

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

FACULTAD DE INGENIERÍA

ESTIMACIÓN DEL EFECTO DE SITIO Y LA VULNERABILIDAD SÍSMICA EN LA CIUDAD DE ACATLÁN, PUEBLA

T E S I S

QUE PARA OPTAR POR EL GRADO DE:

MAESTRO EN INGENIERÍA

INGENIERÍA CIVIL - INGENIERÍA SÍSMICA

P R E S E N T A :

DANIEL VEGA ROCHA

TUTOR: M. en C. JAVIER LERMO SAMANIEGO

2005

JURADO ASIGNADO:

Presidente:	Dr. Roberto Meli Piralla
Secretario:	Dr. José Alberto Escobar Sánchez
Vocal:	M. en C. Javier Lermo Samaniego
1 ^{er} . Suplente:	Dr. Eduardo Reinoso Angulo
2 ^{do} . Suplente:	Dr. Jaime García Pérez

Lugar donde se realizó la tesis:

Instituto de Ingeniería, U.N.A.M., Ciudad Universitaria, México, D.F.

TUTOR DE TESIS:

M. en C. Javier Lermo Samaniego

FIRMA

Dedicatorias

A mi madre, por el ejemplo de humildad, de amor al prójimo y de gratitud que supo sembrar en mi corazón, por el apoyo que siempre me ha dado a pesar de las circunstancias.

A mi abuela, por el amor incondicional que ha mostrado hacia mis hermanos y hacia mí, por el cariño en el que nos acogió cuando más lo necesitamos.

A mis hermanos, por todo lo que vivimos juntos durante la infancia, por ayudarnos mutuamente y seguir el ejemplo que mamá nos ha obsequiado.

A Roberto, por el amor y el cariño que ha brindado a mi familia, por su noble y dedicada entrega en la lucha por salir adelante, por ser un padre para mí a pesar de las adversidades.

A Marisol, por ser como un ángel en mi vida, por el apoyo sincero que supo darnos, por su incesante carácter de servicio y amor a las personas que le rodean.

> A Francisco, por su compañía, ayuda y cooperación en nuestra casa, por la sinceridad y honestidad que nos ha demostrado.

Agradecimientos

Sería imposible mencionar en unas cuantas líneas a todas aquellas personas que contribuyeron en la realización de este trabajo. Aun cuando considero que son escasas las palabras para expresar el enorme agradecimiento que siento hacia ellas, me atrevo a nombrarlas a manera de un sincero y sencillo homenaje por el valioso apoyo que me brindaron:

A la Universidad Nacional Autónoma de México, por darme la oportunidad de realizar en sus aulas mis estudios desde la educación media superior.

Al CONACYT, por brindarme el apoyo económico durante mis estudios de posgrado.

A Javier Lermo Samaniego, por compartir una parte de todo lo que sabe en ingeniería sismológica, por sus consejos y recomendaciones que reforzaron mi formación académica, por su comprensión cuando más lo necesité.

A mis compañeros Marcos Chavacán Ávila, Yanet Antayhua Vera e Isabel Bernal Esquia, por su intensa colaboración en los trabajos de campo.

A Marco Antonio Macías Castillo, por su valiosa cooperación en la obtención de registros sísmicos, por sus consejos de profesor y amigo.

Al H. Ayuntamiento Constitucional de Acatlán de Osorio, Puebla, y en especial al Arq. Lenin Reyes Martínez y al Ing. Juan Luis López Castillejos, por otorgarnos la información y las facilidades necesarias para realizar la investigación.

Al Servicio Sismológico Nacional, y en especial al Ing. Casiano Jiménez Cruz, por facilitarnos los datos de sismos para completar nuestro catálogo.

Al Ing. Gerardo A. Corona Carlos, por obsequiarnos el Sistema Digital de Daños del sismo de Tehuacán del 15 de junio de 1999.

Í N D I C E

Capítulo 1 INTRODUCCIÓN

1.1	Antecedentes	1
1.2	Objetivo y alcances	4
1.3	Desarrollo del trabajo	5

Capítulo 2 GEOLOGÍA Y MORFOLOGÍA

2.1	Geología	6
2.2	Morfología	14
2.3	Microzonas	17

Capítulo 3 SISMICIDAD

3.	1 Sis	smicidad histórica	19
3.	2 Sis	smos intraplaca que han afectado a la ciudad de Acatlán	24
	3.2.1	Temblor del 28 de agosto de 1973 (Mw=7.0, mb=7.3)	25
	3.2.2	Temblor del 24 de octubre de 1980 (Mw=7.0, mb=7.0)	26
	3.2.3	Temblor del 15 de junio de 1999 (Mw=7.0, mb=6.3)	29

Capítulo 4 EFECTO DE SITIO

4.1	Introducción	39
4.2	Obtención de registros	39
4.2	2.1 Microtremores	39
4.2	2.2 Refracción sísmica	42
4.3	Procesamiento de los datos	45
4.3	3.1 Razón espectral H/V	45
4.3	3.2 Tiempos de propagación de ondas	52

4.4 Ar 4.4.1 4.4.2	nálisis de la información Perfiles estratigráficos Movimiento en la superficie del terreno	58 58 68
4.5 Re	sultados	71
4.5.1	Periodos fundamentales del terreno	71
4.5.2	Curvas de isoperiodo	74
4.5.3	Amplificaciones relativas máximas	76
4.5.4	Aceleraciones máximas del terreno	77

Capítulo 5 VULNERABILIDAD SÍSMICA

5.1 In	troducción	78
5.1.1	Marco teórico	78
5.2 M	étodo empírico de categorización	80
5.2.1	Zona de estudio	80
5.2.2	Censo de edificaciones	82
5.2.3	Base de datos	85
5.2.4	Tipologías más comunes	92
5.3 M	étodo experimental	94
5.3.1	Obtención de registros	95
5.3.2	Procesamiento de datos	97
5.3.3	Resultados	99
5.4 M	étodo analítico	100
5.4.1	Modelos matemáticos	100
5.4.2	Periodos v formas modales	105
5.4.3	Análisis dinámico modal paso a paso	109
5.4.4	Análisis dinámico modal espectral	115
5.5 Re	sultados	120
5.5.1	Respuesta estructural	120
5.5.2	Resonancia dinámica	120
5.5.3	Clases de vulnerabilidad	122
Capítulo 6		
CONCLUSION	NES	124
ANEXOS		127
REFERENCIAS	5 BIBLIOGRÁFICAS	155

_

RESUMEN

El estudio consistió en una estimación del efecto geológico de sitio y la vulnerabilidad sísmica de las construcciones en la ciudad de Acatlán, Puebla, una de las localidades más afectadas por sismos cercanos de gran magnitud. El principal objetivo fue investigar la influencia de la geología local en la aparición de daños estructurales en las viviendas ante este tipo de sismos. Por un lado, el efecto de sitio lo estimé experimentalmente a partir de registros de vibración ambiental que obtuve en varios puntos de la ciudad, de tal manera que después de procesarlos calculé varias funciones que permiten determinar el movimiento del terreno. Por otro, la vulnerabilidad sísmica de las construcciones la estimé a partir de modelos analíticos de las viviendas más comunes, los cuales sometí al movimiento del suelo que calculé como acabo de mencionar; para esto, primero realicé un censo en la ciudad sobre aspectos estructurales de las edificaciones, de tal forma que al resumir sus características en una base digital de datos determiné así las tipologías predominantes. Los resultados indicaron que sí existe una amplificación del movimiento del terreno debido a los suelos arenosos en los que se asienta gran parte de la ciudad, y que sin embargo las viviendas más comunes pueden resistir sin daños severos sismos cercanos de gran magnitud, siempre y cuando satisfagan los requisitos constructivos esenciales para que muestren un buen comportamiento sísmico.

Capítulo 1 INTRODUCCIÓN

1.1 Antecedentes

El municipio de Acatlán se localiza al sur del estado de Puebla, cerca de la frontera común con los estados de Oaxaca y Guerrero. De acuerdo con los niveles de bienestar humano calculados por el INEGI (2000), donde el 7 corresponde al máximo y el 1 al mínimo, este municipio tiene un nivel de bienestar de 5 (ver figura 1.1.1). Estos niveles están basados en indicadores como analfabetismo, escolaridad promedio, porcentaje de viviendas con drenaje, agua entubada y electricidad, viviendas con baño, y viviendas con electrodomésticos.

En el contexto demográfico, el municipio de Acatlán actualmente ocupa el lugar número 29 en el estado de Puebla en cuanto al número de habitantes, pues cuenta con una población de casi 35 mil habitantes (0.7% de la población estatal) distribuidos en 79 localidades (INEGI, 2000), como se indica en la figura 1.1.2. La cabecera municipal es la localidad más grande y corresponde a la ciudad de Acatlán, la cual cuenta con una población de casi 15 mil habitantes (el 43.1% del total municipal), cuya distribución por sexo y edad (INEGI, 2000) se muestra en la figura 1.1.3.

Número de localidades en el municipio de Acatlán

Figura 1.1.2. Número y tamaño de localidades en el municipio de Acatlán.

Número de habitantes en la ciudad de Acatlán

Figura 1.1.3. Distribución por sexo y edad de la población en la ciudad de Acatlán.

De acuerdo con el mapa de regionalización sísmica de México (CFE, 1993), esta ciudad pertenece a una zona de sismicidad media (ver figura 1.1.5); sin embargo, es una de las localidades más afectadas por macrosismos de falla normal y profundidad intermedia que se originan en la zona de subducción de la Placa de Cocos bajo la de Norteamérica.

Figura 1.1.5. Ubicación de la ciudad de Acatlán en el mapa de regionalización sísmica de México.

El primer macrosismo que afectó al poblado de Acatlán ocurrió el 16 de agosto de 1711 (Figueroa, 1974; Salmorán, 1995). Este evento provocó el derrumbe de varias casas y de la iglesia, la cual constituía el centro de la población. Debido a esto, en enero de 1712 se inició la construcción de un nuevo templo, en el lugar que ocupa actualmente.

Figura 1.1.6. Ruinas del primer templo religioso en Acatlán.

En épocas más recientes, desde que Acatlán fue elevada al rango de ciudad en abril de 1883, macrosismos de intraplaca han causado daños en la localidad. Por ejemplo, podemos mencionar el sismo de Serdán del 28 de agosto de 1973 (Mw 7.0, mb 7.3), el de Huajuapan de León del 24 de octubre de 1980 (Mw 7.0, mb 7.0), y el de Tehuacán del 15 de junio de 1999 (Mw 7.0, mb 6.3). En estos dos últimos, los daños se concentraron al centro de la ciudad, principalmente en viviendas de mampostería de adobe; sin embargo, las viviendas de adobe construidas fuera del centro no presentaron daños.

Diferentes autores han planteado la posibilidad de un efecto geológico local para explicar dicha concentración de daños. En el sismo del 24 de octubre de 1980, Muriá *et al.* (1980) realizaron un recorrido por diferentes poblados de la región epicentral y reportaron que "… [en Acatlán] se observaron efectos locales producidos probablemente por suelos aluviales, de manera que los daños se concentraron en las zonas con este tipo de suelo". En el sismo del 15 de junio de 1999, Juárez-García *et al.* (1999) e Iglesias-Jiménez *et al.* (1999) observaron que "… en el centro del poblado se concentraron los daños más graves, mientras que en el oeste las construcciones no sufrieron daño alguno" y asumieron que "… [posiblemente] los efectos locales amplificaron el movimiento en la ciudad de Acatlán."

1.2 Objetivo y alcances

A raíz de la inquietud que diferentes autores han planteado sobre la presencia de un efecto de sitio en la ciudad de Acatlán, el objetivo del presente trabajo consiste en investigar la influencia de la geología local en el nivel de daños que puede producir un sismo intraplaca como los ya mencionados. De esta manera, el estudio consistió en la estimación de dos aspectos generales: el efecto de sitio y la vulnerabilidad sísmica.

En cuanto al efecto de sitio, se tuvo el interés de conocer la variación de los periodos fundamentales de vibración y las amplificaciones relativas del terreno, así como la estructura del subsuelo con el fin de obtener información sobre sus propiedades dinámicas. Los trabajos realizados fueron básicamente experimentales: vibración ambiental (microtremores) y refracción sísmica. Los resultados consisten en un mapa de curvas de isoperiodo del suelo, las funciones de transferencia lineales (empíricas y teóricas) del movimiento en superficie, y las aceleraciones máximas del terreno en el escenario del temblor de Tehuacán del 15 de junio de 1999.

En cuanto a la vulnerabilidad sísmica, se delimitó una zona de estudio de acuerdo con la distribución de daños ocasionados por el sismo del 15 de junio de 1999. Se realizó un censo sobre datos estructurales de las edificaciones existentes en dicha zona, y a partir de la información recabada se definieron las tipologías estructurales más comunes. En estas últimas, se aplicó un método experimental y otro analítico para estimar la respuesta de las tipologías definidas ante aquel temblor y para el espectro de diseño sísmico correspondiente; en este caso, sólo se consideró el rango de comportamiento lineal. A falta de pruebas de laboratorio para determinar las propiedades mecánicas de los materiales, estas se estimaron a partir de la información disponible. Los resultados obtenidos consisten en una estadística sobre aspectos estructurales básicos de las edificaciones, la definición de las tipologías estructurales más comunes, así como un análisis de su vulnerabilidad ante estos dos niveles de excitación sísmica.

1.3 Desarrollo del trabajo

En el capítulo2, se muestran los aspectos relevantes sobre la geología y la morfología de la ciudad. Se divide la traza urbana en tres microzonas, en función del tipo de suelo y las altitudes del terreno. El mapa resultante sirve de base para la estimación del efecto de sitio (capítulo 4) y el análisis de vulnerabilidad sísmica (capítulo 5).

En el capítulo 3, se hace una recopilación de los datos de sismos registrados instrumentalmente en el estado de Puebla y sus inmediaciones, a partir de los cuales se muestra la sismicidad histórica en dicha región. Los eventos abarcan la región centro-sur de México y corresponden a los periodos de febrero de 1911 a octubre de 1980, de enero de 1986 a agosto de 1989, y de febrero de 1990 a diciembre de 2002; en total se obtuvieron datos de 1150 eventos. Se exponen también los aspectos más relevantes de los sismos ocurridos el 28 de agosto de 1973 (Mw 7.0, mb 7.3), el 24 de octubre de 1980 (Mw 7.0, mb 7.0), y el 15 de junio de 1999 (Mw 7.0, mb 6.3), los cuales son claros ejemplos de macrosismos intraplaca que afectan a la ciudad de Acatlán.

En el capítulo 4, se presenta el estudio realizado para estimar el efecto de sitio en la ciudad de Acatlán. Los procesos de obtención de registros, procesamiento de datos, análisis de la información y obtención de resultados se describen para los trabajos experimentales efectuados en campo: vibración ambiental (microtremores) y refracción sísmica. A partir de las funciones de transferencia empíricas, se determinan los periodos fundamentales de vibración del terreno; con las velocidades de ondas de cortante (β) del ensaye de refracción, se estiman los espesores de los depósitos arenosos y las profundidades a la roca basal, así como las respectivas funciones de transferencia teóricas. Mediante estas últimas, y considerando como escenario el sismo del 15 de junio de 1999, se estiman las aceleraciones máximas en la superficie del terreno.

En el capítulo 5, se presentan los métodos utilizados para estudiar la vulnerabilidad sísmica en la ciudad de Acatlán: empírico, experimental y analítico. Por un lado, con el método empírico, se determinaron las características estructurales de las edificaciones, tales como el número de niveles, los materiales de construcción y el sistema resistente, entre otros; los datos recabados se analizaron mediante el uso de un sistema de información geográfico. Por otro, con los métodos experimental y analítico, se estimó la respuesta estructural de las tipologías más comunes ante aquel sismo y para el espectro de diseño correspondiente; a partir de mediciones de microtremores en las estructuras seleccionadas, se identificaron los valores de sus frecuencias naturales de vibración. Por último, se definieron y asignaron clases de vulnerabilidad para dichas tipologías con base en los valores de la máxima distorsión de entrepiso ($\gamma_{máx}$) del análisis modal espectral.

Finalmente, en el capítulo 6, se exponen las conclusiones derivadas de los resultados obtenidos en cada uno de los capítulos anteriores.

Capítulo 2 GEOLOGÍA Y MORFOLOGÍA

2.1 Geología

En muchos sentidos, el Complejo Acatlán es una parte única de la geología de América del Norte. Mencionado por exploradores desde principios del siglo pasado (Ordóñez, 1906), sólo fue conocido como una vasta extensión de "esquistos" y filitas localizada en la región Mixteca al sur de México. Diferentes investigadores han determinado la edad geológica de estos materiales, estimando su origen en la era Paleozoica (Salas, 1949) o en la Precámbrica (Ordóñez, 1906; Fries y Rincón-Orta, 1965).

La ciudad de Acatlán pertenece al Complejo Acatlán (Ortega-Gutiérrez *et al.,* 1999), el cual es la plataforma geológica del terreno Mixteco (Campa y Coney, 1983). En la figura 2.1.1 se muestra el marco tectónico regional, integrado por el siguiente sistema de fallas:

- Al Este, el límite con el terreno Zapoteco es una falla compleja, con fases de movimiento que se remontan al periodo Devónico (las más antiguas) y al Terciario (las más recientes).
- Al Oeste, el límite no está bien definido. De acuerdo con Campa y Coney (1983), el terreno Mixteco forma el basamento de la plataforma Morelos del periodo Cretácico, y por consiguiente se expande en la zona de contacto con la porción Este del terreno Guerrero. Otra interpretación (Sedlock *et al.*, 1993) considera que la falla Papalutla es probablemente el límite del terreno Mixteco, y considera la plataforma Morelos como una unidad tectonostratigráfica independiente o como una extensión del terreno Guerrero.
- Al Sur, el terreno Mixteco presenta una frontera tectónica mayor que ha sido interpretada como una falla que penetra hacia el Este, del Complejo Acatlán sobre el Complejo Xolapa (Salinas-Prieto, 1984).
- Al Norte, el límite del terreno Mixteco puede estar definido por la prolongación hacia el norte de la falla Papalutla.

Después de formado el terreno Mixteco en el periodo Devónico (hace 400 millones de años), el Complejo Acatlán sirvió como basamento a secuencias estratigráficas que, hasta finales del Cretácico, fueron depositadas en condiciones tectónicas inactivas. La era Cenozoica, sin embargo, ha estado marcada por un abundante vulcanismo continental (del Paleoceno al Mioceno) y por intensas orogénesis y erosiones (desde inicios del Neógeno).

Durante varias décadas, las rocas metamórficas del Complejo Acatlán recibieron nombres como "esquistos de Acatlán" (Salas, 1949) o "formación Acatlán" (Fries *et al.*, 1962), y no se había hecho algún intento por subdividirlo en sus componentes estratigráficos. En este sentido, el primer esfuerzo fue realizado por Nicholas Rast, quien visitó México de 1970 a 1971 para dirigir un programa de estudios sobre los complejos metamórficos del sur de México; dicho trabajo, organizado por la Royal Society junto con el Instituto de Geología de la UNAM, abarcó los tres de mayor extensión: el Complejo Acatlán de la era Paleozoica, el Complejo Oaxaca de la era Precámbrica y el Complejo Xolapa de la era Paleozoica. Así, por primera vez, el Complejo Acatlán fue analizado y subdividido estratigráficamente, sus relaciones geológicas generales con otros complejos fueron discutidas, y la naturaleza deformada de sus rocas quedó claramente establecida. Desafortunadamente, los resultados de ese trabajo no fueron publicados oficialmente. Años más tarde, el geólogo Fernando Ortega, quien formó parte del grupo encabezado por Nicholas Rast, retomó la experiencia y los resultados de aquella primera investigación para emprender nuevos estudios sobre el Complejo Acatlán, de manera que aportó diferentes conocimientos al desarrollar sus trabajos en el marco de la tectónica de placas.

Figura 2.1.1. Marco tectónico regional del Complejo Acatlán (modificado de Ortega-Gutiérrez *et al.,* 1999). El recuadro de la izquierda señala la ubicación de la ciudad de Acatlán.

Ortega-Gutiérrez (1978) subdividió el Complejo Acatlán en dos unidades tectónicas principales, separadas por una secuencia volcanosedimentaria ligeramente metamorfoseada conocida como Formación Tecomate. La unidad inferior, integrada por las formaciones Cosoltepec, Chazumba y Migmatitas Magdalena, consiste en un grueso paquete de rocas metasedimentarias.

La unidad superior, integrada por las formaciones Xayacatlán y Granitoides Esperanza, consiste en rocas máficas y ultramáficas intercaladas con rocas metasedimentarias pelíticas y silícicas. Estas dos unidades, tectónicamente superpuestas, fueron cubiertas por la Formación Tecomate. La ciudad de Acatlán, en particular, está situada en una zona perteneciente a las formaciones Cosoltepec y Tecomate, como puede verse en la figura 2.1.2.

Figura 2.1.2. Formaciones geológicas del Complejo Acatlán (modificado de Ortega-Gutiérrez, 1993). El círculo indica, tanto en planta como en perfil, la ubicación de la ciudad de Acatlán.

• Formación Cosoltepec.

Alrededor del 90% del Complejo Acatlán pertenece a esta unidad. Se trata de una masa monótona pseudoestratificada de cuarcitas y filitas cuarzosas, internamente deformada por una foliación compleja. La zona de Coatlaco, en el estado de Guerrero, probablemente representa un fragmento del fondo oceánico que se separó de la placa subducida y se incorporó al Complejo, debido a la presencia de rocas metasedimentarias silícicas libres de carbonatos. La naturaleza esquística de los metasedimentos se identifica en zonas de deformación moderada por la presencia de metapsamita y metapelita, en estratos alternados, y por la existencia de exóticos materiales clásticos: bloques masivos de cuarcita (Olinalá, Guerrero), delgadas capas de serpentinita (Coatlaco, Guerrero) o rocas manganíferas (Acatlán, Puebla).

La ausencia total de carbonatos en estas litologías, la naturaleza esquística de la secuencia, la presencia de materiales clásticos exóticos, así como la identificación de fragmentos del fondo oceánico, son evidencias de que la Formación Cosoltepec fue depositada originalmente cerca o en el borde de una placa oceánica de la era Paleozoica subduciendo a una masa continental de la era Precámbrica.

Formación Tecomate.

Esta unidad sedimentaria constituye el último elemento tectonostratigráfico del Complejo Acatlán formado en la era Paleozoica. Su estructura consiste en rocas clásticas finamente estratificadas, incluyendo horizontes de caliza y conglomerado formado por guijas de materiales graníticos, volcánicos y gnéisicos; en los estratos de caliza se hallan frecuentemente organismos microscópicos fosilizados. El cuerpo principal de la formación está compuesto por arenisca, pizarra, materiales piroclásticos y pequeñas intrusiones riolíticas.

Por otra parte, la carta geológica local (INEGI, 1990) muestra la existencia de las tres litologías siguientes:

• *Esquistos del Paleozoico,* P(E).

Rocas metamórficas que incluyen esquistos, filitas, algunos gneises y remanentes de cuarcita (metasedimentaria y metavolcánica), que en general presentan un metamorfismo de bajo grado y cataclástico. Estas rocas pertenecen a las formaciones Cosoltepec y Tecomate. Los esquistos son de facies esquistos verdes, subfacies de clorita y de biotita, clases pelítica, básica y cuarzo-feldespática. Los gneises se presentan intercalados en afloramientos de regular extensión y son principalmente de moscovita y clorita.

• *Metasedimentario del Paleozoico,* P(METASEDIMENTARIO).

Rocas metamórficas pertenecientes a la Formación Tecomate que incluyen metagrauvacas, meta-arcosas, metapelitas, metaconglomerados y metacalizas. En estas últimas, se han encontrado distintos invertebrados fósiles.

• Aluvión del Cuaternario, Q(al).

Suelo aluvial de color oscuro con horizontes de arena y grava.

De acuerdo con esta información, y como puede verse en la figura 2.1.3, la mayor parte de la traza urbana de Acatlán se encuentra en zona de rocas metasedimentarias. El lado oeste de la ciudad incluye una zona de esquistos, el lado sur abarca suelo aluvial producto del río más cercano, y el resto corresponde a rocas metasedimentarias.

Sin embargo, durante los trabajos de campo realizados en el presente estudio, se pudieron apreciar estratigrafías de suelos arenosos y afloramientos de esquistos dentro de la traza urbana, tal como se muestra en las figuras 2.1.4 y 2.1.5.

Figura 2.1.4. Estratigrafía de un depósito arenoso en la ciudad de Acatlán.

Figura 2.1.5. Afloramientos de esquisto en la ciudad de Acatlán.

De acuerdo con un estudio geotécnico realizado por el laboratorio "Laboratorio y Calidad Total Aplicada" en 2003 (cuyo trabajo de exploración consistió en tres pozos a cielo abierto), se confirma la presencia de estratos de arena en otros puntos de la ciudad, como se muestra en la figura 2.1.6.

Figura 2.1.6. Estratigrafía del subsuelo en tres puntos de la ciudad de Acatlán (LABYCTA, 2003).

Por otra parte, dentro de la ciudad existen cauces naturales que dan lugar a corrientes de agua en épocas de lluvia. Estas corrientes transportan fragmentos de roca y gravas, y llevan en suspensión arenas, limos y arcillas. Así, a lo largo de estos cauces se pueden observar suelos de origen aluvial. La figura 2.1.7 muestra la distribución de los arroyos en la ciudad, y la figura 2.1.8 es una toma cercana en un día lluvioso.

Figura 2.1.7. Cauces naturales de ríos y arroyos en la ciudad de Acatlán.

Figura 2.1.8. Toma cercana de un arroyo en época de lluvia.

2.2 Morfología.

La ciudad de Acatlán tiene una altitud promedio de 1180 m.s.n.m. aproximadamente, y está rodeada por las formaciones: al este, el cerro "Pelado" con altura máxima de 1400 m.s.n.m.; al oeste, el cerro "Piedra Azul" con elevación máxima de 1300 m.s.n.m., en cuya zona oriental se asienta una considerable parte de la población; al sur, los cerros "El comal" y "Loma bonita"; y al norte los cerros "Tecolote" y "Tehuixtle", éste último con altura máxima de 1300 m.s.n.m. La carta topográfica local (INEGI, 1988) se muestra en la figura 2.2.1.

Figura 2.2.1. Aspectos geomorfológicos de la ciudad de Acatlán y sus alrededores (INEGI, 1988).

De acuerdo con la cartografía digital del municipio de Acatlán de Osorio (Secretaría de Obras Públicas del Estado de Puebla, 2004), se dispone de la siguiente información: a) fotografías aéreas; b) curvas de nivel a cada metro; y c) distribución de los predios y las construcciones existentes. La figura 2.2.2 muestra una vista aérea del valle, así como la ubicación de la ciudad de Acatlán; la figura 2.2.3 es un acercamiento de la misma.

Figura 2.2.2. Fotografía aérea de la ciudad de Acatlán (recuadro amarillo) y sus alrededores.

Figura 2.2.3. Fotografía aérea de la ciudad de Acatlán.

Las curvas de nivel permiten visualizar la geomorfología local de Acatlán. La figura 2.2.4 muestra las curvas a cada cuatro metros, así como las máximas elevaciones en la localidad. Con base en esta información, y de acuerdo con las observaciones realizadas en campo, podemos distinguir cuatro zonas según su altitud: una zona baja, con valores entre 1159 y 1167 m.s.n.m; una zona media-baja, con alturas entre 1167 y 1176 m.s.n.m.; una zona media-alta, con altitudes entre 1176 y 1194 m.s.n.m; y la zona más alta, con elevaciones mayores de 1194 m.s.n.m. Gran parte de la población se localiza en las zonas media-alta y media-baja, entre los 1167 y 1194 m.s.n.m.; en la figura 2.2.4 se muestra también la distribución de las construcciones existentes.

Figura 2.2.4. Geomorfología local de la ciudad de Acatlán (izquierda) y distribución de las construcciones existentes (derecha, puntos morados).

La figura 2.2.5 es un modelo gráfico tridimensional de la geomorfología local, construido con las curvas de nivel a cada dos metros. Las altitudes indicadas tienen unidades de m.s.n.m.

Figura 2.2.5. Modelo gráfico de la morfología de la ciudad de Acatlán.

2.3 Microzonas

A partir de la información geológica, hidrológica y geomorfológica disponible y de acuerdo con las observaciones realizadas en campo, en el mapa de la figura 2.3.1 se ha dividido la ciudad de Acatlán en tres microzonas:

- Microzona I. Abarca las zonas alta y media-alta, donde predominan rocas metamórficas de naturaleza esquística.
- Microzona II. Abarca las zonas media-alta y media-baja, y está conformada por depósitos arenosos de origen aluvial.

• Microzona III. Abarca la zona baja, donde predominan suelos aluviales producto del río más cercano y caudaloso (el río Tizaac).

Figura 2.3.1. Microzonas de la ciudad de Acatlán.

En Acatlán existen alrededor de 6350 edificaciones (Secretaría de Obras Públicas del Estado de Puebla, 2004), de las cuales el 97% se ubica en las microzonas I y II, tal como se muestra en la figura 2.3.2.

Figura 2.3.2. Distribución de las construcciones existentes en la ciudad de Acatlán.

Capítulo 3 SISMICIDAD

3.1 Sismicidad histórica

El estado de Puebla corresponde a una región de México de la más variada fisonomía, reveladora de antiguos procesos orogénicos que probablemente alcanzaron su máxima actividad durante el Terciario. Actualmente, estos procesos están representados por grandes elevaciones, plegamientos, depresiones, fracturas, etc., que aún siguen desarrollándose y por consiguiente dan lugar a una sismicidad importante, ya sea de origen tectónico, volcánico e incluso de acomodamientos superficiales (Figueroa, 1974). La figura 3.1.1 muestra las principales provincias fisiográficas en esta entidad (INEGI, 2000).

Figura 3.1.1. Fisiografía del estado de Puebla (modificado de INEGI, 2000).

Un primer estudio sobre la actividad sísmica del estado de Puebla y sus alrededores fue realizado por Figueroa (1974). El catálogo correspondiente incluye una lista de macrosismos que afectaron a la entidad desde 1523 hasta octubre de 1974, y otra de sismos localizados instrumentalmente en el estado y en sus vecindades con datos desde febrero de 1911 hasta octubre de 1973; ésta última contiene 125 sismos con magnitudes (Richter) entre 3.2 y 7.8, y con profundidades entre 40 y 100 km. De acuerdo con la distribución espacial de los epicentros correspondientes, la zona de mayor actividad sísmica se encuentra en la parte sur de la entidad (entre los 17.13°N y 18.69°N), la región central (entre los 18.69°N y 19.5°N) presenta una sismicidad moderada, y en la parte norte (entre los 19.5°N y 21°N) los movimientos son escasos.

Posteriormente, Gómez y González-Pomposo (1983) reportaron 104 sismos para el periodo de 1976 a febrero de 1983. Hasta entonces, con la escasa instrumentación sísmica en la región, el catálogo se ampliaba a 229 eventos localizados; después de 1985, con el crecimiento de la red acelerográfica en México, fue posible registrar un mayor número de sismos en lapsos más cortos.

González-Pomposo y Valdés-González (1995) realizaron un estudio de la actividad sísmica en el estado de Puebla y sus inmediaciones, para el periodo de enero de 1986 a agosto de 1989, mediante la operación de la Red Sísmica del Estado de Puebla (RESEP). El catálogo correspondiente reporta 350 eventos localizados, la mayoría con profundidades menores de 50 km; las magnitudes de coda se distribuyen de la siguiente manera: 43% tienen magnitudes entre 2 y 3, 49% entre 3 y 4, 8% entre 4 y 5, y sólo un evento tiene magnitud mayor de 5. El 69% de los sismos se concentran al sur del estado, entre los 17°N y 18.5°N, cerca de la frontera con los estados de Guerreo y Oaxaca; el 26% se localizan en la región central, entre los 18.5°N y 20°N; el resto ocurrieron en la frontera común con los estados de México, Tlaxcala e Hidalgo; al norte no reportaron eventos. Estos autores concluyen que la mayor actividad sísmica se presenta en la parte sur de la entidad, probablemente relacionada con el contacto entre las placas de Cocos y Norteamérica, y que la parte central muestra una actividad sísmica moderada asociada a esfuerzos tectónicos de la corteza.

El Servicio Sismológico Nacional (2005) ha reportado más de 600 sismos localizados en el estado de Puebla y sus alrededores, para el periodo de 1990 a 2002. El 71% tiene magnitudes de coda entre 2 y 4, el 27% entre 4 y 5, y el 2% mayor de 5.

En el presente estudio, se recopilaron los datos de Figueroa (1974), González-Pomposo y Valdés-González (1995), y el Servicio Sismológico Nacional (2005) para integrarlos en un solo catálogo. En total se obtuvieron datos de 1150 sismos, cuyas coordenadas epicentrales van de 15.81° a 20.88° de latitud Norte y de 94.11° a 99.95° de longitud Oeste (ver Anexo 1). Sin embargo, se delimitó una zona de estudio más cercana a los límites estatales y se seleccionó el marco mostrado en la figura 3.1.2, el cual está definido por los paralelos 17.5°N y 21.0°N y los meridianos 96.5°O y 99.5°O. De esta manera, se obtuvieron 565 eventos localizados dentro de dicha área, con profundidades de hasta 148 km y magnitudes distribuidas como se indica en la figura 3.1.3.

Figura 3.1.2. Marco de referencia para estudiar la actividad sísmica en el estado de Puebla.

Figura 3.1.3. Distribución de magnitudes de los 565 sismos seleccionados.

La figura 3.1.4 muestra los epicentros de los 565 eventos, la figura 3.1.5 muestra un perfil transversal para los sismos que cuentan con el dato de profundidad hipocentral, y la figura 3.1.6 presenta un modelo gráfico tridimensional sobre la ubicación de los focos. Como podemos ver, la zona de mayor actividad sísmica corresponde al sur del estado, entre los paralelos 17°30'N y 18°35'N, donde gran parte de los eventos se originaron entre los 25 y 75 km de profundidad para todo el rango de magnitudes observadas. La región central, entre los 18°35'N y los 19°50'N, presenta una sismicidad moderada, donde la mayoría de los eventos ocurrieron cerca de la superficie y con magnitudes menores a 5. La zona de menor sismicidad se encuentra entre los 19°50'N y los 21°N, donde se registraron pocos eventos y cuyas magnitudes son menores de 4.

Figura 3.1.4. Sismicidad en el estado de Puebla. Recopilación de los catálogos de Figueroa (1974), González-Pomposo y Valdés-González (1995), y el SSN (2005).

Figura 3.1.5. Perfil transversal de la sismicidad en el estado de Puebla. Recopilación de los catálogos de Figueroa (1974), González-Pomposo y Valdés-González (1995), y el SSN (2005).

Figura 3.1.6. Modelo tridimensional de la sismicidad en el estado de Puebla. Recopilación de los catálogos de Figueroa (1974), González-Pomposo y Valdés-González (1995), y el SSN (2005).

De acuerdo con estos mapas de sismicidad, podemos identificar tres fuentes sismogénicas principales que afectan a la ciudad de Acatlán:

• *Intraplaca*. Eventos de falla normal y profundidad intermedia que se generan dentro de la Placa de Cocos, en la zona de subducción de esta bajo la de Norteamérica. El origen de estos sismos se debe principalmente a esfuerzos producidos por flexión de la Placa de Cocos,

además de la tensión inducida por el arrastre gravitacional de la misma hacia el manto (Suárez *et al.*, 1990).

• *Cortical*. Eventos que se generan dentro de la Placa de Norteamérica debido a deslizamientos en las fallas geológicas del graben de Puebla. Dichos deslizamientos se deben a las corrientes magmáticas de convección, así como a la flexión inducida por la fricción de la Placa de Cocos cuando llega a gran profundidad (Pardo y Suárez, 1995).

• *Volcánica*. Eventos de poca profundidad que se generan en el Eje Volcánico Transversal de México (EVTM), debido a la actividad de las fallas geológicas y las formaciones volcánicas existentes. La mayoría de estos sismos se concentran en la Sierra Volcánica Nevada y sus inmediaciones.

Otra fuente que podemos considerar es la que genera eventos de foco somero (profundidades de hasta 20 km) cercanos a la costa sur mexicana del Pacífico. El origen de estos sismos se debe principalmente a esfuerzos de compresión producidos en la zona de contacto entre la Placa de Cocos y la de Norteamérica, dando lugar a mecanismos de falla inversa.

Desde que Acatlán fue ascendida al rango de ciudad en 1880, se ha visto que los macrosismos de intraplaca son los que causan mayores daños a la localidad (Orozco y Berra, 1911; Lumbier, 1928; Figueroa, 1963; Figueroa, 1986; Gutiérrez, 1999). Por esta razón, en el presente estudio haremos referencia principalmente a este tipo de eventos.

3.2 Sismos intraplaca que han afectado a la ciudad de Acatlán

Como bien se sabe, los sismos de profundidad intermedia y con mecanismo de falla normal en la zona de subducción de la Placa de Cocos bajo la de Norteamérica causan daños severos a diversas poblaciones de la región centro-sur de México. Desde el siglo antepasado se presentan sismos de este tipo con magnitudes mayores de 6.5 (Singh *et al.*, 1999), la mayoría localizados en el estado de Puebla, tal como se muestra en la tabla 3.2.1 y la figura 3.2.1.

No.	Fecha	Latitud N (°)	Longitud O (°)	Profundidad (km)	Magnitud
1	03/octubre/1864	18.70	97.40	-	7.3
2	17/mayo /1879	18.60	98.00	-	7.0
3	10/febrero/1928	18.26	97.99	84	6.5
4	15/enero/1931	16.34	96.87	40	7.8
5	26/julio/1937	18.48	96.08	85	7.3
6	11/octubre/1945	18.32	97.65	95	6.5
7	24/mayo/1959	17.72	97.72	80	6.8
8	28/agosto/1973	18.82	97.47	82	7.0
9	24/octubre/1980	18.03	98.27	65	7.0
10	15/junio/1999	18.15	97.52	60	7.0

Tabla 3.2.1. Sismos de falla normal y profundidad intermedia (Singh *et al.*, 1999).

Figura 3.2.1. Macrosismos históricos en la región centro-sur de México (Singh et al., 1999).

Los sismos ocurridos el 28 de agosto de 1973 (Mw 7.0, mb 7.3), el 24 de octubre de 1980 (Mw 7.0, mb 7.0), y el 15 de junio de 1999 (Mw 7.0, mb 6.3) son ejemplos de los que afectan a la ciudad de Acatlán. A continuación, se da un panorama general de estos eventos.

3.2.1 Temblor del 28 de agosto de 1973 (Mw 7.0, mb 7.3)

El 28 de agosto de 1973, a las 03:50:55 hrs. (tiempo local), ocurrió un sismo de magnitud Mw 7.0 (mb 7.3) con epicentro al sureste de la ciudad de Puebla. De acuerdo con estudios realizados por los Institutos de Geofísica e Ingeniería de la UNAM, las coordenadas focales fueron las siguientes: latitud 18.817°N, longitud 97.467°O y profundidad de 80 a 100 km.

Este sismo produjo severos daños en los estados de Puebla, Veracruz y Oaxaca, principalmente. Como efecto más lamentable, se alcanzó una cifra de 500 muertos y 1600 heridos. Los daños materiales fueron importantes en monumentos coloniales, los que quizá por macrosismos anteriores ya presentaban daños no visibles o ligeras reparaciones. También resultaron dañados seriamente edificios nuevos que fueron construidos deficientemente. Los daños más generalizados se presentaron en viviendas ordinarias y económicas, las cuales experimentaron destrucción parcial o total. De acuerdo con el mapa de isosistas (Figueroa, 1974), se observaron intensidades de hasta VIII (Escala Mercalli Modificada) en la zona epicentral, tal como se ilustra en la figura 3.2.1.1.

En la ciudad de Acatlán, en particular, se observó una intensidad de VII (Escala Mercalli Modificada). En esta población, los muros y recubrimientos de muchas viviendas resultaron con agrietamientos importantes. Desafortunadamente, no se cuenta con la distribución espacial ni con mayores informes sobre los daños ocasionados por el sismo en la localidad.

Figura 3.2.1.1. Isosistas del sismo del 28 de agosto de 1973 (Figueroa, 1974).

3.2.2 Temblor del 24 de octubre de 1980 (Mw 7.0, mb 7.0)

El 24 de octubre de 1980, a las 08:53:31 hrs. (tiempo local), ocurrió un sismo de magnitud Mw 7.0 (mb 7.0) con epicentro localizado a 57 km al noroeste de la ciudad de Huajuapan de León, Oaxaca. Diferentes instituciones calcularon las coordenadas focales del sismo, tal como se muestra en la tabla 3.2.2.1. En los nueve días siguientes al evento principal ocurrieron cerca de 900 réplicas, 300 de las cuales pudieron ser localizadas (Yamamoto *et al.*, 1984).

Institución	Latitud N (°)	Longitud O (°)	Profundidad (km)
Instituto de Ingeniería, UNAM	17.98	98.32	12
Servicio Sismológico Nacional	17.25	97.98	53
U.S. Geological Survey	18.44	98.13	100
Jesús Figueroa	18.00	98.23	> 33

Tabla 3.2.2.1. Coordenadas focales del sismo del 24 de octubre de 1980.

Las poblaciones más afectadas se localizaron en los estados de Puebla, Oaxaca y Guerrero; por ejemplo Tehuitzingo, Acatlán y San Pedro Yeloixtlahuacan en el primero, Huajuapan de León y Santiago Juxtlahuaca en el segundo, y Xochihuehuetlán y Huamuxtitlán en el último. También se reportaron daños en otros poblados (Prince *et al.*, 1980), pero la severidad y proporción fueron menores.

En las poblaciones de Puebla y Oaxaca, los daños observados (Muriá *et al.*, 1980) tuvieron las siguientes características:

Gran parte de los daños se concentró en edificaciones construidas con materiales de baja resistencia, como mampostería de adobe y de piedra con lodo, y principalmente en aquellas afectadas por las lluvias, ya que éstas deterioran dichos materiales y reducen aún más su resistencia. Los daños en estas construcciones fueron desde grietas en uno o varios muros hasta el colapso total; sin embargo, las que contaban con elementos de confinamiento, como dalas y castillos, sólo presentaron grietas en los muros.

• En casas construidas con mampostería de tabique o tabicón, se observaron daños sólo cuando los muros no contaban con elementos de confinamiento.

 Algunas estructuras de concreto reforzado de varios niveles sufrieron daños graves, muchas de ellas con peligro de colapso y otras completamente derrumbadas. En este caso se observaron distintas deficiencias: el uso de concreto pobre y agregados de mala calidad, falta de continuidad en elementos estructurales, presencia de columnas cortas, falta de confinamiento en muros de carga y juntas constructivas defectuosas, principalmente.

• Las escuelas con estructura metálica no mostraron daños severos, y sólo en pocos casos presentaban vidrios rotos.

• La mayoría de las iglesias resultaron afectadas, algunas de ellas con daños severos. Sólo las más nuevas mostraron mejor comportamiento.

 Aunque no fue un fenómeno generalizado, se observaron efectos locales producidos probablemente por suelos aluviales, de manera que los daños se concentraron en las zonas con tal tipo de suelo; un ejemplo de esto fue la ciudad de Acatlán, Puebla.

 Los daños observados se concentraron en edificaciones con materiales de escasa resistencia y pobre calidad, en estructuras con problemas de diseño y/o construcción, así como en torres, naves y cúpulas de iglesias antiguas.

De acuerdo con el mapa de isosistas (Figueroa, 1986), se observaron intensidades de VIII y IX (Escala Mercalli Modificada) en la zona epicentral, tal como se ilustra en la figura 3.2.2.1.

En la ciudad de Acatlán, en particular, la mayoría de las construcciones eran de adobe de un solo nivel, con techos de teja sobre armaduras de madera; la altura de muchas de ellas, mayor de cuatro metros. Algunas edificaciones eran de muros de mampostería confinados con dalas y castillos. Las construcciones de dos niveles eran de tabique o híbridas (adobe en el primero y tabique en el segundo). Sólo tres edificios de dos o tres niveles estaban construidos con marcos de concreto y muros de mampostería (Prince *et al.*, 1980).

Figura 3.2.2.1. Isosistas del sismo del 24 de octubre de 1980 (Figueroa, 1986).

Figura 3.2.2.2. Distancias epicentrales a diferentes sitios, sismo del 24 de octubre de 1980.

Los principales efectos del sismo en la ciudad de Acatlán se observaron en la parte baja de la población (Muriá *et al.*, 1980); en esta zona, la mayoría de las viviendas de adobe presentaron fuertes daños y algunas se derrumbaron parcial o totalmente. En la mayoría de las casas, la fachada no aparentaba grandes daños, pero los muros interiores o adyacentes a otras casas estaban seriamente afectados. Las viviendas construidas con mejores materiales no presentaron daños importantes; sin embargo, hubo construcciones de mampostería confinada que mostraban agrietamientos diagonales en algunos de sus muros.

3.2.3 Temblor del 15 de junio de 1999 (Mw 7.0, mb 6.3)

El 15 de junio de 1999, a las 15:41:06 hrs. (hora local), ocurrió un sismo de magnitud Mw 7.0 (mb 6.3) con epicentro localizado a 35 km al suroeste de la ciudad de Tehuacán, Puebla. Diferentes instituciones calcularon las coordenadas focales del sismo, y obtuvieron los valores indicados en la tabla 3.2.3.1. Las réplicas ocurridas después del evento principal reportadas por el Servicio Sismológico Nacional y por el U.S. Geological Survey tuvieron magnitudes de coda entre 3.5 y 4.5, distribuidas de la siguiente manera: siete durante las 24 horas siguientes, seis durante las dos semanas posteriores, y cuatro más registradas al cabo de un mes.

Institución	Latitud N (°)	Longitud O (°)	Profundidad (km)
Instituto de Ingeniería, UNAM	18.30	97.60	40
Servicio Sismológico Nacional	18.20	97.47	60
U.S. Geological Survey	18.41	97.34	80

Tabla 3.2.3.1. Coordenadas focales del sismo del 15 de junio de 1999.

Los daños más relevantes se concentraron en hospitales, viviendas, escuelas y monumentos históricos (Alcocer *et al.*, 1999). Aunque los mayores daños se produjeron en el estado de Puebla, también resultaron afectadas algunas partes de los estados de Guerrero, Oaxaca, Veracruz, Tlaxcala y Morelos. El sismo causó intensidades de hasta VIII (Escala Mercalli Modificada) en una amplia zona entre las ciudades de Huajuapan y Puebla (Iglesias-Jiménez *et al.*, 1999; Juárez-García *et al.*, 1999), tal como se muestra en el mapa de isosistas de la figura 3.2.3.1 (Gutiérrez, 1999).

De acuerdo con el sistema digital de daños ocasionados por este temblor (Corona y Perea, 2000), las ciudades de Puebla, Tehuacán y Acatlán reportaron las máximas intensidades de todo el estado de Puebla, tal como se muestra en la figura 3.2.3.2.

Figura 3.2.3.1. Isosistas del sismo del 15 de junio de 1999 (Gutiérrez, 1999).

La ciudad de Acatlán es quizá la población donde se presentó la mayor proporción de daños. En el centro del poblado se concentraron los daños más graves, incluso algunas casas se derrumbaron (Gutiérrez, 1999). Sin embargo, en el lado oeste de la ciudad las construcciones no presentaron daños, incluyendo las casas de adobe (Juárez-García *et al.*, 1999). Cabe recordar que durante el sismo de Huajuapan de León, del 24 de octubre de 1980 (Mw 7.0), también se observó esta concentración de daños al centro de la ciudad (Muriá *et al.*, 1980). Diferentes autores suponen que este fenómeno se debe a un efecto de sitio (Gutiérrez, 1999; Iglesias-Jiménez *et al.*, 1999; Juárez-García *et al.*, 1999; Muriá *et al.*, 1980; Prince *et al.*, 1980), del cual se piensa que produjo amplificaciones del movimiento del terreno durante estos eventos.

Aunque no se cuenta con un informe detallado, se dispone al menos de una distribución espacial de los daños (Dirección de Obras Públicas del Municipio de Acatlán, 1999), la cual se muestra en la figura 3.2.3.3. Se sabe que las viviendas marcadas en esta figura presentaron grandes agrietamientos y aberturas en los muros, así como desplome parcial o tal del techo; por esta razón, y para evitar accidentes mayores, el Ejército mexicano derrumbó estas construcciones.

Por otro lado, diferentes estaciones acelerográficas registraron el movimiento del terreno (Singh *et al.*, 1999). Las más cercanas al epicentro fueron las estaciones CHFL (distancia focal = 73 km) y RABO (distancia focal = 121 km), ambas instaladas en roca por el Instituto de Ingeniería de la UNAM. De estas, la primera es la más cercana al poblado de Acatlán, el cual se situó a 55 km del epicentro (distancia focal = 81 km), como se ilustra en la figura 3.2.3.4.

Figura 3.2.3.4. Distancias epicentrales a diferentes sitios, sismo del 15 de junio de 1999.

En la figura 3.2.3.5 se muestran las componentes horizontales registradas en la estación CHFL. La aceleración máxima en dirección norte-sur fue de 110 cm/s² (0.11g), y en la este-oeste de 104 cm/s² (0.10g). La figura 3.2.3.6 presenta los espectros de amplitudes de Fourier de las señales; se puede observar que las máximas amplitudes ocurrieron en un intervalo de frecuencias de 0.3 a 11 Hz en dirección norte-sur, y de 0.5 a 13 Hz en dirección este-oeste. La figura 3.2.3.7 muestra los espectros de respuesta de seudoaceleración, calculados con el método de las ocho constantes (Chopra, 1995), para diferentes niveles de amortiguamiento; se puede observar que, para el 5% del amortiguamiento crítico, las máximas ordenadas correspondieron a un intervalo de periodos estructurales de 0.1 a 0.6 segundos en dirección norte-sur, y de 0.08 a 0.22 segundos en dirección este-oeste.

Resulta interesante comparar el movimiento del terreno registrado en CHFL debido a diferentes eventos. Desde que inició su funcionamiento en abril de 1999, dicha estación registró los siguientes sismos importantes: 15 de junio de 1999 (Mw=7.0, H~60km, intraplaca), 30 de septiembre de 1999 (Mw=7.5, H~45km, intraplaca, latitud 15.95°N, longitud 97.03°O) y 8 de octubre de 2001 (Mw=6.1, H~10km, interplaca, latitud 16.93°N, longitud 100.16°O). Las figuras 3.2.3.5 a 3.2.3.13 muestran las señales, los espectros de Fourier y los espectros de respuesta para estos temblores.

Figura 3.2.3.5. Acelerogramas registrados en CHFL durante el sismo del 15 de junio de 1999.

Figura 3.2.3.6. Espectros de Fourier de las señales registradas en la estación CHFL, sismo del 15 de junio de 1999.

Figura 3.2.3.7. Espectros de respuesta de seudoaceleración en el sitio de la estación CHFL, sismo del 15 de junio de 1999.

Figura 3.2.3.8. Acelerogramas registrados en CHFL durante el sismo del 30 de septiembre de 1999.

Figura 3.2.3.9. Espectros de Fourier de las señales registradas en la estación CHFL, sismo del 30 de septiembre de 1999.

Figura 3.2.3.10. Espectros de respuesta de seudoaceleración en el sitio de la estación CHFL, sismo del 30 de septiembre de 1999.

Figura 3.2.3.11. Acelerogramas registrados en la estación CHFL, sismo del 8 de octubre de 2001.

Figura 3.2.3.12. Espectros de Fourier de las señales registradas en la estación CHFL, sismo del 8 de octubre de 2001.

Figura 3.2.3.13. Espectros de respuesta de seudoaceleración en el sitio de la estación CHFL, sismo del 8 de octubre de 2001.

La figura 3.2.3.14 muestra la ubicación de los epicentros, y en las figuras 3.2.3.15 y 3.3.2.3.16 se comparan los espectros de Fourier y los espectros de respuesta de seudoaceleración respectivos.

Figura 3.2.3.14. Epicentros de dos sismos intraplaca (15/06/1999, 30/09/1999) y uno interplaca (08/10/2001) registrados en la estación CHFL.

Figura 3.2.3.15. Espectros de Fourier correspondientes a dos sismos intraplaca (15/06/1999, 30/09/1999) y uno interplaca (08/10/2001) registrados en la estación CHFL.

Figura 3.2.3.16. Espectros respuesta de seudoaceleración correspondientes a dos sismos intraplaca (15/06/1999, 30/09/1999) y uno interplaca (08/10/2001) registrados en la estación CHFL.

Ahora bien, en la tabla 3.2.3.2 se estima la aceleración máxima en roca en la ciudad de Acatlán para el sismo del 15 de junio de 1999, el del 30 de septiembre de 1999 y uno supuesto de interplaca con magnitud 7.5, a partir de las leyes de atenuación calculadas por Singh *et al.*, (1999), Singh *et al.*, (2000) y Ordaz *et al.*, (1989), respectivamente. La figura 3.2.3.17 muestra las distancias epicentrales, y la figura 3.2.3.18 las curvas de regresión correspondientes.

De esta comparación se observa que los sismos intraplaca son los que producen mayor nivel de intensidad en la ciudad de Acatlán. A medida que la fuente se halla más próxima a la localidad, la aceleración máxima del terreno resulta mayor. La aceleración pico en roca para el sismo del 15 de junio de 1999 (Mw=7.0, H~60km) es del orden de 5 veces de la que corresponde al sismo del 30 de septiembre de 1999 (Mw=7.5, H~45km).

Evento	15/06/1999, M=7.0	30/09/1999, M=7.5	Subducción, M=7.5
Ley de atenuación	log Amáx = 4.51-1.18logR-0.0023R (Singh <i>et al.,</i> 1999)	log Amáx = 4.45-1.08logR-0.0017R (Singh <i>et al.,</i> 2000)	log Amáx = 1.76+0.3M-logR-0.0031R (Ordaz <i>et al.,</i> 1989)
H (km)	~60	~45	<10
D (km)	55	269	245
R (km)	81.4	272.7	245.2
Amáx (gal)	117	23	7

Tabla 3.2.3.2. Aceleración máxima en roca en la ciudad de Acatlán para diferentes macrosismos.

Figura 3.2.3.17. Distancias epicentrales a la ciudad de Acatlán para dos sismos intraplaca (15/06/1999, 30/09/1999) y uno interplaca supuesto con magnitud 7.5.

Figura 3.2.3.18. Leyes de atenuación para dos sismos intraplaca (15/06/1999, 30/09/1999) y uno interplaca supuesto con magnitud 7.5 (Singh *et al.*, 2000).

Capítulo 4 EFECTO DE SITIO

4.1 Introducción

En este capítulo, se presenta el estudio realizado para estimar el efecto de sitio en la ciudad de Acatlán. Por un lado, se tuvo el interés de conocer la variación de los periodos fundamentales de vibración y las amplificaciones relativas en las microzonas definidas anteriormente; por otro, se investigó la estructura del subsuelo con el fin de obtener información sobre sus propiedades dinámicas. Los trabajos efectuados fueron básicamente experimentales: vibración ambiental (microtremores) y refracción sísmica. Los procesos de obtención de registros, procesamiento de datos, análisis de la información y obtención de resultados se describen para cada caso.

Con los resultados obtenidos, las aportaciones realizadas en la evaluación del efecto de sitio en la ciudad de Acatlán consisten en un mapa de curvas de isoperiodo del suelo, las funciones de transferencia lineales (empíricas y teóricas) del movimiento en superficie, y las aceleraciones máximas del terreno en el escenario del temblor de Tehuacán del 15 de junio de 1999 (Mw=7.0, mb=6.3).

4.2 Obtención de registros

4.2.1 Microtremores

La superficie terrestre vibra constantemente con movimientos muy pequeños, del orden de micrómetros, conocidos como vibraciones ambientales o microtremores. Estas vibraciones se pueden clasificar, de acuerdo con el tipo fuente que las produce, en naturales (viento, oleaje, vulcanismo, etc.) y artificiales (tránsito vehicular, actividad industrial, tránsito peatonal, etc.).

El uso de microtremores para evaluar el efecto de sitio fue iniciado en Japón en la década de los 50 (Kanai y Tanaka, 1954). No obstante los cuestionamientos que se han hecho sobre su utilidad (Udwadia y Trifunac, 1973; Finn, 1991; Gutiérrez y Singh, 1992; Lachet y Bard, 1994), la obtención de registros de microtremores presenta un gran atractivo para caracterizar la respuesta dinámica de un sitio, tanto por su sencillez de operación y bajo costo como por la rapidez con que permite obtener resultados.

En el presente trabajo se obtuvieron registros de vibración ambiental en 57 sitios. La mayoría de los puntos de medición fueron ubicados en la microzona II, la cual corresponde a la de mayor concentración de daños durante sismos como el de Huajuapan del 24 de octubre de 1980 o el de Tehuacán del 15 de junio de 1999; otros puntos fueron situados en las microzonas I y III. La figura 4.2.1.1 muestra la distribución espacial correspondiente.

Figura 4.2.1.1. Ubicación de los puntos de registro de vibración ambiental.

El sistema de adquisición de datos consistió en seis sensores: tres sismómetros marca Kinemetrics con periodo natural de 5 segundos, y tres acelerómetros marca Kinemetrics modelo FBA23; estos sensores fueron conectados a un registrador digital marca Kinemetrics modelo Altus, como se ilustra en la figura 4.2.1.2. Las componentes del movimiento (Norte-Sur, Este-Oste y Vertical) fueron asignadas tal como se indica en la tabla 4.2.1.1.

Tipo de sensor	Canal	Componente
	1	Norte – Sur
Acelerómetro	2	Vertical
	3	Este – Oeste
	4	Norte – Sur
Sismómetro	5	Vertical
	6	Este – Oeste

Tabla 4.2.1.1. Asignación de las componentes del movimiento.

Figura 4.2.1.2. Sistema de adquisición de datos para el registro de microtremores.

En cada punto de medición se realizaron dos muestreos, cada uno con intervalo de 0.01 segundos y duración aproximada de 90 segundos. Por cada muestreo se obtuvo un registro en cada uno de los seis canales, de manera que por cada componente se obtuvieron dos registros simultáneos: uno de aceleración y otro de velocidad. Los datos se grababan en formato binario, y posteriormente se transferían a una computadora portátil.

Finalmente, los datos así adquiridos fueron copiados a una computadora personal para su análisis, el cual se describirá más adelante.

4.2.2 Refracción sísmica

La idea básica de la exploración sismológica consiste en generar artificialmente ondas sísmicas y medir el tiempo requerido para que éstas viajen desde la fuente hasta una serie de sensores (sismómetros y/o acelerómetros), distribuidos usualmente a lo largo de una línea recta cuyo punto inicial es la propia fuente. El objetivo es el de obtener información acerca de la estratigrafía del subsuelo; si se conocen los tiempos de llegada (tiempos de arribo) hasta los diferentes sensores y las distancias entre ellos, es posible calcular la velocidad de propagación de las ondas y el espesor de los estratos.

Las trayectorias que siguen las ondas corresponden a dos clases principales: 1) precursoras o refractadas, en las cuales la parte principal de la trayectoria es horizontal y se encuentra a lo largo de la interfase de dos estratos; y 2) reflejadas, en las cuales la onda se propaga inicialmente hacia abajo y en algún punto se refleja regresando a la superficie, de tal forma que la trayectoria total es prácticamente vertical. En este caso, sólo nos referiremos a las trayectorias de refracción.

El ensaye más común de refracción en campo es el tiro de perfiles, el cual consiste en hacer un tendido de varios sensores en una línea recta y aplicar varios golpes o explosiones en cada extremo. La distancia cubierta por el tendido debe ser lo suficientemente grande para que la mayor parte de la trayectoria de propagación actúe como una onda precursora en el refractor o refractores que se estén detectando (Sheriff y Geldart, 1991).

En el presente trabajo, se utilizó el método del tiro de perfiles en un sitio localizado al Este de la ciudad, como se muestra en la figura 4.2.2.1. Este lugar fue elegido por tratarse de un terreno amplio y despejado, evitando así limitaciones de espacio para la realización del ensaye.

En el sistema de adquisición de datos se utilizaron los siguientes tipos de sensores: acelerómetros marca Kinemetrics modelo FBA23, acelerómetros marca Episensor y sismómetros marca Guralp con periodo natural de 30.8 segundos. Los dos primeros fueron conectados a un registrador digital marca Kinemetrics modelo Altus, y los últimos a un registrador digital marca Reftek. Con estos instrumentos se hizo un tendido lineal, orientando los canales de registro en dirección longitudinal (L), transversal (T) y vertical (V) al mismo. La figura 4.2.2.2 muestra los instrumentos utilizados, así como una vista en planta del arreglo de sensores.

Cada extremo del tendido se consideró como un punto de tiro, de manera que primero se realizó un tiro de ida y después uno de regreso. En cada punto de tiro se aplicaron series de golpes con martillo, cada una con duración aproximada de 65 segundos. Los impactos fueron producidos en dirección perpendicular al tendido por medio de una tabla previamente sujetada al suelo, con el propósito de generar ondas SH principalmente. En cada punto de observación se registraron las señales correspondientes a cada serie, con un intervalo de muestreo de 0.004 segundos. Al final del experimento, los datos adquiridos en formato binario se transfirieron a una computadora portátil para su análisis. La figura 4.2.2.3 muestra un esquema de los tiros de refracción y las series de golpes, y la figura 4.2.2.4 dos tomas durante el ensaye.

Figura 4.2.2.1. Vista y ubicación del predio donde se realizó el ensaye de refracción sísmica.

Figura 4.2.2.2. Sistema de adquisición de datos para el ensaye de refracción sísmica.

Figura 4.2.2.3. Esquema de los tiros de refracción y las series de golpes.

Figura 4.2.2.4. Izquierda, vista de la tabla sujetada al suelo, antes de dar los golpes. Derecha, toma durante la aplicación de los impactos en el tiro de ida; al fondo se observa el tendido lineal.

4.3 Procesamiento de los datos

4.3.1 Razón espectral H/V

La razón espectral de las componentes horizontales entre la vertical para un mismo registro fue introducida por Nakamura (1989) en el contexto del análisis de microtremores. Se le conoce también como técnica de Nakamura, técnica H/V o simplemente REHV, y puede aplicarse incluso a registros de movimientos sísmicos fuertes o débiles (Lermo y Chávez-García, 1993). Para calcular este cociente no se requiere una estación adicional de referencia; a partir del registro obtenido en una misma estación, el numerador corresponde a las amplitudes del espectro de Fourier de la componente horizontal (generalmente, la Norte-Sur y la Este-Oeste) y el denominador corresponde a las amplitudes del espectro de Fourier de la componente vertical.

La técnica REHV aplicada a registros de microtremores ofrece una buena estimación de la frecuencia natural de vibración del terreno, pero subestima los valores de amplificación relativa esperados para un sismo (Lermo *et al.*, 1987; Lermo y Chávez-García, 1994; Bard *et al.*, 1997; Riquer *et al.*, 2003). Además, sólo permite obtener el periodo asociado al primer modo de vibrar de la estratigrafía del sitio, pero no define los periodos para modos superiores (Riquer *et al.*, 2003).

En el presente estudio, se aplicó la razón espectral H/V a los registros de microtremores obtenidos. Para cada punto de medición, el procesamiento de los datos consistió en lo siguiente:

• Convertir los datos de formato binario a formato ASCII.

Se utilizó el programa KW2ASC.EXE. Un archivo de entrada (*.EVT) contiene los datos correspondientes a un evento registrado en los seis canales. Al ejecutar el programa, este los convierte y al final despliega seis archivos de salida en formato ASCII.

• Visualizar las señales, calcular espectros de Fourier y funciones de transferencia.

Se visualizaron las señales para identificar aquellos segmentos de los registros que no estuviesen contaminados por eventos transitorios de corta duración, los cuales afectan la

estacionareidad de las señales y son causados principalmente por vehículos y peatones en la proximidad de los instrumentos. Se seleccionó la misma ventana en cada terna de registros correspondientes al mismo muestreo, y se calcularon los espectros de Fourier respectivos. Se aplicó la técnica de Nakamura para calcular la función de transferencia empírica (FTE) en cada componente horizontal (Norte-Sur y Este-Oeste) para la ventana seleccionada. En las figuras 4.3.1.1 a 4.3.1.5 se ilustra este paso para los registros del punto 23.

Figura 4.3.1.1. Visualización de los tres registros de aceleración del primer muestreo en el punto 23.

Figura 4.3.1.2. Visualización de los tres registros de velocidad del primer muestreo en el punto 23.

Figura 4.3.1.3. Espectros de Fourier (derecha) para una ventana seleccionada (izquierda) en los tres registros de aceleración del primer muestreo en el punto 23.

Figura 4.3.1.4. Espectros de Fourier (derecha) para una ventana seleccionada (izquierda) en los tres registros de velocidad del primer muestreo en el punto 23.

Figura 4.3.1.5. Funciones de transferencia empíricas en el punto 23 para la ventana seleccionada e indicada en las dos figuras anteriores.

Con la finalidad de obtener una mejor estimación de la frecuencia natural de vibración del terreno, se seleccionaron otras ventanas adicionales en cada terna de registros. Así, contamos con varias FTE para cada componente horizontal, tanto en aceleración como en velocidad.

• *Calcular promedios espectrales de las funciones de transferencia calculadas.*

Después de obtener las FTE en cada componente, se calculó su respectivo promedio espectral. De esta forma, se obtuvieron los siguientes promedios espectrales: Norte-Sur de aceleración, Este-Oeste de aceleración, Norte-Sur de velocidad y Este-Oste de velocidad. Por ejemplo, la figura 4.3.1.6 muestra los correspondientes al punto 23. En el Anexo 2 se presentan las FTE y sus promedios para los demás puntos de medición.

Figura 4.3.1.6. Funciones de transferencia empíricas en el punto 23. Las líneas gruesas son los promedios espectrales.

Determinar el periodo dominante y su correspondiente amplificación relativa.

Para cada FTE promedio se identificó la frecuencia dominante y se obtuvo su amplificación relativa. Finalmente, se calculó el valor promedio del periodo dominante (T_0) y de la amplificación relativa máxima ($Ar_{máx}$) correspondiente. De acuerdo con la figura 4.3.1.7, en el punto 23 se tiene una frecuencia dominante promedio de 6.5 Hz (T_0 =0.15 segundos) y una amplificación relativa máxima de 2.6 veces. Los resultados para los demás puntos se muestran más adelante, en el inciso de resultados.

Figura 4.3.1.7. Valores de la frecuencia dominante y la amplificación relativa máxima en las FTE promedio del punto 23.

4.3.2 Tiempos de propagación de ondas

A partir de los registros obtenidos con el ensaye de refracción sísmica, se calcularon los tiempos requeridos por las ondas generadas artificialmente para viajar de la fuente a cada punto de observación. En una visualización previa de las señales se observó que, al aplicar los impactos perpendicularmente al tendido lineal de sensores, la energía suministrada produjo mayores amplitudes del movimiento del terreno en tal dirección. De esta manera, se procesaron los registros de la componente transversal (T) en cada punto del arreglo.

Para el tiro de ida, el procesamiento de los datos consistió en lo siguiente:

• Convertir los datos de formato binario a formato ASCII.

Visualizar las señales.

Para cada serie, la visualización de las señales permitió contar el número de golpes registrados en los puntos de observación del tendido. Por ejemplo, en la figura 4.3.2.1 se muestran las señales de los siete golpes registrados en los puntos 0 y 1, correspondientes a la serie número 2.

Figura 4.3.2.1. Señales registradas en la componente transversal del punto 0 (izquierda) y del punto 1 (derecha), correspondientes a la serie número 2 del tiro de ida.

• Determinar el tiempo de arribo de las ondas.

Para cada señal, se hizo un acercamiento en cada golpe con el fin de identificar el instante de arribo de las ondas. Para un mismo golpe aplicado en la fuente y registrado en los puntos de observación, el instante correspondiente al punto 0 (el más cercano a la fuente) se tomó como el tiempo de referencia en los demás puntos. De esta manera, con los datos de una misma serie, el tiempo de propagación de las ondas queda expresado de la siguiente manera:

$$(\Delta t)_{i,j} = t_{i,j} - t_{0,j} \dots (1)$$

Donde $(\Delta t)_{i,j}$ es el tiempo requerido por las ondas para viajar del punto 0 al punto *i*, dado el *j*-ésimo golpe; t_{i,j} es el instante registrado en el punto *i*, dado el *j*-ésimo golpe; t_{0,j} es el instante registrado en el punto 0, dado el *j*-ésimo golpe. Por ejemplo, las figuras 4.3.2.2 y 4.3.2.3 muestran el instante de arribo en el punto 0 y en el punto 1, respectivamente, para el primer golpe de la serie 2; en este caso, el tiempo requerido por las ondas para viajar del punto 0 al punto 1 es $(\Delta t)_{1,1}$ = 15.544 – 15.520 = 0.024 segundos.

• Calcular valores promedio de los tiempos de arribo.

Los valores $(\Delta t)_{i,j}$ se anotaron en una tabla, y por cada serie se obtuvieron los promedios correspondientes. En la tabla 4.3.2.1, por ejemplo, aparecen los tiempos de propagación promedio para la serie número 2; la celda sombreada indica el valor $(\Delta t)_{1,1}$ anterior. En la tabla 4.3.2.2 se muestran los promedios calculados en las cuatro series del tiro, así como los promedios globales.

Figura 4.3.2.2. Tiempo de arribo de las ondas en la componente transversal del punto 0, considerando el primer golpe de la serie 2 en el tiro de ida.

Figura 4.3.2.3. Tiempo de arribo de las ondas en la componente transversal del punto 1, considerando el primer golpe de la serie 2 en el tiro de ida.

	d	Tiempo de propagación de ondas							
Punto	u				(s)			
	(m)	Golpe 1	Golpe 2	Golpe 3	Golpe 4	Golpe 5	Golpe 6	Golpe 7	Promedio
0	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000
1	6	0.024	0.024	0.028	0.024	0.024	0.024	0.024	0.0246
2	15	0.053	0.053	0.047	0.053	0.053	0.041	0.041	0.0487
3	30	-	-	-	-	-	-	-	-
4	45	0.194	0.194	0.178	0.192	0.192	0.178	0.178	0.1866
5	60	0.222	0.220	0.224	0.210	0.220	0.226	0.226	0.2211
6	69	0.244	0.240	0.244	0.244	0.244	0.244	0.244	0.2434
7	75	0.292	0.292	0.292	0.292	0.288	0.288	0.292	0.2909

Tabla 4.3.2.1. Tiempos de propagación de ondas, serie 2, tiro de ida.

	7		Tiempo de	e propagació	on de ondas	
Punto	u			(s)		
	(m)	Serie 1	Serie 2	Serie 3	Serie 4	Promedio
0	0	0.0000	0.0000	0.0000	0.0000	0.0000
1	6	0.0238	0.0246	0.0248	0.0265	0.0249
2	15	0.0496	0.0487	0.0456	0.0462	0.0475
3	30	-	-	-	-	-
4	45	0.1928	0.1866	0.1936	0.1935	0.1916
5	60	0.2171	0.2211	0.2236	0.2233	0.2213
6	69	0.2438	0.2434	0.2448	0.2450	0.2443
7	75	0.2911	0.2909	0.2920	0.2915	0.2914

Tabla 4.3.2.2. Tiempos de propagación de ondas, series 1 a 4, tiro de ida.

• *Graficar el perfil de refracción.*

Con los datos de la tabla anterior, se graficó el perfil de refracción correspondiente. La figura 4.3.2.4 muestra los tiempos de propagación determinados con todos los golpes registrados, así como los promedios globales calculados; la figura 4.3.2.5 presenta el perfil de refracción propuesto.

TIRO DE IDA

Figura 4.3.2.4. Tiempos de propagación de ondas; los círculos más grandes son los promedios globales.

TIRO DE IDA

Figura 4.3.2.5. Perfil de refracción propuesto para el tiro de ida.

Para el tiro de regreso, el procesamiento de los datos fue el mismo. En la tabla 4.3.2.3 aparecen los promedios calculados en las cinco series del tiro, así como sus promedios globales. La figura 4.3.2.6 muestra los tiempos de propagación determinados con todos los golpes registrados, así como los promedios globales calculados; la figura 4.3.2.7 presenta el perfil de refracción propuesto.

	ł		Tiem	ipo de propa	agación de o	ondas		
Punto	u		(s)					
	(m)	Serie 1	Serie 2	Serie 3	Serie 4	Serie 5	Promedio	
0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
1	6	0.0400	0.0400	0.0400	0.0400	0.0404	0.0401	
2	15	0.0882	0.0798	0.0850	0.0816	0.0832	0.0835	
3	30	0.1322	0.1345	0.1331	0.1326	0.1331	0.1331	
4	45	-	-	-	-	-	-	
5	60	0.2352	0.2410	0.2350	0.2323	0.2382	0.2363	
6	69	0.2520	0.2520	0.2514	0.2514	0.2511	0.2516	
7	75	0.2912	0.2910	0.2920	0.2909	0.2916	0.2913	

Tabla 4.3.2.3. Tiempos de propagación de ondas, series 1 a 5, tiro de regreso.

Figura 4.3.2.6. Tiempos de propagación de ondas; los círculos más grandes son los promedios globales.

Figura 4.3.2.7. Perfil de refracción propuesto para el tiro de ida.

57

La figura 4.3.2.8 muestra los perfiles de ambos tiros, así como sus proyecciones e intercepciones con el eje del tiempo.

Figura 4.3.2.8. Perfiles de refracción obtenidos. Línea continua oscura, tiro de ida; línea continua clara, tiro de regreso; líneas discontinuas, prolongaciones al eje del tiempo.

4.4 Análisis de la información

En esta parte se presenta el cálculo de la respuesta de sitio, utilizando la información obtenida del procesamiento de los datos. Se define un perfil estratigráfico en el sitio del ensaye de refracción, y posteriormente en los puntos de medición de microtremores. Considerando el sismo de Tehuacán del 15 de junio de 1999 (Mw 7.0, mb 6.3), se estima el movimiento en superficie para dichos puntos.

4.4.1 Perfiles estratigráficos

Para definir el perfil estratigráfico en el sitio del ensaye de refracción, se determinaron las siguientes propiedades: velocidad de propagación de ondas de cortante (β), densidad (ρ), amortiguamiento (ξ) y espesor (h) de los estratos. Para fines prácticos, se supondrán válidas las siguientes consideraciones: a) el subsuelo está conformado por una serie de estratos cuyas interfases son horizontales; b) la velocidad de propagación de las ondas es constante dentro de un mismo estrato; y c) la velocidad de propagación de las ondas aumenta con la profundidad.

• *Velocidades de ondas de corte y espesores de los estratos.*

A partir de los perfiles de refracción sísmica, es posible determinar la geometría de las trayectorias de las ondas precursoras generadas artificialmente. En la literatura se pueden hallar

expresiones que relacionan el tiempo de propagación con la distancia, las profundidades de las interfases y las velocidades. Por ejemplo, Sheriff y Geldart (1991) presentan el caso de un refractor horizontal y el de varios refractores horizontales; este último se expone brevemente a continuación.

Considérese el esquema de la figura 4.4.1.1, donde se muestran tres estratos de velocidad V₁, V₂ y V₃. Para un detector ubicado en el punto R, la trayectoria de la onda refractada es OMPR, Θ_1 es el ángulo crítico, y WS es la curva tiempo-distancia correspondiente.

Figura 4.4.1.1. Trayectorias y curvas de tiempo de propagación para el caso de dos refractores horizontales (modificado de Sheriff y Geldart, 1991).

Las trayectorias como OM'M''P''P'R' se fijan por la ley de Snell para relacionar las velocidades de propagación con los ángulos de refracción:

$$\frac{\sin \theta_1}{V_1} = \frac{\sin \Theta_2}{V_2} = \frac{1}{V_3} \qquad ... (2)$$

La curva tiempo-distancia ST queda expresada de la siguiente forma:

$$t = \frac{x}{V_3} + \frac{2h_2 \cos \theta_2}{V_2} + \frac{2h_1 \cos \theta_1}{V_1} \dots (3)$$
$$t = \frac{x}{V_3} + t_2 \dots (4)$$

Se puede observar que la curva tiempo-distancia es una línea recta cuya pendiente es el recíproco de la velocidad justo abajo del horizonte refractante, y que su intercepción al eje del tiempo es la suma de los términos de la forma (2 h_i $\cos\theta_i$ / V_i), contribuyendo con un término cada estrato por encima del horizonte refractante. De esta manera, para un número N de estratos las ecuaciones (2) y (4) se pueden generalizar:

$$\theta_{i} = \operatorname{ang sen} \frac{V_{i}}{V_{N}} \dots (5)$$
$$= \frac{x}{V_{N}} + \sum_{i=1}^{N} \frac{2h_{i} \cos \theta_{i}}{V_{i}} \dots (6)$$

t

Finalmente, los espesores de los estratos se pueden despejar de la expresión (6) y resulta:

$$h_{j} = \frac{V_{j}}{2\cos\Theta_{j}} \left(t_{j} - \sum_{i=1}^{j-1} \frac{2h_{i}\cos\theta_{i}}{V_{i}} \right) \dots (7)$$

Así, podemos calcular las velocidades a partir de las pendientes de las curvas tiempodistancia, y las profundidades a partir de las intercepciones de sus proyecciones al eje del tiempo. Aplicando las ecuaciones (5), (6) y (7) a los perfiles de refracción de la figura 4.3.2.8, los cálculos se muestran en la figura 4.4.1.2 y los perfiles de velocidades en la tabla 4.4.1.1. Con los valores promedio de las velocidades y el valor mínimo del espesor calculado, el perfil propuesto se muestra en la tabla 4.4.1.2.

Figura 4.4.1.2. Cálculo de los perfiles de velocidades.

Tabla 4.4.1.1. Perfiles de velocidades obtenidos del ensaye de refracción sísmica.

	Tiro de IDA		Tiro de REGRESO	
Estrato	h	β	h	β
	(m)	(m/s)	(m)	(m/s)
1	9.7	235	3.1	180
2	-	391	-	295
base	-	629	-	588

Fatrata	h	β
Estrato	(m)	(m/s)
1	3.1	208
2	-	343
base	-	609

Tabla 4.4.1.2. Perfil de velocidades.

Las ondas S producen distorsión angular y llevan consigo la parte más importante de la energía liberada en la fuente sísmica. El comportamiento del suelo y sus propiedades mecánicas dependen en gran medida del nivel de deformación angular (γ_c) al que se ve sometido (Seed e Idriss, 1970; Hardin y Drnevich, 1972; Ohsaki e Iwasaki, 1973). La evidencia experimental ha demostrado que las principales propiedades dinámicas de los suelos, como la velocidad de ondas de cortante (β), el módulo de rigidez al esfuerzo cortante (G), el módulo equivalente de Young (E), o el amortiguamiento (ξ), son función de la deformación angular.

Respecto al comportamiento no lineal del suelo, se sabe que la velocidad de ondas de corte disminuye y el amortiguamiento se incrementa con el nivel de deformación angular alcanzado (Seed e Idriss, 1970; Hardin y Drnevich, 1972). Los sismos pueden inducir deformaciones en el rango de 1x10-3% a 5x10-1%, como se ilustra en el esquema comparativo de la figura 4.4.1.3, y en algunos casos éstas pueden superar el 1% (Díaz-Rodríguez, 2000).

deformación angular γ_c

Figura 4.4.1.3. Comparación de los rangos de deformación posibles con diferentes equipos y el que pueden inducir los sismos (modificado de Díaz-Rodríguez, 2000).

Una manera práctica de tomar en cuenta el comportamiento no lineal del suelo consiste en obtener la velocidad de ondas de corte para niveles bajos de deformación angular ($\gamma_c \le 1x10^{-3}\%$), como en los métodos geofísicos de prospección sísmica, y multiplicarla por un factor de comportamiento no lineal a fin de reducirla al valor que se tendría ante el sismo de diseño; por ejemplo, Trueba (1991) propone la siguiente expresión para calcular dicho factor:

$$FR_{\beta} = \sqrt{\frac{1}{1 + \psi(1 + r_1 e^{-\psi r_2})}} \qquad \dots (8)$$

	Tipo de suelo				
Coeficiente	Arenas y gravas	Arcillas de baja y mediana plasticidad	Arcillas de alta plasticidad (IP>100%)		
	Limos no plásticos	Limos plásticos	Limos muy plásticos		
r_1	- 0.5	1.0	1.0		
r_2	0.16	1.25	1.25		
Ψ	$4a_0$	$2a_0$	$0.75a_0$		
Nota: a_0 es la aceleración pico en terreno firme, expresada como fracción de la gravedad.					

Tabla 4.4.1.3. Coeficientes para el cálculo de FR_{β} (Trueba, 1991).

En el presente estudio, se aplicó la ecuación (8) para estimar un factor de comportamiento no lineal del suelo en la ciudad de Acatlán. El valor de a_0 se estimó con la ley de atenuación calculada por Singh *et al.* (1999) para el sismo de Tehuacán del 15 de junio de 1999 (Mw 7.0, mb 6.3). Como se vio en el capítulo 3, en la formación rocosa de Acatlán se estimó una aceleración pico de 117 cm/s², y por lo tanto a_0 =0.119. Como se vio en el capítulo 2, los suelos de la ciudad están formados principalmente por arenas y gravas; por lo tanto, de la tabla 4.4.1.3 tenemos que ψ =0.477, r₁=-0.5, r₂=0.16, y FR_β=0.892. Aplicando este factor a los estratos 1 y 2 del perfil promedio mostrado en la tabla 4.4.1.2, tenemos lo siguiente:

Estrato	h	β
Estrato	(m)	(m/s)
1	3.1	185
2	-	306
base	-	609

Tabla 4.4.1.4. Perfil de velocidades, valores reducidos por FR_{β} .

Densidad.

La densidad (ρ) se calcula mediante el peso volumétrico ($\gamma = \rho g$, donde g es la aceleración de la gravedad). En el presente trabajo, se retomaron los resultados de un estudio realizado por un laboratorio de geotecnia (LAByCTA, 2003). Dicho estudio consistió en tres pozos a cielo abierto ubicados en una calle adyacente al predio donde realizamos el ensaye de refracción sísmica; aunque la profundidad de los sondeos fue de 1.2 metros, sus resultados sirvieron para una mejor estimación del peso volumétrico de los suelos arenosos en el sitio. En cuanto a la roca basal, γ se tomó de valores típicos publicados en la literatura (Bollinger, 1980). La tabla 4.4.1.5 muestra la densidad para cada estrato del perfil.

Estrato	ρ (t/m³)
1	1.6
2	1.9
base	2.3

Tabla 4.4.1.5. Densidad de los estratos.

• Amortiguamiento.

El amortiguamiento (ξ) se asocia físicamente con un proceso de disipación de energía. En laboratorio, puede determinarse por medio de métodos como el ensaye de columna resonante, péndulo de torsión, triaxial cíclico y torsión cíclica; en campo, son útiles los ensayes de resonancia horizontal y vertical (Díaz-Rodríguez, 2000). Con el fin de hacer estimaciones, diferentes autores han propuesto relaciones empíricas. Por ejemplo, Seed e Idriss (1970) sugieren el uso de las curvas mostradas en la figura 4.4.1.4 para estimar el amortiguamiento en arenas; Avilés y Trueba (1991) proponen, para condiciones no drenadas, los rangos de amortiguamiento de la tabla 4.4.1.6.

Figura 4.4.1.4. Amortiguamiento en arenas (Seed e Idriss, 1970).

Tipo de	Amortiguamiento	
Suelos granulares y	Seco	$1\% \leq \xi \leq 5\%$
limos no plásticos	Saturado	$3\% \leq \xi \leq 10\%$
Arcillas y limos no	$IP \le 100\%$	$2\% \leq \xi \leq 12\%$
plásticos	IP > 100%	$2\% \le \xi \le 6\%$

En el presente trabajo, se consideró el rango de 2x10-2% a 8x10-2% como uno de los posibles intervalos de deformaciones angulares que puede ser producido por un macrosismo de intraplaca. De acuerdo con las figuras 4.4.1.3 y 4.4.1.4, en dicho intervalo se pueden presentar valores mínimos del amortiguamiento en arenas entre 2% y 8% del crítico. Con estas suposiciones, en la tabla 4.4.1.7 se proponen los amortiguamientos de los estratos de suelo; para la roca basal, ξ se tomó de valores típicos publicados en la literatura (Bollinger, 1980).

Estrato	بحر	
Estrato	(1)	
1	0.02	
2	0.02	
base	0.01	

Tabla 4.4.1.7. Amortiguamiento de los estratos.

Retomando los valores de velocidad de ondas de corte, espesor, densidad y amortiguamiento, el perfil estratigráfico preliminar se muestra en la tabla 4.4.1.8. Con el fin de no subestimar la respuesta del sitio durante un sismo, la velocidad de propagación de ondas en la roca basal se aproximó al valor que comúnmente se utiliza para considerarla como base rígida.

Estrato	h	β	ρ	ک
	(m)	(m/s)	(t/m³)	(1)
1	3.1	185	1.6	0.02
2	-	306	1.9	0.02
base	-	700	2.3	0.01

Tabla 4.4.1.8. Perfil estratigráfico preliminar en el sitio del ensaye de refracción.

El espesor del segundo estrato se calculó a partir de funciones de transferencia empíricas (FTE). Estas últimas se obtuvieron mediante registros de microtremores en el sitio del ensaye, con la metodología descrita en el inciso 3 de este capítulo, y se muestran en la figura 4.4.1.5.

De estas gráficas, se obtuvieron valores promedio de $T_0=0.09$ s (11.5 Hz) y Ar_{máx}=4.4 veces. En el marco de la teoría unidimensional de propagación de ondas (Thomson, 1950; Haskell, 1953), la relación entre T_0 , las velocidades de propagación de ondas de corte (β_i) y los espesores (h_i) en un medio estratificado con N capas horizontales, está dada por:

$$T_0 = 4 \sum_{i=1}^{N} \frac{h_i}{\beta_i} \dots (9)$$

En nuestro caso, para N=2, tenemos:

$$T_0 = 4 \sum_{i=1}^2 \frac{h_i}{\beta_i} = 4 \left(\frac{h_1}{\beta_1} + \frac{h_2}{\beta_2} \right) \dots (10)$$

Conocido h₁, se puede calcular h₂ al despejar de la ecuación anterior:

$$h_2 = \beta_2 \left(\frac{T_0}{4} - \frac{h_1}{\beta_1} \right) \qquad \dots (11)$$

De esta forma, si T₀=0.09 s, β_1 =185 m/s, β_2 =306 m/s y h₁=3.1 m, al aplicar la ecuación (11) se tiene h₂=1.8 m. El perfil resultante se muestra en la tabla 4.4.1.9 y en la figura 4.4.1.6.

Estrato	h	β	ρ	بح
	(m)	(m/s)	(t/m³)	(1)
1	3.1	185	1.6	0.02
2	1.8	306	1.9	0.02
base	-	700	2.3	0.01

Tabla 4.4.1.9. Perfil estratigráfico en el sitio del ensaye de refracción.

Aplicando la teoría de propagación unidimensional de ondas (Thomson, 1950; Haskell, 1953) y utilizando el método de Haskell (1962), se calculó la FTT para la columna de suelo definida en la tabla 4.4.1.9. Este método permite calcular la función de transferencia en la superficie de un medio estratificado, dadas las características de los estratos (espesor, velocidad de propagación de ondas, densidad y amortiguamiento), el tipo de ondas incidentes (P o S), el ángulo de incidencia (γ) y el ángulo de polarización (θ) de las mismas. En el presente estudio, se consideró el caso de incidencia vertical (γ =0) de ondas S polarizadas horizontalmente (θ =0, ondas SH). La figura 4.4.1.7 muestra la FTT resultante.

Figura 4.4.1.7. Funciones de transferencia en el sitio del ensaye de refracción. Líneas delgadas, FTE; líneas gruesas negras, FTE promedio; línea gruesa roja, FTT.

Ahora bien, definiremos los perfiles estratigráficos para otros puntos de la ciudad donde obtuvimos registros de microtremores. De acuerdo con los trabajos y observaciones en campo, y ante la falta de estudios geotécnicos en dichos puntos, se hicieron las siguientes suposiciones: a) los depósitos de suelo tienen el mismo origen y proceso de formación; b) en cada punto la estratigrafía del subsuelo consta de dos capas, las cuales sobreyacen a la formación rocosa basal; c) los espesores de los estratos varían de un punto a otro, pero pueden estimarse a partir de las FTE; y d) los valores de β , ρ y ξ son los determinados para el caso anterior.

Por ejemplo, en el punto 23 se obtuvo T₀=0.15 s (6.5 Hz) y Ar_{máx}=2.6 veces de las FTE. Retomando las velocidades del caso anterior, β_1 =185 m/s y β_2 =306 m/s, se propuso h₁=6.5 m, de manera que al aplicar la ecuación (11) se tiene h₂=1.1 m; el perfil estratigráfico así estimado se muestra en la tabla 4.4.1.10 y en la figura 4.4.1.8. Para incidencia vertical de ondas S polarizadas horizontalmente (ondas SH), se calculó la función de transferencia teórica con el método de Haskell (1962). En la figura 4.4.1.9 se observa que el valor teórico de Ar_{máx} es mayor que el correspondiente valor empírico promedio; cabe recordar que la técnica H/V aplicada a microtremores ofrece una buena estimación del periodo dominante, pero subestima los valores de amplificación relativa esperados para un sismo (Lermo *et al.*, 1987; Lermo y Chávez-García, 1994; Bard *et al.*, 1997; Riquer *et al.*, 2003); por esta razón, la función de transferencia teórica se calculó como una envolvente de las funciones de transferencia empíricas.

Estudia	h	β	ρ	٤
Estrato	(m)	(m/s)	(t/m ³)	(1)
1	6.5	185	1.6	0.02
2	1.1	306	1.9	0.02
base	-	700	2.3	0.01

Tabla 4.4.1.10. Perfil estratigráfico estimado en el punto 23.

Figura 4.4.1.8. Perfil de velocidades en el punto 23.

Figura 4.4.1.9. Funciones de transferencia en el punto 23. Líneas delgadas, FTE; líneas gruesas negras, FTE promedio; línea gruesa roja, FTT.

El procedimiento descrito en el párrafo anterior fue aplicado en otros puntos, y los resultados pueden verse en el Anexo 3. De acuerdo con los perfiles de velocidades, se observa que el espesor del primer estrato es bastante mayor que el espesor del segundo estrato, en la mayoría de los casos. Como se vio en el capítulo 2, la ciudad de Acatlán se encuentra sobre una cuenca cuyo basamento metamórfico (el Complejo Acatlán) data de la era Paleozoica (hace unos 400 millones de años), sobre el cual descansa una secuencia sedimentaria marina detrítica y carbonatada de la era Mesozoica (hace unos 240 millones de años); a finales de esta era, las rocas sedimentarias fueron

elevadas, plegadas y fracturadas. Posteriormente, mediante un proceso de intemperismo físico y químico, se formaron los suelos aluviales en la era Cenozoica (hace unos 2 millones de años).

De esta manera, suponemos que la velocidad calculada para la roca basal ($\beta \approx 700 \text{ m/s}$) corresponde a una capa de roca metamórfica intemperizada, la velocidad del segundo estrato ($\beta \approx 300 \text{ m/s}$) es del material residual y fragmentado de la misma roca, y la velocidad del primer estrato ($\beta \approx 180 \text{ m/s}$) es de un depósito de suelo arenoso.

4.4.2 Movimiento en la superficie del terreno

Un problema común en ingeniería sísmica es la predicción de las amplitudes de señales en el tiempo, tales como las aceleraciones del terreno en el sitio de interés. Los principales factores que intervienen en el cálculo de dichas señales, debido a la ocurrencia de un sismo, son el mecanismo de generación de la ruptura, la trayectoria de las ondas irradiadas por la fuente y las características de la formación geológica local en el sitio.

Las ondas sísmicas tendrán una distribución en el espacio y el tiempo que dependerá del mecanismo de ruptura y del cambio en el estado de esfuerzos que esta origina. En su trayecto, las ondas se atenúan por diferentes efectos como la dispersión geométrica, la fricción interna que se desarrolla en los materiales y la presencia de irregularidades en el medio de propagación, entre otros. La manera de describir el campo irradiado por la fuente y los efectos del trayecto quedan fuera del alcance del presente estudio. Por ahora, bastará suponer que se conoce la señal correspondiente a las aceleraciones de las partículas de las ondas incidentes en el sitio.

Considérese el esquema de la figura 4.4.2.1, donde se ilustra una onda S que incide en un sitio (el origen de coordenadas) con un ángulo de polarización (θ) y un ángulo de incidencia (γ).

Figura 4.4.2.1. Esquema de incidencia y polarización de una onda S.

Si por el momento se acepta que se trata de un movimiento armónico con amplitud S, entonces el campo de desplazamientos asociado a la onda incidente se puede expresar como:

$$\begin{cases} u \\ v \\ w \end{cases} = \begin{cases} - \sin\theta \cos\gamma \\ \cos\theta \\ - \sin\theta \sin\gamma \end{cases} e^{i\omega \left(t - \frac{x \sin\gamma - z \cos\gamma}{\beta}\right)} \dots (12)$$

donde

- u: desplazamiento en la dirección X.
- v: desplazamiento en la dirección Y.
- w: desplazamiento en la dirección Z.
- i: variable compleja.
- ω: frecuencia.
- t: tiempo.
- β: velocidad de propagación de ondas S en el medio.

Cuando el plano Z=0 sea una superficie libre y se tenga el caso de ondas SH, el movimiento en el origen de coordenadas está dado por:

$$\begin{cases} \mathbf{u} \\ \mathbf{v} \\ \mathbf{w} \end{cases} = \begin{cases} \mathbf{0} \\ 2 \stackrel{\prime}{\mathbf{S}} e^{i\omega t} \\ \mathbf{0} \end{cases} \qquad \dots (13)$$

donde el factor 2 proviene de la adición de las ondas incidente y reflejada, y se le denomina factor de superficie libre. Dicho factor variará para el caso de ondas SV, en las que $u\neq 0$, v=0 y w $\neq 0$. La solución completa puede consultarse en textos como el de Aki y Richards (1980).

Ahora bien, si en vez de superficie libre existe una formación geológica estratificada y bidimensional, es necesario contar con la función de transferencia que permita pasar del movimiento incidente al movimiento en la superficie. Así, para el caso de ondas SH se tendría que el movimiento en la superficie está dado por:

$$v = H(\omega) \dot{S}(\omega) e^{i\omega t}$$
 ... (14)

donde $H(\omega)$ es la función de transferencia, que depende del ángulo de incidencia, de las propiedades mecánicas de los materiales y de la geometría de la formación geológica.

En general, si se considera $S(\omega)$ como una función compleja con dominio en la frecuencia, se puede calcular la función de desplazamientos en superficie con dominio en el tiempo mediante el uso de la transformada de Fourier, de la siguiente manera:

$$\mathbf{v}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) \overset{\prime}{\mathbf{S}}(\omega) e^{i\omega t} d\omega \qquad \dots (15)$$

Para calcular las aceleraciones del terreno en superficie, en lugar de $S(\omega)$ se considera la función $A(\omega)$ que es la transformada de Fourier de las aceleraciones para el campo incidente, y por lo tanto:

$$a(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\omega) A(\omega) e^{i\omega t} d\omega \qquad \dots (16)$$

En el presente trabajo, se estimaron las aceleraciones del terreno en la microzona II de la ciudad de Acatlán producidas por el sismo del 15 de junio de 1999. Las funciones de transferencia se calcularon en distintos puntos, tal como se explicó en el inciso anterior. El espectro de Fourier se supuso igual al de la señal registrada en roca en la estación CHFL durante dicho evento, dadas las siguientes consideraciones: a) la distancia focal a CHFL (R=73 km) es prácticamente la misma que a la ciudad de Acatlán (R=81 km); b) en ambos sitios, la dirección de propagación tuvo su mayor componente en la dirección oeste-este (S60°O para CHFL, N84°O para Acatlán); y c) la estación CHFL se sitúa sobre rocas de la misma naturaleza que las de la microzona I de la ciudad de Acatlán. En la figura 4.4.2.2 se muestran las componentes norte-sur y este-oeste del movimiento registrado en CHFL y los espectros de Fourier respectivos.

Figura 4.4.2.2. Acelerogramas (izquierda) y espectros de Fourier (derecha) del movimiento del terreno (roca) registrado en la estación CHFL, sismo del 15 de junio de 1999 (Mw 7.0, mb 6.3).

Con ayuda del programa DegtraA4 (Ordaz y Montoya, 2003), se resolvió la ecuación (16) por medio de una convolución entre la historia de aceleración en la formación rocosa (campo incidente) y la función de transferencia teórica en cada sitio. De esta forma, se obtuvieron historias de aceleración correspondientes al movimiento en superficie durante aquel temblor. Con la aplicación del método de las ocho constantes (Chopra, 1995), se calcularon además los respectivos espectros de respuesta de seudoaceleración para 5%, 4% y 3% del amortiguamiento crítico.

Por ejemplo, en las figuras 4.4.2.3 y 4.4.2.4 se muestran los acelerogramas y espectros de respuesta calculados para el punto 23; en este caso, la aceleración pico del terreno en dirección

norte-sur resultó de 174 cm/s² y de 210 cm/s² en dirección este-oeste. En el Anexo 4 se presentan los resultados para los demás puntos.

Figura 4.4.2.3. Movimiento en la superficie del terreno (suelo aluvial) calculado en un punto de la microzona II de la ciudad de Acatlán, sismo del 15 de junio de 1999.

Figura 4.4.2.4. Espectros de respuesta de seudoaceleración (suelo aluvial) calculados en un punto de la microzona II de la ciudad de Acatlán, sismo del 15 de junio de 1999.

4.5 Resultados

4.5.1 Periodos fundamentales del terreno

De acuerdo con los resultados de vibración ambiental, en la microzona I el valor mínimo de T_0 fue de 0.03 segundos (punto 27), el máximo de 0.09 segundos (punto 38) y la media de 0.07 segundos. El valor mínimo de $Ar_{máx}$ fue de 1.0 veces (punto 40), el máximo de 2.3 veces (punto 27) y la media de 1.5 veces. Particularmente, en el punto 27 se observan amplitudes de 2 a 3 veces en un rango de frecuencias de 20 a 40 Hz (0.025 a 0.05 segundos); sin embargo, en el rango de interés (0.1 a 20 Hz) las amplitudes son cercanas a la unidad.

En la microzona II, el valor mínimo de T₀ fue de 0.08 segundos (puntos 9, 26 y 28), el máximo de 0.26 segundos (punto 41) y la media de 0.16 segundos. El valor mínimo de $Ar_{máx}$ fue de 1.0 veces

(punto 34), el máximo de 5.1 veces (punto 36) y la media de 2.8 veces. En la microzona III, el único sitio de medición (punto 42) no muestra un efecto de amplificación.

La tabla 4.5.1.1 muestra los valores de T_0 y Ar_{máx} en los puntos de medición. La figura 4.5.1.1 presenta la distribución espacial de los periodos fundamentales del suelo en la ciudad de Acatlán.

Punto	T ₀ (s)	Ar _{máx} (veces)	Punto	T ₀ (s)	Ar _{máx} (veces)	Punto	T ₀ (s)	Ar _{máx} (veces)
1	0.11	3.0	23	0.15	2.6	45	-	-
2	0.14	5.0	24	0.08	1.2	46	0.22	2.2
3	-	-	25	0.10	2.3	47	0.22	1.2
4	0.15	3.0	26	0.08	2.4	48	0.21	3.0
5	0.18	3.0	27	0.03	2.3	49	0.21	2.3
6	0.13	4.0	28	0.08	4.0	50	0.19	1.8
7	0.16	2.0	29	0.13	3.5	51	0.17	3.4
8	0.18	2.0	30	-	-	52	0.19	2.5
9	0.08	2.0	31	0.16	2.8	53	0.19	2.4
10	0.09	2.0	32	-	-	54	0.20	2.4
11	0.12	2.0	33	0.20	1.7	55	0.17	4.6
12	0.18	4.0	34	0.09	1.0	56	0.18	2.8
13	0.11	3.0	35	0.14	2.0	57	0.23	5.0
14	0.18	2.0	36	0.11	5.1			
15	0.16	3.0	37	-	-			
16	0.10	2.0	38	0.09	1.2			
17	0.17	5.0	39	-	-			
18	0.19	5.0	40	0.07	1.0			
19	0.10	3.0	41	0.26	2.7			
20	0.15	2.0	42	_	_			
21	0.23	3.0	43	0.18	1.5			
22	-	_	44	0.12	2.3			

Tabla 4.5.1.1. Valores de T₀ y Ar_{máx} en los puntos de registro de vibración ambiental.

Figura 4.5.1.1. Periodos fundamentales del terreno en la ciudad de Acatlán.

En las Normas Técnicas Complementarias para Diseño por Sismo del Reglamento de Construcción del Municipio de Puebla (NTCDS-RCMP, 2003), se definen los tipos de terreno en función de parámetros como el periodo fundamental del suelo (T₀), la velocidad de ondas de cortante (β), el número de golpes de la prueba de penetración estándar (N) y la resistencia al corte no drenada (S) de los materiales en el sitio estudiado. Esta clasificación define tres tipos de terreno: firme (tipo I), intermedio (tipo II) y blando (tipo III), tal como se indica en las tablas 4.5.1.2 y 4.5.1.3. Con base en los valores de T₀ mostrados en la tabla 4.5.1.1 y con los de β de la tabla 4.4.1.10, y de acuerdo con la clasificación de las NTCDS-RCMP (2003), el terreno en la microzona I corresponde al tipo I (firme) y el de la microzona II al tipo II (intermedio).

Tipo de	$T(a) = \beta(m/a)$	Suelos granulares	Suelos cohesivos
terreno	$1_0(s)$, p(m/s)	N (1)	S (t/m²)
Ι	$T_0 < 0.4 y \beta > 350$	N > 40	S > 10
П	$T_0 < 0.4 \text{ y } \beta \le 350$ o bien $0.4 \le T_0 \le 1.0 \text{ y } \beta \ge 150$	$15 \le N \le 40$	$2.5 \le S \le 10$
III	$T_0 > 1.0$ o bien $0.4 \le T_0 \le 1.0 \text{ y } \beta < 150$	N < 15	S < 2.5

Tabla 4.5.1.2. Clasificación de los terrenos de cimentación (NTCDS-RCMP, 2003).

Tabla 4.5.1.3. Descripción de los tipos de terreno de cimentación (NTCDS-RCMP, 2003).

Tipo de terreno	Descripción
I	Roca, limos y arcillas de consistencia de dura a muy firme, materiales granulares de alta compacidad.
п	Limos y arcillas de consistencia de blanda a dura, depósitos arenosos de compacidad media, o bien capas intercaladas de estos materiales.
III	Limos y arcillas de consistencia muy blanda, depósitos arenosos de baja compacidad.

4.5.2 Curvas de isoperiodo

Con los valores de T_0 se construyeron, mediante interpolación lineal, las curvas de isoperiodo entre 0.10 y 0.24 segundos (con incrementos de 0.02 segundos) para la microzona II. El mapa respectivo se muestra en la figura 4.5.2.1.

Figura 4.5.2.1. Mapa de isoperiodos en la ciudad de Acatlán.

4.5.3 Amplificaciones relativas máximas

Aun cuando la técnica H/V aplicada a microtremores subestima los valores de amplificación relativa esperados para un sismo (Lermo *et al.*, 1987; Lermo y Chávez-García, 1994; Bard *et al.*, 1997; Riquer *et al.*, 2003), esta información permite identificar los sitios donde pueden ocurrir amplificaciones importantes del movimiento del terreno. La figura 4.5.3.1 muestra la distribución espacial de las amplificaciones relativas máximas en la ciudad de Acatlán, correspondientes a los periodos fundamentales del suelo de la figura 4.5.1.1.

Figura 4.5.3.1. Amplificaciones relativas máximas en la ciudad de Acatlán.

4.5.4 Aceleraciones máximas del terreno

Para el sismo de Tehuacán del 15 de junio de 1999 (Mw 7.0, mb 6.3), las aceleraciones pico del terreno en la microzona II se estimaron en las direcciones norte-sur y este-oeste. En la dirección norte-sur, se obtuvo un valor mínimo de 147 gal, un máximo de 238 gal y una media de 171 gal. En la dirección este-oeste, se obtuvo un valor mínimo de 177 gal, un máximo de 213 gal y una media de 195 gal. En general, las máximas aceleraciones resultaron en la dirección este-oeste. La figura 4.5.4.1 muestra la distribución de las aceleraciones calculadas.

Figura 4.5.4.1. Aceleraciones pico del terreno en la ciudad de Acatlán durante el sismo de Tehuacán del 15 de junio de 1999, dirección norte-sur (izquierda) y este-oeste (derecha).

Capítulo 5 VULNERABILIDAD SÍSMICA

5.1 Introducción

En este capítulo, se presentan los métodos utilizados para estudiar la vulnerabilidad sísmica en la ciudad de Acatlán: empírico, experimental y analítico. Por un lado, se determinaron características estructurales de las edificaciones, tales como el número de niveles, los materiales de construcción y el sistema resistente, entre otros; los datos recabados se analizaron mediante el uso de un sistema de información geográfico. Por otro, se estimó la respuesta estructural de las tipologías más comunes ante un sismo específico (15 de junio de 1999, Mw=7.0, mb=6.3) y para el espectro de diseño correspondiente. A partir de mediciones de microtremores en las estructuras seleccionadas, se identificaron los valores de sus frecuencias naturales de vibración.

Con los resultados obtenidos, las aportaciones realizadas en la evaluación de la vulnerabilidad sísmica en la ciudad de Acatlán consisten en una estadística sobre aspectos estructurales básicos de las edificaciones, la definición de las tipologías estructurales más comunes, y un análisis de su vulnerabilidad ante estos dos niveles de solicitación sísmica.

5.1.1 Marco teórico

La vulnerabilidad sísmica es una propiedad intrínseca de la estructura, una característica de su propio comportamiento ante la ocurrencia de un sismo y descrito a través de una ley causa-efecto, donde la causa es el sismo y el efecto es el daño (Sandi, 1986). El concepto de vulnerabilidad puede utilizarse no sólo para describir aspectos estructurales, sino también aspectos no estructurales, funcionales y operativos, entre otros.

Para la evaluación de la vulnerabilidad sísmica, es necesario realizar estudios que permitan conocer la susceptibilidad de las construcciones a presentar cierto nivel de daño ante un movimiento sísmico determinado. Estos estudios, generalmente se basan en la comparación de la capacidad resistente de la estructura con la demanda sísmica. La demanda es una representación de la acción sísmica, mientras que la capacidad es una representación del comportamiento esperado en la estructura para resistir dicha demanda (Safina, 2003). De esta manera, la capacidad se relaciona con el nivel de daño esperado y, por lo tanto, la acción sísmica y el daño sísmico constituyen los elementos fundamentales para la caracterización de la vulnerabilidad sísmica.

Existe una variedad de métodos y técnicas propuestas por diferentes autores para evaluar la vulnerabilidad sísmica de diferentes tipos de estructuras (Caicedo *et al.,* 1994). De acuerdo con la información disponible para realizar el estudio de vulnerabilidad, las metodologías se pueden clasificar de la siguiente manera (Dolce, 1994):

• *Métodos empíricos*. Se caracterizan por un alto grado de subjetividad. Están basados en la experiencia sobre el comportamiento de ciertos tipos de edificaciones durante sismos pasados. Se utilizan cuando se dispone de información limitada, cuando se adopta un resultado menos ambicioso y para evaluaciones preliminares. Constituyen enfoques menos exigentes y más económicos de implementar. Estos métodos incluyen tanto los de categorización como los de inspección y puntaje.

• <u>Métodos de categorización</u>. Clasifican las edificaciones según su tipología en clases de vulnerabilidad, retomando la experiencia observada sobre el desempeño sísmico que construcciones similares han mostrado en grandes terremotos. El resultado es bastante subjetivo, por lo que son utilizados para evaluaciones preliminares. Un ejemplo de esta metodología es la clasificación propuesta en la Escala Macrosísmica Europea (Grünthal, 1998), la cual define seis clases de vulnerabilidad que van de la A (la de mayor vulnerabilidad) a la F (la de menor vulnerabilidad), en función de los materiales de construcción y el nivel de diseño sísmico, como se muestra en las tablas 5.1.1.1 y 5.1.1.2.

Tabla 5.1.1.1. Clases de vulnerabilidad en la Escala Macrosísmica Europea (Grünthal, 1998	3).
---	-----

Clase	А	В	С	D	Е	F
Descripción	Muy alta	Alta	Media	Baja	Muy baja	Casi nula

Tabla 5.1.1.2. Asignación de clases de vulnerabilidad a diferentes tipos de estructura	ıs, según la
Escala Macrosísmica Europea (Grünthal, 1998).	

Matorial	erial Tipo de estructura		Cla	se de vu	lnerabilic	lad	
wateria	ripo de estructura	А	В	C	D	Е	F
	Piedra natural sin labrar						
	Adobe						
ría	Piedra natural labrada						
oste	Sillería						
npe	Ladrillo no reforzado con						
Jar	bloque de concreto reforzado						
2	Ladrillo no reforzado con						
	losa de concreto reforzado						
	Ladrillo reforzado/confinado						
	Marco sin diseño antisísmico						
opi	Marco con moderado nivel de diseño antisísmico						
reforza	Marco con alto nivel de diseño antisísmico						
eto	Muros sin diseño antisísmico						
JCL	Muros con moderado nivel						
Co	de diseño antisísmico						
	Muros con alto nivel de						
	diseño antisísmico						

Metal	Estructura metálica						
Madera	Estructura de madera						
	: la más probable.	: proba	ble.	: poco	probable	2.	

<u>Métodos de inspección y puntaje</u>. Permiten identificar y caracterizar las deficiencias estructurales de una edificación, asignando valores numéricos a manera de puntos a cada elemento estructural. Estos valores, ponderados en función de la importancia relativa del elemento respecto a la estructura, conducen a la determinación de un índice de vulnerabilidad. Un ejemplo de esta metodología es la propuesta del Gruppo Nazionale per la Difesa dai Terremoti (GNDT, 1990).

• *Métodos analíticos o teóricos*. Evalúan la respuesta de las estructuras utilizando como base modelos analíticos que representan las propiedades geométricas y mecánicas de las estructuras reales. Constituyen un enfoque muy completo, exigente y costoso.

• *Métodos experimentales*. Recurren a ensayes dinámicos para determinar propiedades de la estructura y/o sus elementos. Generalmente constituyen estudios "in situ", orientados a determinar parámetros dinámicos de la estructura.

La aplicación exhaustiva de todas estas metodologías a una misma edificación puede originar discrepancias en los resultados, incluso conducir a conclusiones erradas. En este sentido, se recomienda combinar los métodos analíticos y empíricos con algún método o técnica experimental que permita incrementar la confiabilidad del estudio de vulnerabilidad (Sandi, 1986; Caicedo *et al.*, 1994).

5.2 Método empírico de categorización

En el presente trabajo, el método empírico de categorización se utilizó para tener una idea general de las características estructurales de las edificaciones; para esto, fue necesario recopilar información en campo sobre aspectos básicos como el número de niveles, materiales de construcción empleados, sistema resistente, sistema de piso, tipo de cimentación, nivel de deterioro y nivel de agrietamiento, principalmente. Los datos recabados fueron analizados mediante el uso de un sistema de información geográfico (ArcGIS by ESRI, 2001). De esta manera, se identificaron las tipologías estructurales más comunes con el fin de aplicar en ellas los métodos experimental y analítico.

5.2.1 Zona de estudio

De acuerdo con la información catastral correspondiente a la ciudad de Acatlán (Secretaría de Obras Públicas del Estado de Puebla, 2004), se cuenta con la distribución espacial de las construcciones existentes, tal como se mostró en el primer capítulo.

Con base en la distribución de daños ocasionados por el sismo del 15 de junio de 1999 (Dirección de Obras Públicas del Municipio de Acatlán, 1999), se delimitó una zona de estudio que abarcara principalmente los predios donde se concentraron los daños cuando ocurrió dicho temblor. La figura 5.2.1.1 muestra el área de estudio seleccionada.

Figura 5.2.1.1. Zona de estudio para el análisis de vulnerabilidad sísmica.

5.2.2 Censo de edificaciones

Debido a que la información catastral disponible sólo nos ofrece un par de datos de interés (el número de niveles y el área construida), fue necesario llevar a cabo un censo que abarcara otros aspectos estructurales de las edificaciones. Para realizar el censo, se diseñó previamente un formato que permitiera recabar la mayor información posible de manera clara, sencilla y rápida. Los aspectos incluidos en dicho formato se enlistan a continuación, y en la figura 5.2.2.1 se muestra el esquema de impresión correspondiente. En total, se hizo un levantamiento de 438 edificaciones, cuya distribución se muestra en la figura 5.2.2.2.

1. Ubicación

- Calle
- Número
- Posición en la manzana

2. Datos estructurales

- Número de niveles
- Uso por nivel
 - ▲ Habitacional (unifamiliar, multifamiliar)
 - ▲ Oficinas (administración pública, administración privada, bancos)
 - ▲ Comercio (almacenamiento y abasto, tiendas de productos básicos, tiendas de especialidades, tiendas de autoservicio, tiendas departamentales, centros comerciales, mercados, venta de materiales y vehículos, tiendas de servicios)
 - ▲ Salud (Hospitales, clínicas y centros de salud, asistencia social, asistencia animal)
 - Educación y cultura (educación elemental, educación media, educación superior, institutos científicos, instalaciones para exhibiciones, centros de información, instalaciones religiosas, sitios históricos)
 - Recreación (alimentos y bebidas, entretenimiento, recreación social, deportes y recreación)
 - ▲ Alojamiento (hoteles, moteles, casas de huéspedes y albergues)
 - ▲ Seguridad (defensa, policía, bomberos, reclusorios y reformatorios, emergencias)
 - ▲ Servicios funerarios (cementerios, mausoleos y crematorios, agencias funerarias)
 - Comunicaciones y transportes (estaciones y terminales, estacionamientos, comunicaciones)
 - ▲ Industria (pesada, mediana, ligera)
 - ▲ Infraestructura (plantas, estaciones y subestaciones, torres, antenas, mástiles y chimeneas, cárcamos y bombas)
 - Agrícola, pecuario y forestal (establos, caballerizas, granjas)
 - Materiales de construcción
 - ▲ Madera
 - ▲ Mampostería
 - ✦ Adobe
 - + Piedra natural labrada
 - + Ladrillo, tabique, tabicón o bloque de arcilla
 - + Ladrillo, tabique, tabicón o bloque de concreto

- ▲ Concreto
 - + Prefabricado
 - ✦ Reforzado
- ▲ Acero
- ▲ Otro
- Sistema estructural
 - ▲ Marcos (vigas y columnas)
 - ▲ Muros de mampostería
 - + Diafragma (rodeados por un marco)
 - + Confinados (reforzados con castillos y dalas)
 - + Reforzados interiormente (reforzados con mallas o barras corrugadas de acero, horizontales y verticales, colocadas en los huecos de las piezas)
 - + No reforzados
 - ▲ Marcos y muros
 - ▲ Otra
- Sistema de piso
 - ▲ Armadura de madera y tejas de arcilla
 - ▲ Vigas de madera y relleno de tierra
 - Armadura o vigas y lámina de:
 - + Cartón
 - ✦ Asbesto
 - ✦ Metal
 - ▲ Losa prefabricada
 - + Vigueta y bovedilla
 - ✦ Acanalada
 - ▲ Losa maciza de concreto reforzado
 - ▲ Otro
 - Cimentación
 - ▲ Zapatas aisladas
 - ✦ Mampostería
 - ✦ Concreto
 - ▲ Zapatas corridas
 - + Mampostería
 - + Concreto
 - ▲ Losa
 - ▲ Cajón
 - ▲ Otra
- Problemas visibles
 - ▲ Grietas
 - ▲ Hundimientos
 - ▲ Desplomes
 - ▲ Deterioro de los materiales
 - ▲ Regularidad en planta
 - ▲ Regularidad en elevación
 - ▲ Otro

		1. UBICACIÓN
Calle y número :		
Posición en la manzana :		
		2. DATOS ESTRUCTORALES
Número de niveles :		
2.1. USO POK NIVE	L	2.4. SISTEMA DE PISO
Habitacional		Armadura de madera
Oficinas		y tejas de arcilla
Comercio		Vigas de madera
Salud		y relleno de tierra
Educación y cultura		Armadura o vigas y lámina
Kecreación Algiamiento		Carton
Seguridad		Metal
Servicios funerarios		Losa prefabricada
Comunicaciones y transportes		Vigueta y bovedilla
Industria		Acanalada
Infraestructura		Losa de concreto reforzado
Agrícola, pecuario y forestal		Otro :
2 MATERIALES DE CONST	RUCCIÓN	2.5. CIMENTACIÓN
Madera		Zapatas aisladas
Madera Mampostería		Zapatas aisladas Mampostería
Madera Mampostería Adobe		Zapatas aisladas Mampostería Concreto
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla		Zapatas aisladas Manpostería Concreto Zapatas corridas Manmostería
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto Prefabricado		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa Cajón
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto Prefabricado Reforzado		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa Cajón Otra :
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto Prefabricado Reforzado Acero		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa Cajón Otra :
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto Prefabricado Reforzado Acero Otro :		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa Cajón Otra :
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto Prefabricado Reforzado Acero Otro :		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa Cajón Otra :
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto Prefabricado Reforzado Acero Otro :		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa Losa Cajón Otra :
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto Prefabricado Reforzado Acero Otro : 		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa Cajón Otra : Otra : Grietas Grietas
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto Prefabricado Reforzado Acero Otro : 2.3. SISTEMA ESTRUCTU Marcos Muros de carga		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa Losa Cajón Otra :
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto Prefabricado Reforzado Acero Otro :		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa Cajón Otra :
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto Prefabricado Reforzado Acero Otro : 2.3. SISTEMA ESTRUCTU Marcos Muros de carga Diafragma Confinados Reforzados		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Cancreto Losa Losa Cajón Otra : 2.6. PROBLEMAS VISIBLES Grietas Hundimientos Desplomes Deterioro de los materiales
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto Prefabricado Reforzado Acero Otro :		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa Losa Cajón Otra : Srietas Hundimientos Desplomes Deterioro de los materiales Regularidad en planta
Madera Mamposteria Adobe Piedra natural Ladrillos de arcilla Ladrillos de ancreto Concreto Prefabricado Reforzado Acero Otro :		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa Cajón Otra : 2.6. PROBLEMAS VISIBLES Grietas Hundimientos Desplomes Deterioro de los materiales Regularidad en planta Regularidad en elevación
Madera Mampostería Adobe Piedra natural Ladrillos de arcilla Ladrillos de concreto Concreto Prefabricado Reforzado Acero Otro : 2.3. SISTEMA ESTRUCTU Marcos Muros de carga Diafragma Confinados Reforzados Sin refuerzo Marcos y muros de carga Marcos contraventeados		Zapatas aisladas Mampostería Concreto Zapatas corridas Mampostería Concreto Losa Losa Cajón Otra : C.6. PROBLEMAS VISIBLES Grietas Hundimientos Desplomes Deterioro de los materiales Regularidad en planta Otro :

Figura 5.2.2.1. Formato utilizado en el levantamiento de datos.

Figura 5.2.2.2. Distribución de las construcciones censadas en el área de estudio.

5.2.3 Base de datos

Los datos recabados fueron analizados mediante un sistema de información geográfico (ArcGIS by ESRI, 2001), con el fin de agruparlos, resumirlos y graficarlos más fácilmente. Con el uso del software correspondiente, los 438 formatos recopilados fueron capturados electrónicamente en una base de datos, de manera que el programa permite desplegar la información requerida seleccionando los campos de interés. Así, las características generales de las edificaciones censadas se presentan a continuación.

Número de niveles	Número de estructuras
1	280
2	141
3	14
4	3
Total	438

Tabla 5.2.3.1. Número de niveles.

Figura 5.2.3.1. Número de niveles.

Uso	Descripción	Número de estructuras
1	Alojamiento	4
2	Comercio (abandonado)	1
3	Comercio (nivel 1) - Alojamiento (nivel 1)	1
4	Comercio (nivel 1) - Educación (nivel 2)	1
5	Comercio (nivel 1) - Habitacional (nivel 2)	84
6	Comercio (nivel 1) - Oficinas (nivel 2)	1
7	Comercio	60
8	Comunicaciones y transportes	6
9	Educación y cultura	9
10	Habitacional (abandonado)	11
11	Habitacional (nivel 1) - Comercio (nivel 1)	43
12	Habitacional (nivel 1) - Educación (nivel 2)	1
13	Habitacional	190
14	Industria	5
15	Oficinas (nivel 1) - Habitacional (nivel 2)	3

Capítulo 5 Vulnerabilidad sísmica

16	Oficinas	11
17	Recreación (nivel 1) - Habitacional (nivel 2)	1
18	Recreación	1
19	Salud (nivel 1) - Habitacional (nivel 2)	3
20	Seguridad	2
	Total	438

Figura 5.2.3.2. Usos.

Tabla 5.2.3.3. Materiales de	e construcción.
------------------------------	-----------------

Material	Descripción	Número de estructuras
1	Concreto reforzado	21
2	Mampostería de adobe - Mampostería de ladrillos de concreto	3
3	Mampostería de adobe - Mampostería de piedra natural	1
4	Mampostería de adobe (nivel 1) - Mampostería de ladrillos de arcilla (nivel 2)	1
5	Mampostería de adobe (nivel 1) - Mampostería de ladrillos de concreto (nivel 2)	4
6	Mampostería de adobe	110

7	Mampostería de ladrillos de arcilla - Mampostería de ladrillos de concreto	2
8	Mampostería de ladrillos de arcilla	50
9	Mampostería de ladrillos de concreto	241
10	Mampostería de piedra - Mampostería de ladrillos de concreto	2
11	Mampostería de piedra natural	3
	Total	438

Figura 5.2.3.3. Materiales de construcción.

Sistema	Descripción	Número de estructuras
1	Marcos y muros de carga	5
2	Marcos	18
3	Muros de carga confinados	315
4	Muros de carga reforzados	1
5	Muros de carga sin refuerzo	99
	Total	438

Figura 5.2.3.4. Sistemas estructurales.

Sistema	Descripción	Número de estructuras
1	Cúpulas de mampostería	2
2	Losa (nivel 1) - Lámina de asbesto (nivel 1)	1
3	Losa (nivel 1) - Lámina de asbesto (nivel 2)	2
4	Losa (nivel 1) - Lámina metálica (nivel 2)	4
5	Losa (nivel 1) - Sin techo (nivel 2)	1
6	Losa	319
7	Lámina de asbesto	11
8	Lámina de metal	9
9	Relleno de tierra (nivel 1) - Losa (nivel 2)	2
10	Relleno de tierra	79
11	Sin techo	6
12	Teja de arcilla	2
	Total	438

Tabla	5235	Sistemas	de	niso
Tabla	5.2.5.5.	Sistemas	ue	piso

Figura 5.2.3.5. Sistemas de piso.

Tabla 5 2 3 6	Niveles	de agrie	etamiento
1 abia 5.2.5.0.	INIVEIES	ue agrie	claimento.

Nivel	Descripción Número de es	
Ninguno	Fisuras imperceptibles, casi nulas	234
Ligero	Fisuras en algún punto o región de un elemento estructural 132	
Medio	Grietas en alguna región de un elemento estructural	49
Alto	Grietas en varias regiones de uno o más elementos estructurales	23
	Total	438

Tabla 5.2.3.7. Niveles de deterioro

Nivel	Descripción	Número de estructuras
Ninguno	Materiales no desgastados, bien conservados	260
Ligero	Materiales ligeramente desgastados	119
Medio	Materiales medianamente desgastados	39
Alto	Materiales muy desgastados, mal conservados	20
	Total	438

Figura 5.2.3.6. Niveles de agrietamiento.

Figura 5.2.3.7. Niveles de deterioro.

De acuerdo con estos resultados, podemos ver que la mayoría de las construcciones son de uno o dos niveles, los usos principales son el habitacional y el comercial, los materiales de construcción más empleados son la mampostería de tabiques de concreto y la mampostería de adobe, los sistemas estructurales predominantes son los muros de carga confinados y los muros de carga sin refuerzo, y los sistemas de piso más utilizados son la losa de concreto y el terrado (relleno de tierra sobre vigas). Además, alrededor del 20% de las construcciones presentan niveles de agrietamiento y grados de deterioro de los materiales que van de medios a altos.

5.2.4 Tipologías más comunes

Por último, se definieron tres tipologías estructurales que son las más comunes en el área de estudio, las cuales representan el 62% de las construcciones censadas:

- Tipología I: estructuras de 1 nivel, construidas con mampostería de ladrillos de concreto, a base de muros de carga confinados con dalas y castillos y con techo de losa de concreto.
- Tipología II: estructuras de 2 niveles, construidas con mampostería de ladrillos de concreto, a base de muros de carga confinados y con techo de losa de concreto.
- Tipología III: estructuras de 1 nivel, construidas con mampostería de adobe, a base de muros de carga sin refuerzo y con techo de relleno de tierra sobre vigas.

Las figura 5.2.4.1 muestra el número de edificaciones correspondiente, y la figura 5.2.4.2 la distribución espacial de las mismas.

Figura 5.2.4.1. Número de estructuras por tipología.

Figura 5.2.4.2. Distribución de las tipologías estructurales más comunes.

Ahora bien, la tarea siguiente consistirá en determinar qué tan vulnerables son este tipo de construcciones, para lo cual se han tomado en cuenta dos niveles de excitación sísmica: el que corresponde al sismo de Tehuacán del 15 de junio de 1999 (calculado en el capítulo anterior), y el que recomienda la Comisión Federal de Electricidad (CFE, 1993).

Con el fin de aplicar un método experimental y otro analítico, se han seleccionado las siguientes viviendas representativas.

Figura 5.2.4.3. Vivienda 1, representativa de la tipología I, ubicada en el punto 55.

Figura 5.2.4.4. Vivienda 2, representativa de la tipología II, ubicada en el punto 56.

Figura 5.2.5.5. Vivienda 3, representativa de la tipología III, ubicada en el punto 57.

5.3 Método experimental

En el presente estudio, el método experimental utilizado consiste en determinar los periodos fundamentales de vibración de cada estructura a partir de registros de vibración ambiental. La idea es calcular funciones de transferencia (empíricas) del sistema estructural, relacionando el movimiento en la azotea (o en el nivel de interés) respecto al movimiento en la base (a nivel de terreno). El proceso de obtención de registros y análisis de los datos es semejante al que se realizó para puntos de medición en el terreno, pero en este caso se consideran sólo las componentes horizontales.

Para determinar los periodos de traslación por piso, el numerador de la función de transferencia es el espectro de Fourier de la señal registrada en su centro de masa, mientras que el

denominador es el espectro de Fourier de la señal registrada en la base de la estructura. Para el periodo asociado a torsión, el numerador es el espectro de Fourier de la señal registrada en una o más de sus esquinas, mientras que el denominador es el espectro de Fourier de la señal registrada en el centro de masa. Las funciones de transferencia se obtienen para dos direcciones ortogonales, generalmente las correspondientes a los ejes longitudinal y transversal de la edificación.

5.3.1 Obtención de registros

En cada una de las viviendas seleccionadas, se obtuvieron registros de vibración ambiental en la azotea y a nivel de terreno, para lo cual se ubicaron aproximadamente los siguientes puntos de medición: centro de masa de la azotea (P1), una esquina de la azotea (P2) y nivel del terreno (P3). El sistema de adquisición de datos consistió en tres acelerómetros marca Kinemetrics modelo FBA23, conectados a un registrador digital marca Kinemetrics modelo Altus. En cada punto se hicieron dos muestreos, cada uno con intervalo de 0.01 segundos y duración aproximada de 90 segundos. Los datos se grababan en formato binario, y posteriormente se transferían a una computadora portátil.

Las figuras 5.3.1.1, 5.3.1.2 y 5.3.1.3 muestran los croquis en planta correspondientes y la ubicación de los puntos de registro. Las tablas 5.3.1.1, 5.3.1.2 y 5.3.1.3 indican la manera en que fueron asignadas las componentes del movimiento.

Figura 5.3.1.1. Croquis en planta (dimensiones en centímetros) de la azotea de la vivienda 1 y ubicación de los puntos de registro de vibración ambiental.

Tabla 5.3.1.1. Asignación de las componentes del movimiento, vivienda 1.

Canal	Componente	Eje de la estructura	
1	Norte - Sur	Longitudinal (L)	
2	Vertical	-	
3	Este - Oeste	Transversal (T)	

Figura 5.3.1.2. Croquis en planta (dimensiones en centímetros) de la azotea de la vivienda 2 y ubicación de los puntos de registro de vibración ambiental.

Tabla 5.3.1.2. Asignación de las componentes del movimiento, vivienda 2.

Canal	Componente	Eje de la estructura	
1	Norte - Sur	Longitudinal (L)	
2	Vertical	-	
3	Este - Oeste	Transversal (T)	

Figura 5.3.1.3. Croquis en planta (dimensiones en centímetros) de la azotea de la vivienda 3 y ubicación de los puntos de registro de vibración ambiental.

Canal	Componente	Eje de la estructura	
1	Norte - Sur	Transversal (T)	
2	Vertical	-	
3	Este - Oeste	Longitudinal (L)	

Tabla 5.3.1.3. Asignación de las componentes del movimiento, vivienda 3.

5.3.2 Procesamiento de datos

Con los registros obtenidos en cada vivienda, se seleccionaron ventanas de 30 segundos aproximadamente, para las cuales se calcularon los espectros de Fourier y las funciones de transferencia empíricas correspondientes. Las FTE calculadas, junto con su promedio espectral respectivo, se muestran en las figuras 5.3.2.1, 5.3.2.2 y 5.3.2.3.

Figura 5.3.2.1. Funciones de transferencia empíricas en la vivienda 1. Las líneas gruesas representan el promedio espectral. La flecha indica la frecuencia asociada al modo de vibrar correspondiente.

Figura 5.3.2.2. Funciones de transferencia empíricas en la vivienda 2. Las líneas gruesas representan el promedio espectral. La flecha indica la frecuencia asociada al modo de vibrar correspondiente.

Figura 5.3.2.3. Funciones de transferencia empíricas en la vivienda 3. Las líneas gruesas representan el promedio espectral. La flecha indica la frecuencia asociada al modo de vibrar correspondiente.

5.3.3 Resultados

Por último, con base en los promedios espectrales anteriores, en las siguientes tablas se muestran los valores de las frecuencias asociadas a los tres primeros modos de vibrar de las viviendas.

Dirección	Frecuencia (Hz)	Periodo (s)	
Transversal (T)	11.01	0.091	
Longitudinal (L)	12.30	0.081	
Torsional	13.89	0.072	

Tabla 5.3.3.1. Frecuencias de vibración experimentales de la vivienda 1.

Tabla 5.3.3.2. Frecuencias de vibración experimentales de la vivienda 2.

Dirección	Frecuencia (Hz)	Periodo (s)	
Transversal (T)	5.49	0.182	
Longitudinal (L)	7.27	0.138	
Torsional	11.41	0.089	

Tabla 5.3.3.3. Frecuencias de vibración experimentales de la vivienda 3.

Dirección	Frecuencia (Hz)	Periodo (s)	
Transversal (T)	8.85	0.113	

Longitudinal (L)	11.04	0.091		
Torsional	12.84	0.079		

5.4 Método analítico

En el presente trabajo, el método analítico se utilizó para estimar la respuesta estructural de las viviendas 1, 2 y 3, representativas de las tipologías I, II y III respectivamente. Por una parte, se estudió la respuesta ante el sismo del 15 de junio de 1999, retomando los correspondientes acelerogramas teóricos calculados en el capítulo anterior. Por otra, se investigó la respuesta ante el espectro de diseño por sismo recomendado en el Manual de Diseño por Sismo de la Comisión Federal de Electricidad (CFE, 1993). En ambos casos, se revisó el estado límite de servicio por desplazamientos laterales que establecen las Normas Técnicas Complementarias para Diseño por Sismo del Reglamento de Construcción del Municipio de Puebla (NTCDS-RCMP, 2003).

Como bien se sabe, el análisis de las estructuras a base de mampostería sujetas a fuerzas horizontales y verticales es complejo, dadas las siguientes características de su comportamiento mecánico (Jean y Cesín, 2000):

- Las piezas son frágiles.
- Los materiales son heterogéneos y anisótropos.
- No es fácil conocer los valores del módulo de elasticidad (E_m) y de cortante (G_m).
- El comportamiento a compresión difiere del comportamiento a tensión en la mampostería.
- El comportamiento inelástico comienza a partir de distorsiones pequeñas, del orden de 0.001 y 0.002.
- El comportamiento en el rango inelástico depende del sistema seleccionado, del tipo de refuerzo y del detallado.

En los análisis aquí presentados, únicamente se consideró el rango de comportamiento elástico lineal y la mampostería se modeló como un material homogéneo e isótropo. A falta de pruebas de laboratorio, las propiedades mecánicas de los materiales fueron estimadas a partir de los datos disponibles y de las relaciones empíricas reportadas en estudios experimentales de otros autores. Los cálculos se realizaron mediante el programa SAP2000 (Computers and Structures Inc., 1997). En todos los casos, se utilizó un valor de amortiguamiento estructural del 5% del crítico.

5.4.1 Modelos matemáticos

Para cada vivienda, en el modelo matemático se tomaron en cuenta los elementos estructurales que participan tanto en rigidez como en masa. Se calibró un modelo de elementos finitos para obtener información sobre la distribución de esfuerzos en los muros, de manera que estos se construyeron con aberturas cuyas dimensiones son similares a las reales.

Vivienda 1.

La estructuración de la casa es a base de muros de carga de mampostería de tabique de concreto (tabicón); las dimensiones de las piezas son de 6.5x13x26 cm aproximadamente. Los muros están apoyados sobre una zapata corrida de concreto reforzado de 20x25 cm, y están confinados por dalas y castillos de 18x18 cm. El techo es una losa de concreto reforzado colada monolíticamente con los castillos y la dala superior. Los huecos en los muros cuentan con refuerzo en el borde superior y en uno de los bordes laterales, pero no están totalmente reforzados en su perímetro. Una dala perimetral, ubicada a unos 100 cm del techo, ofrece una liga adicional entre los muros. La vivienda es del tipo denominado autoconstrucción.

De acuerdo con los datos proporcionados por el fabricante que surte los expendios de materiales de construcción en la ciudad de Acatlán, las piezas de mampostería de tabique de concreto con las dimensiones mencionadas tienen valores promedio de resistencia a la compresión (f_p) y peso volumétrico (γ_p) de 65 kg/cm² y 1.5 t/m³, respectivamente. Con estos datos, las propiedades mecánicas de la mampostería se estimaron de las siguientes relaciones empíricas reportadas en los estudios experimentales de Meli y Reyes (1971) y Meli (1979):

$f_m = 0.6 f_p$	(1)
$E_m = 600 f_m$	(2)
$G_m = 0.4E_m$	(3)
$\mathbf{v}_m = \sqrt{f_m}$	(4)

donde	f_p	:	resistencia a la compresión de la pieza.
	f_m	:	resistencia a la compresión de la mampostería.
	E_m	:	módulo de elasticidad secante de la mampostería.
	G_m	:	módulo de rigidez al esfuerzo cortante de la mampostería.
	\mathbf{V}_m	:	esfuerzo cortante resistente de la mampostería.

De esta manera, para un valor de $f_p=65 \text{ kg/cm}^2$, las propiedades mecánicas de la mampostería resultaron como se muestra en la tabla 5.4.1.1.

Propiedad	$\frac{\gamma_p}{(t/m^3)}$	f _p (kg/cm²)	f _m (kg/cm²)	E _m (kg/cm²)	G _m (kg/cm²)	v _m (kg/cm²)
Valor estimado	1.5	65	39	23,400	9,360	6.2

Tabla 5.4.1.1. Propiedades mecánicas de la mampostería en la vivienda 1.

Para el concreto, se tomó en cuenta la dosificación de materiales que utilizaron los propietarios de la casa durante su construcción. En comunicación personal con dichas personas, se
estimó que la dosificación que usaron para elaborar el concreto corresponde a la señalada en la tabla 5.4.1.2; así, la resistencia a compresión (f'_c) se asignó con un valor de 200 kg/cm². El peso volumétrico (γ_c) se y el módulo de elasticidad (E_c) se supusieron para un concreto clase 2, de acuerdo con lo indicado en las NTCDS-RCMP (2003).

Resistencia a la										
compresión	10	00	15	50	20	00	25	50	30	00
(kg/cm ²)										
Tamaño máximo										
de agregado	3/4''	11/2"	3⁄4''	11/2''	3⁄4''	11/2″	3⁄4''	11/2"	3⁄4''	11/2''
(TMA)										
Botes de										
grava	6	8	51/4	71/2	41/2	6	4	51/2	31/2	43⁄4
$(18 \text{ dm}^3 \text{ c/u})$										
Botes de										
arena	5¾	6	43⁄4	51/4	4	4¼	31/2	3¾	23/4	3
(18 dm³ c/u)										
Botes de										
agua		2	1	3⁄4	1	1/2	1	1/4	-	1
(18 dm ³ c/u)										
Cemento	5	0	5	0	5	0	Ц	0	Ц	0
(kg)	0	0	0	0	5	0	5	0	5	0
Volumen de										
concreto	175	189	151	167	133	145	120	130	103	112
(litros)										

Tabla 5.4.1.2. Dosificaciones prácticas por volumen del concreto (ONNCCE, NMX-C-414-1999).

De esta forma, las propiedades mecánicas del concreto resultaron como se muestra en la tabla 5.4.1.3.

Tabla 5.4.1.3. Propiedades mecánicas del concreto en la vivienda 1.

Propiedad	γ_{c} (t/m^{3})	f′ _c (kg/cm²)	E _c (kg/cm²)
Valor estimado	2.1	200	113,000

En el modelo matemático, las dalas y castillos se idealizaron como elementos que proporcionan confinamiento a la mampostería, de manera que cada muro de carga se consideró como un conjunto formado por castillos-mampostería-dalas. Así definidos, los muros fueron configurados mediante elementos finitos cuadriláteros de cuatro nudos, con dimensiones no mayores de 40x40 cm, de relación largo/ancho menor de 1.5, y capaces de resistir esfuerzos de compresión, cortante y flexión en el plano del muro. La cimentación se consideró como viga y se construyó con elementos finitos lineales; los extremos de cada elemento barra se consideraron como apoyos fijos articulados. Finalmente, el techo se idealizó como un diafragma rígido en su plano. En la figura 5.4.1.1 se muestra el modelo construido.

Figura 5.4.1.1. Modelo estructural de la vivienda 1.

• Vivienda 2.

La estructuración de la casa es a base de muros de carga de mampostería de tabique de concreto (tabicón); las dimensiones de las piezas son de 6.5x13x26 cm aproximadamente. Los muros están apoyados sobre una zapata corrida de concreto reforzado de 20x30 cm, y están confinados por dalas y castillos de 16x16 cm. El techo de cada entrepiso es una losa de concreto reforzado colada monolíticamente con los castillos y la dala superior. Los huecos en los muros cuentan con refuerzo en uno o en dos de los bordes, pero no están totalmente reforzados en su perímetro. La vivienda es del tipo denominado autoconstrucción.

Las piezas de mampostería tienen propiedades semejantes a las de la vivienda 1, de manera que los valores de las propiedades mecánicas de la mampostería en la vivienda 2 se tomaron de la tabla 5.4.1.1. Para el concreto, se investigó la dosificación de materiales que utilizaron los propietarios de la casa durante su construcción; puesto que las técnicas constructivas fueron similares a las de la vivienda 1, los valores de las propiedades mecánicas del concreto se tomaron de la tabla 5.4.1.3.

En el modelo matemático, las dalas y castillos se idealizaron como elementos que proporcionan confinamiento a la mampostería, de manera que cada muro de carga se consideró como un conjunto formado por castillos-mampostería-dalas. Así definidos, los muros fueron configurados mediante elementos finitos cuadriláteros de cuatro nudos, con dimensiones no mayores de 30x30 cm, de relación largo/ancho menor de 1.5, y capaces de resistir esfuerzos de compresión, cortante y flexión en el plano del muro. La cimentación se consideró como viga y se construyó con elementos finitos lineales; los extremos de cada elemento barra se consideraron como apoyos fijos articulados. Finalmente, el techo de cada entrepiso se idealizó como un diafragma rígido en su plano. En la figura 5.4.1.2 se muestra el modelo construido.

Figura 5.4.1.2. Modelo estructural de la vivienda 2.

Vivienda 3.

La estructuración de la casa es a base de muros de carga de mampostería de adobe junteada con lodo; las dimensiones de las piezas son de 12x25x50 cm aproximadamente. Los muros están apoyados sobre una zapata corrida de mampostería de piedra natural (piedra braza) de 60x40 cm, y no cuentan con elementos de liga ni de refuerzo. El techo está formado por un relleno de tierra de 20 cm de espesor, apoyado sobre perfiles metálicos con separación de 60 cm; la superficie inferior y la superior del relleno están cubiertas por un enladrillado de piezas de tabique rojo de barro recocido, cuyas dimensiones son 2.5x20x25 cm. Los huecos en los muros no cuentan con refuerzo alguno. La vivienda es del tipo denominado autoconstrucción.

Las propiedades mecánicas de la mampostería de adobe se retomaron de los resultados experimentales reportados por Hernández *et al.* (1981), los cuales corresponden a los adobes característicos de áreas rurales en las zonas de mayor sismicidad de nuestro país (zonas C y D del mapa de regionalización sísmica de México, CFE). De acuerdo con dichos autores, las propiedades de un muro de adobe junteado con lodo son semejantes a las de las piezas y no existe reducción importante por efecto de las juntas, pues al unir las piezas de adobe con el mismo material con que fueron fabricados se obtiene prácticamente un muro monolítico.

De esta manera, los valores asignados a las propiedades mecánicas de la mampostería de adobe se indican en la tabla 5.4.1.4.

Propiedad	γ _m	f _m	E _m	G _m	v _m
	(t/m³)	(kg/cm²)	(kg/cm²)	(kg/cm²)	(kg/cm²)
Valor estimado	1.5	10	2,500	750	1.2

Tabla 5.4.1.4. Propiedades mecánicas de la mampostería de adobe en la vivienda 3.

Para la mampostería de piedra natural en la cimentación, sólo se consideró el peso volumétrico y el módulo de elasticidad, cuyos valores fueron tomados de Robles *et al.* (1984) y son del orden de 2.4 t/m³ y 200,000 kg/cm² respectivamente. Para el relleno de tierra en el techo, se estimó un peso volumétrico de 1.5 t/m³.

En el modelo matemático, los muros fueron configurados mediante elementos finitos cuadriláteros de cuatro nudos, con dimensiones no mayores de 50x50 cm, de relación largo/ancho menor de 1.5, y capaces de resistir esfuerzos de compresión, cortante y flexión en el plano del muro. La cimentación se consideró como viga y se construyó con elementos finitos lineales; los extremos de cada elemento barra se consideraron como apoyos fijos articulados. Finalmente, como el techo no participa en rigidez sino en masa, se calculó el peso tributario en cada muro y se distribuyó en toda su longitud. En la figura 5.4.1.3 se muestra el modelo construido.

Figura 5.4.1.3. Modelo estructural de la vivienda 3.

5.4.2 Periodos y formas modales

A continuación se muestran los resultados del análisis modal. En cada modelo, se comparan las frecuencias y periodos teóricos con los valores obtenidos experimentalmente para los 3 primeros modos de vibrar, y se ilustran las configuraciones deformadas correspondientes.

Vivienda 1.

Los dos primeros modos de vibrar son los que más influyen en la respuesta, como puede verse en los factores de participación modal de masa de la tabla 5.4.2.1. El modo 1 corresponde a la traslación en el eje Y o transversal (T), el modo 2 a la traslación en el eje X o longitudinal (L), y el modo 3 a la torsión respecto al eje Z o vertical, tal como se muestra en la figura 5.4.2.1. Considerando como referencia los valores experimentales de las frecuencias de vibración para los modos 1, 2 y 3, los valores teóricos presentan una diferencia de 2%, 10%, y 4%, respectivamente.

Modo	Frecuencia	Periodo	Factores de participación modal		
	(112)	(3)	L	Т	
1	11.24	0.089	0.0016	0.8319	
2	13.62	0.073	0.8234	0.0106	
3	14.48	0.069	0.0702	0.0441	
4	30.25	0.033	0.0025	0.0013	
5	31.36	0.032	0.0013	0.0055	
6	31.72	0.032	0.0048	0.0000	
7	31.99	0.031	0.0000	0.0062	
8	72.72	0.014	0.0000	0.0000	
9	76.71	0.013	0.0000	0.0000	
10	82.81	0.012	0.0000	0.0000	

Tabla 5.4.2.1. Valores teóricos de frecuencias y periodos en el modelo de la vivienda 1.

Tabla 5.4.2.2. Frecuencias y periodos de los tres primeros modos de vibrar en la vivienda 1.

Modo	Frecuen	cia (Hz)	Periodo (s)		
	Experimental	Teórica	Experimental	Teórico	
1 (T)	11.0	11.2	0.09	0.091	
2 (L)	12.3	13.6	0.08	0.073	
3 (torsión)	13.9	14.5	0.07	0.069	

Figura 5.4.2.1. Configuraciones modales del modelo estructural de la vivienda 1.

• Vivienda 2.

Los dos primeros modos de vibrar son los que más influyen en la respuesta, como puede verse en los factores de participación modal de masa de la tabla 5.4.2.3. El modo 1 corresponde a la traslación en el eje Y o transversal (T), el modo 2 a la traslación en el eje X o longitudinal (L), y el modo 3 a la torsión respecto al eje Z o vertical, tal como se muestra en la figura 5.4.2.2. Considerando como referencia los valores experimentales de las frecuencias de vibración para los modos 1, 2 y 3, los valores teóricos presentan una diferencia de 16%, 27%, y 4%, respectivamente.

Modo	Frecuencia (Hz)	a Periodo Factores de participación mo (s) L T 0.157 0.0015 0.8148 0.108 0.7848 0.0042 0.091 0.0020 0.0017 0.074 0.0417 0.0140 0.056 0.0283 0.0000 0.049 0.0119 0.0086	icipación modal	
	(112)	(5)	L	Т
1	6.37	0.157	0.0015	0.8148
2	9.25	0.108	0.7848	0.0042
3	10.99	0.091	0.0020	0.0017
4	13.46	0.074	0.0417	0.0140
5	17.85	0.056	0.0283	0.0000
6	20.36	0.049	0.0119	0.0086
7	21.45	0.047	0.0002	0.0075
8	22.64	0.044	0.0039	0.0558
9	23.37	0.043	0.0031	0.0302
10	24.44	0.041	0.0390	0.0000
11	26.45	0.038	0.0005	0.0053
12	29.24	0.034	0.0071	0.0010
13	30.98	0.032	0.0208	0.0000
14	37.04	0.027	0.0001	0.0002
15	37.28	0.027	0.0007	0.0000

Tabla 5.4.2.3. Valores teóricos de frecuencias y periodos en el modelo de la vivienda 2.

Tabla 5.4.2.4. Frecuencias y periodos de los tres primeros modos de vibrar en la vivienda 2.

Modo	Frecuen	cia (Hz)	Periodo (s)		
	Experimental	Teórica	Experimental	Teórico	
1 (T)	5.5	6.4	0.18	0.16	
2 (L)	7.3	9.3	0.14	0.11	
3 (torsión)	11.4	11.0	0.089	0.091	

Figura 5.4.2.2. Configuraciones modales del modelo estructural de la vivienda 2.

• Vivienda 3.

Los dos primeros modos de vibrar son los que más influyen en la respuesta, como puede verse en los factores de participación modal de masa de la tabla 5.4.2.5. El modo 1 corresponde a la traslación en el eje Y o transversal (T), el modo 2 a la traslación en el eje X o longitudinal (L), y el modo 3 a la torsión respecto al eje Z o vertical, tal como se muestra en la figura 5.4.2.3. Considerando como referencia los valores experimentales de las frecuencias de vibración para los modos 1, 2 y 3, los valores teóricos presentan una diferencia de 12%, 4%, y 13%, respectivamente.

Modo	Frecuencia (Hz)	Periodo (s)	Factores de part	icipación modal
	()	(0)	L	Т
1	10.01	0.100	0.0036	0.6991
2	10.56	0.095	0.7001	0.0050
3	11.22	0.089	0.0029	0.0058
4	12.93	0.077	0.0072	0.0001
5	13.02	0.077	0.0042	0.0020

Capítulo 5 Vulnerabilidad sísmica

6	13.38	0.075	0.0000	0.0062
7	13.72	0.073	0.0014	0.0008
8	14.37	0.070	0.0059	0.0004
9	15.00	0.067	0.0102	0.0008
10	15.19	0.066	0.0001	0.0001
11	15.74	0.064	0.0063	0.0003
12	16.20	0.062	0.0000	0.0031
13	17.48	0.057	0.0021	0.0000
14	18.02	0.056	0.0023	0.0000
15	18.30	0.055	0.0036	0.0013

Tabla 5.4.2.6. Frecuencias y periodos de los tres primeros modos de vibrar en la vivienda 3.

Modo	Frecuen	cia (Hz)	Periodo (s)		
	Experimental	Teórica	Experimental	Teórico	
1 (T)	8.9	10.0	0.11	0.10	
2 (L)	11.0	10.6	0.09	0.095	
3 (torsión)	12.8	11.2	0.079	0.089	

Figura 5.4.2.3. Configuraciones modales del modelo estructural de la vivienda 3.

5.4.3 Análisis dinámico modal paso a paso

A continuación, se presentan los resultados de un análisis dinámico modal paso a paso para un temblor específico. La excitación en la base de cada modelo estructural corresponde a la historia de aceleraciones del terreno calculada como se describió en el capítulo anterior, para el escenario del sismo de Tehuacán del 15 de junio de 1999 (Mw=7.0, mb=6.3). Se muestran los valores máximos de aceleración y desplazamiento inducidos en la estructura. Se comparan los esfuerzos máximos producidos en los muros con los esfuerzos resistentes estimados anteriormente. Se obtiene también

la máxima distorsión de entrepiso y se compara con el valor reportado por otros autores para el inicio de daño en la mampostería.

Vivienda 1.

En la figura 5.4.3.1 se muestra la historia de aceleraciones del terreno, en las direcciones norte-sur y este-oeste, para el sitio donde se ubica esta vivienda (punto 55 de medición de microtremores). Se muestra también el espectro de respuesta de seudoaceleración, calculado con el método de las ocho constantes (Chopra, 1995), para cada componente. El eje X o longitudinal de la vivienda coincide aproximadamente con la dirección norte-sur geográfica, y el eje Y o transversal con la este-oeste. De esta forma, la componente norte-sur del movimiento del terreno se aplicó en el eje X y la este-oeste en el eje Y.

Figura 5.4.3.1. Acelerogramas teóricos (izquierda) y espectros de respuesta de seudoaceleración (derecha) en el punto 55 (vivienda 1), sismo del 15 de junio de 1999.

En la dirección norte-sur, la máxima aceleración del terreno es de 166 cm/s² (0.17g). El espectro de respuesta para el 5% del amortiguamiento crítico muestra que las ordenadas máximas ocurren en un rango de periodos entre 0.12 y 0.24 segundos, con un pico en 0.20 segundos.

En la dirección este-oeste, la máxima aceleración del terreno es de 190 cm/s² (0.19g). El espectro de respuesta para el 5% del amortiguamiento crítico muestra que las ordenadas máximas ocurren en un rango de periodos entre 0.12 y 0.22 segundos, con un pico en 0.16 segundos.

El pico espectral se presenta en un periodo estructural promedio de 0.18 segundos, el cual es cercano al periodo fundamental del suelo en este sitio (T_0 =0.17 segundos). Sin embargo, los periodos de los tres primeros modos de vibrar de la estructura (los que más influyen en la respuesta) se encuentran entre 0.07 y 0.09 segundos, aproximadamente, de manera que en este caso no se observa una doble amplificación por efecto de resonancia dinámica.

En la dirección X o longitudinal, la respuesta estructural del modelo mostró que la aceleración máxima inducida fue de 270 cm/s² (0.28g). El desplazamiento máximo en el techo fue de 0.04 cm, por lo que la máxima distorsión de entrepiso resultó de 0.00012 ($\gamma_{máx}$ =0.04/340).

En la dirección Y o transversal, la respuesta estructural del modelo mostró que la aceleración máxima inducida fue de 300 cm/s² (0.31g). El desplazamiento máximo en el techo fue de 0.06 cm, por lo que la máxima distorsión de entrepiso resultó de 0.00018 ($\gamma_{máx}$ =0.06/340).

Los esfuerzos máximos producidos en los muros de mampostería presentaron los valores indicados en la tabla siguiente.

Esfuerzo	Valor máximo (kg/cm²)	Valor medio (kg/cm²)
Compresión	9.1	0.7
Tensión	8.9	0.7
Cortante por tensión diagonal	0.2	0.01

Tabla 5.4.3.1. Esfuerzos máximos en los muros de mampostería de la vivienda 1.

Como vemos, los esfuerzos actuantes máximos son menores que los correspondientes esfuerzos resistentes. La máxima distorsión de entrepiso ($\gamma_{máx}$ =0.00019) fue menor que el valor de 0.002 para el estado límite de servicio que fijan las NTCDS-RCMP (2003), y que es el mismo que proponen Reyes y Meli (1999) para el inicio de daño en estructuras de mampostería confinada de piezas macizas. De esta forma, aún cuando se haya alcanzado tal nivel de aceleración, prácticamente no hubo daños.

• Vivienda 2.

En la figura 5.4.3.2 se muestra la historia de aceleraciones del terreno, en las direcciones norte-sur y este-oeste, para el sitio donde se ubica esta vivienda (punto 56 de medición de microtremores). Se muestra también el espectro de respuesta de seudoaceleración, calculado con el método de las ocho constantes (Chopra, 1995), para cada componente. El eje X o longitudinal de la vivienda coincide aproximadamente con la dirección norte-sur geográfica, y el eje Y o transversal con la este-oeste. De esta forma, la componente norte-sur del movimiento del terreno se aplicó en el eje X y la este-oeste en el eje Y.

Figura 5.4.3.2. Acelerogramas teóricos (izquierda) y espectros de respuesta de seudoaceleración (derecha) en el punto 56 (vivienda 2), sismo del 15 de junio de 1999.

En la dirección norte-sur, la máxima aceleración del terreno es de 157 cm/s² (0.16g). El espectro de respuesta para el 5% del amortiguamiento crítico muestra que las ordenadas máximas ocurren en un rango de periodos entre 0.18 y 0.24 segundos, con un pico en 0.20 segundos.

En la dirección este-oeste, la máxima aceleración del terreno es de 177 cm/s² (0.18g). El espectro de respuesta para el 5% del amortiguamiento crítico muestra que las ordenadas máximas ocurren en un rango de periodos entre 0.14 y 0.22 segundos, con un pico en 0.16 segundos.

El pico espectral se presenta en un periodo estructural promedio de 0.18 segundos, que es igual al periodo fundamental del suelo en este sitio (T_0 =0.18 segundos). Los periodos de los tres primeros modos de vibrar de la estructura (los que más influyen en la respuesta) se encuentran entre 0.09 y 0.17 segundos, aproximadamente; en este caso, para el periodo fundamental de la estructura (0.17 segundos, dirección transversal) se observa una doble amplificación por efecto de resonancia dinámica.

En la dirección X o longitudinal, la respuesta estructural del modelo mostró que la aceleración máxima inducida fue de 305 cm/s² (0.31g). El desplazamiento máximo en la azotea fue de 0.10 cm, y en el nivel 1 de 0.06 cm. La máxima distorsión en el entrepiso inferior resultó de 0.00019 ($\gamma_{máx}$ =0.06/310), y en el superior de 0.00017 ($\gamma_{máx}$ =0.04/240).

En la dirección Y o transversal, la respuesta estructural del modelo mostró que la aceleración máxima inducida fue de 575 cm/s² (0.59g). El desplazamiento máximo en la azotea fue de 0.38 cm, y en el nivel 1 de 0.20 cm. La máxima distorsión en el entrepiso inferior resultó de 0.00065 ($\gamma_{máx}$ =0.20/310), y en el superior de 0.00075 ($\gamma_{máx}$ =0.18/240).

Los esfuerzos máximos producidos en los muros de mampostería presentaron los valores indicados en la tabla siguiente.

Esfuerzo	Valor máximo (kg/cm²)	Valor medio (kg/cm²)
Compresión	21.5	2.5
Tensión	21.9	2.4
Cortante por tensión diagonal	2.8	0.03

Labla 5 1 2 7 Latur	orran mávimas on la	a muraa da mam	montaría da la	Tritrion do 7
LADIA J.4.J.Z. ESIUG	erzos maximos en io	s muros de mam	DOSIEITA UETA	vivienda z.

Como vemos, los esfuerzos actuantes máximos son menores que los correspondientes esfuerzos resistentes. La máxima distorsión de entrepiso ($\gamma_{máx}$ =0.00075) fue menor que el valor de 0.002 para el estado límite de servicio que fijan las NTCDS-RCMP (2003), y que es el mismo que proponen Reyes y Meli (1999) para el inicio de daño en estructuras de mampostería confinada de piezas macizas. De esta forma, aún cuando se haya alcanzado tal nivel de aceleración, los daños fueron relativamente ligeros.

• Vivienda 3.

En la figura 5.4.3.3 se muestra la historia de aceleraciones del terreno, en las direcciones norte-sur y este-oeste, para el sitio donde se ubica esta vivienda (punto 57 de medición de microtremores). Se muestra también el espectro de respuesta de seudoaceleración, calculado con el método de las ocho constantes (Chopra, 1995), para cada componente. El eje X o longitudinal de la vivienda coincide aproximadamente con la dirección norte-sur geográfica, y el eje Y o transversal con la este-oeste. De esta forma, la componente norte-sur del movimiento del terreno se aplicó en el eje X y la este-oeste en el eje Y.

En la dirección norte-sur, la máxima aceleración del terreno es de 238 cm/s² (0.24g). El espectro de respuesta para el 5% del amortiguamiento crítico muestra que las ordenadas máximas ocurren en un rango de periodos entre 0.17 y 0.32 segundos, con un pico en 0.21 segundos.

En la dirección este-oeste, la máxima aceleración del terreno es de 184 cm/s² (0.19g). El espectro de respuesta para el 5% del amortiguamiento crítico muestra que las ordenadas máximas ocurren en un rango de periodos entre 0.15 y 0.24 segundos, con un pico en 0.22 segundos.

Figura 5.4.3.3. Acelerogramas teóricos (izquierda) y espectros de respuesta de seudoaceleración (derecha) en el punto 57 (vivienda 3), sismo del 15 de junio de 1999.

El pico espectral se presenta en un periodo estructural promedio de 0.21 segundos, el cual es cercano al periodo fundamental del suelo en este sitio (T_0 =0.23 segundos). Sin embargo, los periodos de los tres primeros modos de vibrar de la estructura (los que más influyen en la respuesta) se encuentran entre 0.08 y 0.10 segundos, aproximadamente, de manera que en este caso no se observa una doble amplificación por efecto de resonancia dinámica.

En la dirección X o longitudinal, la respuesta estructural del modelo mostró que la aceleración máxima inducida fue de 370 cm/s² (0.38g). El desplazamiento máximo en el techo fue de 0.09 cm, por lo que la máxima distorsión de entrepiso resultó de 0.00024 ($\gamma_{máx}$ =0.09/380).

En la dirección Y o transversal, la respuesta estructural del modelo mostró que la aceleración máxima inducida fue de 330 cm/s² (0.34g). El desplazamiento máximo en el techo fue de 0.09 cm, por lo que la máxima distorsión de entrepiso resultó de 0.00024 ($\gamma_{máx}$ =0.09/380).

Los esfuerzos máximos producidos en los muros de mampostería presentaron los valores indicados en la tabla siguiente.

Esfuerzo	Valor máximo (kg/cm²)	Valor medio (kg/cm²)
Compresión	0.81	0.15
Tensión	0.77	0.14
Cortante por tensión diagonal	0.03	0.004

Tabla 5.4.3.3. Esfuerzos máximos en los muros de mampostería de la vivienda 3.

Como vemos, los esfuerzos actuantes máximos son menores que los correspondientes esfuerzos resistentes. La máxima distorsión de entrepiso ($\gamma_{máx}$ =0.00024) fue menor que el valor de 0.001 para el estado límite de servicio que fijan las NTCDS-RCMP (2003), y que es el mismo que proponen Reyes y Meli (1999) para el inicio de daño en estructuras de mampostería sin confinamiento ni refuerzo. De esta forma, aún cuando se haya alcanzado tal nivel de aceleración, los daños fueron relativamente ligeros.

5.4.4 Análisis dinámico modal espectral

En el estado de Puebla, sólo las ciudades de Puebla y Tehuacán cuentan con estudios de microzonificación sísmica (Chávez-García *et al.*, 1995; Osorio-Carrera *et al.*, 1997; Ramírez-Centeno *et al.*, 1997; Ruiz *et al.*, 1993). La ciudad de Acatlán de Osorio no cuenta con su propio Reglamento de Construcción, y prácticamente todas las edificaciones han sido construidas por los propios habitantes sin atender normas técnicas para el diseño sismorresistente de las mismas.

De esta manera, se aplicó el espectro de diseño por sismo del mapa de regionalización sísmica de México (CFE, 1993). El Manual de Diseño por Sismo de la Comisión Federal de Electricidad recomienda los parámetros de la tabla 5.4.4.1 para estructuras del Grupo B en la zona sísmica C, en la cual se sitúa la ciudad de Acatlán.

Tabla 5.4.4.1. Parámetros de los espectros de diseño (estructuras del Grupo B) en la zona sísmica C del Mapa de Regionalización Sísmica de México (CFE, 1993).

Tipo de	a_0	С	Ta	T _b	r
terreno	(1)	(1)	(s)	(s)	(1)
Ι	0.36	0.36	0.0	0.6	0.50
II	0.64	0.64	0.0	1.4	0.67
III	0.64	0.64	0.0	1.9	1.00

Para definir el tipo de terreno en los sitios de estudio, se consideró la clasificación de las Normas Técnicas Complementarias para Diseño por Sismo del Reglamento de Construcción del Municipio de Puebla (NTCDS-RCMP, 2003). Como se vio en el capítulo anterior, las microzonas I y

II definidas en la ciudad de Acatlán corresponden a los tipos de terreno I y II, respectivamente. Las viviendas 1, 2 y 3 se encuentran en la microzona II, de manera que para el análisis se utilizó el espectro de diseño para el tipo de terreno II, el cual se muestra en la siguiente figura.

Espectro de diseño, terreno tipo II

Figura 5.4.4.1. Espectro de diseño para la microzona II de la ciudad de Acatlán (CFE, 1993).

Para los modelos de las viviendas 1 y 2, se utilizó un factor de comportamiento sísmico Q=2, pues en este caso la resistencia a fuerzas laterales es suministrada por muros de piezas macizas confinados por castillos y dalas, y cumplen esencialmente con los requisitos para considerarlas como estructuras de mampostería confinada. Para el modelo de la vivienda 1, se usó un factor Q=1, pues en este caso la resistencia a fuerzas laterales es suministrada por muros de piezas son confinamiento ni refuerzo. En cada caso, el espectro de diseño se redujo de acuerdo con lo establecido en las NTCDS-RCMP (2003). Se aplicó el espectro de diseño correspondiente en las direcciones longitudinal y transversal para las combinaciones de 100% en una y 30% en otra, y viceversa.

• Vivienda 1.

La figura 5.4.4.2 presenta el espectro de aceleraciones reducido por el factor Q'. En este caso, Q'=Q para todo el rango de periodos, pues $T_a=0$.

En la dirección X o longitudinal, la respuesta estructural del modelo mostró que la aceleración máxima inducida es de 270 cm/s² (0.28g). El desplazamiento máximo en el techo (multiplicado por el factor de comportamiento sísmico) es de 0.08 cm, por lo que la máxima distorsión de entrepiso resulta de 0.00024 ($\gamma_{máx}=0.08/340$).

En la dirección Y o transversal, la respuesta estructural del modelo mostró que la aceleración máxima inducida es de 310 cm/s² (0.32g). El desplazamiento máximo en el techo (multiplicado por el factor de comportamiento sísmico) es de 0.12 cm, por lo que la máxima distorsión de entrepiso resulta de 0.00036 ($\gamma_{máx}$ =0.12/340).

Figura 5.4.4.2. Espectro de aceleraciones reducido para el análisis de la vivienda 1.

Los esfuerzos máximos producidos en los muros de mampostería presentan los valores indicados en la tabla siguiente.

Esfuerzo	Valor máximo (kg/cm²)	Valor medio (kg/cm²)
Compresión	8.7	0.6
Tensión	8.2	0.6
Cortante por tensión diagonal	0.3	0.01

Tabla 5.4.4.2. Esfuerzos máximos en los muros de mampostería de la vivienda 1.

Como vemos, los esfuerzos actuantes máximos son menores que los correspondientes esfuerzos resistentes. La máxima distorsión de entrepiso ($\gamma_{máx}$ =0.00036) es menor que el valor de 0.002 para el estado límite de servicio que fijan las NTCDS-RCMP (2003), y que es el mismo que proponen Reyes y Meli (1999) para el inicio de daño en estructuras de mampostería confinada de piezas macizas.

• Vivienda 2.

La figura 5.4.4.3 presenta el espectro de aceleraciones reducido por el factor Q'. En este caso, Q'=Q para todo el rango de periodos, pues $T_a=0$.

Figura 5.4.4.3. Espectro de aceleraciones reducido para el análisis de la vivienda 2.

En la dirección X o longitudinal, la respuesta estructural del modelo mostró que la aceleración máxima inducida es de 300 cm/s² (0.31g). El desplazamiento máximo en la azotea (multiplicado por el factor de comportamiento sísmico) es de 0.18 cm, y en el nivel 1 de 0.10 cm. La máxima distorsión en el entrepiso inferior resulta de 0.00032 ($\gamma_{máx}$ =0.10/310), y en el superior de 0.00033 ($\gamma_{máx}$ =0.08/240).

En la dirección Y o transversal, la respuesta estructural del modelo mostró que la aceleración máxima inducida es de 330 cm/s² (0.34g). El desplazamiento máximo en la azotea (multiplicado por el factor de comportamiento sísmico) es de 0.42 cm, y en el nivel 1 de 0.22 cm. La máxima distorsión en el entrepiso inferior resulta de 0.00071 ($\gamma_{máx}$ =0.22/310), y en el superior de 0.00083 ($\gamma_{máx}$ =0.20/240).

Los esfuerzos máximos producidos en los muros de mampostería presentan los valores indicados en la tabla siguiente.

Esfuerzo	Valor máximo (kg/cm²)	Valor medio (kg/cm²)
Compresión	12.4	1.3
Tensión	12.0	1.3
Cortante por tensión diagonal	1.6	0.02

Tabla 5.4.4.3. Esfuerzos máximos en los muros de mampostería de la vivienda 2.

Como vemos, los esfuerzos actuantes máximos son menores que los correspondientes esfuerzos resistentes. La máxima distorsión de entrepiso ($\gamma_{máx}$ =0.00083) es menor que el valor de 0.002 para el estado límite de servicio que fijan las NTCDS-RCMP (2003), y que es el mismo que proponen Reyes y Meli (1999) para el inicio de daño en estructuras de mampostería confinada de piezas macizas.

Vivienda 3.

La figura 5.4.4.4 presenta el espectro de aceleraciones reducido por el factor Q'. En este caso, Q'=Q para todo el rango de periodos, pues $T_a=0$.

Figura 5.4.4.4. Espectro de aceleraciones reducido para el análisis de la vivienda 3.

En la dirección X o longitudinal, la respuesta estructural del modelo mostró que la aceleración máxima inducida es de 830 cm/s² (0.85g). El desplazamiento máximo en el techo es de 0.19 cm, por lo que la máxima distorsión de entrepiso resulta de 0.0005 ($\gamma_{máx}$ =0.19/380).

En la dirección Y o transversal, la respuesta estructural del modelo mostró que la aceleración máxima inducida es de 750 cm/s² (0.76g). El desplazamiento máximo en el techo es de 0.19 cm, por lo que la máxima distorsión de entrepiso resulta de 0.0005 ($\gamma_{máx}$ =0.19/380).

Los esfuerzos máximos producidos en los muros de mampostería presentan los valores indicados en la tabla siguiente.

Esfuerzo	Valor máximo (kg/cm²)	Valor medio (kg/cm²)
Compresión	1.4	0.2
Tensión	1.5	0.2
Cortante por tensión diagonal	0.07	0.007

Tabla 5.4.4.4. Esfuerzos máximos en los muros de mampostería de la vivienda 3.

Como vemos, los esfuerzos actuantes máximos son menores que los correspondientes esfuerzos resistentes. La máxima distorsión de entrepiso ($\gamma_{máx}$ =0.0005) es menor que el valor de 0.001 para el estado límite de servicio que fijan las NTCDS-RCMP (2003), y que es el mismo que

proponen Reyes y Meli (1999) para el inicio de daño en estructuras de mampostería sin confinamiento ni refuerzo.

Sin embargo, es poco creíble que una casa de mampostería sin refuerzo ni confinamiento pueda resistir sin daños un sismo con una ordenada espectral de 0.64g para el periodo fundamental de la estructura. Cabe recordar que en el análisis no se consideró el comportamiento frágil de la mampostería de adobe no reforzada. Además, el modelo no incluye el efecto del deterioro de los materiales por intemperismo, el cual afecta en forma no despreciable sus propiedades mecánicas y hace más vulnerable este tipo de construcciones (Hernández *et al.*, 1981). De esta manera, dados los niveles de aceleración alcanzados (alrededor de 0.8g), en la estructura pueden ocurrir esfuerzos y desplazamientos de mayor magnitud que los aquí calculados.

5.5 Resultados

5.5.1 Respuesta estructural

De acuerdo con los resultados del método analítico, la vivienda 1 muestra un comportamiento sísmico adecuado ante las excitaciones impuestas en el modelo estructural. En el escenario del sismo del 15 de junio de 1999, la máxima distorsión de entrepiso fue del orden del 10% del valor para el estado límite de servicio correspondiente, el esfuerzo máximo de compresión fue de un 23% de la resistencia a compresión, y el esfuerzo cortante máximo (por tensión diagonal) de un 3% de la resistencia a cortante. Ante el espectro de diseño recomendado por CFE (1993), los valores fueron del orden de 18%, 22% y 5%, respectivamente.

La vivienda 2 muestra un comportamiento sísmico adecuado ante las excitaciones impuestas en el modelo estructural. En el escenario del sismo del 15 de junio de 1999, la máxima distorsión de entrepiso fue del orden del 38% del valor para el estado límite de servicio correspondiente, el esfuerzo máximo de compresión fue de un 55% de la resistencia a compresión, y el esfuerzo cortante máximo (por tensión diagonal) de un 45% de la resistencia a cortante. Ante el espectro de diseño recomendado por CFE (1993), los valores fueron del orden de 43%, 32% y 26%, respectivamente.

La vivienda 3 muestra un comportamiento adecuado ante el sismo del 15 de junio de 1999, donde la máxima distorsión de entrepiso fue del orden del 24% del valor para el estado límite de servicio correspondiente, el esfuerzo máximo de compresión fue de un 8% de la resistencia a compresión, y el esfuerzo cortante máximo (por tensión diagonal) de un 3% de la resistencia a cortante. Ante el espectro de diseño recomendado por CFE (1993) los valores fueron del orden de 50%, 14% y 6%, respectivamente; sin embargo, dado el nivel de aceleraciones máximas inducidas, se considera que en este caso pueden presentarse valores más grandes.

5.5.2 Resonancia dinámica

Las viviendas analizadas tienen periodos fundamentales de 0.09 (vivienda 1), 0.17 (vivienda 2) y 0.10 (vivienda 3) segundos aproximadamente. Los espectros de respuesta para el sismo del 15 de junio de 1999 muestran que la máxima ordenada espectral se presenta en un periodo estructural

con valor cercano al del periodo fundamental del suelo (T_0) en los sitios respectivos: 0.17 (punto 55), 0.18 (punto 56) y 0.23 (punto 57) segundos. De acuerdo con estos resultados, sólo en la vivienda 2 se observa una doble amplificación de la respuesta por efecto de resonancia dinámica; sin embargo, su comportamiento es adecuado gracias a que cumple esencialmente con los requisitos para considerarla como una estructura de mampostería confinada. En la figura 5.5.2.1 se muestran las curvas de isoperiodo junto con la distribución de las edificaciones censadas.

Figura 5.5.2.1. Relación del efecto de sitio con las tipologías estructurales.

Con base en esta figura, podemos ver que en la zona de estudio casi todas las construcciones con tipología I (periodo fundamental de 0.09 segundos aproximadamente) están libres del efecto de amplificación por resonancia dinámica. Esto significa que tales estructuras sólo están expuestas a la amplificación del movimiento del terreno por efecto de la geología local, como se vio en el capítulo anterior. De acuerdo con los resultados del método analítico, su comportamiento sísmico fue adecuado durante el temblor del 15 de junio de 1999 (Mw=7.0, mb=6.3), y es satisfactorio para el nivel de excitación dado por el espectro de diseño correspondiente (CFE, 1993). La vivienda representativa (vivienda 1) posee las características esenciales para lograr dicho comportamiento, tales como la rigidización del techo en su plano para que forme un diafragma, la adecuada liga del techo a los muros, así como la liga y el refuerzo en las esquinas e intersecciones de muros (GDF, 2002). De esta manera, los daños estructurales severos que se hayan presentado en este tipo de construcciones se atribuyen más bien a deficiencias constructivas que no permiten satisfacer dichos requisitos.

Varias construcciones con tipología II (periodo fundamental alrededor de 0.17 segundos) en la zona de estudio están expuestas a un efecto de amplificación por resonancia dinámica, además

de la amplificación por efecto de la geología local. Sin embargo, de acuerdo con los resultados del método analítico, su comportamiento sísmico fue adecuado durante el temblor del 15 de junio de 1999, y es satisfactorio para el nivel de excitación dado por el espectro de diseño correspondiente (CFE, 1993). La vivienda representativa (vivienda 2) posee las características esenciales para lograr dicho comportamiento, tales como las mencionadas en el párrafo anterior. De esta forma, los daños estructurales severos que se hayan presentado en este tipo de construcciones se atribuyen más bien a deficiencias constructivas que no permiten satisfacer esos requisitos.

Casi todas las construcciones con tipología III (periodo fundamental de 0.10 segundos aproximadamente) en la zona de estudio están libres del efecto de amplificación por resonancia dinámica, lo cual significa que sólo están expuestas a la amplificación por efecto de la geología local. De acuerdo con los resultados del método analítico, su comportamiento sísmico fue adecuado durante el temblor del 15 de junio de 1999, pero no es satisfactorio para el nivel de excitación dado por el espectro de diseño correspondiente (CFE, 1993). La vivienda representativa (vivienda 3) cuenta con un recubrimiento de mortero en los muros, el cual disminuye el deterioro a causa del intemperismo; se sabe, por ejemplo, que la resistencia a compresión y a tensión por flexión del adobe disminuyen casi linealmente con la humedad, hasta ser prácticamente nulas para contenidos de agua del 12% (Hernández *et al.*, 1981). De esta manera, los daños estructurales severos que se hayan presentado en este tipo de construcciones se atribuyen más bien a deficiencias en el mantenimiento de la mampostería de adobe.

5.5.3 Clases de vulnerabilidad

La distorsión máxima de entrepiso ($\gamma_{máx}$) es el parámetro de respuesta estructural que tiene mejor correlación con el daño estructural y con el daño no estructural (Alonso *et al.*, 1996; Bertero *et al.*, 1991; Moehle, 1992; Miranda, 1997; Priestley, 1997; Sozen, 1997). Considerando los valores de $\gamma_{máx}$ obtenidos del análisis modal espectral, tenemos que la vivienda 3 (representativa de la tipología III) es la de mayor vulnerabilidad sísmica ($\gamma_{máx} \ge 50\% \gamma_{permisible}$), la vivienda 1 (representativa de la tipología I) es la de menor vulnerabilidad sísmica ($\gamma_{máx} \approx 18\% \gamma_{permisible}$), y la vivienda 2 (representativa de la tipología II) es de vulnerabilidad intermedia ($\gamma_{máx} \approx 43\% \gamma_{permisible}$).

Asumiendo que las edificaciones con características estructurales similares a las de las viviendas analizadas pueden presentar un comportamiento sísmico semejante, se han definido tres clases de vulnerabilidad para las tipologías más comunes de las construcciones estudiadas con el método empírico:

- Clase A. Vulnerabilidad alta, asignada a las construcciones con tipología III.
- Clase B. Vulnerabilidad media, asignada a las construcciones con tipología II.
- Clase C. Vulnerabilidad baja, asignada a las construcciones con tipología I.

En las figuras 5.5.3.1 y 5.5.3.2, se muestra la distribución de las edificaciones estudiadas con el método empírico y se indica la clase de vulnerabilidad asignada de acuerdo con los resultados del método analítico.

Figura 5.5.3.1. Clases de vulnerabilidad asignadas a las tipologías más comunes.

Figura 5.5.3.2. Distribución de clases de vulnerabilidad en la zona de estudio.

Capítulo 6 CONCLUSIONES

De acuerdo con los resultados obtenidos de la presente investigación, podemos enfatizar los siguientes puntos a manera de conclusión.

• Considerando los aspectos geológicos, morfológicos e hidrológicos de la ciudad de Acatlán, se distinguen tres microzonas: I) Alta, donde predominan rocas metamórficas; II) Media, conformada por depósitos arenosos de origen aluvial; III) Baja, donde los materiales aluviales son producto del río Tizaac. La mayoría de las construcciones (el 97%) se localizan en las microzonas I y II.

• La ciudad de Acatlán se localiza en la zona de mayor actividad sísmica del estado de Puebla. Los macrosismos intraplaca son los que producen mayor nivel de intensidad, en comparación con los macrosismos interplaca de la costa sur mexicana del Pacífico. Durante el sismo de Huajuapan de León del 24 de octubre de 1980 (Mw=7.0, mb=7.0) y el de Tehuacán del 15 de junio de 1999 (Mw=7.0, mb=6.3), los daños se concentraron en la microzona II.

• Las funciones de transferencia empíricas muestran la existencia de un efecto de amplificación en los depósitos arenosos de la microzona II, en un intervalo de frecuencias fundamentales del suelo entre 4 y 12.5 Hz (0.08 y 0.26 segundos) aproximadamente, donde se observan amplificaciones relativas máximas de hasta 5 veces con una media de 3 veces.

• Los perfiles de velocidades de ondas de corte, estimados a partir del ensaye de refracción y de las funciones de transferencia empíricas, revelan la presencia de depósitos arenosos en la microzona II con espesores que varían entre 3 y 11 m con una media de 7 m. Las profundidades a la roca basal así estimadas resultaron entre 4 y 13 m con una media de 8 m.

• En el escenario del sismo del 15 de junio de 1999, se estimó un valor mínimo de 147 gal, un máximo de 238 gal y una media de 171 gal en dirección norte-sur para el movimiento en la superficie del terreno de la microzona II. En dirección este-oeste, se obtuvo un valor mínimo de 177 gal, un máximo de 213 gal y una media de 195 gal. En general, las máximas aceleraciones resultaron en la dirección este-oeste.

Del censo estructural realizado en la zona donde se concentraron los daños más graves durante el sismo del 15 de junio de 1999, se demostró que la mayoría de las construcciones son de uno o dos niveles, los usos principales son el habitacional y el comercial, los materiales de construcción más empleados son la mampostería de tabiques de concreto y la mampostería de adobe, los sistemas estructurales predominantes son los muros de carga confinados y los muros de carga sin refuerzo, y los sistemas de piso más utilizados son la losa de concreto y el terrado (relleno de tierra sobre vigas). Además, alrededor del 20% de las construcciones presentan niveles de agrietamiento y grados de deterioro de los materiales que van de medios a altos.

• En la zona de estudio, las tres tipologías estructurales más comunes constituyen el 62% (272 edificaciones) del total de las construcciones censadas, y son las siguientes: I) estructuras de 1 nivel, construidas con mampostería de ladrillos de concreto, a base de muros de carga confinados con dalas y castillos y con techo de losa de concreto; II) estructuras de 2 niveles, construidas con mampostería de ladrillos de concreto, a base de muros de carga confinados y con techo de losa de concreto; II) estructuras de 2 niveles, construidas con mampostería de ladrillos de concreto, a base de muros de carga confinados y con techo de losa de concreto; III) estructuras de 1 nivel, construidas con mampostería de adobe, a base de muros de carga sin refuerzo y con techo de relleno de tierra sobre vigas. A su vez, la tipología I representa el 43%, la tipología II el 32% y la tipología III el 24% de la muestra.

Casi todas las construcciones con tipología I (periodo fundamental de 0.09 segundos aproximadamente) están libres del efecto de amplificación por resonancia dinámica. De acuerdo con los resultados del método analítico, su comportamiento sísmico fue adecuado durante el temblor del 15 de junio de 1999, y es satisfactorio para el nivel de excitación dado por el espectro de diseño correspondiente (CFE, 1993); en ambos casos, los esfuerzos máximos en los muros resultaron bastante menores que los esfuerzos resistentes. Los daños estructurales severos que se presenten en este tipo de construcciones se atribuyen más bien a deficiencias constructivas que no permiten satisfacer los requisitos esenciales para lograr un buen comportamiento, tales como la rigidización del techo en su plano para que forme un diafragma, la adecuada liga del techo a los muros, así como la liga y el refuerzo en las esquinas e intersecciones de muros (GDF, 2002).

• Varias construcciones con tipología II (periodo fundamental alrededor de 0.17 segundos) están expuestas a un efecto de amplificación por resonancia dinámica. Sin embargo, de acuerdo con los resultados del método analítico, su comportamiento sísmico fue adecuado durante el temblor del 15 de junio de 1999, y es satisfactorio para el nivel de excitación dado por el espectro de diseño correspondiente (CFE, 1993); en ambos casos, los esfuerzos máximos en los muros resultaron menores que los esfuerzos resistentes. Los daños estructurales severos que se presenten en este tipo de construcciones se atribuyen más bien a deficiencias constructivas que no permiten satisfacer los requisitos esenciales para lograr un buen comportamiento, tales como los mencionados en el punto anterior.

• Casi todas las construcciones con tipología III (periodo fundamental de 0.10 segundos aproximadamente) están libres del efecto de amplificación por resonancia dinámica. De acuerdo con los resultados del método analítico, su comportamiento sísmico fue adecuado durante el temblor del 15 de junio de 1999, pero no es satisfactorio para el nivel de excitación dado por el espectro de diseño correspondiente (CFE, 1993). En el primer caso, los daños estructurales severos que se presentaron en este tipo de construcciones se atribuyen más bien a deficiencias en el mantenimiento de la mampostería de adobe. En el segundo caso, dado el nivel de aceleraciones inducidas (alrededor de 0.8g), se considera que sí pueden presentarse daños estructurales.

• De acuerdo con los valores de la máxima distorsión de entrepiso ($\gamma_{máx}$) calculados con el análisis modal espectral, y asumiendo que las edificaciones con características estructurales

similares a las de las viviendas analizadas pueden presentar un comportamiento sísmico semejante, se han definido tres clases de vulnerabilidad: A) vulnerabilidad alta ($\gamma_{máx} \ge 50\%\gamma_{permisible}$), asignada a la tipología III; B) vulnerabilidad media ($\gamma_{máx} \approx 43\%\gamma_{permisible}$), asignada a la tipología II; C) vulnerabilidad baja ($\gamma_{máx} \approx 18\%\gamma_{permisible}$), asignada a la tipología II.

Aunque se analizaron dos escenarios sísmicos importantes, en estudios posteriores convendrá simular otros sismos para investigar el efecto de fuente y de directividad en la respuesta del terreno. Además, podemos señalar que aún es necesario evaluar otros aspectos que no se incluyeron en los alcances del presente trabajo; por ejemplo, queda por investigar el efecto de sitio aplicando modelos bidimensionales o tridimensionales de la geometría del valle, así como la vulnerabilidad de las construcciones considerando el comportamiento no lineal de los materiales.

ANEXOS

ANEXO 1 CATÁLOGO DE SISMOS

Este catálogo es una recopilación de los datos de sismos localizados instrumentalmente por Figueroa (1974), González-Pomposo y Valdés-González (1995), y el Servicio Sismológico Nacional (2005) en el estado de Puebla y sus alrededores. Los eventos abarcan la región centro-sur de México y corresponden a los periodos de febrero de 1911 a octubre de 1980, de enero de 1986 a agosto de 1989, y de febrero de 1990 a diciembre de 2002. En total se obtuvieron datos de 1150 sismos, los cuales se enlistan en la tabla 1.

Las coordenadas epicentrales varían entre los paralelos 15.81°N y 20.88°N, y los meridianos 99.95°O y 94.11°O, las cuales definen el marco mostrado en la figura 1. La máxima profundidad hipocentral es de 178 km (evento no. 648 de la tabla 1). Las magnitudes se distribuyen como indica la figura 2.

Figura 1. Región de estudio.

Figura 2. Distribución porcentual de magnitudes.

No	2222	mmdd	hhmm	000	Lat.	Long.	Н	Magn	itud	No	2222	mmdd	hhmm	000	Lat.	Long.	Н	Magn	itud
INO.	aaaa	mmaa	Innini	seg	(°N)	(°O)	(km)	Richter	Coda	INO.	adaa	mmaa	Innin	seg	(°N)	(°O)	(km)	Richter	Coda
1	1911	23	2041	55.0	18.200	96.367	80.0	7.3		74	1959	411	0038	52.0	19.250	97.783		4.0	
2	1920	14	0348	3.0	19.267	96.967		7.8		75	1959	422	0111	14.0	19.250	97.783		4.8	
3	1920	14	0424	50.0	19.267	96.967		4.0		76	1959	422	1050	51.0	19.250	97.783		4.3	
4	1920	14	0500	4.0	19.267	96,967		4.0		77	1959	55	1113	52.0	19.250	97.783		4.5	
5	1920	14	0610	54.0	19.267	96.967		4.0		78	1959	524	1917	43.0	17.750	97.100	100.0	6.8	
6	1920	14	0723	10.0	19.267	96 967		4.0		79	1959	525	0541	38.0	17 750	97 100	100.0	4.0	
7	1920	17	1554	13.0	19.267	96 967		4.0		80	1959	87	2302	2.0	19.400	99.367	100.0	5.0	
, e	1020	172	0442	15.0	10.267	06.067		4.0		Q1	1050	812	1201	14.0	10.400	00.267		5.0	
0	1920	27	2206	21.0	10.267	90.907		4.0		81	1959	012	0706	20.0	17.400	99.307	100.0	5.4	
9	1920	410	2300	21.0	19.207	90.907	80.0	4.0		02	1959	910	0706	20.0	10.017	97.655	100.0	3.2	
10	1920	419	2107	5.0	10.017	97.407	00.0	6.7		03	1960	17	0004	10.0	19.517	99.207		4.0	
11	1920	1010	0222	56.0	19.167	98.667		4.0		84	1960	628	0309	10.0	19.317	99.267		4.5	
12	1921	615	1707	16.0	19.267	96.967		4.0		85	1960	628	0420	22.0	19.317	99.267		4.5	
13	1921	615	1711	16.0	19.267	96.967		4.0		86	1960	628	0611	7.0	19.317	99.267		4.5	
14	1924	929	2003	10.0	17.933	98.850		4.0		87	1961	426	2317	49.0	19.317	99.317		4.0	
15	1928	210	0439	6.0	17.850	97.633	100.0	7.7		88	1961	512	0905	2.0	19.317	99.317		4.0	
16	1928	417	0326	15.0	17.750	97.100	100.0	7.7		89	1961	924	1904	38.0	18.267	99.133		5.1	
17	1928	820	1748	56.0	19.267	97.800		4.0		90	1962	519	1458	5.0	17.300	99.433		6.5	
18	1929	615	0036	10.0	19.267	97.800		4.0		91	1962	93	0926	34.0	17.750	97.100	100.0	4.9	
19	1931	115	0000	0.0	16.340	96.870	40.0	7.8		92	1962	1130	2157	18.0	17.300	99.433		5.8	
20	1932	310	2302	30.0	18.033	96.467		5.5		93	1964	421	0438	44.0	17.933	98.850	100.0	4.5	
21	1935	43	0842	49.0	18.683	96.650		5.0		94	1964	615	0721	14.0	19.350	99.100		4.0	
22	1935	65	0626	0.0	17.217	97.883		6.0		95	1965	23	2125	48.0	17.750	97.100	100.0	4.0	
23	1935	117	2331	57.0	17.850	97.633	100.0	4.5		96	1965	92	1711	26.0	19.483	99.233		4.0	
24	1936	84	0352	15.0	18.200	96.367		4.0		97	1966	215	0654	18.0	18.467	98.450		3.8	
25	1937	726	0348	3.0	18,817	97,467	80.0	7.7		98	1966	49	2042	32.0	18,467	98,450		3.8	
26	1937	10.6	0947	38.0	17.783	99,167	00.0	7.2		99	1966	410	0028	37.0	17,750	97,100	100.0	4.7	
27	1937	1226	1756	50.0	17.000	98 083		4.0		100	1966	417	0850	21.0	18/167	98.450	100.0	4.0	
22	1029	5.2	0215	40.0	17.717	90.005		4.0		101	1044	872	0642	22.0	17 200	00.420		4.0	
20	1930	41	1000	49.0 E2.0	19.667	99.107		0.2 E.0		101	1900	12.6	1221	14.0	10.400	00.102		4.3	
29	1940	41	1900	32.0	17,022	90.155		3.0		102	1900	12.6	1004	14.0	17.207	99.105		4.0	
30	1942	723	1416	23.0	17.933	98.850	100.0	4.0		103	1967	17	1924	16.0	17.367	98.885		4.9	
31	1945	1011	1657	28.0	17.850	97.633	100.0	6.5		104	1967	411	0343	37.0	19.400	99.250		4.0	
32	1945	1021	1554	29.0	17.133	97.517		5.0		105	1967	513	0612	22.0	19.350	99.200		4.0	
33	1947	216	0216	35.0	17.850	97.633	80.0	5.4		106	1967	513	0613	36.0	19.350	99.200		4.0	
34	1948	124	2308	5.0	17.933	98.850		4.5		107	1967	513	0613	58.0	19.350	99.200		4.0	
35	1948	418	0711	46.0	18.033	96.467		4.0		108	1967	514	1146	40.0	19.350	99.200		4.0	
36	1948	811	1036	40.0	17.750	97.100	100.0	6.5		109	1967	1212	0752	45.0	17.700	97.333		4.1	
37	1948	813	0057	28.0	18.033	96.467		4.0		110	1968	217	0850	25.0	18.000	99.167		4.9	
38	1949	10 9	1247	43.0	17.783	99.167		4.0		111	1968	410	1044	15.0	17.433	96.417		3.4	
39	1949	1121	1423	1.0	19.450	99.217		4.0		112	1968	66	0916	37.0	18.617	97.700		5.1	
40	1950	311	0511	46.0	19.900	98.083		4.4		113	1968	82	1619	42.0	17.200	97.500		4.0	
41	1950	620	1859	0.0	17.217	97.833		4.0		114	1968	824	2203	15.0	17.533	99.133		3.2	
42	1950	1223	0820	55.0	19.300	99.100		4.0		115	1968	97	0723	51.0	17.650	99.250		3.2	
43	1951	823	1020	12.0	17.933	98,950	100.0	4.0		116	1968	10 1	2241	54.0	17.200	97.800	40.0	3.7	
44	1951	10.9	0917	24.0	17,750	98.100	100.0	4.0		117	1969	710	1809	13.0	19.000	98.800		4.3	
45	1951	11.2	1819	21.0	18 500	99 100	100.0	4.0		118	1969	713	1043	10.0	17 200	97 500		4.0	
46	1952	12	1401	44.0	10.000	99.100	100.0	4.5		110	1969	710	0725	22.0	18 200	97.000	70.0	3.0	
40	1952	620	18/3	18.0	19.400	99.005		4.0		120	1970	828	1739	45.0	18.400	97,400	68.0	4.0	
48	1952	629	1045	33.0	19.400	00 217		5.5		120	1970	220	21/0	57.0	18.030	99.324	98.0	4.5	
40	1952	7.2	1220	7.0	19.400	99.217		4.5		121	1971	220	0048	11.0	17.656	00.280	77.0	4.J 5.1	
49 E0	1952	72	2020	24.0	19.400	99.217		4.5		122	1971	622	0040	11.0	19 296	08 200	66.0	4.2	
50	1932	13	2030	24.0	19.400	99.217		4.3		123	19/1	022	0754	49.0	10.280	90.322	41.0	4.2	
51	1932	010	0201	0.0 E0.0	17.400	99.217	100.0	4.0		124	19/1	921	1222	10.0	10.011	90.009	41.U	4./	
52	1952	919	2338	50.0	17.850	97.633	100.0	4.0		125	1973	131	1232	20.U	18.187	97.047	0.00	4.7	-
53	1954	47	0535	48.0	18.033	90.467	100.0	4.0		126	1973	828 102 (0950	54.U	18.817	97.467	80.0	7.0	F 0
54	1954	1224	0405	57.0	17.783	99.167	100.0	4.3		127	1980	1024	0853	31.0	18.030	98.270	65.0		7.0
55	1955	37	0905	59.0	18.500	99.100	100.0	4.0		128	1986	14	1538	16.0	19.605	99.014	37.0		4.2
56	1955	316	0254	49.0	18.500	99.100	100.0	4.0		129	1986	18	1220	35.2	17.955	99.041	24.0		3.7
57	1955	318	1334	25.0	17.233	98.350		4.5		130	1986	19	0329	58.0	18.726	99.352	37.0		3.9
58	1955	319	0749	48.0	17.300	99.433		5.0		131	1986	210	0913	28.7	18.616	98.615	37.0		3.5
59	1957	1021	2118	35.0	17.783	99.167	100.0	4.5		132	1986	219	1913	40.8	18.731	98.730	16.0		4.0
60	1957	1115	0416	28.0	18.817	97.467	100.0	4.6		133	1986	220	2054	51.8	18.132	96.302	41.0		4.9
61	1957	1128	0355	54.0	17.217	97.833		4.3		134	1986	320	1012	34.1	19.346	97.614	20.0		3.4
62	1957	128	1628	50.0	18.200	96.367	80.0	4.6		135	1986	58	1844	30.3	19.669	98.667	30.0		4.0
63	1957	1224	1551	56.0	18.683	96.600		4.6		136	1986	58	1929	22.2	19.791	98.662	29.0		3.8
64	1958	53	1957	28.0	18.917	99.417		4.2		137	1986	58	1940	2.1	19.837	98.724	37.0		3.2
65	1958	819	0148	21.0	18.817	97.467		4.2		138	1986	58	2040	4.9	19.599	98.841	37.0		3.5
66	1958	1118	2318	7.0	19.333	99,183		4.0		139	1986	59	0004	39.4	19,769	98,662	37.0		3.6
67	1959	4.6	0444	24.0	19 250	97 783		4.0		140	1986	510	1645	53.4	18.378	99 770	32.0		37
69	1050	16	0725	51.0	10.250	97 792		4.0		1/1	1094	510	0652	55.9	10.570	08 911	34.0		35
60	1909	40	1747	37.0	19.200	07 700		4.U		141	1006	511	1014	20.1	12,009	00.011	24.0		3.5
70	1939	4/	0750	57.0	19.200	97.783		4.4		142	1980	511	1014	29.1	10.081	99.444	24.0		5.0
/0	1959	49	0/50	25.0	19.250	97.783		4.2		143	1986	511	1227	20.3	19.657	98.650	29.0		4.1
71	1959	49	0802	35.0	19.250	97.783		4.0		144	1986	512	2348	28.1	19.654	98.768	37.0		3.7
72	1959	49	1111	59.0	19.250	97.783		4.0		145	1986	512	2352	55.7	19.672	98.782	37.0		2.0
73	1959	410	0144	6.0	19.250	97.783		4.0		146	1986	513	1054	37.0	19.678	98.707	23.0	1	4.0

Tabla 1. Catálogo de sismos.

No	2222	mmdd	hhmm	sea	Lat.	Long.	Н	Magn	itud	No	2222	mmdd	hhmm	sea	Lat.	Long.	Н	Magni	tud
100.	aaaa	mmaa	innini	seg	(°N)	(°O)	(km)	Richter	Coda	100.	aaaa	mmaa	innin	seg	(°N)	(°O)	(km)	Richter	Coda
147	1986	513	1056	57.4	19.712	98,740	35.0		3.3	221	1987	73	0147	4.9	18.539	98.615	41.0		3.0
148	1986	520	1701	21.5	18 978	98 738	37.0		2.8	222	1987	73	0530	42.5	18 264	97 820	51.0		21
140	1006	520	0202	24.5	10.00	00.018	27.0		2.0	222	1007	70	1201	10.2	10.204	08.052	51.0		2.1
149	1900	525	1202	34.3	19.491	99.010	37.0		3.2	223	1967	720	1201	10.2	10.104	96.005	30.0		2.0
150	1986	524	1323	10.8	18.846	99.282	21.0		3.7	224	1987	721	0403	59.2	18.150	97.676	37.0		3.0
151	1986	62	1002	8.9	18.938	98.631	31.0		2.6	225	1987	721	0727	44.6	17.577	97.118	39.0		2.8
152	1986	620	0124	41.5	18.300	98.299	37.0		3.5	226	1987	721	1520	29.6	17.833	97.031	36.0		4.0
153	1986	630	0430	34.6	19.287	98.727	37.0		2.6	227	1987	723	0141	52.5	17.862	96.820	37.0		3.0
154	1986	715	2307	2.9	18.660	99.470	23.0		3.8	228	1987	723	0952	57.6	17.071	97.099	37.0		3.3
155	1986	727	0955	31.1	18 394	99 404	32.0		39	229	1987	81	2116	18.2	18 4 27	99 451	59.0		3.5
156	1086	720	1217	14.6	18 124	00.750	56.0		4.2	220	1097	82	1759	42.7	18 102	08 101	27.0		2.6
150	1006	010	2110	6.2	10.124	07.019	68.0		3.7	230	1007	0.5	0644	42.7	10.102	00.101	41.0		2.0
157	1900	012	2119	0.2	10.755	97.910	00.0		2.7	231	1967	05	1150	9.0	10.402	96.615	41.0		2.0
158	1986	824	1404	3.3	18.300	98.305	37.0		3.2	232	1987	85	1152	20.9	18.300	98.280	41.0		2.4
159	1986	830	1047	25.4	18.958	99.505	37.0		3.2	233	1987	810	1956	53.0	18.068	98.561	35.0		2.7
160	1986	830	1923	46.7	19.680	98.572	37.0		4.0	234	1987	814	0534	30.9	17.915	97.652	48.0		3.2
161	1986	830	2234	23.6	19.692	98.614	37.0		3.4	235	1987	814	0940	32.5	18.203	96.869	37.0		4.7
162	1986	91	0340	33.5	19.636	98.688	37.0		3.4	236	1987	816	0903	54.1	19.393	98.171	32.0		3.1
163	1986	92	1617	30.6	18.730	98.638	37.0		2.9	237	1987	818	1149	11.1	17.921	98.428	37.0		3.0
164	1986	911	0216	54.7	19.638	98.771	14.0		3.7	238	1987	819	1347	33.0	17.745	98.158	39.0		3.4
165	1986	925	0357	33.2	18.442	97.918	64.0		2.9	239	1987	823	0945	16.7	17.842	97,794	23.0		2.9
166	1986	1010	0047	30.3	18.761	98.586	37.0		3.3	240	1987	831	0720	33.2	17.524	97.415	37.0		3.3
167	1986	1013	0312	31.8	19 168	98 587	11.0		33	241	1987	99	0701	193	18.826	96 319	32.0		2.8
168	1986	1030	0242	28.0	18/150	99.470	37.0		30	2/12	1987	00	1600	55.3	17 235	96.966	37.0		3.6
160	1094	1110	0242	10.0	18 122	08 /29	37.0		2.9	242	1097	01/	2257	27	18 124	97 557	45.0		3.0
109	1700	1119	0707	17.4	10.133	20.430	37.0		2.9	243	1007	714	2007	2./	17.000	97.007	+J.U		3.3
1/0	1986	1123	0934	23.7	18.775	98.678	39.0		3.0	244	1987	915	1921	55.9	17.980	97.768	54.0		3.4
171	1986	126	1013	11.2	17.849	98.233	37.0		3.0	245	1987	917	1010	0.7	17.980	97.144	37.0		3.5
172	1986	127	0452	27.5	18.837	99.470	41.0		3.5	246	1987	919	0738	15.7	17.370	97.235	40.0		2.8
173	1986	1213	0030	29.9	17.788	98.673	37.0		3.6	247	1987	920	1434	56.0	18.008	98.583	19.0		2.7
174	1986	1215	2315	41.7	18.494	97.948	62.0		3.8	248	1987	925	0747	44.8	17.834	98.510	13.0		3.5
175	1986	1219	0804	8.6	18.300	99.332	59.0		2.0	249	1987	10 4	0417	6.9	18.756	98.659	37.0		2.9
176	1986	1219	1536	20.3	18.542	99.542	20.0		4.1	250	1987	1014	0707	54.0	18.989	99.232	32.0		3.6
177	1986	1224	0726	4.7	17,797	97.557	37.0		3.0	251	1987	1017	1819	22.0	18,233	97.291	37.0		2.8
178	1986	1226	1621	58.5	17 676	96 734	37.0		4.0	252	1987	1020	2021	34.5	19 791	98 542	37.0		3.3
170	1086	1220	2052	10.7	17.070	06.662	48.0		4.0	252	1087	1020	0747	21.0	18 226	00.914	37.0		2.9
1/9	1007	1251	2033	19.7	10.170	90.002	40.0		4.4	255	1907	1022	0/4/	21.0 41.5	17.064	99.014	37.0		3.0
180	1987	115	2034	59.Z	18.1/8	98.561	41.0		3.2	254	1987	1025	0432	41.5	17.964	97.856	41.0		3.0
181	1987	117	2335	36.3	17.832	98.199	33.0		2.9	255	1987	11.2	0423	0.5	17.900	98.899	41.0		2.8
182	1987	119	0409	57.5	19.909	97.198	37.0		2.9	256	1987	11.2	0614	26.4	17.293	98.444	41.0		3.5
183	1987	121	0341	49.3	18.694	96.542	46.0		3.8	257	1987	11 4	1845	24.5	19.709	96.799	37.0		3.1
184	1987	122	0539	8.4	17.883	97.449	46.0		4.0	258	1987	11 5	1616	23.1	18.186	98.138	37.0		2.6
185	1987	126	2357	53.0	19.058	99.171	30.0		3.3	259	1987	11 5	1623	26.8	18.226	97.919	37.0		3.0
186	1987	127	0351	35.0	18.162	98.462	34.0		4.4	260	1987	117	0254	21.9	18.157	98.079	37.0		2.3
187	1987	129	0943	42.7	18.098	98.356	37.0		3.6	261	1987	117	2250	33.2	18.378	99.702	37.0		2.8
188	1987	2.8	1940	38.6	19.369	99.197	37.0		2.3	262	1987	1115	0329	21.7	17.357	97.371	53.0		3.9
189	1987	218	0126	37.4	19 242	97 620	24.0		31	263	1987	1124	0558	44.3	17 428	98 197	37.0		3.4
100	1987	210	0807	38.7	18 378	99.470	37.0		3.7	264	1987	1127	0834	30.9	17 342	98 254	37.0		37
101	1087	217	0738	30.7	10.570	00 176	37.0		2.0	265	1087	127	2226	12.0	18 206	07 750	37.0		2.2
102	1007	225	1754	52.5	17.302	99.170	27.0		2.9 E 1	205	1907	12.0	2230	12.9	18 522	97.739	22.0		3.2
192	1967	32	1734	34.1	17.100	94.106	37.0		5.1	200	1987	127	2240	11.9	10.322	90.001	32.0		2.0
193	1987	39	1133	27.3	19.247	97.379	37.0		2.9	267	1987	12.8	0902	54.6	18.139	98.464	37.0		2.3
194	1987	312	1847	56.5	19.384	99.111	37.0		3.3	268	1987	1210	0424	15.8	18.007	98.633	31.0		2.9
195	1987	326	1029	56.4	17.803	98.112	37.0		3.8	269	1987	1213	0130	46.1	18.028	98.275	34.0		2.7
196	1987	41	0616	9.5	18.031	99.680	22.0		4.0	270	1987	1214	1244	14.5	17.964	98.067	37.0		3.6
197	1987	43	0529	24.9	17.945	99.665	37.0		3.3	271	1987	1214	1654	28.8	18.264	97.978	37.0		2.3
198	1987	46	0523	43.8	18.550	99.470	50.0		4.2	272	1987	1215	0415	52.8	17.802	98.359	32.0		2.7
199	1987	410	1003	0.4	18.132	98.483	41.0		3.2	273	1987	1215	1115	20.5	17.709	96.929	41.0		3.6
200	1987	416	0524	59.8	17.774	99.098	21.0		3.2	274	1987	1218	0256	36.8	18.777	99.273	24.0		2.8
201	1987	418	0830	42.9	19.534	98.334	37.0	1	3.1	275	1987	1221	0410	3.7	18.534	97.144	41.0		2.9
202	1987	422	1841	16.1	17.071	97,651	40.0		3.1	276	1987	1223	1148	54.1	16,651	98,260	44.0		3,1
203	1987	474	0807	35.9	17 864	97 801	37.0		2.8	277	1987	1225	0720	21.2	17 775	97 570	40.0		31
203	1987	425	0130	12.9	18.007	99.860	37.0		4.7	278	1987	1225	2130	14	17 531	94 647	37.0		3.0
204	1007	420	2220	50.2	17.007	00 500	37.0		±./	270	1007	1223	21.59	2.4	17.001	07.041	64.0		2.2
200	1707	51	2320	6.4	10.00	99.092	27.0		3.9	2/9	1007	1220	2011	47.0	17.090	07 110	22.0		2.6
206	1987	58	0000	0.4	18.885	99.036	37.0		3.8	280	1987	1229	2337	47.3	17.145	97.110	23.0		3.6
207	1987	59	0856	31.2	17.099	97.703	37.0	<u> </u>	3.6	281	1988	15	0532	46.2	17.941	98.259	50.0		2.0
208	1987	513	0408	48.0	19.292	97.412	25.0	ļ	3.4	282	1988	119	1523	33.2	15.814	99.523	37.0		2.0
209	1987	525	1240	1.3	19.271	98.818	41.0		3.0	283	1988	124	0132	44.5	17.513	99.262	37.0		2.0
210	1987	525	2143	32.0	17.801	96.940	37.0		4.1	284	1988	124	1709	35.4	18.029	98.198	37.0		2.0
211	1987	531	0737	20.3	18.515	98.516	37.0		2.4	285	1988	129	1429	7.5	18.225	96.980	37.0		2.0
212	1987	612	1014	20.1	18.976	99.260	37.0		3.3	286	1988	130	2325	54.1	18.130	96.220	32.0		2.0
213	1987	617	0806	33.9	18.144	97.672	37.0	1	2.8	287	1988	131	0617	9.6	18.378	99.099	37.0		2.0
214	1987	619	0439	14.4	18.071	98.801	37.0	1	2.8	288	1988	131	1046	22.1	17.282	99.423	37.0		2.0
215	1987	622	1041	58.5	16.663	99.020	37.0		4.0	289	1988	21	0744	57.0	19,253	97,586	28.0		2.0
216	1087	676	1850	13.9	16 592	98.877	32.0		1.0	200	1089	22	0741	44.2	17.014	98 204	27.0		2.0
210	1007	627	0510	10.0	17.064	07.420	32.0		4.1 2.6	290	1000	2.3	0242	- 11 .∠ 20.4	17.010	07.071	52.0		2.0
21/	1987	627	1429	49.2	17.904	97.430	57.0		3.0	291	1988	211	1220	39.4	17.923	97.971	33.0		2.0
218	1987	627	1438	30.2	17.637	97.144	41.0		4.0	292	1988	216	1530	24.3	18.715	90.693	44.0	\vdash	2.0
219	1987	630	0615	45.5	18.097	97.530	37.0		2.6	293	1988	218	1607	35.0	18.300	98.930	41.0		2.0
	1087	. 71	1921	60	1 18 066	ur/ 765	490	1	20	794	1988	- 218	1 1830	37.5	18 005	I US 606	320		2.0

Tabla 1. Catálogo de sismos (continuación).

No	2222	mmdd	hhmm	600	Lat.	Long.	Н	Magn	itud	No	2222	mmdd	hhmm	600	Lat.	Long.	Н	Magnitud
140.	aaaa	mmaa	iuuiuii	seg	(°N)	(°O)	(km)	Richter	Coda	100.	aaaa	mmaa	iuuiuii	seg	(°N)	(°O)	(km)	Richter Coda
295	1988	221	0022	34.2	19.216	96.418	32.0		2.0	370	1988	819	1111	31.4	16.754	96.185	23.0	4.1
296	1988	221	2017	42.4	19 289	97 189	37.0		2.0	371	1988	820	0322	45.8	17 834	96 239	37.0	33
297	1988	225	1150	37.4	18 778	00 181	37.0		2.0	372	1988	820	0616	37.1	15.965	98.256	37.0	4.2
200	1000	225	0712	22.2	10.770	07.444	46.0		2.0	272	1000	820	0421	57.1	16.020	07.100	10.0	1.2
298	1900	228	0712	23.3	10.005	97.444	40.0		2.0	373	1900	020	0421	37.1	10.030	97.199	10.0	3.9
299	1988	228	2241	49.8	18.105	98.332	37.0		2.0	374	1988	831	1957	28.8	18.584	95.734	32.0	2.9
300	1988	37	0333	25.2	17.836	96.134	22.0		2.0	375	1988	98	1419	29.3	18.096	98.064	42.0	2.5
301	1988	312	2213	3.1	17.904	97.549	37.0		2.6	376	1988	912	0755	38.5	17.195	96.692	37.0	3.2
302	1988	324	1325	42.5	18.002	98.705	37.0		4.1	377	1988	913	2212	46.7	17.904	97.612	54.0	2.6
303	1988	325	0408	14.5	18.210	98.681	37.0		3.6	378	1988	914	2121	0.6	17.112	96.691	27.0	3.9
304	1988	325	0720	6.5	17.964	97.891	42.0		2.6	379	1988	919	1900	36.2	18.150	98.123	37.0	2.5
305	1988	326	2358	21.8	17.896	97.473	48.0		4.4	380	1988	922	0824	43.3	17.032	99.293	41.0	3.9
306	1988	4.1	0330	37.7	18 023	97 928	51.0		3.6	381	1988	925	1747	0.1	18 153	98 538	37.0	2.8
307	1988	41	2358	26.3	19 325	97 422	26.0		27	382	1988	925	2354	2.0	18 434	98.017	37.0	2.0
308	1988	10	0615	41.9	18 303	97 250	43.0		2.7	383	1988	1010	1307	13.0	18 529	97.856	37.0	3.8
200	1000	417	0645	76	10.303	07.160	27.0		2.4	201	1000	1010	2222	10.7	17.050	07.247	46.0	5.0
210	1000	417	2220	7.0	19.411	97.100	37.0 4E.0		2.0	205	1000	1010	2333	40.7 E1.0	17.930	97.247	40.0 E4.0	4.0
211	1900	420	2339	1.0	10.144	97.713	45.0		3.0	200	1900	1012	1(4)	51.8	10.025	97.209	27.0	2.0
311	1988	430	0236	1.2	18.108	98.179	37.0		3.1	386	1988	1012	1642	0.2	18.035	98.280	37.0	2.5
312	1988	51	1641	21.4	18.103	98.167	37.0		2.3	387	1988	1017	2230	54.6	17.783	98.144	39.0	2.7
313	1988	53	0040	6.9	17.389	97.491	37.0		4.1	388	1988	1022	1234	48.9	18.063	98.479	29.0	3.6
314	1988	53	1032	9.1	18.115	99.344	37.0		3.0	389	1988	1023	1334	9.9	17.978	96.927	41.0	3.0
315	1988	54	0409	25.2	18.790	99.237	37.0		3.4	390	1988	1028	1315	33.6	17.517	99.408	56.0	3.2
316	1988	56	0803	15.1	17.892	99.011	37.0		2.7	391	1988	1029	2205	2.2	19.160	96.275	32.0	3.4
317	1988	57	2333	47.5	18.054	96.891	46.0		3.9	392	1988	11 4	1515	3.0	17.953	97.860	50.0	2.5
318	1988	57	2340	10.4	17.935	98.967	37.0		3.4	393	1988	11 6	0659	29.7	18.101	98.149	38.0	3.1
319	1988	59	0037	49.1	17.988	98.944	40.0		3.8	394	1988	1112	1101	12.5	18.253	97.323	47.0	3.4
320	1988	59	0802	1.2	18.195	97.625	47.0		2.7	395	1988	1120	0023	49.5	16.791	98.146	24.0	3.4
321	1988	59	2251	35.1	18.064	98.437	37.0		2.5	396	1988	1125	1830	46.0	17.314	96.725	37.0	3.0
322	1988	510	0633	43.2	19,164	99,006	15.0		3.8	397	1988	12.5	1231	58.5	18,192	98,055	41.0	3.4
323	1988	511	2314	19	18 152	97.574	50.0		31	398	1988	12.8	0826	79	16 959	97 856	32.0	3.3
324	1988	512	0615	17.7	10.152	99.063	37.0		3.2	300	1988	12.0	1547	28.7	17 022	96.024	37.0	2.0
225	1000	512	1001	17.7 E1.0	10.009	99.003	27.0		2.1	400	1000	12.9	2117	20.7 E2.0	10 100	90.924	27.0	2.9
323	1900	512	2122	51.0	17.004	99.065	57.0		3.1	400	1900	1210	2117	33.9	17,200	97.092	37.0	2.0
326	1988	512	2122	40.1	17.964	98.085	50.0		2.4	401	1988	1212	0643	40.3	17.208	96.044	18.0	3.8
327	1988	514	0557	26.6	17.608	97.480	41.0		2.8	402	1988	1224	1732	54.8	16.786	99.099	32.0	4.3
328	1988	515	0803	15.5	17.901	98.193	37.0		2.6	403	1988	1230	0736	46.1	17.957	98.366	37.0	3.3
329	1988	516	0010	42.3	18.461	96.825	20.0		3.0	404	1989	11	0306	1.5	17.987	98.355	37.0	2.2
330	1988	517	2133	27.8	18.214	97.680	37.0		2.2	405	1989	11	0503	17.4	18.092	98.066	44.0	2.6
331	1988	518	1014	30.8	17.417	97.218	55.0		2.4	406	1989	11	0903	4.7	18.025	97.788	41.0	3.6
332	1988	525	0923	56.5	16.778	99.154	37.0		3.6	407	1989	11	2332	28.7	17.598	97.270	50.0	3.1
333	1988	525	1541	13.0	19.371	97.516	37.0		3.5	408	1989	14	1320	6.0	17.995	97.842	49.0	3.0
334	1988	527	0821	51.0	18.808	99.205	29.0		2.8	409	1989	16	0531	40.0	17.055	98.916	37.0	3.8
335	1988	528	1413	20.7	17.852	98.535	39.0		3.5	410	1989	114	2314	55.1	18.070	97.907	44.0	2.7
336	1988	529	0611	48.9	18.378	99.470	20.0		4.6	411	1989	115	1708	33.9	17.964	97.723	37.0	2.4
337	1988	529	1029	17.9	18.224	99.470	37.0		4.0	412	1989	117	0442	40.2	18.086	98.212	37.0	2.8
338	1988	530	0906	32.2	17 334	98 217	37.0		2.8	413	1989	118	0404	32.8	17 964	97.571	40.0	2.8
339	1988	531	0727	53.5	17 706	97 144	40.0		3.8	414	1989	118	1643	19.5	17 593	97.026	34.0	3.0
340	1988	62	1130	21.3	18.657	98.044	41.0		3.0	415	1080	120	0618	47.7	17.055	97 374	48.0	2.8
241	1000	610	1424	21.5	17 705	00.011	42.0		2.7	416	1000	120	0520	10.0	12.060	07.052	27.0	2.0
242	1900	610	1454	20.1	19.246	90.911	42.0		3.7	410	1969	122	1(22	19.0	17.701	97.005	37.0	3.2
342	1988	011	1005	17.7	10.246	98.587	40.0		3.1	417	1989	122	1033	13.6	17.791	95.908	41.0	4.0
343	1988	612	1005	47.7	18.153	97.885	46.0		2.6	418	1989	124	0/52	12.9	17.179	96.933	37.0	4.0
344	1988	615	1008	36.2	18.208	97.817	49.0		2.6	419	1989	124	1146	8.4	18.571	99.556	30.0	3.9
345	1988	616	1557	42.6	17.985	98.403	38.0		2.8	420	1989	125	0005	2.2	16.300	98.488	37.0	4.1
346	1988	617	1006	7.1	18.119	97.996	51.0		2.6	421	1989	126	1555	8.4	17.399	97.258	37.0	3.2
347	1988	625	1227	27.1	17.597	97.499	41.0		3.9	422	1989	126	1600	13.2	17.582	97.001	51.0	3.1
348	1988	629	1509	52.1	18.062	97.952	41.0		3.9	423	1989	21	1650	17.6	17.879	97.877	47.0	2.5
349	1988	76	1957	42.4	17.964	97.521	37.0		2.6	424	1989	21	2321	14.1	17.964	97.631	39.0	2.5
350	1988	78	0305	19.4	17.893	98.463	37.0		3.2	425	1989	23	0454	20.7	17.828	99.470	37.0	2.5
351	1988	79	0424	48.6	18.091	97.645	37.0		2.4	426	1989	26	0651	22.2	17.440	97.274	48.0	2.9
352	1988	713	1058	2.2	17.880	98.701	32.0		3.4	427	1989	27	1241	54.4	17.945	97.936	43.0	2.8
353	1988	714	0538	25.8	18.021	96.041	41.0		3.4	428	1989	29	1406	59.3	18.090	98.766	40.0	3.5
354	1988	718	2120	34.3	17.269	96.734	37.0		3.1	429	1989	29	2149	53.7	17.993	99.107	33.0	2.3
355	1988	724	1542	8.5	17.856	97,989	46.0		2,9	430	1989	212	1120	9.9	17,918	98,694	37.0	3.1
356	1988	725	0431	42.4	17.947	98,209	33.0		3.4	431	1989	213	0149	42	19,168	95,963	24.0	3.8
357	1988	728	2342	38.8	17 795	98.615	24.0		26	432	1989	210	2000	56.2	19.059	98.615	37.0	2.4
358	1988	81	1621	7.4	18.062	99.204	37.0		3.2	432	1980	224	1413	8.4	18 08/	95.015	41.0	2.4
250	1000	01	0057	52.0	10.002	00 0/ 0	27.0		4.2	424	1000	220	2011	25.4	17.047	00.00	42.0	3.3
339	1988	82	00000	32.9	10.000	20.000	37.0		4.2	434	1989	22/	2011	23.4	17.947	90.084	43.0	2.7
360	1988	82	0623	3.4	17.4/8	90.734	42.0		2.6	435	1989	313	0330	59.9	10.814	99.653	37.0	3.8
361	1988	82	2326	24.6	17.983	97.088	59.0		2.9	436	1989	313	1600	17.0	16.234	98.243	37.0	4.0
362	1988	83	0248	39.4	17.475	96.658	37.0		3.6	437	1989	316	2121	58.1	17.612	98.046	41.0	3.8
363	1988	84	2054	3.4	17.812	98.304	22.0		2.4	438	1989	318	0749	53.4	17.964	98.084	41.0	2.7
364	1988	89	2357	0.2	18.277	97.380	37.0		2.7	439	1989	320	2022	29.0	18.035	97.795	49.0	2.6
365	1988	810	2048	24.0	18.277	96.135	37.0		3.4	440	1989	321	0907	34.7	17.888	98.373	37.0	2.2
366	1988	810	2318	55.4	17.960	98.165	38.0		2.6	441	1989	325	1750	15.4	18.132	98.143	37.0	2.8
367	1988	811	1036	32.0	17.316	97.643	33.0		3.9	442	1989	327	1717	37.3	18.170	98.840	37.0	2.6
368	1988	813	2218	20.8	17.781	95.630	37.0		4.2	443	1989	41	0548	43.7	17.990	97.887	40.0	2.8
369	1988	816	1236	39.6	18.084	98.462	16.0		3.6	444	1989	42	0225	27.1	19.088	99.304	18.0	2.7

Tabla 1. Catálogo de sismos (continuación).

No	2222	mmdd	hhmm	800	Lat.	Long.	Н	Magni	tud	No	2222	mmdd	hhmm	600	Lat.	Long.	Н	Magni	tud
100.	aaaa	mmaa	iuuiuii	seg	(°N)	(°O)	(km)	Richter	Coda	100.	aaaa	mmaa	innin	seg	(°N)	(°O)	(km)	Richter	Coda
445	1989	43	0833	26.8	18.888	98.752	29.0		3.2	520	1991	719	1823	32.5	17.930	97.250	63.0		3.9
446	1989	43	1129	38.0	18.123	99.293	33.0		4.0	521	1991	729	0748	29.2	19.740	96.640	46.0		3.8
447	1989	44	1328	27.8	19.023	98,706	18.0		3.5	522	1991	818	1318	12.1	19.330	99.240	1.0		3.8
448	1989	44	1854	0.9	18.352	98.028	37.0		2.5	523	1991	825	1714	45.5	18.290	97.800	20.0		3.9
449	1989	4.8	1804	54.1	16 954	98.463	29.0		4.0	524	1991	918	2301	45.2	18 810	97 340	28.0		3.5
450	1989	412	0547	14.4	17 964	97 519	64.0		2.0	525	1991	10.5	1231	53.0	17.030	96 720	67.0		4.1
451	1080	412	1040	15.0	10 226	07.442	27.0		2.4	525	1001	103	1452	25.0	17.030	07.660	60.0		4.2
451	1909	412	1040	2.4	19.550	07 292	22.0		3.0	520	1991	1023	1055	14.0	19 200	97.000	50.0		4.3
452	1989	412	1042	3.4	19.605	97.282	32.0		2.9	527	1991	1027	1857	14.8	18.280	99.300	50.0		4.5
453	1989	420	0/41	25.2	18.932	99.949	29.0		2.6	528	1991	1121	1918	41.4	20.540	99.110	5.0		3.6
454	1989	420	0830	1.4	18.748	97.520	42.0		2.2	529	1991	1126	0627	51.7	17.450	96.660	80.0		4.9
455	1989	425	2234	15.9	17.813	99.399	37.0		3.3	530	1991	1130	0132	31.0	17.900	98.310	48.0		3.9
456	1989	428	0929	39.4	16.713	99.450	37.0		3.2	531	1991	12 6	1257	49.9	17.090	96.480	53.0		3.8
457	1989	428	1641	59.8	18.315	97.610	41.0		2.3	532	1992	11	2346	33.2	18.170	99.070	82.0		3.7
458	1989	53	0736	1.9	18.107	97.710	37.0		2.3	533	1992	16	0745	10.5	18.170	96.480	70.0		4.1
459	1989	54	0011	29.8	17.234	99.572	32.0		3.2	534	1992	118	0317	56.7	19.170	98.310	5.0		3.5
460	1989	58	1114	39.0	17.869	97.778	47.0		2.5	535	1992	118	1958	14.6	19.200	98.310	5.0		3.4
461	1989	528	1712	58.5	17.278	99.722	37.0		3.2	536	1992	222	2033	3.2	18.230	97.260	75.0		3.7
462	1989	529	0408	9.6	17.644	98.927	37.0		3.5	537	1992	424	0240	15.8	17.930	98.790	60.0		3.8
463	1989	630	1919	10.6	17.814	97.282	41.0		2.7	538	1992	51	2253	7.9	17.110	99.490	74.0		3.5
464	1989	77	2212	12.8	17.730	97.531	37.0		2.7	539	1992	511	1830	54.5	17.010	98.250	54.0		4.1
465	1989	78	0627	45.1	19.338	97.700	32.0		3.0	540	1992	513	1650	57.0	18.630	97.030	4.0		3.5
466	1989	713	1354	5.9	18.080	98.384	37.0		3.2	541	1992	65	0857	50.4	17.400	96.490	58.0		3.9
467	1989	716	1159	18.3	19.143	99.571	37.0		3.2	542	1992	617	0614	11.8	20.460	99.180	10.0		4.1
468	1989	724	1030	16	17,903	97,961	58.0		3.4	543	1992	623	0532	31.6	20.600	99,060	5.0		4.1
469	1989	727	1237	14.4	17 794	99 164	37.0		3.4	544	1992	720	2259	35.0	19 290	97 500	5.0		3.8
470	1980	813	2300	24.4	18 108	97.050	58.0		2.4	545	1992	8.4	0127	42.7	17.640	97.500	70.0		3.8
471	1980	816	0320	30.3	16 017	98 1/10	37.0		3.2	546	1902	811	1327	53.7	17.040	96 710	34.0		41
470	1020	Q10	0029	50.5	10.252	07 3/4	27.0	┝───┤	2.2	540	1002	Q10	0711	55.7	17.700	96.240	57.0	-	т.1 // 1
472	1000	010	2025	5.0	16 410	97.244 08.00E	37.0		2./	540	1002	012	0/11	90.5 9 E	17.000	90.340	100.0		4.1
4/3	1989	028	1145	52.8 E1 7	10.412	90.000	37.0		2.4	548 E40	1992	923	1100	0.0 F0.7	17.270	90.100	109.0		4.3
4/4	1990	24	1145	51.7	18.040	99.200	20.0		3.8	549	1992	927	1100	50.7	17.010	99.490	19.0		4.2
4/5	1990	211	1922	34.9	20.770	97.040	120.0		4.3	550	1992	1115	2212	20.2	18.020	98.390	70.0		3.8
476	1990	212	1147	49.4	19.370	99.200	4.0		3.5	551	1992	1122	1307	56.2	18.280	98.180	90.0		3.6
477	1990	228	0711	59.5	17.620	98.570	15.0		3.8	552	1992	1130	1726	47.2	17.590	97.380	96.0		4.2
478	1990	39	2126	45.4	17.650	96.400	127.0		3.8	553	1992	12 2	1623	2.0	19.050	98.860	7.0		3.7
479	1990	318	0049	18.5	19.220	99.180	5.0		3.2	554	1992	12 4	2324	17.0	18.550	99.480	7.0		3.6
480	1990	318	0542	38.0	20.240	96.440	27.0		4.2	555	1993	16	0044	23.6	17.900	98.740	65.0		4.4
481	1990	422	1237	53.9	19.370	99.300	6.0		3.3	556	1993	23	2312	43.9	17.880	97.760	77.0		4.5
482	1990	422	1240	58.7	19.490	99.360	10.0		3.5	557	1993	222	2013	44.2	17.010	99.220	55.0		3.9
483	1990	426	1821	40.5	17.870	98.260	60.0		3.7	558	1993	227	1858	51.9	18.070	99.470	19.0		3.6
484	1990	529	1236	51.7	18.110	98.020	10.0		3.9	559	1993	38	1437	41.0	19.250	98.930	11.0		3.3
485	1990	67	2004	26.7	19.570	99.240	2.0		3.1	560	1993	320	0153	7.6	19.250	97.090	28.0		3.5
486	1990	614	1701	6.6	17.740	96.860	56.0		3.7	561	1993	320	0154	30.8	19.220	97.160	20.0		3.7
487	1990	76	1016	27.0	19.110	98.120	9.0		3.4	562	1993	320	0204	25.2	19.300	97.250	8.0		3.8
488	1990	76	1038	40.9	19.020	97.980	14.0		3.2	563	1993	324	0141	11.8	19.720	97.950	17.0		3.4
489	1990	730	0923	7.5	17.560	99.250	176.0		3.7	564	1993	331	0651	16.3	17.300	97.130	51.0		4.3
490	1990	85	1437	54.5	20.040	97.490	34.0		3.8	565	1993	414	0431	36.2	17.040	99.460	20.0		4.6
491	1990	92	0327	40.0	18.940	98.840	16.0		3.6	566	1993	430	0749	15.1	19.760	96.450	44.0		3.7
492	1990	93	0405	55.0	17.880	97.660	19.0		3.7	567	1993	430	1148	59.0	19.350	96.220	23.0		4.1
493	1990	919	1447	48.4	19,590	98,650	3.0		3.5	568	1993	430	1505	40.0	19,340	96,160	8.0		4.5
494	1990	10.1	0800	11.1	20.080	98.940	30.0		3.4	569	1993	51	2001	0.1	17.870	99.380	69.0		4.1
495	1990	10.6	2211	20.0	18,490	96,520	20.0		3.8	570	1993	59	0300	6.1	17,990	98,600	56.0		4.0
496	1990	1017	2032	26.6	17 680	99,000	40.0		4.4	571	1993	59	1808	18.2	19.650	96.630	50		3.6
497	1990	11.1	1708	56.5	17.370	97.350	76.0	+ +	4.3	572	1993	513	0046	48.2	17.050	99,180	87.0		4.2
498	1990	1115	0427	16.6	17 730	97 520	88.0	+	4.8	573	1993	515	1637	22.0	18 190	98.530	63.0		3.8
400	1990	1110	1000	32.5	17.050	96 760	59.0		4.0	574	1993	524	22/13	34.7	17 240	96.600	76.0		4.2
500	1990	1120	0010	11.0	19 020	96.450	7.0		3.6	575	1993	525	1907	37.5	17.240	97.020	42.0		4.2
500	1000	1127	1652	28.2	17.920	90.400	44.0	├	4.0	575	1002	529	0650	32.5	10 200	98 720	40.0		3.4
501	1990	12.2	0227	20.3	10.740	99.490 06.4E0	17.0		±.0	570	1002	6.2	0050	52.5	17.390	90.720	94.0		1.2
502	1990	12.2	1120	42.7	17.740	90.430	64.0		3.9	570	1002	611	0202	17.2	12.020	00.900	77.0		4.3
503	1990	122	0527	42.7	12 100	90.740	04.0 80.0		3.5	570	1993	611	1211	17.3	17.090	90.28U	1/2.0		3.0
504	1990	1230	0327	41.0	10.190	97.960	00.0		3./	5/9	1993	011	1211	9.5	17.800	90.000	148.0		5./
505	1991	123	1520	15.8	19.740	96.520	30.0		3.9	580	1993	615	1158	28.7	10.000	99.320	11.0		3.6
506	1991	220	1520	10.3	17.950	98.730	62.0	\vdash	3.9	581	1993	617	2314	32.9	19.560	97.520	21.0		3.7
507	1991	310	1826	11.3	17.900	97.330	88.0	\vdash	3.5	582	1993	623	1337	42.7	17.280	96.520	53.0	-	4.2
508	1991	415	2241	55.0	18.020	99.470	35.0		4.4	583	1993	628	2112	5.6	18.130	96.720	67.0		3.9
509	1991	423	1811	19.2	19.100	96.370	20.0		4.2	584	1993	71	0034	26.5	18.120	97.540	32.0		3.6
510	1991	429	0223	25.3	17.950	98.540	32.0		4.1	585	1993	713	1946	34.5	17.280	97.210	60.0		3.9
511	1991	56	0718	23.0	17.670	96.530	95.0		3.7	586	1993	716	2039	17.0	19.540	97.410	102.0		3.6
512	1991	58	0211	32.7	17.730	99.470	47.0		3.6	587	1993	726	0656	5.8	17.380	96.530	72.0		3.8
513	1991	515	1934	44.5	18.000	98.180	100.0		4.1	588	1993	729	1750	40.2	19.050	98.890	9.0		4.3
514	1991	521	0558	27.7	17.100	99.340	21.0		4.9	589	1993	730	1415	44.0	19.070	98.920	8.0		3.9
515	1991	526	0704	27.3	17.700	99.500	28.0		3.9	590	1993	84	2229	35.7	19.270	99.020	12.0		3.3
516	1991	530	0431	23.7	17.320	96.680	84.0		4.1	591	1993	85	0120	48.2	17.080	98.530	32.0		5.1
517	1991	531	2023	44.5	17.820	98.120	17.0		3.6	592	1993	88	1202	51.7	18.210	98.340	60.0		3.2
518	1991	62	1203	49.0	18.180	98.340	27.0		4.2	593	1993	822	1937	11.6	17.950	98.450	75.0		3.8
519	1991	67	1111	58.2	19.010	97.380	16.0		3.7	594	1993	831	1429	17.7	17.550	99.040	59.0		3.9

Tabla 1. Catálogo de sismos (continuación).

No	2222	mmdd	hhmm	600	Lat.	Long.	Н	Magnit	ud	No	2222	mmdd	hhmm	600	Lat.	Long.	Н	Magnitud
100.	aaaa	mmaa	innini	seg	(°N)	(°O)	(km)	Richter	Coda	100.	aaaa	mmaa	innini	seg	(°N)	(°O)	(km)	Richter Coda
595	1993	912	1537	33.4	20.140	96.540	16.0		4.0	670	1995	1225	2036	47.7	17.820	97.640	73.0	3.8
596	1993	912	1551	34.2	20.130	96.560	9.0		4.0	671	1996	11	0323	35.2	19.170	98.980	11.0	2.9
597	1993	915	0859	39.0	18,990	98,730	6.0		3.3	672	1996	13	0133	9.1	17.980	97.980	64.0	3.8
598	1993	1014	0208	46.2	17.450	96.650	45.0		3.9	673	1996	23	0034	3.5	19.150	98.340	19.0	3.3
599	1993	1016	1750	28.7	19.800	98.650	44.0		3.7	674	1996	24	1022	45.4	17.870	98.910	16.0	3.4
600	1993	1023	2204	36.2	19.590	98.600	41.0		3.6	675	1996	210	0014	30.7	19.210	98.330	15.0	3.7
601	1994	14	1906	30.8	18,910	97.860	76.0		3.9	676	1996	213	0033	38.0	19.080	98.260	17.0	3.3
602	1994	124	1611	49.4	19.220	98.670	54.0		3.8	677	1996	327	0805	15.1	19,770	99.010	8.0	3.4
603	1994	131	2346	48.2	19.580	98 810	30.0		3.6	678	1996	417	1119	10.3	19 210	98 940	10.0	3.5
604	1994	21	2321	38.0	19.000	99.080	13.0		3.8	679	1996	427	1756	48.2	19 210	98.810	13.0	3.7
605	1994	223	0058	12.3	19.660	98.460	28.0		3.6	680	1996	430	0139	54.9	19.050	98.600	7.0	3.6
606	1994	223	1413	51.0	17.820	97 300	53.0		5.0	681	1996	430	0145	20.8	19.060	98 760	13.0	3.0
607	1994	223	1445	24.8	17.820	97.370	71.0		4.0	682	1996	53	0919	79	18 160	98,530	31.0	3.6
608	1994	225	0833	22.1	19.820	98.600	81.0		4.0	683	1996	65	0940	42.5	20,700	99.500	19.0	4.2
609	1994	225	1501	42.4	19.750	98.510	100.0		4.0	684	1996	67	0810	54.0	19.190	98,940	12.0	3.5
610	1994	225	1510	56.7	19.940	98.550	15.0		3.8	685	1996	613	1635	45.2	18,950	98,700	5.0	3.8
611	1994	225	1957	43.2	19.880	98.670	16.0		4.0	686	1996	615	2053	48.5	17.800	98,400	37.0	4.3
612	1994	225	2111	46.7	19.560	98.700	90.0		3.9	687	1996	619	1915	12.5	17.920	97.880	15.0	3.8
613	1994	226	1000	27.7	19,780	98,900	54.0		4.0	688	1996	72	0315	24.6	19.070	98,680	15.0	3.7
614	1994	226	1638	33.5	19.700	98.700	74.0		4.3	689	1996	76	0359	38.2	17.820	99.010	23.0	4.1
615	1994	226	1918	54.7	19.680	98.790	70.0		4.1	690	1996	723	1355	29.1	19.330	98.780	5.0	3.5
616	1994	320	0506	32.5	18.200	99.230	35.0		3.4	691	1996	731	2309	59.9	18.160	97.840	72.0	3.8
617	1994	324	0652	15.3	19.480	96.440	7.0		4.0	692	1996	820	0239	46.0	17.140	98.240	5.0	3.9
618	1994	331	2007	21.7	19.490	96.420	4.0		2.9	693	1996	91	1347	21.5	19.070	98.580	6.0	3.8
619	1994	41	1616	15.6	19.500	96.410	5.0		3.8	694	1996	95	0544	15.6	18.030	98.940	34.0	4.1
620	1994	43	0249	42.2	19.490	96.390	5.0		3.8	695	1996	96	0655	0.6	19.210	98.360	5.0	4.0
621	1994	43	0344	21.6	19.520	96.410	5.0		3.0	696	1996	96	0829	21.7	17.130	96.860	80.0	4.1
622	1994	43	0510	50.0	19.490	96.410	5.0		3.1	697	1996	918	0031	51.5	19.070	98.610	4.0	3.4
623	1994	43	1502	31.5	19.500	96.420	5.0		3.1	698	1996	918	2017	24.7	17.740	97.450	70.0	3.8
624	1994	48	0109	5.6	19.460	96.430	7.0		2.7	699	1996	920	1406	46.2	19.060	98.630	1.0	3.6
625	1994	416	0443	2.2	20.010	96.560	12.0		3.9	700	1996	922	1821	25.6	20.810	99.400	20.0	4.2
626	1994	430	0810	29.7	19.430	98.840	13.0		4.2	701	1996	925	0829	48.5	19.440	99.100	6.0	3.2
627	1994	53	1943	53.7	19.490	99.220	8.0		3.1	702	1996	103	1947	12.1	20.740	99.470	57.0	3.8
628	1994	56	2109	37.4	18.170	98.160	96.0		0.0	703	1996	10 9	0006	31.7	18.260	98.390	59.0	3.6
629	1994	517	1121	26.8	19.400	98.380	5.0		3.4	704	1996	1017	0637	49.4	19.020	98.630	2.0	3.6
630	1994	522	1611	34.0	18.030	98.240	66.0		4.2	705	1996	1023	0819	6.6	19.030	98.630	2.0	3.3
631	1994	528	1852	9.6	19.420	98.870	1.0		2.6	706	1996	11 2	0549	38.4	18.010	98.710	66.0	3.7
632	1994	620	0151	20.2	17.170	97.390	70.0		4.7	707	1996	128	1758	26.8	20.280	99.160	13.0	3.3
633	1994	75	1127	23.2	19.040	98.630	13.0		3.6	708	1997	113	1540	4.6	19.710	98.640	5.0	3.0
634	1994	78	0741	41.5	20.130	98.190	34.0		3.9	709	1997	117	2338	5.9	17.660	98.810	80.0	3.5
635	1994	825	2021	41.0	19.210	96.040	18.0		4.0	710	1997	119	1422	53.7	19.030	98.600	5.0	3.2
636	1994	828	1502	17.8	17.020	96.100	22.0		5.2	711	1997	128	0821	16.2	17.710	97.430	65.0	4.2
637	1994	917	1915	59.2	18.010	99.290	86.0		3.7	712	1997	131	1143	24.5	19.230	98.940	2.0	2.8
638	1994	923	0627	49.0	18.070	98.170	69.0		3.6	713	1997	24	0605	11.8	17.230	96.430	103.0	4.0
639	1994	925	2310	37.0	17.080	96.970	64.0		4.4	714	1997	24	0657	4.8	18.100	98.270	44.0	4.1
640	1994	104	2001	53.0	18.170	97.470	72.0		3.7	715	1997	34	1534	22.3	19.030	98.620	1.0	3.6
641	1994	1011	2106	40.5	19.500	98.710	5.0		3.8	716	1997	38	0626	41.5	19.710	99.120	3.0	2.7
642	1994	1013	0318	12.1	18.200	97.110	59.0		4.0	717	1997	313	1730	56.5	19.080	98.500	13.0	3.8
643	1994	11.2	1531	21.7	19.410	98.900	7.0	├	3.7	/18	1997	315	0538	56.9	19.110	98.550	5.0	3.6
644	1994	1124	2142	52.7	20.320	97.480	19.0	\vdash	4.0	719	1997	330	0214	9.8	17.070	99.290	63.0	3.6
645	1994	1125	1852	59.5	19.780	97.320	4.0	├	4.6	720	1997	330	1214	50.7	19.170	98.460	9.0	3.4
640	1995	118	1532	13.8	17.180	99.310	50.0		4.1	722	1997	43	2122	31.7	17.980	98.330	30.0	4.8
649	1995	121	2020	52.5 21.9	19.290	98.920	179.0		3.8	722	1997	4.6	1909	22.5 2E.0	19.140	98.430	8.U 12.0	3.3
640	1993	210	2030	20 5	17.100	97.030	1/8.0		4.0	724	1997	412	1908	29.0	19.110	90.480	12.0	3.4
650	1995	 	0421	52.0	18 720	90.210	92.0 106.0		4.1 3.7	725	1997	410	0702	28.1	20 270	90.040	2.0	2.9
651	1990	413	1024	26.7	10.720	96 270	60.0		3./	725	1007	410	2011	11.2	18 000	00 100	2.0	2.4
652	1995	414	0056	53.2	17.720	96.620	36.0		3.4	720	1997	420	0617	22.1	18.990	99.190	5.0	3.0
653	1995	4.50	1900	44 A	19.660	98.020	40.0		3.0	728	1997	423	1147	22.1	10.930	98 140	11.0	3.3
654	1995	625	0733	50.5	18,130	98,780	62.0		3.4	729	1997	425	1831	39.2	17.380	97.430	51.0	3.0
655	1995	628	1204	41.0	17 290	96 210	97.0	-	47	730	1997	429	0611	57.5	18 820	98.630	80	41
656	1995	84	1204	01	17.490	96.860	102.0		4.3	731	1997	53	1000	35.7	19.170	98,590	10	3.0
657	1995	811	0626	49.4	18,580	99,410	24.0		3.5	732	1997	56	0759	37.2	19.310	98,190	2.0	3.7
658	1995	924	1444	33.2	17.960	97.010	44.0		4.2	733	1997	58	2251	1.6	19.210	98.940	5.0	2.8
659	1995	1015	0140	39.0	17.130	98.850	94.0		3.7	734	1997	514	0331	47.9	19.050	98.550	20.0	3.8
660	1995	1024	0331	28.2	19.350	96.830	27.0		3.6	735	1997	514	1450	16.7	19.060	98.470	11.0	3.8
661	1995	1025	0443	17.7	17.040	99.180	90.0		3.8	736	1997	69	1231	38.7	19.480	96.230	5.0	4.0
662	1995	11 2	0225	40.7	19.420	98.460	15.0		3.4	737	1997	617	1128	33.2	17.940	97.770	28.0	4.0
663	1995	1111	1824	7.3	19.330	97.220	15.0		3.8	738	1997	617	2051	40.2	19.370	98.430	14.0	3.1
664	1995	1112	2306	22.0	17.080	96.180	77.0		3.4	739	1997	625	1320	18.6	19.360	98.610	25.0	3.2
665	1995	1117	1018	10.8	19.200	98.250	6.0		3.2	740	1997	625	1725	13.8	19.360	98.910	5.0	3.6
666	1995	1124	2113	19.7	17.360	96.230	141.0		4.0	741	1997	627	1529	58.7	19.430	98.550	13.0	3.6
667	1995	1125	1211	9.8	17.350	96.500	123.0		4.4	742	1997	73	1840	39.5	19.260	99.480	9.0	2.6
668	1995	1129	1930	6.8	17.730	98.870	47.0		3.8	743	1997	73	1939	32.5	19.250	99.440	7.0	2.8
669	1995	12 2	1844	25.7	19.400	99.010	88.0		3.6	744	1997	75	0240	18.7	18.020	96.900	73.0	3.5

Tabla 1. Catálogo de sismos (continuación).

No	2222	mmdd	hhmm	600	Lat.	Long.	Н	Magn	itud	No	2222	mmdd	hhmm	600	Lat.	Long.	Н	Magni	itud
140.	aaaa	mmaa	iuuiuii	seg	(°N)	(°O)	(km)	Richter	Coda	100.	aaaa	mmaa	innini	seg	(°N)	(°O)	(km)	Richter	Coda
745	1997	715	2007	28.8	19.330	98.850	10.0		3.6	820	1998	78	1752	51.2	17.520	98.760	69.0		4.0
746	1997	726	1922	23.0	19.510	98.980	53.0		3.4	821	1998	78	2113	43.0	19.330	98.730	2.0		3.4
747	1997	728	2145	43.0	17.890	97.460	96.0		4.0	822	1998	83	1300	35.5	17.690	98.670	61.0		3.9
748	1997	729	0624	11.6	19140	98 670	4.0		37	823	1998	810	2153	40.0	19310	98 760	35.0		3.2
749	1007	83	1006	3.2	19.330	98.690	5.0		2.9	824	1008	810	2311	20.8	18.420	99.250	64.0		3.2
750	1007	85	1550	22.6	10.460	08.040	11.0		2.2	825	1008	812	1047	42.0	18.960	08 560	2.0		2.0
750	1997	0.14	1011	23.0	10.270	90.940	12.0		3.2	825	1990	013	1/947	45.0	10.900	90.000	2.0		3.9
751	1997	814	1911	59.5	19.370	98.630	13.0		3.3	826	1998	818	1627	33.0	19.180	98.950	10.0		2.9
752	1997	818	1739	40.5	19.420	98.830	7.0		3.5	827	1998	818	1852	49.2	19.190	98.990	3.0		2.9
753	1997	826	0912	1.7	19.160	98.900	14.0		2.9	828	1998	821	2356	14.8	19.990	99.390	42.0		3.0
754	1997	96	0847	31.7	18.060	98.620	5.0		3.6	829	1998	822	1111	59.2	17.050	99.400	64.0		3.9
755	1997	99	0030	3.4	20.430	99.190	15.0		3.9	830	1998	824	1451	3.0	19.250	98.630	7.0		3.4
756	1997	910	0006	25.8	19.410	98.950	4.0		3.5	831	1998	825	2248	1.3	17.310	96.420	91.0		3.9
757	1997	914	0038	30.7	17.780	97.790	16.0		3.7	832	1998	831	2013	50.2	19.150	98.580	15.0		3.0
758	1997	920	0244	58.2	19.400	98.900	35.0		3.8	833	1998	96	0042	15.1	17.690	99.320	16.0		3.3
759	1997	920	1343	41.7	19.270	99.170	7.0		3.4	834	1998	96	1258	9.6	17.940	97.580	126.0		3.5
760	1997	10 5	2357	55.5	19.320	98,500	6.0		3.4	835	1998	96	2233	35.7	17.970	98,790	17.0		3.5
761	1997	10.6	1402	44.9	19.220	97.390	16.0		3.5	836	1998	98	2219	57.5	19.460	99.050	5.0		3.2
762	1997	10.6	1620	3.9	20,220	98 950	2.0		31	837	1998	910	2004	20.3	18 020	97 640	16.0		3.6
763	1007	1010	1221	55.2	10.220	98.660	13.0		3.3	838	1008	011	0407	48.5	19 370	98 770	0.0		3.5
764	1007	1010	2031	44.7	19.410	98,930	11.0		3.4	830	1008	018	1527	54.0	18 110	97,990	44.0		3.8
765	1997	1012	1452	-1-1.7 20 E	10.210	90.930	0.0	-	2.4	840	1990	910	1649	1.2	10.110	97.990	7.0		3.0
765	1007	1015	0610	56.0	19.310	90.000	9.0		2.4	Q/1	1000	921	2042	1.3	19.010	00.000	7.0		4.0
700	199/	1017	1659	16.5	10.000	20.72U	30.0		3.9	041	1998	921	2043	40.0	10.100	50.01U	7.0	<u> </u>	3.9
767	1997	1017	1058	16.5	19.300	98.530	25.0		3.5	842	1998	922	1/25	4.0	19.100	98.540	1.0		4.0
768	1997	1018	0314	36.5	18.840	96.640	34.0		3.7	843	1998	923	2329	30.1	19.090	98.530	3.0		3.9
769	1997	1022	0043	37.9	19.160	98.880	16.0		3.2	844	1998	925	0711	42.0	17.810	99.020	42.0		3.6
770	1997	1030	0537	9.6	20.620	96.200	19.0		3.9	845	1998	926	0101	40.7	19.400	99.060	13.0		2.3
771	1997	11 1	1654	24.1	18.420	99.500	4.0		3.5	846	1998	10 6	0412	32.9	19.280	98.400	12.0		3.8
772	1997	1117	1242	6.5	19.240	97.320	4.0		3.5	847	1998	10 6	0947	43.7	17.080	99.280	49.0		4.0
773	1997	1122	1541	35.5	17.040	99.260	20.0		3.8	848	1998	10 6	1825	46.2	17.190	96.960	76.0		3.8
774	1997	1129	1808	26.5	17.220	96.940	71.0		3.7	849	1998	109	0252	36.5	17.950	98.430	65.0		3.9
775	1997	12 4	1849	57.4	19.410	98.680	24.0		3.4	850	1998	1017	0143	12.8	20.550	99.050	3.0		3.1
776	1997	1211	0310	17.3	17.890	98.940	36.0		3.9	851	1998	1026	0235	10.5	19.060	99.170	6.0		3.0
777	1997	1214	0025	47.2	20.250	99.130	2.0		3.1	852	1998	1026	0750	6.1	19.060	99.200	4.0		3.3
778	1997	1225	0129	10.6	18 970	98,590	11.0		41	853	1998	1030	2232	38.2	19 210	98.810	1.0		3.3
779	1997	1228	2122	4.9	18.950	98.420	7.0		3.5	854	1998	11.1	1228	65	17 920	99 500	26.0		33
780	1008	1220	0027	26.7	18.970	98.440	5.0		4.1	855	1008	1125	1/03	29.2	10 130	98 560	1.0		3.9
781	1008	16	2333	32.0	10.370	98.620	25.0		3.3	856	1998	1125	1805	42.2	19.130	98 580	1.0		3.9
701	1990	102	2000	52.0	19.570	96.020	23.0		3.5	050	1990	1125	2000	42.2	19.120	90.000	0.0		3.9
702	1990	125	2236	37.5	17,470	96.900	17.0		3.0	057	1996	1125	2230	39.3	19.100	96./10	0.0		3.9
783	1998	129	1000	46.5	17.4/0	98.760	17.0		3.6	808	1998	1126	1613	21.7	19.120	98.620	0.0		3.9
784	1998	22	1000	53.5	17.240	99.250	83.0		3.8	859	1998	1127	0313	41.7	18.970	98.610	0.0		3.8
785	1998	23	0847	40.5	17.130	98.440	16.0		3.6	860	1998	1127	0420	23.0	19.060	98.570	6.0		3.8
786	1998	26	2118	49.2	18.310	98.510	72.0		3.6	861	1998	1127	1749	55.2	18.750	96.780	12.0		3.9
787	1998	26	2347	52.0	19.410	98.930	43.0		3.5	862	1998	1127	1934	2.2	19.110	98.580	4.0		4.0
788	1998	29	0114	32.5	19.360	99.190	11.0		2.6	863	1998	1128	0545	4.5	19.120	98.600	1.0		3.7
789	1998	211	1156	41.4	18.920	98.600	13.0		3.9	864	1998	1128	0841	57.7	19.040	98.720	9.0		3.9
790	1998	313	1350	53.5	17.430	97.400	67.0		4.2	865	1998	1129	0428	7.9	19.110	98.510	5.0		3.4
791	1998	318	1156	4.5	20.100	99.230	5.0		4.3	866	1998	1129	0905	50.4	19.270	98.640	2.0		3.9
792	1998	318	2014	35.0	20.110	99.270	5.0		3.3	867	1998	1129	2244	28.3	19.180	98.650	1.0		3.8
793	1998	319	0014	35.7	20.260	99.180	1.0		3.1	868	1998	1130	1529	52.0	19.070	98.660	0.0		3.7
794	1998	319	0211	14.5	20.290	99.180	5.0		2.8	869	1998	12 4	0052	51.9	19.080	98.510	2.0		3.9
795	1998	321	2159	32.5	19.100	98.540	4.0		4.1	870	1998	12 4	1855	23.1	19.210	98.610	1.0		3.8
796	1998	323	0638	10.3	20.080	99,190	3.0		3.4	871	1998	12.7	1223	56	19,080	98,600	16.0		4.0
797	1998	323	2342	23.0	20.130	99,210	3.0		3.3	872	1998	1210	1811	03	19,840	98,770	9.0		2.9
798	1998	324	0018	58.5	19 420	98 870	90		3.7	873	1998	1210	0652	41	19100	98 740	2.0		29
799	1998	325	1232	58.5	20 110	99 280	10.0		32	874	1998	1215	2350	10.6	19.070	98.610	4.0		3.8
800	1908	325	0210	12.6	17 030	97.880	17.0		3.7	875	1998	1215	0047	86	19.160	98.640	1.0		37
801	1000	220	0210	25.0	20 120	00 200	17.0		2.2	075	1000	1210	0644	5.0	18 000	08 450	2.0		20
802	1998	329	0100	53.2	20.130	99.300	9.0		3.3	0/0	1998	1231	0044	5.9	10.980	90.000	2.0		3.8
802	1998	331	1254	23.9	19.390	98.920	55.0		3.4	8/7	1999	14	2321	39.5	20.110	98.980	3.0		3.5
803	1998	42	1254	31.1	20.120	99.320	5.0		3.3	8/8	1999	19	0931	0.6	17.280	96.100	25.0		3.7
804	1998	42	1634	11.0	20.210	99.490	20.0		3.1	879	1999	114	2331	2.7	18.180	97.420	62.0		3.7
805	1998	419	0427	48.9	20.150	99.000	5.0		2.9	880	1999	115	0553	47.9	19.120	98.560	0.0		3.4
806	1998	420	1506	42.9	20.040	99.190	5.0		3.3	881	1999	117	2053	45.2	17.330	98.680	41.0		3.7
807	1998	420	2331	36.2	18.760	99.130	4.0		3.4	882	1999	127	0755	23.2	18.750	98.550	0.0		3.4
808	1998	421	1607	2.2	19.050	98.600	2.0		4.0	883	1999	128	2153	43.7	18.500	97.090	84.0		3.6
809	1998	426	0804	24.7	17.290	97.530	86.0		3.9	884	1999	128	2356	13.8	19.440	99.210	9.0		2.7
810	1998	427	1531	29.7	19.040	98.510	2.0		4.0	885	1999	131	1440	5.6	17.880	97.670	43.0		3.8
811	1998	428	1351	59.7	17.520	99.170	70.0		3.5	886	1999	312	0139	53.5	19.250	98.540	2.0		3.9
812	1998	52	0336	19.5	17.280	96.810	91.0		4.4	887	1999	315	1921	37.2	17.730	97.730	16.0		3.8
813	1998	512	1642	24.2	17.680	97.370	58.0		3.6	888	1999	316	1130	29.0	19.680	98.630	5.0		3.0
814	1998	523	1841	5.0	19.450	98,830	8.0		3.8	889	1999	318	1131	14.8	19,110	98,490	3.0		3.9
815	1998	611	0401	33.7	17 870	98,850	53.0		35	890	1999	319	2002	46.7	19 180	98 460	0.0		3.4
816	1998	618	1030	18.1	19.460	98 760	44.0		35	891	1990	320	0038	37.5	19100	98.620	0.0		3.6
817	1000	622	2009	30.0	10.510	08 920	90 80		3.3	802	1000	320	1744	12.2	10,000	98 510	0.0		3.0
01/ Q10	1000	624	1852	22.9	19.010	90.030	0.0		3.3	802	1000	322	0214	13.3	20.000	90.010	0.0		3.9
010 910	1990	7.4	0745	22.7	19.000	00.100	10.0		3.5	804	1000	324	0214	40.7	20.000	99.230 08 E20	0.0		2.0

Tabla 1. Catálogo de sismos (continuación).

No	2222	mmdd	hhmm	600	Lat.	Long.	H	Magn	itud	No	2222	mmdd	hhmm	600	Lat.	Long.	Н	Magnitud
100.	aaaa	mmaa	Innini	seg	(°N)	(°O)	(km)	Richter	Coda	INU.	aaaa	mmaa	Innini	seg	(°N)	(°O)	(km)	Richter Coda
895	1999	4.5	0125	42.2	19160	96 330	18.0		3.8	970	1999	1027	0345	26.3	17 020	98 770	28.0	3.9
806	1000	46	1220	12.2	10.280	00.000	12.0		2.0	071	1000	1027	1424	20.0 26 E	17.620	08.470	20.0	4.1
090	1999	4.6	1220	4.0	19.380	99.090	15.0		2.0	971	1999	1027	1424	26.5	17.610	98.470	20.0	4.1
897	1999	412	1541	32.5	18.070	99.420	49.0		3.9	972	1999	1029	1346	32.5	18.280	99.240	52.0	3.7
898	1999	412	2006	41.7	19.520	99.200	8.0		3.0	973	1999	1029	2218	16.2	17.080	96.090	5.0	4.0
899	1999	418	0453	58.7	17.920	96.420	128.0		3.7	974	1999	113	0416	19.1	19.340	98.570	7.0	3.3
900	1999	420	2006	44.0	19,550	99 240	2.0		2.5	975	1999	11.6	1503	39.9	17 580	96 710	84.0	4.5
001	1000	425	0006	26.4	17,000	99.210	8.0		2.0	076	1000	11.0	0533	26.5	17.000	97 200	75.0	3.7
901	1999	423	0906	50.4	17.090	99.200	0.0		5.0	976	1999	119	0333	26.5	17.700	97.200	75.0	3./
902	1999	429	0539	50.4	17.200	97.270	80.0		3.6	977	1999	1113	1743	20.6	19.400	98.910	16.0	3.4
903	1999	512	1317	41.0	18.100	99.410	51.0		3.5	978	1999	1113	2354	52.2	19.390	98.900	2.0	2.7
904	1999	517	0144	48.5	17.720	99.080	77.0		3.7	979	1999	1114	0102	35.7	19.430	98.870	0.0	3.1
905	1999	519	2023	6.0	19 190	98 960	5.0		31	980	1999	1114	2234	55.2	19 420	98 900	13.0	29
006	1000	512	0657	26.2	10.190	08.070	4.0		2.1	001	1000	1117	0842	71	19.320	07.650	77.0	2.9
906	1999	322	0657	20.5	19.160	98.970	4.0		5.1	901	1999	1117	0845	7.1	18.230	97.630	77.0	3.0
907	1999	523	1833	19.5	19.410	98.630	7.0		2.6	982	1999	1125	0241	14.1	17.880	98.540	74.0	3.5
908	1999	528	1705	21.3	19.280	98.980	3.0		2.6	983	1999	127	1353	49.7	19.220	98.920	3.0	3.4
909	1999	530	1053	47.0	19.840	98.850	3.0		2.4	984	1999	12 9	0453	39.2	19.180	98.900	6.0	3.1
910	1999	67	0024	14.3	19.170	98.960	5.0		3.3	985	1999	12.9	1938	8.6	17.710	98.300	16.0	3.8
011	1000	67	0721	20.2	18 160	97.470	25.0		2.9	086	1000	1210	0122	2.7	10.250	08.020	2.0	2.1
911	1999	07	0731	50.2	10.100	97.470	35.0		3.0	900	1999	1210	1021	2.7	19.230	96.930	2.0	3.1
912	1999	69	0122	5.5	18.590	98.740	3.0		3.3	987	1999	1210	1221	34.2	17.140	96.290	106.0	3.9
913	1999	612	1133	19.7	19.230	98.560	8.0		3.4	988	1999	1212	0545	56.0	17.000	96.710	65.0	3.7
914	1999	612	1410	5.8	19.230	98.520	2.0		3.2	989	1999	1214	0712	16.5	17.960	98.540	36.0	4.5
915	1999	615	1541	6.0	18.150	97.520	60.0		7.0	990	1999	1215	0056	22.0	18.640	99.060	9.0	3.3
916	1999	615	2042	71	18 180	97 510	69.0		0.0	991	1999	1216	0425	7.0	19 280	99 200	20.0	26
017	1000	615 61F	20122	7.1	18 150	07 420	24.0		4 F	002	1000	1014	0424	20 5	10 270	00 1/0	26.0	2.0
71/	1777	015	2102	/.1	10.130	97.030	54.0		4.0	77Z	1799	1210	0421	32.3	17.270	27.14U		5.0
918	1999	616	0156	44.5	18.210	97.610	68.0		3.8	993	1999	1216	0431	4.1	19.270	99.210	9.0	2.4
919	1999	616	0359	7.1	18.220	97.640	41.0		3.8	994	1999	1216	1216	12.6	17.320	97.080	73.0	3.6
920	1999	616	1327	22.6	18.260	97.580	60.0		3.8	995	1999	1227	2121	34.2	17.740	98.330	17.0	4.6
921	1999	616	1903	45.9	18,140	97,640	51.0		3.6	996	1999	1231	1700	18.8	19,060	97,890	126.0	3.6
022	1000	616	1004	47.0	18 050	08 520	2.0		3.6	007	2000	12	0755	15.6	17 740	06.990	82.0	2.4
722	1000	010	1720	47.7	10.930	90.020	5.0		3.0	77/	2000	101	0/33	13.0	10.240	20.000	65.0	3.4
923	1999	616	1926	51.0	19.420	98.890	9.0		3.8	998	2000	121	0421	36.2	18.360	97.680	68.0	3.4
924	1999	616	1938	14.8	19.090	98.490	10.0		3.4	999	2000	24	1529	23.2	18.090	98.020	73.0	3.6
925	1999	616	1957	58.2	19.100	98.530	13.0		3.2	1000	2000	27	0947	22.5	18.660	98.640	2.0	3.3
926	1999	616	2101	26.7	19.040	98,540	13.0		3.5	1001	2000	216	0023	59.7	18.820	99,200	8.0	3.3
027	1000	616	2118	53	18 080	97.680	26.0		37	1002	2000	225	0200	0.8	18 990	98 780	27.0	3.5
020	1000	(1(2110	22.0	18,000	07.710	20.0		2.5	1002	2000	225	0200	45.7	17.020	20.700	27.0	3.5
928	1999	616	2325	32.9	18.220	97.710	66.0		3.5	1003	2000	228	0333	45.7	17.920	99.360	52.0	3.3
929	1999	617	0426	52.9	18.330	97.750	67.0		4.0	1004	2000	34	0406	5.6	18.120	98.200	10.0	3.6
930	1999	619	2006	33.5	19.920	97.810	23.0		3.5	1005	2000	34	2055	23.7	18.840	98.570	4.0	4.1
931	1999	620	0911	59.4	19.310	98.460	3.0		3.4	1006	2000	35	1514	45.5	17.780	98.170	36.0	3.6
932	1999	620	1025	21.1	19310	98.480	3.0		4.0	1007	2000	312	0344	48 5	20 100	99 290	5.0	4.1
022	1000	620	1025	21.1	10.210	08 520	2.0		2.0	1007	2000	212	2055	=0.5 =6.4	10.070	06.400	15.0	
933	1999	620	1049	9.0	19.310	98.330	5.0		2.9	1008	2000	312	2055	56.4	19.970	96.490	15.0	3.7
934	1999	620	1936	51.5	18.750	98.660	11.0		3.1	1009	2000	318	0050	58.4	17.080	99.310	31.0	4.7
935	1999	621	0112	30.1	17.830	98.220	76.0		4.0	1010	2000	318	1119	9.8	17.030	99.420	63.0	3.8
936	1999	624	0829	47.0	18.300	97.750	55.0		4.1	1011	2000	319	0510	42.4	19.420	97.600	9.0	3.9
937	1999	627	0448	6.3	18.880	97.590	110.0		3.4	1012	2000	329	0648	23.7	17.510	99.340	96.0	3.3
038	1000	628	2046	3.7	17 260	96.070	120.0		3.0	1013	2000	4.1	0432	81	19 730	96 370	20.0	3.5
930	1999	620	2040	3.7	17.200	90.070	120.0		3.9	1013	2000	41	0432	0.1	19.750	90.370	29.0	3.5
939	1999	629	1331	12.5	18.200	97.620	55.0		3.8	1014	2000	45	2155	21.2	18.820	99.180	2.0	3.3
940	1999	71	2006	11.0	20.340	99.050	6.0		3.5	1015	2000	46	0037	48.7	19.940	97.660	102.0	3.5
941	1999	72	0202	35.0	18.230	97.150	70.0		3.5	1016	2000	410	0753	23.7	19.220	98.990	14.0	2.6
942	1999	72	1117	53.0	18.340	97.660	95.0		3.9	1017	2000	419	1142	18.5	19.380	98.870	4.0	2.9
943	1999	78	0909	30.1	18,870	96,510	90.0		3.5	1018	2000	427	2227	43.7	18,940	99,370	2.0	3.3
944	1990	715	0153	59.7	19 010	98.610	10		3.3	1010	2000	515	0904	25	20.610	99.410	5.0	25
0/5	1000	716	1005	22.2	18 200	07.600	00.0		2.6	1020	2000	510	0710	2.0	17 220	06 100	110.0	3.5
740	1777	/10	1700	32.2	10.000	97.090	90.0		3.0	1020	2000	522	0/10	45.2	17.320	20.100	110.0	4.0
946	1999	717	0020	1.5	18.330	97.200	85.0		3.5	1021	2000	528	0401	45.0	20.410	99.350	10.0	3.5
947	1999	721	1428	46.9	17.380	97.350	79.0		3.8	1022	2000	529	0501	6.4	17.280	98.450	80.0	4.0
948	1999	724	2256	4.0	18.310	97.770	84.0		4.0	1023	2000	65	1159	41.7	18.770	96.290	16.0	4.4
949	1999	725	1426	1.2	19.190	98.960	2.0		3.6	1024	2000	611	0129	26.7	19.160	98.940	14.0	3.0
950	1999	727	2127	32.7	19,430	98,780	2.0		3.6	1025	2000	611	0530	55.7	17,240	97,250	87.0	43
051	1000	729	1350	79	10 000	96 140	12.0		3.6	1024	2000	614	1722	32.0	10 240	08 410	12.0	2.2
931	1000	140	10.10	7.0	10.170	20.100	12.0		3.0	1020	2000	014	1723	55.0	17.300	20.010	13.0	3.3
952	1999	87	1349	53.0	19.170	98.970	16.0		3.2	1027	2000	626	0545	57.0	20.580	99.450	4.0	3.4
953	1999	813	2252	53.5	17.930	98.180	16.0		3.9	1028	2000	73	0251	5.5	17.970	98.420	50.0	4.2
954	1999	815	1258	40.0	18.030	98.030	77.0		3.7	1029	2000	76	0836	24.8	19.180	98.930	8.0	3.3
955	1999	821	1735	32.9	19.400	98.830	11.0		3.5	1030	2000	76	1315	34.4	19.190	98.960	5.0	3.4
956	1999	822	0118	347	17,120	96,990	69.0		37	1031	2000	720	0826	37.0	17.040	96,720	71.0	37
957	1000	876	0354	38.7	18.070	08 100	16.0		3.6	1022	2000	721	0612	30.7	18.000	08 070	18.0	5.7
937	1000	020	0004	15.7	10.070	90.100	10.0		3.0	1032	2000	/ 21	0013	39.7	10.090	20.970	105.0	0.4
958	1999	829	0313	15.1	18.880	96.050	17.0		3.4	1033	2000	85	0914	20.2	19.370	96.770	105.0	3.6
959	1999	830	2303	55.0	19.760	96.390	5.0		3.6	1034	2000	88	1456	50.5	17.870	98.000	39.0	3.7
960	1999	98	0042	28.6	17.630	98.340	36.0		4.4	1035	2000	811	0819	55.5	19.570	96.420	8.0	4.1
961	1999	98	0504	29.2	17.660	98.290	58.0		4.0	1036	2000	812	1417	59.7	18.390	98.040	64.0	3.3
962	1900	9.8	0842	24.2	18 320	97 560	103.0		37	1037	2000	0.1	0013	22.2	17 130	99 240	52.0	3.9
0(2	1000	20	0147	24.2	10.010	08 (10	27.0		27	1037	2000	74 05	2220	47.4	10 720	00.070	52.0	3.0
963	1999	99	0147	26.2	19.010	98.610	27.0		3.6	1038	2000	95	2238	4/.4	18.730	99.070	5.0	3.5
964	1999	919	0211	3.5	20.410	99.260	2.0		3.4	1039	2000	925	1822	7.9	19.230	96.030	16.0	3.8
965	1999	919	1856	43.7	20.410	99.180	7.0		3.3	1040	2000	10 5	1128	36.7	19.450	99.350	9.0	2.8
966	1999	919	2259	29.2	17.590	99.040	79.0		3.6	1041	2000	106	0619	59.2	19.040	98.830	36.0	3.5
967	1999	927	1332	50.0	19 090	98 730	15.0		3.6	1042	2000	10.6	2103	59.9	19 400	99 290	9.0	23
0(0	1000	10.2	1002	25.0	17.090	00,000	10.0		2.0	1042	2000	1014	0244	48.7	10.240	00.100	12.0	2.3
908	1999	10.2	1033	25.7	17.690	98.680	10.0		3.8	1043	2000	1014	0244	48.7	19.360	99.190	12.0	3.1
969	1999	105	1719	0.8	19.660	98.950	43.0	1	3.7	1044	2000	1015	0750	43.2	19.390	99.110	5.0	2.7

Tabla 1. Catálogo de sismos (continuación).

No	aaaa	mmdd	hhmm	sea	Lat.	Long.	Н	Magni	itud	No	aaaa	mmdd	hhmm	sea	Lat.	Long.	Н	Magn	itud
140.	uuuu	minute	minim	зев	(°N)	(°O)	(km)	Richter	Coda	140.	uuuu	minud	mmm	зев	(°N)	(°O)	(km)	Richter	Coda
1045	2000	11 1	2352	42.7	18.240	97.250	107.0		3.6	1119	2002	520	1005	19.6	18.000	99.000	44.0		3.7
1046	2000	117	2353	53.5	19.690	98.580	13.0		3.2	1120	2002	630	2014	39.5	19.220	96.270	16.0		3.9
1047	2000	11 8	0117	24.2	19.670	98.590	13.0		3.2	1121	2002	75	1045	59.4	17.910	98.340	16.0		3.8
1048	2000	1110	0724	10.0	18.930	96.850	16.0		3.9	1122	2002	713	1543	40.0	17.580	99.330	77.0		3.3
1049	2000	12 5	1503	23.2	19.080	98.380	1.0		3.3	1123	2002	713	1734	42.2	19.190	98.550	34.0		3.4
1050	2000	126	2103	5.5	18.940	97.090	35.0		2.8	1124	2002	719	1349	49.7	17.900	97.370	65.0		3.8
1051	2000	126	2104	54.7	19.010	97.100	34.0		2.6	1125	2002	86	1855	28.2	17.180	97.800	61.0		3.9
1052	2000	128	2236	4.5	18.270	97.430	50.0		4.1	1126	2002	86	2239	27.7	18.650	97.400	2.0		3.5
1053	2000	12.9	1846	5.3	17.910	98.960	91.0		3.6	1127	2002	89	1949	57.2	17.870	99,190	51.0		4.0
1054	2000	1226	0440	36.4	17 700	97 670	63.0		3.6	1128	2002	813	2234	56.0	18 930	98.550	10		3.4
1055	2000	117	2317	27.2	18 270	97.080	65.0		3.5	1120	2002	816	1206	27.0	17 870	99.350	54.0		4.0
1055	2001	117	0430	31.8	17.020	99.080	27.0		3.7	112)	2002	818	1610	50.2	18.030	98.490	20.0		3.4
1057	2001	2.0	1450	7.0	10.200	08.460	1.0		2.2	1121	2002	010 919	1622	28.8	18.060	08 540	26.0		2.2
1057	2001	2.9	2200	12.0	19.200	00.400	1.0		2.5	1122	2002	010 010	0024	20.0	18.900	90.540 08 E00	20.0		3.5
1056	2001	210	2300	45.0	19.370	96.760	1.0		3.2	1132	2002	019	0024	38.0	10.950	96.500	18.0		3.5
1059	2001	42	0/25	28.5	17.590	99.260	63.0		3.7	1133	2002	824	0519	44.4	18.670	98.180	8.0		3.6
1060	2001	43	0456	24.1	17.090	96.560	71.0		3.9	1134	2002	829	0105	41.7	17.570	97.400	92.0		4.4
1061	2001	416	1643	15.8	19.150	98.920	14.0		3.3	1135	2002	92	1623	20.7	20.130	96.750	7.0		3.4
1062	2001	417	0514	35.7	19.190	98.970	14.0		3.1	1136	2002	95	0350	20.0	19.360	98.530	49.0		3.8
1063	2001	418	1147	3.0	20.640	99.180	47.0		3.6	1137	2002	926	2015	9.1	17.410	96.210	87.0		3.9
1064	2001	427	1501	14.0	18.390	96.900	75.0		3.2	1138	2002	1012	1623	58.9	17.860	99.140	36.0		4.3
1065	2001	51	2223	22.1	18.400	96.050	16.0		4.3	1139	2002	1027	0211	59.5	18.820	98.770	6.0		3.4
1066	2001	52	0320	29.2	20.040	96.390	10.0		3.9	1140	2002	1028	0900	2.7	17.340	97.850	36.0		4.0
1067	2001	511	1056	26.2	18.980	98.550	1.0		3.6	1141	2002	11 3	2134	59.4	19.260	98.040	2.0		4.0
1068	2001	512	0514	3.9	18.890	96.860	16.0		3.7	1142	2002	1112	0602	32.5	17.690	97.710	71.0		3.9
1069	2001	531	0158	18.5	18.040	99.380	58.0		3.7	1143	2002	1116	1150	2.0	19.170	98.490	9.0		4.1
1070	2001	61	0235	55.9	19.270	98.490	2.0		3.8	1144	2002	1116	1408	7.5	19.100	98.470	5.0		3.5
1071	2001	61	0951	26.7	19.270	96.460	16.0		3.7	1145	2002	1117	0054	9.3	19.200	98.510	7.0		3.4
1072	2001	61	2257	58.0	19.980	96.560	16.0		3.4	1146	2002	1117	1214	25.7	19.190	98.500	2.0		3.4
1073	2001	613	0357	43.4	19.270	99.420	12.0		3.2	1147	2002	1117	1220	28.5	19.200	98.610	5.0		3.4
1074	2001	617	2348	25.0	17.700	96.090	137.0		3.9	1148	2002	123	0509	40.7	17.320	96.690	75.0		4.0
1075	2001	620	0952	43.0	19.590	97.170	4.0		3.7	1149	2002	1215	1403	41.7	18.910	97.200	2.0		3.7
1076	2001	624	2029	18.5	17.570	96.150	112.0		3.9	1150	2002	1221	2122	25.2	19.310	98.760	22.0		3.0
1077	2001	627	0257	31.2	17.430	97.220	74.0		3.6	1151	2002	1230	1630	19.8	17.920	98.070	18.0		3.5
1078	2001	7.3	0910	7.1	19.110	98.380	15.0		3.8					2710					0.12
1079	2001	79	1346	42.7	19.240	96.280	26.0		3.7										
1080	2001	714	0733	16.1	17.410	96.710	70.0		4.1										
1081	2001	723	0301	43.9	17.490	97.110	92.0		3.9										
1082	2001	725	0044	88	17 290	96 750	76.0		3.9										
1083	2001	728	0343	31.2	17.20	97.850	31.0		35										
1084	2001	83	1521	26.0	17.210	96.470	86.0		3.9										
1085	2001	821	0525	20.8	17 310	96 190	89.0		3.9										
1086	2001	021	0015	20.0	19 330	99.110	11.0		2.9										
1087	2001	91/	1713	15.6	19 310	99.300	14.0		2.9										
1088	2001	020	1850	10.0	17,060	98.460	74.0		3.8										
1000	2001	10.7	0000	200	18 170	00.220	68.0		3.0										
1009	2001	107	4261	18.7	17,000	99.320	81.0		2.0										
1000	2001	1115	2019	22.2	10.560	00.160	4.0		2.5										
1091	2001	1110	1005	54.5	19.000	99.100	±.0	├	3.0										
1092	2001	1123	2111	21.0	12.400	20.9/U	22.0	├	3.0										
1093	2001	1129	0747	21.U 6 E	17 590	97.430	91.0		2.0									-	
1094	2001	12.2	2102	17.2	17.000	97.14U	18.0		3.9									-	
1093	2001	12.3	2102	17.Z	12 100	90.000	10.0		2.4										
1090	2001	1219	2301	33.7	10.100	90.420 08 E00	41.0		2.7										
1097	2001	1220	0120	19.7	19.000	90.000 08 ED0	2.0		3./										
1098	2001	1222	2000 1605	23.3 47.7	19.200	90.32U	72.0		3.0										
1099	2002	110	1020	4/./	10.200	97.330	72.0		3.3								<u> </u>		
1100	2002	118	1015	48.7	17.100	99.480	29.0	┝───┤	3.7	ļ					ļ				
1101	2002	121	1815	36.0	19.180	97.190	86.0		4.1									L	
1102	2002	21	1929	11.0	19.520	99.210	2.0		2.6										
1103	2002	25	1551	45.2	17.090	99.350	11.0		4.2										
1104	2002	216	1858	24.5	17.670	98.870	57.0		4.3								<u> </u>		
1105	2002	311	2106	3.4	17.750	97.550	67.0		3.8								<u> </u>		
1106	2002	316	0632	12.6	17.990	98.080	70.0		3.5				ļ						
1107	2002	318	1856	16.3	17.880	99.420	79.0		3.7								<u> </u>		
1108	2002	325	0931	25.2	17.000	98.980	32.0		4.1				ļ						
1109	2002	326	0444	26.3	17.230	99.140	20.0		4.3				ļ						
1110	2002	421	0920	47.0	19.470	98.940	13.0		3.1										
1111	2002	421	0922	44.2	19.450	98.960	13.0		2.7										
1112	2002	421	0923	16.8	19.440	99.030	11.0		3.1				ļ						
1113	2002	421	0959	58.7	19.450	99.020	12.0		3.0										
1114	2002	59	1425	43.0	19.490	99.010	19.0		3.7										
1115	2002	59	1556	8.0	19.490	99.020	21.0		3.3										
1116	2002	59	2039	42.0	19.500	98.990	22.0		3.4										
1117	2002	511	1535	8.3	19.500	99.000	24.0		3.1										
1118	2002	515	2322	19.6	18,980	98.540	2.0		3.4										

Tabla 1. Catálogo de sismos (continuación).

ANEXO 2 FUNCIONES DE TRANSFERENCIA EMPÍRICAS

En las siguientes figuras, las líneas delgadas son las funciones de transferencia empíricas obtenidas de los registros de vibración ambiental. Las líneas gruesas representan el promedio espectral.

Frecuencia [Hz]

1

Espectral H/V

0.1

0.1

1

Frecuencia [Hz]

10

ANEXO 3 FUNCIONES DE TRANSFERENCIA TEÓRICAS

Se muestran los perfiles de velocidades estimados a partir de las funciones de transferencia empíricas, en varios puntos de la microzona II. Se muestran las respectivas funciones de transferencia teóricas calculadas con el método de Haskell (1962).

En los gráficos siguientes, se superponen las FTT con las FTE obtenidas mediante los registros de aceleración de microtremores. En los perfiles de velocidades, la línea discontinua representa la roca basal. En las funciones de transferencia, la línea roja representa la FTT.

ANEXO 4 ACELEROGRAMAS TEÓRICOS

154

REFERENCIAS BIBLIOGRÁFICAS

Aki, K y P G Richards (1980), "Quantitative Seismology, Theory and Methods", W. H. Freeman and Company, San Francisco, California.

Alcocer, S, G Aguilar, L Flores, R Durán, O López-Bátiz, M A Pacheco, C Uribe y M Mendoza (1999), "El sismo de Tehuacán del 15 de junio de 1999", *Boletín informativo del Centro Nacional de Prevención de Desastres*, 160 pp.

Avilés, J y V Trueba (1991), "Criterios de caracterización de sitio con fines de microzonificación sísmica: Manual de diseño por sismo de la CFE", *Memorias, IX Congreso Nacional de Ingeniería Sísmica,* Sociedad Mexicana de Ingeniería Sísmica, Manzanillo, Colima.

Bard, P Y, A M Duval, B Lebrun, C Lachet, J Riepl, y D Hatzfeld (1997), "Reliability of the H/V technique for site effects measurement: an experimental assessment", *Seventh International Conference on Soil Dynamics and Earthquake Engineering*, Istanbul.

Bollinger, G A (1980), "Blast vibration analysis", Southern Illinois University Press, U.S.A, 131 pp.

Caicedo, C, A H Barbat y J A Canas (1994), "Vulnerabilidad sísmica de edificios", Monografías de Ingeniería Sísmica, Centro Internacional de Métodos Numéricos en Ingeniería, Barcelona.

Comisión Federal de Electricidad (1993), "Diseño por Sismo", Manual de Diseño de Obras Civiles, México.

Computers and Structures Inc. (1997), "SAP2000, Analysis Reference", Vol. I y II, University of California at Berkeley.

Corazao, M y M Blondet (1975), "Estudio experimental del comportamiento estructural de construcciones de adobe frente a solicitaciones sísmicas", Departamento de Ingeniería, Pontificia Universidad Católica del Perú.

Corona, G A y T Perea (2000), *Sistema Digital de Daños (SDD) – Sismo de Tehuacán del 15 de junio de 1999,* CD-ROM, Colegio de Ingenieros Civiles del Estado de Puebla.

Chávez-García, F J, J Cuenca, J Lermo y H Mijares (1995), "Seismic microzonation of the City of Puebla, Mexico", *Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics*, St. Louis, Missouri, USA, pp. 545-548.

Chopra, A K (1995), "Dynamics of Structures, Theory and Applications to Earthquake Engineering", Edit. Prentice-Hall, pp. 156-158.

Díaz-Rodríguez, J A (2000), "Determinación de las propiedades dinámicas de los suelos", Universidad Nacional Autónoma de México, Facultad de Ingeniería, Cuaderno de Investigación número D-104, 85 pp.

Di Pascuale, E y A Cakmak (1988), "Identification of the serviceability limit state and detection of the seismic structural damage", Technical Report NCEER-88-0022, National Center for Earthquake Engineering Research, Princeton University, USA.

Dirección de Obras Públicas del Municipio de Acatlán de Osorio, Puebla (1999), "Distribución de los daños causados por el temblor del día 15 de junio de 1999", Archivo del H. Ayuntamiento Constitucional de Acatlán de Osorio, Puebla.

Dolce, M (1994), "Vulnerability and Risk Analysis", Report of the Working Group of the European Association for Earthquake Engineering, *Proceedings of the 10th ECEE*, Viena, Austria.

ESRI Incorporation (ESRI, 2001), ArcGIS 8.1 - Professional GIS for the Desktop, ArcGIS Desktop Guide.

Figueroa, J (1963), "Isosistas de macrosismos mexicanos", Serie Azul del Instituto de Ingeniería, UNAM, No. 67, pp. 45-67.

Figueroa, J (1970), "Catálogo de sismos ocurridos en la República Mexicana", Serie Azul del Instituto de Ingeniería, UNAM, No. 272, pp. 1-20.

Figueroa, J (1974), "Sismicidad en Puebla. Macrosismo del 28 de agosto de 1973", Serie Azul del Instituto de Ingeniería, UNAM, No. 343, 68 pp.

Figueroa, J (1986), "Isosistas de grandes temblores ocurridos en la República Mexicana", Serie Amarilla del Instituto de Ingeniería, UNAM.

Finn, W D L (1991), "Geotechnical engineering aspects of microzonation", *Fourth Conference on Seismic Zonation*, Stanford, California, Vol. I, pp. 199-259.

GNDT (1990), "Rischio sismico di edifici pubblici", Consiglio Nazionale delle Ricerche, Gruppo Nazionale per la Difesa dai Terremoti.

Gobierno del Distrito Federal (GDF, 2002), "Normas técnicas complementarias para el diseño y construcción de estructuras de mampostería", Anteproyecto del Comité de Normas, México, D.F., 47 pp.

Gobierno del Distrito Federal (GDF, 2004), "Normas técnicas complementarias para diseño por sismo", Anteproyecto del Comité de Normas, México, D.F., 47 pp.

Gómez, R T, y G J González-Pomposo (1983), "Zonificación sísmica del estado de Puebla", *Memorias, VI Congreso Nacional de Ingeniería Sísmica,* Sociedad Mexicana de Ingeniería Sísmica, Puebla, Puebla, pp. 25-38.

González-Pomposo, G J, y C Valdés-González (1995), "Seismicity of the State of Puebla, Mexico, 1986-1989", *Geofísica Internacional*, Vol. 34, No. 2, pp. 221-231.

Grünthal, G (1998), "European Macroseismic Scale 1998. EMS-98", Conseil de L'Europe, Cahiers du centre Européen de Géodynamique et de Séismologie, Vol. 15.

Gutiérrez, C (1999), "Mapa de intensidades sísmicas del evento del 15 de junio de 1999, Mw 7.0, Tehuacán, Puebla", *Memorias, XII Congreso Nacional de Ingeniería Sísmica,* Sociedad Mexicana de Ingeniería Sísmica, Morelia, Michoacán, pp. 736-743.

Gutiérrez, C y S K Singh (1992), "A site effect study in Acapulco, Guerrero, Mexico: comparison of results", *Bulletin of the Seismological Society of America*, No. 78, pp. 42-63.

Hardin, B O y V P Drnevich (1972), "Shear modulus and damping in soils: measurement and parameter", *Journal of the Soil Mechanics and Foundations Division*, American Society of Civil Engineering, Vol. 98 (SM6), pp. 603-624.

Haskell, N A (1962), "Crustal reflection of plane P and SV waves", J. Phys. Earth., No. 67, pp. 4751-4767.

Haskell, N A (1964), "Radiation patterns of surface waves from point source in a multi-layered medium", *Bulletin of the Seismological Society of America*, No. 54, pp. 377-393.

Hernández, O, R Meli, M Padilla y E Valencia (1981), "Refuerzo de la vivienda económica en zonas sísmicas. Estudios experimentales", Serie Azul del Instituto de Ingeniería, UNAM, México, No. 441, 86 pp.

Iglesias-Jiménez, J, J Iglesias-Villarreal, M Ramírez-Centeno, B Gómez-González, J J Guerrero-Correa, C Ruiz-Acevedo e I Salgado-Salazar (1999), "Mapa de intensidades del sismo del 15 de junio de 1999", *Memorias, XII Congreso Nacional de Ingeniería Sísmica,* Sociedad Mexicana de Ingeniería Sísmica, Morelia, Michoacán, pp. 744-753.

INEGI (1988), Carta topográfica "Acatlán de Osorio", clave E14-B83, escala 1:50 000.

INEGI (1990), Carta geológica "Cuernavaca", clave E14-5, escala 1:250 000.

INEGI (2000), "XII Censo General de Población y Vivienda. Tabulados Básicos", página Web <u>www.inegi.gob.mx</u>.

Instituto de Ingeniería - UNAM, "Acelerograma registrado en la estación CHFL durante el sismo del 15 de junio de 1999 (Mw=7.0, mb=7.0)", Coordinación de Instrumentación Sísmica.

Jean, R y J Cesín (2000), "Recomendaciones para el diseño y construcción de estructuras de mampostería", *Memorias, XIII Congreso Nacional de Ingeniería Estructural*, León, Guanajuato, México, artículo No. 37.

Juárez-García, H, A Gómez-Bernal, A Terán-Gilmore, E Sordo-Zabay, E Arellano-Méndez, M Corona-Loera, T Perea-Olvera, D Hernández-Herman, G Rangel-Torres, G Arzate-Juárez, H Ramírez y M Jara-Díaz (1999), "Intensidades y daños asociados al sismo del 15 de junio de 1999", *Memorias, XII Congreso Nacional de Ingeniería Sísmica*, Sociedad Mexicana de Ingeniería Sísmica, Morelia, Michoacán, pp. 754-765.

Kanai, K y T Tanaka (1954), "Measurement of the microtremor", Bulletin of the Earthquake Research Institute, No. 32, pp. 199-209.

Kanai, K y T Tanaka (1961), "On microtremors. VIII", *Bulletin of the Earthquake Research Institute*, No. 39, pp. 97-114.

Laboratorio y Calidad Total Aplicada, S.A. de C.V. (LAByCTA, 2003), Estudio geotécnico realizado para el diseño del pavimento en la Avenida Mina del Municipio de Acatlán de Osorio, 18 pp.

Lermo, J, M Rodríguez y S K Singh (1987), "Observaciones de microtemblores y su aplicación en la ingeniería sísmica", *Memorias, VII Congreso Nacional de Ingeniería Sísmica,* Sociedad Mexicana de Ingeniería Sísmica, Querétaro, Qro.

Lermo, J y F J Chávez García (1993), "Site effect evaluation using spectral ratios with only one station", *Bulletin of the Seismological Society of America*, No. 83, pp. 1574-1594.

Lermo, J y F J Chávez-García (1994), "Site effect evaluation at Mexico City. Dominant period and relative amplification from strong motion and microtremors records", *Soil Dynamics and Earthquake Engineering*, No. 13, pp. 413-423.

Lachet, C and P Y Bard (1994), "Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique", *J. Phys. Earth.*, No. 42, pp. 377-397.

Lumbier, M (1928), "Megasismos recientes en Puebla y Oaxaca", *Folleto de Divulgación*, No. 31, Instituto de Geofísica, UNAM.

Miranda, E (1991), "Seismic evaluation and upgrading of existing buildings", Ph. D. Thesis, University of California at Berkeley, Berkeley, California.

Muriá, D, O Hernández y E Mena (1980), "Reporte de daños observados en la región epicentral del sismo de Huajuapan de León, octubre 24, de 1980", Reporte Interno del Instituto de Ingeniería, UNAM, Proyecto 0769, México, 33 pp.

Nakamura, Y (1989), "A method for dynamic characteristics estimation of subsurface using microtremors on the ground surface", QR of RTRI, No. 30, pp. 25-33.

Ohsaki, Y y R Iwasaki (1973), "On dynamics shear moduli and Poisson's ratio of soil deposits", *Soil and Foundations*, No. 13, pp. 61-73.

Ordaz, M, J M Jara y S K Singh (1989), "Riesgo sísmico y espectros de diseño en el estado de Guerrero", *Memorias, VIII Congreso Nacional de Ingeniería Sísmica*, Sociedad Mexicana de Ingeniería Sísmica, Acapulco, Gro.

Ordaz, M y C Montoya-Dulché (2003), Programa Degtra A4 versión 4.0.7, Instituto de Ingeniería, UNAM.

Organismo Nacional de Normalización y Certificación de la Construcción y Edificación (ONNCCE, 2003), Norma NMX-C-414-1999, "Industria de la construcción. Cementos hidráulicos. Especificaciones y métodos de prueba".

Orozco y Berra, J (1911), "Megasismos en la República Mexicana", *Memorias de la Sociedad Científica Antonio Alzate*, Tomos varios.

Ortega-Gutiérrez, F (1978), "Estratigrafía del Complejo Acatlán en la Mixteca Baja, estados de Puebla y Oaxaca", *Revista del Instituto de Geología*, No. 2, pp. 112-131.

Ortega-Gutiérrez, F (1993), "Tectonostratigraphic analysis and significance of the Paleozoic Acatlán Complex of southern Mexico", *First circum-Pacific and circum-Atlantic Terrane Conference*, Guanajuato, Mexico, Guidebook of field trip B, pp. 54-60.

Ortega-Gutiérrez, F, M Elías-Herrera, M Reyes-Salas, C Macías-Romo y R López (1999), "Late Ordovician-Early Silurian continental collisional orogeny in southern Mexico and its bearing on Gondwana-Laurentia connections", *Geology*, No. 27, pp. 719-722.

Osorio-Carrera, E, S García-Isidro, M Ramírez-Centeno, G López-Arciga y C Ruiz-Acevedo (1997), "Propuesta de zonificación sísmica para la ciudad de Tehuacán, Puebla", *Memorias, XI Congreso Nacional de Ingeniería Sísmica*, Sociedad Mexicana de Ingeniería Sísmica, Veracruz, Veracruz.

Pardo, M y G Suárez (1995), "Shape of the subducted Rivera and Cocos plates in Southern Mexico: seismic and tectotnic implications", *J. Geophys. Res.*, No. 100, pp. 12357-12373.

Park, Y, A Ang y Y Wen (1984), "Seismic damage analysis and damage-limiting design of RC building", Technical Report SRS-516, Civil Engineering Studies, University of Illinois.

Prince, J, J Havskov, J M Espinosa, I Mora, L Alonso, D Muriá y E Mena (1980), "Datos básicos del sismo del 24 de octubre de 1980 cerca de Huajuapan de León, Oaxaca", Reporte Interno del Instituto de Ingeniería, UNAM, Proyecto 0768, México, 88 pp.

Ramírez-Centeno, M, E Osorio, S García, J García, F Rivero y M Ruiz-Sandoval (1997), "Curvas de isoperiodo para la ciudad de Tehuacán, Puebla", *Memorias, XI Congreso Nacional de Ingeniería Sísmica*, Sociedad Mexicana de Ingeniería Sísmica, Veracruz, Veracruz.

Reglamento de Construcción del Municipio de Puebla (2003), "Normas Técnicas Complementarias para Diseño por Sismo (NTCDS)", pp. 81-99.

Reyes, C y R Meli (1999), "Relaciones de distorsión de entrepiso-daño y velocidades y aceleraciones de piso con incomodidad personal y daño a objetos", *Memorias, XII Congreso Nacional de Ingeniería Sísmica*, Sociedad Mexicana de Ingeniería Sísmica, Morelia, Michoacán.

Riquer, G, F Williams, J Lermo, G Torres y R Leyva (2003), "Microzonificación sísmica en la zona conurbada Veracruz - Boca del Río", *Memorias, XIV Congreso Nacional de Ingeniería Sísmica*, Sociedad Mexicana de Ingeniería Sísmica, Guanajuato-León, Gto.

Rosenblueth, E (1953), *Teoría del diseño sísmico sobre mantos blandos*, Ediciones ICA, Serie B, No. 14, pp. 3-12.

Rosenblueth, E, S K Singh, M Ordaz y F J Sánchez-Sesma (1987), "Espectros de diseño para el Distrito Federal", *Memorias, VII Congreso Nacional de Ingeniería Sísmica*, Sociedad Mexicana de Ingeniería Sísmica, Querétaro, Qro.

Ruiz, C, J Juárez, M Ramírez, M Ruiz-Sandoval, J Aguilar, J Carballo, J J Guerrero, H Juárez y J Iglesias (1993), "Zonificación sísmica de la ciudad de Puebla", *Memorias, X Congreso Nacional de Ingeniería Sísmica*, Sociedad Mexicana de Ingeniería Sísmica, Puerto Vallarta, Jalisco.

Safina, S (2003), "Vulnerabilidad sísmica de edificaciones esenciales. Análisis de su contribución al riesgo sísmico", Tesis de Maestría en Ingeniería Civil, Universidad Politécnica de Cataluña.

Salmorán, M (1995), "Diario de un Pueblo. Acatlán de Osorio", edición particular, 20 pp.

Sánchez-Sesma, F J, S Chávez-Pérez, M Suárez, M A Bravo y L E Pérez-Rocha (1988), "On the seismic response of the valley of Mexico", Earthquake Spectra 4, 3, pp. 569-589.

Sandi, H (1986), "Vulnerability and risk analysis for individual structures and systems", *Report of the Working Group of the European Association for Earthquake Engineering*, Proceedings of the 8th ECEE, Lisbon, Portugal.

Sauter, F (1989), "Fundamentos de Ingeniería Sísmica - Introducción a la Sismología", Edit. Tecnológica de Costa Rica, Instituto Tecnológico de Costa Rica, pp. 143-151.

Secretaría de Obras Públicas del Estado de Puebla (2004), *Cartografía digital del municipio de Acatlán de Osorio, Puebla,* Subsecretaría de Desarrollo Urbano, Departamento de Ordenamiento Territorial.

Seed, H B e I M Idriss (1970), "Soil moduli and damping factors for dynamic response analyses", Report EERC-7010, University of California at Berkeley, California.

Sheriff, R E y L P Geldart (1991), "Exploration seismology. History, theory, and data acquisition", Vol. I, Cambridge University Press, pp. 119-126, 263-284.

Singh, S K, J Lermo, T Domínguez, M ordaz, J M Espinoza, E Mena y R Quass (1988a), "A study of amplification of seismic waves in the valley of Mexico with respect to a hill zone site (CU)", *Earthquake Spectra*, pp. 653-673.

Singh, S K, E Mena y R Castro (1988b), "Some aspects of the source characteristics and the ground motion amplifications in and near Mexico City from the acceleration data of the September 19th, 1985, Michoacan, Mexico earthquakes", *Bulletin of the Seismological Society of America*, No. 78, pp. 451-477.

Singh, S K, M Ordaz, J F Pacheco, R Quass, L Alcántara, S Alcocer, C Gutiérrez, R Meli y E Ovando (1999), "A Preliminary Report on the Tehuacán, México Earthquake of June 15, 1999 (Mw = 7.0)", *Seismological Research Letters*, Vol. 70, No. 5, pp. 489-504.

Singh, S K, M Ordaz, L Alcántara, N Shapiro, V Kostoglodov, J F Pacheco, S Alcocer, C Gutiérrez, R Quass, T Mikumo y E Ovando (2000), "The Oaxaca Earthquake of 30 September 1999 (Mw = 7.5): A Normal-faulting Event in the Subducted Cocos Plate", *Seismological Research Letters*, Vol. 71, No. 1, pp. 67-78.

Singh, S K y M Wyss (1976), "Source parameters of the Orizaba earthquake of August 28, 1973", *Geofísica Internacional*, No. 16, pp. 165-184.

Suárez, G, T Monfret, G Wittlinger y C David (1990), "Geometry of subduction and depth of seismogenic zone in the Guerrero gap, México", *Nature*, Vol. 345, No. 6273.

Terán, A (1997), "Energy concepts and damage indices", Página Web de la Universidad de California en Berkeley http://nisee.berkeley.edu/lessons/general.htm.

Thomson, W T (1950), "Transmission of elastic waves through a stratified solid medium", *J. Appl. Phys.*, No. 21, pp. 89-93.

Trueba, V (1991), "Determinación de las propiedades mecánicas del subsuelo con fines de microzonificación sísmica", *Memorias, IX Congreso Nacional de Ingeniería Sísmica*, Sociedad Mexicana de Ingeniería Sísmica, Manzanillo, Colima.

Udwadia, F E y M D Trifunac (1973), "Comparison of earthquake and microtremor ground motions in El Centro, California", *Bulletin of the Seismological Society of America*, No. 63, pp. 1227-1253.

Valles, R, A Reinhorn, S Kunnath, C Li y A Madan (1996), "IDARC 2D Version 4.0: A program for the inelastic damage analysis for building", Technical Report NCEER-96-0010, National Center for Earthquake Engineering Research, New York.

Yamamoto, J, Z Jiménez y R Mota (1984), "El temblor de Huajuapan de León, Oaxaca, México, del 24 de octubre de 1980", *Geofísica Internacional*, No. 23, pp. 83-110.