ÍNDICE	PÁGINA.
INTRODUCCIÓN	1
I EL REACTOR NUCLEAR MODULAR DE HELIO CON TURBINA DE GAS	3
	J
1.1 CONCEPTOS BÁSICOS DE ENERGÍA NUCLEAR	3
1.2 EL REACTOR NUCLEAR	5
1.2.1 Elementos de los reactores nucleares	5
1.2.2 Tipos de reactores nucleares	6
1.3 REACTORES NUCLEARES AVANZADOS	7
1.4 EL REACTOR DE ALTA TEMPERATURA REFRIGERADO POR G	AS
(HTGR - HIGH TEMPERATURE GAS REACTOR)	8
1.4.1 TIPOS DE REACTORES HTGR	10
1.5 EL REACTOR PBMR (PEBBLE BED MODULAR REACTOR)	10
1.5.1 Operación del PBMR	11
1.5.2 Combustible del PBMR	
1.6 EL REACTOR GT-MHR	15
1.6.1 Diseño del GT-MHR	15
1.6.2 Sistemas de la Planta	16
1.6.3 Combustible del GT-MHR	19
1.6.4 Ciclo Termodinámico del Reactor	
1.6.5 Características de seguridad del GT-MHR	
1.6.6 Ventajas ambientales del GT-MGR.	
1.6.7 Resistencia a la Proliferación del GT-MHR	
1.6.8 Competitividad econômica del GT-MHR	
II EL MÉTODO DE MONTE CARLO Y EL PROGRAMA DE CÓMPU MCNPX	TO 20
	····· <i>4</i> 7
2.1 MÉTODO DE MONTECARLO	
2.1.1 Historia del método de Monte Carlo	
2.1.2 Conceptos básicos del Método Monte Carlo	30
2.1.2.1 Generación de números pseudo-aleatorios	30
2.1.2.2 Teorema del límite central	30
2.1.2.3 Técnicas de muestreo	31
2.1.3 Descripción del algoritmo.	
2.1.4 Método de Monte Carlo para transporte de partículas	
2.1.4.1 Trayectoria de las partículas	35

2.1.4.2 Cálculo de la criticidad	38
2.2 EL PROGRAMA DE CÓMPUTO MCNPX	41
2.2.1 Formato del archivo de entrada	41
2.2.1.1. Tarjeta de definición de celdas (Cell Cards):	41
2.2.1.2. Tarjeta de definición de las superficies. (Surface Cards):	42
2.2.1.3 · Tarjeta de datos (Data Cards):	43
2.2.2 Descripción del archivo de salida	45
III ELABORACIÓN DE MODELOS Y SIMULACIÓN DEL NÚCLEO DEL	
REACTOR.	47
3.1 MODELO DE LA PARTÍCULA DE COMBUSTIBLE TRISO	47
3.2 MODELO DEL ELEMENTO COMPACTO	49
3.3 MODELO DEL ENSAMBLE HEXAGONAL	51
3.4 MODELO HETEROGÉNEO DEL NÚCLEO	53
3.5 MODELO SIMPLIFICADO	57
3.6 MODELO HOMOGÉNEO DEL PIN	57
3.7 MODELO HOMOGÉNEO DEL NÚCLEO GT-MHR	58
3.8 IMPLEMENTACIÓN DE LA OPCIÓN DE QUEMADO	60
IV DISEÑO DE UN MÉTODO ALTERNO PARA MEJORAR EL DESEMPEÑ	0
DEL CALCULO DEL QUEMADO DE COMBUSTIBLE DE MCNPA	01
4.1 MÉTODO DISEÑADO	61
4.1.1 Principales instrumentos computacionales del método	61
4.1.2 Descripción del Método Diseñado	62
4.2 IMPLEMENTACIÓN DEL MÉTODO Y RESULTADOS OBTENIDOS 4.2.1 Evaluación del método	68 72
CONCLUSIONES	74
ANEXO 1	76
REFERENCIAS	87

ÍNDICE DE FIGURAS

FIGURA 1.1. REACCIÓN DE FISIÓN NUCLEAR	4
FIGURA 1.2. ESQUEMA DE UNA REACCIÓN EN CADENA	4
FIGURA 1.3. REACCIÓN DE FUSIÓN NUCLEAR	4
FIGURA 1.4. ESTRUCTURA DEL REACTOR HTGR	8
FIGURA 1.5. COMBUSTIBLE HTGR	9
FIGURA 1.6. CICLO DE OPERACIÓN ESQUEMÁTICO DE LA PLANTA PBMR	11
FIGURA 1.7. PLANTA DE GENERACIÓN DE ELECTRICIDAD CON REACTOR	
PBMR	12
FIGURA 1.8. DISEÑO DE ELEMENTO DE COMBUSTIBLE PARA PMBR	13
FIGURA 1.9. MÓDULO GT-MHR	16
FIGURA 1.10. EDIFICIO DEL GT-MHR	17
FIGURA 1.11. ELEMENTOS PRINCIPALES DEL GT- MHR	
FIGURA 1.12. VISTA EN MICROSCOPIO ELECTRÓNICO DE UNA PARTÍCULA TRI	SO19
FIGURA 1.13. COMPORTAMIENTO DEL COMBUSTIBLE	19
FIGURA 1.14. COMBUSTIBLE DE PARTÍCULAS REVESTIDAS	20
FIGURA 1.15. NÚCLEO ANULAR GT-MHR	21
FIGURA 1.16. ESQUEMA DE FLUJO DEL REFRIGERANTE DEL GT-MHR	22
FIGURA 1.17. COMPARACIÓN DE EFICIENCIAS TÉRMICAS	22
FIGURA1.18. RADIACIÓN PASIVA, CONVECCIÓN NATURAL Y CONDUCCIÓN DEL	
CALOR RESIDUAL DEL SILO DE CONTENCIÓN	24
FIGURA 1.19. ELIMINACIÓN DEL CALOR RESIDUAL CUANDO EL SISTEMA DE	
CONVERSIÓN DE POTENCIA NO ES ACCESIBLE	25
FIGURA 1.20. TEMPERATURAS DE CALENTAMIENTO DEL NÚCLEO CON RECHAZO D	Е
CALOR PASIVO	25
FIGURA 2.1. EJEMPLO DE FUNCIÓN DE PROBABILIDAD, P(X)	32
FIGURA 2.2. FUNCIÓN DE DISTRIBUCIÓN, C(X), OBTENIDA DE LA INTEGRACIÓN DE	LA
FUNCIÓN DENSIDAD DE PROBABILIDAD	33
FIGURA 2.3. TRAYECTORIA ALEATORIA DE UNA PARTÍCULA A TRAVÉS DE UN	
MEDIO	36
FIGURA 2.4. DIRECCIÓN DE LA PARTÍCULA EN COORDENADAS ESFÉRICAS	32
FIGURA 2.5. ÁNGULOS LOCALES DE DISPERSIÓN DE LA PARTÍCULA	38
FIGURA 2.6. FORMATO DE ARCHIVO DE ENTRADA DE MCNPX	41
FIGURA 2.7. ESQUEMA DE USO RECOMENDADO	46
FIGURA 3.1 ESQUEMA DE COMBUSTIBLE	48
FIGURA 3.2. MODELACIÓN MCNPX DE LA PARTÍCULA TRISO. MATRIZ CÚBICA	49
FIGURA 3.3. MODELO MCNPX DE UN ARREGLO DE CELDAS	49
FIGURA 3.4. MODELO MCNPX DEL COMPACTO. MATRIZ CÚBICA	50

FIGURA 3.5. MODELO MCNPX DEL COMPACTO. MATRIZ HEXAGONAL	50
FIGURA 3.6 ACERCAMIENTO DEL MODELO COMPACTO	51
FIGURA 3.7. MODELOS PARA LOS BLOQUES DE ENSAMBLES	51
FIGURA 3.8. ENSAMBLE BÁSICO CON MCNPX	52
FIGURA 3.9. ENSAMBLE BÁSICO, PLANO XY	52
FIGURA 3.10. NÚCLEO DE GRAFITO Y TUBOS REFRIGERANTES. PLANO XY	52
FIGURA 3.11. CONFIGURACIÓN DEL NÚCLEO DEL REACTOR GT- MHR CON TRES	
ANILLOS	53
FIGURA 3.12. VISTA SUPERIOR DE LA LATTICE DEL NÚCLEO	54
FIGURA 3.13. SECCIONES HORIZONTALES DEL NÚCLEO. PLANO YZ	54
FIGURA 3.14. SECCIONES HORIZONTALES DEL NÚCLEO. PLANO YZ	55
FIGURA 3.15. NÚCLEO DEL REACTOR GT-MHR	55
FIGURA 3.16. NÚCLEO DEL REACTOR GT-MHR ESQUEMATIZADO	56
FIGURA 3.17. MODELO EMPLEADO	56
FIGURA 3.18. MÉTODO DE HOMOGENIZACIÓN RPT	58
FIGURA 3.19. PIN HOMOGÉNEO	58
FIGURA 3.20. VISTA SUPERIOR DEL NÚCLEO GT-MHR SIMPLIFICADO	59
FIGURA 4.1. MODELO DE UNA PARTÍCULA DE COMBUSTIBLE TRISO UTILIZADA	EN
CPM-3	63
FIGURA 4.2. LISTAS DE ISÓTOPOS GENERADAS	65
FIGURA 4.3. EVOLUCIÓN DE LA K-EF	70
FIGURA 4.4. COMPARACIÓN DE K-EF PARA MCNPX Y EL MÉTODO DISEÑADO	71
FIGURA 4.5. COMPARACIÓN DE LOS CÓDIGOS	72

ÍNDICE DE TABLAS

TABLA 1.1 INDICADORES PARA EL REACTOR PBMR	14
TABLA 1.2. PARÁMETROS DE OPERACIÓN A POTENCIA PLENA NOMINAL DEL GT-M	/HR23
TABLA 1.3 INDICADORES PARA EL REACTOR GT-MHR	
TABLA 3.1. DIMENSIONES DE UNA PARTÍCULA DE COMBUSTIBLE TRISO	48
TABLA 3.2. DIMENSIONES DE LA PARTÍCULA TRISO UTILIZADA PARA LOS MODE	ELOS
SIMULADOS	53
TABLA 3.3. COMPARACIÓN MODELOS DE NÚCLEO GT-MHR	59
TABLA 3.4. TIEMPOS DE EJECUCIÓN DE MODELOS CON Y SIN QUEMADO	60
TABLA 4.1. VALORES DE "K-EF DE QUEMADO" OBTENIDOS CON DISTINTASFOR	MAS
DE MANIPULACIÓN DE ISÓTOPOS	68
TABLA 4.2. VALORES DE K-EF OBTENIDOS CON LA IMPLEMENTACIÓN DEL	
MÉTODO	69
TABLA 4.3. VALORES DE K EFF OBTENIDOS CON LA IMPLEMENTACIÓN DEL MÉTO	DO E
INTERPOLACIÓN	69
TABLA 4.4. VALORES OBTENIDOS CON EL MÉTODO DISEÑADO Y CON MCNPX	70
TABLA 4.5. VALORES OBTENIDOS CON EL MÉTODO DISEÑADO, CON MCNPX Y CO	N
CPM-3	71
TABLA 4.6. DIFERENCIAS %DK/K ENTRE MCNPX Y EL MÉTODO DISEÑADO	72
TABLA 4.7. DIFERENCIAS EN PCM ENTRE MCNPX Y EL MÉTODO DISEÑADO	73
TABLA 4.8. TIEMPOS DE QUEMADO	73