PO

-
[
¥

Palacio de Mineria "Calle de Tacuba 5 primer piso Deleq. Cuauhtemoc 06000 México: DF. Tel

CURSO: LENGUAJE COBOL ENFOCADO A LA : = °,
MAQUINA VAX -11 =
DEL 2 AL 6 DE DICLEMBRE DE 1985

DIRIGIDO AL PERSONAL PROFESIONAL DE

DIRECCTON. GRAL. DE DESAROLLO TECNOLCGICO

S.C.T v T
MEXTICO. D.F . . R : ‘if

“ L]
COBOL BASICO C T
: i
. N '.’.“
> _‘ !
‘DICIEMBRE DE 1985.
.

-

.1 521.40.20 Apdo. Postal M-2285

3

Fidrle

&

«Eﬁ:un
WHHQHQ_

*

"\

EE_ Qu,ndnlenﬂllddﬁ‘ ‘ Pa
31

TR0 SR

L

leftm

LEengisre

Tergus ":J' @

anwuhudnr

CARAC TFRES

BogT lePﬂ

-varaftprvc
Eﬁ el’ lwnﬁ

Corecteros

Lurseteres

Caranteres

; Es de“ 2
Pﬁm wtddntau;Jm guertan W es 31m314r

anla43,

‘___,‘

-

obll_*n

rnece: 2

Davdet

s Common Business.Oriented

?LIKPJ(]OHﬁw
servire

1U

P

los

EH

U

}a

Pual fﬁPllJB
Unlver dﬁ;

B‘HUPHmpﬁth1ﬁn

LéﬁﬁURJEﬁJ

der ut::Prwuﬂ}ﬁﬂua“(t:ongaylafiJ
PHFD! -

3

7,-_ I L
tos adsic cos de cuzleuier

con Tos

L

TENE cnﬁuLi

Nimericos

Alfaboticost A 3

Espoenialos

lengueade e P F

ales. bate & fo

lus ﬂaramterES

i -

Y

GC.g 9

K o lesracilo

"5 . - R o

R A I SN
. e wal .

Languade

2]

e

en{ruriur

Jrn

ue.lps..

Iu%
Iy

1ﬁn
rma.

uge'

v

G
(R

TENEN

P
i

e

o nbE
sefiadg.

T s B

ﬁéﬁjégt”

f“nn Ly

i
HJU i ﬁhﬁﬁ

-
KA "
1 : N
T, ~ '.'- 'n_
3 n'*.
'
.
. , P
. -
. .
[TR
LR
b [
T .
. X

e I?F":”'- S T o “,;',fﬂk T ._: o A
e En L aldunos Pd)Uaf JEn el lengua.de - COROL Lievios . .3
caracleres tiene L blﬁnifirauu-eﬁpwmiﬁlm Etb* caractprpe‘

wosored i T e T BV AN '
i CARACTERES DE.ENICEONG .~ o .
. "B Tn;@rrtﬁn deleseanii hlaheos s e]
! QUPrP*Eén de. ceirog R L T .. _
: O In%ﬂrn16n A faros ;'ﬂf‘- . . fg;ﬂ;f.’ i h'
. A GiEne Kositive o S G
g ‘ €'u1dn0 wesativo . T R :
‘CRUCrediton "0 -0 B T :
‘ TR Déh:tn e L T P
anl K Evoteccion des 2 S SRR :
R $ Signo de resos . | .. B
S Ly Thgereioh de. couas. . . : : o
‘ SRR }‘ Innernlén e PUHtDb . - T
IRREPEE cnaanFaFP HF PUNTUACIGN*}' t oo
i, B . S o : * =1 ai_

A W:-&":'.‘* Fumd' o o - %’J . CL QL
Ao ety Paatbowicons L T T S

’ ':_Uﬂﬁ Furiborg o o n e o,

Lot Bdato 0 - R

P f'uml?h*’" - n . S oy <
k . f._(Favéniuwt, izeulerdo . 0 - 'Vf'w Cu a
: " }j Pferbrdr‘qaﬁ,:déq%y:hof-<,‘ x D Ty
N Emw;t1u«q-hlahcm S L o
: " R "," i mqﬁllri 1 . B r . g L. : ;‘ I R : E " i K -
» Y } e RGN oy
DPEEQHDREE nRIINFTIFOQ o Y
('j~#- oL T _ ;6‘Meﬁdﬁ = ‘1.7. f,h"“‘ S ‘ iy Caee '
: : : P Mae o . : a_:-}’m e T i

k¥ Multielicscion. - _ o S
. _ e Mivis 10“ - ' T . .
s o 7 . *# E”.uuwnvtdc:ﬁn 'n . S P ey

e FﬁlﬁFTFP. UE RELACTON | : |
;E.Ha%mr - ' %. o ' o - o
| foMerar . oo e - CE 4

N i: ;:ﬂl;’ = Tt}

g PROGRAMACION -~ . AP e
T En e eléhoﬁécibn'ﬂé~6ﬁ31duiﬁr“'ﬁrﬁéraﬁﬁhlén) COEOL. 6s-

ohesesario definlt lo sigujente! - _ I

a)llus Resnli'du,é'nhtenﬂméﬂ (Gelidaed o

h, ll‘ 1

SR h) Los Datnﬁﬁ,rpauﬂr dos PdPﬁ obtener "lusn Crectiltodos

¢ ; Ty : . CE N .." L ' A -

Ve

Pt e'ﬁe‘ﬁhanéséféﬁflqﬁ datos

axternos @l rrodrama de loy cusles

T

enterhhs‘al FFURPdmd &n Ios C”ul@q

Wy L . LT ! : '
;2se-éﬁitiran log reaultadns.fhiswoarixvu» de”SaLida).

A

“~Htcétéra."' o S DT e

[}
. o

Fﬁ'la'défihiridu dw 1& informacion BLE 58 EPOCESaTS hau
due ey PPL\fl(‘las Lardrielisttnaa tte Pala-“gnmn es el tzpu

"‘falfdhétlonr_ numér1t0;'.ete.lr g el 1&mo”0 (euantos

nnmhre).=_"@= . L IR E
. ’l-, o A — N . T -
A . .

In“ todoe erodrams QKLSIP<‘C19T16 5 1nfurmaviéu SRR o 17
contenido es definidy den{|u_del Erodramas (15]95 como log

o "r

'.enﬁanp“adue' rie los rwwurtps mup se letilran) w otra

1nfnrmae1ﬁn e runtmnldo (mas no quq raracteria%xude) e
PPOPOPCIDﬁddG al momentno dp PJFCUCIﬁH fdpl PrQQPama “lror

practicaments 1ndnpwnd1ﬂu1w< det cuutentdu e 1z Lnformdcidn
g Fracesar: o . S L o e

i
'
H
a -
- . i .
° v
:
.
. 5
N 1
1
.- v
'
- +
' v
. -~ .
N 3
ke
P
i
. . P .
0 -
; :) g
H N < . ¢ Caim
. i :

10ﬁjdatos 4 #rocesavse . (Niskositivos
: v Hf‘ I

i) 105 ‘diﬁpnﬁitivwé‘déi_afﬁéchﬁémiﬁtu'dé ”ihfnrﬁéni&nf

caracteres .maximo -epuede tener un o datos ':uri .Jem#lh'bn.

gudenr oy .loslihombree de los enpléados, en la PlohUPdLlﬁﬂ de
e neminads - En este ﬂ]ilmu e33R0]us FrOgranss. ,’=qn

\ . y TR @ : R
< :) " frs)
L :;2' S
; P Todo Proqtdma ‘e FORUI T “en Ccuatro
L g '_01v1 1nnes Ph dnnde se H@PLnen' e P ~ i
A § L s ' i -
&l Proqrawa des Tos L disen xh1vu"'~;,ﬂ 5
eutPﬁHOS?PdP'lﬁS< :ualps %P,_.hteﬁdnanhipé,'uumu« " Ty
. A i C - i s o - , . 4 ;
A ; e .Entrad 8. se emitiréﬁ o %
e , EH 3) l.a - dP&PPlPClQH dp levA]'7=* ;Z.';‘ 'Tff"jbwbc psarh.
A W : alaqmitmos_de 5
.: K .', i .. L o - ; . N -h.‘ Lo R o _, _'_. o é i .
i e N . ! R - ., . .
S e En el lengusle CHPU!; A dlrpreana d@ obtros. . lendusdess i
. ‘ et"fnwcee rrio . wnlendpr- la fuun_dn e .vaua?;una e lad

HJVLGlnnPe srites e PUHPP dvsdrrnllat @ lddn wru%rama. [

. r Loty 1. ,";a.-' PR o '
"' -t . e vt . - . v " ' - o v

v " o = DE%PRIPFION DE Lﬁ INFURHAPTON . : ' '

LS 'Para deian @r roqrama e, COROLS ijwxnfurmarlﬁn ‘ o

“ . CRUEe . Se L va LB:.PFUCE%dP nanlu e enhfedds HP i JERAEE cumn |]

¥ e Antermediar se enrlesn los gpnyawtu$ Laqub .me” _,LUﬁ; 107. .

£, -Regislros w los Archivos, = . P o : o

o L o RESAIELTODS F , e S ClegT L

T S Y ORI : K o S Lo

:] o ?L'CAMFDS BE DATUS » O S

i ce . N ' Lt - ‘. . . .- ‘ N o

. : A Lns”Camﬁuﬁ de e :'def:nvn bréas de elmatpuam Penbo | da _

. s . i , o

{: " ©oinformacion- a@n el wrnuram¢.~-ﬁacsua,camuu de* untu haw oue
: L deflnxrlﬁ el ndme ro L de .(ard(L@rﬂsf atfe’- Buddb | nontaner
o _ (Yorgitud del Caneo) yoowl) tivo - de mrnruamotxﬁurtnxe'wntwwL
S almacenar (seas a]?anﬁl1(Ur numérive o rlranumér'rn‘ '

+

Far eldemelo @l EMEO FAra élméwén#rfhlfnﬁmuyu.dq fusnle

ST 'ﬁ'un-aTumnn'dm 1a UNhMr tendré’una,lmngithdddﬁ 8 coratleres . o
T del 11F0 Pl oo . S C - R o :
. NGMBRE-[!E-I?IATU- = _ _ R T S
L ST J o . - L R
YOEs el nombrd ssceilsdo a.un Ceweo de Lnformurtdn~% A
. . haﬁer]u PMFHPPuvik dentro del un Prharaﬁa eI Fﬂnnl (edpm Jv -
T N - [!F~-I urNTf:.,- S SR
. ot ’) = ! ‘;
"-f ' T‘ ! -E- - “ o i ‘
N ! ' . i ."_,-: ‘e
"2‘-5: ’ -) . . - . !I‘_"‘ _"f ‘
T’. v A . 4'_ }.. s .rr ! ‘
1 . N : ‘ -
; ! 1 - Yy b' ; ! ;-“:_. \
$0 ‘ g
.}' _g‘ \. 1 -

" REGLAS FARA FORMAR 105 NOMRRES DE 1ATO

Les redlas rarve Turmar low,

Wi A n0 W en depersl

Gt

rars formar cuzleuier powmbee aue el Fondrawzaor Ukrids vue

definier denleo de dn o rrogramavecnd

.

oy

)
LA e la 7 (suceslo KY D w] 9 e Cauianie)

Nehien omeerar GO oun o

Mo puedern v sl evinedisio nd sl Pl

Moo deiren ewslappse

e lante: ern 1o gl

H

De 17 a 30 carvactovésy wledidios de Lon sirientd

o

vt wlfaléebicn (Falra)
Las duiones (=) s6le soiledn. D cinbormedion an ol

FIGMmU e,

Sl el el v,
.
Mo sk wecaiben esradios o Blandas - ioabermelios,

ealalivres rwssreaton Iver mdo

by

Beme g dn de] i

o
[.O -
"

:

e

ey T‘l-.'! i "l I‘O (—“5 ltn".:‘;'1;1'|;'i;_=t‘i L
L T L R velEcidi,
IO yl.llt\ numhl"". (.mmhre' rjc-' tt.-.ré.-ft

PR % ‘ xl" lJIun
s F‘AHFIJ% NUMFF L an m qu ane T -ar f»a S
e ,

[.
% ’ + -
: o m
v v
-
E
*
i
‘
Al Fl
-t
o
[
PEEN
I
:
i
i i-
T ¥
o

ﬁR"PIUO .

SO - Un ﬁuthxvn ®s un cendurbo, de.
o mtgmm tisp dh_rniurmuu1én'- 28 lu*
' I' NO_“I!‘)___T‘Q __’F"B_f‘rf_s huclf"(‘-l‘e '-:-- T‘&‘.f't- = i

;“' ‘;
. -fip]nns'. ‘ FI"C?-H‘ lIlr:. !_
S C-gpmplnv,

P A e T nétlﬂoqv etdq)¢

’ ¢ & f; f“) Vlé =
de - lost detos
.ados)”d

+

- -.‘l . " r;c:'u 1 i

LUHﬂK

. [N
S alqatltmn de ProCEso
Y BT e, ide lnLLrULv{ fﬁ- dPnnmJnade
j0r=dn1~dn ['.yyats- ouym
. ‘deses 405._ N 5
H‘“
(umpuerLaé
[wu&lﬁn¢_
= ’serLewde ' ' :
qEFinlﬁds,_ rpld.r-"
PEb“r)ﬁdei' : T i
i R N ‘!,.\-. .
G e ﬁYunQP turhna.uaeraﬁ CUﬁ‘thFOb dF
. dafiren 1) yaern en"tujp Her !'JPIWJTRI‘
S Gon los Verbos oze PHFdPH har@r.“ §
T . Y ' -,--, ; .'_', B : .
. - ' |' B
" ‘;Uy rauxon 2 Art*métxv 2
N . RN ..." PN __
‘.fb}-ﬂuvzm:entms-d tnfurmav
N . . * N 4
- o o R
o) UPe$e01qne$
oo g e
Y Domparaciioes waﬁ%
: 1@J.Re?ebiciune$¥de Tnt _
L ~fﬁ ﬁ1187‘?C1ﬁIrtfPl 3 luufa'd., T
_ }E‘FYraue‘f ;- N i
KB " 4
AR . . .

N

. . vy i AN 1 . ’-:",_'“
| :;a;.. MDUE uimﬂ? asTICULu Tﬁ_ﬁlﬁvﬂ,gﬁtfﬁ#;
"":‘ LN ,{—v“;.“ 1]

croTe ,>‘53" ; 'c‘lonwwgu
- Las, Ore

, :'EdeP1uf
térm;nan]")
dphpu_._
,vewh TEY

LILHI

" PARRAFOS

. Fre CORDL las ﬂPa(th . B

ot ras 'zlahraa“wu.i:érr“fu G
'. 19rm3n4dmr con .t Fund o uue‘%e
. {Nembre de Farré?n)ngylmf R

o ,._‘i.g f'f
S :‘“fﬁ' e QL@& whp 1us e b e gl be “HJG*dP,Eﬂécuwiﬂw

v e laq 1PHUt1unew “«Q Thien o raras u*wvgvar =uﬁ,
3 i JH%+FUCP1HHE~ Tufa ver més veees) sin
LT .“:Euetugmén*, lL.os Furrafu% S audtf:owu

4 i‘u;'?.“)
Ky .
¥ .-'.’.4" ‘:~ﬁ) FAN

. S ,i,'u-.*tin'j.'r;;"-u"a_--tr:onw ury mm’r rsf . R) :
T Mrlm°'."'-w Lt e ‘$
| LNtrt { :
R IR LétTnapﬂ | o ;" : ‘ﬁ} 1‘ ,' T .
. - . -~ 7 READ LEngﬂa AT END 6DTO FING S
R | FERFOKK FROCES0, T S
h uUTU LECTURA. o Lo T T
. ¥ L : PR 2t .
. ; -gfpa FHN. .
i‘" t N ' ‘ . i
E . e , "':‘;
} . o P . . .‘: .- 3
I L i -
5 "'.‘ ‘ _?55 ’ 1. ,

St

.

.
N
v . . * -
. W, ¢ T
= ey
'
<
&
- y -
. . ?
. i
o . 1
SE
H
A ‘..
i . .
. . ' !
] - :
. 3 > &
D ' M
, . LG i
2 §

‘En'el lﬁﬁﬂuadﬁ

‘.'i ‘.‘7_ - P

Lﬁﬁf
PDP el

ENmeiﬂb

hoMhréﬁ ide
Nombres de

Nnmh. ws ole

'Mﬂqhbrééfde

Lo hnmbired

. i
]

Lonztintes

Redistrios egreni

'gfﬁﬁnsfﬁﬁﬂpagnsaas[

!an

'NOMBRFP 0 GUPTANTIUDS

Redistros

L

Archivo

Dondicidry
5 T

Frocediniento

due

T

PALABRAb RECFRUAnﬁ

Tienen up

Eétaﬂrpalabrfm

pepea 21l oual
FPGEOPCLONE Una

Las Palahr“g

PREETY
JWHLFJP

[I

JU
;«i,lﬁ?(ief'a
;ﬂshmﬁ
lista

U3y
W

‘

dgiunstivos

9 T

o

|

adagy
&

nnmhresacerct\tdﬁn-enV

Q

FroFarcions

4

v
4.

SO

ciaf i

T

Falabren

Farrafo

L ﬁmtp“mineﬁn,
eme e

N
#5.

@l Terg HdJH-CDRQL.

f%aléh@aé, e :
feal]wu?ufqp Fﬂﬁﬂlw

]

v 1y

I
-
4
. -
5 N
‘
14
s
'
PRl

0

1

Tk Y tenie
reservados, divl

ln:lé

Phil diferente.
Woids sé-

COROL,.

romrwe tar

Lin

wete

IWRNTTLy

L

1, Tods s

Tn
4

i_ménqé_dr

,Bng, -y

SACTUALNME

La‘codlf1rac3ﬂn
rmeto g2 95L4h19
hodags -

lav' hoaas e
YL ES erens

i
15&92% np had1wo; R A

e "
0 W
v s
8
) H
. .
'
.
o
:
El
'
: -
B
.
x
)
ey L
[N
-
.
' .
1
PN
r 1
. -
Lt H
' -
e
4.7,
! "
R R
: ey
-

3@?&.

FUFGL ‘;

de.—'BQ,‘_ colummes v 172

CCoorficscidn .

gn ronnz

wEd de

NTE

S

de los Brogranss

1dn ‘el cusl .se

T
39'1lmlhu

renﬁlnq

i
(—-‘Il

".‘\II

leres: (o sea due

Asnen el i Hujpnteh

;
L3 H
:
o
'l o ‘ '
v S v
- N :
. ¢
r
.
E
)
, i
1 o
, i

[

FOHUL
Pupntr

e

anwuﬂht

lf“*"'“llf-'r

‘g\'allniu

h

tfe.

rwpne Seritan, hasha

"
[T
1
H
[‘a
i
i
-“
i
f
.
[-
' .
'
“
i
4
. B
' ~
P

ff(;xnxalxxv

= "%
?.,-‘r -
» H
B !
R
.
.
ah
. \
t ' o
.
. ey o7 ¥
- .
s
PR
M3
1
e
B
U
ot . w
: e +
. ¢

00
oY=
W
L
AN
i
o

-

2

4

.?,;‘
1.
el

72-80.

"Hasta

Nnmero dca. =EFing 0 hod,
”ﬂ 1 e

.1Nﬂm9vn,
iri ,} ciam
El7

fPU‘umna

Margen

]

l

H.Orl
"Qﬁ e

}Harﬁpn}é

declarar

dﬂHLLfllPPTGH dwl
FrOKT

el
Cede

E

t

‘ ~&UﬁTENIﬂd

1o

e IPHQWﬁln. e
T 10 %’
nume:u de’

Crerresentan L
cHdidgo Hel Pruﬁrdﬁah K
‘nmheh 3P(UPH£13G son

i

¥ Cottinuacion de t

Su@!isﬂn) - Fara:
Prnwrama.q IS

; FL%FURGI B o

BeoLos dinst

Seahar
e ddentificacidn

:'

et w?andn e

Ceeient

e ?iudiCQQioneﬁ

010, ranlﬂn.-

“La - ramuftrar
LLOlUmﬁd.

clertas
1nfurmar1ﬁn“
m T‘“':"llo

v q

cesha :mlumna’ 58 0
innes e

o . . t
T : e
1

snador lé seisna”
foemsd e

av

FZ

..a~vmvndv
Padlna 3}#1

RIS
pEeionsless

33

g

710HEal'ﬂ£¢3 '

1n~lrucrzunwa

S
#

,-hlf"
“uuh‘

l'n“1 al du

.

mm:ju

e

Bl Frngrawgy

Frtv:.ama* Ev €1 nonbve glm

N TR

‘K'a' 8 hdva019r9~+

veiamnal .

v
:
1
]
’
I ey
e
., »
e I ¢
s
H "
, N
.,
o
3 . .
.
'
T

e

v
B s
R}
W
1
.
t
",

‘.

:Uﬁ

o
v
B
"-\
.
FRN
s
ta
T
o
S

ot

a]abras~

Y Llaves!

FEN

‘mdnual_
11 Iector lag

sanérig

X n
rrodraem
‘mostrad

LS

N

“ (‘r‘i tr r.t“-' ']

e e}ﬁﬂoﬁphetesjylLaﬁ

o ”“‘epréwp
) :Lm mue;
o *.ai se i

cnuﬁra“

f)‘Eunth 5

NOTA. - Lés

dmtﬁsrmw

CEJEMPLOSE
S MULTIFLY L

Cddéntif
Eow ;

efy lad

L te

!

identif

s

dp'

\

nnéﬁ~mubae§c?i
E CPltd& con

g% mi
i_} |:.[(l.\ N c‘*
‘:"" C N . .
& @n~el-furmatmé

.éummdﬂf'hég el

w ' 2

“
.k _‘l.

@alébvéﬁ

rlidl:(QPQifﬂlﬂS.:.
i e A_))

‘doﬁteﬁﬁﬁl"'r

e@eé Clet oweidng

]

lDa-

uspeﬁsivné

(fbhn¢q' Cyd 2 los
dﬁtl“PdPlUHPG?fnu

AdaybiPicader

ehhérﬁd

1aves {F hﬁDPé G

ahﬁeg“

runih; Qf

bi 1(1‘-

IS

.ipeva1F1' : ﬁY ideﬂﬁifltadun7m5

ey

Leadors3 CROUNDED]

jcador=4 CLEOINTERT 1. ..

cumaﬁ;.(
E‘* untos (

~Hihﬂséu1a§i,_ sQn'

& aue

'-ﬁéf§hT$uQUﬁ

ceg
nUTIC

dt—

.

YLeenine

H

uJa jﬁu

el]

2

wlasree., -

rvadgs,

np,

AT

PR

Tomi e
.eJ@cutg el

.\JECULlﬁﬂo. I R o
ww'”nar. nonbre a o diﬁpuﬁitivos?dﬁ LntI»uéffﬂllﬂ
nue.de ENPIPBIJH en el BProfrana Ak T
DPfLH1P aldunas . ceovacleristicas e los arcitivos, .
'(nqcuenciali Ranttoms eho.) A
'rdrq darles un ronbre o eivetes Tuntiunes de sldadvos -
ﬁlLPU itivos o ' v *
',(eqemplu” Seltd de hode en une “imwrw u.a\ n
’ . . .\‘) i . - o ;)
13 '
, - ! o S
H A 'f’ "

DIVISION DE.

los »rod
'IDIIP‘)'

Tadns
fivis

Y&DATA nxuxsxnu

“Rnrsnuar ntutsxnn

Nnas
Pvuqidmar el
Frngramayqete+

' bt

Cnn:fa dw
Y fl&:!

:EﬁUI§ONMENTﬁﬁ1U;son

- Se

“,Siruéypaha .

F599P171cbr ld

uwara Ia' LﬂmPJIBC1uT

L0S. FROGRAKAS EN

'“rnmnutauuraa

COROL. . ..o -

tuan135 IIHPH"

"ngqrn-%
Lo

(D;UI?TGN HE EHUIFU)

e =e
o O T'fr‘-'H‘r.Lnrciv -

el

H.L [l"['-\:.‘ '

Ulljl?dhv
Pumui

nrdeT

ctndiiog i el
ST donde dee.

Hntow
P'IB‘“U

DATA DIVISTON

' “PdFS* dw?anlr'
Lnforma 16n LG manpjar‘

u1v1516u)

at

"’Etinuehaéf
ﬂfrJhu{n-'p

s N(J [ni T‘\'. c’.jf-.l B .1!(") ‘.‘J: -\F\-

_ 74-Dﬁac$iﬁﬂidnl de . Tos - -Re
o Cameny P;I'ngt Qe

w7 1 . CaroL

' - Caracheristjéa% e]

A - Deserircidn

E:’QOmO'SDﬁr i . S
w‘EhEabezgdwﬁ;" o .
- CqﬁLadmres L Y ;;itf‘ N 7
istrog intermediﬁﬁ ;i - A
1 FROCEDURE DIVISION (DIVISION DEU PROCESD) -F o

consbituids Por wraciones . asrursdss SO .wﬁt;dfursi - La

egerusidn del mrogesns Frineiris, iesdn eT Frim@r'Pérrst g’

cuta d1v1 s 4, s AR S .

o

o BEnoestadivisidn se define Ya Fovmd k=14 wnp EBEPUCESSPA
1’ informecidn cue manedsrd e1'wruqramq. Jivisldn eatd:

i S P B e
- RrToErémai-

N '
. y B
i . M
AL
R g
s -

L. IDENTIFICATION,

s @

Ve -‘?;'fﬁU%HUR.‘ - Jhlﬁnmeqt&:

.
o
- ..
i)
'
. :
' v
.
. [b
X beoos
b
-
'
;.

structurs de

<" IBENTIFICATION DIVISION. .

s PROGRAM-TNL >

" LDATE-COMPILEL. Cowentarioid '

'
u

DIVISION:

s

" }
esty.

T - P .
[

.

- R N 1 ',‘
Comentario, 7
f - R

W i

CINSTALLATION, . Gonentari

LOATE-WRITTEN, Comentsr i

ESECURITY,. . Lowerhsr

“ . R
v . } 3 “ 4
. - kS
, o Lo
P .
P PRI . . o
.. : . .
. 4
f N -t
. .
T
N \
.‘ LI . ’
. Rl
4
o
.
+ A, :
N s ' ' .
' o X 3
.‘ i : '
Wi . '
] . St v
. ‘ H N
- . H '
N = L} !
, R Sty
. P .o B
3 "
. - ' - R
PR Vi
. KRS ! o
. g A
, ik bR :
. * A W
K . . - - L .
E § N . . ' K
i ' , . ' Lo . '
- Ta
" . o=y oot '
. . . FO
.‘ .
o [.
r T ~:.‘
: , "._.éa
it 1 9 B
' . k.
. N W7 -
M . . .
. [N
s iy "
4 H

. '

\

[CURS

"LGBJFFT CDHFUTER.

_TSE
SOVETE

Comendario, e

EFILE FﬂNTRUl._ < AT
: FILE-CONTROLLBESCR: sty
nLSrRTFrIuN* ‘_ | R
NOMERES ESFECIALEST ' }ji ;
: Qmﬁtrmiwdeédi5ﬁqﬁitiQd?Qﬁr}ﬁéiiémLES @ﬁmurp~ae~qétu .
Edemslol \ : e ;’T l'éh .
Colo1e }ailﬂ%hdJa.-l.WJkilﬂﬁ‘ o !
“1!}MCUHTRﬂf-nESCRIPTIﬂHA j] A_ L ,1Q~
:SELFCT .:Nomhrmidﬁw-f;h} o -AqqrrN’3,,';Ta
. ‘ “JuﬂﬂﬁltiUD”kNPjTH!LCﬂp L o
] o S R -
. . 5h
X “
L : ',ii’ K
. ‘ I TR P ﬁ.Eﬁ

”T_DATQ nquaInN.

‘“iiHDRhINB*STURAGF 'ELTIDN.-=

"z,_ nara DIUTSIUN

La ter(era Pd!tP dv ys wrnqrnm4L

BIVLS TON» ' rermite 1a. dE%PI1F!luH deﬂlaé ;
los arch;vos de H'trddd s/u slxnav‘“‘ 3
qwnp RIS e . B P

e - B .1’4- o
R ' grtau&rae :)
Y w0 S TAMAND ﬂEL*E!UﬂUE

T Y TAMAND DE REGISTROS . Cv .

S CESTA DIVIDIIN UN REGISTROY %
Cwoe o, = BESCRIFCTION RE {FJ‘PIRDH uf“
A0 T COMO SONT i
SR ,;cnurann&Fa,.m

Zh&GISTFUS ,Nrrrmrnrnq

N

s . + b
SO R L . . L -
S0 o e . . T LT . -
. v . . - PR S

. o
7

la ﬁiéurtnra-éq~1é,ﬁiﬁuientﬁf

-

EFIIE SECTION, -
o EFTLE DFSPRIFITUN \ .
‘leFURD ﬁFStF?FTInNJ",,,]%

.J

- 1ﬂLSFhI“ TN NQTO'TL_NIN1Q 1

- NUHERF : TaMAND ¥ TR0 hh*!D‘

FHLR rnmpuestu dP varta& s@pﬁnqneﬁquéﬁLﬁaﬁ, ik o

IAHPﬂagFN 0”&

St

i thPDhN AUXTLIAR-DESCRIFTIONT | 51 ¥ A
MESCRIFCION? o ey
?di,Eny&wUREF“fIDN: RS
Fi ”ﬁomsﬁr B hkPH!UU ' @

o | 1”‘ COWTYYED> - PR

. LABEL RECORDS - = L : ;

‘ ‘ (5 TRNDARDY L :

U pata RECéRH te - rami e regintrg | L fﬁ? K
e L7 3
L

-, Ta K L .}'
CRECORD=UESCRIETIONS .

. c Lt EE
G- Alfanélicog
X = Alfanuméricos
e - Numéricos
R -
e cladsuls VALUE s0lo
CSEETION.. -8
D
e 1
! 4
s
A .
: .

] ﬁﬁngédgvééﬁo}
FILLER. -

pr:e:e rjp @ |(!.}"-_' 1_ Ta N(ll" K I-:f;-!(-‘[. .'..

4. PROCEDURE DIVISION
r&uasuu&& DIVISTON. - . |
.1nnmhrﬂ~dh~'QCcién R

-Una 11teral N3

umér‘rau.

P ;'*LITEhAIE

digitos .0 sl 9y .

o heshd es una CQUtidad

;QeJemPIL

LR D

- -."; +401
R éQr

i

LlTFRAIE

c P sarta. uug‘valur
b ,ﬂ-numérlroi dentro e
' : ‘1t ra1e~:—aue sorded

NUHERIFA el :;u;g

Urid - 1lteral Num*ri

Le7a0 4.8.€;

e

NOZNUMER‘CAS

qECTION kR .

ATy PT@munfo{ ﬂe

,"'T Uf-‘l"dmf; o‘

1\1‘-.»

-

LT 7,7,
digitos qQ

ot

he” TR

E

1
éh

(3 mrﬂi')
%runio

(011 .
iuLLmu

' Una llterfl no numérica Ces:ocunt etwmmn\Ur furmadu b
cualauiera de los caracteres ole- M 31 Ve g i fie tﬂHm
dnelugendo el éseravio en. bl¥anco. FElis v dderaled e
encerrarsy | entire. :umjlﬁnf_?I"}' g el volopr e 13t ltte\aW
numé*icaw,lﬂs"wwnsthuwmn, Tos anrdniwxﬁ” d(nfvo e
comillas, Cuslouier rar. dé comilles. 'P}PH&QHL#HH)
Czimple comillay lo cue rPPM!'B ;wrlutrlﬂ"]n ‘]ﬁTPra
PR NG T ARG, El nume 10 e cai Lp.pa
v, 2046 carscteres, . '
Edemelod
Lo runsr JnsE” %-':ﬁ?ﬂ'- ' “Bn[n- ;
: o7 to . o) . xS
. _ﬁEL'Uo_"HILL“' JINES ™ -.”“”'Hﬂlﬁ
! v 19
L R s,) ' - B '
f' - 4 i

- - |
s T
* 1 . s
" . '
. ~ . '
! o
) ' st * v
3

fpﬁNSTANTE$}FIGURATIués.- ifﬁ?f

: . ST o T

‘Una conshante Fl‘u1mf1va 8s U ,'Ja‘u. '

T f'ﬁﬂncupnfr*~‘ e fifide e el !‘u~$|nqe PORP'n LUH‘hﬂHu .
t 5@ UPdaﬁ;PMP1EdP #r rualhu1rr ru.{e AU ES ue‘ i
o :uné 11¢p131. ' R S E

B p 1‘

. g .; # §r g . ‘ b : Y

R : [

(rprn), dL}uuuLPnﬁ;f 5 A

- i L -:, R)

L : B ‘ e .','!”" -

i - 5rnrr, bFﬁCmnzl o i

v ' . e E— t 1

o RPN |

" warpqentan unpzﬂ. mis @]
el c. QUOTF, auarEﬁg <
‘ S B S ') |
N .R?Preﬁentaﬁ urigs & mds - fel gL i aﬁ
oL ALl Liderslenomnuméries i B :

' . . -

7 Resvesentacla - rere l1a1ﬂu e Ay . literal no naedricgs .
" . . E a o L L . . ¢

Gl tentas v Conn L sea

[L AN
.

—edemrlol oy

ALl eRE s AéQéECﬂ-é. T
o .-L E. JP?:P] 6 i E i”l‘ f}jj f:ﬁ “: s o o ‘-ii'.luf f::;i; : .
| HOVE %FAFF 0 Loves o o
A : e SO _
‘MULTIPL?,LCOﬂTQDﬂR BY ZERG C o '.ﬂfﬁgﬁff
CIF CLAVE = alL *vr S T ?}fé?‘ 'rﬂ%j. |
'[“oﬁ'NnMERﬁjnﬁéHhJé”'ch,9§ UAIUF zrﬁnu;hﬁﬁgi s g;if_;“‘"
o ’ 20
; £ , ﬁ ¢ ’

SRR 51“
rermite eﬁzfdv la

”fb1PVﬁ =3ra
A & (numérico,

Lndlrar

1 13m

alfdbéiiﬁu 0,

ﬁfn
d] fnlllll

rac e’y
dp‘inur

el

campu By numértCUr

blPVH Pav“.u

.HI,SE

f;wn&

tiéne

L.‘Lc‘}b . L

aﬁfj_rgaarrr"as ﬁréfugga:

)

Cfﬁ) Inﬁira'hup Pl cara:iulpf '“i

[U) y
i ™
<
¥ N
.,‘ F"
-
ey

eJemﬁln&
- P

PIF ’ﬁl

“UFFF??? 3
ﬂﬁnCTLHFa F
f Indiea
CHUME
canrn
LAMFO FUENTE
01234
‘5 GOLR3
ol

‘dvclmal.“‘ En o, 189"

UH}hENF OTUPAGF

sidne L4 &

SECTION

¢

A

V&fwh (edePlng

.fnrmﬁb'ﬁn

B

i

'Jnd1la
Trdgics

LCEREQ
O B
[t ST §]

FHEIE e

inEresidn (Fy
T3 S

K :Hmﬂor‘u9

; L. !
_" ' i , .1
5 aH“rWFJtP' 2
W
M?JJQ ?999”)...' ‘
ﬁuméﬁicn"” ! o L

u_fduulkLu
cl?unumérltu

Ctndics

_en el ta

TAMANMG

Tniddics.
(no se
Indica, ewis ene,
contabdlice &h e
Birve Pars dndics

sté fuers del i
maro. upl o
18 en 11”0)?

(M.

LUNTFN1ﬂD Fu MF””FTﬁ’,“Cf;QE
‘ -;" S \ ,_' e K ‘:

N

1LTU vk PF ENICION

SUFPes 10N de
NnumeTicon,. Se

" '_PJ&TURE

2202

7Car9(E)

: AR

21

Cﬂlﬁﬂﬂﬂlﬁhﬂﬂ# HHH[!

contanll iz

'“5 R ¥

e
oot
we eolocan. 8 1

A vbus
smshuf
l'l{.lu- . A

uwl T

Ry el
a e o5
Lo bemaho®
r e el Funt
anEoL N ge}ﬁudt
émpo)f-'- :

7,

(sl o wﬂhh‘hh~"FD

@ oen el Lewm

8. 1awuierds)

auilisz

o

U RESULTARG -
819234

ST

Henimal
il g 7

o ﬁiﬁnifiyatiwuﬁ

NI

(‘ L:‘i‘—:ﬁ'}
Moo s
B TEES T

LGéh

Boe1Rz

RAGEY
1 T

atio. del
mp?ut

ThlPiiﬂ

*

T

Wi 12T

. e,
“ S d%hé_%nﬁﬁr Ty %hhwf%
pH;ladn. Se colobs Bil
g i] '”gﬁdfn i
i :
oy P
" W _ -
' - o Lﬂ34 R $999?'r' et
L ¢ 002 ils‘ BT 1‘$$?9' S fnh%«v
« ' T i ”.’\S oJ.Q T R L G0)_l 2?9 .
SRR R T ey
Lo - v“'.“(glqnu menuq Yuindics uun'ﬂé RO 8 Sur i o merias s
L o ey s el Tvalor el cahen Qs neg' | 5. e g ngCse o
‘? ' _ fpmndr'xun Pf:wrtu Epn i 4nc9. ”M”- oloea a0
o ;:?:‘ - , e llc zeuierda 'y . asa qns ruv~-_usw1{"
S O jihffcamwo*gEaemplaa. B
St w7 L J R oo ‘_x‘_-,‘- .
e § CAHFG FUFNT? .
1, : ‘.'l . ‘!."5
3 ?‘ P
-.) “(3)9

e e T s s T T g

.
-tz 0 T e

Bi el va 10

ST 2 “Funciond izual aue el Skuno nuq 2 L3 vl _
L ' ‘1§uo‘mpu05ﬁ_ﬁ_h;5

del camep. @ nedaliva: Se |w<9\1u P13

E '
Y . - F.

N Y A (cera) indick sue se vologuen carachéres 're:x
.. _— S sirn oud se rpiecdsn (:nttfl—ﬂ%i‘fﬁt“'es cdel doto f‘slt..\ea

' S L T e ean tabilize en el tuwafion.del canse.
'Ejem»]u i . }, ~“' o

CAHFO FUENTE - FIE !HRF L kESULTARD | ITF!”"

oL qnaa . ' ‘¢9o< Y96 1Pn03ec
) 1234 - : eaYoayE o LERE40000 -
B0ty WL Zlay000 Cer L BAIR000

15 Todics ode se cologhen eseaciod i en hlancos sin
vue se miecdan caracleres del bases fuente. .
Eismelosi ' ' : . :

. CAMFD FUENTE © . PICTURE .71 RESULTADN IMERESO

1734 CeREERY T v o iouena
oo 1234 . ?i431‘"‘ P ST 1?54fﬁ

-

. L - . Yoq i I
T PR Y { Coma) “dndi e tie se rm1 rm-n-*r; LG s s'err. el
CoaL s dugar correseondienter sin Coue s s ibhedaf
cesrzgteres del canroe Tuente. ‘

.
.
E
f
.
. ' ‘
B . i
- v
.) u
o ‘
H ' - . -
N .
. . P «
. . H
I N
r v "
o

CAHFD rdFNYE e

ﬁhFU

'1%im1:

B 1"_“.‘5)_4. . ____:‘ -.‘ 3
e X SO

(,Punth y
,Lumdndu
vkau 1.

'\;éLn wugggf

o

fEPlbLD‘

.1*34

";‘"_ L 254 i

.()0 . i

e

[

¥]

UFN _ .

!“’9 ‘F(*

”{ Af”k@!*i%m;b) th:ter:(l&ru. Irnfrt . ﬂLJP
‘EUPlJmIPHUU Pvuﬁ R TOINEa

Indics aue
Cderecis el

nﬂéafivmr'

LaMP0 - r'L!r-HT["

..J «t

- 1234

sing nPlarJ HIY:

%ii'

:tPICTUEE

mclp
gwnnfn,

dins GUR G ((3Lnuup ;n‘ wun?(&
Ceuents T la tJiuw"vtdn
U R "_f .\ I

FTLHJF\F

M .R'

3/7;?(3) ﬁ$1,f54 0“.1. S
*‘hi.ﬁxo ; ;?,{ L.

Ay

‘"

ﬂﬁ YNPPF«U

,c.

g :,%?;hﬂ;f. D0 inag ‘:
Tr(ace ST U ko o
CERNRRE LT T SXAELD, 0 oo

[N '_
4@ volﬁuu@n."
R mPU! tmma

FEL
Gy

TR s

- ~y"rc1u 3 CRE “U!Tﬁﬂﬂ mbﬁbbﬂ L
L TR U Q'
1234 ; ? SeaCR CoTae i ?.hwq A
CooL9GaDE ST e Tyagane 0 T
, RLAICR e '1“54(&_ ’
23 .

{J.tirur
,;uﬁﬂdﬂ'

Evaluscicnes Orerzciones

1) Lésieas - EAuAL ..o NUT;
e LESS e T NeT :
; GREATER Lo LoNOT GRE&?ERW

2) De clage - NUHERTG A T
Lo e ALFRRETIC - .o 0 HES

3) Die ondicion . nivel 88 s

VERRD PERFORM. Se _

FERFORM,.. Sirve wars transferir o PlPLUL%PHUHﬁ ECIRT- T PR
cse@rie t de gecuencizss un Cme 1 uefﬁ!anadUaub veces o feder,
‘n&ctm~ﬁu € wabisfads uns cievta L“ﬁdliLHﬂ*' '

1y PERFORM snambive e ezreatol e el T ' .
' e;@cuta lﬁv‘lﬁbtruﬁtiuﬁﬂﬁ desde 1o etiaueta hddto donde
aneuentre olra, ‘ ‘ N o

S

¥
t

PER M N T R
L) PERFORM <nowbrae. de boAnomivede Fany r.:f,\.xﬁ\.r

fesde . ; hasts’

’
.
> ‘ ,
Wt
L
Pt w
.. i
~
'
ot
. e A
“ X

-t

1) FERFORM <nomb- psrrsfols THRU nuwh-pgﬁzar\g '

S dvewb=date 30 :
’{ﬁymeno-&ntﬁru}- ﬁTIHESfl”

I R : co
L HieCuts d@smw,’&%ﬁéntaﬂwl'hégta.ﬁl*
numn wumh~ddh ﬁmm@rq antera,. %L
- 3 ’_‘.‘P t M T "

LA PERFORH
*ﬁ}_.mUNTllﬁfrnnd1r1du . i N .;1.- sl

»L

) chandtvzén¢;‘r-f‘. e -
U L .
of S E t ! S v
s (.
‘) T .
' R : ‘ L g
UERBD[MDUE. S e e Y -
) . . T .
\~r9%1airn~u HHCTSt h TR
o M{:aLthn ‘ + ~ e s
"MOVE £ cenro hﬂwmﬁ&tmfl U0 campo-d-2 Troameord-3
' o litergl-t R ' : R L el
in%trncciﬁn.muw'cﬁmﬂn en el Erosgeamns 'fuenté“
miver el - coptenide. de camro-de-dato-l
i g - e ﬂalu—” sin alterae el cuntenido del
C fieneles o Lot
MOVE . RFC TR CRFC-GaL., N A
MOUE c ZERDSTO . XX sYYsZ2, ' . 8
MOVE ’X“" TO. HOMERE.)
Le prerecidn MOVE devende dal Lieo. e
mbvi@ndq.f : o B . f
)HQUE ﬁLFﬁNUMFRI“U“ . R,
. . A Co . : -
MQHF v ~..__.._....»...;.._.M.,:.... B (s — .-."._,......A..,..f..._...._'.' ’
"camwu CTINR YOS o T CENRO H@w.1nn‘»
‘ Co Jbtome el mreimer o caracler iﬁnuiﬁhdd‘ fe
enisora. 9 o) llevae a 13 =vimers sosicldn de: s vé?i@hlw
¥ esd T sudesivanente Lodos los dends csrschereds Nowbo
s termine, Hi el emizor tieme un Lamefo ponor ol
los cenros fallantes de este Olting e 1Liedan qdn }1unrun.
] a0 !
N +) B
.

ot - wéPPaPUI TH&U uumhmunvvarnh

. e4€cuf del ravistol al Hérnérdﬁ ha«La e

e

'tunk-%

e,

ot

dﬁé%ﬁhui
@i

.(.’] e aurn iy

MOYE NUﬁERTCU:-J

.. Gamen emtnnr

Lt e aa

“cg@ggluu Shine 04

|,‘r

i m!1~e:<i¢. fi___ ,4,1 72""‘

. PR . . +
i . . . t

Pg%‘lcﬁtaﬁtq ﬁw_gﬁﬁwlqme Glug sii

Fm1sor E;C,.Westlnn;' R
- Se alprden c?fra mas sidn

S “FmLSOi] ﬁestinﬁ; T s
. LLP 8 de Ceros.’

Nﬂfﬁ‘ ”fSi el Funto no wuté ﬁvFPL fi bar'

L default como Pr1m~rd Pma\flén‘ ey
f . . ’ .) i : :
.- Edemrlo! B |
; o .- S ' K . o ¥ -
Cs Recestor definido come $99VF% :
’ L .I .“ L " ._ ' '
5 432 1 L7 890 .
SR e SUR AR :
C. Emigor - - 0. Receshbor - 32100 -
) Cv Receptor desruds-idel noviiiento.
~ Ce Emisor definido como 99990 v 0w 0 L 7
ST .)) L ’ oA o ,
- L' Recesrtor definide comd 999999 5 1w L K
-7 o LI
: o I
I I T R A 127498 C. Recsilor desynds del mov,
Emisor Fecurtor 00 o0 10
N

¢ Evisten situaciones -en las Puule%fﬁaQ\ nueL'mnvPr Cls mv#nﬁw
sarte. del conténide de un ced 1 +ru’a;.dmwnb dP ddfn“.dut ﬂ:nmu'
nomhTe. en 6t ro reﬁiﬁtru}“siwndu r=vu«o P;u!lﬂir 10&0, nﬂ“w
‘nﬁPEudrtm“'Paba tales casdos. T

. . i
. P oy - ' - . £
: . N v oo ta . A . Rl ¥
. v i}
s .
'
- 4 =
b
. 7.
-
i -
. I 7l
P
b "
i .
I v
i
.
L 3
. 2 -
g * o ':
. L] . L
v - - [
' 4 N
- * I
. o
i -

" e v e o .
L vwoddn

LENBOeSAT 10 .

MOVE" CORRESFONINING nomb ce-rsto-1 .T0.

fsticest

Caracten
-~ Ambos rnombres

S_T"UF":'J'V Lo

“
[

.

i
‘

e -

:
.(."l s
serie de MOVE
CEdamelol

CHUME A i6 Emisor

HDUE Food Emiﬁuv:
. HDUE € i Ewisov

ﬁOME u in‘Emign:

HOVE F in, Eidsdr

A B © T E F

s

Hé;ﬂaﬁ&ﬂﬁéb&ﬂ

v h

C - Se adever todos . Los oanr

tenven el migmo. nombve

CORRESEFONNING del

r

" .
b
4

i

-

seneillos,.

HE

Corngidorandn aue

redgistros w biernen el Toomelo wmosbraded

‘

el efecto totel

Emizor u Basgslir s0n

£ 6

£oR

< g

Revesbor

Focastor

Reveslor

Recertor
)

Fecertor

mienyp

gaant o

covYras

as dentro de,
wie ol o came

Crismbee~date=?y t:l 9w cono wi Prafi i e

“

£

nomi e

ISR

-1
.
'
“
- e
s
. [
te .
'r
.-
an
) .
A
i
-

“ o
v

oI M T

HOUVE CURRE??DHHTNH:Emiﬂur 10 Recsrlor

oy by

S,

c@ e i s

o teniro

U

RV

'
W

i,

.. . - ST :
. AT -,
sarlia exsctanente 91 mlamu.- S
O o) ‘-_!.l . ’ ‘:I ?‘_'
f . 4 " ; < 1]
s, 0 ' Lo S : "’
S T ey B - . ey T .
“ ‘Jj - E e
: oo ‘ NER
A i 1d9nt\flcador—1} e L Ldpntlrtnanur~?é
AN S S 11ter'1~2
s C e A “a RN o "t
: 1dpn*1F1cddor-m T LROUNRELD. -
‘ : L S
Jd-ntlfnv"dur—n ROUNIIED oy,
’ R ji”DN‘SIZE FRhUﬂ ingtroveion EESE ing:
. - , v) . . ,‘ Ao .. C R ') . L
e - NOTAD ElY ptro'- formato e s
cesiactamente’ idusl, s0lo qambiﬁndu
‘Falabia GIUING; e o ”:ﬂ "a f" o L
Las walsbres T0 = GBIVING no Puedén-ua:rau aubas 2 1z &
mismas oracidn., . R R F R o
; - L _ - g 5 ,
AL Fa o ’ ! o,
.) L . ” ' ' .

. Fave woder user wsbe verbo en una’ ura\Lﬁn ' BeCERETrTo
contar ror 1o menos:s can . dos uuw;«ndu". L 3, el
sumandns ¢ el orerando sobre el fue e slma,en»né wl reiu]tgc

v -
A OE

1
'l.
1

; ~

it ot ‘. ' . P
31 1a dreidn escogida usa la walahr& T

o El rasultado deila some recms “levarg el corlenido ouris
del cemro eue le sitive 3 le salsbres TO, S .

" C} .
Edems Lol

CADD Ares TO Manedo.

e S .] B
Cd . B)

51 en 2l regultado e la oraracitn el FOmere e .uimila"ﬁ

v decimales excéde 31 espacic dissonible en el camed o idiosdo &1

.. resultsdor Fetderan leos diditos NennE Oues se use Sseduido de - Y
rwlabee | ROUNDED Coue redondesrd le oifra el g

cesrecificadbdy . oo B

AY :

. .

‘ 2 !

) . ‘.\.n
-J
v
X ; w
N ; u

P
CE N .

[P

: Lu:ndu:A1 nﬂm@vo-thh] de oifres s le i;ﬁhjéﬁﬁt del'-ﬂuni<ﬂ ‘3(}
dhﬂumﬁl u%tpdw 2l esrzecio diseonible an PI BEhE Q- datu sssqnndu sl T
.9U1LrHO! ocurririan Posas.Lmrvwdwclwlvv_ R s n,s 'ON:rﬁizﬂ. B

pRROR G50 T Pilﬂuwtdw? Cerevencidn gl ercor dﬂ‘irmdﬁal« BT ,
. . S e !" .
o : Ejﬁmplnﬂ~lj,w_ . Ve ’ ,{;;

ATTL aresy ?HdﬂGJO! FaJd.‘GfUINGJ;Idiél:ﬁRUﬁNﬁﬁH;”qGHf
ERROR .60 TRt da- ogy TR A Lo

. e e - - R g R
. 4~ A AR S S P i

-.' ¢ . A T L + . H
: Luandn wP desen ﬁumar das o, m&x canbidades @i hecer alsin:,
otro cameEo - d?.uafnq isual éﬁlﬁlﬁuman.ae Ysg GAVNTHG e - B
- e ey . o h IR - . ‘l I

' - 'e- I - '
UERFD 6UBTRQ T. K
{ltfer -1 I AR
»SUBTRAPT £ ntmbrw*de~vﬂi : ; o
¢ 1;tera1~ﬂ‘ SRR PN & GIvINr numn.p”" | o
A nﬁmhr&*ie"dékmfﬂ s AR m 3
ROUNDED. Sun e e R
SLF DN bIZE ERROR 1nmtrurct(n,EELSE ingt b
e N .}. Ea '
-HGTAI,'F] ntiw) Fgrmatu d&l ve:ﬂﬂxn%SgETRﬁﬁﬁ ,?f:w‘j- chakente ' ok
igusl reEre.sin la Falabrs GIVING. . : fph e e e L L
Sicue deswes restar un SpEnEo. de - ‘:Suérdar ié S n
dzfeﬂmnCLdben wrs teroor Tameor detie !;EIﬂJNB.A--
lnda% ios ﬂﬁﬂyandﬁﬁ'antéw‘i. 1a Wf]dﬂrb; § - ; Qg
Coese eoethile mgrmé?'la~guma de vavios (FRPANENE w2 ,um,_
L del ovrerendo de le docedha fde la Falaiea FFOM.
L, e 1:1.’3 : . ‘ A) : R &) » Lo o _
CSUBTEALT AsEs FROM G U[v NG . ot T T L
) & P OC T)) B -
ANTES 17305 2% o ‘ - R
CBESFUES T X 0§ pr ‘ ; T
‘ . ‘) . ‘) ‘ :‘:-- .) . ﬂ:“ .
“.?x no se auaga GTYING, el resultado. de 1z *nypunxay
reemrlsz ara] minenio d91 $aqu'GuﬂJ%iSp§f3'1&-FélGQ FPDM_-;'g
SUBTHACT AREA*j:WﬁREAﬁQr‘AHEﬁ~§ R OM - BRE o
i HN.UIZE ERFUF!‘G??O RUJIHA¥3:”' :
: ' 10 T

b

\
ey

I "‘)
W
F

gl
1it

'.UERBD nuLTIPLY;

: {uumhrphddtn“T
'{ llipral i.

UN SIZE(ERRGR,{n

{rur

[

NOTQO#IJI no 5¢,usd ﬁTUINGy

A mul?zwl;uandn.

"Ahgtp UPPbp caritmético

_una 5@SundP o unn LHP'PF&

.EJemFlat,j‘ T

HULTIFLY. Fiezas. BY Pég+u_ﬁxuiwﬁgng :

_ "RIEZAS O CASTE
AHTES C23 147
NESFUFS. 23 C 147

VEREO DIVIDE,

{ literzi-t
DIUIUE foddentific aumv-L

EGIUING*idehtificaddP"S}

1dPn+1flva

L

L:ON qIZE ERRDR iy truwﬁ

s

NOTAS 81 no se usa GIVINGY sers pﬂemplazadn,elﬁcuuieuteu

leldPndu v 1o btantar
Pralb L

A |

Egam=lo?

DIVILE & INTO & BIVING € ROUMDED,. - R

Yo e .uuman e ﬂéﬂ'
lmlpral~’ :

t lf_m

rnuli‘ 1P11l 3 nlurs
var1aule'ﬂqual

FRECIO™ 70 Do)
4444444“‘;iw R

303xs* e

4 11teral~° T, T N
INTO (Lden*} tvsdaﬁ*; e

.ﬂ S

dmr—4 RUUNHED!

ian € EL%F"lnﬁcrunglau 13

este Altimo Aedhsndo no kodes ses

ON SI7ZEERROR GO T0 RUTTNA-4 S

v

CRivide Beepptre

v D e

B) ‘ . . E " VL ’
e btzmato ir 8 rutivs-4) ., S L

s
b
. L) I
' i
. -
. 4
& .
v -
. ¢ .
, K
y g
v . . .
ot :
LI ' .
‘ i
o
v - v
R
N
“+ ' . . "
L . - v
" .

EROUNUFU [RFHQINDER A

[

Lims

VERBO COMFUTE, ~ ° o o oo & |
COMPUTE . nom-dato~1 CROUNDEDY: Oynow-dator2 KOUNTIET ‘
¢ FROMT 2 . 3 e -
{'==‘ AR £ rmmhre rip rid’ru ‘r _
EQUHLb} L f‘drmu‘td s)
. DN szze ERRUR Inhiruc‘lﬁn IEL E e
“ coﬁFuth*'.:' L -
e Fos =+e _-'_-vi:'* rho ..'._rJf‘i:é:‘f},e - LI @ e
BoREC f‘u:' i ceerar:"i_(;ar';es r-l’cﬁ.r’l e
: e 51 PHBLMJL#‘-F é:lPﬁ;(“l'lt('J Coen '1‘;9‘ T‘d:ru:t_ﬂa' T T
-rip'“wr d.;_f.u_:.l res @n’ oL [ll”LHIuH e Thin;. '
Eiemrlol
COMPOTE X = A+ (B %) | ¢
G Emmhivrs . “ - ‘ ',“ T
'mqﬁPuTE;x ROUNDET =,A;4-<B=*.C);mn-v17k* R
FUTINQ 1 S ' . .
NUTH. ‘upwvaw: RETRSITNES e '
dewarﬁuia W omJeoueidn €on las '
' 1 . . ‘ ' +
) o |
= , e ; : i ;,
: 32 R .

. N " i 15 . . o Mw - | ‘
T VERRD INSPECT, :

| I'"C!:ﬂﬂi«:?"?f)-:.f, , .""T. J . S ST ';;'w.—(

i - INSPECT. nouscdirorditos TALLYING

<.‘ , nLL) .‘ .;.j.

CHARACTERS !
Sl E

CUINITIAL ;iitengi 5. S
v ' . Vf. - : YL
i " _CHARACTERS BY:

L E e ULEADING. Lt

gral=4 _ ‘BY

. e e T e
B (BEFORE: ¢ "o o -
ARTER «. -~ T o,
TALLYING - Comtabilizando en i teral l '
ALL = TORAs ' R SR .
EEFORE = ANTES ST e - T
CAFTER . - DESFUES S UV RU v
CFIRST L U-tRRIMER . - L ; ‘ ;
. LEADING * © AL PRINCIPIOC (ENCApEZANRDY . ,
P CHARACTERS - CARACTERES T
- INSFEDT 're::.s‘aa':ni_t:‘ua Cun eampo e datos de Tizoniends 8 ¢ B

0 w0 derechasTealizdndos L o L

Le o Lonleo del ndmero He veces aue s grece yn tatecter y :

>y i,
. -8 Tt B “
° ,l " il -
"L At FUI
- * ¢ L
1 Y
{
“ x S -
: T . k .
o : . h FELE A
= ' .
' .
P 1 - N
. | . . .
. R . A I
f | -~
. y ¥ ¥ I
.- . o
; A
. ' T A
S .. S
L

Cegepcifico.

o ReémPlamu e lnrﬂriarﬂua oo S

.
3. Funteu_ﬁ'Y@eMPlaxd Cineisoes 1w R
EJEHFLOS . 0 L e '
y Ly s nondgreeasda bo
s : .:- inntgc o rlp},pu

. W
R e] —..---.—-...— N T e ——
¥

oINS FECT unm—camruwdabos TﬁLLYINF
-C.lltﬁra]—lmrﬂﬁ LFﬁnING i

:ULu"ﬁf
HOLA)
LLORA

'EINQFPFT nam—"awwo-ddtuc TH'L(TNF . IR = [
‘lateral 1 FQR ﬁLL " e _ - lULH SRR IULU L

HOLA 7% THOLA . : - 3n et
; -

(LLORA: . LEDRAS

Tt v v e e e e b e el ne e e e e A R TS e e et ey vmr e e

1N°PFL Fon-Ganpo-datos FFFLAFINF.§,#* -
CALL "nﬂ BY "Fr Lo, HAMAL P:Fﬁ

¢

Lo AT FHrur _%-ib

INSFECT Fei-eameo-dstos TALLYING
©litersl-1 FOR CHARACTERS AFTER. Co S
coege ﬁFF‘AI!”h ALL I BY *0* - MISSISSIFI-_ MOSENSS oFg.. 7
o A ‘ HISTORYA ..~ HOSTOROA . 5

-

S INSFECT nom-cdmfg=iatos A
REFLACTNG ALL "F= gv "o~ B Tl e

ALL Y8 BY tZt AFTER CHIS® 0 HISBISSIPI C HOSBZOZZOFD _anz“‘
Y o . MEWISFERTO- H}NJSFIFOO e

' ' T g
L REDEFINES,

Easte vléuscels rervmite que o miﬁm$fér55 e ﬁlmu\ennw19nuu
err memornis (redistros parte de un cedistrd o up nlﬁFlu canro)l se

orgede referenciar, con wds de ur nombre oon, ixf; et fnrmﬁlnt
:. .) . ar v Ll .- N A . _. .
' . P . o
EV formato de ewta oldusuls ot
> e, .. t L. AR e . - .
‘Nimero~de-vivel Nombresdalo-l REDEFINESt Numer#daﬁh“ﬁ
A .‘ ‘: N - 0 - - . ’r-::.
Jdonde: - - o e
-]
. N
- A4

A

x

1
E]

Nombre-daln-2 e pl nambre-de-dato " que describe el

s L - I

Formebo del sves de zlwacenamientys HYLELnEL,

Mambrerdati-1 wve el nomhre-de-déto aue describe un
. p) U " _ o . Y
fuevs formabo rave el sreas de slmscenswiénts vridingd

Feferenciada »or nombre~dato~2,

o
o

(el ;.
- REGLAS
1. Le clausuls €6lo se rermite rara redefinie sartede. . -
i) A -) O L h | Tl .

ure registro en la FILE SECTION (o sea oue o Sk wlede]
emrlesr com el midmero de nivel O1) 'wae ous la vedefinididn -

de redisteos 8n esta seceion s indicads el e eldusuls BoTA
RECORDS, ' ' o ‘ Co

Lo e oléusule gl rermile rededinie Lodo o Facbe de un
redished en la WORKING-STORAGE SECTINN. ' o

Jeo Los ndmeras de pivel del nombre-de-dzto-1 « gl '
rampre-de-dato-1 deten ser ddéntices ¥ no rodvdn’ cev 46
8. : g : ' o '

‘ 4.0 Las &vess referenciadss »or los powbres de dato
deberan tener el mismo tawsfor sunwas eedrdntener diferente
Faormeto, ‘ B '

Se ke nuweva desorircion de una Eres orisinel aue s
redefiney debe seduitr 3 continuscion e la descriseian de
gate dltimar sl ninggrs olvs riECian antervmediae.

6. Mas de une redefinicidn & uns dres oriHinagl jes
permitica. Les nuevas redetiniciores a uns dves oriding)
toberan hacorsze o walzs dltiss Aric-thenble (o ses wue ol
nombre-de-dato-2 deberd ser el wizmo o0 tujgs s uevis
redetiniciones del dres sie raereserls el pombre-dscdatoo?)

7. clausuls VALUE sd6la Fernibids en el 4
originglmnente define el Sres v no.as rernitids en : 3]
aue redefinen el cemeo en cuestibne (Don excercidn de
miveles 38y, '

e Un cawmee con nivel 91 eue snvles la cléusule OOCURS
no debe conbengr la nléuaauls REODEFINES. ' -

)

Wit .
- Lo i N
» ¥

EJSEMPLOS
Gl REGISTRO-L.

02 PARTE-LRO

FIE XCA0),

0d . FARTE-1OS REDEFIMNES EAHTErUNU;:

ERS

0x WY

02 FARTE-TRES REDEFINES FARTE-UNG.

03 77
93 FLLLEE

01 TIPD-NE-GRTICULDS.

03 ARTIGULD-1
6T ARTICULD -

03 ARTICULO -

FIC 9oy

I
.

o

01 TARLA-ARTICUHLOS REDEF (NES

0% ARTICULDG

1C

T

o
Lo
o
i,

I Xran) .,

AUHOY,

KOGy,

TIFO-0F-—-aN

Fie

S GV T ol R TR

e

CLAUSULA DCCURS K e
Fets Dlausola sermite devinia tabhlas, Une Labls o un
ponunto de camsog de dnlformanion: dondé csde.csneo Liene les
mismas varscleprfslicas Chamabfio o Formasbod, -
. ' . " o L. R .

EL formsto sde esta Cléusula tienen dos formss?
FORMA L

e .2 | | .
{OCCUREY entero-2 T1MES : o
LLCASCENDIMG 3 g . L u .
CTLDESCENDING 3 EEY I8 rom-eato-2 Ty mom-dzo-37 o0 3‘;.¢I

FINDEXED BY . nombre-ingine-1 Ernﬁmhrwmihdinemﬁi PP

FORMA

o}
.

40c
{OCCURS

A g

entero-1 T8 enteru-2 TIiMES

COEPENDING 0N coubire-dalni] o : -

[£ CASCENDING S
. T THESCENDINGY KUY IS Goam-tabo-2 Cynor~delo-27 .1 3.,“
CINDEXEDR BY nomtrrecdindioe-1 Eynnmhre“iﬁdiQENE T el

REGLAS:

i El entero-l 9 el entero-7 Licnon oie e ndameros anberng
roshtiveg,

v El entero-1 debe see menor eue el sntaro-R

3¢ Eil gombternide del nombri-dabao-l debe contener un valer epbero-

s

rositived este defive ol tamafo mdxime de 1z teblsr sevo no debes
gxoeder el valor del enlern-2. :

4, Bl o mowice de dato-2 pusde ser el ponbes del coueo ele
contieneg la oldusala QUUURS & un ceamko & aue se divicde ¢l
FYil@ro. o :

ek onosdresdato-dy eles 5410 mode SeT MG camre en eue ow
divide el cewro oue enrlep la clidusals DCCURS. S

o

v L eldusulae DEOURS ne ruede snrlesvse wn capeos aue Lorss
lns siduienles numeros de niveld 77r486 9w RE, R

70 Fars haver referencia & un caned aue eweles 1a nléu%ﬁlﬁ.
OOCURS w & los camras, en aus se divide gste siiwmeroy se heep o
ptilizande indices. (enterasy nosbres e dstos. o oowbyres. de ;
indive), S Lestindicks se ancierrven enbre warenbesis 9 deben”
Cseduir sl aombre del cswioo. I T

. ! . Y
’.
%

B, L& clduanls JCCURS -se suwde enviesr eofn cualouisr secridén de

la ﬂﬁTﬁfDIUISIDH.

2, Los dndices uo deben utilivarse sl gwelezr el verbu SFARCH .

10. En 13 forma-1 el vailor del enlevo-d delermning el tawafio
maximo d& lz Labla :

10, En o la formas—2+¢ el valoe del entero-1 define o1 Lanafo minimg

der la table w el entero-2 defTine el lbawafho wiwind de la tohla..
El teamsto exacte de la tabls 1o delermivs el valore dol conteinddde
el nombre-de-dato-1.) :

L0 L peeibn KEY TS airve sses dndicar aue 1s bebla se _
entuentrs orxantizadas ascendente h'Heﬁceﬁdehte cmn,rpsweciQ oo don
nombres de deto 23rele. Estos se wenribden en orden Jdescémlznba
da acuerdo & suoerioricdad, ' '

LEe Ls eowolon INDEXEDR Y sivve sgrs 2eccisgvle wno & wids Ondices
3 1@ fables Estes dos Mitimes cldusulss son recuesddas para’
emrlesr el verbo BEARDH. . y :

+

P

P ey
-

E.emrlos

Frae

COROL

1C0s

29

Coluunas o _ o R o o Ty

TNENTIFICATION DIVISION, - . ;"7f_fff

PROGREAM-TI, NORINITA, -
AUTHOR. T T T : L
DATE-WHITTEH, . o - S
ENVIRONMENT DIVISTINN, : S

CONFLBURATION 'SECTION. - -+ -~ R

“SOURCESCOMPUTER, VAX 11-780. : o
DHJECT-COMPUTER: WAX 11-780. ‘ ' i
SEFCLAL-NAMES. CHAMNFL 118 RRINCO. :
CINFUT-OUTRPUT 5ECTION :

FILE-CONTROL . ‘ ,

SELECT akCHIVD ASGING TO RUALFE,
BELECT THPFRESOR ASSIGHN T FRINTER.

DAaTA DBIVISION, & ‘

FILE SECTIUN.

Fio ARCHIVO :

LAREL RECORD STANTARL
NATEH RECORI 59 - DATAR.
01 Latnt, .
T 0F HDNMBRE FYC KOE00,
0% SUELTLL~-NTANTH R RN W RV L LEN
03 DIAS~TRAR&IATIOS FIn 99,
C 03 8EXD FIN ¥,

Fri IMPRESDR ‘ .
LOBEL RECORT STanNnaRl .
DATA RECGRID I8 LINEN. '

01 LINEA FI6 X132,

WORKING-STORAGE GLOTION.

7 OALT PID 2laiWYY,

77 OBUELGO-MEWSUAL FIO 2(4)U97.

T NUK-LINEAR FIC i) VUALHE 42,

1 TITULO.

03 FILLER

0F FILLER

0% FILLER

03 FILLER

0% FTILLER

LETALLE, ,

GX FILLER FIC X010y VALUE SPacEs,

OF NOMGKE-LISTERT FIC XIZ07,

0% FILLER PIC <0103 valllF g=a0rs,

0% SUE H- MENSUAL-1L1S 16 FRELTNG LR,

N3 FILLER P10 X2l UALUE SPACES,

PROCETUAE BIYISION. :

ENRTR-LEER .

LOOFERN O THPUT ARCHING
QUTFUT TMPEESHR,
KEAT ARTHTYN

Ke1%y VALUE 3FACES,

Ko UALUE *MOMEREY
MOy BALUE SFACRTE
AE14y 0 TEUELTIN BENa
XiA8Y YELUF SPALED.

=

i3

- =
R R e
: SRR B B

P
T
-

5
R

—

'INL&I“«; _ Ce

' PERFORM .CALCULDS
FERFORM LacrIros s’ SR
READ ARCHIVO -7 0 o e
: 'nT Eilir 6D TOTERNING, s

80 T0, INIFIG., " v.,'ﬁ“?'-*:é{ﬁ{“"[,‘

FI!FULan

nu1.1f|v UFIDU NIARIO Wlac TPAHA!ﬁHU:

GTUINF i 1fluu Nf“*”ﬁbi Lo)
If: savn e A s
. }FREDFM 5- FDH—!T!N g L B
’ -FISE P
P CURERFORN (Z- Fon cTENTe.
i E-PFOR-CIENTD, : o

d ABR A1 TO SUELDO- lequml.,_ﬁr;-w
A E-POR-CIEMTD. . SR
MULTIFLY 0.03 RY ,urtur—nFN%UAL GLUING:A*
ART Al RUKLIO - Mrweunl.r‘ : w Trwo 2t
i SC%IPO+ SR n
ST MOVE NOMERE T0O NOMBRE-LTS Ténn:"

HOVE SUELIO-HENSUAL 0 SUELRN, HEREUAL- EE
[F NUH-LINEAS » 57 R .,¢u-'

- THOVE 4 T NUM- l1NFﬁo : L
, WRITE LINEA FRON. TITULD AFlFF thN*O
F!qr""‘ _
ATI 3T NUKSL INEAS. PR
. WEITE LINEA FRON DETALLE SFTER 3,
TERMING, - L A
c CLOGE AaRCHIVD c
IMPRESOR
CSTOF KUN, :
‘dates. DATA ARCHIVO R
OUMDTE 4. 0 30 COLUMITBE ¢ e v a o a RARRARTT AR - ST

JORGE. GfRPIQ Camatin : O?ﬁOﬁEKﬂT'

TJOSE LUIS IGLESTIAS ' 2nudong ;f

ARLREA TQRTA L : AL0TOGAGH

CJULYETA ROMERG AXSQ0R9M

SO0CQRRO ALRINOD - S ARTROBIN
HOROTED ARRANCD B S 2187030
TVAN. TUEWTAN © 4500030

PIOME TR e 6 oos 5844 s s e se e s rasnueldn, -»_f.'i4‘.-'£

1 3

o b
ohes D oroludnns 5 . T
soydn L colamas : RN

.40

MULTIFLY 0¢0J RY. ‘HFlﬁU NFN‘UAL hlUTNU“MF o

P 4
& / ,
Y .
s i
1
¥ e T
B

;:;‘312.-

Y*#*##***R*************#******K*****k#***x*******ik*****&y#**RW#*?i?*.

et T T T
R T S ESTE FROGRAMNA CREA ARCHIVDS NE EMPLEAROE ~ . - © ¥fx
AY 7 LAS.ESFECTFICACIONES DE DICHO. ARCHIVOS SUNI .~ *¥x

kEc L ESRRGBAT 7T o e SRS T OO
ok T DGNDF' - SRR ;r~~f% T Rk

KRR
Kk ‘. -
£X K : . T NUMERD DE L4 SFMANA. S Xk
Kk : ' ' RT3

Juom
[ii

*#*t**#**&#****t*m*&**#?%***#*****1*i***#*#*“#*#*f#VW#¥$*ﬁ*##$*#?ﬁﬁ g 5

* o
IHVENTIFICAT(ON n1017t0N, K T
FROGRAM-IN, ALTE, - I
AUTHOR ' .. GUSTAVD-Y NICNLAS, :
TNSTALLATION, : AQUI EN EL CECAFI.. -
HATE-WRITTEN, © OCTUBRE DE 1985. fot
DHETE-COMPILED, © o+ ESTE Din, T e
ENVIRONMENT DIVISTON. . - L -
INFUT-QUTPUT SECTION,
FILE-CONTROL,
£ : L.
CRECR R R RCOFERAOR RO RO 3O ORROROR SRR R R SORK R Rk
EL) Ly ENTRAIIA DE RBATOS ES FOR TERMINAL. %X
Y###*k#*#********»&%$**#************1**x*****¥*-
¥ L
SELECT NATO3-TERM ﬂSbIGNuTD SYSSINFUT. .
¥ , - S
FARFHAORN R HE KRR AR K00 R ROK R OO R KROERR -
¥ X EL MUMEROD I'E LA SEMANA DETERMINA EL kX,
EX - NOMERE REL ARCHIVD. B SR
EAEEREEEERERRE AR KL FRRKF KRR RER KRRk kR
GELECT EMFLEADNS ASSIGN TN *.0AT".
DATA LU1=30N‘
FIILE \r*r . . ,
.fm!cs}lrnnu, L ‘ T
LEOBEL RECORDS ARE STANDART | - ' -
UALUE OF I I8 CLAVE-EHPLEANONS
naTa RECORD 76 REGLSTRO-EMPLEANOS,
01 REGISTRO-EMFLEALGS, ,
61 FICHA-EMPLEADOS FIC v(09),
0% NOMBRE-EMPLEATOS PIC X(30),
OA GHELGO-EMFLEATOS I 2(04)099,
FIU NATEE-TERM - -
NATAH RECORD I8 REGISTRO-TERMINAL
01 REGISTRUO-TERMINAL . FI0 X(80),
CWOREIMG-STORAGE SECTION,
¥ . ‘ . ‘
AN AR R AR ORI RO ORI R OR KK RSO R R ROk

:1.

EnPLEAnms.' _ -;' P £ 2
SEMANA, " Lol K

A% UEFINTCION DEC LA IDENTIFTGACION TEL ARCHIVO %,

Tk .- ‘DIIE SALIDA. -, . KK
»*m*tm*x*xw*xxa*m#*x*#*xxx**ma*mx*wxmwxv#ww*r*#*f
* ‘ _ R s
01 CLAVE- Lﬁptrﬁuos.'“f; . T R
- u% FILLER - .o FIC X(02) VALUE “ES".
T 03 BEM-CLAVE- EMPLEAnoq CUURTIE 9002) YALUESZERDES,
‘77“ FUD-TERMINAL . :‘ch‘g(om) UﬁLUF z&&n.

: 88 FIN-TERMINAL VALUE 1
. PROCEDLRE nrvrc[nn. .
INICIO. : : ' A

BISPLAY »hANE ht ing LA SEMANA Cdos disitos)d * WITH WO

HIVANCING.
ACCERT SEN-- F!AVE ENPLEADOS.

_ OPEN. DUTPUT EMPLEADOS, Lo
OFEN INFUT BATOS-TERN. B S
FERFORM ALTAS UNTIL FIN-TERMINAL, ‘

“CLOSE EMFLEADOS DATOS-TERM,

STOF RUN. -

ﬁL ae, ; L ' o R
LISPLAY * FICHA. .. NOMBRE . L SUELDGT,
- BISELAY U 99999X . ‘ : T A9999y s,
DISFLAY '~ * UITH ND ANVANCING, ‘ S

LMOVE SPACES TO REGISTRO-TERMINAL : '
READ DATOS-TERN NEXT RECORE INTO REGISTRO- FMPLEAHHG
AT END MOVE SFACES TO FEGISTRO-EMFLEAROS. i
 IF NOMERE-EMPLEAROS = SFACES THEN
L UMOVE 1 TO EDO- TFPWTNR] ‘ _ _
CpLeg - o : _ L
CWRITE RE!IQTRU FHF!FADD

Jiatka

ny

s

fdentiﬁic-u*un Tivisio
Frogran-id,
vigthor.
Inatallation, .
Date-writien.
Becurity,

" s
Ervircnment, divisiun.
ComfPiguration Sectiony
Source-comruter, Nig
hipct-comeuter,
Inrout-outeul, section.
File-control.

"o 8Ba2lect datos
Selict

Bctubre
'Nlndnna

L ascig

¥
division.
sR0LIan.
datos

File
Fel

)

1

%

1

calids essidgn

tle Lmbn]¢

CLIN

ital-VAX-11- 78ﬁ.
Migital-YaX-~

114780,

Lo swesineut, -
Lo ses$outrut

ER®- fécordfis.naioﬁlx

Hatosl,)
03 A ricture
03 B eivhure

03 Doeicture
calida C :

Nlat,z record ig

D Lines

Working-=z

77 Fesual

Bise
S
b
Limes
0%

e
Fes

torzdge sectio

Lpdo sicture
=ichure
ricture
cichure

%
v
o1 @I

Filler wictur

02 Filler pichtur
Q3 Result wichur

0F Filler wictur

¥ :

Fracadyre

Imnicio.
Qeran

gdivision.

datos,
salide

dneut
Gean outeut
Biselagy ¢ °F
Diarloy
Mispipuw *
Mieelay
liselau . "

3 dzatos

Nicrlaw °
decimal” .
Hiwplawe °
Nisplaz "

n n

Niselay

59

is 9 (02IvP (0D
g - 219002)v2(02)
1inga,'

Ficture is x(80).,

[t s
1%

‘Jt.

1.:7

s

&
[

o)

e

+

20

Solucian

(021ve (02}

1

g0 JV?(O?)

sPCOEIR 0L,
sPLO2IvR(02),
S0 (0,

5 qw{1s)
is
18
is

vialue

$RC02) 9002
(53) value

e

*

i

X

i

Solucion-de~-la- PP~HW“°d0 Qradn._ I
frstructores .
Cecafin.

3
A

@

value

"l

2

w{03) value all

all

la ecuacion

Jeading

N
Lo Ol P
-t w
r_ .I‘ " A
& . kg
[-
.
- ‘
Vi
]
P
. .
: .

serarato
sapgrale
separate

leading

leading

Lot
: .
Jeraes. -
resultado esl”,,
a oo
' +
*® [B
[

cuasdraticae.

##*#*#**#%*****kﬂ*****#*#*##**#R#5

linea. 1
5 i

I oot

geddl valors

e
el

enteros*t

chgr

vdecimales”

chaveoler,
chisracher,

Ler,

[l
(DX

sin Funto

star

lizrlay "SeeddSeeddSeedd" S : S
Read dstos at end diselaw " No hubo datog," stopr myn,

If a is eauals to zero and b is eauel to zero mndi o is equdl to0. o

TUT : - e
If & is 'eaual’to zero and b is eauadl to zeno stosiriun,
If 8 is-ecual to zeéro and ¢.is éausl Lo wero-storzrun.,

Jf b is eaual to zero and c-is eausl to Zevo:stor run. .

SIf 2 is eaual cero tihen

~displaw TEcuavion de erimer grado,

2o comPute xl o= ((-1-% c)/b) . ‘ ,
odisplaw 'kl o= o S T
omove wl te result . s -
Curite Jines from linea-aun - A .
else - . ' :) S
comeulte dice = (i KX 2 - A4 Xz %X &),

"Af dise is less than wero

else

Gdisrlaz "Reices oowxledas no puedh resolverlo.®
iselas "Raices resgles”] N
comFute w1l o= ((-b - disc XK 0,5)/(2%ka)
comete 32 ({-b + disc X% 0.5)/(2%a)

move 1 to result

wiite lines from linez-auw .
move 22 Lo resuyly ' ' o

.
" 3
: Yy o

i

i

write lineg Trom linea-aux, .
Star run. B ' : o Y
¥
)
e
t ‘i
4 1

TRENTEETEAT LON h!Ultlnw.- ‘

EERRRAN-TI. ET1QUETAS,
BHTHOK. JORGE VALERTO.
tN“TAILATlUN. CECAFY.
SECURITY. FROGRAMA BUE CMITE FTTOUFTA% DE N ﬁHFHIUU IE, EN1hAHn;

. ASUN ARCHIVOD RE SALITIA. Lo ' ,
x$*m**#*$*¥****#*#*#**************1***#********?***#***#*ﬂ#?*$$*¥*ﬂ#**'
ENVIRONMENT nxuxc1om‘

CONFIGURATION SECTION.
SGURCE~CDMPUTER; VAX-11-780. : S , LR T
GRIECT~COMPUTER. VAX-11~780., . - . SR e
INFUT-OUTFUT q&rTIUN. : ' ' z - : o S
FILE-CONTROL .

SELERT DATOG-DE- ENTEAHA ASSIGN TN
*TCURSDS, CORML . CURCOROL INOMRRES . TIAT" .

GELECT ENVIANDO-ETIQUETAS ASGIGN 10
*LCUESUS . CORDL . CURCORBOLIETIQUETAS 118"
##*#Wﬁ#i*#i*&#**#**t**#****#**4k**#******#*****&ﬂm*&?*}ﬁwﬂﬁwwxw\xVY<Y*'
DATA TIVISION.
FILE SECTIUON.
TH- BATOS-TE-ENTRANA

" ILAREL RECORNS ARE OWHITTED

DATA RECORD IS TARJETA,
01 TARJETA. .

D2 NOMERE PICTURE - I5 X(25).

02 CRLLE FICTURE I3 X(2%5).

D3 CIUBAD FICTURE IS X(30¥.

FOOOEMYLANIO-ETIOURETAS
LAREL RECORDS ARE OMITTEDR
HaTa RECORT IS REGISTRO-DE- IVPRE%TUN.,‘
Wl REGIRTRO-NE-TINPRES IUN..
Q0 LUIMES-TE-IMPRESION FICTURE I8 X (307,
BORKING-STORAGE GECTION.
51 INDICALOR-TE-FIN-DE-TATOS FICTURE I6 Xi02),
1«t&**q#k**%***t*#*##*##k#***#***x****t#*#x*#******xt**#&vaxnt*X**rVﬁ
!“uCFhth DIVISION,
FEOGEAGME~-FRINCIFAL ,
OFEN THEUT BATOS-DNE-ENTRADA QUTPUT ERNVIANDQ- FTlNUhTﬁ,.
MOVE "NO"™ TO INDICADOR-LE-FIN-DE-NATOS,
FERFORM LECTURA-DE-TARJETAS, : o '
FERFORM LFFTURﬁ E~THFRES ION UNTIL'INnIcauuRwDEmFINunEnﬂATos T4
SAL TO O "ST Y, . . ' . :
nLOsE narms~nE»ENTanA FNVUIANDO-ETTAUETAS, o
CHETOF RUN. ' ' '

% .

CLECTURA-DE-TARJETAS. .
EEAN TATOS-DE-ENTRADA RECORD AT ENI MOVE *S1* TN

ITHOICANOR-NE-FIN-RE-DATCS,

* .

LECTURA~E-THPRES IO,

e

MOVE NOMERE TO LINEA- HL~]MFRESIUN~

" FERFORM. LECTURA- ~DE-TARJETAS,

URITE REGISTRO-DE- {MFRESTON REFORE AHOAN(ING 1 LINF;
MOVE CALLE 70 IINFQ DE~TMFRESTON.

.
T . e

WRITE REGISTRO- NE- IMFRESION,, PEFURF-ﬁhUAN!FNF 1 IINE‘,;ff

MOVE . CTUDAT TO LINEA-NE-TMFRESION.

WRITE REGISTRO-DE= IMFRESTON, BEFORE - ADUANFINF 4 LINF.

‘.
R

Au. Ty

T

LherlF[rﬁfIﬂN I]UlSION. . x - : '&J;;.
.JhUhFﬁM Iy fJFﬁFLU -RE-~ARCHIVO- INDLXAHU. N
aﬁUTHUh. lﬁUFA Y FRFIU aﬁNBﬂUﬁ

* .

" : .
1NUIFO€HFN(nxuxcrnn. o
CCONFTGURATION SECTION. ST L e
CUSOURCE-COMPUTER . EN- vax—t1,- :
RJECT=COMPUTER . EN-VAX-11. . N PO
IMPUT-DUTRYT. ssritnn. LT S TR
FILE-CONTROL : : CL .
- SELECT SALINA ASSTIGN Tn "SALINALRAT" EEERTRR TR
b ORGANIZATION IS INDEXED. ‘

. CSELERT ENTRAIA ASSIGN TD *SYSSINFUT",
hﬁ*@. DIVTESLION, o et SR
FILE SECTION, . ST Lo g Y e e
L. SALIDA R e FeoL e e

DATA RECORL 18 RFG‘qap " _ S L
ACCESS “MODE TIYNAMIC ' * LT
. RECORD KEY 1§ MUMOCTA-
01 REG-H5AL., e
S 03 HUMCTA-B J FIC ?(OS)* _ U : ,
03 NOMERE~S CPIC X(22) .. o - S ‘
03 PROMEDIO - - FIC 99V9%., L e e .

%:vzé

CFDENTRARA R T S S I
- LATA HECURD‘IS'RFG ENT;" - ; L T Ty

DL REE-ENT. : S el .

03 HUMCTA-E FIL‘?(GB).* , o , Lol

03 NOMKRE-E CRIC X3y, - O

05 FROMENTIO FIC 99U99, : S : :

4 . ' .
ROEKING-STORABE SECTION,
* " :
PROCEDURE BIVISION, , : . o AR
PAREAFG-INICIO. : : L I
ODFEN TRFUY ENTRADA, | - . e
OFER 1-0 SalIDAa. - R
REAL ENTRANA AT END : ‘ T
. DISPLAY *Ya NO HAY DATOS® . Lo
ENDI-REAT. ' : o R
. PERFORM CREA=INDEXADD UNTIL NUMOTA-E=299¢969¢.
DISPLAY "DAME EL NUMFRO IE CUENTA & RUSCAR®, ‘ L
ALCERT NUNCTA-S. _ :) :
FERFORM BUSQUETA UNTIL NUHCTA-5:9999999%,
DISFLAY *TAME NUMCTA FARA MONTFICAR NOMBRE"
ALCERT NUMCTA-S.
FERFORM MODIFTICA UNTIL NUMCTA-&= vvvvvﬁov.
NISFLAY "DAME NUMCTA FARA LORRA&R Fi RECISTRO®
ACCERT NUMCTA-S, : . :

FERFORM BORRA UNTIL NUNDTA-5=9799999%.
CHTOF RUN. 4 » :
CREA-INDEZALD.)
MOVE REG-ENT TO REG-SaL.
WHITE REG-3AL ITNVALYTD KEY o
HISPLAY "ERROR ENM LLAVE® NUMCTA-F .
FHI-URITE, : o '
READ ENTRADA 67 END _
DISFLAY "FIN DE DATOS"
ENR-REAT,
RUSHUE LA,
FEAT Sal10N KEY 1S NUMCTA-S S -
THUALTI KEY TISFLAY "NN ENCONTRN NUMNCTA®
EMI--REAL, : '
BISEFLAY “HUNBCTA ° NUMCTA-S "NOMBRE * NOMRRE-G,
DISPLAY *I6ME L NUMERO I'E CUENTA A RUSCARY,
AUEERT NUMCTA-S. o

S MOBEFTICA .

START SALTHA KEY 18 EQUAL MUMCTA~S INVALID KEY
CORTGPIAY "NO HAY REGISTRO A MODIEICAR®Y.

ENB-GTART, :

DISPLAY "NIMERE & MODIFICAR®,

ACTEFRT NOMERE-5, ~

REURITE REG-SAL INVALID KEY
DISFLAY "GF 3E HIZU FIL. REWRITE"

ERT-BEMETTE.,

BESFLSY "DHAME MUMCTA FARA MOLGIFICAR NOMRRE®

ACTEFT NUKCTA~S,

IRATATIE

REAT SALINGE KEY I6 NUMCTA-S INVALID KEY
NIGILAY “HO HAY REGISTRO A RORRAR®

EMI-REaT, L

NELETE AL TG INVALID KEY . .
(L5FLAY *NO SE EFLCTUO Fi. MELETE"

M- BELETE .

DTSELAY "HAME NUMCTA FARA RORRAR EL REGIGTRO®

AGDUET NUMCTA-S. ' '

h

THENTIFTCATION DIVISTON,
TRDGRAM-1TH. MARTAS.
CRUTHOR . FRERECARTOS.
ERSTALLATION, VAYX 11-780,
NARYE-WRITTEN, 22 FERRERQO 1985,
HnTE-COMPILER, 22 FERRERO 178275,
SECURITY . NINGUNA. :
ENUIRONHENT RIVISLON,
FRPUT-DUTRFUT SECTIGN,
tu|L~cauTFDi, o
'SELECT DATOS ASSIGN *MARIAS.DAT®
ORGANIZATION 15 SEGUENTIAL . .
SELELT SALINA AnUTFN "REFORTE.DAT™
URBANTIZATION 15 SEQUENTIAL,. '
SELECT SALINA-NOUEDANES ASSIGN “"NOVEDARF&.DATY
: DEGANTITATION 15 SEQUENTIAL,
fAaTH HIVISIGH,
FULE SECTION.
FIi BaT08
RECTFED CONTAING 280 CHARAUTERS
NATA RECORD 1§ REGISTRO,
A REGTIATED :
GEONOMERE FIC N{20),
D LOLALIZACION PID Y20,
OFCARTICWLD PIC K020,
0% PRECTO-UNITARIOD FIC 9(03).
G TANTIDAD PIE 90030,
OF FTLLER PIC %014y,
FNoGAL LA
REDOED CONYAIMS 50 CHARACTERS
DATA RECORED IS5 DESCRIPCINN-S5ALINA:
OESURTPCTAN-SALTRA
S LTHEA-RE-IHPFRFSION BIC YA,
FIUSal TIa-NOVEDATIES
RECE RN OCONTAING 80 CHARADTERS
AT n%tﬂﬁﬂ 15 ﬂESCHTPc10n~SAL1nawNnu,

AN

I 0N FIC K080,
Nﬂﬁﬁlﬂﬂwﬂfﬁﬁmﬂﬂ MEL!LHH¥

FIM-TE-~GROHTVD BI0 X002 Ui HE 7N,
PTOTOVAL-TIARIO FIC 91040 URLLE ZERD,
FEOTOYAL--GLOEAL PTG 20095 UALYUF ZERNES,
V7 U INEH-TE-RLANCOS FIO X(E0) UaLUE SPADES.
Gl REGTZTRO-AUXTLIAR-L .,

B3 FTLLER FIC XO69) Mal e SFACEDS.

G illkli FLDOXL0AY URLUE THMOMBRES

D OFTLLER FUC YO1AY UALDD 9BRALES,

93 FllLﬁﬁ FIG Loy Waldiy "LaalIZanTiNg,
03 FTLLRER & T0 X132 UALUE SFaACEs.

GA FLLLER FPIC (G VaLUE JaRTICULD .
FFOFTLLER PTG Xoids YaluE SPACEE.

SO FTLLIR RFYL O RIGHY VallE TToTa

ki
ks

50

SROFILLER PLC X(05B) VALUE §
PR G TR AU LLTAR-2,
O3 FILLER =38
QO NIMRBRE IO X205,
03 FLLLER PIo Lo

i LOCALIZACLION FIC
ﬁw

1,

EOamYy UsLUE

ERYRITS
Ya0) .
VALUE
0207,

FOFTLLER AIC Y602
ARTICHLE Ffl
YA OFLLLER FID end) QBALUE
+1J ?(@6).
G OFTLLER FIC X(643
IORFSISTRO-ADNILIAR=3,
0% FILLER PIT ¥(H3)
U3 FTLLER PR %28
0 FILLER FIC K58
REGISTRO-AUXTILIAR~4,
8% FILLER FIC X057 VALUE
0 FILLER FIC M(08) VALUE
0F ATHDIAR~CAHMBIAR FIC X0
07 FLLLER FIC X(02) VALUE -
OF NOMRERE FI0 ¥o20),
DU FILLER FID H{a?
REGEOTRO-AUXTLIAR~%,
A% FILLER PIGC Y (053 JaLUE
0% FILLER FIC ¥(15) WALUE
DX ARTICHULO =I0 ¥(26y,
G3 FILLER R0 Z:a3) valus
D% LNDaLIZACION PIE X020,
O3 FILLER FPIC XO17) UALUE
T1OREGISTRO-AUXTLIAR- &,
N7 OFTLLTE FIC Y40
FeoopTn Menh)
FID 9(09) .,
FIC K {04
GIVTSION,

ud T ek
Vel e
{}

VAt UE
VAL LE
. VALUE
01

ALl

Vil LE
3 VallE
Ny
ek l]:llF
FROCEDURE
PRINCIFAL .
FERFORY FROCESO-1.
MEVE T INDT T FIN-TE-~&ROHIVO
PERFORK PROCESO-T,
"s'rl: RERENAN
PR,
.'!FN IHPuT DAaTHs.,
OFEN DUTRUT SaL .
PERFORM FARRAFD-1.
FERFORN PEOCFSO-REFURTF-NTA
AUVE TOTHL-GLORAL TD TOTAL
WETTE NESCRIFCION-BALIIA
SOUTNER ‘
losr
cLaee
ﬂfF 3--F
FEAT DY
TE

B
v

HaluE

HATOG,
Sl A
FEFURTE ~DTARIO, .
T3 AT END MOVE "ST¢
FIN-HE~-ARCHIVO NOT EGUMNL

BRE0

FROM

FACES.
SFACES,
SRACES,

SPACES.
SPATES,

GRACES,

SPACER.,

‘REFGRYE
SEALES,

DE NOVENADES .,

SFATES,
HAY OUF ‘.

-

AT,

SFACES,

EFACES,
TEBTA

VENDTENRD 7.

EN
SPACES,

SFACES,
CTOTALL .

SPAGES,

UHTIL FIN-TE-ARCHIVA
REGISTRO-&ULTLLAR-&Y
REGTSTRO-AUYITL TAR-&

T

Tﬂ FIN~DE-~ HRL{TUU.
gr. FIIH

AR T

ERUAL

ER

o
Poua

l-Sll'.

AOVGHETRG.

| FERFORN PARRAFO-
LA anl%f

oo mHuLr

}fﬁ?ﬁlﬂ 1.

UL TINES .
FaREAFD-2.

52

WRTTE DESCRTECLON-SALINA FROM REBISTRO-AUYILIAR-1 AFTER ARVAHCTNG

MULTIPLY DANTIDAD v PRECIO-UNTTARIO GIVING TO?@L-HIARIH.

AET O TOTAL-DTARYO . TO TOTAHL-GLORAL

DRME ROMPRED IN REGISTRO TO NDHEBRE

MOVE LOCALIZACION TN REGISTRO TO
REGISTRND-AUXTLTAR-7,

TN REGISTRO-AUXTL Tak-2,
LOCALTZACION TN ‘

MOYE ARTICULG TH REGTISTRO TO ARTICULD IN REGISTEO-AUXKILIAR-7.

MOVE TOVAL-UTARTIQ TO TOTAL IN REG
UF[IF DESCRIFCINDH-SALINA FROM REG

1 IN TNFUT. BATOS, _
OFEW QUTRUT S8LIDA-NOVEDNATES.
CEEREORE PARNAEN-T, :
FERFORA FROGESO-NOVELANES UNTIL F
SLOSE TBATOS.
CLOSE SALIHA-NDVEDNANES,
FRODEAD-NOUETATIES .
READ STATOS AT ERD MOUE "SI T FI
LF FIM-LE-aARCHTVG NOT FEQUAL - "SI*
FERFORKE PARRAFD -4, '
% MOELGE
EMI T
FLTRAF-T .
L MEITE RESLRIFCION-SALINA-NOY FROM
5OLTHES. . .
KRITE DESCRIFCION-SAL IDA-NOV FROM
:&anqr A -
FULTIFLY CANTIDAD BY FRECTO-UNTTA
I[TOTAL-ITARIO LESS 500
FMUOUE “CAMRIARY 1O AYUDAR~CAME
MOUE NOMRRE TN REGISTRO F0 N0
S HUOUE LOGCALIZACION TN RFGISTRD
nLr}vTﬂn UKL T AR
FMOVE ARTICULD IH REGYSTRO TO
WRITE DESCRIFCION-SAL THA~NIY
ATVAHCING 2 LINES
WETTE DRESCRIFCTON-SAL THA-N
ELs .
FERFORM MAYORwUUEwESGO.
¥ . FRDIF

MATOR-DUE~2500, :
IF TOTAL-DTARIT BREATER 2500 °
MOVE “AYURAR ¢ TO AVUNAR-fANE
CHOVE NOHZEE TN REBISTRO 70 NO
MOVE LOCALIZACTON TN REGIGTR

3

THETRO-AWILTAR- 2.
TETRD-AUXTILTAR-2 AFTER ANVANCING

[N-TIE-ARCHIVO EGUAL "81°.

M-TIF —aRCHTU, Y

LINEA-DE-BLANCOE AFTER ARVANRCTNG

REGISTRO-QUXTLIAR-Z,
RIO GIYING TOTRL-DIAKRTD.
TR

MERRE IN RFFTHThU-HUHTFfﬂF - 4
™ LOrAaLIZacigH IN

ARTICHLYD TH REGISTR{O-AUNILTAR-D
FROM REGTETRO-AUXTILIAR-4 A4F I'ER

FROM. REGISTRO-AUXTL TR -5

TAR . '
MERE LN REGISTRO-AUXTL THR-4
T LaCALIZTACTON IN

REGISTRQ-

SOYANCTN

NUEL
¥ ENDI

ALY
COMOVE

JILT6R-5
ARTICULD

IN REGISTRO T0 AHIICULD

WRITE DESCRIPCIGN”QALIﬁA-NUU'FRdH‘RFh'

e

LINES

3

IN h[hl‘lh“ AUXlIIAR 5.
IRU AUAJ!IhH 4 ﬁFTIF

MWRITE ﬂF"Fle”IﬂH—FﬁLIUA NOV FROM Hth%IHn ﬁUXII1ﬁh~;a

’F.-a.

F

wruTrr7rnTxu~ NEVISTON, .
GOGEAR- T, ORGANTIZACTOM-RELATIVA,

'ﬂu[dﬂh. CEERGTOY ADRTAMN.

FgbTRANMENT BIVISTION. -

CAHFUT-OUTEUT SEGTION.

FLLE-CONTROL, _
SELELY FNTRADA G3STGN T "ENTRADALDAT®,
SELECT RELATIVO ASSIGN TO "RELATIVO.TAT®

ORGANTZATTON 15 RELATIVE,

TATA HIVTSION. "

FILE SFCTTON,

FH.ENTRAUﬁ :

CORECORD CONTAING 40 CHARACTERS
UHTH REQORD 18 REG-FHT,
Gl REG-FENT. :

03 CARRERA~F ‘ : FEC ORCOT,
D3 NO-CHENTA~E FIC 2008,
O3 HOMERE-E FIC 0300,

FLLRELATIVD)
REGOET CONTAING 40 CHARALCTERS
HATA RECORD IS REG-REL

ALLESS MODE TS RANDOM RELATLVE KEY IS LLAVE.,

a1 REG-REL.

03 LARKERA- BLC §002Y,
9% HO-CUENTf-F FTE 90083,
0 HORMERE -1 : FIC X(Zo).

¥
ROGE LG - 0RAGE GECTENN,

FELLAVE FIC 9002)
FEORESE : FIC XD1).

PERLEDUdSn GYUISTON.
PTHICTG,
PERFORM ARRE-&ROCHTIYNG,
FlEan !JnFﬁﬂﬂ BT EWN
PUSFLAY "ERRDOR, ND HAY DATORS®
STOF RUN
EMii~mE ALY,

PERFUORM CREA-RELATIVO UNTIL CaRBEFRA-F

DESRLAY *CON QUE REGISTRG QUIERES TRARAJARTT

ACCEERT LLAVE

UISFLAY “QUIEEES BKONTFINARLAYT (S/H)"

ATTERT REEP

FE

EERFORS CTERRA-GFOHTVITS

GTOP RN
ARRECARCHTYNG .

RN

TMPLY FTRATA
Il RELHTIVO,
.FH”!FIIIJ““g

Aatill LV L AVE

FORM TRARSSA-EELATIVO UNTIL (L AVE = 99

(L=10)r (87

UALUE ZERD,

SFING

v

REWRITE REG-REL FRGA REG-FENT THUALTR KEY _ :
AXEPLeY C"EFREROF Ed LLAVE Al DRFEa% EFLATIVO®
BISFLAY *REG-HE, = " REG-REL ‘
FERp-REWRITE,
FE&D ENTRAGG AT END ' .
DLSFLAY *FIN JIATDS DE FNTRuﬂA: SF CRFO EL RELATIVO®
ExD-REAL,. - '
TRABAJA~FELATIV0O,
IFOURDURE = "SRy THER
CEERFORM MODIFTCa-REGTIS IR0

FERFORM EDRRA-REGTETRD
P T . _ : ,
NESFLAY *CON QUE REGISTRD QUIERES»TRABQJAR?? (1-10)y (PF-FIN)"*
ALUERT LLAVE E ' :
014FaY *OULERFES MONTETCARLOY? 'S;N)"
SUGERT MESP,
muer1'f»n|r1 TRD. : . o
FEAL RIZLATIUVN
INUALTID KEY
NTEFLAY "FEROR AL LFER BEL RELATIVO®
Nﬁ FeF Al _ '
PTEPLAY "REGISTRM &4 MOMIFICAR +°
LAY !;,'Ef.:t REL,
WEGEL AT SUAME FL OMUEVD BESYSTED :e
ALDEFT REG-REL) :
REWRITE REG-RFL [HVALTR KEY
NEGFLAY "ERROR FN LLAYE Al CREAR RllaTTun"
NISPLAY “REG-REl = * REG-RE
PR -REWMETTE,
VORNA-GEE ST,
BEAR RELATIVO
FHUALTD RBEY .
DISFLAY SERFDR AL LEER DFEL KELATIWVO®
FEMHD-EAD
FELETE RELATIVY RECOED
THUGLTTE REY .
NIGELAY "FREOR AL BORRAR FI REBISTRO®
ENTG-IELRETE ,
FLERE A ARCHIVOS,
CLOGE FNTRADA
O RELATIUN,

L

i
Rt

THEHTIFIOATION NIVISION,

FROGEAM-TI. FRUERA,

AUTHOR, GRUFOL3.

THSTALLATION, VAL 11-780.

HATE-WRITTEN, 29 OCTURRE 1984.

[ATE-COMPTLEDN. 29 NCTURRE 1584,

SECHRITY., NINBUNA.

EAVTRGHAENT DIVISION,

CONFIGURATION SECTION,

SOURVE-COMPUTER, YAX-11-780,

GRAECT-DOMFUTER ., VAX-13-7080.

IMRPUT-GUTFUT SECTION, +

FILE-CONTROL . .

CBELECT DATOS ASEIGN "HOMERE.TIAT®
NRGAMIZATION 16 SEQUENTIAL .

CRFLECT NOHYRFC ASSIGN "NOMYRFC.DAT®
DRGANIZATION I SEGUENTIAL .

DaTe NIV I0N,

FILE SECTION:

SUOIATOS :
REDOED CONTAING 3¢ CHARACTERS
DEYA RETORD IS REGISTRO.

0L REGISTRD,

04 MOMERE PIC X (Z0),
RS N 5 I SEL -
BEOMES PLD 99,
DEOANTD MIC 99,

FreONOpY R
RECORED CONTATHS 40 CHARACTERS
BATEH RECORD TS SALINA.

01 GALTTA. ‘

03 NOMERE ., , -
URACOMONADD DUOURS 30 TIMES PIC X(01Y,
S0 LETRAS FPIC AC0aY,
0% ANIN PIC 29,
03 WES FIC 99,
SEONIa PIC 99,

WORKING-STORAGE SECTION.

7YORLANCOS PIN 99 VALHE ZERNDES,

27 FUNTO-Y-COMA-1 PIC 929 UslLUE 7ERO.

PEOFUNTO-Y=NOMA~2 PFIC 99 UaLUE 7ERD.

PEOENCONTRAR PIC ¥XI(07) VALUE “NO",
BH Ya-LAa-ENCONTRE JALUE "ste.

CF7OTOPID 99 VALUE ZEROES.

P4 RTD 99 VALUE ZEROES.
77OLECTURA £I0 %0020 UALUE *Ni",

: GEOFIH-DE-ARCHIVO YALUE *81%,
TTONCOALER FIO A ValUE "ge,

LS VuCAL YRLHE SAr s TEr, It rar, e,
CO1 MOMERES,

' OF CHILEL DCCURS 30 TYMES FIN X(01).
01 LETRAG-RIC. ‘ :

04 THBICE~LETRA DECURS 4 TINES FPIC ACO1Y.
PRGOEOURT DIVISTON, - i -
FARIEAI-1, -
FRINGYEAL. .

NN INFUT DATOS, ~

OFEN UUTPUT NOMYRFC. : .

FERFORMW FRDCESD UNTIL FIN-DF-ARCHIVO.

DLOSE NATOS. : ' :

CLOSE MOMYRFC.

BT RUM '

FPROCESO. o
REATH TATOS AT END MOVE *S1* 10 LECTURA,
MOVE ZEROES TO FUNTO-Y-C0OMA-1. :

MOVE ZERDES 10 PUNTG-Y-COMA=2,

MOVE ZEROES TO RLANCOS,

MOUE ZEROES TO J.
CMOVE 1 TO T, ‘

MOVE MO T ENCONTRA&R

IF MOT FEIf-DE~ARCHIVO THEN

IFIFDRM INuF ‘!“IUNA THRE ITHPRTNE

¢
wl

FL3
' NEXT SEMTENCE
¥ ENDLE :
[HEFECDTONG ., :
MOWE MOMERE TN REGISTEQ T0D NOMEREE,
: MOUE INDTCECL) TO IMRBICE~LETRA(L). ' 1
. FERFORN ENCUENTRA-VOCAL URTIL YA~ A-ENCONTRE . T
MOUE YOCALES TO THDICE-LETRA(Z). : .
TMEFECT NOMRRES HEFLACING ALL " * BY *%" BEFORE INITIAL "§".
IHSFECT NOWERES TALLYING PUHTO-Y-COMA-1 FOR CHARACTERS EEFORE .
THITIEL 5, B ' o - |
‘ ATITL 2 TOOPUNTO-Y-R0MA-1, ‘ .
MOVE SNDICE(FUNTO-Y-COMA-1) TO INRICE-LETRACI),
THOFECT NOMRRES REFLACIHG FIRST "$* RY °*X°
THEFEDT NOMERES REPLACING ALL * " RY *%" REFNRE INTITIAL "3*
PNEPECT NOMERES TALLYING FUNTO-Y-COMA-2 FOR CHARACTERS EEFOFE
THITIAL “35° REFLACYMG FIRST "§* Ry "%° '
ARNR T PUNTO Y- COMA~2,
MOUE INDICECFURNTI-Y-COMA-2Y 10 TNRICE-LETRA(4Y .,
AONE CORR RESTSTRO TO SALINA.
MOVE LETHAS-RFT TO LETRAS TN SALTOA ,
. ' : TNSPELI MOMERES TALLCING BLAMCDS FOR CHARADTERS REFORE INITIAL *

sl T BLANTGE

TF B ANGCOS 230 THENS
MUOVE 30 TO BLAHCOS

Fi. s ‘) . .)

MEZT SENTINCE, ' - - L

¥ N ' ' ‘
CEREOGRM aOQHODA-NOMERE JARYING T FROM PUNTO-Y-0MMA-2 BY 4 UNTIL X

RLanNChns, ' '

FIRFORM ACOHODA-MOWMARE VaRYIMG T FEOM 1 RBRY 1 UNTIL I =

FUNTO-Y-COMA-2 . : -

L 58
THSPECT NOMERE IN SALINA REFLACTMG ALL "%¢ RY * .0, . | |
THERIHE,, T T I EEE T ..

WRITE SaLIDA. - | | - AP o T

ENCUENTREA=VOCAL

B (54 N v S A : :
v HOVE INDINECIY TO VYOCALES, -) - t o

- IF VOCAL THEN ‘ - ' B

OMOVE *S10TO EHCONTRAR : ' -

F1L.8E o '
HEXT SENTENCE,
* ENDLF L

ACOMDHA~MNONERE .
ang -1 T0O .0, . ' o
MOVE INDICE (D) TO ACOMOTALOC) .

ite

Oecianes

ENVIRONMENT DIVISION

s ——— =t

B

e Tt

[P LI TP

INPUT-QUTPUT SECTION

FILE-CONTROL

3.2 INPUT-OUTPUT SECTION

The INPUT-OUTPUT Sectmn can contain two paragraphs FILE-CONTROL
and I-O-CONTROL.

3.3 FILEf-CONTROL Paragraph

Function

~ The FILE CONTROL paragraph contams file-related specxﬁcatmns

General Format

-

2 »

FILE-CONTYROL.
‘§ELECT [OPTIQONAL | file-name

ASSIGN TO file-spec

-

-

[FILE STATUS IS file-stat)

| ACCESS MODE IS)

[ACCESS MODE IS) {

. AREA
RESERVE reserve-num { '

[ORGANIZATION IS | |

_ _ £ RECORDS
BLOCK CONTAINS [smallest-block JTO] blocksize]

* [CODE-SET IS alphabet-name |

SEQUENTIAL

SEQUENTIAL . [RELATIVE KEY IS rel-key]

AREAS

SEQUENTIAL
RELATIVE _

INDEXED

CHARACTERS

RANDCM

RELATIVE KEY IS rel-key
DYNAMIC

3-14 Environment Division

(continued on next page)

FILE-CONTROL

2 : _ (Continued) .
(SEQUENTIAL
* [AGCESS MODE IS] RANDOM
' DYNAMIC

* [RECORD KEY IS rec-key]

* [ALTEHNATE RECORD KEY IS alt-key { WITH oupucmss;]
~ [PADDING CHARACTER IS pad-char |

*These clauses are part of the Data Division File Description entry. They can be in the
SELECT ctause; however, they cannot be in both the SELECT clause and the File
Description entry for the same file,

file-name '
is the internal name of a file. Each file-name must have a File De-
scnptlon entry or Sort-Merge File Description entry in the Data Divi-

" sion. The same file-name cannot appear more than ‘once in the
FILE-CONTROL paragraph.

Syntax Rules

1. The FILE- CONTROL paragraph must have at least one SELECT clause.

2.. SELECT must be the first clause in the File-Control entry. The other
clauses can follow it in any order.

3. The OPTIONAL phrase can appear only for input files.

General Rules

1. There must be an QOPTIONAL phrase for mput ﬁles that need not be
present when the program runs.

2. The rules for the OPEN statement describe the eft'ects of the QPTIONAL
phrase.

Technical Notes

" The followmg clauses can be in either the File Description entry or the
SELECT clause, but not both for the same file:

¢ BLOCK CONTAINS {See Section 3.3.2, BLOCK CONTAINS CIause)
® CODE-SET (See Section 3.3.3, CODE-~SET Clause.)

Environment Division 3-15 _

FILEECONTROL 3
(Continued) C ' o

® RECORD (See Section 4.3.7, IRECORD Clause.) .

¢ FILE STATUS (See Section 4.3.4, FILE STATUS Clause.)

* ACCESS MODE (See Section 4.3.1, ACCESS MODE Clause.)
* RECORD KEY (See Section 4.3.8, RECORD KEY Claﬁse.)

¢ ALTERNATE RECORD KEY (See Section 4.3.2, ALTERNATE RECORD KEY
* Clause.)

Additionat Reteiences
~ 8Section 5.29 OPEN Statement
- Examples

The following examples assume that the VALUE OF ID clause is not in any
associated File Description entry. .

1. Sequential file. This example refers to a file with sequential organization.

The word INFILE is equivalent to the nonnumeric literal “INFILE", If

" INFILE is not a logical name at run time, the program accesses a file
named “INFILE.DAT”.

SELECT FILE-A
ASSIGN TO INFILE.

2. Indexed file. This SELECT clause specifies that the indexed file need not
be present when the program opens it for input.
SELECT OPTIONAL FILE-A

ASSIGN TO INFILE
ORGANIZATION INDEXED.

f'--.
{ \

A4 . ASSIGN

3.3.1 ASSIGN Clause

Function

The ASSIGN clause associates a file with a partml or complete file
specification.

General Format

ASSIGN-TO file-spec

file-spec
is a nonnumeric literal or a COBOL word formed according to the
rules for user-defined names. It represents-a partial or compiete file
specification. '

General Rules

1. If there is no VALUE OF ID clause in the File Description entry, or the
clause contains no file specification, file-spec is the file specification.

2. If there is a filé specification in an associated VALUE OF ID clause,
file-spec is the default file specification. File specification components in
the VALUE OF ID clause override those in file-spec. '

3. File-spec can contain a logical name.

4. If file-spec is not a literal, the compiler: -

a. Translates hyph_eﬁs in the COBOL word to underline characters’

b. Treats the word as if it were enclosed in quotation marks

5. When an QPEN statement executes, VAX-11 RMS:

a. Removes leading and trailing spaces and tab characters from the file
specification

" b. Translates lower-case letters in the file specification to upper case
c. Performs logical name translation

| Additional References
 Section 439 VALUE OF ID Clause

Environment Division 3-17

s

BLOCK CONTAINS

N

3.3.2 BLOCK CONTAINS Clause

Function
The BLOCK CONTAINS clause speéiﬁes the size of a physical record.

General Format

- RECORDS
BLOCK CONTAINS { smallest-block TO] biksize '

CHARACTERS

smallest-b!ock

' -~
is an integer literal. It specifies the minimum physical record size. f
~ blksize
is an integer literal. It specifies the exact or maxlmum physical record
size. :
Syntax Rule ‘ |
The BLOCK CONTAINS clause can be in the file’s Data Division File Descrip- '
tion entry. However, it cannot be in both the SELECT clause and the File B
Description entry for the same file.
General Rujes _
1. The BLOCK CONTAINS clause specifies physical record size.
2. The compiler ignores smallest-biock. ~
3. The RECORDS phrase specifies physxcal record size in terms of logical R
records.
a. For a fixed-length-record magnetic tape file, each physical record ex-
cept the last contains biksize records.
b. For a variable-length-record magnetic tape file, the compiler computes
the physical record size. It equals the size of the largest logical record,
plus any overhead bytes, multiplied by blksize.
¢. For a sequential disk file, there are no unused bytes in any physwal ’
record. Records can span physical record boundaries.
d. For a relative or indexed file, the compiler uses blksize to compute the
size of the physical record. Because of overhead bytes, the size can
differ from record size times blksize. .
.“\-.

3-18° Environmeht Division

~ BLOCK CONTAINS
‘ | (Continued)

4. The CHARACTERS phrase specifies physical record size in terms of
" characters, ' '

a. For files assigned to magnetic tape, the physical record size is the

maximum of: (1) blksize bytes and (2) the size of the largest logical
record; plus any overhgad bytes for variable-length records.

~ b. For sequential disk files, there are no unused bytes in any physical
record. Records can span physical record boundaries.

c. For relative and indexed files, the physical record size is biksize bytes.
Blksize must be at least as large as the largest logical record, plus any
overhead bytes. It should be a multiple of 512.

. If there is no BLOCK CONTAINS clause, physical record size assumes a
default value. _ '

a. For & .magnetic tape file, the physical record size is the size of the

largéé't record plus any overhead bytes.

b. For a sequential disk file, there are no unused bytes in any phy'sicalA

record. Records can span physical record boundaries.

c. For a relative or indexed file, the physical record sizeis the smallest
number of 512-byte physical blocks that can contain at least one rec-
ord (including any overhead bytes).

The maximum physical record size depends on file organization and

device.

a. For a sequential file, the maximum physical record size is 65,535 bytes
on a magnetic tape device and 65,024 bytes on disk.

A compile-time informational diagnostic appears if the physical record
size exceeds 65,024. However, VAX-11 COBOL programs are device-
independent. Therefore, a fatal run-time error can also occur if the file
is assigned to disk when the image executes.

b. For a relative or indexed file, the maximum physical record size is’

16,384.
For files assigned to magnetic tape, the size of physical records (in charac-

ters) must be a muitiple of four. Otherwise, VAX-11 RMS rounds up the
physical record size to the next multiple of four.

Environment Division =~ 3-19

-

CODE-SET 7

.3.3.3 CODE-SET Clause
Function . .
“The CODE-SET clause specifies the representation of data on external media.
General Format '
CODE-SET IS alphabet-name . : : .
j alphabet-name '
is the name of a character set deﬁned in the SPECIAL-NAMES para-
graph. It cannot be described with literals in the ALPHABET clause.
Syntax Rule - o \q
' The CODE-SET clause can be in the file’s Data Division File Description
entry. However, it cannot be in both the SELECT clause and the File Descrip-
tion entry for the same file. -
:General Rules -
1. The CODE-SET clause 1dent1ﬁes alphabet-name as the character set used _
to represent the ﬁle data externally. O
2, Alphabet-name specifies how to convert character codes in the file to and
from native character codes. _
3. Code conversion occurs during execution of an input or output operatlon
_ Conversion occurs as if the data were USAGE DISPLAY.
4. Successful OPEN statement execution establishes the character set for
code conversion. The set used is the one specified by alphabet-name in N
the File-Control entry implied by the OPEN statement. ’e_/

5. If there is no CODE-SET clause, no character conversion occurs during
input-output operations. The native character set is the default.

'Additional References . - -
Section 3.1.3 SPECIAL-NAMES Paragraph
Example . : ‘ o

In this example, the CODE-SET clause specifies that the data in INFILE is ST
coded in an alphabet named “EB”. The SPECIAL-NAMES paragraph defmes
EB as the EBCDIC character set.

SPECIAL-NAMES.
ALPHABET EB 1S EBCDIC.
INPUT-OUTPUT SECTION.

FILE-CONTROL, ' S ~
SELECT INFILE ASSIGN TO INFILE _ ,
CODE-SET 1S EB.

3-20 Environment Division

8 - ORGANIZATION

3.3.4 ORGANIZATION Clause
Function '

~ The ORGANIZATION clause specifies a file's logical structure.

General Format

SEQUENTIAL
[ORGANIZATION IS] { RELATIVE

INDEXED

General Rules

1. File arganization is fixed when the file is created. It cannot be changed
after file creation. h

2. If there is no ORGANIZATION clause, the default is sequential.

Environment Division 3-21

PADDING CHARACTER 9

3-22

3.3.5 PADDING CHARACTER Clause -
Function

The PADDING CHARACTER clause specifies the character to be used to pad
blocks in sequential files, '

General Format

PADDING CHARACTER IS pad-char

pad-char

is a4 one chgrat:t(!_r nonnumeric literal or the data-name of a one char-
acter data item. The data-name can be qualified.

General Rules .. ' _ t
The PADDING CHARACTER clause is for documentation only.

Environment Division

N

N\

T e

B

i . RESERVE

3.3.6 RESERVE Clause

Function'
The RESERVE clause spec1ﬁes the number of mput output buffers for a file.

‘General Forrnat

:) AREA
" RESERVE reserve-num
- AREAS

reserve-num -
is an integer literal from 1 through 127. It spemﬁes the number of

input-output areas for the ﬁle

General Rule

If there is no RESERVE clause, the number of 1nput-output areas equals the
RMS default. .

_ Technical Note

Two VAX/VMS commands change and display the defaults for multibuffer-
ing: SET RMS_DEFAULT and SHOW RMS_DEFAULT. -

Additional References

Section 3.4 APPLY Clause
VAX/VMS Command Language Users Guide

. Environment Division = 3-23

I-O-CONTROL

11

3.4 1-O-CONTROL Paragraph

3-24.

Function

The I-O-CONTROL paragraph specifies the input-output techniques for a file.

‘Goneral Format

1-0-CONTROL. [

DEFERRED-WRITE

FILL-SIZE

| MASS-INSERT
APPLY ‘ [gomaeuous

EXTENSION extend-amt

CONTIGUOUS-BEST-TRY]

’]PHEALLOCATION preali-amt

PRINT-CONTROL
WINDOW window-ptrs

integer CLOCK-UNITS

condition-name

\

ON | file-name | ...]

i RECORD . 7

SAME SORT AREA FOR f{ same-area-fila] ... | ...
! SORT-MERGE - \
r - >

BERUN [ON file-name]
N r b

REEL) :
[END OF] QF file-pame
, UNIT]
EVERY 4 integer RECORDS b

[MULTIPLE FILE TAPE CONTAINS {fiie-name [POSITION Integer 1}] .]

A

extend-amt

in each extension of a disk file.

is an integer from O through 65535. It specifies the number of blocks

Environment Division

{continued on next page)

\

N

12 i-O-CONTROL

_(Continu_ed)

preall-amt
is an integer from 0 through 4,294,967,295. It specifies the number of
blocks to allocate when the program creates a disk file.

window-ptrs
is an integer from 0 through 127. Its value can also be 255. It spec:fies

the number of retrieval pointers in the window that maps the disk
ﬁle

fite-name
is the file-name of a file described in a Data Division File Description

entry.

same-area-file
is the file-name of a file to share storage areas with every other
same-area-file.

Syntax Rules

1. The I-O-Control clauses can appear in any order.

2. Each APPLY clause phrase can refer to only some ty-pes of files:

Phrase : * File Type

DEFERRED-WRITE Relative or indexed organization

EXTENSION " Disk file
FILL-SIZE Indexed organization
MASS-INSERT Indexed organization

PREALLOCATION Disk file
PRINT-CONTROL Sequential organization
WINDOW - Disk file

- 3. More than one APPLY clause can refer to the same file-name.

4. ‘The phrases of the APPLY clause can appear in any order. However, each
phrase can be used only once for each file-name.

5. The RERUN and MULTIPLE FILE clauses cannot refer to a sort or merge
file. -

Environment Division 3-25

-

S e s

e i el A A S L S Bl W 4 ety | e ol e

13

I-O-CONTROL

(Continued)

6.

7.

8.

In the SAME AREA clause, SORT and SORT-MERGE are equivaient.

If same-area-file refers to a sort or, merge file, the SORT, SORT—MERGE
or RECORD phrase must be used.

A program can contain more than one SAME clause. However,

a. A same-area-file cannot be in more than one SAME AREA clause.

| b. A same-area-file cannot be in. more than one SAME RECORD AREA

-clause,

c. A same-area-file that refers to a sort or merge file cannot be in more
than one SAME SORT AREA or SAME SORT-MERGE AREA clause.

d. If one or more same-area-files of a SAME AREA clause are in a SAME
RECORD AREA clause, all same-area-files in the SAME AREA

clause must be in the SAME RECORD AREA clause. However, other.

same-area-files can also be in the SAME RECORD AREA clause.

"The rule that only one same-area-file in a SAME AREA clause can be
open at a time takes precedence over the rule that more than one
same-area-file in a SAME RECORD AREA clause can be open at once.

e, If a same-area-file that is not a sort or merge file is in a SAME AREA
clause and one or more SAME SORT AREA or SAME SORT-MERGE
AREA clauses, each same-area-file in the SAME AREA clause must be
in the SAME SORT AREA or SAME SORT-MERGE AREA clauses.

General Rules

APPLY Clause

1.

The DEFERRED-WRITE phrase causes a pAhysicaI write operation to occur
only when the input-output buffer for file-name is full. If there is no
DEFERRED-WRITE phrase, a physical write occurs for each execution of

~ an output statement for file-name. The DEFERRED~WRITE phrase ap-

plies only to relative and indexed files.

The EXTENSION phrase specifies the number of disk blocks for each
extension of the file. RMS extends a file when it needs more file space to
add a record.

. If extend-amt equals zero, RMS extends the file By its default value.

The FILL-SIZE phrase causes RMS to use the file creation fill size to fill
the file’s buckets. If there is no FILL-SIZE phrase, RMS fills buckets
completely. The FILL-SIZE phrase applies only to indexed files.

© 3-26 Environment Division

Cnem

14 I-0-CONTROL
(Continued)

4. The MASS-INSERT phrase optimizes the addition of records to an indexed
file. However, the optimization occurs Only if the records are in ascending
order by Prime Record Key.

5. The PREALLOCATION phrase causes RMS to allocate preall-amt d1sk
blocks when it creates the file.

a. The CONTIGUOUS phrase specifies that the preallocated disk blocks
must be contiguous, If RMS cannot find preall-amt contiguous disk
blocks, the open fails.

b. The CONTIGUOUS-BEST-TRY phrase causes RMS to try to preallo-
cate disk blocks contiguously. If RMS cannot find preall-amt contigu-
ous disk blocks, it preallocates disk blocks in the largest possible
contxguous areas,

6. The PRINT—CONTROL phrase specifies that the file has print file format.
"~ The PRINT-CONTROL phrase is redundant if: (1) the File Description
entry contains a LINAGE clause or (2) the program contains a WRITE
statement with the ADVANCING phrase for the file. The PRINT-
CONTROL phrase applies only to sequential files. '

7. The WINDOW phrase causes RMS to use window-ptrs' number of retrieval
pointers in mapping the files. Window-ptrs must fall in the range of 0 to
127 inclusive or be equal to 255. If window-ptrs is 255, then RMS attempts
to map the entlre file. .

SAME AREA Clause
8. The SAME AREA clause is for documentation onIy

SAME RECORD AREA Clause

9. The SAME RECORD AREA clause causes two or more files named by
same-area~ﬂ!e to share the same memory area for the current logical
records. -

10. More than one same-area-file (or all of them) can be open at the same
~ time.

11. A logical record in the shared area is a logical record of:

.a. Each same-area-file of the SAME RECORD AREA clause open in the
output mode

b. The most recently read same-area-file of the SAME RECORD AREA
clause open in the input mode

Environment Division 3-27

£ o e e e e cpmm—

1-O-CONTROL

(Continued)

3-28

sr":bcbw

The logical records start with the same leftmost character position. Thus,
the SAME RECORD AREA clause is equivalent to an implicit redefinition
of the shared area.

SAME SORT (SORT-MERGE) AREA Clause

In these rules, the terms SORT, sort, and sort file lmply SORT—MERGE
merge, and merge file. .

I2. At least one same-area-file in the SAME SORT AREA clause must be a
sort ﬁle

13. The SAME SORT AREA clause causes two or more sort files named by
same-area-file-to use the same memory area.

~ 14. Files other than sort files do not share the same storage area unless their

names are in a SAME AREA or SAME RECORD AREA clause.

15. No other same-area-file can be open during the executlon of a SOR’I‘
statement that refers to any same-area-file,

- RERUN Clause

16. The RERUN clause is for documentatlon only It has no effect on program
execution. ,

MULTIPLE FILE Clause

17. The MULTIPLE FILE clause is for documentatmn only It has no effect on
program execution.

Fechnicat Notes

The following notes describe the effects of APPLY clause phrases on
parameters in the File Access Block (FAB) and Record Access Block (RAB)
associated with file-name. Descriptions of FAB and RAB fields are in the

VAX-11 Record Management Services Reference Manual.

1.. The DEFERRED-WRITE phrase sets the DFW bit in the FOP field of the
FAB.

The EXTENSION phrase stores extend-amt in the DEQ field of the FAB.
The FILL-SIZE phrase sets the LOA bit in the ROP field of the RAB.
The MASS-INSERT phrase sets the MAS bit in the ROP field of the RAB.

The PREALLOCATION phrase stores preall- amt in the ALQ field of the
FAB.

a. The CON’I’IGUOUS phrase sets the CTG b1t in the FOP field of the
FAB.

Environment Division

)

()

-O-CONTROL
106 (Continued)

b. The CONTIGUOUS-BEST-TRY phrase sets the CBT bit in fhe FOP
field of the FAB. ‘ '

6. The PRINT-CONTROL phrase sets bits in two FAB fields:

a. The PRN bit in the RAT field
b. The VFC bit in the RFM field

7. The WINDOW phrase stores window-ptrs in the RTV field of the FAB.

Additional References
Section 3.3.6 RESERVE Clause

Environment Division 3-29

17

Meviones de la

ATA DIVISION

1. This exaxﬁple is the same as Example 2 except that it omits TTEM-G.

2. ITEM-D is four byfes long. No fill bytes are added, since the next occur-

rence is already aligned on a two-byte boundary.
ITEM-C is 12 bytes long.
4. The record ITEM-A is 15 bytes long.

®

Data Division - 4-15

P

' 19

4.3 FD - File Description - Complete Entry Skeleton

"Functlon

-The File Description describes a file's physical structure, identification, and

record names.

: G_eneral Format

Format 1

ED file-name

Format 2

FD file-name

[BLOCK CONTAINS | smallest-block TO | blocksize

. [aLOCK CONTAINS [smaliest-block TO] blocksize { }]
’ CHARACTERS
* [CODE-SET IS alphabet-name | .
= CONTAINS { shortest-rec TO | longest-rec CHARACTERS
'RECORD . _
IS VARYING IN SIZE [[FROM shortest-rec] [‘_rg_longest-rac i CHARACTERS]
L [DEPENDING ON depending-itam |
[RECORDS ARE | ' § STANDARD .
LABEL . :
L) RECORD IS . OMITTED

[VALUEQF IDIS file-spec |

] ‘RECORDS ARE
DATA | rec-name | ..

RECORD IS

[FILE STATUS IS file-stat |

[[ACCESS ‘MODE IS | SEQUENTIAL]
[LINAGE IS | page-size] LINES [WITH FOOTING AT footing-line]

[LINES AT TOP top-lines] [LINES AT BOTTOM bottorn-iines]]

RECORDS ’]

CHARACTERS

* { COOE-SET IS alphabet-name |}

4-16 Data Division

{continued on next page)

21) -

: RECORDS ARE '
DATA { rec-name | ...
RECORD IS
[FILE STATUS IS file-stat } .
' SEQUENTIAL [RELATIVE KEY IS rel-key }

{ ACCESS MODE IS | RANDOM . -

. - RELATIVE KEY IS rei-key
Format 3
iq file-nama .
R RECORDS
. BLOCK CONTAINS [smallest-block TO] blocksize
' : CHARACTERS

, .

CQNTAINS { shortest-rec TO] longest-rec CHARACTERS
RECORD '
: IS VARYING IN SIZE [[FROM shertest-rec | [TO longest-rec | CHARACTEFIS]
[DEPENDING ON depending-item]
“
RECORDS ARE STANDARD
LABEL ’ A
AECORD 1S OMITTED

[VALUE OF IDIS fila-spec |

[CODE-SET IS aiphabet-name |

CONTAINS [shortest-rec TO] longest-rec CHARACTERS

RECORD
IS VARYING IN SIZE [{ FROM shortest-rec } { TO tongest-rec) CHAHACTERS]
[DEPENDING ON depending-itemn |
RECORDS ARE STANDARD
LABEL ‘
RECQRD IS . OMITTED

{ VALUE OF ID IS file-spec]

RECORDS ARE
DATA { rec-name |
RECORD S

[FILE STATUS IS filo-stat |

{continued on next page)

- 'Data Division 4-17

_ SEQUENTIAL
[ACCESS MODE IS | RANDOM
| DYNAMIC

RECORD KEY IS rec-key

[ALTERNATE RECORD KEY IS ait-key | WITH DUPLICATES]]

Format 4
SO flle-name
[~ CONTAINS { shortest-rec TO] . longest-fec CHARACTERS

RECORD .
’ IS VARYING IN SI1ZE [[FROM shortest-rac ! [TO longest-rec } 'CHARACTERS]

L { DEPENDING ON depending-item]

-

RECORDS ARE

. | para [] . | rec-name |
I RECORD IS

.

* These clauses are part of the Environment Division SELECT clause, They can be in the File Description entry.
However, they cannot be in both the SELECT clause and the File Description entry for the same file.

Syntax Rules

Formats 1, 2 and 3

1. The level indicator FD ldentlﬁes the start of a File Description. It must
precede file-name.

2. The clauses following file-name can appear in any order.
3. A separator period must terminate a File Description entry.

4. One or more Record Description entries must follow the File Description
entry.

Format 1

5. File-name can refef only to a sequential file.
" Format 2

6. File-name can refer only to a relative file.

7. If a START statement refers to file- name the File Description must have a
RELATIVE KEY clause.

Format 3

. 8. File-name can refer only to an indexed file.

"4-18 ~ Data Division

22

9. Alt-key cannot have the same leftmost character posxt.mn as that of
rec-key or any other alt-key for the same file.

Format 4

10. The level indicator SD identifies the start of a Sort-Merge | File Descrip-
tion. It must precede file-name.

11. The clauses following file-name can appear in any order.
12. A separator period must terminate a Sort- Merge File Description entry.

13. One or more Record Deéscription entries must follow the Sort-Merge Flle
Description entry.

General Rules

Formats 1, 2 and 3

1. " A File Description entry associates the file-name with a file connector.
Format 4 |

2. No input-output statements can refer to a file-name in a Sort-Merge File
Description. .

Technical Notes

The following clauses can be in either the File Description entry or the
SELECT clause, but not both for the same file:

1. BLOCK CONTAINS (See Section 3.3.2, BLOCK CONTAINS Clause.)
2. . CODE-SET (See Section 3.3.3, CODE-SET Clause.) -
3. RECORD (See Section 4.3.7, RECORD Clause.}

4. FILE STATUS (See Section 4.3.4, FILE STATUS Clause.)

5. ACCESS MODE {See Section 4.3.1, ACCESS MODE Clause.)
6. RECORD KEY (See Section 4.3.8, RECORD KEY Clause.)
7

ALTERNATE RECORD KEY (See Section 4.3.2, ALTERNATE RECORD
KEY Clause.)

Examples

The VAX-11 COBOL User's Guide contains examples of each File Descrip-
tion entry format.

Data Division - 4—19

ACCESS MODE 03

4-20

4.3.1 ACCESS MODE Clause
Function ‘ ' | _
The ACCESS MODE clause specifies-the order of access for a file’s records.

General Format

FormaH' : .
[ACCESS MODE IS] SEQUENTIAL

Format 2 SEQUENTIAL [RELATIVE KEY IS rel-key }

[ACCESS MODE IS | RANDOM

RELATIVE KEY IS rel-key
DYNAMIC .
Format 3 ‘
. (SEQUENTIAL
[ACCESS MODE 1S) { RANDOM
' DYNAMIC .
rel-key

is the file’'s RELATIVE KEY data item. It must be the data-name of
an unsigned integer data item. It can be qualified but cannot be in a
Record Description entry for the same file-name.

Syntax Rules

1. "I.‘he' ACCESS MODE clause can be in the file’s SELECT clause. However, it
cannot be in both the SELECT clause and File Description entry.

2. If the USING or GIVING phrases of a SORT or MERGE statement contain
~ the name of the file, the ACCESS MODE RANDOM clause cannot be used
for the file, >

General Rulés

All Formats

-

1. If there is no ACCESS MODE clause‘, the access mode is sequential.

2. Forsequential access, record access sequence depends on file organization:

a. Sequential files — The sequence is the same as that established by the
execution of WRITE statements that created or extended the file,

Data Division

¥

O

()

ACCESS MODE
04 ‘ . . (Continued)

b. Relative files — The sequence is the order of ascending relative record
numbers of the file's existing records.

¢. Indexed files — The sequence is the order of ascendmg record key
values in the established Key of Reference.
Formats 2 and 3

3. For random access, the value of rel-key (for relative files) or a Record Key
data item (for indexed files) indicates the record to be accessed.

4. For dynamic access, the program can access records sequentially and
randomly.

Format 2

5. Relative record numbers uniquely identify records in relative files. A rec-
ord’s relative record number identifies its ordinal position in the file.

& The first record in the file has a relative record number of 1. Subsequent
records have consecutively higher relative record numbers.

7. 'The Relative Key data item associated with the execution of an input-
output statement is rel-key in the File Description entry (or SELECT
clause) associated with the statement.

Data Division 4-21

ALTERNATE RECORD

4-22

4.3.2 ALTERNATE RECORD KEY Clause

Function

The ALTERNATE RECORD KEY clause specnﬁes an altemate access path to

indexed file records.

General Format

ALTERNATE RECORD KEY IS . alt-key [WITH DUPLICATES |

alt-key '

is the Alternate Record Key for the file. It is the data-name of a data
item in a Record Description éntry for the file. It can be qualified.
The data item must be described as: (1). alphanumeric or alphabetic
category, (2) a group item, (3) unsigned numeric display, (4) a
COMP-3 integer, or {5) a COMP integer with no more than nine digits.

Syntax Rules

1. The ALTERNATE RECORD KEY clause can be in the file’s SELECT
clause. However, it cannot be in both the SELECT clause and File De-

scription entry for the same file.

2. Alt-key cannot be a group item that contains a variable-occurrence data

item,

3. Alt-key’ cannot have the same leftmost character position as that of the

Prime Record Key data item or any other alt-key for the same file.

- General Rules ' . / '

" 1. The data description of alt-key and its relative location in the record must

be the same as when the file was created,

2. The DUPLICATES phrase specifies that two or more records in the ﬁlé: can
have duplicate values in the same alt-key data item. If there is no
DUPLICATES phrase, two records cannot have the same value in corre-

sponding Alternate Record Keys

3. Only one Record- Descnptlon entry for a file must describe alt-key. The:
Alternate Record Key has the same character positions m every record of

the file.

4. A file can have up to 254 Alternate Record Keys.

Data Division

]

9,

26 DATA RECORDS

4.3.3 DATA RECORDS Clause

.Funcﬂon

The DATA RECORDS clause documents the names of a file’s Record Descrip-
tion entries. o :

General Format

RECORD 1S) .o
DATA : { rec-name } ...
‘ RECORDS ARE|
rec-name

is the name of a data record. It must be defined bj} a level 01 Record
. Description entry subordinate to the File Description entry.

Syntax Rule -
The order of appearance of multiple rec-name entries is not significant.
General Rule -

The DATA RECORDS clause is for documentation only.

Data Division 4-23 -

(-

FILE STATUS | | 27

4-24

4.3.4 FILE STATUS Clause

Function

The FILE STATUS clause names a data item that contams the status of an
input-output operation.

General Format

FILE STATUS IS file-stat

file-stat ' ‘
is the data-name of a two-character alphanumeric Working- Storage D
Section data item. It can be qualified. File-stat is the file’s FILE
STATUS data item.

Syntax Rule

The FILE STATUS clause can be in the file's SELECT clause. However, it
cannot be in both the SELECT clause and the File Descnptwn entry for the -
same file. : \)

- @General Rule

After the execution of every statement that refers to the file, a value is moved
to file-stat. This value indicates the statement’s execution status.

Additional References . _ - C .

Section 5.8.9 1-0 Status B ’

O

" Data Division

_ LABEL RECORDS
28 E .

4.3.5 LABEL RECORDS Clause
Function |

The LABEL RECORDS clause specifies the presence or absence of labels.
General Format

: RECORDS ARE STANDARD
- LABEL
‘ RECORD 1S OMITTED

General Rule
The LABEL RECORDS clause is for documentation only,

Data Division 4-25

LINAGE
29

4.3.6 LINAGE Clau;e-

.. Function

The LINAGE cIause specifies the number of lines on a logical page. It can also
specify the size of the logical page's top and bottom margins and the line
~ where the footing area begins in the page body.

General Format

LINAGE 1S | page-lines | LINES [WITH FOOT!ING AT footing-line |

" [LINES AT TOP top-lines] [LINES AT BOTTOM - bottom-lines |

page-!lnes

is a positive integer or ‘the data name of an elementary unsigned
. numeric integer data item. It specifies the number of lines that can
be written or spaced on the logical page. The data name can be
quahﬁed '

{focting-line :
is & positive integer or the data-name of an elementary unsigned
numeric integer data item. Its value cannot be greater than
page-lines. Footing-line specifies the line number where the footing
_area begins in the page body. The data-name can be qualified.

top-lines
is an integer or the data-name of an elementary unsigned numeric
integer data item. Its value can be zero. Top-lines specifies the num-
ber of lines in the top margin of the logical page. The data-name can
be quahﬁed :

bottom Imes
is an integer or the data-name of an elementary unsigned numeric
integer data item. Its value can be zero. Bottom-lines specifies the
number of lines in the bottom margin of the logical page. The data-
name can be qualified.

General Rules

1. The LINAGE clause specifies the number of lines on a logical page.

2. Logical page size is the sum of the values specified in all phrases except

: FOOTING. If there is no LINES AT TOP or LINES AT BOTTOM phrase, its
default value is zero. If there is no FOOTING phrase, the default value of
footing-line equals the value of page-lines.

4-26 Data Division

o

5.

10.

11.

12.

e (Continued)

. Logical and physical page sizes are not necessarily the same. -

The page body is the logical page area in which the program can wnte or
space lines. Its size equals the value of page-lines.

When the program opens the file by executing an OPEN statement with
the OUTPUT phrase, it uses the values of page-lines, footing-line,
top-lines, and bottom-lines to define the logical page sections. These val- -
ues apply to all logical pages the program writes to the file during its
execution.

The values of page-lines, top-lines, and bottom-lines affect OPEN and
WRITE statement execution:

a. When the program executes an OPEN statement with the OUTPUT
phrase for the file, the values specify the number of lines in each of the -
“associated sections of the first logical page.

b. When the program executes a WRITE statement with the ADVANCING .
PAGE phrase, or when a page overflow condition oécurs, the values -
specify the number of lines in each of the assocmted sectlons of the
next logical page. .

The value of footing-line defines the footing area for the first logical page
when the program executes an OPEN statement with the OUTPUT phrase
for the file. The value defines the footing area for the next logical page
when: (1) the program executes a WRITE statement with the ADVANCING
PAGE phrase or (2) a page overtlow condition occurs.

'The program has a special register called LINAGE-COUNTER for each file
with a LINAGE clause. At any time, the value in LINAGE-COUNTER is
the line number in the current page body at which the device is
positioned. '

There is a separate LINAGE-COUNTER in the program for each File De-
scription entry that has a LINAGE clause.

LINAGE-COUNTER is a nine-digit numeric special register. Procedure Di-
vision statements can refer to LINAGE-COUNTER but cannot change its
value.

If the program has more than one LINAGE-COUNTER, all Procedure Divi-
sion references to it must be qualified by file-name.

Ex'ecution of a WRITE statement for a file with the LINAGE clause
changes the value of the associated LINAGE-COUNTER:

a. If the WRITE statement has the ADVANCING PAGE phrase, its
execution resets LINAGE-COUNTER to one. The resetting implicitly
increments the value of LINAGE-COUNTER to exceed the value of
page-lines.

Data Division 4-27

LINAGE
(Continued)

i

31

b. If the WRITE statement has the ADVANCING LINES phrase, its execu-
tion increments LINAGE-COUNTER by the value in the ADVANCING
phrase.

¢c. If the WRITE statement does not have the ADVANCING phrase, it

« increments LINAGE-COUNTER by one.

13. Execution of an OPEN statement for the file sets its LINAGE-COUNTER to
one. _

14. Each logical page follows the one before with no spacing between them.

Technical Note

The LINAGE clause causes a file to be in print-file format. When a WRITE
statement positions the file to the top of the next logical page, device position-
ing occurs by line spacing rather than page ejection or form feed:

The default VAX/VMS PRINT command inserts a form feed character when a
form is within four lines of the bottom. Therefore, when the default PRINT
command refers to a LINAGE file, unexpected page spacing can result.

The /NOFEED file qualifier of the PRINT command suppresses the insertion of

form feed characters and prints LINAGE files correctly.

For example:
$ PRINT/NOFEED tile-seec

Addmonal References

Section 5.44 WRITE Statement

Example

This example specifies a logical page whose size is 26 lines. The first line to
which the page can be positioned is the fifth line. The end-of-page condition
occurs when a WRITE statement causes the LINAGE-COUNTER value to be in
the range 13 through 16. The page overflow condition occurs when a WRITE
statement would cause the LINAGE-COUNTER value to exceed 16.

FD PRINT-FILE .
VALUE OF ID IS “REPORT1.LIS"
LINAGE IS 16 LINES WITH FOOTING AT 13
« LINES AT TOP 4 LINES AT BOTTOM 6.

4-28 Data Division

3 LINAGE

(C_ontinued)

Thas figure shows the log_ical page areas resulting from the example:

Top
Margin

L -

o a

] g

;]

c

a

] B

0

2 d

a y

] Footing

e Area
Bottom
Mergin

Data Division .4-29

RECORD

(o
-
(M

4.3.7 RECORD Clause

Function

. The RECORD clause specifies: (1) the number of character positions in a
fixed-length record, (2) variable-length record format, and (3} the minimum
and maximum number of character positions in a variable-length record.

General Format

Format 1

)

RECORD CONTAINS [shortest-rec TO | longest-rec CHARACTERS

Format 2

RECORD IS VARYING'IN SIZE [[FROM shortest.rec).[TO longest.rec | CHAHACTERS]

[DEPENDING ON depending-item }

shortest-rec .
is an integer. It specifies the minimum number of character posxtlons
in a variable-length record. ‘ : Ner

Iongest-rec
is an integer greater than shortest-rec. It specifies the maximum
number of character positions in a variable-length record or the size
of fixed-length records.

depending-item N
is the data-name of an elementary un51gned integer data item in the o
Working-Storage or Linkage Section. It specifies the number of char-
acter positions for an output operation, and it contains the number of
character positions after a successful input operation.

Syntax Rules
1. No Record Description entry for the file can specify:
a. Fewer character positions than shortest-rec

b. More chdracter positions than longest-rec

2. In a Sort-Merge Description entry, the first shortest-rec character posi-
tions of the record must contain all keys specified in any SORT or MERGE
statement for the sort-merge file. ‘) C

4-30 Data Division

———— -

14 RECORD
(Continued)

3. For an indexed file, the first shortest-rec character positions of the record
must contain all record keys.

General Rules

Both Formats

1. The absence of a RECORD clause is the same as a Format 1 RECORD
clause with: (1) no shortest-rec phrase and (2) longest-rec equal to the
greatest number of character positions descnbed for any of the file's
records,

2.. The number of character positions described by a Record Description
entry is the sum of:

a. The number of character positions in all elementary items excluding
redefinitions and renamings :

b. Any implicit FILLER due to alignment

It the Record Description entry contains a table definition, the sum in-
cludes the number of character positions in the maximum number of table
elements.

Format 1

3. If there is no shortest-rec phrase, Format 1 specifies fixed-length records.
Longest-rec then specifies the number of character positions in each rec-
ord of the file.

- 4, If there is a shortest-rec phrase, Format 1 specifies variable-length
records, the same as Format 2 without the DEPENDING phrase.

5. For variable-length records:

a, The maximum record size for a READ or RETURN operation is the
number of character positions described in any Record Description
entry for the file,

b. During execution of a RELEASE, REWRITE, or WRITE statement, the
number of character positions in a record equals the number of charac-
ter positions in the Record Descrlptlon entry referred to by the
statement,

¢. If all Record Description entries for the file describe records of the same
- size, RELEASE, REWRITE, and WRITE statements for the file transfer
fixed-length records in variable-length format.

Déta Division 4-31

RECORD
(Contln_ued)

(a2
4|

Format 2

6.
7.

10.

11.

Format 2 specifies variable-length records.

If the clause does not contain shortest-rec, the minimum number of
character positions in any of the file’s records is the smallest number of
character positions described by a Record Description entry for the file.

If the clause does not contain longest-rec, the maximum number of
character positions in any of the file’s records is the largest number of
character positions described by a Record Description entry for the file.

If there is a DEPENDING phrase, the program must set depending-item to
the number of character positions in the record before executing a
RELEASE, REWRITE, or WRITE statement for the file.

After successfully executing a READ or RETURN statement for the file,
depending-item indicates the number of character positions in the ac-
cessed record.

Successful DELETE and START statement executions, and
unsuccessful READ and RETURN statement executlons do not change the

_depending-item value.
12,

During RELEASE, REWRITE, and WRITE statement execution, three rules
determine the number of character positions in the record:

a. If there is a depending-item, its value speclﬁes the number of charac-
ter positions.

b. If there is no’ depending-ltem and the record does not contain a

variable-occurrence data item, the number of character positions de-

scribed by the Record Description entry specifies the number of character

positions.

‘c. If there is no depending-item and the record contains- a variable-

occurrence data item, the number of character positions is the sum of
the character positions in: (1) the fixed part of the record and (2) the

~ table elements specified by the OCCURS clause depending-item when
the output statement executes.

Additional References

" Section 4.4.11 SYNCHRONIZED Clause

Section 4.4.12 USAGE Clause

)

RECORD KEY

4.3.8 RECORD KEY Clause

Function

The RECORD KEY clause specifies the Prime Record Key access path to
indexed file records.

General Format

- RECORD KEY IS rec-key

rec-key
is the data-name of a data item in a Record Description entry for the
file. It can be qualified, but it cannot be a group item that contains a
variable-occurrence data item. The data item must be described as:
(1) alphanumeric or alphabetic category, (2) a group item, (3) un-
signed numeric display, (4) a COMP-3 integer, or (5) a COMP integer
with no more than nine digits.

Syntax Rule

The RECORD .KEY clause can be in the file’'s SELECT clause. However, it
cannot be in both the SELECT clause and the File Descnptlon entry for the
same fiie.

General Rules

1.
2.

The RECORD KEY ciause‘ specifies the Prime Record Key for a file.

The values of the Prime Record Key cannot be duphcated in the file’ s
records.

The data description of rec-key, and its relative location in the record,
must be the same as those used when the file was created.

Only one Record Description entry for the file must describe rec-key. The

Prime Record Key has the same character positions in every record of the
file. :

Data Division 4-33

TS TR

P Ty ST

p——

VALUE OF ID 77 o P

4.3.9 VALUE OF ID Clause

Function ' '
The VALUE OF ID clause specifies, replaces, or completes a file specification.

. Qeneral Format

VALUE OF ID IS fllg-spec

file-spec '
is a nonnumeric literal or the data-name of an alphanumeric ~~
Working-Storage Section data item. It contains the full or partiai file b

specification. File-spec can be qualified. -
* Technical Notes |
1. File-spec is a complete or partial file specification in RMS format.
2. Each file specification field in file-spec augments the specification in the j
SELECT clause ASSIGN phrase. ' ,-")
. . i
3. A file specification field in file-spec overrides the corresponding field in
the SELECT clause. If a file specification field is in either the SELECT
clause or file-spec, but not both, it becomes part of the file speciﬁ.cation.
4. If the program opens a file in the input, I-0, or extend mode, RMS uses
file-spec to locate the existing file. '
5. If the program opens a file in the output mode, or the file does not exist, .
RMS uses file-spec to name the new file. O

Addltional References

VAX-11 COBOL User’s Guide Input-Output Handling

G 4;34 Data Division

38

Orciones de la

FROCEDURE DIVISTON:

Vit

ad

19

- e

5.13 CALL Statement

Function

\

The CALL statement transfers control to another program in the executable .

image. -

General Format

CALL prog-name

| {1 BY REFERENCE |
USING BY VALUE “{arg |
BY DESCRIPTOR

BY REFERENCE:
BY VALUE . farg) ..
8Y DESCRIPTOR

{ GIVING function-res)

: { ExcepTiON
ON

" stment [END-CALL]
OVERFLOW .

prog-name _
is a nonnumeric literal or the identifier of an alphanumeric data item.
It is the name of the program to which control transfers.

arg .
is the argument. It identifies the data that is available to both the
calling and called programs. It is the data-name of a level-01 or
elementary data item described in the Data Division. Arg can
be qualified when it refers to a File Section data item. If the
argument-passing mechanism is BY VALUE, arg can also be: (1) a
signed integer numeric literal in the range -2%%31 to +2%*31-1,

* (2) an unsigned integer numeric literal in the range 0 to 2*%31-1,
{3) a COMP-1 data item, or (4) a word or longword COMP.

function-res ’
is the identifier of an elementary integer numeric data item
with COMP, COMP-1, or COMP-2 usage and no scaling positions.
Function-res can be subscripted, and it can be qualified. When con-
trol returns to the calling program, function-res can contain a func-
tion result. '

stment

is an imperative statement.-

Procedure Division 5-47

CALL

CALL

{Continued)

548

. 8yntax Rules
"L

10

Prog-name rnust be from one to 30 chmactem-loné. It can contain the

- characters A-Z, a-z, 0-9, $ (dollar sign), - (hyphen), and (underline).

Prog-name is the entry-point in the called program. For COBOL pro-
grams, prog-name is the program-name in the PROGRAM-ID paragraph E

The same arg can appear more than once in the USING phrase
The maximum number of arguments is 255

If there is no initial argument-passing mechanism (REFERENCE, VALUE,

or DESCRIP’TOR) 'BY REFERENCE is the default.

An argument-passing mechanism applies to-every arg foIlowmg it until a

- new mechanism (if any) appears.

. The CALL statement has a USING phrase only if there is a USING phrase

in the Procedure Division header of the called program. Both USING
phrases must have the same number of arguments ‘

_ General Rufes

1.

Procedure Division | -.

The program whose name is specified by prog-name is the called pro-
gram,. The program containing the CALL statement is the calling program.

When the CALL statement executes the contents of prog-name are inter-
preted as follows:

a. Hyphens are treated as underline characters.
b. Lowercase. letters are treated as upper case.

. ¢. Leading and trailing spaces and tab characters are ignored.

The CALL statement transfers control to the called program.

If prog-name is an identifier, the CALL statement can transfer control
only to VAX-11 COBOL programs.

If prog-name (in an identifier) is not in the executable image-and there is

an ON EXCEPTION phrase, control does not transfer; stment executes.

If prog-name (in an identifier) is not in the executable image and there is

'no ON EXCEPTION phrase, an error condltlon exists; the program terml-.

nates abnormally.

If the called program does not have the initial attribute, it is in its initial .
state: (1) the first time it is called in an image, and (2) ‘the t"rst time it is
called after a CANCEL to the called program.

On sll other entrles, the state of the called program is the same as when it
was last exited. The program state includes internal data.

i M s S m mmeaiams e e bee

10.

11,
. to'the called program when the CALL executes:

.13,

T CALL
41 (Continued)

If the called program has the lmtlal attrlbute it ns in its initial state every -

‘time it is called.

. Files associated with a called program s ﬁle connectors are not inthe open :
- .mode: -

- a. The ﬁrst time the program is called

‘b. The first time the programis called after execution of a CANCEL -

statement referrlng to the program °

c. Every time the program is called' if 1t has the inltial -attribute

On all other entrles the status and positioning of files in a called program :
are the same as when the program was Iast exlted ‘

The arguments’ order of appearance in the USING phrases of the CALL
statement and the called program’s Procedure Division header determines .
correspondence between the data-names used by the calling and: called

programs. Data-names correspond by’ posmon m the USING phrase—not
by name. :

No correspondence exists for index-names. Therefore, index- names in
calhng and called programs always reter to separate mdexes

’I'he arguments in the CALL statement USING phxase are made avallable

. Called programs can contain CALL statements However a called pro-

gram must not execute a CALL statement that dn'ectly or mdlrectly calls‘
the calling program. co e

The CALL statement can make data avallable to the called program by.
three argument-passing mechanisms:

a8. REFERENCE - The address of (pointer'to) erg is passed to the called.
program. This is the default mechanism: arguments are passed by
REFERENCE if there is no explicit mechanism in the CALL statement'

b. VALUE - The value of arg is passed to the called program. If arg is a
data-name, its description in the Data Dmsmn can be

. COMP usage with no scalmg posxtlons The pxcture can spemfy no
" more than nine digits, :
¢ COMP-1 usage |

.oy

¢. 'DESCRIPTOR - The address of (pomter to) the data 1tem s descnptor is

passed to the called program. "

‘s, Procedure Divisién , " §-49 -~ ' i

CALL

- (Continued)

42

.7 14, If the called program is.a COBOL program, the- CALL statement can paéé

Additional Reference§

Examples

1.

at'*guments only BY REFERENCE. Otherwise, the mechanism for each ar-
. gument.in the CALL statement USING phrase must be the same as the
a mechamsm for'each argument in the non-COBOL. called program s argu-

ment list.’

. Chapter 5 Procedure Division Header.

VAX-11 Architecture Handb'ook .

Passing arguments by reference.

CALL “DATERTN" USING ITEMA ITEMB ITEMC.

Mixing argument-passing mechanisms. Reference arguments are ITEMA -

and ITEMD. Descriptor arguments are ITEMB, ITEMC, ITEMD, and
ITEMF. The value argument is ITEME ITEMD is passed tw1ce by refer-
ence and by descrlptor '

‘CALL “NEWPROG" USING ITEMA

BY DESCRIPTOR ITEMB ITEMC
REFERENCE 1TEMD ,
VALUE ITEME I DU
DESCRIPTOR ITEMD ITEMF, o

Calimg a program whose name is selected at run tlme

HOQE “PRGGOOS' TO PROG-TO-CALL.
LI]

CALL PROG:TO-CALL USING ITEMA.
Receiving a function result.

CALL "PROGO10O" USING ITEMA ITEMB
GIVING 1TEMC. :

- 550" Procedure Division -

e

o . 'CONTINUE .
43 |

5.17 CONTINUE Statement

Function

" The 'CONTI_NUE statement indicates that no executable statement is present. .
It causes an implicit control transfer to the next executable statement.

General Format -

'"CONTINUE

Syntax Rule

- The CONTINUE statement can be used wherever a condxtlonal or xmperatwe h
. statement can be used. :

.‘ Generaf Rule '

" The CONTINUE statement causes an implicit control transfer to the next
executable statement. : ' :

Example

* This example shows how CONTINUE can replace an INVALID KEY imperative
statement. Control passes to the MOVE statement whether or not the
. INVALID KEY condmon occurs.,

. READ FILE-A
" - INVALID KEY
CONTINUE.

MOVE ...

Procedure Division . 5-59°

DELETE

44

5 18 - DELETE Statement

Funcﬂon

.~ 560, - Procedure Division Lo e

" The DELETE statement logically removes a.record from a mass storage file.

.- General Format

DELETE file-name: RECORD [INVALID KEY stment [END-DELETE]] ‘

ﬂle-name

stment

is the name of a file described in the Data Division, It cannot be the
name of a sequentlal file or a sort or merge file,

is an imperative statement.

' Syntax Rules

" *1, There cannot be an INVALID KEY phrase for a. DELE’I‘E statement that -

references a file in sequential access mode. -

There must be an INVALID KEY phrase if: (1) the file is not in sequenttai
access mode and (2) there i$ no apphcable USE AI-‘TER EXCEPTION
y procedure ' L

_General Rules
. 1,
2.

The file must be open in I-O mode when the DELETE statement executes. .

For a sequential access file, a successfully executed READ statement must
be the last input-output statement executed for the file before the
DELETE statement. RMS logxcally removes the record the READ state-
ment accessed.

For a relative file in random or dynamic access mode, RMS logically
removes the record identified by the file's RELATIVE KEY data item. If
the file does not contain that record, an invalid key condition exists.

For an indexed file in random or dynamic access ‘mode, RMS iog:cally
removes the record identified by the file's Prime Record Key data item. If
the file does not contain that record, gn invalid key condition exists.

After successful DELETE statement execution, the identified record has
been logically removed from the file. It is no longer accessible.

DELETE statement execution does not affect the contents of the record
_area. It also does not affect the contents of the data item referred to m the
DEPENDING ON phrase of the file's RECORD clause

e Bpa

| DELETE -
45 0 (Continued)

7. For sequentlal access files, DELETE statement execution does not affect
the Next Record Pointer.

8.. For dynamxc access files, the Next Record Pointer can point to the deleted

record before the DELETE. After-the DELETE: statement €xecutes, the .

Next Record Pointer:

a. Pomts to a relatwe file’s next existing record

b.. Pomts to an indexed file’s next ex:stmg record as estabhahed by the :
_ Key of Reference :

c. Indicates the at end condition if the file has no next recor'd

9. DELETE statement execution updates the value of the FILE STATDS data
item for the file.

If there is an applicable USE AFTER EXCEPTION procedure it executes
whenever an input or output condition occurs that would result in a non:
zero value in a FILE STATUS data item. However, it does not execute if.
the condition is invalid key, and there is an INVALID KEY phrase.

Technical Notes

1. DELETE statement execution can result in the followmg FILE STATLIS
data item values:

FILE Access ‘Meaning
STATUS Method
00) All Successful .
23 Rand Record not in file (invalid key)
92 All Record locked by another program
93 Seq No previous READ or START
94 All File not open, or incompatible open mode
30 Al All other permanent errors

Additional References

. Section 5.3 Scope of Statements

Section 529 OPEN Statement o S
Section 5.8.10 Invalid Key Condition :
Section 5.8.9 [-O Status o

Procedure Division 5-61

DISPLAY

A0

519 DISPLAY Statement

Function

The DISPLAY statement transfers low-volume data from the program to the
default system output device or the object of a- mnemonic-name.

Gene;ml Format
DISPLAY _{ src-item | ... [UPON output-dest |

{ WITH NO ADVANCING |

grc-item ‘ ' : -
is a literal or the identifier of a data item, If the literal is a ﬁguratwe)
constant, it cannot be “ALL literal.”

output-dest : : -
is a mnemonic-name defined in the SP::.CIAL NAMES paragraph of
the Environment Division. ‘

'Synlax Rule ;
In a DISPLAY statement, the number of src-item entries cannot exceed 254.

Gmrql Rules

1. The DISPLAY statement transfers data from each src-item (in its order of

2.
3.

.4.

appearance in the statement) to output-dest.
No editing or conversion occurs during DISPLAY execution.
If src-item is a figurative constant, only one occurrence is displayed.

When there is more than one src-item, sending item size is the sum of the
src-item sizes. The DISPLAY statement does not transfer any device-
Ppositioning information between consecutive src-item values. -

If there is no UPON phrase, the DISPLAY statement transfers data to the
default system output device. If there is a WITH NO ADVANCING phrase,
the DISPLAY statement does not transfer any device poa:tlonmg informa-
tion after the last src-item value.

If there is no WITH NO ADVANCING phrase, the DISPLAY statement
transfers device positioning information. It resets the output- dest pOSlthﬂ
to the leftmost posmon on its next Ime :

5-62 Proceduré Division -)

1.

T ~ DISPLAY
R (Continued)

" Technical Notes

The DISPLAY statement transfers data through VAX-11 RMS using the '
Variable with Fixed-Length Control (VFC) format.

The default system output device for COBOL programs is- the VAX/VMS
logical name COBSOUTPUT. Therefore, a DISPLAY statement without
the UPON phrase transfers data to the object of the logical name
COBSOUTPUT.

When there is an UPON phrase, DISPLAY transfers-data to the object of
the VAX/VMS logical name associated with the SPECIAL-NAMES para-
graph description of output-dest.

The object of a logical name is not necessarily a device. Therefore, there is
no implication of open mode. As a result, output-dest can be associated
with any device-name in the SPECIAL-NAMES paragraph. For example,
output-dest can refer to PAPER-TAPE-READER as well as

" PAPER-TAPE-PUNCH.

Additional References .

Section 3.1.3 SPECIAL-NAMES Paragraph

Examples

In the example results, the character *‘s” represents a space. The examples -
assume the following Environment and Data Division entries:

SPECIAL-NAMES,

DISPLAY ITEMD SPACE ITEMA "AREs" ITEMB.

DISPLAY ITEME. .

LINE-PRINTER IS ERR-REPORTER.

ITEMA PIC X{(B) VALUE "ITEMS".
ITEMB PIC X(8) VALUE *UALID"“.
"ITEMC. PIC X(S) UALUE *TODAY",
ITEMD PIC 99 VALUE 2.

ITEME PIC X(10) VALUE "“MONDAY".

DISPLAY ITEHC. ' ~ TooaY
DISPLAY ITEMD UPON ERR-REPORTER. 02
DISPLAY ITEMD ITEMA "ARE" ITEMB. 02ITEMSSAREVALIDsSS

025 ITEMSsAREsVALIDsss

DISPLAY ITEMC "sISs" ND ADVANCING.
DISPLAY ITEME.

TODAYsISsMONDAYssss
MONDAYsSSS

L :.,'Pt‘t).—éedure -Di\i'i'slio'p : 5;5_3 o

EXIT

5.21 EXIT Statement

5, 5-68

Function

The EXIT statement provides a common logical end point for a series of
- procedures. It also marks the logical end of a called program

General Format

EXIT [PROGRAM |

" Syntax Rules

1. The EXIT sta_itement without the PROGRAM phrase must be the oh]y_
statement in the sentence. It must also be the only sentence in the
paragraph.

2. If EXIT PROGRAM is in a consecutive sequence of imperative statements
in a sentence, it must be the last statement in the sentence.

‘General Rules N

1. EXIT without the PROGRAM phrase associates a procedure-name with a
point in the program. It has no other effect on program compilation or
execution.

2. If EXIT PROGRAM executes in a program that is not a calfed program, it
has the same effect as a STOP RUN statement; image execution ends.

3. If EXIT PROGRAM executes in a called program without the INITIAL
clause in its PROGRAM-ID paragraph, execution continues with the next .
executable statement after the CALL statement in the calling program.

The state of the calling program does not change. It is the same as when
the program executed the CALL statement. However, the contents of data
. items shared by the calling and called programs may have been changed.

The state, of the called program does not change. However, the called
program is considered to have reached the ends of the ranges of all
PERFORM statements it executed.

4. When EXIT PROGRAM executes in a called program with the initial at-
tribute, the actions described in General Rule 3 also apply. In addition,
executing the EXIT PROGRAM statement is equivalent to also executing a
CANCEL statement that. names the called program. :

Procedure Division . : B Ty

[} . N .
3 ; . o : . EXIT
; ﬁ.:) 1' _ C : (Continued)
Examples
. 1. prOC-a,
. ' : EXIT,
2. TEST-RETURN,
IF ITEMA NOT = ITEMB
MOVE ITEMA TO ITEMB
‘ EXIT PROCRAM.

" 4

t\‘j)

SN

‘ [}

v :‘J"

L}
3;
3y
i
=\ k

Procgdpre Div._is.ion‘ 5-69 T . .

R

L

5.24

" INITIALIZE

INITIALIZE Statement

Function

The INITIALIZE statement sets selected types of data fields to predetermmed
values : ‘ .

General Format

" INTIALIZE { fid-name}..

ALPHABETIC
ALPHANUMERIC _
REPLACING 4 NUMERIC . g DATA BY val -
. ALPHANUMERIC-EDITED ’
NUMERIC-EDITED

fid-name i '
is the identifier of the receiving area data item.

val
is the sending area. It can be a literal or the identifier of a data item.

. Syntax Rules
1. The phrase after the word REPLACING is the category phrase.
2. The category of the data item referred to by val must be consistent with
- that in the category phrase. The combination of categories must allow
execution of a valid MOVE statement.
3. Ifafid-name is an elementary item, its category must be the same as that
in the category phrase.
4. The description of fld-name or any item subordinate to it cannot contain .
the OCCURS clause DEPENDING phrase. '
" 5. Neither fld-name nor val can be index data items.

General Rules

1.

Fld-name can be an elementary or group item. However, all data move-

- ment operations occur as if they resulted from a series of MOVE state-
" ments with elementary item receiving areas: : :

- a. If the receiving area is a group item, INITIALIZE affects only those

subordinate elementary items whose category matches the category
phrase General Rule 5 describes the effect on elementary 1tems when
there is no REPLACING phrase. ' :

Pmeedu;e' Divis_;iqnw ‘57'-75

INITIALIZE |
(Continued) | 51

5-76

a
N oo w

b. INITIALIZE affects all eligible elementary 1tems, mcludmg all occur-

‘rences of table items in the group.

2. INITIALIZE does not affect mdex data items and FILLER data 1tems
INITIALIZE does not affect items subordinate to fid- name that contam a

REDEFINES clause. Nor does it affect data items subordinate to those

“items. However, fild-name itself can have a REDEFINES clause or be sub-
ordinate to a data item that does. :

4. When there is a REPLACING phrase, val is the sendmg field for each of the

implicit MOVE statements.

- 5.. When there is no REPLACING phrase, the sending field for the 1mphc1t
MOVE statements is:

a. SPACES, if the data item category is alphabetic, alphanumenc or

alphanumeric edited

b. ZEROS, if the data item category is numeric or numeric edlted

6. INITIALIZE operates on each fld-name in the order it appears in the state-"

ment. When fld-name is a group item, INITIALIZE operates on its eligible
subordinate elementary items in the order they are defined in the group.
Additional References
Section 5.27 -~ MOVE Statement
Examples

In the examples' results, “-" means that the value of the data item is un-
changed; ‘s’ represents the character space. The examples assume this data

descrlptlon
01 ITEMA.
03 ITEMB PIC X(4),
03 ITEMC.
: 05 ITEMD PIC 8{S).
05 ITEME PIC $%$%9,99,
05 ITEMF PIC XX/XM.
03 ITEMG.
05 ITEMH PIC 999.
05 ITEMI PIC XX.
0% ITEM. PIC §9.8.
03 ITEMK PIC X(4) JUSTIFIED RIGHT,
1. INITIALIZ2E ITEMA.
2. INITIALIZE ITEMB ITEMG,

» INITIALIZE ITEMA REPLACING ALPHANUMERIC BY “ABCDE",
INIT.IALIZE iTEl"IG REPLACING NUMERIC BY S,

INITIALIZE ITEHA. REPI;RCING NUMERIC-ECITED BY 1B.

. INITIALIZE ITEMA REPLACING ALPHRNUHERIC-ED“ITEOI BY "GBC[?"-
IQNITIALIZE ITEMA REPLACING ALPHANUMERIC gy "8a",

Procedure Division

Y

.

I - - S SR

. ITEMB

8838

3388

ABCD -

9935

ITEME

8s$0.00

ot
oo

{TEMF

$8/38

* INITIALIZE
(pongin ued)

ATEMH ITEMI ITEMJ. ITEMK.

000 'ss 000 ssss
000 - ss ' 000 - A .
- A8 - BCDE

. s) o
- - 16.0 -

“ 99 - 8599

Procedure Division - 5-77 g

MERGE "

5. 26 MERGE Statement

c o Function

. The MERGE statement combines two or more identically 'seqae'ﬁcéd filesona
set of key values. During the process, it makes records avmlable, in merged
order, to an output procedure or an output file.

General Format

: DESCENDING ‘
MERGE mergafite {ON KEY | margekey | ...} ...)
. L ASCENDING o
“{ COLLATING SEQUENCE IS alpha | 1 p
USING {infile) [(infile | .. . L - ' ~
' . THRU
QUTPUT PROCEDURE IS first-proc[‘ _en_d-proc]:
THROUGH '
-GIVING | outfile | ... :
e
mergefile ‘ o &
is a file-name described in a Sort Merge File Descnption (SD) entry b =
in the Data Division.
mergekey
is the data-name of a data itemin a record assoc1ated with mergefile.
alpha S S
is an alphabet-name defined in the SPECIAL—NAMES paragraph of o '\
the Environment Division.
infile '
- is the file-name of the input file. It must be descnbed in a Flle _
Descnptwn (FD) entry in the Data Dmsnon : ‘
first-proc
"is the section- name of the output procedure’s first sectlon
end-proc
- ' is the section-name of the output procedure’s last section. -
" outfile } '
is the file-name of the output file. It must be described in a File s
Description (FD) entry in the Data Division. \

5-86 Procedure Division

- e
—

54 . MERGE
- o4 : (Continued) '

. Syntax Rules

1.

MERGE statements can be anywh_efe in the Procedure Division ezgceﬁt in: .

a, Declarativea

‘b. A SORT or MERGE statement input or output procedure

If mergefile contains variable-length records, .infile records must not be

- smaller than the smallest in mergefile nor larger than the largest.

If mergefile contains fixed-length records, infile records must not be larger ‘_
than the largest record described for mergefile.

If outtile contains variable-length records, mergefile records must not be
smaller than the smallest in outfile nor larger than the largest

If outfile contains fixed-length records, mergefile records must not be

larger than the largest record described for outfile.

: Each_mergekey must be described in records associated with mer_geflie. |
. Mergekey can be qualified. '

‘Mergekey cannot be a group that contains variable-occurrence data

- items,

The descnptwn of mergekey cannot contam an OCCURS cIause or be

.. subordinate to one that does,

10.
"need not be described in more than one of the record descriptions. The:

11.
T2

Mergef_ile can have more than one record description. However, mergekey

character positions referenced by mergekey are used as the key for-all the:
file’s records.

The words THRU and THROUGH are equiva_lent.
If outfile is an indexed file, the first mergekey must be in the ASCENDING

“phrase. It must specify the same character positions in its record as the
- Prime Record Key for outfile. :

General Rules

1.
‘2.

The MERGE statement merges &ll records in the infile files.

If mergefile contains fixed-length records, any shorter infile records are

"space-filled on the right after the last chatacter. Space-filling occurs be-'

fore the infile record is released to mergefile.

_'I‘he leftmost mergekey is the major key, and the next mergekey is the
‘ next most significant key. The significance of mergekey data items is not -

affected by how they are divided into KEY phrases. Only left to-right
order determines mgmﬁcance .

- Procedure Division ; 5_37‘ L

MERGE
(Cominued)

"

4.

4

o
.

The ASCENDING' phrase causes the merged sequence ‘to be from the low |

&at mergekey value to the hlghest

L

The DESCENDING phrase causes’ the merged sequence to be from the. e
.hrghest mergekey value to the lowest '

6. .Merge sequence follows the rules for relatron eondmon compansons

10,

7. ‘When the contents of all key data rtems of one record equal the contents of .
.- the corresponding key data 1tems in- another record the order of return
 from. the merge: - S . l

e

a. Follows the order of the assocrated 1nput ﬁles in the MERGE statement

»b Causes all records with equal’ key values from one input’ ﬁle to-be

. returned before any are returned frorn another "

r' D

‘The MERGE statement determines the companson collatmg sequence for

nonnumeric mergekey items when it begins - execution,.If there is a
COLLATING SEQUENCE phrase in the. MERGE statement MERGE uses
that sequence. Otherwise, it uses the program collatmg sequence N

The results of the merge are undefined unless the records in-the lnflle files.
are ordered as described in the’ MERGE statement s ASCENDING or

DESCENDING KEY clause. . . . R

The MERGE statement transfers all records in mﬂle to mergeflle When_ .

. the MERGE statement executes, infile rnust not be: open.
. ‘11, 'For each infile, the MERGE statement '

‘a. Begins file processmg as if the program had executed an: OPEN state-

ment with the INPUT phrase

b Gets the logical records and releases them to the merge operat:on

MERGE obtains each record as’if the program had executed a READ'

statement with the NEXT and AT END phrases. .

¢. Terminates file processing as if the program had executed a, CLOSE

statement with no optional phrases,

These implicit OPEN, READ, and CLOSE operat;ons can cause. assoc:ated

USE procedures to execute. : " .

. The output procedure consists of one or more s_e',ctionst'-that:_

».Are contiguous in the source program

e Do not form a part of any other pmcedure

5-88 __A.lProcedure Division - . - . 7 ;.;.!

. s,

VAR

i

- | . MERGE . /.
. . :(Continue‘_d):- - L

13 When'the MERGE statement enters the output procedure, it is ready to
- select the next record in merged order. The output procedure must exe-
. cute at least. one RETURN statement to make records avaxlable for’
processmg :

The program ‘must not pass control to the output procedure except, dunng
. execution of a related MERGE statement. '

' 15 The output procedure cannot contain SORT or MERGE statements It
must not explicitly transfer control outside the output procedure. How-
ever, statements can cause implied control transfers’to Declaratives '

16 The remainder of the Procedure Dmslon ‘must not transfer control to”
“points in the output procedure.

= 17 If the MERGE statement- isina fzxed segment the output procedure must -
. ‘be e:ther :

a. Completely in fixed segments

b. Completely contamed in one mdependent segment

‘ 18. If the MERGE statement is in an mdependent segment the output proce-. - -
dure must be either:

a Completely in fixed segments

b Completely contained in the same mdependent segment as the MERGE
" gtatement itself . .

19. If there is an output procedure, control passes to 1t dunng execution of the
. MERGE statement. When control passes the last statement in'the output
procedure’s last section, the MERGE statement ends. Control transfers to
the next executable statement after the MERGE statement

20. During executron of the output procedures, or USE AF‘TER 'EXCEPTION -
. procedure implicitly invoked during the MERGE statement, no statement . -
.can mampulate the files or record areas assocrated with infile or outfile.

ik ol B AP g =Py et T L Y e £
- X . . o

21. If there is'a GIVING phrase, the MERGE statement writes all merged
" records to each outfile: This transfer is an implied :MERGE.statement:
‘output procedure When the MERGE statement executes outfﬂe must not
- be open. ' :

Bt~

22.:The MERGE statement begme outfile processing as 1f the program had':{-‘
. executed an OPEN statement with the QUTPUT phrase

2_3 The MERGE statement gets the merged logical records and wrltes them to o
' -each outfile. MERGE writes each record as if the program had executed a -
WRITE statement with no optxonal phrases

A Procedure Dmsnon 4589 .7

A P Lo, E i I'
B - . - AR PR
L e . . [N

MERGE L o DR
(Continued) . * . 57 et

" For relative files, the value of the relative key data itein is 1 for the first * -
“ returned record, 2.for the second, and so on. When the: MERGE statement o
- ends, the value of the Relative Key data item’ mdxcates the. number of
'outﬂie records. : ; :

_ . 24. The MERGE statement terminates outfile processing as lf the program had' '
| I . executed a CLOSE statement wlth no. opmonal phrases

25. These unphctt OPEN; WRITE and CLOSE operations can cause assoc1ated
" . USE procedures to execute, If the MERGE statement. tr:es to write beyond
. the boundaries of outfile, the apphcable USE AFTER EXCEPTION proce- * .
b R dure executes. If control returns from the USE procedure, or if there is . -
o ' C none, outfile processing terminates as if. the program had executed a - -
_.CLOSE statement with-no optional phrases. — Ve o~

. 26 If outfile contains fixed-length records ‘any shorter mergeflle records are '_ :
| space-filled on the right after the last character. Space-ﬁllmg occurs be- -
fore the mergeftle record is released to outfile .

_ . A_ Additional Referencea , _—
Tl Section 3.1.2 . | OBJECT—COMPUTER Paragraph- -~ ."; o,

. 7 Section 3.3 - SPECIAL-NAMES Paragraph U ¢
: I _ Section 3.4 I-O-CONTROL Paragraph . S

. VAX—II COBOL Users Gutde Sortmg and Mergmg D

- 5-90 : :?rogcdcre_ Division .

. N L2

Y
Qo

:) S »-'-f‘; . oeen
- 5. 29 OPEN Statement |

‘ Fum:tlon

The OPEN statement begins the processmg of a file and makes 1t avallable to
_the program. . _ .

.~ H

" Generat Format'_

- fﬂg'omens_"' T Y 4ol
| N ') | | READERS]} - :
™ R %“-E%UT} file-name [WITH NO REWIND | | ALLOWING 4 WRITERS |5 | % | (- @
) g (= . _ ' T UPDATERS|) | |- (| £

- L B

. -/

OPEN : r o h -

T i NO OTHERS
\, o 1 ReADERS () |
al ; E’é—mﬂ} file-name | ALLOWING 1 WRITERS (

- UPDATERS)|
o . B R
hle name -

™~ is the name of a file described in the Data Dw:szon It cannot be the
) name of a sort or merge file.

Syntax Rules

1. The NO REWIND phrase can be used only for sequentlal files.

2. The I-O phrase can be used only for mass storage files.
3. The EXTEND phrase can be used only for sequentlal access mode ﬁles |
_General Rules

1. Successful OPEN statement execution:

a. Makes the file available to the program

$
-

b, Puts the file in an open mode

* 8 0 .
-

c. Associates the file with the file-name 'tlm_rofigH the file coniiector

- . ' v P g -
N . e RS ;
Lot

"OPEN

(Continued) .

, al PhySicalIy present
b, Recogmzed by RMS

" Table 5-6 shows the result of opemng avallable and unavallable files.

. 59.

. A file is available if it is both: -

1o

Table 5-6: Opening Available and Unavailable Files

(Optional File)

Open Mode . File Is Available. File Is Unavailable -
* INPUT Normal open Errot
INPUT ‘ Normal open .- - Normal open.

The first read causes the at

- end condition or invalid key

condition

“I-0

. (RANDOM or

DYNAMIC access) -

I—O .
" (SEQUENTIAL access)

Normal open .

Normal open

The open creates'tl_}e file.

Error

‘OUTPUT

Creates a new version
of the file.

The open creates the file

‘EXTEND

Normal open

~ The open creates the file.

. 3. Successful OPEN statement executlon makes the file’s record area avail-

5-100

able to the program.

When a file is not in an open mode, no statement that references the file '

either implicitly or exphc1tly can execute, except for:

a. A MERGE statement with the GIVING phrase
b An OPEN statement

c: A SORT statement with the USING or GIVING phrase

An OPEN statement for a file must successfully execute before any allow-
able input-output statement executes-for the file. Table 5-7.shows allow-
able input-output statements by file orgamzatxon access mode, and open -

mode,

- "Procedure Division

rnaga

OPEN

. <
bl (Continued)
‘Table 5-_7': -Allowable Input-Output Statex;;ents"
L Mode
File Access - Open : e
" QOrganization Mode - Statement INPUT OUTPUT -0 EXTEND |
'SEQUENTIAL | SEQUENTIAL | READ Yes { No | Yes| No
' REWRITE No No | Yes| :No
WRITE No Yes No Yes
RELATIVE | SEQUENTIAL | DELETE No | .No | Yes No .-
o ; READ Yes | = No Yes No
REWRITE No . Neo Yes No'
START Yes No Yes | No
_ WRITE No . Yes No ~No
RANDOM DELETE No No | Yes| ~No
READ Yes .| No Yes No
REWRITE No “No Yes No
WRITE No - Yes Yes :No
DYNAMIC | DELETE No | No | Yes| 'No
' READ Yes No Yes No
REWRITE No .| - No Yes| No-
START - Yes . No - | Yes No
WRITE No | Yes | Yes No.
INDEXED SEQUENTIAL | DELETE No.| No | Yes No
‘ READ Yes Neo Yes No -
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes | No No
RANDOM DELETE No No Yes No
: READ Yes No Yes No
' REWRITE No No Yes No
WRITE No Yes Yes No
DYNAMIC DELETE No No Yes No
READ Yes No Yes| ~ No
REWRITE No No Yes No
START Yes No Yes No
WRITE No Yes Yes No

‘An executable image can open a file more than once with the‘lINPUT.

QUTPUT, I-0, and EXTEND phrases. After the first OPEN statement,
each later OPEN for the same file must follow the execution of a CLOSE
"statement for the file. The CLOSE statement -must not have a REEL,
UNIT, or LOCK phrase :

Procedure Division

5-101

e ——a

OPEN

(Continued}

" 5-102

10.

11.

12.

13.

b1

. The OPEN statement does not get or release the first data record

. For an OPEN statement with" the INPU'I‘ I-0,-or EXTEND phrases, the
file's File Description entry must be equwaient to that used when the ﬁle

was created

The NO REWIND phrase applies only to sequentlal smgle reeUumt files. It ‘

has no effect if the concept of rewmdmg does not apply to the file’s storage
medium.

If the file's storage medium allows réwinding, and:

a. There is neither an EXTEND nor NO -REWIND phrase then OPEN
' statement execution posntlons the ﬁle at its beginning.

b. There is a NO REWIND phrase, then the OPEN statement does not
reposition the file. The file must already be positioned at its beginning
before the OPEN statement executes.

If the file bopened with the INPUT phrase is an optional file that is not
present, the OPEN statement sets the Next Record Pointer to md:cate this
condition. .

For indexed files opened with the IN PUT or 1-0 phrése, the OPEN state-

ment sets the Next Record Pointer to the first record existing in the file

when it is opened. The Prime Record Key is established as the Key of
Reference. It determines the first record to be accessed. If the file has no
records, the OPEN statement sets the Next Record Pointer to cause an at
end condition on the next sequential READ statement for the file.

An OPEN statement with the EXTEND phrase positions the file immedi-
ately after its last logical record. The definition of last Ioglcal record

 differs by file orgamzatlon .

14,
A operatlons

15.

a. For sequential files it is the last record written in the file.

b. For relative files, it is the currently existing record with the highest
relative record number.

c. For indexed files, it is the currently ex:stlng record with the highest .

Prime Record Key value.

The I-O phrase opens a mass storage file for both input and output

Successful execution of an OPEN statement with the EXTEND or I-0
phrase creates the file if it is not available. Successful execution of an
OPEN statement with the QUTPUT phrase creates the file, In. each case,
the created file contains no data records.

 Procedure Division =~ - - o

e

16.

17.

-18.
19,
. The ALL phrase specifies unlimited file sharing.
21.
22.
23.

24,

1.

. 62 ; - OPEN
' (Contlnued)
Successful executxon of an OPE\I statement sets the Current Volume
Pointer to: _
a. The first or only‘reel/unit for an available input or input-output file
b. The reel/unit containing the last logical record for an extend file

c. The new reel/unit for an unavailable output mput output or extend
file

If there is more than one file-name in the OPEN statement, execution

is the same as if there were separate OPEN statements, one for each:

file-name.)
The ALLOWING phrase specifies a file-sharing option for the file,
The NO OTHERS phrase specifies exclusive file access. |

The READERS phrase allows access only by READ statement.
The WRITERS phrase allows access only by WRITE statement

The UPDATERS phrase allows access only by READ, DELETE and -

REWRITE statements,
If there is no ALLOWING phrase:

a. The default for files in the input mode is ALLOWING READERS.

" b. The default for files in other than the input mode is 'ALLOWING NO

OTHERS.

- Technical Note

OPEN statement execution can result-in these FILE STATUS data item

values:
 FILE
STATUS " Meaning
60 Successful
05 Optional file not present
91 File is locked by another program
M File is already open, or closed with lock
95 No file space on device
97 File not found

30 All other permanent errors

Additlonai He_ferences

Section 5.15 CLOSE Statement

 Procedire Division.” 5-103 "

READ

S | 63
'5.31 READ Statement.

o Function

For sequential access files, the READ ‘_staternent makes the next logical record
avatlable. For random access files, READ makes a specified record available.

General Format

Format 1 _ |
READ fie-name. [NEXT] RECORD [INTO destitem] -
[AT END stment { END-READ 1]

Format 2 - ,
READ file-name RECORD [INTQ dest-item }
| KEY IS key-name] '

[INVALID KEY stment [END-READ }]

file-name : :
is the name of a file described M the Data Division. It cannot be a
sort or merge file. -

_dest-ltem
is the identifier of a data item that contams the record accessed by
the READ statement.

stment
is an imperative statement executed for an at end or invalid key
condition.

key-name | :
is the data-name of a data item specified as a Record Key for
file-name. It can be qualified. :

* . Syntax Rules

1. Format 1 must be used for a sequential access mode file.

2, There must be 2 NEXT phrase for dynamlc access mode files to retneve
records sequentlally S -

3. Format 2 can be used for random or dynamlc access mode ﬁies to retneve ;
' ' . records randomly.

.
N

6-118 JPrqcedu_re Division

.

By L READ .
b4 S (Continued)\ -

4. The KEY phrase can be used only for mdexed files. -

5. - There must be an INVALID KEY or AT END phrase when’ there is no

applicable USE AFTER EXCEPTION procedure for the ﬁle " ,_

' General Rules

L

The file must be open in the INPUT or I 0 mode when the READ state-
ment executes. ‘

For sequentlal access mode files, the NEXT phrase is optlonal It has no'

effect on READ statement execution.

Executlng a Format 1 READ statement can cause the following to occur:’

_a. The record pointed to by the Next Record Pointer becomes avallable in

the file’s record area,

" b. For sequential and relative lees the Next Record Pointer pomts to the

file’s next existing record

c: For indexed. files, the Next Record Pointer points to the next lex_iSting.

record established by the file’s Key of Reference. ;

“d.- If the file has no next record, the Next Record Pomter indicates that no.

next logical record exists.

The READ statement updates the value of the FILE S'TA'I‘US data item for -

the file.

LA record is available before any statement executes after the READ.

More than one record description can describe a file’s logical records. The

records then share the same record area in storage. Sharing a record area
i8 equivalent to implicit redefinition.

READ statement execution does not change the contents of data items in

the record area beyond the range of the current data record. The contents
are undefined.

A Format 1 READ statement can recognize the end of a reel/onit duriing its

execution. If it has not reached the logicai-end of the file, the READ
statement performs a reel/unit swap. The Current Volume Pointer points .

to the file's next reel/unit.

During execution of a Format 2 READ statement, the Next Record Pointer
can indicate that an optional file is not present. The invalid key condition
then exists, and READ statement execution is unsuccessful.

When a Format 1 READ statement executes, the Next Record Pomter can
indicate that:

-~

¢ There is no next logical record

-Proced ‘.i_’? Division 5-1 19

A — W A [

T TE I

'READ

" (Continued)

‘10.
. file’s record area are undefined. If an optional file is not present, the Next
Record Pointer is unchanged; otherwise, it indicates that no valid next

Ri%

12

. No vahd next record has been estabhshed

. ' An optlonal file ls not present

When the READ statement detects one of these conditions:

a. It updates the FILE STATUS data item for the ﬁIe to indicate the at

end condition.

" b, If the READ statement has an AT END phrase, control transfers to

stment. No USE AFTER EXCEP‘I‘ION procedure for the file executes,

c. If there is no AT END phrase, a USE AFTER EXCEP’I‘ION procedure' ’

must be associated with the file. Control transfers to that procedure.
Control returns from the USE AFTER EXCEPTION. procedure to’ the
next executable statement after the end of the' READ statement.

- When the at end condrtmn occurs, * execution of the mput-output

13.

statement that caused it is unsuccessful.

After the unsuccessful execution of a READ statement, the contents of the

record has been estabhshed For indexed files; the Key.of Reference is
undefined .

For a relative or indexed file with dynamzc access mode,.a Format 1 READ
statement with the NEXT phrase retrieves the file’s next logical record.

For a relative file, a Format 1 READ statement updates the contents of the

file's RELATIVE KEY data item. The data item c0ntams the relatwe rec-

ord number of the available record. .

‘For a relative file, a Format 2 READ staterrient sets 'the' Next Record

Pointer to the record whose relative record number is in the file’s

" RELATIVE KEY data item. Exécution then contmues as. spemﬁed in Gen-

14.

15.

_retrievals by Format ! READ statement executions for the file. The Key of -

eral Rule 3.

If the record is not in the ﬁle the mvalnd key condmon exists, and READ

statement execution is unsuccessful.

For a sequentially accessed indexed file, records wrth an identical value in

‘an Alternate Record Key that is the Key of Reference are made available
in the same order the duplicate values were created. The duplicate values :

can be created by execution of WRI’I‘E or REWRITE statements.

For an indexed fi le, a Format 9 READ statement with the KEY phrase -
establishes key-name as the Key of Reference for the retrieval. For a-.

dynamic access mode file, the same Key of Reference appiies to later

Reference continues in effect until a new Key of Reference is established.

5-120 ""iProcedure Division. ¢ o o nw

A

IECE 7 R R

i

'

e

i
. 111\\

i‘/ ,a 1.

e]
yf.;i S READ
' (Fqnﬁnued)

7

16. For an mdexed file, a Format 2 READ statemnnt without the KEY phrase
establishes the Primé Record Key as the Key of Reference for the retrieval.
For a dynamic access d mode file, the same Key of Reference applies to later

- retnevals by Forrnat i READ statement executions for the file The Key of
Reference contlnues Jim effectluntll a new Key of Reference is established.

l

17. For an indexed file a Format 2 READ“statement compares the value in the
Key of Reference with the value in the corresponding data item in the
file’s records. The comparison ¢ontinues until the READ statement finds
the first record with an equal vlalue For an alternate key with duplicate
values the first recbrd found 1s the first of a sequence of duplicates re-
leased to RMS. The READ statement sets Next Record Pointer to the
record Execution then contmues as specified in General Rulie 3.

|

If the READ statement cannot identify a record w1th an equal value,

the invalid key condition EXIStS READ statement execution is then
unsuccessful.

If the size of the retrieved record exceeds the maximum size specified for
the file, READ statement execution is unsuccessful.

If there is an applicable USE AFTER EXCEPTION procedure it executes
whenever an input condition occurs that would result in 2 nonzero value in
a FILE STATUS data item. However, it does not execute if: (1) the
condition is tnvalid key and there is an INVALID KEY phrase or (2) the
condition is at end and there is an AT END phrase.

Technical Note

READ statement execution can result in these FILE STATUS data item values:

FILE
STATUS Organization

‘ 00
13
i5
16

23 -

25
90"

2

94

File

All
All
All
All
Ind, Rel
Ind, Rel
Al

Al
- ANl

Access
Method

All
Seq
Seq
Seq
Rand
Rand
All

All
All
All

’Meaning

Successful.

No next logical record (at end).
Optional file not presehe (at end).
No valid next record (at end).’
Record not in file (invaliid key).

Optional file not presenit {(invalid key).

Record locked by another program; record avail- .

able in reccrd area.
Record locked by another program.
File not open or :ncompatlble open mode.

All other permanent. errors.

T
[PoaF
ER A t L

* Procedure Division - §-121

.

AN
\

READ = £

_ - (Continued)

| N Additlonal References

P ‘ : '

“Section 5.3 Scope of Statements

‘ Section 5.8.9 1-0 Status
Section 5.8.10 Invalid Key Condition
Section 5.8.13 INTO Option
Section 5.29 OPEN Statement

AL

Procedure Division - -

)

)

TS

RELEASE

=)
Qo

' 5.32 RELEASE Statement

Functlon

The RELEASE statement transfers records to a SORT operation. |

Genersal Format’

HELEASE. rec [FROM src-area)

rec

‘src-area

is the name of a logical record in a Sort- Merge File Descrlptlon (SD)
entry It can be qualified.

is the identifier of the data item that contams the data. .

Syntax Rule ' ,

A RELEASE statement can be used only in an input procedure. The.input
procedure must be associated with a SORT statement for the Sort-Merge file
that contains rec. :

General Rules

1.
2.

The description of the FROM phrase abpears in the FROM Option entry.

The RELEASE statement transfers the contents of rec to the first phase of
the sort.

After the RELEASE statement executes, the record is no longer available
in rec unless the associated sort-merge file-name is in a SAME RECORD
AREA clause. In that case, the record is available to the program as a
record of the sort-merge file-name. It is also available as a record of all
other file-names in the same SAME RECORD AREA clause. :

Addltlonal -References

Section 5.8.12 : FROM Option

. VAX-11 COBOL Users Gu;de Sorting and Merging

.. Procedure;Division . 5-123

ey maamh ot o e

RETURN
| 63

5.33 RETURN Statement

Functlon '

The RETURN statement gets sorted records from a SORT operatioﬁ. It also
returns merged records in a MERGE operation.

General Format

_HETURN smrg-tle RECORD | INTO dast—area]
AT END stment
[END-RETURN |

smrg -file

is the name of a file described in & Sort- Merge Flle Descnptmn (SD)
entry.

-dest-area

is the identifier of the data item- to which the returned smrg-flie
record is moved.

. |] 3 p
stment . . LN
is an imperative statement. ' ll
Syntax Rule :]
A RETURN statement can be used only in an output procedure. The output \,
procedure must be associated with a SORT or MERGE statement for smrg-file. - .
‘Genera! Rules : ‘ | . \ ;
.1. The description of the INTO phrase appears in the INTO Optzon entry 'z .
' 2. When more than one record description describes the logical records for
' smrg-file, the records share the same storage area. The contents of storage
positions beyond the range of the returned record are undefined when the
~ RETURN statentent ends. |
3. Before the output procedure executes, the Next Record Pointer is up-
dated. It points to the record whose key values make it first in the file.
If there are no records, the Next Record Pointer indicates the at end
condition. |
4. The RETURN statement makes Ehe next record (pointed to by the Ne-xt
Record Pointer) available in the record area for smrg-file.
5. The Next Record Pointer is updated to point to the next record in smrg- =
fite. The key values in the SORT or MERGE statement determine which is P

the next record : , . \

5-124 - Procedure Division -

- . . *, B T - N N . S
O TR R I B R Coe . i
P T ' : : SRS

'RETURN

74 -(Continll.led)

6. If smrg-file has no next record, the Next Record Pointer is updated to -

indicate the at end condition,.

7. If the Next Record Pointer indicates the at end cohdition when the

RETURN statement executes, control transfers to stment. The contents of

the smrg-file record areas are then undefined.

8. When the at end condition occurs:

s RETURN statement execution is unsuccessful.’

e The Next Record Pointer is not changed.

9. The description of the END-RETURN phrase appears in the entry'for
~ Scope of Statements.

Addlitional References

Section 5.3 7 Scbpé of Statements.
Section 5.8.13 -) INTO Option
VAX-11 COBOL User’s Guide Sorting and Merging

_ ‘Proc‘_edure Division 5—125

c Lk

e

JURFOF

REWRITE

5.34 REWRITE Statement

Functlon

' 5-126 .

The REWRITE statement loglcally replaces a mass storage file record.

General Format

REWRITE rec-name [FROM src-item]

[INVALID KEY stment [END-REWRITE |]

gre-item

rec-name
is the name of a logical record in the Data Division F1le Section. It
can be qualified. The logical record cannot be in a Sort-Merge File
Description Entry.

. is the ldentxf ier of the data item that contains the data

stment
is an imperative statement.

Syntax Rules

1.

1.

The INVALID KEY phrase cannot be used in a REWRITE statement that
refers to a sequential or relative file with sequential access mode.

For a relative file with random or dynamic access mode or for an indexed

file, the REWRITE statement must have an INVALID KEY phrase when
there is no applicable USE AFTER EXCEPTION procedure for the file.

- General Rules

All Files
The file associated with rec-name must be a mass storage file. It must be
open in the I-O mode when the REWRITE statement executes.

-2. For sequential access mode files, the last input-output statement executed
for the file before the REWRITE statement must be a successfully executed -
READ or START. The REWRITE statement loglcally replaces the record
accessed by the READ or positioned by the START."

. The record is no longer available in rec-name after a REWRITE statement

successfully executes. However, if the associated file-name is in a SAME

. RECORD AREA clause, the record is available in rec-name. It is also

available in the record areas of other file-names in the same SAME
RECORD AREA clause.

Procedure Division

N

P

75 " REWRITE

{Continued)

4. | The REWRITE staternent does not affect the Next Record Pointer.

N

. The REWRITE statement updates the value of the FILE STATUS data
item for the file. .

Sequentlal Flles

6. The record named by rec-name must be the same size as the record bemg
replaced. :

Holatlve Files

For a random or dynamic access mode file, the REWRITE statement logi-
cally replaces the record specified in the RELATIVE KEY data item for
rec-name’'s file. If the record is not in the file, the invalid key condition
exists. The update does not occur, and the data in the record area is not
affected.

Indexed Files

8. For a sequential access mode file, the Prime Record Key specifies the
record to be replaced. The values of the Prime Record Keys in the record
to be replaced and the last record read from (or positioned in) the file
must be equal.

" 9. For a random or dynamic access mode file, the Prime Record Key specrfres

the record to replace.
10. For a record with an Alternate Record Key:
a. When the REWRITE does not change the value of an Alternate Record

" Key, the order of retrieval is unchanged when the key is the Key of

Reference.

b. When duplicate key values are allowed and the value of an Alternate
Record Key changes, the later retrieval order of the record changes
when the key is the Key of Reference. The record’s logical position is
last in the group of records with the same value in the Alternate Record
Key that changed. '

11. Any of the following cause the invalid key condition:

‘a. The access mode is sequential, and the values in the Prime Record
Keys of the record to replace and the last record read from (or posi-
- tioned in) the file are not equal.

b. The value in the Prime Record Key does not equal that of any record in .

the file.

e The value in an Alternate Record Key whose definition d'oes not have a
DUPLICATES clause equals that of a record already in the file,

The update does not occur, and the data in the record area is not affected.

e R ‘ faa, 1 ot - q
. - RV . v
W

. Procedure Division 5-127

m e s - : e

REWRITE S SR
(Continued) " -'?3'

If there is an applicable USE AFTER EXCEPTION procedure, it executes
whenever an input or output condition occurs that would result in a non-
zero value in a FILE STATUS data item. However, it does not execute if
the condition is invalid key, and there is an INVALID KEY phrase.

"Technical Note

REWRITE statement execution can result in these FILE STATUS data 1tem

=

values
FILE- File - Access | ’
STATUS O,rganization Method . ' 'Meaning
- 00 All CAlL Successful S _
02 Ind All Created duplicate Alternate Key
21 Ind Seq Primary key changed after READ or START -
(invalid key) 7 _
2 Ind Al Duplicate Alternate Key (invalid key)
23 Ind, Rel Rand Record not in ﬁle {mvahd key)
92 Ind, Rel) All Record locked by another program
'y Al Seq No previous READ or START -
< 94 Al'® All File not open, or incdmpatib_le open mode

30 All - All All other permanent errors
Additional References

- Section 5.3 Scope of Statements
Section 5.8.9 I-0O Status
Section 5.8.10 Invalid Key Condition
Section 5.8.12 FROM Option
Section 529 OPEN Statement

-5-128. Procedure Division

Y

o

8

R,

(O | SEARCH

" 5.35 SEARCH Statement

Function

The SEAR(_}H statement searches for a table element that satisfies a condition.
It sets the value of the associated index to point to the table element.

General Format

Format 1
SEARCH src-table { VARYING pointr | N

[AT END stment]

' gtment ‘]
WHEN ‘cond ° . : .. [END-SEARCH]
: NEXT SENTENCE .

Format 2 ‘
_ SEARCH _Pﬁ. src-table [AT END stment)

IS EQUAL TO
_ O

: elemnt - _arg
WHEN IS =

cond-name

IS EQUAL TO

elemnt : arg
AND i8S =
. cond-name

stment

[END-SEARCH 1}
NEXT SENTENCE .

‘src-table . o
is an identifier that identifies the table.

polintr
is the .identifier of a data item described as USAGE INDEX or an

elementary numeric data item with no positions to the nght of the
assumed decimal point.

(continued on next page)

. Procedure Division , 5129 -

SEARCH

(Continued) .

arg

cond _
is any conditional expression.

stment
is an nmperatwe statement

elemnt
*is an indexed data-name. It refers to the table element against which
the argument is compared.

15 the argument tested against each elemnt in the search. It is an
identifier, literal, or anthmetlc expression.

5

cond-name
is a condition-name.

Syntax Rules

Both Formats

1. Src-table must ﬁot be subscripted, indexed, or reference-modified. How-
ever, its description must contain an OCCURS clause with the INDEXED
BY phrase ‘ _

The END- SEARCH and NEXT SENTENCE phrases cannot be used in the -
same SEARCH statement. :

Format 2

3. Src-table must contain the KEY IS phrase in its OCCURS clause.

- 4,

. 5-130 Procedure Division

Each cond-name must be defined as having only one value. The data--
name associated with cond-name must be in the KEY IS phrase of the:

OCCURS clause for src-table.

. Each eiemnt:

¢ Can be qualified

¢ Must be indexed by the first index-name associated with src-table, in ‘,

~addition to other indexes or literals required for uniqueness

- @ Must be in the KEY IS phrase of the OCCURS clause for src-table

Neither arg nor any identifier in its arithmetic expression can:

¢ Be used in the KEY IS phrase of the OQCCURS clause for src-table

¢ Be indexed by the first inde_x-namé associated with src-table

-

TN

76 © . SEARCH
' {Continued)

7. When the data-name associated with cond-name or elemnt is in the KEY
phrase of the OCCURS clause for src-table, each preceding data-name {or
associated cond-name) in that phrase must also be referenced. -

General Rules

Both Formats - : {

1 After the execution of a stment that does not end with a GO TO statement,
control passes to the end of the SEARCH statement.

2. Src-table can be subordmate to a data item that contains an QCCURS
clause. In that case, an index-name must be associated with each dimen-

sion of the table through the INDEXED BY phrase of the OCCURS clause. -

The SEARCH statement modifies the setting of only the index-name for
src-table (and pointr, if there is one).

A SEARCH statement must execute several times to search a multi-
dimensional table. Before each execution, SET statements must execute to
“change the values of index-names that need adjustment.

Format 1

3. The Format 1 SEARCH statement searches a table serially, starting with
the current index setting.

a. The index-name associated with src-table can contain a value that

indicates a higher occurrence number than is allowed for src-table. If -

the SEARCH statement execution starts when this condition exists, the
search terminates immediately. If there is an AT END phrase, stment
then executes. Otherwise, control passes to the end of the SEARCH
statement.

b. If the index-name associated with src-table indicates a valid src-tab|e
occurrence number, the SEARCH statement evaluates the conditions in
the order they appear. It uses the index settings to determine the
occurrence numbers of items to test. ‘

If no condition is satisfied, the index-name for src-table is incremented
to refer to the next occurrence. The condition evaluation process
repeats using the new index-name settings. However, if the new value
of the index-name for src-table indicates a table element outside its
range, the search terminates as in General Rule 3a.

When a condition is satisfied: 7
o The search terminates immediately.
* The stment associated with the condition executes.

o The index-name remains set at the occurrence that satlsﬁed the
condition.

Procédure Division 5-131

e ok e, A e e &

PP S S ——

 SEARCH.

(Continued) . \ 7

5-132 * Procedure Division

4." If there is no VARYING phrase, the index-name esed for the search is the
first index-name in the OCCURS clause for src-table. Other src-tabte
index-names are unchanged. :

5. The VARYING phrase pointr can be used in the INDEXED BY phrase of the
- OCCURS clause for src-table. The search then uses that mde_x name. Oth-
erwise, it uses the first index-name in the INDEXED BY phrase.

- 6. The VARYING phrase pointr can be used in the INDEXED BY phrase in
the OCCURS clause for another table entry. In that case, the search incre-
ments the occurrence number represented by pointr by the same amount,
and at the same time, as it increments the occurrence number represented
by the src-table index-name. :

7. If the VARYING phrase pointr is an index data item rather than an index-
name, the search increments it by the same amount, and at the same
time, as it increments the src-table index-name. If the VARYING phrase
pointr is not an index data item or an index-name, the search increments
it by one when it increments the src-table index-name.

_ 8. Figure 5-6 describes the operation of a Format 1 SEARCH statement with
two WHEN phrases

Format 2

9. A SEARCH ALL operation yields predictab]e results only when both:

. ® The data in the table has the same order as described in the KEY IS
phrase of the OCCURS clause for src-table

¢ The.contents of the keys in the WHEN phrase ldentlfy a unique table
element.

10. SEARCH ALL causes a nonserial, or binary, search. It ignores the initial
setting of the src-table index-name and varies its setting during
_ executlon : . _ !

11. If the WHEN phrase conditions are not satisfied for any index setting in -
the allowed range, control passes to the AT END phrase stment, if there is
one, or to the end of the SEARCH statement. In either case, the setting of
the src-table index-name is not predictable. ' :

12. If all the WHEN phrase conditions are satisfied for an index setting in the

"~ allowed range, control passes to either stment or the next sentence, which-
ever is in the statement. The src-table index-name then indicates the
"occurrence number that satisfied the conditions.

13. The index-name used for the sea'rch.is the first index-nameé in.the-
OCCURS clause for 'src-tabie. Other src-table mdex-names are un-
changed _ ‘ o

SEARCH

(Continued)

Figure 5-6: Format 1 SEARCH Statement with Two WHEN Phrases

ITEMC (ITEMB)

= space

ITEMC {ITEMB)
= "X" and

ITEMD (ITEMB)
= spaces

Ingrement ITEMB

increment ITEME

: Addlgloﬁal Reterences

Section 4.4.6
Section 5.3
Section 5.7

-
siment-1 -
stment-2 ['S
simeni-3 -
—f

Each of thaese

- control transfers

OCCURS Clause
Scope of Statements
Conditional Expressions

is to the end of

the SEARCH
statement unless
stment ands with

a GO TO statement

03 ITEMA OCCURS 55 TiMES
INDEXED B8Y ITEMB.

05 ITEMC PIC X.

05 ITEMD PIC XX.

SEARCH ITEMA VARYING ITEME

AT END stment-1

WHEN ITEMC (ITEMB} « SPACE

stment-2

WHEN ITEMC (ITEMB) = "X"
AND ITEMD {{ITEMB) = SPACES

stment-3.

.F-MK-00192-00

: S DRV

- Procedure Division

“r

3

. 5-133

SEARCH
(Continued)

5-134

79

Examples

The examples assume these Data Division entries:

01

ot -

ot
01

ot

1.

Procedure Division

CUSTOMER-REC.
03 CUSTOMER-USPS- STATE PIC XX. .

03 CUSTOMER-REGION PIC %.
03 CUSTOMER-NAME T PIC X(15))
STATE-TAB.

03 FILLER PIC X{153) VALUE
: "AK3ALSARSAZACALCO4CTIDCIDELIFLSGASHIZ
" TTAZID3IILZINZKGZ hYSLASMQIMDlMElﬂI“HNE
“MMOSHMSOMTINCSINDINEZNHINJIINMANVANY 10HZ
“OK4OR3IPAIRI1SCSSOATNSTHAUTAVASUTINAT
"WIZWUSKY4" .,
STATE TABLE REDEFINES STATE-TAB.
03 STATES OCCURS 31 TIMES
ASCENDING KEY IS STATE-USPS-CODE
INDEXED BY STATE-INDEX.
05 STATE-USPS5-CQDE PIC XX,
05 STATE-REGION . PIC X

STATE-NUM PIC 99.
STATE-ERROR PIC 9.

NAME-TABLE VALUE SPACES, '

03 NAME-ENTRY OCCURS 8 TIMES h
INDEXED BY NAME-INDEX., '
03 LAST-NAME PIC X(15).,
03 NAME -COUNT PIC 999,

Binary search. The correctness of this statement’s operation depends on
the ascending ordpr of key values. .

SEARCH ALL STATES
AT END
MOVE 1 TO STATE- ERROR _
WHEN STATE-USPS-CODE (STATE-INDEX) = CUSTOMER-USPS-STATE
MOQVE ¢ TO STATE-ERROR
MOVE STATE-REGION (STATE-INDEX) TO CUSTOMER-REGION.

Results

CUSTOMER-STATE C US\"OMER—REGION STATE-INDEX STATE-ERROR

NH . 1 31 ..

0
* CA . T4 5 0
DM A) 10 1
wY <4 51 0

. et Ty A Yy
LN o

i b e

(Y

‘)

2

SEARCH
80 ' (Continued)

2. Serial search with two WHEN phrases. The initial value of
CUSTOMER-REGION is 2. '

SEARCH-LOOP,
SEARCH STATES
AT END MOYE 1 TO STATE-ERROR :
WHEN STATE-REGION (STATE-INDEX) = CUSTOMER-REGION
NEXT SENTENCE
WHEN STATE-USPS-CODE (STATE-INDEX) = "NH"
MOVE 3 TO STATE-ERROR,
SET STATE-NUM TD STATE-INDEX,
DISPLAY STATE-USPS-CODE (STATE-INDEX) "
STATE-NUM " " STATE-ERROR.
IF STATE-ERROR NOT = 1 - - i -
SET STATE-INDEX uP BY 1
GO TO SEARCH-LOOP,

Results
1A 13 0
IL 15 0
IN 16 0
KS 17 0
Mi 23 0
MN 24 0
'NE 30 o _
NH 31 3
* OH 36 3
Wi’ 49 3
52 1
3. Updating a table in a SEARCH statement.
GET-NAME. _
DISPLAY “Enter name: " NO ADVANCING. . 3

ACCEPT CUSTOMER-NAME.
SET NAME-INDEX TO 1. .
SEARCH NAME-ENTRY ﬂ
AT END ' 3
DISPLAY * Table full"
SET NAME-INDEX TO 1
'PERFORM SHOW-TABLE 8 TIMES .
STOP RUN .
WHEN LAST-NAME (NAME-INDEX) = CUSTOMER-NAME
ADD 1 7O NAME-COUNT (NAME-INDEX)
HHEN LAST-NAME (NAME-INDEX) = SPACES
MOVE CUSTOMER-NAME TO LAST-NAME (NAME-INDEX)"
MOVE 1 TO NAME-COUNT {NAME-INDEX).
GO TO GET-NAME,
SHOW-TABLE.
DISPLAY LAST-NAME (NAME-INDEX}) *
‘ “ NAME-COUNT (NAME-INDEX).
SET NAME-INDEX UP BY 1.

Prpcedure»Division 5-135

3

SEARCH
. (Continued)

Results

5-136) Procedure Division

Enter name:
Enter name:

~ Enter name:

Enter name:
Enter name:
Enter name:
Enter name:
Enter name:
Enter name:
Enter name:
Enter name:
Enter name:
Enter name:
Enter name:
Enter name:

e
N
> -

SMITH
JONES
SMITH

THOMPSON-

MACINTOSH
SMITH
JAMES
FRIED
ADAMS

MACINTOSH

SMITH
JAMES .
MACINTOSH

KAPLAN

WILLIAMS

Table full

_ SMITH

JONES
THOMPSON
MACINTOSH
JAMES

" FRIED

ADAMS
KAPLAN

004
oot
001
003
002
001
- 001
001

()

()

()

SET

. 5,36 SET Statement o
o Function.. :

The SET statement sets values of indexes associated with table elements. It
can also change the value of a conditional variable and the status of an
external switch. ' : " :

General Format

Format 1 .
SET frsult] .. TO val
Format 2 A
P BY

SET }indx} .. increm
: DOWN BY ' ‘ , '

Format 3

- SET | cond-name } ... TO TRUE
Format 4

. SET f switch-name § ... TQ

rsult ‘ .
is an index-name or the identifier of an index data item or an elemen-
tary numeric integer data item.

val ‘ _
is a positive integer, which may be signed. It can also be an index-
" name or the identifier of an index data item or an elementary
numeric integer data item. '

indx
is an index-name, -

increm" . ;
is an integer, which may be signed. It can also be the identifier of an

elementary numeric integer data item.

{continued on next puge)

| Procedure Division 5-137

SET

(Contlnueti) : ' K3
cond-name :
Is a condition-name that must be assomated with a conditional
variable.

E switch-name
is the name of an external sw:tch defined in the SPECIAL~\AMES
paragraph.

. Syntax Rule
No twe occurrences of cond-name can refer to the same conditional variable,
General Rutes

Formats 1 and 2

- 1. Index-names are associated with a table in the tables OCCURS clause
' INDEXED BY phraqe

2. If rsult is an index:name, its value after SET statement execution must
correspond to an occurrence number of an element in the associated table..

3. If val is an index-name, its value before SET statement execution must
- correspond to an occurrence number of an element in the table associated
with rsult.

4. The value of indx, both before and after SET statement execution. must
correspond to an occurrence number of an element in the table a:-,soc1ated
with indx. .

) Format 1

5.' The SET statement sets the value of rsult to refer to the table element
whose occurrence number corresponds to the table element referred to by
val. If val is an index data item, no conversion occurs.

6. If rsult is an index data item, val cannot be an integer. No conversion
occurs when rsult is set to the value of val.

7. If rsult is not an index data item or an index-name, val can only be an
. index-name.

8. When there is more than one rsult, SET uses the original value of val in
each operation. Subscript or index evaiuatu)n for rsuit occurs lmmedldtelv
before its value changes. o

9. Table 5-8 shows the .validity of operand combinations. An asterlsk (}
means that no conversion occurs durmg the SET operation. :

5—138 Procedure Diyisioh

—

™

e

SET

it (Continued)

L™

Table 5-8: Validity of Operand Combmatlons in Format | SET

Statements
Receiving Item
Sending Item Integer Data Item Index - Index Data Item
Integer Literal Invalid/Rule 7° Valid/Rule 5 Invalid/Rule 6
Integer Data Item Invalid/Rule 7 Valid/Rule 5]. Invalid/Rule 6.
Index | Valid/Rule 7 Valid/Rule 5 | Valid/Rule 67
Index Data Item - . Invalid/Rule 7 Valid/Rule 5* Valid/Rule 6*

Format 2

10. 'The_SE_T statement increments (UP) or decrernents (DOWN) indx by a
value that corresponds to the number of occurrences increm represents.

11. When there is more than one indx; SET uses the original value of increm
in each operation.

Format 3

- 12 SET moves the literal in the VALUE clause for cond- name to its associ-

ated conditional variable. The transfer occurs according to the rules for
elementary-moves. If the VALUE clause contains more than one literal,
the first is moved. .

Format 4 o _

13. SET changes. ihe-s'tatus of each switch-name in the statement.
14. The ON phrase changes the status of switch-name to “on.”
15. The OFF phrase changes the status of switch-name to “off.” .

16. The SET statement changes the switch status only for the image in
which it executes. When the image terminates, the status of each exter-
nal switch is the same as when the image began.

Additional References

Section 3.1.3 - SPECIAL-NAMES Paragraph
Section 5.7.8 Switch-Status Condition
Section 5.27 MOVE Statement '
Section 5.30 PERFORM Statement
Section 5.35 SEARCH Statement

Procedure Division = §-13%

SET
(Continued)

Exanuﬂes=‘

- The SEARCH statement examples show the use of Format 1 ‘and Format 2
SET statements.

The examples assume these Environment and Data Division entries:

SPECIAL-NAMES,
SWITEH § UPDATE-RUN DN STATUS IS DO-UPDATE
SWITCH 3 REPORT-RUN ON STATUS IS DO- REPDRT
OFF STATUS IS SKIP-REPORT
_SKITCH 4 1S NEW-YEAR ON STATUS IS BEGIN- YEAR
OFF IS CONTINUE-YEAR.

DATA DIVISION., ' c ' : _ -
WORKING-STORAGE SECTION, . - ‘ , .
01 YEAR-.EVEL PIC 99, (

‘88 FRESHMAN UYALUE 1,

88 SOPHOMORE VALUE 2.

88 JUNIOR VALUE 3.

@88 SENIOR VALUE 4,

88 FIRST-MASTERS VALUE 5.

88 MASTERS YALUE S.G6.

88 FIRST-DOCTORAL VALUE 7.

88 DOCTDORAL YALUE 7.8, '

88 NON-DEGREE-UNDERGRAD WALUE S.

88 NON-DEGREE-GRAD WALUE 10, .

88 UNDERGRAD VALUE 9, 1 THROUGH 4. (:

88 GRAD VALUE 10, 5 THROUGH 8. ‘

YEAR-LEVEL B

1. SET SOPHOMORE TO TRUE - o 02
2. SET MASTERS TO TRUE X : " 05
3. SET GRAD TO TRUE ' ‘ ‘ 10 o (:
4. SET NON-DEGREE-GRAD TO TRUE | 10

5. Setting external switches. The truth value shows the result of the 'IF
statements: : .

Truth Value.

SET UPDATE-RUN TO ON.

SET REPORT-RUN TO OFF,

SET NEW-YEAR TO ON. -

IF DO-UPDATE ... :) ' true

IF DD-REPORT ... ~ U faise
IF. CONTINUE-YEAR ... talse
SET REPORT-RUN TO ON. . : _

IF DO-REPORT true
IF SKIP-REPORT ... : . . false

™

5-140 Prdcedure Division

a6 ~ SORT

5.37 SORT Statement

Function

The SORT statement creates a sort file by executing input procedures or
transferring records from an input file. It sorts the records in the sort file on a
set of keys. Finally, it returns each record from the sort file, in sorted order, to
output procedures or an output file.

General Format

_ DESCENDING o
. S0ORT sortfile ON KEY | sortkey | ...
ASCENDING

[WITH DUPLICATES IN ORDER |
[COLLATING SEQUENCE IS alpha |

y .

. THRU
INPUT PROCEDURE IS first-proc end-proc
THROUGH
USING | infile | ...
< THRU
‘ QUTPUT PROCEDURE IS first-proc end-proc
THROUGH J -
GIVING | outfile | ... :

sortfile

is a file-name described in a Sort- Merge File Description (SD) entry
in the Data Division.

sortkey
is the data-name of a data xtem in a record associated with sortfile.

alpha

is an alphabet-name defined in the SPECIAL—NAMES paragraph of
the Environment Division,

first-proc

is the section-name of the first section of the input or output
procedure.

infile .

is the file-name of the input file. It must be described in a File
Description (FD) entry in the Data Division. '

(continued-on next page)

Procedure Division 5-141.

ey

i v e bms o e
e N T L s

s T

SORT

(Continued) o - 87
end-proc :
" is ‘the section-name of the last section of the input or output
procedure
outhle
is the file-name of the output file. It must be described in a Fxle
Descnpt:on (FD) entry in the Data Division.

5-142

Procedure Division’

Syntai Rules

1. SORT statements can be used anywhere in the Procedure Division except
in: :
a. Declaratives

b. A SORT or MERGE statement input or output procedure

2. It sdrtﬁle'contains variable-length records, infile records must not be
- smaller than the smallest in sortﬁle nor larger than the largest.

3. If sortfile contains fixed-length records infile records must not be larger .
than the largest record descnbed for sortfile.

4. If outfile contains variable- length records, sortflle records must not be
smaller than the smallest in outfile nor larger than the largest.

* 5. If outfile contains fixed-length records, sortfile records must not be larger
- than the largest record described for outfile.

6. Sortkey can be qualified. _
Sortkey cannot be a group that contains variable-occurrence data items. _

8. The sortkey description cannot contain an ‘OCCURS clause or be subordi-, -
‘nate to a Data Description entry that does. : '

9. Sortfile can have more than one record desbriptionl However, sortkey need
be described in only one of the record descriptions. The character posi-
tions referenced by sortkey are used as the key for all the file’s records.

10. The words THRU and THROUGH are equivalent.

11. If outfile is an indexed file, the first sortkey must be in the ASCENDING o |

phrase It ‘must specify the same character positions in its record as the
pnme record key for outfile.

‘(Y

) | - SORT
48 - (Continued)

General Rules

1.

If sortfile contains fixed-length records, any shorter infile records are
space-filled on the right after the last character. Space-filling occurs be-
fore the infile record is released to sortfile.

The leftmost sortkey is the major key, and the next sortkey is the next -

most significant key. The significance of sortkey data items is not affected
by how they are divided into KEY phrases. Only left to-right order deter-
mines significance.

The ASCENDING phrase causes the sorted sequence to be from the Jowest

. sortkey value to the highest.

10.
1.

12.

. 'The DESCENDING phrase causes the sorted sequence to be from the high-

est sortkey value to the lowest.

Sort sequence follows the rules for relation condition comparisons.

The DUPLICATES phrase affects the return order of records whose corre-

sponding sortkey values are equal.

8. When there is a USING phrase, return order is the same as the order of
appearance of infile names in the SORT statement.

b. When there is an input procedure, return order is the same as the order
in which the records were released.

¥ there is no DUPLICATES phrase, the return order is undefined for
records with equal corresponding sortkey values.

The SORT statement determines the comparison collating sequence
for nonnumeric sortkey items when it begins execution. If there is a
COLLATING SEQUENCE phrase in the SORT statement, SORT uses that
sequence. Otherwise, it uses the program collating sequence.

The input procedure consists of one or more sections that:
@ Appear contiguously in the source program

Do riot form a part of any output procedure

The input procedure must execute at least one RELEASE statement to
transfer records to sortfile.

The program must not pass control to the mput procedure except during
execution of a related SORT statement.

The input procedure cannot contain SORT or MERGE statements. It must
not explicitly transfer control outside the input procedure, However, state-
ments can cause implied control transfers to Declaratives.

v

Procgdure Division 5-143

S

SORT _ . S .
(Continued) _ ‘ , 83 S ' -

13. The remainder of the Procedure Division must not transfer control to
points in the input procedure.

14, If there is an input procedure, control passes to it before the SORT
statement sequences the sortfile records. When control passes the last
statement in the input procedure s last section, the records released to
SOrtflle are sorted,

15. Durmg executlon of the input or output procedures or.any USE AFTER
. EXCEPTION procedure implicitly invoked during the SORT statement, no
statement can manipulate the files or record areas associated with infile or
outfite. - ' ' ..

16. If there is-a USING phrase, the SORT statement transfers all records in -
infile to sortfile. This transfer is an implied SORT statement input proce- .
dure. When the SORT statement executes, infile must not be open.

17. For each infile, the SORT statement:

a. Initiates file processing as if the program had executed an OPEN state-
ment with the INPUT phrase.

b. Gets the logical records and releases them t6 the sort operation. SORT .
~obtains each record as if the program had executed a READ statement)
with the NEXT and AT END phrases , e

C. Termmates file. processing as if the program had executed a CLOSE
statement with no optional phrases. The SORT statement ends file
processing before it executes any output procedure.

These implicit OPEN, READ, and CLOSE operations can cause associated
USE procedures to execute,

18. The output procedure consists of one or more sections-that: (

* Appear contiguously in the source program

® Do not form a part of any input procedure

19. When the SORT statement enters the output procedure, it is ready to
select the next record in sorted order. The output procedure must execute
at least one RETURN statement to make records available for processing.

20. The program must not pass control to the outpht procedure except during
. execution of a related SORT statement.. '

- 21. The output procedure cannot contain SORT or MERGE statements. It
must not explicitly transfer control outside thé output procedure. How-
ever, statements can cause implied control transfers to Declaratives.

22. The remainder of the Procedure Division must not transfer control to .
pomts in the output procedure. ‘ - : ‘ ~—

- 5144 Procedure Division

24,

25.

26.

21.

30.

U |
J - SORT
(Continued)

. If there is an output procedure, control passes to it after the SORT

statement sequences the records in sortfile. When control passes the last

" statement in the output procedure’s last section, the SORT statement

ends. Control then transfers to the next executable statement after the
SORT statement. '

If there is a GIVING phrase, the SORT state'.ment writes all sorted records
to each outfile. This transfer is an implied SORT statement output proce-
dure. When the SORT statement executes, outfile must not be open.

The SORT statement initiates outfile processing as if the f)rogram had
executed an OPEN statement with the QUTPUT phrase. The SORT state-

ment does not initiate outfile processing until after input procedure

execution.

The SORT statement gets the sorted logical records and writes them to
each outfile. SORT writes each record as if the program had executed a
WRITE statement with no optional phrases.

For relative files, the value of the relative key data item is 1 for the first
returned record, 2 for the second, and so on. When the SORT statement
ends, the value of the relative key data item indicates the number of
outfile records. :

The SORT statement terminates outfile processing as if the program had
executed a CLOSE statement with no optional phrases.

. These implicit OPEN, WRITE and CLOSE operations can cause associated

USE procedures to execute. If the SORT statement tries to write beyond
the boundaries of outfile, the applicable USE AFTER EXCEPTION proce-
dure executes. If control returns from the USE procedure, or if there is
none, outfile processing terminates as if the program had executed a
CLOSE statement with no optional phrases. '

. If outfile contains fixed-length records, any shorter sortfile records are

space-filled on the right after the last character. Space-filling occurs be-
fore the sortfile record is released to outfile.

If the SORT statement is in a fixed segment, its input and output proce-
dures must be completely in either: '

. 8. Fixed segments

- 31.

b. One independent segment

If the SORT statement is in an independent segment, its input and output
procedures must be completely in either:

a. Fixed segments

b. The same independent segment as the SORT statement itself

~ Procedure Division = 5-145

A A ot b, s L

v ——————————

SORT
(Continued) "

Additional Refgrent’:es _

Section 3.1.2
Section 3.1.3
. Section 3.4
Section 5.9
VAX-11 COBOL User's Guide

5-146 Procedure Division

Cai'
L
OBJECT-COMPUTER Paragraph
SPECIAL-NAMES Paragraph
I-O-CONTROL Paragraph -
Segmentation
Sorting and Merging
F/-\
i\._/
.

()

,

=
oo

START

5.38 START Statement

Function

The START statement establishes the logical position in an indexed or relative
file. The logical position affects subsequent sequentizal record retrieval.

General Format

IS EQUAL TO
' IS =
START file-nama KEY IS GREATER THAN | key-data
15 >
IS NOT LESS THAN
I8 NOT <

[INVALID KEY stment | END-START] :l

file-name’
is the name of an mdexed or relative file with sequential or dynamxc
access. It cannot be the name of a sort or merge file.

key-data :
is the data-name of a record key, or the leftmost part of a record key,
for file-name. It can be qualified.

stment
is an imperative statement.

Syntax Rules

1. There must be an INVALID KEY phrase if file-name does not have an
- applicable USE FOR EXCEPTION procedure.

2. For arelative file, key-data must be the file’'s RELATIVE KEY data item.
3.. For an indexed file, key~-data can be either:
* A record key for the file.

¢ An alphanumeric data item subordinate to the description of the file's
- " record key. The leftmost character position of key-data must correspond
to that of the record key data item.

- Procedure Division 5-147-

START -

(Continued)

General Rules

1.

. All Files '

The file must be open in the INPUT or I-O mode when the START state-
ment executes,

If there is no KEY phrase, the impI{ed relational operator is “EQUAL.”

START statement execution does not change: {1) the contents of the
record area or {2) the contents of the data item referred to in the
DEPENDING ON phrase of the file’s RECORD clause.

The comparison specified by the KEY phrase relational operator occurs
between a key for a record in the file and a data item. (See General Rules
7, 8, and 9.} If the file is indexed and the operand sizes are unequal, the
comparison operates as if the longer one was truncated on the right to the
size of the shorter. All other numeric or nonnumeric comparison rules
apply. :

The Next Record Pointer is set to the first logical record in the file whose
key satisfies the comparison.

If no record in the file satisfies the comparison:

¢ The invalid key condition exists.
¢ START statement execution is unsuccessful.

¢ The Next Record Pointer indicates that no vahd next record Is
established. :

The START statement updates the FILE STATUS data item for the file.

If the Next Record Pointer indicates that an optional file is not present
when the START statement executes, the invalid key condition exists.
START statement execution is then unsuccessful.

Relative Files

7.

The comparison described in General Rule 4 uses the data item referred to
by the RELATIVE KEY phrase in the file's ACCESS MODE clause.

Indexed Files

8. The START statement establishes a Key of Reference as follows:

~a. If there is no KEY phrase, the file's Prime Record Key becomes the Key

of Reference.

b. If there is a KEY phrase and.key—data is a Record Key for the file, that
Record Key becomes the Key of Reference.

5-148 Procedure Division -

M

A

.

P

-
L

el

=

START
(Continued)

“c. If there is a KEY phrase and key-data is not a Record Key for the file,

the Record Key whose leftmost character corresponds to the leftmost
character of key-data becomes the Key of Reference.

The Key of Reference establishes the record ordering for the START state-
ment. (See General Rule 4.) If the execution of the START statement
is successful, later sequential READ statements use the same Key of
Reference. :

If there is 8 KEY phrase, the comparison described in General Rule 4 uses

. the contents of key-data.

- 10,

11,

If there is no KEY phrase, the comparison described in General Rule 4 uses
the data item referred to in the file's RECORD KEY clause.

If START statement execution is not successful the Key of Reference is
undefined.

whenever an input or output condition occurs that would result in a non-

If there is an applicable USE AFTER EXCEPTION procedure, it executes |

zero value in a FILE STATUS data item. However, it does not execute if

the condition is (nvalid key and there is an INVALID KEY phrase.

Technical Note

START execution can result in these FILE STATUS data itém values:

FILE

STATUS_ . Meaning
Oﬁ ' Successful
23 Record not in file (invalid key}
25 Optional file not present (invalid key)
92 Record lock;ed by another program
94 File not open or iﬁcompafible open mode
.30 All other permanent errors

" Additional Reterences

Section 5.3 Scope of Statements

Section 5.7.3 Comparison of Numeric Operands
Section 5.7.4 Comparison of Nonnumeric Operands
Section 5.8.9 [-O Status

Section 5.8.10 Invalid Key Condition

Section 5.29 OPEN Statement

Section 5.31 READ Statement

V-Proqeduré Division v 5-149

STOP

5.39 STOP Statement

5-150

Function

The STOP statement permanentlyvor temporarily suspends image execution.

General Format

RUN
STOP
dilsp

disp

is any literal except a figurative constant of the “ALL literal” form .

Syntax Rule

Ifa STOP RUN statement is in a consecutive sequence of imperative state-
- ments in a sentence, it must be the last statement in the sentence.

- General Rules

1. STOP RUN ends image execution.

. 2. STOP disp suspends the image. It displays the value of disp on the user’s
- standard display device. If the user continues the image, execution

resumes with the next execuiable statement.

Technical Notes

1. STOP RUN causes all open files to be closed beforé control returns to

VAX/VMS command language level.

2. 'STOP disp returns control to VAX/VMS command Ianguage level without

terminating the image.

The user can continue image execution with a:

. CONTINUE command, which returns control to the program at the next

executable statement

¢ DEBUG command, which resumes image execution under the control of

the VAX-11 Symbolic Debugger

Additional References _

VAX-11 COBOL User’s Guide Debugging Programs
VAX/VMS Command Language User's Guide

Procedure Division.

g

NS

Dy

STRING

5.40 STRING Statrement

Function

The STRING statement concatenates the partial or complete contents of two
or more data items into a single data item.

General Format

,‘ . :) deilm
STRING | sre-string {... DELIMITED BY
- - size

INTO dest-string [WITH POINTER pointr]
[ON OVERFLOW stment [END-STRING }]

sre-string
is a nonnumeric I:tera] or identifier of a DISPLAY data item. It is the
sending area.

delim C
is a nonnumeric literal or the identifier of a DISPLAY data item. It is
the delimiter of src-string.

dest-string
is the identifier of a DISPLAY data item. It cannot be reference-
modified. Dest-string is the receiving area that contains the resuit of
the concatenated src-strings:

pointr
is an elementary numeric integer data item. It pomts to the position
in dest-string to contain the next character moved.

stment
is an imperative statement.

Syntax Rules

1. therals can be any figurative constant other than "ALL hteral ”

2. The description. of dest-string cannot: (1) have a JUSTIFIED clause or
. {2) indicate an edited data item.

'3. The size of pointr must allow it to contain a value one greater than the size

~ of dest-string.

 Procedure Division . 5-151

1

. e e D S e T

-— e e ey e e e, T et e 4 T e e e i 8 o e o Tk) 7 S M Ao gl b e et e mas —an - inme

 5-152

'STRING
(Continued)

General Rules

Delim specifies the character(s) to delimit the move.

.. If the size of delim is zero characters, it never matches a src-string

delimiter.

If src-string is a variable-length item, SIZErefers to the number of charac-
ters currently defined for it. ' :

When src-string or delim is a figurative constant, its size is one character.

The STRING statement moves characters from src- étring to dest-string
according to the rules for alphanumeric to a]phanumenc moves. However,
no space-filling occurs.

When the DELIMITED phrase contains delim:

a. The contents of each src-string are moved to dest-string in the se-
"quence they appear in the statement.

~ b. Data movement begms with the leftmost character and contmues to

the right, character by character.
¢. Data movement ends when the STRING operation either:
¢ Reaches the end of src-string |
® Reaches the end of dest-string
" ® Detects the characters specified by delim
No data movement occurs if the size of s‘rc}‘string is zero characters.

When the DELIMITED phrase contains the SIZE phfase:

a. The entire contents of each sr¢-string are moved to dest-string i in the.

sequence they appear in the statement.

b. Data movement begins with the leftmost character and continues to
the right, character by character.

c. Data movement ends when the STRING operation either:
» Has transferred all data in each src-string
* Reaches the end of dest-string,

d. If src-string is a variable-length data item, the STRING statement
moves the number of characters currently defined for the data item.

When the POINTER phrase is ué_ed, the program must set._ pointr to an
initial value greater than zero before executing the STRING statement.

Procedure Division

e

.)-

10.

11.

STRING

{Continued)

When there is no POINTER phrase, the STRING statement operates as 1f
pointr were set to an initial value of 1.

When the STRING statement transfers characters to dest-string, the
moves operate as if;

a. The characters were moved one at a time from src-string-

b. Each character were moved to the position in dest-string indicated by
pointr (if pointr does not exceed the length of dest-string)

" ¢. The value of pointr were increased by one before moving the next

13.

character

. When the STRING statement ends, only those parts of dest-string refer-
enced during statement execution change. The rest of dest-string contains

the same data as before the STRING statement executed.

Before it moves each character to dést-string, the STRING statement tests
the value of pointr. If it is less than one _or greater than the number of
character positions.in dest-string, the STRING statement:

a. Moves no further data to dest-string

b. Executes the ON OVERFLOW phraée stment

14.

15.

¢. Transfers control to the end of the STRING statement if there is no ON
OVERFLOW phrase

Subscripting or indexing evaluation for src-strihg and delim occur just
before the STRING statement examines src-string for its delimiters,

Subscriptihg or indexing evaluation for pointr occurs just before STRING
statement execution. '

Additional References

Section 5.3 - Scope of Statements
Section 5.27 MOVE Statement

Examples

The examples assume these data description entries:

WORKING-STORAGE SECTION,

01
01
o1

TEXT-STRING N PIC X(30).
INPUT-MESSAGE ' PIC X(GBO},
NAME -ADDRESS -RECORD, _

03 CIVIL-TITLE PIC X(5),

03 LAST-NAME PIC X(10),
03~ FIRST-NAME PIC X(10).
03 STREET PIC X(15),
03 CITY PIC X(15),

(continued on next Jayge)

Procedure Division® 3153

.

e

K
STRING EE .
. o . \ N
(Continued) ;
' t | T ! 4
.. % Assume CITY ends Wwith "/ﬁ
y 03 STATE PIC XX. ,
' 03 21 . Jpxc gy,
01 PTR ! PIC 99)
01 .HOLD PTR . PIC 99,
01 LINE‘CDUNT ﬂ |« PIE 99, .
‘| l b -
' o i o
i | i T ; ’ ! 7
1. Usmg both dellmlters and SIZE e
DISPLAY » », | - -
DISPLAY NAME-ADDRESS- RECURD. i

MOVE SPACES TO TEXT-STRING.

5-154

1
| STRING CIUIL-
" "’DELIMITED BY

TITLE DELIHITED By § ».
SILE ‘

|
FIRST-NAME DELIMITED (BY * » . |.

" " |DELIMITED BV 51z

|LAST -NAME DELIMITED BY

INTQ TEXT-STRING.
DISPLAY TEXT-STRING!
DISPLAY STREET.

MOVE SPACES TO TEXTLSTRING.

E .
SIZE °

STRING CITY DELIMITED By n/»
"y " DELIMITED BY SITE
STATE DELIMITED BY SIZE

" * DELIMITED BY

SIZE

ZIP DELIMITED BY SIZE

! INTO TEXT-STRING.
DISPLAY TEXT-STRING,

Results:

Mr. Smith "Irwin
Mr. Irwin Smith

- 603 Main St. -
Merrimack: NH 03054

Miss Lambert Alice
Miss Alice Lambert
1229 Exeter St.-
Boston, MA 03102

Mrs. Gilbert Rose
Mrs. Rose Gilbert

B State Street

New York, NY 10002

Mr. Cowherd Owen
Mr. Quwen Cowherd
1064 A St.
Washington: DC 20002

Procedure Division

603 Main St,

1229 Exeter St

B8 State Street

10684 A St.

Mefrimack/

Boston/

New York/

Hashindton/

NHO30S4

MAO3102

NY10002

DCZo00z

ot

Y ot %

Yy

s W

100

2. Using the POINTER phrase.

MOVE O TO LINE-COUNT.
MOVE 1 TO PTR

GET-WQORD,
IF LINE-COUNT NOT < 4
BISPLAY " " TEXT-STRING

GO TO GOT-WORDS.
ACCEPT INPUT-MESSAGE.
DISPLAY INPUT-MESSAGE.

SAME-WORD.
MOQUVE PTR TO HOLD-PTR.

STRING
(Continued)

STRING INPUT-MESSAGE DELIMITEGD BY SPACE

“+ " DELIMITED BY SIZE
INTD TEXT-STRING
WITH POINTER PTR
ON OVERFLOW
STRING "
INTO TEXT-STRING
WITH POINTER HOLD-PTR
DISPLAY * " TEXT-STRING

MOVE SPACES TO TEXT-STRING

ADD 1 TO LINE-COUNT
MOVE ! .TO PTR
GO TO SAME-WORD.

GO TO GET-WORD.

 GOT-WORDS.

EXIT.

Resuhs:

This
gxamele
demonstrates
how
Thiss example, demonstrates,
the
STRING
statement
can
how, the: STRING: statement,
construct
text
sttinds
can, construct, text.,
using
the
POINTER
phrase
strings., using, the, PODINTER.,
mhrase:

“ DELIMITED BY SIZE

" Procedure Division 5-155

UNSTRING

5.42 UNSTRING Statement

Function

The UNSTRING statement separates contiguous data in a sending field and -
stores it in multiple receiving fields.

General Format

UNSTRING sr¢-string
[DELIMITED BY [ALL] defim [@ [ALL) deiim]]
Eﬂ'_(_){dest-string [DELIMITER IN delim-dest | [COUNT IN countr]} .
[WITH POINTER pointr.]
[TALLYING IN tally-ctr]

[ON OVERFLOW stment [END-UNSTRING] }

src-string .
. is the identifier of an- alphanumerlc class data 1tem It cannot'be
- ~ reference-modified. This field is the sending area.

delim
is 2 nonnumeric literal or the identifier of an alphanumenc data item.
It is the delimiter for the UNSTRING operation.

dest-string _ :
is the identifier of an alphanumeric, alphabetic, or numeric DISPLAY
data item. It is the receiving area for the data from src-string.

delim-dest :
" is the identifier of an alphanumeric data item. It is the recewmg area
for delimiters.

countr.
is the identifier of an elementary numeric integer data item. It con- .
tains the count of characters moved.

pointr
“is the identifier of an elementary numeric mteger data item. It pomts
to the current character position in src-string.

{continued on next page)

Procedure Division 5-159

102

UNSTRING.

(Continued)

2. The symbol P cannot be used in the PICTURE character -string for

tally-ctr
‘is the identifier of an elementary numeric integer data item. It ¢counts
the number of dest-string fields accessed during the UNSTRING
operation.

stment ‘
is an imperative statement.

Syntax Rules

1. Literals can be any figurative constant other than “ALL literal.”

dest.string.

3. Polintr must be large enough to contain a value one greater than the size of

src-string.

4. The DELIMITER IN and COUNT IN phrases can be used only if there is a

DELIMITED BY phrase.

General Rules

1. Countr represents the number of characters in src- striﬁg isolated by the
delimiters for the move to dest-string. The count does not include the

-_ delimiter characters.
2. When delim is a figurative constant, its length is one character.

3. When the ALL phrase is present:

a.- One occurrence, or two or more contiguous occurrences, of delim
(whether or not they are figurative constants} are treated as only one

occurrence.

b. One occurrence of delim is moved to delim-dest when there is a

DELIMITER IN phrase.

4. When any examination finds two contiguous delimiters, the current

dest-string is filled with:

a. Spaces if its class is alphabetxc or alphanumeric

b Zeros, if its ciass is numeric

5. Delim can contain any characters in the computer character set.

given order, to qualify as a delimiter.

5-160 Procedure Division

Each delim is one delimiter. When delim contains more than one charac-
ter, all its characters must be in src-string, in contiguous positions and the

7.

8.
9.

- 10,

11.

12,

13.

14,

15.

16.

163 'UNSTRING
' - (Continued)

When the DELIMITED BY phrase contains an OR phrase, an “OR" condi- -

tion exists between all occurrences of delim. Each delim is compared to
src-string. If a match occurs, the character(s) in src-string ‘is a single -
delimiter. No character(s) in src-string can be part of more than one
delimiter. -

Each delim appl:es to src-stnng in the order 1t appears in the UNSTRING
statement.

-When execution of the UNSTRING statement begins,_;‘.he current receiving

area is the first dest-string.

If there is a POINTER phrase, the string of characters in src-string is
examined, beginning with the position indicated by pointr. Otherwise,
examination begins with the leftmost character position.

If there is a DELIMITED BY phrase, examination proceeds to the right
until the UNSTRING statement detects delim. (See General Rule 6.)

If there is no DELIMITED BY phrase, the number of characters examined
equals the size of the current dest-string. However, if the sign of
. dest-string is defined as occupying ‘a separate character position,
UNSTRING examines one less character than the size of dest-string..If
dest-string is a variable-length data item, its current size determmes the
number of characters examined.

If the UNSTRING statement reaches the end of src- étrlng before detecting
the - delimiting condition, exammatlon ‘ends with the last character .
exammed -

The characters examined (excluding delim) as just described are:
a. Treated as an elementary alphanumeric data item

b. Moved to the current dest-string according to the MOVE statement
rules

When there is a DELIMITER IN phrase, the delimiter is:

a. Treated as an elementary alphanumeric data item
b. Moved to delim-dest according to the MOVE statement rules

If the delimiting condition is the end of src-string, delim-dest: is
space-filled. : :

‘The COUNT IN phrase causes the UNSTRING statement to:

a. Count the number of characters examined (excluding the delimiter) .

b. Move the count to countr according to the elementary move rules

- Procédure Division 5-161

UNSTRING
(Continued)

17.

18.

19.

20

21.

104

When there is a DELIMITED BY phrase, UNSTRING continues examining
characters immediately to the right of the delimiter. QOtherwise, examina-
tion continues with the character immediately to the right of the last one
transferred. :

After data transfer to dest-string, the next dest-string becomes the cur- .
rent receiving area. :

The process described in General Rules 11 through 18 repeats until either:

a. There are no more characters in src-string.

b. The last dest-string has been processed

The UNSTRING statement does not initialize pointr or tally-ctr. The
program must set their. initial values before executing the UNSTRING.
statement.

The UNSTRING statément adds one to pointr for each character it exam-
ines in src-string. When UNSTRING execution ends, pointr’ contains a

- value equal to its beginning value plus the number of characters the

23,

26.

28.

. statement examined in src-string.

22,

At the end of an UNSTRING statement with the TALLYING phrase,
tally-ctr contains a value equal to its beginning value plus the number of
dest-string fields the statement accessed

An overflow condition can arise from exther of these conditions:

a. When the UNSTRING statement begins, the value of pointr is less than
one or greater than the number of characters in src-string.

b. During UNSTRING execution, all dest-string fields have been pro-
cessed, and -there are unexamined src-string characters. '

. When an overflow condition occurs, the UNSTRING operation ends. If’

there is an ON OVERFLOW phrase, stment executes. Otherwise, control
passes to the end of the UNSTRING statement. '

. Subscripting or indexing evaluation for src-string, pointr, and tally-ctr

occur only once, just before the statement transfers any data.

Subscripting or indexing evaluation for delim occurs only once, jUSt before
the statement examines src-string for its set of delimiters.

. Subscripting "or indexing evaluation for dest-string, detim-dest, and

countr occur just before the statement transfers-data to any of these data
items. .

If there is a DELIMITED BY phrase and the size of dest-string is zero
characters, no characters are moved. However, delim-dest contains the
matched delimiter, and countr contains the character count.

5-162 Procedure Division

. UNSTRING
~ (Continued)

<

29. If there is no DELIMITED BY phrase and the size of dest-string i zero
~ characters, no characters are moved. The value of pointr does not change.”
UNSTRING continues with the next dest-string.

30. If the size of dellm is zero characters delim does not match any characters
in src-string.

Additional References

Section 5.3 Scope of Statements
Section 5.27 MOVE Statement

Eiamples
The examples assume these data descriptions:

WORKING-STORAGE SECTIDN.

01 INMESSAGE PIC %(¢Z0).

01 THEDATE.
03 THEYEAR "PIC XM JUST RIGHT.
03 THEMONTH PIC XX JUST RIGHT.
03 THEDAY .PIC X¥ JUST RIGHT.

01 HOLD-DELIM PIC XX,

0y PTR PIC 99.

01 FIELD-COUNT PIC 99.

01 MONTH-COUNT PIC 33.

0t DAY-COUNT PIC 99,

01 YEAR-COUNT PIC 99,

1. .‘With OVERFLOW phrase.

DISPLAY "Enter a date: " NO ADVANCING,
ACCEPT INMESSAGE.
UNSTRING INMESSAGE
DELIMITED BY "-" OR /" OR ALL " "
INTO THEMGONTH DELIMITER IN HOLD-DELIM
THEDAY DELIMITER IN HOLD-DELIM
THEYEAR DELIMITER IN HOLD-DELIM
ON OVERFLOW MOVE ALL "0" TO THEDATE.
INSPECT THEDATE REPLACING ALL " * 'BY "o",
DISPLAY THEDATE. '

Results:

Enter a date: 6/13/80
800613

Enter a date: G5-13-80
800613

Enter a date: 6-13 BO
800613 -

Enter a date: B/13/8B0/2
000000

Enter a date: 1-2-3
030102

.Procedure Divisiori 5-163

106
UNSTRING
(Continued)

2. POINTER and TALLYING phrases.

DISPLAY "Enter two dates in a row: " NO ADVANCING.,
ACCEPT INMESSAGE. ’ :
MOVE 1 TO PTR., =
PERFORM DISPLAY-TWO 2 TIMES.
: GO TO DISPLAYED-TWO,
- DISPLAY-~-TWO.
MOVE SPACES TO THEDATE.
MOWE O TO FIELD-COUNT.
UNSTRING INMESSAGE
DELIMITED BY “-* OR “/" OR ALL " " '
INTO THEMONTH DELIMITER IN HOLD-DELIM
THEDAY DELIMITER IN HOLD-DELIM
. THEYEAR DELIMITER IN HOLD-DELIM
WITH POINTER PTR
TALLYING IN FIELD-COUNT,

INSPECT THEDATE REPLACING ALL " " BY "O",
DISPLAY THEDATE * " PTR “ FIELD-COUNT.
DISPLAYED-TWD., ‘ ‘
EXIT.
Results:

Enter two dates in a row: B/13/80 8/15/840
800613 09 03
800815 21 03

Enter two Jates in a row: 10 15 6O-1 1 81
B01013 1¢ 03
810101 21 03

. Emter two dJates in 3 row: 6/13/80-12/31/80
800613 08 03 C
801231 21 03

Enter two dates iIn a rows 5113150-12/31
BOOB13 09 03,
Q01231 21 02

Enter tweo dates in a row: G/13/780/12/31/80
800613 09 03 .. :
801231 21 03

3. With COUNT phrase.

DISPLAY "Enter two dates in a row: " NO ADVANCING,
ACCEPT INMESSAGE.

MOVE 1 TO PTR.

PERFORM DISPLAY-TWO 2 TIMES.
GO TO DISPLAYED-TWO.

{continued on next page)

5-164 Procedure Division

f) 7 -« !

107 |

UNSTRING
* {Continued)

DISPLAY-THO.
MOVE SPACES TO THEDATE.
MOVE O TO FIELD-COUNT MONTH-COUNT DAV-COUNT YEAR-COUNT.
UNSTRING INMESSAGE
DELIMITED BY “"-" OR
' INTO THEMONTH
DELIMITER IN HOLD-DELIM COUNT MONTH-COUNT
THEDAY DELIMITER IN HOLD-DELIM COUNT DA-—CDUNT
THEYEAR

1] /" OR ALL [RET

DELIMITER IN HOLD-DELIM CUUNT YEAR-COUNT
WITH POINTER PTR
TALLYING IN FIELD-COUNT.
INSPECT THEDATE REPLACING ALL " " BY "oV,
DISPLAY THEDATE " " PTR " " FIELD-COUNT
" 3 " MONTH- CDUNT "-" DAY-COUNT "-" YEAR-COUNT.

DISPLAYED-TWO. -

EXIT.
Results:
Enter two dates in a row: G/13/80 B8/15/80
BOOG13 09 7 93 1 01-02-07
B0O0OB1S 21 03 : 01-02-02
.En{er twoe dates {n a row: 10 15 B0-1 1 81
801015 10 03 @ 02.02-02
810101 21. 03 : 01-01-02
Enter two dates in a row: 6113/80;12/31/80
800612 09 03 : 01-02-02 . -
801231 21 03 : 02-02-02 :
Enter two dates in a row: 6/13/80-12/31
800613 09 03 : Ul O" 02
001231 21 02 : 02-02-00
Enter two dates in a row: G/13/80/12/31/80
BOOB13 05 03 @ 01-02-02
BO1231 21 03 3 02-02-02

5-165

- Procedure Division

USE | 105 o o o
‘ : | ‘ . | :]
5.43 USE Statement | ' o o
' Function | ' : o E

The USE qtatement epemf“es Declarative procedures to handle input- output . B

errors. These procedures supplement the standard procedures in the COBOL
Run-Time System and VAX-11 RMS. :

General Format

) file-name ...
- EXCEPTION _ INPUT
USE AFTER STANDARD PROCEDURE ON OUTPUT
ERROR -0

m
x
|
m
rad
o
"'\‘___-/‘ ‘
—

file-name

is the name of a file connector described in a File Descrlptlon entry in
the Data Division. It cannot refer to a sort or merge file.

aa.

P)

Syntax Rules

1. A USE statement can be used only in a sentence immediately after a e !
section header in the Procedure Division Declaratives area. It must be the . o
anly statement in the sentence. The rest of the section can contain zero, .

one, or more paragraphs to define the Declarative procedures.

Lo

2. The USE statement itself does not execute It defines the condmons that
cause execution of the Declarative. -;.f_’

=

3. ERROR and EXCEPTION are equivalent and interchangeable. - 1

—

General Rule .' # - . ' . ()

1. A Declarative executes automatically either:

a. After standard input-output error processing ends

 b. When an invalid key or at end condition results from an iﬁput-output
statement that has no INVALID KEY or AT END clause

2. [If there is an applicable USE AFTER EXCEPTION procedure, it executes
' whenever an input or output condition occurs that would result in a non-
zero value in a FILE STATUS data item. However, it does not execute if:
(1) the condition is invalid key and there is an INVALID KEY phrase or
(2) the condition is at end, and there is an AT END phrase.

3. A Declarative cannot refer to a nondeclarative procedure.. In addition,
‘a nondeclarative procedure cannot refer to a Declarative. However,

PERFORM statements can refer to a USE statement or procedures assoct- \)
ated with it.

5-166 Procedure Div_ision

109 - USE
(Continued)

After a Declarative executes, control returns to the next executable state-
ment in the invoking routine, if one is defined. Otherwise, control trans-
fers according to the rules for Explicit and Implicit Transfers of Control.

One input-output error cannot .cause more than one USE AFTER'

- EXCEPTION procedure to execute

More than one USE AFTER EXCEPTION procedure can apply to an input-
output operation when there is one procedure for file-name and another

- for the applicable open mode. In this case, only the procedure for

file-name executes.

_If an input-output error occurs and there is no applicable USE AFTER

EXCEPTION procedure, the image terminates abnormally.

A program must not execute a statement in a USE AFTER EXCEPTION
procedure that would cause execution of a USE AFTER EXCEPTION pro-
cedure that had been previously executed and had not yet returned con-
trol to the routine that mvoked it.

Additional References

Section 5.5.2 Explicit and Implicit Control Transfers

Examples

PROCEDURE DIVISION.
DECLARATIVES,
FILEA-PROBLEM SECTION. USE AFTER STANDARD ERROR PROCEDURE

ON FILEA.

- PROCA.
IF FILEA-STATUS .,.
. ALL-EXTEND-PROBLEM SECTION.

USE AFTER EXCEPTION PROCEDURE ON EXTEND,

PROCA.

DISPLAY ...

1-0-PROBLEM SECTION, USE AFTER ERROR PROCEDURE ON 1-03,
PROCA. :

DISPLAY

END DECLARATIVES.

1.

If any input-output statement for FILEA results in an error, FILEA- ‘

. PROBLEM executes.

If an error occurs because of an input-output statement for any file open in

‘the extend mode except FILEA, ALL-EXTEND-PROBLEM executes.

If an error occurs because of an input-output statement for any file open in

‘the I-O mode except FILEA, I-O-PROBLEM executes.

‘Procedure Division 5-167

WRITE

110

5.44 WRITE Statement

Function

The WRITE statement releases a logical record to an output or input-output
file. It can also position lines vertically on a logical page. '

General Format

Format 1

WRITE rec-name [FROM src-item]

LINE
BEFORE advance-num
o ADVANCING LINES

AFTER
top-name
{PLGE }
END-QF-PAGE ' :
AT stment { END-WRITE)
EOP —

Format 2

WRITE rec-name [FROM src-item |

[mvmo KEY stment [END-WRITE 1]

rec-name

is the name of a logical record described in the Data Division File
Section. It cannot be qualified. The logical record cannot be in a
Sort-Merge File Description entry.

src-item .
is the identifier of the data item that contains the data.

advance-num

is an integer or the identifier of an unsigned integer data item, Its
value can be zero. .

top-name
is 8 mnemonic-name equated to *C01” in the SPECIAL-NAMES par-

agraph of the Environment Division. It represents top-of-page and is
equivalent to the PAGE phrase.

stment
is an imperative statement.

5-168 Procedure Division

L

. !
e

o

PUAP Pyt~ il = g et - 1 A

111 WRITE
B ' : (Cont_imtqed)'

Synmtax Rutes

Format 1 n_msf be used for sequential files.
Format 2 must be used for relative and indexed files. .

If the File Description entry coniaining rec-name has a LINAGE clause,
the WRITE statement cannot have an ADVANCING top-name phrase.- -

If there is an END-QOF-PAGE phrase, the File Description entry containing -
rec-name must have a LINAGE clause.

The words END-OF-PAGE and EOP are equivalent.

In Format 2, there must be an INVALID KEY phrase if there is no applica-
ble USE AFTER EXCEPTION procedure for the file.

General Rules -
AN Files

1.

2.

7.

The file must be open in the output I-0,0r extend mode when the WRITE
statement executes. : :

The record is no longer available in rec-name after a WRITE statement
successfully executes. However, if the associated file-name is in a SAME
RECORD AREA clause, the record is available in rec-name. It is also
available in the record areas of other file-names in the same SAME
RECORD AREA clause. S

For mass storage files, the WRITE statement does not affect the Next

Record Pointer.

The WRITE statement updates the value of the FILE STATUS data item
for the file.

A file's maximum record size is set when it is created. It cannot be
changed later.

On a mass storage device, the number of characters required to store a
logical record in a file depends on ﬁle organization and record type. See
Technical Notes.

WRITE statement execution releases a logical record to RMS.

Sequential Files

8.

The successor relationship of records in a sequential file is set by the order
of WRITE statement executions that create the tile. The relationship does
not change, except when records are added to the end of the file,

Procedure Division 5-169;

WRITE

{Continued)
9.
10.
11,
12,
5-170

11<

For a sequential file open in the extend mode, the WRITE statement adds’

records to the end of the file as if the file were open in the output mode. If
the file has records, the first record written after execution of an QPEN
statement with the EXTEND phrase is the successor of the file's last
record.

When a program tries to write beyond a sequentlal file's externally defined
boundaries, an exception cond:tlon exists:

a. The contents of the record area are unaffected.

b. The value of the FILE STATUS data item for the file indicates a
boundary violation.

c. Ifa USE AFTER EXCEPTION procedure applies to the ﬁle it executes.

d. If there is no applicable USE AFTER EXCEPTION procedure, the pro-
gram terminates abnormally.

If the end of a reel/unit is recognized and the WRITE does not exceed the
externally defined file boundanes

a. A reel/unit swap occurs

. b. The Current Volume Pointer pomts to the file’s next reel/unit

The ADVANCING and END-OF-PAGE phrases control the vertical posi--

. tioning of each line on a logical representation of a printed page. If there is

no ADVANCING phrase, the default is AFTER ADVANCING 1 LINE.
If there is an ADVANCING phrase:

a. The WRITE statement advances the logical page the number of hnes
specified by the value of advance-num. :

b. The BEFORE phrase causes the WRITE to present the line before ad-
vancing the logical page.

¢. The AFTER phrase causes the WRITE to present t;,hé line after advanc-
ing the logical page. ‘

d. The PAGE or top-name phrase presents the line before or after (de-
pending on the phrase) positioning the device to the next logical page.

If the associafed File Description entry has a LINAGE clause, the de-
- vice is positioned to the first line that can be written on the next logical
page, as described in the LINAGE clause.

If there is no associated LINAGE clause, the device is positioned to the
first line on the next logical page.

Procedure Division

P

Ma

13.

14.

- 15.

16.
. operates as if the FOOTING phrase value were the same as the number of

17.

119 WRITE
113 " (Continued) -

If page has no meaning for the associated device, PAGE and top-name
are the same as ADVANCING 1 LINE. However the BEFORE and -
- AFTER phrases affect’ operatlon sequence. :

If the end of the logical page is reached during execuﬁon of a WRITE
statement with the END-OF-PAGE phrase, stment executes. The associ-
ated LINAGE clause specifies the logical end.

An end-of-page condition is reached when a WRITE statement with the
END-OF-PAGE phrase causes-printing or spacing in the page body footmg
area.

The condition occurs when the'WRITE causes the LINAGE-COUNTER to
equal or exceed the value in the LINAGE clause FOOTING phrase. Stment

.then executes after execution of the WRITE.

An automatic bage overflow condition occurs when the page body cannot
fully accommodate a WRITE statement (with or without the
END-OF-PAGE phrase).

The condition occurs when WRITE statement execution would cause the
LINAGE-COUNTER to exceed the number of lines in the page body speci-
fied in the LINAGE clause. When'this happens, the line is presented on the
logical page before or after (depending on the phrase) device positioning.
The device is positioned to the first line that can be written on the next
logical page (as described in the LINAGE clause). After execution of the
WRITE, stment executes,

If there is no LINAGE clause FOOTING phrase, the WRITE statement

lines on the logical page. That is, the end-of-page condition occurs when
the WRITE causes the LINAGE—COUNTER to equal the number of lines on
the logical page.

If there is a FOOTING phrase and a WRITE statement would cause the
LINAGE-COUNTER to exceed both the number of lines in a logical page
and the value in the LINAGE clause FOOTING phrase, the WRITE operates
as if there was no FOOTING phrase

Relative Files

18.

‘When a relative file with sequential access mode is open in the output

" mode, the WRITE statement releases a record to RMS. The first record has

a relative record number of 1. Subsequently released records have relative
record numbers of 2, 3, 4, and so on. If rec-name has an associated

‘RELATIVE KEY data item, the WRITE places the relative record number

of the released record lnto it.

I
Procedure Division 5-171

WRITE
(Coqtinued)

19.

21,

22,

When a relative file with random or dynamic access mode is open in the
output mode, the program must place a value in thé RELATIVE KEY data
item before executing the WRITE statement. The value is the relative
record number to associate with the record in rec-name. The WRITE
statement releases the record to RMS.

. When a relative file is open in the extend mode, the \WRITE statement

releases a record to RMS. The first record has a relative record number
one greater than the highest relative record number existing in the file.
Subsequent records have consecutively higher relative record numbers. If
rec-name has an associated RELATIVE KEY data item, the WRITE places
the relative record number of the released record into it.

When a relative file is open in the I-O mode and the access mode is
random or dynamic, the program must place a value in the RELATIVE
KEY data item before executing the WRITE statement. The value is the
relative record number to associate with the record in rec-name. Execut-
ing a Format 2 WRITE statement releases the recurd to RMS.

The invalid key condltxon exists when either:

a. The access mode is random or dynamic, and the RELATIVE KEY data
item specifies a record that already exists in the file

b. The WRITE tries to write a record beyond the externally defined file

boundanes

. When the invalid key condition is recognized, WRITE statement execution

is unsuccessful.

a. The'contents of the current record area are not affected.

-b. The WRITE statement sets the FILE STATUS data item for the file to

indicate the cause of the condition.

c. Program execution continues according to the rules for the invalid key
condition.

indexed Files

24.

25,
26.

Executing a Format 2 WRITE statement releases a record to RMS. The
contents of the Record Keys enable later record access based on any de-
fined key.

The value of the Prime Record Key must be unique in the file’s records.

The program must set the value of the Prime Record Key data itém before
executing the WRITE statement.

5-172 Procedure Division

T T e e L T T S T T T T

t D
\ .
\w_/‘

27.

28.

31.

 WRITE
115 : (Continued)

If the file is open in the sequential access mode, the program must release
records in ascending order of Prime Record Key values. If the file is open
in the extend mode, the first released record must have a Prlme Record
Key value greater than the highest present in the file.

If the file is open in the random or dynamlc access mode, the program can

release records in any order.

. When the File Description entry has an ALTERNATE RECORD KEY

clause, the Alternate Record Key value can be nonunique only if there is a
DUPLICATES phrase. When a program later accesses these records

sequentially, the retrieval order is the same as the order in which they

were written.

. The invalid key condition is caused by any of the following:.

a. The file is open in the sequential access mode and in the output or -

extend mode, and the Prime Record Key-value is not greater than the
Prime Record Key value of the previous record.

b. The file is open in the output or [-O mode.-and the Prime Record Key
value duplicates an existing record’s Prime Record Key value.

¢. The file is open in the output, extend, or I-0 mode, and the value of an

Alternate Record Key for which duplicates are not allowed duplicates.

the value of the corresponding data item in an existing record.

d. The WRITE tries to write a record beyond the externally defined file

boundanes

When the invalid key condition is recognized, WRITE statement execution
is unsuccessful.

a. The contents of the current record area are not affected.

b. The WRITE statement sets the FILE STATUS data item for the file to
indicate the cause of the condition.

c. Program execution continues according to the rules for the invalid key
condition.

-

If there is an applicable USE AFTER EXCEPTION pfdcedure. it executes
whenever an input or output condition occurs that would result in a non-
zero value in a FILE STATUS data item. However, it does not execute if:

(1) the condition is invalid key and (2) there is an INVALID KEY phrase.

Procedure Division . 3-173

—_—

sty A
it

PRLYVSI

WRITE | - 1i6
(Continued) | '

b

\

Technical Note

" WRITE statement execution can result in these FILE STATUS data item

values: _ _ -
FILE File Access |
STATUS ° Organization Method Meaning .
(1)) All All Successful
02 Ind All Created duplicate Alternate Key :
21 Ind = Seq Attempted non-as;:ending key value (invalid key) — }
2 Ind, fiel All Duplicate key {invalid key) . h U ;
24 Ind, Rel All Boundary violation (invalid k.ey)
M | . Seq - Seq Boundary violation
92 Ind, Rei" All Record locked by another program
94 Al R All File not open or incompatible open mode
30

All All All other permanent errors

Additional References

Section 5.3 Scope of Statements
Section 5.8.9 ' I-Q Status

Section 5.8.10 Invalid Key Condition S 1
Section 5.8.12 FROM Option : :_ . : ' i
Section 5.29 OPEN Statement ' B

5-174 - . Procedure Division

1 DT 77

5!

004

L\ DIVISION DE EDUCACION CONTINUA
) FACULTAD DE INGENIERIA. U.N.A.M.

CURSO: LENGUAJE COBOL ENFOCADO A LA
- MAQUINA VAX -11
DEL 2 AL 6 DE DICIEMBRE DE 1985
DIRIGIDO AL PERSONAL PROFESIONAL DE
DIRECCION. GRAL. DE DESAROLLO TECNOLCGICO
S.C.T

MEXICO. D.F

OPCIONES DE LA

ENVIRONMENT DIVISION _

DICIEMBRE DE 1985.

Palacio de Mineria Calle de Tacqba 5 ' primer piso Deleg. Cuauhtemeoc 06000 Méxic@ D.F. Tel.: 521-40-20 Apdo. Postal M-2285

i
Urpinnes de . l

Form Manazdement Swstem (FMS)

" \
’ |
.
.
. I
1
|
“
|
|
|
' .
LN
i
r ! d *
s -,
-
t
. .
. . \
'
[
'
i
hd E]
it . ” 1 E
” " i !
| M T . s v it
. B Ve . M
L - . L. . . 1y
W y e TR . ’ :
! o - . .
L ; . b . ol :
¥ \ .
- e

e e 3

BRI

Eai

Chapter 1 - _
lntroductlon to VAX-11 FMS

1.1 Overview

FMS is DIGITAL's Form Mansgement System. FMS software contains the

tools for developing form applications and running them on VT100 terminals.

Printed forms have been the most comman tool for eollecting and transmit-

. tinz dnta in an orderly manner, FM8 software now bringa the speed, conven-

. ience, sccuracy and low cost of computerized prucessing to users who have
been using prinled forms.

FMS was previously available only ob RT-11, RSX-1IM and
RSX-1IM-PLAJS systems. In addidon, many FMS application programs de-
veloped for RSX-11M or RSX-1 IM-PLUS systems cnhuld be run on
RSX-115. The FMS software described in this manusl is designed to run on
VAX/VMS V2.0. : o
Forma ore designed by typing them directly onto the terminal screen. Neither
layout charts nior a special forms design langunge is required. FMS associates
, constont data with the farm, not with the application prozram. resuliing in
!) simplified sppiication nrogram maintenance and incressed application pro-
gram Mexibitity. Forms can |ater be modified without the need to recompile
- the application program,) .
Form application progrems can be written in any lenguage that ruma oh
VAX/VMS. FMS provides language support for VAX-11 BASIC, VAX-11
COBOL, VAX-11 FORTRAN, and YAX-1} PL/L :
. FMS softwsre bas thres main compoaents for developing and executing form
application programs: -

* The Form Editor (FED) ,
* The Form Utility (FUT) !
* The Form Driver (FDY)

1-1

1.1.1 The Farm Eduor

The Form Editor {FE D) snmphﬁes deqlpmng, modifying, and storing form
descriptions for video display. Your screen always shows the current state of
the form you are working on. Keypad and keyboard funetions provide ways for
you to specily video display characteristics for constant text or fields that
contain picture characters. To help operators, you can include in the form
descriptions short, helpful explanatlnns ehout Individual l'e!ds and ahout
each form as a whale.

When designing forms, you assign form nanes, ﬁeld names, and refer to data
that will le used (but not displayed) by the Form Driver when the form is
used by an application. The desired operator response to information dis.
played or datn to be entered on forms Is controfled by the actual design of the
form and the specific applucslion requirements, Chapter 2 of this manual
describes the Form Editor in detail,

1.1.2 The Form Utitity

The Form Utility (FUT) allows you to create versions of form descriplions
that are suitable for hard-ropy listings, ta create and modify form libraries,
. and to list the names of forms contained in 8 form library. The Form Utllity
nlso gencrotes COBOIL data division code suitable for copying into a COBOL
pgram to enrrespand to a form definition. Chapter 3 of this manual de-
scribes the Form Litility in detail.

1.1.3 The Form Driver

The Form Driver {FDV) is & sot of submutines that permits your application
prograin uraceess forms that you ercated using the Form Editor. Application
programs access forms by issuing Form Driver calls that are imbedded in the
program and are written in the source langunge of the program. All Form
Driver cails refer to specific forms and/or fields within forms by names that
you assign during the form editing process, The Form Driver performs field

and character validation for operator input based on the form definition (vali-
dntion is hased on picture validation charncters and field ottributes). The

Yorm Driver b responds to sperator HELP requests by displaying help text
associnted with the furm and field bemg processed. Chapters 4 lhmugh 7 of
this manual describe the Form Driver in detail.

1.2 Developing Form Applications

Th typical development eycle for form application programs han seven
atage:

. PLAN

Study the existing process thit the VAX-11 FMS application will improve;

* [iat the data that operators can provide; list the hardware resources that
operator sites will have; describe the ekills that operators have and the

1-2 Introduction to VAX-11 PMS

additional shills they will need; specify the features that FMS forms for the
applicatinn are to have and the processes that the l'orm application pro-
grams are to perform.

¢ DESIGN FORMS

Use the Form Editor to tay out and modily the I'orrm that the form applica-
tian programs will use; use the Form Utilily to print form descriptions for
reference, tn store forma in s form library file, and w lut the names of forma
that are in a furm library file.

s WRITE PROGRAMS

Use the Form Driver calls in the form application to pmu form dump- .
tions, to handle form-related terminat 10, and to chack (to & limited ex-

tent} the validity of operator responses.
+ DEBUG PROGRAMS WITH FORMS

Confirm that all processes that use the application’s forms work.
o VALIDATF, ON OPERATOR SITE SYSTEMS '

Confirm that the forms and application program w!’lwam work on each type
_of targel system on which it will be used.

¢ PREPARE, APPLICATION S\'STEM DOCUMEN’I‘ATIO\

Provide complete docurnentation for Opei'!mfl who will use the FM$ I'oﬂm
and application program software.

* DISTRIBUTE

Package and distribute the FMS forms, application prgram snitware, and
uger dncumenlaliun 8k A comple!e application sptem puckage,

The tw major slages required when develeping form applications are de-
signing forms and writing application programs. Chapter 2 contains the infor-
matien that you will necd in order to design and mindify forms. After forms
have heen designed, the Form Utility helps you to create and maintain form
library files; the Form Utility is described in detail in Chapter 3.

The npplication program writing stuge deals with the use of the Form Driver.
Details for writing Form Driver application prograros are contained in Chap-
ters 4 through 8, These chapters include information on Form Driver interac-
tion beiween forms and the operator as contrulied by Form Driver calls issued
by the application program, application pmgrammmg requirements and con-
cepts, Form Driver interface to various programming languages, the Form
Driver calls, programming techaiques and #xamples, and building and run-
ning form application programe,

Introduction to VAX-11 FMS 1-3

Chapter 2 ‘
The VAX-11 FMS Form Editor (FED)

,’ 2.1 Overview

The FMS Form Editor aliows yau {0 create, modify, and store customized
" forms. Your application progrems can then use these forms Lo collect dota
entered Yy an operatnr at a video tertminal.

Creating or editing a farm with the Forin Editor is an interselive and iterntive

process. You do not need lo know all the details or all the modilicatinns that

you intend 1o specify for a form. The Form Editor Iets you test various possi-

; bilitias. cirverve their apprarance on the screen, and choose the design that
- you comider most successful.

P

Tl product of your werk with the Form Editor is a form description that can
be saved in o file ar form librazy. The form description can be retrieved from
the file or foran lihrary for additions or changes. You can chanpe individusl
fields 07 text portions of the form without affecting other ficlds or text.

For example, you might want to translate the text of a lorn into another
I#nguage, reposition items on the screen Lo make the form mote atiractive to
s the eye or ensier for an operator to handle, rdd or remove fields, or supply”
additional help text. You can maoke (hese and other chenges by ealling the
Form Editor, ediring the screen image of the {oim to make the desired chonges
in the form deseription. and saving the madified form description in o form .
descriptica file, ’) ~

The purpose of the form description i 1o pravide information to another
software companent called the Form Driver. The Form Diver handles the
interaction of the terminal oparatar with 1hie furm dlaplayed on the screen end
with Lhe application progratm. The Forin Driver is deseribed in Chapter 4.

In summary, the Form Editor allowa you to perform these operations:

t. Creation ang modification of a form’s screcn image by means of the ter-
" minal’s main keyboord and the text editor koypad. .

2. Siorage of {orm descriptions in fiies, and rstriaval of the form description
files from form libraries.

3

"1

* Issuing Form Editor Commnnds

You can use gny of several commandr to enter a particular phase of the
Form Editor. Table 2-1 summarizes the commands. You type the com-
mends in response to the COMMAND: prompt. If you type HELP in re.
sponse to the COHMAND ¢ prompt, the Form Editor displays the valid re-
aponses to the prompt.

Table 2-1: FED Command Summary

Abbrevigied
Command Cemmand Function
EDIT ED. Create or edjl the lorin's screen
: imnge.)
ASSIGN loprisn] A Amign fiedd srtributes, (At-
. tributes” are cheracteristios of
fields that you sssign’ with
FED for uxe by the Form
) Driver.)
where oplion can be ona of
the tollnwiag:

ALL : . AA Assign attributes for old and
new fields,

NEW AN Axsign atiributes for newly cre.
ated ficlds. .

FIELD fidnamm A F fidnem A=sign attributes for the fGeld

_ called fldnam.

FORM F Asnign form wide attributles.
{Form wide altributes are at-
tributes that apply to pn entire
firm rather than a particular

. feld.)

HELP . H Lists 1the commands aveilable

© in the {orm editor,

NAME : N * Farer and edit nnined data.
{Named dato i infermation
that is to be axsorciated with & |

© form But mat displayed with
Tt} ’
SAVE : Nona Store the form and return 10
. the FEOD : prempt. Both input
end sutpul files are preserved.
Qurr - Mone Cancel s aesslon without

saving eutpul files and retum
to the PED> prompt The
input (Ue is prestrved,

2~4 The VAX-11 FMS Form Editor (FED)}

. |

p—

* File Specifications

The Form Editor's output alwaya goes to a form file, A form file containg. -
one form description. (To create or update form libraries use the Form
Utility IFQ’I‘). deacribed in Chapter 3.} -

To create a new form, use the /CR ophon
FED> /CRED ‘

To edit & form contained in a form fils, typs the name of the form file, for this
example “VENDOR". - :

FED > VENDORSD

.To extract a form from a form library fotvediting. type the name of the library

file and respond to FED's Form name? prompt with the name of the form.
The default file type js .FRM, indicating 8 form file. If the file type is .FLB,

.you must type .FLB:

FEDDCLrLIS . FLBEY
Foru nawe? FIRSTHED
If the specified form is not found, FED repeats the Form name? prompt. If

you press the &% key in rexponse to the Form nawe T prompt, FED displays
the FED> prompt agoin and. wails for a hew command line.

It is not necessary to distinguish a form file from a library file on the com-
mand line. FED determines whether.the input file is & form file or & library

- file, and proceeds accordingly.

- 2.4 Form

If you want te know the version number of the Fb;m Editor you nre using, you
can ask the Form Editor to display its identification measage by typing:

FEO: 7 IoND

The defauit file, type for the input file is FRM (a form file). If an explicit
v:rsion number is not specified for an input file, FEI? uses the latest version of
the file. : . o .

The autput file that FED creates during an editing session is always a form
file with the file specification “form.FRM", "Form" is the naine of the furm
when the session ends. FED creates the cutput file in the curreat defoult
directory. - . T o

Edltor Commands N 1|

You can type sny one of the commands shown in Tabje 2-1 (The FED Com-
mend Summary) in response to the COMMAND1 prompt. The Form Editor
enters the specified command after you press the ENTEH key on the keypad.
I you want to cancel your last command, type the combination before

- The VAX-11 FMS Form Editer (FED) 2-3

2.2 Form Editor Terminology

2.2.1 Screen Form

The screen form looka like a paper form bul is instead a video display, The
canputer displays a form-by using a form description that apecifics to the
computer which characters to display on the screen.

" 2.2.2 Form Description

The form description is the computer’s specifications of e screen form. It
-specifies which characters to display on the screen as well as the location, size
ard other characteristics of each field. The name of the form and how the
form and its fields ere processed are alan past of the specifications.

2.2.3 Fleld

The field is a set nf ¢contiguons characters {either picture-validation or field-
marker) terminated by a blank, a non-field churacter, an end-of -line delimiter
ot a chenge in video aitributes. A field i3 a formatted blank for some o!’ the
informatinn that a form has heen designed to wark with.

2.2.4 Form Description Flie

_The fonin description file is s computer file that contains only one form de-

scription which may or may no! be complete or accurate. It is a hinary file

that has heen arranged 50 FMS can use it to display & screen form,

2.2.5 Ferm-Library File

The form librery file is & computu- fite containing at least one form descrip-
tien and a directory of the names for each form description. It is a binary file
but ix arranged so individual form descriptions can be accessed by name for
use by FM3.

2.3 Starting the Form Editor.

The Form Editor {FED) requires 8 VT10) terminal. The terminal must be
mnade knewn to the syslom as 8 VT100. Use the 3ET command for this;

¢ 37T TERRIHAL/UTION &%

(Sec the VAX/VMS Unrja tiuide for & description of the SET command.}

The main keyboard petforms normally when you ste uslng the Fotm Edites,
providing vou with 6 means to insert characters, deleis théim, and s on. The
keypad tn the right of the keybeard provides operations spuiﬂcally related to
the Furm Editor,

.- The following opcrations are used to design o form:

2-2 The VAX-11 FMS Foim Editor (FED)

+ Btorling the Form Editor - -

By using the stendard commands to load the Form Editer into memory, you
begin program execution.

Whet the Form Editor prompt (FED >) is displayed on the screen, you may
tvpe in a response. The response describes the form file that you want to
create or edit, or the lihrary that contains the desired form. The response

- requires a prescribed syntas (described in the “File Specification” eection).

To start the Form Editor type:

+ HCR FED &0

You cen create a symbol s you do not have to re-type the command string
every time you want to use the Form Editor.

% FED1=:nCle FED #n

The Form Editor clears the screen, displ;ya the prompt FED) at the bottom

of the screen and accepta a command line,

The Form Editor is built with buffer apace that is sufficient to edit any form.

s Using Keypad Operations

The keypad layout for the Form Editor in Figure 2-1 shows the operations
that are associated with certain keys or key combinations.

Figure 2-1: FED Keypad Layout

'Ulllll'llrl}

BELCHAR

The VAX-11 FM8 Form Editor (FED} 2-3

.

|
|
-
|

e e e

vatt press the ENTER key., If you want to chunge n comunand, use the 600 key
i deleta the charactess that make up the command. You can use €RE) to

cz-’ete tP‘c entire cummand line snd then type in a new command.

You ean type the HELP command to display a list o[the Form Editor com-
mands and their [unctwm .

Begm an editing session with a rough pencil sketch of the form that you want

" to create. You can elzborate the details of the form interactively with the
. Farmy Editor by Inoping back through the command functions {by menns of

the GOLD/COMMAND key sequence} and adiding or deleting teatures gradu-
ally during the develupment of the form design.

-The various command operalions let you contrel the phases of your work

durirg a form editing session snd (o move in an o;dcrly manner from one
phase to another, Any phase enn be entered et any time, The FORM, AS-
SIGN, and NAME phases use the Form Driver to displey and coliect re.
spnges with questinnniaire forms. .

Forin Driver key aperations are active while you are completing any of the

qurestivnnaires. For example, when you are assigning form wide, field, and -

named data attribuies, the TAB key has the effect of moving the cursor Lo the
first character position of the next fjeld, and the BACKSPACE Ley moves the
cursei to the previous feld. Chapter 4, on Form Driver interaction with the
termina! nperator, describes Form Driver key operations in detajl.

2.4.1 Assigning the Form Wide Attilbutes: The FORM Command

FORM places you in the Form Wide Attribule Quesiionnaire. The Form
Tditar displays a questionnaire that enllects the heccmar_', information from
Lo to create & form file.

2.4.2 Editing the Form Dlspi'ayi The EDIT Command

EDIT causes tha Form Editor to enter the EDIT phase. in EDIT vou creets
and modify the screen image of the form. You may type buckground teat,
creaie fields and scrolled areas, and assign some kinds of atiribures, Use the
GOLDYCOMMAND key sequence to return to the COMMAND : prompt.

2.4.3 Assigning the Fleld Attrtbules: The ASSIGN Commands

- ASSIGN with any of its options tells the Form Editor to enter the. field
- attribute assignment phase. When the form is a new one, you usually {ype

ASSIGN after cumpleting the EDIT phase. For each field in the form, the
Form Editor displays a questionnaire that requests field nttributes. If you are
editing z2n-existing form, you only need to fill in field attributes that were not

" nxsigned earlier.

If, during the ASSIGN phau you wish 1o exit befors eninpletion of ell fieid
atiribute assignments, press the period () key on the keypad. This action

" returns you to the CDHHAND 1 prompt and azsigme defauls atiribules to ol
. remaining fiejds.

© 26 The VAX-11 FMS Form Editor (FED)

\-_d

" 2.43.1 For afl Flelds: The ASSIGN ALL Command — Causes the Form Editor

to request altributes fur all fields. To display the quecllonnulre for the next
field, press the ENTER key.

2.4.3.2 For New ond Changed Flelds Dnly; The ASSIGN NEW Command —
- Causes the Form Editor to request attributes for new fields only. To display

the questionnaire for the next field, press the ENTER key.

2433 Fo.r a Specttied Fleld Only: The ASSIGN Fleld Command — Followed by
a fictd name, allows you 1o assign attributes to the field you specify.

2.4.4 Specifylng tho Named Data: The NAME Command

NAME places you in the named dale assigninent phase. The Form Editor
dispinys an Fntry Form that colfects names and data to he associated with
those names. Named data is typicelly used 10 hold infoermstion about a form
in the {orm. description but oumde the form itsell. Named data is not dis-
pluved with a form,

2.4.5 Storing the Farm Description: The SAVE Command

The SAVE command stores the form description that you are working on.in
an output file and relurns you to the FED > or system prompt, depending on
how you :1arled ths piepram.

If field attributes have not yet been assigned to all fields when the SAVE
operation it performed. the Form Editor supplies defauit values for any fields
whose sttributes have been [efl unspecified; a defauit name of ali blanks is
supplled as lhe ﬁrld name.

2.4,] Canceling lhe Sesslon Without Saving the Form; The
- auIT Command

QUIT returns ym: tn the FED > orsystem prompt. The form you were editing

is not saved in the output file; it is desiroyed.

- 2.5- Edit Status Display

When you are in tho EDIT phase, the bottam line (24) of the screen displays
informatioh about the current status of the Form Editor. The format for the
lme is:

i:unsmh Tx7 wON LIN 1 COL 1 WODES: TXT ADY ING ‘(lle! Lll | CoL t
FL)

O BCh 73 §32 FLD BCh OVY 2 5§32

The second line {above) indicates the altemative choice nr the limitations of
the items in the display.

The fields on line 26 are displayed in reverse video.

The YAX-11 FMS Form Bditos (FED) 2-7

2.6 Form

' CURSOR This section indic-ates the line and character that the cursor is

locatad on.

TETFLD The cumsor cheracter in gither a text (TXT) character or a field
{FLC) character,

NOR,SCR The cursor line ia either a normal screen line (NOR) or partof &
scrolled region {SCR). - .

LIN 1-23 The line number at which the eursor is located.
COL 1-132 The column number at which the cursor is iocated.

MODES This section indicates the status of the internal mode indicators
of the editor.

TXT,FLO The cutrent input mode s either text o field.

ADY,BCK The current move mode is either Advance (ADV} or Backup

(BCX).

INS,0¥S The current input mede is either Insert (INS) or Qverotrike
. {OVS). . -

SELECT This section is present anly if a select renge is active, Otherwise,
this partion of the line is blank.

LiN =23 The line number at which the select point ia located.
COL i-122 The column pumber at which the select poim' in jocated,

Editor Operations Reference

Tiis section describes the creation of the form's screen image during the
EIAT phase and the ossignment of all attributes during the FORM, FDIT,
ASSIGN, and NAME phases,

2.6.1 Creating the Form's Screen imzge

The Form Editor includes a text editor for creating and mndilying screen

images. Tre text editor lets you ure standard operations for mode changing,
cursor centrol, and text modilication. .

The Form Editor lets you define fields in the form for data input/output
hetween vour application and the terminal operator. 1t also enalles you to
assign video attribules {such as bold, blink, and underline) to any character or
set of chararters on the terminal screen, and to define a block of lines as &
surolled area.

" 2.6.2 The Text Editor

The keyboard performs like a typewriter when you uze the Form Editar: it lets

you enter and delete charactery. The keypad to the right of the hybmd_

2-8 The VAX-11 FMS Form Editor (FED)

provides operations specifically related to the Form Editor. It is recommended
that you mpke a copy of the keypad layout and keep it at the tetminal.

The text editor provides four kinds of operations:
¢ Mode-Changing Operations

You change modes by pressing the uppropriute. key or key combination on
the keypad. Modes determine placement of characters, movement forward
or backward through the form, and definition of fields and background text,

¢ Cursor Contrel Operations

These operations change the cursor position but do not affect the text. The
cursor may advance only to the margin boundaries. '

O_Text Modification Operations
These operations insert, delete, and modify text.
* Scroll Operation -

This operation permits the definition of a scrofled line. Together with iden-
tical iines that immedintely follow it, the line becomes & scrolied area.

2.6.3 Mode-Changing Operations

The Form Fditor works in raveral modes. The mnde choices are
TEXT/FIELD, INSERT/OVERSTRIKE, and ADVANCE/BACKUP. Only
onz of each pair can be active at one time.

The TEXT/FIELD mndes tell the Form Fditor whether the characters you
enter are hackground text characters for the form (TEXT mede), or the spe-
cial set of field charpclers that define the pictute format of a field (FIELD
mode). The special set of field characters includes feld-markers (such as
stashes and hyphens that delimit fields) and picture-validation characters.

The INSERT/OVERSTRIKE modes determine how the Form Editor places
characters in the form with respect to characters alreedy there.

The ADVANCE/BACKUP modes determine whether the Form Editor exe-
cules ar: operation in & forward (right and downward) or backward (left &nd
upward} direction.

2.6.2.1 TEXTFIELD — Enter TEXT monde by pressing the TEXT key on the

skeypad. Start FIKLD mode by pressing the GOLIVFEELD key requence. In
TEXT mode, the Form Fditor accepts any character as input. It enters any
printable character or space in the background text of the form. The Form
Driver does not see these characters as data. Rather, it trests the characiers a3
cotistant text that Is always displayed on the Form. Return to FIELD mode by
pressing the GOLD/FIELD key sequence. ‘ .

In FIELD mode, the Form Editor accepta as input only the picture-validation
cheracters A, C, N, X, and the digit §, as well as & set of ASCIT field-marker
characters. Picture-velidation characters tell the Form Bditor whether to ac-

The VAX-11 FMS Form Editer (FED) 2-9

iy

ey

e

cept siphabetic (A), elphanumeric (C). numeric {9}, sigued numeric (N), or
any characters (X) as input for each character position in a field. Field-
marker characters, such as the pound sign £4) and the dash (—). are text
characters that you may define as part of a ficld.

If. while in FIELD mode, you enter a character that is neither a ficld-marker

nor a picture-validation character, the Form Editor sounds the terminal bell
and reicela the inpul. The Form Editor accepts a blank as input in FIELD
mode, but does not make it part of the fietd. Field-marker and picture.valida-
tinn characters are {zeated as such only when the Form Editor is explicitly in

*FIELD mode, For example, the digit 9 is associsted with a fizld as a piclure-

validation character if it is typed in FIELD mode; otherwise, it is treated as a
text ch..ractnr

You can change FIELD mode to TEXT mode by pressing the TEXT key

2.6.3.2 ADVANCE/BACKUP — The ADVANCE/BACKUP modes affect the
BLINE {beginping of line) and KOL {end of line) operations. They do not
affect character insertion or deletion.

ADVANCE mode causes the Form Editor to implement operations in the
direction moving from the current cussor posilion toward the end of the lineor
form. You can denctivate ADVANCE mode by pressing the BACKUP key.

RACKUP made causes the Form Editor to implement operations in the direc-
tinn toward 1he beginning of the line or form. You can deactivate BACKUP
made hy pressing the ADVANCE key. -

" 2.6.2.3 INSERT/OVERSTRIKE ~~ The INSERT/OVERSTRIKE modes affect

the way characters are placed or moved when you type or make deletions..

" . INSERT mode places typed characters at the current cursor location and
- moves the cursor Lo the right. Any other characters on the line are moved over

to moke roam for the inserted character. If characters would be lost by being
purhed beyond the margin, the Form Editor sounds the terminal. bell and
rejncu the tnsertion.

If you delete a character in NSPRT mode, the Form Editor removes lhe
chazacter to the left of the cursor and cheracters to the right slide over to close
the space.

You can desctivate INSERT mode by pressing the GOLD/QVERSTRIKE key

seguence.

OVERSTRIKE mode causes the Form Fdltnr ta replace the character at the
current cursor paaition with'the new chavacter Lyped at the terminal, When a
characier is deleted, adjacent characters do not close up the line. The char-

= acter is erased. The delcted charocter is replaced by a blank, and the cursor is

positioned on thal character’s space. You can enter OVERSTRIKE mods by
typing the GOLN/OVERSTRIKE key sequence, -

. Deactivate OVERSTRIKE mode by prezsing the INSERT key.

*2-10 The VAX-11 FMS Form Editor (FED)

2.6.4 Cursor Control Operations .

The following operations change the cuisor's positiun during an editing ses-
sion. L

The cursor symbol (either a solid rectangle or an underline} blinks on-the
character cursor location, A row.column counter in the lower right corner of
the screen displays the character posmon where the cursor symbol is blinking.

Uparrow (1} Press the UI’ARI!OW key to move 1he cursor up one line,
You cannot move the cursor ahove the top margin of the
form, otherwise the Form Editor sbunds the termiinal bell.

Downarrow {5} Press the DOWNARROW key to move the cursor down
one line. You cannnt move the cursor below the bottom

margin of the form, otherwise the Form Editor scunds the
_ terminal befl.

Rightarrow (=) Press the RIGHTARROW key to move Lhe cursor one
. character position to the right. You cennot move the

cursor beyord the right margin, otherwise the Form Editor |

sounds the terminat beil,

- Leftarrow (+) Press the LEFTARROW key to move the cumor one char-

acler position to the left. You cannat move the cursor be-
yond the lefl margin, otherwire the Form Editor sounds
the terminal bell. '

BLINE Press the BLINE key to move the curser to the beginning
. " * of & line. Which line the cursar moves to the leginning of
depends on whether the Form Editor is in ADVANCE or

BACKUP made when the BLINF key is pressed.

If the Form Editor is in ADVANCE mode, BLINE moves
the cursor to the beginning of the next line, Pressing
BLINE &gain moves the cursor to the beginning of the
subsequent line.

If the Form Editar is in BACKUP mode, BLINE moves

. the cursor to the beginning -of the current line, Pressing

. BLINE again moves the cursor to the beginning of the
© o« previous line, °

Ty o ‘If an attempt is mede to move to a line beyend the top or
bottam screen boundary, lhe Form E.jnor mundu tbe trr-
. © minat bell.
RETURN ° The RETURN key on the keybosrd prcmdﬂ an altcmanw '

‘to LINE when used in ADVANCE minde. Pressing RE-
TURN moves the cursor to the beginning of the next lins.
BACKUP mods hes no eifect on this operation.

Tho VAX-11 FMS Foss ditor (FED) - 2-1§

EOL ’ Pressing the EQL kéy moves the cursor to the end of a line.
' Which line the cursar moves tn the end of depends on
whether the Form Editor is in ADVANCE or BACKUP

mode.,

If the Form Editor is in ADVANCE mode, EQL moves the
cursor o the end of the current line, If you strike EQL
again, the cursor moves to the end of the next line,

If the Form Editor is in BACKUP made, EOL moves the
cursor to Lhe ond of the previous line. ’ .

BOTTOM Pressing the GOLD/BOTTOM key sequence on the
keypad moves the cursor to the bottom right corner of the
screen. ‘

TOP Pressing the GOLD/TOP key sequence on the keypad
moves the cursor to the top telt corner of the screen.

REPEAT If you press the GOLD key, a number, and an operation

that you want la perform, the Form Fditor repeats that
operation the number of times that you have specified.

- After vou type the first digit of the number, you see the
prompt REPEATY: on the screen as well as the number
itsell. The first command or key typed alter the digite is
repeated that number of times. You can edit the number
using the DELETE key to increase or decrease the repeti-
tions.

2.6.5 Text Modification Operations

Text medification aperations allow vou to insert, modify, and delete chatac-
ters and lines in the form, as well as to assign video attnbutes to background
text and felds)

The Form Editor handies typed charecters differently depending on whether
INSERT or OVERSTRIKE mode is in effect. .

2.6.5.1 Inserting ASCI Characters — When you type eny ASCII character,
the Form Editor inserts that character at the current cursor location and
moves the cursor one location to the right. .

If yuu type & charecter at the end of a line, the Form Editor inserts the

character in the 1ast available positisn, sounds the terminal bell, and couses

the cursor to “bounce back,” jeaving the cursor aymbol at the Iast character
pasition on the line.

2.6.5.2 Insarting Charactors In INSERT Mode ~ In INSERT mude, the Form
Editor inserts the character at the cutrent cursor position. The character
provicusly Incated there moves ona position to the right, All other characters
on the line to the right of the cutsor mbve ono poltion to the right. If the last
cheracier on the lin¢ is not a blenk, the Form Editor rejects any operation

2-12 The VAX-11 FMS Form Editor (FED)

that would cause that character to be Ioat by pushing it off the end of the line.
Il any ficlds are invved on a line, the Form Editor automatically updates their
ficld descriptors in the focm descriplion to reflect the change in the field’s
screcn location.

Press the DELETE or €22 key on the keyboard to delete the character to the
lett of the cursor. If the cursor pesition is in column ¥ when the delete key ia
pressed, the Form Fditor rejects the operation and sounds the terminel bell.

DELFETE moves the cursor and the remaining characters on the line one .

character position to the feft. A blenk is inserted at the end of the line,

2.8.5.3 Inserting Characlers In the OVERSTRIKE Mode — In OVERSTRIKE

maode, the Form Editor replaces the character at the current cursor position
with the new chatacter that.is typed.

Press the DELETE or €8 key on the keyhoard 1o delete the character to the |

lefi of tire cursor, If the cursor position is in column | when this key is pressed,
the Form Editor rejects the operation and sounds the terminal bell.

It the Form Editor is in OVERSTRIKE mode, DELETE replaces the char-
acter to the lefl of the cursor with a blank and moves the cursor one position
to the Jeft. If a field"s position is changed, the corresponding descriptor is
updated. However; if a field's pictuce is modified, it is n new field and old
attributes are Jost. k

2.6.5.4 DELETE CHARACTER — Press the DEL(ete)CHAR{acter) key on the
keypad to delete the character al the cumsor position. If a field's position is
changed, the descriptor is updated. However, if s field's picture is changed, it
fa, for all intents, & new feld and the old etiributes are lost.

If the Form Editor is in INSERT mode, DELCHAR deletes the character,
moves Lhe remaining characters on the line ane position to the leflt , snd
tnseris a blank st the end of the line. The cursor remeins in its current
pnsilihn,

If the Form Editor is in OVERSTRIKE mode, DELCHAR replaces the char-
acter on which the cursor is positioned with a blank and moves the eursor one
posilion {0 the right, This is cquivalent to typing a blank while in OVER-
STRIKE mode. If the cursar is on the lnst character position on the line, the
Form Editor deleles the character, sounda the tertninal bell, and leaves the
curser in ils zutrent position. The Form Edit or updates the field descriptors

: of fields affected by the change.

2.4.5.6 OPENLINE — Fress the OPENLINE key to insert a blank line at the
current line and move all remaining lines down one line. The Form Editor
reasaigng screen locations to affected fields on the form that already have feld
descriptam. If the next to last line on the screen (the last line available for

* yout form) is not biank, the Form Editor rejects the QPENLINE operation,

sounds the terminat bell, and prints an error message.

2056 OUM - Press the % combination to redisplay the current ocreen;

and restore tho keypad to application mode. This command i useful when
there are power failures, static problems, or distortions.

The VAX-11 FMS Form.Bdit.or_ (FED)} 2-13

2.6.5.7 %3] — I'ress the §A T combination to'deicte all characters between |

the cusrent evtsor pusition and the beginning of the line, The cursar remains

LAt its current position.

2.6.58 DELEOL ~ Press the DELEOL (DELete End Of Line) key on the
keypad 1o'dclete all characters between the cursor location snd the ead of the
fine, replacing them with biankas. The cursor remains at its current position,

2.6.5.9 DELLINE — Press the DELfete} LINE key to delete the current line,
move all the Jines below it up one line, and insert n blank line at the bsttom,
The Ferin Editer updates the field deseriptors of any affected: fields. The
UNDELLINE operation allows you o recover the deleted line. The entire line
is deleted regnrdless of the cursor position in the line.

2.6.5.10 UNDELLINE — Press the UNDEL{ete) LINE key te restore the line
or line segment that you have just deleted. This aperation saves you from

mistaken of aceidental deletiuns. It alse provides you with an easy way to

duplicate lines. For example, UNDELLINE can be used to create many iden-
tical lines in a scrolled area. :

The effect of the UNDEILINE operation depends en how the urigingl dele-
tion was performed. .

If the deletion was performed by using 0 DELEGL or a §&mW, the Form Editor
places the contents of the buffer containing the deleted characters at a posi-
tinn starting at the carrent cursor Incation, [f deleted by GAA), the charactery
are phiced te the ieft of the cursor location; if by DELEOL, they are placed to
the rirht of the curser Incation. This restoration can be performed only if the
deleted characters will be replacing blanks. Field descriptors for the original

" fields are restored only if tha cursor remainx at the location where the original

deletion was made,

If vou mude the deletion with DELLINE, the Form Editor performs an
OPEXLINE operation at the current cursor position. It then places the de-
leted line on the screen in the blank line created by OPENLINE. The Form
Editor uprates all old field descriptors for ficlds alfected by the OPENLINE
cperation when the fisld's position chonges, hut not ihe picture. The feld
deseripturs for the deleted line are restored only when HNDELLINE is per-
farmed the first time and an the saame line where the deletion was done.

2.6.5.51 REPEAT — To tepeat a character, or an operatian, press the GOLD
kev, and type a number. The Fiam Editor repeats that operation the number
of times that you have specified. After you type the first digit of the number,
the prompt REPEAT: and the number appear on the screen. The firat com-
mand or key typed alter the digits-is repeated thay number of times. You can
edit the number to increase or decrease the repetitions by using-the &0 and
€50 operations, &D is not a repeatable function, T

26512 SELECT — Press the SELECT key to' mark the current cursor posi-
tion as a reference point fur video attribute asslgnment and CUT operations,
SELECT definea the first chozacter of the seloct range, 'l"l;o end of the selest

2-M The VAX-11 FMS Form Editor (FEDj

\
.

—

range is the final position to which you move the cursor. In other words, the
sefect range is defined ns all chiaructer poritions in the area delimited by the
SELECT- position at one corner and the current cursor position at the other.

. SELECT is uned with the CUT, PASTE and VIDEO operations.

2.6.5.13 CUT — Pressing the CUT key saves ali the characters contained in
the current sclect range {the aren defined by the place where SELECT waa
pressed nnd the current cursor pesition). The characters are stored in a huffer,
and blanka replace the contents of the arca in the sereen image. If a SELECT
operation has not ieen performed, the Form Editor sounds the terminal bell
in response to an attempted CUT.

2.6.5.14 PASTE -~ The PASTE opernlioz.r inserts the characters saved by
CUT into the spme area relative to the curmrent location of the cursor as
obtained when the original CUT operatinn occurred, The PASTE operation

checks that the inserted materinl does not cross boundary lines or any nther |

text or fields in the form. If houndary lines are crossed; the Form Editor

displays the error message “Cannot paste over mergins or non-blanks or in |

scrolled areas™ and sounds the terminal bell.

The PASTE operation is allowed only if the target paste area consists enlirt:-ly
of bianks. If the larget paste area [s not blank, the target orea is painted in
reverse video, and a message is displayed on line 24. When this occurs, press

any key to remove the reverse video atiribute, move the cursor to define &.

proper target aren, and continue the operation.

2.0.5.15 VIDEG — Press the VIDEQ key to assign video attributes to Lhe

form. Tha prompt VIDED: appears on the terminal screen. Type any of the -

following responses to activate the specified attribute within the select range.
Press the ENTER key after typing the response. The abbreviations are undes-
hned:) .

Bgld Dispiays all charecters within the select range in bold face.

Blink Displays. all characters within the select range in alter-
) nately increasing and decreasing screen brightness.

Revorse | Displays all characters within the select range on a reverse
acreen background. If the screen is white-on-black, charac-
ters in reverse video sppear in black-on-white; if the screen
is hinck-on-white, the characters appear in white-on-
black. :

Underlins Underlines all characters within the select range.

.Clear Deactivates or clears all the active video attributes In the
select range. _)
Edit This {s not an sttribute, but retums you to the normal

screen oditing mode, -,

The VAX-11 FM8 Form Editer (FED} 2-15

ot

[=1

-

You most use the SELECT operation (see ahove} to detimit the characters
affected. The SELECT ranga includes hoth text and ficlds; it may cut a field -

in the middle. A field cut in two by the SELECT aperation becomes two
sepacate ficlds if the two pants of Lhe field receive different video attributes,

You can assign video atiributes in either TEXT or FIELD moade.

Since you can nse the CLEAR attrhute to cancel the ol—i-wr video attributes,
you can easily experiment with the various ottributes to achieve the beat

- effect, \When you have the combination of attributes that you want to keep in

your form, end the video attribule azsignment session by typing EDIT or
pressing the RETURN key.

A character can have more than one video attribute. For exnmpié. the char-

-acter can appedr on the operator's screen as both beld and blinking. However,

all churacters in a field must have the same video Bttﬂbulﬂ

2.6, 6 Scrof! Operation

By uaing the scrofl function in the Ff)l'l phase of the Form Editor, you can set
up scrolted arcas in & form. The Form Driver can scmll lines in response to
subroutine calls from your program (see Chapter 7 for a scrolling exaniple).

The scmlled area that the Form Editor and Form Driver work with is like

“wintlow' into a collection of dota oo large 1n sppear on the fcreen 8t one

time, Your program must stare ond manipulate any dolna that scovdls off Lhe
screen. The Form Driver does not have the enpacily to store auch data,

Rerdlling, in effect, allowa you ta create a form of unfimited length that can beo
filted in by an operator as information hecomes svailable. An inventory clerk
receiving hists of needed materials continugusly during the day, or a bank
teller recording onguing transactions, could use a scrolled sres in a form
application,

Pressing the GOLIWACROLL key sequence tellr the Form Editor to define the
current line as scrollcd. A serolled area is a miniinum of two fines,

The GOLD/NORMAL key requence removes the seralling attribute from s
l:ne

0:\(‘0 vou hue ‘defined g line as scrolled, you can extend the scroll and create
8 sceolléd aren by using the DELLINE and UNDELLINE operations. Deleta
the serolled line and then “undeicte” or restare it as many times as you wish.
In this way, you can be sure that the lines of the scrolled area are identical.

The GOLD/SCROLL key sequence only defines the current line as scrolied.
The sueceeding lines that are identical to the scrolled line sre pmceuefl [
part of the scrolled area, The first line that differs in any detall from the

_ original scrolled lino causes the Form Editor to torminate tha serolled ares,
Al lines in a scmlled drea must have [dentical fields. A scrolled area should

not contain text exccpt for field- marku chaiacters. Onco the text terclh off

ol tlnacuen,itzslmt

2-16 The VAX-11 FMS Form Editor (FED)

The Form Editor, during its field attribute assignment phase, asks you about
" the ficlds on the first line of o scrolled area onty. Fields on subsequent lines of
the scroll are considered to have the same altributes as the fields on the fint
line. A [orm may have more than onc scrolled area.

2.6.7 Flald Pictures

A field is a sct of contiguous field characters (picture-validation or field-
marker characlers) terminated by a blank, a non-field character, an end.of-
line delimiter, or a change in video attributes. Picture.validation atiributes
apply only to characters in fields. They tell the Form Driver whether the
operalnr may enter & number, a letler, etc., in response to & given field,

The Form Editor recognizes the five picture-validation characters shown in
Table 2-2.

Table 2-2: FED Picture-Validatios Charoctérs

c Alphanuemeric
A Alphabetic
] Numeric
N Signed Numeric
X Any Character

2.6.7.1 For Alphanumaeric Characters—C — The C in any character pasition

deflines what is valid input in thal position: The C character is a character -

attribute aliowing the operator to enter the digits { through 9, the letters A
through Z (either in upper or lower case) and/or a space. Any other attempted
input sounds the terminal bell end causea an error mesaage, -

2.8.7.2 For Lotters—A — The A in a character nu}ibute.position indicsten to
the operntor to enter the letters A through Z (either in upper or lower casc)
and a space.

2.6.7.3 For Unaigned NumSers—9 — TheSina character attribute pusmon :

mdacateu to the operatar to input only the digits 0 through 9.

2.8.7.4 For Signed Rumbers—N ~ The N in a character attribute position
allows the opetator to input Lhe digits 0 through 9, with only one decimal
paint and with only one plua {+) sign or one minus (-} sign. Their positions
wlthl;d the fleld ere not checked by the P‘orm Driver. Any other inpat Is
rojic

. 2838 Fot Any Printsble Characters—X — .The X in & charzeter attribote

position allows the qunw to input any duplnyabh character,

Tho VAX-11 FMS Form Editor (FED) 3-17

.ZI

[P

2.6.7.5 For Mixed Plcures — A single ficld may contain different picture-
validation characters. For example, v field constructed to accept both alpha-
betic and numeric characters specifically may look like this:

AAR3ZAS

Such a field allows the_eperator to enter alphabetic characiors in the ﬁm .
-three field character positions and digits in the !nat thres Lield choractar

posﬂlrms The field is zaid to have & "m:xed picture.”

2.6.7.7 With Fleld-Marker Chnradon — For example, & field w‘hou picture
looks like this

595%35.99 .
contains two field-marker characters, the pound sign and the dash.

The Farm Editor treals nll field-marker characters ~ whether Ieadlng,
trailing, or embedded — as part of Lhe field in which they occur.

A field that conlains field.marker characters hut only one picture-validation
character doves ot have o mixed picture. Two or mare pu:turc -validalion
characters in a single field canstitute a mixed picture.

Field-marker characters may he the ASCI characters from 4} to 57 octal and
72 to 100 nctai i Table 2-3). The Form Fditor accepts field-marker characters
when in FIELD mode. The Form Driver does not retorn field-marker charac-
ters tn the calling progtam or include them in the length of the field. Field-
matker charactérs are transparcent to the program, which does not pasa them
to the Form Driver in the data to be displayed in a field.

Table 2-3: FED Field-Marker Characters

Character Charscter
1 -
' A
|
%
- a ;
] -"
{ > .
} T
R . 6

'2-18 The VAX-11 FMS Form Editor (FED)

—

-

2.6.8 Assigning Form Wide Attilbutes

The Form Fditor collects Form Wide Attributes by displaying the question.

naire shown in'Figure 2-2. The Form Fditor amomnuully displays the Form
‘Wide Attributes questicrinaire when you create a new form or when you type
FORM in response Lo the CONMAND ¢ prompt. The quuuouuu ommmuu‘
default condilions for each choice.

Pigure 31 Form Wide Attributes Questionnalre

Fora Wide Attriboies

Reverse Screen (1K}
Current Screen (T,N)
¥ide Screen (VR
Starting Line (1.2]).
Ending Line {1,23}

Inpure brea 1777 Lytes
- fora Size 17T words

L.oa 10

Preas the TAB key to move from one question o the next. You can use the
BACKSPACE key to move backward. When you have completed the input
end want 1o exit, return to the COMMAND ; pmmpz by pressing the ENTP.R
key.

The fields listed in the Furm Wide Attributez Questjonnaire sre:

.

2.6.0.1 Form Name — A response to this field is required. When FED saves .

the form description in a file, the file name is the form name with a file type of
FRM, When you use FUT to place the form description lile in & form lihrary,
the form name is used as the form description file-name,

2, G 8.2 Healp Form Nems — This field conteins the name orf an euocmed
"Help form. The ﬁeld mey be left blank.

2683 Reverse Scresn — I7 this field cobtains a Y, the form is displayed’

black-on-white. If it eonmm an N, the display ls white-on-biéck. The default
in N,

2.6.0.4 Current Sereon— If Lhis field cunlaim & Y, the Form Driver displny:
the form in the current screen mode, An 80-column form with a Y answer to
this flald doos not require a chasige if the current mode is set at 132 columbns.

PR

. -

The VAX-~11 FMS Form Editor (FED) 2-18

pu—y

Tha current screen also applies tu reverse screen. [f current screen is specified,
tze Form Driver does not change Lhe screen background or the screen width,
unless the form ia speca!'ed for 132 columns ond the screen is currently 80
columns,

You cannot specify ¥ both to this option and to the wide scrten option de-
scribed beinw, If the choice ig N, the Form Diriver resets the screen if necessary
to confarm to the display mode for this form. The default value is N.

2.6.8.5 Wideo Screen — [f this field contains a Y, the form is displayed in }32-
enlumn rnde and the Current Screen option described above ia set to N. If the
. Feld contains an N, the form is displayed in B0-tolumn mode. The Form
Editor changes the terminal to the sefected mode, The defauit is N,

2.5.0.6 Starting Line — This field contains a value from 1 to 23 tnclusive,
indicating the first line of the screen to be cleared when the form is displayed.
If you specily a starting line number greater than the ending line number, the
Form Editor replaces your entry with the defaull value of 1.-

" 2.6.2.7 Encing Line — This field contains a vahie from ! to 23 inclusive,
indicating the last line of the screen to be cleared when the form is displayed.
I the valse is iees than the starting line number, 1he default valiie of 23 is
used by the Forn Editor.

Starting and ‘ending line rumber defines the area of the screen to be cleared

when the form is displayed using the FIDVESHOW call {which doesn't auto-
matically clear the entire screen} or when the form is displayed os a help form.

26.8.0 Impure Ares — This is a Display-Only field that indicates the size of
the impure area required when the fonn is displnycd Fiy the Form Driver, You
specily the atray and size of the impurce ares in the FODVSINIT call within
your program. The two arguments passed are: the arrny, which must be at
lorest 8 (32 bit) integem; and the size, which muet be 32 bytes (8 longwords).
- \hen creating a new form, this lield is initially displayed &5 question marks.

2689 Form Stze — This is a Display-Only field that indicates the length of

the form. This velue is used in cnleulating the media or memory storags -

requirements for the form. When creating 4 new form, the feld is initiaily
displayed as question marks unt-l the Form Editor determines the correct
value,

2.6.9 Assigning Fleld Aitributes

" The Form Editor culle:l_-: field uurlbutea by diqplnymg the questionnaire

ehown in Figure 2-3. Each entry in the questinnnaire designotes & single
atributs: for a feld. If the foym or field is 2 new ore, the Form Editor supplisa
- defauit values in the questiannaire, If the atiributes for the field were assigued

-~ in & previous editiug seasion, thoss values are displayed.

.

-2 The VAX-11 FM3 Form Editor (FED)

. Figure 2-3: Field Attributes Questionnaire

he : EEIE Right Just (VM)] Clear Char (che) B Tero Fill (1,00]
wit @

Halp ¢ Type_at, 2.0r 3. ' . '
futo Tab (T} § Resp Resd (Y,N) 9 Must Fill (VM) D Fired Dec (VM) E .
Indered I0HY) § ise Dnly (1N) Echo B8 (00§ Scpv Gnly (Y10

L. E]

Enter the attribute assignment phose by typing ASSIGN and any of the

following options in reaponse Lo the COMMAND ¢ prompt.

ASSICN NEW Assign attributes only to new fields

ASSIGN ALL © Assign or edit attributes for ali fielda in the form

ASSIGN FIELD fidname Assign or edit attributea for the field named
fldnnme

ASSIGN is used Lo assign field sitributes after creating the form’s screen
image. Any new ficlds placed in the form may have their ficld suiributes
defined by using either ASSIGN or ASSIGN NEW, If you exit from the field
attribute assignment phase and then return to change any previously as:ci;med
fields, you must use the ASSIGN ALL or ASSIGN FIELD commands.

Ficlds that have changed their locations as a result of the OPENLINE or
DELLINE operations, or as a result of charucter imsertion or deletiun on
another part of the line, are recognized an exinting fields. Fielda whose pic-
tures are medified must be redefined.

If you select ASSIGN NEW or ASSIGN ALL, you may proceed to as<ign
attribuica tu the next ficld by pressing the ENTER key. To retum to the

COMMAND : prempt before you have finished all the fields, type the period ()

on the key gad. (Remember thai this resulis in assignment of defoult velues to
all remaining felds in the form, The defanlt value for a {ield name is 6
blanks.) If you used ASSIGN FIELD, the Form Editor returns to the COM-
MAND: prompt when you press ENTER for thet ficld.

The Form Editor displays the field attribute questionnaire for each field on
the form. The TAB key moves the cursnr from one field to the next within the
questionnaire. Pressing ENTER after guing through the questionnaire for the
laat field in a form causes the Form Editor Lo reissue the COMHAND ; prompt.

NOTE

- The nsa:gnment of invalid combinations of sttsibutes to a field
reaults in an erear messnge. To continue, you press the ENTER
kay to redisplay the questionnaire for that ficld and correct the
sitribute that caused the error messagn.

Ths VAX-~11 FMS Form Editer (FED) 3-21

ek
Wt

The foliewing ficld attributes a;pear in the Field Attributes Questionnaire:

Name

‘Right Jn:t‘

- CIeu" Clu:

Zero Fill

Defsult

Help

Containa the name by which the lnld is known and referred to
by your pregram. Unigue fiekl nnmes are not required if a form
is to be occessed by the FDVIGETAL call. However, if the
application is to access cne field at & time, unique names should
be assigned. (M & form contains more than one field with the
same nyme, the Ferm Driver can access only the first one.) The
default value for a Meld name is 6 blanks.

“If you type a Y, the field ix right-justified. If you type an N, the
field is left-justified. A right-justified field may uwot contein a
mixed picture, The defanlt is N.

The character that you type in this field is displayed in place of
the fill character {either zero or blank for the field). For zero-
filied fields, it must be o zero. For binnk-filled fields, the clear
chatacter may be any charéeter; underiine, period, and blank
are the mosl commaon choices. A blank is the default,

If you fvpe a Y. the field is filled with zerpes before the operator
erlers any data in the field. If you type an N, blanks are stored
in the field. Note that the Clear Characler attribute must be set
to zero if the field is zern.filled. The default is N. The L char.
acter s alro retumed (o the calling program in any positions the
terntinal nperaior doos nol enter data.

" Specifies the initial value to be siored in the field when the form

Is loaded by the Form Driver. If you do nat respond, the field
containg either blanks or zetoes, depending wn your response to
the Zero Fill attribute. Your answer to [efault should be con.
sistent with the picture.validation type of the field. If a defauit
value is not apecified, the internal representation of the field is
blark or zero-filled depending on the definition. The fill cher-
acter is alwayr displayed os Lhe clear eharucter. [f & field has no
default value it is initially displaved with clear charactern. The
default value may not be longer than the field.

NOTE
The Form Fditor does not validate defaudt daota
. valuds to be certain that they ure legal and con-
form to the pirture-va!itlntihn type of the field.

" ‘Specifies # line of Infurmation asanclaled with the fleld that the

User con read by pressing the HELD key, The help message
appears on the last line of the (erminal screen, The default {s
that no help message in displayed. IF this ficld is teft blank, the
Help form for the entire form is displayed if there is onc. Other-
wise, the message “NO HELP AVAILABLE" ia displayed.

Determines whether entering the last character in the field
‘causea the cursor to advance putomatically to the next field.

© TypingaY specifies that Auto Tab la In effect, Thadofault is N.

-2 The VAX-11 FMS Form Editor (FED)

c mgroa e

Reap Reqd

Must Fili

Fixed Dec

Indexed

Disp Oniy

Echo Off

. Supv Only

The attribute that defines a field aa scrolied does not appear on this question-

At least one chatacter that in not the fill charocier must be

entered in the figld. If you tvpe a Y, the operator at the terminal
muxt respond to the feld with zome kind of input before contin-
uing. I you type an N, the operator docs nat have teo respond to

the field. The Form Driver uses this attribute to validate the

operntor s responses for fields, The default Va]ue is N.

If data is entered in the ﬁcld it must be filled so that it does not
contain a gingle Il character. The field must be either empty or
full, The default value ju N.

A field defined oz must-fifl but not response.required must be
filled hy the operator only if he or she enters data in it. It may be
left empf.)'

I you type a Y, the ficld is o fixed decimal field, pnwided that
the picture is nll 95 with an embedded decimal point. Sigred
numeric is not valid. If you type an N or if the numeric picture-
validation type is not in effect, the field is not fixed decimal.
The default mlue is N.

This attribute enables you to define identical tields, nne below

the other, as indexed fields. An N indicates that the field is not

indexed. An H indicntes that the ficld is horizentally indesed
and that the cursor shnuld proceed horizontally to the next field
on the same line in response to the ‘TAB key {or Auto Tab) if the
next field is also hoiizontally indexed. A V indicates that the
field in vertically indexed and that the cursor should prceed
vertically to the next ficld in the same coluinn in response to the
TAB key (or. Autoe Tab). The default value is N. The Indexed
attribute is illegal for fields in scrolled sreas. .

If you type a Y, only your application progfam may‘pllce data
in the Geld. If you type an N, both the terminal nperator and
your program may enter data in the field. The default is N,

It you type o Y.- data in the field is not displayed on the terminal
screen, If you type an N, the charncters echo as in normal opora-
tion. The defaylt Ia N,

If you type a Y, the field is dirplay-only unless the task has
turned off supervisor-only mode (by meons of & Form Driver
call). If you type an N, the field is not display-anly end msy be
accesied by the terminal operator. The default value is N.

nalre. You can define aill fields on a line o scrolled fields by pmun; the
GOLD/SCROLL key sequence during the EDIT phase.

" The VAX-11 FMS Formn Editor (FED) 223

[y
(©1

e

By

g aid -

by

LY &

., -

2.6.10 Asslgning Named Datn Aftributes

izmed duta is any data that is to be peseciated with a fortn but ot displayed

'mth it. Usually. nemed data contains information that the application uses to

control program flow in a form-dependent manner, The information may
constst of the names of other forms or program modulea Named data also
might contnin field specilic data. Your prograin accesses named data by
means of calls to the Form Driver.

The Entry Form that collects named dota eonsists of the two horizontally-
indexrd fields of 16 elements. When the Entry Form nppears, it includes ail
existing named data followed by blank named data ficlds.

To enter the named data phase, type NAME in reaponse to the
COReand: prompt. The Form Editor displays the Named Data Entry Form.
When the Entry Form appenrs on the screen, the cursor is at the firet cher-
acter position of the first field. Enter the hame by which you want to refercnoe
the dats that you supply. Alter you enter the name, press the TAB key to
mnve into the data field. Now enter or edit the npimed data itsell. If a name
slready exists, tab aver to Lthe data field. Exit from the nnmed data phsse by
pressing the ENTER key. .

.

The Named Data Entry Form (Figure 2-4) has twe ﬁe}ds:

NAME A 6G-character field that receives the name of the data itera. Form
Driver calls acetss an element of named data by using either its
- mame or its index number in the list of named data for a form.

DATA A 6Q.chsracter field that receives the data,
Figure 2-4; Named Data Entry Form

Nacwed Data Eptry Forn

Haxz Pata

T - AAL-043-e0

2.7 A Step-by-Step Example of How tc Use the Form Editor

This section presenis an example of creating and modifying screen versions of
forwas. The exampie demonstrates aome of the most commeon Form Editer
crammands, funclions, and design processes. The example does not cover all
Form FEditor fentures, and it is not a complete tutorial, The purpoaa of thia
example are as follows:

+ To illustute how you can design 0 computerized version of 8 simple print.ed
form.

+ To show you whntummnloohuhwhﬂnmmwkiumth the Farm,
Editoe,

2-24 The VAX-11 FMS Foni Editor (F’Eb)

* To introduce how the Form Editor uses the V’I‘lOO special function keypad
to control editing functions.

* To mr.roduce how the Furm Fditor usea the Form Driver and questionnaires
to coltect informniion from you about the form that you are designing,

This example hua three siages. In the first stage, a printed forta is described.
Assume that the form was originally designed for a card file of a company’s
venrdors, Before designing the computerized version of the form, read the
Tequirements of lhe ﬁolds in the form seclion (2.7.1.2).

in the sccond stage, you create the screen version of the form. Eacb siep in
this stage staris with on instruction, and each atep completes & part of the
exercise of designing the computerized version of the sample form. Pead the
instruction, and then loak &t your screen while you foilow the instruction.

Watch how the Form Editor responds. Finally, read the explanation that -

follows the instruction.

In the third siage, you meodify one of the demonatration forms that you
received as part of your FMS soltware kit. Use the same procedure for the
steps in this stage es for the second stage,

You are encouraged to try using this example. You will be able to add the new
forma that you create and the demonstration form that you modify Lo the
demonstration form library lile DEMLIB.FLB. You can then demonstrate
how your new form works by running one of the demonatration programs
supplied in your VAX-11 FMS software kit. .

2.7.f The Prinled Form

The st steps in designing s screen version of the form sre:
® Provide an overview or a rough draft of the new form.
+ Dencribe the requirements for each field.

* Describe the layout of the form and any npecial video features thatit s to
include.

v Sketch the screen form dnd include the maximum lengths of fields.

2.7.1.1 Overview of the New Form — The new form will have fields for all of
the information that the printed form can conisin. This example assumes
that the new form will be used only to enter the vendot information that is in
a cord file. .

VENDQR is the namy to be essigned to the form. For now the form will not

havo g help form associated with it. It will use the 80-column screen width and

thohdlmhe!;ht(umhmlthmzh%)

The VAX-11 FMS Form Editor (FED) 2-25

b |

91

2.7.1.2 Requirements of the Fialds In the Original Form — This section de-

scribea the requirements for the fields that are in the original form.
1. \r’e_mndor. ﬁumser
-\'enaor 'n_umbers are in the following form:
B-67-0035

The first character can be any letler. Except for two hyphens an shown,
the remzining characters must be digita. An cperator must efter the
vendor number. Progrems that use the form can then use the vendor

number to get other vendor information from s computer file and diaplay

that information.
2. Vendor Name

Vendor names may be as Iong‘ a3 38 characters and may include any
printable character. When the name is first entered, it must be typed
exactly as it appears on the file card. .

3. Address

The top line in the address shows the vendor's street address. The next

fine shows the city and state. The bottom fine shows foreign countries and
mail codes, such as the ZIP code,

4. Contact

Contact names are the names of the peaple in the vendor companies who
~ are most informed about the sample company's business. Contact namea
may be as Jong as 28 cheracters and may includo any printable character.

5, Phone

The farm needs to be designed only for one standard North Americen
telephone number in Lhe following form: . C

(12%) 555-4678

Ay shown, parentheses enclose a 3.digit area code. A 7-digit number has &
hyphen separating the exchange code from the line number, All input
characters must be numbers. The telephone number {8 not required infor-
marian, but il a telephone number is entered, all 10 digits must be en-
tered. The area code bas the default value 111 hecause most vendots are in
that arca, but there 1s no default value for the balance of the telephone

number.

v

© " 8. Enxtension -
The form necds to be designed for two telephone extension numbers. Te
" make the new form gs flexible as the original printed form, the new form
will accept extension numbers up o seven digits, to cover the cases when
difierent vendor extensions are complete T-digit telephone numbers. The
telephone axtension is not required infortation. All input characters &
be numbers, but any number of charsctem is valid. . -

2-76 The VAX-11 FMS Form Editor (FED).

© 2.7.1.3 Layout and Video Fealutes of the New Form — The layout of the new

form will follow the sketch that sppears in Figure 2-5. A screen width of B
columne will provide ample room.” Abbrevietions are not necessary: The ex-
rampfe assumnes that the vender number is the most imporiant piece of vendor
data, and thercfore, the sketch shows it at the upper-left comer of the form.

The field will e in reverse video and underlined to show its importence,
Other fichls will have the hold video attribule to make the values that opera-
tors enter more visible. The title of the form, “Vendor Data,” will also have
the bold videg attribute. Field lobels will be in standard sideo. (The bold
;ideo)auribute reaAll_v does not look good in a form if used &s much as specified
. here.

2.7.1.4 Sketch of the Form Named VENDOR ~ Flgure 2-5 is a sketch of the
form that you will be creating in this example. Several other dexigns would be
enually effective. In many cases, the aketch that you use may be less detaited
than the one in Figure 2-5. Since you can easily change the design by using
the Forin Editor, you need only enough detail in a sketch to show the number

of fields on each line and the rough alignment of Hields. More detail appesrs in

Figure 2-5 in order to increase the reliability of this example.

Figure 2-8: Bkelch of the Form Named VENDOR

gomﬂﬂuf Mﬁ'mé ‘ e
£vocRr. Dara” o
Verwoon Mumscrs = = Names |

OMTACT:
F)rid:ug_: (_}

AJJF: »3 L.

[_ \

2.1.2 Creallhg the Screen Form

This section guides yoy from starting the Form Editar through each of the
other steps that you need to complete in order to create a sereen version of the

. form named VENDQR. Each step starta with an instruction. Read -the in-

struction, and then ook at your screen while you foliow the imiructicn.
Watch how the Form Bditor reaponds. Finally, if an explanation follows the

" inatruction, rend it and then go on to the next step. Each explanstion begine

with the myrobol >3, :

The VAX~11 FMS Form Bditor (FED) 2-37

i Oei80 -

-
-3.

. e+ - W el et v n Rk s e e

The first time you work with this example, follow cach instruction carefully.
Each step depends closely on the preceding stcp. .

1. Logon to a system that includea the Farm Editor. Check with your syatem
' mannger if vou are ot sure whether or not the Form Editor is available on

your system.
. 2. Set your VTI00 as {ollows:

» For the block cursor (8)
"use SET-UP MQDE B.

« For the R)-column screen width .
use SET-UP MODE A. (This is the defauit.)

» For the standard video display {light cheracters on a dark background)
‘use SET-UP MODE B. (Thia is the defauit.)

= For signalling with the terminal bell
use SET UP MODE B.

(The VT190 User Guide Order #EK-VT100-UG-002 has detailed diree-
tions.} h N

~

2.7.2.1 Starling the Form Edilor—Step 3 —.

3. Start the Form Editor by entering the foliowing {The prompts that your
syslem types are in black. The responses that you lhoul_d type are in red.)

¢ MC? FED W

or .

S FED I« THCR FEO KD
s FEI 6O

In vesponse to the FED> prompt, type:
P

5> Each ret of commands starts the Form Editor on the corresponding
aystem. The commands alse specify that you are develnping a screen form.
The Form Fditor responds by displaying the first questionnaire for & new
acreen form, the Form Wide Attributes yuestionnaire.

2.7.2.2 Awslgaing the Form Name—>5ieps 4-5 — -

4, On the keybioard, 1ypo the name VENDOR. [PM make 4 mlstake, press
the DELETE key 1o erbse incorreét choraciers and then complete the fornd

namé correcily. Later steps depend on the fact thii the nawe of the nwy

2-23 The VAX-11 FMS Form Editor (FED}

form is VENDOR. When the form name in correct, press the RETURN

. key.

>>> Each chatacter you type appeurs in the “Form Name” field, The
cursor advances through the field from left to right.

When a questicnnaire is displayed, preas the RETURN key to do the
following: .

@ Assign to Lhe questionnaire whatsver value you put into the field.

 Stare the questishnaire information intemally until you change it or
aave the form deseription that you are creating. i

o Erase the queationnaire from the screen and respond to a Form Editor
command, in some cases. '

® Continue a process by changing your display in some way.

With the Form Wide Attributes questionnaire displayed, pressing the RE-

TURN key nlways causes the Form Editor to ersse the screen end display
the prompt COMMAND: on the last line,

. Type the command EDIT, Press the DELETE key Lo correct mistakes.

When you complete the command, use the EXTER function — press the
ENTER key on the keypad, or press the RETURN key.

533 The ENTER or RETURN function key causcs the Form Edifor to
- gxecute the command that you have just typed. When the Form Editor

exceutes the EDIT command, it displays the screen form thet you are
designing and shows you each detnil of the form that you have specified so
Tar. In this case, your new form is entirely blank — 23 lines long, with B0
spaces in eoch fina. The cussor appears in the upper left comer of the
sereen on Line 1 and Coluinn 1.

While you nre editing o form, the Form Editor uses Line 24 to show you
information sheut the cursor's location and several Form Editor settings
that you can change while you are editing. At this point, the different
sections of Line 24 and their meanjngs are:

» CURSOR TXT NDR LIN 1 COL 1

The character that the cursor is on is & text character (TXT) end the line
is & normal line of a form (NDR), not a scrolled line. (Scrolling festures

are exploined Iater in this chapter.) The cunor's position is oa Line 1

and Column 1,
* MODES ¥XT OQVE ADV

The current settings of the oditing modes are as follows (ister vieps

The VAX~11 PMB Form Editor (FED) 235

81

B
E
i
\
-
o
\,

. demonstrale thc effecls of the different mndm)

— The text mude {T3T) for entering background text. You cannst use
the field mode until you have put in all the background text. The
fieid mode will allew you lo a.mgn attributes to each f'eld label you
:rea.ed in text mode.

* — The oventﬂlce mode (0'.19) for rep!aclng the cl\amcter th-t the
" cursor is on with the character that you type. :

—~ The advance mode (ADV) for advancing the cursor to the right and
* downward when certain cursor movement functions are used,

NOTE

While using the Form Editor, you will be using the form-editor
auxitiary kevpod as well as the main keyboard to perform spe-
cific furm ediling {unctions. Refer to the Form Eduor keypad
_lavnut (Flgure 2-1}h

Laraa Crentlng the Background 'rm—sieps 520

6. Use the Domnanuw function io move the cursor to Line 2. Press the

Dewnarmow kev once.

»5> The Downarrow function moves the cursor s_lraight. down one line at a
time. The Form Editor reports the cursor’s new position in Line 24

7. With the cursor on Lire 2 and Column 1, type the-name of youi company
or any other enmpany name thet you would like to use. Press the DE.
LETE key to correcl mistakes.

8. Use the Leftarrow l‘unclmn to move the cursr back to Lme 2 and Column ' a

1. Press thc Laftarrow key seversl times.

9. Useihe I’\ SERT function to set the Forn Editor o the invert mnde Preu .

the 9 key on the keypad,

»>3> The standard function ol' the 9 key on the keypnd is the INSERT
function, The function sets the Form Editor to the insert mode. The

abhreviation TN$ repluces OVS in the modes section of Line 24 In the
insert mode, the Form Editor moves charncters out of the way nflnsemom

rather than ‘replacing the character,

-10. Move the company neme to the right in Line 2 by inserting apaces at the

beg nning of the line. Insert spaces unti} the compeny name is centered in

Line 2 on column 39 or 40, Hnld the space har down for ench space that

you want to Insert,

i1, Use the BLINE function to move the cursor Lb Line 3 and Cnlumn 1. PI-H: .

_‘" the 0 key ah the keypad. . :

The uandord function of the O key on the kcypad is BLINE. In ths ad-
‘Vance mode, the BLINE function advances the cursor to the next line and

“. Column I. In the backup modo, the BLINE Tunction’ bnckl up the cursor

up to Column 1.

7 2-30 The VAX-H FMS l"urm Editor (FED)

w

o

-

S 13, UHE the following sequence of lunctmru and kayboard keyl to move l.be

cureor to Colemn 3.

Press the PFI key on the keypad, then' typo 33 on tbe keyboard end
finally press the Rightarrow key:

GOLD 33 nghlarrow -

331 ne only function on the PFL key is the GOLD function. When you
“use the GOLD function before typing & number on the keyboard and then
use another Form Felitor function, the Form Editor repeats the last fune-
tion as many times as you have specified. In this case, the Form Editor

repeats the Rightarrow function 33 times and the cursor moves” from - -

Colutnn 1 to Column M.

13. 'I‘ype the title of the form, Vendor Daia. Or type any other title that you
would like to use. Since the cursor ts lt Colymn 3, the title deor Dala
. wmbeccnterzd . .

14, Move the cursor back to Lme 2, Prezs the BACKUP key on the editor -

keypad, then the BLINE key to get to Line 2. Then press the DELCHAR
‘ke_v to remove spaces and to cenler the company name.

15. Move the cursor to Line 5 and Column 1. To do this, use the ADVANCE

BLINE function.

18, \Mth the curser on Line 5 und Coiumn 1, type lhe fietd label for the - .

vendor number field, Vendor Numh-er

I7. Use the Rightarrew function to move the cursor to Column 34, Prers the
Rightarrow key and waich the colurmn number in Line 24. You can shso
press GOLD 18 nghtarmw Then - typc the label for the vendor name
field, Name:,

18. Use the Downarrow and Lefiarrow functions to move the rﬁurwr to Line 8
end Co.umn 34, directly under the N of Name'in Line 6. Thea type the
label for the Vendor contact field, Contact:.

18, Use the Downarrow and Leltarraw functions again to move the curser to
Line 7 and Column 34. Then type the labe] for the vendor telephene fisld,
Phune . . a

20. Une the annarrow and Leharmw functiohis again o move the cursor
.down two lines to Line 9 and Cofumn 34. Then typo the labcl for the
vendor address r elds, Address; | .

£.7.0.4 Crasting the Plalds~-Btaps ai-n-‘ e

.

31, This end the roilowiné stepa create the Felds whose labels you heve typed.

Use the BACKUP function to change the directional mode and the

BLINE function to move the cursor back to Line & and Column k. Press
-* the 5 key on the keypad, Ther the 0 key on l,hekeypnd several times until' -

thcnmlshckonl.ims.

The VAX-11 FMS Form Editor (FED) 2-31

6T

>>> The stancdurd functian of the § key on the kevpad is the BACKUP
function. The BACKUP function sels the Formn Editor to the backup
made. The abbreviation BCK replaces ADV in the modes section of Line
24. In the backup mode, the BLINE function backs up the cursor directly
to Column 1. . - - '

22, Mave the cursar to Line 5 and Column 15, Use the OVERSTRIKE fune-
tion and the FIELD function to set the Form Editor to the overstrike and
field mndes. Press the following sequences of keys:

* For the OVERSTRIKE function, the PF1 key ond then the 8 key on the
keypad. - '

. For the FIELD [uriction, the PF1 key and then the 8 key on the keypad.

»>> The alternate function of each keypad key ia the function whose
name is ot the bottom of the key in the keypad dingrom. The aiternate
function af the 9 key on the keypad is the OVERSTRIKE function, and
the ajternate functinn of the 8 key on the keypad is the FIELD funetion.
Ta use an alternate function, use the GOLD function first and then presy
the key that contrais the function that you want to use.

The OVERSTRIKE lunction sets the Form Editor to the overstrike made,
as described earlier. 7 .
The FIELD function sets the Form Editor to the field mode, To create a

ficld, the Form Editer must be in the field mode. in the field mode, you
_ coan type only field picture characters and field formnt characters.

The full sets of fietd picture and field format characters are described later
in this chapter. in this example, you will need to use only the field charac-
ters that are listed in-Table 24.

Table 2-§; Field Characters Required for the Example

Charscter : Usage

Fisld-Picture Charscters

9 For the pasitions in the vendor number and teleph bar where &
- number iy 1he only valid character,
A For the first position in the vendor number, where » lottar is the culy
valid characier,

X For the vendor name, coniract name, and vender sddrum flakds, where
. any printzble ASCH cheracter is vakid,
© Fel-Maker Charecter :

« For enclosing the ares code in the telephope number.

) For enclesing the area ecde in the tlephone numbsr,

T . Fot separating tha two parts of the tolepbons numbet.

. 2-32 The VAX-11 FMS Form Editor (FED)

25. Mova the cursor to Line 6 and Column 43. Create the vendor contact field

23. Tn'this example, vendor numbers are in the fnllm;-ing form;

R-67-0085 .
‘To create the field for the vendor number, type n-SS—BS.SS.

>>> A-99-89939 specifies Lhe characters that are valid for each column
in tha field: they make up a field picture. The picture specifies’that the
first character in the field must be a letter or a space and the other
chargcters must be digits. The hyphens separate parta of the field. For a
program that processes the field, the hyphens will not be part of the fisld
valie, Thercfore, the program only uses seven characters, although nine
are displayed. : '

24. Move the cumer to Line 5 gnd Column 43, Create the vendor name ﬁel.d

by ingerting the letter X 37 times. The easiest way to do this accurstely is

0

. "with the following sequence:
GOLD 27 X o
Press the PF1 key, type 37 on the keyboard, and press the X key.

>>> The GOLD function sequence for repeating functions also repeats
cheracters that you want to insert,

Any chacocter may appear in s vendor name. Therefore, the form hes to -

allow any character,

by inserting the letter A 28 timea. Use the following sequence:
GOLD 28 A

>>> Assume that only spaces and ietters can appear in the contact name.
. Perioda () after initials and ebbreviations will not be copied (rom the card

file. If an operator types a period or other invalid.character. the Form

Driver will refuse to aceept the character and will signal the operstor with
. the following messoge: :

ALPHABETIC REQUIRED

26. Move the cursor to Line 7 and Column 43 by pressing

GOLD 42 Rightarrow. Create the vendor phose field by twping
(899,959-9999,

>>> Assume that only the digits 0-9 can appesr in s phone number.
-Wh'en old phene nembers that include letters in the exchange code are
. copied, the operator will convert the letters to the corresponding numbers,

27, Move the cursar to Line 9 and Column 43 by pressing the Dosmarrow iéy

twice, and the <Leftarrow> until you see 43 in the Edit Status Display

field column on the bottom of the screen. Create the first vendor address

field by inserting the letter X 28 times. .
>>> Assuros that any character may appea.r' in an address.

- The VAX-11 FMS Form Editer (FED) 3-33

02

mn et e -

25. To experiment with duplicating 8 field without retyping it, move the
cursor back to the first X in the VENDOR epddress field. Then use the
folinwing scquence of functions to erase the field p:clnm and restore it to
the farm description: .

GOLD DELEOL GOLD UNDLLLINF

Press the PF1 key, the 2 hy on the keypad, the Pl-‘l key again, end the
PFi key.

s>> The nhernate functions of the 2 and PF4 keys are DELEOL and
UNDELLINE. The DELEOL function ernses the cursor'a character and
the other characters between the cursor and the end of the line. The Form
Editor stores the erasure in an internal line buffer, in case you want to
restore the last line erasure that you meke.

The UNDELLINE function restores the string that is in lhe line buffer to
the form description, When you want to create several {ields with the same

ficld pictuze, one easy method 1o use is to create one field picture, erase it,

-

and then restore it in as many positions as necded.

. Move the cursor to Lines 10, and 11, With the cursor in Column 43 in each
line, create one of the vendor address [lields by wusing. the
LNDELLINF function. .

2.7.2.5 Assigning Ficld Atiributes—Steps 3040 —
30. In this siep and the following steps, you will complete the Field Atiributes

questionnaire for each field that you have created. To begin work with the
Field Attributes questionnaire, enter the ASSIGN command Uee the fol-
lowing sequence:

GOLD COMMAND ASSIGN ENTER ‘(or RETURN}

»>> The alternate function of the 7 key on the heypad is the COMMAND
functinn. After the COMMAND function, the Form Editar erases Line 24
‘gnd displays the prompt COMHAND s . When the prompt appears, enter a

command by typing on the keybnard and use the ENTER function to

cause the Form Editor to execule the command.

The ASSIGN command causes the Farm Fditor to display the Farm At-
trihutes questinnnaire for each new field. A new field is a fichd for which na
field .attributes have been assigned. In this case, all of the fields that you
have created are new. The first new.field is the Vendor Numbher field. The
Farm Editor displays the Form Attributes questionnsire o that you can
atill see the field itsedl and then identifies the field by replacing each
. picture character with an underline character (_) Within the Field At-

tributes queﬂmnnmre, the cursor is dlsp!aved in the first field of-the _l)

questiunnnite,

Like the Furm Wide Attributes questionnaire, the Field Atuibutes quu

tionr.oire is alra an FMS form that is displayed by the Form Driver. The
full get of fields in the Field Atiributes questionanire is explained later in
this chapter, For this onmpl.. the flelds that you need to mphu are
lisud in Table 2-5.

2-34 The VAX-11 FMS Form Editor (FED)

Table 2-5: Field Aliribules Required for the Example

: Attribute . Usage
o '
L Defauit, : Tumfydnnmﬂmmnmmduhlmhmdmuim
- - Rumbers. ’
* Field pame Te previde & unique identifier for each field.
Help . To provide mnmdm 1n the operatay abogyt mpiﬂln‘ ﬁddl
" Mus it To require the operator' ta enter ull of the tbuutun in the vmdw
N number and telephone number.
Resparme ‘To require the apatstor to enter the vendor nurmber brfm finishing with
required the form.
- 3 . 81. For the Vendor Number field, type the {ield name NUMBER and press

the TAB key to move to the next field in the questionnaire. Press the
DELETE key to correct any typing errors.

>>> When the Form Driver is displaying 8 questionnaire, the Form Driver
displays each character as you type it. The TAB key signals that you are
finished with the Name field, slthough you can return to the field later
and change it. The Form Driver responds by moving the cursor to the next

field that you should complete. Table 2-6 lisis the Form Driver editing.

T ' functions that you will need in this éexample. The {ull set of editing func-
. tions is explained in Chapter 4,

" Table 2-6: 'Form Driver Editing Functions Required for tho Example

’) v " Fusctisn . . Usage
o "' BACKSPACE Tobackup from ficld tn field in & questionnaire.
: DELETE To erase & singhe characier in & questicnnaire respooes,
. LINEFEED To eraae an eriire qwbnnm respone, .
REI‘URN ‘Fo signat that all responses are correct in a quesiionnaby,

TAB Te sdvance frem feld to (ield In @ questionnairs. . . .

82. Press the TAB key four timex. With the cumor at the beginning of the -

Help field, type s short, helpful message that dutnbﬂ hcw an apcrlt.ur in
1o type a vendor number. For exampie:

Ceﬂr_tht vendor nusber from the old vendor card.

! -, . Presa the DELETE and LINEFEED keys to coert missaka.

The VAX-11 FMS Form Editor (FED) 3-35

~x» Each time you press the TAB key, the cursor moves (o the next field
in the questinnnaire, For the Right Just, Clear Char, and Zero Fiil fields,
the default field attributes are unchanged. Therelore, in your new form,
the Vender Number ficld will have the following corresponding attributes:

* Not right justified.

» The space it the clear character. (It is better to assign’s cleor character
such os underline ar if space is used casign the reverss video attribute so
the lfeld is visible on the screen)

o Nat filled with zeroes.

The Default field in the questionnaire remains blank. Therelore, in your
new form, the Vendor Number field will not have a defoult vafue,

. When you have typed the help message, move the cursor to the Reap Reqd

field. Now type Y for “"ves”.

>5> In your new form, the Vendor Number is required information. By
typing Y, you assigned the response-required field attribute, The Form

Driver responds by moving the cursor to the next field — thatis, asif you -

had pressed the TAD key,

. With the cursor on the Must Fill field, type Y.

>35> In your new farm, the operator respanse must fill the Vendor Number
field, By typing Y, you assigned the Must Fill attribute. The Form Driver

‘responds by automaticaliy moving the cursor to the next ficld.

Press the RETURN key.

- »>» For the field attrlhl.les after the Must Fill ﬁcld the defaults are

3t

corract for the Vendor Number field. The RETURN or ENTER key sig-
nats that ynu are finished with the' questionnaire. The Form Driver
responrds by displaving o fresh image of the Field Attributes gquestionnaire.
Fre Form Driver alsa identifies the next field in your new form, the
Vendor Name ficld, as the ficld to which you should now assign field
atirihutes. The cursor appears at the begmmng of the Name field in the
questivnnaire,

. Type UNARME as the fiold name. Move the cursor to the Help field with the

TAB key ond type a HELL' message such as the folluwing:
Comy the vendor s name from the old vendor card.

>3 The ather default niiributes are corrcct for the Vendor Name field.

Theretore, press the RETURN key when you compleie the HELP mes-

sage. The Form Diiver ideatifies the next field in your new form. the
Contact field, as the field to which you should now assign field attributes.

Type CONTAC a8y the field name. If you want to specifly a HELP message -

for the Contact field, move the cursor 1o the Help Geld and typa the
message. The other default attributes are correet for the
Cunlact field, Therefore, when the Name and Help fields are complete,
press the RETURN key.

2-36 The VAX-11 FMS Form Editor (FED) .

38. Type the name PHONE for the next field, Mave the cursor to the Defoult

field and type 111 as the default ares code. Then move the eursor to the
Help field if you would like 1o ar.sxgn s HELP message for the Phane ﬁeld
One example of 8 HELP message is:

The erea code and & 7-61!1! number are resufred.

»>>> For the new form, the default area code is 111, although the design
does not coll for a default number, With 111 as the only printing charac-

ters-in the default vatue. the field will look like the following example -

when the Form Driver displays your new form:

Phone ¢ ¢111) ---

. Asgign the Must Fill atiribute to the Phone ﬁelé. Advance the cursor to

the Must Fill field and type Y. The other defaull field attribytes nre
torrect for the Phone fietd. Press the RETURN key when you have fin-
ished assipning the Must Fill attribute.

>>> The telephone number is not required input data. I, however, the
operator types 8 numher, sll 10 columns of the area code and number
must he cnmplete. The Must Fill field attribute is assigned but the Resp
Reqgd field attribute is not assigned. Since this field contains deta already
{the defaull value), it must be filled unless the default area code is de-
leted, If 8 Must Fill field contains any data, it must be filled — as is the
cese here.

. For ench of the Address fields in your new form. cnmplcl.e the following

procedure:

* Assign field names to each — for example, ADDRI, ADDR2, snd

ADDRA.
* Assign 8 HELP message, if voii would like Lo Jo so.

* For the other field atiributes the dc—l’auil!; are correct. Prexs the RE-
TURN key when you finish sssigning the field attributes for each field.

When vou press the RETURN key alter assigning the field attributes for
the last Address field, you have finished assigning attributes to all fields in
your new form. The Form Editor will return you to the CONMAND:

T prompt.
2.7.2.6 Assigning Video Attributes—Steps 41-48 —
41. Assigning video atlributes is part of the process of editing a form descrip-

tion. The following steps teli you how to make lhe following nmgnmenu

. Dinplay the company name in boldlace.

* Digplay the Vendor Numbcr ﬁzld lahel nnd field plcture in reverse
- video,

© With the COMMAND ¢ prompt displayed in Line 24. type EDIT.

>>> The Form Editor responds 1o the EDIT coromand by thnplaym; your
new screen form.

The VAX-11 FMS Form Editor (FED) 2-37

44

42. T sesign videa atiributes. to character prsitinns in's forn, first mark the
pusitions by putting them in a seleet range. Then assign to the nelect range
the combinution of viden ailnbules that veni wanl.

Mme the cursor o the firmt character of your company name, Now usg the
SELECT function: press the period (.} on the keypad.

>>> The Form Editor respands by adding information about your select
range to Line 24, When you are huilding a selcet range, the Form Editor
shows the line and enlumn number of the cumt L} pmilmn at the time you
used the SELFCT function.

43. Advance the cursor to the blank thet is al the end of your company name.
Now yse the VIDEQ function. Press the 7 key on the keypad.

335> The Form Editor displays the VIDED; prompt on Line 24,

* 44! To assign the hold video stiribute to the select range, respond to the
VIDED: aunhute by typing BOLD and Ihen press the FNTER key.

>35> The Fnrm Fditor dizplays the selecl range in boldface and again
dmplays the VIDED: prompt.

4. To ﬁn'-h nssigning the viden attributes, preas the FNTER key without '

specifving a video attribute. Then advance the curser to the V of the
Vendor Number and begin to build 2 new select range by using the
SELECT function.

»>> The Form Fditor updates the line and column numbers in the select
range repotd in Line 24.

46. Advance the cursor to the blank that follows the field picture
tA-99-9993) for the Vendor Number field, and use the VIDEQ func-
tion. When the Form Editor displays the VIDEG: promph type RE-
VERSF and presy the ENTER key. To stop ansigning graphic attributes,
pross lhe RETURN kev again,

>>> The Form F.chmr responds by displaying the field label end pacture in
- reverse video.

;.1.2.? Asslgning Named Data-—5Steps 47-56 -

- 47. Thia example assumes that you want to experiment wilh your new form by
having the demanstrutinn program display the form, To make that pos-
sible, vou must assign named data to your new form, The demonstration
progsant is listed and explained in Appendix A. The named data [abel
that ot need to azsign i "NXTFRM” and the named data value to be

. associated with that Isbel in the atring “.NONB.” Press

GOLD COMMAND.

With the COMNAND ¢ prompt displayed on Line 24, type tha NAME com-
mcnd and press the ENTER hy '

2-33 The VAX-11 FMS Form Editor (FED) - .

Ll

7 33> The Furtn Editor responds by displaying the Named Data Fntry

49.

Forin. The fields on the left in each line of named data are the fields for a
fahel that are {rom une to six characters long. On the right is the date
string that is from 0 to 66 characters long. The label is simply an identifier
by which a program can request (the Form Driver searches — not the
program) an associated date string. The cursor is st the beginning of the
first field in the questionnaire, the NAME l'eld

,-To enter the label, 1ypé NXTFRM. To mave the cursor to the Data field,

presa the TAE key and then type +NONE,

>>> As in the uther questionnaires, the Form Driver is prweumg the
Entry Form and your responses. .

Since the form does not require any other named dsta, press the RETURN

key to get the CONMAND : prompt.

55> When you press the RETURN key while working Wilh the Nlmed
Data yuestionnaire, the Form Editer displays the COMMAND 5 prompt.

., You have now compieted ynur new computerized version of the sample

form. To save the form description that you have created, use the SAVE
command. Complete the foliowing sequence: ,

" sAvE ENTER - . .
>5>3 In response to the SAVE command the Form Editor saves your new

_ form description in an cutput file and displays the following mvzmn:

FED-Form being raved

The Form Editor's prompt for a command fine is then dieplayed:

FED>

B ¥ XY Editing One of the l.;!emonslrctlon Forma—Steps 5‘!-—57 —

51. With the FED prompt displaved. you can continue to use the Form Editor

to work on another form deseriptiun or you can stop the Form Editor. The

follpwing steps assume thal you want to have the demonsiration program

display your new form. For the demonstration program to do that. you

must modify the named data for the First form that the demonstration

uges. The First form is a menu that is illustrated and explained in Ap-
pendix A. The form is named FIRST and is stored in the form libzary file
DEMLIB.FLB. You need to modify the form as follows;

* Add an alternative exercise 1o the list in the form by nddmg the fol-
fowing line of background text: -

4 Enver’ vendar dats

o Add & named data label and value to the other named data that are

elvendy associated with the form., m Inbel and value are;
B vawoon N ’

1

The VAX~11 FMS Form Editor (FED) 2-3%

.

£

" To edit the forin named FIRST, respond to the FED prompt by typing the
fol_lnw'mg command:

FEDOEML IR FLRVS

When the Form Editor responds with the prompt: Fors name?, type -

“FIRST and press the RETURN hey.

»33 The Form Editor displays the sereen image of the form named FIRST
and the COMHAND: prompt. The form has only one feld, the single char-
scter ficld fnllnwmg the word Da. The fiefd picture character 8 specifies
that only numeric respanses are valid for the field. All ol.her chnraclere in’
the form are background text.

52, Tvpe EDIT. Then advence the eursor to the E in the line lhat recds

f £wxit, With the cursor in that pmllmn replace the word Exit with'
Enter vendar data. Check the report in Line 24 that you are in the over-
strike mode, and type the new phrase.

" 35~ In the overstrike mode, ench character that you type replaces the
character at the tursor's pusition.

53. To restore the choice of emtmg from the demonstration program, insert

the Exit choice. Advance the cursor Lo the character position dll'ecl.ly
below the 4 and type 5 Ewit.

B4. The demonstration program uses the named data that are associated with
the forms in DEMLIR.FLA 1o transfer controt from form to form and to
exit. Therefore, you must now change the named data that are associated
with the form named FIRST so that: .

® The respunse 5 stops the demnnstration,

s The response A makes the demonstration displey the form named ’

VENDOR and store vendor dala in an output file,

To edit the named dnta associated with the form named FIRST, enter the
NAMFE command. Use the following sequence:

GOLD COMMAND NAME ENTER

»>> The Form Driver displays the Named Data Entry Form which has
the datn and labels that are essaciated with the form named FIRST. The
cursor is at the beginning of the Name fieid in the first Ima of the Entry
Formi.

55. Press .he TAB %oy several times to advance Ihe cursor to the labe} associ-

ated with - EX 17 (4). Then, press the LINEFEED key to erase the 4, and
) type 5 to enter the new Iabel

3> When the Form Dnver is duplaymg an Entry Form, preumz the
LINEFEED koy erases the characters in o field, The cursor con be at any
character position in the field that you want to erase,

240 The VAX-11 FMS Form Editor (FED)

57.

- 88. For programs that use nemed data labels ta call for data, the named data

assoclated with a form can be in any order, Therelore, to associate the
response 4 with the form pamed VENDOR and the output file for vendar

_ detn, you can add the new named data at the end of the original data that

is associnted with the form. Do the following:

o Press the TAB key until the cursor is in the first blank Name field of the
Entry Form.

* Type the label 2, and press the TAB key to edvance the cursor to the .
Data field,

* Type vENDuR the name of the form that is to be duplnyed for the
response 4 1o the form named FIRST, Press the TAB key to sdvance the
cursar Lo the next blank Name field. ~

* Type &F, a special 1abel that the demonstration program will create'.
explmned in Appehdu A. Press the TAB key 1o sdvance the currer to
the Data Meld.

"» Type VENDOR . DAT or another file name that you want the demonstra-
tion program Lo uge for vendor data.

. 'To finish editing the named deta entry form, press the RETURN key.

>>> When you press the RETURN key while working vmh the Named
Data Entry Form, the Form Editor displays the COMMAND ¢ prompt.

To save the cdited version of the form named FIRST, ase llje SAVE
command. Type. SAVE and press the ENTER key. The Form Editor caves
a form description file named FIRST FRM ond displays this message:

PFED-Form beins saved

2.7.2.9 Storing the New Forma in » Form Library Fln—supl 58-59 —

58 The preceding step is the last one in this euample that deals with the

Form Diriver and Form Fdilor. If you want to experiment with vour new
form nml the edited vemion of the forth named FIRST, you must add the

* form deseriptions Lo the farm library file DEI\ILIH.FLB. The FMS compo-

nent that manipulutes form descriptions and form library filea is the Form

Utility (FUT). The Form Utility is described in Chapter 3. The following

steps provide the instructions that yvu need for the forms thn you have

just edited.

With the Form Editor promp!t di ‘played stap the Form Edltor by typing .

&), When the system prompt is displayed, start the Form Ulility by

using one of the following commands or sequences:

*HCR FUT B : . .

or,

create a aymbol: .

SFUTImsACAFUT B9 . ‘ ' oo
_ | - -

s FUT

' The VAX-1] FMS Form Editor (FED) 2-41

55 “. tk the Form U tility prompt (FUT 7} dﬁplu) ed, type the following Form
Uity command line:

CEmL I s L8=LEnLIC.FLE F!r«f‘l Fare,vEnoon. fl?‘h’l"P‘ilj

"»»> The Form UCtility produces @ new version of the form Kbrary file

- DEMLIB.FLD. Becaure the command line causes the naw version of the
- form named FIRST to replace the orlginal version, the Form Utltity ro-
© ports the full fite specification of the replacemem The reportis a message

that looks like tke following:

CRALITUSERIFIRST.FRNIY Farm Naae » FIRST
TFormrarlaced

The new version of the form library file DEMLID.FLB contains the edited -

capy of the form named FIRST and the new form description that you
created for the sample vendor data form. You can use this version of
DEMLIB.FLB instead of the dm.nbuwd version wlunyounm the damon-
stration program. .

", 242 The VAX-11 FMS Form Editor (FED)

Chapter 3
The VAX-11 FMS Form Utllity (FUT)

: - 3.1 Starting and Stopping the Form Utllity - -

The Fn;'m Utility is the only progtam that cresles and modifies FMS form
libraries. Only the Form Uul:ly should be used when you want to examing
FMS library [iles
The Form Ulility program provides the following services:

1, Extracts ond deletes form descriptions from form libraries.)
& Combines form descriptions snd forin libraries into larze form Libraries..

3, Converts form descriptions 1o MACRO-11 cbject files for applications
that wse memory-resident forms on PDP-11s. Note: Memory-resident
I‘orml are not supported by the VAX-~i1 FMS Foren Driver. . ’

i Pmdum printshle dats descriptions In COBOL formsat and {isting ﬂu
for form library directories and form descriptions. .

8. Creates form libraries from form fles.
. /’

3.1.% Starting lho' Form utility

. You can run the Farm Utility in wo ways:

1. snca FUT &
2 Cmu Y uymbol

3 FUT 12 nCR FUT 6D ! oo
' FuUtT) ’) [|

Tbs Form Utility starta by diuphyinz the r-'u'r> pmpt. Later sections de-
scribe hw to reapond $0 the prompt. .

-1

'31.2 Stopping the Form Ufitity

The Form Utility stops in two ways. The way it stops dependi an how you

- start the Form Ulility. The two general cases are as inllows:

1. When _n.'ou start the Form Utility with the direct call FUT and include a
Form Utility cotnmand line. In thie cese the Form Utility exits sfter

” _completing the process you have speclﬁcd and the tystam displays tha

- aysterm prompt.

2, When you start the Form Utility with the MCR command or with FUT
withnut a command line. In this case the Form Utility remaina active after

completing o process and displavs the prompt FUT3. You con then entera -

new file specification string or type € to exit.

3. 2 Form Utility Defaults

Table 3—1 ‘suthimarizes the comma.nd del'au!t valuea for the Form Utility.

Table 3-1: Default Values

Item ’ Default

Input & output The LOGON directory or the direcinry apecified in the laleat SET DE-
uic FAULT command.

Input & output The volume instalisd in the default user device,
velume | :

Input fite The inpul Gile name must be apecified. The default input file type iv
. name & typy FILD

Qutput fie With Lhe /FF optinn, no outpul file name or type can be apecified. The

name & (ype form weme hecomes the file name and the file type ia FRM, With the
JFD optinn. the form name i the default cutpul le name. With the /Ul
option, the input foem iilsary file name ta the defeult output file name,
With the /CU nption Lhe outpal extension is .LIB, With other options,
the outpu! file name must be specilisd and the default file types are:

.FLB for any 2utput form library file.
MDD for printable form descriptions,
FHM for.form fles.

LR far CUBOL. data descriptions,
ST for form library fle directories,
LORJ tor PUP-11 object files.

Input file - The latest version of the input e that is on the inpul walume.
version R
Qutput fils Versinn i fur & new File. Otherwixe, the Form Utility wagigns a version
vetsion . pumber that b otie plus the version number of the latest version thet ls
. . o Lhe oulput volume.
" Option . The defuukt optian ia /D, to produes & printable ve:cian of & form de-
)) wripton., .-

Spmllng & The /5P deBA -pdnm are the delaults for rpoulla;md block-allgn-
Bloek- hlila- mtdmmmthhMﬂwm&mM
' ment

+

- N

32 The VAX-11 FMS Form Utility (FUT)

“n

a

RN

3.3 Form Utility Errors

* When an error occurs, the Form U'tilitj- displays g message and transfers

contro! in une of the three following ways:
1. When recovery is impossible, control transfers to your operating system,

2. When recoverable errors occur in” processing form descriptions or files,
cantrol transfers to the FUT > prompt,

3. When file specifications and options contml tram(an to the FUT>
pmmpt. -

Appendix B lists F‘orm Utility messages and explains how to look messages
up.

3.4 Prompts for Form Library Flie Processes

The following six options allow you to select individual l'orml from fom

- library files and process them in different waya:

1. /CC to produce a COBOL data description structure.
2. /DE to delete form deacripliona from form library files.

3. /EX to select mpecific form descriptions from one form lsbrary file and
store them in & new form ltbrery file.

4. /FD, the defaull option, to produce a printai:!! form description.

5. /FF to select a form description from a form library file and store it in a
form description lile.

6. /OB to convert form descriptions to PD)P-11 object format.

For cach of Lhe six options. the Form Utility prompts -yau for & form name,
The general formet of the prompt is the full file specification of the form
library file foltowed by the prompt Form name? For example, with
DRI, [USER], and .FLB as the delanlt input volume, DIRECTORY, end form

library file type, and with version 6 as Lhe Jatest version of the form library file
DEMLIB, the Form Utility would prompt you as follows:

FUTXESCR.FMD=OTMLIB/FONY

DRLcCOIRECTORYJOENLID FLBIG Forw name?

You can respond te l.he Form nawe?t prompt by typing

1A valid form name and pressing the Retumn key. .

The Portm Uility pmcessu only the form description for the form nams
that you type. It then fequests another form name,

2. An ssterisk {*) and the Return key.

The VAX-11 FMS Form Utility (FUT) 3-3

92

e i o

s - ———— ST

Tue Frm Utility processes all form descriptions that the form library file
ennliing.

« NOTE

Respending with the aatensk is not valid when you have speci-
fied the /FF option, -

3. The Return key only.

The Form Utility begina procesaing the next input file that you heve
spetilied, if there is another input file, or stops.

. 3.5 Form ility Command Options

This section describes each of the Form Utility command options, Tha de-
scriptions are arranged in three groups, as follows:

1. Options for control and HELP.

"The /ID option to display the Farm Utility identificetion.

‘e /HE optinn to dispisy the Form Utility HELP file.

The /51" and /-SI* aptions to contrul spoaling of the files to the line
printer.

The ,,‘I I option to list the names of forms in form library ﬁles

2. Oplmm for ereating form lihrary files.

The /BA and /-BA optics to control form description block alignment.
The /CR option to create 8 form Library file by comhining files.
The /UE option to delete farm descriplions from files.
The /EX optien to extract form descriptions from files.
- The /RP optien to update form descriptions in files,

3. Options for processing and converting form descriptions.

. The /CC option to create COBOL data declarations for form descriptions.
" The /FD option to create a listing of a form description.
The /FF option to create a fornt description fiie from a form in a librery

file.
The /0B uptmn to create PDP-11 object modules of form descriptions.

'3.5.1 Options for Control and HELP

3.5.1.% The /0 Oatlon: Displaying the Form Utillty identification — Use the AD
option by itsell in.the command line to make the Form Utility display its
identification. The identification includes the Furm Utility’s namre (FUTH,
version number, and potch level, . ..

NOTE

FUT is uscd. throughaut this chapter a3 & symbel for the com-
mand string: $ MCR FUT. -

3-4 The VAX-11 FMS Form Utility (FUT),

" The following examples {lustrate how the Form Uulily rupmd: to the /ID
nphon

b rur F10
-Fut U_O!.Og:
.-

$ FUTED
FuT>/1om
FUT vol,00
Fut>

3.3.1.2 The ME Option: Using Form Utlitty HELP Fite — Use the /HE option by
itse!f in the command line to have the Form Utility display a ahort summeary
of the Form Utility command line forms, as well as a [ist of the command line
options and their mesnings.

Figure 3-1 shows bow to use the /HE option and inchides a copy of the F'orm
Utility help display. Later sections in this chapter pmcm the full details
about the other opum.!

Figm 3-1: The /HE Option and the Help Display

S FuTEy

Fut)/u:@ .
HELP FOR FRMUTL v01.90 ,

Cammand limps

eutputitiie » Inrar-files «o1 sineul filesuntinn

orl ieng

/o " Prent idencificarian on terminal

FHE . Print this helr yeat Dn terminagl

/FQ Hrite Torm descrieiion ldefault)

Ll Mrite likrarr dirrclorr listing

00 Write obuect module of forms

/CR Create Jabrary Trom libraries and fotes
IRE- Rerlace forms in librarr

/DE Delete forms from library

FEX Ewiract forws to build [ibrary

/CEC Cteoate CODOL fore descrimijon

/FF Create a fora fi)e Yrom a library Torm
r-0A Do wet bisck ali#n farms din librabr -
/8P Sroal listing sutsut 1e line Printer
Fut> °

L -pa5-00

3.5.1.3 Tho /5P and /-SP Opllons: Requesting Line Printer Listings — Use the |
/8P option with one of the following oplivas to direct the Form Utllity cutput

to the defsult line printer on your system:

« The /LI option, for form library file directories.

* The /FD option, for printed descriptions of forms.

» The /CC optlon, for COBOL data descripiions of forms. -

The VAX=-I1 FMS Form Utility (FUT) 3-§

& _ B

Lo

“3-6 The VAX-11 FM$ Form Utility (FUT)

Whea you use the /5P aption, the Form Utility creales the output file and
spenild the fite to youe line printer alter you specify either the form name or
indicate with an asterisk you want &ll the forms listed.

Use the /-SY option with the same optiona to prohibit line printer listings.
The default option is /-SP.

If no ouiput file is specified in the /SP option. then the defaull output dovice
is the terminal, not the line printer. .

1.5.1°4 The /LI Option: Listing Direciorles of Form Library Fitas — Use the /LI
option ta create a printable file that lists the names of the forms that are in
form library files. The output file includes the following information:

The Form Ctility identification and the current date.
The full file specification for the form library fle,

The date the form library File was last vpdated.

= w oo

. The tize of the directory within the form library file.

The Form Utility cieales a one-block form library file capable of storing
sixty-two formg. If you are writing a large FAIS application that requires
maore farms, vou shouid create more than one form Iibrasy file o use in
your application. .

5. Fuor cach form description in the form library fite:
- » The form name (85 assigned by using the Form Fditor),
» Tle date the form description was last edited with the Form Editor.

+ The size of the impure area that the form requires in an application.

The fallowing example Mustrates the /LI option and the format of the output .

file that the Form Utitity produces. Decause the command Iifu.- !ll? includes
the /3P uption, the Form Utility spools the sutput file to the line printer afler
creating the file. :)

FUT w01.00
G-JR'N-BD

Library DRIsCDIRECTORYIDEMLIO.FLDIE oreateds 4-DEC-7E
Directory 4s 1 blooks lons

Form Date Impure Ares (bytes)

FiRST Q-DEC-79 368 .
. CUSTPR 4-0EC-78 <]
©LA&ST §-DEC-79 4.4]
EMPLOY 4-DEC-78 612
" PARTS #-DEC-783 794
CcUSTD 4-DEC-78 812
-

3.6.2 Optlans for Creating Form Library Files

3521 Tho /8A end /-BA Options: Using Block-Aligned Form Descriptions —
Use the BA aption with one of the following options to explicitly align each
form description from the beginning of a block on the cutput mass storage
volume (/BA is the default option): ’ '

» The /CR option. . i)
* The /DE option, B -

* ¢ The /EX option.

* The /RP option.

The input form library files can he aligned or unaligned.

Block aligned form libraries may result in faster access times for an applica-
tion, Block-aligned form descriptions require farger form librory files than
non-block-aligned form descriptions. The maximum increase in fonn library
file size in 1 block for each form description.

In practice, block-aligned form library fiies are usually used unless space is
severely limited, For example, if you are packaging a VAX-11 FMS appiice.
tion with ite forin lihrary fites on diskettes or other media with small capacity,
you may want to use non-block-aligned farm libraries.

Use the /-BA option with the same options to prohibit block.aligned form -~

descriptions,

Section 3.5.2.2 includes an example of the /BA option.

3.5.2.2 The /CR Option: Combining Form Library Files and Description Flles —
Use the /CR option te combine jnput form descriptions inio one form library
file. The option has no effect on any of the input files, If the Form Utility finds

@ form name more Lhar once in the input files that you specify, the following
message is displayed:

FUT - Itlesal rerlacement of form: use /PP

The following example fitustrates the /CR option. Because the /BA option is
alvo ysed, the form descriptions in the cutput file will be block aligned.

s FUT DEPISZ.FLE/CR/DAPROIDILECMIZFRAIS PROJITED

When the Form Willity completes the commend, the foym library file
DEPTG4.FLB contsine the foliowing form deatriptions: :

® The form descriptions in the latest vemion of the form library fils’

PROJO1.FLB. . .
+ The single forws descripticn In the fonm description file ECO12.FRM;5.
The YAX-11 FMS Form Utility (FUT) 3-7

5¢

B

¢ The .form de-:cnp:mns in the]am,t version of the furm library Tile
PRQJ2VFLB,

* -3.5.2.3 Yhe /DE Optlen: Deleting Form Descriptions from Form Libtary Fllos —

The /DE option lets you delete some form descriptions from form library Gles
and combines the remaining form descriptions into a new form library file,

The Form Utility does not change any of the input files. For each input fla
that is & form librery file, the Form Utility displays the full file apecification
and prompts you for the names of the forma you want to exclude from the
output file. .

NOTE

The Form Ltility accepts form description files as input files
with the ;IDE option. However, none of the form description
files will be comhined in the oulput file, In effect, form des«cnp-
tion files are Jgnnred in this case,

The lollowing example illusteates the /DE option and reeponses that exclude

twa forms from each of the input form library files:

g ETEr

FUT-TIL™GD/GE=SLIbE.FLdia MOVIE.FLBIGRD

DAL CDIRECTARYISLIDE FLBTA Farm nawe?F I3STHD
DRE:EOIKECTORVISLIDE .FLB IS Form name?SECONDED
DR1:(DIRECTCAYISLIDE.FLBIA Form name?ih -
OR 53 (DIRECTORYINOVIE.FLBIG Farm name?7HIRONY' -
ORUILDIFECIORY INOVIE FLB 6 Farm namg ¥ OURTHED L

“DRIICOIPECTORYINOVIE.FLOFIS Form name?¥0

Furt.

When the Form Utility finishes, the form library file FILMGD.FLB:1 contains
the foflowing:

The forem descriptiona that are in SLIDE . FLB; 4 except for the forma named
FIRST and SECOND.

f

* The form descriptions that are in MO\']E FLB;G extept for the forml .

named THTRD and FOURTH.

3.5.2.4 Tha /EX Opilon; Extracting a Form Litirory Fite — Use the /EX option to
#xtract some farm descriptions from fotm library filey and combine them ina
aew form library file. When vou include an input file that is a form descrip-
tion file, the Form Utility adds the form description to the sutput file,

The Form i]tuhty does not change inpat files. For each input file that is a form®

library fite, the Form Utility displays the full file apecificstion and prnmpu
you l‘ur the names of Lhe {forma you want Lo extract. .

\ 48 The VAX-11 FMS Form Uiitity (FUT)

In the following example the /EX option is used to extract twofnm duaip-
tmns from each mpul form hhrary fite:

FUTSPICHUR2ES " St 1OE. FLD 12 ausHLe, Fri «ROVIE.FLBIGED

OPI(DIRECYORYISLIDE.FLBIA Form
DRIV (DIRECTORY JGLIDE.FLE G Ferm
DRIJIDIRECTORY ISLIDE.FLDI4 Fara

- ORLILODIRECTORY)IHOVIE .FLDOG Fora

OR1:IDIRECTORYJNOVIE.FLDIE Form

nane MUIHLAED
nl.t’ﬂo"”l— Y
hamp Il

b aa 300 INL PRD
nawe ?00CHLPRY

DRISIOIRECYQRY IHQUIE .FLBIE Form p.-e’ﬂB
Fut>

When the Form l.thty finishes, the form library file PICHLP.FLB;1 contmn;‘

the form descriptions for the forms named 00IHLP, 002HLP, 003HLP,
O04HLP, and 005HLP.

-7
3.6.2.5 The MP Option: Upda"nc Form Doscriptions in Ferm Library Flles —
You can use the /RP option to:

1. Replace o furm description that is in a form library file with a new vemicn
of that form description.

2. Creale form library file that contains alf of the forms that are in neveral
form library files.

The Form Utility can process the /RP option If each form that i stored in a
forin library file has a unique name, The Form Utility processes the input files
one al a time from left to right. For input form descriplions with vnique form
names, the output form library file includes each one. For input form dexcrip.
tions with the same form names, the output form library file includes only the
Jast one proceszed. Therefore, the final contentr of the output form Library file

in sotne cares depen& o the order you use when Lyping the input Nile spocll‘-
cations. B

Figure 3-~ illustrates how the Iinal contents of a form library file sre different
for two Form Utility comnmands. In the first case, the Jast vetsion of the form
named TESTOZ that the Form Utility processes ia in the input file TIN.FRM,
and the cutput form libeasy file includes only that version of TESTO2. In the
second case, the Jost version of TESTO2 that the Farm Utility processes is in

the input file T.FLB, and the cutput form library file includes on!y lhat'
veraidn. :

3 5. 3 Optlons for Proceulng and convurtlng Form Descrfpllonl :

) I.B 3.1 Tho FF Opl!on' Creating Form Dncnmlon Flies l‘mm ‘Porm Library Filos
_~== Une the /FF oplion to extracl a fartn description from a form library file

and store the description In a form description fite, With this option, you may
not specifly an output file name and you may not extract more than one form
deacription st a time, To create & form description flje from & form library m..
uss the general form:

 Jorm Library-filespec /FF &0

The VAX-11 FMS Form Utility (FUT} 3-9

Figure 3-2: Tha /RP Opticn: Effects or lnpu! File Order on OQutput l?lla
Canbenu

Fore Larary Form Dwacription 7
e Tin.FRM

= E

R I | ._L—[TPUT TGUIZ.FresTimEan T FLE/AP |

Outrwt Form Qnpet Form
Lirary Fan . Libcary Filg
TOUTLFLD IOUTLELE
r——(:"f}‘—\ . rf—ﬂjf:
e . s
,’ Te ! | e
|— i ——t
I tame H ' . LY
— e

[TRVUN

The Form Utility dnpla)—s the full form library file speclﬁgnr.mn and prompts
vou for the name of the form that you want to extract. The Form Utility then
ures the form name that you ‘pec-ry as an output file name, adding the fils
type JFRM. :

In the following example, lhe /FF option extracts a form description from the
input form library file SYSSDISK:FRMLIB.FLB;5 in the directory [DIREC-

TORYL. The Form Utillity creates RY). The Form Utility creates the form

description file named KELPLFRM,

s 7N

FUTSSR AL I FLB TS /FE S

DRIt IDIRECTORY JFRALIA.FLD #3 Flr- naweT HELFPIAD
FUT»

3.5.3.2 The /OB Optton: Creating MACRO-11 Object Mogutes tor Forms — Use

- the /OB eption tn convert form deseriptions to PDP-11 MACRO-11 object
format, You can then build the ohject files with your FMS application to add
memory resident forme to the appileation,

The Form Utility processes the input files In the order that you type the fils
specifications. For ench input fonn libeary file, the Form Utility prompla you
for the names of the {nrme you want to convert. Converaion is automatle for
each jnput form descriptiont file,

. For each form that you specify, the Form Uhllf.y crum an object modull
’ mlh the followmg two program sections PSEC"SB

7). $FIDXS

-Coritains the name of the form and a pomur to the beginning of the form's
data ulructu.re

310 The VAX-11 FMS Form Utility (FUT)

2. $ FORMS

Contains the form description, including dup!ny al.tnbutu. default l'eld
values, named dats, and field heip.

" The format used by the Form Utility for the object module is the samme oo for

the following MACRO-11 module:
lti\ir"n-f the Gedule
{Fore Utilivr vereton number

+TITLE frunan
+ IDENT V03,007

+PSECT $ FIOKS. 0oL Vindex that the Fers Driver wses

»RADSO /ftonan/ Ito find Lhe dats struesurs Tor

is form that i galied
{Polnter to the be
Iferm d8ta strvoLurs

JHORD FSYR

- <PRECT ¢ FORAS,O
FETR . iFarw
.] dnra
i strycture

iForm data siruciwrs PRECT

'
«END

When you specify more than one form name, the Form Utility converts each
form description and produces a concatenated object module of ali the forms.

The following example illusirates the /OB option and responses to convert one
form description fram the form library file DRO:{DIRECTORYIBILL FLB and
the form description file DRO:({30,10BILHLF.FRM to object format:

WUT BTLFAM.0BJ¢0%0 037 10IBILL.FLD ,OROIBILHLP.FRA/0D &)
DROSIDOIDIBILL . FLBIG Form name? SIARTUP @D
DROIEIO$0IDILL.FLBIE Form name? &1

MCRD>

The build command file order is important:

HLECBL »FOULAN/LBFDOVDATBILFRH.0DJ (FEVLRM/LE

- The Form Driver data module (FDVDAT} must come before any memory-

resident forms to be included in the program.

1.5.0.3 Tho /CC Option: Producing COBOL Data Declarstions lo? Farms — Use
the /CC option to produce an ASCII file that containa the dota declaration
statements that COBOL applications require for furms, You cen then ure the
COBOL COPY statement In the data division of your COBOL pregram to
refer to the files that contain the data declaration statements. Or you cun uze
toxt editor to add the data decluratmn sintement file to your COROL data
division. ,

Por each form that you apec:t‘y. the Form Utility produces ' 1bre¢ level

COBOL structure in the Termina! Formet e illustrated in Fipure 3-3
COBOL abso supports the Conventional (ANS) Format. Yoo can wse the
COBOL REFORMAT utility to convert the Form Utility’s daa’ dwdmnun
structure to the Conventional Format.

Tha VAX-11 FM$ Form Utility (FUT) 3-11

0€

. Figure 3-3: The /CC Option

Figure 3-3 shows a three-field form named PARTS snd the COBOL data
declaration struicture that the Form Uitlity prodyces {or the form. Assume

" that the field names PARTNO, DESCRP, and SUPPLR were essigned by
using the Form Editar and that the “Suppliers” field has been designed wsa

vertically indexed Ficld i
Hustration of tln_ COBOL Data

Description
L% COBCL Form Libkrary Structure
. fais atraciure contains three tyepns of Oata ftamsy
s Fotwe Nawe, Prefined with *FORN-*
L Mased, rrefaned with "N-". and
L} Oata,s prefyned wisk "0.-.,

01 FORPM-PARTS.DEF,
Q3 FOFM-PAATS PIC ¥I18) VALUE "PARTS =",
03 N-PARTS.PARTNO PIL Xt8&) VALUE "PaRTNO=,
A3 D-PARIS-PARTND PIC X{9).
0d N-PARTS-DESCRP PIC X{B) VALUE *“DESCHP™,
03 D-PARTS_JESCRP PIC Xi26).
02 N.PARTS.SUOPLR PIC NiBEY VALUE "SUPPLR™.
03 D-PARTS.-SUPPLAR PIC Xe23) OCCUAS) TIMES.
ML-047.80

. ‘The following example illusirates the /CC option and responses to produce

concatenated COBOL data descriptions for the form that is in the form de-

scription file SYSSDISK:(MHRECTORYHELP04.FRM;2 and for the forms in
‘the form library file DRU:BIRECTORYIFRMLIB.FLB;I. :

s FUT&?
D.LIB=IDINECTORY JMELPOA.FRMD «{DIRECTORY JFRNLIB . FLB 41 /CCHD
DAL LOTRECTORY IFRALTD.FLBIS Form name? *MV
FUT>

NOTE

1. If the :ame name is used for mare than mu; field in a form, the COBOL’

compiter will flag one of the ﬁglds as an efror.

2. A COBOL data declaration cannot be created for & form description that

contains blank field names.

3534 The /FD épllon: Progucing Form Descriptions for Printed Listings —
Use the /FD oplion to produce an ASCI file that describes éll of the features
of a forin. You can print the file that the Form Utility pmduces or display it

oh vour video terminal,

_The daseription produced by the Form Ulility is arranged in five major sec-

uons.‘
1.- The form descnpl:cm header

‘This section lists ali form-wide r.n!'unnalwn For uamplc. l.he uction lilll
the form name, the unocuted HELP l'mn nams, nnd the impuu area alu
. that the form fequires,

3-12 The VAX-11 FMS Form Utilivy (FUT)

Lottt ling:

In unusual cases, the Form Utility may also detect a problem with a form
that the Form Editor did not detect. in such a case, the Form Utility
prints a brief summary of each-possible problem in this section.

2. The image map

This section shows nil of the conatant l.ni in the form and the default
. velue that has been assigned: to each field. When no defsult has been
easigned, the image map shows the clear character that hes been assigned.

3. The video attributes map

This section shows the vldeo stiributes of all constant text and fields in
the form. .

4. The field descriptions

" For each field in the form, this section lists the field name, length, posi-
tion, pu.ture. clear character, and other nmmed features.

5. The named data map

This section includes a [ull list of the names, associated data, and order of
the named dats that have been assigned to the form.

The following example Wlustzates the /FD option and responses to produce
descriptions for one lorm from each of two form libzary files:

s Fuinn
FUTYD. VEValDIRECIGNY 1aM . FLBNT.
DRI cLOIKECTORYIANLFLBTY Ferm nawe? CHILAND
DASeIDIRECTORYIAM.FLB1) Ferw nama? %7
DALY IQIRECTORYIAN.HLP L Fors namp? CHII Forw un" culoom}:
DRISEOIRECTURY AN .HLPIf Form name? M7
FUrt:

]

. The following sections deseribe each ae'cuon ‘.:f the O\Ilp;lt file that ihe Form

Utility creates when you use the /FD oplmn

.

ATha /FD Option: 'l'he Form Ducripﬂon Headu

Figure 3-4 shows an cumpla of the fortn descnpﬁon header in a form descrip-
tion.

Figure 3-4: The /m.opﬂon: The F‘o'rm_Deid'Ipuo'n Huder T

-Form nawet) . BYE .- -, . Lo

Hel> fwrw namey BYEWLPF
Frrst limer 1) e

23 -
29-0€C-78
°

IBTO bvtcn

Dats oreatsdy
Ownst I

Fuxre Lehdthr
Husber of fieldss

Iurwre dtas sixes 20!0 bvul

LS L

Tha VAX-11 FMS Form Utility {FUT) 3-13

1e

-

Y
2

The individual lines in the form description header provide the foilowing
informatin: . . .

» Form name

As assipned by completing the form-wide attributes questionnsire In the

Form Editor,
¢ Help form name -

As nssigned by completing the form.wide attributes questionnairs in the
Form Editer. .

® First line

As sssigned by completing the form.wide attributes questionnaire in the
Form Editor. - -

® Last line

As gssizned by completing the form-wide attributes questionnaire.in the
‘Form Editar. '

& Date created

The mest recent date on which the form was processed with the Form
Editor.) C

¢ Qwner ID
Reserved for future use.

¢ Form attributes

If the reverse screen, current screen, and wide screen stiributes have been
selected in the form-wide attributes questionnairs, they are reported on this
line,

s Form length .
As reported in the form-wide sttributes questionnaire in the Form Edil.'or{
« Number of fields ’ 7

The number of fields with different names. Each accurrence of a acrolled or
indexed field is counted. .

* Impure area size

_As reported in the form-wide attributes quostionnaire [n the Porm Editor.

The /FD Option: Tho Imago Map

Fipure 3-5 shows on example of theomcu!umn image -map that the Form
Utility produces in a'printable form description. (Although the Form Utilicy
shows ali ‘24 Jines in the image map, the figure hes been compressed for
printir.g in this manual.) .

-4’ Tze VAX-11 FMS Form Ltility (FUT)

Figere 3-8: The /FD Option: The Image Map
' [

P el
e P AN e Sad P e

[Py TR Y RE O DL e R Y T
i

ML-B4Y .80

" For 80-column forms, the borders of the image mep include séales that show
" the line and column numbers for the map. For 132-column forms, the line

numbers do not appear. Except for the video attributes of the form, the image
map shows the form as the operator will see it before the Form Driver or the
operator enter informaltion in any fields. Each character of the constant text
appears in the correct line and column position. Each field appears in the
imege map with the clenr character that was assigned hy using the Form
‘Bditor, and each field includes any field marker characters such as the hy-

. phen (-} i .

The /FD Option: The Video_Atl.‘ribules Map

Figure 3-6 shows nn example of the B0-column video attributes map that the

Form Utility produces in a printable form description. (Although the Form

Utility shows atl 24 lines in the map, the figure haa been compressed for
printing in this manual.} -

For 80-column forms, thq- botders of the_video ﬁllribut_e- map include scales

that show the line and column numbers for the map. For 132-column forms, -

the line numbers do not appear. Within the map, a one-digit or one-letter
code for the video ‘attributes of each character appears at the character’s
position, Table 3-2 contains a complete liat of the codes and their meanings.
In each map, the ccdes that actually appesr are described below the map

- under the heading *Key to Video Attributes.”

The VAX-11 FMS Form Utility (FUT) . 3-15

PP

. 'f’he /_?'D Option: Field Descriptions

i ' o Figuro 3-6: The /FD Option: The Video Attribates Map
S ,._1'5.‘-‘ . o i " C
g ‘ ' TR AT
e bl 1 1 5 ¢ 3
i ¢ i T
"L 2 I3
X vritictitsroann 1
¢ DT H
g b Fitrr ety 5 :
J: "
e . I
¢ s "
+ i e !
A -RR08% R R
Z ?
T B
* W .
5 h
' %
i w
_ F 4 :
t z _]
Code Altribates
) Norual
: 2 ~Reverse Videp
4 Lld _
\ ¢ Bold, Reverse Video
|
|

produces in the printable form description,

Flgure 3-71 . The /FD Option: Ficld Descriptiong

Field Deseriptions

248 Field INUE of length ¢ o
Bisplay atiributes: Kigt Justitind, Zero Fi))
Field Type: Mumeric
Clear character: g ,
hft?n .Villl‘l. mm et

316 The VAX1; FMS Form Utility (FUT)

-
o

Figure 3-7 shows an example of the field dexcription tiul the Form Utility

Table 3-2: The /FD Option: Video Attributes Codes and Mesnings

- Cods) - H’Inhl' -

e Normal

H Undering

Reverse video

H "Undertine, Reverse vides

‘ Bod

[] Bold, Underine

[] " Bold, Reverse video

7 Bald, Reverse video, Underline
s Blinking .

9 Blinking, Underline
A

B
c
o

4
F

P

Blinking, Revers video

Blirking, Underline, Reverse video
Blinking, Bold

Blinking, Bold, Undertine

Blirking, Bold, Reverse video
Blinking, Bold, Reverse vides, Underline

——

The individual .lines in edch el descriplion provide the foliowing informa.
tion: " .

* Field name, size, and position

‘The first Line of the fieid description describes the starting position of the
field in terms of the row and colurn numbers for the first character (“139"
in the example above). The line also provides the field name ang the length
of the field as used by the application,

® Display attributes

Any of the following field attributes, as assigned with the Form Editor: -
— Autotzh ’ ' Co
— Display Only -

= Fixed Decima)l

— Full Required . .

— Verlical {indexed) .

= Horizonial (indexed)

— No Bcho . '

~ Right Juatifisd T

~= Some Required -

“The VAX-11 FM8 Porm Utility (FUT) 317

1

. !. }Tope
e tyze of characters 1hat &n operator can enter in the (ield, corresponding
as foiews with the refd picture charactere that the Form Editor accepts:

— 5 Numeric tvpe) ' .) s . S
— A Aiphabetic type .) . o
~ C Alphanumeric type

— N Signed pumeric type
= X Any printing character

Chapter 4

The other field type features listed in this section are:

— Indexed .
— Mixed picture ' ' -
« Serolled * . -
. Ctear character) The Form Driver is a lihrary of routines that is a subcomponent of your
As sssigned with the Form Edltor field attributes questionnaire. - - ;‘-‘:.’ - program. In an application that uses video images of forms on the terminal
. acreen, using the Form Driver can reduce your programming effort by manip-

¢ Help text Blating the screen, checking responses that an cperator types, and displaying

As assigned with the Form Editor sttributes questionnaire, help messages and forms when the aperotor requests them.

« Pieture value ' This chapter discusses how the Form Diriver interacts with:
icture valu b

As enterud in the Form Editor's field mode. * The form description, which is creaied with the Form Editor,

* The terminel operator, who completes the fields in & displayed form.

‘The /FD Ophon The Namcd Data Map .)

o o Throughout the chapler, programming requitements are mentioned and spe-

o , _ Introduction to the VAX-11 FMS Form Driver (FDV)

Fignse 3-8 shows an example of the named data map thet the Porm Utility
produces in lhe printable form descriplion.)

Figure 3-8: The /FD Option: The Named Data Map

Hamed Data Inforwattian

Hamse Daxe
DNE 218 288 23 -8 i 83 END -
ONEQUT SYSED16Ks COIRECTORY IATHAYS. DAT
whigs
~

318 The YAX-11 FMS Form Utility (FUD)

cific subroutine calls are mentioned ocessionally but not fully described.
Chapter b details the pragramming requirements for different high-level tan-
guages. In Lhnpter 6, the calls are arranged in alphabetical arder and a full

. description is presented for each one. In Chapter 7, pro;,ramrnmg technigues

sre deseribed for some 1ypical Form Driver applications.

4.1 Form Driver Interaction with the Form Description

Thix rection describes how the Form Driver uses forms to display information
for the operator, guide the aperator through & form, and collect the responses
that the aperator types. The term “form ™ refers to the image that the operator

aces aind to the computerized form description that the Form Driver handles

internally.

4.1.1 Program Access to Forms

Your program uses form descriptions by reading them from a forn library ﬁle
that has been stored on a mass storage volume, luch a8 o disk,

Form descriplions created with the Form Editor are processed by the Form
Utility. For example, afier using the Form Editor to creste a form description,
you must use the Form Utility to store the descriplion in a form library file.
Chopter 2 describes how to use the Form Editor, and Chapier 3 describes how

to use the Fonmn Utilicy. Chapter 8 ducnbu the build pnmdure for each

language.

-1

b

SETLATE FOUSRETW ENTRY (CHARLs) CIIAR (81 FIXED BINITI) ' ' DECLARE FOV$_FLD GLODALREF VALUZ FINED BINARY STATICH

OPTIQNSIVARIADLEY RETURNSIFIXED BINt313)0 B F8 o)1 Seecafied Freld does not exist ef
CECLARE FOVSSA0W ENTRY (CHARC®) .FIRED aIN(IL}H) s B " DECLARE FDVI_FNN GLOBALREF UALUE FIXED DIMARY STATICH - . . B
CPTIONSEVARIABLE) RETURNSIFIXED BINI(JIZIIE . + feo 9 Segrified fore Joes not wwist o/ . ' H
DECLARE FQUs5"OFF ENTRY R : . . DECLARE FOVS_FARN CLOBALREF VALUE FINED BInARY SYATICH . :
. REVTURKSIFINED BINLILIIN D) . /e <8 Invalid fore definition s/
DECLARE FO$SPON ENTRY i . +e DECLARE FOVI_FEP CLODOALREF VALUE FIXED DINARY STATICH X
RETURNSIFIXED DINC3I) TS . c . . . e =3 Invalag fTile seatifizavion &/ B
QECLARE FevesSTal ENTRY (FIXEG OINC31)FIXED BINIJN)) : " Co- _ ., . : .
. OPTIONS(UARLAGLE) S /#The onlr men-funsiisns/ - CECLARE FOVAK_FT.ATD FIXED BINARY STATIC INITIAL D))
DECLARE FOVSTERN _ENTRY (FIXED BIN(31H) /% Bute tad tield vas f1lled o '
. RETURNSIFIXED BIN(ILIND B} i DECLARE FOUVSK.FT.KPD FIXED DINARY STATIC IN!TIAL (°0000002C D8I
. - « - OECLARE FOUSK_FTI_NTR FI#ED BINARY S1ATIC INELTTAL (0110
e Thate ate definitions for form driver comeintion Teturny vhes the o/ : % Enter Rey inpuy o/
Iz fare ~raver ragtines are catled a3 Ffunctiens, The rriurns foe o . DECLARE FOUSK_FT_NNT FIXED BINARY BYATIC INITIAL (1)}
') FOre®TAT arw different and are Hiven &1 COmmenlg. o/ /e Wenl field Ker termpnated input o/
CEFLARE FDVUSLITT GLOBALKEF VALUE FIXED BINARY STATICE . ", DEGLARE FOVSK_FY_PRY FIXED OINARY STATIC INITIAL (2f72
Fe JC5 lnualid terwinal Lrme-s? - . L . /% Peravious Field Xer terainated input &/
Y ECLARE FOVS_FUM CLOBALREF VALUE FIUED BINARAY STATILY o DECLARE FOUSX_FT_SBK FIXED DINARY BTATIC INITIAL (3)F
/a .23 Erter fereind virtizal memory &/ . . - - Fe Screifed arey jrnryt Lermpnated with
DECLFPE FOUS_ICH CLOBALREF WALUE FIXED OINARY STATILE . Vo T scroll tackwara kKer o/ ’
se .G lpeslid channel nnwber smecifivd /7 - . DECLARE FOVSK_FT.EFW FIXED BINARY STATIC JNITIAL (@1
DECLARE FOUs_IFN GLOBALREF UALUE FIRED DINARY STatiCt coe . 7% Scrolled sres ineul terainated vith . .
7o .19 trnualig call in turrent forw comtemt S/ S o . scrol] fosward Key o/ . . R
DECLGRE FOUS_IMP GLGBALREF VALUE FIMED BINARY STYATICT DECLARE FOUSK_FT_SNX FIXED BDINARY STATIC INITIAL (6)F -
fe -7 Imeure ares too swall-#/ . ' - . 7% Last Freld a0 screll line vas terminased ;
DECLARE FOVS.INC GLOBALPEF DALUR FIUES BINARY ETATICE : - ¢ 3 with next field Loy o/ N
le D Curvent. form Incowmliete o/) ~ DECLARE FOVSK.FT_BPR FIXKED BINARY STATIL INITIAL 713 H
DECLARE FOUS_ IKI CLOCALREF WALUE FIMEDR BIMARY STATICY . /% Firsy Field am scrall lane vas tor-lnltad 3
/e .71 [mpure 3tea not inktialized Por aall o/ - . N - wilh esrevious fileld Rer &/ . 3
DECLARE FOWS_TOL CLERALREF WALUE FIXED BINARY STATICY DECLARE FDVSK.FT_XBK - FINED BINARY STATIC INITIAL (a0) N ' -3
/o .4 -Errar omrening fore Jibetarr o/ . s Y T e Iweut §n screlled srva tarminaied wiln -3
DECLARE FOUS_IQR CLABALRLF VALUE FIUNED BINARY STATICH .) ! . ewvit scrolled areas backwards Ker o/ ‘:
fv -1B Error teading fore librarr o/ . - GECLARE FOVSK_FT_XFUW FIXED DINARY STATIC INITIAL IS0V 3
DECLARE FO7¢_1UM CLOJALREF WALUE FINED BINARY S514TICH o . . “f* Inrevl in serolled arvh ierminated with J
/% 28 Lusufficient virtual memprr o/ . LI . ’ tnit serollied area ferwards Ker o/ :
DETLARE FOVS_LIN rLDﬁﬂ'ﬂgF VALUE FIXED BIRARY STATICE . .)
: Zv o100 Irvalld first line nuuber to displer Ilr- L4 - s, £End of FOUDEF.PLI . . .’
DECLARE fY4_NDF GLOBALREF VALUE FIXED BINARY STATICE . . - .] : -) . R
R Fe 1T Nao fislds defined for forw s/ . . Lo A . [H
OECLARE 1 IVA.NSE GLODALREF VALUE FIXED BINARY STATICH . 8.2 ‘The Role of the Fleld Terminators - . . :
- f® .18 Seectfied field not In scrolled ares 97) - - N . L. i
DECLARE +DV4_STR CLCIALREF waLUE FIXED SINARY STAYTICE . —.{l The field terminatora define one of the [o]lowing'conditinnl: - ~

f® 20 Innulic string lengih of

LARE TOVS._SUC GLGHALREF VALUE FIXED DINARY §TATIC) . : - : , - :
DECLARE “Dve.SU FA RN ;:ccn;rur campleripn w/ o ' ‘ . When the npemlor wants to work on the next form. o }
DECLARE FOVS UTR CLODALREF VALUE FIZED BINARY STATIC| . ' ' L c.

¢ fw Undefined field terminator s/ T . . 2. When the operalor wan!s w work on e different field from the current !
DECLARPL FOUB.ARG GLODALREF VWALUE FIXED DINARY ETAYICH . b . ficld. o :
f¢ -20 Invalig number of arduments in call &7 Lo P e) . : . B .) . :
ALE FOYS_GLM CLOBALREF WALUE FIHED &INRRY STATICH - L . T .]
DECLALE FD L EE e g B L e 40 Pis o7 . Bar.horthe keys listed In Table -2 controls s ficld terminator. The Autolab !
GECLATE FOVEDNR GLQML:EF VALUT FIUED BINARY BTATICH tes o7 . fleld aftribute ulso eunteols a unigue terminalor. When an nperstor presses s o
. /b <43 Busarfied naar ants doe1 nat eats P : ‘key or complotes a field that hes the Autolab attribulc. the Form Driver ;
A a - - i
uc_we "“ “',c.ufo;:U:.c.:.‘f::uf.:iff? ?:":::431:::5: ontr field Of . . either processes the terminatos ilself and displays the effect for the operaior or ;
" BECLARE FCVI_FCO CLOBALREF VALUE FIXED BIMARY BraTICY . . - . " returns a uninue Neld terminator code io your program and leaves the chaice . :
. A 7¢--1 Invalié funstien coes 8/ . . ’ : +' . of processes Lo the program. Table 52 also |ists the process and code that the G
"OECLAIE FOUS.FCH GLOBALREF VALUE FIXED BiNAAY smnct” ; , Form Driver uses for each ficld terminator key. - o
/% =Y Forme lidrary ngt oran oh serediflied ohannal ¢ .
DECLAIE FOVS_FLB GLOBALREF VALUE FIXED BINARY STATICH L .) When you set the VTI00 keypad to the alternate keypad mnde the Form
7o .3 Seecified file 4v nuv o form libeary o/ . o : : Driver ales treats the keypad’s numeric keys, comma { .) key, h)p}.tn(-1 .

=3 Ferz L rver Programming Requirements and Concepls . ' ') " Form Driver Progremining Requircmen'.a and Concerts 5-11

< a- gnd decsmal point . l key u‘ﬁelql ferminators. The codes fcr these - :
Tabie 5-2 {Cont.); Field Terminator Keys, Codes, Symhals, and Typlcal

5-1 Form Driver Programming Requiroments and Concspta

order.

Form Driver Programming Requirements and Concepts 5-13

3 :-r .2t aeypdd mode terminators are always returned to your program im- —_
o noriels, : o Effects i -
S Table 5-2: Fiel Terminator Keys, Codes, Symbols, and Typlcal Effects . ey Coda . :
S - - (Declmal) Symbel Usage or Meaning '
" Rey Code . .
('Dm:}a-l) Srabel Usage or Meaning) FDVSK_FT_SPR Serolt backward tn the previogs
: _ Beld. The BACKSPACE key
ENTER ° FOVEK__FT_NTR Terminaten nl! entrion in the trrmindted input in the fint
or RETURN formm. If the enll being proce wed field in o serclled line. Always -~
N i an FOVIGETAL and re. _- . rturned (0 the prigrars, :
e et are ;;:;;‘m": Nons tAutotaby ’ FOVIK_FT.ATB Processed o3 for the TAP key. :
- eepl the tenminator, and the op- PR ¢ FOVSH_PT_XBK (Velid input enfy when the cur- \ K
eralor remains in control, If re. (Exit rent fiekd in in & rerolled arved ! =
guired enfries ore complete. the Seralied Mmves the tursor ot of the ! i
terminatur is always relumed to Ares - scrolled aren to the initial prwi- ' .
the proztam. Thercfore, the - Backward) tinp of 1he previns field tha . B
final #fiect depends on the pext . the vperalar is ailoned e com- i
call that the prugram initistey o plete. .
. -
. fot 82 operstor reponse. PR 5 FDVIK_FT_XFW (Valid inpul only when the cur- : t
It eny other call in heing pro- {Exit . rent fiehd is in o scrdied ares) ; y
tensed, unly the requirements Serotled Maces the comsor oyt of the h :
for the curren! field must be Area scrrdled aren to the initial per- . B
satisfied, If mo, control is re. Forward) twn of the nesl Geld tha the
. turned o the program. . operatys is alloard o complete.
TAB 1 FPDOVIL.FT_NXT Valid only whea the current Downarrow 8 YOVEK_FT_EFW (Valid it ooty wbo the cur- : :
= field 4 not Lhe fast field in the {Beroll A . rend (eld w i a sernlod srea). v
firmy that i not Dieplay Only, : Foreard) ' The serailed arcs iz sondied vp :
Bfoves the eyt to the initial ' sod the currmnt line remaine A
prstition of the next field, the evme phxsival oz twith ' s
T new datal o the curror mves s
Processed Ly the Phem Driver duwn nne line and that Lrr be- .
for the FUVIGETAL and comies the pew current tine. The H -
FDOVIINLN calls and, untéi an CUrsor moves to e inilist pwi- ik
ertry is typed or modified, for tion of the firmt Ocki that the -
the FDVSGETAFP call. He- .. aperator iy Allwmed 1o eemplete !
tuened t0 the progeam for the . in the cureem line. !
py . :
! 2:::; T;T;;ut':lin‘::-du;r;,’ i;: [] FOVIK.FT__BBK {Valid inpunt only whea the cur- [
. FOVSGETAF call. {Bcrol) vent ficld i in & serolled areai. i,
Bethward} The sembicd area s popeiied i
) FDVEK__FT_SNX Scroil forward o the next field, derwny Bpe . the current line fe- B
The TAH key tezmizsnted input mains ithe rame phycical line T
in last field of & scrolled line. B twith new datal or the curor I
Always retumned tn the pro- moves up une line and that line i
gram. becomes the new current Lne, i
BACKSPACK }] FDVIK_FT_PRV Vulid only when the rument Thu curne moves 1o t‘!’! initial .
: _ * Gield is not the firm field in the position of the fini feid 1hat H
A - the operator is sllowed fo com- .
form that is oot display only, Jete in the current lint .
Moves the curscr to the initial £x . '
position of the previsus field, - 'A:
Proctzacd &3 for ths TAD key. . -) . e " i
L s This sectiou describes how your program can use the feld terminators and (o
- {continoed en vt page) Form Diiver calls to guide an cperator through the fields in o form in any &

1. Umrg the FOVEGETAL call.
& Thke pregram initiates the FOVSGETAL call.

b, The cppmlor uses the feld terninator keys that move the cursor from
“ficld to Zield af any time. The Form Driver processes these ﬁeld termi-
nators without returning them to the program.

&

Driver returns the ficld terminptor code and the string of field values to
the pm;ram

d. The p-ugmm thern is in control of what the apemt,or does next.
2. Using a serica of FDVSGET calls

&. The program initiates the FDYSGET call. The operator can only type
and change the entry in the upec:fed field,

b. When the operator presses a field terminator key, the Form Driver
returns the firld terminator code and the single field value to the
program. The progenm then in in control of what the operator does
next. For example, on the basis of the field value or the field termi-
nator, the program can specify the sgme l"eld or molher field in the
next FDVSGET zall.

5.2.1 Relationship Belween the Fleld Terminators and Form
Driver Calls

In effect, the Form Dtiver works between the operator and the application
program thaet the aperator is using, When the program initiales a call to get an
operator response, the Form Driver allows the operator to type an entry in a
field. When the operator presses a field terminator key that completes the

call, the Form Driver passes the response and the field terminator code to the

progzam and prohibita the operetor from further typing.

Only the fllowing four Form Driver colls aliow the operator to reapond:
* FDVSGET, to get the value for a specified field and the field terminator.

* FDVIGETAF, to get the value for any field that the operator chooses, as
well ar the [reld name and the field terminator.

e FDVSGETAL, toget a concalenated string of all field values for the current

form and the last field terminator used.

" » FOVSINLN, 10 get a8 concatenated string of the field values from the current -

ling of the aperificd scrolied area and the [ast fictd Wrminsier used.
¥or each of these fout calls, the Form Dtiver validates all fleld terminators.

. For example, with the cursor in the first field in a form, the Form Driver

accepts the field terminator for the TAD key but does not accepl the field
terminator for the BACKSYACE key.

Tahie 5-3 lists tha four calls and shows the feld urminutof keys that com-
plete each call. The FOVSGET call leaves total control of responding to any
field terminator to the program. The FDVSGETAF call ailows the operator to

~

. %14 Form Driver Programming Requirements and Conespls

When the operator presses the ENTER or RETURN ley. the Form

+

chonae ane field but returns control to the program as acon #s the operator
completes an Autotab field or modifies a field and presses any field terminator
key. The FOVSOGETAL call leaves the Farm Driver in control of responding to

any field terminator except when the operator presses the ENTER or HE. -

“TURN.key, The FDVSINLN cal! leaves the Form Driver in control within a
* line of a scrolled area.

For a genera! illustration of the fexihility that the set of field terminator
features and relnted calls gives you, compare the following two methods of
getting all of the current field values from the operator. {The illusteation
assumes that none of Lhe fields han any special attributes, such o the Re-
sponse Required attribute.) . .

Table 53-3: The Helationship Belwcen the Cal!l to Get Opernl.ar
Responses and the Field Terminators

Canl Field Terminalor Keys That Complele the Call

FDVSGET Any valid fisld terminator key or the Autotab code. ~

- FDOVSGETAF ENTER, RETURN, or any 1yped field entry followed by any valid feld
terminator key or the Autotab code,

FDVSGETAL ENTEH or RETURN,
_FDVSINLN Any valid fieid terminstor key o the Autorab tode.

In terms of designing forma.nnd pm:grams for FMS a'ppiic-uom. the following .

principles provide a useful summary of Tables $-2 and 5-3:

1. Except for the ENTER, RETURN, PF3, and PF4 keys, the effects of the

field terminator keys cannot be changed {rom what DIGITAL bes de- .
signed in the foliowing cases:

a. For the FDVSGETAL call. .
b. For the FDVEINLN call, '
¢. For the F‘D\«‘SGBTAF call hefore the operator makes & ﬂeld entry.

2, Wien the operator presses the ENTER. RETURN, PFY, or FF4 key, or. in~
response. Lo the FOVSGET cail, sny flald terminator key, the pragram
llmll conirois the elfect that the operator sees.

For exumple, i you use the FDVSG F'TAL call in a pragram, the TAB key will
slways advance the cursor from field to field according to the default order
that DIGITAL hes implemented, Howaver, il you use a series of FOVSGET.
calle instead of the FDVEGETAL call, the program is passed the field termi-
nator code for the TAB key and can react to it in any way you specily.

-You can, {or example, uee the FDVSPFT call. After the operator uses any fisid .
urlninlun that returns contred 1o the cpplu:lhon program, the program can ’

Farm Driver Programming Rai;uinmml.-n-;iid Concepts 5-£8

(%
-3

|

|

|

l
|
|
|
|
|
|

imtiate the FRVAPFT call, in effect making the Form Driver display the
eifocts of eny field terminater key. In the example of an FDVIGET eall
terminated by pressing the TAB key, the program can react by specifying the
BACKSPACE key code tn the FDVEPFT call. Then, the cffect of the next
FDVSGET call would be to move the cursar back te the previous field in the
forsn.

Or you can use another FDVSGET call. Again in the example of an FDVSCGET

_call terminated by pressing the TAD key, the program can'renet with another
FDVIGET call that specifies by name the next field that the operator is to
comnpirte, regardless of where the field appears on the operator’s streen,

§.2.2 Using the Alternate Keypad Mode Terminators

Normally, the numeric and punctuation keys on the VTI(0 keypad produce
the same numbers and characters that the correspanding keyboard keys pro-
duce., Therefore, for many common applications the aperater can enler ny-
metic data by using the keypad rather l.hun the more cumbersome keyboard
arrangement.

For special applications, you can set the VT100 to the alternafe kevpad mode
from your program and then desipn the appiicativns to use the numetic and
punetueiion kave on the keypad as Field terminator keyvs. In this case, the
Ferm Toriver always passes the alternate kevpad mode terminators to the
prgzram immediately, regardless of whether the Input Required and Must Fill
requirements are salisfied for the form. The V7100 User Guide describea how

" to set the elternate keypad mode, Table 5-4 lists the keypad keys thut are
afiected by the eliernate keypad setting and the code that is returned to your
program for ewch key.

In cach case, the churacter returned is the last character in the escape se-
quence generated by the key in alternate keypad mode,

Table 5-4: Alternale Keypad Mode Field Terminator Keys and Codes

Code Retumad

Keypad Key Character Value [D‘elnu!)
Commat,) I {lawercens L} 108
Hyphen (- - © 109,
Decimal (.) n 110,

1] . B t12.

i q 113,

2 . 1.

] us.
4 t 118
. ’ {eontinued on naxt pags}

5-1& Form Driver Programming Requirements and Cuncepta

- ' Table 8-4 (Cont.): Allernate Keypad Mode Field Terminntor Keys and
N Codes : .
Code Raturned
Keypad Key Character Valur (Decimal)
] u R I |
[} . v 114,
? ‘ K " T I
8] L
. 9 y 121,
5.3 The Impure Area

. The size of the Impure area must satisly the requirements of the largest form
S B) “that you are using if yon want your application to migrate to a PDP-11. On

VAX/VMS, the Form Driver increases the number of byies needed dynami-
catly. However, the user should use a size argument that is 1000 bytes. You do
this in the call FDVSINIT to the Formn Driver. See Chapter 6, Section 6.7,

The impure area is used by the Form Driver W maintain terminal cantext
between calla. If you issue direct calls frem your program to display data onor
aolicit input from the terminsl, rather thaxn using the Form Driver for all
terminal /0, the results of the next Fortn Driver call may not be as expected.

The FDVSINIT call within your proyrom defines ihe size of the impure area:
The actual impure area is dynamically created by the Form Driver. You wil]
notice when nnining the Forn Editor that the fields for impure area and form

gize are display-only, conlaipning question marks, Afier you have created a -

form, you will notice that when you display the Form Wide Attribules ques-
tivnnaire by typing FORM in response to the commsnd: prompt in FED, that
the ‘777" have disappeared and definilive numhbers have sppeared there. The
impure size specificalion is nvailable for the programmer to write a transport-
able program between the RT11, RSX-11IM, or YVAX/VMS operating svstemns.

ot

5.4 The High Level Language Interface

The high level fanguage interface, a special component of the Form Driver,
processes your high level language Form Driver calls. The inlerface passes the
values that you supply to the Form Driver end returns values to your program
{rom the Form Driver.

The high level language interface is Ltrnnspnrent to you and o your program
excepl when you build your FMS application. To use forms, you need to use
only the Form Driver calls.

Muost of the mutual tequirements for the Form Driver and each h!sh level
language are the same. They are grouped in the follawm; four catégories and
described in the rections that follow:

L 1. The lnpuz and output arguments for l.he Form’ Dnv«r calll

Form Driver Promramming Muirsmuiu and Concepts 5-17

8¢

2. The syntox of the catls and conyentions used in this manuatl to deﬁne the
syntax for the different languages.

3. The completion statua of calls for success and fajlure,

- 4. Interpretation of the field terminators that on operator uses whns working

with your apphcatmn and using the terminators ﬂuibly.

5.4.1 General Descriptlon of the Arguments

Collcctive!y, the calla use arguments to pass values to the Form Driver and to
receive values that the Form Driver returns. For each call, this manual uses
the term [nput Arguments {(or Inputs) to refer to the arguments that pass
values from your program to the Form Driver. The term Output Arguments
{or Outputs) refers to the grguments for values that the Form Driver returns
to your program. For example, the FDVSGET call allows an operator to enter
data: in n field and then retumms the ficld value to the program when the
operator finishes. The input arguments for the FDVEGET call are the field
name and, if the field is indexed, the field index. The gutput arguments for

.the FDVSGET call are the field value when the operaior terminated the field
and the code for the field terminator.

Table 5-5 shows the abbreviations used for the Form Driver call arguments
end describes bricfly the requirementa or value for each input argument and

. output argument.

The full descriptions of the Form Driver calls in Chapter 6 also use the abbre-
viations that appear in Table 5-6.

Table 5-5: Summary of Form Driver Call Argument’s Inpute and Out-

puls
Argunm_:l. Abbreviatien Requirenyent or Valuo
“inputs
' CHAN An FMS chennel number for & form library file. which
ia tnepiped to & VMY fogicsl vnit number by the Form
Driver. It can be any positive integer,
FID o A licld namie or 8 need data label, at leant & charac.

teen tong. To specify m scrobled area, use the name of
any. rﬂd in the ncrollzd ares.

FIDX A ﬁnld index for lht apecified field (ﬂuen the field is
. indeted) or the jndex for 8 named data valie. The
argument is ignored unlemy the Form Driver Is pro-~
ceming an lndntd field or accessing named dats by

© index,
LM Alwmmmryﬂllcp.dnudn.

FNAME A lorm name, ot leart & characlers Tong.
" - (centinued o next pags)

518 Forx# Driver Programming Requirements snd Cancepts

Table 5-5 (Cont.}- Summnry of Porm Dmer Call Argumen:'s lnpuu
and Outputs

Argamant Abbreviation

quulrma't or Value -

.- VAL &b an input valus, the nn.kn!u-uthomwmm
values to by diaplayed: |
* in a field.)
L. 'lnunhpbnumwcmthmufnm
. T wres,
& in Lhe last line of the sereen.
* in an entire form. ’

" IMPURR . ’ The name of 2 wh;cnpir& \'.uublr {n? ll'rly) for the
impure area, The VMS Form Driver requires mly L]
lompwords.

LINE . ‘The =aplicil l_lming tine gumber for Lhe Form, ower-
: ’ riding Lhe line number assigned with the Forn, Editor,
BIZE The sizs of the impure ares in bytes. The VMS Form
Diiver increases the number of byfes needed dynami-
cally; hawever, Lo creste an area large enough for your
prograa’s lesgest form, make the size 1000 bytes,

TERM Az an input value, the numeric code for the terminatar
that the Form Driver is to process,

[The status code is set for all calls)
D - The current field name ot a named data labef.
B A field indes. i ’
v . . FLEN. The length of & apecified field (not the Jength of the
dats Lhe field contains).
FYAL B A named date velue, o single field value, or & coneat-
enated string that is compoved of severs) field valuea

tincluding padding when a value ta shorter Lhan its
field),

TERM . The numeric oode for the key that lhopnmmdb
Letminsie input:

s in s Geld,
® in # line in a scrolied ares.
. % in n enlire form. -
- BYATUS A numerie code fur the completion status of tbc lut
- call that ‘way execuled.

5TA1? - A bumeric Vs sialva code fur detailed infuemation

when Lhe STATUS vahoe la -¢ (FIIVS_IOL) or ~18
* FDVRION). ’

4

An shown in Table 5-5, the maximum length of form names and field names is
six characters. Form and field names that are Jonger than six characters are -
truncated when passed to the Form Driver. The field names retumed by.the
Form Driver are six characters fong, including’ any spaces that have besn

L pdded..

Form Driver Programming kquinmmt; and Concepts 5-19

6E

~ S$.4.1.1 Argumeni Dala Types — The data types of the Form Driver argu.
Teniedepend on the !.mﬂuage that you are using. Specific requiremenis are
i'a ed later in this chapter in the sections that provide information on the
Aamcuages.

The general data types that the Purm Driver uses regularly are integers and
aiphanumeric strings. Examples of arguments that pags integer values to and
fram the Form Driver are the arguments for

« ‘The starting line number for & form.
¢ The code for the key that an operator uses Lo finish s field.

.® The size of the impure area.

Examples of arguments that pass s!phanumeric strings to and fram the Form
Driver are the arguments for;

¢ The name of a field. .
‘»'A named data voiue.

* A value to he displayed in a field.

5.4.1.2 The Relationsh'p Belween Fleld Longths and Vaiues — Regardless of
the practical purpos<es of the fislds in a forin, the Form Driver always treats
field valves as strings. For example, when the Form Driver returns a field
value to your program as an argurnent to the FDVSGET call, your program
rereives a string of characters that is as fong as the field that you specified, If
the value is shorter than the field, Fili Characters (mlher ZETOLS OF EPaCes, as
you aszigned with the Form Editor) nve added.

As annther c:nmple of the relationship between field lengths and values, when
you use the FDVSPUTAL call to display specified values in the first three
ficlds of & formy. vou pasa to the Form Driver 8 eoncatenated string of the three
field valgss. For any valee that is shorter than the field in which it is to be
displayed, vou add Fill Characiers so that the value end the field are the same
fength.

5.4.2 General Description of Call Syntax

The syntax of the Form Driver calls follows the requirementa and conventions
of the language that yos use, VAX=(1 BASIC, COBOL, FORTRAN, and PL/I
proszamis all use the CALL statement. In this mangal, only the call statement
forma sre listed in the detailed descriptions of the calts, For example, the
CALL statenient syntax for the calls Lo get a field value from the operator ang
then d;spta; & message on the lant Ime of the aparator's eoresn b u fnllmx

"1, For BASIC and FORTRAN —
£oLL FOVSGET (fuad, cerm, fidl, fidsl)

caLL FoverutLifoal)

3% Form Driver Prog-_'rmmina Requiroﬁ-nu and Concepts

2. For COBOL — R
. CALL “FOUSGET USING fual term fidl fidx).

CALL "FOUHPUTL" UBING fual.

3. ¥For PLA —

CALL FDVHGE tffval torm fid fidx));

The argument shbrevintions thal are printed in Iowercpse Ielters etand for
argumenie that you must provide. They must be in the order shown for each
call and must meet the functiona!l requirements described in Table 5-5. -

In the call descriptions in this manual, aquare brackets ([and]) enclose
optional arguments. For example, in the FOVSGET call itlustrated above, the
argument for a field index {(fidz) Is required only to specifly a particular field
that is in an indexed field.

For ealls that have more then one optional field, omitting one requires you to
omit the others to its righl. For example, if you omit the optional field name
argument (fid} in the following cail, you must also omit the field value argu-
ment {fval).

CALL FpUsPF T(terml fidl fualll}
CALL "FOUSPFT* UG ING termlfidl foall.

For some calls, you can omit the entire list of arguments. For added clarity in
this manual, these calln are listed both with and without the argument lista.
For exampie, the full syntax of the FD'VSPUTAL call is shown as follows:

CALL FOV$PUTAL (foal)

CALL FOVSPUTAL

.The Form Driver’s interface doea not support null argument lista in calls,

Using the sacond form of the FOYSPUTAL cell above as an example, the
follawing form is bot recommended, for croas system compar.lblluy. withip an
FMS application:

CALL FDVSPUTAL() {The nuli srgument form,

5.4.3 Status and Error Checking

An described fully in Section 6.23, the Form Driver includes a specific call, the
FIVBNTAT call, thot returns statug endes for the completion atatus of the
last eall that was processed. Tabla 8-1 lsts Lhe status codes and thelr mean-

ings, . .
With all VAX languages, you can use the standard syntax for calling a func-

tion subprogram, The steius vaive return syntax for the FDVSGET and

FDVIPUTL cails h {/nceal stands for the status value retum):

Form Dyiver Programming Requirements and Concepts 321

0

: 5] i
it ol it i =Lk 4
e

———————_———

e B

Tabie 3-7 {Cont.): Listing of VAX-1{ BASIC I“n.rm Driver Calls

Call
Abbresiation Semmary und Forma
. FDVSSPON Turrs on the Supervisne Only mode and preventa Lhe operatar from .

entening or chunging data in fiekdn to which the Supervisor-Ounly
eltribute was sssipaed i the Vield Altributes Quesuonmam {in
the ASSION ermmand in the Form F.drtorl

Tre form is: CALL FDUSSPCN

FDVISTAT - - Retums the FALS atntus eode for the last call that was processed as
the valur of the first arpument. The value of the second argument
is mesningful i an RMS syviem error codde only if the value of the |
first arzument is -4 [FDYS_100) or -18 {FDVS_IOR1, indicating
en errur while trying 1o npen of read a forny Libeary fle.

The [orm in: CALL FDUSSTAT stglushaigr?))

FDVSTERM This is an optinhal call executable snly in the VAX/YMS environ-
. . ment. The termine! channel number must be passed. Use
SYSSASSIGN 1o obtain the value. Further information can be
. found in the VAX/VAS Syvetem Seruices Reference Monuel, If you
de not ure this call 1he default terminal channet is chosen, This
caliis helpful if you want 10 sce form displavs and system dlbul(ﬂ'

stabistics on e different 1erminnl during program debug. -

The torm is: CALL FCUSTERA(chan) -

£.5.3 Building a VAX-11 BASIC Program

A VAX-11 FMS BASIC program is compiled as follows:
$EASIC BASOEN [/LIST-GASDEM /DB JECT-BASDEN]
The -spp]icm.ion may be ‘Iinked using one of three methods.

Method 11 Link with the Form Driver in STARLET. OLB (rymm oluect.
library)

S LNy BASDEN

. Method 2 Link with the Standalone Form Dnver Library.

. l"‘ L L ,.“.'G DHLUIRRARVFOUVLIB/LIBRARY

"Methed 3t Link with the Form Driver shared library.

ST AT RUSHLHEZDFT

The Irterface for VAX-11 COBOL

Is VAX-11- COBOL programs, only deta names may be paascd a8 Arguments.
All values thet are passed must have been defined in the data division of the

_ program. No atring literals of numeric conatants are eltlowed.
The COBOL interface sssumes two specific data types when passing dala to

and (rom the Form Driver. These data types are;
for strings: ledt justified sign separate

% ¥orm Driver Programming Requirements and Concahu

I S St - . e e . e

) 0 B Rt 3
et ee ey TR mf mn P bt AT o 8
R L L -

for numbers: one-longword computational
For example:

01 TERM PIC (%) COMP.-
01 STAT PIC S8(9) COMP.

"See Section 5.6.2 for a list of COBOL. arguments that shows the necessary
* dats types. You may create your own data structure pro\nded that you use the
listed data types in your Form Driver calls.

Slnce the FDV routines are nut written in COBQL, special calling syntax
must be used. String variables must be catled with BY DESCRIPTOR prefix

and computationn] variables with BY REFERENCE prefix. See Sec!lcm

5.6.1.2 for detailed svntax for each call,

5.8.1 Using the Form Utility [FUT) to Create tha Communication
Structure for @ COBOL Program

The Form Utility (FUT?} creales Lhe communication structure for a form used
by a COBOL program. {See Chapter 3 on the Form Utility.] I response ta the
/CC option, FUT creates a COBOL iibrary file. The cutput is s text [ile with
the default file type LIB.

AL compile time, you request the library file by ineans of a COPY command in
the date division of your program. (See the VAX-1] COROL Language Re/er-
ence Manual for details on the COPY commeand.}

Group items created by FUT have the same names ae the I'eld names in the :

' form that you are using,

The library file contains the necessary communication structure. If you do not
wish to use the structure provided, you may create youtr own.

The output of the Form -Utility is in terminal format with nipect to the
COBOI- program. Il you want to use conventional formal, you must reformat

_ the file.

Chapter 3 includes an example of the VAX-11 COBOL structure that the
Form Utility can produce.

5.6.2 Argumenls for the COBOL Callg

Table 6-8 lists typical COBOL data types and data mucturea for ench of the
arguments in the Form Driver calls.

Tablo 5-8: Typical COBOL Data Types for Fortn Driver Ar:umenta

Abbreviation Purpose, Data Trpe, and Picture Attributes
CHAN Channel number: [nteger number. .
- Picture: ons longword computationsl, synchronited loft. Passed
by refetence.

{continued on next pagsl

. Form Driver Programming Requirements and Concepts §-27

e s

2

[O,

o B Fe

FEPTORT-IE

e h d enty Tao 1 CGEOL Data Types for Form Priver Argu-

Y —— e
e it = —_—

Atievislies - Purpote. Data Type, and Picture Attribules

[2is) ' Field anme: up 1o G-character steing.
Picture: any character, hiank paddad, felt Jeatified, #ign sepa-
tate, syncheoniced left, Pasved by dn_:ripwr.

FiDX Fic!d and named data index: intezer number,
) Pieture: une langwerd enmputstional, synchronized left. Passcd
by reference.

FLEN Field length: integer pumber.

Picture: ont Inngwond computational, aynchrenized lefa, Paned
i by reference.] .
FLNM Ferra liheary file kpecification: a siring whoae length Is the

bength of the file «pecificalivo,
Picture: snv character, blank padded, lefi fustified, sign sepa-
ate, synchronized left, Passed hy descriplor.

FNAME Form name: up bo 6-chararter elring.
Picture: any chrracter, Llonk podded. left justified, sign sepa-
reie, unchronized left. Passed by descripter, :

FVAL Nameil dnit volue, phe or mare field valen, Lext for display on
. the battem screen [ine. & string whose length is:

« For & single Gield vatue, the lengih of the feld.

w For 8 <tiing of field values, the sum of the jengths of ali fedds
to e processsed. .

+ For 8 nareed ata salue, the length of the named dota field
mesimun f0- artual fengeh is varinhfe.

o Ent text tu he displaved on the bultom line, the lengrh n{ the
tenl, Pawed hy descripror.

- IMPUNHE Impeire arer: Hinary array which should vontain at leaal 8 (32-

bitd anlegers, Faswed by deweriptar, .

CLINE ’ Stasting line member fue @ displnyed form: binary index,
Ficture: aae langwnrd eemputational, pynchronized left. Paxsed
by reference. -

SRE The size of the impure area in byies. To ~reate an srea large
srowgii Inr your jenpram’s inrgest form, moks the site 1000
bytes. Passed B refetence.

F.rure one |onguord signed cumputationel, synchronized lelt.
Pasced hy reference.

STATUS Call eompletinn status: integes numbser,
Picture: one Inngwird signed compitational, sy: hronited Teft.
Pacced Dy reference.

STA:!'? FMS s« rtem error code: integer number.
Pieture: ntie Iongwerd signed oum putationsl, synchrenized Jelt
Prawwd by refercnce. .

TERM Fieid terminator code: integer number.
Piclure: nne longword compatational, gmchrenized Jal, Pewed
by rcferenco. i

5.6.3 Syntzx for the COEOL Calls
Al of the COBOL Form Driver calls uss the CALL statemeant. Table 5-9

"3 Form Diver Programming Requirements snd Concepts

Nen

‘Ml‘&b.i;ﬂ\fl':ﬁ-mﬂ--A "
"L —

Fomra m -
P .
ca s

simmarizes the priacipol purpeses and shaws the full CALL statement syntax
for cach cafl. The arguments thal you must supply are in Iowercase letters
and oplienal arguments are enclustd in squarc brackets ([and |). The furm;
of calls that have ne arguments are tisted seprrately. The argument abbrevia-

tions 'and purposes are {ully described in Table §-8, See Section 5.1 for details
on using FDV calle as function value returns.

Table §-9: Listing of COBOL Forin Driver Calls

Cull
Atbrevistion

Bummary apd Forms

FOVSCLRSH Cleam the entite screen and displays the form with default fieid

welues. If a line number ia apecified, uses it an the starting line

naumber for the form.

The form is: CALL “FOVSELRSM® USINT by destriptor fnem
Loy reforence line],

Retum» (.hv field name from the Form Dryiver argument list (and If
the field ix indexed, ita indea).

FDVSGCY

The form is: CALL *FOUSCLF® USING by descripror fid
Lby reference fidy).
If & field name i apecified, gets and retums the vajue for the field

and its terminalor, [f a field name is not apecified, 8y nchronizes the
prograw whth the cperatos,

FOVSGET

The forma are: CALL "FDVSGET® USING by descriptor fral
hy reference form
by deseripror f1d
Lby reference fids).

CaLL “FOVSCET".

FOVIGETAF Geta und relurma the valve, field name fand. if the fiek) is indeand,

its index), end 1he field terminator for the Heid,

The form is: CALL. "FOVSGE TAF ™ USTNC by deuriprar fral

by referance term

by descripior fid

Loy reference fidzl,

FDVIGETAL If the eall includes en arg gets avd ret ac ted
string of all field veluea (and epiienally the last Geld terminator
wied}, If o argurents sre specified, gria all vehaes but only stores
ihen in the impure ares,

The lorms are: CALL "FOVSCETAL ® USING by dreseripror ool
Lby reference
term),

CALL "FOVSLETAL".

FDVIIDATA rﬂ. and returne the pamed data valos that has he index speci-

L _ ‘Thw form b: CALL "FOVSIOATA® UBING by reference fids,
by deseriptor fvel.

{rontinusd on next page)

Ferm Driver Programming Requirements and Concopts §~19

'p:
oo

3 abie 3-9 {Coal):

Listing of COBOL, Form Driver Calls .. -

- . Calt
w ('.1_[1 e Summary and Forma)) . . Abbreviation - Bummary snd Forms
riatid ; i . .
Atbreviab — - -t . rovsPUT "Displays the apecified value In the apecified Feld.
o w ; Form Driver.the name of .tha impurn arra io use - S, . . .
TOVHNT f:?:l::i:z.t:;ism n::'ml It own ptatns code If the third argu- , The form in: CALL FOUSPUT" USING ::ydﬂ;ﬂpfo' J;t‘;i{l‘
- ! ' . seferencs fide).
ment is apecified. .) - .
. . : . ; i imBuure ' FDVIPUTAL Displays valuen in alt fickds of the form. 3 o concatenated siring of
~The form iél CALL “FOUSTNIT™ USIRG by descrip :"._"a * values is nupplicd, ench value must be 1he same length s the field
. . + by referene ‘:_‘ qust ~ in which it in to be displaved and the velues musl be in ike ame
i Lby rrf::.rmu aeusk. order that the FUVIGETAL call would pruduce for the form,
. tenated string of the field values for the Values from the atring supplied are displayed in the firt fieldy of
_ FDVSINLN l‘::' ::n:’_ r:t :',S‘: :‘c’:“"' rd“:m,“m containa the specified field the form, and defoults sre displayed in any field that remein, If no
:n'mi and the last termirator wed. - . . ;t"r:‘l;:d values la supplied, default values are displayed in all
" . . X ol X
.. is: CALL *FOUS INLN" USING by descriptor fid fu
- T"f form.is: Cat.t * Lby reference term). The forms are: CALL “FDUSFUTAL® USING by descriptor fual,
. . . . i CALL *FOVSPUTAL=, - _
3 - Lt f1 Driver the L0 chanael to use for resding o -) :
FDVSLCHAN s“"P'I'_;” ‘o .'El'trm Driver th . FOVSPUTL, Il an srgument is specified. displays the specified siring on the
. L form library Gile. . bottom lLine of the screen. If 6o srgument is specified, clears the
. The form in: CALL *FOUSLCHAN® USTNG 8y reference chan, boitom line. ’
FbVllCLOS Climes the current form librasy Gle. i The fonna are: CALL "FOV4PUTL" USIKG by dracriptor fual,
ALL "FOVSPLTL=,
The form is: CALL "FDUSLLLDE" . - c uTt
: lied firkd FOVIRETAL Returns the current values for all fields in the form in the same
FOVSLEN Retums the length of the specified field. order that the FGETAL cali wonzid praduce.
- “Fhe furm is: CALL “FOUSLEN" USING :: :it::;f':’ﬂ;;- o] The form [s: CALL "FOVRRETAL = USING by descriptor fool.
]) Lbv reference fids). B FDVIRETN fetums the current velue of the specified firld.
FDVSLOPEN Opens the apecified form library file. . The form b: CALL “FOUSRETN™ USING by descriptor fral fid
.) The fnrm is: CALL "FOVSLOPEN™ USING by demeriptor flitm, _ o Lby reference fids),
. . { datn value that fsy the nemed dats FOVISHOW Clears the part of the sereen that the specified form requines and
FDIVSNDATA bt::i and _f;:.',_m‘ the name: b . dizplayn the form with defpult field values. If & dine number l»
labed rpevified. sotee fid fral apexified, uses it an the wtarting line number for the Jorm. '
The form is: CALL "FDUSHOATA = US ING by dhecriptor fid frof. ,]
. . The form is: CALL “FOVSSHON® USING by drseriptor faym
. . N . 2 Virex i line of i
- Dirpiave the specified string of feld u.lm in the current Ly reference linet, .
‘FDV’OW g]:‘:&r-lled ur:é that cﬂnll‘i‘ns the sperified Neld. ' .
) . FOVSSPOPY Turna off the Supervisor Only mode and allows the opersiny to
The farm ia; CALL "FOVSDUTLN" USING by descriptor fid. feal, enter and chanee data in ficlds to which the Supervisor Only at.
p— IF the call inciudes an argument, processex the specified ficld ter- (nhut‘e wan snzigned with che Form Fditor,

inator wnd identifies the appropnate ticld as lh:- current field.
:;“:ar::-xtd the current lield nume, e the FP\'SGLF il ",:(h.
epecified Lerminstor s a scrolled arep len'mm?lur, the n_ame o . .
field in the intended acruiled erea must be spetified, and il ;:,::)n(. 1
of valurs Lo apecified, they will be dllplu.)td nn‘th- 102.::" i m
lina af the seroiled atea after the teeminator in processed, lhn":
argument L {ncluded, the call processes (he lasl trminator that
Tha forma asy: CALL "FOUSFFT* UBING by reference torm -

Table 5-9 (Cont.): Listing of COBOL Form Driver Calls

The form is: CALL "FOVSSPLFF=,

mVFSPdN Tuma on the Supersisor Only mode and prevents the operator from
. antering of changing data i fields tn shich the Supervisgr-Only
attribirte wan amigned in the Field Attributes Questionnaire {in
the ASSIGN command in the Form Editor).
The form is; CALL "FOveSPON-,

FOVISTAT Taturna the stasun code for the lest call that was processed as the

LBy descriptor valug of the fime ergument. The value of Lhe second strument a
Adlfoelll. . meaninglul ax an RMS system error code only if the value of the
. . . first arqument is -4 {FDV3__1OL} or -18 (FIVA_IOR}, ndlenting
CALL "FDUSFFT=. an ermir whils Uyiog Us open or read & fovm library file. -

(eontintsd on next page) N

{oontinued on nexl pags)

P

f

\] |

%" Farm Driver Programming Requirements and Concepts

Form Driver Programming Requirements and Concepts 5-31

PR

ol e ¢ 8 et e By

P

Tatle 39 {Conl.}: Listing of COBOL Form Driver Calls

Call
Abbrevistion) Summary and Formm
The form is: CaLL -roussmr USING by rrfwmce
. stgluslatat?
FOVITERM R

menl.

The terminal chonnel number must he passed. lq L3 Qsa%ﬁ!(}‘ﬂ a
to obiain the walue. Further information can be found in' the
VAXIVMS Sactermt Services Breference Manual, Il you do not te

. this call, the default terminal channel ia chosen, This call is belplul
if you want to see form dhsplays s system debugger statistics oo
different terminalb during program debug.

The form is: CALL “FDVSTERN" USING TERMINAL,

" Method 2:

5.6.4 Bullding a VAX-11 COBOL Program

A YAX-11 COBOL-program is compiled as follows:
$T5ETL CABSEN [LIS CORLEN /DB JECT=COBDEN)
The application may be linked using one of three methods,

Method 1: Link with the Form Dmer in STARLET. OLB (lyntam obfect
library)

sL ik COBLENR -

Link with the standalone Fon.n Driver Libeary,

s INK LRCOEM (SYSTLTARARY FDVLIB/LIBRARY
Link with the Form Driver sheared library.

st INh COZCEMFRUSHARE/QPT

Method 3:

5 ? The !n.er[ace I‘or VAX—‘H FOHTRAN

R

2 Form Driver Pro;mmr;:in'g Requirements and Consepta 7

LI

* the prograrn,

)

FDHTRAV can use @ atatus Value return to receive VAX/VMS return codes in

* '.

‘hu_:r_mnc.n.r;:umt_'nls mist'be default tongword integers. If ynu use res] num-

. tnrns; I they are called 4s functions, the name of the routioe iuat be declered -

bers or hytes, the calls de nol work properly. .
All subroutines may be r:n"ed either as syhprograms of as Status \"u!ue(ﬂe-

in an integer stotemeént or'an lmplnc:l integer stalement {for example, IM-

PLICIT'INTEGER {(A-Z)). If calleql ns functions, the sutrmutines may relum L

the status of the call fmm the Farm Dnver on oulput v o

dels recnmmended l.hal VAX 1 FOR‘!‘RAN apphcal.im whlch my mapnu

< . . . -

This is an nplmn'\! ol uemlnh!r unlv inthe \'A‘UVM'-‘» snviron-" i

k3

ta PDE-11a nnt use the Siatus Value Return. The stalus returned is system

. dependent and will not be compatible across systems. To preserve the com-

palibilily use Lhe FMS FDVSSTAT call to return a call's status.

" . 5.7.1-_Arguments for the FORTRAN Calls D

"Table 5-10 Hists typlcal VAX-11 FORTRAN data types and data structures
for each of the arguments in the Form Driver calls.

. Table5-10; Typical FORTRAN Data Types for Form Driver Arguments

Argumeal .
Abbreviatien Pui'pole, Data Type, and nlll Structure

CHAN Channel number: integer umh[e of constant. Pnued [T "'REI-'

F1b Field name: up to s-brlt wring variable. Prsed s "DF.S(‘R

FIDX . Field snd named dats lndu integer variable. Praced as ZREF,

FLEN Field lengih: integer variable, Passed 33 “REF.

FLNM Form libraty file epecification: string or constant (the size depends
on application requirements and conventions). Passed a0
SDERCRH.

PNAME Form name: up to G6-byte string varishie or conslant. Paxsed 2
“<+DFSCR.

FVAL Named data value, one nr more field values, text for diapley on the
hettom screen fine: siring variable (the size depends on the lpﬂb

: chtjon]. Passed as ";DESCR,

' f

IMPURE Impure aten: hyte artay containing et lesst 8 432 Bit) integers.
Paived &9 7 DFESCR.

LINE Starting Fine numbez for & displayed form: intrger variable or con-

. stanl, Pagsed as “REF,

SIZE ' The size of Lhe impure area arrey in bytes. To create an sres lurpe

- enough for your program’s Iargest form, MIkl the size 1\0 bytes,

Passed as < REF.

STATUS Call completion matus: integer variable, Passad ax SREF. ~

S'[‘AT’? RMS syrtem error onde; integer vanable, Pawrd as TREF.

TERM Field terminator code: integer variable, Pussed s “REF.

§.7.2 Syniax for the FORTRAN Cails

All of the FORTRAN Form Driver calls ure the CALL statement. The func-
tion subprogram form can glsn be used. Toble §-11 summatizen the principal
purposes anid shows the full CALL statement syntax for each call, The argu-
ments that you must supply are in iowercase lotters, and optional arguments
are enclosed in square brackeis ({ and } }. The forms of calls that have no
arguments are listed separately. The argument abbreviations lnd purpous
are fully den:ribed in Teble 5-10.

S

