CAPÍTULO IV

Simulación Del Microespejo Torsional Propuesto

4. Diseño del Microespejo para simulación

Los dispositivos con microespejos torsionales tradicionales accionados por un solo electrodo, presentan dificultades al tratar de lograr efectos de escalonamiento de ángulos debido a sus características de transferencia entre ángulo y voltaje.

De este modo, teniendo el concepto de un microespejo controlado por dos microelectrodos, se pretende suavizar ese inconveniente. Sin embargo, primero hay que poder establecer la respuesta del microespejo bajo ciertas condiciones de voltaje y fuerzas, tal que la estructura soporte su manipulación electrónica.

El reto de diseño para el control del microespejo, es la demanda de que el microespejo resista inclinarse a diferentes ángulos de inclinación sin presentar fracturas o vibraciones incontrolables, para diversos requerimientos ópticos.

Se propone de tal modo una aproximación para realizar un microespejo torsional con comportamiento lineal. Así, cada electrodo puede ser seleccionado independientemente para activarlo (conectarlo a voltaje) o para dejarlo inactivo (conectarlo a tierra).

Se utilizarán simulaciones hechas con el método de elemento finito para simular la respuesta del microespejo tanto en comportamiento lineal, como su resistencia a las fuerzas a las que será sometido. Se pretende que los resultados de las simulaciones validen el concepto.

4.1 Especificaciones de Diseño para el Microespejo con Electrodos Accionados Simultáneamente

Teniendo como base el modelo matemático simple del microespejo, ya desarrollado, se pueden predecir las características de transferencia entre ángulo y voltaje del dispositivo propuesto que serán simuladas por medio del elemento finito.

52

Figura. 4.1 Modelo del microespejo torsional en 3-d de Coventor Ware

Típicamente, la curva de transferencia que se obtiene de un dispositivo con un solo electrodo será no lineal en el plano ángulo-voltaje, tal como la como la que se muestra en la figura 3.19 del capítulo anterior. Por lo tanto, se espera que la curva ángulo voltaje para el caso del dos electrodos sea muy parecida.

Los parámetros simulados en Coventor son idénticos a los que están listados en la tabla 4.1.

Parte	Notopión	Valor	Parte	Notopián	Valor
Geométrica	Notación	Numérico	Geométrica	Notación	Numérico
Largo del	1	600um	Ancho de la	142	200
microespejo		οσομπι	viga torsional	rv	zμm
Ancho del	W	300um	Grosor de la	t	2µm
microespejo	**	300µm	viga torsional	l	2µ11
Largo			Largo total		
efectivo de	$l_a = L$	600 um	de las vigas	l	200um
cada	·e	p	torsionales		_ • • • •
electrodo			tererere		
Ancho de los			Largo de una		
electrodos	$w_e = a_2 - a_1$	70µm	sola viga	$l/2 = l_v$	100µm
cicoliodos			torsional		
largo de			Parámetro de		
cada	1	100um	posición de	$a_{1}-aW$	um
electrodo	i e	τοσμπ	los	$a_1 - a_{11}$	μπ
electiono			electrodos		
Espacio entre			Parámetro de		
	d	50um	tamaño de	$a = \beta W$	um
nicioespejo y	u	ούμm	los	$a_2 - \mu$ w	μπ
6160110005			electrodos		

Tabla 4.1. Parámetros de diseño del microespejo torsional propuesto

4.2 Método de Elementos Finitos

El Método de Elementos Finitos, es un método numérico que se ha convertido en los últimos años en una herramienta importante a nivel industrial, de investigación y académico. El Método consiste en resolver mediante ecuaciones matriciales, las ecuaciones diferenciales que se plantean en sistemas discretos o continuos.

En el caso de sistemas continuos, se divide un dominio en varios elementos, describiendo el comportamiento de cada uno de estos últimos de manera discreta.

Entonces, se conectan los elementos a través de sus nodos para representar el problema completo. Este proceso conduce a un sistema de ecuaciones algebraicas simultáneas.

A continuación se explicarán los pasos del método de elementos finitos para la resolución de un sistema continuo.

4.2.1 División del sistema.

Dividir el sistema en Elementos Finitos: Triángulos (3 nodos), Tetraedros (4 nodos), etc. En este paso se define la malla que discretiza la estructura por analizar, se dan las restricciones de deformación, las propiedades de los materiales que la forman, así como las acciones mecánicas externas que actúan en ella, es decir, esta fase consiste en definir los datos de entrada del problema.

4.2.2 Ecuación de potencial.

Deducir la ecuación que describe el potencial dentro de un elemento finito. Esta fase consiste en la formulación y el planteamiento de ecuaciones de equilibrio para el modelo desarrollado.

4.2.3 Condiciones de frontera.

Plantear las ecuaciones que dan las condiciones de ajuste de las soluciones en las fronteras de los elementos finitos. Usando las aproximaciones adecuadas para elemento seleccionado, se obtienen la matriz de rigidez y el vector de fuerzas nodales equivalentes, los cuales se determinan para cada elemento.

- Los contornos pueden ser irregulares

- Los elementos finitos serán tan chicos como lo considere el usuario. Cuanto más varía el potencial, los elementos finitos deberán ser más chicos.

4.2.4 Cálculo de los potenciales.

Calcular los potenciales en los nodos de cada elemento finito. Obtenidas las ecuaciones de equilibrio para cada elemento de la discretización se procede a ensamblar las matrices de rigidez y los vectores de fuerzas nodales. Con este paso se modela el problema entero y se realiza el cálculo de la solución del problema.

4.2.5 Resolución de las ecuaciones planteadas.

Al resolver las ecuaciones algebraicas planteadas, la matriz de rigidez y el vector de fuerzas de toda la estructura se construyen identificando las condiciones de continuidad entre los elementos, relacionando los nodos del elemento con los nodos globales correspondientes.

El sistema de ecuaciones resultante se resuelve para obtener valores de los desplazamientos nodales. Una vez obtenidos estos desplazamientos se pueden calcular las deformaciones, los esfuerzos y las reacciones en los nodos con movimientos restringidos

4.2.6 Interpretación de resultados.

Finalmente se procede a la interpretación de los resultados obtenidos, presentados en una manera accesible para el usuario. Por lo tanto, la interfaz gráfica muestra el comportamiento de la estructura a través de las distribuciones de esfuerzos y deformaciones

El propósito del Método de Elementos Finitos es de llevar a cabo pruebas en una estructura sin tener que construirla y así ahorrar tiempo y dinero. Cuando el modelo en computadora hace lo que el diseñador quiere que haga, solamente en este momento se va a construir la estructura física.

4.3 Simulaciones de Elemento Finito

Con la finalidad de verificar el modelo matemático propuesto, se utilizará una herramienta para análisis de elemento finito para MEMS: el software comercial de simulación CoventorWare, construyendo en él el microespejo torsional con la geometría, los parámetros, las propiedades de los materiales, las condiciones de frontera y el voltaje aplicado.

4.3.1 CoventorWare

CoventorWare es una herramienta totalmente integrada para producir modelos precisos de diseños de Sistemas Micro-Electro-Mecánicos, ya que soporta aproximaciones tanto físicas como de sistema.

Cuenta a su vez con una herramienta de modelado para generar un plano de diseño en 2-D que posteriormente servirá para verificar el modelo en la aproximación física.

Por lo tanto la aproximación física comienza con los planos de diseño en 2-D que posteriormente se utilizarán para construir un modelo en 3-D, generar un mallado y,

utilizando el Modelo de los Elementos Finitos, simular la respuesta del sistema bajo diversas condiciones electromecánicas.

Los componentes principales del software son los que se explican a continuación en los puntos 4.3.1.1 al 4.3.1.7.

4.3.1.1 Base de datos de Propiedades de los materiales.

Actúa como base de datos de los materiales que se utilizarán en el flujo de diseño.

4.3.1.2 Editor de Procesos.

Permite la creación del flujo de proceso de micromaquinado con el cual se fabricara el diseño MEMS.

Aquí se establecen los materiales, los nombres de las máscaras y los modos de deposición y atacado que se utilizarán durante el proceso, utilizando una secuencia simplificada de pasos de depósito y atacado, en este caso, Coventor cuenta con los pasos y características del Proceso MUMPS.

4.3.1.3 Arquitecto

Simula la configuración de diseño utilizando la aproximación de sistema, tal que se puede refinar la modelo y luego extraerlo al Editor de Plano 2-D para realizar un análisis de MEF.

4.3.1.4 Diseñador.

Diseña el modelo MEMS utilizando como herramienta planos en 2-D y un generador automático del modelo en 3-D. Estos pasos también se refieren como un diseño de principio a fin.

4.3.1.5 Mallado

Crea capas de mallas en 3-D basadas en el modelo sólido. Coventor cuenta con varias opciones de mallado, incluyendo mallado de superficie, tetraédrico, de extrusión y tipo ladrillo. Este paso prepara al modelo para el análisis MEF

4.3.1.6 Analizador

En éste se establecen las condiciones de frontera y se escoge uno o más tipos de herramientas para resolver el análisis de MEF.

Consta de herramientas que tienen también capacidades de simulación, esto quiere decir que se pueden variar parámetros durante el proceso y generar corridas con

iteraciones. Además se pueden observar los resultados de las simulaciones en 3-D y extraer los datos obtenidos de la resolución

De tal modo, el Analizador incluye componentes electrostáticos, mecánicos, térmicos, de fluidos y de soluciones acopladas. Permiten muchos diferentes tipos de soluciones de entre las cuales se pueden mencionar:

- Cálculo de capacitancia y carga
- Deformaciones debidas a presiones o fuerzas
- Soluciones electromecánicas acopladas
- Soluciones utilizando las condiciones de frontera de contacto total
- Solución utilizando gradientes de tensión aplicada
- Análisis modal para frecuencias naturales de vibración en los modelos matemáticos
- Análisis de armónicas, entre otras.

4.3.1.7 Visualizador

Proporciona una salida para la mayoría de los modelos MEMS que incluye una gran cantidad de datos del análisis y de la solución. Esto es, incluye tablas con los valores de los resultados iniciales y también proporciona resultados gráficos en soluciones que así lo requieran.

Además permite observar gráficamente los resultados obtenidos del modelo original y visualizar la solución.

Las soluciones pueden ser campos electrostáticos, deformaciones mecánicas tensiones, variaciones térmicas, gradientes de temperatura, etc. Estos parámetros se seleccionan en el modelo 3-D y se muestra un modelo coloreado con las características solicitadas, permitiendo un análisis completo del modelo y su solución.

4.3.2 Proceso de Simulación en Coventor Ware

4.3.2.1 Construcción del Modelo

Como se mencionó en la sección anterior, el software CoventorWare cuenta con varias herramientas sencillas para la simulación de un modelo MEMS, de tal modo, en la ventana inicial del programa, se pueden elegir tanto las propiedades de los materiales, el proceso de micromaquinado, la herramienta de dibujo de los planos de diseño, o el analizador (ver figura 4.2).

CoventorWare	- D: \lalo\TorsionalMirrorDiana\TorsionalMirrorDiana.mps	
<u>F</u> ile <u>T</u> ools <u>H</u> elp		
Materials	D: Valo'Shared'WPD'mpd1.mpd	
Process	D: Valo\TorsionalMirrorDiana\Devices\TorsionalMirrorProcess.proc	🗃 📰 -
Architect Designe	analyzer	
Lavout	D:\lah\TorsionalMirrorDiana\Devices\TwoElectrodes.cat	
Lujou		
Model / Mesh	TwoElectrodesFinalMallado	产 🖻
	Options	
	Apply Offset Values	
	Create Inverse of Device (Negate)	
	Clip Device with Mask Poly0	
	Substrate with Mask Poly0	
		?
		-4
View Log 🔻		

Figura 4.2 Ventana principal de Coventor

En la figura 4.3 se muestra el proceso de micromaquinado de superficie, en este caso se eligió el proceso PolyMUMPS, a partir del cual se simulará la construcción del microespejo torsional propuesto.

Process Editor - [D:/lalo/Torsic	onalMirrorDiana	/Devices/To	rsionalMirrorProcess.pr	oc]				
🖹 File Edit View Tools Windows Help)							×
] 🗅 🥔 🖬 🐰 🖦 🛍 🗙 😂 :	☐ ☆ ☆ [EMBBLE	C DEABLE ?						and a second
Step Name	Action	Layer Name	Material Name	Thickness	Mask Name	Photoresist	Etch Depth	I Balance Dur Etch
Definition N-type (100) Silicon 1-2 Ohm-cm	Substrate	Substrate	SILICON	20	GND			
LPCVD Deposition 600nm SixNy	Stack Material	Nitride	SIxNy_PolyMUMPs	0.6		1		- Helease Wet Etch
LPCVD Deposition 500nm PolySi	Stack Material	Poly0	POLYSILICON0_PolyMUMPs	0.5		1		- Stripping
Etch RIE 500nm Poly0	Straight Cut				Poly0	+		Thermal Oxidation
Etch RIE 500nm Poly0	Straight Cut				Hole0	1 .		T Generic PECVD
LPCVD Deposition Phosphosilicate 2000nm	Conformal Shell	Oxide1	PSG	2.5		1		- 🛲 Sputtering
Etch RIE 750nm PSG	Straight Cut				Dimple	1 .	0.5	Evaporation
Etch RIE 2000nm PSG	Straight Cut				Anchor1	1 2		
Etch RIE 2000nm PSG	Straight Cut				Anchor2	1 2	0.5	Charling Charling
LPCVD Deposition 2000nm Poly1	Conformal Shell	Poly1	POLYSILICON1_PolyMUMPs	2		1		BCKere On Londone (C
Etch RIE 2000nm Poly1	Straight Cut				Poly1	+		
Etch RIE 2000nm Poly1	Straight Cut				Hole1	1 .		The second secon
Etch RIE 2000nm Poly1	Straight Cut				Anchor2	1 -		Electroplating
LPCVD Deposition Phosphosilicate 750nm	Conformal Shell	Oxide2	PSG	0.75	1	Î		📋 👜 🗗 LIGA
Etch RIE 200nm PSG	Straight Cut				Poly1Poly2Via			i 🗄 🗗 Lift-Off
Etch RIE 200nm PSG	Straight Cut				Anchor2	1 -		🗐 🕀 🛱 Anodic Glass Wafer B
LPCVD Deposition 1500nm Poly2	Conformal Shell	Poly2	POLYSILICON2 PolyMUMPs	1	1	Î		Elision Water F
Etch RIE 1500nm Poly2	Straight Cut				Poly2	+		Pro Couperto (ultra 2005 S
Etch RIE 1500nm Poly2	Straight Cut	1			Hole2	1 -		
Evaporate 500nm Au	Conformal Shell	Metal	METAL PolyMUMPs	0.5		Î		- En Foundry Processes
Lift-off Metal Patterning	Straight Cut				Metal	+		
Lift-off Metal Patterning	Straight Cut				Holem	1 .		T PINTEGRAM_DPK_full
HF (49%) Release Etch	Delete		PSG			1		- EDINTEGRAM_DPK_sim
	L D. D. D. D. D.							- 🖓 INTEGRAM MPK full
<u>*</u>								- FIINTEGBAM MPK full
and the second sec							*	
Step Name Definition N-type (100) Silico	on 1-2 Ohm-cm							
Action Cubstrate								
								MINTEGRAM_PPK_full
Layer Name Substrate	L T	nickness						INTEGRAM_PPK_sim
The second secon	Dis	stribution 9	icalar 💌					🖅 MetalMUMPs
🕶 Mask 🛛 🖉 🛨		-	A Danser (🚰 MultiMEMS_Release_
C Bounding Box X1 X1	No	ominal Value 2	D Edit					
		COLOR OF PRODUCTS						- FilmultiMEMS Thin Mer
0 0	Mat	erial SILI	CON 🗾					
¥2 Y2								
12	Disp	play Color						
0 0								
								····· HITronics_MEMSOI_60_
Lomments The surface of the starting	n-type (100) wafers a	are heavily dope	d with phosphorus in a				-	

Figura 4.3 Proceso de micromaquinado PolyMUMPS

Al tener bien claras las características del proceso PolyMUMPS, tanto de las capas de deposición, como las máscaras y los atacados de las mismas, se pudo diseñar el modelo en planos 2-D, para poder así generar el modelo sólido. En la figura 4.4 se muestra el modelo completo, con todas las capas y máscaras que definen al microespejo como cuerpo sólido.

Figura 4.4 Planos de diseño del microespejo para máscaras y atacados

En la figura 4.5 se observan las medidas con las que se generó en modelo, basadas en los cálculos de diseño previos.

Figura 4.5 Medidas del microespejo

Las figuras 4.6 a la 4.9 muestran algunas de las máscaras para el proceso de atacado, individualmente.

🔀 Mask Viewer	🞽 Mask Viewer	[
<u>F</u> ile ⊻iew <u>H</u> elp	<u>F</u> ile ⊻iew <u>H</u> elp	
Poly0 💽] ම Light O Dark] 🙀 🍭 🔍 🔍 🖉 🤤 🕂 🕇 🕹	Dimple 🔽 ⊚ Light ⊖ Dark 🎇 🍭 🔍 🔍 🍳 🚱] ← 🕇 🖡	
	+	

Figura 4.6 Máscara de Poli0

Figura 4.8 Máscara para los anclajes

Figura 4.8 Máscara para la placa del

microespejo

La figura 4.10 muestra el modelo sólido del microespejo torsional basado tanto en los pasos del proceso PolyMUMPS, como el los planos de diseño en 2-D y, para poder proceder al análisis mediante MEF, se estableció sobre el modelo, un mallado tipo Bloques Manhattan (como se muestra en la figura 4.11), además de que se procedió a nombrar todas las entidades a analizar del microespejo (placa del microespejo, vigas torsionales, electrodos y anclajes).

Figura 4.10 Modelo sólido o en 3-D del microespejo torsional

En las siguientes figuras (4.12 y 4.13) se muestran las ventanas correspondientes a los tipos de análisis a los que se sometió el modelo, cuyos resultados serán analizados en el siguiente capítulo

Coventor Ware	- D:\lalo\TorsionalMirrorDiana\TorsionalMirrorDiana.mps	_ 🗆 🛛 🗙
<u>File T</u> ools <u>H</u> elp		
Materials	D:Valo\Shared\MPD\mpd1.mpd	
Process	D: Valo\TorsionalMirrorDiana\Devices\TorsionalMirrorProcess.proc	
Architect Design	ner Analyzer	
Domain	MEMS 🔥 O Microfluidics	
Solver (effects)	F MemMech (mechanical, thermomechanical and piezoelectric) Image: Comparison of the piezoelectric (mechanical) Image: Comparison of the piezoelectric (mechanical	
Model / Mesh	TwoElectrodesFinalMallado	
Analysis	prueba3	2 🔤 🗉
		?

Figura 4.12 Interfaz de la herramienta Analizador de Coventor Ware

Figura 4.13 Diferentes procesos de análisis que pueden elegirse en Coventor

4.4 Obtención de resultados

Después de haber determinado las condiciones de frontera y el valor del voltaje a utilizar, para las condiciones que son de interés para el modelo propuesto, se obtuvieron los resultados de la simulación.

Los resultados del desplazamiento de la placa del microespejo son fundamentales para determinar la relación ángulo-voltaje, de igual modo los de la tensión en las vigas torsionales, sirvieron para determinar si resisten el momento de torsión que sufren con la fuerza de atracción que generan los electrodos y no se fracturan, así como la respuesta a los tres diferentes modos de vibración más comunes.

4.4.1 Parámetros utilizados para la simulación

Las siguientes figuras, muestran los parámetros que se ingresaron en Coventor para llevar a cabo la simulación. Para ello se seleccionó el análisis CoSolve, el cual lleva a cabo simulación de parámetros electrónicos y mecánicos en un solo análisis.

En las figuras 4.14 y 4.15 se observan las ventanas donde se ingresaron los parámetros para el análisis electromecánico.

Figura 4.14 Parámetros para el análisis electromecánico CoSolve

CoSolveEM BCs	×
ConductorBCs	
DielectricBCs	
SymmetryBCs	
Parametric Study	, 1

4.15 Ventana de opciones para definición de parámetros de CoSolve

Sin embargo, el análisis electromecánico CoSlove requiere además que se ingresen parámetros eléctricos y mecánicos, por lo que es necesario seleccionar tanto las opciones MemElectro como MemMech, para fijar las condiciones de frontera que servirán como base del análisis.

Las figuras 4.16, 4.17 y 4.18 muestran los parámetros eléctricos y mecánicos ingresados para la realización del análisis.

C SurfaceBCs									
SurfaceBCs	FixType	Patch1	and1	Patch2	and2	Patch3	LoadValue	Variable	Transient
Set1	fixAll 🗵	Anclaje2 🔄	and 💌	Anclaje2 💽	and 💌	none 💌	Scalar 💽 0	Fixed 💌	Fixed 💽
Set2	fixAll 💽	Anclaje1 💽	and 💌	Anclaje1 🖃	and 💌	none 🔽	Scalar 💽 0	Fixed 💌	Fixed 💽
Set3	none 💽	none 💌	and 💌	none 💽	and 💌	none 💽	Scalar 🖸 0.0	Fixed 💌	Fixed 💽
Set4	none 💽	none 💽	and 💌	none 💽	and 💌	none 💽	Scalar 🔽 0.0	Fixed 💽	Fixed 💽
Set5	none 🗵	none 🔽	and 💌	none 💌	and 💌	none 💌	Scalar 💽 0.0	Fixed 💌	Fixed 🔄
Set6	none 🗵	none 💽	and 💌	none 💽	and 💌	none 🔽	Scalar 💽 0.0	Fixed 💌	Fixed 💽
Set7	none 💽	none 🗵	and 💌	none 💽	and 💌	none 💌	Scalar 🖸 0.0	Fixed 💌	Fixed 💽
Set8	none 💽	none 💌	and 💌	none 🖃	and 💌	none 💌	Scalar 🔽 0.0	Fixed 💽	Fixed 💽
Set9	none 🗵	none 💽	and 💌	none 💌	and 🖃	none 💽	Scalar 💽 0.0	Fixed 💌	Fixed 🔄
Set10	none 🗵	none 💌	and 💌	none 💌	and 💌	none 🖃	Scalar 💽 0.0	Fixed 💌	Fixed 💽
Set11	none 💽	none 🗵	and 💌	none 💽	and 💌	none 💌	Scalar 🖸 0.0	Fixed 💌	Fixed 💽
Set12	none 💽	none 💌	and 💌	none 🖃	and 💌	none 💌	Scalar 💿 0.0	Fixed 💌	Fixed 💽
Set13	none 💌	none 💽	and 💌	none 💌	and 💌	none 💌	Scalar 💽 0.0	Fixed 💌	Fixed 💽
Set14	none 🗵	none 💽	and 💌	none 💽	and 💌	none 💽	Scalar 💽 🚺 0.0	Fixed 💌	Fixed 💽
Set15	none 💽	none 💽	and 💌	none 💽	and 💌	none 💽	Scalar 🕑 0.0	Fixed 💌	Fixed 💽
Set16	none 💽	none 🖃	and 💌	none 🖃	and 💌	none 💽	Scalar 🔽 0.0	Fixed 💽	Fixed 💽
				ОК	Cancel				?

4.16 Ventana de opciones para definición de parámetros mecánicos

MemElectro Settings	X						
Physics	Electrostatics						
Relative Permittivity of Free Space	1.0						
Frequency (Hz)	0.0						
Geometry							
Use deformed mesh?	🔿 Yes 💿 No						
Deformed Mesh	Choose a result 💿 💕						
Honor mechanical links?	🔿 Yes 💿 No						
Analysis Options	Capacitance Matrix						
Compute charge density?	O Yes 💿 No						
Additional Analysis	None						
Advanced							
OK Cancel Next -> ?							

4.17 Ventana de opciones para definición de parámetros electrónicos

ConductorBCs								
ConductorBCs	Conductor	BC	Туре	Voltage	Charge	Varial	ole	
Setting	Electrodo2 💽	Fixed	-	5.0	0.0	none	-	
Setting	Electrodo1 💽	Fixed		10.0	0.0	none	-	
Setting	Espejo 🔽	Fixed	-	10.0	0.0	none	-	
OK Cancel ?							?	

4.18 Ventana de opciones para definir los de parámetros de los conductores

De igual modo, para poder obtener los resultados del análisis de modos de frecuencias de vibración se seleccionó la opción MemMech, el cual lleva a cabo análisis puramente mecánicos.

Physics	Modal (non-equilibrium)	J				
Analysis Options						
Linear or Nonlinear?	Nonlinear	-				
Restart from prev. result	O Yes O No					
Time Dependence	SteadyState	-				
Stop Time(s)	1.0E-5					
Output Timestep(s)	1.0E-6					
Timestep Method	Variable	-				
Solver Timestep(s)	1.0E-7					
Residual Tolerance(mN)	10.0					
Max Temperature Inc.(K)	10.0					
		_				
Additional Analysis	Modal					
Solution Method	Lanczos					
Modal Analysis		_				
Specify modes by	Number of Modes					
Number of Modes	5					
Minimum Freq. (Hz)	0.0					
Maximum Freq. (Hz)	0.0					
Freq. of Interest (Hz)	0.0					
Number of Vectors	0					
Harmonic Analysis						
Minimum Freq. (Hz)	0.01					
Maximum Freq. (Hz)	100.0					
Advanced						

4.19 Ventana de opciones para definición de parámetros del análisis modal

4.4.1.1 Resultados de la simulación del desplazamiento de la placa del microespejo

La tabla 4.2 muestra los resultados de desplazamiento vertical de la placa del microespejo, obtenidos en Coventor al aplicar como condición de la simulación, un voltaje de 1 a 10 V en cada uno de los electrodos y accionados independientemente, tal como se muestra en la tabla 4.2.

 Step 1
 Elect1
 Elect2
 V Electrodo2
 V_Electrodo1
 V_Espejo

Tabla 4.2 Parámetros de voltaje aplicado en cada electrodo.

rounde 🖸								
	Elect1	Elect2	V_Electrodo2	V_Electrodo1	V_Espejo			
step_1	1	10	100	10	0			
step_2	2	9	90	20	0			
step_3	3	8	80	30	0			
step_4	4	7	70	40	0			
step_5	5	6	60	50	0			
step_6	6	5	50	60	0			
step_7	7	4	40	70	0			
step_8	8	3	30	80	0			
step_9	9	2	20	90	0			
step_10	10	1	10	100	0			
ОК								

En la tabla 4.3 se puede observar que el desplazamiento vertical máximo para la placa fue de 3.4184 μ m y de -3.4183 μ m, respecto a la posición original del microespejo, como se muestra en la tabla 4.3, en la que las partes de la placa con mayor desplazamiento están coloreadas de rojo y las de ninguno de azul. Este dato es muy importante ya que demuestra que en desplazamiento máximo vertical, el microespejo no tendrá contacto con la superficie base de nitruro ni con los electrodos, ya que la altura de la placa del microespejo en estado de reposo es de 3.75 μ m –por el proceso PolyMUMPS (ver figura 4.3 -.

Tabla 4.3 Resultados de desplazamiento de la placa del microespejo, respecto a los tres ejes coordenados, con 10 pasos de voltaje aplicado.

C Displacement										
	Elect1	Elect2	Max	MaxX	MaxY	MaxZ	Min	MinX	MinY	MinZ
step_1	1	10	4.262855E01	6.561869E-02	1.384999E01	3.418407E01	0	-6.561884E-02	-1.822655E01	-3.884804E01
step_2	2	9	3.405048E01	5.628617E-02	8.37439E00	2.721554E01	0	-5.628629E-02	-1.163023E01	-3.219611E01
step_3	3	8	2.519081E01	4.787309E-02	4.143503E00	1.936302E01	0	-4.787319E-02	-6.359321E00	-2.447509E01
step_4	4	7	1.617371E01	4.072238E-02	1.318303E00	1.087172E01	0	-4.072246E-02	-2.610765E00	-1.599798E01
step_5	5	6	7.102259E00	3.468411E-02	3.159382E-02	1.982216E00	0	-3.468419E-02	-4.645996E-01	-7.091083E00
step_6	6	5	7.101402E00	3.468358E-02	4.644697E-01	1.981359E00	0	-3.468364E-02	-3.155106E-02	-7.090232E00
step_7	7	4	1.617271E01	4.072181E-02	2.610432E00	1.087073E01	0	-4.072188E-02	-1.31807E00	-1.599701E01
step_8	8	3	2.518982E01	4.787252E-02	6.358813E00	1.936208E01	0	-4.787261E-02	-4.143098E00	-2.447419E01
step_9	9	2	3.404936E01	5.628553E-02	1.162946E01	2.721455E01	0	-5.628565E-02	-8.373739E00	-3.219519E01
step_10	10	1	4.262735E01	6.561805E-02	1.822552E01	3.418309E01	0	-6.56182E-02	-1.384908E01	-3.884718E01
ОК										

Figura 4.20 Ejemplo del desplazamiento máximo del microespejo a máximo valor de voltaje

En la siguiente gráfica (figura 4.21) se observa el comportamiento lineal de desplazamiento del microespejo, el cual llega a un punto de equilibrio para cuando el voltaje en ambos electrodos se encuentran entre 5 y 6V, dado que sus fuerzas se contrarrestan.

Figura 4.21 Comportamiento de desplazamiento de la placa del microespejo respecto al funcionamiento de los dos electrodos

4.4.1.2 Relación entre los Ángulos de Desplazamiento y el Voltaje Aplicado

La tabla 4.4 muestra los diferentes ángulos obtenidos al aplicar voltajes de 1-10V en los electrodos, los cuales se obtuvieron con base en los resultados de desplazamiento obtenidos en la simulación con Coventor. En estos resultados se determinó que el ángulo máximo que alcanza la placa del microespejo es de 43.130°.

Tabla 4.4 Diferentes ángulos que logra la placa del microespejo, con 10 pasos de voltaje aplicado a los electrodos.

1	Displacement											
2		Elect1	Elect2	Max	MaxX	MaxY	MaxZ	Min	MinX	MinY	MinZ	
3	step_1	1	10	42.6285518	0.06561869	13.8499899	34.1840706	0	-0.06561884	-18.226553	-38.8480377	
4	step_2	2	9	34.0504791	0.05628617	8.37438965	27.2155399	0	-0.05628629	-11.6302309	-32.1961098	
5	step_3	3	8	25.1908124	0.04787309	4.14350271	19.3630199	0	-0.04787319	-6.35932064	-24.4750919	
6	step_4	4	7	16.1737139	0.04072238	1.31830251	10.8717232	0	-0.04072246	-2.61076498	-15.9979763	
7	step_5	5	6	7.1022585	0.03468411	0.03159382	1.98221576	0	-0.03468419	-0.46459958	-7.09108305	
8	step_6	6	5	7.1014021	0.03468358	0.46446967	1.98135948	0	-0.03468364	-0.03155106	-7.09023237	
9	step_7	7	4	16.1727067	0.04072181	2.61043167	10.8707275	0	-0.04072188	-1.3180697	-15.9970055	
10	step_8	8	3	25.1898187	0.04787252	6.35881329	19.3620777	0	-0.04787261	-4.14309788	-24.4741898	
11	step_9	9	2	34.0493636	0.05628553	11.6294632	27.2145462	0	-0.05628565	-8.37373924	-32.1951904	
12	step_10	10	1	42.6273469	0.06561805	18.2255173	34.183094	0	-0.0656182	-13.8490782	-38.8471756	
13												
14												
15	Angle											
16		Elect1	Elect2	MaxZ	MinZ	sen θ MaxZ	sen θ Min Z		θ Max Z	θ MinZ		VV=
17	step_1	1	10	34.1840706	-38.8480377	0.68368141	-0.77696075		43.1319957	-50.9831411		
18	step_2	2	9	27.2155399	-32.1961098	0.5443108	-0.6439222		32.9775786	-40.0849134		
19	step_3	3	8	19.3630199	-24.4750919	0.3872604	-0.48950184		22.7841405	-29.3078441		
20	step_4	4	7	10.8717232	-15.9979763	0.21743446	-0.31995953		12.5583912	-18.6604772		
21	step_5	5	6	1.98221576	-7.09108305	0.03964432	-0.14182166		2.27204736	-8.15327165		
22	step_6	6	5	1.98135948	-7.09023237	0.03962719	-0.14180465		2.27106537	-8.1522869		
23	step_7	7	4	10.8707275	-15.9970055	0.21741455	-0.31994011		12.5572224	-18.659303		
24	step_8	8	3	19.3620777	-24.4741898	0.38724155	-0.4894838		22.7829694	-29.3066586		
25	step_9	9	2	27.2145462	-32.1951904	0.54429092	-0.64390381		32.9762212	-40.0835365		
26	step_10	10	1	34.183094	-38.8471756	0.68366188	-0.77694351		43.1304623	-50.9815719		
_												

De igual modo, se observa que los ángulos de escalonamiento alcanzados por la placa tienen un comportamiento lineal, como se muestra en la gráfica de la figura 4.22.

Figura 4.22 Relación ángulo-voltaje

4.4.1.3 Resultados de la Simulación de Fuerza de Reacción en las Vigas torsionales.

La tabla 4.5 muestra los resultados de la fuerza de reacción en las vigas torsionales que soportan la placa del microespejo, obtenidos en Coventor al aplicar un voltaje de 1 a 10 V en cada uno de los electrodos y accionados independientemente.

Se puede observar, en la tabla 4.5, que la fuerza de reacción máxima en las vigas torsionales que soportan la placa fue de 1.418735 MPa, como se muestra en la figura 4.23, en la que las partes de las vigas torsionales con mayor fuerza de reacción están coloreadas de rojo y las que no presentan ninguna de azul.

Tabla 4.5 Resultados de la fuerza de reacción en las vigas torsionales del microespejo, respecto a los tres ejes coordenados, con 10 pasos de voltaje aplicado.

💽 Reacti	C Reaction Force									
	Elect1	Elect2	Fx_Anclaje1	Fy_Anclaje1	Fz_Anclaje1	Fx_Anclaje2	Fy_Anclaje2	Fz_Anclaje2		
step_1	1	10	-2.459988E02	1.499611E01	1.41868E01	2.45999E02	1.499621E01	1.418693E01		
step_2	2	9	-2.110298E02	1.030197E01	1.404983E01	2.110299E02	1.030203E01	1.404995E01		
step_3	3	8	-1.835399E02	6.549268E00	1.350145E01	1.8354E02	6.549303E00	1.350156E01		
step_4	4	7	-1.645023E02	3.582185E00	1.290751E01	1.645024E02	3.582204E00	1.290762E01		
step_5	5	6	-1.547839E02	1.132187E00	1.253901E01	1.54784E02	1.132196E00	1.253911E01		
step_6	6	5	-1.547839E02	-1.131952E00	1.253902E01	1.54784E02	-1.131954E00	1.253912E01		
step_7	7	4	-1.645025E02	-3.581901E00	1.290759E01	1.645026E02	-3.581914E00	1.29077E01		
step_8	8	3	-1.8354E02	-6.548965E00	1.350157E01	1.835401E02	-6.548995E00	1.350169E01		
step_9	9	2	-2.110299E02	-1.030161E01	1.405006E01	2.110301E02	-1.030166E01	1.405019E01		
step_10	10	1	-2.459992E02	-1.49957E01	1.418719E01	2.459994E02	-1.49958E01	1.418735E01		
	ок									

Figura 4.23 Ejemplo de la fuerza ejercida sobre las vigas en mínimo y máximo voltajes.

En la siguiente gráfica (figura 4.24) se observa el aumento de la magnitud del voltaje en el electrodo 1 y cómo éste afecta la magnitud de la fuerza que se aplica en las vigas torsionales del microespejo, de tal modo que a voltaje máximo se tiene máxima fuerza de torsión y para lo cual hay que verificar que no se vayan a romper a este voltaje dado.

Figura 4.24 Comportamiento de la fuerza de reacción que presenta una viga torsional al aplicar voltaje de atracción en un electrodo

4.4.1.4 Resultados de la Simulación de Modos de Frecuencia de Vibración.

De igual forma, se realizó un análisis de modal para determinar las frecuencias de vibración que sufre el microespejo bajo la condición ideal de amortiguamiento, y se puede observar en la tabla 4.6, los resultados de las diferentes frecuencias obtenidas para 5 modos de vibración que podría presentar el microespejo, con una condición de amortiguamiento ideal, obtenidos en Coventor.

Así la tabla 4.6, arroja que los valores de frecuencias más comunes de vibración que podría presentar el microespejo en su conjunto, es de 37820.8 Hz, para el modo vibracional 1, de 77337.07 Hz para el modo vibracional 2 y 102608.84 Hz para el modo vibracional 3 (que serían los modos de vibración más comunes que podría presentar el microespejo.

La figura 4.25 muestra el modo vibracional 1, la figura 4.26 muestra el modo vibracional 2 y la figura 4.27 muestra el modo vibracional 3, donde en cada figura, las partes coloreadas de rojo presentan mayores desplazamientos por vibración y las que no presentan ninguno están coloreadas de azul.

Tabla 4.6 Resultados de las frecuencias para 5 diferentes modos de vibración del microespejo.

Microsoft Excel - Modal.xls											
1	<u>A</u> rchivo <u>E</u> dici	ión <u>V</u> er <u>I</u> nser	rtar <u>F</u> ormato <u>H</u> erra	amientas Da <u>t</u> os	s Ve <u>n</u> tana <u>?</u>	Ado <u>b</u> e PDF					
	💕 🛃 👌 j	3 3 🖏	🔁 र 🤊 र 🔂 😒	§Σ - <u>2</u> ↓	🔔 💿 📲	Arial					
1	🛅 🔄 🖄 🕢 💿 🏹 茨 🏷 🎘 🖏 📦 💖 Responder con <u>c</u> ambios Terminar revisión										
1											
	A1 🗸	<i>f</i> ∗ mo	IdeDomain								
	A	В	С	D	E	F					
1	modeDomain	1									
2											
_		Frequency	Generalized Mass	Damping							
3	1	Frequency 37820.80469	Generalized Mass 7.43E-12	Damping O							
3	1	Frequency 37820.80469 77337.07813	Generalized Mass 7.43E-12 2.18E-11	Damping O O							
345	1 2 3	Frequency 37820.80469 77337.07813 102608.8438	Generalized Mass 7.43E-12 2.18E-11 2.25E-11	Damping 0 0 0							
3 4 5 6	1 2 3 4	Frequency 37820.80469 77337.07813 102608.8438 211895.875	Generalized Mass 7.43E-12 2.18E-11 2.25E-11 1.31E-11	Damping 0 0 0 0							
3 4 5 6 7	1 2 3 4 5	Frequency 37820.80469 77337.07813 102608.8438 211895.875 229147	Generalized Mass 7.43E-12 2.18E-11 2.25E-11 1.31E-11 7.38E-12	Damping 0 0 0 0 0							

Figura 4.25 Ejemplo del primer modo de vibración del microespejo a 37820.8 Hz .

Figura 4.26 Ejemplo del segundo modo de vibración del microespejo a 77337.07 Hz

Figura 4.27 Ejemplo del tercer modo de vibración del microespejo a 102608.84 Hz.