

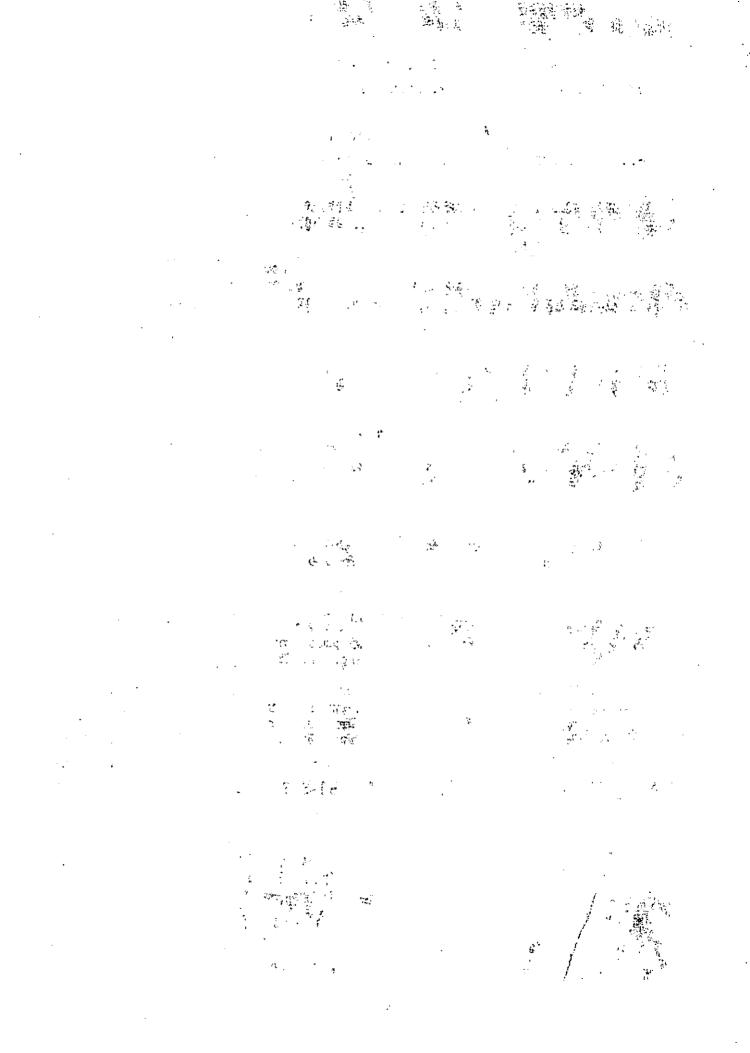
FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

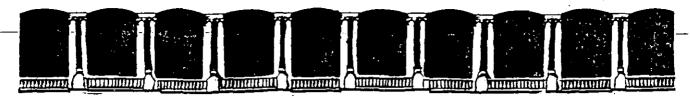
CENTRO DE INFORMACION Y DOCUMENTACION
"ING. BRUNO MASCANZONI"

EL CENTRO DE INFORMACION Y DOCUMENTACION "ING. BRUNO MASCANZONI" TIENE POR OBJETIVO SATISFACER LAS NECESIDADES DE ACTUALIZACION AL PROPORCIONARLA ADECUADA INFORMACION QUE PERMITA A LOS PROFESIONALES INGENIEROS PROFESORES Y ALUMNOS, ESTAR AL TANTO DEL ESTADO ACTUAL DEL CONOCIMIENTO SOBRETEMAS ESPECIFICOS ENFATIZANDO LAS INVESTIGACIONES DE VANGUARDIA DE LOS --CAMPOS DE LA INGENIERIA TANTO NACIONALES COMO EXTRANJERAS.

POR LO QUE SE PONE A DISPOSICION DE LOS ASISTENTES DE LOS CURSOS DE LA - D.E.C.F.I.; ASI COMO AL PUBLICO EN GENERAL.

EN DICHO CENTRO USTED TENDRA LOS SIGUIENTES SERVICOS:


- * PRESTAMO INTERNO
- * PRESTAMO EXTERNO
- * PRESTAMO INTERBIBLIOTECARIO
- * SERVICIO DE FOTOCOPIADO
- * CONSULTA TELEFONICA
- * CONSULTA A LOS BANCOS DE DATOS: LIBRUNAM EN CD-ROM Y EN LINEA


LOS MATERIALES A SU DISPOSICION SON:

- * LIBROS
- * TESIS DE POSGRADO
 - * NOTICIAS TECNICAS
 - * PUBLICACIONES PERIODICAS
 - * PUBLICACIONES DE LA ACADEMIA MEXICANA DE INGENIERIA
 - * NOTAS DE LOS CURSOS QUE SE HAN IMPARTIDO DE 1971 A LA FECHA

EN LAS AREAS DE INGENIERIA INDÚSTRÍAL, CIVIL, ELECTRONICA, CIENCIAS DE LA-TIERRA, MECANICA Y ELECTRICA Y COMPUTACION.

EL C.I.D. SE ENCUENTRA UBICADO EN EL MEZZANINE DEL PALACIO DE MINERIA LADO ORIENTE. EN HORARIO DE SERVICIO DE 10:00 A 19:30 HORAS DE LUNES A VIERNES.

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

A LOS ASISTENTES A LOS CURSOS DE LA DIVISION DE EDUCACION CONTINUA

Las autoridades de la Facultad de Ingeniería, por conducto del Jefe de la División de Educación Continua, otorgan una constancia de asistencia a quienes cumplan con los requisitos establecidos para cada curso.

El control de asistencia se llevará a cabo a través de la persona que le entregó las notas. Las inasistencias serán computadas por las autoridades de la División, con el fin de entregarle constancia sólamente a los alumnos que tengan un mínimo del 80% de asistencias.

Pedimos a los asistentes recoger su constancia el día de la clausura. Estas se retendrán por el período de un año, pasado este tiempo la DECFI no se hará responsable de este documento.

Se recomienda a los asistentes participar activamente con sus ideas y experiencias, pues los cursos que ofrece la División están planeados para que los profesores - expongan una tésis, pero sobre todo, para que coordinen las opiniones de todos los interesados, constituyendo verdaderos seminarios.

Es muy importante que todos los asistentes llenen y entreguen su hoja de inscripción al inicio del curso, información que servirá para integrar un directorio de asistentes, que se entregará oportunamente.

Con el objeto de mejorar los servicios que la División de Educación Continua ofrece, al final del curso deberán entregar la evaluación a través de un cuestionario diseñado para emitir juicios anónimos.

Se recomienda llenar dicha evaluación conforme los profesores impartan sus clases, a efecto de no llenar en la última sesión las evaluaciones y con ésto sean más fehacientes sus apreciaciones.

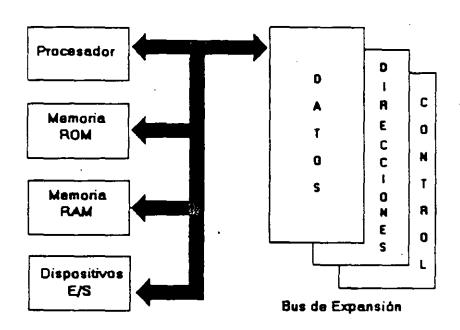
i GRACIAS!

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

MANTENIMIENTO DE PC'S Y PERIFERICOS (PARTE I)

MATERIAL DIDACTICO

OCTUBRE 1994


ARQUITECTURA DE UNA MICROCOMPUTADORA

ARQUITECTURA DE LA PC

El diseño de la PC consiste de cinco áreas funcionales: El subsistema del procesador, el subsistema de memoria de solo lectura (ROM), el subsistema de memoria de lectura/escritura (RAM), los puertos de entrada/salida, y el BUS de expansión, llamado PC-BUS.

Arquitectura de una PC

El corazón del sistema es el microprocesador 8088 de Intel, este procesador opera a una velocidad de 4.77 MHz, en la PC original, esta velocidad se obtiene de un cristal de 14.31818 MHz, dividido entre 3. Actualmente existe una gran cantidad de máquinas compatibles que además de operar a la frecuencia de 4.77 MHz, operan el llamado modo turbo, en frecuencias tan variadas como: 7.15, 8, 9.54, 10 y 12 MHz (en maquinas XT), utilizando una pequeña variación en la arquitectura de la PC que permite el manejo de 2 o hasta 3 diferentes velocidades seleccionables.

El procesador recibe al soporte de un conjunto de circuitos que proveen: cuatro canales de acceso directo a memoria (DMA)de 20 bits, tres canales de 16 bits de un contador-timer, y 8 niveles de interrupciones manejables por prioridades.

Très de los cuatro canales de DMA se encuentran en el PC-BUS y soportan transferencias a alta velocidad entre los dispositivos de e/s y la memoria sin la necesidad de la intervención del microprocesador, el cuarto canal de DMA se usa para dar refresco a la memoria RAM dinámica. Esto se hace programando un canal del contador para que periódicamente pida una transferencia de DMA nula.

MANTENIMIENTO DE PC'S/XT/AT Y PERIFERICOS (PARTE 1)

PRESENTACION

El auge en el uso de las computadoras "PC's" compatibles con IBM sigue en aumento y se está extrapolando hacia los equipos de mayor capacidad y mejor tecnología, como son lasPC/AT y los nuevos sistemas PS/2 de IBM.

Virtualmente las necesidades del mundo actual, fácilmente han convertido al ciudadano común en usuario de una computadora personal, ya que cualquier empresa u organismo por pequeños o grandes que sean, requieren ya, de esta tan indispensable herramienta. Lo mismo está sucediendo en aquellos hogares donde el estudiante o el hombre de negocios engrosa el "club de usuarios de PC's"

La aparición de las "PCs", se puede decir que es un hecho relativamente reciente, por lo que aún gran parte de las comunidades de usuarios, no ha desarrollado los hábitos adecuados para el uso y mantenimiento de sus PC's. Estos hábitos tendrán que generarse casi paralelamente al mayor conocimiento de su equipo.

La mayoría de los problemas que disminuyen la vida útil de una computadora y de sus periféricos, pueden ser prevenidos, sí se ejerce un mantenimiento continuo y adecuado. Casi cualquier usuario con un poco de experiencia, puede cubrir este ejercicio de mantenimiento, si su capacitación sin ser la más exigente, es la minima y bien orientada. Y con base en ella, sepa distinguir cuándo debe acudir a un especialista.

La aseveración anterior es uno de los objetivos de este curso, mismo que después de la introducción, muestra la arquitectura básica de una microcomputadora, luego menciona las características y diferencias físicas entre los equipos -tanto microcomputadoras como sus periféricos-, más pópulares que existen actualmente en el mercado.

Se especifica el juego de herramientas básico que se requiere para un mantenimiento adecuado y se establece el "A.B.C." del mantenimiento preventivo, complementando esta materia, con la práctica y aplicaciones de los programas de diagnóstico existentes.

No debiendo soslayar la parte administrativa-legal, que genera un servicio de mantenimiento contratado, para finalizar, se analiza con sus pros y contras, algunos de los diferentes contratos de mantenimiento que se ofrecen en el mercado.

Este curso es teórico-práctico, y contará con un laboratorio de micros adecuado, donde el capacitado tendrá la oportunidad de "meter mano a los equipos" con el debido cuidado y supervisión de los profesores, para evitar responsabilidades.

OBJETIVOS

Lograr que los participantes después del curso, puedan alargar la vida útil de sus equipos, aplicando las acciones y cuidados del mantenimiento preventivo, evitando así problemas en potencia. Destruir los frecuentes mitos de que una computadora es "intocable por profanos" y que sólo los "GURUS" son los elegidos. Ayudar at usuario a decidir cuando puede resolver un problema por si mismo y cuando debe acudir a un especialista, y en general, dotarlo de se guridad en el manejo y cuidado de su PC y equipo.

A QUIEN VA DIRIGIDO

A profesionales, técnicos y usuarios en general, de microcomputadoras compatibles que por sus necesidades, requieran dar por si mismos, mantenimiento a sus equipos como mínimo, conocimientos de MS-DOS.

TEMARIO.

- 1.- Arquitectura de una Microcomputadora.
- Características y diferencias entre los sistemas XT,AT- 286, AT-386 Y PS/2.
- 3.- Características de los principales periféricos.
- 4.- Juego Básico de Herramientas
- 5.- Mantenimiento preventivo.
- 6.- Programas de diagnósticos.
- 7.- Mantenimiento correctivo básicos.
- 8.- Impresores y además periféricos.
- 9.- Contratos de mantenimiento.

Los tres canales programables del contador-timer se usan en el sistema como sigue: Canal O se usa como un contador de propósito general, quien nos provee de una base de tiempo constante que nos permite llevar control de la fecha y de la hora; canal 1 se usa para pedir periódicamente los ciclos de refresco de memoria por DMA; canal 2 se usa para generar los tonos de la bocina de audio.

De los ocho niveles de interrupción disponibles, seis se encuentran en el PC-BUS para ser usadas por las tarjetas conectadas en él. Dos niveles se usan en la tarjeta principal, la interrupción con nivel 0, el de mayor prioridad, está conectada al canal 0 del contador y proves una interrupción periódica para el manejo del reloj/calendario. La interrupción no enmascarable (NMI) del 8088 se usa para reportar errores de paridad en la memoria.

Los circuitos de soporte más importantes dentro de la arquitectura de la PC, son los siguientes:

8259 : Controlador de Interrupciones.

8237 : Controlador de Acceso Directo a Memoria.

8284 : Generador de Reloj.

. 8255 : Interfaz con Periféricos Programable.

8253 : Contador Programable. 6845 : Controlador del CRT.

8272 : Controlador de Disco Flexible.

Cada uno de estos circuitos desempeña una labor específica e igual de importante dentro de la arquitectura de la PC y de su correcto funcionamiento depende la confiabilidad del sistema.

Una de las bondades de la PC es que su arquitectura abierta, permite al usuario y al diseñador de software o hardware hacer uso de cada una de sus partes funcionales, poniendo a su disposición las señales necesarias en el PC-BUS y los medios para software por medio del BIOS.

A continuación se da una descripción más detallada de los elementos principales de la arquitectura de la PC.

ARQUITECTURA DEL 8086 / 88

El 8088 es un microprocesador de 16 bits que controla a todas las computadoras de las familias PC, PC/XT y compatibles, (figura 2)

El 8088 controla la operación básica de la PC enviando y recibiendo señales de control, direcciones de memoria y datos de una parte de la computadora a otra, a través de una red de conexiones o caminos a los que se les llama BUS. Localizados en alguna parte de este bus se encuentran los puertos de entrada/salida que conectan a todos los circuitos de memoria o de soporte bus.

The same of the same

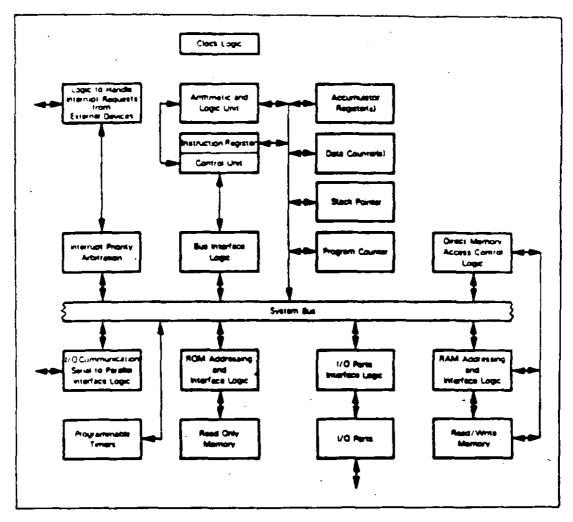


Figure 20-1. Logic of the Intel 8086 CPU

Dentro del 8088 existen 14 registros que nos proveen de un área de trabajo para la transferencia y el proceso de datos. Estos registros internos forman un área de 28 bytes en la cual se pueden guardar temporalmente datos, direcciones de memoria, direcciones de puertos, apuntadores e instrucciones y banderas de esta y del control. A través de estos registros el 8088 puede accesar hasta 1 Megabyte de memoria y hasta 64 kbytes de puertos de E/S.

El 8088 no es más que uno más de la familia de microprocesadores de 16 bits diseñados por Intel Corporation. El primer miembro de esta familia fue el 8086. El 8088 difiere del 8086 solo en un aspecto: Aunque el 8088 es un microprocesador de 16 bits, usa un bus de datos de 8 bits para comunicarse con el resto del sistema, a diferencia del 8086 que si tiene un bus externo de 16 bits. Prácticamente, toda la información que se refiere al 8086 se aplica al 8088 y viceve sa; para propósitos de programación se consideran idénticos.

EL BUS

Como se mencionó antes, la familia de PCs se conecta internamente por medio de un bus, este bus no es más que un camino compartido al cual se conectan todas las partes funcionales de la computadora. Cuando se comunica un dato de una parte a otra de la computadora, pasa por este bus hasta llegar a su destino.

Todos los circuitos de control y toda localidad de memoria de la PC se conectan directa o indirectamente a este bus. Cuando un nuevo componente se inserta a la PC comparte este bus también, haciéndolo un usuario más de éste.

EL BUS DE DIRECCIONES

El·bus de direcciones en el 8088 corresponde al de la PC, y utilizan 20 señales para transmitir las direcciones de memoria o de puertos de entrada/salida hacia todos los dispositivos que están conectados al bus.

Como para cada señal existen 2 diferentes valores (0 ó 1) las PC normales pueden direccionar hasta 2 a las 20 localidades, esto es 1 megabytes de memoria.

EL BUS DE DATOS

El bus de datos trabaja en conjunto con el bus de direcciones para transferir datos a todas las partes de la computadora. El bus del 8088 es de 8 bits esto es los datos se transmiten en bytes (8 bits = 1 byte). El 8088 al ser un microprocesador de 16 bits, puede trabajar con 16 bits de datos a la vez, exactamente igual que el 8086. Pero aunque puede trabajar con datos de 16 bits, los transmite al exterior en dos partes de 8 bits. Por lo que mas de una vez se ha dicho que el 8089 que es realmente un microprocesador de 16 bits.

ORGANIZACION INTERNA

El 8088 fue diseñado de forma tal que pueda procesar datos al mismo tiempo que recibe instrucciones y transmite datos a la memoria (Arquitectura de Pipeline). Para hacerlo usa registros de 16 bits. Existen 14 registros en total ,cada uno con un uso especial. Cuatro registros de propósito general, en los cuales se guardan temporalmente resultados y operandos de operaciones aritméticas y lógicas. Cuatro registros de segmento, que guardan la dirección inicial de ciertos segmentos de memoria. Cinco registros índice y apuntadores que guardan la dirección relativa (offset) que se usan en conjunto con los segmentos para referirse a una localidad específica de memoria. Y por último, existe un registro de banderas, que contiene 9 banderas de 1 bit que se usan para guardar información de control y sobre el estado actual del 8088.

REGISTROS DE PROPOSITO GENERAL

Los registros de propósito general son AX, BX, CX, y DX. Cada uno de ellos puede dividirse a su vez en dos registros de 8 bits, el de mayor valor o más significativo (AH, BH, CH, DH) y el de menor valor o menos significativo (AL, BL, CL, DL). El uso de los registros completos o de solo la mitad puede hacerse libremente, sin necesidad de seguir reglas especiales, como se necesiten.

Los registros de propúsito general se usan en la mayoría de los casos como áreas temporales de trabajo, particularmente para operaciones aritméticas. Las sumas y restas se pueden hacer directamente en memoria, pero el uso de resgitros incrementa la velocidad de ejecución. Aunque estos registro están disponibles para cualquier tipo de trabajo, cada uno de ellos tiene algunos usos particulares como por ejemplo:

- * AX : Es el acumulador, y es el registro principal para efectuar operaciones aritméticas.
- * BX : Este registro (base) se usa comunmente como apuntador al inicio de una tabla en memoria. También puede usarse para la dirección relativa (offset) de una dirección segmentada.
- * CX: Este registro (cuenta) se usa como un contador de repeticiones en instrucciones de ciclos o transferencias de bloques de memoria. Como por ejemplo la instrucción *LOOP* usa a *CX* para llevar el control de cuantas veces ha ejecutado el ciclo. Ninguno de los otros registros puede usarse para ello.
- * DX : Este registro solo se usa para guardar datos de 16 bits para diferentes propósitos. Es decir, no tiene ningún uso especia

LOS REGISTROS DE SEGMENTO

Para poder conocer el uso de estos registros, es necesario conocer como maneja el 8088 las direcciones de memoria. El 8088 es un microprocesador de 16 bits, por ello no puede trabajar con números cuya representación necesite más de 16 bits, el número decimal más grande que puede manejar es 65,535 es decir 64 K. Teóricamente esto significaría que el 8088 podría accesar cuando mucho 64 K localidades de memoria. Pero como mancionamos anteriormente, el 8038 puede accesar bastante más que eso, es decir hasta 1,024 K. Esto es posible dado que se manejan 20 líneas de direcciones. Pero el 8088 está limitado por su capacidad de manejar solo 16 bits en sus registros. Para manejar 20 bits de direcciones debe usarse un método que use solo 16 bits.

El 8088 divide el espacio de memoria direccionable en un número arbitario de SEGMENTOS, cada uno de los cuales no contiene más de 64 kbytes. Cada segmento empieza en una localidad que es divisible entre 16 bytes a la que se le llama la dirección del segmento o párrafo (paragraph). Para accesar localidades individuales se usa una dirección adicional llamada dirección relativa (offset) que apunta a un byte específico dentro del segmento de 64 kbytes designado por la dirección del segmento.

Las direcciones se crean y se manipulan combinando un segmento de 16 bits y una dirección relativa de 16 bits. El segmento se maneja como si estuviera recorrido a la izquierda 4 bits, y después sumado a la dirección relativa de 16 bits. Lo que nos da la dirección absoluta o vector de 20 bits.

Segmento	Dirección del 1 0 1	1	1	0	1	1	1	0	1	0	0	0	1	1	0	0	0	0
(offset)	Dirección Relativa		1	0	1	1	1	0	1	0	0	1	1	0	0	1	1	1
(Vector)	Dirección Absoluta 1 1 0	0	0	1	1	1	0	1	0	0	1	0	0	1	0	1	1	1

Por ejemplo, para obtener la dirección absoluta de un segmento 1234 H y un offset 4321 H:

12340 (1234 corrido 4 bits a la izquierda)

+ 4321 (el offset)

16661 La dirección de 20 bits (en hexadecimal)

Debido a esto, los 4 registros llamados de segmento: CS, DS, SS Y ES se usan para identificar 4 segmentos de 64 kbytes específicos.De los 4 registros de segmento, los siguientes tres se dedican a propósitos especiales:

- CS. Localiza el segmento de código, que contiene el programa que se está ejecutando.
- DS. Localiza el segmento de datos, que es el área de memoria donde se guardan los datos que están siendo usados.
- SS. Localiza el segmento de stack, un espacio de trabajo temporal que mantiene datos acerca de parámetros y direcciones en uso por el programa que se está ejecutando.

LOS REGISTROS DE OFFSET

Existen cinco registros de offset que se usan para localizar un byte o una palabra específicos dentro de un segmento de 64 kbytes.

Uno de los registros, el apuntador da instrucciones (IP), localizada la instrucción del programa que se está ilevando a cabo, dentro del segmento de código; otros dos los registros de stack, están ligados intimamente con el stack, que es el área de memoria que el 8088 utiliza para guardar datos o direcciones que necesita recordar para su uso posterior; y los dos registros restantes, los registros indice se usan para apuntar datos que se están usando en el segmento de datos.

- IP: El apuntador da instrucciones, nos da la dirección relativa con respecto al segmento de código. Se usa junto con el CS para mantener la dirección de la siguiente instrucción a ser ejecutada. Los programas no tienen acceso directo al IP, pero existe en algunas instrucciones como JMP o CALL, que cambian el IP directa o indirectamente.
- SP & BP: Los registros de stack, nos dan direcciones relativas dentro del segmento de stack. El SP (apuntador de stack) da la dirección del fin de stack y es análogo al IP. El BP (apuntador base) se usa para guardar localidades en las cuales tenemos datos específicos, que vamos a usar en un momento cercano, el BP es particularmente útil cuando se manejan parámetros entre rutinas o programas escritos en diferentes lenguajes de programación.

Como por ejemplo, cuando se desea utilizar rutinas escritas en ensamblador dentro de un programa escrito en PASCAL.

- SI & DI: Los registros índice, SI (índice de fuente) y DI (índice del destino) se usan normalmente junto con algunos de los registros de propósito general para apuntar al inicio de alguna tabla de datos almacenada en memoria, son particularmente útiles en la transferencia de datos por bloques o de cadenas de carácteres, usualmente, SI y DI incrementan sus valores automáticamente al ser usadas con ciertas instrucciones para los fines descritos anteriormente.

EL REGISTRO DE BANDERAS

El último de los registros del 8088, el registro de banderas, es realmente un conjunto de banderas de un bit. Estas banderas se agrupan en un solo registro de forma que se pueden accesar como un conjunto, de una sola vez, no es necesario el leer estas banderas de una en una, aunque el valor de estas banderas debe revisarse bit por bit.

Existen nueve banderas de un bit en este registro de 16 bits, dejando 7 bits sin usar. Estas banderas se dividen en dos grupos, las banderas de estado (6) que se usan para indicar el estado de el procesador después de ejecutar una instrucción, generalmente se usan para saber el resultado de una operación aritmética o de una comparación, y las otras 3 se usan como banderas de control, es decir en algunos casos el procesador irá a revisar el estado de estas banderas para saber que hacer en algunas instrucciones. Este registro contiene las siguientes banderas.

Tabla Banderas de Estado

Bandera	Nombre	Uso
CF	Acarreo	Indica que existió en un acarreo de un bit en una operación aritmética
OF	Sobreflujo	Indica un sobreflujo aritmético
ZF	Cero	Indica un resultado de cero o un igual en una comparación
ŞF	Signo	Resultado negativo en una operación o comparación
PF	Paridad	Indica un número par de bits 1
AF	Acarreo	Indica que se necesita un ajuste en operaciones en BCD

Tabla Banderas de Control

Bandera	Nombre	Uso
DF	Dirección	Drirección hacia la izquierda o derecha al procesar cadenas de caracteres
IF	Interrupció n	Habilita o Deshabilita las Interrupciones
TF	Trampa	Controla la operación instrucción por instrucción, introduciendo una trampa al finalizar cada instrucción (como lo hace DEBUG)

MEMORIA Y PERIFERICOS

Estas dos secciones son básicas en la arquitectura de la PC, pues en la memoria se almacena la información necesaria para el control de cualquiera de los procesos que se llevan a cabo en la PC. Y los periféricos son la forma en la que la PC se conecta con el mundo exterior, sin ellos la existencia de la PC no serviría para nada, pues por medio de ellos, se alimenta a la computadora con los datos necesarios para nuestros procesos, y por medio de ellos también es como nos enteramos de los resultados generados por estos procesos.

DIRECCIONAMIENTO DE ENTRADA/SALIDA

El 8088 se comunica y controla la mayor parte de la PC mediante el uso de los puertos de entrada/salida. Los puertos de entrada/salida son vías por las cuales la información pasa en su camino hacia o desde un dispositivo de entrada/salida, como por ejemplo un teclado o una impresora. La mayor parte de los circuitos de soporte descritos anteriormenta, usan estos puertos de e/s; de hecho, cada circuito puede usar varios de estos puertos para diferentes propósitos.

Cada puerto se identifica con una dirección específica de 16 bits, esto es podemos manejar hasta 64k diferentes puertos dentro de la PC. El microprocesador envía datos o información de control a un puerto específico usando su dirección, y el puerto responde pasando datos o información de estado de regreso al micro.

De la misma forma que al accesar la memoria, el CPU usa los buses de datos y direcciones como conductos para la comunicación con los puertos. Para accesar un puerto, el microprocesador envía una señal por el bus de control que notifica a todos los puertos que la dirección que se envía corresponde a un puerto, y envía la dirección.

La dirección de un puerto, o el número de un puerto se maneja de forma similar a una localidad de memoria.

De hecho, algunas tarjetas de expansión hacen uso tanto de puertos como de algunas áreas de memoria, como por ejemplo las tarjetas de video.

En la tabla siguiente se muestran los puertos que se encuentran asignados dentro del diseño de la PC:

Tabla Asignación de Puertos de E/S

Rango (Hex)	Función
000-00F	Circuito de DMA 8237A
020-021	Controlador de Interrupciones 8295A
040-043	Contador 8053
060-063	Interface Programable 8255A
080-083	Regs. de página del DMA
0Ax	Regs. de máscara de la NMI
0Cx	Reservado
0Ex	Reservado
100-1FF	No puede usarse
200-20F	Control de Juegos
201-217	Unidad de Expansión
220-24F	Reservado
278-27F	Reservado
2F0-2F7	Reservado
2F8-2FF	Puerto Serie Secundario
300-31F	Tarjeta para Prototipos
320-32F	Controlador de Discos Duros
378-37F	Puerto Paraielo (LPT1)
380-38C	Comunicaciones SDLC
380-389	Comunicaciones BCS (Secundarias)
3A0-3A9	Comunicaciones BCS (Primarias)
380-3BF	Pto. paralelo de la tarjeta
	monocromática
3C0-3CF	Reservado
3D0-3DF	Tarjeta de Color
3E0-3EF	Reservado
3F0-3F7	Controlador de Discos Flexibles
3F8-3FF	Puerto Serie (Primario, COM1)

DIRECCIONAMIENTO DE MEMORIA

Como mencionamos anteriormente el 8088 tiene un esquema de manejo de memoria por segmentos, lo que permite que el espacio de memoria aprovechable sea de hasta 1 Mbyte.

La arquitectura de la PC tiene contempladas básicamente dos áreas de memoria para su funcionamiento; la memoria de solo lectura (ROM), y la memoria de lectura/escritura.

MEMORIA ROM

En-esta área de memoria se encuentra contenido el programa que controla el funcionamiento básico de la PC, es decir, aquí se encuentra el programa de inicialización, cuya función básica es la de: Realizar diagnósticos a los circuitos principales, detectar que equipo periférico tiene conectado al PC, programar todos los circuitos de soporte como son: el detectar si existe algún otro ROM que vaya a efectuar alguna función especial, y finalmente cargar el sistema operativo de disco. Ver figura referente a la asignación del mapa de memoria ROM en ANEXO 1

La forma en que el sistema detecta si existe alguna memoria ROM o EPROM instalada en el área de expansión de 192k, es buscando cada 16k a partir de C0000 si encuentra los bytes AA 55 (hex), al encontrarlos, transfiere el control al cuarto byte del ROM (pues el tercero deberá tener de que tamaño es el ROM en bloques de 512 bytes), el programa almacenado en el ROM se deberá encargar de regresar el control al programa de inicialización usando un RET FAR. Estos 192k, se deberán accesar desde alguna tarjeta colocada en el bus, tal como lo hace la controladora de disco duro o el BIOS de las tarjetas de video EGA o VGA.

El área entre las direcciones F0000 y FE000 marcada como memoria para el usuario, se encuentra ya en la tarjeta principal,. en las bases para ROM que se encuentran vacías.

MEMORIA RAM

La memoria RAM, es la memoria de lectura/escritura donde la máquina almacena todos los datos que usa mientras esta máquina almacena todos los datos que usa mientras está encandida y ejecutando un programa, aquí se mantienen nuestros programas, datos, parámetros del sistema operativo e incluso se guarda lo que vemos en la pantalla. Ver figura referente a la disposición del mapa de memoria RAM en el ANEXO 1.

Como se aprecia en el mapa de memoria , el área aprovechable para los programas del usuario, así como para el sistema operativo, se limita hasta la dirección 9FFFF, es decir hasta 640 kbytes de memoria, pues el resto es utilizado por las rerjetas de video y por el área para ROM.

Esta limitación de 640 kbytes se puede evitar usando tarjetas de expansión que se direccionen como bancos, y no como memoria continua, que es como se maneja el estandar de memoria expandida de Intel, Microsoft y Lotus (EMS).

MANEJO DE INTERRUPCIONES

La forma en la que el 8088 puede comunicarse con los periféricos que componen la PC es por medio de interrupciones, en cualquier momento que un dispositivo necesita la asistencia del microporcesador, envía una señal o instrucción llamada interrupción, identificando la tarea que desea que el micro desempeñe.

Cuando el microprocesador recibe esta señal de interrupción, detiene sus actividades e inicia la ejecución de una subrutina almacenada en memoria, ya sea RAM o ROM, a la que se llama el manejador de la interrupción, este manejador corresponde a un número determinado. Después de que el manejador de la interrupción termina su tarea, las actividades del sistema continuan a partir del punto donde fueron interrumpidas.

Existen tres categorías de interrupciones: primero, las interrupciones generadas por la circuitería de la PC como respuesta a algún evento, como la presión de una tecla o la recepción de un dato por el puerto serie.

Estas interrupciones se manejan por medio del circuito controlador de interrupciones, el 8259, que les da prioridades en orden de importancia antes de enviarlas al microprocesador para su proceso. Segundo, las interrupciones generadas por errores imprevistos en las aplicaciones como por ejemplo la división entre cero.

Estas dos categorías de interrupciones son las llamadas interrupciones por hardware y se clasifican de la siguiente forma:

Asignación de las Interrupciones

Número	Causa			
NMI	Error de Paridad			
0	Contador			
1	Teclado			
2	Reservada			
3	Comunicaciones por puerto serie (COM2), SDLC o BSC (Secundaria)			
4	Comunicaciones por puerto serie (COM1), SDLC o BSC (Primaria)			
5	Disco Duro -			
6	Disco_Flexible			
7	Puerto Paralelo			

La tercera categoría de las interrupciones, son aquellas, generadas deliberadamente por los programas de aplicación como una manera de llamar subrutinas lejanas y de uso constante que se encuentran en RAM o ROM. Estas rutinas son usualmente parte del BIOS o del MS-DOS, éstas pueden ser modificadas incluso crear algunas nuevas para usos particulares.

De cualquier forma en que una interrupción sea generada, el dispositivo que la genera no necesita saber donde está el manejador que le dará servicio; lo único que necesita conocer es el número de interrupción. Este número sirve como referencia a una tabla almacenada en RAM, en las localidades mas bajas, en donde se encuentra la dirección segmentada de el inicio del manejador, a esta dirección se le llama vector de interrupción, y será tratado con detalle más adelante.

Las interrupciones automáticamente guardan el segmento de código que se está usando, así como el apuntador a las instrucciones, para que al terminar el manejador el micro sepa a donde regresar.

EL PC-BUS

El bus de la PC es una extensión del bus del 8088. Se encuentra ya demultiplexado, con líneas para la fuente de poder y con el manejo de interrupciones y de acceso directo a memoria. El bus contiene un bus de datos de 8 bits, 20 líneas de direcciones, 6 niveles de interrupciones, líneas de control para memoria y los puertos de e/s, relojes, 3 canales de DMA, etc. Estas funciones se encuentran en un conector de 62 contactos.

Se tiene disponible una señal de "ready" para permitir la operación de tarjetas de expansión lentas, ya sea de e/s o de memoria. Si esta señal de "ready" no se activa, todos los ciclos de lectura o escritura a memoria generados por el procesador, duran 4 pulsos de reloj es decir 840 ns/byte.

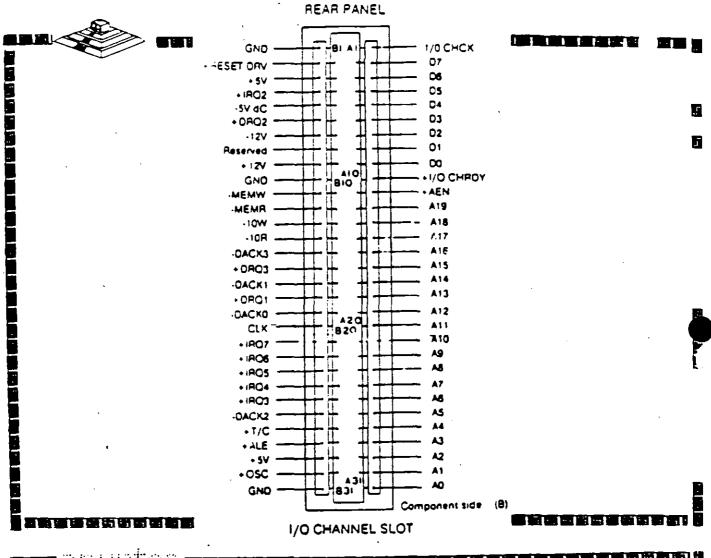
Los ciclos de lecturas o escrituras a los puertos de e/s generados por el procesador, requieren 5 pulsos de reloj para completar un tiempo de 1.05 us por byte. Los ciclos de refresco ocurren uno cada 72 pulsos de reloj (aproximadamente 15us) y requieren de 4 ciclos de reloj, es decir ocupan aproximadamente el 7 % del ancho de banda del bus.

El bus está diseñado para dar acomodo a 512 puertos de entrada/salida para el uso de las tarjetas de expansión, a pesar de que el 8088 podría manejar hasta 64 K. Existe una línea llamada "chanel check" que reporta condiciones de error al procesador. Al activar esta línea se genera una NMI (interrupción no enmascarable) para el 8088. Las tarjetas para expansión de memoria generalmente usan esta línea para eportar errores de paridad.

El PC-Bus está diseñado para dar suficiente alimentación a todas las ranuras de expansión, para lo cual se asumen 2 cargas LS (low-power shottky) por ranura máximo. Por lo general las tarjetas de buena calidad sólo tienen una carga LS.

A continuación se da una explicación mas detallada de cada una de las señales del BUS (ver figura siguiente):

EL PC - BUS


Sofial	E / 8	Utilización
osc	S	Osciledor: Reloj de alta velocidad con un
		penodo de 70 ns. Tiene un duty del 50%
CLK	S	Reioj del sistema: Es una división entre 3
	j	del oscilador y tiene un periodo de 210 ns.
	<u> </u>	(4.77Mhz.) Tiene un duty del 33%
RESET	S	Esta línea se usa para inicializar la lógica
]	del sistema al encender la máquina o
		durante una baja en el voltaja de
		alimentación. Está sincronizada con la
10.110	 	bejeda del reloj y es activo alto
A0-A19	S	Bits 0 a19 de las direcciones: Estas líneas
	1	se usen pera menejar la memoria y los
00.07		dispositivos de E/S del sisteme
00-07	€/S	Bits de Datos O de 7 : Es el bus de datos.
41.6		Son activo alto
ALE	S	Habilita Direcciones. Esta línea es
		generada por el controlador del bus (8288) y se usa para indicar cuando existen
		directiones válidas dadas por al
		procesador. Está disponible en el PC-BUS,y
	Į	se use en general en conjunto con AEN.
		Active elte.
	j	1.00.0
I/O CHK	E	Revisión del canal: Da la información
		sobre errores en las tarjetas del PC-BUS y
		se use generalmente errores de pandad.
		Activo bejo.
YOR ON	Ε	Canal Listo: Esta línea, activo alto, se
	J	coloca en cero por alguna tarjeta cuando
		éeta necesita tener un ciclo de lectura o
		escritura más largo, ya saa en memoria lo
	}	en E/S. No puede tener abajo más de 10
		ciclos de reloj.
IRQ2-IRQ7	E	Pedidos de Interrupción 2 a 7: Se usan
	j	pera señalar el procesador que un
		dispositivo de E/S requiere etención. Están dispuestas por prioridades, teniendo IRQ2
	1	1
	1	la máxima prioridad e IRQ7 la mínima. Una interrupción se genera levantando una
		tines de IRQ (de 0 a 1) y menteniéndola
	}	en alto hasta recibir el aviso de que se a
	Į	captado o reconocido la interrupción
IOR	5	Lectura des Dispositivo de E/S; Esta línea
,	•	se use pera avisar al dispositivo, que debe
•	J	poner un dato en el bus del procesador.
		Puede ser generada por el procesador o
		por el controlador de DMA. Esta señal es
	<u> </u>	ectivo bejo.
IOM	5	Escriture a dispositivo de E/S: Esta línea
		se use pera eviser el dispositivo que debe
	1	leer el dato qui el procesador colocó en el
	1	bus . Pueede ser geenerede por el
	1	procesador o por el controlador DMA.
		Activo bajo.
MEMR	5	Lecture de Memorie: Avise e la sección de
	1	memoria que debe poner un dato en e
	1	bus. Puede ser generada por el procesado
	1	o por el conrtolador de DMA. Acitvo bajo.

MEMW	S	Escritura a Memoria: Avisa a la sección de memoria que debe leer el dato que el procesador na puesto en el bus.Puede ser generada por el procesa ir o por el controlador de DMA. Activa pajo.
DRQ1-DRQ3	E	Pedido de DMA 1 e 3: Son pedidos asíncronos usados por dispositivos, penféricos para lograr acceso directo a memona.
DACKO DACK3	S	Reconocimiento de OMA: Estas líneas se usan para avisar que la petición a OMA ha sido concedida (para drq1-drq3) y para el refresco de la memoria dinámica del sistema (DACKO). Son de activo bajo.
AEN	S	Hebilita Dirección: Esta línea se usa para desconectar al procesador y otros dispositivos del PC-BUS para permitir el ecceso directo a memoria. Cuando esta línea se coloca en activo elto, quiere decir que el controlador de DMA tiene el control del bus de datos, y de direcciones de las líneas de escritura y lectura tanto a memoria como a E/S.
T/C	S	Cuenta Terminal: Esta línea provee un pulso cuando el DMA de alguno de los canales debe terminar. Es de activo sito.

Arquitectura de una computadora bus XT

I/O CHANNEL SLOT

2 0

CARACTERISTICAS Y DIFERENCIAS ENTRE LOS SITEMAS XTs, ATs Y PS/2

DIFERENCIAS ENTRE EL 80286 Y EL 8088

El procesador que se usa en el siguiente miembro de la familia de microcomputadoras de IBM, la AT es el 80286. El 80286 es un microprocesador de 16 bits reales, es decir usa un bus de datos de 16 bits y agrega algunos aspectos de programación más avanzados en su diseño. Posiblemente los aspectos más importantes de 80286 sean su capacidad de manejo de varias tareas a la vez (multitasking), multiprocesaminto y el manejo de memoria virtual, dos conceptos que antes sólo se encontraban en las computadoras de mayor tamaño.

Multitarea.- es la capacidad del microprocesador de efectuar varias tareas o procesos a la vez, como imprimir un documento o recalcular una hoja de datos cambiando rápidamente su atención entre estas tareas. Una PC común que usa un 8088, puede hacer una limitada cantidad de multiproceso con la ayuda de algunos programas muy sofisticados, como el TopView de IBM, Windows de Microsof o DesqView de QuarterDeck.

Pero un procesador de multiproceso real, como el 286 hace este intercambio de tareas internamente, y la ayuda que requiere del sistema operativo es muy pequeña en comparación con el 8088. Como la capacidad de multiproceso del 80286 es parte de su diseño, es mucho más rápido y confiable que el manejo de multiproceso por software.

Memoria Virtual.- Permite a la computadora trabajar como si tuviera mas memoria de la que realmente tiene. Por medio de un diseño de hardware y software muy sofisticado, un programa puede llegar a creer que tiene un Gigabyte de memoria disponible, aún cuando la memoria real del sistema sea sólo de una parte muy pequeña de esa cantidad, esto se logra por medio de un manejo de memoria muy elaborado que guarda algunas partes poco usadas del programa en disco y as partes mas usadas en memoria, cuando las partes que están en el disco se necesitan, se intercambian con una de las que se encuetran en memoria. El 286 y el sistema operativo tienen la tarea de manejar este esquema de forma que sea realmente eficiente, y los accesos a disco no dañen la eficiencia del sistema.

Este manejo de memoria virtual se ha usado en minicomputadoras y en mainframes por mucho tiempo, pero sólo a partir del uso del 286 en las AT's es posible su uso en minicomputadoras.

Esta virtud de multiproceso y de manejo de memoria virtual ha sido muy poco usada en las AT's, debido a que el sistema operativo y la gran mayoría de los programas existentes fueron diseñados para su uso con el 8088, por lo que sólo usaban a la AT basada en el 8088 como una PC más rápida. Hasta ahora, con la aparición del sistema operativo OS/2 de Microsoft, se espera que estas cualidades comiencen a ser usadas y la AT pueda apreciarse por su valor real.

ARQUITECTURA DE LA AT

Como se mencionó anteriormente, la AT está diseñada en base al microprocesador 80286, lo que la hace bastante más poderosa que el anterior miembro de la familia, la PC. Esto debido a su diseño más avanzado que permite como ya dijimos antes al multiproceso y manejo de memoria virtual, y además tiene un bus de datos de 16 bits reales, y man a 24 líneas de dirección, lo que permite el manejo de hasta 16 Mbytes de memoria directamente, y a la incorporación de un controlador de interrupciones y un controlador de DMA extras, lo que permite, a diferencia de la PC, el uso de 16 niveles de interrupciones manejables por prioridades, y el uso también de 8 canales de acceso directo a memoria. Estas adiciones al diseño de la AT hacen de ella una máquina mucho más poderosa que la PC, y extienden su capacidad de crecimiento en gran medida, pues se tiene el doble de posibilidades de interrupciones y canales de DMA para las tarjetas de expansión.

CREADA PARA LA VELOCIDAD

LA FUNCION DE LA ARQUITECTURA DEL SISTEMA

TRATESE DE FLEX, MICRO CANAL, O SMARTSLOT, LA ARQUITECTURA DE UNA COMPUTADORA BASADA EN EL MICROPROCESADOR 80386 DETERMINA SU POTENCIA Y DESEMPEÑO FINALES.

e que da potencia a computadoras modernas como la 386/ 20 de Compag, el Modelo 80 de IBM y la Premium 386 de AST, es el procesador 80386 de 32 bits de Intel. Pero el 80386 no actúa sólo en la computadora; en cada una de estas méduines, el chip interactée con otros componentes enviando información a la memoria, al monitor, las unidades de disco y los periféricos. Aug cuando son competibles los sistemas IBM, Compaq y AST (es decir, corren los mismos sistemas operativos y software), differen en la manera cómo interactúan sus componentes. Cada compañía trata de obtener el máximo desempeño de su computadors.

En las pruebas de desempeño que corrimos, encontramos que las tres máquinas con microprocesadores idénticos, y corriendo a igual velocidad de reloj, producían resultados distintos. En algunos casos, la diferencia fue de sólo una fracción de segundo (por ejemplo, las tres computadoras realizaben una búsqueda y reemplazo en un documento de 32 páginas, en dos a tres segundos); en otros fue más marcede (la IBM tardaba como seis

segundos más que las otras en realizar una consulta a una base de datos de 1 000 registros). En todos los casos, la disparidad se debe a las arquitecturas distintas.

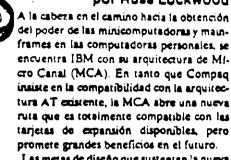
Para comprender la diferencia entre estas arquitecturas, es esencial ir más alla de la velocidad. Los diseñadores de hardware en ocasiones sacrifican cierto grado de velocidad, a fin de conseguir algún otro beneficio en el desempeño. Los ingenieros de IBM prefirieron confiabilidad a desempeño al disefiar la arquitectura de Micro Canal, y con SmartSlot, AST decidió olvidane de la competibilidad; ninguna de les máquines 80386 de estas compañías es tan rápida como la Compaq 386/20, con su arquitestura Flex de velocidad optimizada.

Al adquirir una nueva computadora, usted invierte en u arquitectura. Las preferencias del fabricante repercutirán en el trabajo que ahora realiza usted, y en el que efectúe en los años veniderns.

Lisa Kleinman

000027

Entre otras señales de control en el micro-canal se encuentran las siguientes (para mejor referencia observe las figuras esquemáticas):


-BURST y -TC que controlan la transferencia de datos, la señal M/-IO gobierna la transferencia de datos a memoria o a dispositivos I/O, las lineas -SO y -S1 definen la transferencia de datos como una lectura o escritura, las lineas -PREEMPT, ARB/-GNT y ARBO a ARB3 manejan el arbitraje del Canal, etc.

Para evitar el conflicto en el acceso al control del Canal, las opciones que están conectadas a él, tienen códigos identificadores tínicos, en ese caso, un controlador de disco flexible de 3½" tendrá un código diferente al controlador de disco fijo, lo mismo sucederá entre un modem de 2400 bps y uno de 1200 bps, cada uno de estos códigos son asignados por el fabricante de un conjunto de más de 64,000. Este código es requerido al efectuarse el POS, que basado en los dispositivos encontrados incluye los archivos de configuración necesarios para correr el Hardware, por lo que el Software resuelve los conflictos de instalación.

Para aumentar la transferencia de datos a traves del micro-canal, además de la utilización de los ocho canales de DMA que permite el compartir los recursos, los dispositivos de acceso al canal están gobernados por procesadores específicos que liberan al procesador central de un mayor número de operaciones, un ejemplo de este tipo de controladores se tiene en la tarjeta IBM/Sytex PC Network que contiene un procesador 80186 para la realización de sus funciones.

MICRO CANAL: EL NACIMIENTO DE UNA NUEVA RUTA

por Russ Lockwood

Las metas de discho que sustentan la nueva arquitectura, según Chet Heath, ingeniero

en jefe de IBM y arquitecto principal de la MCA, son incrementar la confiabilidad del sistema de la computadora, dar preferencia a la transferencia de datos en un ambiente de multitareas y multi-usuarios en lugar de un "ambiente singular" (o sea, un solo usuario trabajando con una aplicación a la vez), y mejorar el desempeño por sobre el de la IBM PC AT.

Este ambicioso orden de prioridades explica por qué los resultados de las pruebas comparativas casi siempre indican que las computadoras PS/2 están alcanzando a las máquinas de Compaq y de otros competidores. Al preferir la seguridad a la rapidez, la compañía refuerza su idea de que una computadora en buen estado que corra un poco más lento, es mejor que otra descompuesta que haya sido más veloz. Aunque IBM se niega a reveiar cifras específicas, Heath señala que la tasa de tiempo medio entre fallas para la línea PS/2 es dos à tres veces más alta que para la IBM PC AT.

Por supuesto, usted tiene que equilibrar los reducidos costos de servicio con los más altos costos de instalar tarjetas de expansión nuevas. Los contactos en las tarjetas de MCA son más pequeños y numerosos que en las AT, por lo que no puede insertar tarjetas para arquitectura AT en ranuras para MCA y vicaversa. IBM distribuyó a intervalos regulares líneas de tierra y de poder para reducir la interferencia electrónica que pudicia alterar la integridad de los datos.

Mientras más exija a su computadora, más tránaito de datos generan los dispositivos de I/O. Al agregar el hardware necesario para aprovechar al máximo un sistema operativo y aplicaciones de multitareas, el bus AT se sentirá sobrecargado. Para superar estas limitaciones, el diseño de la MCA eleva la velocidad del bus de RMHz a 10MHz, e incrementa la ruta de 16 bits de I/O en una AT, a una ruta de datos de 32 bits de ancho en los Modelos 70 y 80.

La arquitectura AT delega al procesador central la tarca de coordinar la transferencia de datos. La MCA separa los procesadores del bus y permite que un dispositivo de I/O mueva datos por sí mismo. La MCA también cuenta con ocho rutas de alta velocidad orientadas al bloque entre I/O y la memoria, a fin de minimizar la congestión y desplazar grandes bloques de datos en una sola "ráfaga". En una PS/2 Modelo 80 con bus de 32 bits, la tasa de transferencia de ráfaga es de 18.7MB por segundo, o sea

aproximadamente tres veces la de una AT

Puesto que una colisión del sistema puede crear múltiples complicaciones en un ambiente de multitareas y multiusuarios, IBM ha realizado grandes esfuerzos por lograr que su MCA sea lo más resistente posible a dichos inconvenientes. En la MCA se emplea un esquema de arbitrajo para eliminar la contención del procesador, y asegurar que cualquier procesador independiente (también llamado bus maestro) no domine el bus. Las conocidas "interrupciones de borde" (peticiones de un adaptador para señalar al procesador que aigo hay que hacer con los datos) desaparacen, y son sustituidas por "interrupciones sensibles al nivei", que llevan el número de identificación del adaptador, y colocan en hilera todas las interrupciones. Este tipo de señalización, originado en mainframes y minicomputadoras, reduce la probabilidad de que haya algún arror en el sistema, pues monitorea las interrupciones, identifica la fuente de cada una, y la aisia del resto del bus en caso que ocurra una colisión.

LOS OBJETIVOS DE DISEÑO QUE SUSTENTAN LA MCA, MUESTRAN PREFERENCIA POR LA SEGURIDAD Y NO POR LA RAPIDEZ.

Uno de los mayores atractivos de la MCA es su Selector de Opción Programable (POS, Programmable Option Select), que configura automáticamente una tarjeta de expansión para que trabaje con el sistema. Cada tarjeta viene con software que pasa la información necesaria de configuración a la RAM de CMOS. Obidese de colocar interruptores dip, POS hace que la MCA sea lo más cercano posible a "enchufar y jugar".

La característica POS puede, por al sola, inducir a numerosos usuarios que se sienten frustrados con los interruptores dip, a cambiar por la línea PS/2 y su arquitectura innovadora. Pero decidirse por la MCA implica olvidarse de su inversión en las tarjetas de espansión existentes, y muchas de ellas aún no están disponibles en versión para MCA. IBM afirma que están desarrollando 1 000 tarjetas, pero hasta ahora sólo han entregado 250. Si usted busca una computadora de alto desempeño, la Compaq Deskpro 386/20 con su arquitectura Flex es simplemente más rápida que cualquiera de IBM. Si desea una computadora que cuente con procesamiento concurrente y esquemas de arbitraje, a la vez que mantiene su hardware compatible con las tarjetas AT existentes, piense en una SmartSlot de-AST. Sin embargo, AST se enfrenta a la difficil tarea de lograr que los otros fabricantes alaboren tarjetas para SmarSlot.

Las tarjetas procesadoras que hacen tan atractiva a la MCA, no estarán disponibles en grandes cantidades sino hasta 1989. Mientras tanto, las computadoras sin MCA se vuelven cada vez más rápidas, y las basadas en el microprocesador 80486 quizá aperezcan pera cuando los otros fabricantes de tarjetas empiecen a proveer diversas tarjetas procesadoras. Por supuesto, la arquitectura independiente del procesador facilitará la adaptación a la próxima generación de microprocesadores.

Si se consideran las incompatibilidades de hardware, es dificil decidir la compra de una PS/2 con MCA. Pero ya se cuenta con mayor confiabilidad, y ese factor puede ser el crucial una vez que las computadoras personales ingresen al ambiente de multitareas y multiusuarios que se está gestando. IBM está segura de que estos beneficios serán más visibles a medida que pase el tiempo, y espera que la MCA continúe siendo su plataforma arquitectónica durante la próxima década.

FLEX: LA AT ESTANDAR NO HA PERDIDO VIGENCIA

por Patrick Honan

La arquitectura de una computadora es como una compañía de autobuses que trata
de desplarar a sus pasajeros (en este caso,
sus datos) en la forma más eficiente. Los
pasajeros abordan el autobus en dos paradas, memoria y puertos I/O (entrada/
salida), paro todos tienen el mismo destino: el procesador. Una masera de evitar
amontonamientos y acelerar el tránsito es
crear dos rutas, una para transportar
pasajeros de la memoria al procesador, y la
otra para manejar el tránsito de I/O.

Compaq Corp., desarrolló el concepto de dos rutas para datos, el cual lanzó en 1984. Este diseño, llamado Dual Bus, se encuentra en la Deskpro 386 y es el precursor de Flex, la arquitectura más remente de Compaq, la cual ha sido incorporada en la Deskpro 386/20 y la nueva 386/25.

De las tres nuevas arquitecturas 386. Flex es la que ha realizado cambios menos marcados a partir del estándar AT. No genera un nuevo estándar en hardware como lo hace la MCA, sino que obtiene el máximo desempeño posible del estándar existente. Flex (al igual que Dual Bus) sigue siendo competible con el estándar AT manteniendo la estructura básica del bus, la ruta de datos de 8/16 bits para tarjetas de expensión y los conectores de espiga estándar de la industria. Por su parte, la arquitectura de Micro Canal de 1BM es totalmente incompatible con las tarjetas de expensión de 8 y 16 bits existentes, en tanto que la arquitectura SmartSlot de AST Research cuenta con ex dispositivo de compatibilidad, ya que incluye ranaras estánda: , cuatro de las quales aceptan tarjetas SmartSlot de diseño propio.

El problema con el discho AT es que muestra limitaciones a medida que aumentan las velocidades del proestador. La vetocidad a la que lleva datos de la memoria o I/O el procesador es 8MHz, que funcionó bien con la IBM PC AT de 6 MHz, pero retrasa procesadores que corren a velocidades de reloj de 12, 16 y 20 MHz. Al igual que Dual Bus, Flex divide en dos la ruta de datus, de modo que los datos que vienen de la memoria pueden llegar al procesador a una velocidad mucho mayor que la de 8MHz a la que se mueven los datos que se desplazan entre puertos I/O (tales como el monitor, disco duro e impresora) y el procesador. Compag mantiens la velocided dei bus para 1/O en SMHs (la de IBM es 10MHz), a fin de mantener su compassibilidad con las miles de tarjetas de expansión que existen para el estándar AT. Varias características contribuyen a que Flex sea un método más eficax que Dual Bus para manejar estas dos retas. La más importante es el chip Intal 82385, processoor separado con dos funciones: manejar 32K de RAM caché de alta velocidad, y controlar el movimiento por toda le I/O y el bus de memoris. El 82385 quita un gran peso de encima al processor 386, que anteriormente desempehaba estas dos funciones además de todas sus otras actividades de procesamiento. Compaq alirma que utilizando el procesador 82385 para manejar la RAM caché, la computadora puede operar con cero estados de espera el 95° del tiempo. Varias compañías, entre ellas Advanced Logic E search, Dell Computer Corp. y Zenith, han lanzado duseño parecidos a Flex, pero no todas han agregado el chip Intel 82385 IBM también añadió una memoria caché de 64 K y el controlador 82385 a la recientemente lanzada PS/2 Modelo 70-A21 de 25MHz, programada para surtirse en septiembre. Es la primera computadora personal de IBM que utiliza memoria caché. (Los modelos 70 de 20 y 16MHz no la utilizam.) Pese a este cambio de diseño en el Modelo 70, la MCA de IBM todavía no crea dos rutas para el flujo de datos. SmartSlot divide los datos en dos rutas, una para memoria y la otra para I/O, pero no utiliza memoria caché, ni tampoco algún procesador separado dedicado al manejo de dicha memoria.

LA POLITICA DE DESARROLLO DE PRO-DUCTOS DE COMPAG SIEMPRE SE HA EN-FOCADO AL DESEMPEÑO Y LA CONFIABILI-DAD, Y FLEX COINCIDE CON ELLA. BRINDA A SUS USUARIOS SISTEMAS RAPIDOS Y PODEROSOS SIN ARRIESGAR CONFIABILI-DAD NI COMPATIBILIDAD.

Hoy día, la arquitectura Flex de Compaq es más poderosa y útil que la MCA o la SmartSlot. Analizada frente a la IBM PS/2 Modelo 80 y la Pramium 386 de AST Research, la Deskpro 386/20 de Compaq fue la vencedora indiscutible. Se ha convertido la mejor computadora para CAD, ingeniería y otras tareas cálculos intensivos, e incluso ha llegado al mercado de estaciones de trabajo. Su compatibilidad total con las tarjetas de expansión estilo AT, la hacea más práctica que la MCA o SmartSlot.

Ples no osenta con las características de facilidad de uso que ofrece la MCA. Los fabricantes de tarjetas han comenzado a simplificar los procedimientos de instalación de sus productos, pero usted todevía tiene que instalar interruptores dip y puentes de conexión en la mayoría de tarjetas de expensión que conecte a las computadoras Deskpro 386. La MCA identifica y configura automáticamente las tarjetas. Asimismo, Flex tampoco puede solucionar problemas del sistema como lo hace la MCA.

En el fucuro, Flex posecrá una capacidad limitade para soportar múltiples bus maestros, que son procesadores adicionales que usted podrà instalar en su computadora para manejar tareas especificas. Los bus maestros pueden ser "privados" o "compartidos"; los procesadores privados son tarjetas que cuentan con memoria propia, en tanto que los compartidos, valga la redundancia, compartan la RAM del sistema. Flex ya soporta tarjetas de procesador privado, que liberan al 80386 de tareas como la de elaboración de redes o creación de gráficas. Pero como no poses un esquema de bus arbitrario, la arquitectura de Flex no puede permitir que varios procesadores compertan simultáneamente la misma memoria. Quiza usted no resienta esta timitación hasta dentro de algunos años, ya que aún no se diseñan tarjetas de procesador compartido. Y entes que éstas se vuelvan prácticas. deberá haber un nuevo nivel de sistema operativo, y generarse el software respective.

La política de productos de Compaq siempre se ha centrado em un alto desempeño y una total confiabilidad, y la arquitectura l'estrada con dicha orientación. Brinda e sus usuarios los rápio y poderosos sistemas que buscan, sin sacrificar confiabilidad ni compatibilidad.

SMARTSLOT: UN PUENTE Entre el ayer y el mañana

por Russ Lockwood

En tanto que Compaq e IBM se encuentran enfrascadas en una controversia técnica con respecto al desempeño, AST Research ha adoptado un enfoque arquitectónico intermedio, basado en las mejores características de Flex y MCA. Es unpresionante el logro tecnológico de ser a la vez propietario y compatible con el estándar AT, pero AST aún tiene ante si la ardua tarea de convencer a los usuarios y otros fabricantes de tarjetas de que su arquitectura SmartSlot es una opción viable.

AST secunda la opinión de Compaq de que la arquitectura AT sigue teniendo más vigencia que la que IBM asegura. Su arquitectura SmartSiot brinda todas las ventajas teóricas de un ambiente de procesador múltiple, posee también muchas de las cualidades de velocidad de la arquitectura Flex de bus dual, y mantiene compatibilidad con el bus AT.

AST dio a conocer SmartSlot en su Premium/386, una computadora de 20 MHz basada en el microprocesador 80386. De las siete ranuras de expansión que giene, una as de 32 bits de diseño propio (sólo para expansión de memoria), otra es de 16 bits, dos de 8 bits, y tres son ranuras SmartSlot de diseño propio de 16 bits.

El bus ha sido adaptado para que reconozca hasta custro procesadores independientes y controladores inteligentes (denominados bus maestros), y transflera el control del bus a estos bus maestros. Para mantener el orden entre ellos, y evitar que varios procesadores soliciten el bus al mismo tiempo, la arquitectura SmartSlot separa los maestros del bus, e incorpora un esquema de arbitraje central. Cada procesador o controlador que busca transferir datos, pide control del bus a un solo chip de la tarjeta principal que enntiene la lógica de arbitraje.

Para preservar la competibilidad con la terjeta AT y proporcionar la capacidad de tener bus maestros múltiples, cade ranura de expansión de SmartSiot contiene 44 contactos en lugar de los 36 estándar de la AT. Los contactos adicionales permiten que las señales de arbitraje pasen entre las tarjetas de expansión y el chip de lógica. Las tarjetas diseñadas para aprovechar las especificaciones de SmartSiot no encajan en las ranuras AT. Las tarjetas AT estándar encajan en las ranuras de SmartSiot, pero como carecen de los contactos adicionales y no están diseñadas para sacar particlo de la lógica de arbitraje de la arquitectura SmartSiot, no estarán en condiciones de controlar el bus. Igualmente, las tarjetas concebidas para las ranuras MCA de IBM, no encajan en las ranuras SmartSiot ní AT estándar, puesto que emplean contactos diferentes en tamaño y número.

Por shora, ninguna tarjeta aprovecha al máximo el ambiente de bus arhitrado y procesador múltiple de SmartSlot (o en todo caso, de la MCA). El Advanced Disk Controller de AST, la primera tarjeta SmartSlot anunciada, no estará a la venta sino hasta otoño. Esta tarjeta de interface por dispositivo pequeño mejorado

(ESDI, Enhanced Small Device Interface) contará con un controlador inteligente para aprovechar el ambiente de multiprocesamiento, y transferir datos a y desde la memoria sin interactuar con el microprocesador.

La prueba más dura para Smart Slot será lograr la aceptación de otros. fabricantes de tarjetas. Si bien IBM puede afirmar que se encuentran en desarrollo más de 1 000 tarjetas MCA (y ya hay disponibles como 250) fabricadas por ellos mismos y otras empresas. AST no puede decir lo mismo. La última vez que AST lunzó una ranura de diseño propio (la Fasi Slot de la Premium/286, que acelera la transferencia de datos a y desde la memoria expandida), la misma AST era la única compañía que elaboraba tarjetas para dicha ranura.

LA PRUEBA MAS DURA PARA CHARTSLOT SERA QUE
LA ACEPTEN LOS OTROS FARRICANTES DE
TARJETAS, MIENTRAS QUE IRM INFORMA QUE SE
ENCUENTRAN EN DESARROLLO MAS DE 1 000
TARJETAS MCA, AST NO FUEDE DECIR LO MISMO
CON RESPECTO A SMARTSLOT.

Alan Kraemer, vicepresidente de ingeniería de sistemas de AST, acepta que los fabricantes de tarjetas de otras marcas van a ocuparse primero de la MCA de IBM. Admite que convencerlos de que desarrollen para SmartSlot "no es una prioridad alta". Sin embargo, Kraemer está seguro de que AST continuará desarrollando tarjetas de expansión para SmartSlot, aun cuando otros fabricantes no estén interesados en ello.

AST, al igual que Compaq, utiliza una arquitectura de bus dual para crear un bus de 32 bits entre la memoria y el microprocesador, así como un bus de I/O de 16 bits. La velocidad del bus de 32 bits es de 20MHz, exactamente el mismo tamaño y velocidad que maneja el 80386, por lo que el microprocesador no tiene que esperar a que el bus envie datos. El bus de I/O de 16 bits corre a una conservadora velocidad (compatible con AT) de 8MHz. Con la adición de un enlace independiente de alta velocidad, los datos se transferen con mucha mayor rapidez entre el microprocesador y la memoria, y sin interferencia de las funciones de I/O.

En las pruebas de puntos de referencia, la Premium/386 de AST es más lenta que la Deskpro 386/20 de Compaq, lo que Kraemer atribuye a que en esta última se emplea el Intel 82385, un chip controlador de caché y de manejo de memoria, que obtiene mejoras significativas de velocidad a partir de la RAM dinámica comás. Sin embargo, explica que para aplicaciones grandes que no entran por completo dentro de la memoria caché y que requieren un acceso amplio al disco duro, específicamente bases de datos y CAD, la arquitectura de SmartSlot y el Advanced Disk Controller (controlador avanzado de disco) ofrecerán un mejor desempeño.

Sin importar que AST cumpla o no con su promesa de suministrar tarjetas SmartSiot, la Premium/386 con arquitectura SmartSiot es una répida computadora 386, comparable a la Compaq 386/20 y otras 386 en cuanto a compatibilidad, precio y desempeño. SmartSiot también abre una ruta hacia el futuro, pero si AST pienas impulsar SmartSiot igual que como hizo con FastSiot (es decir, sin mucha fuerza), entoncos esta ruta no ilevará sino a un calleido sin satida.

Le arquitecture SmartSlot combine los ideales de competibilided con la innovación tecnológica de un esquema de bus arbitrado. Demuestra que el bus AT no ha quededo obsoleto, y constituye además un puente entre la AT y la MCA para quien se atrava a dar el salto.

Maintenance' Reference

Hardware Maintenance Reference

Revised Edition (March 1986)

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS 15" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that IBM intends to announce such IBM products, programming, or services in your country.

Products are not stocked at the address below. Requests for copies of this publication and for technical information about IBM Personal Computer products should be made to your authorized IBM Personal Computer dealer, IBM Product Center, or your IBM Marketing Representative.

The following paragraph applies only to the United States and Puerto Rico: A Reader's Comment Form is provided at the back of this publication. If the form has been removed, address comments to: IBM Corporation, Personal Computer, P.O. Box 1328-C, Boca Raton, Florida 33429-1328. IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligations whatever.

© Copyright International Business Machines Corporation 1981, 1986

Federal Communications Commission Radio Frequency Interference Statement

Warning: The equipment described herein has been certified to comply with the limits for a Class B computing device, pursuant to Subpart J of Part 15 of the FCC rules. Only peripherals (computer input/output devices, terminals, printers, etc.) certified to comply with the Class B limits may be attached to this computer. Operation with non-certified peripherals is likely to result in interference to radio and TV reception. If peripherals not offered by IBM are used with the equipment, it is suggested to use shielded grounded cables with in-line filters if necessary.

CAUTION

414

The products described herein are equipped with a grounded plug for the user's safety. It is to be used in conjunction with a properly grounded receptacle to avoid electrical shock.

Safety Inspection Guide

The intent of this inspection guide is to assist you in identifying potentially unsafe conditions on these products. Each machine, as it was designed and built, had required safety items installed to protect users and service personnel from injury. This guide addresses only those items. However, good judgment should be used to identify potential safety hazards not covered by this inspection guide.

If any unsafe conditions are present, a determination must be made on how serious the apparent hazard could be and whether you can continue without first correcting the problem.

Consider these conditions and the safety hazards they present:

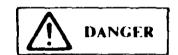
- Electrical hazards, especially primary power: primary voltage on the frame can cause serious or fatal electrical shock.
- Explosive hazards, a damaged CRT face or bulging capacitor can cause serious injury.

The guide consists of a series of steps presented in a checklist.

Begin the checks with the power off and the power cord removed from the power receptacle.

We recommend all non-IBM devices and attachments be removed from the unit before you conduct the safety inspection.

Reference Literature:


- Guide to Operations manual
- · Any applicable safety publications.

Checklist:

- 1. Check exterior covers for damage (loose, broken, or sharp edges).
- 2. Power off the system. Disconnect the power cord from the electrical outlet.
- 3. Check the power cord for:
 - a. A third-wire ground connector in good condition. Use a meter to measure third-wire ground continuity for 0.1 ohm or less between the external ground pin and frame ground.
 - b. The cord set should be the appropriate molded type as specified in the parts catalog in the *Hardware Maintenance Service* manual.
 - c. Insulation must not be frayed or worn.
- 4. Remove the back panel from the system unit (if applicable).
- 5. Remove the cover mounting screws, and remove the cover.
- Check for any obvious non-IBM alterations. Use good judgement as to the safety of any non-IBM alterations.
- 7. Check inside the unit for any obvious unsafe conditions, such as metal filings, contamination, water or other liquids, or signs of fire—noke damage.

- 8. Check for worn, frayed, or pinched cables. Ensure the voltage specified on the voltage tag, or switch position (back panel of the machine) matches the voltage of the power receptacle. If in doubt, verify the voltage.
- 9. Examine the power supply and verify the following:
 - a. Non-removable fasteners in the power-supply cover have not been removed or tampered with.
 - b. The grommet is installed where the internal power cables come through the frame of the power supply.
- 10. Check for the following labels on all systems:
 - "Caution: Hazardous Area. Do Not Remove This Cover. Trained Service People Only. No Serviceable Components Inside."

or

- Hazardous voltage inside. Do not open.
- 11. In systems using a battery, check for the following hands:
 - "BATTERY WARNING: Do not dispose of battery unit in fire or water. See instruction for disposal in the battery installation instructions."

or

- Replace only with P/N 8286121. Use of a different battery could result in ignition or explosion of battery.
 Order replacement from IBM authorized dealer.
- 12. Visually check the condition of the battery (if applicable) and ensure the battery has a safety hazard label attached.
- 13. Machines manufactured May 1986 or later, weighing in excess of 18 Kg. (41.8 lbs), must be labeled with the weight of the system unit.

Handhing Static-Sensitive Devices

Some of the components that make up the options for the system can be damaged by electrostatic discharges. To prevent this damage, the options are wrapped in a conductive, anti-static bag; certain precautions must be taken before removing an option from its bag:

Hold the option (still wrapped in its anti-static bag) in one hand and touch a metal part of the system unit with the other hand. This will place your body, the option, and the system unit at the same ground potential, thus preventing an accidental static discharge.

Carefully remove the option from its anti-static bag. Be sure to grasp circuit boards by the edges only; do not touch the component pins or solder joints. Grasp diskette drives by their frames to avoid touching the electronics board. Grasp chips by their narrow ends only, not by their pins.

When inserting an option adapter into the system board, hold the adapter by its top edge or upper corners.

How to Use this Maintenance Libr...y

This Hardware Maintenance library consists of three major diagnostic tools: a two-part set of diagnostic manuals and an Advanced Diagnostics diskette.

The Hardware Maintenance Reference manual describes diagnostic procedures and their use, field replaceable unit (I RU) removal procedures, and provides general information about the systems. Once the reader has become familiar with its content, the Hardware Maintenance Reference manual is no longer required on each service call. It can be kept in a convenient place and used for reference, as needed.

The Hardware Maintenance Service manual contains all necessary information to diagnose a failing system. Maintenance Analysis Procedures (MAPs), jumper positions, switch settings, and the parts catalog are in this manual.

Additional options may require supplements to the manuals. The Hardware Maintenance Reference manual provides an area in the back of the manual to file these supplements. Each section of the Hardware Maintenance Service manual (with the exception of the MAPs) has a designated area for supplements. The MAPs are sequenced by number and should be updated accordingly.

The Advanced Diagnostics diskette is designed to be used with the MAPs to:

- Test each area of the system
- Isolate problems to specific areas of the system through the use of error codes
- Verify correct installation and operation of the system.

Other functions of the Advanced Diagnostics diskette are described in this manual.

Preface

This manual is used to support the Hardware Maintenance Service manual and Advanced Diagnostics diskette. Readers should have received training on the IBM Personal Computer family.

This manual is divided into major parts that are separated by full-length die cut tabs.

Within each part are 3 sections:

SECTION 1, "GENERAL INFORMATION," provides product description, theory of operation, and environmental specifications.

SECTION 2, "INTRODUCTION TO DIAGNOSTICS," has the diagnostic menu reference and explains the diagnostic aids. Also included are sample diagnostic screens that may be encountered during diagnostic testing.

SECTION 3, "REPAIR INFORMATION," shows the locations of the various components and the information needed to remove, replace, and adjust any of the field replaceable units (FRUs).

"SUPPLEMENTS," is provided as a convenient place to add any new information to this manual for IBM Personal Computer options.

This manual supports the IBM Personal Computer family. The procedures, within each section, work for all machine types except where differences are noted.

Operating instructions are in the appropriate Guide to Operations manual. Detailed hardware and interface information is in the Technical Reference library.

GENERAL INFORMATION - PC and XT

Place the hard-tab page labeled "GENERAL INFORMATION - PC and XT" in place of this page, then discard this page.

SECLON 1. GENERAL INFORMATION

Product Description	 -3
Option Compatibility	l - 5
Incompatible Adapters and Terminating Resistors	1-5
IBM Personal Computer	1-6
IBM Personal Computer XT	i -6
Operating Requirements	i - 7
Power Supply	1-7
	1-8
Microprocessor	l -8
•	1 - 8
	1-8
	1-9
· · · · · · · · · · · · · · · · · · ·	-10
	-11
•	- 11
•	-13
•	-14
	-15
· ·	-15
	16

Product Description

The IBM Personal Computer and the IBM Personal Computer XT consist of a variety of systems and options to meet present and future needs.

The following are features of the IBM Personal Computer:

- 63.5-Watt Power Supply
- System Board
 - 8088 Microprocessor
 - 4.77 MHz Clock
 - Five Expansion Slots (with 62-pin card edge sockets)
 - 16K-64K base Random Access Memory (RAM)
- Speaker
- 320K or 360K Diskette Drive (Drive A)
- 83-Key Keyboard.

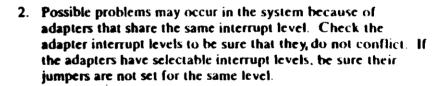
The following are features of the IBM Personal Computer XT:

- 130-Watt Power Supply
- System Board
 - 8088 Microprocessor
 - 4.77 MHz Clock
 - Eight Expansion Slots (with 62-pin card edge sockets)
 - 256K base Random Access Memory (RAM)
- Fixed Disk Drive (in some models)
- Asynchronous Communications Adapter (in some models)
- 83-key Keyboard.

The optional Expansion Unit has:

- Fixed Disk Drive
- Six Expansion Slots
- Receiver Card
- Data/Control Cable
- Expansion Unit Cable
- Extender Card (to be installed in the system unit).

Option Compatibility



Incompatible Adapters and Terminating Resistors

Incompatible Adapters

Certain option adapters are not compatible when used in the same system.

- 1. The following adapters should not be installed together in the system unit:
 - Synchronous Data Link Control (SDLC)
 - Alternate Binary Synchronous Communications (Alt BSC).

Terminating Resistors

Terminating resistors are required on certain diskette and fixed disk drives for proper operation of the drive.

These drives always require a terminating resistor:

- Diskette Drive A
- Fixed Disk Drive C.

Always remove the terminating resistor from:

- Diskette Drive B
- Fixed Disk Drive D.

The IBM anal Computer and IBM Personal Computer XT can have a total of only 640K of RAM installed in the system. unit. This is regardless of where the memory is installed (system board or on memory expansion cards).

IBM Personal Computer

SDLC and Alternate BSC adapters share the same address and cannot be installed together in the same system.

The following may be installed only in the system unit:

- Primary Display Adapter
- Memory Expansion Options
- Diskette Drive Adapter
- PC Network Adapter
- Enhanced Graphics Adapter.

The following may be installed only in the expansion unit:

- Fixed Disk Drive Adapter
- Professional Graphics Controller.

All other adapters may be installed in either the system unit or expansion unit.

IBM Personal Computer XT

The following may be installed only in the system unit:

- Primary Display Adapter
- **Memory Expansion Options**
- Diskette Drive Adapter
- PC Network Adapter
- Enhanced Graphics Adapter.

All other adapters may be installed in either the system unit or expansion unit (in those models where the expansion unit is supported).

Operating Requirements

This describes the operations that take place from the time the system is turned on until the minimum operating requirements have been met.

Power Supply

There are two power supplies, 120 Vac and 220/240 Vac. Both are fused. The accurrent is converted to de outputs, which supply the system with proper operating voltages. AC current is passed through a filtered-fused circuit to the Monochrome Display receptacle. No other usage of this receptacle other than with the Monochrome Display, is supported or recommended.

Whenever the power supply has been off for a minimum of one. second and then switched on, the power supply generates a 'power-good' signal. The 'power-good' signal resets system logic, indicates proper operation of the power supply, and gives the system board advance warning of voltage loss when the system is switched off.

The 'power-good' signal ranges from 0.0 to 0.4 Vdc when any output is below its minimum undervoltage (UV) sense level and increases to 2.4 to 5.5 Vdc when all power supply output voltages are present and above their minimum UV sense levels.

Output (Vdc)	Minimum UV Sense Level (Vdc)		
	PC	XT	
+5 Vdc	+40	+45	
-5 Vdc	-40	~43	
+12 Vdc	+96	+108	
~12 Vdc	-96	+102	

Once the minimum UV sense levels are established and the 'power-good' signal has risen to its active level, all system hoard power requirements have been met.

If do over-current or over-voltage conditions exist, the power supply automatically shuts down until the condition is corrected

System Board

The major components of the system board are the 8088 microprocessor, dual in-line package (DIP) switch, and ROM BIOS.

Microprocessor

The microprocessor is the action center of the system. It interprets and carries out instructions. The 8088 is an 8-bit microprocessor with a clock speed of 4.77 MHz.

Dual In-Line Package (DIP) Switch

A dual in-line package (DIP) switch (PC has two DIP switches) is mounted on the board and can be read under program control. The DIP switch provides the system programs with information about the installed options, how much storage the system board has, what type of display adapter is installed, what operation modes are desired when power is switched on (color or black-and-white, 80- or 40-character lines), the number of diskette drives attached and if the Math Coprocessor is installed.

ROM BIOS

The ROM BIOS contains instructions and routines that make the system perform in a particular manner. It is responsible for the major I/O devices (such as keyboard, diskette, fixed disk drives, and video) in the system. Some adapters may have their own ROM modules that contain extended routines that work in conjunction with the system board ROM BIOS. The routines for performing the power-on self test (POST) are also contained in the ROM BIOS.

Power-On Self Test (POST)

The POST is initiated automatically with each power-on of the system. The POST can be invoked at any time by pressing the Ctrl key, the Alt key, and the Del key at the same time, then releasing them.

The POST is a series of system checks and initialization that verifies the correct operation of the base system. Two classifications of malfunctions that may be detected during the POST; critical and non-critical.

Critical malfunctions prevent the system from operating at all or could cause incorrect results that are apparent to the user Examples of critical errors include processor or interrupt controller malfunctions.

Non-critical malfunctions are those that cause incorrect results which may not be apparent to the user. An example of a non-critical error would be a memory chip failure.

If a critical error is detected during the POST, an attempt is made to indicate the error and all testing will halt. On a non-critical error, an error code is displayed and testing will continued. On an XT a non-critical error may be bypassed by pressing the FT key.

After a successful POST, where no critical errors were detected, a single short beep will be generated. Control is then given to the system boot strap loader.

It is important to remember that the POST does not test all areas, but only those that allow the system to be operational enough to run the "Advanced Diagnostics" program.

- Nominal 120 Vac
- Minimum 104 Vac
- Maximum 127 Vac.
- 220/240V Power Supply
 - Nominal 220/240 Vac
 - Minimum 180 Vac
 - Maximum 259 Vac.

IBM Personal Computer XT

Size

- Length: 500 millimeters (19.6 inches)
- Depth: 407 millimeters (16.1 inches)
- Height: 140 millimeters (5.5 inches).

Weight

• 14.5 kilograms (32 pounds)

Environment

- Air Temperature
 - System On: 15.6 to 32.2 degrees C (60 to 90 degrees E)
 - System Off: 10 to 43 degrees C (50 to 110 degrees F).
- Humidity
 - System On: 8% to 80%
 - System Off: 20% to 80%.

Heat Output

• 717 British Thermal Units (BTUs) per hour

Electrical

- 125V Power Supply
 - Nominal 120 Vac
 - Minimum 104 Vac
 - Maximum 127 Vac.
- 220/240V Power Supply
 - Nominal 220/240 Vac
 - Minimum 180 Vac
 - Maximum 259 Vac.

Syster. Memory

The following figure shows an example of how memory is assigned on a system board. The address is an identifier for a particular part of memory. The addresses run sequentially (in hexadecimal notation) starting at 000000 and ending at FFFFFF.

The only difference between base memory on system boards, is how it is allocated.

Address in Hex	Memory	Function
00000		256K RAM On System Board
10 7FFFF -	######################################	256K RAM On System Board
8000 to 9FFFF	************	128K RAM On I/O Adapter
A0000 to BFFFF		128K Viu. : riAM Reserved For Graphics Display Buffer
C0000 to DFFFF		192K Reserved For ROM on I/O Adepters
Ì	**********	Reserved
F0000 to FFFFF	******	Reserved ROM on System Board

B=Base Memory

R=Reserved

000040

1-10 Syc

Environmental Specifications

IBM Personal Computer

Size

- Length: 500 millimeters (19.6 inches)
- Depth: 407 millimeters (16.1 inches)
- Height: 140 millimeters (5.5 inches).

Weight

- 9.5 kilograms (20.9 pounds) without a diskette drive
- 11.4 kilograms (25 pounds) with a diskette drive.

Environment

- Air Temperature
 - System On: 15.6 to 32.2 degrees C (60 to 90 degrees [1]
 - System Off: 10 to 43 degrees C (50 to 110 degrees F)
- Humidity
 - System On: 8% to 80%
 - System Off: 20% to 80%.

Heat Output

• 1083 British Thermal Units (BTUs) per hour

IBM I **Sonal Computer Expansion Unit**

Size

- Length: 500 millimeters (19.6 inches)
- Depth: 407 millimeters (16.1 inches)
- Height: 140 millimeters (5.5 inches).

Weight

14.9 kilograms (33 pounds)

Environment

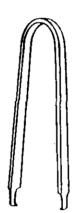
- Air Temperature
 - System On: 15.6 to 32.2 degrees C (60 to 90 degrees F)
 - System Off: 10 to 43 degrees C (50 to 110 degrees F).
- Humidity
 - System On: 8% to 80%
 - System Off: 20% to 80%.

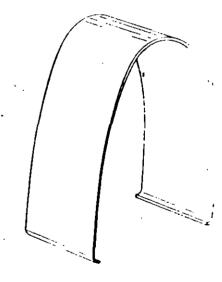
Heat Output

717 British Thermal Units (BTUs) per hour

Electrical

- 125V Power Supply
 - Nominal 120 Vac
 - Minimum 104 Vac
 - Maximum 127 Vac.
- 220/240V Power Supply
 - Nominal 220/240 Vac
 - Minimum 180 Vac
 - Maximum 259 Vac.


Special Tools


The following special tools are required to service the IBM Personal Computer:

A meter similar to the Triplett Model 310 '

Module Pullers

A tweezer-like module puller similar to those shown below. (Used to remove the memory modules)

Manufactured by Triplett Corporation, Blofton, Ohio 48817

GENERAL INFORMATION - AT

Place the hard-tab page labeled "GENERAL INFORMATION - AT" in place of this page, then discard this page.

Product Description

The IBM PERSONAL COMPUTER AT: family consists of a variety of systems and options to meet present and future needs.

The following are features of the IBM Personal Computer AT Models 068, 099, 239:

- Power Supply
 - Manually switched to support 115 Vac or 230 Vac
 - 192 Watts.
- System Board
 - 80286 Microprocessor
 - 6 MHz Clock
 - 8 Expansion Slots
 - 6 with a 36-pin and 62-pin card edge socket
 - 2 with only the 62-pin card edge socket
 - 256K base Random Access Memory (RAM)
 - Complementary Metal Oxide Semiconductor (CMOS)
 RAM to maintain the system setup configuration
 - Battery to keep CMOS active when power is off.
- Speaker
- 1.2MB Diskette Drive (Drive A)
- Security Lock (Inhibits input from the keyboard)
- 84-Key Keyboard.

Additional features include:

- Fixed Disk Drives
- Diskette Drives
- · Various other options and adapters.

Option compatibility

Incompatible Adapters and Terminating Resistors

Incompatible Adapters

Certain option adapters are not compatible when used in the same system.

- 1. The following adapters should not be installed together in the system unit:
 - Synchronous Data Link Control (SDLC)
 - **Alternate Binary Synchronous Communications** (Alt BSC).
- 2. Possible problems may occur in the system because of adapters that share the same interrupt level. Check the adapter interrupt levels to be sure that they do not conflict. If the adapters have selectable interrupt levels, be sure their jumpers are not set for the same level.

Terminating Resistors

Terminating resistors are required on certain diskette and fixed disk drives for proper operation of the drive.

These drives always require a terminating resistor:

- Diskette Drive A
- Fixed Disk Drive C.

Always remove the terminating resistor from:

- Diskette Drive B
- Fixed Disk Drive D.

Operating Requirements

This describes the operations that take place from the time the system is turned on until the minimum operating requirements have been met.

Power Supply

The power supply can be manually set to operate at either 115 Vac or 230 Vac. The accurrent is converted to de outputs, which supply the system with proper operating voltages or are passed through a filtered-fused circuit to the Monochrome Display receptacle. No other usage of this receptacle other than with the Monochrome Display, is supported or recommended.

Whenever the power supply has been off for a minimum of one second and then switched on, the power supply generates a 'power-good' signal. The 'power-good' signal resets system logic, indicates proper operation of the power supply, and gives the system board advance warning of voltage loss when the system is switched off.

The 'power-good' signal ranges from 0.0 to 0.4 Vdc when any output is below its minimum undervoltage (UV) sense level and increases to 2.4 to 5.25 Vdc when all power supply output voltages are present and above their minimum UV sense levels

Minimum UV Sense Level (Vdc)
+ 45
- 375
+108
-104

Once the minimum UV sense levels are established and the *power-good* signal has risen to its active level, all system board power requirements have been met.

System Board

The major components of the system board are the 80286 microprocessor, CMOS RAM, and ROM BIOS.

Microprocessor

The microprocessor might be thought of as the action center of the system. It interprets and carries out instructions. The 80286 microprocessor can operate in two modes. The real-address mode uses all system memory below the hex 100000 address, and the protected mode uses all system memory starting at the hex 100000 address. See "System Memory" later in this section for additional memory information.

CMOS RAM

The CMOS RAM chip contains the real-time clock and 64 bytes of storage. The clock uses 14 bytes of this storage to track the date, time, and battery level. The remaining 50 bytes are assigned to store system configuration information. The information stored in the CMOS RAM is entered from the Setup program. A battery keeps this chip active when the system is off.

ROM BIOS

The ROM BIOS contains instructions and routines that make the system perform in a particular manner. It is responsible for the major I/O devices (keyboard, diskette, fixed disk drives, and video) in the system. Some adapters may have their own ROM modules that contain extended routines that work in conjunction with the system board ROM BIOS. The routines for performing the power-on self test (POST) are also contained in the ROM BIOS.

Power-On Self Test (POST)

The POST is initiated automatically with each power-on of the system. The POST can be invoked at any time by pressing the Ctrl key, the Alt key, and the Del key at the same time, then releasing them.

The POST is a series of system checks and initialization that verifies the correct operation of the base system. Two classifications of malfunctions that may be detected during the POST: critical and non-critical.

Critical malfunctions prevent the system from operating at all or could cause incorrect results that are apparent to the user.

Examples of critical errors include processor or interrupt controller malfunctions.

Non-critical malfunctions are those that cause incorrect results which may not be apparent to the user. An example of a non-critical error would be a memory chip failure.

If a critical error is detected during the POST, an attempt is made to indicate the error and all testing will halt. On a non-critical error, an error code is displayed and the testing is stopped. Testing can be continued on a non-critical error, by pressing the F1 key.

After a successful POST, where no critical errors were detected, a single short beep will be generated. Control is then given to the system boot strap loader.

It is important to remember that the POST does not test all areas, but only those that allow the system to be operational enough to run the "Advanced Diagnostics" program.

Systen. Aemory

The following figure shows an example of how memory is assigned on the system board. The address is an identifier for a particular part of memory. The addresses run sequentially (in hexadecimal notation) starting at 000000 and ending at FFFFFF.

Address in Hex	Memory	Function
000000	004800 pp. 6000 00 00 00 00 00 00 00 00 00 00 00 0	256K RAM On System Board
lo 07FFFF	***************************************	. 256K RAM On System Board
080000 to 09FFFF	***************************************	128K RAM On I/O Adepter
0A0000 to 0BFFFF		128K Video RAM Reserved for Graphics Display Buffer
OCOOOO to ODFFFF	BORGERBRARARARA	128K Reserved for ROM on I/O Adapters
OEOOOO to OEFFFF	**************************************	Reserved ROM on System Board
OFOOOO to OFFFFF	***********	Reserved ROM on System Board
0100000**		512K RAM On I/O Adapter
lo		
FOFFFF	ATTECTION COLORS THE	512K RAM On i/O Adapter (15M Maximum)
FE0000 to FEFFFF	********	Reserved ROM on System Board
FF0000 to FFFFFF		Reserved ROM on System Board

8 System Memory (AT)

Memory Switch Settings

The switches on the memory options are divided into two sections:

- Switches 1 through 5 determine the starting address for the expansion memory installed on the option
- Switches 6, 7, and 8 have special assignments for each type of memory option.

Starting Address (Switches 1 through 5)

The switch settings can be determined through the following procedure. Assume you have 3.5M of expansion memory installed in your system and you are installing another memory option.

1. Establish your starting address by adding the amount of expansion memory already installed (3.5M) to the starting address for expansion memory.

3.5M (Amount of expansion memory installed) +1.0M (Starting address for expansion memory)

4.5M (Starting address for next option)

 In the following table, find the values that, when added, equal 4.5M.

	Switch Number	Value in OPEN (OFF) Position
	1	84.
r	2	41.4
	3	2V
	4	19,4
	5	514
	4 0M (Switch 2 set	10 O# P25 13 O# F ~

Switch Number	Memory Opt	ion Name			
	512KB Memory Expension Option				
	Benk 0	Bank 1			
6	ON	OFF			
7	ON	ON			
. 8	ON	OFF			

Environmental Specifications

IBM Personal Computer AT

Size

Length: 540 millimeters (21.3 inches)
Depth: 439 millimeters (17.3 inches)
Height: 173 millimeters (6.8 inches)

Weight

• 19.05 kilograms (42 pounds)

Environment

- Air Temperature
 - System On: 15.6 to 32.2 degrees C (60 to 90 degrees F)
 - System Off: 10 to 43 degrees C (50 to 110 degrees F).
- Humidity
 - System On: 8% to 80%
 - System Off: 20% to 80%.
- Altitude
 - Maximum altitude: 2133.6 meters (7000 feet)

Heat Output

1229 British Thermal Units (BTUs) per hour

CARACTERISTICAS DE LOS PRINCIPALES PERIFERICOS

TECLADO

El teclado de la PC contiene el controlador de teclado 8048, éste realiza varias tareas, que ayudan a descargar de trabajo al microprocesador del sistema.

La tarea principal del 8048 es el de detectar el uso de las teclas y reportar al BIOS cuando se oprimió o se soltó alguna de ellas. Si alguna tecla permanece oprimida por más de medio segundo, el 8048 repite su acción a intervalos específicos. El 8048 también maneja algunos diagnósticos y revisión de errores, y tiene una cola que puede almacenar hasta 20 teclazos hasta que la computadora pueda aceptarlos. La AT usa un controlador diferente, el 8042, que realiza esencialmente la misma tarea.

Cada vez que oprimimos o soltamos una tecla ésta genera un número de un byte al que se le llama código de barras (scan code), que identifica la tecla oprimida. El teclado genera un diferente código para cada tecla oprimida o liberada. En cualquier momento que se oprime una tecla, se genera el código, que es un número entre 1 y 83 (en el teclado estandar de PC). Cuando soltamos la tecla, se genera otro código que es el de la tecla al oprimir más de 128. Por ejemplo, si oprimimos la tecla Z, se genera un código 44, al soltarla, se genera otro código que es 172 (44 + 128). En la figura de la siguiente página se ilustra el teclado estandar de la PC y el código que corresponde a cada una de las teclas.

Cuando oprimimos alguna tecla, el teclado no conoce su significado, simplemente se encarga de avisar lo que se oprimió. Es tarea del BIOS el traducir estos códigos en datos útiles para su proceso por el sistema.

Cada vez que oprimimos o liberamos una tecla, el teclado lo reporta al sistema por medio de la interrupción 9. Esta interrupción 9 llama a una subrutina que se encarga de leer el puerto 96 (60 hex) para saber que paso en el teclado. Lee el código de barrido y la rutina lo traduce a un número de 2 bytes. El byte de menor orden contiene el Código ASCII de la tecla oprimida y el de mayor orden el código de barrido.

Las teclas especiales como las teclas de función o las del teclado numérico, mandan un cero en el byte de menor orden.

Entonces, las rutinas del BIOS ponen estos códigos en una cola que inicia en la localidad 0000:041E. En la memoria del sistema. Los códigos se mantienen ahí hasta que son requeridos por algún programa; como el MS-DOS por ejemplo.

El trabajo de traducir estos códigos de barrido no es tan sencillo, dada la variedad de opciones que ofrece el teclado, es decir, al oprimir la misma tecla en combinación con Shift, o Ctrl, el significado cambia.

Aparte del funcionamiento normal del teclado, y de las diferentes combinaciones que se pueden manejar, existe una forma de capturar cualquier código ASCII que nos interese, aunque éste no esté representado en el teclado.

Esto se hace oprimiendo la tecla ALT y manteniéndola oprimida mientras tecleamos el Código ASCII deseado en el tecleado numérico que se encuentra del lado derecho del teclado.

Este método permite la captura de cualquier Código ASCII entre 1 y 255. El único que no puede capturar de esta forma es el código 0. Porque éste está reservado para separar a otros códigos que no son ASCII, como por ejemplo las teclas de movimiento del cursor.

LAS TARJETAS DE VIDEO

Para poder manejar un monitor, las PCs necesitan tener conectada en una de las ranuras de BUS, una tarjeta controladora de video, (aunque algunas compatibles ya traen este controlador en la tarjeta principal).

Esta tarjeta de video está basada en un circuito llamado el controlador de CRT. Y tiene un conjunto de puertos de E/S programables, un generador de caracteres almacenado en ROM y memoria suficiente para mantener los datos que se van a desplegar.

Existe una gran variedad de controladores de video, pero la mayoría están basados en las dos tarjetas que IBM diseñó, que son la tarjeta Color Graphics Adapter (CGA), y el Monochrome Display Adapter (MDA). Nos basaremos en estas dos tarjetas para hablar de los controladores de video.

Básicamente se manejan dos tipos de video, Texto y Gráficas. El controlador CGA puede manejar cualquiera de estos dos tipos, en cambio MDA sólo maneja texto, aunque esté con una calidad bastante mejor que aquel producido por la CGA, por eso en algunas aplicaciones como el proceso de texto, contabilidad, etc. su uso es bastante extendido.

Para solucionar esta incapacidad de MDA para desplegar gráficas, muchos fabricantes diseñaron variantes de ella, pero la que hasta ahora es más popular y mejor aceptada es la tarjeta Hércules, que puede desplegar texto, con la misma calidad que MDA, y gráficas, de muy buena calidad, incluso mejores que las de CGA, aunque sin colores. Actualmente se ha estandarizado la resolucion VGA y SuperVGA.

LA MEMORIA DE VIDEO

La memoria de video está localizada físicamente junto con el resto de la circuitería de la tarjeta de video, pero lógicamente, esta área de memoria es parte de la memoria principal del sistema.

Un bloque de 128k de memoria, está reservado para el uso de las tarjetas de video de la dirección A0000 a BFFFF (hex), pero las dos tarjetas originales (CGA y MDA) usan solo 2 partes pequeñas de esta área. MDA usa solo 4k de esta memoria, empezando en la localidad B0000. Mientras que la tarjeta CGA usa 16k iniciando en la localidad B8000. El resto del espacio está reservado para usos más avanzados, como por ejemplo la tarjeta EGA.

Estas dos tarjetas manejan lo que se llama un despliegue mapeado en memoria, es decir, cada localidad en la memoria de video corresponde a una posición específica de la pantalla.

El controlador de video lee repetidamente (60 veces por segundo) la memoria y despliega en la pantalla lo que encuentra ahí. El controlador de CRT es quien se encarga de traducir la información de la memoria en puntos de luz que se muestran en la pantalla.

Estos puntos se llaman pixels, y se producen por un haz de electrones que se reflejan en la superficie de la pantalla del monitor. Al ir recorriendo la pantalla con este haz de electrones es lo que se conoce como el barrido, el controlador de CRT se encarga de ir encendiento y apagando al haz para que en la pantalla aparezcan los datos correctos.

Al finalizar cada actualización de la imagen, el haz se apaga y se regresa a la primera posición de la pantalla a este movimiento se le llama Vertical Retrace. Durante el Retrace, el haz se apaga y no se escribe información en la pantalla.

Este período de *Retrace* (1.25 ms) es importante para el programador, debido a que en ese momento el controlador de video no está leyendo la pantalla y tenemos acceso libre para escribir lo que queramos en ella. De otra forma, al escribir un dato, el controlador de CRT podría estar accesando la misma localidad y se produciría un efecto de "ruido" en la pantalla al que se le dice "nieve". Podemos revisar si el controlador se encuentra en el retrace leyendo su registro de estado, y aprovechar el momento para escribir toda la información disponible en la memoria de video.

LOS MODOS DE VIDEO

Originalmente, sólo se manejaban 8 modos diferentes de video, ahora se manejan 7 más. Estos modos de video definen las características del despliegue, es decir, la cantidad de texto que puede desplegarse, la resolución, y la cantidad de colores. La tarjeta CGA maneja los primeros 7 modos que incluyen varias opciones para texto y gráficas. La tarjeta MDA sólo maneja uno de estos modos. Y la tarjeta EGA maneja los 15 modos. Cada uno de estos modos se identifican con un número del 0 al 16. Los modos de video disponibles en cada tarjeta son los siguientes:

Modo	Tipo	Tameño	Colores	Tarjeta
_0	Texto	40 x 25	16 (Tonos de Gris)	CGA o EGA
1	Texto	40 x 25	16 Texto 8 Fondo	CGA o EGA
2	Texto	80 x 25	16 (Tonos de Gris)	CGA o EGA
3	Texto	80 x 25	16 Texto	CGA o EGA
4	Gráfico	320 x 200	4	CGA o EGA
5	Gráfico	320 x 200	4 (Tonos de Gris)	CGA o EGA
6	Gráfico	640 x 200	2	CGA o EGA
7	Texto	80 X 25	B/N	MDA o EGA
8	Gráfico	160 x 200	16	PCjr
9	Gráfico	320 x 200	16	PCjr
10	Gráfico	640 x 200	4	PCir
13	Gráfico	320 x 200	16	EGA
14	Gráfico	640 x 200	16	EGA
15	Gráfico	640 x 350	B/ N	EGA
16	Gráfico	640 x 350	64	EGA

Todas las imágenes que vemos en la pantalla se forman a base de puntos a los que llamamos pixels. La resolución se define por el número de renglones o líneas de barrido, y por el número de puntos en cada línea de barrido. El número de renglones que un monitor puede desplegar se define por el hardware y por las señales de video que genera el controlador. Los modos de video, se controlan por medio del BIOS, usando la interrupción 16, e incluso podemos ejercer cierto control usando el MS-DOS, pero solo sobre los modos de texto, con la instrucción de MODE.

LOS COLORES

Los colores en la pantalla de una PC, se generan por medio de la combinación de 4 elementos: sus componentes de rojo, azul y verde y una intensidad. Los modos de texto y gráficas usan las mismas opciones de colores e intensidad, pero los combinan de diferente forma para lograr sus propósitos. Los modos de texto, cuya unidad básica es un caracter-compuesto de varios pixels- usa un byte completo para el color y el parpadeo del caracter y de su fondo. Los modos gráficos tienen como unidad el pixel usan solo entre uno y 4 bits para definir el color e intensidad, pues el pixel no tiene entre sus características el parpadeo.

Con el afán de lograr una mejor compatibilidad con el mayor número de monitores posible, se crearon los modos de colores suprimidos, (0, 2 y 5). En estos modos los colores se convierten a diferentes intensidades de gris. El color se suprime en la salida de video compuesto de la tarjeta CGA, pero ne en la salida RGB. Debemos hacer notar el diferente manejo que se hace de los colores entre las modos de texto y los de gráficas.

En texto tenemos control completo sobre el color de cada una de las posiciones de los caracteres en la pantalla, podemos colocar un diferente color de los 16 de fondo y los nueve de texto en cada posición. Pero en los modos gráficos el control es más limitado. En los modos de texto cada posición en la pantalla se controla por medio de 2 bytes adyacentes en la memoria. El primer byte contiene el caracter que se despliega, el segundo byte contiene el atributo de ese caracter, es decir la forma en la que ese caracter deberá ser desplegado.

Ese byte de atributo contiene tres características: El color del caracter, el color del fondo sobre el que se despliega ese caracter, y el componente de parpadeo, que al existir o no indica si el caracter estará parpadeando o no.

A continuación se muestra como colocar cada bit del byte de atributos para lograr el resultado deseado.

	BIT							7
7	6	5	4	3	2	1	0	USO
1								Componente de parpadeo
	1							Componente Rojo del Fondo
		1						Componente Verde del Fondo
			1				,	Componente Azul del Fondo
	· .			1				Intensidad del Caracter
	<u> </u>				1			Componente Rojo del Caracter
	\Box			·		1		Componente Verde del Caracter
				,			1	Componente Azul del Caracter

Los resultados de estas combinaciones pueden variar ligeramente entre cada monitor.

En el modo 7 (monocromático) no se maneja el atributo de la misma forma, puesto que no existe la disponibilidad de colores, los bits de intensidad y parpadeo se usan de la misma forma, pero el resto de los bits producen diferentes resultados.

El modo normal de texto blanco en fondo negro se logra colocando 000 en elifondo y 111 en el texto. Los caracteres subrayados se logran colocando el fondo en 001, etc.

Para los modos gráficos esto es bastante diferente, pues cada pixel en una pantalla tiene un color asociado, por lo que si usáramos un byte para guardar el color de cada pixel, la necesidad de memoria crecería en forma exponencial. Aquí no existe el manejo de color del fondo o del texto, simplemente el punto es de un color o de otro.

Para cada modo gráfico existen opciones definidas de colores, llamadas paletas. Estas paletas en CGA no pueden cambiarse, están definidas de antemano, en cambio en la tarjeta EGA el usuario puede definir sus propias paletas.

En el modo de 2 colores (640 X200) el color del pixel se almacena en un sólo bit,si el bit vale 0 el pixel es negro , si vale 1 es blanco. En cambio en el modo de 4 colores (320X200) existen 2 paletas diferentes , y el color que los 2 bits de cada pixel representan varía según la paleta seleccionada. Solo el color 0 de cada paleta puede cambiarse, los otros tres son fijos, las dos paletas se muestran a continuación:

ſ	Pixel		Color Paleta1	Color Paleta 2
	0	0	Negro	Puede Cambiarse
	0	1	Verde	Cyan
	1	0	Rojo	Magenta
	1	1	Café	Blanco

MANEJO DE LA MEMORIA DE VIDEO.

A pesar de que IBM no recomienda el uso directo de la memoria de video, y por ello provee la rutina al BIOS para video, este manejo directo es posible, siempre y cuando se sigan ciertas reglas que se explican a continuación para evitar conflictos.

El uso y codificación en la memoria de video varía según el modo de video que estemos empleando, en los modos 0 al 6 esta memoria ocupa 16 K. En el modo MDA (7) solo se ocupan 4 K. Los modos de texto de ambas tarjetas CGA y MDA necesitan menos memoria que los modos gráficos para almacenar lo que se despliega en una pantalla, pues solo necesita 2 bytes por caracter lo que hace en modo de texto 80 X 25, 2000 caracteres, es decir 4000 bytes. Una pantalla en modo gráfico puede usar desde 16K hasta 32 K. dependiendo del número de colores que se usen. En el modo gráfico de 2 colores (640 X 200) cada pixel usa un bit. En los modos de 4 y 16 colores, cada pixel ocupa 2 ó 4 bits.

Como una pantalla en modo de texto ocupa normalmente 4000 bytes, (2000 bytes en 40 X 25), queda bastante espacio sobrante de nuestra memoria de 16K de la tarjeta CGA. Por ello , podemos dividir esta memoria en cuatro páginas de texto. En los modos de texto del 0 al 3 usamos menos de 16K de memoria. Los médos 0 y 1 usan 2K, los modos 3 y 4 usan 4K la memoria de video se dividirá en 8 y 4 páginas de texto, respectivamente.

En el momento en que una de las páginas se muestra en pantalla, podemos estar actualizando otra que no se esté mostrando. Usando esta técnica podemos construir una imagen mientras se está mostrando otra, y después cambiarlas. El cambiar imágenes de este modo, da la impresión de que éstas se generan instantáneamente.

Esta técnica puede implementarse usando los servicios del BIOS, que permiten escribir caracteres o cadenas en la página que deseamos y después cambier la página activa, es decir, la que está siendo desplegada.

De cualquier forma, podemos escribir directamente en la memoria de video, recordando que en el modo de texto, los bytes pares son los caracteres desplegandos, y los bytes nones son los atributos.

Recordando que la memoria de video para la tarjeta CGA, comienza en el segmento 8800, podemos calcular la posición de cualquier caracter, usando la siguiente formula:

Posición = (pag. * Tamaño _pag) + (No_rengión *Ancho_región *2) + (No_col *2) + cual.

Donde:

Pag. = Número de página en la que queremos escribir tamaño _pág = No de caracteres que caben en la página (80 X 25 ó 40 X25)

No._rengión = rengión en el que queremos escribir ancho_rengión = 80 ó 40

No._col = columna en la que queremos escribir cual = o si es caracter, 1 si es atributo.

En los modos gráficos, la memoria está organizada de una forma diferente; en estos modos la pantalla se divide en 20 líneas, numeradas de 0 a 199, cada línea tiene un número diferente de puntos, dependiendo del modo, 320 ó 640.

La memoria donde se guardan estas líneas se dividen en 'bancos' de líneas, que ocupan localidades contiguas en la memoria. Son dos bancos, el primero en donde se guardan las líneas pares, que se inician en el segmento B800, y el segundo en donde se guardan las líneas nones, y que se inician en el segmento BA00.

UNIDADES DE DISCO

La mayor parte de las computadoras utilizan algún medio magnético para almacenar datos en forma masiva, en el caso de la IBM PC, los medios más comunes son los discos flexibles y el disco duro. La capacidad de almacenamiento entre uno y otro varía bastante, pero su organización y principio de operación es básicamente el mismo: se codifica la información magnéticamente en su superficie en patrones determinados por el software y el hardware usado.

Cuando se introdujo el primer modelo de PC en 1981, usaba disco flexible de doble densidad y de un solo lado, que tenía capacidad de almacenar 160 Kbytes de datos, actualmente el medio más usado son los discos de doble densidad, doble lado, en los que se almacena hasta 360 K bytes de datos. Existen ahora algunos los discos de alta densidad de cpacidades de 1.2Mb ó 1.44 Mb. IBM en sus nuevos modelos PS/2 esta anunciando discos con capacidad de 2.5 Mb.

Las unidades de discos, la versión del sistema operativo que se use determina la capacidad total del disco, pero su estructura es básicamente la misma en todos los casos. Los datos se guardan en el disco en una serie de divisiones concéntricas llamadas pistas (tracks). Cada pista—está a su vez dividida en segmentos más pequeños, llamados sectores. La cantidad de datos que pueden almacenarse en cada lado del disco depende del número de pistas y el tamaño de los sectores en los que—se—encuentre—dividido. La—densidad del disco—que—puede—variar considerablemente—de una unidad a otra: los discos estandar de doble densidad pueden tener 40 pistas de datos, mientras que las de alta densidad de una AT pueden tener hasta 80 pistas.

Para los discos comunes de una PC, la localización de cada pista y el número de lados utilizables están definidos por el hardware de la unidad de disco y por el mismo disco, y no pueden cambiarse. De cualquier forma, el tamaño y el número de los sectores dentro de una pista se controla por software. Por eso los discos de la PC se conocen como de sectores suave (soft sectored). Pues las características de cada sector como son su tamaño y el número de sectores por pista, se ponen al ser formateado el disco. Los discos de 5 ¼ " que se usan en las PCs, pueden tener sectores de 128, 256, 512 ó 1024 bytes. El MS-DOS en todas sus versiones de la 1.0 hasta la 3.3, han usado consistentemente sectores de 512 bytes.

Un disco flexible tiene dos lados que se pueden utilizar. Los discos duros pueden tener uno o más platos en su interior, por ello pueden tener más de 2 lados, por ejemplo, los discos duros de 20 Mbytes, tienen 2 discos en su interior, es decir tienen 4 lados. Sin importar que tipo de disco usemos, los discos del MS-DOS están organizados lógicamente de la misma forma: Los lados, sectores o pistas del disco se identifican numéricamente usando la misma notación, y ciertos sectores se reservan siempre para usos especiales que el DOS se reserva para el control de la información del disco.

Normalmente, los discos flexibles de doble densidad doble lado, están divididos en 2 lados, 40 pistas, 9 sectores por lado, y 512 bytes por sector, lo que nos da una capacidad total de 360 Kbytes. Mientras que los discos de 20 Mbytes, tienen 4 lados, 615 pistas y 17 sectores de 512 bytes por pista, lo que defiene su capacidad total de 20 Mbytes aproximadamente.

Al formatear un disco, lo que se hace es dar esta división en pistas y sectores, pero además, se divide el total de los sectores en cuatro secciones, estas secciones en el orden en que se pueden encontrar en el disco son: El sector de carga, la tabla de localización de archivos (FAT), el directorio y la sección de datos.

El sector de carga es siempre un sector localizado en el primer sector, de la pista 1 del lado 1. Este contiene entre otras cosas un pequeño programa que inicia el proceso de carga del sistema operativo hacia la memoria de la máquina. Todos los discos tieden su sector de carga, aunque no tenga el sistema operativo guardado en ellos.

La tabla de localización de archivos, o FAT, sigue al sector de carga, empezando en el sector 2 de la pista 0 del lado 0. El FAT contiene las estadísticas oficiales de la utilización del espacio del disco. Cada elemento del FAT contiene código específico que indica que sectores del disco se encuentran en uso, que espacio está disponible, y que espacio no puede usarse por estar dañado. Como el FAT se usa para controlar todo el espacio utilizable del disco, se tienen 2 copias de él en el disco, en caso de que alguna de ellas llegue a dañarse.

Las dos copias de FAT pueden usar 4 sectores en los discos flexibles normales, 14 en los discos de alta densidad, 82 en un disco duro de 20 Mbytes, y así hacia arriba, dependiendo del tamaño del disco en uso.

La siguiente sección es el directorio, que se usa como una tabla de contenido, identificando cada archivo del disco en un elemento del directorio, que además del nombre del archivo, contiene la fecha en que se guardó, su tamaño total, su tipo, etc. Uno de los elementos del directorio, indica cual es el primer sector que ocupa el archivo, dejando la localización de el resto de ellos bajo el control del FAT. El tamaño del directorio varía según el disco, en los discos normales de doble lado, ocupa 7 sectores. En un disco duro, la cantidad de sectores necesarios para el directorio varía con el tamaño del disco.

El espacio para datos, que ocupa el resto del disco, se usa para nuestros datos. Los sectores en esta parte se van asignando a cada archivo como vayan siendo necesarios, en unidades llamadas clusters. El tamaño de un cluster varía con el formato del disco, normalmente un cluster son 2 sectores adyacentes, así pues, el espacio más pequeño que puede ocupar un archivo en el disco es de un cluster. En el disco duro de 20 Mbytes, un cluster se compone de 4 sectores.

PUERTO SERIE

El controlador del puerto serie se encuentra en una tarjeta de expansión en la IBM-PC original, aunque ahora en muchas de las compatibles se encuentra ya incluido en la tarjeta principal, en la PC original el puerto puede usarse como un puerto serie RS-232C o como current loop, pero en las máquinas compatibles son muy pocas las que lo permiten, normalmente su funcionamiento es sólo como RS-232C.

Esta tarjeta es totalmente programable, y soporta sólo comunicaciones asíncronas. Agrega y remueve bits de inicio, de paro, y de paridad. Tiene un generador de baud rate que permita la operación en velocidades entre 50 y 9600 bauds.

Es posible utilizar datos de 5,6,7 y 8 bits con 1, 1 ½ ó 2 bits de paro. Tiene un sistema de interrupciones que se maneja por prioridades que controla la transmisión , recepción, errores, el estado de la línea y los datos. Contiene capacidad de diagnóstico que hacen transmisión y recepción interna para prueba de todas las señales (loopback).

El corazón de esta tarjeta es el controlador 8250 originalmente diseñado por Nacional Semiconductors. Las ventajas que ofrece este circuito son las siguientes:

- Reloj de recepción independiente
- Señales para control de modem (CTS, RTS, DSR, DTR, RI, CD)
- Detección de bit de inicio falso
- -Generación y detección de corte de líneas

Todo el protocolo de comunicación es función del microcódigo del sistema, y debe cargarse antes de que la tarjeta opere. Todas las señales y sus respuestas deben manejarse por software. Algunas de las funciones básicas del puerto serie se encuentran en el BIOS, pero por lo general estas funciones no son lo suficientemente buenas para programas de comunicación con manejo de protocolos, por ello es casi siempre necesario el generar nuestras propias rutinas que manejen el puerto serie, sobre todo si se com:enzan a manejar interrupciones o algún protocolo para modem como XModem o Kermít.

Los diferentes modos de operación se seleccionan programando el 8250. Esto se logra seleccionando sus puertos (3F8 a 3FF para COM1 y 2F8 a 2FF para COM2) y escribiendo datos de control en ellos. LOs bits A0,A1, y A2 seleccionan los diferentes registros que definen los modos de operación,

Se provee una línea de interrupción al sistema, esta interrupción es IRQ4 para COM1 e IRQ3 para COM2, esta línea es activo alto. Para poder hacer uso de ellas es necesario programar el registro de control de modem del 8250.

Esta tarjeta provee un interfaz EIA RS-232C en un conector DB-25 (DB-9 en la AT). Además se provee un current loop para ciertos tipos de periféricos, la operación como RS-232 o Current loop puede seleccionarse por medio de un Jumper.

Para el current loop las señales que se usan son:

Pin 18+	Recepción de Datos del Current Loop
Pin 25 -	Regreso de la Recepción del Loop
Pin 9 +	Regreso de la Transmisión del Loop
Pin 11 -	Transmisión de Datos del Current Loop

El interfaz serie RS-232C emplea las siguientes señales de datos y control:

Pin 2	Transmisión de Datos
Pin 3	Recepción de Datos
Pin 4	Request to Send
Pin 5	Clear to Send
Pin 6	Data Set Ready
Pin 7	Tierra de Señal
Pin 8	Carrier Detect
Pin 20	Data Terminal Ready
Pin 21	Ring Indicator

Puerto RS232 (serial)

	Description NC	Pin No			
	Transmitted Data			-	
	Received Data	. 3			
PERIPHERAL	Request to Send	4			5
PERIPHERAL	Clear to Send	5	RS232 PORT		_
	Data Set Ready	(1	1		9
	Signal Ground	7	1		<u> </u>
	Carrier Detect	8]		#
	NC	9		, ·	<u></u>
	NC	10	Ĭ		G
	NC	11	}		亞
	NC	12	1 <u></u>	_ .	밁
	NC	13	1 .		666666666
	NC	14	1 .	,	7
	NC	15	}		ē
	NC	16	1	٠.	Ē
	NC	17	1	ч	ß
	NC	18	1		28
	NC	19	1		
	.Data Terminal Ready		İ	- 4.	4
	NC	21	 		Ñ
. •	Ring Indicator	::	1 ·		ផា
•	NC	2.3	1 .		Ğ
	NC .	24	1 ·		9955
	NC	25	1		

La tarjeta convierte estas señales desde o hacia niveles TTL y EIA. Estas señales se muestran o generan en el circuito controlador de las comunicaciones. Estas señales se pueden sensar desde el software del sistema para determinar el estado del interfaz o del periférico conectado a él.

En la página siguiente, se muestra la disposición de las señales del puerto serie en el conector de la tarjeta.

PUERTO PARALELO

El puerto paralelo de la PC está diseñado específicamente para la conexión de una impresora, pero puede usarse en un momento dado como un puerto paralelo de propósito general, siempre que la aplicación en que se use cumpla con las características de las señales a emplear. Tiene 12 salidas tipo TTL que pueden leerse o escribirse desde el procesador. También tiene 5 entradas para el control del puerto, que también pueden leerse desde el procesador.

Además cualquiera de las entradas puede usarse para generar una interrupción. Esta interrupción se puede habilitar o deshabilitar por software.

Cuando este dispositivo (normalmente es una tarjeta conectada al bus) se usa para conectar una impresora, los datos se colocan en sus líneas correspondientes, y se activa la línea de strobe, para que los tome la impresora. Después se leen la líneas de estado en donde se nos indica cuando podemos escribir el siguiente caracter. Esta tarea de escritura y revisión de líneas de estado se puede efectuar automáticamente usando la interrupción del BIOS para impresora.

Los puertos que usa el puerto paralelo son: del 378 al 37A para LPT1; del 278 al 27A, para LPT2; y de 38C a 38E para el puerto paralelo que se incluye en algunas tarjetas de video, y que normalmente será LPT1, recorriendo los dos anteriores a LPT2 y LPT3 respectivamente. Las señales que el puerto paralelo maneja se muestran en la página posterior.

Interface "Centronics" (paralelo)

25 PIN Connector 36 PIN Connector MN SIGNAL PIN SIGNAL STROBE STROBE DATA 1 2 2 D/ TA 1 DATA 2 3 12 DATA 3 4 1: ... A 3 DATA 4 5 DATA 4 DATA 5 á DATA 5 DATA 6 7 7 DATA 6 DATA 7 8 DATA 7 DATA 8 9 DATA 8 ACK 10 ACK 10 BUSY 11 BUSY 44 PAPER PAPER 12 12 + SELECT 13 + SELECT 13 -AUTO FEED 14 -AUTO FEED 14 -{RROR 32 -ERROR 15 INIT (PRIME) 34 16 -INIT 15-17, 19-30 GND 18-25 GND

60

MODEMS

El modem o modulador/demodulador sirve como una liga de interconexión para un equipo para comunicarse por medio de una línea telefónica o cualquier otro alambrado. Como se muestra en la sig.figura, el modem codifica (modula) los datos binarios que recibe en señales adecuadas para la trasmisión por esos medios.

En otro lado de la línea de comunicación, otro modem convierte (demodula) esos datos digitales de nuevo. En la figura, Rxd₂ (datos recíbido) sería ídentico a el de Txd₁ igual a Txd₂. Esto es, que un modem operando correctamente reproducirá a, su salida lo que el modem transmisor tiene en su entrada. El modem que inicia la conversación que se conoce como el Origen y el que recíbe es la Respuesta.

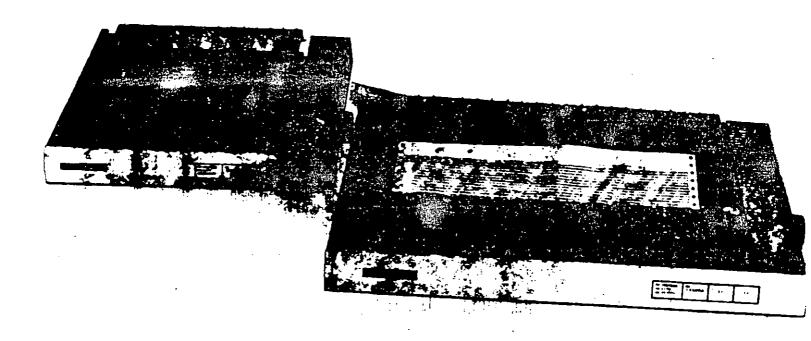
En la figura se muestran modems que pueden funcionar en las dos direcciones simultáneamente, es decir son full-duplex. La operación en ambas direcciones pero en un solo sentido al mismo tiempo se conoce como half-duplex. La comunicación en un solo sentido es operación simplex.

Las velocidades de transmisión de los modems se miden en BPS (bits por segundo). Para modems de baja velocidad, se usa el térrmino Baud Rate como equivalente a BPS. Los modems de baja velocidad son aquellos de 0 a 1200 BPS, los de media velocidad van de 2400 a 9600 BPS, y los de más de 9600 BPS se conocen como de alta velocidad. La mayoría de los modems se clasifican de acuerdo a que estandar de comunicación emplean, ya sea el Bell (en EU) o el CCITT (el resto del mundo). En México para que un modem pueda ser vendido debe cubrir el estandar CCITT. Este estandar indica que velocidad, su operación y la técnica de codificación que emplea el modem.

Existen actualmente gran variedad de modems conectables a una PC, ya sea por medio del puerto serie RS-232 o tarjetas que se conectan al PC-BUS, existen modems en un gran rango de calidades y precios, y que se pliegan a los 2 estándares más usados en el mundo.

DIAGRAMA A BLOQUE DE UN SISTEMA CON MODEMS.

Contando con el software adecuado, una PC puede funcionar como un controlador de un sistema de mediciones realmente complejo, con una gran cantidad de instrumentos conectados a él, y en un momento dado, combinar la conexión a este bus con algún otro método de adquisición de datos para el control de un proceso completo, pues la PC además de monitorear el proceso por medio de los instrumentos conectados al bus, puede procesar la información y dependiendo de los resultados, modificar los parámetros que controlan el proceso.



OTRAS TARJETAS Y SUS FUNCIONES

Existe gran variedad de tarjetas de expansión para IBM-PC y máquinas compatibles, aparte de las que ya hemos mencionado, algunas funciones muy importantes dentro de este mundo de compatibles, cada una de ellas cumple un papel que puede diferir en importancia según el campo en donde sea usada, de estas tarjetas, las que podemos mencionar como las más populares son:

- Tarjetas Multifunción: Estas tarjetas se usan sobre todo en las IBM-PC y en las compatibles más antiguas, en donde por su diseño muy sencillo era necesario el incluir puertos y memoria adicionales. Las tarjetas multifunción más comunes incluyen en sus funciones: Puerto paralelo, puerto para juegos, reloj de tiempo real y memoria. Aunque existen algunas más nuevas que incluyen ya video (generalmente tipo Hércules), y controlador de disco flexible.
- Tarjetas de memoria Expandida: Estas tarjeta se han vuelto muy populares debido a la límitación existente en el MS-DOS, que solo puede manejar hasta 640Kb de memoria. Estas tarjetas, por medio de un manejo de bancos de memoria de diferentes tamaños, han logrado rebasar esta limitación del sistema operativo, al punto que ahora este manejo es un estandar ya muy común (EMS 4.0) y ya gran cantidad de programas dan soporte al manejo de memoria de este modo.
- Tarjetas Multipuerto Serie: Estas tarjetas son cada vez más y más comunes, se utilizan normalmente en AT's o 386's en las cuales se han instalado un sistema operativo como SCO Xenix o Theos, en los cuales se utilizan los puertos serie como conexiones con terminales tontas de bajo costo.
- Gateways y bridges. Estas tarjetas son de uso muy extendido en lugares donde la comunicación es vital. Un Gateway es una tarjeta que permite a una red local de PCs comunicarse con un ambiente completamente diferente, como puede ser una Mini-computadora o un mainframe. Un Bridge o puente es una tarjeta que permite la comunicación entre 2 redes locales de diferente tipo, por ejemplo un Ethernet con un Arc-Net.
- Tarjetas Emuladoras de terminales: Estas tarjetas permiten la conexión de una PC con una computadora de mayor tamaño, como una terminal satélite, dando algunas ventajas sobre las terminales comunes, como son la transferencia de archivos al formato del MS-DOS, y la posibilidad, de que aparte de ser una terminal, poder correr sus propios procesos totalmente independientes de la computadora central, aparte de que generalmente en Maiframes es más barato el tener una PC emulando una terminal, que comprar una terminal especial para ese sistema.

Aparte de las ya mencionadas existe una gran variedad de tarjetas para PCs, como son tarjetas de video de muy alta resolución, interfaces para mouse, digitalizadores, Fax, Telex interfaces con sistemas de comunicación especiales como los sistemas de reservaciones de líneas aéreas y agencias de viajes (SERTEL de televideo) etc, que sería imposible cubrir en un curso de este tipo.

Las Impresoras

Las computadoras están siendo utilizadas cada vez más para el almacenamiento de información, pero de nada silve dicha información sil no es factible imprimirla, o sea, generar una copia de la misma en papel. La manera más idónea para la realización de esta labor es por inedio de una impresora, o sea, de un dispositivo capaz de convertir la información almacenada electrónicamente en un impreso.

Existen básicamente dos grandes grupos de impresoras:

- Las de impacto, o sea, aquellas cuya generación de caracteres depende del golpe que da un martillo o algún otro tipo de elemento contra una cinta de tela entintada, la cual, a su vez, genera los caracteres propiamente; y
- Las de no impacto, o sea, aquellas cuya impresión ya no depende de un mecanismo que golpee una cinta entintada, sino que ellas mismas generan el carácter deseado mediante combinaciones de calor, de chorros de tinta, o de otros elementos

Las impresoras para equipos grandes son esencialmente las de impacto, con cadenas o bandas de caracteres que van pasando periódicamente, digase cada x décimas de segundo, frente a los martillos distribuidos en forma tal que corresponda un martillo por cada posición de impresión de papet. Sin embargo, con la llegada de las computadoras chicas y de las impresoras

de no impacto, el campo de las impresoras ha cambiado notablemente. Es por ello que en este artículo, **Data Processing Digest** presenta un breve análisis acerca de las impresoras para equipos de computación personal.

Partiendo de la división en los dos grandes grupos antes mencionados, de impacto y de no impacto, las computadoras personales cuentan con varios tipos de impresoras, las cuales caen esancialmente en la siguiente ciasificación:

Las impresoras de impacto

Las máquinas de ascribir electrónicas con dispositivos especiales para ser conectadas a una computadora personal. Diches máquinas de escribir suelen contar con una gran variedad de martillos que "pegan" directamente sobre una cinta entintada a modo de dejar su imagen en el papel ubicado exactamente por detrás de la cinta entintada. El mecanismo de martillos cuenta con una letra en cada martillo. Estas máquinas están atenidas a un solo tipo de escritura, dado que cualquier cambio de tipo implica un cambio de todos los martillos correspondientes.

Las máquinas con esferas o con discos de letras (llamadas margaritas por algunos proveedores), similares a las anteriores, pero con una esfera o con un disco intercambiable en la cual están grabadas las letras:

Las máquinas de matriz de puntos que van generando los caracteres a medida que estos van siendo formados en una cabeza con múltiples puntitas, agujas o pins que pueden o no ir saliendo de la cabeza de escritura, dependiendo de las indicaciones dadas por el sistema de cómputo, y de la letra deseada. En estas máquinas, un factor importante es el del número de agujas por cabeza (generalmenta menos de 60). La ventaja principal de estas máquinas es el hecho de que con una misma cabeza permiten generar diversos tipos de impresión en un mismo texto. Además, permiten la generación de gráficas.

Las Impresoras que no son de Impacto

Las impresoras de chorritos de tinta, las cuales operan esencialmente con una matriz similar a la de las máquinas de matriz de puntos, pero con puntas generadoras de chorritos de tinta que, en su conjunto,

la calidad de las letras depende del número de puntos, chorritos de tinta o pins con los que cuenta la cabeza de escritura de la impresora. Desgraciadamente, estas impresoras provocan serios problemas de manchas cuando su mecanismo no está bien ajustado.

Las impresoras tármicas cuya operación está basada en la temperatura de ciertas puntas de la cabeza de escritura para "quemar" el papel en el cual han de escribir.

Las impresoras de rayos laser, o de xerografía, cuya forma de operación es relativamente similar a la de las impresoras de matriz, pero con un número mucho más elevado de puntos lunos 300 en vez de 601, permitiendo obtener una claridad de letras mucho mayor. El control de estas impresoras está basado esencialmente en rayos electromagnéticos extraordinariamente delgados y visibles, llamados laser, que alteran la composición química del material existente sobre un rodillo, el cual, a su vez, transmite la imagen sobre él grabada al papel, en forma similar a lo que ocurre en las copiadoras electrónicas. La ventaja de estas máquinas es que permiten el manejo de cualquier combinación de caracteres o de imágenes en una misma hoja de texto.

¿Qué otras diferencias existen entre impresoras?

Posiblemente uno de los factores que más diferencian a las impresoras de impacto de las de no impacto, aparte, obviamente, de su modo de operación en base a un martillo o no, es la velocidad de operación. Las impresoras de impacto más sofisticadas por ación a velocidades inferiores a las 3,600 líneas por minuto, mientras que las de no impacto han logrado generar textos a un ritmo de 18,000 líneas por minuto, o sea, a velocidades unas cinco veces mayoras.

Independientemente de su forma de operación interna, las impresoras pueden ser clasificadas de otras formas, dependiendo de las características de los textos que permiten obtener.

Entre los factores que permiten diferenciar una impresora de otra, incluso dentro de un mismo tipo, cabe mencionar los siguientes:

La velocidad de impresión, la cual depende mucho de la posibilidad de operar en serie o en paralelo, o sea, recibiendo un carácter a la vez, o una serie de caracteres simultáneamente. También depende de la posibilidad o no de almacenar información en una memoria intermedia

o hultor, y de la capacidad de dicha memoria en caso dado. Finalmente, la velocidad de impresión depende también de la posibilidad de imprimir en un sentido o en dos, o sea, de izquierda a derecha y/o de derecha a izquierda.

La calidad de las letras o tipos, la cual depende del número de puntos, agujas o pins de impresión, del espacio entre ellos, del espacio entre lineas, etc.

Los tipos con los cuales pueden operar para formar letras normales, latinas, o germánicas, y para manejar símbolos especiales tales como acentos, letras particulares (como, por ejemplo, la c francesa con cedilla), o signos matemáticos.

El ancho de la superficie en la qué pueden escribir, eduvalente al ancho del carro de las máquinas de escribir tradicionales.

La forma de alimentar el papel, ya sea en formas continuas, con rollos de papel, sin límite en cuanto al euro de la forma, o con algún alimentador de hojas sueltas li as impresoras para la generación de gráficas generalmente requieren de un movimiento alterno tanto hacia arriba como hacia abajo, lo cual implica un mecanismo especial para controlar los desplazamientos de una misma hoja de papel.

La posibilidad de generar gráficas, líneas, recuadros, etc.

La posibilidad de operar con diversos colores.

¿Cuál es la Mejor impresora?

Resulta muy diffcil determinar cuál es la mejor impresora para un usuario en particular sin conocer el tipo de trabajo que ha de realizar.

Evidentemente, entre más compleja sea la labor a malizar, más sofisticado habrá de ser el equipo a utilizar. Por ejemplo: para una editorial que desee imprimir sus propios textos, la impresora idónea posiblementa sea la Laser, mientras que para un usuario independiente que sólo desee utilizar una impresora para generar cartas para sus amistades, una impresora de impacto quizá le resulte más que suficiente.

Un factor importante a considerar al hablar de impresoras es el del equipo de cómputo con el cual ha de operar. Evidentemente, una computadora chica, de 128 K de memoria, por ejemplo, no puede operar con una impresora de alta calidad como una laser.

simplemente por el hecho de que el sofiware requendo para controlar una impresora laser ocupa por lo menos unas 200 K de memoria, además del espacio necesario para el sistema operativo.

Por otra parte, en el extremo opuesto, el uso de una impresora chica de impacto en un equipo de cómputo con 640 K de memoria posiblemente implique un aprovechamiento inadecuado de las posibilidades de impresión del equipo. Un equipo de cómputo con tal capacidad soporta una impresora de gráficas con varios colores. El usuario que justifique un equipo de esta capacidad probablemente también justifique una impresora más sofisticada.

La elección de una impresora para una finalidad específica depende mucho no sólo del equipo al que ha de estar conectada, sino también del software con el cual ha de operar. Ya son muchos los paquetes en el mercado para el manejo de aplicaciones especiales tales como el manejo de documentos, la elaboración de textos, etc. Dichos paquetes serán motivo de otro di artículo dentro de esta serie de análisis especiales.

Por el momento basta con hablar de las impresoras propiamente, o sea, de los equipos.

¿Cuál es la Mejor Marca?

En el campo de las impresoras para equipos grandes, casi todos los proveedores de equipos de cómputo cuentan con sus propias impresoras. Sin embargo, en el campo de las computadoras personales, los proveedores de equipos parecen no estar tan interesados en crear sus propias impresoras, lo cual ha dado lugar al surgimiento de varios proveedores, en particular de Epson, una de las pocas empresas que ofrecen impresoras de diversos tipos y de diversos modelos para cada necesidad.

¿Quién es EPSON?

No resulta sorprendente observar como una empresa dedicada originalmente al desarrollo de serniconductores y de relojes electrónicos, poco a poco fue ampliando su mercado hasta abarcar el campo de las computadoras y crear una subsidiaria dedicada únicamente al desarrollo de impresoras.

El grupo Seiko Epson, de origen Japonés, surgió en 1982 de la necesidad de diversificar las operaciones de la empresa K. Hattori & Co. Ltd frindada originalmente en 1881. Cabe señalar que esta empresa y sus subsidiarias han dado al mundo muchos productos nuevos, tales in

como los relojes de quarzo en 19**69, las pantallas de** cristal liquido (LCD), las computadoras portátiles en 1981, y las televisiones de bolsillo a color en 19**83.** En la actualidad, el grupo de empresas afiliadas a la K. Hattori & Co. cuenta con más de 10,000 empieados en el mundo entero.

EPSON en México

Con una amplia experiencia en el manejo de dispositivos electrónicos de todo tipo, la Epson ha abierto una gran variedad de empresas en Estados Unidos, en Alemania, en Francia, en Austria, en Taiwan, y en Singapore, pero nunca antes lo había hecho en México, mucho menos en calidad de coinversionista. Es quizá por su amplia cobertura del mercado que dicha empresa está teniendo un éxito inusitado en la fabricación y venta de toda clase de dispositivos electrónicos, en particular en el campo de las impresoras.

Cabe mencionar que en 1964, Epson fue la creadora de la primera impresora digital para controlar los tiempos de las competencias celebradas durante los juegos olímpicos de Tokyo. Esta tecnología fue la base para crear las impresoras de matriz de puntos, haciendo que Epson se convirtiera en el líder en este campo, con más del 28 por ciento del mercado de impresoras simplemente en los Estados Unidos.

Respetuosa de las normas jurídicas mexicanas, la Epson se asoció con el grupo Siga (49 y 51 por ciento de inversión respectivamente) para fabricar en la ciudad de Puebla, en la República Mexicana, algunos de los modelos de impresoras de dicha marca. Esto significa un adeianto muy importante para los países de habla hispana que, hasta hace poco, para abastecerse de equipos de impresión, dependían esencialmente del mercado norteamericano con productos de tecnología vieja y de alto precio.

Los modelos que serán fabricados en México por el momento tienen las siguientes características en común:

- Todos son de matriz de puntos.
- Todos son bidireccionales.
- Todos cuentan con una memoria intermedia o buffer de 8K bytes.

Dichos modelos son los siguientes:

El FX85, con una velocidad de 160 caracteres por segundo, y con posibilidades de graficación de 60 a 240 puntos por pulgada. Esta impresora está hecha para

trabajos rudos, dado que tiene un promedio de horas de operación sin fallas de 4000 horas (más de tres meses de operación ocho horas al día sin fallas). Permite operar con varios tipos de impresión en un mismo equipo.

El FX-286, el más vendido a nivel mundial, con una velocidad de 200 caracteres por segundo. También permite operar con varios tipos de impresión en un mismo equipo, pero con más tipos que la FX85.

El LX-800, con una velocidad de 180 caracteres por segundo. Esta es la impresora más chica de la familia Epson. Es ideal para el usuano que esporádicamente imprime alguna carta.

El EX-1000, con una velocidad de 300 caracteres por segundo, pero con posibilidades de operar a colores. La Ex — 1000 es la primera impresora con un aditamento especial para la lectura de documentos y para el rastreo de imágenes, convirtiendo así las imágenes en señalir digitales. Puede decirse que es el primer equipo en mercado capaz de realizar simultáneamente operacion de lectura y de escritura.

¿Requieren las Impresoras de algún Mantenimiento?

La impresora es probablemente el elemento más problemático de todos los que componen un equipo de cómputo. Es por ello que los usuarios han de establecer las políticas pertinentes de mantenimiento preventivo, tanto para los centros principales de cómputo como para las impresoras de las computadoras personales.

Quizá lo más recomendable sea el establecimiento del control apropiado de un inventario de piezas de repuesto, dígase cintas o carretes de impresión, papel, formas especiales, etc. Incluya en el inventario aquellas piezas que pudieran tener mayor desgaste, dígase, por ejemplo, los rodillos pequeños de hula que sostienen el papel. No olvide contar con los repuestos necesarios para toda la organización, a modo de poder controlar el consumo global y de adquirir lotes de piezas a un precio más económico.

Quizà uno de los factores más importantes para el buen funcionamiento de las impresoras sea la limpiaza. El uso regular de una brocha o de un pincel grileso para limpiar la impresora, obviamente cuando esté apagripuede resultar de mucha utilidad no sólo para supripolvo acumulado, sino también para eliminar los restudel confeti que resulta del paso de los orificios mal hechos de las formas por los pivotes que detienen el papel. También puede resultar conveniente la limpieza de los pivotes y de las cintas especialmente diseñadas contra la estática con un viejo cepillo de dientes.

¿Qué limpieza necesitan?

Al limpiar una impresora, no olvide revisar su cinta de in prosimi, si es que la tiene, o bien, su capeza de inimiesión. El eje por el cual pasan las cabezas de impresión o las cadenas de caracteres, dependiendo del middelo, ha de estar limpio y debidamente lubricado de acuerdo con las instrucciones del proveedor establecidas en el manual correspondiente.

lias bolitas de las impresoras que trabajan con tal respositivo han de ser revisadas periódicamente para sustituirlas en caso de desgaste excesivo de alguna letra en particular.

Las impresoras con una matriz de puntos han de ser las pudas más seguido que las demás, sobre todo cuando el número de puntos es superior a nueve.

Sea cual sea el mecanismo con el que opere su impresora, tenga cuidado de no utilizar disolventes que dicerari dañarla. Mejor utilice un trapo húmedo de agua de caso dado, pero no disolventes.

Uno de los problemas serios con las impresoras de oborros de tinta es la resequedad de la tinta precisamente en los prificios por donde han de salir los chorritos. En un caso así, no ilvide consultar a su proveedor, el cual tiene más experiencia que usted en torno a este tipo de problemas.

La cuestión del mantenimiento y de la limpieza resulta más crítica tratándose de impresoras de rayos lacer. No clvide abrir su impresora y limpiar toda la ruta usual del papel de acuerdo con las instrucciones del manual correspondiente. Tampoco olvide revisar los regilios pertinentes y asegurar que estén debidamente funciados.

¿Es necesario contratar a alguien para el mantenimiento?

La mayoría de las impresoras tienen una garantía determinada, generalmente de varios meses a un año. Sin embargo, la limpieza regular del equipo puede ser más que suficiente para no tener problemas durante mucho tiempo. Lo más importante entonces consiste en iducar a los usuarios de las impresoras y en establecar un calendario regular (dígase diario o cada x días, dependiendo del uso) de labores de limpieza y de revisión del equipo por personal del mismo departamento usuario o del área central de preceso de datos de la empresa, en caso dado. Cualquier otra

opción de mantenimiento le resultará definitivamente más costosa, sobre todo si contrata algún servicio externo.

¿Existe algún Tipo Especial de Impresoras, aparte de las ya mencionadas?

Tomando en cuenta la aplicación para la cual ha de ser utilizada la impresora, existen algunas impresoras especiales, en particular las de códigos de barras.

En 1973 fue adoptada por la industria alimenticia de los Estados Unidos un código de barras para el uso de lectoras automáticas de códigos de barras que permiten actualizar el inventario de productos de las tiendas tan pronto es vendido alguno de ellos. Este hecho llevó a algunos fabricantes de equipos de impresión a crear un sistema especial de generación de barras, el cual opera de acuerdo con las siguientes normas:

- No ha de tener errores (uno al millar como máximo) al generar las barras.
- Cada barra del código ha de tener un espacio adecuado totalmente limpio tanto adelante como atrás de la impresión.
- Cada palabra codificada ha de contar con una zona de ajuste tanto al principio como al final a modo de poder ser lelda an cualquier sentido.
- Cada conjunto de palabras codificadas ha de contar con un mensaje anexo, ya sea arriba, abajo o a un lado del código, para que cualquier persona pueda leer lo que dica el mensaje sin necesidad de conocer el código.
- Las diferencias entre las partes con barras y las partes sin información han de ser suficientemente contrastantes a modo de que las lectoras ópticas puedan distinguirlas claramenta.

Cabe aclarar que cualquiera de las impresoras mencionadas en este artículo puede ser utilizada para la generación de códigos de barras, aunque posiblemente las más utilizadas en la actualidad sean las de rayos laser, esencialmente por la nitidez de la imagen obtenida, y por la alta velocidad de operación. En cualquiera de los casos, la clave para la impresión de mensajes en código de barras está en el uso de los programas pertinentes, varios de los cuales ya están a la venta en el mercado.

Otros perifericos

Otros perifericos

COPROCESADORES MATEMATICOS: ALTA VELOCIDAD A BAJO COSTO

COMO FUNCIONAN?

Si usted usa hojas de calculo, bases de datos, CAD o cualquier otro tipo de aplicaciones cientificas o de inconiccia, su computadora realiza un tipo especial de procesamiento numerico llamado Aritmetica de Punto i lotante. Un procesador estandar tarda mucho tiempo en realizar operaciones de punto flotante. Sinembargo, los coprocesadores matematicos manejan estas operaciones con una velocidad increible. Us por esto que, si su aplicación contiene un alto porcentaje de operaciones de punto flotante, su sistema correra mucho mas rapido, despues de que haya instalado un coprocesador matemático. Toda la aritmetica de punto flotante es realizada por el coprocesador matematico, y la unidad central de procesamiento (del microprocesador) queda libre para manejar el resto de las operaciones. El aumento de productividad que usted obtiene depende del numero de operaciones de punto flotante que realize la aplicación. Por ejemplo, una hoja de calculo aumentara mas su velocidad que un programa de procesamiento de palabras. Y en un programa de CAD se observara un anmento de velocidad aun mayor. Por lo general, usted podra observar los mayores aumentos de velocidad cuando su aplicación involucre grandes cantidades de operaciones de punto flotante.

VELOCIDAD. EL BENEFICIO PRINCIPAL.

Los coprocesadores matematicos littel, aumentan la velocidad de todas las aplicaciones que son escritas para soportarlos. Su programa correra desde un 10% hasta un 500% mas rapido y aun mas de 500% en algunas aplicaciones científicas especializadas. El aumento de velocidad dependera de su software y del tipo de funciones matematicas que realize. En general, entre mas compleja sea la operacion, mayores serañ los beneficios que usted podra observar.

AUMENTO DE EFICIENCIA.

La familia de Coprocesadores Matematicos de Intel son circuitos integrados que dan a su computadora personal un aumento de eficiencia. Ellos hacen que su software corra mas rapido y le permiten a usted realizar su trabajo en menos tiempo. Los coprocesadores son una manera efectiva de obtener una mayor eficiencia de su computadora personal. De hecho, mas de cienpaquetes famosos de software tienen la ventaja de utilizar este mejoramiento. Estos paquetes incluyen hojas de calculo, Bases de Datos, Paquetes de Contabilidad, y una amplia variedad de aplicaciones graficas, cientificas y de ingenieria. Existe un Coprocesador Matematico para cada tipo de microprocesador Intel en

cada computadora personal compatible con IBM. De hecho, cada Petiene un espacio reservado para un Coprocesador Matematico. Esto lo hace muy facil de instalar, solo se requiere insertarlo.

QUIEN NECESITA UN COPROCESADOR?

Casi cualquier usuario puede obtener beneficios de un Coprocesador Matematico en su PC, Por ciemplo, los usuarios de hojas de calculopodran recalcular mas rapido Los usuarios de CAD podran regenerar sus dibujos en un tiempo mucho menor. Y aquellos involuciados en estadistica observaran una gran ganancia de velocidad al calcular desviaciones estandar y regresiones. Los analistas financieros encontraran que pueden realizar estudios que requieran calculos de valor presente neto y de tasas internas de retorno mucho mas rapido. Y para otros usuarios de paquetes financieros, tendran un aumento en la velocidad al calcular el interes compuesto, amortización de prestamos y simulaciones. En pocas palabras, los Coprocesadores Matematicos aumentan la velocidad de mas de cien paquetes de software que cubren una amplia gama de aplicaciones. Consulte el manual de su paquete para saher si usted puede disfrutar de los beneficios de un Coprocesador Matematico, Para obtener una lista completa de software que soportan los Coprocesa Matematicos de pregunte a su distribuidor de confianza o llame a: SENMEX INTER-NACIONAL (91-83) 35-0901.

COMO ESCOGER SU COPROCE-SADOR.

Chando llegue el momento de escoger su coprocesador, usted va a querer comprar aquel que sea mas adecuado para su sistema. Los Coprocesadores Matematicos Intel estan divididos en tres grupos de acuerdo al CPU que soportan:

CPU	Coprocesador	
8088 y 8086	8087	
80286	80287	
80386	80387	

Dentro de estos tres grupos, cada coprocesador esta disponible en diferentes velocidades, designadas por el número posterior al guion. Este número no necesariamente corresponde directamente a la velocidad de la computadora en la cual se instalara.

Coprocesador	Velocidad
8087	
8087-3 u 8087	5MH2
8087-2	8 MHz
8087-L	LOMHE
80287	
80287-6 u 80287	6Mliz
80287-8	8MHz
80287-10	10MHz
80387	
80387-16	IéMilz
~	

NOTA: La velocidad del Coprocesador (el numero posterior al guion) se refiere a la maxima frecuencia a la cual puede ser operado el circuito, no a que tan rapido es el circuito por si solo. Usted siempre podra utilizar un Coprocesador mas rapido en un sistema mas lento, pero no habra ninguna ganancia adicional de velocidad. Para determinar cual circuito es el adecuado para su computadora, revise la documentación del fabricante o llame a SENMEX INTERNACIONAL (91-83) 35-0901. De esta forma usted estara seguro de no gastar mas de lo necesario.

INFORMACION TECNICA.

8087- Para sistemas 8088 y 8086, el 8087 opera a la misma frequencia que el CPU:

- * 8087 de 5 MHz, u 8087-3. Para computadoras estandar de 4.77 MHz, IBM PC, PC/XT y compatibles.
- * 8087-2 de 8MHz. Para sistemas 8088 y 8086 mas rapidos.
- * 8087-1. Sistemas 8088, 8086 y tarjetas turbo corriendo a 10 MHz.

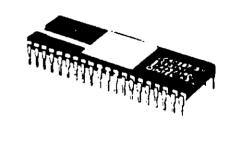
En general, usted puede seleccionar el coprocesador correcto si conoce la velocidad del CPU.

80287- En general, los sistemas 80286 no operan a la misma frecuencia que el CPU. Muchos sistemas, incluyendo la IBM AT y la Vectra (anterior a Octubre de 1987) manejan el coprocesador a dos tercios de la frecuencia del 80286. Observe el siguiente ejemplo:

IBM PC/AT de 8 MHz:

Vel. del Cristal 16 MHz

Vel. del 80286 8 MHz


Vel. del Coprocesador 5.33 MHz

Otros sistemas, incluyendo el Sistema Personal/2 Modelos 50 y 60 de IBM permiten que el 80287 corra exactamente a la misma velocidad que el 80286. En el caso de las

nuevas Vectras ES/8 y ES/12 cualquiera de las dos maneja el coprocesador a 8 MHz y por lo tanto requieren el coprocesador 80287-8. Para determinar la velocidad del Coprocesador para un sistema 80286 específica, consulte el manual de operaciones del sistema, o llamenos al (91-83) 35-0901. El equipo de Soporte Tecnico de Senmex mantiene una lista de muchos sistemas 80286 y su coprocesador correspondiente.

80387. El 80387 se utiliza en la tarjeta InBoard 386 de Intel y en algunos sistemas 80386 incluyendo la IBM PS/2 Modelo 80 y las versiones recientes de la Compaq DeskPro 386.

Para obtener una solucion que acelere su PC, una solucion que sera de bajo costo y que trabaje con mas de cien paquetes famosos de software y una solucion que sea facil y rapida de instalar, considere los Coprocesadores Matematicos de Intel. Llame hoy mismo a su distribuidor de confianza. SENMEX INTER NACIONAL es representante exclusivo en Mexico de INTEL PCEO.

El original de esta publicación fue elaborado utilizando WordStur 2000 + PageMaker y GuadLaser.

Lista de Software que soporta Coprocesadores Matematicos

Software

Desarrollado por:

APLICA	CIONES	GENERALES
~	~ ~ ~ ~ ~	A C 11 C 17 C C A

Paradox FRAMEWORK, dBASE III + Time Line SuperCalc 3, SuperCalc 4 Diagraph Revelation DR Draw, DR Graph

Smart Ver. 2.0 JavelinSymphony, Ret. 1.1 y superior, 1-2-3 Rel. 2.0 y superior Ribase Series 4000, CLOUT

Clipper Enable ABILITY Ansa Software Ashton-Tate

BreakThrough Software Corp. Computer AssociatesInternational Computer Support Corporation Cosmos, Inc. Digital Research Innovative Software Javelin Software Corporation

Lotus Development Corporation

Microrim Nantucket, Inc. The Software Group Xanaro Technologies,inc.

INGENIERIA

AutoCAD, Autoeketch Eureka: The Solver Images-3D CAD MASTER MathCAD 1.1 Design Board 3D, Design Board Professional

RoboCAD PATHFINDER VersaCAD 3-D Graphixx AutoDesk Bortand

Celestial Software Detagraphic Systems **MethSOFT** MEGA CADO, Inc.

Robo Systems Summit CAD Corp. T & W System Inc. Universal Intergraphix Corp.

RUTINAS GRAFICAS Y

DE PROGRAMACION

Graphical Kernel System,

Plotting System

18.4

LENGUAJES DE PROGRAMACION Y SISTEMAS OPERATIVOS

Turbo Pascal, Turbo Basic, Turbo C Pascal/MT + 86, Digital Research C. DR LOGO, Fortran 77, Concurrent PC DOS polyFORTH II FORTRAN 77 TopView, APL, FORTRAN, Pescel,

Professional FORTRAN,PC/IX, Macro Assembler, RDT Resident Debugging Tool PC/Forth

Lattice C Compiler, Version 2.1 Module-2 FORTRAN, Pascal, C, Quick BASIC

RM/FORTRAN APL "PLUS/PC **BetterBASIC** True BASIC VENIX/66

Soriand international

c-systems Digital Research

FORTH, Inc. Genesis MicroSystems IBM

Laboratory Microsystems, Inc. Lettice, Inc.

Logitech Microsoft Ryan McFarlan Corporation

STSC, Inc.

Summit Software Technologies, Inc.

True Besic, Inc.

Unisource Software Corp.

ESTADISTICOS Y ECONOMETRICOS

SPSS/PC Statgraphics SYSTAT PC SAS System

SSPSS Inc. STSC, Inc. SYSTAT, Inc. SAS Institute, Inc.

InBoard, AboveBuard e Intel son marcas registradas de Intel Corporation. IBM XT y PS/2 son marcas registradas de International Business Machine Corporation, impreso an Mexico por Sermex internacional S.A. de C.V. Derechos Reservados. Copyright 1987 Intel Corporation.

MEMORIA EXPANDIDA (EMS), CARACTERISTICAS Y BENEFICIOS.

UN POCO DE HISTORIA...

En 1981, con la introduccion del procesador INTEL 8088, el sistema operativo MS-DOS de Microsoft y la IBM PC, los usuarios de computadoras personales podian realizar grandes tareas con los 640k bytes de memoria direccionable soportados por DOS. Esto es considerando que las anteriores PC's en el mercado no disponian de mas de 64k. En muy poco tiempo, a medida que se desarrollaron aplicaciones mas sofisticadas, 640k de memoria no fueron suficientes. Contrario a lo que muchas personas creen, la limitacion de los 640k de memoria de la primera IBM PC no es una barrera de DOS. Es una limitacion del procesador 8088. El MS-DOS se desarrollo para la arquitectura 8086/8088. Estos procesadores pueden direccionar 1 Megabyte de memoria como maximo (1024k). De estos 1024k, 384k estan reservados para las funciones basicas del sistema y para el video. De aqui que solo 640k bytes de memoria pueden ser utilizados por cl DOS, los datos y las aplicaciones.

EL 80286...

En 1983, Intel desarrollo el 80286, un nuevo procesador que puede direccionar 16 Megabytes de memoria. Esta nueva capacidad permite desarrollar aplicaciones mucho mas solisticadas como hojas de trabajo

de gran complejidad.

Desafortunadamente, MS-DOS es incapaz de poder utilizar esta capacidad de "memoria extendida" ya que fue desarrollado originalmente para el procesador 8086/8088. Mas aun, la arquitectura del 80286 es tan diferente a la del 8086/8088 que solo un sistema operativo completamente nuevo puede utilizar toda su capacidad.

El 80286 puede operar en dos modos diferentes, Modo Real y Modo Protegido. En modo real opera utilizando exactamente el mismo juego de instrucciones basicas de 8086 y por lo tanto tiene las mismas limitaciones de memoria. En modo protegido, el 80286 puede utilizar completamente su capacidad de memoria extendida siempre v cuando el software sea desarrollado para trabajar en este modo. El desarrollo de software para modo protegido es muy complejo y es por eso que practicamente no existe ninguna aplicacion para este modo. Los avances en tecnologia de circuitos integrados son tan grandes que ahora Intel ha desarrollado un nuevo procesador, el 80386, capaz de direccionar hasta 4 Gigabytes de memoria, o sea 256 veces mas de memoria que los 16 Megabytes del

El desarrollo de un nuevo sistema operativo ha sido muy lento y aun cuando muchos usuarios no re-

quieren mas, de 640k de memoria, DOS esta obsoleto en comparacion a los avanzados procesadores Intel. Para disminuir las diferencias tecnologicas entre la capacidad del DOS y el poder de los procesadores, Microsoft esta desarrollando OS/2.

EMS...

Sin embargo, ya existen millones de usuarios que utilizan aplicaciones de DOS y requieren de mas memori las empresas (abricantes de haro ware y software no han esperado ur. nuevo sistema operativo. Existen ya soluciones a las limitaciones de memoria del DOS que "expanden" el area de memoria para trabajar. Lotus, Intel y Microsoft unieron sus fuerzas para desarrollar la especificacion de memoria expandida conocida como LIM EMS, la cual permite que las aplicaciones de software usen memoria arriba del limite de los 640k bytes.

Esto permite a los usuarios de PC's con procesador 8086, 8088, 80286 y 80386 utilizar tarjetas de expansion que permiten accesar mas de 1 Megabyte de memoria RAM.

Existe una gran diferencia entre memoria extendida y memoria expandida. Memoria extendida es como su nombre lo indica, una extension de la cantidad de memoria que el sistema operativo o la aplicación puede direccionar directamente. Por lo contrario, memoria expandida simplemen expande la cantidad de memoria disponible para almacenar programas y datos utilizando una tecnica llamada "intercambio de bancos" (bank

switching). Por ejemplo, al utilizar una hoja de calculo, los datos pueden almacenarse en memoria expandida, al momento que scan requeridos, son "intercambiados" cusi instantaneamente a una dirección de memoria que este dentro del limite de 1 Megabyte del 8086. La version de EMS mas utilizada actualmente es la EMS 3.2 de Lotus/Intel/Microsoft. Esta version usa memoria supuestamente reservada temando 64k de memoria expandida e intercambiando su contenido con un area de 64k disponible dentro de los 384k que se han reservado para el video y funciones del sistema que nunca se utilizan completamente.

El LIM-EMS Expanded-Memory Manager, es un programa que controla el proceso de intercambio de bancos.

Para utilizar LIM-EMS se requieren tres cosas:

- 1) Una PC equipada con una o mas tarjetas de memoria que soporten LIM EMS.
- 2) EI LIM EMS Expanded-Memory

Manager debe cargarse al inicializar el sistema. Este programa se incluye generalmente con las tarjetas de expansion y por lo general es diferente para cada marca y tipo de tarjeta.

3) La aplicacion debe ser desarrollada con la capacidad de utilizar memoria expandida bajo el esquema de intercambio de bancos del LIM EMS.

AVANCES DE EMS...

No estando satisfechos con el estandar LIM EMS 3.2, AST, Quadram y Ashton Tate formaron una alianza para producir la Especificacion de Memoria Expandida Mejorada conocida como AQA EEMS, un estandar que funciona con todos los programas compatibles con LIM EMS 3.2.

Bajo el estandar EEMS, el intercambio de bancos esta restringido solo por el numero de areas (paginas) de 16k bytes disponibles dentro de 1 Megabyte de memoria estandar. LIM EMS 3.2 esta limitado a un maximo de 64k bytes de memoria

intercamblada a un mismo liempo. Ademas, LIM EMS 3.2 cotal restringido a los 384k de memoria reservada v por el contrario, EEMS puede utilizar tanibien el area convencional de 640k bytes de DOS. Recientemente, la alianza Lotus/ Intel/Microsoft introdujo el LIM EMS 4.0 el cual por sus nuevus capacidades resuelve las limitaciones de LIM EMS 3.2 y ademas agrega la habilidad de correr varias anlicaciones a un mismo tiempo (multitareas). Estas capacidades hacen de LIM EMS 4.0 una poderosa solucion que para muchos usuarios es una muy buena alternativa que les evita la necesidad de cambiar a OS/ 2 cuando este disponible. LIM EMS 4.0 permite manejar hasta 32 Megabytes de memoria en un mismo sistema. Ademas, el hecho de que que ya el nuevo Windows 2.0 soporta LIM EMS 4.0 y utiliza la misma interfase de usuario (mismas pantallas y forma se uso) que el OS/ 2 Presentation Manager, hace que para muchos usuarios, los dos ambientes van a ser funcionalmente identicos. Sin embargo, OS/2 ofrecera características mas avanzadas que algunos usuarios van a requerir.

Nota: Como regla general, con un driver de software todas las tarjetas LIM EMS 3.2 se hacen compatibles con LIM EMS 4.0 exceptuando la capacidad multitarea. Las unicas tarjetas que actualmente soportan 100% LIM EMS 4.0 son las disenadas para la linea PS/2 de IBM. Todas las tarjetas de memoria expandida que ofrece Senmex para computadoras 80286 y 80386 pueden configurarse para Xenix y OS/2.

GRAN POTENCIAL DE MER-CADO...

Debido a que las apticaciones desarrolladas para OS/2 se esperan para finales de 1988, el mercado para tarjetas de expansion y paquetes de software que operen bajo LIM EMS 4.0 tiene un gran potencial de

Senmex internacional le ofrece las siguientes tarjetas de expansion LIM EMS de entrega inmediata:

TARJETA

Intel Above Board PC Intel Above Board PS/PC Intel Above Board 286

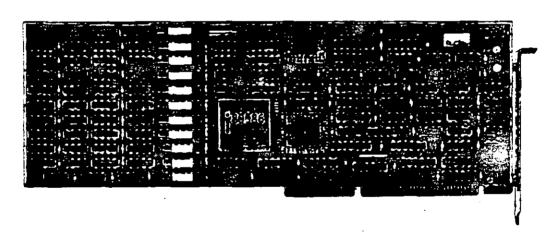
Intel Above Board PS/286

Intel Above Board /2 •

COMPATIBILIDAD

PC/XT y compatibles
PC/XT y compatibles
PC/AT, Vectra ES y compatibles
de 12 Mhz o menos
PC/AT, Vectra ES y compatibles
de 12 Mhz o menos
PS/2 Modelo 50 y 60

* Para IBM PS/2 Modelo 30 user Above Board 296


crecimiento, ya que provee una solucion lo suficientemente poderosa para satisfacer las necesidades de la mayoria de los usuarios en Mexico sin la necesidad de invertir grandea cantidades de dinero en un nuevo sistema operativo y nuevos paquetes de aplicación.

Senmex Internacional es representante en Mexico de Intel Personal Computer Enhancement Operation.

Algunos paquetes de software con soporte EMS:

Lotus
Lotus
MicroPro
Nantucket
Microsoft
Microsoft
Quarterdeck
Symantec
Borland

Lotus 1-2-3 Rel. 2.0
Lotus Symphony
WordStar 2000 + Rel.3
Clipper
Windows 2.0
Windows 386
Desqview
Q & A
Quattro

El Sistema Facsimile en PC's.

Ahora su computadora puede enviar y recibir faxes directamente desde su escritorio proporcionando rapidez, un bajo costo y una forma simple para enviar textos y graficas a traves del mundo.

Una tarjeta fax para PC es el medio mas eficiente para transferir documentos que son originados en PC. Los modems y el correo electronico ofrecen soluciones rapidas y no muy caras cuando usted necesita enviar simples archivos de texto. Pero los modems no son tan comunes y la experiencia requerida para operarlos es aun menos comun. A menos que ambas conexiones del modem esten trabajando bajo el mismo software el envio de graficas via modem es para la mayoria imposible.

Recurrir a servicios de mensajeria es caro y la mayoria de las veces no se gana tiempo. La maquina fax es un medio rapido, economico y sencillo para enviar textos y graficas dentro de la ciudad, a otro estado o bien a otro pais. De acuerdo a los investigadores de mercado, airededor de 2000,000 de faxes estan en uso en el mundo, la mitad de ellos en Japon, donde las maquinas han resuelto el problema de transmitir los complejos caracteres japoneses. Del resto, 600,000 fueron utilizadas por empresas americanas durante los ultimos 12 meses. Las ventas internas en E.U. se estan incrementando, se esperan vender 250,000 en 1988. La popularidad de los faxes ha ido en aumento entre las pequenas empresas, en todo el mundo se ha incrementado el desarrollo de tarjetas fax para las PC. No tione sentido comprar una PC, un scanner, una impresora laser y una tarjeta fax para utilizarla como maquina fax. Si el scanner y la impresora, son parte de su equipo computacional, una tarjeta fax de \$1,000 es una mejor aliernativa de costo-efectividad que una maquina fax. la cual tiene un precio que fluctua entre \$2,000 y \$5,000 US.

COMO FUNCIONA?

Una maquina fax trabaja digitalizando un documento linea por linea (como el barrido de las lineas en el cinescopio de television) y transmite esas lineas por telefono a otra maquina fax, la cual reensambla las lineas en una imagen del documento. El sistema fax

encontro sus primeras aplicaciones en los departamentos de policia y periodicos que necesitaban enviar instantaneamente fotos de archivo o fotos nuevas. Las primeras maquinas fueron tediosas, dificiles de usar y muy costosas (mas de \$10.000). Por el contrario, hov en dia las maquinas fax requieren un poco mas que marcar el telefono e insertar originales en la maquina.

Una tarjeta fax para PC es el medio mas eficiente para transferir documentos, que son originados en formatos texto de PC, fuera del correo electronico de la red, la ausencia de estandares para comunicación asincronica de datos hace de la comunicación vía modem una tarea dificil.

La posibilidad de comunicación entre faxes es particularmente importante para los usuarios de computadoras portatiles (PC's lap-top).

Es sencillo y muy practico para ejecutivos que viajan y personas de ventas o mercadotecnia utilizar una JT-Fax Portatil, para comunicarse directamente con la casa matriz, que con un sistema de correo electronico. JT-Fax Portatil se conecta al puerto serial de cualquier IBM PC o compatible y cuenta con modulo RJ11 para conectar la linea telefonica.

Para mayor informacion pregunte a su distribuidor de confianza o llame a Senmex Internacional (91-83) 35-0901 y 35-4453.

Aun cuando, JT Fax transmite a 4,8(X) bps (bits por segundo), a la mitad de velocidad estandar para fax, el sistema de conversion de formato ASCII a fax, hace a JT Fax tan rapida como las tarjetas de 9600 bps, que son mas caras. Con la transmision 'en el aire', el texto ASCII es convertido a formato fax y transmitido a traves de lineas telefonicas en un solo paso, en contraste con muchas otras tarjetas fax que hacen primero la conversion a formato fax y despues transmiten en dos pasos separados.

Con una PC con microprocesador 8088, trabajando a

4.77MHz toma dos minutos el digitalizar una pagina de 8.1/2 x 11 pulgadas y cerca de 8 minutos el salvar este documento en un archivo de 1.3MB en PC Paintbrush. Convertir el archivo de Paintbrush en un archivo tax de 150K toma 5 minutos. El proceso actual de fax para convertir el documento toma aproximadamente 55 segundos.

Una de las características que pueden ser ventajosas en una tarjeta fax, es que pueda operar en background, es decir, la habilidad de enviar y recibir faxes mientras otra aplicación de software esta en ejecución. Algunas de las tarjetas fax le dan la opción de suspender la operación de alguna aplicación que esta corriendo en su PC si un fax comienza a ser recibido.

Una tarjeta sax para PC no es la mejor opcion para una carga pesada de transmision de documentos via sax. Pero para uso poco frecuente en un sistema Desktop Publishing, una tarjeta sax le da un sentido especial si usted necesita la aprobacion rapida de su cliente de una copia o de un original desde un lugar remoto.

COMO UTILIZARLO?

Para enviar un documento por sistema fax, usted necesita decirle al sistema que datos va a enviar, a donde enviarlos y cuando enviarlos. Donde y cuando, es sencillo. Donde, es el numero telefonico de la maquina fax receptora o la PC equipada con una tarjeta fax; usted simplemente escriba en la pantalia o seleccionelo dei archivo que contiene el directorio telefonico. Cuando, son el dia y la hora. La parte dificil es que enviar. Para transmitir una foto, un sistema fax envia senales representando una linea de pixels en una pagina a la PC equipada con tarjeta fax o a una maquina fax. Cada pixel es un 'ON' o un 'OFF', y lineas sucesivas de estos puntos hacen el modelo de una pagina, como los puntos en la pantalia de la computadora.

LA TECNOLOGIA DEL FAX

Usted puede obtener una comunicacion instantanea del fax con cualquier sistema del Grupo III facsimile o con un equipo PC. Las tarjetas fax, como los modems, tienen dos entradas para el telefono, una para la linea del sistema y otra para el telefono actual. La conexion de las lineas permite que la unidad del fax envie los documentos y conteste las llamadas para recibirlos. El telefono comparte la linea con la tarjeta fax, puede utilizarla para hacer llamadas normales cuando usted no esta usando la PC como una maquina fax. No importa en que clase de PC usted haya instalado la tarjeta fax, usted necesitara una tarjeta de graficas, monitor (CGA, EGA o Hercules) y de 256K hasta

La diferencia mas grande en cuanto a tarjetas fax esta en el software.

640K RAM dependiendo del software que este utilizando. Todos tienen un RAM que espera las llamadas por fax, mientras usted utiliza su PC para otras tareas. Puede aimacenar los documentos recibidos en un disco en formato fax comprimido y este envia los documentos a la impresora, o bien los inhibe en la pantalla. Todos los sistemas fax mantienen grandes archivos mostrando que se envio y recibio y cuando se llevo a cabo. Con JT Fax usted puede transmitir en cualquier momento o arreglar la transmision para que esta se realice durante la noche, debido la tarifa telefonica es mas barata, y usted no tiene que estar presente ya que JT-Fax lo realiza automaticamente. Si el destino al cual se dirige se encuentra ocupado, sigue intentando hasta que tenga exito. Para mayor informacion pregunte a su distribuidor de confianza o llame a Senmex Internacional (91-83) 35-0901 y 35-4453.

ESTANDARES.

El fax nacio a mediados de los 60's cuando un comite europeo de estandares conocido como CCITT (Comite Consultatif International Telephonique et Telegraphique), desarrollo un estandar para transmision de datos por sistema facsimile llamado Grupo I. Maquinas basadas en el estandar del Grupo I pueden transmitir una pagina completa en seis minutos.

En 1976 las maquinas de Grupo II disminuyeron el tiempo de transmision a tres minutos.

El Grupo III fue introducido en 1980 y es ahora el estandar mas popular. Para 1986, la población de maquinas fax del Grupo III se habia incrementado a medio millon.

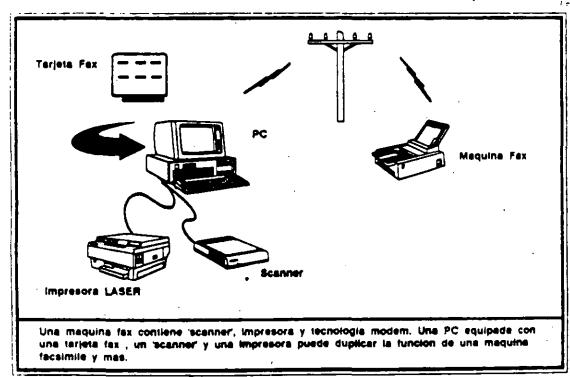
Los sistemas PC-Fax unen el poder de su PC con el poder del estandar Grupo III. Este estandar ofrece una resolucion de 200 dpi (dots per inch) horizontalmente y entre 100 y 200 dpi verticalmente. El tiempo de transmision por pagina fluctua entre 30 y 60 segundos dependiendo si las lineas telefonicas pueden manejar 9.600 bits por segundo (bps). La densidad de imagen comienza a ser transmitida en alta o baja resolucion, dependiendo de lo que haya seleccionado la persona que envia.

entro estandar. Grupo IV, sue establecido en 1984 y provec una resolución de 400 dpi, pero requiere lineas digitales de alta velocidad.

lel Grupo I esta basado en tecnología analoga y los Grupos II y III incluyen transmision digital. La tecnología del Grupo III es completamente sincronica y compatible con cualquier linea telefonica en el mundo.

EL HARDWARE. La instalación es directa.

La tarjeta se inserta dentro de un slot, y se conecta a la linea telefonica atraves de un modulo RJ11 estandar. Utilizar una PC como una maquina fax no significa que este libre de costos. En el presente un sistema fax, esta compuesto por cuatro partes esenciales.


- Un scanner que convierte las imagenes en senales digitales.
- Un modem de nita velocidad que convierte los senales digitales en senales analogicas que son compatibles con las de red telefonica.
- Un modem, al final de la otra linea convierte las senales analogicas a digitales.
- Por ultimo, una impresora que reproduce los originales de la senal digital en papel.

La interfase de la PC es una conexion entre el puerto serial y un sistema fascimile el cual permite que la PC use el fax para escribir y/o imprimir, digitalizar u otras capacidades, las cuales pueden convertirse en sistemas de comunicacion grafica, crear, administrar, enviar, recibir, almacenar, exhibir e imprimir dibujos complejos, documentos en textos o patrones digitalizados.

La maquina receptora imprime los datos, y alguien, no importando que tan lejos se encuentre de quien lo envio, tiene una copia del documento en cuestion de minutos.

EL SOFTWARE.

La diferencia mas grande en cuanto a tarjetas fax esta en el diseno del software. Debido a la complejidad del proceso fax, el software puede ser dificil de utilizar si esta en Modo de Comandos. Por esta razon, asegurese de que las tarjetas fax incluyan programas con Interfase de Menu. Aun cuando gran cantidad de software permite funciones basicas de graficas, tales funciones son mejor ejecutadas por un programa de graficas. El software del fax debe permitir convertir imagenes tomadas de un scanner o creadas por PC Paintbrush. Publisher's Paintbrush o Dr. Halo II en formato fax e imagenes fax a los formatos anteriormente mencionados. El software debe ser capaz de trabajar con programas de reconocimiento de caracteres opticos, así usted puede

convertir un codigo de barras o caracteres opticos en caracteres ASCII para su edición en un procesador de palabras. El software que seleccione debe de proveer:

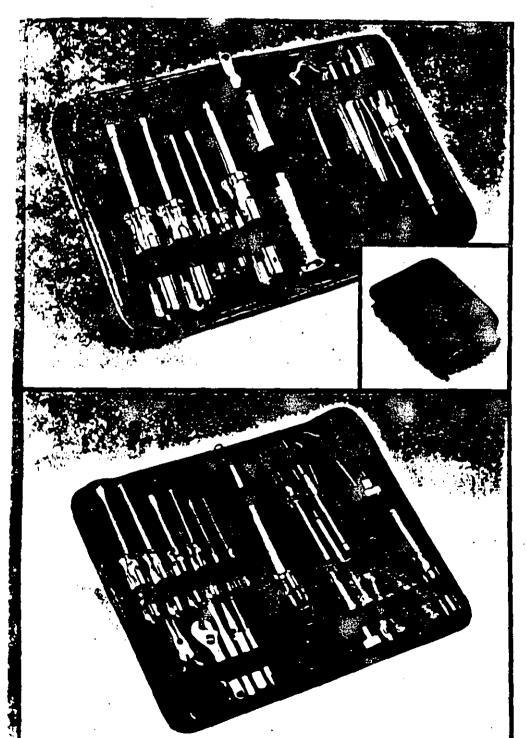
- Facil recepcion y envio de documentos.
- Transmision y recepcion de mensajes en tiempos específicos.
- Ruteo automatico de una transmision sencilla.
- Transmision de diferentes documentos a diferentes lugares.
- Impresion automatica de hora, fecha v pagina.
- Almacenamiento de los numeros telefonicos mas utilizados.
- Conversion de archivos de procesadores de palabras a formato fax.
- Impresion de los documentos.

- Despliegue de los documentos en la pantalla.

Lo que hace que un sistema de fax sea mejor que otro, es el software para convertir archivos de varios formatos, a formatos estandares de fax para la transmision. Todos los sistemas pueden convertir y enviar archivos ASCII en cuestion de minutos al equipo fax en cualquier parte del mundo. Los formatos que el sistema fax de la PC puede ajustar y la forma de como prepara, exhibe, edita, recibe y almacena los documentos, son los factores mas importantes a considerar cuando usted realiza una decision de compra.

Las tarjetas JT Fax (tarjeta corta, portatil y larga de 9600 bps) cumplen con todos los requisitos de software anteriormente mencionados. Para mayor informacion llame hoy mismo a su distribuidor de confianza. Senmex Internacional es representante exclusivo en Mexico de Quadram Corporation.

" El precio y su facil instalacion, sin mencionar la finisima interfase con el usuario y la calidad de salida que produce, hacen de JT Fax una gran compra."


Bruce Brown.
PC Magazine Junio 28,1988

JUEGO BASICO DE HERRAMIENTAS

Juego de herramienta

C TOOLKITS

The perfect office molkits, especially designed for maintenance and modification of computers, printers and peripherals. Both kits contain high quality demagnetized tools, individually secured inside padded black vinyl cases.

PC TOOLKIT 1 For microcomputers

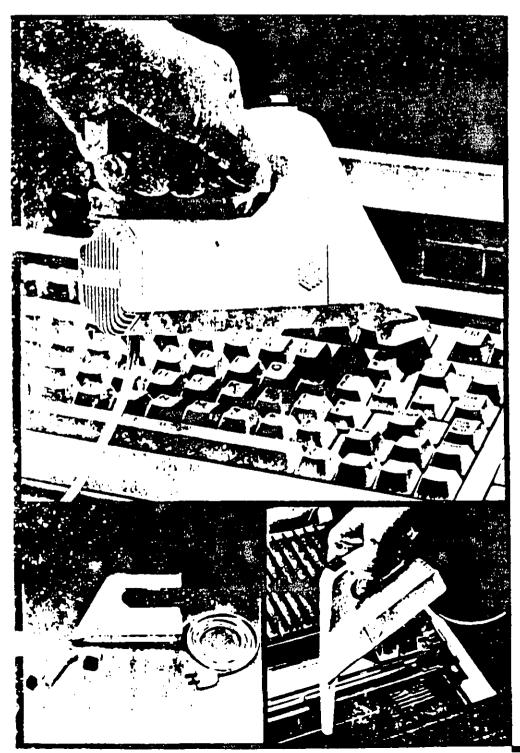
Our "entry level" toolkit contains 10 roots:

- 46" flat screwdriver,
- 14" (#0) phillips screwdriver reversible Yin" flat/Yin" (#1) phillips screwdriver
- Yea" nut driver
- # Vi* nut driver
- reversible T-10/1-15 torx driver
- tweezer/pincher
- 5 prong parts retriever.
- IC inserter/extractor.
- spare parts tube
- black vinyl zipper case.

Model # 120

PC TOOLKIT 2 For micro and minicomputers

Our "power user" toolkit contains 20 tools:


- soldering iron
- spider =
- ■'8" wire cutter/stripper
- needlenose pliers
- 4° adjustable wrench
- 'k' flat screwdriver
- Yea" flat screwdriver
- 44° flat screwdriver
- 16" (#0) phillips screwdriver
- "ha" (#1) phillips screwdriver
- "." (#2) phillips screwdriver
- Yes nut driver
- 4" nut driver
- reversible T-10/1-15 forx driver
- tweezer/pincher.
- s clamping tweezer (hemosiat)
- 3 prong parts retriever
- IC inserter (patented)
- KC extractor
- spare parts tube.
- black vinyl zipper case

Mixici #425

Sistema de limpieza por aspirado

THE SYSTEM SWEEPER

PC/Printer Vacuum

SYSTEM SWEEPER

Stop destructive dust! Protect your keyboard, printer and other computer components with this compact, powerful vacuum.

Compact—small size and multiple attachments let you reach those hard-to-clean areas.

Powerful—110-volt power (not batteries) makes dirt and dust disappear. In vacuum tests. The System Sweeper was approximately four times more powerful than competing battery-operated PC vacuums.

The System Sweeper comes with an extra-long 10 foot power cord and these attachments:

- 1/2" wide brush for general use.
- 21/2° long nozzle for tight spaces.
- Small brush for nozzle end.
- Two filters (not shown in photo).

Model #440

MANTENIMIENTO PREVENTIVO Y CORRECTIVO BASICO

Hardware Maintenance Service

Hardware Maintenance Service

*ڍ*ڙ .

Revised Edition (March 1986)

The following paragraph does not apply to the United Kingdom or any country where such providing are inconsistent with local law. INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and programs), programming, or services that are not announced in your country. Such references or information must not be construed to mean that IBM intends to announce such IBM products, programming, or services in your country.

Products are not stocked at the address below. Requests for copies of this publication and for technical information about IBM Personal Computer products should be made to your authorized IBM Personal Computer dealer, IBM Product Center, or your IBM Marketing Representative.

The following paragraph applies only to the United States and Paarto Rico: A Reader's Comment Form is provided at the back of this publication. If the form has been removed, address comments to: IBM Corporation, Personal Computer, P.O. Box 1328-C, Boca Raton, Florida 33429-1328. IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligations whatever.

© Copyright International Business Machines Corporation 1981, 1986

Federal Communications Commission Radio Frequency Interference Statement

Warning: The equipment described herein has been certified to comply with the limits for a Class B computing device, pursuant to Subpart J of Part 15 of the FCC rules. Only peripherals (computer input/output devices, terminals printers, etc.) certified to comply with the Class B limits may be attached to the computer. Operation with non-certified peripherals is likely to result in interference to radio and TV reception. If peripherals not offered by IBM are used with the equipment, it is suggested to use shielded grounded cables with in-line filters if necessary.

CAUTION

The products described herein are equipped with a grounded plug for the user's safety. It is to be used in conjunction with a properly grounded receptacle to avoid electrical shock.

Safety Inspection Guide

The intent of this inspection guide is to assist you in identifying potentially unsafe conditions on these products. Each machine, as it was designed and built, had required safety items installed to protect users and service personnel from injury. This guide addresses only those items. However, good judgment should be used to identify potential safety hazards not covered by this inspection guide.

If any unsafe conditions are present, a determination must be made on how serious the apparent hazard could be and whether you can continue without first correcting the problem.

Consider these conditions and the safety hazards they present:

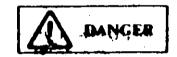
- Electrical hazards, especially primary power: primary voltage on the frame can cause serious or fatal electrical shock
- Explosive hazards, a damaged CRT face or bulging capacitor can cause serious injury.

 Mechanical hazards, loose or missing hardware can cause serious injury.

This safety inspection guide consists of a series of steps presented in a checklist. Begin the checks with the power off and the power cord removed from the electrical outlet.

We recommend all non-IBM devices and attachments be removed from the unit before you conduct the safety inspection.

Reference Literature:


iv

- · Guide to Operations manual.
- · Any applicable safety publications.
- Check exterior covers for damage (loose, broken, or sharp edges).
- 2. Power off the system. Disconnect the power cord from the electrical outlet.
- 3. Check the power cord for the following:
 - a. A third-wire ground connector in good condition. Use a meter to measure third-wire ground continuity for 0.1 ohm or less between the external ground pin and the frame ground.
 - b. The cord set should be the appropriate molded type as specified in the parts catalog of this manual.
 - c. Insulation must not be frayed or worn.
- 4. Remove the back panel from the system unit (if applicable).
- 5. Remove the cover mounting screws, and remove the cover.
- Check for any obvious non-IBM alterations. Use good judgement as to the safety of any non-IBM alterations.
- Check inside the unit for any obvious unsafe conditions, such as: metal filings, contamination, water or other liquids, or signs of fire or smoke damage.
- 8. Check for worn, frayed, or pinched cables. Ensure the voltage ' "ified on the voltage tag, or switch position (back

panel of the machine) matches the voltage of the power receptacle. If in doubt, verify the voltage at the power receptacle.

- 9. Examine the power supply and verify the following:
 - a. Nonremovable fasteners in the power-supply cover have not been removed or tampered with.
 - b. The grommet is installed where the internal power cables come through the frame of the power supply.
- 10. Check for the following labels on all systems:
 - "Caution: Hazardous Area. Do Not Remove This Cover-Trained Service People Only. No Serviceable Components Inside"

0

- · Hazardous voltage inside. Do not open.
- 11. In systems using a battery, check for the following labels:
 - "BATTERY WARNING: Do not dispose of battery unit in fire or water. See instruction for disposal in the battery installation instructions."

Of

- Replace only with P/N XXXXXXX. Use of a different battery could result in ignition or explosion of battery.
 Order replacement from IBM authorized dealer.
- 12. Visually check the condition of the battery (if applicable) and ensure the battery has a safety hazard label attached.
- 13. Machines manufactured May 1986 or later, weighing in excess of 18 Kg. (41.8 lbs), must be labeled with the weight of the system unit.

How to Use this Maintenance Library

This Hardware Maintenance library consists of three major diagnostic tools: a two-part set of diagnostic manuals and Advanced Diagnostics diskettes.

The Hardware Maintenance Reference manual describes diagnostic procedures and their use, field replaceable unit (FRU) removal and replacement procedures, and provides general information about the systems. Once the reader has become familiar with its content, the Hardware Maintenance Reference manual is no longer required on each service call. It can be kept in a convenient place and used as needed.

The Hardware Maintenance Service manual contains all necessary information to diagnose a failing system. Maintenance analysis procedures (MAPs), jumper positions, switch settings, and the parts catalog are in this manual.

Additional options may require updates to the manuals. The Hardware Maintenance Reference manual provides an area in the back of the manual to file the updates. Each section of the Hardware Maintenance Service manual (with the exception of the MAPs) has a designated update area. The MAPs are sequenced by number and can be updated accordingly.

The Advanced Diagnostics diskette is designed to be used with the MAPs to:

- Test each area of the system
- Isolate problems to specific areas of the system through the use of error codes
- · Verify correct installation and operation of the system.

Other functions of the Advanced Diagnostics diskette are described in the *Hardware Maintenance Reference* manual.

Preface

This manual provides the information needed to diagnose and repair IBM Personal Computer products. Readers should have received training on IBM Personal Computer products and be familiar with the Triplett Model 310 Multimeter' or equivalent.

The manual is divided into two major categories; system specific information and Personal Computer family diagnostic being the computer of the

The system specific information is identified by the analysis and organized as follows:

"START" is the entry point for all diagnostic procedures.

"JUMPERS AND SWITCH SETTINGS" contains jumper positions and switch settings for the system unit and supported options.

"PARTS CATALOG" contains illustrations and part numbers of field replaceable units (FRUs).

Step-by-step instructions to isolate failing FRUs are located in the "DIAGNOSTIC MAPs" section.

Related repair information can be found in the Hardware Maintenance Reference manual. Operating instructions are in the Guide to Operations manual. Detailed hardware and interface information is in the Technical Reference manual.

The term "Reference manual" as used in this manual, refers to the Hardware Maintenance Reference manual.

Manufactured by the Triplett Corporation, Bluffton, Ohio 45812

START - PC, XT, and Portable PC

Place the hard-tab page labeled "START - PC, XT, and Portable PC" in place of this page, then discard this page.

MAP 0000: Start (PC, XT, Portable PC)

This is the entry point for maintenance analysis procedures (MAPs). The MAPs will help you determine the failing field replaceable unit (FRU).

The Advanced Diagnostics program is intended to test only IBM products. Non-IBM products, prototype cards, and modified options can give false errors and invalid system responses.

All voltages in the MAPs are positive unless otherwise specified.

001

Before you begin:

- 1. Power off the system.
- 2. Ensure all connectors are installed correctly.
- 3. Ensure all jumpers and switches are set correctly

Note: Ensure the Portable Personal Computer 115/230 Vac selector switch is set for the voltage available at the outlet.

- Insert the Advanced Diagnostics diskette into drive A.
- Power on the system.

IS THE POWER SUPPLY FAN RUNNING?

Yes No

002

Go to Step 045 in this MAP.

003

Listen carefully for any audio responses during the power-onself test (POST).

DID YOU HEAR ONE SHORT BEEP AT THE END OF THE POST?

Yes No

(Step 004 continues)

01. Go to Step 006 in this MAP. 005 Go to Step. 010 in this MAP. 006 (From Step 004 in this MAP) DID THE MESSAGE (RESUME = "F1" KEY) APPEAR ON THE SCREEN? Yes No 007 Go to Step 052 in this MAP. Make a note of any error messages on the screen. Press the FI key to continue. DID THE MESSAGE (RESUME = "FI" KEY) GO AWAY WHEN THE FI KEY WAS PRESSED? Yes No Go to "MAP 0300: Keyboard Start." (From Step 005 in this MAP) DOES THE ADVANCED DIAGNOSTICS MENU APPEAR? Yes No 011 Go to Step 053 in this MAP. Select 0 (SYSTEM CHECKOUT). **Note:** Depending upon the options installed in the system, questions about attached devices may appear

on the screen. Press V or N as required, then Enter.

012 (continued) DOES THE INSTALLED DIVICES MENU APPLAR? 013 Go to Step 037 in this MAP 014 Compare the list to the options installed oxide the system Note: The Installed Devices list displays only those devices supported by this manual. If a device is missing from the fist and is not supported by this manual, press Y (IS THE INSTALLED DEVICES LIST CORRECT?) then Enter to continue the diagnostic tests. Go to Step 025 in this MAP. DOES THE INSTALLED DEVICES LIST CO. A. CTLY **IDENTIFY THE DEVICES INSTALLED INSIDE THE** SYSTEM? Yes No 015 Go to Step 017 in this MAP. 016 Go to Step 025 in this MAP. 017 (From Step 015 in this MAP) Follow the instructions on the screen and attempt to correct the Installed Devices list. Note: A 199 error indicates you answered "No" to the question about the Installed Devices list. Disregard the effor. COULD YOU CORRECT THE INSTALLED DEVICES LIST? No Yes

(Step 018 continues)

(Step 012 continues)

018

Go to Step 020 in this MAP.

019

Go to Step 025 in this MAP.

(From Step 018 in this MAP)
IS THE OPTION MISSING FROM THE INSTALLED DEVICES LIST?

Yes No

Press Y (IS THE INSTALLED DEVICES LIST CORRECT?) then Enter to continue the diagnostic tests. Go to Step 025 in this MAP.

622

 Make sure all switches and jumpers are set correctly for the missing option. Be sure to check the system board switches as well as the option's switches and jumper positions.

ARE THE SWITCHES AND JUMPERS SET CORRECTLY?
Yes No

023

Reset any incorrect jumper or switch settings. Go to Step 001 in this MAP to verify system operation.

024

Go to the appropriate MAP for the missing device.

Note: If you are unable to find the MAP that corresponds to the device, you have an IBM device with its own service manual or a device not supported by IBM diagnostic tests.

025

(From Steps 014, 016, 019, and 021 in this MAP)

 Follow the instructions on the screen to run the tests on all devices. Use the (RUN TESTS MULTIPLE TIMES) option

DID YOU RECEIVE AN ERROR MESSAGE?

Yes No

Go to Step 028 in this MAP.

027

Go to the MAP indicated by the error code. For example, if you receive the error code 7XX, go to "MAP 0700: Math. Coprocessor."

Note: If you are unable to find the MAP that corresponds to your error code, you have an IBM device with its own service manual or a device not supported by IBM diagnostic tests.

028

(From Step 026 in this MAP)

DID THE SYSTEM CHECKOUT MENU API'EAR AT THE END OF TESTING?

Yes No

Go to "MAP 0020: Power Start."

030

DID YOU NOTICE ANY FAILURE SYMPTOMS?

Yes No

031

Go to Step 033 in this MAP.

032

Go to Step 053 in this MAP.

033 (From Step 031 in this MAP) DID THE CUSTOMER PROVIDE A SYMPTOM? 034 Go to Step 036 in this MAP. 035

Go to the MAP for the suspected failing device.

036

(From Step 034 in this MAP)

The Advanced Diagnostic tests have finished without detecting an error.

- If you are still experiencing a problem:
 - Check all switch settings.
 - Check all jumper positions.
 - Check all cables and connectors for proper installation.
 - Run the Advanced Diagnostic tests on all devices. Use the (RUN TESTS ONE TIME) option. If you receive an error, go to the MAP indicated by by the error code. For example, if you receive the error code 7XX, go to "MAP 0700: Math Coprocessor."
- If you are experiencing a problem with a device not supported by this manual, refer to that device's service manual for special testing instructions.
- If you suspect an intermittent problem, start an error log. If you need instructions, refer to the Reference manual.

037 (From Step 013 in this MAP) DID YOU RECEIVE AN ERROR MESSAGE INDICATING A **DISKETTE READ ERROR?** Yes No 038 Go to Step 040 in this MAP Go to "MAP 0600: Diskette Drive Start '

(From Step 038 in this MAP) IS A MATH COPROCESSOR INSTALLED IN THE SYSTEM Go to "MAP 0300: Keyboard Start,"

- Power off the system and remove the math coprocessor.
- Power on the system.
- Select 0 (SYSTEM CHECKOUT).

DOES THE INSTALLED DEVICES MENU APPEAR?

Yes No

Reinstall the math coprocessor, then go to "MAP 0300: Keyboard Start."

Replace the math coprocessor and the 8088 processor. If that does not correct the problem, replace the system board.

045 (From Step 002 in this MAP) IS THE POWER CORD PLUGGED INTO A FUNCTIONING, PROPERLY GROUNDED ELECTRICAL OUTLET?

Yes No

- Attach the system to a functioning, properly grounded electrical outlet. Return to Step 001 in this MAP to verify system operation.

047

- Power off the system.
- Disconnect the power cord from the electrical outlet then from the system unit.
- Check the system unit power cord for continuity.

DOES THE POWER CORD HAVE CONTINUITY?

Yes No

041

Replace the power cord.

041

- Reconnect the power cord.
- Power on the system.
- Check for a voltage of 2.4 to 5.2 Vdc between pins 1 and 5 (ground) at the system board power supply connector, Figure 1.

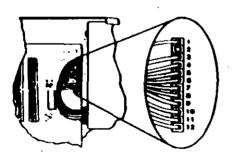


Figure 1. System Board Power Connecters

052

(From Step 007 in this MAP)
Refer to the following figure and go to the MAP indicated or take the action described.

Note: If you received an error message and incorrect audio response, use the error message as the POST Error Symptom.

POST Error Symptom:	Action:
No Brep and	
Blank Display	MAP 0020: Power Start
Unreadable Display	MAP 0020 Power Start
Blinking Cursor	MAP 0020. Power Start
Parity Check Message	MAP 0200 Memory Start
1XX Error	
Machine Functioning	•
Properly	MAP 0020: Power Start
1 Long and 1 Short Beep	Replace System Board
1 Long and 2 Short Beeps	Go to Step 054 in this MAP
1 Long and 3 Short Beeps	Go to Step 054 in this MAP
2 Short Beeps and.	
Blank or Unreadable	•
Display	Go to Step 054 in this MAP
Distorted Image on	
Display	Go to Step 054 in this MAP
TXX Error	MAP 0100 System Board Start
XXXXX XX 201 Error	MAP 0200 Memory Start
XXXX 501 Enot	MAP 0200 Memory Start
301 Error	MAP 0300 Keyboard Start
XX301 Error	MAF 0300 Keyboard Start
601 Error	MAP 0600 Diskelle Drive Start.
17XX Error	MAP 1700 Fixed Disk Drive Star
30XX Error	MAP 3000 PC Network
31XX Error	MAP 3100 All PC Network
C8000 ROM Error	Replace Fixed Disk Drive Adapte
CC000 ROM Error	MAP 3000 PC Nelwork
ROM Error	Replace System Board
FXXXX ROM Error	Replace System Board
Continuous Beep	MAP 0020 Power Start
Repeating Short Beeps	MAP 0020 Power Start
Any Errors Not Shown Above	Go In Step 062 in this MAP

Figure 2. POST Errors

053

(From Steps 011 and 032 in this MAP)
Refer to the following figure and go to the MAP indicated or take
the action described:

Note: If you received an error message and incorrect audio response, use the error message as the symptom.

Symptom:	Action.		
Incorrect Memory Size Displayed	MAP 0200 Memory Start		
Incorrect Colors on Display	Go to Step 054 in this MAP		
No High Intensity on Display	Go to Step 954 in this £4645		
Missing Broken or Incorrect Characters on Display	Go to Step 954 in this MAP		
Distorted Image on Display	Go to Step 054 in tros MAP		
Blank Display	Go to Step 054 in this MAP		
Unreadable Display	Go to Step 054 in this MAP		
Flashing Cursor Only	Go to Step 057 in this MAP		
BASIC Screen Appears	MAP 0600 Diskette Drive Sta		
Loads Program from Fixed Disk	MAP 0600 Dishette Drive Stare		
Disk Boot Failure	MAP 0600 Diskette Disse Sta		
Loads Program from Remote Station	MAP 0600 Diskette Drive Start		
PARITY CHECK Error	MAP 0200 Memory Start		
Keyboard Problem	MAP 0300 Keyboard Start		
Cannot Finish Diagnostic Tests	MAP 0020 Power Start		
Printer Problems	Refer to the Service Mangai for the Printer		
Network Problems	Refer to the Service ktynual for the Network		

Figure 3. Failure Symptoms

```
054
(From Steps 052 and 053 in this MAP)
IS AN ENHANCED GRAPHICS ADAPTER INSTALLED?
Yes No
     055
     Go to the MAP for the failing display adapter
Go to "MAP 2400: Enhanced Graphics Adapter."
057
(From Step 053 in this MAP)
IS A MATH COPROCESSOR INSTALLED?
Yes No
     058
     Go to "MAP 0600: Diskette Drive Start "
   Power off the system.
   Remove the math coprocessor from the system board.
- Power on the system.
DID THE FAILING SYMPTOM REMAIN?
Yes No
      Replace the math coprocessor and the 8088 processor.
Reinstall the math coprocessor, then go to "MAP 0600. Diskette
Drive Start."
```

Note: If you are unable to find the MAP that corresponds to your error code, you have an IBM device with its own service manual or a device not supported by IBM diagnostic tests.

Jumpers and Switch Settings

Place the hard-tab page labeled "Jumpers and Switch Settings" in place of this page, then discard this page.

JUMPERS AND SWITCH SETTINGS

Option Compatibility	3
BIOS ROM Identification	3
Using the Switch Charts	4
System Board (Diskette Drives, Displays, Coprocessor, a	
POST Loop)	
System Board (Memory)	6
Memory Adapter Switch Sets	. 11
Extender Card Switch Settings	
Cluster Adapter	. 20
Station Address	. 20
Remote Initial Program Load	. 22
Adapter Number	
Enhanced Graphics Adapter (EGA)	. 23
PC Network Adapter	
Asynchronous Communications Adapter	26
Binary Synchronous Communications (BSC) Adapter	27
Data Acquisition and Control (DAC) Adapter	28
Analog Output Range	. 28
Analog Input Range	29
Adapter Number	29
Interrupt Request (IRQ) Level	30
General Purpose Interface Bus (GPIB) Adapter	31
Adapter Number	
Interrupt Request (IRQ) Level	
Interrupt Acknowledge (INT ACK) Level	33
Direct-Memory Access (DMA) Channel	33
Professional Graphics Controller	34
Voice Communications Adapter	35

Option Compatibility

Certain option adapters conflict when used in the same system. The following adapters should not be installed together in your system unit:

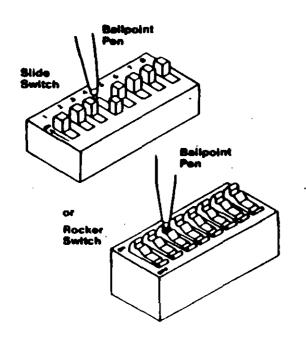
- Synchronous Data Link Control (SDI C) adapter.
- Alternate Binary Synchronous Communications (Alt. BSC) adapter.

BIOS ROM Identification

To determine the date of the BIOS ROM module, run the following BASIC program. Type the program exactly as shown.

```
10 DEF SEG=EHF000
20 FOR X=EHFFF5 TO EHFFFF
30 PRINT CHR$(PL:k(X));
40 NEXT
RUN
```

The date that is displayed is the date of your BIOS ROM module


Using the Switch Charts

The following legend applies to the charts in this section.

Symbol	Meening
•	Not Used by this Application
1	On/Closed Position Of A Switch
1	Oll/Open Position Of A Switch
N/A	Not Allowed Or Not Applicable

Note: For some options, the customer must supply information for correct setting of jumpers or switches.

To set a rocker switch, press the rocker down to the desired position; to set a slide switch, slide the lug of the switch to the desired position.

System Board (Diskette Drives, Displays, Coprocessor, and POST Loop)

•	System Board Switches			
Function .	Р	PCXT & Portable		
FUNCTION .	Sw. Block	Sw. Block 2	Sw. Block 1	
	12345678	12345678	12345478	
0-Diskette Drives			N A	
1 Diskelle Drive	111	******	***************************************	
2-Diskette Drives	111		11	
3-Diskette Drives	N/A	N/A	••••••1	
4 Diskette Drives	N/A	N/A	11	
No Display Adapter	11	· N/A	11	
Enhanced Graphics Adapter (Primary: See Note 1)	11	N/A	11	
Color/Graphics Adapter (40 X 25 Primary)	11	N·A	11	
Color/Graphics Adapter (80 X 25 Primary)	11	N/A	11	
Professional Graphics Controller (Primary)	N/A	N/A	11	
Monochrome/Printer Adapter (Primary, See Note 2	11	N/A	11	
Math Coprocessor Installed	.1	N-A	.1	
Math Coprocessor Not Installed	• † • • • • • • • • • • • • • • • • • •	N/A	• • • • • • • • • • • • • • • • • • • •	
POST Loop (Allows Continuous Running)	N/A	N·A	1	
No POST Loop (Normal Operation)	N'A	N,A	1	

Notes

- If the Enhanced Graphics Adapter (EGA) is installed with another display adapter, set the system board switches as shown for the EGA.
- 2) The IBM Monochome Display and Printer Adapter is not supering in the Portable Personal Computer.

System Board (Memory)

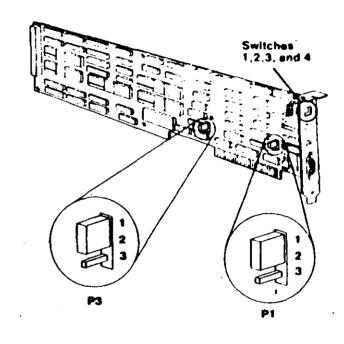
Portable Personal Computer					
Total Memory	System Board Switch Settings	Board Option Switch With 256K		84/256K Option With 1 26K (See Note)	64/256K Option With 64K (See Note)
	12345678	12345678	12345678	12345678	12345678
256K	11	N/A	N/A	N/A	N/A
320K	11	N/A	N/A	N/A	1111111
384K	11	N/A	N/A	11111111	N/A
448K	11	N/A	11111111	N/A	N/A
512K	11	TITTILIT	N/A	N/A	N/A
576K	11	1111111	N/A	N/A	11111111
540K	11	11111111	N/A	11111111	N/A

Mote: The 64/256KB Memory Expansion Option and the 256KB Memory Expansion Option are the only memory options supported in the IBM Portable Personal Computer.

To use the following chart, first find the column under "System Board Type" that matches your system. Follow this column down to the switch settings for the total amount of memory in your system. Set the system board switches to match those in the chart. Then go to the "Switch Set" listed and set the switches on the memory adapters in your system. These sets of memory adapter switch settings start on page 11.

Note: If memory above 544K is to be installed on a 16/64KB system board, the BIOS ROM must be dated 10/27/82 or later. See "BIOS ROM Identification."

	System	Syst	Note)	
Total	Board	P	PC XT	
Memory	Switch-Settings & Adapter	16K-64K	84K-256K	64K-256K
	Switch Sets	12345676	12345678	12345676
	Switch 1	**11****	N/A	N A
16K	Switch 2	11111111	N/A	N A
	Set	N/A	N/A	N A
32K	Switch 1	11	N/A	N-A
	Switch 2	1111111	N/A	N A
	Set	N/A	N/A	N A
48K	Switch 1	11	N/A	N/A
	Switch 2	11111111	N/A	NΑ
	Set	N/A	N/A ·	N A
64K	Switch 1	11	11	Ŋ·Δ
	Switch 2	11111111	11111111	N A
	Set	N/A	N A	N·A


Note: The system board's identifier is located on its left edge.

(Part 1 of 4)

atem		System Board Type		
Total	Board Switch	P	PC XT	
Memory	Settings & Adapter	16K-64K	64K-256K	64K-256K
	Switch Sets	12345678	12345676	12345678
	Switch 1	11	N/A	N/A
96K	Switch 2	11111111	N/A	N/A
	Sel	1	N/A	N/A
	Switch 1	11	**11****	**11****
128K	Switch 2	11111111	11111111	N/A
	Set	3	N/A	N/A
	Switch 1	11	N/A	N/A
160K	Switch 2	11111111	N/A	N/A
	Set	5	N/A	N/A
	Switch 1	11	11	••11••••
192K	Switch 2	11111111	11111111	N/A
	Set _	7	N/A	N/A
I	Switch 1	11	N/A	N/A
224K	Switch 2	11111111	N/A	N/Á
	Set	9	N/A	N/A
	Switch 1	11	**[]****	11
256K	Switch 2	11111111	11111111	N/A
	Set	11	N/A	N/A
	Switch 1	11	**11****	11
288K ·	Switch 2	TITLLITT	munin	N/A
İ	, Set	13	2	. 2

Enhanced Graphics Adapter (EGA)

Warning: Damage to the graphics adapter, the display, or both may result if these jumpers are not in the correct position.

Type of Display	P1	P3
IBM Color Display or IBM Monochrome Display	2 and 3	1 and 2
IBM Enhanced Color Display	1 and 2	1 and 2

(Part 2 of 4)

If an EGA is the only display adapter installed, or an EGA and a Monochrome Display and Printer Adapter are installed in the system, refer to Figure 1 to set the EGA switches.

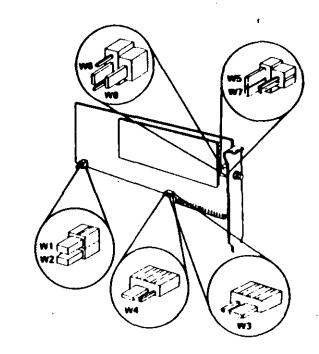
If an EGA is installed with a Color/Graphics Monitor Adapter, refer to Figure 2 to set the EGA Switches.

Type of Display Attached to the	EGA as Primary	EGA as Secondary Switch 1234	
Enhanced Graphics Adapter	Switch 1234		
No Display	N/A		
Moriochrome Display	TTTT	N/A	
Color Display (40 X 25 Mode)	1111 1111 1111	1111	
Color Display (80 X 25 Mode)		1111	
Enhanced Color Display (Normal Color Mode)		1111	
Enhanced Color Display (Enhanced Color Mode)	1111	1111	

Figure 1

Type of Display Attached to the	EGA ao Primary	EGA se Secondary	
Color/Graphics Monitor Adapter	Switch 1234	Switch 1234	
Color Display (40 X 25 Mode)	1111	1111	
Color Display (80 X 25 Mode)	1111 .	1111	
No Display (80 X 25 Mode)	1111	N/A	

Figure 2


Notes:

Jou

- 1. Mode selection can be changed by programming.
- 2. A maximum of two displays can be attached to the system, one color display and one monochrome display.

PC Network Adapter

Function
Automatic Remote Program Load (RPL)
Nol Used
Sets Adapter to use Interrupt Level 2
Sets Adapter to use Interrupt Level 3
Sets Adapter as Alternate Adapter
Sets Adapter as Primary Adapter
Enables ROM on Adapter (See Note)

Parts Catalog

Place the hard-tab page labeled "Parts Catalog" in place of this page, then discard this page.

PARTS CATALOG

Limited Warranty - IBM Service Parts	2
How To Use This Parts Catalog	
Visual Index	
Assembly 1. System Unit - Exterior (5150)	
Assembly 2. System Unit - Exterior (5160)	
Assembly 3. System Unit - Exterior (5155)	
Assembly 4. System Unit - Interior (5150)	
Assembly 5. System Unit - Interior (5160)	
Assembly 6. System Unit - Interior (5155)	
Assembly 7. Full High Diskette Drive Type 1	
Assembly 8. Full High Diskette Drive Type 1	
Assembly 9. Full High Diskette Drive Type 2	
Assembly 10. Full High Diskette Drive Type 2	
Assembly 11. Full High Diskette Drive Type 3	
Assembly 12. Full High Diskette Drive Type 3	26
Assembly 13. Diskette Drive Portable PC	28
Assembly 14. Fixed Disk Drive	
Assembly 15. Internal Options and Adapters	
Assembly 16. Expansion Unit - Exterior (5161)	
Assembly 17. Expansion Unit - Interior (5161)	
Assembly 18. Monochrome Display (5151)	
Assembly 19. Color Display (5153)	
Assembly 20. Enhanced Color Display (5154)	
Assembly 21. Professional Graphics Display (5175)	
Assembly 22. Keyboard (83-Key for 5150 and 5160)	
Assembly 23. Keyboard (83-Key for 5155)	
Assembly 24. Keybutton Kits (83-Key)	
Assembly 25. Keybuttons (83-Key)	
Assembly 26. Power Cords	
Assembly 27. Miscellaneous	

The warrants terms and conditions apply able in the country of purchase (except for the United States and Puerto Rico) in respect of an IBM Personal Computer product are available from the supplier.

Limited Warranty - IBM Service Parts

(Applies to United States and Puerto Rico)

The International Business Machines Corporation warrants that each IBM Service Part will be free from defects in material and workmanship under conditions of normal use for a period of 90 days from the date of purchase from IBM or an Authorized IBM Personal Computer Dealer. Service Parts will be either reconditioned or new parts. Should an IBM Service Part fail to be free from defects in materials or workmanship during the 90-day warranty period, IBM will, at its option, repair or replace this Service Part at no charge in the United States or Puerto Rico. All replaced Service Parts will become the property of IBM. This limited warranty does not include service to repair damage to the Service Part resulting from ancidem, disaster, misuse, abuse, or non-IBM modification of the Product.

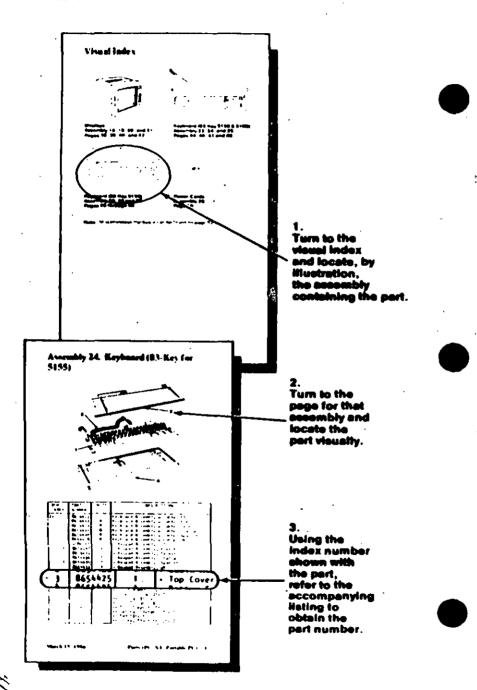
Limited Warranty service may be obtained by delivering the defective Service Part during the 90-day warranty period to an Authorized the IBM Personal Computer Dealer, or any Service Euchange Center in the United States or Puerto Rico. A dated proof of hase from IBM or an Authorized IBM Personal Computer Dealer must accompany the claim. Contact IBM by writing to IBM National Parts Center, P.O. Box 481, Greencastle. Indiana 46135 for further information.

ALL EXPRESS OR IMPLIED WARRANTIES FOR THIS SERVICE PART, INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO A PERIOD OF 90 DAYS FROM THE DATE OF PURCHASE, AND NO WARRANTIES, WHETHER EXPRESS OR IMPLIED, WILL. APPLY AFTER THIS PERIOD. SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU.

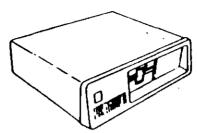
IF THIS SERVICE PART IS DEFECTIVE IN MATERIALS OR WORKMANSHIP UNDER CONDITIONS OF NORMAL USE, AS WARRANTED ABOVE, YOUR SOLE REMEDY SHALL BE REPAIR OR REPLACEMENT AS PROVIDED ABOVE. IN NO EVENT-WILL IBM BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE SUCH PRODUCT, EVEN IF IBM OR AN AUTHORIZED IBM PERSONAL COMPUTER DEALER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS, SO THE ABOVE LIMITATIONS OR FXCLUSIONS MAY NOT APPLY TO YOU.

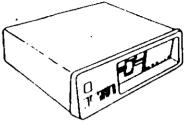
THIS WARRANTY GIVES YOU SPECIFIC FEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHES WHICH MAY VARY FROM STATE TO STATE.


How To Use This Parts Catalog

- 1. Similar Parts If two parts are similar, they may be listed in the same list. Similar parts are referred to by one index number but are distinguished by the part number and description.
- 2. NS When this indication appears in the ASM INDEX column, it denotes a part not shown in the assembly. This designation is generally used for miscellaneous parts packets.
- 3. R This entry in the Units column indicates the part has a restricted availability.
- 4. AR As Required (AR) in the Units column denotes that the units per assembly may vary based upon system configuration.
- 5. Indenture The indenture is marked by a series of dots located before the part description. The indenture indicates the relationships of a part to the next higher assembly.


Example of a Parts List

ASM -	PART NUMBER	UNITS	DESCRIPTION
1 - - 1 - 2 - 2 - 3 - 4	1234567 1234568 1234569 1234566 1234565 1234564	1 1 1 R 1	Main Assembly Subassembly Subassembly, US Subassembly, Mon-US Detailed Part Restricted Subassembly Perailed Part Detailed Part Detailed Part Subassembly Not Shown Detailed Part
- 5	1234562	AR	•• Detailed Part • Subassembly - Use as Required

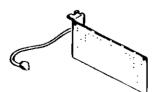

How to . . . the Visual Index

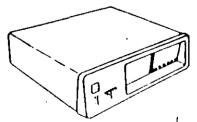
Visual Index


System Unit (5150) Assembly 1 and 4 Pages 7 and 10

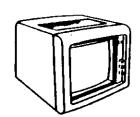
System Unit (5160) Assembly 2 and 5 Pages 8 and 12

System Unit (5155) Assembly 3 and 6 Pages 9 and 14

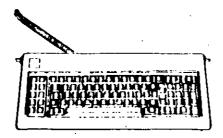

Full-High wiskette Drives Assembly 7, 8, 9, 10, 11, and 12 Pages 16 through 26


Diskette Drive Portable PC Assembly 13 Page 28

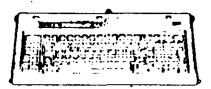
Fixed Disk Drive Assembly 14 Page 29



Internal Options and Adapters Assembly 15 Page 30

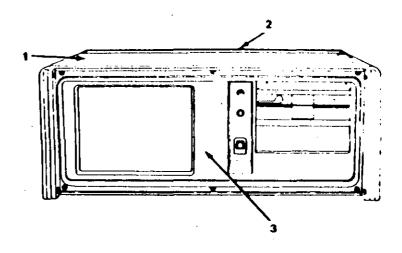


Expansion Unit (5161) Assembly 16 and 17 Pages 33 and 34

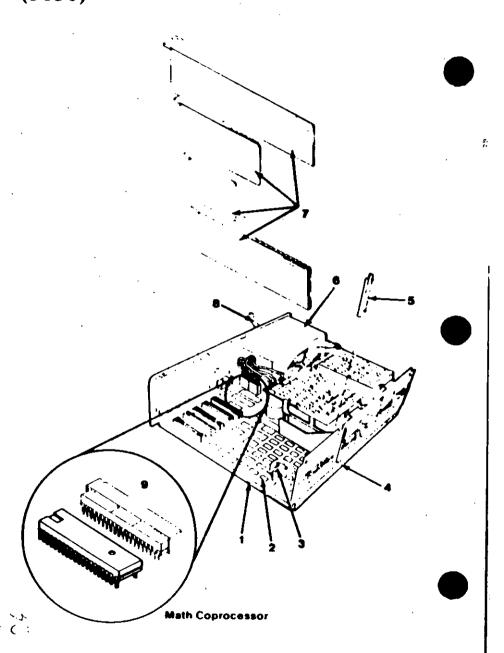

Index

Displays Assembly 18, 19, 20, and 21 Pages 36, 36, 40, and 42

Keyboard (83-Key 5150 & 5160) Assembly 22, 24, and 25 Pages 44, 46, 47 and 48

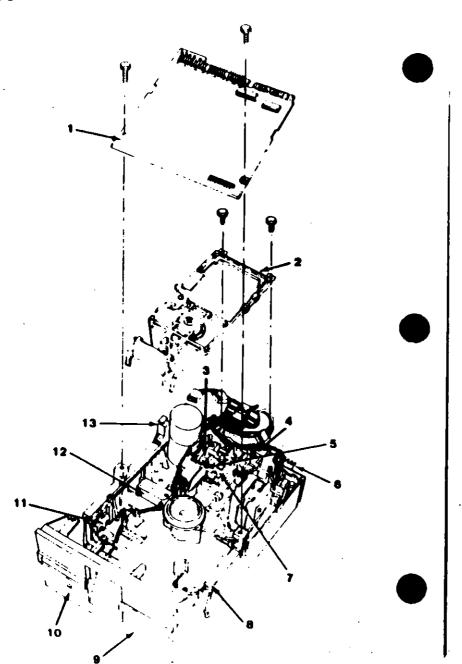

Keyboard (83-Key 5155) Assembly 23, 24 and 25 Pages 45 through 48

Power Cords Assembly 26 Page 50


Note: Miscellaneous Hardware and wrap plugs are listed on page 53.

Assembly 3. System Unit - Exterior (5155)

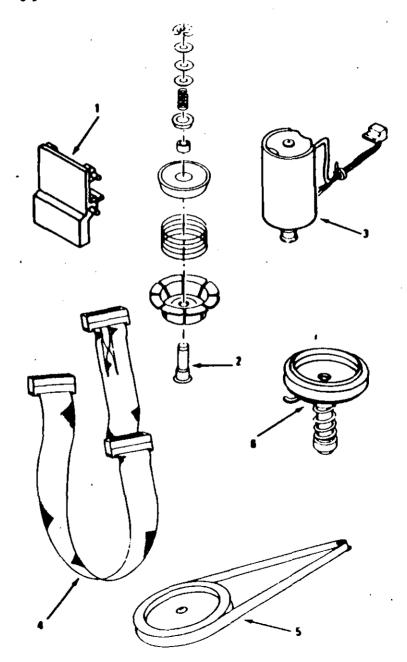
ASM -	PART NUMBER	UNITS	DESCRIPTION
3 -	8654414		Cover Assembly
` - 1			- Cover
- 2			• Handle Assembly
- 3	8654413	1	Panel Assembly
- NS	8654440	1	• Panel Assembly Kit
			Panel Assembly (Rear Access)
			Panel Retainer Kit
- NS	8654439	1	. Cover and Handle Hardware Kit
	00,44,,,	i '	. Foam Pad
			Washer, Friction (Qty 2)
			Nut, Stud (Qty 2)
		ļ	Screw, Shoulder M4 (Qty 2)
- NS	8654445		- IBM Label
-	8654418		Carrying Case
- NS	00)4410	!	
- NS		'	Power Cord (See Power Cord Parts List
			ł
		ŀ	•
			1
			}
	i '	1	
	[.	ı	1


Assemb., 4. System Unit - Interior (5150)

System Unit - Interior (5155)

ASM -	PART NUMBER	UNITS	DESCRIPT ON
- 1701 ^	NONE IN		
6 - 1]	8529254	1	System Board 64KB 256KB (PI)
			(Populated to 129K)
- NS	8529211	AR	• 64KB Memory Module
- 2	8529143	. 1	Speaker and Cable
- 3	8654452		Cable Raceway
- 6	8654427	1	Cable, Keybnard, Internal System
- 5	00,000	ĺ	Power Cord (See Power Cord Parts List)
- 6	8654417	l i	Power Supply
•	00,44.7	•	(Includes fan and Information Label)
- NS	8654444	1	Fan, Power Supply
- 7	00)7777	•	
- 8	8654415		See Internal Options and Adapters Shield
- 9	8654419	l ;	1 - · · · · · ·
- 7			Display Assembly
	8285975	R	• High Voltage Transformer
	8285976	Ŗ	• Yoke
- 10		1	Shield, Keyboard, Internal System
- 11	8285977	R	Brightness/Contrast Assembly
- 12		į ,	Diskette Ground Bracket
- NS	8654441	•	Display Assembly Hardware Kit
		Į.	• Knob, Brightness
		Ì	• Knob, Contrast
- NS	8654438	•	Front Panel Hardware Kit
			• Foot Assembly (Qty 2)
			· Panel, Bumper
			· Screw, Plastite (Qty 2)
		ł	· Panel, Keyboard Connector
			· Blank Insert, Diskette Drive
			. Screw, attach Shroud M-4 (Qty 6)
		-	• Strip, Wear, Front Padel (Qty 2)
			• Screw, Controls to Panel (Qty 2)
- NS	8654442	l ı	System Hardware Kit
7.7	2077442		- System Board Supports (Qty 6)
		1	
			- Screws, Skt. Head 3.5mm x 8 (Qty 16)
		i	- Bumper, Card (Qty 3)
			- Screw, Plastite 8-18 (Qty 6)
		1	- Mounting Screws, Diskette (Qty 4)
			• Attachment Card, Blank Insert
			• Glide, Chassis (Qtv 2)
			• Bracket, System Board Ground
			 Spacer, Diskette Drive (Qty 3)
		1	• Screw, Special Bristol (Qty 7)
		ŀ	j
			1
		1	
	}		
i i			ī
,	i .		
	i		

Assembly 7. Full High Diskette Drive Type 1



Diskette Drive - Type 1

Use only in drives that have an A, B, or nothing in front of the serial number. The serial number is visible from the top of the drive.

ASM - INDEX	PART NUMBER	UNITS	DESCRIPTION
7 - - 1 - 2	8529153 8529206 8529226 8529267	1	Diskette Drive Assembly, Single-S der Diskette Drive Assembly, Double-Sider - Logic Board with Shield - Cone Lever Assembly Cone Lever Arm Cone Assembly Hounting Clips Latch Assembly
- 3 - 4 - 5 - 7 - 7 - 8 - 9 - 10 - 11 - 12 - 13	8529225 8529257	R R 1 R R 1 1 1 1 R 1	Latch Assembly - Track O Switch - Track O Stop - SSR Upper Arm - Servo Board - Module SSR/160KB - Module DSR/320KB - Guide, Right - Front Panel - LED Assembly - Write Protect Switch - Index Assembly - Guide, Left

Assembly 8. Full High Diskette Drive Type 1

START - AT

Place the hard-tab page labeled "START - AT" in place of this page, then discard this page.

MAP 0000: Start (AT)

This is the entry point for all IBM PERSONAL COMPUTER AT* MAPs. The MAPs will help you determine the failing field replaceable unit (FRU).

The Advanced Diagnostics program is intended to test *only* IBM products. Non-IBM products, prototype cards, or modified options can give false errors and invalid system responses.

All voltages in the MAPs are positive unless otherwise shown.

001

Before you begin:

- 1. Power off the system.
- 2. Ensure all connectors are installed correctly.
- 3. Ensure any jumpers or switches are set correctly.
- 4. Ensure the 115/230 Vac selector switch is set for the voltage available at the outlet.
- 5. Verify the options are correctly set by running the Setup program. After running the Setup program (or if you cannot run the Setup program) continue with Step 001.
- Insert the Advanced Diagnostics diskette into drive A.
- Power on the system.

IS THE POWER SUPPLY FAN RUNNING?

Yes No

O02
Go to Step 058 in this MAP.

103

Listen carefully for any audio responses during the power-on self test (POST).

DID YOU HEAR ONE SHORT BEEP AT THE END OF THE POST?

Yes No | | | (Step ()04 continues)

...4 Go to Step 006 in this MAP. 005 Go to Step 034 in this MAP. 006 (From Step 004 in this MAP) DID YOU RECEIVE A 16X ERROR? Yes No Go to Step 011 in this MAP. 008 DID YOU RECEIVE A 161 ERROR! Go to Step 016 in this MAP. Go to "MAP 0100: System Board Start." (From Step 007 in this MAP) DID THE MESSAGE (RESUME = "F1" KEY) APPEAR ON THE SCREEN? Yes No Go to Step 073 in this MAP. Make a note of any error messages on the screen. Press the F1 key to continue.

DID THE MESSAGE (RESUME = "F1" KEY) GO AWAY WHEN THE F1 KEY WAS PRESSED?

Yes No (Step 014 continues)

073
(From Step 012 in this MAP)
Find your error in the following figure and take the action indicated.

Note: If an error message and incorrect audio response occur, take the action indicated for the error message.

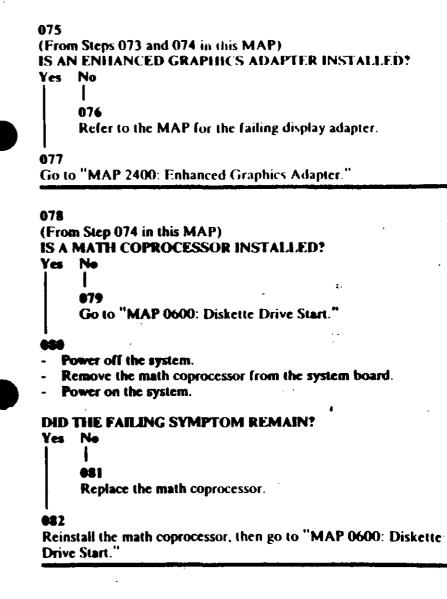

POST Error:	Action:
No Beep and:	
Blank Display	Man case a
Blinking Cursor	MAP 0020 Power Start
Unreadable Display	MAP 0020 Power Start
Machine Functioning Properly 1XX From	MAP 0020: Power Start
1XX Error	MAP 0020, Power Start MAP 0100, System Board Sta
1 Long and 1 Short Beep	
1 Long and 2 Short Beeps	Go to Step 075 in this MAP
1 Long and 3 Short Beeps	Go to Step 075 in this MAP
2 Short Beeps and:	
Blank or Unreadable Display	C-1 0:
Distorted Display Image	Go to Step 075 in this MAP
	MAP 0100 System Board Star
30X Error XX30X Error	MAP 0200. Memory Start
XX30X Error	MAP 0300 Keyboard Start
601 Error	MAP 0300: Keyboard Start MAP 0600: Diskette Drive Start
17XX Error	MAP 0600. Diskette Drive Start MAP 1700. Fixed Disk Drive Sta
30XX Error	MAP 1700 Fixed Disk Drive Sta
31XX Error C8000 BOM Error	··· MAP 3000 PC Network
C8000 ROM Frme	MAP 3100: All, PC Network
IO ROM CC0000	Replace Fixed Disk Drive Adapte
ROM Error	· · · · MAP 3000; PC Network
IO ROM XXXXXX (IO Adapter Failure)	Neplace System Board
- The state of the	MAP 0020: Power Start
ontinuous Beep	MAP 0020 Power Start
Repeating Short Beeps	MAP 0020 Power Start
ny Errors Not Shown Above	

Figure 2. POST Errors

74
(From Steps 032, 035, and 056 in this MAP)
Find your error in the following figure and take the action indicated.

Symptom:	Action:
Incorrect Memory Size	
Displayed During the POST	MAP 0200: Memory Start
Display Problems:	
Incorrect Colors	Go to Step 075 in this MAP
No High Intensity	
Missing, Broken, or Incorrect Characters	Go to Step 075 in this MAP
Blank Display (Dark)	Go to Step 075 in this MAP
Blank Display (Bright)	Go to Step 075 in this MAP
Distorted Image	Go to Step 075 in this MAP
Unreadable Display	Go to Step 075 in this MAP
Other Display Problems	
Fleshing Cursor Only.	Go to Step 078 in this MAP
BASIC Screen Appears	MAP 0600: Diphotio Drive Start
Loads Program from Flied Disk	MAP 0800: Dishutto Drive Start
Loads Program from Remote Station	MAP 0000: Dishatto Drivo Start
Dishatte Boot Falkure	MAP 0800: Dishette Drive Start
PARITY CHECK	MAP 0200: Memory Start
Keyboard Problem	MAP 0300: Keyboard Start
Cannot Finish Diagnostic Tests	MAP 0020: Power Start
Printer Problems	Refer to the Service
	Manual for the Printer.
Network Problems	Refer to the Service
	Manual for the Network

Flaure 3. Fallure Symptoms

(From Step 073 in this MAP)

Go to the MAP indicated by the error code. For example, if you receive the error code 7XX, go to "MAP 0700: Math Coprocessor."

Note: If you are unable to find the MAP that corresponds to your error code, you have an IBM device with its own service manual or a device not supported by IBM diagnostic tests.

Jumpers and Switch Settings

Place the hard-tab page labeled "Jumpers and Switch Settings" in place of this page, then discard this page.

JUMPERS AND SWITCH SETTINGS

System Setup	j
Option Compatibility	5
BIOS ROM Identification	5
Terminating Resistors and Switches	6
Diskette Drive	5
Fixed Disk Drive	7
Power Supply Voltage Selector Switch	
Using the Switch Charts	9
System-Board Display Switch	0
Memory Expansion Options	
Base Memory 1	ı
Expansion Memory 1	ı
Cluster Adapter 1	2
	2
	4
Adapter Number	4
	5
	7
Serial/Parallel Adapter 1	8
Binary Synchronous Communications (BSC) Adapter I	9
Data Acquisition and Control (DAC) Adapter 2	0
Analog Output Range 2	0
Analog Input Range	1
Adapter Number 2	1
Interrupt Request (IRQ) Level	2
General Purpose Interface Bus (GPIB) Adapter 2	13
Adapter Number 2	3
Interrupt Request (IRQ) Level	4
Interrupt Acknowledge (INT ACK) Level	25
Direct-Memory Access (DMA) Channel	
Professional Graphics Controller	
Voice Communications Adapter	

System Setup

The Setup program is on the Advanced Diagnostics diskette. You need to know what options are installed in the system unit to runthe Setup program.

- 1. Make a list of the option adapters installed in the system.
- 2. Determine the type of drives installed.
 - Fixed Disk Drive: An identification label is on the front of the drive.
 - Diskette Drive: The bezel of a double-sided (360K) diskette drive has an asterisk; the bezel of a high-capacity (1.2M) diskette drive is not marked.
- 3. Ensure that all jumpers and switches are set correctly.

Note: If you receive an error code, troubleshoot any error indications other than 16X first. If the only error code you receive is 16X, and you cannot correct the Setup program using the instructions on the following page, go to "MAP 0000: Start (AT)."

System p

- 1. Insert the Advanced Diagnostics diskette into diskette drive A.
- 2. Power on the system.
- When the Advanced Diagnostics menu appears, select option 4 (SETUP) and verify that the options are correctly set.

The Setup program will prompt you for the following information:

Time	•	Set or change the time.
------	---	-------------------------

Date	Set or change the date.
------	-------------------------

Diskette Drives Select the number and type (high capacity or double sided) installed.

Fixed Disk Drives	Select the number and type of drives
	installed.

Memory	-	Select the amount of base and
		expansion memory installed.

Display Set the primary display if two display adapters are installed. Select the mode (40 or 80 column) if a color display is

installed.

Option Compatibility

Certain option adapters conflict with each other when used in the same system. The following adapters should not be installed together in the system unit:

- · Synchronous Data Link Control (SDLC) Adapter
- Alternate Binary Synchronous Communications (Alt. BSC) Adapter.

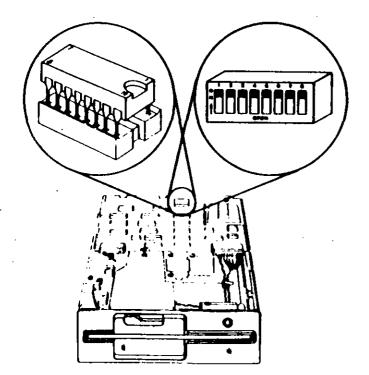
BIOS ROM Identification

To determine the date of the BIOS ROM module, run the following BASIC program. Type the program exactly as shown.

```
10 DEF SEG=&HF000
20 FOR X=&HFFF5 TO &HFFFF
30 PRINT CHR$(PEEK(X));
40 NEXT
RUN
```

The date that is displayed is the date of your BIOS ROM module.

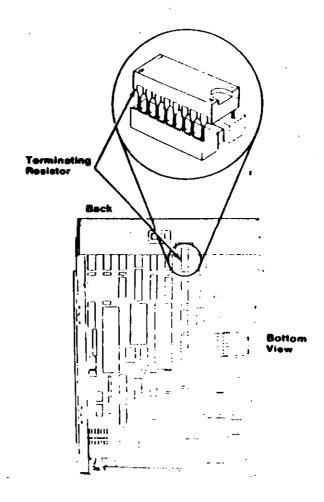
(V


Terminating Resistors and Switches

Diskette Drive

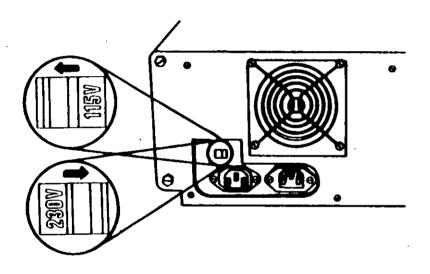
A diskette drive may have a terminating resistor or terminating switch.

- Terminating Resistor A terminating resistor must be installed in diskette drive A. Diskette drive B should not have a terminating resistor installed.
- Terminating Switch If a diskette drive is equipped with a terminating switch instead of the terminating resistor, set all switches on diskette drive A to the On position. Set all switches on diskette drive B to the Off position.


Note: The terminating resistor may appear in a different location on the drive. If so, an identifying label will be attached to the terminating resistor.

Fixed Disk Drive

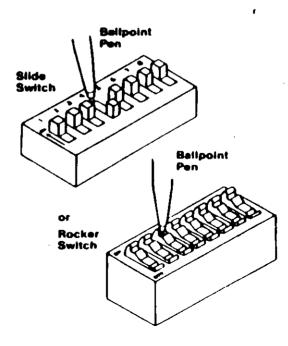
- The terminating resistor must be installed on fixed disk drive C.
- In a system unit with two fixed disk drives, remove the terminating resistor from fixed disk drive D.


Note: The terminating resistor may appear in a different location on the drive. If so, an identifying label will be attached to the terminating resistor.

Power Lapply Voltage Selector Switch

The voltage selector switch is located at the rear of the system unit power supply. It must be set for the voltage present at the electrical outlet.

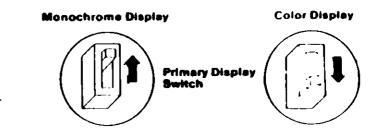
Switch Position	Voltage Range
115 Vac	100 to 125 Vac
230 Vec	200 to 240 Vec

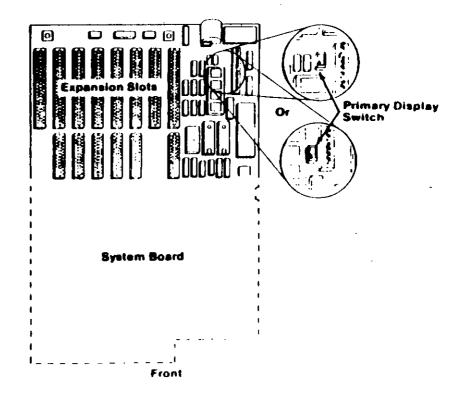

Using the Switch Charts

The following legend applies to the charts in this section.

Symbol	Mesning
•	Not Used by this Application
1	On/Closed Position of a Switch
1	Off/Open Position of a Switch
N/A	Not Allowed Or Not Applicable

Note: For some options, the customer must supply information for correct setting of jumpers or switches.


To set a rocker switch, press the rocker down to the desired position; to set a slide switch, slide the lug of the switch to the desired position.



System-Board Display Switch

If your primary display adapter is a:

- Monochrome Display and Printer Adapter Set the display switch to the rear of the system.
- Color display adapter Set the display switch to the front of the system.

DIAGNOSTIC MAPs

DIAGNOSTIC MAPs	

MAP 0020: Power Start	
MAP 0020: Power (PC)	0020-1
MAP 0020: Power (AT)	0020-1
MAP 0100: System Board Start	0100-1
MAP 0100: System Board (PC)	0100-1
MAP 0100: System Board (AT)	0100-1
MAP 0200: Memory Start	0200-1
MAP 0200: Memory (PC)	0200-1
MAP 0200: Memory (XT)	02(X)-1
MAP 0200: PC Family Expansion Memory	0200-1
MAP 0200: Memory (AT)	0200-1
MAP 0300: Keyboard Start	0300-1
MAP 0300: Keyboard (PC)	0300-1
MAP 0300: Keyboard (AT)	0300-1
MAP 0400: Monochrome Display and Printer	
Adapter	0400-1
MAP 0500: Color/Graphics Monitor Adapter .	0500-1
MAP 0600: Diskette Drive Start	0600-1
MAP 0600: Full-High Diskette Drive	1-(10)
MAP 0600: Diskette Drive (Portable PC)	
MAP 0600: Diskette Drive (AT)	
MAP 0700: Math Coprocessor	
MAP 0900: Parallel Port Start	
MAP 0900: Printer Adapter	0900-1
MAP 0900: Serial/Parallel Adapter - Parallel	
Port	0900-1
MAP 1000: Alternate Serial/Parallel Adapter -	
Parallel Port	
MAP 1100: Serial Port Start	1100-1
MAP 1100: Asynchronous Communications	
Adapter	
MAP 1100: Serial/Parallel Adapter - Serial Port	
MAP 1200: Alternate Serial Port Start	1200-1
MAP 1200: Alternate Asynchronous	_
Communications Adapter	1200-1
MAP 1200: Alternate Serial/Parallel Adapter -	
Serial Port	1200-1
MAP 1300: Game Control Adapter	1300-1

MAP 1400: Graphics Printer	1400-1
MAP 1500: Synchronous Data Eink Control	
(SDLC) Communications Adapter	1500-1
MAP 1700: Fixed Disk Drive Start	
MAP 1700: Fixed Disk Drive (PC)	
MAP 1700: Fixed Disk Drive (AT)	1700-1
MAP 1800: Expansion Unit	. 1800-1
MAP 2000: Binary Synchronous	
Communications (BSC) Adapter	2000-1
MAP 2100: Alternate Binary Synchronous	
Communications (Alt BSC) Adapter	2100-1
MAP 2200: Cluster Adapter	2200-1
MAP 2400: Enhanced Graphics Adapter	2400-1
MAP 2900: Color Printer	2900-1
MAP 3000: PC Network Adapter	3000-1
MAP 3100: Alternate PC Network Adapter	3100-1
MAP 3300: Compact Printer	. 3300-1
MAP 3600: IBM General Purpose Interface Bus	
(GPIB) Adapter	3600-1
MAP 3800: IBM Data Acquisition and Control	
Adapter	3800-1
MAP 3900: IBM Professional Graphics	54444
Controller	3900-1
MAP 7100: Voice Communications Adapter	7100-1
Sapplemental MAPS:	
•	
	· · · - · · · · · · · · · · · · · ·
	

		٠,
		œ
		H.
	-	-
- 1		
		Α,

Symptom Explanation	Conditions That Could Cause This Symptom	
You have entered this MAP because you were unable to complete the POST, you have been directed here from another MAP, or you suspect a power problem.	 The power supply is failing. A diskette drive is failing. A fixed disk drive is failing. An option adapter is failing. The system board is failing. The math coprocessor is failing. The speaker is failing. 	

Find your system type in the following figure and go to the MAP indicated.

System Type	MAP
Personal Computer	. MAP 0020: Power (PC)
Personal Computer XT	. MAP 0020: Power (PC)
Portable PC	MAP 0020: Power (PC)
Personal Computer AT	. MAP 0020: Power (AT)

Figure 1. System Identification

MAP 0020: Power (PC)

Symptom Explanation	Conditions That Could Cause This Symptom	
You have entered this MAP because you were unable to complete the POST, you have been directed here from another MAP, or you suspect a power problem.	 The power supply is failing. A diskette drive is failing. A fixed disk drive is failing. An option adapter is failing. The system board is failing. The math coprocessor is failing. The speaker is failing. 	

60 1

- Power off the system.
- Unplug the power cord of the system unit (and expansion unit, if attached) from the electrical outlet.
- Disconnect the keyboard and any external devices, except the primary display (and expansion unit if attached) from the system unit.
- Plug the power cord of the system unit (and expansion unit, if attached) into the electrical outlet.
- Power on the system.

Note: A 301 error may occur if you disconnected the keyboard. Disregard this error.

DID THE SYMPTOM REMAIN?

Yes No

002

CAUTION

Power off the system before connecting any device.

 Connect the external devices to the system unit, one at a time.

(Step 002 continues)

002 (continued)

- Power on the system after connecting each device. Repair or replace the device that causes the failure to return.
- Power off the system.
- Connect the keyboard to the system unit.
- Disconnect the expansion unit cable (if attached) from the system unit.
- Power on the system unit; do not power on the expansion unit.

Note: An 1801 error code may appear if you disconnected an expansion unit. Disregard the error and continue with the POST.

THE SYMPTOM REMAIN?

Yes N

004

Go to Step .039 in this MAP.

- Check for a voltage of 2.4 to 5.2 Vdc between pins 1 and 5 (ground) at the system board power connector (Figure 1).

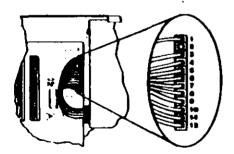


Figure 1. System Board Power Connector

007

- Check the system board power connectors for the correct voltages (Figure 2).

Voltag	e (Vdc)	PI	ne .
Minimum	Meximum	-Load	Hood
+ 4.8	+ 52	5	10
+ 45	+ 5.4	9	6
+11.5	+126	7	3
+108	+12.9	4	8

Figure 2. System Board Voltages

- Check the diskette drive and fixed disk drive power connectors for the correct voltages (Figure 3).

Velleg	e (Vdc)	Pi	20
Malmum	Maximum	-Lood	+Leed
+ 4.8	+ 52	2	4
+11.5	+12.6	3	1

Locating Rib

Figure 3. Diskette and Fixed Disk Drive Power Connectors

ARE ALL VOLTAGES CORRECT?

Yes No

80

(Step 008 continues)

00. Intinued)
Replace the power supply.

009

- Power off the system.
- Disconnect the speaker cable from the system board.
- Check the continuity of the speaker.

DOES THE SPEAKER HAVE CONTINUITY?

Yes No

Ot0
Replace the speaker.

011

Reconnect the speaker then go to Step 016 in this MAP.

012

(From Step 006 in this MAP)

You may have a failing diskette drive or fixed disk drive. Perform the following procedure.

- Power off the system.
- Remove the power supply connector from one of the drives.
- Power on the system.

DID THE SYMPTOM REMAIN?

Yes No

| 013
| Replace the failing drive.

014

Repeat this procedure for any remaining drives.

DID THE SYMPTOM REMAIN?

Yes No

| 015
| Replace the failing drive.

(Step 016 continues)

016

(From Step 011 in this MAP)

IS A MATH COPROCESSOR INSTALLED IN THE SYSTEM UNIT?

- Power off the system.
- Remove the math coprocessor from the system board.
- Power on the system.

DID THE SYMPTOM REMAIN?

Yes No

Replace the math coprocessor and the 8088 processor.

620

Reinstall the math coprocessor then continue with Step 021 in this MAP.

021

(From Steps 017 and 020 in this MAP)

An adapter may be failing. Perform the following procedure:

- Power off the system.
- Remove one option adapter from the system board. Do not remove the diskette drive adapter or the primary display adapter.
- Power on the system.
- Repeat the above procedure until you find the failing adapter, or all option adapters, except the diskette drive adapter and the primary display adapter, have been removed.

Note: As adapters are removed, switches may need to be reset to match the system configuration

(Step 021 continues)

021 (continued) DID THE SYMPTOM REMAIN? Yes No 022 Replace the last adapter removed. 023

Power off the system.

Remove the diskette drive adapter from the system board.

Power on the system.

Note: Removal of the diskette drive adapter may result in a 601 error code. Disregard the error and continue with the POST.

DID THE SYMPTOM REMAIN?

Yes No

024 Replace the diskette drive adapter.

04 IS THE PRIMARY DISPLAY ADAPTER AN ENHANCED GRAPHICS ADAPTER?

Yes No 026 Go to Step 030 in this MAP.

027

Power off the system.

- Remove the Enhanced Graphics Adapter from the system
- Set switches 5 and 6 of Switch Block 1 on the system board for color display operation. Set switch 5 to the Off position and 6 to the On position.
- Power on the system.

(Step 027 continues)

027 (continued) DID YOU RECEIVE ONE LONG AND TWO SHORT BELPS? Yes No 028 Go to Step 033 in this MAP.

029

Replace the Enhanced Graphics Adapter. Set the system board switches back to their original settings.

030

(From Step 026 in this MAP)

- Power off the system.
- Remove the primary display adapter from the system board.
- Power on the system.

DID YOU RECEIVE ONE LONG AND TWO SHORT BEEPS?

Yes No 031 Go to Step 033 in this MAP.

032

Replace the primary display adapter.

033

(From Steps 028 and 031 in this MAP)

- Check for a voltage of 2.4 to 5.2 Vdc between pins 1 and 5 (ground) at the system board power connector (Figure 4 on page 0020-8).

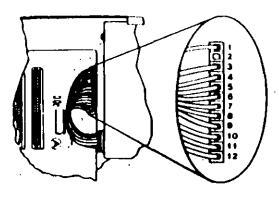


Figure 4. System Board Power Connectors

DO YOU HAVE 2.4 TO 5.2 VDC BETWEEN PINS 1 AND 5?

Yes No

034

Go to Step 036 in this MAP.

035

Replace the system board.

036

(From Step 034 in this MAP)

- Power off the system.
- Disconnect the power supply connectors from the system board.
- Ensure all option adapters have been removed from the system board.
- Check for resistance as shown in Figure 5 on page 0020-9.

Pins		Minimum	
-Lead +Lead		Resistance	
5	3	17 Ohms	
6	4	17 Ohms	
7	9	17 Ohms	
8	10	0 B Ohms	
8	F 1	0 B Ohms	
8	12	08 Ohms	

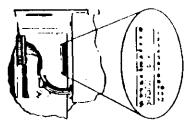


Figure 5. System Board Resistance

ARE ANY RESISTANCE VALUES BELOW THE MINIMUM INDICATED?

Yes No

037

Replace the power supply.

038

Replace the system board.

039

(From Step 004 in this MAP)

- Power off the system.
- Connect the expansion unit cable.
- Insert the Advanced Diagnostics diskette into drive A.
- Power on the system.

Note: An 1801 error may occur. Disregard the error and continue with the POST.

(Step 039 continues)

039 (continued) DID THE ADVANCED DIAGNOSTIC MENU APPEAR? Yes No 040 Go to Step 043 in this MAP. Run the Expansion Option tests. Use the (RUN TESTS ONE TIME) option. **DID YOU RECEIVE AN 1820 ERROR CODE?** 642 Replace the extender card. 043 · (From Step 040 in this MAP) An adapter may be failing. Perform the following: Power off the system. emove one option adapter (except the receiver card) from the expansion board. Power on the system. epeat the above steps until you find the failing adapter, or all option adapters have been removed. **DID THE SYMPTOM REMAIN?** Yes No Replace the last adapter removed. Power off the system. Replace the receiver card. Power on the system. **DID THE SYMPTOM REMAIN?** Yes No (Step 046 continues)

Notes:

Replace the expansion card.

MAP 0020: Power (AT)

Symptom Explanation	Conditions That Could Cause This Symptom
You have entered this MAP because you were unable to complete the POST, you have been directed here from another MAP, or you suspect a power problem.	 The power supply is failing. The diskette drive is failing. The fixed disk drive is failing. An option adapter is failing. The system board is failing. The math coprocessor is failing. The speaker is failing.

001

ARE YOU IN THIS MAP FOR A 101 OR 107 POST ERROR MESSAGE?

Yes No

002

Go to Step 004 in this MAP.

003

Go to Step 017 in this MAP.

004

(From Step 002 in this MAP)

- Power off the system.
- Unplug the system unit power cord from the electrical outlet.
- Verify the 115/230 Vac selector switch is set for the correct voltage.
- Disconnect all cables and external devices, except the display, from the system unit.
- Plug the system unit power cord into the electrical outlet.
- Power on the system.

(Step 004 continues)

Yes No

605 CAUTION

Power off the system before connecting any device.

 Connect the external devices to the system unit, one at a time, until the symptom returns.
 Repair or replace the device causing the failure.

- Power off the system.
- Remove the system unit cover.
- Reseat the power connectors.
- Power on the system.
- Check for a voltage of 2.4 to 5.2 Vdc between pins 1 and 5 (ground) at power supply connector P8.

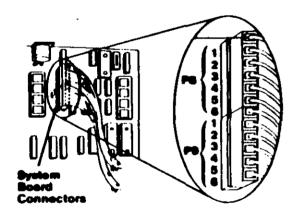


Figure 1. System Board Power Supply Connector

DO YOU HAVE 2.4 TO 5.2 VDC BETWEEN PINS 1 AND 5? Yes No

(Step 007 continues)

007

Go to Step 013 in this MAP.

901

- Check the system board power connectors for the correct voltages (see Figure 2).
- Check the diskette drive and fixed disk drive power connectors for the correct voltages (see Figure 3).

Note: If no fixed disk drives are installed in the system, a power supply load resistor is required for normal operation of the power supply. It may be attached to either connector P10 or P11.

Voltage (Vdc)		Pins	
Minimum	Meximum	-Leed	+Leed
+ 4.8	+ 5.2	P6-5	P9-4
+ 4.5	+ 54	P9 3	P8-6
+115	+126	P9 1	P8 3
+108	+129	P8 4	P9-2

Figure 2. System Board Voltages

Voltage (Vdc)		Pins	
Minimum	Maximum	-Leed	+Leed
+ 4.8	+ 52	2	4
+11.5	+126	3	

Locating Rib

Figure 3. Diskette Drive and Fixed Disk Drive Voltages

ARE ALL VOLTAGES CORRECT?

Yes No

009

Replace the power supply.

(Step 010 continues)

. .

- Power the system.
- Set the meter to the Ohms X I scale.
- Disconnect the speaker cable from the system board.
- Check the continuity of the speaker.

DOES THE SPEAKER HAVE CONTINUITY?

Replace the speaker.

012

Reconnect the speaker.
 Go to Step 013 in this MAP.

013

(From Steps 007, 012, and 015 in this MAP)

You may have a failing diskette drive or fixed disk drive. Perform the following:

- Power off the system.
- Remove the power connector from one of the drives.
- Power on the system.

DID THE SYMPTOM REMAIN?

Yes No

014

Replace the failing drive.

015

- Reinstall the connector you removed in Step. 013 in this MAP.
- Perform the same procedure for any remaining drives.

DID THE SYMPTOM REMAIN?

Yes No

414

Replace the failing drive.

(Step 017 continues)

(1

0020-4 Power (AT)

017

(From Step 003 in this MAP)

You may have a failing adapter. Perform the following

- Power off the system.
- Remove one option adapter from the system board. Do not remove the Fixed Disk and Diskette Drive Adapter or the primary display adapter.
- Power on the system.
- Repeat this procedure until you find the failing adapter or all option adapters (except the Fixed Disk and Diskette Drive Adapter and primary display adapter) have been removed

DID THE SYMPTOM REMAIN?

Yes No

018

Replace the last adapter removed.

019

You may have a failing math coprocessor.

IS A MATH COPROCESSOR INSTALLED IN THE SYSTEM?

Yes No

020

Go to Step 023 in this MAP.

021

- Power off the system.
- Remove the math coprocessor from the system board.
- Power on the system.

DID THE SYMPTOM REMAIN?

Yes No

ì

022

Replace the math coprocessor. If this does not correct the problem, replace the system board.

02.

(From Step 020 in this MAP) (Step 023 continues)

023 (continued)

- Power off the system.
- Remove the Fixed Disk and Diskette Drive Adapter from the system board.
- Power on the system.

Removal of the Fixed Disk and Diskette Drive Adapter results in a 601 error code, disregard this error.

DID THE SYMPTOM REMAIN?

Yes No

624

Replace the Fixed Disk and Diskette Drive Adapter. If that does not correct the problem, replace the system board.

ė25

- Power off the system.
- Remove the primary display adapter from the system board.
- Power on the system.

Removal of the primary display adapter results in one long and two short beeps during the POST.

DID YOU RECEIVE ONE LONG AND TWO SHORT BEEPS?

Yes No

026

Go to Step 028 in this MAP.

027

Replace the primary display adapter. If that does not correct the problem replace the system board.

028

(From Step 026 in this MAP)

(AT)

- Power off the system.
- Wait 10 seconds.
- Power on the system.
- Check for a voltage of 2.4 to 5.2 Vdc between pins 1 and 5 (ground) at power supply-connector P8.

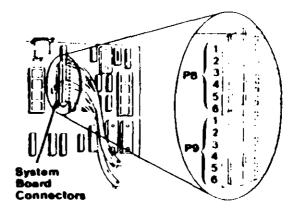


Figure 4. System Board Power Supply Connector

DO YOU HAVE 2.4 TO 5.2 VDC BETWEEN PINS 1 AND 5?

Yes No

029

Replace the power supply. If that does not correct the problem, replace the system board.

030

Replace the system board. If that does not correct the problem replace the power supply.

Mr. 0100: System Board Start

Symptom Explanation	Conditions That Could Cause This Symptom
You have entered this MAP because you were unable to complete the POST, or you received a LXX error message.	The system board is failing.

601

Find your system type in the following figure and go to the MAP indicated.

Bystom Type	MAP
Personal Computer	MAP 0100: System Board (PC)
Personal Computer XT	MAP 0100: System Board (PC)
Portable PC	MAP 0100: System Board (PC)
Personal Computer AT	MAP 0100: System Board (AT)

Figure 1. System identification

MAP 0100: System Board (PC)

Symptom Explanation	Conditions That Could Cause This Symptom
You have entered this MAP because you were unable to complete the POST, or you received a TXX error message.	The system board is failing.

001

- Power off the system.
- Insert the Advanced Diagnostics diskette into drive A.
- Power on the system.

DID THE POST FINISH WITHOUT A 1XX ERROR MESSAGE?

Yes No

Replace the system board.

003

- Select 0 (SYSTEM CHECKOUT).
- Run the System Board tests. Use the (RUN TESTS MULTIPLE TIMES) option.

DID YOU RECEIVE A 1XX ERROR MESSAGE?

Yes No

004

You have successfully completed the Advanced Diagnostic tests. If you suspect an intermittent problem, start an error log. If you need instructions, refer to the Reference manual.

(Step 005 continues)

DID YOU RECEIVE A 199 ERROR MESSAGE?

Yes No

006

Replace the system board.

607

 Refer to "MAP 0000: Start (PC)," and verify the installed devices.

Note: The 199 error message indicates you answered "No" to the question about the installed devices list.

MAP 0100: System Board (AT)

Symptom Explanation	Conditions That Could Cause This Symptom	
You have entered this MAP because you were unable to complete the POST, or you received a LXX error message.	 The system board is failing. The battery is failing. The keyboard cable is failing. The keyboard is failing. 	

001

- Power off the system.
- Insert the Advanced Diagnostics diskette into drive A.
- Wait at least 10 seconds.
- Power on the system.

DID YOU RECEIVE A 1XX ERROR MESSAGE DURING THE POST:

14 /0

993

Go to Step 004 in this MAP.

003

Go to Step 009 in this MAP.

004

(From Step 002 in this MAP)

DID THE ADVANCED DIAGNOSTICS MENU APPEAR ON THE SCREEN?

Yes No

1,70

005

Go to "MAP 0000: Start (AT)."

006

(Step 006 continues)

006 (contin

- Press 0 (5 r STEM CHECKOUT).
- Run the System Board tests. Use the (RUN TESTS MULTIPLE TIMES) option.

DID YOU RECEIVE A 1XX ERROR?

Yes No

007

You have successfully completed the Advanced Diagnostic tests. If you suspect an intermittent problem, start an error log. If you need instructions, refer to the Reference manual.

008

Replace the system board.

009

(From Step 003 in this MAP)

Find your error code in the following figure and take the action indicated.

Error Code	Action	
105	. Go to Step 018 in thi	MAP.
162, 163, 164	Go to MAP 0000: Sta	ırt.
101, 107	Go to MAP 0020. Por	NOT.
151, 161	. uu 10 ^{ete} p 010 ir	IAP
102, 103, 104, 106,		
106, 109, 121, 152	Replace the System	Board

Figure 1. POST Errors

010

(From Step 009 in this MAP)

This error message indicates a new or a defective battery is in the system.

(Step 010 continues)

0100-2 System Board (AT)

010 (continued)

IS A NEW BATTERY INSTALLED IN THE SYSTEM?

Yes No

011

Go to Step 015 in this MAP.

012

Run the Setup program and correct any errors.

Note: A 161 Battery Defective or New Battery Installed message appears during the POST after battery installation or replacement.

DID RUNNING THE SETUP PROGRAM CORRECT THE PROBLEM?

Yes No

013

Go to Step 015 in this MAP.

014

You have successfully completed the Advanced Diagnostic tests. If you suspect an intermittent problem, start an error log. If you need instructions, refer to the Reference manual.

015

(From Steps 011 and 013 in this MAP)

 Disconnect the battery from the system board and check the voltage between pins 1 and 4 on the battery cable connector.

WAS THE VOLTAGE AT LEAST 6.0 VDC?

Yes No

1

016

Replace the battery.

CAUTION

Fire, explosion, and severe burn hazard can be caused by the battery. DO NOT recharge, disassemble, heat above 100°C (212°F), solder directly to the cell, incinerate, or expose battery cell contents to water.

(Step 017 continues)

- Replace the system board.

618

(From Step 009 in this MAP)

- Power off the system.
- Disconnect the keyboard cable from the system unit.
- Power on the system.

DID YOU RECEIVE A 105 ERROR MESSAGE?

Yes No

619

Go to Step 021 in this MAP.

020

Replace the system board.

021

(From Step 019 in this MAP)

- Power off the system.
- Disconnect the keyboard cable from the keyboard.
- Refer to Figure 2 on page 0100-5, and check the keyboard cable for continuity.

Note: Check the continuity of wires 1, 2, 4, and 5 (wire 3 is not used).

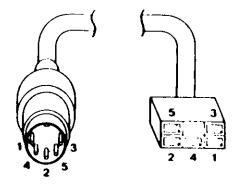


Figure 2. Continuity Check

DOES THE KEYBOARD CABLE HAVE CONTINUITY?

Yes No

022

Replace the keyboard cable.

023

Replace the keyboard assembly.

MAP v200: Memory Start

Symptom Explanation	Conditions That Could Cause This Symptom	
You have entered this MAP because you were unable to complete the POST, the memory size displayed was incorrect, there was a memory parity check, you received an error message indicating a memory failure, or you have been directed here from another MAP.	 A memory module is failing. A memory expansion adapter is failing. The system board is failing. The Setup program options are not correctly set. 	

001

Find your system and system board type in the following figure and go to the MAP indicated.

System Type	System Board	MAP
Personal Computer	16/64KB	MAP 0200: Memory PC
Personal Computer	. 64/256KB	MAP 0200 Memory PC
Portable PC	64/256KB	MAP 0200: Memory XT
Personal Computer XT	64/256KB	MAP 0200: Memory XT
Personal Computer AT	All	MAP 0200: Memory AT
Note: 16/64KB and 64/256 left edge of the syste		e marked along the

Figure 1. System Identification

MAP 0200: Memory (PC)

001

When a memory failure is detected during the POST, a 201 error message preceded by a four-character error code (XXXX 201) may be displayed. This error message lasts about 1 second before being replaced by a Parity Check message

Watch the display carefully and make a note of the four-character error code.

- Power off the system.
- Insert the Advanced Diagnostics diskette into drive A.
- Power on the system.

DID A 201 ERROR OCCUR DURING THE POST?

Yes No

))(1)

Go to Step 004 in this MAP.

003

Go to Step 011 in this MAP.

004

(From Step 002 in this MAP)

IS THE ADVANCED DIAGNOSTICS MENU DISPLAYED?

Yes No

005

Go to "MAP 0020: Power Start."

004

Select 0 (SYSTEM CHECKOUT).

DOES THE AMOUNT OF MEMORY DISPLAYED ON THE INSTALLED DEVICES MENU MATCH THE AMOUNT OF INSTALLED MEMORY?

Yes No

007

(Step 007 continues)

007 (continued)
Go to Step 018 in this MAP.

608

(From Step 020 in this MAP)

- Press Y (IS THE LIST CORRECT).
- Press 0 (RUN TESTS ONE TIME).
- Press 2 (XXX KB MEMORY).

DID YOU RECEIVE AN ERROR MESSAGE DURING DIAGNOSTIC TESTS?

Yes No

902

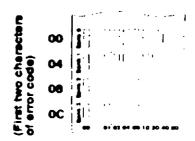
You have successfully completed the Advanced Diagnostic tests. If you suspect an intermittent problem, start an error log. If you need instructions, refer to the Reference manual.

Note the four-character error code as shown in Figure 1. You will need it for later steps.

TESTING - XXXXO MEMORY
THIS TEST TAKES UP TO TWO MINUTES
PLEASE STAND BY
X:XX:XX
ERROO XXXXO MEMORY
FAILING ADDRESS - SPACE/MODULE XXXX

PRESS ENTER TO CONTINUE

Figure 1. Advanced Diagnostics Error Message


Continue with Step OII in this MAP.

015

Find the failing bank and module in Figure 2.

Notes:

- 1. The failing bank is identified by the first two characters of the error code.
- 2. The failing module is identified by the last two characters of the error code.

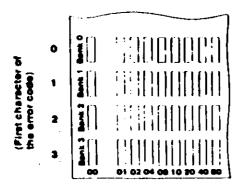
(Last two characters of error code)
Top View of System Board

Figure 2. System Board

(Step 015 continues)

015 (continued) DID YOU FIND THE FAILING MODULE? Yes No 016 Replace the nine modules in the failing bank. If this does not correct the problem, replace the system board 017 Replace the failing module, then go to Step 001 to verify system. 018 (From Step 007 in this MAP) Check the memory switches on the system board and any installed memory expansion options. **ARE THE SWITCH SETTINGS CORRECT?** Yes No Correct the switch settings, then go to Step 001 to verify system operation. 020 Press N then Enter. Follow the instructions on the screen to correct the memory size, then go to Step 008 in this MAP to verify system operation. 021

- 021
 (From Step 012 in this MAP)
 IS THE FIRST CHARACTER OF THE ERROR CODE 0, 1, 2, OR 3?
 Yes No
 - | | 022 | Go to "MAP 0200: PC Family Expansion Memory."
- **023** (Step 023 continues)


4

023 (continued)

- Find the failing bank and module in Figure 3.

Notes:

- 1. The failing bank is identified by the first character of the error code.
- 2. The failing module is identified by the last two characters of the error code.

(Last two characters of error code)
Top View of System Board

Figure 3. System Board

DID YOU FIND THE FAILING MODULE?

Yes No

024

Replace the nine modules in the failing bank. If this does not correct the problem, replace the system board.

025

Replace the failing module, then go to Step 001 to verify system operation.

MAP 0200: Memory (XT)

001

- Power off the system.
- Insert the Advanced Diagnostics diskette into drive A.
- Power on the system.

DID A 201 ERROR OCCUR DURING THE POST?

Yes No

002

Go to Step 004 in this MAP.

do3

Go to Step 017 in this MAP.

004

(From Step 002 in this MAP)

DID THE ADVANCED DIAGNOSTICS MENU APPEAR?

Yes No

005

Go to Step 025 in this MAP.

006

- Select 0 (SYSTEM CHECKOUT).

DOES THE AMOUNT OF MEMORY DISPLAYED ON THE INSTALLED DEVICES LIST MATCH THE AMOUNT OF MEMORY INSTALLED?

Yes No

007

Go to Step 022 in this MAP.

800

(From Step 024 in this MAP)

IS THE INSTALLED DEVICES LIST CORRECT?

Yes No

(Step 009 continues)

Press N and follow the instructions on the screen, then go to Step. 010 in this MAP.

010

(From Step 009 in this MAP)

- Press Y (IS THE LIST CORRECT).
- Press 0 (RUN TESTS ONE TIME).
- Press 2 (XXX KB MEMORY).

DID YOU RECEIVE AN ERROR MESSAGE DURING DIAGNOSTIC TESTS?

Yes No

Ó I I

You have successfully completed the Advanced Diagnostic tests. If you suspect an intermittent problem, start an error log. If you need instructions, refer to the Reference manual.

DOES THE ERROR MESSAGE HAVE A 201 ERROR CODE DISPLAYED?

Yes No

013

Go to Step 025 in this MAP.

014

 Note the seven-character error code (XXXXX XX) as shown in Figure 1 on page 0200-3.

Figure 1. Advanced Diagnostic Error Message

IS THE FIRST CHARACTER OF THE SEVEN-CHARACTER ERROR CODE 0, 1, 2, OR 3?

Yes No

015

Go to "MAP 0200: PC Family Expansion Memory."

016

Go to Step 019 in this MAP.

017

(From Step 003 in this MAP)
201 is preceded by a seven-character error code (XXXXX XX 201).

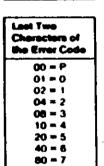
IS THE FIRST CHARACTER OF THE SEVEN-CHARACTER ERROR CODE 0, 1, 2, OR 3?

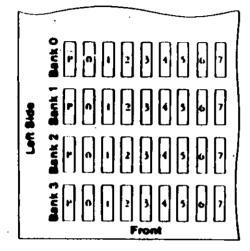
Yes No

018

Go to "MAP 0200: PC Family Expansion Memory."

019


(From Step 016 in this MAP)


 Find the failing bank and module in Figure 2 on page 0200-4. Í,

Notes:

- 1. The failing bank is identified by the first character of the error code.
- 2. The failing module is identified by the last two characters of the error code.

First Character of the Error Code
0 = Bank 0
1 = Bank 1
2 = Bank 2
3 = Bank 3

Top View of System Board

Figure 2. System Board

DID YOU FIND THE FAILING MEMORY MODULE?

Yes No

020

Replace the nine modules in the failing bank. If this does not correct the problem, replace the system board.

Replace the failing module, then go to Step 001 in this MAP to verify system operation.

022

(From Step 007 in this MAP)

- Check the memory switch settings on the system board and any installed memory expansion options.

ARE THE SWITCH SETTINGS CORRECT?

Yes No.

023

Correct the switch settings, then go to Step 001 to verify system operation.

024

- Press N then Enter.
- Follow the instructions on the screen to correct the memory size, then go to Step 008 in this MAP.

025

(From Steps 005 and 013 in this MAP)

IS A PARITY CHECK MESSAGE DISPLAYED?

Yes No

Go to "MAP 0020: Power Start."

027

IS A FIVE-CHARACTER ERROR CODE DISPLAYED UNDER **PARITY CHECK MESSAGE?**

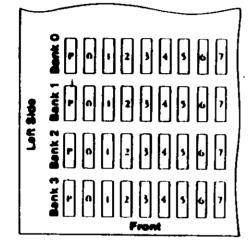
Yes No

Go to "MAP 0020: Power Start."

029

IS THE FIRST CHARACTER OF THE ERROR CODE 0, 1, 2, OR 3.

Yes No


Go to "MAP 0200. PC Family Expansion Memory."

(Step 031 continues)

- Find the failing bank in the following figure.
 - Note: The failing bank is identified by the first character of the error code.
- Replace the nine memory modules in the failing bank, then go to Step 001 to verify system operation.

First Character of the Error Code

- 0 = Bent 0
- 2 = Bank 2
- 3 = Bank 3

Top View of Bystem Board

Figure 3. System Board

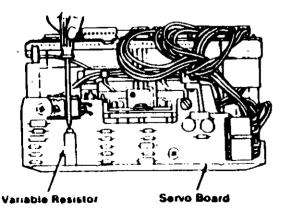
TEST POINT REFERENCE PAGE

for

TYPE 1 DISKETTE DRIVES

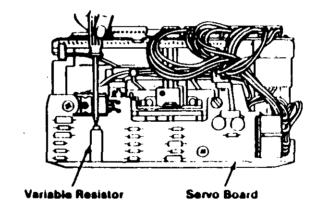
(Drives with a serial number prefix A, B, or no prefi:

Preliminary Speed Check


- 1. Remove the diskette drive
- Plug the power connector into the diskette drive logic board. Leave the signal cable disconnected.
- 3. Insert a scratch diskette into the diskette drive.
- Connect a jumper between TP-10 and TP-13 of the diskette drive logic board.
- 5. Power on the system.
- Observe the strobe marks on the drive pulley under fluorescent lighting.

Note: The outer ring is for 60 hertz and the inner ring is for 50 hertz.

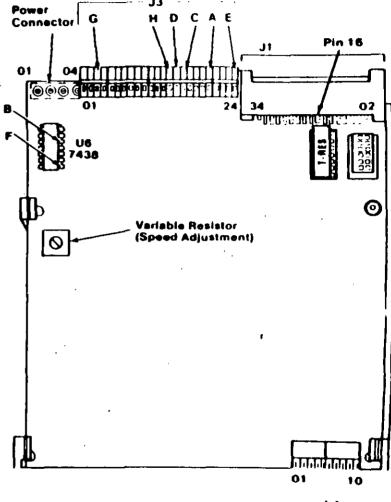
If the speed is correct, the appropriate ring of strobe marks will appear to stand still.


Preliminary Speed Adjustment

Adjust the variable resistor on the servo board until the appropriate ring of strobe marks appears to stand still.

Final Speed Adjustment

- 1. Power off the system.
- 2. Insert the Advanced Diagnostic into the diskette drive.
- 3. Power on the system.
- 4. Run the Diskette Drive and Adapter tests. Use the (RUN TESTS MULTIPLE TIMES) option.
- 5. When the Diskette Diagnostic menu appears, select option 4, (SPEED TEST).
- Adjust the variable resistor on the servo board until the speed falls within the range displayed.



Test Point Reference Chart

Test Point	Location	Specifications	
A	J2-20	Increases from 0 Vdc to 5 0 Vdc while inserting a diskette in the drive	
В	U6 Pin 5	Decreases from 5.0 Vdc to 0 Vdc while inserting a diskette in the drive	
Ė	J3-16 (+).	1.5 Vdc minimum across	
D	J3-15 (~)	test points	
E	J3-24	0 Vdc before the LED lights.	
F	U6 Pin 1	As the LED initially lights, the voltage increases by 0.2 Vdc.	
G	13:3	3 Vdc to 12 Vdc with the LED on.	
н	J3-14	Decreases from 5 0 Vdc to 0 Vdc while inserting a diskette into the drive	

Requested Voltage Reading	Minimum	Meximum
Approximately 0 Vdc	0 0 Vdc	0.8 Vdc
Approximately 0.2 Vdc	0 15 Vdc	0 25 Vdc
Approximately 0.5 Vdc	0.5 Vdc	1 0 Vdc
Approximately 5.0 Vdc	2 0 Vdc	5.5 Vdc
Approximately 12 Vdc	11 2 Vdc	12 6 Vdc

Test Point Locations

J-4

ICE PAGE

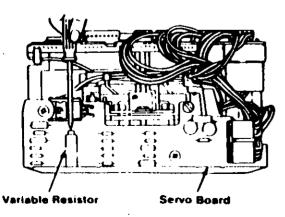
RIVES

prefix D)

ā

0600-27/28

Preliminary Speed Check


- 1. Remove the diskette drive.
- 2. Plug the power connector into the diskette drive logic board. Leave the signal cable disconnected.
- 3. Insert a scratch diskette into the diskette drive.
- 4. Connect a jumper between TP-10 and TP-13 of the diskette drive logic board.
- 5. Power on the system.
- 6. Observe the strobe marks on the drive pulley under fluorescent lighting.

Note: The outer ring is for 60 hertz and the inner ring is for 50 hertz.

If the speed is correct, the appropriate ring of strobe marks will appear to stand still,

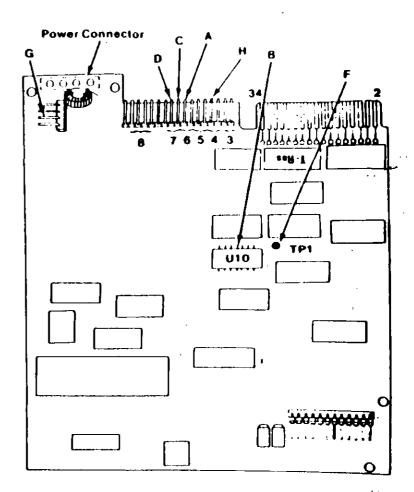
Preliminary Speed Adjustment

Adjust the variable resistor on the servo board until the appropriate ring of strobe marks appears to stand still.

TEST POINT REFERENCE PAGE

for

TYPE 3 DISKETTE DRIVES


(Drives with a serial number prefix E)

Test Point Reference Chart

Test Point	Location	Specifications
A	J6-2	5.0 Vdc with the diskette removed and the latch closed
В	U10-4	Do the following
•		1. Insert a diskette into drive A
		2 Power off the system for 5 seconds.
	•	3 Power on the system
		4. With the diskette inserted and the latch closed, a fluctuation of approximately 0.1 Vdc will occur after the beep at the end of the POST and will continue for as longs the spindle rotates.
C	P7·1 (+)	1 5 Vdc minimum across.
O	P7-2 (-)	test points
ε	N/A	Go to Step 038
F,	TP-1	As the LED initially lights, the voltage decreases by 0.2 Vdc
G	P9-3	3 Vdc to 12 Vdc with the LED on.
н	P4-2	Decreases from 5.0 Vdc to 0 Vdc white inserting a diskette into the drive

Requested Voltage Reading	Minimum	Meximum
Approximately 0 Vdc	0 0 Vdc	08 Vdc
Approximately 0.2 Vdc	0 15 Vdc	0 25 Vdc
Approximately 0.5 Vdc	0.5 Vdc	1 0 Vdc
Approximately 5.0 Vdc	2 0 Vdc	5 5 Vdc
Approximately 12 Vdc	11 2 Vdc	12 6 Vdc

Test Point Locations

NCE PAGE

DRIVES

prefix E)

Final Speed Check

- 1. Power off the system.
- 2. Insert the Advanced Diagnostic diskette into drive A.
- 3. Power on the system.
- 4. Run the Diskette Drive and Adapter test using the (RUN TESTS MULTIPLE TIMES) option.
- 5. When the Diskette Diagnostic menu appears, select option 4, (SPEED TEST).
- 6. The speed should fall within the range displayed.

The Type 3 diskette drive monitors its own speed and compensates accordingly. There are no speed adjustments on the drive. If the speed is not correct, an electrical or mechanical problem exists. Return to the MAP to isolate the failure.

Preliminary Speed Check

- 1. Remove the diskette drive
- 2. Plug the power connector into the diskette drive logic board. Leave the signal cable disconnected.
- 3. Insert a scratch diskette into the diskette drive.
- 4. Connect a jumper between pin 16 of the diskette drive signal connector and ground (use the frame as ground).
- 5. Power on the system.
- Observe the strobe marks on the drive pulley unusifluorescent lighting.

Note: The outer ring is for 60 hertz and the inner ring is for 50 hertz.

7. If the speed is correct, the appropriate ring of strobe marks will appear to stand still.

The Type 3 diskette drive monitors its own speed and compensates accordingly. There are no speed adjustments on the drive. If the speed is not correct, an electrical or mechanical problem exists. Return to the MAP to isolate the failure.

MAP 0900: Parallel Port Start

Symptom Explanation	Conditions That Could Cause This Symptom		
You have entered this MAP because you received a 9XX error code, or you have been directed here from another MAP.	 The Printer Adapter is failing. The Serial Parallel Adapter is failing. The printer cable is failing. 		

001

Find your system type in the following figure and refer to the MAP indicated.

System Type	MAP
Personal Computer	MAP 0900 Printer Adapter
Personal Computer XT	. MAP 0900. Printer Adapter
Portable PC	. MAP 0900 Printer Adapter
Personal Computer AT	MAP 0900 Senal Parallel Adapter Parallel Port

Figure 1. System identification

001 (continued) **DID YOU RECEIVE AN ERROR MESSAGE?** Yes No 002 You have successfully completed the Advanced Diagnostic tests. If you suspect an intermittent problem, start an error log. If you need instructions, refer to the Reference manual.

003

Replace the Primary Serial/Parallel Adapter.

M... 0900: Printer Adapter

Symptom Explanation	Conditions That Could Cause This Symptom
You have entered this MAP because you received a 9XX error code, or you have been directed here from another MAP.	• The printer adapter is failing.

001

- Power off the system.
- Disconnect the printer cable from the adapter.
- Insert the Advanced Diagnostics diskette into drive A.
- Power on the system.
- Run the Printer Adapter tests. Use the (RUN TESTS ONE TIME) option.
- Follow the instructions on the screen. Do not power off the system during this test.

Note: Use wrap plug (IBM Part 8529228) when instructed to install the wrap plug.

DID YOU RECEIVE AN ERROR MESSAGE?

Yes No

002

You have successfully completed the Advanced Diagnostic tests. If you suspect an intermittent problem, start an error log. If you need instructions, refer to the Reference manual.

003

Replace the printer adapter.

MAP 0900: Serial/Parallel Adapter - Farallel Port

Symptom Explanation	Conditions That Could Cause This Symptom	
You have entered this MAP because you received a 9XX error code, you suspect a Serial/Parallel Adapter - Parallel Port problem, or you have been directed here from another MAP.	The adapter assigned as the "Primary Parallel Port" is failing.	

Ensure the following conditions exist:

- 1. An adapter is set for "Primary Parallel Port" operation.
- 2. If a second adapter with a parallel port is installed, it is set for "Alternate Parallel Port" operation.

001

- Power off the system.
- Disconnect the printer cable if it is attached to the parallel port set for primary operation.
- Insert the Advanced Diagnostics diskette into drive A.
- Run the Serial/Parallel Parallel Port tests. Use the (RUN TESTS ONE TIME) option.
- Follow the instructions on the screen. Do not power off the system during this test.

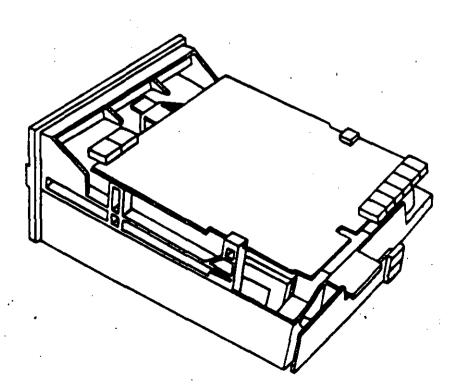
Note: Use wrap plug (IBM Part 8529228) when instructed to install the wrap plug

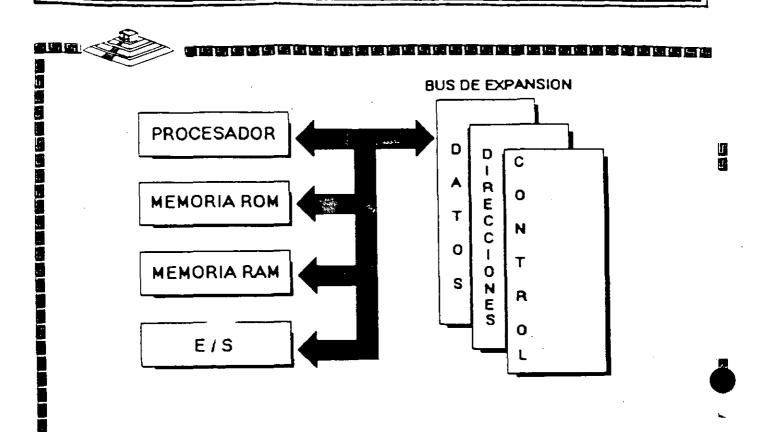
(Step 001 continues)

- 4. IMPULSORES DE DISCO FLEXIBLE
- I. DESCRIPCION Y FUNCIONAMIENTO DEL IMPULSOR DE DISCO FLEXIBLE DE 5:25 PULGADAS DE DIAMETRO

El impulsor es el dispositivo de la microcomputadora que permite leer, grabar y borrar información en discos flexibles en forma digital.

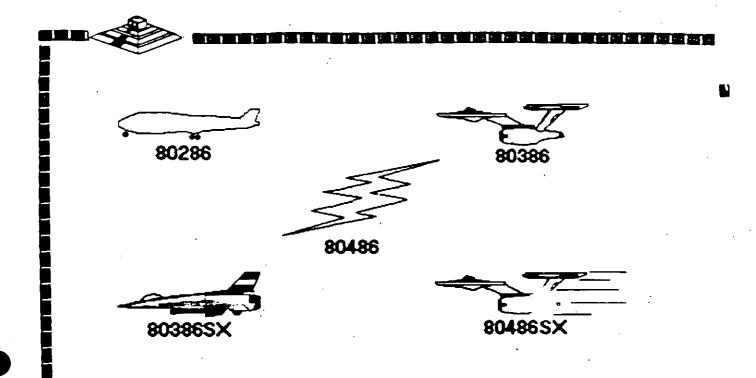
Los primeros impulsores fabridados por las compañías Tandon y Control Data Corporation fueron grandes (fig. 4.1), posteriormente varias compañías, además de las anteriores, a finales de los setentas fabricaron impulsores de media altura (fig. 4.2), es decir, de la mitad de altura de los primeros. Sin embargo, todos manejan el estándar de las señales de interfaz.




Figura 4.1. Impulsor Tandom.

./c

ANEXO 1


ACTUALIZACION EN MICROINFORMATICA

Arquitectura General de la PC

કુ ફ

EL MICROPROCESADOR

Características de un Microprocesador

Un microprocesador es un circuito combinacional y secuencial que interactua con otros circuitos para formar en conjunto un sistema digital de cómputo.

Funciones Principales:

- *Provee las señales de tiempo y control para todos los elementos del sistema.
- *Busca instrucciones y datos desde la memoria.
- *Transfiere datos desde y hacia Dispositivos de Entrada/Salida.
- *Decodifica instrucciones.
- *Realiza operaciones lógicas y aritméticas solicitadas através de instrucciones.
- *Responde las señales de control de E/S, tales como RESET e INTERRUPT.

RESERBAGESSE

NIVELES DE INTERRUPCION XT

N"	CAUSA
NMI	Error de Paridad
0	Contador
1	Tedado
2	Reservado
3	Comunicación / Puerto Serie (COM2), SDLC o BSC (Secundaria)
4	Comunicación / Puerto Paralelo (COMI), SDLC o BSC (Primaria)
5	Disco Duro
6	Puerto Paralelo

• anountes

<

NIVELES DE INTERRUPCION AT

N"	FUNCION
0	Timer del Sistema de salida 0
1	Salida del Teclado buffer lleno
2	Interrupción del controlador 2 (niveles 8-15
3	Puerto Senal 2
4	Puerto Serial 1
5	Puerto Paraielo 2
6	Controlador de Discos
7	Puerto Paraleio 1
8	Reloj de Tiempo Real
9	Redireccionado via Software a INT IAH
10	Reservado
11	Reservado
12	Reservado,
13	80287
14	Disco Duro
	_

rapuntes

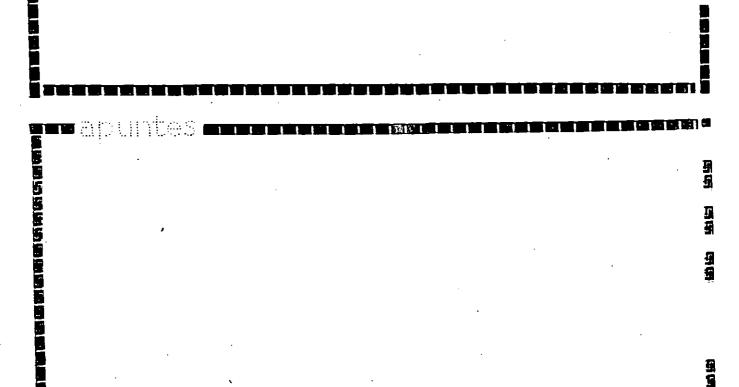
Memoria ROM (Read Only Memory)

Funciones Principales:

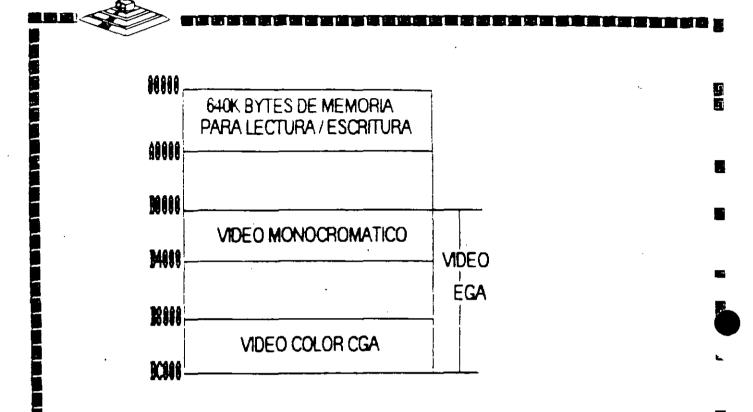
- *Inicialización del Sistema.
- *Diagnóstico de Encendido y Revisión del Sistema.
- *Determinación de la Configuración del Sistema.
- *Manejo de Dispositivos de E/S.- BIOS
- *Cargado del Sistema Operativo.
- *Patrones de bits para los 1ros. 128 caracteres ASCII.

~ 3

Mapa de memoria XT (ROM)


Ġ

Memoria RAM (Random Access Memory)



Características Principales:

- *Lectura / Escritura.
- *Acceso Aleatorio.
- *Espacio Disponible al Usuario y sus aplicaciones.
- *Tamaño Limitado por el número de bits de direcciones del Microprocesador.
- *Se direcciona através de un mapa de memoria predefinido.
- *Tiempo de acceso de 150 a 80 nanosegundos.

Mapa de memoria XT (RAM)

Arquitectura de una computadora

D.1 VO Address Map

Devices	lex Range	Usage	
ler i	000-015	≾ysterπ	į i
troller)	020 CGF	System	
	040-05F	System	
Lro)	060-06F	System	!
ick, NMI mask	070-07F	System	
gister	080-09F	System	1
troller 2	0A0-0BF	System	
er 2	OCO-ODF	System	1
Coprocessor busy	0F0	System	
coprocessor	of:	System	'
essor	OF8-OFF	System	·
•	1F0-1F8	vo	
	200-207	l vo	
er port 2	278-27F	vo]
	2FB-2FF	10	
ud .	300-31F	VO	
	360-36F	, vo	
er porc1	378-37F	VO	1
chronous 2	380-38F	. vo	İ
us 1	SAO-SAF	l vo	-
e display and printer adapter	380-38F	i vo	
•	3C0-3CF	l vo	
ics monitor 20 aprier	300-30F	, vo	
troller	3F0-3F7	vo	
	3F8-3FF	vo	

Bus de Expansión

Funciones Principales:

- *Conecta los componentes funcionales al Microprocesador.
- *Está formado por: Bus de Datos

Bus de Direcciones

Bus de Control

*Además da las señales de:

Tiempo

IRQs

DMA

Dispositivos Inteligentes

DMA (Direct Memory Access)

Ventajas:

- *Velocidad en el Dispositivo.
- *No "distrae" al Microprocesador.
- *Transferencia de información rápida.

sar urras

Arquitectura de las Microcomputadoras

Especificaciones IBM Personal Computer

- * Fuente de Poder de 63 5 Watts
- * Microprocesador 8088 de 4.77 Mhz
- *5 Slots de Expansión (Con socket de 62 pins)
- * Memona PAM base de 16K 64K
- * Bocina
- *Unidad de Disco Flexible de 320K o 360K de 5¼
- *Tedado de 83 tedas.

多明明医医图图斯德医图图图 [

Arquitectura de las Microcomputadoras

Especificaciones IBM Personal Computer XT

- *Fuente de Poder de 130 Watts
- *Microprocesador 8088 de 4.77 Mhz.
- *8 Stats de expansión (Con sacket de 62 pins.)
- *Memoria RAM base de 256K
- *Disco Duro (En algunos modelos)
- * Adaptador de Comunicaciones Asincronas (En algunos modelos)
- *Tecado de 83 tecas

للكلة

Microprocesador Intel 8088

- *Velocidad de Reloj en MHz. 4.77 12
- *Tamaño del Bus de Datos 16 / 8
- *Tamaño del Bus

de Direcciones 20 --- > Memoria = 1MB

*Modos de Operación: Real

640 KBytes Usuario

> 384 KBytes Sistema

anuntes

3個低气气低色味气气气气气

Microprocesador Intel 8086

- *Velocidad de Reloj en MHz. 4.77 12
- *Tamaño del Bus de Datos 16 / 16
- *Tamaño del Bus

de Direcciones 20 --- > Memoria = 1MB

*Modos de Operación: Real

640 KBytes Usuario

> 384 KBytes Sistema

20) 20 21

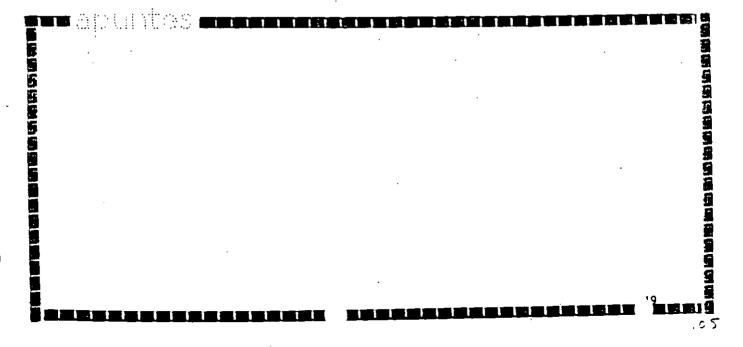
Arquitectura de las Microcomputadoras

Especificaciones IBM Personal Computer AT

- *Fuente de poder de 192 Watts switchable para 115 o 230 Vac
- *Microprocesador 80286 de 6 Mhz.
- * 8 Soits de expansión
 - 6 con 1 socket de 36 pins y 1 de 62 pins 2 con 1 socket de 36 pins únicamente
- * Memoria RAM base de 256K
- *Memoria RAM de tipo Semiconductor Complementario de Oxidos Metálicos (CMOS) primantener la configuración del setup del sistema.
- Batería para manteneer activa la memona CMOS cuando el equipo este apaqado.
- *Bocina
- * Disco Duro
- [●]Unided de Disco Flexible de 5¼º de 1 2MB
- * Sequip que inhibe cualquier entrada por gel teclado
- * Tedado de 84 tedas.

#明明年6日日日日日日日日日

Microprocesador Intel 80286



- *Velocidad de Reloj en MHz. 6 20
- *Tamaño del Bus de Datos 16 / 16
- *Tamaño del Bus de Direcciones 24 --- > Memoria = 16MB
- *Modos de Operación: Real

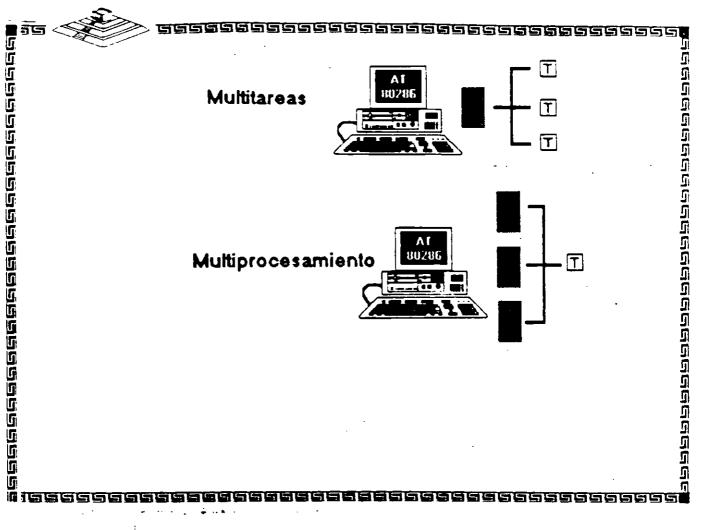
Protegido

15 MBytes Usuario

> 1 MByte Sistema

Microprocesador 80286

Modos de Operación 80286


Modo REAL

Se comporta como:un:

Modo PROTEGIDO

- *16 MB Memoria RAM
- * Multitare as
- * Multiprocesamiento
- * Memoria Virtual

Modo Protegido de Operación 80686

Microprocesador Intel 80386

- *Velocidad de Reloj en MHz. 16 33
- *Tamaño del Bus de Datos 32 / 32
- *Tamaño del Bus

de Direcciones 32 --- > Memoria = 4GB

*Modos de Operación: Real

Protegido Virtual Limitante Tecnológica (128 MBytes)Usuario

1 MByte Sistema

Microprocesador Intel 80386/sx

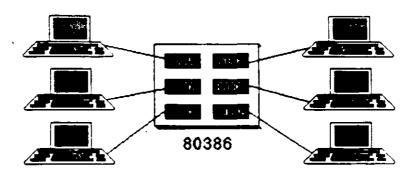
- *Velocidad de Reloj en MHz. 16 20
- *Tamaño del Bus de Datos 32 / 16
- *Tamaño del Bus

de Direcciones 32 --- > Memoria = 4GB

*Modos de Operación: Real

Protegido Virtual Limitante Tećnológica (128 MBytes)Usuario

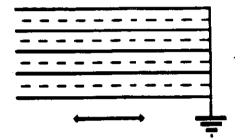
1 MByte Sistema


]

电影电影电影电影影响的多级多级

Modos de Operación 80386

Modo Virtual 8086



Arquitectura 80386

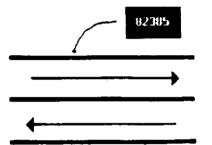
Micro Channel IBM:

- *"Nuevo Estándar....?"
- *Canal Compartido.
- *Alta Confiabilidad.
- *Orientado a Multitareas y Multiprocesos.
- *Utiliza e implementa el POS.
- * No Compatible.

Arquitectura 80386

Smartslot AST Research:

- *Enfoque Arquitectónico Intermedio.
- *Bus Arbitrado.
- *Procesador Múltiple.
- *Buena Velocidad.
- *No 100% Compatible.
- *Necesita Adeptos.


: S

Arquitectura 80386

Flex Compaq:

- *Alta Velocidad.
- *Compatibilidad.
- *Canal Dual con Procesador Adicional 82385.
- * No Comparte Canal Ni Memoria.

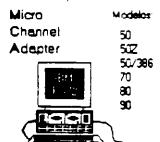
•apuntes

_

EISA

Miembros del consorcio EISA:

- *AST Research
- *Compag
- *Hewllett Packard
- *NEC
- *Zenith Data Systems
- *Epson
- *Olivetti
- *Tandy
- *Wyse Technology


. .

Tecnología de las Microcomputadoras

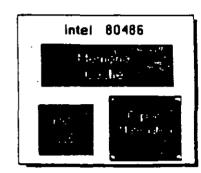
Industry
Standar
Architecture

医厄厄厄图

9

Caracteristicas Principales de las diversas Arquitecturas

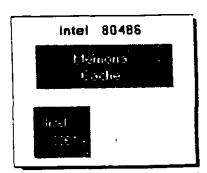
Compatibilidad	Ninguna	ISA	Ninguna
Soporte para messoria direccionable	16MB	4B 4GB	
Promodio máximo de Datos: DMA CPU	20MB/seg 14MB/seg	33MB/seg 16MB/seg	2MB/seg 8MB/seg
Permite el uso de Periféricos Inteligentes y bus master de 32 bits	SI	SI	NO
Amplitud máxima de Datos	32 bits	32 bits	16 bits
CARACTERISTICA	MCA	EISA	ISA


g

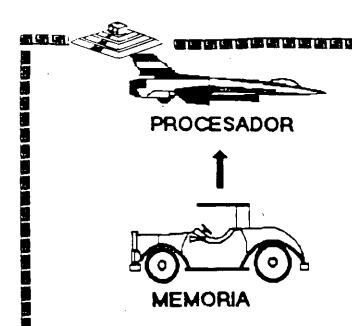
S

Microprocesador Intel 80486

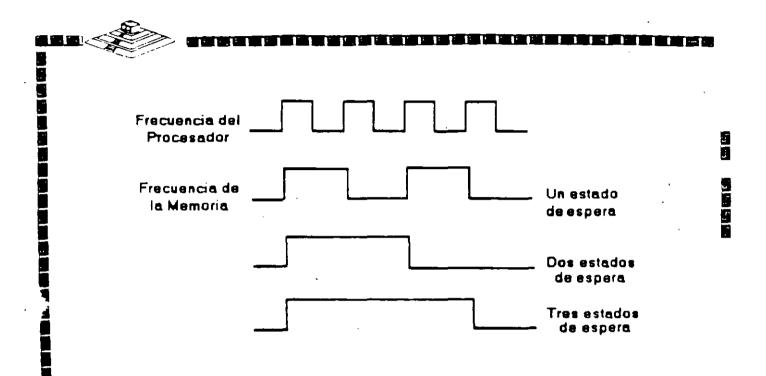
- *Características Similares al 80386
- * Incluye Coprocesador Matemático
- *Incluye Memoria Caché

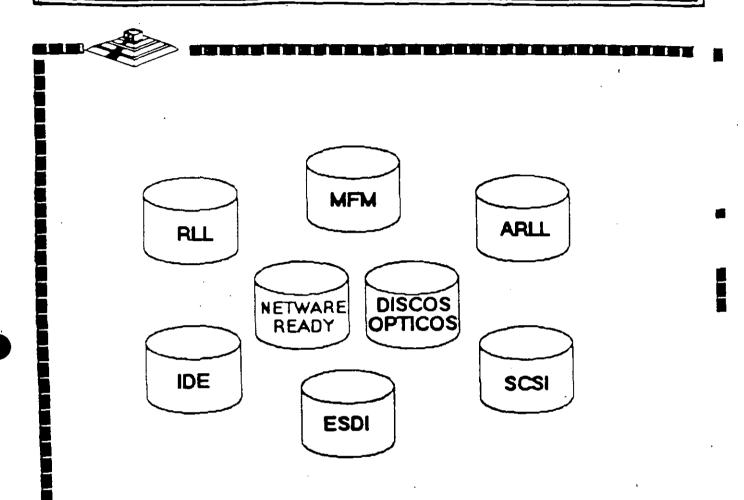


rapuntes


Microprocesador Intel 80486/sx

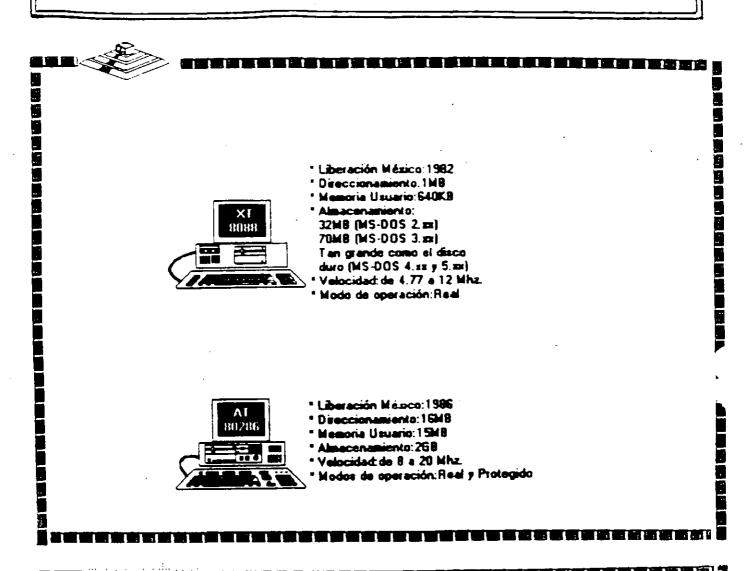
- *Características Similares al 80386/sx
- *Incluye Memoria Caché


LA MEMORIA


ESTRATEGIAS

- Simple DRAMS
- Simple SRAMS
- Interleaved RAM
- Page Mode
- Caching

Estados de Espera "Wait States"



TIPOS DE CONTROLADORES

•apuntes

Características de las Computadoras

Características de las Computadoras

- * Liberación Máxico: 1989
- * Direccionamento: 468
- Memoria Usuario: Limitante Tecnológica (64M)
- * Almacenamiento: en TB * Velocidad: de 16 a 33 Mhz.

- Liberación México: 1990
- Características: Similares al 80386
- * Inches Memorie Caché y Coprocesador Matemático
- * Tecnolog(a:RISC
- * Velocidad de 25 a 55 Mkz.

医络线线的现在时间的时间时间的线线

COMMUNICATIONS

Installation

Guide -

G/Ethernet 8-bit PC Adapter
G/Ethernet 8-bit WS Adapter

;>

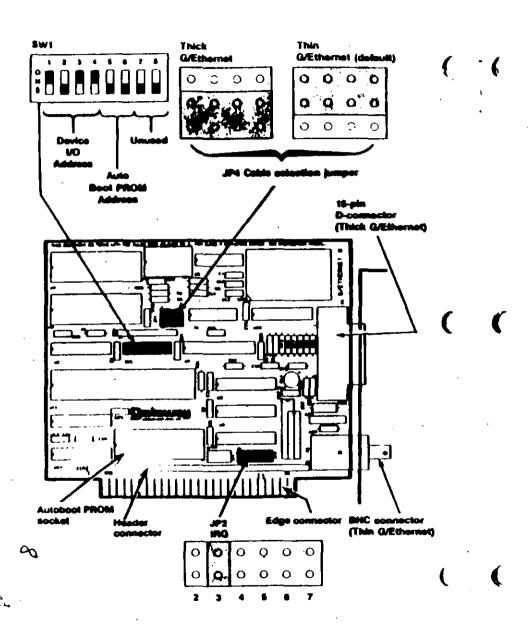


Figure 2-1, G/Ethernet 16-bit Component Locations.

SELECTING THE DEVICE VO ADDRESS

The device I/O address allows the PC to locate and differentiate between installed devices. Switches 1, 2, 3, and 4 of switch block SW1 set the device I/O address. The default is 002A0-002BF (hexadecimal). Table 2-1 lists the available device I/O address ranges and their correct switch positions.

If you have installed an Autoboot PROM, select device I/O address 2 A0h.

Table 2-1. Device I/O Address Selections.

	3/10/	Sive	SVE	63.48
00280-0029F	ON	ON	ON	ON
002A0-002BF (1)	ON	OFF	ON	ON
002C0-002DF (2)	ON	ON	OFF	ON
002E0-002FF	ON	OFF	OFF	ON
00300-0031F (A)	ON	ON	ON	OFF
00320-0033F	ON	OFF	ON	OFF
00360-0037F (4)	ON	OFF	OFF	OFF
NOTES:				
(1) Detect				
(2) Both IAQ2 and I	RQ3 are available v	ofth this add	1000	
(3) Possible conflict	with some tape de-	Aces		
(4) IBM LAN defeats				

Table 2-3 lists the IRQ and device I/O address combinations that are selectable through the NetWare software installation process. Be sure that the device I/O and IRQ setting you have selected matches one of those combinations. Refer to Selecting the Software Configuration in this section for more details.

CF

SETTING THE AUTOBOOT PROM ADDRESS

The Autoboot PROM address allows the PC to locate the Autoboot PROM. If you cannot use the default, CC000h-CFFFFh, select a new address by setting switches 5 and 6 of switch block SW1 (Figure 2-1) according to the Table 2-2.

The Autoboot PROM requires IRQ 3 and device I/O address 2A0h.

Table 2-2. Autoboot PROM Address Ranges.

Address Range	SW1-6	W. Stranger
C0000-C3FFF (1)	ON	ON
C4000-C7FFF (2)	OFF	ON .
C8000-CBFFF (2)	ON	OFF
CC000-CFFFF* (2)	OFF	OFF
NOTES:		•
* Default address		
(1) Possible conflict with here edepters	i disk controller	or VQA and EQA
(2) Possible conflict with EMI	B memory or L	NN adapters

SELECTING COMPATIBILITY

The G/Ethernet 16-bit adapter is compatible with most PC mother-boards. If you experience intermittent failures when booting the PC, the PC locks up, or you receive continous network error messages, and you cannot attribute these problems to incorrect software installation, poor cable connection, or faulty hardware, then you may need to change the compatibily jumper, JP5.

JP5 has one column of three pins with one jumper installed. Select position A (default) by strapping the top and middle pins (Figure 2-1). Select position B by strapping the middle and bottom pins.

If the problem still occurs refer to the Diagnostic and the Troubleshooting sections of this manual.

SELECTING THE SOFTWARE CONFIGURATION

During the NetWare installation process, you will need to select the IRQ and device I/O settings to match the adapter. Table 2-3 lists the combinations that will display for the NetWare Configure Drivers/Resource option. Verify that one of these combinations matches the adapter's hardware settings.

Table 2-3. Predefined Address Selections.

	Conficting Device
0*	IRQ 3, Device I/O Address 002A0h COM2 (IRQ only)
1	IRQ 5, Device I/O Address 00280h Tape Controller
2	IRQ 3, Device t/O Address 002E0h COM2
3	IRQ 5, Device I/O Address 00320h XT hard disk cont.
4	IRQ 7, Device I/O Address 00380h LPT1
5	IRQ 3, Device I/O Address 00300h COM2 (IRQ only)
6	IRQ 3, Device I/O Address 002C0h COM2 (IRQ only)
.7	IRQ 2, Device I/O Address 002C0h EGA (IRQ only)
* Default	

EL SISTEMA PERSONAL 2.

Hace algunos años, cuando Apple marcaba la pauta en el campo de las computadoras personales, IBM lanzó a este mercado sus máquinas denominadas PC (computadoras personales por sus siglas en Inglés), estableciendo un estandar que predominaría en adelante en dicho campo. De la misma forma que en ese entonces, IBM "modifica" los estándares en este año al liberar su línea de computadoras personales bajo el nombre de sistemas personales 2 o simplemente como se conoce en el lenguaje común PS/2.

La creciente utilización de procesadores más versátiles y el avance dentro de la fabricación de un mayor número de dispositivos lógicos en menores espacios, permite a IBM la reducción de dimensidas singuianes de rendimiento comparable dentro de la línea PC.

Dentro de la nueva línea en sistemas personales se nombran diferentes modelos, como son: Modelo 25, Modelo 30, Modelo 50, Modelo 60, y Modelo 80, Cada una con opción a configurarse en diferentes submodelos, dependiendo de la instalación de opciones.

Las dos carcarísticas más significativas que se pueden distinguir en el sistema personal 2, según el anuncio de IBM, son la introducción de una nueva "tecnología" en el manejo de los canales de comunicación interna, llamada "Arquitectura de Micro-Canal" y el funcionamiento del sistema bajo, el sistema operativo OS/2, y que está siendo desarrollado en conjunto por IBM y MICROSOFT.

El manejo del video dentro de los PS/2, también ha sufrido modificación, los monitores se manejan analógicamente y la unidad central de procesamiento trae integrado al Mother-board (la tarjeta principal del sistema) la circuitería controladora.

INTRODUCCION.

La tecnología de Micro-canal se puede catalogar como un bus de alto rendimiento a alta velocidad, además, con el manejo adecuado por parte del sistema operativo, según se promete, proporciona un manejo distribuido por parte del procesador para la realización de multitareas, este Micro-canal soporta tres tipos de conectores al sistema, uno a 16 bits de datos al sistema con 24 de direccionamiento, otro de 16 con una extensión de video y un canal a 32 bits con 32 bits de direccionamiento. El manejo de DMA se hace en 8 canales de rendimiento, para transferencia de información de 4 a 8 Megabytes por segundo.

Al mirar dentro de cada uno de estos modelos, podemos notar la ausencia de interruptores para la selección de opciones, esto sa debe a que, el sistema personal DOS realiza un tipo de configuración vía programación de registros, llamada POS (programable Option Select); cada opción instalada al canal del microprocesador tiene un registro que al ser encendida la máquina es revisado contra la información guardada en memoria RAM no Volátil.

Adicionalmente se nota una tendencia a la fabricación de sistemas con la tecnología de montaje en superficie (SMT) y circuitos de alta escala de integración con firma IBM (Custom Chips), lo que ha reducido las dimensiones físicas de estos sistemas en un 40% en comparación con la tarjeta principal de la computadora personal PC/AT.

SISTEMA PERSONAL 2 MODELO 50

El sistema 50 de Ps/2 se puede concebir cono una PC/AT rediseñada trabaja a 10 Mhz bajo el mando de un procesador Intel 80286, cuenta con tres ranuras (slots) de expansión, un Megabyte de memoria RAM (expandible a 7 MB), un puerto paralelo, un puerto de comunicación asíncrona, circuitería de video integrado a una tarjeta principal (puede manejar los monitores IBM 8503, 8513, 8514), utiliza manejadores de disco flexible de 3½° en formato de 1.4 MB, su costo fluctúa alrededor de \$ 3,595 U.S.D. dependiendo de los dispositivos instalados (monitor especialmente).

En una vista general interior al modelo 50, se pueden observar como partes principales:

- a) Microprocesador 80256 en versión 10 Mhz.
- b) Coprocesador 80257 en versión 10 Mhz.
- c) Tarjeta de memoria de IBM versión 150 ns.
- d) Memoria ROM de sistema 27256 (en arregio de 64Kx16 bts).
- e) Convertidor digital analógico (D/A) de video (IMSG1718).
- f) Controlador de discos flexibles (NEC 765).
- g) Dos controladores de Interrupción (Intel 8259).
- h) Reloi de tiempo real (Motorola 146818).
- i) Controlador de puerto serie (National 16550).
- j) Fuente de poder de 92 Watts.
- k) Circuitaría de soporte en tecnología de montado en superficie.

La vista posterior al sistema central destaca una serie de conectores para intalación de opciones externas, se puede observar:

- a) Un conector de video DB-15.
- b) Dos conectores DB-25, uno para puerto paralelo y otro para el puerto serie.
- c) Un conector para teclado, y
- d) Un conector para Mouse.

Como opciones que se instalan al sistema básico, generalmente se encuentra una segunda unidad de impulsor de disco flexible y una unidad de disco duro de 20 MB.

Entre las características de operación del Modelo 50 se pueden nombrar:

- La operación del microprocesador a una velocidad de 10 Mhz con tiempos de acceso de 100 ns, la inserción de un estado de espera de acceso a memoria, lo que da un tiempo de acceso en el sistema de 300 ns; en las funciones de entrada/salida el microprocesador añade un ciclo de espera como mínimo.
- Tres controladores temporizadores programables marcados como 0, 2, y 3. Los temporizadores 0 y 2 son similares a la PC. El controlador 0 maneja la interrupción 0 del sistema (IRQ 0), el controlador 2 maneja la bocina y el controlador 3 maneja la interrupción NMI (nonmaskable).
- Controladores de DMA/IBM que soporta 8 canales (la PC/AT soporta 7 canales).
- El sistema maneja 16 niveles de interrupción usando dos controladores 8259A.
- Mapa de Memoria:

DERECCION	CAPACIDAD	DESCRIPCION
000000 - 09FFFF	540 K	SYSTEM BOARD RAM
0A0000 - 08FFFF	128 K	VIDEO RAM
OCOOOO - ODFFFF	128 K	I/O EXP ROM
060000 · OFFFF	128 K	SYSTEM BOARD ROM
100000 - 15FFFF	384 K	SYSTEM BOARD RAM
		MICRO-CHANNEL
160000 - FDFFFF	i	EXPANSION MEM.
FE0000 · FFFFFF	128 K	SYSTEM BOARD ROM

- Video. El control de video al contrario que en las PC's, se encuentra localizado en estos sistemas en la tarjeta principal, la generación de video se hace por medio de una circuitería en un arreglo gráfico de video (VGA), operando en conjunto con un convertidor digital/analógico y 256K bytes de video arreglado en cuatro mapas de 64Kb. Este arreglo es compatible con los adaptadores Monocrome Display Adapter, CGA Y EGA. Cada modo de video es seleccionado mediante programación de registros del VGA localizados en diferentes direcciones de I/O. En modo adecuado, se puede desplegar 256 colores simultáneamente de un conjunto de 262, 144 sobre un monitor de color o, 64 tonalidades de gris sobre un monitor onocromático. Los Modos generales de video que maneja el PS/2 son:
 - a) Alphanumérico (textos).
 - b) APA (all-points-addressable)

De manera específica, el PS/2 puede ser programado para manejar:

- 1) ASCII en tres conjuntos y formatos 40 X 25 y 80 X 25.
- 2)320X200 4 colores (CGA emulado) 640X480 2 colores. (CGA en modo 640X 200).
- · 3) 640 X 480 2 colores
- 4) 640 X 350 2 colores con atributos (emula EGA).
- 5) 16 colores con máximo de 640 X 480.
- 6) 256 colores 320 X 200.
- Puerto serie bajo la norma RS232c.
- Puerto paralelo con funcionamiento idéntico a PC.
- -Conectores (slots) de 116 pins (Micro-channel conector). Un conector tiene 20 pins adicionales (video extensión conector), cada uno de estos conectores permiten la transferencia en modalidades de 8 y16 bits.
- -No existen interruptores para la selección de configuración básica. La configuración se realiza mediante una rutina de programación POS.
- BIOS. Idéntico al de AT pero con adición de tamaño para el manejo de multitarea bajo el sistema operativo OS/2.

LA ARQUITECTURA DE MICRO-CANAL.

En los modeios PS/2 basados en el 80386, el canal estandar (bus) ha sido reemplazado por la sofisticada arquitectura del micro-canal. El viejo estandar estaba limitado en su velocidad de transferencia, era eléctricamente ruidoso tendiendo a irradiar interferencia de radio frecuencia, no existía la flexibilidad para cambiar funciones dentro del canal (las funciones estaban fijas para cada línea), sumado a esto el manejo de señales lógicas mediante el concepto de disparo por borde (edgetriggered), lo que contribuía a muchos errores.

Contrario al canal "tradicional", el micro-canal no está especificamente ligado al procesador central Intel, sino que tiene un conjunto de señales, protocolos asíncronos y reglas que permiten a procesadores diversos trabajar compartiendo este canal y operando unos con otros, reduciendo así el conflicto entre dispositivos con el manejo de un arbitraje en el acceso al mando del canal. Este canal no es eléctrica ni mecánicamente compatible con el viejo estandar IBM-PC, los modelos 50 y 60 usan una variante de 16 bits de datos, mientras que el modelo 80 soporta los 32 bits en tres de sus ocho conectores al canal, con dimensiones físicas menores a las del estandar PC.

El micro-canal es un canal no multiplexado, datos y direcciones viajan por líneas de manera separada, adicionalmente a estas líneas, existen dentro del canal señales de control de transferencia, señales de arbitraje, señales de soporte y líneas de alimentación a las opciones; todas estas líneas son TTL compatibles.

Para evitar el ruido de radio frecuencia el canal cuenta con líneas de tierra que corren paralelamente a las demás señales, sumando a esto, la inmunidad al ruido del micro-canal se aumenta al trabajar las señales lógicas dentro del concepto de disparo por nivel (edge-triggered).

Entre otras señales de control en el micro-canal se encuentran las siguientes (para mejor referencia observe las figuras esquemáticas):

-BURTS y -TC que controlan la transferencia de datos, la señal M/-10 gobierna la transferencia de datos a memoria o a dispositivos I/O, las -SO y S1 definen la transferencia de datos como una lectura o escritura, las líneas -PREEMPT, RB/-GNT y ARBO a ARB3 manejan el arbitraje del canal, etc.

Para evitar el conflicto en el acceso al control del canal, las opciones que están conectadas a él tienen códigos identificadores únicos, en ese caso un controlador de discos flexibles de 3½ "tendrá un código diferente al controlador de disco fijo, lo mismo sucederá entre un modem de 2400 bps. y uno de 1200 bps, cada uno de estos códigos son asignados por el fabricante de un conjunto de más de 64,000. Este código es requerido al facturarse el POS, que basado en los dispositivos encontrados incluye los archivos de configuración necesarios para correr el hadware, por lo que el sotíware resuelve los conflictos de instalación.

Para aumentar la transferencia de datos a través del micro-canal, además de la utilización de los ocho canales de DMA que permite el compartir los recursos, los dipositivos de acceso el canal están gobernados por procesadores específicos que liberan al procesador central de un mayor número de operaciones, un ejemplo de este tipo de controladores se tiene en la tarjeta IBM/Sytex PC NETWORK que contiene un procesador de 80186 para la realización de sus funciones.

UNIDADES DE DISCO FLEXIBLE

DESCRIPCION Y FUNCIONAMIENTO DE LAS UNIDADES DE DISCO FLEXIBLE DE 5% Y 3% PULGADAS

Las unidades de disco son los dispositivos de las computadoras que permiten leer, grabar y borrar información en discos flexibles en forma digital.

Las primeras unidades de disco fabricadas por Tandon y Control Data Corporation fueron diseñadas de altura completa (fig. 4.1), posteriormente varias compañías, además de las anteriores fabricaron unidades de media altura, es decir de la mitad de altura de las primeras, esto traía beneficios para la industria y el usuario pues se comenzaba a compactar el tamaño de los periféricos y microcomputadoras en general, cabe mencionar que estos parámetros de altura se manejan en unidades de 5¼" de diámetro.

En cuanto a las unidades de 3½", desde su aparición en el mercado en 1987 aproximadamente, se han diseñado con las dimensiones que hasta la fecha rigen y es muy notorio el avan — tecnológico, pues el tamaño nuevamente se redujo casi a la mitad.

A pesar de estas variaciones en unidades de 5% " y 3½ " todas manejan el estandar de las señales de interfaz.

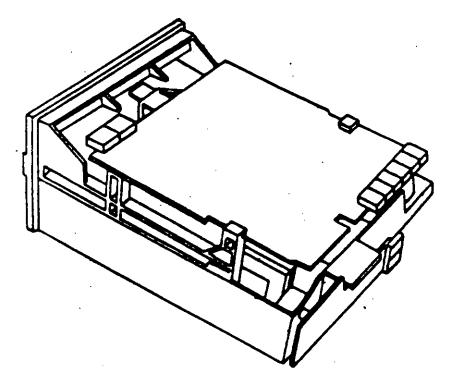


Figura 4.1. Impulsor Tendon.

Figura 4.2. Impulsor de media altura.

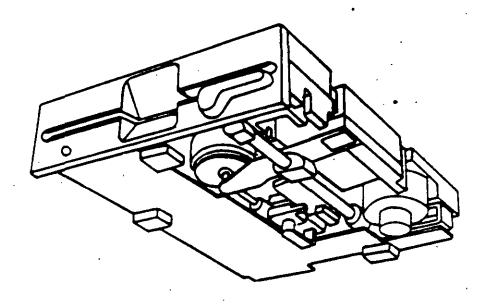
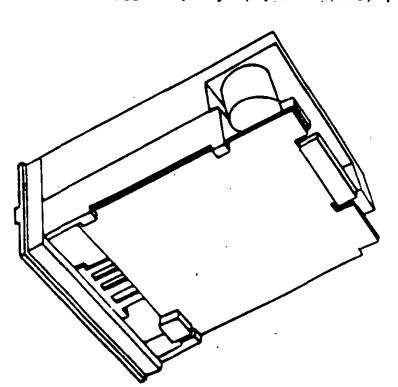



Figura 4.1 (continuación). Impulsor CDC.

Es necesario hacer una pequeña descripción de los discos flexibles que emplean las unidades de 5 ¼ *, así como los utilizados por las de 3 ½ *.

El disco está hecho de un material plástico llamado Mylar (marca registrada por la Compañía Dupont). Este plástico se reviste de una fina capa de material magnético (óxido de fierro) por ambos lados, a la vez que se pule. Después se corta en circulos y se pule nuevamente; posteriormente se coloca dentro de la cubierta protectora, que en su parte interna tiene una capa suave y fina de tela nylon que evita que el disco se raye. A través de este proceso de fabricación se hacen una serie de pruebas a los discos, de tal manera que al final de ella se le asigna la etiqueta de: un solo lado, dos lados, densidad simple, densidad doble, alta densidad, etc.

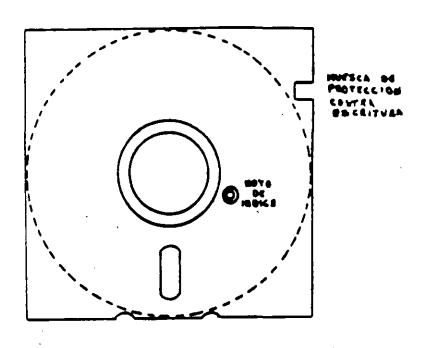
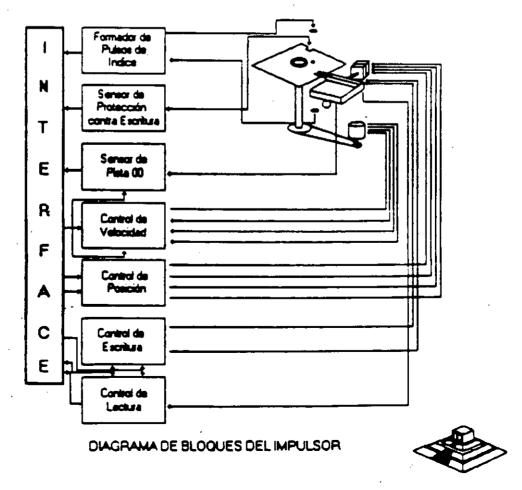


Figura 4.3. Disco Flexible.

El centro del disco (fig. 4.3) está reforzado con un anillo de plástico que le permite soportar mayor presión por parte del eje de la unidad y pueda hacerlo girar en forma apropiada. Muy cerca del hoyo central tiene uno más pequeño llamado índice.


Por otro lado, la cubierta protectora tiene un corte ovalado que permite el contacto necesario de las cabezas de lectura/escritura con la superficie del disco.

En un lado se encuentra una muesca cuadrada la cual se conoce como muesca de protección de escritura. Estas características tienen los discos de 5 %

En cuanto a los discos de 3½° cumplen con las mismas características de fabricación, su variación consta, aparte del tamaño físico y lógico en cuanto a capacidad máxima de almacenamiento de información, el plástico que lo proteje es más resistente, el corte ovalado donde se posiciona la cabeza de lectura/escritura está cubierta con un metal para evitar dañar el disco y al momento de entrar a la unidad se desplaza por un mecanismo propio de ésta. Uno de los factores más importantes de la confiabilidad de las unidades radica en el buen trato y manejo adecuado de los discos, para que la totalidad de los datos grabados no se altere. Un disco dañado o contaminado puede deteriorar o impedir la recuperación de los datos, pudiendo además, dañar las cabezas de lectura/escritura de la unidad. A continuación se enumera una lista con las recomendaciones necesarias para un mejor cuidado y manejo de los discos:

- Manténgalos alejados de fuentes magnéticas, tales como: bocinas, teléfonos, cualquier máquina de grabación, motores, etc.
- 2) No los flexione o doble.
- No toque las superficies magnéticas del disco con los dedos.
- 4) Inserte el disco con cuidado dentro de la unidad hasta donde lo permita el tope.
- 5) Cologia el disco dentra de su funda quando no se use.

La siguiente figura muestra un diágrama a bioques de los 7 grupos funcionales de que consta la unidad, mismos que se describen a continuación.

1) FORMADOR DE PULSOS DE INDICE

El circuito formador de pulsos de índice (fig. 4.5) consiste de un led, un foto transistor y una red formadora de pulsos. El led y el fototransistor forman el sensor del pulso de índice, el primero como fuente luminosa y el segundo como receptor de esa luminosidad. Esta combinación led/fototransistor está colocada de tal manera que cuando el pulso de índice del disco pasa por ella, la luz del led incide en el fototransistor haciendo que conduzca y éste a su vez satura al transistor Q1, generando un nivel alto en TP7, esta señal junto con la señal DRIVE SELECT (nivel alto), producen un nivel bajo en la línea 8 de la interfaz.

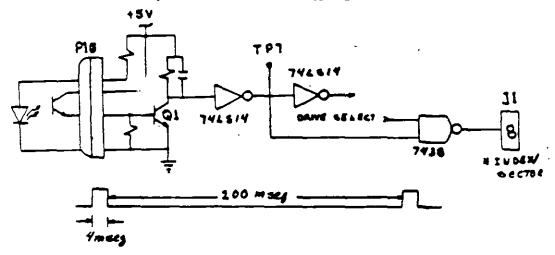
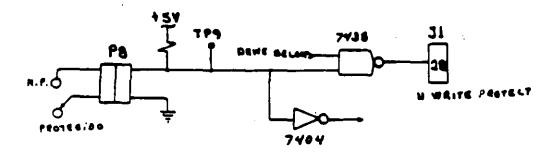



Figura 4.5. Circuito de Indice.

2) SENSOR DE PROTECCION CONTRA ESCRITURA.

La unidad cuenta con un sensor de protección contra escritura, constituido por un interruptor mecánico. El interruptor cierra cuando se inserta un disco con una etiqueta cubriendo la muesca de protección de escritura, deshabilitando la electrónica de escritura una señal de salida (nivel bajo) que indica este estado se proporciona en la línea 28 de la interfaz (fig. 4.6).

Fignes Ast. Circuito de protección de escritura.

3) SENSOR DE PISTA 00.

El sensor de pista 00 está constituido por un interruptor que cierra cuando el carro alcanza una posición tal que las cabezas de lectura/escritura se encuentren en la pista 00.

El nivel en la línea 26 de la interfaz (N TRACK 00) es función de la posición del carro de las cabezas magnéticas, y de la fase del motor de pasos, como lo muestra el circuito de la figura 4.7 cuando la cabeza se posiciona en la pista 00 y la fase del motor de pasos es 0 (líneas 4C-6 y 4C8 en niveles altos) se genera un nivel bajo en línea 26 de la interfaz.

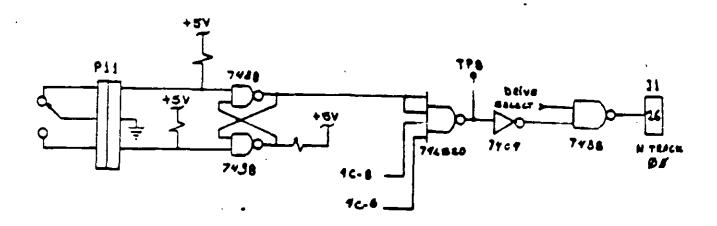


Figura 4.7. Círcuito sensor de pista 00.

4) SISTEMA CONTROLADOR DE LA VELOCIDAD DEL MOTOR CD.

El sistema que hace girar el disco consiste de un motor de CD (con tacómetro integrado), y un circuito que mantiene la velocidad a 300 rpm en discos de baja densidad y 360 rpm en discos de alta densidad (fig 4.8). El circuito cuenta con un limitador de corriente que deshabilita el motor cuando la corriente a través de él excede 1.3 amperes.

Cuando el nivel es bajo en la línea 16 de la interfaz, correspondiente al habilitador del motor, éste comienza a girar hasta alcanzar su velocidad nominal.

5) Control de Posición

El sistema de control de posición del carro de las cabezas de lectura/escritura, eestá constituido por un motor de pasos de cuatro fases y la electrónica que maneja dicho motor. Para avanzar una pista en el disco, el motor cambia una fase que provoca una rotación de un paso del motor y éste a su vez provoca un movimiento lineal del carro de las cabezas. Cuenta además con una compuerta que inhibe al circuito posicionador durante una operación de escritura.

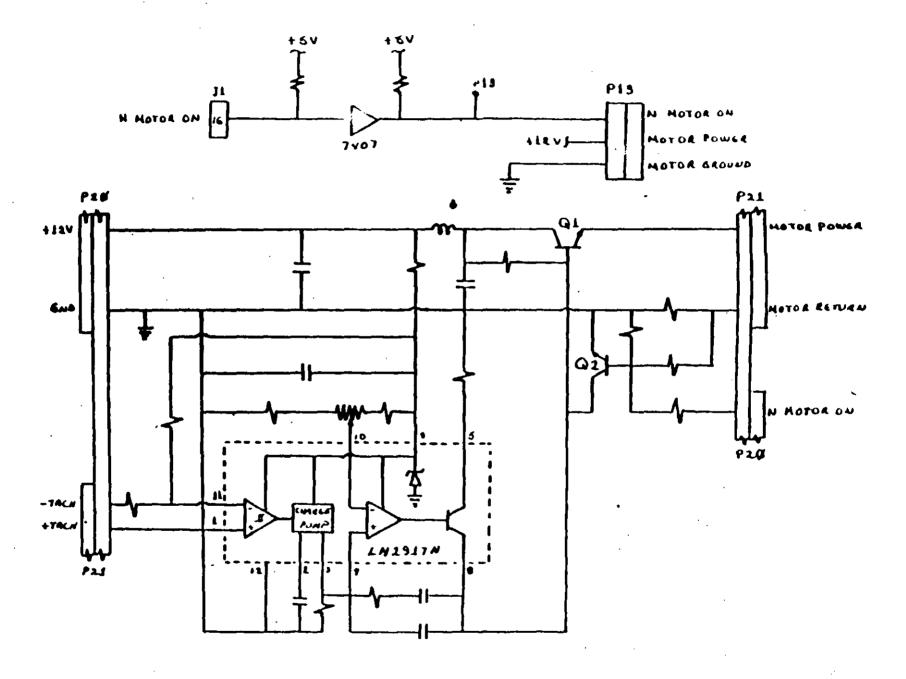


Figura 4.8

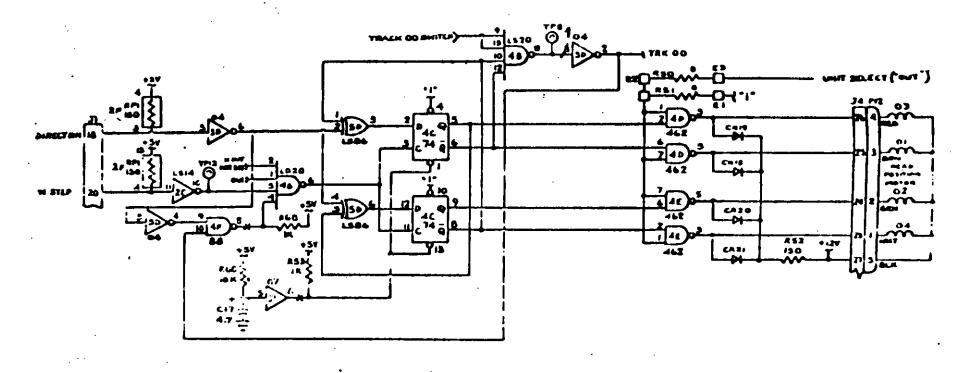


Figura 4.9

La dirección del carro de las cabezas depende del nivel de la señal DIR (línea 18 de la interfaz), ya que esto cambia la secuencia de fases del motor de pasos. Si el nivel es bajo el carro se moverá hacia la pista 39, si es alto se moverá hacia la pista 00.

TABLA DE VERDAD DE FASES

Hacia la pista 39				Hac	Hacia la pista 00							
	Fase	Fase		Fase						Fase	9	
Pin_N°.	0	1	2	3	0	Pin Nº	0	3	2	1	0	
4C-5	0	0	1	1	0	4C-5	0	1	1	0	0	
4C-6	1	1	0	0	1	4C-6	1	0	0	1	1	
4C-8	1	0	0	1	1	4C-8	1	1	0	0	1	
4C-9	0	1	1	0	0	4C-9	0	0	1	1	0	

6) CONTROL DE ESCRITURA.

La electrónica de escritura consiste de una fuente de corriente de escritura, un generador de forma de onda de escritura, una fuente de corriente de borrado, y la lógica de selección de cabeza (fig 4.11).

Las condiciones requeridas para un proceso de escritura, son las siguienetes:

- 1)Estabilización de la velocidad a 300 o 360 rpm.
- 2) Estabilización del motor de pasos en la pista correcta.
- 3)Habilitador de escritura.
- 4)Escritura de datos.
- 5)Selección de lado.

7) CONTROL DE LECTURA.

La electrónica de recuperación de datos incluye un amplificador de lectura, un diferenciador, un filtro, un detector de cruce por cero y un circuito de digitalización (fig. 4.12).

- * La señal pequeña a la salida de la cabeza de lectura/escritura se aumenta por un amplificador de lectura filtrada para quitar el ruido.
- * La señal de salida después del filtro se pasa al diferenciador, cuyo detector de cruca por cero genera una forma de onda correspondiente a picos de la señal de lectura.
- * Esta señal pasa después a un comparador y al circuito digitalizador que generan un pulso por cada pico de la señal de lectura. Por último esta señal pasa a la línea 30 de la interfaz.

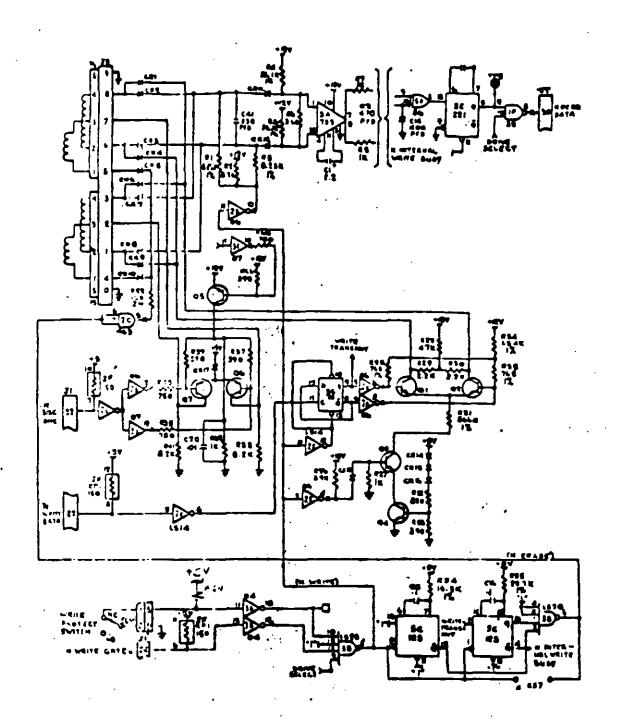


Figura 4.11

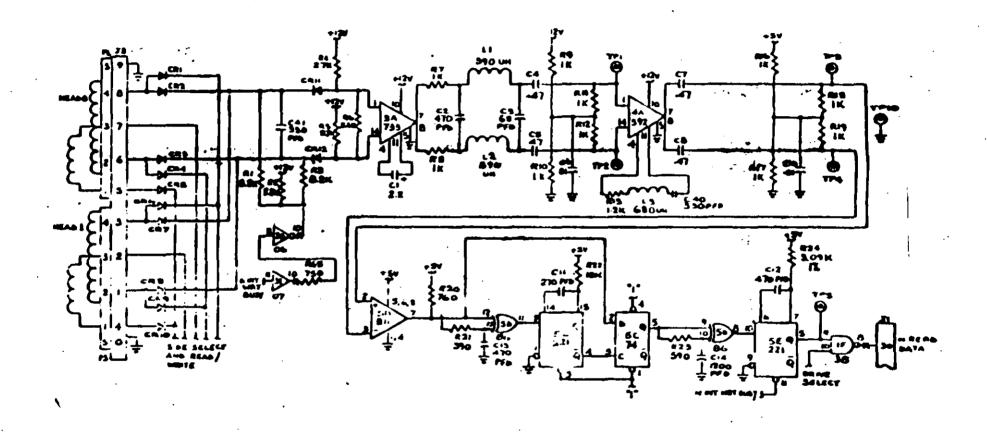


Figura 4.12

PRUEBAS BASICAS PARA ALINEAR UNA UNIDAD DE DISCOS.

Herramientas Necesarias

- Un osciloscopio de dos canales.
- Un programa capaz de seleccionar cualquier cabeza y colocarla en cualquier pista del disco.
- Un juego de desarmadores.
- Un disco de trabajo
- * Software de alineamiento Dyssan o alguno equivalente.

UTILIZANDO COMO HERRAMIENTA EL OSCILOSCOPIO.

a) Comprobación y ajuste de la velocidad del motor.

La velocidad del motor que hace girar el disco debe mantenerse en 300 o 360 rpm dependiendo el caso con una tolerancia de \pm 5 rpm. Para comprobarlo se hace lo siguiente:

1.- Verificar la alimentación que entrega la fuente a la unidad, la cual debe ser:

- 2.- Insertar un disco de trabajo. ...
- 3.- Con el programa de posicionamiento de cabezas habilitar el impulsor y observar bajo luz fluorescente las barras colocadas en la polea mayor que hace girar el disco, situada en la parte inferior del impulsor (fig. 4.13)

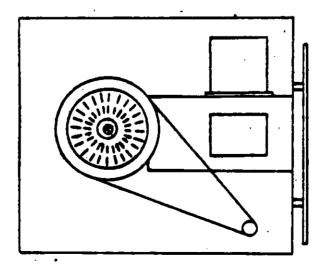


Figura 4.13. Vista inferior del impulsor Tandon.

4.- Ajustar la velocidad del motor con el potenciómetro R4 localizado en la tarjeta del servo (fig 4.14), hasta que el patrón permanezca inmóvil (50 Hz las interiores y 60 Hz las exteriores).

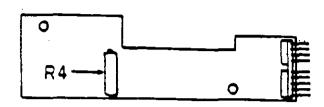
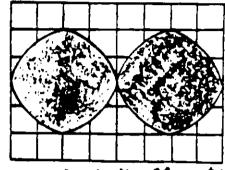


Figura 4.14. Localización de R4.

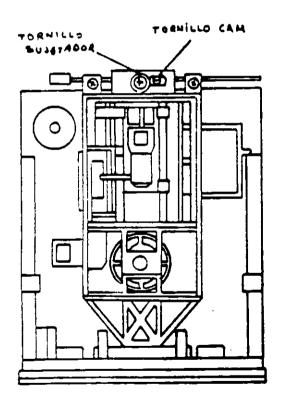
- 5.- Hay que aclarar que este metodo de ajuste únicamente se utilizaba en las primeras unidades que salieron al mercado, actualmente los fabricantes argumentan que esta velocidad de rotación del motor no tiene variaciones.
- b) Comprobación y ajuste del alinemiento radial de las cabezas de lectura/escritura mediante el patrón de los " ojos de gato ".

Esta prueba verifica que la cabeza de lectura/escritura esté en la distancia radial apropiada de la línea central del eje que hace girar el disco, asegurando asi la colocación correcta de las cabezas en la pista deseada.

COMPROBACION


Coloque el osciloscopio como sigue:

- Canal A al TP1, canal B al TP2 y tierra al TP10.
- Lectura : A más B, B invertida.
- Base de tiempo: 20 mseg, por división.
- Disparo : Externo con flanco positivo al TP7.
- Insertar el disco de alinemiento.
- Seleccionar la cabeza 0 (la inferior)
- Leer la pista 16 del disco para observar los "ojos de gato" en el osciloscopio (fig. 4.15).
- Verificar que uno de los "ojos de gato" no sea menor que el 75% de amplitud del otro.
- Pase las cabezas a la pista 00, después regréselas a la pista 16 y compruebe nuevamente.
- Pase las cabezas a la pista 26 o una mayor, después regréselas a la pista 16 y compruebe nuevamente.
- Cambie à la cabeza 1 (la superior) y repita los últimos 4 pasos.
- Si cumple con lo anterior el alinemiento radial es aceptable, si no, continúe con lo siguiente:


AJUSTE

- Afloje ½ vuelta los tornillos que sujetan el módulo de las cabezas.
- Observe los "ojos de gato" de la cabeza que esté más desalineada.
- Gire el tornillo CAM (fig. 4.16) hasta que los "ojos de gato" cumplan las condiciones del porcentaje de diferencia entre los tamaños.
- Apriete los tornillos sujetadores y verifique nuevamente el patrón.

Figura 4.15. Patrón de los "ojos de gato".

ESCALA DE TIEMPO - 20mms pir

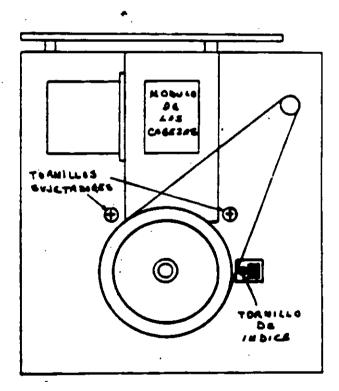


Figura 4.16. Tornillos que sujetan el módulo de las cabezas.

c) Comprobación y ajuste del pulso de índice.

El ajuste del sensor de índice cambia el período de tiempo de pulso de índice al comienzo de los datos. Este ajuste debe realizarse después del alineamiento radial o cuando ocurren errores en la lectura de información.

COMPROBACION

- OCompruebe que la velocidad del motor sea correcta.
- Conecte el osciloscopio como sigue:
- Canal A al TP1, Canal B al TP2 y tierra al TP10.
- Disparo : Externo con flanco positivo, al TP7.
- Lectura : A más B. B invertida.
- Base de tiempo : 50 mseg, por división
- Seleccione la cabeza 0.
- Inserte el disco de alinemiento y seleccione la pista 01.
- Mida el tiempo de punto de disparo al comienzo del primer pulso (fig.4.17), que debe ser 200 mseg. ± 100 msg.
- Compruebe que la cabeza 1 cumpla las mismas especificaciones que la cabeza 0. Si no las cumple, ajuste el sensor de índice.

AJUSTE

- Gire el tornillo que sujeta al sensor de índice en sentido contrario a las manecillas del reloj ¼ de vuelta (fig. 4.16)
- Ajuste el sensor de índice con un desarmador hasta que el pulso comience 200 mseg. ± 100 mseg. desde el punto de disparo.
- Apriete el tornillo.

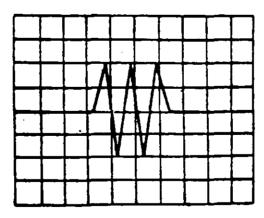


Figura 4.17. Señal de Indice al pulso del dato. Base de tiempo: 50 µseg/div.

d) Ajuste del interruptor de protección contra escritura.

- Sin alimentación, desconecta el conector P8 y comprueba que hay continuidad del interruptor.
- Inserte un disco no protegido y habilite la unidad, compruebe que no hay continuidad entre los alambres de conector P8 y que hay un nivel alto en la línea 28 de la interfaz.
- Inserte un disco protegido, compruebe que hay continuidad entre los alambres del conector P8 y que hay un nivel bajo en la línea 28 de la interfaz.
- Para ajustar el interruptor afloje el tornillo que lo sujeta al soporte. Mueva el interruptor hacia arriba y hacia abajo hasta satisfacer las condiciones anteriores.
 (fig.4.18)

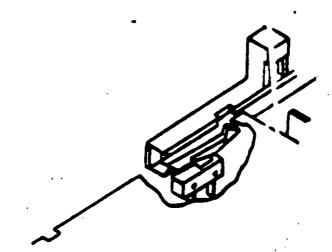


Figura 4.18. Ajuste del interruptor de protección contra escritura.

UTILIZANDO COMO HERRAMIENTA SOFTWARE DE DIAGNOSTICO

Por la amplitud de este tema el curso se ha diseñado en base a prácticas, utilizando software de diagnóstico, para alineación de cabezas de lectura/escritura.

A lo largo del curso veremos este tipo de herramientas, quedando al juicio del capacitando que fabricantes de este tipo de software cumplen con los requerimientos del ingeniero de servicio.

fublia 3-1. Asignación de pines del conector de sutorfaz J1 del impulsor (fig. 4.21).

		CONTROLLI: N-YO-DISK DRIVE
Cround	Signal	Mnemonic Description
1	2	Connector Clamp
3	4 .	Spare
5	6 o	Select 3 (NDS3)
9	10	Select 0 (NDS0)
11	12	Scient 1 (NDS1)
13	14	Select 2 (INDS2)
15	16	Drive Motor Enable (N MOTOR ON)
17	18	Direction (DIR)
19	20	Step (NSTEP)
21	22	Write Data (N WRITE DATA)
23	24	Write Gate (N WRITE ENABLE)
31	32	Side Scied (N SIDE SELECT)
ં 3	34	Connector Clamp

DISK DRIVE-TO-CONTROLLER				
Ground	fignal	Mnormanic Description		
7	8	Index (NINDEX / SECTOR)		
25	26	Track 00 (NTRK 00)		
?7	28	Mille Period (NWRITE PROTECT)		
פיי	30 ,	Read Data (NIBUAD DATA)		
• •	_	and the second of the second o		

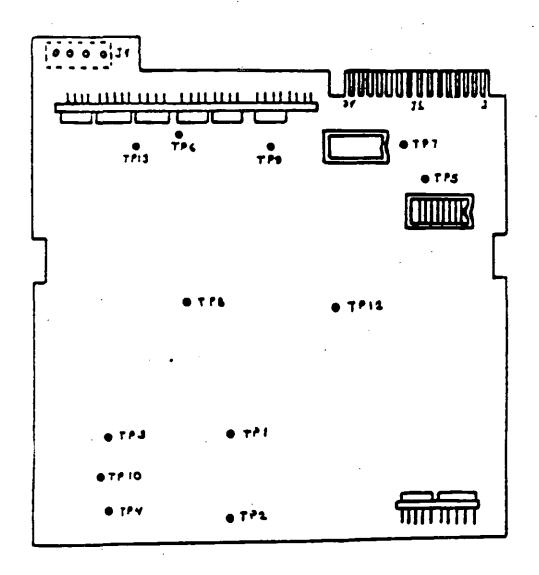


Figura 4.21

MANTENIMIENTO DE DISCO DURO

Un disco duro es un dispositivo que hace más versátil el uso de una computadora , reduce los tiempos de espera en carga y/o grabado de datos, aumenta la capacidad de almacenamiento y permite una mejor administración de los recursos del sistema. Así, es uno de los dispositivos que requieren mayor cuidado. La falla de un accesorio tan importante trae para el usuario grandes problemas, por lo que, en un servicio de mantenimiento, el tiempo de respuesta debe ser lo más pequeño posible.

El disco duro es en realidad un dispositivo combinado, parte mecánica y parte electrónica; electrónicamente la función del dispositivo es transformar pulsos eléctricos en campos magnético permanentes, estos se llevan a cabo por medio de la utilización de "electro-imanes", llamados en forma general cabezales de lectura/escritura; estas cabezas, alinean la polaridad de las particulas magnéticas contenidas en los discos o platos del dispositivo.

El mecanismo de un disco típico es relativamente simple, contiene pocas partes móviles. El elemento básico es un conjunto de uno o más platos que giren unidos a un eje conjunto común, llamado "spindle", este eje unido a un eje directamente a un servo-motor de la rotación controlada.

La parte adicional con movimientos dentro del mecanismo es el cabezal del sistema. Por lo general existe una cabeza por cada lado del disco, las que a su vez están conectadas a un brazo en ensamble común a todas ellas, lo que permite el movimiento del conjunto de cabezas en unidad.

El ensamble de cabezas está unido al llamado actuador de cabezas (Motor o bobina), que permite el deslizamiento radial de la cabeza sobre los platos o discos.

Al contrario de la forma operación de los discos flexibles, el disco duro, permanece en rotación todo el tiempo que se mantiene encendida la máquina, dado que el tiempo requerido para vencer la inercia del aistema de disco es en promedio 20 segundos, el tiempo de acceso a información sería demasiado grande.

Debido a la constante rotación del sistema de discos, existen algunos inconvenientes como son, la constante pérdida de enegía en forma de calor, el constante consumo de energía eléctrica y el desgaste de las partes por fricción.

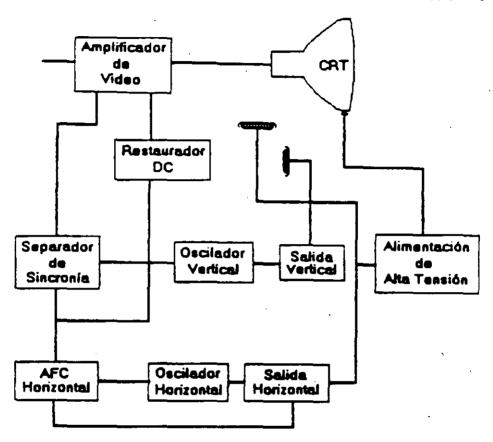
La capacidad de estos dispositivos, está dada en funcion del número de discos y cabezas dentro de el ensamble, por lo que con diferentes combinaciones de discos-cabezas, se pueden tener capacidades iguales de almacenamiento, está capacidad será o no completa (sin partes dañadas o inutilizables), dependiendo de la calidad del material magnético de los discos y de la tecnología utilizada en su construcción.

Existen dos "tipos" reconocidos por una gran mayoría de personas en cuanto a discos duros se refiere, el llamado estandar-XT y el estandar - AT estas normalizaciones, están dadas de manera principal en los tiempos de acceso a información, para AT se requiere un máximo de 40 ms, en cambio para una máquina tipo XT, el tiempo de acceso puede ser de 100 ms o más. En general, un disco con menor tiempo de acceso, será un disco con mayor rendimiento.

MONITORES

INTRODUCCION

Debido a la amplia variedad de monitores que existen en el mercado, describiremos en esta parte, en forma muy general, la teoría de operación y las características de los mismos. Dicha descripción que deberán tomar en cuenta para asegurar su óptima operación.


INSTALACION

- El monitor está equipado con un conector de AC polarizado. Esta característica de seguridad le permite conectar la alimentación de la computadora al monitor.
- 2.- Deberá operar su monitor desde una fuente de alimentación indicada en las especificaciones del mismo. Si no está usted seguro de que tipo de alimentación tienen en el lugar donde ubicará su sistema consulte con el personal apropiado para solucionar estos casos.
- 3.- Las cargas y extensiones son peligrosas, así como los conectores defectuosos y conectores rotos. Pueden ocasionar un corto circuito. Verifique que estas partes estén en óptimas conditiones.
- 4.- No use su monitor cerca de agua.
- 5.- Los monitores están provistos de aberturas para ventilación en el gabinete para permitir la liberación del calor generado durante la operación. Si estas aberturas son bloqueadas, el calor puede causar fallas.

TEORIA DE OPERACION

El siguiente diagrama de bloques, en formas generalizadas, la construcción de un monitor:

AMPLIACION DE VIDEO

- 1) La señal de video compuesto es aplicada en el conector de entradas de video, localizado en la parte trasera del monitor. La señal es acoptada en amplificador de video, el cual nos proporciona la salida de video y la entrada al separador se sincroniza.
- 2) CRT (tubo de rayos catódicos).

La señal de salida de video es aplicada a un amplificador de alta ganancia, la cual nos proporciona la señal que va hacia el cátodo del CRT.

Alta tensión es aplicada al CTR proporcionándole tensión adecuada y es del orden de miles de volts. El flyback nos proporciona las tensiones para las rejas de aceleración y foco del CTR.

3) SEPARADOR DE SINCRONIA

La señal de entrada al separador de sincronía obtenida del amplicador de video entrada al separador de sincronía donde la señal positiva es recortada de la señal de video.

La amplitud de los pulsos de sincronía es de 11 volts más o menos. Estas se ambos pulsos, el de horizontal y el de vertical.

4) Circuito de restauración de CD

Los pulsos de sincronía son retardados en este circuito para colocar en cada pulso retardado, en un punto fijo, el nivel obscuro de la señal de entrada de video y todas las tonalidades de gris de la gama del negro al blanco aparecerán correctamente.

5) Oscilador vertical

Los pulsos de sincronía vertical son acoplados al sistema de deflexión vertical de bajo ruido, el cual incorpora todas las funciones proporcionadas al yugo del monitor con la corriente requerida para deflexión vertical.

6) Oscilador horizontal y alimentación de alta tensión

El circuito del procesador horizontal realiza las siguientes funciones:

- Separador de ruido de sincronía horizontal.
- Separador de ruido de sincronía vertical.
- Oscilador horizontal.
- Comparador de frases enteras pulsos sincronizados y pulsos del oscilador.
- Comparador de frases entre puisos del transformador flyback y puisos del oscilador.

El transformador flyback genera los voltajes altos neces. Os para el CTH y tiene un embobinado secundario para suministrar tensiones a las rejas de aceleración y enfoque.

PROBLEMAS GENERALES

Para realizar el servicio en un monitor, este deberá ser abierto y colocado en tal forma que la parte baja del circuito impreso sea accesible y una fuente de video, tal como un sistema, esté conectado a la unidad en prueba

Los controles de contraste y brillantez deberán ser ajustados al máximo.

Cuando se enciende una unidad se deberá detectar un sentido de alta frecuencia, esto significa que el alto voltaje está siendo generado. Si no se detecta este sonido se deberá revisar el circuito del oscilador horizontal.

Si hay alto voltaje y no hay rastreo en la pantalla, habrá que revisar el circuito del oscilador vertical.

Si exista alto voltaje y rastreo pero el problema persiste, el paso a seguir es revisar el circuito de video.

Si la unidad está completamente muerta, alguno de los fusibles probablemente esté fundido o existe algún problema en la fuente de alimentación.

Este tipo de seguimientos de fallas es muy general, se recomienda que para un monitor de un modelo determinado se profundice en el estudio de los circuitos particulares en mismo, así como las fallas generales presentadas en él .

SEÑALES DE ENTRADA

Las señales de video que nos proporcionan una tarjeta controladora son las siguientes:

DE TERMINAL DEL CONECTOR	SEÑAL
1	Tierra
2	Tierra
•3	Rojo
•4	Verde
•5	Azul
6	Intensidad
7	Video Compuesto
8	Sincronía Horizontal
9	Sincronía Vertical

^{*}Usado solamente para tarjeta Color Graphics.

El tipo de conector usado para realizar la conexión de la tarjeta controladora al monitor es de tipo D con 9 terminales o, para monitores monocromáticos, se utilizan también conectores de tipo A el cual traslada información de video compuesto.

PROGRAMAS DE DIAGNOSTICOS

PROGRAMAS DE DIAGNOSTICOS

AUTOPRUEBA DE ENCENDIDO (POWER-ON SELF TEST)

Cada vez que se enciende una PC, la microcomputadora realiza un diagnóstico rápido para asegurarse de que todas sus partes estén trabajando apropiadamente. Este diagnóstico toma aproximadamente 30 segundos.

La respuesta normal después de una autoprueba es cuando el cursor esta parpadeando en la pantalla, seguido de un beep corto y, enseguida, la pantalla mostrará el sistema operativo o el software disponible en el impulsor a el sistema operativo en la unidad de disco duro (si se cuenta con él).

Si alguna parte tiene problema , la autoprueba dará una respuesta audible y desplegará en la pantalla un código de error que guiará al usuario acerca de la parte que está funcionando mal.

Los códigos de error se muestran en la siguiente tabla:

RESPUESTA DE ERROR DE LA AUTOPRUEBA DE ENCENDIDO

INDICACION AUDIBLE.	PROBLEMA			
No hay beep (no hay despliegue)	Alimentación			
Beep continuo	Alimentlación			
Beeps cortos repetidos	Alimentación			
1 Beep largo y 1 beep corto	Tarjeta Principal			
1 Beep largo y 2 beeps cortos	Monitor			
1 Beep corto sin despliegue	Monitor			
1 Beep corto y BASICA en pantalla	Impulsor de discos flexibles			

DISKETTE DE DIAGNOSTICOS

El diskette de diagnósticos está diseñado pera dar una visión de los problemas que existen en una máquina y para hacer pruebas periódicas de las mismas.

Los diagnósticos son similares a la autoprueba de encendido y también utiliza códigos. La tabla siguiente muestra dichos códigos.

CODIGO DE ERROR DE LOS DIAGNOSTICOS.

NOTA; Si los dos últimos dígitos del código son cero, el sistema probado está operando correctamente.

La diferencia de los diagnósticos con autopruebas de encendido consiste en que los mimeros son más poderosos y realizan las pruebas con más detalle.

Por otra parte, los diagnósticos no checan dispositivos externos, tales como modems

Cuando el diskette de diagnósticos ha sido cargado, la pantalla despliega el siguiente menú:

MENU 1

The IBM personal computer DIAGNOSTICS Version 2.03 (c) copyright IBM 1981,1983.

SELECT AND OPTION

- 0.- RUN DIAGNOSTICS ROUTINES.
- 1.- FORMAT DISKETTES.
- 2.- COPY DISKETTES.
- 3.- PREPARE SYSTEM FOR RELOCATION.
- 9.- EXIT TO SYSTEM DISKETTE.

ENTER THE ACTION DESIRED

Donde el significado de cada opción es:

- O. RUN DIAGNOSTICS: comienza el procedimiento de prueba del sistema (ir al ,menú 2)
- 1.- FORMAT DISKETTE: Formatea un diskette para ser usado con los diagnósticos solamente.
- 2.- COPY DISKETTE: Copia el diskette de diagnóstico a otro diskette.
- 3.- PREPARE SYSTEM FOR RELOCATION: Coloca las cabezas del disco duro de estacionamiento para poder mover el sistema.
- 9.- EXIT TO SYSTEM DISKETTE: Carga el programa desde el diskette en el impulsor A.

después de teclear un 0, la pantalla desplegada deberá ser similar al menú 2 dependiendo de los dispositivos instalados.

MENU 2

PERSONAL PROPERTY OF THE

14.70%,20%,20%。 [2]

67596

THE INSTALLED DEVICES ARE:

1-S SYSTEM BOARD.
18-S EXPANSION OPTION.
2-S XXXXB MEMORY
3-S KEYBOARD.
4-S MONCHOROME & PRINTER ADATER.
5-S COLOR/GRAPHICS MONITOR ADATER.
6-S X DISKETTE DRIVEISI & ADAPTER
9-S PRINTER ADAPTER.
11-S ASYNC COMUNICATION ADAPTER.
12-S ALT ASYN COMUNICATION ADPT.
13-S GAME CONTROL ADAPTER.
15-S SDLC COMUNICATIONS ADAPTER.
14-S MATRIX PRINTER.

IS THE LIST CORRECT (Y/N).

172 161

Este primer paso verifica que la computadora reconozca cuales dispositivos tiene conectados. Una de las maneras de hacer esto es checando los bancos de interruptores DIP (dual in package) dentro de la computadora. Si el despliegue en la pantalla es diferente a lo que se tiene conectado se deberán checar los cables y conexiones, así como la disposición de los interruptores DIP.

Si todo resulta compatible, tecle "Y" para indicar que las cosas que están instaladas aparecen en la pantalla.

De esta manera pasamos a la siguiente pantalla (menú 3).

MENU 3

SYSTEM CHECKOUT

O.- RUN TEST ONE TIME

1.- RUN TEST MULTIPLE TIME

2.- LOGG UTILITIES

9.- EXIT DIAGNOSTICS

ENTER THE ACTION DESIRED

Opciones 0 y 1, las rutinas de diagnósticos probarán los dispositivos del sistema y sus opciones uno por uno, empezando por la tarjeta de sistema (100) y a través de todas las opciones hasta concluir con el adaptador BSC (2100) si usted tiene dicho adaptador.

Cuando una unidad es aprobada, la pantalla mostrará a usted que la unidad está funcionando correctamente, (mostrando dos ceros en la parte última de código), o que está funcionando incorrectamente (mostrando un código con algo diferente a dos ceros en su parte final). Si los diagnósticos muestran una falla particular en alguna unidad, ánote el código de error y continúe con los diagnósticos, puede ocurrir en otras unidades.

La opción O requiere una respuesta de usted en muchos pasos. La prueba de teclado, por ejemplo, le dice que presione cada tecla y vea en la pantalla el símbolo correcto. Si la unidad probada está funcionando bien, deberá teclear una "Y". Si la pantalla marca un error usted deberá marcar "N" y mostrará un código de error.

En la opción 1 no se requiere de una respuesta suya durante los diagnósticos. Solo deberá estar al pendiente de las pruebas. Con esta opción se pueden detectar problemas intermitentes. Si ustad elige esta opción deberá decirle a la máquina cuantas veces quiere correr las pruebas y la opción para parar las mismas en cada error encontrado.

Opción 2. Los diagnósticos avanzados y estandar le dan a usted la oportunidad de grabar los mensajes de error que ocurran. Estos pueden realizarse a través de una impresora, al diskette de diagnósticos o a una unidad de cinta, esto se hace posible con la opción 2 (LOG UTILITIES).

Registrar los errores a diskette requiere que usted tenga una copia de el disco de diagnóstico en el impulsor A y que no esté protegido contra escritura.

En resumen, estas son las características más importantes de los diagnósticos. Se recomienda hacer uso de los mismos para familiarizarse con su funcionamiento.

CONTRATOS DE MANTENIMIE...TO

		CONTR	ATO No
CONTRATO DE PRESENTACION parte: parte Consultores Icimex, S.A.	quien en la sucesive	o se denominará el l	CLIENTE V por otra
.Ambas partes convienen en c	elebrar el contrato al	rubro siguiente:	
DECLARACIONES			
1.0 DECLARA EL CLIENTE po	or conducto de su re	presentante.	
1.1 Que es una sociedad me propietario del equipo descrite requiere de ICIMEX el servicio	o en el anexo 1, q	ue se agrega como	parte de éste y que
1.2 Que tiene su domicilio e	n		
			•
1.3 Que está	representado	para este	acto por
1.4 Que 'su representante tie	ene las facultades ne	cesarias pra celebrar	este contrato.
1.5 Que el equipo objeto o		scrito en el anexo	
2.0. DECLARA ICIMEX por c			花 教
2.0. OECOANA IOIMEA POI C	onducto de su repres	entente.	4 %
2.1 Que es una sociedad mei	rcantil constuída de a	icuerdo a las Leyes M	fexicanas.
2.2 Que tiene su domicilio e Cuidad de México con Tel. 65		1810 A-1 col. Rome	,
2.3 Que está representada (en este acto por el	ing. Juna F. Magafi	ia Carrillo Director
1		•	
2.4 Que tiene capacidad jurí este contrato, y que cuenta debido cumplimiento del mism	con los recursos hi	umanos y materiales	necesarios, para el
•			r I — Kir Kenedas
2.5 Que puede acreditar documentación.	el legal funciona	•	
- Escritura Pública No.4915 No 173 Lic. Francisco Xavier		8, otorgada ante la F	del Area de la company

Registros:

- RFC. CIC-860314 6NO.
- CED. EMP: 1450662.
 - CONACO. 156648
- SPP (PROVEEDOR A GOB.): 8760900566.
- SPP (CONTRATISTA A GOB.): 270799.
- 3.0.- Declaran ambas partes protestando decir verdad, que su manifestación contenida en este convenio es voluntaria, libre de : dolo, mala fe, error voluntario o vicio alguno que pudiera nulificarlo todo o en partes.

CLAUSULAS

NATURALEZA DEL CONTRATO

- 1).- A solicitud del EL CLIENTE, el contrato será de MANTENIMIENTO PREVENTIVO que ICIMEX acepta prestar al equipo descrito en el anexo uno, da acuerdo a la siguiente cláusula, y con los cargos indicados en VI.
- la).- EL CLIENTE delega en La Lic. Rocio Hernandez Ofaldo en funciones conducentes para refectos de sacudable coordinación en los servicios materia de este contrato.
- II).-. Se define como MANTENIMIENTO PREVENTIVO, la limpieza externa e interna del equipo, la lubricación, los diagnósticos y los ajustes menores necesarios.
- III).- EL MANTENIMIENTO PREVENTIVO será BIMESTRAL y programado con base a las necesidades específicas de c/u de las partes del equipo, según lo determine ICIMEX.
- IV) La duración del presente contrato es de _______, debiendo avisar por escrito 30 dies antes de su vencimiento, cualquiera de las partes la rescisión y/o actualización del mismo, de lo contrario, se considerará convenida por ambas partes, la renovación automática por otro período igual.

CARGOS

· 自然性的。

- VI).- Los cargos convenidos por el servicio, son por la cantidad de ______, que serán cubiertos por el ELCLIENTE a ICIMEX en moneda nacional, a la firma del presente contrato.
- VII):- Si el equipo está fuera de la ciudad de México, los viáticos, traslados y gastos inherentes al caso, son con cargo el EL CLIENTE
- VIII).- ICIMEX prestará el servicio en el lugar mencionado, en 1.5 de las DECLARACIONES, en horas y días hábiles con personal propio.
- IX).- EL CLIENTE cuando así lo solicite podrá dar de alta en este contrato a equipos adicionales, previa negociación en costo y ajuste de tiempo, acompañando a su solicitud, un complemennto del anexo 1.

176 165

- X).- Un vez que ambas partes hayan convenido los cargos por nuevas altas en este contrato, y después de presentada y cobrada por ICIMEX la factura correspondiente, se dará por aceptada la inclusión.
- XI.- Quedan fuera de este contrato todos aquellos servicios que no estén contemplados en el MANTENIMIENTO PREVENTIVO como:
- a) Reparación de las partes que no estén funcionando en el momento del primer servicio de mantenimiento, en el entendido de que este contrato se firma bajo el supuesto de que los equipos están trabajando normalmente.
- b) Reparación de daños productos de accidentes, siniestros o negligencia en el uso del equipo, por efectos de humedad o cualquier otra causa distinta al uso normal.
- c) En caso de interacción del equipo, conectado mecánica, eléctrica o electrónicamente a otra máquina o mecanismos y no prevista esta situación en cláusula específica.
- d) Los servicios de ingeniería de sistemas, operación y/o programación de cualquier tipo.
- e) La reposición de cartuchos, de cintas de respaldo, cabezas de impresión partes de plástico, CRT y discos.
- f) Los trabajos externos del sistema, pintura y/o retocados de los equipos, aire acondicionado, instalaciones eléctricas etc.
- XII).- Se define como MANTENIMIENTO CORRECTIVO las reparaciones y/o reemplazo de partes que resulten dañadas durante la operación normal del equipo y la mano de obra que se requiera.
- XIII.- EL MANTENIMIENTO CORRECTIVO será por evento, previa solicitud telefónica o escrita del CLIENTE, a la que atenderá un técnico de ICIMEX dentro de las siguientes seis horas hábiles.
- a) Queda a juicio del Ingeniero de servicio si la reparación es posible resolverla in situ, previo a un diagnóstico de fallas y daños detectados.
- b) Si la reparación ha de resolverse en laborartorio, ICIMEX recogerá el equipo después de contar con la orden respectiva de salida.
 - XIV).- La mano de obra calificada que se requiera será sin cargo alguno al CLIENTE
 - XV).- Las refacciones y PC-partes que resulten necesarias serán con cargo al CLIENTE
 - XVI).- Si el servicio requiere de más de dos días hábiles, ICIMEX dentro de su disponibilidad, facilitará al CLIENTEun equipo lo más semejante al que está en reparación.
 - XVII).- En fallas de disco duro sólo se dará servicio a circuitos y tarjetas externas, ya que por su tácnología, no permite su reparación aquí en México.
 - XVIII).- ICIMEX no se hace responsable por la información contenida en los discos duros no obstante será su preocupación conservaria. Por seguridad, el CLIENTE deberá respectar su información periódicamente.

XIX).- Para efectos de prestar correctamente un servoio, el CLIENTE se obliga en todo tiempo a dar las facilidades necesarias al personal de ICIMEX quien respetará las normas y medidas de seguridad que indique el CLIENTE

XX). Si el CLIENTE no da las facilidades necesarias para que se presente el servicio objeto de este contrato, cesará toda responsabilidad de ICIMEX.

XXI).- Si cualquier tipo de servicio de mantenimiento ICIMEX considera que las falla o daño detectados fueron por negligencia de operación o mal uso del equipo el costo total de la reparación será con cargo al CLIENTE

XXII).- Durante la vigencia de este contrato solo el personal de ICIMEX es el único autorizado para reparar, ajustar modificar o dar el servicio de mantenimiento al equipo materia de este convenio por lo que si cualquier persona ajena manipula con esa intención al equipo, el contrato quedará anulado.

XXIII).- ICIMEX se obliga a prestar el servicio en los términos del presente contrato excepto en los casos de fuerza mayor que se lo impidan, tales como entrega tardía en los suministros de PC- partes, por problemas de importación, huelgas en los organismos proveedores o por causas ajenas a ICIMEX

XXIV). - Si el CLIENTE modifica por su cuenta la configuración del equipo especificada en este contrato sin dar aviso, ICIMEX se reserva el derecho de modificar las tarifas convenidas o apegarse al artículo siguiente.

XXV).- Cualquier cambio en la Ingenieria del Hardware del equipo y/o de las instalaciones donde funcionará el mismo, será supervisado por ICIMEX a efecto de ofrecer máxima seguridad. Si en estas acciones el CLIENTE actúa sin acordarlo con ICIMEX, este contrato quedará sin efecto y todo servicio posterior, será con cargo adicional al CLIENTE.

XXVI). En caso de violación de alguna clausula de este contrato por cualquiera de las partes, la otra podrá exigir el cumplimiento o la rescisión del mismo.

XXVII).-Cualquier comunicación de una parte a la otra deberá hacerse por escrito, excepto los reportes telefónicos.

XXVIII) Para la interpretación o cumplimiento del presente contrato en caso de disputa, las partes se someten expresamente a los tribunales de la Ciudad de México.

Para	los	efectos	legales	del caso.	firman	фe	acuerdo	las	partes	que	intervienen	en	este
contr	ato,	en la ci	udad de	México, a	los					_·			

THE STATE OF STREET	Д. П

rate of the contract of

海髓 化四氯苯酚

