DIVISION DE EDUCACION CONTINUA CURSOS ABIERTOS PROYECTO DE AIRE ACONDICIONADO del 14 al 25 de agosto de 1995

FECHA	HORARIO	TEMA	PROFESOR
•			
Lunes 14	17 a 21 hrs.	Psicrometría	Ing. Rodrigo de Bengoechea
Martes 15	17 a 21 hrs.	Procesos psicrométricos cantidad de aire necesario	Ing. Rodrigo de Bengoechea
Miércoles 16	17 a 21 hrs.	Análisis de cargas térmicas	Ing. Jorge Ruiz de Esparza
Jueves 17	17 a 21 hrs.	Cálculo de cargas variables	Ing. Jorge Ruíz de Esparza
Viernes 18	17 a 21 hrs.,	Equipo terminal	Ing. Indalecia López G.
Lunes 21	17 a 21 hrs.	Cálculo de ductos y tuberias Balanceo de sistemas	Ing. Luis Alegre S. Ing. Guillermo Velázquez Ing. Eric Hernández
Martes 22	17 a 21 hrs.	Equipo central	Ing. Indalecia López G.
Miércoles 23	17 a 21 hrs.	Ingenieria de proyecto	ing. Jorge Ruíz de Ezparza Ing. Rodrigo de Bengoechea
Jueves 24	17 a 21 hrs.	Instrumentación	ing. Rodrigo de Bengoechea
Viernes 25	- 17/a/21:hrs.	Ahorro de Energía	Ing. Guillermo Velázquez Ing. Rodrigo de Bengoechea

EVALUACION DEL PERSONAL DOCENTE

CURSO: PROYECTO DE AIRE ACONDICIONADO

FECHA: del 14 al 25 de agosto de 1995

CONFERENCISTA	DOMINIO DEL TEMA	USO DE AYUDAS AUDIOVISUALES	COMUNICACION CON EL ASISTENTE	PUNTUALIDAD
Ing. Rodrigo de Bengoechea		-		
Ing. Jorge Ruíz de Esparza				
Ing. Indalecia López G				
Ing. Luis Alegre S.				
Ing. Guillermo Velázquez				
Ing. Eric Hernández	,	, ,	,	
	٠.		* ** : j = 10	
				·
				•
			· · · · · · · · · · · · · · · · · · ·	
3				
	·			
		•		

EVALUACION DE LA ENSEÑANZA

ORGANIZACION Y DESARROLO DEL CURSO	
GRADO DE PROFUNDIDAD LOGRADO EN EL CURSO	
actualización del Curso	
APLICACION PRACTICA DEL CURSO	

EVALUACION DEL CURSO

CONCEPTO	CALIF.
CUMPLIMIENTO DE LOS OBJETIVOS DEL CURSO	
CONTINUIDAD EN LOS TEMAS	
CALIDAD DEL MATERIAL DIDACTICO UTILIZADO	

ESCALA DE EVALUACION: 1 A 10

			. '\				•				
	LE VOLVOORNOO 'SO	ESTANCIA EN L	۸D	IVISION DE I	:DUC/	vcion c	ΟΝΤΙΙ	NUA?		•	
:		•		· SI		NO	•	,			
•				ا سيا		الستنية		. •			
•	STINDICA QUE "	NO" DIGA PORI	QUI	Ŀ. <u>;</u>		•	•	•		- •	
	***	****	•					•	•		
2	MEDIO ATRAVE	S DEL CUAL SE E	NT	ERO DEL CU	RSO:		•	-			
	PERIODICO	rouszo		CACTE	<u>T</u>	0755					
	EXCLUSION	FOLLETO		GACETA UNAM		OTRO ,MEDIO				:	:
	PERIODICO - EL UNIVERSAL	FOLLETO DEL CURSO	-	REVISTAS TECNICAS							
3	Ŀ ŢŎſſĿĠŶŶĬijĬ <mark>ſŎŖŶŨĠ</mark>	ERIRIA AL CURSO PA	\RA	MIJORARI OI .							
•	*****	·				•					
_	2 - 2	- 24	<u>. i</u>			<u> </u>					
				rate in		• .				••	•
4.	JRECOMUNDARIA EL	CURSO A OTRA(S) F	ERS	1(S)ANC				,	•		
		· . (SI	МО		7					
5,-	AQUE CUR SOS LE SE F	יים RVIRIA QUE PROGR	٨٨٨	ARA LA DIVISION	OE ED	DUCYCION ≅1	CONTI	NUA			•
	•	4			:			=			
		# 1 Same		-				<u>-</u>			_
6	OTRAS SUGERENCIAS	S:		,	4		• •,				•
										,	<u> </u>
					,						

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

C U R S O S A B I E R T O S

PROYECTO DE AIRE ACONDICIONADO.

INTRODUCCION.

1995.

INTRODUCCION.

La necesidad de acondicionar el ambiente en el cuál ha vivido el hombre, ha sido un problema que lo ha inquietado, desde la mas remota antigüedad; se sabe que los egipcios calentaban al sol grandes piedras durante el día, que proporcionaban calefacción a las habitaciones de los faraones durante la noche; asi mismo humedecían hojas de palma que se interponían sobre las ventanas para que la brisa de la tarde, penetrara al palacio húmeda y fresca.

Las crónicas de Bernal Díaz del Castillo cuentan como se conservaba fresco el pescado que se servía en la mesa de Moctezuma II por medio de nieve que se traía del popocatépetI; trescientos años antes de que se empleara el mismo método para conservar la carne fresca para las tropas Yankis durante la Guerra de Secesión en los Estados Unidos.

El primer sistema que se puede llamar de aire acondicionado, fué inventado por un laborioso granjero norteamericano que descubrió una gran caverna cerca de su casa, de la cual salía aire extremadamente frío; construyó un rústico sistema de ductos y por medio de un molino de viento introdujo aire fresco al interior de su casa, logrando mantenerla fresca durante los cálidos veranos de su región.

A partir de éste primer experimento, al llevar aire frío para regular la temperatura de un local y así vencer las temporadas cálidas; se ha creado una de las más importantes industrias de servicios que ha permitido mejorar substancialmente las condiciones de vida de millones de personas en todas las latitudes del mundo.

En un pasado reciente, se consideró al aire acondicionado en nuestro país como un artículo de lujo o un "mal necesario" en algunas regiones extremosas. Actualmente se reconoce a ésta especialidad no solamente como un servicio útil para proporcionar confort, sino como un medio adecuado y económico para mejorar las condiciones de trabajo en oficinas, fábricas e inumerables lugares a los cuales concurren los seres vivos.

Las modernas aplicaciones para el desarrollo óptimo de especies animales y diversos cultivos por medio de sistemas adecuados de aire acondicionado, han abierto un amplio campo a ésta especialidad.

PSICOMETRIA

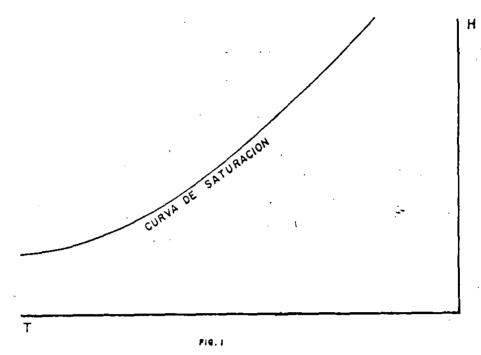
La relación entre el contenido de humedad del aire, su cantidad de calor y la presión atmosférica; son los campos de acción de la psicrometría.

HUMEDAD.

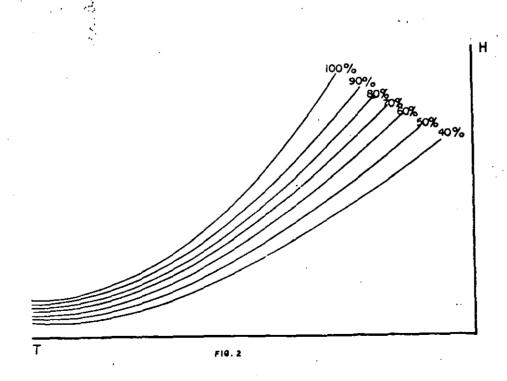
เลดท

:91 Gi

La cantidad de humedad que puede contener el aire, es finita, y está relacionada con la temperatura ambiente, la presión de vapor de agua a ésta temperatura y la presión atmosférica del lugar considerado. La cantidad máxima de vapor de agua que puede contener el aire a una temperatura dada (SATURACION), está definida por la siguiente ecuación:


Las variables aquí consideradas son:

Pv : Presión de vapor de agua a la temperatura considerada


Patm.: Presión atmosférica del lugar

18/29: Relación de pesos molecualres del agua y aire

Si ésta ecuación se grafica para una presión atmosférica determinada y diferentes temperaturas, se obtendrá una gráfica correspondiente a la HUMEDAD DE SATURACION vs temperatura.

caso más general es tener aire con una humedad menor al valor correspondiente de saturación, para poder ubicar el valor de humedad en la mayoría de los casos, se hace necesario obtener fracciones decimales del valor de saturación a las diferentes temperaturas con objeto de poder ubicar el aire que se tiene dentro de la gráfica; al graficar éstos números se obtiene una familia de curvas que son fracción decimal de la línea de saturación y así es fácil ubicar cualquier punto dentro de la gráfica.

TEMPERATURA DE BULBO SECO.

Es aquélla temperatura que es posible registrar por medio de un termómetro normal, y es la temperatura del ambiente.

TEMPERATURA DE BULBO HUMEDO.

Cuando una persona va a nadar en un día soleado, sentirá una sensación agradable, tanto en el aire como en el agua, pero normalmente al salir del agua sentirá FRIO, pese a que la temperatura del aire no ha variado. Esta sensación se debe a que al estar rodeado por aire NO S RADO, existirá una evaporación del agua que moja su cuerpo hacia el aire; per que el agua pase al aire deberá evaporarse. Este proceso requiere una gran tidad de calor y éste será obtenido del agua que que humedece al sujeto, en indose el agua restante y tomando calor de su cuerpo.

Si a un termómetro normal se le coloca una franela húmeda sobre el bulbo y se hace circular aire ambiente, éste evaporará parte del agua que humedece al paño para tratar de saturarse: el calor requerido para ésta evaporación de agua será tomado del agua restante de la franela y al permanecer húmeda, disminuirá su temperatura hasta un cierto límite. A éste límite se le llama temperatura de "bulbo húmedo".

ENTALPIA.

Para un proceso a presión constante, volúmen constante y sin trabajo, el término ENTALPIA define la cantidad de calor contenido por una unidad de masa de aire; se puede definir a la entalpia del aire como la suma de la entelpia de aire seco a partir de un punto de referencia, mas la entelpia del vapor de agua (Humedad) que contiene el punto en cuestión.

Para el aire seco la ecuación que define su entelpia es:

Para la humedad del aire:

 \cdot hw = H (Cpw(Tw - Tr) + hfgw + Cpv (Ti - Tr))

La entelpia total del aire será la suma de éstas dos ecuaciones:

$$h = Cp(Ti - Tr) + H(Cpw(Tw - Tr) + hfgw + Cpv (Ti - Tr))$$

Se considera que el agua añadida al aire se calentará como agua desde un cierto punto de referencia (Tr) hasta la temperatura de rocío del aire final (Tw), a ésa temperatura se convertirá en vapor y de ahí se recalentará hasta la temperatura considerada del punto (Ti).

Evidentemente la temperatura de referencia lógica es 0 C, con lo que se simplifica un poco la ecuación.

Las variables de éstas ecuaciones son las siguientes:

H: Humedad absoluta ó específica.

ha: Entelpia del aire seco

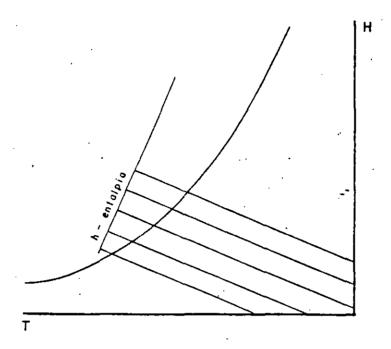
hw: Entalpia de la humedad contenida por kg de aire

Cp: Calor específico a presión constante del aire

Cpw: Calor específico del agua

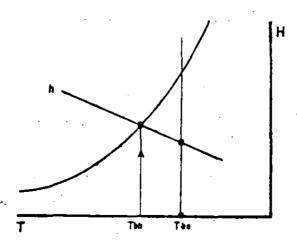
Cpv: Calor específico del vapor de agua

hfgw: Calor de vaporización del agua a Tw


Tr: Temperatura de referencia del sistema (0 C)

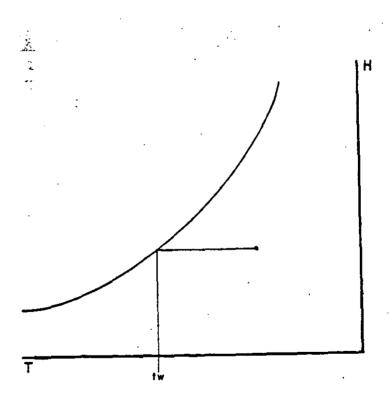
Ti: Temperatura de bulbo seco del punto considerado

Tw: Temperatura de rocío del punto considerado.


En la ecuación que define la entalpia, hay únicamente dos varibales independientes: la temperatura Ti y la humedad absoluta H, ya que Tw es una función de H. Al tenerse una ecuación de primer grado con dos varibales independientes al definir una de ellas, para un cierto valor asignado de "h" se tendrán una serie de puntos que formarán una línea recta cuyo valor de entalpia será constante. Es interesante hacer notar que la línea de entalpia constante coincide al llegar a saturación con la temperatura de "bulbo húmedo", esta circunstancia que actualmente es obvia, se descubrió casualmente.

3

La forma más general de encontrar las condiciones del aire ambiente es la siguiente:


Se determina por medio de un PSICROMETRO, (Aparato que tiene un termómetro para bulbo seco y otro para bulbo húmedo), las temperaturas de bulbo seco (tbs) y de bulbo húmedo (tbh); se marcan dos líneas verticales sobre una carta psicrométrica, una para bulbo seco y otra para bulbo húmedo, al tocar la línea de temperatura de bulbo húmedo con la curva de saturación, se corre hacia la derecha por una línea de entalpia constante, al cortar la línea de temperatura de bulbo seco, ahí se encuentra el punto ambiente buscado.

TEMPERATURA DE ROCIO.

Al enfriar aire no saturado, se conservará su humedad absolita hasta que el aire toque con la línea de saturación, a partir de éste punto cualquier enfriamiento posterior ocasionará una disminución de la humedad del aire. A ésta temperatura, a la cual se llega a saturación sin disminuir humedad, se le llama temperatura de rocío (tro tw).

Una forma simple de percibir éste concepto es la siguiente: Al servirse una bebida fría en un vaso, se empezará a enfriar el recipiente y el aire circundante también, pasados algunos minutos el vaso estará empañado exteriormente y tendrá unas gotas de rocío que se han condensado sobre su superficie. Esto demuestra que la superficie del vaso está a una temperatura inferior a la temperatura de rocío del aire.

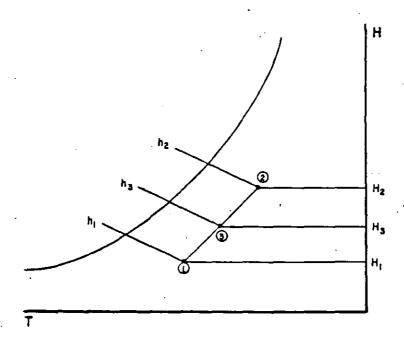
FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

PROCESO PSICOMETRICOS.

1995

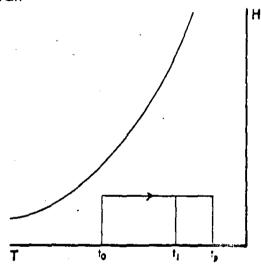

PROCESOS PSICROMETRICOS.

Las maneras por medio de las cuales es posible modifiar las condiciones del aire son las siguientes:

1:- MEZCLA DE DOS FLUIDOS DE AIRE

Al mezclarse dos corrientes de aire con diferentes características, ^rel aire de mezcla se encontrará sobre una línea recta que los une, las ecuaciones que definen éste comportamiento son las siguientes:

M1 + M2 = M3	(1)
M1 h1 + M2 h2 = M3 h3	(2)
M1 H1 + M2 H2 = M3 H3	(3)



2.- FLUJO DE AIRE SOBRE UNA SUPERFICIE SECA Y MAS CALIENTE.

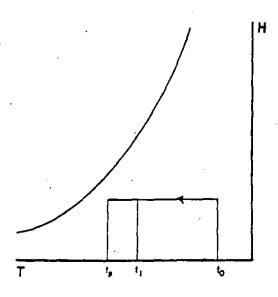
Al fluir aire sobre una superficie seca y más caliente que él, el aire se calentará por supuesto, pero normalmente no alcanzará la temperatura de ésta superficie, ya

que para que ésto sucediera, sería necesario tener o un tiempo de contacto infinito, o una superficie de contacto infinita. Aquí se emplea un concepto nuevo llamado FACTOR DE BY PASS (FB); éste factor mide la ineficiencia de un serpentín y es el complemento a 100% de la eficiencia. En términos generales se puede medir de la siguiente froma:

El factor de by pass es un número adimensional que relaciona las temperaturas del aire y la placa del serpentín y es función únicamente del diseño del serpentín y la velocidad del aire a traves de éste. Permite fácilmente calcular la temperatura de un medio de calefacción ó predecir la temperatura de salida del aire a calentar.

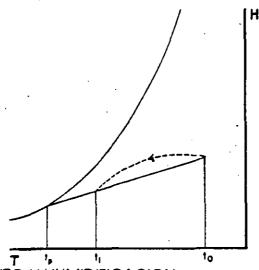
to : Temperatura de placa

to : Temperatura del aire de .


entrada

t1 : Temperatura del aire de

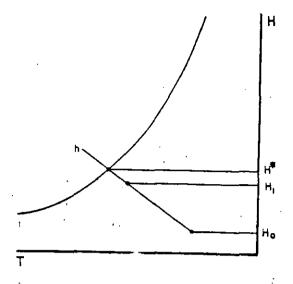
salida


3.- FLUJO DE AIRE SOBRE UNA SUPERFICIE MAS FRIA Y SECA.

El aire se enfría al paso por el serpentín, conservándose su humedad absoluta constante (no llegará a saturación y el proceso se lleva a cabo de forma similar al anterior:

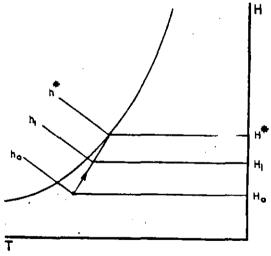
4.- ENFRIAMIENTO Y DESHUMIDIFICACION.

En este caso la temperatura de placa estará a un valor menor que la temperatura de rocio del aire y por lo tanto se presentará una condensación de humedad que reducirá la humedad total del aire de salida. El comportamiento real del aire se presenta aproximadamente por medio de la línea punteada, pero el "factor de by pass equivalente" nos define con bastante precisión el punto de salida del aire. En procesos donde se lleva a cabo condensación, se acostumbra llamar a la temperatura de placa "Punto de rocio del aparato" (PRA).



$$FB = \frac{t1 - tp}{to - tp}$$

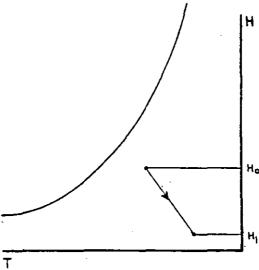
5.- ENFRIAMIENTO Y HUMIDIFICACION


Al pasar aire no saturado a través de una cortina de agua, el aire tratará de saturarse, pero al no existir una fuente externa de calor que le permita conservar su temperatura, simultáneamente a la ganancia de humedad existirá una pérdida de temperatura ya que el calor necesario para la evaporación del agua, será tomado del medio a su alrededor y por lo tanto el proceso se llevará a cabo a entalpia constante (humidificación adiabática). Este proceso se emplea en acondicionamiento de aire para los "Enfriadores evaporativos" (lavadoras de aire) que son el sistema mas barato de proporcionar aire fresco y húmedo a un local.

Aquí se utiliza el concepto clásico de eficiencia para evaluar la bondad del sistema; se puede establecer la eficiencia en función de las temperaturas o de los valores de humedad absoluta.

6.- CALENTAMIENTO Y HUNDIFICACION.

Si durante el proceso de humidificación se introduce calor al sistema, generalmente calentando el agua, se logrará humidificar y calentar simultáneamente; este proceso presenta una variación de entalpia entre la entrada y la salida del del aire que es la cantidad de calor requerida para poder llevar a efecto del proceso.



$$\mathcal{J} = \frac{H* - Ho}{H1 - Ho}$$

7.- CALENTAMIENTO Y DESHUMIDIFICACION.

Al pasar aire ambiente por un medio absorbente de humedad, como alúmina, gel de silice, bromuro de litio, etc., una parte de la humedad del aire pasa a formar parte del material absorbente, ya sea como agua de cristalización ó agua en solución; pero al pasar de la fase vapor que tenía en el aire a fase líquida que tendrá en el absorbente, necesariamente cede su calor de vaporización,

incrementándose consecuentemente la temperatura del aire y el medio absorbente. Esta es una operacion inversa a la humidificación adiabática, y presenta grandes posibilidades a un futuro muy cercano.

HUMIDIFICACION Y DESHUMIDIFICACION.

DESHUMIDIFICACION

Es muy frecuente en Aire Acondicionado requerir que el aire que se encuentra en una posición "A", deba ser transformado a otro con una condición "B"; normalmente se requerirá modificar tanto su temperatura como su humedad. Esto podrá ser llevado a cabo por medio de uno o varios de los "procesos psicrométricos" empleados en secuencias o diferentes pasos.

Es importante hacer notar que para la solución de un determinado problema, habrá varias posibles soluciones; todas ellas buenas, algunas mas sencillas y otras más complejas pero todas posibles, siempre y cuando se respeten los procesos psicrométricos. En algún momento se presentarán dos o mas alternativas TOTALMENTE EQUIVALENTES y se escojerá una de ellas al criterio ó gusto del diseñador.

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO .-

CALCULO EN INVIERNO (CALEFACCION)

1 9 9 5

CALCULO EN INVIERNO (CALEFACCION)

Para poder nacer un análisis de la calefacción de un determinado local, contar previamente a él con las informaciones siguientes:

- Planos del local; plantas y cortes, si es posible fachadas.
- 2.- Materiales de construcción de los muros, techos ventanería, etc.
- 3.- Datos climatológicos del lugar; altura sobre el nivel del mar, temperaturas máximas y mínimas; temperaturas de diseño.
- 4.- Condiciones de operación del lugar
 - a) USO; oficina, hospital, casa habitación, hotel, etc
 - b) Cantidad de personas probables en el local
 - c) Equipo que habrá en el local
 - d) Iluminación; cantidad y tipo
 - e) Miscelaneos
- 5.- Recursos energéticos
 - a) Electricidad; voltaje, fases, ciclos; capacidad
 - b) Gas; natural o LP
 - c) Vapor

Una vez que se tiene la información necesaria para el desarrollo del proyecto, es conveniente realizar un pequeño anteproyecto, que permitirá hacer un análisis completo del problema. En éste se analizarán los siguientes puntos:

1.- ¿ Que tipo de barreras térmicas se tienen.?

a)	Muros al exterior	. (Մ ₁)
b)	Muros en partición	(U_2^2)
c)	Techos	(ប ₃)
d)	Vidrios	(U ₄)
e)	Pisos a areas no acondicionadas	(ប_)

2.- ¿ Hay materiales especiales ?

- a) Piedra del lugar para fachadas
- b) Ventanas dobles para evitar congelación
- c) Superficies exteriores homogeneas, que requieran análisis especial de " h " (Edificios forrados de vidrio, concreto martelinado, etc.

3.- Tipo de sistema a proponer

- a.- Manejadoras; proponer trayectorias de ductos y ubicación de manejadoras
- b) Fan & coils; Proponer ubicación de los equipos y trayectorias de tubería.
- c) Convección natural; ubicación de convectores y trayectorio de tuberías.
- d) Ubicación de casa de máquinas y areas disponibles.

La realización de este análisis permitirá que se aclaren algunas dudas y este pequeño anteproyecto, que representará poco tiempo y esfuerzo, permitirá la realización de una memoria de cálculo ordenada y lo mas lógica posible para la evaluación del problema.

MEMORIA DE CALCULO

Para la realización de la memoria de cálculo que debe respaldar cualquier proyecto se deberán seguir los siguientes pasos generales:

- 1.-Condiciones de proyecto
 - a) Nombre de la obra
 - b) Ubicación; lugar, altura SNM
 - c) Condiciones de diseño

c.1.- Exteriores;

tbs; tbh

c.2.- Interiores

 $tbs + \emptyset +$

- 2.- Cálculo de los coeficientes totales de transmisión de calor " U "
- 3.- Cálculo de areas de transmisión de calor; exteriores, colindancias, particiones, vidrios, techos, etc.
- 4.- Cálculo de pérdidas de calor por transmisión

g= UA ▲ T

y suma de todas las perdidas por diferentes areas

5.- Cálculo de ganancias interiores

Iluminación

Personal

Equipo

Miscelaneos

- 5.- Carga térmica neta del sistema (4)-(5)
- 7.- Cálculo del aire necesario

$$q = m(h_{inj} - h_{inj})$$

8.- Cálculo de la capacidad del equipo

- 9.- Selección del equipo; con la información que se ha obtenido, ya se puede seleccionar el equipo
- 10.- Cálculo de redes de ductos y redes de tubería

De esta manera se na logrado resolver el problema y se tiene la información necesaria para la elaboración de planos, especificaciones y listas de materiales y equipo (Cuantificación)

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONCIONADO

SELECCION DE SERPENTINES

1995.

SELECCION DE SERPENTINES

Uno de los problemas que se deben solucionar en el diseño de un sistema de aire acondicionado, es la selección adecuada de los serpentines de enfriamiento o calefacción con que va a contar la unidad manejadora a emplear. Una véz que se han calculado las cargas térmicas que habran de retirarse, es necesario especificar los equipos que realizarán este servicio; del análisis psicrométrico del problema considerado tenemos las siguientes variables:

- a.- Condiciones de inyección; tbs, tbh
- b.- Condiciones de mezcla del aire; aire exterior y aire de recirculación que se alimentarán al equipo enfriador: tbs. tbh
- c.- Calor total por absorber o suministrar Kcal/h
- d.- Cantidad de aire requerido; kg/h, m³/h

Con esta información se puede proceder a la selección de los equipos requeridos:

El primer paso consiste en hacer una selección de la unidad manejadora que será empleada; requerimos el gasto de aire y la presión que habrá que vencer en las redes de ductos y difusores.

Para la correcta selección de la manejadora, los fabricantes sugieren una velocidad máxima a través de los serpentines de enfriamiento para evitar arrastre de agua que se haya condensado en ellos; se presenta una tabla de velocidades recomendadas por un fabricante. SON VELOCIDADES MAXIMAS

Altura SNM. (m)	Densidad aire (kg/m ³)	Velocidad máxima (Pies/min)	(m/s)
0	1.2	615	3.12
304	1.16	6 30	3.20
610	1.11	640	3.25
915	1.07	650	3.30
1 220	1.04	66 0	3.35
1 525	1.00	67 0	3.40
1 830	0.96	685	3.48
2 130	0.92	700	3.55
2 440	0.89	710	3.60
2 740	0.85	⁻ 7 25	3.68
3 050	0.82	740	3.76

En la selección que se realice de una unidad manejadora es necesario tomar en cuenta estas velocidaes máximas de flujo a través de los serpentines; una vez seleccionada la manejadora, ya se cuenta con información del area de los serpentines que se habrán de seleccionar.

CARGA TERMICA UNITARIA (CTU)

Las capacidades de los serpentines tanto de enfriamiento como de calefacción se encuentran tabuladas en capacidad térmica por unidad de area (Kcal/mñ), (BTU/ftñ)

por lo que es indispensable tener una selección de la

unidad manejadora para conocer el area de flujo de los

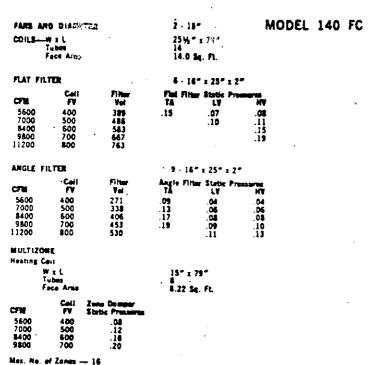
serpentines y así poder calcular la CTU

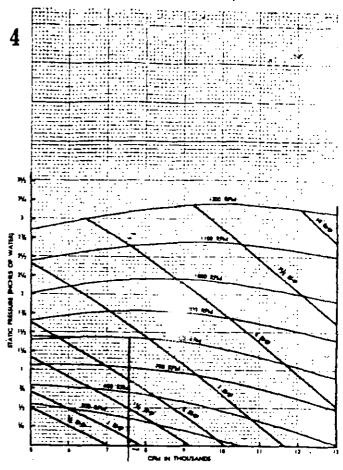
Ejemplo:

Se tiene una carga térmica de 74 300 Kcal/h Gasto de aire 12 750 m³/h

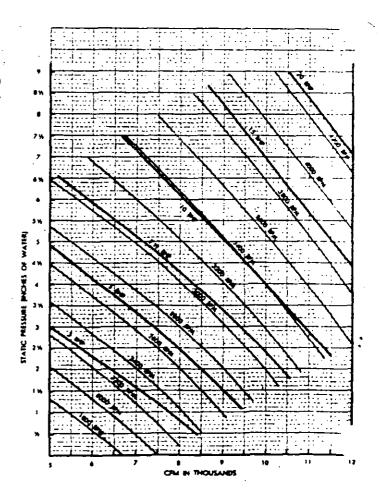
Condiciones del aire de mezcla tbs= 24 °C (75°F) tbh= 19°C (66°F)

Condiciones requeridas de inyección tbs= 11.4°C (52.5°F) tbh= 11.0°C (51.8°F)


Para estas condiciones se selecciona una unidad manejadora modelo 140 cuya area de serpentín es de 14 ft²; la velocidad de flujo del aire es de 535 ft/min.


$$294 841 BTU/h$$
 $CTU=---\frac{1}{14} \frac{1}{ft} = 21 060 3TU/h ft^2$

Con la información de que se dispone se busca la capacidad en las tablas de serpentines para agua helada; encontrandose lo siguiente:


Serpentín de la serie HC con 5 hileras trabajando a una velocidad de 500 ft/min; empleandose agua de 45°F, con una diferencial de 10°F y un gasto de 5 gpm/circuito

Por regla "eneral el mejor equipo será el que sea mas sencillo. Para calcular las caidas de presión tanto del agua en circulación por el serpentín, como para el aire que pasa a través deél, los fabricantes dan tablas o nomogramas

FANS	AND DIAM	ETER	2 -	12-		MODEL 140
COILS	WıL		25 4	5" ± 79"		MODEL 140
	Tubes		14			AIRFOIL
	Face Area	l es es	14.0	9 Sq. FL. ,		
FLAT I	FILTER		6.	16" z 25" z 2	?-	
	Cell	Filter		Har Statle Pri	-	
CFN		Yei	TA	LY	HT	•
5600 7000	400 500	389 486	.15 .	.07	.06	
8400	500	\$43		.10	.11 .1 5	
9800	700	647			19	
11200	800	763				
ANGLE	FILTER		9 - 1	16" z 25" s 2	•	
	Ceil	Filter	Ancto F	line Sindle Pr		•
CFM	FY	Yel	T\$	LV	. 167	
5600	400	271	.09	.04	84	
7600	500	338	.13 -	.06	.06	
8400	600	406	.17	.08	.68	
9800 11200	700 200	453 530	.19	.09	.10	
11200	200	340		.11	.13	
MULTIZ	ZONE				-	
Heating	Ceil					
	WIL		15"	z 79"		
	Tubes					
	Face Area		8.22	Sq.' ft.		
CFTM	Ceil IV	Zone Demper Static Pressures				
5600	400	.08		•		
7000	500	.12				• •
8400	600	.16			•	
9800	700	.20				
Mar No	n of Zaass .	_ 14				

3 Row	4 Row	5 Row	6 Row	7 Row	8 Row		
BTUH WBI D81	BTUH WE! DBI	BTUH WBI DBI	BTUH WBI DBI	STUH WBI DBI	STUH WEI DOI	WT RISE TI	GPM / CJR.
12670 55.8,56.8 12210 56.2 57.3 11660 50.7 57.8	15390 53.3 53.8 14830 53.8 54.3 14320 54.3 54.8	17720 51-2 51.4 17100 51-7 52-0 16460 52-3 52-6	19620 49.3 49.4 19330 49.9 53.0 18320 50.6 50.7	21240 47.7 47.7 20570 46.4 48.4 19830 49.1 49.2	2238G 46.5 46.5 21820 47.1 47.1 2127G 47.6 47.7	8 10 40 12)
10070 55.2 59.2 9600 58.6 59.6 9100 59.0 60.0	12340 56.1 56.6 11770 56.6 57.1 11180 57.2 57.7	14140 54.4 54.7 13510 55.0 55.3 12860 55.6 55.9	15690 53.0 53.; 15020 53.6 53.7 14320 54.3 54.4	16980 51.8 51.9 16340 52.4 52.5 :5600 53.; 53.2	18160 5C.7 50.8 17520 51.3 51.4 16730 52.1 52.1	8 10 45 12	1
7570 60.3 61.3 7150 60.6 61.7 6710 61.0 62.0	9:80 56.9 59.4 8660 59.4 59.9 8140 59.8 60.3	10560 57.7 57.9 .9990 58.2 58.5 9380 58.0 59.0	11760 56.7 56.6 11120 57.2 57.3 10440 57.6 57.9	12730 55.8 55.9 12090 56.4 56.4 11370 57.0 57.;	13650 54.9 54.9 12960 55.5 55.6 12190 55.3 56.3	8 10 50	
17160 51.7 52.7 16540 52.8 53.3 16750 53.0 54.0	10751 11.2 E3.7	22334 46.7 47.1 24-50 47.5 17.7 20757 48.0 48.2		24732 45.0 42.5 24.40 44.0 84.1 2.870 42.0 42.1	214-1 42-1 44-1 214-1 44-1 44-1	10 40	1
13550 55.0 56.0 12500 55.6 56.5 12220 56.2 57.3	(6)36 \$2.7 53.25 (6)36 \$2.6 53.8	179:0 51.0 51.2 170:0 51.6 51.1		20000 45.0 (45.1) 1907 - 60.0 (45.1)		8 10 45	3
10040 58.2 59.2 9340 58.7 59.8 8740 59.3 66.3	1040 70 8 14767 1040 70 8 14767 1044 70 7 8 7 8 7 8	13210 35.2 55.5 13250 35.4 56.1 1.760 56.6 50.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15270 53.4 53.4 15570 55.4 55.4 14770 55.4	1611 .42.	10 50	}
18380 50.5 51.6 17750 51.1 52.2 17010 51.6 52.8	21310 47.6 48.1 20610 48.3 48.8 19910 49.0`49.5	23160 45.6 45.9 22620 46.2 46.4 21980 46.9 47.1	24540 44.1 44.2 24043 44.6 44.6	25490 42.9 43.0	26150 42.2 42.2 25790 42.6 42.6	10 40	1
14620 54.0 55.0 13020 54.6 55.7 23140 55.4 56.4	17060 51.6 52.3	18820 50.1 50.3 18060 50.8 51.1 17370 51.5 51.7	20450 45.3 45.4 20070 48.9 49.0 19440 49.5 49.6 18700 50.2 50.3	21020 47.9 48.0 20470 48.5 48.5	25320 43.2 43.2 21660 47.2 47.3 21170 47.7 47.8 20570 48.4 48.4	12 10 45	5
	12730 55.8 56.3	14000 54.6 54.8 13350 55.2 55.4 12440 56.0 56.3	15110 53.5 53.7 14360 54.2 54.3 13520 55.0 55.1	19760 49.2 49.2 15940 52.8 52.9 5210 53.4 53.5 14380 54.2 54.3	10000 52.2 52.2 15920 52.8 52.8 15090 53.0 53.6	10 50	
13710U57.4 58.6 13140-57.8 59.0	17000 54.9 55.6	19610 53.0 53.4 19060 53.4 53.8	22090 51.2 51.4 21390 51.7 51.9	24010 49.7 49.8 23280 50.3 50.4	25750 48.3 48.4	12 10 40	1
12650 59.3 60.6 10930 59.7 60.9	15680 55.9 56.6 13530 57.5 58.2 12900 57.9 58.6	18310 53.9 54.3 15770 55.9 56.2 15060 56.4 56.7	20590 52.3 52.5 17550 54.5 54.7 16900 55.0 55.2	19280 53.3 53.4	24130 49.6 49.7 20680 52.3 52.3 19800 52.9 52.9	12 8 10 45	(,
8260 61-1 62-4	9610 60.2 60.9	14330 56.9 57.3 11840 58.7 59.0 11180 59.1 59.5	10:00 55.6 55.8 13:80 57.7 57.9 12530 58.2 58.4	17560 54.5 54.6 14480 56.8 56.9 13650 57.4 57.5	18900 53.5 53.6 15530 56.0 56.1 14680 56.7 56.7	12 10 50	• '
19150 53.4 54.6	9040 60.6 61.2 2 2272 -20.6 0.0 0.0	25510 59.6 59.9 25514 48.5 48.9	11780 58.7 56.9	12840 58.0 58.1 _2V250 45.5 45.4	.3057. 44.2 44.2	12)
1986 54.9 55.2 17800 54.5 55.8 -15670 56.4 57.7 14343 56.7 56.2	16165 5-17.54.0		27460 46.7 46.6 24966 47.3 47.5. 24122 46.0 48.2 128340 51.0 91-1			10 40	
13570 57.5 58.6	1240 54 8 55.4. 1630 50 4 8 55.4. 1240 57 6 56.8 1250 50 1 56.8 1770 50 7 59.4	19550 50.3 56.6	28343 51.0 01.1 21473 51.7 54.6 20012 52.4 52.6	17390 53 541	16030,80.6 50.6	10 45	3
9730 60:1 61:4	-	27070 47.2 47.6		10130 55.7 55.8		10 50 12 8	1
Z0:00 52-7 54-0 11-00 53-3 54-6 1-00 55-3 56-5	23790 49.9 50.0 22890 50.6 51.3	26370 47.8 48.2 25530 48.5 48.9	29110 45.5 45.7 28420 46.1 46.3 27550 46.8 47.0	29110 45.5 45.6		10 40 12	
15710 55.9 57.2 14510 56.6 57.9	19600 53.0 53.7 18650 53.7 54.4 _ 17700 54.4 55.1	73990 52:8 53:1)	22740 50.7 50.9 21890 51.4 51.5	24910 49.0 49.1 24160 49.6 49.7 23290 50.3 50.4 18810 53.6 53.7	26010 48.1 48.2 25340 48.7 48.7 24430 49.4 49.4 19720 52.9 53.0	10 45 12	5
10850 59.6 60.8	13600 57.4 58.1	16290 55.5 55.8 15360 56.2 56.5 14350 56.9 57.3		17900 54.3 54.4 16870 55.0 55.1	18810 53.6 53.6 17770 54.4 54.4	10 50	, · —
14020 58.0 60.3 14020 58.0 60.3	18190 56.3 57.2 17480 56.8 57.6 15740 57.2 58.0	21370 54.3 54.8 20580 54.8 55.3 19770 55.3 55.8	23250 53.2 53.4	20510 51.2 51.3 25610 51.6 51.9 24660 52.3 52.5	28420 50.0 50.1 27550 50.5 50.6 26550 51.2 51.3	. 10 40)
11570 60.2 61.7 11020 60.5 62.0 10490 60.8 62.3	14470 58.5 59.4 13790 58.9 59.8 13110 59.3 60.1	17050 57.0 57.5 16270 57.5 57.9 15470 57.9 56.4	19240 55.7 55.9 18390 56.2 56.5 17510 56.7 57.0	21150 54.5 54.6 20250 55.0 55.2 19310 55.6 55.8	22740 53.5 53.6 21790 54.1 54.1 20790 54.7 54.8	10 45 12	1
8810 61.7 63.2 8370 61.9 63.4 7880 62.2 63.7	10940 60.5 61.3 10350 60.8 61.7 9750 61.2 62.0		14460 58.5 58.8 13670 59.0 59.2 12860 59.4 59.7	15900 57.7 57.8 15040 58.2 58.3 14150 58.7 58.8	17(10 57.0 57.1 16180 57.3 57.6 15230 58.1 58.2	10 50	1
20000 54.7 59.2 19970 55.2 56.7 19620 55.8 57.3	المخرج والمحاجدة	28530 49.9 50.4 27530350.6 51.0 26430 51.3 51.7	29170 48.8 48.1 29170 48.8 48.1 29170 49.5 48.7 28480 52.1 52.8 23793 52.8 55.0 22780 53.5 55.7	33420 40.0 46.7 32510 47.2 47.4 31440 47.4 46.1	35370 45.4 45.5 \$34830 46.0 46.1 \$33800 46.7 46.8	10 40)
10420 57.4 58.9 15570 57.9 59.4 14600 50.4 59.9	19870-55 13756 2 19830 35 17 50 8 19730 35 13 57 3	22033-50.6 54.0 51620-54.6 54.6 20543-54.6 55.3	27930 52.1 52.4 27930 52.8 90.0 22780 53.5 53.7	26430 50.4 51.1 26410 51.6151.7 24660 52.3 52.5	28440 50.0 50.0 27470 50.6 50.7 26440 51.2 51.3	10 45 12	3
12130 57.9 61.4 1:345 60.3 61.5 10540 60.7 64.2	1981-0-35 13726 2: 19830 35 19750 8: 1920 35 1877 3 1920 35 1877 3 13760 35 1978 3 13250 59 1860 5	15840 57.1 57.6 15840 57.7 56.2 14800 58.3 58.8	18050 50.0 56.5 PL7560 60.7 56.5 NASSO 67.4 22.4	20:90 55.1 35.2 14032 55.8 55.9 17030 56.5.50 72	24300 44.3 54.4 20343.95.0 55.1 19133.50.7 55.6	10 50 12	}
22700 53.5 55.0 21990 53.9 53.5	27310 50.7 51.5 26320 51.3 52.2	30470 48.6 49.1 29680 49.2 49.6		35030 45.4 45.5 34270 46.0 46.1	36620 44.2 44.3 35940 44.7 44.8 34970 45.5 45.5	8 10 12)
18100 56.4 57.9 17090 57.0 56.5	25220 52.0 52.8 21670 54.1 55.0 25540 54.9 55.7 19470 55.5 56.4	24490 52.4 52.9	26850 51.0 51.2 25560 51.8 54.0 24470 52.5 52.7	25340 49.9 50.0 27470 50.6 50.7 26370 51.3 51.4	29920 49.0 49.1 28930 49.7 49.7 27860 50.3 50.4	10 45	5
13390 59 3 40.7	16000 57.6 58.5 14970 58.2 59.1 13930 58.8 59.7	1H150 56.3 56.8	19940 55.2 55.5	2:380 54.3 54.5	22510 53.6 53.7 21420 54.3 54.4 20190 55.1 55.2	10 50	
	ur Per Square Foot Of Fac luib_Temper≉ture		= Initial Wet Bulb Tem = Final Wet Bulb Tem = Water Temperature	perature			•
Ti = Initial Water		n.	— ल्याचा प्रसाधिक वस्ति				31

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

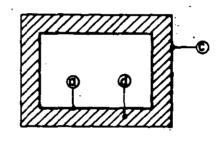
PROYECTO DE AIRE ACONDICIONADO

DUCTOS

1 9 9 5

DUCTOS

Los ductos para aire son conductos por los cuales se hace circular el aire nece sario para mantener las condiciones de comodidad establecidas para un local determinado.


Normalmente la sección rectangular y fabricados en lámina galvanizada calibre - 22, 24 o 26 dependiendo de sus dimensiones, no obstante, también pueden ser de sección circular, lo cual permite dar mayor velocidad al aire pero también re-quiere de mano de obra más especializada.

Estos ductos deben ir aislados por varias razones: en caso de conducir aire caliente, para evitar que este aire se enfríe antes de llegar al lugar donde se requiere, en caso de conducir aire frío, para evitar que éste se caliente en el trayecto y también para evitar que el aire que rodea al ducto al enfriarse, for me gotas de agua condensadas que provocarían finalmente goteras, humedades y deterioro.

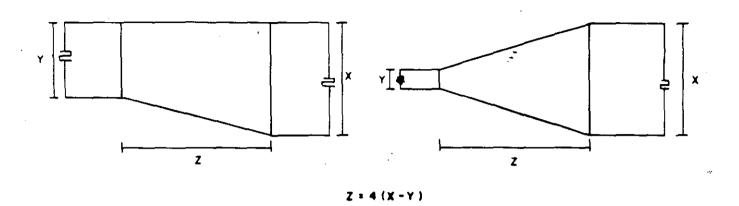
A continuación se dan tablas que indican el calibre de lámina que se debe utilizar dependiendo de las dimensiones del ducto, así mismo se muestran esquemas de como se debe aislar un ducto de calefacción y uno de refrigeración.

DIMENSION MAYOR DEL cm	N DEL LADO L DUCTO pulg			E DE LAMIN IZADA A US	
0- 30	0-12	<u>.</u> ,		26	
.31- 76	13-30		, - *	24	
77-135	31-54	,		22	

DUCTO DE CALEFACCION

DUCTO DE ENFRIAMIENTO

- a) Ducto de lamina galvanizada
- b) Aislamiento de fibra de vidrio de 25 mm de espesor (1")
- c) Papel bondalum pegado con resistom 5000
- d) Aislamiento de fibra de vidrio o espuma de poliestireno de 25 mm (1") Ø.


En caso de que los ductos se instalen a la intemperie, habrá que ponerles un recubrimiento a base de cemento monolítico de 25 mm de espesor (1") puesto sobre una tela de gallinero que le ayudará a adherirse al aislamiento.

Para el diseño de ductos deben seguirse ciertas normas que a continuación se s \underline{e} . \bar{n} alan:

- 1.- Su trayectoria debe ser lo mas recta posible
- 2.- El largo y ancho del ducto no debe rebasar una relación de 3:1
- 3.- La caída de presión recomendable es de 8.5~mm H20/100 mt. de ducto (0.1 pulg H20/100 pies de ducto).
- 4.- Las velocidades máximas permisibles son las que aparecen en la siguiente table:

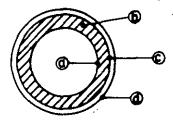
TOMAS DE	RESIDE	NC I AS	LOCALES I	PUBLICOS		INSTALACIONES - INDUSTRIALES	
	m/s	FPM	m/s	FPM	m/s	FPM	
Aire exterior .	2.50	500	2.50	500	2.50	500	
	4.00	800	4.50	900	6.10	1200	
Filtros	1.25	250 300	1.55 1.80	300 350	1.30	350	
Serpentines	2.30	450 500	2.50 3.05	500 600	3.05 3.50	600 700	
Lavadoras de aire	2.50	500	2.50	500	2.50	500	
Succión de ventilador	3.50	700	4.00	800	5.10	1000	
	4.50	900	5.10	1000	7.10	1400	
Descarga de ventilador	5.10	1000	6.60	1300	8.15	1600	
	8.65	1700	11.20	2200	14.20	2800	
Ductos principales	3.50	700	5.10	1000	6.10	1200	
	6.10	1200	8.15	1600	11.20	2200	
Ductos secundarios	3.05	600	3.05	600	4.00	800	
	5.10	1000 ູ	6.60	1300	9.15	1800	
Derivaciones a difuosres	2.50	500	3.05	600	4.00	800	
	4.00	800	6.10	1200	8.15	1000	

5.- Las reducciones deben seguir las siguientes relaciones:

TUBERIAS

Las tuberías utilizadas parala conducción de agua fría o caliente y vapor pue-den ser de los siguientes matériales:

- a) Cobre tipo "M" (agua fría o caliente)
- b) Fierro galvanizado cedula 40 (agua fría o caliente),
- c) Acero negro soldable cedula 40 (agua y/o vapor).


Lo más frecuente es utilizar tubería de cobre para diámetros desde 13 mm (1/2") hasta 76 mm (3") y tubería de acero negro soldable cedula 40 para diámetros de 100 mm (4") en adelante.

Nunca deben emplearse combinaciones de tuberías de cobre y tubería de fierro - galvanizado ya que la unión de estos materiales genera una diferencia de potencial eléctrico llamdado PAR GALVANICO, el cual produce deterioro de la conexión y obviamente su falla después de algun tiempo.

En general no es recomendable el uso de tubería de fierro galvanizado debido a su corta vida (5-10 años) y a los graves problemas de obstrucción que presenta:

Al igual que los ductos las tuberías deben ir aisladas para mantener su temperatura y para evitar condensaciones de aire que los rodea.

A continuación se dá una tabla que señala el espesor recomendado de aislamientos para los diferentes diámetros de tuberías y para las diferentes temperaturas.

AISLAMIENTO DE TUBERIAS

- a) Tubería de cobre o de -
- b) Aislamiento de fibra de vidrio
- c) Manta de cielo impregnada con impermeabilizante
- d) Pintura y/o lámina de alu minio o galvanizada.

Para el diseño de tuberías deben tomarse en cuenta las siguientes consideraciones

- 1.- Las trayectorias deben ser lo más rectas que la estructura y arquitectura lo permitan.
- 2.- La caída de presión por fricción no debe exceder del 10 m col H20/100 m. tubería en tuberías de agua fría o caliente.
- 3.- Las velocidades máximas permisibles son:

	m/s	FPM
Tuberías de agua (fría o caliente)	3	590
Tuberias de vapor (P=7 kg/cm²= 100 psig)	50	9800
Tuberias de vapor (P=1.05 kg/cm ² =12 psig)	30	6000

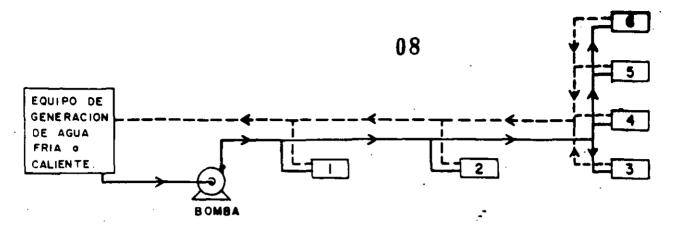
4.- Las tuberías por ser metálicas, tienen dilataciones y contracciones debido a los cambios de temperatura; estos cambios de longitud deberán ser absorbidos por accesorios especiales llamados juntas de expansión (para tuberías de vapor) y por mangueras flexibles (en tuberías de agua fría y caliente). Se deberá instalar una junta de expansión o manguera flexible (según el caso) cada tramo que pueda tener una variación en su longitud de 2.5 a 5.0 cm (1"-2") Si la variación es mayor de 5.0 cm (2") se deberán instalar varios accesorios de los mencionados. Si la variación es menor a 2 cm (3/4"), se puede absorber con un juego de codos.

A continuación se proporcionan gráficas para el cálculo de diámetros de tuberías de agua (fría y caliente) y para vapor en alta y baja presión, así como para el cálculo de longitud equivalente de los diferentes accesorios que pueden instalar se.

En los sistemas de agua fría y agua caliente existen fundamentalmente dos criterios a seguir:

- a) Retorno directo
- b) Retorno inverso

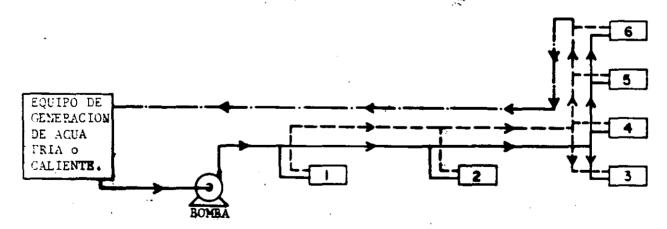
Ya sea el agua fría o el agua caliente, se producen o generan en un equipo de refrigeración (reciprocante, por absorción, centrífugo) ó en un equipo de calefacción (caldera, caldereta, calentador); a partir de éste equipo, el agua se bombea para que llegue a todos los serpentines que tiene que alimentar (manejadoras y/o fan & coil); el agua atraviesa los serpentines correspondientes y regresa nuevamente al equipo generador de agua fría o caliente.


CIRCUITOS DE CIRCULACION DE AGUA

Dependiendo de como se diseñe el retorno, el sistema será de retorno directo o de retorno inverso.

RETORNO DIRECTO

En este sistema, el agua que sale del equipo de bombeo alimenta a los diferentes equipos que lo requieran en forma consecutiva, o sea, primero al equipo que se - localiza más cerca y al último al que se encuentre más alejado.


La tubería de retorno normalmente es una tubería paralela a la de alimentación per ro que circula en sentido contrario, o sea que recoge primero el retorno del -- equipo más alejado y finalmente el del equipo más cercano, para así regresar al -- equipo de generación de agua fría o caliente.

ESQUEMA DE UN SISTEMA DE RETORNO DIRECTO

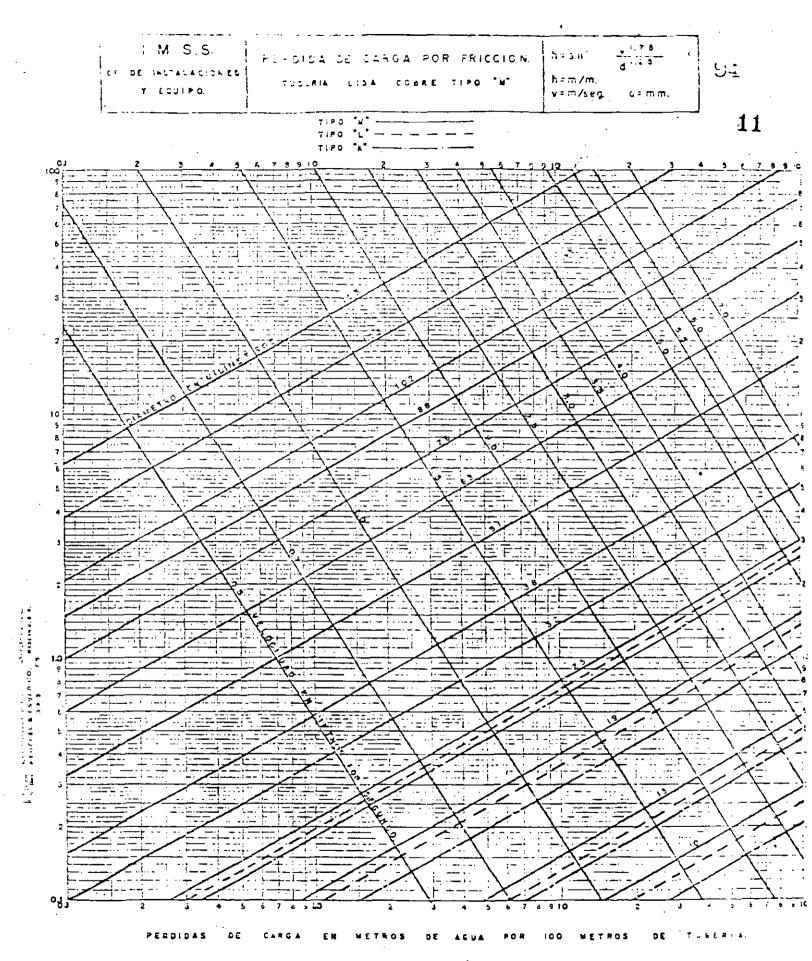
RETORNO INVERSO

Este sistema tiene la alimentación de agua en la misma forma que en el caso anterior, en donde difiere es pecisamente en la tubería de retorno cuya trayecotria recoge primero al equipo más cercano, que resulta ser también el primero en ser alimentado y conecta al final con el equipo más alejado que es el último en ser alimentado, para de ahí regresar al equipo generador de agua fría o caliente.

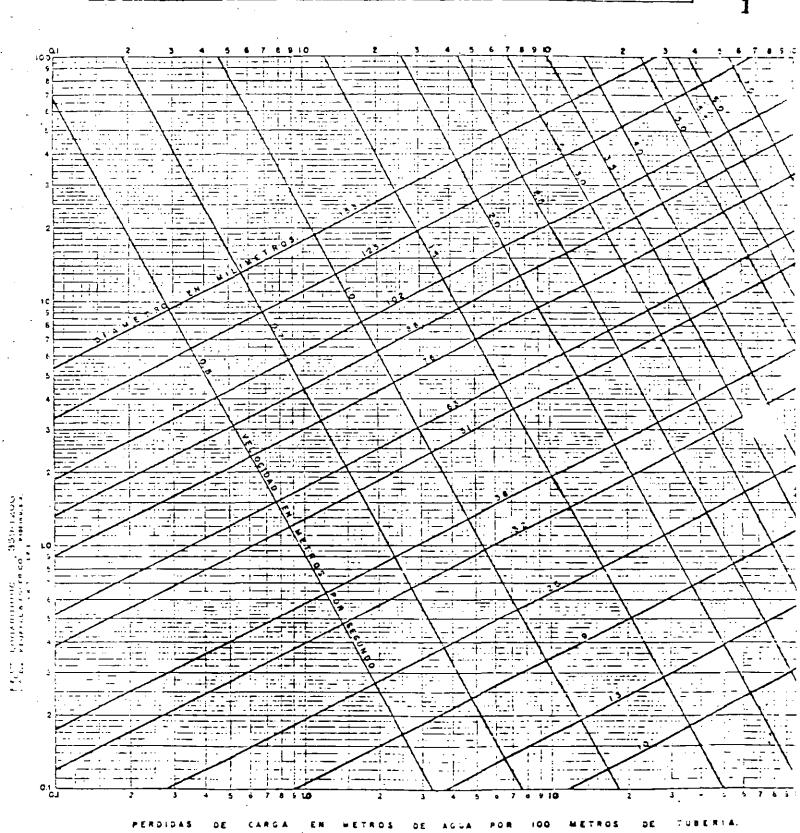
ESQUEMA DE UN SISTEMA DE RETORNO INVERSO

Como se puede observar, en este último sistema se requiere de una tubería más - que en el caso anterior, pero tiene la gran ventaja de quedar balanceado casi - totalmente desde el momento de su construcción lo cual hace más eficiente su - funcionamiento.

En el caso del retorno directo, el agua llega con una presión alta al primer ser pentín y con una presión baja al último serpentín; en el retorno, la presión de salida del último serpentín resulta ser también más baja que en el primero y és to provoca que en el último serpentín circule menos agua que en el primero.


Esto se puede corregir instalando válvulas tipo globo en la salida de cada ser-pentín para dar en forma manual la caída de presión necesaria para que todos los serpentines operen con el gasto de agua correcto. De cualquier forma, no es -fácil dejar correctamente balanceado todo el sistema ya que cuando se abre o cierra la válvula globo de cualquiera de los serpentines se modifica el flujo en todos los demás.

Cuando se utiliza el retorno inverso, la alimentación al primer serpentín, es al igual que en el caso anterior, con presión alta y en cambio el del último serpentín es con presión baja, pero a diferencia del retorno directo; en este sistema de retorno inverso se provoca que, el retorno del primer serpentín, que tiene -- una presión todavía alta, circule una longitud equivalente a la que provoca la -caída de presión en la tubería de alimentación de forma tal que, cuando se juntan el retorno del primer serpentín con el del último, sus presiones ya están practicamente igualadas sin necesidad de válvulas adicionales.


Este sistema de retorno inverso es más caro en su costo inicial, pero a mediano plazo res, ta más económico debido a que disminuye los costos de mantenimiento.

Es aconsejable utilizar este criterio en instalaciones grandes (hoteles, edificios de oficinas, etc.) donde se aprovecharán sus ventajas constantemente.

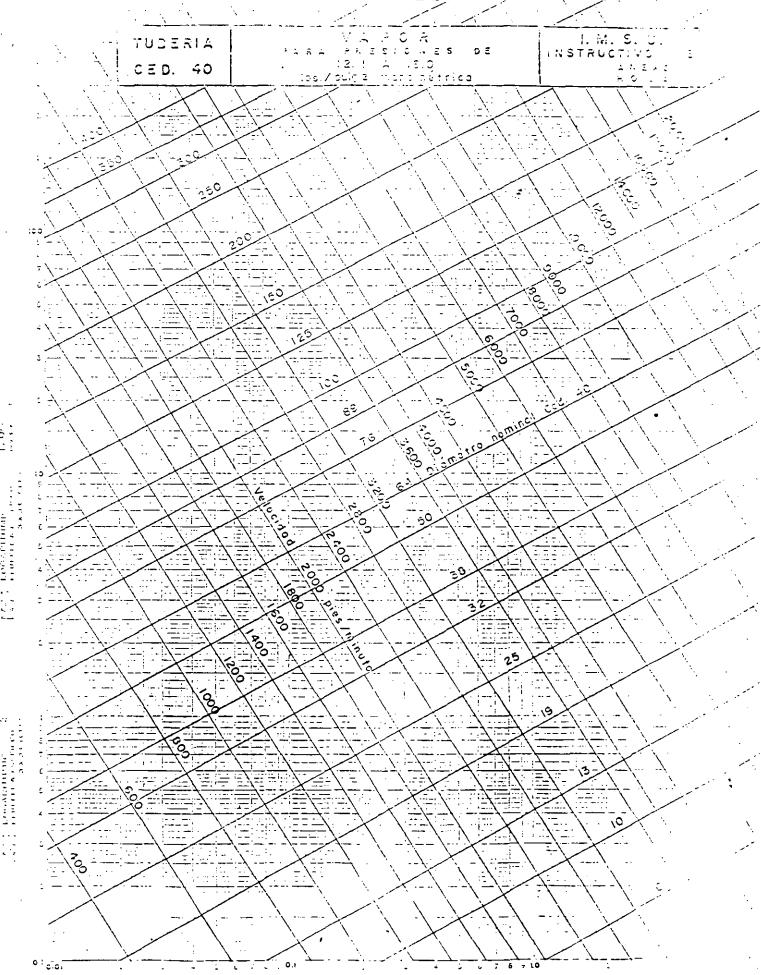
En instalaciones de pequeñas dimensiones (casas habitación, pequeños comercios, u oficinas), no resulta práctico su empleo, además de que no siempre se tiene - una amortización atractiva.

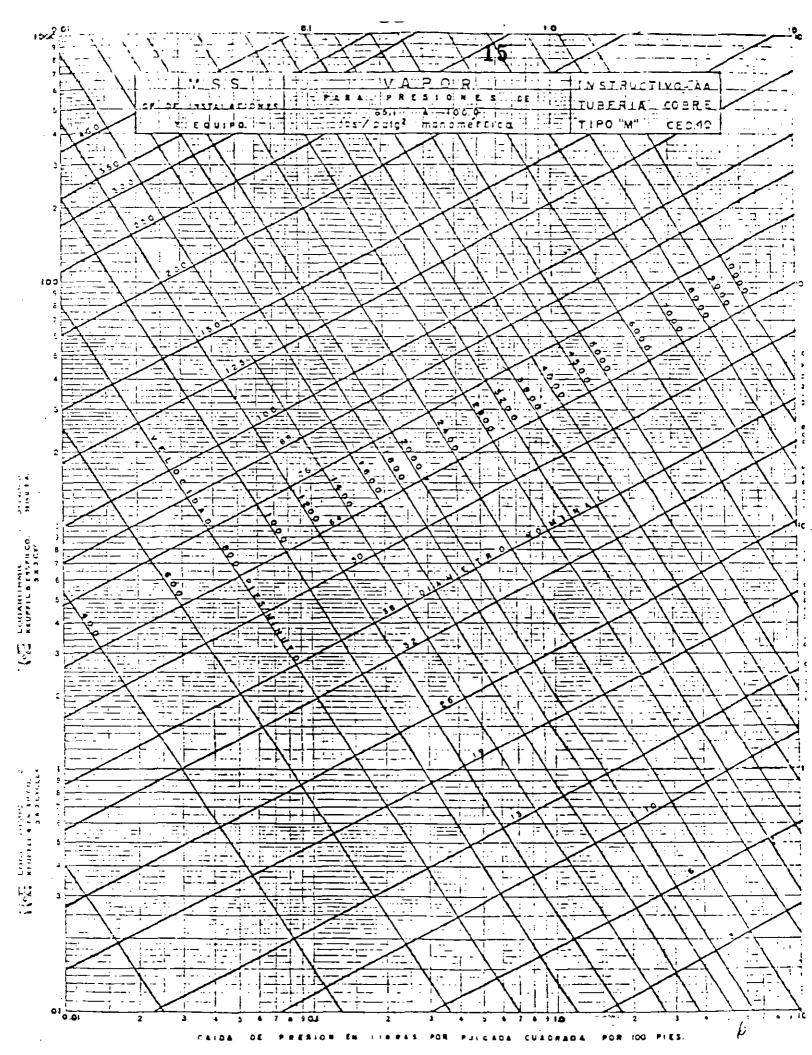
FERDIDA DE CARGA POR FRICCION DE LOS DELOS DE LOS DELOS DE LOS DELOS DE LOS DELOS DELOS DE LOS DELOS DELOS

I. M. S. S. PERDIDAS DE CARGA EN INSTRUCTIVO CALCULOS

C. 35.29 ALVULA DE COMPUERTA. ---- CERTIĈA 3/4 - 600 - CENHADA 1/2. - 500 - 400 - 300 - 250 1270 -- 500 150 VALVULA DE ANGULO ABIERTA 36 = 100 = 75 VALVULA DE PETENCION COMPLETANENTE AGIERTA. 406-356 -CRIFICIO CON TUBO "I 5 ENTRANTE (BORDA), E `3 Q **5** -3 203 -1 152æ 1,27-TEE STANDARD & TRAVES DE LA ENTRADA LATERAL 102 1.50 0.60 - 21/2 CODD STANDARD O PASO SE TEE REQUEIDA A 1/2 0.40 5! -0.30 -4/D 0.20 CODO DE CURVATURA MED 0.16 A PASO DE TEE REDUCIDA A I/A 0.10 25 -0.08 007 008 0.04

NOTA


O PASO DE TEE STANDARD.

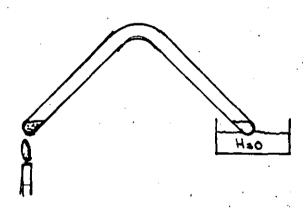

PARA CONTRACCIONES Y ENSANCHAMIENTOS BRUSCOS UTILICESE EL DIAMETRO MENOR ""

0.08

13 -

- 0.5

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA


CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

ENFRIADORAS POR ABSORCION

1995

En 1824 el Físico Michael Faraday realizó una serie de experimentos basados en que el cloruro de plata, (un polvo blanco) es capáz de absorber grandes cantidades de gas amoniaco formando un ión complejo; este proceso puede hacerse reversible por medio de la aplicación de calor y se liberará amoniaco en forma gaseosa. Faraday introdujo en un túbo en forma de "U" invertido cloruro de plata amoniacal y al calentar uno de los extremos se genera amoniaco que se condensa en el otro

extremo por medio de enfriamien

to con agua; al retirar la fuente

de calor y enfriamiento respecti

vamente, se inicia una evaporación

del amoniaco que consume calor para

llevar a cabo el cambio de esta

do (líquido a vapor) producien

dose un efecto de refrigeración

Aprovechando este principio el Ing. Marcel Carré registró una patente para el empleo de una mezcla absorbente-agua para idear un sistema de refrigeración por absorción.

El sistema actualmente de uso en el mercado emplea como absorbente bromuro de Litio y como refrigerante agua; el sistema funciona de la siguiente manera:

Fig 1 -

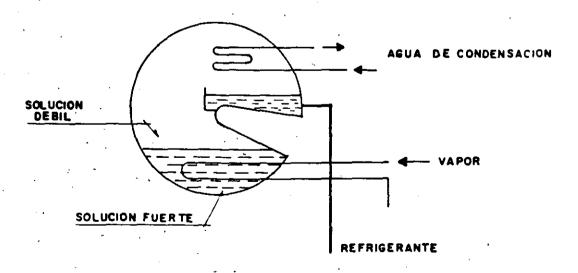


Fig 2

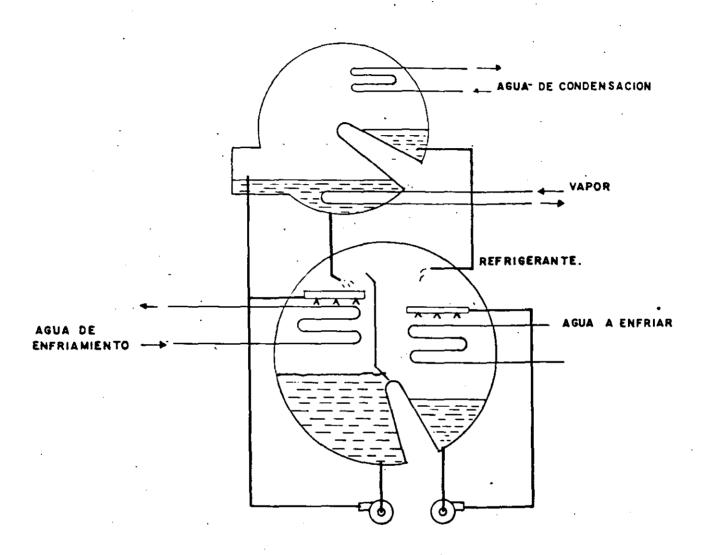
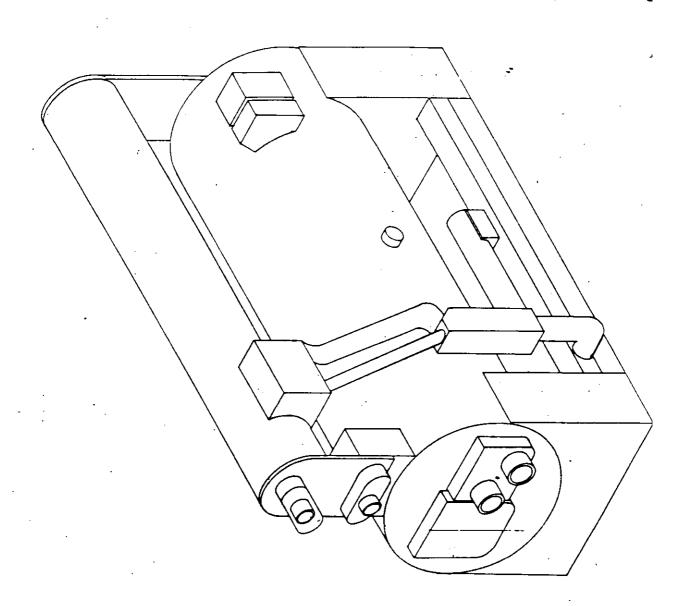
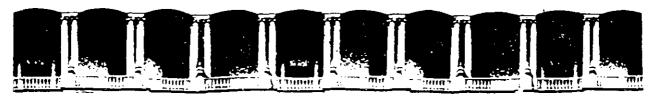


Fig 3

La figura (1) representa un recipiente hermético que contiene el ABSORBEDOR y el EVAPORADOR divididos por medio de una mampara; el absorbedor contiene una solución concentrada del absorbente que es recirculada por medio de una bomba y espreada sobre su depósito, creando una gran superficie de contacto (el area de las pequeñas gotas) todo el recipiente se encuentra a muy baja presión y el vapor de agua que se halla presente es facilment absorbido por esta solución; la reacción es exotérmica por lo que es necesario enfriar al absorbedor para que se obtenga la máxima capacidad posible.

En la sección correspondiente al SVAPORMOR se recir
cula refrigerante (agua) por medio de una bomba para lograr
que ésta presente la máxima superficie posible para favorecer
su EVAPORACION; al evaporarse el agua, que en forma de vapor
pasará hacia la otra parte de la cámara, necesita consumir
calor(CALOR DE CAMBIO DE FASE) que obtendrá del cambiador
de calor que se encuentra en la zona del evaporador; este calor
al ser retirado provoca la REFRIGERACION y así se obtiene agua
helada de este equipo.

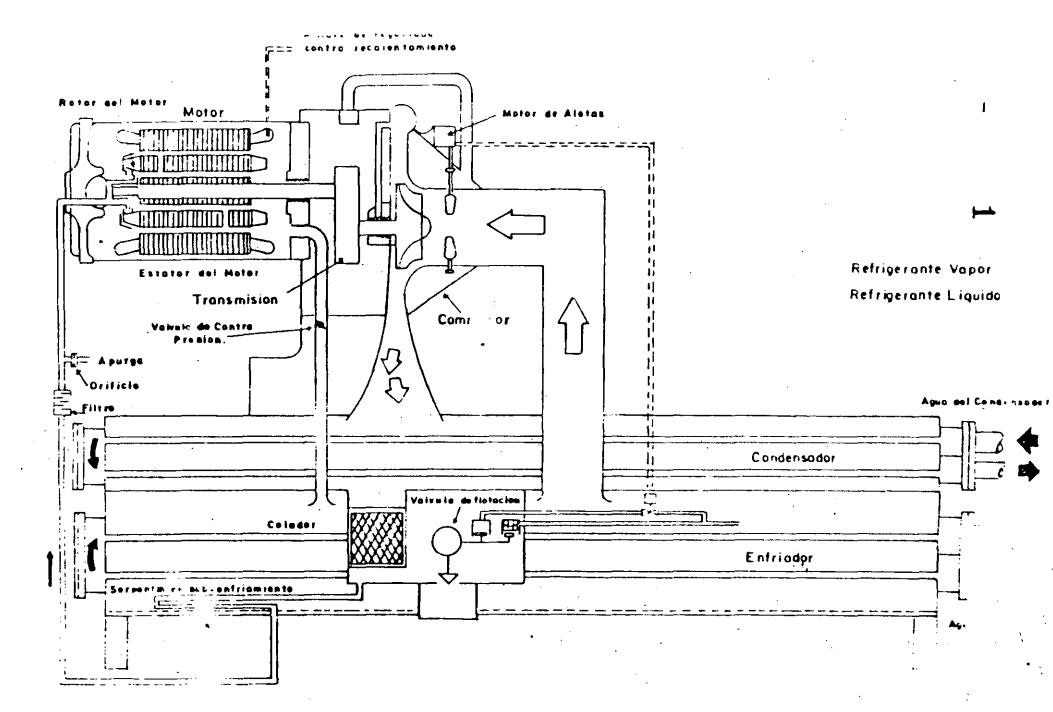

En la figura (2) se representa el sistema de recuperación.


de refrigerante; en otro recipiente hermético GENERADORCONDENSADOR, se alimenta la solución diluida de absorbente
y refrigerante (SOLUCION DEBIL) y por medio de un serpentín
de vapor, se hace hervir esta solución, generándose vapor de
agua (refrigerante) que pasará a la parte superior del recipiente y se condensará ahí por medio de un serpentín enfria
do por agua de torre de enfriamiento (CONDENSADOR). Simultaneamente se logra tener al refrigerante en forma pura por
evaporación y a la solución absorbente suficientemente concentrada para porder iniciat el ciclo de absorción nuevamente

El grupo generador-condensador trabajan aproximadamente a presión 10 veces mayor que la del absorbedor- evaporador 3 pulgadas absolutas de mercurio/ 0.3 " abs. por lo que para pasar del recipiente de " alta " presión al de " baja " se requieren restricciónes para mantener esta diferencial de presión.

En la figura (3) se representa esquemáticamente el ciclo completo de un sistema de refrigeración por absorción y es importante hacer notar que uno de los elementes fundamen tales en la economía del sistema es un cambiador de calor que enfría la solución "fuerte" obtenida en el generador por medio de la solución debil" que va hacia el sistema de regeneración.

Durante las diferentes condiciones de operación a las que normalmente se ve sometida una máquina de absorción, se pueden presentar súbitos cambios de " carga " que pueden originar una excesiva concentración de la solución " fuerte " o un enfriamiento súbito de ésta originando una CRISTALIZACION de la solución; en la gran mayoría de las máquinas modernas está prevista esta eventualidad y antes de que ocurra un sis tema automático de dilución entra en operación. Sin embargo el problema de la cristalización se llega a presentar y es uno de los riesgos mas importantes en la operación de estas. unidades.


FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

MAQUINAS CENTRIFUGAS

1 9 9 5

MAQUINAS CENTRIFUGAS

El equipo centrífugo, funciona en base al principio de "Evaporador inundado". El equipo está constituido por un gran envolvente dividido en dos secciones; la parte alta constituye el condensador del equipo, y la parte baja el eva porador. Para lograr la evaporación del refrigerante, se crea una succión por medio de un rotor centrífugo (parecido al de una bomba) que gira aproximadamente a 12 000 rpm. La descarga del rotor al pasar por la voluta del equipo convierte la velocidad de descarga en presión y es descargado el vapor refrigerante hacia el condensador. Para el rango de operación de un equipo centrífugo se requiere un refrigerante con bajas presiones de condensación y una presión de evaporación moderada también.

Las presiones de operación normales para un equipo centrífugo son del siguiente orden.

Alta presión (Condensador) 7 a 8 psig

Baja presión (Evaporador) 16" de vacío

El refrigerante empleado en la generalidad de los casos es R-ll por sus propiedades adecuadas al rango; sin embarge existen algunos equipos que operan con R-12

La velocidad del rotor es constante y para regular la capacidad del equipo se modifica la caida de presión de la succión del compresor centrífugo por medio de un juego de álaves movibles que cierran el paso al flujo de gas; al disminuir el flujo de vapor disminuye la presión de succión y aumenta el ponto de ebullición del refrigerante, controlandose así la capacidad del equipo.

PARTES PRIMCIPALES

1.- MOTOR-IMPULSOR

En algunas marcas de equipo, el motor de la unidad se encuentra dentro da un recipiente sellado formando parte del interior del equipo; en este caso el motor es enfriado por una corriente de refrigerante que circula por medio de diferencias de presión entre el evaporador y el condensador; el sistema de lubricación del grupo mecánico se lleva a cabo por medio de una bomba de aceite que opera inclusive durante algún tiempo después de que el equipo ha dejado de operar. Ya que las velocidades a las que opera este equipo son muy altas, elcuidado del sistema de lubricación es primordial para la vida del equipo.

2.- FLUJO DE REFRIGERANTE LIQUIDO

El refrigerante pasa del condensador al evaporador por medio de una válvula reguladora de flujo de líquido; se pretende mantener constante el nivel del evaporador para cualquier capa-

cidad y un nivel mínimo en el condensador; para algunos modelos se emplea una válvula de flotador y para otros una válvula de orificio variable que ha demostrado mayor versatilidad a las variaciones de carga.

3.- SISTEMA DE PURGA

Siendo que la parte de baja presión de la máquina funciona a una presión inferior a la atmosférica, es frecuente encontrar pequeñas entradas de aire al sistema principalmente por el eje de mando de las compuertas de control de capacidad y algunas veces, en equipo en mal estado hay entrada de aqua de los serpentines enfriadores. Se requiere un sistema que elimine estas impurezas que afectan en forma determinante el funcionamiento del equipo y para esto se emplea el sistema de purga, que en algunos equipos es automático y en otros manual; se . toma en forma permanente una pequeña cantidad de vapor del condensador y se pasa a una pequeña cámara enfriada por un serpentín de refrigerante, el refrigerante en forma de vapor que esté presente se condensará, lo mismo vapor de agua si se encuen tra presente; la parte superior de ésta cámara forma un sello hidráulico con el refrigerante impidiendo que los no condensables salcan, por medio de la válvula de purça se tira al ambiente el aire que está presente, subiendo nuevamente el nivel del refrig gerante. El agua presente flotará sobre el refrigerante y podrá distinguirse por medio de una mirilla; sobre el nivel de refriger estará el de agua que se puede eliminar por medio de otra válvula

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS.

PROYECTO DE AIRE ACONDICIONADO -

TORRES DE ENFRIAMIENTO

1995.

El proceso que se lleva a cabo en una torre de enfriamiento es el tipico de humidificación y calentamiento, este proceso -- también se lleva a cabo en los condensadores evaporativos y en una infinidad de problemas de aire acondicionado.

La torre de enfriamiento es un dispositivo auxiliar en un - sistema de refrigeración que tiene por objeto enfriar cierta can tidad de agua, aprovechando, el proceso de humidificación del - aire.

Las torres de enfriamiento se clasifican de acuerdo a la forma de mover el aire a través de la torre. Existen tres formas -- que son las mas comúnmente usadas:

- a) TIRO NATURAL
- b) TIRO INDUCIDO
- c) TIRO FORZADO

Tiro Natural; se emplea el "efecto chimenea" aprovechando - las diferencias de densidad del aire dentro de la torre contra una columna de aire exterior con densidad constante.

Se construye una estructura hiperbólica, normalmente de concreto con grandes arcos de acceso en su parte baja para la entrada del aire ambiente, en la garganta de la parte superior de la torre se colocan una serie de espreas o rociadores que dejarán caer el agua caliente en el interior; al descender el agua provocando una lluvia estará en contacto con el aire cada vez menos saturado humedeciendolo y calentándolo hasta llegar el agua a la parte inferior donde es colectada a una cisterna subterranea. El aire cada vez mas húmedo y caliente formará una cara

corriente ascendente y saldrá por la parte superior.

Este equipo maneja gastos de agua superiores a los 500 m³h
y su gran ventaja es que no consume energía en ventiladores; se emplea fundamentalmente en acerías y termoeléctricas.

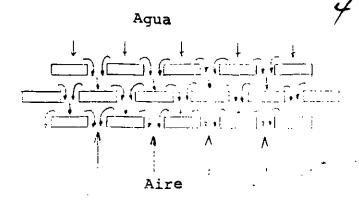
flujo de aire a traves del empaque por medio de un ventilador colocado en la parte superior del equipo y se distribuye agua caliente sobre el relleno enfriador (empaque) por medio de un sistema de espreas; al descender el agua cada vez entra en contacto con aire mas frío y menos saturado, produciendose un efecto de contracorriente que incrementa considerablemente la eficiencia del equipo.

Tiro forzado. - En una época se emplearon las torres de enfriamiento de tiro forzado, se fuerza el aire por medio de ventiladores desde la parte baja de la torre hacia arriba y el agua cae en cotracorriente; han perdido popularidad debido a que la violencia con la que penetra el aire provoca que parte del empaque no opere correctamente y se requiere incrementar las dimensiones del equipo.

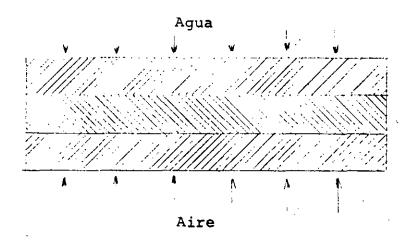
EMPAQUES HUMIDIFICADORES

Para el enfriamiento de agua en una torre se requiere crear un espacio físico en el cuál se establezca un contacto íntimo entre el agua por enfriar y el aire que será el medio de enfriamiento; este espacio debe reunir las siguientes cond:

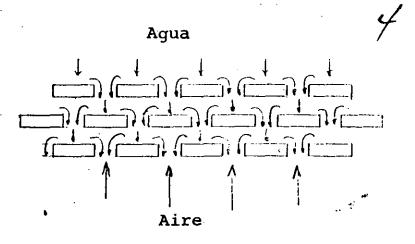
- 1.- Gran superficie de contacto en poco volúmen
- 2.- Poca caide de presión al flujo de aire
- 3.- No descomponerse o podrirse con el agua

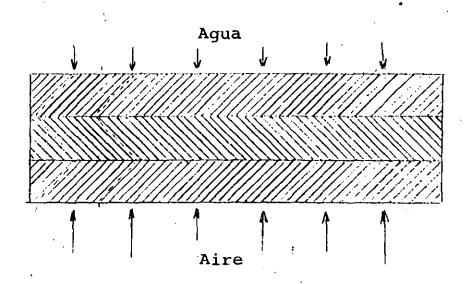

Los empaques se clasifican en dos tipos principales
PELICULA y SALPIQUEO

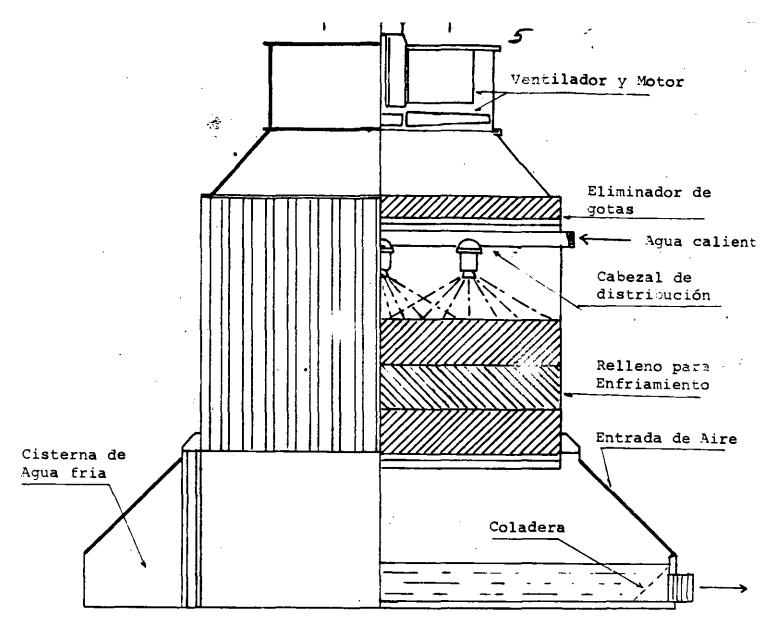
EMPAQUE DE PELICULA


Se pretende formar una película de líquido de muy pequeño espesor sobre la superficie del empaque para que el aire al tener contacto con ella pueda efectuar la transferencia de masa y calor.

EMPAQUE DE SALPIQUEO

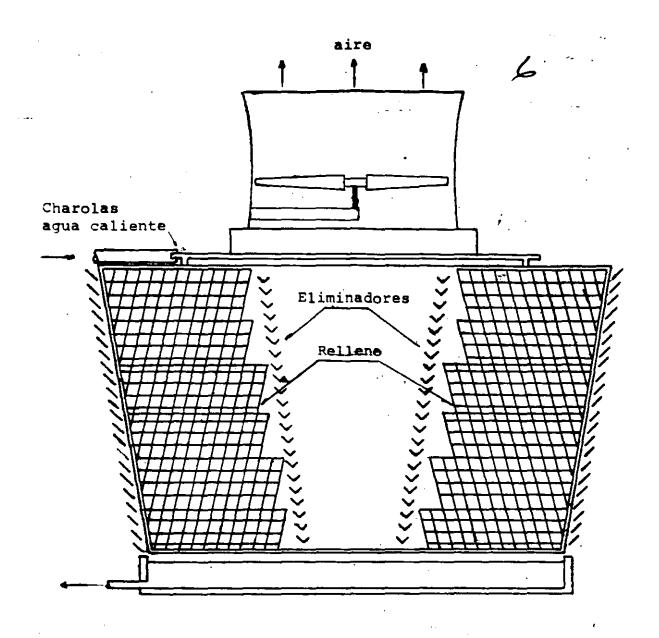

Se pretende formar una serie de pequeñas cascadas en el interior de la torre para que el aire circule a través de ellas, humidificandose y realizando la transferencia.


ETDAQ TO DE CALPIQUES.



EMPAQUE DE PELICULA

EMPAQUE DE SALPIQUEO.



Salida de Agua fria

TORRE DE ENFRIAMIENTO DE TIRO MECANICO INDUCIDO

(Empaque tipo película)

TORRE DE ENFRIAMIENTO DE TIRO MECANICO INDUCIDO DE FLUJO CRUZADO (Empaque pélicula o salpiqueo)

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO --

MANTENIMIENTO

1 9 9 5

MANTENIMIENTO

El criterio de mantenimiento se ha modificado en forma substancial durante las últimas décadas; ha pasado de ser correctivo a PREVENTIVO el criterio antiguo de personal improvisado, insuficiente y abrumado de trabajo con "soluciones para ayer" ha pasado a la historia como una PESIMA opción El costo de los equipos, refacciones y horas-hombre desperdiciados por este sistema debe ser erradicado como una pésima inversión ya que su produciividad es muy escasa y siempre habrá problemas "urgentes" que no se podrán resolver.

En las instalaciones actuales se debe VIGILAR el equipo, no esperar a que falle y solucionarlo con medidas de emergencia.

Un director de mantenimiento de importante cadena hotelera comentaba "Estoy tranquilo tomando un café con usted por que SE que todo marcha bién "Esta tranquilidad se debe a una excelente programación que se lleva a cabo en su departamente de mantenimiento. "Aquí no hay sorpresas" comentaba; los regis tros de los equipos se llevan a la perfección y los riesgos de falla se MINIMIZAN, se programa una revisión general de cada equipo cada determinado períoda de tiempo y se cuenta con las refacciónes probables para no tener sorpresas. El "mantenimiento" normal como lubricación, verificación de presiones, tensión de candas, análisis de aguas de caldera, etc; se realizan con

con un programa perfectamente definido, cada miembro del depto tiene asignados determinados equipos y un programa semanal para lubricación, verificación, etc. Se llevan registros de cada parte de equipo para saber su tiempo de operación, cambios refacciones, fallas comunes y un programa de remplazo

De las observaciónes que se han hecho anteriormente, se pueden establecer cuatro puntos fundamentales para la correcta instrumentación del mantenimiento.

- A) PROGRAMAS DE MANTENIMIENTO
- B) BITACORAS DE OPERACION
- C) ANALISIS ESTADISTICO DE OPERACION Y REEMPLAZO
- D) CAPACITACION AL PERSONAL

A.- PROGRAMAS DE MANTENIMIENTO

Es físicamente imposible revisar, lubricar y verificar todos los equipos diariamente; se deben establecer programas para los equipos con la frecuencia que se requiera y distribuir los como tarea diaria para el personal de mantenimiento. Por ejemplo, si no hay personal encargado directamente de los equipos de tratamiento de agua, se programará una revisión al día, o tal vez por turno, si la instalación lo, requiere; para calderas, unidades enfriadoras, etc. normalmente hay un encargado u operador por turno; él se deberá encargar del mantenimiento general de su equipo así como del equipo accesorio.

Es fundamental que cada equipo esté asignado a una

persona específica y que se lleve un informe de que se le hizo al equipo durante su mantenimiento; (Si se encontró en perfectas condiciones el informe debe decirlo NO SE HIZO NADA)

B) BITACORA DE OPERACION

Los equipos principales, enfriadoras, calderas, torres de enfriammento, etc. deben llevar una bifacora de operación, en la cuál se registrarán sus condiciones de operación probablemente 3 ó 4 veces por turno; es fundamental la veracidad de la información de la bitácora, ya que el estado interno y las condiciones de operación se deben o tener de información de la bitácora. Cada fabricante presenta tipos de hojas de bitácora para sus equipos; todos ellos son buenos, sin embargo es conveniente tomándolas como base diseñarlas específicamente para cada caso o grupo de empresas; por ejemplo cadenas hoteleras, en donde se requerirá una copia para el jefe de mantenimiento y otra más para la Dirección corporati

C) ANALISIS ESTADISTICO DE OPERACION Y REMPLAZO

Este análisis a base de informes periódicos de mantenimiento y bitácoras de operación se realiza para prever reparaciones mayores a equipo, paras programados y substitución de unidades, en grandes cadenas hoteleras se centraliza este trabajo y se procesa por medio de computadora; para el caso normal el jefe de mantenimiento debe realizar estos estudios permanentemente

Es común que el jefe de mantenimiento no tenga tiempo para realizar este trabajo; esto indicará una falla de organización, el jefe de mantenimiento NO DEBE ser mecanico de operación sino coordinador de su departamente.

D) CAPACITACION AL PERSONAL

La capacitación del personal debe ser de 2 clases fundamentales:

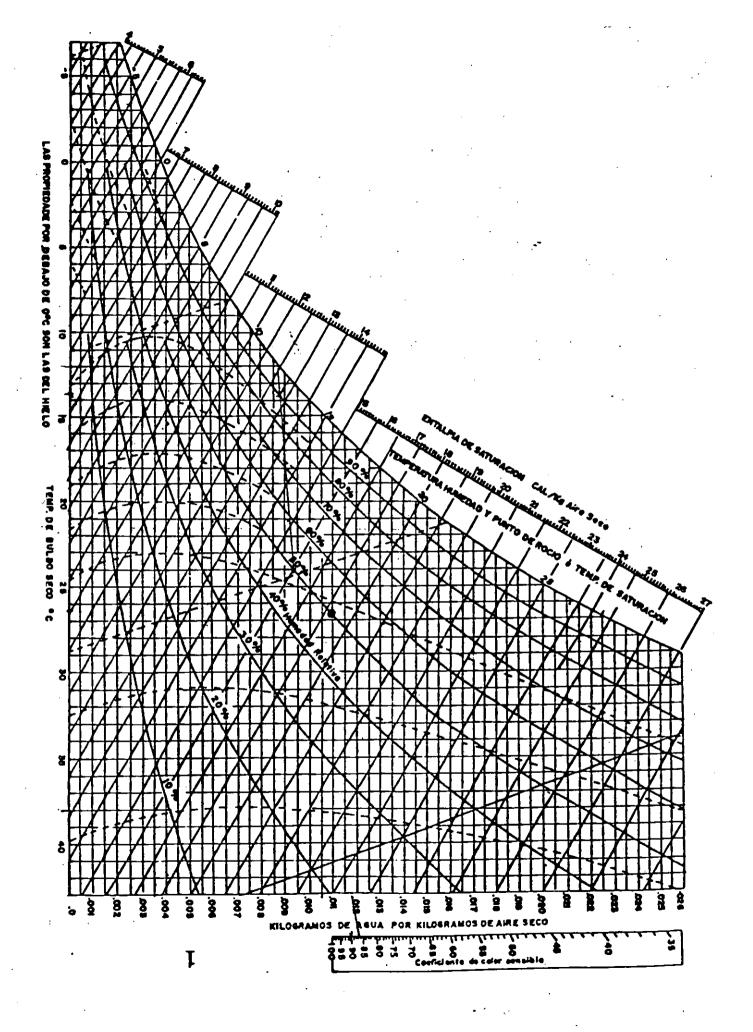
- 1.- GENERAL
- 2.- ESPECIFICA

Es común el reclutamiento de personal para mantenimien to entre el personal de intendencia o el mercado libre de trabajo donde la preparación que tiene el personal escasamente cubre la educación secundaria; es necesario darle una capacitación general sobre plomería, electricidad y mecánica básicamente para que este personal pueda ser útil en las labores que le serán asignadas; la capacitación que obtiene en el campo adolece de fallas profundas en la teoría de las operaciones que realiza y la calidad del trabajo es muy deficiente; es conveniente que se capaciten por medio de cursos especiales para el nivel en el que se desarrollarán ya que su rendimiento y calidad justificarán ampliamente la inversión.

Para el caso de operadores de calderas, subestaciones equipos de enfriamiento, etc. es necesario que se tenga una preparación específica, ya que los equipos a su cargo son com plicados y pueden llegar a presentar riesgos, a este respecho

hay cursos magníficos que dan algunas empresas fabricantes o instituciones especializadas.

En general, cualquier capacitación que se proporcione a un ser humano tendrá dos grandes ventajas; primero permitirá a éste una superaci ón personal y después logrará un mejor desarrollo de su trabajo con las consecuentes ventajas para su empleador.


FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

TABLAS.

995

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUÇACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE CONDICIONADO -

ANALISIS DE CARGAS TERMICAS

1995

ANALISIS DE CARGAS TERMICAS

En la evaluación de un problema de aire acondicionado, el análisis de las cargas térmicas que intervienen en él es de primordial importancia; estas aportaciones o pérdidas se pueden clasificar en dos grandes grupos:

- a.- CARGAS FIJAS
- b.- CARGAS VARIABLES

Las cargas fijas se pueden a su vez clasificar de la siguiente forma:

- a.l Transmisión de calor
- a.2 Personal
- a.3 Iluminación
- a.4 Equipo y miscelaneos
- A.l La transmisión de calor que ocurre a través de barreras físicas como muros, ventanas, pue rtas etc está definida por la ecuación general de la trasferencia de calor:

TAAU = p

En doade

U: Coeficiente total de transferencia de calor

A : Area a trav'es de la cuál fluye el calor

∆T: Diferencial de temperatura entre los

lados de la barrera

Como en el caso general de transferencia de calor, el cálculo de "U" es la parte medular del problema y en ocasio nes la mas engorrosa; U está definida de la siguiente forma:

$$U = \frac{1}{\frac{1}{h_{1}} + \frac{1}{h_{0}} + \frac{x_{1}}{k_{1}} + \frac{x_{2}}{k_{2}} + \cdots + \frac{x_{n}}{k_{n}}}$$

en donde

h_i: coeficiente de película interior para aire "quieto"

h_o: Coeficiente de película exterior para aire en movimiento 24 km/h (15 millas/h)

x : espesor del material que constituye la barrera

k : conductividad térmica del material de la barrera

Los valores de "hi" y"ho" se consideran constantes dentro de cierto rango de rugosidad de la pared y velocidad del aire y sus valores en sistema métrico son los siguientes:

$$h_i = 8.03 \text{ kcal/ } h \, ^{\circ}\text{C m}^2$$
 $h_0 = 29.3 \, ^{\circ}$ "

La conductividad térmica " k " está definida como

$$k = kcal - m / h m^2 ° C$$

Y la distancia o espesor " x " en metros

f

COEFICIENTES DE CONVECCION

SUPERFICIE AL AIRE EXTERIOR.
Velocidad del viento m/seg. 12/Km/h 6 menos
(3.33m/seg.6 menos).

Velocidad del viento 5m/seg. 18Km/h 6 menos
(5m/s)

Velocidad del viento m /seg. 24km/h 6 más
(6.67m/seg. 6 mas).

SUPERFICE VERTICAL INTERIOR
SUPERFICIE HORIZONTAL INTERIOR
Flujo hacia abajo

SUPERFICIE HORIZONTAL INTERIOR
Flujo hacia arriba

9

NOTA 1:

Los coeficientes de conductividad K están expresados en Kilocalorías por metro cuadrado, por hora y por grado centígrado de diferencia de temperatura, para un material de un metro de espesor. Dividiendo el coeficiente K entre 0.124 se obtienen BTUs por piécuadrado, hora grado Fahrenheit, para una pulgada de espesor.

NOTA 2:

Los coeficientes de transmisión U y los de convección f están -dados en kilocalorías por metro cuadrado por hora y por grado -centígrado de diferencia de temperaturas. Para convertirlos a BTUs por pié cuadrado, hora, y grado Fahrenheit habrá que dividir
los entre 4.88

COEFICIENTES DE CONDUCTIVIDAD TERMIC	A DE DIVERSOS	MATERIALES
Materiales de construcción	Kg/m ³	К
	•	
Muro de ladrillo al exterior		0.75
Muro de ladrillo al exterior con	•	
recubrimiento impermeable por -		
fuera Muro de ladrillo interiores		0.66
Muro de ladrillo interiores Muro de ladrillo comprimido vi-		0.60
driado para acabado aparente,		
exterior:	,	1.10
CACCIOI		±+10
		'
Muro de tabique ligero con recu-	1 (00	,
brimiento impermeable por fuera	1,600	0.60
	1,400	0.50.
	1,200	0.45
Numa do Estigua ligada al avtorios	1,500 1,600	0.35
Muro de tabique ligero al exterior	1,000	0.70
Placas de asbesto cemento	1,800	0.50
Siporex al exterior con recubrimiento	660	^π 0.18
Impermeable por fuera	510	0.14
	410	0.12
Siporex al interior en espacio seco	660	0.16
	510	0.13
	410	0.11
		1 50
Concreto armado	2,300	1.50
Concreto pobre al exterior	2,200	1.10
Concreto ligero al exterior	1,250	0.60
Concreto ligero al interior	1,250 800	0.50 0.40
Concreto ligero al exterior Concreto ligero al interior	~80 0	0.30
concreto ligero al interior	1000	0.30
Muro de tepetate o arenisca calcarea		
al exterior		0.90
Muro de tepetate o arenisca calcarea al		
interior		0.80
Muro de adobes al exterior		0.80
Muro de adobes al interior		- 0 - 50 .
Muro de embarro (cón paja y carrizo)		0.40
	•	
Granito, basalto	2,700	3.00
Piedra de cal, marmol	2,600	2.10
Piedras porosas como arenisca y la		2 22
caliza blanda o arenosa	2,400	2.00
	•	

•		_1	<u> </u>
Rellenos y aislamientos	kg/m ³	kcal/	m,c
Tezontle como relleno o terrado seco		. 0.	.16
Relleno do tierra, arena o grava expues			_
tos a la lluvia			. 0
Rellenos de terrado, secos, en azoteas			.50
Arena, seca, limpia	1,700		.35
Senica de carbón, seco	700		.20
Siporex despedazado, seco	400		.13
Escoria, seco	150		80
Aserrin relleno suelto, seco	120		.10
Aserrin relleno empacado, seco	200	0.	.07
Bolas de plástico celular, empacado,	10.20		۸.
seco	10-20		.05
Virutas como relleno, seco	100		.07
Masa de magnesia, seco	190	0 .	.05
Fibra de vidrio diam. de la fibra	15 100		
6 micras	15-100	υ,	.04
Fibra de vidrio diam. de la fibra	40 200		O.4
•	40-200		04
Lana de escoria	35-200		04
Lana mineral	35-200 -		04
Plástico celular de polyestireno	15-30		.03
Cartón ruberoide con brea	1.200		20
Cartón rubercide como aislamiento		υ.	. 14
Cartón corrugado, seco, poros horizon-	40	0	04
tales	40. 500		.07
Piso de corcho comprimido	140		.03
Placa de corcho expandido, seco	210		.04
Placa de corcho expandido, seco · Placa de paja comprimido, seco	300		03
Celotex	350		.07
•	350		.07
Fibracel, duro, seco	1,000		.11
Fibracel, medio duro, seco	600		.07
Fibracel, poroso, seco	300		04
Varios materiales	•		
Vidrio	2,600	0.	.70
Madera de encino, seco, 90º de la	_,000		
fibra	700	0.	.14
Madera de pino blanco, seco, 90º de la	, 30		
fibra	500	0.	.12
			.18
Madera de pino blanco, expuesto a la lluvia Asfalto para fundir	2,100		.70
Asfalto bituminoso	1,050		.15
	1,000		. 1 ö
Linoleo, seco			.04
Algodón, seco	•		.04
Lana pura, seco			. U 5
Cascara de semillo de algodon, suelta, seca	1.2		.02
Aire	1.5	J	

17	
<u> </u>	

		kg/m ³	kcal/m,0C,hi
agua		1,000	0.5
acero y fierro	·	7,800	45
cobre		8,900	320
		•	

Acabados

Azulejos	y mosaicos		•	0.90
-	con mortero de cal	al	exterior	0.75
	con mortero de cal			0.60
Terrazos	y pisos de mortero	de	cemento	1.50
4e30				0.138

A.2 Las personas que ocupan un lugar acondicionado producen una gran cantidad de calor dependiendo de la temperatura interior y el grado de actividad que estén realizando en algunas aplicaciones como pueden ser teatros o salones de espectáculos la carga térmica producida por personas es la mayor carga a disipar en las instalaciones; los seres vivos y algunas aplicaciones específicas producen tanto calor sensible como calor latente debido a la transpiración; la siguiente tabla da los valores que se emplean para el cálculo de la aportación térmica por personas.

TABLA IX-7. Cafor producido por las personas

	<u> </u>	metábolica nbre adulto	Je	Grup perso		de la abòlica	. 2	17.7		ම ම peratu	25 ras de	5.5 Leuar		B. 8	2	_
Grado	Aplica ción	meta		comp let gri	osició:		3	2°F	30)° F	73	"F	75	°F	70	rF
de actividad	típica	ión hon			., .	Promedio ación met	В	tu/h	Bt	u/h	Bti	u/h .	Bt	u/h	Bt	u/h
		Relución 4/n de un hon	Hombre	Majer	Niño	Buc/h		. Lat.	Sens.	Lat.	Sens.	Lat.	Sens.	Lat.	Sens.	Lat.
Sentado	Teatro	390	45	45	10	350	175	175	· 195	155	210	140	230	120	260	90
Sentado; trabajo ligero	Escuela -	450	50	50	0	400	180	220	195	205	215 5 4	185 47	240 60	160 40	275	125
Frabajo de ofici- na, a c t i v i dad moderada	Oficinas, hoteles, departamentos	475	50	150	0	45C	200	* 270	'200	250	215 (34	235 ÷9	245 %2	205 5 2	285	165
Parados; cami- nando despacio	Tienda de ropa, almacenes	550	10	70	20	450	200	270	200	250	215	- 280	245	205	285	165
Caminando; sen- taldo, de pie; vaminando des- paçio	Cafeterias, Bancos	550 550	20 40	70 60	10 0	500	180	320	200	300	120 54	180 170	255	245	290	210
Trabajo sedenta-	Restaurantes	500	50	50	U	550	190	360	220	330	240	310	280 7-0	270 GS	320	, 230
Trahajo ligero	Fábrica, trabajo ligero	300	00	40	O	750	190	560	220	530	245	505	295	455	₹65	25.5
t itt mod tado	Salas de baile	900	50 s	50	Ú	350	220	630	245	ó05	275	575	325	:2:	859	450
ominionalo, Smple	Fábricas, trabajo algo pesado	1,000	100	ð	Ŋ	(((ú,1	270	730	300	700	330	o7i)	180	e20	4ml	£4,1
But in to	Bollehe	1,500	7.5	25	t)	1,450	150	000.1	465	183	135	-115	125	123	,.,\=	₹.₹

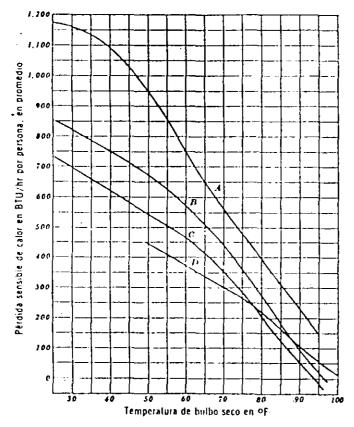


Figura IX-34. Pérdida de calor sensible de un ser homano a varias temperaturas de bulbo seco en aire quieto.

De Air Conditioning and Refrigeration, 4º edición, por Burgess H. Jennings y Sanuel R. Lewis, con autorización de International Textbook Company.

- A) hombre trabajando (66,150 lb pie/h)
- B) hombre trabajando (33,075 lb pie/h)
- C) hombre trabajando (16,538 lb pic/h)
- 1) hombre sentado y descansando.

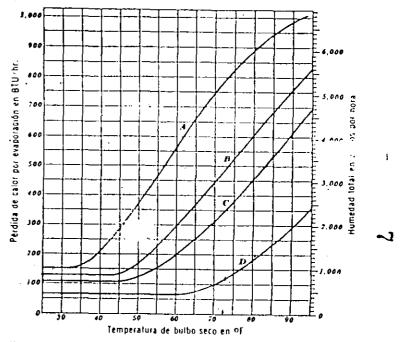
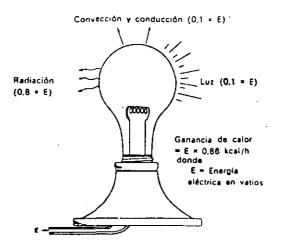



Figure 1X-35. Pérdida de calor latente del ser humano por evaporación y humedad evaporada a varias temperaturas de bulbo seco en aire quieto.

De Air Conditioning and Refrigeration, 4: edición, por Burgess H. Jennings y Samuel R. Lewis, con autorización de International Textbook Company.

- A) hombre trabajando (66,150 lb pie/h)
- R) hombre trabajando (33,075 lb pie/h)
- C) hombre trabajando (16,538 lb pie/h)
- D) hombre sentado y descansando.

A.3 La iluminación que normalmente es eléctrica emplea una pequeña parte de la energía consumida en producir luz y la mayor parte se transforma en calor; en el caso de la iluminación incandescente este fenómeno resulta evidente por la alta temperatura que alcanza un foco al estar prendido, en el caso de la iluminación fluorescente, el tubo es "frío" pero la balastra que intensifica el potencial para permitir el efecto fluorescente disipa gran cantidad de calor al espacio acondicionado, como ilustración de la forma que actúa la energía se presenta la siguiente figura:

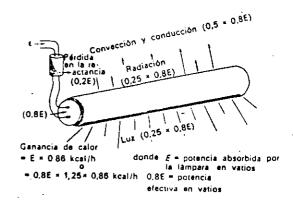


Fig. 31. Conversión de la energía eléctrica en calor y luz en las lámparas fluorescentes

Fig. 30. Conversión de la energía eléctrica en calor y luz en las lámparas de incandescencia

El calor producido por los diferentes tipos de iluminación será el siguiente:

kcal/h

Incandescente g= W x 0.86

Fluorescente $q = W \times 0.86 \times 1.25$

El valor de corrección para la iluminación fluorescente se debe al factor de eficiencia del sistema.

A.4 En general cualquier instacion donde hay acondiciona miento ambiental posee algún tipo de equipo como son bombas, motores, equipo de oficina o equipo y accesorios mas sofisticados como pueden ser equipos de computación o equipos de restaurant

Para el caso específico de motores el calor disipado por HP óKW nominal variará con el tamaño del motor ya que los motores grandes son sumamanate eficientes y los pequeños no lo son; de la energía absorbida, una parte se disipará como calor y la restante se transformará en trabajo; sin embargo al realizarse trabajo en un lugar acondicionado toda la energía se transformará en calor; el caso típico es un ventilador, que al remover el aire únicamente lo calienta.

La siguiente tabla nos proporciona los valores de carga térmica para varios motores en diferentes aplicaciones:

TABLA 50. GANANCIAS DEBIDAS A LOS APARATOS ELECTRICOS DE RESTAURANTES

Sin campana de extracción *

	DIMENSIONES TOTALES sin pie ni asa (mm)	-		Potencia nominal (kcal h)	Potencia en marcha continua (kcal,h)	GANANCIAS A ADN. R. PARA USO MED 3			
APARATOS		MANDO	DATOS DIVERSOS			Calor sensible (#cal/h)	Calor latente (kcal h)	Calor total (kcal/h)	
Percolador 2 litros Calent, de agua 2 litros		Manual Manual		560 77	77 77	227 58	55 22	28 2 8 0	
4 percoladores con reserva de 17 litros	308 × 762 ≤ 660 H	Auto.	Calentador agua 2000 vatios Percolador 2960 vatios	4 22 5	-	1700	300	1500	
10 litros Cafetera 10 litros 20 litros	381 φ × 864 H 305 × 584 p v al × 533 H 457 φ × 940 H	Manual Auto Auto	Negro Niquelado Niquelado	3000 3855 4280	750 650 900	650 550 850	425 375 575	1075 925 1425	
Māquina donut	- 558 × 558 × 1450 H	.Auto.	Extractor motor de 1,2 CV	4000		1250	T	1750	
Cocedora para huevos	254 × 330 × 635 H	Manuat	Media 550 vatios Lenta 275 vatios	935		30.0	200	500	
Mesa caliente, con ca- lientaplatos, por mº de superficie	•	Auto.	Aislado - Calentador sepárado para cada plato. Calientaplatos en la parte inferior	3600	1350	9 50	9 50	1900	
Mesa catiente, sin ca- lientaplatos, por mª de superficie		Auto	Como arriba, pero sin calientaplatos	2750	1080	540	960	1500	
Freidora 5 litros aceite	305 φ × 355 H	Auto.		2220	27.5	400	600	0001	
Freidora 10 litros aceite	404 × 457 × 305 H	Auto.	Superficie 300 × 360 mm	5995	5000	,950	1425	2375	
·Placa calentadora	457 × 457 × 203 H	Auto.	Superficie activa 450 × 360 mm	2000	700	775 #	425	1200	
Parnila para carne	355 × 355 × 254 H	Auto	Superf. útil 250 × 300 mm	2550	475	975	525	1500	
Parnita para sandwich	330 × 355 + 254 H	Auto.	Superficie de parrilla 300 × 300 mm	1400	475	675	175	_B 50	
Calentador de pan	660 K 432 × 330 H	Auto.	1 cajón	375	100	275	25	300	
Tostador (continua)	381 × 381 × 712 H	Auto.	Para dos corres 360 corres/h	1875	1250	1275	325	1600	
Tostador (continuo)	504 × 381 × 711 H	Auto.	Para 4 cortes 720 cortes/h	2570	1500	1525	650	2175	
Tostacor (automático)	152 × 279 × 228 H	Auto.	2 cortes	1025	250	617	113	730	
Molde de tortas	305 × 330 × 254 H	Auto.	1 torta de 180 mm	620	150	27.5	165	460	
Molde de fortas	355 × 330 × 254 H	Auto.	12 tortas de 64 × 95 mm	18 90	375	775	525	1300	

^{*} En el caso en que exista una campana bien proyectada, con extracción mecánica, multiplicar los valores anteriores por 0,5.

TABLA 51. GANANCIAS DEBIDAS A LOS APARATOS DE RESTAURANTE

Funcionamiento a gas o a vapor - Sin campana de extracción *

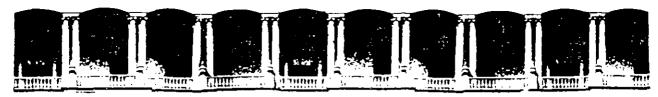
	DIMENSIONES TOTALES			Potencia nominal	Potencia en marcha continua (kcat/h)				
APARATO	sin pie ni asa (mm)	MANDO	DATOS DIVERSOS	(kcal/h)		Calor sensible (kcal/h)	Calor latente (kcal/h)	Calor total (Ecal/h)	
			GAS						
Percolador 2 litros Calentador agua 2 litros		Manual Manual	Combination, sin percolador y calentador agua	8.54 176	126 126	340 100	90 25	430 125	
Percolador completo con depósito	482 = 762 > 660 H		4 percolabores con reserva de 17 litros			H\$15	455	2270	
Cafetera 11 litros 2 11 litros 3 19 litros	381 Ø × 864 H 304 × 584 aval × 533 H 457 Ø × 940 H	Auto. Auto. Auto.	Negra Niquelada Niquelada	804	983 854 1380	730 £30 980	730 £30 986	1460 1760 1960	
Calientaplatos, por m ^e de superficie	•	Manual	Tipo baño maria	5430	2450	7510	1220	3:30	
Freidora, 6,8 kg de grasa	304 × 508 × 457 H	Auto.	Superficie 250 × 250 mm	3590	755	10.60	705	17.65	
Freidora, 12,7 kg de grasa	38 i > 849 = 279 H	Auto.	Superficie 275 = 400 mm	6050	1135	1815	2.50	30 ZS	
Parrilla Quemador superior Quemador inferior	558 > 355 > 431 H (0,13 m² de super- ficie de parrilla)	Manual	Aislado 5500 kcal/h 3750 kcal/h	†326		3625	915	4540	
Horno, parte sup. abierta, por m ^e de superficie		Manual	Quemadores anulares 3000-5500 kcal/h	3600		1140	1140	2200	
Horno, parte sup. cerrada, por m ^a de superficie		Manual	Quemadores anulares 2500-3000 kcal/h	2980		19 5	475	1790	
Tostador continuo	361 × 361 × 711 H	Auto.	2 cortes 360 cortes/h	3000	2500	1940	8 30	2770	
			VAPOR	1	L			<u>:</u>	
Cafetera 11 litros a 11 litros a 19 litros	361 ☆ h 864 H 304 > 584 o - ol × 533 H 457 ダ > 940 H	Auto. Auto. Auto.	Negra Niquelada Niquelada			730 600 855	400 400 580	1210 1000 1435	
11 litros 11 litros 19 litros	361 선 = 864 H 304 > 584 e-et × 533 H 457 선 > 540 H	Manual Manual Manual	Negra Niquelada Miquelada			780 655 930	78.0 655 930	1560 1310 1860	
Mesa caliente por m ^s de superficie		Auto.				100	125	225	
Calientaplatos, por m ^e de superficie		Manual	•	·		110	280	390	

[🐣] En al caso en que exista una campana bien proyectada, con extrazo ún mecánica, multiplicar los valores anteriores por 0.50.

TABLA 52. GANANCIAS DEBIDAS A LOS DIVERSOS APARATOS

sin campana de extracción *

	-		POTENCIA	GANANCIAS A ADMITIR PARA USO MEDIO			
APARATO	MANDO	DATOS DIVERSOS	NOMINAL MÁXIMA (Ecal·h)	Calor sensible (kcal h)	Cafor latente (kcal.h)	Calor total (kcal/h)	
		ELÉCTRICOS	1 (1001 11)	(1 (400),,,)	(((((() () () () () () () (
Secapelo con ventilador		Ventilador 165 W	i				
15 a 115 V	Manual	(bajo 915 W. fuerte 1580 W)	1151	5 00	193	540	
Casco secapeto 6,5 a 115 V	Manual	Ventilador 80 W (bajo 300 W, fuerte 710 W)	£000	479		555	
Calentadores de permanente	Manual	60 calentadores de 25 W normalmente 36 en marcha	1280	110	40	150	
Lavador y esterilizador a presión		200 < 203 < 540 mm		פין ער	39 20	8740	
Letrera de neón, par 30 cm		Diametro exterior : 12 mm	1		î .	•	
de longitud		Diámetro exterior : 10 mm		- 15		13	
Calentador de toalfas		460 × 760 × 18 10 mm		300 765	7 50 60 3	1050 870	
Esterilizador de ropa	Auto Auto.	404 × 470 mm 508 × 114 mm		2429 5870	3126 86 50	44 10 1 (7 20	
	Auto.	420 * 420 * 914 mm	tt	8770	5,791	14040	
1	Auto.	420 * 420 * 12 20 mm	1 1	10 100	6872	17 100	
. 1	Auto.	620 - 114 + 1220	1 1	14179	90.70	23240	
Esterilizador paralelepipédico	Auta.	620 × 414 × 1524 mm	! !	17279	£1330	28500	
į	Auto	714 < 1097 < 2144 mm	· 1	40.733	1 24 58 3	63290	
	Auto Auto.	1047 = 1219 < 2430 mm 1219 < 1302 < 2430 mm	.	45 2 50 5 24 57	35.753 45412	#1630 ##150	
Esterilizador agua	Auto.	40 litros - 60 litros		1030	41 a0 a200	5 190 77 40	
	Auto	152 = 705 = 437 ===	 	40	400	1280	
	Auto.	729 = 754 × 508 mm	1	1262	943	2270	
Esterilizador, instrumentos	Auto.	254 < 105 × 160 mm		20 40	1470	3510	
Esternizador, instrumentos	Auto.	254 × 305 + 714 mm	ł I	2572	2270	4743	
	Auto.	30.5 × 40.5 × 620 mm		2300	2150	4450	
Esterilizador, utensilios	Auto. Auto	404 < 405 < 670 mm 508 × 508 × 670 mm	1 1	2672 3100	\$1 #0 #4 \$0	78 19 9330	
F and Providence of the Control of t	Auto.	Modelo 120 Amer, Sterilizer Co.		500	1060	1540	
Esterilizador, aire caliente	Auto.	Modelo 100 Amer, Sterilizer Co.		300	130	130	
Alambique, agua		20 1/h		430	#3	7110	
Aparato de radiografia		Para médicos y dentistas		Ninguna	Ninguna	Ningun	
Aparato de radioscopia	•	Las ganancias pueden ser grandes Solicitar información del constructor					
		A GAS					
Paqueño mechero Bunsen	Manual	Quemador 11 mm diám, con gas ciudad	4 50	2 40	40	300	
Pequeño mechero Bunsen	Manual	Quemador 11 mm diám, con gas natura i	730	429	110	530	
Quemador de llama plana	Manual	Quemador 11 mm diám, con gas natural	880	500	120	420	
Quemador de llama plana	Manual	Quemador 11 mm diám, con gas natural	1350	780	190	970	
Mechero Bunsen grande	Manual	Quemador 38 mm diâm, con gas natural	1300	846	130	1070	
Encendedor de cigarros	Manual	Funcionamiento continuo	430	no	25	795	
Secapelo central		Constituido por un calentador y un		1764			
5 cascos	Auto.	ventilacion que impulsa el aire cariente	8370	1780 529 3	1010 1310	47 90 4870	
10 cascos	Auto.	hacía los cascos	ı l	147 3	ן שוכו	94 00	


TABLA 53. GANANCIAS DEBIDAS A LOS MOTORES ELÉCTRICOS

Funcionamiento continuo *

		Mator en el interior	Motor en el exterior	Motor en et interior
POTENCIA	RENDIMIENTO A	Aparato impulsado en el interior	Aparato impulsado en el interior	Aparato impulsado en el exterio
NOMINAL	PLENA CARGA	CY × 432	· ·	CY > +32 (1-p)
CA	*	(CY N 4.2.	CA + 435	
CV	*			<u> </u>
	į Į		Krol/h	·
1/20	40	BC	ĸ	47
1/12	49	105	sċ	25
17.6	55	145	e c	65
1.14	40	180	105	76
17.4	64	250 .	160	90
1/3	- 64	, 320	215	110
1/2	70	450	320	135 -
3/4	72	. 044	480	187
1	77	800	6 30	170
11	80	1 200	. 950	237
2		1 600	1 260	370
3	#1	2 350	1 990	450
\$.	62	3 100	3 140	700
7.1	85	5 500	4 800	6.50
10	85	7 500	6 4DB	1 125
1\$	••	11 100	₹ 500	1 575
20	47	14 500	12 750	1 875
25	13 '	18 100	15 900	. 2 200
30	• • • • • • • • • • • • • • • • • • • •	21 300	19 :00	2 250
	. •• .	Ø 35 700	25 500	1 250
50	89	35 700	31 600	4 000
40	4.5	43 000	38 400	4 750
75	100	53 000	47 100	5 250
100	90 90	71 000	43 800	7 250
	70	87 500	79 500	7 000
150	n '	105 000	9.5 600	9 506
200	71	140 000	127 500	12 500
250	11	175 000	· 159 000 *	16 000

^{*} En el caso de un funcionamiento no continuo, aplicar un coeficiente de simultaneidad, determinado a ser posible mediante ensayos.

Para un ventilador o una bomba que impulse al illuido hacia e' pr, utilizar los valores de la última columna.

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

· CONDICIONES DE COMODIDAD

1 9 9 5

El aire acondicionado tiene como objeto fundamental el provocar zonas con temperatura y humedad adecuadas para que las personas se sientan cómodas. Esto quie re decir que, en zonas donde hace mucho frío, el aire acondicionado se diseña y calcula para producir temperaturas más altas que la exterior en el interior de - los locales habitados (oficinas, escuelas, teatros, casas, etc.) asi mismo, en - lugares donde se registran muy altas temperaturas, el objetivo del aire acondircionado es lograr que en los locales habitados se mantengan temperaturas más bajas que las exteriores.

Para lograr lo anterior se deben tomar en cuenta cuatro factores principalmente:

- a) Temperatura del aire
- b) Humedad del aire
- c) Movimiento del aire
- d) Pureza del aire
- e) Nivel de ruido

A continuación se explica la importancia de cada uno de estos factores:

a) TEMPERATURA DEL AIRE

El primer intento de crear zonas cómodas para el hombre fué tratando de controlar la temperatura, ya que, como de todos es sabido, trabajar ó descansar en un lugar donde la temperatura sea extremadamente baja ó alta, resulta incomodo y poco eficiente.

b) HUMEDAD DEL AIRE

El cuerpo humano pierde bastante calor debido a la evaporación, esta evaporación aumenta cuando la humedad ambiente es baja, de aquí la importancia de - controlar la humedad. Debe de aclararse también que humedades altas producen reacciones fisiológicas molestas y además afectan algunos materiales.

c) MOVIMIENTO DEL AIRE

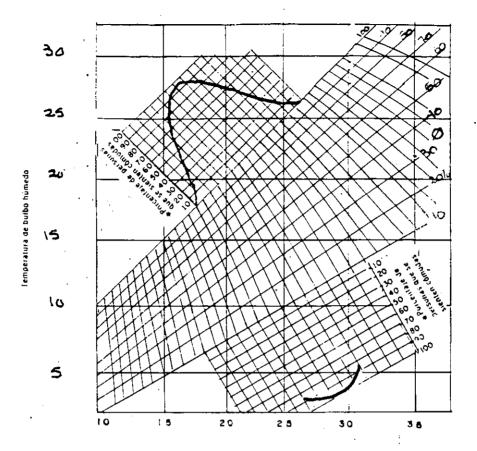
El simple movimiento del aire puede modificar la sensación de calor, puede - incluso llegar a provocar la sensación de frío, ya que el movimiento del aire sobre el cuerpo humano incrementa la pérdida de calor y humedad del propio cuerpo.

d) PUREZA DEL AIRE

Cuando se está en un local acondicionado, se procura recircular constantemente el mismo aire para ahorrar energía, pero debe tenerse cuidado en purificar suficientemente este aire debido a que de no hacerlo, los olores se irán concentrando hasta ser muy molestos, el humo del cigarro provocará molestias en los ojos y la nariz, etc.

En casos especiales deberá considerarse una purificación especial, como puede ser el caso del aire inyectado a un quirófano. En general la contamina-ción del aire deberá evitarse ya que es un problema complejo que la humani-dad tiene que resolver en esta época.

CARTA DE COMODIDAD


Para poder establecer las condiciones adecuadas de los cuatro factores menciona dos, se ha establecido la llamada "Carta de Comodidad", la cual se obtuvo des-pués de una serie de experimentos realizados por la ASHAE y que permite determinar diferentes conjuntos de valores en cuanto a temperaturas de bulbo seco y humedo, humedad relativa y velocidad del aire, en función de la "Temperatura Efectiva" que se escoge.

TEMPERATURA EFECTIVA

La temperatura efectiva es un índice empírico del grado de calor que percibe -una persona cuando se expone a varias combinaciones de temperatura, humedad y movimiento del aire.

Una temperatura efectiva puede tener humedades relativas desde 0% hasta 100% y velocidades de aire desde muy lentas hasta muy altas y aunque la sensación de - calor en cualquier caso es la misma, la comodidad producida en los diferentes casos no es igual.

Por ejemplo se puede decir que muy bajas humedades producen sensación de "tosta miento" en la piel, boca y nariz; humedades altas en cambio provocan malos olores y transpiración mayor del cuerpo. Altas velocidades en el aire crean chiflones incómodos y molestos.

Ahora siguiendo la trayectoria de la línea de temperatura efectiva de 70°F se - busca la intersección con la temperatura de bulbo seco de 79°C (26°C), ésto dá como resultado que la humedad relativa necesaria para la condición preestableci da sea de 19%.

FACTORES QUE DETERMINAN LA TEMPERATURA EFECTIVA

Cómo se puede observar, en la Carta de Comodidad se indica el porcentaje de personas que se encontrarán cómodas con cada una de las temperaturas efectivas, es decir, siempre existirán personas que no se encuentren totalmente cómodas.

Lo anterior sucede debido a los diferentes factores que influyen en la tempera tura efectiva y que son:

a) Aclimatación diferente.

Esto se refiere a que personas que viven en zonas cálidas estarán cómodas a temperaturas más altas que aquellas acostumbradas a vivir en lugares fríos. Lo mismo sucede con las diferentes estaciones, ya que en invierno se siente uno cómodo a menores temperaturas que en verano.

Algo similar sucede con la humedad.

b) Duración de la ocupación.

Es de suma importancia este factor en lugares públicos como tiendas, bancos, oficinas, etc.

Se ha comprobado que cuando la duración de la ocupación es pequeña, resulta conveniente tener diferencias de temperaturas bajas con respecto a la exterior y viceversa, en lugares donde la estancia es prolongada, la diferencia de temperaturas deberá ser mayor.

c) Ropa

Dependiendo de la época del año, as gentes se visten con ropa diferente, de tal manera que ésto tiene una determinación directa sobre la temperatura --- efectiva.

Debemos mencionar que en general las mujeres usan ropa más ligera que los -- hombres, lo cual crea problemas para acondicionar locales que serán utilizados por hombres y mujeres.

d) Edad v sexo.

Las personas de 40 años ó más, en general requieren de una temperatura efectiva mayor, así como las mujeres; esta temperatura es más alta en 0.5° C --- $(1^{\circ}F)$ aproximadamente. La carta de comodidad está estructurada para hombres maduros menores de 40 años.

e) Efectos de choque.

Se le llama así al efecto producido al entrar del exterior a un lugar acond \underline{i} cionado y provocado por el cambio de temperaturas. Este efecto se puede con trolar provocando zonas de temperatura efectiva intermedia entre la exterior

y la más cómoda, por ejemplo: en los vestíbulos ó corredores de un hotel u oficina.

Se ha demostrado que estos choques no son dañinos para personas acostumbra-das a vivir en zonas donde el acondicionamiento de aire es indispensable -(regiones muy frías y/o muy cálidas).

f) Actividad.

La temperatura efectiva cómoda varía dependiendo de la actividad que se desa rrolle en el local acondicionado ya que, resulta obvio, no se estará cómodo a la misma temperatura en una fábrica ó taller donde los operarios tienen -- una actividad más o menos constante, que en una oficina o en un teatro, donde las personas se encontrarán intactas o casi inactivas.

g) Calor radiado.

Cuando se habla de aglomeraciones grandes de personas, como en un teatro o - cine, el efecto del calor radiado entre las gentes obliga a disminuir la tem peratura efectiva cómoda.

De igual manera, cuando se está en un local con muchas ventanas, el cuerpo - radía más calor al medio ambiente y ésto produce sensación de frío por lo -- que la temperatura efectiva deberá ser más alta.

MAXIMA TEMPERATURA EFECTIVA

En general, los diferentes manuales y diseñadores de aire acondicionado señalan que la temperatura efectiva no debe exceder de 30°C (85°F).

CONDICIONES GENERALES DE DISEÑO

Para diseñar el aire acondicionado de un local se debe partir de ciertas bases que son:

- a) Condiciones de diseño exterior
 - b) Condiciones de diseño interior
- a) Las condiciones de diseño exterior están dadas por las temperaturas mínimas promedio exteriores del lugar en donde se ubicará el local acondicionado, así como por las temperaturas máximas promedio. En páginas posteriores aparece una tabla que proporciona las temperaturas de diseño exterior para las principales ciudades de diferentes estados de la República Mexicana.
- b) Las condiciones de diseño interior se establecen preisamente con la carta de comodidad, pero además existen tablas que señalan la temperatura de bulbo seco y humedad relativa recomendadas dependiendo de las temperaturas exteriores.

La tabla siguiente la propone la Jefatura de Proyectos y Construcciones del I. M. S. S., que en México es una de las instituciones que más normas han - desarrollado en este campo.

CONDICIONES GENERALES DE DISEÑO.

Temperaturas exteriores de diseño.	Temperaturas interiores de diseño.	Humedad relativa interior.
35 grados C. de buibo - seco, o mayores.	25 grados C. de bulbo- seco.	50% ·
32 grados C. de bulbo - seco.	23 grados C. de bulbo- seco.	50%
30 grados C. de bulbo - seco.	22 grados C. de bulbo- seco.	50%

La misma dependencia señala que para invierno la temperatura de diseño interior será en general de 21°C (70°F) y humedad relativa no menor del 30-35%.

b.2) cuando se diseña calefacción debe tenerse especial cuidado con la hume dad relativa permisible ya que, si la humedad es muy alta en el local acondicionado, se puede producir condensación del vapor de agua en las ventanas. La tabla siguiente señala los máximos valores permisibles de humedad relativa dependiendo de la temperatura exterior y del tipo de ventana que se -- utilice.

De cualquier forma, se puede calcular la temperatura de rocio permisible para evitar condensaciones, según la siguiente fórmula:

tw = ti - (ti - te) U/f

tw = temperatura de rocio

ti = temperatura de b.s. interior

te = temperatura de b.s. exterior

U = coeficiente de transmisión del vidrio ó muro

f = coeficiente de película interior.

b.3) El movimiento del aire es otra condición interior que debe considerarse en el diseño.

La ASHRAE ha establecido que la velocidad del aire dentro de los locales de berá oscilar entre los 4.5 m/min (15 pie/min) y los 12 m/min (40 pie/min).

CONDICIONES INTERIORES ESPECIALES

Espacios acondicionados.	Temperatura interior Bulbo seco.	Humecad Relativa Interior
QUIROFANOS: Salas de Operaciones, Salas de Expulsión y Emergencias.	21 - 24° C.	50 - 60%
Salas de Recuperación.	21 - 24° C.	50 - 60%
FEDIATRIA: Cuneros.	24° C.	50%
Observación y aislamiento.	24° C.	50%
Encamados.	24° C.	40 - 50%
Prematuros.	25 - 27° C.	55 - 65%

Como ya se mencionó anteriormente, cuando se diseña aire acondicionado para un local, siempre se procurará reutilizar el mismo aire, provocando su recirculación, para evitar grandes consumos de energía.

Lo anterior debe ser estudiado con calma ya que, si se recircula el 100% del - aire, éste se encontrará cada vez más contaminado de olores y humo así como -- con mayor contenido de ${\rm CO}_2$.

Para evitar esta contaminación, se debe suministrar siempre una cierta canti-dad de "aire nuevo de ventilación", tirando así la misma cantidad del aire contaminado, con ésto se logra que, a través del tiempo, todo el aire se haya renovado y la contaminación no alcance altas y molestas concentraciones.

A continuación se proporcionan 2 tablas que recomiendan la ventilación necesaria para diferentes tipos de locales, en función del uso del local y del número de personas y en función del volúmen del mismo local.

TABLA VII-3. Ventilación recomendada para diferentes lugares

		ft ¹ /min.po	r persona	f!³/min. minimos	
APLICACION	Humo de cigarros	Recomen- dado	Minimo	de obra por fi³ de techo	13
Departamentos { normales de lujo Bancos Peluquerías Salones de belleza	Poco Poco Ocasional Considerable Ocasional	20 30 10 15	15 25 7.5 10 7.5		
Bares Corredores Sala de juntas Departamentos de tiendas	Mucho — Excesivo Nada	30 50 7.5	25 	0.25	
Garajes Fábricas Funerarias (salones) Cafetería	Nada Nada Considerable	10 10 10	7.5 - 7.5 7.5	1.0 0.10 —	
Hospitales { quirófanos cuartos privade salas de espera de hote! { restaurantes cocinas { residencias } }	Nada os Nada Nada Mucho — Poco	30 20 30 — — 20	25 15 25 — — —	2.0 0.33 - 0.33 4.0 2.0	
Salones de reunión Oficinas { generales privadas privadas { cafetería Restaurantes } comedor	Mucho Poco Nada Considerable Considerable Considerable	50 15 25 30 12	30 10 15 25 10	1.25 - 0.25 0.25 	
Salones de clase Teatros Teatros Tocadores	Nada Poco	7.5 15	5 10		~

De Modern Air Conditioning, Heating, and Ventilating, 3t edición, por Willis H. Carrier, Realto E. Cherne, Walter A. Grant y William H. Roberts, con autorización de Pitman Publishing Corporation.

ESPACIOS A VENTE ARSE	Cambios por hom:	Minutes par cambio:	14									
Almacenes	4 - 6.	15 - 12										
Auditorios	6	10										
Casetas de Proyección.	60	1										
Clubes	. 12	5										
Cocinas	30 .	2										
Garages	12	. 5										
Laboratorios	10 - 20	6 - 3										
Lavanderías	20 - 30	3 - 2										
Oficinas	- 10	6										
Panadenas y Repostenas	20	3	•									
Restaurantes	12	. 5										
Salas de Máquinas	$7\frac{1}{2}$	8	•									
Salas de Recreación	· 10	6										
Sanitarios interiores	15 - 20	4 - 3										
Talleres	10	6										
Vestidores	10	. 6	17									

TABLA VII-3. Venttlación recomendada para diferentes lugares

	Humo de	ft²/min.po	or persona	ft³/min. minimos
APLICACION	cigarros	Recomen- dado	Minimo	de obra por fi³ de techo
Departamentos { normales de lujo Bancos Peluquerías Salones de belleza	Poco Poco Ocasional- Considerable Ocasional	20 30 10 15 10	15 25 7.5 10 7.5	
Bares Corredores Sala de juntas Departamentos de tiendas	Mucho Excesivo Nada	30 	25 30 5	0.25 - 0.05
Garajes Fábricas Funerarias (salones) Cafetería	Nada Nada Considerable	10 10 10	7.5 7.5 7.5 7.5	1.0 0.10 —
Hospitales { quirófanos cuartos privado salas de espera habitaciones de hotel cocinas { restaurantes residencias } { Laboratorios		30 20 30 — — 20	25 15 25 — — —	2.0 0.33 - 0.33 4.0 2.0
Salones de reunión generales Oficinas { privadas privadas } Restaurantes { cafeteria comedor	Mucho Poco Nada Considerable Considerable Considerable	50 15 25 30 12	30 - 10 15 25 10 12	1.25 0.25 0.25 —
Salones de clase Teatros Teatros Tocadores	Nada Poco	7.5 15	5 10	2.0

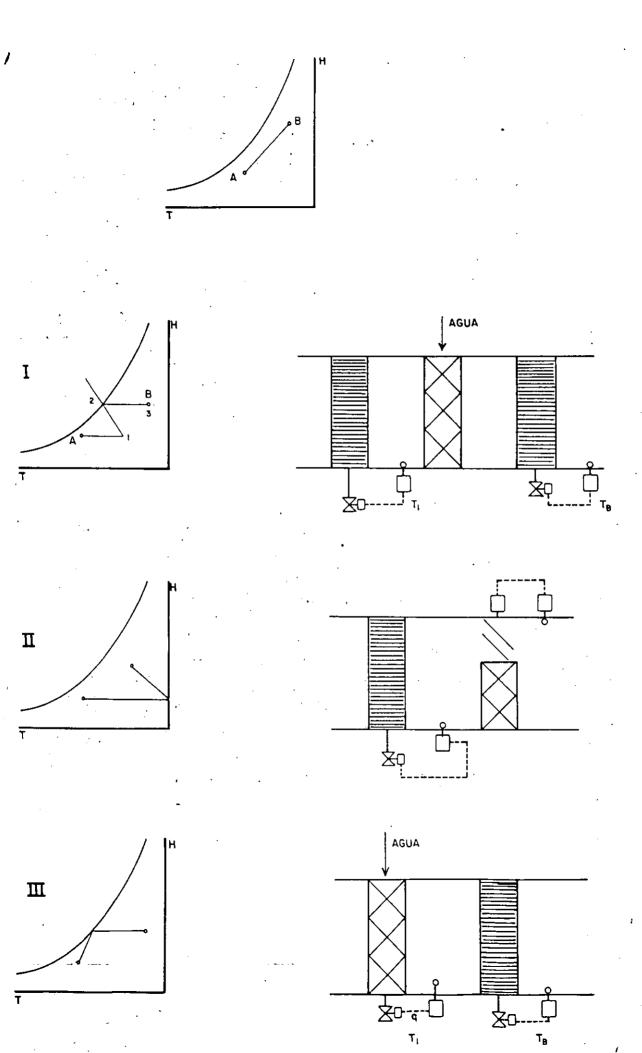
De Modern Air Conditioning, Heating, and Ventilating, 3st edición, por Willis, H. Carrier, Realto E. Cherne, Walter A. Grant y William H. Roberts, con autorización de Pitman Publishing Corporation.

ESPACIOS A VENTELARSE	Cambios por hora:	Minutes por cambie:
Almacenes	4 - 6	15 - 12
Auditorios	6	10
Casetas de Proyección.	60	1
Clubes	12	5
Cocinas	30	2
Garages	. 12	5
Laboratorios	10 - 20	6 - 3
Lavanderias	20 - 30	3 - 2
Oficinas	- 10	6
Panadenias y Reposterias	20	3
Restaurantes	12	5
Salas de Maquinas	$7\frac{1}{2}$	8
Salas de Recreación	10	5
Sanitarios interiores	15 - 20	4 - 3
Talleres	10	6
Vestidores	10	6

•	į I	RANGO	DATOS SITUACION							DATO	DATOS INVIERNO							
ESTADO	CIUPAD	Diatio		ICION RAFICA	ALTURA	PRESION BANGMETRICA		TEMPERATURAS					HUMPD.	GRADO5	TEMPERATURAS			GRADOS
E 51400 .	CIDPAD	1		,	EL MIVEL			MA.A	1	DE CA	LCULO		RELAT.	DIA	MIN	DEC	ALCULO	DIA
	1	(*p)	LATITUD	LONGITHO	PEL HAS		mm Hg			ε	-	r	100000	ANUALBS	g ×T	85	85	ANUALES
	ì	(,	N	W	l m			•c	85	Вн	8.5	8 H	7.	(℃)	*c	100	•F	(*c)
	APATZINGAN	11,10	19" 05"	102" 16"	662	917	703	41.0	37	25	102	77	35	3,013	411.5	+15	57	
MICHOACAN	MORELIA	14.19	19 42	101" 07"	4,913	812	609	31.3	30	19	86	CC	3.0	168	4 1.6	4 5	43	270
MICHORCEN.	ZAMORA	17.70	190 59	102" (8"	1,633	840	630	37.6	35	20	95	¢е	27	520	-02	+ 4	39	
	TACAPU	1939	190 451	101- 45	2,000	804	603	34.8	37	19	90	66	52	168	-6.0	- 1	30	675
MORELOS	CUAUTLA	15.00	10" 40'	98. 51.	1,741	874	: 655	47.4	41	22	1013	72	20	025	+5,1	+9	45	
MOKEUDS	CLIERNAVACA	11.70	18" 55"	-944 141	i 1,530	847	632	32.6	31	10	£7B	68	39	25C	+ 1.9	+11.	52	
NATARIT	JAN BLAS	8.25	21" 32"	105* 19"	7	1013	760	36.0	3.3	26	91	79	60	1,462	₹7.3	+11	5 Z	
	TEPIC	16.45	21" 31	104-55	718	912	GBH	38·i	34	76	97	19	47	600	+1.9	+ 4	43	
ALLEGA L BANK	MONTEMORELOS	12.46	26" 12"	99. 50'	457	785	724	4/8	37	25	102	77	3.5	1,056	105	+ 5	41	99
HUEVO LEON	MOUTERPEY	15.15	75"40 ,	100 * 18'	534	954	715	41.5	(اقي ا	(26)	100	79	41	1, () 1	-54	e	32	173
	DANACA	18.45	17"04	96 - 42	1,563	846	635	3110	35	22	75	72	35	270	+24	+ 7	45	
OA XACA	3ALINA CRUZ 6.55 (6°12' 93°12' 36 1,007 7	75.5	36 D	34	76	93	74	55	2,403	116.0	. +19							
PUEBLA	Put BLA	15,15	16,01.	44" 11"	2,150	790	543	30.4	2.7	17	Bri	63	35	160	- 45	1 1 1	37	41.5
-D1 6CA	"F HUACAN	119 15	18'20'	47"23"	1,676	835	627	37c	74	70	7.	68	j 30	196	- 50	0	32	80
SUERETARO	QUERLIARO	17.70	20'36	100" 23"	1,842	619	614	36.2	33	71	91	70	30	157	-47	٥	32	248
	COZUMEL	930	20' 31	86. 61.	3	1,013	160	350	33	27	71	81	65	1,757	+10.3	• 14	57	
	PAYO OBISTO	: 7 . 0	16"30"	80° 10'	4	1,013	760	372	34	27	93	81	60	2,170	+ 9.5	+ 13	45	
SAN LUIS POTOSI	SAN LUIS POTOSI	6.15	21.04	100.20.	1,987	816	612	37.3	34	18	43	64	2.2	84	- 7.7	+ 2	36	145
	CULIACAN	1245	24 48	107" 24"	5 5	1,005	755	40.9	37	27	_??_	18	47	1,659	.*3:1_	_+7_	45_	
SINALOA	MAZATLAN	5.10	23" 11"	106 * 25'	78	1,004	753	33,4	16	76	80	79	60	1,377	+11.2	. +14	57	
	TOPOLOBAMPO	10 60	25" 36	109-03	3	1,013	760	41.1	37	27	99	81	47	(754	.80	+12	53.6	
	GUAYNAS	16.45	77° 85	110*53	<u> </u>	1,013	760	410	4.7	22	100	72	1.7	1607	470	+11	52	
SOUGRA	HERMOSILLO	13.20	29" 05"	110"58"	211	989	747	45.0	1 41	28	106	82	37	1,675	+10	. + 6	43	84
	NOGALES	1440	30, 51,	110038	4,177	885	664	41.0	37	26	99	79	414	655	-90	- 4	25	979
	CIUDAD OBREGON	1715	27°29'	109"55"	40	1,009	-757	48.0	43	26	109	67	32	2.443	- 1,1	+ 4	34	
TABASCO	VILLA HERILOSA	1270	17*31	91°53'	10	1,612	759	410	37	:6	91	79	42	2,200	+12.2	+15	59	
	MATAMOROS	10.06	25" 52"	47*30	12	1,012	759	39,2	36	26	77	79	46	1,815	- 47		32	47_
TAMAULIPAS	NUEVO LAREDO	13.05	27" 18"	99*30	140	907	748	45.0	41	75	106	77	27	2.041	-7.0	- 2	ı	416
	TAMPICO	11.58	22" 12"	97051	10	LOIT	750	39.3	36	28	97	87	54	1,635	-2.5	+2	16	
	CIUDAD VICTORIA	15.15	13. 44.	44.08,	321	977	733	41.7	38	26	100	79	40	1,337	- 7.5	 •1 _	36	07
TLARCALA	TLANCALA	16 16	19" 32"	98"15"	2,752	781	588	29.4	38(%)	17	#2	63	39	30	-1.4	+ 3	37	512
Prin HiCa 4711119.	JALAPA	1770	19.32	46.22,	1,399	#63	647	34.6	32.	21	40	70	40	245	+2.2	1 + -	43	208
VERACRUZ ROLLZON	ORIZABA	19.50	(8° 51'	9706	1,248	878	659	37.0	34	21	93	70	15	184	+1,5	+6	43	134
, <u> </u>	VERACRUZ	Bas	190 131	96.08,	16	1,011	758	35.6	33	27	91	81	65	4,763	+9,6	+13	.55	·
YUCATAN	MERIDA	1300	20'36'	89" 36"	7.7	1.011	750	41.0	37	27	99	11	47_	2,145	411.6	716	59	
	PROGRESO	13.00	11" 17"	2.90 40	14	1,012	759	36,6	36_	27	97	81	50	1.700	+130	+16	61	
ZACATECA 5	FREGNILLO	21.45	3 10	102 33	2,150	781	586	3-1.0		19	970-	66	13	235	- 4.5	<u></u>	32	794_
	ZACATECA 5	16.45	22' 47'	10: 10	2,6 (2	714	361	290	2.6	. 17	6.2	63	39	·	- 7.5	-2	25	1103

•	PAR	<u>.</u>	DATUS B	TUACIO	N.	_	<u> </u>	_:_	DATO	6 VEF	DATOS INVIERNO							
•	: <u>0</u> 6 1	•	ICION	ALTURA		£510jH		TEMP	ERATU	245				TEMP	S COTU	<u> </u>		
ESTADO	CILIDAD	GROC	KAFICA	SOBRE	9440	METRICA	MAX.		De CA	LCULO		HUMED	GAADOS		DEC	ماسكا	GRADOS	1
		LATITUD	LONGITUD	DEL MAR	mbar	man Ha	EAT.		c			(arasa)	PIA	MIN 5×7.	8.6	BS	DIA	! (
	(*F)	'N	l w	m	, , , , , , , , , , , , , , , , , , ,))	•c	84	Вн	85	МН	7.	49111ALES (*2)	*c	•c	• •	(°C)	[]
AGUASCALIENTES	IBPA AGUASCALIENTES	21" 53"	102" 16"	1,877	HIC	612	36.0	34	19	93	6.0	1 26	248	- 4.7	0	3.2	330] [
	3.15 ENSENADA	31" 52"	115" 36"	13	1,012	759	36.5	34	26	93	. 79	. 55	109	+1.1	+5	1.41	492	:
BAJA CALIFORNIA	1E15 MEXICALI	32" 29!	116. 30,	1	1.015	740	47.8	43	213	109	02	. 33	1,660	-37	+1	34	372	, ,
BIJU CALIFORNIA	684 LA PAZ	24" 10"	1100 07'	18	toll	750	\$8.0	36	27	97	1 10	50	1,827	+90	+13	55		, (
	20.40 TIJUANA	37" 79"	117" 01"	28	(2) (0)	758	38.7	3.1	74	9.1	79	.50	751	-3.5		36	55.	! (
CAMPECHE	1245 CAMPLEHE	190 51	90" 32"	25	1,010	758	38.9	36	26	. 47	79	4.	2.087	+12.7	•16	- 41		1 - 2 1 - 2 -
	13.50 CHUPAD DEL CARMEN	10 36	910 491	3	1,513	760	41.0	37	76	99	74	4.7	212	4108	+14	57		清
	12.45 MONCLOVS	26" 65"	101" 26"	386	940	711	410	50	24	100	75	. 34	1,169	-78	- 5	27	325	3 × 3
east. m. a	1605 NUEVA ROSITA	27° 55'	101* 17	430	965	724	450	41	25	106	77	30	1,537	- p.5	- 3	. 7	481	<u> </u>
COAHUILA	1472 PIEDRAS NEGRAS	28* 42'	100" 31"	120	984	741	43.1	40	26	104	79	54	1547	-11.9	-6	21	479	
	18 % SALTILLO	25" 26'	1010 00'	1,639	341	C32	36.0	35	222	9.5	72	36	208	-4.5	4	25.	523	į (
	1440 COLIMA	14. 14.	103.45	494	438	719	37.5	36	24	47	7.5	3.5	1,683	+13.5	+17	54.		. (
:DL.MA	10.30 MANZANILLO	100 04	1000 20		1013	7.0	386	35	21	45	£3 1	.55	2,229	+17.5	+ 16	5 y		ا ا
	1070 TAPACHULA	14 · 54	929 161	168	794	746	37.4	34	25	93	77	44	1.081	+12 B	410	61		,
HIAPS:	1170 TUATE GUTIERRET	16" 45"	93-06'	3.56	933	715	385	35	25	75	77	46	1,601	+72	+11	5≀		1
	1945 CHINDANUA	28" 30"	106" 04"	1,423	6. ; 3	646	38.9	35	23	75	73	38	631	-11.5	- 6	21	793	. (
CH.HUBHUW	1500 CHURAD JUAREZ	31" 44"	10 50 19	1,137	8:19	-67	41,2	37	24	29	75	35	695	-10.5	-10	14	1219	
STRITO FEDERAL	DETERMINATION CHEST ETS! 1	19. 26'	99" 10"	2,240	780	585	350	32	17	95	63	26	78	- 4.8	. 0	,32	847	•
	103 DURZNGO	24° 01'	104" 40"	1,070	8:4	÷10	35.6	33	17	1 91	6.5	23	100	-5.0	ō	32	550	- (
ספייני	1275 CHUNAN LERDO	25° 30'	103-37	1,140	409	667	37.0	36	21	97	7,5	27	1,087	-4.2	+1	34	721	! 7
	MA CELANA	20" 32"	100" 49"	1,754	678	- 610	41.5	38	20	100	68	22	637	-4.5	0	32	136	`
	In 46 GUANA JUATO	21001	101" 15"	2.037	1101	601	33.6	52	16	10	64	28	. 49	+1,0	+5	41	245	
OTAUL AMAU D	ISES. LEON	31=08,	101" 41'	1807	822	617	36.5	34	20	93	68	30	192	- 13	+2	36	175	1
	1740 GALVATIERRA	200 13	100" 53"	1.761	5:7	620	380	35	19	95	CC	25	347	-20	43	57	40	•
····	1690 (ACAPULCO (INTAPA)	160 901	99-86		1013	710	35.0	33	27	91	81	65	2.613	+1521	+19			0
GUERRERO	SCAN UNAND	(7- 33'	99.30	1,260	-1717_ 073	696	352	33	23	9	73	45	434	+ 6.0		T-28		m
	15% CHILPANCINGO	18. 33,	990361	1.755		- £21	36.5	34	20	93	60	30	518	+30	+12	54		1 1
	18451 PACHUCA		12.5															
HIDALGO	2130 TULANCINGO	200 05'	96.11,	7.001	/67 767	500	147	32	19	40	66	32	12	-5.B		در	1007	后
	1534 GUADALAJATA	200 411	103*20'	1,5119	544	633	36.0	33	20	71	68	34	204	- 3.7	+1	34	164	୍ଦି (
JALISCO	21.00 LAGOS	21- 12'	1019 26	1.880	816	612	43.0	37	20	102	68	20	574	- 3.2	+2	36	162	D'
	1170 PUERTO VALLARTA	20* 57'	105" 15"	7.000	1,013	760	170	36	26	177	79	46	2090	111.0	+14	51	1	S
 _	ASS TEXCOCO	19-31	98*52	2,216	784	500	340	32	19	90	66	32	17.5	** 0	-1	30	. 500	1
MEXICO .			97*14	(74.3		26.0	76	17	77	63	47		-3.0	+2			į
	ISAS TOLUCA	19* 17'	441-74.	2.675	/43	557	25.8	- " -	''	//		4/	أحسب	3.0		1 36	1,570	1_

IJ

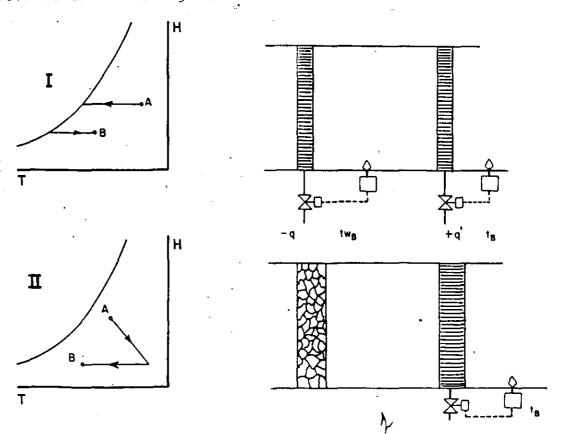

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

HUMIDIFICACION Y DESHUMIDIFICACION

19,95



2

DESHUMIDIFICACION

Es muy frecuente en Aire Acondicionado requerir que el aire que se encuentra en una posicion "A", deba ser transformado a otro con una condicion "B"; normalmente se requerira modificar tanto su temperatura como su humedad. Esto podra ser llevado a cabo por medio de uno o varios de los "procesos psicrometricos" empleados en secuencias o diferentes pasos.

Es importante hacer notar que para la solución de un determinado problema, habrá varias posibles soluciones; todas ellas buenas, algunas mas sencillas y otras mas complejas pero todas posibles, simpre y cuando se respeten los procesos psicrométricos. En algun momento se presentarán dos o mas alternativas TOTALMETE EQUIVALENTES y se escojerá una de ellas al critério o gusto del diseñador.

CANTIDAD DE AIRE NECESARIO

CALOR SENSIBLE

El mire que se injecta a una area acondicionada, tiene como finalidad "recojer" o "suministrar" calor al espacio que se pretende econdicionar; si se trata de calefacción, el aire que se introduzca al local deberá tener una temperatura mayor a la del ambiente que se pretende mantener, para que al mezclarse con vi sire interior ceda calor que compense a aquel que esta perdiendo el local hacia el exterior.

Si se trata del enfriamiento requerido en verano, el aire deberá suministrarse mas frio que el ambiente para contrarrestar la ganancia de calor del local.

La cantidad de calor que puede tomar a ceder el aire de suministro so definira por medio de la siguiente ecuacion:

$ms = m \cdot Cp \cdot \Delta T$

En donde com sera la cantidad de calor cedida o absorbida por ol mire desde su temperatura de entrada al local hasta la temperatura del interior.

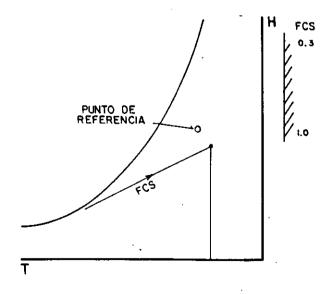
Este calor se llevara a caoo siempre a humedad constante.

CALOR LATENTE

La humedad en el interior de un local es una de las variables que deben ser controladas para conservar las condiciones propuestas de diseño; normalmente existe una generación de humedad que se debe principalmente al metabolismo do los ceres vivos y tambien a algunos equipos que generan humedad hacia el ambiente. En el caso general, el aire que se suministre a un determinado local deberá tener una humedad absoluta menor a la requerida en el interior, con objeto de absorber la que se genere ahí.

La humedad en el aire representa una forma de calor, ya que está como vapor de agua y a temperatura constante la variación de humedad implicará una variación de entalpia; se define de la signiente forma:

$\Box 1 = m\Delta H \lambda$


Si "calor latente" o calor de vaporizacion del agua varia con la temperatura, presentando un problema adicional, sin embargo para el rango normal de aire acondicionado (O a 40°C) su valor no varia substancialmente, y tomar un valor intermedio como "constanto" es perfectamente permisible

 $\lambda = 585 \text{ kcal/kg de agua}$

FACTOR DE CALOR SENSIBLE

Evidentemente no es posible introducir una cantidad de aire que recoja el calor sensible (qs) y otra que recoja el calor latente (ql); por lo que será necesario considerar una cantidad de aire que sea capaz de realizar las dos funciones simultaneamente. Con este objeto se define al FACTOR DE CALOR SENSIBLE (FCS) de la siguiente forma:

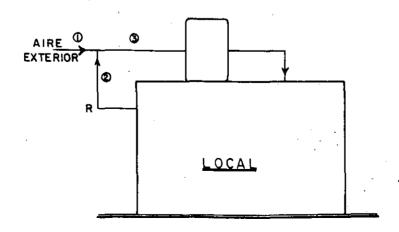
El factor de calón sensible, en realidad indica la pendiente de la linea de operación del aine desde que este ingresa al local hasta que llega a las condiciones interiores; y para cada problema SOLAMENTE existirá un solo FCS, ya que indica cuanto calor latente debe ser recojido por unidad de calor sensible.

Para el caso de Varano la linea de FCS tendrá como como la curva de caturación de la carta psicrométrica y como final el punto que define las condiciones interiores del local.

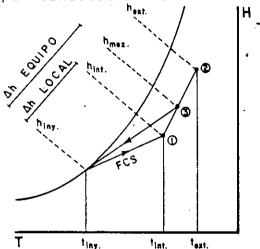
En el caso de calefacción en Invierno se presenta un problema de indefinición de las variables; si el suministro de aine es "muy grande", la diferencial de temperatura requerida sona "muy pequeña" y viceversa. El problema estriba en definir que se considera "mouy grande" o "muy pequeño"; a este respecto so hace necesario el auxilio de criterios auxiliares para poder definir una de las dos variables involuntedas:

A) VOLUMEN DE INYECCION

Si el volúmen de aire que se inyecta a un lugar es muy pequeño no será posible lograr una temperatura uniforme en el local y se encontraran "puntos" frios o calientes en él. Si es muy grande se tendrá una temperatura totalmente homogenea pero habra corrientes de aire molestas.


Algunos autores y la experiencia de los diseñadores han establecido un criterio al respecto; "El aire que se suministra al interior de un local deberá ser de 10 a 20 VECES su volúmen en una hora" A este criterio se le llama "Cambios por hora". No es un criterio absoluto pero es una buena guia.

B) TEMPERATURA MAXIMA DE INVECCION


Mientras mayor sea la temperatura de inyección, se requerirá menos aire y por lo tanto el equipo será mas pequeño; sin embargo una temperatura elevada causará grandes pérdidas en los ductos y sobre todo problemas serios de RADIACION en los difusores; como regla general deberá tratarse de que la temperatura de los difusores no sea mayor de 45°C.

CICLO COMPLETO DEL AIRE

Una vez que el aire ha realizado su labor en el interior del local por acondicionar, debe salir de él para ser substituido por aire proveniente del acondicionador; sin embargo en la mayoría de los casos este aire es mas facil de acondicionar que el aire exterior, obteniendose una economía de importancia. No es posible recircular todo el aire, ya que es necesaria una cantidad de "aire nuevo" para mantener la pureza necesaria; sin embargo se recirculará todo el que sea permisible y se completará al 100 % con aire exterior (Este sera función del número de personas y de la actividad que realicen).

La mezcla de aire exterior y aire recirculado será la que se suministre al equipo acondicionador.

T tiny, tiat. text.

La cantidad de calor que debera suministrar o retirar el equipo acondicionador será la diferencia de entalpias entre al "aire de mezcla" y el "aire de inyección".

Normalmente la carga térmica del equipo es DIFERENTE a la carga térmica del local.

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

C U R S O S A B I E R T O S

PROYECTO DE AIRE ACONDICIONADO

CALCULO DE CARGAS VARIABLES EN VERANO

CALCULO DE CARGAS VARIABLES EN VERANO.

En la época de verano, la carga térmica se debe fundamentalmente a la energía que entra del exterior del local, aunque también in fluye la generada dentro del local por personas, equipos, iluminación, etc.

Respecto a las cargas térmicas generadas en el interior, se calculan según se analizó anteriormente en la sección de cargas tér
micas en invierno (personas, equipo, iluminación, etc.)

En referencia a las cargas térmicas generadas por las condiciones exteriores para el caso de verano, vale la pena hacer varias acla raciones:

- 1.- Parte de la carga térmica exterior se dá debido a la transmisión por muros, pisos, techos, ventanas, puertas, etc., y la cual es provocada por la diferencia de tempe raturas entre el exterior y el interior.
- 2.- Otra parte de la carga térmica exterior se produce debido a la "Radiación Solar" que llega a los mismos elementos antes mencionados (muros, ventanas, etc.)

A continuación se analiza la forma de calcular las cargas térmicas correspondientes a las diferentes barreras exteriores, para lo cual dividiremos el problema en dos secciones:

- a) VENTANAS
- b) MUROS Y TECHOS

GANANCIA SOLAR A TRAVES DE VENTANAS:

La cantidad de energía que puede entrar a un local por una ventana depende de varias variables:

- · l.- Latitud del lugar en estudio.
 - 2.- Orientación de la ventana.
 - 3.- Mes y hora de estudio.
 - 4.- Nubosidad del cielo.
 - 5.- Tipo de cristal empleado.
 - 6.- Elementos de sombra existentes.
 - 7.- Diferencia de temperaturas entre el exterior y el interior.

En las páginas siguientes se dan varios tipos de tablas que nos permitirán calcular numéricamente la cantidad de energía que por radiación entra a un local a través de sus ventanas.

Las primeras seis tablas sirven para calcular la cantidad de energía solar que puede entrar por una ventana, dependiendo de la Latitud del lugar. del mes, de la hora y de la orientación de la ventana.

El cálculo de esta ganancia de energía se logra mediante la aplicación de la siguiente fórmula:

donde:

Q= Energía que entra al local (kcal/hr)

A= Area de la ventana en estudio (m²)

 $(FGS) = Factor de ganancia solar (kcal/hr. <math>m^2$) (de tablas)

F = Factor de ferma

TABLA 15. APORTACIONES SOLARES A TRAVÉS DE VIDRIO SENCILLO

kcal/h × (m² de abertura)

00

												<u>.</u>				
0º LATITU	D NORTE	<u> </u>					HOR	A SOL	LAR	,		.	,	, -	0º LATITU	SUR
Época	Orientación	6	7			10	11	12	13	14	15	16	17	10	Orientaci ón	Época
	N H E E	0 0	122 322 314	176 423 398	200 417 366	211 360 252	217 267 116	222 143 38	217 54 38	211 38 38	200 35 35	176 29 29	122 16 16	0 0	S S E E	
	S E	1 0	100	113	73	, 4G	. 38	38	38	38	35	29	16	0	- HE	
21 Junia	\$ \$ 0	0	16 16	29	35	38	38	38	3 E 3 B	35 40	35 73	2 9 113	16 100	0	N NO	22 Diclembre
	0 N 0 Horizontal	0 0 0	16 16 75	29 29 235	35 35 398	38 38 518	38 54 588	38 143 612	116 267 588	252 360 518	356 417 398	398 483 235	314 322 75	0	O S O Horizontal	
	N N E	0	100	146	165	176	179	181	179	176	165	146	100	0	S S E	
	Ê	ŏ	328	414	406 377	336 260	116	116 38	38	38 38	35 35	29	16	ŏ	E	
22 Julio	S E S	0	124	29	97 35	48	38	38	3 6	38	35 35	29 29	16	0	HE	21 Enero
21 Mayo	5 0	0	16	29	35	38	38	38	38	48	97	141	124	Ò	N O	Y 21 Noviembre
	0 № 0 Horizontal	0 0	16 16 78	29 29 246	35 35 409	38 38 528	36 44 605	36 116 631	733 604	260 336 528	377 406 409	414 263	328 320 84	0	S O Horizontal	
	N N E	0	46 298	75 382	84 360	276	92 165	65	92 38	89 38	84 35	75 32	46 16	0	S S E	
24 Agosto	E	0	349	442	401	279	125	38	38	38	35	32	16	0	£	20 Febrero
y	S E	0	181	214 32	176 35	94 38	38	38	36 38	38 38	35 35	32 32	16	0	N.E.	Y
20 Abril	<u> </u>	0	16	} _	35	38	38	38	124	94 279	176	214 442	181	0	н 0	23 Octubre
	N C Horizontal	0	16	32	35 406	38	38	65	165	276 558	360 406	382	29 B	0	\$ 0 Horizontal	
-	н	0	16	32	35	38	38	. 38	38	38	35	32	16	0	5	
	N E	0	257 363	120 452	273	184 290	127	38 38	38	38	35 35	32	16	0	S E E	
2 Septiembre	S E	0	257	150	273	184	84	38	36	38	35	32	16	0	NE	22 Marzo
22 Marzo	s s o	0	16	32	35 35	38	38 38	38	38 84	38 184	35 273	32 320	16 257	0	M N O	y 22 Septiembri
	O N D	0	16	32 32	35	38 38	30	38 38	127 84	290 184	409 273	452 320	363 257	0	\$ 0	
	Horizontal	0	86	263	442	569	650	678	650	549	442	271	86	0	Horizontal	
•	- NE	0	181	32 214	35 176	38 94	38	38	38	38 38	35 35	32	16 16	0	S E	
22 0	E	0	349		401	279	124	38	38	38 38	35 35	32 32	16 16	0	E N E	30 AS-1
23 Octubre	SE S,	0	298 46	-	360 84	276	165	65 92	92	69	84	75	46	0	N N	20 Abril Y
20 Febrero		0	16		35	38	38	38	165	276	360 401	382	298 349	0	N 0	24 Agosto
	N O Horizontal	0	16	32	35	38	38	3#	40	94	176	214	161	0	S O Horizontal	
	N N	0	16	_	406 35	38	634 38	38	634 38	558 38	406 35	263	16	0	S	•
	N E E	0	124 328		97 377	48 260	38 116	38	38 36	38 38	35 35	29 29	16	0	S E	
1 Noviembre	S E	0	320	414	406	336	233	116	43	38	35	298	16	0	N E	21 Mayo
y	\$ \$ 0	0	100		165 35	176	179	181	17 9 233	176 336	165	146	100 320	0	H O	y 23 Julio
21 Enero	0	0	16		35 35	38	38	38	1 16 36	260	377 97	412 [4]	328 124	0	0 5 0	, 23 30110
	Horizontal	0	78		409	38 528	604	631	604	52B	409	246	70	ŏ	Horizontal	
	N E	0	100		35 73	38 40	38 38	38	38 38	38 38	35 35	29 29	16 16	0	\$ 5 E	
1	E	٥	314	398	366	252	116	38	38	38	35	29	16	٥	E	
22 Diciembre	S E S	0	122		200	360	257	222	54 217	38 211	35 200	29 176	122	0	HE .	21 Junia
	<u> </u>	- C	16	29	35	38	54	143		360	417	423 398	322 314	0	N O	Junio
	N O Horizantal	0	16 16 75	29	35 35 398	38 518	38 38 588	38 38 612	116 38 588	252 40 518		113 235	100 75	0	S Q Horizontal	
	Marco me	tálico	Ī	Def	ecto d	•		Altr	tudi -			นกเอ			Punto de rocio	Latitud sur
Correcciones	o ningún n				npieza e		+ 0	.7 🗫 p	or 300	m (perior			superior a 19,5 °C + 14 % per 10° C	Dic. o Enero + 7 %
	= 1:0,85 6	1,17	- {	15	% māx	ι,					-	1 * 74	HOT I	, -L	- 1- % por 10° C	7 / 3

TABLA 15. APORTACIONES SOLARES A TRAVÉS DE VIDRIO SENCILLO (Cont.)

kcal h :< (m² de abertura)

4

10°

10°

		T		_			нов	A SO							Ou 1.A	TITUD SUR
0º LATITU		-	<u> </u>									1 1			 -	
Epoca	Orientación	•	7	•	9	10	11.	12	13	14	15	16	17	1.	Onentación	Epoca
	N Ne	51 149	119	135 414	122 379	119 287	116 176	111 75	116 38	119 38	122 35	135 29	119 21	5 5	32	
	<u> </u>	146	363	120	377	265	111	38	38	38	35	29-	21	5	E	
21 Junio	SE S	48	132	149	116 35	67 38	18 38	38 38	38 38	38 38	35 35	29 29	21	5	ME M	22 Diciembre
	so	5	21	21	3.5	38	38	38	38	67	116	149	132	48	HO	. 22 DICIEMOR
1	O HO	5 5	21	21	35]8 38	38	38 75	111 176	265 287	377	420	363 355	146	o so	
	Horizontal	10	119	290	450	556	631	659	631	556	450	290	119	10	Horizontal	
-	N NE	113	92 344	401	94 360	89 295	84 (51	81 59	84 38	89 38	94 35	105	92 19	13	SE	
22 Julio	<u>E</u>	70	366	179	385	265	116	38	38	38	35	29	19	2	HE HE	21 Enero
y y	\$	2	154	29	35	86 38	38	38	38	3 a	35	29	19	2	H	71 Fileto
21 Mayo	<u>so</u>	2	19	29	35	38	38	38	116	265	151	179 428	154 364	70 135	мо .	21 Noviembr
	NO	2	19	29	35	38	38	. 59	151	295	360	40 1	344	113	so	
	Horizontal	8 2	40	290	450	569 40	38	38	38	569 40	450	290	113	- 8	Horizontal S	
	HE	46	306	352	301	217	92	38	38	38	35	29	19	2	3.6	
24 Agosto	E SE	48	214	254	23.0	162	124 73	38	38]8]8	35	29	19	2	HE	20 Febraro
	s so	2	19	29	35	38	38	34	38	38	35	29	19	2 48	M MO	у
20 Abril	- 30	2	19	29	35	38	38	38	124	162	230	254 442	214 374	67	0	23 Octubre
	NO . Horizontal	2 5	19	29 284	35	38 577	38	38 678	92	217 577	301 452	352 284	306 103	46 5	\$0 Horizontal	
	H	, 2	16	29	452 35	38	38	38	38	38	35	29	16	2	S	
	NE E	2 2	241 352	279	217	1 22 287	46. 127	3 B	38 38	38 38	35 35	29 29	16 16	2 2	SE .	3.
2 Septiembre	SE	7	263	344	330	254	151	57	38	38	35	29	16	2	NE	22 Marzo
Y	s so	2 2	16	35 29) 51 35	5.5 38	73	57] 73 151	65 254	330	35 344	16 263	2	N NO	¥
22 Marzo		2	16	29	35	38	38	36	127	287	409	444	357	2	0	22 Septiemb
	NO Horizontal	2	16 84	29	35 433	38 561	38 637	38 669	637	122 561	217 433	279	241 84	2	SO Horizontal	_
	М	. 0	13	27	35	38	3 B	38	38	38	35	27	13	0	5	
	HE E	0	157 320	179	393	75 271	3 8 1 08	38	38	38 38	35 35	27	13 13	- 0	SE E	
23 Octubre	SE S	0	279	198	40 4	333	219	124	48	38	35	108	13 48	0	NE	20 Abril
y 20 Febrero		0	13	108	35_	176 38	192	198	192 219	176	149 404	398	279	0	N NO	. Y 24 Agosto
20 repleto	0 NO	0	13	27	35 35	38 38	3 8 3 8	38	108	271 75	393 119	420 179	320 157	0	0 50	2+ Agusto
	Horizontal	10	59	230	377	523	596	623	596	523	377	230	59	٥	Horizontal	
1	N NE	0	10	100	32	35	38	38	38	35	32	24	10 10	0	SE SE	
		0	268	387	358	252	105	30	38	35	32	24	10	0	E	
1 Noviembre	SE S		268	176	246	396 260	295 282	189 287	282	46 260	32 246	24 176	10 94	0	NE N	21 Mayo V
21 Enero	<u> </u>	0	10	24	32	35	38	189	105	396 252	434 358	387	298	.0.	NO O	23 Julio
İ	NO	0	10	24	32	35	38	38 38	38	35	46	100	73	٥	so	
	Horizontal N	0		168	355	35	547 38	38		35	355	168	10	0	Horizontal S	
· \	N E) 0	10	75	46	35	38	3.8	38	35	32	24	10	0	SE	
<u> </u>	<u>E</u>	100		371 417	352	404	113 328	214	97	62	32	24	10	0	NE NE	•
12 0 , er bre	SE S	0	135	200	254	295	314	3 25	314	295	254	200	135	٥	н	21 junio
-	<u>- 50</u>	0	10	24	32	35	97	214 38	328·	246	352	371	268	0	0 0	
	NO Horizontal	0	10	24	32	35	38	18 547	38 523	35 452	46 325	75 179	40 38	0	\$0 Horizontal	·
	Marco metál	ico	٥	efecto	de	·	4	Altitud			Punto	de ro	cio		unto de rocio	Latitud sur
Correcciones	o ningún ma			impie:		+	0.7 %	por 3	300 m	1	•	a 19,			perior a 19,5° C	Dic, o enero
	* 1/0,85 6 1	.17	'	5 % m	ax.					-	14 %	por 1	O. C	1 *	14 % por 10° C	+ 7 %

Valores subrayados-máximos mensuales

Valores encuadrados máximos anuales

5

TABLA 15. APORTACIONES SOLARES A TRAVÉS DE VIDRIO SENCILLO (Cont.) kcdi h × (mº de abertura)

20°

20°

0º LATITU	JD NORTE						HORA	SOL	AR			,			0° (A	TITUD SUR
Época	Orientación	6	7	6		10	11	12	13	14	15	16	17	1 g [†]	Orientación	Época
	N	76	111	90	68	51	46	40	46	51	67	90	111	75	5	
	, NE E	219	401	390 434	330 387	225 260	103	40 38	3 6 3 6	38	38	32 32	24	8 1	SE E	
	SE	7.5	168	198	179	119	57	3.8	3 8	38	38	32	24	- 8	NE	
21 Junio	\$ 50	8	24	32	38 38	3 8 3 8	38 36	38 38	38 57	119	179	32 198	74 168	75	N NO	22 Disi€=5/6
	0	7	24	32	38	38	38	38	111	260	387	434	401	220	0	
	NO Horizontal	30	162	32 328	38 477	38 585	3B 629	40 678	103 629	275	330 477	390 328	162	220 30	SO Horizontal	
	H	54	7.5	62	46	40	38	38	38	40	46	62	75	54	5	
[N E E	192	358 401	142	301 3 93	198 268	84 124	36 36	38 38	38	35 35	32	21	8	SE E	
22 Julio	SE	84	189	210	214	154	78	38	38	38	35	32	21	8	ИE	21 Enero
y 21 Mayo	\$ \$0	8 8	21	32	35	38 38	38 38	38 38	38 78	38 154	35 214	230	21 189	8 84	M	y
21 141490	0	8	21	32	35	38	38	38	124	266	393	442	401	203	0	21 Noviemb
	N O Horizont al	1 8	149	32	35 474	38 585	38 650	680	84 650	198 585	301 474	374	358 149	192	SO Horizontal	
	H.	16	27	29	35	38	38	18	38	38	35	29	27	16	S	
	NE E	122	301 385	320 447	241 404	135 287	48 138	38	38 38	38 38	35 35	. 29	19	5	SE E	
24 Agosta	SE	78	241	306	292	265	149	54	38	38	35	29	19	5	HE	20 Febrero
y [\$ \$0	5 5	19	29 29	38 35	54 38	65 3 B	70 54	149	265	38 292	29 306	19	5 78	N NO	20 / 2 0-010
20 Abril	0	5	19	29	35	38	38	38	13B	287	404	447	385	143	0	23 Octubre
	N O Horizontal	13	19	29	35 452	38 569	38 637	38 669	4 8 637	135 569	241 452	320 290	30: 130	122	SO Horizontal	
	N N	1 3	16	29	35	38	38	38	36	38	35	29	16		5	
1	NE E	0	225 352	235	160	59 282	36 122	3 8 3 8	38 38	38 38	35 35	29 29	16	٥	· SE E	
22 Septiembre	SE	1 - 6	268	368	379	325	227	111	40	38	35	29	16	- 0	ME	22 Marzo
Y	\$ \$0	0	21	59 29	1 03 3 5	141 38	170 40	176 111	172 227	-141 325	103 379	368	21 268	. 0	H	Y
22 Marzo	0	1 0	16	29	35	38	38	38	122	282	404	142	352	-		22 Septiem
1	N O Horizant al	0	16	29 252	35 414	38 537	38 610	38	38 610	59 537	160 414	235 252	225 81	0	50 Honzontal	
	N	+	10	24	32	35	38	631	38	35	32	24	10	-	S	
l	HE E	0	119	141	78	35	38	38	36 38	35 35	32 32	24	10	0	SE E	
23 Octubre	SE	- 0	268	398	382 433	271 404	132 322	200	73	35	32	24	10	0	HE	20 Abril
v /	\$ \$0	0	57	135	206	252	287	301	287	252	206	135	57	0	н	y
20 Febrero -	~	0	10	24	32	35	73 38	38	132	271	382	396 398	246	. 0	NO 0	24 Agosto
	N O Horizontal	0	10	24	32	35	38	36	38	35	78	141	119	0	so	
	N N		- 8	184	344	463	531	35	331	463 35	344 29	184	48		Horizontel 5	
- 1	нĒ	0	65	70	38	35	35	35	35	35	29	21		0	SE	•
1 Noviembre	E SE	- 0	192	347	344	246 428	366	35 244	124	35 43	29	21	8	0	E	21 Mayo
Y	\$ \$0	0	75 B	187	271 29	333 43	368 124	382	368 366	333 428	271	1 67 390	75 198	0	N NO	, A
21 Enero	- 30	0		21	29	32	35	35	116	246	344	347	192	-		23 Julio
1	NO Horiz ontal		13	21 130	29	32	35	35	35	35	38 273	70	65 13		50	
	N N	+ + +	5	19	273	396	35	488 35	466 35	396	29	130	5	- 0	Horizontal S	
1	HE	1 0	38	48	32	32	35	35	35	32	29	19	5	0	58	
}-	SE SE		151	377	328 452	230 431	363	75 763	162	32 54	29	19	5	0	e NE	
22 Diciembre	\$		67	200	301	35€	3%	404	396	358	301	200	67	٥	<u> </u>	21 Junio
1	<u>50</u>	0	5	19	29	32	162 35	263 35	363 92	230	123	377	160	0	0 0	
ĺ	но	0	5	19	· 29	32	35	35	35	32	32	48	38	0	50	
	Horizontal	· ·	10	97	249	366	436	461	436	366	249	97	10	0	Horizontal	
	Marco metálio	:01	D	fecto	de		A	titud		,	unto	de roc	:io	P	unto de rocio	Latitud sur
Correccionas	o ningún marc			impiez		+		por 30	00 m			a 19.	_		perior a 19.5° C	Dic. o enero
	* 1/0,85 6 1,1	7	15	% m	áx.	1				-	14 %	por 10	3- €	+	14 % por 10° C	+7%

TABLA 15. APORTACIONES SOLARES A TRAVÉS DE VIDRIO SENCILLO (Cont). $kcal/h \, \times \, (m^3 \ de \ abertura)$

30º

30°

0º LATIT	UD NORTE					١	IORA	SOLA	R						0º LATI	TUD SUR
Época	Orientación	6	7	8	,	10	11	12	13	14	15	16	17	10	Orientación	Época
1	H HE	284	78	48 352	38 · 263	38 149	3 6 5 1	38 38	38 38	36 38	38 38	48 32	78 27	13	se i	
<u> </u>	SE .	292	423	436	387	265	119	38	38	38	30	32	27	13	E	
1	. S	113	203 27	32	38	198	1 19 5 1	46 57	3 g 51	38 40	38 38	32	27 27	13	NE N	•
21 Junio	so	13	27	32	38	38	38	38	119	198	244	244	203 423	292	NO 0	22 Diciemb
}	NO Horizontal	13	27	32	38	34	36) 8	51	149	261	352	377	284	\$0	
	N N	51	765 54	355	488 ·	38	650 38	3.8	38	38	4 50	355	165	51	Horizontal \$	
	HE E	252 270	355 420	333	241 393	124 268	119	38	38 34	38	35 35	32 32	24 24	10	SE E	
22 Julio -	SE	113	222	271	271	2 25	143	59	38,	38	35	32	24	10	. NE	21 Enero
Y 21 Mayo	\$ \$0	10	24 24	32 32	38	54 38	73. 38	38	73 143	225	38 271	32 271	24 222	10	N NO	y 11. Naviasah
,	0 H0	10	24	32 32	15	36	3.8	34 38	119	268	393	444	420	271	0	21 Noviemb
	Horizontal	10	24 179	333	35 477	38 580	38 640	667	43 640	124 580	241 477	333	355 179	252 40	50 Horizontal	
	H HE	16	21 292	29 27 1	35 179	35 73	38	38	38 38	35 35	35 35	29 29	21 21	16	S SE	
	E	179	398	447	401	276	124	38	38	35	35	29	21	5	ŧ	
24 Agosto	SE S	100	265 21	344	73	303 127	157	105	157	35 127	35 73	29 35	21 21	5	NE N	20 Febrero
20 Abril	SO	5	21	29	35	35	40	105	222	3 03	349	344	265	100	ок	23 Octubri
	NO	5	21 21	29 29	35 35	35 35	38	38 38	124 38	276 73	179	271	398 292	179 149	0 50	
	Horizontal N	16	127	290	436	35	610 38	637	610	342	436	290	127	16	Horizontal \$	·
)	HE	0	200	244	108	40	38	38	38	35	32	27	13	0	SE	
Septiembre	SE '	0	336 265	428 355	390	379	130	181	38	35	32	27	13	.0	HE HE	22 Marzo
v	S SO	0	24 13	48 27	162 32	2 22 35	265 67	284	265 306	222 382	162	48 355	24 265	0	N O	y
22 Marzo	0	0	13	27	32	35	38	30	130	279	390	428	336	0	0	22 Septiemi
	NO Horizontal -	0	13	27	366	35 485	38 547	38 574	38 547	40 485	366	244	200 67	0	50 Horizontal	-
	н	0	•	21	29	32	35	38	33	32	29	21		0	<u> </u>	
	NE E "	0	214	366	358	32 254	116	38	35 35	32	29 29	21	8	0	SE E	
23 Octubre	SE	0	198	385	142	431	368	249	127	40	29	21	8 48	0	NE	20 Abril
20 Febrero	\$ \$0	0	48	154 21	249 29	328 40	377 127	193 249	3 <i>7</i> 7 368	328 431	249 442	154 385	198	0	N NO	y 24 Agosto
{	0 H0	0		21	29	32 32	35	36 38	116	254 32	350 48	366 105	214 89	0	9	•
	Horizontal	0	16	132	271	387	463	485	463	387	271	132	14	0	Horizontal	··
1	N Ne	0	21	143	24	29 29	32	32	32	29	24	16	2	0	\$ SE	
		0	73	295 344	314 436	225	94 387	282	173	62	24	16	2	0	E NE	91 14
1 Noviembre	SE S	0	27	184	295	439 371	417	411	417	371	295	184	27	٥	H	21 Mayo y
21 Enero	<u>\$0</u>	0	2	16	24	29	173	282	387	439	436	344	75	0	OK 0	23 Julio
	NO	0	2	16	24	29	32	32 32	94 32	225 29	314 24	295	73 21	0	50	•
	Horizontal N	0		<u>: </u>			368	393	368	295	192	73	5	0 1	Horizontal S	
	NE	0	0	27	24	29	3.2	32	32	29	24	10	٥	0	32	
-	<u>E</u>	1 0		109	284	419	86 187	32 : 292	195	75	24	10	0	0	ME	
22 Ordiembre	\$ \$0	0	0	173	306	3 9 5	431 i 195	272	431 387	385 439	106 425	173 309	0	0	. H	21 Junia
 -	. 0	1 0			24	29	32		86	217	284	249	0	0	0	
	NO Horizontal	0			172	29 263	330	<u> 12</u>	32	29 263	24 172	27 51	0	0	SO Horizontal	
	Marco metáli		<u> </u>	Defect		Ť				T		o de n		1	Punto de rocio	Lantud sur
Correcciones	Marco metali o ningún mar		1	limpi:		1.		lt:tud por 3	00 m	٠],		ora 19			perior a 19,5 °C	Dic o Enero
,	× 1/0,85 & 1.		1	15 %	máx.	1					- 14 9	6 par	10 °C	+	14 % por 10° C	- 7 %

Valores subravados-máximos mensuales

Valores encuadrados-máximos anuales

TABLA 15. APORTACIONES SOLARES - TRAVÉS DE VIDRIO SENCILLO (Cont.) kcal/h \times (m $^{\circ}$ de abentura)

40°

0º LATITU	D NORTE	<u> </u>				i	HORA	SOL	R	,	, , <u>,</u>	, -			0° LA	TITUD SUR
Época	Orientación	6	7	8	9	10	11	12	13	14	15	16	17	18	Orientación	· Época
	н	87	54	32	35	38	28	38	38	38	35	32	54	86	ISI	
}	NE E	320	360 436	303 439	198 385	81 257	38 119	38 38	38 38	38	35	32	27 27	16	\$ €	
1	SE	138	238	295	301	2 ± B	192	77	38	38	35	32	27	16	- "HE	
21 Junio	s so	16	27	32	35	94 38	119 38	92	119	758	301	32	27	138	NO NO	22 Didit at Sire
	-	16	27	32	35	38	38	38	119	257	385	439	436	341	0	,
1	NO Herizontal	16 84	27	32	35 485	38 569	38 429	3B 642	38 629	81 569	198 485	303 363	360	320 84	SO Hozizontal	
	N .	65	38	32	35	38	38	38	38	38	35	32	38	65	S	
ľ	N E E	287 320	344 436	284 444	179 390	70 265	38 116	38	38 38	38 38	35 35	32	27 27	13	SE	
22 Julio	SE	146	260	322	379	298	222	113	40	38	35	32	27	13	NE NE	21 Enero
22 30.10	\$ \$0	13	27 27	35	70 35	119	170 40	187	170	119 298	70 339	35	27 260	13	HO HO	v
21 Mayo		13	27	32	35	38	36	38	116	265	390	144	436	320	0	21 Noviembre
	NO Horizontal	65	27 198	32 341	35 463	38 550	38 610	38 631	38 610	70 550	179 463	284 341	198	287 65	SO Horizontal	
-	N	19	21	29	35	38	23	38	38	38	35	29	21	19	S	
İ	HE	184	276	222	124	43	38	38	38	38	35	29	21	8	SE E	
34 4	E	130	398 284	374	393 396	273 377	122 290	179	38	38	35	29	21	8	N.E	20 Febrero
24 Agosto	S _	8	21	65	138	241	263	276	263	241	138	65	21	8	H	У
20 Abril	<u> </u>	8 8	21	29	35	38	67 38	179 38	122	273	396	439	284 398	130	0 0	23 Octubre
	но	8	21	29	35	38	38	36	38	43	124	222	276	184	so	
	Horizontal N	24	127	271	406 32	501 35	556 35	580 38	35	35	406 32	271	127	24	Horizontal 5	
`}	NE	1 0	138	157	70	35	35	38	35	35	32	24	13	0	SE.	
	E SE	0	314 257	390	377 439	268 425	122 360	38 244	35	35 38	32	24	13	0	E HĒ	
22 Septiembre :	3E \$	0	33	119	219	298	330	379	330	298	219	119	32	0	M	22 Marzo
22 Marzo		0	13	24	32	35	111	744	360	425	439	190	257	0	но	22 Septiembre
	NO NO	0	13	24	32 32	35	35 35	38 38	122 35	268 35	377 70	157	314 138	Ö	so	
	Horizontal	10	57	181	336	414	477	496	477	414	336	181	57	0	Horizontal	
,	N ME .	0	94	16 89	27 32	29 29	32	32	32 32	29 29	27 27	16	5 5	0	SE SE	
	E v	0	230	317	3.30	236	105	32	32	29	27	16	5	0	E	
23 Octubre	SE S	0	219 57	358 160	336 282	371	370 417	290 _439	170	54 371	27	160	5 57	0	NE N	20 Abril
20 Febrero	02	0	5	16	27	SI	170	290	390	442	336	358	219		NO	24 Agosto
	0	0	5	16	27 27	29 29	32 32	32 32	105 32	238	3 <u>10</u> 32	317	230 94	0) 💃	_
	Horizontal	0	21	78	173	273	333	349	333	273	173	78	21		Horizontal	
ļ	N .	0		32	19 19	24	27	29 29	27 27	24	19	8	0	0	SE	•
	E	0	0	246	271	200	89	29	27	24	19		0	٥	E	
21 Noviembre	SE S	0	٥	295 160	390 282	423 377	390 428	314 450	189 428	377	19 282	160	0	0	NE N	21 Mayo
Y 21 Enero	50	0	0	8	19	73 24	189	314	390	423	390	295		0	МО	y 23 Julia
	0 N0	"	0	:	19	24	27 27	29 29	89 27	200	271 19	246 32	00	Ö	So I	1
	Horizontel	0	0	43	116	198	249	279	249	198	116	43	0	0	Horizontal	
	N NE	0	0	19	16 16	24	27 27	27	27 27	24	16 16	5	0	0		
L	E	0	0	195	233	184	84	27	27	24	16	5	0	0	SE E	
	SE S	0	0	238 138	363 268	401 363	3 85 428	311	198 428	363	19 268	138	0	0	HE H	21 Junio
22 Diciembre	SO	0	0	5	19	81	198	311	3.55	401	363	238	0	٥	NO	
1	O '	0	0	5	16 16	24 24	27 27	27 27	84 27	184 24	233 16	195	0	0	0 50	
	Horizontal [*]	•	0	21	86	149	206	230	204	149	86	21	•	ŏ	Horizontal	
<u>-</u> \ _\	Marco metáli	co	D	efecto	de		Altit	ud		Pu	nto di	e rocio		Pun	ito de rocio	Latitud sur
Correcciones	o ningún mar	c o	ļ	limpiez		+ 0.		or 300	m			19.5	1		ror + 19,5 °C	Dic. a Enera
i	× 1/0.85 6 1,	17 -	1	5 % m	áx.				1	- 14	4 % pc	or 10 '	C	+ 14	* oor 10° C	+ 7 %

TABLA 15. APORTACIONES SOLARES A TRAVÉS DE VIDRIO SENCILLO (Cont.) $kcal/h \, \times \, (m^2 \, de \, abertura)$

50°

50°

0º LATITU	D NORTE						ног	RA SO	LAR						0º LATIT	UD SUR
Época	Orientación	4	7	•	9	10	11	12	13	14	15	16	17	18	Orientación	Época
	N NE E	78 341 377	32 339 444	32 254 439	35 135 368	38 43 254	38 38 111	38 38 38	38 38 38	38 38 38	35 35 35	32 32 32	32 27 27	78 21 21	S SE E	
21 Junio	\$E \$ \$0	173 21 21	276 27 27	341 43 32	366 105 35	336 184 38	265 235 62	165 252 165	62 235 265	38 184 336	35 105 366	32 43 341	27 27 276	21 21 173	NE N NO	22 Diciembr
	0 NO Horizontal	21 21 119	27 27 233 29	32 32 360	35 35 469 35	38 38 534	38 38 580	38 38 596 38	38 580 38	254 43 534 38	368 135 469	439 254 360	339 233 29	377 341 119 57	0 \$0 Horizontal	
22 Julio	N HE E	309 355	317 436 290	235 442 363	382 387	40 260 368	38 116 295	38 38	38 38 70	38 38 38	35 35 35	32 32 32	27 27 27	16	SE E NE .	
22 Julio y 21 Mayo		16 16	27 27 27	57 32	135 35 35	217 38 38	265 70 38	287 189 38	265 295 116	217 368 260	135 387 382	57 363	27 290 436	16 176	H NO	21 Enero y 21 Noviembr
	NO Horizontal	16 89	27 203	32 322 27	35 431 32	38 509	38 556 38	38 572	38 556	40 509	119 431 32	23.5 -32.2 -27	317 203	309	SO Horizontal	
	HE E SE	206 254	254 393 301	189 428 390	84 382 475	35 265 414	38 122 358	36 38	38 38 108	35 35	32 32	27 27 27	21 21 21	10 10	SE . E	20 Febrero
24 Agosto y 20 Abril	\$ 50 0	10 10	24 21 21	97 27 27	198 32	284 35 35	352 108 38	37.4 24.1 38	352 358 122	284 414 265	198 425 382	97 390 428	24 301 393	10 143 254	м но 0	23 Octubre
	NO . Horizontal N	10 35	21 124	27 241 21	32 355 27	35 433 32	38 485 32	38 501	36 485 32	35 43 3	84 355 27	189 241 21	254 124	206 35	50 Horizontal 5	ļ
2 Septiembre	NE E SE	0	157 276 233	124 374 377	43 352 439	32 252 442	32 116 393	32 32 284	32 32 151	32 32 46	27 27 27	21 21 21	10 10	0	SE E HE	22 Marzo
y 22 Marzo	\$ \$0	0 0	29 10	138 21 21	252 27 27	355 46 32	406 151 32	428 284 32	406 393 116	355 442 252	252 439 352	138 377 374	29 233 276	0	0 N O	y 22 Septiembr
	Horizontal N	0	10 40 0	132 10	27 238	32 320 24	379 27	32 401 29	37 379 27	32 320 24	23 B 19	124 132	157 40 0	- 0	SO Horizontal	-
23 Octubre	SE SE	0	78 198 187	54 268 301	19 284 393	24 214 425	27 94 390	29 29 311	27 27 187	24 24 65	19	10	0	0	SE E HE	20 Abril
20 Febrero	0 30 2	0	46 0 0	143 10 10	19 19 19	371 65 24 24	425 187 27 27	311 29 29	425 390 94	371 425 214 24	268 393 284	143 301 268 54	167 198 78	0	N NO SO	Y 24 Agosto
	Horizontal H NE	0	0 0	51 2 13	10	195 16 16	233 21 21	254 24 24	27 233 21 21	195 16 16	122	34 51 2 2	5	0	Horizontal S SE	
1 Noviembre	E	0	0	138 168 92	173 257 189	154 344 314	75 344 387	24 290 414	21 181 387	16 57 314	10	2 2 92	0	0	E HE H	· 21 Mayo
21 Enero	SO O NO	0	0	2 2	10 10	57 16 16	181 21 21	290 24 24	75 21	344 154 16	257 171 10	168 138 13	0	0	. О 50	23 Julio
	Harizontal N NE	0 0	0	0 0	35 8 8	B1 13 13		143 19	127 16 16	13 13	35 8 8	10 0 0	0	0	Horizontal \$ \$E	
2 Diciembre	SE S	0 0	0	0	111 84	127 290 268	62 314 355	271 182	16 168 355	67 268	8 84	0	0	0	HE H	21 Junia
-	0 NO	0 0	0	0	8 8	13 13 51	168 16 16 89	19 19 108	62 16 89	127 13 51	73 8 13	0 0 0	0	0	NO O SO Horizontal	1
Correcciones	Horizontal Marco metá o ningún ma × 1/0,85 ó 1	lica arco	D	efecto limpie:	de ≀a		AI	titud por 30		5	Punto	de ro	cio	f Su	Punto de rocio perior a 19,5° C 14 % por 10° C	Latitud sur Dic, p enero + 7 %

Valores subrayados-máximos mensuales

Valores encuadrados-máximos anuales

TABLA 16. FACTORES TOTALES DE GANANCIA SOLAR A TRAVÉS DEL VIDRIO (coeficientes globales de inso:con o sin dispositivo de sombra o pantalla) *

Aplicar exios coeficientos a los valores de las tablas is y 15. Velocidad del viento 8 km/h. Angulo de incidencia 30º. Con máxima sombra de persiana

ORDIDAIO	SIN PERSIANA O	ltistones cales	VAS VENEC TERIORES horizontales inclinados RTINAS DE	o verti- 45*	VENE EXTE Listones	SIANAS CIANAS RIORES horizoniales idos 45º	EXT	ISIANA ERIOR nclinados	DE Circulació amba y lat	
	PANTALLA	Color	Calor media	Color oscuro	Color	Exterior claro Interior oscurd		Color os-	Color claro	Color medio u oscuro
VIDRIO SENCILLO ORDINARIO	1,00	0,56	0,65	0.75	0, 15	0,13	0,22	0,15	0, 20	0, 25
VIDRIO SENCILLO 6 mm	0,94	0,56	0.65	0,74	0,14	0,12	0,21	0,14	0, 19	0,24
VIDRIO ABSORBENTE****	T		•					— —		
Coeficiente de absorción 0,40 a 0,48 Coeficiente de absorción 0,48 a 0,56 Coeficiente de absorción 0,56 b 0,70	0,80 0,73 0,62	0,56 0,53 0,51	0.62 0.59 0.54	0,72 0,62 0,56	0, 12 0, 11 0, 10	0,11 0,10 0,10	0, 18 0, 16 0, 14	- 12 - 11 0, 10	0,16 0,15 0,12	0, 20 0, 18 0, 16
VIDRIO DOBLE Vidrios ordinarios Vidrios de 6 mm	0.90 0.80	0, 54 0, 52	U, 6 1 0, 59	0.67 0.65	0, 14	0,12 0,11	0, 20 0, 18	0,14 0,12	0,18	0,22
Vidrio interior ordinario Vidrio ext. absorbente de 0,48 a 0,56	0,52	0, 34	0,39	0,43	0, 10	0,10	0,11	0, 10	0, 10	0, 13
Vidrio interior de 6 mm Vidrio ext. absorbente de 0,48 a 0.56	0,50	0,36	0,39	0,43	0, 10	0,10	0,11	0, 10	0, 10	0, 12
VIDRIO TRIPLE Vidrio ordinario Vidrio de 6 mm	0,83 0,69	0,48 0,47	0,56 0,52	0,64 0,57	0, 12 0, 10	0,11 0,10	0, 18 0, 15	0, 12 0, 10	0,16 0,14	0, 20 0, 17
VIDRIO PINTADO Color claro Color medio Color oscuro	0,28 0,39 0,50					·				
VIDRIO DE COLOR ****** Ambar Rojo oscuro Azul Gris	0,70 0,56 0,60 0,32									
Gris-verde Opalescente claro Opalescente oscuro	0,46 0,43 0,37		,	•						

TIPOS DE VIDRIO O DISPOSITIVOS		COEFICIENT	£ S	E
UE SOMBRA"	Absorcion (a)	Reflexion (r)	Transmisión (t)	- Factor solar**
Vidrio ordinario	0,06	0.08	0,86	1,00
Place regular 0,65 mm	0.15	0,08	0.77	0,94
Vidrio absorbante térmico	según labricante	0.05	(1-0,5-a)	
Persiana veneciana, color claro	0.37	0.51	0.12	0.56***
color medio	0.58	0.39	0.03	0.65
calor obscuro	0,72	0.27	0.01	0,75
Tela de fibra de vidrio blanquecina (5,72-61/58)	0.05	0.60	0.35	0 48***
Tela de algodón, buige (6,18-91/36)	0.26	0.51	0.23	0.56
Tela de fibra de vidrio, gris claro	0.30	0.47	0.23	0.59***
Tela de libra de vidrio. Color canela (7,55-57/29)	0.44	0.42	0.14	0.64***
Tela de vidrio blanca con franjas doradas	0.05	0.41	0,54	0.65***
Tela de fibra de vidrio, gris obscura	0,50	0.29	0,11	0,75***
Tels «Dacron» blanca (1,6-86 81)	0.02	0.28	0.70	0.76***
Tela de algodón, gris obscura con revestimiento de vinilo	"""	0,20	-	
(análoga al estor)	0,85	0.15	0,00	0,88***
Fela da algodón, gris obscura (6.06-91/36)	0,02	C 28	. 70	0.76***

Los factores correspondientes a las diversas continas serán sólo a titulo de guía, ya que el material realmente empteado en las coninas puede ser da diferentes colores y texturas, las cifras entre parentesis son onzas por yarda cuadrada, y números de hebras de la urdimbre.
 *** Comparado con al vidrio ordinario.
 *** Para dispositivo de sombina combinado con vidrio ordinario.

Las dos últimas tablas presentadas en la página anterior enlistan varios factores de corrección que modifican la ganancia solar dependiendo del tipo de vidrio que se emplee y de los dispositivos de sombra instalados como cortinas o persianas.

Además de emplear las tablas anteriores para el cálculo de la energía que entra al local por sus ventanas, debemos de recordar que por el hecho de existir una temperatura mayor en el exterior, habrá una cantidad de energía que entrará por transmisión por las ventanas. Esta cantidad de energía se calcula en forma idéntica a como se señaló en el capitulo anterior de cargas térmicas en in vierno, o sea mediante la aplicación de la siguiente ecuación:

Q=UxAx∆T

Haciendo uso de todo lo anterior, se habrán calculado todas las ganancias de energía que recibe un local a través de sus ventanas. Resulta conveniente aclarar que cuando en un local existen varias ventanas y/o muros al exterior, con diversas orientaciones, es necesario hacer un analisis detallado para encontrar el mes y la hora críticos y con éllo poder seleccionar el equipo adecuado que cubra las necesidades del local en cualquier época del año.

GANANCIAS DE ENERGIA EN VERANO A TRAVES DE MUROS Y TECHOS.

Como ya se mencionó anteriormente, la ganancia de energía que entra a un local por sus muros y azoteas se debe tanto a la transmisión, como a la radiación.

Para hacer sencilla la solución de este problema, fué diseñado un método llamado de "Diferencia de Temperaturas Equivalente"; este método consiste en el cálculo experimental de la diferencia de temperaturas que debiera de haber entre el exterior y el interior para provocar, por pura transmisión, el efecto total logrado en la realidad por transmisión y radiación a traves de muros y techos. En las páginas siguientes se proporcionan tablas que dan los resultados experimentales obtenidos y que dependen de: orintación del muro, densidad del muro, y hora del día; y para azoteas depende tam bién de si está o no sombreada o rociada con agua.

Para el cálculo de la energía que se gana en un local a través de sus muros y azoteas, lo único que se requiere es la aplicación de la siguiente ecuación:

O=UxAx∆Te

donde:

Q= Energía recibida dentro del local (kcal/hr)

U= Coeficiente de transmisión total del muro o techo (kcal/hr.m²C)

A= Area del muro o techo (m²)

Te= Diferencia de temperaturas equivalente entre el exterior y el interior. (de tablas)

-							TIEN	IPO S	SOLA	R									
Lat. Norte			A.M.									P.M.							Lat. Sur
[8		10		12		2		4		6		8		10		12		
Pared [COL	OR E	XTEF	RIOR	DE L	A PA	RED	(0 = 0	OBSC	URA	, C =	CLA	RA)		Pared
hacia el:	0	С	0	С	0	С	0	С	0	C	0	C	0	С	0	C	0	С	hacia el:
NE]	12	6	13	7	8	6	7	6	Parti	cion 8	8	8	6	6	3	2	1	- 1	SE
E	17	8	20	10	18	9	7	7	8	8	8	8	- 6	6	3	3	- 1	<u>_</u>	E
SE	7	3	14	9	16	10	13	9	9	- 8	8	8	6.	6	3	2	1		NE
S	-2	-2	2	0	12	7	17	11	14	11	9	8	6	6	3	3	- i l		N
so	-2	-2	ᆖ히	-1	3	2	14	12	22	16	23	16	13	11	3	2	1		NO
0	-2	-2	_ 0	0	3	3	11	7	22	16	27	19	12	12	4	4	1	1	0
NO	-2	-2	0	-1	3	2	7	6	13	11	22	14	19	13	3	2	1	1	so
N	-2	-2	-1	-1	2	2	6	6	8	8	7	7	4	4	2	2	0	0	S
-																			
NE T		<u> </u>	49	- - - 1	441				le 4 p	_			 1	-1	- 61	٥١			05
NE E	-1 1	-2 0	13	7 8	11	<u>6</u>	6 8	8	7	6 7	8 8	8	7	7	6	6 4	3	3	SE E
SE	-	-1	11	6	16	9	14	9	10	8	- 8	8	7	7	6	4	3		NE .
S	-2	-2		-1	7	3	13	9	14	10	11	9	7	7	4	4	2		N
so	0	-1	-1	-1	1	1	7	4	18	12	20	14	19	13	- 6	4	3		NO
0	- 6	-1	- ö l	0	2	1	6	4	14	10	22	16	23	16	9	8	3	3	
NO	-2	-2	-1	-1	1	1	4	3	7	7	17	12	19	13	7	6	3		so
N	-2	-2		-1	o	Ö	3	3	6	6	7	- 7	7	7	4	4	2		S
<u> </u>												- 1	•.1	'.1					,
							Ladr	illo h	ueco	de 8	pig.				. •	•			
NE	0	0	0	0	11	6	9	6	6	3	7	6	8	7	7	6	4		SE
E	2	1	7	2	13	7	14	8	11	7	7	6	8	7	8	6	6		E
SE	1	0	_1	0	9	4	11	7	11	8	8	7	8	7	7	6	4		NE
S	0	0	0	0	1	0	7	3	13	8	14	9	11	8	7	6	4		N
so	1	0	_1	0	_1]	0	3	2	7	6	14	10	17	11	14	10	4	3	
0	2	1	2	1	2	1	3	2	6	4	10	8	17	12	18	12	10	8	0
NO	0	0	0	0	1	0	2	1	4	3	7	6	12	10	17	12	6	4	<u>s</u> o
N	-1	-1]	-1	-1	-1	-1	0	0	3	3	6	6	6	6	6	6	3	3	<u>s</u>
					Tabio	que d	e 8 p	lg	Ladril	lo hu	ieco (de 12	plq.	•				,	
NE	1	1	1	1	6	1	9		8	4	6	3	6	4	6	6	6	4	SE
E	4	3	4	3	8	4	10		10	6	8	4	8	6	8	6	7		E
SE	4	2	3	2	3	2	8	6	10	7	9	7	7	6	7	6	7	6	NE .
S	2	1	2	1	2	1	2		6	3	9	6	9	7	7	6	6		N
SO	4	2	3	2	3	2	4	2	6	3	7	4	11	7	13	9			NO
0	4	2	3	2	3	3	4	3	6	3	8	4	11	6	13	9	13		0
NO	1	1	1	1	_1	1	2		3	2	4	3	6	4	9	8	10		so
N	0	οT	- 0	0	0	0	0	0	1	1	3	3	4	4	4	4	3	3	s ·

TABLA DE TEMPERATURA EQUIVALENTE PARA MUROS EN G. CENTIGRADOS

	-						TIEM	PO S	SOLA	R]
lat. Norte		_	A.M.									P.M.							lat. Տև.
·	8		10		12		2		4		. 6		8		10	-	12		
Pared				_	COL	OR E	XTER	RIOR	DE L	A PA	RED	(0 =	OBS	CURA	<u>, C</u> =	CLA	RA)		Pared
hacia el:	0	C	0	С	0	C	0	С	0	C	0	O	0	O	0	ဂ	0	С	hacia el:
							Tabio	que c	ie 12	plg.									
NE	4	3	4	3	4	2	4	2	6	2	7	3	7	3	6	3	6	4	SE
E	7	4	7	4	7	4	6	3	7	4	8	6	8	6	8	4	8	4	E
SE	6	3	6	3	6	3	6	3	6	3	7	4	8.	6	8	6	7	4	NE
S	4	3	4	3	3	2	3	2	3	2	4	2	6	3	7	4	7	4	N
so	6	3	6	3	6	3	6	3	- 6	3	6	4	6	4	7	4	8	6	NO
0	7	4	7	4	7	4	6	3	6	3	6	3	6	3	7	4	9	6	0
NO	4	3	4	3	4	2	4	2	4	2	4	2	4	3	6	3	6	3	SO
N	2	2	1	1	1	1	1	1	1	1	1	1	1	1	2	2	3	3	S

		Conc	reto	o pie	dra d	e 8 p	lg. o	bien,	bloc	lue d	e cor	ncreto	de (S u 8	plg.				15
NE	2	1	2	0	9	4	8	4	6	3	7	4	7	6	6	4	4	3	SE
E	3	2	8	4	13	7	13	7	10	6	8	- 6	8	6	7	6	6	4	E
SE	3	1	3	2	9	6	10	7	10	7	8	7	7	6	7	6	6	4	NE
S	1	1	1	1	2	1	7	3	9	7	10	7	8	7	6	4	4	3	N
so	3	1	2	1	3	1	4	2	8	6	12	9	13	9	12	9	6	4	NO
0	3	2	3	2	3	2	4	3	7	4	11	8	16	10	14	10	8	6	0
NO	2	1	2	0	2	1	2	2	3	3	7	6	11	8	12	9	4	3	SO
N	0	0	0	0	0	0	1	1	2	2	3	3	4	4	3	3	2	2	S

•						Con	creto	o pie	dra d	le 12	plg.								_
NE	3	2	3	1	3	1	8	4	8	4	6	4	6	4	7	6	6	4	SE
E	6	3	4	3	6	3	10	6	10	7	9	6	7	6	- 8	6	8	6	E
SE	4	2	4	2	3	2	8	4	9	6	9	6	8	6	7	6	7	6	NE
S	3	2	2	1	2	1	2	1	6	3	8	· 6	9	7	8	6	6	4	N
so	4	2	4	2	3	2	3	2	4	3	- 6	4	10	8	11	8	10	7	NO
0	6	3	4	3	4	3	6	3	6	3	7	4	9	6	13	8	12	8	0
NO	3	2	3	1	3	1	3	2	3	2	4	3	6	4	10	7	11	8	SO
N	0	0	0	0	0	0	0	0	1	1	2	2	3	3	4	4	3	3	S

TABLA DE TEMPERATURA EQUIVALENTE PARA TECHOS

Tiempo solar.

DESCRIPICION DE LOS MATERIALES DEL TECHO

		A.M.			Р	.М.			
	8	10	12	2	4	6	8	10	12
Techos expue	stos a	sol.	Const	rucció	n liae	era.			

Madera de 1 plg Madera de 1 plg y aislante

7	21	30	34	28	14	6	2	0

Techos expuestos al sol. Construcción media.

Concreto de 2 plg. Concreto de 2 plg. y aislante Madera de 2 plg.

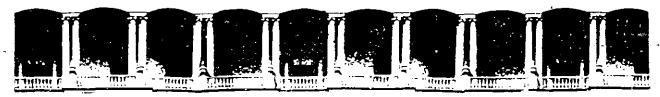
3 17 27 32 28 18 8 3 1	,	3 4	17	27	32	28	18	8	3	1
------------------------	---	-----	----	----	----	----	----	---	---	---

Concreto 4 plg. Concreto de 4 plg. y aislante

١ ٨	44	24	20	20	22	49	7	9
	11	41	20	. 25	22	14		.

Techos expuestos al sol. Construcción pesada.

Concreto de 6 plg.
Concreto de 6 plg. y aislante


2	3	13	21	26	24	18	10	7
3	3	11	19	23	24	19	· 11	8

Techos en la sombra.

Construcción ligera Construcción media Construcción pesada.

-2	0	3	7	. 8	7	4	1	0
-2	-1	1	4	7	7	6	3	1
-1	-1	0	2	4	6	6	4	2

NOTAS: 1 TECHO CLARO = TECHO A LA SOMBRA + 55% DE LA DIFERENCIA DE TECHO A LA SOMBRA Y TECHO AL SOL 2 COLOR MEDIO = TECHO A LA SOMBRA + 80% DE LA DIFERENCIA DE TECHO A LA SOMBRA Y TECHO AL SOL

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

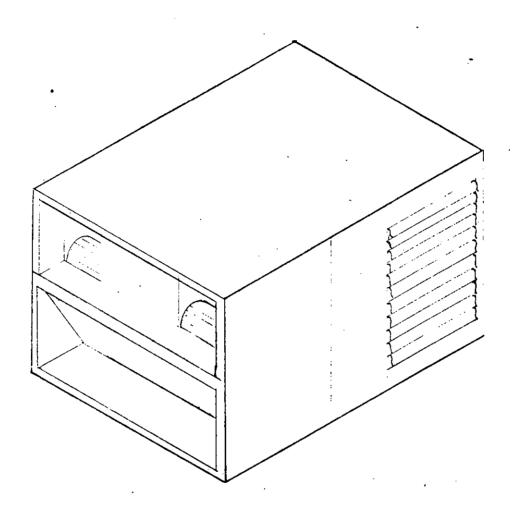
CURSOS ABIERTOS

PROYECTO DE AIRE ACONDICIONADO

EQUIPO TERMINAL

EQUIPO TERMINAL

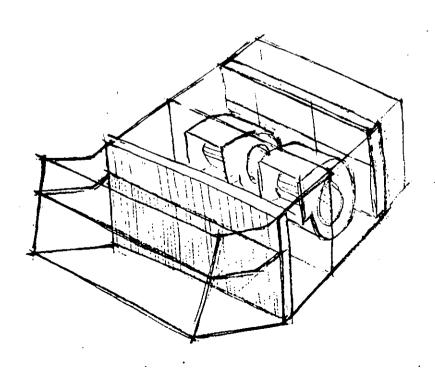
Se da el nombre de equipo terminal, a aquel que "produce" el aire que se va a emplear para el acondicionamiento de un local. Los equipos mas comunes son los siguientes:


- a) Unidad paquete
- b) Manejadora de aire
- c) Fan & coil

Hay algunos otros como son el equipo de inducción y otros pero por ser equipos poco comunes en nuestro medio no son muy importantes.

A.- UNIDADES PAQUETE

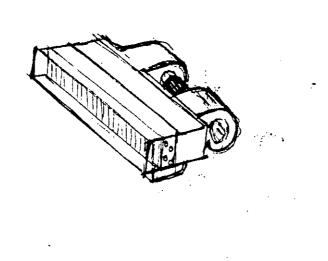
Es un sistema de refrigeración completo integrado en una sola unidad; contenienda condensador, compresor, sistemas de control y una cámara que contiene un serpentín evaporador y ventiladores centrífugos para el manejo del aire.

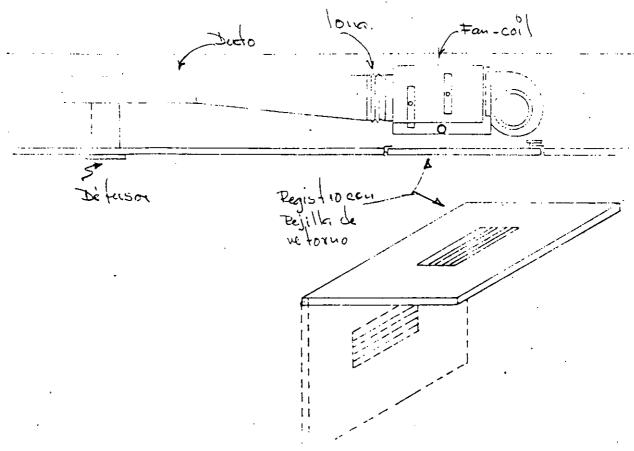

Esta unidad para instalaciones pequeñas es la mas cómoda, ya que requiere una inversión moderada y su costo de instalación es relativamente bajo

B.- MANEJADORA DE AIRE

Es un equipo constituido por uno o mas ventiladores centrífugos, serpentines que operan con agua helada, calien te o sistema de expansión directa. Caja de filtros y compuer tas para regulación de aire.

Se emplea para el acondicionamiento de zonas relativamente extensas y puede ser para el abastecimiento de una "zona" que deberá tener una temperatura homogenea o varias zonas (Multizona) en cuyo caso se regulará la temperatura del aire que será enviado a diversas zonas del local por medio de un sistema de compuertas de regulación que permitirán que el aire enviado sea mas frío o mas caliente; esto re regulará por medio de sistemas de control de temperatura.




C.- FAN & COIL

El fan & coil realmente es u cuya capacidad normalmente es infer de refrigeración, una TR es 3 024 opera normalmente por medio de la helada; aunque los hay que operan directa. Su empleo se limita a lo tos de hoten, oficinas, etc; sin pueden cubrir areas importantes. en el claro. comprendido er el techo; el aire acondicionado local por medio de un ducto y un hace normalmente colocando una : el equipo. La gran ventaja que l que se logra en el control de puede controlar al gusto del u un motor de 3 velocidades que : gusto del que lo va a operar.

Como regla general, sie será mas cómodo y mas barato de las instalaciones de un ed acondicionado; esto da u... ma

de manejadoras y fan & coils

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABÍERTOS

PROYECTO DE AIRE ACONDICIONADO

EJEMPLO DE CALEFACCION

Je proyecta acondicionar el ecutro de esempento de much companía para que open las 24 hs del déa y se requiere el déseit de la calefassicie:

In , a macion general.

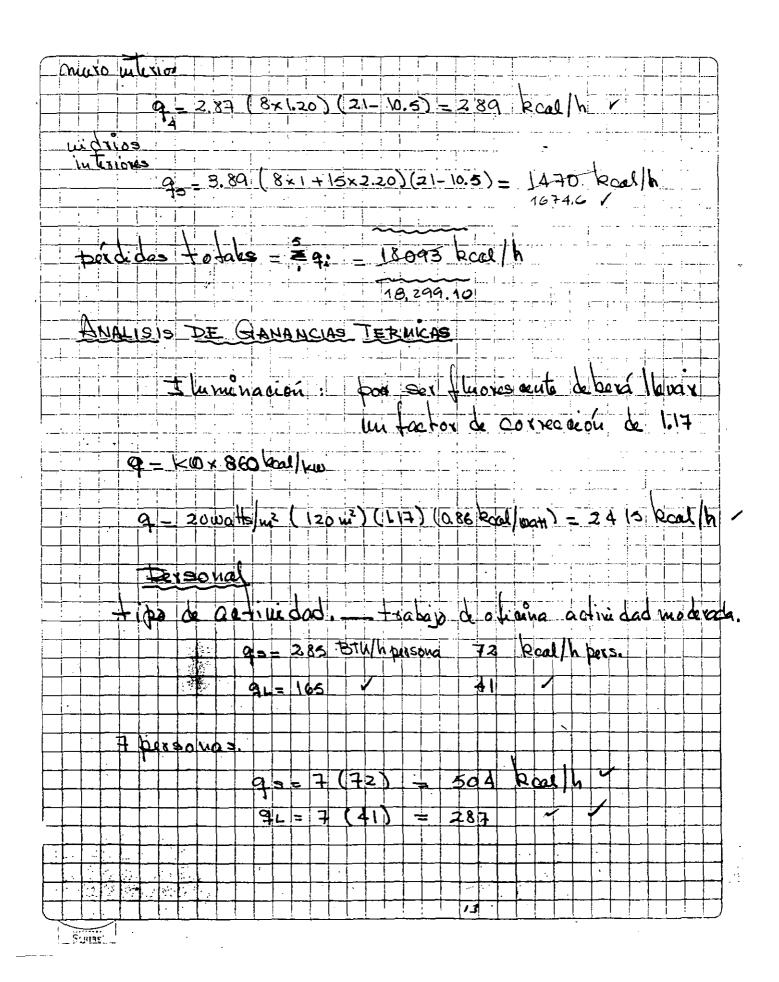
Moicarian __ Ca. de Mexico

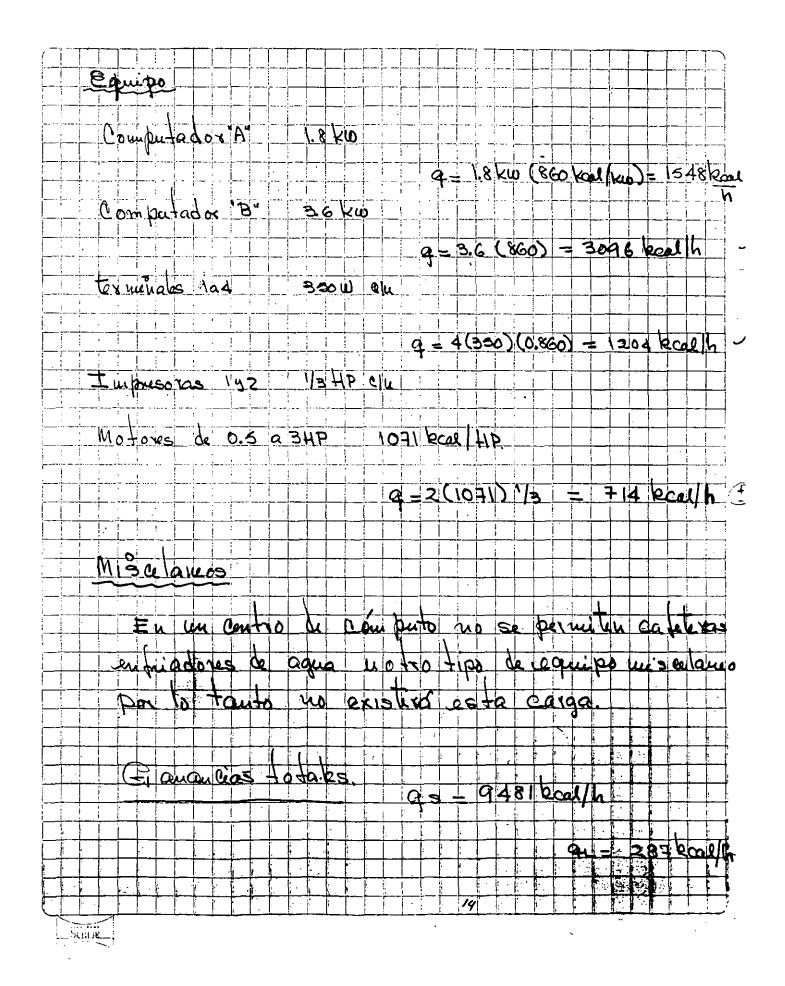
altera __ 2200 ru 8.0.m.

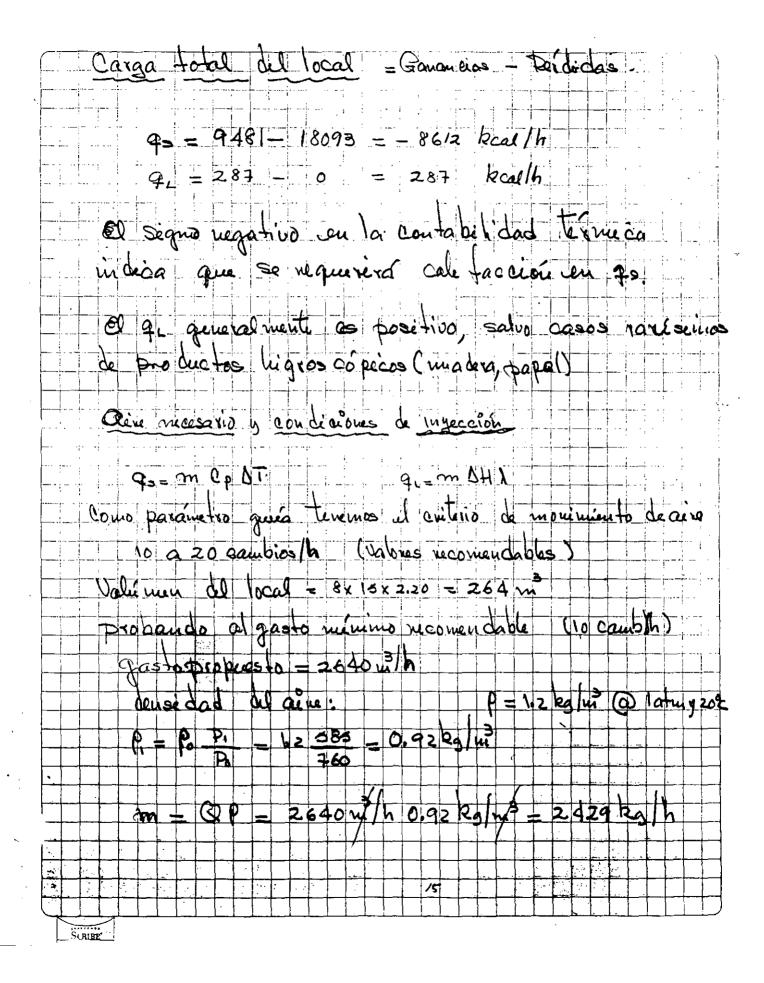
Condiciones interiores

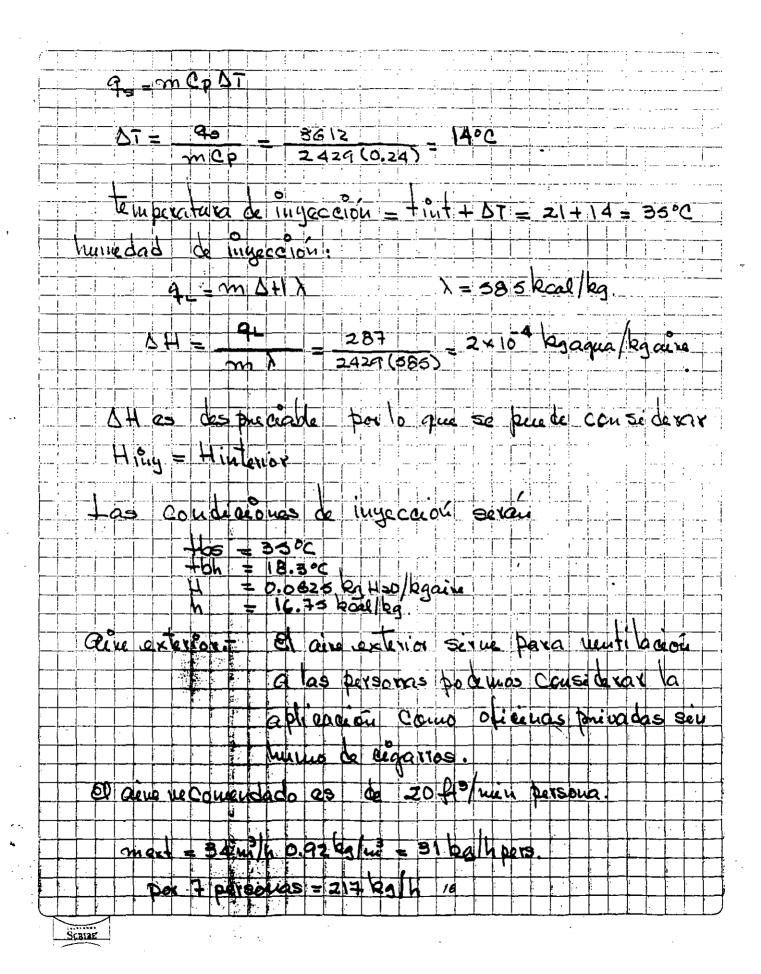
Can diciones exteriores

 $+bs = 21^{\circ}c \pm 2^{\circ}c$ $\phi = 40^{\circ}l_{0} \pm 5^{\circ}l_{0}$ $+bs = 0^{\circ}c$

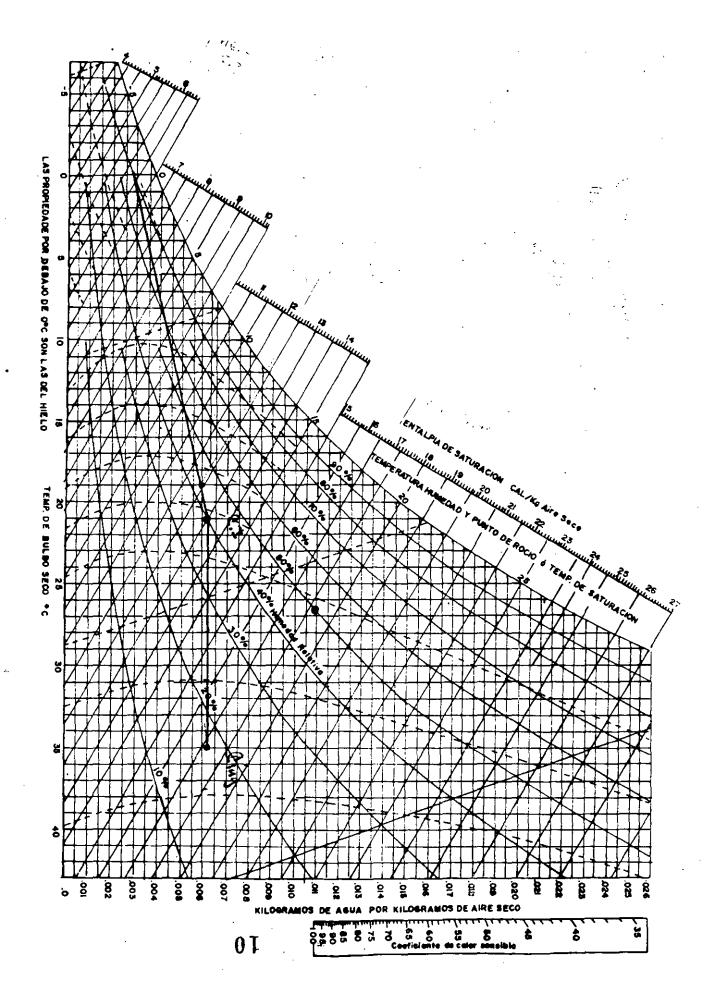

0.15 # 1


NORTE


,,		· 1, -	-					-,	<u>.</u> .	_;				,							
_	Carga	s Ju	le y u	as	-· .	:	-	:					! '				; ,	- : -	:		·
A	texuina		1 2	300	165	01	 !a :	:							- -	<u>;</u> -		 -		<u>-</u>	
- T	W Yuana	<u>((3</u>		7-0		<u> </u>	_				+	+-	-		_		_ _	+	+	1 :	i
2	I un pre	عصىء	, ,	1	4 E	9	0	u :			-	-	1-1			1.		<u> </u>	- -	<u></u> '	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		- I I	.;			1													1	
_	Com	outar	100	+11	<u> 7 6 c</u>	P :	<u>-!\</u>	81	<u>دلال</u>		- ;					 }-	<u> </u>		<u>:</u> _	-;!	:
	Com	1	+		-" <u>"</u>	- 		3.6	Vi	م			<u> </u>		!	- !	_ -	_!_	- -	<u> </u>	
- 1	Com	εμπιο	SON	4,6	0_1	2	<u></u> -	. · ·			:	 -	<u> </u>		-	+	+		+	+-	\dashv
							•								1				1		
	Illernie	من فده	u	i	<u> </u>	2	ا ۵	U	n²		4	V.	ÖV.	5 (eil	9					
		<i>y</i>			 	<u>. į</u>	.	!		-	.	-	-			_	<u>. </u>	_	<u> </u> _		
	person	al	+		<u></u>	-	<u>∃</u> k	1882	OUC	<u>عاٰج.</u>		:	<u> </u>		-	-	<u>i</u> 1.		1-	-	
	1 .	<u> </u>	++	-		-	<u> </u>	; <u>'</u>			-	+	-		-	+	+	+-	+-	+	
1/1	raterial	ردے آگ	(0	tex	щC	e c	w.			 -	-	T	<u> </u>				ij	-	+-		\neg
			7		~																
		<u> </u>	1-1			[1	-		. \ 	<u> </u>	<u> </u>				_	-	-			
ļ.	lealto	losa	Ce	<u> </u>	KA C	ne t	0 0	A) I	ua	۵۵	1	<u> </u>	<u>O</u> v	и,	}}		+	-	+-	+-	H
++	butil	nu	<u>, </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<u></u>	\- <u>-</u>	- i j			1	5 (H	-		-	-	+-		
	bur!	, com	10	e C	<u>o ua</u>	we.	<u>74</u>			 	\	1	-	-		_	-		-	-	
	blato	ud		Ч	50	<i> 1</i>		!		- - - - - - - - - - 		EN	m	~			T	i			
-	1 1			. [~				,											-		
	leid ride		Vee	di		40	Liva	لل	_			6	m	n	٠.	_	 -			<u> </u>	
+				_	1				- -	1	<u> </u>	-	 	_	1		_	$\frac{1}{1}$	+	-	
1	alouto	de	11							+-				-		\dashv	+			+	
						1														· -	
			1	-			<u> </u>	; - - 1		1	-1	1	:	-		- [1	_			!
<u>v</u>	Gho	10	lumi	mae	Lon	0	a!	397¢	cad	a	(4)	<u>r#x</u>	O	۵	۲.	N	2 	ou	<u>م</u> .		<u></u>
		5.00 3. 4 92。				7-	-	0:-		-	+		. 72	-		40	<u> </u>	- 		- <u>-</u>	
		D.O.	09			_ (ea	lor	Jen	6257	90	\$	4		P.	()	W.	UC		2		
		esp	4 OŁ A	Q	114	ha	u ·	ا, <u>۔۔۔۔۔</u> تابیک	he	\g	1	مور		u	لل	d	<u>a</u> .	Lan	, d		
				T		!	7							7		1	_1	J		-	<u> </u>
		Noc	sq	ou 1	L L	ųυ		20	m S	ė d	va;	4	W.	D	04	-01	٥	Q	.0	uy	0_
- - -			4			+	 	!!	0	<u> </u>		<u> </u>	0			1	1	1.	-	+	<u> </u>
		roen	2/1/	Leca	1 - 5	a	4	۲	ч	ca	M	- POE	المر	للمو	laç	20	+	361	a	1	
++		Mer	ا مار	au			ىمىر	Q i				+	+	<u> </u>		+	\dashv		$\dot{\perp}$	-	
		77461	- (بعب	<u>`</u>													
								-											Ţ	-	
	<u> </u>															<u> </u>	: · i	-	<u> </u> ;	 	ļ
. [f .		. ! !	1		<u>i</u> '	!	•	!	1.	<u>. [/</u>	0 🖳	ţ	[<u> </u>	<u> </u>	1	زك


Uteaho -	7 0/2	= 3.87 kc	l h m² oc		
	8.05 293 1.5			***	: .
Muyos:	comu ca	s que da	n al extern	ia de besan	llew.
				e dan a la	checi
	yal pasélli	o de Derai	1 levar 2	١٨١.	
			1 20		
** tribs	W = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5	bool hing		
	805 243	1.5			
in terior	1 2 101	5 2.87	bool hing	2	
	8,05				
hi drios	los marios	deberon	tener la m	isma cousi	devade
	Querion				<u>i</u>
Extriox	W = 1 2 1	0.006	99 kcal/h	m² &	+ +
	805 293	0.7			
interior	2 . 0.000		1.89 Real	hm²00	
	8.05 0.7				+
Calendo	de berdides				
				-1,	
23	Calor que pires	(de una darre	va está	divido	
Couro:	1 9 -	TOAU			+++
		++++			
	+	++++			

Sencin bargo es incesario un analises para ST, en al. caso de muros o vidrios al exterior, la diferencia será la matural; para el casa de areas no a condicioundas contiguas, se de berá analizar el tipo de construcción y la hermeticidad de estos locales Olgunos autores suguren que se consedere como temperatura de estas locales al valor medio centre el area acondiaronada y el exterior. Ben un bargo si el avea no acondicionada es mun grande este valor de bara désminuirse y se es pequeña podra in che mentarse Sen comex nesque de considera Cich un el caloulo ber de das 9=387 (15-8) (21-0) = 9752 Rcally techo muxos a extrio 9-3.87 (15x1.2+8x1.2) (21-0) = 2243 bool h 9-549 (15x 6+8x1) (21-0) - 4339.3 Reallh mucros con lubrios un peratura de 103 are dea dol in bride



13 = 217 (519) + 2212 (13) = 12.36 local/leg. apacidad lel equipo. apacidad lel equipo. apacidad lel equipo. apacidad lel equipo. a lumedad absoluta el aine de mezola es 0.0059 leg Hodono se ha aquesiderado des preciable el valor calenda le DH curque se compusará con esta peque na dele		- <u> </u>			,		5	٩Ì	1_1		······································	i 	/: \>	\		 	- i -		_	, 		—; {		 .			: i	
quinching-lines = 2429 (16.75-12.36) = 10663 kg a humedad absoluta lel ciène de mezola es 0.0059 kg Hiof como se ha aquesi derado des preciable ul valor cal enlad e DH cm qu se comprisará con esta pequena de le		, h	3 =		۷.۱:	*	2.4	12	9			121		- -	=	12	≀∙∃	6	R.	لمت	4	kg	}•					
quinching-lines = 2429 (16.75-12.36) = 10663 kg a humedad absoluta lel ciène de mezola es 0.0059 kg Hiof como se ha aquesi derado des preciable ul valor cal enlad e DH cm qu se comprisará con esta pequena de le	·	-		<u>. </u>		_			. <u>.</u> .		٠.				, ł				•		-,			-				
a humedad absolute tel ciène de mezola es 0.0059 leg Had como se ha aquesi derado des preciable el valor cal culad le DH curque se compusará con esta peque na defe	Ca	pac	id	29		_(ليلا		9	<u>w</u>	.bo	٠				· · · · · · ·		:						:	•	;		
a humedad absolutes del ciève de mezola es 0.0059 leg Hisolomo se ha acusidendo des preciable el valor calculad le DH cur que se compensará con esta peque na defe			:		,			10			· ; •-	<u> </u>					. :	-	:	1			-				- l	
como se ha aquesi dendo des preciable ul valor calculad se OH cur que se compunsará con esta peque na defe	· !			او	, _	M		MI	ny	<u>+ </u>	1111	(عد)	. =	2	42	9.1	(16	<u> </u>	<u>⊃</u>	- / .	۸.,	36	.) [- -	10(2	06 es) i	æ ₽C
como se ha aquesi dendo des preciable ul valor calculad se OH cur que se compunsará con esta peque na defe	la	lu	we	da	4	6	bs	امد	<u>,</u>	1 2	ليل	α	e ve	• • •	de	 1		2.cl	A	Qs	: 3	E). O	, . රජ	91	2	Hsc	Ą
EDH cinquise compusará con esta pequeña de le									l									L .										
	1		:	1 1			ì					- 1			• i	- 1	1	1	ļ	1	. i	. !	- 1	:	:	1	. 1	1
	Œ	0	71		ىب	u _	41			ie.	Cc	بند <u>ر</u> :	μ	u s .	ar	a:_		6 1.		251	a		ieu	M	Łų	a	Œ	e
		• •					-					·		:			:	- 	ļ	 		٠.		!				
		··· ·			·					-·; 			-		:	:		-					; ;					
	باد میرید. د دید بنشد					-				<u>-</u>				!			-							. : _i_	- ,	_	•	
											·					+			 				-		;	:		
			-				-			_	-							-	-			·		_ -		. <u></u>		
										 ;		i		ا ـ . ـ ا ا ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	:	 :	- <u> -</u>											
			<u> </u>	P 1						-		_	-	: _ :			-		<u> </u>				-			-	 _i. :	
			-	是								-	<u> </u>	j	-	+	+	-	-	-				+	-	_		
			-								-		-	+	_	-	1		<u> </u>					_		1		_
		- -			_			-								_	+							-				L
	-		-				-				-	+	1.		-	+	-	+	-					-	+	+		<u> </u>
	- -		-			-	-					1					-	-						1		+		
		-	-		-						-		+			$\frac{1}{2}$		7.										
┍┍┍╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒		- -	- 2			-4), -2	_		-		-		+			_	1.	7						-	-	+	+-	ļ.,
						े. इंटे.										-										+		1

?A	MES '	@ver [Kcal/n3	
Ć2	JUNIO	ZÁ	- 819793
***	MOVIEMBRE		407 - 684
8 .	MOVIEMBRE	/13	~40 1,253
7	Did MERSON	1452	1.199 2,641
1.0	· DICTEARRE ·	2499	1,863 4,392
1. 1.	DICIEMBRE	Jodi	2804 6,556
i de e Sa disa	DICTEMBRE	4003	3,919 - 8,557
v 1991 * 1993	00000000000000000000000000000000000000	D 1 4 2	5,030 10, 174
1 4	DICIEMBRE	5400	5,979 11,279
15	DICIEMBRE	5083	6,831 - 11,914
* 6	ENERO	4457	7.774 11 735
1.7	TEBRERO	2758	7.001 100.F
1.5	JULIO	924	6060 - 6,984

CARBA MAXIMA EN DICIEMBRE A LAS 16 HRS. CON UN VALOR DE 11,914 [Kcal/h]

					•				
				· čKe	al/b]	•			
Production of the	1,1	MEE	E	SE	5	90	Ö	, OM	1-17
ė.	()	0	0	. ()	-117		-65		- 527
	()	٥·	Ō.	Ó	215		267		
3	Ü	Q	.0	•	191		230 .	•	111
9	\circ	t)	0	Q	262		289		630
10	()	0	0	0	28&		312		1275
1. 1	Ö	Q.	Q.	Ó	Z81		420		2093
, T.	0	Q.	0	0	475		540	·*· · · · · · · · · · · · · · · · · · ·	2901
2	O.	0	Ó	O	518		708		3704
	O	O	()	Q	737		მგ4		4379
	Ü	O	Ō	0	855	•	1058		4 7 1 /2
<u>. 4.</u>	()	O	Ō	0	879		1183		52:1
77	0	Q	O	Ō	760		1178		5151
13	Q.	O,), 🚅	О	0	547	-	1028	*	4435

Par metros de Orientaci"n, Ares e Inclinaci"n de Ventanas

SETENTACION	AREA (m})	TMCLIMACIÓN (x)
Norse	0.00	90
Noneste -	0.00	90
	0.00	90
Eureste 📯 .	.0.00	90 ·
Bur	22.50	90
Surceste	5,0 , 5,00	90
Coesto	12100	90 -
Moreaste	$\phi_{\bullet}(0)$	$^{I}\bar{\phi}^{I}(\underline{\hat{c}})$
Tragalus	0.00	O

Desea cambier alg#n par metro (S/N)

Par métros de Orientaci″n y Area de Muros y Tecnos

CRIENTACION	AREA [m3]
Norte Noreste Este Sureste Sur, Suroeste Deste Norceste Techo	, 0.00 0.00 0.00 0.00 18.00 0.00 9.60 0.00

Desea cambiar alg#n par metro (S/N)

JRA	MES	Qven [Kcal/h]	Omur (Kcal/h)	Qaum [Mcal/h]
				_
60	JUNIO	26	282	308
7	MOVIEMBRE	277	ළ පුළ	WS.
8	NOVIEMBRE	713	75F	1450
Φ.	DIC (EMBRE	1452	7-42	2197
.Õ	. DICIEMPRE	2499	7.34	2233
i. i.	DICIEMBAE	3862	724	4386
, m	DICTEMBRE	4638	763	5401
- New York	DICTEMBAE	5144	863	5947
Ž,	DICIEMBRE	5400	933	6333
****	D(Clamere	5083 .	1063 ·	6146
. 60	ENERO	4457	1134	sea!
. 7	FERRERO	2988	978	- 29 W/
. 13	JULIO	924	760	1 684

TARGA MAXIMA EN DICJEMBRE A LAS 14 HRS.

DIVISION DE EDUC	CACION CONTI	NUA F.I.						•					
OBRA:	CENTRO DE O	COMPUTO											
	D.F. CENTRO DE C	COMPUTO		, LA	TITUD NOR	TE	19" 25'	grados	-				
									,			•	
DATOS DE DISEVO)	-		•					•		•		
VERANO		EXTERIOR		INTERIOR	_	DIFERENCIA	_	INYECCION	_	MEZCLA	_ :		
	_	øC	øF`	øC	øF	øC	øF	øC	øF		øF	-	
TEMP. BULBO SECO		32.00	89.6	24.00	75.2		14.4	14.25	57.7	24.18	75.5		
EMP. BULBO HUME(17.00	62.6	17.40	63.3		-0.7	13.50	56.3	17.39	63.3		
PUNTO DE ROCIO	ı	6.00	42.8	13.25	55.9	-7.25	-13.1	12.75	55.0	13.08	55.6		
HUMEDAD RELATIVA	Ά	19.00	*	50.00	%	-31.00	%	0.90	*	49.29	%		
ENTALPIA		47.00	k.i/kg	48.50	kJ/kg	-1 50	k.J/kg	38 00	kJ/kg	48 47	kJ/kg		
IUMEDAD ESPECIFIC	CA	0.0056	lig/kg	0.0095	ko/ko	-0.0039	ko/ko	0.0092	kg/kg	0.0094	kg/kg		
INVIERNO		0.0	32.0	21.0	69.8	-21.0	-37.8		32.0			•	
FACTORES DE									e.				
CONDUCTIVIDAD		k.l/hmyaC			•		AREAS					• •	
		•	Q	RIENTACION		VIDRIOS		MUROS			,		
MUROS:	•					my		my		AREA DE			•
EXTERIORES		16.20		NORTE		,		,	PI	ISO O TECHO		120.0	m2
INTERIORES		12.01		N-E					•	.00 0 12,01.0		.20.0	,,,,_
HATEL HOLLED		12.01		ESTE						ALTURA			
ENTREPISOS				S-E						PROMEDIO		2.2	_
, ENTREPISOS				SUR		22.50		18 00		PROMEDIO		2.2	m
		40.00				22.50		18 00					
AZOTEAS		16 20		S-W						VOLUMEN			_
				OESTE		12.00	•	9.60	`	DEL LOCAL		264 0	m3
VIDRIOS:				N-W		-							
			н	ORIZONTAL				120 00		-			-
EXTERIORES	•	25 07			•	•	•						
INTERIORES	•	16.28	11	NTERIORES		41.00	•	9 60					•
			•	PISO					um.				
FACTOR DE VIDRIC		0.68	,	TECHO			•		•				
PERSONAS:	* -			EQUIPOS:		CONCEPTO		(W)o(CP)			•		
TOTAL	7					ILUM. (W)		2,808					
EN REPOSO-	100%	7			,	MOT<=2CP		0.67					
EN MOVIM.	0%	0				MOT>=3CP EQPO.EL(W)		6,800					
CTOR DE VENTILAC	ION:		•			EQPO.GAS DUCTOS	•	-,		-			
34	3/(h*pers) =		20	cm/persona		VARIOS							
RGA DE CALEFACC	ION:												
			FAC.COND.	AREA	DIF.TEM.		CARGA						
			kJ/hmvaC	my	øC.		k.l/h						

	FAC.COND.	AREA	DIF.TEM.	CARGA
	k.J/hmyøC	my	a C	ku/h
VIDRIOS EXTERIORES	0.00	34.5	21	0
MUROS EXTERIORES	16.20	27.6	21	9389
AZOTEAS	16.20	120 0	21	40824
VIDRIOS INTERIORES	16.28	41.0	′ 11	7010
MUROS INTERIORES	12.01	9.6	11	1211
PISOS		0.0	11	0
TECHOS	,	0.0	11	0

CARGA DE CALEFACCION DEL LOCAL CARGA POR VENTILACION.

58434 kJ/h= 13959 kcal/h= 55388 BTU/h=

1.65 C.C.

CARGA TOTAL DE CALEFACCION

	DIVISIO	DUCACION CO	NTINUA F.I.				•										
	OBRA:	CENTRO D	E COMPUTO		RES	UMEN DE R	ESULTADOS R	EFRIGERAC	CION:	r							
	LOCAL:		DE COMPUTO				•										
	CALOR SENSI CALOR LATEI	_	•	128,574 1,201	k.l/h k.l/h	121,871 1,139			•			•					
	GANANCIA TOTAL D			129,775	k.l/h	123,009		10.251	T.R.								
	FACTOR DE CALOR S	SENSIBLE =		128,574	1	129,775	=	0.991									
EM	IP. BULBO SECO AIRE	DE INYECCION	=		14	øC											
	T.bs.cuarto - T.b	sai≂		24		. 14	=	10	øC		1						-"
	AIRE SUMINISTRAL	OO (A.S.):									4				•		
	a.	CALOR SE	NSIBLE/(1.21*)	(T be cuarto - '	T bs aire))				04070	AJ AJBACO DE							
		12857	4 / (1.21 x	•	9.75) =			10,898	AL NIVEL DE m3/h =	6,411	pcm =	3.0273	m3/s	•		
	b	AL/(1.186 x	(h aire - h iny))						13,795	N LA CO DE m3/h = AL NIVEL DE	8,115	pcm ≃	3,8321	m3/s			
		12977	5 /(1.186 x (48.50		38.00)) =	10,421	m3/h =	6,130	pcm =	2.8948	m3/s			
	CAMBIOS / HC								13,191	M LA CD DE m3/h =	7,760	pcm =	3,6643	m3/s			•
	GAS	TO / VOLUMEN	DEL LOCAL														
	a b	1089 1042		264 264	= =		cambios / hora			MUCHOS CA							
	CARGA POR VENTI	_															
6	GASTO DE VENTILA								CASTO	DE RETORNO	0 (C B):						
				_													•
	No PERSO	NAS FACTOR	DE VENTILAC	ION			NIV. MAR	AIRE S	UMINISTRA	DO - GASTO	DE VENTIL	ACION		NIV. MAR		CD. MEX	
			7 •	34	=	238 301	m3/h = m3/h =	140 177	pcm pcm	10421	-	238	=	10,183 2.8287	m3/h m3/s	12,890 3.580 6	m3/h m3/s
	CALOR SEN	SIBLE POR VEN	ITILACION:	•	•		CD. MEX.							5,994	pcm	7,587	bem
:	G.V.* 1.	21 * (Tbs exterio	r - Tos interior)														
	VERA INVIER			32 0) = } =	2302 -6044	k.l/h ≠ k.l/h =	2182 -5729	BTU/h BTU/h	•		4			
	CALOR TOT	AL POR VENTIL	ACION:				• •		• ;	•	=			•		•	٠.,
	G.V.*	1.186 * (h exteri	or - h interior)										٠,				
	, VERA	.NO. 23	8 *1.186(47		49)=	-423	kJ/h =	-401	BTU/h						
	INVIER		•	0) =	-1	kJ/n =	-1	BTU/h						
(CARGA TOTAL DE REFI CARGA DEL L CARGA POR VEN	OCAL .			SENSIBLE 128574 2302		LATENTE 1201 -2726		TOTAL 129775 -423								
				SUMAS	130876 124053 10.338	kJ/h ∙BTU/h T.R.	-1524 -1445 -0.120	kJ/h BTU/h T.R.	129352 122608 10 217	kum BTUm T.R.							

DIVISION DE EDUCACION CONTINUA F.I.

OBRA: CENTRO DE COMPUTO

O.F

LOCAL: CENTRO DE COMPUTO

------GANANCIA DE CALOR SENSIBLE POR TRANSMISION Y EFECTO SOLAR (KJ/h)-------

FECHA	/ HORA	6	7	8	9	10	11	.12	13	14	15	16	17	. 18	MAXIMO MENSUAL
OINUL	SUBTOTAL 1	799	2397	3197	3729	3729	3729	· 3729	6231 °	11327	15682	16910	15277	8026	
	SUBTOTAL 8	2160	3326	4493	5573	6653	16535	26417	34873	43329	48794	54259	53600	52941	
	SUBTOTAL 13	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	
	TOTAL JUNIO	53445	56209	58175	59788	60868	70749	80631	91589	105142	114961	121654	119362	111453	121,654
JULIO	SUBTOTAL 2	799	2131	3197	3463	3729	3729	3729	6694	11605	15694	17188	15103	7470	
્,&	SUBTOTAL 8	2160	3326	4493	5573	6653	16535	26417	34873	43329	48794	54259	53600	52941	
MAYO	SUBTOTAL 13	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	Miss
	TOTAL JUL & MAY	53445	55943	58175	59521	60868	70749	80631	92053	105420	114973	121932	119188	110897	121,932
AGOSTO	SUBTOTAL 3	533	1865	2930	3637	4772	5467	5814	8895	13296	16238	17199	14373	5258	
8.	SUBTOTAL 8	2160	3326	4493	5573	6653	16535	26417	34873	43329	48794	54259	53600	52941	
ABRIL	SUBTOTAL 13	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	
	TOTAL AGO & ABRIL	53178	55677	57908	59695	61910	72487	82716	94253	107111	115517	121943	118459	108685	121,943
SEPT	SUBTOTAL 4	0	1946	4841	7806	10331	12242	12590	15115	18670	20408	18925	13435	0	
8.	SUBTOTAL 8	2160	3326	4493	5573	6653	16535	26417	34873	43329	48794	54259	53600	52941	
MARZO	SUBTOTAL 13	50485	50485	50485	50485	50485	50485	50485	5 0485	50485	50485	50485	50485	50485	
	TOTAL SEP & MARZO	52645	55758	59619	63865	67469	79262	89492	100473	112485	119687	123669	117520	103426	123,669
001	SUBTOTAL 5	0	4019	9520	14315	17362	19713	20581	22956	25423	26268	22307	12821	0	
8	SUBTOTAL B	2160	3326	4493	5573	6653	16535	26417	34873	43329	, 48794	54259	53600	52941	
FEB	SUBTOTAL 13	50485	50485	50485	50485	50485	50485	50485	50485	50485 ु	50485	50485	50485	50485	
	TOTAL OCT & FEB	52645	57831	64499	70374	74500	86733	97483	108314	119237	125547	127051	116907	103426	127,051
NOV	SUBTOTAL 6	0	5142	12729	18392	22481	24832	25701	27612	29801	29141	23848	11443	0	
8	SUBTOTAL 8	2160	3326	4493	5573	6653	16535	26417	34873	43329	48794	54259	53600	52941	
ENERO	SUBTOTAL 13	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	50485	
	TOTAL NOV & ENERO	52645	58954	67707	74451	79619	91852	102603	112970	123615	128420	128592	115528	103426	128,592
DIC.	SUBTOTAL 7	0	4529	13505	20303	24044	26569	27091	28515	30808	30496	23790	9532	0	
	SUBTOTAL 8	2160	3326	4493	5573	6653	16535	26417	34873	43329	48794	54259	53600	52941	
	SUBTOTAL 13	50485	50485	50485	50485	50485	50485	50485	5048 5	50485	50485	50485	50485	50485	
	TOTAL DICIEMBRE	52645	58340	68483	76362	81183	93589	103992	113873	124623	129775	128534	113617	103426	129,775
											ATOTA	L MAXIMO (I	kJ/h)		129 275
												TON REF			10 25

(BTU/h)

123,024

DIVISION DE EDUCAC

ONTINUA F.I.

D.F.

OBRA: CENTRO DE COMPUTO

LOCAL: CENTRO DE COMPUTO

-GANANCIA DE CALOR SENSIBLE POR TRANSMISION Y EFECTO SOLAR (KJ/h)-

OS EXTERIORES

FECHA	ORIENTACION	FACTOR VIDRIO	AREA m2	6	7	8	9	10	11	12	13	14	15	16	17	18	MAXIMO MENSUAL'
JUNIO 21	NORTE	0.68	0	0	0	0	0	0	0	.0	0	0	0	0	0	0	
	N-E	0.68	٥	0	٥	0	0	0	0	0	0	0	0	0	٥	0	
	ESTE	0.68	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	. 1
-	S-E	0.68	Ō	ō	0	0	0	0	0	0	0	0	0	0	0	0	
	SUR	0 68	23	521	1564	2085	2432	2432	2432	2432	2432	2432	2432	2085	1564	521	
	S-W	0.68	0	o	0	0	0	0	0	0	0	0	0	0	0	0	
	OESTE	0.68	12	278	834	1112	1297	1297	1297	1297	3799	8895	13250	14825	13713	7505	
	N-W	0.68	0 .	0	0	0	0	O	0	0	0	0	0	0	0	0	
	HORIZONTAL	0.68	0	. 0	0	0	0	0	0	0	0	0	0	0	0	0	
	SUBTOT, 1			799	2397	3197	3729	3729	3729	3729	6231	11327	15682	16910	15277	8026	16910
JULIO 23	NORTE	. 0.68	0	Ō	0	0	٥	. 0	0	Q	0		. 0	· 0	0	. 0	
. &	N-E	0.68	0	0	0	. 0	0	0	0	0	0	0	0	0	0	0	
MAYO 21	ESTE	0.68	0	0	0	0	0	0	0	. 0	0	0	0	.cgr 0	···- O	.; 0	
1	S∙Ę	0.68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SUR	0 68	23	521	1390	2085	2259	2432	2432	2432	2432	2432	2259	2085	1390	521	
	S-W	0 66	0	٥	0	0	0	0	0	0	0	. 0	0	0	·. 0	_ 0	
	···a OESTE	0 68	12	278	741	1112	1205	1297	1297	1297	4262	9173	13435	15103	13713	6949	
	M-M	0 68	0	0	0	٥	0	0	0	0	, U	. 0	0	0	0	0	
V	HORIZONTAL	0 68	0	0	0	0	0	0	0	. 0	. 0	_د . 0	0	0	0	0	
. `	SUBTOT 2			799	2131	3197	3463	3729	3729	3729	6694	11605	15694	17188	15103	7470	17188
AGCS102	NORTE	. 0 68	0	0	0	0	0	0	0	0	0	o ·	0	0 .	0	0	
, &	N-E	0.68	0	0	0	0	0	0	. 0	. 0	0	0	0	0	0	0	
ABRIL 20	ESTE	0.68	0	.0	. 0	0	0	0	0	0	0	0	0	o o	0	0	
· · •	S⋅E	0 68	0	0	0	0	0	0	0	0	0	0	0	Ó	. 0	0	
	SŲR	0.68	23	347	1216	1911	2432	3475	4170	4517	4170	3475	2432	1911	1216	347	
-	S-W	0 68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
_	OESTE	0.68	12	185	649	1019	1205	1297	1297	1297	4725	9822	13806	15288	13157	4911	
,	N-W	0.68	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	
	HORIZONTAL	0.68	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0	<i>S</i> 2
·	SUBTOT 3			533	1865	2930	3637	4772	5467	5814	8895	13296	16238	17199	14373	5258	17199
SEPT, 22	NORTE	0.68	0	0	0	0	0	. 0	17.7.0	0	. 0	0	0	. 0	Ö	0	
- &	N-E	0.68	0	0	0	0	o	0	٥ د	0	. 0	0	0	0	0	0	
MARZO 22	ESTE	0.68	0	0	0	0	0	0	0	0	0	,, , O	. 0	0	0	0	
•	S-E	0.68	0	0	ο.	. 0	0	. 0	., 0	0	0	10.74 O	0	0	0	.0	
•	SUR	0.68	23	0	1390	3822	6602	9034	10945	11293	10945	9034	6602	3822	1390	0	
w * '	S-W	0.68	0	Ö	. 0	0	0	0	0	0	0	· Q	0	0	0	0	•
	OESTE	0.68	12	0	556	1019	1205	1297	1297	1297	4170	9636	13806	15103	12045	0	
	N-W	0 68	0	0	0	0	0	0	0	, 0	0	0	0	0	0	0	
	HORIZONTAL	0.68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SUBTOT 4			0	1946	4841	7806	10331	12242	12590	15115	18670	20408	18925	13435	0	20408

DIVISION DE EDUCACION CONTINUA F.I.

OBRA: CENTRO DE COMPUTO

D.F.

LOCAL: CENTRO DE COMPUTO

-GANANCIA DE CALOR SENSIBLE POR TRANSMISION Y EFECTO SOLAR (k.l/h)---

OS EXTERIORES	į
---------------	---

FECHA	ORIENTACION	FACTOR VIDRIO	AREA m2	6	7	8	9	10	11 '	12	13	14	15	16	17	18	MAXIMO MENSUAL
OCT.23	NORTE	0 68	0	0	0	0	0	0	0	. 0	. 0	0	0		` o	. 0	
	N-E	0.68	G.	ō	ō	0	ō	Ō	o	Ō	ō	Ō	Ō	Ō	Ō	0	
FEB 20	ESTE	0 68	Ô	Ŏ	ō	0	0	D	0	O	0	0	0	O	0.	0	•
• • •	s⋅E	. 0 68	0	Ō.	. 0	. 0	0	0	0	0	΄ ο	0	0	0	0.	٠ ٥	
	SUR	0 68	23	Ď	3648	8687	13204	16157	18416	19284	18416	16157	13204	8687	3648	O-	
· 1 -	S-W	0 68	0	Ö	0	0	0	0	0	Ó	0	0	0	0.	. 0	0	
	OESTE	0.68	12	0	371	834	1112	1205	1297	1297	4540	9266	13065	13621	9173	0	
	N-W	0 68	0	Ō	0	0	0	0	0	0	0	0	0	0	. 0	0	
-	HORIZONTAL	0 68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	SUBTOT. 5			o	4019	9520	14315	17362	19713	20581	22956	25423	26268	22307	12821		26268
NOV 21	NORTE	0 68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8	N-E	0.68	ō	ō	õ	· o	ō	Ō	o	o	0	o	0	0	0	Ō	
ENERO 21	ESTE	0 68	0	Ō	o	0	0	0	0	0	0	0	0	0	0	0	
	S-E	0 68	0	Ó	0	0	0	0	0	0	0	0	0	0	0	0	
	SUR	. 0.68	23	0	4864	11987	17373	21369	23627	24496	23627	21369	17373	11987	4864	0	
	s-w	0 68	0	0	0	0	0	· O	0.	0	0	0	0	0	0	0	
	OESTE	0 68	12	0	278	741	1019	1112	1205	1205	3984	8432	11767	11860	6579	0	
	N-W	0 68	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ž	HORIZONTAL	0 68	0	0	0	0	0	. 0	0	0	0	0	0	0	0	0	
. "	SUBTOT 6			0	5142	12729	18392	22481	24832	25701	27612	29801	29141	23848	11443	0	29801
					•						4.51	٠ .					
D(C 22	NORTE	0 68	0.	0	0	0	0	О	O	a	O	Ó	0	0	0	0	
	N∙E	0 68	0.	o	0	0	0	0	0	0	o _,	0	0	Ο.	0	0	
	ESTE	0.68	0	0	0 .	0	0	0	0	0	0	0.	. 0	0	0	0	
•	Ş-E	0 68	0	0	0	0	0.	. 0	0	0	0	,0,	.0	0.	٥	0.	
	SUR	0 68	23	0	4343	12856	19284	22933	25365	25886	25365	22933	19284	12856	4343	0	
	s-W	0.68	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	
	OESTE	0.68	12	0	185	649	1019	1112	1205	1205	3150	7876	11211	10934	5189	0	
	N-W	0.68	0	o	0	0	0	0	0	0	0	0	0	0	0	0	
	HORIZONTAL	0.68	0	0	0	0	0	0	0	. 0	0	0	0	0 .	. 0	0	
	SUBTOT. 7			0	4529	13505	20303	24044	26569	27091	28515	30808	30496	23790	9532	0	30808

DIVISION DE EDUCACE DINTINUA F.I.

OBRA: CENTRO DE COMPUTO

D.F.

LOCAL: CENTRO DE COMPUTO

.

PAREDES	EXTERI	ORES:
----------------	---------------	-------

ORIENTACION	٠٠٠	AREA	6	7	8	9	10	11	12	13	14	15	16	17	18
	kJ/hm2oC	m2						-	•						
NORTE	16.20	. 0	0	٥	0	0	0	. 0	0	0	0	0	0	0	0
N-E	16 20	0	0	0	0	0	0	0	Ò	0	0	0	0	0	0
ESTE	16 20	0	0	0	0	0	0	٥	0	0	0	0	0	0	. 0
S-E	16.20	0	. 0	Đ	0	0	0	0	0	0	0	0	0	0	0
SUR	16 20	18	0	0	0	0	0	162	324	1134	1944	2916	3888	4050	4212
s-w	16 20	0	0	0	0	0	0	0	0	٥	0	0	0	0	0
OESTE	16 20	10	0	86	173	173	173	173	173	259	346	518	691	950	1210
N-W	16 20	0	0	O	0	0	0	0	0	0	0	0	0	0	0
AZOTEA	16.20	120	2160	3240	. 4320	5400	6480	16200	25920	33480	41040	45359	49679	48599	47519
AZ.(SOMBRA)	16.20		0	0	0	0	0	0	0	0	0	ο.	0	0	0
SUBTOT 8			2160	3326	4493	5573	6653	16535	26417	34873	43329	48794	54259	53600	52941

1.1-0

DIVISION DE EDUCACION CONTINUA F.I:

OBRA: CENTRO DE COMPUTO D.F.

LOCAL: CENTRO DE COMPLITO

CANAMOIAS DE	CALOD SENSIBLE	E POR TRANSMISION	

CONCEPTO	AREA m2	"U" kJ/hm2oC	Te-Ti oC	GANANCIA kJ/h
PISO	0.00	0.00	4.0	0
TECHO (i)	0.00	0.00	4.0	0
MURO (i)	9.60	12.01	4.0	461
VIDRIO(i)	41.00	16.28	4.0	2671
VIDRIO(e)	34.50	25.07	8.0	6920
PUERTAS				0
	SUBTOT. 9			10052

-----GANANCIAS DE CALOR POR PERSONAS-----

CALOR	CANT. PERSONAS	FACTOR ku/h.pers	SENSIBLE KJ/h	LATENTE kJ/h
SENSIBLE	7.00	301	2110	
LAT (rep)	7.00	172		1201
LAT.(mov)	0.00	0		0
	SUBTOT 10		2110	1201

-----GANANCIAS POR EQUIPOS-----

CONCEPTO	CANTIDAD (W)o(CP)	FACTOR ku/h(W,CP)	SENSIBLE KJ/ħ	LATENTE kJ/h
ILUM (W)	2808	3.6	10109	
MOT<=2CP	0 67	3800	2533	
· MOT>=3CP	0 00	3170	0	
EQPO EL(W)	6800 00	4	24480	
EQPO,GAS	0.00	0	0	
DUCTOS	0.00	0	0	
VARIOS	0.00	0		
	SUBTOT.11		37122	0

-----GANANCIAS POR INFILTRACION-----

. CALOR	AIRE(int) M3/H	FACTOR	Te-Ti(oC) We-Wi(kg)	SENSIBLE KJ/h	LATENTE k.i/h	TOTAL KJ/ħ
SENSIBLE	0.00	1	11	. 0		
LATENTE	0.00	2972	0		0	
•	SUBTOT. 12			. 0	0	
SUBTOTAL 13 (9 a)	12)			49284	1201	50485

DIVISION DE EDUCACION CONTINUA CURSOS ABIERTOS PROYECTOS DE AIRE ACONDICIONADO DEL 14 AL 25 DE AGOSTO DE 1995 DIRECTORIO DE PROFESORES

GERENTE GENERAL INGENIERIA QUIMICA APLICADA BERLIN 166 COL. DEL CARMEN COYOCAN 04100 MEXICO, D.F. TEL. 554 47 43

ING. RODRIGO DE BENGOECHEA O. ING. INDALECIA LUZ LOPEZ GARCIA EJECUTIVA DE VTAS. AIRE ACOND. TRANE FAB. DE AIRE ACONDICIONADO FELIX GUZMAN 21 COL. EL PARQUE NAUCALPAN, EDO. DE MEXICO TEL. 580 29 90

ING. GUILLERMO VELAZQUEZ MTZ. ING. JORGE RUIZ DE ESPARZA GERENTE DE VENTAS DIVISION HIDRAULICA DE MEXICO TAJIN 368 COL. NARVARTE MEXICO, D.F. TEL. 682 35 93

ING. LUIS ALEGRE S.

ING. ERIC HERNANDEZ

DIVISION DE EDUCACION CONTINUA CURSOS ABIERTOS PROYECTO DE AIRE ACONDICIONADO DEL 14 AL 25 DE AGOSTO DE 1995 DIRECTORIO DE ASISTENTES

MA. DE LOURDES BAUTISTA GORDIAN CANAL DEL RISCO 19 COL. BENITO JUAREZ 55340 ECATEPEC, EDO. DE MEX. TEL. 755 15 34

JOSE L. DIAZ MUÑOZ CONTROL TECNICO IST APOYO TECNICO , 181 TURBOMEX, S.A. FELIPE CARRILLO PTO. 410 COL. ANAHUAC 11320 MEXICO, D.F. TOT TEL. 359 30 55 W.H

REEMBOLSOS 70 COL. POSTAL COL. SAN LORENZO TILL 03410 MEXICO, D.F. 14370 HUIPULCO TLALPAN TEL. 696 54 42

HUGO H. LOPEZ VELARDE SUPERVISOR DE OBRAS GTZ. TELLO Y CIA., SA.CV. DAKOTA 423 PISO 1 COL. NAPOLES
03810 MEXICO, D.F.
TEL. 543 88 42

TEL. 543 88 42

TEL. 641 41 41

MAURO G. PARTIDA RIOS · INGENIERO DE PROYECTOS COLGATE PALMOLIVE PRESA LA ANGOSTURA 225 COL. IRRIGACION 11500 MEXICO, D.F. TEL. 629 76 93

JOSE A. CASTILLO DIAZ VENTAS MOVIMIENTO Y CONTROL DE AIRE VIVEROS DE COYOACAN 75 VIVEROS DE LAGLOMA E MACO 54080 TLALNEPANTLA, EDO. DE MEX. TEL. 397 36558 O 187

E: 27" - 3 -RICO FRAGOSO ZARCO M INGENIERO J ACONDICIONAMIENTO DE CLIMAS P. DE LAS ALAMEDAS 223 ATIZAPAN DE_UZARAGOZA 52970 EDO: DE MEXICO TEL. 824 74 775 MAJ

PEDRO GUZMAN ROBLES : --CARLOS GUIJARRO DE PABLO
DIRECTOR GENERAL
SOCIO
IMEI INGENIEROS, SA.CV.
INSURGENTES CENTRO 125
COL. SAN RAFAEL
06470 MEXICO, D.F.
TEL. 592 21 54
JOSE GMO. JUAREZ DIAZ
GERENTE DE INGENIERIA
ING. REFRIGERACION Y MAQUINARIA
REEMBOLSOS 70

PEDRO GUZMAN ROBLES
SOCIO
WRG MANTO. ACABADOS E INST.
3 NORTE 71
COL. NUEVO LAREDO
DE MEX.
TEL. 11 60 01
TEL. 11 60 01
COTAVIO LARA ESPINDOLA
OFICIAL DE VALIDACION
CALZ. MEXICO-XOCHIMILCO 4900

CALZ. MEXICO-XOCHIMILCO 4900 14370 HUIPULCO TLALPAN TEL. 728 52 00 EXT. 5009

LEONCIO MORAN JUAREZ
PRACTICANTE
TRESIM
AHUEJOTES 105

JOSE LUIS PEREZ HERNANDEZ INGENIERO DE SERVICIOS DIESEL VIAL, SA. CV. EJE CENTRAL LAZARO C. 89 COL. SAN BARTOLO ATEPEHUACAN 07730 MEXICO, D.F. TEL. 587 01 74

JUAN JOSE POOT MIRANDA . MEM 'DIRECTOR DE OBRA WILFRIDO RODRIGUEZ GONZALEZ GERENTE GENERAL GTZ. TELLO Y CIA. SA. CV. WRG MANTO. ACABADOS E INST. TEOTIHUACAN 13 BIS ... DAKOTA 423 COL. NAPOLES OF ECTEPEC; EDO. DE MEXICO TEL. 116 06 01 YHMOFRU. 03810 MEXICO, D.F. TEL. 543038973444 2 33MAJA CARLOS RODRIGUEZ SANCHEZ ISMAEL RODRIGUEZ GUTIERREZ ESTIMADOR DE EQUIPOS ... 4A. CDA DE LA CALZ. MATEO 14 COL. JUAN BÖSCÖ MOV. Y CONTROL DE AIRE, SA. CV. 54500 ATIZAPAN, EDO. DE MEX. VIVEROS DE COYOACAN 75 TEL. 825-10-85 COL. VIVEROS DE LA LOMA 54080 TLALMEPANTLA, EDO. DE MEX. ALL E WIALL WRG PELNIO TEL. 397, 36, 58 ANGEL SALGÜERO PILLE 100 VICENTE SOLARES GARCIA GRAL. DE INST. INDS., SASCV. GERENTE DE PROYECTOS COLGATE PALMOLIVE PRESA LA ANGOSTURA 225 COL. IRRIGACION LASSO 11500 MEXICO, D.F. DWI TEL. 626 74 95 AMBERES 33 No. 302 COL JUAREZ 5 CICO 06600 MEXICO, D.F. TEL . 525 26 05 JAVIER ULISES VAZQUEZ SILVA JUAN CARLOS VALVERDE GONZALEZ ASESOR DE PROYECTOS SUPERVISOR DE INSTALACIONES INSTS. ELECTROMECANICAS HESA TAYRO CONSTS., SA. CV. PUEBLA 395
COL. ROMA
MEXICO, D.F.
TEL. 256 04 72
RENE MAURICIO ZILVETTI INFANTE FERROCARRIL 27. FRACTO: IND. ALCE BLANCO 53370 NAUCALPAN EDO. DE MEXICO TEL: 576 53 55 EXT. 1564. COLL PARCORE 03810 MERICO, 1.7. JEFE DE SERVICIOS TECNICOS TYS. 343 88 62 ING., REFRIGERACION Y MAQUINARIA REEMBOLSOS 70 ... D. F. COL. POSTAL 03410 MEXICO, D.F. COL. 579,88 06 ... MAURO G. PARTHURA KIDD INGENTISCO - - PONECTAS PRO ARUIT CON AREFORE