

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

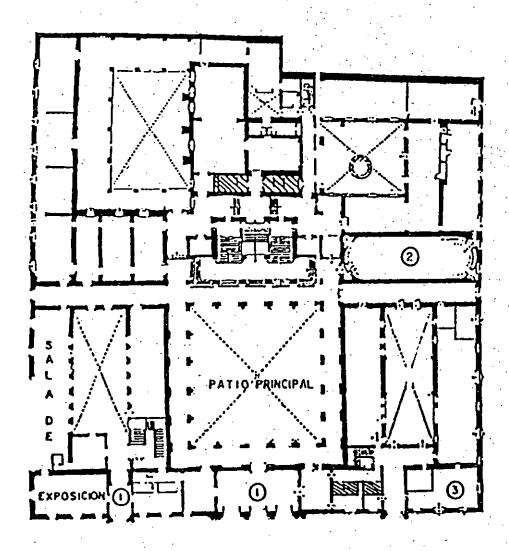
A LOS ASISTENTES A LOS CURSOS DE LA DIVISION DE EDUCACION CONTINUA

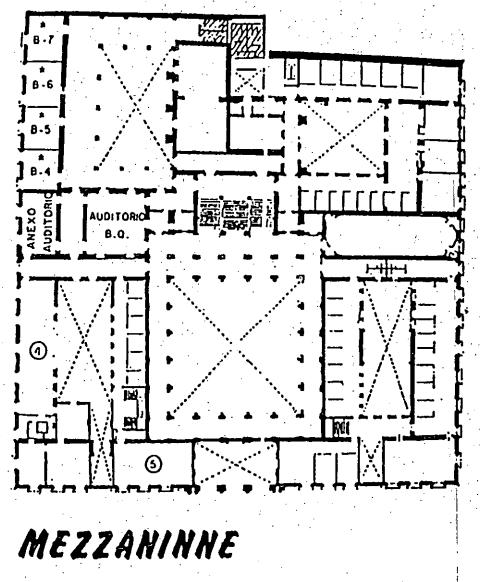
Las autoridades de la Facultad de Ingeniería, por conducto del Jefe de la División de Educación Continua, otorgan una constancia de asistencia a quienes cumplan con los requisitos establecidos para cada curso.

El control de asistencia se llevará a cabo a través de la persona que le entregó las notas. Las inasistencias serán computadas por las autoridades de la División, con el fin de entregarle constancia sólamente a los alumnos que tengan un mínimo del 80% de asistencias.

Pedimos a los asistentes recoger su constancia el día de la clausura. Estas se retendrán por el período de un año, pasado este tiempo la DECFI no se hará responsable de este documento.

Se recomienda a los asistentes participar activamente con sus ideas y experiencias, pues los cursos que ofrece la División están planeados para que los profesores - expongan una tésis, pero sobre todo, para que coordinen las opiniones de todos los interesados, constituyendo verdaderos seminarios.

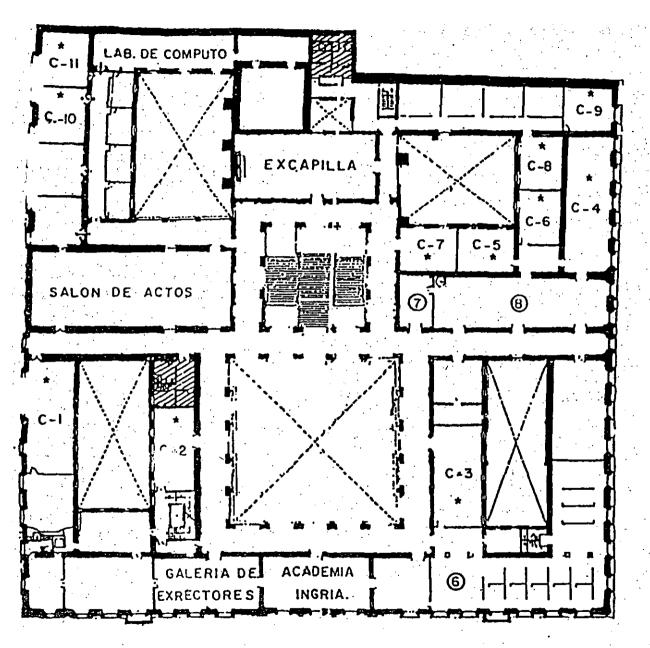

Es muy importante que todos los asistentes llenen y entreguen su hoja de inscripción al inicio del curso, información que servirá para integrar un directorio de asistentes, que se entregará oportunamente.


Con el objeto de mejorar los servicios que la División de Educación Continua ofrece, al final del curso deberán entregar la evaluación a través de un cuestionario diseñado para emitir juicios anónimos.

Se recomienda llenar dicha evaluación conforme los profesores impartan sus clases, a efecto de no llenar en la última sesión las evaluaciones y con esto sean más fehacientes sus apreciaciones.

GRACIAS!

PALACIO DE MINERIA



PLANTA BAJA

DIVISION DE EDUCACION CONTINUA FACULTAD DE INGENIERIA U.N.A.M. CURSOS ABIERTOS

GUIA DE LOCALIZACION

I - ACCESO

2 - BIBLIOTECA HISTORICA

3-LIBRERIA UNAM

4-CENTRO DE INFORMACION Y DOCU-MENTACION "ING. BRUNO MASCANZON!"

5-PROGRAMA DE APOYO A LA TITULACION

AULAS

6-OFICINAS GENERALES

7-ENTREGA DE MATERIAL Y CONTROL DE ASISTENCIA.

8-SALA DE DESCANSO

SANITARIOS

ler. PISO

DIVISION DE EDUCACION CONTINUA CURSOS ABIERTOS

IV CURSO INTERNACIONAL DE TELECOMUNICACIONES MODULO I: TELECOMUNICACION VIA FIBRAS OPTICAS DEL 29 DE MAYO AL 3 DE JUNIO DE 1995 DIRECTORIO DE PROFESORES

OPTICA Y ELECTRONICA TONATZINTLA PUEBLA, PUE. 72000 TEL. 472011, 472142,472742

M.C. CELSO GUTIERREZ
M.C. CARLOS HIRSCH GANIEVICH
NAOE INST. NAL. ASTROFISICA
PLANEACION DE SISTEMAS DE TRANSMISION
ISATEL GRUPO IUSACELL, SA. CV.
MONTE URALES 460 PISO 3
COL. LOMAS DE CHAPULTEPEC
11000 MEXICO, D.F. TEL. 272 32 35 EXT. 3386 FAX 272 24 77

DR. HILDEBERTO JARDON M.C ROBERTO LINARES
DEPTO. ING. ELECTRICA CINVESTAV LABORATORIO LASER
A.P. 14-740 AV. IPN 2508 ESIME-IPN
MEXICO, D.F. 07000 UNIDAD PROFESIONAL DR. HILDEBERTO JARDON MEXICO, D.F. 07000 TEL. 586 12 82, 754 0200 EXT. 3415 6 227 FAX 586 62 90, 747 70 93

ADOLFO LOPEZ MATEOS EDIFICIO 5 PISO 3 MEXICO, D.F. Z.P. 14 TEL. 5869001 FAX 5869001

DR. FERNANDO MARTINEZ PIÑON PLANEACION DE SISTEMAS DE TRANSMISION ISATEL GRUPO IUSACELL, SA.CV. DEPTO. COMUNICACIONES MONTE URALES 460 PISO 3 COL. LOMAS DE CHAPULTEPEC MEXICO, D.F. 11000 TEL. 107 4500, 107 4509 FAX 557 8509

M.C. JAVIER MENESES RUIZ INSTITUTO DE INVESTIGACIONES ELECTRICAS AV: REFORMA 113 COL. PALMIRA TEMIXCO, MOR. 62490 TEL. 189914, 183811 EXT. 7532 FAX 189535, 189854

ING. FERNANDO NAVARRETE MONTES DE OCA IPN ESTUDIOS PROFESIONALES ZACATENCO MEXICO, D.F. TEL. 586 3991, 552 4857

ING. DANIEL PINEDA CORTES TELCORE, S.A. DE C.V. INSURGENTES SUR 1106 COL. NAPOLES MEXICO, D.F. 03720 TEL. 559 82 44 CON 10 LINEAS 575 12 98, 575 12 00 FAX 575 31 76

M.C. JOSE A. TOVAR MARTINEZ TELCORE, S.A. DE C.V. INSURGENTES SUR 1106 COL. NAPOLES MEXICO, D.F. 03720 TEL. 559 82 44 CON 10 LINEAS 575 1298, 575 1200 FAX 575 31 76

DEPTO. ELECTRONICA Y TELECO-MUNICACIONES KM. 107 CARR. TIJUANA-ENSENADA: ENSENADA, BAJA CALIFORNIA 22860 TEL. 44501/06 FAX 45155

M.C. DAVID COVARRUBIAS ROSALES DEPTO. ELECTRONICA Y TELECOMU-NICACIONES KM. 107 CARR. TIJUANA-ENSENADA ENSENADA, B.C. 22860 TEL. 44501/06 FAX 45155

DR. FRANCISCO JAVIER MENDIETA JIMENEZ COORDINADOR GENERAL DEL CURSO CICESE DEPTO. ELECTRONICA Y TELECO-MUNICACIONES KM. 107 CARR. TIJUANA-ENSENADA ENSENADA, B.C. 22860 TEL. 44501/06 44069 FAX 45155

ING. RAUL UGALDE MONCISVAIS CONDUMEX, C.I.D. KM. 9.6 CARR. MEX.-QRO.-SLP QUERETARO, QRO. 76120 h TEL. 80984, 81057, 81802 FAX 80 717

AND THE STATE OF

ING. ARTURO ARVIZU MONDRAGON - ING. SILVIA BARRIOS VELAZQUEZ CALLE 4a ORIENTE 16 COL. INDEPENDENCIA M.A. CAMACHO POZA RICA, VERACRUZ . TEL. 34701

Mari (esta)

ING. GERARDO CHAVEZ DIAZ INTERSYS CONSTITUYENTES 908 COL. LOMAS ALTAS MEXICO, D.F. 11950 TEL. 259 2873, 259 0186 259 0390 FAX 259 0015

EVALUACION DEL PERSONAL DOCENTE

CURSO: MODULO I: TELECOMUNICACIONES VIA FRIBRAS OPTICAS

FECHA: Del 29 de mayo al 3 de junio de 1995.

CONFERENCISTA	DOMINIO DEL TEMA	USO DE AYUDAS AUDIOVISUALES	COMUNICACION CON EL ASISTENTE	PUNTUALIDAD
M. en C. Arturo Arvizu Mondragó	ın			
Ing. Silvia Barrios Velázquez		·		
M.C. David Covarrubias Rosales				
Ing. Gerardo Chávez Díáz				
Dr. Celso Gutiérrez Martínez		٠.	· ·	
M.C. Carlos Hirsch Ganievich	,		·	` _
Dr. Hildeberto Jardón Aguilar				<u> </u>
M.C. Roberto Linares				
Dr. Fernando Martínez Piñón				
Ing. Javier Meneses Ruíz		·		
Ing. Fernando Navarrete Montes	·		_	<u> </u>
Daniel Pineda Cortés		·		
M.C. José A. Tovar Martinez				
Ing. Raúl Ugalde Moncisvais				

EVALUACION DE LA ENSEÑANZA

ÓRGANÍZACION Y DESARROLO DEL CURSO	
GRADO DE PROFUNDIDAD LOGRADO EN EL CURSO	
ACTUALIZACION DEL CURSO	
APLICACION PRACTICA DEL CURSO	

EVALUACION DEL CURSO

CONCEPTO	CALIF.
CUMPLIMIENTO DE LOS OBJETIVOS DEL CURSO	
CONTINUIDAD EN LOS TEMAS	
CALIDAD DEL MATERIAL DIDACTICO UTILIZADO	
· · · · · · · · · · · · · · · · · · ·	

ESCALA DE EVALUACION: 1 A 10

•		SU ESTANCIA EN «·	t s		erena Trena	110.
				SI NO		
	SI INDICA QU	E, "NO" DIGA PO	RQUE. 3			
		· ,	* -			-
2	MEDIO A'TRAY	VES DEL CUAL SI	E ENTERO DEL	CURSO:	****	
	PERIODICO EXCELSIOR	FOLLETO ANUAL	GACETA UNAM		RO DIO	
	PERIODICO EL UNIVERSAL	FOLLETO DEL CURSO	REVISTAS TECNICAS	1 1		1
	(RECONENDARIA	EL CURSO A OTRA(S	D PERSONAISV			•
•••	precome vortain	ee conso //rons	·		, ,	
		•	SI	0		,
5	QUE CURSOS LE	SERVIRIA QUE PROC	<u> </u>		CION CONTI	NU/
6	QUE CURSOS LE		<u> </u>		CION CONTI	NU/

IV CURSO INTERNACIONAL TELECOMUNICACIONES

MODULO: TELECOMUNICACIONES VIA FIBRAS OPTICAS 1995

HORA	LUNES 29 MAYO	MARTES 30 MAYO	MIERCOLES 31 MAYO	JUEVES 1' JUNIO	VIERNES 2 JUNIO	SABADO 3 JUNIO	HORA
17:00	INTRODUCCION	EMPALME Y	6 SISTEMAS ANALOGICOS	PCM y	10 CABLES Y	12 AMPLIFICADORES	9:00
17:30	J. Mendieta	CONEXION	A. Arvizu	REDES	MEDICIONES E	OPTICOS	9:30
18:00	1 PROPAGACION	F. Navarrete	7 TRANSMISION,	INTEGRADAS	INSTALACIONES	F. Martínez	10:00
18:30	EN FIBRAS	FOTODETECTORES	ENLACES Y	C. Hirsch	DE FIBRAS	13 APLICACIONES AL SECTOR ELECTRICO	10:30
19:00	OPTICAS	H. Jardón	SISTEMAS	9 REDES DE	OPTICAS	J. Meneses	11:00
19:30	F. Martínez	5 RECEPTORES	DE FIBRAS	FIBRAS	R. Ugalde	SENSORES OPTICOS S. Barrios	11:30
20:00	2 TRANSMISORES	OPTICOS	OPTICAS	OPTICAS	DISPOSITIVOS	15 INTERCONEXION DE REDES	12:00
20:30	OPTICOS				ELECTROOPTICOS	D. Covarrubias	12:30
21:00	J. Mendieta	R. Linares	D. Pineda	G. Chávez	C. Gusiérrez	MESA REDONDA J. Tovar	13:50 14:50

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS
TELECOMUNICACIONES VIA FIBRAS OPTICAS

PROPAGACION EN FIBRAS OPTICAS

DR. FERNANDO MARTINEZ P.

INTRODUCCION.

Nuestra sociedad Gemanda una cantidad siempre creciente de información transmitida a través de diversos medios de comunicación. Los sistemas de comunicación de onda luminosa que utilizan fibras ópticas ofrecen una forma elegante de combinar voz, imágenes y datos en un solo flujo universal.

Las fibras ópticas son filamentos flexibles de pequeña sección transversal - (un diámetro externo típico son 0.125 mm) hechas de material dielectrico - - transparente tal como vidrio o plástico, y que tienen una variación radial en el índice de refracción que les permite actuar como guías de onda para la luz.

La cantidad de información que un sistema de comunicación puede transportar - es aproximadamente proporcional a la frecuencia de la portadora. En el caso de los sistemas de comunicación por onda luminosa la frecuencia de la portado ra es del orden de 300 000 GHz y el ancho de banda potencial es de 25 000 GHz en el rango de longitudes de onda de 1.45 - 1.65 µm [1].

Los sistemas de comunicación por onda luminosa se han convertido en una tecnología esencial y crítica para el sector de telecomunicaciones. Las fibras ópticas son ya un medio de transmisión competitivo y efectivo en costo en muchas aplicaciones además, debido a su enorme ancho de banda potencial, las fibras ópticas ofrecen la flexibilidad necesaria para acomodar tasas mas altas de transmisión conforme la tecnología avanza.

La primera propuesta sería de utilizar las fibras de vidrio como guía de onda se remonta a 1965 [2]. Desde entonces, la tecnología de onda luminosa ha avanzado dramáticamente. Se pueden identificar dos generaciones de sistemas. Los sistemas de la primera generación emergieron comercialmente en 1980 [3] y empleaban fibras multimodales de índice gradual, láseres semiconductores en las longitudes de onda cortas de 0.82-0.9 µm, tasas de transmisión de 8-140 Mb/s en Europa (6-90 Mb/s en los Estados Unidos) y un espaciamiento entre repetidores de 5-10 km. Fué entonces cuando se puso de manifiesto que casi todas las propiedades de las fibras ópticas eran mejores a las longitudes de onda largas de 1.3 a 1.5 µm.

La combinación de la dispersión de material cero o casi cero y la atenuación más baja (0.2-1.0 dB contra 2-5 db/km en el rango 0.82-0.9 µm) ofrecían la promesa de una mayor simplicidad en los sistemas junto con una mayor capacidad de transmisión. El uso de fibras ópticas unimodales evitaron el problema de dispersión multimodal. Los sistemas de segunda generación empezaron a producirse en 1985, usando fibras ópticas unimodales operando a la longitud de onda de 1.3 µm y a tasas de transmisión de 100-600 Mb/s con un espaciamiento típico entre repetidores de 25-30 km.

Los avances continúan hoy más alla de los sistemas de segunda generación. Fibras típicas de producción de alta calidad exhiben pérdidas mínimas cercanas a los 0.2 dB/km [Li,1985] a 1.55 µm. Sin embargo, la dispersión total puede ser alta en esta longitud de onda (20 ps/(nm.km)) para fibras convencionales de índice escalonado cuyas características de dispersión no se han modificado [Midwinter, 1985]. Para maximizar el espaciamiento entre repetidores existen dos técnicas: 1) Desarrollar láseres con un ancho espectral de línea muy angosto o 2) Optimizar el diseño de las fibras para reducir la dispersión. Siguiendo la primera técnica se han desarrollado con éxito experimentos de tasas de transmisión a tasas mayores de 1 Gb/ sobre fibras unimodo que exceden 100 km de longitud.

Sin embargo, laseres de anchos de linea angostos son difíciles de producir y requieren un control preciso durante su operación que es difícil de lograr fuera del laboratorio [lemrow, 1985]. La segunda técnica tiene mejores perspectivas a corto plazo y ha resultado en varios diseños para correr el mínimo de dispersión hacia la longitud de onda de 1.55 µm y para minimizar la dispersión en el rango 1.2 - 1.6 µm de longitud de onda [Kalish,1987].

Como una analogía notable para ayudar a comprender el significado de una tasa de transmisión de 1.7 Gb/s (AT&T Sistema FT serie G, ruta Filadelfia-Chicago, 1987) puede decirse que a esa tasa de bits sería posible transmitir el contenido entero de la Encyclopedia Británica en menos de dos segundos [Sanferrare, 1987].

Aplicaciones a las comunicaciones por onda luminosa incluyen el cable optico trasatlántico TAT-E que empezó a operar a finales de 1988 y que proporcionan servicios digitales de banda ancha que rivalizan con los enlaces de comunicación vía satélite. Las fibras ópticas unimodales prometen ser también elementos clave para la Red de Servicios Integrados (ISDN) del futuro a través de su uso en el lazo del abonado y en redes locales.

Una queva tecnología de sensores basado en fibras ópticas está emergiendo. Los sensores de fibra óptica trabajan a través de la alteración de la luz mediante estímulos externos y virtualmente puede detectarse cualquier estímulo tal como temperatura, presión, posición, desplazamiento, vibración, rotación, campos magnéticos y eléctricos, etc., y en muchas aplicaciones ofrecen mejores características que otros sensores [Giallorenzi,1986]. Los sensores de fibras ópticas están encontrando aplicaciones en áreas tales como instrumentación industrial, de laboratorio, química y médica, en control de procesos, plantas eléctricas, aereoespacio, etc.

Nuevos tipos de fibras ópticas se han introducido en años recientes. Estas incluyen fibras altamente birefringentes [Varnham,1983], para usarse donde se requiera mantener el estado de polarización, y fibras dopadas con tierras raras [Poole,1986]. Usando estas últimas, láseres de fibra óptica [Mears, 1985], amplificadores de fibra óptica [Mears, 1988] y sensores de temperatura [Farries, 1986] han sido demostrados.

En-esta parte del curso se presentan los conceptos basicos de propagación de la luz en fibras ópticas mediante la exposición y discusión de la estructura de una fibra óptica, la teoría de transmisión de rayos, la teoría modal de propagación, y mediante breve discusión de cada uno de los tipos de fibra, es decir, de las fibras multimodales tanto de indice escalonado como de indice gradual, y de las fibras unimodales de indice escalonado, de indice gradual, de tipo W y finalmente, de las que preservan el estado de polarización de la luz.

Estructura de una fibra óptica

Una fibra óptica está constituida de un material dielectrico interno llamado núcleo (core) el cual está rodeado de otro dielectrico llamado revestimiento (cladding) con un índice de refracción menor. Una envoltura plástica (coating) se aplica al exterior de la fibra para proteger a la misma contra daños mecánicos (rayaduras, raspadura, desgastes, etc.), contra la humedad y ambientes que puedan debilitar la fibra. También sirve para evitar el cruce de señales (cross talk) con otras guías de luz [Sams, 1987]. La Fig. 1 muestra esquemáticamente la estructura de una fibra óptica.

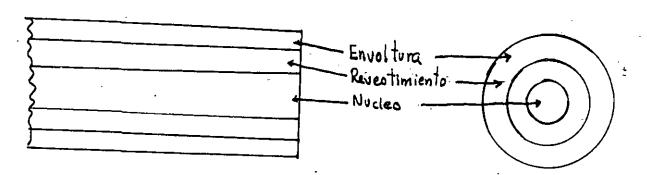


Fig. 1.- Estructura física de una fibra optica.

Una fibra optica actúa como una guía de onda luminosa y puede ser analizada utilizando la teoría de transmisión de rayos lo que tiene como ventaja ser un metodo relativamente simple y para muchos casos proporciona una buena representación. Sin embargo, los conceptos de óptica geométrica no son suficientes cuando se consideran todos los tipos de fibras ópticas y los distintos fenómenos de propagación de la luz como distribución de campo, conversión de modos, acoplamiento de modos y, frecuencias de corte los que son difíciles de explicar utilizando un tratamiento de optica geométrica pura por lo que la teoría modal electromagnética debe ser usada en estos casos para la obtención de un análisis completo. A continuación se presentan las bases de ambos métodos. [Senior, 1985, Sams, 1989].

1.2 TEORIA DE TRANSMISION DE RAYOS

1.2.1 Reflexion interna total

Para considerar la propagación de luz dentro de una fibra óptica utilizando el modelo de la teoría de rayos es necesario tomar en cuenta el indice de refracción del medio dielectrico.

El indice de refracción se define como la razón de la velocidad de la luz en el vació a la velocidad de la luz en el medio.

$$n = c/v \tag{1}$$

Un rayo de luz viaja más lentamente en un medio óptico denso que en uno que es menos denso y el índice de refracción da una medida de este efecto.

Cuando un rayo de luz incide en la interface entre dos dielectricos de diférente índice de refracción (como por ejemplo vidrio-aire), la refracción ocurre como se ilustra en Fig. 2.2

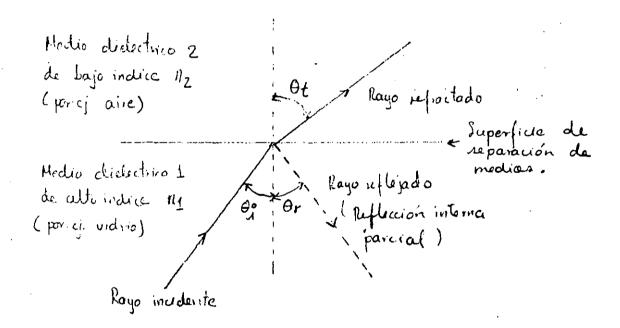


Fig. 2.2. Refracción de rayos de luz que inciden en una interfaz de un medio de alto indice de refracción a uno de bajo indice de refracción, (por. ej. vidrio-aire).

La relación entre los rayos reflejado y refractado esta dada por las leyes de reflexión que se enuncian a continuación:

1. Los rayos incidente, reflejado y refractado están contenidos en un mismo plano, llamado plano de incidencia, que es normal a la superficie de separación de medios y por lo tanto contiene a la normal N a la superficie.

2. El angulo de reflexión es igual al angulo de incidencia

$$\Theta i = \Theta r$$
 (2)

3. Los angulos de incidencia y refracción están relacionados por la ley de Snell.

Si el dielectrico en el otro lado de la interfaz tiene un indice de refracción n2 que es menor que n1 entonces Ot es mayor que Oi. (Un indice de refracción n2 mayor que n1 implicaría que Ot sería menor que Oi).

Existe una pequeña cantidad de luz que es reflejada hacia el medio dielectrico de origen. Esta es una reflexión interna parcial.

Como nl es más grande que n2, el ángulo de refracción siempre es más grande que el ángulo de incidencia. De esta forma cuando el ángulo de refracción es 90° y el rayo refractado emerge paralelo a la interfaz entre los dielectricos el ángulo de incidencia debe ser menor que 90°. Este es el caso límite de refracción y el ángulo de incidencia se conoce como ángulo crítico oc como se muestra en la Fig. 3

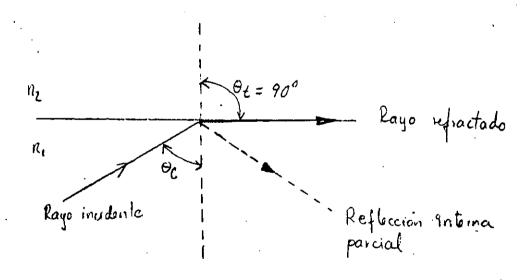


Fig. 3.- Caso límite de refracción que muestra el rayo de incidencia en el ángulo crítico 0c.

De Eq. (3) el angulo crítico esta dado por:

A angulos de incidencia mayores que el ángulo crítico la luz se refleja nuevamente hacia el medio dielectrico de origen con una eficiencia del orden de 99.9% lo que se conoce como reflexión interna total. En la Fig.4 se ilustra este fenomeno. Este es el fenomeno mediante el cual la luz con angulos suficientemente pequeños (menos que 90° - 0c) se propagan a lo largo de una fibra óptica con poca atenuación.

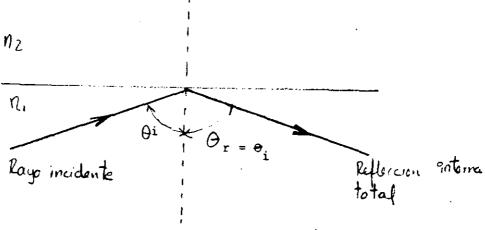


Figura 4.- Reflexion interna total cuando 9i > 0a.

En la Fig. 5 se muestra la transmisión de un rayo de luz en una fibra optica a través de una serie de reflexiones internas totales en la interfaz del núcleo de sílice y el revestimiento de sílice con un índice de refracción ligeramente menor. El rayo tiene un ángulo de incidencia en la interfaz el cual es mayor que el ángulo crítico y es reflejado al mismo ángulo con respecto a la normal.

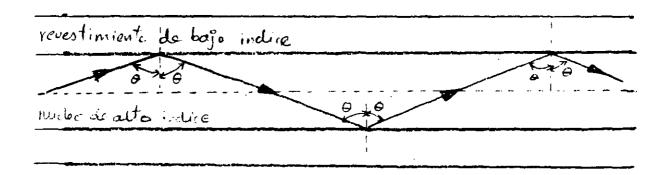


Fig. 5.- Transmision de un rayo de luz en una fibra optica ideal.

El rayo de luz que se muestra en la Fig. 5 se conoce como rayo meridional y se define como el rayo que pasa por el eje del núcleo de la fibra.

1.2.2 Angulo de aceptancia y apertura numérica.

La geometria involucrada con un rayo de luz que se acopla a una fibra óptica se muestra en la Fig. 6 la cual ilustra un rayo meridional A con el ángulo crítico oc dentro de la fibra en la interfaz nucleo-revestimiento. Este rayo ingresa al núcleo de la fibra con un ángulo oa con respecto al núcleo de la fibra y se refracta en la interfaz aire-núcleo antes de transmitirse hacia la interfaz núcleo-revestimiento con el ángulo crítico.

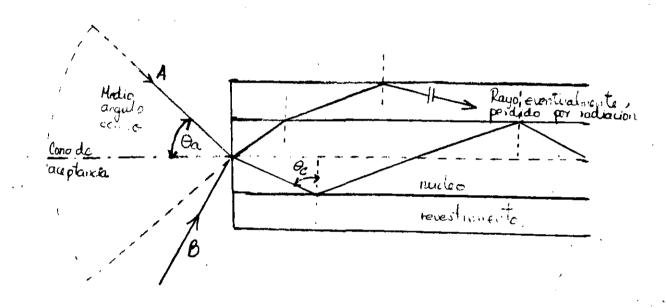


Fig. 6. - Angulo de aceptancia Oa.

Los rayos que inciden en el núcleo de la fibra con un angulo mayor que θa (por ej. rayo 3 de la Fig.6) serán transmitidos a la interfaz núcleo-revestimiento con un angulo menor que θc y no seran reflejados interna y totalmente y eventualmente serán perdidos por radiación.

De esta forma para que los rayos sean transmitidos por reflexión interna total dentro del núcleo de la fibra se requiere que incidan en el núcleo de la fibra dentro de un cono de aceptancia definido por el ángulo cónico medio θa o ángulo de aceptancia total.

A continuación se obtiene la relación entre el angulo de aceptancia y los indices de refracción de los tres medios involucrados es decir núcleo, revestimiento y aire. Esto conduce a la definición del termino más comunmente utilizado de apertura numerica (NA) de la fibra.

La fig. 7 muestra un rayo de luz que incide en la fibra con un angulo 01 con respecto al eje de la fibra y que es menor que el angulo de aceptancia 0a. El rayo ingresa a la fibra desde un medio (aire) de indice de refracción n0 y el nucleo de la fibra tiene un indice de refracción n1 que es ligeramente mayor que el indice de refracción del revestimiento n2.

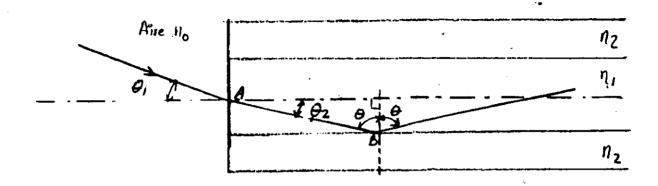


Fig. 7.- Trayectoria de un rayo meridional acoplado a una fibra optica con un angulo menor al angulo de aceptancia de la fibra.

Utilizando la ley de Snell dada por la Eq. (3) para la interfaz aire-núcleo podemos escribir:

 $n0sen\Theta1 = n1sen\Theta2$

Considerando el triángulo rectangulo ABC indicado en la Fig. 7 entonces:

$$\Theta = \frac{pi}{2} - \Theta2 \qquad (5)$$

$$\operatorname{sen}\Theta2 = \operatorname{sen} \left(\frac{pi}{2} - \Theta\right)$$

$$= \operatorname{sen}\Theta\cos\frac{pi}{2} \qquad 0$$

$$= \operatorname{sen}\Theta\cos\frac{pi}{2} \qquad 2$$

54n 02 = cos 0

La Eq. (5) entonces se convierte en:

 $nOsen\Theta1 = nlcos\Theta$ (6)

usando la relación trigonométrica sen² θ + cos² θ = 1, se obtiene:

 $\cos\theta = (1 - \sin^2\theta)^2$

por lo que la EC. (6) se puede escribir como:

$$n0sen(1 = n1(1-sen^2\theta)^2$$
 (7)

El caso límite se considera para reflexión interna total y en este caso θ = θ c. También en el caso límite θ l = θ a. Combinando estos dos casos límites se tiene

$$n2$$
 $sen\theta = sen\theta c = -- n1$

$$n2^{2}$$
 $sen^{2}\theta = -- n1^{2}$
 $(n1^{2}-n2^{2})^{2}$
 $(1 - sen^{2}\theta)^{2} = ----$

sustituyendo esta última relación en la Eq. 7 nos da:

$$n0sen\Thetaa = (n1^2 - n2^2)^{1/2}$$
 (8)

Esta ecuación sirve como base para definir el importante parametro de apertura numerica NA:

$$NA = n0 \text{ sen}\Theta a = (n1^2 - n2^2)^4$$
 (9)

Ya que la NA se usa frecuentemente con la fibra en el aire entonces NA = $sen\Theta a$.

La apertura numérica también se da en términos de la diferencia relativa de Índices de refracción Δ la cual se define como:

$$\Delta = \frac{n1^2 - n2^2}{2n1^2}$$

Combinando E. (9) con E. (10) podemos escribir:

Las relaciones dadas por las ecuaciones (9) y (11) para la apertura numerica son muy útiles para medir la capacidad de captación de luz de una fibra.

Ejemplo

Una fibra optica de sílice tiene un índice de refracción en el núcleo de 1.50 y un índice de refracción en el revestimiento de 1.47.

Determinar: (a) el ángulo crítico en la interfaz núcleo-revestimiento; (b0) la NA de la fibra y (c) el ángulo de aceptancia en aire para la fibra.

Solución: El ángulo crítico ec en la interfaz núcleo-aire esta dado por EC. (4) donde

$$\frac{1}{2} = \sin^{-1} \left(\frac{1}{2} \right) = \sin^{-1} \left(\frac{1.47}{1.50} \right)$$

= 78.5°

(b) De la Ec. (9) la apertura numérica es

$$NA = (n1^{2} - n2^{2})^{\frac{1}{2}} = (1.50^{2} - 1.47^{2})^{\frac{1}{2}}$$
$$= (2.25 - 2.16)^{\frac{1}{2}}$$
$$= 0.30$$

(c) De la EC. (9) el ángulo de aceptancia en el aire esta dado por. ea = sen NA = sen 0.30 = 17.4°.

1.2.3 Rayos Oblicuos

Existe otra categoría de rayos los cuales se transmiten sin pasar a través del eje de la fibra. Estos rayos superan en número a los rayos meridionales, siguen un trayectoría helicoidal a través de la fibra y se les conoce como rayos oblicuos (skew rays). La trayectoría helicoidal trazada por los rayos oblicuos a través de la fibra da un cambio de dirección de 2 de en cada reflexión. A es angulo entre la proyección del rayo en dos dimensiones y el radio del núcleo de la fibra en el punto de reflexión. Contrastando con los rayos meridionales, el punto de salida de los rayos oblicuos dependerá del número de reflexiones sufridas más que de las condiciones de entrada a la fibra. Cuando la entrada de luz a la fibra no es uniforme, los rayos oblicuos producirán un efecto de balance en la distribución de la luz cuando esta se transmite dando lugar a una salida más homogenea Para más información sobre este tema vease por ejemplo el libro "Optical Fiber Communications" citado en la bibliografía.

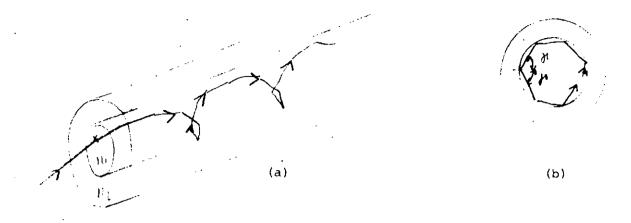


Figura 8.- (a) Trayectoría helicoidal seguida por un rayo oblicuo en una fibra óptica; (b) vista transveral de la fibra.

1.3 TEORIA MODAL ELECTROMAGNETICA DE PROPAGACION OPTICA.

Para obtener un mejor modelo de propagación de la luz en fibras ópticas es necesario recurrir a un análisis de teoría electromagnética. La base para el estudio de propagación electromagnética está dada por las ecuaciones de Maxwell. El resultado de combinar dichas ecuaciones lo constituye la ecuación escalar de onda la cual se puede expresar tanto en coordenadas cartesianas (x,y,z) en el caso de guías de onda planas como en coordenadas polares cilindricas (r,q,z) en el caso de fibras circulares.

La solución basica de la ecuación de onda es una onda senoidal. La onda plana uniforme está dada por:

$$\psi = -\sqrt[4]{\exp \left((wt - \vec{k} \cdot \vec{r}) \right)}$$
 (12)

donde representa una componente del campo electrico E o del campo magnético H, w es la frecuencia angular del campo, t es el tiempo, k es el vector de propagación que nos da la dirección de propagación y la tasa de cambio de fase con la distancia y \vec{r} especifica el punto coordenado en el cual se observa el campo. Cuando) es la longitud de onda óptica en el vacío, la magnitud del vector de propagación o constante de propagación en el vacío k (donde $k = |\vec{k}|$) esta dada por

$$k = 2\pi / \lambda \tag{13}$$

k se conoce también en este caso como el número de onda en el espacio libre.

1.3.1 Guía de onda plana y concepto de modos.

La guía de onda plana es la forma más simple de guía de onda óptica y puede servir de base para comprender la propagación electromagnética en fibras ópticas. Esta guía de onda consiste de un medio dielectrico con índice de refracción nl situado entre dos regiones de índice de refracción menor n2.

La transición de la teoría de rayos a la teoría de ondas puede realizarse considerando una onda monocromática plana que se propaga en la dirección de la trayectoría del rayo dentro de la guía como se muestra en la Fig. 9.

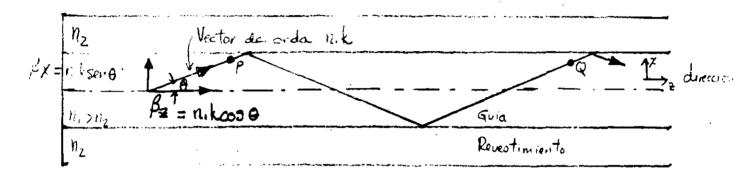


Figura 9.- Propagación de una onda plana en una guía. El vector de onda corresponde a un rayo equivalente.

El indice de refracción en la guía es nl. la longitud de onda óptica se reduce a λ/n mientras que la constante de propagación se incrementa a n.k. θ es el ángulo entre el vector de propagación o rayo equivalente y el eje de la guiapor lo que la onda plana puede resolverse en dos ondas planas componentes que se propagan en la dirección z y x como se muestra en la Fig. 9. La componente de la constante de propagación en la dirección z β 2 esta dada por:

$$\beta_{\mathbf{z}} = \mathbf{n}_{\mathbf{k}} \cos \mathbf{\theta} \tag{14}$$

La componente de la constante de propagación en la dirección x / es:

$$\beta_{\chi} = n_{1} k \operatorname{sen} \theta \tag{15}$$

El componente de la onda plana en la dirección x se refleja en la interfaz dielectrica. Cuando el cambio de fase entre dos reflexiones sucesivas (entre los puntos P y Q) es igual a 2m T radianes, donde m es un entero, entonces interferencia constructiva ocurre y una onda estacionaria se obtiene en la dirección x. Esto sugiere un fenómeno de resonancia del campo electromagnetico en una cavidad, en este caso una guía de onda.

La onda optica queda efectivamente confinada dentro de la guia y la distribución de campo electrico en la dirección x no cambia conforme la onda se propaga en la dirección z. La distribución estable de campo en la dirección x con solo una dependencia periódica de z se conoce como modo.

En la Fig. 10a se ilustra la onda estacionaria de orden mas bajo (m = 0) en la cual el campo eléctrico es un máximo en el centro de la guía y decáe a cero en la frontera entre la guía y el revestimiento. El campo eléctrico penetra cierta distancia en el revestimiento lo que se conoce como campo evanescente.

Un modo específico se obtiene cuando el ángulo entre los vectores de propagación o rayos y la interfaz tienen un valor particular lo que origina que la luz que se propaga dentro de la guía se forma en modos discretos cada uno tipificado por un valor distintivo de $\boldsymbol{\theta}$.

Los modos de propación tienen una dependencia de la forma $\exp(-j\beta_{\pm}z)$ donde β_z es la constante de propagación. Por simplicidad $\beta_z = \beta$. Si suponemos una dependencia temporal para el campo electromagnético con frecuencia angular ω de exp (j ω t) entonces el factor combinado expj $(\omega$ t - β z) describe un modo de propagación en la dirección z.

Las Fig. 10b-d muestran los rayos correspondiente a ondas planas con angulos específicos diferentes y sus patrones de onda estacionaria a través de la guía que siguen una formula seno o coseno. Puede observarse que el número m denota el número de ceros en el patrón de campo transversal.

Cabe hacer notar que la aproximación de teoría de rayos para el modo fundamental es la menos adecuada en el analisis de óptica geométrica.

La luz es una onda electromagnética que consiste de un campo eléctrico E y un campo magnético M que varian periodicamente y que son ortogonales entre si. Los modos transversales que se muestran en la fig. 10 ilustran el caso cuando el campo eléctrico es perpendicular a la dirección de propagación y de aqui que $E_{\rm Z}=0$, pero una componente correspondiente de campo magnético $H_{\rm Z}$ se encuentra en la dirección de propagación. En este caso se dice que los modos son transversales eléctricos (TE). Alternativamente, cuando el componente del campo E esta en la dirección de propagación, pero $H_{\rm Z}=0$, los modos así formados se llaman transversales magnéticos (TM)

Los números de modos se incorporan en esta nomenclatura refiriéndonos a los modos como TE_{m} y TM_{m} .

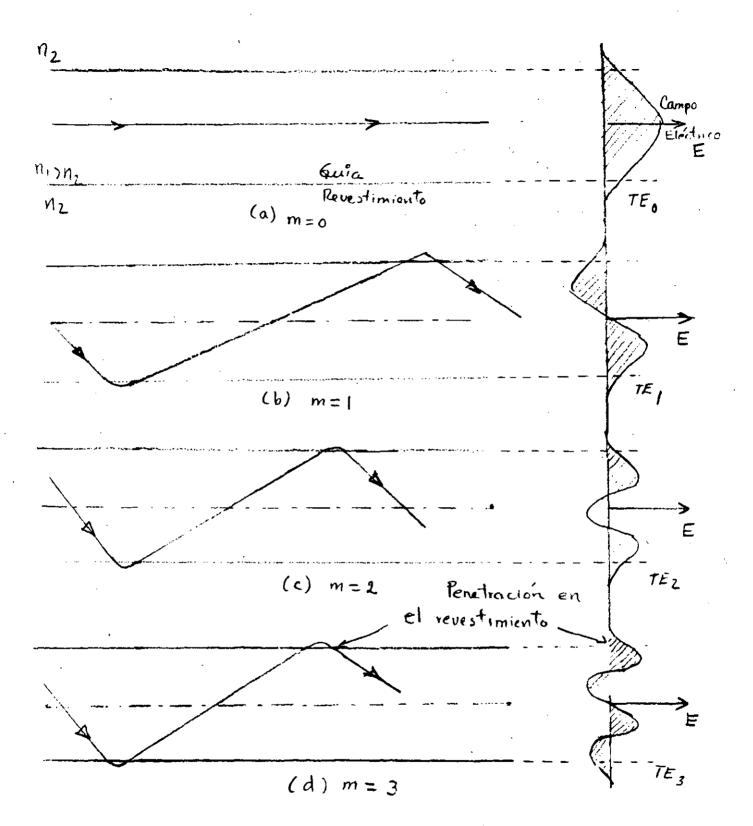


Figura 10. Modelo físico que muestra la propagación de rayos y los correspondientes patrones de campo electrico (TE) para los cuatro órdenes inferiores (m = 0,1,2,3) en la guía de onda dielectrica plana.

Cuando el campo total esta sobre el plano transversal, ondas electromagnéticas transversas (TEM) existen y E_Z y H_Z son cero. Las ondas TEM que ocurren en conductores metalicos (por ejemplo en cables coaxiales) rara vez se encuentran en guías de onda óptica. [Senior, 1985].

1.4 FIBRAS DE INDICE ESCALONADO

La fibra optica considerada en las secciones previas con un núcleo de Índice de refracción constante n y un revestemiento de Índice de refracción inferior n2 se conoce como fibra de Índice escalonado. La Fig. 11 muestra los tipos de fibra de Índice escalonado. El Índice de refracción se define como:

$$n(r) = \begin{cases} n, & r < a \text{ (nucleo)} \\ n, & r > a \text{ (revestimiento)} \end{cases}$$
 (16)

La Fig. 11a muestra una fibra de indice escalonado multimodal con un diametro de núcleo de aprox. 50 µm el cual el los suficientemente grande para permitir la propagación de muchos modos en el núcleo de la fibra. Esto se ilustra en la Fig. 11a por las muchas trayectorías posibles diferentes de los rayos a través de la fibra. La Fig. 11b muestra una fibra de indice escalonado unimodal (o "monomodal") la que permite la propagación de un solo modo (HE,) y de aquí que el dametro del núcleo debe ser del orden de 4 a 10 µm. La propagación de un modo único se ilustran en la Fig. 11 como un solo rayo axial a través de la fibra.

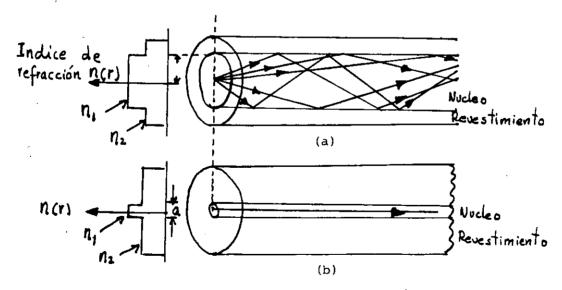


Fig. 11.- Perfil de indice de refracción y transmisión de rayos para fibras de Índice escalonado (a) fibra de indice escalonado multimodo y (b) fibra de indice escalonado unimodo.

La fibra optica unimodal tiene la distintiva ventaja de muy baja dispersion modal (ensanchamiento de los pulsos transmitidos) mientras que en la fibra de índice escalonado multimodal ocurre considerable dispersión debido a las diferentes velocidades de propagación de los modos. Esto restringe el máximo ancho de banda que se puede conseguir con fibras de índice escalonado multimodales especialmente cuando se compara con fibras unimodales. Sin embargo, las ventajas de las fibras multimodales son:

- (a) El uso de fuente ópticas incoherentes (por ej. diodos emisores de luz) los cuales no pueden ser acoplados eficientemente a fibras unimodales.
- (b) Aperturas numéricas y núcleos grandes lo que hace más fácil el acoplamiento a fuentes ópticas.
- (c) Requisitos modestos para tolerancia en conectores.

1.4.1 Fibras multimodales de índice escalonado.

El número de modos guiados depende de los parametros físicos (es decir, diferencia relativa de índice , radio del núcleo a) de la fibra y de la longitud de onda de la luz transmitida los cuales están incluídos en la definición de la frecuencia normalizada V:

$$V = -\frac{2\pi a}{\lambda} - (n_1^2 - n_2^2)^{\frac{1}{2}}$$

$$= -\frac{2\pi a}{\lambda} - n_1(2\Delta)^{\frac{1}{2}}$$
(17)

Se puede demostrar que el número total de modos en una fibra de indice escalonado se relaciona con el valor V mediante la expresión aproximada:

$$\mathbb{H} \quad \chi \quad \frac{\nabla^2}{2} \tag{18}$$

Ejemplo: Una fibra óptica con un diámetro de núcleo de 80 um y una diferencia relativa de índice de refracción de 1.5% opera a la longitud de onda de 0.85 um. Si el índice de refracción del núcleo es 1.48, estimar: (a) la frecuencia normalizada de la fibra y (b) el número de modos guiados. Solución: La frecuencia normalizada se obtiene utilizando Eq.(18):

$$V = \frac{2\pi}{\lambda} \alpha \eta, (2\Delta)^{\frac{1}{2}} = \frac{2 \times \pi \times 40 \times 10^{-6} \times 1.48}{0.85 \times 10^{-6}} (2 \times 0.015)^{\frac{1}{2}}$$

(b) El número total de modos guiados está dado por la E . (13):

$$M_S \cong \frac{V^2}{2} = \frac{5745.6}{2}$$

$$= 2873$$

Como se ilustran en el ejemplo anterior, la potencia óptica se acopla a un gran número de modos guiados cada uno teniendo diferentes distribuciones espaciales de campo, constantes de propagación, etc.

En una fibra ideal no existe acoplamiento entre modos y la potencia optica acoplada a un modo en particular permanece en ese modo y viaja independientemente de los otros modos guiados. Sin embargo, perturbaciones en la guía de onda tal como desviaciones del eje de la fibra, variaciones en el diametro del núcleo, irregularidades en la interfaz núcleo-revestimiento, producirán conversión de energía entre modos y afectarán las propiedades de transmisión de las fibras ópticas.

1.4.2 Fibras unimodales de Índice escalonado.

Nota: El analisis de fibras opticas se simplifica considerablemente utilizando el hecho de que la diferencia relativa de indices de refracción de la esto se le conoce como aproximación de onda escalar o aproximación de guiamiento debil. De esta forma soluciones aproximadas para el conjunto completo de modos HE, EH, TE y TM pueden darse mediante dos componentes polarizados linealmente. Estos modos polarizados linealmente (LP) no son modos reales de la fibra pero representan una excelente aproximación.

Para operación en modo único, solo el modo fundamental LP_{Ol} debe existir. De aquí que el límite de operación unimodal depende del límite inferior de propagación guiada del modo LP_{II}.La frecuencia normalizada de corte para el modo LP_{II} ocurre a V=2.405. Por lo tanto, propagación unimodal es posible en el rango:

$$0 < V < 2.405$$
 (19)

El modo fundamental no tiene condición de corte.

Para que una fibra unimodal tenga un diametro de núcleo no muy pequeño se requiere reducir la diferencia relativa entre índice de refracción. Para un valor de V=2.4 a la longitud de onda de 0.95 um, parametros típicos de la fibra son:

Radio del núcleo = 4.0 µm indice de refracción del núcleo = 1.48 Diferencia relativa de indices = 0.003

Una característica adicional de fibras ópticas unimodo es que para bajos

valores de V el campo se extiende apreciablemente en el revestimiento. Para un valor de V de 1.4, aproximadamente la mitad de la potencia óptica se propaga en el revestimiento. Esto implica que el grosor del revestimiento debe ser adecuado (del orden de 50 µm).

1.5 Fibras multimodales de Índice gradual.

Las fibras de índice gradual tienen un índice de refracción n(r) que decrece con el radioa desde un valor máximo n en el eje a un valor constante n2 en el revestimiento. Esta variación de índice se representa como:

$$n(r) = \begin{cases} n_1 (1 - 2\Delta (r/a)^2)^{\frac{1}{2}} & r < a \text{ (nucleo)} \\ n_1 (1 - 2\Delta)^{\frac{1}{2}} & = n2 \quad r > a \text{ (revestimiento)} \end{cases}$$
 (20)

donde Δ es la diferencia de índice de refracción y \ll es el parametro de pérfil que da la característica de pérfil de índice de refracción del núcleo de la fibra. En la Ec. (20), \ll = ∞ , \ll = 2 y \approx = 1 significan un pérfil de índice escalonado, parabólico y triangular respectivamente.

Los perfiles de índice gradual que mejores resultados presentan para propagación multimodal tienen un pérfil de índice de refracción en el núcleo casi parabólico con % 2.

Una fibra multimodal con un pérfil de índice parabólico se muestra en la Fig. 12. Los rayos meridionales siguen trayectorías curvas a través del núcleo de la fibra.

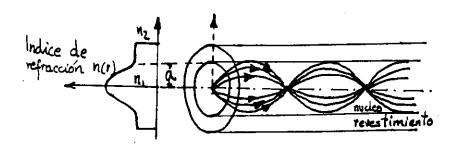


Fig. 12.- Pérfil de Índice de refracción y transmisión de rayos en una fibra de Índice gradual multimodal.

Usando los conceptos de óptica geométrica, la disminución gradual en el índice de refracción a partir del centro del núcleo crea muchas refracciones de los rayos y estos se comportan como si incidieran en un numero alto de interfaces de alto a bajo índice. El mecanismo se ilustra en la Fig. 13 donde un rayo se muestra gradualmente curvado, con un ángulo de incidencia siempre creciente hasta que se cumplen las condiciones de reflexión interna total, y el rayo viaja nuevamente hacia el eje del núcleo siendo refractado continuamente.

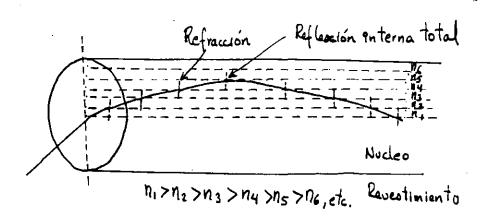
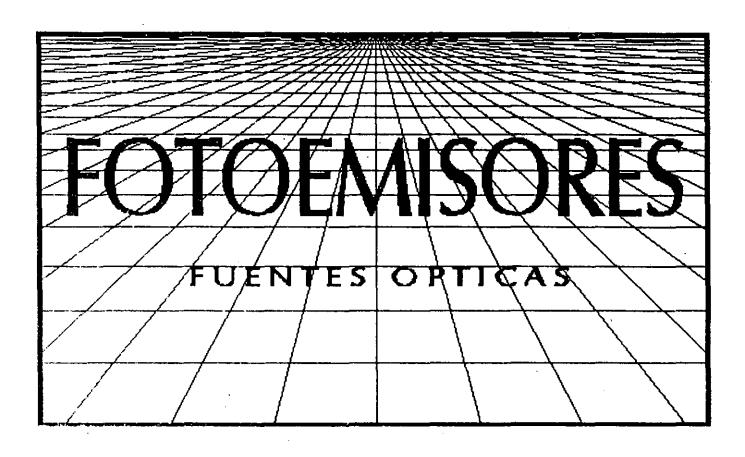


Figura 13.- Diagrama que muestra la refracción en las diversas interfaces de alto a bajo indice en una fibra de indice gradual lo que da una trayectoría curva del rayo.

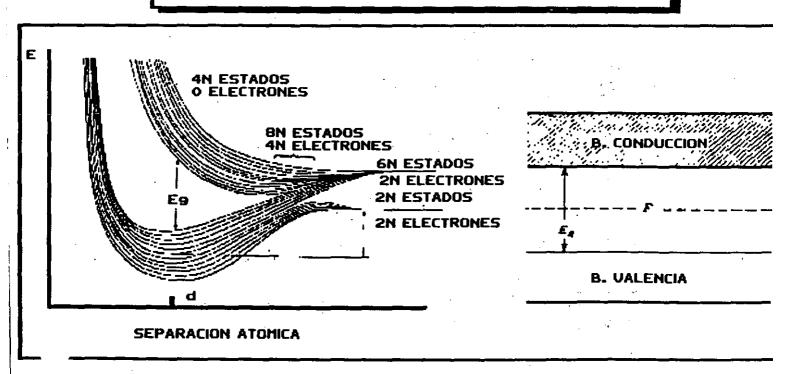
Las fibras con indice gradual exhiben mucho menos dispersión intermodal que las fibras de indicescalonado debido. Lunque muchos modos diferentes son excitados en una fibra de indice gradual, las diferentes velocidades de propagación de los modos tienden a normalizarse por el gradiente de indice. Los rayos casi axiales se transmiten a través de una región de alto indice de refracción y por lo tanto viajan a una velocidad más baja que los rayos más extremos. Esto compensa las travectorías más cortas y reduce la dispersión en la fibra.


FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

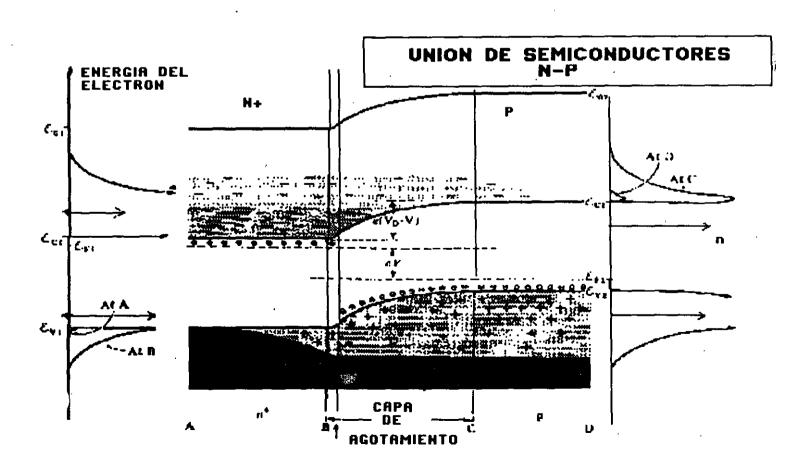
CURSOS ABIERTOS
TELECOMUNICACIONES VIA FIBRAS OPTICAS

TRANSMISORES OPTICOS

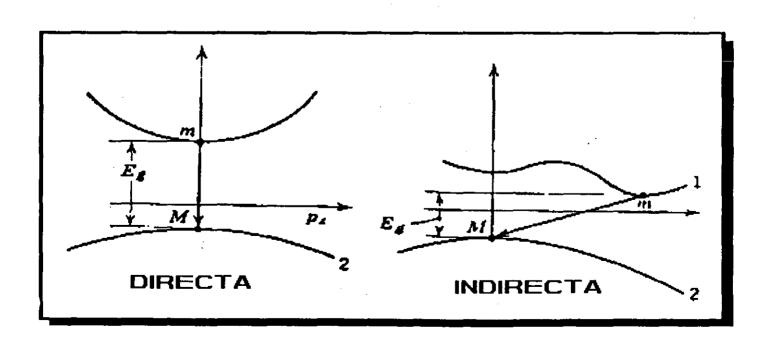
 Palacio de Minería
 Calle de Tacuba 5
 Primer piso
 Deleg. Cuauhtémoc 06000
 México, D.F.
 APDO. Postal M


 Teléfonos:
 512-8955
 512-5121
 521-7335
 521-1987
 Fax
 510-0573
 521-4020 AL 26

FIS. MARTIN SANTOS DOMINGUEZ


¿COMO PRODUCE LUZ UN SEMICONDUCTOR?

FORMACION DE BANDAS DE ENERGIA EN UN SOLIDO

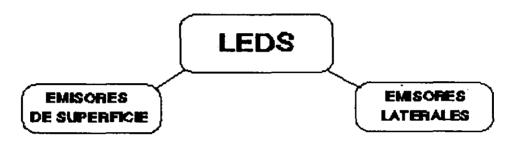

INMERCIAL INCOME LA PROPRIATION DE LA PROPRIATION DEPURSITATION DE LA PROPRIATION DE

- La operación de un semiconductor esta esencialemente basada en la inyección y extracción de portadores.
- Esto puede lograrse formando una unión de semiconductores tipo P y N
- Si la unión es poiarizada -----directamente la barrera de potencial
 en la región de contacto permitiendo
 la recombinación de portadores.

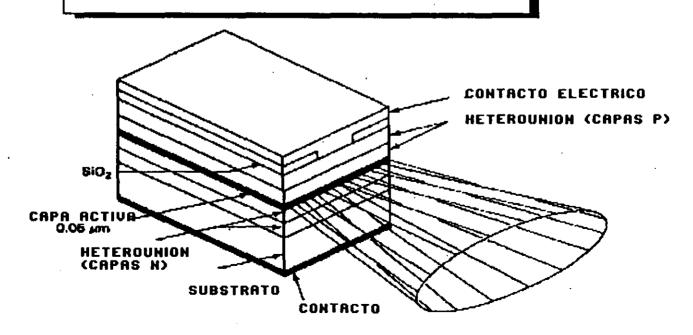
- El proceso de recombinación más simple es aquel en el que el electrón y el hueco tiene el mismo valor de momento.
- La emisión o absorción de un fotón solo se produce si se conserva la energía y el momento de la partícula.
- Esto da origen a dos tipos de transiciones radiativas: directas e indirectas.

TRANSICIONES

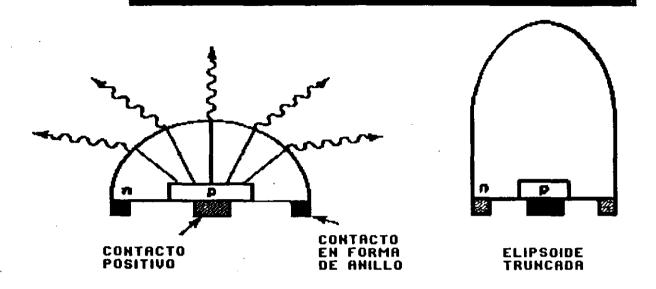
- - La combinación de elementos de la tabla periódica de los grupos III v V produce compuestos con las propiedades de electroluminscencia.
 - D Los compuestos más comunes para fabricar estos dispositivos son:

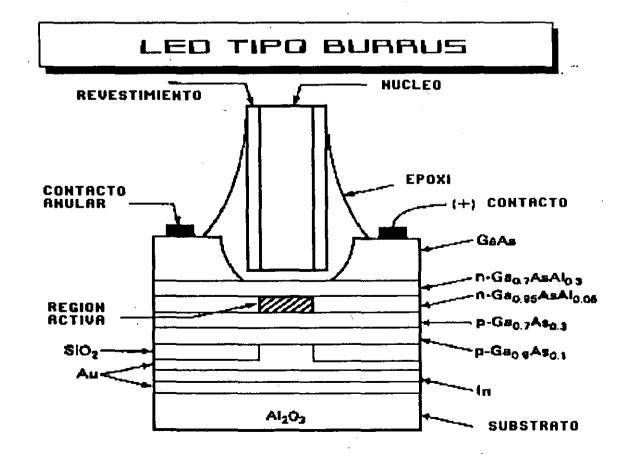

GaAs y GaAsAl 800 a 900 nm. InP y InPGa

930 a 1700 nm.


BIOMAIN (DICHE)

- El LED emite fotones mediante el mecanismo de emisión espontánea.
- Es una fuente de luz incoherente porque los fotones que resultan de esta operación tienen fases aleatorias.


 A lo largo del tiempo se han desarrollado diversas estructuras para mejorar las características del led.

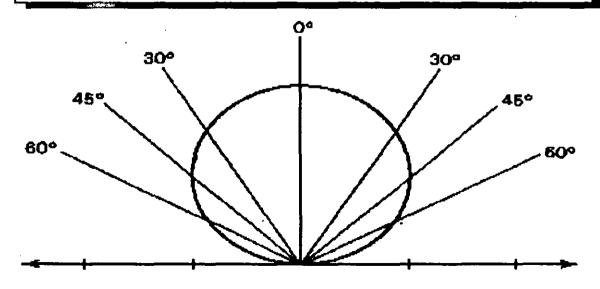


LED EMISOR DE EXTREMO

ESTRUCTURAS DE LEDS TIPO DOMO

*

CARACTERISTICAS

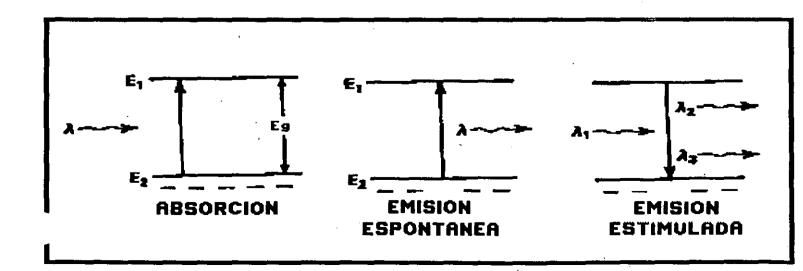

- Ancho de banda de modulación bajo (50 Mhz).
- Ancho espectral óptico grande.
- Baja potencia acopiada en la fibra.
- Distorsión armónica en modulación directa.
 - Por esto son fuentes adecuadas para enlaces cortos y de bajas tasas de transmisión.
 - Son usados con fibras multimodo de Indice escaionado o graduado.

MINIANAS DE SUNCISÓ

- Las principales ventajas del LED son:
 - Fabricación simple.
 - Linealidad.
 - Costo y duración.
 - Circulterla de manejo simple.
 - Dependencia térmica baja.
- Esto ha hecho del LED una fuente ampliamente usada.

- La potencia emitida tiene una
 - La potencia emitida tiene una relación casi lineal con la corriente inyectada. (I max= 100 mA).
 - El ancho espectral es típicamente de 30 a 50 nm a 850 nm.
 - Su dependencia térmica es de 3 a 4 A/ °C.
 - Su patrón de radiación es lambertiano por lo que su eficiencia de aco piamiento en las fibras es baja.

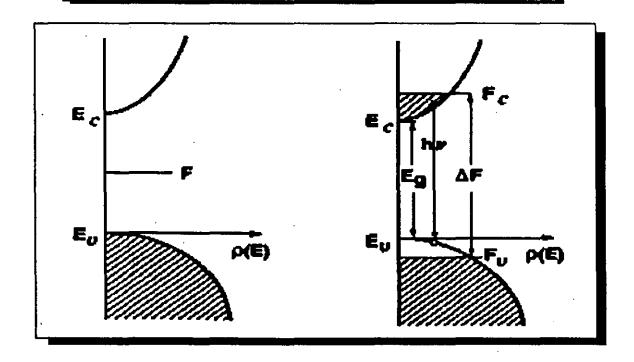
PATRON DE RADIACION DE UN LED

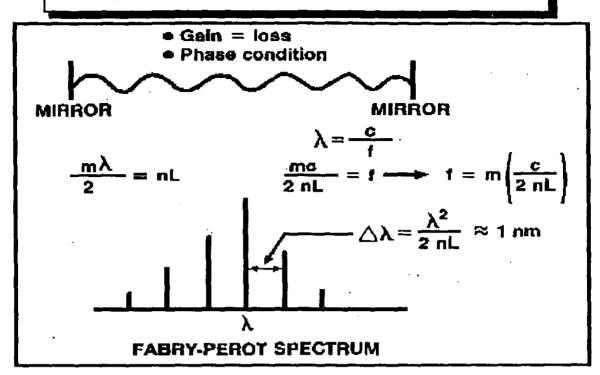


RADIADOR LAMBERTIANO

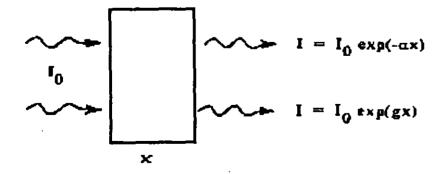
IDAGADACA LASSER IIU DAGE

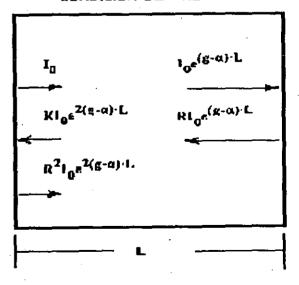
- La palabra LASER significa ampilificación de luz por emisión estimulada de radiación.
 - El laser puede ser descrito por la formación de una onda estacionaria que se amplifica dentro de una cavidad formada por los semiconductores.

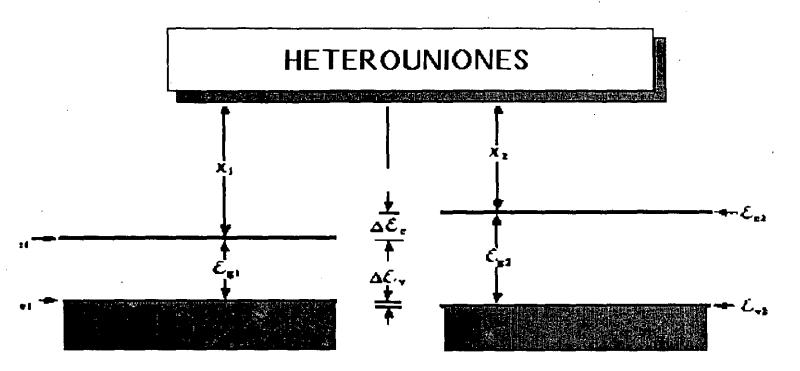

INTERACCION LUZ - MATERIA

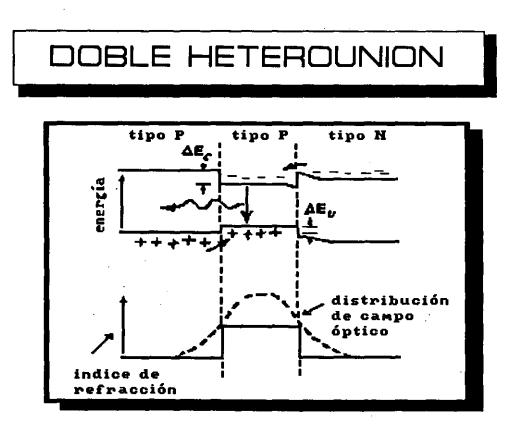

THE BUTCH WE WIND WIT OF THE STATE OF THE ST

- Para que la emisión estimulada sea mayor que los demás pro cesos es necesario que exista una inversión de población.
- La ganacia dentro del material tiene que ser igual por lo menos a las pérdidas por lo que la señal óptica se retroalimenta mediante la formación de una cavidad resonante en la capa activa.

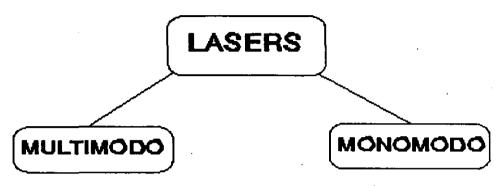

INVERSION DE POBLACION


CONDICION DE OSCILACION


ABSORCION Y GANANCIA


CONDICION DE UMBRAL

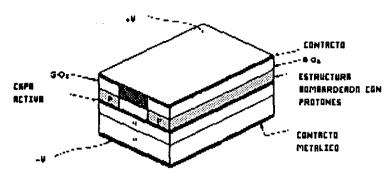
$$I_0 = \kappa^2 I_0 e^{2(g-\alpha) \cdot L}$$



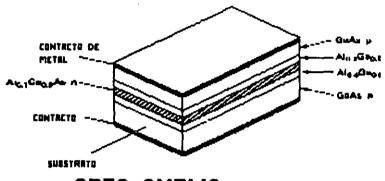
NIVELES DE ENERGIA PARA DOS SEMICONDUCTORES DOPADOS DIFERENTE

 Por sus características de oscilación, los lasers pueden clasificarse en:

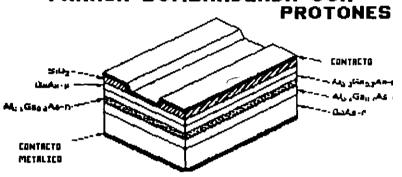
48



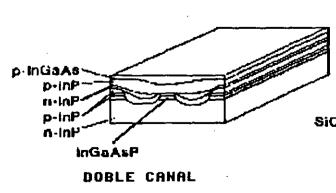
ESTRUMEDIZAS!

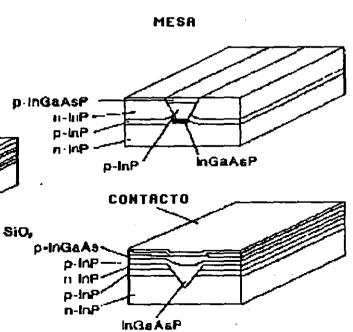

- Una gran cantidad de estructuras han surgido como resultado de las investigaciones realizadas sobre el laser de semiconductor.
- Las principales estructuras desa rrolladas para lasers fabry-perot son:
 - Ganancia gulada.
 - Indice guiado.

ESTRUCTURAS DE LASERS


GANANCIA GUIADA

FRANJA BOMBARDEADA CON

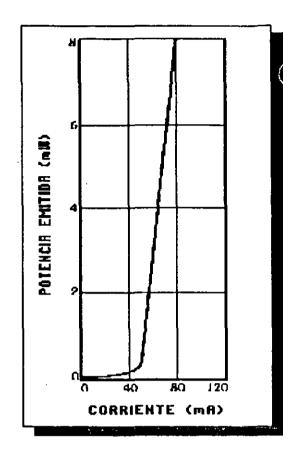

AREA AMPLIA



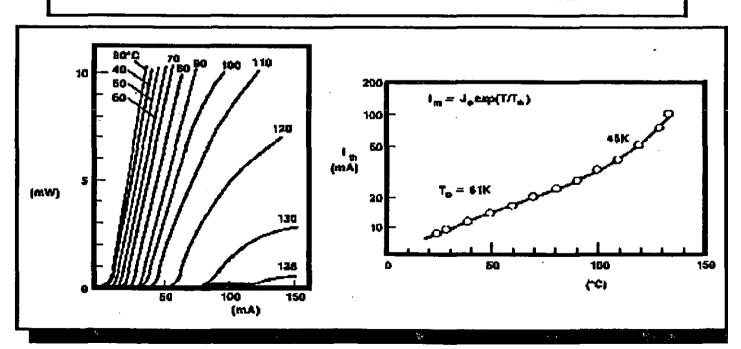
FRANJA DE CONTACTO

ESTRUCTURAS DE LASERS

INDICE GUIADO

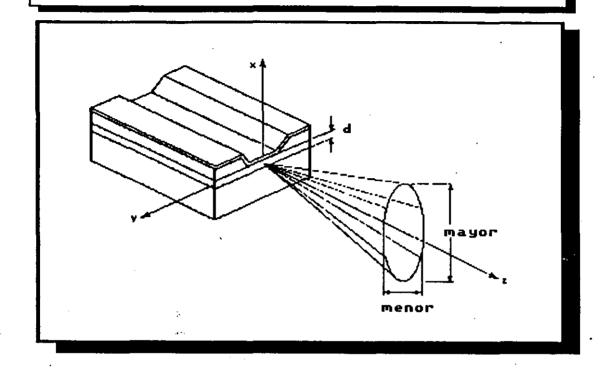

SUBSTRATO EN V

CARACTERISTICAS DEL DIODO LASER


EL LASER TIENE UN NIVEL DE UMBRAL A PARTIR DEL CUAL SU POTENCIA SE INCREMENTA RAPIDAMENTE CON LA VARIA-CION EN LA CORRIENTE.

SU CORRIMIENTO DEL NIVEL DE UMBRAL TIPICO CON LA TEMPERATURA ES DE:

8.5 mA/ *C



DEPENDENCIA TERMICA DEL UMBRAL

- REQUIERE DE UN FOTODETECTOR EN LA CARA POSTERIOR Y UN CIRCUITO DE CONTROL.
- UN TERMISTOR Y UN CIRCUITO DE CONTROL.

EMISION NO LAMBERTIANA

PATRON DE RADIACION DEL LASER CAMPO CERCANO Y LEJANO

10 Կ m

20.44

28 Mm

20 H M

CAMPO ERCANO

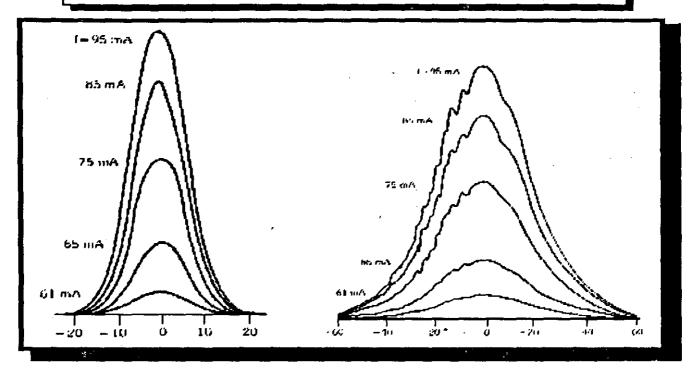
 \mathcal{M}

CAMPO LEJANO

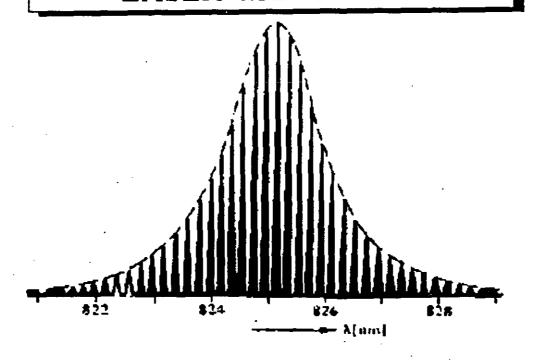
30 HW

G-940-G

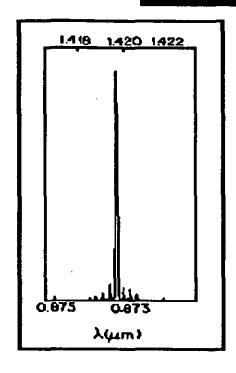
30 M m

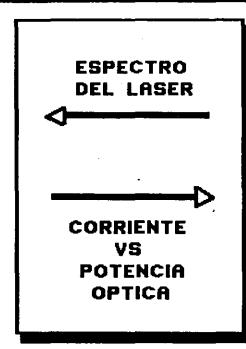

-

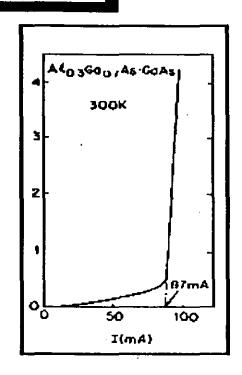
50 ղm CAMPO

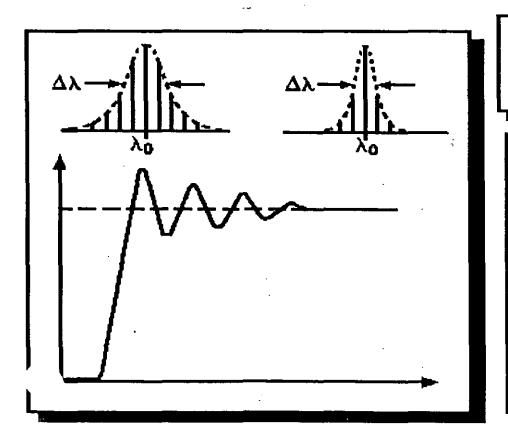

CAMPO CERCANO

CAMPO LEJANO

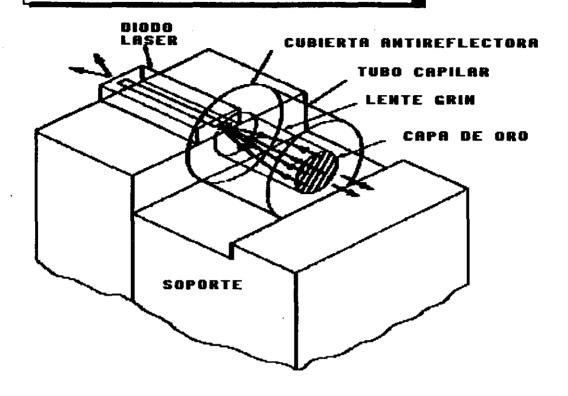

PATRON DE RADIACION DE UN LASER



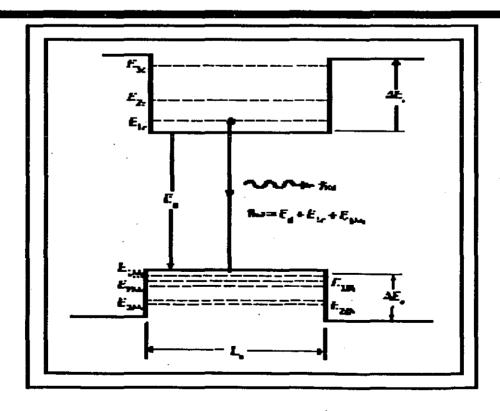

ESPECTRO DEL LASER MULTIMODO

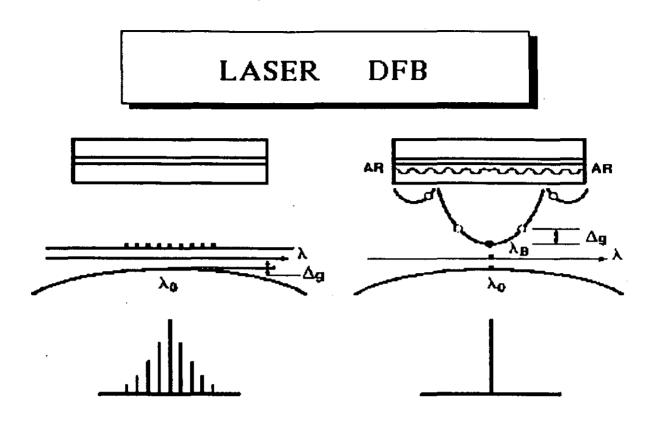


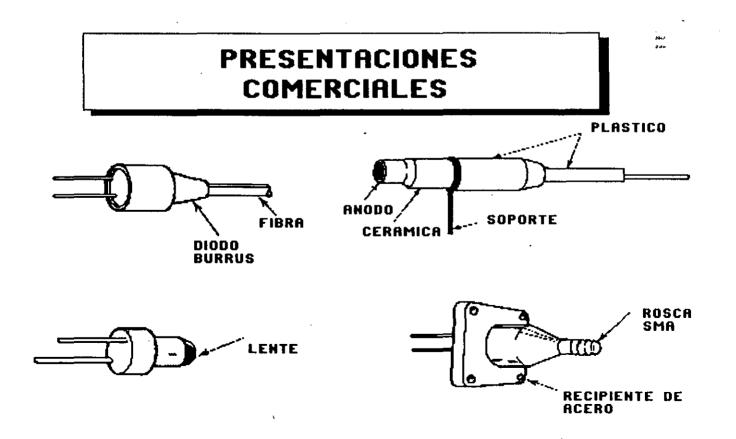
CARACTERISTICAS DE UN LASER MONOMODO



DE UN LASER MULTIMODO


CONSECUENCIAS:


- ENSANCHAMIENTO DEL ANCHO ESPECTRAL A ALTAS TASAS DE TRANS-MISION.
- **LIMITE POR DISPERSION**
- RUIDO POR PARTICION MODAL


LASER DE CAVIDAD EXTERNA

LASER DE PARED CUANTICA

FOTOEMISORES DE SEMICONDUCTOR

Las principales fuentes luminosas usadas en comunicaciones por fibra óptica son:

- Diodo emisor de luz (LED)
- Diodo láser (LD)

Estos dispositivos semiconductores son adecuados para sistemas de transmisión por fibra óptica, a causa de que sus características los hacen ser compatibles con ellos.

Para escoger una fuente luminosa adecuada, las características de la fibra tales como:

- su geometría (tamaño)
- su atenuación como función de λ
- distorsión por retraso de grupo (ancho de banda)
- características modales

y la interrelación de estos factores con los de las fuentes luminosas tales como:

- potencia óptica
- ancho espectral
- patrón de radiación
- capacidad de modulación

necesitan ser considerados, por lo que se hace necesario analizar las características de salida y de operación de estas fuentes luminosas.

¿Cómo se produce luz en un semiconductor?

Un material semiconductor tiene propiedades intermedias entre un metal y un aislante (elementos del grupo IV).

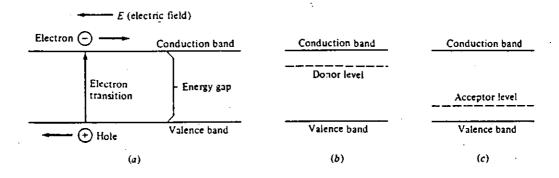


Fig. 1 Diagrama de bandas de energía

Observando el diagrama de bandas de energía de la Figura 1, podemos interpretar estas propiedades dado que en este tipo de material, cuando son puros y están a temperaturas de 0°K la banda de conducción (nivel superior) está completamente vacía y la banda de valencia (nivel inferior) está completamente llena. Estando separadas por una diferencia de energía que recibe el nombre de banda prohibida, ya que en ella no existen niveles energéticos que puedan ser ocupados y que además no es muy grande, permitiendo de esta forma que conforme la temperatura aumenta algunos electrones son "excitados" térmicamente a la banda de conducción, permitiendo el flujo de electrones en el material, de una forma parcial.

Por cada electrón excitado a la banda de conducción aparece una vacante en la banda de valencia, que recibe el nombre de "hueco" y que también tiene un comportamiento de partícula por lo que contribuye al flujo de corriente. Dadas estas características, se puede observar que en un material puro la población de electrones y huecos es la misma, sin embargo

la introducción de pequeñas cantidades de "impurezas", modifica esta proporción dando origen a dos tipos de semiconductor:

Semiconductor tipo N: que es aquél en el que las impurezas añadidas tienen un electrón de más y éste está disponible para conducción produciendo un exceso de electrones. En este caso, los electrones resultan ser los portadores mayoritarios.

Semiconductor tipo P: en este material las impurezas añadidas tienen un electrón de menos para el enlace requerido con los demás átomos, con lo que un hueco es heredado por cada uno de ellos, produciendo un exceso de huecos que resultan ser los portadores minoritarios.

La operación de un dispositivo semiconductor es esencialmente basada en la inyección y extracción de portadores.

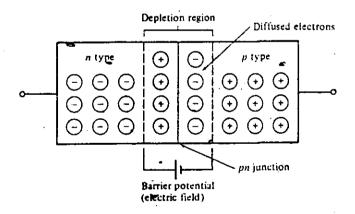


Fig. 2 Union PN

Cuando un material tipo P y uno tipo N se unen, los portadores mayoritarios de ambos se difunden a través de la unión, produciéndose una recombinación en la región alrededor de la frontera entre ellos, como un resultado aparece un campo eléctrico a través de ella, estableciendo el equilibrio, previniendo el movimiento de las cargas.

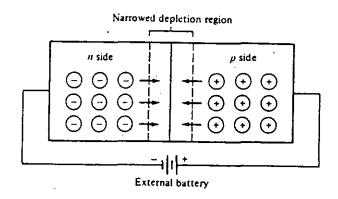
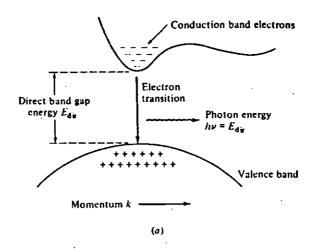



Fig. 3 Unión PN polarizada directamente

Si la unión PN es polarizada directamente como en la Fig. 3, la barrera de potencial establecida se reduce permitiendo una difusión de los electrones de la banda de conducción del material tipo N hacia los huecos de la banda de valencia del material tipo P.

El proceso de recombinación de portadores toma lugar y la energía del electrón que se recombina puede ser transformada en la emisión de una partícula luminosa de energía hve Eg, o disiparse en forma de calor, dependiendo del tipo de material semiconductor con el que esté hecha la unión y del tipo de transición realizada.

La emisión o absorción de un fotón, se produce sólo si se conserva la energía y el momento de la partícula. Esto da origen a dos tipos de transiciones radioactivas que dependen de la forma de la función de energía con el momento de la partícula, como se muestra en la figura 4.

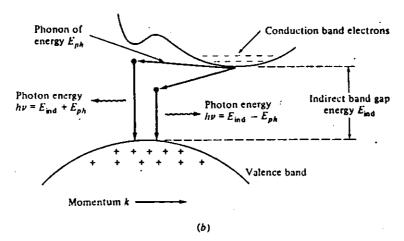


Fig. 4 Transiciones directas e indirectas

El proceso de recombinación más simple y más probable es aquél en el que el electrón y el hueco tienen el mismo valor de momento, mientras que en el otro proceso es necesaria la intervención de una tercera partícula llamada "fonón" para que se realice la transición, por lo que se reduce la probabilidad de ocurrencia.

Ya que en un material se presentan, tanto transiciones radioactivas como no radioactivas, los materiales que pueden generar electroluminiscencia con una eficiencia alta son los de transición directa.

Diodo emisor de luz (LED)

Para sistemas de comunicación que requieren velocidades de transmisión menores o aproximadas a 50 Mb/s, junto con potencias ópticas acopladas en la fibra del orden de décimas de microwatts, los diodos que emiten luz (LED) son usualmente las mejores fuentes escogidas, esto es debido a que requieren de una circuitería de manejo menos compleja, además de ser más baratos.

Para ser útil en estas aplicaciones un LED debe tener:

- alta radiancia
- tiempo de respuesta de emisión rápida
- alta eficiencia cuántica

Para lograr estos propósitos, el LED debe proveer un medio de confinamiento óptido y de portadores de carga, generando 2 tipos principales de estructuras:

- diodos emisores de superficie
- diodos emisores laterales

Diodo emisor de superficie

La estructura de un diodo emisor de superficie se muestra en la figura 5, en este diseño se tiene un área de emisión relativamente pequeña de 15 a 100 μ m de diámetro sumergida una gran cantidad de material semiconductor la cual ayuda a disipar el calor de manera eficiente, además, la separación de la unión semiconductora respecto a la superficie se hace muy angosta para minimizar las pérdidas de absorción.

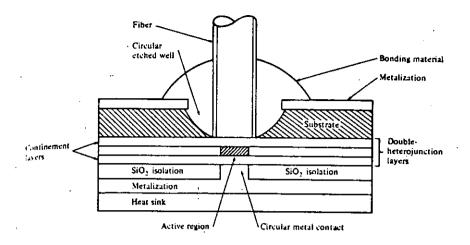


Fig. 5 Diodo emisor de superficie

La medida de eficiencia de un led es la radiancia definida como la potencia radiante electromagnética por unidad de ángulo sólido y unidad de superficie normal a la dirección considerada, la unidad de esta medida es Watts/Stereoradian.m²

El tipo de emisión de luz en los diodos emisores de superficie es aproximadamente Lambertiano, es decir, que la radiancia es constante en todas direcciones aunque en este caso es confinada a un rango de 120°.

Diodo emisor lateral

En este diodo se emplea la doble heteroestructura semiconductora para confinar los portadores y los fotones en una capa activa muy angosta del orden de 500 Å. Estos dispositivos utilizan un espejo en una cara y una cubierta antirreflejante en la otra, con el objeto de aumentar la eficiencia de emisión, la radiancia de este les es varias veces mayor que la del diodo emisor de superficie, pero lo complicado de su geometría hace difícil la disipación de calor. (Ver Fig. 6).

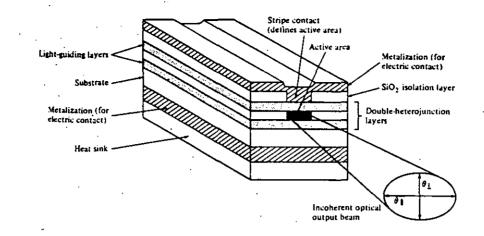


Fig. 6 Diodo emisor lateral

Emisor Superluminiscente

P.I

Este led es una gran aproximación al láser de semiconductor, debido a que su geometría de franja forma una cavidad en la que se produce luz por emisión espontánea y un primer paso de amplificación por emisión estimulada.

Las ventajas de este tipo de led son:

- gran cantidad de potencia óptica de salida
- un haz de salida más direccional que el led
- ancho espectral reducido
- no hay corrimiento de umbral como en el láser.

La principal desventaja es que para producir una potencia equivalente a la del láser se necesita una densidad de corriente tres veces mayor a la del láser.

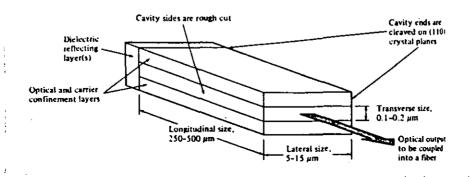
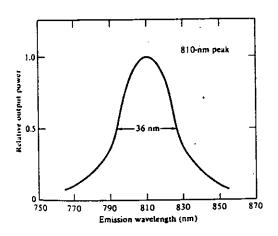
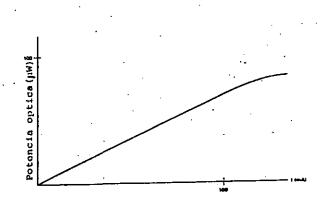




Fig. 7 Diodo Superluminiscente

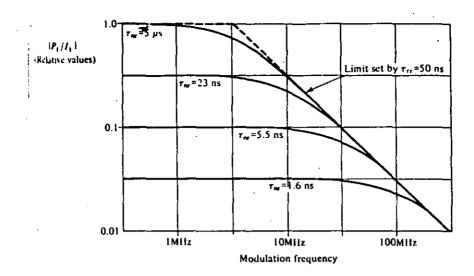
CARACTERISTICAS DE LOS LEDS

1. SALIDA ESPECTRAL; El ancho espectral de la salida de un led a temperatura ambiente en la región de 0.8 a 0.9 μ m $_{,6}$ es generalmente de 350 a 500 Å en los puntos de 3 dB. El corrimiento de la longitud de onda pico con respecto a la temperatura es del orden de 3 a 4 \pm Å/OC.

Salida Espectral del LED

Relacion Potencia vs. I

2. EFICIENCIA Y ANCHO DE BANDA DE MODULACION; La relación entre la potencia óptica de salida de un led y la frecuencia de modulación esta dada por:


$$P(\omega) = \frac{P(0)}{\left[1 + (\omega \tau)^2\right]^{1/2}}$$

donde P(w) potencia óptica de salida.

P(O) potencia de salida a corriente directa.

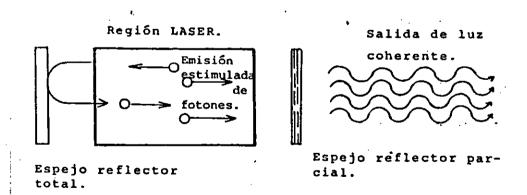
- w frecuencia de modulación.
- τ tiempo de vida de los portadores en la región de recombinación.

るや

Ancho de Banda de Modulación del LED.

Debe tenerse en cuenta que la capacitancia parásita (10 a 20 p8) introduce un retardo entre la señal de excitación y la respuesta de la unión emisora.

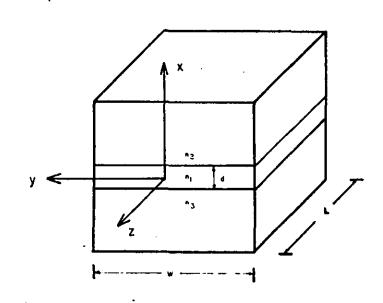
En los resultados para un emisor de superficie de AsGaAl se observan que altas frecuencias de modulación producen bajas potencias de salida.

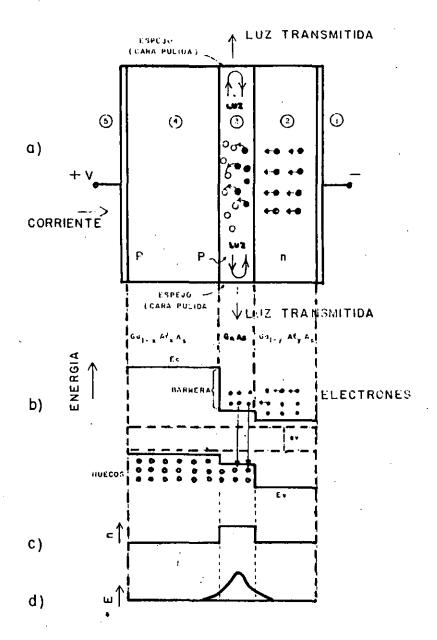

El ancho de banda de modúlación se da en terminos eléctricos o sea el ancho de banda de 3 d8 de la potencia eléctrica detectada.

DIODO LASER SEMICONDUCTOR

EMISION ESTIMULADA

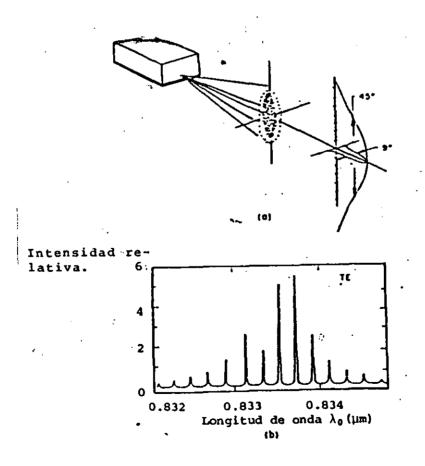
La emision estimulada se logra por medio de la inversión de población de portadores, una condición en la cual el nivel superior de dos niveles electrónicos separados con una energía $E=E_2-E_1$ tiene una probabilidad más alta de ser ocupada por un electrón que el nivel inferior y la probabilidad de que un fotón con energía E=hv induzca una transición electrónica hacia abajo, excederá a la probabilidad de que ocurra una transición electrónica bacia arriba. La amplificación de luz es posible cuando un fotón incidente estimula la emisión de un segundo fotón con una energía aproximadamente iqual a la

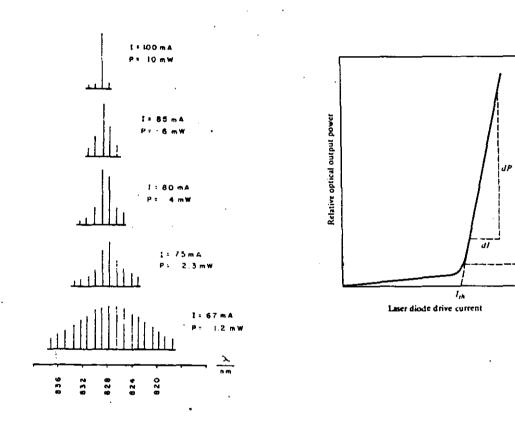



_separación de energía entre los dos niveles electrónicos. Para aumentar la densidad óptica en la región donde se produce el efecto láser se introduce una retroalimentación mediante dos espejos planos y paralelos, formandose de esta manera una cavidad llamada interferómetro gabry-Perot, uno de los espejos se hace totalmente reflejante y el otro solo parcialmente y es a través de este último del cual se obtiene la salida de potencia óptica cuyas características son coherencia, alta direccionalidad y alta radiancia.

DIODO LASER SEMICONDUCTOR DE DOBLE HETEROUNION

Se ha comprobado que para reducir las densidades de corriente y permitir de esta manera el efecto láser en operación contínua a temperatura ambiente y con tiempos de vida útiles grandes, la unión semiconductora PN del diodo debe contruirse de varias capas, cada una ligeramente distinta de la otra, formando las llamadas heterouniones o heteroestructuras, el objetivo de formar heteroestructuras es confi nar la luz debido a las diferencias de indice de refracción entre las capas, (ver figura) y confinar tambien la región de tránsito de los portadores inyectados a una región muy angosta.

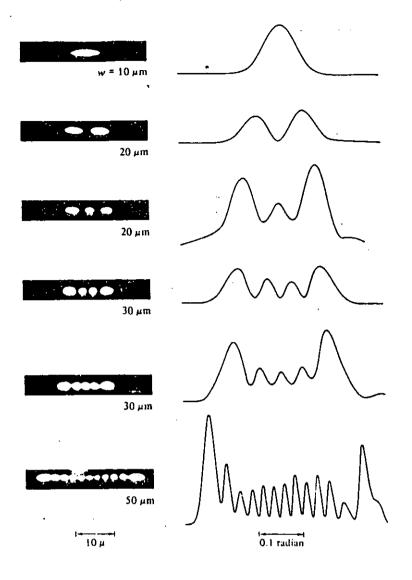

Esto último se logra debido a las diferencias de energía de . bandas de las diferentes capas.

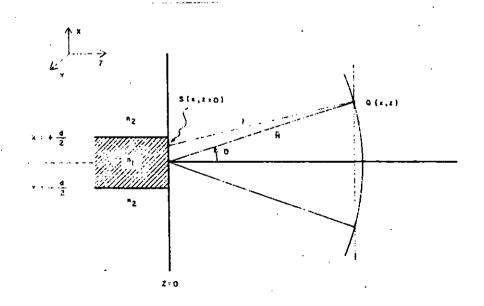


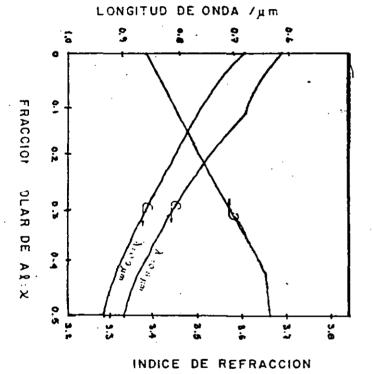
DIODO LASER DE DOBLE HETEROESTRUCTURA DE GEOMETRIA DE FRANJA

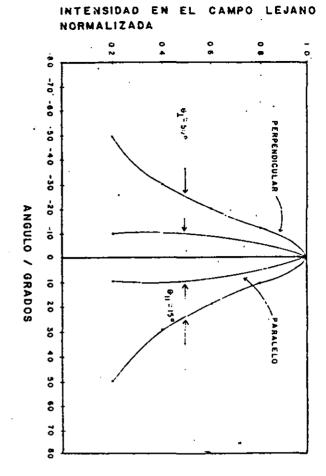
Las propiedades de emisión del láser de geometría de franja se illustran en la figura . La parte superior de la figura muestra el patrón de emisión de campo lejano, un rayo de emisión típica diverge, para obtener la mitad de la intensidad pico 45º perpendicular al plano de la unión y 9º en el plano paralelo a la unión, la parte baja de la figura illustra la emisión espectral del láser, la cual no es una linea de longitud de onda unica sino una familia de modos longitudinales que corresponden a un número entero de longitudes de la cavidad óptica. Ciertos tipos de lásers de geometría de franja tienen un modo longitudinal único.

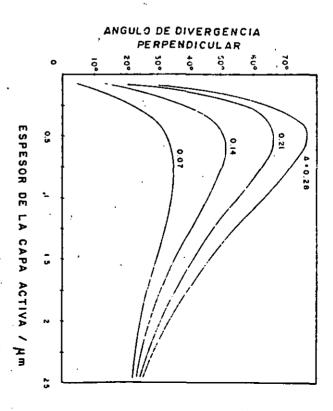
1. SALIDA ESPECTRAL; El ancho espectral de un láser semiconductor es normalmente menor de 20 Å, lo que es hastante reducido en comparación con un led, esta característica permite que el láser sea empleado para comunicación en enlaces largos debido a que el problema de dispersión o ensanchamiento del pulso es mínimo.

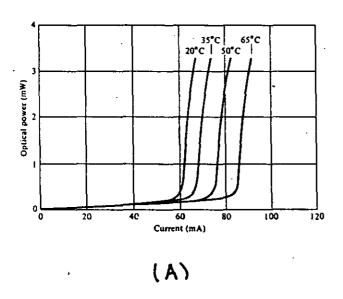


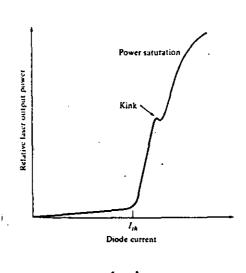

2. CORRIENTE DE UMBRAL; Debajo de un cierto nivel de corriente la salida óptica de un láser se comporta como la de un led, pero arriba del umbral el láser tiene un salida óptica que se incrementa rapidamente con una eficiencia que se aproxima al 100 %, ver figura.


·Lasing (stimulated)


Spontaneous (LED-type)


emission




Las principales deficiencias del láser relacionadas con las características de corriente y salida óptica son:

A)Corrimiento de) nivel de corriente de umbral con la temperatura:

En la figura (A) se puede observar la gran variación del nivel de umbral con la temperatura, valores de $0.5\,$ mA/ 0 C son comúnes. Lo que precisa el uso de controladores como los que son descritos en el capítulo de transmisores ópticos.

B)Ealta de linealidad: la salida de la luz varia linealmente hasta un valor de corriente en el cual ocurre un "rizo" en la curva característica. El rizo en muchos casos puede

(12)

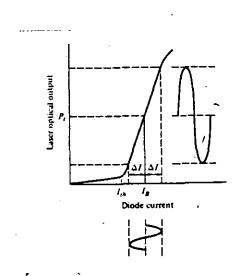
atribuirse a la aparición de un segundo modo transverso.

3)Eficiencia y ancho de banda de modulación:

MODULACION ANALOGICA

La modulación analógica de banda base de los diodos láser es posible en varios cientos de Mhz, hasta un punto en el cual ocurre una fuerte resonancia debida a la interacción entre la inversión de población y los fotones en la cavidad óptica la frecuencia resonante esta dada por:

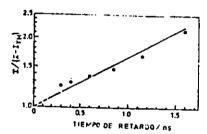
$$W_i^2 \approx \frac{1}{T_5 T_p} \left(\frac{I}{Iu} - 1 \right)$$


donde τ_s tiempo de vida de la recombinación espontánea del electrón (1 ns).

τ tiempo de vida del fotón (l a)0 ps).

I corriente de inyeccción.

I corriente de umbral.



MODULACION DIGITAL

La modulación digital del diodo láser puede realizarse a velocidades muy altas, del orden de l'Gbit/seg, sin embargo aparecen varios problemas significativos, el retrazo en tiempo $\mathbf{t}_{\mathbf{d}}$ entre los pulsos de luz y corriente esta dado por:

$$T_0 = T_5 \ln \left[\frac{I}{I - Iu} \right]$$

y es tipicamente de unos cuantos nanosegundos. Además retardo presenta иња oscilación. amortiquada (aproximadamente en 100 Mhz). Este comportamiento oscilación, por relajación y son producidos por interacción entre los portadores y los fotones, otro tipo de pulsación que ha sido observada les la autopulsación de aproximadamente 0.2 a 2 Ghz que se caracteriza por su amplitud constante. Para evitar oscilación, de relajación, autopulsaciones y rizos dе se han propuesto diodos con diversas estructuras basadas geometria de franja.

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS
TELECOMUNICACIONES VIA FIBRAS OPTICAS

EMPALME, CONEXION Y MEDICION EN ATENUACION EN FIBRAS OPTICAS

ING. FERNANDO NAVARRETE MONTES DE OCA

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285 Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

7. INTERCONEXION OPTICA.

La conexión de los elementos que integran un sistema de comunicación por fibra óptica; es una de las consideraciones fundamentales para una realización teórico-práctico adecua-da. La conexión se puede realizar a dos niveles:

- 1.- Entre fibras, siendo de dos tiros: a) empalme, que es una unión fija, b) conector, la cual es una unión mo-vil.
- 2.- Entre cables, se usa lo que se conoce como cierre o caja de empalmes.

El empalme encuentra su mayor aplicación en la planta - externa y en menor grado en el equipo de oficina. El empalme puede ser de dos tipos: 1) Mecánico, el alineamiento y suje ción de la fibra se realiza por medios mecánicos, térmicos y adhesivos 2) Por fusión, se aplica a las fibras una elevada temperatura que las funde, al normalizar la temperatura las fibras quedan unidas permanentemente es el que se emplea mayormente y se realiza por microflama o arco eléctrico, siendo esta última técnica la que ha dado mejores resultados. El conector se usa más en el equipo de oficina que en la planta externa. El cierre de empalmes se usa básicamente en la planta externa.

La conexión óptica no es tan sencilla como la conexión eléctrica; donde solo se requiere contacto eléctrico que se obtiene torciendo y soldando los conductores metálicos. La unión óptica requiere alineamiento y conexión precios del - núcleo de la fibra, lo cual se dificulta por las dimensiones

reducidas. Todos los tipos de conexión óptica deben tener - las siguientes características: pérdida reducida y estable a las condiciones ambientales, confiabilidad en el plazo largo, sencillo de realizar y con tiempo y costos reducidos.

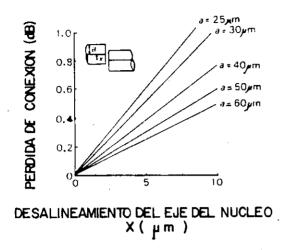
7.1 Pérdidas en el Empalme

El objetivo de la conexión óptica es acoplar o transferir potencia óptica de un punto a otro. Sin embargo, en la transferencia de potencia existe pérdida causada en el elemento de conexión, estas pérdidas se clasifican en.

- 1.- Intrínsecas, se deben a las variaciones de las caracterrísticas propias de la fibra como son: diámetro del nú-cleo, apertura numérica, índice de refracción, concentricidad etc. Estas propiedades dependen del proceso de fabricación pudiendo variar entre fibras aún del mismo fabricante.

En la tabla 7.1 se resumen los factores de pérdida que afectan la conexión en fibras multimodo de índice gradual --

(GI) y en fibras unimodo (SM). Los efectos de imperfecciones afectan más a la fibra SM que a la fibra GI, esto se debe a que la fibra unimodo tiene un núcleo con dimensiones menores

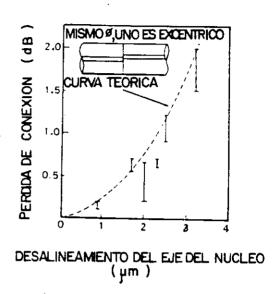

TABLA 7.1 FACTORES DE PERDIDA EN LA CONEXION DE LA FIBRA.

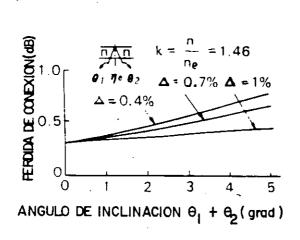
<u> </u>	CONTROL TO A CION
FACTORES	CONFIGURACION
DESALINEAMIENTO DEL EJE DEL NU- CLEO	()
SEPARACION	
ANGULO	- S
INCLINACION EN EL EXTREMO DE LA FIBRA	
DIFERENCIA EN EL DIAMETRO DEL NUCLEO	. ====
DIFERENCIA EN EL ANGULO DE RE- FLEXION	()

Tabla 7.1 Factores de pérdida que afectan la conexión para fibras GI y SM.

7.1.1 Desalineamiento Transversal

En las figuras (7.1) y (7.2) se muestra la pérdida experimental en empalme que produce el desalineamiento transversal entre núcleos, este desalineamiento es el factor que más afecta la pérdida en el empalme. En la figura (7.1) se presentan las pérdidas para una fibra de índice gradual con 50 um de diámetro en el núcleo. Para este caso cuando el radio




FIG. 7.1 PERDIDA POR DESALINEAMIENTO DEL EJE DEL NUCLEO GI PERDIDA POR DESALINEAMIENTO DEL EJE DEL NUCLEO S M

del núcleo a tiene un desplazamiento $x=5\,\mu\text{m}$, la pérdida que - se produce en el emaplme es de 0.6 dB. Cuando se tiene una - fibra unimodo de $11\,\mu\text{m}$ de diámetro, como se muestra en la figura (7.2), un desalineamiento de $2\,\mu\text{m}$ origina una pérdida en el empalme de 0.5 dB. Esto significa que el efecto del desalineamiento transversal sobre la pérdida de conexión, es mayor para una fibra unimodo que para una de índice gradual. - Así que la conexión de una fibra unimodo necesita un alineamiento transversal más preciso.

7.1.2 Desalineamiento por inclinación en el extremo de la fibra

Cuando uno de los extremos de la fibra que se han de $e \underline{m}$ palmar, tiene un ángulo de inclinación causado por un mal -

corte, se producen pérdidas que se incrementan con los aumentos del ángulo de inclinación. Para la fibra de índice gradual se aprecian tales pérdidas en la figura 7.3, comunmente el ángulo máximo que se tolera es de 3°. En la figura 7.4 se muestran las pérdidas en el empalme causados por inclinación angular en el extremo de una fibra unimodo, el ángulo que se permite es de 1°, debido a que al aumentar el ángulo rapidamente aumenta la pérdida. Para reducir las pérdidas es importante que el ángulo de inclinación sea lo más pequeño posible.

DESPUES DE OUS DESPUES DE FUSION QB)

OUT DESPUES DE FUSION

ANGULO DE INCLINACION (grad)

FIG. 7.3 PERDIDA POR ANGULO DE INCLINACION GI

FIG. 7.4 PERDIDA POR ANGULO DE INCLINACION S M

Fig. 7.4

7.1.3 Pérdidas Intrînsecas

A pesar que la fabricación de la fibra óptica (núcleo y revestimiento) sigue normas precisas, existen variaciones en

la producción aun siendo del mismo lote. Como dos ejemplos importantes se tiene la variación en el diámetro del núcleo y en los parámetros del índice de refracción relativo.

En la fibra de índice gradual cuando la difrencia entre núcleos se presenta con la fibra transmisora con un diámetro a₁, que es mayor al diámetro a₂ de la fibra receptora, se -- produce en el empalme una pérdida severa. Así, como se observa en la figura (7.5) cuando la fibra transmisora tiene 50μm de diámetro y la receptora 47.5μm, es decir 5% menor, produce en el empalme una pérdida cercana a 0.5 dB. El efecto de las diferencias entre características del índice de refrac--

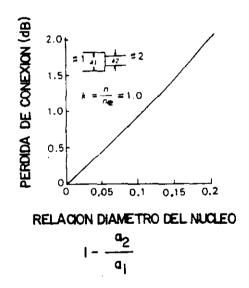


FIG. 7.5 PERDIDA POR DIFERENCIA DE NUCLEOS G I

ción es menos perjudicial que las variaciones entre diáme-tros del núcleo. Por ejemplo una diferencia de 10% entre los parámetros del índice de refracción relativo, causa una

pérdida en el empalme aproximada a 0.2 dB.

Para la fibra unimodo la diferencia entre parámetros de diamétro del núcleo e índice de refracción, causa pérdida - pequeñas que son despreciables con otro tipo de pérdidas. El desalineamiento transversal es la fuente pérdidas mayor para las fibras de índice gradual y unimodo

7.2 Empalme de fibras por fusión

Por razones de facilidad en la instalación, el cable de fibra óptica de vidrio se fabrica normalmente en tramos aproximados a 2 Km. Un alto porcentaje de aplicación de la fibra óptica requiere enlaces mayores a 2 Km., por lo cual es necesario unir el número de tramos necesario en el enlace. Esto se logra por medio del empalme entre fibras, empleando comunmente el método de fusión por arco eléctrico.

Para empalmar fibras ópticas de vidrio individualmente por fusión se sugiere el procedimiento de la figura 7.6

Descubrimiento de la fibra

Es el procedimiento para preparar los extremos de la fibras que han de cortarse. Inicialmente se remuven todas las cubiertas y envolturas del cable hasta dejar solamente la fibra recubierta, es decir, la fibra con su recubierta primaria, aislante y secundaria, estas 3 recubiertas envuelven a la fibra (núcleo y revestimiento) en el orden mencionado.

Posteriormente se quitan las 3 recubiertas, lo cual se realiza en dos pasos. El primer paso consiste en remover -

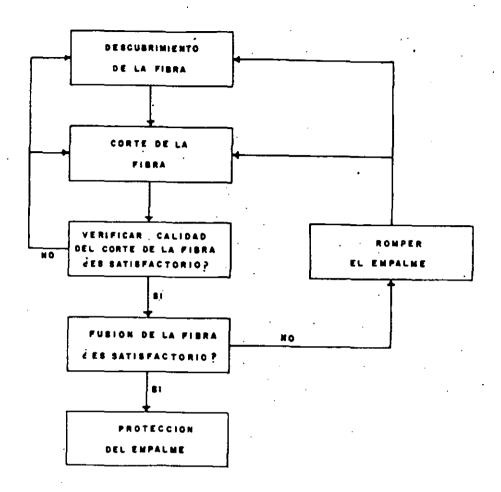


FIG. 7,6- PROCEDIMIENTO PARA EMPALMAR FISRAS OPTICAS

la recubierta secundaria y en el segundo se quitan la recubierta aislante y primaria: Cualquier método que se use para remover los 3 recubrimientos, debe evitar fracturar la fibra que causa reducción en su resistencia y aumenta la probabilidad de falla.

El recubrimiento secundario se quita en diversas formas, una de ellas es por medio de una pinza para remover recubrimientos, similar a la pinza usada con conductores metálicos delgados, en la figura (7.7) se tiene una muestra. --

FIG. 7.7 PINZAS PARA DESCUBRIR LA FIBRA

Otras de las herramientas simples para remover mecanicamente el recubrimiento secundario, desarrollado por dos fabricantes Japoneses se muestran en la figura 7.8.

Con los dos métodos mecánicos descritos, resulta dificil quitar el recubrimiento primario, por esta razón se emplea comunmente un papel humedecido con alcohol, con el cual se ejerce un cepillado sobre la fibra que logra remover con limpieza la recubierta primaria. Un inconveniente del cepillado es que puede originar fisuras en la fibra que reducen su resistencia. Por ejemplo la resistencia promedio de una

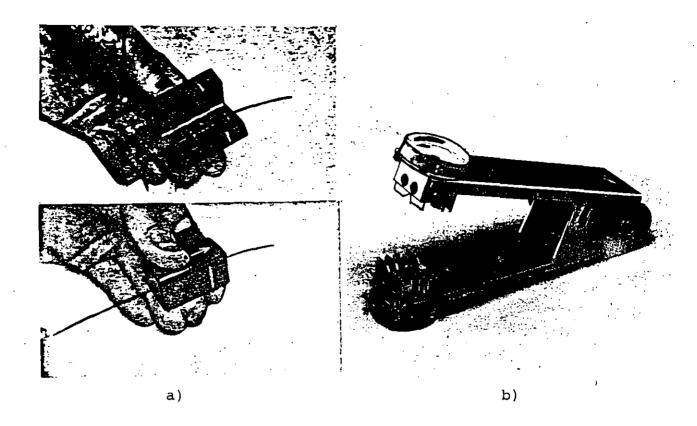


Fig. 7.8 Herramientas para remover la cubierta secundaria en una fibra óptica: a) Tipo Furukawa, b) Tipo Sumitomo.

fibra con recubierta primaria y secundaria es aproximadamente 6 kg. y 7 Kg. respectivamente. Después de quitar el recubrimiento primario la resistencia puede disminuir de 0.7 a 1 kg. Para prevenir la disminución de resistencia se hace una prueba de resistencia en el empalme.

Para quitar el recubrimiento primario existen otros métodos que evitan las fisuras en la fibra. En estos métodos - se reduce la adhesión del recubrimiento primario por calor, solventes orgánicos como el benzeno, un gel de clorido de metileno etc.

CORTE DE LA FIBRA

En el procedimiento para empalmar fibras ópticas por fusión de arco, destaca por su importancia el corte de la fibra; de ésto depende la preparación de los extremos de la fibra para obtener una fusión satisfactoria. Un corte inadecuado comúnmente aumenta las pérdidas en el empalme y demerita su integridad mecânica.

Previo al corte la fibra se marca con un rayador, con el que se ejerce cierta presión que inicia la fractura de la fibra. De aquí, la necesidad de tener un adecuado control de la distribución del esfuerzo en la zona de fractura, a fin de obtener en el corte extremos de la fibra libre de disturbios indeseables (ondulaciones pronunciadas, astillas y labios grandes, etc.).

Las fibras de vidrio se tienden a romper formando una -zona de fractura compuesta de 3 regiones, que se conoce como las zonas de espejo, opaca y fragmentada, figura 7.9.

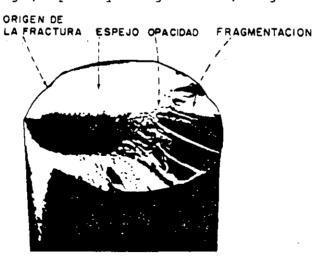


Fig. 7.9 Fractura típica en una fibra.

La zona de espejo es un área lisa adyacente al origen - de la fractura, la zona fragmentada es un área donde la fractura se bifurca formando pequeñas áreas, y la zona opaca es un área de transición entre las dos anteriores.

Para efectuar el rayado y corte de la fibra, los fabricantes han desarrollado diferentes modelos, uno que ha dado buenos resultados en la práctica de campo es el fabricado -- por Sumitomo mostrado en la figra (7.10). En la parte a) de la figura, se oberva la forma de ejercer la tensión que cor-

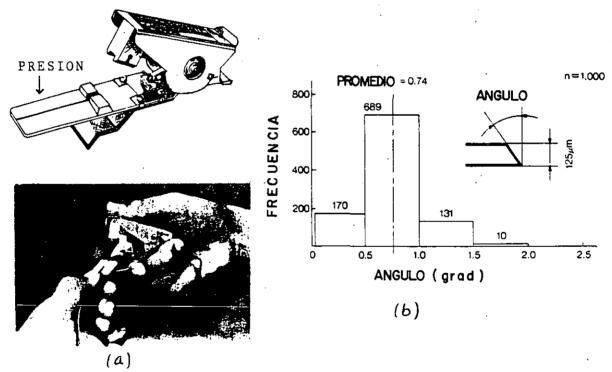


Fig. 7.10 Herramienta para efectuar el rayado y corte de la fibra, así como los ángulos de corte logrados.

tará a la fibra previa operación de rayado. y en la parte -- (b) el histograma de los ángulos de corte obtenidos, de ---

acuerdo al fabricante el corte se logra con una calidad que el 93% está libre de defectos.

La calidad de corte en los dos extremos de las fibras por empalmar, se verifica colocando las fibras sobre una ranura en V, al rotar las fibras se puede apreciar la calidad
del corte por medio de un microscopio. En la figura (7.11)
se da una guía en este punto. En los ultimos años se han -puesto en el mercado, empalmadores que en forma automática evaluan la calidad del corte para aceptarlo ó rechazarlo. En
algunos modelos el dispositivo de corte se integra en la empalmadora y se reporta que para fibra unimodo se obtienen -cortes con ángulos <1º.

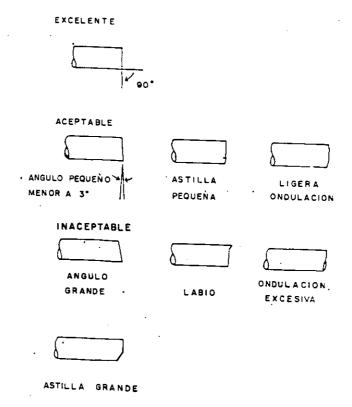


Fig. 7.11 Guía para la calidad del corte en una fibra.

Independientemente del tipo de cortadora usada se aconseja usar alcohol puro para limpíar los extremos de las fibras después de la operación de corte. Esto es necesario realizarlo antes del alineamiento al que se someten -las fibras en la empalmado.3.

7.3 Diferentes tipos de fusión para la fibra óptica.

Después de haber realizado el corte en los dos extremos de la fibra por empalmar, se colocan las fibras sobre una ranura en V que sirve para alinear y unir los extremos. Por medio de una fuente térmica se aplican temperaturas cercanas a 1800°C a la unión, el vidrio se funde y al cesar la temperatura elevada el núcleo y revestimiento de los extremos queda unido permanentemente.

El empalme por fusión bien hecho, probado a resistencia y protegido adecuadamente, es bastante fuerte para usarse en interiores y en las condiciones habituales de la planta externa. Existen diferentes métodos para fundir el cuarzo de la fibra individual. A la fecha los que han tenido mayor utilidad son el de arco eléctrico y después el de microflama. Para empalmar fibras multimodo individuales, se han fundido con un laser de CO2 como fuente térmica; logrando un mejor control del calor que con la microflama. Las pérdidas que se obtienen en el empalme son de 0.1 dB para fibras identicas. Sin embargo la complejidad del equipo con fuente laser, restringe su uso al laboratorio.

La técnica de fusión por microflama se presenta en la figura 7.12, los gases que se emplean para la combustión son oxígeno e hidrógeno de alta pureza, los cuales se introducen en un quemador miniatura que produce una microflama que calienta la unión de las fibras. Al parecer el buen control y

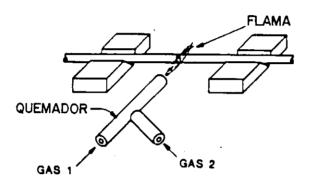


FIG. 7.12 FUSION DE LA FIBRA POR MICROFLAMA

distribución del calor, produce empalmes más resistentes que con arco eléctrico, esto es especialmente cierto cuando se - usa una microflama con clorino. Los inconvenientes que tiene la fusión por microflama comparado con el arco eléctrico, es que el equipo es más complicado y la automatización menor. Los dos métodos producen en el empalme pérdidas bajas alrede dor de 0.1 dB.

1.3.1 Fusión por arco eléctrico

El equipo para alinear y fundir la fibra óptica de vidrio multimodo y unimodo, usa como fuente térmica un arco eléctrico cuyo esquema básico se presenta en la figura 7.13 El arco eléctrico se produce generalmente con una corriente alterna de alto voltaje y corriente reducida, el cual se -- inicia entre los electrodos por lo común de fugsteno. La co

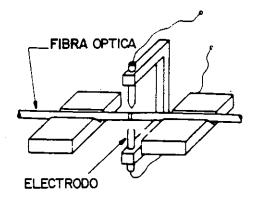


FIG. 7.13 FUSION DE LA FIBRA POR ARCO ELECTRI CO

rriente se controla para ajustar la temperatura en la región del arco, y de este modo fundir solo los extremos de la fi-bra.

A fin de tener un empalme de pérdida baja y buena calidad, se deben evitar: imperfecciones en los extremos de la fibra, variación en la presión de la unión y variaciones en la energía al calentar. Los inconvenientes anteriores ocacionalmente llevan a la formación de burbujas y corvaturas; para reducir estos efectos se recurre a la prefusión, la --cual consiste en un calentamiento ligero sobre los extremos de la fibra previo a, la fusión. Con la prefusión se disminuyen las imperfecciones en los extremos, posibilitando la obtención de un empalme más confiable y con una pérdida promedio baja inferior a 0.1 dB. Estas características se pueden lograr en las aplicaciones de campo como pozos de trabajo y postes telefónicos.

al Prefusión de fibras individuales

En la figura 7.14 se tiene el procedimiento de prefu--sión, se observa la pérdida en el empalme en función al tiem
po de descarga. En la parte A se presenta el estado inicial
con pérdidas por desalineamiento, por reflexión de Fresnel e
imperfecciones de extremo. En el punto B se aplica la prefusión y se aumenta la pérdida. Cuando se unen a presión las
fibras disminuye la pérdida como se ve en C. Finalmente en
D se calientan y alizan las fibras obteniendo reducción de

FIG. 7.14 PROCEDIMIENTO DE PREFUSION

pérdidas. Las condiciones de prefusión deben controlarse, de lo contrario se pueden incrementar las pérdidas como se observa en la curva punteada.

tural el núcleo y revestimiento de la fibra, lo cual compensa desplazamientos de pocas micras y reduce la pérdida en el empalme. La calidad del empalme se puede determinar por la precisión en el alineamiento y comprobando la ausencia de purbujas, zonas enegrecidas y reducción de diámetro en el punto de empalme. De acuerdo al fabricante con este tipo de empalmadora para fibras de índice gradual, se obtienen pérdidas promedio de 0.07 dB para aplicaciones de campo. En función a la tolerancia en las dimensiones de las fibras, la pérdida en el empalme por lo general oscila entre 0.1 y 0.2 dB.

c) Empalme individual de fibras unimodo.

Las empalmadoras semiautomáticas de índice gradual, reaalizan el alineamiento de la fibra en base a la dimensión ex terna del revestimiento y con la ayuda de la ranura en V se logra el centrado de los núcleos por lo general de 50 µm. En la fibra unimodo cuyo diámetro del núcleo varia de 8-10 μm , y la excentricidad de sus núcleos es común, se requiere un alineamiento mucho más preciso que con el conductor de índice gradual. Para esto, se han desarrollado diversos métodos de alineamiento activo que permiten el ajuste rápido y con alta precisión de fibras de Indice gradual y unimodo. En figura 7.16 se muestra un ejemplo conocido como sistema lo-cal de inyección y detección de luz (LID). El sistema LID tiene como principio básico la inyección y extracción de luz de una fibra con radio de curvatura pequeño. En el lado transmisor un led acopla luz. (por medio del modo LP11) a la fibra por empalmar en la parte curveada, la luz se propaga entre los extremos por empalar y llegar a la fibra curveada

b) Empalme individual de fibras multimodo.

Para empalmar fibras multimodo de 50/125µm se han usado en el campo empalmadoras semiautomáticas como la que se mues tra en la figura 7.15. Inicialmente la fibra ya cortada se coloca en la ranura en V para su alineamiento. Al apretar - el interruptor de inicio las fibras son alineadas longitudinalmente en forma automática. Por medio del microscopio desde dos direcciones en ángulo recto se observa el corte (que ha de ser en ángulo <3°) y también el alineamiento de los extremos. Finalmente al activar el interruptor de descarga, au tomáticamente se realiza la prefusión y finalmente la fusión con lo cual queda terminado el empalme. Cuando la fibra se funde la tensión superficial del vidrio, alinea en forma na-

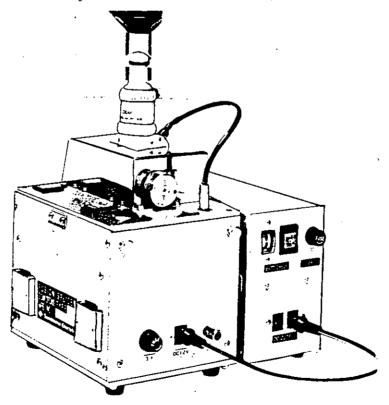


Fig. 7.15 Empalmadora semiautomática para fibra multimodo.



Fig. 7.16 Alineamiento automático de la fibra usando microprocesador y sistema LID.

en la parte receptora donde la luz es forzada a salir (por medio del modo LP_{11}) de la fibra, siendo captada por un foto diodo que la convierte a señal eléctrica. Esta señal se amplifica y se aplica a un microprocesador, el cual alinea en 3 ejes a la fibra hasta lograr un máximo acoplamiento en el punto de empalme.

El efecto favorable de la tensión superficial en la fusión de las fibras de índice gradual, en las fibras unimodo es una desventaja. Esto se debe a que la fusión de los extremos de la fibra en el punto de unión, provoca movimiento de la masa liquida del vidrio que puede desalinear los núcleos aumentando las pérdidas figura (7.17). Este efecto negativo

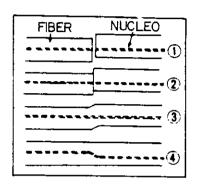


FIG. 7.17 EFECTO NEGATIVO DE LA TENSION SUPERFICIAL

es posible evitarlo con tiempos y corrientes de calentamiento pequeños, así como también con extremos con cortes en ánquio $<1^{\circ}$.

Existen en el mercado diversos tipos de máquinas empalmadoras por fusión de arco eléctrico, la tendencia de desarrollo ha sido la automatización máxima de tales máquinas. - Uno de estos ejemplos es la empalmadora de Sumitomo tipo 35 que se muestra en la figura (7.18). El alineamiento del núrcleo se efectua en forma automática por medio de un monitore reo directo de potencia en el núcleo. La fusión es automática y se realiza en un tiempo de 1 minuto o menos, cuenta con un monitor de televisión donde se observa la fusión.

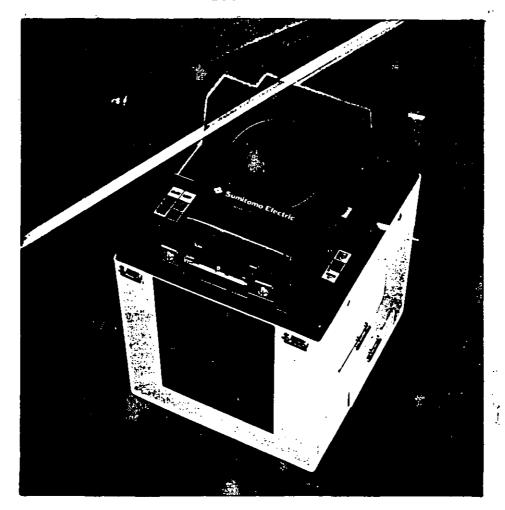


Fig. 7.18 Empalmadora automática de fusión.

En el monitor se valora la pérdida en el empalme y se - estima su apariencia externa. Como opción se puede integrar en la empalmadora, el dispositivo para la protección de em-palmes. Se pueden empalmar fibras multimodo y unimodo, obteniendose pérdidas promedio de 0.03 y 0.05 dB respectivamente para fibras idénticas. En las aplicaciones de campo, la tolerancia en las dimensiones de la fibras hace que la pérdida sea mayor manteniéndose <0.1 dB. En la figura (7.19) aparece el procedimiento de empalme de esta máquina. De acuerdo al fabricante el histograma de pérdidas que se obtienen se mues tra en la figura (7.20).

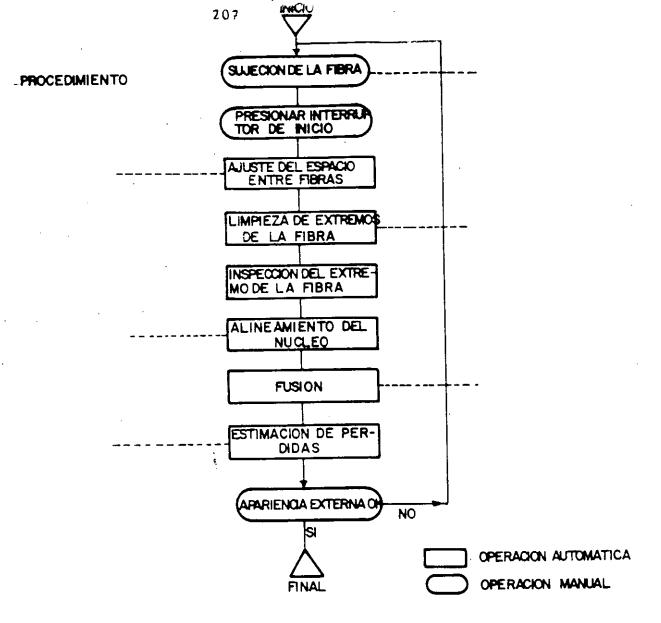
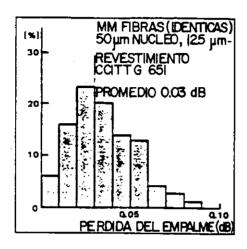



Fig. 7.19 Fusión automática de una fibra con la empalmadora Sumitomo 35.

7.4 Resistencia del empalme.

Al concluir el procedimiento de fusión la resistencia - a la tensión en el empalme, se reduce a una decima parte de la que tiene la fibra original. Este efecto se produce por - las fisuras que se origan por dos causas, la primera se debe al esfuerzo que significa quitar mecanicamente la cubierta primaria. La segunda causa se debe al esfuerzo térmico --

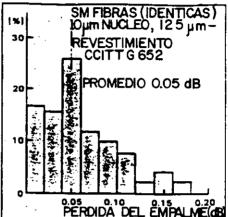


Fig. 7.20 Pérdidas de empalme con la máquina Sumitomo 35.

durante la fusión. (interacción de impurezas en el calenta-miento). Para aumentar la resistencia de la fibra y mejorar
su confiabilidad, se usan dos principios básicos:

1) Se mejora la resistencia antes de la fusión .

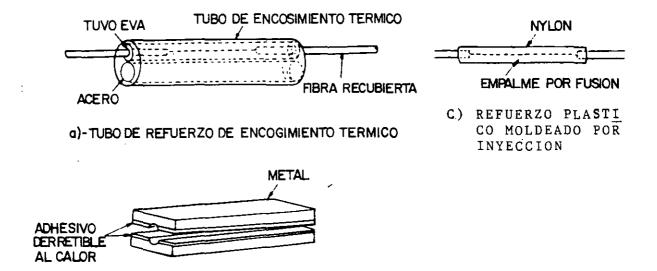
Un método consiste en usar fibras con recubrimiento primario fusionable (SPC). Como no es necesario quitar el recubrimiento primario, se evitan las fisuras que esto represente. Usando fibras SPC la resistencia a la tensión tiene un valor promedio de 1.2 kg.

También se quita el recubrimiento plástico por medio de acido sulfúrico concentrado caliente. El empalme se realiza con una microflama de hidrógeno-clorino, obteniendo una re--

sistencia a la tensión alrededor de 4 kg. Los métodos que -usan compuestos químicos líquidos para remover el recubri--miento primario, son idoneos para lograr empalmes de alta re
sistencia. Sin embargo, estos métodos requieren ser muy cuidadosos especialmente para las aplicaciones de campo.

Además de los diferentes solventes líquidos que se usan para quitar el recubrimiento primario, existe un gel hecho - de clorido metileno que realiza la misma función con la ventaja de ser más práctico ya que se fabrica en envases como - los usados con dentríficos.

2) Se incrementa la resistencia después de la fusión.


Se usa el acido hidroflúorico para limar y quitar las fisuras grandes que resultan durante el empalme. Con ello la resistencia de la fibra mejora, llegando a valores de 1.5 a 2 kg.

Otra forma de mejorar la resistencia de la fibra des--pués de la fusión, es por medio de un refuerzo o protector del empalme. Esta técnica es la que se usa comunmente en las
instalaciones de fibra óptica.

7.4.1 Refuerzo o Protección del Empalme.

La región de fusión de las dos fibras, se cubre con un protector de empalme para proveer confiabilidad en el plazo largo. El protector puede tener diferentes estructuras tal y como se muestra en la figura 7.21. La estructura que ha adquirido gran propularidad es la del tubo de encogimiento tér

mico, la cual tiene una pequeña barra de acero que le da al empalme la resitencia adecuada.

b)-REFUERZO SANDWICH

Fig. 7.21 Diferentes estructuras de protector de empalme.

Cualquier tipo de protector que se use debe reunir cier tos requisitos como son: aumento de resistencia a la tensión y curvaturas, estabilidad en el tiempo de las característi-cas de resistencia y transmisión, simple y rápido de realizar, bajo costo. En la tabla 7.2 se presentan comparativamen te las características de los tres tipos de protectores. En la figura 7.22 se observa el aumento en la resistencia a la tensión (o disminución en la probabilidad de falla) que se obtiene en el empalme cuando se usa el protector de tubo tér mico.

Tabla (7.2) Características de protectores de empalme

Refuerzo	, -	Tiempo de trabajo (minutos)	Resistencia a la ten sión (kg)	Características
Tubo termo contractil	0.02	4	1.7 ~ 2.4	Facilidad para: de terminar condicio nes de refuerzo y construcción de - máquinas requeri- das.
Sandwich	0.18	2	1.6 ~ 2.3	Capacidad para automatizar la operación
Plastico moldeado	0.3	4	0.7 ~ 2	Protector pequeño Máquina complica- da

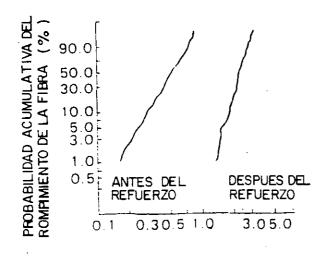


Fig. 7.22 Resistencia a la tensión del protector de - tubo térmico.

RESISTENCIA A LA TENSION (Kg)

Algunos modelos de empalmadores tienen integrado el dis positivo calorífico necesario para el encogimiento del protector de tubo. También existen en el mercado estos dispositivos como unidad individual, en la figura (7.23) se tiene un modelo fabricado por Sumitomo donde se realiza automática mente el encogimiento del tubo térmico. Además realiza automáticamente la prueba de tensión en el empalme a fin de reducir la probabilidad de ruptura en el futuro y lograr más alta confiabilidad. A continuación se dan en la tabla (7.3) al gunos valores que el fabricante suministra después que se ha colocado el refuerzo de tubo termocontractil.

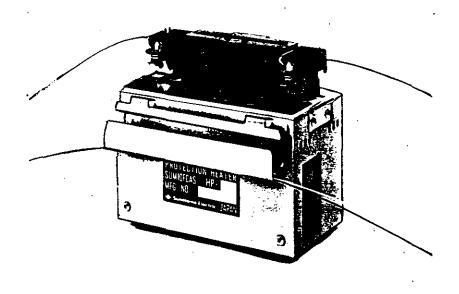


Fig. 7.23 Fuente térmica automática para el refuerzo del empalme.

Tabla 7.3 Probabilidad de ruptura en el refuerzo de empalme.

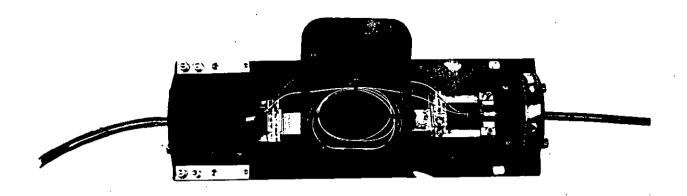
Resistencia a la tensión después del refuerzo 2.2 kg. promedio

	 -	1		
Fuerza de tensión en HPA-3	180g	200g	230g	260g
Probabilidad de ruptura en la prueba	0.6%	0.9%	2%	3%
Probabilidad de ruptura du- rante 20 años	10-4	10-5	10,-6	10-7

7.4.2 Cierre o Caja de Empalmes.

Para unir tramos de cable óptico, se empalman las fi-bras por fusión y se coloca el protector o refuerzo del em-palme. Posteriormente es necesario envolver o encerrar al conjunto de fibras en una estructura que de a la unión las propiedades funcionales del cable original. Esto se obtiene
por medio de lo que se conoce como cierre o caja de empalmes

Existen una gran variedad de cierre de empalmes de --acuerdo a diferentes aplicaciones, por ejemplo para uso en líneas de centrales o abonados, pudiendo ser de paso o derivación. También los tipos de instalación del cable (aéreo, bajo tierra y submarino) obligara a diseños y materiales que
respondan a las características ambientales.


Así se tiene que por el factor agua o humedad, las condiciones a que se somete el cierre de empalme son diferentes para instalación aérea que para bajo tierra. Para el cable - aéreo, el agua se puede infiltrar al cierre de empalme cuando existe lluvia o neblina, sin embargo, el efecto no es muy marcado. Por el contrario el cable bajo tierra puede encontrarse dentro de agua por periodos largos. Esto se presenta en los pozos de trabajo donde suele instalarse el cierre de empalmes que puede ser muy afectado por el agua. Para evitar tal inconveniente el cable se rellena con un gel que impide la penetración de agua y el cierre de empalme debe ser hermético, y se suele colocar dentro de el pequeñas bolsas de sal para absorver la humedad, así como algun tipo de papel que indica aumento de humedad al cambiar de color.

Algun tipo de cable óptico en lugares del relleno de --gel, usa gas presurizado, por lo que el cierre de empalme se ra adaptado a ello. Es importante que el cierre de empalme - facilite operaciones futuras de reabrir, reempalmar, derivar etc. En las figuras 7.24 y 7.25 se muestran modelos usuales de cierre y caja de empalmes.

7.5 EMPALME MECANICO.

Para empalmar fibras por medios mecánicos existe una variedad considerable de métodos. Las operaciones que se realizan por lo general son: corte de los extremos por empalmar, alineamiento preciso del eje de las fibras y retención perdurable de la unión. En la tabla 7.4 se presentan los métodos típicos.

Con objeto de alinear las fibras la ranura en V parece ser la técnica mas simple y usual. La retención permanente, se logra con materiales adhesivos que tengan el mismo índice

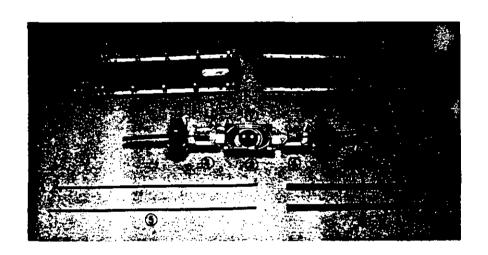


Fig. 7.24 Cierre de empalme.



Fig. 7.25 Caja de empalme.

de refracción que la fibra, tales como cemento y epoxies. Es to es necesario porque el material adhesivo se infiltra en-tre los extremos de la fibra. La degradación con el tiempo de los materiales adhesivos afecta las características de transmisión, lo cual constituye una limitante del empalme mecánico.

En la tabla 7.4 se dan algunas propiedades comparativamente entre dos tipos de empalmes mecánicos y el de fusión. En la figura 7.25 se muestra el costo por empalme que se obtiene comparando el empalme mecánico y por fusión.

Tabla 7.4 Propiedades de métodos de empalme.

Método	P é rdida en empalme	Dimensiones del refuerzo	Tiempo de empalme	Propiedades
Ranura en V	0.1 dB	4X6X30 mm	Grande	 Requiere habilidad Variaciones poten- ciales de tiempo
Manga	0.3 dB	4x5x60 mm	Grande	 Dificil de operar Variaciones poten- ciales de tiempo
Fusión	0.1 dB	3X3X60 mm	Corto	• Se requiere equi- po sofisticado

PLACA PARA TAPAR
RANURA EN V

AHUJERO PARA EL MATERIAL
DE ACOPLAMIENTO
MANGA FIBRA

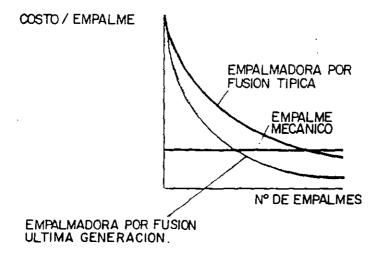


Fig. 7.26 Costo por emapalme para método mecánico por fu sión.

8.7.1 ETAPAS DE MEDICION

Los diversos métodos de medición que se aplican a la fibra óptica parten desde el control del método de fabricación de la misma fibra, en los cuales se miden diversos parámetros como son concentricidad núcleo/revestimiento, atenuación, ancho de banda, dispersión y varios más.

Otra de las etapas de medición lo constituyen las mediciones durante la fabricación del cable, en los cuales se miden algunos de los parámetros que se obtuvieron en la fabricación de la fibra, esto es con la finalidad de comprobar que al fabricar el cable, estos parámetros no fueron al terados de forma que salgan de las normas.

Ahora bien las mediciones mencionadas anteriormente, for man parte en consecuencia de las etapas de fabricación de la fibra y el cable. En el presente trabajo estamos enfocando nuestra atención a las etapas de instalación y analizaremos pues las mediciones realizadas en estas etapas.

- a) Bobina a Pie de Obra. Las pruebas a realizar en esta fase tienen por objetivo comprobar que se han recibido los materiales solicitados y que no han su frido degradación durante el transporte. Para ello se realiza, a cada una de las fibras, las pruebas siguientes:
- . Detección de defectos.
- . Comprobaciones previas.

Estas pruebas consisten en una inspección física del cable y la verificación de la atenuación de las fibras median te el reflectómetro (este método se detallará más adelante) Son realizadas en el almacen situado a pie de obra, por el personal responsable de la instalación.

Se ha de comprobar el buen estado de las bobinas y no se comienza la instalación si estas tuvieran algún defecto. Además se efectúa un registro de la señal retrodispersada en cada fibra, lo que da el estado de la misma sirviendo de referencia para la fase siguiente.

Los resultados de esta medición se deben comparar con los datos de la hoja técnica que el fabricante debe entregar al momento de suministrar el cable.

b) Bobina Tendida. - En esta fase se comprueva que durante el tendido, el cable no ha sido sometido a fuertes tensiones que sean causa de la rotura de las fibras u otros defectos y que no existen curvaturas pronunciadas en las mismas que produzcan atenuación.

Las pruebas a realizar son:

- . Detección de defectos.
- . Atenuación por retrodispersión.

Nuevamente se hace una inspección física del cable y se somete a comprobación mediante el reflectómetro. En la mayoría de las ocasiones esto no se lleva a la práctica por cuestión de tiempo, sin embargo consideramos que este es un punto importante que nos puede evitar trabajo extra, pues al efectuar esta etapa de medición podemos detectar a tiem po fallas en la instalación, que de omitirse nos podrían llevar a trabajos de revisión o corrección de algún problema.

Deben realizarse a cada una de las fibras las mediciones. Los registros han de compararse con los efectuados antes de tender la bobina, para detectar los posibles defectos de construcción o las mejoras alcanzadas al perder el -

cable la situación de enrollamiento de la bobina, esto es detectable sobre todo en cables con fibras multimodo, ya que a este tipo de fibra la curvatura significa mayor atenuación.

c) Empalmes. Debido a la influencia de los parâmetros intrinsecos de las fibras, en el valor de atenuación del empalme, es preciso medir este parâmetro durante su realización para comprobar que no se superan los límites establecidos.

La prueba a realizar es:

. Atenuación por retrodispersión.

Esta medida se realiza antes de colocar el tubo termocontractil sobre el empalme, procediendo a repetirlo cuando la tenuación de este supera 0.2 dB. También se ha de repetir esta medida una vez colocados los empalmes y pigtails -(conectores finales) en la caja de empalme terminal.

Para obtener los valores de atenuación de los empalmes al momento de la ejecución, se debe establecer un circuito de comunicación entre el empalmador y un técnico que obtiene las mediciones en el extremo del cable o del enlace mediante un OTDR (Reflectómetro Optico por Dominio en el Tiempo). Dicho circuito de comunicación puede ser improvisado utilizando el núcleo y la armadura de acero del cable o bien a través de radiocomunicación o algún otro medio.

d) Medidas Finales. Una vez que se han efectuado la totalidad de los empalmes, es preciso realizar las medidas finales entre extremos del cable.

Estas son:

- . Detección de defectos.
- . Atenuación por retrodispersión.
- . Atenuación por pérdidas de inserción.

Estas medidas se efectuarán a cada una de las fibras, en la longitud de onda a que se va a trabajar el sistema.

8.7.2 DESCRIPCION DE LAS MEDICIONES

En este apartado se describen brevemente las distintas mediciones que hemos mencionado, para fibra monomodo así co mo la organización del personal y los medios necesarios para efectuarlas.

COMPROBACIONES PREVIAS

Antes de comenzar las mediciones en la bobina a pie de obra se deberá hacer una inspección física de la misma, dicha inspección física consiste en hacer una revisión visual para comprobar su estado externo, verificando los datos de la hoja técnica del fabricante, se observará:

- . Número y tipo de fibras.
- . Tipo de cubierta.
- . Longitud de la bobina (cotejandolo con el marcaje en el cable).
- . Características mecánicas del cable (peso y tensión máxima de tiro).
- . Características de transmisión (atenuación).

DETECCION DE DEFECTOS DE LA FIBRA OPTICA.

Para realizar esta medición en el almacen de cable o en campo, es necesaria una camioneta acondicionada especialmente para esto, la cual dispondrá en su interior de mesa con anclaje para el aparato y bandeja para elementos auxiliares, la figura 8.18 muestra el interior de la camioneta. Para alimentar el equipo es necesario un generador de 110V; además se precisa de las herramientas para la apertura de los pozos, protecciones y señalización.

También se realiza esta prueba en la sala de transmisión de la central telefónica donde termina el cable. En este caso es preciso disponer de una mesa a la cual se trasladará el equipo desde la camioneta. La alimentación se tomará de la red.

Para realizar esta medida son necesarios dos técnicos y un empalmador, el cual efectuará la preparación del extremo del cable y de las fibras.

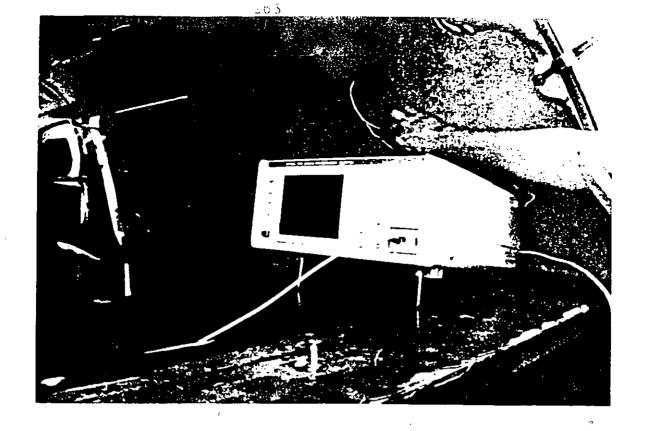


FIG. 8.18 INTERIOR DE LA CAMIONETA DURANTE LA PRUEBA DEL CABLE

El aparato empleado para esta medición utiliza la técnica de retrodispersión que proporciona en pantalla (figura 8.19) la gráfica de la fibra en la que se observa la continuidad óptica y las atenuaciones (defectos y empalmes) permitiendo la medida de estas y su localización, así como medir la atenuación de la fibra y su longitud.

8.7.3 ATENUACION POR RETRODISPERSION.

El principio básico del reflectómetro se muestra en la siguiente figura 8.20. Un pulso de luz se inyecta a la fibra bajo prueba mediante un acoplador "Y. El acoplador se utiliza para inyectar el pulso en la fibra, recibir la energía retrodispersada, separarla y dirigirla a un detector fotosensible en el otro extremo del acoplador. La señal retrodispersada se detecta, procesa y se presenta en una pantalla.

El principio teórico del método se fundamenta en el mecanismo de dispersión de Rayleigh. Este mecanismo origina un esparciamiento de la energía luminosa en todas las direcciones, con una distribución proporcional a $(1 + \cos \theta)$, cuando la luz no es polarizada, y donde θ representa el ángulo entre la dirección de propagación y la de dispersión. De la energía que se esparce en cada punto de la fibra sólo una fracción S, se mantiene dentro del núcleo y regresa hacia el extremo de la fibra por el que se inyectó la luz.

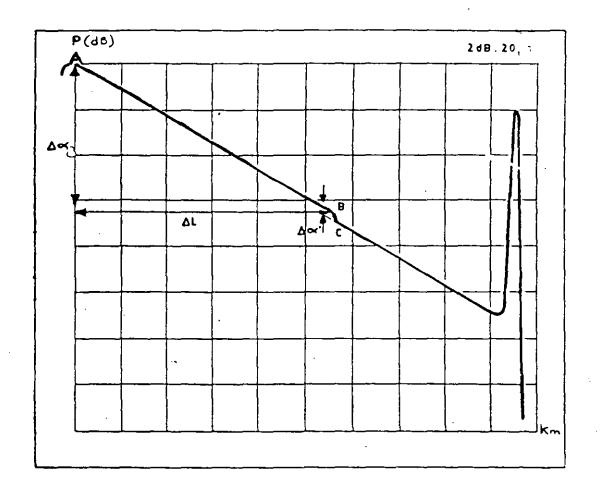


FIG. 8.19

GRAFICA A MANERA DESCRIPTIVA DEL OTDR (PERDIDA ENTRE DOS PUNTOS)

FIG. 8.20 PRINCIPIO BASICO DEL REFLECTOMETRO.

En otras palabras, cuando introducimos por un extremo de una fibra óptica un impulso de luz, parte de la energía de ese impulso se ira dispersando en cada punto de la fibra y en consecuencia, a la cara por la que se introdujo el impulso llegará una señal óptica P(t) de tipo exponencial, cuya constante de tiempo y duración es proporcional a la atenuación y a la longitud física de la fibra respectivamente.

En la práctica P(t), no es perfectamente exponencial, ya que se presentan fluctuaciones en la velocidad de grupo (c/n, donde c = velocidad de la luz en el vacío y n es el findice de refracción) y en el coeficiente de aceptación S. Todo ello hace algo irregular la forma exponencial de P(t) y por lo tanto, dificulta y oscurece la información que proporciona la medida, según se aprecia en la figura 8.21. Este inconveniente puede subsanarse efectuando la medida desde ambos extremos de la fibra bajo prueba.

La respuesta en escala logaritmica obtenida por el aparato (según la figura 8.19), da la atenuación entre dos puntos de la fibra aplicando la expresión:

$$\alpha_{AB}(dB) = (1/2) (P_A - P_B) = \Delta \alpha / 2$$

siendo $\Delta\alpha$ la lectura en pantalla para la atenuación.

La atenuación por unidad de longitud será:

$$\alpha(dB/Km) = (1/2) (P_A - P_B) = (1/2) (\Delta\alpha/\Delta L) (L_B - L_A)$$

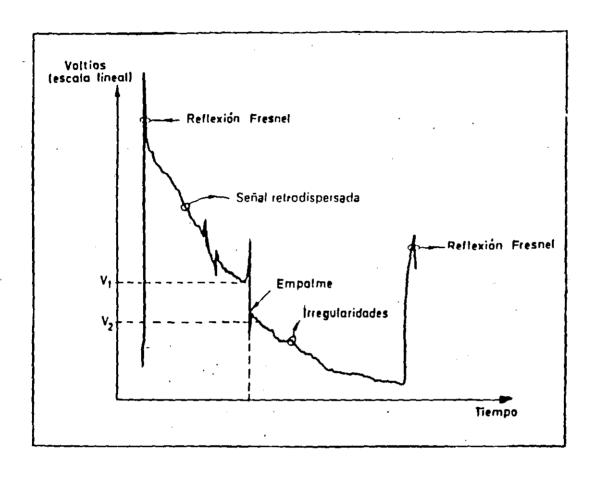


FIG. 8.21

REPRESENTACION GRAFICA DE UN EMPALME DE FIBRA OPTICA EN EL OTDR

129

donde

 L_{A} = Longitud hasta el punto A.

 L_{R} = Longitud hasta el punto B.

El mecanismo de dispersión de Rayleigh también posibilita caracterizar la atenuación de los empalmes. Esta atenuación se manifiesta en forma de un descenso brusco de la señal retrodispersada P(t), según puede observarse en la figura (8.21). El valor numérico de la pérdida se evalua según la expresión.

$$\alpha_{\text{Empalme}}(dB) = (1/2)10 \log_{10} (V_1/V_2) = 5 \log_{10} (V_1/V_2)$$

siendo V_1 y V_2 los niveles de la señal P(t) en los puntos inmediatamente antes y después del empalme.

La recomendación G.651 del CCITT indica que para obtener un valor confiable de la atenuación del empalme se debe realizar la medición en ambos sentidos y obtener un promedio.

8.7.4 ATENUACION POR PERDIDAS DE INSERCION

Como medida final ha de realizarse la medida de la atenuación neta del enlace de fibra óptica, para lo que se utiliza la técnica de pérdidas por inserción.

Para efectuar esta medida es preciso tener acceso a los dos extremos del cable y que entre ambos exista comunicación, por ser la última medición se contará ya con los pigtails empalmados en ambos extremos del enlace y se tiene por lo tanto conectores, por lo que el montaje para estaprueba queda como se muestra en la figura 8.22.

Inicialmente se tomará una señal como referencia evaluando la potencia en un tramo de fibra con características similares a las de la fibra del enlace, dicha señal es P_{ref} posteriormente colocamos la fuente de luz en uno de los extremos del enlace y en el otro extremo colocamos el detector y tomamos la siguiente lectura que será P_0 , finalmente la pérdida total del enlace está dada por:

$$\alpha = 10 \log (P_0/P_{ref}) dB$$

8.7.5 LOCALIZACION DE FALLAS

Cuando los enlaces de fibra óptica han sido realizados, en muchas ocaciones ocurren accidentes a alguna fibra durante el tendido del cable, o bien puede ocurrir que por algún agente externo el cable sufra algún daño. Cuando esto suce de es necesario localizar el punto exacto donde ocurrió el daño.

El procedimiento para determinar la distancia donde se encuentra el daño en la fibra es el siguiente:

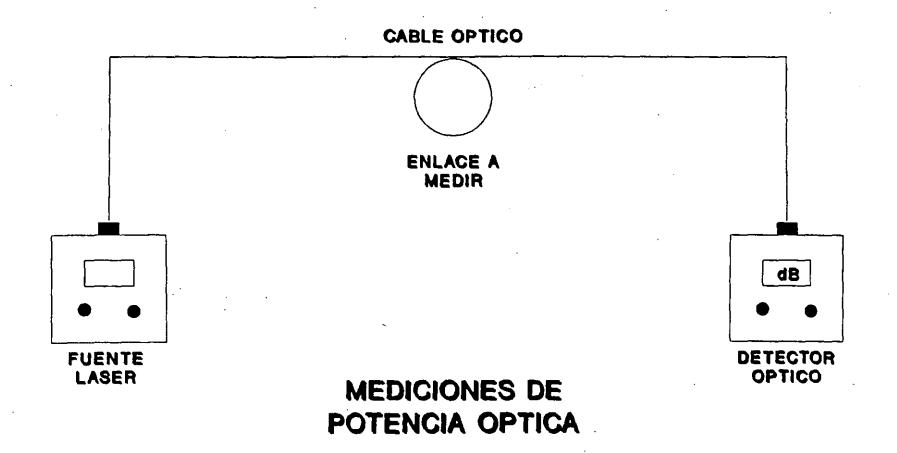


FIG. 8.22

a) Una vez estando en la central telefónica donde termina el cable del enlace, procedemos a efectuar la medición de todas las fibras del enlace, conectado cada pigtail a nuestro OTDR. Al entrar en funciona miento el equipo, un corto impulso luminoso es enviado a través de la fibra que se está investigando; este se vará reflejado o dispersado en todo tipo de irregularidades a lo largo de la fibra (impurezas, empalmes y otras). Ver figura 8.23. El intervalo de tiempo transcurrido desde que es enviado el pulso hasta la señal reflejada llega nuevamente al emisor, es medido y presentado en el OTDR, con lo cual es determinada la posición física del problema analizado.

Tomando en cuenta que se conoce la velocidad de la luz dentro de la fibra, es posible de esta forma obtener con bastante precisión la posición a la cual se ubica la falla o defecto estudiado.

b) A causa del salto de índice de refracción al principio y al final de la fibra óptica, como consecuencia del paso de la luz del aire hacia el vidrio y del vidrio hacia el aire respectivamente, se produce una gran reflexión del pulso luminoso que se inyecta y viaja en la fibra, esto produce que la señal mostrada en el CRT tenga dos grandes picos, uno al principio de la señal y otro al extremo final de la curva. La diferencia de tiempos Δt entre ambos picos, la velocidad de la luz en el vacío Co y el

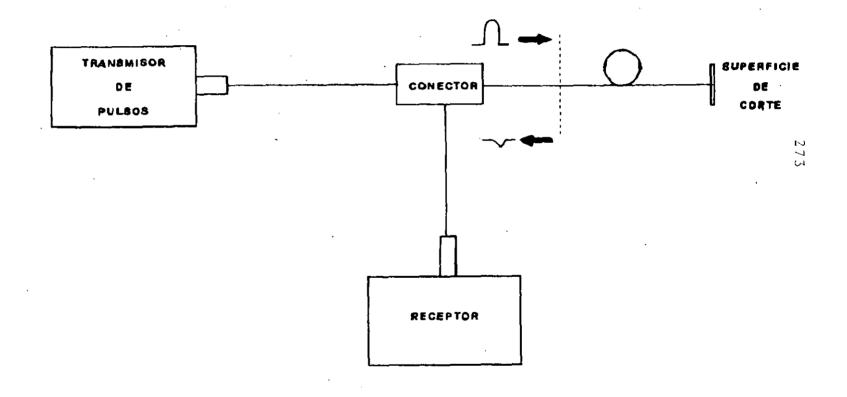


FIG. 8.23 LOCALIZACION DE FALLAS

findice de refracción de grupo n_g = 1.46 en el núcleo permiten calcular la longitud L de la fibra óptica.

$$L = \Delta t (C_0/n_g)$$

8.7.6 ENFOQUE COMPARATIVO ENTRE LOS DIFERENTES METODOS DE MEDICION

El método de medición empleando la técnica de la reflec tometría es uno de los más útiles, ya que nos proporciona una gráfica la cual nos permite apreciar las variaciones en la atenuación en función de la distancia, en consecuencia este método es muy útil para verificar las atenuaciones de los empalmes de línea y corregirlos cuando sea necesario. Permite a su vez efectuar revisiones en las fibras en eta; pas de mantenimiento, ya que en la gráfica podemos ubicar claramente el punto en el cual se ubican las fallas o los puntos con altas atenuaciones.

El método de pérdidas por inserción empleando el par fuente-detector es un método usado en las etapas finales y de puesta en funcionamiento del sistema. Esto es dibido a que este método incluye las atenuaciones en los extremos del enlace, es decir las atenuaciones en los conectores, de esta forma este método proporciona la atenuación total del enlace, en una medición que es definitiva más confiable para efectos de atenuación total del enlace.

Cuantitativamente la diferencia entre ambos métodos es de aproximadamente 2 dB más para el par fuente-detector, lo cual se atribuye a las pérdidas introducidas por los dos acopladores que se tienen en el enlace.

De lo anterior podemos concluir que las mediciones más exactas se realizan con los medidores de potencia. La exactitud debe ser de +/-5% ó mejor.

MEDICION DE ATENUACION EN FIBRAS OPTICAS

1. INTRODUCCION.

Los sistemas de comunicación por fibra óptica, tienen dos características básicas que son la atenuación y la dispersión. Ambas limitan - la separación entre transmisor y receptor; la longitud máxima del enlace será función de la limitante que primero ocurra. En la práctica, des pués que se ha instalado la fibra, es necesario hacer mediciones de ate nuación y dispersión, con el objeto de garantizar que se cubran satisfactoriamente los objetivos previstos en el cálculo teórico.

La medición de atenuación incluye las pérdidas en la fibra, empalmes y conectores, y sirven para preveer el funcionamiento de los equipos terminales, así como una referencia para el mantenimiento del enlace.

La atenuación se puede medir en forma manual o automática. Los métodos manuales son los que se usan en las aplicaciones comunes de campo, por lo que se describen en detalle. Los métodos automáticos, requieren de condiciones especiales para su aplicación como es el caso del fabricante de la fibra, a manera de ejemplo se presenta uno de ellos.

La potencia que originalmente se inyecta en la fibra, se propaga - hacia el receptor, y se le conoce como señal directa, Las condiciones - prácticas de propagación en una fibra, hacen que parte de la señal direc

i:

ta regrese a la fuente óptica. La potencia que regresa, la componen señales de retrodispersión y reflexión. En base a lo anterior, existen dos arreglos para medir atenuación: 1) Técnica de los dos puntos, utiliza la señal directa y se conoce también como técnica directa; 2) Técnica de retrodispersión que se desarrolla en base a la señal que regresa. La técnica directa se describe en la parte inicial y la segunda técnica al final.

Básicamente existen dos métodos para medir la atenuación en forma manual y son: Pérdida por Inserción y Corte Regresivo. Los dos métodos utilizan para medir la potencia un receptor óptico (multímetro óptico). Cualquiera que sea el método utilizado (manual o automático), se deben cumplir ciertos requisitos como son:

- a) Simple y rápido sobretodos si se realiza en el campo donde las condiciones suelen ser adversas.
- b) Versatil con objeto de facilitar la interconexión don la fibra bajo prueba y al equipo asociado.
- c) Suficientemente preciso para que sea confiable.
- d) La técnica de medición empleada debe ser equivalente a la del fabricante para poder contrastar ambos resultados.

Inyección de la luz en la fibra.

La potencia óptica al propagarse en la fibra, experimenta una disminución por los diferentes mecanismos de pérdida existentes. Para una fibra de modo único; la potencia P(x) de cualquier longitud se puede expresar como:

$$P(x) = P_0 e^{-\alpha x} \qquad \dots (1)$$

donde P_0 es la potencia a la entrada, α es el coeficiente de atenuación por unidad de longitud y x es la distancia considerada con respecto a la entrada. Esto supone que la sección transversal de la fibra y el materir rial son uniformes en toda su longitud.

En la fibra de modo multiple aparece la atenuación diferencial de modo, que hace que cada uno de sus modos, tenga un coeficiente de atenuación distinto siempre que no exista acoplamiento de modos. Así que no puede haber un solo valor del coeficiente de atenuación, por lo que la disminución de potencia no se puede calcular con la ecuación y la descripción del coeficiente de atenuación dependen del concepto distribución de potencia en el estado estable.

Cuando la fuente de luz ilumina la fibra, tiende a excitar distintos modos y un grado diferente, dependiendo de las características de - la fuente-fibra e interface de acoplamiento entre ambos. Los diferentes

modos que se excitan pueden ser de diferentes tipos por ejemplo de orden alto, de orden bajo, fugaces, etc., provocando que la luz se propaque tanto en el núcleo como en el revestimiento.

2. MEZCLA DE MODOS Y EXTRACCION DE LUZ DEL REVESTIMIENTO.

La mezcla de modos ocurre en función a la apertura numérica, la dispersión de modo y a las pérdidas diferentes que sufren los modos. Los modos de orden alto pierden más rápidamente la energía que los de orden bajo. Las diversas formas de pérdidas por dispersión que existen en la fibra, causarán que un fotón escape de un modo a otro modo vecino. Este acoplamiento de modos produce conversión de modos de orden alto en modos de orden bajo y viceversa. El intercambio de energía entre modos hace que la energía se redistribuya con más uniformidad en los diferentes modos. Cuando el acoplamiento de modos es fuerte, nulifica el efecto de la atenuación diferencial de modo, y la potencia transportada por los diferentes modos será la misma, tendiendo a establecer una distribución de potencia en el estado estable.

Cuando no hay acoplamiento de modos, el estado estable se alcanza si sólo existen los modos (o modo) de atenuación más baja. Los modos de atenuación grande no tienen potencia significativa y se puede considerar que no existen.

A partir que se ha alcanzado la distribución de potencia en el es-

tado estable, la razón de potencia de los modos con relación a la potencia de un modo de referencia, será independiente de la distancia longitudinal. En estas condiciones se puede asignar un coeficiente de atenua ción por unidad de longitud, que obedece a una ley exponencial de decai miento como la ecuación (1) Antes del estado estable, no se puede ha cer la consideración anterior, ya que existe un transitorio.

La luz que se inyecta a la fibra, se propaga tanto en el núcleo como en el revestimiento. La parte que se propaga en el núcleo tiene una atenuación menor que la del revestimiento, por lo que en el extremo de salida de la fibra, existirá generalmente sólo propagación en el núcleo. Los métodos de medición comprenden una medición en la entrada y otra en la salida de la fibra bajo prueba. Al medir la potencia de entrada se incluye la luz del núcleo y del revestimiento, sin embargo, la medición de la potencia de salida sólo contiene la luz del núcleo, ya que la atenuación grande del revestimiento no permite que llegue energía al extre mo de salida. La diferencia entre los valores obtenidos dará la atenuación en la fibra, que resultará en estas condiciones superior a la atenuación real de la fibra.

Para evitar el error mencionado y con objeto de que la medición - sea precisa, contrastable con las especificaciones del fabricante e independiente del tipo de fuente de luz, debe existir en la fibra distribución de potencia en el estado estable y propagación sólo en el núcleo. La primer condición se obtiene con tres técnicas: 1) Natural, 2) De haz puntual, y 3) Artificial o de inducción.

Para que la luz se propague unicamente en el núcleo, se requiere hacer la extracción de luz del revestimiento o que la fibra tenga aproximadamente más de 1 km. de longitud. La extracción de luz se debe rea+
lizar cuando la longitud de la fibra es aproximadamente < 1 km. Esto se
obtiene usando sustancias con indice de refracción mayor al del revesti
miento (aceite de índice de máquina, epoxy, etc.). La sustancia se colo
ca a la entrada (o a la salida) de la fibra bajo prueba, cubriendo el revestimiento de 4-6 cm. Cuando la fibra tiene aproximadamente más de 1 km., en el extremo de salida prácticamente sólo habrá luz en el núcleo
En este caso no es necesario aplicar sustancia alguna, esto es especial
mente cierto, cuando la cubierta plástica de la fibra, tiene material con un índice de refracción mayor que el del revestimiento.

3. DISTRIBUCION DE POTENCIA EN EL ESTADO ESTABLE.

La distribución de potencia que existe en la fibra, depende entre otras características de la distribución de potencia (patrón de radiación) de la fuente óptica, tal y como se muestra en la figura 1.

En la figura 2 se presente para cada una de las distribuciones de la figura 1, la atenuación en potencia que experimenta la señal óptica con la longitud de la fibra. Cuando la fibra es de longitud corta, es - de notarse los errores en que se puede incurrir al interpretar la ate-

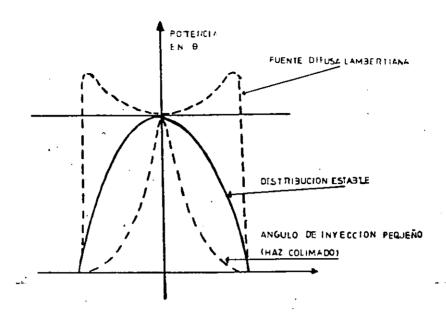


FIG | DISTRIBUCIONES DE POTENCIA TIPICA EN UNA FIBRA DE INDICE DE ESCALON PARA SITUACIONES DIVERSAS

nuación en la fibra. Si la fibra se excita por un laser de modo único - con ángulo de inyección pequeño, las pérdidas de radiación en la fibra, serán menores que las que ocurren con una distribución estable de potencia, lo anterior se interpretaría como una fibra con atenuación menor. En el caso de excitación con una fuente lambertiana difusa, se cubre to da la fibra, lo que provoca que se propaguen modos guiados y fugaces; - resultando al principio de la fibra una atenuación mayor que la del estado estable. Si se usara en la inyección de luz una distribución de po

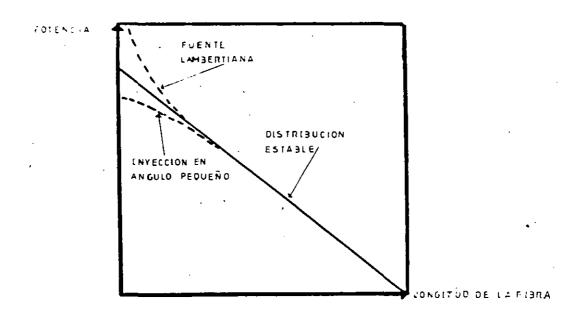


FIG 2 CURVA TIPICA DE ATENUACION DE POTENCIA CON LA DISTANCIA PARA LAS DISTRIBUCIONES DE POTENCIA DE LA FIG. 5,1

tencia intermedia entre las dos anteriores, se obtendría una aproximación cercana a la distribución estable, lo que se puede lograr por medio de las 3 técnicas mencionadas y que a continuación se describen.

a) Técnica Natural. Esta técnica es la forma ideal de obtener distribución estable de potencia, para lo cual se usa la propia fibra. Es decir, cuando la luz ha recorrido una distancia igual a la longitud de equilibrio se produce en forma natural el estado

estable. La longitud de equilibrio, depende del tipo de fibra - empleada, y varía de centenas de metro a varios kilómetros; para la fibra multimodo de índice gradual empleada comunmente en telecomunicaciones, es alrededor de 2 km. En la figura 3 se mues tran algunos resultados típicos para una fibra de índice de escalón. Cuando la distribución de potencia es simétrica respecto a $\theta = \theta^o$, implica que la potencia es la misma en toda la sección transversal de la fibra, lo cual se dá porque los distintos modos aún propagándose en diversos ángulos, tienen o han obtenido la misma potencia. Cuando la luz se inyecta con una fuente Lambertiana, las dos distribuciones de potencia obtenidas en la -

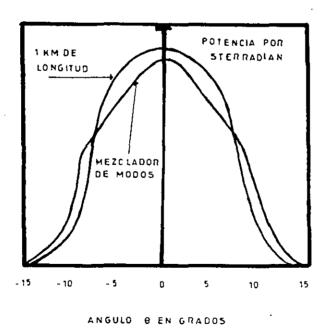


FIG. 3 DISTRIBUCIONES DE POTENCIA EN UNA FIBRA

fibra, se logran en una forma natural usando una fibra de 1 km. de longitud y la otra con técnica aritficial por medio de mez—clador de modos.

Al alcanzarse la distribución estable de potencia, la distribución angular de potencia en la fibra es esencialmente independiente del tipo de fuente, y de las condiciones de alineamiento en la inyección de luz. Como se observa en la figura 3, con las técnicas mencionadas se puede obtener en la fibra, una distribución de potencia que se aproxima al estado estable.

La manera práctica de realizar la técnica natural se muestra en la figura 4. La inyección de luz es a través de una fibra de — longitud fija, conectada a la entrada de la fibra bajo prueba, y de longitud suficiente para asegurar que se alcanza la longitud de equilibrio.

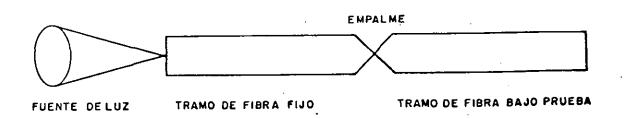


FIGURA 4. OBTENCION DE DISTRIBUCION DE POTENCIA ESTABLE USANDO UN TRAMO DE FIBRA FIJO.

b) Técnica de Haz Puntual. A esta técnica también se le llama Espacio de Fase Limitada y se realiza con un arreglo como el de la figura 5. La luz de la fuente se enfoca al núcleo de la fibra de fipor medio de un lente. Para que la excitación a la fibra de índice de escalón sea eficiente, el haz de inyección de luz, debe tener un tamaño y apertura numérica AN que se acoplen a la fibra. El tamaño del haz tiene que ser igual al radio del núcleo, y la apertura numérica del haz y de la fibra deben ser iguales. Los rayos de luz que inciden fuera del núcleo se pierden. También se pierden los rayos que inciden en el núcleo en ángulos cuya AN es mayor que la AN de la fibra. En una fibra de índice gradual, la AN es función del radio, por lo tanto, para de de gradual, la AN es función del radio, por lo tanto, para de la fibra.

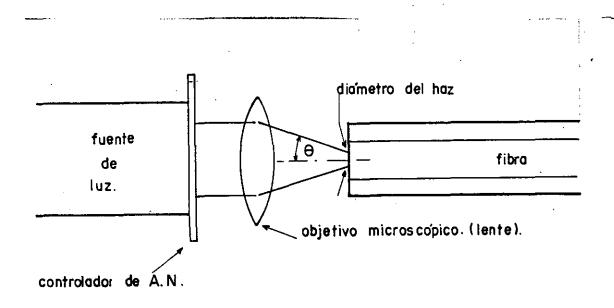


FIG.5 ARREGLO PARA LA TECNICA DE HAZ PUNTUAL.

que se acople adecuadamente, la AV del haz de inyección también debe ser función de su radio. En la práctica, es difícil lograr las condiciones anteriores, por lo que el esquema de medición — con la técnica de haz puntual, resulta un tanto complicado. De acuerdo a la Asociación de Industrias Electrónicas de Estados \underline{U} nidos, el haz de inyección debe tener un diámetro y un ángulo — de inyección que sean 70 ± 5 % del diámetro del núcleo de la — fibra y de la apertura numérica respectivamente.

c) Técnica Artificial o de Inducción. De las técnicas artificiales que han adquirido más popularidad se pueden mencionar: 1) Fibra Enrollada, 2) Fibra de serpentina y 3) Fibra en tramos. Las 3 - técnicas usan simulador de modos equilibrado SME, que también - se conoce como mezclador de modos MM. Para la obtención de las dos primeras técnicas; el SME se implementa con un tramo de fibra que se somete a perturbaciones mecánicas por medio de curva turas. Estas deformaciones forzan el acoplamiento entre modos, y además, incrementan las pérdidas de los modos de orden alto, en esta forma se obtiene el efecto de un filtro de modos altos, produciéndose en forma rápida el estado estable. La tercer técnica se logra al introducir variaciones severas en el índice de refracción, para lo cual se empálman tramos de fibra con diferrente índice de refracción.

La técnica de la fibra enrollada se obtiene como muestra la figura 6, la fibra se enrolla alrededor de un mandril liso, evitando que haya traslape en las vueltas, la tensión no debe ser mayor que la que se necesita para que exista contacto entre fibras y con el mandril. Este SME, es sencillo y produce una distribución de potencia casi estable. Para lograr los mejores resultados, se debe cuidar la preparación en los extremos de la fibra y usar equipo óptico de precisión. El haz de inyección puede sobrellenar la fibra, es decir, se tolera que el diâmetro del haz sea mayor que el del núcleo y que el ángulo de inyección exceda la apertura numérica de la fibra.

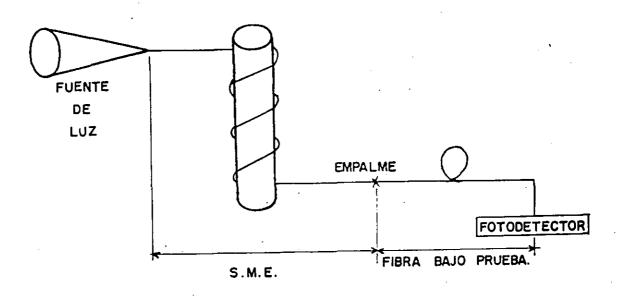


FIG.6 SIMULADOR DE MODOS EQUILIBRADOS TIPO FIBRA ENROLLADA.

En la figura 7 se presenta el arreglo de fibra en serpentina, - se permite que el haz de inyección sobrellene la fibra. Esta - técnica y la de fibra enrollada son aceptadas por la Asociación

de Industrias de Estados Unidos.

Técnica en Tramos Cortos, para lograr el SME Iove propone un mezclador de modos como se muestra en la figura 8, se construye
empalmando 3 tramos de fibra de longitud aproximada de 1 metro
cada tramo. El primer y tercer tramo son de índice de escalón,
el tramo intermedio es de índice gradual. Se reporta que el mez
élador de modos tiene una pérdida aproximada de 1.5 dB.

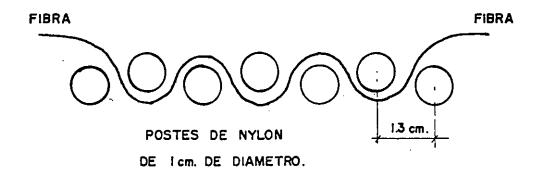


FIG.7 SIMULADOR DE MODOS EQUILIBRADOS TIPO FIBRA EN SERPENTINA.

Se puede usar una forma alternativa del mezclador de Iove que - consiste en empalmar tres tramos de fibra de longitud aproximada de 1 metro cada tramo. El primer y tercer tramo son de indice gradual y el de en medio de indice de escalón (figura 9). - Cuando este mezclador se conecta con fibras de indice gradual -

que es el caso común en telecomunicaciones, las pérdidas de inserción serán menores al de la figura 8. Se sugiere que los 3 - tramos de fibra empleada tengan 50 µm de diámetro en el núcleo, 125 µm de diámetro de revestimiento y 0.18 de apertura numérica.

FIGURA 8 - MEZCLADOR DE MODOS FORMADO POR DOS TRAMOS DE FIBRA DE INDICE DE PASO Y UNA DE INDICE GRADUAL.

FIGURA 9 - MEZCLADOR DE MODOS DE PERDIDA BAJA FORMADO POR DOS TRAMOS DE FIBRA DE INDICE GRADUAL Y UN TRAMO DE INDICE DE PASO

Discusión de las Técnicas para lograr distribución de potencia estable.

La técnica natural es la más simple, y la que produce la distribu-i ción de potencia que más se acerca al estado estable. Tiene la desventa ja, que la fibra utilizada debe alcanzar la longitud de equilibrio, que puede ser de varios kilómetros, representando un problema sobretodo cuan do no hay fibra disponible. En el laboratorio es donde se puede usar con mayores ventajas, su gran longitud la hacen poco funcional para aplicaciones de campo.

Para lograr precisión en el control de modos, se debe emplear la técnica de haz puntual. Como el método se basa en condiciones estructas
de inyección de luz, el arreglo empleado es un tanto complicado y difícil de usar en el campo. Sin embargo, en el laboratorio resulta ampliamente usado.

La principal ventaja de los 3 tipos de SME que se emplean en la técnica artificial, es que usan tramos de fibra cortos. Además, la implementación del arreglo es sencilla, encontrando su aplicación ideal
en el campo aunque también es aceptable en el laboratorio. El inconveniente es que no existe un adecuado control de modos, y se ha dudado, que la distribución de potencia que produce sea aceptablemente estable.
Sin embargo, al realizar mediciones de atenuación empleando la técnica
de haz puntual y la de fibra enrollada, se han obtenido comunmente dife
rencias menores de 0.1 dB/km.

Ya que previamente se trató lo referente a la extracción de luz - del revestimiento, y a la obtención del estado estable, a continuación se analizarán dos métodos manuales para medir atenuación.

4. MEDICION MANUAL DE ATENUACION.

Para la medición manual de atenuación, generalmente se utiliza como medidor de potencia un multímetro óptico. Los valores se obtienen en decibeles dependiendo dela longitud de onda con que se transmita. A con

136

tinuación se describen dos métodos comunes para medir atenuación, que son el de inserción y el corte regresivo.

a) Método de perdidas por inserción.

El métodos consiste en dos mediciones, la primera en el extremo cercano que sirve de referencia y la segunda en el extremo lejano. La - diferencia entre las dos mediciones da la atenuación de la fibra bajo - prueba.

Medición en el extremo cercano. Conectar a la fuente de luz el mez clador de modos. El otro extremo del mezclador se empalma a 1 metro de fibra semejante a la fibra de prueba. Aproximadamente de 15-20 cm del - extremo de la fibra empalmada, realizar la extracción de modos. El tramo extra de fibra que se empalma tiene dos razones: la primera es para prevenir que se haga uso excesivo de la fibra del mezclador para la extracción de luz; la segunda es tener un empalme adicional, que igualará el número de empalmes en las dos mediciones dando nayor precisión al resultado. Conectar el tramo de fibra de 1 metro al receptor y obtener la medición del extremo cercano (figura 10.A).

Medición en el extremo lejano. Para esta medición se abre en el -punto A de la medición en el extremo cercano y se empalma el extremo -del mezclador a la entrada de la fibra bajo prueba. En el extremo de sa
lida de la fibra bajo prueba se realiza la extracción de luz del revestimiento y se conecta al receptor (figura 10.B). En estas condiciones -se obtiene la medición en el extremo lejano.

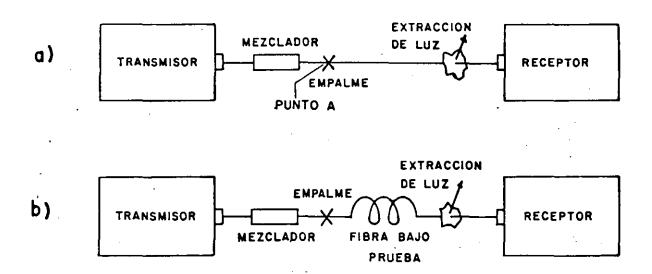


FIG. 10.7 MEDICION DE ATENUACION POR EL METODO DE PERDI-DA DE INSERCION DE PARA EXTREMO CERCANO

b) para extremo lejano

En el método de pérdida por inserción, es importante tener presente que la conexión más sensible es en el transmisor y no debe perturbar se en el lapso de tiempo que se realiza la medición de extremo cercano y extremo lejano. En caso contrario, se debe efectuar nuevamente la me-

154

dición en el extremo cercano que sirve de referencia.

b) Método de Corte Regresivo.

En el método de corte regresivo se realizan dos mediciones, la primera en el extremo lejano y la segunda en el extremo cercano. La diferencia entre las dos mediciones dá la atenuación de la fibra bajo prueba. Comparando con el método de pérdidas por inserción el orden de las mediciones se invierte.

Medición en el extremo lejano. Uno de los extremos del mezclador - se conecta al transmisor, y el otro se empalma a la entrada de la fibra bajo prueba. En el extremo de salida de la fibra bajo prueba se realiza la extracción de luz del revestimiento, conectándose posteriormente al receptor y se obtiene la medición en el extremo lejano (figura 11.A).

Medición en el extremo cercano. En esta caso, se corta la fibra en el punto A. Se realiza la extracción de luz y se conecta al receptor para efectuar la medición en el extremo cercano (figura 11.B).

La técnica de corte regresivo es más precisa que la de pérdida por inserción. Tiene el inconveniente que al hacer el corte en la medición

19

del extremo cercano, se pierden algunos centímetros de la fibra bajo — prueba, ésto puede llegar a ser un problema cuando la fibra no tiene su ficiente longitud.

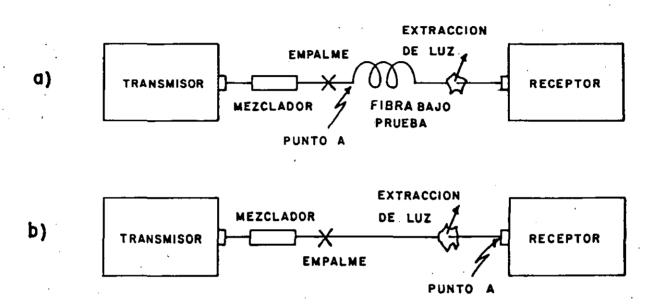


FIG. 11. MEDICION DE ATENUACION POR EL METODO DE COR-TE REGRESIVO G) PARA EXTREMO LEJANO
b) para extremo cercano

Discusión de los métodos de Inserción y Corte Regresivo.

Para realizar mediciones de atenuación en una fibra óptica, es necesario que la fibra tenga una distribución de potencia en el estado es table y que exista propagación de luz sólo en el núcleo. Esto se logra respectivamente usando un Simulador de Modos Equilibrados (Mezclador de Modos) y extrayendo la luz del revestimiento. En enlaces mayores a 1 km el error por no realizar la extracción de luz del revestimiento es del orden de décimas de dB, pero para enlaces menores a 1 km, puede ser de varios dB.

De los métodos de medición descritos, el de corte regresivo es el más preciso. Sus ventajas son que se pierde un tramo de la fibra bajo - prueba cada vez que se mide y cuando la fibra está conectorizada, se - destruye un conector en la medición de extremo cercano. Cuando se tiene más de una fibra se realizan 2n mediciones donde n es el número de fi-bras.

La técnica de pérdida por inserción, se adapta mejor a fibras conectorizadas, ya que no se tiene que destruir ningún conector, y tampoco - se pierde longitud de la fibra bajo prueba. Cuando hay varias fibras se realizan n + 1 mediciones y el número de viajes entre el extremo cercano y el lejano es menor que el método de corte regresivo.

Por las características propias de cada método, el de pérdidas por inserción se recomienda para aplicaciones de campo y el de corte regresivo para laboratorio.

5. MEDICION DE ATENUACION EN FORMA AUTOMATICA

Los métodos automatizados para medir atenuación, se desarrollan - cuando es necesario medir la atenuación de un gran número de fibras en poco tiempo. Esta situación se presenta generalmente en las empresas que manufacturan el cable de fibras ópticas, quienes implementan métodos, - que se adapten a los requerimientos del tipo de cable y fibras que fa-- brican. A continuación se describe uno de tales métodos.

Existe un tipo de cable de fibras, que consiste de un cable principal, el cual está formado por 12 cables de cinta, cada uno con 12 fibras haciendo un total de 144 fibras, las cintas terminan en ambos extremos en conectores chip de silicón. El método es no destructivo y se basa en pérdidas por inserción, en la figura 12 se muestra el arreglo empleado.

La fuente óptica, es un laser de G_{α} Alla estabilizado con realimentación que opera en 0.82 µm, conectado a un tramo de fibra de inyección que mantiene una posición fija; cerca de cuyo extremo, se coloca un microposicionador x - y sirve para que se monte un conector múltiple de - dos salida, cada uno de las cuales con terminales para 12 cables de cinta. El microposicionador es controlado por una microcomputadora, para - alinear el tramo de fibra de inyección con cada una de las fibras de - las cintas. Una de las dos salidas del conector múltiple, sirve para monitorear el corrimiento del laser y la circuitería de recepción. La - otra salida del conector múltiple pasa a través de un simulador de modos equilibrado SME tipo fibra enrollada, en ésta salida es donde se colocan las fibras que se requiere medir.

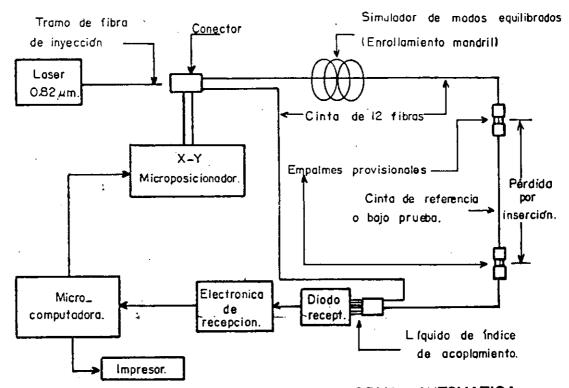


FIG.12 MEDICION DE ATENUACION EN FORMA AUTOMATICA.

Para la medición de la atenuación se realizan dos pasos:

- 1. Inicialmente se toma una medición de potencia de referencia, lo que se obtiene insertando un metro de cable de cinta. Esta medición se realiza para cada una de las fibras, registrando los resultados correspondientes.
- 2. El cable de cinta por medir se inserta en lugar del cable de referencia, y se mide la potencia de recepción asociada a cada fibra. La diferencia en dB entre la lectura 2 y la 1 de la atenuación en la fibra.

Para comprobar la exactitud del método, se midió la atenuación de

una misma fibra 10 veces, obteniéndose una desviación standard de 0.04 dB. Comparando el método automatizado con el método manual de dos puntos, en el primero resulta una atenuación mayor con valor promedio de - 0.14 dB. Con el método automatizado expuesto, se pueden medir un cable con 144 fibras en una hora con una precisión de ± 0.4 dB. Para medir el mismo cable con el método manual de dos puntos, se requiere aproximadamente 24 horas.

6. MEDICION DE ATENUACION POR MEDIO DE REFLECTOMETRIA

Usando principios de reflectometría se puede medir la atenuación en una fiora óptica, también se pueden lozalizar fallas, así como medir
la pérdida que introducen descontinuidades como conectores, empalmes, fisuras, etc. La medición de atenuación se realiza con un Reflectómetro
Optico en el Dominio del Tiempo RODT, con el que se determinan indirectamente las pérdidas como una función de la longitud de la fibra, la cual se calcula por medio de mediciones de la diferencia temporal en el
recorrido de la señal directa y la reflejada compuesta. La señal reflejada compuesta está formada de las señales de reflexión y retrodisper-sión.

a) Reflectómetro Optico.

El principio de operación del RODT es semejante al del radar.

Como se observa en la figura 13 consiste de un fotoemisor (laser) que envían pulsos periódicos de corta duración < 20 nseg
a uno de los extremos de la fibra bajo prueba. Parte de la ener

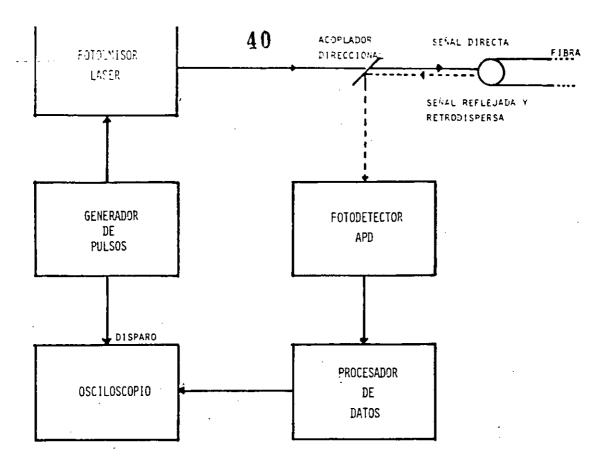


Fig. 13 DIAGRAMA BASICO DE UN RODT

Fig. 14 Sefial que regresa como se observa en un RODT

gía de los pulsos regresa al mismo punto de entrada, con la ayuda de un acoplador direccional, la señal que regresa se detecta y se muestra en una pantalla de osciloscopio figura 14. Ia amplitud de la señal de reflexión compuesta depende de la pérdida de la señal como se observa en el eje vertical, en el eje de tiempo se representa la longitud de la fibra. En este caso se ha supues to que en la fibra existe un empalme y una fisura. Los extremos de entrada y salida de la fibra se dan por los puntos A y B respectivamente. Cuando el extremo de salida de la fibra está abierta, se cotiene una fuerte reflexión que se caracteriza porque la señal de reflexión compuesta cae a la línea base del osciloscopio, como sucede también en el caso de una rotura total en la fibra.

Cuando la luz de la señal directa se propaga en la fibra, encuen tra fluctuaciones microscópicas del índice de refracción que se deben a impurezas moleculares del proceso de fabricación de la fibra. Esto provoca dispersión de la luz en todas direcciones, resultando que una pequeña cantidad de la luz dispersa se propaga hacia atrás, es decir en dirección del fotoemisor. Esta señal se atenua en la misma forma que la señal directa, por lo tanto, la señal de retrodispersión que aparece en el osciloscopio sirve para determinar atenuación en la fibra, además de localización de fallas y pérdidas por discontinuidades.

En las fibras de atenuación reducida que se fabrican actualmente, se ha demostrado que la función de retrodispersión es constante y aproximadamente igual a:

$$\delta(z) = \frac{\alpha d^{(AN)^2}}{2n^2} \qquad \dots \qquad (2)$$

donde α_d es el coeficiente de dispersión, AN es la apertura numérica, n es el índice de refracción del núcleo y z es la coordenada longitudinal. Suponiendo que el coeficiente de atenuación es constante e independiente tanto de la coordenada longitudinal como del sentido de propagación se tiene:

$$\alpha_{it}(x) = \alpha_{rt}(x) = \alpha_{t} \qquad (3)$$

donde $\alpha_{i,t}(x)$ y $\alpha_{n,t}(x)$ son los coeficientes de atenuación total de los pulsos incidente y retrodisperso; $\alpha_t = \alpha_d + \alpha_a$ siendo $-\alpha_a$ el coeficiente de absorción. En este caso, la potencia de retrodispersión P(z) que llega a la entrada de la fibra, se reduce a la Ley de Beer que se puede expresar:

$$P(z) = \alpha_d P_0 - \frac{(AN)^2}{2n^2} e^{-2\alpha} t^Z$$
 (4)

La ecuación (4) determina la forma de la señal que se observa en el osciloscopio del RODT, es una curva cuya amplitud decrece exponencialmente de acuerdo a la longitud de la fibra, tal como se observa en la figura 15.

b) Medición de atenuación en la fibra.

Con un arreglo como el de la figura 1, se obtiene en el oscilos copio la figura 3 y con referencia a la línea base se determinan las amplitudes de voltaje V_1 y V_2 que corresponden a la entrada y a la salida de la fibra. La figura del osciloscopio es el resultado de la operación del fotodetector, el cual es un dispositivo de ley cuadrática; por lo tanto, la diferencia entre los niveles de voltaje se puede expresar en decibeles por

$$dB = 10 \log \frac{V_2}{V_1}$$

Considerando que la medición usa la señal de retrodispersión — que es una señal tipo eco, que recorre el doble de distancia, — por lo tanto, en la ecuación anterior se debe sustituir el 10 — po 5 para compensar la atenuación doble. Entonces la pérdida — que introduce la fibra estará dada por

$$dB = 5 \log \frac{V_2}{V_1} \qquad (5)$$

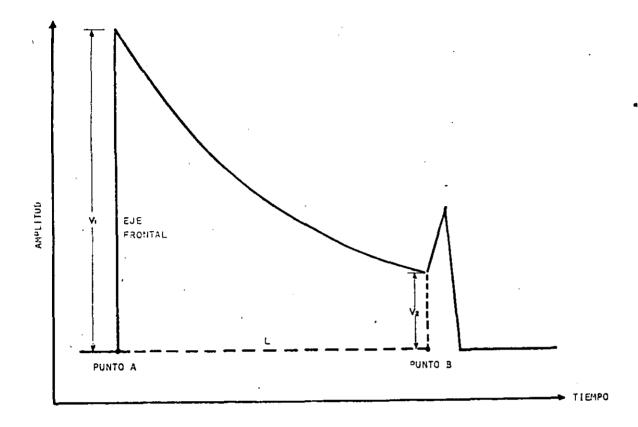


Fig. 15 MEDICION DE LONGITUD EN UNA FIBRA

REFERENCIA'S

- 1. D. Marcuse, "Theory of Dielectric Optical Waveguides" Academic Press, New York, 1974.
- 2. F. Kapron, J. Dyment, J. Conradi, C. Anderson, "Fiber Optics Communication Course", Bell Northern Research, 1981.
- 3. M. Takeda, T. Horiguchi, M. Tokuda and N. Uchida, "Optical loss measurement in graded index fiber using a dummy fiber", Appl. Opt. 18, 3273 (1979).
- 4. W.F. Love, "Novel Mode Scrambler for use in optical fiber bandwidth measurements", Conf. Opt. Fiber Commun. Wasnington, D.F., Warch 6-8, 1979. Conf. Digest p. 188 paper THG2.
- 5. John E. Mdwinter, "Optical Fiber for transmission", John Wiley & Sons, New York, 1979.

- 6. L.C. Hotchkiss, "Automated loss measurement set for optical cable", Hewlett Packard Application Note.
- 7. R.L. Gallawa ans D.L. Franzen, "Progress in Fiber Test Standards", Communication Spectra April, 1983.
- 8. P.R. Reitz, "Predicting Fiber Performance" Fiber Optics, February 1983.
- 9. F. Navarrete Montes de Oca, "Consideraciones para la localización de fallas en enlaces de Fibra Optica" Memoria de la Conferencia. LATINCON 84.

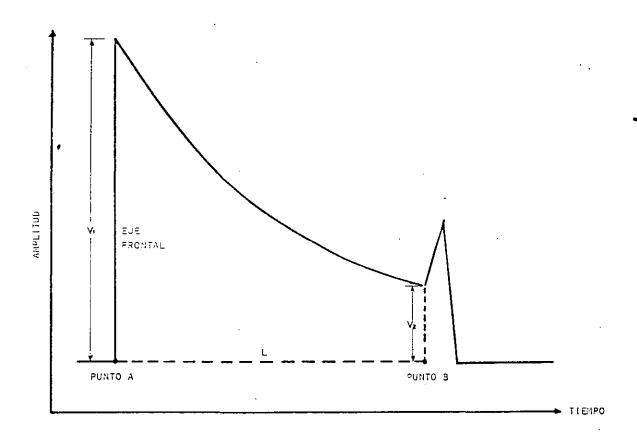


Fig. 15 Medición de Longitud en una Fiera

REFERRENCIAS

- 1. D. Marcuse, "Theory of Dielectric Optical Waveguides" Academic Press, New York, 1974.
- F. Kapron, J. Dyment, J. Conradi, C. Anderson, "Fiber Optics Communication Course", Bell Northern Research, 1981.
- 3. M. Takeda, T. Horiguchi, M. Tokuda and N. Uchida, "Optical loss measurement in graded index fiber using a dummy fiber", Appl. Opt. 18, 3273 (1979).
- 4. W.F. Love, "Novel Mode Scrambler for use in optical fiber bandwidth measurements", Conf. Opt. Fiber Commun. Wasnington, D.F., March 6-8, 1979. Conf. Digest p. 188 paper THG2.
- 5. John E. McWinter, "Optical Fiber for transmission", John Wiley & Sons, New York, 1979.

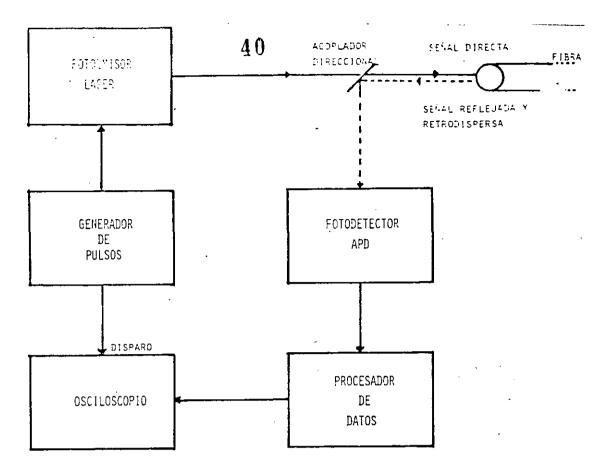


Fig 13 DIAGRAMA BASICO DE UN RODT

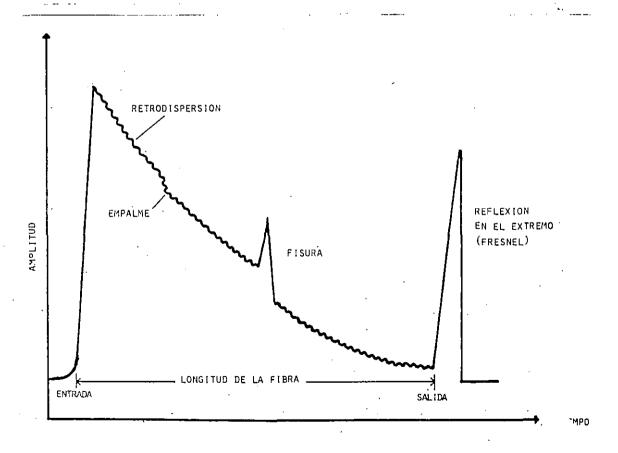


Fig. 14 Señal que regresa como se observa en un RODT

1.68

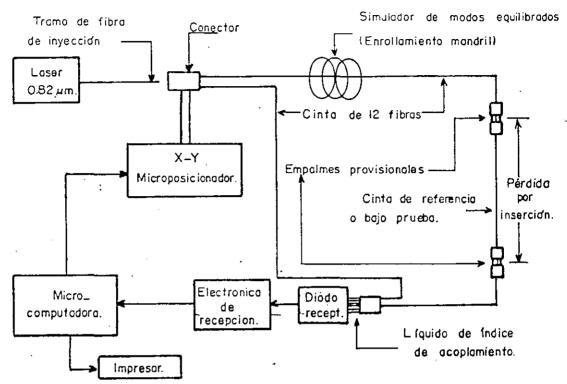


FIG.12 MEDICION DE ATENUACION EN FORMA AUTOMATICA.

Para la medición de la atenuación se realizan dos pasos:

- 1. Inicialmente se toma una medición de potencia de referencia, lo que se obtiene insertando un metro de cable de cinta. Esta medición se realiza para cada una de las fibras, registrando los resultados correspondientes.
- 2. El cable de cinta por medir se inserta en lugar del cable de referencia, y se mide la potencia de recepción asociada a cada fibra. La diferencia en dB entre la lectura 2 y la 1 de la atenuación en la fibra.

Para comprobar la exactitud del método, se midió la atenuación de

del extremo cercano, se pierden algunos centímetros de la fibra bajo - prueba, ésto puede llegar a ser un problema cuando la fibra no tiene su ficiente longitud.

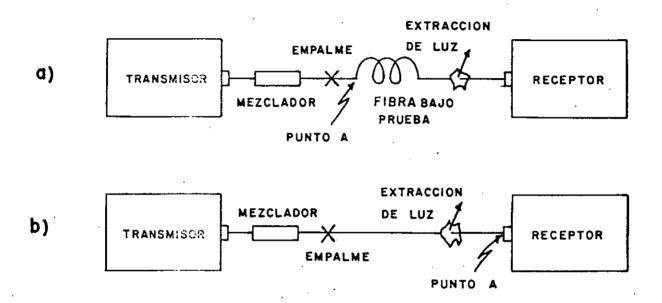


FIG. II . MEDICION DE ATENUACION POR EL METODO DE COR-TE REGRESIVO d) PARA EXTREMO LEJANO

D) PARA EXTREMO CERCANO

Discusión de Los métodos de Inserción y Corte Regresivo.

Para realizar mediciones de atenuación en una fibra óptica, es necesario que la fibra tenga una distribución de potencia en el estado es table y que exista propagación de luz sólo en el núcleo. Esto se logra respectivamente usando un Simulador de Modos Equilibrados (Mezclador de Modos) y extrayendo la luz del revestimiento. En enlaces mayores a 1 km el error por no realizar la extracción de luz del revestimiento es del orden de décimas de dB, pero para enlaces menores a 1 km, puede ser de varios dB.

220

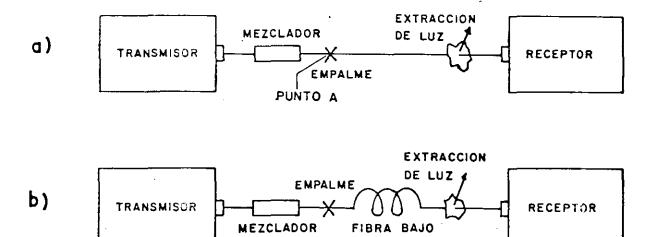


FIG. 10. MEDICION DE ATENUACION POR EL METODO DE PERDI-DA DE INSERCION Q) PARA EXTREMO CERCANO
b) para extremo lejano

PRUEBA

En el método de pérdida por inserción, es importante tener presente que la conexión más sensible es en el transmisor y no debe perturbar se en el lapso de tiempo que se realiza la medición de extremo cercano y extremo lejano. En caso contrario, se debe efectuar nuevamente la me-

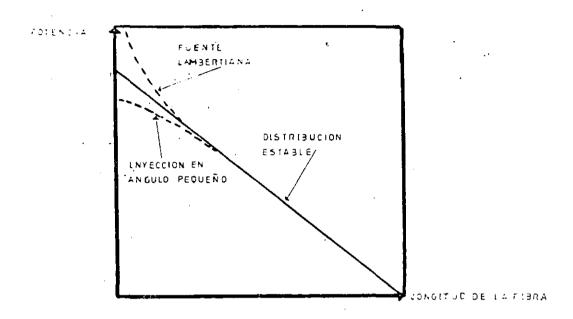


FIG 2 CURVA TIPICA DE ATENUACION DE POTENCIA CON LA DISTANCIA PARA LAS DESTRIBUCIONES DE POTENCIA DE LA FIG. 5.1

tencia intermedia entre las dos anteriores, se obtendría una aproxima-ción cercana a la distribución estable, lo que se puede lograr por medio de las 3 técnicas mencionadas y que a continuación se describen.

a) Técnica Natural. Esta técnica es la forma ideal de obtener distribución estable de potencia, para lo cual se usa la propia fibra. Es decir, cuando la luz ha recorrido una distancia igual a la longitud de equilibrio se produce en forma natural el estado

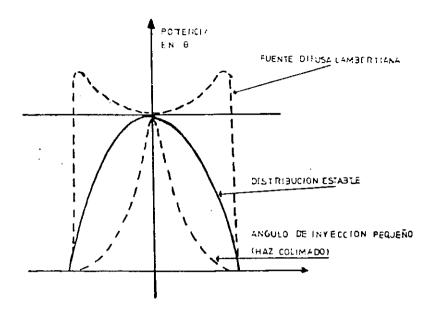
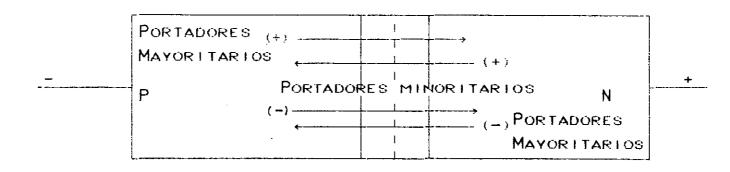
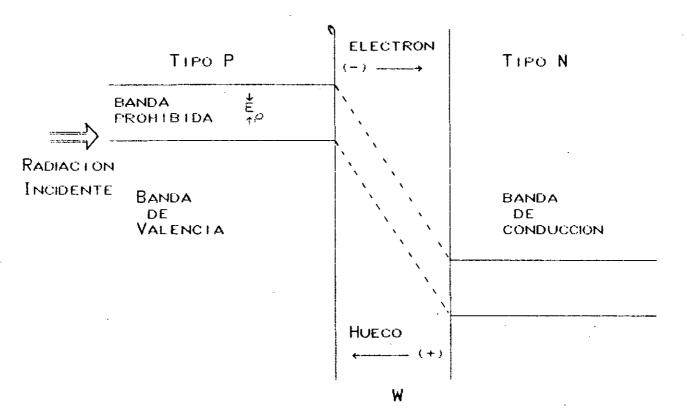


FIG | DISTRIBUCIONES DE POTENCIA TIPICA EN UNA FIBRA DE INDICE DE ESCALON PARA SITUACIONES DIVERSAS

nuación en la fibra. Si la fibra se excita por un laser de modo único - con ángulo de inyección pequeño, las pérdidas de radiación en la fibra, serán menores que las que ocurren con una distribución estable de potencia, Lo anterior se interpretaría como una fibra con atenuación menor. En el caso de excitación con una fuente lambertiana difusa, se cubre to da la fibra, lo que provoca que se propaguen modos guiados y fugaces; - resultando al principio de la fibra una atenuación mayor que la del estado estable. Si se usara en la inyección de luz una distribución de po

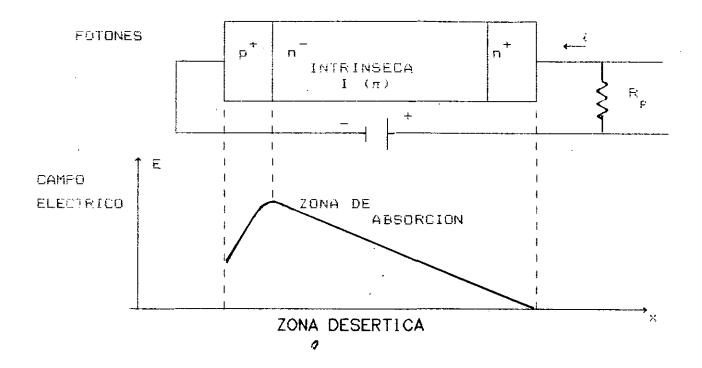
FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

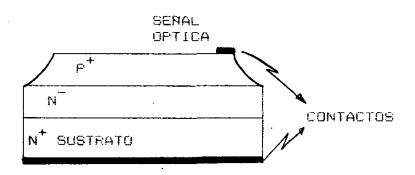

CURSOS ABIERTOS
TELECOMUNICACIONES VIA FIBRAS OPTICAS


FOTODETECTORES

DR. HILDEBERTO JARDON

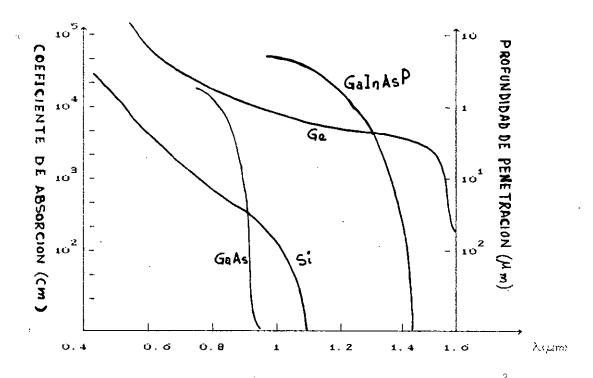
Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285 Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26


PARA LOS SISTEMAS DE TELECOMUNICACIONES OPTICOS FOTODIODOS PIN (SEMICONDUCTOR PUVO (1) EN MEDIO DE UN TIPO P Y UN TIPO N). APD (FOTODIODO DE AVALANCHA).



PARA UNA POLARIZACION INVERSA SE FORMA UNA ZONA LIBRE DE PORTADORES

W = ANCHO { LA DENSIDAD DE IMPUREZAS VOLTAJE APLICADO.


EL PROCESO DE ABSORCION DE POTENCIA OPTICA OBEDECE A LA ESTADISTICA DE FERMI-DIRAC.

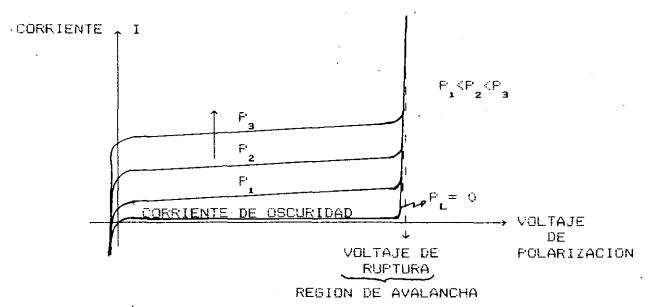
$$P_{L}(X) = P_{L}(0) (1 - e^{-XX})$$

P (x) - FOTENCIA OPTICA A LA DISTANCIA X DE LA SUPERFICIE DE ENTRADA DEL MATERIAL (INCIDENCIA NORMAL).

P_L (o) - POTENCIA OPTICA QUE LLEGA AL MATERIAL (X=0)

α - COEFICIENTE DE ABSORCION → PARAMETRO DEL MATE-RIAL QUE RELACIONA LA LONGITUD DE ONDA (λ) L = 1/2 - LONGITUD MEDIA DE DIFÚSION DE LOS FOTONES DESDE SU ENTRADA AL MATERIAL HASTA LA ABSORCION COMO RESULTADO SE TIENE LA LIBERACION DE UN PAR ELECTRON-HUECO

$$\lambda_c = \frac{h_c}{E_g} = \frac{1.24}{E_g(ew)} \mu m \rightarrow \text{Longitud de onda de corte.}$$


La efectividad de lúz => señal eléctrica: $\lambda < \lambda_c$ => $h \nu$ > E g CURVAS CARACTERISTICAS

$$1 = I_{s} \left(1 - e^{\frac{qV}{\eta KT}}\right) + I(P_{L}) \Rightarrow Polarizado Inversamente$$

A temperatura Ambiente $\frac{qV}{KT} \approx 40 \Rightarrow e^{\frac{qV}{KT}} \leqslant 1$

$$I = I_s + I (P_s)$$

Si $P_L = 0 \Rightarrow I = I_S \Rightarrow Corriente de Oscuridad.$

RESPONSIVIDAD

ESTE PARAMETRO RELACIONA LA RESPUESTA DEL FOTODIODO DE ACUERDO A SU EXCITACION.

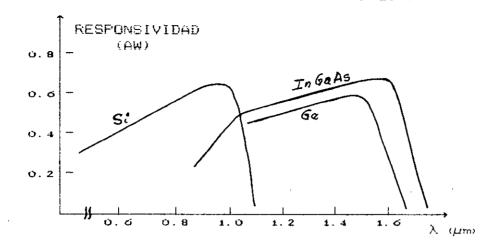
$$R = \frac{\partial I_f}{\partial F_L} \Big|_{V = cte}$$

SI LA POTENCIA OPTICA INCIDENTE ES Δ P = $\frac{N_f}{\Delta t}$ $h\nu$

N, = No. DE FOTONES.

$$h\nu = \text{ENERGIA DEL FOTON} \qquad \left\{ \begin{array}{l} h = \text{cte DE PLANK} \approx 6.63 \times 10^{-94} \, \text{J.s} \\ \\ \nu = \text{c/}\lambda \, \left(\lambda = \text{Longitud DE ONDA}\right) \\ \\ \text{c} = 3 \times 10^{8} \, \text{(m/s)} \end{array} \right.$$

LA FOTOCORRIENTE =>
$$\Delta$$
 I_f = $\frac{N_e}{\Delta \tau}$ q


N = No. DE ELECTRONES LIBERADOS.

a = CARGA DE ELECTRON

$$E = \frac{N_{\theta}}{N_{t}} \circ \frac{q}{n_{t}}$$

$$R = \eta \frac{q}{h\nu} = \eta \frac{\lambda(\mu m)}{1.24} \left(\frac{A}{W}\right)$$
$$\eta = EFICIENCIA CUANTICA$$

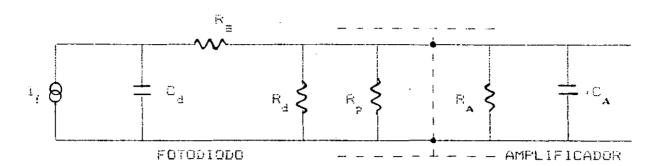
9

$$R = \frac{I_f}{P_L} = \eta \frac{q}{h\nu} \qquad . \eta = \frac{I_f/q}{P_L/h\nu} \Rightarrow \frac{\text{NUMERO DE ELECTRON}}{\text{HUECO LIBERADOS}}_{\text{POR FOTON INCIDENTE.}}$$

VELOCIDAD DE RESPUESTA Y ANCHO DE BANDA

TIEMPO DE TRANSITO: DE LOS FOTOGENERADORES
TIEMPO DE TRANSITO: DE LOS PORTADORES DE CARGA.
CONSTANTE: FORMADA POR LOS COMPONENTES PROPIOS
Y DEL CIRCUITO EXTERNO.

PARA UN ANCHO DE LA ZONA DESERTICA W EL TIEMPO DE TRANSITO ES:


$$t_d = \frac{W}{V_d}$$

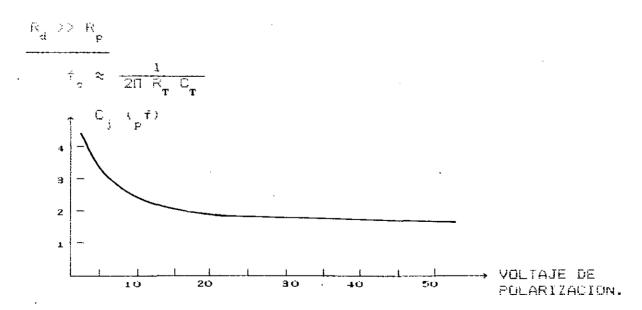
 $V_{
m d} = \mu \in \left\{ ext{ VELOCIDAD DE DESPLAZAMIENTO.}
ight.$ $\mu = ext{MOVILIDAD DE LOS FORTADORES.}$

MATERIAL	MOVILIDAD		
	ELECTRONES	HUECOS	
	μη	μÞ	
G e	3900	1900	
ទ _្	1350	480	
G _a A _s	8600	250	

CONSTANTE DE TIEMPO

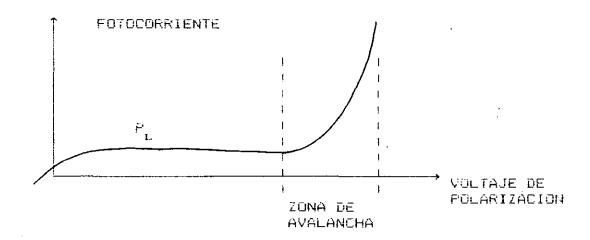
$$\tau_{\boldsymbol{z}} R_{\mathbf{T}} \subseteq_{\mathbf{T}}$$

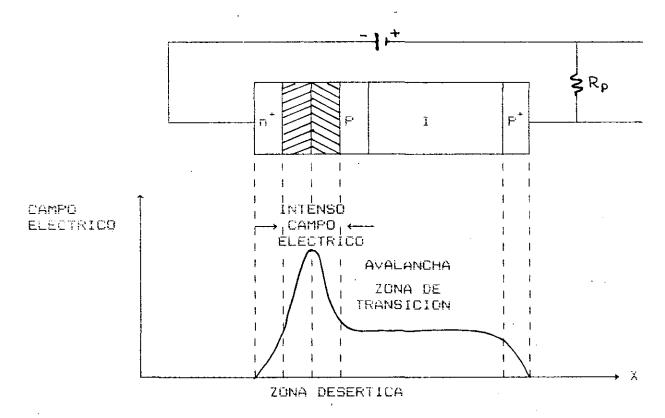
$$C_{d} = C_{j} + C_{p}$$


 $C_{i} = \frac{-\epsilon A}{W}$ CAPACITANCIA DE UNION DEL FOTODIODO.

C = CAPACITANCIA PARASITAS.

$$C_{\mathbf{T}} = C_{\mathbf{j}} + C_{\mathbf{p}} + C_{\mathbf{A}}$$


$$\frac{1}{R_{T}} = \frac{1}{R_{d}} + \frac{1}{R_{p}} + \frac{1}{R_{A}}$$


 R_g = RESISTENCIA SERIE CON LA ZONA DESERTICA, DISMINUYE CON EL VOLTAJE DE POLARIZACION (5 - 50)

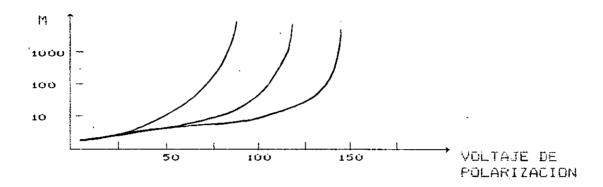
FOTODIODO DE AVALANCHA

----- A. P D ←---

$$1 = \langle m \rangle \ 1_f = \langle m \rangle \ \eta \ \frac{q}{h\nu} \ P_L$$

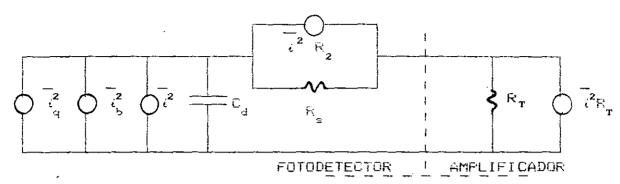
$$m = \frac{1}{1_f} = \frac{1}{1 - \left(\frac{V}{V}\right)^n}$$

I = CORRIENTE TOTAL.


I = FOTOCORRINTE PRIMA.

V = VOLTAJE DE RUPTURA.

V = VOLTAJE APLICADO.


n = COEFICIENTE.

$$V_{p} = \begin{cases} 50 - 300 & \lambda = 850 \text{ nm.} \\ 10 - 50 & \lambda = 1300 \text{ nm.} \end{cases}$$

PARAMETROS	PI) Si	N Gala ans	APD S _i	APD G _e
λ (μηυ intervalo de Operación.	0.4-10	1.0-1.6	0.4-1.0	0.4-1.5
Pico de Sensibilidad λ (μm)	0.8-0.9	1.0-i.4	0.6-0.9	1.0-1.4
Eficiencia Cuántica n	0.82	0.7	0.82	1.15
Corriente de oscuridad I (nA)	0.1-5.0	0.02-3.5	0.02-15	10-200
Tiempo de Subida R $_{_{\mathbf{T}}} \approx 50~\Omega$ T $_{_{\mathbf{S}}}$	0.5-3	0.1-1.5	0.1-0.5	0.1-0.2

RUIDO EN FOTODIODOS

DENSIDAD ESPECTRAL DEL RUIDO.

$$\frac{d}{df} \langle i^2 \rangle = 1$$

$$\langle i_{\mathbf{T}}^2 \rangle = \overline{i_{\mathbf{T}}^2} = \overline{i_{\mathbf{q}}^2} + \overline{i_{\mathbf{b}}^2} + \overline{i_{\mathbf{d}}^2} + \overline{i_{\mathbf{R}}^2} + \overline{i_{\mathbf{R}}^2}$$

$$i_q^2 = 2q \text{ If } \Delta f \longrightarrow$$

RUIDO FRODUCIDO POR EL PROCESO DE DETEC-CION - RUIDO CUANTICO.

$$\frac{1}{i_q^2} = 2q \text{ Ib } \Delta f \longrightarrow$$

RUIDO PRODUCIDO POR RADIACION OPTICA -ESPURIA.

$$\frac{-1}{i_{\alpha}^{2}} = 2q \text{ Id } \Delta f \longrightarrow$$

RUIDO DEBIDO A LA CORRIENTE DE OSCURIDAD

$$\frac{1}{i_{R}^{2}} = \frac{4KT \Delta f}{R} \longrightarrow$$

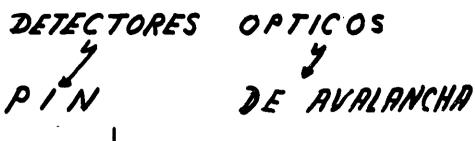
RUIDO DEBIDO A LA RESISTENCIA SERIE "TERMICO"

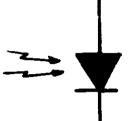
$$\frac{\frac{2}{R}}{R} = \frac{4KT \Delta f}{R_s}$$

RUIDO DEBIDO A LA RESISTENCIA TOTAL SERIE "TERMICO"

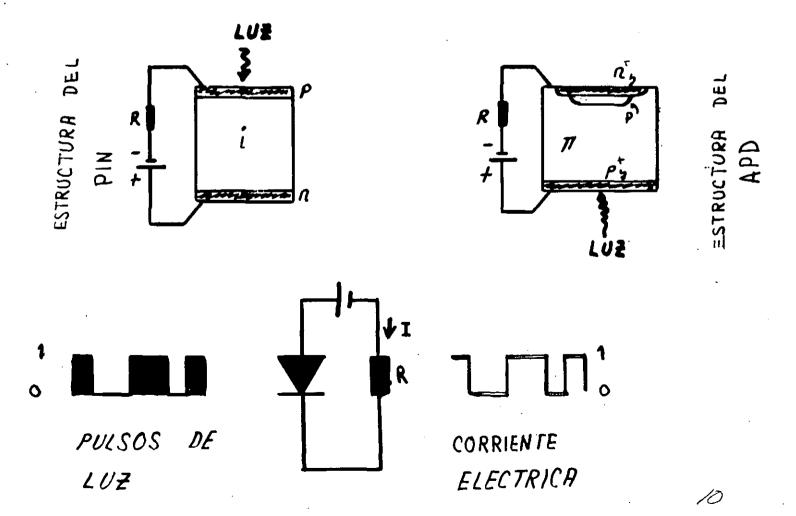
PARA APD

$$\frac{d}{dt} < \epsilon^2 > = I < M^2 > F < M >$$

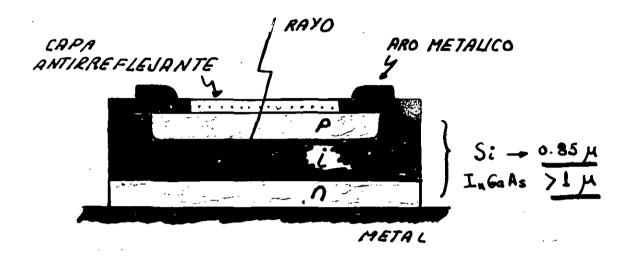

F <M> = FACTOR DE RUIDO DE EXCESO.


$$F < m > = < m > \left\{ (1-k) \left[\frac{< m > -1}{< m >} \right]^2 \right\}$$
 ES UNA MEDIDA DE DEGRADA-
CION DEL PROCESO DE GA-
NANCIA.

ES UNA MEDIDA DE DEGRADA-


R = CUEFICIENTE DE IGNIZACION.

{ RECEPTORES OPTICOS }



SIMBOLO DE UN FOTODETECTOR

POLARIZACION 10-20 V.

SIMPLICIDAD, ESTABILIDAD, ANCHO DE BANDA.

GANANCIA UNITARIA

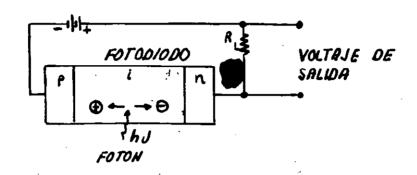


FIG. REPRESENTACION DE UN FOTODDIODO PIN CON SU CIRCUITO DE POLARIZACION

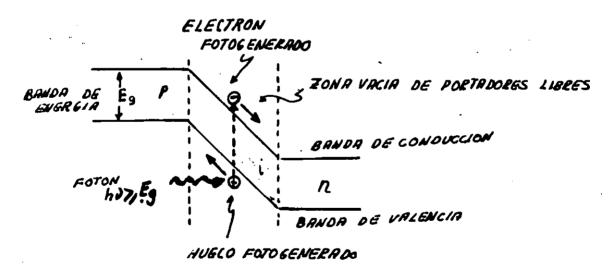


FIG. DIAGRAMA SIMPLIFICADO DE LAS BANDAS DE ENERGIA DE UN FOTODIODO PIN. FOTONES CON ENERGIA DE PUEDEN GENERAR PARES ELECTRON-HUECO, LOS CUALES ACTUAN COMO PORTADORES DE LA FOTOLORRIENTE

EFICIENCIA CUANTICA (A)

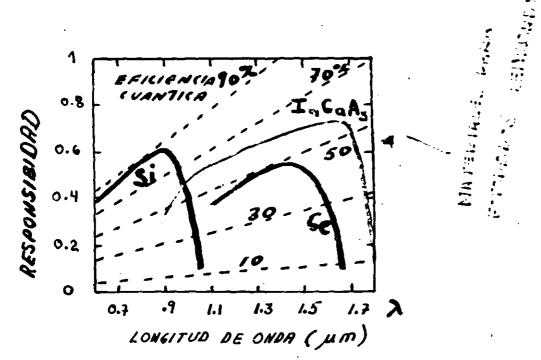


FIG COMPARACION DE LA RESPONSIBILIDAD Y EFI-CIENCIA CUANTICA COMO FUNCION DE X, DE FOTODIODOS PIN DE DIFERENTES MATERIALES

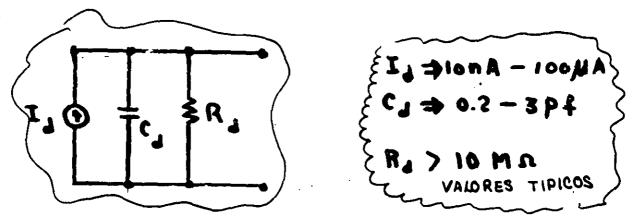
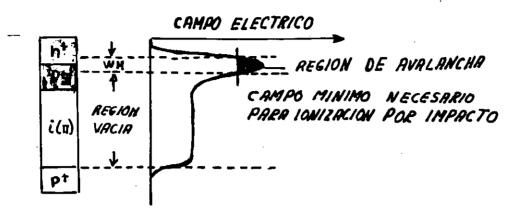



FIG. CIRCUITO EQUIVALENTE DE UM FOTODIODO PIN

GANANCIA DE CORRIENTE (M)

DONDE

In - ES EL VALOR DE LA CORRIENTE DE SALIDA (MULTIPLICAPA)

Ip - CORRIENTE PRIMARIA

 $M = M(\lambda, \vee, \tau)$

le = MPopt

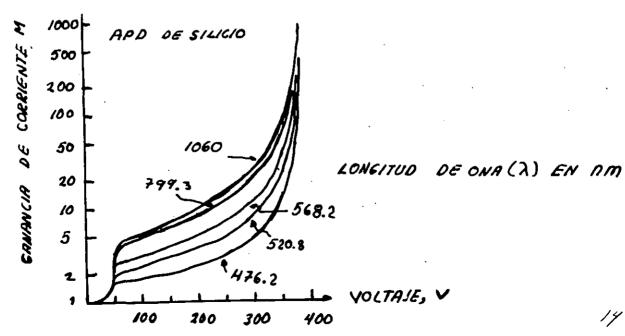


FIG. CARACTERISTICA TIPICA GANANCIA CONTRA VOLTASE.

DE APO DE SILICIO A TEMPERATURA AMBIENTE

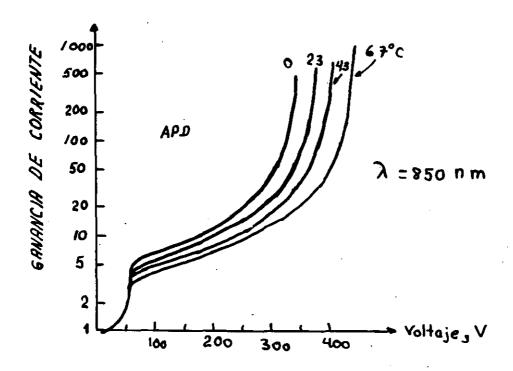


FIG. ESEMPLO QUE MUESTRA LA DEPENDENCIA DE LA GANANCIA DE CORRIENTE DE FOTODIODOS DE AVALANDE DE SILICIO COMO FUNCION DE LA TEMPERATURA.

COMPARACION:

PIN:

APD:

PIN-FET

FUENTES DE ERROR

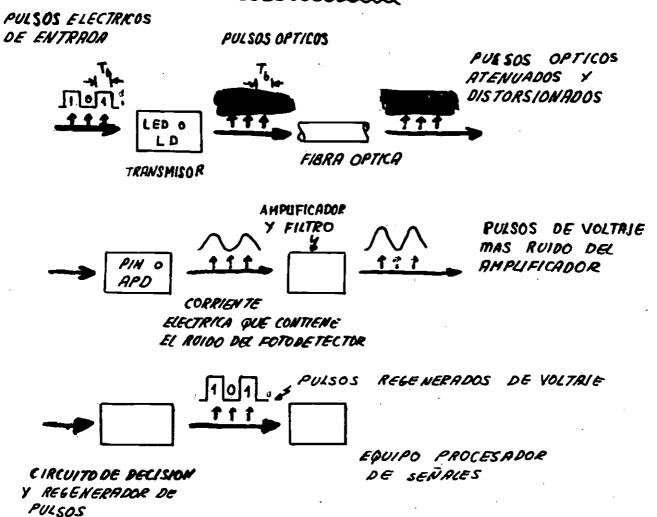


FIG. TRAYECTORIA DE LA SEÑAL A TAVES DE UM SISTEMA OPTICO DE COMUNICACIONES DE SEÑALES LOS ERRORES EN EL MECANISMO DE DETECCIÓN PROVIENEN DE VARIOS RUIDOS Y DISTURBIOS

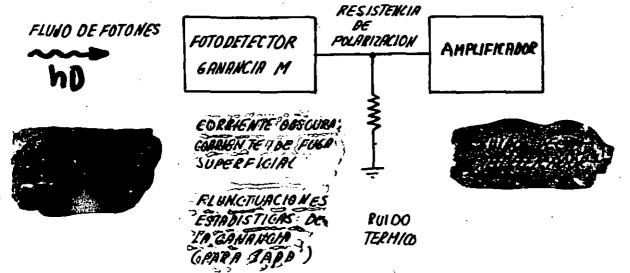
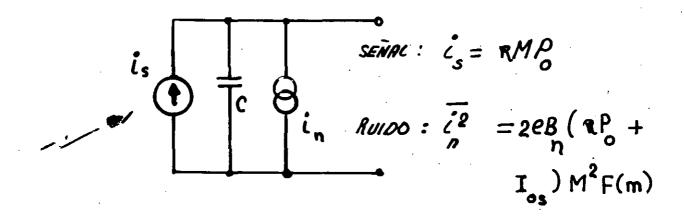
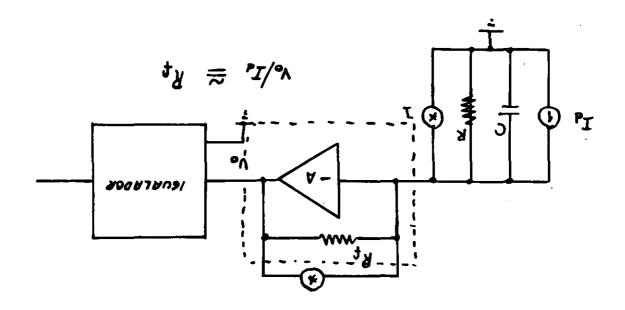



FIG. FUENTES DE RUIDO Y DISTURBIOS EN LA DETECCION DEL PULSO OPTICO

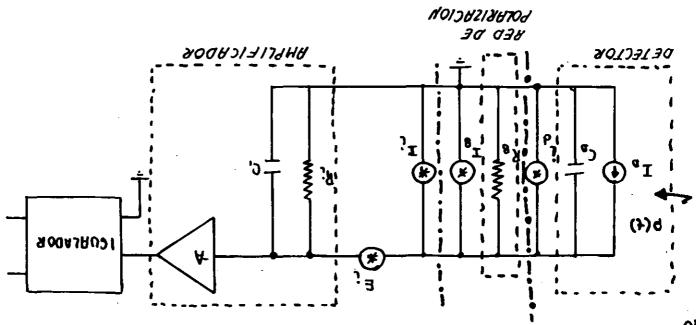
MODELO ELECTRICO DE FOTODETECTORES

R - RESPONSIBIOAD PRIMARIA

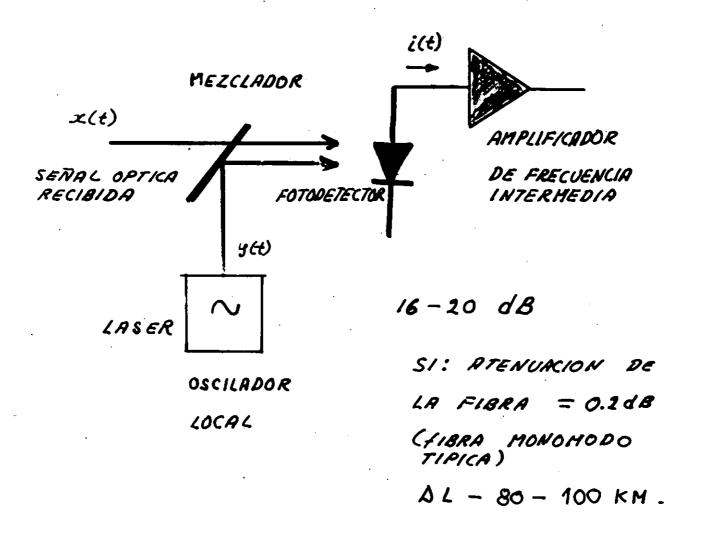
M - FACTOR DE MULTIPLICACION; M=1 PARA PIN


PO - POTENCIA OPTICA (SEÑAL Y POLARIZACION)

B - ANCHO DE BANDA DE RUIDO


IOS - CORRIENTE DE OBSCURIDAD (SIN MULTIPLICACION)

F(M) → FACTOR DE RUIDO DE EXCESO (F(M)= 1
PARA DIODOS PIN)


FIG. AMPLIFICADOR DE TRANSIMPEDANCIA

FIC. HHALIFICHOOR COTTED HIS BONNED SE ENTRADA GENNAS

RECEPCION COHERENTE

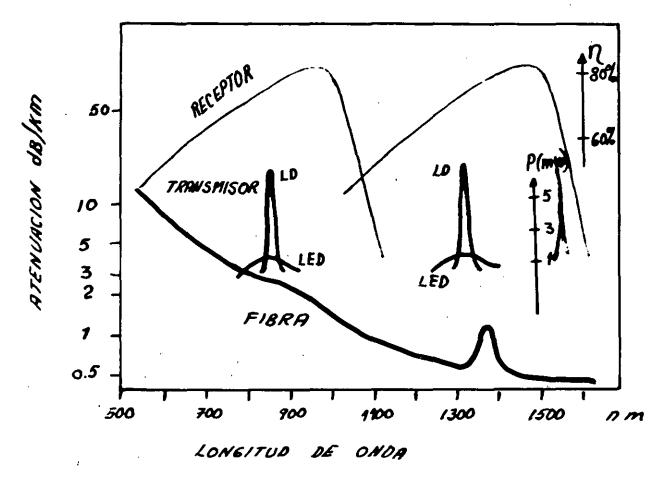


FIG COMPONENTES PARA SISTEMAS OPTICOS DE COMUNICACIONES

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS TELECOMUNICACIONES VIA FIBRAS OPTICAS

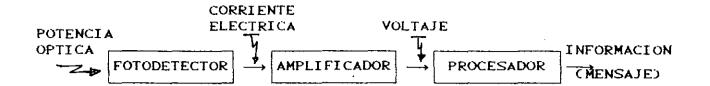
RECEPTORES OPTICOS

M. EN C. ROBERTO LINARES

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285 Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

"RECEPTORES OPTICOS"

EN UN SISTEMA DE COMUNICACIONES POR FIBRAS OPTICAS.


RECEPTOR - EXTRAE LA INFORMACION DESDE LA PORTADORA OPTICA QUE INCIDE EN EL DETECTOR.

SISTEMA DIGITAL.- EL RECEPTOR PRODUCE UNA SECUENCIA DE PULSOS ELECTRICOS (UNOS Y CEROS) QUE SON UNA REPRODUCCION FIEL DE LA INFORMACION DIGITAL QUE EXCITA LA FUENTE DE LUZ DEL TRANSMISOR.

SISTEMA ANALOGICO.- EL RECEPTOR AMPLIFICA LA SALIDA DEL DETEC-TOR Y DEMODULA LA SEÑAL AMPLIFICADA PARA -OBTENER LA INFORMACION.

EN ESTOS SISTEMAS EL "RECEPTOR" ES EL BLOQUE MAS "CRITICO" YA QUE ESTE DETERMINA TODA UNA SERIE DE PARAMETROS DEL SISTEMA TALES COMO:

SENSIBILIDAD
INTERVALO DINAMICO
VELOCIDAD DE TRANSMISION
ESTABILIDAD
CONFIABILIDAD

FOTODETECTOR.- CONVIERTE LA POTENCIA OPTICA A POTENCIA ELECTRICA LA POTENCIA OPTICA ES UNA CANTIDAD EN BANDA DE BASE (LAS VARIACIONES SON DE ACUERDO A LA AMPLITUD Y NO CON RESPECTO A LA FASE.

> LA CORRIENTE ELECTRICA QUE PROPORCIONA EL FOTODE-TECTOR ES MUY PEQUENA (NANOAMPERS).

AMPLIFICADOR.- ES DE BAJO NIVEL DE RUIDO SE DISENA ESPECIALMENTE PARA FOTODETECTORES OPTICOS

PROCESADOR.- LA SALIDA DEL AMPLIFICADOR SE PROCESA PARA EXTRAER LA INFORMACION.

SISTEMAS ANALOGOS

Fo (t)

Fo
$$t$$

FOTENCIA

OFTICA.

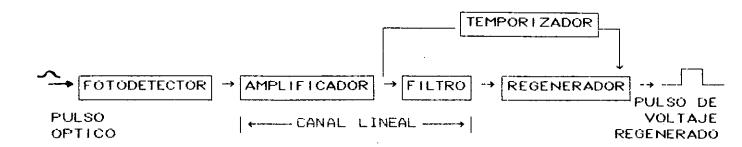
FOR t

FOR t

FOR t

SALIDA m_e (t)

SENAL OPTICA DE ENTRADA POPTICA (t, m(t))


m(t) - MENSAJE ANALOGICO (PORTADORES)

PARA UNA SIMPLE INTENSIDAD DE MODULACION

POPTICA
$$\left[t, m(t) = Po\left[1 + \gamma m(t)\right]\right]$$

 $\gamma \le 1 -$

 $||m(t)|| \le 1$ - CONDICION QUE FIJA EL LIMITE SUPERIOR DE LA INTENSIDAD A LA CUAL SE PUEDE MODULAR LA PORTADORA.

SISTEMAS DIGITALES

LA SEMAL QUE INCIDE EN EL FOTODETECTOR ES UNA

SECUENCIA DE PULSOS OPTICOS

Popticos (t) =
$$\sum_{k=-\infty}^{\infty} a_k h_p$$
 (t - kT)

 $a_{\rm k}$ - ES "CERO" O "UNO" - HAY O NO HAY PULSO

h - ES LA FORMA DE UN SOLO PULSO.

T - ES EL ESPACIAMIENTO ENTRE PULSO

LA SEÑAL DE SALIDA DEL FOTODETECTOR ES:

$$i_s(t) = R \sum_{k=-\infty}^{\infty} a_k h_p (t - kT)$$

R = (A/W) RESPONSIVIDAD

LA SEÑAL DE SALIDA DEL CANAL LINEAL.

Vour (t) =
$$\sum_{k=-\infty}^{\infty} a_k$$
 hour (t - kT)

hour FORMA DE UN SOLO PULSO EN LA SALIDA DEL CANAL LINEAL.

EN UN INTERVALO DEL PULSO "T" LA SEÑAL VOUT (t) SE COMPARA CON UN UMBRAL PARA DETERMINAR SI HAY PULSO O NO HAY PULSO

TA**MB**IEN SE PUEDE TENER CON <u>SUBPORTADORA</u> <u>DE FASE.</u>

Poptica (t, m (t) =
$$P_c$$
 {1 + cos $l\omega t$ + $\gamma m(t)$]

ω - FRECUENCIA INTERMEDIA

LA CORRIENTE ELECTRICA QUE PROPORCIONA EL FOTODETECTOR ES

$$i$$
 (t) = R Poptica (t)

R - RESPONSIVIDAD = (A/W)

LA CORRIENTE SE AMPLIFICA Y SE FILTRA

SI EL SISTEMA ES CON MODULACION SIMPLE - NO SE REQUIERE DEMODULACION YA QUE LA SEÑAL ESTA EN BANDA BASE

SI EL SISTEMA ES CON SUBPORTADORA DE FASE - EL DEMODULADOR PUEDE SER PLL O UN DISCRIMINADOR.

SU LIMITACION ES: LA RELACION SERAL A RUIDO

LA NO LINEALIDAD

VENTAJAS: SIMPLICIDAD

CAPACIDAD DE ANCHO DE BANDA

CRITERIO PRACTICO DE LA FIDELIDAD ES EL ERROR CUADRATICO MEDIO

EL VALOR PROMEDIO DEL CUADRADO DE LA DIFERENCIA DE LOS MENSAJES DE SALIDA Y ENTRADA

$$MSE = \langle Im_{e}(t) - m(t)]^{2} \rangle$$

TAMBIEN SE DEFINE: COMO UNA ESTADISTICA O PROMEDIO DE DEL CONJUNTO DE TODOS LOS POSIBLES MENSAJES Y DEGRADACIONES (RUIDO E INTERFERENCIA). EL REGENERADOR - COMPARA Y SE SINCRONIZA POR EL TEMPORIZADOR A LA VELOCIDAD DE LLEGADA DE LOS PULSOS.

IDEALMENTE.- CUANDO HAY <u>PULSO (UNO)</u>, Vout(t) DEBERA EXCEDER SIEMPRE EL UMBRAL.

LA REALIDAD.— EL RUIDO E INTERFERENCIAS (DE PULSOS ADYACENTES D DE OTROS SISTEMAS) PUEDEN AUMENTAR O DISMINUIR LA SENAL IDEAL (Vout(t)) CAUSANDO ERRORES.

EL CRITERIO DE FIDELIDAD: TASA DE ERROR (BER)

EL VALOR TIPICO PARA SISTEMAS DE TELECOMUNICACIONES ES: 10-9
EL MINIMO NIVEL DE POTENCIA OPTICA (SENSIBILIDAD) QUE DEBE
RECONOCER EL RECEPTOR LO DETERMINA:

EL RUIDO

LA TASA DE ERROR

LA INTEFERENCIA ENTRE SIMBOLOS

EN AUSENCIA DE LUZ. NO FLUIRA CORRIENTE (DESPRECIANDO LA CORRIENTE DE OSCURIDAD) NO SE GENERAN PARES ELECTRON-HUECO.

SI HAY UN PULSO EN AUSENCIA DE LUZ

"HAY ERROR" LA PROBABILIDAD ES:

$$p(o) = e^{-NAV}$$

Si p(a) =
$$10^{-9}$$
 => NAV = 21

LA ENERGIA MINIMA DETECTABLE ES:

$$E = 21 \text{ Hy}$$

LA POTENCIA MINIMA DETECTABLE ES:

PMIN = 10.5 hv B donde
$$\nu = \frac{C}{\lambda}$$

SE LLAMA LIMITE CUANTICO.

1

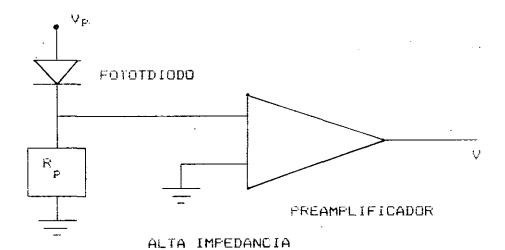
PREAMPLIFICADORES OPTICOS

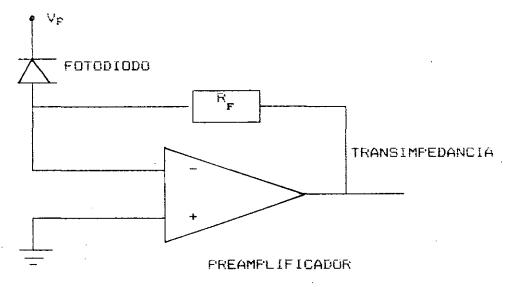
LA CALIDAD DEL RECEPTOR DETERMINA TODA UNA SERIE DE PARAMETROS IMPORTANTES EN LOS SISTEMAS DE COMUNICACIONES POR FIBRAS OPTICAS.

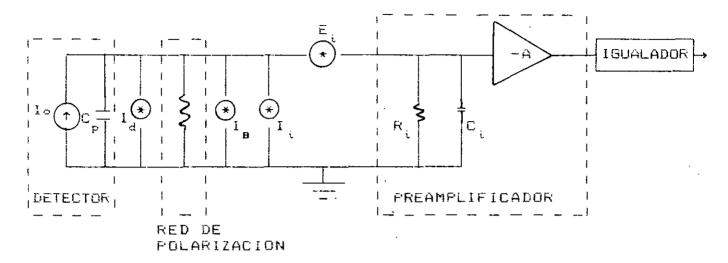
SENSIBILIDAD
INTERVALO DINAMICO
VELOCIDAD DE TRANSMISION
TASA DE ERROR

EL PREAMPLIFICADOR ES EL BLOQUE MAS CRITICO DEL RECEPTOR.

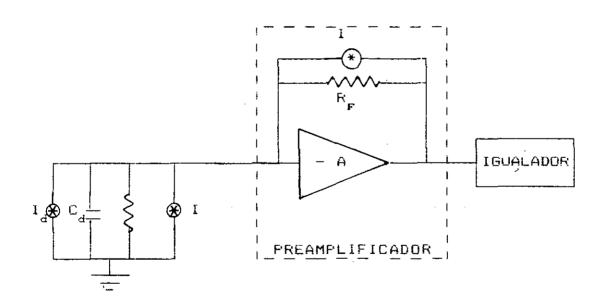
SUS CARACTERISITICAS IMPORTANTES SON:


SENSIBILIDAD
INTERVALO DINAMICO
ANCHO DE BANDA


FORMA DE LA FUNCION DE TRANSFERENCIA


LAS CONFIGURACIONES COMUNMENTE USADAS EN LOS PREMPLIFICADORES OPTICOS SON:

ALTA IMPEDANCIA TRANSIMPEDANCIA.



PREAMPLIFICADOR OPTICO DE ALTA IMPEDANCIA

PREAMPLIFICADOR DE TRANSIMPEDANCIA

LA ELECCION DE LA CONFIGURACION SE DA POR:

- 1- SENSIBILIDAD (RUIDO)
- 2.- INTERVALO DINAMICO

EL RUIDO LO DETERMINA LA <u>ETAPA</u> DE <u>ENTRADA</u> Y LA RED DE <u>RETROALIMENTACION</u>.

LOS ELEMENTOS QUE PUEDEN USARSE EN LA ETAPA DE ENTRADA SON:

BJT

JFET

MOSFET

GAASFET

LOS JFET - SE UTILIZA PARA VELOCIDADES MENORES DE 25 Mbits/s

LA CONFIGURACION DE TRANSIMPEDANCIA

TIENE MAYORES VENTAJAS CON RESPECTO A LA DE ALTA IMP.

ANCHO DE BANDA

INTERVALO DINAMICO

RESPUESTA PLANA DE LA CARACTERISTICA AMPLITUD-FRECUENCIA LA IGUALACION ES MENOS COMPLICADA

LOS ELEMENTOS MAS UTILIZADOS SON:

BST Y GAASFET.

TIENEN COEFICIENTE DE GANANCIA BASTANTE GRANDE

FRECUENCIAS DE CORTE DE VARIOS GHZ.

RUIDO

$$\langle \eta_{\text{OUT}}^2 \rangle = \frac{4 \text{kT} \left[2 \Pi \overline{C_i} \right] \text{A}^2 \text{B}^2}{\sqrt{3 \beta_1}} = \frac{4 \text{kTB}}{\gamma_{\text{in-optima}}} \left[\text{Volts}^2 \right]$$

DONDE:

 $k = 1.38 \times 10^{-29}$ J/K Constante de Boltzman's.

T = Temperatura (k) = 300 k para temperatura Ambiente.

C, = Capacitancia de Entrada.

A = Ganancia de Transimpedancia.

8 = Ancho de Banda.

$$\gamma_{\text{in-optima}} = \frac{kT}{q I_{\text{base}}} = \frac{\sqrt{3\beta_1}}{2\Pi C_i B}$$

$$I_{\underline{\text{cotector-optima}}} = \frac{kT(2\Pi C_i B)^{\beta_i}}{q \sqrt{3\beta_i}}$$

 $q = 1.6 \times 10^{-19}$ Conf. Carga del Electrón.

 β_1 = Ganancia de Corriente de T

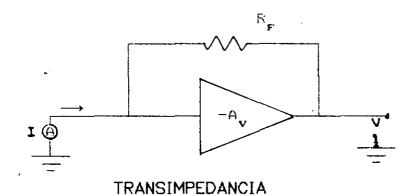
SI SE UTILIZA COMO T1 UN JFET

EL RUIDO DE SALIDA DEL PREAMPLIFICADOR ES:

$$\eta_{\text{out-rms}} = \left[\langle \eta_{\text{out}}^2 \rangle \right]^{1/2} = \left[2.8 \frac{B^3}{3gm} (2\Pi C_{\underline{i}})^2 A^2 \right]^{1/2}$$

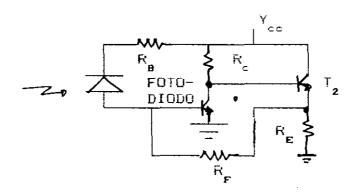
gm es la transconductancia del JFET.

DISEÑO Y SIMULACION DE PREAMPLIFICADORES OPTICOS


EL DETECTOR OPTICO ES UN FOTODIODO

CONVIERTE
$$\longrightarrow$$
 ENERGIA (P) CORRIENTE (I)

OPTICA


 $I = DF$

LA CORRIENTE \rightarrow SE PROCESA \rightarrow SE CONVIERTE EN VOLTAJE PARA INTERPRETAR LA ENERGIA OPTICA:

LA GANANCIA DE TRANSIMPEDANCIA ES =
$$\frac{V}{I}$$
 R_{F}

SI SE UTILIZA PARA EL AMPLIFICADOR DE VOLTAJE UN PAR RETROALIMENTADO.

LA RESISTENCIA DE ENTRADA ES

$$R_i = \frac{R_F}{1 - A_V}$$
 Donge A = GANANCIA DE VOLTAJE DEL AMPLIFICADOR.

LA CAPACITANCIA DE ENTRADA ES

$$C_{i} = C_{p} + C_{p} + C_{be} + \left[C_{be} + C_{f}\right] (1 - A_{v})$$

DONDE:

C_ - CAPACITANCIA DEL FOTODIODO.

c - CAPACITANCIA FARASITA.

 $C_{
m be}$ - CAPACITANCIA BASE-EMISOR DE T

 $^{\circ}C_{bc}$ - CAPACITANCIA BASE-COLECTOR DE T

C, - CAPACITANCIA DE RETROALIMENTACION.

 $\left[C_{f} + C_{bc} \right]$ (1 - A) CAPACITANCIA MILLER.

EL ANCHO DE BANDA DEL PREAMPLIFICADOR ESTA LIMITADO POR:

$$f-3dB = \frac{1}{2\Pi R_i C_i}$$

$$SIA_v >> 1 \qquad => \qquad C_i \approx (C_{bc} + C_f) (1 - A_v)$$

$$f-3dB = \frac{1}{C_i} = \frac{1}{C_i}$$

$$t-3aB = \frac{1}{2\Pi\left(\frac{R_f}{1-A_v}\right)\left(C_{bc}+C_f\right)\left(1-A_v\right)} = \frac{1}{2\Pi R_F\left(C_{bc}+C_f\right)}$$

$$f-3dB = \frac{1}{2\Pi\left[\frac{R_{F}}{1-A_{V}}\right]\left[C_{D}+C_{p}+C_{be}+\left(C_{bc}+C_{f}\right)\left(1-A_{V}\right)\right]}$$

RUIDO

$$\langle \eta_{\text{OUT}}^2 \rangle = \frac{4kT \left[2\Pi \overline{C_i} \right] A^2 B^2}{\sqrt{3}\beta_1} = \frac{4kTB}{\gamma_{\text{in-optima}}} \left[\text{Volts}^2 \right]$$

DONDE:

 κ = 1.38 \times 10⁻²⁹ J/K Constante de Boltzman's.

T = Temperatura (k) = 300 k para temperatura Ambiente.

C; = Capacitancia de Entrada.

A = Ganancia de Transimpedancia.

B = Ancho de Banda.

$$\gamma_{\text{in-optima}} = \frac{kT}{q l_{\text{base}}} = \frac{\sqrt{3\beta_i}}{2\Pi C_i B}$$

$$\frac{1}{\text{colector-optima}} = \frac{kT (2\Pi C_i B)^{\beta_i}}{q \sqrt{3\beta_i}}$$

 $q = 1.6 \times 10^{-19}$ C. Carga del Electrón.

 β_{\star} = Ganancia de Corriente de T

SI SE UTILIZA COMO T₁ UN JFET

EL RUIDO DE SALIDA DEL PREAMPLIFICADOR ES:

$$\eta_{\text{out-rms}} = \left[\langle \eta_{\text{out}}^2 \rangle \right]^{1/2} = \left[2.8 \frac{\text{R}^3}{3\text{gm}} (2\text{MC}_{\underline{i}})^2 \text{A}^2 \right]^{1/2}$$

qm es la transconductancia del JFET.

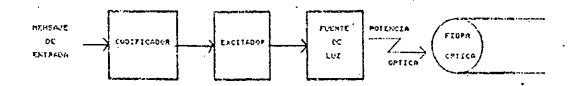
DISEÑO Y CONSTRUCCION DE RECEPTORES OPTICOS PARA SISTEMAS DE TRANSMISION DIGITAL POR FIBRAS OPTICAS DE 140 MBITS/S

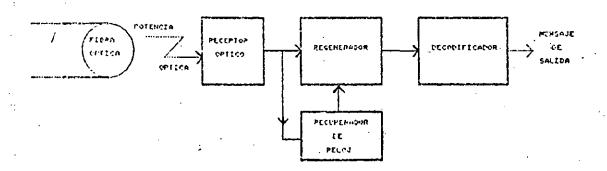
OBJETIVO:

DISENAR, CONSTRUIR Y CARACTERIZAR UN RECEPTOR OPTICO PARA SISTEMAS DE COMUNICACIONES OPTICAS DE LA CUARTA JERARQUIA DE TRANSMISION DIGITAL EN LA VENTANA DE 1300NM.

LOS MEDIOS PRINCIPALES PARA LOGRAR ESTE OBJETIVO SON:

- -DOMINAR LOS METODOS DE MEDICION DE LOS PARAMETROS DE LOS COMPONENTES OPTICOS.
- -SIMULACION POR COMPUTADORA PARA LA OPTIMIZACION DE DISEÑOS DE CIRCUITOS ELECTRONICOS-
- -DISPONER DE UN PROTOTIPO DE LABORATORIO DEL PREAMPLIFICADOR OPTICO COMPATIBLE CON LA CONSTRUCCION HIBRIDA Y MONOLITICA.
- -UTILIZACION DE LA TECNOLOGIA DE MONTAJE SUPERFICIAL.


ANTECEDENTES:


EL RECEPTOR DESARROLLADO DEBE POSEER LAS CARACTERISTICAS
ESENCIALES EN EL AMBITO DE LABORATORIO SIMILARES A LAS
CARACTERISTICAS DE LOS EQUIPOS COMERCIALES, PARA QUE CON
UN PEQUEÑO DESARROLLO ADICIONAL, SOBRETODO EN EL
MEJORAMIENTO DE LA CALIDAD DE ALGUNOS COMPONENTES SE
PUEDA LLEGAR A UN PROTOTIPO DE CAMPO O INDUSTRIAL.

LOS OBJETIVOS SE CUMPLIERON SATISFACTORIAMENTE.

PARA ESTO SE REALIZO LO SIGUIENTE:

- 1.-SE ANALIZO LAS CARACTERISTICAS PARTICULARES DE LOS SISTEMAS DE COMUNICACIONES POR FIBRAS OPTICAS, HACIENDO ENFASIS EN EL RECEPTOR.
- 2.-SE REALIZO UN ANALISIS DEL ESTADO DEL ARTE EN EL DISEÑO DE RECEPTORES PARA SISTEMAS DE TRANSMISION DIGITAL POR FIBRAS OPTICAS DE ALTAS VELOCIDADES. HACIENDO ENFASIS EN LOS PREAMPLIFICADORES OPTICOS Y EN LOS DISPOSITIVOS DE ENTRADA.
- 3.-SE DISEÑO EL RECEPTOR OPTICO Y SE SIMULO CON COMPUTADORA PARA OPTIMIZARLO. SE MIDIERON LOS PARAMETROS DEL FOTODETECTOR Y DE LOS COMPONETES ACTIVOS UTILIZADOS.
- 4.-SE DISEÑARON, OPTIMIZARON Y CONSTRUYERON TRES VARIANTES DE PREAMPLIFICADORES OPTICOS COMPATIBLES CON LA CUARTA JERARQUIA DE TRANSMISION DIGITAL, CON EL FIN DE SELECCIONAR EL MEJOR.
- 5.-EL RECEPTOR OPTICO SE CONSTRUYO Y SE CARACTERIZO. EL,
 PREAMPLIFICADOR SELECCIONADO SE CONSTRUYO CON COMPONENTES DE
 MONTAJE SUPERFICIAL. LA CONSTRUCCION Y CARACTERIZACION DEL
 RECEPTOR SE REALIZO BLOQUE POR BLOQUE. FINALMENTE SE ENSAMBLO
 TODO EL RECEPTOR Y SE CARACTERIZO.

EL RECEPTOR OPTICO ESTA CONSTITUIDO POR:

- -UN FOTODETECTOR DE AVALANCHA.
- -UN PREAMPLIFICATION OPTICO.
- -UN AMPLIFICADOR CON CONTROL AUTOMATICO DE GANANCIA.
- -UN FILTRO PASA BAJOS TIPO THOMSON DE 5º ORDEN.
- -UNA FUENTE DE POLARIZACION PARA EL FOTODETECTOR DE AVALANCHA CON

CIRCUITO DE PROTECCION Y CONTROL.

EL PREAMPLIFICADOR ES EL BLOQUE MAS CRITICO DEL RECEPTOR, DEBIDO A QUE ESTE DETERMINA VARIOS PARAMETROS DE IMPORTANCIA EN EL COMPORTAMIENTO DEL SISTEMA DE COMUNICACIONES POR FIBRAS OPTICAS. DEBE DISEÑARSE ESTABLECIENDO UN COMPROMISO DE CRITERIOS QUE PUEDEN ESTAR EN CONTRAPOSICION, POR LO QUE SE REQUIERE DE UN PROCESO DE OPTIMIZACION. LOS CRITERIOS COMUNMENTE CONSIDERADOS EN EL DISEÑO DE PREAMPLIFICADORES OPTICOS SON: SENSIBILIDAD, INTERVALO DINAMICO, ANCHO DE BANDA, FORMA DE LA RESPUESTA AMPLITUD-FRECUENCIA Y FASE-FRECUENCIA.

EL AMPLIFICADOR CON CONTROL AUTOMATICO DE GANANCIA TIENE COMO FUNCION COMPENSAR LAS VARIACIONES DEL NIVEL DE POTENCIA QUE INCIDE EN EL FOTODETECTOR, CON EL FIN DE MANTENER LA AMPLITUD CONSTANTE DE LA SEÑAL DE SALIDA DEL RECEPTOR, PARA QUE FUNCIONEN LOS CIRCUITOS POSTERIORES AL RECEPTOR (CIRCUITO DE DECISION, DE EXTRACCION DE SINCRONIA O DEMODULADORES).

EL FILTRO PASA BAJOS TIPO THOMSON DE 5º ORDEN DETERMINA EN LO FUNDAMENTAL EL COMPORTAMIENTO DE AMPLITUD-FRECUENCIA Y FASE-FRECUENCIA DEL RECEPTOR. SE UTILIZA PARA OPTIMIZAR LA RELACION SEÑAL A RUIDO Y MINIMIZAR LA INTERFERENCIA ENTRE SIMBOLOS.

LA FUENTE DE POLARIZACION PARA EL FOTODETECTOR DE AVALANCHA CON CIRCUITO DE PROTECCION Y CONTROL ESTA FORMADA POR UN CONVERTIDOR DE DC/DC. CON PROTECCION DE SOBRE VOLTAJES PARA EL FOTODETECTOR Y CONTROLA EL VOLTAJE PARA COMPENSAR LAS VARIACIONES DE GANANCIA DEL APD. CAUSADAS POR LAS FLUCTUACIONES DE TEMPERATURA Y PARA INCREMENTAR EL INTERVALO DINAMICO DEL RECEPTOR.

REQUISITOS MAS SOBRESALIENTES DEL RECEPTOR OPTICO:

- -VELOCIDAD DE TRANSMISION: 139.264 Mbits/s
- -CODIGO DE LINEA: 5868
- -FRECUENCIA DE OPERACION: 167.116 MHz
- -FORMATO DE SENAL: NRZ
- -VENTANA DE TRANSMISION: 1300 nm
- -TASA DE ERROR: 10⁻⁹
- -SENSIBILIDAD MAXIMA: -48 dBm
- -SENSIBILIDAD MINIMA: -20 dBm
- FOTODETECTOR: APD
- -NIVEL DE LA SENAL DE SALIDA: 200 mVp-p
- -INTERVALO DINAMICO DE LA SEÑAL DE SALIDA: ± 1.5 mVp-p
- -IMPEDANCIA DE SALIDA: 100 Ω
- -ESTABILIDAD DINAMICA: LA RESPUESTA TRANSITORIA NO DEBE TENER SOBRETIROS

CALCULO DE LA FOTOCORRIENTE DEL FOTODETECTOR DE AVALANCHA

EL FOTODETECTOR UTILIZADO EN EL DISENO ES UN APD DE GERMANIO DE FUJITSU TIPO FPD13R12JT SUS CARACTERISTICAS PROPORCIONADAS POR EL FABRICANTE PARA UNA GANANCIA DE DIEZ SON:

- -DIAMETRO DEL AREA ACTIVA: 100µm
- -VENTANA DE TRANSMISION (λ): 1300 nm
- -EFICIENCIA TIPICA: 70%
- -FRECUENCIA DE CORTE TIPICA: 700 MHz PARA RL = 50 Ω
- -VOLTAJE DE POLARIZACION: 25 V 40 V
- -FACTOR DE RUIDO DE EXCESO: 9
- -VALOR DE X = 0.95
- -CORRIENTE DE OSCURIDAD: 0.33 μ A

EL CALCULO DE LA FOTOCORRIENTE SE REALIZA UTILIZANDO LA ECUACION (1.3) PARA LA SENSIBILIDAD EXIGIDA.

	MINIMA	MAXIMA	INTERVALO
SENSIBILIDAD			,
(POTENCIA OPTICA			
PROMEDIO DETECTADA)	~48 dBm	-20 dBm	28 dB
GANANCIA DE CORRIENTE			
DEL APD	5 (13.79 dB)	30 (29.54 dB)	15.75 dB
FOTOCORRIENTE PROMEDIO	0.475 µA	52.3 µA	

El fotodetector esta acoplado a un tramo de fibra óptica, el núcleo de la fibra es de 50 μm y el primer recubrimiento óptico es de 125 μm . La eficiencia del APD medida es η =0.535 y su característica Ganancia-Voltaje de polarización experimental.

medida en el laboratorio se muestra en la figura 3.1.

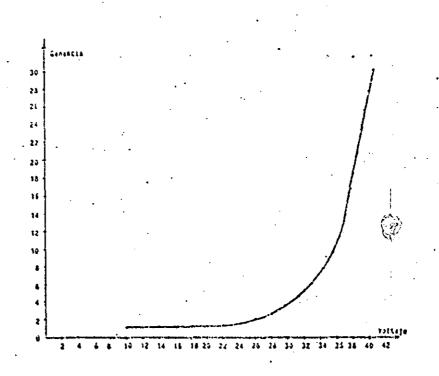
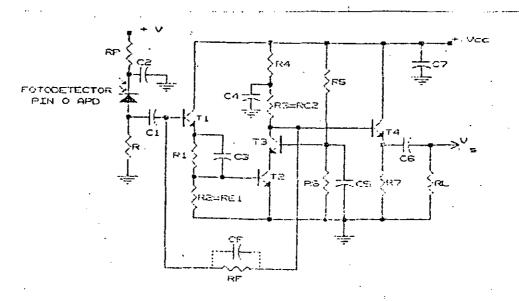



Fig.3.1.-Característica experimental Ganancia-Voltaje de polarización del AFD de fujitsu FD13R12JT.

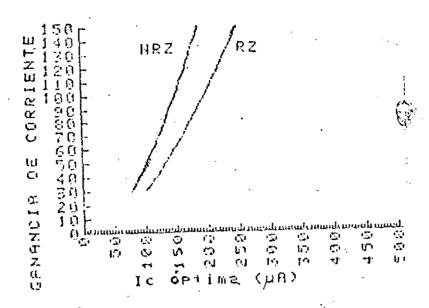


Fig. 3.3. -Comportamiento de la corriente de colector óptima para el intervalo de 8 del transistor MRF931.

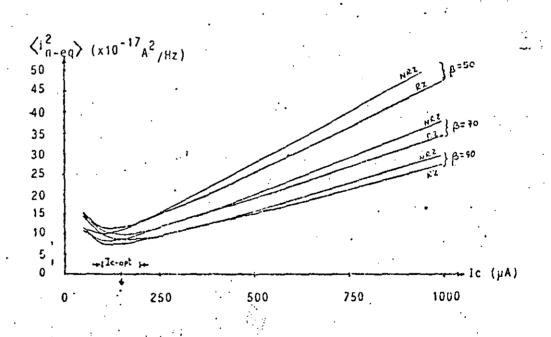


Fig.3.4.-Comportamiento de la corriente de colector de Ti contra el valor cuadrático medio de la corriente de ruido equivalente de entrada, para diferentes β y los formatos RZ y NRZ

para el formato RZ, Ztrans-BJT = 1094.5 para el formato NRZ, Ztrans-BJT = 1053.6

La potencia promedio minima detectable se determina por: para el formato RZ

$$\eta \overline{P} = \frac{h \dot{\nu} B}{2} \left(36 Fd + \frac{127}{M} \right) \quad (W) \tag{3.5}$$

para el formato NRZ

$$\eta \vec{F} = h \nu B I_2 \left[36 F_d + \frac{12Z}{M} \right] \quad (W)$$
 (3.6)

donde

 $h\nu = 1.529 \times 10^{-19}$, para $\lambda = 1300 \text{ nm}$

B = 139.264 Mbit/s

 $I_2 = 6.564$

• Fa = M^{\times} , M ganancia del APD y \times = 0.95.

Z = figura de mérito

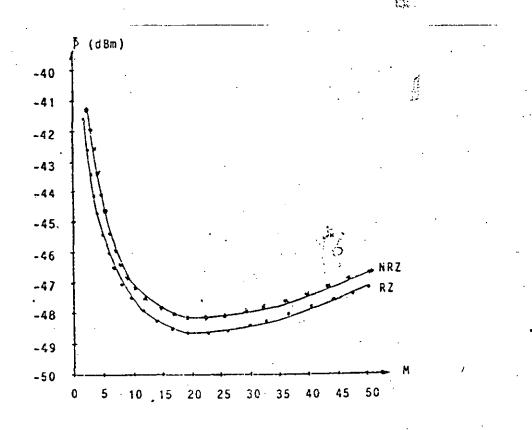
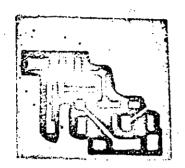


Fig. 3.5. - Sensibilidad del preamplificador contra ganancia del APD.

CON EL OBJETO DE OPTIMIZAR EL DISEÑO Y FUNCIONAMIENTO DEL PREAMPLIFICADOR SE CONSTRUYERON TRÈS VARIANTES DEL MISMO PARA FINALMENTE SELECCIONAR EL MEJOR, EL CUAL SE DUPLICO CON EL PROPOSITO DE ANALIZAR SU REPETIBILIDAD.

NO OBSTANTE DE QUE LA VERSION ELEGIDA ES UNA OPTIMIZACION DE LAS DOS ANTERIORES, ESTOS PROTOTIPOS PUEDEN EMPLEARSE EN EL RECEPTOR CON RESULTADOS SATISFACTORIOS.

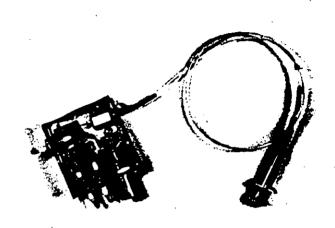
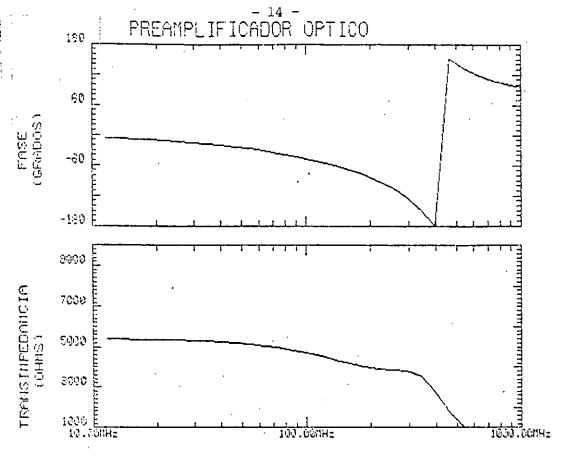

LOS PREAMPLIFICADORES SE CONSTRUYERON CON COMPONENTES PASIVOS DE DADO. DE ACUERDO A LOS OBJETIVOS DE LOS DISEÑOS ACTUALES, BASADOS EN LA TECNOLOGIA DE MONTAJE SUPERFICIAL DE COMPONENTES.

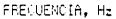
LA TECNOLOGIA DE MONTAJE SUPERFICIAL PRESENTA LAS SIGUIENTES VENTAJAS:

- -ALTA DENSIDAD
- -MEJOR FUNCIONAMIENTO ELECTRICO
- -BAJO COSTO DE FABRICACION
- -ENSAMBLE AUTOMATICO
- -ALTA RESISTENCIA MECANICA

SUS DESVENTAJAS SON:

- -REQUIEREN DE UN MANEJO CUIDADOSO
- -REQUIEREN DE UN ALMACENAJE ADECUADO


Fig.4.6.—Circuito impreso de los preamplificadores y fotografía de ~ uno de ellos terminado.

4.12. -CONSTRUCCION DEL AMPLIFICADOR CON CONTROL AUTOMATICO DE GANANCIA

El amplificador con CAG se construyó en una tableta de fibra de vidrio de doble cara de cobre de 16 x 19 cm. Una de las caras se utilizó para las pistas del circuito y la otra como plano de tierra y pistas de alimentación. En esta tableta también se construyó el filtro Thomson y se dejó el espacio suficiente para colocar el preamplificador y la fuente de polarización con control y protección del fotodetector de avalancha.

Las diferentes etapas del amplificador con CAG se desacoplaron con filtros RC. Los componentes utilizados son discretos y se ensamblaron superficialmente. En la figura 4.7 se muestra la tableta del circuito por el lado de las pistas del receptor óptico.

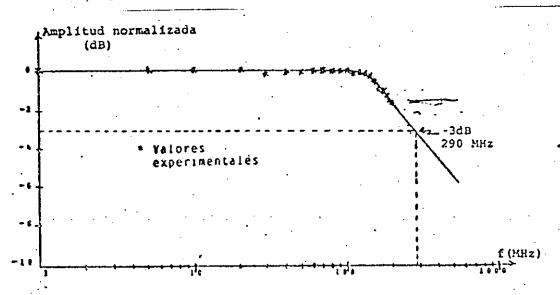
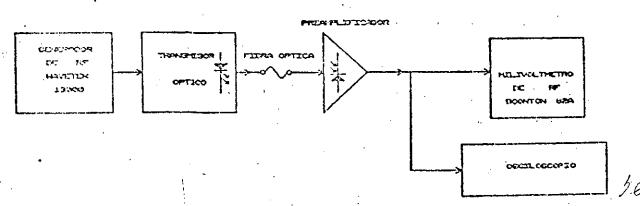



Fig. 4.11.—Característica amplitud—frecuencia del preamplificador óptico.

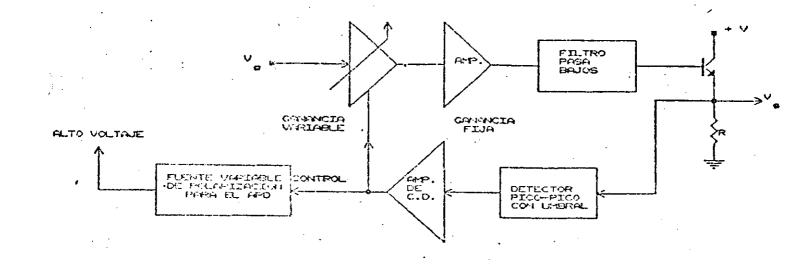


Fig. 2.13. - Diagrama a bloques del amplificador con CAG

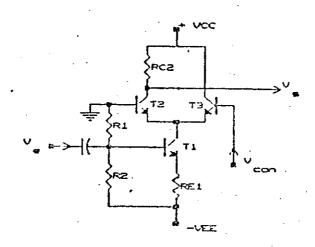


Fig. 3.6.-Circuito de la etapa de ganancia variable.

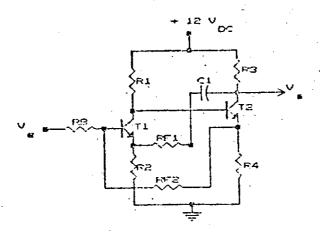


Fig. 3.7.-Circuito del amplificador de ganancia constante.

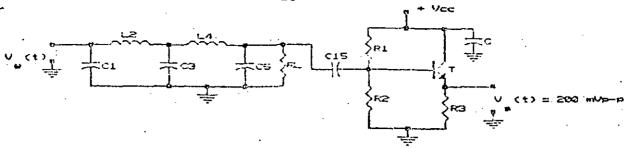


Fig. 3.9.-Circuito del filtro Thomson con etapa de desacoplamiento.

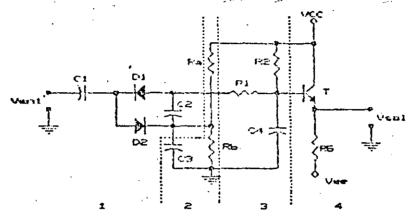


Fig. 3.11. - Circuito del detector pico-pico

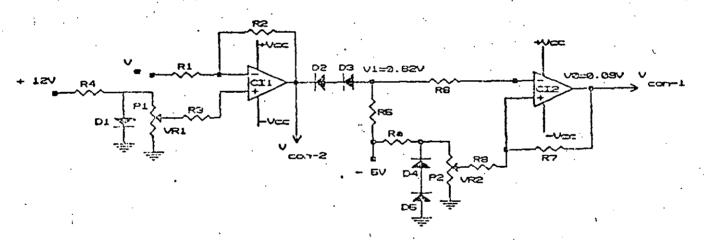


Fig.3.15.-Red de retroalimentación para el control automático de ganancia del receptor óptico

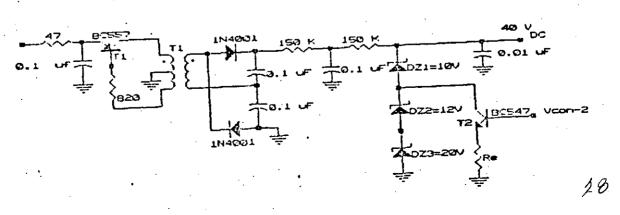
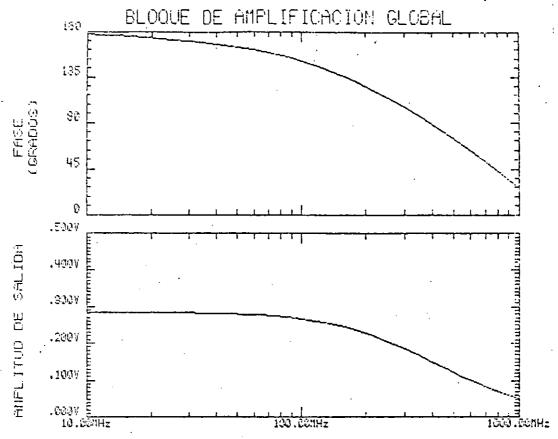



Fig. 3. 13. -Circuito de la fuente de polarización del APD con

FRECUENCIA, Hz

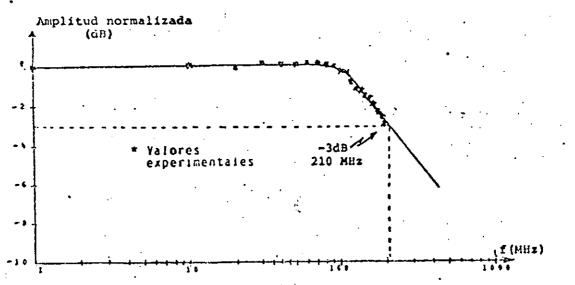


Fig. 4.17. - Característica amplitud frecuencia del bloque de RF

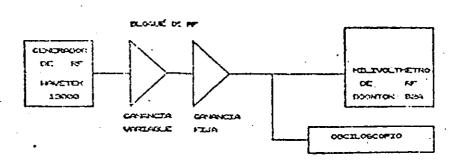
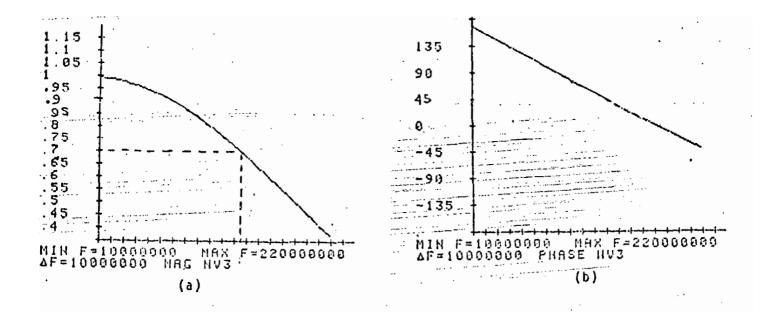



Fig. 4.18.-Sistema de medición para la característica de amplitud-frecuencia del bloque de RF.

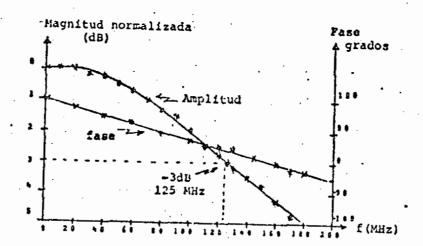


Fig.4.21.-Características amplitud-frecuencia y fase-frecuencia de la etapa de amplificación de RF en cascada con el filtro Thomson

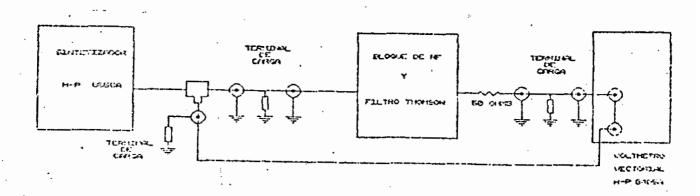


Fig.4.22.-Sistema de medición de las características amplitud-frecuencia y fase-frecuencia de la etapa de amplificación de RF en cascada con el filtro Thomson.

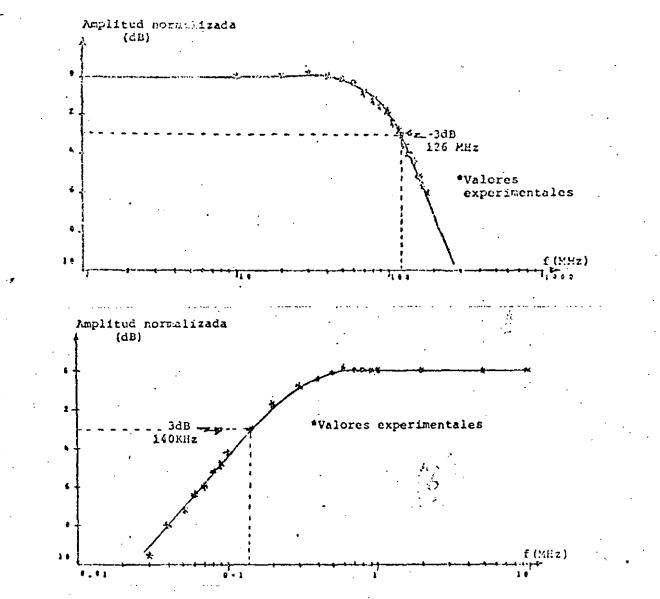


Fig. 4.26. -Característica amplitud-frecuencia del receptor óptico para bajas frecuencias.

Fig 4.27.-Característica del voltaje salida como función de la potencia óptica de entrada del receptor.

CONCLUSIONES

EL RECEPTOR OPTICO DISERADO Y CONSTRUIDO EN LA FASE DE PROTOTIPO
DE LABORATORIO PRESENTA LAS SIGUIENTES CARACTERISTICAS:

-SENSIBILIDAD MAXIMA

FARA EL FORMATO RZ: -46.6 dBm

PARA EL FORMATO NRZ: -46.1 dBm

- -VELOCIDAD DE TRANSMISION: 139.264 Mbits/s
- -TASA DE ERROR: 10-9
- -INTERVALO DINAMICO: 25 dB
- -VENTANA DE TRANSMISION: 1300 nm
- -INTERVALO DINAMICO DE LA SENAL DE SALIDA: ± 2.6 mVp-p
- -IMPEDANCIA DE SALIDA: 100Ω
- -CARACTERISTICA AMPLITUD-FRECUENCIA PLANA: ± 0.12 dB EN EL INTERVALO DE FRECUENCIA DE 0.5 30 MHz
- -CARACTERISTICA FASE-FRECUENCIA LINEAL: ± 3% EN EL INTERVALO DE FRECUENCIA DE 10 180 MHz
- -ANCHO DE BANDA: A -3dB 126 MHz

EL RECEPTOR OPTICO CONFORME A SUS CARACTERISTICAS PUEDE USARSE EN SISTEMAS DE TRANSMISION DIGITAL DE DISTANCIAS MEDIAS Y LARGAS QUE MANEJEN 1920 CANALES TELEFONICOS CODIFICADOS A 64 KBITS/S O DE 2 A 4 CANALES DE TELEVISION CODIFICADOS A 70 MBITS/S O 34 MBITS/S RESPECTIVAMENTE.

PUEDE UTILIZARSE EN SISTEMAS DE TELECOMUNICACIONES DE AREAS URBANAS SIMILARES A LAS DE LA CIUDAD DE MEXICO-

LA SENSIBILIDAD DIFIERE ENTRE LO TEORICO Y LO EXPERIMENTAL 3.1 %

PARA EL CASO DEL PREAMPLIFICADOR LAS DISCREPANCIAS SON:

PARA EL ANCHO DE BANDA:

--ENTRE LO CALCULADO CON LA ECUACION PROPUESTA Y LO EXPERIMENTAL ES 2 %

-- ENTRE LO SIMULADO Y LO EXPERIMENTAL ES 6.9 %

PARA LA TRANSIMPEDANCIA SE TIENE UNA DISCREPANCIA DE 6.3 % ENTRE LO TEORICO Y LO EXPERIMENTAL

LOS RESULTADOS REFLEJAN QUE EL METODO DE DISERO ES EL ADECUADO, INFLUYENDO SIGNIFICATIVAMENTE EL METODO DE CONSTRUCCION UTILIZADO QUE EL DE LA TECNOLOGIA DE MONTAJE SUPERFICIAL.

CON LA CONFIGURACION SELECCIONADA DEL PREAMPLIFICADOR SE HIZO UNA EXPLORACION EXPERIMENTAL NO RIGUROSA ALCANZANDOSE ANCHOS DE BANDA DE 380 MHz.

SE HAN REPORTADO RESULTADOS SIMILARES CON PREAMPLIFICADORES
DE GAASFET.

SE CONCLUYE LAS TECNICAS DE DISERO Y CONSTRUCCION SEGUIDAS ES UNA BUENA OPCION PARA CONSTRUIR PREAMPLIFICADORES OPTICOS DE ALTA VELOCIDAD, ALTA FUNCIONALIDAD Y BAJO COSTO.

CON RESPECTO AL AMPLIFICADOR CON CONTROL AUTOMATICO DE GANANCIA

LA ETAPA AMPLIFICACION DE RF.

TIENE UNA CARACTERISTICA AMPLITUD-FRECUENCIA PLANA EN EL INTERVALO
DE FRECUENCIA DE INTERES, SU ANCHO DE BANDA ES 210 MHz, LOS
RESULTADOS EXPERIMENTALES Y LOS TEORICOS SON MUY CERCANOS.

EL DETECTOR PICO-PICO CON UMBRAL DEL AMPLIFICADOR CON CONTROL AUTOMATICO DE GANANCIA ES UN CIRCUITO BASTANTE VERSATIL PUEDE APLICARSE EN UNA GRAN VARIEDAD DE SISTEMAS RADIOELECTRICOS.

LA EFICIENCIA DEL DETECTOR PICO-PICO ES DE 0.9

SU UMBRAL SE FIJA PARA EL NIVEL DE AMPLITUD A PARTIR DEL CUAL EL CONTROL SE REALIZA.

LA ESTIMACION DEL COMPORTAMIENTO DEL AMPLIFICADOR CON CONTROL AUTOMATICO DE GANANCIA SE REALIZO EN TODO EL INTERVALO DINAMICO DE LA POTENCIA OPTICA LA DISCREPANCIA CON RESPECTO A LO PREDICHO ES DEL 8%

EL FILTRO PASA BAJOS REQUIERE COMPONENTES DE PRECISION DE 1% O MENOR PARA QUE EL COMPORTAMIENTO EXPERIMENTAL SEA APROXIMADAMENTE IGUAL AL TEORICO. CON RESPECTO A LA FRECUENCIA DE CORTE SE OBTUVO UNA EXACTITUD DEL 8%.

EL CIRCUITO DE PROTECCION DEL APD SE LIMITA A UN VALOR MAXIMO DE 40.1 VOLTS DE CORRIENTE DIRECTA Y A UN VALOR MINIMO DE 10 VOLTS DE CORRIENTE DIRECTA.

LA POLARIZACION DEL APD SE FIJO A LA GANANCIA OPTIMA (38.6 VOLTS)

EL ANCHO DE BANDA DEL RECEPTOR ES 140 KHz A 126 MHz

EL INTERVALO DINAMICO DE POTENCIA OPTICA DEL RECEPTOR ES DE

-45 dBm A -20 dBm


EL INTERVALO DINAMICO DEL FOTODETECTOR ES DE 6 dB
EL INTERVALO DINAMICO DEL AMPLIFICADOR CON CONTROL AUTOMATICO DE
GANANCIA ES DE 19 dB.

ESTE RECEPTOR FUNCIONA EFICIENTEMENTE EN JERARQUIAS MENORES PARA LAS QUE FUE DISERADO

CON ESTE TRABAJO SE HA OBTENIDO LA EXPERIENCIA EN EL DESARROLLO DE LA ELECTRONICA DE LOS SISTEMAS DE COMUNICACIONES POR CABLES DE FIBRAS OPTICAS DE MEDIANA Y ALTA VELOCIDAD. ESPECIALMENTE EN LA CONSTRUCCION DE MONTAJE SUPERFICIAL.

CREEMOS QUE EL PRESENTE TRABAJO REPRESENTA UN PASO IMPORTANTE EN EL DESARROLLO DE NUESTRO PAIS EN EL CAMPO DE LA ELECTRONICA DE ALTA VELOCIDAD Y DE LAS COMUNICACIONES POR FIBRAS OPTICAS Y COMO CONSECUENCIA ES UN IMPULSO A LA FORMACION DE RECUERSOS HUMANOS.

EL RECEPTOR PRESENTA CARACTERISTICAS SIMILARES A LOS RECEPTORES DE LOS SISTEMAS COMERCIALES:

140 Mbit/s MULTIPURPOSE optical line terminal

TECHNICAL DATA

Line Terminal

Junction (cross connect): CMI Code: 139, 264 Mbit/s 🕸 15 ppm Loss: 12 dB max at 69, 632 MHz Jitter: Compatible with CCITT G 703

Impedance: 75 \(\Omega\) unbalanced Line rate: 278.528 Mbit/s

Repeater

Code: CMI

Line rate: 278.528 Mbit/s

Monitoring data transmission interface:

1 200 baud modem (V 23 interface)

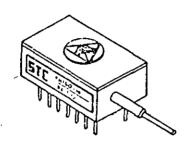
	MULTIMODE FIBRE	MONŌMODE FIBRE
Output power injected	0 dBm	— 3 dBm
Power received	36 dBm (for BER 10 °°) 30 dBm °	-36 dBm (for BER 10**
Power budget	36 dB	33 dB
Recommanded system margin	4 dB	4 dB
Loss of spliced link (suggested)	1.25 d8/Km	0.8 dB/Km
Maximum suggested repeater spacing	20 Km *	35 Km

For a 6 dB bandwidth of 100 MHz.

OPTICAL CHARACTERISTICS

Transmission medium: Monomode fibre or

multimode graded index fibre


Source: Laser diode Wavelength: 1,3 um Spectral width: 3 nm. Detector: PIN-FET

AGC dynamic range: 20 dB

Fibre Optic Receiver

PH series

Vavelength 1000nm to 1600nm.

FEATURES

- * InGaAs Photodetector PIN diode & GaAs FET preamplifier.
- * HIGH IMPEDANCE INTEGRATING design for very high sensitivity.
- * Suitable for bounded data at rates from 2.0 to 320 Mbaud.
- * Novel stabilizing network ensures suppression of oscillation.
- * Epoxy-free, hermetic metal package.
- * 50/125 µm graded index fibre tail.

DESCRIPTION

This F/O receiver consists of a high responsivity lII-V PIN detector, a low noise FET preamplifier, and a bipolar output stage. This design integrates the input signal for maximum sensitivity. A hybrid circuit within an all metal hermetic DIL package combines low parasitic design with ruggedized construction.

CHARACTERISTICS

Conditions: Ambient temperature, 22°C. Output, fully equalized. Load impedance, 50 ohms. Vavclength, 1300nm nom.

Parameter	Min.	Typ.	Units
Sensitivity & BER = 10 ⁻⁹ (Ims noise voltage test) Line rate 2 Mbaud 16 Mbaud 45 Mbaud 90 Mbaud 160 Mbaud	-56.5 -52.0 -49.0 -46.0 -43.0	-58.5 -54.0 -51.0 -48.0 -45.5	dBm dBm dBm dBm dBm
* Dynamic range	18.0	20.0	dB
Detector responsivity	0.65	0.85	A/W
Total Leakage Current		20.0	nA

Data on receivers for use at other line rates is available upon request.

The dynamic range R BER=10⁻⁹ is defined as:
the system overload point (using RRZ 2⁷-1 PRSS data)
minus the sensitivity (using the rms noise voltage test)

PHOOAG2OA.EB ISSUE B APR 14/86

EL RECEPTOR SUPERA LAS CARACTERISTICAS PRINCIPALES DE LOS RECEPTORES DE LOS SISTEMAS COMERCIALES:

MAIN PARAMETERS OF 32Mb/s & 100Mb/s FIBER OPTIC SYSTEMS (N. T. T.)

	F-32M F-100i			
Information Rate	32.064M b/s	97.728Mb/s		
Line Code	СМІ	8B1C		
Clock Frequency	64.128MHz	111.689MHz		
Allowable Cable Loss •	35 dB (S),	35 dB (S), 22 dB (L)		
Optical Source -	GaAlAs LD (S), InGaAsP LD (L)			
Optical Detector •	Si-APD (S), Ge-APD (L)			
Lass Marsin Cable	. 4dB			
Loss Margin System	2~8.5 dB			
Repeater Spacing •	10 km (S), 15 km (L)			
Error Rate	less than 10 ⁻¹¹ /REP			
Line Supervision	Coding Rule Check	Parity Check		
Service System : Stand by System	11 : 1			

^{* (}S) shows 0.85 μ m, (L) shows 1.3 μ m

SYSTEM	2MB FOTS	8MB FOTS	34MB FOTS	140MB FOTS
EQUIPMENT	FD-1015A-L	FD-2015A-L	FD-3009A-L	140M-FM-3A-L
PARAMETERS	O-LTE	O-LTE	O-LTE	MPX(OPT)
Line Bit-rate	2.048Mb/s	8.448Mb/s	34.641Mb/s	139.264Mb/s
Wavelength	1300nm(nominal)			
Optical Source	InGaAsP-ILD			
Optical Device	Ge-APD			
Line Code	Code Mark Inversion(CMI) Scrambled Binary			
Transmitter Output (peak power)	+2dBm ±0.5dB			
Transmitter Output (arerage power)	$-1 dBm \pm 0.5 dB$ $-4 dBm \pm 0.5 dB$			
Receiving Sensitivity (BER=10 ⁻¹¹)	47.0dBm	-43.	OdBm	-38.0dBm

Ū;	tica	l Fiber Transmission Mode		Mui	ti-Made	
	ster		2M FOTS	8M FOTS	34M FOTS	140M FOTS
Eq	uipa	ment	FD-1015A-L OLTE	FD-2015A-L OLTE	FD-3009A-L OLTE	140M-FM-3A- MUX (OPT)
Lir	ie B	it Rate (fo)	2.048 Mb/s	8.448 Mb/s	34.641 Mb/s	139.254 Mb/s
W	vel	ength		1.30µm	±0.03,,m	
Op	tica	d Source		InGa	AsP-ILD	
٥r	tica	al Detector		Ge	-APD	
Lir	ne Code Code Mark Inversion (Mark		(Mark Ra	bled Binary latio = 50%) ycle = 50%)		
•	ទ	Source output power in the fiber (peak power)	+ 2dBm ±0.5dB			
	uione	Source output power in the fiber (average cower)	-1dBm ±0.5dB -4dBm ±0.5d9		± 0.5dB	
	į	Connection loss in the equipment	3dB			
nager	낊	Operating margin for the equipment			2dB	
2	All	owable Link Loss	40.5ชย	3€.5dB	j 33.5 aB	28.50B
Connection loss between the transmitter and line		1.5dB				
ပို		Penalty for fiber bandwidth limitation (0.8 iii)	i	Not necessar	γ	1,508
JUK LOSS	E Required liber bandwidth (- 3dB optical)		>8MHz	>32MHz	>68MHz	>112MHz
Ē	1-	Operating margin for the cable			3dB	
	l	Total tine loss including splicing loss	36dB	32JB	29d B	22.5dB
Maximum Repeator Spacing (Example: 1.3dB/km including splicing loss)		27.7i.m	24.6 km	22.3 km	17.3km	

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS
TELECOMUNICACIONES VIA FIBRAS OPTICAS

SISTEMAS ANALOGICOS DE COMUNICACIONES POR FIBRAS OPTICAS

M. EN C. ARTURO ARVIZU

INDICE

- 1. Introducción
- 2. Técnicas de Modulación
- 3. Comparación entre las diferentes técnicas de Modulación.
- 4. Esquemas de Modulación-Demo dulación para sistemas de modulación de pulsos
- 5. Resultados obtenidos
- 6. Conclusiones
- 7. Referencias

TECNICAS DE TRANSMISION DE SEÑALES ANALOGICAS DE BANDA ANCHA POR FIBRA OPTICA

1. INTRODUCCION:

En el presente trabajo se reportan las diferentes alternativas que pueden utilizarse para la transmisión de señales analógicas vía fibra óptica.

Este estudio tiene por objeto el poder determinar la técnica adecuada a utilizar cuando se desea transmitir señales analógicas de banda ancha (entre 5 y 10 Mhz para el caso que nos ocupa) con una alta linealidad y una alta relación señal a ruido.

2. TECNICAS DE MODULACION:

En la Fig. 1 se muestran las diferentes técnicas de modulación existentes.

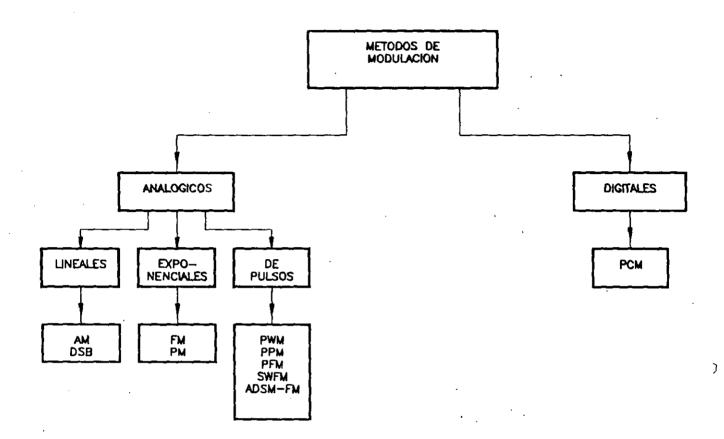


Fig. 1.- Técnicas de Modulación.

3. COMPARACION ENTRE LAS DIFERENTES TECNICAS DE MODULACION

En la tabla 1 es mostrada una comparación entre las diferentes técnicas de modulación mostradas en la fig. 1, esta comparación se basa en los análisis realizados en las referencias (1-7).

TABLA 1 COMPARACION ENTRE LAS TECNICAS DE MODULACION					
TECNICA	VENTAJAS	DESVENTAJAS			
1. Modulación lineal: (también conocida como modulación en banda base, en sistemas ópticos).	a) Es una técnica directa. b) Ancho de banda de los circuitos de pro cesamiento de señal reducido.	 a) No linealidad de los dispositivos ópticos transmisores. b) Dependencia de las características de los fototransmisores con la temperatura y el envejecimiento. c) Cuando se realizan compensaciones, es necesario hacerlas para cada fototransmisor en particular. 			
2. Modulación digital: (PCM)	a) Es el método más utilizado actualmen te para transmitir información vía fibra óptica. b) Tiene todas las ventajas asociadas con una transmisión de señales digitales (menos susceptible al ruido, entre otras).	a) Para transmitir seña les analógicas de banda ancha con una alta linealidad y una buena relación señal a ruido, se requieren muestreadores muy rápidos y con un número "regular" de bits, así por ejemplo, para digitalizar señales de video, se habla de velocidades de transmisión mayores de 100 Mbits/seg. para señales digitalizadas con 8 bits.			
	. 3	b) Se requiere toda la circuitería asociada con un equipo PCM (MUX, CO-DECS, etc.) trabajando			

TECNICA	VENTAJAS	DESVENTAJAS
		a velocidades relativamen- te elevadas (mayores de 100 Mbits/seg.)
3. Exponencial (FM, PM)	Buena relación señal a ruido (SNR) teóri- camente mayor que la de las técnicas lineales.	Dado que su portadora es senoidal se ve afectada por las no linealidades del fototransmisor, lo cual afecta en el desempeño del sistema al realizarse una conversión distorsión de amplitud-modulación de fase o frecuencia, lo cual es indeseable.
4. Modulación de pulsos:	Tiene la ventaja de utilizar una porta-dora cuadrada la cual no se ve afectada por las no linealidades del fototransmisor.	
4.1 Modulación por ancho de pulso (PWM):	a) Circuitería relativamente sencilla. b) Existe la posibilidad de realizar modulación de ancho de pulso a alta velocidad utilizando un circuito monoestable de alta frecuencia.	a) Ineficiente, ya que gran parte de la energía transmitida no contiene información dado que ésta viene dada por las variaciones del pulso alrededor de un valor nominal de interés. b) Dado que el ancho del pulso varía, se hace necesaria la utilización de un circuito de control automático de ganancia (CAG) en recepción. c) Dificultad de realización de un generador de onda triangular (el cual es parte fundamental del modulador) con buena linea lidad a alta frecuencia.
		,

comparadores de alta velocidad y respuesta plana e en frecuencia (los cuales sor necesarios en el modulador e) Su relación señal a ruido es mejor que la de pulso. 4.2 Modulación* de pulso. 4.2 Modulación* de pulso. 4.3 Modulación de pulso. 4.3 Modulación mejor que la de perm. 4.3 Modulación de pulso. 4.3 Modulación frecuencial con una linealidad mejorada. 4.3 Modulación mejorada. 4.3 Modulación mejorada. 4.3 Modulación mejorada. 4.4 Modulación de pulso. 4.5 Se obtiene una modulación frecuencial con una linealidad recuencia. 4.6 Modulación mejor que la de perm. 4.7 Modulación mejorada. 4.8 Modulación mejorada. 4.9 Es difícil encontrar veco's con buena linealidad respuesta plana a alta frecuencia y buena estabilidad térmica. 4.6 Modulación mejor que la de perm. 5. Su relación señal a ruido es mejor que la de perm. 6. Su relación señal a ruido es mejor que la de perm. 6. Su relación señal a ruido es mejor que la de perm. 6. So percuencia y buena estabilidad térmica. 6. Se requiere utilizar CAG en recepción.	TECNICA	VENTAJAS	DESVENTAJAS
delta-sigma asíncrona con frecuencia modulada (ADSM-FM) 4.3 Modulación* de pulsos en frecuencia (PFM): 4.3 Modulación* de pulsos en frecuencia (PFM): 4.4 Modulación* en frecuencia de señales cuadradas con ciclo de trabajo del 50% (SWFM) 4.4 Modulación* en frecuencia (SWFM) 5 Su relación señal a ruido es mejor que la de PFM. 6 Demodulación sencilla (sólo se necesita teóricamente un filtro paso bajas). 6 Su relación señal a ruido es mejor que la de PFM. 7 Unido es mejor que la de PFM. 8 D Difícil de implantar a alta frecuencia. 6 DE ROCCION SEÑAL 8 D ES difícil encontrar VCO's con buena linealidad respuesta plana a alta frecuencia y buena estabilidad térmica. 8 D Su relación señal a ruido es mejor que la de PFM. 9 C) Demodulación sencilla (sólo se necesita teóricamente un filtro paso bajas). 4.4 Modulación* en frecuencia de señales cuadradas con ciclo de trabajo del 50% (SWFM) 6 D Su modulador es más sencillo que el de PFM. 7 D Demodulación señal a ruido es mejor que la de pFM. 8 D Difícil de implantar a alta frecuencia. 6 D Su relación señal a ruido es mejor que la de pFM. 8 D Difícil de implantar a alta frecuencia. 6 D Se necesario utilizar CAG en recepción. 8 D Se obtiene una modulación sencial con una linealidad respuesta plana a alta frecuencia. 6 D Su relación señal a ruido es mejor que la de PFM. 8 D Difícil de implantar a alta frecuencia. 9 D Es difícil encontrar VCO's con buena linealidad respuesta plana a la tricuencia voca con buena linealidad respuesta plana a la pilidad térmica. 9 D Es difícil encontrar VCO's con buena linealidad respuesta plana a la uido es mejor que la de PFM. 9 D Es difícil encontrar VCO's con buena linealidad respuesta plana a la uido es mejor que la de PFM. 9 D Es difícil encontrar VCO's con buena linealidad respuesta plana a la uido es mejor que la de PFM. 9 D Es difícil encontrar VCO's con buena linealidad respuesta plana a la uido es mejor que la de PFM. 9 D Es difícil encontrar VCO's con buena linealidad respuesta plana a la uido es mejor que la			ruido es la más baja de todos los esquemas de mo-
de pulsos en frecuencia (PFM): modulador y demodulador y demodulador son de fácil implantación. b) Su relación señal a ruido es mejor que la de ADSM-FM y la de PWM. c) Demodulación sencilla (sólo se necesita teóricamente un filtro paso bajas). 4.4 Modulación* en frecuencia de señales cuadradas con ciclo de trabajo del 50% (SWFM) modulador y demodulación respuesta plana a alta frecuencia y buena estabilidad térmica. b) Se requiere utilizar CAG en recepción. a) Su relación señal a ruido es mejor que la de PFM. a) Dado que se necesita utilizar un VCO en el modulador tenemos los mismos problemas que en (a) del inciso 4.3 c) No necesita CAG	delta-sigma asincrona con frecuencia modulada	a ruido es mejor que la de PWM. b) Se obtiene una modulación frecuen- cial con una linea-	ruido es menor que la de PFM. b) Difícil de implantar a alta frecuencia. c) Es necesario utilizar
sita teóricamente un filtro paso bajas). 4.4 Modulación* en frecuencia de señales cuadas con ciclo de trabajo del 50% (SWFM) sita teóricamente un filtro paso bajas). a) Su relación señal a Dado que se necesita utilizar un VCO en el modulador tenemos los mismos problemas que en (a) del inciso 4.3 c) No necesita CAG	de pulsos en frecuencia	modulador y demodu- lador son de fácil implantación. b) Su relación señal a ruido es mejor que la de ADSM-FM y la de PWM. c) Demodulación sen-	VCO's con buena linealidad, respuesta plana a alta frecuencia y buena estabilidad térmica. b) Se requiere utilizar
	en frecuencia de señales cua- dradas con ci- clo de trabajo	sita teóricamente un filtro paso bajas). a) Su relación señal a ruido es mejor que la de PFM. b) Su modulador es más sencillo que el de PFM. c) No necesita CAG	utilizar un VCO en el mo- dulador tenemos los mismos problemas que en (a) del

TECNICA	VENTAJAS	DESVENTAJAS
5. Modulación por posición de pulsos (PPM)	a) Su relación señal a ruido es la más alta de todos los esquemas de modula-ción de pulso. b) Eficiente en uso de potencia.	a) Su modulador se implanta a partir de un modulador PWM con los problemas mencionados en (c) y (d) de 4.1 b) Su demodulador tiene una complejidad de realización superior a la de cualquiera de los esquemas de modulación de pulsos.

^{*} Para todos estos tipos de modulación (ADSM-FM, PFM, SWFM) se requieren circuitos monoestables de alta frecuencia, con buena linealidad, respuesta plana en frecuencia y buena estabilidad térmica.

4. ESQUEMAS DE MODULACION-DEMODULACION PARA SISTEMAS DE MODULACION DE PULSOS

A continuación se muestran los diagramas a bloques de los diversos esquemas de modulación-demodulación para sistemas de modulación de pulsos; asimismo, se muestra una gráfica (tomada de la referencia 1) donde se ilustra la relación señal a ruido para los sistemas de modulación de pulsos en función de la potencia recibida para unos parámetros dados.

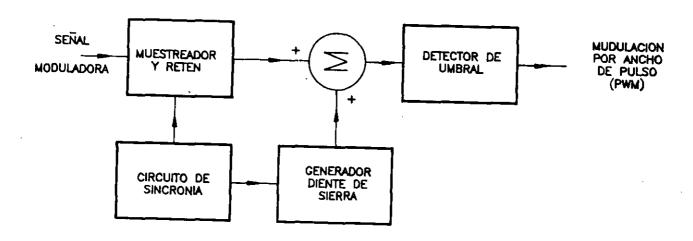


Fig. 2.- Generación de Modulación PWM con muestreo uniforme.

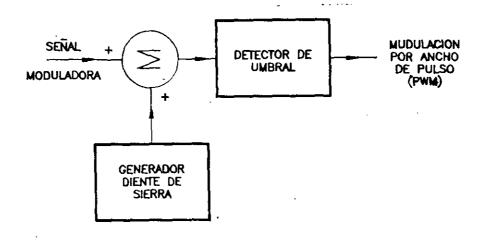


Fig. 3.- Generación de Modulación PWM con muestreo no-uniforme.

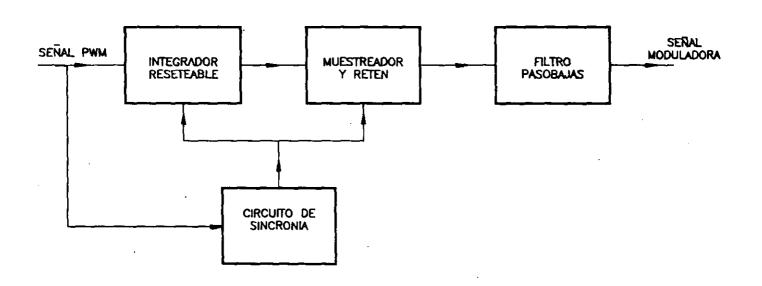


Fig. 4.- Demodulación PWM

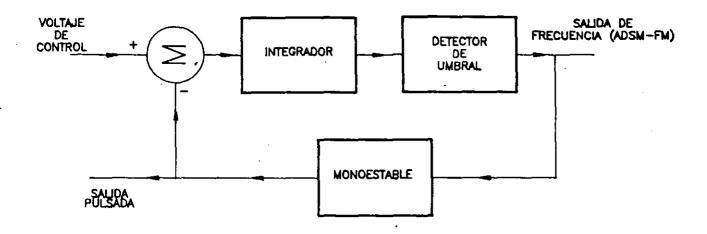


Fig. 5.- Generación de Modulación ADSM-FM

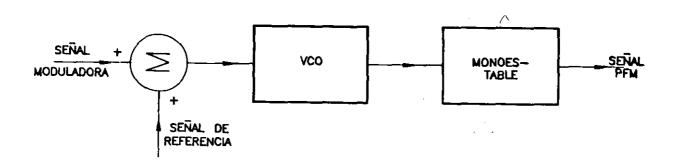


Fig. 6.- Generación de Modulación PFM

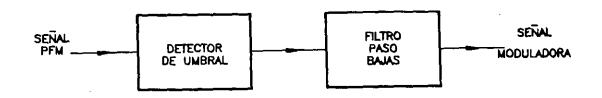


Fig. 7.- Demodulación PFM

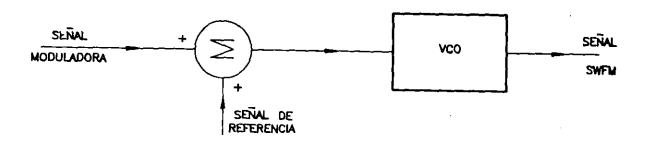


Fig. 8.- Generación de Modulación SWFM

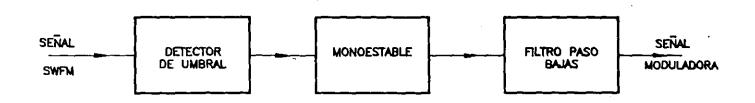


Fig. 9.- Demodulacion PFM

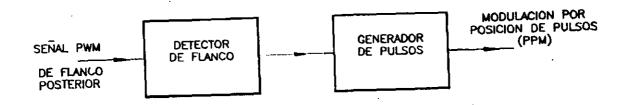


Fig. 10.- Generación de Modulación PPM

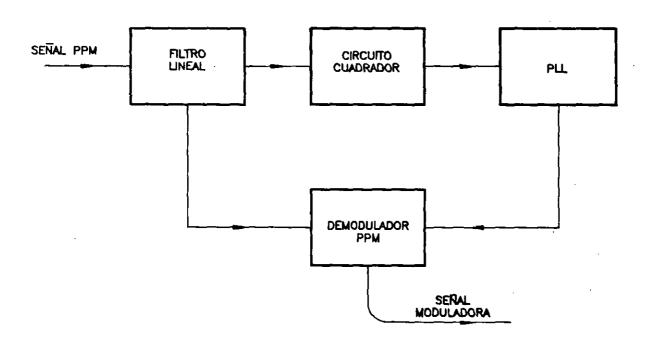


Fig. 11.- Demodulación PPM

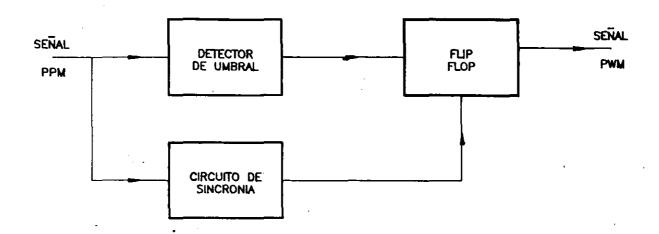


Fig. 12.- Diagrama a bloques de un demodulador PPM.

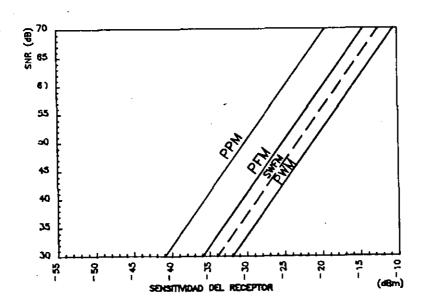


Fig. 13.- SNR (dB) para un receptor con diodo
PIN en función de la potencia óptica
de recepción (referencia 1).

5. RESULTADOS OBTENIDOS

A continuación se muestra una tabla donde se resumen los resultados obtenidos del análisis realizado para las técnicas de modulación de pulsos.

TABLA 2					
	TABLA 2 RESULTADOS OBTENIDOS				
TECNICA	REQUIE	ere cag no	RELACION SEÑAL A RUIDO CON-30 dBM DE POTENCIA EN EL RECEPTOR, UTILIZAN DO PIN (REF. 1)*	COMPLEJIDAD	
1. PWM	х		5 (45 dB)	*Se requieren genera- dóres triangulares li- neales de alta fre- cuencía y amparadores rápidos con buena res puesta.	
2. ADSM-FM	х		4	*Se necesitan inte- gradores y sumadores de alta frecuencia así como monoestables con buena respuesta.	
3. PFM	X		2 (60 dB)	*Se requieren VCO's lineales y monoesta- bles con respuesta plana en frecuencia.	
4. SWFM		. x	3 (53 dB)	*Mismos problemas que para PFM.	
5. PPM		х	1 (.70 dB).	*Se requiere generar primero PWM. *El demodulador tiene una complejidad de realización elevada.	
6. PCM	X		Es dependiente del número de bits utilizados en la conversión analógica digital.	*Se requieren veloci- dades de procesamien- to y transmisión ele- vadas, por ejemplo, para video codificado a 8 bits se necesita trabajar a velocidades mayores de 100 Mbits/ seg.	

^{*}Los Nos. fuera de los paréntesis indican la relación entre los diferentes esquemas.

CONCLUSIONES

De la comparación realizada en las tablas 1 y 2 podemos observar que las alternativas más viables son las referentes a las técnicas de modulación de pulsos y dentro de éstas las más factible de implantar es la modulación por ancho de pulso, la cual está condicionada a poder realizar un generador de onda triangular lo suficientemente lineal y poder disponer de comparadores de voltaje rápidos y con respuésta en frecuencia plana.

Para las técnicas de modulación en frecuencia (PFM, SWFM) se hace necesario disponer de VCO's de alta frecuencia con buena linealidad, respuesta plana en frecuencia y buena estabilidad térmica, lo cual por experiencias del autor del presente trabajo, es muy difícil de lograr.

Opcionalmente, se podría intentar la realización de un esquema PPM, sin embargo, dicha realización está condicionada a lograr en primer lugar, la modulación PWM.

7. REFERENCIAS

- V.Di Biase, P. Passeri, R. Pietroivsti, "Pulse Analog Transmission of TV Signal on Optical Fibre", Alta Frequenza, Vol. LVI-No. 4, June 1987.
- 2. G.G.Windus, "Fibre Optic Systems for Analogue Transmission" the Marconi Review, Vol. XLIV, No. 222 2nd Quarter 1981".
- 3. D.G. Fink, "Electronics Engineer's Handbook" Mc Graw Hill, 1975, U.S.A.
- 4. C.J. Kikkert, D.J. Miller, "Asynchronous Delta Sigma Modulation", Proceedings of the IREE, April 1975.
- 5. K. Sato, S. AOYAGI, T. KITAMI, "Fiber Optic Video Transmission Employing Square Wave Frequency Modulation", IEEE Trans. on Comm., Vol. COM-33, No. 5, May 1985.
- 6. C. Chen, C.S. Gardner, "Performance of PLL Synchronized Optical PPM Communication Systems" IEEE Trans. on Comm., Vol. COM-34, No. 10, Oct. 1986.
- 7. A.B. Carlson, "Sistemas de Comunicación" Mc Graw-Hill, 1980, México.

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS
TELECOMUNICACIONES VIA FIBRAS OPTICAS

CARACTERISTICAS DE TRANSMISION, ENLACES Y SISTEMAS DE FIBRAS OPTICAS

ING. DANIEL PINEDA C.

2.3.1.Dispersión en fibras opticas.

Los mecanismos de dispersion en fibras ópticas son los causantes de las limitaciones de ancho de banda en estos sistemas.La dispersión se entiende básicamente como un ensanchamiento temporal del pulso óptico inyectado a lo largo de su viaje por la fibra.

Existen tres mecanísmos básicos de dispersión en las fibras que son:

- a) Dispersión Intermodal.
- b) Dispersión del Material.
- c) Dispersión de Guía de Onda.

Es el efecto conjunto de estos tres fenúenos lo que determinará finalmente el ancho de banda de la fibra.

La dispersión intermodal es prácticamente independiente del ancho espectral de la fuente exitadora y depende básicamente del número de modos que viajan en la fibra y de la diferencia de velocidad entre el mas rápido y el mas lento.

La dispersión material y la dispersión de guía de onda son fenómenos cromáticos, es decir, dependen de la longitud de onda central y del ancho espectral de la fuente.

En fibras multimodales el factor dominante es la dispersión modal que es particularmente fuerte para la fibra de índice escalonado y mucho menor para la fibra de índice graual.

Si se utiliza un LED como emisor el efecto del material es grande .

En fibras multimodales de índice gradual la dispersión material y modal cooperan aproximadamente con la misma proporción en la dispersión total si se usa un laser en 0.85µm., sin embargo, para un laser en 1.3µm. la dispersión material disminuye a un valor despreciable.

En una fibra monomodal, la dispersión modal no existe y la combinación de dispersión material y de guía de onda determinan la dispersión total que es mucho menor que en las fibras multimodales.

-/-

Para estas fibras en =1.27μm. la dispersión cromática cambia de signo y se elimina teoricamente con la dispersión intramodal en =1.3μm..El ancho de banda en este punto es enorme.

Analicemos ahora las tres formas de dispersión.

Dispersion Intermodal.

La dispersión intermodal es el resultado de la diferencia de velocidades de viaje entre los modos que se propagan. Obtener una fórmula exacta para el valor de esta dispersión es demasiado complicado y en general no tiene sentido. Por ejemplo para una fibra de índice escalonado de 504m. de diámetro donde se transmiten hasta 800 modos, es inútil conocer la velocidad individual de cada modo. Los métodos de óptica geométrica aproximan la multitud de modos a un volumen continuo y se obtiene un tiempo de propagación en función de una variable que representa el orden del modo.

Una aproximación mas sencilla pero muy burda consiste en considerar solo la velocidad de los modos mas rápido y mas lento de acuerdo a su trayectoria de rayo.

Esta diferencia es entonces, para una fibra de Indice escalonado:

$$\Delta t = n, L/c - n_2 L/c = \frac{n, \Delta L}{c}$$
 (2.3.1.)

$$\zeta_m = \Delta z/L = \frac{(NA)^2}{20.C}$$
 (2.3.2.)

Esta aproximación no considera la forma del pulso de salida y generalmente se toma una forma rectangular.

El análisis para la fibra óptica de índice gradual puede llevarse a cabo exactamente en los mismos términos.

Para la fibra de índice parabólico, la relación entre los tiempos de propagación de un rayo incidente con ángulo θ_o con respecto a un rayo axial $(\theta=0)$, se puede ver en el siguiente análisis.

Tomando la relación:

$$\frac{\mathcal{E}(\theta)}{\mathcal{E}(0)} = \frac{2\sqrt{\frac{n(r)}{c}} ds}{\frac{n(o)}{c} L_o} = \frac{1}{L_o} \int_{\frac{n(o)}{c}}^{\frac{n(o)}{c}} ds$$

$$n(i) = \eta(0)\sqrt{1-2\Delta(\frac{1}{a})^2}$$
 (2.3.4.)

obtenemos:

$$Z(\theta_0) = \left(1 + \frac{3e_{\pi} \gamma_{\theta_0}}{\gamma_{4\pi}^2 \epsilon_0}\right) Z(0)$$
 (2.3.5.)

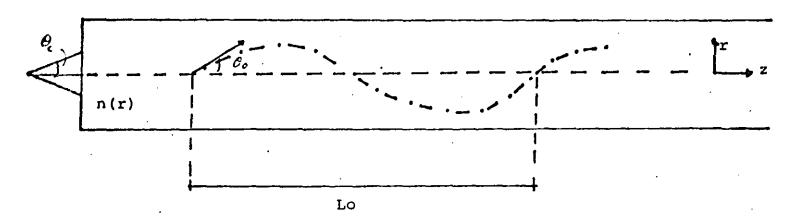
y con:

$$BZ = Z(e_0) - Z(0) = \frac{4n^760}{74n^760} \frac{nL}{c} = \frac{L}{c} \frac{Ln^7E}{4n^3}$$
 (2.3.6.)

Tenemos:

$$\Delta Z_{mix} = \frac{un^4 \delta c}{4n^3} \frac{L}{c} = \frac{0.0^2 L}{c}$$
 (2.3.7.)

La figura (2.3.1.), ilustra este efecto.


Sin embargo la aproximación presentada no es suficiente, el aná - lisis de óptica geométrica desarrollado para fibras cuyo perfil de índice de refracción sigue la ley: ___

Donde n es el indice de refracción en r=0 y $\Delta = (n_0 - n\omega)/n_0$

muestra el siguiente resultado para la dispersión modal

$$T(M) = \frac{Lm}{c} \left[1 + \Delta \left(\frac{\alpha - 2 - \epsilon}{\alpha + 2} \right) \left(\frac{M}{M} \right)^{\alpha/2} + \frac{\Delta^2}{2} \left(\frac{3\alpha - 2 - 2\epsilon}{\alpha/2} \right) \left(\frac{M}{M} \right)^{\frac{22}{2}/2} + \frac{\Delta^3}{2} \left(\frac{5\alpha - 2 - 2\epsilon}{\alpha/2} \right) \left(\frac{M}{M} \right)^{\frac{3\alpha}{\alpha/2}} \right] + O(\Delta^2)$$

Fibra Optica de Indice gradual

Tiempo de propagación para un rayo con ángulo \mathcal{Q}_o en r=0

figura 2.3.1.

Donde:

M es la variable que identifica el orden del modo.

M es el número máximo de orden que un grupo de modos puede llevar.

$$\epsilon = \frac{2n_1 R}{m_1 \Delta} \frac{d\Delta}{dk} \sim \frac{2\lambda}{(N_A)^2} \frac{d(N_A)^2}{d\lambda}$$
 (2.3.10.)

$$\frac{y}{m} = n - \lambda \frac{J_{n_i}}{\sigma \lambda}$$
(2.3.11.)

La figura (2.3.2.) muestra los perfiles de índice de refracción para varios valores de α .La figura (2.3.3.) muestra los valores del retardo en función de la variable .

Es fácil demostrar que A7 tiene un mínimo para:

$$\alpha = 2 + \epsilon - 2 \Delta \qquad (2.3.12.)$$

En este valor la dispersión total se reduce a:

$$\Delta \zeta = \frac{m_1 \Delta^2}{8c} L \qquad (2.3.13.)$$

Disporsión del material.

El hecho de el vidrio sea un material dispersivo, es decir, que cambie su indice de refracción efectivo en función de la longitud de onda, obliga a todos los análisis electromagnéticos o de óptica geométrica a tomar en cuenta este efecto. El resultado final es simple campos de diferente longitud de onda tendrán diferente velocidad de propagación en el material y esto es una nueva causa de dispersión. Por ejemplo el tiempo de propagación de un rayo en la teoría mas simple es:

$$7 = \frac{2a \, n_i}{c \, sin \, \theta}$$
 (2.3.14.)

Sin embargo, teniendo en cuenta la dependencia de n_1 en λ toma la forma:

$$\zeta = \frac{2\alpha \, M_l}{c \, \sin \theta} \tag{2.3.15.}$$

Donde:

$$m_i = n_i - \lambda \frac{dn_i}{d\lambda}$$
 (2.3.16.)

La figura (2.3.4) muestra las variaciones de n_1 y de m_1 en función de λ para las longitudes de onda de interés.

Para una fuente de ancho espectral finito se tendrá la dispersión del material porque las señales de diferente longitud de onda tendrán diferentes velocidades de grupo. El tiempo de tránsito de un modo viajando a la longitud de onda λ puede relacionarse con la longitud de onda central de la fuente $\lambda_{\rm e}$ mediante una expansión en series de Taylor:

$$7(\lambda) = 7(\lambda_0) + (\lambda - \lambda_0) \frac{dz}{d\lambda} + \frac{(\lambda - \lambda_0)^2}{\lambda_0} \frac{d^2z}{d\lambda^2} + (2.3.17.)$$

El término dominante en los lasers y LEDs típicos $(\lambda - \lambda_o = 2,30 \text{ nm.})$ será el de la primera derivación. Ahora si notamos la fórmula (2.3.16.) el factor que determina la dispersión es:

$$\frac{1}{c}\frac{dm_i}{d\lambda} = -\lambda_c \frac{\partial^2 n_i}{\partial \lambda^2} = M_i(\lambda) \qquad (2.3.18.)$$

La gráfica de la fígura (2.3.5.) muestra los valores de M_1 para SiO $_2$ Vemos de la fígura que M_1 =80 ps./nm./Km. a λ =0.85 μ m. implicando que para un ancho espectral de 40 nm., la dispersión del material será de 3 ns./Km. Como se indico antes M_1 decrese, hasta pasar por cero en λ =1.27 μ m. implicando una disminución significativa de la dispersión enesta zona, donde otros miembros de la expansión (2.3.17.) son significativos.

La longitud de onda de dispersión material cero depende desde lue de la compocisión del vidrio, en el caso de GeO₂-SiO₂ varía entre 1.27µm. y 1.39µm.

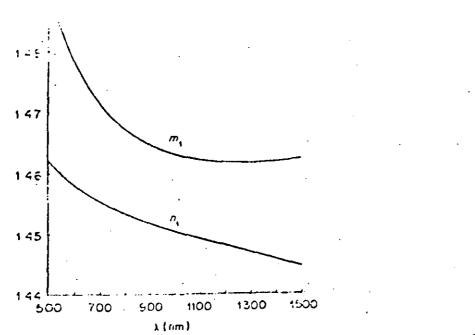


Figura (2.3.4).- Variación de n_1 y m_1 en las longitudes de onda de interés.

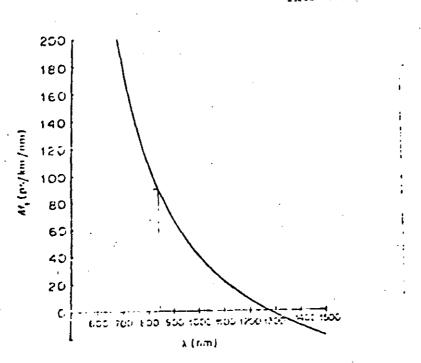


Figura (2.3.5). - Variación de M₁ en función de la longitud de onda.

Dispersión de Guía de Onda.

Aun considerando que el índice de refracción permaneciera constante y un solo modo se transmitiese aparecería un efecto de dispersión cromático si la fuente tuviera un ancho espectral determinado. Considerese la fórmula siguiente:

$$\zeta = \frac{2\alpha n_i}{(un \theta)} \tag{2.3.19.}$$

Si cambia la longitud de onda de trabajo debe cambiar aunque n_1 permanesca constante.La razón es que el ángulo θ cambiaría.En efecto de la teoría modal sabemos que solo ciertos ángulos discretos de propagación θ_n son permitidos.Son estos ángulos los que definen los modos.Si cambia la longitud de onda de propagación los angulos permitidos cambian también, es decir, cada modo toma una velocidad de viaje ligeramente distinta.La diferencia de velocidades de viaje para un modo cuando es excitado en diferentes longitudes de onda es la dispersión intramodal.

La figura (2.3.6.) muestra una gráfica de velocidad de propagación (normalizada) contra frecuencia (normalizada) en la región monomodal la figura muestra la diferencia entre velocidad para una excitación laser. En esta región solo la dispersión del material y la de guia de onda existen. La dispersión intramodal para un laser de 2 nm. de ancho espectral es de 0.01 ns/Km. por lo que para los valores de dispersión vistos en fibras multimodo, el efecto es despreciable.

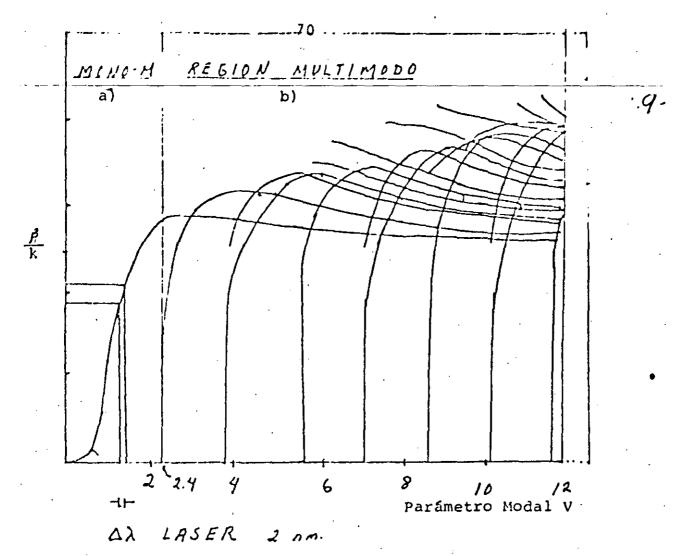


Figura (2.3.6).- Regiones de propagación. a) Monomodal y b) Multimodal.

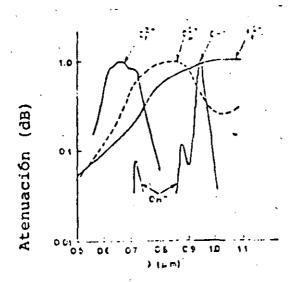


Figura (2.3.7). - Bandas de absorción de diferentes impurezas.

La atenuación en fibras ópticas ha sido siempre un impedimento principal en su uso. Aún hoy en día desde un punto de vista eco nómico representa uno de los mayores retos.

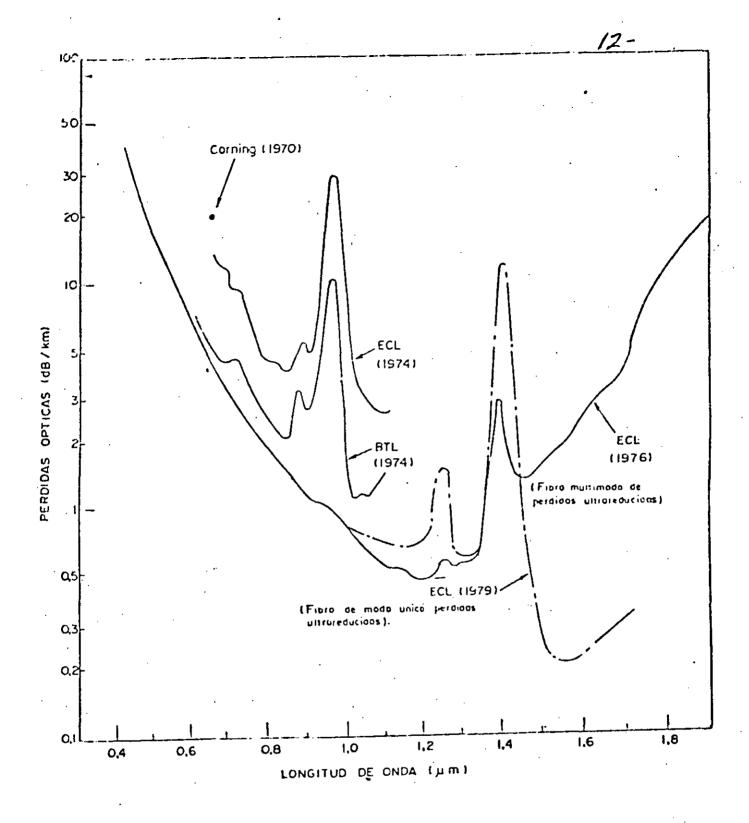
La atenuación puede dividirse de acuerdo a sus causas, en atenuación por absorción o pérdidas de calor y atenuación por dispersión o pérdidas por radiación. La absorción se puede dividir a su vez en dos tipos, intrínseca y por impurezas extrínsecas: La dispersión se puede dividir en tres tipos:intrínseca, por inho mogeneidades en el vidrio y aberraciones en la distribución radial del índice de refracción.

La absorción es el proceso por el cual la energía electromagnetica del campo luminoso excita un sistema atómico que tiene una resonancia de oscilación a la misma frecuencia que el campo incidente. El efecto es entonces la absorción de la energía óptica en un campo de vibración mecánica del sistema atómico.

La absorción intríseca ocurre por definición cuando el material se encuentra en un estado perfecto. En condiciones normales, materiales dieléctricos como el vidrio son considerados perfectamente transparentes. Esto es cierto para la mayoría de las aplicaciones pero no para las fibras donde los coeficientes de atenuación con tres órdenes de magnitud menores se trabajan. Conocer estos fenómenos es de básica importancia para obtener los límites fundamentales de transmisión an fibras.

Los vidrio transparentes en el rango visible tienen fuertes ban das de absorción óptica en el t.V. y en el I.R. Son los residuos de las bandas de absorción en el ultravioleta que presentan mayores efectos en la región 600-1500 nm para λ de transmisión. La absorción en el ultravioleta está relacionada con resonancias atómicas del oxígeno y cambia de acuerdo a la composición del

vidrio.


La absorción por impurezas se debe básicamente de la presencia de iones metálicos tales como hierro, cobalto y cromo. La absorción de estos iones varía de vidrio a vidrio dependiendo del estado de Valencia del ion. Introduciendo cantidades fijas de la impureza en un tipo de vidrio dado y calculando las pérdidas se pueden obtener datos para extrapolar a bajas concentraciones.

Se ha demostrado con este procedimiento que se requieren unas pocas partes por billon para lograr pérdidas menores de 20dBs/Km. La figura (2.3.7) muestra estas bandas para los iones Cr³⁺,Cu²⁺, y Fe²⁺. Se ve que la banda de absorción varía de elemento a elem to y varía también aunque no se ilustre ésto, dependiendo del tipo de composiciones de vidrio utilizado, Por lo que la figura (2.3.7) debe tomarse más como ilustración que como una figura precisa.

Otra impuresa importante es el agua que se presenta como iones ON. Estos contribuyen con picos de absorción angosto e intensos perfectamente identificados en 1370, 1230 y 950 nm. Estos son respectivamente el primero y segundo sobretonos y una combinación intermedia del tono fundamental de absorción en 2800nm.

Una constante carrera para disminuir la influencia de la absorción OH entre los fabricantes ha fijado límites de atenuación significativos en las regiones de 1.1-1.2µm, 1.3µm y 1.5 a 1.7µm, con un mínimo absoluto de 0.16 dB/Km obtenido en 1.5µm, donde las pérdidas intrínsecas de absorción son despreciables.

La dispersión o radiación en fibras ocasiona que un rayo dirigido de luz se disperse en una infinidad de rayos algunos de los cuales no son ya guiados por la fibra perdiéndose por lo tanto a lo largo de la trayectoria.

ECL: Electrical Communication Laboratory, NTT

BTL : Bell Telephone Laboratory

Corning: Trabajos realizados sobre vidrio por Corning

PROGRESO EN LA REDUCCION DE PERDIDAS EN LA FIBRA OPTICA.

FIGURA 2.3.8 Los mecanismos de dispersión son generados por fluctuaciones en el índice de refracción menores al tamaño de la longitud de onda de propagación. Estas fluctuaciones tienen dos causas básicas: fluctuaciones térmicas a lo largo del material y más importante, fluctuaciones en la concentración de los óxidos presentes en el vidrio. Estas fluctuaciones definen la denominada dispersión de Raleygh que es la misma presente en el cielo (por lo que se ve azul) y se definen por las fórmulas:

Para la dispersión por fluctuaciones de temp.

$$\mathcal{E} = \frac{8\pi^3}{31^7} (n^2 - 1) K T B$$
 (2.3.20)

Donde: K = es la constante de Boltzman

T = es la temperatura

y B = la compresibiliad

Para la dispersión por fluctuación de densidad

$$Z = \frac{16 \pi^3 n}{3 2^4} \left(\frac{\partial n}{\partial c}\right)^2 \overline{\Delta c}^2 \delta V \qquad (2.3.21)$$

Donde: $\overline{\Delta C}^2$ = es la fluctuación de concentración media cuadrática y δV = el volúmen en que ocurre.

Lo importante es la dependencia en el factor $1/\lambda^{\gamma}$ de ambos. Sien do la segunda ampliamente dominante con respecto a la primera, se miden sus efectos conjuntos analizando la cantidad de potencia óptica que sale de una fibra y marca un límite absoluto para la reducción en pérdidas.

La tercera causa de dispersión se debe a los efectos de la varia ción del índice de refracción radial de su valor teórico a lo largo de la longitud de la fibra. Su efecto en fibras de índice

gradual no puede ser estimado directamente ya que estas imperfecciones se confunden con las otras inhomogeneidades en el ma terial. Para la fibra de índice escalonado estas variaciones se presentan como rugosidad en la frontera núcleo/cubierta a lo largo de la longitud y afectan de la misma manera que las micro curvaturas. En fibras monomodo donde estas irregularidades solo son críticas cuando tienen una longitud de onda espacial relacionada con la diferencia entre constantes de propagación del modo fundamental y el que le sique, se puede detectar su efecto. Para fibras monomodo fabricadas con el método de disposición ex terna se ha logrado fibras con muy poca constribución de estos efectos y las pérdidas se aproximan mucho al límite fundamental dado por la absorción interna y la dispersión Raleygh. La figura (2.3.8) muestra el espectro de pérdidas para la fibra monomodal mencionada y la figura (2.3.9) una descomposición de las pérdidas para una fibra de este tipo en sus elementos constituyentes.

El límite teórico como se ve, aproxima 0.16 dB/Km para la región λ = 1.55 μ m.

Dadas las características de las pérdidas por dispersión extrín secas, es decir, debidas a los efectos de desviaciones geométricas o del índice de refracción, su efecto es un fenómeno estable solo después de que han recorrido una distancia suficiente en la fibra. Esta distancia, denominada distancia de correlación es la distancia a la cual la distribución de potencia entre modos alcanza una distribución uniforme, y los modos débiles se han perdido (ya que no cooperan en la transmisión larga distancia) y no serán medidas. Una prueba de atenuación para una fibra sólo puede ser confiable para esta distribución de potencia.

En lo general se usan varios métodos para lograr esta excitación estable sin necesidad de usar la longitud de fibra mencionada

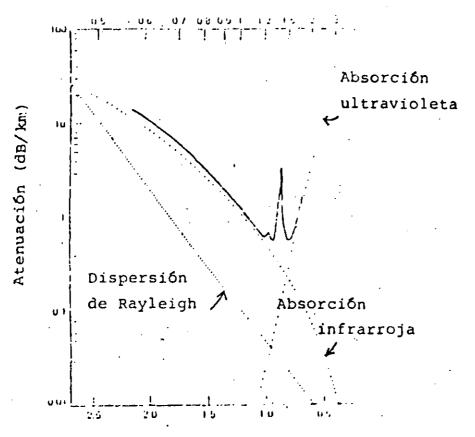


Figura (2.3.9).- Descomposición de pérdidas en absorción y dispersión.

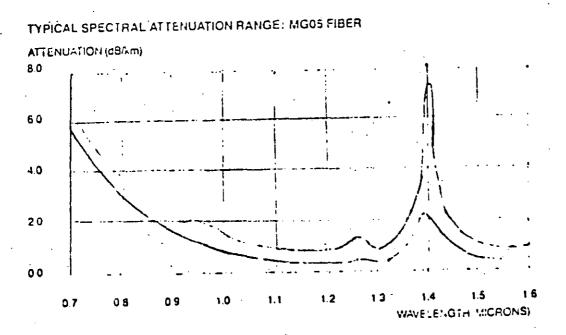
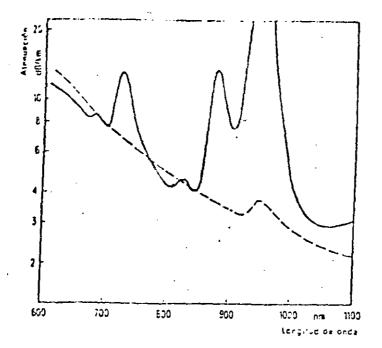



Figura (2.3.10).- Atenuación Indice gradual. (VALTEC)

Ejemplos de la curva de atenuación medida --- Cables con libras sin agua a demanda (No hay crestas de atenuación en el margen de 900 nm)

Figura (2.3.11). - Atenuación Indice gradual (SIEMENS)

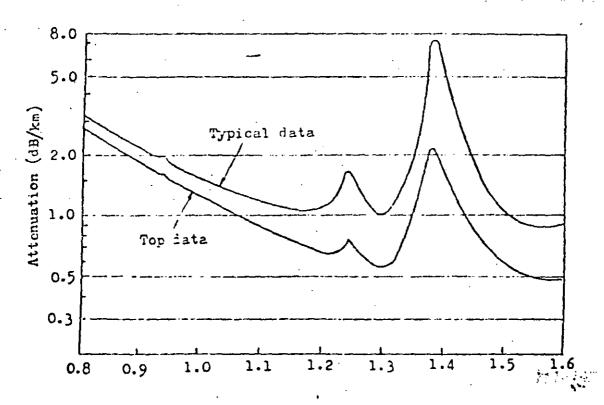



Figura (2.3.12). - Atenuación Indice gradual (SUMITOMO)

Telecommunications Products Department Corning Glass Works Corning New York 14831 Tel (607) 974 4411 Telex 932499 (USA)

Single Mode Fiber/SMF

SMF PRODUCTS FOR EXPERIMENTAL APPLICATIONS

Price per meter (US S) 10-100 km Attenuation 1-10 km λε 4 00/m ~600 nm 4.75/m ≦4.0 dB/km @ 850 nm 4 00/m ≨2 0 dB/km @ 1060 nm <950 nm 4.75/m 4 00/m ≤1.0 dB/km @ 1550 nm 4.75/m <1450 nm

Core Diameter 4-12 µm Clad Diameter 125 µm Coating CPC (250 µm O.D.) Screen Test 50 kpsi Standard Length 2.2 km

Figura (2.3.13).- Atenuación en una fibra óptica monomodal.

Las figuras (2.3.10), (2.3.11), (2.3.12) y (2.3.13) muestran curvas de atenuación típicas es fibras multimodales y monomodales comerciales. Es interesante notar que no todas tienen la atenuación esperada de acuerdo a los avances de la tecnología y que los picos de absorción OH están más o menos limitados de acuerdo a la calidad de la fibra.

2.3.3. - Ancho de banda en fibras ópticas

La determinación de un parámetro de ancho de banda en las fibras ópticas no es trivial. Se complica básicamente por las siguientes razones:

- a) La dependencia del ancho de banda en tres factores de ensanchamiento de pulso denominados modal, intramodal y del material.
- b) La dependencia del ancho de banda en la forma del perfil de índice de refracción con respecto a su valor ideal perfil que en general es difícil de controlar en fabricación.
- c) La dependencia del ancho de banda en las microdesviaciones aleatorias sufridas por la fibra en su cableado e instalación.
- d) La dependencia del ancho de banda en la forma de la distribución espectral de la fuente de luz utilizada.
- e) La dependencia del ancho de banda en las condiciones de inyección de la luz en la fibra.

Si se van tomando en cuenta en forma consecutiva simplificaciones al caso general podremos reducir el tamaño de las fórmulas requeridas para la evaluación.

En general cada fibra en particular después de fabricada tiene una figura de dispersión modal intramodal y del material única y esta figura puede determinarse si se controlan las condiciones de inyección y la forma espectral y amplitud de la fuente usada. De esta figura puede obtenerse una medida comercial de ancho de banda utilizable en la especificación de sistemas.

La característica deseada es una excitación uniforme de los modos de propagación y existen varias formas para lograr esto: Estas se verán posteriormente.

Dadas las características de la medición el fabricante al reporta sus resultados, elimina en lo posible el efecto de la fuente para que cada quien evalue su ancho de banda de acuerdo a la fuente que utilice.

Estas consideraciones son particularmente importantes cuando se asocian fibras de diferentes características en una línea. El fabricante por otra parte debe medir esta respuesta cuando quiere optimizar un perfil de índice a una longitud de onda dada.

De acuerdo a la teoría de propagación sabemos que los fenómenos de dispersión en el pulso propagado provienen de efectos de guía de onda inter o intramodales, de efectos del material y finalmente de fenómenos de tranferencia de potencia entre modos causados por imperfecciones en la geometría de la fibra.

Analicemos primero el caso de la fibra óptica ideal, es dictr.

de dispersión, dispersión modal, dispersión de guía de onda 20(intramodal) y dispersión del material. De ellos la dispersión
del material y la de guía de onda son efectos cromáticos, es decir dependen del ancho espectral de la fuente. Sin embargo en
las fibras ópticas multimodales, la dispersión del material es
siempre mucho mayor que la dispersión de guía de onda y se puede despreciar a esta última.

Tenemos ahora dos efectos de dispersión uno independiente de la fuente (modal, y otro dependiente de la fuente (material). Cómo interactúan los dos efectos?

Las mediciones más precisas proponen un análisis considerando los dos efectos como dos procesos que actúan consecutivamente sobre el pulso inyectado. La figura (2.3.14) muestra esta simplificación.

2.3.3.1.- Efecto de dispersión Modal

De acuerdo a este modelo un impulso de dirac entrando al primer proceso distribuirá su potencia entre todos los modos de la fibra; como cada modo arribará a tiempo diferente al final de una cierta distancia L, la respuesta hi(t) será una serie de impulsos espaciados en tiempo como lo muestra la figura (2.3.15)

Así para una potencia de entrada Pi(t) considerada por

$$P_{o}(t) = \sum_{n=1}^{M} P_{n} \delta(t-z_{n}); P_{i} = \sum_{n=1}^{M} P_{n}$$
 (2.3.22)

donde: Pn= es la potencia que lleva el modo n $\mathbf{Z}_{n=}$ el retardo correspondiente al modo n.

Cuando el número de modos es muy grande se puede substituir la sumatoria por una

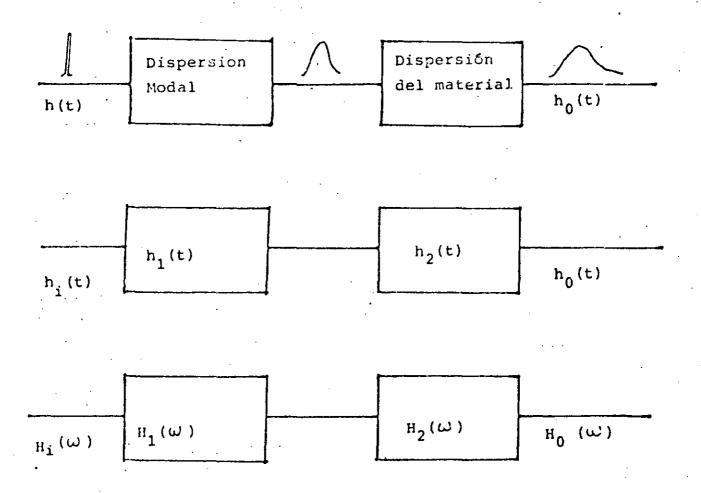


Figura (2.3.14).- Procedimiento de análisis de ancho de banda.

Esta será la respuesta al impulso de la dispersión modal y su transformada de Fourier determinará el ancho de banda para esta sección.

Por ejemplo, si suponemos que todos los modos se excitan por igual Pn= Pi/N, la llegada será una serie de impulsos de la misma amplitud cada uno con un tiempo de arribo particular tn, y la respuesta al impulso será un pulso cuadrado con ancho igual a la dispersión intermodal; en este caso una fibra de índice escalo nado.

$$\Delta G = \frac{n_i \Delta}{c} L = \frac{(WA)^2}{2n_i c} L$$
 (2.3.24)

Así para:

$$\Delta = 0.0018$$
 N.A. = 0.09 $\Delta \tau = 9$ ns/Km.
 $\Delta = 0.005$ N.A. = 0.15 $\Delta \tau = 25$ ns/Km
 $\Delta = 10.01$ N.A. = 0.21 $\Delta \tau = 50$ ns/Km

La transformada de Fourier de un pulso cuadrado determina directamente Hi(w). Así normalizando el pulso para t=o en el centro del mismo la respuesta en frecuencia es:

$$H_{1}(\omega) = \int_{\xi}^{\frac{\pi}{2}} e^{-j\omega t} dt = \frac{2\sin(\pi z t)}{2\pi r t}$$
 (2.3.25)

La figura (2.3.15) muestra estos casos

Las frecuencias f_1 y f_2 de la figura definen dos formas de caracterizar el ancho de banda f_2 es el ancho de banda de 3dBs ópticos y corresponderá a una disminución de 6 dBs en la corrier

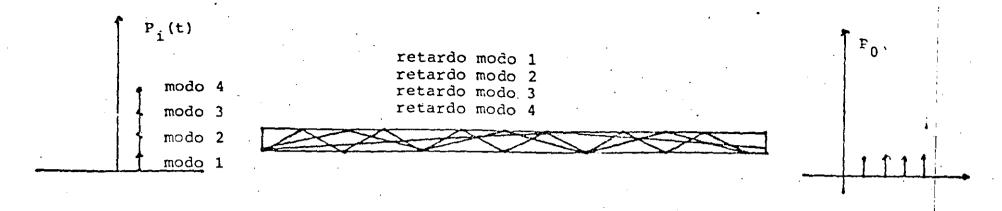


Figura (2.3.15). - Espaciamiento de impulsos modales

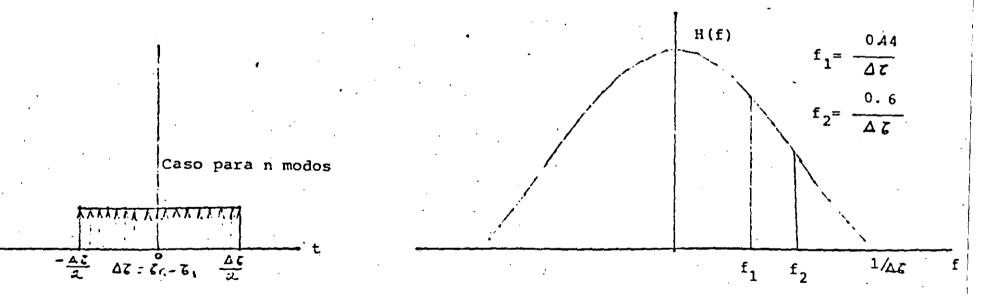


Figura (2.3.16).- Aproximación de la dispersión modal mediante un pulso rectangular de ancho Az y su transformada de Fourier, indicando f₁ (3 dB eléctricos) y f₂ (3 dB ópticos).

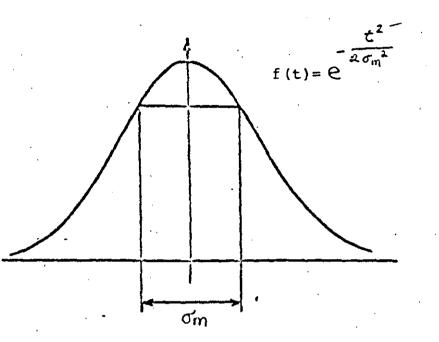
N

te o voltaje de salida de un conversor f_1 corresponde al ancho de banda de 3 dBs eléctricos tradicionalmente usada y corresponde a una caída en voltaje de $1/\sqrt{2}$ de su valor en DC.

Es el valor f_2 el que normalmente obtenemos en las figuras del .- fabricante dado para un Km. de longitud.

Ahora bien, tomando en cuenta el efecto de distribución de potencia en los modos, se ha demostrado que la forma del pulso de salida a una excitación modal se aproxima a una respuesta Gaussiana con desviación estándar dada por:

$$V_{m_e} = \frac{L_1 N_1 \Lambda}{2 C \sqrt{3}}$$
 (2.3.26)


Esta distribución y su tranformada de Fourier se aprecian en la figura (2.3.17) con los valores de f_1 y f_2 indicados.

- Para el caso de una fibra de Indice gradual óptima, donde el efecto modal es mucho menor, obtenemos también una distribución gaussiana pero ahora con desviación dada por:

$$\overline{V_{m_0}} = \frac{L \ n_i \ \Delta^2}{20 \ c \ \sqrt{3}}$$
 (2.3.27)

En la práctica los valores se alejan de este valor teórico pero se sigue manteniendo la distribución gaussiana para lo que los valores f_2 o f_1 determinan completamente m. La figura (2.3.17) muestra el efecto.

Algunas veces la dispersión intermodal domina por completo a la dispersión material como es el caso de la fibra de índice escalonado cuando se usa con un laser, sin embargo en otros casos hay que considerar también el efecto del material y determinar $h_2(t)$ y $H_2(w)$.

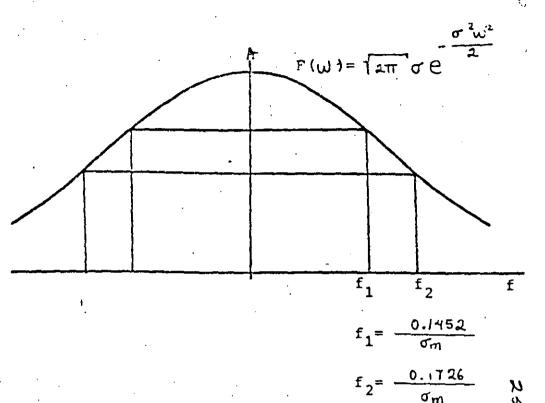


Figura (2.3.17). - Modelo Gaussiano para la dispersión intermodal.

$$\sigma_m = \frac{\ln_i \Delta}{2c\sqrt{3}}$$
 para la fibre de indice escalonado (~14.0 ns)

$$O_{m} = \frac{L n_{i} \Delta^{2}}{20c \sqrt{3}}$$
 para la fibra de índice gradual óptima (\sim 0.014 ns)

2.3.3.2. Efecto de la Dispersión material

Para encontrar la respuesta al impulso $h_2(t)$ en el efecto de la forma espectral del pulso supongamos una fuente con distribución espectral $S(\lambda)$. Un impulso de luz inyectado en un solo modo se ensanchará debido a que la potencia del impulso se distribuirá de acuerdo a $S(\lambda)$ y cada longitud de onda viajará con una velocidad diferente y tendrá un tiempo de viaje $\tau(\lambda)$. La mayoría de las fuentes ópticas disponibles se pueden caracterizar por una distribución $S(\lambda)$ gaussiana centrada en la longitud nominal de emisión λ o; su fórmula será:

$$S(\lambda) = S(\lambda_0) e \times \rho^{-\frac{1}{2} \left(\frac{\lambda - \lambda_0}{\gamma_5}\right)^2}$$
(2.3.28)

normalizando S(λ) tenemos:

$$\int_{0}^{\infty} S(\lambda) d\lambda = 1$$
 (2.3.29)

λo será

$$\lambda_o = \int_{\alpha}^{\infty} \lambda \, S(\lambda) \, d\lambda \qquad (2.3.30)$$

y Vs será

$$\nabla_{3} = \left[\int_{0}^{\infty} (\lambda - \lambda_{0})^{2} S(\lambda) d\lambda \right]^{1/2}$$

De la teoría sabemos de un rayo de luz a una longitud de onda λ o y con un pequeño ancho espectral $\delta\lambda$ tendrá una dispersión alrededor de λ o, en la fibra dada por:

$$Z(\lambda) = 2 \frac{\lambda_c}{\sqrt{\lambda^2}} \frac{J^2 n}{J \lambda^2} \delta \lambda \qquad (2.3.31)$$

$$\zeta(\lambda) = L \frac{\lambda_0}{\zeta} \Lambda''(\lambda_0) (\lambda - \lambda_0) \qquad (2.3.32)$$

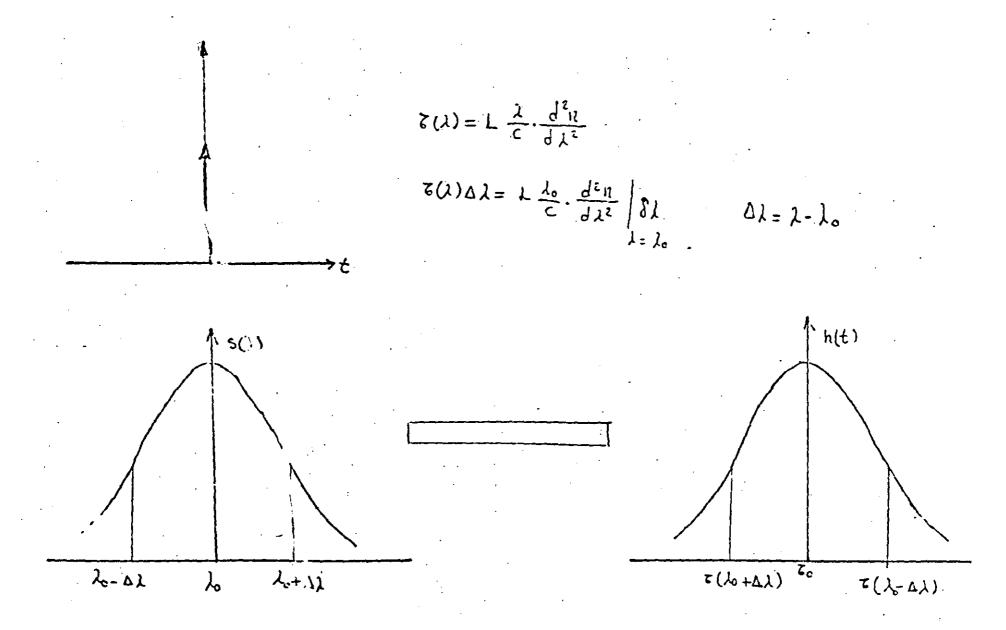


Figura (2.3.18).- respuesta temporal de una fibra a una excitación con espectro $S(\lambda)$

Si de acuerdo a esto distribuímos las velocidades de viaje de las diferentes longitudes de onda del enisor tendremos el efecto de la figura (2.3.12)

Por otra parte la potencia que arribará en $\tau(\lambda o + \Delta \lambda)$ y en $\tau(\lambda o - \Delta \tau)$ serán proporcionales a $S(\lambda o + \Delta \lambda)$ y a $S(\lambda o - \Delta \lambda)$. Es por esto completamente lógico pensar que la respuesta al impulso $h_2(t)$ tendrá una forma igual a $S(\lambda)$ pero mpeada al tiempo S(t). Esto se expresa de la siguiente formà.

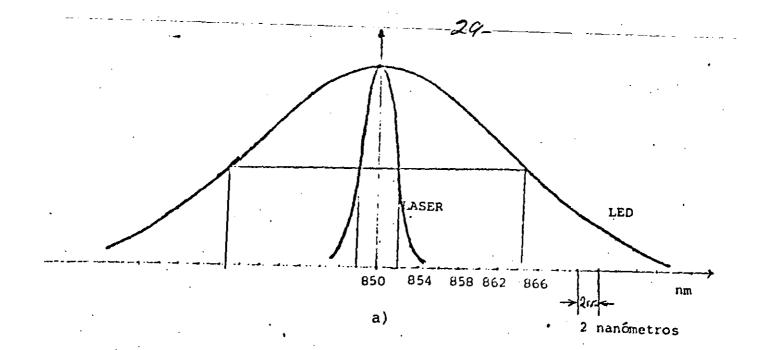
$$h(t) = S\left(\frac{t}{Z_m}\right) \iff S(\lambda - \lambda_0)$$
 (2.3.33)

donde

$$\zeta_{m} = L \frac{\lambda_{0}}{c} \frac{J^{2} \eta}{d \lambda^{2}} \bigg| \delta \lambda = L M(\lambda_{0}) \delta \lambda$$
 (2.3.34)

y $\frac{1}{4}\lambda$ es el ancho espectral de la fuente.

Esta distribución será normalmente gaussiana.


Cuando el fabricante ofrece sus características de emisores indica generalmente el valor λo en que la respuesta cae a 1/2 de su valor en λo , respecto a esa medida:

$$T_{s} = 0.4247 \Delta \lambda_{1/2}$$
 (2.3.35)

y para la dispersión temporal resultante \sqrt{c} (c de cromática)

$$V_c = V_s M = \frac{\lambda}{c} \frac{d^2n}{d\lambda^2} V_s n^s / k_m$$
. (2.3.36)

La figura (2.3.19) muestra la respuesta al impulso y su transformada de Fourier H_2 (w) para un laser semiconductor en 0.85µm. con $\Delta\lambda$ = 2nm,

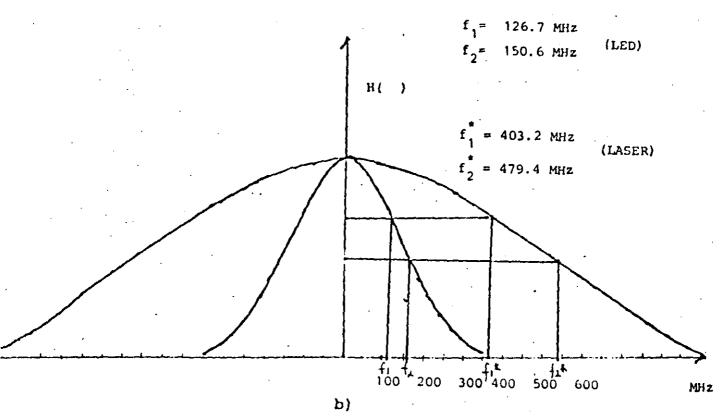


Figura (2.3.19). - Ancho espectral (a) y ancho de banda (b) para un LASER y un LED típicos.

El efecto conjunto de la dispersión material y modal es la convolución temporal $(h_1(t) * h_2(t))$ o la multiplicación en la frecuencia $H_1(w) H_2(w)$.

Si lo vemos en dispersiones cuadráticas medias se puede decir que el pulso de salida de una fibra óptica es un pulso Gaussiano con dispersión media cuadrática σ_π dada por:

$$V_T = V_m^2 + V_c^2$$
 (2.3.37)

Donde

om = es la dispersión modal
oc = es la dispersión cromática

O bien en anchos de banda de 3 o 6 dBs eléctricos.

$$\frac{1}{B_T} = \sqrt{\frac{1}{B_m^2} + \frac{1}{B_c^2}}$$
 (2.3.38)

Donde

Bm = es el ancho de banda de 3 o 6 dBs modal
Bc = es el ancho de banda de 3 o 6 dB cromático

Ejemplo

Para una fibra de índice gradual óptica utilizada con un led de ancho espectral $\Delta\lambda$ = 300 nm y utilizando los valores de ancho de banda dados por el fabricante

a 820 nm M= 160
$$\frac{P-seq}{nm-Km}$$
 $B_m = 600 M h_3 \cdot km$.

para el LED = 5λ = 40 nm

El último factor que es necesario considerar es el efecto de aco plamiento aleatorio entre modos cuyo efecto más evidente es alte rar la dependencia del ancho de banda con la distancia.

El efecto es la equalización en los tiempos de viaje de los diferentes modos causada por los microdobleces aleatorios a lo largo de la longitud. Esto hace que el ancho de banda no disminuya linealmente con la distancia sino de acuerdo a la relación.

$$B = B_0 L \tag{2.3.39}$$

Donde B₀ es el ancho de banda a un Km. dado por el fabricante este efecto es puramente modal y no debe mezclarse con los efectos del material, l'es una medida de la mezcla entre modos y depende de la longitud de onda de trabajo siendo aproximadamente 0.7 para 0.85µm y 0.85 para 1.3µm.

2.3.2.4.- Fibras concatenadas

Las fibras ópticas multimodales, principalmente las de Índice gradual, tienen aún un problema sin resolver debido a su método de fabricación que es la variación de los anchos de banda obtenidos. Esto se debe a que desviaciones ligeras en la forma del perfil de índice de refracción causan cambios grandes en los anchos de banda. La figura (2.3.20) muestra este efecto. Al realizar longítudes de fibras mediante emplames es necesario un método para predecir el ancho de banda total.

El ancho de banda final depende de los anchos de banda individuales y la conversión de modos en las uniones.

Para fibras en que la regla de retardo es la misma en todas y no existe acoplamiento enetre modos la dispersión modal se puede caracterizar como:

$$\overline{V}_{T} = \sum_{k=1}^{N} \overline{V}_{k}$$

$$(2.3.40)$$

 σ_{k} denota la dispersión modal de cada fibra y σ_{T} la dispersión total. Cuando existe un acoplamiento intensivo en tres modos la dispersión total es :

$$\overline{V_T}^2 = \sum_{k=1}^{N} \overline{V_k}^2$$
 (2.3.41)

En la realidad el ancho de banda toma un valor entre los dos.

Se han obtenido diversas fórmulas para obtener un resultado apropiado entre ellas

$$\nabla_{r}^{2} = \sum_{k=1}^{N} \nabla_{r}^{2} + \sum_{p=1}^{N} \sum_{q=1}^{N} \nabla_{p} \nabla_{q}^{2} \nabla_{p} \nabla_{q}^{2}$$
 (2.3.42)

Donde

p y q y se determina por parametros estructurales imperfecciones de empalme y acoplamiento modal

Otra fórmula es:

$$B_{7}^{-1/8} = \sum_{k=1}^{N} B_{k}$$
 (2.3.43)

El problema se complica cuando las fibras concatenadas han sido optimizadas a diferente longitud de onda.

La figura (2.3.21) muestra el efecto de concatenado en diferente orden para un conjunto de 6 fibras con respecto a la distancia. Como se ve pueden existir variaciones hasta de 250 Mhz en L=3Km.

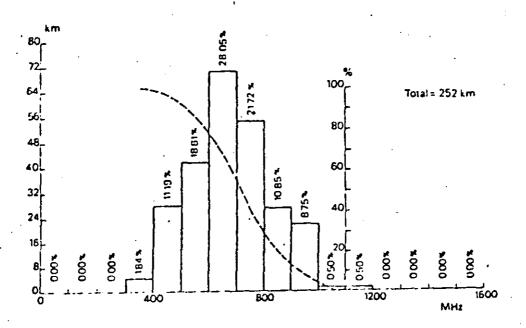
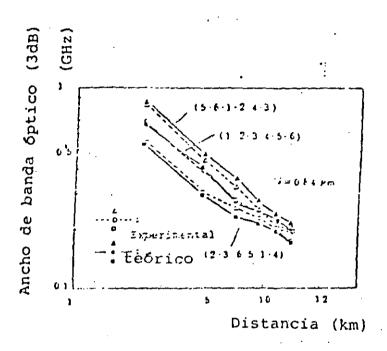
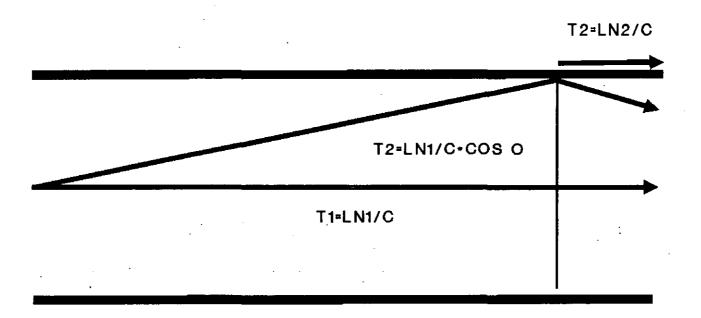
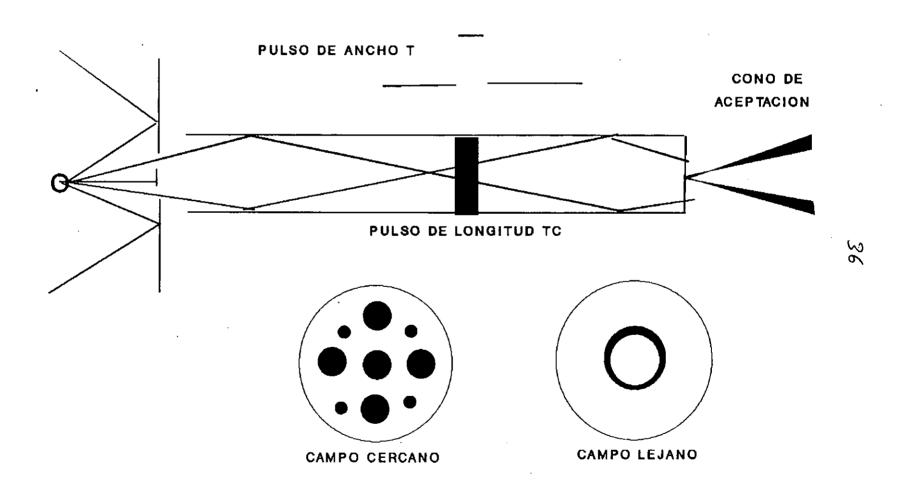
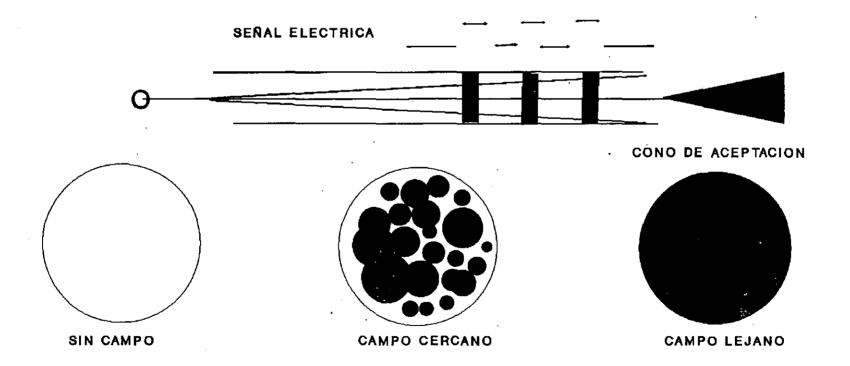


Figura (2.3.20).- Ancho de banda. Histograma.

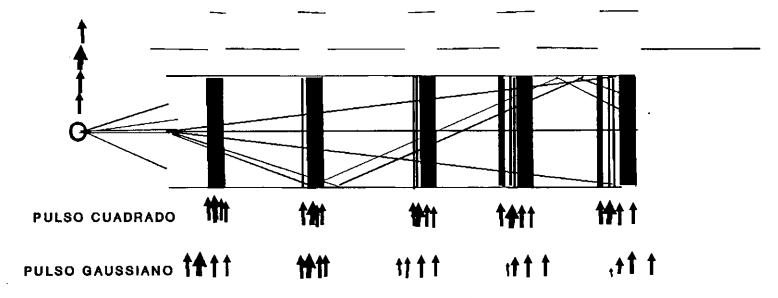

Figura (2.3.21).- Variación del ancho de banda total cuando se cambia el orden de las fibras concatenadas.

DISPERSION INTERMODAL FIBRA MULTIMODO



T2-T1 = LN1/C(1-1/COS O) = L/C(N1-N2)=LN1/C

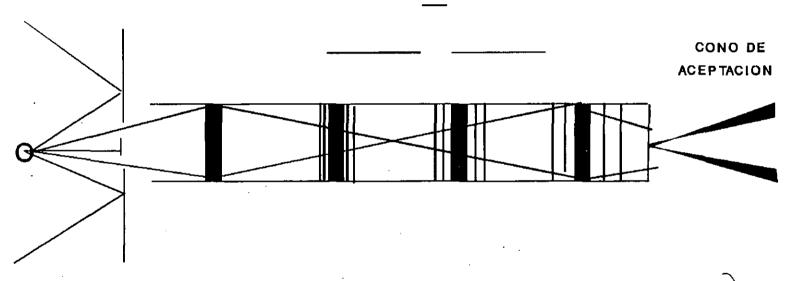
PROPAGACION F.O. MULTIMODO RESTRICCION A UN SOLO MODO



PROPAGACION F.O. MULTIMODO EFECTO GLOBAL

DISPERSION INTERMODAL F.O. DE INDICE ESCALONADO

ENSANCHAMIENTO DEPENDIENTE DE LA DISTANCIA

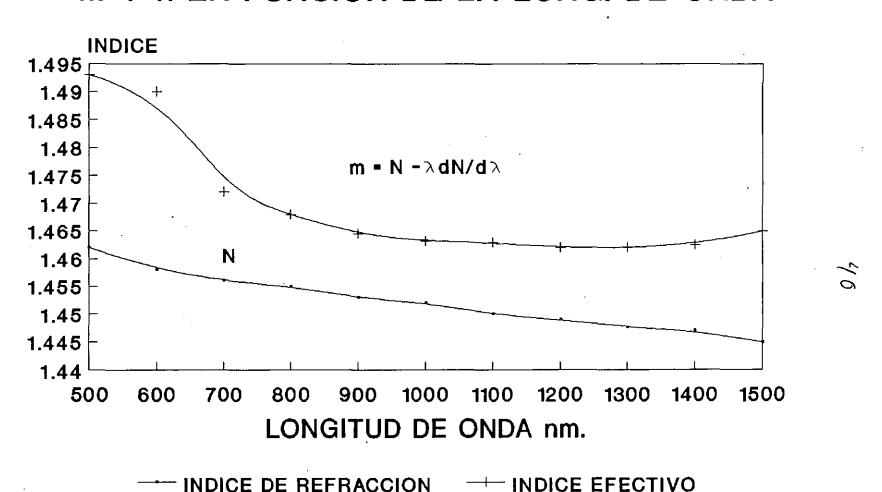

FACTOR DE DISPERSION I. M. = (L/C)+ (N1-N2) = Q

PARA EL PULSO CUADRADO T -____ (Q+t/2)

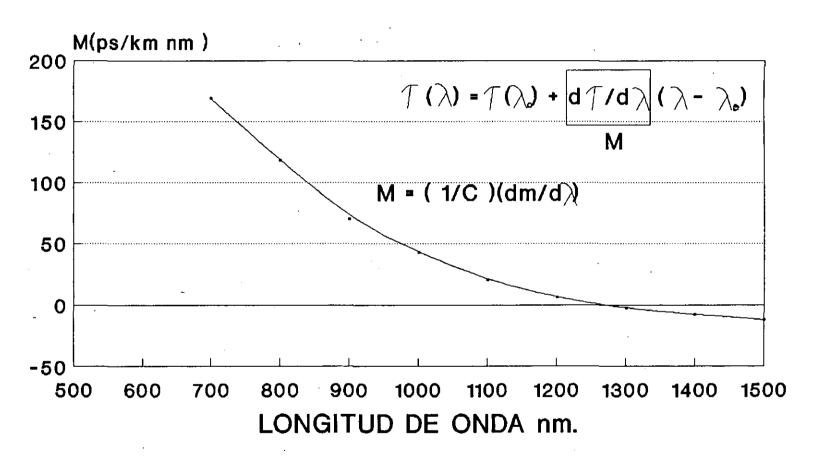
PARA EL PULSO GAUSSIANO F(t)= EXP(t /2Q')

ليا

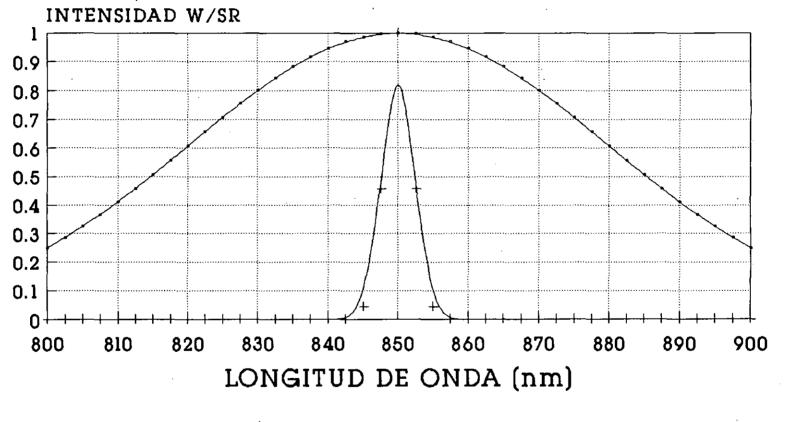
DISPERSION CROMATICA PARA UN SOLO MODO



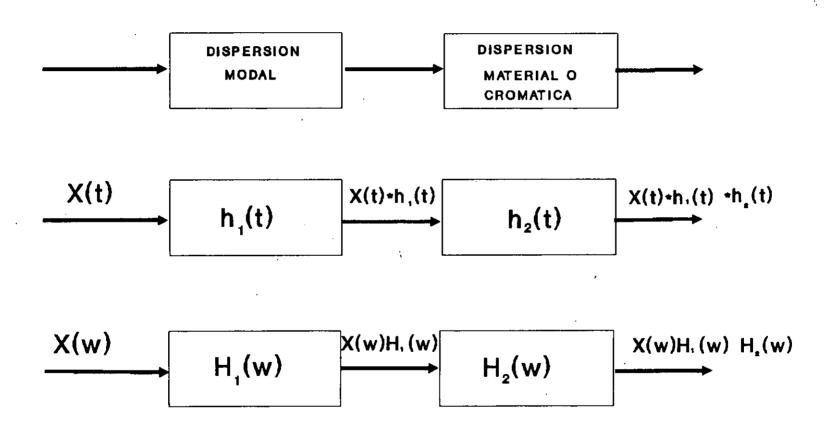
VELOCIDAD DE PROPAGACION EN FUNCION DE λ



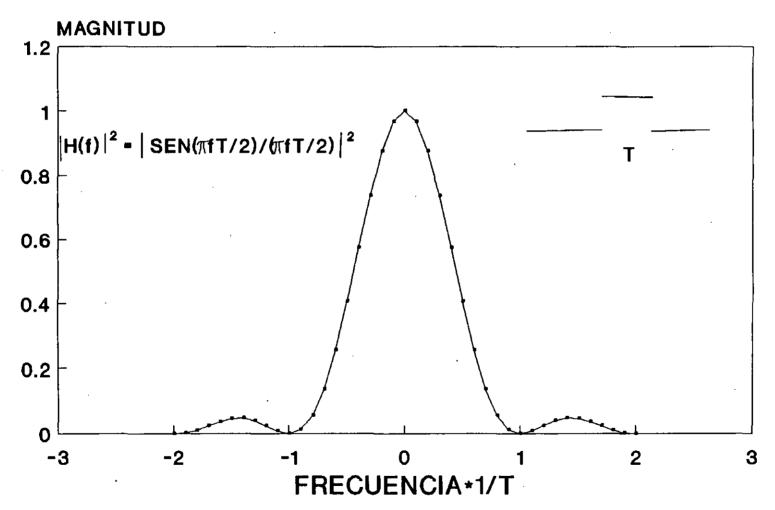
ESPECTRAL DELA FUENTE


VARIACION DEL INDICE DE REFRACCION m Y n EN FUNCION DE LA LONG. DE ONDA

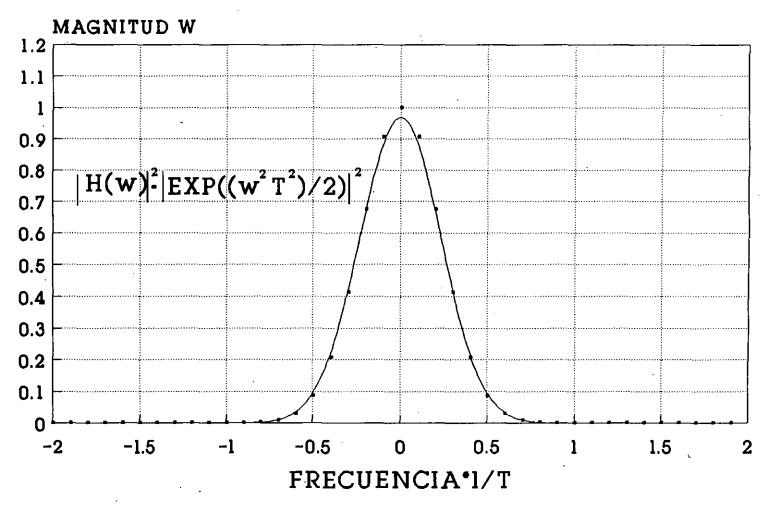
FACTOR DE DISPERSION DEL MATERIAL EN FUNCION DE LA LONG. DE ONDA


ESPECTRO DE EMISION DIODO LASER Y LED

— LED — LASER


77

MODELO PARA EL ANALISIS ANCHO DE BANDA


151

RESPUESTA EN FRECUENCIA PULSO CUADRADO DE SALIDA

T ES EL ANCHO DEL PULSO DE SALIDA

RESPUESTA EN FRECUENCIA PULSO GAUSSIANO

T ES LA VARIANZA DEL PULSO DE SALIDA

METODOLOGIA DE DISEÑO DE UN ENLACE DE COMUNICACION POR FIBRAS OPTICAS.

Introducción

Una vez analizado el funcionamiento de cada uno de los componentes de un sistema de comunicación por fibras ópticas, se procedea determinar de que manera se tiene como resultado un sistema que cubra las necesidades de comunicación para una aplicación particular. Para ello se sigue un proceso de diseño que consiste en contraponer los requerimientos de un usuario con las características que puede ofrecer el estado actual de la tecnología de comunicación por fibras ópticas. Generalmente, éste será un trabajo de ensayo y error que permitirá conocer, finalmente, si es posible o no la realización de un sistema práctico y en caso afirmativo, cua les deben ser las características de los componentes de dicho sis tema y, tal vez, las modificaciones que el usuario tenga que pacer a sus requerimientos.

En este capítulo se presentará la descripción de los parámetros - principales que deben considerarse en un enlace de comunicación - por cable óptico, la interrelación entre ellos; de manera general la metodología de diseño como una herramienta de planeación y por último, se discutirán varios ejemplos representativos de diseño.

1 Elementos Principales en el Proceso de Diseño

Los elementos o parámetros principales de diseño se pueden divi-dir en los grupos siguientes:

- De entrada o requerimientos del usuario

- Intermedios o cálculos principales

-De salida o resultados de diseño

Requerimientos del usuario

Los requerimientos que se consideran más significativos para el - diseño de un sistema de comunicación por fibra óptica son:

- Distancia
- Tipos de datos (Analógicos o digitales)
- Ancho de banda del canal o velocidad de Transmisión
- Calidad deseada en la Transmisión (SNR o BER)

Por supuesto, existen otros parámetros que deben considerarse enel diseño final tales como el costo, confiabilidad, tamaño, peso, medio ambiente y alimentación. Sin embargo, los requerimientos -que se mencionan involucran las limitantes más importantes del -sistema y determinan la factibilidad de realización del enlaçe de comunicación.

La utilización de un sistema de transmisión digital o uno analógico dependerá de cual de las dos presente mayores ventajas tanto, técnicas como económicas para una aplicación específica, por ejemplo: un sistema de comunicación que implique el manejo de una gran cantidad de canales de voz con un mínimo de ruido e interferencia favorece el uso de técnicas digitales de transmisión tales como el PCM. Sin embargo, si lo que se requiere es un enlace de video, un sistema de transmisión analógico representaría menos problemas de complejidad y costo que un sistema digital.

¥į.

La capacidad de transmisión de información se especifica como ancho de banda en hertz cuando se emplea modulación analógica y como velocidad de transmisión en bits/seg en modulación digital. - De la misma manera, los términos en que se expresa la calidad deseada en la transmisión son función del sistema que se utilice. - Básicamente, en sistemas analógicos se tiene la relación señal arruido, y en sistemas digitales la probabilidad de error.

La Relación Señal a Ruido (SNR) es la razón de la amplitud de una señal deseada a la amplitud de las señales de ruido en un punto - determinado, se expresa en decibeles y generalmente se usa el valor pico para el ruido impulsivo y el valor RMS para ruido eleatorio.

La probabilidad de error o tasa de bits errôneos (BER) está dadapor la razón de bits identificados incorrectamente, al número total de bits transmitidos. En aplicaciones de fibra óptica, un $v_{\underline{3}}$ lor típico de BER es 10^{-9} .

Los factores de distancia y capacidad de transmisión son esenciales en el diseño por que determinan, practicamente, el sistema de comunicación por fibras ópticas que va a utilizarse y si es ne cesario, además, el uso de repetidores ópticos. Estos dos factores tienen que ver directamente con las dos limitantes de los siste-mas de comunicación por fibras ópticas: la atenuación y la disper sión.

En las fibras ópticas pueden considerarse los siguientes rangosde distancias:

- Corta distancia (l <1km)
- media distancia (1km< l <30 km)
- larga distancia (l >30 km) -

Atendiendo a cada una de ellas, puede proponerse la calidad de la fibra, el tipo de emisor y fotodetector, así como la separación y número de repetidores que resulten más adecuados.

Cálculos Pricipales

Los cálculos principales en el diseño de un sistema de comunicación por fibra óptica están relacionados a las dos limitantes mencionadas, de tal forma que los valores permisibles de atenuación-y dispersión puedan conocerse en base a los requerimientos y resultados de diseño propuestos.

Esencialmente, el cálculo de la atenuación se realiza mediante la suma de las componentes siguientes:

- La atenuación en la fibra óptica a la longitud de onda de transmisión utilizada.
- Las pérdidas por acoplamiento, de la fuente de emisión a la fibra óptica y de la fibra óptica al fotodetector.
- Las pérdidas en los emplames necesarios para unir dos secciones de fibra óptica.

En base a lo anterior la separación máxima entre equipos terminales o entre repetidores L, considerando únicamente la limitante de -- atenuación, puede expresarse por:

$$\alpha L + kaj = 10 \log \left(\frac{Pt}{Pr} \right)$$

donde:

α es la atenuación en la fibra (dB/km)
aj es la pérdida por empalme promedio (dB)
Pt es la potencia acoplada a la fibra óptica (watts).
Pr es la potencia mínima requerida en el receptor (watts)

La dispersión, a su vez, depende de:

- La longitud de onda de transmisión
- El tipo de graduación del índice de refracción, ya sea parabóli co o escalonado
- La apertura numérica
- El ancho espectral de la fuente de emisión.

La dispersión llega a ser significativa cuando la distorsión porretardo del pulso transmitido, llega a ser lo suficientemente -grande como el intervalo entre bits. Eventualmente, después de un cierto límite, cualquier incremento en la velocidad de transmi
sión causa una disminución en el espaciamiento entre repetidores.
Este límite de dispersión puede ser estimado por la ecuación;

$$\sigma tot L = 0.25 T = \frac{1}{4fo}$$
 (2)

donde:

otot es el valor cuadrático medio de la distorsión por retardopor unidad de longitud

En la fórmula anterior, se ha supuesto que la dispersión aumentalinealmente con la longitud de la fibra L. Sin embargo, el fenóme no de acoplamiento entre modos, reduce en alguna extensión el problema de dispersión por lo que los resultados prácticos son mejores que los resultados obtenidos teóricamente.

Debe considerarse, además, los componentes de este ensanchamiento, como son el ensanchamiento debido a la dispersión modal y el en-sanchamiento cromático ocasionado por la dispersión del material:

$$\sigma^2 \text{tot} = \sigma^2 \text{mod} + \sigma^2 \text{crom}$$
 (3)

A partir de las ecuaciones (2.1) y (2.2) puede estimarse la frecuencia límite de modulación (flim), más alla de la cual, el en lace de la fibra está límitado por dispersión.

fo > flim =
$$\frac{\alpha}{4\sigma tot}$$
 ($\frac{1}{10 \log \frac{Pt}{pr} - kaj}$) (4)

Resultados de diseño

Los resultados de diseño son condicionados por los requerimientos del usuario y los cálculos principales. Estos resultados de salida definen las caracterfisticas de los elementos del sistema de comunicación:

- Subsistema Transmisor
- Cable Optico
- Subsistema Receptor

Para el subsistema transmisor deben considerarse:

- La longitud de onda de transmisión.
- La potencia de la fuente.
- El ancho espectral de la fuente, lo que determinará si se util<u>i</u> za un diodo emisor de luz (LED) o un diodo Laser de inyección (ILD).

Para la fibra óptica:

- La atenuación espectral
- El perfil del indice de refracción (gradual o escalonado)
- Y finalmente para el susbsistema receptor:
- La sensitividad.

El término Sensitividad se refiere a la potencia óptica mínima ala entrada del receptor requerida para lograr la relación Señal a Ruido o la probabilidad de error deseada. De este factor, dependerá el tipo de fotodetector que será utilizado; ya sea fotodiodo PIN o fotodiodo avalancha APD.

Interrelación entre los Parámetros Principales.

En la fig. (1) se muestra la interrelación existente entre losparámetros anteriormente descritos con el fin de mostrar las características principales del proceso de diseño de un enlace ópti co de comunicación.

Por ejemplo, si tomamos como base el diseño en el receptor vemosque éste se ve influido por :

- La potencia optica disponible
- La longitud de onda
- El ancho de banda de la información

Luego, la potencia óptica recibida se determina por:

- La potencia óptica de la fuente.
- Las pérdidas totales del enlace.

Las pérdidas totales del enlace se dividen en:

- Pérdidas por acoplamiento.
- Pérdidas en la transmisión.

Por otro lado, las pérdidas por acoplamiento están dadas por:

- Características de la fuente
 - Area de radiación efectiva
 - Perfil de emisión
- Características de la fibra
 - Apertura Numérica
 - Area de radiación efectiva
 - Indice de refracción del núcleo

Y las pérdidas en la transmisión están determinadas por:

- Características de atenuación espectral de las fibras
- Longitud de onda
- Pérdidas por empalme
- Distancia entre la fuente y el detector.

De lo anterior se desprende que, el proceso de diseño de un enlace de comunicación por fibras ópticas es un problema que involucra muchas variables y que puede llevar varios ensayos antes decompletarse, ya que la selección de un elemento final (transmisor, receptor o cable óptico) afectará la selección de los otros dos. Generalmente, es necesario suponer las características de ciertos elementos del sistema y entonces proceder de manera sistemática a interrelacionar y redefinir los elementos restantes.

En los puntos siguientes se proporcionan los diagramas de flujo - que describen un método de diseño-para los sistemas de comunica-- ción por fibra óptica así como un breve análisis en cada caso.

2 Proceso de Diseño para la Selección del Transmisor Optico

En la figura 2 se muestra un diagrama de flujo que muestra el proceso de diseño en el subsistema transmisor. El diseño comienza
con los requisitos propuestos por el usuario. Cualquier limitante de confiabilidad, de potencia o de medio ambiente que pudieraafectar la selección del componente y de esta manera la calidad en la transmisión, debe tomarse en cuenta y permitir que influyaen la configuración del sistema y decisiones del tipo de componen
te.

La longitud de onda de transmisión y los requisitos de anchura - espectral son función de las características de la fibra óptica- elegida. Se ha supuesto que estos parámetros han sido ya investigados y especificados como un resultado del esfuerzo del diseño del medio de transmisión.

La potencia óptica de salida acoplada se calcula a partir del nivel de señal mínima requerida en el extremo terminal del sistema y la pérdida de transmisión de la fibra óptica, incluyendo las pérdidas por acoplamiento en la salida y empalmes. Esta figurade potencia acoplada se obtiene después de las pérdidas por acoplamiento en la entrada y de esta manera afecta la selección dela fuente de acuerdo con sus características de emisión.

De manera general, podemos decir que un diodo LED se utiliza -cuando se requieren productos ancho de banda- distancia bajosy un diodo Laser cuando se necesitan valores altos de esta especificación. Como puede notarse, el producto ancho de banda-distancia (o velocidad de transmisión-distancia) relaciona la capacidad de transmisión de la fibra óptica con la distancia y tiene
su origen en la limitante de dispersión.

Por ejemplo, para un sistema digital y basándose en la tecnología actual de longitud de onda de transmisión de 0.85µm, un valor típico de producto velocidad de transmisión-distancia para un LED es de 140 Mbits-Km mientras que para un diodo Laser, este producto es de 2500 M bits/km debido pricipalmente a su reducido anchoespectral.

Las características de acoplamiento para un diodo LED y un diodo-Laser son trambién muy distintas: Para un LED, las pérdidas por acoplamiento fuente-fibra son del orden de 16 dB, en cambio paradiodo Laser solamente 3 dB. Sin embargo, el Laser, al ser un dispositivo cuyo funcionamiento está determinado por un umbral que depende de la temperatura, requiere de circuitos de control que lo hacen más costoso en comparación con el LED.

En el caso de modulación analógica, la salida de potencia ópticase especifica para lograr una determinada calidad de transmisiónen términos de la Relación Señal a Ruido en el ancho de banda que va a utilizarse. Para sistemas de modulación digital, además dela potencia óptica, deben especificarse los tiempo de elevación y descenso de generación del pulso óptico en el diodo emisor, paraconocer si es compatible el dispositivo con los requisitos de diseño. De no ser así puede reconsiderarse el formato de la señaldigital (Manchester, RZ, NRZ) y cambiar la selección de la fuente o considerar multicanalización en el espacio, es decir, un mayornúmero de fibras ópticas para transmitir la cantidad de información requerida, para reducir la velocidad del canal.

Finalmente, una vez que la fuente es compatible con los requisitos del usuario, el diseño se completa especificando las características de protección ambiental, alimentación y limitantes mecánicas.

3.3 Proceso de Diseño para la Selección del Cable de Fibra Optica.

En la figura (.3) se muestra un diagrama de flujo para la selección del cable de fibra óptica. Como puede observarse, el proceso comienza con un completo entendimiento de los requisitos básicos del usuario, incluyendo la distancia entre la fuente y el detector y el ancho de banda de la información. Basado en lo anterior, el diseñador supone la configuración de un cable de fibra - óptica, que incluye:

- Número de fibras
- Apertura númerica
- Perfil de Indice de refracción
- Longitud maxima disponible
- Atenuación en la longitud de onda de interés

El siguiente paso es entonces, calcular la pérdida total del enla ce, incluyendo tanto pérdidas de atenuación en la fibra como pérdidas por acoplamiento.

Las pérdidas por acoplamiento están determinadas por las características de la fuente (área y pérfil de emisión) así como, las - características de la fibra (apertura numérica, área e índice derefracción) y por reflexiones Fresnel.

Las pérdidas por acomplamiento de salida depende de: el índice de refracción de la fibra, el índice de refracción del medio entre - la fibra y el detector, del campo de visión que ocupa el detector con respecto a la fibra óptica y de las reflexiones Fresnel.

Las pérdidas de transmisión pueden calcularse en base a la distancia conocida y a la atenuación de la longitud de onda óptica de interés. Sin embargo, en suma, debido a que las fibras disponibles se suministran generalmente en longitudes estándar menoresa la distancia requerida, es necesario empalmar varios segmentos. Por lo tanto, la estimación de las pérdidas de transmisión debenincluir también, las pérdidas en los empalmes.

De la manera descrita en las discusiones procedentes, el diseña-dor continua ensayando, en los cálculos de la pérdida de transmisión y en la selección de la fibra hasta que se pueda encontrar -

un cable con una pérdida aceptable.

Suponiendo que un cable de fibra óptica satisface ya los requisitos de atenuación, se procede a determinar si las características de dispersión modal y del material son adecuadas para el ancho de banda requerido de la información. La dispersión del material se determina por el ancho espectral de la fuente, así como, por laspropiedades del material de núcleo de la fibra. La dispersión -- modal se determina, básicamente, por la apertura numérica de la fibra de vidrio y el pérfil del índice de refracción. Sin embargo, la experiencia ha mostrado que el ancho de banda real de lasfibras ópticas es mejor que el predicho por la teoría. De aquí, que para un diseño real, debe consultarse al fabricante paraobtener datos más precisos.

Después que las propiedades de la atenuación y dispersión son satisfactorias, debe considerarse cuidadosamente el medio ambientey los esfuerzos mecánicos de tensión bajo los cuales operará la fibra óptica para que de esta manera se especifique el diseño del
cable que ofrezca protección y reforzamiento adecuados, ya que los esfuerzos de tensión y en particular aquellos que causan distorsiones en el eje de la fibra (curvaturas y microcurvaturas) -pueden tener un efecto significativo sobre las propiedades de ate
nuación en la fibra.

Por último y tomando en cuenta las consideraciones anteriores se escribe el documento de especificación para el cable óptico.

4 Proceso de Diseño para la Selección del Receptor Optico.

En la figura (4) se muestra un diagrama de flujo para el proceso de diseño en el subsistema receptor. Primeramente, el usuario de fine el tipo de información que va a manejarse, ya sea analógica-o digital. En el caso analógico, el usuario debe especificar elancho de banda de la información y la Relación Señal a Ruido queva a requerirse. En el caso digital, el usuario especifica la ve

locidad de transmisión y la tasa de error esperada en el sistema.

Deben considerarse también, las condiciones ambientales que pueden afectar la elección del componente y de esta manera, la calidad en la transmisión del sistema.

Si el usuario requiere un sistema digital, debe considerarse el formato de la señal y el código de emisión para calcular el ancho
de banda de la señal en el receptor. El formato de la señal se refiere a los diferentes esquemas de codificación tales como el Manchester, NRZ y RZ.

La sensitividad del receptor es uno de los parámetros de diseño - más importantes en el receptor óptico y como se mencionó, se refiere a la potencia óptica minima requerida a la entrada del receptor para lograr una determinada Relación Señal a Ruido en sistemas analógicos y una determinada probabilidad de error en sistemas digitales.

Por ejemplo, la Relación Señal a Ruido en un receptor óptico ana- ¿ lógico está en función de la intensidad de la señal eléctrica a - la salida del receptor y de la intesidad de las señales de ruido- las cuales se pueden dividir, básicamente, en dos componentes:

- Ruido térmico
- Ruido cuántico

Además, la intensidad de la señal eléctrica de salida depende dela potencia de la señal óptica incidente. De tal manera que, suconocemos las fuentes de ruido podemos entonces determinar la -sensitividad del receptor.

Es conveniente recordar algunas características básicas de los receptores ópticos. Primero, existen dos tipos de fotodetectores:

- Fotodiodo PIN (Semiconductor P, Intrinseco y tipo N)
- Fotodiodo de avalancha APD (Avalanche Photo-Diode).

El fotodiodo PIN posee ganancia unitaria, es decir, por cada fo-tón se genera un electrón, en cambio, el fotodiodo de avalancha puede generar hasta 100 electrones por cada fotón incidente. Sin
embargo, esto último representa problemas de ruido por variaciones
estadísticas sobre el nivel medio de su ganancia < m >, la cual es
una variable aleatoria.

Esencialmente, la selección del tipo de fotodiodo es un problemade optimización. Por otro lado, en el receptor óptico existe laalternativa de emplear amplificadores FET o bipolares que representan nuevamente un compromiso de uso, dependiendo de las fuentes de ruido que aparecen en estos dispositivos para diferentes rangos de frecuencia.

En receptores ópticos digitales la sensitividad está también enfunción de las fuentes de ruido cuántico y térmico del receptor, pero además de lo que se conoce como Interferencia entre símbolos. Este efecto consiste en el translapamiento entre pulsos vecinos de la señal óptica digital a lo largo de su recorrido en la fibra óptica.

Este fenómeno de interferencia entre símbolos es función de la señal óptica incidente y de la respuesta en frecuencia del receptor. Esto último sugiere que puede ser controlado parcialmente por eldiseño adecuado de circuitos de filtro.

Cuando aumenta la distancia de transmisión en el sistema de comunicación óptico se requiere el uso de repetidores para regenerar la señal a intervalos determinados. Este proceso de regeneración se lleva a cabo en tres pasos, en el caso de un repetidor óptico digital:

- Amplificación e igualación de la forma de onda del pulso
- Recuperación de la señal de sincronismo del tren de pulsos
- Detección Síncrona y retransmisión de los pulsos.

Para un repetidor óptico analógico bastarían únicamente el pri-mer paso y la retransmisión de los pulsos.

Es muy importante hacer notar que la separación máxima entre repetidores depende de la sensitividad del receptor óptico que contienen, de manera que la metodología de diseño para un repetidor óptico es la misma que la de un receptor óptico y la de un transmisor óptico conjuntamente.

Cuando se ha logrado la señal mínima requerida se toman en cuenta, también, las condiciones ambientales, (temperatura, vibración, cho que, radiación y humedad), consumo de potencia y acoplamiento mecánico, para escribir el documento de especificaciones del receptor.

.5 Ejemplos de Diseño.

A continuación se presentan algunos ejemplos representativos de - sistemas de comunicación por fibra óptica.

1. Supóngase que las pérdidas de transmisión permisibles en un en lace óptico son 50 dB, la atenuación de la fibra óptica es de-5 dB/km, el fabricante proporciona secciones de 1 km y las pér didas promedio en cada empalme es 0.5 dB. ¿ Cuál es la distancia máxima entre repetidores, cuándo no es significativa la limitante por dispersión?

solución:

$$\alpha L + kaj = 10 \log \left(\frac{Pt}{Pr} \right)$$

 $\alpha = 5 \text{ dB/km}$

L = ?

K = ?

K= número de empalmes= $\frac{L}{100}$

nj = 0.5 dB

$$flim = \frac{11 \times 1}{4 \times 2 \times 10^{-9} \times 50}$$

Laser

datos:

 $\sigma tot = 4ns/km$ $\alpha = 5 dB/km$

utilizando nuevamente (2.4):

$$flim = \frac{5 \times 1}{4 \times 4 \times 10^{-9} \times 50}$$

$$flim = 6.25 Mbd.$$

2. Considerense los siguientes datos de un sistema de comunica-ción óptico, determine la distribución de potencia óptica (o"presupuesto") en cada una de los componentes del enlace.

datos:

Velocidad de transmisión: 2.048 Mbit/seg

Código de Linea: 3B4B

Guía de onda: índice gradual, $\alpha = 5.0$ dB/km

Apertura numérica: 0.18

Logitud de fabricación: lo= 1.0 km

Fuente: LED , λ = .9µm , P₁ = 3.91 dBm; σ tot= 4ns/km

Sensitividad del receptor: -71.42 dBm

Solución:

Para determinar si el enlace está limitado por atenuación o por - dispersión se utiliza la expresión 4.

log
$$\left(\frac{Pt}{Pr}\right) = .50 \text{ dB}$$
.

$$\alpha L + \frac{L}{10} \text{ aj} = 10 \log \left(\frac{Pt}{Pr}\right)$$

$$L \alpha + \left(\frac{1}{10}\right) \text{aj} = 10 \log \left(\frac{Pt}{Pr}\right)$$

$$L = \frac{10 \log \left(\frac{Pt}{Pr}\right)}{\alpha + \frac{1}{10} \text{ aj}}$$

Sustituyendo valores:

$$L = \frac{10 \times 50}{5 + \frac{1}{1} \times 0.5} = 9.09$$

$$L = 9.09 \text{ Km}$$

Utilizando un diodo Laser como fuente de emisión (dispersión - . cromática o del material despreciable), una fibra de índice -- gradual con una dispersión total de σ tot = 2ns/km, α =11dB/km- y un receptor para el cual 10 log $\frac{Pt}{Pr}$ = 50 dB, ¿Cuál es el límite de dispersión?. ¿ Para una fuente LED con σ tot=4ns/km y - α = 5 dB/km cual es el límite de dispersión?

solución:

caso 1. Laser

datos:

 $\sigma tot = 2ns/km$

 $\alpha = 11 \text{ dB/km}$

 $10 \log \frac{Pt}{Pr} = 50 \text{ dB}$

flim= ?

Sustituyendo valores en la expresión (4) se tiene:

$$flim = \frac{\alpha}{4 \text{ otot}} \cdot \frac{1}{10 \log \frac{Pt}{Pr}}$$

flim=
$$\frac{\alpha \cdot 1}{4 \text{ stot} \quad 10 \text{ log} \quad \frac{Pt}{Pr}}$$

Sustituyendo valores:

flim=
$$\frac{5.0}{4 \times 4 \times 10^{-9}} \frac{1}{\text{ns/km} \times 3.91 - (-71.42)}$$

flim= 4.14 MBd.

fo= 2.048 x $\frac{4}{3}$ * = 2.731 MBd.

* Este valor se debe a código de línea utilizado, el cual cambia-3 bits a 4 bits.

Como fo <flim, entonces el sistema está limitado por atenuación.

La distribución de potencia se muestra en la tabla 1 y se hansupuesto además los siguientes datos:

Pérdida de acoplamiento fuente- fibra = 18.13 dB.

Pérdida por empalme = 0.3 dB.

Pérdida de acoplamiento fibra-detector= 0.5 dB.

Margen de tolerancia = 5 dB.

Tabla 1 Distribución de Potencia del enlace del ejemplo 3

Transmisor:

Diodo Emisor de Luz ($\lambda=0.9\mu m$)

 $P_1 = 3.91 \text{ dBm}$

Pérdida por acoplamiento hacia

la fibra

 $K_1 = 18.13dB$

Nivel de entrada a la guía de onda

$$P_1' = P_1 - K_1 = -14.22 \text{ dB}$$

Receptor:

Sensitividad del fotodiodo de avalancha $P_2 = -71.42$ dBm.

Nivel de salida de la guía de onda

$$P_2' = P_2 + K_2 = -70.92 \text{ dBm}$$

Pérdida en la transmisión : $P_1^* - P_2 = 56.70 \text{ dBm}$

Pérdidas en la guía de onda

$$\alpha = 5.0 \text{ dB/km}$$
, 9.8 Km L= 49.0 dB

Pérdidas en los empalmes,

$$\alpha L + ajK + Kr = 56.7 dB$$

Distancia entre repetidores L = 9.8 Km

Conclusiones.

En este capítulo, se ha analizado la metodología de diseño de los sistemas de comunicación por fibra óptica de manera general, to--mando en cuenta los parámetros y limitantes principales.

Las conclusiones más importantes de este estudio se pueden resu-mir de la siguiente manera:

- Los parámetros de diseño de un sistema de comunicación por fi-bra se dividen, básicamente, en requisitos del usuario, cálcu-los principales y resultados de diseño.
- Los requisitos del usuario de interés son: la distancia, la velocidad de transmisión o ancho de banda, el tipo de datos: analógicos o digitales y la calidad en la transmisión (Relación Se

ñal a Ruido o probabilidad de error).

- Los cálculos principales están relacionados con las limitantesdel sistema de comunicación por fibra óptica: atenuación y dispersión.
- Los resultados de diseño son las especificaciones para el trans misor, el cable, y el receptor ópticos.
- El proceso de diseño es un problema que involucra muchas variables y que puede llevar varios ensayos antes de completarse.

REFERENCIAS

- 1.- Miller S.E. and A.G. Chynoweth. Optical Fiber Telecommunications. First Edition. Academic Press. New York. 1979: 653:674.
- 2.- Information Gatekeepers, Inc. Fiber Optics Design Aid Package. Vol. IV. Part 1. Fiber Optics HandBook and Manual Series: 2.1-2.28
- 3.- Kressel H. Semiconductor Devices for Optical Communications. Topics in Applied Physics, Vol. 39. Springer-Verlag. Berlin. 1981: 89-160.
- 4.- Technical Staff of CSELT. "Optical Fibre Communications".

 First Edition. McGraw-Hill. New York. 1981:723-775.

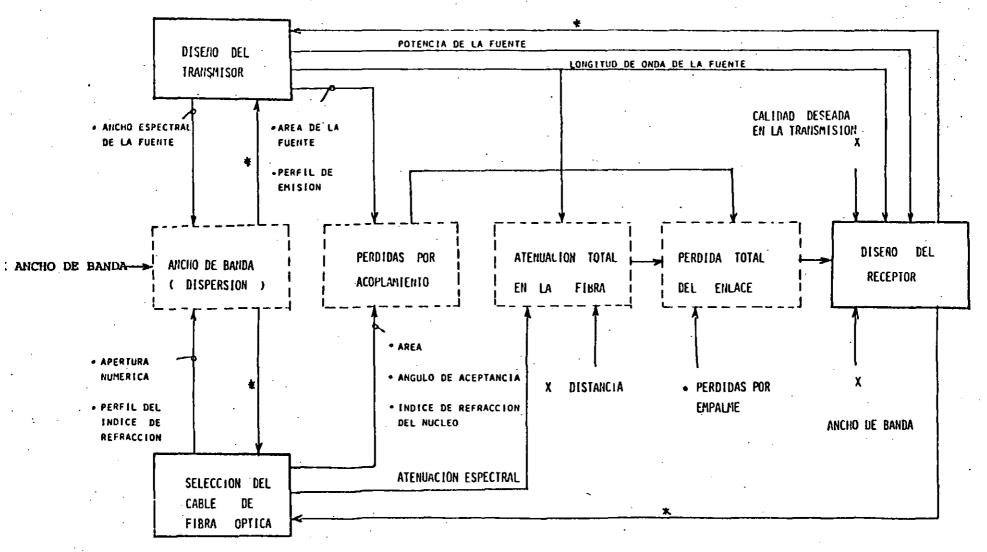


FIG (1).- ELEMENTOS PRINCIPALES EN EL PROCESO DE DISEÑO DE UN SISTEMA DE DE COMUNICACION POR FIBRA OPTICA.

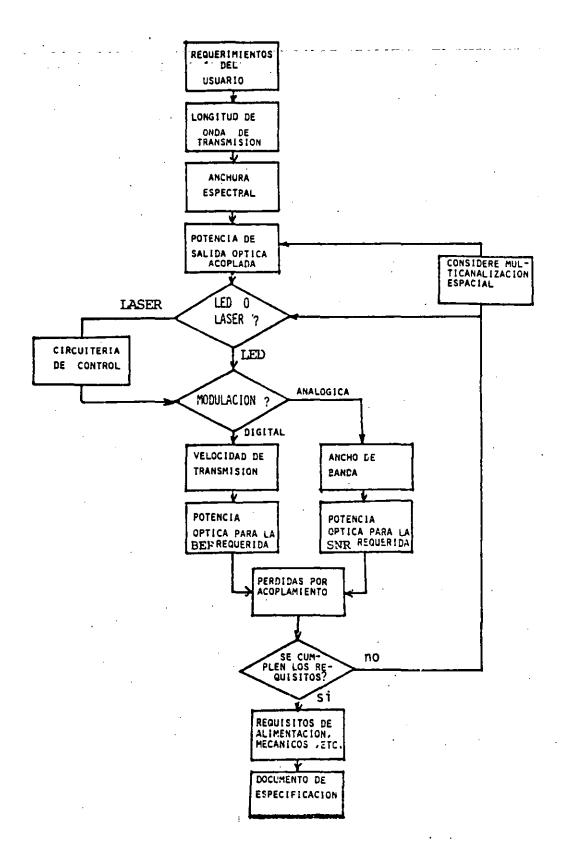


Figura (2).- Diagrama de flujo que muestra el proceso o diseño para la selección del transmisor óptico.

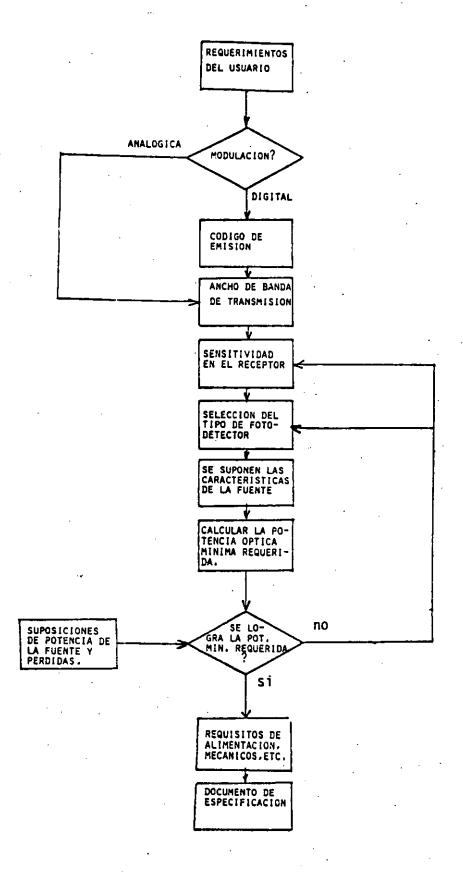


Figura (4).- Diagrama de flujo que muestra el proceso de diseño para la selección del receptor óptico.

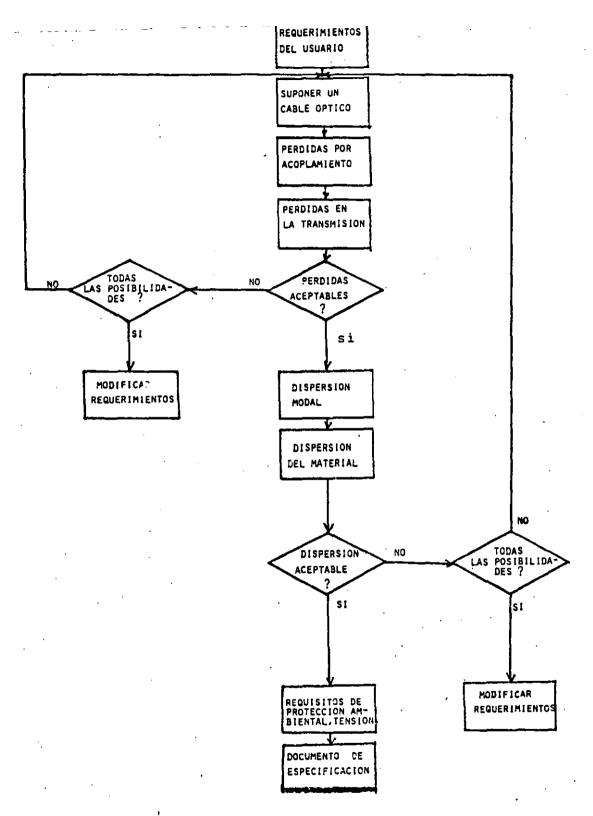


Figura (3).- Diagrama de flujo que muestra el proceso de diseño para la selección del cable de fibra óptica.

SISTEMAS DE COMUNICACION POR FIBRAS OPTICAS

INTRODUCCION

Los sistemas de comunicación por fibras ópticas han encontrado en los últimos años una gran aceptación en diversos sectores, debido principalmente a la gran versatilidad para el manejo de grandes volúmenes de información a altas velocidades. Las propiedades intrinsecas de la fibra óptica como son su inmunidad a la interferencia electromagnética, su aislamiento dieléctrico, su gran ancho de banda y su sección transversal y peso reducido le han permitido su aplicación en zonas expuestas a grandes interferencias como -- son las plantas nucleares y las plantas generadoras de electricidad.

Una de las aplicaciones más importantes de estos sistemas de comunicación - es la telefonía. En ésta, los canales de voz son utilizados para la transmisión de señales eléctricas analógicas que contienen ya sea conversaciones, o señales de datos que han sido procesadas analógicamente.

Cabe mencionar que los sistemas de comunicación convencionales son el partelefónico, el cable coaxial y las microondas, entre otros, los cuales, en
mayor o menor grado poseen problemas de congestionamiento de las líneas, en
el caso de par telefónico, o bien, de limitación del espectro de frecuencia
disponible, en el caso de las microondas. Es por ello que se ha acudido al
empleo de los sistemas de comunicación por fibras ópticas los cuales presen
tan grandes ventajas para su empleo en corta y mediana distancia (menor a 30 Km), pero ciertas desventajas a larga distancia (mayor a 30 Km), con res
pecto a los sistemas de microondas.

Los sistemas de comunicación por fibras ópticas se clasifican en sistemas - analógicos y sistemas digitales. En los sistemas analógicos se emplea principalmente la modulación en frecuencia, con una multicanalización en la -- frecuencia (FDM), mientras que en los sistemas digitales se utiliza principalmente la modulación por pulsos, con una multicanalización por división - en el tiempo (TDM).

Los sistemas digitales requieren de mayor ancho de banda que los sistemas - analógicos, para el mismo número de canales, deibdo a que una señal senoi-- dal en general requiere de un muestreo de al menos dos veces por ciclo, con el objeto de asegurar una correcta representación digital, según el teorema de Nyquist.

Así los sistemas analógicos son principalmente aplicados a la transmisión - de canales de televisión, mientras que los sistemas digitales permiten la transmisión de información, de códigos de protección, control y alarma de - manera que se pueden satisfacer las diversas necesidades que se presenten.

En el presente capítulo se hace una descripción general sobre las caracterrísticas de los sistemas analógicos, y sus principales aplicaciones; lo mis mo se hace con los sistemas digitales, en donde se describen los principales códigos utilizados, y los problemas de alimentación de reperidores para grandes distancias. En el siguiente punto se describen los diferentes bloques que componen un sistema de comunicación por fibras ópticas así como su importancia dentro del funcionamiento óptimo del sistema. Finalmente, se - hace una comparación sobre las diferentes alternativas de comunicación existentes y las condiciones bajo las cuales los sistemas de fibra óptica pre-sentan mayores ventajas.

Aunque la tecnología de fibras ópticas se ha encaminado para su aplicación en la transmisión de señales digitales, también tiene la posibilidad de utilizarse con señales analógicas. De hecho, puede pensarse que cualquier señal analógica es mejor digitalizarla a fin de evitar problemas de atenuación o distorsión de la señal bajo la presencia de ruido; sin embargo, desde el punto de vista económico resulta más atractiva la eliminación de los conversores analógico-digitales y digital-analógicos, además de poder disminuir los costos de multicanalización en el sistema. Este problema se observa en los sistemas de transmisión de televisión; una señal típica de video ocupa un ancho de banda de aproximadamente 5 mhz y existen codificadores que pueden convertir dicha señal en forma digital; estos codificadores mues trean la señal a una velocidad de 10 Mb/s, codificando las muestras mediante 9 Bits. Esto hace que el codificador llegue a requerir una capacidad de transmisión de 90 Mb/s por canal de video, lo cual lo hace económicamente prohibitivo. A pesar de la creación de otros codificadores que utilizan me-

nores tasas de transmisión, éstos más bien, son prácticos para enlaces de muy larga distancia. Es por ello que se ha acudido a los sistemas analógicos de fibras ópticas para la transmisión de la televisión por cable -- (CATV); desgraciadamente, la no linealidad de los componentes del sistema es una de las principales limitantes de este medio de comunicación. Como - se observa en la figura l el sistema consiste básicamente en la recuperación de la señal eléctrica de salida proveniente de la cámara de televi-sión y su aplicación para modular directamente la intensidad de salida en un diodo emisor de luz (LED), o un diodo laser.

De esta forma, la señal óptica se propaga a través de la fibra, y es con-vertida de nuevo a su forma eléctrica en el receptor. Las no linealidades ya mencionadas producen problemas de armónicas y de intermodulación, los cuales pueden en un momento dado, llegar a distorsionar la imagen recibida, en el caso de que dicha intermodulación esté contenida en el ancho de banda de interés el cual es relativamente grande (aproximadamente 5MHz), la distorsión es bastante significativa. Una solución que evita este problema es la utilización de la modulación usando banda vestigial lateral, y una subportadora que permita la modulación de la intensidad de la fuente. Si la frecuencia de la subportadora es lo suficientemente alta, las armónicas y la intermodulación pueden alejarse bastante del ancho de banda de inte-rés como para que un filtro elimine los posibles problemas de distorsión. En el caso de multicanalización se debe tener cuidado con el número de canales a transmitir, con el objeto de minimizar la aparición de armónicas y de intermodulación debido a un canal, en el espectro de otro canal transmi tido. De hecho en la actualidad se manejan 8 canales por multicanalización en fibras ópticas, en comparación con los 50 canales que normalmente se -transmiten en los sistemas de cable coaxial.

Se espera que cuando se resuelvan todos los problemas antes mencionados, la capacidad de canalización de los sistemas de fibras ópticas pueda igualar o rebasar la actual capacidad de los sistemas de cable coaxial.

Los sistemas analógicos se pueden clasificar de acuerdo a su capacidad de canalización en sistemas de baja capacidad y alta capacidad; un sistema - como el anteriormente descrito se conoce como un sistema óptico de baja - capacidad denominado FDM-IM.

Un sistema óptico de alta capacidad conocico como FDM-FM-IM es también utilizado en la transmisión de señales de video. En este sistema, la fuente luminosa es modulada en intensidad mediante una portadora de radio frecuencia. Así, las señales de video son usadas para modular la portadora de radio frecuencia, la cual puede estar en el rango de VHF (30 a 300 MHz). Estos sistemas de modulación en intensidad y de modulación en frecuencia pueden usar un laser en lugar de un diodo emisor de luz para aumentar la relación señal a ruido de transmisión.

A partir de esto, diversas portadoras de RF moduladas en frecuencia, localizadas a diferentes frecuencias pueden combinarse en una señal multicanalizada por división en la frecuencia. A su vez esta señal es utilizada para modular en intensidad la fuente luminosa. Este proceso FDM-FM-IM permite la transmisión de varios canales de video por una sola fibra, como se observa en la figura 2.

La idea de utilizar la conmutación como un medio para transmitir información se remonta a épocas pasadas; el uso de la clave morse es una versión particular a este respecto. Es aquí donde las fibras ópticas tienen su cam po de acción más promisorio, ya que bajo esta tecnología no solo se pueden manejar aspectos como la telegrafía, telefonía o transmisión de datos entre computadoras, sino también imágenes fijas o en movimiento. El sistema se basa practicamente en el muestreo de la señal analógica, la cual se codifica digitalmente, para así ser transmitida a través de la fibra óptica.

La codificación permite el manejo de grandes flujos de unos o ceros sin te ner una distorsión significativa, lo cual establece en gran medida una disminución de la probabilidad de error de la transmisión. Sin embargo, este sistema puede acarrear problemas para enlaces de fibra óptica, en los cuales se tengan altas velocidades, ya que como los pulsos de luz son unipola

res (hay o no hay "luz"), el receptor debe estar acoplado en corriente alterna (AC), a fin de eliminar los errores por la presencia de corriente di recta (DC) indeseable.

Antes de pasar a la descripción de un sistema digital, es conveniente hacer notar la incompatibilidad de los sistemas digitales manejados por Estados Unidos con respecto a Europa; tanto unos como otros manejan ciertos niveles de jerarquía de acuerdo a sus propias necesidades; así, los norteamericanos se basan en un sistema que convierte una señal telefónica de 4 KHz en forma digital y además multicanalizada a través de un banco de canales. Dicho ban co de canales convierte 24 canales de voz en su versión digitalizada, y los combina de tal manera que es generado un flujo binario de datos a una fre-cuencia de 1.544 MHz. Por lo tanto, cada canal de voz ocupa 64 Kb/s del total requerido. Dicha tasa de transmisión es por lo tanto de 1.544 Mb/s, y pertenece a la jerarquía DS1 (digital signal 1). Para obtener una tasa de transmisión más alta, lo que generalmente se acostumbra es realizar una mul ticanalización conjunta para producir una señal compuesta de mayor velocidad; de esta forma, velocidades de aproximadamente 10Mb/s (que incluye bits para control de mantenimiento), se generan por medio de señales tipo 6 DS1. Análogamente, los Europeos fundamentan su sistema en que cada señal de voz (se considera que posee un ancho de banda de 4 KHz aproximadamente) se mues trea a una frecuencia de 8000Hz, según lo señalado por el teorema de Nyquist y cada muestra es convertida a una palabra digital (BYTE) de 8 bits. Dentro de esta codificación el primer bit dá la polaridad de la señal, mientras -que los otros 7 se utilizan para definir la magnitud de la misma, de acuerdo con características de la ley de cuantificación logarítmica. Por convención, se ha optado por usar los primeros 3 bits, después del bit de polaridad, como la característica, y los últimos 4 como la mantisa. Basados en e<u>s</u> te procedimiento, cada canal de voz requiere de una tasa de transmisión de 64 Kb/s, pero por economía, la multicanalización en el tiempo se realiza -con 30 canales, generando un flujo de transmisión de 2.048 Mb/s.

Así las muestras de cada canal son intercaladas en el tiempo, de manera que cada trama se constituye de 32 intervalos de tiempo; parte de estos intervalos, son utilizados como elementos de sincronización, además de contar con algunos bits de servicio requeridos para la sincronización de la trama, y -

alarma, por solo mencionar algunos ejemplos. Esta es la razón por la cual las tasas de transmisión resultantes no son exactamente el cuádruple de la inmediata inferior considerada. En la tabla I se muestran las diversas jerarquías utilizadas tanto en Europa como en Estados Unidos de acuerdo a la tasa de transmisión requerida.

CARACTERISTICAS DE TRANSMISION

Un sistema de transmisión digital requiere de llevar flujos datos de un -- punto a otro con la cantidad mínima de error.

Para lograr lo anterior, uno de los factores que deben tomarse en cuenta, es el formato de los datos. Por ejemplo, la transmisión de largas cadenas de "ceros" y "unos" pueden hacer perder la sincronía en la recepción de la señal, siendo una posible solución el uso de un código de retorno a cero -- (RZ). Este código se caracteriza porque presenta un mayor número de transiciones entre estados alto-bajo y requiere el doble del ancho de banda comparado con un código de no retorno a cero (NRZ).

El código de retorno acero es particularmente convenitne en el caso de -- transmisión síncrona (transmisión de datos junto con la señal de reloj) ya que se puede extraer la señal de reloj de manera directa; en cambio para - los de no retorno a cero se debe enviar la señal de reloj por obra fibra, lo que hace que el costo de transmisión incremente considerablemente.

Por esta razón muchos fabricantes sugieren códigos como el Manchester, o - el de tipo bipolar; dichos esquemas permiten un mejoramiento en la calidad de la información.

Ambas codificaciones permiten un equilibrio en la densidad de pulsos y espacios; el aleatorizador, además de esto, genera un patrón aleatorio reversible para la codificación de la señal. Por su parte, la codificación HDB-3 - (high density bipolar), también utilizado en los sistemas de conductores metálicos, permite el mantenimiento de un bajo nivel de corriente directa en la línea, a manera de protección contra una disipación inútil de potencia - se la señal. Una versión del código HDB-3 es el código AMI, (Álternative --

Mark Inversion) el cual se utiliza en el caso de enlaces limitados por dispersión, afin de no aumentar la velocidad de transmisión.

TIPO DE REDES Y REPETIDORES

En los sistemas digitales de comunicación por fibras ópticas existen va-rios problemas que se deben solucionar; el problema de la codificación de la señal, que ya ha sido mencionado, el problema de la derivación en una-red de comunicaciones y el problema de la instalación y alimentación de los repetidores para sistemas de largo alcance.

En este punto se estudiarán estos dos últimos problemas.

Hay dos tipos básicos de redes de comunicaciones: la de "Arból" y la de -- "Anillo".

En la figura 3 se muestra una red de "Arbol", la cual se basa en una terminal principal y varias terminales remotas.

La figura 4 ilustra una red de "Anillo". Dichas redes de datos están limita das por la considerable cantidad de Bits de control requeridos para mante-ner una comunicación ordenada entre las diversas terminales.

Unos de los principales puntos a desarrollar en las redes digitales de fibras ópticas es el referente a la derivación terminal. Hay básicamente dos formas para conectar terminal a la red; en el caso de un acceso por "derivación regenerativa", como se indica en la figura 5 la señal óptica finaliza en la terminal, y a partir de ahí se genera una nueva señal óptica. La información digital puede ser modificada en dicha terminal mediante la adición o supresión de algunos Bits.

Sin embargo, este acceso tiene la desventaja de que si en un momento dado se presenta una falla en alguna terminal se puede alterar el funcionamiento de la mayor parte de la red.

En el acceso por derivación óptica, señalado en la figura 6 un acoplador óptico es usado para remover la luz de la fibra, o por el contrario, agregar luz a la misma. De esta forma, si la terminal llega a fallar, sólo la sección perteneciente a dicha terminal se verá afectada en la comunicación.

Las desventajas de este método son la necesidad de la derivación óptica -- misma y la dificultad para supresión o modificación de los pulsos de la red óptica. Otro aspecto importante a considerar es el aprovisionamiento de potencia óptica de la red, ya que la señal óptica no es regenerada en cada no do terminal y por lo tanto, presenta diferentes pérdidas tanto por la derivación, como entre las derivaciones de la red, lo cual limita considerablemente el tamaño de la misma.

Pasando el problema de los repetidores, cabe mencionar que las complicaciones más importantes se presentan en sistemas de largo alcance, ya que en los de corto alcance se puede establecer un cierto control y mantenimiento de los mismos. Debido a la necesidad de maximizar la distancia entre los repetidores, se ha acudido al uso de fuentes de laser a fin de obtener alta potencia de entrada y baja dispersión cromática; también se pueden utilizar fibras ópticas de bajas pérdidas y grandes anchos de banda, fibras ópticas de indice gradual, o en su caso, fibras monomodales.

Se ha concluído que con el objeto de minimizar las pérdidas de la fibra óptica se requerirá del uso de la tecnología de longitud de onda de 1.3um, - donde la atenuación y dispersión son muy reducidas. Esto permitirá enlaces mayores de 50 Km sin uso de repetidores.

En lo que respecta a la alimentación de los repetidores, existen diversas - alternativas: se pueden utilizar conductores metálicos, dispuestos ya sea - en el propio cable de fibra óptica, o en un cable independiente; se ha pensado también en una alimentación local por medio de baterías y celdas solares, lo cual representa ciertos costos de mantenimiento y de instalación, - además de que el hecho de que estén expuestos al medio ambiente reduce el - tiempo de vida útil de los mismos.

Finalmente es importante señalar algunas de las razones por las cuales el costo de instalación y mantenimiento de enlaces a larga distancia y con al tas tasas de transmisión ha disminuido considerablemente.

En primer lugar, las fibras ópticas de baja dispersión trabajan bastante - bien bajo todas las tasas de transmisión, siempre y cuando la fuente y la longitud de onda emitida sean adecuadas.

En segundo lugar, la distancia entre repetidores, en la longitud de 1.3µm, no depende fuertemente de la tasa de transmisión, ya que dichos enlaces es tán limitados por atenuación más que por dispersión.

Es por ello que el desarrollo de mejores sistemas digitales de comunicación por fibras ópticas, dependerá en gran medida de que se superen todas las an teriores limitantes mencionadas, principalmente en lo que a alimentación y monitoreo de repetidores se refiere.

PRINCIPIO DE FUNCIONAMIENTO

En esta sección se hace una descripción del funcionamiento general de un -- sistema de comunicación por fibras ópticas con el objeto de dar una visión más clara de los elementos que constituyen el sistema y sus principales características de operación.

El diagrama a bloques de un sistema de comunicación por fibras ópticas se muestra en la figura 7 en dicha figura se indican los dos tipos de sistemas de comunicación: los sistemas digitales (a) y los sistemas analógicos (b). El primer bloque de la figura 7 se refiere a la multicanalización de las señales recibidas a fin de ser transmitidas por un solo canal. Existen dos métodos que se pueden emplear: multicanalización por división en la -- frecuencia y la multicanalización por división en el tiempo. Ambos métodos permiten definir el tipo de modulador a utilizar dentro del sistema.

Si se emplea la multicanalización por división de la frecuencia, implica la utilización de amplitud modulada en la fuente luminosa para producir una variación en la intensidad de luz. El uso de la multicanalización por división en el tiempo, significa la comutación directa del estado de la fuente luminosa (encendida o apagada), a una cierta velocidad.

Una de las principales limitantes de la modulación directa es la velocidad, que algunas responden muy lentamente a las variaciones de su potencia -- eléctrica. Sin embargo, fuentes luminosas como el laser de inyección o simplemente el LED, pueden ser manejadas a velocidades de transmisión razona-- ble.

Se puede concluir que la multicanalización por división en la frecuencia - se aplica para la transmisión de señales analógicas, mientras que la canal<u>i</u> zación por división en el tiempo se utiliza en la transmisión de señales d<u>i</u> gitales.

En el siguiente bloque de la figura 7 se describen el tipo de codificador - de línea a utilizar en el caso de un sistema digital de comunicación.

Como ya se mencionó, existen varios tipos de codificaciones; entre ellas -- destacan la codificación bipolar, la Manchester, el aleatorizador y el HDB-3.

La codificación binaria, como se ilustra en la figura 8 convierte cada pulso de entrada alternativamente en un pulso positivo o negativo. Así la señal binaria es transformada en una señal ternaria. Esta operación es fácilmente recuperable en el decodificador, ya que los pulsos positivos y negativos en la señal ternaria representan pulsos positivos para una señal binaria. El efecto de la codificación bipolar es el equilibrar la señal con respecto a un nivel de corriente directa. Desafortunadamente esta señal ternaria es ineficiente, ya que transmite 1.58 Bits de información por símbolo, comparativamente con la señal binaria que transmite únicamente 1 Bit de información por símbolo.

11

Otro tipo de codificación es la Manchester, también conocida como bifase o de fase dividida; ésta requiere del doble de ancho de banda, por ser del ti po retorno a cero (RZ), lo que reduce su capacidad de transmisión con res-pecto a las de no retorno a cero (NRZ).

La descripción de esta codificación se puede observar en la figura 9.

Este tipo de codificación provoca un aumento de la tasa de símbolos al doble, debido a que el código se reduce a la mitad del ancho del intervalo de tiempo de la señal proveniente de la fuente luminosa. Por otro lado, si la señal codificada en Manchester se encuentra acoplada en AC, sólo se obtendrá un nivel de corriente directa, cuyo valor es 1/2 de la señal de salida; ésta se debe al equilibrio existente en la densidad de los pulsos y espacios relativos al código.

El aleatorizador es un dispositivo que establece de cierta manera una codificación al mensaje transmitido; se caracteriza por ser un limitador del posible desequilibrio en el número de pulsos o espacios; así, el aleatorizador pretende una transformación aleatoria del patrón de la señal de entrada mediante una operación de codificación reversible. Dicho código permite una recuperación bastante fiel de la señal transmitida, ya que el desaleatorizador regenera el patrón aleatorio utilizado originalmente.

5B6B codificador, DSCR aleatorizador, FO localización de fallas, LA alarma laser, OS transmisor laser, REG regenerador, SCR desaleatorizador.

Finalmente la codificación HDB-3, se utiliza principalmente como complemento de los sistemas PCM, ya que al igual que los anteriores, la aparición de una señal con una larga secuencia de unos a ceros provoca la pérdida de sin cronía en el receptor óptico.

El código se establece de la siguiente manera:

Todos los unos lógicos son alternativamente transmitidos como niveles positivos y negativos, mientras que los ceros se transmiten como ceros. Aunando a lo anterior, si más de 3 ceros consecutivos ocurren, el cuarto cero se -- codifica como un uno de la misma polaridad que el uno anterior. Dichos -- unos son conocidos como "violaciones" de la regla general y son interpreta dos como ceros por el receptor óptico.

En la figura 10 se observa un sistema PCM típico basado en fibras ópticas y en la codificación HDB-3.

Una versión del código HDB-3 es el código AMI, el cual se diferencía del primero en que los BITS de "Violación" no son utilizados; por lo tanto, una secuencia larga de unos o ceros puede llegar a ocurrir en la recepción. Para el caso de sistemas limitados por dispersión, se requiere que las codificaciones no aumenten la tasa de transmisión utilizada, para lo cual se emplean codificaciones como la de la fig. 11 que permiten una interfaz del código HDB-3 para su transmisión óptica a través de la fibra. Como se puede observar en la fig.11, lo único que se necesita es mantener un nivel de potencia óptica $P_{\rm t}$ para la transmisión, y que éste sea modulado por las se ñales de codificación HDB-3. Este tipo de codificaciones presenta el problema de un nivel de estabilización tanto para el transmisor como para el receptor.

En lugar de esta codificación de interfaz han presentado diferentes opciones como son el código de interfaz 1828, en el que un Bit se representa -por dos Bits.

Ejemplos de este tipo de códigos es el AMI de segundo nivel y el CMI (Complemented Mark Inversion). Sus características son las siguientes: para el caso del código AMI de segundo nivel, si aparece un pulso positivo, la codificación óptica es "11", para un pulso negativo si codifica como "90", y en el caso del cero se codifica "10" si aparece después de un pulso negativo y es "01" si el cero aparece después de un pulso positivo.

Como se puede ver este tipo de códigos de interfaz no manejan largas cadenas de "O" ó "1" lo que impide una sobrecarga en la fuente luminosa.

Las codificaciones prohibidas como son "01" después de pulso negativo o -- "10" después de pulso positivo en el código AMI, y "01" en el CMI, permiten la detección de errores.

Su principal desventaja es el aumento al doble de la tasa de modulación lo cual no es recomendable en sistemas limitados por dispersión, por lo que su aplicación se encamina para sistemas con limitaciones por atenuación. Es por ello que se ha buscado aplicar otro tipo de codificaciones como la 283B, etc. que permitan que las tasas de transmisión no aumenten demasiado.

Después de codificada la señal, ésta pasa por una etapa de amplificación - para que su nivel de entrada al transmisor óptico sea el adecuado; dicho transmisor puede estar constituido por dos tipos de fuentes luminosas: el diodo emisor de luz (LED) y el laser.

La emisión de LED es de tipo lambertiana, lo que significa que los rayos de luz son emanados sobre un hemisferio completo; otra forma con la que se describe el tipo de emisión de luz por un LED es la palabra "ISOTROPICO", lo que implica que los rayos de luz son emitidos en todos los ángulos. Esto provoca una cierta ineficiencia en el acoplamiento de un LED a la fibra óptica. Como se sabe, la respuesta de un led es directamente proporcional a la corriente que pasa a través de la unión, de tal forma que el cambio en la potencia óptica de salida fundamentalmente lineal para un cierto rango de corriente de entrada, por lo que se manifiesta como un dispositivo ideal para el uso de un sistema de amplitud modulada.

Dependiente de sus características, un LED puede conmutar a velocidades -- arriba de 200 millones por segundo, aunque de hecho la tasa máxima de transmisión que se trabaja actualmente es de 50Mb/s.

El laser es un dispositivo de umbral: una vez encendido, provee una larga cantidad de potencia óptica; esto se logra cuando la corriente manejada al canza el valor de umbral, como se observa en la figura 12.

Dicha gráfica nos muestra cómo el rango lineal que maneja el Laser es muy limitado, por lo que es un dispositivo adecuado para la amplitud modulada.

Sin embargo, el ancho espectral del Laser es mucho más angosto que el del Led, por lo que los problemas de dispersión se disminuyen significativamen te; además el Laser puede transmitir a mayor velocidad que un Led convencional.

Es por ello que se recomienda el uso del Laser para sistemas de muy alta velocidad (Gb/s), y que usen la modulación por pulsos, dentro de los que destaca el PCM.

Las propiedades básicas de un laser son la coherencia y la colimación.

La coherencia implica que los rayos se encuentren en fase con otros, por lo que se refuerzan entre ellos; la luz proveniente de una fuente totalmente coherente posee una sola longitud de onda.

La colimación se refiere a que todos los rayos viajan en caminos paralelos. Ambas propiedades son ideales para su uso en las comunicaciones por fibras ópticas.

El Led se aplica principalmente en sistemas limitados en ancho de banda, y de corto alcance, mientras que los Lasers se emplean en enlaces de largo - alcance.

Una vez descritos los tipos de fuentes luminosas, se debe considerar la -etapa propiamente de transmisión de la señal óptica a través de la fibra
misma; por lo general el acoplamiento entre el transmisor y la fibra óptica se realiza lo suficientemente cerca como para que el área de emisión de
la fuente sea comparable con la sección transversal de la fibra; esto disminuye los problemas de pérdidas de potencia óptica y por lo tanto, costos
innecesarios de alimentación al sistema.

Cabe mencionar aquí, algunas de las características generales de la fibra óptica.

Su mecanismo de propagación es la reflexión total interna; se encuentra -constituída por un núcleo y un revestimiento. El índice de refracción del
revestimiento (vidrio o plástico), es ligeramente menor que el índice de refracción del núcleo; sus dimensiones típicas son entre 50-100µm de diáme
tro para el núcleo y de 100-200µm de diámetro para el revestimiento. Fibras
con pérdidas menores a 10dB/km permiten una transmisión eficiente para varios kilómetros sin repetidor; en sí, la tecnología de cables con una pérdi
da menor a 4dB/km y con longitud de onda de 0.8µm se encuentra comercial mente disponible.

En la etapa de recepción del sistema de comunicaciones por fibra óptica, - el primer paso es la recuperación de la información óptica transmitida, para que posteriormente pase a ser decodificada. Para ello es necesario la - convers ión de la señal óptica incedente a su correspondiente señal eléctrica. El dispositivo a utilizar se conoce como Fotodetector. Dos tipos de fotodiodos son los más usados para este propósito; uno de ellos consiste - en una unión PN con una capa intrínseca entre las regiones P y N. Este se - conoce como diodo PIN. El otro diodo se conoce como fotodiodo de avalancha (APD). En cada uno de estos diodos, el hecho de que sean iluminados por la fibra en la región cercana a la unión, provoca un aumento de! nivel de - energía de los electrones en la unión. En efecto, la resistencia de la -- unión disminuye, lo que permite un flujo mayor de corriente a través de la unión, y consecuentemente a lo largo del circuito.

El fotodiodo avalancha es más eficiente que el tipo PIN. Debido a que nive les más altos de energía en la unión representan un mayor flujo de corrien te, el efecto de avalancha genera una ganancia en la potencia de la señal a través del diodo; por ello, los fotodiodos avalancha poseen mejor sensitividad que los diodos PIN.

La sensitividad se define como la mínima entrada de luz requerida para un - nivel de funcionamiento dado. Este nivel de funcionamiento se establece a partir de la relación señal o ruido para los sistemas analógicos de comunicación, o con respecto a la tasa de error por BIT en los sistemas digita-les de comunicación.

El APD es más conveniente que el PIN en los sistemas que requieren grandes anchos de banda. Sin embargo, los APD tienen la desventaja de necesitar al tos voltajes de polarización, y una gran sensitividad a la temperatura. Esto obliga al empleo de fuentes de alimentación con voltajes del orden de 100 a 400 volts.

Posteriormente, las señales eléctricas provenientes del fotodetector son conectadas a la entrada de un amplificador. Las señales en este punto pueden ser analógicas o digitales, dependiendo del sistema utilizado.

Este amplificador debe ser de bajo ruído, de banda ancha y que no cargue resistivamente al fotódiodo.

La salida del amplificador es una réplica de las señales de banda base utilizadas en la etapa de modulación del sistema de comunicación. Estas señales pasan por el decodificador correspondiente, para finalmente pasar al demulticanalizador, ya sea por división en el tiempo o en la frecuencia, y se reintegren las diversas señales a sus canales correspondientes.

ANALISIS COMPARATIVO CÓN OTROS SISTEMAS DE COMUNICACION

En primer lugar se realizará una descripción de las ventajas de la tecnología de fibras ópticas con respecto a otros sistemas de comunicación, para después evaluarla con respecto al rango de distancia en que los sistemas - de comunicación por fibras ópticas se apliquen.

El cable de fibra óptica presenta varias ventajas en comparación con el cable metálico. Una de ellas es la inmunidad de la fibra óptica a la interferencia electromagnética. El tipo de material que la constituye es dieléctrico, de forma que la inducción electromagnética en el medio no influye en la transmisión de información. Por su parte, las señales ópticas en el cable no causan radiación electromagnética. Esto hace que no se afecte la comunicación de otros usuarios.

El cable de fibra óptica multipar es mucho menor en diámetro que un cable de cobre multipar para la misma capacidad de transmisión. Esto es una ven taja muy importante, sobre todo cuando se hacen instalaciones en ductos -- saturados; además, el cable óptico posee una mayor flexibilidad que uno de cobre, lo que facilita la instalación.

Por su resistencia a altas temperaturas y a la corrosión, se puede instalar en medios que normalmente el cable metálico no resistiría.

En lo que respecta al uso de repetidores el uso de cable óptico de alta - calidad tiene menor atenuación que el par telefónico o el cable coaxial, por lo que un sistema de fibras ópticas requiere menos repetidores que un sistema convencional de cobre. Sin embargo, esta ventaja se reduce por el hecho de que el repetidor de un sistema de comunicación por fibras ópti-cas es más complejo que el repetidor empleado en los sistemas de conducto res metálicos. Los costos de instalación de un repetidor son bastante favorables comparativamente con los costos en un sistema de cable coaxial, pero no tan favorable si hablamos de sistemas de microondas.

Generalmente, el mayor uso que se le ha dado a los sistemas de comunica-ción por fibras ópticas es el de troncales digitales entre centrales tel<u>e</u>
fónicas. Una gran parte de las necesidades futuras de comunicaciones tel<u>e</u>
fónicas será cubierta por esta tecnología en lugar de los sistemas conve<u>n</u>
cionales de par telefónico, cable coaxial y microondas.

Por otra parte, las fibras ópticas poseen un mayor ancho de banda que el cable metálico, lo que permite el manejo de un mayor volumen de información.

En lo que se refiere al uso de cable coaxial para la transmisión de canales de televisión, este resulta todavía muy atractivo comparado con los sistemas de fibra óptica, principalmente debido al reducido número de canales que actualmente esta tecnología puede manejar, ya que aún se tienen problemas con la no linealidad de los componentes optoeléctricos.

En la tabla II se muestra una comparación de las características del cable coaxial con las de un cable de fibra óptica.

De manera general se puede hablar de las ventajas que presenta un sistema de comunicación por fibras ópticas acuerdo a las diferentes distancias bajo las cuales se esté aplicando. Para enlaces a muy corta distancia (menor a 100m), la justificación del uso de fibras ópticas debe ser muy especial, ya que cualquier otra alternativa de comunicación puede suplir su aplicación, reduciendo los costos de inversión (alta interferencia electromagnética, ruido, transitorios eléctricos, etc.).

A corta distancia (mayor a 100m y menor a 1Km), la fibra dificilmente com pite económicamente con los sistemas convencionales, excepto a muy altas frecuencias y bajo condiciones especiales como las ya indicadas.

A media distancia (mayor 1Km y menor 30Km), la combinación capacidad-distancia, favorece en costo a la fibra óptica con respecto al cable coaxial y al cable de cobre multipar, indudablemente su ventaja en cuanto a flexibilidad, resistencia a altas temperaturas y a la corrosión permiten su aplicación en la comunicación de centrales telefónicas interurbanas, contenidas por lo general en este rango de distancia.

Para larga distancia (mayor a 30Km), el incremento del uso de reptidores hace que la tecnología actualmente desarrollada (fibras ópticas multimoda les a una longitud de onda de 0.85µm) no sea lo suficientemente competiti va con los enlaces de microondas actualmente empleados. Quizá el desarrollo de la tecnología de longitud de onda de 1.3µm, con su consecuente disminución de repetidores, permita que los sistemas de comunicación por fibras ópticas resulten más atractivos económicamente a largas distancias.

De lo anterior se puede concluir que en la actualidad los sistemas de comunicación por fibras ópticas tienen una mejor competividad con otros medios de comunicación en media distancia.

Potencia acoplada 9 dBm.
Minima pot. en recepción59 dBm.
Pérdida en linea 50 dB.
Pérdidas fijas:
Conectores 1 dB
Margen para equipo 3 dB
Total 4 dB
Perdidas en instalación 46 dB
Pérdidas variables (en instalación):
Cable 0.5 dBs/Km.
Empalmes (0.1 dB.c/u 1/2Km.) 0.2 dBs/Km.
Margen 0.1 dBs/Km.
Total 0.8 dBs/Km.
Dist. = perdidas en inst. = 57 Km.
TABLA 1

.

.

	ESTADOS UNIDOS					EUROPA					
NIVEL DE JERARQUIA	T-0	T-1	T-2	T-3	T-4	0	1.	2	3	4	5
TASA DE TRANSMISION (Mb/s)	0.064	1.544	6.312	44.736	274.176	0.64	2.048	8.448	34.368	139.264	565.143
NUMERO DE CANALES	1	24	96	672	4032	1	30	120	480	1920	7680

TABLA 2.

	CABLE DE 144 FIBRAS OPTICAS A 45 Mb/s	CABLE COAXIAL DE 22 ELEMENTOS A 274 Mb/s	UNI DADES			
CAPACIDAD	45,000	40,000	CANALES DE VOZ			
DI AMETRO	0.5	3.0	PULGADAS			
SECCION TRANS VERSAL	0.2	7.0	PULGADAS CUADRADAS			
PESO	0.1	10	LIBRA/PIE			
COSTO (MATERIALES)	сом	COMPARABLE				
ESPACIAMIENTO REP.	4	1	MILLAS			

TABLA 3

APLICACION	DIAMETRO	PERDIDA POR KM.	FRECUENCIA (MHz)	COSTO POR	Km (Dis)
GRAN TRONCAL					
CABLE COAXIAL	1	23 dB	300	1600	1600
FIBRA OPTICA	1/2	4	300	1000	800
TRONCAL	} 	-			
CABLE COAXIAL	1/2	42	300	415	415
FIBRA OPTICA	3/3	4	300	600	400
DISTRIBUCION					
CABLE COAXIAL	3/8	55	300	305	305
FIBRA OPTICA	1/4	4	300	500	300
DIST. SECUNDARIA					
CABLE COAXIAL	1/4	140	300	90	90
FIBRA OPTICA	1/4	4	300	475	275

TABLA 4

Į ,	MI CRO- ONDAS	CABLE COA- XIAL	PAR TELEFO NICO	SATE LITE	GUIA DÉ ONDA	FIBRA OPTICA
ESTACION TRANSMISORA	3	3	3	3	3 `	3
ENLACE DE LARGO ALCANCE	3	3	2	3	3	3
ENLACE DE CORTO ALCANCE	2	3	3	1	1	3
ELACES ENTRE USUARIOS	1	2	3	1	1	3
ENLACES ENTRE LA CENTRLA Y USUARIOS	1	3	1	1	1	3
MILITAR	3	3	3	3	3	3
ENLACES ENTRE COMPUTADORES	1	3	1	1	1	3 .
CATV	3	3	1	3 .	_1	3

TABLA 5

EQUIPO TRANSMISOR "CEPTOR DE SEÑALES DE VIDEO POR FIBRA OPTICA

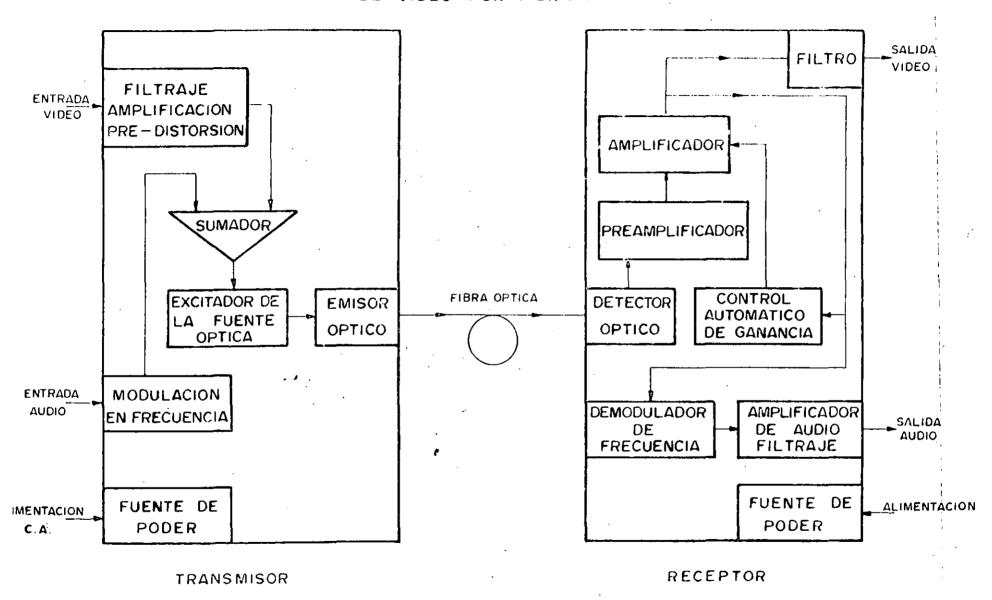


FIGURA 1. Sistema de transmisión analógica para señales de video.

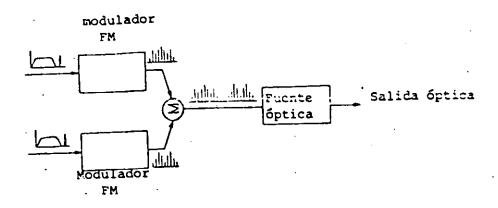


FIGURA 2. Multicanalización analógica por división en frecuencia.

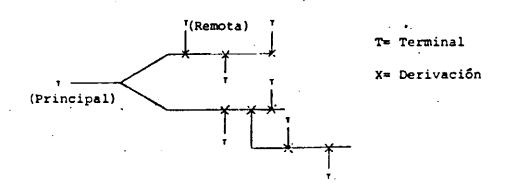


FIGURA 3. Red de distribución con topología de tipo árbol.

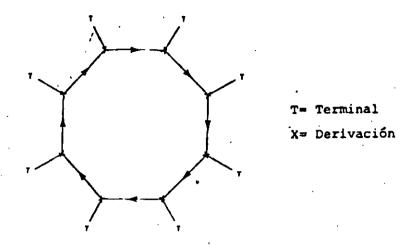


FIGURA 4. Red local tipo anillo

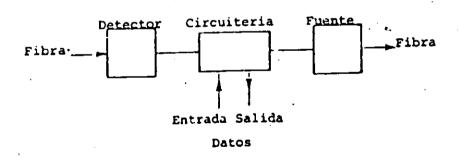


FIGURA 5. Sistema de derivación activo para red local por fibra óptica.

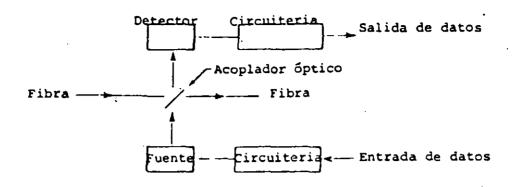


FIGURA 6. Sistema de derivación pasivo para red lucal por fibra óptica.



FIGURA 7. Equipo terminal de línea óptica para transmisión P.C.M.

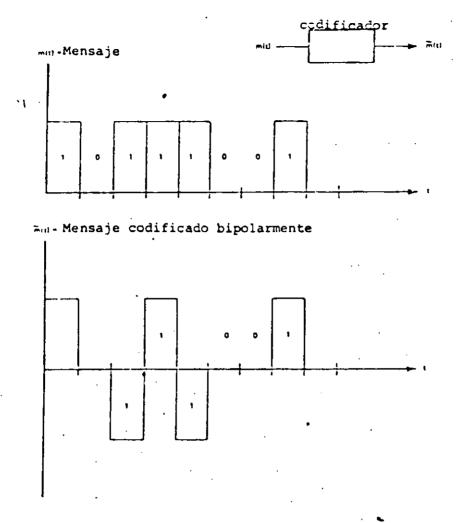
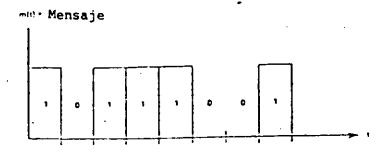



FIGURA 8. Codificación de línea bipolar

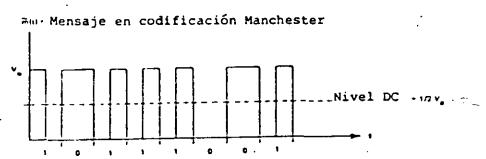


FIGURA 9. Código Manchester.

AMI/HDB-3	Potencia óptica
-1	0
0	Pt
+1	· 2P _t
_	

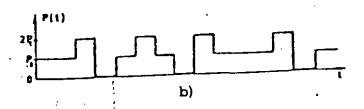


FIGURA 11. Transmisión de un código bipolar usando tres niveles de potencia óptica.

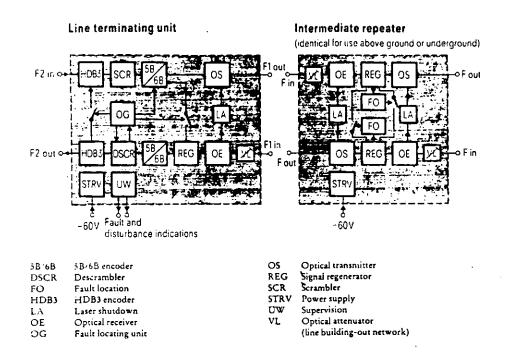


FIGURA 10. Equipo terminal de línea para comunicaciones digitales por fibra óptica.

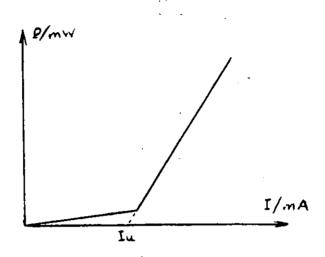


FIGURA 12 Respuesta de un diodo láser.

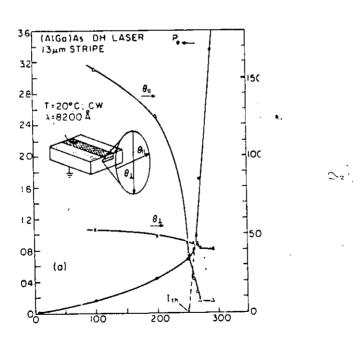


FIGURA 13 Angostamiento espacial del haz láser con la corriente de inyección.

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS
TELECOMUNICACIONES VIA FIBRAS OPTICAS

P.C.M. REDES DIGITALES INTEGRADAS

M. EN C. CARLOS E. HIRSCH GANIEVICH

MULTICANALIZACION

GENERALIDADES:

La multicanalización hace posible transmitir decenas o cientos de comunicaciones a un mismo tiempo. Cada canal tiene un ancho de banda limitado; existen 2 técnicas principales de multiplexación.

- a) Por división de tiempo (MDT)
- b) Por división de frecuencia (MDF)

2. MULTICANALIZACION POR DIVISION DE FRECUENCIA (MOF).

El principio de ésta es intercalar todas las señales que se desean transmitir, en el dominio de la frecuencia, ya que cada canal tendra como característica un ancho de banda fijo, se utiliza su información para modular una portadora, donde los limites (inferior y superior) de la señal resultante aumentarán de acuerdo con el número de canales que se quiere transmitir.

El ancho de banda disponible del medio de transmisión se divide en bandas o subcanales más angostos; cada usuario tiene disponible durante todo el tiempo, una parte del espectro total. En el transmisor, las señales individuales se insertan en los subcanales, modulando la amplitud de frecuencias portadores apropiadamente seleccionadas. En el receptor, las señales se separan mediante el uso de filtros pasabanda.

Como puede observarse, el ancho de banda para cada canal es constante, lo único que varia son los limites tanto inferior como superior; en consecuencia, la capacidad de un equipo dependera de la frecuencia máxima que maneje.

3. MULTICANALIZACION POR DIVISION DE TIEMPO (MDT)

En la multicanalización por división de tiempo el medio de transmisión se comparte estableciendo una secuencia de intervalos de tiempo, durante las cuales las fuentes individuales transmiten en forma alterna; cada usuario dispone del ancho de banda total durante intervalos de tiempo restringidos. El transmisor asigna periodicamente el canal completo a cada fuente y envia información adicional para que el receptor identifique la duración de intervalo y la fuente de procedencia, de manera que pueda derivar adecuadamente las señales.

Es posible convertir una señal analógica limitada en banda a una forma discreta en el tiempo, por medio de la técnica de muestreo. Los valores muestreados de la señal contienen la información original, y la demodulación puede llevarse a cabo mediante un filtro pasa bajas.

La mayorfa de los sistemas de comunicación por pulsos transmiten muchas señales simultáneamente, en lugar de una sola. Se puede explicar a partir del proceso de muestreo, si tenemos una muestra muy estrecha, la mayorfa del tiempo no está siendo transmitida información alguna a través del sistema, es posible transmitir entonces información, procedente de otras fuentes en los intervalos vacios. La transmisión de las muestras de información de varios canales simultáneamente a través de un sistema de comunicación con diferentes muestras escalonadas en tiempo es llamado multicanalización por división de tiempo.

La mayor parte de los sistemas que emplean este tipo de multiplexaje son digitales, ésto implica que las señales analógicas son convertidas a un formato digital antes de la transmisión. Las señales digitales (provenientes de terminales de datos, computadoras, impresoras o cualquier otra fuente digital) tienen un formato adecuado.

En un esquema típico las diversas señales a ser transmitidas, son muestreadas secuencialmente y combinadas en un solo canal. El tiempo necesario para que todos los canales sean transmitidos al menos una vez, se denomina TRAMA. Usualmente cada trama lleva un identificador denominado BANDERA DE ALINEACION TRAMA, que es un patron fijo de bits, con ciertas características, para ser localizado fácilmente en el receptor.

Si varias de las señales que serán multicanalizadas tienen anchos de banda diferentes o como comúnmente es el caso, con fuentes de datos que tienen diferentes velocidades de bits, se puede usar 2 aproximaciones: proporcionalmente tomar más muestras de la señal de ancho de banda más amplio, o las señales que varian máslentamente pueden primero ser combinadas en una señal analógica de ancho de banda amplio por medio de la técnica MDF.

Es obvio que el ancho de banda necesario en la transmisión se incrementa con el número de señales, y es proporcional al reciproco del ancho T de los pulsos transmitidos, entonces el ancho de banda requerido para transmitir los pulsos mostrados sería aproximadamente n/T Hz, siendo n el número de pulsos que forma un trama. Obviamente, para reducir el ancho de banda es necesario ensanchar al máximo los pulsos, justo hasta el punto donde comienza a superponerse.

Como un ejemplo, suponiendo 30 canales de voz, cada uno limitado en banda a 4 KHz, son muestreados secuencialmente a una velocidad de 8 KHz, multicanalizandolos en tiempo en un canal.

Los pulsos sucesivos están espaciados 4.2 useg.

El ancho de banda requerido para transmitir estos pulsos es aproximadamente de 240 KHz. El filtro que aparece en la figura es usado para ensanchar los pulsos como se requiera. El filtrado podría ser incorporado en la operación de muestreo.

Un problema que se introduce en la multicanalización en tiempo es la sincronización de los pulsos sucesivos en el receptor, ésto es, que los pulsos en la recepción deben ser entregados al destino apropiado lo que implica que un interruptor está dispuesto en el receptor y sincronizado con el interruptor del transmisor.

Varias técnicas se han utilizado en la práctica para realizar la sincronización y reconocimiento de los canales, por ejemplo*

- El uso de pulsos especiales, etiquetados para ser facilmente diferenciables de los pulsos de la señal regular (bandera de alineación de trama).
- Ondas senoidales continuas de fase y frecuencia conocidas, las cuales pueden ser filtradas en el receptor para proveer la información de sincronización necesaria.
- Esquemas que dan información de sincronía desde los pulsos de la misma señal transmitida por medio de promedios de períodos largos de tiempo (alineación estadística).

En la multicanalización de señales digitales, los siguientes puntos deben tomarse en cuenta:

- 1. Se deben incorporar algunas estructuras de trama, representando la unidad más pequeña de tiempo en la cual todas las señales son enviadas al menos una vez.
- 2. La trama se divide en intervalos de tiempo, asignado unicamente a cada fuente de datos conectado.
- 3. Los bits de alineación de trama y sincronización se deben fijar para que el receptor sea capaz de sincronizar en tiempo, el inicio de cada trama, con cada ranura. Estos bits son llamados bits de control.
- 4. Cuando los relojes de los afluentes son plesiocronos, es necesario hacer una previsión para el manejo de pequeñas variaciones en la velocidad de bit de la señal digital de entrada.

Una trama (estructura) tipica aparece en la figura y corresponde al primer nivel del sistema de 30 canales, en donde B representa la bandera de la alineación de trama que en este caso está colocada al principio de la trama y 30 canales digitales son multiplexados; existe un canal adicional S para señalización, lo que completa los 32 canales de la trama y da origen a que este sistema sea también conocido como 30 + 2 canales.

Cada canal contiene 8 bits y una velocidad de 64 Kbit/s. La bandera de alineación de trama es X0011011 y se envia en tramas alternadas. La velocidad de salida es 2.048 Mb/s.

A continuación se mencionan algunas ventajas y desventajas de la técnica de MDT en relación con el multiplenaje por división de frecuencia.

Ventajas:

- Bajo costo en equipo terminal
- Mejor inmunidad contra el ruido
- Facilidad de regeneración
- Posibilidad de tratamiento digital (almacenamiento y procesamiento de la información)

Desventajas:

- Mayor ancho de banda
- Necesario convertidor analógico digital

4. ORDENES DE MULTICANALIZACION

- El Comité Consultivo Internacional de Telegrafia y Telefonia (CCITT), ha recomendado dos jerarquias de multiplexaje digital. La primera, utilizada en E.E.U.U. y Japon principalmente, se basa en los sistemas T1 de 24 canales.
- T1, multicanalizador aunque tué originalmente para manejar 24 circuitos de voz digitales, no esta restringido para multiplexar canales telefônicos. señal de 56 Kb/s, del formato apropiado, podria ser transmitida como uno de los 24 canales. Similarmente, a un nivel más alto en jerarquta, no todas las entradas necesitaron haber sido derivadas de un multiplexor de bajo nivel. En el nivel ejemplo, algunas de las entradas a 6.312 Mb/s podrian representar entradas de TV digitales; otras podrian ser - T2), transmitiendo multiplexadas en grupos de 4 (señales

información de voz; otras pueden ser derivadas por multiplexaje ascendente y combinando apropiadamente el tráfico de datos de más baja velocidad.

La multicanalización de señales permite a un canal de transmisión dado, ser compartido por un número de usuarios, reduciendo el costo. Una jerarquia similar, pero usando diferentes niveles de velocidades de bit, ha sido también establecida como una norma internacional por el CCITT, basándose en el sistema de 30 canales y se utiliza ampliamente en México y el resto del mundo.

El primer nivel PCM multicanaliza 30 canales a 64 Kb/s cada uno, con dos canales adicionales usados para alineación de trama, señalización y otros propósitos. En este punto difiere de la norma T1.

Estas jerarquias a muy alta velocidad han sido desarrolladas para el uso de los sistemas de comunicaciones nacionales y están basados históricamente en las normas PCM usadas para canales de voz digitales, aunque también pueden ser otros tipos de señales.

5. OPERACION DEL MULTICANALIZADOR

En las jerarquias propuestas por el CCITT, se especifican dos tipos, de acuerdo con la técnica empleada para tomar las informaciones de entrada y obtener la salida o trama principal, y son:

- Multicanalizadores PCM
- Multicanalizadores digitales

En un multicanalizador PCM basicamente sus entradas son analógicas y se obtiene a su salida una señal digital. Dentro de sus funciones realiza una conversión analógica/digital por canal, muestrea la información de entrada a una velocidad de 8 KHz, codifica cada uno de los canales de 8 bits, y la repetición de la trama se realiza cada 8 KHz. Conserva una estructura de entrelazado de octetos, es decir, los 8 bits de cada canal son transmitidos en forma de conjuntos individuales claramente identificables.

Un multicanalizador digital tiene como entradas señales digitales y su salida es digital, este tipo de multicanalizadores dentro de la jerarquia se encuentra a partir del segundo orden, no tienen una estructura de entrelazado de octetos, en su lugar se emplea el entrelazado de bits; la velocidad de repetición de la trama no necesariamednte es de 8 KHz.

Para solucionar el problema de sincronta, en estos-

sistemas se emplean técnicas que controlan la integridad de las secuencias binarias, denominadas técnicas de justificación, las cuales pueden ser:

- Justificación positiva
- Justificación positiva/cero/negativa

La justificación positiva consiste en agregar a la trama original un bit extra por tributario, haciendo que la velocidad de la trama sea ligeramente mayor que, la velocidad de entrada, estos bits se colocan en un lugar fijo de la trama y son llamados bits de justificación; de tal manera que cuando sea necesario compensar variaciones de velocidad, los bits de justificación pueden contener o no un bit significativo.

Durante la operación de desmulticanalización, es necesario determinar si el bit de justificación contiene información o no, para este propósito, bits especiales llamados bits de control o indicación de justificación son insertados sistemáticamente y preceden al bit de justificación, los que indican su naturaleza al demultiplexor.

La justificación positiva/cero/negativa consiste en emplear 2 bits, uno de ellos llamado de justificación negativa (J-) y el otro de justificación positiva (J+), los cuales se encargarán de ajustar la velocidad de la transmisión de información a la velocidad real.

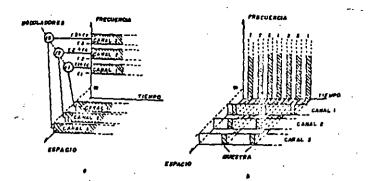
El tipo de justificación se establece por medio de un código en los bits de justificación, de manera que se tiene:

- Justificación positiva cuando los bits J+ y J- no tienen información.
- Justificación cero cuando el bit J+ contiene información y J- no la tiene.
- Justificación negativa cuando los bits J+ y Jcontienen información.

6. MULTICANALIZACION POR ENTRELAZADO DE OCTETOS

Esta técnica de intercalado de octetos es utilizada para la transmisión de información en forma sincrona, de manera que las variaciones a velocidad en la entrada serán proporcionales a las variaciones de velocidad del propio multicanalizador en otras palabras todas las entradas tienen la misma velocidad de bit y dependen del mismo reloj del multiplexor.

El principio de esta técnica básicamente consiste en tomar los 8 bits de cada uno de los canales de las entradas en forma ciclica, y transmitir cada uno de los canales hasta formar la trama de salida a una velocidad más alta.


7. MULTICANALIZACION POR ENTRELAZADO DE BITS.

Esta técnica de intercalado de bits, difiere de la estructura anterior básicamente en que la transmisión de la información se lleva a cabo en forma plesiócrona y la salida está formada por un grupo de bits, que fueron tomados en forma individual de otros grupos; para ejemplificar si se observa la figura, cuatro grupos de bits como entradas son combinados en un grupo de bits como salida, lo que significa que un bit del grupo l es seguido por un bit del grupo 2 y así

El grupo de bits resultante en la multiplexación tiene una velocidad digital más alta que 4 veces la velocidad de los tributarios; una razón de ésto es que el grupo de bits de orden más alto necesita su propia palabra de sincronización y algunos bits de servicios agregados al grupo de bits. Además, contiene una previsión para absorber diferencias de frecuencias entre grupos de bits tributarios y el reloj del demultiplexor, ésto es necesario porque cada sistema tributario puede tener su propia frecuencia de reloj.

Para compensar la diferencia en velocidades de la información proveniente de los tributarios, se emplean técnicas de justificación (descritas anteriormente), en este ejemplo se inyectan bits desocupados en la señal, junto con los bits de control indicando el estado de los bits libres. Estos bits de control son usados en el desmulticanalizador para llevar a cabo la desmulticanalización exacta sin pérdida de información.

El método descrito corresponde a la justificación positiva, y es generalmente usado como la forma más sencilla para la transmisión de información plesióncrona.

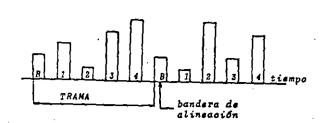


Figure 1. Cultipleanje por división de tiempe y frecuencia. n- División de frecuencia b- División por tiempo

Figura 2. Luitipiexaje por tiempo

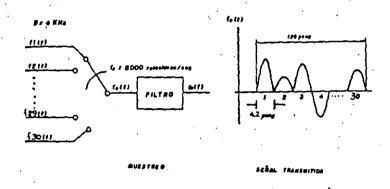
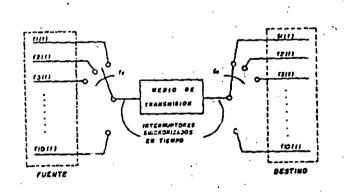



Figura 2. Canales de voz multiplexados en ticapo

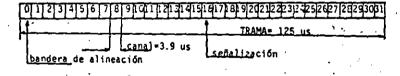
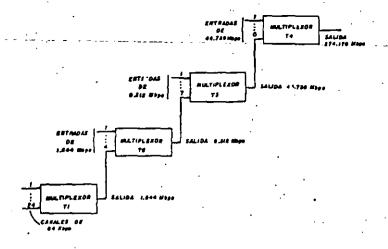



Figura 5. Sistema de 30 canales, entrolazado de octetos

igura 4.º Sincronización de un sisteme de multiplemaje

Figuro C. Jerarquia digital, sistemas de 24 concles

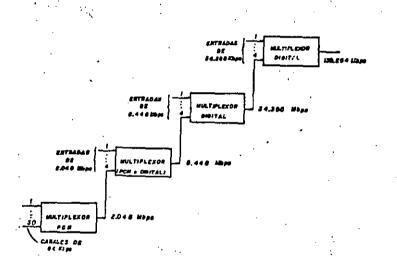


Figura 7. jerarquia digital, sistemes de 30 canales -

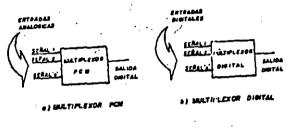
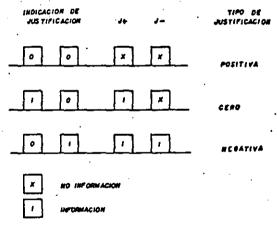



Figura 3. Tipos de multiplexeres.

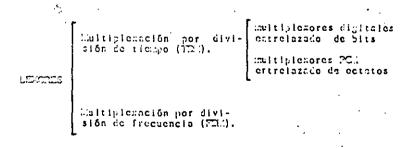


Figura 10. Clasificación de los amitipioneres.

Figure 9. Justificación positiva/cero/negativa

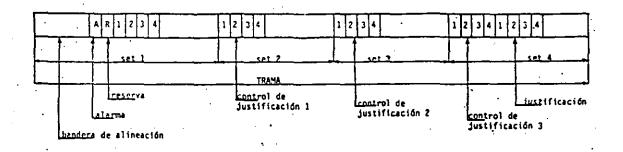
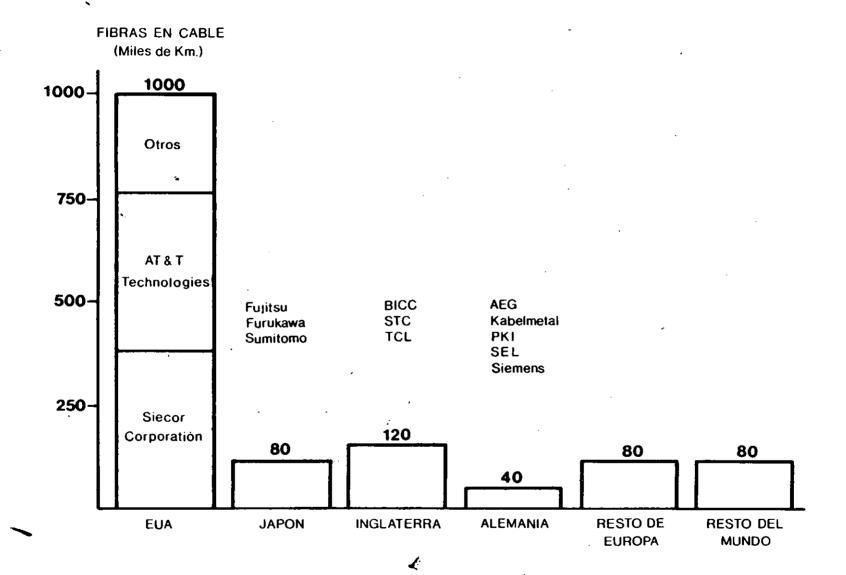
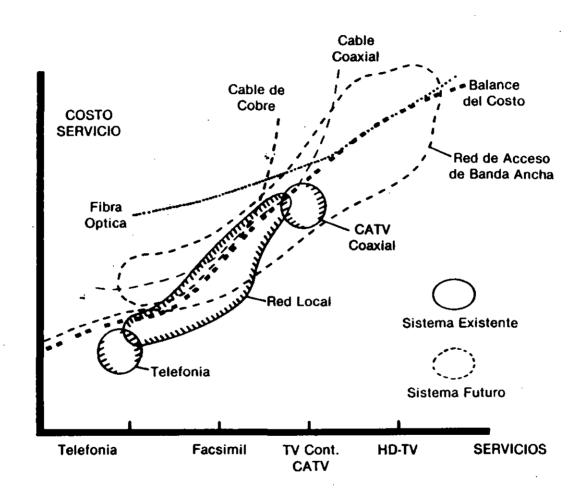
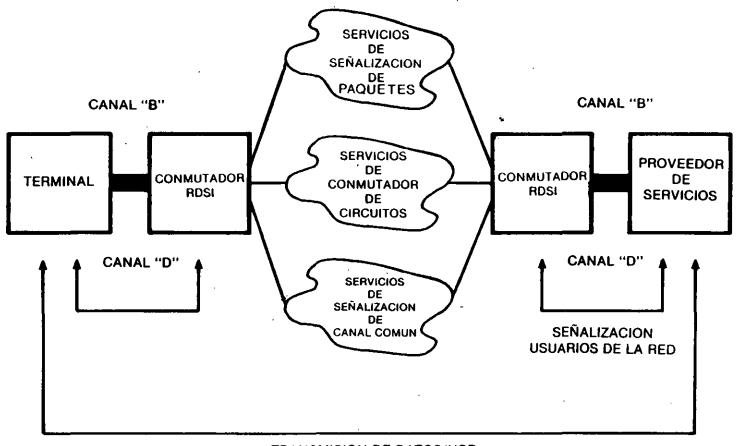


Figura 11. Estructura de trama de segundo nivel (3.440 i h/s) Entrelazado de bits.

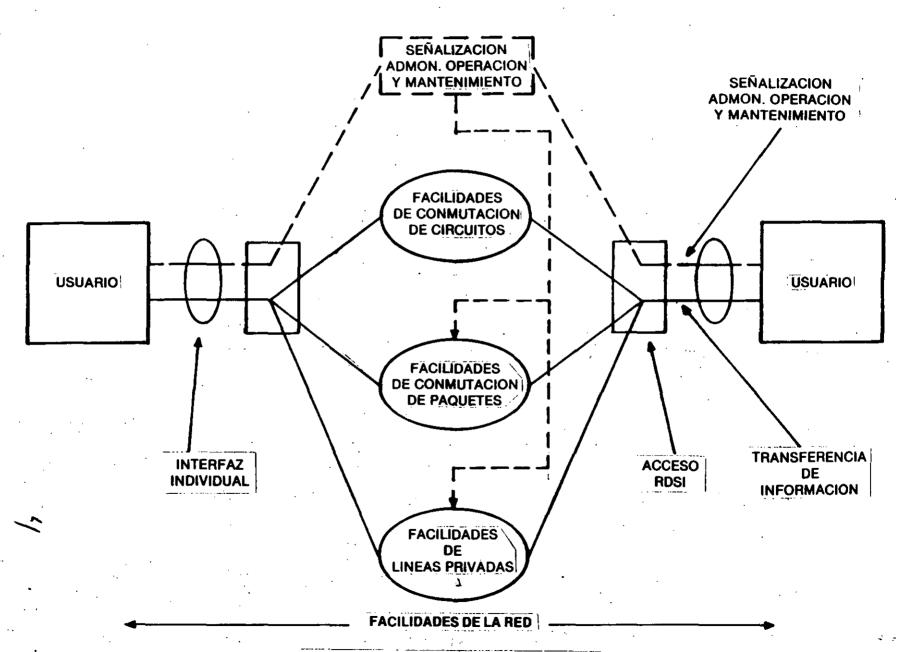

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

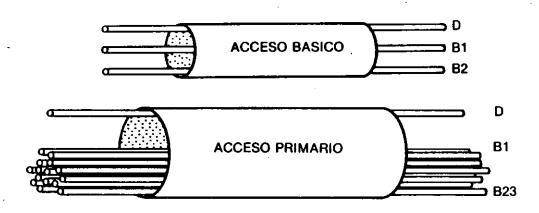

CURSOS ABIERTOS TELECOMUNICACIONES VIA FIBRAS OPTICAS

REDES DE FIBRAS OPTICAS


ING. GERARDO CHAVEZ DIAZ

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285
Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

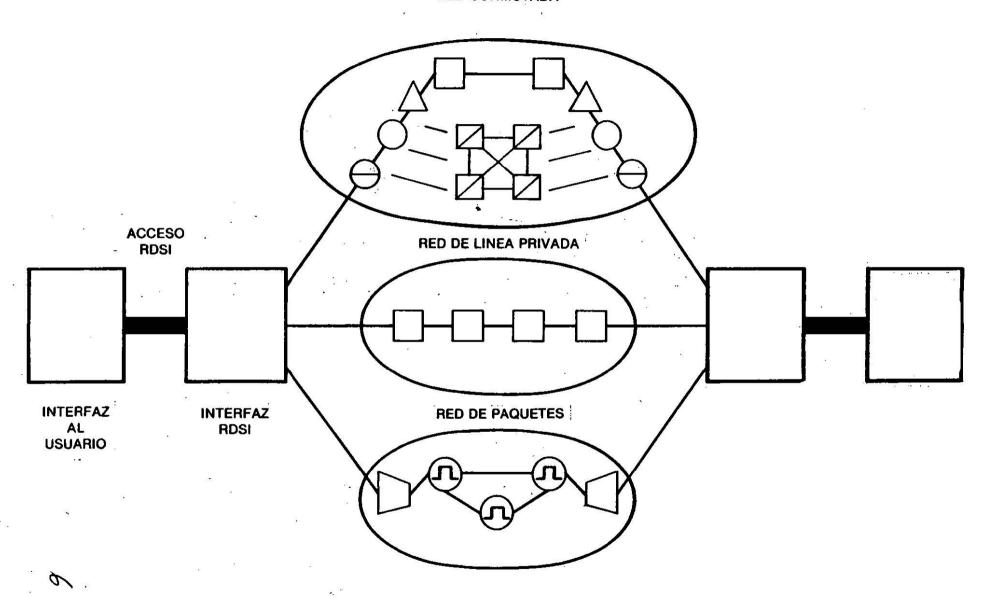

MAPA COSTO-SERVICIO



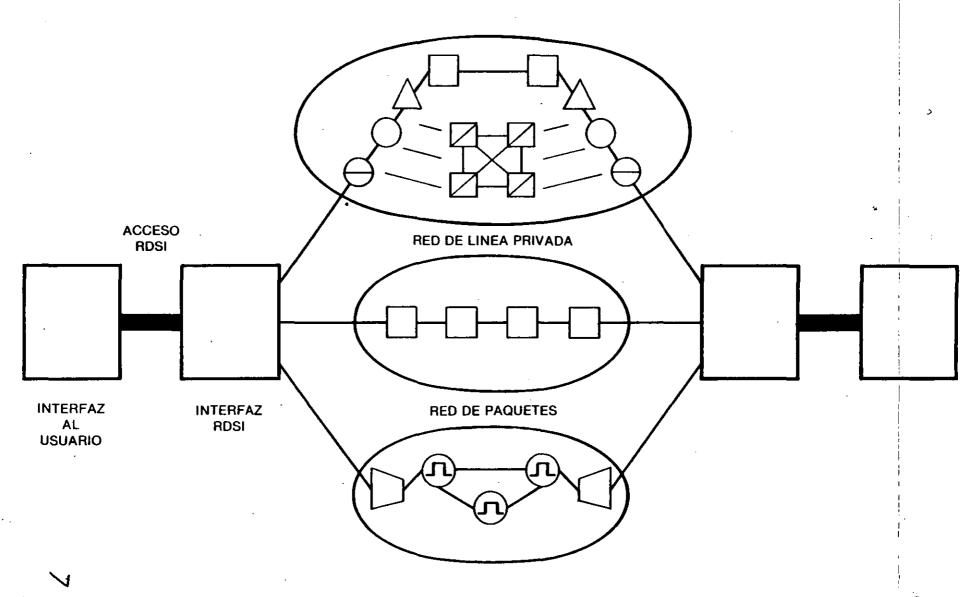
TRANSMISION DE DATOS/VOZ

S

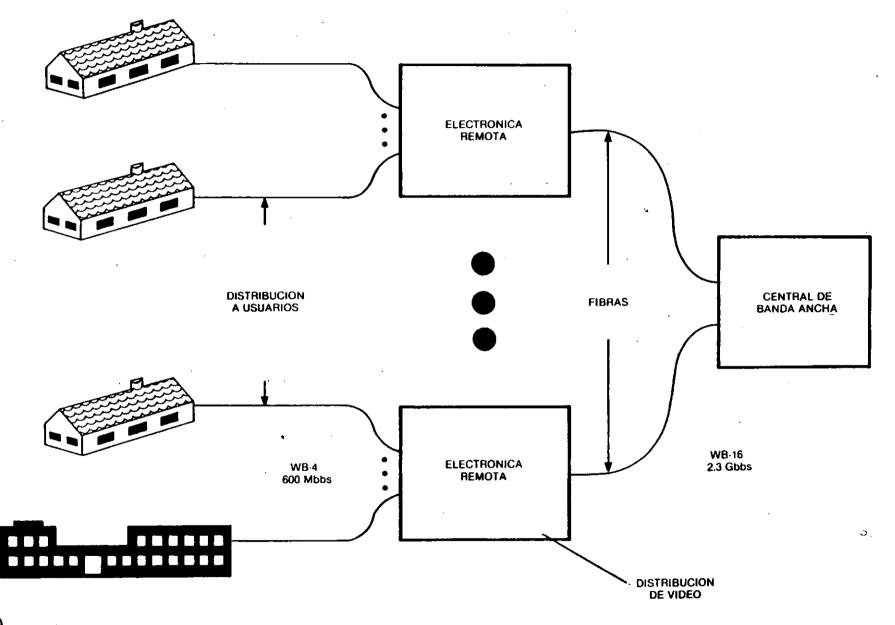
INTERFACES DE LA RDSI CON LOS DIVERSOS USUARIOS DE LA RED

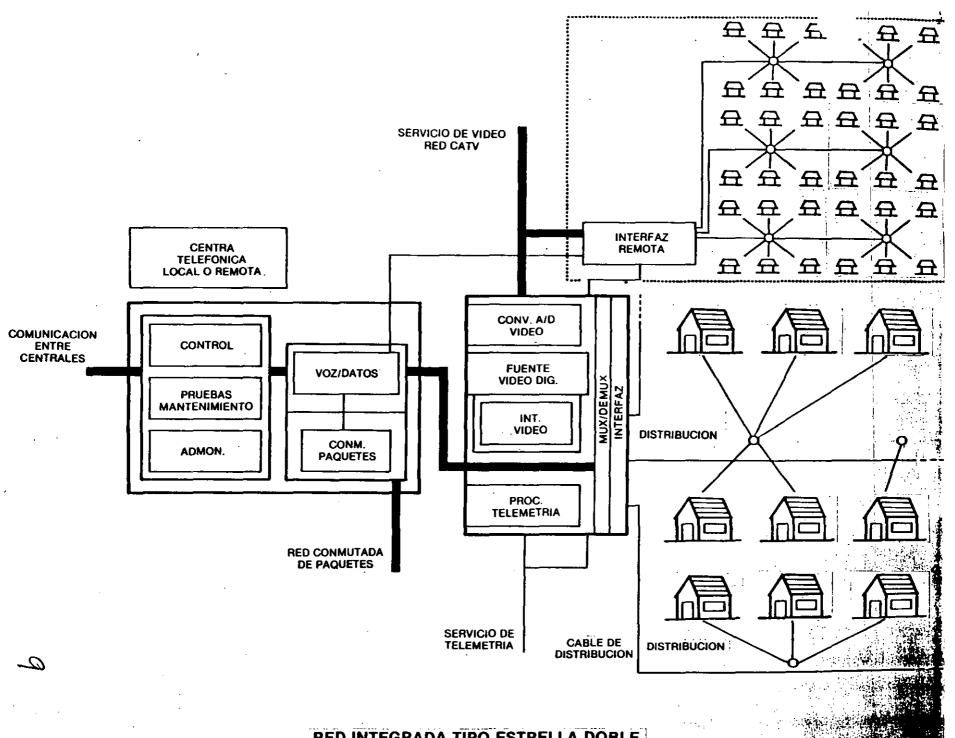


Canal "D": Señalización + Paquete de Datos Canal "B": Acceso Digital a 64 kb/s

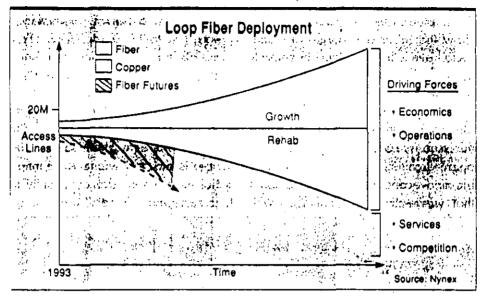

INTERFACES PARA RDSI: ACCESO BASICO Y ACCESO PRIMARIO

RED CONMUTADA

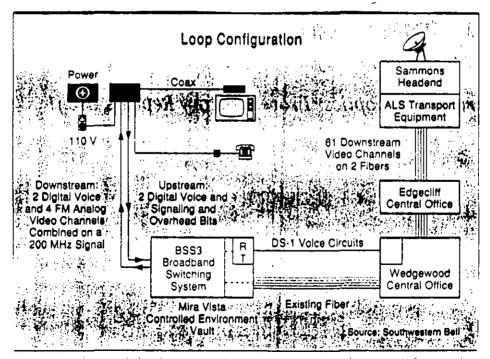


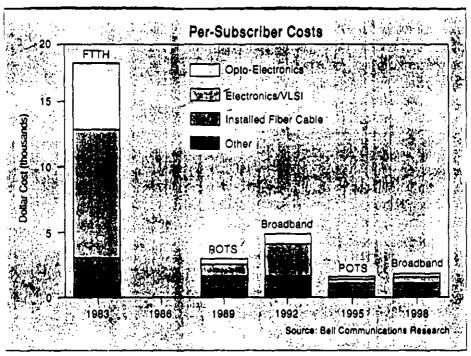

CONCEPTO DE RED DIGITAL DE SERVICIOS INTEGRADOS (RDSI)

RED CONMUTADA.



CONCEPTO DE RED DIGITAL DE SERVICIOS INTEGRADOS (RDSI)



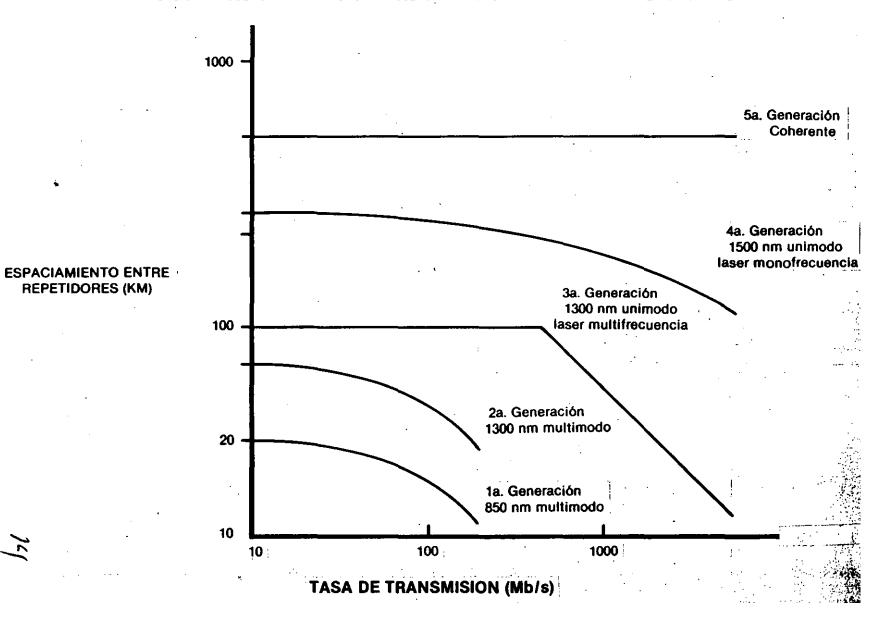

SPECIAL REPORT

Fiber will be deployed in all new installations and rehabilitation projects when the cost difference between fiber and copper disappears. However, the installed base of fiber will still be small. Broadband services and competitive pressures will be the motivating factors accelerating the deployment of fiber.

Mira Vista loop trial in Fort Worth, Tex., delivers two digital voice and four analog video channels to the home over a single fiber.

Opto-electronic component prices dominate per-subscriber costs for fiber-to-the-home delivery of POTS and broadband services.

FIBER-TO-THE-HOME TRIALS


Balding Channeling Channeling	Developer	Coll Market	Lamba 2	Humber of warden to the state of the state o	Thechonics supplier	Trensmittelen system/optionat mode	Cable and their regularitype
BellSouth 1991 Southern Bell		Heathrow Tele- communications 9/89 Integ voice & vi		55 now, Northern Telecom 256 targeted DMS-100	Northern Telecom	LEDs and Singlemode digital	Northern Telecom for central office to residences. Optical Coble Corp. within homes
BelSouth Southern Bell		Hunte's Creek 1986-CAI coblevision, Gen- stor and Scienti- fic-Alianta upgrades of	V South Orlando, Flo.	250	Scientific Adorto	LEDs Single- and multimode	ATET SM 48-fiber coble from headend to selector node; 5 multimode 144-fiber cobles
BellSouth South Central Bell	Boyle Investment of Memphis	POTS only 11/88	Riveredge, Tenn.	54 so for, AT&T 1A-ESS 99 torgeted	AT&T System SCC-5 system and terminal	FT-series 1.7- gigobit/sec trans- mission system Singlemode digital analog for POTS	
BellSouth . Southern Bell	The Sail Constitution of the Constitution of t	POTS only Began 8/8		42 torgeted AT&T 5-ESS	AIST	AT&T Series 5 Singlemode SLC digital	1 singlemode fiber
BellSouth Southern Bell		POTS only 4th quarter 1989	Lakeview Terrace, Charleston, S.C.	100 AT&T 5-ESS	AT&T	AT&T Series 5 Singlemode SLC digital	1 singlemode fiber
BellSouth Southern Bell	Allerian A	POTS only Began 8/8	9 The Landings, Stidenway Island, Savannah, GA	192 AT&T 5-ESS	AT&T = 5.00	AT&T Series 5 Singlemode digital	1 singlemode fiber
BellSouth Southern Bell	িক্টের হ েটি জন। প্রতিধিন্তা	POTS only Began 6/8	9 Hunter's Creek (L. Orlanda, Fla.	117 AT&T 5-ESS	AT&T	AT&T Series 5 Singlemode SLC digital	I singlemode Notice The All All All Confidence of the All All All All All All All All All Al
BellSouth Southern Bell		POTS only 8/89	Coco Plum Miami, Fla.	45 initially, AT&T 5-ESS 300 eventually	AT&T	AT&T Series 5 Singlemode SLC digital 30	1 singlemode Story 10
BellSouth Southern Bell		POTS only 2 1st quarter 1990	The Summit, Columbia, S.C.	285 AT&T 5-ESS	AT&T	AT&T Series 5 Singlemode SLC digital	1 singlemode 1960
BellSouth Southern Bell		POTS only 1st quarter		50 now, AT&T 5-ESS 90 eventually	ATRI	AT&T Series 5 Singlemode SLC digital	1 singlemode fiber
GTE Corp. General	Existing community	4 4 4 4 5 7 47 5	r 90 Cernice, Cold.		Amer. Light	Analog video	36 video channels and POIS over
of Collionio				的复数形式 医皮肤 医二甲基二甲基苯酚 "这个人说,这是这种最后人会。	Actions a	A Water Control	Shor opic se- partuals layland dis- video/vacca/data coor water data Shor

	energy design - Existing (September 1) Community - Com	POTS		Cerrico, Cold	A	GIE 2EAX		Analog	Twisted pau	
STE Corp.	General Existing Telephone Community of California	Apollo Cable vision is leas- ing bandwidth	Main Street and pay-per-view 2nd quarter 1990	Carrice, Cold.	250-300 targeted now, potentially 16,000	GTE Services Co	*****	Digital #	Coasol coble	
ontel	Contel Service	POTS only	4th quarter 1988	Ridgecrest, Calif.	100 togeted	ATRY 5-ESS ATRY Phoenix,	ATRI Network Systems	Singlemode digital	Singlemode	House wing as it is normally is
orinch	Bross Bell	POIS only	Late 1989	Chicogo's northwest suburbs	300			Digital #	2 singlemode fibers	Fiber optics set up to in "active pedestal" if format to get cost a down to POIS will
l Alonic	New Jersey Bull, Binder and Son	POTS only	8/88	"Princeton Gate," South Brunswick, N.I.		AT&T 5-ESS AT&T Network Systems	Laser diodes	Digital	Singlemode fiber	4 dual lines per residence
Aforic **	Bell of Rehab Pennsylvania	Holicon	1st quarter 1989	Perryopolis, Pa.	80-100	Alcohol anakog " Alcohol N.A.		Analog video; digital voice over multimode	62.5/125-micron multimode fiber	
udiwedom I	Southwestern Bell Cadar Creek Telephone Properties Inc.		10/89	Cadar Creek, Olathe, Kan.	260		AT&T Series 5	Digital	Singlemode fiber	Fiber-to-the 1
uhwestern I	Southwestern Ball Telephone	POTS only	1989	Leawood, Kan.	50-100	AT&T AESS AT&T DOM-100 fine-division multiplexer	00 taser diodes	scriber loop corner, digital/	ATRT programode (ber/hvisted-poir copper "mused" coble	
dhusdon Lagares	Southwestern Bell Telephone	Sommon CATV	4th quarter 1989	Miro Visto, FL Worth, Tex.	80 77	Amer. Light.	Amer Light Sys.	ALS FM analog	2 singlemode fibers	Fiber-to-home
West	Northwaters Bell	POTS only	2nd quarter	Mendota Heights, Minn.	97 torgulad	AT&T 5-ESS AT&T Network Systems	The state of the s		Singlemode fiber	
West	Mountain Bell	POTS only	1990	Desert Hills, Scottsdale, Ariz.	102 targeted	AT&T 5-ESS AT&T	AT&T Series 5 (Digital	Singlemode (
h Telecom.	British Televisia	Single line tele- phony positive optical astrock (TPON); voice on	Start 9/90	Bishops Stortford, U.K	128 customers	at at	BT positive WOM (IPON)	digital	1 singlemode fiber	
ah Telecom	British Talecom); 194	14.	Stort 9/90	Bishops Stortford, U.K.	125 business (customers (customers (customers))	er er	BT passive WDM (IPON)	Singlemode / (1) K	1, sieglemode fiber	Busines IPON A
de Telecom	British Telecom		Start 9/90	Bishops Stortford, U.K.	128 cudomers	ST VIZ. ST	BT positio	Singlemode digital/copper	lber 1	Single-line street TPON; voice cely
A Telecom	British Telecom	Broadband distributed star; voice, 1 and other service		Bishops Stortford, U.K.	cudomers	81 switched stor 81 - 5	BT possive WDM (IPON)	Singlemode digital	l inglamede Sher 17 This	Similar to West of chester cobin IV not work in U.K. straight.
	Royant	POTS only	1989	Lynnfield, Moss.	100	640		A.M. · · · ·	85/125-aicros malimode fiber	Fiber to the copy of
	us chart compiled by John Kreidi.				. Jacon der	a here a		4.0		

LIGHTWAVE OCTOBER 1989

32

LAS 5 GENERACIONES EN SISTEMAS DE COMUNICACION POR FIBRA OPTICA

LA FDDI Y SU IMPACTO EN LAS R.D.S.I DE LOS 90'S

Ing. Gerardo Chávez Diaz NOVELLCO DE MEXICO

INTRODUCCION 1.-

 $\Delta S_{1} \rightarrow 0.05$

El mercado que tradicionalmente ha cubierto la fibra óptica nivel internacional ha sido el de las comunicaciones de larga distancia. Dicho mercado en el caso de Estados Unidos sufrirá en los anos venideros un decremento importante, después de una etapa de estabilidad; sin embargo, a nivel general, la demanda de las fibras ópticas permanece sostenida y con un incremento importante en otros sectores de aplicación, representando con ello "nichos" para esta tecnología. Algunos de ellos son los sistemas de Comunicación Submarina, Redes de Area Metropolitana (MAN'S) y el cableado para redes en edificios o parques industriales para la transmisión de datos. para la transmisión de datos.

Entre los factores que han contribuido al fortalecimiento de las fibras ópticas en dichos mercados se encuentran el establecimiento de estándares e interfaces de comunicación como es el caso de la fibra óptica de 62.5/125 micras para redes locales (LAN), la tendencia hacia el uso de conectores opticos tipo ST para dichas aplicaciones, y la reciente liberación de los estándares de la Interfaz de Datos Distribuida por Fibra (FDDI).

Las ventas en el caso de cables para la transmisión óptica larga distancia descendieron en Estados Unidos de 961,000 Km-fibra en 1987 a 504,000 Km-fibra durante 1988. A pesar de ello, no se espera un impacto proporcional en los equipos de transmisión para este mercado, ya que por otra parte las companias proveedoras de estos servicios continúan aumentando la capacidad de sus equipos alcanzandoo velocidades que van desde 1.17 Gbps hasta 2 Gbps durante el presente ano.

En contraste con otros países como es el caso de China, India y México se espera un despegue en los próximos anos de esta tecnologia aplicadas en larga distancia, mediante proyectos de Comunicación Terrestre y/o Submarina.

En el sector de transmisión de datos, durante los últimos anos han existido una diversidad de equipos, componentes y arquitecturas de operación que han permitido aplicaciones

GRUPO NOVELLY

1. of all 4.

básicas de punto a punto basadas en la utilización de modems y multiplexores ópticos. Recientemente, la aplicación de las fibras ópticas en el ambiente de las redes locales han requerido la especialización de productos y servicios para este sector.

De hecho, la demanda de equipo para redes locales es en la actualidad una de las áreas de mayor crecimiento a nivel mundial; así, se ha proyectado un crecimiento de las redes locales via fibras ópticas con una tasa anual promedio del 47% hasta 1993, mientras que las redes con otros medios de comunicación crecerán a una tasa de aproximadamente el 25% en este mismo periódo.

Dentro de este mismo sector los principales usuarios de dicha tecnología serán en primer término las corporaciones industriales, y en seguida los campus universitarios, las fábricas, la industria militar, los hospitales y la industria editorial.

2.- ACCESO A LA FDDI

Una de las formas para aprovechar de manera óptima las ventajas que ofrece la tecnología de fibras ópticas es mediante la aplicación en forma jerárquica de la red de datos.

Asi, dichas redes se desarrollarán acordes con las necesidades de capacidad y velocidades de transmisión; esto nos permite, como consecuencia, un crecimiento modular y una mejor planeación del sistema.

Existen cuatro niveles jerárquicos principales:

- a) Redes distribuidas de baja velocidad (de Kbps hasta algunos Mbps).
- b) Redes Intermedias (de 10 Mbps hasta algunas decenas de Mbps).
- c) Redes Columna Vertebral de Datos FDDI (de 100 Mbps hasta algunos cientos de Mbps).
- d) Redes Columna Vertebral de Alta Velocidad (hasta 1 Gbps).

Esta estrucura nos ofrece un fácil acceso entre redes así como la conexión via "Gateways" o concentradores.

GRUPO NOVELLCO

可能到现代在

MEXICO Consulta ventes 926 Lomas Altas Mexico 11950, D.F. Tel: 259-0186, 259-0538. 259-0047, 259-0390 FAX: 259-0015

Museumy (Survey Constitution (

GUADALAJARA Angulo 1847 Col. Ladron de Guevar 44650 Guadalajara, Jalii Jel: 91(36)15-64-69, 15-65 15-66-62, 15-64-18

16

a) Redes de Baja Velocidad

El objeto de estas redes es ofrecer a los usuarios soluciones de conectividad de bajo costo a través de los estándares de tipo ArcNet. Dicho estandar con protocolo "Token-Passing" opera a una velocidad de 2.5 Mbps y fue creado en 1977 por DATAPOINT Corp. Aunque originalmente fue desarrollada para operar con cable coaxial y par torcido, existen actualmente topologías de estrella-pasiva con fibra óptica; la versión de 20 Mbps es conocida como ArcNet Plus y es totalmente compatible con la de 2.5 Mbps.

Como apoyo a la utilización de la tecnología de fibras ópticas se han logrado reducciones importantes en los precios de los dispositivos optoelectrónicos con la difusión de la fibras plásticas en dichas redes.

b) Redes Intermedias

Estas redes son empleadas para la comunicación entre microcomputadoras y los Mainframes, y utilizan estándares como el IEEE 802.3, 802.4, 802.5, de los cuales el más comúnmente usado con fibras es el de la configuración EtherNet con alrededor de 10,000 nodos en operación a nivel internacional.

c) Redes Columna Vertebral de Datos (FDDI)

Las redes para aplicaciones de alta velocidad se han apoyado importantemente en la Interfaz de Datos Distribuida por Fibra (FDDI) mediante una red doble-anillo a 100 Mbps con protocolo Token-Passing; en este estandar han participado alrededor de 250 empresas permitiendo con ello un rápido abatimiento en los costos de desarrollo del producto y haciéndolo sumamente competitivo con los medios tradicionales de comunicación.

d) Redes Columna Vertebral de Alta Velocidad

Estas redes están constituídas por varias del tipo FDDI en paralelo, manejando alternativas para la transmisión de voz, video y datos, que demandan un gran ancho de banda (B-ISDN) y velocidades de transmisión del orden de Gbps; es en este punto donde los esfuezos tecnológicos orientados hacia el desarrollo de los servicios integrados han cobrado gran importancia debido a las bondades de la fibra óptica por un lado y a la fuerza que el estandar FDDI está tomando en el mercado internacional.

GRUPO NOVELLCO

MEXICO Constituyentes 908
Lomas Altas
México 11950, D.F.
Tel: 259-0186, 259-0538, 259-0047, 259-0390 FAX: 259-0015

140 Medickette Currente iki die 477 Grauss Genool Gesche Monterroj Nuevo veen tek 9163 /6 93 bei 7694 74 76 27 be GUADALAJARA Angulo 1847 Col. Ladron de Guer 44650 Guadalajaro, J 161: 91(36)15-64-69, 15-15-66-62, 15-64-1

.- ESTRUCTURA DE LA FDDI

Las especificaciones de la FDDI han sido desarrolladas por el comité X3T9.5 de la ANSI (American National Standards Institute) y están relacionadas con los niveles 1 y 2 del modelo OSI. La FDDI emplea un protocolo de acceso tipo Token-Passing a una velocidad de transmisión de 100 Mbps con la posibilidad de soportar hasta 1,000 conexiones y con una máxima distancia de enlace de 200 km. La máxima distancia entre dos nodos adyacentes es de 2 km utilizando una fibra multimodo de 65.5/125 micras en una ventana de operación de 1,300 NM.

Dichas especificaciones están organizadas en 4 partes:

- 1) La administración de estaciones (SMT) define el control requerido para la operación e intercomunicación de las estaciones dentro del anillo FDDI.
- 2) El Control de Acceso Medio (MAC) que define el formato de la trama de datos, la interpretación de su contenido y el mecanismo de "Token-Passing".
- 3) La capa fisica (PHY) que especifica la codificación, decodificación y el reloj; y
- 4) La dependencia del medio físico (PMD) que se refiere a los tranceptores ópticos, conectores y tipo de cable óptico utilizado.

Existen además tres tipos de dispositivos utilizados por la red FDDI; estos son los concentradores (CONS), las estaciones de acceso único (SAS) y las estaciones de acceso doble (DAS); así, los concentradores pueden ser accesados en forma única o doble. Por su parte, los "DAS" pueden enlazarse con otras "DAS" o "CONS"; un "CONS" puede también ser utilizado como un dispositivo individual que conecte varios "SAS" a manera de red local, o como un "HUB" en una red mayor donde se conecten "CONS", "DAS" y"SAS".

De esta manera, la topologia de la red FDDI se definirá como un "anillo doble de árboles". Hay tres variaciones de dicha topologia basadas en los dispositivos antes mencionados, que son:

- Anillo Doble,
- Arbol,
- Anillo Doble de Arboles.

GRUPO NOVELLO

MEXICO
Constituyentes 908
Lomas Allas
México 11950, D.F.
Tel: 259-0186, 259-0538, 259-0047, 259-0390 FAX 259-0015

MONTERREY

Calz. del Valle 40%/25 piso
Guizo Garcia
Monterry, Naco Lea tenno a un richo 78 9 1 y c

GUADALAJARA Angulo 1847 Col. Ladron de Guevara 44650 Guadalajara, Jalisco tal: 91(36)15-64-69, 15-65-58 15-66-62, 15-64-18

En la topologia de Anillo Doble, las "DAS" son conectadas entre ellas para formar un "lazo fisico"; todas las estaciones son de tipo "DAS" y no se utilizan "CONS" o "SAS".

Por otra parte, en la topología de Arbol las "SAS" son enlazadas a un "CONS" en forma de estrella y no se emplean las "DAS" en la red; en la posibilidad de que una "DAS" se conecte a la red, ésta se comportará como una "SAS". Además, dichos "CONS" pueden ser colocados en cascada a nivel jerárquico.

En el caso de la topología de Anillo Doble de Arboles son conectados a un anillo doble junto con las "DAS"; como su nombre lo indica, esta red está concebida como un anillo doble al cual uno o mas árboles se conectan.

En la red FDDI existen 2 tipos de dispositivos utilizados: uno para usuario final, que son las estaciones de trabajo y los servidores de archivo (File Server), y otro para la columna vertebral, que son los concentradores, los puentes y los "ruteadores". En ambos casos éstos pueden implementarse como "SAS" o "DAS"; sin embargo la implementación de las "SAS" en un doble anillo de árboles provee un mejor repaldo a la operación de red.

En el concepto básico de la red Anillo cada estación es considerada como un repetidor y puede representar un punto de falla; en un enlace físico, inclusive esto puede significar la ruptura del anillo. Dicha probabilidad puede aumentar sustancialmente conforme el número de estaciones se incrementa, por lo que el soporte del doble anillo resulta muy importante. Así, en el caso de que alguna estación se desactive o reubique, o alguno de los cables de los anillos sufra algún damo, el sistema de red se reconfigurará para establecer un nuevo enlace.

Por su parte la topología de Arbol ofrece la tolerancia a fallas a través de dos caminos: si la falla ocurre en la porción del árbol ya sea en la estación o en el cable que conecta a la "SAS" con el "CONS", se establecerá en forma automática el "reenrutamiento" a través del concentrador de tantas estaciones como sea necesario; esto mismo ocurrirá en el caso de fallas múltiples.

La combinación de ambas por lo tanto refuerza la operatividad de la red y la tolerancia a fallas de la misma.

GRUPO NOVELLCO

MEXICO

Constituyentes 908

Lonics Altas

México 11950 D 1

Tel: 259-0186, 259-0938
259-0047, 259-0390 FAX: 259-0015

MONTERREY

Controlled Market and Market and

GUADALAJARA
Angulo 1847
Col. Ladron de Guevara
44650 Guadalajara, Jalisco
let: 91;36)15-64-69, 15-65-58
15-66-62, 15-64-18

.- USO DE LAS ESTACIONES FDDI

La aplicación de las estaciones tipo "SAS" en general resulta más cómoda y económica para el administrador de red si la comparamos con las de tipo "DAS", ya que en el caso de redes con un gran número de usuarios el "reenrutamiento" resulta mas accesible a través de los "CONS" que la reordenación de la ruta ante la presencia de una falla en una "DAS". Esto repercute en los costos de cableado y conectorizado que, a manera de ejemplo en una red de 200 nodos puede representar alrededor de 15.000 USD de aborro en nodos puede representar alrededor de 15,000 USD de ahorro en el costo de instalación.

En algunas aplicaciones de bajo número de usuarios se emplean técnicas alternativas como es el uso de relevadores (alrededor de 10 estaciones) pero limitan sustancialmente el alcance a 200 mts entre nodos, lo cual implica una reducción con respecto a los 2 Km marcados por el estandar.

5.- APLICACIONES DE LA FDDI

La utilización de las redes FDDI se ha concentrado en tres ambientes principales:

- Instalación en campus o parques industriales, mediante el cableado entre edificios empleando el concepto de a) columna vertebral de alta velocidad (hasta varios Km de distancia).
- Instalación en edificios, a través del cableado de oficinas del mismo piso o en diferentes niveles. Dicho b) cableado resulta por lo general definitivo e involucra a un gran número de usuarios finales, así como dispositivos para la columna vertebral con distancias relativamente cortas (varios cientos de metros).
- Instalación en centros de cómputo, donde el número de usuarios es reducido y las distancias son cortas (decenas de metros) lo cual requiera de una gran C) flexibilidad en la red instalada.

Para analizar y definiir la problemátiica de planeación e instalación de este tipo de redes, se está desarrollando actualmente en Estados Unidos el estandar EIA TR 41.8.1 que normará la aplicación en edificios de la FDDI.

internacional se están realizando importantes esfuerzos para la difusión de la FDDI a través de empresas como Proteon Inc., que recientemente ha sido escogida para la instalación de una red en la Universidad de Singapore con

GRUPO NOVELLCO

MEXICO Constituziones 955 Comps Alters Mexico 11950. D.F. Tel: 259-0186, 259-0538, 259-0047, 259-0390 FAX: 259-0015

Memory of the or over 72.95 53

GUADALAJARA Arigulo 1847 Cal Ladron de Guevara 44650 Guadalajara, Jalisco 44650 Guadalajara, Jalisco teli 91(36)15-64-69, 15-65-58, 15-66-62, 15-64-18

NOVE

2,000—nodos—y establecer la conectividad con un Mainframe 3081 IBM y una supercomputadora NEC; de igual forma CODENOLL TECHNOLOGY CORP. ha lanzado a fines del ano pasado su linea CODENET FDDI para las computadoras EISA, la cual es compatible con el software de red Novell NetWare 386, asi como los estándares ISO-9384 y el ya mencionado ANSI X3T9.5; asimismo, la compania Synoptics Communications Inc. está ofreciendo la conectividad a todos los ambientes ya sea EtherNet, Token Ring y FDDI a través de su topología de "estrella jerárquica" con par torcido de cobre, con lo que el concepto de columna vertebral de alta velocidad repercute importantemente en la reducción de costos totales de la red.

6.~ CONCLUSIONES

Con la liberación del SMT a principios de este ano por el comité ANSI X3T9.5, finalizará la primera etapa de la red FDDI. Sin embargo ya se está trabajando en paralelo con una versión del sub-nivel PMD para fibra óptica unimodo que permitirá un espaciamiento entre nodos FDDI hasta de 60 km, lo cual posicionará estrategicamente a la FDDI en el mercado de MANS, y como consecuencia, en la competencia con las companías telefónicas que ofrezcan multiservicios al usuario; esto se viene a reafirmar con el concepto de la FDDI-2 que brindará servicios de voz, video y datos a través de la red doble anillo.

Con todo ello se espera un crecimiento exponencial en la demanda de este producto en los primeros anos de la década, aumentando la base instalada de alrederdor de 3,000 transceptores en 1990, a 22,000 para 1991, y 200,000 para 1993. Las aplicaciones estarán orientadas a la transmisión de imágenes y bases de datos a grandes velocidades y con enlaces a redes mas lentas de propósito específico (voz/video/datos) que permitirán la conectividad de diferentes ambientes y el uso de medios de comunicación sumamente variados.

GRUPO NOVELLCO

MEXICO
Constituyentes 908
Lomas Altas
México 11950, D.F
Tel: 259-0186, 259-0538
259-0047, 259-0390 FAX: 259-0015

MOST JERREY
Catz der visite Aczi zh pisc
Garzo Garcia
Monteney Nueva ceon
tel 91 83 78 78 76 56
Sirina

GUADALAJARA Angulo 1847 Col. Ladron de Guevaro 44650 Guadalajara, Julisco rel: 91(36)15-64-69, 15-65-58, 15-66-62, 15-64-18

M N O V E L L C

~EFERENCIAS

- 1.- MACK,R., "FIBEROPTICS POISED FOR RAPID GROWTH IN THE 1990'S", LASER FOCUS WORLD, DEC. 1989.
- 2.- REED, T., "FIBER JOINS FACTORY AUTOMATION SYSTEMS", PHOTONICS SPECTRA, NOV.1989.
- 3.- MARSH., J., "FDDI DUAL RING OF TREES TOPOLOGY", TELECOMMUNICATIONS, OCT. 1989.
- 4.- PROTEON NEWS RELEASE DECEMBER 1989.
- 5.- CODENOLL TECHNOLOGY CORP. NEWS RELEASE NOVEMBER 1989.
- 6.- SYNOPTICS COMMUNICATIONS INC. CONNECTIVITY PRODUCTS GUIDE, 1989-1990.

GRUPO NOVELLCO

MEXICO

Constituyentes 908

Lomas Altas

Mexico 11950 D 1

Tel: 259-0186, 259-0538
259-0047, 259-0390 FAX 759 0015

MONTERREY

Copy (set to the 4, 7, 7 and

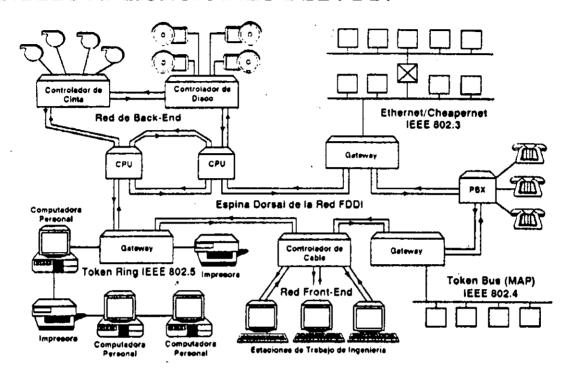
di Terrena di Prima di Prima di Prima di Prima Terrena di Prima di GUADALAJARA Angulo 1847 Con Ludran de Guevara 44650 Guadalajara, Julisco (cl. 91/56)15-64-69, 15-65-98, 15-66-62, 15-64-18

22

FDDI:

LA RED LOCAL OPTICA DE ALTA VELOCIDAD

FDDI = FIBER DISTRIBUTED DATA INTERFACE


RED ANILLO TOKEN- PASSING 100 Mb/S CON REDUNDANCIA. (ANSI - X3T9)

ANILLO PRINCIPAL= CONEXION PUNTO A PUNTO ENTRE NODOS PARA TRANSMISION DE DATOS.

ANILLO SECUNDARIO = TRANSMISION DE DATOS /
RESPALDO DEL ANILLO
PRINCIPAL EN CASO DE FALLA.

FDDI PROVEE COMUNICACIONES POR CONMUTACION DE PAQUETES Y TRANSMISION DE DATOS EN TIEMPO REAL.

POSIBLES APLICACIOINES DEL FDDI

FDDI OFRECE HASTA 1000 CONEXIONES FISICAS (500 ESTACIONES) Y UNA DISTANCIA TOTAL DE 200 KM. DE EXTREMO A EXTREMO.

LA DISTANCIA MAXIMA ENTRE NODOS ACTIVOS ES LA DE 2 KM.

FIBRAS OPTICAS EMPLEADAS:

- A) FIBRA TIPO UNIMODO. CON GRAN ANCHO DE BANDA (GHz. KM) Y LARGAS DISTANCIAS (20 - 30 KM)
- B)FIBRA TIPO MULTIMODO. FIBRAS CON NUCLEO 50-62.5 MICRAS Y MEDIANAS DISTANCIAS (10 - 20 KM) A 1300 NANOMETROS.

ESTACIONES:

TIPO CLASE A: SE CONECTA DIRECTAMENTE AL ANILLO DOBLE.

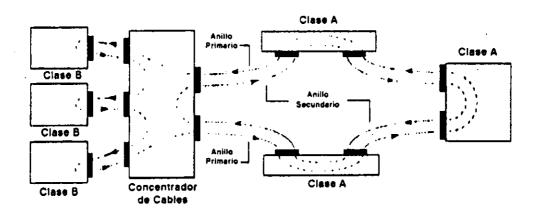
TIPO CLASE B: SE CONECTAN AL

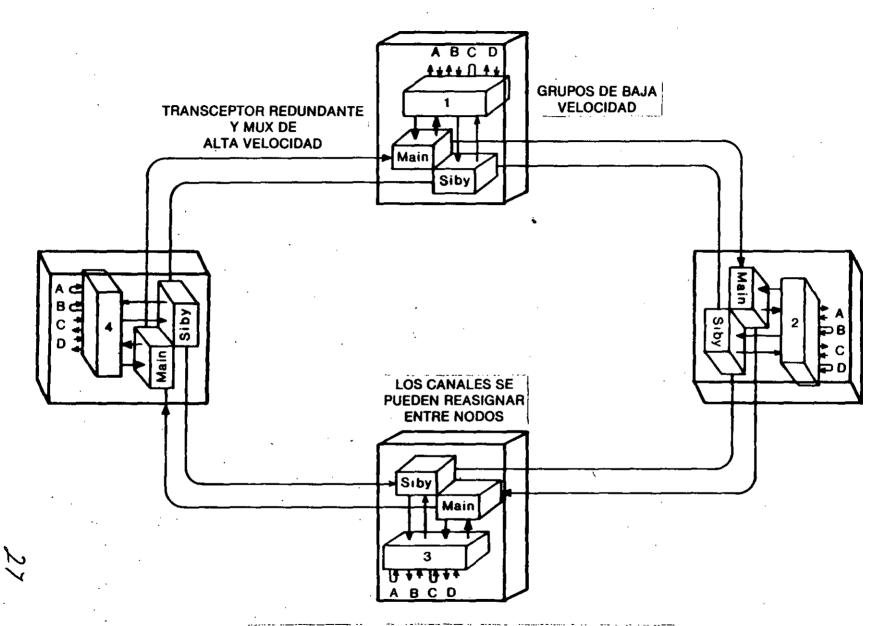
CONCENTRADOR DE

PUERTOS MULTIPLES EN RED

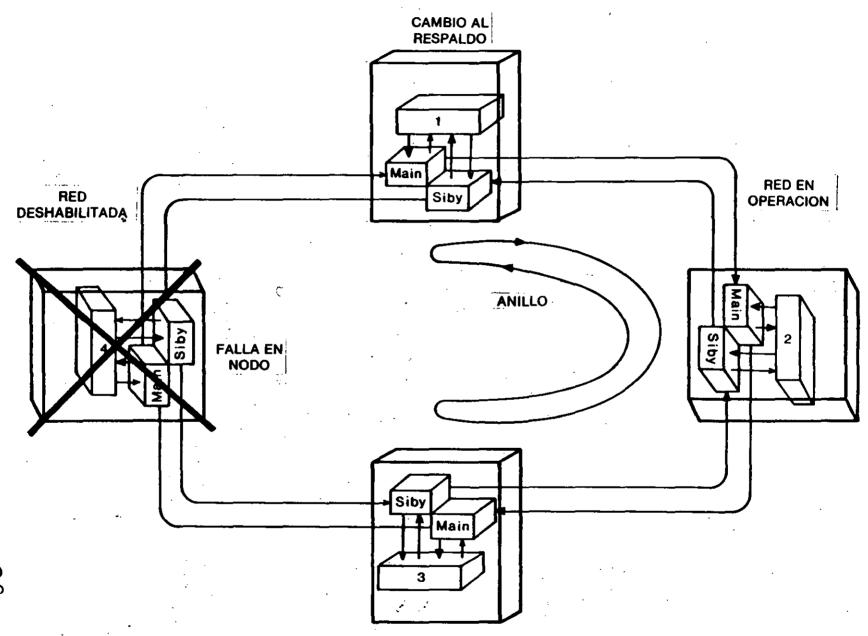
ESTRELLA O ESTACIONES

CON POSIBILIDAD DE

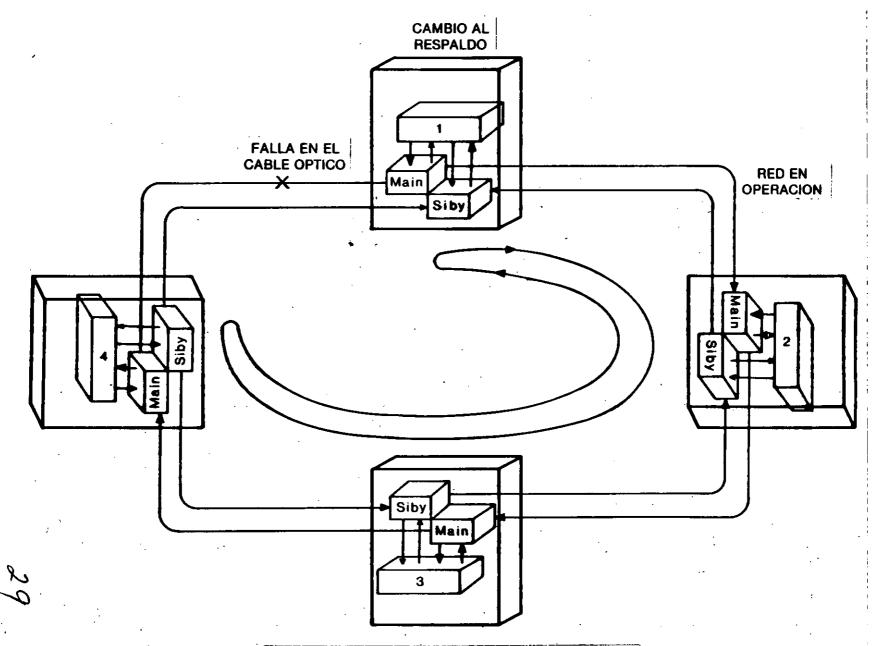

CONEXION SENCILLA. LOS

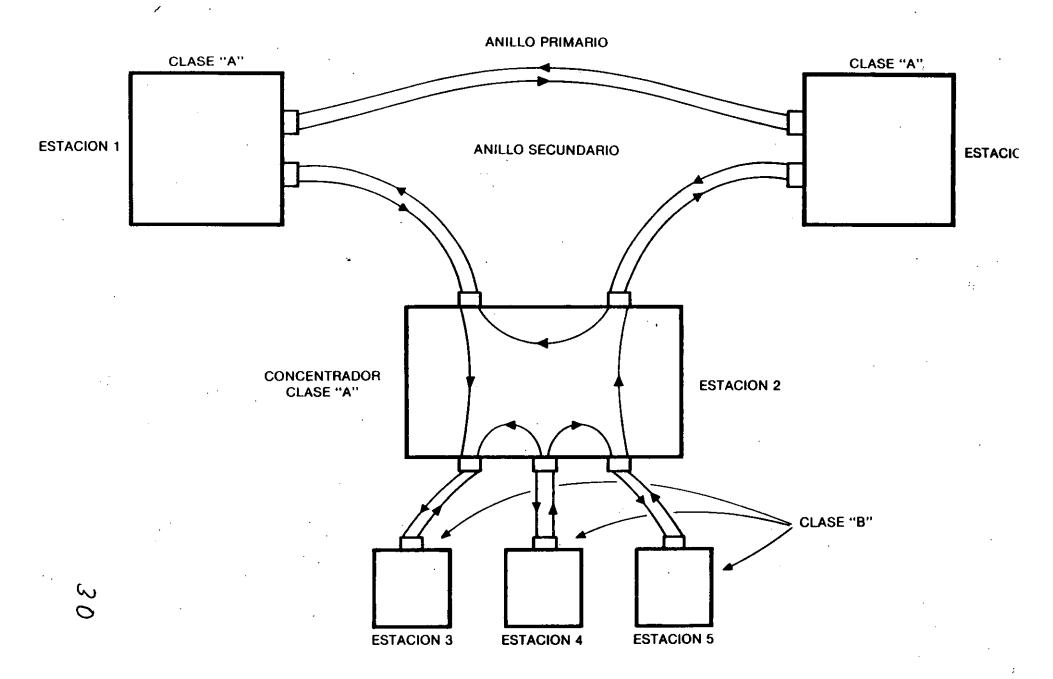

CONCENTRADORES PUEDEN

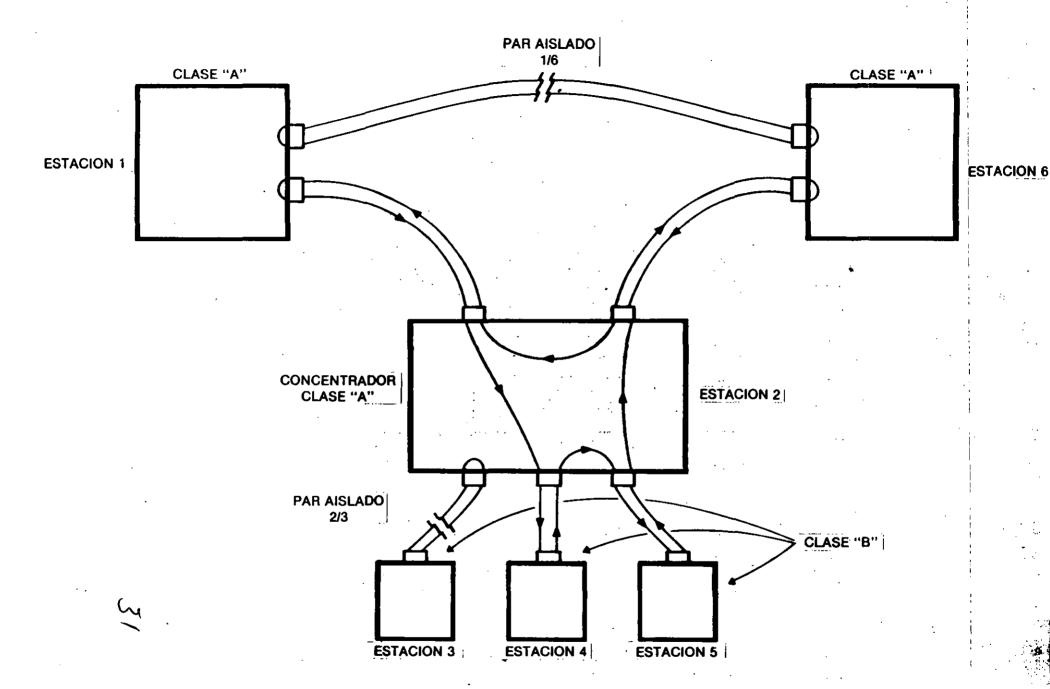
SER CONECTADOS


EN CASCADA.

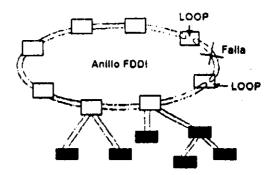
EJEMPLO DE ANILLO FDDI



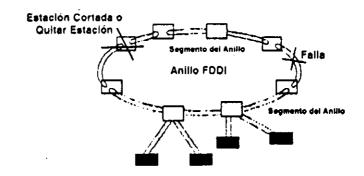

RED ANILLO DE BANDA ANCHA CON FIBRA OPTICA


FALLA DE NODO EN LA RED ANILLO

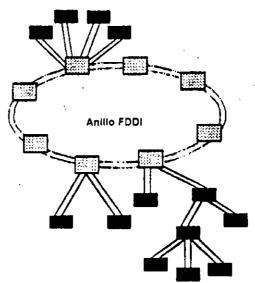
FALLA DE CABLE OPTICO EN LA RED ANILLO



TOPOLOGIA ANILLO FDDI



ANILLO FDDI RECONFIGURADO


UNA FALLA

FALLAS MULTIPLES

ESTACION/CONCENTRADOR

Doble Firms

Firma Sancilla

TOKEN-PASSING OFRECE UNA TRANSMISION DE DATOS MAS EFICIENTE, QUE CONFORME AUMENTA EL TRAFICO SE REQUIERE UN MAYOR ANCHO DE BANDA. TRT) 85%

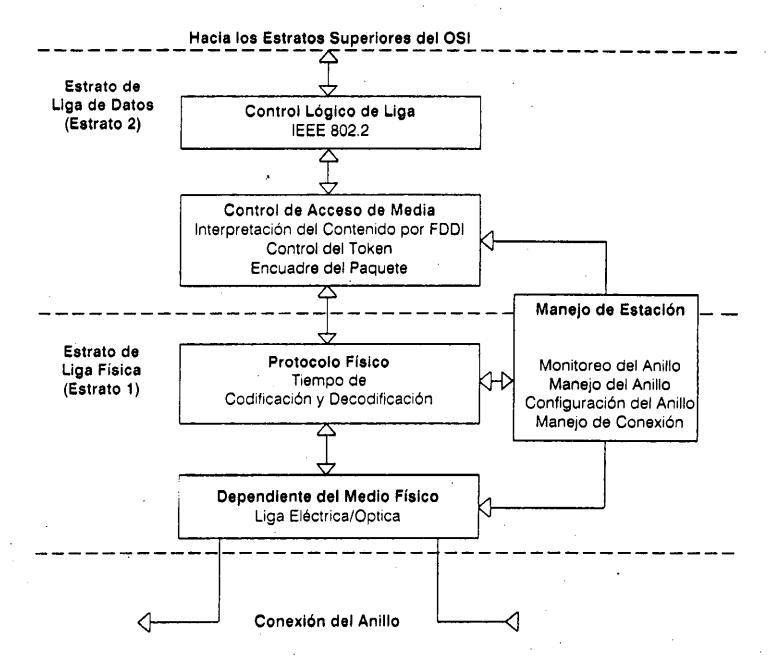
CSMA/CD RESULTA MAS EFICIENTE CUANDO SE UTILIZA UN MENOR ANCHO DE BANDA.

FDDI EMPLEA UNA CODIFICACION 4B/5B. TASAS DE TRANSMISION A 100 Mb/S - 125 MHz. 80% DE EFICIENCIA EN EL ANCHO DE BANDA.

ETHERNETYTOKEN-RING EMPLEAN UNA CODIFICACION MANCHESTER

TASA

DE TRANSMISION -


ETHERNET:

10 Mb/S - 20 MHz

TOKEN-RING: 16 Mb/S - 32 MHz

50% DE EFICIENCIA EN EL ANCHO DE BANDA

LOS ESTRATOS DE FDDI

FDDI: VS. TOKEN-RING 16Mb/S:

RELOJ DISTRIBUIDO Y RECUPERACION DE

ERRORES.

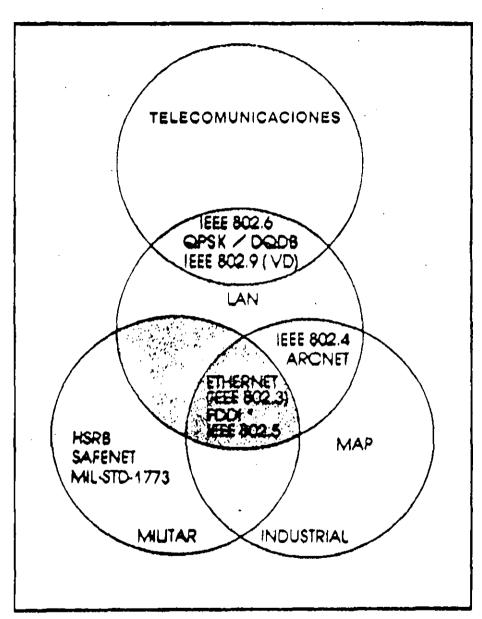
MONITOR ACTIVO.

DOBLE ANILLO.

ANILLO SENCILLO.

ROTACION DEL "TOKEN ".

SISTEMA DE RESERACION POR


PRIORIDAD.

USO DE FIBRA OPTICA

USO DE PAR TORCIDO / FIBRA

OPTICA.

FDDI-2 = VOZ, DATOS, VIDEO (TDM)

ESTANDARES DE RED QUE EMPLEAN FIBRA OPTICA POR APLICACION

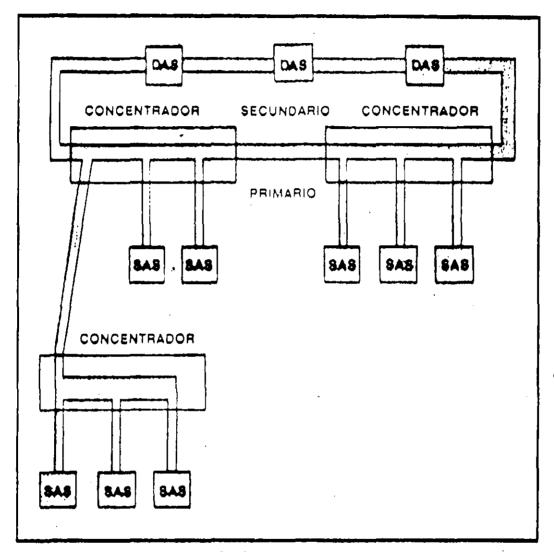
TABLA 1 PROPIEDADES vs VENTAJAS DE LOS SISTEMAS POR FIBRA OPTICA

	COSTO DECRECIENTE			INCREMENTO EN LA SEGURIDAD		DISEÑO SIMPLE		CALIDAD DE INFORMACION		
	EOURPO UNICIAL	DISTALACION DISCARL	MANTENMENTO	POSIBILIDAD DE EXPAISION	PERSONAL	EQUIPOS.	SISTEMA DE COMUNICACIONES	PLANTA	ESTABILIDAD SEGUR	-0A0
1. PROPIEDADES	•		4		•		•		•	•
ELECTROMAGNETICAS							•			
-INMUNIDAD A RUIDO						4				
ELECTROMAGNETICO							•		•	
-NO EXISTE RADIACION						t				
ELECTROMAGNETICA							•	•	•	•
NO CONDUCE ELECTRICIDAD		•	•		•	•		•		
NO EXISTE PROBLEMA DE "TIERRA										
DE REFERENCIA		_	•		•	•	•	•		
NO GENERA CHISPA		•	•				-	•		
2 CARACTERISTICAS FISICAS										
ESPACIO REDUCIDO MUY LIGERA		•						•		
-CONVIVENCIA CON CABLES		•						•		
DE ENERGIA		•	•					•		
-CONVIVENCIA CON										
LICHIDOS EXPLOSIVOS		•	•		•		•	•		
3. CAPACIDAD Y FUNCIONAMIENTO										,
ATEMUACION INDEPENDIENTE A LA TASA										•
DE MODULACION			•	•			•	•		
CAPASIDAD ALTA DE TRANSMISION DE										
INFORMACION	•			•			•	•		
-SE PUEDE UTILIZAR COMO MEDIO										
DE COMUNICACION Y SENSOR			•				•	•		
-UTILIZA UN ESPECTRO DE FRECUENCIA										
REDUCIDO					•		•	_		
-NO EXISTE DISFONIA							•			

TABLA 2 TIPOS DE FIBRAS OPTICAS PARA TELECOMUNICACIONES

NUCLEO NUCLEO / REVESTIMIENTO (MICRAS)

UNIMODO ESTANDAR (VIDRIO) 9/125


MULTIMODO ESTANDAR (VIDRIO) 50/125
62.5/125
85/125
100/140

GRUESO (PLASTICO) 200/250

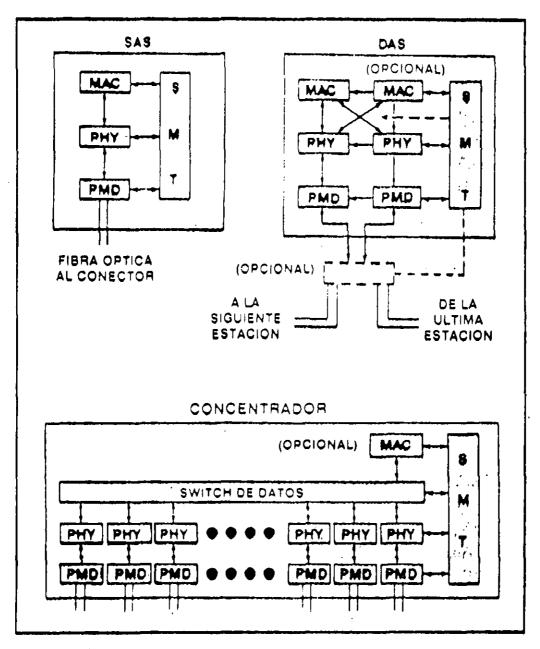
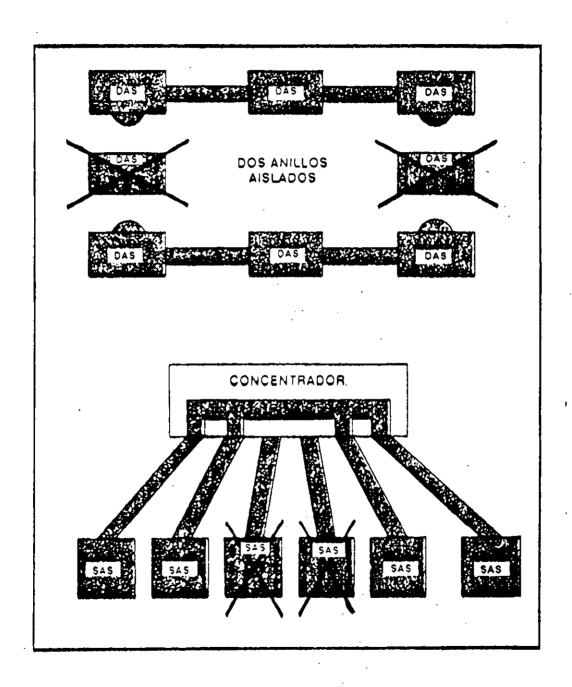
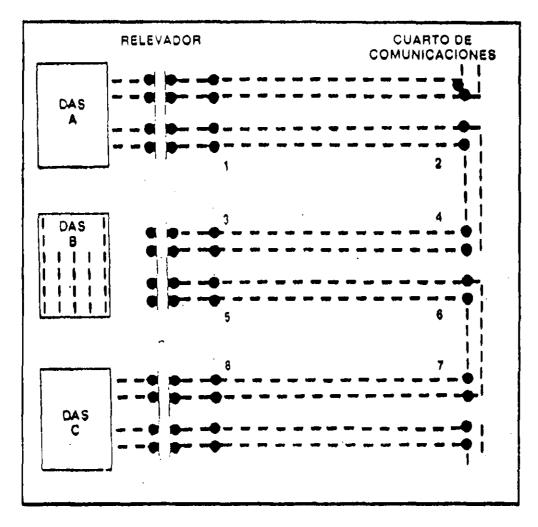
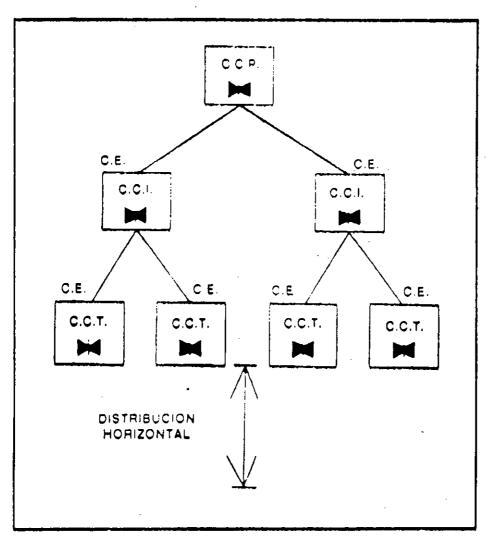

1000/1040

TABLA 3 CARACTERISTICAS DE LOS COMPONENTES DE LA RED CON FIBRAS OPTICAS

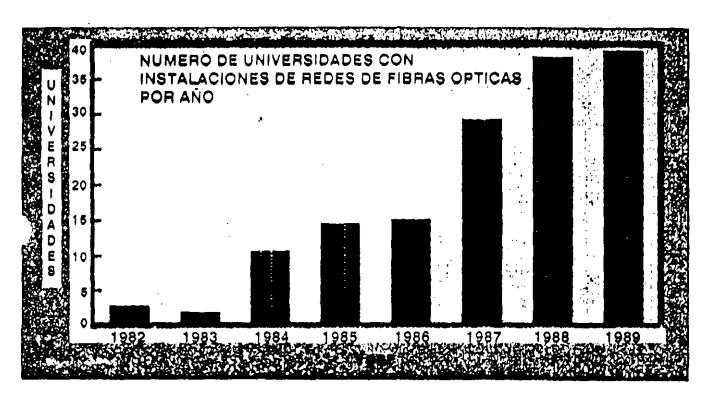

FUE	NIES	DETE	CTORES	FIBRAS		
LED LASER		PIN	APD	NUCLEO GRUESO	NUCLEO DELGADO	
COSTO REDUCIDO	MAYOR ANCHO DE BANDA	COSTO REDUCIDO	MEJOR SENSIBILIDAD DEL DETECTOR	FACIL DE EMPALMAR Y CONECTORIZAR	MAYOR ANCHO DE BANDA	
ACOPLAMIENTO SENCILLO	MAYOR ACOPLAMIENTO DE POTENCIA	ACOPLAMIENTO SENCILLO				
MAYOR TIEMPO DE VIDA		MAYOR ESTABILIDAD	,			
MAYOR ESTABILIDAD				•	\	



TOPOLOGIA FDDI



TIPOS DE ESTACIONES PARA FDDI

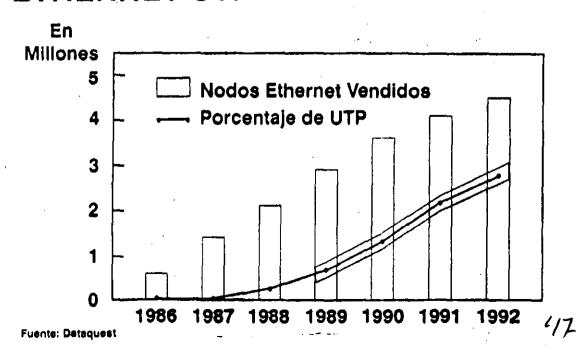


USO DE LA DERIVACION OPTICA CON "DAS" EN LA ESTRUCTURA DE CABLEADO

ESTANDAR AMERICANO PARA CABLEADO DE EDIFICIOS

EMPLEO EN LAS UNIVERSIDADES DE REDES DE FIBRA OPTICA PARA TRANSMISION DE DATOS

CABLEADO TIPO TELEFONICO PARA LANS


(UNSHIELDED TWISTED PAIR, UTP) A 10 MB/SEG

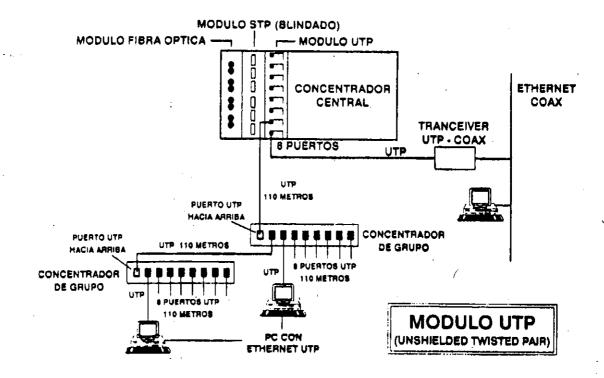
INVENTADO POR SYNOPTICS EN XEROX PALO ALTO RESEARCH 1985

RAPIDA POPULARIDAD DEBIDO A QUE:

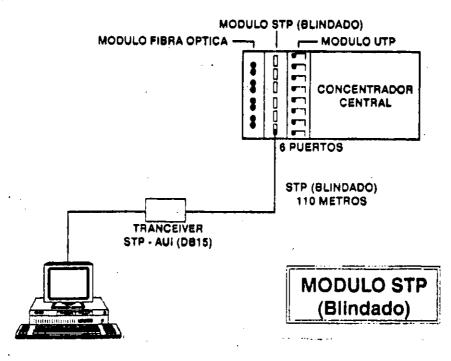
FACILITA CONEXION DE LA RED
FACILITA ADMINISTRACION DE LA RED
AISLA LA DETECCION DE FALLAS
FACILITA EL MANTENIMIENTO DE REDES

DESARROLLO DE REDES ETHERNET UTP

LA TECNOLOGIA UTP RESPONDE LAS SIGUIENTES PREGUNTAS:

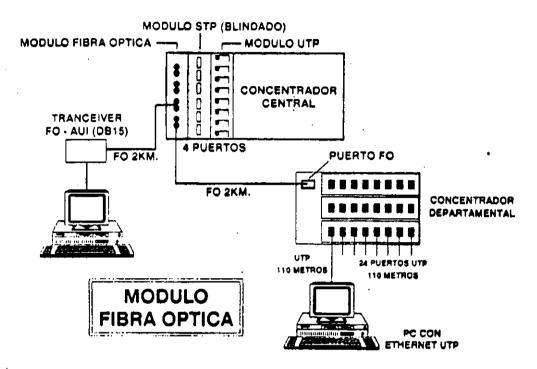

- ¿ QUE TAN CONFIABLES SON LAS REDES ACTUALES?
- ¿ EN CUANTO TIEMPO SE REESTABLECE UNA RED CAIDA?
- ¿ QUE TANTA FLEXIBILIDAD SE TIENE EN ADICIONES Y MODIFICACIONES DE RED?
- ¿ CUANTOS DIFERENTES EQUIPOS, PROTOCOLOS Y APLICACIONES TENDRA LA RED EN LOS SIGUIENTES AÑOS ?
- ¿ COMO SE MANTIENE UN SEGUIMIENTO DE LA OPERACION DE LOS EQUIPOS CONECTADOS EN RED ?

LA RED COMO UTILERIA


LA TECNOLOGIA UTP OFRECE

- MANEJO COMO SISTEMA ABIERTO MEDIANTE EL USO DE ESTANDARES
- GRAN CAPACIDAD DE ADAPTACION AL CAMBIO MEDIANTE SU MODULARIDAD Y FLEXIBILIDAD
- MINIMIZAR EL TIEMPO DE CAIDAS DE RED MEDIANTE MONITOREO DE OPERACION Y CONTROL ADMINISTRATIVO
- RECUPERACION RAPIDA DE CATASTROFES MEDIANTE REDUNDANCIA Y PRE-DIAGNOSTICOS
- BASE DE CRECIMIENTO EFICIENTE MEDIANTE UNA PLATAFORMA EXPANDIBLE DE HARDWARE CUMPLIENDO CON ESTANDARES ESTABLECIDOS

TECNOLOGIA UTP LATTISNET SYNOPTICS



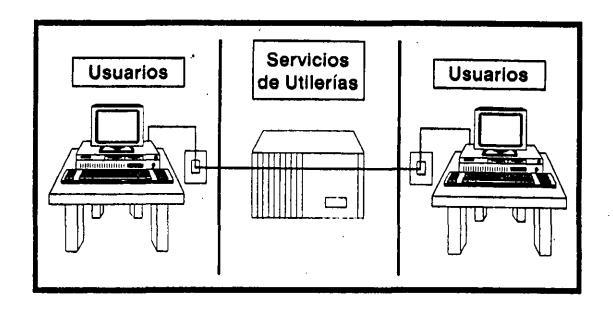
TECNOLOGIA UTP LATTISNET SYNOPTICS

50

TECNOLOGIA UTP LATTISNET SYNOPTICS

PRINCIPALES VENTAJAS DEL CABLEADO TELEFONICO

SEGURIDAD


FLEXIBILIDAD

MODULARIDAD

ADMINISTRACION

5/

EL CONCEPTO DE RED COMO SERVICIOS DE UTILERIAS

M.

52

ESTANDARES Y TENDENCIAS DE LAS

COMUNICACIONES EN EL MARCO DE

LA IEEE

Ing. Gerardo Chávez Díaz

IEEE Sección México.

NATURALEZA Y CARACTERISTICAS DE LOS ESTANDARES IEEE

- Los estándares benefician a los usuarios de comunicaciones y computación.
- Requieren de gran compromiso por los fabricantes de tecnología.
- Competencia en el mercado basada en la calidad y servicios de valor agregado, más que en "Monopolios Tecnológicos".
- Permiten conciliar los intereses <u>particulares</u> en beneficios <u>universales</u> para la coexistencia de antiguas y nuevas tecnologías en el mercado de comunicaciones y computación.

ORGANIZACIONES QUE RIGEN ESTANDARES A NIVEL INTERNACIONAL

- ANSI (EUA)
- AFNOR (Francia)
- BSI (Reino Unido)
- CSA (Canadá)
- ECMA (Europa)
- EIA (EUA)
- IEEE (EUA)
- ISO (Internacional)
- CCITT (Internacional)
- NCS (EUA)
- NIST (EUA)
- DOD (EUA)

CARACTERISTICAS DEL IEEE

- Fundada en 1884
- La más grande organización de profesionales en ingeniería a nivel mundial.
- Gran impacto en el mercado por los trabajos de estandarización en redes locales (LAN's).
- Adicionalmente incluyen estándares en componentes electrónicos, conectores de comunicaciones y otros dispositivos afines.
- Los estándares IEEE están basados en el modelo OSI desarollado originalmente por el CCITT y adoptado por la ISO.

Data Link Layer

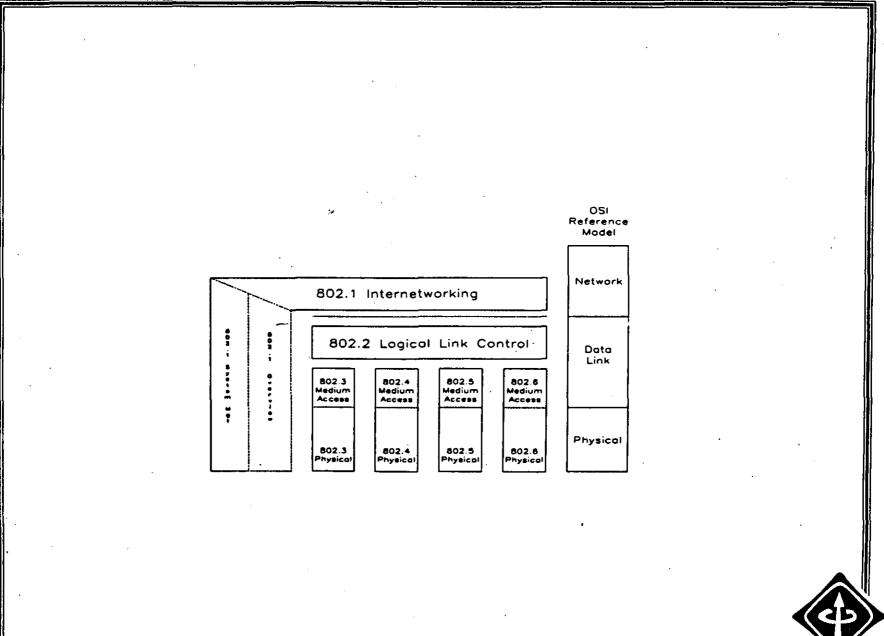
MAC

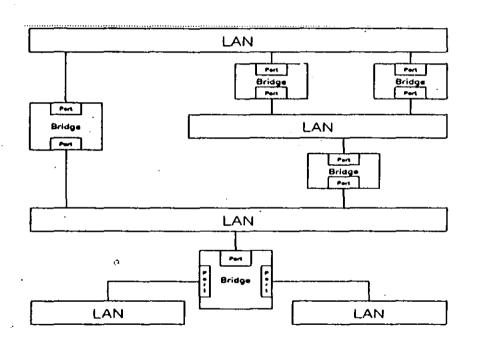
Physical Layer

Medium

CARACTERISTICAS DEL COMITE IEEE 802

- Ofrecer estándares operativos para la comunicación de las Redes Locales (LAN's) y Metropolitanas (MAN's).
- Están orientados a la capa física y de enlace definidos por el modelo OSI.
- Familia de estándares IEEE 802.X:
 - 802. 1- Relación de los estándares IEEE y su interacción con el modelo OSI de la ISO; interconectividad y administración de Redes.
 - 802. 2- Control lógico del enlace (LLC).
 - 802. 3- Red de topología "BUS" con el método de acceso (CSMA/CD) (1975-1983, Primera edición 1985).


802. 4- Red de topología "BUS" con el método de acceso TOKEN PASSING (1983, Primera edición 1985).


802. 5- Red de topología "ANILLO" con el método de acceso TOKEN PASSING (1969, Primera edición 1985).

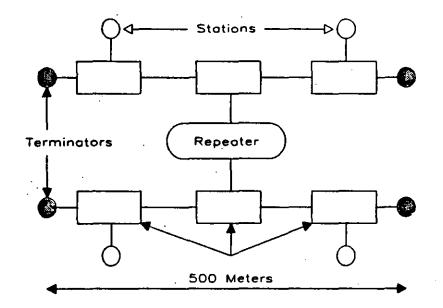
802. 6- Red de área metropolitana (MAN) basada en la topología DQDB (Nov. 1987, Primera edición 1987).

802.11- Redes inalámbricas (WIRE LESS-LAN's) (Estándar en proceso de definición-Julio 1994).

ANSI/IEEE 802.3 - CSMA/CD

- El estándar 802.3 adoptado en 1985 está basado en las especificaciones de la Versión Ethernet II.
- En 1988 se publicaron los siguientes complementos:

802.3a - 10 Base 2


803.3b - 10 Broad 36

803.3c - Repetidor Ethernet 10 Mbps

803.3e - 10 Base 5

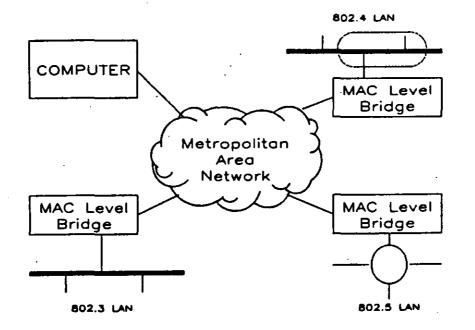
- En 1990: 10 Base T (Cable UTP Cat. 1,2,3).

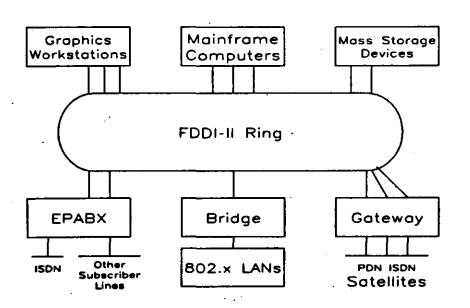
- En 1992: Fast Ethernet a 100 Mbps. Existen actualmente 2 propuestas en evaluación :
 - a). Eliminar el soporte a la capa MAC (100 Base -VG) control de tráfico vía "HUBS".
 Apoyado por : HP, ATT, U-B, WELLFLEET, PROTEON, COMITE IEEE 802.12 (Cable UTP categoría 5, 4 pares).
 - b). Manejar el soporte a la capa MAC/CSMA/CD.
 -Aumento de velocidad de 10 100 Mbps basado en el esquema de capa física de la ANSI/FDDI.
 -Apoyado por: GRAND JUNCTION NETWORKS,
 - SYNOPTICS, 3 COM, SUN MICROSYSTEMS, entre otros, COMITE IEEE 802.14 (Cable UTP, categoría 3,2 pares).

ESTANDARES PARA REDES METROPOLITANAS (MAN's)

- IEEE 802.6

Basado en topología DQDB Desarrollado originalmente por TELECOM Australia 1987, velocidad de transmisión = 300 Mbps (150 Mbps por cada BUS).


- ANSI X 3T9.5 - FDDI


Doble anillo bajo el método TOKEN PASSING a 100 Mbps

basado en el estándar IEEE 802.5

- FDDI - II

Transmisión en el tiempo real de voz digitalizada y video de "Barrido Rápido".

IEEE 802.11 - REDES INALAMBRICAS

- Por definir frecuencias de operación, velocidad de transmisión y máximo alcance.
- Seguridad en la transmisión. Datos encriptados.
- Interferencia de señal. Administración del espectro de frecuencias.
- Transparencia. Comunicación con los protocolos estándarizados vía "Puentes".
- Liberación del estándar en Julio 1994.

CONCLUSIONES

- Los estándares de Redes Ethernet y Token Ring predominarán en el mercado.
- Mayor énfasis en la comunicación de Redes MAN's y WAN's en los próximos años.
- Compatibilidad y transparencia de esquemas locales de alta velocidad (FDDI CDDI), con Redes WAN's basadas en FRAME RELAY, ATM y SDH.
- Desarrollo de Redes WAN's, bajo el concepto de comunicaciones personales móviles e inalámbricas.

Table 2-1 (continued) OSI Intra-Layer Standards

Layer	Standand Name	Number
Presentation	Connection-Oriented Presentation Protocol	ISO 8823
	Connectionless Protocol	ISO 9576
Session	Connection-Oriented Session Protocol	ISO 8327
	Connectionless Protocol	ISO 9548
Transport	Connection-Oriented Transport Protocol	ISO 8073
	Connectionless Protocol	ISO 8602
Network ^	Connectionless Protocol	ISO 8473
	X.25	ISO 8208
	End System to Intermediate System	ISO 9542
	Exchange Protocol Proposal on how to Use ISDN in OSI	130 9342
	and OSI in ISDN	ISO 9574
Data Link	Logical Link Control	IEEE 802.2
	Logical Luiz Condoi	ISO 8802/2
	Media Access Control	
	CSMA/CD	IEEE 802.3 ,
		ISO 8802/3
	Token Bus	IEEE 802.4
		ISO 8802/4
	Token Ring	IEEE 802.5,
		ISO 8802/5
	Fiber Distributed Data Interface	ISO 9314
Physical	CSMA/CD	IEEE 802.3,
	· ·	ISO 8802/3
	Token Bus	IEEE 802.4
	m 1 n'	ISO 8802/4
	Token Ring	IEEE 802.5
	File of District and Data Landon	ISO 8802/5
	Fiber Distributed Data Interface	ISO 9314 ISO 8802/7
	Slotted Ring	
OSI Model-Related	Application Layer Structure Procedures for OSI Registration	ISO 9545
	Authorities	ISO 9834
	Security Architecture	ISO 7498-2
	Naming and Addressing	ISO 7498-3
	Management Framework	ISO 7498-4

Table 2-1
OSI Intra-Layer Standards

Layer	Standand Name	Number
Application	Office Document Architecture (ODA)	ISO 8613
	File Transfer, Access, and Management	
	(FTAM)	ISO 8571
	Virtual Terminal	ISO 9040
	Network Management	ISO 9595/96
	Manufacturing Message Specification	ISO 9506
	Distributed Transaction Processing	ISO 10026
	Document Filing and Retrieval	ISC 18N 1264/5
	Remote Database Access Protocol	ISO 9576
	Job Transfer & Manipulation	ISO 8832/33
	Document Transfer, Access, and	
	Manipulation Protocol	CCITT T.431/433
	The Directory	CCITT X.500,
	,	ISO 9594
	Message Handling Service	CCITT X.400,
		ISO 10020/21
	Common Service Elements	
	Association Control Service Elements	1
	(ACSE)	ISO 8649/50
	Reliable Transfer Service Elements	130 00+7/30
		100 006
	(RTSE)	ISO 9066
	Remote Operations Service Elements	
	(ROSE)	ISO 9072

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS
TELECOMUNICACIONES VIA FIBRAS OPTICAS

CABLES DE FIBRAS OPTICAS, MEDICIONES E INSTALACIONES

M.C. RAUL UGALDE M.

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285 Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

5.1. - INTRODUCCION

1

Los sistemas de comunicación por fibras ópticas ofrecen grandes ventajas debido a su gran ligereza, alta capacidad de transmisión e inmunidad a la interferencia electromagnética, lo que per mite operar bajo condiciones en las cuales los cables metálicos presentan grandes problemas de ruido, diafonía y saturación de los ductos disponibles para las líneas.

La tecnología de fibras ópticas meneja actualmente en forma comercial fibras multimodales de índice gradual que trabajan con una longitud de onda de emisión de 0.85µm, presentando una atenuación de 2 a 3 dB/Km, aunque su tendencia es operar con fibras multimodales (de índice gradual) y monomodales (de índice escalonado) que operen en el rango de 1.3 a 1.6µm; en este caso para las fibras multimodales a 1.3 um se tiene una atenuación de 0.7 a 1.2 dB/Km con un ancho de banda de 800 a 1300 MHz .Km. Para las fibras monomodo se maneja un rango de atenuación de 0.5 a 0.8 dB/Km, y de 0.2 a 0.3 dB/Km, para las longitudes de onda de 1.3 y 1.55 µm respectivamente, teniendo un ancho de banda de varias decenas de GHz.Km.

Dependiendo de la longitud de onda de operación también se definen los espacios entre repetidores ópticos; así, para 0.85µm se admite una separación máxima entre 10 y 12 Km, mientras que para 1.3 µm se pueden lograr distancias de 50 Km., y para 1.55 µm hasta de 100 Km. (1).

Existen dos fenémenos interrelacionados con las curvaturas del eje de la fibra que producen perturbaciones en la propagación de la potencia óptica, y con ello, trayec torias de radiación a su paso por dichos defectos: Ellos son el radio de curvatura o curvatura continua, y las microcurvaturas o microdesviaciones.

En el caso del radio de curvatura, este se presenta como consecuencia de esfuerzos de compresión sobre la fibra óptica, produciendo un decrecimiento exponencial de la potencia óptica de acuerdo a la siguiente ecuación: (2)

$$\frac{\Delta P_1}{P_1} = \frac{Ae^{-(-SR)}}{R}$$
 (5.-1)

Donde,

A= constante que depende del tipo de fibra óptica empleada P.=potencia óptica

β =constante de propagación del modo

El valor máximo del radio de curvatura oscila entre 50 y . 60 mm. Por su parte, las microcurvaturas se deben a esfuerzos de elongación cuando la fibra se encuentra apoya da sobre una superficie rugosa; esto genera un acoplamiento de potencia entre los modos guiados a modos de ra diación, produciendo una cierta pérdida en función de la distancia. Para una fibra óptica deíndice gradual, se debe trabajar con un rango menor a 100 defectos por metro, de manera que las pérdidas no afecten al sistema de comunicación.

De esta forma, el eje óptico de la fibra sigue una curva periódica cuyo radio de microcurvatura depende de la pre-

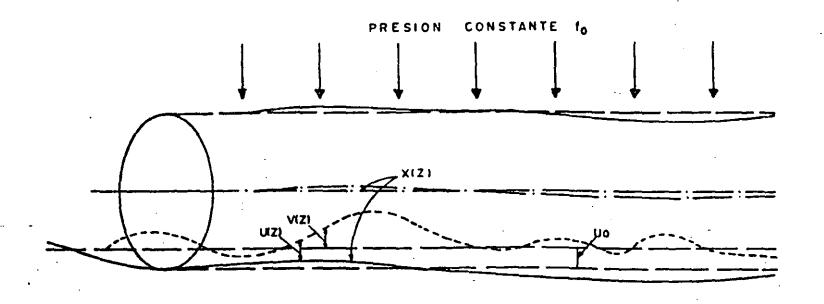


FIGURA 5.-1.- FIBRA PRESIONADA CONTRA
UNA SUPERFICIE RUGOSA

Û

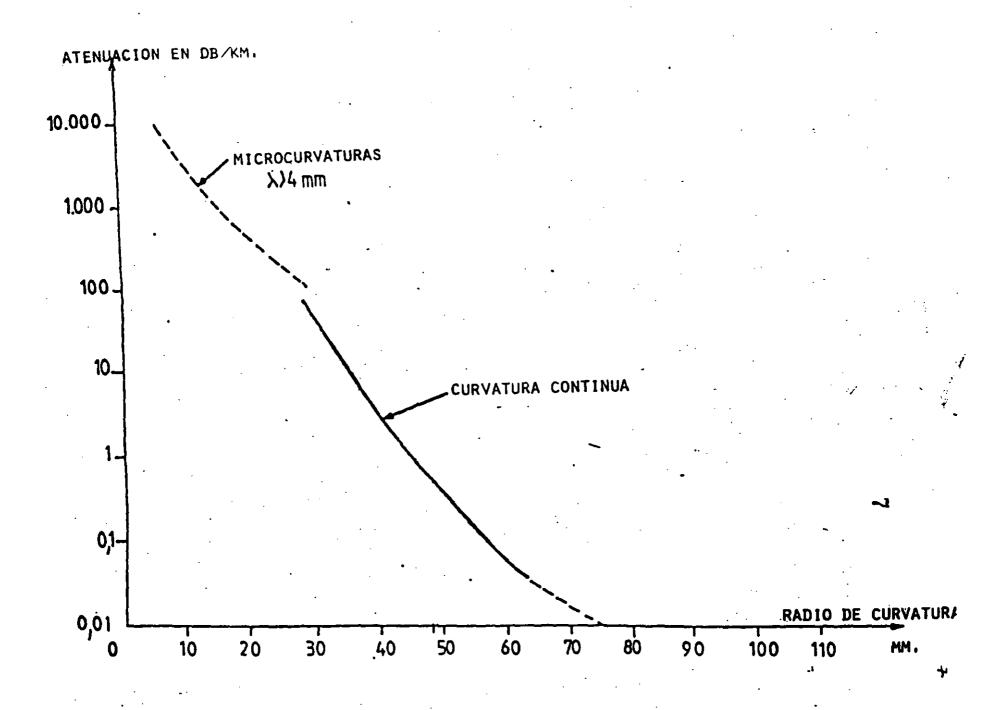


FIGURA 5 -2 - ATENUACION E' EXCESO EN FUNCION DEL RADIO DE CURVATURA

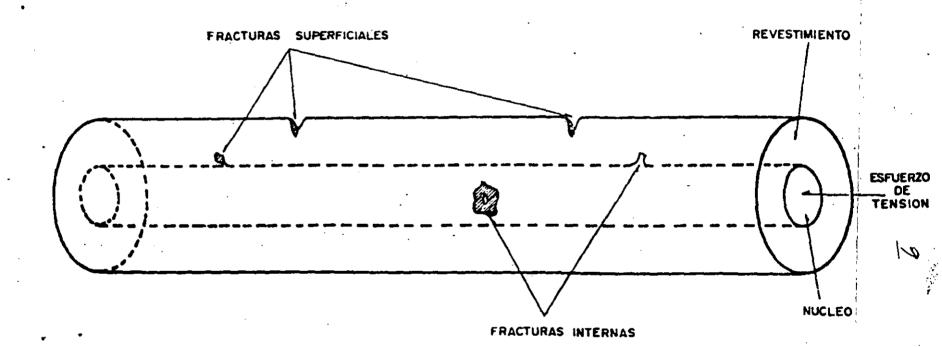


FIGURA 5.-3.- MICROFRACTURAS EN LA FIBRA OPTICA

de fibra bajo prueba, a través de la variación de la pendiente de fractura (m) en forma positiva.

Otro factor importante que influye en el fenómeno de envejecimiento es el conocido como fatiga estática, el cual
es una consecuencia de la presencia de microfracturas en
la fibra, de manera que ante variaciones de temperatura
y humedad, y combinando ciertos valores de tensión aplica
da al cable (tensión de trabajo) y resistencia inicial a
la tensión de la fibra óptica, la fatiga estática produci
rá un rápido envejecimiento de la fibra con un período de
vida de unos pocos días; es por esto que se debe tener
sumo cuidado durante los procesos de fabricación e instalación, aprovisionando a la fibra de las protecciones
plásticas y metálicas correspondientes, de forma que el
tiempo de vida útil del cable resulte lo más grande posible, ante la influencia del medio ambiente.

5.-3 ESTRUCTURA DEL CABLE OPTICO

En la actualidad existen una gran variedad de estructuras de cable óptico fabricadas y distribuídas dentro del mercado mundial, todas ellas tendientes a satisfacer los requerimientos de sus aplicaciones, y principalmente buscando una reducción de las pérdidas ocasionadas por curvaturas o microcurvaturas en la fibra óptica, debido a las condiciones de operación de la misma.

Para ello se deben analizar los problemas de compatibilidad de coeficientes de expansión térmica y módulos de elasticidad de los materiales que componen al cable óptico, su resistencia mecánica (resistencia a la tracción Rr, y compresión Re) y el tratamiento de los materiales plásticos (extrusión, maquinado, etc.)

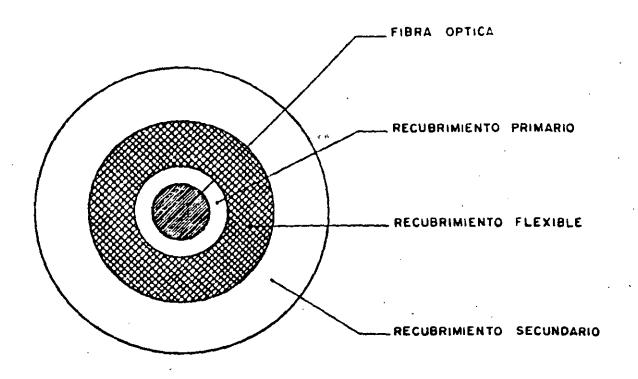


FIGURA 5.-5.- FIBRA OPTICA DE TRES CAPAS

15

CUBIERTA EXTERNA

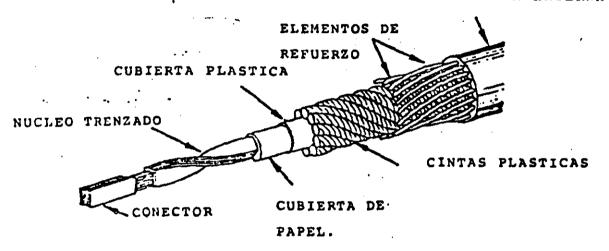
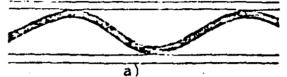
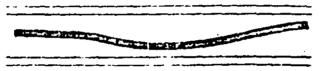




FIG. 5.-6 Cable Optico que contiene 144 fibras

Fibra óptica en el tubo después del cableado

b)

Decremento de la longitud en exceso por esfuerzos sobre el tubo durante la tensión.

c)

Incremento de la longitud en exceso por encogimiento del tubo durante enfriamiento

Fig. 5.-7 Fibras ópticas en estructuras de tubos libres.

hélice de la fibra, generando las pérdidas por doblamientos periódicos. Este efecto produce además una disminución de la ventana hacia la contracción.

Cuando se trata de estructuras libres trenzadas, la ventana de elongación/contracción se determina por medio del espacio libre de la fibra óptica en el tubo (w), la longitud de la hélice del trenzado (L), y el diámetro del círculo (D) (3) (ver fig. 5.-9).

El margen de elongación inducido por el trenzado es mayor que en caso de estructuras libres sin trenzar (de 0.3 a 0.8%). De esta forma, cuando el cable trenzado es sometido a tensión, la fibra óptica se mueve lateralmente hacia el centro del núcleo del cable; mientras permanece en un cierto rango, la fibra óptica no sufre esfuerzos hasta que toca la pared interna dentro del tubo que está en contacto con el miembre central de refuerzo. (5)

Esta estructura de tubos puede ser seca o rellena; los enlaces - instalados han demostrado que la mayoría de las aplicaciones operan mejor rellenas, ya que además de actuar como una barrera contra la migración del agua al aplicarse tanto dentro como fuera - de los tubos, dicha gelatina le sirve como amortiguador a la fibra, a fin de evitar el rozamiento de la misma con las paredes - del tubo que la contiene.

b) Estructura de cintas con fibras libres

La estructura consta de una cinta con 5 alveolos en forma hexagonal, con un círculo inscrito de $450\mu m$ de diâmetro. (3)

tico y enrolladas en una espiral. Dicha estructura tiene ventajas sobre la afectibilidad de los esfuerzos mecánicos, comparativamente con las estructuras de cintas densas (ver fig. 5.-10)

c) Estructura cilindrica ranurada

El elemento de cable se forma por un cilindro ranurado en "V" (ver fig. 5.-11) de diametro (D) en el que se alojan l'ibremente las fibras ópticas de diámetro exterior (de) (recubrimiento primario) con lo que se les permite un margen de elongación; las ranuras se disponen en espiral con una profundidad (h), y un paso helicoidal (P) continuo o alternado, lo que permite, por una parte, mayor holgura a las fibras ópticas liberándolas de esfuerzos mecánicos dentro de un cierto rango de elongación/contrac ción, y por otro, debido a que el cable puede someterse a condiciones de elongación prolongadas, se requiere agre gar una longitud adicional de fibra óptica bucleada en las ranuras a fin de aumentar el rango de trabajo. El cilindro ranurado se refuerza por un miembro central de diámetro (Dp), logrando un mejor comportamiento térmico y mecánico del cable. (Rr, Re, porcentaje de elongación A%, coeficiente de expansión térmoia a). (7)

Los parámetros más importantes de esta estructura son:

1) La diferencia de longitud entre el paso de la fibra óptica en el fondo de la ranura, con respecto al borde de la ranura (cc):

$$\varepsilon c = \frac{2\pi^2 (D-h) (h-de)}{P^2 + \pi^2 (D-de)^2}$$
 (5.-5)

2) El radio de curvatura continuo (Rc), determinado por

23

la hélice del cilindro: (3)

$$Rc = \frac{(D-de)}{2} \left(1 + \frac{p^2}{\pi^2 (D-de)^2}\right)$$
 (5.-6)

3) Si al radio de curvatura continuo (Rc) se le agrega el radio períodico de la hélice (µ) cuando se tiene holgura de la fibra en la cavidad, se establece el margen de elongación (3) (£s):

$$\varepsilon s = \frac{h - de}{8Rs} \tag{5.-7}$$

Donde Rs es el radio mínimo de curvatura autorizado.

4) El margen de elongación teórica se expresa como:

$$\varepsilon t = \frac{\varepsilon C}{2} + \varepsilon s \tag{5.-8}$$

5) La combinación de la curvatura continua (Rc) y la curvatura periódica (µ), induce un esfuerzo de curvatura estático (σa) que debe exceder a un valor (σal), el cual se determina por: (7)

$$\sigma a = \operatorname{Edf} \left[\frac{1}{h - \operatorname{de}} \left(\frac{1}{1 + \frac{p^2}{\pi^2 (D - \operatorname{de})^2}} \right) + \frac{4\varepsilon s}{h - \operatorname{de}} \right]$$
 (5.-9)

Siendo Edf el módulo de elasticidad de la fibra óptica.

De esto se concluye que el paso de la hélice (P), su profundidad (h) y las curvaturas debidas al cable (Rs), son factores importantes en el cálculo del margen de elongación de la fibra, y de la calidad de la transmisión.

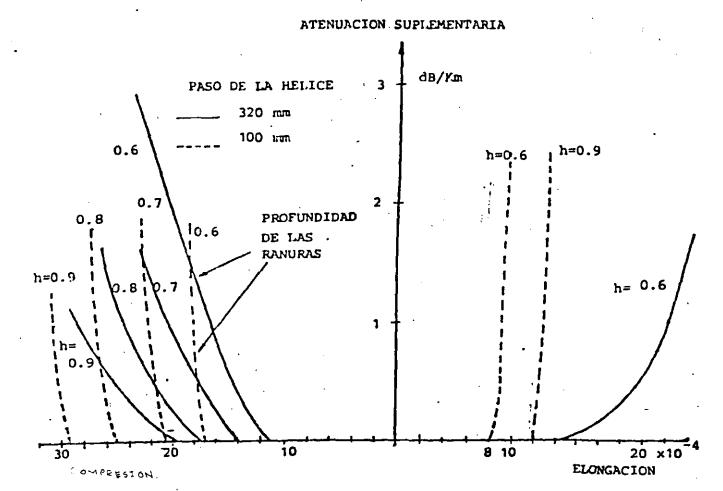


Fig. 5.-12 Atenuación del cable en función de la elongación y compresión para diferentes valores de h.

Por su parte, la cubierta del cable óptico permite disminuir los esfuerzos de tensión y compresión que actuan sobre los módulos de fibras ópticas, y ofrecen una adecuada protección contra la humedad; dichas cubiertas pueden ser de aluminio + polietileno de alta densidad (HDPE), acero + polietileno, aluminio corrugado + polietileno, compuestos reforzados de plás tico y vidrio (FRP), entre otros; de ellos, la combinación más usual resulta de aluminio + HDPE.

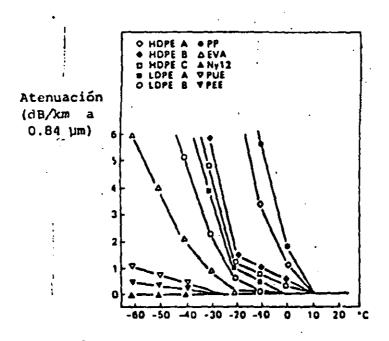
Las estructuras antes mencionadas son las más comunes en el mercado mundial, presentando algunas, más ventajas que otras, por lo que es importante considerar su afectabilidad en la calidad de la transmisión, especialmente en el caso de estructuras sometidas a condiciones críticas de esfuerzo como es el caso del cable aéreo y submarino; dichas consideraciones se ana lizan a continuación.

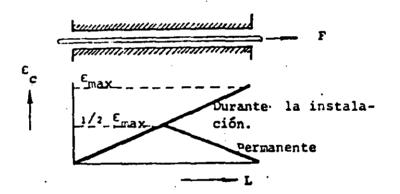
5.-4 CALIDAD DEL CABLE OPTICO

La calidad del cable óptico depende de diversos factores como son el tipo de materiales utilizados, el número de etapas, y su proceso de fabricación; por ello, la calidad del cable pue de evaluarse en función de su comportamiento óptico, térmico y mecánico.

a) Calidad de la transmisión óptica

Para la evaluación del cable bajo transmisión se compara la atenuación de la fibra óptica antes y después del proceso de cableado; en dicho análisis se pueden tener dos casos: la variación en la atenuación para un cable de estructura densa y para un cable de estructuras libres. En el primero, los resultados indican que existe un incremen




Fig.5.-15 Atenuación adicional de las fibras de tres capas a bajas temperaturas.

El cable unido a mensajero tiene la ventaja de permitir un adecuado tensionado del cable óptico de acuerdo a las condiciones de carga o de "deslizamiento", y a las deformaciones plásticas, ambas del orden de 0.1% (ver fig. 5.-17). El problema más importante es asegurar la igualdad de elongaciones para el cable mensajero y el cable óptico a fin de evitar tensiones excesivas o concentradas en los puntos de amarre, lo que implica que para líneas en operación se diseñe el cable a la medida. Otro aspecto a tomar en cuenta es la incidencia de descargas atmosféricas sobre el cable lo que puede dañar al cable óptico si no posee un amarre dieléctrico seccional, o si la protección del cable óptico no es adecuada.

El cable autosoportado presenta el problema de agregarse a los cables de la línea instalados, lo que puede causar sobrecargas mecánicas en algunos tramos sobre las torres; sin embargo, se ha desarrollado un diseño de tipo dieléc trico que puede disminuir estos problemas, aunque para los claros que normalmente se requieren en las líneas de alta tensión no se han obtenido buenos resultados, sobretodo por los efectos de galopeo y vibraciones por influen cia del viento. (ver fig. 5.-17).

El diseño de cable interconstruído tiene la ventaja de poder cumplir las funciones de un cable de potencia (conductor de fase o cable de guarda) y las de un cable de telecomunicación, ya que el cable óptico se encuentra con tenido propiamente dentro del cable de potencia, y así evitar modificar las torres para la instalación de un cable adicional. Además, las características mecánicas del cable conductor y del elemento de refuerzo central permiten a las fibras ópticas cierta holgura en el margen de elongación; en forma experimental se han instalado algunos tramos de cable de guarda óptico, empleando estructuras de fibras libres en tubos y estructuras cilíndricas ranuradas;

Sin embargo, es importante mencionar que en casos en los que se cruce por áreas con alta inducción electromagnética, es recomendable o bien tomar las precauciones pertinentes para -- aterrizar adecuadamente el blindaje contra roedores, o susti-tuir dicha protección por un material de refuerzo dieléctrico a base de kevlar o fibra de vidrio con alguna resina, al igual -- que el elemento de refuerzo central.

Valores típicos: $F_{max} = 1000 \text{ N}$ $\epsilon_{max} = 0.2 \dots 0.4 \text{ }$

Fig. 5.-16 Deformación permanente para cables en ductos.

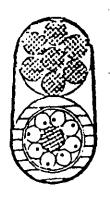
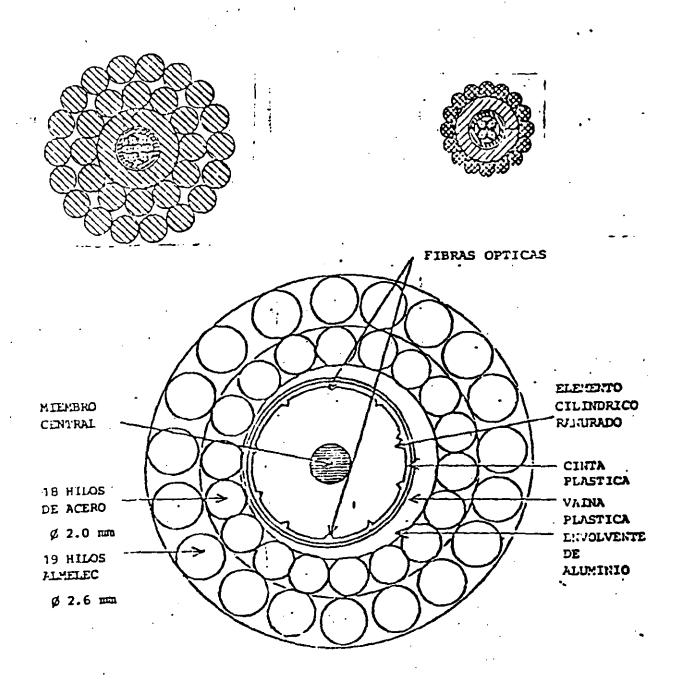



Fig. 5.-18 Cable Optico unido a mensajero

TITLETING ENTERIOR : 19.5 mm

rig. 5.-19 Cable Optico interconstruído en el cable

las estructuras de ambos calbes se muestran en las figuras 5.-18 y 5.-19.

La tendencia de dichos diseños es de que cumplan con las especificaciones propias de un cable conductor, ya sea de fase o de guarda, de manera que su instalación en las líneas ya existentes resulte inmediata.

c) <u>Instalación Submarina</u>

La aplicación de las fibras ópticas en cable submarino es una de las que se espera obtener mayores beneficios de comunicación; desde hace varios años se ha venido experimen-tando en países como Japón y Canadá los enlaces submarinos para la intercomunicación entre islas o con el continente. Sin embargo, en 1985 se pretende realizar la instalación -del primer cable submarino transcontinental que viajará de Estados Unidos hasta Francia e Inglaterra. Dicho cable deno minado TAT-8 entrará en operación para 1988 con un costo de inversión de 355 millones USD.; con el objeto de resistir las grandes presiones hidráulicas en el fondo del mar y los esfuerzos de tensión durante las maniobras de instalación se requiere una protección mecánica en la que el elemento prin . cipal de diseño es el tubo donde se contiene a las fibras ópticas. Dicho tubo debe soportar deformaciones de 0.5 a --0.7% y permitir la conducción de energía eléctrica a fin de telealimentar a los repetidores, proporcionando un canal de comunicación de emergencia. En la figura 5.-20 se resumen algunos de los criterios aplicados de acuerdo al tipo de estructuras disponibles para la selección del cable óptico a instalar.

5.6. - ESTADO ACTUAL Y TENDENCIAS DE DESARROLLO

En general, el mercado de cables ópticos está muy diversificado

- -

39

La variedad de estructuras disponibles para comunicación ha requerido al usuario la especificación de sus necesidades de aplicación; en general se puede decir que las estructuras densas se utilizan para aplicaciones con pocos requerimientos de esfuerzos sobre el cable, aunque para instalaciones subterráneas es recomendable proveer al diseño del cable de una protección metálica que evite la acción de roe dores, y de capas plásticas que lo aislen de la influencia de la humedad. Sin embargo, para condiciones de instalación subterránea crítica, o para instalaciones aereas, se recomienda el uso de estructuras de fibras ópticas libres, que permiten un margen de elongación para las fibras, antes de que aparezcan microcurvaturas sobre ella.

En este aspecto, es aconsejable que dicho margen de elongación sea mayor al 1%, a fin de que las fibras estén protegidas mecánicamente ante esfuerzos de elongación no mayores al 0.2%.

El tercer mercado disponible es de tipo potencial, y está orientado al desarrollo de fibras ópticas monomodales de índice escalonado, - con características de núcleo muy reducido $(7-9~\mu\text{m})$ y diámetro del revestimiento normalizado $(125\mu\text{m})$; dichas fibras tienen rangos de atenuación entre 0.2~y~0.3~dB/Km, dependiendo de la longitud de onda de emisión. Su aplicación actual es para enlaces experimentales de altas velocidades (cientos de Mb/s) y para medir diferentes fenómenos con alta resolución y rápida respuesta.

La fibra óptica unimodo está disponible en el mercado de manera comercial, habiendo tenido un crecimiento de demanda a partir de 1984, debido al desarrollo de dispositivos emisores y detectores para operar en rangos de 1300 a 1600 nm con alta calidad, así como de conectores, empalmadores de fusión controlados por microprocesador y OTDR adecuados para trabajar con las dimensiones tan reducidas del núcleo en dicha fibra. Esta ha provocado un descenso de los costos de la misma, resultando ahora más barata una fibra unimodo que la de tipo multimodo.

De lo anterior se puede concluir que la tendencia del mercado actual se inclina hacia el uso de cables ópticos con fibras unimodo, aunque para enlaces de redes locales se emplee la de tipo multimodo de indice escalonado o gradual; la diversificación en el uso de esta tecnología ha generado un abatimiento en los costos de producción, tanto de la fibra óptica como del cable mismo. Se busca pues, tener --

5.7 AVANCES TECNOLOGICOS EN FIBRAS OPTICAS 4/41

En este momento existen varios tipos de fibras ópticas disponibles en el mercado, con diversas características, de acuerdo a la aplicación; sin embargo, en un principio, las primeras fibras ópticas desarrolladas poseían un núcleo de algunas micras de diámetro, pudiendo transmitir luz en un modo de propagación. Debido a la dificultad de acoplamiento óptico en un núcleo reducido, lo que implicaba altas pérdidas, se buscó el desarrollo de fibras con núcleos de varias decenas de micras, a fin de poder soportar varios modos de propagación. Dichas fibras fueron utilizadas comercialmente en conjunto a fuentes semiconductoras laser de GaAlAs con longitudes de onda entre 800 y 900 nm (primera ventana). Posteriormente, la investigación ha demostrado que se pueden obtener más bajas atenuaciones y un mayor ancho de banda trabajando a 1300 nm (segunda ventana) a través de láseres de tipo InGaAsP.

Conforme el desarrollo de la óptica de acoplamiento y de empal me se ha ido mejorando, y las características de concentricidad y ovalamiento del núcleo en la fibra unimodo se han perfec cionado, se ha podido lograr la comercialización de la fibra unimodo de indice escalonado en forma masiva desde 1985, lo que ha permitido atacar el mercado del cable troncal de altacapacidad. Asimismo, ya se encuentra disponible la Cuarta Gene ración de fibra óptica con mayor ancho de banda operando a --1550 nm, y con atenuaciones del orden de 0.15 dB/km, permitien do espaciamiento de repetidores hasta de 100 km. Sin embargo, el ancho de banda no es infinito: la dispersión del material y la de guia de onda son sus principales limitantes; la primera debido a la variación de respuesta del indice de refracción con la longitud de onda, la segunda ocurre porque la luz en la fibra óptica unimodo no se confine por completo en el núcleo,sino que un 20% de ésta viaja en el revestimiento adyacente, nú cleo de indice escalonado.

Ambos factores se han logrado cancelar en fibras de silicio -dopadas con germanio a 1300 nm lográndose "cero dispersión"; -esto también ha ayudado en las fibras de índice graduado, ya -que elimina el aumento de la dispersión, logrando un incremento
en el ancho espectral de la fuente.

En la actualidad la fibra unimodo permite transmitir arriba de 400 Mb/s con espaciamiento de repetidores de varias decenas de kilómetros; sin embargo, la máxima velocidad de transmisión y la distancia de alcance tanto en las fibras como en las fuentes láser se encuentran poco optimizadas, ya que la "cero dispersión" se localiza a 1300 nm, mientras que la mínima pérdida está en 1550 nm, y como la dispersión es proporcional al ancho de la fuente espectral, la optimización puede lograrse haciendo más angosto el ancho espectral del laser, o disminuyendo la dispersión a 1550 nm.

En el primer caso, la Compañía AT&T ha logrado estabilizar --- láseres en longitud de onda, transmitiendo a 4 Gb/s a través -- de 103 km. de fibra unimodo sin repetidor (13). A pesar de estos resultados todavía es compleja la estructura de soporte para dichas fuentes a 1550 nm como para volverse totalmente comerciales.

La otra alternativa es reducir la dispersión en la fibra, ya sea corriendo la longitud de "cero dispersión" a 1550 nm o dis tribuyendo la dispersión hacia un valor mínimo sobre un rango de mayor cobertura. La dispersión del material es dificil de alterar, por lo que se ha preferido modificar la dispersión de guía de onda, pasando de un diseño de índice escalonado simple perfiles más complejos como se muestran en la Fig. 5-21; de esta forma, la suma de ambas dispersiones pueden generar valores de cero o de muy baja dispersión sobre valores entre 1300 y 1550 nm, éstas se conocen como fibras de "dispersión corrida" y de "dispersión aplanada" respectivamente. Las primeras son fáciles de fabricar, ya que requieren que los parámetros de diseño de la fibra se ajusten para optimizar la dispersión a una longitud de onda. En el caso de las fibras con "disper-sión aplanada" son más complejas de diseñar porque el ajuste se efectúa sobre un rango relativamente amplio. No obstante, Corning Glass Works ha logrado fabricar fibra óptica con valores de atenuación ligeramente mayores a los normalmente obtenidos con el diseño de "dispersión-corrida" a 1550 nm. Aunque nunca se puedan obtener las ventajas de maximizar la tasa de trans-misión con respecto a la distancia, este diseño permite contem plar la posibilidad de multiplexar en el dominio de la longi-tud de onda (WDM) y así optimizar el uso de la fibra a futuro, pudiendo trabajar a 1300 nm y a 1550 nm.

El siguiente nivel de sofisticación en los sistemas de comunicación ópticos requiere de una alta calidad en la sensibilidad del receptor, lo cual puede obtenerse por medio de una --detección homodina o heterodina de la señal. Este sistema puede permitir el manejo de WDM de varias portadoras ópticas con una separación muy angosta comparado con el espaciamiento de diversos canales multiplexados de manera convencional. En la-Fig. 5,22 se observan las diferentes generaciones de sistemas por fibras ópticas (14).

Para lograr esta transmisión óptica "coherente", es necesario el uso de fibras no convencionales ya que las de tipo unimodo normalmente propagan dos modos ortogonalmente polarizados de - muy bajo orden; para solucionar dicho problema, ya que evita - la igualdad en los estados de polarización de la señal transmitida con el oscilador local, se fabrican a nivel experimental fibras uni-polarizadas mediante el manejo de simetrías no circulares en el índice de refracción del núcleo o cercano a él.

Finalmente, se está experimentando con fibras ópticas a longitudes de onda mayores a 1800 nm a fin de obtener atenuaciones menores de señal.

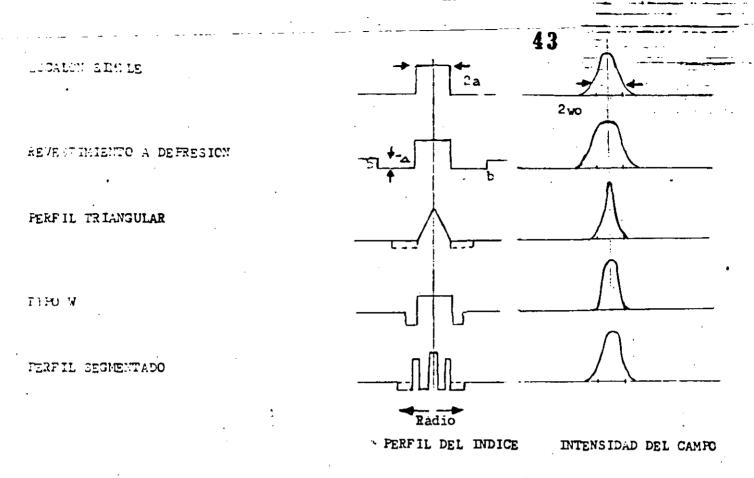
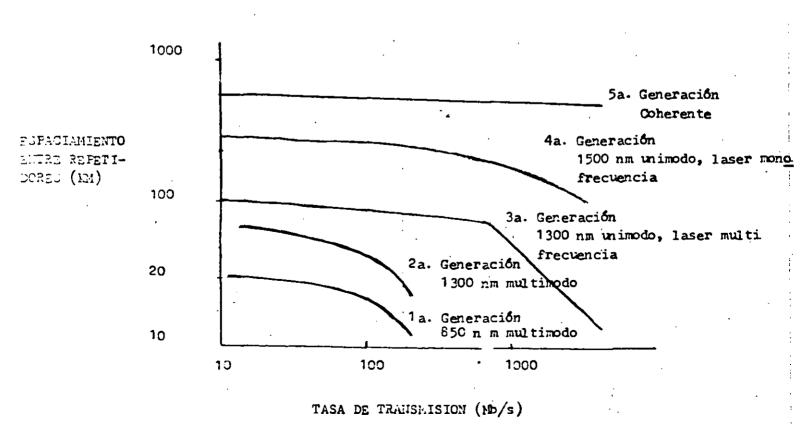



FIG. 5.22 5 GENERACIONES EN SISTEMAS DE COMUNICACION POR FIBRA OFTICA

Dichas fibras requieren de materiales cuya absorción por vibración molecular ocurre solo a grandes longitudes de onda; esto puede lograrse reduciendo las fuerzas de doblez y/o incrementan do la vibración de masas. Las alternativas son las siguientes:

- Reemplazo del silicio por materiales más pesados (Ge, Pb, Ca, Ba).
- Reemplazo del oxigeno por elementos como S, Se y Te.

Resulta generalmente cierto que una reducción de las fuerzas - de doblez es acompañada por un incremento de la actividad química. De esta forma, el vidrio se vuelve más sensitivo en los procesos de envejecimiento. Es por ello que existe un compromiso - entre la transmisión y su estabilidad.

Sin embargo, aunque los problemas tecnológicos no están completamente resueltos, se espera la disponibilidad en la próxima -- década de fibras con atenuaciones mucho menores a 0.1 dB/km. en el rango de los 2000 a los 5000 nm (15).

- 1.- Corning Glass Works, información técnica, Febrero 1985.
- 2.- Midwinter J.E., "Optical Fibres for Transmission" John Wiley & Sons, New York, 1979, 260-307.
- 3.- Le Noane G., Cables de Fibras Opticas", Boletín de Telecomunicaciones, 48(11), 1981, 649-656.
- 4.- Baden, J.L., AT&T Bell Labs, "Single Mode Ribbon Cable and Array Splicing" OFC 85 Febrero. Pag. 106
- 5.- Bark P.R., D.O. Lawrence, H.M. Liertz, O.I. Szentesi U. Oestrich, y G. Zeidler, "Cable Desing Testing and Installation" International Fiber Optics and Communications (IFOC), 3(2) 1982, 22-33
- 6.- Bark P.R., U. Oestrich y G. Zeidler, "Fiber Optic Cable Design Testing and Installation Experiences", 27th International Wire & Cable Symposium Proceeding, 1978, 379-384.
- 7.- Boscher D.G. LeNoane, Q.B. Nonclercq y A. Zaganiaris "Optical Fibre Cables Using V-Grooved Cylindrical Units: High Performance Cable", Fiber & Integrated Optics, 4(1), 1982, 67-94.
- 8.- Boscher D., Q.B. Nonclerq, "Ultra Low Loss Optical Fibre Cable Design and Characterization" Comunicación escrita CNET, Lannion Francia.
- 9.- Vecchis M. de, J. P. Huilin y J.C. Staath, "Ultra Low Loss --Cables Using the Cylindrical V-Groved Structure", Thomson CSF/ LTT, 30th Internacional Wire & Cable Simposium Proceeding, -1981, 228-235.
- 10.- Información Técnica Thomson CSF, "Cables de Fibra Optica".
- 11.- Oestrich, V., Zeidler, G., Bark, P.R., Lawrence, D.O., Fiber -Optic Cable for application. International Wire & Cable Sym-posium proceedings 1980, pp. 394-400.
- 12.- Light Wave, the journal of Fiber Optics, Febrero 1985. 22-23.
- 13.- KECK, DONALD: "Fundamentals of Optical Waveguide Fibers", IEEE Comms. Vol. 23. No. 5 May, 1985 pp. 17-22.
- 14.- Basch, Brown; "Introduction to Coherent Optical Fiber Transmission", IEEE Comms. Vol. 23. No. 5 May, 1985. pp 23-29.
- 15.- Oestreich, U., Zeidler, G.; "Development Trends in Fiber and Cable" Telcom Report 6 "Optical Communications" (1983) pp 198-201.

MEDICION

CARACTERIZACION DE FIBRAS OFTICAS

La determinación de las propiedades físicas y de transmisión de una fibra óptica es una necesidad bajo muchos puntos de vista: investigación experimental, acompañamiento o seguimiento durante la producción, proyecto de un sistema, evaluación de una instalación, etc.

Han sido desarrollados diversos métodos de medición que deben sér precisos y prácticos en la utilización, debiéndose establecer patrones internacionales de referencia.

Los parámetros de mayor interés en una fibra óptica para quien proyecta un sistema y que son normalmente presentados como datos de catálogo son:

- Diámetro del núcleo
- Diámetro del claddino
- Atenuación
- Dispersión o ancho de banda 🕟
- Apertura numérica
- Perfil de Indice de refracción

Otros parámetros más específicos, relacionados o no con los anteriores son de interés solamente para quien desarrolla un proceso productivo y no serán discutidos aquí.

La presentación de los métodos de medición será primero para fibras multimodo y posteriormente para fibras unimodo.

DISTRIBUCION MODAL DE EQUILIBRIO

La determinación exacta de las propiedades de transmisión de una fibra multimodo encuentra una dificultad fundamental: cada uno de los muchos modos de propagación de la fibra muestra un comportamiento particular, tanto del punto de vista de atenuación como en el atraso en tiempo de propagación.

Además de este comportamiento diferenciado entre los modos, se suma también el fenómeno de transparencia de potencia entre ellos, o acoplamiento entre modos. Este acoplamiento está asociado a perturbaciones geométricas o de composición de la fibra y en fibras de buena calidad es causado por fenómenos externos como microcurvaturas o uniones.

De esta forma, tanto atenuación como ancho de banda de una fibra multimodo no están definidos exactamente, pero dependen de las condiciones de excitación de la fibra, y también de las perturbaciones que favorecen o no el acoplamiento entre modos. Otra consecuencia de esta distribución de potencia y acoplamiento entre los modos es que la atenuación y el ancho de banda no son generalmente funciones lineales con la longitud y, por lo tanto, una extrapolación de valores obtenidos para longitudes diferentes es siempre válida.

Se verifica también que después de cierta longitud de fibra la transferencia de energía entre los modos, producirá una distribución de modos que a partir de abí, se propaga inalterada, desde que la fibra no esté sujeta a grandes perturbaciones mecánicas. Este es el llamado estado estacionario de propagación o distribución de equilibrio.

1.- MEDIDA DE LA ATENUACION

Las señales luminosas que se propagan a lo largo de una fibra sufren atenuación, o ses, una pérdida de energía debido a procesos de absorción e irradiación. En la mayoría de los casos y especialmente para quien proyecta un sistema, el parámetro mas importante es la atenuación total de la fibra que engloba todos los factores de causa sin distinción. Los procesos que causan atenuación están en función de la longitud de onda y, por lo tanto, una medida de atenuación en función de la longitud de onda (atenuación espectral) es siempre útil pues permite identificar regiones de menor pérdida para una determinada fibra.

Para una fibra uniforme en condición de equilibrio, la atenuación para una determinada longitud de onda (λ) entre dos puntos, 1 y 2, separados por una distancia L es dada por:

$$\alpha(\lambda) = 10 \log (F_1/F_2) \frac{38}{k_m}$$

·

 P_{\bullet} = Potencia luminosa en sección 1 P_{\bullet} = " " " 2

Por lo tanto, conociendo P_4 y P_2 y la longitud del tramo en cuestión, determinanos la atenuación de este tramo en dB/km. Tres métodos son empleados para la determinación de P_4 y P_2 :

1.1 Medida de la atenuación por "Cut-Back"

Esta técnica es una aplicación directa de la definición de atenuación anterior. Consiste en la determinación de la potencia óptica en dos puntos distintos de la fibra, una en el extremo de salida (P_4) y la otra en un punto próximo al extremo de entrada (P_4), después de efectuado un corte de fibra.

De esta manera mantenemos fijas las condiciones de prueba, aumentado la precisión de la medición:

Un esquema de un montaje tipico de esta medida se muestra a continuación:

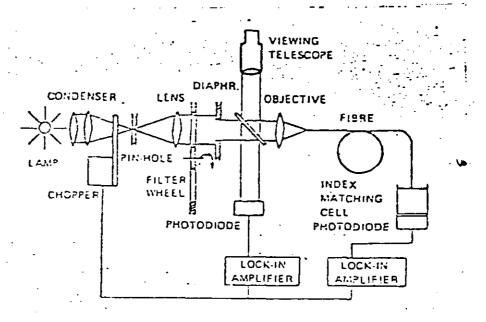


Fig. 1.1 Esquema del conjunto de medición de atenuación por el método "Cut-Back"

Para medidas espectrales, la fuente luminosa debe ser de gran capacidad espectral, luz blanca y un monocromador o filtro para seleccionar la longitud de onda de la medición.

La luz enviada en la fibra debe satisfacer las condiciones de equilibrio.

La luz pasa por un modulador mecánico (chopper) que permitirá una detección singrona, suprimiendo de esta forma la influencia de la luz ambiental.

La detección de la señal óptica normalmente se hace por un fotodiodo de silicio para longitud de onda hasta 1800 nm.

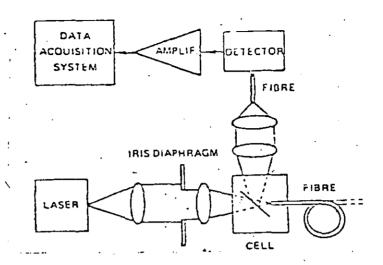
Este tipo de medición tiene el inconveniente de ser destructiva (siempre se pierde un trecho initial de 1 a 2 metros donde se bace el enlace), y de requerir acceso a las dos extremidades de la fibra en el lugar de medición, siendo difícil en caso de cable instalado.

1.2 Medida de la atenuación por Inserción

Es una técnica que deriva de la anterior, utilizando inclusive el mismo equipo.

Se determina la potencia de salida de la fibra como en el caso anterior y se admite conocida la potencia de entrada, lo cual no siempre es verdadero. Esto requiere una calibración del equipo para determinar la potencia acoplada a la fibra, además de ventajas de no ser destructivo y no exigir el acceso a las dos extremidades de la fibra junto al equipo detector.

Como desventaja, es menos preciso que el método anterior, debido a lo incierto en la potencia enviada en la fibra.


1.3 Medida de la atenuación por Retroesparcimiento (Backscattering)

Esta técnica consiste en la invección de un impulso luminoso en una extremidad de la fibra y en el monitoreo (en la misma extremidad), de la luz que es retrodifundida a medida que se propaga.

El principio teórico del método se fundamenta en el mecanismo de esparcimiento Rayleigh, el cual origina un esparcimiento de la energía lumínica en todas direcciones, con una distribución proporcional a 1 + $\cos^2(\Theta)$, y donde Θ representa el ángulo entre la dirección de propagación, en el sentido de transmisión, y la de retroesparcimiento.

De la energia que se esparce en cada punto de la fibra, sólo una fracción ,S, se mantiene dentro del núcleo y regresa hacia el extremo por el cual se había inyectado la luz.

Esta luz retrodifundida será guiada por la fibra y puede ser detectada en la misma extremidad de inyección a través de un sistema óptico conveniente. Un montaje típico para esta medida es el siguiente: "

Montaje del sistema de medición de atenuación por el método de retrodifusión.

De esta forma, para cada instante a partir de la inyección del impulso en la extremidad de la fibra una señal retroesparcida correspondiente a un determinado punto de la fibra.

Sabiendo la velocidad de propagación de la luz en la fibra, si observamos la señal retroesparcida en un osciloscopio, podemos calibrar la escala de tiempos en unidades de longitud de fibra y obtendremos una figura que nos muestra el comportamiento de la luz a lo largo de la fibra.

Recordando que los impulsos retroesparcidos observados recorren un determinado trecho de fibra dos veces (ida y vuelta), la señal observada corresponde la dos veces el tiempo de recorrido de la fibra y la atenuación de la fibra puede calcularse por:

Vg = Velocidad de propagación de la luz en la fibra

ts = Tiempo de salida del impulso de luz en la fibra (km/s)

to = Tiempo inicial

Ps = Potencia de salida

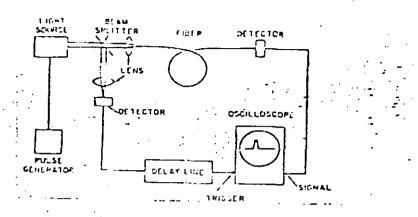
Pe = Potencia de entrada

Este método es bastante interesante porque además de que no es destructivo y necesitar solo una extremidad de la fibra para ser medida, también proporciona informaciones detalladas de atenuación de señal a lo largo de la fibra, permitiendo la localización y determinación de la atenuación en uniones y defectos localizados además de ser bastante repetitiva. Como desventajas no permite medidas espectrales, trabaja con señales muy bajas, obligando al uso de procesos sofisticados de filtrado.

2:- MEDIDA DE LA RESPUESTA EN BANDA BASE.

Varios mecanismos de alargamiento de impulso están presentes en una fibra óptica, incluyendo la dispersión modal, material y de guía de onda. Por lo tanto, es importante especificar las condiciones en que se hace la medición (longitud de onda y ancho espectral de la fuente, geometría del lanzamiento, etc.) de modo a dar significado al valor de banda pasante obtenido. Para la determinación de la capacidad de transmisión de la fibra, dos valores pueden medirse, la respuesta al impulso en el dominio del tiempo y la función de transferencia en el dominio de las frecuencias. Si la fibra tuviera comportamiento lineal en potencia se puede mostrar que la respuesta al impulso y la función de transferencia están ligadas por la transformada de Fourier. Por lo tanto, en principio es posible pasar de un valor a otro matemáticamente.

2.1 Medida en el Dominio del Tiempo:


A CANADA

La manera más simple de obtener la respuesta a impulso de una fibra es enviando un impulso lumínico estrecho a través de la fibra y detectando el impulso de salida en la otra extremidad.

Si los impulsos fueran Gaussianos, la respuesta al impulso o alargamiento de impulso puede ser dada por la fórmula:

Bonde \$\forall \sigma_s \quad \forall \forall \sigma_s \quad \forall \

Un montaje experimental para esta medida es el siguiente:

Esquema de medición de banda por el método impulsivo

Si los impulsos no fueran Gaussianos, se debe usar una desconvolución para obtener la respuesta al impulso.

La banda pasante puede obtenerse aplicando una transformada de Fourier a la respuesta al impulso. En la práctica son calculadas las transformadas de Fourier de los impulsos de entrada y salida, y una función de transferencia se calcula por la relación entre las transformadas.

La dispersión tiene unidades ns/km, además no varía linealmente con la longitud de la fibra.

2.2 Medida en el Dominio de Frecuencia

Salahari .

La función de transferencia G(w) de una fibra puede ser directamente calculada por transformada de Fourier y a partir de g(t), como se vió anteriormente. Como errores experimentales y de cálculo reducen, algunas veces, la precisión de esta medida, siendo interesante la obtención de G(w) en el dominio de las frecuencias directamente. Un esquema para esta medida es como sigue:

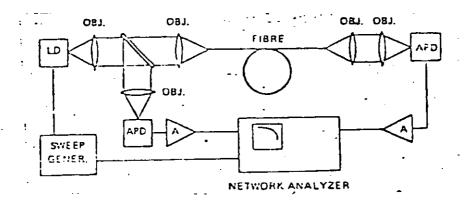
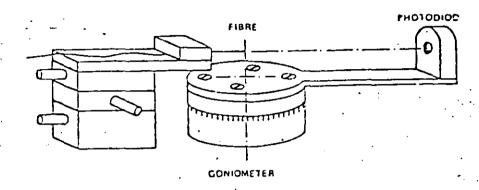


Diagrama de medición de banda en el dominio de frecuencia

Una fuente luminosa (láser) es modulada senoidalmente con frecuencia variable. La luz modulada es introducida en la fibra, cuya salida es detectada y enviada a un analizador de espectro o de red registrada. La misma medida se hace en un trecho corto de fibra (referencia) y el módulo de función de transferencia está dado por:

$$G(w) = Ps(w)/Pe(w)$$


donde: Ps(w) es la señal de salida de fibra Pe(w) es la señal de salida de referencia o de entrada de la fibra.

3.- MEDIDA DE ABERTURA NUMERICA

La abertura numérica se calcula fácilmente a partir de los Indices de refracción del núcleo y el revestimiento. Para una fibra con salto de indice, ésta posee un único valor y corresponde al ángulo máximo de aceptación de luz. Para fibras de Indice gradual debemos definir una abertura numérica local para cada punto de núcleo, después el indice de refracción varía en función del radio.

Si no disponemos de los valores de indice de refracción para el cálculo, podemos determinar la abertura numérica a través de un análisis de campo distante irradiado por un tramo corto de fibra $(\sim I_{\rm H})$.

Un montaje experimental para la medida de campo distante es la siguiente:

Medición de Abertura Numérica

El fotodiodo hace un barrido angular y determina los puntos entre los cuales está concentrada la mayor parte (99%) de luz irradiada por la fibra. El seno de la mitad del ángulo formado entre estos dos puntos equivale a dos veces la abertura numérica de la fibra.

TDATA 11/05/24

La siguiente figura muestra un ejemplo de la medida:

THURK : PBD405/A

ASSERTAL REPORTED A SEL 1.2

4.- MEDIDAS DIMENSIONALES

Es importante conocer las características dimensionales de la fibra, especialmente cuando se desea reducir las pérdidas de una unión. No solo los núcleos de las fibras deben tener la misma geometría sino también el revestimiento pues en la práctica, la mayoría de los conectores y dispositivos de unión utilizan una superficie externa de revestimiento como referencia para el alineamiento.

Un método simple para la verificación de los diámetros del núcleo y revestimiento y sus tolerancias consiste en la comparación fotográfica de la superficie de una fibra obtenida con el microscopio con una plantilla de cuatro círculos concéntricos, como se muestra a continuación:

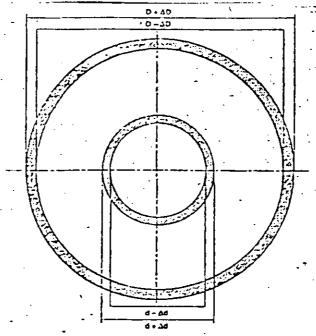


Figure 10 - Tolerance field (template)

d = core diameter (numinal)

The State of States

∆d = tolerance of the core diameter

D = reference surface diameter (numinal)

D = tolerance of the reference surface diameter

Caracterisación Dimensional de la Fibra Optica

MEDICION PARAMETROS TRANSMISION EN FIBRAS MONOMODO

1.- ATENUACION.

Las observaciones descritas para fibra multimodo son aplicables a la medición para fibras monomodo.

Se describe el método de conte adoptado por CCITI como método de ceferencia, al igual que para fibras multimodo.

1.1 Método de Corte

Recordando que atenuación A(λ), a la longitud de londa λ , entre dos secciones separadas una distancia L, como:

Siendo P la potencia óptica transmitida en la sección 1 y P la potencia óptica que atraviesa la sección 2.

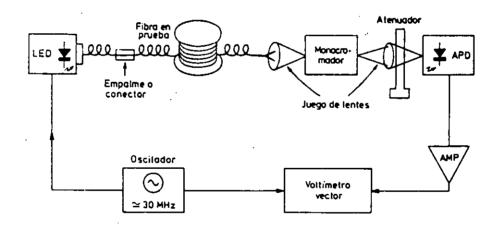
Cuando la fibra es uniforme, es factible definir la atenuación por unidad de longitud, o coeficiente de atenuación:

$$\propto (\lambda) = A(\lambda) / L \cdot dB / Km$$

Con independencia de la longitud de la fibra.

Al igual que en fibras multimodo, el método de corte para fibras monomodo consiste en la aplicación estricts de la definición enterior, en donde los niveles P $_{1}$ y P $_{2}$ son los niveles de potencia medidos en dos puntos de la fibra sin modificar las condiciones de inyección.

1.2 Retroesparcimiento


los principios y metodología son idénticos a los ya expresados para las fibras multimodo. No obstante, hay diferencias en el nivel de la señal retroesparcida que se manifiestan en un menor margen dinámico en las medidas sobre fibras monomodo que en las multimodo.

2.- MEDIDA DE DISPERSION TOTAL

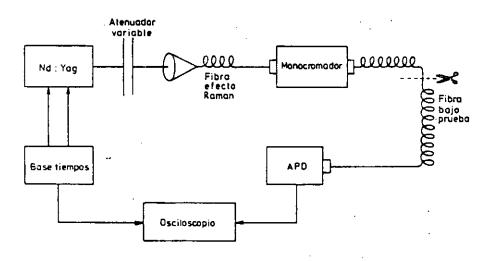
Hasta el momento se han propuesto dos métodos que podrán ser válidos como métodos de referencia. Uno está basado en medidas en el dominio de la frecuencia, mediante LED, y el otro mide, en el dominio del tiempo, el retardo relativo entre impulsos emitidos a diferentes longitudes de onda.

2.1 Método de Desplazamiento de Fase (Dominio de frecuencia)

Este es un método reciente, se aplicó con éxito en 1981. Consiste en la medición sinusoidal de una señal óptica producida por LED de ancho espectro de emisión; la dispersión cromática se evalda a través del desplazamiento de fase que sufre la señal modulada al ir variando la longitud de onda de emisión, ajustando un monocromador; por ejemplo:

Banco para medición de dispersión total en fibras monomodo por el m*todo de retardo de fases.

Interesa, acoplar correctamente la fibra bajo prueba con el monocromador. Es preciso conocer previamente las curvas de relación S/N de los diodos disponibles para las medidas.


El procedimiento de medida puede dividirse en tres etapas:

2.2 Método de Retardo de Impulsos (Dominio del tiempo)

Evalúa el retardo cromático, $\tau(\lambda)$, observando el retardo relativo entre impulsos muy estrechos, generados a distintas longitudes de onda.

La medida puede efectuarse en tres fases:

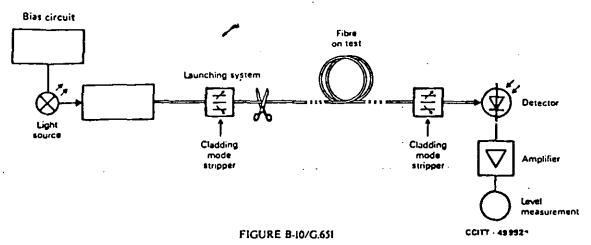
- a) Evaluación de retardos relativos de los impulsos, enviados a las longitudes de onda seleccionadas por el monocromador.
- b) Evaluación de retardos correspondientes al banco de prueba
- c) Obtención de la dispersión cromática derivando la curva $\epsilon(\lambda) = A + B \lambda^{-2} + C \lambda^{-2}$

Banco para la medida de la dispersión total por método de retardo de impulsos

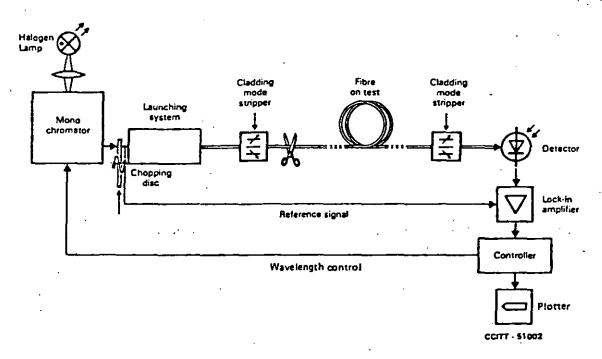
3.LONGITUD DE ONDA DE CORTE:

Indica la frontera que separa el comportamiento multimodal del comportamiento monomodal de una fibra. Interesa trabajar por encima de χ_c para que la fibra se comporte como monomodo.

Lat definiciones más usadas:

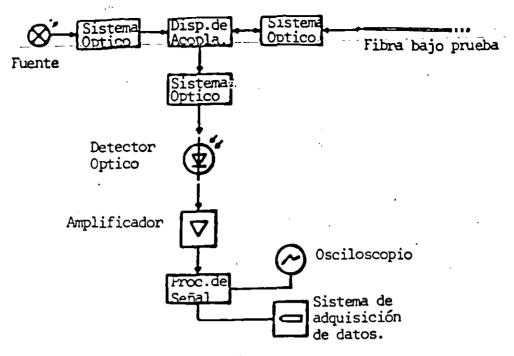

- a). La longitud de corte efectiva, $\lambda_{\rm e}$, es aquella longitud de onda para la cual la atenuación de un tramo de fibra enrollado en un tambor de 20 mm excede en 0.1 dB la atenuación de la misma fibra, su jeta a una curvatura no inferior a 25 mm.
- b). Es la menor longitud de onda para la cual la atenuación del modo principal (LP₄) y del primer modo de orden superior (LP₄₄) difieren en un determinado valor, por ejemplo 10 dB/m.

Existen dos métodos de medida:


a). El método de pérdidas por curvatura. El banco usado es el mismo que para atenuación. Con una fibra de aproximadamente 1 m., se registra la atenuación en una banda de 700 u/300 nm aproximadamente. Se repite la medida enrollando la fibra en un cilindro de 20 nm.

La diferencia de atenuación observada entre ambas medidas decrece bruscamente con la ongitud de onda: La es aquella para la cual la diferencia es de 0.1 dB.

b). El segundo método evalda en función de la variación del diametro de campo nodal con la longitud de onda, Wo (2). A medida que al ir subiendo en longitud de onda nos aproximamos a 20, el diámetro Wo(2) experimental un decremento lineal con la longitud de onda, y vuelve a incrementarse para longitudes de onda superiores a la de corte.


Arrangement of test equipment to make spot loss measurement

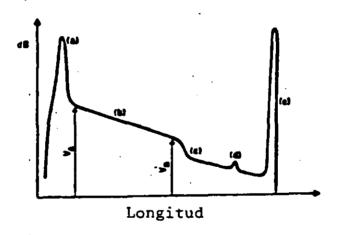
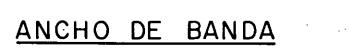

Arrangement of test equipment used to obtain the loss spectrum

FIGURE B-11/G.651
The cutback technique

16



a) Esquema del Aparato

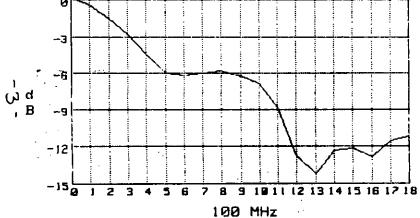
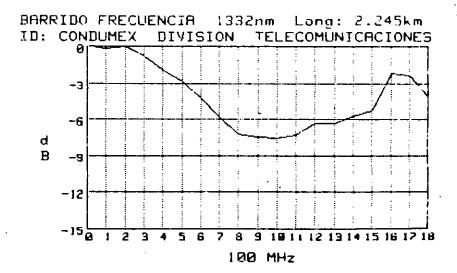

b) · Curva Tipica

FIGURA 4.- TECNICA DE REFLECTOMETRIA



BARRIDO FRECUENCIA 330nm Long: 2.245km ID: CONDUMEX DIVISION TELECOMUNICACIONES

FREC CORTE a -3dB en 316MHz

FREC CORTE a -3dB en 510MHz

CONECTORES OPTICOS EN SISTEMAS DE TELECOMUNICACIONES

INTRODUCCION

Este curso pretende dar una visión del estado actual de la tecnología de los conectores para fibra optica. En el se exponen las distintas tecnicas de conexión optica, diseños de conectores y metodología de prueba así como los factores que intervienen en la calidad de la conexión por medio de conectores.

En un sistema eléctrico, es suficiente un contacto físico para unir dos conductores. En el caso de conectar dos fibras épticas los requerimientos son mucho mas críticos, ya que la señal óptica es transportada por el nácleo de la fibra, por lo que es necesario un preciso alineamiento entre los dos nácleos de las fibras.

La interconexión en sistemas de comunicación por fibra óptica, se soluciona básicamente por dos métodos: empalmes y conectores.

Los empalmes se utilizan cuando se requiere una conexibn permanente o semipermanente entre dos fibras y pueden ser elaborados por fusión o acoplamiento mecanico.

Los conectores son usados para dar flexibilidad y facilidad de conexibn y desconexibn entre sistemas de fibra y/o componentes activos (LED, LASER, PIN, APD, etc.).

I. PRINCIPIOS DE CONECTORES OPTICOS

La interconexión de dos fibras es una de las partes críticas en un sistema de transmisión por fibra óptica. Esta unión es sensible de tener pérdidas de potencia óptica por diversos factores que están en función del alineamiento físico de los dos nácleos y de la calidad de su acabado. Las pérdidas son intrínsecas cuando son atribuibles a defectos en el dimensionado de las fibras o en sus especificaciones ópticas. Son extrínsecas o de inserción, cuando se pueden atribuir al diseño y/o acabado del conector (ver tabla 1).

Tabla 1. Causas de Pardidas en una Conexión Optica.

<u>Intrinsecas</u>

Extrinsecas

*Distintos diâmetros de nacleo *Desplazamiento lateral

*Distinta apertura numérica *Desalineación angular

* Calidad del acabado

I.1.Perdidas Intrinsecas.

a. Distintos Diametros de los Nucleos.

Cuando se unen dos fibras con nucleos de distintos dibmetros (Fig. 1A), el solapamiento de las dos breas produce una perdida tanto en la dirección del dibmetro mayor al menor, como del menor al mayor.

En el primer caso, la pérdida es debida a que existe una cantidad de modos que se pierden al entrar directamente al revestimiento de la fibra con núcleo menor. La atenuación producida es:

$$d2 d1 - \cancel{p} del emisor$$

$$A = -10 log ----$$

$$2 d2 - \cancel{p} del receptor$$

$$d1$$

En el segundo caso (di(d2), también existen perdidas debido a una nueva redistribución modal, perdes menos significativa.

b. Distinta Apertura Numbrica.

Cuando se conecta-una fibra de apertura númerica (N.A.) mayor a otra de menor N.A. (Fig. 1B), se produce una perdida por los modos que no "gula" o capta la fibra de menor N.A. La atenuación está dada por la siguiente formula:

Donde:

$$2 2$$
 $NA = n1 - n2 = sen 0$

ni - indice de refracción del núcleo. n2 - indice de refracción del revestimiento.

c. Excentricidad del Nacleo.

La excentricidad del nucleo también causa perdidas debido al solapamiento de las areas.

I.2. Perdidas Extrinsecas.

I.2a. Desplazamiento Lateral.

El desplazamiento lateral (Fig. 2.A) es debido a tolerancias en la manufactura del conector y el efecto es similar al que ocurre cuando hay excentricidad del nucleo, produciendose una atenuación de .75 dB para una relación (Desplazamiento Lateral (L) / Diametro (d)) de 10 % . Estas tolerancias se hacen especialmente críticas en conectores unimodales donde un desplazamiento de 2 micras, produce una pérdida de .5 dB. La atenuación por este desplazamiento es igual a:

donde es la eficiencia del acoplamiento que se determina por la siguiente fórmula:

$$\eta = \frac{2}{\Pi} \left\{ \cos \frac{-1}{d} - \frac{L}{d} \sqrt{\left[1 - \left(\frac{L}{d}\right)^2\right]} \right\}$$

donde el coseno inverso se calcula en radianes.

I.2b. Desalineación Angular.

Cualquier angulo entre las caras de las fibras produce pérdidas. La desalineación angular (Fig. 2.8) es producida por un mal pulido, corte de la fibra o por un mal diseño del conector. Esta perdida depende de la apertura numerica de la fibra optica, siendo menor la perdida al aumentar la N.A. de la fibra.

La perdida producida es:

donde D es el angulo en radianes entre las dos caras y no es el indice de refracción del material que esta entre las dos caras, en el caso del aire no = 1.

c. Separación entre las Caras de las Fibras.

La separación entre las caras de las fibras (Fig. 2.C), tiene influencia en el aumento de atenuación en una interconexión optica, siendo mayor a medida que aumenta la apertura numerica.

La atenuación se puede calcular así:

donde X es la distancia entre caras.

d. Calidad en el Acabado de las Cares.

Existe otra causa mas para producir perdidas entre conectores, y esta es la atenuación por el efecto Fresnel que ocurre cuando dos fibras estan separadas por aire (Fig. 2.D). Esta perdida aumenta con las imperfecciones de las caras de las fibras, por lo que se exige un pulido a espejo en la mayoría de conectores.

El efecto Fresnel consiste en perdidas por reflexión que ocurren cuando la luz transmitida por la fibra optica cambia de un indice de refracción a otro.

El coeficiente de reflexión es:

$$P = \frac{n1-n2}{n1+n2}$$

Las perdidas por efecto Fresnel, se pueden disminuir e incluso suprimir logrando un contacto físico entre las dos fibras eliminando así el cambio del indice de refracción. Este procedimiento serà posteriormente comentado en la sección dedicada al conector FC/PC.

Otro-método frecuentemente usado, consiste en colocar un fluido igualador de indice entre las dos caras de las fibras. Este método no es aconsejable debido a los problemas de limpieza y contaminación de las superficies pulidas que ocasiona el fluido.

II. TIPOS DE CONECTORES .

La necesidad a mediados de los 70's de desarrollar conectores para fibra bptica dib lugar a que cada fabricante diseñara sus propios conectores opticos, segun su experiencia en otros campos. Así, compañías familiarizadas con dispositivos opticos, se inclimaron hacia conectores que usaran lentes u otro sistema expansor de haz (beam expander) en los extremos, para minimizar las perdidas por desplazamientos. Por otra parte, las empresas que tenlan dirigida su tecnología hacia la mecânica de precisión, como los fabricantes de 🕟 conectores electricos, desarrollaron conectores de acoplamiento mecânico. En estos, las fibras se encaran sin tener ningun elemento optico entre ellas y solucionando sus problemas de desplazamiento desarrollando nuevas tecnicas con menores tolerancias, nuevos sistemas de alineamiento y nuevos materiales que proporcionen mayor precisibn y mayor resistencia mecanica. En el primer grupo se encuentran compañías como: Dorran, Lamdek (filial de Kodak) y Deutch. En el segundo grupo (mas numeroso) están: AMP. Amphenol.GTE. Interoptics, AT&T, OFTI y la mayor parte de las compañlas japonesas fabricantes de conectores.

En los dos altimos años han surgido versiones de conectores que en un principio usaban la têcnica de alineación por lente y ahora existen con tecnología de contacto entre fibras, como por ejemplo el conector bicánico de OFTI (ver Fig. 3a).

En la tabla 2 se presentan las distintas opciones en el diseNo de conectores opticos.

Cualquier intento de clasificación de conectores bpticos, es arriesgado, si bien ultimamente se esta adoptando la clasificación en base a las aplicaciones en las que el conector tiene ventajas más relevantes.

Bajo esta premisa, es pueden determinar dos grandes areas de aplicación:

> -Comunicaciones de pequeño y medio alcance, en los que se transmiten datos, señales de video o control en sistemas punto a punto o en redes locales, en los que normalmente se usa fibra

multimodo y el costo de los conectores es una parte importante del monto total del proyecto.

-Sistemas de largo alcance que transmiten señales de telefonia y/o datos a través de fibra unimodo y donde el costo de los conectores solo representa una pequeña parte de todo el sistema.

II.1. Evaluación de Conectores.

Para la evaluación de un conector, es necesario tener en cuenta las siguientes características:

- * Baja perdida por inserción
- * Facilidad de montaje
- * Compatibilidad con distintos fabricantes del mismo conector
- * Pequeña variación en la perdida por inserción después de un gran número de conexiones y desconexiones (repetitividad).
- * Insensibilidad a factores ambientales (temperatura, polvo, etc).
- * Buena relación costo/beneficio.

II.2. Conectores para Corto y Medio Alcance

II.2a. El Conector SMA, un Conector Tipo.

Dentro de los muchos diseños, especificaciones y fabricantes de conectores para fibra multimodal, aproximadamente el 80% del mercado esta cubierto con conectores SMA (Subminiatura tipo A) desarrollado por AMPHENOL PRODUCTS a mediados de los 70°s. Este conector se ha convertido en un estandar respaldado por normas militares (MIL-1863A) y alrededor de cuarenta fabricantes; si bien su uso en nuevos productos, esta en declive.

El SMA, tiene un costo adecuado, 10 a 25 dôlares, es de facil uso y la atenuación oscila de .5 dB a 2 dB, dependiendo de la versión. Las partes que constituyem un conector SMA, se pueden considerar básicas en el diseño de un conector óptico, por lo que vamos a describirlas detalladamente.

* FERRULA. - Es la parte principal de un conector bptico, pues es el elemento que contiene en su interior la fibra óptica, ayudando a su alineación. En los conectores SMA, existen dos versiones de férrula, tipo 905 (Fig. 4.A) y tipo 906 (Fig. 4.B). El tipo 905 es el diseño original y tiene una respuesta adecuada en empalmes terminales. Pero sus caracteristicas resultan bajas cuando se requiera

acoplamiento entre conectores. Pensando en estas ditimas aplicaciones, se diseño el tipo 906 que soluciona en parte los problemas del 905 en cuestión de alineación. En el conector SMA, la longitud de la ferrula es critica.

- * TUERCA DE ACOPLAMIENTO. Es el elemento mecânico que sujeta el conector al receptaculo del transmisor o del detector o al cople.
- * CUERFO. Es la parte del conector en donde se inserta el pigtail y la cual soporta los distintos elementos del conector. En el conector SMA la férrula està integrada al cuerpo.
- * CASQUILLO DE SUJECCION.- Es el elemento que asegura la tracción del pigtail por medio del Kevlar.
- * CUBIERTA PROTECTORA. Es una pieza de plastico moldeado o de spaguetti termocontractil, que cubre el casquillo de sujección y parte del cuerpo para mejorar la protección y la apariencia del conector.

II.2b. Conector ST.

El conector ST desarrollado por AT&T (Fig. 5), està destinado a ser uno de los estàndares en fibra multimodales, ya que distintas normas y fabricantes lo estàn recomendando para aplicaciones en LAN Por ejemplo, IBM lo especifica en su red Token Ring.

El ST tiene una configuración parecida a la del conductor SMA, pero con caracteristicas superiores. Sus ventajas son:

- i. Férrula cerâmica de precisión, que mejora el alineación al tener tolerancias (2 micras.
- ii. Dispositivo de fijación, que evita la rotación, obteniendo así mayor repetitividad.
- iii. La tuerca de acoplamiento no es roscada, sino del tipo bayoneta que hace que la comexión y descomexión sea más rápida.
 - iv. Atenuación típica de .4 dB.

II.3. Conectores para fibra unimodal.

En aplicaciones donde se requiere un gran ancho de banda y una baja atenuación, como por ejemplo en compañías telefónicas, se hace necesario el uso de fibra unimodo. El 80% del mercado estadounidense de

conectores unimodo, esta constituido por dos tipos que son: el NTT-FC y el biobnico.

II. 3a. Conector NTT-FC.

El conector FC (Fig. 6), fue en principio desarrollado para la NTT (Nippon Telephone and Telegraph) de Japon. Este conector consta de una ferrula metàlica que contiene un elemento de ceramica capilar, que es el encargado de alinear la fibra. Las tolerancias de concentricidad y diametro de orificio, no sobrepasan tolerancias de 1 micra, asegurando una atenuación menor de 1 dB. El FC incorpora una roldana de ajuste que asegura: i) optimización de la menor perdida al tener ocho posiciones distintas, ii) mayor repetividad al fijar la posición de la ferrula.

II.3b. Conector FC/PC.

Como se comente en el inciso B.2.d., parte de la luz incidente en el extremo pulido de una fibra, es reflejada debido al efecto Fresnel. En conectores unimodales convencionales esta reflexión se calcula en aproximadamente 3% de la luz incidente, lo cual equivale a .15 dB de atenuación por esta causa. Para eliminar la atenuación debido a esta causa sin usar un fluido igualador de Indice, recientemente se ha desarrollado el conector de Contacto Físico FC/PC. fig. 7 Para conseguir este contacto físico, se le proporciona a la terminación de las caras un pulido convexo que permite el contacto físico entre las dos caras. En la Tabla 3 se pueden comparar los valores tipicos de atenuación del conector FC y FC/PC.

Tabla 3.

	PERDIDAS					
CONECTORES	INSERCION	(dB)	RETORNO	(dB)		
FC	0.7		13			
FC/PC	0.2		28			

II.3c. Connector bichnico.

Desarrollado también por AT&T, el conector bicònico (Fig. 3b) es otro de los conectores con gran aceptación en el campo de las telecomunicaciones en aplicaciones tanto multimodales como unimodales. Es usado en el IBM 3044 Fiber Optic Chanel que es un subsistema usado para comunicar computadoras y terminales. El conector bicònico, es el dispositivo más popular de haz expandido. Consta de una ferrula cónica insertada en un cuerpo metalico y una tuerca de acoplamiento de material plástico. La cara de la fibra esta cubierta de epoxy moldeado que hace la función de una lente. Su pulido y ajuste es algo complejo, por lo que se han desarrollado versiones de acoplamiento fibra/fibra.

III. Procesos de ensamble.

Las partes en las que se divide el ensamble de un conector, son las siguientes:

- 1. Preparación del cable terminal
- 2. Ensamble del conector
- 3. Pulido

III.1. Preparación del cable terminal (pigtail).

El primer proceso consiste en preparar el pigtail con las dimensiones especificadas por el fabricante del conector, tanto en lo que se refiere al Kevlar como a la(s) cubierta(s). Esta operación también incluye una limpieza cuidadosa de la fibra.

III.2. Ensamble del conector.

En la segunda operación, se ensamblan las distintas partes del conector introduciendo la fibra por el orificio de la ferrula, no sin antes haber aplicado la resina epóxica. Se han conseguido buenos resultados utilizando resina epóxica de curado a 140 °C, debido principalmente a:

- * Facilidad en el manejo ya que el tiempo de vida de la mezcla es de 6 horas.
 - * Rapidez en el ensamble del conector. En 4

minutos se consigue un curado por medio de una pistola de aire caliente, dando a la vez una indicación visual ya que se oscurece con el curado.

*Es de baja viscosidad, característica indispensable en los conectores ceràmicos, pues al tener gran longitud el orificio de la ferrula requeriría una fuerza excesiva en la inserción con un epoxy de alta viscosidad. Posteriormente se sujetan los elementos de tracción, se cura el epoxy y se corta la fibra sobrante.

III.3. Pulido.

El pulido es la parte mas delicada del proceso, tanto en el ensamble, como en el apego a las especificaciones del fabricante. El proceso puede ser manual o auxiliado de maquinas pulidoras, aunque para algunos tipos de conectores se exige que sea manual (FC/PC) o solo con maquina (FC). El procedimiento consta normalmente de tres pulidos:

- * GRUESO (12 micras).
- * MEDIO (3 micras).
- * FINO (.3 micras).

Durante el proceso de pulido, se debe comprobar la longitud de la férrula por medio de un calibrador adecuado e inspeccionar al acabado de la cara de la fibra.

IV. Procedimientos de pruebe.

La Electronic Industries Association (EIA), ha desarrollado varios procedimientos FOTP (Fiber Optic Test Procedure). La meta de estas recomendaciones, es conseguir una estandarización de los procedimientos de pruebas 'para que las mediciones sean aceptadas de manera general. En la Tabla 4, se enumeran los FOTP's más comunes para la evaluación de conectores.

IV. 1. El FOTP-171.

Este es un procedimiento para la medida de atenuación por sustitución, para ensambles de cortas longitudes (menores a 100 mt) y fibra multimodal de indice gradual, o fibra unimodal. Esta FOTP cubre ensambles con conectores en uno, o en los dos extremos, ya sean del mismo o de diferente tipo de conectores.

- * METODO A. Prueba de concatenación (unión en serie de varios conectores), para ensambles con conectores iguales o distintos.
 - * METODO B. Para ensambles con los mismos conectores.
 - * METODO C. Para ensambles con distintos conectores en los extremos.
 - * METODO D. Para un conector en un solo extremo.

IV.1a. El metodo B.

Vamos a describir el método B, ya que es el más adecuado a nuestros requerimientos.

EQUIPO REQUERIDO:

- * Fuente ôptica estabilizada.
- * Medidor de potencia ôptica.
- * Cable de referencia del emisor.
- * Cable de referencia del receptor.
- * Dos coples.

El cable de referencia del emisor, debe incorporar un simulador de equilibrio modal (EMS) cuando la fibra es multimodal, o un filtro de modos (N/F) cuando la fibra es unimodal. Un sencillo EMS se puede construir dândole cinco vueltas al cable multimodo alrededor de un cilindro de 20 mm de diâmetro. El filtro de modos, consiste en una vuelta con un diâmetro de 50 mm de cable unimodal.

El mètodo se ilustra en la Fig. 8 y los pasos son los siguientes:

- i. Comectar la fuente éptica y el medidor por medio de los cables de referencia, usando un cople adecuado. Registrar en dBm la potencia éptica de los cables de referencia. Esta sera la potencia inicial (PO).
- ii. Insertar entre los dos cables de referencia, el cable sujeto a prueba.
 - iii. Registrar la potencia ôptica (P1) en dBm.

iv. Repetir los pasos $2 \ y \ 3$, tres veces; invertir los extremos del cable y repetir los pasos $2 \ y \ 3$, tres veces mas.

v. Calcular el valor promedio de las 7 mediciones.

7

La Atenuación del Ensamble es:

At (dBm) = PO - Pprom.

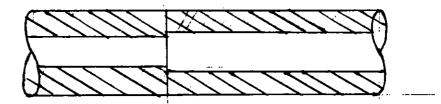
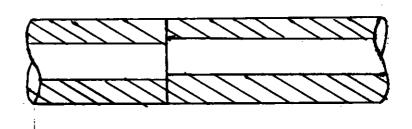
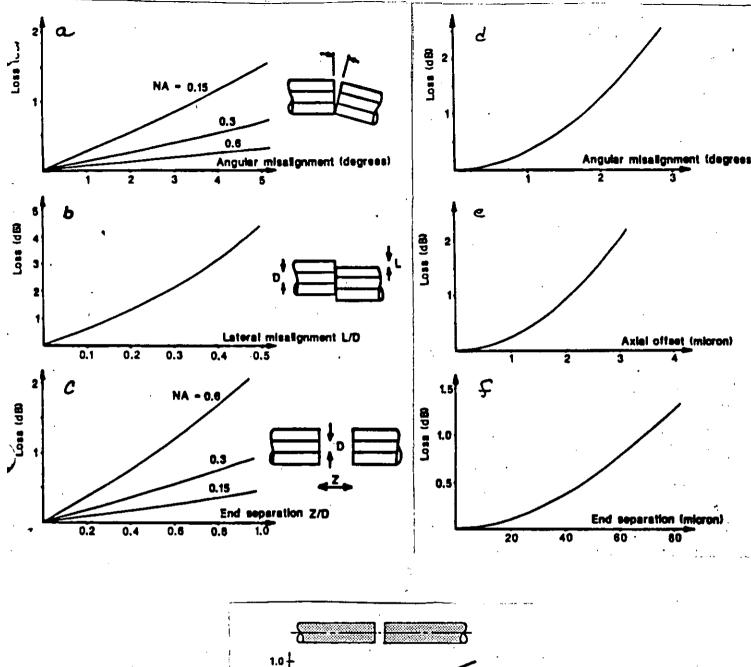

CONECTOR	TIPO	FIBRA	TIPO CABLE	ACOPLAMIENTO				
	NUCLEO	REVEST.		OPTICA	TIPO ALINEAMIENTO	MECANICO	SUJECCION	
SENCILLO			MONO		Ferrula cilindrica Ferrula conica Ferrula en V	PLUG-COPLE-PLUG		
	VIDRIO	VIDRIO		TOPE			ROSCA	
DUPLEX			DUPLEX		Ensamble pasivo Ensamble activo	PLUG-JACK		
	} -					1		
MULTI	PLAST.	PLAST.	MULTI	LENTE	Expansor de haz: —Lente líquido Plastico moldeado	HERMAFRODITA	BAYONETA	
1 0	renote	runoti	HIBRIDO	,	Lente esferica			

Tabla 2. Variables en el diseno de conectores.


TABLA 4. METODOS DE PRUEBA RECOMENDADOS POR LA EIA.

PARAMETRO	METODO DE PRUEBA	COMENTARIOS		
				
PERDIDA	FOTP-171-BP T	7 MEDICIONES		
INSERCIONES	FOTP-21	500 CICLOS		
IMPACTO	FOTP-2	CAIDA DESDE 1.8 mt, 8 VECES		
TEMP. ALMAC.	FOTP-4	85 °C, 96 hs.		
SHOCK TERMICO	FOTP-3	-20 'C A +65 'C		
HUMEDAD	F0TP-5	40 'C, 90% A 95% HUMEDAD RELATIVA		
TEMP. OPER.	F0TP-5	-20 'C A + 65 'C		
FLEXION CICLOS	FOTP-1	90 GRADOS DE ARCO, 5 kg, 300 hs.		


Fig. 1 PERDIDAS INTRINSECAS

a) Distinto diametro de nucleo

b) Excentricidad del nucleo.

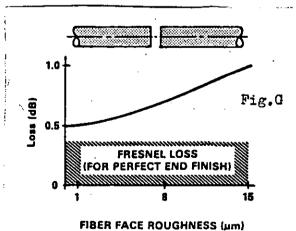


Fig.2 Pérdidas Extrînsecas. a-c y g) fibra multimodo d-f) fibra unimodo

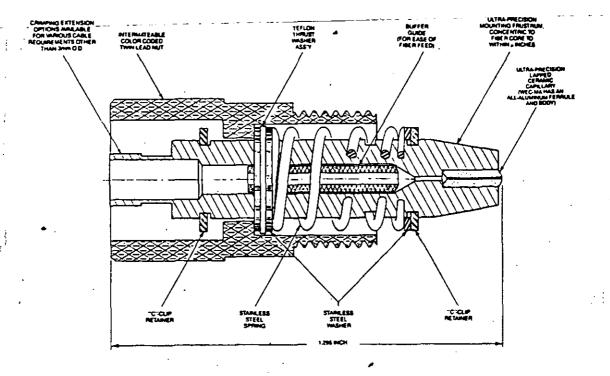


Fig 3a. Corte transversal conector biconico OFTI

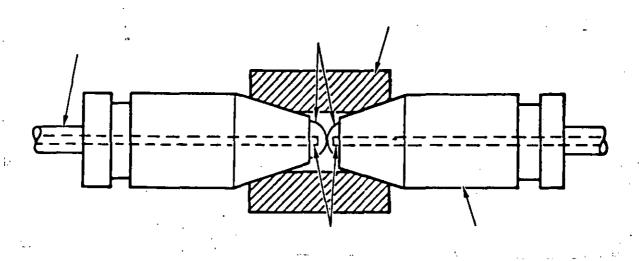


Fig. 3b. Corte transversal de Una pareja de conectores bicónicos

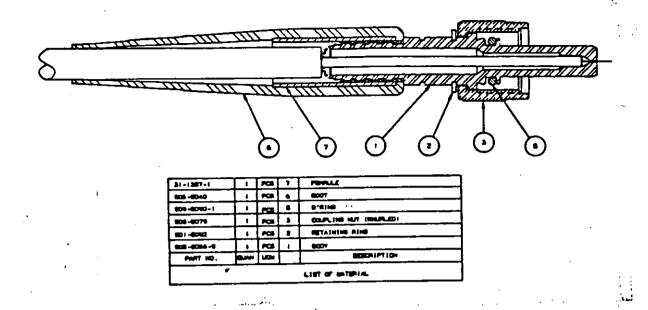


Fig. 4a. Conector SMA tipo 905.

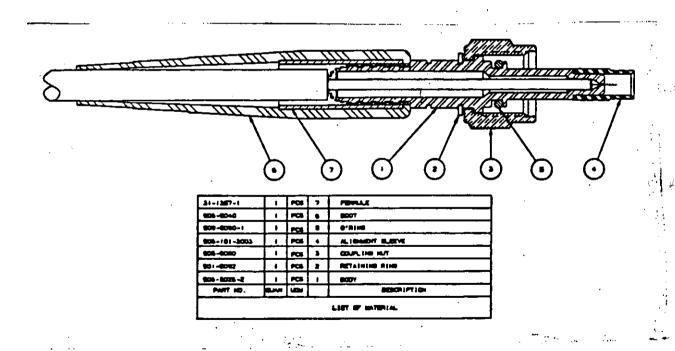


Fig. 4b. Conector SMA tipo 906.

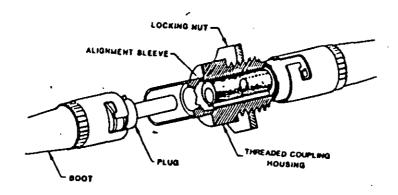


Fig. 5 Pareja de conectores ST con cople.

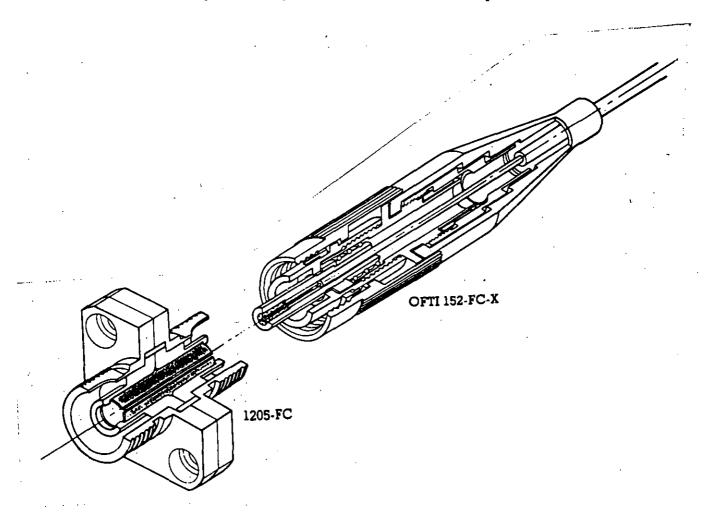
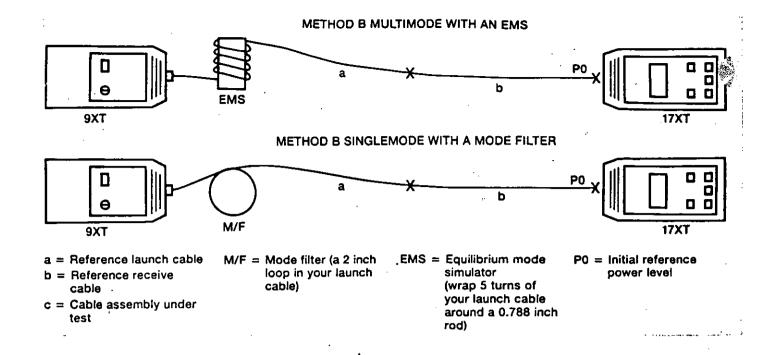
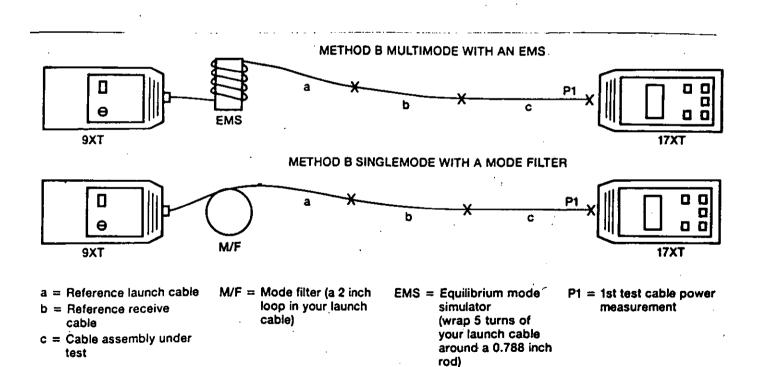
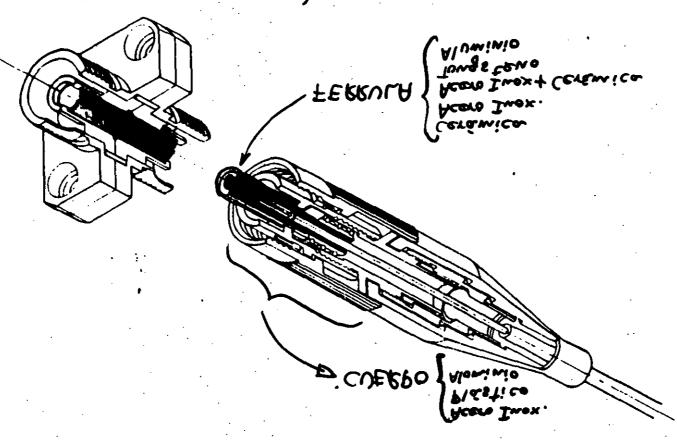




Fig.6 Corte transversal. Conector FC y cople.

A) Medición de referencia.



B) Médición del cable.

Fig. 8 Método FOTP-171-B.

SINGLE-MODE CONNECTOR

COPLE (CONSCIOR-CONECTOR)

Fig. 1 Construction of FC Connector

HIGH PERFORMANCE RADIALL SINGLEMODE FIBER CONNECTOR

VFO SERIES

RADIALL'S SINGLEMODE OPTICAL FIBER CONNECTOR

Singlemode technology has advanced to the point where both undersea and ground systems are now being planned for service in the mid 1980's.

Connectors for such systems are now available but the tolerances necessary to align 8 μ m fiber cores, require very good connection systems. One practical strategy for meeting this challenge is to use the RADIALL OPTABALL SYSTEM.

The majority of singlemode fiber connectors reported are based on ultra-high precision machining technologies, the passive alignment method requires excellent geometrical properties of the fibers and manufacturing tolerances of submicron orders for the main connector parts. Some active alignment procedures have been proposed to reduce the insertion loss, in which the eccentricity of the fiber core to the axis is removed by trimming or grinding the ferrule (or plug) mating surface. High-precision machines with a sophisticated optical collimating system are necessary. The plug is generally terminated in a laboratory with a pigtail.

To meet the growing needs for a low-loss, truly field installable and low cost single-mode connector, we have developed a new type of connector based on the sphere/cone mating mechanism «OPTABALL» used in multimode fiber connectors.

Fig. 1 illustrates the mating system. The principle of the system is based on the contact between a sphere located in the center of the adaptor and the concave conical end-faces of two identical plugs. The connection is established at the center of the sphere. The only element in our connector which requires a high level of accuracy is the sphere. The lateral misalignment of the fibers is mainly affected by the sphericity of the sphere. The tolerance on the diameter of the sphere only influences the separation between the ends of the fibers.

One can easily find commercial ball bearings with a diametric tolerance of $1 \mu m$ and a sphericity of better than $0.2 \mu m$ which satisfy the requirements of the alignment tolerance for the singlemode connections.

The angular misalignment can be held down to 0,4° per plug by a freely sliding fit at the entrance to the adaptor. The result is a plug that can be inserted into the adaptor until firm contact is made between the cone and the sphere. There is almost no friction between the fitted surfaces.

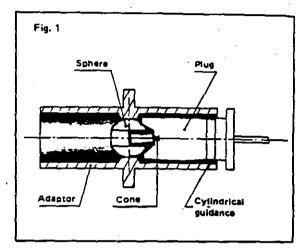
In addition all the connector parts can be made by traditional machine shop processes with a tolerance no more than 0.02 mm. This significantly reduces the price of our connectors.

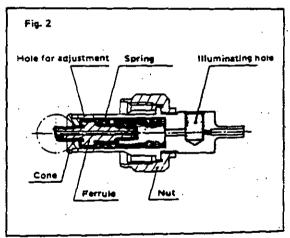
Fig. 2 shows the plug structure. Firstly the fiber is bonded within a metal ferrule. Then the fiber end is polished by means of a special tool, until there is a gap of several μ m of the end-face with reference to the center of the sphere.

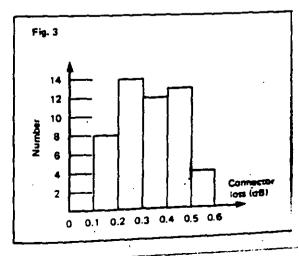
The ferrule together with a cylindrical piece is maintened in its position by a compression spring.

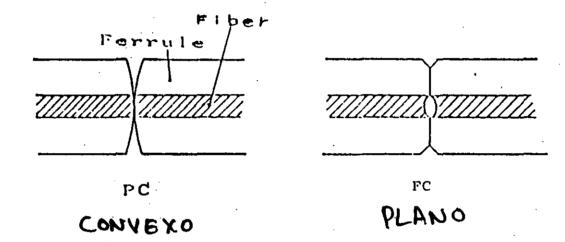
The alignment of the fiber core in relation to the axis of the sphere is achieved by the lateral sliding of the cylindrical piece onto the rear plane of the conical piece.

A simple microscope with a magnification of 900 for visualizing the fiber core, has been constructed. At the front of a lense, there is an adjustment tool including essentially a sphere which is identical to that used for the adaptor. The lense focuses at the center of the sphere. The fiber is illuminated transversally by a powerful white light source through a hole filled with resin at the rear of the plug. After mounting the plug onto the tool, one can observe the image of the fiber core through the occurar. The image consists of several colored diffraction rings.

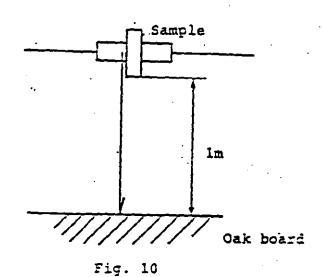

By means of four differential screws one can easily position the center of the fiber core in coincidence with the center of the reticle.


After the adjustment, the cylindrical piece is glued to the cone to ensure the ability to resist shocks. The total assembly time is less than 30 minutes per plug.


The design target was set such that the average lateral offset of two fibers could be maintained under 1.3 μ m and the angular tilt less than 0.4 4 . From the resolution of the microscope lens, better than 0.5 μ m, we can estimate the alignment accuracy to be better than 0.7 μ m per plug. The average lateral and angular offsets should be less than 1.1 μ m and 0.4 6 respectively after the two plugs have been mated.


A diagram of insertion loss messured at 1.3 µm for 50 connectors is shown in fig. 3. The mean loss being 0.34 dB with a standard deviation of 0.14 dB. The repeatability is better than ± 0.1 dB for a minimum of 200 matings.

The connectors were assessed in field triefs and these performances were confirmed. To reduce Fabry-Perrot interference effects and Fresnel loss, the fiber ends were index-matched. The measured level of the connector reflection retrodiffused into the light source is below — 40 dB. The measured maximum transmission fluctuations as a function of the separation between the fiber ends is 0.02 dB instead of 0.7 dB for dry connections. These results show that we have successfully achieved the design of an easily field installable, high quality and low cost singlemode connector.



4.5 Shock

i) Test conditions

Sample (plug-adaptor-plug) is dropped 3 times in the following condition (Fig.10) and fluctuation of transmission light is checked every times. Return loss is measured before and after test.

ii) Results of assessment

Table 1 shows measured examples. These data meet with the specifications.

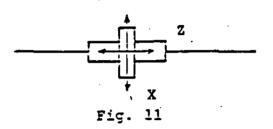
Table 1

Sample	Fluctuation of transpission light			Return loss		
No.	1	2	3	Before	After	Fluctua- tion
1	-0.03	-0.03	-0.01	30	31	+1
2	-0.05	-0.02	-0.03	30	30	0
_ 3	-0.07	-0.06	-0.07	31	31	a
4	-0.01	-0.01	-0.02	31	30 ,	-1
,5	-0.02	-0.02	-0.02	. 31	30	-1
L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> 1</u>

Unit : dis

Date: May 6, 1986

No.: NAGSCD03


PС

4.6 Vibration

i) Test conditions

Sample (plug-adaptor-plug) is vibrated in the following conditions (Fig.11 and Table 2) and insertion loss and return loss are checked before and after test.

Table 2

Amplitude	1.5 mm P-2
Frequency	10 to 50 Hz 2 min./cycle
Direction	X,Z each 3 hrs.

ii) Results of assessment

Table 3 shows measured examples. These data meet with the specifications.

Table 3

Sample	Befor	Before		r	Fluctua	Fluctuations	
No.	Insertion loss	Return loss	Insertion loss	Return loss	Insertion loss	Return . loss	
. 1	0.46	30	0.50	30	+0.04	0	
2	0.18	30	0.17	30	-0.01	0	
3	0.33	29	0.30	29	-0.03	0	
. 4	0.25	30	0.25	31	0.00	+1	
5	0.20	29	0.31	30	+0.09	+1	

Unit : dB

No. : NAGSCD03

PC

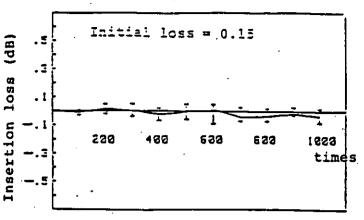


Fig. 7 - 1

MAX value in 10 times Mean " MIN "

Sample No.2

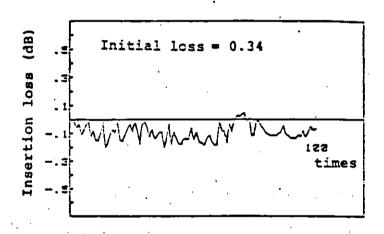


Fig. 7 - c

Sample No.2

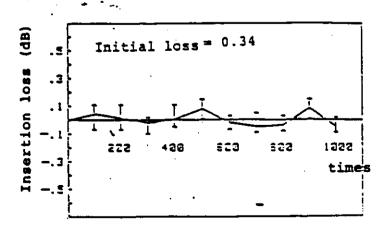


Fig. 7 - d

No.: NAGSCD03

4C

4.4 Bump

i) Test conditions .

Sample (plug-adaptor-plug) is bumped 4,000 times in the following condition. (Fig.8) Insertion loss is checked every 1,000 times and Return loss in the measuring system as shown in Fig.4 (used sample plug instead of master plug) is measured before and after test.

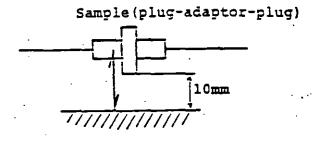
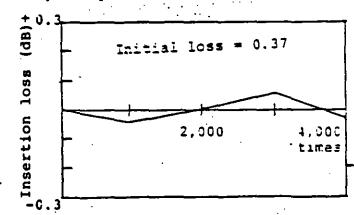



Fig. 8

ii) Results of assessment

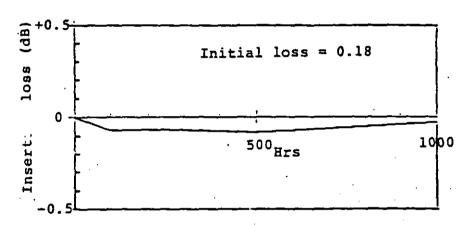
Fig.9 a - e show measured example. These data meet with the specifications.

Sample No. 1

Return loss (dB)					
Before	After	Fluc.			
30	30	0			

PC

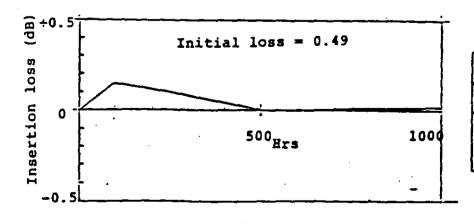
4.12 Dump heat, steady state + fluxidity


i) Test conditions

Sample (plug-adaptor-plug) is set up at 40°C 95%RH in the conditions as shown in Fig.16 and insertion loss is checked after storing for 96, 240, 500, 1,000 hrs. Return loss is measured before and after test.

ii) Results of assessment

Fig.19-a - c show measured example. These data meet with the specifications.

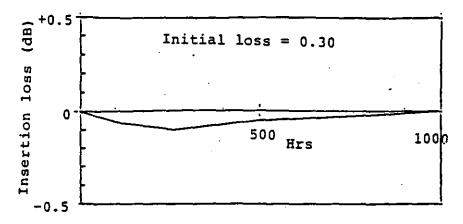

Sample No. 1

Return loss (dB)				
Before	After	Fluc.		
29	. 30	+1		

Fig. 19 - a

Sample No. 2

Return loss (dB)					
Before	After	Fluc.			
23	31	+3			


Fig. 19 - b

Date: May 6, 1986

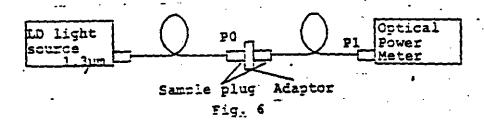
No.: NAG5CD03

His idity + Heat. (CONT.)

Sample No. 3

Return loss (dB)				
Before	After	Fluc.		
30	32	+2		

Fig. 19 - c


PC

4.3 Receatability of connection/disconnection

i) Testing conditions

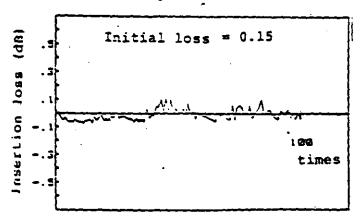
Used the following measuring system as shown in Fig. 6, both-end-plugs are connected/disconnected 100 times and the insertion loss is measured every times.

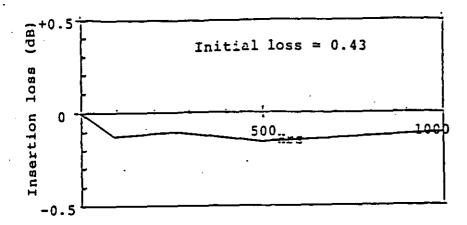
In succession one-end-plug is connected/disconnected 1,000 times and the insertion loss is measured 10 times in total every 100 times.

iil Results of assessment

Fig. 7-a - f show measured examples. These data meet with the specifications.

Sample No. 1

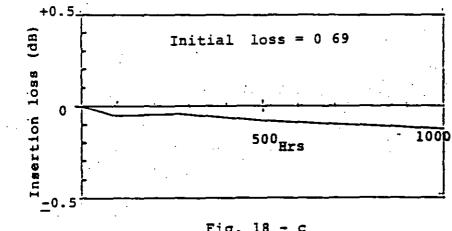



Fig. 7 - a Seiko instruments & electronics Li

NAG5CD03 No.:

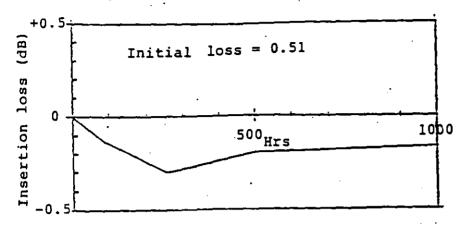
PC.

LOW TEMP. (CONT.)


Sample No. 2

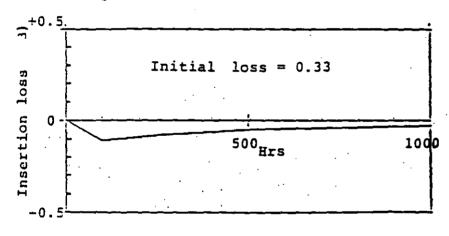
Return loss (dB)					
Before After Fluc.					
28	30	÷2			

Fig. 18 - b


Sample No. 3

Return loss (dB)			
Before	Fluc.		
31	31	0	

High Temp. (cont.)


Sample No. 2

R	Return loss (dB)		
3efor	e After	Fluc.	
30	31	+1	

Fig. 17 - b-

Sample No..3

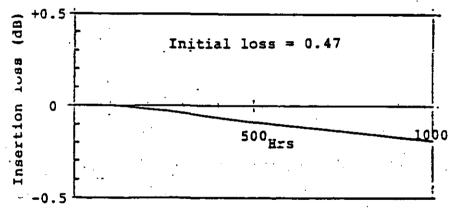
Return loss (dB)			
Before	After	Fluc:	
31	. 31	0	

Fig. 17 - c

No.: NAG5CD03

PC

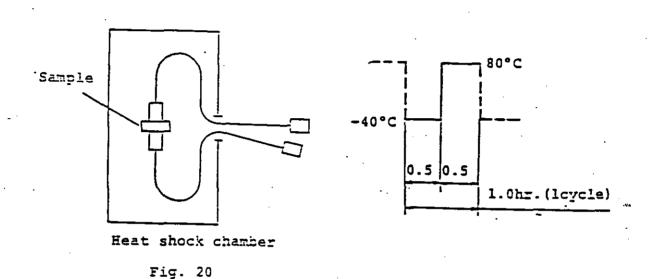
4.11 Low temperature endurance


i) Test conditions

Sample (plug-adaptor-plug) is set at -40°C in the conditions as shown in Fig.16 and insertion loss is checked after storing for 96, 240, 500, 1,000 hrs. Return loss is measured before and after test.

ii) Results of assessment

Fig.18 a - c show measured example. These data meet with the specifications.


Return loss (dB)			
Before After Fluc.			
30	31	<u>+1</u>	

Fic. 18 - a

No.: NAG5CD03

i) Test conditions

Sample (plug-adaptor-plug) is tested 30 cycles of heat shock in the following conditions with terperature pattern as shown in Fig.20 and insertion loss and return loss are measured before and after test.

ii) Results of assessment

Table 9 shows measured example. These data meet with the specifications.

Table 9

	Before		After		Fluctuation	
Sample No.	Insertion loss	Return loss	Insertion loss	Return loss	Insertion loss	Return loss
1	0.29	31	0.22	31	-0.07	0
2	0.14	30	0.19	30	+0.05	0
3	0.23	30	0.29	30	+9.06	, o
. 4	0.12	31	0.15	31	+0.04	0
5	0.11	30	0.56	31	+0.15	<u>+1</u>

Unit : dB

NAG5CD03

4.10 High temperature endurance

i) Test conditions

Sample (plug-adaptor-plug) is set up at 80°C in the . following condition (Fig.16) and insertion loss is checked after storing for 96, 240, 500, 1,000 hrs. Return loss is measured before and after test.

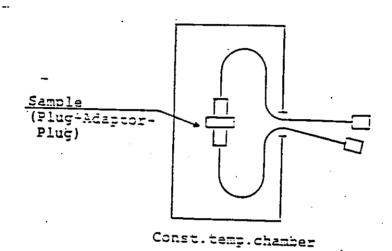
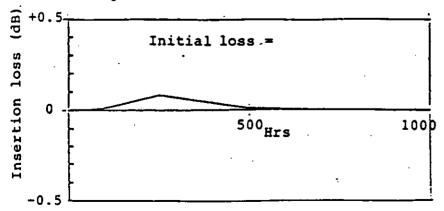



Fig. 16

ii) Results of assessment

Fig. 17 a - c show measured example. These data meet with the specifications.

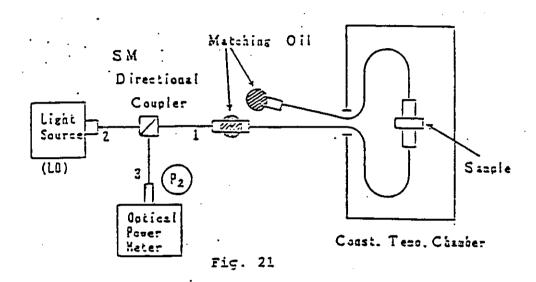
Sample No. 1

Return loss (dB)			
Sefore	After	Flu:.	
29	31	+2	

Fig. 17 - a

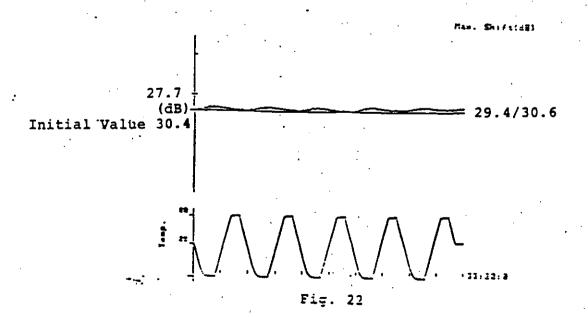
Table 1

Environmental test	Testing Items	Conditions	Fluctuation of insertion loss before and after testing	Fluctuation of return loss before and after testing	
	Temperature cycle	-40°C ~ 80°C, 10 cycle 6.5H/cycle	< 0.2 dB		
	Heat shock	i-20°C ~ 80°C, 50 cycle ,1H/cycle	< 0.2 dB		
	High temperature endurance	80°C, 1000H	< 0.2 dB		
	Low temperature endurance	-40°C, 1000H	< 0.2 dB		
	High temperature and humidity endurance	40°C, 95%RH 1000H	< 0.2 dB		
	Durability for connection	1000 times. The insertion loss is measured by every 100 times	< 0.2 dB		
	Vibration	X & Y Direction, each 3Hrs 10 ~ 55Hz 1.5mm, 2min/cycle	< 0.1 dB	> 27dB	
25	Drop = SHOCK	3 times. Drop from 1m high on the oak board	< 0.1 dB		
Mechanical	Bump	4000 times. Drop from 1cm high	< 0.1 dB	! ! !	
Mech	Twist = TofTtoN	200 times. ±360°, Tension 500g	< 0.1 dB		
; -	Bending	200 times. ±90°, Tension 500g	< 0.1 dB]. -	
	Tensile strength	0 ~ 20kg. Speed of tensile strength	< 0.1 dB		


No: NAGSCD02

PC

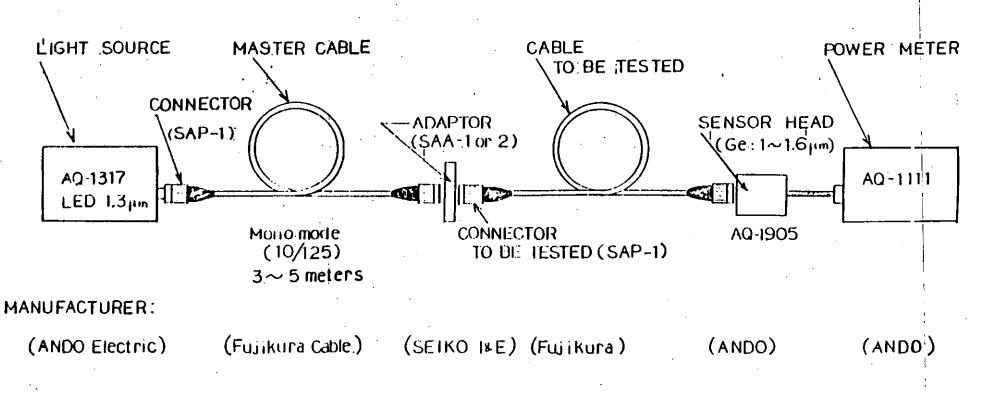
4.14 Temperature cycling


i) Test conditions

Sample (plug-adaptor-plug) is set in the following conditions (Fig.21) and the fluctuation of return light is checked during the test.

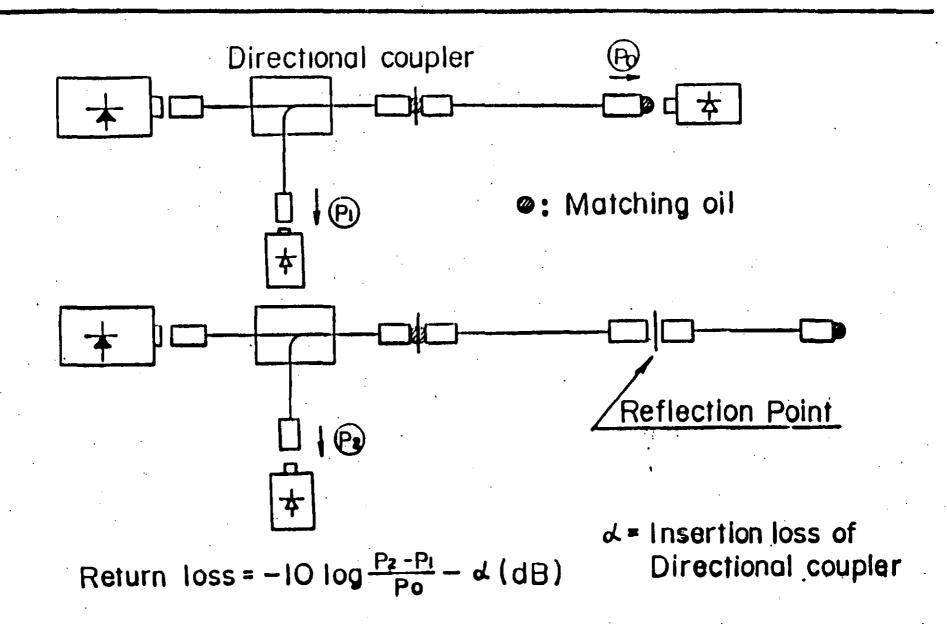
ii) Results of assessment

Fig. 22 shows measured example.


TS U.S.A., INC.

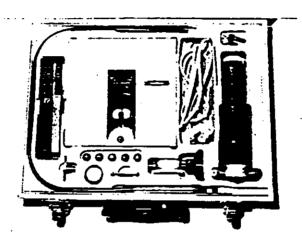
2990 W.

'A BLVD. TORRANCE, C. ORNIA 90505

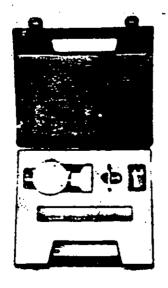

(213) 530 87,77

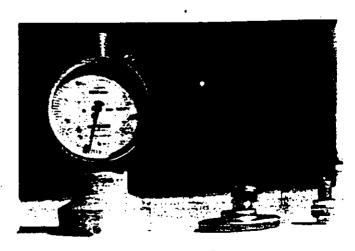
MONO MODE CONNECTOR ATTENUATION MEASUREMEN

(SEIKO INE)


MEASURING METHOD OF RETURN LOSS

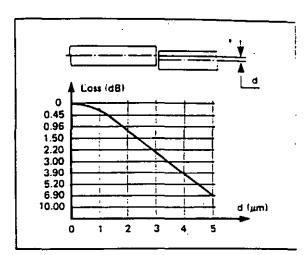
VFO-DF ASSEMBLY KIT


RA	Di	AL	سا
----	----	----	----


VOLTAGE	PART NUMBER
110 V	F 780 116 000
220 V	F 780 117 000

OPTIONAL ASSEMBLY KIT FOR SLANT POLISHING DF SERIES CONNECTORS

BASE PULIDO

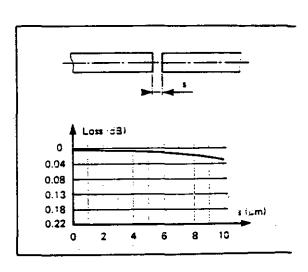

HIGH PERFORMANCE RADIALL SINGLEMODE FIBER CONNECTOR

VFO SERIES

'NNECTOR RELATED LOSSES

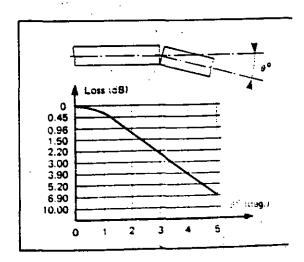
Lateral displacement causes the greatest loss in a connection.

The OPTABALL SYSTEM enables the centering of the two fibers within 1 μm .

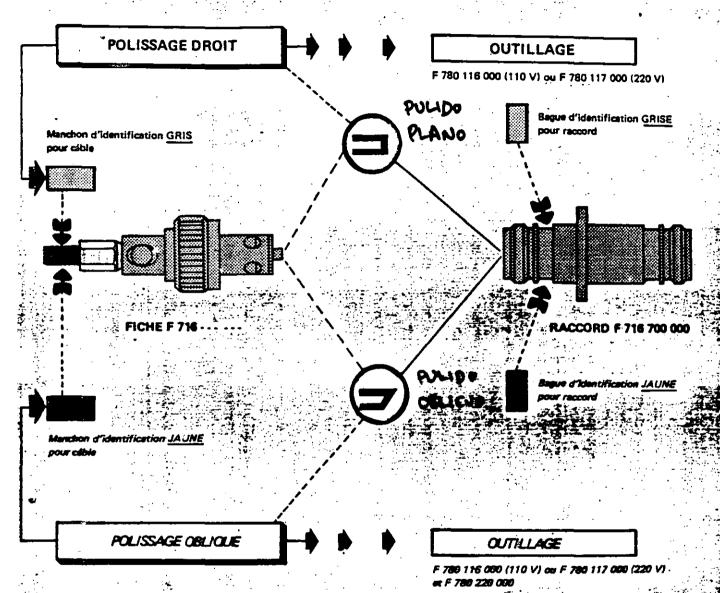

The gap between the two fibers yields two types of losses:

- Fresnel loss for two glass fibers separated by air is about 0.32 dB.

This loss is reduced by replacing the air with index matching.


- Loss due to the beam expansion

The OPTABALL SYSTEM allows a distance between the two fibers of 10 µm.


Angular misalignment also causes loss.

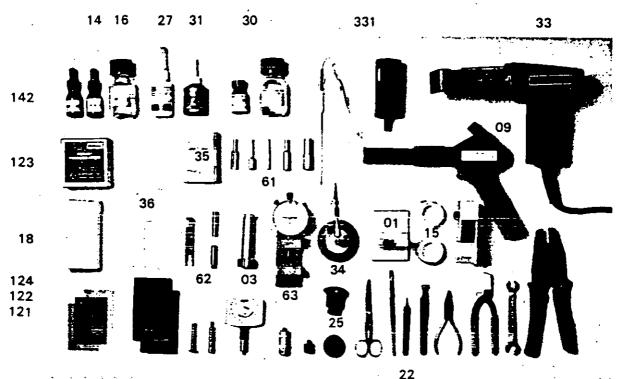
The OPTABALL SYSTEM maintains fiber alignment within 0.4°.

All the tests carried out on the RADIALL singlemode connectors which respect the characteristics shown above give an average loss < 0.4 d8.

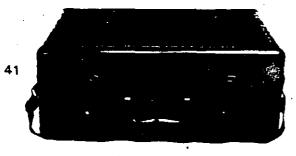
SERIE VFO-DF

NB : L'opsion policiage oblique permet également l'etilliacion de le gamme d'otténuateurs fixes et variables.

CAI	RACTÉRISTIQUES	Avec GEL OPPANOL 83	Sens GEL
 Folissage droit (repárage gris)	OPTIQUES - Perton d'Insertion Inserte d'un principal de la company de l	≤04d8.00 ≤-20d8 -20°C,+60°C	
Polissage oblique (repárage jaune)	OPTIQUES RETULTAS - Partes d'Insertion INSERTAS - Puissance réfléchie Letorne CLIMATIQUES - Température d'utilisation		< 0,7 d8 typ. < -55 d8. - 25°C. + 70°C



TERMINATION KITS FOR FIBRE OPTIC CONNECTORS


Z - 211 to

Z-217

CONTENTS OF TERMINATION KITS FOR FIBRE OPTIC CONNECTORS

11 02 63 041 05 06 13 24 32 23 28 21 26 51

The illustrated parts are subject to change without notice

External dimensions: 460 x 340 x 180 mm Weight: 6,5 Kg. (approx.)

- Termination kits allow assembly of more than 10'000 ferrule plugs with appropriate handling of the high precision tools.
- The consumable components allow approx. 100 ferrule plugs to be terminated.

Selection of the unit in fonction of the connector type

Unit part number	Z - 211	Z - 212	Z - 213	Z - 214	Z - 215
Connector type	GFS - 3	GFS - 13/A	GFS-13/21	GFS - 13	GFS - 25
	MMS - O	MMS-10/A	GFS-13/22	MMS - 10	

		1			
Unit nart number	7 - 21 6	7 - 217	7 - 218	1.	•

Center axis of ferrule outer dia.

Fiber Ferrule

O

AB

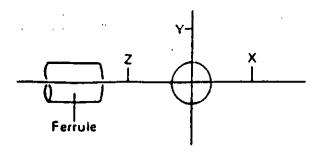
R

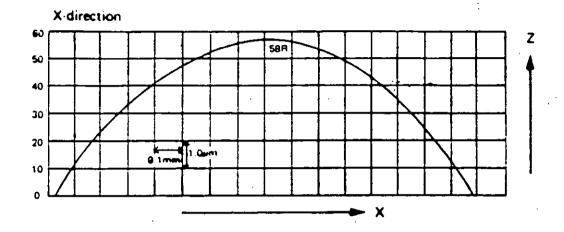
R

AB

Z

d


d


point O:Center of convex curved surface

R = 60 mm

ΔΘ	ď
0.15 ^{deş}	0.09**

The relation between $\Delta \theta$ and d

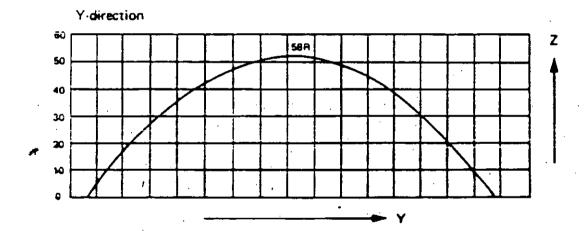


Fig. 4 The end surface shape of the convex curved surface

No.: NAGSCD03

4.7 Bending moment

i) Test conditions

Sample—(plug-adaptor-plug) is tested in the following conditions (Fig.12 and Table 4) and fluctuation of transmission light is checked before and after test and return loss is measured before and after test.

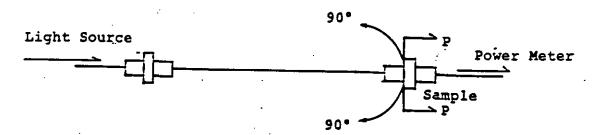


Fig. 12

Table 4

Tension (P)	500g
Cycling time	6 sec/cycle
Operation times	200 times

ii) Results of assessment

Table 5 shows measured examples. These data meet with the specifications.

Table 5

Sample	Fluc. of trans-	Return loss		
No.	mission light	Before	After	Fluc.
1	0.00	32	30	-2
2	0.00	.31	31 -	0
3	0.00	33	30	-3
_ 4	0.00	36	30	-6
5	0.00	31	30	-1

No.: NAG5CD03

4.9 Tensile strength

PC

i) Test conditions

Sample (jumper cable) is tested in the following conditions (Fig.14) and fluctuation of transmission light'is checked during test and after test.

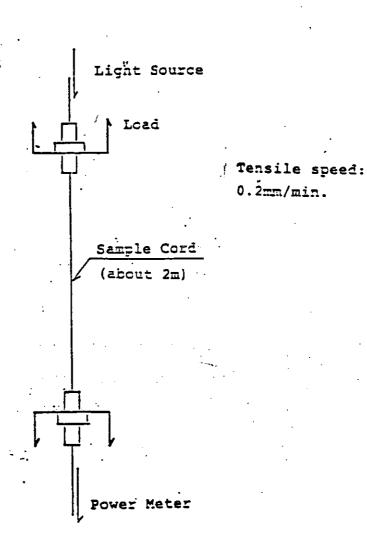
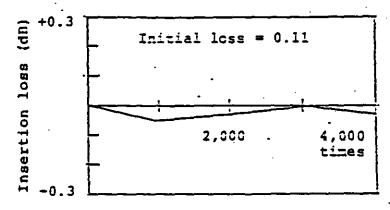


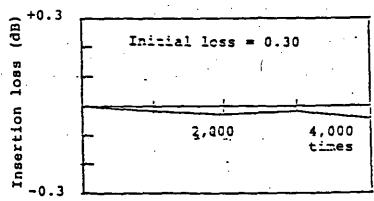
Fig. 14


No.: NAG5CD02

	•	_ <u> </u>	·
ਰਿ ਰਿ ਰਿ ਰਿ ਰਿ ਰਿ ਰਿ ਰਿ ਰਿ ਰਿ ਰਿ ਰਿ ਰਿ ਰ	Initia	1 loss = 0	.13
loss			
Insertion	-	2,000	4,000 times
Ins	. 3	·	

Return loss (dg)				
Before	hiter	. Flue.		
30	30	o		

Fig. 9 - b


Sample No. 3

Return loss (dB)				
Before	After	Fluc.		
30	30	.∕ 0 .		

Fig. 9 - c

Sample No. 4

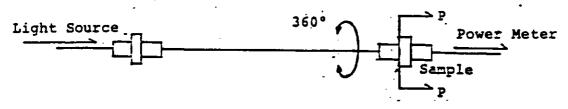
Return loss (dB)				
Before	After	Fluc.		
31	32	+1		

Fig. 9 - d

Sample No. 5

+0.3		Initial loss = 0	.35
1088	-		·
Insertion		2,300	4,000 times

Return loss (dB)						
3efcrt	After	Fluc.				
30	31	+1				


No.: NAGSCD03

PC

4.8 Tortion

i) Test conditions

Sample (plug-adaptor-plug) is tested in the following conditions (Fig.13 and Table 6) and fluctuation of transmission light is checked before and after test and return loss is measured before and after test.

- Fig. 13

Table 6

Tension (P)	500g
Cycling time	1 sec/cycle
Operation times	200 times

ii) Results of assessment

Table 7 shows measured examples. These data meet with the specifications.

Table 7

Sample No.	Fluc. of trans-	Reti		
	mission light	Before	After	fluc.
1	0.00	31	32	+1
Ż	0.00	30	31	+1
3	0.00	. 33	33	0
4	0.00	35	36	+1
- 5	0.00	31	31	0

Unit : dB .

No. : NAG5CD63

TENSILE-STRENGTH-(CONT.)

ii) Results of assessment

Table 8 shows measured examples. Fig.15 shows typical stress-strain curve.

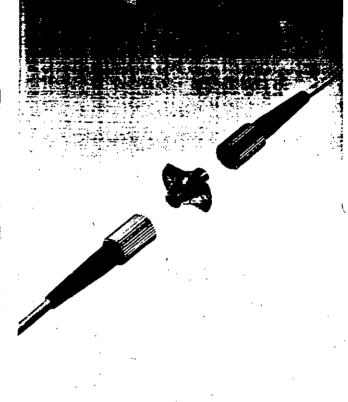
Table 8

61-	Fl	uctuation o	of transmis	sion ligh	t
Sample No.	0kg	—→ 5kg —	→ 10kg —	→ 20kg -	} 0kg
1	0	. 0	0	0	0
2	0	0	÷0.01	+0.01	0
3	0	-0.01	-0.01	-0.01	. 0
4	. 0	0	0	0	0
. 5	0	0	-0.02	-0.05	-0.05

Unit : dB

SEIKO I

Single Mode D4 Compatible Type Connector

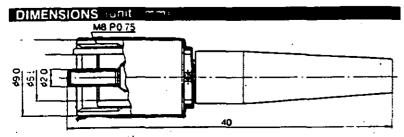

Plug: SDP-1, Adaptor: SDA-1

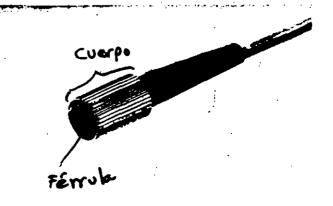
FEATURES

- Using ceramic capillary in ferrule and slit sleeve in adaptor, which are highly experienced in FC type connector, high reliability has been performed.
- With fiber excentricity adjusting function, on the spot assembly can be realized
- Polishing (PC and flat) can be performed by our Fiber Polisher OFL-1B.-2.
 6 series.

SPECIFICATIONS		+ Pati
Plug	!	SDP-1
Applicable fiber cord		Single fiber (Fiber dia. di 125um) Fiber cord dia. a3mm
Connection loss	:	<1dB (SM10/125, λ=1 3μm) Ασαρίος : SDA-1
iting temperature range		0 to 60°C
rection durability		more than 1000 times

Items	Test conditions	Performance	
Connection loss	SM 10, 125 liber, λ=1.3μm	<1.0dB	
CONNECTION 1022	LED Light souce (RM Temp)	21.00B	
Connection durability	more than 1000 times	<1 2aB	
Vibration	10~55Hz 1.5mm P-P	<1.2d B	
Tensile	10kg	/ <1.2dB	
Temperature cycling	-10~60° 10 cycles	<1 2dB	
High temperature	80°C, 240 hours	<1 2dB	
Low temperature	-40°C. 240 nours	<1.2 aB	
High humidity	40°C, 95°4RH, 240 hours	. <1.2dB	




Not: Data changes according to the fiber speciations.

SDP-1 D4 COMPATIBLE PLUG

FEATURES

- Easy on the spot assembly with only 3 parts of ferrule, housing and rubber hood.
- Conform to JIS standard.

Available as

Parts for field termination with Z - 211-kit.

Fibre type

9/125 micron singlemode.

Alignment method

High precision annular crimp centres cladding within ferrule.

Ferrule rotates (12 pre-set positions) for optimum positioning.

Fibres in contact. Perpendicular fibre end faces.

Construction/ Materials Ferrule: 0 3,5 mm, Tungsten carbide with spiral air vent,

spring loaded with 10 N spring force.

Alignment sleeve: Tungsten carbide, solid bush.

External body parts: Nickel silver, PVC cable boot for bend

protection.

Connection with threaded nut (M 9 x 0,5 mm).

Versions available

- Standard: for secondary coated fibres (tight buffered or loose

tube).

Compatibility

With all DIAMOND connectors Ø 3,5 mm (singlemode).

Technical data:

Insertion loss	1 dB typical (9/125 SM, 1300 nm, room temperature, dry)
Repeatibility	± 0.5 dB
Service life	min. 1000 matings without change of insertion loss
Return loss	12 dB typical
Operating temperature	-20° / +80° C
Storage temperature	-40° / + 90° C
Strain relief	200 N (light interruption at 10 N)

Technical data is subject to change without notice

HIGH PERFORMANCE SINGLEMODE CONNECTOR with index matching getter

RADIALL **OPTABALL** system and singlemode fiber

A high performance series intended for singlemode fiber transmission systems and all applications requiring low insertion loss and high bit rates.

Characteristics

optical:

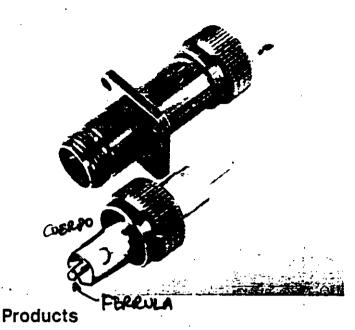
Typical insertion loss: <= 0.3 dB. Typical reflected power # <= -35 dB. (with OPPANOL B3 index matching gel).

mechanical:

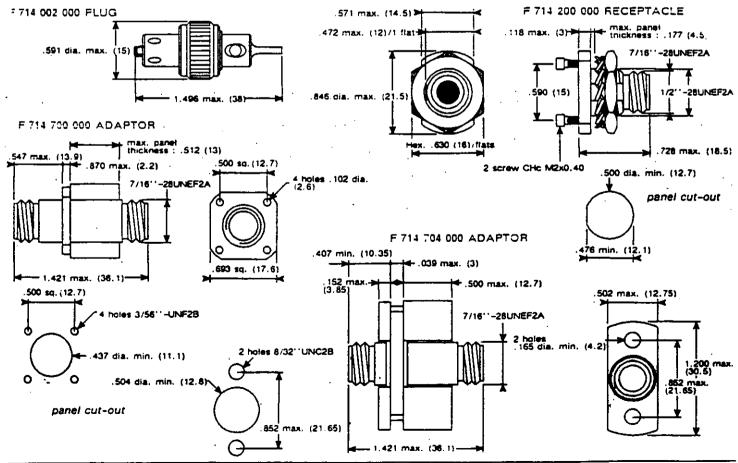
Matino life: 250 operations.

Vibrations: 10-55 Hz 1.5 mm peak to peak.

environmental :

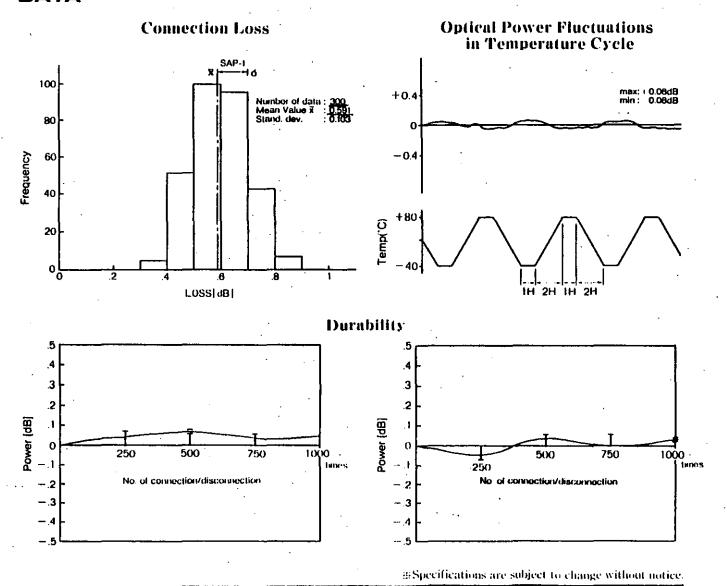

Temperature range : -20°C to +60°C.

Damp heat: 95 % HR 4 days.


material : .

Stainless steel.

Black chrome-plated alloy.


Crimp straight plugs - Adaptors - Receptacles - Rack and panel connectors - Patchcords and Pigtails mounting tool.

101, Rue Philibert Hoffmann - Z.I. Ouest - 93116 ROSNY - SOUS - BOIS Cedex (France) Telephone: (1) 48 54 80 40 - Fax: 48 54 63 63 - Telex: RADIA A 220673 F

DATA

SPKO NSKO VENKS

A. REPEATABILITY: Through 100 times of connection/disconnection insertion loss is measured.

FLUCTUATION + : LOSS DECREASE

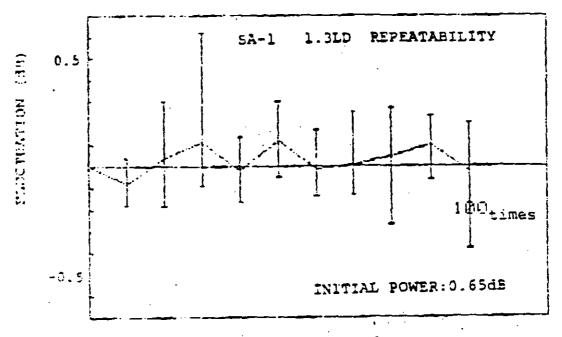


Fig. 3

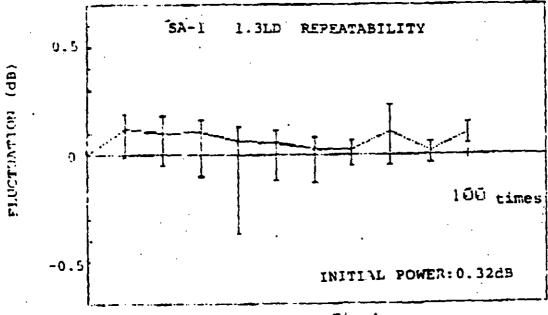
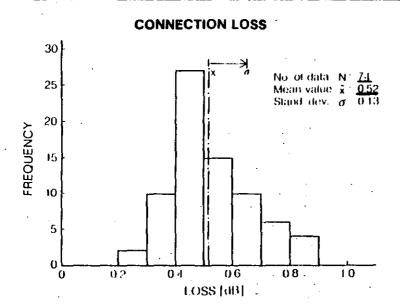
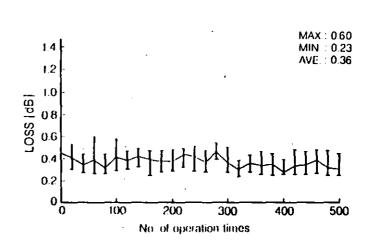
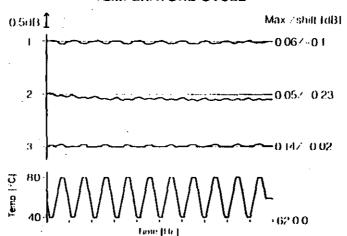




Fig. 4



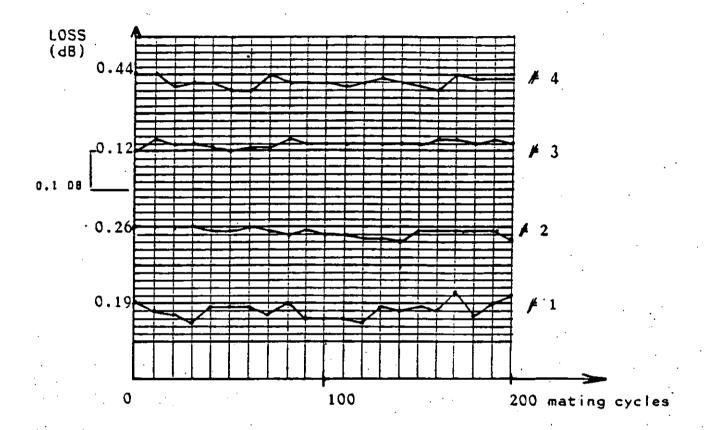
DURABILITY

OPTICAL POWER FLUCTUATIONS IN TEMPERATORE CYCLE

RADIALL

III - MATING/UNMATING REPEATABILITY

Four connectors had been tested. The total deviations
(Δα) = α - α were found less than 0.10 dB for


πax πax πin
100 mating/unmating cycles of both plugs.

Each plug of a connector was undergone 10 cycles and then the loss was noted. In total 20 measurements for 1 connector.

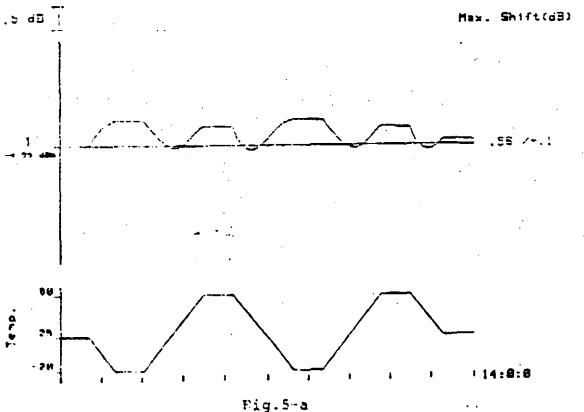
TABLE 2 - REPEATABILITY

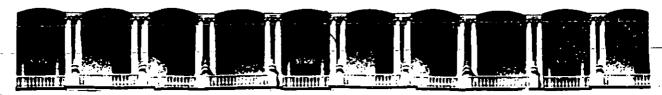
: Connector	: : a (initial loss)	(Δα) _{max}
: :	: 0.19 : 0.26 : 0.12 : 0.44	0.08 0.04 0.03 0.04

Figure 2 show these results:

CONECTORES PARA FIBRA OPTICA.

	и и	G M 1	ם _, G	
TIPO	FC	- D4	RADIALL	DIAMOND
PRECIO	10 USD	14 USD	+ 100 USD	120 USD
ATENUACION	0.5 dB	< 1 dB	0.4 68	0.8 dB
REPETIBILIDAD	1,000	1,000	200 F/1dB	1,000 6/2 48
PERDIDAS DE RETORNO	30 dB		· 30 dB	12 d5
No.DE PZS.P/ENSAMBLE	11	7	4	13


M'ULTIMODO'				
TIPO	SMA	SC	ST	MINI BNT
PRECIO	a usp	12 USD	7 USD	9 USD
ATENUACION	< 1 dB	< 0.5 dB	< 0.8 dB	< 1.0 dB
REPETIBILIDAD	500 /.2 dB		1,000 /.2 dB	1,000 / .2 dB
No.DE PZS.P/ENSAMBLE	5	9	5	5


TEMPERATURE CYCLE: Through 2 cycles of temperature from В. -20°C to 80°C, insertion loss is measured.

> The difference of loss fluctuation due to light source (LD & LED) is shown in Fig. 5 a & b and Fig. 6 a & b

FILUCTUATIONS of OPTICAL POWER

(1.3 LD Source)

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA CURSOS ABIERTOS TELECOMUNICACIONES VIA FIBRAS OPTICAS

INTERCONEXION DE REDES

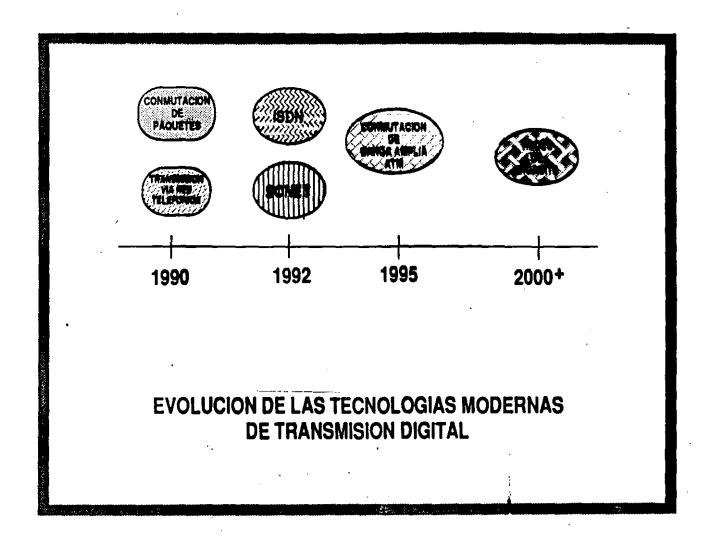
M. EN C. COVARRUBIAS ROSALES

Patacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285 Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

INTERCONEXION DE REDES DE COMUNICACIONES VIA FIBRAS OPTICAS

DAVID COVARRUBIAS ROSALES

DEPARTAMENTO DE ELECTRONICA Y TELECOMUNIOCACIONES


CICESE

ENSENADA, BAJA CALIFORNIA

MEXICO

INTRODUCCION.

Los requerimientos de ancho de banda por parte de los usuarios de servicios de telecomunicaciones, han estimulado el desarrollo de nuevas tecnologías con capacidad de manejar información paquetizada de voz, datos y video a través de redes de comunicaciones de cobertura y banda amplia. Estas redes se están moviendo de los clásicos 64 Kbps (ó E1/T1 fraccional) hacia los 150 Mbps. Por otro lado se ha incrementado fuertemente la confiabilidad de la comunicación. ya que la probabilidad de error ó relación de error de bit (BER) ha pasado de un valor de 10⁻⁶ a 10⁻⁹. Otro aspecto importante, ha sido el desarrollo y aplicación de nuevas técnicas de compresión de voz y video, que han permitido su manejo en unidades fundamentales de información llamadas paquete. Los criterios para poder llevar a cabo esta integración de servicios, de características diferentes, se pueden resumir en [1]: 1) asignación dinámica del ancho de banda, 2) el empleo de un medio de transmisión no ruidoso ó virtualmente limpio de error, 3) protocolos de transporte orientados a aplicaciones sensibles al tiempo. La figura 1 muestra las expectativas que se tienen para los próximos 10 años acerca de la evolución de las tecnologías modernas de transmisión digital que cumplen con los tres criterios anteriores.

REDES DE COBERTURA Y BANDA AMPLIA

COBERTURA:

- * URBANA
- * REGIONAL
- * NACIONAL
- * INTERNACIONAL

CAPACIDAD:

- * DATOS SOLAMENTE
- * VOZ, DATOS e IMAGENES
- * VOZ, DATOS Y VIDEO

**** REDES MULTIMEDIA ****

MOTIVACION PARA EL EMPLEO DE ESTE TIPO DE REDES:

- * MAYOR VELOCIDAD DE TRANSMISION
- * OPTIMIZACION DEL ANCHO DE BANDA
- * MAYOR AREA DE COBERTURA
- * INTERCONECTIVIDAD UNIVERSAL
- * APLICACIONES MULTIMEDIA

REDES RAPIDAS DE COMUNICACIONES

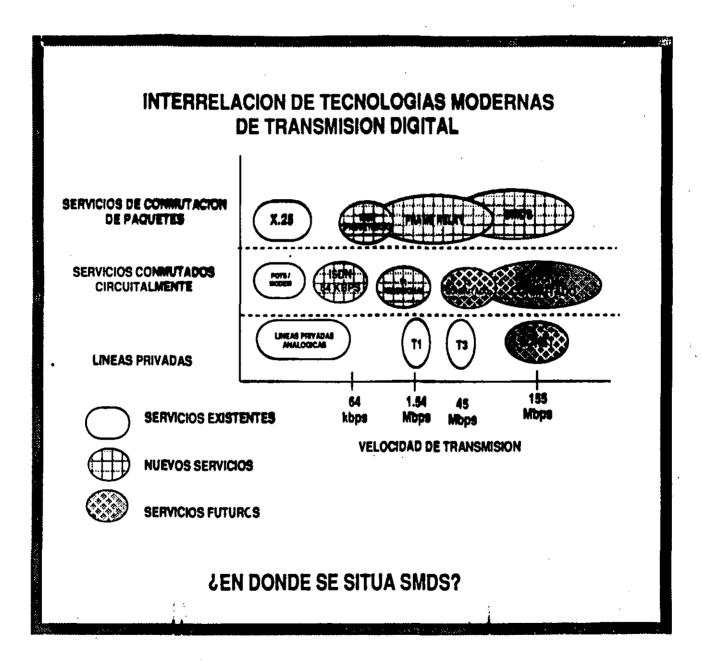
FDDI I/II.

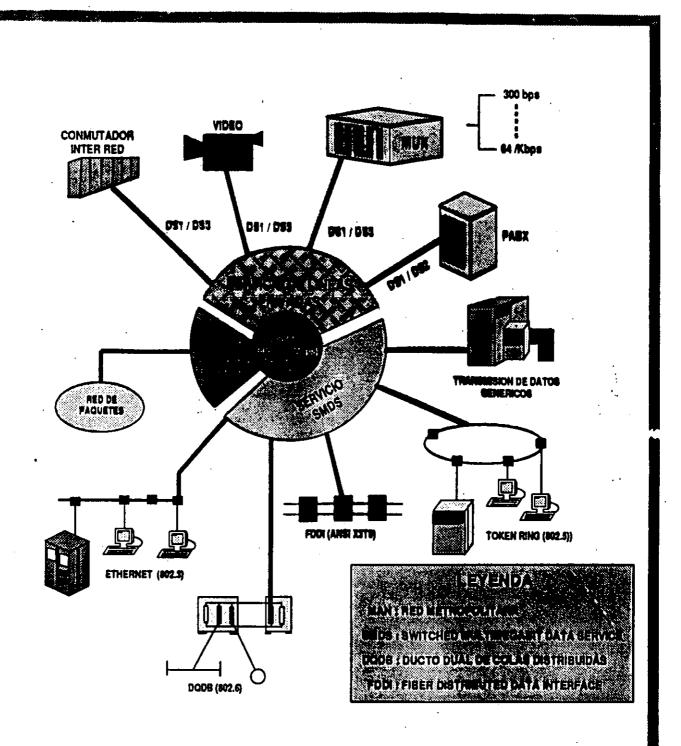
La interfaz de datos distribuídos por fibra óptica (FDDI: Fiber Distributed Data Interface) es un estándar de la ANSI (American National Standar Institute) establecido en 1985 por el comité X3T9.5. FDDI se define como una red local de datos de doble anillo de fibra óptica, la cual soporta una velocidad de 100 Mbps. La primera versión de FDDI proveé sólamente un servicio orientado a paquete, mientras que FDDI-II al proporcionar un servicio adicional de orientación a conexión permite el manejo de voz, datos y video. FDDI-II representa una red ideal para la interconexión de PBX's inteligentes, ó bien para procesos de control aplicado de alto rendimiento en la industria (CAD/CAM). FDDI-II soporta el manejo de tráfico isócrono (retardo constante), síncrono y asíncrono (restringido y no restringido) de bajo retardo (voz y video) y de retardo constante (datos).

MAN.

La red de área metropolitana (MAN:Metropolitan Area Network), es un estándar en proceso de consolidación por el grupo 802.6 de la IEEE. Las MAN's están facultadas para transportar simultáneamente de manera integrada: voz, datos y video, permitiendo a un mayor número de estaciones comunicarse entre sí, a mayores velocidades que las que ofrecen las redes locales de datos. Las características generales de este tipo de red son: velocidades de transmisión mayores a 100 Mbps, gran cobertura de área geográfica -desde unos cuantos hasta cientos de Km-, soporte para un gran número de estaciones, aproximadamente 1000 nodos, una tasa de error de 10-9 y capacidad para cursar tráfico isócrono y asíncrono.

BISDN.


La red digital de servicios integrados de banda amplia (BISDN: Broadband Integrated Services Digital Network) es una evolución de la ISDN, BISDN es un estándar que está en desarrollo por el grupo XVIII de la CCITT. El objetivo de esta red es proporcionar los servicios integrados de audio, video y datos en la misma red.


Para BISDN se utilizará el modo de transferencia asíncrona (ATM), el cuál mediante una multicanalización asíncrona por división de tiempo, coloca el flujo de información en bloques de tamaño fijo llamadas celdas. ATM no proporciona una capacidad fija de canal, sino que maneja canales virtuales con la capacidad requerida.

RED SMDS.

Como complemento al tipo de redes rápidas descritas anteriormente, existe, con las mismas características de ambiente multimedia y altas velocidades, la red de conmutación rápida de paquetes conocida Servicio como de (SMDS:Switched Multimegabit Conmutado Multimegabit Service). SMDS es un servicio diseñado para transportar paquetes (en modo datagrama) empleando tecnología digital existente T1, T3 y/o SONET. Las características básicas de SMDS son: 1) servicio público de conmutación rápida de paquetes, 2) servicio de interconexión RLD/RCA, 3) acceso desde 1.5 hasta 155 Mbps (acceso tipo SONET) d) servicios de banda amplia(voz datos y video). El tráfico que manejará una red SMDS será de tipo asíncrono, es decir el protocolo que emplea es el ATM ó Cell Relay.

La figura 2 muestra la interrelación que existe entre las tecnologías modernas de transmisión digital. Por su parte, la figura 3 muestra como pueden coexistir dichas tecnologías en un ambiente urbano.

ALTERNATIVAS TECNOLOGICAS A OFRECER POR COMPAÑIAS TELEFONICAS

SONET

- * A PARTIR DE SONET (SYNCHRONOUS OPTICAL NETWORK) EN LOS ULTIMOS 5 AÑOS HAN EVOLUCIONADO UNA SERIE DE ESTANDARES; QUE HAN PERMITIDO UNA FUERTE EVOLUCION A CIERTAS APLICACIONES; PARTICULARMENTE EN LA TELEFONIA.
- * SONET ES EL MECANISMO DE TRANSPORTE QUE SE ESPERA PREDOMINE A PARTIR DE ESTA DECADA, CON EL CUAL SE TENDRAN VELOCIDADES DE TRANSMISION DEL ORDEN DE GIGABITS.
- * SONET ES UN CONJUNTO DE ESTANDARES QUE DEFINEN LOS PARAMETROS FÍSICOS Y REQUERIMIENTOS DE MECAMATICA (HARDWARE) ASOCIADOS A LAS CAPAS FÍSICAS Y DE ENLACE.
- * A TRAVES DE SONET SE ESPERA UN FUERTE CAMBIO EN LAS REDES PUBLICAS COMO PRIVADAS, YA QUE LA DEMANDA PARA ESTAS SON CADA VEZ MAYOR CAPACIDAD Y VELOCIDAD, CON LO QUE SONET PUEDE SATISFACER ADECUADAMENTE TALES REQUERIMIENTOS.
- * SONET OFRECE DOS VENTAJAS SUMAMENTE ATRACTIVAS EN COMPARACION CON LAS REDES ASINCRONAS: UNA INTERFAZ OPTICA ESTANDAR, Y UN CAMPO PARA LA ADMINISTRACION DE LA RED.
- * LO ANTERIOR REPRESENTA UNA INDEPENDENCIA A INTERFACES PROPIETARIAS DE EQUIPO, Y LA POSIBILIDAD DE MANEJAR UN ANCHO DE BANDA MAYOR DE LOS TOPES ESTABLECIDOS POR LOS FABRICANTES DE EQUIPO T1/E1
- * DADA LA GRAN CAPACIDAD DE SONET, ASI COMO SU FLEXIBILIDAD PARA LA ADMINISTRACION, PERMITE LA CREACION DE REDES INTELIGENTES CON CAPACIDAD DE ASIGNAR DINAMICAMENTE EL ANCHO DE BANDA REQUERIDO, SEGUN LA APLICACION Y JERARQUIA. ES DECIR, LA CREACION DE REDES QUE PUEDEN SOPORTAR APLICACIONES MULTIMEDIA.

SONET COMO UN ESTANDAR

- * EN 1985 LA COMPAÑIA TELEFONICA BELLCORE PROPUSO EL CONCEPTO SONET T1X1 (JERARQUIA DIGITAL Y SINCRONIZACION)
- * EN JUNIO DE 1988 FUE APROBADO COMO UN ESTANDAR POR LA ANSI T1.105 Y ANSI T1.106 LO QUE SE CONOCIO COMO ESPECIFICACION SONET FASE I. TIEMPO DESPUES LA CCITT LO RECONOCIO COMO UN ESTANDAR BASADO EN OC-3, LA CUAL PERMITIA A LA NORMA EUROPEA MULTICANALIZAR A 34 Mbps Y A LA NORMA AMERICANA A UNA SEÑAL DS-3.
- * LAS ESPECIFICACIONES DEL EQUIPO OPTICO ASOCIADAS A LA FASE I ESTAN PERFECTAMENTE ESTABLECIDAS Y COMERCIALIZADAS. LA FASE II SE EMPIEZA A MANEJAR SIN QUE ESTEN AUN ESTABLECIDAS LAS CARACTERISTICAS DEL EQUIPO, Y LA FASE III SE ENCUENTRA BAJO ANALISIS POR LOS GRUPOS DE ESTANDARIZACION.
- * LAS ESPECIFICACIONES DE SONET EN SU FASE I SE REFIEREN A:

FORMATOS Y VELOCIDADES DE LA SEÑAL

MULTICANALIZACION

ELEMENTOS DE RED

OPERACION DE LA RED

INTERFACES OPTICAS

* SONET SOPORTA VELOCIDADES DE TRANSMISION DESDE 51.84 Mbps (STS-1 SYNCHRONOUS TRANSPORT SIGNAL) HASTA LOS 2.488 Gbps (OC-48 OPTICAL CARRIER), EXTENDIBLE HASTA 13 Gbps.

- * DE UNA MANERA SIMPLIFICADA, SONET ENVUELVE VARIAS SEÑALES DIGITALES COMUNES EN UNA SEÑAL OPTICA DE ALTA VELOCIDAD. DICHAS SEÑALES DE ENTRADA PUEDEN SER DEL TIPO DS-0, DS-1, DS-3, U OTRAS, LAS CUALES PRIMERAMENTE VAN A SER MULTICANALIZADAS EN LA SEÑAL BASICA SONET STS-1.
- * SEÑALES MULTIPLOS DE STS-1 SON ENTONCES MULTICANALIZADAS SINCRONICAMENTE HACIA VALORES MAYORES DE STS-n, PARA SER CONVERTIDAS DESPUES EN SEÑALES OC-n.
- * EL MARCO BASICO SONET STS-1 ESTA FORMADO POR UNA MATRIZ DE 90 COLUMNAS POR 9 RENGLONES , LO CUAL DA UN TOTAL DE 810 OCTETOS. ESTO DA UNA GRAN FACILIDAD Y EFICIENCIA PARA EMPAQUETAR LAS VELOCIDADES DE TRANSMISION TANTO EUROPEAS, COMO AMERICANAS EN UNA "CARGA UTIL" DE 783 OCTETOS.
- * EN UN CAMPO ESPECIFICO DENTRO DEL MISMO PAQUETE BASICO SONET, ESTA CONTENIDO EL ENCABEZADO DE 27 OCTETOS. DICHO ENCABEZADO CONTIENE ENTRE OTRAS COSAS, LA INFORMACION DE EMPAQUETAMIENTO, MONITOREO DE ERROR EN LOS CANALES E INFORMACION DE IDENTIFICACION DEL FORMATO.
- * EL ENCABEZADO ADEMAS, PERMITE LA IDENTIFICACION DE LA RED Y LA ADMINISTRACION Y MANEJO DE SEÑALES INDIVIDUALES DS-0 SIEMPRE EN UN HAZ DE DATOS SONET EN GIGABIT.

PARAMETROS OPTICOS ASOCIADOS A SONET

* SONET EN SU FASE I ESTA ORIENTADO A GRANDES DISTANCIAS; POR LO QUE, EL EQUIPO OPTICO ASOCIADO A LA RED SONET ESTA FORMADO POR LA COMBINACION LASER-FIBRA MONOMODO-APD @ 1300 nanómetros.

EL IMPACTO DE SONET

A CORTO PLAZO:

- * SONET SE PERFILA COMO ALTERNATIVA MUY ATRACTIVA PARA LOS PRESTADORES DE SERVICIOS DE TELECOMUNICACIONES (CARRIERS), YA QUE LES PERMITE INTERCONECTAR EQUIPO DE VARIOS VENDEDORES Y NO EXCLUSIVAMENTE DEL EQUIPO PROPIETARIO ASOCIADO A T1/E1.
- * SONET TAMBIEN PROPORCIONA SUFICIENTE CAPACIDAD DE PROCESAMIENTO (OVERHEAD) DE COMUNICACIONES, PARA MANEJAR LAS COMPLEJAS TAREAS DE ADMINISTRACION DE LA RED QUE ENFRENTAN LAS COMPAÑIAS OPERADORAS DE SERVICIOS.
- * LA FLEXIBILIDAD DE ACCESO A LA CARGA UTIL (PAYLOAD) DEL MARCO BASICO SONET, EMPLEANDO LA FIBRA OPTICA, LE PERMITEN UNA GRAN APLICACION EN AMBIENTES DE NEGOCIOS Y RESIDENCIALES

A LARGO PLAZO:

- * LAS EXPECTATIVAS SON DE QUE SONET TAMBIEN BRINDE LOS SERVICIOS DE COBERTURA AMPLIA, TANTO PARA REDES PUBLICAS COMO REDES PRIVADAS.
- * LOS FUTUROS SERVICIOS OFRECIDOS POR BISDN, O CUALQUIER OTRO SERVICIO OFRECIDO A 150 Mbps, REQUERIRAN UNA CONEXION DE FIBRA OPTICA A LA PARTE FINAL DEL EQUIPO DE USUARIO, Y LA IDEA ES QUE PRECISAMENTE SONET SEA LA PLATAFORMA DE TRANSPORTE PARA ESTE TIPO DE SERVICIOS.

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA CURSOS ABIERTOS TELECOMUNICACIONES VIA FIBRAS OPTICAS

SENSORES DE FIBRA OPTICA

ING. SILVIA BARRIOS

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285 Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

SENSORES VIA FIBRA OPTICA.

Ing. Silvia Barrios Velázquez.

I INTRODUCCION.

Hasta ahora, la principal aplicación de las fibras ópticas permanece en el área de las telecominicaciones. Sin embargo, por sus grandes bondades (como gran ancho de banda, peso y tamaño reducidos, inmunidad a las interferencias electromagnéticas, por mencionar algunas), también se han aplicado a otros campos : el control automático, la instrumentación electrónica y en el campo de los sensores.

De los campos de aplicación mencionados, veremos únicamente el de los sensores vía fibra óptica.

II DEFINICION.

Un sensor es un elemento el cual cambia de algún modo a causa de alteraciones externas; por ejemplo, cambios en el medio ambiente, cambios químicos o cambios dimencionales.

III REQUISITOS PRELIMINARES PARA LA ELECCION DE UN SENSOR VIA FIBRA OPTICA.

El campo de los sensores ópticos es extremadamente grande y competitivo desde el punto de vista de los tipos de tecnologías que pueden ser seleccionadas para desarrollar un sensor.

Algunos de los criterios de selección de una tecnología específica para el diseño de un sensor vía fibra óptica son:

- a) El sensor debe cumplir con las especificaciones requeridas por el usuario, en cuanto a:
 - sensibilidad,
 - exactitud y,
 - reproducibilidad.
- b) Los costos deben ser competitivos para la aplicación específica, con otras tecnologías.

IV VENTAJAS DE LOS SENSORES VIA FIBRA OPTICA.

Las ventajas de los sensores vía fibra óptica se las dan precisamente el hecho de utilizar fibra óptica y se enumeran a continuación:

- a) Seguros: No hay riesgos de conducción de voltajes peligrosos ni de que provoquen alguna chispa en ambientes altamentes explosivos.
- b) Tamaño y peso reducidos: Debido a que algunos de los sensores se construyen directamente sobre la fibra óptica, contaminándola de algún material, esto le proporciona dimenciones pequeñas a los sensores.
- c) Inmunidad a la IEM: La inmunidad a las intereferencias electromagnéticas de los sensores vía fibra óptica, se deben al hecho de que como la fibra es de cristal, no capta ni radía interferencias. Por lo anterior, los sensores pueden colocarse en ambientes de altos niveles de interferencias EM., por ejemplo, en plantas eléctricas o cerca de transformadores, donde un sensor por cable eléctrico se vería altamente afectado.

V DESVENTAJAS DE LOS SENSORES VIA FIBRA OPTICA.

A continuación veremos las desventajas de los sensores vía fibra óptica:

- a) Fragilidad: Debe ponerse un cuidado especial en el empaquetamiento del sensor y sus componentes para asegurar robustés.
- b) Componentes ópticos pequeños: Las dimensiones tan pequeñas de las F.O.

 pueden provocar problemas durante la manipulación del sensor
 por ejemplo, problemas para alinear los componentes lo que
 requeriría de técnicas especiales y facilidades para su ensamble
 y reparación en campo.
- e) Costo: Muchos componentes desarrollados para aplicación en las telecomunicaciones, pueden no ser lo óptimo para utilizarse en los sensores vía fibra óptica. Por ejemplo algunas veces es necesario desarrollar fibras ópticas con terminaciones especiales como por ejemplo porosidades especiales.

Para clasificar los sensores vía fibra óptica, por conveniencia se ha elegido la división en tres grandes grupos, los cuales se describen a continuación.

Los sensores vía fibra óptica se clasifican como:

- Sensores Extrínsecos,
- Sensores Evanecentes y,
- Sensores Intrínsecos.

a) SENSORES EXTRINSECOS:

Son aquellos donde la Fibra óptica es utilizada únicamente para transmitir luz hacia y desde el punto o región a ser sensada. La luz es liberada de la fibra óptica y modulada externamente por algún cambio inducido o ambiental.

Ejemplos de los sensores Extrínsecos son los sensores de gas con absorción infrarroja. La mayoría de los primeros sensores disponibles comercialmente fueron de este tipo, donde la fobra óptica sólo se utilizaba como medio de transmisión.

b) SENSORES EVANECENTES:

Los cuales basan su funcionamiento en las pérdidas que sufre la luz que se lleva através de la fibra debido a factores externos. Los sensores de Gas con Fibra óptica porosa es un ejemplo de estos sensores evanecentes.

c) SENSORES INTRINSECOS:

En este tipo de sensores la misma fibra óptica sirve como dispositivo sensible a alguna influencia externa. Un ejemplo de estos sensores intrínsecos son los interferómetros ópticos en el dominio del tiempo (OTDR).

En la figura I se muestra de manera esquemática los tres grupos de sensores vía fibra óptica.

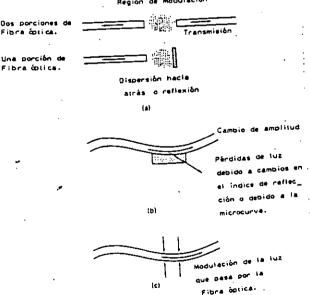


Fig. 1 Representación esquemática de los tres grupos de sensores vía fibra óptica: a) Extrínsecos,

b) Evanecentes y c) Intrínsecos.

VII EJEMPLOS DE SENSORES VIA FIBRA OPTICA.

A continuación describiremos el funcionamiento de algunos sensores vía fibra óptica.

1.- SENSOR DE GAS CON ABSORCION DE INFRA-ROJO.

Este tipo de sensores estan basados en la absorción por un gas, de la energía óptica en la región del espectro de 0.7 a 20 µm (región de luz infraroja).

Un gas característicamente absorve luz a ciertas frecuencias que corresponden a su frecuencia de vibración. El sensor vía fibra óptica de gas con absorción de infrarojo se utiliza comúnmente para detectar la presencia de Monóxido de Carbono (también para detectar Dióxido de Carbono y Metano), el cual tiene un pico de absorción de 4.6 µm.

VENTAJAS:

- Alta sensitividad,
- Respuesta rápida,
- Selectividad,
- Alta inmunidad ante la presencia de otros gases y,
- Bajos costos de mantenimiento

DESVENTAJAS:

 El laser utilizado debe ser compacto, de alta irradiancia y barato, lo cual no siempre es fácil de conseguir.

Este tipo de sensor se clasifica como Extrínseco.

2.- SENSORES DE GAS CON FIBRA ÓPTICA POROSA.

Un sensor experimental de gas, hecho con fibra óptica porosa fué desarrollado para la detección de amonia en bajas concentraciones. La sección porosa de la fibra, se cubre de un indicador químico y el sensor se coloca dentro de una pequeña cámara de gas. En presencia de gas de amonia en la cámara, la absorción de la fibra porosa químicamente tratada, cambia. Por la fibra se ha hecho pasar un láser naranja de HeNe y se monitorea la salida de la luz con un fotodetector. El cambio en la intensidad de la luz detectada es proporcional a la consentración del gas.

En la figura 2 se muestra una sección de fibra óptica porosa y su pico de absorción.

En la figura 3 se muestra una fotografía hecha con ayuda de un microscopio, donde se ven los poros de la fibra óptica porosa utilizada en el desarrollo del sensor descrito.

Este tipo de sensor se utiliza, dependiendo del químico que se impregne en el poro de la fibra:

- Para detección del PH.
- Para detección de Monóxido de Carbono,
- Para la detección de Amonia en gas y,
- Para la detección de humedad.

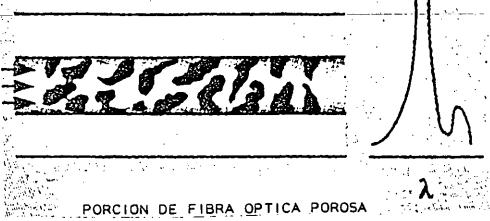


Fig. 2 Sección de Fibra óptica porosa mostrando un pico de absorción.



Fig. 3 Imagen de una FO porosa en la cual se observan los poros de 4 a 80 nm los cuales cubren una superficie total de 200 m2/g; las pérdidas por dispersión son de 0.7 dB/cm.

Las características de la sección porosa la cual se muestra en la figura 3 son

- La sección porosa es compacta: 1 cm de longitud aproximadamente,
- La sección porosa se recubre con indicadores químicos dependiendo el tipo de gas que se desea sensar.

A continuación veremos el campo de aplicación de los sensores vía fibra óptica.

VIII APLICACIONES DE LOS SENSORES VIA FIBRA OPTICA.

ł

Los primeros sensores vía fibra óptica fueron desarrollados para cubrir requerimientos de la milicia, donde el costo del dispositivo no se consideraba un factor muy importante. A continuación mostramos algunas de las aplicaciones más importantes de los sensores.

AREA DE APLICACION	COMENTARIOS
MEDICINA	Los sensores desarrollados en esta área son desechables. Consisten en pequeños dispositivos que se insertan en el torrente sanguíneo, para determinar problemas como Canser o inactividad de los anticuerpos.
MILICIA	Se han desarrollado muchos sensores en esta área con aplicación en vigilancia y navegación: sensores de campo magnético, giróscopos, acústicos, sensores de fuego, de radiación, etc.
AEROESPACIALES .	Sensores para detectar aceite en agua, partículas en los combustibles, sensores de presión. Para las aplicaciones aeroespaciales los sensores deben ser ligeros y resistentes a las vibraciones y a grandes temperaturas.
MARITIMAS	Detección de gas en las plataformas marinas, sensores de fuego, humo, control de niveles de contaminantes, etc. Los sensores en ésta área están fuertemente ligados al desarrollo de los cables los cuales deben ser herméticos y resistentes a la fatiga mecánica.
EMPRESAS DE SERVICIO PUBLICO Y APLICACIONES INDUSTRIALES	En las empresas de servicio las aplicaciones son especializadas: sensores detectores de gas en un punto específico o en un área determinada, detectores de voltaje y corriente y sensores de temperatura. Las aplicaciones industriales de los sensores incluyen: sensores de presión, de flujo, de temperatura, etc. Para aplicaciones industriales los sensores deben ser competitivos en cuanto al costo. Usualmente se requiere multiplexaje y utilización de componentes ópticos estandarizados.

Tabla 1 Aplicaciones de los sensores de fibras ópticas.

IX CONCLUSIONES.

Las aplicaciones de las fibras ópticas como sensores siguen de cerca los avances del uso de las fibras en las telecomunicaciones. Sin embargo, es probable que la taza de aceptación sea aún baja, hasta que los sistemas sensores vía fibra óptica sean lo suficientemente robustos y baratos.

Se ha enfatizado la importancia de los aspectos mecánicos y operacionales del sensor en cuanto a su sensibilidad y además, que las pruebas de operación de los sensores en condiciones controladas de laboratorio no son relevantes si no más bién las pruebas que importan son las operacionales en el campo.

Los ingenieros primero debe distinguir las técnicas que proveen ventajas sobre otras tecnologías y que permitan la operación de los dispositivos en medios adversos y que puedan permanecer robustos y cumplir con los requisitos en cuanto a mantenimiento sencillo.

Se ha mostrado que el campo de los sensores de FO cubren un rango muy amplio variando desde dispositivos muy caros con aplicaciones militares que a menudo requieren componentes específicos y ecostosos, hasta aplicaciones médicas y procesos de control más simples donde el bajo costo, la seguridad y la funcionalidad son las consideraciones primordiales para el desarrollo de los mismos.

SENSOR DE VOLTAJE BASADO EN EL EFECTO POCKELS.

Medición Tradicional de Voltaje.

En plantas eléctricas, las mediciones de voltaje y corriente se requieren para controlar, supervisar y registrar la generación, transmisión, distribución y venta de energía; lo que implica la necesidad de técnicas de medición seguras, confiables y económicamente adecuadas.

La mayor parte de las mediciones se basan en la utilización de transformadores de voltaje (TV) v de corriente (TC). Esta tecnología se ha desarrollado durante 75 años, aproximadamente, v alcanza hov un nivel adecuado para la tarea requerida.

Sin embargo, a medida que los sistemas de notencia se extienden y se interconectan de manera compleja y que los voltajes se incrementan, esta tecnología convencional empieza a presentar limitaciones, dada la necesidad de más exactitud bajo diferentes condiciones de operación y de un mayor número de puntos de medición. En las industrias eléctricas del mundo, esto ha motivado la búsqueda de tecnologías alternativas para la medición, esto, combinado con el acelerado desarrollo del campo de las fibras ópticas ha enfocado la atención sobre los sensores ópticos aplicados a esta función.

El campo de los sensores ópticos presenta gran interés dadas las características de las fibras, los emisores, los detectores y los transductores ópticos relacionados con el aislamiento eléctrico, la inmunidad a interferencias, la velocidad de respuesta, el intervalo dinámico, el tamaño y peso reducidos. Se han investigado y desarrollado sensores ópticos para la transducción de variables físicas en el área de mecánica, médica, navegación, varios de los cuales han alcanzado etapas industrial y comercial.

Nosotros nos enfocaremos en el funcionamiento del sensor de voltaje que hace uso del efecto-electroóptico en cristales.

El diagrama a bloques del sensor desarrollado es el siguiente: Fig. 1.

Los lentes (Fig. 2), al inicio y al final del sensor se utilizan para colimar el haz de luz (y enfocarlo) que sale de la fibra depolarizado.

POLARIZACION.

La luz (Fig. 3) como una onda electromagnética se caracteriza por una combinación de campos eléctrico y magnético, que varían en el tiempo y se propagan a través del espacio. Los campos eléctrico y magnético vibran perpendiculares uno con respecto al otro y perpendicularmente a la dirección de propagación. Si el vector de campo eléctrico de una onda electromagnética que se propaga en el espacio libre vibra en un plano específico, se dice que la onda está polarizada en el plano. Pero si el haz luz comprende muchas ondas individuales y en general los planos de vibración de sus campos eléctricos son aleatoriamente orientados, se dice que esta luz es depolarizada.

BIRREFRINGENCIA (FIG. 4).

Muchos cristales son eléctricamente anisotrópicos, es decir sus propiedades ópticas no son las mismas en todas las direcciones de una muestra dada; la anisotropía está poco relacionada con la estructura del enrejado cristalino. Esto significa que la polarización P producida por un campo electrico E no se puede representar por un simple escalar múltiplo del campo aplicado, sino que varía de manera que depende de la orientación del campo aplicado con respecto al enrejado cristalino. Una consecuencia de esto es que la rapidez de propagación de un haz de luz en tal cristal, depende de

la dirección de propagación y polarización de la luz. En otras palabras, el índice de refracción varía con la dirección del cristal. De esto podemos concluir que hay dos posibles valores de velocidad de fase para una dirección dada de propagación. Este tipo de cristales son llamados doblemente refractivos o birrefrigentes.

EL FENOMENO ELECTROOPTICO (FIG. 5)

Pero nuestro cristal no presenta este fenómeno de manera natural, así que pasaremos a definir el efecto electroóptico. Este efecto también llamado efecto pockels o efecto lineal enuncia que "Cuando se aplica un campo eléctrico a ciertos materiales se induce un cambio de índice de refracción An que es directamente proporcional al campo eléctrico aplicado".

El cambio en el índice, como función del campo eléctrico puede ser representado por la ecuación: $\Delta n = r\epsilon$ deonde r se une a la llamada coeficiente lineal Electro-óptico y ϵ es el campo eléctrico aplicado.

El resultado ee este efecto lineal es introducir nuevos ejes ópticos a los ejes naturales del cristal. En el efecto Pockels las direcciones privilegiadas son perpendiculares al campo eléctrico aplicado. Así un cristal electro-óptico exhibirá birrefringencia en el plano (X Y), si el campo eléctrico se aplica en la dirección Z.

La luz emergente será luz polarizada elípticamente. Como va se dijo la luz polarizada en el plano o linealmente polarizada es aquella en el que todo el tren de ondas que comprence el haz tienen su vector de campo eléctrico situado en el mismo plano. Para fines prácticos un haz puede considerarse como dos ondas linealmente polarizadas con sus planos de polarización perpendiculares uno a otro y están fuera de fase.

LUZ ELIPTICA (FIG. 6)

Consideremos ahora el caso especial donde las amplitudes de las ondas son diferentes y tienen una diferencia de fase de $\pi/2$. Si estas ondas se propagan en dirección Z podemos escribir las componentes de campo eléctrico como $Ex = iE_0 \cos \Psi y$ $E_y = j E_0^i \sin \Psi$.

El campo eléctrico total es la suma de los dos componentes:

$$E = E_x + E_y$$
 y , $\Psi = Kz - wt$

donde K es la constante de propagación en dirección z, w es la frecuencia angular y t es el tiempo. Por lo tanto:

$$E = i E_{O} \cos (Kz-wt) + j E_{O}' \sin (Kz - wt)$$
.

La resultante de esta última ecuación puede ser interpretada como una onda individual, en la cual el vector de campo eléctrico en un punto dado en el espacio, difieren en amplitud y rotan con una frecuencia angular w, tal onda se dice que es elípticamente polarizada.

LA PLACA DE RETARDO (FIG. 7)

Los retardadores son un tipo de elemento óptico que se utiliza para cambiar el estado de polarización de la luz incidente sobre él. Uno de los dos estados coherentes de la luz es retrasado en fase, de alguna manera, con respecto al otro. La luz que emerge del retardador tiene una diferencia de fase relativa diferente a la que tenía inicialmente y, por lo tanto un estado de polarización diferente. Como sabemos cuando un haz de luz monocromático incide sobre un cristal uniaxial generalmente dividido en dos emergiendo como un haz ordinario y otro extraordinario. Después de atravesar el retardador de espesor de la onda electromagnética será la superposición de las ondas C y O, con una diferencia de fase AY la cual:

$$\Delta \Psi = \frac{2II}{\lambda_o} d (|N_o - N_e|)$$

La lámina de 1/4 de longitud de onda es aquella que introduce un retardo de $\pi/2$ entre las componentes o y e. Este tipo de placas de método se fabrican de mica, cuarzo y plástico polimérico.

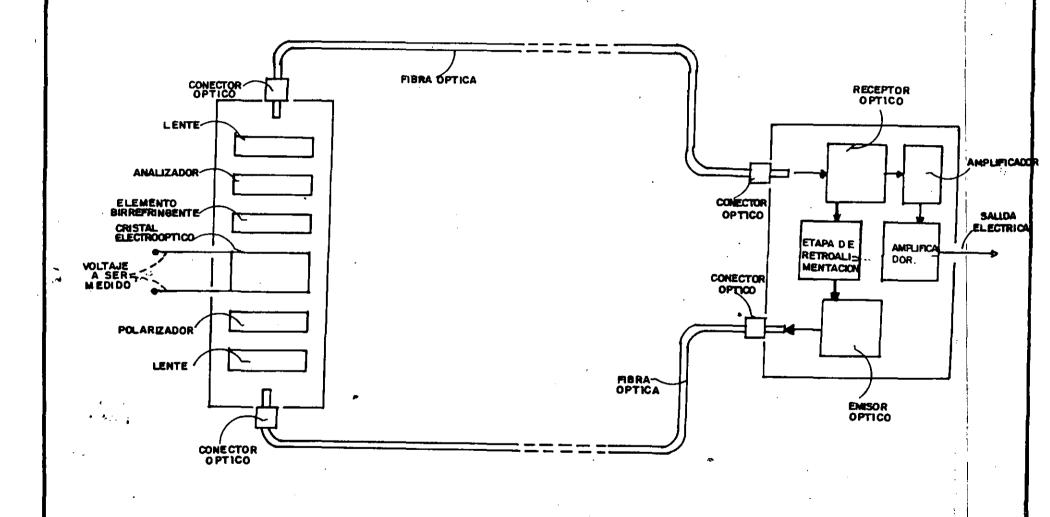


FIG. 4.1 DIAGRAMA A BLOQUES DEL SENSOR DE VOLTAJE.

DESCRIPCION DEL SENSOR DE VOLTAJE.

La figura 4.1 muestra el diagrama a bloques del sensor de voltaje. Un diodo emisor de luz infrarroja de alta irradiancia operando en 0.860 μ m y un fotodiodo tipo PIN se utilizan como fuente de luz y detector, respectivamente.

Con la utilización de un amplificador de bajo ruido integrado el diseño del receptor se facilitó en gran manera.

La confiabilidad de los leds ha sido demostrada por su utilización en muchos sistemas de comunicación por fibra óptica. El fotodiodo convierte la señal óptica a una señal eléctrica idéntica.

Al aplicar un voltaje al cristal modulador, la luz que atraviesa el cristal sigue las variaciones de dicho voltaje, lo que se traduce en una señal de c.a. montada en un nivel de c.d. Así la transmitancia está dada por la ecuación 2.32:

$$I = \frac{Io}{2} \left(1 + Sen \pi \frac{V}{Vo} \right)$$

donde I es la intensidad de la señal modulada (a la salida del esquema polarimétrico). Io es la intensidad de luz que entra al sensor. V es el voltaje aplicado y Vo es el voltaje necesario para transmisión máxima.

La señal óptica de c.d. está dada por

$$P_{cd} = \frac{1}{2} I_o$$

mientras que la señal de c.a. es:

$$P_{ca} = \frac{1}{2}$$
 Io Sen πV_{va}

Detectando la señal óptica de c.a. que va 'montada' en la señal de c.d., podemos obtener el voltaje aplicado al cristal.

Se utiliza una fibra óptica que tiene 50 μm de diámetro en el núcleo. 125 μm de diámetro del revestimiento y 0.25 de apertura numérica.

La potencia acoplada en el sistema es $251~\mu w$, y la potencia óptica promedio recibida es de $15.8~\mu w$; de éste modo, las pérdidas de inserción son 12dB. Algunas de las pérdidas en el sistema son inevitables, como por ejemplo, las debidas a la presencia en el esquema polarimétrico del polarizador y de la placa de retardo que provocan pérdidas de 6dB; las demás pérdidas se deben a el resto de los componentes ópticos y a desalineamientos en el esquema.

figura 4.2 muestra el arreglo del modul ador electroóptico, el cuál consiste de un polarizador, el cristal KD"P, una placa de retardo de $\lambda/4$, un analizador (en cuadratura con el polarizador) y dos lentes. La dirección del campo eléctrico aplicado al cristal es la misma que tiene el haz de luz (en dirección de z). La luz que sale de la fibra óptica es colimada por el primer lente y polarizada linealmente por el polarizador. En presencia del campo eléctrico aplicado, la luz linealmente polarizada es cambiada a luz elípticamente polarizada a su paso el cristal electroóptico. Esta luz con polarización elíptica pasa por la placa de retardo y por último, introducida nuevamente a la fibra por el segundo lente; de modo que la luz está ahora modulada electroópticamente. El índice de modulación es equivalente al voltaje de corriente alterna aplicado al cristal. Esto es: el voltaje aplicado al sensor puede ser medido detectando el índice de modulación de la señal óptica. El índice de modulación (m) es la relación entre la potencia de la señal de corriente alterna dividida sobre la potencia de la señal de corriente directa:

$$m = \frac{\frac{P}{ca}}{P}$$

En ambos lados del cristal K^*DP se deposita por evaporación una película conductora semitransparente de óxido de Indio y el cable es colocado en contacto con dicha capa.

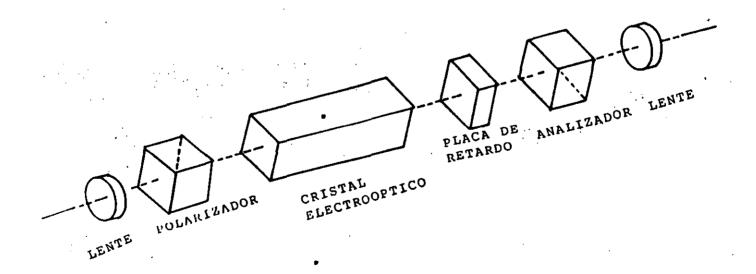


fig. 4.2 Los componentes del modulador electroóptico.

El tamaño del esquema polarimétrico mostrado en la figura 4.2 es de 20 x 16 x 5.5 cm, debido a que las bases donde se colocaron los componentes ópticos son bastante voluminosas, por ser componentes para laboratorio (las bases lo mismo que los conectores de las fibras, deben ser de preferencia de plástico para conservar el alto aislamiento del sensor). El montaje experimental se realizó sobre una mesa óptica 'Melles Griot'.

4.2 FUNCION DE TRANSFERENCIA DEL ESQUEMA POLARIMETRICO.

En la mayoría de los casos, un sensor se utiliza para determinar el valor instantáneo de una variable (voltaje, corriente, presión, étc.), por ello, la función de transferencia deseable es una función lineal:

$$R(x) = Kx 4.2$$

donde:

x es la variable a medir.

R(x) es la salida del sensor y,

K es una constante.

En muchos casos, especialmente en la medición de variables de doble polaridad. la naturaleza anti-simétrica de la forma de onda es importante. Desafortunadamente, en el campo de la óptica, raramente es posible obtener funciones lineales.

[1] En todos los casos, la salida de un sensor óptico está relacionada a la variable a medir por una función de la forma:

$$R(x) = A \operatorname{Sen}^{2} \left[\Phi + \frac{x}{x_{0}} \right]$$
 4.2

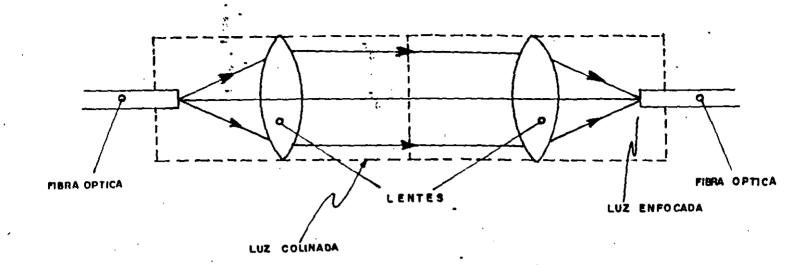


FIG. 2 · ARREGLO DE LENTES.

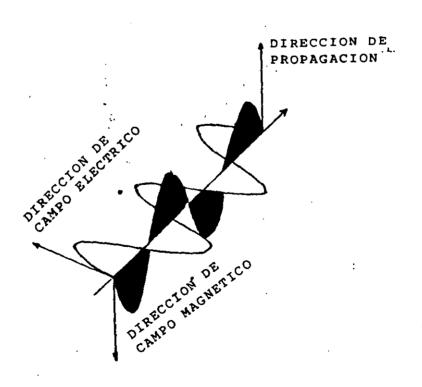


FIG. 3 UNA ONDA ELECTROMAGNETICA.

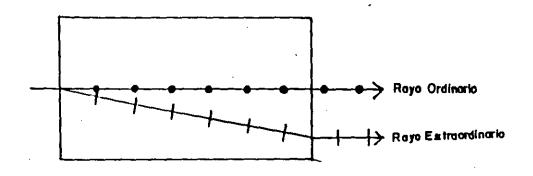
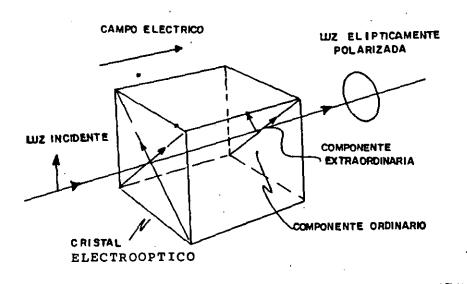



FIG. 4 CRISTAL EXHIBIENDO BIRREFRINGENCIA.

3/

FIG. 5 EL FENOMENO ELECTROOPTICO.

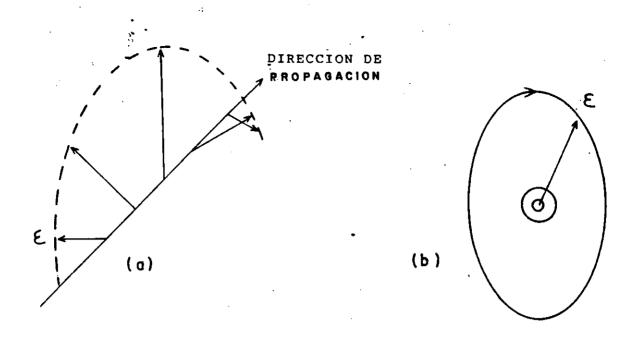


FIG. 6 LUZ ELIPTICAMENTE POLARIZADA.
a) EN UN PUNTO EN EL TIEMPO.

b) EN UN LUGAR EN EL ESPACIO.

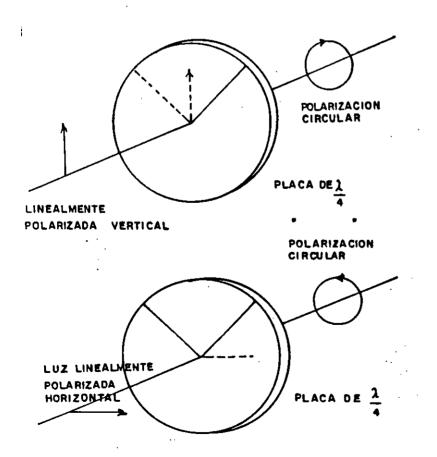


FIG. 7 PLACA DE UN CUARTO DE LONGITUD DE ONDA.

32

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS

" TELECOMUNICACIONES VIA FIBRAS OPTICAS "

16. INSTALACIONES OPTICAS

M. EN C. RAUL UGALDE

La Paracion de Minería de Jaire de Tacriba 5 Primer piso Deteg. Cuauhtémoc 06000 Mêxico, D. P. APDO. Postal M-2285

Taléfones: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

CURSO INTRERNACIONAL DE COMUNICACIONES MODULO II TELECOMUNICACIONES VIA FIBRAS OPTICAS TEMA INSTALACIONES AUTOR ING. RAUL UGALDE MONCISVAIS

1. INTRODUCCION

La fibra no se ha instalado unicamente por sus ventajas técnicas, sino también porque se ha demostrado que resulta económicamente viable. Las Administraciones telefónicas son generalmente conservadoras; si la fibra no hubiera demostrado sus ventajas frente a otras tecnologías, no habría sido instalada, cualesquiera que hubieran sido sus beneficios técnicos.

Los procedimientos para instalación como jalado, manejo y terminación de los cables opticos son diferentes a los utilizados para instalar cables de cobre. Las técnicas de instalación han evolucionado con los cables opticos y en adición, excepto para fibra hasta el escritorio, los costos de instalación de fibra son a menudo menores que para otros tipos de cable.

Las ventajas de instalar cables opticos son: Su tamaño reducido, ser pequeños, ligeros y más flexibles que otros tipos de cable. La principal desventaja es el cuidado extra de manejo del cable para evitar dobleces excesivos y aplastamiento. Las tensiones de jalado son menores a las utilizadas para otros cables metalicos.

Finalmente la terminación mientras más rapida de los cables es aun más lenta que para un par de cobre. La gente que maneje fibra óptica cada vez tendrá más experiencia y su trabajo sera más facil cada vez.

2. PLANIFICACION DE UNA INSTALACION DE CABLES DE FIBRAS OPTICAS

En general el cable de fibra optica para telecomunicaciones debe poderse instalar con los metodos tradicionales de tendido, pero se debe prestar atención especial a sus limites de esfuerzo muy bajos, sus características criticas de curvatura, los largos tramos de instalación posibles y el efecto de las condiciones ambientales.

2.1 PLANIFICACION DE LA INSTALACION

La planificación puede basarse en muchos de los procedimientos utilizados para cables metalicos, pero se debe prestar especial atención a los siguientes aspectos:

- -el efecto de las uniones y conectores sobre la longitud del tramo,
- -la baja tolerancia del cable, en terminos de transmisión, a uniones adicionales,

-los tramos de cable más largo que puedan instalarse, la diferente construcción de los cables de fibra optica y su parametros fisicos mas criticos, tales como los limites de esfuerzo sumamente bajos, las caracteristicas de curvatura y la gama de temperatura ambiente,

-construcción y condiciones de ruta, y acceso a la misma, en tanto lo que se refiere a la instalación como al servicio y valor de la información local,

-el uso de métodos predictivos para proporcionar información sobre las tensiones de cableado máximas.

-la importancia de la información y capacitación como parte de la planificación de las instalaciones de cables ópticos.

2.2 CONOCIMIENTO DE LA RUTA

Para el reconocimiento de la ruta se deben tomar en cuenta la geometria de las instalaciones existentes y la condición en que se encuentren y en especial en largas distancias, las disposiciones de acceso. Las canalizaciones deben estar en buen estado y por su tamaño reducido se pueden considerar sistemas de subcanalización para mejor aprovechamiento de las mismas. En los sistemas aereos es importante reducir al minimo el movimiento del cable en servicio y los esfuerzos y aumentar la estabilidad de la ruta de los postes. Cuando se necesite establecer nuevas estructuras, subterráneas o aéreas, s deben considerar los requisitos especiales de los cables ópticos en terminos de diámetro menor, longitudes largas, límites críticos de curvatura, configuraciones de empalme grandes y límites de esfuerzo y movimiento.

2.3 LONGITUD TOTAL DEL ENLACE

Esta longitud depende de la perdida maxima del trayecto dentro de la cual se debe considerer perdidas por cableado y empalmes, además una ruta que contiene una gran cantidad de instalaciones aéreas puede ser más corta debido a los margenes por perdidas causadas por temperaturas extremas.

2.4 LONGITUD TOTAL DEL CABLE

Esta es la longitud de la canalización tomada de planos y confirmada por recorrido fisico por el personal de diseño, a esta se debe anadir longitud adicional para cada empalme (Permitir una vuelta completa de cable de repuesto alrededor del registro de acceso personal del empalme y fibra adicional en el cierre de empalme), también debe incluir el cable de acometida al edificio (central) desde la primera unión (última) exterior hasta el repartidor o distribuidor de FO ubicado cerca del equipo terminal.

La longitud adicional puede ser de 4 m (para caja de reserva) 12 m.

2.5 LONGITUD DEL CARRETE

Esta será determinada por la longitud continua que puede producir el fabricante de cables y por el tamaño y peso del carrete que permita su facil manejo sobre el terreno.

La separación máxima de las uniones depende de las caracteristicas fisicas de la ruta y de la longitud maxima de cable disponible (en carrete), los cables arados, directamente enterrados o en canalización en ductos requieren empalmes a distancias determinadas segun criterios ya comentados, las longitudes de cable que pueden introducirse por tracción en ductos será menor debida a la resistencia limitada a la tracción y las posiciones especificadas para los registros de acceso personal.

Ejemplo de calculo de longitud de carrete:

La determinación de longitudes de carrete para canalización en ductos cuando se han fijado las posiciones de empalme es,

distancia entre uniones - de planos o medida x(m)
margen de longitud 2% de x(m)
margen de empalmes+medicion, 10 m/extremo 20(m)

Longitud de carrete para longitud de canalización de x metros queda (1+0,02)x + 20

2.6 NUMERO Y UBICACION DE LOS EMPALMES

Normalmente los empalmes se realizan a distancias de 1 a 3 km sin embargo depende si es canalización, directamente enterrado por las condicones del terreno y en caso de instalación submarina se revisará más adelante.

Los empalmes se encuentran en los registros de acceso personal de los sistemas de canalizaciones, en registros de acceso manual, es decir pequenas cajas enterradas, en isntalaciones enterradas directamente o fijadas al cable sustenatador de una linea aérea. En las instalaciones de disribución, los empalmes pueden situarse en cajas de unión, sobre la superficie, en lugares donde se proyecta reestructurar la red.

2.7 DERECHO DE VIA

La elección de una zona para el ejercicio del paso del cable óptico depende de varios factores, entre ellos el mas importante la reglamentación nacional y por ejemplo a quienes se ya a afectar:

Caminos publicos afectados, Propiedades privadas afectadas, Instalaciones de otras entidades (por ejemplo CFE, PEMEX, etc.) Posible utilización de canalizaciones ya existentes, etc.

2.8 MATERIALES Y DIAMETROS DE LAS CANALIZACIONES Y TUBERIAS

Los materiales utilizados normalmente son PVC y PE, lo diametros se 40 a 100 mm.

2.9 SECCIONES DE CABLE (O TUBERIAS DE RESERVA) ARADAS O DIRECTAMENTE ENTERRADAS

Los cables ópticos se entierran directamente en trincheras o surcos arados, las trincheras tienen menos exigencias y pemiten instalar el cable con mas suavidad pero son mas costosas que el arado

2.10 SECCIONES DE CABLE AEREO

Se deben tomar en cuenta las siguientes caracteristicas de la primera de esas soluciones:

VENTAJAS:

- aspectos económicos;
- uso de lineas de postes existentes;
- independencia de las condiciones del suelo;
- rapidez de instalación
- posibilidades de cableado en tramos largos;
- facilidad de mantenimiento cuando los cables se tienden a lo largo de caminos

DESVENTAJAS:

- una vida útil más corta debida a factores ambientales;
- peligro de esfuerzo excesivo del cable en condiciones especiales como viento, carga de hielo claros muy largos, etc.
 - susceptibilidad a cierto tipo de averias (vandalismo,
- susceptibilidad a cierto tipo de averias (vandalismo tormentas
 - consideraciones estéticas

2.11 INFORMACION Y CAPACITACION

Los técnicos que instalen cables ópticos deben tener clara conciencia de las diferencias entre cables metalicos y ópticos.

3. TECNICAS DE INSTALACION

3.1 INSTALACION EN CANALIZACIONES

El diámetro reducido y la relativa resistencia baja de los cables ópticos requieren cierta planificación y precauciones durante la instalación, entre los factores que limitan lalongitud que puede introducirse en un conducto se cuentan:

-el número y grado de las curvaturas;

los cambios de configuración y desniveles entre los registros
 la desalineación de canalizaciones, secciones dañadas y reparadas y condición general de las mismas

Como técnicas utilizadas para reducir al minimo estos factores y permitir maxima distancia entre uniones se cuentan:

- -introducir el cable desde un punto intermedio en ambos sentidos luego de la colocación inicial o bien poner el cable en forma de ocho antes de la segunda tracción;
- -jalar en un sentido con salida en los registros de acceso personal intermedios, donde la canalización cambia bruscamente de dirección o a cada lado de una sección dificil conocida;
- -jalar en las pendientes hacia abajo no hacia arriba;
- -utilizar lubricación adecuada;
- -limpiar cada canalización y verificar que este despejada;
- -utilizar puntos de tracción intermedios;
- -utilizar un dispositivo adecuado de guia de cables.

Por medio de la elección adecuada de superficies de apoyo y guias, se debe garantizar que el radio de curvatura del cable en tensión no se reduzca más alla de lo especificado.

3.2 CABLE DIRECTAMENTE ENTERRADO

Los cables ópticos se pueden enterrar directamente excavando trincheras, normalmente l cable se maneja desde un portacarretes motorizado. La alineación de la trinchera debe mantenerse lo más recta posible para facilitar el tendido del cable. Una vez colocado el cable óptico en la trinchera de debera rellenar con finos y ser compactado, el cable se deberá recubrir hasta una profundidad de 0,6 m a 1,0 m, segun los reglamentos pertinentes.

Los cables o tuberia pueden tenderse en la trinchera a mano o por medio de carretes o directamente desde un vehiculo movil. Cuando se tienden tuberias de reserva, se debe tener cuidado de enderezar cualquier curvatura de la tubería causada por su enrrollamiento en un carrete estirandola durante el proceso de tendido, a fin de evitar curvas adicionales.

Los cables y las tuberias de reserva deberan marcarse con una cinta especial por ejemplo de Polietileno, colocada a 30 cm arriba del cable y con una advertencia que indique la presencia de un cable de telecomunicaciones.

3.3 ARADO

En tramos largos y sin obstrucciones, se debe considerer este económico metodo. La tension del cable instalado puede reducirse añadiendo una pieza de baja frición en el arado y usando grandes radios de curvatura. Se debe utilizar un cabrestante electrico de gran diametro, montado en la parte posterior de aplanadora para jalar el cable del carrete y presentarlo al conducto del arado bajo tensión mínima. Hay que evitar las elevadas tensiones transitorias provocadas por una velocidad excesiva o latigueo del carrete debido a los canbios bruscos de velocidad o de dirección de la aplanadora.

Las cintas marcadoras se pueden instalar al mismo tiempo, unos 30 cm por encima del cable o la tuberia de reserva. El cable deberá tenderse a una profundidad de 0,8 m a 1,0 m.

3.4 INSTALACION AEREA

El método para la instalación aérea de cables depende de la estructura del cable, es decir si se utiliza la construcción autosoportada o la suspensión continua

Estructura de cable autosoportado

El cable se tiende primero a lo largo de la línea de postes, con rodillos de cable ubicados al lado de los postes. Según la condiciones de terreno esto se hace utilizando vehiculos de instalación o estirando el cable a mano.

Los límites de las condiciones de instalación, o sea la temperatura mínima de instalación, fuerza máxima de tracción, etc., deben concordar con lo indicado por el fabricante del cable.

Se pueden utilizar claros de diferentes longitudes si se escoge la flecha adecuada, teniendo en cuenta los posibles excesos de carga. Para reducir al mínimo los daños provocados por vehiculos de gran altura, los cables deben instalarse en el extremo superior de los postes.

El cable se iza sobre los postes. Luego de igualar la flecha a todo lo largo del cable, este se fija a los postes.

Estructura de suspensión continua.

El cable se ata al alambre de sustentación, sea en el suelo o en los postes. El alambre de sustentación debe tensarse antes de esa operación para evitar un alargamiento excesivo del cable. Se debe tener cuidado para evitar daños a la cubierta durante el proceso de sujección, debidos por ejemplo, a una tensión demasiado elevada del alambre de fijación al cable.

Si el alambre de sustentación no se fijó previamente a los postes, el cable se iza, y tras igualarse sus flechas, se fija a los postes.

3.5 INSTALACION SUBMARINA

Instalación subacuatica:

Cuando es necesario cruzar un rio o un lago o instalar un cable óptica bajo el agua se deben planificar los siguientes aspectos:

- -disponer de cable especialmente fabricado para uso subacuatico, generalmente con una protección de armadura de alambre;
- -evitar los empalmes bajo el agua, previendo una sección continua siempre que sea posible;
- -evitar el movimiento del cable durante el servicio en cualquier plano, por arado, o lanzando el cable de modo que penetre al fondo;
- -el tendido del cable se realiza desde una barcaza o un pequeño barco cablero dandose al cable una holgura de un pequeño porcentaje;
- -si se requiere de un empalme a la mitad del tramo, se deben tomar las disposiciones para mantener la resistencia de la armadura a traves de la unión y el cierre debe soportar la presión del agua sin permitir infiltraciones.

Instalación Submarina

El gran auge que han tenido los enlaces transoceanicos se tienen las más recientes como el sistema TAT-9 America-Europa listo para entrar en operación este sistema utiliza 3 pares de fibras cada uno con una capacidad de 565 Mbps y la tendencia se ve hacia la utilización de amplificadores de fibra óptica (utilizando tierras raras como el Erbio, los cuales modificarán seguramente los esquemas actuales de diseño de enlaces, estos sistemas se espera entren en operación en 1995/6 TAT-12 y TPC-5 con distancias de transmisión de 6,500 y 9,000 km respectivamente. El TAT-12 operará a 5 Gbps con espacio de repetidores de 30 a 40 km.

Además Telmex anunció que tendrá su propio cable submarino "COLUMBUS II " que partiendo de Cancun a Quintana Roo, se enlazará con USA, el Caribe, España, Portugal e Italia, su entrada en servicio está prevista para diciembre de 1994 con una capacidad de 22,680 circuitos en su segmento trasatlántico capaz de manejar mas de 90,000 conversaciones simultáneas.

Los cables para ser instalados en enlaces transoceanicos en el fondo del mar deben ser capaces de asegurar estabilidad e integridad de las fibras para una vida de sistema minima de 25 años.

La instalación de cables submarinos se realiza con barcos especializados para llevar e instalar miles de kilometros con empalmes en el mismo cable y repetidores que se hacen en el mismo barco, hoy en día existen complejos sistemas robotizados con control a distancia para revisar y acomodar el lecho marino en el cual sera depositado el cable.

El cable debe cumplir entonces los siguientes requisitos:

- -proporcionar una ambiente libre de humedad, hidrogeno y presión a las fibras:
- -asegurar minimos esfuerzos en las fibras durante la instalación y ser muy reforzado en profundidades bajas susceptibles de problemas por anclas;
- -permitir tramos de fabricación continuos largos, 80 a 150 km;
- -proporcionar la posibilidad de conducir corriente a los repetidores

3.6 RECORRIDOS VERTICALES

En la mayoria de los casos los cables de fibras pueden introducirse verticalmente en edificios, utilizando las mismas tecnicas de instalacion y el mismo tipo de sujeciones empleadas para cables de cobre.

Cuando se necesita tender el cable verticalmente en un edificio, un estribo de puente u otra construcción similar, y segun la estructura del cable, se deben insertar bloques de anclaje de epoxy para sujetar las fibras y la estructura del cable como una unidad. Por ejemplo, esos bloques se aplican en ciertos tipos de cable con los siguientes intervalos:

-cable de terminacion interno----cada 3 metros -cable relleno-----cada 30 metros o menos

El primer bloque de anclaje se coloca en el extremo superior de la sección vertical. Se deben tomar medidas para sostener cada bloque de anclaje mecanicamente en esa sección.

4. PROCEDINIENTOS DE UNION O EMPALME----

Las pérdidas en uniones (o empalmes) y conectores son un parámetro de gran interés de los sistemas de transmisión óptica, ya que la pérdida total en las uniones puede contrinuir en forma considerable al balance de pérdidas del sistema. Esto es importante, y a que la mayoría de los sistemas actuales están limitados por las péridas. La pérdida en una conexión equivale a la adición de una longitud determinada. En términos de atenuación, la longitud posible de un enlace sin repetidores puede reducirse en kilómetros si esta perdida no se mantiene al mínimo. Ya que una de las ventajas de enlaces ópticos reside en que las estaciones repetidoras están muy espaciadas, resulta evidente la necesidad de conexiones con bajas obtención práctica es difícil, puesto que los pérdidas. Su procedimientos de empalme deben realizarse sobre el terreno. Las uniones no han de incluir partes delicadas que sesan dificiles de manejar o requieran procedimientos de ensamble completos. PAra que las conexiones puedan realizarse con un mínimo de capacitación es indispensable contar con material confiable y procedimientos de ensamblaje sencillos. Es neceseario aplicar técnicas económicas y adecuadas a los trabajos sobre el terreno, para efectuar uniones de fibra con baja pérdida y alta confiabilidad. También es necesario contar con una forma de medir las pérdidas de las uniones.

Para proporcionar enlaces de fibras ópticas es necesario empalmar tramos adyacentes de cable. La principal condición que deben cumplir los empalmes es transferir la potencia máxima posible entre las fibras conectadas.

Se considera que existe un capítulo dedicado exclusivamente a empalmes de fibra óptica en este curso por lo que no se profundizará más en este tema.

5. BIBLIOGRAFIA

- 1. Instructivos técnicos para la Construcción de la Red Troncal Vía Fibra Optica Gerencia de Normas y Especificaciones TELMEX
- 2. Reporte Asistencia AMERICAS TELECOM 92 CIDEC CONDUMEX Raúl Ugalde
- 3. Pirelli Submarine Optical Links Societá Cavi Pirelli
- 4. Guía para Planificación de Sistemas de Fibras Opticas UNION INTERNACIONAL DE TELECOMUNICACIONES 1990

CAPITULO VI.

INSTALACION, EMPALMES Y PRUERAS FINALES

HEMOS DIVIDIDO ESTE CAPITULO EN CUATRO PARTES. LAS TRES PRIMERAS SERVIRAN COMO INTRODUCCION AL TEMA, DE MANERA DESCRIPTIVA. EN LA CUARTA PARTE SE PRESENTA UN "PROTOCOLO DE INSTALACIONES", DOCUMENTADO CON FOTOGRAFIAS. ESTE PROTOCOLO DESCRIBE PUNTO A PUNTO, LOS PASOS NECESARIOS PARA LLEVAR A BUEN EXITO LA REALIZACION PRACTICA DE LAS TRES PARTES QUE SIRVEN DE ENCABEZADO A ESTE CAPITULO.

A. INSTALACION.

1. TRACCION DEL CABLE.

LA UTILIZACION DE LAS FIBRAS OPTICAS (FO) ES UNA REALIDAD GRAÇIAS A LAS DIFERENTES PROTECCIONES QUE SE LES APLICAN A FIN DE CONFORMARLAS EN UN CABLE. LOS CABLES MAS IMPORTANTES POR SU CAPACIDAD EN FO Y OBRAS DE INGENIERIA ASOCIADAS, SON LOS MULTIFIBRAS, ES DECIR, AQUELLOS CON SEIS O MAS FO. DICHOS CABLES TIENEN EN GENERAL UN ELEMENTO CENTRAL ALREDEDOR DEL CUAL SE DEPOSITAN O CABLEAN LAS FO., YA CON SU PROTECCION HOLGADA O ADHERIDA. SOBRE EL CABLEADO SE APLICAN COMO PROTECCION UNA Q MA CUBIERTAS PLASTICAS Y MUY FRECUENTEMENTE UNA ARMADURA DE ACERO E INCLUSU ELEMENTOS TEXTILES DE REFUERZO.

LAS DIFERENTES PARTES QUE CONFORMAN UN CABLE NO SOLAMENTE SON PROTECCIONES SINO QUE EN GENERAL ES IGUALMENTE IMPORTANTE SU FUNCION DURANTE LA INSTALACION. EN MEXICO LAS REDES TELEFONICAS URBANAS CORREN PRINCIPALMENTE POR DUCTOS SUBTERRANEOS A LO LARGO DE LOS CUALES HAY QUE INTRODUCIR LOS CABLES. ESTAS RUTAS NO SON SIEMPRE RECTAS Y EN LA INMERSION, EL CABLE ESTA SUJETO A ESFUERZOS IMPORTANTES SOBRE LOS QUE HAY QUE PONER ESPECIAL ATENCION, TANTO ANTES (DISEMO) COMO DURANTE LA OPERACION EN CAMPO.

EL ELEMENTO CENTRAL O NUCLEO DE TRACCION DEBE TENER LA RIGIDEZ MECANICA ADECUADA PARA SOPORTAR EL PESO DEL CABLE Y LAS TENSIONES DE INSTALACION A LO LARGO DE LA LONGITUD TOTAL DEL TRAMO DE CABLE QUE SE VA A MANEJAR. SI LA TRACCION SE HICIERA SOLAMENTE SOBRE EL NUCLEO, TANTO EL CABLEADO COMO LAS CUBIERTAS PODRIAN RETRAERSE. ES POR ELLO QUE TAMBIEN LA CUBIERTA EXTERIOR Y EN SU CASO LOS REFUERZOS TEXTILES INTERMEDIOS, SE UTILIZAN PARA EL HALADO DEL CABLE. ESTO AUMENTA EL FACTOR DE SEGURIDAD DE LA OPERACION.

CUANDO EL ELEMENTO CENTRAL DEL CABLE ES METALICO, ES SUFICIENTE HACERLE UN BUCLE, PARA ASI SUJETARSE CON EL CABLE DE TRACCION. EL HALADO SUELE HACERSE CON UN CABLE DE ACERO, QUE TIENDE A TORCERSE. POR TANTO ENTRE AMBOS CABLES ES NECESARIO INSTALAR UN DESTORCEDOR QUE EVITE ESFUERZO ADICIONALES EN EL CABLE OPTICO.

PARA SUJETAR LA CUBIERTA EXTERIOR SE UTILIZA UNA MALLA METALICA, COMUNMENTE CONOCIDA COMO "CALCETIN". SI NO SE DISPONE DE ELLA, PUEDE ELABORARSE MANUALMENTE CON ALAMBRE DE ACERO: UNA VEZ APLICADO EL CALCETIN, A ESTE SE SUJETA TAMBIEN EL NUCLEO DE TRACCION Y EN SU CASO, ELEMENTOS TEXTILES DE REFUERZO MECANICO.

2. MULTIPLICACION DE VIAS.

TRADICIONALMENTE LOS DUCTOS TELEFONICOS HAN SIDO DIMENSIONADOS A LOS MAXIMOS DIAMETROS DE LOS CABLES CON CONDUCTORES ELECTRICOS DE COBRE. TALES DIAMETROS SE HAN ESTANDARIZADO A 100 mm, LO CUAL CONTRASTA CON LOS MENOS DE 20 mm QUE ALCANZAN LOS CABLES OFTICOS.

RECIENTEMENTE EL PRIMER FABRICANTE NACIONAL DE CABLES OPTICOS HA PATENTADO UN SISTEMA MEDIANTE EL CUAL ES POSIBLE AUMENTAR LA CAPACIDAD DE LAS VIAS ESTANDAR. ELLO CONSISTE EN INTRODUCIR EN EL DUCTO TIFICAMENTE TRES FLEXODUCTOS (TUBOS PLASTICOS) QUE SE FIJAN A LA VIA APLICANDO UNA TAPA EN CADA EXTREMO DE LA MISMA. NOS REFERIMOS A UNA VIA COMO EL TRAMO ENTRE DOS POZOS CONSECUTIVOS.

LA OPERACION DE TRIFURCACION DE VIAS PERMITE QUE DONDE PUDO HABER CORRIDO UN SOLO CABLE DE COBRE, SE PUEDEN INSTALAR TRES CABLES OPTICOS. CONSIDERANDO QUE UN CABLE OPTICO SUSTITUYE DIRECTAMENTE Y EN OCASIONES REBASA LA CAPACIDAD DE LOS CABLES TRADICIONALES DE COBRE, ES EVIDENTE QUE CON EL SISTEMA DESCRITO SE HACEN MAS EFICIENTES Y SE AUMENTA LA CAPACIDAD, DE LAS CANALIZACIONES TELEFONICAS.

B. EMPALMES.

1. UNION DE LAS FIRRAS.

TODOS LOS CABLES DE FO SE HACEN EN LONGITUDES FINITAS. ASI ES NECESARIO UNIR UN TRAMO CON OTRO, A FIN DE LOGRAR REALIZAR UN ENLACE ENTRE DOS PUNTOS' DISTANTES ALGUNOS KILOMETROS. DICHA UNION O CONCATENACION ES UN TRABAJO QUE REQUIERE DE MANO DE OBRA MUY BIEN CALIFICADA. LA UNION DE LAS FO EN SI, SE HACE CON UN EQUIPO ESPECIALIZADO QUE PERMITA UN CORTE ADECUADO Y LA UNION PROPIA DE LAS FO.

EL CORTE DE LAS FO DEBE HACERSE PERPENDICULAR AL EJE DE LA MISMA, CON UN ERROR MENOR A 3 GRADOS. DICHO CORTE GENERALMENTE SE HACE POR FRACTURA, PERO DEBE SER CON LA SUFICIENTE DELICADEZA PARA NO DEJAR ASTILLAS EN LA SUPERFICIE. LA LIMPIEZA DE ESTA OPERACION ES PRIMORDIAL YA QUE LAS PARTICULAS DE POLVO, GRASA Y AGUA SON DE DIMENSIONES COMPARABLES A LAS DEL NUCLEO DE LA FO.

PREVIO A LA UNION, LAS DOS FO DEBERAN ALINEARSE EN LOS EJES x, y, z, INCLUYENDO UNA ROTACION CON RESPECTO AL EJE DE LAS MISMAS. PARA ESTO, EL EQUIPO A UTILIZAR DEBERA PERMITIR TODOS ESOS GRADOS DE LIBERTAD AL MENOS EN UNA DE LAS FO, EN TANTO QUE LA OTRA DEBERA TENER COMO MINIMO EL MOVIMIENTO DEL EJE z, COLINEAL CON EL EJE DE LA FO. LOS AJUSTES EL ESTOS MOVIMIENTOS DEBEN SER MICROMETRICOS, DADAS LAS DIMENSIONES DE LAS FIBRAS.

LA UNION PERMANENTE DE LAS FO SE LOGRA POR FUSION DEL MATERIAL QUE LAS FORMA. LOS METODOS MAS COMUNES PARA LOGRAR LA FUSION SON UNA MICROFLAMA DE GAS Y UN ARCO ELECTRICO. EL PRIMERO ES MAS DELICADO, TANTO EN LA PUREZA DE LOS GASES COMO EN EL SISTEMA DE APLICACION. EL ARCO ELECTRICO ES MUY COMUN, MAS SENCILLO DE REALIZAR (FABRICACION Y USO) Y MAS LIMPIO (MENOR RIESGO DE MICROPARTICULAS).

ALINEADAS LAS FO, ESTANDO SEPARADAS APROX. 100 MICRAS, SE APLICA UNA PRIMER DESCARGA O "PREFUSION," QUE LIMPIA Y CONDICIONA LAS FIBRAS. A CONTINUACION SE ACERCAN A TOPE, Y SE INICIA LA DESCARGA PARA LA "FUSION." DE NO AVANZAR MAS LAS FO, EL MATERIAL SE ADELAGAZARIA EN EL PUNTO DE FUSION, FORMANDO UN MICRO-CUELLO QUE LIMITARIA EL PASO DE LUZ. CADA ETAPA, PREFUSION, AVANCE Y FUSION, REQUIEREN UN CONTROL ADECUADO DE SUS TIEMPOS DE DURACION. LOS VALORES TIPICOS SON DECIMAS DE SEGUNDO PARA LOS DOS PRIMEROS Y 5 SEG. PARA EL TEPCERO. EL ARCO EN SI ES DE 3 KV CON 20 MA. TODOS ESTOS VALORES SON REGULABLES E INCLUSO PROGRAMABLES EN LA MAYORIA DE LOS EQUIPOS EMPALMADORES POR FUSION.

2. EVALUACION DEL EMPALME.

ALINEACION Y EVALUACION SE RECOMIENDA SEAN HECHOS CON UN OTDR. LA ALINEACION CON OTDR ES PARTICULARMENTE RECOMENDABLE CUANDO SE TRABAJA CON FO-UM YA QUE LA PRIMERA APROXIMACION SE HACE CON EL OJO AL MICROSCOPIO. ESTO PUEDE DEJAR UN LIGERO DESCENTRADO EN LOS NUCLEOS, PUESTO QUE SOLAMENTE SE TIENE HASTA AQUI UNA APRECIACION CON RESPECTO A LOS REVESTIMIENTOS. ES ENTONCES QUE SE PROCEDE A UNA ALINEACION FINAL CON AYUDA DEL OTDR.

PREVIO À LA ALINEACION, SE COLOCA EL OTDR EN EL EXTREMO LEJANO DE UNO DE LOS CABLES A EMPALMAR. ESTO PERMITE VERIFICAR LA LONGITUD TOTAL Y POSICIONAR EL CURSOR DEL OTDR EN EL PUNTO DE EMPALME, PRECISAMENTE ANTES DE ALINEAR. UNA VEZ REALIZADO EL EMPLAME, EL CURSOR PERMITE UBICAR ESTE AUN EN EL CASO DE LOGRAR UN VALOR MUY BAJO DE ATENUACION (O GANANCIA) EN LA UNION. PARA VALORES PEQUEMOS DE ATENUACION, EL PUNTO DE EMPALME SE PIERDE DENTRO DEL TRAZO CASI CONTINUO DEL EQUIPO.

EL TRAZO DEL OTDR EN EL PUNTO DE EMPALME ES POR LO GENERAL UN PEQUEMO ESCALON, EL TAMAMO DEL CUAL INDICA LA PERDIDA DE LA UNION. OCASIONALMENTE, AUN EN FO UNIMODALES SE VEN ESCALONES POSITIVOS, LO QUE SERIA INDICATIVO DE UNA GANANCIA, PERO DESDE EL OTRO EXTREMO DEL ENLACE SE VERIA UNA ATENUACION. EN ESTOS CASOS EL VALOR REAL ES EL PROMEDIO DE LOS VALORES ABSOLUTOS DE LAS DOS LECTURAS.

LOS CABLES OPTICOS SON GENERALMENTE HERMETICOS, PARA MAYOR SEGURIDAD DE LAS FO. SIN EMBARGO, PARA REALIZAR LA UNION DE DOS TRAMOS ES NECESARIO TENER LAS FO AL DESCUBIERTO. ESTO INDUCE A CUESTIONAR COMO PROTEGERLAS EN EL PUNTO DEL EMPALME. LA SOLUCION ES TENER UNA ENVOLVENTE QUE INCLUYA TANTO A LOS EMPALMES DE LAS FO COMO UNA SECCION DE AMBOS CABLES.

DICHO ENVOLVENTE ES CONOCIDO COMO CIERRE DE EMPALME. DICHO CIERRE ES NECESARIAMENTE HERMETICO EN SU TOTALIDAD Y EN PARTICULAR ALREDEDOR DE LOS CABLES. DENTRO DEL CIERRE HAY GENERALMENTE UNA O MAS CHAROLAS (ORGANIZADOR) DONDE SE DISTRIBUYEN COMODAMENTE LOS EXCESOS DE FO Y SE DEJAN Y PROTEGEN LOS EMPLAMES. TALES EXCESOS EN LONGITUD SON DE UNO A DOS METROS POR FIBRA, POR CABLE. ESTO SE HACE A FIN DE PODER TRASLADAR EL EMPALME DE LAS FO DESDE EL EQUIPO DE FUSION HASTA EL ORGANIZADOR. ADICIONALMENTE SE TIENE CON ESTO UNA LONGITUD DE RESERVA PARA EL CASO EN QUE SE REQUIERA INTERVENIR EL EMPALME, LO CUAL ES COMUN PARA CASOS DE LOCALIZACION DE FALLAS Y MODIFICACIONES EN LOS ENLACES.

C. PRUEBAS FINALES.

NOS REFERIMOS AQUI A LA VERIFICACION DE LA OPERACION DEL CARLE OPTICO EN UN ENLACE. HAY EVIDENTEMENTE UNA COMPROBACION DE LA CONTINUIDAD DEL CABLE AL REALIZAR EL ULTIMO EMPALME, YA QUE EN ESE MOMENTO PUEDE O DEBE VERSE EN EL OTDR LA LONGITUD TOTAL DEL ENLACE. YA QUE EL OTDR TAMBIEN PUEDE MEDIR LA ATENUACION DE ESA LONGITUD, QUEDA HECHA ASI UNA PRIMERA EVALUACION. PERO ES MUY RECOMENDABLE VERIFICAR ADEMAS EN AMBAS DIRECCIONES Y OBTENER LOS PROMEDIOS DE LAS LECTURAS.

PARA REALIZAR LOS EMPALMES ENTRE TRAMOS, PUEDEN HACERSE LAS MEDICIONES CON LA FIBRA DESNUDA EN LOS EXTREMOS DEL ENLACE. PARA LLEGAR A LOS EQUIPOS DE TRANSMISION Y RECEPCION, ES NECESARIO CONECTAR O REMATAR EL CABLE CON CABLES TERMINALES (PIGTAILS). ESTOS REMATES SON CABLES CORTOS (5, 10, 15 mt) Y EN SU EXTREMO LLEVAN APLICADOS LOS CONECTORES. ANTES DE CONECTAR. LOS CABLES TERMINALES, SE PUEDEN REALIZAR PRUEBAS DE ATENUACION Y ANCHO DE BANDA (SOLO EN FO-MM) AUN POR EL PROCEDIMIENTO DE CORTE DE 2 METROS (CUT-BACK).

UNA VEZ EMPALMADOS LOS CABLES TERMINALES E INSTALADOS CON SUS CONECTORES RESPECTIVOS, EL EMPLEO DE UN OTDR SE DIFICULTARA POR LAS RELFEXIONES INHERENTES EN LA UNION A TRAVES DEL CONECTOR. EN ESTE CASO, LAS MEDICIONES DE ATENUACION DEBERAN HACERSE CON UNA FUENTE ESTABILIZADA DE LUZ, UN TRAMO DE REFERENCIA Y UN MEDIDOR DE POTENCIA. OTRA LIMITACION AL USO DEL OTDR ES PARA EL CASO DE UN ENLACE DE GRAN LONGITUD. EN ESTOS CASOS SE PODRIA REBASAR EL RANGO DINAMICO DEL REFLECTOMETRO, YA QUE SE REQUIERE QUE EL PULSO VIAJE HASTA EL EXTREMO DEL ENLACE Y RETORNE AL INSTRUMENTO. ESTO SIGNIFICA UN DOBLE RECORRIDO DEL CABLE, CON LA CONSECUENTE DOBLE ENERGIA REQUERIDA, O PERDIDA RESULTANTE.

CON EL RAPIDO ADVENIMIENTO DE LAS FO UNIMODALES, YA NO ES REQUERIDA LA MEDICION DE ANCHO DE BANDA. EN SISTEMAS MULTIMODALES ESTA MEDICION HACE NECESARIO TENER ACCESO SIMULTANEO A LOS DOS EXTREMOS DEL ENLACE, LO CUAL SOLO ES POSIBLE CON EQUIPO COMPUTARIZADO.

SE HA VERIFICADO QUE LA TAZA DE ERROR DE BITS (BER) NO SE VE AFECTADA DE MANER ALGUNA EN LOS ENLACES CON FO. ES POR ELLO QUE TAMPOCO ES REQUERIDA ESTA MEDICION HOY EN DIA.

D. PROTOCOLO DE INSTALACIONES.

· INDICE

- 1. PLANIFICACION E INGENIERIA DEL PROYECTO
- 2. LIMPIEZA, VERIFICACION Y GUIADO DE LA VIA
- 3. INSTALACION DE FLEXODUCTOS Y TAPAS
- 4. GUIADO DE FLEXODUCTOS PARA INSTALACION DE CARLE
- 5. INSTALACION DEL CARLE
- 6. ACOMODO Y FIJACION DEL CABLE
- 7. EMPALMES RECTOS, TERMINALES Y PRUEBAS A CARLE INSTALADO
- 8. PRUEBAS FINALES

1. PLANIFICACION E INGENIERIA DEL PROYECTO.

LA PRIMERA ACTIVIDAD DEL PROYECTO DE INSTALACION DEL CABLE OPTICO ES LA ADQUISICION DE LOS PLANOS DE LA RUTA.

SE REALIZA UN ANALISIS DE ESTOS PLANOS, PARA LO CUAL ES NECESARIO LA INTERVENCION DE PERSONAL ESPECIALIZADO (VER FIG. 6.1, 6.2, 6.3).

DE ESTE ANALISIS SE DERIVA UNA PREASIGNACION DE LOS PUNTOS DE EMPALME. DEBEN TOMARSE COMO BASE LOS PUNTOS CRITICOS DE LA RUTA, COMO CAMBIOS DE DESNIVELES Y DE DIRECCION, ASI COMO LA LONGITUD DE SUMINISTRO DEL CABLE.

SE EFECTUA UN DIAGNOSTICO DE LAS CONDICIONES TOPOGRAFICAS DEL TERRENO, DETECTANDOSE ALGUNAS AREAS DE LA RUTA CON MAYOR GRADO DE DIFICULTAD PARA LOS FINES REQUERIDOS. TALES COMO:

- # AVENIDAS CON ELEVADO INDICE DE TRANSITO
- * PARQUES
- * CRUCES IMPORTANTES DE AVENIDAS
- * REGISTROS EN EL ARROYO
- * ACCESO A CANALIZACION (RUTA)

TAMBIEN SE DETERMINAN LOS SENTIDOS DE CIRCULACION DE TRAFICO DE VEHICULOS, CON LA FINALIDAD DE ESTABLECER UN PROGRAMA DE ACTIVIDADES EN HORAS Y DIAS NO HABILES (VER FIG. 6.4, 6.5).

SE EFECTUA UNA VISITA FISICA A LOS REGISTOROS Y A LA RUTA PARA VERIFICAR LAS CONDICIONES EN LAS CUALES SE ENCUENTRAN LOS REGISTROS, AL MISMO TIEMPO QUE SE ASIGNA LA VIA SELECCIONADA PARA EL CABLE OPTICO (VER FIG. 6.6, 6.7).

SE VERIFICAN LAS DIMENSIONES DE CADA UNO DE LOS REGISTROS, CON LA FINALIDAD DE TENER LA INFORMACION CERTERA Y NECESARIA PARA SER UTILIZADA CUANDO SE EFECTUE LA ASIGNACION FINAL Y DEFINITIVA DEL SITIO DONDE SE HARAN LOS EMPALMES, ASI COMO DETERMINAR EL EXCESO DEL CABLE QUE DEBE CONSIDERARSE PARA LA INSTALACION.

UNA VEZ QUE HAN SIDO DIMENSIONADOS TODOS LOS REGISTROS, SE SELECCIONA EL QUE SE CONSIDERE ADECUADO PARA EFECTUAR EL EMPALME. DERE CONSIDERARSE QUE EN CADA REGISTRO DE EMPALME SE DEBE ACUMULAR UNA LONGITUD DE CABLE DE 15 mt DE CADA PUNTA (UN TOTALDE 30 mt). EN LAS PAREDES DEL REGISTRO SE ACOMODA DICHO EXCESO, EL CUAL ES UNA RESERVA DE CABLE COMO MEDIDA PREVENTIVA PARA MOVIMIENTO DEL CABLE EN LOS CASOS DE REPARACIONES A ESTE.

ANTES DE LA VERIFICACION Y LIMPIEZA DEL DUCTO SELECCIONADO PARA LA INMERSION DE LOS FLEXODUCTOS Y/O DEL CABLE, SE DEREN CONSIDERAR LAS SIGUIENTES ACTIVIDADES:

- * PREVIAMENTE DEBE ANALIZARSE LA TRAYECTORIA DE LA RUTA PARA PROGRAMAR EL TRABAJO EN DIAS Y HORAS NO HABILES, SEGUN CORRESPONDA.
- * MEDIDAS DE SEGURIDAD TANTO PARA EL PERSONAL, LOS PEATONES Y EL TRANSITO DE VEHICULOS.

2. LIMPIEZA, VERIFICACION Y GUIADO DE LA VIA.

LA VERIFICACION, LIMPIEZA Y GUIADO SE REALIZA EN UN SOLO PASO. SE UTILIZA UN DISPOSITIVO METALICO COMO VERIFICADOR DEL DUCTO, YA QUE TIENE UN DIAMETRO MUY SEMEJANTE AL DE ESTE Y EN EL CUAL SE MARCA EL CONTACTO CON CUALQUIER FILO DE CONCRETO EXISTENTE EN EL INTERIOR DEL DUCTO. CUANDO SE ENCUENTRA ESTE PROBLEMA SE DETIENNE MOMENTANEAMENTE LA OPERACION (VER FIG. 6.8).

LA LIMPIEZA DEL DUCTO SE EFECTUA CON UN ELEMENTO CILINDRICO QUE CONTIENE CERDAS DE ACERO, EL CUAL SE ELIMINA LA REBABAS DE CONCRETO EN EL INTERIOR DE ESTE (VER FIG. 6.9).

FINALMENTE ESTA AUNADA A LOS DISPOSITIVOS DE VERIFICACIÓN Y LIMPIEZA, LO QUE SERA LA GUIA DE HILO DE ALGODON, POLIESTER, NYLON O ACERO GALVANIZADO (VER FIG. 6.10).

ES NECESARIO MENCIONAR QUE EL INICIO DE TODA ESTA OPERACION SE EFECTUA CON UNA GUIA DE FIBRA DE VIDRIO, LA CUAL SE INSERTA EN LA VIA SELECCIONADA EN FORMA MAÑUAL (VER FIG. 6.11). h. UNA VEZ TERMINADA LA INMERSION COMPLETA DEL FLEXODUCTO, SE DEBEN CORTAR ESTOS AL RAZ DE LA SALIDA Y ENTRADA DE LA VIA EN CADA UNO DE LOS POZOS, INICIANDO ESTA OPERACION EN LA PUNTA EXTERNA Y DESPUES EN LA INTERNA.

NOTA: SI EL TENDIDO DE LOS FLEXODUCTOS SE EFECTUA EN FORMA MANUAL. SE COLOCA PERSONAL EN CADA POZO PARA QUE EL HALADO SEA MAS UNIFORME. POSTERIORMENTE SE SIGUEN LOS PASOS f, g, h.

- i. PROCEDER À LA COLOCACION DE LAS TAPAS TANTO A LA ENTRADA COMO A LA SALIDA DE LOS FLEXODUCTOS EN LOS REGISTROS.
- j. FINALMENTE ES NECESARIO MATAR LOS FILOS EN DONDE FUERON CORTADOS LOS FLEXODUCTOS, EN TODOS LOS REGISTROS, PARA EVITAR DAMOS EN EL CABLE CUANDO SE DISPONGA A LA INMERSION DE ESTE.

4. GUIADO DE FLEXODUCTO PARA INSTALACION DE CABLE.

ESTA OPERACION ES MUY SEMEJANTE A LA ETAPA DE GUIADO EN LA VIA SELECCIONADA PARA LA INSTALACION DE LOS FLEXODUCTOS.

LA VERIFICACION, LIMPIEZA E INSTALACION DE LA GUIA EN EL FLEXODUCTO SELECCIONADO PARA LA INMERSION DEL CABLE SE EFECTUA EN UN SOLO PASO. PARA ESTO SE UTILIZA UN DISPOSITIVO COMPUESTO POR UN ELEMENTO CILINDRICO DE MATERIAL ESPONJOSO O PLASTICO QUE TIENE UN DIAMETRO MUY SEMEJANTE AL DEL FLEXODUCTO, EL CUAL CUBRE APROXIMADAMENTE UN 85% DEL AREA INTERIOR DEL MISMO. A ESTE ELEMENTOS ESTA AUNADA LA GUIA QUE ES DE ALGODON, POLIESTER, NYLON O ACERO GALVADNIZADO (VER FIG. 6.18).

EN ESTE CASO TAMBIEN EL INICIO DE TODA LA OPERACION SE EFECTUA CON UNA GUIA DE FIBRA DE VIDRIO DE 200 mt DE LONGITUD, LA CUAL SE INSERTA EN EL FLEXODUCTO SELECCIONADO. EN FORMA MANUAL.

5. INSTALACION DEL CABLE.

PARA LA INSTALACION DE CABLES OPTICOS EN DUCTOS SUBTERRANEOS, DE MANERA SEGURA Y CONFIABLE, SE DEBEN SEGUIR LOS PROCEDIMIENTOS Y REQUISITOS LISTADOS A CONTINUACION:

5.1. PREPARATIVOS ANTERIORES A LA INMERSION:

- a. CONSIDERAR EL ANALISIS DE LA FRAYECTORIA DE LA RUTA, EFECTUADO ANTERIORMENTE.
- b. SE DEBEN TOMAR LAS MEDIDAS DE SEGURIDAD NECESARIAS, TANTO PARA EL PERSONAL, LOS PEATONES Y EL TRANSITO, COLOCANDO SEMALES COMO FANTASMAS, ANUNCIOS DE HOMBRES TRABAJANDO, PRECAUCION, ETC.
- C. HACER UNA EXHORTACION ESPECIAL AL PERSONAL PARA EL CUMPLIMIENTO
 Y OBSERVACION DE LAS REGLAS DE SEGURIDAD Y EL MANEJO ADECU
 DEL CABLE.

-EL-FLEXODUCTO-ES---DE--MATERIAL TERMOPLASTICO PROTEGIDO CONTRA--AGENTES -QUIMICOS Y EL CUAL ACTUA COMO DUCTO DEL CABLE OPTICO (VER FIG. 6.12).

CON LA FINALIDAD DE INCREMENTAR LA CAPACIDAD DE LOS DUCTOS DE CONCRETO DE LA RED, SE HAN REUNIDO TRES FLEXODUCTOS QUE SON ALOJADOS EN LA VIA SELECCIONADA PARA LA DISPOSICION DEL CABLE. DE ESTA MANERA, SE TRIPLICA LA CAPACIDAD DE LA VIA CORRESPONDIENTE Y ADEMAS SE PROTEGA AL CABLE DE ALGUN POSIBLE DAMO, AL EFECTUAR LA INMERSION DEL CABLE, OCASIONADO POR PEQUENAS REBABAS DE CONCRETO CONTENIDAS EN EL INTERIOR DEL DUCTO, QUE NO HAYAN SIDO ELIMINADA EN LA OPERACION DE LIMPIEZA DEL MISMO.

LAS TAPAS CONSISTEN EN BRIDAS DE MATERIAL TERMOPLASTICO QUE SON COLOCADAS EN LAS ENTRADAS Y SALIDAS DE LA VIA QUE CONTIENE LOS FLEXODUCTOS EN LOS REGISTROS, CON LA FINALIDAD DE MANTENERLOS FIJOS EN UNA SOLA POSICION (VER FIG. 6.13).

LA METODOLOGIA PARA LA INSTALACION DEL FLEXODUCTO Y COLOCACION DE TAPAS Y AVELLANADO DE FLEXODUCTO SE INDICA A CONTINUACION:

- a. ANTES DE LA INMERSION DE LOS FLEXODUCTOS SE DEBEN HACER LAS SIGUIENTES CONSIDERACIONES:
 - i. EFECTUAR UN ANALISIS DE LA TRAYECTORIA DE LA RUTA EN EL AREA DONDE SE EFECTUARA LA INMERSION.
 - 11. TOMAR LAS MEDIDAS DE SEGURIDAD TANTO PARA EL PERSONAL, LOS PEATONES Y EL TRANSITO, COLOCANDO SEMALES COMO FANTASMAS, ANUNCIOS DE HOMBRES TRABAJANDO, PRECAUCION, ETC. (VER FIG. 6.14)
 - 111. ASEGURARSE QUE SE HA EFECTUADO LA CORRECTA LIMPIEZA DEL DUCTO.
- b. EFECTUAR EL MONTAJE DE LOS FLEXODUCTOS EN CARRETES Y COLOCARLOS EN EL REMOLQUE O GATOS CORRESPONDIENTES (VER FIG. 6.15).
- c. IDENTIFICAR LA VIA POR LO CUAL SE EFECTUARA LA INMERSION, VERIFICANDO QUE EN ELLA SE LOCALIZA LA GUIA (VER FIG. 6.16).
- d. SI EL TENDIDO DE LOS FLEXODUCTOS SE EFECTUA USANDO EQUIPO MECANIZADO, SE DEBE COLOCAR UN MALACATE EN EL REGISTRO QUE PREVIAMENTE SE HAYA SELECCIONADO Y DEBE ANCLARSE DE TAL FORMA QUE RESISTA, SIN DESPLAZARSE, LA TENSION QUE SE PRESENTE AL HALADO DE LOS FLEXODUCTOS.
- e. LOS CARRETES DE FLEXODUCTOS DEBEN COLOCARSE EN EL REGISTRO EN EL EXTREMO OPUESTO AL MALACATE.
- f. ATAR LA PUNTA DE FLEXODUCTOS A LA GUIA INSTALADA EN LA VIA SELECCIONADA (VER FIG. 6.17).
- g. SE FROCEDE AL HALADO DE LOS FLEXODUCTOS.

- d. IDENTIFICAR EL FLEXODUCTO POR EL CUAL SE INSTALARA EL CARLE EN CADA REGISTRO.
- e. EL CARRETE DEL CABLE DEBE MONTARSE EN UN REMOLQUE O GATOS DESENRROLLADORES. ESTOS SERAN DE DIMENSIONES ADECUADAS AL CARRETE.
- f. SI EXISTEN CAMBIOS DE DIRECCION EN LA RUTA DEL CABLE, ESTE DEBE DESENRROLLARSE DEL CARRETE Y FORMAR UNA FIGURA 8 SOBRE EL PISO PARA SEGUIR EFECTUANDO LA INMERSION.
- g. LA TERMINAL EXTERNA DE LOS TRAMOS DE CABLES EN CADA CARRETE DEBE TENER UN FUSIBLE-DESTORCEDOR ASI COMO EL DISPOSITIVO DE TRACCION QUE SUJETARA TANTO LA CUBIERTA POLYACERO COMO EL KEVLAR (VER FIG. 6.18).
- h. PARA EL FLEXODUCTO EN EL CUAL SE INSTALARA EL CABLE, TANTO LAS SALIDAS COMO LAS ENTRADAS, DEBEN ESTAR PERFECTAMENTE ABOQUILLADAS, PARA EVITAR QUE EL CABLE SE DAME.
- i. EN TODOS LOS REGISTROS DEBEN CONSIDERARSE ANCLAS DE IMPACTO Y CINTURONES DE NYLON EN LAS PAREDES PARA SOPORTAR EL CABLE (VER FIG. 6.19).

5.2. PROCEDIMIENTO DE INSTALACION:

- a. COLOQUESE EL EQUIPO, DISPOSITIVOS Y MATERIALES EN LOS LUGARES PREVIAMENTE ESTABLECIDOS, INCLUYENDO LOS DE PROTECCION Y SEMALIZACION EXTERNA.
- b. DEBERA DISTRIBUIRSE AL PERSONAL A LO LARGO DE LA TRAYECTORIA DEL CABLE POR INSTALAR (EN LOS EXTREMOS Y EN LOS REGISTROS INTERMEDIOS), PARA QUE SE VIGILE LA INSTALACION, CON EL FIN DE EVITAR POSIBLES DAMOS POR CAIDA DE TROQUELES, ROCE DEL CABLE, FIC.
- c. SERAN COLOCADOS EL DESTORCEDOR METALICO EMBALADO Y UN FUSIBLE DE 100 KGS. UNIDOS AL DISPOSITIVO DE TRACCION DEL CABLE.
- d. DURANTE LA INSTALACION EL PORTA CARRETE Y EL CABLE ESTARAN UBICADOS APROXIMADAMENTE EN LA PARTE INTERMEDIA DE LA LONGITUD TOTAL DEL TRAMO A INSTALAR, QUE ES DE 2,000 mts.
- e. SE INSTALA EL CARLE EN UN SENTIDO Y AL LLEGAR A UN PUNTO DE EMPALME EL COMPLEMENTO DE ESTE CARRETE SE DESENRROLLA, DEPOSITANDOLO EN EL PISO. SE FORMAN OCHOS HASTA QUE LA PUNTA INTERNA QUEDE LIRRE. LOS OCHOS SERAN DE LONGITUD ENTRE 8 Y 10 METROS DE DIAMETRO, TAL QUE SE RESPETE EL DIAMETRO MINIMO DE CURVATURA DEL CABLE. (VER FIG. 6.20).

- f. SE COLOCAN PERNOS DE ACERO EN LOS MUROS DE LOS REGISTROS PARA FIJAR DE MANERA DISTRIBUIDA CINTURONES DE NYLON. SE EMPLEA LA PISTOLA DE FIJACION DE PERNOS, DEBIENDOSE TENER PRECAUCION QUE LOS PERNOS NO REBOTEN CONTRA LAS VARILLAS DE ACERO QUE FORMAN LAS PAREDES DEL REGISTRO. LOS CINTURONES DE NYLON SERVIRAN PARA SUJETAR AL CABLE.
- g. SE MANTENDRA EQUIPO ADECUADO DE COMUNICACIONES, TANTO EN LA ZONA DEL CARRETE COMO EN LOS REGISTROS INTERMEDIOS.
- h. CUANDO EXISTAN CAMBIOS DE DIRECCION, SERA NECESARIO CUIDAR EXTREMADAMENTE EL CABLE PARA QUE LOS RADIOS DE CURVATURA SEAN LOS MAS AMPLIOS POSIBLES, Y ASI EVITAR QUE EL CABLE SE DAME DURANTE LA INSTALACION.
- i. ANTES DE INICIAR LA INSTALACION DEL CABLE, HABRA QUE REALIZAR UNA INSPECCION FINAL A TODA LA INSTALACION, POZOS Y ESTADO DEL CABLE.
- j. SE DISPONDRA DE PERSONAL EN LA UBICACION DEL CARRETE DEL CARRETE, PARA AYUDAR A QUE ESTE GIRE DURANTE LA INSTALACION.
- k. SE INICIA EL HALADO EN FORMA MANUAL A INDICACIONES DEL SUPERVISOR, UTILIZANDO EL SISTEMA DE COMUNICACION.
- 1. SI LA INMERSION DEL CABLE ES INTERUMPIDA, AL VOLVER A EMPEZAR LA ACELERACION SERA GRADUAL PARA EVITAR SE PRESENTEN TENSIONES ELEVADAS.
- m. EN CADA REGISTRO DESTINADO A UN EMPALME SE DEBERAN DEJAR 15 mt
 DE EXCESO DE LONGITUD EN CADA PUNTA DE LOS DOS CABLES. ÂMBAS
 PUNTAS SERAN ENRROLLADAS EN FORMA CONJUNTA Y COLOCADAS EN LAS
 PAREDES DEL REGISTRO MEDIANTE HERRAJES DE SUJECION.
- n. UNA VEZ QUE SE HA TERMINADO LA INSTALACION DE UN TRAMO DE CABLE, ES CONVENIENTE COLOCAR UN TAPON TERMOCONTRACTIL EN SU PUNTA PARA EVITAR.QUE LA HUMEDAD PENETRE AL MISMO.

6. ACOMODO Y FIJACION DEL CABLE.

PARA LA REALIZACION DE ESTA ACTIVIDAD SE RECOMIENDA QUE EL ACOMODO Y SUJECION DEL CARLE SEAN EN LA PARTE SUPERIOR DE LOS REGISTROS. ESTO ES CON EL FIN DE PROTEGERLO DE MALTRATOS DE PERSONAS QUE EFECTUEN OTROS TRABAJOS EN LOS REGISTROS POR DONDE SE INSTALARA EL CABLE DE FIBRA OPTICA. (VER FIG. 6.19).

ESTA OPERACION SE RECOMIENDA SE EFECTUE EN FORMA SIMULTANEA CON LA INMERSION DEL CABLE PARA EVITAR CUALQUIER TENSION ADICIONAL (JALONEO) QUE PUDIERA MALTRATAR AL CABLE.

7. EMPALMES RECTOS, TERMINALES Y PRUEBAS A CABLE INSTALADO.

NA VEZ QUE SE HA EFECTUADO LA INMERSION DE DOS O MAS TRAMOS DE CABLE SE ROCEDE A EFECTUAR LAS PRUEBAS DE CABLES Y EN CADA UNA DE LAS FIBRAS FARA VERIFICAR SI NO SUFRIERON ALGUN MALTRATO QUE HAYA OCASIONADO UN INCREMENTO CONSIDERABLE EN LA ATENUACION O BIEN QUE HAYA SUFRIDO ROTURA ALGUNA DE ELLAS (VER FIG. 6.21).

DESPUES DE QUE HAN SIDO VERIFICADAS LAS FIBRAS DE DOS TRAMOS DE CABLE QUE SERAN EMPALMADOS, Y QUE LOS RESULTADOS HAN SIDO SATISFACTORIOS, SE PROCEDE A EFECTUAR LOS PREPARATIVOS PARA LA REALIZACION DEL EMPALME.

PROCEDIMIENTO

- a. 'PREVIO A LA REALIZACION DE LAS PRUEBAS A LOS CABLES INSTALADOS, ASI COMO A LA REALIZACION DEL EMPALME, SE DEBEN SEGUIR Y GUARDAR LAS OBSERVACIONES DE SEGURIDAD TANTO PARA EL PERSONAL, LOS PEATONES Y EL TRANSITO, COLOCANDO SEMALES COMO FANTASMAS, ANUNCIOS DE HOMBRES TRABAJANDO, PRECAUCION, ETC.
- b. ACONDICIONAR EL VEHICULO EN EL CUAL SE EFECTUARAN LAS PRUEBAS, ASEGURANDOSE DEL CONTINUO SUMINISTRO DE ENERGIA ELECTRICA PARA LOS EQUIPOS E ILUMINACION.
- c. SE PROCEDE A PREPARAR LAS PUNTAS DE LOS CABLES EN EL PUNTO DONDE-SE EFECTUARA EL EMPALME. ESTA PREPARACION CONSISTE EN LO SIGUIENTE:
 - * DESPRENDER CUBIERTA FOLYACERO, KEVLAR, CUBIERTA INTERNA Y MYLAR, HASTA QUE LOS TUBOS QUE CONTIENEN A LAS FIBRAS QUEDEN FEN LIBERTAD. DESPUES SERA NECESARIO CORTAR LOS TUBOS CUIDADOSAMENTE, DE TAL FORMA QUE NO SE FRACTUREN LAS FIBRAS (VER FIG. 6.22, 6.23).
 - * AHORA SE PROCEDE A QUITAR LA PROTECCION PRIMARIA (ACRILATO) DE LA FIBRA .CON HERRAMIENTAS ESPECIALES. TAMBIEN SE EFECTUA UN CORTE PERFECTAMENTE PERPENDICULAR EN LA MISMA (VER FIG. 6.24)
- d. SE EFECTUA LA MEDICION DE TODAS LAS FIBRAS EN AMBOS CABLES CONECTANDO ESTAS AL EQUIPO OTDR, EL CUAL NOS PROPORCIONA LA INFORMACION DE LA LONGITUD Y LA ATENUACION DE LA FIBRA EN dB.
- e. SE COLOCA EL EQUIPO OTDR EN ALGUNA DE LAS PUNTAS LEJANAS DE ALGUNO DE LOS DOS CABLES. DICHA PUNTA SE PREPARA ESA PUNTA COMO SE MENCIONA EN EL INCISO C. ESTO SE HACE CON EL PROPOSITO DE REALIZAR LAS MEDICIONES CUANDO SE ESTAN EFECTUANDO LOS EMPALMES DE LAS FIBRAS.
 - DE IGUAL MANERA QUE COMO SÉ MENCIONA EN EL INCISO 6, SE DERE ACONDICIONAR EL VEHICULO EN EL CUAL SE EFECTUARAN LAS MEDICIONES.
- ". SE ESTABLECE COMUNICACION ENTRE EL PUNTO DE EMPALME Y EL PUNTO DE PRUEBA A TRAVES DE DIADEMAS QUE SE CONECTAN A UNA BATERIA Y A LA ARMADURA Y EL NUCLEO DEL CABLE . ES POR DONDE SE ESTABLECE DICHA COMUNICACION (VER FIG. 6.25).

- g. SE PROCEDE A INICIAR EL EMPALME DE LAS FIBRAS CON UNA CONTINUA COMUNICACION ENTRE LOS OPERADORES DEL OTDR Y DEL EQUIPO EMPALMADOR, DE TAL FORMA QUE EL EMPALME QUE PRESENTE LAS MEJORES CARACTERISTICAS DE ATENUACION SEA EL QUE QUEDE EN FORMA DEFINITIVA EN LA UNION DE CADA UNA DE LAS FIBRAS (VER FIG. 6.26).
- h. SE PROCEDE A EFECTUAR EL CIERRE DE EMPALME UNA VEZ QUE HAN SIDO EMPALMADAS Y COLOCADAS EN EL ORGANIZADOR TODAS LAS FIBRAS (VER FIG. 6.27 A 6.32)
- i. UNA VEZ QUE SE HAN REALIZADO TODOS LOS EMPALMES INTERMEDIOS SE PROCEDE A REALIZAR LOS EMPALMES TERMINALES. ESTOS CONSISTEN EN UNIR LAS FIBRAS CONTENIDAS EN EL CABLE INSTALADO CON LOS CABLES TERMINALES (PIGTAILS). EL PROCEDIMIENTO PARA LA REALIZACION DE LOS EMPALMES TERMINALES ES SIMILAR AL DE LOS EMPALMES RECTOS; EXPLICADO ANTERIOMENTE (VER FIG. 6.33 A 6.37)

8. PRUEBAS FINALES.

UNA VEZ CONCLUIDA LA REALIZACION DE EMPALMES RECTOS Y TERMINALES EN TODO EL ENLACE, SE PROCEDE A EFECTUAR LAS PRUEBAS FINALES DEL SISTEMA, PARA LO CUAL ES NECESARIO EFECTUAR PREVIAMENTE LAS SIGUIENTES ACTIVIDADES:

- a. DEFINIR POR PARTE DEL PROVEEDOR DE LOS EQUIPOS, EL SITIO EN EL CUAL SE INSTALARAN LOS EQUIPOS A LOS CUALES SE CONECTARAN LA FIBRAS OPTICAS (VER FIG. 6.38, 6.39).
- b. DEFINIR COMO SE ALOJARA EL CABLE DENTRO DE LA CENTRAL TELEFONICA Y EFECTUAR DE ESTA MANERA LOS PREPARATIVOS CORRRESPONDIENTES PARA SU INSTALACION.
- c. EFECTUAR EL ACOMODO Y FIJACION DEL CABLE DENTRO DE LA CENTRAL TELEFONICA.

AHORA SÉ INDICA EL PROCEDIMIENTO PARA LA REALIZACION DE LAS PRUEBAS FINALES DEL SISTEMA.

- d. PREVIO A LA REALIZACION DE LAS PRUEBAS FINALES, SE DEBEN SEGUIR Y GUARDAR LAS RECOMENDACIONES DE SEGURIDAD.
- e. ACONDICIONAR EL SITIO EN EL CUAL SE EFECTUARAN LAS PRUEBAS EN LAS CENTRALES TELEFONICAS, ASEGURANDOSE DEL CONTINUO SUMINISTRO DE ENERGIA ELECTRICA A LOS EQUIPOS E ILUMINACION.
- f. SE CONECTA EL CABLE TERMINAL AL EQUIPO OTDR EN LA CENTRAL DONDE SE EFECTUARA LA PRUEBA Y SE DETERMINA LA ATENUACION TOTAL DEL SISTEMA. ESTA OPERACION SE EFECTUA CON CADA UNA DE LAS FIBRAS, EN AMBOS EXTREMOS DEL SISTEMA (VER FIG. 6.40, 6.41).
- g. SE ESTABLECE COMUNICACION CON EL OTRO EXTREMO DEL ENLACE PARA INFORMARSE MUTUAMENTE DE LOS VALORES OBTENIDOS.

- h. SE OBTIENEN LAS GRAFICAS DE CADA UNA DE LAS FIBRAS MEDIANTE UN EQUIPO IMPRESOR. EN ELLAS SE REPRESENTA LA ATENUACION TOTAL DEL SISTEMA, ASI COMO LA LONGITUD DE LA FIBRA (VER FIG. 6.42).
- i. CON EL PROPOSITO DE TENER LA MAXIMA EXACTITUD EN LA CARACTERIZACION DE LA ATENUACION DE LAS FIBRAS EN TODO EL SISTEMA, SE EFECTUA UNA PRUEBA MAS, PERO AHORA DEDSDE EL EXTREMO OPUESTO.
- j. LA MANERA ADECUADA DE REPORTAR LOS VALORES FINALES PARA CADA FIBRA, ES CON EL PROMEDIO DEL VALOR ABSOLUTO DE LAS DOS LECTURAS (EXTREMOS OPUESTOS).
- k. EL CABLE ESTA LISTO PARA EFECTUAR EL ENLACE.

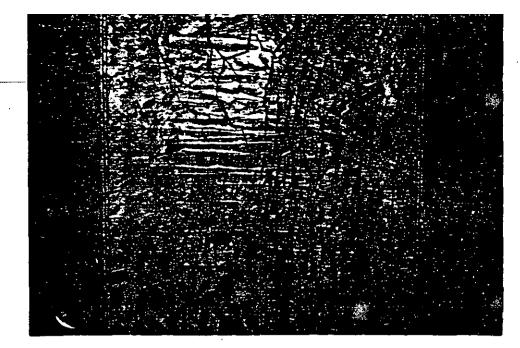


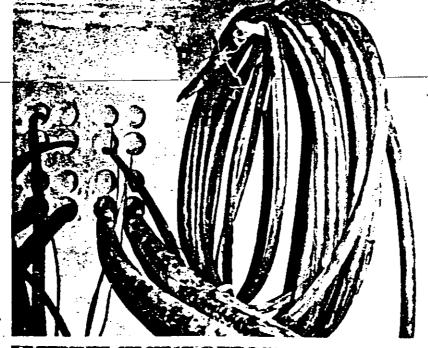
Fig. 6.1

Fiq. 6.2

F12 F 3

Fig. 6.4

Fig. 6.5



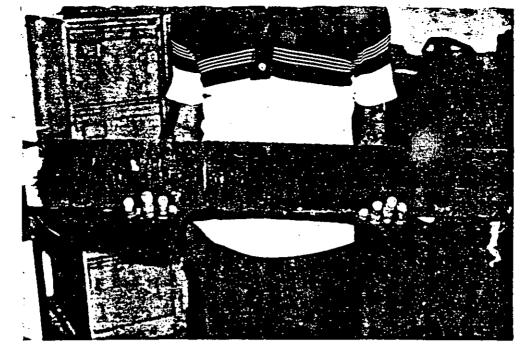

Fig. 6.6

Fig. 6.7

Fia. 6.9

Fia. 6.10

Fig. 6.11

Fig., 6.12

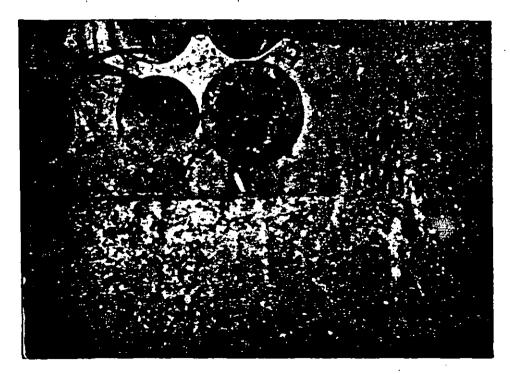


Fig. 6.13

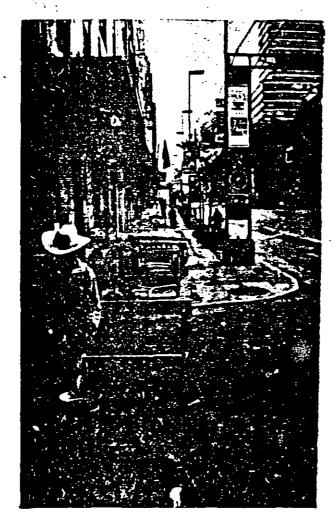


Fig. 6.14

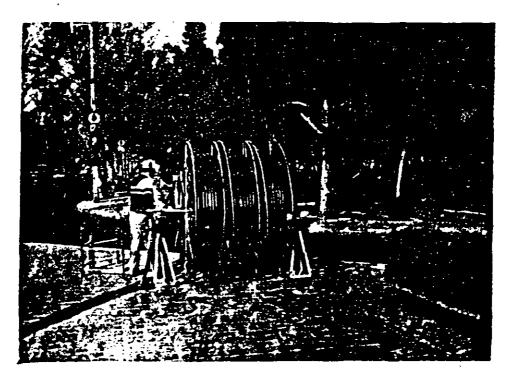


Fig. 6.15

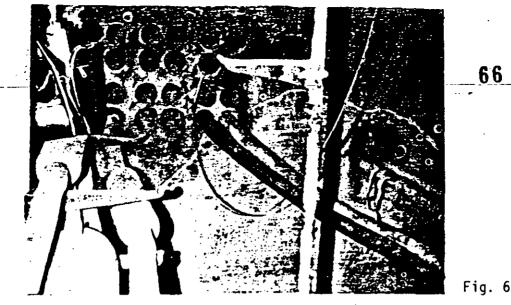


Fig. 6.16

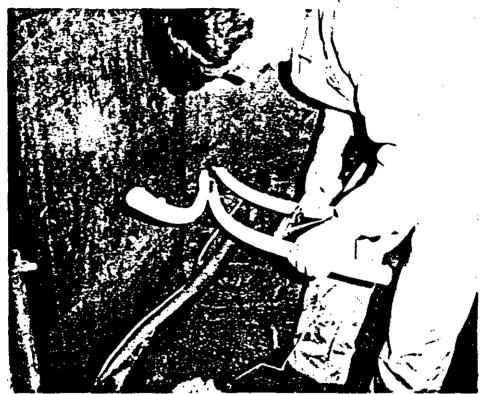


Fig. 6.17

Fig. 6.18

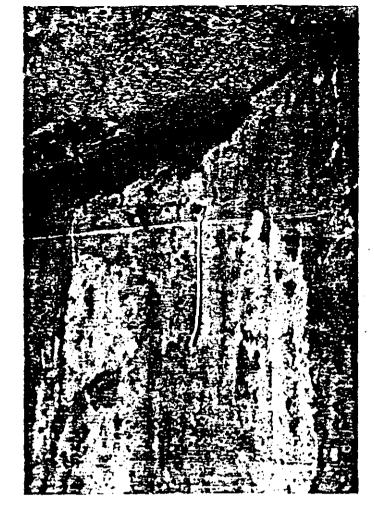


Fig. 6.19

Fig. 6.20

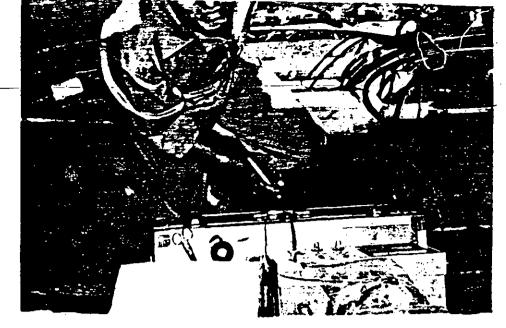


Fig. 6.21

68

Fig. 6.22

Fig. 6.23

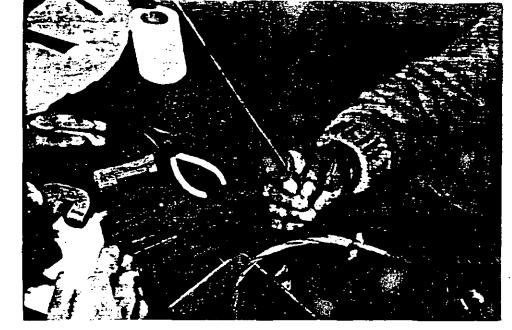


Fig. 6.24

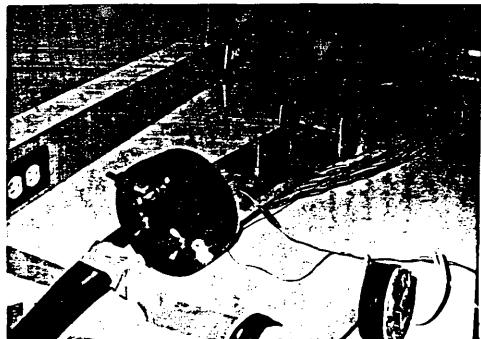


Fig. 6.25

Fig. 6.26

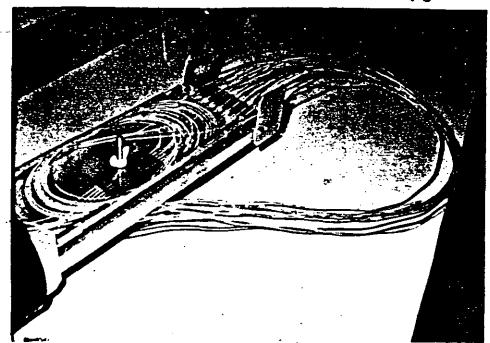


Fig. 6.27

Fig. 6.28

Fig. 6.29

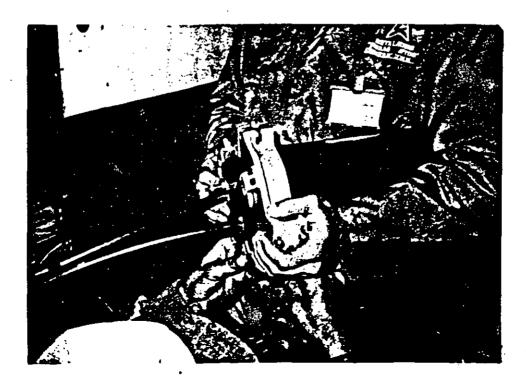
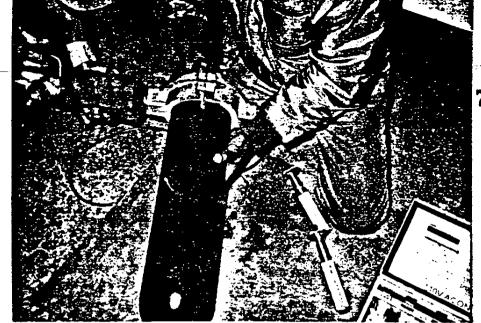



Fig. 6.30

72

Fig. 6.31

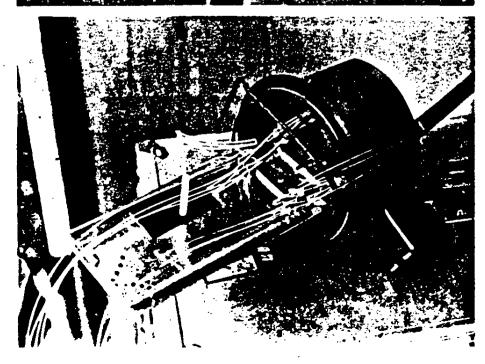



Fig. 6.32

Fin. 6.33

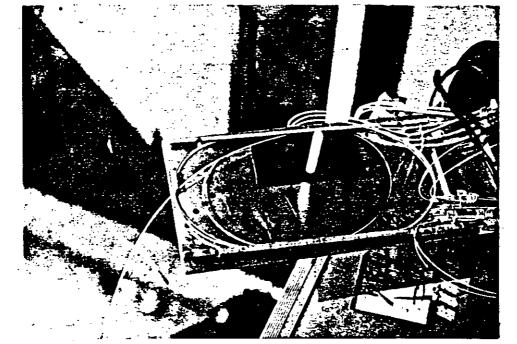


Fig. 6.34

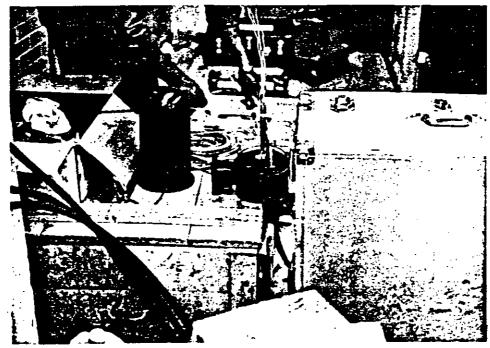



Fig. 6.35

Ein 6 36

Fig. 6.37

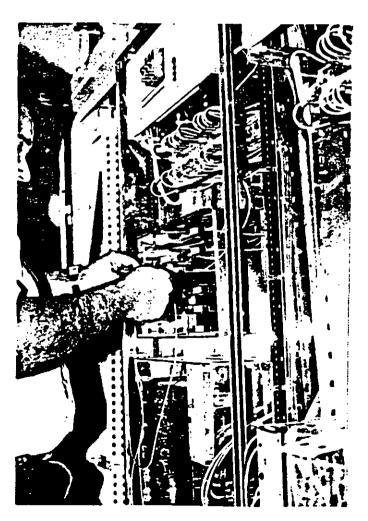


Fig. 6.38

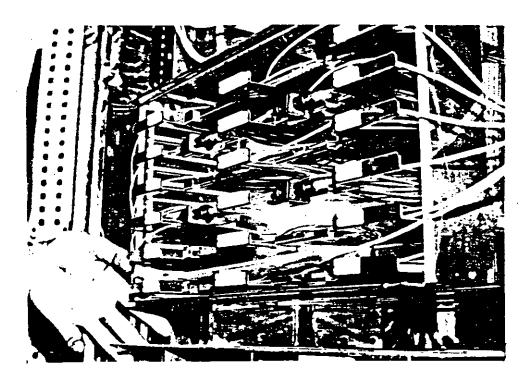


Fig. 6.39

Fig. 6.40

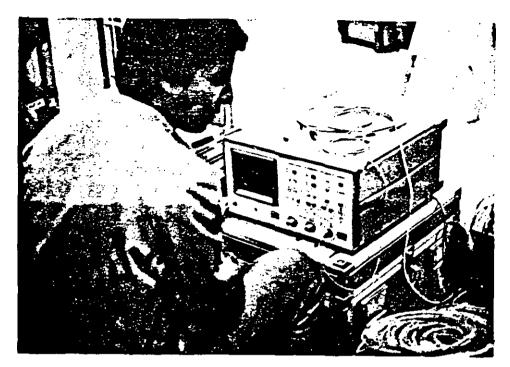
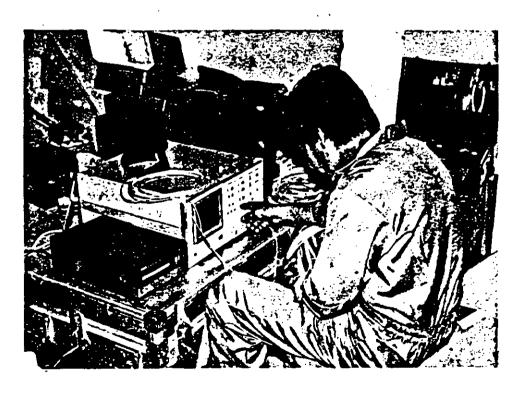



Fig. 6.41

Fia. 6.42

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS
TELECOMUNICACIONES VIA FIBRAS OPTICAS

TENDENCIAS DE INVESTIGACION Y DESARROLLO

ING. FRANCISCO JAVIER MENDIETA

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285 Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

TENDENCIAS DE INVESTIGACION Y DESARROLLO

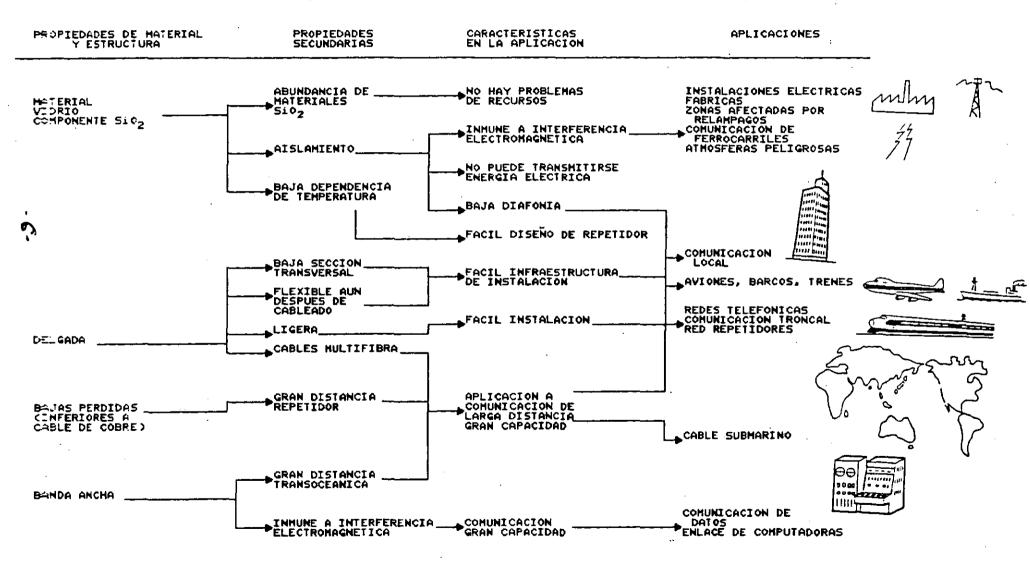
La figura presenta la evolución de la telefonía tradicional hacia los servicios de la "era de la información". El creciente ancho de banda ilustrado en abscisas refleja el incremento en la velocidad de los dispositivos electrónicos y ópticos, impulsados particularmente por el nuevo medio de transmisión; la fibra óptica. Con una capacidad creciendo aceleradamente tanto en transmisión como en conmutación, la red es capaz de manejar comunicación "multimedia". Además de la voz tradicional, puede proporcionar servicios de datos, facsímil, video, etc. Este eje representa la tecnología tradicional de las telecomunicaciones.

La ordenada describe el nivel creciente en la inteligencia de la red. Esta es una nueva dimensión en las telecomunicaciones modernas, dado que hasta ahora había sido terreno de la computación, partir del desarrollo conjunto del "software" y del "hardware", ayudado por el incremento de velocidad y complejidad de los circuitos y computadoras digitales.

Los avances en este campo están marcados por los procesadores de señal de alta velocidad, microprocesadores de creciente complejidad, capacidades mayores y tiempos de acceso menores en el almacenamiento y nuevos avances en "software" tales como los asociados a inteligencia artificial y redes neuronales. La inteligencia impacta tanto en la operación interna de la (inteligencia) red como en los servicios ofrecidos. Las características más avanzadas vendrán de la sinergia del ancho de banda y la inteligencia.

Se prevé que la red proporcionará un número creciente de servicios sobre interfaces "amigables". Se podrá responder a comandos de voz y el sistema podrá identificar a los usuarios a partir de patrones de voz. Después, la red será capaz de detectar las necesidades de los clientes. Por ejemplo, podrá grabar y categorizar los hábitos de los usuarios y ofrecer servicios. paquetes de ifnormación orientados entretenimiento. Esta base de datos de usuarios será accesible desde cualquier teléfono, de modo que una vez que una persona es identificada a través de patrones de voz o una tarjeta de identidad, cualquier teléfono público o privado se convierte en el teléfono privado del cliente con las ofertas usuales de servicios.

Con la continua pérdida de significancia de las fronteras internacionales y el advenimiento de una economía global, el mismo concepto podrá extenderse más allá de las fronteras nacionales, con la nueva dimensión de traducción instantánea del lenguaje e interpretación. En términos de la calidad de la presentación, futuros usuarios obtendrán la riqueza del ambiente "multimedia", con comunicaciones yendo desde voz de alta fidelidad hasta video 3-D, así como portabilidad en la forma de terminales inalámbricas ligeras. Para alcanzar esta meta, avances paralelos deberán realizarse a lo largo de los dos ejes de ancho de banda e inteligencia, así como diversas combinaciones de ambas tecnologías.


La capacidad de transmisión y distribución de la red telefónica depende del ancho de banda disponible. Este parámetro ha cambiado drásticamente con la evolución de la tecnología óptica. Los límites de ancho de banda para diferentes tecnologías se muestran en la figura.

Tanto la frecuencia de modulación como las pérdidas en el medio de transmisión favorecen a la fibra óptica para transmisión a alta velocidad. Esto dá el ímpetu para la rápida evolución de dispositivos ópticos de estado sólido usados en conjunto con electrónica de alta velocidad.

La evolución de las redes experimentales sigue a la disponibilidad de fuentes de luz con propiedades espectrales cada vez más refinadas. La figura muestra una serie de fuentes de luz desde los LED'S hasta láseres de retroalimentación distribuida sintonizables, contribuyendo a mayores velocidades de transmisión.

	1950 s	1960 s	1970 s	1980 s	1990 s 1
CONMUTACION	.CROSS-BAR	.CONTROL POR PROGRA- MA ALMACENADO	.TARIFACION DIGITAL	.CONMUTACION DIGITAL LOCAL	.CONMUTACION DE BANDA ANCHA
TRANSMISION	.RADIO ANALOGICO .MULTICANALIZACION .COAXIAL		.SIST. CONEXION CR <u>U</u> ZADA DIGITALES .SISTEMAS DE GANAN- CIA DE PAR DE LAZO .RADIO DIGITAL	.FIBRA .EQUIPO MULTIPLICA- CION CIRCUITOS DI- GITALES	.FIBRA EN EL LAZO
SEÑALIZACION	.SEÑALIZACION EN BANDA SF Y MF		SEÑALIZACION DE TA RIFACION POR CANAC COMUN FUERA DE BA <u>N</u> DA	.SERVICIÓ BASADO EN SEÑALIZACION USANDO BASE DE DATOS DE LA RED	SEÑALIZACION EXTREMO A EXTREMO GLOBAL (CCS-7)
EQUIPO DE ABONADO	.PBX .MODEMS	.DISTRIBUCION AUTO- MATICA DE LLAMADAS	.PBX SPC .TERMINALES INTELI- GENTES	.PBX DIGITAL .LAN'S .PC'S .FACSIMIL	.CONMUTACION BANDA ANCHA .ESTACIONES DE TRABA- JO
TECNOLOGIA DE COMU- NICACION DE DATOS	.MODEMS		.CONMUTACION DE PA- QUETES .CONMUTACION DE CIR CUITOS	.SISTEMAS DE GESTION DE ANCHO DE BANDA	.MODO DE TRANSFEREN- CIA ASINCRONO .CONMUTACION PAQUETES BANDA ANCHA
CAPACIDADES DE LA RED	.RUTEO ALTERNO AUTOMATICO		.SEÑALIZACION POR CA NAL COMUN	.RUTEO DINAMICO NO JERARQUICO	.FLEXIBILIDAD MUNDIAL
SISTEMAS DE OPERA- CION DE REDES	.CONTABILIDAD DE MENSAJES AUTOMA- TICA	.GESTION DE RED DE TRAFICO	.PRUEBA MECANIZADA, MONITOREO ALARMAS, ADMINISTRACION DE TRAFICO	.CONTROL POR USUARIO .SISTEMAS EXPERTOS	.GESTION DE RED, IN- TEGRADA .OPS INTERNACIONAL AU TOMATIZADA
SERVICIO PUBLICO CONMUTADO	.MARCADO DE SERVI- CIO DIRECTO	.MARCADO DE SERVICIO DIRECTO INTERNACIO- NAL	.SERVICIO DE LLAMADA GRATUITA ("800")	.COMPETICION INTERNA- CIONAL Y LARGA DIS- TANCIA .SERVICIO "800" CON- TROLADO POR CLIENTE .RDSI	RDSI BANDA ANCHA
SERVICIO DE RED PRIVADA	.RED TANDEM "TIE TRUNK" .LINEAS PRIVADAS	REDES PRIVADAS DE CONMUTACION COMPARTIDA	.REDES TAMDEM ELEC- TRONICAS .BANDA VOZ CONM. < 2.4 kbps	.REDES DEFINIDAS POR SOFTWARE	.RED DIGITAL DE SERVI CIOS INTERNACIONALES
SERVICIO DE COMUNI- CACION DE DATOS	.SERVICIO DE DATOS EN BANDA DE VOZ	.DATOS EN BANDA DE VOZ CONMUTADOS (≤1.2 kbps) .DATOS EN BANDA DE VOZ NO CONMUTADOS (€ 9.6 kbps)	SERVICIO DATOS DI- GIT. NO CONMUT. (56,64 kbps) .CONMUTACION DE PA- QUETES PRIVADA .CONM. DE PAQ. PUBL.	.SERVICIO DIGITAL CON MUTADO (56 kbps) .DATOS NO CONMUTADOS (2,45 Mbps) . OSI	.CONMUTACION DATOS BANDA ANCHA (150 Mbps) -NO CONM. (→1.2 Gbpc' .DIF RIO INTERNA- CIGA.

FIBRAS OPTICAS: CARACTERISTICAS Y APLICACIONES

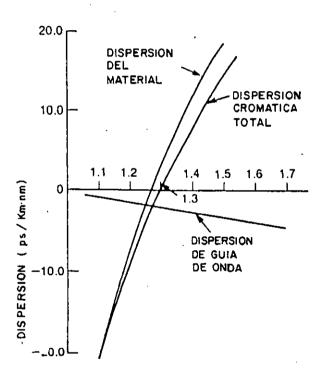


Figura 5

* En fibras ópticas unimodales, la contribución de la dispersión de material y de la de guía de onda produce un mínimo alrededor de 1.3 micrómetros.

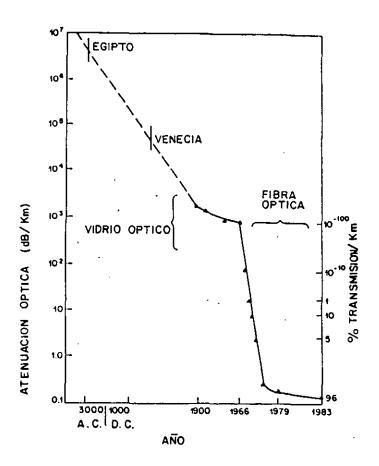


Figura 4

- * La disminución progresiva de la atenuación por unidad de longitud del vidrio ha permitido la construcción de fibras ópticas para grandes distancias de transmisión.
- * Actualmente la tecnología se encuentra muy cerca del límite de atenuación de Rayleigh.

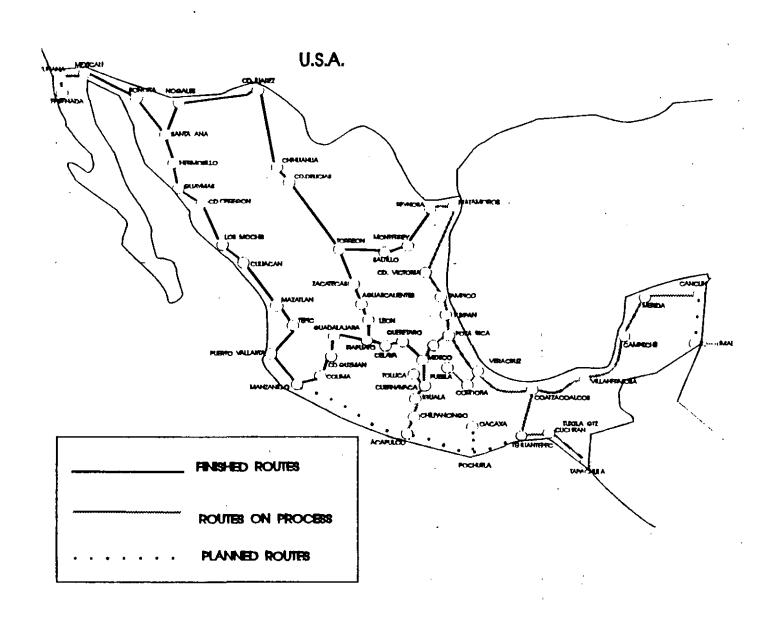


FIG. 1 TELMEX NATIONAL FIBER OPTIC BACKBONE

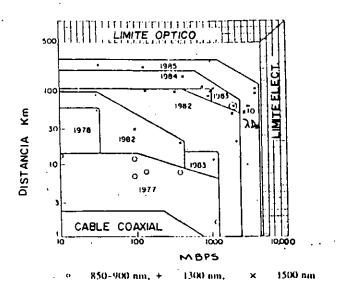


Figura 10

- * Evolución de la velocidad de transmisión alcanzable en un sistema de comunicaciones ópticas.
- * Los límites últimos están asociados a la generación de pulsos ópticos angostos y a la capacidad de la fibra (dispersión).
- * Sin embargo los límites prácticos quedan fijados por los dispositivos de emisión, modulación y detección óptica.

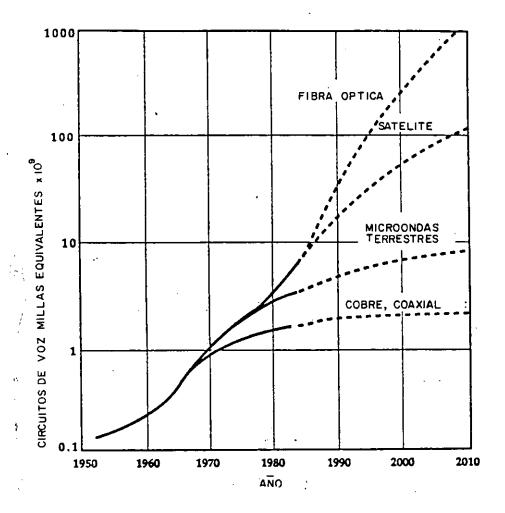


Figura 6

* Evolución prevista para la capacidad (circuitos de voz por distancia) de diversos canales de transmisión, notándose una clara ventaja de la fibra óptica sobre otros medios.

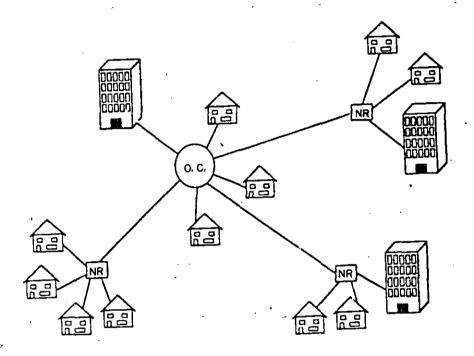


Figura 17

- * Area de servicio de una central telefónica.
- * Los abonados cercanos son servidos por fibras dedicadas.
- * Los abonados remotos son servidos a través de topologías de doble estrella, con alimentadores compartidos y nodo remoto.

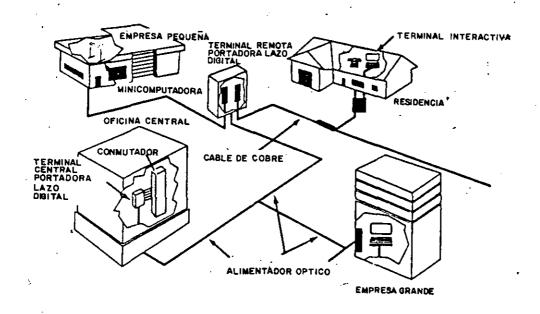


Figura 11

* Distribución típica de la planta de transmisión digital.

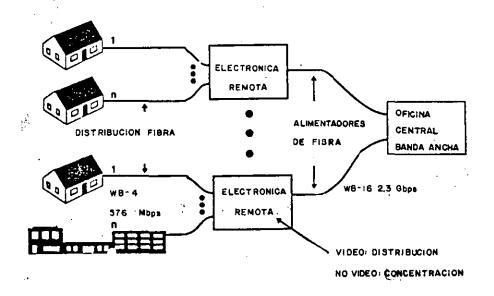


Figura 18

- * Prototipo de una RDSI-BA en topología de doble estrella.
- * Una estrella está representada por los alimentadores de fibra desde la central hasta la electrónica remota.
- * La estrella de segundo nivel conecta a la electrónica remota a los abonados.

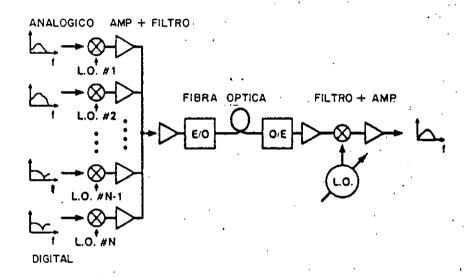


Figura 13

- * En un sistemna de multicanalización por división en frecuencia de subportadoras, N 1 canales son superpuestos previamente a la modulación óptica.
- * En el receptor, un oscilador local sintonizable permite efectuar la conversión de bajada del canal deseado.

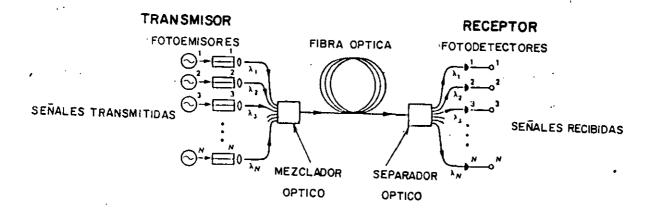


Figura 14

- * En un sistema de multicanalización por división en longitud de onda, N portadoras ópticas generadas por N fotoemisores son superpuestas usando el mezclador óptico y transmitidas simultáneamente por una sóla fibra.
- * En el receptor, un separador óptico efectúa la tarea de enviar una y sólo una longitud de onda a cada uno de los N receptores.

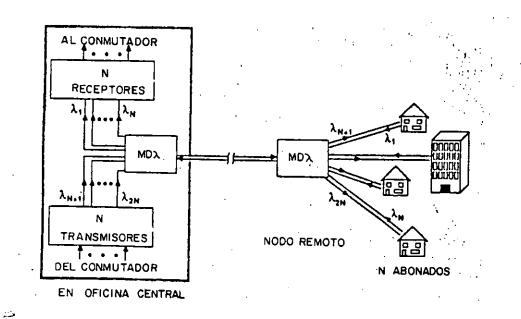


Figura 15

* Arquitectura de lazo óptico pasivo empleando MDA y enrutamiento al nodo remoto para obtener una ganancia de N:1.

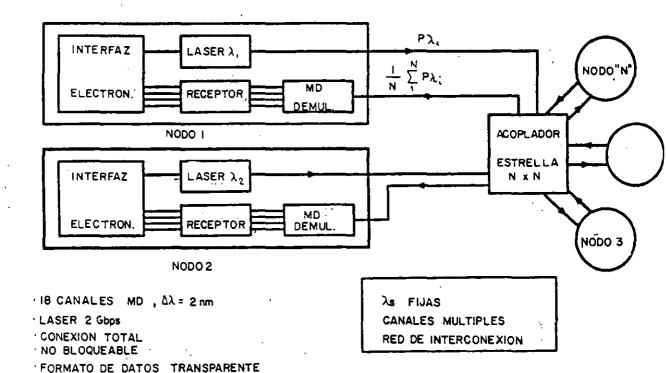


Figura 16

- * Arquitectura de una red óptica en estrella multi- λ para servicios de banda ancha.
- * Es de interconexión total, no bloqueable y permite integración de servicios punto a punto y punto a multipunto de banda ancha.
- * Características:
 - Datos de banda ancha y videoconferencia.
 - Velocidades variables desde telemetría hasta TVAD.
 - Control distribuido de la red.
 - Costo del transporte (transmisión y conmutación) disminuyendo progresivamente.

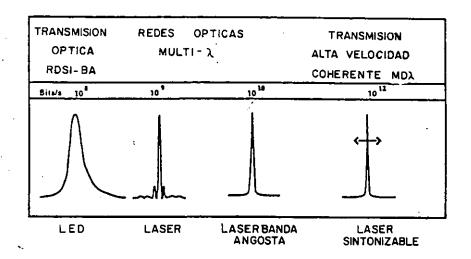


Figura 8

- * Diversos elementos fotoemisores son utilizados, dependiendo de la aplicación.
- * En RDSI-BA, los LED'S son preferentemente utilizados.
- * En redes ópticas con multicanalización por división en λ , deben usarse láseres monofrecuenciales y, en algunos casos, láseres de banda angosta.
- * En transmisión coherente y en sistemas MD\(\lambda\), l\(\text{seres}\) monofrecuenciales sintonizables deben ser usados.

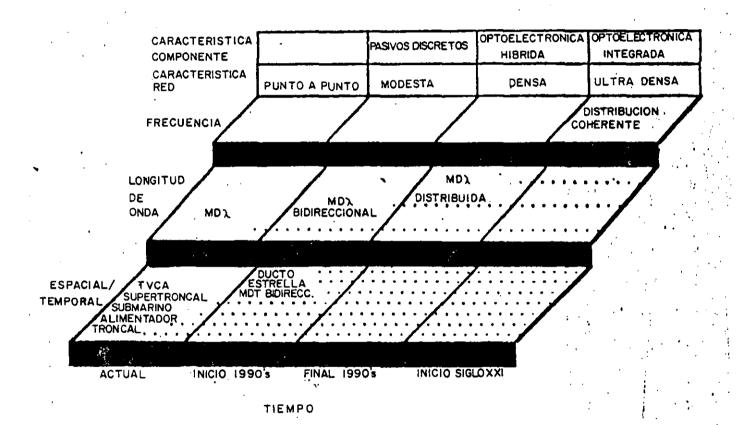


Figura 12

* Evolución en la metodología de distribuición en la medida que el lazo de abonado cambia de una topología punto a punto hacia un número grande de bifurcaciones.

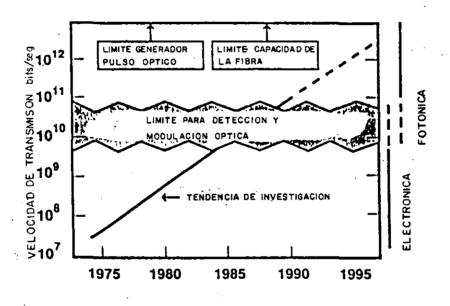


Figura 7

- * Las distancias y velocidades de transmisión por fibras ópticas se han incrementado con el tiempo, estando cerca de alcanzar el límite electrónico y óptico.
- * El límite electrónico está asociado a la máxima velocidad de respuesta de los dispositivos de extremidad.
- * El limite óptico está asociado a la máxima potencia susceptible de ser transmitida sin distorsión por la fibra.

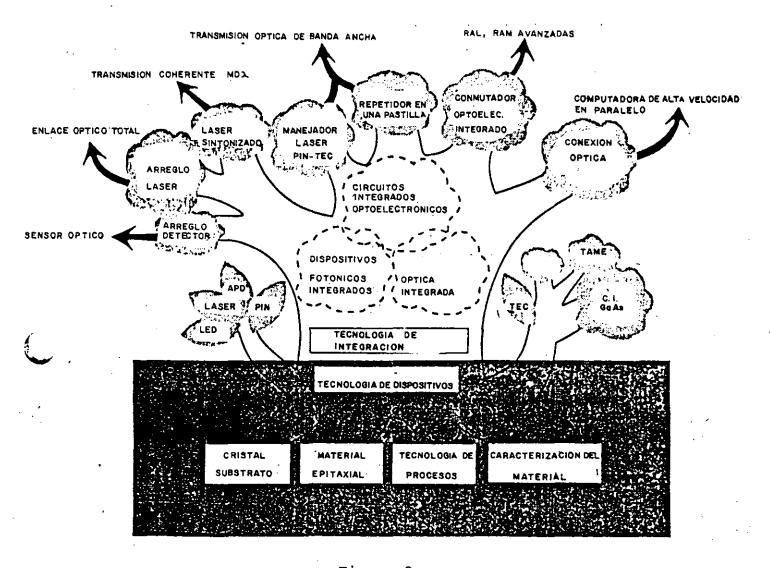


Figura 9

- * Evolución de los dispositivos de estados sólido hacia la optoelectrónica integrada.
- * Las flechas conducen a las diversas tecnologías involucradas.

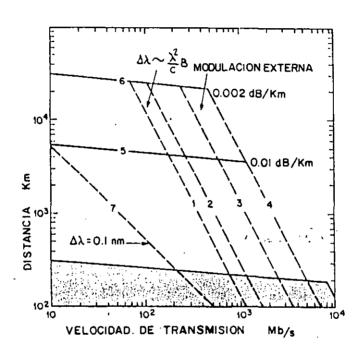


Figura 19

- * Máxima distancia posible entre repetidores en función de la velocidad de transmisión para diversos sistemas ópticos.
- * La región sombreada es representativa de las fibras ópticas de sílice.
- * Las curvas 1-7 corresponden a las futuras fibras ópticas operando en el infrarrojo medio.

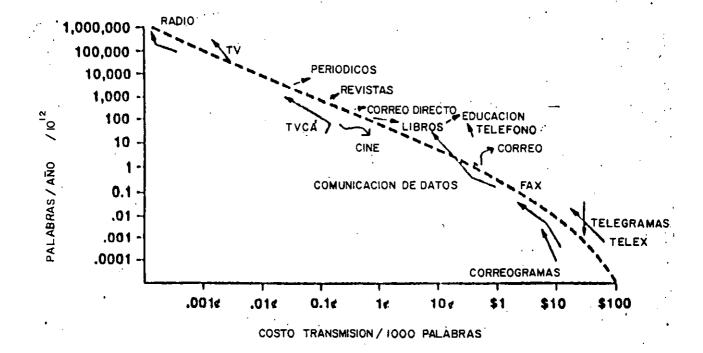


Figura 20

* Comportamiento en volúmen y costos (1960-1980) de las comunicaciones por diversos medios.



Figura 3

- * Evolución de la telefonía tradicional hacia los servicios de la era de la información.
- * Las características avanzadas de la red provienen de la sinergia del ancho de banda y de la inteligencia, tanto en la operación interna de la red como en los servicios ofrecidos.

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS MODULO I: TELECOMUNICACIONES VIA FIBRAS OPTICAS

APLICACIONES EN EL SECTOR ELECTRICO

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285 Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

Telecomunicaciones vía Fibras Opticas : Teoría y Aplicaciones

APLICACIONES EN EL SECTOR ELECTRICO

3/junio/1995

Beneficios del uso de las Fibras Opticas en el Sector Eléctrico

Confiabilidad y Disponibilidad

Costo reducido por canal

Mayor capacidad de canales de comunicación

Independencia de la cía. de teléfonos

Saturación de los sistemas de radio

Actualmente hay más de 16,500 Km. de cables de F.O instalados en empresas eléctricas de todo el mundo

Crecimiento esperado en 1996 : 35,000 Km.

85% de las empresas eléctricas de EUA tienen algún tipo de instalación de fibra óptica

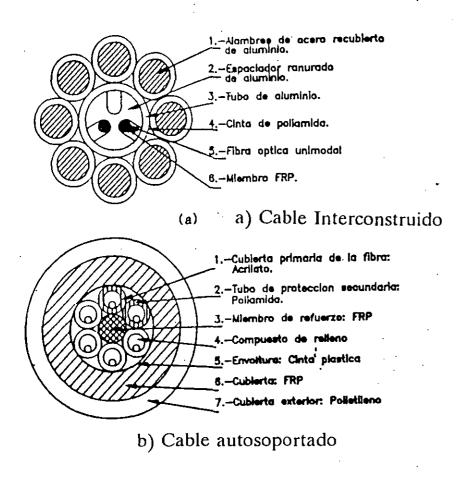
En México se aplica la tecnología de fibras ópticas desde la década de los 80's

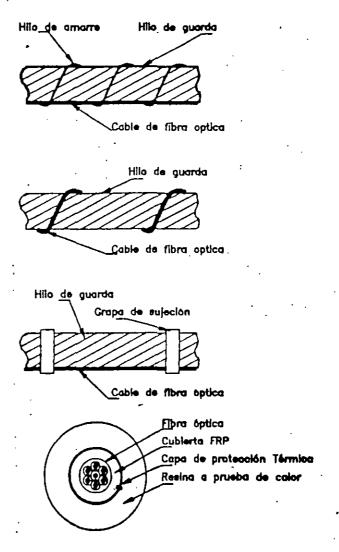
Primer enlace experimental : patio de la subestación de 400 KV de la C.T. Tula (1983) (34 Mb/s,450 mts. de fibra óptica multimodo de indice gradual)

En 1990 existen instalados : 90 canales, 36 equipos, 65 Kms. de F.O. en regiones de transmisión

COMUNICACIONES

Comunicación entre subestaciones:


- Voz : telefonía
- Datos : Redes de area local
- Teleprotecciones (analógicas o digitales)
- Telecontrol: Sistemas SCADA


CABLES DE FIBRA OPTICA UTILIZADOS EN EL SECTOR ELECTRICO

Cable óptico interconstruido

Cable autosoportado

Cable sujeto al hilo de guarda

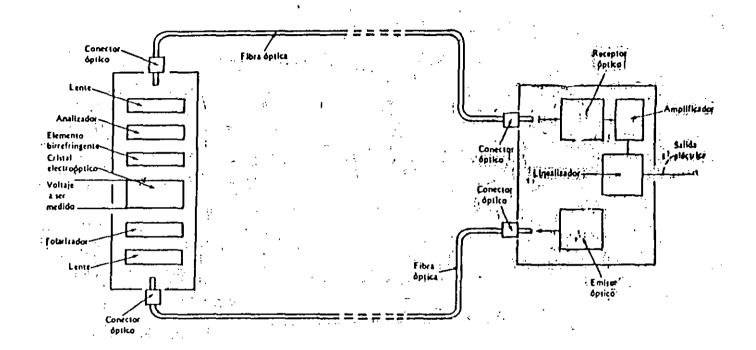
c) Cable sujeto al hilo de guarda

Tipos de cables de F.O. utilizados en el Sector Eléctrico

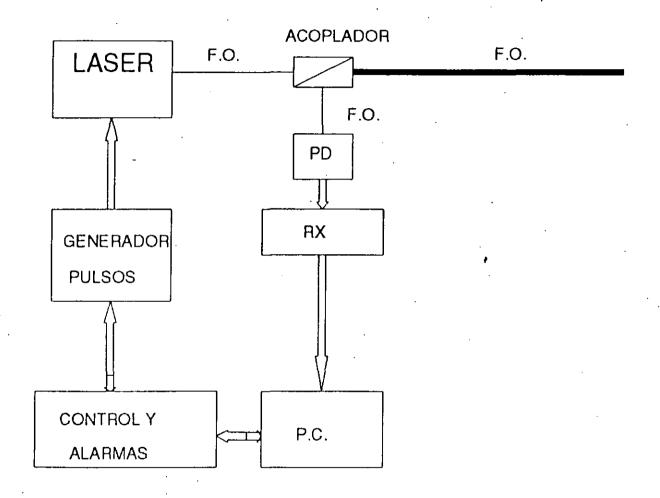
VENTAJAS

Hacer eficiente el acarreo de señales punto a punto

Disminución de la IEM.


Garantizar el aislamiento galvánico

SENSORES OPTICOS


- Voltaje
- Corriente
- Temperatura Puntual
- Temperatura Distribuída (Efecto Raman)

PRINCIPALES VENTAJAS

- Aislamiento eléctrico
- Inmunidad a la IEM
- Velocidad de respuesta
- Tamaño y peso reducidos
- Fácil conexión con Sistemas de Adquisición de Datos

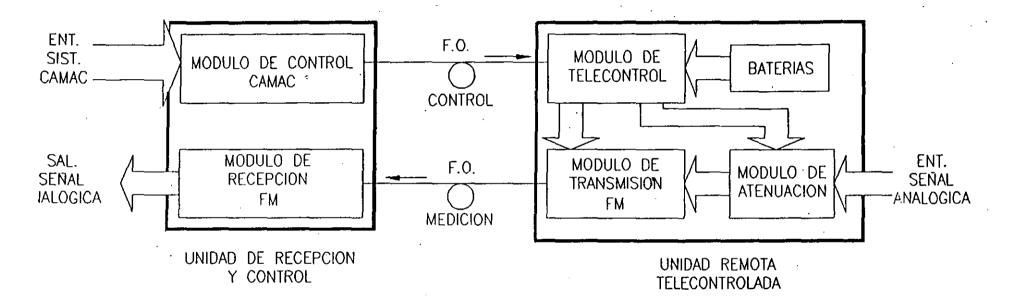
SENSOR DE VOLTAJE OPTICO

ESQUEMA DE INSTRUMENTACION PARA EL SENSADO DE TEMPERATURA

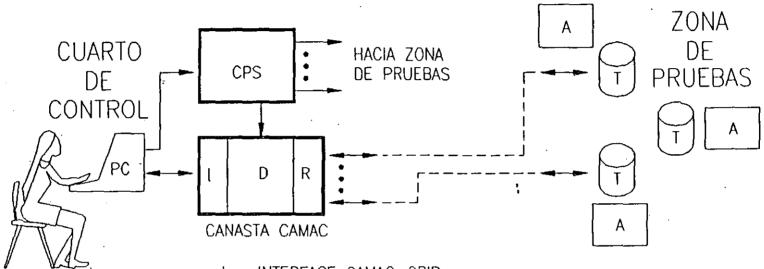
TELEMEDICION EN LABORATORIOS DE PRUEBAS ELECTRICAS

Familia de equipos diseñados por el IIE para la telemedición y control por medio de fibras ópticas (cadenas electroópticas)

Empleadas en el LAPEM


Características

- Ancho de Banda seleccionable :
 - a) Baja frecuencia: 0 20 Khz
 - b) Media frecuencia: 0 200 Khz
 - c) Alta frecuencia: 0 2 Mhz.


Actuador telecontrolado por Fibra Optica: Conmutación del comando de apertura o cierre del dispositivo bajo prueba

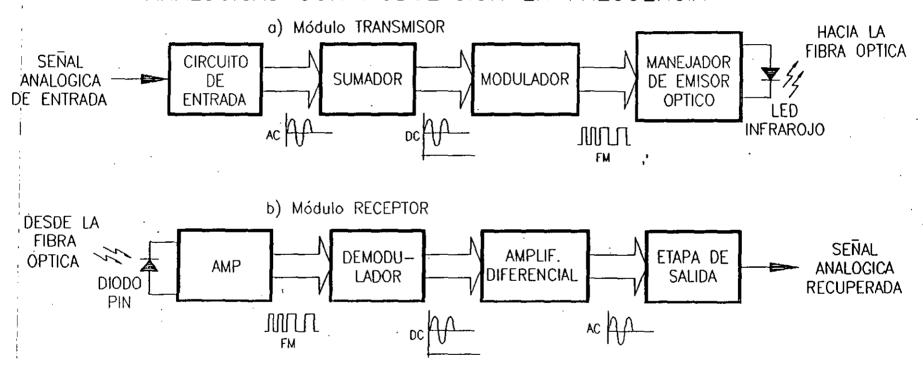
Controlados a distancia por una computadora utilizando la interfaz CAMAC

DIAGRAMA A BLOQUES DE UNA CADENA ELECTRO-OPTICA.

ARQUITECTURA SIMPLIFICADA DE APLICACION DE LAS CADENAS ELECTRO OPTICAS DE MEDIA FRECUENCIA

1 - INTERFACE CAMAC-GPIB

D -DIGITALIZACION


PC - COMPUTADORA PERSONAL CON TARJETA GPIB CPS - CONTROLADOR PROGRAMABLE DE SECUENCIAS

R - RECEPTORES

T -TRANSMISORES

A - ACTUADORES TELECONTROLADOS

SUBSISTEMA DE TRANSMISION DE SEÑALES ANALOGICAS CON MODULACION EN FRÉCUENCIA

TELEMEDICION EL CENTRALES DE GENERACION

SISTEMA MUXFO

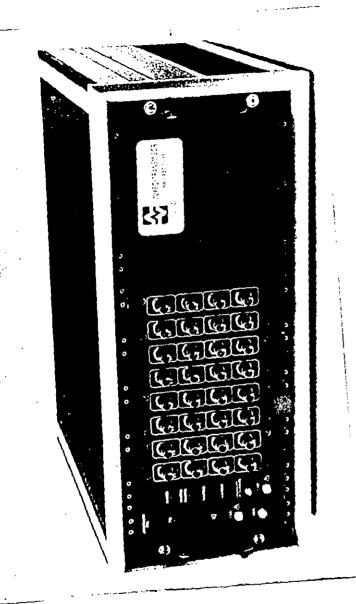
Sistema Multiplexor de Señales de control analógicas para pruebas de comportamiento en Centrales de Generación

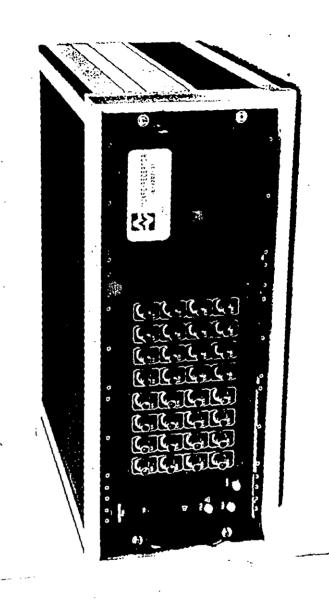
SISTEMA MUXFO

- Diseñado para el LAPEM

- Aplicado en Pruebas a los Sistemas de Control de Centrales Electricas

- Cumple Normas de C.F.E.


- Emplea Fibras Opticas de uso rudo para la transmisión de señales de voz y datos


QUE HACE?

- Multicanaliza hasta 32 señales analógicas

- Provee de Aislamiento Galvánico de 2.5 KV

- Evita la contaminación de las mediciones durante la transmisión

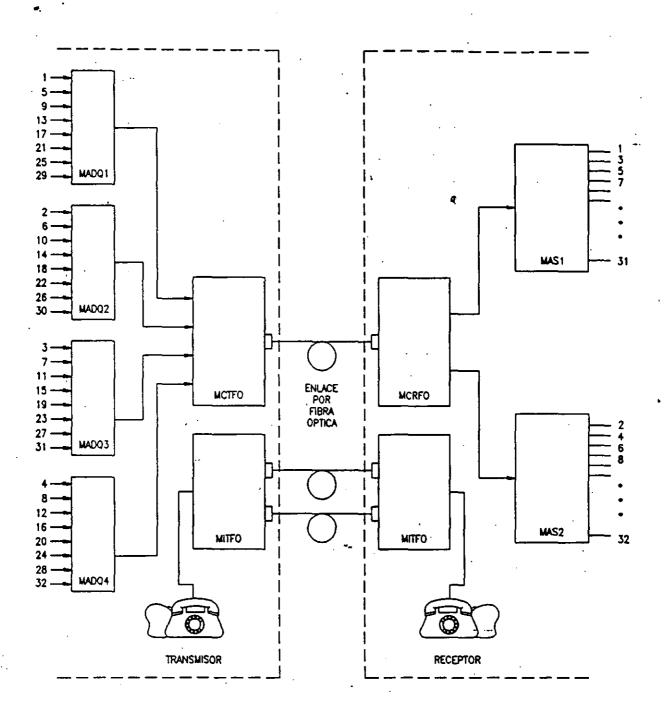


Figura 1-2.- Diagrama de Bloques del Sistema

IMPACTO

- Instrumentación a la medida

- Mejora la calidad del trabajo de campo

- Reduce la cantidad de instrumentación de campo

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSOS ABIERTOS
MODULO I: TELECOMUNICACIONES VIA FIBRAS OPTICAS

PARAMETROS DE MAYOR INTERES: DIAMETRO DEL NUCLEO DIAMETRO DEL CLADDING ATENUACION DISPERSION O ANCHO DE BANDA APERTURA NUMERICA PERFIL DE INDICE DE REFRACCION

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285
Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

CARACTERIZACION DE FIBRAS OPTICAS

PARAMETROS DE MAYOR INTERES:

- DIAMETRO DEL NUCLEO
- DIAMETRO DEL CLADDING
- ATENUACION
- DISPERSION O ANCHO DE BANDA
- APERTURA NUMERICA
- PERFIL DE INDICE DE REFRACCION

CARACTERIZACION DIMENSIONAL DE LA FIBRA OPTICA

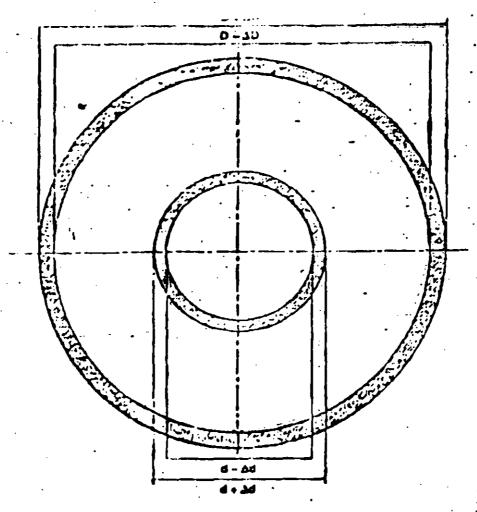
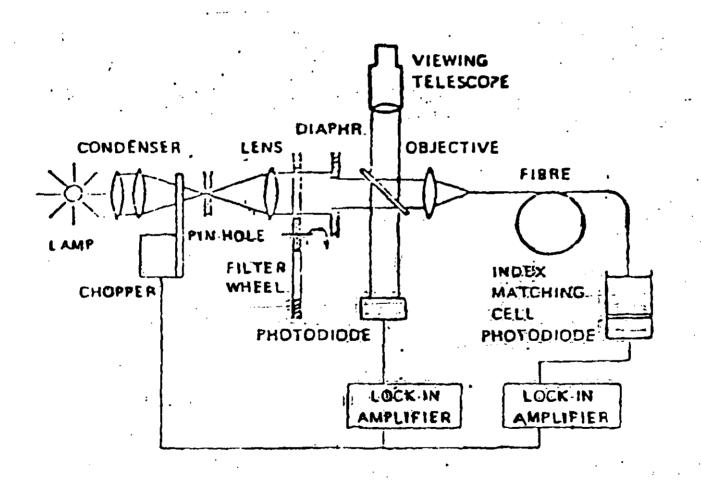


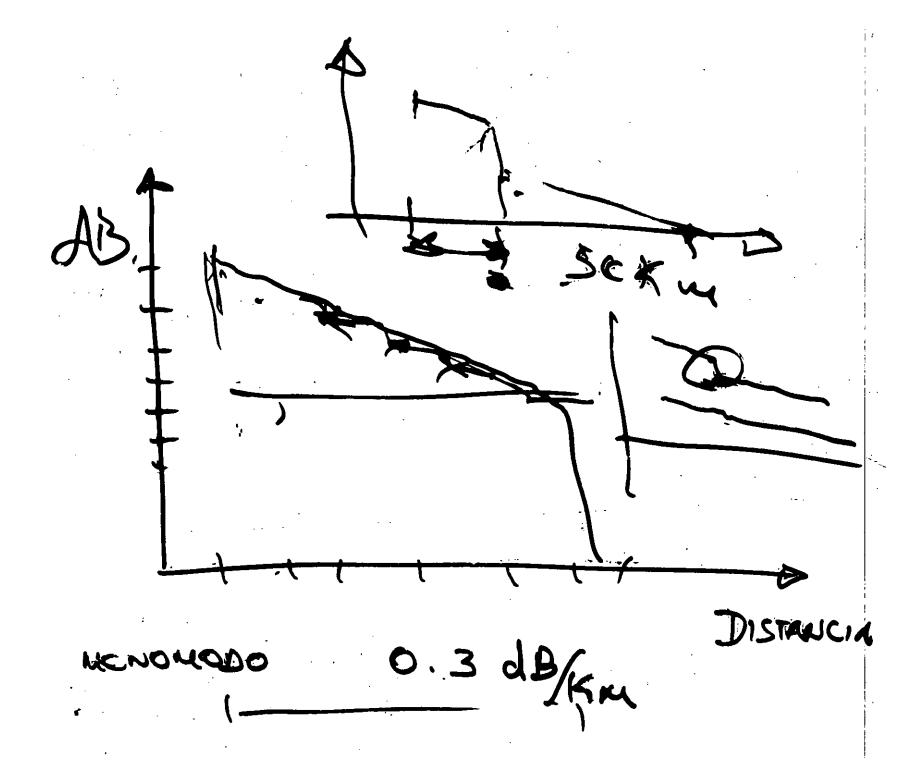
Figure 10 - Tolcrance field (template)

& = cure diameter (nominal)

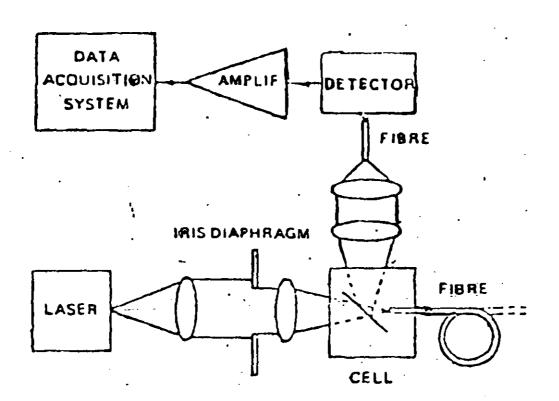
Ad = tolerance of the core diam.

D = reference surface diameter (nominal)

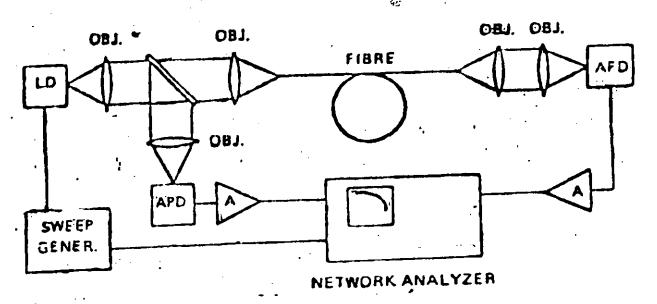

CARACTERIZACION DE F.O. ATENUACION

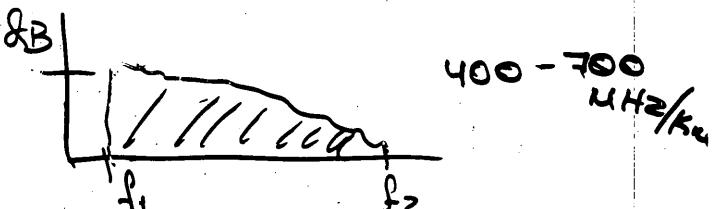

ATENUACION ES LA PERDIDA DE ENERGIA POR DE ABSORCION E IRRADIACION

FORMAS DE MEDIR:

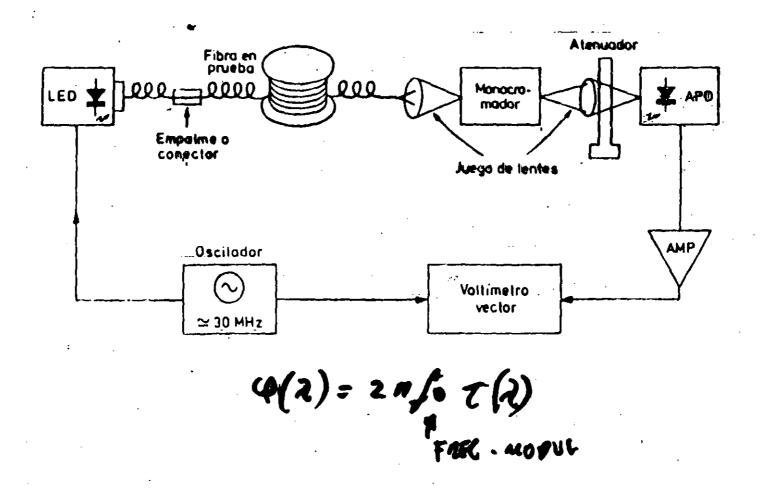

- ATENUACION POR CUT BACK "
- ATENUACION POR INSERCION
- RETROESPARCIMIENTO (BACKSCATTERING)

ATENUACION POR " CUT BACK "

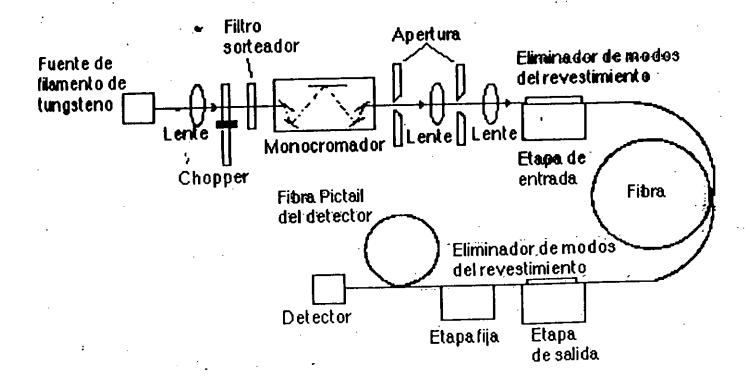


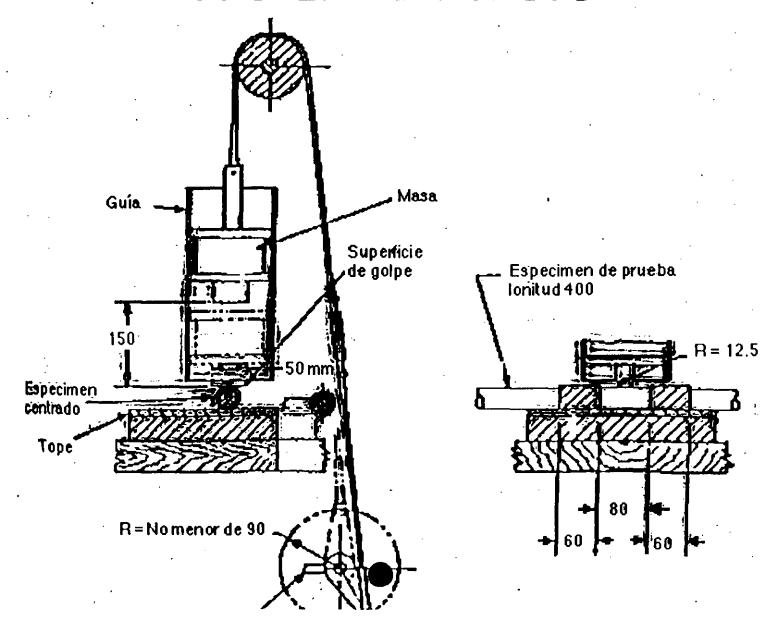


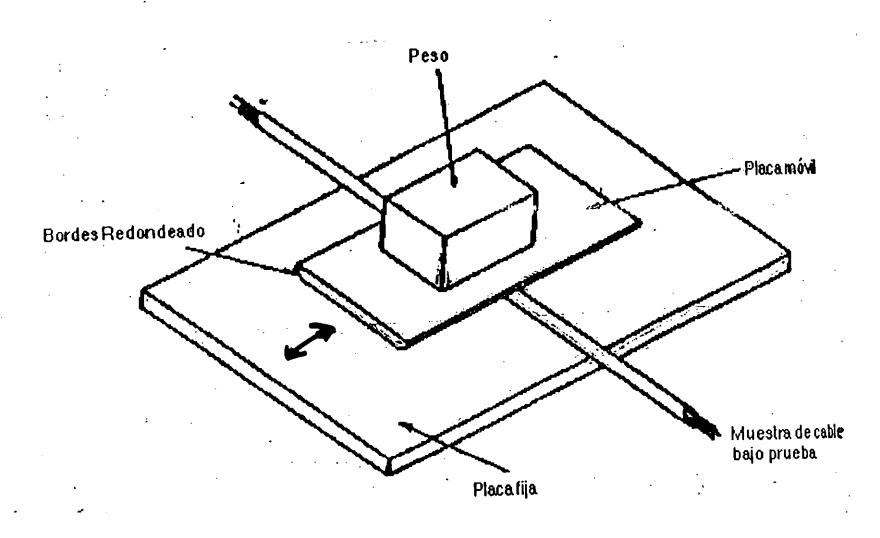
ATENUACION POR RETRODIFUSION

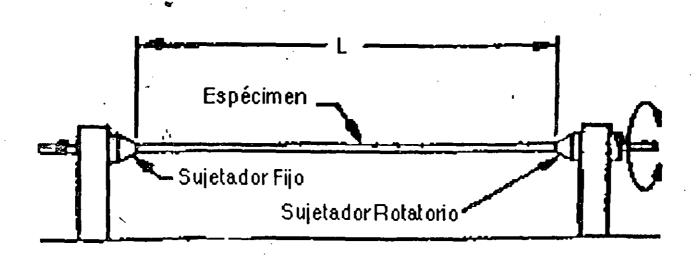


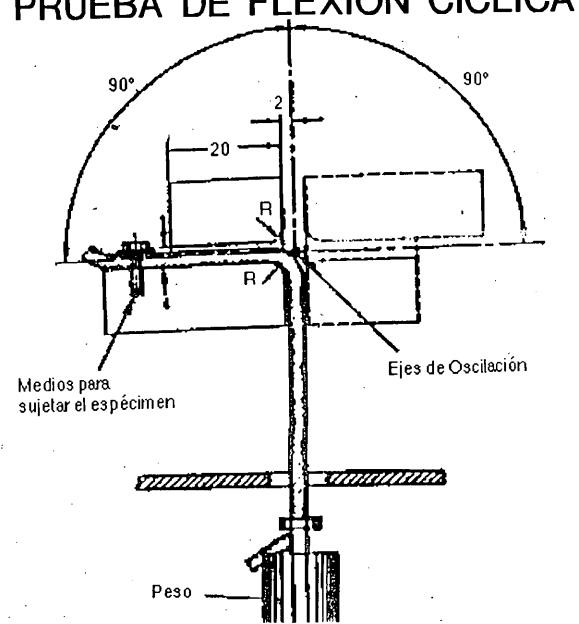
MEDICION DE ANCHO DE BANDA EN EL DOMINIO DE LA FRECUENCIA




MEDIDA DE DISPERSION TOTAL DESPLAZAMIENTO DE FASE


LONGITUD DE ONDA DE CORTE


MEDICIONES MECANICAS EN CABLE PRUEBA DE IMPACTO


MEDICIONES MECANICAS EN CABLE PRUEBA DE COMPRESION

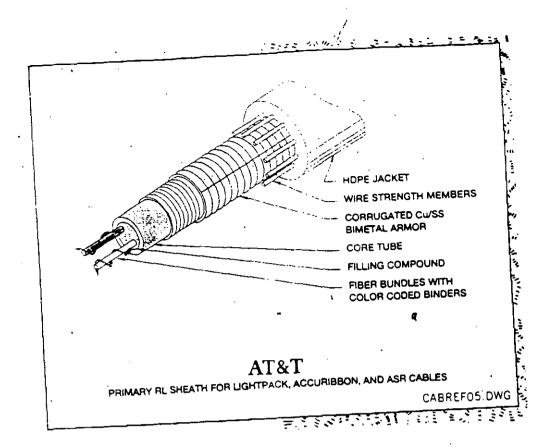
MEDICIONES MECANICAS EN CABLE PRUEBA DE TORSION

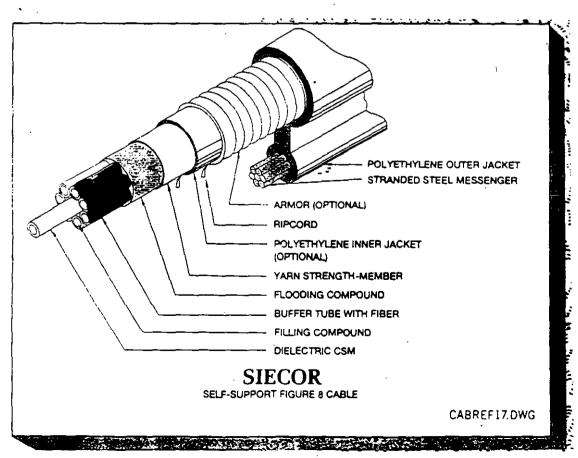
MEDICIONES MECANICAS EN CABLE PRUEBA DE FLEXION CICLICA

CABLES OPTICOS

CONSTRUCCIONES:

TIPO -TIGHT.

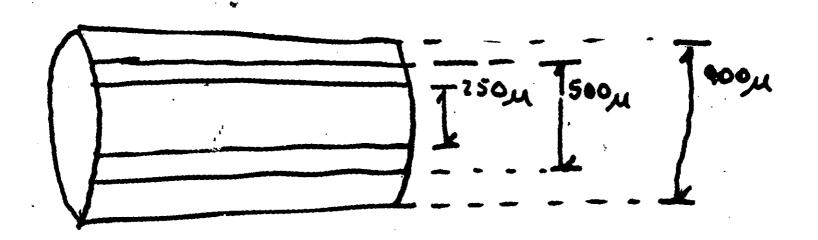

TIPO LOOJE O SUELTO


NU CLEO RA NURADO

RIBBON O LISTON

ELEMENTOS A CONSIDERAR

- TIPO DE INSTALLCION AEREO, DUCTO, DIE, ENTERMOO OPEW, SUBMARINO, INTERNO
- RESISTENCIA A TRACCION, COMPRESION, MARGEN DE TENPERATURA
- # Y TIPO DE FIBRAS
- OTROS FACTORES: RESISTENCIA UV, ACIDOS, FLAMA, ROEDORES, ETC.

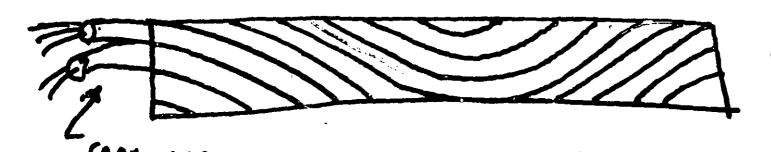


TIPO LOOSE O SUELTO

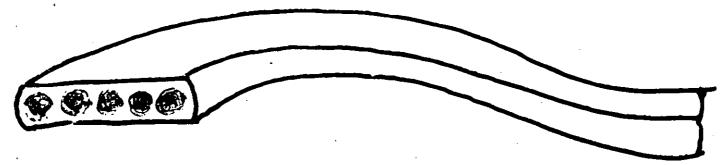
ugo en pastro rigist FO. DIF A NO CONDICION e von Gacio a CONDICION CONTRACTON

CONSTRUCCION TIPO TIGHT

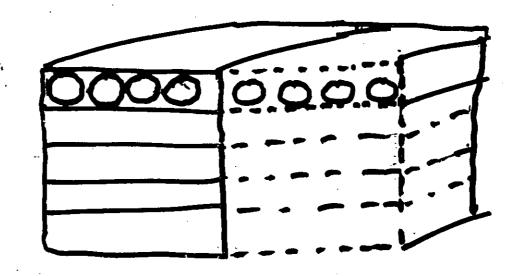
FIBRA OPTICA

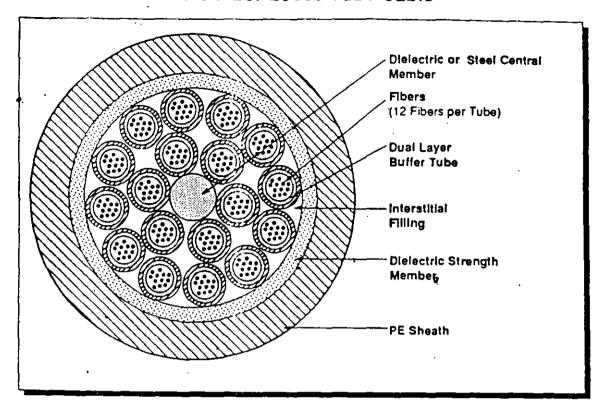


FO. MULTIMODO 50 6 62.5 M UNIMO 00 8 0 10 M


DISEÑO DE CABLE TIGHT

CARACTERISTICAS DEL CABLE


- + INCREMENTO EN FLEXIBILIDAD
- + FAÇIL DE MANEJAR
- + FACIL DE CONECTORIZAR
- + MAS SENSIBLE A FUERZAS EXTERNAS


NUCLEO RANURADO HEUCE CERRAPA

RIBBON MODULOS DE 4, 6, 8 à 12 FIBRAS

216 Fiber Loose Tube Cable

ADBLE

216 Fiber Armored Cable Swell Tape HDPE Outer Jacket Steel Armor Steel Wires Kevlar Ripcord Swell Tape Ribbon Cores

CARACTERISTICAS DE LA FIBRA OPTICA REQUERIDAS EN EN EL PROYECTO DE RED DE FIBRAS OPTICAS DE LARGA DISTANCIA PARA TELEFONOS DE MEXICO

	÷
1. TIPO DE FIBRA	UNIMODO
. 2. VENTANA DE OPERACION	3A, VENTANA (1,550 nm) OPCIONALMENTE LA 2A. VENTANA (1,500 nm)
3. ATENUACION/KM PROMEDIO INSTALADO	0.25 08 , 23
4. LONITUD DE ONDA CENTRAL	1,550 nm Y 1,300 nm
5. LONGITUD DE ONDA DE CORTE (CURVA CARACTERISTICA DE RES)	4ENOR O IGUAL 1,300 nm Y 1,280 ** PARA 2A. VENȚANA
G. APERTURA NUMERICA	0.12
7. DISPERSION CROMATICA PS/NM/KM	MENOR O IGUAL 20 PS/(nm X KM) .
8. DIAMETRO DEL NUCLEO	8.3 nm ± 1 um
9, DIAMETRO DE CAMPO O PROPAG.	10 ± 1.0 um
10. DIAMETRO DEL REVESTIMIENTO	, 125 <u>±</u> 3om
11. RADIO MINIMO DE CURVATURA	20 VECES O DE LA FIBRA
12. PERDIDAS POR EMPALME	MENOR O IGUAL 0.1 dB
13. TOLERANCIA DE CONCENTRIDAD ENTRE CAMPO Y REVESTIMIENTO	1 um
14. TOLERANCIA DE CIRCULARIDAD DEL CAMPO Y REVESTIMIENTO	CAMPO 6%, REVESTIMIENTO 2%
15. FACTOR DE DEGRADACION	MENDR O IGUAL 0.1 dB/KM

1. TIPO DE CABLE	ENTERRADO, SUBMARINO, AEREO
2. ESTRUCTURA DEL CABLE	+VER FIGURAS 1, 2 Y 3
3. DATOS DE LA ESTRUCTURA	-VER FIGURAS 1, 2 Y 3
4. NUMERO DE FIBRAS	12, 18 Y 24
5. LONGITUD NORMAL DE ENTREGA	
6. FORMA O METODO DE INSTALACION	DIRECTAMENTE ENTERRADO, MANUAL O AUTOMATICO, EN DUCTOS, SUBMARINO, AEREO
7. DIAMETRO DEL CABLE	TIPO 1 30mm, TIPO 2 45 mm, TIPO 3 70mm
B. RESISTENCIA & LA TENSION	MAYOR O IGUAL 300 Kg PARA EL TERRESTRE MAYOR O IGUAL 60,000 Kg PARA EL SUBMARINO
9. RADIO MINIMO DE CURVATURA	
- MOMENTANEO PERMANENTE	15 VECES AL DIAMETRO DEL CABLE 20 VECES AL DIAMETRO DEL CABLE
10. RANGO DE TEMPERATURA	
- OPERACION - ALMACENAMIENTO - INSTALACIÓN	-20 grados C/ A + 60 grados C -30 grados C A + 70 grados C - 5 grados C A + 15 grados C
11 PESO	TIPO 1 350 Kg/Km, TIPO 2 500 Kg/Km;" (~) TIPO 3 1000 Kg/Km
12. TIEMPO DE VIDA	MAYOR 25 AROS
13. RESISTENCIA A LA COMPRESION	3000 Kg/10CM PARA TERRESTRE 100,000 Kg/10CM PARA EL SUBMARINO
14. PROFUNDIDAD DE INSTALACION	1 mTs PARA EL YERRESTRE 1.5 mTs PARA EL SUBMARINO

CABLES OPTICOS SUMARIO

- DISEÑO TIPO LOOSE
- + OPTIMO PARA LONGITUDES GRANDES
- + ALTA DENSIDAD DE FIBRAS (#)
- + DISPONIBLE EN CONSTRUCCIONES DIELECTRIC
- CABLES TIPO TIGHT
- + OPTIMO PARA UTILIZACION INTERIOR
- + DISPONIBLE PARA PLENUM

ELEMENTOS DE UNA RED DE TELECOMUNICACIONES POR FIBRA OPTICA:

- * CABLES DE FIBRAS OPTICAS MULTIMODO O UNIMODO.
- * CONECTORES Y EMPALMES.
- * TRANSMISORES Y RECEPTORES ELECTRO-OPTICOS.
- * ACOPLADORES TIPO "Y" Y "T".
- * ACOPLADORES TIPO ESTRELLA.
- * MULTIPLEXORES POR DIVISION DE LONGITUD DE ONDA.
- * REPETIDORES ELECTRO-OPTICOS.

CONECTORES OPTICOS

Ing. Raúl Ugalde M.

conexión eléctrica VS conexión optica

eléctrica= contacto físico
 óptica = alineamiento preciso de núcleos

interconexión óptica: empalmes y conectores

Los conectores son usados para dar flexibilidad y facilidad de conexión y descoonexión entre sistemas de fibra y/o componentes activos y pasivos.

La interconexión óptica deberá ser con un mínimo de pérdidas

CAUSAS DE PERDIDAS EN UNA CONEXION OPTICA

Intrínsecas

Atribuíbles a defectos dimensionales de las fibras

Diámetros diferentes de fibra Distinta apertura numérica Excentricidad del núcleo

Extrínsecas

Atribuíbles a diseño y acabado del conector

Desplazamiento lateral
Desalineación angular
Separación entre caras de fibras
Calidad del acabado

Desplazamiento lateral: debido a tolerancias en la manufactura del conector; en FO UM de 2 μ produce una pérdida de 0.5 dB. **Desalineación angular:** mal pulido, corte o mal conector

CAUSAS DE PERDIDAS EN UNA CONEXION OPTICA Separación entre caras de fibras:

Calidad del acabado: Por efecto Fresnel ⇒ pérdidas por reflexión al cambiar de un índice de refracción a otro, ocurre al haber aire entre las fibrasn, se exige por esto un pulido a espejo en los conectores o utilizar un fluído igualador de índice entre las dos caras de las fibras.

AREAS DE APLICACION

EVALUACION DE CONECTORES

Baja pérdida por inserción Facilidad de montaje Compatibilidad con distintos fabricantes Repetitividad Insensibilidad a factores ambientales (temperatura, polvo, etc.)

Buena relación costo - beneficio 03

*PREPARACION DEL CABLE TERMINAL: Preparar el cable pigtail con las dimensiones específicas del fabricante del conector, incluye limpieza de la fibra

*ENSAMBLE DEL CONECTOR: Ensamble de las partes del conector introduciendo la fibra por el orificio de la férrula con aplicación de resina epóxica +- 4 minutos

*PULIDO: Es la parte más delicada del proceso tanto para ensamble como para apego a especificaciones del fabricante puede ser manual o con máquinas pulidoras El proceso consta normalmente de tres pulidos: *GRUESO (12 micras) *MEDIO(3 micras)

* FINO (0.3 micras)

PARTES:DE UN CONECTOR

*FERRULA: elemento que contiene en el interior a la fibra

*TUERCA DE ACOPLAMIENTO: Elemento que sujeta al conector al receptáculo del transmisor o del detector o al cople

*CUERPO: Parte del conector en donde se inserta el Pigtail y soporta a distintos elementos del conector

*CASQUILLO DE SUJECCION: ee el elemento que asegura la tracción del pigtail por medio de la fibra aramida.

*CUBIERTA PROTECTORA: Pieza de plástico moldeado o espaguetti termocontráctil que cubre el casquillo de sujección y parte del cuerpo para mejorar la protección al conector.

- *CONECTOR SMA (Subminiatura tipo A) costo 10 a 25 USD fácil uso y atenuación 0.5 a 2 dB
- *CONECTOR ST Desarrollado por ATT para fibra MM atenuación típica de 0.4 dB superior al SMA
- *CONECTOR NTT-FC Tolerrancias de i micra atenuación menor a 1 dB para FO UM
- *CONECTOR FC/PC De contacto físico se proporciona a las caras un pulido convexo para reducir el efecto Fresnel de reflexión evitando un 3 % equivalente a 0.15 dB de atenuación por esta causa.
- *BICONICO multimodo y unimodo desarrollado por ATT

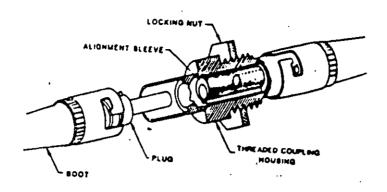


Fig. 5 Pareja de conectores ST con cople.

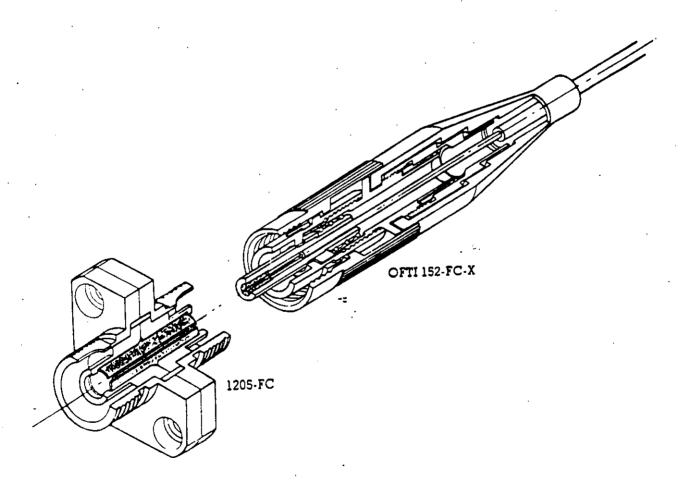


Fig.6 Corte transversal. Conector FC y cople.

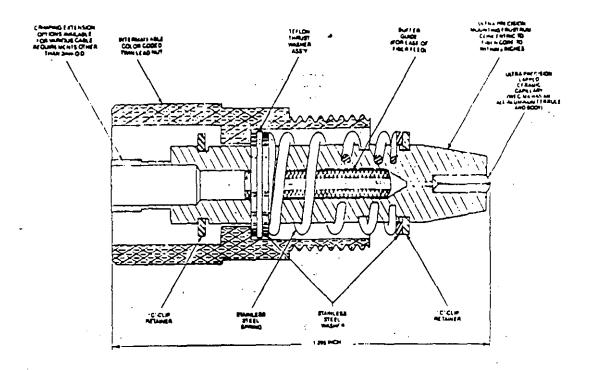
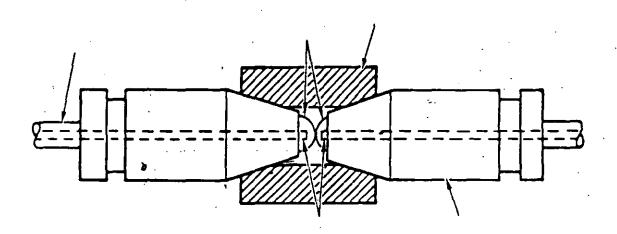



Fig 3c. Corte transversal conector biconico OFFI

Pig. 3b. Corte transversal de Vaa pareja de conectores bicónicos

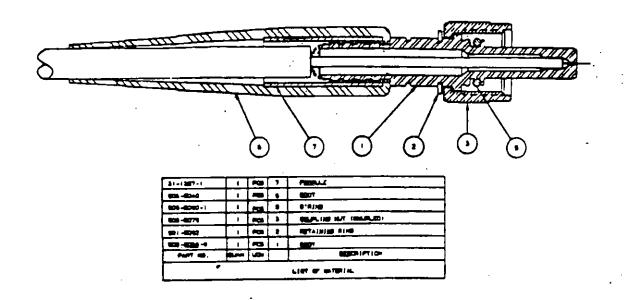
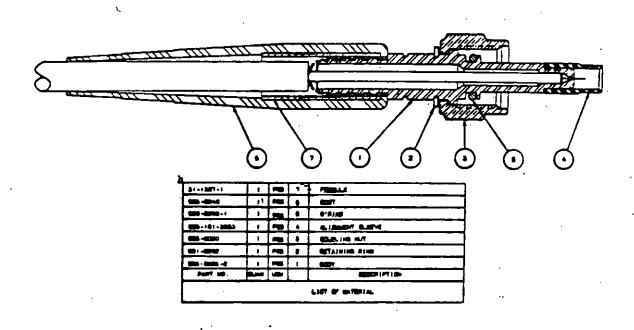


Fig. 4a. Conector SMA tipo 905.



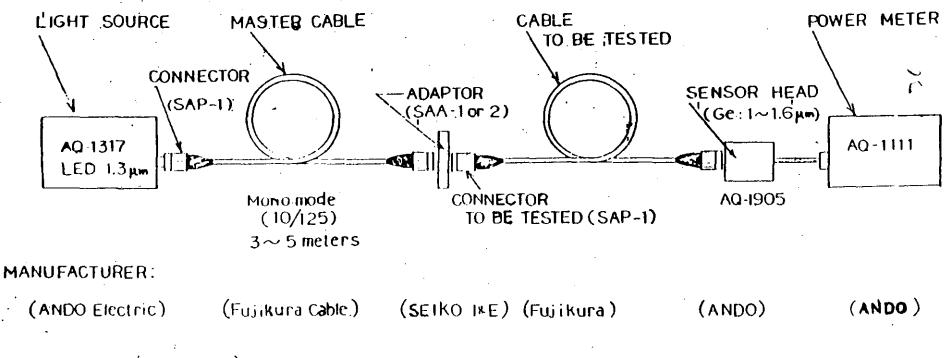
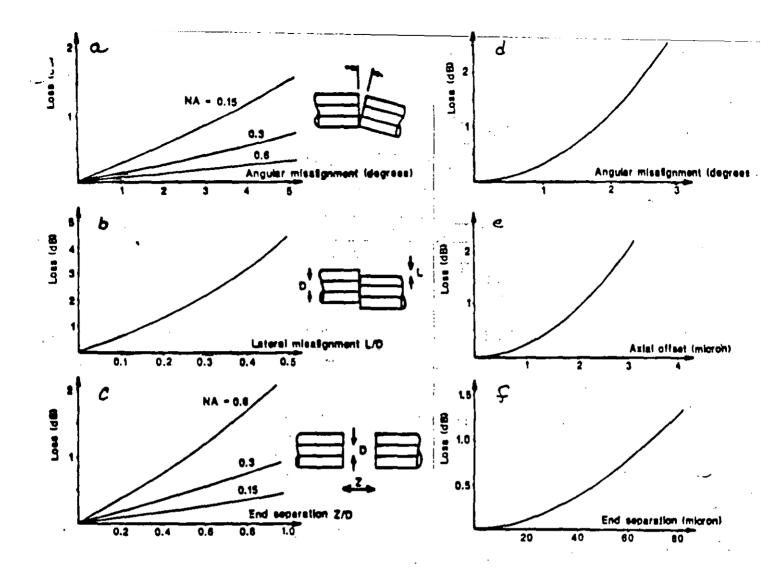

Fig. 4b. Conector SMA tipo 906.

TABLA 4. METODOS DE PRUEBA RECOMENDADOS POR LA EIA.


PARAMETRO	METODO DE PRUEBA	COMENTARIOS

PERDIDA	FOTP-171-BP T	7 MEDICIONES
INSERCIONES	FOTP-21	500 CICLOS
IMPACTO	FOTP-2	CAIDA DESDE 1.8 mt, 8 VE CES
TEMP. "ALMAC.	FOTP-4	85 °C, 9 6 hs.
SHOCK TERMICO	FOTP-3	-20 'C A +65 'C 10 CICLOS
HUMEDAD	FOTP-5	40 'C, 90 % A 9 5% Humedad Relativa
TEMP. OPER.	FOTP-5	-20 'C A + 65 'C 10 CICLOS 20
FLEXION CICLOS	FOTP-1	90 GRADOS DE ARCO, 5 kg, 300 hs.

(213) 530 6777

MONO MODE CONNECTOR ATTENUATION MEASUREMENT

(SEIKO ILE)

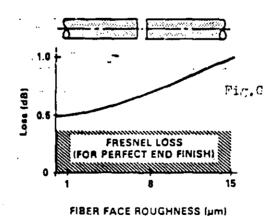


Fig.2 Pérdidas Extrînsecas. a-c v g) fibra multimodo d-f) fibra unimodo

INSTALACION DE CABLES OPTICOS INTRODUCCION

- INTRODUCCION
- PLANIFICACION
- * TECNICAS DE INSTALACION
- INTRODUCCION
 - VIABILIDAD
 - COMPARACION CON CABLES TRADICIONALES
 - VENTAJAS: TAMAÑO Y PESO
 - DESVENTAJAS: CUIDADO EXTRA

DOBLECES / APLASTAMIENTO

INSTALACION DE CABLES OPTICOS PLANIFICACION

CONSIDERACIONES

- LIMITES DE ESFUERZO / CURVATURA
- LONGITUD DE TRAMOS Y COND. AMBIENTALES
- EFECTO DE EMPALMES Y CONECTOERS
- PREDICCION DE TENSIONES MAXIMAS
- CAPACITACION DE PERSONAL
- CONDICIONES DE SEGURIDAD

CONOCIMIENTO DE LA RUTA

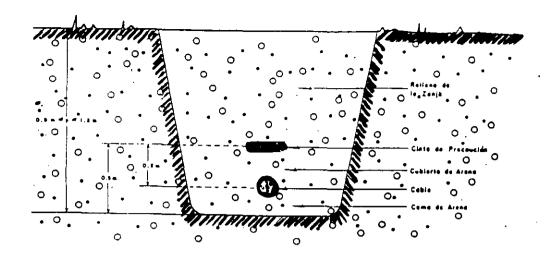
- -GEOMETRIA DE INSTALACIONES EXISTENTES
- -CONDICION
 - -DISPOSICION DE ACCESO
 - -INSTALACION DE POSTES, ESTRUCTURAS

PLANIFICACION

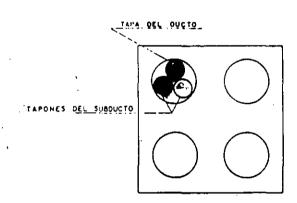
- LONGITUD DEL CARRETE
 - SEPARACION ENTRE EMPALMES EN FUNCION RUTA
 - EJEMPLO DE CALCULO: EN DUCTSOS YA DETERMINADOS EMPALMES
 - + DISTANCIA ENTRE EMPALMES X(m)
 - + MARGEN DE LONGITUD . 2 % de X(m)
 - + MARGEN EMPALME+MEDICION
 10 METROS / EXTREMO 20 (m)

ENTONCES LONGITUD DE CARRETE PARA CANALIZACION

```
(1 + 0.02) \times (metros) + 20
```


- NUMERO Y UBICACION DE EMPALMES
- DERECHO DE VIA
 - CAMINOS PUBLICOS
 - PROPIEDADES PRIVADAS
 - INSTALACIONES EXISTENTES
 - UTILIZACION CANALIZACION EXISTENTE

PLANIFICACION SECCIONES DE CABLES AEREOS

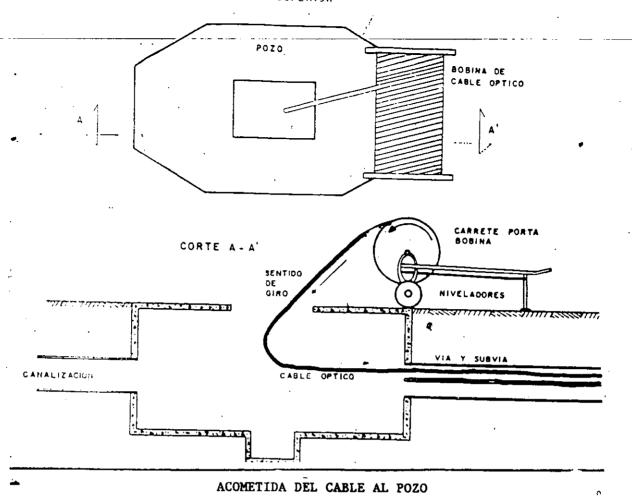

- * VENTAJAS
 - \$\$\$\$
 - POSTES EXISTENTES
 - INDEPENDENCIA DEL SUELO
 - RAPIDEZ DE INSTALACION
 - TRAMOS LARGOS
 - FACILIDAD DE MANTENIMIENTO
- * DESVENTAJAS
 - VIDA UTIL MENOR
 - CONDICIONES ESPECIALES HIELO
 - VANDALISMO, TORMENTAS

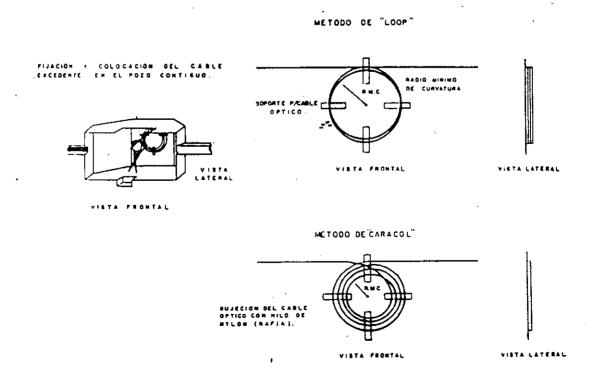
INSTALACION RECOMENDACIONES

- * RECONOCIMIENTO DE LA RUTA
- * DESARROLLO DE UN PLAN DE INSTALACION
- * PROCEDIMIENTOS ADECUADOS A F. O.
- * NO EXCESO DE RADIO MINIMO DE CABLE
- NO EXCESO DE CARGA-TENSION MAXIMA
- DOCUMENTAR INSTALACION
- * CONECTORES
- PRUEBAS

PREPARACION DE LA ZANJA PARA INSTALACION DEL CABLE

POSICION DEL CABLE EN EL DUCTO Y DIVISION DE VIA

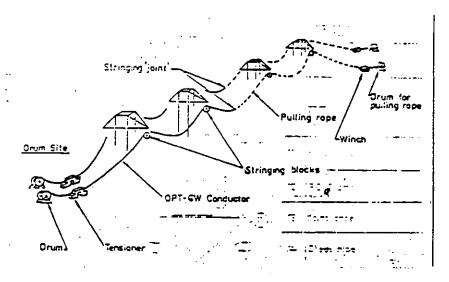

TECNICAS DE INSTALACION EN DUCTO Y DIRECTAMENTE ENTERRADO

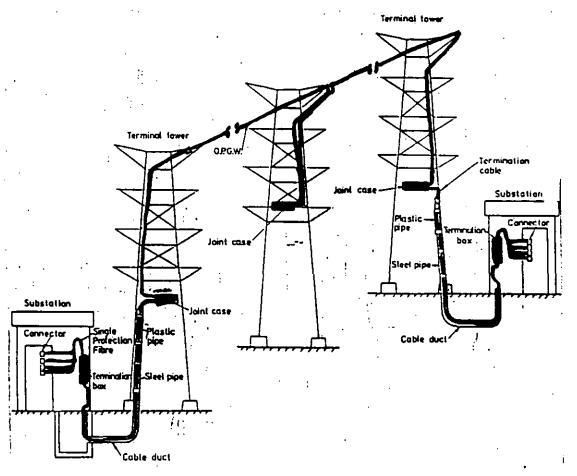

CANALIZACIONES

FACTORES LIMITANTES: -NUMERO Y GRADO DE CURVAS
-CAMBIOS Y DESNIVELES
-DESALINEACION, COND. GRAL.

TECNICAS DE UTILIZACION:

- -INTRODUCIR EL CABLE EN UN PUNTO INTERMEDIO Y DISTRIBUIR EN AMBAS PARTES
- -JALAR EN PENDIENTES HACIA ABAJO
- -UTILIZAR LUBRICACION ADECUADA
- -LIMPIAR CADA CANALIZACION Y VERIFICARLA
- -UTILIZAR PUNTOS DE TRACCION INTERMEDIOS
- -UTILIZAR DISPOSITIVOS ADECUADOS
- CABLE DIRECTAMENTE ENTERRADO
 - -EN TRINCHERAS +- 1 METRO PROFUNDIDAD
 - -CINTA DE ADVERTENCIA (NARANJA)
- CABLE ARADO
 - -TRAMOS LARGOS Y SIN OBSTRUCCIONES
 - -CINTAS MARCADORAS


3


TECNICAS DE INSTALACION INSTALACIONES AEREAS

- * DEPENDIENDO DE LA ESTRUCTURA DEL CABLE
 - +AUTOSOPORTADO +FIGURA 8
 - +ATADO Y OPGW
- * AUTOSOPORTADO
 - -TENDIDO JUNTO A POSTERIA CON RODILLOS
 - -CUIDAR CONDICIONES DE INSTALACION, TRACCION, T
 - -IZADO DEL CABLE, IGUALADO DE FLECHA Y FIJADO
- * ATADO
 - -ATAR A ALAMBRE DE SUSTENTACION TENSAR ANTES

INSTALATION

47

Condutal, S.A. de C.V.

Plants: Km, 5 Carr San Juan del Rio-Tequisquispen, Apdo. Postal 100 San Juan del Rio, Cro.
Código Postal 78900 Tel (487) 2-02-42 Telex: CTSAME 012811
Oficinas Comerciales: Sor Juana Inte de la Cruz 344 3er, Piso Tlainesantta, Edo. de Máxico
Código Postal 54000, México Tel , 565-54-87 565-59-44 T : 172312 CXTLME

DISPOSICION DEDGRAFICA DE LAS LINEAS DE TRANSMISION DE 230 kV 4+66.00

F 10. 2

DISPOSICION GEOGRAFICA DE LAS LINEAS DE TRANSMISION DE 400 kV 8910H0045 DFR

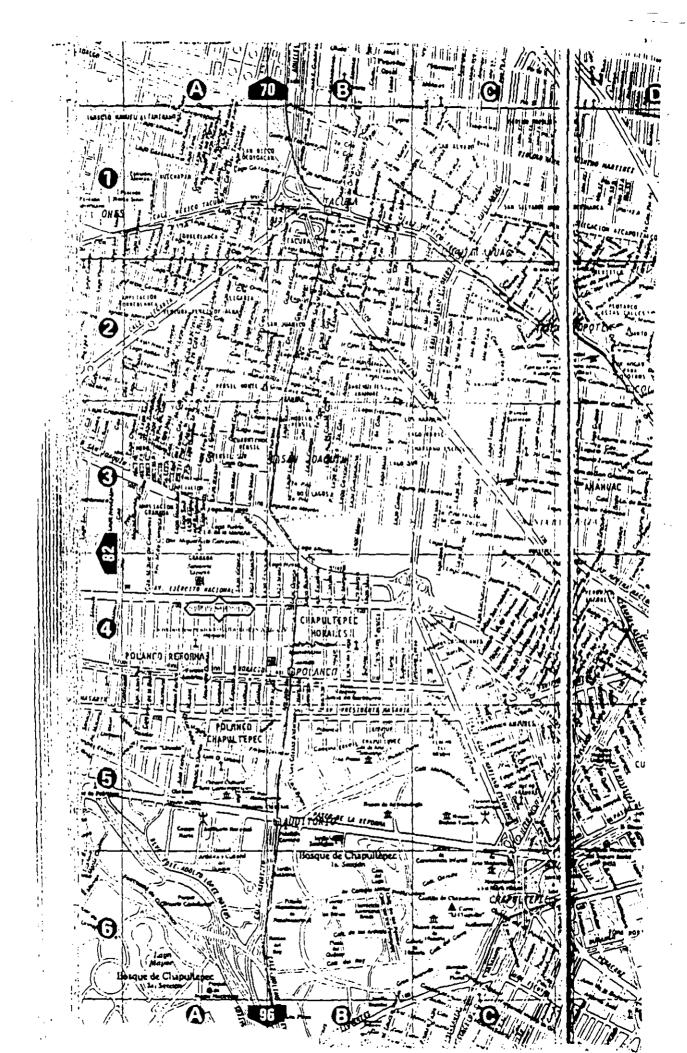
TECNICAS DE INSTALACION INSTALACIONES SUBMARINAS

- INSTALACION SUBMARINA
 - CABLE SUBMARINO PROTECCION DE ARMADURA
 - EVITAR MOVIMIENTO BAJO EL AGUA
- REQUISITOS:
 - -AMBIENTE LIBRE DE HUMEDAD, HIDROGENO Y PRESION
 - -MINIMO ESFUERZO SOBRE FIBRAS
 - -TRAMOS DE FABRICACION LARGOS 80, 150 KM
 - -POSIBILIDAD DE CONDUCCION A REPETIDORES
- EN 1995: TAT-12 6.500 KM
- 5 GBPS
 - TPC-5 9.000 KM 565 MBS TAT - 9
- TELMEX: COLUMBUS

CANCUN-USA-ESPAÑA-PORTUGAL-ITALIA

DIC 1994 22,680 CIRCUITOS 90.000 CONVERSACIONES

SECRETARIA DE RELACIONES EXTERIORES


LLEVAR DOS FOTOGRAFIAS TAMAÑO INFANTIL

COPIA DEL PASAPORTE

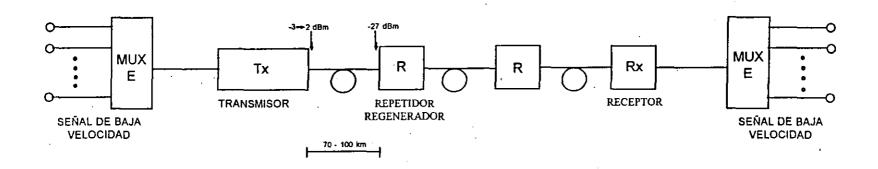
CON LA LIC. ELIZABETH COLIN ARROYO

CALLE DE HOMERO 213 PISO 3 COL POLANCO MEXICO DISTRITO FEDERAL

DE 9 A 13 HORAS

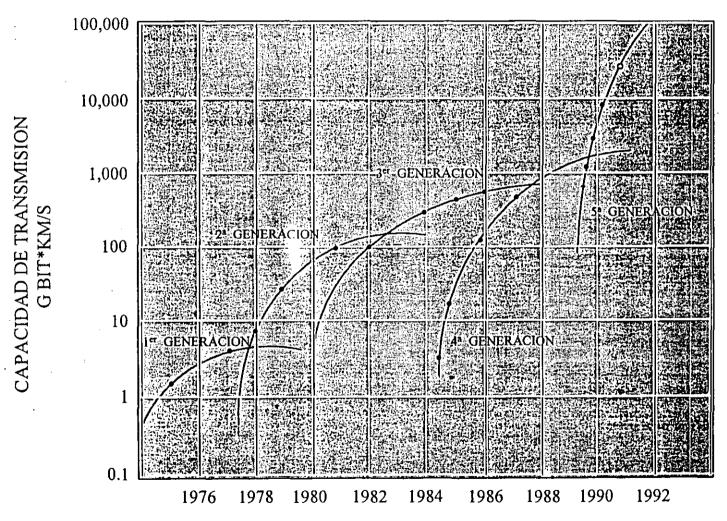
FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

T E L E C O M U N I C A C I O N E S


VIA FIBRAS OPTICAS

AMPLIFICADORES OPTICOS

FERNANDO MARTINEZ PIÑON


Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285
Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

SISTEMA TRADICIONAL DE TRANSMISION POR FIBRA OPTICA $(\lambda = 1550 \text{ nm})$

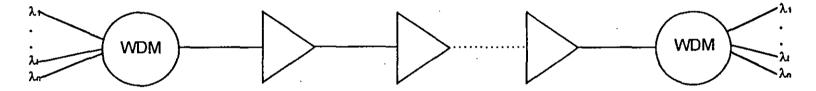
- Operación en una sola longitud de onda.
- Utiliza repetidores regeneradores optoelectrónicos.
- Ruido y distorsión no acumulativos.
- Incremento en la velocidad de transmisión implica cambio deTx, Rx y R's.

EVOLUCION DE LOS SISTEMAS DE TRANSMISION POR FIBRAS OPTICAS

LA CAPACIDAD DE TRANSMISION DE LAS FIBRAS SE HA INCREMENTADO 10 VECES CADA CUATRO AÑOS DESDE 1975.

LIGHTWAVE COMMUNICATIONS: THE FIFTH GENERATION. EMMANUEL DESURVIR E. SCIENTIFIC AMERICAN

GENERACIONES DE LOS SISTEMAS DE FIBRA ÓPTICA


CENERACIÓN	Fecha de aplicación comercial	Longitud de ond de operación (nm).	Tipo de Fibra	Distancia máxima entre terminales o repetidores (Km)	Máxima velocidad de transmisión disponible comercialmente (Mb/s)					
1ra	1978	850	Multimodo	10	34					
2da.	1982	1300	Uhimodo	40	140					
3ra	1985	1550	Unimodo	80	5555					
4ta.			Sistemas ocherentes. Demostraciones de laboratorio.							
5ta.	1992	1550	Unimodo	250*	2500					

^{*} Sistemas submarinos costeros sin repetidores.

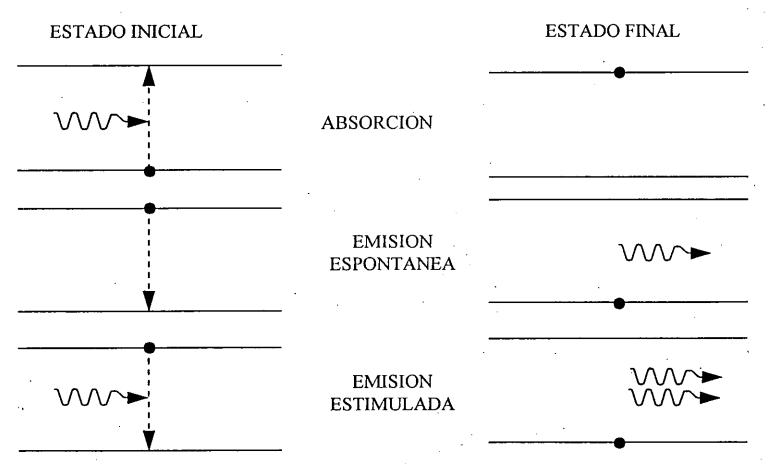
•La quinta generación se distingue por la introducción de amplificación óptica.

¿PORQUE AMPLIFICADORES OPTICOS?

- Mayor separación entre equipos terminales ADM.
 - Sistemas terrestres.
 - Festones costeros.
- Capacidad de elevar la velocidad de transmisión cambiando solo las terminales.
- · Altas velocidades potenciales de transmisión a través de WDM.

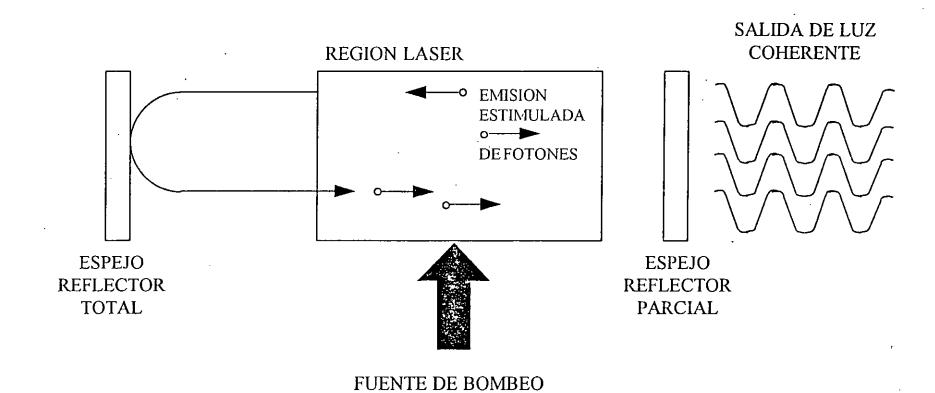
Compensación practica de perdidas en dispositivos pasivos.

- Bajo costo esperado y alta confiabilidad.
- Potencial para crear un "Ducto de Luz" (Lightpipe) universal entre terminales.

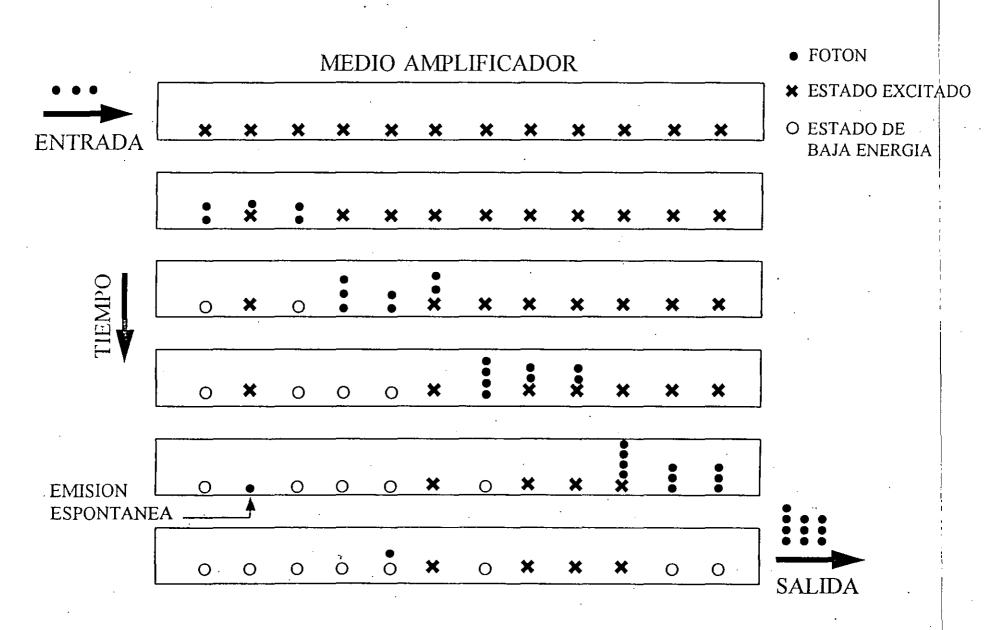

AMPLIFICADORES OPTICOS: PARTE I

¿ QUE ES UN AMPLIFICADOR OPTICO?

ORIGEN: EL EFECTO LASER


LASER: LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION.

PROCESO DE ABSORCION Y EMISION:


í۸

CAVIDAD OPTICA RESONANTE

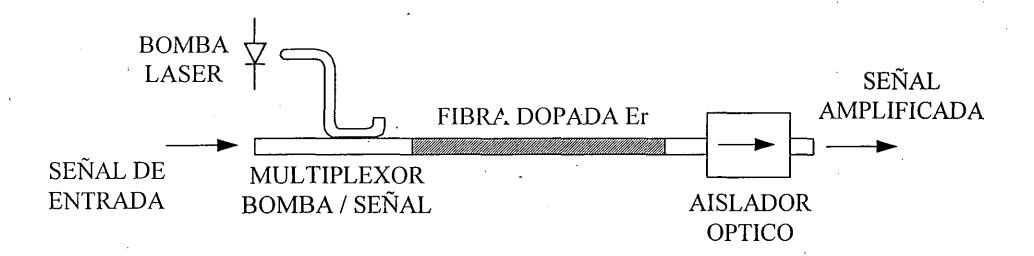
- EN REALIDAD UN LASER ES UN OSCILADOR OPTICO
- UN AMPLIFICADOR OPTICO ES UN DISPOSITIVO AMPLIFICADOR BASADO EN EL EFECTO LASER PRESCINDIENDO DE LA CAVIDAD OPTICA RESONANTE

AMPLIFICACION DE LUZ A TRAVES DE EMISION ESTIMULADA

ANTECEDENTES HISTÓRICOS

- 1958 Arthur Schawlow y Charles Townes de Bell Laboratories proponen el LASER.
- 1960 Demostración del láser de rubí por Theodor Maiman.
- Demostración del efecto láser en varillas de vidrio dopadas con elementos de tierras raras y amplificación óptica en fibras dopadas de Neodimio (1060 nm). Elias Snitzer. (Fuente de Bombeo: Lámparas de destello).
- 1974 Demostración de amplificación en fibras dopadas en Neodimio (1060nm) y bombeadas con láseres de semiconductor. Julian Stone y Charles Burrus de Bell Laboratories.
- 1985-86 Demostración del amplificador de fibra óptica dopada con Erbio (EDFA) a 1550 nm por David Payne en la Universidad de Southampton, Inglaterra. (Longitud de onda de bombeo: 650 nm).
- 1988-89 Demostración de dispositivos EDFA prácticos bombeados con láseres de semiconductor a las longitudes de onda de 980 nm y 1480 nm en los laboratorios de la Universidad de Southampton, ATT y NTT.

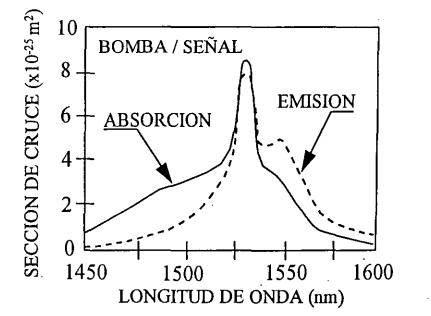
TABLA PERIODICA

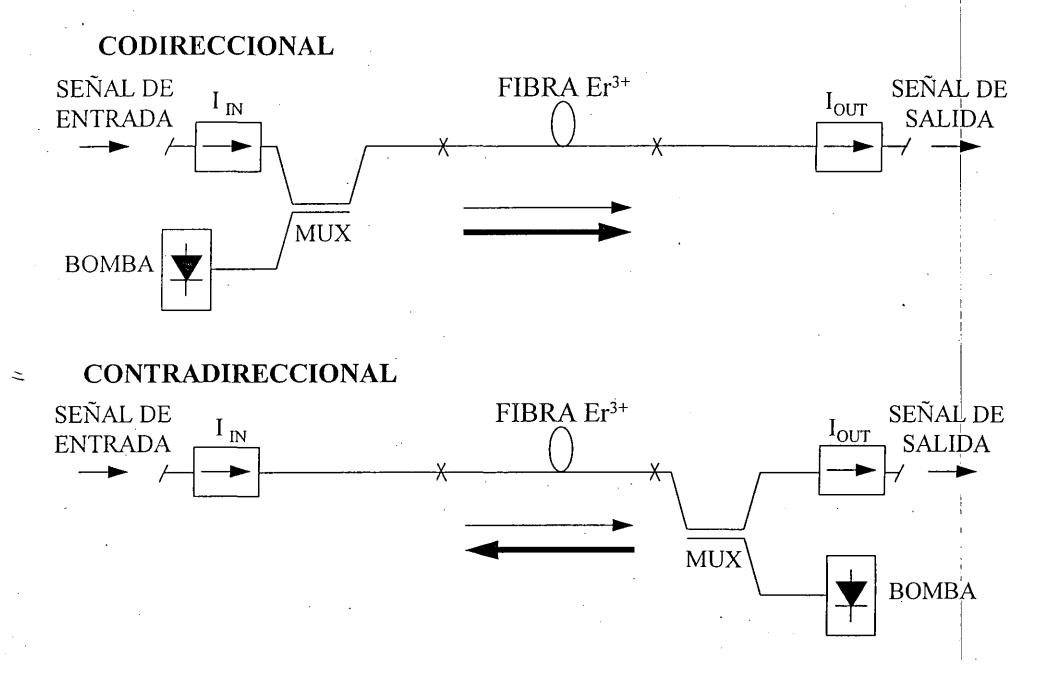

ELEMENTOS QUE CONSTITUYEN A LA FIBRA OPTICA

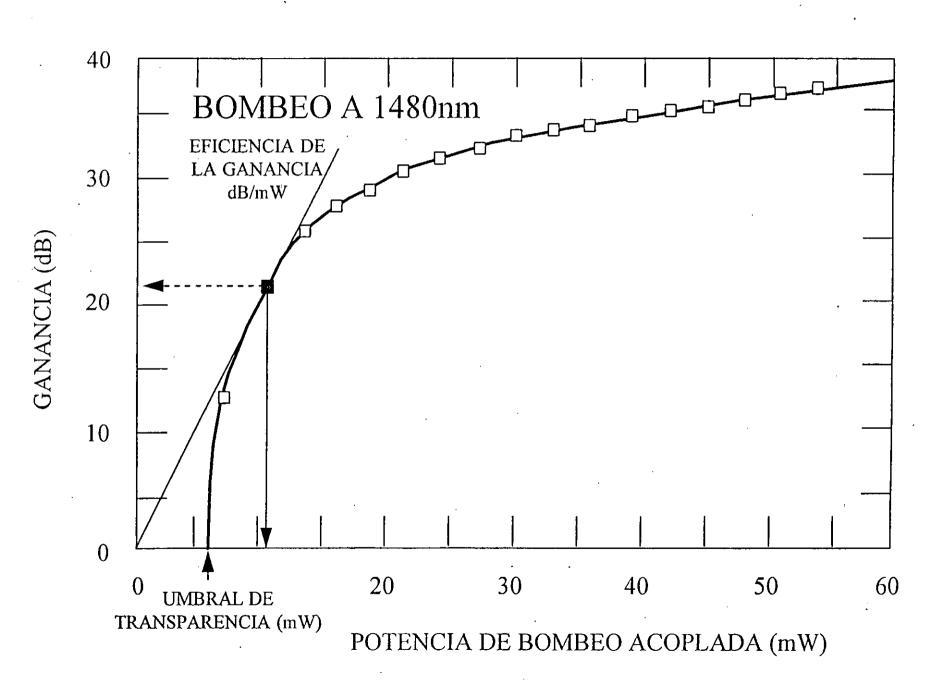
											·					 		
ERIOD									G	ROUI	P							
1	1A	2A	-38	4B	5B	6B	78	/B		8		2B	3A	A 4A	5A	6A	7A	0
1	+1 -1 H																	о Не 2
		GHT					MET	AVY ALS						NO	N META	LS	INER	T GA
2	Li 3	+2 Be 4		8	RITTL	E			DUC	TILE		OW- LTING	13 B 5	*2 -4 *C 6	11 -1 13 N -3 15 7	9	F 9	0 Ne 10
3	Na 11	12 Mg 12]]		A4 13		13 -3 15 P 15	14 -2 16 16	17 -1 17	o Ar 18
4	11 K 19	12 Ca 20	+3 Sc 21	†2 †3 Ti 22	13V 1523	12 13 16 24	12 13 Mn 1725	†2 †3Fe 26	13 Co 27	13 13 13 28	*1 *2Cu 29	12 Zn 30	+3 Ga 31	3 G• 32	13 -3 15 As 33	14 -2 16 Se 34	11 -1 15 Br 35	o K <i>r</i> 36
5	Rb 37	+2 Sr 38	+3 Y 39	14 Zr 40	ND 41	16 Mo 42	†† _{Tc}	13 Ru 44	+3 Rh 45	^{‡2} Pd 46	11 Ag 47	12 Cd 48	+3 In 49	** 5n 50	13 -3 15 Sb 51	14 -2 16 Te 52	11 -1 17 I 53	0 Xe 54
6	+1 Cs 55	+2 Ba 56	♦ 57-71	+4 Hf 72	+6 Ta 73	+6 W 74	14 15 7Re 75	0s 76	12 4 7 77	78	11 Au 79	+t +t Hg 80	ነ <u>ኒ</u> የተ	#2 Pb 82	#3 Bi 83	Po 84	A1 85	o Rn 86
7	+1 Fr 87	+2 Ra 88	₩ 89- 103	104	105					1							· · · · · ·	

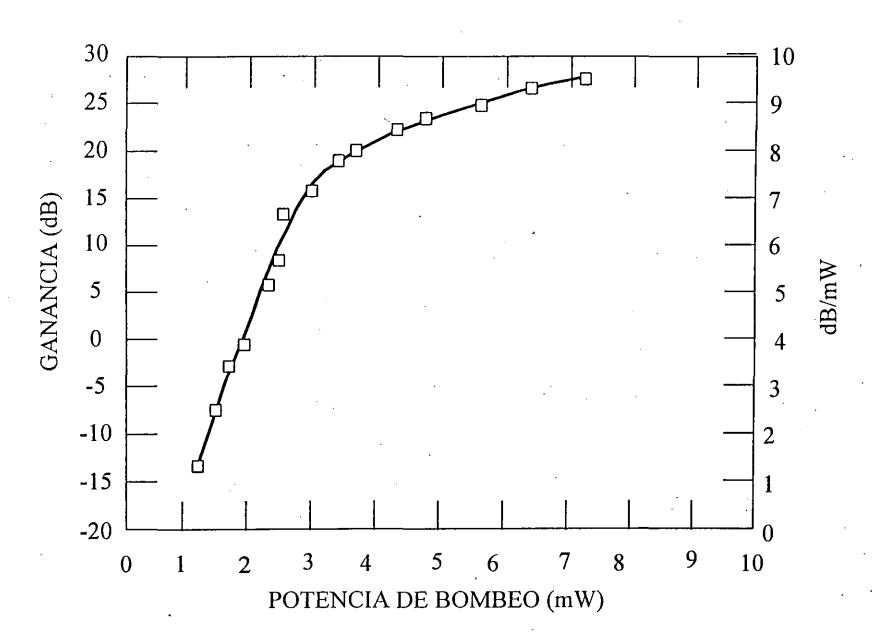
TRANSITION ELEMENTS BETWEEN GROUPS 24 AND 34.

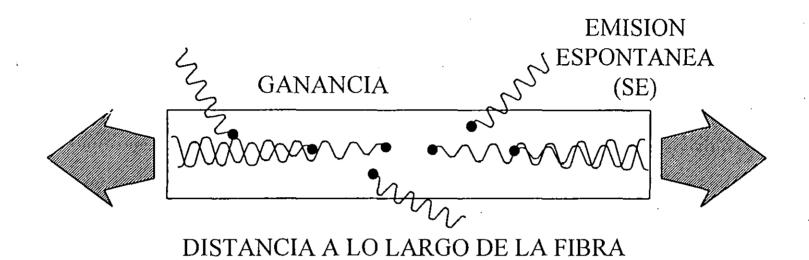
LANTHANIDES (RARE EARTHS)	La 57	13 Ce 58	+3 Pr 59	60 Nd	13 Pm 61	†3 *3 *5 62	64	+3 Tb 65	Dy 66	Ho 67	68 68	Tm 69	13 Yb 70	13 Lu 71
ACTINIDES	+3 Ac 89	14 Th 90	** **Pa 91	1 1 1 92	13 16Np 1693	15 Pu .	Cm 96	13 14 Bk 97	+3 Cf 98	E \$	Fm 100	# 18 Md 101	No 102	Lw 103

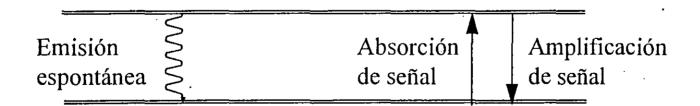

AMPLIFICADOR DE FIBRA DOPADA CON ERBIO (EDFA)


DIAGRAMA DE NIVEL DE ENERGIA


ESPECTRO DE EMISION Y ABSORCION


DIAGRAMA ESQUEMATICO DE UN EDFA

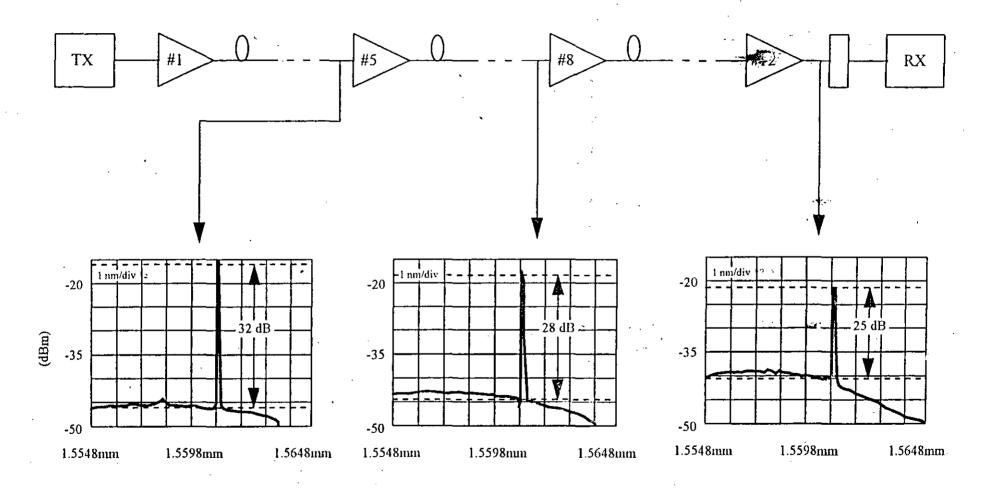

CURVA DE GANANCIA DEL AMPLIFICADOR


AMPLIFICADOR DE FIBRA BOMBEADO A 980 nm

RUIDO DEL AMPLIFICADOR OPTICO

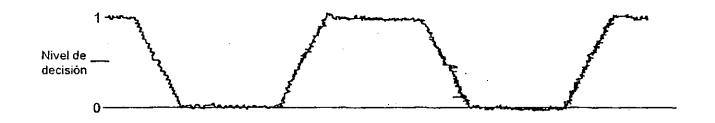
• ASE : Emisión espontánea amplificada

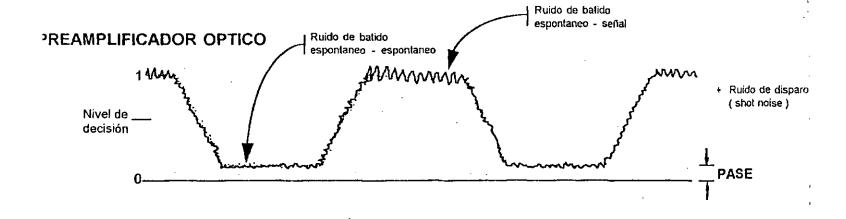
FIGURA DE RUIDO DEL AMPLIFICADOR OPTICO


$$NF = \frac{SNR_1}{SNR_0} = \left(\frac{S_1}{N_1}\right) \left(\frac{N_0}{S_0}\right) = \frac{N_0}{GN_1}$$

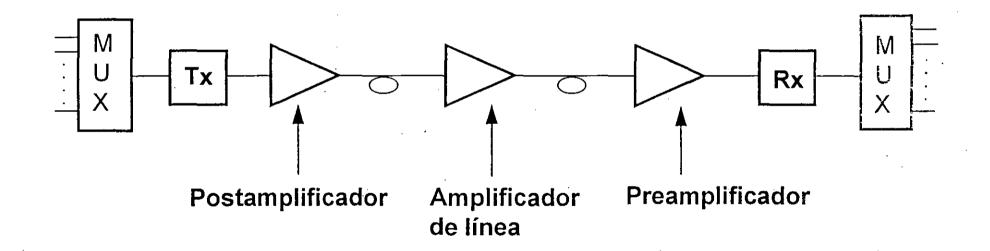
SNR_{1/0} : Relación señal a ruido (in / out).

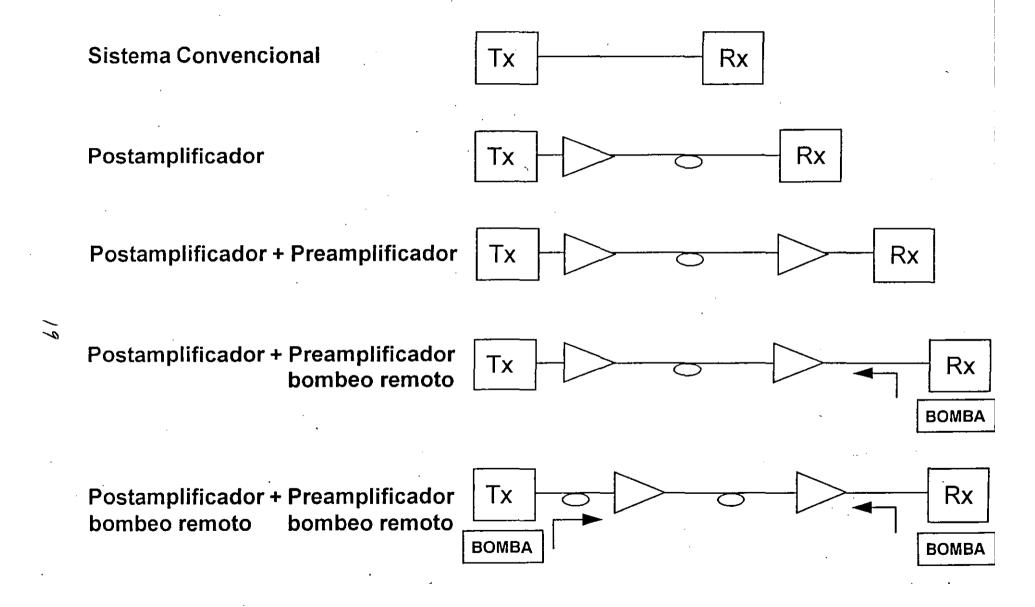
Señal: Número de fotones promedio.


Ruido: Fluctuación del número de fotones.


λp (nm)	•	NF (dB)
980		3
1480		4.2

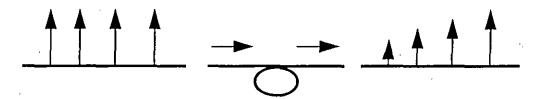
$$(NF)_N = (NF)_{SENCILLO} + 10 \log N$$


RUIDO EN EL RECEPTOR

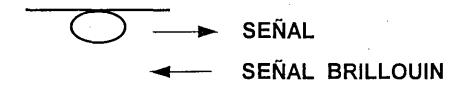


AMPLIFICADORES OPTICOS: PARTE !!

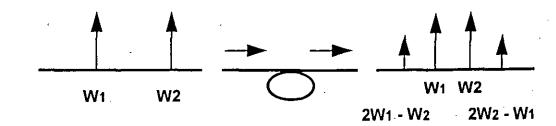
DIFERENTES APLICACIONES DE AMPLIFICADORES OPTICOS



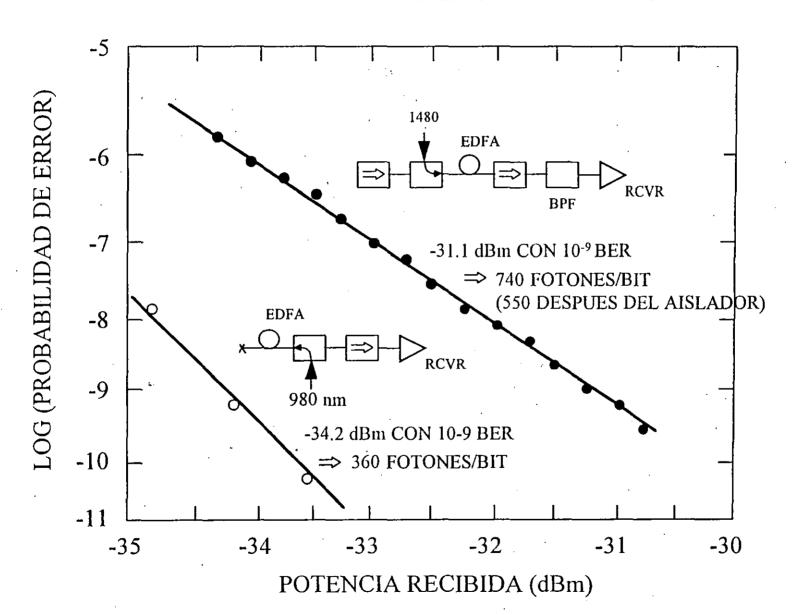
CONFIGURACIONES EDFA EN SISTEMAS SIN REPETIDORES



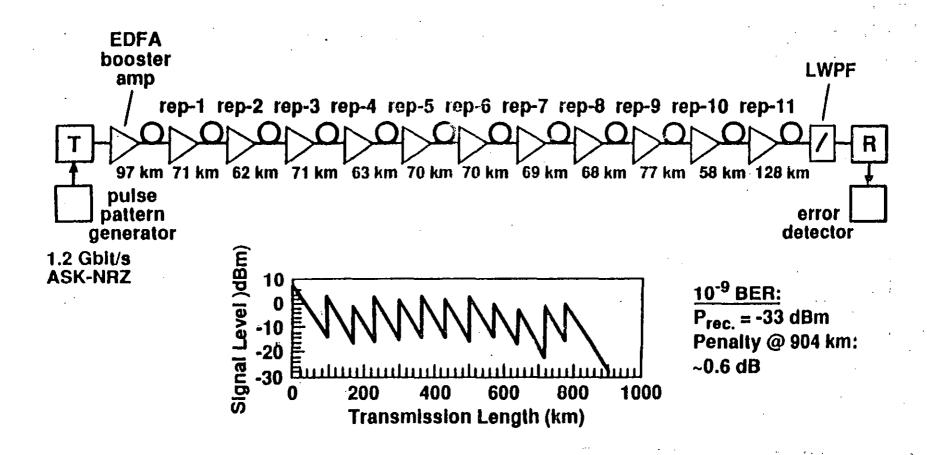
EFECTOS NO LINEALES


DISPERSION RAMAN ESTIMULADA

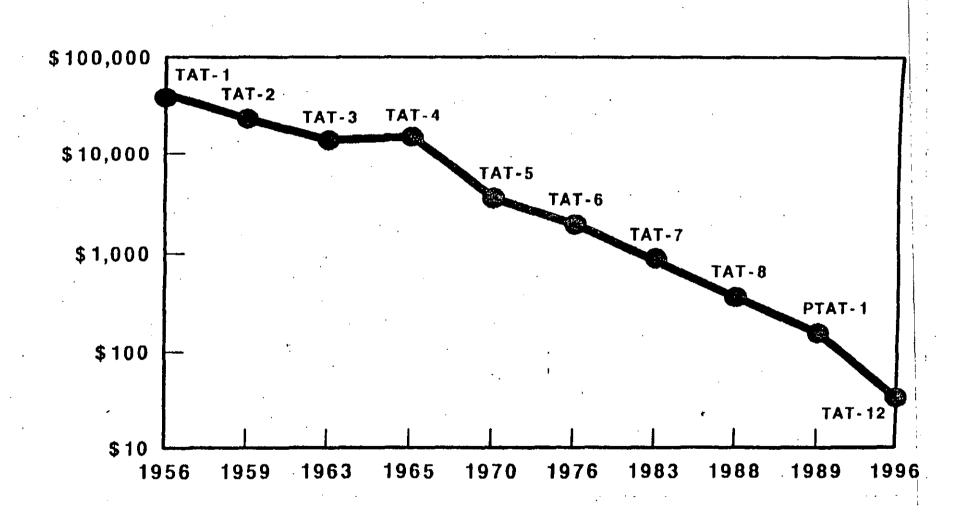
- DISPERSION BRILLOUIN ESTIMULADA
- AUTOMODULACION DE FASE

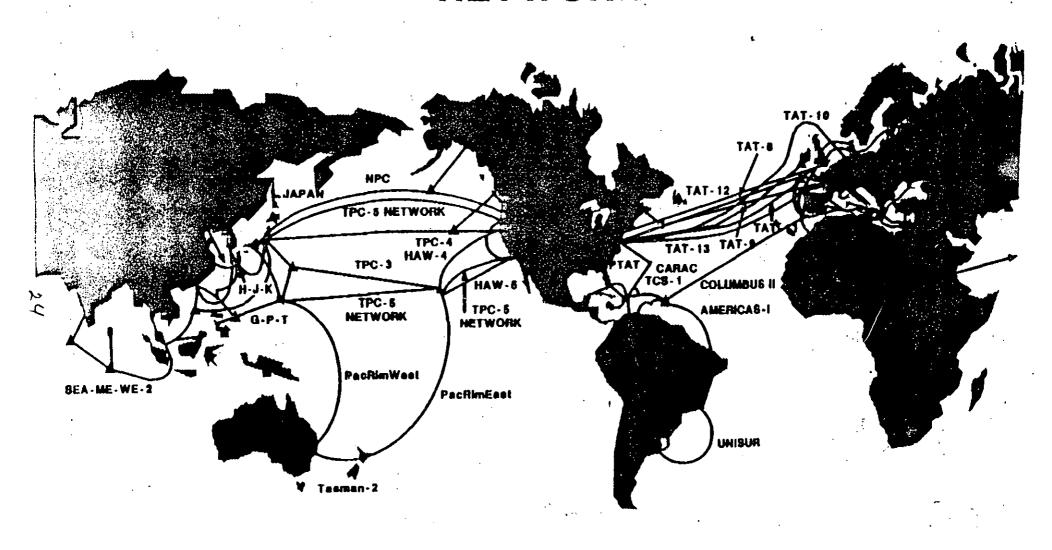


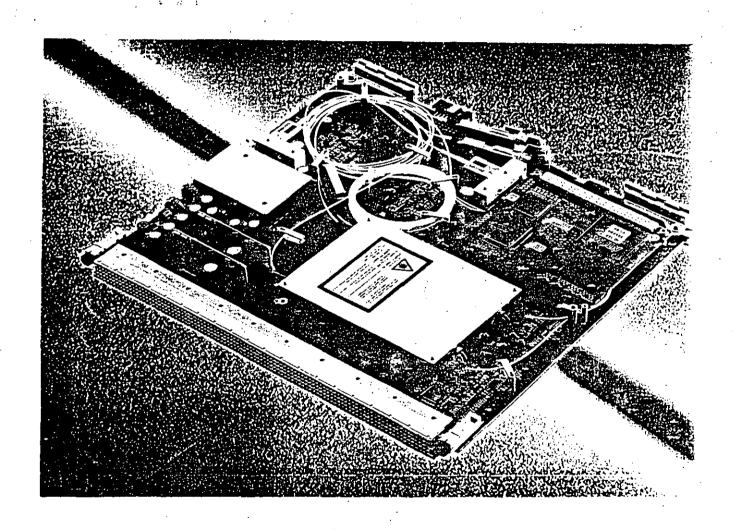
- MODULACION CRUZADA DE FASE
- MEZCLADO DE 4 ONDAS



5


PREAMPLIFICADORES BOMBEADOS CON 980 nm VS 1480 nm A 8Gb/s


TRANSMISION SOBRE 904 km UTILIZANDO EDFA'S COMO REPETIDORES EN LINEA


COSTO POR CIRCUITO POR AÑO DE SISTEMAS TRASATLANTICOS

WORLDWIDE INTELLIGENT NETWORK

MODULO EDFA

とい

EL AMPLIFICADOR OPTICO COMO ELEMENTO DE RED

FUNCIONES

- Amplificación de una señal óptica a 1550 nm
- Monitoreo de la señal óptica y de la unidad enchufable de hardware
- Detección de pérdida de señal (LOS)
- Apagado automático del laser (ALS)
- Monitor de la fuente de bombeo
- Provisión de la interface de señalización a la unidad de administración y comunicaciones del elemento de red
- Regulación del filtro óptico pasabanda de supresión de emisión espontanea amplificada (ASE)

Preamplificador

Ganancia fibra a fibra con una potencia de entrada de - 30 dBm

: 25 dB

Longitud de onda de operación

: (1530 - 1560) nm

Figura de ruido

: < 6 dB

Cambio de potencia de salida debido a polarización

: < 0.5 dB

Número de laseres de bombeo

: 1

Longitud de onda de bombeo

: (975 - 985) nm

Niveles máximos de potencia de la banda y la señal

: < 10 dBm

4

CARACTERISTICAS DE LOS EDFA'S DISPONIBLES COMERCIALMENTE

Postamplificador

Potencia mínima de salida a - 5 dBm

de potencia de entrada

: 14 dBm

Longitud de onda de operación

: (1530 - 1560) nm

Figura de ruido

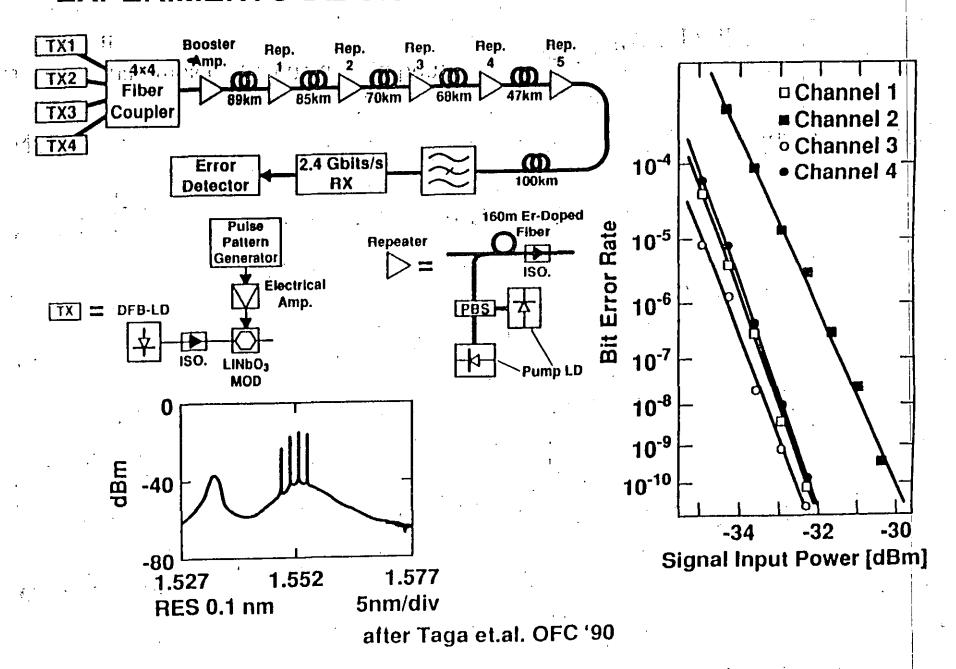
: < 7 dB

Cambio de potencia de salida

debido a polarización

: < 0.5 dB

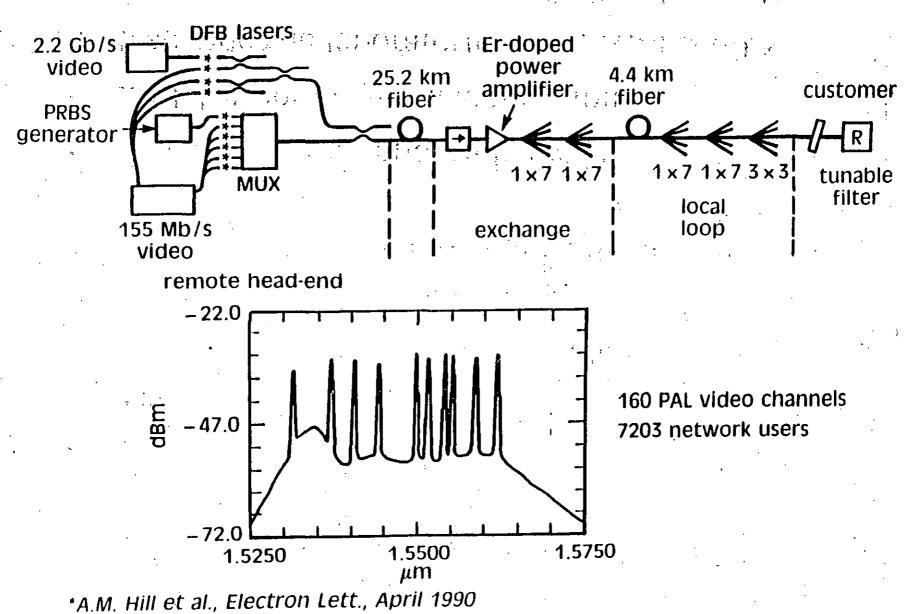
Número de lasers de bombeo

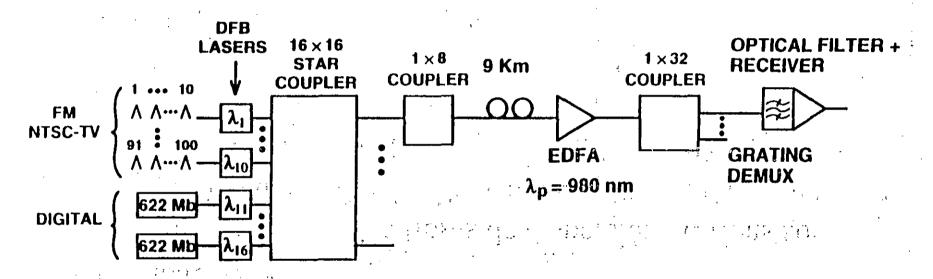

: (1465 - 1490) nm

Niveles máximos de potencia de la bomba

y la señal

: < 17 dBm


EXPERIMENTO DE SISTEMA CON REPETIDOR WDM


TRANSMISIÓN POR SOLITONES

- Un solitón es un pulso que se propaga sin distorsión (ideal para comunicaciones).
- Efecto Kerr: Cuando la intensidad de luz excede cierto nivel, ondas de luz de la misma longitud de onda pero diferente intensidad viajan a diferentes velocidades.
- El efecto Kerr compensa la dispersión.
- El EDFA compensa la atenuación.
- Resultados de laboratorio: 2.5 Gb/s 14000 Km..
 - 5 Gb/s 10000 Km..

RED "BROADCAST" WDM UTILIZANDO UN AMPLIFICADOR DE POTENCIA EDFA

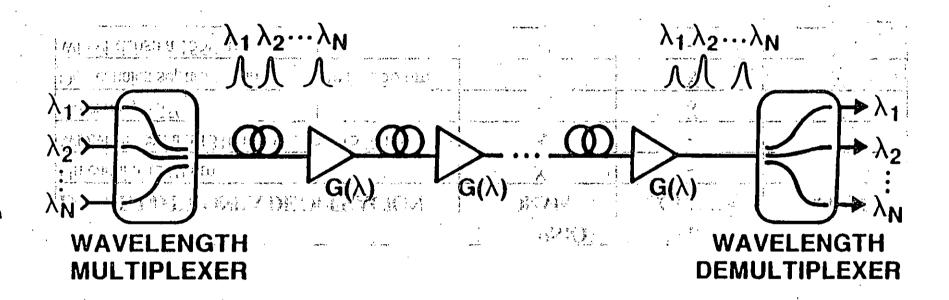
DISTRIBUCION DE FORMATOS MULTIPLES DE SEÑAL

Equivalent to 4096 subscribers after WAY et al '90 Bellcore
 1527 nm < λ_S <1551 nm

32

NUEVOS TIPOS DE FIBRAS OPTICAS

AT&T TRUEWAVE/CORNING GLASS LS


- Implantación de los sistemas de transmisión WDM de alta capacidad del futuro.
- La utilización de las fibras de dispersión corridas son amplificadores EDFA. Presenta una limitación de desempeño.
- El nuevo diseño de fibra óptica minimiza el problema.
- Efecto responsable: mezclado de 4 ondas. (4WM: FOURWAVE MIXING). Produce interferencia entre señales WDM e incrementa la tasa de errores.
- Solución: Introdución de una pequeña cantidad de dispersión cromática (2 ps/(nm*Km). Perfil de indice: triangular.
- Resultado: Transmisión de 10 Gb/s por cada longitud de onda.

FIBRAS SUGERIDAS PARA LA CONSTRUCCIÓN DE REDES DE TRANSMISIÓN

L'ONGITUD DE ONDA DE OPERACIÓN	DISPERSION NORMAL	DISPERSION CORRIDA	SUPRESORA , 4WM
Un canal a 1310 nm.	X	The same of the sa	.m.at .max
WDM un canal a 1310 nm y otro a 1550 nm	· X	_	
Un canal a 1550	<u>-</u>	X	X
Dos canales separados ampliamente a 1550 nm	-	\mathbf{X}_i	X
WDM densa a 1550nm.	-	. , = √3	X

TENDENCIAS TECNOLOGICAS

TRANSMISION OPTICA POR MULTIPLEXAJE EN EL DOMINIO DE LA LONGITUD DE ONDA (WDM)

ISSUES

- - SATURATION-INDUCED CROSSTALK
 - FOUR-PHOTON MIXING CHANNEL-TO-CHANNEL GAIN UNIFORMITY

DIVISION DE EDUCACION CONTINUA CURSOS ABIERTOS

IV CURSO INTERNACIONAL DE TELECOMUNICACIONES MODULO I: TELECOMUNICACIONES VIA FIBRAS OPTICAS DEL 29 DE MAYO AL 3 DE JUNIO DE 1995

DIRECTORIO DE ASISTENTES

EDUARDO ALVAREZ GUZMAN JEFE DE DEPARTAMENTO FACULTAD DE INGENIERIA CIUDAD UNIVERSITARIA 04510 MEXICO, D.F. TEL. 622 09 55

LUZ A. ARISTIZABAL QUINTERO DOCENTE ASISTENTE DE DIREC. OP.
UNIV. AUT. DE MANIZALES HONDUTEL
ANTIGUA ESTACION DEL FF.CC. TEGUCIGALPA, HONDURAS
MANIZALEZ CALDAS COLOMBIA CENTRO AMERICA
TEL. 810 339 TEL. 31 5555

J. TRINIDAD BALBUENA CRUZ
ING. EN REDES TELEFONICAS
PERSONA FISICA
PRADOS DE AHUHUETES 4
PRADOS DE ARAGON
CD. NEZA. EDO. DE MEXICO
TEL. 799 19 59

JAVIER BENITEZ MACIAS
TEC. ACADEMICO
ENP. PLANTEL No. 1
PROLONG. ALDANA S/N
LAS PERITAS
16020 XOCHIMILCO, D.F.
TEL. 653 13 85

SOFIA BRITO OCAMPO

RESPONSABLE DEL PRY.
INST. DE INV. BIBLIOGRAFICAS
CENTRO CULTURAL, CD. UNIVERS.
04510 MEXICO, D.F.

BENJAMIN CACERES YAÑEZ
CATEDRATICO
UNIV. MAYOR DE SAN ANDRES
AV. VILLAZON S/N
TEL. 359 584 TEL. 622 68 35

TEL. 30570

FRANCISCO CASTRO CABRERA DIRECTOR GYCOM REDES TULIPAN 88 COL. CD. JARDIN 04270 MEXICO, D.F. TEL. 689 58 52

VICTOR ANIZAR HERNANDEZ DOCENTE ING. DE DISEÑO ENEP ZARAGOZA JUAREZ 60 COL. SAN ALVARO 02090 MEXICO, D.F. TEL. 341 25 52

NELSON AVILA MORALES

ALBERTO CALZADILLA OLVERA

JEFE DE AREA

GRUPO HYTT, S.A. C.V.

KM. 11 ANT. CAR. MEX. QRO.

SANTIAGO TLAUTLA

42860 TEPEJI DEL RIO

ING. RICARDO CASTAÑEDA MTZ.

ING. RICARDO CASTAÑEDA MTZ.

ING. RICARDO CASTAÑEDA MTZ.

CENTRO DE INSTRUMENTOS, UNAM

CIUDAD UNIVERSITARIA

04510 MEXICO, D.F.

TEL. 622 86 50

JAVIER CHAIRES BALDERAS TECNICO FES ZARAGOZA J.C. BONILLA 66 COL. EJERCITO DE OTE.
DEL. IZTACALCO, MEX. D. F.
TEL. 623 03 16 MARCIAL CONTRERAS BARRERA
TECNICO ACADEMICO
UNAM D.G.B.
CIUDAD UNIVERSITARIA
04510 MEXICO, D.F.

J. ANTONIO DOMINGUEZ HDEZ.

JEFE DE SECCION DE COMPUTO

CENTRO DE INSTRUMENTOS, UNAM

CIUDAD-UNIVERSITARIA

04510 MEXICO, D.F.

TEL. 550 06-54

EDUARDO FLORES Q.
PROGRAMADOR
INST. DE INVES. ECONOMICAS
TORRE II DE HUMANIDADES
CIUDAD UNIVERSITARIA
04510 MEXICO, D.F.
TEL. 623 00 94

ا معدد مواهد احساد

DIANA DONATTI GOMEZ COTERO
GERENTE DE INSTALACIONES
GRUPO TELEDINAMICA
SANTA MA. LA RIVERA 121
COL. SANTA MA. LA RIVERA 106400 MEXICO, D.F. 106400
TEL. 729 30 45

ING. JOAQUIN GONZALEZ MARIN PROFESOR FACULTAD DE INGENIERIA, UNAM CIUDAD UNIVERSITARIA 04510 MEXICO, D.F. TEL. 602 17 06

MARIO IBAÑEZ NAJERA
TECNICO ACADEMICO
DIR. GENERAL DE PREPARATORIAS
ADOLFO PRIETO 722
COL. DEL VALLE
03100 MEXICO, D.F.
TEL. 687 68 86

J. RICARDO DAMIAN ZAMACONA
ING. DE SOPORTE EN ELECTRONICA
CENTRO DE INST. ELECTRONICA, UNAM
CIUDAD UNIVERSITARIA
04510 MEXÍCO, D.F.
TEL. 622 86 02

RUBEN DOMINGUEZ TREJO
DOCENTE
FAC. DE INGENIERIA, UNAM
CIUDAD UNIVERSITARIA
04510 MEXICO, D.F...
TEL. 622 80 86 AL 82

PEDRO GARCIA SOLIS
LABORATORISTA
CCH VALLEJO
EJE CENTRAL LAZARO CARDENAS S/N
MAGADLENA DE LAS SALINAS
07760 MEXICO, D.F.
TEL. 587 49 91

HILARION J. HERNANDEZ SIMON
COORD. DE PROYECTO
BCO. NAL. DE CRED. RURAL, S.N.C.
AV. MEXICO COYOACAN 378
COL. GENERAL ANAYA
DEL. COYOACAN. MEXICO, D.F.
TEL. 723 13 00 EXT. 1014

JOSE ANGEL JUAN PEREZ
COORD. DE TELECOMUNICACIONES
CONALEP
AV. CONALEP 5
COL. LAZARO CARDENAS
52140 METEPEC, EDO. DE MEXICO
TEL. 91 72 71 01 11

MIGUEL A. LOPEZ SANCHEZ
JEFE DE DEPTO. DE COMPUTO
INST. DE INV. BIBLIOGRAFICAS
CIUDAD UNIVERSITARIA
04510 MEXICO, D.F.
TEL. 622 68 33

LUIS M. MONCAYO LOPEZ
ANALISTA DE SISTEMAS
FES ZARAGOZA
J.C. BONILLA 66
COL. EJERCITO DE OTE.
MEXICO, D.F.
TEL. 623 06 16

LILIANA J. MUÑIZ ZĀFRA
TEC. ACADEMICO
CENTRO DE INV. HUMANIDADES
CIUDAD UNIVERSITARIA
COL. COPILCO
04510 MEXICO, D.F.
TEL. 623 00 28

LEONEL PEREZ BAUTISTA
PROFESOR DE LABORATORIO
FACULTAD DE INGENIERIA
CIUDAD UNIVERSITARIA
04510 MEXICO, D.F.
TEL. 585 68 10

JAVIER PERNAS BUSSO
JEFÉ DE REDES
CORREO ARGENTINO
SARMIENTO 151 OF 555
1000 BUENOS AIRES, ARGENTINA
TEL. 315 32 79

JOSE A. PRIETO ANDRADE
JEFE DE ADMINISTRACION
GRUPO HYTT, S. A. DE C.V.
ANTIGUA CARR. MEX. ÓRO. KM. 11
SANTIAGO TLAUTLA
42860 TEPEJI DEL RIO, HGO
TEL. 91 773 305 70

BEATRIZ MELENDEZ VENANCIO-ACADEMICO FACULTAD DE INGENIERIA CIUDAD UNIVERSITARIA 04510 MEXICO, D.F. TEL. 622 31 13

WENCESLAO J. MORENO CEOLAN JEFE-DE DEPARTAMENTO SUBSRIA. DE COMUNICACIONES SAMUNATEGUI: 139 SANTIAGO DE CHILE TEL. 672 65 03

ERNESTO PADILLA VALDEZ
SISTEMAS
NYSSEN, SERVICIO SOCIAL
ALONSO CANO 122
COL. ALFONSO XIII
MEXICO, D.F.
TEL: 559 91 18
VICTOR M. PEREZ CRUZ

VICTOR M. PEREZ CRUZ

LABORATORISTA

FÉS ZARAGOZA

PUERTO DE PALOS

EJERCITO DE OTE:

TEL. 710 15 59

ING. TATIANA PICCINI ANTON
JEFE DE AREA
INICTEL
AV. SAN LUIS 1717
SAN BORJA LIMA PERU
TEL. 36 9110

LIVIA RAMIREZ MATHEUS
JEFE DE INFORMATICA
INST. VENEZOLANO DE INV. CIENT.
VENEZUELA EDO MIRANDA CARR
PANAMERICANA KM. 11 ALTOS DE
PIPE
TEL. 582 50 11 296

~

TEODORO RAMOS RIVERA
SUPERVISION MANTENIMIENTO
BANCOMER
AV. UNIVESIDAD 1200
COL. XOCO
03900 MEXICO, D.F.
TEL. 621 62 40

SEGUNDO ELOY ROBLES CASTRO ASISTENTE DE GERENCIA TECNICA ENETEL EGUADOR LUIS URDANETA Y BOYACA (ÉSO.)

SERGIO RODRIGUEZ PACHECO ING. EN REDES TELEFONICAS PERSONA FISICA GRAL. JOAQUIN AMARO MZ 16 LT.19 COL. AMPL. CARACOLAGO JOAGUA 15630 MEXICO, D.F. COLLAGO TEL. 558 57 14

JAIME ROMERO GALICIA
TECNICO ACADEMICO
DIREC. GENERAL DE BIBLIOTECAS
CIUDAD UNIVERSITARIA
04510 MEXICO, D.F. CONSTRUITE
TEL. 622 16 04

VICENTE SANCHEZ LUNA
OPERADOR TECNICO
T.V. UNAM
CTO. MARIO DE LA CUEVA S/N
CIUDAD UNIVERSITARIA
04510 MEXICO, D.F.
TEL. 653 29 45

URIEL REYES LIBA MARCOS 88 COL SIMON BOLIVAR 15410 MEXICO, D.F. TEL. 751 60 71

ING. RUBEN ROBLES GONZALEZ
INGENIERO
INST. NAL. DE TELECOMUNICACIONES
PANAMA EDIF. AVESA, VIA ESPAÑA
C.P. 659
TEL. 69 71 11

ING. ELIZABETH ROMERO FUERTE PROFESOR DE ASIGNATURA DIEEC FAC. DE INGENIERÍA CIUDAD UNIVERSITARIA 04510 MEXICO, D.F. TEL. 622 31 19

MIGUEL SALAZAR SERRANO
JEFE DE DEPARTAMENTO
DOTA ING. MEX., S.A. C.V.
1a. CRDA. DE ADOLFO PRIETO 23
COL. DEL VALLE
03100 MEXICO, D.F.
TEL. 543 20 26

PAOLA L. TELLEZ BALLESTEROS LINS. STA. TERESA 100 COL. INSURGENTES CUICUICO 14010 MEXICO, D.F. TEL. 606 29 34

EDUARDO ULLOA MURILLO CONTRENAMIENTO INST. COSTARRICENSE DE ELECTOR SAN JOSE COSTA RÍCA TEL 220 7104 (506)

ROQUE VALENZUELA ESPINOSA ALFONSO WILSON ALVAREZ
DEPTO GERENTE GENERAL
CONALEP CONET AMERICAN COMIVIERS, SA.C
AV CONALEP 5
COL. LAZARO CARDENAS COL. DEL VALLE
52140 METEPEC EDO. DE MEX 03100 MEXICO, D F
TEL. 91 72 71 01 11 CONET AMERICAN COMIVIERS, SA.CV.