

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

OGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA INGENIERÍA CIVIL – ESTRUCTURAS

PREDICCIÓN DE LA RESISTENCIA A PARTIR DEL MÉTODO DE LA MADUREZ: DETERMINACIÓN EXPERIMENTAL DE LA ENERGIA DE ACTIVACIÓN DE CONCRETOS AUTOCOMPACTANTES Y CONVENCIONALES DE ALTA RESISTENCIA.

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: MIGUEL ÁNGEL DIRCIO BAUTISTA

TUTOR M. I. CARLOS JAVIER MENDOZA ESCOBEDO, INSTITUTO DE INGENIERÍA

COMITÉ:

DR. ROBERTO MELI PIRALLA, INSTITUTO DE INGENIERÍA DR. JUAN JOSE PEREZ GAVILAN ESCALANTE, INSTITUTO DE INGENIERÍA DR. CARLOS MÁXIMO AIRE UNTIVEROS, FACULTAD DE INGENIERÍA ING. JUAN LUIS COTTIER CAVIEDES, FACULTAD DE INGENIERÍA

MÉXICO, D. F. AGOSTO 2014

JURADO ASIGNADO:

Presidente: Dr. Roberto Meli Piralla

Secretario: Dr. Juan José Pérez Gavilán Escalante

Vocal: M. I. Carlos Javier Mendoza Escobedo

1 er. Suplente: Dr. Carlos Máximo Aire Untiveros

2 d o. Suplente: Ing. Juan Luis Cottier Caviedes

Lugar o lugares donde se realizó la tesis:

INSTITUTO DE INGENIERÍA, UNAM.

TUTOR DE TESIS:

M. I. Carlos Javier Mendoza Escobedo

FIRMA

AGRADECIMIENTOS

A la Universidad Nacional Autónoma de México (UNAM) por el privilegio de pertenecer a esta comunidad estudiantil. También agradezco al Instituto de Ingeniería (IINGEN) por darme la oportunidad de colaborar en uno de sus proyectos de investigación y brindarme un espacio para el desarrollo de mi tesis y así mismo a la Facultad de Ingeniería (FI) por permitirme cursar mis estudios de maestría.

A CONACYT por el apoyo económico otorgado durante mis estudios de posgrado.

Agradezco a los miembros del comité, Dr. Roberto Meli Piralla, Dr. Juan José Pérez Gavilán Escalante, Dr. Carlos Máximo Aire Untiveros y al Ing. Juan Luis Cottier Caviedes, por su tiempo, sugerencias y valiosos comentarios en la creación de este escrito.

Agradezco y reconozco a la Dra. Cristina Mercedes Vázquez Herrero por su apoyo, esfuerzo, dedicación y ayuda constante durante el proyecto de investigación, el cual fue un proyecto realizado entre el Instituto de Ingeniería de la UNAM y la Universidad de la Coruña, en España.

Agradezco a mis amigos y compañeros del Posgrado, Instituto de Ingeniería y Laboratorio de Estructuras y Materiales por brindarme su apoyo y amistad. Asimismo agradezco el apoyo durante la campaña experimental a los ingenieros de OHL Construcción México.

Y por último, de manera muy especial y con mucho afecto, por su calidad humana y amistad agradezco a mi tutor M. I. Carlos Javier Mendoza Escobedo por el apoyo y confianza brindados durante el proyecto de investigación y desarrollo de mi tesis, así como también, por compartir sus conocimientos e invaluable experiencia.

A dios:

Por estar hoy aquí y acompañarme todos los días

A mis padres: Leticia Bautista Morales y Alfonso Dircio Fuerte

Por quienes agradezco a Dios el haberme puesto entre sus brazos; por su motivación y apoyo para cumplir todos mis sueños y a quienes les debo el llegar hasta aquí y convertirme en lo que soy, los amo

A mis hermanos: Oscar y Mari

Gracias por existir, por ser mis amigos y brindarme su comprensión, apoyo incondicional y aliento en los momentos más difíciles de mi vida para concluir esta meta, los quiero

A mis amigos y familiares:

Gracias por su amistad, apoyo, cariño y alegrías que le han puesto sabor a mi vida, si empre los llevare en el corazón

A todos ustedes que han sido un aliciente en la culminación de este sueño tan importante, les dedico las páginas de esta tesis

RESUMEN

La productividad de las empresas de prefabricados está condicionada por los plazos de fabricación de los elementos estructurales. En el caso de las trabes y zapatas-columnas (ZC) de los segundos pisos del periférico de la ciudad de México, la transferencia del presfuerzo es la que condiciona los plazos de prefabricación. La transferencia del presfuerzo generalmente se realiza cuando el concreto ha alcanzado el 80% de su resistencia de diseño; actualmente en México, la estimación de la resistencia del concreto en las estructuras, se realiza a partir de la confección de cilindros de control (CC), los cuales se encuentran bajo condiciones ideales de temperatura y humedad, por lo cual, el fraguado y endurecimiento de un CC es muy diferente a las condiciones de fraguado y endurecimiento del concreto en las estructuras prefabricadas.

El objetivo de estudio es profundizar en el conocimiento de la resistencia del concreto a edades tempranas, se pretende adecuar la práctica de la construcción de las estructuras de concreto al avanzado estado del arte internacional, aplicando el método de la madurez.

La investigación se enfocó a determinar las propiedades mecánicas y la energía de activación (*Ea*) de tres dosificaciones de concreto autocompactante de alta resistencia, además, a realizar una campaña experimental para aplicar el método de la madurez y predecir la resistencia de una *ZC* de los segundos pisos del DF, aplicando la norma ASTM C1074-11.

La *Ea* se determina mediante el ensayo de probetas de mortero a diferentes edades y curados a tres temperaturas diferentes. La estimación de las resistencias in situ en función de la edad y la temperatura interna del concreto, se denominan métodos de la madurez, el cual combina los efectos del tiempo y la temperatura sobre el desarrollo de la resistencia; el procedimiento requiere el establecimiento de la relación resistencia-madurez del concreto, estimar los valores de madurez de acuerdo con los datos de temperatura registrados en campo y compararlos con los valores de madurez obtenidos en laboratorio, según el registro de la temperatura interna del mismo; esto se logra embebiendo sensores de temperatura en la *ZC* y a la mitad del diámetro y altura en 2 *CC*.

Las mezclas en estudio presentaron un buen comportamiento mecánico, los valores de *Ea* están comprendidos entre 21 y 38 kJ/mol. Las predicciones realizadas se compararon contra las resistencias obtenidas de los *CC* de la *ZC* instrumentada. Se observó que, la madurez en distintas zonas de la *ZC* no es la misma y además es mayor que en los *CC*, las predicciones de resistencia estuvieron dentro de los límites establecidos. A la luz de los resultados se concluye que el método de la madurez es una herramienta que proporciona un cálculo relativamente simple para predecir la resistencia del concreto a edades tempranas. Las ventajas de implementar el procedimiento en la construcción de estructuras es: determinar las zonas críticas de resistencia, garantizar la resistencia mínima del concreto durante la transferencia del presfuerzo, disminuir el tiempo de descimbrado e izaje, determinar la temperatura y duración de los procesos de curado acelerado si es necesario, evitar los ensayos destructivos o tener que extraer testigos de los elementos estructurales y disminuir la cantidad de residuos sólidos en la construcción.

PALABRAS CLAVE: concreto, resistencia, edad temprana, método de la madurez, temperatura, energía de activación, edad equivalente.

ABSTRACT

The productivity of precast concrete industry is conditioned by the time of manufacture of the structural elements. In the case of beams, columns and footings (ZC) of the second level of the peripheral circuit, the prestressing transfer determines the timing of prefabrication. The prestressing transfer is usually done when the concrete has reached 80% of its design strength; currently in Mexico, the estimate of concrete resistance is carried out by control cylinder (CC) kept under ideal conditions of temperature and humidity, whereby the setting and hardening of a CC is very different curing conditions and strength of precast concrete structures.

The objective of this study is to increase the knowledge the concrete strength at early ages. The aim is to bring the practice of construction of concrete structures to the advanced international art state, using the maturity method.

The investigation focused on determining the mechanical properties and the activation energy (Ea) of dosages of high-strength self-compacting concrete and an experimental campaign to apply the method of predicting the maturity and strength of a ZC of the second level DF, applying the ASTM C1074-11 standard.

The Ea is determined by testing mortar specimens cured at different ages and at three different temperatures. Estimating resistances in situ depending on the age and the internal temperature of the concrete, is carried out using known methods of maturity that combine the effects of time and temperature on the development of resistance. The procedure requires the establishment of the concrete strength-maturity relationship, to estimate the values of maturity according to the temperature data recorded in the field and compare the values obtained in the laboratory to maturity as recorded by the internal temperature. The temperature internal can be obtained by embedding the temperature sensors into ZC and half the diameter and height in 2 CC.

Mixtures in study had good mechanical strength the *Ea* values are between 21 and 38 kJ/mol. The predictions were compared against those obtained from the *CC* resistances of the *ZC* instrumented. It was observed that, maturity in different areas of the *ZC* is not the same and also is greater than in the *CC* resistance predictions were within limits. In light of the results it is concluded that the maturity method is a tool that provides a relatively simple calculation to predict the strength of concrete at early ages. The benefits of implementing the process in building structures is: identify critical areas of resistance, ensuring a low concrete strength for prestressed transfer, reducing time and lifting decentering, determine the temperature and duration of curing processes accelerated if necessary, avoid destructive testing or witnesses having to remove the structural elements and decrease the amount of solid waste in construction.

KEYWORDS: concrete, strength, early age, maturity method, temperature, activation energy, equivalent age.

INDICE

1.	INTRODUCCIÓN	9
	.1 ANTECEDENTES	9
	.2 PLANTEAMIENTO DEL PROBLEMA	10
	.3 CONTENIDO	11
2.	ESTADO DEL ARTE	12
	2.1 INTRODUCCIÓN	12
	2 INVESTIGACIONES PREVIAS	
	2.2.1 BROOKS, 2008.	
	2.2.2 PINTO Y HOVER, 1999	
	2.2.3 PINTO Y SCHINDLER, 2010	
	2.3 FUNDAMENTOS DEL MÉTODO DE LA MADUREZ	
	2.3.1 FACTOR TEMPERATURA-TIEMPO O MADUREZ	15
	2.3.2 EDAD EQUIVALENTE	
3.	MATERIALES Y EQUIPOS EMPLEADOS	17
	3.1 CEMENTO	
	3.2 AGREGADOS PETREOS	17
	3.2.1 AGREGADO GRUESO	17
	3.2.2 AGREGADO FINO	18
	3.3 ADITIVOS	19
	3.3.1 ADVA CAST 575	19
	3.3.2 WRDA 64	19
	3.3.3 PLASTOL PRECAST.	19
	3.3.4 EUCON W.O	19
	3.3.5 RECOVER.	
	3.4 EQUIPOS E INSTRUMENTACIÓN	
	3.4.1 DESCRIPCION DE LA CAJA REGISTRADORA	
	3.4.1.1 CAJA CONTENEDORA	
	3.4.1.2 DATALOGGER TINYTAG	21
	3.4.1.3 SENSOR	
	3.4.2 CALIBRACIÓN	22
4.	MEZCLAS DE CONCRETO EN ESTUDIO	23
	.1 PROPORCIONAMIENTO	23
	4.1.1 ELABORACIÓN DEL CONCRETO.	
	4.1.2 ELABORACIÓN DEL MORTERO.	24
5.	RESULTADOS	25
	7.1 RESULTADOS DE LOS CONCRETOS EN ESTUDIO	25
	5.1.1 CONCRETO EN ESTADO FRESCO	
	5.1.1.1 REVENIMIENTO, MASA UNITARIA, CONTENIDO DE AIRE Y ANILLO ".	J"25
	5.1.2 CONCRETO EN ESTADO ENDURECIDO	

5.1.2.1 RESISTENCIA A COMPRESIÓN SIMPLE Y RESISTENCIA A TENSIÓN	IPOR
COMPRESIÓN DIAMETRAL.	
5.1.2.2 MODULO DE ELASTICIDAD	27
5.1.2.3 RELACIÓN DE POISSON	
5.2 RESULTADOS DE LOS MORTEROS EN ESTUDIO	29
5.2.1 MORTERO EN ESTADO FRESCO	30
5.2.1.1 TIEMPOS DE FRAGUADO	
5.2.2 MORTERO EN ESTADO ENDURECIDO	
5.2.2.1 RESISTENCIA A COMPRESIÓN SIMPLE	32
6. METODO DE LA MADUREZ	37
6.1 INTRODUCCIÓN	37
6.2 DETERMINACION DE LA ENERGIA DE ACTIVACIÓN Y LA TEMPERATURA	A DATO.37
6.3 FUNCIONES DE MADUREZ	43
6.3.1 FACTOR TEMPERATURA-TIEMPO O MADUREZ	43
6.3.2 EDAD EQUIVALENTE	46
7. CAMPAÑA EXPERIMENTAL	49
7.1 INTRODUCCIÓN	49
7.2 ZAPATA COLUMNA-049	
7.2.1 UBICACIÓN DE DISPOSITIVOS	49
7.2.2 HISTORIAL DE TEMPERATURAS	
7.3 CILINDROS DE CONTROL	51
7.3.1 HISTORIAL DE TEMPERATURAS	52
7.3.2 RESISTENCIA A COMPRESIÓN SIMPLE	52
8. APLICACIÓN DEL MÉTODO DE LA MADUREZ	53
8.1 INTRODUCCIÓN	53
8.2 DESARROLLO.	
8.2.1 RELACIÓN RESISTENCIA-MADUREZ	55
8.2.2 VALORES DE MADUREZ REGISTRADOS EN CAMPO	56
8.2.2.1 MADUREZ Y PREDICCIÓN DE LA RESISTENCIA DE LA ZC-049	56
8.2.2.2 MADUREZ Y PREDICCIÓN DE LA RESISTENCIA DE LOS CILINDRO	S DE
CONTROL	60
8.2.3 COMPARAR LOS VALORES DE MADUREZ OBTENIDOS EN CAMPO Y EN	1
LABORATORIO	62
9. ANALISIS DE RESULTADOS	67
9.1 CONCLUSIONES GENERALES	69
9.2 CONCLUSIONES PARTICULARES	71
RECOMENDACIONES A FUTUROS TRABAJOS	72
REFERENCIAS	72

1. INTRODUCCIÓN

1.1 ANTECEDENTES

El método de la madurez es una técnica que fue desarrollada por investigadores ingleses a fines del año 1940 (Macintosh) y principios del año 1950 (Nurse y Saul), donde se identifico la gran influencia de la temperatura sobre la evolución de la resistencia del concreto. Durante esa época se dedujo que la temperatura del concreto estaba directamente relacionada con la cantidad de hidratos que se generan en la hidratación del cemento y estos, a su vez, con la resistencia del mismo. De esta forma aparece el concepto de madurez que se funda en el registro de temperaturas internas del concreto, este concepto utiliza el principio de que la resistencia del concreto está directamente relacionada con la edad y el desarrollo de su temperatura.

La función de madurez se puede expresar de dos formas, en términos del factor temperatura-tiempo (madurez) o en términos de la edad equivalente (te) a una temperatura específica. El factor temperatura-tiempo o madurez es el área bajo la curva del registro de temperatura contra el tiempo; para el cálculo de la te es necesario determinar la energía de activación (Ea) de la mezcla de concreto, recordando que, la hidratación del cemento es un complejo proceso termodinámico, que requiere de una Ea, que de acuerdo con la definición de Arrhenius, es la energía mínima necesaria para el inicio de cualquier reacción química, se puede conocer la energía de activación durante el fraguado y en el endurecimiento (Pinto y Hover, 1999).

El tiempo de fraguado inicia a partir del contacto inicial entre el cemento y el agua de mezclado, el fraguado inicial se mide cuando la pasta alcanza una resistencia a la penetración de 35 kg/cm² y el fraguado final corresponde al momento en que comienza el endurecimiento, generalmente cuando alcanza una resistencia de 280 kg/cm² (ASTM C403).

Actualmente en México, la estimación de la resistencia del concreto en las estructuras, se realiza a partir de cilindros de control, los cuales se encuentran bajo condiciones ideales de temperatura y humedad (23°C y 100% HR), por lo cual, el fraguado y endurecimiento de un cilindro de control es muy diferente a las condiciones de endurecimiento y resistencia del concreto en las estructuras.

La ASTM (American Standard for Testing and Materials) establece los lineamientos para la aplicación del método de la madurez en su normativa ASTM C-1074 2011 la cual describe la forma de aplicarlo.

El método de la madurez no es habitual aplicarlo en las obras de los Segundos Pisos del DF. Sin embargo, este método es empleado usualmente en la construcción de estructuras en EUA, Canadá y Francia. Por lo tanto, este proyecto se propone para explorar la viabilidad de la implementación de procedimientos basados en el método de la madurez en las obras actualmente en curso en el DF, en las que las exigencias de plazos a menudo conducen a poner en carga a las estructuras a edades tempranas (transferencia del presfuerzo, transporte y montaje, aplicación del postensado, etc.).

Es importante mencionar que esta tesis forma parte del proyecto de investigación que se realizo en el Instituto de Ingeniería de la UNAM en colaboración con la Universidad de la Coruña, en España.

1.2 PLANTEAMIENTO DEL PROBLEMA

El planteamiento del problema es: a partir del registro de temperaturas internas del concreto contra el tiempo en una estructura ¿Se puede predecir la resistencia del concreto en las diferentes zonas de la estructura a edades tempranas? ¿Qué ensayos se requieren realizar en laboratorio para poder predecir la resistencia in situ de un concreto?

Por todo ello, se requiere determinar la energía de activación y la relación resistencia-madurez para la mezcla de concreto de acuerdo con ASTM C-1074.

Recordando que, la hidratación del cemento es un complejo proceso termodinámico, que requiere de una energía de activación (*Ea*). De acuerdo con la definición de Arrhenius, es la energía mínima necesaria para el inicio de cualquier reacción química, la cual se utiliza para calcular la edad equivalente de una mezcla de concreto.

OBJETIVOS Y ALCANCES

El objetivo de este proyecto de investigación, desarrollo tecnológico e innovación es profundizar en el método de la madurez con el fin de adecuar la práctica de la construcción de las estructuras de concreto al avanzado estado del arte internacional, aplicando el método de la madurez para la determinación de la resistencia a compresión a edades tempranas.

La investigación se enfocó a determinar:

- Las propiedades mecánicas de 3 concretos autocompactantes de alta resistencia.
- Determinar la energía de activación de los concretos en estudio.
- Llevar a cabo una campaña experimental para aplicar el método de la madurez y predecir la resistencia de una zapata-columna (ZC) de los segundos pisos del periférico en el DF.

Algunos de los objetivos particulares son:

- Determinar la energía de activación (Ea) de los concretos estudiados empleando los siguientes procedimientos para comparar los resultados obtenidos experimentalmente con los que recomienda la norma:
 - ✓ Procedimiento ASTM C 1074-2011 del apartado A1.1.7: determinación de los tiempos de fraguado a diferentes temperaturas.
 - ✓ Procedimiento ASTM C 1074-2011 del apartado A1.1.8.1: determinar valores de Su, t₀ y k para cada temperatura
 - ✓ Procedimiento ASTM C1074-2011 del apartado A1.1.8.2.
- Aplicar tres modelos de crecimiento de resistencias del concreto: hiperbólico, exponencial y logarítmico.

1.3 CONTENIDO

Este documento, tras un primer capítulo de introducción, donde se exponen los objetivos de la investigación, tiene 8 capítulos adicionales, los cuales se organizan de la siguiente forma:

En el capitulo dos, se resume el estado del arte de trabajos experimentales y las contribuciones más relevantes realizadas por varios investigadores, además, se tratan las principales formulaciones para el cálculo de la energía de activación y del método de la madurez.

La caracterización física de los agregados pétreos, la descripción de los aditivos y equipos empleados se presenta en el tercer capítulo y el análisis de las dosificaciones de los concretos en el cuarto capítulo.

En el quinto capítulo se muestran los resultados de las propiedades mecánicas de los concretos.

En el sexto capítulo se aplica la norma ASTM C-1074 2011 para determinar experimentalmente la energía de activación (*Ea*) y temperatura dato (*To*), posteriormente se obtienen las relaciones resistenciamadurez para los concretos en estudio.

La descripción de la campaña experimental donde se instrumentó una zapata-columna (ZC) de los segundos pisos del periférico en el DF para la aplicación del método de la madurez, se menciona en el séptimo capítulo.

El octavo capítulo aborda los resultados de la aplicación y validación del método de la madurez.

En el noveno capítulo se analizan los resultados de esta investigación.

También se mencionan algunas recomendaciones para futuros proyectos.

Las referencias bibliográficas consultadas se anexan al final de esta tesis.

2. ESTADO DEL ARTE

2.1 INTRODUCCIÓN

Los métodos empleados en la estimación de las resistencias del concreto in situ a edades tempranas en función de las temperaturas internas del concreto se denominan métodos de la madurez. Estos métodos están establecidos en diversas normas, dentro de las cuales destaca la ASTM C1074-11 de amplia utilización internacional y se emplea de forma complementaria a los métodos no destructivos convencionales para determinar, con seguridad (Malhotra y Carino, 2004):

- La edad mínima del concreto para desmoldar las estructuras.
- La edad mínima del concreto para efectuar operaciones de cimbrado/descimbrado o recimbrado en estructuras.
- La edad mínima del concreto para transferir el pretensado a la estructura.
- La temperatura y duración de los procesos de curado acelerado en construcción in situ.
- La certificación de que una estructura no ha sufrido temperaturas extremas a edades tempranas (superiores a 70°C o inferiores a 5°C), ni gradientes térmicos entre el interior y la superficie de concreto superiores a 20°C, que puedan afectar su comportamiento estructural.

2.2 INVESTIGACIONES PREVIAS

2.2.1 BROOKS, 2008.

El objetivo fue evaluar la precisión y exactitud del método ASTM C1074 para mezclas con diferentes cantidades de cementantes suplementarios.

Características principales:

- 11 dos ificaciones de mortero fabricado como dice la ASTM C1074-2004
- Diferentes cantidades de ceniza volante
- Aplica dos modelos de crecimiento de resistencias: exponencial e hiperbólico
- Temperaturas: 8, 23 y 40°C
- Agua saturada de hidróxido cálcico
- Diferentes edades de ensayo según la madurez: 1, 2, 4, 8, 14, 28 días a 8°C pero a otras temperaturas, se determina la edad equivalente (*te*) de todas ellas con una energía de activación (*Ea*) de 40 kJ/mol

Los autores aplican el procedimiento de ASTM C1074 y encuentran que a temperaturas de 40°C la precisión del método es muy baja, las predicciones sobrepasan las resistencias reales debido a que, probetas sometidas a temperaturas elevadas a edades tempranas, reducen su resistencia a largo plazo lo cual se denomina "cross-over effect", que es el cruce que experimentan las curvas resistencia contra edad a diferentes temperaturas de curado. Los resultados de la investigación invalidan el método de la ASTM C1074 en probetas de mortero, debido al efecto de cruce.

El artículo es interesante para reproducir la aplicación de ASTM C1074, especialmente a distintas edades de ensayo y diferentes temperaturas.

2.2.2 PINTO Y HOVER, 1999

Pinto y Hover (1999) desarrollan un procedimiento para determinar la *Ea* al inicio del fraguado y durante el mismo (desde el inicio hasta el final del fraguado).

El procedimiento se basa en la determinación del inicio y final del fraguado de acuerdo con la normativa ASTM C403. Para cada mezcla de concreto se obtiene el mortero, cribando en húmedo el concreto fresco. Se fabrican 9 cilindros de 15x15 cm: 3 cilindros a temperatura mínima, 3 cilindros a temperatura máxima. Se cubren todos los cilindros con membrana plástica mientras no se realiza el ensayo ASTM C403. Se introduce en 1 cilindro de cada temperatura un sensor de temperatura, centrado. Cada 20 minutos se mide la resistencia a la penetración.

Pinto y Hover representan las siguientes curvas y ecuaciones, a partir de las cuales obtienen los valores de energía de activación:

- Tiempos de inicio y final de fraguado para cada temperatura de curado
- Ln(1/tiempo de fraguado inicial) vs. 1/T^a. Regresión lineal: y=ax+b, -a*R=energía de activación
- Ln(1/duración de fraguado) vs. 1/T^a. Regresión lineal: y=cx+d, -c*R=energía de activación
- Duración de fraguado = fraguado final-fraguado inicial (ASTM C403)
- Duración de fraguado vs. Ta
- Fraguado inicial vs. Ta
- Fraguado final vs. T^a

donde:

R = Constante universal de los gases ideales, 8.314 J/mol*K,

 T^a = Temperatura promedio del concreto, Kelvin

Los autores desarrollan un procedimiento para la determinación de la *Ea* durante la etapa previa al fraguado (entre la colocación-compactación y el inicio de fraguado) y durante el fraguado (entre el inicio y el final del mismo).

El procedimiento propuesto presenta gran interés en prefabricación, para poder fijar con seguridad, conocido un registro de temperaturas internas del concreto: la edad de mínima de transferencia del presfuerzo, la edad de descimbrado, la necesidad de curado acelerado, el tiempo de inicio y la duración del mismo. Muchas de las patologías observadas en las plantas de prefabricados se deben a la insuficiente madurez del concreto a la puesta en carga a edad de temprana.

2.2.3 PINTO Y SCHINDLER, 2010

Esta investigación tiene una extraordinaria relevancia, porque en ella los autores proponen un modelo unificado de fraguado y endurecimiento del concreto a edad temprana. Los autores parten de la formulación Freiesleben-Hansen y Pederson y se apoyan en la evidencia experimental, según la cual la energía de activación entre el inicio y final de fraguado (*Es*) es menor que en el endurecimiento (*Ea*).

El tiempo inicial *to*, es el tiempo a partir del cual comienza el desarrollo de resistencia o madurez, definido como tiempo transcurrido entre el inicio y el final de fraguado. Se estudian 10 dosificaciones de mortero, las nueve estudiadas por Wade y una de Pinto y Hover.

Los autores concluyen lo siguiente: *Ea>Es*, es decir, es mayor la energía de activación en el endurecimiento que en el fraguado (del orden de 10 kJ/mol); la predicción de la resistencia a edades tempranas es mejor con la siguiente ecuación:

$$\frac{S}{S_u} = \frac{k(t-t_0)}{1+k(t-t_0)} - \frac{k_r(t_e-t_{0r})}{1+k_r(t_e-t_{0r})}$$
(1)

donde:

 $S = \text{Resistencia a compresión promedio de un cubo a la edad } t, \text{kg/cm}^2$,

 S_u = Resistencia límite, kg/cm²,

k = Tasa de la variación, 1/día,

t = Edad de ensayo, días u horas,

to = Edad cuando se asume inicia el desarrollo de resistencia, días u horas,

 k_r = Tasa de la variación a la temperatura de referencia, 1/día,

t_e= Edad de equivalente, días u horas,

 t_{or} = Edad cuando se asume inicia el desarrollo de resistencia a la temperatura de referencia, días u horas

La tasa de la variación (k) es un factor constante para el desarrollo de resistencia que, varía en función de la temperatura.

El tamaño de muestra es limitado, con relación agua/cemento (a/c) entre 0.41 y 0.48; sería muy interesante aplicar el procedimiento anterior a esta investigación, ya que los valores de a/c son inferiores (0.32 y 0.34) complementando a los investigados por Pinto y Hover, 1999.

2.3 FUNDAMENTOS DEL MÉTODO DE LA MADUREZ

El método de la madurez es una técnica que combina los efectos del tiempo y la temperatura sobre el desarrollo de la resistencia del concreto, el cual permite predecir la resistencia a compresión simple, basada en el historial de temperaturas internas (fig 2.1). La resistencia de concreto aumenta con la hidratación del cemento, esto a su vez depende del tiempo de curado y la temperatura, por lo tanto, la madurez es una medida de cómo ha progresado la hidratación del cemento.

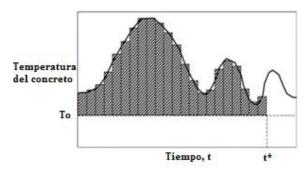


Fig 2.1 Factor temperatura-tiempo o madurez (Malhotra y Carino, 2004).

La temperatura dato (*To*) es el punto teórico donde se detiene la hidratación; después de superar este punto se inicia el proceso de fraguado y endurecimiento. De acuerdo con el anexo de la norma, se determina experimentalmente para cada mezcla su correspondiente *To*.

La norma ASTM C1074 proporciona un procedimiento para estimar la resistencia del concreto mediante el método de la madurez. La función de madurez se puede expresar de dos formas, en términos del factor temperatura-tiempo o en términos de la edad equivalente (te) a una temperatura específica.

En los años 50 el investigador Saúl enuncia la regla de la madurez, la cual dice que "Muestras de una misma mezcla de concreto tendrán iguales resistencias si es que tienen iguales valores de madurez, aunque el historial de temperaturas varíe en el transcurso del tiempo". El método de la madurez dice que, dos muestras de concreto con la misma madurez tendrán la misma resistencia, aunque las condiciones de curado sean diferentes para cada una, en la figura 2.2 se observa que una muestra expuesta a bajas temperaturas toma más tiempo para alcanzar una madurez M1, y considerando una muestra expuesta a altas temperaturas tarda menos tiempo para alcanzar la madurez M2; si M1 es igual a M2 entonces, estas dos muestras tienen iguales resistencias aunque las condiciones de curado (tiempo y temperatura) son diferentes.

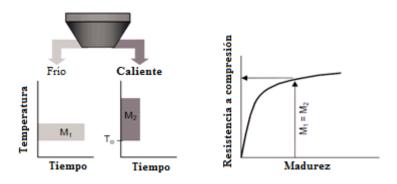


Fig 2.2 Regla de la madurez (Saul, 1950).

El procedimiento requiere el establecimiento de la relación resistencia-madurez del concreto y el registro de la temperatura interna del mismo. Lo anterior se logra embebiendo sensores de temperatura a la mitad del diámetro y de la altura en 2 cilindros de concreto.

2.3.1 FACTOR TEMPERATURA-TIEMPO O MADUREZ

Una de las funciones de madurez que se utiliza para calcular el factor de temperatura-tiempo (Nurse-Saúl, 1951), está dada por la siguiente ecuación:

$$M(t) = \sum (Ta - To) * \Delta t \tag{2}$$

donde:

M(t)= Índice de madurez, °C-horas,

Ta = Temperatura promedio del concreto, °C, durante el intervalo de tiempo Δt ,

 $To = \text{Temperatura dato, } ^{\circ}\text{C},$

t = Tiempo transcurrido, horas y

 Δt = Intervalo de tiempo, horas.

Gráficamente la madurez es el área bajo la curva del historial de temperaturas internas del concreto (fig 2.1).

2.3.2 EDAD EQUIVALENTE

Otra función de madurez, basada en la ecuación de Arrhennius, que toma en cuenta la no linealidad en la hidratación del cemento para calcular la edad equivalente (*te*) a una temperatura específica es:

$$te = \sum e^{-\frac{Ea}{R}*\left(\frac{1}{Ta} - \frac{1}{Ts}\right)} * \Delta t \tag{3}$$

donde:

te = Edad equivalente a la temperatura de referencia, horas,

Ea = Energía de activación, J/mol,

R = Constante universal de los gases ideales, 8.314 J/mol*K,

Ta = Temperatura promedio del concreto, Kelvin, durante el intervalo de tiempo Δt ,

Ts = Temperatura de referencia, Kelvin y

 Δt = Intervalo de tiempo, horas

La temperatura de referencia (Ts) se recomienda que sea de $23 \pm 2^{\circ}$ C; por motivos de capacidad y temperatura constante del horno, para llevar a cabo los ensayes en tiempo y forma, se utilizó un horno donde la temperatura constante más próxima a la recomendada fue de $28 \pm 2^{\circ}$ C.

Para calcular la edad equivalente (te) es necesario conocer la Ea que es la energía mínima necesaria para el inicio de cualquier reacción química, la cual se determina de manera experimental. La Ea depende de: tipo de cemento, relación a/c, aditivos empleados, tipo y proporcionamiento de los agregados pétreos, temperatura del concreto a edades tempranas.

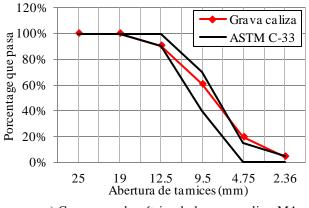
3. MATERIALES Y EQUIPOS EMPLEADOS

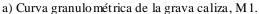
Los concretos en estudio provienen de 3 empresas y son los siguientes:

- 1. M1: Concreto autocompactante con tamaño máximo de agregado grueso de 1/2", empleado en la producción de los prototipos de zapata-columna, INPRESA, f'c= 600 kg/cm².
- 2. M2: Concreto de alta resistencia con tamaño máximo de agregado grueso de 3/8", empleado en la fabricación de modelos de zapata-columna, TICONSA, f'c= 600 kg/cm².
- 3. M3: Concreto autocompactante con tamaño máximo de agregado grueso de 1/2", empleado en la producción de las trabes de los segundos pisos, PRETENCRETO, f'c= 600 kg/cm².

3.1 CEMENTO

Los cementos empleados son, para la mezcla M1 y M3 cemento portland compuesto resistente a los sulfatos (CPC 40 RS) y para la mezcla M2 cemento portland compuesto (CPC 40 R).


3.2 AGREGADOS PETREOS


3.2.1 AGREGADO GRUESO

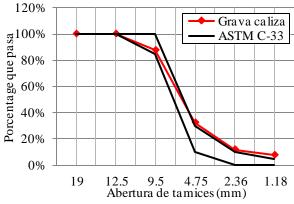
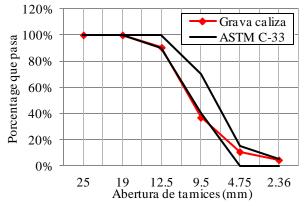
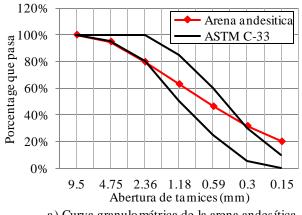

Para la fabricación de los concretos se emplearon agregados gruesos de origen calizo; en la tabla 3.1 se presentan las propiedades físicas y en la fig 3.1 la granulometría de las gravas utilizadas.

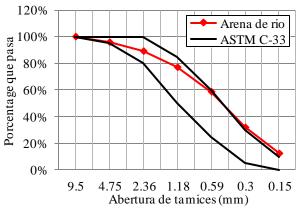
Tabla 3.1 Propiedades físicas de las gravas.


	<u>υ</u>		
Propiedades		Caliza	
	M1	M2	M3
Tamaño máximo, mm (pulg)	12.7 (1/2)	9.5 (3/8)	12.7 (1/2)
Peso especifico, seco	2.65	2.71	2.66
Peso especifico, SSS	2.67	2.76	2.68
Absorción, %	0.73	1.80	0.92
Peso volumétrico seco (suelto) kg/m3	1412	1502	1359
Peso volumétrico seco (compacto) kg/m3	1582	1674	1561

b) Curva granulo métrica de la grava caliza, M2.

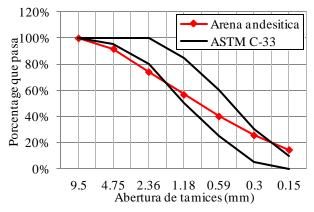
c) Curva granulo métrica de la grava caliza, M3.


Fig 3.1 Curvas granulométricas de los agregados gruesos.


3.2.2 AGREGADO FINO

Como agregado fino se utilizó arena de origen andesítico y de río; en la tabla 3.2 se presentan las propiedades físicas y en la fig 3.2 la granulometría de las arenas empleadas.

Tabla 3.2 Propiedades físicas de las arenas.


Propiedades	Andesita	Rio	Andesita
	M1	M2	M3
Módulo de finura	2.65	2.35	2.97
Peso especifico, seco	2.21	2.48	2.25
Peso especifico, SSS	2.36	2.52	2.38
Absorción, %	6.84	1.81	5.77
Pasa malla # 200, %	16.2	5.61	12.49
Peso volumétrico seco (suelto) kg/m3	1570	1608	1545
Peso volumétrico seco (compacto) kg/m3	1759	1791	1730

a) Curva granulo métrica de la arena andesítica, M1.

b) Curva granulo métrica de la arena de rio, M2.

c) Curva granulo métrica de la arena andesítica, M3.

Fig 3.2 Curvas granulométricas de los agregados finos.

3.3 ADITIVOS

Para la fabricación de los concretos se emplearon los aditivos y dosificación utilizados por cada empresa.

3.3.1 ADVA CAST 575.

Es un reductor de agua de alto rango a base policarboxilatos, de alta eficiencia, diseñado para la producción de mezclas de concreto, desde los convencionales hasta los concretos autocompactantes. Está diseñado para impartir una trabajabilidad extremadamente buena sin que se presente segregación en la mezcla. Las dosis típicas pueden ir desde 130 a 650 ml/100 kg de materiales cementantes, para la mayoría de las aplicaciones, pero es usual usar consumos desde 200 hasta 390 ml/100 kg de cementante.

3.3.2 WRDA 64.

Es una solución acuosa de compuestos orgánicos complejos basada en un polímero, diseñado para producir un concreto con menor contenido de agua, generalmente una reducción de 8 a 10%; proporciona mayor plasticidad y resistencia. Las dosificación está en el rango de 195 a 390 ml/100 kg de cementante.

3.3.3 PLASTOL PRECAST.

Es un aditivo reductor de agua de alto rango hiperfluidificante a base policarboxilato, diseñado especialmente para dar alta fluidez y reducción de agua con el empleo de una menor dosis respecto a otros aditivos de la misma línea Plastol. La dosificación va en un rango de 4 a 10 cc/ kg de cemento.

3.3.4 EUCON W.O.

Es un aditivo líquido para concreto que inhibe temporalmente la hidratación del cemento, Ideal para las mezclas de concreto que requieran un control en la permanencia de la fluidez. La cantidad recomendable, si se requiere como aditivo retardante y para control de la permanencia de la fluidez, está en el rango de dosificación de 0.1 a 4 cc/kg de cemento, como dosis máxima.

3.3.5 RECOVER.

Es una solución acuosa cuyos componentes químicos están específicamente diseñados para estabilizar la hidratación de concretos fabricados con cemento portland. La cantidad adecuada dependerá de los materiales involucrados, edad del concreto, temperatura y el tiempo de espera.

3.4 EQUIPOS E INSTRUMENTACIÓN

Como se ha mencionado anteriormente, la madurez es función de las temperaturas internas del concreto. Para registrar la historia de las temperaturas internas y de curado de los concretos y morteros, se han utilizado cajas registradoras de temperatura.

3.4.1 DESCRIPCION DE LA CAJA REGISTRADORA

A continuación se enlistan los componentes de la caja registradora (Laport, 2011):

- Una caja contenedora, con conectores para un sensor y una computadora personal (PC)
- Un datalogger Tinytag con conectores para una PC y un sensor LM35DZ.
- Un sensor de temperatura protegido y conectado a la caja registradora, mediante cable y conector.

El equipo y procedimiento de instrumentación es una transferencia tecnológica que se realiza con la Universidad de la Coruña, todo el proceso se realizó de acuerdo con lo recomendado en el proyecto técnico denominado "DESARROLLO DE UN NUEVO SISTEMA DE INSTRUMENTACIÓN PARA LA APLICACIÓN DEL MÉTODO DE LA MADUREZ EN PUENTES DE HORMIGÓN", Federico Laport Rivas 2011 (Laport, 2011). En la fig 3.3 se muestran las distintas cajas registradoras y sensores.

Fig 3.3 Distintas cajas registradoras y sensores (Laport, 2011).

3.4.1.1 CAJA CONTENEDORA

Las cajas que se utilizan son de aluminio, resistente a impactos y a temperaturas elevadas, tienen ranuras para poder conectar el sensor de temperatura y la interface PC-datalogger (fig 3.4).

Fig 3.4 Caja contenedora (Laport, 2011).

La caja lleva una fuente de alimentación (batería de 9 volts) y un cableado interno para realizar la conexión del data logger con el sensor LM35DZ y la PC.

3.4.1.2 DATALOGGER TIN YTAG

Se han utilizado dos equipos distintos:

- El primero, denominado Tinytag Plus 2, Temp. RH, registra directamente la temperatura y humedad relativa ambiente; se utilizó para registrar los datos de las cámaras de curado cada 10 minutos (fig 3.5).
- El segundo, denominado Tinytag plus re-ed voltaje logger 0-2.4V, registra un voltaje; a este es necesario conectar un sensor que va embebido dentro del concreto para transmitir los datos y almacenar el registro de las temperaturas internas del concreto cada 10 minutos. Estos dataloggers se calibraron previamente para un rango de temperaturas entre 0 y 90 °C, con una precisión de 0.1 grados (fig 3.6).

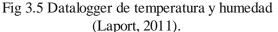


Fig 3.6 Datalogger de voltaje (Laport, 2011).

3.4.1.3 SENSOR

Se denomina sensor al conector, cable, LM35DZ y demás componentes que montados son una pieza única que se puede conectar a la caja registradora (Datalogger). Su fabricación es independiente de las cajas y es necesario fabricarlos para cada caja ya que estos sensores son "perdidos"; solo se recupera el conector, en la fig 3.7 se muestras los componentes del sensor.

Fig 3.7 Componentes de un sensor (Laport, 2011).

Para la descarga de datos es necesario conectar una interface PC-datalogger para transferir los registros de temperatura con un software propio de Tinytag, como se observa en la fig 3.8.

Fig 3.8 Descarga de datos con el software especializado.

3.4.2 CALIBRACIÓN

Hay dataloggers que necesitan calibrarse antes de ser utilizados, para este fin se necesitan los siguientes materiales: recipientes para agua, termómetro de 0.1°C de precisión, hielo y agua, PC e interface PC-datalogger y un calentador de agua.

El procedimiento es el siguiente (Laport, 2011):

- Se enfría agua con hielo hasta 1°C y se calienta el agua hasta 100°C.
- Se utilizan cinco puntos de calibración, desde 1°C hasta 100°C.
- Se introducen los sensores en el agua a cada temperatura, los sensores tardan 1 o 2 minutos en adaptarse a la temperatura del recipiente. Durante este proceso debe revolverse continuamente el agua (fig 3.9).
- Se toman lecturas de cada sensor anotando exactamente la temperatura en el momento de cada lectura, con precisión de 0.1°C (tabla 3.3).
- Si las lecturas son dispersas se toma una media estadística. Todo ello se anota en una hoja de calibración.
- Se elabora una hoja de cálculo de calibración con una hoja para cada caja y una hoja resumen. Debe quedar claramente especificado cuál es el código de cada sensor.
- Se hace una regresión por mínimos cuadrados y se ajusta a una recta (fig 3.10).
- El valor R2 de la regresión debe ser 0.999 como mínimo. En caso contrario repetir la calibración.

Fig 3.9 Calibración de datalogger.

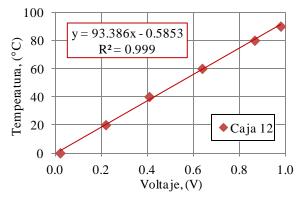


Fig 3.10 Grafica de calibración, caja 12 #562589.

Tabla 3.3 Calibración caja 12 #562589

Temperatura (°C)	Voltaje (V)
0	0.023
20	0.221
40	0.410
60	0.640
80	0.868
90	0.981
$R^2 =$	0.998
pendiente=	93.386
Ord. Origen=	-0.585
$R^2 =$	0.999

4. MEZCLAS DE CONCRETO EN ESTUDIO

4.1 PROPORCIONAMIENTO.

Los concretos se reprodujeron en laboratorio siguiendo las proporciones y recomendaciones de cada empresa como se muestran en la tabla 4.1:

Tabla 4.1 Proporcionamiento.

Mezcla	Cemento	(kg/m³)	A/C	Arena	(%)	Grava	(%)	Aditivo	#	(cc/kg de cemento)					
M1	CPC 40-RS	640	0.34	Andesítica	53	Caliza 1/2"	47	ADVA CAST 575	1	9					
IVI I	CPC 40-RS	040 0	0.54	Andesitica 55	0.34 Andesitica	33	Caliza 1/2 4	47	WRDA 64	2	2				
M2	CPC 40-R	610 0.3	0.34	Rio	16	Caliza 3/8" 5	5.1	PLASTOL	1	10.5					
IVI Z					46		Caliza 5/6	Caliza 5/8	34	WO	2	2.25			
M2	CPC 40-RS	580	0.32	Andesítica	50	50	50	50	50	50	C-1: 1/2"	50	ADVA CAST 575	1	12
М3				Andesitica		Caliza 1/2"	50	RECOVER	2	2					

4.1.1 ELABORACIÓN DEL CONCRETO.

Para cumplir con el número de ensayos requeridos para las diferentes edades, se elaboraron 270 litros distribuidos en 3 bachadas, las cantidades a pesar por bachada son las que se indican en la tabla 4.2.

Al realizar las mezclas, estas presentaron una gran inestabilidad, provocando segregación. Después de revisar paso a paso el diseño de la mezcla, correcciones de humedad en agregados y no encontrar error alguno, se decidió reducir el porcentaje de aditivos, esto después de revisar la ficha técnica del fabricante y notar que las cantidades utilizadas por cada empresa superan los límites recomendados en algunos casos.

Tras realizar varias correcciones, finalmente los porcentajes utilizados de los aditivos fueron 75% para la mezcla M1, 70% para la mezcla M2 y 65% para la mezcla M3 del diseño original.

Tabla 4.2 Pesado de materiales.

MATERIALES	M1	M2	M3
Cemento (kg)	57.60	54.90	52.20
Arena (kg)	65.03	61.58	67.24
Grava (kg)	56.16	72.36	66.73
Agua (kg)	22.12	19.24	19.52
Aditivo 1 (cc)	388.80	403.52	407.16
Aditivo 2 (cc)	86.40	86.47	67.86

El criterio empleado para la dosificación de los concretos fue el de volúmenes absolutos. Las cantidades de agua, grava y arena empleadas en las mezclas fueron ajustadas para tomar en cuenta la humedad y absorción de los materiales pétreos en el momento de realizarlas. En la fig 4.1 se observa la elaboración y curado del concreto.

Instrumentación de los cilindros

Curado de los especímenes

Fig 4.1 Elaboración y curado del concreto.

4.1.2 ELABORACIÓN DEL MORTERO.

Para cumplir con el número de ensayos requeridos para las diferentes edades, se elaboraron 6 litros de mortero equivalente al de la mezcla de concreto; se utilizó el 100% de agregado fino, dejando la misma cantidad de cemento, agua y aditivos como se muestra en la tabla 4.3, en la fig 4.2 se observa la elaboración y curado de las probetas de mortero.

Tabla 4.3 Materiales para los morteros.

	F		
MATERIALES	M1	M2	M3
Cemento (kg)	3.84	3.66	3.48
Arena (kg)	7.43	8.45	8.39
Agua (kg)	1.69	1.35	1.34
Aditivo 1 (cc)	25.92	26.90	27.14
Aditivo 2 (cc)	5.76	5.76	4.52

Fig 4.2 Elaboración y curado del mortero.

5. RESULTADOS

5.1 RESULTADOS DE LOS CONCRETOS EN ESTUDIO

5.1.1 CONCRETO EN ESTADO FRESCO

5.1.1.1 REVENIMIENTO, MASA UNITARIA, CONTENIDO DE AIRE Y ANILLO "J"

A las mezclas de concreto en estado fresco se les determinó el revenimiento antes de agregar los aditivos; después de agregarlos se realizó el ensayo del "anillo J" para determinar la capacidad de paso del concreto autocompactante de acuerdo con la norma ASTM C1621 M-09b (fig 5.1); también se tomó el tiempo que tarda el concreto en extenderse hasta 50 cm de diámetro en la placa de acero, se determinó el contenido de aire atrapado y el peso volumétrico. Los resultados de los ensayes se presentan en la tabla 5.1.

Tabla 5.1 Resultado de los ensayes en estado fresco.

Mezcla	Revenimiento s in aditivo (cm)	Diámetro sin anillo (cm)	Diámetro con anillo (cm)	Capacidad de paso (cm)	t(s)	Cont. Aire (%)	M. U. (t/m³)
1	5	75.67	70.00	5.67	0.74	1.80	2.26
2	1	82.00	78.00	4.00	1.09	1.50	2.38
3	3	81.00	77.00	4.00	0.97	1.40	2.31



Fig 5.1 Ensaye del "anillo J" (ASTM C-1621, 2009).

5.1.2 CONCRETO EN ESTADO ENDURECIDO

Para cada mezcla en estudio se programaron ensayos para las edades de 1, 2, 3, 4, 7, 14 y 28 días, para cada edad se fabricaron: 4 cilindros para determinar la resistencia a compresión a la edad de ensayo y, de ellos, a 3 cilindros se les determinó el módulo de elasticidad estático y simultáneamente la relación de Poisson, además se ensayaron 3 cilindros más para conocer la resistencia a tensión por compresión diametral (prueba brasileña).

5.1.2.1 RESISTENCIA A COMPRESIÓN SIMPLE Y RESISTENCIA A TENSIÓN POR COMPRESIÓN DIAMETRAL.

En la tabla 5.2 se observan los valores promedio de la resistencia a compresión simple (fc) y la resistencia a tensión por compresión diametral (ft) ó prueba brasileña, en las figuras 5.2 y 5.3 se muestran las graficas correspondientes y en las figuras 5.4 y 5.5 las imágenes antes y después del ensaye, respectivamente.

		I		. I	- 5			
Mezcla	Día	1	2	3	4	7	14	28
1	fc (kg/cm²)	477	511	525	537	565	615	628
	ft (kg/cm²)	34	38	35	38	39	40	53
2	fc (kg/cm²)	459	494	551	573	632	647	660
2	ft (kg/cm²)	34	32	34	38	41	42	52
3	fc (kg/cm²)	480	510	540	555	585	642	653
3	ft (kg/cm²)	29	39	35	42	41	42	51

Tabla 5.2 Resistencia a compresión simple y resistencia a tensión.

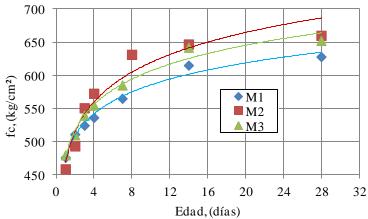


Fig 5.2 Variación de la resistencia a compresión simple con la edad.

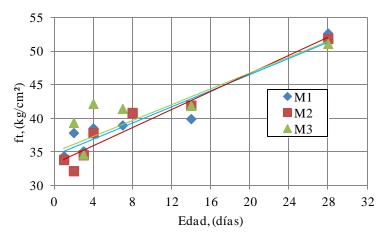


Fig 5.3 Variación de la resistencia a tensión con la edad.

Fig 5.4 Ensaye de cilindros a compresión simple, antes y después de la prueba.

Fig 5.5 Ensaye de cilindros a tensión por compresión diametral, antes y después de la prueba.

5.1.2.2 MODULO DE ELASTICIDAD

Como se mencionó anteriormente, se ensayo para cada edad tres probetas con el fin de determinar los módulos de elasticidad (Ec). En la tabla 5.3 se presentan los resultados obtenidos, además de una relación que permite conocer el Ec en función de la resistencia a compresión, en la fig 5.6 y 5.7 se grafican los resultados correspondientes y en la fig 5.8 se muestran las imágenes antes y después del ensaye.

Tabla 5.3 Módulo de elasticidad

	M 1				M2			M3		
Día	Ec (kg/cm²)	fc (kg/cm²)	Ec/√fc	Ec (kg/cm²)	fc (kg/cm²)	Ec/√fc	Ec (kg/cm²)	fc (kg/cm²)	Ec/√fc	
1	230871	477	10576	283622	459	13237	255894	480	11676	
2	235714	511	10423	231313	494	10410	266641	510	11803	
3	237495	525	10367	302194	551	12873	273100	540	11753	
4	240671	537	10389	315330	573	13174	281186	555	11935	
7	242140	565	10184	333226	632	13260	286567	586	11843	
14	251929	615	10156	350272	647	13769	298280	642	11769	
28	268966	628	10731	359985	660	14010	314254	653	12302	

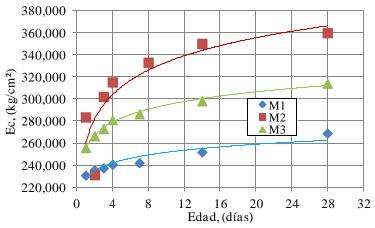


Fig 5.6 Variación del módulo de elasticidad con la edad.

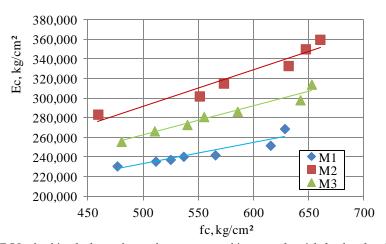


Fig 5.7 Variación de la resistencia a compresión con el módulo de elasticidad.

Fig 5.8 Ensaye de cilindros para determinar el modulo de elasticidad y la relación de Poisson, antes y después de la prueba.

5.1.2.3 RELACIÓN DE POISSON

De manera simultánea a los ensayos de módulo de elasticidad se obtuvieron los valores para determinar la relación de Poisson de las mezclas en estudio. En la tabla 5.4 se presentan los resultados obtenidos y en la fig 5.9 la gráfica de los resultados.

Tabla 5.4 Resultados de la relación de Poisson.

Día	M1	M2	M3
Dia	Poisson	Poisson	Poisson
1	0.244	0.201	0.224
2	0.227	0.234	0.215
3	0.234	0.196	0.218
4	0.205	0.208	0.246
7	0.223	0.217	0.23
14	0.224	0.247	0.264
28	0.266	0.256	0.244

Se observa que los valores de la relación de Poisson tienen una gran dispersión aunque se nota tendencia a incrementar su valor con la edad; el promedio de los valores para M1, M2 y M3, fueron 0.232, 0.223 y 0.234, respectivamente.

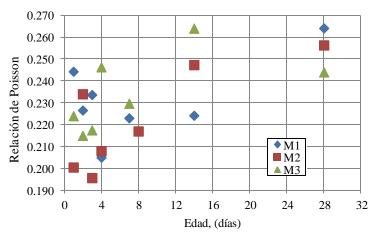


Fig 5.9 Variación de relación de Poisson con la edad.

5.2 RESULTADOS DE LOS MORTEROS EN ESTUDIO

Siguiendo las recomendaciones de la ASTM C1074, inicialmente se ensayaron especímenes a las edades de 1, 2, 3, 4, 7, 14 y 28 días, las temperaturas de curados fueron: mínima, media y máxima, por la zona geográfica en que se encuentra México y debido a su gran diversidad en los climas de nuestro país, las temperaturas fueron 5, 42 y 90 \pm 2°C. Tras analizar los resultados y detectar una degradación en la resistencia a 90 \pm 2°C se realizaron ensayos adicionales a temperaturas de 14, 23 y 60 \pm 2°C con el fin de observar a partir de cuál temperatura la resistencia se degrada. Con toda la información recabada se pudo determinar la energía de activación para cada mezcla en estudio según la norma.

5.2.1 MORTERO EN ESTADO FRESCO

5.2.1.1 TIEMPOS DE FRAGUADO

Se siguió lo establecido en la norma ASTM C403-08, que trata sobre la determinación de los tiempos de fraguado del concreto con un asentamiento mayor de cero, por medio de mediciones de resistencia a la penetración del mortero.

Se obtuvo una muestra representativa del mortero en estudio, se coloca en un recipiente indeformable y se almacena a una temperatura específica. Justo antes de realizar el ensayo de penetración, se removió el agua de exudación de la superficie y a intervalos regulares de tiempo se midió la resistencia a la penetración del mortero por agujas estándar. Se realizó una grafica de la resistencia a la penetración en función del tiempo transcurrido, de la cual se determinaron los tiempos de fraguado inicial (fi=35 kg/cm²) y fraguado final (ff=280 kg/cm²); en la tabla 5.5 se presentan los resultados de los tiempos de fraguado y en la fig 5.10 las graficas correspondientes a un ajuste exponencial.

Tabla 5.5 Tiempos de fraguado

Mezcla Temperatura (°C) fi (minutos) ff (minutos) fi (horas) ff (horas) M1 4.5 489 841 8.15 14.02 16.3 290 416 4.83 6.93 25 204 271 3.40 4.52 42.5 167 222 2.78 3.70 60 149 182 2.48 3.03 87.7 132 166 2.20 2.77 4.6 626 919 10.43 15.32 16.6 412 517 6.87 8.62 M2 25 306 402 5.10 6.70 42.2 194 284 3.23 4.73 60 144 226 2.40 3.77 87.8 135 203 2.25 3.38 M3 4.6 564 857 9.40 14.28 4.6 564 857 9.40 14.28 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th></td<>							
M1	Mezcla	Temperatura (°C)	fi (minutos)	ff (minutos)	fi (horas)	ff (horas)	
M1		4.5	489	841	8.15	14.02	
M1 42.5 167 222 2.78 3.70 60 149 182 2.48 3.03 87.7 132 166 2.20 2.77 4.6 626 919 10.43 15.32 16.6 412 517 6.87 8.62 16.6 412 517 6.87 8.62 25 306 402 5.10 6.70 42.2 194 284 3.23 4.73 60 144 226 2.40 3.77 87.8 135 203 2.25 3.38 4.6 564 857 9.40 14.28 16.8 340 446 5.67 7.43 25 25 236 332 3.93 5.53 42.3 147 215 2.45 3.58 60 130 184 2.17 3.07		16.3	290	416	4.83	6.93	
M2 42.5 60 149 182 2.48 3.03 87.7 132 166 2.20 2.77 4.6 626 919 10.43 15.32 16.6 412 517 6.87 8.62 25 306 402 5.10 6.70 42.2 194 284 3.23 4.73 60 144 226 2.40 3.77 87.8 135 203 2.25 3.38 4.6 564 857 9.40 14.28 16.8 340 446 5.67 7.43 25 25 236 332 3.93 5.53 42.3 147 215 2.45 3.58 60 130 184 2.17 3.07	N // 1	25	204	271	3.40	4.52	
M2 87.7 132 166 2.20 2.77 4.6 626 919 10.43 15.32 16.6 412 517 6.87 8.62 25 306 402 5.10 6.70 42.2 194 284 3.23 4.73 60 144 226 2.40 3.77 87.8 135 203 2.25 3.38 4.6 564 857 9.40 14.28 16.8 340 446 5.67 7.43 25 236 332 3.93 5.53 42.3 147 215 2.45 3.58 60 130 184 2.17 3.07	IVII	42.5	167	222	2.78	3.70	
4.6 626 919 10.43 15.32 16.6 412 517 6.87 8.62 25 306 402 5.10 6.70 42.2 194 284 3.23 4.73 60 144 226 2.40 3.77 87.8 135 203 2.25 3.38 4.6 564 857 9.40 14.28 16.8 340 446 5.67 7.43 25 236 332 3.93 5.53 42.3 147 215 2.45 3.58 60 130 184 2.17 3.07		60	149	182	2.48	3.03	
M2 16.6 412 517 6.87 8.62 M2 25 306 402 5.10 6.70 42.2 194 284 3.23 4.73 60 144 226 2.40 3.77 87.8 135 203 2.25 3.38 4.6 564 857 9.40 14.28 16.8 340 446 5.67 7.43 25 236 332 3.93 5.53 42.3 147 215 2.45 3.58 60 130 184 2.17 3.07		87.7	132	166	2.20	2.77	
M2 25 306 402 5.10 6.70 42.2 194 284 3.23 4.73 60 144 226 2.40 3.77 87.8 135 203 2.25 3.38 4.6 564 857 9.40 14.28 16.8 340 446 5.67 7.43 25 236 332 3.93 5.53 42.3 147 215 2.45 3.58 60 130 184 2.17 3.07		4.6	626	919	10.43	15.32	
M2 42.2 194 284 3.23 4.73 60 144 226 2.40 3.77 87.8 135 203 2.25 3.38 4.6 564 857 9.40 14.28 16.8 340 446 5.67 7.43 25 236 332 3.93 5.53 42.3 147 215 2.45 3.58 60 130 184 2.17 3.07		16.6	412	517	6.87	8.62	
42.2 194 284 3.23 4.73 60 144 226 2.40 3.77 87.8 135 203 2.25 3.38 4.6 564 857 9.40 14.28 16.8 340 446 5.67 7.43 25 236 332 3.93 5.53 42.3 147 215 2.45 3.58 60 130 184 2.17 3.07	М2	25	306	402	5.10	6.70	
M3	1412	42.2	194	284	3.23	4.73	
4.6 564 857 9.40 14.28 16.8 340 446 5.67 7.43 25 236 332 3.93 5.53 42.3 147 215 2.45 3.58 60 130 184 2.17 3.07		60	144	226	2.40	3.77	
M3		87.8	135	203	2.25	3.38	
M3 25 236 332 3.93 5.53 42.3 147 215 2.45 3.58 60 130 184 2.17 3.07		4.6	564	857	9.40	14.28	
M3 42.3 147 215 2.45 3.58 60 130 184 2.17 3.07		16.8	340	446	5.67	7.43	
42.3 147 215 2.45 3.58 60 130 184 2.17 3.07	M2	25	236	332	3.93	5.53	
	IVIS	42.3	147	215	2.45	3.58	
87.9 114 160 1.90 2.67		60	130	184	2.17	3.07	
		87.9	114	160	1.90	2.67	

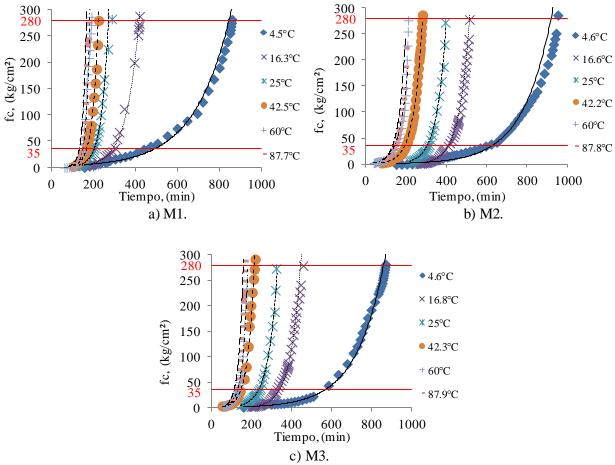
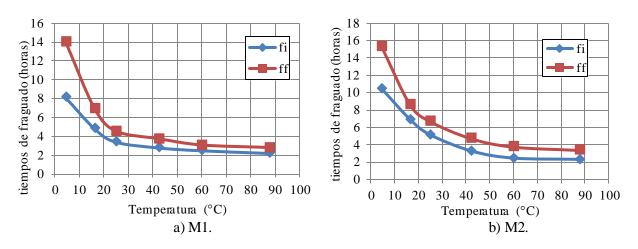



Fig 5.10 Tiempos de fraguado contra la resistencia.

En la fig 5.11 se grafica la variación de los tiempos de fraguado inicial (fi) y fraguado final (ff) en función de las temperaturas.

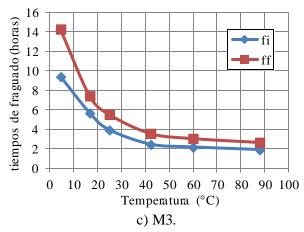


Fig 5.11 Temperaturas contra los tiempos de fraguado inicial y final.

5.2.2 MORTERO EN ESTADO ENDURECIDO

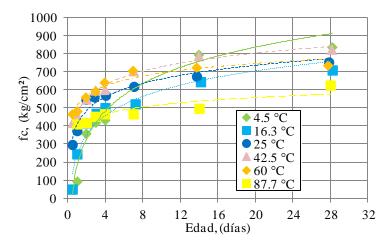
5.2.2.1 RESISTENCIA A COMPRESIÓN SIMPLE

Siguiendo la normativa, se ensayaron especímenes a las edades de 1, 2, 3, 4, 7, 14 y 28 días, curados a las temperaturas ya mencionadas, en la fig 5.12 se observan las probetas antes y después del ensaye. Con toda la información recabada se pudo determinar la energía de activación (*Ea*) para cada mezcla en estudio.

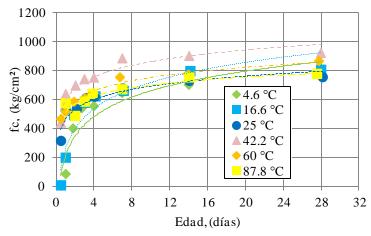
A continuación en la tabla 5.6 se presentan los datos de resistencia a compresión simple de los cubos de mortero para las diferentes edades reales (tomando en cuenta hora de ensayo) y temperaturas también reales. En la fig 5.13 se grafican los resultados y se realiza un ajuste semilogarítmico.

Fig 5.12 Ensaye a compresión simple de probetas cubicas de 5 cm de arista, antes y después de la prueba.

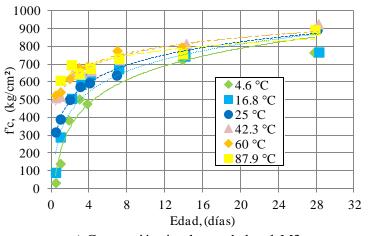
Tabla 5.6 Resistencia a compresión simple a diferentes temperaturas de curado.
a) Resistencia a compresión simple, M1.


		4.5 °C	С				16.3 °C	;		25°C					
Días	Horas	fc (kg/c m²)	Hora	Fecha	Días	Horas	fc (kg/c m²)	Hora	Fecha	Días	Horas	fc (kg/c m²)	Hora	Fecha	
1.00	24	94	14:57	24-oct-12	1.00	24	245	13:33	29-ene-13	1.00	24	374	18:00	13-mar-13	
1.96	47	359	14:02	25-oct-12	2.06	49	417	14:27	30-ene-13	1.97	47	547	17:57	14-mar-13	
2.98	71	420	14:42	26-oct-12	3.05	73	470	14:24	31-ene-13	2.83	68	561	14:43	15-mar-13	
3.98	95	434	14:42	27-oct-12	4.00	96	501	13:30	01-feb-13	4.05	97	570	19:24	16-mar-13	
6.94	166	707	13:45	30-oct-12	7.21	173	522	18:02	04-feb-13	7.06	170	619	19:50	19-mar-13	
13.96	335	796	13:57	06-nov-12	14.18	340	645	17:16	11-feb-13	13.75	330	675	12:49	26-mar-13	
28.17	676	838	18:28	20-nov-12	28.21	677	710	18:48	25-feb-13	27.83	668	754	14:50	09-abr-13	
		42.5 °	C				60°C			87.7 °C					
Días	Horas	fc (kg/c m²)	Hora	Fecha	Días	Horas	fc (kg/c m²)	Hora	Fecha	Días	Horas	fc (kg/c m²)	Hora	Fecha	
1.00	24	458	14:32	23-oct-12	1.00	24	483	19:56	26-feb-13	1.00	24	411	18:00	13-nov-12	
2.01	48	549	14:45	24-oct-12	1.92	46	560	17:37	27-feb-13	2.02	49	419	18:22	14-nov-12	
2.96	71	599	13:31	25-oct-12	2.94	71	593	18:29	28-feb-13	2.96	71	453	17:29	15-nov-12	
3.98	96	602	14:02	26-oct-12	3.92	94	642	18:09	01-mar-13	3.96	95	467	17:33	16-nov-12	
7.00	168	706	14:30	29-oct-12	6.94	167	706	18:26	04-mar-13	7.00	168	467	18:04	19-nov-12	
13.96	335	789	13:13	05-nov-12	13.73	330	725	14:17	11-mar-13	14.02	337	497	18:21	26-nov-12	
28.13	675	825	17:33	19-nov-12	27.73	666	737	13:19	28-mar-13	28.00	672	626	18:03	10-dic-12	

b) Resistencia a compresión simple, M2.


4.6 °C							16.6 °C	3		25°C					
Días	Horas	fc (kg/c m²)	Hora	Fecha	Días	Horas	fc (kg/c m²)	Hora	Fecha	Días	Horas	fc (kg/c m²)	Hora	Fecha	
1.00	24	84	17:57	06-nov-12	1.00	24	197	14:59	12-feb-13	1.00	24	527	13:52	09-abr-13	
1.77	43	399	12:29	07-nov-12	1.90	46	491	16:42	13-feb-13	2.17	52	532	17:27	10-abr-13	
2.71	65	539	11:11	08-nov-12	3.00	72	576	14:54	14-feb-13	3.17	76	608	17:31	11-abr-13	
3.98	96	553	17:28	09-nov-12	4.15	100	620	17:55	15-feb-13	4.04	97	618	14:15	12-abr-13	
6.96	167	644	18:23	12-nov-12	7.13	171	658	17:29	18-feb-13	7.04	169	674	14:17	15-abr-13	
14.00	336	700	17:52	19-nov-12	14.17	340	795	18:12	25-feb-13	14.05	337	727	14:50	22-abr-13	
28.06	674	752	18:38	03-dic-12	27.98	672	804	14:22	11-mar-13	28.15	676	753	16:35	06-may-13	
		42.2 °	С		60°C						87.8 °C				
Días	Horas	fc (kg/c m²)	Hora	Fecha	Días	Horas	fc (kg/c m²)	Hora	Fecha	Días	Horas	fc (kg/c m²)	Hora	Fecha	
1.00	24	637	17:58	15-ene-13	1.00	24	514	19:27	05-mar-13	1.00	24	572	17:54	14-nov-12	
2.04	49	695	18:12	16-ene-13	1.90	46	583	17:45	06-mar-13	2.00	48	485	17:59	15-nov-12	
2.98	72	739	17:35	17-ene-13	3.04	73	608	20:37	07-mar-13	3.00	72	584	17:55	16-nov-12	
3.98	96	750	17:30	18-ene-13	3.96	95	641	18:10	08-mar-13	3.83	92	638	13:54	17-nov-12	
6.98	168	883	17:20	21-ene-13	6.73	162	752	13:44	11-mar-13	6.98	168	669	17:32	20-nov-12	
14.04	337	900	18:09	28-ene-13	13.96	335	771	18:50	18-mar-13	14.06	338	751	18:49	27-nov-12	
27.96	671	921	16:47	11-feb-13	27.75	666	864	13:55	01-abr-13	27.54	661	776	12:48	11-dic-12	

c) Resistencia a compresión simple, M3.


4.6 °C							16.8 °C			25°C						
Días	Horas	fc (kg/c m²)	Hora	Fecha	Días	Horas	fc (kg/c m²)	Hora	Fecha	Días	Horas	fc (kg/c m²)	Hora	Fecha		
1.00	24	136	17:39	08-ene-13	1.00	24	285	13:27	19-feb-13	1.00	24	386	12:48	16-abr-13		
1.88	45	380	14:29	09-ene-13	2.19	53	502	17:15	20-feb-13	1.98	48	496	12:20	17-abr-13		
3.00	72	499	17:32	10-ene-13	3.19	77	581	17:19	21-feb-13	3.08	74	569	14:03	18-abr-13		
3.81	92	473	13:17	11-ene-13	4.17	100	635	17:29	22-feb-13	4.08	98	590	14:17	19-abr-13		
7.04	169	655	18:06	14-ene-13	7.17	172	669	17:36	25-feb-13	6.94	167	633	11:16	22-abr-13		
13.88	333	719	14:36	21-ene-13	14.17	340	740	17:45	04-mar-13	14.21	341	787	17:10	29-abr-13		
27.79	667	761	12:20	04-feb-13	28.31	680	763	20:20	18-mar-13	28.13	675	889	15:01	13-may-13		
		42.3 °	°C		60°C						87.9 °C					
Días	Horas	fc (kg/c m²)	Hora	Fecha	Días	Horas	fc (kg/c m²)	Hora	Fecha	Días	Horas	fc (kg/c m²)	Hora	Fecha		
1.00	24	514	11:57	07-nov-12	1.00	24	538	18:10	12-mar-13	1.00	24	604	14:54	09-ene-13		
2.25	54	639	17:31	08-nov-12	1.96	47	614	17:31	13-mar-13	2.17	52	691	18:04	10-ene-13		
3.27	79	647	18:02	09-nov-12	2.96	71	675	17:29	14-mar-13	2.96	71	642	13:46	11-ene-13		
4.27	103	657	18:06	10-nov-12	3.83	92	682	14:12	15-mar-13	4.17	100	671	18:33	12-ene-13		
7.25	174	720	17:48	13-nov-12	7.00	168	771	18:14	18-mar-13	7.19	173	727	18:38	15-ene-13		
14.29	343	811	18:33	20-nov-12	13.81	332	791	14:25	25-mar-13	13.94	335	753	13:57	22-ene-13		
28.25	678	922	17:41	04-dic-12	27.83	668	892	14:34	08-abr-13	27.90	670	887	12:58	05-feb-13		

a) Compresión simple vs edad real, M1.

b) Compresión simple vs edad real, M2.

c) Compresión simple vs edad real, M3.

Fig 5.13 Resistencia a compresión simple vs edad real.

6. METODO DE LA MADUREZ

6.1 INTRODUCCIÓN

A continuación se describirá el procedimiento empleado en laboratorio para determinar experimentalmente la energía de activación (*Ea*) y la temperatura dato (*To*) de cada mezcla en estudio, según las recomendaciones del anexo A1.1 de la ASTM C1074, objeto de esta investigación.

La norma establece que el cálculo la energía de activación en un concreto, se puede obtener a través de un mortero equivalente. La dosificación se basa en fabricar un mortero donde la relación agregado finocemento sea la misma que la relación agregado grueso-cemento del concreto en estudio, donde, las cantidades de aditivos son las mismas.

6.2 DETERMINACION DE LA ENERGIA DE ACTIVACIÓN Y LA TEMPERATURA DATO

Los datos de edad real-resistencia (tabla 5.6) obtenidos a las distintas temperaturas de curado, se analizaron para determinar la relación entre la tasa de la variación k (ecuación 4) y la temperatura. Para estimar los valores de k se pueden utilizar 3 métodos que recomienda la norma.

1. Cuando son conocidos los tiempos de fraguado se aplica el procedimiento del punto A1.1.7 (método 1), donde el valor de k es el inverso del tiempo de fraguado inicial (ki) y fraguado final (kf), en horas, como se muestra en la tabla 6.1.

	i abia 6.1	valores de <i>ki</i> y <i>kf</i>	
1 \	CC (1.)	1:/1/6 1 : : : 1	

Mezcla	Temperatura (°C)	fi (h)	ff (h)	ki (1/fraguado inicial)	kf (1/fraguado final)
	4.5	8.15	14.02	0.1227	0.0713
	16.3	4.83	6.93	0.2069	0.1442
M1	25	3.40	4.52	0.2941	0.2214
1411	42.5	2.78	3.70	0.3593	0.2703
	60	2.48	3.03	0.4027	0.3297
	87.7	2.20	2.77	0.4545	0.3614
	4.6	10.43	15.32	0.0958	0.0653
	16.6	6.87	8.62	0.1456	0.1161
M2	25	5.10	6.70	0.1961	0.1493
1 V1 2	42.2	3.23	4.73	0.3093	0.2113
	60	2.40	3.77	0.4167	0.2655
	87.8	2.25	3.38	0.4444	0.2956
	4.6	9.40	14.28	0.1064	0.0700
	16.8	5.67	7.43	0.1765	0.1345
M3	25	3.93	5.53	0.2542	0.1807
IVIS	42.3	2.45	3.58	0.4082	0.2791
	60	2.17	3.07	0.4615	0.3261
	87.9	1.90	2.67	0.5263	0.3750

- 2. Como alternativa al punto A1.1.7, los valores de k pueden estimarse por los siguientes métodos:
 - a) En el punto A.1.1.8.1 (método 2), se realiza el ajuste de una ecuación general para un conjunto de datos, donde se determinan los valores k ajustando la siguiente ecuación para los datos edad realresistencia para cada temperatura de curado:

$$S = S_u \frac{k(t - t_0)}{1 + k(t - t_0)} \tag{4}$$

donde:

 $S = \text{Resistencia a compresión promedio de un cubo a la edad } t, \, \text{kg/cm}^2$,

t = Edad de ensayo, días u horas,

 S_u = Resistencia límite, kg/cm²,

 t_o = Edad cuando se asume inicia el desarrollo de resistencia, días u horas y

k = Tasa de la variación, 1/día.

El ajuste de la ecuación de mínimos cuadrados permite calcular los valores más adecuados de S_u , t_o y k, como se muestra en la tabla 6.2.

				1 4014 0.2	v alores v	$ue b_u, v$	0 3 10.				
M1				M2				M3			
Temp. (°C)	S_u	k	t_o	Temp. (°C)	S_u	k	t_o	Temp. (°C)	S_u	k	t_o
4.50	91.384	0.506	0.722	4.60	76.192	1.101	0.651	4.60	78.340	0.741	0.651
16.30	73.700	0.606	0.000	16.60	82.955	1.161	0.704	16.80	77.256	1.134	0.500
25.00	76.121	1.222	0.012	25.00	75.032	2.213	0.000	25.00	92.747	0.557	0.000
42.50	83.370	1.168	0.000	42.20	92.575	2.075	0.000	42.30	93.133	1.180	0.000
60.00	75.075	1.710	0.000	60.00	86.946	1.380	0.000	60.00	88.633	2.722	0.000
87.70	62.605	1.808	0.000	87.80	77.139	2.666	0.000	87.90	88.530	2.022	0.000

Tabla 6.2 Valores de S_u , t_o y k.

b) En el punto A 1.1.8.2 (método 3), se gráfica el inverso de la resistencia de las últimas 4 edades de ensayo, en MPa, contra el inverso de la edad real. Es muy importante ser preciso en el cálculo de la edad real del mortero, teniendo en cuenta la hora exacta de la fabricación y ensayo. En la fig 6.1 se grafica el inverso de la edad contra el inverso de la resistencia de las ultimas 4 edades.

Después de analizar los datos de todas las temperaturas de cada mezcla, se detectaron valores de k que hacían que el cálculo del valor de Q=-Ea/R resultara muy pequeño; por lo anterior se tomaron en cuenta las siguientes consideraciones para determinar el valor óptimo:

- En todas las mezclas se descartaron los datos de resistencia a 12 horas.
- Al graficar el inverso de la resistencia de las últimas 4 edades de ensayo contra el inverso de la
 edad real se tomaron las temperaturas para las cuales se cumplía que, a mayor temperatura menor
 valor de la pendiente.
- Para cumplir con el punto anterior, para las mezclas M1 y M3 y temperaturas de 5 y 25 °C, respectivamente, el valor de S_u se calculó con las 3 últimas edades.
- Determinación del valor de S_u para cada temperatura.

- Al graficar los valores de A contra la edad real se cumplía que, a mayor temperatura mayor valor de la pendiente.
- Los resultados del método 2 fueron comparados con los del método 3 para identificar qué datos hacían variar significativamente los valores de Q.

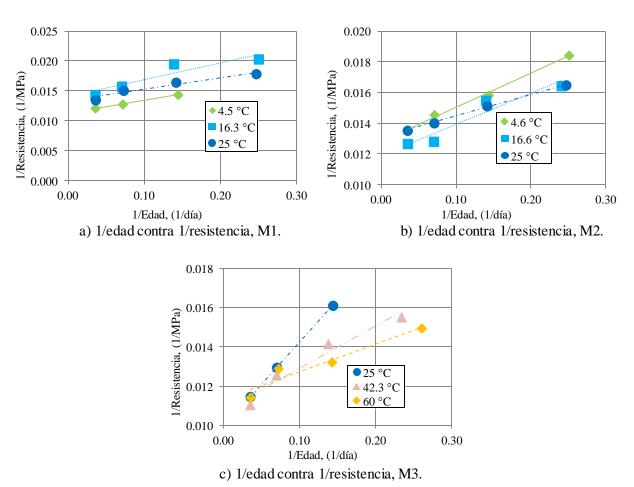


Fig 6.1 Inverso de la edad contra el inverso de la resistencia de las ultimas 4 edades.

De las graficas de la fig 6.1 se determina el valor de la resistencia límite S_u , como el inverso de la intersección con el eje vertical:

$$S_u = \frac{1}{b} \tag{5}$$

donde:

 S_u = Resistencia límite, MPa y

b = Intersección con el eje vertical (ordenada en el origen), 1/MPa

Con el valor de S_u y los datos de resistencia a las primeras 4 edades de ensayo, se calculan los valores de A para cada temperatura, donde A está dada por la siguiente ecuación:

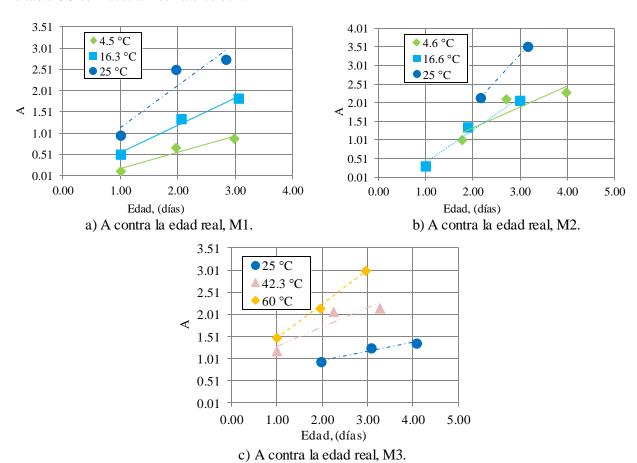
$$A = \frac{S}{S_u - S} \tag{6}$$

donde:

S =Resistencia a compresión promedio de los cubos a la edad t, MPa y

 S_u = Resistencia límite, Mpa

Por cada temperatura graficar los valores de A contra la edad real y realizar el ajuste a una recta, el valor de la pendiente será igual a k. En la fig 6.2 se grafica A contra la edad real de las primeras 4 edades y en la tabla 6.3 se muestran los valores de k.



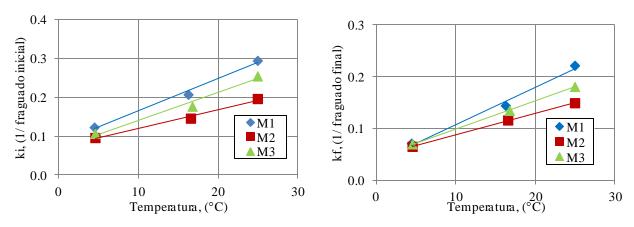
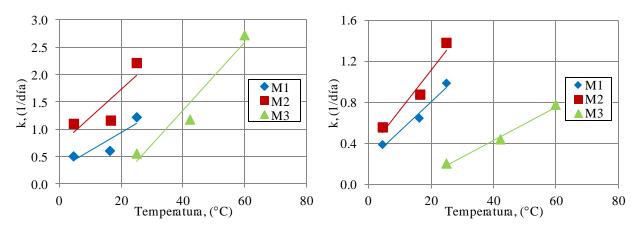

Fig 6.2 A contra la edad real de las primeras 4 edades.

Tabla 6.3 valores de k


M1		M2	,	M3		
Temp. (°C)	k (1/día)	Temp. (°C)	k (1/día)	Temp. (°C)	k (1/día)	
4.5	0.385	4.6	0.553	4.6	0.553	
16.3	0.643	16.6	0.872	16.8	1.029	
25.0	0.985	25	1.378	25	0.201	
42.5	0.513	42.2	0.623	42.3	0.436	
60.0	0.910	60	0.423	60	0.773	
87.7	0.558	87.8	0.101	87.9	0.347	

Para los tres métodos:

- a) Graficar los valores de k como función de las temperaturas y ajustarlos a una recta, el valor de la Temperatura dato (To) es la intersección de la recta con el eje de las temperaturas, que se usa para el cálculo del factor temperatura-tiempo o madurez (ecuación 2). En la fig 6.3 se grafican las temperaturas contra los valores de k para los 3 métodos y en la tabla 16 se muestran los resultados.
- b) Determinar las temperaturas absolutas en grados Kelvin (K) y obtener el inverso, calcular los logaritmos naturales de k, graficarlos y ajustar a una recta. El valor negativo de la pendiente será la energía de activación (Ea) dividida entre la constante de los gases ideales (R= 8.314 J/mol*K), Q=-Ea/R, que se usa para el cálculo de la edad equivalente (ecuación 3). En la fig 6.4 se grafican los resultados de Q para los tres métodos y en la tabla 6.4 se presenta el resumen de los valores obtenidos.

a) Temperatura contra los valores de *ki*, método 1. b) Temperatura contra los valores de *kf*, método 1.

c) Temperatura contra los valores de k, método 2. d) Temperatura contra los valores de k, método 3. Fig 6.3 Temperatura contra los valores de k para los 3 métodos.

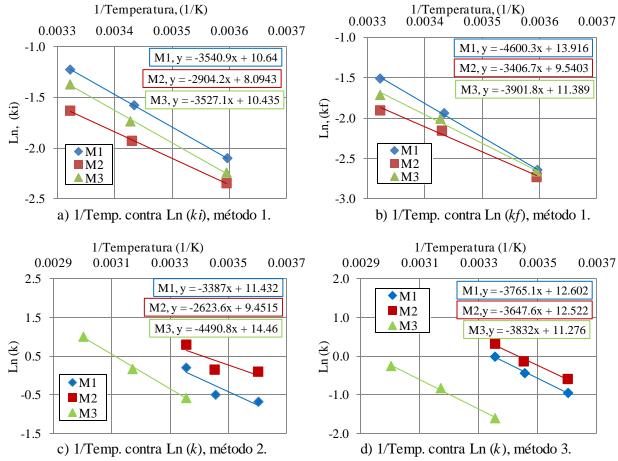


Fig 6.4 Inverso de la temperatura absoluta en grados Kelvin contra el logaritmo natural de k, para los 3 métodos.

Tabla 6.4 Resultados de la temperatura dato (To) y energía de activación (Ea) para las 3 mezclas

	<i>To</i> , (°C)			Q, (K)			Ea=Q*R, (J/mol)		
Método/Mezcla	M1	M2	M3	M1	M2	M3	M1	M2	M3
1 (fi)	-10	-14	-9	3541	2904	3527	29439	24146	29324
1 (ff)	-5	-11	-8	4600	3407	3902	38247	28323	32439
2	-8	-14	18	3387	2624	4491	28159	21813	37336
3	-8	-8	14	3765	3648	3832	31303	30326	31859

6.3 FUNCIONES DE MADUREZ

Para obtener las funciones de madurez es necesario como ya se ha mencionado, ensayar cilindros de concreto de 15x30 cm a las edades de 1, 2, 3, 4, 7, 14 y 28 días, para cada día se ensayaron 3 especímenes a compresión simple, además de instrumentar 2 con el fin de registrar el historial de temperatura interna del concreto a la temperatura en la cámara de curado aproximadamente 28 ± 2 °C. En la tabla 6.5 se resumen los valores de resistencia a compresión simple de las 3 mezclas en estudio y en la fig 6.5 se muestra el registro de la temperatura interna del concreto, para la mezcla M1.

			* · *
Edad	M1	M2	M3
Días	fc, (kg/cm²)	fc, (kg/cm²)	fc, (kg/cm²)
1	477	459	480
2	511	494	510
3	525	551	540
4	537	573	555
7	565	632	586
14	615	647	642
28	628	660	653

Tabla 6.5 Valores de resistencia a compresión simple, para las 3 mezclas

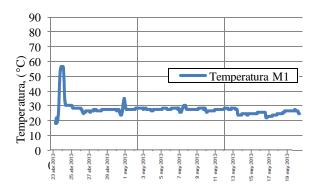
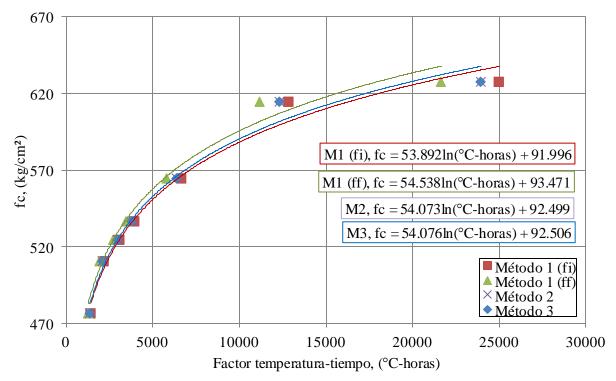


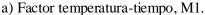
Fig 6.5 Temperatura interna del concreto, M1.

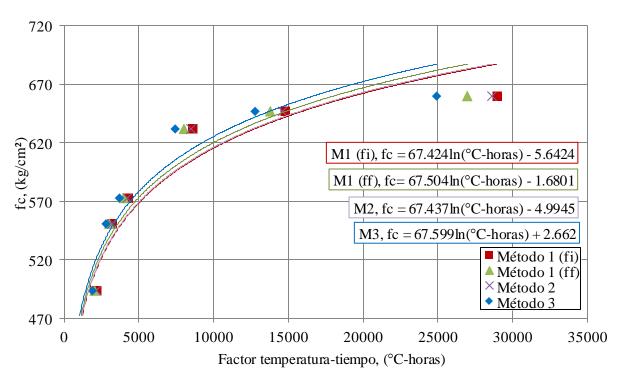
6.3.1 FACTOR TEMPERATURA-TIEMPO O MADUREZ

Para determinar el factor temperatura-tiempo o madurez a las edades de ensayo correspondientes, se utilizó la ecuación 2: $[M(t) = \sum (Ta - To) * \Delta t]$ donde se necesita conocer la temperatura promedio del concreto durante el intervalo de tiempo, que se registra por medio de los dataloggers; To para las mezclas M1, M2 y M3 que se determinaron de manera experimental. En la tabla 6.6 se muestran los resultados obtenidos para el método 2.

En la tabla 6.7 se enlistan las ecuaciones de ajuste para los tres modelos de crecimiento de resistencias. Se observa que el ajuste logarítmico tiene un mejor coeficiente de correlación, por lo tanto en la fig 6.6 se grafica la relación resistencia-madurez para este modelo y para las 3 mezclas.


Tabla 6.6 Resultados del factor temperatura-tiempo o madurez.


	1 1									
	Método 2									
M1				M2	M3					
Edad	fc	Temperatura-tiempo	fc	Temperatura-tiempo	fc	Temperatura-tiempo				
Días	kg/cm²	°C-horas	kg/cm²	°C-horas	kg/cm²	°C-horas				
1	477	1370	459	1192	480	522				
2	511	2096	494	2147	510	871				
3	525	2970	551	3193	540	1142				
4	537	3794	573	4221	555	1343				
7	565	6389	632	8488	585	1965				
14	615	12327	647	14613	642	3627				
28	628	23957	660	28633	653	7027				


Tabla 6.7 Ecuaciones para los 3 mode los de crecimiento de resistencias.

	Modelo/procedimiento	Método 1 (fi)	R ²	Método 1 (ff)	R ²
	Exponencial	$fc = 506.08 e^{1E - 05x}$	0.774	$fc = 505.7 \ e^{1E - 05x}$	0.775
M1	Hiperbólico	$fc = 614.19 - 219103.3 \frac{1}{x}$	0.894	$fc = 615.2 - 197542 \frac{1}{x}$	0.895
	Logarítmico	fc = 91.99 + 53.89 Ln(x)	0.982	$fc = 93.47 + 54.54 \ Ln \ (x)$	0.981
	Exponencial	$fc = 515.99 e^{1E - 05x}$	0.599	$fc = 515.89 e^{1E - 05x}$	0.599
M2	Hiperbólico	$fc = 651.5 - 265236.19 \frac{1}{x}$	0.795	$fc = 651.68 - 248381.82 \frac{1}{x}$	0.796
	Logarítmico	$fc = -5.64 + 67.42 \ Ln \ (x)$	0.934	fc = -1.68 + 67.5Ln(x)	0.935
	Exponencial	$fc = 515.8 \ e^{1E - 05x}$	0.735	$fc = 515.75 e^{1E - 05x}$	0.735
M3	Hiperbólico	$fc = 630.93 - 206744.63 \frac{1}{x}$	0.874	$fc = 631.06 - 203125.41 \frac{1}{x}$	0.874
	Logarítmico	fc = 55.86 + 60.17 Ln(x)	0.977	fc = 56.17 + 60.28 Ln (x)	0.977

	Modelo/procedimiento	Método 2	R²	Método 3	R ²
	Exponencial	$fc = 505.97 e^{1E - 05x}$	0.774	$fc = 505.97 e^{1E-05x}$	0.775
M1	Hiperbólico	$fc = 614.52 - 212608.07 \frac{1}{x}$	0.894	$fc = 614.53 - 212503.94 \frac{1}{x}$	0.895
	Logarítmico	$fc = 92.49 + 54.07 \ Ln \ (x)$	0.982	fc = 92.51 + 54.08 Ln (x)	0.982
•	Exponencial	$fc = 515.97 e^{1E - 05x}$	0.599	$fc = 515.77 e^{1E-05x}$	0.610
M2	Hiperbólico	$fc = 651.65 - 262801.09 \frac{1}{x}$	0.796	$fc = 651.89 - 231063.81 * \frac{1}{x}$	0.799
	Logarítmico	$fc = -4.99 + 67.44 \ Ln \ (x)$	0.934	$fc = 2.66 + 67.60 \ Ln \ (x)$	0.935
•	Exponencial	$fc = 509.46 e^{4E-05x}$	0.738	$fc = 512.24 e^{3E - 05x}$	0.737
М3	Hiperbólico	$fc = 647.54 - 101169.09 \frac{1}{x}$	0.876	$fc = 640.94 - 118495.07 \frac{1}{x}$	0.875
	Logarítmico	fc = 32.24 + 72.04 Ln(x)	0.967	$fc = 49.59 + 67.10 \ Ln \ (x)$	0.972

b) Factor temperatura-tiempo, M2.

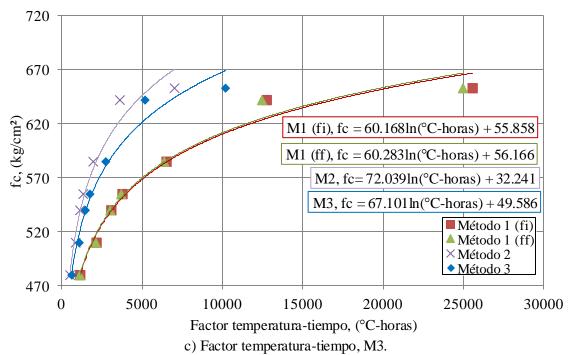


Fig 6.6 Gráficas del factor temperatura-tiempo °C-horas para las 3 mezclas.

6.3.2 EDAD EQUIVALENTE

La edad equivalente se determina aplicando la ecuación 3: [$te = \sum e^{-\frac{E}{R}*\left(\frac{1}{Ta}-\frac{1}{Ts}\right)}*\Delta t$]; los valores de la Ea se determinaron en laboratorio; la temperatura de referencia es la temperatura de curado 28.43, 28.32 y 27.69 °C, para M1, M2 y M3, respectivamente, las cuales se registraron con ayuda de los dataloggers. En la tabla 6.8 se muestran los resultados obtenidos para el método 2.

En la tabla 6.9 se enlistan las ecuaciones de ajuste para los tres modelos de crecimiento de resistencias. Se observa que el ajuste logarítmico tiene un mejor coeficiente de correlación, por lo tanto en la fig 6.7 se grafica la relación resistencia-madurez para este modelo.

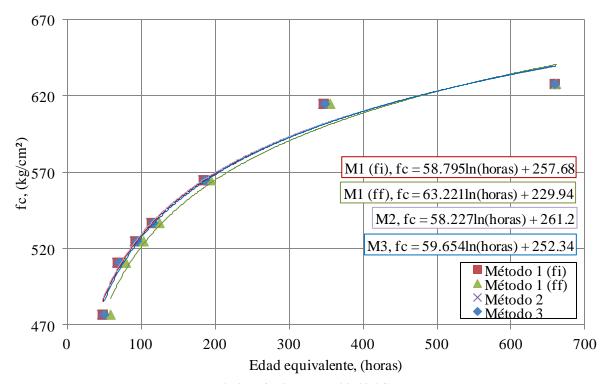
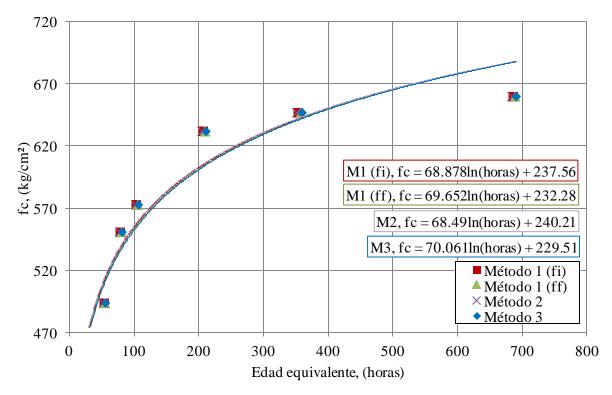

	rabia 6.8 Edad equivaiente.								
	Método 2								
	M1 M2 M3								
Edad	fc	Edad equivalente	fc	Edad equivalente	fc	Edad equivalente			
Días	kg/cm²	horas	kg/cm²	horas	kg/cm²	horas			
1	477	47	459	30	480	50			
2	511	67	494	53	510	81			
3	525	91	551	78	540	107			
4	537	113	573	103	555	127			
7	565	184	632	205	585	200			
14	615	346	647	352	642	373			
28	628	660	660	684	653	730			

Tabla 6.8 Edad equivalente


Tabla 6.9 Ecuaciones para los 3 mode los de crecimiento de resistencias.

	Modelo/procedimiento	Método 1 (fi)	R ²	Método 1 (ff)	R ²
	Exponencial	$fc = 503.48 e^{4E - 04x}$	0.777	$fc = 503.93 e^{4E-04x}$	0.779
M 1	Hiperbólico	$fc = 622.7 - 7754.1 \frac{1}{x}$	0.896	$fc = 614.53 - 212503.94 \frac{1}{x}$	0.897
	Logarítmico	fc = 257.68 + 58.79 Ln(x)	0.977	$fc = 229.94 + 63.22 \ Ln \ (x)$	0.973
	Exponencial	$fc = 515.11 \ e^{5E - 04x}$	0.602	$fc = 514.59 e^{5E-04x}$	0.605
M2	Hiperbólico	$fc = 654.62 - 6883.42 \frac{1}{x}$	0.797	$fc = 656.18 - 7245.03 \frac{1}{x}$	0.799
	Logarítmico	fc = 237.56 + 68.88 Ln(x)	0.932	fc = 232.28 + 69.65 Ln(x)	0.931
	Exponencial	$fc = 513.57 \ e^{4E - 04x}$	0.735	$fc = 512.86 e^{4E-04x}$	0.735
M3	Hiperbólico	$fc = 639.61 - 7643.97 \frac{1}{x}$	0.874	$fc = 642.07 - 8308.3 \frac{1}{x}$	0.874
	Logarítmico	fc = 241.51 + 65 Ln(x)	0.973	$fc = 232.05 + 66.44 \ Ln \ (x)$	0.972

	Modelo/procedimiento	Método 2	R²	Método 3	R ²
M 1	Exponencial	$fc = 503.8 e^{4E - 04x}$	0.777	$fc = 503 \ e^{4E - 04x}$	0.777
	Hiperbólico	$fc = 621.76 - 7516.5 \frac{1}{x}$	0.895	$fc = 624.1 - 8120.14 \frac{1}{x}$	0.896
	Logarítmico	fc = 261.2 + 58.22 Ln(x)	0.978	fc = 252.34 + 59.65 Ln(x)	0.977
	Exponencial	$fc = 515.38 \ e^{5E - 04x}$	0.601	$fc = 514.33 \ e^{5E - 04x}$	0.605
M2	Hiperbólico	$fc = 653.83 - 6704.89 \frac{1}{x}$	0.797	$fc = 657.01 - 7438.92 \frac{1}{x}$	0.799
	Logarítmico	$fc = 240.21 + 68.49 \ Ln \ (x)$	0.933	$fc = 229.51 + 70.06 \ Ln \ (x)$	0.930
	Exponencial	$fc = 511.62 \ e^{4E - 04x}$	0.736	$fc = 512.99 \ e^{4E - 04x}$	0.736
М3	Hiperbólico	$fc = 646.23 - 9505.9 \frac{1}{x}$	0.874	$fc = 641.6 - 8179.17 \frac{1}{x}$	0.874
	Logarítmico	fc = 215.86 + 68.88 Ln(x)	0.969	fc = 233.86 + 66.16 Ln (x)	0.972

a) Edad equivalente Ts=28.43 °C, M1.

b) Edad equivalente Ts=28.32 °C, M2.

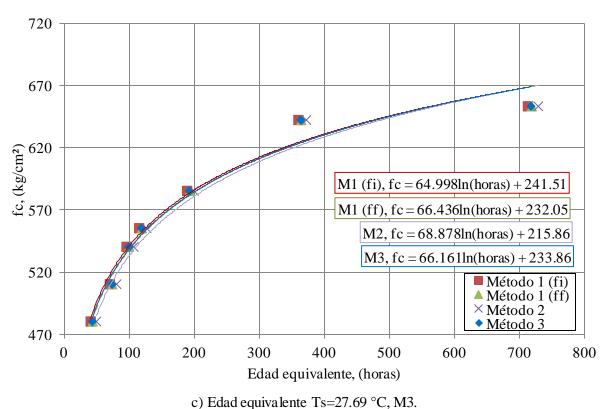


Fig 6.7 Gráficas de la edad equivalente en horas.

7. CAMPAÑA EXPERIMENTAL

7.1 INTRODUCCIÓN

Se llevo a cabo una campaña experimental, donde se instrumento una zapata-columna (*ZC*) durante su fabricación, en la planta de prefabricados de INPRESA, con el fin de aplicar el método de la madurez. La pieza seleccionada es la *ZC*-049 que soporta el cuerpo central de los Segundos Pisos del periférico en el DF, colocada en el tramo de Autopista Urbana Norte, en el cruce entre el Periférico y Viaducto, fig 7.1.

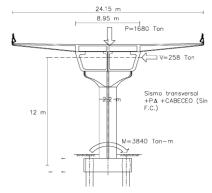


Fig 7.1 Zapata-columna 049.

7.2 ZAPATA COLUMNA-049

Se instrumento con 7 sensores de temperatura las zonas críticas de la ZC-049, además de incluir 2 dispositivos que registraron la temperatura ambiente (TA) y humedad relativa (HR) del elemento estructural.

7.2.1 UBICACIÓN DE DISPOSITIVOS

En la tabla 7.1 se muestra la localización de los sensores. El origen de coordenadas "y" y "z" es la base de la zapata y el eje "x" es el eje vertical de la columna. En la fig 7.2 se muestra la localización de los dispositivos y en la fig 7.3 los cortes transversales de las secciones.

Tabla 7.1 Localización de los sensores de temperatura interna del concreto, temperatura ambiente y humedad relativa.

Sens	sor	X	у	Z
		m	m	m
Caja 1	#1	9.77	0	1.114
Caja 2	#2	2.70	0	1.342
Caja 3	#3	18.25	1.251	1.09
Caja 5	#4	16.45	0	1
Caja 8	#5	0.35	1.380	-0.065
Caja 14	#6	0.35	-1.38	-0.094
Caja M1	#7	18.60	-1.5	1.09
HTa2	HTa2	2.427	0	1.651
НТа3	HTa3	2.427	0	1.651

Fig 7.2 Localización de los dispositivos en la ZC-049.

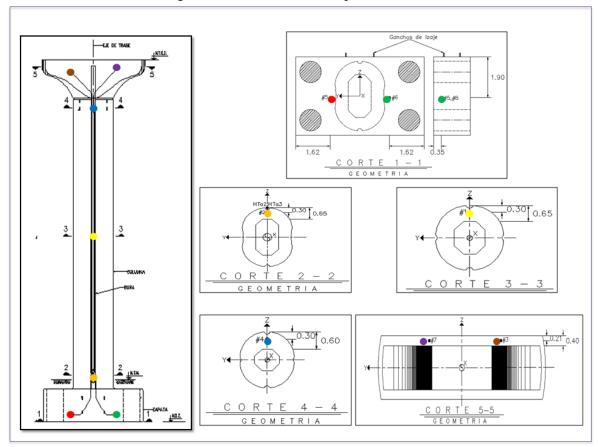


Fig 7.3 Cortes transversales de los dispositivos en la ZC-049.

7.2.2 HISTORIAL DE TEMPERATURAS

En la figura 7.4 se representa la evolución de las temperaturas internas, temperatura ambiente y humedad relativa registrada en la superficie de la *ZC*-049.

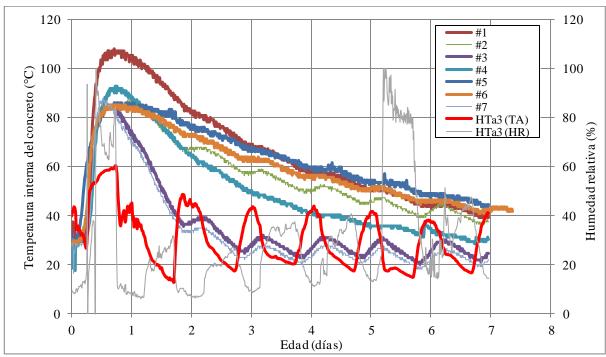


Fig 7.4 Temperatura interna, temperatura ambiente y humedad relativa de la ZC-049.

7.3 CILINDROS DE CONTROL

Durante el colado del elemento estructural, como ya es práctica habitual se confeccionaron cilindros de control (*CC*) para monitorear la ganancia de resistencia del concreto en la estructura, los cuales están bajo condiciones ideales de temperatura y humedad (23°C y 100% HR), por lo cual INPRESA solicito al Laboratorio Nacional de la Construcción (LANCO) realizar este trabajo.

Se confeccionaron 32 especímenes, los cuales se ensayaron a 1, 2, 3, 7 y 28 días de edad, de los cilindros, 2 se instrumentaron (A1, A2) para determinar su resistencia aplicando el método de la madurez y poder evaluar la precisión de la norma ASTM C1074 objeto de esta investigación. En la fig 7.5 se muestran imágenes de los cilindros confeccionados.

Sensor a la mitad del diámetro y altura

Colado de especímenes

Curado de los cilindros

Registro del historial de temperatura interna

Fig 7.5 Confección de los cilindros de control.

7.3.1 HISTORIAL DE TEMPERATURAS

En la fig 7.6 se muestra la evolución de las temperaturas internas, temperatura ambiente y humedad relativa de los *CC*.

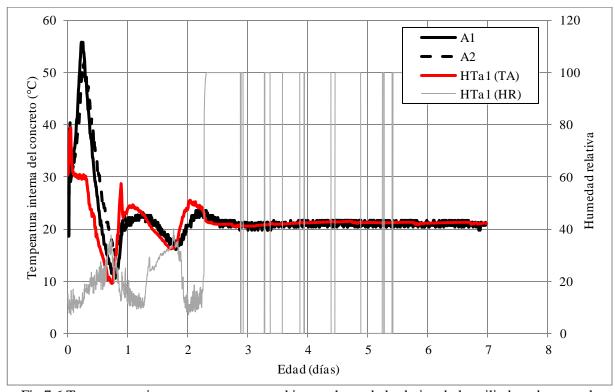


Fig 7.6 Temperatura interna, temperatura ambiente y humedad relativa de los cilindros de control.

7.3.2 RESISTENCIA A COMPRESIÓN SIMPLE

Para comparar las resistencias pronosticadas con el método de la madurez y las reales (fc cc) obtenidas por LANCO, se establecen los límites dentro de los cuales deben de estar las predicciones de resistencia. La norma recomienda que la resistencia a compresión simple se encuentre dentro del $\pm 10\%$ del valor promedio, por lo tanto, los resultados pronosticados que estén dentro de este rango, serán aceptables, en la tabla 7.2 se muestran los resultados de los cilindros de control, correspondientes a la ZC-049.

Tabla 7.2 Resistencia a compresión simple de los cilindros de control de la ZC-049.

Edad (días)	Fecha	hora	$0.9 fc cc \text{ (kg/c m}^2\text{)}$	$fc \ cc \ (kg/c m^2)$	$1.1 fc cc (kg/c m^2)$
1	26/04/12	14:05	393	437	481
2	27/04/12	14:05	436	485	533
3	28/04/12	14:05	473	526	578
7	2/05/12	14:05	484	538	591

El colado fue el 25 de abril del 2012 entre las 14:00 y 16:00 hrs. La descarga de datos fue el día 8 de mayo del 2012 a las 11:45 a.m.

8. APLICACIÓN DEL MÉTODO DE LA MADUREZ

8.1 INTRODUCCIÓN

El método de la madurez es una técnica la cual considera que, muestras de una misma mezcla de concreto tendrán iguales resistencias si es que tienen iguales valores de madurez, aunque el historial de temperaturas internas varíe en el transcurso del tiempo.

En este capítulo se aplica el método de la madurez, relacionando los resultados obtenidos en la calibración de la mezcla de concreto (capitulo 6) y la campaña experimental (capitulo 7), siguiendo el procedimiento descrito en la norma ASTM C1074. La aplicación del método consiste en calcular la madurez de los CC de acuerdo con el historial de temperaturas internas del concreto y hacer la predicción de resistencias; además en esta sección se comparan las temperaturas internas del concreto de la ZC-049 y los CC, para demostrar que, la madurez desarrollada en la ZC no es igual a la madurez de los CC, y por lo tanto, el fraguado y endurecimiento de un CC es muy diferente a las condiciones de endurecimiento y resistencia del concreto en la estructura.

La mezcla en estudio es para el concreto autocompactante con tamaño máximo de agregado grueso de ½", empleado en la producción de los prototipos de zapata-columna, INPRESA (M1). En la campaña experimental se instrumentó la *ZC* (Capitulo 7).

8.2 DESARROLLO.

Para determinar la resistencia del concreto in situ, el método requiere de los siguientes puntos:

- 1. Establecer en laboratorio la relación resistencia-madurez para la mezcla de concreto.
- 2. Obtener los valores de madurez de acuerdo con los datos de temperatura registrados en campo.
- 3. Comparar los valores de madurez obtenidos en campo y en laboratorio de acuerdo con los historiales de temperatura.

La fig 8.1 describe gráficamente la aplicación del método de la madurez.

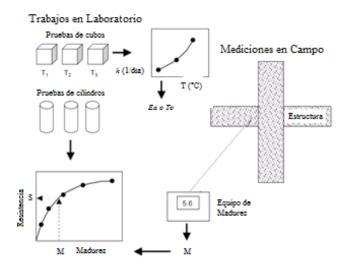


Fig 8.1 Aplicación del método de la madurez (Carino y Lew, 2001).

El procedimiento consiste esencialmente en dos etapas: trabajos de laboratorio y mediciones en campo.

El desarrollo de la curva de calibración de madurez para una mezcla de concreto, puede realizarse en laboratorio antes de la construcción del elemento estructural, como se describe a continuación:

- Se requiere ensayar cubos de mortero a diferentes edades y curados a 3 temperaturas (mínima, máxima y una intermedia), para determinar la energía de activación (*Ea*) y la temperatura dato (*To*).
- Para establecer la relación resistencia-madurez se necesitan ensayar a diferentes edades cilindros
 de concreto (relación altura a diámetro igual a 2) a compresión simple, de estos, instrumentar 2
 especímenes con el fin de registrar el historial de temperaturas internas del concreto, para
 determinar la madurez a las edades de ensayo.

En campo se necesitan realizar los siguientes trabajos:

- Embeber sensores en diferentes zonas del elemento estructural, para conocer en cualquier instante de tiempo las temperaturas que desarrollan.
- Con la información anterior calcular la madurez in situ de la estructura.
- Dirigirse a la curva resistencia-madurez y leer de la grafica o con la ecuación de ajuste logarítmico, calcular la resistencia del concreto en función de su madurez.

8.2.1 RELACIÓN RESISTENCIA-MADUREZ.

Para establecer la relación resistencia-madurez, debemos conocer los siguientes parámetros: *Ea*, *To*, ensayos a compresión simple y el historial de temperatura interna del concreto, en esta investigación *Ea* y *To* se determinaron experimentalmente de acuerdo con las recomendaciones de la norma ASTM C1074 (capitulo 6). En la fig 8.2 se muestran la relación resistencia-madurez.

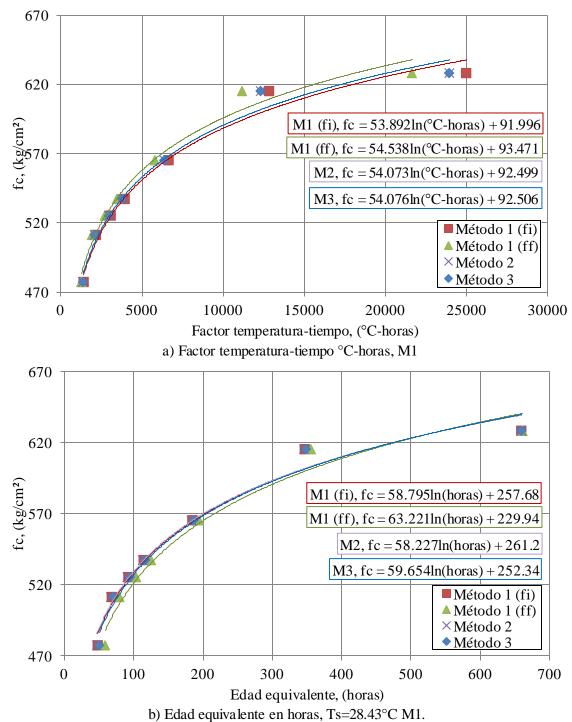


Fig 8.2 Relación resistencia-madurez, INPRESA (M1).

8.2.2 VALORES DE MADUREZ REGISTRADOS EN CAMPO.

La madurez se determinó a las edades de ensayo de los *CC*, siendo a 1, 2, 3 y 7 días, debido a que el registro del historial de temperaturas internas del concreto fue hasta el día 8 de mayo del 2012 a las 11:45 a.m.

8.2.2.1 MADUREZ Y PREDICCIÓN DE LA RESISTENCIA DE LA ZC-049

A continuación, en la tabla 8.1 se presentan los resultados de madurez en las diferentes zonas de la ZC y en la tabla 8.2 los resultados de la predicción de resistencias. En la fig 8.3 se muestra la temperatura interna del concreto que se desarrolla en las diferentes zonas de la ZC y en los CC, para comparar la diferencia de temperaturas.

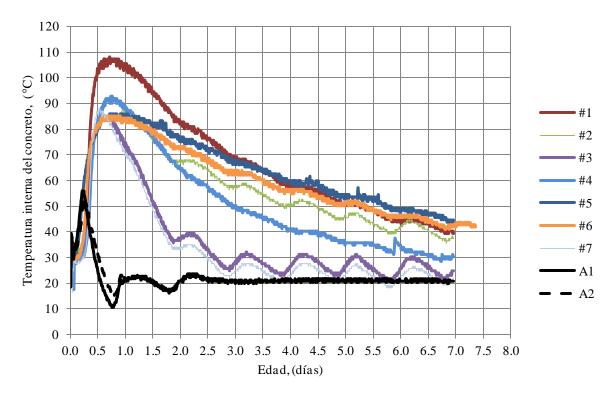


Fig 8.3 Temperatura interna de la ZC-049 y los cilindros de control.

- Se observa que la temperatura en la ZC es mayor que en los CC, por lo tanto la madurez y resistencia a compresión en la ZC es mayor que en los CC.
- En las distintas zonas de la ZC la temperatura no es la misma, aproximadamente después de 9 horas del inicio del colado con una temperatura de 75°C, esto se debe a la posición de cada uno de los sensores, lo que significa que en una estructura la temperatura interna del concreto varía según la localización, exposición y forma del elemento.
- La temperatura máxima alcanzada es de 106°C en la ZC-049, mientras que en los cilindros es de 55°C.
- Las condiciones de temperatura bajo las cuales fragua y endurece un cilindro de concreto, son muy distintas de las condiciones bajo las que el concreto fragua y endurece en la estructura.

Tabla 8.1 Valores de madurez de la zapata-columna 049. a) Método 1 (fi).

									ZC	C-049						
Edad	D1	TT	:	#1	:	#2	:	#3	:	#4	:	#5	:	#6		#7
(días)	Fecha	Hora	Madurez (°C-hrs.)	Edad equivalente (hrs.)												
1	26/04/12	14:05	2,178	210	887	50	1,750	109	1,846	137	963	33	1,843	128	1,747	116
2	27/04/12	14:05	4,663	446	2,949	196	3,240	183	3,914	284	1,677	54	3,961	281	3,162	182
3	28/04/12	14:05	6,717	589	4,696	293	4,253	217	5,514	364	2,424	76	5,820	393	4,093	212
7	2/05/12	14:05	12,668	870	10,114	522	7,720	324	10,056	530	5,355	161	11,699	663	7,284	307

b) Método 1 (ff).

									ZC	C-049						
Edad				#1	:	#2		#3	:	#4		#5	:	#6		#7
(días)	Fecha	Hora	Madure z (°C- hrs.)	Edad equivalent e (hrs.)												
1	26/04/12	14:05	2058	434	767	80	1629	180	1726	250	1800	234	1724	222	1724	222
2	27/04/12	14:05	4423	904	2709	331	3001	285	3674	504	3873	534	3722	490	3722	490
3	28/04/12	14:05	6358	1148	4337	479	3894	324	5155	619	5717	745	5461	668	5461	668
7	2/05/12	14:05	11832	1541	9278	779	6884	434	9220	815	11451	1176	10863	1039	10863	1039

c) Método 2.

									ZC	C-049						
				#1	:	#2	,	#3	:	#4	:	#5	:	#6	,	#7
Edad (días)	Fecha	Hora	Madurez (°C-hrs.)	Edad equivalente (hrs.)												
1	26/04/12	14:05	2141	190	850	47	1712	102	1808	126	1883	124	1806	118	1710	107
2	27/04/12	14:05	4589	403	2875	182	3166	171	3839	262	4038	278	3887	260	3087	170
3	28/04/12	14:05	6605	535	4585	273	4142	205	5403	338	5965	397	5708	364	3982	200
7	2/05/12	14:05	12409	802	9855	493	7461	311	9797	499	12028	685	11440	622	7025	295

d) Método 3.

									ZC	C-049						
Edad (días)	Eagles	Homo		#1		#2	:	#3		#4		#5	:	#6	:	#7
Edad (días)	Fecha	Hora	Madurez (°C-hrs.)	Edad equivalente (hrs.)												
1	26/04/12	14:05	2140	245	849	55	1712	122	1808	156	1883	151	1806	143	1709	129
2	27/04/12	14:05	4588	518	2874	218	3165	200	3838	320	4037	341	3886	316	3086	200
3	28/04/12	14:05	6604	678	4584	324	4140	235	5401	407	5964	482	5707	440	3981	230
7	2/05/12	14:05	12405	979	9851	567	7457	343	9793	578	12025	809	11436	728	7022	325

Tabla 8.2 Predicción de la resistencia de la zapata-columna 049. a) Método 1 (fi).

						ZC-	049									
				#1	7	#2		#3	:	#4	7	# 5	÷	#6	÷	#7
Edad (días)	Fecha	Hora	Madurez	Edad equivalente	Madurez	Edad equivalente	Madurez	Edad equivalente	Madurez	Edad equivalente	Madurez (°C-hrs.)	Edad equivalente (hrs.)	Madurez	Edad equivalente	Madurez	Edad equivalente
			fc (k	fc (kg/cm²) fc (kg/cm²)		g/cm²)	fc (k	(g/cm²)	fc (k	g/cm²)	fc (kg	g/cm²)	fc (k	g/cm²)	fc (k	g/cm²)
1	26/04/12	14:05	507	572	459	488	495	534	498	547	501	546	498	543	495	537
2	27/04/12	14:05	548	616	524	568	529	564	539	590	542	594	540	589	527	564
3	28/04/12	14:05	568	633	549	592	543	574	557	604	563	614	560	609	541	573
7	2/05/12	14:05	602	656	590	626	575	598	590	627	601	646	598	640	572	594

b) Método 1 (ff).

									ZC	C-049						
				#1	:	#2		#3		#4		#5	:	#6	;	#7
Edad (días)	Fecha	Hora	Madurez	Edad equivalente												
			fc (k			g/cm²)	fc (k	(g/cm²)	fc (k	g/cm²)						
1	26/04/12	14:05	510	614	456	507	497	558	500	579	502	575	500	571	500	571
2	27/04/12	14:05	551	660	525	597	530	587	541	623	544	627	542	622	542	622
3	28/04/12	14:05	571	675	550	620	544	595	560	636	565	648	563	641	563	641
7	2/05/12	14:05	605	694	592	651	575	614	591	654	603	677	600	669	600	669

c) Método 2.

									ZC	C-049						
			7	#1	#	‡ 2	;	#3	:	#4	-	# 5	#	#6	#	‡7
Edad (días)	Fecha	Hora	Madurez fc (kg	Edad equivalente g/cm²)	Madurez fc (kg	Edad equivalente g/cm²)	Madurez fc (k	Edad equivalente g/cm²)	Madurez fc (k	Edad equivalente g/cm²)	Madurez fc (kg	Edad equivalente g/cm²)		Edad equivalente g/cm²)	Madurez fc (kg	Edad equivalente g/cm²)
1	26/04/12	14:05	507	567	457	486	495	530	498	543	500	542	498	539	495	533
2	27/04/12	14:05	548	611	523	564	528	561	539	585	541	589	539	585	527	560
3	28/04/12	14:05	568	627	548	588	543	571	557	600	563	610	560	605	541	570
7	2/05/12	14:05	602	651	590	622	575	595	589	623	600	641	598	636	571	592

d) Método 3.

									ZC	C-049						
F. 1. 1				#1	:	#2	:	#3		#4	:	#5	:	#6	÷	#7
Edad (días)	Fecha	Hora	Madure z	Edad equivalent e												
			fc (k	(g/cm²)	fc (k	g/cm²)	fc (k	g/cm²)	fc (k	(g/cm²)	fc (k	g/cm²)	fc (k	g/cm²)	fc (k	g/cm²)
1	26/04/12	14:05	507	581	457	495	495	541	498	555	500	553	498	550	495	544
2	27/04/12	14:05	548	625	523	575	528	570	539	597	542	601	539	596	527	570
3	28/04/12	14:05	568	641	548	598	543	579	557	611	563	621	560	616	541	578
7	2/05/12	14:05	602	662	590	630	575	601	589	632	601	651	598	645	571	598

8.2.2.2 MADUREZ Y PREDICCIÓN DE LA RESISTENCIA DE LOS CILINDROS DE CONTROL

De acuerdo al historial de temperaturas internas de los *CC* (fig 7.6), los valores calculados del factor temperatura-tiempo y edad equivalente se resumen en la tabla 8.3.

Tabla 8.3 Valores del factor temperatura-tiempo (madurez) y edad equivalente de los cilindros de control.

a) A1.

Edad	Méto	do 1 (fi)	Méto	do 1 (ff)	Mé	todo 2	Mé	todo 3
(días)	Madurez (°C-hrs.)	Edad equivalente (hrs.)	Madurez (°C-hrs.)	Edad equivalente (hrs.)	Madurez (°C-hrs.)	Edad equivalente (hrs.)	Madurez (°C-hrs.)	Edad equivalente (hrs.)
1	908	32	788	37	871	31	870	33
2	1623	52	1383	56	1548	52	1547	53
3	2374	74	2015	78	2263	74	2261	75
7	5306	159	4469	159	5047	159	5043	159

b) A2.

	Méto	do 1 (fi)	Méto	do 1 (ff)	Mé	todo 2	Mé	todo 3
Edad (días)	Madurez (°C-hrs.)	Edad equivalente (hrs.)	Madurez (°C-hrs.)	Edad equivalente (hrs.)	Madurez (°C-hrs.)	Edad equivalente (hrs.)	Madurez (°C-hrs.)	Edad equivalente (hrs.)
1	963	33	843	38	926	33	925	34
2	1,677	54	1437	58	1603	54	1602	55
3	2,424	76	2065	79	2313	75	2311	76
7	5,355	161	4519	161	5096	161	5092	161

Las ecuaciones para la predicción de las resistencias son las correspondientes al ajuste logarítmico (tabla 6.7 y 6.9), en la tabla 8.4 se muestran los resultados de resistencia, de acuerdo a la madurez calculada.

Tabla 8.4 Predicción de la resistencia.

a) A1.

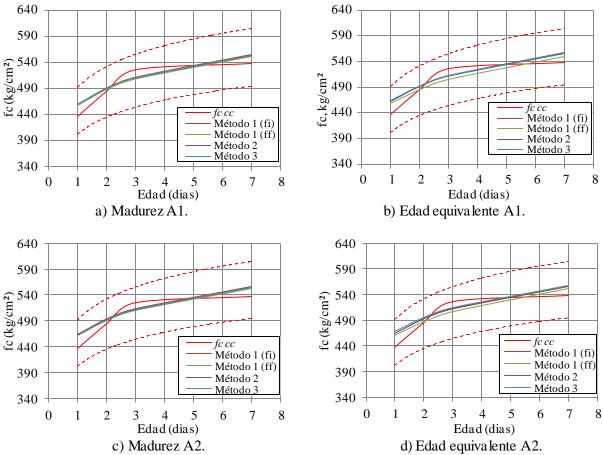
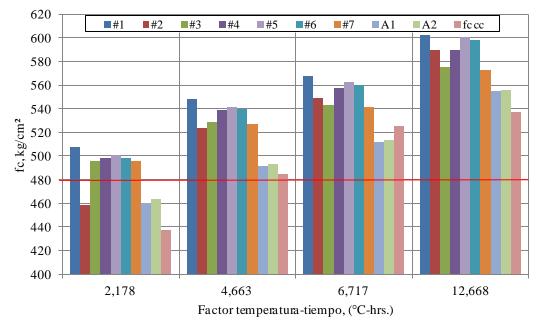
Cilindros de control		Madurez				Edad equivalente			
		Método 1 (fi)	Método 1 (ff)	Método 2	Método 3	Método 1 (fi)	Método 1 (ff)	Método 2	Método 3
Edad (días)	fc cc (kg/c m²)	fc (kg/cm²)	fc (kg/cm²)	fc $(kg/c m^2)$	fc $(kg/c m^2)$	fc (kg/c m²)	fc (kg/c m²)	fc (kg/c m²)	fc (kg/c m²)
1	437	460	457	459	459	461	458	462	464
2	485	491	488	490	490	491	485	491	493
3	526	512	508	510	510	511	505	512	513
7	538	555	552	554	554	556	551	557	556 ⁱ

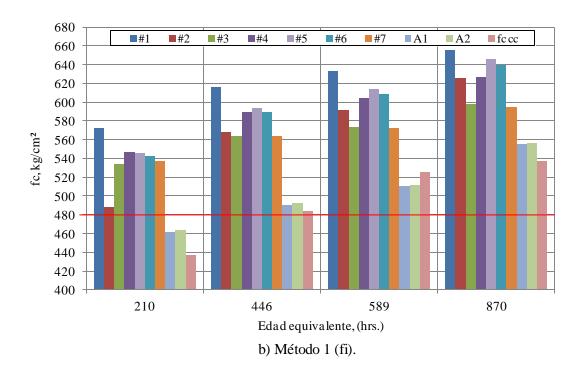
b) A2.

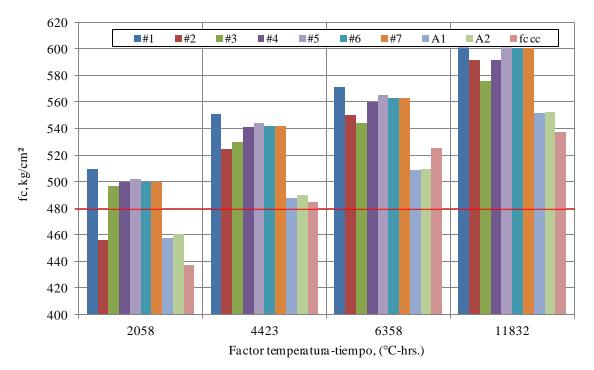
Cilindros de control		Madurez				Edad equivalente			
		Método 1 (fi)	Método 1 (ff)	Método 2	Método 3	Método 1 (fi)	Método 1 (ff)	Método 2	Método 3
Edad (días)	fc cc (kg/cm²)	fc (kg/c m²)	fc $(kg/c m^2)$	fc (kg/c m ²)	fc (kg/c m²)	fc (kg/c m²)	fc $(kg/c m^2)$	fc (kg/c m ²)	fc $(kg/c m^2)$
1	437	463	461	462	462	464	460	464	467
2	485	493	490	492	492	492	486	493	494
3	526	513	510	511	511	512	506	513	514
7	538	556	552	554	554	556	551	557	557

8.2.3 COMPARAR LOS VALORES DE MADUREZ OBTENIDOS EN CAMPO Y EN LABORATORIO.

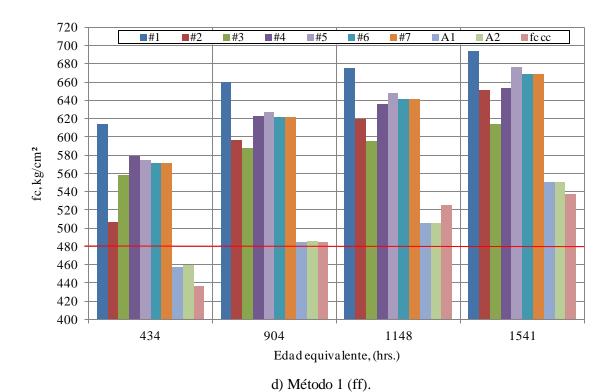
Como resultado de la aplicación, se presentan gráficas comparativas que relacionan datos de madurez y resistencia, a edades de 1, 2, 3 y 7 días. En la fig 8.4 se comparan las resistencias a compresión simple de los CC pronosticadas con los 3 métodos (tabal 8.4) contra las resistencias reales (fc cc) obtenidas por LANCO dentro de los límites establecidos, $\pm 10\%$ (tabla 7.2).

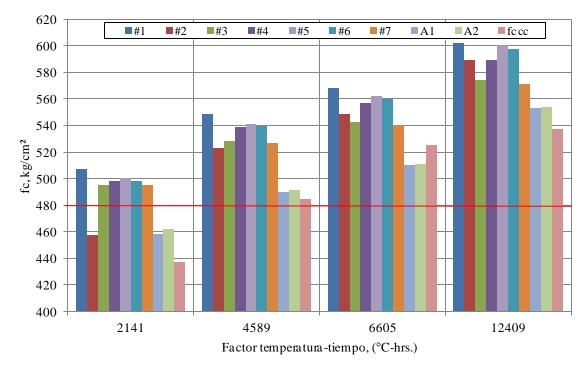

Fig 8.4 Comparación de las resistencias pronosticadas con las resistencias reales de los cilindros de control (fc cc).

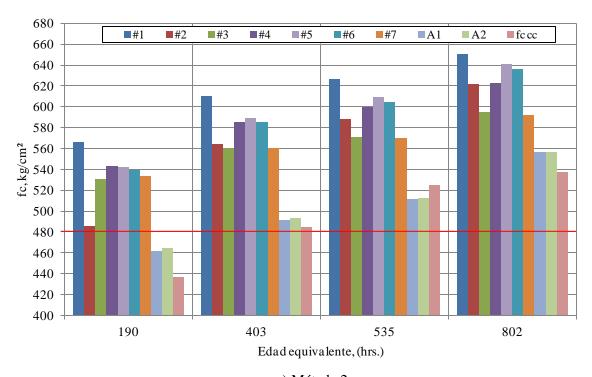

Aplicando la teoría de la madurez, la cual nos indica que a mayor temperatura interna del concreto, mayor será la ganancia de resistencia del mismo; a partir de esta premisa, las zonas de la *ZC* donde se registran mayores temperaturas desarrollaran mayores valores de resistencia, por lo tanto, en la fig 8.5 se agrupan los valores de madurez a las edades de ensayo, para comparar las predicciones de resistencias en campo de la *ZC*-049 (tabla 8.2; #1, #2, #3, #4, #5, #6, #7) y los *CC* (tabla 8.4; A1, A2), con las resistencias reales (*fc cc*) obtenidas en LANCO (tabla 7.2).

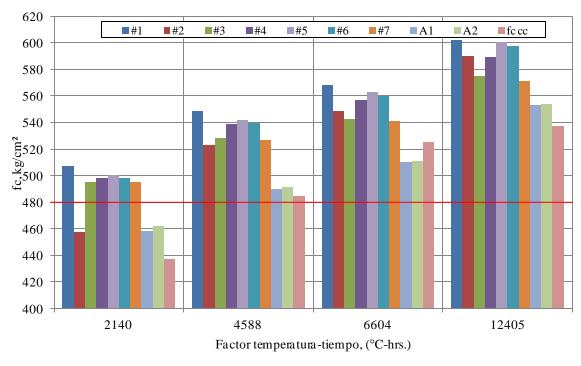
La transferencia del presfuerzo generalmente se realiza cuando el concreto ha alcanzado el 80% de su resistencia de diseño (fc= 480 kg/cm²), la línea en color rojo marca este límite.



a) Método 1 (fi).




c) Método 1 (ff).


64

f) Método 2.

g) Método 2.

h) Método 3.

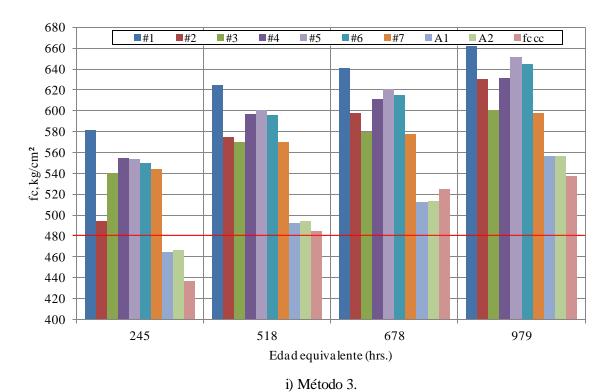


Fig 8.5 Comparación de las resistencias entre los cilindros de control y la ZC-049.

9. ANALISIS DE RESULTADOS

- 1. La relación a/c para M1, M2 y M3 es de 0.34, 0.34 y 0.32, respectivamente.
- 2. Los concretos en estudio tenían una consistencia adecuada sin aditivos, al incorporarlos presentaron una gran inestabilidad, provocando segregación. Después de realizar varias correcciones en la dosificación de los mismos, los porcentajes utilizados para M1, M2 y M3 fueron 75%, 70% y 65% respectivamente, del diseño original.
- 3. La norma ASTM C1621señala que, para concreto autocompactante una diferencia en el flujo del asentamiento, con y sin anillo J, de 25 mm indica una buena capacidad de paso y 50 mm indica pobre capacidad de paso, se observa que la M2 y M3 tienen una capacidad de paso intermedia y la M1 tiene pobre capacidad de paso.
- 4. El tiempo en que el diámetro de la torta alcanza 50 cm en la placa metálica, para las mezclas M1, M2 y M3 fueron 0.74 s, 1.09 s y 0.97 s, respectivamente. Los resultados indican que la viscosidad de la mezcla es adecuada y facilita el llenado de los moldes.
- 5. El mejor desempeño en cuanto a resistencia a compresión a 28 días de edad fue el de la mezcla M2 con 660 kg/cm², le sigue el de la mezcla M3 con 653 kg/cm² y finalmente la M1 con 628 kg/cm², aunque todas son del mismo orden.
- 6. La resistencia a tensión por compresión diametral de las mezclas de concreto ensayadas a 28 días de edad se puede estimar en función de la resistencia a compresión con las siguientes expresiones:

M1 ft =
$$1.68\sqrt{f'c}\left(\frac{kg}{cm^2}\right)$$
 ; M2 ft = $1.62\sqrt{f'c}\left(\frac{kg}{cm^2}\right)$; M3 ft = $1.65\sqrt{f'c}\left(\frac{kg}{cm^2}\right)$

7. En la estimación del módulo de elasticidad a partir de la resistencia a compresión del concreto, las variables que tuvieron influencia fueron, la granulometría y tipo de agregado, la relación agua/cemento y la dosificación de los aditivos. Los valores promedio alcanzados se indican a continuación:

M1 Ec=10 404
$$\sqrt{f'c} \left(\frac{kg}{cm^2}\right)$$
; M2 Ec=12 962 $\sqrt{f'c} \left(\frac{kg}{cm^2}\right)$; M3 Ec=11 869 $\sqrt{f'c} \left(\frac{kg}{cm^2}\right)$

- 8. La relación de Poisson para las mezclas de concreto tienen una gran dispersión aunque se nota tendencia a incrementar su valor con la edad; el promedio de los valores para M1, M2 y M3, fueron 0.232, 0.223 y 0.234, respectivamente.
- 9. En la determinación de los tiempos de fraguado por medio de mediciones de resistencia a la penetración del mortero, las principales variables que reducen los tiempo de fraguado son: una relación a/c más baja y el aumento de la temperatura de curado.

10. Los tiempos que transcurren desde el inicio al final de fraguado, son los siguientes:

M	1	M	2	M3		
Temperatura, (°C)	Tiempo	Temperatura, (°C)	Tiempo	Temperatura, (°C)	Tiempo	
4.5	5 hrs. 52 min.	4.6	4 hrs. 53 min.	4.6	4 hrs. 53 min.	
16.3	2 hrs. 6 min.	16.6	1 h 45 min.	16.6	1 h 46 min.	
25	1 h 7 min.	25	1 h 36 min.	25	1 h 36 min.	
42.5	55 min.	42.2	1 h 30 min.	42.2	1 h 8 min.	
60	33 min.	60	1 h 22 min.	60	54 min.	
87.7	30 min.	87.8	1 h 8 min.	87.8	46 min.	

- 11. En los morteros ensayados, se nota que a una mayor temperatura de curado los especímenes obtienen una mayor resistencia a edades tempranas; sin embargo a edades posteriores se presenta una degradación en su resistencia, a excepción de la mezcla M3. Se observa así mismo, que los especímenes curados a bajas temperaturas a edades tempranas ganan resistencia a un ritmo muy lento, pero a edades posteriores alcanzan resistencias mayores.
- 12. La energía de activación determinada experimentalmente para cada mezcla en estudio, no superan la variación estimada en distintos artículos internacionales, con valores de 15 kJ/mol, como se observa a continuación:

Mezcla	Método 1 (fi)	Método 1 (ff)	Método 2	Método 3	
	Ea, (J/mol)	Ea, (J/mol)	Ea, (J/mol)	Ea, (J/mol)	
M1	29439	38247	28159	31303	
M2	24146	28323	21813	30326	
M3	29324	32439	37336	31859	

Sin embargo los valores son menores a los que recomienda la norma ASTM C1074 40-45 kJ/mol.

13. Los valores de la temperatura dato para las mezclas en estudio, son las siguientes:

Mezcla	Método 1 (fi)	Método 1 (ff)	Método 2	Método 3	
	<i>To</i> , (°C)	To, (°C)	<i>To</i> , (°C)	<i>To</i> , (°C)	
M1	-10	-5	-8	-8	
M2	-14	-11	-14	-8	
M3	-9	-8	18	13	

- 14. Para la relación resistencia madurez, se realizo el ajuste de los resultados a las funciones exponencial, hiperbólica y logarítmica (Tabla 19 y 21)
- 15. La temperatura máxima alcanzada es de 106℃ en la *ZC*-049, mientras que en los cilindros es de 55℃.
- 16. El gradiente térmico medido es de 8-19 °C/hora en la ZC-049, muy superior al que se produjo en los cilindros de control, de 6-9 °C/hora.
- 17. Los ensayos a compresión simple de los cilindros de control fueron a 1, 2, 3, 7 y 28 días de edad.

- 18. El registro de temperatura de los cilindros de control fue durante los primeros 8 días.
- 19. La estimación de la madurez y las predicciones de resistencia de los cilindros de control, se calcularon a 1, 2, 3 y 7 días de edad.
- 20. Los límites establecidos para la predicción de resistencia serán los que estén dentro del 90% y 110% de la relación resistencia-madurez.
- 21. Los porcentajes de las predicciones de resistencia de los cilindros de control son: en el primer día sobre-estiman en un 6%, en el segundo día en 2%, en el tercer día se sub-estima en 4% y en el séptimo día se sobre-estima en 4%.
- 22. La temperatura, la madurez y por lo tanto la resistencia, es mayor en la ZC que en los cilindros de control.
- 23. Los cilindros de control alcanzan la resistencia que generalmente es requerida para realizar la transferencia del presfuerzo, durante el día 2, mientras que en la ZC es en el día 1.
- 24. La edad equivalente tiene mejores resultados en la predicción de resistencia.

9.1 CONCLUSIONES GENERALES

- A. Para la determinación de la energía de activación de cada mezcla, no es posible definir con anticipación las temperaturas de curado, para M1 y M3 que utilizan el mismo tipo de materiales pero en diferentes proporciones, las temperaturas de curado mínima, media y máxima fueron 4.5, 16.5, 25 °C y 25, 42.3, 60°C, respectivamente; en la M2 que utiliza agregado fino de tipo rio, las temperaturas de curado fueron 4.6, 16.6, 25°C.
- B. Se puede establecer un intervalo de energía de activación, para la M1 de 28-38 kJ/mol, para la M2 de 21-30 kJ/mol y para la M3 de 29-37 kJ/mol.
- C. La variación en la estimación de la energía de activación de cada mezcla, de acuerdo con los métodos estudiados, no supera la estimada en distintos artículos internacionales de 15 kJ/mol.
- D. Los valores de energía de activación alcanzados resultaron inferiores a los recomendados en la norma ASTM11 de 40 a 45 kJ/mol para concretos fabricados con cemento CPO (Tipo 1).
- E. La temperatura de curado es un factor de sensibilidad que regula la velocidad con la que crece el valor de la tasa de la variación (k) y su efecto es análogo en la estimación de la energía de activación. Lo anterior pone de manifiesto la necesidad de calcular experimentalmente la energía de activación (Ea) para cada tipo de mezcla.
- F. De los 3 modelos de crecimiento de resistencia, la función que conduce a los coeficientes de correlación más altos es la logarítmica.
- G. Para una mezcla dada, la resistencia máxima está en función de su madurez.

- H. De la fig 7.4 se concluye que, en las distintas zonas de la *ZC* la temperatura no es la misma, lo que significa que en una estructura la temperatura interna del concreto varía según la localización, exposición y forma del elemento.
- I. La evolución de las temperaturas es muy diferente en la ZC que en los cilindros de control (CC), por lo tanto, la madurez y ganancia de resistencia en la ZC no es la misma que en los CC.
- J. La predicción de las resistencias de los CC están dentro de los límites permitidos por la norma $\pm 10\%$ (fig 8.4).
- K. Los limites para la predicción de resistencias de los CC se reducen, para la el factor temperaturatiempo en $\pm 5\%$ y $\pm 6\%$ en la edad equivalente (fig 8.4).
- L. De acuerdo con los resultados de la fig 8.5, la resistencia que se necesita para llevar a cabo la transferencia del presfuerzo (80% de *f'c*) en la *ZC* es durante el primer día, con excepción de la zona #2 (parte inferior de la columna) y solo para el factor temperatura-tiempo; en los cilindros de control es hasta el segundo día.
- M. La resistencia a compresión simple de los *CC* proporcionan resultados del lado de la seguridad estructural para estimar la resistencia del concreto en la *ZC*.
- N. De las dos funciones de madurez para predecir la resistencia del concreto, es mejor utilizar la edad equivalente, ya que, representa mejor el fenómeno físico-químico al tomar en cuenta la no linealidad en la hidratación del cemento.
- O. Las 3 mezclas en estudio alcanzaron una resistencia a compresión simple a 28 días de edad superiores a 600 kg/cm².
- P. La resistencia a compresión y tensión y los parámetros elásticos de módulo de elasticidad y relación de Poisson de las mezclas en estudio se vieron influenciadas principalmente por las características físicas de la arena, y del agregado grueso.
- Q. La mezcla M2 alcanzó los valores mayores de resistencia a la compresión y módulo de elasticidad respecto a M1 y M3. Esto se debe al uso de una arena con un mayor peso específico, menor pérdida por lavado y tamaño máximo de agregado grueso también menor. La proporción en porcentaje de agregado grueso fue mayor que la del agregado fino a diferencia de lo que se tuvo en las otras dos mezclas.
- R. La resistencia a tensión se incrementa con la edad del concreto. La estimación de la resistencia a tensión a 2 días de edad se puede hacer a partir de lo establecido en 6.1.7 para las tres mezclas de concreto.
- S. La relación de Poisson incrementa su valor con la edad.
- T. El aumento de la temperatura ambiente reduce el tiempo de fraguado, lo cual debe de tomarse muy en cuenta, ya que la ZC y en general todos los elementos estructurales en las plantas de

prefabricados están expuestos a la luz del sol y a otras condiciones que pueden influenciar el tiempo de fraguado del concreto.

- U. La resistencia a compresión se degrada si la temperatura de curado es alta. A edades tempranas, los concretos curados a temperaturas altas tienen mayor resistencia a la de los concretos curados a bajas temperaturas; pero la resistencia de los concretos curados a temperaturas bajas aumentan su resistencia con la edad, llegando a exceder a las primeras.
- V. Implementar el método de la madurez en la construcción de las estructuras de concreto en nuestro país, implica adquirir los equipos de instrumentación (capitulo 3), para este proyecto, aproximadamente representa el 10% del costo total de una ZC de los segundos pisos del periférico en el DF. Los equipos de instrumentación se pueden utilizar para instrumentar distintos elementos estructurales, por lo tanto, el costo se puede amortizar en varios periodos del proyecto.

9.2 CONCLUSIONES PARTICULARES

El método de la madurez combina los efectos del tiempo y la temperatura sobre el desarrollo de la resistencia del concreto. La madurez y edad equivalente proporcionan un cálculo relativamente simple para hacer predicciones de la resistencia del concreto, además, las formulaciones toman en cuenta de mejor forma las condiciones reales de los elementos estructurales. El uso de este método implica considerar factores muy importantes como son, la temperatura de curado de las estructuras, el historial de temperaturas internas del concreto, la determinación previa de las curvas de madurez y edad equivalente, las temperaturas utilizadas, las dosificaciones de las mezclas o si se presentan cambios, realizar nuevas curvas de madurez y edad equivalente, entre otras.

La aplicación del método no se limita a la construcción de estructuras prefabricadas, se puede implementar en la construcción de estructuras donde se requiera conocer la resistencia del concreto a edades tempranas. El procedimiento consiste esencialmente en el ensaye de cubos de mortero a diferentes edades y curados a 3 temperaturas, para determinar la energía de activación (*Ea*) y la temperatura dato (*To*); determinar la relación resistencia-madurez mediante el ensaye de cilindros de concreto y en campo instrumentar el elemento estructural para conocer la madurez que desarrolla en cualquier instante de tiempo y así determinar la resistencia del concreto in situ.

Es importante mencionar que el procedimiento es de fácil aplicación, interfiere mínimamente en los trabajos de campo, es sistemático, reproducible, repetitivo y representativo de la resistencia del concreto. Las ventajas de implementar el método de la madurez en la construcción de las estructuras de concreto son:

- Conocer la resistencia real del concreto a edades tempranas, en las diferentes zonas de los elementos estructurales.
- Determinar las zonas críticas de resistencia en los elementos estructurales.
- Evitar fisuras en los elementos al momento de hacer la transferencia del presfuerzo.
- Monitorear en tiempo real el gradiente de temperatura entre el interior de la estructura y el ambiente.
- Determinar la temperatura y duración del proceso de curado acelerado, si es necesario.

- Disminuir el tiempo de descimbrado e izaje de los elementos estructurales.
- Reducción del área de almacenamiento debido a una izaje en menor tiempo.
- Dejar de hacer ensayos destructivos y la extracción de testigos de los elementos estructurales.
- Disminuir la cantidad de residuos sólidos en la construcción.

De los resultados obtenidos a partir de los cilindros de control ensayados a diferentes edades (fig 8.4), se puede decir que, la resistencia obtenida por el método de la madurez es muy aproximada a la resistencia real. Bajo esta misma premisa, se puede mencionar que, de acuerdo a la madurez desarrollada en las diferentes zonas de la zapata columna, la resistencia del concreto en campo es parecida a la resistencia calculada por el método de la madurez (fig 8.5).

A la luz de los resultados y con las curvas de madurez y edad equivalente, se concluye que el método de la ASTM C-1074 2011, es una herramienta que permite predecir la resistencia del concreto a edades tempranas, con la ventaja de no hacer ensayos destructivos o tener que extraer testigos de los elementos estructurales, lo que ayudaría a disminuir la generación de residuos en la construcción.

RECOMENDACIONES A FUTUROS TRABAJOS

Las curvas de madurez y edad equivalente se obtienen a partir de la aplicación de la norma ASTM C-1074. Para tener una mayor confianza sobre el uso de este método, el siguiente paso que se propone es, realizar una campaña de nuevos ensayos con las mismas mezclas en estudio pero, sometidas a temperaturas variables. A partir de los resultados y de utilizar las gráficas de madurez y edad equivalente, hacer una calibración de la metodología para tener un mejor nivel de confianza en la predicción de la resistencia a compresión del concreto.

Instrumentar diferentes elementos estructurales prefabricados de los segundos pisos del periférico (zapata-columna, trabes, etc.) para aplicar el método de la madurez, confeccionando e instrumentando 2 lotes de cilindros de control, el primero sometido a condiciones idea les de temperatura y humedad y el segundo a las condiciones reales de los elementos estructurales, con el fin de comparar la predicción de resistencias con el método de la madurez y las resistencias reales bajo las condiciones mencionadas.

Ampliar el estudio para diferentes relaciones a/c y observar la variación de la energía de activación.

REFERENCIAS

- ➤ ASTM C 33, Standard Specification for Concrete Aggregates, 2003.
- ➤ ASTM C 39/C 39M, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, 2001.
- ➤ ASTM C 403, Standard Test Method for Time of Setting of Concrete Mixtures by Penetration Resistance, 2008.
- ➤ ASTM C 469, Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, 2002.

- ➤ ASTM C 1074, Standard Practice for Estimating Concrete Strength by the Maturity Method, 2011.
- ➤ ASTM C1621/C1621M, Standard Test Method for Passing Ability of Self-Consolidating Concrete by J-Ring, 2009.
- ➤ ACI 306R-10, Manual of Concrete Practice, Construction Practices and Inspection Pavements American Concrete Institute, 1996.
- ➤ Brooks AG, Schindler AK, Barnes RW., Maturity method evaluated for various cementitious materials, Journal of Materials in Civil Engineering, 2007.
- ➤ Carino, N.J.; Lew, H.S., The Maturity Method: From Theory to Application, Building and Fire Research Laboratory, National Institute of Standards and Technology, 2001.
- ➤ Casal Rey, A., Desarrollo de un procedimiento de estimación de la energía de activación equivalente para la aplicación del método de la madurez, 2012.
- ➤ EUCLID CHEMICAL, http://:www.eucomex.com.mx.
- Freiesleben Hansen P., Pedersen EJ., Maturity computer for controlled curing and hardening of concrete, Nordic Concrete Research, 1977.
- ➤ GRACE Construction Products, http://:www.graceconstruction.com.mx.
- Laport Rivas, F., Desarrollo de un nuevo sistema de instrumentación para la aplicación del método de la madurez en puentes de hormigón, 2011.
- Malhotra, V.M.; Carino, N.J.; Handbook on nondestructive testing of concrete; CRC Press, 2004.
- Mechura Verónica, Aplicación del ensayo de madurez a pavimentos de hormigón, Universidad Tecnológica Nacional Facultad Regional La Plata, Centro de investigaciones viales.
- Mendoza E. Carlos Javier, Vázquez H. Cristina, Meli P. Roberto, Aire U. Carlos, Dircio B. Miguel, Desarrollo de un procedimiento basado en el método de la madurez: determinación experimental de la energía de activación de concretos autocompactantes y convencionales de alta resistencia, aplicación y validación del procedimiento experimental a prefabricados de los segundos pisos del DF., Informe final del proyecto de investigación para el Instituto de Ingeniería, UNAM, 2012.
- ➤ NTC-Concreto (2004), Normas técnicas complementarias para diseño y construcción de estructuras de concreto, Gaceta Oficial del Distrito Federal, Tomo I No. 103 BIS.
- ➤ Samuel A. Wade, Anton K. Schindler, Robert W. Barnes, Jeffery M. Nixon, Evaluation of the Maturity Method to Estimate Concrete Strength, Highway Research Center and Department of Civil Engineering at Auburn University, 2006.