives
Upon completion of Lhis module, you will be able lO:

• Creale an arra y.

• Manípula1e an array using subscripl notation.

• Create a charac1er array as a string.

• Manípula1e a suing.

Lab
Manipulating Arrays

222 Module 14: UslngArrays

Creating an lnteger Array
S lid e
Objective
Presenta
simple overview
dealing w'1lh a
local integer
array. Present
the purpose
and uses for
arrays.

int main(vo1d)

1
1nt nSales(S];

nSal .. (O] 26

aSal .. lll 18

a8al .. (2] 31

a.Sa~ .. (J) 22

nSal .. (4] 55

salea

What Js an Array?

Sales for Monday

Soleo for Tueaday

Solea for Woct\ .. day

Soln lor Thursday

Saleo for Frtday

An array lS a collection of comiguous data, all of !he same data type. An imeger
array is an array of 2-byte elemen!S.

Single-Dimension Arrays
In !he example on !he slide, you see an integer array being declared. lt uses !he
name nSales, and it allocates five bytes of storage.

This array is declared as a local variable, so it has !he same scoping and storage
class rules as ordinary vanables do. Nme lhat global arrays are inmalized toO by
!he compiler, and lhat auto arrays can eas1ly exhaust !he stack. Al so. beca use u •s a
stack-based (auto) array, 1ts conten!S are undefined at this pomt. Finally. nme lhat
!he total size of each array or !he range of !he subscripts must be known at compile
time.

' .

Module 14: Uslng Arrays 223

Demo
ARRA Y.CPP is localed in \DEMOS\\10014. 11 shows how lo crea1e an arra y and
access elemems.

1 // ARRAY.CPP Found ~n \demos\modl4

2 li Creating arrays follows the scop~ng, in~tialization and
3 11 assignment rules as standard data types but adds a
4 /1 subsc~ipt notat~on to address individual array elements.
5 iinclude <iostream.h>
6

7

a
9

10

11

12

13

14

15

16

17

19

19

20

21

22

23
24

25

26
27

29
29
30

int ma~n (va id) /1 test function

11 Declare an integer array will space for S Lntegers
int nSales[S]; // nSales has undefined contents
/! Assign values to
/1 starting at ZERO
nSales(O) .. 26;

nSales[11 ~ 18;
nSales[21 • 31;
nSale•[31 - 22;
nSales[41 • 55;

cout « !. S. M.

e out « "\nMonday
cout « "\nTuesday

each element using subscrLpts
counting up to array size-1.

11 Monday sales total
!1 Tue.!!day

!1 etc.

Inc.\nWeekly Sales Report\n'';

e out « "\nWednesday

$" << nSales(O];

<< nSales[l];
<< nSales{2J;
<< nSales (3 1;
<< nSales[4j;

cout « "\nThursday
cout « "\nFr1day

11 Total daily sales
long .sales"" nSales[OJ + nSales[l) +

cout << "\n
return 0;

nSales(2] + nSales(Jj + nSales(4];
Total $'' << sales << endl;

224 Module 14: Uslng Arrays

Accessing Individual Array Elements
Slide
Objeclive
Define
subscripting as
an oddressing
mechonlsm
simple address
oddition.

Key Points
C++
progrommers
count from
zero'

• Slbiat¡:i ls O'l atsa lranlhe BegrTing á the.bnqt.

• Fa cn.krqtá LErQh n, Slbiat¡:is .keOton-1.

• YaJ Q:rrd S¡:scily aRcngeá Slbiai¡:is.

• YaJQ:nRU1 01 EilhEr Endá cn.krqt.

Think of an arra y as being like Lhe houses on a block. Whal is Lhe distance from thc
beginning of Lhe block to the nrst house on Lhc block' ll's O. and Lhis providcs a
clue as to what subscriplS are 10 Lhe comp!lcr. They are a mcasurc of Lhc
displacemenr or offset of an array clcmem from the beginmng of Lhe arra y. Elcmcm
#!in an array is al an offset ofO from thc bcginrung of thc arra y.

Actual! y, thlS is true foral! arrays m a computcr. Compilers for languages that
permit subscriplS starting al 1 makc an adjuslment lo reflecl Lhis facl. Thc C ++
compiler doesn't havc lO make an adjusanenL The progranuner coming lO C/C++
from another language makes Lhe adjusunem memally.

Module 14: Ullng Alrayl 225

De m o
ACCESS.CPP is located in \DEMOS\MOD 14. It sllows l!ow to use subscript
notaúon to access arra y elemems.

Accessing array elements using subscript noLaúon

1 // ACCESS.CPP round in \demos\modl4
2 // Array elements are typically accessed us~ng a variable
3 11 with1n the subscrlpt notat1on.
4 finclude <1ostream.h>
S

6

7

B

9

10

11
12

13

14

15

16

lnt main (void) 1/ test function

int 1 ~ O; // Use an integer to index array elements
int nSales[SJ; // nSales has undefined contents
11 Assign values to
11 starting at ZERO

nSales [O 1 • 26;
nSales (ll ~ 18;
nSales[21 • 31;
nSales[3) • 22;
nSales(4) • 55;

each element us1ng subscr1pts

11 Monday sales total
11 Tuesday
/1 etc.

17 // This is not a language error, it is a logic error.
18 // nSales[SJ s 7; // tl common programm1ng error-Trouble!
19

20

21

22

23

24

25

26
27

28

cout << " I.S.M. Inc.\nWeekly Sales Report\n'';
for. (long !Sales - OL; i < 5; i++)

11 ''i'' indexe~ the array
cout << ''\nDay 11 << i << 11 $" << nSales{i];
lSales +• nSales[i};

cout << "\n
return O;

Total $" << lSales << endl;

226 Module 14: Ullng Anays

lnitializing lnteger and Character Arrays
Sil de
Obiectlve
Eoch ot
preVIO US
exomples used
multiple lines to
set volues into
the orroy
elements.
Introduce woys
to etticiently
initiolize orroys.

Key Poinl
Let the
compiler count.

Dellvery Tlp
Dont get off
topic tolking
obout
chorocter
arroys!

... ···········-····--············-··:---·· .. ··············· .. ··-.. ························-······

tdefine SIZE :.0

l.nt iArrayl[S] • l, 2, 3, 4, 5 };
char chArray[~:ZE] =- "Bill";

void main ()

The size of an array musl be known atcompile time. Generally. you ¡:;ovide lhis
size by means of lhe number m braclcets in lhe array declaration. U lhe arra y is
being initialized. however,lhe compiler can coumlhe elemems belween lhe curly
braces 10 derive lhe size of lhe array.

For inslance, bolh of lhe foUowing produce lhe same results;

static int nPowarsOf2[5) • (1, 2, 4, 8, 16);

or

static int nPoversOf2. • { 1, 2, 4, 8, 16 };

There are severa; Jvantage o lelting lhe compiler derive lhe size of an initialized
array. When you ..re initiaJj¡. 1g an array, you often wam 10 change il by adding or
removing an elemem. Uyou ,pecify lhe size, you have 10 change u. There's always
a e bance you '11 forgel, or lhat you '11 miscounllhe elements in lhe array sel. 11le
compiler never rruscounts.

ModUle 14: Uslng Anfrt$ 227

Demo
lNITARY.CPP is Jocaled in\DEMOS\MODI4. 11 shows !he initialization of
imeger and character arrays.

1 11 !NITARY .CPP Found in \demo~\modl4
2 // Alternate way~ to Ln~tialize element~ in an array.
3 finclude <tostream.h>
4

S

6

idefine NBR_O<_INTS 5
11 manifest constant

7 va id main () 11 s1:nple test function

8 1
9 int iCount, iP02Sum ~ O;

10 // Explicitly stzed using manifest
11 11 constant e for ma.lntalnabllity)
12 int iPowersOf2[NBR_OF INTSJ
13 •11.2,4,8,16};
14 11 Implicitly sized, comp1.ler
15 // will count elements and SLze
16 int 1NbrSeries [J 11 the array to match the list.
17 ~11.2,4,8,16};

18 // Loop to total the array
19 for (iCount • O; iCount < NBR_OF_INTS; iCount++)
20 iP02Sum +- iPowersOf2 [iCountl:

21
22 // Below are three ways to initialize character arrays.
23 11 Output is: ''The sum of the 1st S powers of 2 is "
24 11 In1t to size with strLnq l1teral ~
25 char szMsql [16] • "The sum of the ";
26 // Init lettinq compilar count

21 chars
28 char szMsg2[] • ''1st S powers of 2 ";
29 11 Init by proqrammer with too much
30 11 free time (Note: NULL is '\0').
31 char szMsg3[]- {'i', 's',' ', '\O'L·
32 cout << szMsgl << szMsg2 << szMsg3 << iP02Sum << endl;

33

:.......:...-~ ----

Module 14: Ullng Arlayl

Arrays and the sizeof Operator
Sllde
Objeclive
The comp1ler
con count
elements for
programmers.
Does the
programmer
need to know
howmany
elements exist?
Use sizeof
operator.

Key Points
The sizeof
operator is
resolVed at
compilation
time.
Aids portability
in source cede.
Works great en
standard and
user-defined
data types.
Works great on
arrays of local
or global
scope.

'sizeot· returns
just the size ot
an element for
arrays passed
as arguments!
See the demo.

• Cl:rrJII• CcnO:ariBelta'ThatYOJCtn.

• EcayM:irteam

• srz.D Repats

• Cedl t:>.-t:s fa ala:d arO{

• 13'1& preaTErtmarO{awre1S·

When you are writing loops. how do you know how big !he array is? The sizeor
opera1or comes 10 your rescue. You were introduced 10 lhe sizeo(operator in an
earlier module.

Module 14: Ullng Arlays 229

Demo
lNIT ARY2.CPP is in \OEMOSI.\110Dl4. lt shows how lo initialize arrays and pass
Lhem 10 a function. N me Lhe difference from Lhe sizeof opera1or.

1 // INITARY2.C?P Found in \demos\modl4
2 // The compiler can determine the number of elements in an
J /) array. The sizeof operator allows programs to d~scov8r
4 // that length at runtime Wlthout a maintenance problem.
S finclude <1ostream.h>
6 // function prototype
7 void IntArrayTotal(int[J, int);
a 11 manifest con.stant
9 tdefine NBR OF !NTS S

10
11 /***************** Simple Test Funct1on *****************/
12 void main ()
13 { 11 Explicitly sized
14 int nPowersOf2[NBR_OF_INTS] - (L 2, 4, 8, 16);
15 11 Implicitly siz:ed
16 int nDayo[] • [L 2, 3, 4, S);
17
lB
19
20
21
22
23

24
25
26
27

28
29
30

31

32

33
34
35
36
37

38
-39--

40

41
42
43

44
45
46

47

48
49

50
51

52

cout << "Within main ... \nnPowersOf2 1s an array of "
<< NBR_OF_INTS <<" integers.\n";

cout << ''nPowersOf2's s1zeof shows ''
<< S1Zeof(nPowersOf2) << "-bytes of storage.\n'';

cout << "A ·•
<< sizeof(nPowersOf2) << "-byte array of
<< sizeof(l.nt) << "-byte integers is "
<< sizeof(nPowersOf2) 1 sizeof(int) <<" ints.\n";

IntArrayTotal(nPowersOf2, NBR_OF_INTS);
cout << ''Within main ... \nnDays is an array of

<< "unspecified ([]) integers. \n":
cout << "Fortunately, sizeof shows nOays as "

<< sizeof(nPowersOf2) << "-bytes of storage\n";
cout << "allowing the funct1on to be callad with a "

<< "second argument of \n '':
cout << ''sl.zeof(nDays) 1 sizeof(int) or ''

<< sizeof(nDays) 1 sizeof(int) << ".\n";
IntArrayTotal(n~ays, sizeof(nDays) 1 sl.zeof(int));

void IntArrayTotal(int iArray[], int iSize)
{---- ------

int 1Count, iSum • O;
cout << "Within a function receiving the array ... \n":

"iArray's sizeof shows " cout «
«

cout «
«
«
«

sizeof(iArray) <<"-bytes of storage.\n";

"A "
sizeof(iArray) << "-byte array of ''
sizeof (int) << "-byte integers is ·•
sizeof{iArray} 1 sizeof(int) << '' ints.\n";

11 Loop to total the array
for (iCount • O; iCount < iSize; iCount++}

iSum +• iArray(iCount];
cout << "The sum of the array is '' << iSum << endl;

230 Module 14: Ullng Anays

Differences with Character Arrays
Sil de
Objectlve
Beg1n the
explanation of
character
arrays with '\0'
character
implied in literal
strings and
required within
char array
processing.

~-----····-···---··························--·········-······················-··························-··········· ·········---·······-·······

~~~~-r~•-•_au_t_t~•~r(-5~J~·--"B~i~1~1~"-'~~--~~-4~¡ 
(O) • 'B' 

[1) • 'i' 

[2) • '1' 

(3] • '1' 

(t) • '\0' 

In the examp!e on !he foil, a character array is being declared. It uses !he name 
szBuiTer. and it allocates five bytes of storage. Note lhat !he sz preftx indicates lhat 
this is a zero-terrninated string, so !he fúlh character should be NULL AU literals 
w1thin double quotation marks have a NULL character. 

U you changed the exarnple removing !he 5, szBuiTer would still be assigned five 
locations and be initialized with the characters depicled. 

U you changed it again by increasing the 5 to 50, szBuiTer would contain 45 more 
NULL characters. 



ModUle 14: Ullng Anayl 231 

Demo 
CHARRA Y.CPP is found in \DEMOS\MODI4. lt examines functions that input to 
character arrays. 

!/ CHARRAY.CPP round 10 \demos\modl4 
2 11 Manag1ng character arrays using various iostream 
3 // operators anO functions. 
4 iinclude <iostream.h> 
5 11 manifest constant 
6 ldefine SIZE 30 
7 

8 /**********•e**** Array Class Declaration ****************/ 
9 class Arrays 

10 ( 

11 public: 11 operat1ons 
12 void ByCharCinOperator(); 
13 vo1d ByWordCinOperator (}; 
14 void ByCinGet(); 
15 void ByCinGetline (): 
16 void Display() 
17 
18 
19 
20 
21 
22 
23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

cout << "\"" << m_chArray << "\"\n''; 
cout << Extras \"" 

<< m chExtras << "\''\n''; 
m_chExtras{O] • '\0'; 

private: // implementatlon 
char m_chArray(SIZE]; 
char m_chExtras[S!ZE]; 

} ; 

/********** Array Member Function Definitions ***********/ 
vo~d Arrays: :ByCharCinOperator() 
( 

cin >> m_chArray(O]; 
/1 remove re~t of chars and the newline 
cin.getline(m_chExtras, SIZE); 

35 void Arrays::ByWordCinOperator() 
36 ( 
37 cin >> m_chArray; 
38 // remove rest of m chars and the newline 
39 cin.getline(m_chExtras, SfZE}~; 

40 
41 void Arrays: :ByCinGet() 
42 1 
43 

44 

45 
46 

cin.get(m_chArray, SIZE); 
JI remove rest of chars and the newline 
cin.getline(m_chExtras, SIZE); 

41 . void Arrays:: ByCinGetline (} 
48 1 
49 cin.getline(m_chArray, SIZE); 
so 
51 

(continued) 



232 Module lA: UllngAnays 

52 /****************** Simple Test Proqram *****************/ 
53 void main () 
54 
55 Arrays aNames; // default C'tor 
56 c;out << "Enter your name (cin >> chArray[OJ) .\n"; 
57 aNames.ByCharCinOperatór(); 
58 aNames.D1splay(); 
59 

60 

61 
62 

63 

64 

65 
66 

67 

68 
69 

cout << "Enter your name (cln >> chArray). \:1"; 

aNames.ByWordClnOperator(); 
aNames.01splay(); 
cout << "Enter your name (cin.get(chArray, SIZE) .\n"; 
aNames.ByCinGet(); 
aNames.D1splay(); 
cout << "Enter your name (c:in.getline(chArray, SIZE) " 

"\n"; 
aNames.ByCinGetline(); 
aNames.Display(); 



• 

Module 14: Ullng Anaya 233 

Character Arrays As Function Arguments 
Slide 
Objeclive 
Describe 
character 
arrays (and 
string literal) as 
arguments to 
functions. 

[
. ······························ ·······-··················································································· 

• Q;ylheBcseAd:tas ls PICD!dO"'IheSkD< 

• AnArr~terrel7(11s8f ls EYdudedAs lheBae 
Ad:tess 

• 2a4Byta 

• Mnm:IStaevtr'E led 
. • VayEtndet 

Features of Functions That Take Array 
Arguments · 
Remember -!he proiOtype specifies lha1 an argumem is an arra y. and lhal only lhe 
base address is on lhe s1ack. When you lhink aboul il, il wouldn '1 make much sense 
10 physically placean enlire array on lhe sw:k. The sl3Ck size is finite and limiled 
10 2K. U an array were placed on lhe sw:k in a pass 10 a function, you 'd quick.ly 
exhausl your slack. 

np Excep1 for char arrays (which are NULL terrrtinated), lenglh canno1 be 
determined. 

!, 
•...!. 

. .. 
' . ' 



234 Module 14: Ullng Anays 

1 

2 
3 

4 

S 

6 

Demos 
SEARCH.CPP is located in \DEMOS\\10014. It passes an array anda character 
to a function that returns the nwnber of occurrences of !he character in the arra y. 

11 SE.ARCH.CPP Found in \demos\modl4 
/1 Pa~s1ng charac~er arrays as funct1on arguments. 
tinclude <1ostream.~> 

!define MAXLENGTH 30 

7 int CharCount (char [], char); 

8 

9 

10 

11 

12 
¡) 

14 

15 
16 
17 
18 
19 
20 

21 
22 
23 

24 
25 
26 

27 

28 

29 
30 

31 
32 

33 

void mal.n () 
{ 11 an array anda char 

:har chBuffer(30], chlnput; 
lnt l.Le~terCount; 

e out <· -:nter • line of text. \n'': 
c1.n.gep e(c:-_ Jffer, MAXLENGTHl: 

cout < :1.ter • search character: 
e in » .oput 

11: 

11 array name and char name 
iletter~ount ~ CharCount (chBuffer, chinput); 

/1 Array passed as address 
1/ char passed as value 

cout << chinpl!-: << " occurred '' 
<< 1.Lett~:~ount <<''times in''' 
<< chBuff~r << ''','' << endl; 

int CharCount (char chSearchString{], char chLookup) 

int iCount • O. nSum • O; 
while {chSearc::Strlng [iCount 1 ! • '\0') 

if (chSear~hString[iCount++J -- chLookup} 
nSum+.,.; 

return nSum; 

• 



• 

Module 14: Ullng Arraya 236 

Functions That Convert to and from Strings 
Slide 
Objeclive 
The numeric 
data types are 
automaticol/y 
truncated or 
promoted to 
d1fferent types. 
Present library 
functions that 
perform those 
translations for 
character 
arrays. 

Dellvery Tlps 
Two functions: 
Hoaand ltoa 
are needed in 
the lab . 

• Sta ICbdOdaTypa¡ /lle<l::r'Mitedb¡Qallng 
Tnnxficn. cndPrcrrdlcn 

• CC++Stamdlltray 
finclude <stdlib.h> 

itoa, ltoa 

• a:n.et Olacde' /llro¡s totUT&IcCctaT)'PIII Uslng 
atoi, atol# atof 

To loe ate delails on any of lhese functions, open any C++ file,type in any of lhe 
funcüon names, and press Fl. 



236 Module 14: Ullng Anay1 

Lab 12: Manipulating Arrays 
Sllde 
Objecllve 
Execute the lab 
solutron. 
Set the lab 
objectives. 
Ask students to 
read the lab 
scenario. 

······-···························· ·································· ................................................................ , 



' 
Module 15: W orking with References 
and Pointers 



Module 15: Wcxtdng wtth Referencea and Polnfera 239 

:L Overview 
Sil de 
Objeclive 
Provide an 
oveNiew of the 
module 
conrents. 

Key Points 
Present the- -
leaming 
objectives and 
set the 
expectatlon 
that two 
different (but 
similarand 
related) tapies 
are presentad. 

• ~Eteeus 

• Pcirles 

• QrlrCIHf"G~Eie8'1CIIS aldPdmrs 

Module Summary 
In the las! module. you leamed lo creale and manipulale arrays. Thal makes for a 
good introduction 10 references and poin1ers. References are exuemely easy 10 work 
with. and lhey add power 10 your applications. Though poimers are useful for 
manipulaling the elemenlS in an array, their value uanscends simple array- . 
manipulation. In fact. poinlers are one of the mosl useful COOSlrUClS of the C++ 
language. 

In la1er modules, you will see lhat il is easier 10 use suings when you know how 10 
encapsulale !he poinler manipulations you leam in Ibis module. 

Objectives 
U pon completion of Ibis module. you will be able 10: 

• Use references. 

• Underslind refeience sjnw. · 

• Undersland poinler symax. 

• Pass references and poinlers as funclion argumems. 

• Manipulale slrings with reference and poinler notation. 

Lab 
Using Poinlers 10 Manipulale Suings 



2AO Module 1 S: WO!Iclng wlth Reterences and PoJnters 

References: An Overview 
Sil de 
Objeclive 
Loosely define 
references 
<eschew 
address 
terminologyl 
and c:te 'why" 
programs might 
use them. 

Key Points 
References can 
be an a~ernate 
neme tora 
variable or 
ob¡ect. 
References are 
similar to type
modifiers but 
do not create 
another 
variable. 
Used CJS 
funcr:IJn 
ar<;l~;7,ents. 

rereP:;nces are 
more afficient 
than the 
defau~ pass-by
value. 

......................................................... ,,, _____ ····························-····-·-·········-························· 

• Rú&lt& 14 AIICI81 

• lrftldlzi~aRtttra'lCB 

• Rúftllll 14 Fll'idi01Arg.nwls 

• Rtt .. rca O'ICISWIP.CPP 

What Are References? 
References are aliases for objects-that is, they are nicknarnes for objects. Once 
you ha ve initialized a reference toan object, you can refer to the object by its alias. 

How Are References Used? 
References are used primarily to pass paramete111 to functions and to rerum values 
back from funcnons. 1ñe syntax is the same for objects. 

References are semantically identical to constan! poin1e111. and !he y can be assigned 
only one value ata time. Since reierences 'an only be iniú:llized once, there 15 only 
one way to initialize a class data member wluch IulS a reie,er.ce. That is to initialize 
it in !he constructor, using colon syntax. 



Module 15: Wollclng wlth Reterencea and Polntera 2A1 

References as Aliases 
Sil de 
Objeclive 
Loosely define 
reference as 
another nome 
tor an existing 
variable or 
ab]ect. 

Key Points 
The • & • symbol 
is NOT the 
address·of 
o pe rotor. lt is 
not any 
operator- it is 
a type
declarator. 
Students hove 
not seen the 
"address 
operator· yet. 

lnt actuall.nt; 
1nt &other1nt ~ actualint: // reference 

11. declarat.ion 

'" '"", "'>' "'"" '"'"' ".:-: 

What ls a Reference? 
A reference is a type declaration lhal creates an alias for an existing variable. 
UsuaUy, a reference is initialized explicilly, giving it somelhing to refer to when 
you declare it. As lhe foil tille suggests, a reference is an alternate narne for a 
variable-nO! a copy of lhe variable. The declaration wilh initializauon associates 
lhe two narnes. Whatlhat means for you is lhat operations on eilher narne ha ve lhe 
sarne resul!. The reference becomes a synonym for lhe variable. 

Remember lhat when you declare an array-such as szBuff[IOO]-lhe bracket 
characters are not operators. They are declarators lhat ha ve a spectal meaning. The 
arnpersand character. &. used in lhe declaration of a reference is notan operator. 
(nor is it lhe addr~r operator or lhe bitwise-AND operator listed in lhe 
Operator Precedence e han.) References use lhe ampersand to identify lhe variable 
as a reference to lhe compiler. 

References may be used any time you want to permanenlly associate narnes for a 
_variable. ___________________ _ 

Reference 
See "References" in lhe C + + Tworial. 

'' 

¡· 

;• 



242 Module 15: WOik 1ng wlth Reterences anc1 Polnfert 

Demo 
REFDEMO.CPP is foun :n \DEMOS\MOD15. lt creates an alias and proves that 
it is identical 10 the orig1 1 object. 

11 REFpE~O.CPP found in \\demos\modlS 
2 11 Os1ng reference notation to create an al1as for 
3 11 an 1nteger. Usage after declaration is identical. 
4 f1nclude <iostream.h> 
5 

6 'lo id main () 
7 1 
8 lnt actualint s 123; // the ~ctual integer 
9 int &otherint a actualint; // the alias 

10 
11 

12 

l3 

14 
eS 
16 
17 
18 

19 

cout << actualint << endl; 
cout << 0ther·.nt << endl; 
otherin-: .. +; 11 increment al:..as 
cout << 1ctu :.nt << endl; 
cout << .::the -.e << endl; 
actuali -~~+; 11 increment actual 
cout << J.ctu .. :.nt << endl; 
cout << othe= ~t << endl; 



Module 15: WOiklng Wllh Referencea en! Polntera 243 

lnitializing a Reference 
Sil de 
Objeclive 
Detail how 
references are 
initialized. 
Note the 
exceptions 
where 
in111alization is 
not required. 

Delivery Tips 
Don'! try to 
explain details 
of what the 
compiler does 
witho 
reference or 
how they work. 
The 
implementotion 
moyvary 
between 
various 
compilers. 
References ore 
easy and they 
work. 

r . .. .. .. . .. ... . .... ············ . 

1nt ac~ual_ ~ ~ 123; 
l.nt. &other:.:-.: .. actuall.nt: 

Creating References 
References rarely exisl wilhoul a variable lO which lhey can refer-and lhey carmol 
be manipulated as a separate enlily. Once lhe associalion between a reference and a 
variable is set, 11 cannol be changed. 

Nol all cases require lhe inilializalion 10 be sel al declaralion. Here are sorne 
exceptions: 

l. There is no need lo inilialize a reference if il is declared extem and inilialized 
elsewhere. An extern reference typically would be iniualized in lhe source file 
where lhe declaration was made. 

2. [f lhe reference is a member of a class and is inilialized in a constructor. 

3. !f lhe reference is declared as a pararneter and i!S value is established when lhe 
function is called. 

4. !f lhe reference is declared as a return type and is esLabüshed when lhe function 



244 Module 1 S: WOIIclng wtth References m1d Polnters 

References as Functi n Arguments 
Sil de 
Objective 
Descnbe the 
changes 
between a 
functian that 
takes an 
integer and 
ane that takes 
a reference to 
an integer. 

Detivery Tips 
Students may 
be bothered by 
the notation: 
(int& a) versus 
(int &a). 
C++ ignores 
whrtespace so 
the compiler 
doesn·t care. 
The convention 
is: 
int&a: 

.................................... ············- ···-····-····· ........... ··-····-· ····················-· 

Two Wayo to Paso a Variabla toa Functim 
Paso by Value 
Paso by Referenca 



2 
3 

' S 

6 

7 

8 

9 

!O 
11 

12 
!3 

14 
!S 

16 

17 
18 
!9 
20 
21 
22 
23 
24 

2S 

26 
27 

28 
29 
30 

31 
32 
33 

34 

35 

36 

37 

38 

39 

40 

Module 15: Wolldng wllh Reterences Cl'ld Polnters 2A5 

Demo 
REFADDR.CPP is found in \DEMOS\MODI5. h details the declaralion and 
initialization for references. Contrast the usage of the actual integer versus the 
reference both in statemems and as arguments to funclions. 

1/ REFAOOR.CPP found in \demos\modl5 
11 Initial1z1nq references uses a simple variation 
1/ on syntax. After that, everything is easy. 
jinclude <iostream.h> 

lnt Addl(int&); 
vo1d Oisp{const int&); 

void main () 

11 function prototype 
11 call by reference 
11 call by const reference 

1/ a variable must exist 
int actualint • 123: 11 befare the reference 

1/ a reference must 
int &otherint • actualint; // be initial1zed 

11 to the target 

11 compare standard usage of the variables 
cout << "\nComparing actualint and otherint ... \n"; 
cout << Value; '' << actualint 

<< ' << otherint << endl; 
cout << "A.ddre.s": " << &actualint 

« ' << &otherint << endl; 

/1 compare u.sage as function argument!l 
cout << "\nTe.sting A.ddl (int&) function ... \n"; 
cout << "Before cal! actual " << a.ctua.lint << endl; 
A.ddl(actualint); 
cout << " After call actual << actualint << endl; 
cout << "Befare call other " << otherint << endl; 
Addl(otherint); 
cout << " After call other << otherint << endl; 

cout << "\nTe.stinq Disp(con.st int&) function ... \n''; 
cout << "What is the difference between\n" 

<< "actual1.nt "; 
Oi.sp(actualint); 
cout << " and otherint "· 
Di.sp(otherint); 

-cout << "" ?;' << e.;dl: 

41 int Addl (int& n) 11 call by reference 
42 11 a reference argument can be changed 

43 n++; 
44 return n; 
45 
46 
47 void Disp{const int& n) 11 call by con.st reference 
48 // a const argument can't be chanqed 
49 cout << n; 
50 



Module 15: WOIIclng Wlth Referencea cn:1 Polntera 

References and SWAP.CPP 
Slide 
Objective 
Deta11 the 
act1vities that 
occurwhen a 
reference is 
passed ta a 
~unction. 

References are frequenlly used to pass argumems toa function or to retum a value 
from a function. Passing by reference is much more efficient than passing by value. 

Demo 
SWAPREF.CPP is found in \DEMOS\MODI5. 

1 // SWAPREF.CPP Found in \demo~\modl5 
2 /1 Functions that take reference arquments have 
3 // access to the caller's data. 
4 tinclude <iostream.h> 
s // CHANGE tl // function prototype 
6 void swap(int&, int&); 11 referenca to lnteqer 
7 

8 

9 

10 

11 

12 

void main () 
( 

int x (5), y (lO); 

11 Identical to swap.cpp 

/1 two local variables x and y 
11 
11 

Note: equivalent to: 
int x • 5, y - 10; 

e out « "X i• " « 
e out « " a na y i• 
swap (X, y) ; 
e out « "X i• " « 
cout « " a na y i• 



Module 15: Wcxldng wllh Referenc:es cn:l Polnlerl 2A7 

Pointers: An Overview 
SUde 
Objeclive 
Provide an 
overview of 
pointers wllh an 
introductory 
defin,tion of 
addresses. 
Cover "why" 
you would use 
pointers. 
including 
features and 
benefits. 
The following 
pagesadd 
details to the 
points listad. 

-~------- ~--

• OealngPamrs 

• Pdrta's QndnAd:tases 

• Uslng Pdrla's 

• llftatngUsa d • 

• OhEr Usa d Parles 

-- ---------~-------



2A8 Module 15: WOiklng wllh Reterencea and Polntera 

Creating Pointe 
Slide 
Objecllve 
Cover pointers 
to stanaard 
data types. 
Each of the 
standard types 
has a pointer 
type associated 
with it. 

Key Polnts 
There are int 
pointers. float 
pointers. etc. 

There are no 
genenc 
pointers. A void 
pointer can 
only se•.¡ e as a 
bucker •e !1ald 
sometr ··~ :::>f 
unscec · HJ 
type: r ' ! ·:an't 
be e~¡-;¿. ,v 
usec. 

··Twa 
• 11 s1a"ctJdt.,p:s 

• s.,mx 

int •p; 

A pointer-to-type-integer 

Contains the address of an int 

Types of Pointers 
There is a pointer type for each of the C/C++ standard data types. Thus. you will 
create and use an int pomter for working with integers. a char pointer for workmg 
With characters, and so on. 

What lsn't Covered Here 
C suppons a special, generic type of pointer called a void pointer. The uses and 
implications of these are discussed later in this module. In ano!!" r module, you 
learned how 10 defme your own data types. User-defmed type' 1 also have their 
own pointers. (1ñis issue is covered in another module.) Finall ,.ou can have 
pomters that poiru to functions. That is an advanced 10pic tita! os not covered in this 
crA.!.r.ie. 

Features of Polnters 
Pointer variables have 10 be created. just like other variables. 

The asterisk in a declaration statement makes the variable that follows ita pointer. 
The • does not have the sarne meaning as the multiplication or the dereferencing 
opera10r. The example in the foil creates an integer pointer. You might say that p is 
a variable tbat is capable of pointing 10 an integer. 

lt 's iruport.ant 10 recognize that in the declaration above. the pointer does not 
currently point 10 anything. As you leamed earlier with the built-in data types, 
crealing space doesn • t mean that anything is assigned 10 that space y e t. lt is 
imponaru 10 stress that even though the pointer is capable of poinling, it doesn't 
point 10 anything yeL 

Poiruers. like other variables in C prograrns, can be automatic local, static :ocaJ, or 
global in scope. 



Module 15: WOiklng wllh References m1d Polnters 

Pointers Contain Addresses 
Slide 
Objeclive 
Cover the use 
of the 
ampersand 
character. the 
address-of 
operator. to set 
a pointer. 

Key Poinls 
Cover the three 
statements 
above in the 
sequence 
presentad. Use 
pointer and 
address 
terminology. 

• Vald:tes Exlst d Scrr. Lcxatcnln Ml'raV. 
• Ga'BcteAd:tesses WlhlheR4t88'01®QBcta 

• PdrfEr Vcrfctles HddAd:tesses 
int .. iPtr; 

int iCount ::::1 26; 

iPt r = &iCount; 

. iptr 1 1000 1 :-----i::.:COUAtl 
-1000 

, ~ .. -... .. WC,S:::, , :X,,, ... _'''"" ·· .;...,,, .... J.WX:: ., 

Sequence 
The lhree lines of code in the foil are interpreted as follows: 

' 
· • iPt r is a pointer toa type inleger. 

• iCount is an integer initialized to 26. 

• Assigntheaddressof iCount tothe int poinler iPtr. 

26 1)¡ 

In algebra, the equal sign(=) is much like a balance scale: the two sides of an 
equation must balance. For imtance, 8 + 8 = 16. 1ñe same is true, generally, of 
compilter languages like C. 1be type on the left must be same as the type on the 
righL In the statement iPtr = &iCount. this is true. On the left is a pointer variable 
that can hold an address of an int. On the right, the & operator generales the 
address of an integer. The two sides balance. 

We have seen that there are two uses for the asterisk as a token in the C language: 
_ _ •. -~- ____ ~ as the multiplication operator, andas the pointer-creation operator.in a declaration 

stalement 

There's a third use of the asterisk, as you'll see next. 

,, 

' . 
.,. 



Module 15: Wor1dng w11h Reterences md Polnters 

Using Pointers 
SUde 
Objective 
Dereferencing 
a pointer gives 
the variable 
pointed to by 
the po1nter. 

Key Polnts 
The processing 
depicted uses 
the 
dereference 
operator to 
assign 26 
'where the 
pointer. iPtr. 
points to." 

•Oa'Ehr&'ldrg 

• THrdLJsed • 

• C8efa'ErCe d:XIn.v.h:t ap:lr1a' ls p:!r11rgto 

Given i~tr = &iCount; 1 
cout << iCount; ¡ 

iCount "" 26; 

Dereferencing 
An asterisk is a dereferencing operaror if it is placed before a poinrer variable in 
executable code. 

What ls a Dereferencing Operator? 
When placed before a pointer variable in an executable statement. the aslerisk 
generales an insuuction to look (through the poinler) 10 the address that the poinler 
contains. Dereferencing an integer poinler obtains an integer. dereferencing a 
double poinrer obtains a double, and so on. Use of a pointer is called "indirection." 

In the foil example, you see that a dereferem:ed pointer variable can be used as both 
an rvalue aod an lvalue. wr :~ you use J dereferenced pointer asan lvalue, the 
original value is changed lu.~ this: 

'*iPtr - 26; 
cout << iCount; 

This prints out 26. 

• iPtr is transla!ed as "the conrents stored al the address iPt r holds" 



1 

2 
3 

4 

S 

6 

7 

8 

9 

10 

11 

12 
13 

14 

15 
16 

17 

18 

19 
20 
21 
22 
23 

---.- ------ 24 

Module 15: Worklng wtth Reference• Cllld Polnter1 251 

Demo 
POINTI.CPP is located in\DEMOS\MODIS. This demo tiesa pointer toan 
imeger and compares !he syntax for variables and addresses to !hat of pointers and 
dereferences. 

11 PO!NTl.CPP Found in \demos\modlS 
11 Creating pointers and work1ng with pointer notation. 
~1nclude <iostream.h> 

void ma1n () 

{ // '•' used in a declaration denotes 
11 (This • is not mult1plicat1on and 
1nt *iPtr; 11 iPtr is a polnter to 

a pointer var1able 
not dereferenc1ng.) 
data-type integer 

int 1Count • 26: 
to point to a variable 11 set the pointer 

1Ptr • &iCount; 1/ address-of '&' assigns address 

cout << 
cout << 

e out « 
cout « 

cout « 
cout « 

.. 

1/ iCount •a *iPtr 
iCount • '' << iCount << endl; 

*1Ptr • '' << *iPtr << endl; 

11 &iCount iPtr 
&iCount . « &iCount « endl; 

iPtr . .. « iPtr « endl; 

11 just for fun ... 

&iPtr . .. « &iPtr « 
•iCount . .. « *(int •)iCount « 

endl; 
endl; 



Module 15: Worlclng wlltt Reterenc:e1 md Polnt811 

. Differing Uses of * 
Sil de 
Objeclive 
Explain the 
distinction 
betweenthe 
use of • '" in a 
definition 
statement 
where the 
pointer is 
created 
versus 
an executable 
statement 
where the 
po,nter is 
dereferenced. 
Only 
"dereference· 
1s an oper or. 

Dellvery Tlps 
Draw a similarity 
thatthe ·&· 
used to declare 
a reference is 
like the • •• tor a 
pointer. 
NEITHER IS AN 
OPERATORS. 

..................... ····················· ·························-···············-···············--·····-····--.. ·········---............. , 

int *iPtr: 
int iCount • 26; 
11 i.Ptr • &iCount: 
Ptr • &iCount; 
iPtr - 50; 

_I_ Createsl!la iPtr Pointar 
~ al Deci81BUon Time 

int *iPtr; 
int iCount; 

iPtr = & iCount; : 
*iPtr = 50; 

11 wrong 
1/ riqht 
11 riqht 



Module 15: WOII<Ing wlth References and 'polnters 253 

De m o 
POINT2.CPP is localed in \DEMOS\.\100 15. This dcmo compares !he syntax for 
variables and addresses 10 lhal of poimcrs and dereferencmg. ll also shows various 
ways a pom1cr can be uscd 10 manipulale an arra y of imcgcrs. 

l (/ POINT2.CPP Found 1n \demos\modlS 
2 11 Contrast 5 different methods to total an array 
3 // of J.nt.egers. The last 3 use an 1nteger poJ.ntt:!r. 

4 finclude <iostream.h> 
5 

6 1.nt iSuml, i5um2, J.Sum3, iSum4, iSumS; 
7 int nSales[! ~ ( 26, 18, 31, 22, 35 ); 

8 

9 void main() 
10 

11 

12 

13 

14 

15 

16 
17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 
35 
]6 

37 

38 

39 
40 

41 

42 

43 

44 

int *iPtr-, iindex; 
11 calculat.e the size oE the 
11 array (portable src cede) 

int 1.Size =- sizeof (nSales) 1 s1zeof (~~"nSales); 

/1 Method 1: ~raditJ.onal array notatJ.on 
for (iindex "" O; 1Index < iSJ.;:e; 1Index++) 

iSuml +"" nSales(1Index]; 

/1 Method 2: use the array name as a pointer 
for (iindex "" O; iindex < 1Size; i!ndex++) 

iSumS +• * {nSale.9 + ~Index); 

/1 Method 3: ''.9cale'' off the pointer 
~Ptr- nSalc.9; // equ~valent to- &nSale.9(0] 
for (~Index .. O; 1Index < iSize; ilndex++) 

iSumJ +- •(1Ptr + iindex); 

/1 Method 4: .9Ub3cript off the po1nter 
iPtr = nSale3; 
for (i!.'1dex = O; iindex < iSize; iindex++) 

iSum4 +- iPtr[iindex}; 

11 ~ethod S: "walk" the po1nter 
iPt r = nSales; 
for (ilndex = O; iindex < 1Size; ilndex++) 

iSum2 +~ ~lPtr++; 

cout « "Any way yo u loo k at it, thc oum of 

« iSize « " weekly\n"; 

cout « "sales numbers 15: " « iSuml « " 

the 

« iSum2 « " " « ~sum3 « " « 1Sum4 

« " and " « iSumS « endl; 



Module 15: Worklng wlth References ond Polnters 253 

De m o 
POINT2.CPP is loca1ed m \DEMOS\.\100 15. This dcmo compares !he symax for 
vanables and addresscs 10 llJal of pom!Crs and dcreferencmg. !1 also shows various 
ways a potmcr can be used 10 mampulalc an arra y of imcgcrs. 

l // POINT2.CPP Found ~n \demos\modlS 
2 // Contrast 5 different methods to total an array 
3 11 of lntegers. The last 3 use an integer pointer. 
4 f1nclude <1ostream.h> 
S 

6 int 1Suml, 1Sum2, iSum3, iSum4, l.SumS; 

7 int nSales[] • 1 26, 18, 31, 22, 35 ); 
a 
9 vo1d main () 

10 

11 

12 

13 

14 

15 

16 
17 

18 

19 
20 

21 

22 

23 
24 

25 

26 
27 

28 

29 

30 

31 
32 
33 

34 

35 

36 

37 
38 

39 

40 

41 
42 

43 

44 

int *iPtr, i!ndex; 
/1 calculate the s1ze of che 
/1 array (portable src cede) 

1nt iS1ze "" sizeof (nSales) 1 sizeof ("nSales); 

/1 Method 1: t~aditional array notation 
for {1Index =- O; 1Index < 1Size; iindex++) 

iSuml += nSales[iindex]; 

11 Method 2: use the array name as a pointer 
for (iindex =- O; iindex < iSize; 1.Index++) 

iSumS +• 11 (nSales + i Index); 

11 Method 3: ''scale'' off the pointer 
iPtr • nSales; JI equ1valent to- &nSales[O] 
for (iindex =O; ilndex < iSize; 1Index++) 

1SumJ +• ~ (1Ptr + 1Index); 

JI Method 4: subscript off the pointer 
iPtr .. nSales; 
for (iindex =- O; 1Index < iSize; ilndex++) 

iSum4 + .... 1Ptr[ilndex]; 

/1 Method 5: ''walk'' the pointer 
1Ptr =- nSale.,; 
for (iindex ~ O; i!ndex < iSize; i!ndex++) 

iS~m2 +- •1Ptr++; 

cout << ''Any way you look at it, the ~um of the 
<< 1S1ze << '' weekly\n''; 

cout << "sales numbers is: " << iSuml << 
<< iSum2 << "," << iSum3 << ", << iSum4 

<< '', and '' << iSum5 << endl; 



Module 1 5: Worldng wllh References and Polnters 256 

Demos 
POINT3.CPP is Iocated in \DEMOS\MOD15. h shows !hree versions of a string 
copy routine. Ths is where pointers to character arrays are most efficient. 

1 // PO!NT3.CPP Found in \demos\modlS 
2 11 Contras~ three ways to pass arrays of characters 
3 11 to functions. 
4 iinclude <iostream.h> 
S 

6 // Use [] or *, it's all the same in a prototype 
1 void my_strcpyl(char (], char ()); 
8 void my_strcpy2(char * char *); 
9 void my_strcpy3(char *, char *); 

10 
11 char szBuff[) • ''An array is always passed'' 
12 "by reference.\n"; 
13 
14 VOld malO(} 

15 1 
16 char szBuffl[lOOJ, szBuff2[100]. szBuff3[100J; 
17 
19 
19 
20 

21 

22 

23 

24 

25 

my_strcpyl {szBuffl, szBuff); 
cout << szBuffl; 
my strcpy2 (szBuff2, szBuffl); 
cout << szBuff2,· 
my_strcpy3(szBuff3, szBuff2}: 
cout << szBuff3 << endl; 

26 // Method 1: traditional array notation. 
27 vo1d my strcpyl (char szDest(), char szSource()) 
29 1 
29 int i; 
30 for (i • O; szSource(i) !• '\0'; i++) 

31 szDest[1) • szSource[i); 
32 szDest[i) • '\0'; 

33 

34 
35 11 Method 2: shrink the code 
36 void my_strcpy2 (char *szOest, char *szSource) 
37 ( 

39 

39 

40 

41 
42 

43 

int.i•O; 
/1 loop stops after NULL assignment·occurs 

while (szDest[i) • szSource[ij) 
i++; 

44 11 Version 3, increment the pointers 
45 void my_strcpy3 (char *szOest, char •szSource) 
46 ( // loop stops after NULL assiqnment occurs 
47 while (*szOest++- *szSourCe++); 

49 

49 
SO 11 Note: The "while". loops in Methods 2 and 3 may 11 
51 11 genera te warn.lnq messages from your compilar. 11 
52 JI That's qood. I'd want te be warned about that // 
53 11 unexpected location of an as.signment. - Ed 11 



256 Module 15: W011clng wllh References and Polnters 

SW N R.CPP is loca1ed in \DEMOS\\fODIS. lt shows how 10 malee !he S\\ 

functic . wap by passing addresses and using poin1er.1. 

11 SoliPPTR.CPP F::::·.:nd in \demos\modlS 
2 // Functions that ~~ke pointer arguments have 
J // access to the caller's data. 
4 

5 

6 

7 

8 

9 

lO 
ll 

12 
l3 

14 
15 

" 
l ' 
ca 

~:nclude <1ostream.h> 
11 CHANGE H 

vo1d swap(int •, int 

vo1d main () 

11 
• 1 : 11 

11 

function prototype 
swap is a funct1on that 
takes lnt ptr arguments 

int x (5) 

/1 two local var1ables x and y 
(10); 11 Note: equivalent to: 

11 intx•S,y•lO; 
cout << ··x ~s '' << x: 
cout << ~ and Y is '' << y << endl; 
swap (&x, &y); 11 CHANGE f2 &address of integers 
ccut << ··x is << x; 
cout << ~ and ~ ~s '' << y << endl; 

11 CHANGE t3 
11 void swap(int *a, ~n7 *b) // Now takes pointers 

20 
21 
22 
23 

24 

25 
26 

11 as arguments 
int temp; 

11 CHANGE t4 Must dereference ptrs to get values 
temp - *a; 
• a • *b; 

*b • temp; 



Module 15: WOik lng wtth Rete rene ea and Polntera 257 

Contrasting References and Pointers 
SUde 
Objective 
Starting with 
call by volue. 
begin a 
contras! of 
Pointers vs. 
References. 
The graphic on 
the fallowing 
page will assist 
the contras!. 

¡···································· . . ......................................... ······················································ 

' • O:!ltyVduew.O:!tb(Pdrm 

• ByVdue 

• Cl:p(dagrre'tis rra:Bm!resta:k 

• ~ dfe:t o1y lrec::cp(, rct !reoi¡;jrd 

• ByPdrm 

• .Acíie;s d agrre't is p:ssoom1res1o:k 

• Q-crg:s dfe:taf¡;jrd ftra.Qlráa'm:lrg 

When to Call by Pointer 
You should call by pointer when a function argumem must be modified in the 
function aml/or it takes up a lot of space. S pace is an issue because an argument 
passed by value will be pushed onto the stack. Suppose you have a 1000-byte 
structure. Every time you pass it by value toa function. 1000 bytes will copied over 
to the stack. This will be time--=onsurning. 



258 Module 1 S: Worklng wllh Referenc:ea and Polntera 

Demo 
REFPARAM.CPP is found in\DEMOS\MODI5. 

N Ole !he use of !he asterisk and !he ampersand as well as !he use of !he const 
keyword in !he prOIO!ypeS. 

1 // REFPARAM.CPP found in \demos\modlS 
2 // Contrast three ways to pass argumente to functions. 
3 // (Note: Pointers will be covered next.) 
4 flnclude <iostream.h> 
S // structure definition and declaration, bo 
6 struct bigone 
7 { 

a int nbr; 
9 char text[lOOO]; // space for a lots of char's 

10 bo • {123, ''This is a big structuren }; 
11 

12 
13 

14 
15 
16 

void valfunc(bi~ 
void reffunc (cor. 
void ptrfunc(con 

/1 function prototypes 
l; // call by value 
~igone&); // call by reference 
Jigone *); // call by polnter 

17 /*****••••••••••• Small Test Program *******************/ 
18 void :t~ain () 
19 

20 

21 

22 

23 

24 
25 
26 
27 
28 

29 
30 

31 
32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

val func (be): 
reffunc (bo); 
ptrfunc (&bo); 
cout « endl; 

void valfunc(bigone 

cout « '\n' '< 
e out « '\n' 

void reffunc (cor: 

cout « '\n' 
cout « '\n 1 < 

void ptrfunc(const 

cout « 1 \n' « 
cout « 1 \n, « 

11 passing 
11 passing 
11 passing 

vl) 

vl. nbr; 
vl.text; 

Ji gene& rl) 

rl.nbr; 
rl.text: 

bigone 'pl) 

pl->nbr; 
pl->text; 

the bo value:s 
a reference to bo 
the address of bo 

11 pass by value 

11 " .. dot operator i• 
11 member of notation 

11 pass by reference 

11 reference notation 
11 same a• member of 

11 pass by pointer 

11 "->'' pointer to 

11 struct member notation 



Module 1 S: Wcxtdng wtlh Reterencea anc:l Polnter1 259 

References and Pointers 
Sllde 
Objeclive 
Contras! the 
processing that 
occurs during 
the declaration 
and assignment 
ot Refs and Ptrs. 
Note the 
opportunities 
tor errors or 
typos. 
Note the 
additional 
storage for a 
pointer. 

i.at *i.Ptr; 
i.at iCouat : 
i.at ¡~lCoua:t. • iCouD.t: 

1Ptr • '1Couat: 

Mamory Locoti..,a 

\ Addrossea 

/ 

-~1-----1 
1 l.R&olCOUDt • . - 1----f 

n-3 
n -2 
n ·1 
n 

. s.,x., .... M~ .... cw ... w.,( -

.. 
.. "a, ... w .... "'·····,'·" 

adllleea n 

n +1 
n+2 
n+3 

Put graphically, !he contras! of pointers to references would look like !he above. 



2«1 Module 1 S: Wortclng wllll Refereneea and Polntera 

Advantages of References Over Pointers 
Sil de 
Objective 
Summarize the 
Refs versus Plrs 
contras!. 

#••···············-· .. ··-.. ·············································-···············-···-····················-········-············-··-·-···-

• SlrrPifla::IS.,-tcx 

• M:reFiedthtOxB 

• Hlrl: 

• Use1 a' a e as lfilre.e' 'IOJ l"a.eoctdce ta\.o.Ee'\ 
ráa'Ero:5 O"dp:irias. 

• Usep::Jnes 1n1te1e 'ci 11 gcae; --qro,1ciTEI'T'Oy 
dlaJjlmO"dqrorccttJ51n.d\.rEslikellrWidlls1S. 

References give you more flexibility because you can easily change back and fonh 
be1ween passing and retuming by value and by reference. Only !he function 
prmolype and header mus! be louched. By comrasl. when you use poiruers, you 
mus1 also 1ouch lhe function call and lhe function body. 



Module 15: WO!klng wtlh lleferences cn:t Polntera 261 

Lab 13: Using Pointers to Manipulate Strings 
S lid e 
Objeclive 
Execute the lab 
solution. 
Set the lab 
objectives. 
Ask students lo 
read the lob 
scenarto. 

Key Poinls 
The loop la 
cap y 
characters fram 
one string to 
another would 
appear not to 
worl< if: 
1) later cede 
places the NULL 
character in the 
wrong location. 
or 
2) there is en 
"off by one· 
error starting 
the copy loop. 



Module 16: Using the Debugger 



MOdule 16: Ullng lhe Deb1 ¡gger 266 

L Overview 
Sil de 
Objectlve 
Provide on 
overv~ew of !he 
module 
contents. 

• ABugTWXI0!1f 

• The\1SUd Walclad'lllieg'ctedOetu¡pr 

• UslngDebJgWinc:bMI 

Sorne people define a bug as any shoncoming that a program might ha ve. Others 
define a bug as incorrect operation. There's room for inrerpretauon between these 
two defmitions. For example, would you say a program that runs 100 slow has a 
bug? 

In this module we '11 restrict our scope to !hose bugs which arise either from 
incorrect use of the language or sorne tlaw in lhe basic logic of lhe program. 

Module Summary 
Continuing on the !heme of importan! programming skiUs. you will now leam 10 use 
the debugger. In the demo you will be given a sample program lha1 has a number of 
eriurs embedded into its code. You will use the features of the Visual Workbench 
debugger 10 fmd and eradica!e them. And while we strive to provide you wilh non
trivial examples, you will still need 10 gain real-world experieoce before you can 
fully apprecia!e how and when 10 apply tbe debugger. 

Objective 
Upon completion of the module, you wiU be able to use lhe features of !he Visual 
Workbench inregrared debugger. 



266 Module 16: Ullng !he Debugger 

A Bug Typology 
Slide 
Obleclive 
Loosely. a bug 
1ncludes all 
these errors. 
Developers 
need to get 
through the first 
2 oreas and 
hove the .EXE in 
order to use the 
debugging 
tools. 

······························ ·····-·········--·-···········-··········· ------···----·····-·-· 

• 5.,.-ta::llc ene 38'1'afic 

• CbTPia B"'S'des era rresscg:s 

• Se v.arirgta.es 

• LII'KEm:rs 

• U1 cJ:jl¡ e:_ ;Jf(o:!s 

• MJtlpy cairEds\oflb:i$ 

• LagcErras 

• /lly:lill 11 'TOS 

• LO"Q.Ct: scg:¡aros 

Errors Caught by the Compiler 
A synlaX error is caused by miscoding a stalelllelll You've probably encoumered a 
number of them by now: a missmg semicolon. a paremhesis out of place. a 
misspelling, and so on. The compiler fmds mese and alens you quickly. Semanlic 
errors. on lhe other hand. are a liule more cornplex. 'They occur wben you have 
obeyed !he grammatical rules of lhe C ++ language, bul have done somelhing 
nonsensical-multiplied a pointer by an inleger. for exarnple. On !he surface. Ibis 
koQks like one variable nultiplied by anotber, butlhe compiler knows lhal a pointer 
can'! be mulliplied by a umber meaningfully.lbe compiler would generate a 
compile-time error Ole> ,e, and you would have 10 rernedy lhe siruation befare the 
prograrn \Vould build. 

Errors Caugh: ¡y the Llnker 
The linker's job is 10!. . and incorporate alllhe externa! references your program 
makes. 11 generaleS an ~ 70r message if il eithercan'l fmd a symbol (function name. 
class narne, or global v¡¡.nable) il needs 10 resolve. or if lhe symbol is defined more 
!han once. Again. you would receive some 501'1 of message staling !he problem. 

Logic Errors 
Logic errors can be very llicky. Let's say you have creaied ulterly intelligible code. 
11 compiles and links WllhOUI incidem. bul il doesn'l do whal you wanl illo. 1be 
culpril is generally four J in 1wo types of logic error: 1) either you 've used the 
wrong algorilhm-or e ·coded il. or 2) you have inadveneruly cornposed an emity 
lhat desttuys iLself (or nelhing else imponanl). For exarnple. you miglu have 
accidemally indexed o· he end of an array. You mighl have creaied a wi/d poinler 
lhal is happily corrupo lhings il sbouldn '110uch. Y ou mighl be dividing by zero 
-eilher lhrough a 1n1r ttion or a convoluied calculation. Remernber, run-time 
errors (general! y logic ~ors) may or may 001 be accompartied by error messages. 
lbis is compiler-depen...eru. 1be C++ language does 001 requ1re nm-time errors 10 
be scouied ow by lhe compiler. 



Key Poinls 
Remind 
students to use 
F4 to match 
code-lines with 
error ond 
warning msgs. 
Al so use F 1 for 
odditional 
assistance. 

Module 16: Ullng !he Debugger 267 

np The flrsttwo categories of bugs are dealt with in a very straightforward way: 
The compiler points 10 the offending syntax and you sean:h down the problem. 

Logic errors are notlike Ibis. Often you wantto jump immediately into the 
debugger to salve logic errors. Don'L Take a moment to carefully read over your 
code and see if the problem isn 't apparent. If the problem · s not apparen~ you may 
be able to atleast forrnulate a hypothesis that you can test by using the debugger. 
Yo u will probably wantto invoke the debugger. however. if you ha ve pointer or 
dynamic memory errors. 



268 Module 16: Ullng !he Debugger 

The Visual Workbench lntegrated Debugger 
Slide 
Objecllve 
Present high
level interface 
tar starting the 
VWB debugger. 

······· ····················································-······················' 

Visual Workbench has an integrated debugger that is accessible from either the 
Debug menu or the toolbar. (lñe cona-o! mapping is shown above.) lf you need 
more information about how the debugger is conD"OIIed, go 10 the Help menu and 
chose the Visual Workbenc" ·.>ption. Visual Workbench Help provides information 
on the toolbar and shoncut ,cys, a narrative mtroduction to debugging your 
application, and a discussion about 10 provide build information 10 the debugger. 

With the debugger, you can step through your prograrn's statements a variety of 
ways. You can place breakpoints in your code and toggle thern on and off. You can 
see how the values of variables change as your prograrn executes. Y ou can also see 
!he values placed in the CPU's registers (tbough this is a bit outside the scope of 
this course). 

Note The Visual C ++ Professional Edition also includes the Microsoft Code 
View debugger if you prefer to use it. 



Module 16: Ullng !he Debuggef 269 

Using Debug Windows 
S lid e 
Objective 
Depending on 
student 
experience with 
Windowsand 
debugg1ng 
tools. 
1 l lead students 
through the 
exercise 
2) get them 
started. or 
3) turn them 
laose to 
complete the 
exercise. 

• Da'ra PARTCDT.CJIP 

• BUidtrdr [)b.gM:x:e 

• ser lPW:Xtl wn:t:w 

• Setm:ltmemoa:lq]:ins 

• S1epf1Tclq1a:x:Bwth\Oia.s Q:1I0"6 



270 Module 16: Ullng !he Debugger 

Working with the Debugger: A Walkthrough 
Preface Concerning Conventlons 
As you progress through lhis exercise. you '11 discover lhat the Microsoft Visual 
Workbench offers multiple methods for controlling the debug session. The 
instructions listed below progress through three differeru methods: using menu 
opuons. using function or control keys. and using the toolbar bunons. (This exercise 
generaUy ignores rnost accelerator keys.) After compleung the exercise, t.ake time to 
pracuce whichever method 1s most comfonable and efficient for you. 

lnstructions 
Before you swt lhis exercise, you should understand what the application does. It is 
very similar to the inheritance lab you completed earlier. 

L Toopen the me PARTCOST.CPP 

l. S tan MS Visual C ++ and make sure any open projects or files are closed. 

To close a file, choose Oose from the File menu. 

To close a project, choose Oose frorn the Project menu. 

2. From the File menu, choose Open. 

The Open File dialog box appears. 

3. In the Directory box, select the\DEMOS\DEBUG subclirectory. 

PARTCOST.CPP will appear in the File box. 

4. In the File box, select the filename PARTCOST.CPP. 

5. Choose the OK bu non. 

L To set Visual Workbench lo build a non-debug .EX E nle 

Run lhis to see what the application does. 

1. FI"O!D the Options menu. choose Project. 

The Project Options dialog box appears. 

2. In the Project Type box, select QuickWin application (.EXE). 

3. Under Build Mode. select the Release option buttat. 

4. Oloose the OK but1011. 

L To build PARTCOST.EXE 

1. From the Project menu. choose Build PARTCOST.EXE. 

2. Assurning P ARTCOST compiled and linked with no wantings or errors, use 
CI1U.+F4 10 clase the compiler output window. 



Module 16: Ullng !he Debugger 271 

L To start PARTCOST rrom Visual Workbench 

l. From the Project menu. choose Execute PARTCOSf.EXE. 

You'll see this output: 

or: 1 arg 
nportPdPart C'tor: 3 args 

I.S.I1., lnc. 
Part Pl"icl! list: 

(gi!RI!I"iC) PH: 1 
(dOAI!Stic) PH: 2 Pl"iCI!: 10 
(inported) PH: 3 Price: 10 
(iRported) PH: 4 Price: O 

D'tOI" 

PARTCOST.EXE created three PartiD objects and displayed their values. 

2. Use cnu.+<: to close the PARTCOST output window. 

The curren! build has not been compiled for debugging. 

Note its size here: ___ _ 

Compiling for MS VIsual Workbench 
L To recompile PARTCOST.CPP ror Visual Workbench debugging 

l. Frorn the Options menu, choose Project. 

The Project Options dialog box appears. Do n01 cbange the Project Type: leave 
itas QuickWin application (.EXE). 

2. Under Build Mode. select the Debug option bullon. 

3. Choose !he OK bu tton. 

L To build PARTCOST.EXE 

1. From the Project rnenu, choose Build PARTCOSf.EXE. 

A dialog box appears, asking you to confum that you wish 10 build the affected 
mes. 

2. Choose lhe Y es buttoD. 

Note the new size of PARTCOSf.EXE here: -----· 



272 Module 16: Ullng !he Debugger 

Two or more imponant c<'mpiler options were changed for this build The /Od 
option suppresses optiiruzauon and lhe (Zi opnon insens debuggmg information into 
lhe .EXE file. 

3. Assuming PARTCOST compiled and linked wilh no wamings or errors, use 
CilU.+F4 toe lose lhe output window. 

Starting Debugging in MS Visual Workbench 
L To start a debug session with Go 

l. From lhe Debug menu, choose Go. 

PARTCOST runs to completion. Note lhat lhe output is identical to lhe 
execution results you have already seen. 

Use lhe Control menu (lhe icon in lhe upper-left comer of lhe PARTCOST 
window lhat looks like a miniarure spacebar) as follows. 

2. From lhe Control menu, choose Oose. 

3. Oose lhe process-tennination message box by choosing lhe OK buttOIL 

L To Restar! the debug session 

• From lhe Debug menu, choose Restan. 

Controlllng Multiple Wlndows In Visual 
Workbench 
As MS Visual Worltbench restarts, lhe Source window appears. Many other 
windows are available to view lhe execution of lhe application. One of lhe most 
useful is lhe l..ocals window. 

L To open the Locals window 

l. From lhe Window menu. choose l..ocals. 

2. ArraDge lhe two windows so lhat both are visible. fO!oose Ti le from lhe 
Window menu, or select, size and move tbem yourself.) 

PartiD Partl (ll. 
OoaeeuePart Put2 ¡2, .. lO); _ .... 
-~·-• ,..., ,_,a, .t2t11: .. ·• •.•.·: . . · ·• • · · :-.::,.::• • ·, 
Iapo:rtedP&rt Part4 (4, 100, CJD). 

a . oooo 
D:l • 0000 
SP • JSe.e 
BP • JSclio 
SI • DOlO 
DI • 3858 
t6 • Oc21 
ES • Oc2f 
SS • Oc2t 
es . 2bd7 
IP • 0025 
n • ozc& 



Module 16: Ualrlg lhe Debugger 273 

Using FuncHon Keys 

L To single-step through a procedure using function keys 

l. From the Debug meno, choose Step lnto to get through the startup code and imo 
the m• _ ~ funcúon. 

The ftrst executable line of main is highlighted, and the funcúon's local 
variables appear in the Locals window. The vanables displayed in the Locals 
window change every time you move from one function to another. The 
mcoming pararneters to a function and auto variables are shown in the Locals 
wmdow. 

Everything you '11 need todo in MS Visual Workbench can be done with the 
function keys. the mouse, keysuoke combinaúons, or the toolbar (below the menu 
bar). You '11 explore all of them in this exercise. 

Here' s what the function keys do: 

Fl Help 

1'2 N/A 

F3 Fmd 

F4 Next error 
FS GO! Execute 10 end of program or nex1 breakpoint 

F6 Switch wmdows 

F7 Execute up 10 the line the clUlior is on 

F8 Single-step and !Illce into user-wriaen functions 

F9 Toggle breakpoiru on the currentline 

FIO Single-step, but don't tiace into user-wriuen functions 

(They are execulfd, however.) 

Using mouse opttons 
• The left mouse bunon makes the current wiindow the active window.It's thus 

símilar to F6, but faster. li also chooses meno items in the nonnal fashion. 

• Double-clicking the left mouse buuon in a line selects the closest word to the 
mouse pointer. (lt does not toggle a breakpoint, as in MS CodeView.) This ts 
useful when selecting a variable for a W atch window. 

Stepping Through a Program 
L To step or trace tbrough a program 

l. From the Debug meno. choose Step lnto. 

MS Visual Worlcbench has executed one line of the code listed in the Source 
window. Execution goes to the 1-argument constructor for the PartID class. 

2. Press 1'8. 

MS Visual Workbencb bas executed one more line. Wbicb step was easier 
for you? 



274 Module 16: Uslng !he Debugger 

3. Conlinue pressing and watch !he program uace. 

MS Visual Workb eh is execuling one line of code in !he Source window. The 
selected line is !he .. ~xtline 10 execute. Notice lhatlhe vanables in !he Locals 
windows are updated as lhey are assigned new values and as execuuon enters 
vanous functions. 

4. Restan !he program by pressing S 111FT +F5. (Compare lhis melhod to lhat of using 
!he mouse or menu uems.) 

5. Perform !he followmg steps: 

a. Press F8 five lir.:es. The cursor should be on !he declaration of !he 
OomesticPar-. object, Part3. 

b. Press F8 five times more. Execution has crealed !he base object. Part ro 
wilh a value of 2. and execution is back 10 !he two-argwnem consuuctor for 
!he Domest ic- u t. Note lhatlhere 's a new set of variables in !he Locals 
window. 

c. Continue press F8 untillhe cursor is on !he curly brace atlhe end of !he 2-
argumem cons1 :tor. 

d. Press F8 once rr.ure 10 retum from !he consuuc10r. 

e. Execution has advanced to !he declaration of Pa rt 3 in ma in. 

6. Press FIO two times. 

The consuuction of :he Part3 and Part4 objects is complete. The 
ImponedPart 3 ugwnent consUUclOr was called,lhe base Part ro was 
buil~ and bolh con"ructors were completed Y ou didn 't have 10 uace lhrough it. 
lltis is useful for "'hen you're uacing lhrough a program and you hit a function 
lhat works correclly or lhat you 're not interesled in. 

Note lhat F8 orlly uaces in10 all inline and all user-written functions. When 
you're looking al source code. if you use Step In10 011 a callto e in or cout, for 
instance, F8 will jw ~ from your source code window inlo !he source code 
window for IOSTJ< · AM.H at !he swement definitioo for !he inline function. 
This may not be w1 .1 you waru. Plan 10 use FIO for all inline funcuons. 

Examining Variables in the Locals Wlndow 
L To explode tlle display or objec!S, structs, and variables 

l. Oick anywhere in lile Locals window 10 give il !he focus. Then place !he mouse 
cursor 011 a comer oi !be window and drag !he edge around as needed 10 see !he 
four objects. 

2. Restan !he program by pressing SIIIFT+F1. Now sWt pressing FIO a few times (it 
doesn't mauer many times, but five or six will do). 

The objective here is 10 watch !he variables change. In panicular, !he four 
objects which hold member dala. No cbanges are visible. 

Any time an object. suucrure. or array appears, you can expand or collapse !he 
display 10 include or exclude members by double-clicking 011 a variable. Try lhis 
011 Put 1 and Par~3 in !he Locals window. Note that !he+ on !he exueme lefl 
converts 10 a-. Double-clicking !he fllllt line of !he object again collap¡es !he 
display. 

3. Restan the program by pressing SIIIFT+Fl. The Locals window wiU retain !he 
settings you esiablbhed. 



Module 16: Ullng !he Debugger 275 

SeHing and Clearing Breakpoints 
L To set and clear breakpoints 

l. Click somewhere on !he Source window 10 give it !he focus, and use cursor
movement keys to place !he cursor on line 101. ('The line number is !he next-to
last field on the status bar at !he bottom of the Visual C++ window.) 

2. Press 1'9. 

This selects line 101 and establishes itas a breakpoint. The F9 key is also used 
to remove a breakpoint. 

Press P9 twice,leaving a breakpoint set on line 101. 

3. Place !he cursor on line 103. Press 1'9. This will establish line 103 as another 
breakpoint. 

4. Press FS. 

MS Visual Workbench executes the prograrn up to !he first breakpoint. Line 101 
is !he next line to execute. Press F9 to remove !he breakpoint on line 101. 

Press FS to execute to line 103. Press 1'910 remove the breakpoint on line 103. 

Viewing Assembly Code 
L To see PARTCOST in Assembly 

l. Press CTRL+F7. 

The source code window now shows a mixture of C/C++ statements and 
assembly-language statements. 

Move around in !he Source window using !he PAGE OOWN and PAGE UP keys to 
examine this feature. 

C/C++ prograrnmers sometimes fmd it necessary 10 see what the compiler generated 
from a given express•on. This is also a valuable leaming tool. You can see how a 
compiler builds a prograrn, how a function is called, and many other useful bits of 
infonnatiort You are encouraged 10 use the debugger and this display mode to 
exaniine prograrns Ibis way. 

At Ibis course's leve! of prograrnming, you probably won 't use !he CTRL+F7 keys 
when doing actual debugging. StiU, in advanced programming, a mixed view of 
source code can be a useful derugging 1001. 

2. Press CTRL+F7 again and you 're back 10 just source code. 

There is another use for F7. lt is the equivalen! of setting a breakpoint with F9 and 
then pressing FS. 

3. Use !he cursor-movement keys 10 position the cursor on line 118. Press F7. 

MS Visual Workbench executes up to line 108 and stops. 

• ' ' 



276 Module 16: Ullng !he Debugger 

The VIsual Workbench Debugglng Toolbar 
Toggle Breo1kpc,lnt¡ 

Steplnto 

From your expenence in the dass. you might already be familiar with !he lefunost 
buuons on !he Visual Workbench loolbar. Those buuons are used when you write 
your applications. From leftto right they are Projecl Files, Open. Save, Find (and 
the dropdown), and Find Next. The middle three buuons are Compile File, Build, 
and Rebuild All. The six toolbar bunons we 'U examine in llus debugging exerciSe 
are as follows. 

• Toggle Breakpoint seiS or clears a breakpoinl al !he currem location in !he 
Source window. 

• QuickWatch works with the QuickWaoch dialog box lo add and display a 
vanable in the WaiCh window. 

• Run stariS execution frorn the currentlocation until a breakpoint is reached or 
!he application terminales. (ll is equtvalemto !he Go menu oplion or the FS key.) 

• Step Into executes one linr 'lepping iniD a local function call if appropriate. (ll 
is equivalem 10 the Step lntu menu option or the F8 key .) 

• Step Over executes one line or function call wilhoul stepping iruo !he function. 
(ll is equivale~! lo the Step Over menu option or the FJO key.) 

• Step Out executes out of the curreru fwtction call and siDps immediately 
following lhe cal liD the function. (ll is equivaleniiD !he Step Out menu option or 
the SHIFT+FlO keys.) 

L To practice usiag tbe debugging buttons on tbe toolbar 

l. Place !he cursor on line 121 in !he Source window. Oick !he Togg1e Breakpoim 
butiDn on !he IDOlbar. 11 wiU be highlighted. 

2. Reswt the program by pressing SHIFT+FS. 

3. Oick the Run butiDn on !be ID01bar severa! times. 

Notice bow lite program slops eacb lime il hiiS the breakpoinl. WaiCh the value 
of i in !he Locals window as il changes. You may bave ID juggle the posuions 
and sizes of !he Locals and Source windows ID see alllltis. 

4. Oick !he Step Over buuon on !he toolbar once ID advance 10 for loop line 
abo ve the breakpoint. M ove !he cunar ID line 121 and click !he T oggle 
Breakpoinl buuon OD the IDOlbar. (Tbai deseleciS the line.) 

Note The aposuophes in here aren 'tlrue. (They sbould be.) Remove 
parentheses. 

5. Oick dte Run buuon on the toolbar again. 

The program runs lo completion. You should see the QuickWin outpul screen. 

6. Use ALT+FS lO SIDp debugging. (There is no IDOlbar equivalenL) 

7. Oose !he process-terrnination swus box by choosing lite OK buuon. 



Module 16: Ualng !he Debugger 277 

:t To restart lhe program 

l. From lhe Debug menu, choose Restan. 

2. Make lhe lastline of ma in (line 123) a brealcpoinl. 

Use lhe scroll bar on lhe Source window. lhe mouse. and cursor-movemem keys 
10 getlhe cursono line 123. 

3. Click lhe Toggle Breakpoinl bunon on lhe toolbar. 

Make a break poi m atlhe end of ma in whenever you begin a debugging sesston. 
Since you're never interested in anything after main.lhis is a good and r:ypical 
,xacuce when debugging applications. 

4. Click lhe Run bunon on lhe toolbar. 

:t To stop and restartthe program 

l. Press AL T +Fl lo stop debugging. (There is no toolbar equivalen!.) 

2. From lhe Debug menu, choose Resl.arl 

3. Click lhe Step lnto bunon on lhe toolbar. 

The Registers Window 
:t To examine values in the registers 

l. Früf!llhe Window menu, choose Registers. 

A new window opens. showing lhe machine's registers in rwo-column fonnat. 
You can resize lhe window as laller and less wide; lhe display will change 10 a 
single column. Ordinarily lhis isn 'l of much interestto a novice programrner. 

2. Start pressing FlO and watch lhe registers change. 

Orle register lhat is of interestto a progranuner is lhe AX register. All functions 
wilh a return statemem pass lhe return value in !he AX register. lf you "re calling 
a function and your program isn 't wriuen 10 check lhe return value. you can 
exarrune lhe return value lhis way. 

3. Press Al.T+l to change focus 10 lhe Source window. Similarly, press Al.T+l and 
Al. T +3 10 cycle lhrough !he Locals and Registers windows. 

4. Press Al.T+l again 10 return 10 lhe Source window. 

The QuickWatch Dlalog Box 
:t To display the QuickWatch dialog box 

The Locals window shows all the variables visible by scope 10 lhis function. When 
debugging, you should closely track lhe values in just a few variables. The 
QuickWatch box allows you 10 check !he current contems of any variable. 

1. In the Source window, place the mouse pointer over lhe object narne. Part 1. 

2. Double-dick the left mouse buCIOn. (The variable is selected) 

3. Oick the QuickWatch button on lhe toolbar. 

The QuickWatch box appears,listing lhe variable and its currem value. 

4. Press lhe ESC key to clase lhe QuickWatch box. 



278 Module 16: Ullng !he Debugger 

The Watch Window 
Sorne of the imponant variables in PARTCOST are the arguments received for the 
ImponedPart object ~art4. The prograrndisplay indicares an error m that 
object The value listed on the screen for the Price is mcorrect 

lt's eas1er ui rrack importan! variables in a separare Watch window. 

L To watch the values of your program's variables change during execution 

L ln the Sowce window, place the mouse pointer over the variable P a rt 4 . 

2. Double-click the left mouse buuon. (The word is selected.) 

3. Click the QuickWatch bullon on the toolbar (or use SHIFT+P9). 

4. Choose the Add To Watch Window buuon. 

A Watch window appears. It displays variable de• lils in a window. The Watch 
window is handy for examining global variables ou usually won ·r place local 
variables m the Watch window unless you want 1lter how they 're displayed. 

5. Press FIO severa! limes to see the variable in the '· 11ch window change. 

Other Visual Workbench Features 
Here are sorne other MS Visual W orkbench fean.res you might find handy: 

-• Any lime a saucrure or array appears. you can expand or collapse the display ro 
include or exclude strucrure members. This done by double-clicking on a 
variable. Try this on Pa rt 4 in the Locals window. Noce that the + on the 
exo-eme left converts toa-. Double-clicking the fllSt line of the struct collapses 
it again. 

• You can work with all of your breakpoints at once by displaying the Debug 
menu and choosing Breakpoints. (Breakpoints are a complicated subject in MS 
Visual WorkbenclL) In addition 10 just malcing a panicular Iine a breakpoint, 
you can do tbe following: 

• Brealc on a line if an expression is true. 

• Brealc on a line if an expression changes. 

• Brealc anywbere if an expression is true. 

• Brealc anywhere if an expression changes. 

The laaer two options drastically slow down tbe Go. Run. and Step options of 
the MS Visual Workbench debugger. This is because the debugger has 10 
iruerrupt your program after every macbine instruction to see if it should stop. 

• lf you can fmd a variable in a window, you can change its contents. Try this on 
the n mPartNbr variable in the Locals window. (You can even change 
regisi'en in tbe Registen window, inctuding IP, !he instruction pointer. Be sure 
you know what you 're doing if you auempt this.) 

" ., 



Module 16: Uslng lhe Debugger 279 

On YourOwn 
For lhe remainder of tlus exercise, experirnem wilh MS Visual Workbench. Try to 
loca te the processing error that causes lhe P rice of Pa rt 4 to be zero. (We expect 
to see a numeric P rice of 90.) 

Be sure you're comfonable with the features covered so far. Al! debuggers are the 
sarne in lhat they al!: 

• Allow you to single-step through a prograrn. 

• Examine variables. 

Everything else is just an enhancemem. Be sure you can do !hose two things w1lh 
MS Visual Workbench. 

A complete mastery of MS Visual Workbench takes considerable time. This 
exercise has just touched on lhe highlights and most essenual features. You are 
encouraged to consult the docurnentation and to experirnem a lot. There's also 
considerable help avaJ!able in the helpfiles. You can press Fl to get Help in MS 
Visual Workbench. 

The very best prograrnmers are often !hose who have mastered a good debugger. 



Module 17: Using CString 



Module 17: Ullng CS!rlng 283 

L Overview 
Sil de 
Objectlve 
Provide an 
oveNiew of the 
module 
contents. 

r -----
• Red.JcelheO.Vhea:fá UslrgStrlng; 

• UseO"'IIofCOcss Llb'ay 

• M:rlpJctelhe01Cra:krs Q:rrpaslrgaStrlrg 

Module Summary 
In the last few modules. you have explored character arrays. pointers to character 
arrays. and strings. In this module, you '11 see how using string objects can 
significantly reduce the overhead associated with manipulating the character array 
that compases a string. 

The point that is being made in this module can be extended beyond mere character 
arrays. Using commercially available class libraries can significantly reduce the 
arnount of prograrnming you need todo in general. In fact the whole point of this 
course is to provide you with the skills you need to be a competen! class library 
user. Microsoft's Foundation Oass tibrary is by no means your ortly option. Since it 
is included with the Visual C ++ development envirorunen~ it wiU be used as an 
exarnple of how you can incorporate and reuse code from commercially available 
class libraries. 

This module concludes the three-module set on arrays. pointers. references. and 
strings. Recall from the lectures in these modules that pointers and references can 
be used 10 refer to either the value contained within a variable. or its address. This 
brings us 10 an imponant subject: how does a prograrn utilize !he computer's 
memory? That is !he topic of the next module. 

Objectives 
U pon completion of !he module, you will be able to: 



284 Module 17: Ualng CStrlng 

Key Polnts 
Cover lhe 
objéclives lo 
sel lhe 
direci!On for lhe 
module. 
The lob solulion 
oulpul is 
idenlicol lo lhe 
previous lob. 
but is much 
smorter obout 
string-handling. 

• lnclude the MFC CString class declaralions. 

• lnstanliate ob)-· tS of type S!ring. 

• Manipuiate the ~haracters composing a string. 

Lab 
Using Commercially Avaiiable Oasses 



ModUle 17: Ullng CSirlng 286 

CString: A Microsoft Foundation Class 
Slide 
Objectlve 
Oisclaimer: MFC 
libreri es are e++ 
classes ond 
objects created 
ter lhe MS-OOS 
ond MS-Windews 
plotferms. The 
QuickWin apps 
we·re building are 
cleser te 
character-mode 
OOS apps lhan 
grophlcal 
Windows apps. 
The appllcarlons 
tramewerk (ofxl 
must be teld NOT 
te include all the 

classes. The pre
processor 
directivas below 
make lhat 
dlsMncllen. 

¡·······- ··············-···-·············· 

• MaClSdl's CUiiiadd Ocss Litray 

• Prirroily ttr Wn:D.Is q:piaj!Ol c:BSq::rra1 

• Mscellcr'fn.ls S~ Ocases 

• Soreeerre1s dM'CUtroyrcts¡:a::lftct>Wrdl.-& 
cB..GQJTErt 

• CS111rgls credteslrrpe\dl..el)pldase; 

• TlweheExtroStep¡ ReqirejlolrdudeCStrlngwlh 
Qidc.Wn Prcgcms 

MFC librarles are primarily for Windows appiicalion development (which is 
oulSide lhe scope of lhis course). Using CString objeclS in QuickWin applications 
requires a modificalion to !he include statemenlS. QuickWin applicalions are a 
hybrid between an MS-DOS and a Windows appiication. 

The MFC librarles are no! buih for lhe QuickWin applications. 

To use CString objeclS, you must make sure lhat you have taken lhe foliowing steps: 

l. From lhe Options menu, choose Project. This invokes lhe Project Options dialog 
box. Select QuickWin as !he Project Type. 

2. In lhe Project Options diaiog box, clear lhe Use Microsoft Foundation Oasses 
' checkbOx. 

3. In !he Project Options dialog box, ciick on !he Linker command bu non. This 
invokes lhe Linker Options dialog box. Select !he Prevent Use Of Extended 
Dictionary checkbox. 

4. Manually add !he library malxcr (or mafxcrd if you are budding under debuq 
mode) 10 !he Librarles text box in !he Linker Options dialog box. U you snll ,ot 
"unresolved externa!" link errors after you ha ve added it, make sure !hat 
MAFXCR.UB exislS in !he \MSVC\MFaLIB directory. 

5. Finaily, you must define _DOS befare you inciude AFX.H. Place !he above 
preprocessor directives at !he beginning of your source file. 

This set of preprocessor directives brings in !he MS-DOS version of !he function 
prototypes found in lhe class declarations of AFX.H. 



286 Module 17: Ullng CSirlng 

Key Points 
These 
statements are 
not necessary in 
MFCWindows 
apps. Only the 
#include 
<afx.h> is 
needed for Ms
DOS targets. 

To make swe it all worl<s correctly, ay building the following sampie program. 

//*******Test CString with QuickWin EXE********* 
hfdef _W!NDOWS 

•undef W!NDOWS 
•deflne DOS 
•1nclude <afx.h> 
•undef DOS 
idefine WINOOWS 

iendif 
t1nclude <iostream.h> 
int maln () 

CString strHello ("Hello World Of Objects"); 
cout << strHello <<endl; 
return O; 

' 



Module 17: Ullng CStrtng 287 

What ls a CString Object? 
Slide 
Objecllve 
A CString 
object is made 
from one of the 
simples! stand
clone classes 
from MFC. 
lt is fully self
contained. self
managed. and 
extremely 
flexible. 

• AVala:.eLEngt!S4q8Q<i'Olcrcdas 

• TheM:JdmmSized aC:StrlllJc::t:tea ls Y4767 
Olcra:ters. 

• =c::t:teas HaleBúiHn Mnuy .tllctdlm 
ifle& SoCSirlngs Qn Qo.vbfO:nxte"ddcn 

• CStrlngs Qn BeSU::i&ttiUedftr Ola cae Pdrla's in 
F\.11diQ"' Cklls. 

• CSITI!lJM:npJdl<rlls SirrllatoS~Fa.ndinlhe 
Maasctt Bale LcrQJCUt 

E ven lhough CString objects are similar 10 arrays and chatacter poimer.;, lhey 
behave like ordinary suings. Like an array, a CString objecl has member functions 
10 re!Um lhe number of chatacters in a CString objecl and tes! whelher or nm il is 
emply. l! can re!Um a charac!Cr al a given pos ilion. and provide access 10 a 
characler al a given position. Like a pointer, CSuing objects can be used in place of 
characrer pointers as arguments lo fWictiorts. 

Bu! CStrings are objects. You can use lhem in assignmem statements. You can al so 
concatenare lhem wilh lhe + and += opera!Ors, compare lhem, son lhem. and extrae! 
sequences from lhem. 

N~xl. you will see how 10 creale CString objects. Following lhal, you will see how 
lo manipulare dala in a CString object 



288 Module 17: Ullng CS!rlng 

Creating a CString Object 
S lid e 
Obieclive 
Highl'1ght the 
vanous 
overloaded 
constructors 
offered by 
CString. 
Note: 57 uses 
the copy e· tor. 

···············································-·-·····-·· ···························· ···············································-·-······~ 

CStr.-!..'19 sl; 

CStr1nq s2(~catn); 
CStr1ng s3 (.nBuff); 

CStrinq s4('x'l; 
CString !!S('y', 4); 
CString s6(s2 + ~ 

CString si • l!IIS; 

/1 Empty stn.ng 
1/C string literal 
JI where szBuff is a char • 

//s4•"x" 
11 .s - "yyyy• 

+ sS); 11 s6 • "cat yyyy" 
11 "copy" constructor 

s 1 is just instantiated as a CSDing object. It is empty. 

s2 is initialized with a C literal, "cat." CSDing objects behave like sDings. so 
they can be given titeral values. 

s3 is consuucted from a character pointer. 

s 4 and s s are consuucted from characters .. 

s6 is consuucted by concatenating CSDing objects with a literal. 

s 7 miglu look as if it is getting its data through simple assignment, but litis is 
actually a "copy consuuctor." which you will examine in a later module. 



Module 17: Ullng CStrtng 289 

Manipulating Data in a CString Object 
Slide 
Objectlve 
Besides an 
expected set of 
muta ter 
functions (Get 
& Set). CString 
offers operators 
to manipulate 
strings. 

aparatar= 
aparatar+= 

aparatar+ 

Reset active buffer to new contenta 
Concatanata addltionalatring at end ol 
oxisting slring 
Concatanate two 1tringe and ratum a 
naw string 

char CCI1veraiona 
MakeUpper, Makelower, MakeReversa 

char Comparisane 
Compare, ComparaNoCua, ==· e, etc. 

.. .. -~ 

The CSuing class has special members lhat define how standard operators may 
manlpulate CSuing objects. Those special members, called overloaded opera1ors, 
allow suings to be set and reset (=), expanded or concatenated (+=), and used in 
suing equations with + operators. 

CString includes a series of mutator and manlpulator functions to massage or 
modify existing strings in place. 

' 



Module 17: Ullng CStrlng 

Using a CString Object As an Array 
S lid e 
Obiecllve 
Introduce direct 
string access as 
an alternate lo 
array(subscripl) 
notation. 

Key Poil"'! 
Using lhEo. 
mulotor 
functions. the 
subscnpts ore 
simply function 
argumenTS. 

···························-······ ···········································---···················· ················-··----, 

• Olred Aa:as 

•S.tAt 
• Gli!tAt 

Wilh lhe SetA! member function, if you used !he foUowing syruax 

s2. SetAt (2, 'b · l; 

s2 is modilied by iiS member function, SetAt, which places !he character 'b' at 
index 2. Given "cat," !he resuh would be "cab." 

In contrast, GetAt ( indexl retums !he character ata panicular index value. 



1 

2 

3 

4 

S 

6 

47 
48 

Module 17: Ullng CShlng 291 

De m o 
CSTRING l.CPP is found in \DEMOSIMOD 17. 

11 CSTR!NG!. CPP 
hfdef W!NDOWS 

Found in \demos\modl7 

~undef WINDOWS 
tdefine DOS 
ftnclude <afxcoll.h> 
tundef DOS 

CString sl; 
CStrtng •2 ("cat"); 

CString sJ (•zBuff): 
CStrtng •4 (' S' ) : 
CString sS ( 1 o 1, 5): 

/1 Empty strlng 
/1 From a string 
11 From a char• 
/1 From a char 
/1 Repeat char 

cout << city << " in reversa is "; 
city.MakeReverse(); 

49 cout << city << ". \n"; 
so city.MakeReverse(); 11 back to the original city 

(continuad} 



292 Module 17: Ullng CShh¡g 

11 building a .str~ng 

c:;.ty ·- .. 11 add a char 
C.lty ·- .. WA"; 11 add a string 

Sl 
52 

53 

54 

SS 
cout « •2 « '\n' « city << ", " << .sS << endl: 

56 
57 

se 
59 
60 

61 

62 
63 

11 SetAt and GetAt allow direct access 
11 current character .strinq 
s5.SetAt(O, . 9. ) ; 11 Set at position 
s 5. SetAt (1, , a,> : 11 set at po.Sl.t i.on 
.::J5.SetAt(3, • 7.); 11 Set at po.sJ.tion 
s5.SetAt (4, '3.); 11 Set at po.sition 
e out « •2 « '\n' « Clty « .. « 

to the 

o char • 9. 

l char • 8. 

3 char • 7. 

4 char • 3. 

.s « endl; 

64 // Here's trouble! sS was initialLzed toS 0'3 and the 
65 // null char 1s automatically managed by the constructor. 
66 sS.SetAt(S, 'a'); 
67 cout << ".sS.SetAt(S, 'a') sets the 6th element.\n" 
68 << ''sS is now 10 an unpredictable state.\n'' 
69 << "Continu1ng further shows the problem. \n"; 
70 s5.SetAt(6, 'b'); 
71 s5.SetAt(7, 'e'); 
72 cout << "s5 might be '9807Jabc' but it is '" << sS 
73 << ''''' << endl; 
74 // Oon't assume a class member or operator performs extra 
75 // process1ng (llke nulls). If your CString objects Wlll 
76 11 grow, use the +• operator. · 
77 // SetAt and GetAt may be the best solutions for many cases. 
78 // The class documentation warns about the null character 
79 // condition. 
80 ) 



Module 17: Ullng CStrtng 293 

How You Get Data Out of a CString Object 
Sil de 
Objeclive 
The full
featured 
interface to 
CString includes 
functions many 
will recognize 
from BASIC. 

¡···:~::Cil 
-1. 
1 • Md 

•Lett 
•Rigt 

• S¡xrlrdldrgS~ 

• lklkr Accass 

• Gl3Búfe' 

The extraction member functions bebave much like those of !be Basic language. 
M id ( indexF i rst, [ nCount J ) begins wilh lhe character in !be sequence 
indexF i rst and continues eilher to !he end orfor nCount characters. The Le ft 
and Right member functions behave similarly. 

1ñe GetBuffer member function rerums a character pointer toa buffer where !be 
string's characters exist. Umillhe buffer is reset,lhe character pointer has full 
access to all character locations. 



Module 17: Ullng CShh¡g 

Lab 14: Using Commercially Available 
Classes 
Slide 
Objeclive 
Execute the lab 
solut1on. 
Set the lab 
objectives. 
Ask students to 
read the lab 
scenario .. 

Hove students 
avoid the 
optional section 
if time is tight. 
That section 
uses SetAtO 
and GetAtO 
instead of 
subscripted 
arrays. ere IS 
no 0-0 or .EXE 
benem. 

................................................ ··········································: 



Module 18: Formatting and File l/0 



Module 18: Formalllng ald FUe 1/0 297 

L. Overview 
S lid e 
Objeclive 
Provide an 
overview of the 
module 
contents. 

Oellvery Tlps 
Present the 
leaming objects 
to set the 
directian tor the 
module. As a 
variotion. this 
module covers 
classes that are 
included in C++ 
libraries 
available wijh 
aiiC++ 
compilers. 

• Slrecrr& cn:IB~ng 

• dn cn:lv.td Ya~ Qn Dowth lt 

• Alterrdi'ftls todnla Radlllll 

• oalcn:lv.tdYOICl:nDowthlt 

• Wcrldngwlh Fila 

Module Summary 
1bis module begins a number of IOpics lhat help you add functionality 10 your 
programs. Y ou '11 stan it off wi!h this module on input and output. 

C++ stream objects sirnplify l/0 (and panicularly file 1/0) over !he strictly C 
symax. And !hough no o!her modules rely directly on stream objects, UO is one of 
!he most imporlant functions of computer programs. 

Objectives 
U pon completion of this module. you will be able to: 

• Create formaaed output at !he cbaracter, word,line, and Ole levels. 

• Open and close files. 

• Gel dala from files and pul dala imo files. 

Lab 
Formaning and File l/0 



298 Module 18: FormaHing and Rle 110 
~----------------------

Streams and Buffer g 
Slide 
Objective 
Seta 
foundat10n for 
i/o streams from 
a persoective 
that 1ncludes 
effic1ent 
processing for 
PCs. 

.................................................................................................... 

• Gld:ld ~ Yttkh Haldei,Q 

• dnReats franKettxxrcfv.tltiEldra:fiO'IQ:lll'da 
e in >> ninteger: 

• cxuWIIta toSaanwthlnsatiCJ'IQ:lll'da 
cout << ninteger; // buffered 

• CBTWrlta toStamdErra O'ldls unt~«< 

• dclg\\tltell toStcnctrdErra O'ldls FúJVBilhnd 

What Are Streams? 
You should think of a stream object as a sman file that acts as a source and a 
destination for bytes. Although this module cannot cover all devices. these concepts 
apply wben reading from and writing to keyboard, screen, disks, printers, 
commwtication pons, memory, and more. 

The four strearn objects "know" how to inpur/output inl, char. char•. and so on. 
They are objects of classes which overload >> and << such that the inpur/output of 
int, char, char•, float. and others "happerw correctly." 

Why Buffers Are Your Friends 
Using buffers keeps a PC running at a reasonable pace because buffer access is at 
RMvl speed. not drive speed. The disk and diskette drives in personal computers are 
block-mode devices. The mechanical operations of moving the read/write heads, 
waiting for the rowion of the media. and trartsferring dala is hundreds of times 
slower to a disk drive than to memory chips. Therefore, the disk controller card, 
device drivers, and operating system work together to buffer information. The 
device driver will read a sector of inforrnation and load it toa buffer. Subsequent 
requests for the next character are handled frorn the buffer. 

Unit-buffering "packages" characters in a complete line before displaying them on 
the screen. Fully buffered output packages multiple lines as needed until the sueam 
is explicitly flushed. 



Module 18: Formalllng en:! FUe 1/0 299 

cin and What You Can Do with lt 
Sil de 
Obieclive 
Take the magic 
out of the ·e in .. 
object students 
hove used all 
week. 
Cover ·c;n·· 
originas an 
object from 
istreamwrthassi 
gn and 
member 
functians. 
operators. and 
manipulators 
inher~ed from 
base classes. 

Key Points 
An abject of a 
well-defined 
class can be 
used easily 
withaut 
knowing how it 
is implementad. 

¡········· ..... 
iaa 

1 t 
istream 

How cin Works 
The cin object is a predefmed object of class istream_ withassign. The class 
istream _ withassign onJy allows stream objects to be constructed, destructed. and 
assigned to replace cin. As depicted in the hierarchy, however, Lhe cin object 
irlherits access 10 member functions and public data members from istream. 

How Extraction Works 
·The extraction operator (>>) matches data from Lhe stream wilh variables you 
supply and Lhen rerums a reference to the stream. That rerum allows one lme of 
code to extrae! multiple variables as follows. 

cin >> nA >> nB >> nC; 

The value for integer nA is assigned the flrst numeric value enlered up to Lhe 
foUowing whitespace (tab, space, oewline, and so on). The value for nA is 
determined and the reference to Lhe stream is passed from Lhe flrst » operator to 
Lhe second ». From Lhere, input proceeds to extrae! Lhe value for nB, and so on. 

Formatted text input, or extraction, depends upon whitespace to separate values
but data errors or unexpected results can occur and need 10 be checked for. There 
are a number of member functions available to help you out. 

Error-Handling Member Functions 
A failure bit is set when input errors occur. This is !.he program's clue Lhat cin could 
not match !.he input stream to the data types. This bit should be reset for input to 
continue. 



Module 18: Formattlng ald Flle 1/0 

cout and What Vou Can Do with lt 
Sil de 
Objeclive 
Explain the 
ongins of the 
·cout" object. 
lnclude deta11s 
and examples 
ofmember 
functions. 
operators. and 
manipulators. 

···············································----················· ................................................ ························• 

1 ioa l 

r 
1 oatraam j¡ 

,, " 

1 ofstream t 
·--! 

1 
caul r 

ootnoam_willtossign 1 
--~- ~~ "'"'''"~~-~ 

How cout Works 
The ostream_ withassign class is a variant of ostream that allows object 
assignment. Titis class has the predefmed objects cout, cerr. and clog. 

Here are sorne of the many things you can do with cout (and cerr and clog): 

You can use the following manipulators. A manipulator is a "packaged" mutator 
function that modifies the behavior of !he stream. Sorne make permanent changes, 
and sorne make remporary changes. 

• en di insens a newline characrer and then flusbes !he buffer. 

• ends insens a null terminator characrer. 

• flush flushes the output buffer. 

The following member functions are aiso available: 

• pul inserts a single characrer into !he output stream. 

• write inserts a specified number of byres from a buffer into a sueam. 

• tellp gets the position value for the stream. 

• seekp changes !he position value fll' the stream. 

These characrer escape sequences are used to advance Iines down !he screen. (You 
saw them in anearlier module.) 

• • \n • inserts a newline characrer. 

• ' \ 1 ' insens a linefeed down. 

ij 
1 



Module 18: Formattlng a1d Rle 1/0 301 

The following characrer escape sequences are used 10 advance columns across !he 
screen: 

Spaces or 1abs 

• ' ' insens a space charac1er. 

• '\ t ' inserts a 1ab charac1er. 

• ' \ r' re1urns 10 leflmosl colurnn on !he same line. 

The following can be used lo formal outpul wilh cout: 

• Seuing widlh: 

cout.width(lO) // member function 
out << setw (10}: 11 man~pulator 

• Filling a field wilh a user-defmed characler: 

cout.width(l0); 
cout.fill('*'); 
cout << nCnt: 

• Aags for fonnalting 

Jusliry 

ios::left 

ios::righl 

Floal 

ios::fixed 

ios::scienliflc 

Example 

123.4 

1.2et002 



Module 18: FanwllhiQ cn1 Rle 1/0 

Working with Files: Overview 
Sllde 
Obiective 
lnitiate the 
tapie of File l/0. 
Begin with the 
slow, inetticient 
block-mode 
devices that 
are the target 
meaia. 

Let students 
know that we'll 
start at ground 
zero and are 
going to cover 
file i/O from the 
fromthe C++ 
library functions 
up owar user
defined 
functions. 

Quickly cover 
the simple 
sample below. 

• I:WinlngAie~ 

• Oladdngfa Suecas 

• UslngTact-Mx&Sirearl 

• UslngBinay-M:daSirecrrs 

• M:ncQng FilePc:aillcnng 

The cin and cout objeclS are: 

• Predefmed objeclS. 

• COIIJiected to streams. 

• Tools for access 10 dozens of operators, manipula10rs, and member functions. 

To worlc wilh files, you will: 

• Defme and open objeclS. 

• Connect 10 dala files. 

• Have access lhrough dozens of operators, marupulators, and member functions. 

Demo 
TFILE.CPP is found in \DEMOS\MODIS. 

1 // TFILE.CPP Found in \demoe\modl8 
2 // Create a file, te~t.da.t, and wr1tes the msg: 
J // "This is test data". File closed by d'tor. 
4 tinclude <fstream.h> 
S 

6 void main () 
7 ( 

8 ofstrea.m tfile("test.dat"); 
9 tfile << "This i" test data": 

10 



Module 1 S: Fcfrnallb 1g en:! Rle 1/0 

Checking for Success 
Slide 
Objeclive 
Always expect 
errors dealing 
with l/0. 
Your code may 
be fine. the disk 
may be full. or 
the user may 
enter letters 
whenyou 
expected an 
integer. 

l.fstrea:n iFile ("test..dat."); 

if(iFile.is_open() ~ 0) 

error---
if(!iFile) 

do 
error----

11 process file 
while(lFile.good()}; /1 while no errors 

iF!le.clear(); /1 clear error.s 

Class ifstream is specialized for disk file input and output. The consrructor (and 
open) automaticaUy crea te and auach a file buffer object. The file buffer object 
holds file-sharing infonnation: either exclusive use, or read-sharing or write
sharing. 

The fstreamclass irnplements amember function, is_open (), which retums 
an integer if the file is not connected. 

Both ofstream and ifstream inherit the NCJr operator ! from class ios. Titis 
overloaded operator returns a non-zero value if a sueam UO error has occurred. 
Operator ! may be used with al! sueam objects at open or during processing. 

Demos 
OUT.CPP is found in\DEMOS\MODI8. 

1 // OUT.CPP found in \demo•\modlS 
2 /1 Creates a file, test.txt, and outputa two lines. 
3 

4 

5 

tinclude <iostream.h> 
tinclude <fstream.h> 

6 void main () 

/1 For file stream support 

7 // Create disk file: test.txt 
9 // Note: the 2nd arq to the 
g 11 c'tor is: ios::out 1 ios::app 

10 ofstream outfile("test.txt"}; 
11 if (!outfile) //test for successful open 
12 cerr << "Cannot open 'test.txt' for output. \n"; 
13 else 
14 out file << "This is test data. \n" 
15 <<"File will be closed at termination.\n"; 

16 



304 Module 18: Forrilattrng and Rle 1/0 

INOUT.CPP is found in \OEMOS'MODIS. 

1 // INOUT.CPP found 10 \demos\modl8 
2 // Read an input file, test.txt, getting a character 
3 // at a time, appends the files contentas all capital 
4 // letters at the end of the original file. 
S ftnclude <lostream.h> 
6 ftnclude <fstream.h> 
7 tinclude <ctype.h> 
8 

9 tdeflne SIZE lOO 
10 
11 int iCount - 0: 
12 char data(SIZE); 
13 vo1d matn () 
14 // fstream tnherits input & output 
15 //::in input mode 
16 // ::app append·additions 
17 fstream iofile("test.txt'', ios: :in 1 ios: :app); 
18 if (!iofile) // error handling 
19 

20 

21 
22 
23 

24 
25 

26 

27 

28 

29 
30 

cerr << ''Trouble openinq file 'test. txt' . 
''Please run 'out.exe' to create file.\n''; 

whtle (!iofile.eof()) // while data exists, load data 
iofile.get(data(iCount++J); // get 1 char ata time 

iofile.clear(); // clear eof & other error sta~es 
iCount--; // adjust for 'off by one' 
for (int j • O; j < iCount; j++) 
{ // "put'' uppercase chars to file 

data ( j) - (charl toupper (data ( j)); 
iofile.put(data(jJ); 

TOFlLE.CPP is found in \OEMOS'MODI8. 

1 // TOFILE.CPP found in \demoo\modl8 
2 11 Takas usar input and write charactars to file test.out. 
3 tinclude <iostream.h> 
4 tincluda <fstream.b> 
5 tinclude <stdlib.h> // for exit() 
6 

7 void main() 
8 ( 

9 char eh: 
10 ofstream outfile("teat.out", ios::out); 
11 if (!outfile) // datect error openinq file 
12 { 11 give usar sugqestiona 
13 cerr << "Trouble openinq file 1 test. out 1 

• 

14 "Check disk: file read only? full?\n"; 
15 exit(l); 
16 

17 

18 

19 

20 

cout << "Enter characters. Use Ctrl-Z to quit. \n": 
while (cin.get(ch)) // while data eY -=s 

outfile.put(ch); // put char to =~-• 

/ 



Module 18: Formalllng mld File l/0 305 

Using Text-Mode File Streams 
Slide 
Objeclive 
The previous 
examples used 
vanous 
keybaard and 
file l/0 
techniques. 
Summarize 
those details. 

•·O!cra:tas 

• A<toa:Je a affrre(a bfdu&l 

• ''Wa«S" 

• Agu.pddua:las ¡_ptot'erectWite;pre 

• Lira 

• Qa..p dvad$) ¡_p1o'Ai a crdt'e' d:slg'dej 
eijjn-SeJ dua:1e' 

Character-by-character processing with char eh: 

Member Function 

iFile » eh; 

iFile .get (); 

iFile.qet(ch&); 

Meaning 

Extraction opernoor IIUI!ches liJe char data 
type and rerums charactm. 

The get function has multiple forms. Given 
a char or char reference, it extracts one 
character a¡ a time. getO rerums 
whitespace. 

Word-by-word processing with char szBufltSIZE): 

Member Functlon 

iFile >> szBuff; 

Meanlng 

Agai.ft, lhe extraction operntor mau:hes lhe 
array of characters and extracts a group of 
charaetm into szBufl'. 

Line-by-line processing with char szBufltSIZE): 

Member Functlon 

iFile.qet(szBuff, SIZE); 

iFile.qetline(szBuff, SIZE); 

iFile.getline(szBuff, SIZE, '\t') 

Meanlng 

By default. liJe get and getllne member 
functions extraet up to SIZE charactm. 
8oth accept a third argument to override the 
default delimiter character, 'In'. 



Module 18: Formattlng a1d File 1/0 

Demo 
FTOFNBR.CPP is fr ,d in 'DEMOS\.\10018. 

1 11 FTOFNBR.CP:. found in \demos\rnodl8 
2 11 The applica~_:..on reads text files by char, word, and 
3 11 l~ne. It dL:plicates the input file, creat1nq a 
4 // line-numbered file with the exten.s1on ".NBR". 
5 t1nclude <iostream.h> 
6 tinclude <fstream.h> 
7 

8 

9 

finclude <ioman1p.h> 
f¡nclude <stdl1b.h> 11 for exit () 

lO tdetine SIZE 256 
ll 
12 void main () 
13 { 

14 int nCntCh:!.rs, nCntWords, nCntLines: 
15 char data.: aEJ, eh; 
16 // Create ·o:ream objects using constructors: 
17 ifstream i:.:ile("test.txt", ios: :in); 
18 ofstream e .:file("test.out'', los: :out); 
19 if (!infilll 11 !outfile) 
20 { 

21 cerr << "Error opening file (s) "; 
22 exit(l); 

23 

24 
25 
26 
27 

28 

29 
30 

31 

32 

33 

34 
35 

36 

37 
38 

39 

40 

4l 
42 
43 
44 

45 
46 
47 
48 

49 

50 

51 

/************ 'char' pass thru input file ***********/ 
for (nCntChars- 0: inf~le.get(ch); ++nCntChars); 

cout << "I:1put file conta.ined •• << nCntChars 
<< " characters, ": 

11 reset infile for 'word' pass 
infile.clear{); // reset eof state 
infile.seekq{OL, ios::beg); // seek toO-byte 
!*********••* 'word' pass thru input file ******••·••¡ 
while (in f.:. ~e >> data) 

.P+nCntWords; 

cout "<< nC; :Worda << " words, "; 

infile.clear{); 
infile.seekg{OL); 

11 reset infile for 'line' pass 
11 reset eof 
11 seek {default ios::beq) 

/************ 'word' pass thru input file ***********/ 
for {nCntL~nes- 1; infile.getline(data, SIZE); 

++nCntLines) 

outfile.width(3); // set vidth for line t 
outfile << nCntLinea << • "· /1 insert line t 
outfila << data<< endl;// insert line to file 

cout << nc 
cout << ": 
in file .cl·
outfile.c. 

(continuad) 

~Lines << " lines.\n"; 
.a-to-file number copy complete.\n\n"; 
(); //clase files (d1sconnect stream) 
(): 11 or the d'tor v1ll (good style!) 



Module 18: Formattlng ancl Rle l/0 307 

52 e out « ""' ..... S rain Tea .ser •••\n"; 
53 cout « get. (e) report.s « nCntChar.s 
54 « " chars. \n"; 
55 cout « "getline. (•) report.s " « nCntLine:!ll 
56 « " lines.\n"; 
57 e out « "But, dir cmd shows: 
58 « nCntChars + nCntL1ne.s « " .size. \n'': 
59 e out « ""'"'• Q: Why the difference? *"'"\n"; 
60 



Module 19: Memory Management 



Module 19: Memory Ma'ICIQemenl 315 

L. Overview 
Sil de 
Objecllve 
Provide en 
oveNiew ot the 
module 
contents. 

Oellvery Tlps 
Cover the 
learning 
objectives. 

The second lab 
exercise is a 
game: itmay 
providea 
distraction. 

• UndErstalclrgOld!aiCIDdaSep:rdfm 

• Sla'cgeOc:ss .d \VIda 

• sldtcSia'cgeOcas 

• Uslrgl>,ncrrlcMrray . 

• ~Q:fecls cndArr~ el Qteds 
• DynaricMrray lssua 

Module Summary 
One of the fundamema.l concepts of modem computer science is !he separation of 
code from data within prograrns. PC prograrns place data and executable code in 
differem areas-in the simples! case. in differeru "segrnents." 

The data area is further divided into !he heap. !he stack. and !he static data areas. 
Variables in a C++ prograrn live in one of these three subareas. The subarea affects 
some of !he auributes of a variable; it defmes !he storage class for a variable. 
Selecting !he corree! storage class can have a profound effect on a prograrn 's 
perfonnance. 

This module is only an overview of an extensive and implementation-dependem 
subject. Appendix C contains additiona.l information on memory issues. 

Objectives 
Upon canpletion of this module. you will be able to: 

• Draw a distinction between code and data segrnents and how !he data segrnem is 
partitimed. 

• Create variables of !he differeru storage clas.ses (this includes managing 
variables dynamically). 

• Understand how !he storage class of a variable affects it behavior and !he 
performance of your prograrn. 

Lab 
DynamicMemory 



316 Module 19: Memory Mmagement 

Understanding Code and Data Separation 
Sil de 
Objectlve 
MS Compilers 
refer the data 
segment as the 
DGROUP. 
Provide a high
level 
introduction to 
the type
modifiers. data 
segment 
(DGROUP). and 
e o de 
segments. 

Hoap 
High 
RAM 

Dalll AddNU •• T· Sagmant 

Coda 
Sagmant 

Slllck 

SDA 

mainO 

!iinCIO 

fllncBO 

axtraction c-e 

'""'' " ~ .... -. 

1 

1 

1 
Law 
RAM 
Add .... 

When a C++ program is loaded in RAM memory, it is divided into two main 
ponions, or segrnents: the data and the code segrnents. 



Key Polnts 
Cover the load 
imageofon 
.EXE from the 
bottom up: 
Codeseg. is 
user and library 
functions. 
Data sea. (MS 
calls DGROUPJ 
contains 3-
mojor suboreos: 
Slatlc Data 
orea: 

NULL seg. 
Copyrtght 

notice 
morked reod

only. 
_DATAseg. 
lnitial/zed 

global 
dotaond 

stotic 
local orea. 
_CONSTseg. 
String literols. 
BSS and 
_C_COMMON 
Uninitialized 
globols ond 

stotic 
local (all set 

to Ol 
Slrlck. Auto 
variables ond 
porometers ore 
on the stock ot 
run-time. 
Heap. 
Unollocoted 
memory pool 
fordynomic 
allocotions. 

ModUle 19: MemoryManagement 317 

The code segment contains all the executable machine code statements, which are 
grouped into functions. These are just the translations of user-supplied or library 
e++ statements. 

The data segment contains all the variables and literals in the e++ program. lt is 
further divided into three subareas: 

• The SDA (static data area) contains all global (and static) variables and literal 
values. 

• The stack is the data work area for functions. Each currently active function 
allocates a stack frame. where it stores its local variables, arguments, and 
administrative infonnation. 

• The heap is the area from which variables are dynarrtically allocated and 
deallocated. 

The size of the SDA is fixed at link time, and does not change. 

At run-time, the stack grows downward in stack-frame chunks as functions are 
invoked. lt shrinks as functions rerum. 

The heap grows general! y in an upward direction as memory is dynarrtically 
allocated. lt often fragments as memory is deallocated. 



318 Module 19: Memory Management 

Storage Classes 
Slide 
Objecllve 
With the 
previous 
diogrom, this 
summory chart 
depicts a table 
ot the type
modifier 
~e'tWords that 
affecta 
variable's 
location in 
memory. 
Define dynamic 
variables in the 
context ot the 
heap. 

Dellvery Tips 
stattc has three 
uses in C++: 
static storage 
class, static 
lin~age, and 
static member 
functions. 
vold ~9'fWOrd is 
usad for more 
than one 
purpose. 

S 
T 
o 
A 
A 
G 
E 

e 
L 
A 
S 
S 

.. 
aulo 

ala tic 

ella m 

dynemic 

AlTRIBUTES 

Lila tima Ylaiblllty 
(Scopa) 

dañnition ro wlltlin wrrent 
end ot block bbck only 

definition to WJthin current 
prcgram end bbck only 

entlre entire 
prcgram prcgram 

trom new storaga dass 
unol delata of pointer 

DIY dala i 

segmanl 

stack ' ? trame ' 

o SDA 

o SDA 

? heep 

" " '-'' """' ., .. ,c. 

C ++ variables can have four different storage classes tha! derermine lheir lüetime 
and visibilily wilhin a program. We have used so-<:alled "local," "global," and 
"sralic" variables up 10 lhis poinL Their proper srorage class names are auto 
(auromalic), extem lexremal), and static respective/y. (Lii.eral slrings have a 
slorage class of extem.) 

The static srorage class is an inrermediare be!Ween extem and auto. !1 enjoys lhe 
lüetime and defaull irlilial value of an extern, bu! lhe limiled visibilil}' of an auto, 

The heap al localeS conliguous series of byres that can be used by lhe programmer as 
variables or arrays of variables. Larer in lhis module, you wdl see how 10 
dynamically allocal.e and deallocare from lhe heap subarea. 

• 



ModUle 19: Memory Management 319 

static Storage Class 
Slide 
Objective 
Cover the use 
of the stot1c 
type-modifier 
for vario ble 
declorotions. 
Introduce static 
in the context 
of the dota 
variables in the 
DGroup. 

Note: Course 
has already 
covered stotic 
data members 
and member 
functions. 

Key Poinls 
Using ·static" in 
front of an auto 
variable (in a 
function) drlves 
the storage 
from the stock 
te the stotic 
dota orea. The 
variable retains 
values from call 
to call of the 
function. 

Using • statlc • in 
front of a global 
variable 
(defined 
outside a 
function). 
affects the 
global visibility. 
Only functions 
defined in the 
current source 
file hove 
access to thot 
va noble. 

• ~lnelcxdlywthstdiCK6fo\Q'd 

• Llfai1T'8d en E,-,¡reProgan 

• '-'1sltiUtyllmtedtoBicx:k fl.ndla1) 

• ~cut lriHd W11Jd Z&o 

• Gllles FllldiCI'I$ Mrray 

Static variables are defmed at function scope. much like automatic variables. The 
difference is that the keyword static is placed before the data type keyword: 

3tatic int nTemp • 5: 

Static variables live for the entire program: automatic variables are reincamated 
each time their function is invoked. 

The visibility of statics is limited 10 the current block, usuaUy a function body. Th1s 
is also uue of automatic variables. 

· Initialization for statics occws once. at prograrn load time: the dcfault is zero. 
Automatic variables are (re)initialized every time their function is invoked. with the 
default being some unknown value. 

Keep in mind that you can assure the default value of abstrae! variables (regardless 
of their storage class) by supplying explicit constructors. 

The main purpose for static variables is 10 give functions memory between 
invocations wtule still maintaining local function encapsulauon. 

-. 



320 Module 19: Memory Mcnagement 

De m o 
STATIC.CPPis found in\DEMOS\MODI9. 

1 // STATIC.CPP found in \demos\modl9 
2 // Demonstates auto and static storage class. 
3 t1nclude <Lostream.h> 
4 

5 

6 

7 

B 

9 

lO 

int funcA(int): 
1nt LmcB(lnt); 
int funcC (int): 

int nGlobal; 

/1 function prototypes 
/1 un-initialized local 
/1 in~t1alized local 
!/ stat1c 

/1 default initial O 

ll int main () 
12 
13 

14 
15 
16 
17 
lB 
19 
20 

21 
22 
23 

24 

25 

26 

27 

28 

/1 output global to preve O 
cout << "nGlobal i s " << nGlobal << endl: 
cout << "\nCalling funcA ... \n"; 
cout << funcA(3) << endl; 
cout << funcA(3) << endl; 
cout << funcA{3} << endl; 
cout << ''\nCalling funcB ... \n''; 
cout << funcB(3) << endl; 
cout << func8(3} << endl; 
cout << func8(3) << endl; 
cout << "\nCalling funcc ... \n'•; 
cout << funcC(3) << endl; 
cout << funcC(3) << endl; 
cout << funcC(3) << endl; 
return O; 

29 int funcA ( int n) 
30 

31 
32 

33 

34 

35 

int nTemp; 
nTemp +• n: 
return nTemp: 

36 int funcB (int n) 

37 

38 

39 

40 

41 

42 

int nTemp - 1: 
nTemp +• n; 
return nTemp: 

43 int funcC(int n} 
44 

45 
46 

47 

48 

static int nStat; 
nStat +• n; 
return nStat; 

11 nTemp not initialized! 

11 default inital O 



Module 19: Memo1Y Management 321 

Using Dynamic Memory 
Sil de 
Objective 
Define dynomic 
memoryond 
cover its 
purpose ond 
benefits. 

Oellvery Tips 
NULL is defined 
in stdlib.h os 
well os severo! 
other heoder 
files to be O in 
C++ in C it is 
defined to be 
((void")Q). 

Key Point 
Note the use or 
( ) with orroys. 

• Vbf Usel)yncn1cMmry? 

• I"ISIYC'lddi!l8eQ:ectas 

• Alloa:llngC'ldDedloaflngSfrrPeTypa 

• Alloa:llngC'ldOedloaflnghr~ el SifT'PeTWJIII 

Dynamic memory is useful if a program has no prior knowledge of how much 
infonnation it must handle, has uansient memory needs. or needs 10 e reate variably 
sized objects. Data suucture libraries invariably use dynamic memory. 

The C++ language aUocates heap memory with the new opera10r and deaUocates 
memory with the delete operator. For example, 10 allocate an integer-sized variable 
on the heap: 

int *pn • new int; 

The new operator allocates two bytes on the heap and retums a pointer 10 the 
beginning of that block. Note that the variable created does not ha ve a name. lt can 
onJy be accessed through the associated pointer. 

lf new fails to allocate this variable for sorne reason. it will return a pointer with a 
value of zero. called the NUU poinler. When you use new, you should always test 
the return value against NULL. 

The initial value of a dynamic variable wiU be garbage. 

The delete operator takes a pointer to the beginning of a block of memory, as in 

delate pn; 

The heap memory tbat was used by this variable is now freed 

Allocalion and deallocation of simple arrays is a straightforward extertsion: 

int *pan • new int[lOO]; 

delate (1 pan; 



322 Module 19: Memory Management 

Demo 
DYNAMICI.CPP is found in\OEMOS\MODI9. 

1 // DYNAMICl.CPP found in \demos\modl9 
2 // Dynam~c allocatlon and deallocati~n of standard types. 
3 •include <iostream.h> 
4 finclude <stdlib.h> 
S linclude <memory.h> 
6 

7 vo1d CheckNull(void*): 
8 

9 int main () 
10 

unsigned int iRange; 
11 allocate space for an unsigned long 
unsigned long *pn • new uns1gnec long; 
CheckNull(pn)J //error c~~ck1ng 
COL!':. << "Enter a po!litive integ· :- value: 

11 

12 
13 
14 
15 
16 
17 
18 

19 
20 

ci:; • *pn; 11 accept .:put into al loe space 

21 
22 
23 

24 
25 

26 
27 

29 
29 
30 

31 
32 

33 

34 
35 

36 
37 

39 

39 

40 

41 

42 
43 
44 

e oc· -< "The square of the numbe = i.s 
< *pn • *pn << endl; 

del~-·;! pn; 11 ralease the space 

cout << "How many power.s of 2 do you want to see?\n'': 
cout << "Enter number between 1 and 40 please: ''; 
C.ln >> iRange; 
iRange \• 41: // trim user input > 40 
11 allocate an array of iRange unsigned longs 
pn • new unsigned long(iRange]; 
CheckNull(pn); //error checking 
pn[O] • 1; // a number to 1st power•itself 
cout << endl; 
cout.width{l2); 
cout << pn(O); // output firat element 
for (unaigned int k•lu; k < iRange; k++) 
( 

pn(k] - pn[k-lu] • 2ul; 11 ::alculate next 
cout .widtb (12): 
cout « pn [k]: 11 Show resulta 5-

if 1 (k+! u) ' Su 0) 11 vide across the 

cout << endl; 

crt 

delate [] pn; // ralease the array allocation space 

return O; 

45 void CheckNull(void* pv) //Check for new failures 

46 

47 
49 
49 
50 

51 
52 

if (pv •• NOLL) 
( 

11 NULL ptr indicates error 

cerr << "\nERROR: Heap Allocation Failure! "; 
exit(l); 



2 

3 

4 

5 
6 

7 

a 
9 

lO 
11 

12 

13 

14 
15 

16 
17 
18 

19 
20 

21 
22 
23 

24 
25 
26 
27 

28 
29 
30 

31 

32 
33 

34 
35 

Module 19: Memory Malagement 323 

De m o 
Note Clase all files and projecrs. Use DYNAMIC2.MAK (found in 
\DEMOS\MODI9) to access the following files: DYNARRA Y.H. 
DYNARRA Y.CPP, and DYNAMIC2.CPP. 

DYNARRA Y.H is found in \DEMOS\MODI9. 

1/ DYNARRAY.H found in \demos\modl9 
/1 Demon~tate~ dynamic allocation and deallocation 
11 of standard types with1n a class. 
tinclude <iostream.h> 
tinclude <stdlib.h> 
t1nclude <memory.h> 
tinclude <limits.h> 

Class DynArray - Inefficient but Slmple implementation 
of dynamic arrays. Only allows adding new element to 
end. Allocation checking performed in c'tor and in 
AddElement and simple ranga checking done 10 

GetElementAt and SetElementAt 

tdefine TYPE int 
tdefine SIZE 10 

JI Uses a manifest data type 
/1 value for genericity. 
11 unit of growth 

class DynArray 
{ 

public: 
DynArray(unsigned int ~ize • CHUNKSIZE); 
-DynArray {); 
un~igned int GetSize(void) 

{ return m_nSize+l; } // changa from O to 1-ba~ed 
void AddElement(TYPE); 
void SetElementAt(un~igned int index, TYPE val); 
TYPE GetElementAt(un3igned int); 
void Oi~play(un~iqned int); 

private: 
void CheckNull(void); 
un~igned int m_nSize; // 64K max element~ 
un~igned int m_nLa~t; // la~t u~ed element 
TYPE •m_pBeg; 

36 ); 
37 

(continuad) 



324 Module 19: Memory Management 

38 /******* Cla~s DynArray !nline Member Functions *********/ 
39 inline DynArray: :-DynArray() 
40 ( 

41 

42 

delate (1 m_pBeg; 

43 /* S1mple allocat1on checking implementad here. */ 
44 inline void OynArray::CheckNull(void) 
45 

46 

41 

48 
49 
50 
51 
52 
53 

Lf (m_pBeg •• NULL) 
( 

cerr << "\nError: " 
"Memory Allocation Failure Within DynArray" 
<< endl; 

exit(l); 



Module 19: Memory MCRJgement 

DYNARRA Y.CPP is found in \DEMOS\MODI9. 

1 // DYNARRAY.CPP found in \demos\modl9 
2 11 Demonstates dynamic allocat1on and deallocation 
3 11 of standard types withln a class. 
4 ~include ''dynarray.h'' 
5 ;irtclude <memory.h> 
6 

7 /*********** Class DynArray Member Functions ••••••••••••! 
a //DynArrays are zero based just like C++ arrrays. 
9 DynArray: :DynArray(unsigned int size) 

10 m_nSize (size-1), m_nLast (0) 

11 
12 

13 

14 
!S 

16 

17 

m pBeg ~ new TYPE[sizej; 
CheckNull (); 

11 Zero new area out for safety 
memset(m_pBeq, O, size * sizeof(TYPE)); 

18 vo1d DynArray::AddElement(TYPE val) 
19 
20 if (m_nLast < m_nSize) // If any unused .slot.s are left 
21 *(m_pBeg + m_nLast + 1) • val; /1 use them first 
22 el se 11 el se make more. 
23 // This is the horr1bly inefficient part. 
24 TYPE *ptemp • m_pBeq; 
25 m_nSize +• CHUNKSIZE; 
26 m_pBeq • new TYPE{m_nSize]; 
27 CheckNull (); 
28 memcpy (m_pBeg, ptemp, (m_nSize-1) ·~izeof (TYPE)): 
29 delete r 1 pternp; 
30 m_pBeg(m_nLast + 1] • val; 
31 
32 m_nLa~t++; 

33 
.34 // Allow u~er to acce~~ any allocated element. 

35 TYPE DynArray::GetElementAt(uns~gned int index) 

36 1 
37 if (index < O 11 index >• m_nSize) 

38 1 
39 cerr << "\nOut of Bound~ Error in GetElementAt'' 

40 << endl; 
41 exit(l); 
42 
43 return m_pBeg(index]; 
44 
45 // Allow u~er to ~et any allocated element. 
46 void OynArray: :SetElementAt(un~~gned int index, TYPE val) 

47 
48 iÍ (index < O 11 index >• m_nSize) 

49 

so 
51 

52 

53 

54 
55 
56 

cerr << "\nOut of Bound~ Error in SetElementAt" 

<< endl; 
exit(2); 

m_pBeg(index] • val; 

(continuad} 



326 ModUle 19: Memory Managernent 

5'1 void OynArr~ :Dl~play(unsigned int :.. -~X} 

58 { 

59 for (uns ~ned int i "" 0: i <• index; i++) 
60 cout << m_pSeg [ i] << '; 
61 



Module 19: Memay Management 327 

DYNAMIC2.CPP is found in\DEMOS\MODI9. 

1 // DYNAMIC2.CPP found in \demos\modl9 
2 !/ Project files DYNARRAY.CPP and DYNARRAY.H demonstrate 
3 /1 allocatlon and deallocat1on of standard types within 
4 // the dynam1c array class. 
S #include Clostream.h> 
6 i1nclude "dynarray.h" 
7 

9 int main() 
9 

10 

!1 

12 

13 

14 
15 

16 

l7 

18 

19 

20 
21 

char e; 
/1 Create two DynArray objects 

DynArray dl, d2(1000); // dl is empty, d2 is 1000 
dl.AddElement{S); // Add 5-elements to dl 
cout << ''The size of dl is " << dl.GetSize() << endl; 
cout << ''The element d2 (500) initially is 

<< d2.GetElementAt(500) << endl; 
11 Set number 666 at element 500 

d2. SetElementAt (500, 666); 
cout << "After SetElement, element d2(SOOJ is " 

<< d2.GetElementAt(500) << endl; 
1/ trip range checking 

22 // dl.GetElementAt(20); 
23 11 trip allocat1on checkinq 
24 cout << ''\nEnter any key to eat up the heap. "; 
25 Cln >> e; 

26 while(l) 
27 ( 

28 dl.AddElement (rand()); 
29 
30 cout << "\nEnd of main" << endl; 
31 return O; 
32 



328 Module 19: Memory McnJgement 

Dynamic Objects and Arrays of Objects 
Sil de 
Objecllve 
The syntax for 
dynamcally 
allocating 
standard data 
types was easy 
either in a 
function or in a 
class. The 
syntax for 
allocating user
defined data 
types is 
consisten! and 
therefore very 
easy. 

, ..................................... ·-·······················-···················---··------······-·····--· ................................. . 

• navll'llldca the.tqlq::¡ldeOretruda' 

• OWdrfttetrM:.tca theDastrlda 

• l>,ft:l • la:tly AllcxxteciArr~ d Q:feds Mat Use !he 
Dfi<Ut Q:relrlda 

The new and delete operalors can be used in similar ways to dynamically allocate 
and deallocate objects: 

Rectangle *prl • new Rectangle; 

delate pr; 

Since the compiler is not given any initialization information. the default 
constructor will be used to build the object referenced by pr. U you want to 
initialize this object using a different consuuctor. arguments can be supplied: 

Rectangle *pr2 • nev Rectangle(2,7,10,-10); 

Arrays of objects can also be dynamically created. much like you did with standard 
typeS: 

Rectangle *pr3 • new Rectangle[x); 

Note The default constructor must be used when .. newing .. an array of objects: no 
other syntaX is permissible. However, to cilcumvent this limitation. you can declare 
an array of poinrers. then new each element separarely: 

Rectangle *apr[lO); 

apr[OI - new Rectangle(3,3,5,5); 



ModUle 19: Memory Management 329 

De m o 
Note Close all files and proJeclS. Open DYNOBJ.MAK found in 
\DEMOS\.\10019. You'll use this projectto access !he file DYNOBJ.CPP. 

The Project also uses RECf.H and RECf.CPP. These files are un-modified from 
earlier demos. No lines were added or modified in either file except!O denote !he ir 
new locations in 'demos'mod 19. Neither !he consuuctor or desuuctor nor member 
functions have been modified to use dynarrtic memory. 

Open !he file DYNOBJ.CPP found in \DEMOS'MOD19. 

1 // DYNOBJ.CPP found in \demo~\modl9 
2 11 Dynamically allocates and deallocates objects. 
J tinclude <iostream.h> 
4 i1nclude ''rect.h'' 
S t1nclude <scdl1b.h> 
6 // function prototype 
7 vo1d CheckNull(void*); 
a 
9 void main () 

10 // Create a default rectangle 
11 // dynmically in the heap 

12 
13 

14 
15 
16 

17 
19 

19 

20 

21 
22 
23 

24 
25 
26 

27 
29 
29 
30 

31 
32 

33 

34 

35 
36 

37 

38 

Rectangle *pr • new Rectangle; 
pr->Draw () ; 
delate pr; 
cout << endl; 

11 Ralease the memory 

11 Re-use the pointer, pr, to 
/1 create another Rectangle 

pr • new Rectangle(4,14,l00,-100); 
pr->Draw () : 
delate pr; // Ralease the memory 
cout << endl; 
unsigned int nNbrRects; // prompt the usar for a number 
cout << "Kow many Rectangles would you " 

''like 1n the array1 "; 
cin >> nNbrRects; 

11 Using pr aqain, allocate an 
JI array of Rectangles Wlth the 

pr- new Rectanqle[nNbrRects); JJ user's size 
CheckNull(pr); //error checkinq 
for (uns1gned int i • O; i < nNbrRects; i++, pr++) 

pr->Draw(); //display each rectangle 
delate [) pr; JI Ralease the array memory ... 

JI Q: Why the [] notation? 

cout << endl; 
pr • new Rectanqle; JI Q: When is this one destroyed? 
e out << "\nEnding main ()" << endl; 

(continuad) 



330 Module 19: Memory Mcnlgement 

38 void CheckNull (vold* pv) 
39 ( 

40 if (pv ~a NULL) 

41 ( 

42 

43 

44 

45 

46 

cerr << "\nERROR: Heap Allocatlon Failure!" 
<< endl; 

exit(l); 



Module 19: Memory Management 331 

Dynamic Memory lssues 
SUde 
ObiecHve 
Exploin cores 
ond concerns 
when deoling 
with dynomic 
memory: 
IT IS PREFERRED 
TOHAVE 
CLASSES 
MANAGE 
ALLOCATIONS. 
The lost 
exomple 
showed it" s not 
o requ1rement. 
The goal is to 
moke 
progrommers 
owore o e 
issues. not to 
score them 
owoyfrom 
dynomic 
memory. 

Oellvery Tips 
A~hough C++ 
does not 
provide 
gorboge 
collection. it is 
foirty eosy to 
implement such 
oscheme 
inside your 
closs. 

·············-----·--··-····-----············· ··-·············· ---··········---····--· ································-····--·········--· 

• TheHer:pMn:gi 

• MlrrayFrq;¡na•dlcrt 

•MirrayQ:rl\,fllm 

• Slrcrdrtl Mn'ay ~ L«tc'Grt 

The heap is managed by a small function that is added to your program by the 
linker. lmplememations of this manager tend to be very simple and efficieru. 
Typically, for every heap block that e :'lisiS a lable emry is made. Thal entry comains 
the slarting address and size of the block. When a block is deleted, lhe table is 
searched for the poinler address. lf a malCh is found. lhe block of bytes is freed. 

The heap generally grows upward in memory, bul in a program thal allocates and 
deaUocales many differem-sized objeclS, il is very common for small unused are as 
in the heap to appear after sorne time. This is called memory fragmemation, and il 
can resull in new reruming NULL when enough 101al memory ellislS 10 sausfy an 
operation. 1bis memory is no!, however, contiguous. 

The heap is fragile in other ways. For exarnple, il is relatively easy 10 ruin the 
operation of the heap manager by doing any of the foUowing: 

• Deleling the same non-NULL poinler more !han Ol"lCe without newing in 
between 

• Deleting an invalid pointer 

• Overwriting the heap manager's data slriiCrures 

Note that it is safe to delele a NULL poinler; this operation does nO!hing. Nter the 
heap has been corrupled, dynamic memory operations are nol guaranleed 10 work 
correclly. 

AnOiher serious problem can occur in a program if memory is allocated but nol 
deaUocated. This is called memory leakage. lf a program nms for a sufticiem time, 
tbis condition will cause a prograrn 10 run out of heap space. Even though the 
operaling system will release a prograrn's normal resources when il ends, always 
use proper etiquelte and deiete oulStanding variables. 

1 



332 Module 19: Memory Management 

Lab 16: .Dynamic Memory 
SUde 
Objecllve 
Execute the lab 
selutien ter 
Exercise l. 
Explain that the 
string is new 1n 
ene member 
functien. 
displayed in 
anether. and 
deleted in the 
d'ter. 
Set the lab 
ebjectives. 
Ask students te 
read the lab 
scenarie. 



Module 20: Conversions 



Module 31: Convenlonl 

L Overview 
• 

Sil de 
Objecltve 
Provide an 
oveNiew ot the 
module 
contents. 

Detl very Tipa 
Execute the lab 
solution to show 
new 
conversions 
with the date 
class. 

• Sfa1ctrdTpCl:n.vsia1S 

• Q:rMersfaaOntndas 

• Q:wOntructas 

• OrMrslolQ:&dcrs 

• Q:rMersfaa Oder a'ldArrtig.ity 

Module Summary 
You leamed about standard C/C++ data types in the basics module. anda lillle 
about how the compiler bandles expressions with mixed data types. In the modules 
011 classes, you also saw ltow 10 create user-defmed data type instances by invoking 
special member fwtctions called consauctors. In this module, you willlearn about 
the possible categories of type cooversions one can encoumer in C++, namely 

standard => standard 

standard => abstrae! 

abstract => abstract 

abstract => standard 

and bow we, as class users, can determine wben and wbat conversions will occur. 

Objectlves 
U pon cornpletion of Ibis module, you will be able 10: 

• Explain promotion and truncatim. 

• Use type casting. 

• Use cmversion constructors. 

• Use copy consauctors. 

• Use conversion operators. 

Lab 
Building Sueams in the Heap 



336 Module 20: Converslonl 

Standard Type Conversions 
S lid e 
Objectlve 
Review 
promotions ond 
truncations. 
adding more 
detail about 
rvalue and 
lvalue 
_operations. 
Explain casting 
and temporary 
variables. 

Dellvery Tipa 
Use the coda 
exampleto 
explain 
promotion and 
truncation. 

Assigning a 
'truncated · 
constan! 
expression 
always 
generates a 
warning. Using 
a cost controiS 
and documents 
the activtty (but 
the warning will 
remain.) 

·····--·· --···· ······-· ......................................................... ·········-··· 

• Prarata~to'Mar DdaTpPrftred 

• Tnrtedla1 Ox:us 'Mla1 Nec:esay 

• Expiclt Q:sHng 

• lrTPJclt T 8'flXI'GY '.tlfd:f• Used 

int x; 
x • 120.34F + 'e' • (lonq)44S; 
11 int ,. ( float. + (char • long)); 
11 int • (float + long); 
11 int • float; 

Promotion 
You saw in a very early module that when the compiler encounters an expression 
with mixed data types, it may be fon:ed to promete the narrower data types to wider 
ones. For example, in the arithmetic expression on the right side of the assignment 
above. the fust subexpression, a muhiplication. demands the promotion of the char 
to be a long, resulting in a long pnxluct. Next, the addilion demands promotion of 
this long productto a Roat. The result of the right-band side of the arithmelic 
expression is of data type Roat. 

Truncation 
During assignmem, and passing and reruming funclian argumems, the compiler may 
not have the optian of promoting: the targel data type may be determined. These 
cases can resuh in uuncatian or narrowing of data types. In the foil example, the 
right-band side Roat value must be uuncated lOan int value. 

The cast operator can be used 10 explicitly comrollbis process. It results in an 
rvalue. 

lmpliclt Temporaries 
C++ is a statically typed language. One result of this is tha! variables do not change 
data types in a program. When variables or values are promoted or II'IIDCated. the 
compiler oflen must generate an unnamed variable of the appropriale type for 
ternporary storage. 



Module 20: Convera~ona 337 

Conversion Constructors . 
Sil de 
Objectlve 
Introduce 
s1ngle-arg c'tars 
as adding 
promotian 
features to the 
class. 

Delivery Tips 
use terms: 
cast. 
temparary 
object. 
and conversian. 

Avold terma: 
Copy c'tor and 
assignment 
operator. 

Key Points 
Each example 
creates a 
temporary 
object. 
lstexample 
looks like a casi. 
2ndexample 
look like a c'tor. 

• An,'Oratru:ta'ThdTdcaaSinge~ 
lf1lidtlyTEIIs lt'e~kr Ha.vtoPrardeThd 
Ar~s DdaTypetocnQ::fe::t cllt'eOmn Ocas. 

class Square ( 
publl.c: 

Square(l.nt x): m_Side(x) () 

private: 
int m_Side; 

. ,· 

A conversion conslJ'Uctor is any consnucror lhal Lakes a single argumem.ln lhe 
example above. lhe conslJ'Uctor for Square takes a smgle-imeger argument A 
conversion conslJ'UciOr can be irnpücitly used by lhe compiler whenever it needs 10 
do lhe irnplied promotion. Exarrune lhe following statemems: 

Square sl (10), s2 (100): 
sl ... s2; 1 /ok - assignment 
sl - lOO; //ok - implicit conversion via c'tor 

You might suspectlhatlhe lhird would give you an error message since snuctures 
and class instances can normaUy only be assigned 10 like objeclS. However, wilh 
lhe consttuc10r. we have g¡ven lhe compiler lhe implicil ability 10 conven an intlo a 
Square temporary objecL The assigmneotlhen occurs. and final! y lhe temporary 
Square object is desuoyed. 

This conversion can also be forced by invoking lhe constructor in two explicit ways: 

si • (Square)IOO; 
si • Square(IOO); 



338 Module 20: Converslonl 

Copy Constructors 
Sil de 
Obieclive 
Extend the 
conversion 
lopic to include 
those 1-
orgument c'tors 
that take an 
instance ot their 
own type. 
'hence. Copy 
c'tor. 

NOTE: ·const• is 
not requ~red. 
but reference is 
typical. 

Key Points 
For classes with 
pointers. a 
shallow copy 
simply makes 
another pointer. 
Assuming the 
pointer 
addresses 
dynamic 
memory. 
trouble begins 
when the first 
object is 
d · tored. The 
memory is likely 
to be deleted. 
The shallow
copied object 
remains with a 
pointer to 
trouble! 

···············-····································-·······-- .............................................................................. , 

• AOn.vsim Q:ntrucfcr Thd Teta en lnstcnced lts 
0t.n T'~Jl&ls CtledaQ:P{Q:ntruaa. 

class Square ( 
pu.blic: 

Square(const Square& s); 

privat.e: 
int m_Side; 

A copy consuuctor tells how to create a new object out of a previously existing 
object: 

Square ol(l00); 
Square s2(al); // invoke copy c'tor 

The compiler supplies a default copy consuuctor only if a user-defmed one is not 
provided. The default copy consuuctor slffiply does a memberwise copy of values. 
just as occurs in suucture variables. 

E ven if you do lllll explicidy use a copy consttucta in a program. the compiler may 
implicidy use it in the following instances: 

• 10 pa5s an object by value 

• 10 retum an object by value 

• for temporuy object creation 

For many classes. explicit copy consuucum are not needed. However. if a class 
does dynamic memory aUocation widlin its c'tor. and deallocatioo widlin the d'tor. 
as a general rule. it will need an explicit copy c'tor (as well asan overloaded 
assigrunent operator). 

A user-supplied copy c'tor always t.akes a single argumem (it meets the criteria for 
a conversion c'tor) thal is a constan! reference 10 an object of the sarre type of the 
class. Since a copy c'tor is invoked implicidy by the compiler wben it needs to 
perform call-by-value. the copy consuuctor must not use caU-by-value. or else an 
infmite recursioo would result. 



Module 20: Convert~ona 

Conversion Operators 
Slide 
Objectlve 
Introduce the 
use of the 
'operotor· 
keyword to 
create a 
member 
function thot 
controls the 
casi of a class 
lo a standard 
type or another 
class type. 

Dellvery Tips 
General use of 
operotor 
overloading is 
beyondthe 
scope of this 
course! 

• Ho.vDoYruO:nwrt Fran cnctteddTheQnei 
Oe&s lokdha' Dc:taTpVduíf/ 

• Cl::rMrslcnQ::a'da<lriBelhaqt el e& o.vt.oa:t~ 
lheQst Q:Bda. 

class Square ( 
publl.c: 

operat.or in t.{); 1 /Square •> in t. 
operat.or Cl.rcle(); //Square •> Circle 

private: 
int. m_Side; 

Sometimes you want to allow the user to conven an object of the current class to an 
object of sorne other class or toa standard type. Constructors orlly take us the 
opposite direction-frorn sorne other data type to the current class type. C++ 
allows a special group of rnernber functions, conversion operators, to be defmed to 
do just this. 

For exarnple, in the code above the conversion operators tell the compiler how to 
conven a Square toan int anda Circle object, respectively. 1ñese operators can be 
invoked irnplicitly: 

x - 55 + sl + s2; 

or explicitly 

Circle cl(•l), c2((Circle)•l); 

Cautlon Extreme cace rnust be taken when you provide conversion constructors 
and operators. 

Altbough supplied here as a symactic example, it is doublful that the 
Square => int conversion operator in the foil rnakes good design sense. 



Module 20: ConvenloN 

Demo 
CONVERT.CPP is found in \DEMOS\MOD20. 

/ CONVERT.CPP in \Demos\mod20 
2 !1 Using convers1on c'tors and operators. 
3 ~~nclude <ios~ream.h> 

4 

5 /*************** Class Oeclarations *********************/ 
6 // Clrcular forward reference needs declaration (pun 
7 // incended). C1rcle must be predefined for Square. 
a class Circle; 
9 

10 class Square 
11 
12 public: 
13 

14 

15 
16 

17 
18 
19 

20 

21 

Square(int x•O); // conversion c'tor 
Square(const Square&): // copy c'tor 
Square(const Circle&); // conversion c'tor 
operator Circle () const; //conversion operator 
void Display(} const; 

prívate: 11 implementation 

int m_Side; /1 Square's have a side dimension 
1: 

22 class Circle 
23 

24 publ ic: 
25 · Ci re le ( int d) 11 conver3ion e' tor 
26 : m_Dia(d) 
27 ( cout << "Circle Convereion c'tor (int)\n"; 
28 int GetDia (void} const 1 return m_Dia; ) 
29 void Display(void) const; 
30 p:-:vate: 11 implemantation 
31 

32 ) ; 

33 

34 

35 

36 
37 

38 

39 

40 

!••· 
Squ ... 

int m_Oia.; 11 Circle's bave a diameter dimension 

'**** Member Functions Oefinitions ***************/ 
Square {int x) 

._Side(x) 

cout << "Square Conversion c'tor (int)\n"; 

41 Square: :Square(const Square& s) 
42 : m_Side(s.m_Side) 
43 

44 

45 

46 

cout << "Square Copy c'tor (Square&)\n''; 

47 Square: :Square (const Circle& e) 
48 ( 

49 m Sida • c.GetOia(); 
so cout << "Square Conversion c'tor (Circle&) \n"; 

51 
52 

(conr:inued) 



Module 20: Convetllonl 341 

53 Square: :operator Circle () const 
54 { 

55 

56 
57 

58 

cout << "Square •> Circle 
return Circle(m_Side); 

operator\n"; 
//Invokes Circle(int) 

59 'J'Ol.d Square:: Display (Vol.d) const 
60 

61 
62 

63 

cout << ''Display square of side '' << m Side << endl; 

64 void Cl.rcle::Display(void) const 
65 

66 cout << "Display circle of diameter " << m Dia << endl; 
67 

68 
69 !••••••••••••••••••• Test Function ••••••••••••••••••••••/ 
70 int main(} 
71 
12 cout << "Con.struct two circle objects: \n"; 
73 Circle el {33), 
14 c2 {66); 

75 

76 
77 

78 

79 

80 

81 
82 
83 

84 

as 
86 

87 

88 

89 

90 

91 

92 

93 

/1 Circle cnot; 11 error: no default c'tor 
cout << "Construct two square objects: \n"; 
Square sl, 

s2 {25); 
cout << "Construct .s3 from .s2 (25): \n"; 
Square .sJ (s2); // copy c'tor 
s3 .Display{); 
cout << ''Construct s4 from el (33}:\n''; 
Square s4 (el); 11 conv c'tor 
s 4. Display{) ; 
cout << "Construct cJ from sl (default): \n"; 
C~rcle c3 (sl): 1/ how does th~s work? 
c3. Display{); 
cout << ''Assiqn a 
sl "" c2; 

circle toa square, sl • c2\n"; 
/1 conv c'tor for temp object 

cout << "Assiqn a square to a circle, el - s2\n"; 
el • s2; // how does this work? 
return O; 



342 Module 20: Convenlons 

Conversion Orcer.and Ambiguity 
Sllde 
Objecllve 
Summarize all 
students know 
about 
conversions. 
then introduce 
ambiguities. 

Key Polnts 
Detoil the 4 
oreas where 
conversions 
occur: 
1) Exoct or 
neorly exact 
2) Promotion 
(presentad Doy 
1) 
3) Other 
standard 
conversions 
(truncotion. 
specific pointer 
to non-specific 
pointer, and 
from derived
type to bose
type.) 
4) Through user
defined 
conversions. 

Introduce 
·ambiguities·: 
multiple woys to 
perform the 
so me 
conversion. as 
an errorot 
compile time. 

·········-····················· .................................................................................. , 

• a:r .nm SdareOutngÑgSI'B'l M:tctUQ Raun 
VdueO.dat 

• E xaí rn::ktl a friiAd an.eslm 

• M:lch 1tTQ.(1l stm::trdpardlo"l (eg, lrf =o ftcd) 

• Cite" SIO'l:írdCin.e'Sia'6 

• User~re:::lan.esla's: a:n.ssia'lanln.dos O"d 
asdus 

• Arrbc;J.itla Q:n R•út if Us• S~Ja Rer:ln:tri 
Q:rl'.carsicns. 

Where the compiler deteciS type mismatches, especialiy in function calls. it attemp!S 
to coerce or cast data ¡ypes to achieve a match. 11Je preferred order is shown above. 

Exact matches need no conversions. Trivial conversions are non-i:Onst 10 const, 
reference to ob•ect. and an array to pointer of the sarne type. 

Standard prornctions were covered in an early module; they involve "widening" a 
data lype. 

Other standard :ooversions cover three areas: 

• Standard D"'" cation (for exampie, Ooat => int) 

• Speeific po · ·er type => void• 

• Conversioo ~!he pubiic bierarchy (from a derived type 10 a base type) 

Note that the ilr.~licit conversiom from specitic• => void•, and non-i:Onst => const 
are one-way; th~ reverse conversions can only be accomplished with an explicit cast 
operation. 

Conversion operators and conversion comouctors were featured in !he preceding 
demo. 

Ambiguities can occur when a user supplies both conversion consouctors and 
conversion operators for a class. Unforrunateiy, normaliy the compiler w1U only 
catch these error 1 when the ambiguous conversion is atternpled, not when !he 
offending design 1s implernented. 



Module 20: Canverllona 343 

Demo 
A.\filiG.CPP is found in \DEMOSIMOD20. 

1 // AMB[G.CPP in \demos\mod20 
2 // Demonstrates errors from ambiguous conversions. 
3 1 • The member functl.ons: * 
4 Square: :operator Circle (); • 
5 Circle: :Circle (Square&); • 
6 do the same thing, and are thus ambiguous. */ 
7 tinclude <lostream.h> 
8 

9 /***************** Class Oeclarations ••••••••*•*********/ 
10 class Circle; // Predefine class Circle for use in Square 
11 
12 class Square 
13 
14 public: 
15 // Squarej); // Ambiguous Overloading 
15 Square ( int x•O); 11 int •> Square 
17 Square (Square&); 11 copy e' tor 
18 Square(Circle&); // Circle •> Square 
19 operator C1.rcle(); JI Square ,..> Circle 
20 int GetS1.de (vo1.d) { return m_S1de; ~ 

21 private: // implementation 
22 int m_Side; // Squares have a s1de dimension 
23 ) ;,. 

24 
25 class Circle 
26 

public: 
Circle (int d) 

: m_Dia(d) 1/ int •:> Circle 

27 

28 

29 
30 

31 
32 

{ cout << "Ci re le Convers1.on e' tor ( int) \n"; 
Circle(Square&): // Square •> Circle 
int GetOia(void} { return m_Oia: } 

33 . private: 11 implementation 
34 int m_Dia; // Circles have a diameter dimension 
35 1: 
36 
31 /*********** Member Functions Definitions *******•*******/ 

38 Square::Square(int x) 
39 : m_Side (x) 
40 
41 cout << "Square Cc,;1version c'tor (int)\n"; 
42 
43 
44 Square: :Square(Square& s) 
45 : m_Side(s.m_Side) 
46 

47 

48 

cout << ''Square Copy c'tor (Square&)\n"; 

(continuad} 



344 Module 20: Converslonl 

49 Square: :Square (Circle& e) 
so { 
51 m_Side • c.GetDia(); 
52 cout << ''Square Convers1on c'tor {Clrcle&)\n''; 
53 

54 
55 Square: :operator Circle () 
56 { 

57 cout << "Square •> Circle operator\n"; 
58 return Circle(m_Side); //Invokes Circle(int) 
59 
60 
61 Circle: :Circle(Square& s) 
62 { 
63 m Dia- s.Getside(); 
64 cout << "Circle Conversion c'tor (Square&) \n''; 

65 
66 
67 /******************* Test Proqram •••••••****************/ 
68 void Funcl(Square s); // function prototypes 
6~ void Func2(Circle e); 
10 
71 int main{) 

12 
73 cout << ··construc-:. a circle object, el. \n"; 
74 Circle el (33) 
75 a square object, sl.\n''; cout « "Const 

16 Square 

" e out « 
« 
« 

•1 {67) 
endl 
"Func 
"Call 

,;s a Square argument. \n" 
..:ncl () vith a square. \n ''; 

18 

19 

80 

81 
82 
83 

84 
85 

86 
81 

88 

89 

90 
91 

Funcl <•11: 
cout « "Ca: 

11 Square •> Square (by value) 
·uncl() with a circle.\n"; 

Funcl(cl); 
cout « en:; 

« "Fl.· 
11 UNCOMMENT To~ 
11 cout « "Cai __ 

11 Func2(•1); 
e out « "Calling 
Func2(cl); 
return O: 

92 
93 void Funcl (Square s) 

94 
95 
96 
91 

98 

cout << "Func: 
•. GetSide () : 

99 void Func2(Circle 
lOO 
101 

102 

103 

cout << "Func2 
e. GetOia () : 

11 Circle •> Square 

,/ces a Circle argument. \n"; 
:INES 
Func2 () vith a square. \n": 

11 Square •> Circle 
Func2 () with a circle.\n"; 

11 Circle •> Circle (by 

:allinq GetSide()\n"; 

. __ ing GetDia () \n"; 

value) 



Module 20: Converllont 

Lab 17: Building Streams in the Heap 
Sllde 
Objeclive 
Execute the lab 
solution. 
Set the lab 
objectives. 
As k students to 
read the lab 
scenario. 

[
.... .... .. . ········ ......... ········································ ······································ 

,· ,:·:.:::: ..... ~.:~., ........ ·.·······:··.:.·········: :·················:·········::-:-~....__~ 
1 



Lab Manual 

lntroduction to Microsoft® 
Visual C++'M and Object
Oriented Programming 

Microsoft Corporation 
Coursc Number. 280 
Pan Number: 5362A 
Master Pan Number: 5369A 



Infonnation in this document is subject to changc without notice. Companies, names, and data uscd m 
e.umples hen:in are fictttious unlcss otherwtsc noted. No pan of lhis documcnt may be reproduced or 
traru;mmed in any form or by any mcans, electroruc or mcchanicaJ, for any pw-posc, without thc 
exprcss wnnen penniss1on of M.icrosoft Corpor.:uion. 

©1993 t-.1icrosoft Corporation t\ll rights rescrvcd. 
Pnntcd in the United S tates of A menea. 

Microsoft, FoxPro, Microsoft Access, MS, MS-DOS, CodeView, PowerPoint, and QuickC are 
registcn:d trademarks and Microsoft Windows and des1gn. Microsoft QuickBasic, Visual Basic. Visual 
C++, Win32, Win32s, Windows. and Windows NT are tradema.rk.s of Microsoft Corporation in thc 
United States of A menea and othcr countries. OS/2 and Prcscntallon Manager are rcgistcrcd 
trademarks liccnsed to M.icrosoft Corporalion in the UnHcd Stales of Amenca and othcr countncs. 

Small Talk is a registered trademark of Xcrox Corporation. 

Course Nwnbcr: 280 
Pan Numbcr: 5362A 
Ma.stcr Pan Numbcr: 5369A 



Contents 111 

Contents 
Lab 1: ldentifying the Components of a Class ........................ 1 

Objcclives ............................................................................................................ 1 
Exercise 1 ldemifying Lhe Enlities and Activities in a 
Simple Invemory Objcct ...................................................................................... 2 
Excrcise 2 Idcntifying Objccts and Thcir Behaviors ............................................ 2 
Sununary ............................................................................................................. 7 
Possible Answcr for Excrcise One ...................................................................... 7 
Possible Answer for Excrcisc 2 ........................................................................... 8 

Lab 2: The Basics ..... ................................................................. 11 
Objcctives ............................................................................... : .......................... ll 
Exercise 1 Writing a Simple C++ Program ....................................................... 12 

Sununary ······················:····················································································13 

Lab 3: Using Statements and Expresslons ............................. 15 
Objectives .......................................................................................................... IS 
Exercise 1 Dcclaring Variables and Using Flow Control .................................. l6 
Sununary ........................................................................................................... 17 

Lab 4: lmplementing Simple Functlons ................................. 19 
Objeclivcs .......................................................................................................... l9 
Exercise 1 Building Functions and Prototypes ................................................... 20 
Sununary ........................................................................................................... 21 

Lab 5: Using Structures to Encapsulate Data ........................ 23 
Objectives .......................................................................................................... 23 
Exercise 1 Declaring and Accessing Data in a Structurc ................................... 24 
Sununary ........................................................................................................... 24 

Lab 6: CreaHng Classes and Member Functlons .................. 25 
Objcctives .......................................................................................................... 25 
Exercise 1 Writing a Simple Dale Class ............................................................ 26 
Exercise 2 Adding Constructors and Dcstructors to a Class .............................. 27 
Exercise 3 (Optional)Verifying That Your Data Is Securc ................................ 27 
Sununary ........................................................................................................... 28 

Lab 7: Tuning Your Member Functions .................................. 29 
Objectives .......................................................................................................... 29 
Exercise 1 Using Overloaded Functions and Dcfault Argwnents ...................... 30 
Exercise 2 Inlining Functions ............................................................................ 31 
Sununary ........................................................................................................... 31 

Lab 8: Static Class Members .................................................. 33 
Objectives ......................................................................................................... .33 
Exercise 1 Using Overloaded Functions and Dcfault Argwnents ...................... 34 
Sununary ........................................................................................................... 35 



iv Contents 

Lab 9: Containment and Embedded Objects ...................... 37 
Objective ........................................................................................................... 37 
Exercise 1 Embedding Objecls .......................................................................... 38 
Summary ........................................................................................................... 39 

Lab 1 O: Working with lnheritance ........................................... 41 
Objcctives ......................................................................................................... 41 
Excrcise 1 Extending a Base Class .................................................................. .42 
Exercise 2 (Optional: Complete in open lab time) Extending Another Class .... .43 
Summary ........................................................................................................... 44 

Lab 11: Managfng Projects ..................................................... 45 
Objectives ........................................................................................................ .45 
Exercise 1 Source vs. Header Files .................................................................. .46 
Exercise 2 Scope in Single Source Files ............................................................ 50 
Excrcisc 3 Scopc in Multiplc Source Files ........................................................ 51 
Summary ........................................................................................................... 51 

Lab 12: Manipulating Arrays ................................................... 53 
Objcctivcs ........................ , ................................................................................ 53 
Exercisc 1 Adding O!aractcrs toa String .......................................................... 54 
Exercise 2 (Optional) Writing a Simple String-Handling Function ................... 56 
Summary ........................................................................................................... 51 

Lab 13: Pointers and Arrays of Polnters .................................. 59 
Objective ........................................................................................................... 59 
Exercise 1 Using Poinlers .................................................................................. 60 
Summary ......................................................................•.................................... 61 

Lab 14: Using Commercially Avaflable Classes ................... 63 
Objective ........................................................................................................... 63 
Exercise 1 Parsing Strings with the CString Class ............................................ 64 
Summary ........................................................................................................... 66 

Lab 15: Formattfng and File l/0 .............................................. 67 
Objective ........................................................................................................... 67 
Exercise 1 Oasses That Load and Sto re Data ................................................... 68 
Summary ........................................................................................................... 69 

Lab 16: Dynamfc Memory ....................................................... 71 
Objectivc ........................................................................................................... 71 
Excrcise 1 Building Strings in thc Heap ............................................................ 72 
U Time Permits .................................................................................................. 73 
Excrcisc 2 Fun Managing Memory ................................................................... 73 
Summary ........................................................................................................... 74 



Conlenls v 

Lab 17: Creoting Conversions ................................................ 75 
Objective ........................................................................................................... 75 

Excrcise 1 Building Strings in lhc Hcap ............................................................ 76 

Summary ........................................................................................................... 77 

2 



Lab 1: Identifying the Components of 
a Class 

Objectives 
At the end of this lab, you will be ablc to: 

• Identify the entities and activitics of a simple objcct. 

• Identify the state and bchavior of a class. 

• Determine "is a kind of a" and "is pan of a" charactcristics of a class. 

• Idcntify "behaviolli" and "communication" charactcristics of a class. 

Scenario 
Toda y is your fillit day as a Lcad Analyst for a small manufacturing corporation 
called ISM. lnc., which stands for Industrial Smokc and Mirrolli. Although thc 
company is small, the domcstic and intcmational markct demand shows a largc 
sales poten ti al for the products. 

Mid-moming news around thc corree area includcd sccond-hand rcports from an 
early-moming management meeting. Rumor has it that the CEO clobbcrcd thc 
Purchasing Manager complaining, "Too many unusable parts are stockcd in 
inventory and there are frcqucnt delays gctting thc right parts to manufacturing." 
Th~ Finance Manager was the ncxt targct: "A lack of purchasing controls has 
delayed product assernbly, and rush orders have increased our cost of goods sold." 

Back at your desk, electronic mail has arrived from your boss, thc Manager of 
Information Systems, conceming a meeting with you. After a fivc-minutc meeting 
with the boss, you 're back at your dcsk, staring at your meeting notes. Although thc 
request sounds simple, you realize that thc problcm describcd in your notes may 
takc months to sol ve. 

Your mild-mannered manager has given you until tomorrow moming to answcr thc 
following question: "What do we nccd in an invcntory systcm?" 

Estimated time to complete this lab: 30 minutes 



2 Lab 1: ldenlllylng !he Components ot a Class 

Exercise 1 
ldentifying the Entities and Activities in a Simple 
lnventory Object 

Exercise 2 

Step 1 
Run the completcd version of thc class application. lt is located in thc dircctory 
\STUDEN'T\LABO l. 

Step 2 
Composc a list of itcms that would be nccdcd in an invcntory-control systcm. 
Expect that this systcm will nccd to intcñacc purchasing (adding ncw inventory) 
and both sales and manufacturing (rcmoving cxisting invcntory). 

Takc a fcw minutes to composc lhc list. Soon, wc'll rcvicw and sharc ideas with 
other dcvelopers in the group. 

Note For all of the code-based labs, answers will be located in a subdirectory on 
your studcnt disk. For thesc two cxcrcises, thc answcrs will found at thc cnd of this 
lab. 

ldentifying Objects and Their Behaviors 

Scenario 
The overalllist of items that are necded in an inventory-control system has bccn 
approvcd. The Manager of Infonnation Systcms wants to know what the ncxt stcp 
is, and wants an estimate for complction of a ncw system. 

You 're back at your desk, staring at your meeting notes. You rcalizc thc rcquest 
requires further research. 

Note As with the first exercise, there is no clcar wrong or right answer. Thc 
purpose of this lab is to get you to stan thinking about objccts and their traits rat.hcr 
than about coding. That will come soon cnough! 

Step 1 
Given the list of items needed in a simple inventory system. you are to dcvclop a sct 
of classes that implemem iL The systcm must kccp track of the following: 

l. Pan number, namc, quantity, and cost 

2. Inventory adjustrnents (additions fcd from purchasc ordcrs. and subtractions as 
in· .. ntory is sold or uscd in manufacturing) 

3. Adjustrncnts in price (including purchases at various prices and various 
currencies) ' 



Lab 1: ldentllylng lhe Components of a Class 3 

4. Bill of materials (built around part numbers to show the explosion of finishcd 
goods back to their componen¡ parts) 

Use this data to identify the itcms that might bccome objects in the new system. 
Kecp track of mcssages or requests that thesc objccts would respond to during 
interactions with othcr objccts. 

Step 2 
Use the attachcd shects to hclp shapc your ideas. Four classes are identificd on thc 
following working cards. Each of the four cards is incomplete. Rcvicw the 
infonnatim' providcd and add othcr dctails conccrning thc infonnation cach class 
will nccd to ue functional. 

If you havc identificd othcr itcms that may bccomc classcs, you may add thosc on 
thc subscquem blank cards. 

Step3 
Thc "bchavior" and "commUJtication" scctions are missing numcrous cntries that 
will make the inventory systcm functional. Add cmries to thosc scctions. 

Asan approach, imagine the convcrsations that would take place bctwccn objccts. 
Try working through various scenarios, such as inventory from a purchase ordcr 
being received ata loading dock. What infonnation comes in? What behaviors 
should occur? Don't bccomc burdcncd with dctails; vicw the systcm abstracUy from 
a mile away. 

And, finally, remembcr that we don 't ha ve time to truly dcsign the systcm this weck 
(or this month)! In design, you won't nccd any algorithms or aecounting rules, justa 
good imagination. Besides, if you rcach a dcad cnd trying to resol ve how thc 
Invcmory system should imeract with anothcr software systcm, you can always 
makc it the othcr system 's problem! We're trying to build a mind-set that will gct 
you to look at problem from a düferent pcrspcctive. 

Class Narne: lnventory Abstrae~ 

Parent: 
Children: 

Behavior: Communication: 
Purchase () Ouanti!y In Stock () 
Se/1() 

TriggerEOOOrder () 
Load() 
Store () 

Embedded Objects: 

Date, Money, and PartiD 



4 Lab 1: ldentllylng the Components ot a Class 

Class Name: Money Abstract 1 Concrete 

Parent: 
Children: 

Dollars, Pounds, Deutsche Marks 

Behavior: Communication: 
Display 

Display Money Numerically 

Display Money in Text 

E m bedded Objects: 

Class Name: Date Abstract 1 Concrete 

Parent: 
Children: 

Behavior: Communicanon: 
Display () 

Embedded Objects: 



Lab 1: ldentltylng !he Components ol a Class 5 

Class Name: PartiD Abstrae! 1 Concrete 

Parent: 

Children: 

Behavior: Communication: 

AdjustPrice ( ) GetPrice () 

Embedded Objects: 

ClassName: Abstrae! 1 Concrete 

Parent: 

Children: 

Behavior: Communication: 

Embedded Objects: 



6 Lab 1: ldentlfylng lhe Camponenls cA a Class 

Class Name: Abslract 1 Concrete 

Paren!: 
Ch1ldren: 

Behav1or: Communication: 

Embedded Objects: 

~· 

Class Narne: Abstract 1 Concrete 

Paren!: 
Children: 

Behavior: Communication: 

Embedded Objects: 



Summary 

Lab 1: ldentllylng lhe Components ola Class 7 

This obje<:tive \Vas met by ... 

ldcntify !.he entüies and activitics of a Excrcisc 1 
simple objcct 

ldentify the st.ate and bchavior of a class Exercise 2. Step 2 

Determine "'is a kind of a'' and "'is pan of a"' Exercise 2, Stcp 2 
charactcristics of a class 

ldentify "'bchaviors"' and "'communication"' Exercise 2, Stcp 3 
charactcristics of a class 

Possible Answer for Exercise One 
Even a relativcly simple inventory system will have a large numbcr of possible 
components. For the purposcs of this class and this lab, your list of entitics for !l1e 
inventory systcm should look something likc this: 

Cost 

Price 

Quantity 

Location or Bin 

Raw Material or Finished Good 

Current Rcquirements 

Description (size, dimensions) 

Purchase Date 

Age 

Delivery Lcad Time 

Mínimum Amount (al so known as EOQ) 

Supplier or V endor 

Requestor 

Most of these specific entities will show up in la ter labs. 

1 



8 Lab 1: ldenlflyfng lhe Componenls á a Class 

Possible Answer for Exercise 2 
Below is a first pass ata dcsign for !he classes in !he inventory systcm. ll is only a 
tirst pass. You mayor rnay nol have sorne oral! of !he data we listcd. That's nmlhe 
poinl. Our goal is to give you a fccl for sorne of !he possible data mcmbcrs, inter
class communicalions and aclivilics lhat will probably show up in lhcsc classcs. 

Class Narne: lnventory Abstrae~ 

Parent: 

Children: 

6ehaVIOT: Cornrnunication: 
?rocessPurchase ( ) 
ProcessSalesOrder ( ) 
TriggerEOQOrder () 

OuantitylnStock () => quantity 
OrderQuantity ( ) => quantity 
Price (and cost) => rnoney 

Load () Date=> date 
Store () OrderleadTirne => date range 

PurchaseOrders => quanlity and cost 
Sales Orders ( ) invahd if > Ouantity 

Ernbedded Objects: 
Date, Money, PartiD 

Class Narne: Money Abstra~ 

Paren!: 

Children: 
Dollars. Pounds. Deutsche Mar1<s. and so on. 

Behavior: Communication: 
Displays: AdjustArnounti ) => Exchange Rate 

as NumericAmount( ) CurrencyConversion( ) 
as AlphaTextAount() SetAmount( ) => Money 

Add Arnount(s) Display () 
Mul~ly Amount(s) 
Loa () · ( See lnventory class. ) 
Store () 

Ernbedded Objects: 

Currency symbol, Field Separator Characters 



Lab 1: ldentltylng lhe Componenls of a Class 9 

Class Name: Date Abstrae~ 

Parent: 

Chitdren: 

Behavior: Communieation: 
Display Display () 

as Month/DaAIYear ¡ ¡ JulianVaJue () => numerie 
as Day/Mont IYear SetMonth ( ) => month 
as AlphaText ( ~ SetDay ( ) => day 

Compare ( ) and alidate ( ) SetYear ( ) => year 
DateSpan or Ran}e ( ) 
GetCurrentDate ( 
Load ( ) and Store ( ) ( See lnventory elass ) 

Embedded Objects: 

Class Name: PartiD Abstrae~ 

Parent: 

Children: 
lmportedPart, and DomestiePart 

Behavior: Communieation: 
GetVendor ( ) 
GetPriee () 
SetUnitOfMeasure ( ) 

Display () 

Load() 
Store () 

Embedded Objects: 



10 lab 1: ldentltyfng !he Componenls ot a Class 

Class Name: lmportedPart Abstrae~ 

Parent: PartiD 
Ch1ldren: 

Behavior: Communication: 
CalculatePrice ( ) GetExchangeRate ( ) => rate 

SetExchangeRale ( ) <= rate 

Se!Price ( ) <= money 

( See PartiD class ) 

Embedded Objects: 
ExchangeRate 



Lab 2: The Basics 

Objectives 
At !he end of this lab, you will be able to: 

• Use #include to access prccompiled header files. 

• Use #define to crcate manifest constaniS. 

• Use cout to output to !he scrccn. 

• Use !he multiple-insenion opcrations with cout. 

• Create a main function with a retum value. 

Before You Begin 
Befare accessing !he source file, clase any files or projects that may be opcn. lf 
you're not sure whether Visual Workbench has other files opcn,'display !he File 
menu. lf !he Clase option is available. choose it. If it is unavailable (d•mmcd), no 
file is open. Do Ulc same thing f rom !he Projcct menu. 

Se en ario 
MicrosoftaD Visual C++N programs do not have Ule rigid structure offcred in many 
other languages. As your familiarity with Ule C++ language grows, you '11 discover 
that most of the conventions uscd in this module are "rcquired." Through 
experience, you willleam that other mcans exist, but all these conventions add to 
the readability and maintainability of your code. 

Estlmated time to complete this lab: 20 minutes 



12 Lab 2: The Baslcs 

Exercise 1 
Writing a Simple C++ Program 

An cmpty siJurce file, SIMPLE.CPP. cxisls in Lhc\STUDEN1\LAB02 subdircctory. 
You will complete Lhc codc statcmcms Lo crcatc a small program Lhat follows Lhc 
basic program structure descnbed in Lhis module. 

I To open a lile 

Open Lhe SIMPLE.CPP file by following Lhese steps. 

l. From Lhe File menu, choose Open. 

The Open File dialog box appcars. 

2. In Lhe Directories box, select Lhe \STUDENT subdirectory. (lf it is nm visible, 
yo u .,-¡ay ha ve Lo first select Lhe root dircctory, C:\ Lo find \STUDENT.) 

3. Sci .. :1 Lhe \LAB02 subdirectory. A few files should appcar in Lhe File N ame 
bo,. ' 

4. In me File Name box,select SIMPLE.CPP and chooselheOK button. 

The SIMPLE.CPP file docs not contain much of a head-stan. Thc following steps 
will detail Lhe statemems Lhat must be addcd. Each step is associatcd wilh a 
comment in Lhe sourcc file noled as: 11 TO DO #n. 

Step 1 
A prograrn Lhat intcractl wilh Lhe uscr Lhrough input or output willtypically use Lhe 
C++ iostrearns. Add Lhe preproccssor directive Lhat will cause Lhe compiler to 
include Lhe header file definitions in IOSTREAM.H wilhin your applicalion. 

Step2 
For readability, add a manifest constant, BEGIN_INV, wilh Lhe value of last year's 
invemory fmal balance: $123,500. (Be carcful. The $ and. characters can'L be 
mixeó wilh numeric data in C++.) 

Step3 
Write Lhe definition line for Lhe main function using Lhe standard conventions noted 
in Lhe lecture. 

Step4 
Display lhe following single line of texl after 8 spaces on Lhe scrcen: 

I.S.M., Inc. 

Your display statement should advancc Lo Lhe nextline using Lhe \n notalion Lhat 
was used in HELLO.CPP. 



Summary 

Lob 2: The Baslcs 13 

Step 5 
Display a sccond line of text: 

1994 Beginninq Inventory: $ 

and lhe amount, using !he manifcst constanl BEGIN_INV. Your display should 
advance to !he nextline, allhough lhis is !he end of !he program. 

Step 6 
The program is complete. Return a o ro !he opcrating system to indicare succcss. 

Step 7 
Build, cxccute, and tcsl your application. 

This objective 

Use #include statcmcnts to access 
precompilcd headcr files 

Use #define statemcnts to crcatc manifest 
constants 

Create a main fWlclion with a rcturn vaJuc 

Use cout to output to the screen 

Use the multiplc-insenion operations with 
cout 

Was met by ... 

Stcp 1 

Stcp 2 

Stcp 3 

Stcp 4 and Stcp 5 

Step5 



Lab 3: U sing Statements and 
Expressions 

Objectives 
At lhe end of this lab. you will be ablc to: 

• Declare variables. 

• Declare variables wilh an initial valuc. 

• Writc a do ... while loop lhat tests for a user's preferences. 

• Write a simple if stat~ent lhat tests user input for a range of values. 

• Write output statements lhat inform lhe user about inventory quantities. 

• Write simple arilhmetic calculations using C ++ syntax. 

Scenario 
Statements. expressions. and flow control wíll drivc lhe processing and logic wilhin 
your applicatíons. To investígatc processing and computational calculations. you'll 
build a small applicatíon lhat simulates invcntory-proccssing and rcports final 
results. 

Estimated time to complete thls lab: 30 minutes 



16 Lab 3: Uslng Statements and Expresslons 

Exercise 1 
Declaring Variables and Using Flow Control 

A skcleton sourcc file, FORMULA.CPP exists in the \STUDEN1\I...AB03 
subdirectory. In this file, you will writc and cxcrcise severallooping, conditional. 
and computational constructs. 

Step 1 
Examine the existing preprocessor directives at the top of the sourcc file. A 
manifestconslanl is provided: ECONOMIC ORDER QTY is thc valuc so. Within thc 
main function, two variables, nTotalit-;;mssoid and nBeginninginv, are 
provided and initialized lo O and 150, respcctivcly. 

Add stalements 10 declare local integer variables, nBuyQuanti ty and 
nSellQuantity, anda local character variable, chTransType. 

Step2 
The global variable linventory has no initial value, so assign 1 Iventory the 
value of the nBeg inn ing In v local variable. To prove thc assignmem worked, 
wrile a slatemem thal displays the following and advances lo thc ncxl linc: 

Begining inventory: nn items. 

(where nn is the value of 1 Inventory} 

Step3 
Mosl statements within the main function are contained within a do ... while loop 
thatrunswhi1e (chTransType != 'Q').Wrileashort,nesledloopthal 
prompts the user for a lransaction lypc, chTransType, of Buy ( 'B') or Scll 
('S'), and allows the user 10 Quil ( 'Q' ). The body of thc loop is provided. 

Step4 
The previous line input the uscr's sell quanlily. Tes! that input value versus the 
invenlory amount Rejecl the Sales Order if il exceeds currcnt invemory. 

Hin! Examine the processing for Bu y amounts or purchasc orders, if nccded. 

StepS 
Invemory levels should be maimained al a leve! supponed by sales activity andan 
item's Economic Order Quamily. A manifesl constan!, ECONOMIC _O ROER _QTY, 
is provided. Add the conditional construcl!O 1es1 invemory. Display a warning 
message if the inventory is less than half an item's economic arder quantily. 

Step6 
Write a statemem 10 calculale inventory rollover and display the value. Your 
calculation should divide the total items sold by the bcginning invemory. Thc formal 
for the display is 

"Inventory turnover was nn times." 

where nn is the resull of the calculation. 



Lob 3: Uslng Stotements ond Expresslons 17 

Step 7 
Build, executc, and test your solution. 

Summary 
This objedive Was met by ... 

Declare variables Step 1 

lnitialize the value of variables Stcp 2 

Write a simple do ... while loop thattests for Stcp 3 
a uscr's prefcrcnces 

Writc a simple if statcmcnt thattests uscr Stcp 4 
input for a range of values 

Write simple output statcmems lhat inform Step 5 
lhc uscr about invcntOry quantities 

Write simple arithmetic calculations using Stcp 6 
C++ symax · 

!• 



Lab 4: Implementing Simple 
Functions 

Objectives 
At the cnd of this lab, you will be ablc to: 

• Prototypc and define a function. 

• Calla function from within anothcr funcüon. 

• Retum a valuc from a funclion. 

• Convcrt a block of statemcnts toa function. 

Scenario 
Functions will cvcnrually providc the methods, behaviors, and communication 
messagc-handling within thc invcmory-comrol system. As part of your prcliminary 
research, invcstigate thc implcmcntation of functions in C++. You nccd to 
determine whcther functions can casily handlc various inputs and rctum valucs for 
your business situations. 

Estimoted time to complete this lob: 30 minutes 

1(. 



20 Lab 4: lmplementlng Simple Functlons 

Exercise 1 
Building Functions and Prototypes 

A skeleton source file, FUNCT!ON.CPP, exists in the 'STUDEN1\LAB04 
subdircctory. You will write and exercise severa! small functions to test data 
manipulauons within differemtypes of functions. 

This program is similar to the formula program in the previous lab. Many of the 
blocks of statements have bccn packagcd as funcuons, but others nced to be 
completcd. The uscr-proccssing of the applicalion has not changcd. 

Step 1 
Examine the existing statemems at the top of the source file. A manifcst constan! is 
providcd. Within the main function, sevcral function calls exist. 

Add statements 10 prototypc the two functions called within the main function: 
ProcessBuy and ProcessSell. Thosc functions are defincd below the body of 
the main funclion. Both funclions rewm an integer lo the calling routine. 

Step 2 
Write a statementto call the ProcessBuy function. The function retums an 
integer value represcming the number of items purchascd for invcmory. Add that 
retum value lo update the invcntory balance, linventory. 

Step 3 
Write three statemcnts to handle the proccssing from the ProcessSell function. 

l. First, add a statemem to call the P rocessSell function. lt returns an integer 
value representing the number of items sold. Save that value in the variable 
nSold. 

2. Add a statement that updates the invemory balance, linventory. 

3. Add a statement that updates the nTotalitemsSold variable. 

Step4 
l. Locate the function body of the P rocessBuy function. Examine how it 

"retums" the purchase amoumto thc calling function. 

2. Locate the ProcessSell function. Portions ofthis function necd to be 
completed. Use a conditional statememto deny the Sales Ordcr if the quantity 
exceeds the currem invemory arnount. You should display a message to thc uscr 
and rcturn a zero (indicating a rejcctcd order). Altemately, if that quamity is 
available, return the sell quantity. 

Note Your partially complctcd solution may be compilcd and tcstcd at this 
point. 



Summary 

Lab 4: lmplemenllng Simple Functlons 21 

Step 5 
Locate !he function body of !he main function. Near !he end of main, you'll 
recognize a display statement lhat calculatcs inventory tumover. To complete lhis 
step, conven lhat statement toa function: CalcTurnover. You nccd a statement 
to prototypc !he function anda statcmcnt to cal! the funcuon. You also nccd to 
"package" !ha! statcment from main as a function body. The values of two 
variables, nTotalitemsSold and nBeginninginv, are nccdcd within the 
CalcTurnover function. 

Step 6 
Build, execute, and test your final solution. 

This objeclive Was met by ... 

Prototypc and dcfmc a function· Stcp 1 

Calla funclion from wilhin anolhcr function Stcp 2, Step 3 

Rcturn a valuc from a function Step 3, Stcp 4 

Con ven a block of statcments toa funclion Stcp 5 

'·: 



Lab 5: Using Structures to 
Encapsulate Data 

Objectives 
Atlhe end of lhis lab, you will be ablc to: 

• Declare a structure. 

• Assign valucs to structurc mcmbers. 

• Access !he comeniS of a struclUre's members. 

Se en ario 
Suucrures are one of !he logical frarneworks C++ offcrs to encapsulate or package 
!he data your applications will managc. Your dcvelopmem tcarn will be sccking 
your guidance as lhey detcnnine !he data needs of !he invcmory systcm. 

You realize lhatlhe invemory system will nccd to integrate wilh bolh Sales and 
Purchasing groups. Their systems rcly heavily on lhree data items: time, cost, and 
quantity. C+t offers standard data typcs lhat can effcctively handle quantity, but 
lhere are no data typeS to handlc dates or money. In lhis lab, you will define a date 
structurc. 

Estimated time to complete this lab: 20 minutes 

1 'i 



24 Lab 5: Uslng Structures la Encapsulare Data 

Exercise 1 
Declaring and Accessing Data in a Structure 

Summary 

An incomplctc sourcc file, DATES.CPP, cxis!S in thc 'STUDENTILAB05 
subdircctory. You '11 writc a structurc to store date information ande reate a function 
to display the date in a format you prefcr. 

Step 1 
Define a Date structure with storagc for month. day, and ycar as data membcrs. 

Caution You may be temptcd to use thc char data typc to store thc da y and 
month variables because they havc small ranges. (Calcndars typically havc 31 or 
fcwer days pcr month and 12 months per year.) Fight that temptation! In thc futurc, 
you m ay want to pcrform opcrations that cxcced thc rangcs allowcd by char. 

Step 2 
Declare a global instance of the Date structure, narncd dSolst ice, that represen !S 
this cemury's last surnmer solstice: June 21, 1999. 

Step3 
Declare a local instance of the Date structure narned dToday (within ma in, no 
initialization). 

Step4 
Assign values to each member of dToday to represent today's date. 

Note The answer solution shows today as 9(2'111994. 

Step5 
Examine the DisplayDate function.looking at the prototypc at the top of the 
sourcc file and the calls inside of main. Write the function DisplayDate to 
display the Date structure passed asan argumem. Use simple literals to delimit 
fields (such as"-" or "/") for now. We'll revisit this lab later to improvc thc 
display. 

Step 6 
Build, execute and test your final solution. 

This objective 

Declare a structure 
Assign values to structurc members 

Access the coments of a structurc's 
members 

W as met by ... 

Step 1, Stcp 2, Step 3 

Step4 

Step 5 



Lab 6: Creating Classes and Member 
Functions 

Objectives 
At !he end of this lab, you will be ablc to: 

• Create a simple class using acccss specificrs. 

• Write multiplc Gel mcmber functions that rctricvc valucs of class data 
members. 

• Write a Set member function that modifies (assigns or mutatcs) class data 
membcrs. 

• Write a Display member function that managcs output of data. 

• Write a constructor member function to initializc data members. 

• Write a destructor mcmber function to pcñonn cleanup. 

Scenario 
Using classes to encapsulatc data members and membcr functions allows your 
system to integra te !he methods that managc !he data 's behavior. The acccss 
spccifiers, public and prívate, allow !he class dcsigners to control !he interface to ·
!he class, locking out ill-bchavcd programs. 

Knowing !he intemational nature of your company, you're conccmed about !he 
approach your group should takc to date-handling. Many opcrating systcms. such as 
Microsoft~~> WindowsN, offer hclpcr routines for fonnatting dates, time, currencics, 
and so on. Eventually, your inventory systcm will be running on Windows-but in 
!he intcrim, another solution nccds to be deviscd. 

Estimated time to complete this lab: 45 minutes 

\ ~ .. 



26 Lob 6: Creotlng Closses ond Member Funcllons 

Exercise 1 
Writing a Simple Date Class 

An incomplcte source file. DATETEST.CPP, cxists in !he \STUDEN1\LAB06 
subdirec!Ory. You'll write a Date class wilh constructor, destructor, Get, Sel, 
and Display member functions 10 handle data. 

Step 1 
Loe ate !he hcader for !he class, Da te. The delinition for !he class is incomplete. 
Overall, lhis class will have Display, GetMonth, GetDay, GetYear. and Set 
mcmber funclions. Thc Set func!ion will rcceive lhrec integcr variables and assign 
values 10 !he data mcmbers m _nMonth, m_ nDay, and m_ nYear, rcspcclivcly. 

Complete !he class dclinilion. Pr0101ype all member functions 10 allow acccss 10 !he 
interface, but hide all data members from dircct manipulation. 

Step 2 
The Display function should output !he lhrce data members in a formatlhatlits 
your headquaner' s date and lime rcponing standards. U you 're unsure aboutlhose 
standards, use an MMJDD/YYYY formal. 

Step3 
Three member functions, GetMonth, GetDay, and GetYear, are necded lo allow 
conlrolled access 10 each data member. Ama in function lhat invokcs lhcsc lhrcc 
functions has been providcd. (Y es, lhis interface may be modifted in futurc 
implementations, butlhcsc func!ions are sufftcient for now.) 

Step4 
Your Set function should accept lhrcc values and initialize !he lhree data members: 
m_nMonth, m_nDay, and m_nYear. 

Step5 
Locate !he main funclion lhat has bccn provided. The statcments !ha! follow ''TO 
DO #5" are coded 10 referencc an exisling local instancc of !he Date class: 
dMyDate. 

Add a statement to instamiate a Date objccl named dMyDa te. 

Step6 
In Step 2, you created a Display member funclion. To exercise !he lhrcc Get ... 
funclions, write a statemem lhat outpu!S !he lhrcc data members in an alternatc 
formal. U your Display function ordered !he member MIO/Y. cilhcr D/M/Y orO
M-Y would be acceptable. 

Step 7 
Build, executc, and test your applicalion befare conlinuing lo Exercisc 2. 



Lab 6: Creatlng Classes and Member Functlans 27 

Exercise 2 
Adding Constructors and Destructors to a Class 

Prerequisites 
Exercise 1 should be complete and pass testing. 

From the File menu, choose Save As. From the Save As dialog box, edil the 
filename to DATETST2.CPP. Choose the OK buuon. 

Scenario 
What was odd about the output from Excrcise 1? 

The output from the first Display funclion showed "undelined valucs"' for the 
uninitialized Date object. Obviously a better solution exists-controlling the 
creation and deletion of the Date objccts. 

Step 1 
Within the Date class, add a simple, no-argument constructor. 

Below the class dclinition, add the body of the constructor function. lt should output 
thc message "Da te C' tor: \n" and iniualize al! membcr data 10 zcros. 

Step2 
Within the Date class, add the prototypc of a destructor. 

The destructor should out pul the mcssagc "Da te D' tor: \n". 

Step 3 
Build, execute, and test your application. Notice the differences in output. 
Previously, the uninitializcd Date displayed undelined results. Docs your solution 
irnprove that display? 

U time permits, continue to Excrcisc 3. 

Exercise 3 (Optional) 
Verifying That Your Data ls Secure 

Prerequisites 
Exercise 2 should be complete and pass tcsting. 

From thc File menu, choosc Save As. From the Save As dialog box, edil the 
filenarne to DATETSTI.CPP. Choosc the OK button. 

Scenario 
You ha ve a class that supposcdly encapsulatcs and protccts your data. Prove it. Add 
statements that try to dircctly manipulate the data. 

'' 



28 Lab 6: Creatlng Classes and Member Functlons 

Summary 

Step 1 
Within main, add a statement to declare another Date structure. Something likc this 
will do: 

Date ErrorDate; 

Step 2 
At !he end of main, add statement(s) to dircctly changc Date data membcrs. Thcy 
mightlook like this: 

ErrorOate.m nMonth • 10; 
ErrorDate.m_nDay +• 1 + ErrorDate.m_nYear; 

Compile your application. Lag !he error nurnbers and messages bclow. 

Error Code: Error Message: 

This objective 

Create a simple class using acccss 
specificrs 

Writc a Set member function that 
accesscs class data mcmbcrs 

Write a Display member function that 
manages output of data 

Writc a Get mcmber function that 
initíalizcs class data mcmbers 

Writc a constructor mcmber function to 
irtitialize data mcmbers 

Writc a destructor member function to 
pcrform clcanup 

Was met by ... 

Excrcise l. Stcp 1 

E•crcisc 1, Stcp 4 

Excrcise 1, Step 2 

Excrcisc 1, Stcp 3 

Excrcisc 2, Stcp 1 

Excrcise 2, Step 2 



Lab 7: Tuning Y our Member 
Functions 

Objectives 
At the end of this lab, you will be able to: 

• Write overloadcd constructors. 

• Use default argumeniS. 

• Use inlining to malee your codc run more efficiently. 

• Use colon initialization for efficient objcct initialization. 

Se en ario 
Based on your inventory systcm design, numerous small changes ha ve bccn 
implcmented in othcr systems that Wlll interface the invemory system (especial! y the 
purchasing and sales order systems.) 

The new purchase order system was purchascd and installcd, and it has bccn well 
rcceived. The purchasing manager stopped by to thank you for your assist.ance 
installing that system-a job well done. "About the only trouble we 've encoumercd 
has becn order-emry errors on purchase-order dates. Sometimes a date field is 
skipped and unexpcctcd values are fillcd in by the purchasing systcm." The 
purchasing manager left after issuing a tcaser: 

"1 hope the invemory system is smarter about dates ... " 

Back at your desk, you recall that purchasc orders may be triggcrcd automatically 
by thc inventory systcm, but may be hcld pcnding approval. Thcrefore. purchasc 
orders may be cut with the current date, or entcrcd with eithcr a current ora futurc 
date. · 

You'll write a Date class and test application that handles the currcm date issuc and 
avoids dates with invalid ficlds. Your Date class will fill in rnissing ficlds using 
toda y 's date whether one, two. or al! three fields are missing. U thcre is no initial 
value supplied, it should dcfaultto today's date. That will also allow ordcr<ntry 
personnelto skip entry on dates if they wanttoday's date for an order. 

Estimated time to complete this lab: 45 minutes 

' -. . -



30 Lab 7: Tunlng Your Member Functlons 

Exercise 1 
Using Overloaded Functions and Default Arguments 

A complete source lile, TODA Y.CPP. is in Lhe \STUDENT\LAB07 subdircctory. 
Exccute Lhis program so Lhat you are familiar wilh Lhe issues Lhc purchasing 
manager raiscd. 

Step 1 
At stanup, Lhe test applicalion prompts Lhc user to emer today's date. Thc global 
funclion GetCurrentDa te is invokcd. Thc body of Lhc function consists of Lhe 
lastlines wilhin Lhis source file. 

Add Lhe prototype for Lhe GetCurrentDa te function. ll takes no arguments and 
has no retum value. 

Step2 
The GetCurrentDa te function sets lhree global variables: nCu rrMon, 
nCurrDay, and nCurrYear. Add a statemcmto declare lhosc global variables. 

Step3 
Locate lhe class Date and lhe four prototypes of overloaded constructors. The no
argumem constructor allows a Date objcct to be creatcd wilh all zeros. Thc onc
and two-argumem constructors allow parlial dates wilh zcro ficlds. (Whilc zero is a 
rcasonable lill-valuc for an incomplctc date, lhosc fields must be corrcctly 
completed during Date construction.) 

First, determine how lhose constructors could be overloaded to a single constructor 
wilh default arguments of value zero. (Y es, you should slill allow zeros-Lhe body 
of lhe constructor will replace lhem wilh currcnt date values.) A single constructor 
with lhree default arguments may be called four different ways. 

When you are satislied wilh your new constructor prototypc, eilhcrcommem or 
delete the old prototypes. 

Step4 
Locate the definitions for the four Date constructors. The default (no-argument), 
one-, and two-argurncnt constructors all assigncd a zero value to any data member 
lhat was not passed a value. The lhrcc-argumem constructor, Date: :Da te ( int 
M, int D, int Y) assigned lhe parametcrs to lhc data members. 

Write lhe body of your new constructor from Step 3. For eai:h data member, 
determine whether the value of the parameter is valid. If the passcd value is zero, 
assign lhe appropriate global variable from Step 2 or accept the user input. 

Step5 
The four original constructors for Da te rcmain. Eithcr commcm or deletc lhosc 
functions. 

Step6 
Build, execute, and test your application befare continuing to Exercisc 2. 



Lab 7: Tunlng Yaur Member Funcflans 31 

Exercise 2 
lnlining Functions 

Summary 

Prerequisites 
Exercise 1 is complete and passcs tesling. 

From Lhe File menu, choosc Save As. From Lhe Save As dialog box. :dit Lhe 
filename lo TODA Y2.CPP. Choosc Lhe OK buuon. 

Scenario 
Your test application handles Lhe current date issue and avoids dates wilh zeros. 
Your class could be tuned a bit more. 

Step 1 
Locate Lhe class Da te and Lhe protmypes of all member functions. Determine which 
funclions are candidatcs for inlining lo avoid Lhe overhead of function-call 
proccssing. 

Your soluüon may use eilher implicit or explicit inLung conventions. 

Step 2 
Locate Lhe class Date and ilS single cons1ruc1or. The conslructor acceplS Lhrcc 
valucs as pararneters. Dcpcnding on Lhe valucs, !he body of !he constructor eilher 
assigns !he pararneter or !he slatic data mcmber. Thc colon inilialitalion symax is 
more efficient !han !he assignmcnt statcmcm. 

Your solution should use colon initializalion in !he conslructor. 

· Since lhe assignmcnt lo !he data members occurs prior lo !he body of lhe 
conslructor, !he body of !he conslructor can be changcd to simply test for zcro data 
members. If a zcro value is encountercd, assign !he appropriate value from !he 
global variables. 

Step3 
Build, exccute, and test your application. 

This objective 

Write overloadcd constructors 

Use default argumems 

Use inlining to makc your cede run more 
eflicien~y 

Use colon initiaJization in consttuctors 

Was met by ... 

E.<crcise 1, Step 3 

Excrcise 1, Stcp 5 

Excrcise 2, Stcp 1 

Excrcise 2, Stcp 2 



Lab 8: Static Class Members 

Objectives 
At the end of lltis lab, you will be able to: 

• Use and intialize static membcr data. 

• Use static member functions in classes. 

Scenario 
The previous Date program solved the invalid dala problems-assuming the user 
entered a corrcct dale when the test program staned. 

A few additions to the Daie class could allow the class to ask the opcraling system 
for the current date. Using static membcrs, all Date objccts could be constructed 
with currcnt, val id ficlds on startup. 

You'll modify thc Date class, and use a static membcr fWiction and mcmbcr data to 
handlc the currcnt-date issuc. 

Before You Begin 
There's a big-picture issue to considcr. Which opcrating system are you going to 
ask for today's date? FonWJately, C++ programmers are somewhat protccted from 
the opcrating system. Libraries of functions that are tuned for various opcrating
system plaúorrns already exist. 

The classroom machines may be ruMing MS.DOS41 vcrsion 5.0. 6.0, or abovc, 
with either Windows 3.0, 3.1, or above or Windows For Workgroups 3.1 or above. 
Alternately, this course may be prescnted without MS-DOS at al l. Microsoft 
Windows NTN could be used ins!Cad. 

Two options exist: either call a standard C or C++ language library function, or 
create an object by using the Microsoft FoWidation Class library. Both ways, you'll 
get accurate date inforrnation. If you use the language-library method, you '11 codc 
multiple lincs using either a pointcr toa structurc ora binary bit-shifting tcchnique 
to get !he data. If you use the MFC library, you '11 nced one-linc toe reate and 
initialize a CTime object. 

Welcome to MFC. 

Estimated time to complete this lab: 30 minutes 

¡,_ 



34 lab 8: Statlc Class Members 

Exercise 1 
Using Overloaded Functions and Default Arguments 

A complete source file, TODA Y3.CPP, is in thc \STUDEN'J\LAB08 subdircctory. 
lt is roughly equivalem to the last date lab program. Thc .EXE file in this dircctory 
conforms to thc solution for this lab. You should exccute it so that you are familiar 
with thc new prograrn now. · 

Step 1 
The last version of this application prompts the user to enter today's date by calling 
the GetCurrentDate function. That should change, two diffcrem ways. 

l. Move the prototype for the GetCurrentDate function from the global arca to 
within the class Date. 

2. Modify the prototypc. The function still takes no arguments and has no retum 
value-but it is only called once for the class, and only modifies static data. 

Step2 
The old GetCurrentDate function set values for three global variables: 
nCurrMon, nCurrDay, and nCurrYear. That should change thrcc ways. 

l. Move the declaration within the private area of class Date. 

2. Modify the declaration so that one copy of each variable exists for the class. 

3. Optionally (but still highly recommended), modify the variable narnes to rencct 
their new scope as members of class Date. 

Step 3 
Static data members must be irtitialized at file scope. Below the definition of class 
Date, initia!ize each static member to zcro. Match the variable narnes from Step 2. 

Step4 
Locate the body of the three-argument Date cons1ructor. The prototypc listed default 
arguments. The definition includes colon initialization. The body of the constructor 
determines whether the value ofthe data member is non-zero. That's all fine, except 
that Step 2 had you change thc global narnes to member narnes. 

With the consuuctor, match the variable narnes from Stcp 2. 

Step5 
Locate GetCurrentTime. lt has been moved above main (as of Step l, it's now 
pan of Date). Rather than asking the user to enter today's date, your program can 
get the currem date from the MFC class CTime. Three changes are nceded. 

l. Change the defmition of thc function from file scopc to class Date scopc. 

2. Declare a CT ime object narned tm, initialized using the CTime static member 
function GetCurrentTime. 



Summary 

Lab 8: Stallc Class Members 35 

Hinl Enter CTime and press the Fl key. In the Scarch dialog box, selcct the 
MFC Libr:uy and choose the OK button. Use Help to find the CT ime mcmbcr 
GetCurrentTime example. You don't gel extra credit for original code: copy 
the example. You dcserve extra credn if you can copy and paste the example. 

3. Use the tm objcct and CT ime mcmbcr functions to assign the current date value 
to cach static data mcmbcr. The GetDay example shows the thrcc acccssor 
f unctions yo u nccd. 

Step 6 
Loca te the call to GetCurrent Time within main. That function may exccute 
befare any Date objects are creatcd. 

Change the line to call the Date class GetCurrentTime function. 

Step 7 
Build, execute, and test your application. The addition of tlte MFC includes rcquircs · 
an additionallibr:uy in the build proccss. From the Options menu, choose Projcct. 
From the Projcct Options dialog box. choose the Linker buuon. In the Ltbraries text 
box, add the library mafxcr for a releasc mode projcct. 

fhis objective 

Write overloadcd consuuctors 

Use default arguments 

Use static functions 

Use inlining to make your code run more 
efficiently 

Was met by ... 

Exercise 1, Step 1 

Exercisc 1, Step 5 

Excrcise 1, Steps 2, 3, and 5 

Excrcisc 2, Step 1 



Lab 9: Containment and Embedded 
Objects 

Objective 
Atlhe end of lhis Jab, you wiJJ be ablc toe reate a class lhat comains anolhcr class. 

Scenario 
Your developmem tcam at ISM has produccd a fcw of lhc building blocks for an 
inventory system, specificaJJy a Date class and a Moncy class. Thc invcmory 
system wiJJ comain lhose classcs anda pan-idemification class lhat hasn 't bccn 
created yet. Wilh lhese lhree building-blocks, you decide to crcatc a simple 
Inventory class comairting lhc abovc classes. 

Estimated time to complete this lob: 30 minutes 



38 Lab 9: Conlalnmenl and Embedded Objects 

Exercise 1 
Embedding Objects 

A complete source file, INVENTRY.CPP, is m lhe \STUDEN1\LAB09 
subdircctory. lt has two classcs. Date and Money, roughly cquivalentlo earlier lab 
and demo prograrns. Your new version will add a new, simple PartiD class, and 
cmbcd alllhrcc classcs imo a new, simple Inventory class. 

Step 1 
Locate lhe class Money. Notice lhat it has a no-argumem anda two-argumcnt 
constructor (bolh int argumems). 

Locate lhc class Date. From a previous lab. you know lhe constructor for lhis class 
accepts Oto 3 integers and may assign components of lhe currcm date to zero fields. 

Locate lheclass Inventory. Above lhis definilion. you'll write a new class, 
PartiD. 

Your class, PartID, should be very simple. The class will be revisitcd in future 
labs. To avoid data errors (as occurrcd wilh Dates), you decide lhat PartID should 
no1 ha ve a no-argument constructor. Write a one-argumem constructor lhat 
efficiently initializes lhe class's priva te data member, m_ nPa rtNbr. Thc 
constructor should display a mcssage when it runs. 

Step 2 
Write a class destructor lhat displays a message when it runs. 

Step 3 
Write a Display member function lhat displays lhe value of lhc privace member 
m nPartNbr when called. 

Step4 
Locate lhe class Inventory. This class is partially complete. The dcclaration for 
lhc constructor is missing. Writc lhc formal dcfmition for lhc constructor so lhat it 
receives seven intcgers and efficiemly initializcs lhc data membcrs. 

This version of lhe Inventory class has four data mcmbers: 

• an integer, m_nQuantity 

• a PartiD object, pPartNbr 

• a Money object, mCost 

• a Date object, dOrig 



Summary 

lab 9: Contalnment and Embedded Objects 39 

Step 5 
Loca te lhe ma in function. Declare an Invento "Y objcct named iOakMi ""o" 
wilh lhc following bcginning invcmory: 

• Quanlity 100 

• Pan Nwnbcr: 5 

• Cost: $50.00 

• Origination: today's date 

Step 6 
Build, cxccute, and test your application. The use of lhc MFC library for !heCT ime 
objcct rcquires an additionallibrary in !he build proccss. From thc Options menu, 
choose Projccl. From !he Projcct Options dialog box. choose !he Linkcr buuon. In 
lhc Libraries text box, add !he library mafxcr for a relcasc mode projcct. 

This objective 

Create a class lhat contams a sct 
of rclatcd classcs 

Was met by .•. 

Exercisc 1, Stcps 1, 2, and 3 



Lab 10: Working with Inheritance 

Objectives 
At the end of this lab, you will be ablc to: 

• Use public inheritancc. 

• Extend a base class. 

Se en ario 
The intcmational naturc of !.S.M .. Inc. poses a problem whcn it comes to 
purchasing parts through Part Ordcrs. Thc domestic supplicrs providc parts with 
unit cost information. Intcmational suppliers frequcntly providc cost informauon 
bascd on a forcign currcncy, and thcy typically statc an cxchangc ratc. 

Thc base class PartiD maintains thc part numbcrs uscd for purchasing and 
rccciving. Thc PartiD and thc unit costare both uscd in thc invcntory systcm. 

Estimated time to complete thls lab: 30 minutes 

'1 



42 Lab 1 0: Worklng wllh lnheritance 

Exercise 1 
Extending a Base Class 

A skclcton application, PARTCOST.CPP. cxists in thc \5TUDEN1\LAB 1 O 
subdircctory. The base class, PartID, is complete. There is al so an exisling 
derivcd class, DomesticPart, that is ncarly complete. You will fimsh the 
DomesticPart dcrivcd class and crcate another dcrivcd class: 
ImportedPart. 

Step 1 
Open and examine the file PARTCOST.CPP. The PartiD base class maintains 
PartNbr and includes a Display funclion. 

The DomesticPart class inherits from PartiD and includes one data member: 
m nUnitPrice. 

Locate the DomesticPart Display member function. Complete this function. 
Overall, the output should list 

PN: nn Price: ppp 

wherc nn is the PartID and ppp is the unit price. (lt is rccommcndcd that you 
use the DomesticPart Get function). PartID IS thc private mcmber of the 
base class. The value is available through the Get ID member funclion, and the 
tirst portion of output is provided by thc Display function. Eithcr way, you 'll be 
calling the base class. 

Step2 
You will complete a ncw dcrived class, ImportedPart, that has two data 
mcmbers: m_nUnitPrice and m_nE:xchangeRatePct. 

Examine the constructors and destructor for the DomesticPart class. In a 
similar fashion, the ImportedPart class should build a base class objcct. 

The ImportedPart Display funclion also should list 

PN: nn Price: ppp 

where nn is the PartiD and ppp is the unit price. (lt is recommcndcd that you 
use the GetUnitPrice function rather than access the member data d1rectly.) 

Final! y, complete the accessor function, GetUnitP rice. lt must calculatc and 
rctum the appropriate part pricc bascd on the equation 

(UnitPrice ~ ExchangeRatePct 1 100) 

Step3 
Within the main funclion, declare a DomesticPart objcct with a PartiD of 2 
anda unit price of lO. Declare an ImportedPart with a PartiD of 3, a unit 
price of 1 O, and an exchange rate of 120%. 

Step4 
Build, execute, and test your application befare conlinuing to Exercise 2. 
Exercise 2 is oplional. Close all source and headcr files befare conlinuing. 



Lab 1 0: Worklng wlth lnheritance 43 

Exercise 2 (Optional: Complete in open lab time) 
Extending Another Class 

ScEmario 
Your MIS Manager has offered the use of contract programmers for the shon
tenn necd of completing the prototype lnventory System. You realize that the 
current payroll package includes just salaried employees denoted as permanent. 
The contractors don't match the job descriptions typically classified as 
"temporary," dueto payrolltax and insurance bcnefits. 

You have time to CÍ<tend the temporary employee classification to meet the 
reporting necds for contract programmers. The majar variation is hourly pay 
versus a salary. Contractors, paid monthly, also rcceive double-ume for hours 
o ver 160 pcr month. 

A skeleton application, EMPLOYEE.CPP. exists in the \STUDENl\LAB 10 
subdirectory. The base class, E:mployee, embcds the Date class from previous 
modules. There is also an existing dcrived class, Permanent. 

Step 1 
Open and examine the file EMPLOYEE.CPP. Thc Date class occurs first; it is 
embcddcd in E:mployee. Thc E:mployee class maintains the date of hire for 
each cmployee. The Permanent class inherits from E:mployee, and includes 
·ane data membcr for monthly salary. 

You will create a new class, Contractor, that has two data mcmbcrs: 
m nHourlyRate and m nHours. Examine the constructors and destructor for 
thc Perrnanent class. Your new class should include acccssor functions for cach 
data membcr: GetRate, GetHours, and SetHours. 

Note Hourly ratc is "set" at time of hire (also known as contractor construction.) 

Additionally, the membcr function to generate the contractors' monthly pay, 
Paycheck, must calculate at double-timc ratcs for hours greater than 160. 

Step2 
Within thc main function, declare a contractor object, cont l, with a starl date of 
1/4/1994 anda $12 hourly rate. 

Step 3 
The con tractor worked l 80 hours. Sct that amount. 

Step4 
Examine thc lincs in rnain where the Perrnanent cmployee is "paid." In a 
similar fashion, "pay" the contractor. 

Step 5 
Build, cxccute, and test your application. The CT irne class rcquircs thc AFX 
library in the build process. From the Options menu, choose Project. From the 
Projcct Options dialog box, choosc the Linker button. In thc Librarics text box, 
add thc Jibrary mafxcr for a relcase modc pro¡ect. 



44 Lab 10: Worklng wllh lnherHance 

Summary 
This objective 

Use public inheriUIJ1ce 

Extend a base c\ass 

Was met by •.. 

Excrciscs 1, Stcp 2; Excrcisc 2, Stcp 1 

Exercises 1 and 2 



Lab 11 : Managing Projects 

Objectives 
At lhe end of lhis lab, you will be able to: 

• Use various melhods to divide header files from source code. 

• Use and creatc project .MAK files to manage multiple files. 

Scenario 
You will revisitlhe lnventory application from earlicr modules. You will 
investigate the process of splitting a large source file into logical class componcnts 
(header files) and test programs (source-code files). 

Estimated time lo complete this lab: 30 minutes 

' 



46 lab 11: Managing ProJects 

Exercise 1 
Source vs. Header Files 

A complete source lile, INVENTR Y.CPP, is in lhe \STUDEN1\LAB 11 
subducctory. lt's lhe solution from a previous lab. lt has four classcs: Date, 
!1oney, ?artiD, and Inventory, plus a main function lo declare one inventory 
item. This lile does n01 have any TO DO steps listed in lhc source file. 

Note You should clase all source and header liles (and olher windows opcn in lhe 
Visual Workbench) befare cominumg. 

The instructions in Steps 1 lhrough 3 prescntlhrcc distinct ways to copy data from 
one wmdow to anolher. Windows expcricnce is nota prercquisite for lhis course, so 
lhese stcps spcll out sorne tcchniqucs lhat may alrcady be familiar lo you. lf you 
ha ve a preferred way of editing and working wilh tcxt, fecl free to go about it in 
your own way. lf you are unfarniliar wilh lhc Windows environment, try cach of 
lhese melhods. Then use lhe one you prefer in lhe rcmaining stcps. 

As wilh previous labs, yo u will go to lhe File menu and choose Open. 

Step 1 
This step uses lhe keyboard to selcct and manipula te code. 

l. In lhe INVENTRY.CPP source file,locate lhe class Money. 

2. Select all of class Money, including lhe blank line after lhc class delinition. To 
sclectlhe code you wish to copy, position lhe cursor atlhe blank line above 
class Money. Press and hold lhe SI IlFT key. Wilh lhe SlllfT key deprcsscd, 
use lhe DOWN ARROW kcy to sclectlinc after line in lhe source file. (Sclectcd 
text is highlighted on lhc scrccn.) Releasc lhe SI IlFT kcy. 

The selected text remains highlightcd. 

3. Copy lhehiglllighted text to lhe Clipboard. Al..T+E displays lhe Edil menu. The 
Copy conunand is chosen wilh ALT..C. 

The Clipboard temporarily holds data so lhat it can be pasted (insertcd) 
anywhere in any Windows-bascd file. When you use lhe Cut or Copy command 
to place data in lhe Clipboard, lhe Clipboard clears any previous contents and 
lhen holds lhe new data for pasting. (Simply deleting text docs not place it in lhe 
Clipboard.) 

4. Open a new window. (1llat is where you will paste lhe text from lhc Clipboard.) 
ALT+F displays lhe File menu. ALT+N chooscs lhc New command, which opens a 
newwindow. 

A window labeled <2> UN1TILED.I appcars. The cursor is blinking in lhe 
upper-left comer of window 2, which shows lhat it is lhc active window. 

5. Paste lhe coments of lhe Clipboard into lhe new window. Again, Al.. T+E displays 
lhe Edil menu; ALT+P chooses lhe Paste command. 

The text should appear in lhe ncw window. lf lhe text for lhe Money class docs 
not appcar, repeat Step 1 from lhe beginning. (1lle following step tclls you how 
to relUrn to lhe INVENTRY.CPP source window.) 



Lab 11: Manag1ng Projects 47 

6. To relum 10 !he JNVENTRY.CPP source window, use ALT+l (ALT and numeric 
one-lhe window numbcr). 

7. To de1ele !he Money c1ass code from INVENTRY.CPP, verify lhal il is still 
selcc!ed. Press •he DEL key (labcled Delele on sorne keyboards) 10 remove !he 
sclccted code from !he file. 

Step 2 
This slep uses !he mouse lo cu1 and paste !he code for class Da te. 

l. In !he INVENTRY.CPP source file, locale !he class Date. 

Only class Date uses !heCT ime functions. Time dala and funclions are fully 
encapsulaled wilhin Date; lhey are n01 refercnced anywhere clsc wilhin 
INVENTRY.CPP. 

2. Selectlhe ponion you wish 10 cul and paslC: !he cmire Da te class. Use !he 
mouse lo pos ilion !he cursor atlhe s1ar1 of !he 1 i fde f. _ WINDOWS s1a1emem 
above class Date. Click and hold down !he lefl mouse buuon. Drag !he 
mouse poimer lower and.lower in !he window. Lines of codeare selccled as you 
scroll by. Cominue lo drag and sclec1 all of class Da te, including !he blank line 
below !he GetTodaysDate membcr funclion. 

Release !he mousc buuón. The arca will remain highlighled. 

Scrolling Tip You can conrrol scrolling spced wilh !he mouse. Did you notice 
lhal as you approached !he bouom of !he souree window, !he window scrolled 
more quickly? Jf you wan1 scrolling 10 slow down or reverse ilSelf, move llte 
mouse 10 a higher position in !he window. The spced wilh which you move ll1e 
mouse affeclS scrolling spced. loo. 

3. Oick !he Edil menu and choose Cut 

The 1ex1 is cul from lhis file and held in !he Clip board for pasting. 

4. To open a new file, click !he File menu. Choose New. 

A window labeled <3> UNTJTLED.2 appears. Thc cursor is blinking in !he 
upper-1efl comer of window 3. Thal shows lhallhe new window is !he active 
window. 

5. To pasle !he contenlS of lhe Clipboard inlo lhe new window, click lhe Edil menu. 
Choose Pasle. 

If lhe 1ex1 does nol appcar, ask !he insuuclor for assistance. 

6. 1f !he lexl appeared as expccled, use ALT+I 10 rclUm lo !he INVENTRY.CPP 
source window. 

Notice lhallhe Date class was dcleled from lhis file by lhe cul opcralion. 

:¡ 



48 Lab 11: Managlng ProJects 

Step 3 
This step performs the cut and paste operations in a combination of mouse and 
keyboard shoncuts. 

Note You can learn any Windows-bascd shoncuts by looking at the mcnus. To 
display a particular mcnu, prcss ALT plus thc undcrlincd lcttcr in the dcsircd mcnu. 
For cxarnple. since thc r- in thc File mcnu is undcrlincd, you know that ALT +r- will 
display the File menu. When you display a menu, you will sec that sorne of the 
commands ha ve shortcut key combinations 10 the right of thcm. Those are the 
acceleraror key combinations that will be uscd in Step 3. Accelcrator kcys carry 
out operations without displaying a mcnu or its commands. 

l. In the INVENTR Y.CPP source file, locate the class PartiD. 

2. Use the mouse to select the en tire PartID class. Pos ilion the mouse pointcr on 
the blank line just above class PartID. Click and hold the left mouse bu non. 
As you did in Step 2, drag themousc pointer down the scrccn, sclccting codc as 
you go. Select all of the PartID class, including the blank line aftcr the class 
definition. 

Relcase the mouse button. Thc sclection remains highlightcd. 

3. Use the Cl1.+X kcy sequence to cut the sclcctcd text and place it in the 
Clipboard. 

4. Use the CilU.+N key sequence to open a new file. 

A window labeled: <4> UNTITLED.3 appears. It is the active window; thc 
pasting operation you 're about todo will place the texl in thc active window. 

5. Use the cnu..v kcy sequencc topaste the text. If the tcxt does not appcar, ask 
the insuuctor for assistance. 

6. To retwn to the INVENTRY.CPP coursc window, use the ALT+l key scquence. 

The PartID class was already deleted from this file by the cut opcration. 

Step4 
Use any of the procedures in Steps 1, 2, or 3 to carry out this step. 

l. Locate the class Inventory. 

2. Select the class Inventory. 

3. Copy or cut the selcction to place it in the Clipboard. 

4. Start a new file. lt will be <5> UNTITLED.4 if you have pcrfonncd all of the 
steps. 

5. Paste the contenlS of the Clipboard 10 insert the Inventory class in the new 
window. 

6. Use ALT+I to retum 10 the INVENTRY.CPP window. (lf you uscd the copy 
command to pul the text in the Clipboard, you must still delete the selcctcd text 
from the INVENTRY.CPP file. Use the DEL key to delete it.) 

Step5 
l. Use ALT+S to retwn lo the <5> UNTITLED.4 window. 

2. At the top of this file, add a comment describing this header file as 
INVENTRY.H. 



Lab 11: Managlng Pro)ects 49 

Step 6 
Does the main function know about Partid? or Mane y? or Date? The answcrs 
are "no," "no," and "a liulc." Thc ma in function pcrforrns one picce of 
housekccping Lo initialize thc static variables u sed by Da te (and we '11 get rid of 
that soon.) With most answers as "no," should ma in include thcsc .H files? No. 

l. Add staLements in INVENTR Y.H to include the following: 

MONEY.H 

DATE.H 

PARTID.H 

These files will be in the currcm directory. Docs that change your in elude 
sLatements? 

2. Save the file by going Lo the File menu and choosing Save As. 

The Save As dialog box appcars. 

3. Press the oa ko.y once to·clcar thc filcname extcnsions. In thc File Name tcxt 
box, enter the narnc inventry.h. (Note that there is no "o" in the filcnamc.) 

4. Press ENlCR (or choose the OK bullan). 

Step 7 
1. Use ALT+2 Lo change to the Mane y class window. 

2. Add a comment at the top of the file dcscribing itas MONEY .H. 

3. Use AL T +F and then AL T +A to invoke the Save As command. 

The Save As dialog box appcars. 

4. Press the oa key once to clcar the filename extensions. In the File Namc tcxL 
box, enter the name money .h and prcss ENlCR (or choosc the OK button). 

Step8 
l. Use ALT+3 Lo change to the Da te class definition. 

2. Add a comment at the top of the file dcscribing it as DA TE .H. 

3. Add a second commentlinc that notes this filc's use of AFX.H. 

4. Use the CTRL+S kcy sequencc to invoke thc Save As dialog box. 

Note CTRL+S is usually just Save, but this file has not bcen namcd or savcd yct. 
Visual Workbcnch prcscnts a Savc As dialog box in anticipation of your naming thc 
file. 

5. Press the oa key once to clcar the filcname cxtcnsions. In thc File N ame text 
box, entcr the narnc date.h and prcss EN'IER (or choosc thc OK button). 

Step 9 
l. Use ALT+4 to changc to thc PartID class definition. 

2. Add a comment at the top of the file dcscribing itas PARTID.H. 

3. Save the file as PARTID.H. 

8 



50 Lab 11 : Managlng ProJects 

Exercise 2 

Step 10 
You can save all of lhe open files at once. From !he File menu, choose S ave All. 

Step ·11 
l. Use ALT+Ito retum to lhe INVENTRY.CPP file. 

Does !he main funclion in INVENTRY.CPP know about our class Inventory? 
No. Docs it necd to know? Thc answer is easily "yes." ll conslruclS an objcct and 
invokes lhc Display membcr funclion. 

2. Add an include statcmem for INVENTRY.H. 

Step 12 
Build, execute, and test your applicalion before conlinuing to Exercisc 2. You 
should also closc all sourcc and header files (and olher windows opcn in lhc Visual 
Workbench) bcforc cominuing. 

Scope in Single Source Files 

Scenario 
Your retum visitto lhe Inventory applicalion was a good examplc of projcct 
managemem for sourcc and header files. Building an example wilh enough code to 
demand mulliple sources would take a long time-and it would take a long time 
justto presem !he problem. The two following cxcrcises use small codc files, but 
lhcy present an answer to Lhc ovcrall queslion of how to protcct or sharc bolh code 
and data across multiple sourcc files. 

A complete source file, SCOPEI.CPP, is located in lhe 'STUDEN1\LAB 11 
subdirectory. This program displays text conccming lhc visibility :ss"es wilhin a 
single source-file applicalion. 

Step 1 
l. Open lhe file, rebuild it, and execute lhc applicaúon. 

2. Expand lhe output window for !he program. Use eilher Maxirnizc or Sizc 
opúons for a window. Read lhe output as a rcfreshcr for scoping rules wilhin a 
single source file. 

3. Close lhis source file (and any olher windows Lhat are open in !he Visual 
Workbcnch) bcforc continuing. 



Lab 11: Managlng ProJecls 51 

Exercise 3 
Scope in Multiple Source Files 

Scenario 
As was memioned earlicr, this sccond scopc exercise uses small code files as you 
learn to protcct or share code and data across multiple source files. 

Two complete source files are locatcd in the \STUDEN1\LAB 11 subdircctory. 
Prior to opening the source files, we'll crcate a projcct file to control the build 
process. 

Step 1 
l. From the Projcct menu, choose New. 

The New Projcct dialog box appcars. 

2. In the Projcct N ame text box, typc scope2.mak. 

3. Press the TAB key twice to advance to the Projcct Typc box. Use the DOWN 
ARROW key to display the options. 

4. Select QuickWin Application (.EXE). 

Note Be sure the Use Microsoft Foundation Classes option is clearcd-that is, 
not chccked. 

5. Choose the OK button. 

The Edit dialog box appcars, listing severa! source candidates in the File N ame 
box. 

You'll be adding two files to this projcct. There are two ways todo it. 

6. Double-click the file narncd SCOPE2A.CPP. 

7. Select the SCOPE2B.CPP lile by clicking on it once. Then choose the Add 
buuon. 

8. Choose the Close buuon to complete the projcct. Notice that the title bar for 
Microsoft Visual C++- now includes the projcct narne, SCOPE2.MAK. No 
project components are automatically opcncd. 

Step2 
l. From the Project menu, choose Build SCOPE2.EXE. 

2. Execute the prograrn. Expand the output. 

3. Read the output to confirm concepts for scoping rules within multiple source 
files. 

4. Clase any source files and clase the projcct. 

9 



52 Lab 11: Managlng Pro)ects 

Summary 
This objective 

Use lhe apprapriate melhod for making 
header files from source code 

Use and crea te project .MAK Files to 
manage multiple files 

Was met by ... 

All lhrcc cx.crciscs 

Excrcise 3, Stop 1 



Lab 12: Manipulating Arrays 

Objectives 
At thc end of this lab, you will be ablc to: 

• Manage character manipulations using arrays and subscript notation. 

• Convcrt numcric data typcs to charactcr strings. 

• Writc a string-handling function. 

Scenario 
You 're very pleased with the status of a number of the samplc applications 
you'vc created. You should be! Still, it would be nicc-and much casicr on your 
cyes-to havc nicely formattcd output from your applications. A lcading 
currency sign with a string of digits is difficult to decipher. Separators would be a 
nice addition. 

Estimated time to complete this lab: 45 minutes 

10 



54 Lab 12: Manlpulatlng Arrays 

Exercise 1 
Adding Characters to a String 

A projcct file, MONEY.MAK, cxists in thc 'STUDEN1\LAB 12 subdirectory. lt 
uses a vcrsion of the Money class that is similar 10 previous modules. This project 
uses the files MONEY.CPP and MONEY.H. This vcrsion won't compile beca use 
main IS ceded 10 calla missing mcmbcr function, DisplayNurneric. 

Gct stancd by going to thc Projcct mcnu and choosing Opcn. Sclect 
MONEY.MAK. Click the far lcft button on the toolbar, the Project File bu non. lt 
displays the list of files that are uscd in this projcct. From thc list, sclcct a file 10 
opcn. 

Step 1 
l. Opcn the source file MONEY.CPP. 

2. Locate the call lo invoke the DisplayNurneric function within rnain. Thcrc 
is no return typc, and thcre are no arguments. DisplayNurneric is self
comained. 

3. Opcn the header file MONEY .H. 

4. Loe ate the class Money. The class constructors ha ve changed. 8oth 
constructors still assign values lo the data members. But there is a new 
statcmem in each that assigns a NULL character to the data mcmbcr 
szFormatted. 

5. Declare szForrnatted as a ncw prívate data mcmbcr with room for 20 
charactcrs. 

Step2 
Locate the DisplayNurneric mcmber function. lt contains simple 
conditionallogic to determine whether szForrnat ted comains information. 
lf it contains no information, thc function BuildNurneric is called to load 
the data. 

2. Add a prototypc for the BuildNurneric function. 

Overview of Steps 3-9 
The steps that follow are a rccommcndation. There are various ways 10 achicvc 
thc dcsired outpuL You may follow thcse stcps, or crcatc your own solution. You 
are strongly urged to design your solution using a notcpad and pcncil bcforc 
starting with the cede! 

Thc loop in Step 6 is the most challcnging algorithm in this lab. Charactcrs are 
transfcrred from szTernp and are mcrged with currcncy scparator charactcrs to 
load the szForrnatted string into an array. Thc logic for the loop could be 
picudo-ceded as follows: 

Loop from start of szTemp until thc fulllcngth ofthc string is proccsscd. 
Determine if current char in szTernp is an cven multiplc of 3 from 
the end of the string. 

lf true, assign a scparator char to thc ncxtlocation in szForrnatted 
Assign thc next char from szTemp 10 thc nextlocation in szForrnatted 

End of loop 



lab 12: Manlpulatlng Arrays 55 

Threc imcgers anda small character array are givcn wilhin BuildNumeric. 
iFormat is uscd lo indcx lhe szFormatted data membcr as characters are 
assigncd 10 lhal slring. i Temp indexes imo !he char array, szTemp. iLen is set 
lo lhe lenglh of s zTemp and used as a coumer/index for a loop lhallransfers 
digiiS and commas imo szFormatted. 

No currency displays bcgin wilh a separator. As a statemenl prior 10 !he loop, you 
m ay wantto assign lhe firsl character from s zTemp imo !he nextlocation in 
szFo rmat te d. Be su re 10 advance i Temp and iFo rma t as characters are 
assigned from one s1ring 10 anolher. 

For mosl currencies, !he separators occur every 3 digiiS. You may wamto use lhc 
modulus operator, %, 10 test for a lhird occurrence. Your loop should start atlhc 
bcginning of lhe s zTemp slring and advance lhrough all characters. mcrememing 
i Temp and iFormat and decrementing iLen. Eilher lhe value iLen or !he null
character in szTemp will be a stopping point. 

Step 3 
Begin wilhin BuildNumeric. Assign lhc currcncy symbollhat is appropriate for 
your currency lo lhc szFormatted slring. lf !he currency symbol occurs aftcr 
lhe arnoum, place your assigrunem at lhe bottom of lhis function. 

Step4 
Thc lDollars arnoum is a long. Convcrt the value of lDollars imo a slring 
using !he szTemp character array providcd, and base 10. Dcpending on lhe 
function you use, you may have to add an #include 10 lhis file. 

Onc rccommcnded solution is !he ANSI 1 toa function in lhe <stdl ib. h> file. 

Step5 
The location of !he currency separator characters dcpends upon lhc length (iLen) 
of !he character slring in szForma t te d. 

Determine !he lenglh of szTemp and savc !he valuc in iLen. 

Step6 
Loop lhrough szTemp, adding characters and commas to !he szFormatted 
slring as needed. 

For most currencics, !he separators occur cvery 3 digiiS. [f you want to test for a 
lhird occurencc, you could use thc modulus opcrator, %. Typically, cvcry 
itcration of lhc loop should takc a charactcr from szTemp to szFormatted. 
Whenever lhe remaining characters in szTemp arnoum toan evcn multiplc of' 
lhree, also add !he currency separator character. 

Step 7 
Assign the decimal separator imo szFormatted. 

,, 



56 Lab 12: Manlpulatlng Anays 

Step 8 
The cents display has becn disappoiming. Whcn lhe cents amount is less lhan 10. 
lhc ccnt amount has appcarcd wherc lhc "tcns" amoum should appcar. 

l. Convcn lhc valuc of nCent s to lhc string szTemp. Rcfcr to Step 4, if nccdcd. 

2. Inscn a conditional statement to cnsurc that a leading zero appcars whcn 
nccdcd. Your application must clearly diffcrcmiate betwcen .50 and .05. 

3. Assign lhe appropriatc charactcrs from szTemp lo szformatted. 

Step9 
Thc data member szforma t ted holds ail lhc visible charactcrs. Add lhc final 
character lhat makes it a safc string variable. 

Step 10 
Build, executc, and test your applicalion befare continuing to Exercisc 2. Clase 
any open files, andel ose lhc MONEY.MAK projcct befare continuing. 

Exercise 2 (Optional) 
Writing a Simple String-Handling Function 

Scenario 
Thc Purchasing group rcordcrcd forms and cnvclopcs for thcir purchasc ordcrs. 
Thesc ncw envclopcs havc an address window that is 15% smallcr lhan standard. 
Thc addrcss arca in lhe reprintcd forms is 20% smaller lhan in prcvious vcrsions. 
Thcy'vc requested new functionality lhat truncates a givcn string to accommodatc 
strings to a given lenglh. 

You rcalize lhatlhis is notlikely to be a ene-time fix. You decide to build a small 
class and·sample program lhat prompts lhc user for a string anda number. Onc 
function, LeftString, will rctum lhe leftrnost"number" or charactcrs from lhc 
string. 

A skeleton application, LEFr.CPP. exists in lhc \STUDEN1\LAB 12 
subdirectory. lt contains a class, MyString, anda main to testthe mcmbcr 
functions. 

Step 1 
Loca te lhe skeleton class, MySt r ing. 

Wilhin the member funclion, MyReadString, writc a statementlhat gcts up to 
iLen (- 11 characters from lhe user. 

Step 2 
Wilhin lhe LeftString mcmber funclion, write the loop lhat copies charactcrs 
from argument 1, szSource, to argumcnt 2, szDest. Your loop should be 
carcful not to copy beyond lhe end of the sourcc string, and should not cxcccd lhc 
sizc of lhe destination string. 



Summary 

Lab 12: Manipulatlng Arrays 57 

Step3 
Appcnd a null charactcr after lhc last charactcr lo rcturn a clcan string. 

Step4 
Within ma in, prcvious lincs ha ve promptcd lhe uscr for a string and lhcn rcad 
lhosc charactcrs. Complete lhc conditional statcment provided lo determine 
whclher any charactcrs were cntercd. 

Step 5 
Build, execute, and test your applicalion. 

This objective 

Managc charnctcr manipulations using 
arrays and subscript notation 

Con ven numcric data types to charactcr 
strings 

Wruc ponions of a string-handling 
function 

1 l. 

Was met by ... 

Excrcisc l, Stcps 3. 5. 6, and 7 

Excrcisc l, Stcp 4 

Excrcisc 2, Stcps l, 2, and 3 



Lab 13: Pointers and Arra ys of 
Pointers 

Objective 
At the end of this lab, you will be able to use pointers to pcrforrn string-parsing. 

Scenario 
You're very pleased with changes to the money display routines. You realize that 
one more variation will satis[ y most of the fu tu re nccds. What 's missing? (Hint: 
Try to prmt a check.) Class Money stilllacks a formattcd alpha or string output 
that is typically used to prim chccks. 

Estimated time to complete this lab: 30 minutes 

1 ' • 



60 Lab 13: Polnters and Arrays of Polnters 

Exercise 1 
Using Pointers 

A projcct .MAK file exists m the \STUDENN..AB 13 subdircctory. After closing 
any open files or projccts, open the TESTMONY.MAK project. 

TESTMONY.MAK builds TESTMONY.EXE by compiling TESTMONY.CPP 
and MONEY.CPP using MONEY.H. This application is s1milar to the final lab 
from the previous module, with the addition of a display function to print 
monetary amounts using a string format. 

This version won't run correctly because the main in TESTMONY.CPP is coded 
to calla Mene y member function, DisplayAlpha, in MONEY.CPP. That 
function has statements missing. One last detail-in the interests of fiscal 
responsibility- this version of DisplayAlpha will only display amounts less 
than S 1 billion. 

Step 1 
Open the file MONEY.H. Examine the ctass Mene y. lt has changed two ways: 

• The conditional in DisplayNumeric has changed. 

• A new member function, DisplayAlpha, is in class Mene y and contains a 
similar conditional. 

Examine thcse conditional statements. The objcctivc is to only build thc numcric 
forrnattcd string or alpha forrnattcd string when nccdcd. lf cithcr display type is 
presentcd, it tries to avoid building the same string again. 

Modify those conditionals if that is required for your currency. 

Step2 
Thc alpha forrnatted string requircs more characters. Incrcase thc dimcnsion of 
szFormatted to 180 bytes. 

Step3 
Class Money has thrcc ncw membcr functions. BuildAlpha is cquivalcnt to 
BuildNumeric, no arguments, no rctum valuc. HundredsTensOnes gcncratcs 
words for numeric values and takes one long data type as an argumcnt. Thc third 
function is. Str ingCa t. lt takcs two charactcr pomtcrs as arguments. 

Add prototypes for those thrce functions. 



Summary 

Lab 13: Polnters and Arrays ol Polnlers 61 

Step4 
Open the file MONEY.CPP. This file contains the growing collcclion of non
inlincd membcr functions that support Lhe Money class. Thcre are numerous 
helpcr routines and data dcfinitions addcd to MONEY.CPP. 

Thrcc arrays of strings ha ve bcen dcclarcd and initializcd: 

char• szOnes[lOJ "' ( "Zero", "One", ... 

char* szTeens(lOJ =- {"Ten", "Eleven", ... 
char* szTens(lO] = { "?", "Ten", "Twenty", 

Thcy are global, so only one copy of those strings will be in our application, 
regardlcss of the numbcr of objects. 

Locate Lhe definition for Lhe DisplayAlpha function. lt has full acccss to 
Money data members. Read Lhrough the function to bccome familiar with Lhe 
processing Lhat's given. Trace Lhe logic into Lhe HundredsTensOnes function. 

Yo u 've likely encoumercd four blank lincs wilhin the commcnts: TODO #4. 
Good gucss! In cach of Lhcse arcas, a digit position from Lhe lDollars arnount 
has bccn identificd. That digit will index into an array of strings to output Lhe 
correct string on the screcn. 

There are numerous examples in Lhe previous Jincs and severa! good clucs in Lhc 
program commcnts Lhat dctail what necds to happcn. Complete Lhosc four 
statcments. 

Step 5 
At Lhc bouom of Lhe MONEY.CPP file is Lhe skeleton of a funclion. St r ingCat. 
You prototypcd it carlicr. You 'JI write Lhe funclion now. 

Your solution should advance Lhe poimer pStrl until a NULL charactcr is 
locatcd. With pStrl positioncd on Lhc NULL,Ioop Lhrough bolh pointcrs. 
concatenating Lhc contents of pSt r2 onto pSt rl u mil Lhc NULL from pSt r2 is 
transferred. 

Step6 
When you've complcted Lhc changcs. use Build TESTMONY.EXE. Then use 
Run to test your application. 

This objective Was met by .•• 

Use pointers io perform string-parsing Stcp 5 

1 ,, 



Lab 14: Using Commercially 
A vailable Classes 

Objective 
At thc end of this lab, you will be ablc to: 

• Create objects using a comrnercially availablc class. 

• Use operators to manipulatc objects. 

• Use member functions from a comrncrcially available class. 

Scenario 
Thc money display routincs work vcry wcll. Thc CString class is intriguing. Thc 
codc appears clcarer and would be casier to maintain. You decide to rcvisit thc 
class Mane y to modify thc alpha or string output uscd to print chccks. 

Estimated time to complete this lab: 30 minutes 

1) 



64 Lab 14: Uslng Commerclally Avallable Classes 

Exercise 1 
Parsing Strings with the CString Class 

A projcct :MAK lile cxisll in lhc \STUDEN1\LAB 14 subdircctory. Aftcr closing 
any opcn files or projccts, opcn lhc projcct MONEY.MAK. MONEY.MAK builds 
MONEY.EXE by compiling TESTMONY.CPP and MONEY.CPP using 
MONEY.H. This vcrsion would run right now-it's idcmicalto thc solulion from 
lhe previous lab. 

This two-pan excrcisc modifics lhc applicalion to use a CString objcct ralhcr than 
s zFormat ted [ 180]. lnitially, lhe opcrators offered wilh CString are uscd. The 
buffer-access member funclions wilh CString may be uscd in lhe latcr half of lhe 
exercisc. 

Step 1 
Using projcct MONEY.MAK, opcn lhe file MONEY.H. 

lt will include a CStr ing objccl ruuncd strFmt. t\dd lhe statcments LO includc ¡· 

MFC collcction classes in a QuickWin application. Thcse statements were 
introduccd in lhe "stauc" module and supplicd in Lab 8. 

Step 2 
Examine lhe class Money.lt must be changcd four ways: 

• The condilional statemem in DisplayAlpha must determine whelher lhe 
CString object, strFmt, is emply. Use Hclp for a list of CString member 
funclions. 

• The cout statemcm in DisplayAlpha should be changcd LO outpul an objccl 
narned strFmt. 

• A new data member, s t rFmt, should be dcclared as a CSt r ing objcct. 

• Thc StringCat member funclion will not be nceded. Dclete lhe prototypc 
statemem. 

Step3 
Opcn lhc file MONEY.CPP. This lile comains lhe growing collcction of non
inlined member functions lhat supponlhe Money class. There are numerous hclpcr 
routines and data definitions added LO MONEY.CPP. 

Note Do not change BuildNumeric unul Step 8. 

Three arrays of strings are slilllhere. 

I...ocate lhe definition for lhe BuildAlpha function. lt has full acccss LO Money 
data members. I...ocate lhe line lhat assigns lhe NULL character lO s zForma t te d. 
Thalline should assign an cmpty string lo s t rFmt. 

Step4 
Read lhrough lhe rest of lhe function. lt shows a dozen or more localions whcre lhe 
local St r ingCa t function is invokcd. AJI of lhose calls should change LO opcrator 
+~ concatenation of lhe words omo the cxisting s t rFmt string. 



Lab 14: Using Commerclally Avallable Classes 65 

Hin! Use lhe Editor oplion to find the StringCat function. Notice lhat me Find 
window now lists lhe function name as lhe last search stting. You can casily rcpcal 
lhe previous find by double-clicking thc Find window; sclccling a word in lhc Find 
window, and prcssing ENTER; or prcssing 1'3. 

Step 5 
At lhe bouom oflhe MONEY.CPP file, you'll find lhe funclion StringCat. 
Commcm or deletc lhose lincs. 

Step6 
When you've completed the changcs. use Build TESTMONY.EXE to test your 
application. 

Note The following stcps are optional. They are prcscmcd to show you lhe powcr 
of working wilh a wcll-dcsigncd class. The Builc!Numer ic function works 
satisfactorily as it is curremly ceded. 

Asan exercise to invcstigate lhc buffer-acccss mcmber functions in cst r ing, lhc 
following steps willlead you lhrough a rewrilc of Builc!Numer ic. Thcse steps 
may be complcted if lime perrnits. 

Step 7 
Within lhe file MONEY.H, examme the class Money. ll must be changcd four 
ways: 

• The conditional statemem in DisplayNumeric musl determine whcthcr a 
CString objcct, strNbr, is cmpty. 

• The cout stalemem in DisplayNumeric should be changed lO outpul an 
objeclnamcd strNbr. 

• The character array szFormatted will no longcr be needed. A second CString 
objecl, s t rNb r, should be crcaled and initialized lO 20 spaccs ( ' '). 

• The Money class construclors need lO change. Currenlly, cach scts a NULL 
characler into s zFo rma t ted clemcm O. In lhc dcclaralion and construction of 
the CString objects, lhe appropriate aclion is performed. Removc thc stalcmcnts 
from lhc construclors lhal dcal wilh s zFormat ted. 

Step 8 
Within lhe MONEY.CPP file,localc thc dcfinilion for lhe Builc!Numeric 
function. ll has full acccss lO Money data mcmbers. Localc lhe linc lhal assigns lhc 
currency symbollo szFormat ted. 

The line should sel a currcncy characler al pos ilion O of s t rNb r objcct. Help 
describes the SetAt member funclion. 

Step9 
Rcad ~ough the rcsl of lhe Bu i lc!Nume r ic function. There are numcrous placcs 
where characlers were assigned lo szFormatted. Those localions should be 
changcd to sel characlcrs imo lhc s t rNb r object. 

;; 



66 Lab 14: Uslng Commerclally Avallable Classes 

Summary 

Step 10 
Whcn you 've complctcd the changcs, use Build TESTMONY.EXE to test your 
application. 

This objective 

Crcatc objccts using a commcrcially 
available class 

Use operators to manipulatc objects 

Use member functions in a commercially 
availablc class 

Was met by ... 

Steps 2 and 7 

Stcps 3 and 4 

Steps 2, 3, 4, 7, 8 and 9 



Lab 15: Formatting and File I/0 

Objective 
At the cnd of this lab, you will ~ ablc to: 

• Add file l/0 member functions to a class. 

• Open. read, write, and clase data files. 

Se en ario 
Your developmcnt team has retumed with ncwer vcrsions of thc building blocks for 
the invemory systcm. Thc new vcrsions of thc Da te class and Money class ha ve 
new member functions thatload from and storc to disk. Thesc funcuons takc a 
strcam asan argumcm: Load takes an i fst re a m and Sto re takcs an 
ofstream. 

You'll rcvisit the Inventory application from earlicr modules and invcstigatc file 
inpul/output on an objcct with cmbedded objects. This version loads tcxtlnvcmory 
data from disk, lists an invcntory repon, and storcs binary Invcntory data to anothcr 
disk file. 

Estimated time to complete this lab: 30 minutes 

,
' < 



68 Lab 15: Formattlng and File 1/0 

Exercise 1 
Casses That Load and Store Data 

A projcct .MAK file exislS in the \5TUDEN1\LAB 15 subdircctory. After closing 
any open files or projeclS, open the projcct INYENTRY.MAK. 

This projcct builds INYENTRY.EXE by compiling INYENTRY.CPP. lt has four 
classes: Date and Money have the updatcd Load and Sto re functions, but 
PartiD and Inventory still nccd that funcuonality. 

Step 1 
l. Locate the class Money. Notice that it has new Load and Sto re membcr 

functions. The Money class has all thc codc to savc and rcstore ilS membcr data. 
(Each class should be sclf-containcd.) 

2. Locatc thc class Date. Examine ilS cxisting Load and Sto re functions. 

3. Locatetheclass PartiD. 

4. Add Load and Sto re functions to thc PartiD class. 

Step2 
Locate the class Inventory. The lnventory class "knows" about the cmbcdded 
classes. Your solutions to Load and Sto re should handle the Inventory-specific 
data membcr, m_ nQuantity, then invoke the Load and Sto re functions for cach 
embedded object. Be sure to ha ve your functions deal with each objcct in identical 
order! 

The previous Load and Sto re functions simply tcstcd the stream to detennine 
whether it was "not bad." During input-stream processing, the strcam may be valid, 
but it may be at thc end-of-filc marker. Thcreforc, thc lnventory Load function 
should also check whether the input strcam is "good" after attcmpting to rcad thc 
m_ nQuant ity valuc. lf the strearn is not good, thc Load function should retum a 
zero value to indicate therc was not anothcr itcm to load. 

Hin! Refcr to the module tapie ''Testing for Success" to scc an examplc. 

Add Load and Sto re functions to this class. 

Step 3 
Locate the main function. Declare an Invcntory objcct namcd i I tem. 

Step4 
A text disk file narned INYENTRY.DATcxislS for input. Using the i fst ream 
constructor, opcn iF i le as the file strcam for input. 

Step 5 
The Sto re functions will update a binary file, INYENTRY.BIN. 

l. For a variation, create ano fst ream object named oF ile, using the default 
constructor. 



Summary 

Lab 15: FormaHing and File 1/0 69 

2. As another statemenl, use thc o fs t re a m open membcr function to opcn thc 
stream INVENTRY.BIN for binary mode. 

Step 6 
A skelcton while loop cxists. You nccd to complete thc while condition such that 
the lnventory Load function is invokcd. Thc loop should continuc unlcss Load 
rctums a non-zcro valuc. 

Step 7 
Build, exccute, and test your application. 

This objective 

Add file VO member functions toa class 

Open, read, wruc, and clase data files 

Was met by •.• 

Stcps 1, 2 and 3 

Steps 4, 5 and 6 



Lab 16: Dynamic Memory 

Objective 
At the end of this lab, you will be able to use the new and delete opcrators. 

Scenario 
Remember that Date class? lt's simple, it's current, but it's notable to display all 
the ways your users want to use dates. Y es. it docs handle M/D{Y, D-M- Y. and 
may have another customized display you added. But the users report that 
occasionally a transposilion error occurs. For example, an arder needed by March 
4, 1995 was scheduled for 4/3/1995. 

The ability to display a date. as a string (Weekday, Month, DH, Y###) would be a 
visual input-confirrnation for the users. lt would add onc more variation to satisfy 
most future needs. Oass Date could supply output typically printed on business 
correspondence (such as follow-up letters to fmd missing part orders). 

Estimated time to complete this lab: 45 minutes . 

/(i 



72 Lab 16: Oynamlc Memory 

Exercise 1 
Building Strings in the Heap 

A projcct .MAK file cxists in !he \STUDENT\l..AB 16 subdircctory. Aftcr closmg 
any opcn files or projcciS, open !he projcct DATE.MAK. 

DATE.MAK builds DATE.EXE by compiling TESTDATE.CPP and DATE.CPP 
using DATE.H. This application is similar 10 !he finallab from !he previous 
module, with !he addition of a Display function 10 prim dates using one of the 
formats dep•ctcd above. 

This version won't run right now bccausc main in TESTDATE.CPP is codcd 10 
cal! a Date membcr function, DisplayAlpha. That function is incomplctc. 

Step 1 
Opcn the file DATE.H. Examine !he class Date. lt now has ponions of a ncw 
member function, DisplayAlpha. The function should display the rctum from thc 
function Builc!AlphaDate. Builc!AlphaDate creatcs a new arca in memory, 
builds a suing containing the day of week and the month namc, and rctums a 
poimer 10 that area. This DisplayAlpha function should rcccivc thc pointer, 
display the value, and free !he mcmory creatcd by Builc!AlphaDate. 

Within class Date, add a prototypc for thc function Builc!AlphaDate. lt should 
take no argumcnts and retum a e ha r • 

Step2 
l. Locate the function DisplayAlpha. 

2. Declare a local charactcr poimer, cpDayMor.:h. 

Step3 
Invoke a cal! lo Builc!AlphaDa te and rcceivc the retum value in cpDayMonth. 

Step4 
Display the contents !he dynamic area poimed at by cpDayMonth. 

StepS 
The dynamic memory is no longer nccded. Rclcase it. 

Step 6 
Opcn the file DATE.CPP. !1 has !he code for several mernber funcr.ions you crcatcd 
in earlier labs. 

Examine !he two characler arrays: Da y and Month. Thcy hold !he namcs ofthc 
days of !he week and the month narncs. You may modify !hose suings lo lit thc 
reporting s1andards for your corporation. 



Lab 16: Dynamlc Memory 73 

Step 7 
Locate lhe Builc!AlphaDate member function. ll retums a character poimer for 
lhc date, day of week, and monlh. The general formal for lhc text out pul is "day-of
week, monlh DD, YYYY" whcrc DO is lhe day-of-lhc-monlh digits and YYYY is 
lhe year. 

Wilhin BuildAlphaDate, declare and initialize a poimcr variable, 
cpAlphaDate, lo havc 4ü bytes of dynarnic mcmory on lhe hcap. 

Step 8 
Create a temporary poimer, cpTemp, initialized to lhc samc mcmory arca as 
cpAlphaDate. 

Step 9 
The dynamic area exists. You have an milialized, tcmporary pointcr to work wilh. 
After Stcp 7, lhe cxisling lines ha ve dctermined which da y of lhc wcek should be 
loaded. ll is clcmcm tmToday. tm_ wday + l. 

(Oplionillly, you may declare a temporary variable, int iWDay, and use iWDay 
in lhis step.) 

Write lhe statemem(s) lo copy lhe charactcrs from lhc abovc clemcm of lhc Da y 
character array atlhc localion in lhe hcap arca hcld by lhc tcmporary poimcr, 
cpTemp. 

Step 10 
Build, execute, and test your application befare cominuing to Exercisc 2. 

Be sure to clase all projects and files befare you proceed. 

lf Time Permits ... 

Exercise 2 
Fun Managing Memory 

Scenario 
To investigate dynarnic mcmory allocalions, you decide la creatc a gucssing garnc 
lo exercise new and delete opcrators. 

For fun, no fces, lhis garnc allows lhc playcr 10 anempts to gucss a random number. 
If successful, lhe player "wins" 10 points. lf unsucccssful, lhc playcr is allowed to 
continue lhe game, and has up to 10 more guesses wilh a chance to win an ever
dccrcmenling prize of 10, 9, R, ... points for guesscs 11 lhrough 20. Thc garne 
terminales after 20 anempts. 

During play, lhe garnc saves cach guess so lhat il can play back all gucsses atlhc 
cnd of the garne. lnitially, lhc array has 10 locations. Aftcr ten guesses anda 
confirmalion to conlinue, lhc arra y is resized to accommodate 20 guesscs. (Thc first 
ten guesses must be copied imo lhe "new" largcr array.) 



74 Lab 16: Dynamlc Memory 

Summary 

As each guess is acccpted. the game will repon whethcr the user's gucss was too 
high or too low. 

After 20 auempts ha ve C..: en exhausted, or the u ser corree ti y gucsscs the random 
numbcr, a complete list of all gucsses is displayed. 

An incomplele source file, GUESSER.CPP, exists in thc \STUDEN1\LAB 16 
subdircctory. 

Step 1 
Class Guesser includes a private imegcr pointer, ipGuess. 

Withm the constructor, crealc a new arra y with room for 10 imeger gucsscs. Your 
solution must also check for errors to ensure dynamic mcmory exists for the array. 

Step2 
Within thc Guesse r destructor, called after thc gamc is ovcr, rcleasc the dynamic 
memory from Step l. 

Step 3 
The original allocation in Step 1 allowed room for 10 gucsses. Thc user has dccided 
lo play for up lo 20 gucsses. 

Makc the new allocation. Again, your solution musl check for errors. 

Step4 
The new allocation exists. Copy the ftrsl 10 guesses from the old array into the new 
array. 

StepS 
The ftrst 1 O guesses (the old arra y) are no longer needed. Release lhal dynamic area 
lo thc free store. 

Stepó 
Thc user has auempled a guess, m_ nUserGuess. Save lhat value lO lhe end of lhc 
olher guesses al ipGuess. Consider using [m_ nNumberOfTries] and 
incrememing the number of tries. 

Step 7 
Build, execute, and leSl your application. 

This objective 

U se lhe new and dclcte operators 

Was met by ... 

Exercise 1, Steps 2, 5, and 1 O; 
Exercise 2, Stcps 1 and 2. 



Lab 17: Creating Conversions 

Objective 
At t.hc end of t.his lab, you will be ablc to: 

• Crea te and use typc casting. 

• Crcate copy constructors and control conversions. 

Scenario 
Thc ability to create, set, get, and display Da te objccts in various formats has givcn 
t.he Date class a robust interface. That class does ncarly evcryt.hing you'd wam to 
do! What's missing? 

How about t.he ability to add or compare two dates? Fundamcmally. t.he Invcntory 
system needs to use t.hc !cad-time for an Inventory pan whcn automatically 
reordcring Invemory. Adding convcrsions will complete our Da te class. 

A Julian date is a measure of clapsed time from a base date. Many operating 
systems for personal computers use tcchniqucs such as t.he numbcr of scconds 
elapsed sincc January 1. 1980 to rcprescnt date and time valucs. Thc lnvcntory will 
handlc Julian dates as a numbcr of days sincc l/1/1972. 

Estimoted time to complete this lob: 45 minutes 

1.1 



76 lab 17: Creallng Converslons 

Exercise 1 
Building Strings in the Heap 

A project .MAK file exists in the \STUDENT\LAB 17 subdircctory. After closing 
any opcn files or projccts, opcn the projcct DATE.MAK. 

DATE.MAK builds DATE. EXE oy compiling TESTDATE.CPP and DATE.CPP 
using DATE.H. This application is s1milar to the finallab from the previous 
module. with the addilion of a conversion constructor anda casting opcrator. Thesc 
two features allow the Da te objcctto be creatcd from a single number. and they 
allow dates lo be convertcd to the long data typc. 

This vcrsion won't run right now bccause the main in TESTDATE.CPP is codcd lo 
create, subuact, and convert various dates. 

Step 1 
l. Opcn the file TESTDATE.CPP. Examine the new lincs wilhin main. 

2. Open the file DATE.H. Locate and examine the class Date.lt necds a prototypc 
for a conversion constructor thattakes a rcfcrence 10 a long data typc asan 
argument. 

3. Add the prototype for thc new constructor. 

Step2 
l. Within the class defmition, locate !he incomplete pro!Otypc for an operator. 

2. Complete !he prototype for an opcrator lo convert a const date objcctto a 
1 ong data typc. 

Step 3 
1. Opcn !he file DATE.CPP. Locate and examine two charactcr arrays: Da y and 

Month. 

2. Modify thosc character suings as nccded to mcet corporatc standards for date 
displays. 

Step4 
Locate and examine the body of !he ncw convcrsion constructor. lt is codcd to 
process a series of loops. decrementing the argument lDays, (a long data typc) 
and assigning values to !he date members of thc Date class (actually to !he ncw 
date objcct). Complete !he formal definition of lhis conversion constructor. 

Step5 
Locate and examine the body of the ncw cast operator. lt calculates and retums a 
long data type reprcscnting the number of days since l/l/1972. As coded, the 
function is accuratc for more !han 100 ccnturics. You may modify itas nccdcd for 
your corporate standards. Complete !he formal definition of lhis conversion 
opcrator. 



Summary 

Step 6 
Build, CXe{;ute, and test your application. 

This objective 

Create and Use typc casting 

Creatc copy constructors and control 
convcrsions. 

Lab 17: Creatlng Converslans 77 

Was met by ... 

Excrcisc t. Stcps !, 2, and 5. 

Excrcisc !, Stcps 2, 3, 4, and 5. 



Appendix A: Hungarian Notation 
Table 

1 ,, 



Appendlx A: Hungarlan Notatlon Toble 3 

Preflx Meaning 

Basic types 

r Flag 

eh Olaractcr (no implicit Slzc) 

sz Zcro-tcnninatcd char • 

Fn Function 

V Yo id 

n Nwnbcr (no implicit sizc) 

b Byte 

w Word 

Long 

u Unsigned 

Fp Floating poinL (no implicit size) 

Prcfixes 

p Poimer (don't use lp, hp, np) 

r Refcrence 

rg Array or &arrny 

lndex 

e Coum 

d Differcncc 

h Handle 

mp Maparray 

u Un ion 

m Class membcr 

rr Bitflags 

g Global 

S1a11dard Qualifiers 

M in Fi~t clemcnt in a sct 

Mic Currem first clement in a sct 

First F1rst clcmcnt in a set 

Last Last clcmcnt in a sct 

Most Last elcmcnt in a sct 

Lim Uppcr limit of clcmcnts in a sct 

Mac Currcm uppcr limit of elcmcnts in a set. 

Max Uppcr limit of clcmcnts in a sct 

Nil Special illcgal valuc 

Sav Tcmporary savcd value 

T Temporal y valuc 

S re So urce 

Dst Dcstination 



4 Appendlx A: Hungarlan Nolatlon Table 

Proccdures 

Deletc, not Destroy or Free 

Macros and defines 

Structurc namcs 

struct lmagelrúo 

Class names 

class Ulmage : public CObjcct 

Wmdow typcs 

at 

bm 

blb 

bih 

br 

ca 

es 

cur 

de 

dis 

dwp 

e Ir 
fix 

rnt 

gm 

hk 

icn 

inst 

lbr 

1r 
lpal 

lpen 

mis 

menu 

mr 
mfp 

Each word capitalized, including the first to 
dislinguish from variables. 

Macros that acccpt parameters are named 
the same way as procedurcs. (use inlinc 
functions) Macros for constants are namcd 
thc samc way as variables. NULL, TRUE, 
and FALSEare the only exceptions. 

Same as structure names but prefixed with 
'll (lo avoid namc collisions with othcr 
class librancs) 

ACCELTABLE 

BITMAP 

BITMAPFll.EHEADER 

BITMAPINFOHEADER 

BRUSH 

COLORREF 

CREATESTRUCT 

CURSOR 

OC (Dcvicc Context) 

DRAWITEMSTRUCT 

DWP (DeferWindowPos) 

ENUMLOGFONT 

F!XED 

FONT 

GL YPHMETRICS 

HOOK 

!CON 

INSTANCE 

LOGBRUSH 

LOGFONT 

LOGPAIEITE 

LOOP EN 

MEASUREITEMSTRUCT 

MENU 

METAFll.E 

MET AFILEPICT 



Appendlx A: Hungarlan Nalatlon Table 5 

m mi MINMAXINFO 
mod MODULE 

msg MSG 

nbn NEWTEXTMETRIC 
of OFSTRUcr 
otm OUTLINETEXTMETRIC 
ps PAINTSTRUCf 
pal PALETTE 
pe PALETTEENTR Y 
pan PANOSE 
pen PEN 

ptw POINT 

flxpt POINTFX 

rcw RECf 

rgn RGN (rcgion) 

rsrc RSRC (resource) 

sizw SIZE 

tm TEXTMETRIC 
wp WINDOWPOS 

wnd WND (window) 

wc WNDCLASS 

"' HFll.E 

MFC typcs 

Window Oasses 
wnd CWnd 

wndf CFramcWnd 

wndmf CMDIFramcWnd 

wndmc CMDIChildWnd 

dlg CDialog 

dlgm CModa!Dialog 

btn CButton 

e be CComboBox 

edc CEdil 

lbc CLislBox 

sbc CScroiiBar 

sic CSllltic 

GDI Classcs 

de CDC 

de e CCiicntDC 

dcm CMclllFilcDC 

dcp CPaintDC 

dcw CWindowDC 



6 Appendlx A: Hungarlan Nolatlon Table 

bm CBiunap 

br CBrush 

fnt CFont 

pal CPalc<Lc 

pen CPcn 

rgn CRgn 

Othcr Cl asses 

menu CM en u 

pt CPoint 

re CRcct 

siz CSizc 

File classes 

fil CFile 

film CMcmfilc 

fils CStdioFilc 

Object 10 

arch CArchive 

dmpc CDumpContcxt 

Exceptions 

ex CException 

ex a CArchivcExccption 

exf CFileException 

exm CMcmoryExccption 

exns CNotSupponcdExccption 

exr CResourceException 

Collcctions 

arb CByteArray 

ardw CDWordArray 

aro CObArray 

arp CPtrArray 

ars CStringArray 

arw CWordArray 

lso CObList 

lsp CPtrList 

lss CSiringList 

mppw CMapPtrToWord 

mppp CMapPtrToPtr 

mpso CMapStringToOb 

mpsp CMapSiringToPtr 

mpss CMapStringToSiring 

mpwo CMapWordToOb 

mpwp CMapWordToPtr 



Misccllaneous suppon classes 

S 

time 

dtime 

Utopia types 

X 

y 

Appendlx A: Hungarlan Notallon Table 7 

CString 

Cfime 

CfimeSpan 



Appendix B: Operator Preceden ce 
Chart 



Appendlx B: Operator Precedence Chart 3 

Operator Name or Meaning Assa<:ialivily 

.. Scope Rcsolulion Nonc 

.. Global Nonc 

11 Array Subscnpl l.cf11o righl 

o Function Call l.cft lO righl 

o Conversion None 

Member sclcction- objecl l.cf11o righl 

·> Mcmbcr sclcction - poimcr l.cfllo righl 

++ Posúix incrcment Nonc 

Posúix dccrcmcnt Nonc 

new Alloca1e objccl Nonc 

delete Deallocate objecl Nonc 

deletell Deallocalc objecl None 

++ ~tix incrcmcnt Nonc 

Prcfix decrcmcnl Nonc 

• Dercferencc Nonc 

& Addrcss-of Nonc 

+ Unary plus Nonc 

Aritlunctic ncga1ion Nonc 

Logical NOT None 

Bilwisc Complerncnl Nonc 

:> Base Operalor Nonc 

sizeof Sizc of objocl Nonc 

sizeofO Sizc oflypc None 

(type) Typc casl (convcrsion) Righlto lcft 

• Apply pointer to class Lef11o righl 
member 

·>* Dcrcfcrcnce pointcr 10 class l.cft lO righl 
member 

• Mulliplication l.cf11o righl 

1 Division l.cft lO righl 

% Modulus l.cflto righl 

+ Ack.lition l.cfllo righl 

Subtraction l.cf11o righl 

« l.cfl shifi l.cfl lO righl 

» Righl shifl l.cf11o righ1 

< Lcss lhan l.cf11o righl 

> Grcatcr lhan l.cf110 righl 

<= l.css lhan or cquallo l.cfllo righl 

>= Grca1er lhan or cquallo l.cfllo righl 

-- Equalily l.cft lO righl 

!= lnequalily l.cf11o righl 

& BilwiscAND l.cfl lO righl 



4 Appendix B: O pe rotor Precedence Chort 

A Bitwisc exclusive OR lcfl lO nghl 

Bitwísc OR lcfl lo nghl 

&& logical AND Lcft to right 

el?e2:c3 CondítJO!lal Lcft to nght 

= Assignmcnt R1ghl lo lcfl 

·= MulllpliCJlton a5stgnmcnt R1gl1l tO lcfl 

1= Di vis ion J.'iSJgnmcnt R1ghl lO lcfl 

%= Modulus assignmcm R1ghl lo lcfl 

+= Addition assignmcnt Righl 10 lcf1 

-= Subr.raction assignmcnt Righl 10 lcfl 

<<=;:;; Lcft-sh1fl ass1gnmcnt R1ghl lo lcft 

>>== Right-shift ass1gnmcm R1ghl 10 lcfl 

&= B!twisc ANO ass¡gnmcnt Righl 10 lcfl 

1= BitwJsc inclusive OR Righl lo !cf1 
assignmcnt 

'= Bitwisc exclusive OR Rigl1110 lcft 
assignmcm 

Comma Lcfl tO right 



Appendix C: Memory Management 



Appendix C: Memory Monagement 3 

The tapies eavercd in lhis appendix are enl1er advanccd tapies, ar funher 
eluciualion of tapies introduecJ inthe module an memory managemcnt: 

l. How lhe Staek Warks 

!1. Reeursion 

III. Mcmory Models and Segmentalian 

IV. lnsufficientll!emory Condilians 

As yau read thraugh thcse seclions, rcmembcr lhat many af thc spccif¡cs :1rc 
eampilcr- or apcraung-systcm dependen t. 



4 Appendlx C: Memory Management 

How the Stack Works 
The stack rcpresents thc data work arcas for functions. As thc namc implics. it 
grows and shrinks m units justas a stack of pi ates docs. Each unit of growth or 
shrinkage is callcd a slackframe. Thc stack framc reprcsents the work arca for a 
single mvocation of a function. lnside an executing program. when a function is 
invokcd. a ncw stack framc for that function is allocatcd on thc stack. When a 
function retums. Jts corrcsponding stack frame is discardcd. Consider the following 
source program anda picturc of thc stack as it would appear at thc indicatcd point 
of execution: 

swap's 
stack 
trame 

void swap(int, int): 

int main () 
¡ int x~s. y~lO; 

swap(x,y); 
cout << x << '' '' << y: 

void swap(int a, int b) 

{ ~~-t~.tv; -..E7,~PJ '-"~~ u:fJJJJP . .::.~.s,: A.t:: .. :~ 
a~ b; 
b ~ temp; 

Two functions are active at this point: main and swap. Thc main function invokcd 
swap, and swap is currcntly executing. Each stack framc has four ponions: a 
passcd argurncnt ponion (main has no arguments, but swap docs), an RA slot, a 
BP slot, andan automatic variable portian. RA stands for retum addrcss. lt holds 
the address of the instruction to cxecute after thc currcnt function rctums. BP stands 
for base poimer. lt acts as an anchor point in thc currcnt stack framc and points 
back to prcvious stack framcs. (lf a function accidcntally ovcrwrites the BP or RA 
area-by writing past the end of a local array, for exarnple-the results will 
norrnally be disastrous.) SP, thc 80x86 register "variable," always points to the top 
of the stack (lowest uscd mcmory); the register vanable, BP, points to the current 
stack's BP slot. 

Because swap was coded as call-by-value, only the valucs of K and y are copicd to 
the formal argurncnts a and b, rcspcctively. The valuc-swapping of a and b do not, 
therefore, affect K and y. Had swap becn coded directly using call-by-reference or 
simulated by passing pointers and using derefcrcnce, the a and b would contain t11e 
addresscs of x and y, rcspectivcly. When the swap function retums, SP will be 
moved to point to the bottom of the ma in stack frarne, effectively discarding the old 
stack frame for swap. 

Rcmember that thc stack physically sits abovc the static arca of the data segrncnt. 
By default, the 16-bit Microsoft compilcr adds a small bit of code toa program that 
checks at run-time to determine whether a new stack frame will ovcrrun the cnd of 
the allocatcd stack region. 1ñis stack-checking functionality can be disabled by thc 
/Gs command line switch, or through Visual C++ menus. (From the Options menu, 
choosc thc Project command, then the Compiler button. Clear the Disable Stack 
Checking box.) Stack-checking is enablcd in Visual C++ Developmcnt Systcm for 



Appendlx C: Memory Management 5 

Windows and Windows NT by the /Ge oplion. Under Windows NT, it is difficult 
to overflow thc stack sincc its default size is 1 MB RAM. and thc stack can cven 
use vinual memory to grow as rcquircd. 

lf thcrc is a rctum valuc from thc function. a Visual C++-bascd program wdl scnd 
thc val u e back usmg onc of thc following mechanisms: 

• lf thc retum value is onc or two bytes, it is rctumcd in thc AX rcgistcr. 

• lf thc retum valuc is thrcc or four bytes. it is rctumcd in thc AX/DX registcr 
pa~r. 

• lf thc rctum valuc is greatcr than four bytes, it is retumcd in a spccial arca, and 
a poimcr to it is placcd in AX (ncar) or AX/DX registcr pair. 

: 1• 

·' 

r 



6 Appendlx C: Memory Management 

Recursion 
Becausc C++ is a stack-base{! ·-"'6uage. it is ablc to suppon a special typc of 
function invocation called recursion. A function invocation is recursivc if it dircctly 
or indircctly calls itself. In a rccursivc situation, thcre will be multiplc instanccs of a 
function's stack framc appcaring on thc stack at thc samc time. Asan cxamplc, 
considcr thc scqucncc below. 

Thc initial execution of main: 

int main () 

:~i~~~j,~~$4~~%f·;:¿¿:i:::{iii~ífiU 
ncount++; 
main (); 

OUTPUT 

Thc ncxt statement will incrcmcnt ncount to l. ! fourth statemcnt in main is 
ur.•. · invokcs the currcnt function main, ano :s therefore dircctly rccursive. 
Bec. · · this call. a new stack frame for main is created, control jumps to thc 
first c. . >:able statcmcnt in main, and we output thc value of thc local vanablc 
ncounr..: 

This represents the second invocation of ma in: 

· Stack 
int main () 

¡ ,AP,Ke;~-\l#Rbt'"R&:r.~"'1ftíl<F'~~1 o•,c®J! 0 •<!Qng!m!\_.,•~'S~- w• ,.,'/id;, 
ncount++; 
main (); 

OUTPUT 

) 
· This local variable ncount is a completely different variable that exists in a 
· diffcrent. ''"'ck frame. Again, the local variable will be incrcmented, and again 

main wiíl iJe invoked, and so en. Hcre the direct rccursion is infinitc and will 
inevitably use up the program 's stack. Recursion is norrnally contrOilcd through a 
conditional cal!, pcrhaps using local static variables. 

Recursion is a powerful prograrnming tool that '· 'ssentiat in many advanccd 
programming situations such as inscnions ande .:ons on complicatcd, trcc-likc 
data structurcs. 1t is also uscful in many othcr Sllll•Hlns whcrc thc simple itcrativc 
solution is not obvious. Thc cxamplc abovc shoutd be considercd trivial. 



Appendlx C: Memory Management 7 

Memory Models and Segmentation 
IBM-compaliblc PCs use lhe Imcl® 80x86-compaliblc series of CPUs. Thc original 
8088/86 vcrsion of lhis chtp hadan arclutccturc bascd on 16-bit words. Standard 
pcintcrs wcrc also 16 bits widc; in addition, a widcr 20-bit vcrsion was supponcd. 
The shoner, so-callcd near pcintcrs, suppcn mcmory ranges up to 64K in stzc, 
whcrcasfar pointers cover l MB. 

Thesc pcinters' sizcs hada dircct cffect on MS-DOS prograrns, forcing wri1crs to 
selccl a spccific memory model using a spccific segmentation scheme: 

memory model 

tiny 

small 

maxcode max data , 

64K combincd size········ 
64K 64K 

mcdium 64K 1MB 

compac1 l MB 64K 

large 1~ 1MB 
huge 1MB 1MB 

The tiny model is a primilive one lhat was modeled af1er CPM opcraling system 
prograrns. As a rcsult, it generales programs with a .COM file exl_ension. Allhough 
lhe larger memory models allow maximum code and/or dala-size 10 be up 10 1 MB, 
most lirnil each unil (function or variable) lo a size of 64K or lcss. Only lhc hugc 
model suppcrts variables (usually arrays) up 10 l MB. Howcvcr, !he huge memory 
model is rarely uscd bccause of its inherent slowncss. 

Thc sizcs in lhe 1able are lhcoreticallimits ror 16-bil opcrating systcms. MS-DOS 
furlher lirnits mcmory use to a combincd total of 640K. ·; · 

To complicare matters, most opcrating sys1cms recognize two heaps: a near or local 
heap owned by your prograrn, anda far or global heap owned by lhe opcrating 
system (and that can be shared arnong prograrns). Fortunately, the new and delete 
opcrators are implemented in such a way tha1 the average prograrnmer docs no1 
ha ve to be concerned about which hcap the rcsourccs come from. 

Sixtcen-bit Windows also suppcrts the small-through-huge mernory models. Though 
cach variable and function must be smaller !han 64K, thc total prograrn sizc is 
incrcascd to a total of !6 MB in thc mcdium-through-largc memóry models. Again, 
huge suppcrts arrays larger !han 64K. 

Newer versions of !he Intcl chips, such as the Intel386~. lntel486~. and !he 
Pentium~. do have a 32-bit mode. Nonmally, only 32-bit opcrating systcms such as 
Windows NT can be run in this modc, howevcr. Prograrns written for thesc ncwer 
operating systems ha ve pcinters that cover a 4 GB rarigc, so most prograrns treat 

. memory as a flat field wilh no segmentation_:and thus no memory models. In 
theory, a Windows NT program can grow to be 64 terabytcs' by using virtual 

' ., . 
mcmory. 

'· ; 



8 Appendlx C: Memory Monagement 

lnsufficient Memory Conditions 

. -''ji 

1' : '· 

Whcn a 16-bit program is loadcd into RAM mcmory, the subareas of the data 
segmcnt are allocated using the following schcmc: 

• Thc SDA is of lixcd sizc. That sizc, which is dctcrmmcd by thc linkcr. is 
calculated by adding up the sizc rcquired by all thc static and extern variables. 
and all string litcrals. 

• Thc stack has a default sizc of 2K. lt can be adjustcd at link time by using the 
command-line option /ST:nflll or by using thc mcnus. (From thc Options mcnu, 
choosc ProjecL Thcn choosc the Linkcr button and select the Mcmory Imagc 
option under catcgory.) In addition, the Exchdr utility can be used to adjust thc 
stack sizc of an cxisting progran1. 

• _.Thc rcmaining mcmory is the sizc of the local heap. 

Thc global hcap is thc mcmory rcmaining after the opcrating systcm allocatcs 
.mcmo,.Y for all the running proccsscs and reserve mcmory arcas . 

The Visual C++ Devclopment System for Windows and Windows NT uses a 
relate<! (but more powerful) scheme for suballocation: 

· • _' Ágain, th.e SDA is of lixcd size. 

• . The stack has a default size of 1 MB. lt, too, can be statically adjustcd or can be 
.;set to grow dynamically by using vinual mcmory. (From the Options mcnu, 
choosc ProjccL Choose the Linkcr buuon. Undcr Image Attributcs, sclcct the 
Stack Allocations option.) 

a The heap is unconstrained to grow until maximum prograrn-sizc is auaincd. 

In a larger project on a 16-bit operating systcm, it is common to run into low-
. memory conditions. Although thére are many complicating factors, thc following 
troubleshooting chan may be helpful: 

Area Low Mem lndication Possible Solutions 

1) Dynamically free unneeded memory. 

Heap new returns NULL 2) Use larger memory model. 

3) Use both local and global heaps. 
1) run-time error: 1) Set larger stack size. 

Stack stack overflow. 2) Changa local arrays to static or extern. 
2) GP fault or crash 3) Limit recursiva function calls. 

1) Use a larger memory model. 

SDA compile time out of 2) Dynamically allocate memory inste.ad. memory condition 
3) Store information in files instead. 

Coda compile time out of Use a larger memory model (compact 
memory condition or large). 



L. 

' ,. 
.... -. 

Appendlx C: Memory Management 9 

In memory-constraint conditions, memory optimizalion often involves tradcoffs 
between the different subareas. When maximum limits necd to be excecdcd, 
prograrns often must rcsort to unusual and nonstandard measurcs, such as: 

• Expanded (EMS), Extended (XMS). and Virtual Memory Librarics: Thcse 
replacement librarics allow you to dynarnically allocate data from memory 
above the 1-MB MS-DOS limit. The MS _fmalloc package reprcsents this 
category. 

• Overlaid Prograrns: Thcsc build (usually code only) automalic swapping-lo-disk 
into the prograrn. : 

• P-code: This reduces file-size by replacing native machine instructions with 
smaller "virtual machine" mstructions that are quickly interprctcd at run-time. 

• DOS Extenders: TI1cse allow 24- and 32-bit prograri1s Lo run under MS-DOS by 
acting asan intermediary betwccn MS-DOS and thc program. DPMI is an MS
DOS extender thal is buih into 16-bn Windows. 

• Win32s'" API: This allows 32-bit prograrnming under t.l\e'l.6-bit Windows 
prograrnming environment. Thc s indicatcs that this interface API is a subsel of 
thc full Win32® API found in Windows NT. ' · 

'. 
Finally, one of the easiest solutions to mcmory woes is to port thc program toa 
bigger opcrating systcm such as 32-bit Windows NT. Win32 prograrns havc an 
irthcrent 4GB-RAM maximum, and through the use of virtual mcmory, this 
maximum increascs to. 64terabytcs. Most convcniently, memory constraints and 
complications usually,don't nccd to be considcrcd. 

7 

·. ·,;: 

,., .. , 

• 





Appendix D: Reading List 



;•. 

·; 

~- 'J -~ 

''· 

1' .. 

. ' i _. .( 

\ ... 

. ~. 

....... 
•·>. 

'· -;: 
.. 

·" 
'¡:._,¡•_ • 

" .. 
·,_'J!,' '. 

(. -. L-

·-; • • .' :: ; ._; r 1, 

.! ~ 

( -·· 
' :~ 

..... ~· ¡, :"! 

;, 

1 

. ! ._j "~ ~. ' 

.r:'· 

.,, 

¡ -·- - •• " .. 

;,; ,:_.¡;. 

'11 . . .'/ 

., "· 

j z: 
e, 

·' .. 

. - .· 
'):..·- i.í..-'.-

' ' ... 

.; 

"' . 
·-·- J 

¡',. 

'. 

'- .J 

l..' 

. í. 1-

~ ::: :' 

1·,·· \'.' 

¡,, 

¡-¡,- . .! 

... !:· . 

,.1, 



Appendlx D: Readlng Llsl 3 

I Reading List 

. " . 

C++ Language Resources 
Thi! e Programming Language, SC{;ond (ANSI) Edilion, by Brian W. Kcmigham 
and Dennis M. Rilchie. Prcnlice-Hall, 1988. 

Rcfercnce on lhc language by lhc original aulhors. Very succinct, pilhy, slyle 
not meam as a lutorial. Supcrseded as lhe language definilion by lhe ANSI 
X3Jil e Language eomminec s~ificalion. 

The Annotated Reference Manual, by Bjame Strouslrup and Margaren El lis. 
Addison-Wesley, 1990. Hardcovcr. 

Nicknarned lhe "ARM", lhis is lhc de facto s~ificalion on lhe languagc 
umillhe ANSI X3Jl6 commitlee issucs ilS spcc. Vcry lC{;hnical and dctailcd 
manual on lhe e++ language, bul does not covcr iostrearns, lhe only actual 
e++ library. 

The e++ Programmming Language, second cdition, by Stroustrup. Addison
Wesley, 1991. · 

The main ponion is an advanced manual/ruloriallhal is much more readablc 
!han lhe ARM. The last ponion is a condenscd refercnce on lhc language. 
More ptaclical advicc and coveragc of relaled topics, such as iostreams. 
Mixcs in explanations of why lhings are done as lhey are in e++. 

e++ Primer, SC{;ond cdition, by Stanley Lippman. Addison-Wcsley, 1991. 

One of lhe firsl and slill one of lhc bcstlutorial/refcrence manuals on lhe 
e++ language: Easier paced !han Stroustrup and Ellis. 

Learning e++, by Tom Swan. SAMS Publishing, 1991. 

A begiMer's tutorial on C/C++, il comes wilh an older MS-DOS small 
memory model C++ compiler anda sharewarc editor. Good, inexpcnsive 
inlroduction lO e++ for !he Sludenl Or hobbyisl. 

A e++ Tool/cit, by Jonalhan Shapiro. Prentice Hall, 1991. 

A nice, small, practica!, hands-on book of objcct-oriemcd analysis and 
design using C++. wilh a bunch ofcodeexarnplcs. 

e++ Strategies and Tactics, by Roben Murray. Addison-Wesley, 1993. 

lnterrncdiale lo advanccd, bul highly readable and concise, guide 10 lhe C++ 
language and practica! OOAD. Answcrs many why and how qucslions on 
fearures of lhe languagc. Many small cxarnplcs and praclicallhreads 10 

irnprove your e++ implcmcmalions. ' 

Effective e++: 50 Specific Ways to lmprove Your Programs and Designs, by 
Scou Meycrs. Addison-Weslcy, 1992. 

Linkcd discussion of advanccd design and irnplemcntalion lopics in e++. The 
book answers many of lhc natural questions lhal arise whcn a new C++ 
prograrnmer starlS writing non-trivial code. 

e++ Programming Guidelines. by Plum and Saks. Plum Hall, 1991. 

eocting convemions. style. and ponabilily advice for lhe prograrnmer and 
tearn manager alike. Considercd by many 10 be more complete and lcss rigid 
!han e Programmmg Guidelines by Plum. 

7 



4 Appendlx O: Readlng Lis! 

.... 

( 

Advanced C++ Programming .e <v/es and ldioms. by James Coplien. Addison
Wesley, 1992. 

How 10 design and coc. 
cxpcricnced C++ progr 

An lnlroduclion 10 Object-On 
Wcslcy, 1991. 

:ncr-order" abstractions in C++. For lhe 
_,r who appreciales 00 acslhclics. 

ed Programming in C++, by Budd. Addison-

. An imroduclion 10 lhe OOP paradigm, covcring a numbcr of languagcs. 
including C++. 

Objec1-0r~med Design wilh App/icalions, by Grady Booch. Bcnjarnin & 
Currurtings, 1991. · 

One of lhe most highly regardcd book on OOAD wilh cxarnp1es in ADA, 
Objecl Pascal, Small Talk®, and C++. 

Designing Objeci-Oriemed Software, by Wirfs-Brock, Wilkcrson & Wicncr. 
Premice Hall, 1990. 

Anolher highly regarded book on OOAD. Crcalor of CRC cards. 

The Design of Everyday Things, by Dona Id Nonnan. Doublcday Currcncy. 

Well-wriltcn book on how lo and how n011o design rca1-world objects and 
syslems . 

. Periodicals 
C++ Report, publishcd by SIGS, bimonlh1y, $4.95. 

Mosl aulhorilalive, up-lo-dalc magazine ori technical•ssucs surrounding 
. C++. . 

Journal ofObjeci-Oriemed Programming (lOOP. publishcd by SIGS, bimonlhly, 
$9 . 

/ 

High-lcvel, acadcmic revicw ofcurrcm iss.. ·1d rcscarch intoOOPLs and 
· technology. 

Objecl Magazine, published by SIGS bimonlhly. :. cu. 
'Readable news magazine, mixing industry ncws wilh 1echnological arliclcs. 

Other 
· CompuScrvee forums comp.lang.c++ and comp.sul.c++ 

Usenix C++ Workshops and Confcrcnces 

OOPSLA Conference Proceeding's 


