ÍNDICE

Capítu	alo 1 Introducción general	1
1.1	Objetivos	2
1.2	Metodología	2
1.3	Hipótesis	3
1.4	Esbozo de la tesis	3
Capítı	10 2 Marca de agua digital y su robustez	5
2.1	Introducción	5
2.1.1	Criptografía	6
2.1.2	Esteganografía	6
2.1.3	Marca de agua digital	7
2.2	Características de la marca de agua	8
2.3	Tipos de marca de agua	9
2.4	Distorsiones y ataques	11
2.4.1	Ruido aditivo	12
2.4.2	Filtrado lineal	12
2.4.3	Recorte de la imagen	13
2.4.4	Distorsiones geométricas	14
2.4.5	Compresión	14
2.4.6	Modificaciones del histograma	15
2.5	Aplicaciones del marcado de agua	15
2.5.1	Monitoreo de emisiones de contenido	15
2.5.2	Demostración de propiedad	15
2.5.3	Control de copias	16
2.5.4	Autenticación	16
2.6	Esquema general del marcado y recuperación de la marca	17
2.7	Codificación de la marca de agua	18
2.8	Codificación de canal	19
2.9	Detección y corrección de errores	19
2.10	Códigos convolucionales	20
2.10.1	Diagrama de estados	22
2.10.2	Diagrama de trellis o enrejado	23
2.10.3	Corrección de errores	24
2.10.4	Codificación de la marca de agua	26

Capítu	alo 3 Marca de agua en el dominio transformado	29
3.1	Introducción	29
3.2	Transformada Discreta de Fourier	30
3.3	Transformada wavelet	32
3.3.1	Transformada discreta wavelet en 1-D	35
3.3.2	Transformada discreta wavelet en 2-D	37
3.4	Transformada contourlet	39
3.4.1	Pirámide Laplaciana	41
3.4.2	Multiresolución	43
3.4.3	Banco de filtros direccionales	46
3.4.3	Descomposición Direccional y Multiescala	51
3.5	Espectro disperso	53
Capítı	alo 4 Recuperación de la marca de agua	55
4.1	Introducción	55
4.2	Recuperación de la marca de agua	55
4.3	Decodificación de la marca de agua	58
4.3.1	Decodificador de Viterbi	58
4.4	El sistema visual humano	59
4.5	Índice estructural de similaridad	61
4.6	Algoritmo de inserción y recuperación de la marca de agua	64
4.6.1	Algoritmo 1	64
4.6.1.1	Inserción de la marca de agua	64
4.6.1.2	Recuperación de la marca de agua	66
4.6.2	Algoritmo 2	66
4.6.2.1	Inserción de la marca de agua	66
4.6.2.2	Recuperación de la marca de agua	67
Capítı	1lo 5 Resultados	71
5.1	Introducción	71
5.2	Espectro disperso mejorado sin codificación convolucional	72
5.3	Espectro disperso mejorado con codificación convolucional	74
5.4	Capacidad del sistema de marcado de agua	81
5.5	Prueba a diferentes ataques	83
5.5.1	Compresión JPEG	83
5.5.2	Ruido Gaussiano	92
5.5.3	Ruido salt & pepper "sal y pimienta"	96
5.5.4	Filtrado Gaussiano paso bajas	101

5.5.5 Recorte de la imagen	104
Capítulo 6 Conclusiones	109
6.1 Trabajo futuro	110
Referencias	112
Anexo 1	115
Anexo 1.1 Pseudocódigo del algoritmo 1	115
Anexo 1.2 Pseudocódigo del algoritmo 2	116
Anexo 1.3 Funciones utilizadas en los algoritmos 1 y 2	117

ÍNDICE DE FIGURAS

Figura 2.1 Esquema general del encriptado y desencriptado	6
Figura 2.2 Sistema de marcado de agua	7
Figura 2.3 (a) Imagen original. (b) Marca de agua. (c) Imagen con marca de agua visil	ble.
(d) Imagen con marca de agua invisible.	10
Figura 2.4 Ejemplo de filtrado. (a) imagen original. (b) Imagen suavizada con filtro p	aso
bajas Gaussiano de tamaño 5x5 y σ =1.	13
Figura 2.5 Ejemplo de imagen recortada	13
Figura 2.6 Ejemplo de distorsión geométrica: rotación.	14
Figura 2.7 Esquema general de marcado y recuperación de marca de agua informado.	18
Figura 2.8 Esquema general de marcado y recuperación de marca de agua ciego.	18
Figura 2.9 Codificación	20
Figura 2.10 Ejemplo de codificador convolucional. $V = 2$, $K = 3$. Por cada bit que entra al	
codificador salen 2 bits codificados.	21
Figura 2.11 Diagrama de estados de código convolucional $V = 2, K = 3$.	22
Figura 2.12 Diagrama de <i>trellis</i> de código convolucional $V = 2$, $K = 3$.	23
Figura 2.13 En azul palabras del código, en rojo vectores de S_n .	24
Figura 2.14 En azul palabras del código, en rojo palabras del código luego de transmisión	
por canal AWGN.	25
Figura 2.15 Codificador de marca de agua binaria. $V = 3$, $K = 5$.	27
Figura 3.1 División del plano tiempo-frecuencia hecha por la STFT. La resolución es la	
misma en cualquier región del plano tiempo-frecuencia.	32
Figura 3.2 Función de escalamiento Haar.	33
Figura 3.3 <i>"wavelet madre"</i> Haar.	34
Figura 3.4 División del plano tiempo-frecuencia hecho por la transformada wavelet.	35
Figura 3.5 Banco de filtros <i>wavelet</i> 1-D	36
Figura 3.6 Respuesta al impulso del banco de filtros pasa banda. Se divide el ancho	de
banda original <i>BW</i> .	36
Figura 3.7 Síntesis <i>wavelet</i> 1-D	36

Figura 3.8 Análisis wavelet en 2-D. "L" denota banda de paso baja, "H" denota banda	de
paso alta.	37
Figura 3.9 Análisis <i>wavelet</i> en imágenes	38
Figura 3.10 Descomposición <i>wavelet</i> de la imagen "Bárbara" a nivel 3.	39
Figura 3.11 Aproximación del contorno suave a diferentes resoluciones [16].	40
Figura 3.12 Esquema de la pirámide Laplaciana [17]. H es el filtro pasobajas de análisis <u>p</u>	у G
el de síntesis. $\downarrow M$ representa el submuestreo y $\uparrow M$ el sobremuestreo.	41
Figura 3.13 Se obtiene la aproximación $m{c}$ a partir de la imagen original $m{x}$ filtrada paso ba	ijas
por H y submuestrada por M . Sobremuestreando c y luego de un filtro de síntesis	se
obtiene la predicción \pmb{p} . La diferencia entre la imagen original \pmb{x} y la predicción \pmb{p} nos	da
los detalles d .	42
Figura 3.14 Primeros 4 niveles de de la pirámide Gaussiana y Laplaciana [18]. Pirám	ide
Gaussiana columna superior, pirámide Laplaciana columna inferior.	43
Figura 3.15 Síntesis Laplaciana. \hat{x} es la imagen reconstruida [17].	43
Figura3.16 Subespacios multiescala generados por la pirámide Laplaciana [17].	45
Figura 3.17 Ejemplo de imagen remuestreada. (a) Imagen de "Bárbara". (b) "Bárba	ra″
remuestreada por la matriz $R = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.	47
Figura 3.18 Imagen rotada por matriz de muestreo quincunx Q_0 .	48
Figura 3.19 Respuesta en frecuencia de (a) filtro en forma de diamante (b) filtro en for	ma
de abanico. [17]	48
Figura 3.20 (a) Filtro de abanico. (b) Filtro de cuadrantes. (c) cuatro direcciones	de
descomposición [17].	49
Figura 3.21 Partición direccional en frecuencia para <i>l</i> =3 [17].	49
Figura 3.22 Subespacios multidireccionales generados por el banco de filtros direcciona	les
[17].	50
Figura 3.23 Subespacios generados por la descomposición multiescala multidirección [17].
	51

Figura 3.24 Descomposición piramidal direccional. (a) Se realiza la descomposición piramidal; la descomposición direccional es aplicada solamente al canal paso altas. (b) División en frecuencia resultante: el número de direcciones aumenta con la frecuencia. 52 Figura 3.25 Descomposición contourlet de la imagen "Bárbara" con 2 niveles de descomposición. 4 direcciones en el primer nivel y 8 direcciones en el segundo nivel. 52 Figura 4.1 Probabilidades condicionales $p(r/s_1) \neq p(r/s_2)$. 56 59 Figura 4.2 Comparación entre decisión dura y decisión suave. Figura 4.3 Ejemplo de la característica número 2 del sistema visual humano. El brillo absoluto de los cuadrados interiores es el mismo. 60 Figura 4.4 Descomposición *contourlet* empleada en el sistema de marcado de agua. 65 Figura 4.5 Diagrama de bloques de algoritmo de inserción de marca de agua propuesto. 70 Figura 5.1 PSNR contra factor de multiplicación γ sin utilizar codificación convolucional. 73 Figura 5.2 SSIM contra factor de multiplicación γ sin utilizar codificación convolucional. 73 Figura 5.3 Tasa de bits en error en la marca de agua recuperada sin utilizar codificación convolucional. 74 Figura 5.4 PSNR contra factor de multiplicación y. La marca de agua fue codificada 75 utilizando codificación convolucional previa a su inserción. Figura 5.5 SSIM contra factor de multiplicación y. La marca de agua fue codificada utilizando codificación convolucional previa a su inserción. 75 Figura 5.6 Tasa de bits en error en la marca de agua recuperada utilizando decisión dura en el decodificador de Viterbi. 76 Figura 5.7 Tasa de bits en error en la marca de agua recuperada utilizando decisión suave en el decodificador de Viterbi. 77 Figura 5.8 Comparación de la tasa de bits en error en la marca de agua recuperada para procedimiento 1. 78 Figura 5.9 Comparación de la tasa de bits en error en la marca de agua recuperada para 79 procedimiento 2.

Figura 5.10 Comparación de la tasa de bits en error en la marca de agua recuperada para procedimiento 1. **79**

Figura 5.11 Marca de agua "Ingeniería" de tamaño 9 × 72 pixeles. 80

Figura 5.12 Marca de agua recuperada para espectro disperso mejorado sin codificación convolucional. Porcentaje de compresión JPEG=77%, PSNR= 40, SSIM=.9578, BER=.0586, γ =.2946.

Figura 5.13 Marca de agua recuperada para espectro disperso mejorado utilizando codificación convolucional y decisión dura en el decodificador. Porcentaje de compresión JPEG=77%, PSNR= 40, SSIM=.9577, BER=.0478, γ=.0478. **80**

Figura 5.14 Marca de agua recuperada para espectro disperso mejorado utilizando codificación convolucional y decisión suave en el decodificador. Porcentaje de compresión JPEG=77%, PSNR= 40, SSIM=.9577, BER=0, γ=.0478.
81

Figura 5.15 PSNR de la imagen marcada contra tamaño de la marca de agua en bits.
Figura 5.16 SSIM de la imagen marcada contra tamaño de la marca de agua en bits.
Figura 5.17 PSNR de la imagen comprimida para diferentes valores de porcentaje de compresión JPEG.
84

Figura 5.18 SSIM de la imagen comprimida para diferentes valores de porcentaje de compresión JPEG. 84

Figura 5.19 Tasa de bits en error en la marca de agua recuperada para diferentes valores de porcentaje de compresión JPEG. La decodificación se realizó utilizando decisión dura. **85** Figura 5.20 Tasa de bits en error en la marca de agua recuperada para diferentes valores de porcentaje de compresión JPEG. La decodificación se realizó utilizando decisión suave. **85** Figura 5.21 Comparación entre decisión suave y decisión dura. Tasa de bits en error en la marca de agua recuperada para procedimiento 1 contra porcentaje de compresión JPEG. **86** Figura 5.22 Comparación entre decisión suave y decisión dura. Tasa de bits en error en la marca de agua recuperada para procedimiento 2 contra porcentaje de compresión JPEG. **87** Figura 5.23 Comparación entre decisión suave y decisión dura. Tasa de bits en error en la marca de agua recuperada para procedimiento 3 contra porcentaje de compresión JPEG. **87** Figura 5.24 Marca de agua binaria "Ingeniería" **88**

Figura 5.25 (a) Imagen de "Lena". (b) Imagen marcada con la marca de agua invisible	е	
"Ingeniería" PSNR=33.52dB, SSIM=.8282. 88	3	
Figura 5.26 Histograma de la imagen "Lena" original. Entropía=7.2894 bits 88	3	
Figura 5.27 Histograma de la imagen "Lena" marcada con marca de agua "Ingeniería"	•	
Entropía=7.3432 bits 89)	
Figura 5.28 (a) Imagen marcada comprimida. Porcentaje de compresión JPEG=80%),	
PSNR=31.2dB, SSIM=.79. (b) Marca de agua recuperada utilizando decisión dura. (c) Marca	а	
de agua recuperada utilizando decisión suave. 89	9	
Figura 5.29 Marca de agua binaria "Puma" 90	0	
Figura 5.30 (a) Imagen "Bárbara". (b) Imagen marcada con la marca de agua "Puma"	•	
PSNR=36.24dB, SSIM=.9291. 90	0	
Figura 5.31 Histograma de la imagen "Bárbara" original. Entropía=7.6321 bits. 92	1	
Figura 5.32 Histograma de la imagen "Bárbara" marcada con marca de agua "Puma"		
Entropía=7.6576 bits. 92	1	
Figura 5.33 (a) Imagen marcada con marca de agua "Puma" y comprimida. Porcentaje de		
compresión JPEG=80%, PSNR=28.72dB, SSIM=.8466. (b) Marca de agua recuperada		
utilizando decisión dura. (c) Marca de agua recuperada utilizando decisión suave. 92	2	
Figura 5.34 PSNR de la imagen "ruidosa" contra potencia del ruido Gaussiano. 93	3	
Figura 5.35 PSNR de la imagen "ruidosa" contra potencia del ruido Gaussiano. 93	3	
Figura 5.36 Tasa de bits en error en la marca de agua recuperada de la imagen con ruido		
Gaussiano utilizando codificación convolucional con decisión dura. 94	4	
Figura 5.37 Tasa de bits en error en la marca de agua recuperada de la imagen con ruido		
Gaussiano utilizando codificación convolucional con decisión suave. 94	4	
Figura 5.38 (a) Imagen marcada con ruido Gaussiano de varianza .01. PSNR=19.91dB,		
SSIM=.3864. (b) Marca de agua recuperada utilizando decisión dura. (c) Marca de agua		
recuperada utilizando decisión suave. 99	5	
Figura 5.39 PSNR de la imagen "ruidosa" contra porcentaje de ruido <i>salt & pepper</i> . 9 6	6	
Figura 5.40 PSNR de la imagen "ruidosa" contra porcentaje de ruido salt & pepper		
(acercamiento de 0 a 20%) 92	7	

Figura 5.41 SSIM de la imagen "ruidosa" contra porcentaje de ruido salt & pepper.97Figura 5.42 SSIM de la imagen "ruidosa" contra porcentaje de ruido salt & pepper98(acercamiento de 0 a 20%)98

Figura 5.43 Tasa de bits en error en la marca de agua recuperada de la imagen con ruidosalt & pepper utilizando decisión dura en el decodificador de Viterbi.98

Figura 5.44 Tasa de bits en error en la marca de agua recuperada de la imagen con ruido *salt & pepper* (acercamiento de 0 a 20%) utilizando decisión dura en el decodificador de Viterbi. 99

Figura 5.45 Tasa de bits en error en la marca de agua recuperada de la imagen con ruidosalt & pepper utilizando decisión suave en el decodificador de Viterbi.99

Figura 5.46 Tasa de bits en error en la marca de agua recuperada de la imagen con ruido *salt & pepper* (acercamiento de 0 a 20%) utilizando decisión suave en el decodificador de Viterbi.

Figura 5.47 (a) Imagen marcada con 6% de ruido *salt & pepper*. PSNR=17.33dB, SSIM=.3724.
(b) Marca de agua recuperada utilizando decisión dura. (c)Marca de agua recuperada utilizando decisión suave.

Figura 5.48 PSNR de la imagen filtrada contra desviación estándar del kernel Gaussiano.

102

Figura 5.49 SSIM de la imagen filtrada contra desviación estándar del *kernel* Gaussiano.102 Figura 5.50 Tasa de bits en error en la marca de agua recuperada de la imagen filtrada utilizando decisión dura en el decodificador de Viterbi. 103 Figura 5.51 Tasa de bits en error en la marca de agua recuperada de la imagen filtrada utilizando decisión suave en el decodificador de Viterbi. 103 Figura 5.52 (a) Imagen marcada filtrada con filtro pasobajas Gaussiano de tamaño 5×5 y varianza σ =1.2. PSNR=24.4dB, SSIM=.7296. (b) Marca de agua recuperada utilizando decisión dura. (c) Marca de agua recuperada utilizando decisión suave. 104 Figura 5.53 PSNR de la imagen recortada contra porcentaje recortado de la imagen marcada. 105

Figura 5.54 SSIM de la imagen recortada contra porcentaje recortado de la imagen	
marcada. 105	
Figura 5.55 Tasa de bits en error en la marca de agua recuperada de la imagen recortada	
utilizando codificación convolucional con decisión dura. 106	
Figura 5.56 Tasa de bits en error en la marca de agua recuperada de la imagen recortada	
utilizando decisión suave en la decodificación. 106	
Figura 5.57 (a) Imagen marcada recortada al 35% PSNR=8.9151dB, SSIM=.3755. (b) Marca	
de agua recuperada utilizando decisión dura. (c) Marca de agua recuperada utilizando	
decisión suave. 107	