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ABSTRACT 
 
 
 
 
 
 
 
The object of this thesis is to develop numerical tools to characterize heterogeneous soil masses 
with respect to their hydraulic conductivities from a probabilistic perspective of analysis. The 
proposed tools can be used to simulate site-specific realizations of random fields conditional to 
measurements of hydraulic conductivity and histories of hydraulic heads. The document is first 
devoted to discus the concept of dependence that is defined in the context of random fields then 
theoretical concepts of the model adopted to represent uncertainty due to spatial variability of 
the hydraulic conductivity of soil masses is presented. To characterize soil masses taken into 
account available hydraulic head observations, an inversion technique based on the so-called 
Ensemble Kalman Filter method is proposed. Both the original and the propose techniques are 
used to simulate conductivity random fields conditional to histories of hydraulic heads. The 
developed tools are validated through numerical experiments. In one experiment, the 
conditional conductivity fields are used to predict seepage velocities in a transversal cross-
section of the internal core of an idealized earth dam for the purpose of identifying preferential 
seepage paths. The characterization of non-homogeneous 1D and 2D hypothetic aquifers is also 
considered. The presentation of this research finalizes with general conclusions and 
recommendations that attempt to motivate future investigations. 
 
 



 



 
 
 
 
 
 
 

RESUMEN 
 
 
 
 
 
 
 
El objetivo de esta tesis es desarrollar herramientas numéricas para caracterizar masas térreas 
heterogéneas en relación con sus conductividades hidráulicas desde una perspectiva de análisis 
probabilista. Las herramientas propuestas se pueden utilizar para simular campos aleatorios 
condicionales a mediciones de la conductividad hidráulica y a historias de cargas hidráulicas. El 
documento se dedica primero a discutir el concepto de dependencia que se define en el contexto 
de los campos aleatorios y luego presenta los fundamentos teóricos del modelo utilizado para 
representar la incertidumbre asociada a la variabilidad espacial de la conductividad hidráulica en 
las masas de suelo. Para caracterizar masas de suelo tomando en cuenta observaciones 
disponibles de la carga hidráulica, se propone una técnica de modelación inversa basada en el 
método conocido como filtro de Kalman ensamblado. Tanto la técnica original como la que se 
propone se utilizan para simular campos aleatorios condicionales a historias de cargas 
hidráulicas. Las herramientas desarrolladas se validan con experimentos numéricos. En uno de 
los experimentos, los campos aleatorios condicionales se utilizan para pronosticar velocidades 
de filtración en la sección transversal del núcleo interno de una presa de tierra idealizada con el 
propósito de identificar trayectorias preferenciales de filtración. Se considera además la 
caracterización de acuíferos hipotéticos heterogéneos en una y dos dimensiones. La 
presentación de esta investigación finaliza con conclusiones generales y recomendaciones que 
intentan motivar futuras investigaciones. 
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INTRODUCTION 
 
 
 
 
 
 
 
Motivation 
 
The hydraulic conductivity of soil masses is very sensitive to variations of internal structure. In 
the same type of soil, hydraulic conductivity may vary by several orders of magnitude. Field 
measurements show clearly that such variations are the rule more than the exception. This fact 
can be verified both in natural soil formations and in mechanically stabilized soils wherein 
heterogeneity is likely to occur because of the intrinsic properties of materials at the borrow 
banks and the procedure adopted for their collocation. In addition, the number of available 
measurements for determining the hydraulic conductivity of a soil mass in a specific site is often 
limited. As a result, the hydraulic properties of soil masses are so uncertain that they are best 
characterized in a probabilistic manner. 
 
Numerical models are often employed in practical situations to analyze seepage conditions. 
Such models permit to incorporate in the analysis the heterogeneity of the porous media. In real-
world problems, the presence of heterogeneity is often critical to the performance or the 
reliability of soil structures subjected to seepage. For example, K. V. Terzaghi pointed out that 
minor geological details frequently control the behavior of the soil mass. In this context, it is 
inconvenient to simplify the analysis of seepage using mean values in idealized homogeneous 
domains. 
 
Problem definition 
 
A particular case of high relevance in the practice of geotechnical engineering is the 
identification of preferential seepage paths in the core of earth dams. In heterogeneous media, 
fluid moves faster along preferred paths of least resistance. The presence of high conductive 
zones in earthen structures has different sources. It may be the consequence of the inadvertent 
inclusion of coarser materials or poor mechanical compaction, among other factors. 
 
Although the sole occurrence of preferential seepage pathways in earthen structures does not 
necessarily lead to failure, it may indicate the risk of internal erosion or the existence of soil 
cracking. In the event of inadequate performance of filters, preferential seepage paths may 
facilitate the development of the mechanism of internal erosion in the core. This last 
phenomenon has been the main cause of failure of earthen structures. The detection of 
preferential seepage paths in its incipient condition is therefore an issue in dam embankment 
engineering. 
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Contribution 
 
The object of this thesis is to develop numerical tools to characterize heterogeneous soil masses 
with respect to their hydraulic conductivities from a probabilistic perspective of analysis. The 
propose tools will be used to simulate realizations of random fields conditional to measurements 
of hydraulic conductivity and/or histories of hydraulic heads. The developed tools during this 
investigation will be validated through numerical experiments. In one experiment, conductivity 
fields conditional to histories of hydraulic heads will be generated to predict seepage velocities 
in a transversal cross-section of the internal core of an idealized earth dam to identify 
preferential seepage paths. 
 
It is expected that the proposed tools reinforce the experienced engineer’s criteria during the 
process of identification of preferential seepage paths in earth dams and help engineers to make 
decisions with respect to the safety of such kind of dams. 
 
Organization of the document 
 
The presentation of this research has been organized in five chapters. In chapter 1 the concept of 
multi-Gaussian dependence in spatial random fields is discussed. Chapter 2 presents the random 
field model adopted to represent heterogeneous hydraulic conductivities and a simulation 
algorithm of random fields is proposed. In chapter 3, an extension of the so-called Ensemble 
Kalman Filter method is proposed and its performance in relation to the original technique is 
discussed. The characterization of a non-homogeneous hypothetic aquifer with respect to their 
hydraulic conductivities is conducted in chapter 4. Chapter 5 explores the benefits of histories of 
hydraulic heads to characterize a non multi-Gaussian conductivity field that mimics continuous 
zones of hydraulic conductivities in a triangular dam core. The presentation finalizes with 
general conclusions and recommendations that attempt to motivate future investigations. 
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CHAPTER 1 
 

FLOW IN CONTINUOUS RANDOM 
MEDIA: A REVIEW ON THE MULTI-
GAUSSIAN DEPENDENCE CONCEPT 
 
 
 
 
 
 
 
Hydraulic conductivity of soils can be determined at least in three major axes of anisotropy by 
means of any well established standard experiment. However, in practice it is often measured in 
a limited number of locations within a region of interest treating it as a scalar quantity, namely 
no as a tensor. As a rule more than an exception, measurements of the hydraulic conductivity of 
soils exhibit significant spatial variability or heterogeneity even in fairly “homogeneous” 
formations. It is observed that this spatial variability is very difficult to be described in a 
deterministic way from a few set of measurements. Statistical analyses of measurements 
performed in different sites have shown however that such spatial variability presents certain 
structure or organization. 
 
It is now widely accepted that spatial variability of soil hydraulic conductivity can be 
interpreted, for practical purposes, as a realization of a random field (Dagan, 1989; Ghelar, 
1993; Zhang, 2002; Rubin, 2003). Parameters of the random field can be estimated from local 
samples taken from the realization itself under the ergodicity hypothesis. The spatial structure of 
the random field can be described by covariance functions. The concept of variogram is also 
useful under some circumstances. It was introduced by Matheron (1967) who also suggested 
using the Kriging technique for spatial interpolation purposes. All these relevant concepts 
conform part of the so-called geostatistics. 
 
A stochastic approach involves then the adoption of a probabilistic model called random field 
for the purpose of modeling the spatial variability of the hydraulic conductivity of soils. One or 
more hydraulic properties can be modeled by random fields. The equations of flow in this 
approach become stochastic differential equations. Dependent variables of flow such as 
hydraulic head and flux become also random fields. Such fields may also be time dependents in 
which case they are called spatial-temporal random fields. The solution of such equations 
allows quantifying uncertainty in the flow response. Uncertainty emerges from the fact that 
spatial distribution of hydraulic conductivities in the flow domain cannot be fully determined. 
The issue of paramount importance in this approach is not the accurate solution of the stochastic 
flow equations, but the assignment of hydraulic conductivity values to a flow model and the 
quantification of uncertainty in the flow response. 
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Different methods have been developed in order to solve stochastic equations of flow. Among 
them: 1) Perturbation based methods, 2) Spectral based methods and 3) Monte Carlo based 
methods. A review of them can be found in Zhang (2002); Lu and Zhang (2004). Variants of 
perturbation based methods have been developed aimed at improving the computational 
efficiency of the method (Gainis et al., 2008). The perturbation based methods consist basically 
of evaluating changes in the response due to variations in the conductivity field near its 
expected value. In a spectral approach the hydraulic conductivity random field is represented in 
a functional space by a Karhunen-Loeve development and the response field by a Polynomial 
chaos development. 
 
In the simulation or Monte Carlo technique, a particular realization of the hydraulic conductivity 
random field is simulated first in order to solve a deterministic flow problem numerically by 
finite differences or finite elements. This process is then repeated a number of times until a 
sufficiently accurate statistic trend can be defined concerning the variability of the response. 
This is therefore a quite time-consuming approach in spite of the increasing capacity of modern 
computers and introduction of variance reduction methods (Curtis, 1949; Yamasaki et al., 1988; 
Araujo and Awruch, 1994). A simulation approach is often preferred over a perturbation or a 
spectral approach because the later are just approximates based on the first two moments of the 
field assuming implicitly that the field is multi-Gaussian and because they provide smooth 
solutions. 
 
Simulation or Monte Carlo technique for solving seepage problems (Fig. 1) involves three main 
steps: 1) Generating a large enough number of realizations of the random field adopted for 
representing heterogeneity; 2) Solving deterministic equations of flow for each one of the 
realizations in the ensemble and 3) Quantifying uncertainty in the dependent variables of flow 
through a statistical analysis. 
 
 

GENERATING REALIZATIONS OF 
THE RANDOM FIELD

STEP 1

SOLVING EQUATIONS OF THE 
SEEPAGE MODEL

STEP 2

QUANTIFYING UNCERTAINTY IN 
THE MODEL RESPONSE

STEP 3

 
 
Fig. 1.1 Main steps involved in a stochastic approach based on simulations. 
 
 
In a stochastic approach, the multi-Gaussian random field is the most common model adopted 
for representing spatial variability in hydraulic conductivity. A discussion of its suitability to 
such representation is the main purpose of this chapter. The discussion is based on the study of 
its spatial dependence characteristics. First, the concept of random field is formally introduced 
and the particular case of a multi-Gaussian random field is presented. The necessity of 
considering non multi-Gaussian dependence for representing heterogeneous hydraulic 
conductivity fields is then established. The chapter finalizes with the main conclusions of the 
subject. 
 
1.1 The concept of random field 
 
A review of the main definitions involved in the concept of random field is presented in this 
section. 
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1.1.1 Definitions 
 
A random function is an indexed collection of random variables. When the index is a multi-
dimensional spatial one, a random function is also called random field. It is in fact a 
probabilistic model which represents phenomena that vary in space like the distribution of 
hydraulic conductivity values in a region of interest. In a random field, every point over space is 
associated to a simple random variable so, globally it is a set of random variables. At each point 
in space, corresponds not just one value for a property but a whole set of values. From a 
probabilistic point of view, the value observed at a particular location is regarded as one sample 
from its probability distribution. A specific configuration of values in space is called a 
realization of the random field. A random field can thus also be considered as an ensemble of 
realizations. 
 
1.1.2 Spatial structure 
 
Spatial structure of a random field can be described by autocovariance functions. An 
autocovariance function expresses linear dependence among random variables separated by a 
given vector. A standardized autocovariance function called correlogram can also be used for 
such purposes. The correlogram describes the dependence by a linear correlation coefficient, 
formally the Pearson correlation coefficient. In geostatistics, especially in mining applications, 
the concept of variogram (variance of the incremental field) is often used. Autocovariance 
function and variogram in random fields may vary along different directions. In this case, the 
random field is said to be anisotropic. 
 
In practice, the autocovariance function is estimated from observations as part of a process 
known as structural analysis of the field. In this context the function receives the name of 
sample or experimental autocovariance. For random field modeling purposes, a theoretical 
covariance model has to be adapted to its experimental version. A theoretical covariance model 
is said to be valid when the variance-covariance matrix of the random field yields positive 
definite. This must also be true for any linear combination of such valid models. The most 
common valid covariance models used in practice are (Deutsch and Journel, 1998): 
exponential1, spherical2, Gaussian3 and nugget effect4 models. They can be specified through 
parameters such as variance and correlation scale, except for the nugget effect model whose 
correlation range is nil. It is used to represent uncertainty affecting measurements. 
 
The correlation range is the distance at which the correlation value in the correlogram reaches 
zero. However, asymptotic covariance models such as exponential and Gaussian models reach 
the value of zero correlation at infinity. In these cases a practical definition of the correlation 
range, sometimes called effective range, has been proposed (Deutsch and Journel, 1992). It is 
defined as the distance at which 95% of the correlation has been lost. 
 
1.1.3 Stationarity and ergodicity 
 
A random field is said to be strictly stationary within the region A, if its n-variate probability 
distribution functions are invariant under any translation in such space for any value of n. The 
random field is said to be stationary of order N when all n-variate probability distributions are 
invariant under any translation in the space A for n≤N. If the expected value is constant 
throughout the domain and the covariance function depends only on the separation distance 
between points rather than their actual locations, the random field is said to be wide sense 

                                                 
1 Cexp(h)=σ2exp(-3h/a) 
2 Csph(h)=σ2(1.5h/a-0.5(h/a)3) if h≤a and Csph(h)=σ2 if h≥a 
3 Cgs(h)=σ2exp(-3h2/a2) 
4 Cnug(h)=σ2 if h=0 and Cnug(h)=0 if h>0 
where: σ2; is the variance of the field and a is a correlation scale parameter. 
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stationary. A second order stationary random field is also wide sense stationary, but the 
opposite is not necessarily true because the first two moments may not reveal any information 
about the bivariate probability distribution, except in the Gaussian case. 
 
In the special case when the statistics of the random field can be obtained from a unique 
realization, the field is said to be ergodic. In other words, ergodicity lets the statistical 
descriptors of the random field to be estimated from space averages rather than ensemble 
averages. 
 
1.2 The multi-Gaussian random field 
 
A multi-Gaussian random field is, by far, the most used continuous random function model for 
representing heterogeneity in hydraulic conductivity. This section introduces its formal 
definition as well as the reasons for its justification in practical situations. 
 
1.2.1 Definition 
 
A random field is called multi-Gaussian if and only if the random variables are jointly Gaussian 
for any set of n points. Therefore, a marginal Gaussian distribution is a necessary but not a 
sufficient condition for the field to be multi-Gaussian. Further necessary conditions are that the 
multivariate probability distributions, namely bivariate, trivariate, …, n-variate to be also 
Gaussian. 
 
1.2.2 Practical justification 
 
In practical situations a multi-Gaussian random field model is often assumed to be adequate for 
modeling uncertainty due to spatial variability. This is generally based on some degree of wide 
sense stationary behavior of the available observations of the field. But, as a matter of fact, 
available measurements very often prevent inferring statistical moments higher than those of 
order two. Therefore, most of the times, a multi-Gaussian random field model cannot really be 
justified in practice. 
 
In the case of saturated hydraulic conductivities, it has been shown that the histogram can be 
sufficiently approximated by a lognormal probability distribution. This has been verified from 
the study of different geologic formations (e.g. Law (1944); Davis (1969); Hoeksema and 
Kitanidis, (1985); Fogg (1986); Woodbury and Sudicky (1991), López-Acosta and Auvinet, 
2011). Therefore, the following transform is commonly applied to saturated hydraulic 
conductivity ks: 
 

( )ln sy k=                                                          (1.1) 
 
The empirical univariate distribution of the values of y can then be described by a Gaussian 
(normal) distribution. 
 
However, a marginal Gaussian distribution does not imply a multi-Gaussian distribution. This 
fact is often overlooked in numerical studies of flow in random media (e.g. Griffiths and 
Fenton, 1993, 1997; Fenton and Griffiths, 1997; Gui et al., 2000; López-Acosta and Auvinet, 
2003, 2004; Ahmed, 2009). In theses cases, the interest is focused only on two subjects: 1) The 
simulation method of the random field and 2) The method for solving the stochastic equations 
of flow. The suitability of the random field model used to represent spatial variability of 
hydraulic conductivity is often unattended. The characteristics of the spatial structure of a multi-
Gaussian random field are discussed next. 
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1.3 Characteristics of the multi-Gaussian dependence 
 
The characteristics of the spatial structure or dependence in multi-Gaussian random fields are 
studied in this section. The discussion is limited to the bivariate case for practical reasons. The 
characteristics that are analyzed are: correlation structure, symmetric property, entropy property 
and connectivity property. 
 
1.3.1 Correlation 
 
The linear correlation coefficient is not invariant to nonlinear transforms of the type of Eq. 1.1. 
The correlation coefficient ρln(·) of a pair of log-normal random variables (Z1,Z2) is given by 
(Mood and Graybill, 1963): 
 

( )
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−

=
n

nn

e
eZZ
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σρ

ρ ; ( )1;1 +−∈                        (1.2) 

 
where σ2

n and ρn are the variance and linear correlation coefficient of the associated normal 
random variables, respectively. A plot of Eq. 1.2 is shown in Fig. 1.2. Only the positive branch 
of the correlation is shown. A dash line with slope 1:1 is also displayed for reference purposes. 
It is observed that the linear correlation coefficient is not the same between variables of such 
distributions except at zero and one. Therefore, the correlograms of ks and y in eq. 1.1 are 
different. The differences in correlations become significant as variance increases, that is, when 
the heterogeneity is stronger. 
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Fig. 1.2 Linear correlation coefficient of log-normal random variables as a function of the linear 
correlation coefficient of normal random variables with distinct variances. A dash line with slope 1:1 is 
shown for reference. 
 
 
1.3.2 Symmetry 
 
In multi-Gaussian random fields, the autocovariance function uniquely defines the spatial 
structure of all classes5. In order to illustrate this fact, consider the following definitions. To any 
random field Z(x) corresponds a series of indicator random field transforms I(x,z) defined for 
each cutoff value z as: I(x,z)=1 if Z(x)≤z or I(x,z)=0 otherwise. 
 
 

                                                 
5 A class is defined as an interval of values in the marginal distribution of the field. 
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The decomposition of the random field Z(x) into a series of indicator random fields I(x;z) allows 
assigning a specific spatial structure to each class of z(x) values. Such indicator random fields 
are viewed as co-existents binary random fields. 
 
The set of indicator covariances for a bivariate Gaussian random field has been derived 
analytically. The covariance C(h;z) of the indicator I(x;z), called indicator covariance, of a 
standard bivariate Gaussian random field Z(x) is related to the correlogram ρ(h) of Z(x) by 
(Abramovitz and Stegun, 1964; Chilès and Delfiner, 1999): 
 

C(h;z)=
( ) 2

2
0

1 exp
2 1 1

z du
u u

ρ

π
 
− + − 

∫
h

                                     (1.3) 

 
Solutions of Eq. 1.3 can be obtained for different correlograms ρ(h), namely: exponential, 
spherical and Gaussian correlograms and as a function of the q-quantile defined by q=G(z), 
where G(z) is the cumulative Gaussian distribution function and z is the q-quantile of Z. These 
solutions are plotted in Fig. 1.3 and in Fig. 1.4, respectively. The correlation scale in all 
correlogramas is unity. Fig. 1.3 expresses results in terms of a standardized indicator covariance 
called indicator correlogram. This indicator correlogram is defined as ρI(h;z)=C(h;z)/C(0;z); 
where: C(0;z)=q(1-q), is the variance of the indicator random field. 
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Fig. 1.3 Indicator correlograms of a bivariate Gaussian random field Z(x) as a function of the distance for 
an exponential correlogram (left), a spherical correlogram (middle) and a Gaussian correlogram (right). 
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Fig. 1.4 Indicator correlograms of a bivariate Gaussian random field Z(x) as a function of the q-quantile 
associated to the threshold z at h=0.05 (left), h=0.5 (middle) and h=0.9 (right). 
 
 
Fig. 1.4 exhibits indicator correlogramas as a function of the quantiles q associated to the 
threshold z for different distances. It can be observed that correlation is at a maximum for the 
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0.5 quantile and decreases symmetrically as the threshold approaches to its extreme values of 
either 0 or 1 for all correlogram functions of Z(x) and for all distances. This means that the 
spatial structure at extreme values tend to a nugget effect (white noise) while mean values 
present the strongest correlation. Note that the spatial structure of the different classes cannot be 
modified introducing different correlograms of Z(x), since this structure is defined by the bi-
Gaussian probability law itself. 
 
Figure 1.5 presents values of the indicator correlogram ρI(h;z) at 0.5, 0.8 and 0.9999 q-
quantiles, now as a function of the correlogram of Z(x). Note that each value of ρ(h) can be 
associated with some distance. For example, at h=0 the correlation is the strongest one, so 
ρ(h)=1 whereas it becomes weaker as the distance increases. Recall that 0.2 and 0.0001 are the 
complementary q-quantiles of 0.8 and 0.9999, respectively, so the curves at 0.0001 and 0.9999 
coincide. The same behavior occurs at the quantiles 0.2 and 0.8. From all curves it is evident 
that correlation at both low and high quantiles (0.0001 and 0.9999) is significantly weaker than 
at the median for all distances. Such behavior is independent of the correlation function. 
Therefore, extreme values (both low and high) in Gaussian random fields occur randomly 
within a more continuous mean values structure. 
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Fig. 1.5 Indicator correlograms of a bivariate Gaussian random field Z(x) as a function of the correlogram 
of Z(x). For the exponential (left), spherical (middle) and Gaussian (right) correlograms. 
 
 
1.3.3 Entropy 
 
The term entropy was originally introduced in physics to study the implications of the amount 
of “disorder” of a system. Different definitions have been derived since then depending on the 
discipline. The formally called Shannon entropy concept derived by Shannon (1948) as part of 
the information theory has been adopted in the context of random fields (Christakos, 1990; 
Ababou et al., 1992; Journel and Deutsch, 1993). In information theory, entropy was introduced 
as a measure to quantify the “amount of uncertainty” contained in a prior discrete probability 
distribution, so both terms “entropy” and “uncertainty” are synonymous (Jaynes, 1957). The 
extension of the concept to the case of continuous distributions was also performed but the term 
differential entropy instead of Shannon entropy is sometimes used. 
 
For a continuous random field Z(x) with bivariate probability density function (PDF) f(z1,z2), 
entropy Hf, is defined as (Shannon, 1948): 
 

212121 ),(log),( dzdzzzfzzfH f ∫∫−=    (1.4) 
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For statistical inferences on the basis of partial information it is argued by information theory 
that one must use that prior probability distribution which has maximum entropy subjected to 
the information that is known. In order to obtain such prior PDF the solution of a maximization 
problem is considered. According to Journel and Deutsch (1993), maximizing Eq. 1.4 amounts 
to choose the prior PDF that is maximally uncommitted with respect to unknown information. 
In other words, it amounts to choose the most conservative prior PDF in view of what is known. 
 
This view has been used to develop a Bayesian/maximum entropy approach to address the 
spatial estimation problem (Christakos, 1990). A maximum entropy approach has been used in 
the past in order to derive some analytical results. For example, it has been proved that among 
all bivariate PDF’s sharing the same expectation and covariance function, the prior PDF that 
maximize entropy in Eq. 1.4 is the bivariate Gaussian distribution (Shannon, 1948; Johnson and 
Kotz, 1972; Kapur, 1989; Cover and Thomas, 1991). In the multivariate case the corresponding 
analogous result holds (Christakos, 1990). Practical consequences of the entropy property of a 
multi-Gaussian random field are closely related to the notion of connectivity. They are 
discussed in the sequel. 
 
1.3.4 Connectivity 
 
In hydrology the term connectivity is used to describe the physical presence of spatially 
connected zones with similar values of the hydraulic conductivity (Kundby and Carrera, 2005). 
Particularly relevant is the connectivity of either low or high values because they control the 
presence of flow paths and flow barriers. Related concepts such as “channeling” and 
“preferential paths” are used to describe the consequences of connectivity of high values on the 
flow response. Connectivity and continuity as described by covariance functions are not the 
same concept. Connectivity attempts to characterize interconnected low/high conductivities 
“channel-type” paths, whereas continuity describes averaged “discontinuous lens-type” paths. 
 
Different measures have been proposed in order to quantify spatial connectivity (point to point) 
in random fields, namely: 1) Topological descriptors for random geometric sets such as the 
Euler characteristic (Mecke and Wagner, 1991; Vögel, 2002); 2) Measures of percolation 
probability such as the percolation threshold (Hilfer, 1992, 1997); 3) The multi-fractal 
correlation dimension (Bruderer-Weng et al., 2004) and 4) Some intuitive indicators of flow and 
transport connectivity such as effective permeability and certain typical flow and transport 
parameters (Kundby and Carrera, 2005; Trinchero et al., 2008; Vassena et al., 2009). 
 
To illustrate graphically the concept of connectivity, the Euler number χ(p) is considered in this 
section. This is a topological measure of binary structures which are obtained after segmentation 
of a heterogeneous structure using various thresholds p. Its mathematical definition in two 
dimensions is (Vögel, 2002): 
 

( ) CNp −=χ                                                        (1.5) 
 
It is a scalar whose value is the total number of isolated objects N at threshold p in the binary 
image minus the total number of holes C in those objects. Hence, χ(p) has positive values at p, 
for disconnected structures (N>C) and becomes negative (N<C) for objects which are more 
intensely connected. 
 
Fig. 1.6(a) shows a typical realization of a multi-Gaussian random field with isotropic 
exponential autocovariance function and correlation scale ≈1/13 of the side of the image. 
 
An indicator function is defined such that: i(x;z)=1 if z(x)≤z (black phase) and 0 otherwise 
(white phase) where z is an arbitrary threshold defined over the empirical cumulative 
distribution function ˆ ( )nF z  (ECDF) of the field z(x), such that: q= ˆ ( )nF z  with: q∈[0,1] is the 
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q-quantile derived from the ECDF. For every threshold q a binary image can be obtained by 
separating the values (phases) below and above the threshold. Then the Euler number is 
calculated at each threshold. 
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Fig. 1.6 Connectivity of a representative realization of a multi-Gaussian random field with Gaussian auto-
covariance function as expressed by the Euler number. a) Realization. b)-f) Binary images at different 
thresholds. g) Euler functions of the realization. 
 
 
For example, for a quantile such as q=0.002, the lowest values represented in black on Fig 
1.6(b) appear as isolated clusters; that is they are not connected and the Euler number takes 
negative values (point (i) on Fig. 1.6(g)). As the threshold increases, the clusters get closer but 
they remain unconnected and the Euler number reaches its minimum value (point (j) on Fig. 
1.6(g)). Further increments of the threshold create connected isolated zones and the Euler 
number increases accordingly. When it reaches zero (point (k) on Fig. 1.6(g)) the high values 
(black phase) becomes well connected (Fig. 1.6(d)), but a continuous high conductive zone 
spanning two opposite sides of the field can be detected until q=0.5. As the threshold keeps 
increasing, high values become intensely connected thus the Euler number reaches its maximum 
(point (l) on Fig. 1.6(g)). When the threshold increases even more the highest values (white 
phase) appear now as isolated clusters, for example, at q=0.802 (Fig. 1.6(e)), and the Euler 
number begins to decrease. For q=1 the total number of objects is equal to one and the number 
of connections is zero and the Euler number tends to unity. An analogous study can be made by 
analyzing the connectivity behavior of the white phase first (discontinuous line in Fig. 1.6(g)). 
 
The previous connectivity analysis shows that connected paths of extreme values either low or 
high cannot occur in multi-Gaussian random fields. Values around the median of its univariate 
distribution present significant spatial connectivity. Similar behaviors were detected previously 
by other authors at analyzing percolation paths in multi-Gaussian realizations for different 
values of the relation side of the domain/correlation scale (Allard, 1994). Therefore, it could be 
anticipated that in isotropic heterogeneous multi-Gaussian media the average flow response will 
be so close to the flow response of a homogeneous medium with conductivity given by the 
average of the heterogeneous conductivities. 
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1.4 Necessity of non multi-Gaussian dependence 
 
Field evidence suggests that natural soil formations are seldom multi-Gaussian but rather 
present some connected paths of high or low conductivity values that significantly impact the 
flow response. This section presents such evidence separately, firstly based on actual case 
studies and then based on numerical modeling. The reader may refer to appendix A for some 
useful definitions. 
 
1.4.1 Evidence based on actual case studies 
 
Direct measurements and samples collected at different soil formations have shown that the 
dependence at low quantiles often differs from that at high quantiles of the distribution function. 
At larger scales, like the scale of hydro-geological facies, comparative analysis between the 
observed actual behavior and the numerical model suggest the necessity of a better description 
of the structure of spatial variability of the hydraulic conductivity field. 
 
For example, Journel and Alabert (1989) observed different patterns of spatial correlation at 
different quantiles of the distribution of air permeability measurements taken on a vertical slab 
of Berea sandstone. Such behavior corresponds to an asymmetric correlation structure between 
low and high values. A similar behavior has been observed with hydraulic conductivities. For 
example, Haslauer et al., (2009) report non-Gaussian dependence structures of core samples of 
hydraulic conductivities obtained from two different sites. In one of their analysis they used the 
same data sets used by Sudicky (1986) and Woodbury and Sudicky (1991) which contain 
hydraulic conductivity measurements of the Borden aquifer. 
 
Furthermore, Fogg (1986) carried out a numerical three-dimensional study of the hydraulic 
conductivity of a real aquifer consisting of thick complex sequences of sand, silt and clay. His 
conceptual model was based on interpretative geologic and hydrologic information. He 
concluded that the flow system in the aquifer was mainly controlled by the continuity and 
interconnectedness of the sand, rather than by their local conductivity values. Other studies on 
distinct natural soil formations based on different models for heterogeneity representation agree 
with Fogg’s (1986) conclusions. A general consensus is that the large-scale behavior of natural 
soil formations is controlled by the way high and low conductive zones are spatially 
interconnected over the flow domain (Bradbury and Muldoon, 1990; Poeter and Townsend, 
1994; LaBolle and Fogg, 2001; Frind et al., 2002; Teles et al., 2004; Zappa et al., 2006; López-
Acosta, 2010). 
 
1.4.2 Evidence based on numerical modeling 
 
The necessity of non multi-Gaussian dependence to describe spatial variability of the hydraulic 
conductivity has also been established through numerical modeling. Several studies have shown 
that the multi-Gaussian model is not necessarily a conservative assumption. The presence of 
spatially connected zones of extreme values (either low or high) is the most consequential 
feature in hydraulic conductivity fields. Most of the studies have analyzed the flow response on 
different non multi-Gaussian random fields and the responses are then compared to the multi-
Gaussian response. The aim is to compare the flow response only in terms of differences on the 
characteristics of the spatial dependence. 
 
For example, Sanchez-Vila et al., (1996) analyzed steady state, saturated flow in synthetic log-
transmissivity random fields with different non multi-Gaussian dependence but sharing normal 
marginal distributions. The study was carried out in 2D sections under confined boundary 
conditions by Monte Carlo simulations. They showed that structures favoring increased 
connectivity of high values consistently yield values of effective conductivities higher than the 
geometric mean. The differences became higher as the variance increased. For the same flow 
conditions and solution scheme, Vögel (2002) observed effective hydraulic conductivity values 
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by a factor 71.5 higher than the geometric mean in non multi-Gaussian fields exhibiting 
increased connectivity of high values. 
 
In other numerical experiment, Zinn and Harvey (2003) studied groundwater flow and transport 
in 2D fields. They compared the response among multi-Gaussian and non multi-Gaussian 
hydraulic conductivity random fields with nearly identical marginal and isotropic covariance 
functions through Monte Carlo simulations. Their non multi-Gaussian realizations exhibited two 
particular features: a) Inclusions of low values in a connected high-values background and b) 
Inclusions of high values in a connected low-values background. As far as to flow concern, the 
field with connected high-conductivity paths shown an effective conductivity greater than the 
geometric mean and large variations in specific discharges. In the connected low-conductivity 
fields, the effective conductivity was less than the geometric mean and the velocity variance 
was smaller. In both type of conductivity fields, differences in the flow response with respect to 
the multi-Gaussian case became higher as the variance of the field increased. 
 
Nowak et al., (2008) determined the probability density functions of dependent variables of 
flow such as hydraulic head and specific discharge. They solved steady state flow in 3D under 
confined boundary conditions. Heterogeneity in hydraulic conductivity was accounted for 
through random field models. The study was carried out on the basis of Zinn and Harvey’s 
(2003) comparative scheme by extensive Monte Carlo simulations but now the multi-Gaussian 
and non multi-Gaussian hydraulic conductivity random fields shared marginal distributions and 
anisotropic covariance functions. They conclude that, altogether; the connected highly 
permeable zones seem to adversely affect the fitting of the curves which matched well in the 
multi-Gaussian case. For the connected low conductivity case they found that the mean total 
discharge does not significantly differ from the solution in multi-Gaussian fields; moreover the 
fitted curves followed better the multi-Gaussian case. 
 
Additionally, Journel and Deutsch (1993) analyzed the frequency distributions of effective 
hydraulic conductivities and times to achieve a 90% water cut from a waterflood numerical 
experiment. The study was carried out over a 2D section under confined boundary conditions 
including an inflow and an outflow by simulations. The histogram, covariance function and 
seven indicator covariance functions were extracted from a synthetic reference field. Then, the 
information was used to characterize three random fields with different spatial dependences. 
The response obtained from the synthetic formation was compared against the mean response 
from the different random fields. All three random fields yielded response distributions whose 
centers deviate considerably from the reference values. More importantly, the multi-Gaussian 
model yielded an overoptimistic assessment of uncertainty of such prediction entailing thus a 
misleading sense of safety. 
 
 
Comment: 
 

• One can also debate the representativeness of the multi-Gaussian model to represent 
heterogeneity of hydraulic conductivity in stabilized soils. For example, the presence of 
wetter bands than the desired average embedded in dryer layers facilitates the creation 
of continuous zones of high hydraulic conductivity values. Such continuous, highly 
conductive zones not only may alter the seepage behavior of the structure but also, if 
combined with certain factors, its safety against an eventual internal erosion event. This 
phenomenon has been the main cause of failure in this kind of structures over years 
(ICOLD, 1995; 1997). The multi-Gaussian model therefore seems to be no suitable for 
seepage assessments even in this kind of apparently “homogeneous” structures. 
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1.6 Conclusions 
 
In the study of flow in random media, the multi-Gaussian random field is a model very 
commonly used to represent heterogeneity in hydraulic conductivity. Adopting such model is 
often justified in practice based only on a log-transform normal histogram. A multivariate 
Gaussian distribution is then “sightlessly” assumed often disregarding the characteristics of 
multi-Gaussian dependence. Such characteristics were discussed here by analyzing the bivariate 
case. 
 
Multi-Gaussian random fields exhibit symmetric dependence structure. Both high and low 
values present exactly the same spatial structure. The highest continuity is presented at mean 
values (symmetry axis). This property assumes that in nature or man made earth works both 
high and low conductive zones are created for equal. The Pearson correlation coefficient as 
expressed by correlogram functions is not preserved by non linear transforms (for example 
taking the logarithm) in the general case. 
 
The maximum entropy property of the multi-Gaussian random field does not imply maximum 
uncertainty of the flow response. Such conclusion is based on the fact that with a single 
autocovariance function there is no way to enhance the organization of neither high nor low 
values. Nature however presents certain spatial structure or organization for a certain class of 
values. As a result, a multi-Gaussian random field may not include real spatial features of the 
hydraulic conductivity fields like better continuity of high values from which a higher 
uncertainty in the flow response could arise. 
 
Connected paths of extreme values either low or high cannot occur in multi-Gaussian random 
fields. Values around the median of their univariate distributions present significant spatial 
connectivity. A general consensus is however that the large-scale flow behavior of natural soil 
formations is controlled by the way high and low conductive zones are spatially interconnected 
over the flow domain. In other words, the presence of flow paths and flow barriers controls the 
flow response. Therefore, multi-Gaussian random fields of the hydraulic conductivity of soils 
seem to provide a poor representation of reality. 
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CHAPTER 2 
 

SIMULATION OF NON MULTI-
GAUSSIAN RANDOM FIELDS BY 
COPULAS 
 
 
 
 
 
 
 
The previous chapter established that, to conveniently represent patterns of spatial variability in 
hydraulic conductivity fields, random fields with non multi-Gaussian dependence characteristics 
ought to be considered. These kinds of random fields will permit to incorporate a higher degree 
of realism in descriptions of the heterogeneity of porous media. This chapter proposes an 
algorithm for the simulation of such fields. 
 
Stochastic simulation of random fields is the process by which alternative, independent 
configurations or images of the spatial distribution of an attribute with physical meaning such as 
the hydraulic conductivity of soils are generated. Each configuration or image (often called 
realization) can then be used in numerical models of seepage to quantify uncertainty via the 
method of Monte Carlo. A random field that is only compatible with their descriptive 
parameters is called unconditional random field, but if the random field is also made specific to 
a set of location dependent measurements, this is called conditional random field. Conditional 
random fields thus allow simulating plausible spatial configurations that attempt to mimic 
reality (Deutsch and Journel, 1992). 
 
Different methods can be used to simulate non multi-Gaussian random fields: spectral 
approaches (e.g Yamazaki and Shinozuka, 1988; Popescu et al., 1998; Grigoriu, 1998), 
optimization methods (e.g. Srivastaba, 1995), anamorphosis approach (Journel and Huijbregts, 
1978; Sanchez-Vila et al., 1996), Bayesian-Maximum Entropy approach (Christakos, 1990) and 
multiple point geostatistical methods (Guardiano and Srivastaba, 1993; Strebelle, 2002; Journel 
and Zhang, 2006). The characteristics of the dependence structures achieved by all these 
approaches cannot be discussed here. Alternatively, a brief discussion of the main 
characteristics of some non multi-Gaussian random field models and of the methods used to 
simulate them is presented. Among the most common methods one can find: 1) Series 
expansions methods (e.g. Sakamoto and Ghanem, 2002a; Sakamoto and Ghanem, 2002b), 2) 
Multiple indicator decomposition methods (Journel, 1983; Journel and Alabert, 1989) and 3) 
Isofactorial representation methods (e.g. Chilès and Delfiner, 1999; Emery, 2002). 
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Series expansion methods for non multi-Gaussian random fields have recently become very 
popular due to its computational efficiency. In these methods the random field is represented in 
the form of a polynomial chaos expansion1 which can readily be incorporated into a spectral 
stochastic finite element scheme (Ghanem and Spanos, 1991; Pineda-Contreras and Auvinet, 
2013). The random function in the non-conditional case is constructed by making use of a 
polynomial chaos expansion to match any kind of marginal distributions while the Karhunen-
Loève expansion is used to approximate the autocovariance function of the field. In the 
conditional case the autocovariance function is obtained first by a Kriging simple estimate, the 
conditional eigenvalues and eigenfunctions are then obtained by solving a Fredholm integral 
numerically. 
 
At least, three main drawbacks can be found in this approach. 1) The Karhunen-Loève 
expansion only approximates the observed covariance. 2) More importantly, there is no control 
on the characteristics of the no multi-Gaussian dependence. In fact, a non multi-Gaussian 
random field cannot be entirely described through their first two moments. 3) Since the 
covariance function is used as the sole descriptor of spatial variability, specific information 
regarding the continuity of the values at tails of the marginal distributions cannot be 
incorporated. Therefore, such method seems to be not suitable for hydraulic conductivity fields 
in which well defined spatial features, namely flow paths and flow barriers control uncertainty 
in the flow response. 
 
The multiple indicator method meanwhile makes use of the property of the autocovariance 
function to be decomposed in their indicators2. Thus specific information regarding the 
continuity at a series of quantiles can be incorporated. In practice, information by a set of 
indicator covariances is only specified. The conditional random field is generated as follows. At 
any unobserved location over the field, an estimate of the value of the conditional CDF at a 
particular quantile is obtained by a regression technique applied to an indicator transform (zero 
or one) of the original random variables. Such technique is called indicator Kriging (Deutsch 
and Journel, 1992). Repeating the process with various specified quantiles, a distinct version of 
the conditional CDF is obtained at each target point. Hence such approach provides a complete 
solution to the estimation problem. After the indicator coding (zero or one) the approach 
becomes non-parametric, so it is able to deal with any kind of marginal distributions. 
 
The multiple indicator method is the more common non multi-Gaussian random field model 
used in geostatistics however it suffers several deficiencies. 1) The indicator covariances cannot 
be modeled independently of each other (Journel and Posa, 1990). Hence the apparently wide 
initial flexibility of the model is severely reduced since at certain thresholds some spatial 
structures are only roughly approximated. 2) The monotonicity of the conditional CDF at each 
point is not guaranteed; instead it is corrected artificially to meet order relations (Deutsch and 
Journel, 1992). Consequently, the local conditional CDF at each target point is only 
approximated. 
 
The indicator formalism is often implemented in a sequential simulation scheme where it 
receives the name of sequential indicator simulation (Deutsch y Journel, 1992). Under such 
scheme the indicator formalism suffers additional insufficiencies: 1) There is no guarantee in 
the general case for the reproduction of the autocovariance function of the field, only of their 
indicator covariances, if and only if, order-relation violations do not occur. 2) The multivariate 
distributions of the realizations have to be considered as undefined since they depend on factors 
such as total number of simulated nodes and number and location of the samples (Emery, 2004, 
2005), that is, the realizations do not refer to a fully specified random function model therefore 
their multiple point statistics depend on implementation factors. Hence, incomplete and 

                                                 
1 A polynomial in which the variables are uncorrelated Gaussian random variables. 
2 Covariances and cross-covariances. 
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approximate representations of bivariate spatial variability as well as undefined multiple point 
statistics would deliver rough configurations of spatial patterns for seepage modeling purposes. 
 
Instead of only approximating the bivariate dependence by multiple indicators, the isofactorial 
representation models the entire bivariate probability law via its isofactorial bivariate 
distribution3. Several families of isofactorial distributions exist, each one of them including a 
series of models able to represent diverse characteristics of the dependence. The Laguerrian 
model for example allows representing asymmetric dependence structures. Such model is an 
isofactorial representation of the bivariate Gamma distribution (Chilès and Delfiner, 1999) 
whose factors are given by the normalized Laguerre polynomials of order α (Chilès and 
Delfiner, 1999), where scalar α is the so-called “shape parameter” of the standard univariate 
Gamma distribution. The factor covariances are randomized in this model and written as 
function of the correlogram and a positive scalar β. Although a single autocovariance function is 
used to specify the covariances of all the factors of the bivariate law, the asymmetry of the 
dependence is controlled by the scalar parameters α and β. 
 
The conditional random function of an isofactorial representation is constructed as follows. An 
anamorphosis is needed first in order to transform the observed variable into a second variable 
which follows the univariate distribution of the isofactorial model (e.g. standard Gamma 
distribution for the Laguerrian model). Then, the conditional probability at a certain threshold is 
obtained at any point from the anamorphosis function modeled via an expansion in a series of 
factors (Laguerre polynomials), where each factor can be computed by simple Kriging given the 
values of the same factor at the observed locations. The interpolation technique for the 
conditional CDF to be achieved is called disjunctive Kriging (Kriging of a disjunctive coding of 
the anamorphosis function). By disjunctive Kriging at different thresholds, the local conditional 
CDF at the target point can be obtained. 
 
Isofactorial models appear to be an immediate alternative to multiple indicator models since in 
the former the full bivariate distribution can be taken into account in a consistent way. 
Furthermore, isofactorial models offer great flexibility to incorporate diverse structural patterns. 
Isofactorial models share however some deficiencies with multiple indicator models: 1) 
Disjunctive Kriging does not always give mathematically consistent estimates (Emery, 2002, 
2006). For example, the monotonicity of the conditional CDF is not ensured, it still has to be 
corrected artificially. 2) Only the bivariate distributions of the random field are modeled, the 
multivariate distributions remain undefined. Therefore multiple point statistics of the 
realizations may also be implementation dependent at simulating the random field in a 
sequential scheme (sequential isofactorial simulation) (Emery, 2002, 2004). 
 
To overcome the aforementioned second inconvenient, Emery (2005, 2008) formulated a 
“multivariate chi-square distribution”, from random fields with bivariate Gamma distribution 
with half integer shape parameter α, obtained as the sum of squared independent Gaussian 
random fields. The multivariate dependence becomes now determined furthermore an 
isofactorial representation of the bivariate distribution is available. The isofactorial 
representation let the model to be parameterized. The spatial dependence in such model is 
controlled by the correlogram and the scalar α. The conditional random field is suggested to be 
constructed by iterative procedures such as simulated annealing (Deutsch and Cockerham, 1994; 
Deutsch and Journel, 1994) and Gibbs sampler techniques (Geman and Geman, 1984; Casella 
and George, 1992), avoiding hence the use of disjunctive Kriging due to their often 
inconsistencies. 
 
It can be shown that the multivariate chi-square distribution of Emery (2005, 2008) is in fact a 
particular case of a more flexible multivariate distribution achieved by copulas. In addition, 
                                                 
3 A factorized joint probability density function expressed in terms of a set of orthonormal functions for 
L2(R,f) (Hilbert space of functions that are square-integrable with respect to the measure given by f(·)) 
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models based on copulas are exempt of the aforementioned deficiencies of the Kriging type 
techniques. Some copula models are presented in this chapter. The exposition of the subject is 
divided in four main sections. Section one presents a formal introduction to copulas. Section 
two introduces the concept of spatial copulas as well as the spatial copula modeling process. 
Section three discusses the subject of non conditional simulation while section four deals with 
conditional simulation. To illustrate the different subjects discussed, examples over all different 
sections are presented. 
 
2.1 Definitions 
 
Formally, a copula is a function (·)C  on the n -dimensional unit cube i.e., :[0,1] [0,1]nC →  
that links (couple) a multivariate distribution function 

1, , 1( , , )
nX X nF x x… …  to their marginal 

distribution functions 
1 1( ), , ( )

nX X nF x F x… . Its mathematical expression is (Sklar, 1959): 
 

( ) ( ) ( )( )1 1, , 1 1, , , ,
n nX X n X X nF x x C F x F x=… … …                               (2.1) 

 
If 

1
, ,

nX XF F…  are all continuous, then (·)C  is unique. Moreover, if 
1

1 1, ,
nX XF F− −…  are the 

inverse distribution functions of 
1
, ,

nX XF F… , then: 
 

( ) ( )( ) ( ) ( )( )1 1 1

1 1
1 1 , , 1, , , ,

n n nX n X n X X X X nC u F x u F x F F u F u− −= = = …… …                 (2.2) 

 
Since: 

11 1( ), , ( )
nX n X nU F x U F x= =…  are all uniform RV on [0,1]  (Rosenblatt, 1952), a 

copula is itself a multivariate distribution function with uniform marginals. 
 
Several properties can be derived from copulas (Nelsen, 2006). For example, if (·)C  is 
absolutely continuous, from the definition: ( ) / ( ( ))X Xf x d dx F x= ; it is shows that the copula 
density (·)c  is: 
 

( )
( ) ( )( )

( )( )
1 1

1 1
, 1

1 1
1

, ,
, , n n

i i

X X X X n
n n

X X ii

f F u F u
c u u

f F u

− −

−
=

=
∏

… …
…                                        (2.3) 

 
where 

1 , , (·)
nX Xf …  denotes the multivariate density function corresponding to , , (·)

i nX XF …  and 

(·)
iXf  the marginal density function corresponding to (·)

iXF  for 1, ,i n= … . 
 
Moreover, from the definition: | ,( | ) ( , ) / ( )X Y X Y Yf x y f x y f y= ; it is shown that the density of 
the conditional copula is: 
 

( ) ( )
( ) ( )

0 1, , , 0 1
0 1 1

11

, , , 1| ( ), , ( )
, ,

n

i

X X X n
X n X n n

nX ii

f x x x
c u u F x u F x

c u uf x
=

= = =
∏
… …

…
…

              (2.4) 

 
Copulas are of interest as random functions for modeling spatial variability because they 
express dependence without the influence of their marginal distributions and because of the fact 
that copulas are invariant to strictly increasing monotonic transforms. For instance, if 
Y(x)=ln(Ks(x)), then both Ks(x) and Y(x) share the same copula. As a result, correlation and 
asymmetry measures expressed only in terms of their copulas are also invariant. 
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The inspection of Eq. 2.2 shows that copulas hold at least the following properties: 
 

• Copulas contain valuable information about the type of dependence that exists between 
random variables. 

• Copulas express dependence between random variables in its purest or essential form, 
without the influence of the kind of marginal distributions. 

• Copulas can be constructed from any kind of continuous marginal distributions. 
• Copulas depend only on the ranks of the variables which do not change through strictly 

increasing monotonic transforms, such as taking the logarithm. 
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Fig. 2.1 Construction of a bivariate copula using a pair of correlated Gaussian random vectors. a) 
Scattergram of the correlated Gaussian random vectors. b) and c) Distribution functions of the random 
vectors. d) and e) Probability values of the distributions functions in b) and c), respectively. f) The 
bivariate copula of the random vectors (X1,X2). g) and h) The distribution functions of Student’s t and 
Gamma, that are obtained with the probability values in d) and e) respectively. 
 
 
To illustrate these properties, consider the following example. Fig. 2.1(a) shows the scattergram 
of a pair of correlated Gaussian random vectors (X1,X2) with Pearson correlation coefficient 
ρ=0.65. The distribution functions of each vector is shown to the left (Fig. 2.1b) and below 
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(Fig. 2.1(c)) of Fig. 2.1(a), respectively. After extracting probability values from each 
distribution function, a uniform distribution function is obtained for each random vector as 
shown in Figs. 2.1(d),(e). Every pair of such uniform distribution (u1,u2)∈[0,1] from the vectors 
(U1,U2), is plotted onto the unit square [0,1]2 as illustrated by Fig. 2.1(f). That plot shows the set 
of points of a bivariate copula. The uniformly distributed distributions of each random vector 
can then be used to generate a pair of random vectors (Z1,Z2) each one holding any kind of 
marginal distribution. For example, the vectors (U1,U2) are used in Figs. 2.1(f),(g) to generate 
the vectors (Z1,Z2) from the Student’s t  distribution and from the Gamma distribution, 
respectively. 
 
The bivariate copula expresses the dependence between random variables independently of the 
kind of marginal distributions. In fact, a pair of Gaussian random vectors was used to construct 
the bivariate copula but any other kind of continuous distribution for the random vectors (X1,X2) 
would have been used similarly. Moreover, under any strictly increasing monotonic transform 
of the variables in the vectors (X1,X2) the copula would have remained invariant, since the 
transform (X1,X2)→(U1,U2) is in fact monotonous. 
 
Comment: 
 

• The correlation coefficient of the random vectors with Student’s t  and Gamma 
distribution functions in the previous example is no longer ρ=0.65. In fact, Pearson 
coefficient is dependent of the kind of marginal distributions of the vectors (Z1,Z2) 
(Hoeffding, 1940; Lehmann, 1966). Therefore, invariant measures of dependence are 
more convenient at modeling spatial dependence by copulas, as it will be explained in 
section 2.3.1. 

 
 
2.2 Spatial modeling 
 
In this section, the concept of bivariate spatial copulas is presented. A method for constructing 
bivariate spatial copulas from a sample is also described. Once spatial copulas from a sample 
are determined, a multivariate copula has to be adopted for spatial variability modeling 
purposes. This subject is discussed in this section. For illustration purposes, the manner in 
which the multivariate Gaussian copula is constructed is explained first. Then the multivariate 
copula adopted in this research for heterogeneity representation of hydraulic conductivity fields 
is described in detail. 
 
2.2.1 Bivariate spatial copulas 
 
Consider a strictly stationary random field {Z(x)x∈S}, where nS ℜ∈ , is the domain of 
interest and n=1,2 o 3 the dimensional space. The available experiments on S  are interpreted as 
a realization of the random field assuming ergodicity. Let Fz denote the marginal distribution 
functions of the random field. The stationarity of the field ensures that Fz is the same for each 
location x∈S; so Fz=F1=F2=…=Fn. Similar to a description with autocovariance functions, 
bivariate spatial copulas can be used to describe spatial variability. Namely, the bivariate 
copula Cs for any two locations separated by a vector h can be written via Sklar`s theorem as 
(Bárdossy, 2006): 
 

CS(h;u1,u2)=P[Z(x) ≤ z1, Z(x + h) ≤ z2] 
                            =C(P[Z(x) ≤ z1], P[Z(x + h) ≤ z2]) 

           =C(FZ(Z(x)), FZ(Z(x + h)))   (2.5) 
 
Hence, the copula becomes a function of the separating vector h or of the distance h. Note 
that u1 and u2 are the quantiles of Z(x) and Z(x+h), respectively. For a given h or h, the spatial 
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copula CS, describe thus the spatial dependence between the quantiles u1,u2 of pairs of random 
variables. 
 
2.2.2 Bivariate empirical copula densities 
 
To determine bivariate empirical copulas from a sample {z(x1),z(x2),…,z(xn)}; the empirical 
distribution function ( )n̂F z , is obtained first. Then, for any given vector h, a set of pair values 
S(h), of the empirical distribution function of the investigating parameter is obtained by 
(Bárdossy, 2006): 
 

S(h)={ n̂F (z(xi)), n̂F (z(xj)) ∀ i,j ∈ S  xi-xj   or   xj-xi≈ h}  (2.6) 
 
S(h) is thus a set of points in the unit square [0,1]2. Note that S(h) is by definition symmetrical 
regarding the major axis u1=u2 of the unit square; namely: if (u1,u2)∈S(h), then (u2,u1)∈S(h). 
 
The bivariate empirical copula density ĉ of S(h) can be estimated by (e.g. Nelsen, 2006; 
Bárdossy, 2006): 
 

2i - 1    2j - 1            m2 
     ĉ            ,     =         ηij                  (2.7) 

 2m  2m         S(h) 
 
where ηij, denotes the empirical frequency of the values corresponding to a regular mesh (mxm) 
with coordinates (i,j), where i,j=1,…,m. For a given pair (i,j), the empirical frequency ηij is 
equal to the cardinality (number of elements) of the following set: 
 

  i – j       i  j – 1       j 
ηij=     (u1,u2)∈ S(h);  < u1 ≤  and  < u2 ≤                  (2.8) 

   m      m   m      m 
 
with · denoting the cardinality of a set. In this way a bivariate empirical copula density 
ĉ(h,u1,u2) for a given vector h can be estimated. 
 
To illustrate these concepts, consider the following example. Fig. 2.2 shows three realizations of 
three different random fields (RFs) which share univariate Gaussian distributions. The 
histogram and experimental (exhaustive) correlation functions (correlograms) of each 
realization are shown on top of Fig. 2.2. Images (a) and (b) are realizations of a multi-Gaussian 
RF with isotropic exponential and Gaussian autocovariance functions, respectively. The range 
in both functions is a=60 units. Image (c) is one realization of a transform-based RF introduce 
by Vögel, 2002 (see also Zinn and Harvey, 2003; Knudby and Carrera, 2005; Nowak et al., 
2008). Such transform-based RF imposes to the realizations non multi-Gaussian dependence 
with higher continuity for high/low values. The autocovariance function of the random field is 
also in this case an isotropic, exponential one with range a=60 units. 
 
The dependence structure of each realization is examined through the assessment of their 
empirical bivariate copula density plots at different distances. Only horizontal vectors are 
considered. The plots are shown by columns below each realization in Fig. 2.2. 
 
Empirical copulas were determined at distances h=1, 5 and 20 units. Observe that copula’s 
density shape of both multi-Gaussian realizations is elliptical and that tends to be lost as 
distance increases. These observations illustrate two interesting properties of copulas. The 
elliptical shape is typical of the Gaussian copula density. It is symmetric with respect to the axis 
u=1-v indicating symmetric dependence. The second observation illustrates that as distance 
approaches the correlation range the copula shape become less specific indicating nearly 
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independence. Comparing the copula densities of both multi-Gaussian realizations at the same 
distance, it is observed that the Gaussian autocovariance function imposes stronger association 
than the exponential one which means higher continuity of the autocovariance function. This is 
a well-known result in geostatistics (Deutsch and Journel, 1992). 
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Fig. 2.2 Representative realizations of different random fields and their corresponding empirical copula 
density plots. a) Realization of a Gaussian RF with exponential auto-covariance function. b) Realization 
of a Gaussian RF with Gaussian auto-covariance function. c) Realization of a non-Gaussian RF with 
exponential auto-covariance function. The corresponding histograms and experimental correlograms of 
each realization are shown on top. 
 
The empirical copula densities of the non multi-Gaussian realization are no longer symmetric 
(Fig. 2.2(c)). Instead they show a stronger association for low quantiles than for high quantiles. 
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Such asymmetry imposes higher continuity for the high values as can be observed by inspection 
in that realization. It is important to say that although the visual inspection of realization (c) 
suggests certain connectivity for high values, it cannot be said anything about connectivity at 
examining the copula densities. Intuitively, connectivity may be associated to the wide spread of 
density values at high quantiles. However, in its actual state of the art, copulas do not provide 
any information regarding connectivity. Alternatively, connectivity functions can be employed 
for such purpose (section 2.4.2). 
 
From the previous example the following advantages of bivariate copula density over indicator 
variograms to examine dependence among random variables can be verified (Bárdossy, 2006; 
Bárdossy and Li, 2008): 
 

1) Copula densities allow a joint handling of the dependence structure over the entire 
distribution of quantiles of the variables at once, for a given distance. 

2) Differences in types of association between variables are readily identified by copula 
density shape. 

3) Indicator variogram/covariance functions are no longer needed to examine dependence 
at different quantiles. Copula densities achieve this task to a less inference cost. 

 
 
Comment: 
 

• For spatial modeling purposes empirical copulas have to be replaced by theoretical 
ones, in the same way that empirical variograms have to be fitted to theoretical ones to 
ensure a variance-covariance matrix of the field to be positive definite (Chilès and 
Delfiner, 1999). Moreover, to describe the multivariate dependence structure in the 
random field a theoretical multivariate copula is needed. The construction of such 
copula is the subject of the next section. 

 
 
2.2.3 The multivariate Gaussian copula 
 
The multivariate Gaussian copula can easily be formulated. In fact, if H(·)=ΦΓ(·) in Eq. 2.1 is 
the multivariate Gaussian distribution with zero mean and correlation matrix Γ and if 
F1=…=Fn=Φ is the standard Gaussian distribution, then the multivariate Gaussian copula     
CG

Γ (·) is given by: 
 

CG
Γ (u1,…,un)=ΦΓ(Φ-1(u1),…,Φ-1(un))                                 (2.9) 

 
Note that in this case the multivariate Gaussian copula is fully parameterized by the correlation 
matrix Γ. It is worth to mention that for the bivariate case such matrix only contains the 
correlation coefficient among two random variables. 
 
For the Gaussian copula density an analytical expression is available (e.g. Bárdossy, 2006). 
Gaussian copula density plots can be easily constructed from this. As an example, Fig. 2.3 
displays copula density plots of the bivariate Gaussian copula for different correlation 
coefficients (ρ=0.95, 0.85 y 0.45). Observe its typical shape and symmetry property. 
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Fig. 2.3 Bivariate Gaussian copula density plots for different correlation coefficients. 
 
 
2.2.4 The multivariate V-transformed copula 
 
The multivariate V-transformed copula is obtained through a non monotonic transformation of a 
multi-Gaussian random field G(x) with zero mean, unit variance and correlation matrix Γ such 
that (Bárdossy and Li, 2008; Li and Bardossy, 2009): 
 

 k (G(x) - m)α  if  G(x) ≥ m 
Y(x)=    
 m - G(x)  if  G(x) < m 

(2.10) 
 
where k is a positive constant and m and α are arbitrary real numbers. Note that if m=0, k=1 and 
α=1, then Y(x)=G(x). In that case, the transform in eq. 2.10 corresponds to the transform-
based random function used to generate the realization (c) in Fig. 2.3. When k=1 and α=1 
transform in Eq. 2.10 leads to the multivariate non centered chi-square distribution. 
Furthermore, the effect of non linear transform vanishes when m → ±∞  and the resulting 
copula converges to the Gaussian copula. 
 
The effect of transformation in ec. 2.10 leads to a random field Y(x) such that their marginal 
distribution functions are identical and they are given by: 
 

FY= Φ[ (y / k)1/α + m ] - Φ[ m – y ]                                         (2.11) 
 
The multivariate V-transformed copula with parameters λ={k,m,α} can be written as: 
 

CV
λ,Γ (u1,…,un)= Hλ,Γ (F-1

Y(u1),…,F-1
Y(un))                                 (2.12) 

 
where Hλ,Γ (·) is the multivariate distribution function of Y(x) (Appendix C). 
 
For n=2, the bivariate V-transformed copula is: 
 

CV
λ,Γ (u1,u2)= ΦΓ[ (yi / k)1/α + m, (yj / k)1/α + m ] - ΦΓ[ m – yi, (yj / k)1/α + m ] 

 
- ΦΓ[ (yi / k)1/α + m, m - yj ] + ΦΓ[ m – yi, m - yj ]                      (2.13) 

 
where ΦΓ(·) stands for the bivariate normal distribution with standard normal marginals and 
correlation matrix Γ. 
 
Different asymmetric dependence structures can be represented with the V-transformed copula 
by simply modifying the set of copula parameters λ and the correlation matrix Γ. Fig. 2.4 shows 
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copula density plots for different sets of parameters computed with eq. 2.4. Observe the wide 
flexibility of the V-transformed copula to represents asymmetric dependences. 
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Fig. 2.4 Bivariate theoretical copula density plots for different parameters of the V-transform. 
 
 
The bivariate dependence of random fields using copulas is controlled by their bivariate copulas 
and the multivariate dependence of such fields will be explicitly accounted for by the 
multivariate copulas. 
 
Comment: 
 

• Dependence structures in Fig. 2.4 shown stronger association for the upper quantiles. 
The opposite dependence structure is obtained by taking the complement to one of 
every value of u, that is by computing the copula density c(1-u1,1-u2). 

• In spite of its wide flexibility, the multivariate V-transformed copula might not fit well a 
given set of observations. In that case other copula models should be considered. Li and 
Bárdossy (2009) proposed a so-called maximum copula which was constructed similarly 
as the V-transformed copula but in this case the transformation involves the maximum 
of two Gaussian random fields. 

 
 
2.3 Non-conditional simulation 
 
An unconditional realization using the V-transformed copula can easily be generated by simply 
applying the V-transform in Eq. 2.7 to a multi-Gaussian realization. However, by the effect of 
such transformation, the correlation matrix of G(x) is not preserved in Y(x). Therefore, an 
appropriate correlation model for G(x) has to be found in order to get a prescribed rank 
correlation for Y(x) after the transformation. The set of copula parameters k, m and α will 
control the asymmetry of the dependence by imposing strong/weak association at tails. The 
asymmetry of the spatial dependences can be quantified using asymmetry functions. The rank 
values of the marginal distribution of Y(x) can be used to impose a marginal distribution of any 
kind to the field. Details on these subjects are explained next. 
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2.3.1 The correlation function 
 
Alternative measures of dependence to the Pearson correlation coefficient are the Spearman 
rank correlation (Hoeffding, 1940; Quesada-Molina, 1992): 
 

ρs= 12 ∫ C(u,v) dudv – 3                                              (2.14) 
                                                          [0,1]2 
 
and the Kendall’s tau rank correlation (Hoeffding, 1948): 
 

τ = 4 ∫ C(u,v) dC(u,v) – 1                                             (2.15) 
                                                                                 [0,1]2 
 
both of which rely on the ranks (u,v) of the random variables of the bivariate copula C(u,v) and 
have the invariance property to monotonic transforms such as Y(x)=ln(Ks(x)). Thus, both Ks(x) 
and Y(x) will share identical rank correlation functions. The correlograms of Ks(x) and Y(x), on 
the other hand, are in fact not the same. 
 
From Eqs. 2.14-2.15 it is clear that both Spearman and Kendall’s tau correlation coefficients 
can be obtained only in terms of the bivariate copula C(u,v). Each coefficient ρ of the bivariate 
copula C(u,v) can be related to some separation distance in the correlogram of G(x). Hence, by 
computing ρs for different ρ, the curve ρs-ρ can be used to determine a prescribe rank 
correlation function for Y(x), given an appropriate correlation model for G(x). Namely, a 
prescribed Spearman rank correlation function for Y(x) can be achieved following the 
instructions: 
 
1) Fit a curve to the relationship ρs-ρ. 
2) Substitute the ρs values in the fitted curve in order to obtain Pearson values at the distances 
in ρs. This is the p-h curve. 
3) Fit a curve to the previous p-h one using a linear combination of correlation functions derived 
from valid covariance functions. 
 
It is worth to mention that the prescribed rank correlation function for Y(x) is achieved in the 
ensemble sense and that such curve is usually only the best fitting in a least square sense. 
 
2.3.2 The asymmetry of the dependence 
 
The dependence at upper and lower quantiles of the marginal distributions of a non multi-
Gaussian random field can be different, that is, can be asymmetric. Some measures of 
asymmetry can be found in the scientific literature (Haslauer et al., 2008; Li and Bárdossy, 
2009; Manner, 2010). They are helpful at quantifying asymmetry over distance, similarly to 
rank correlation functions, by collecting pairs of rank values (u,v) from the marginal distribution 
separated at the same distance. The concept of exceedance correlation is used in this section for 
this purpose. 
 
Exceedance correlation is defined as a conditional correlation at a given exceedance level c. 
Manner (2010) suggested an definition of this concept based on the Kendall's tau correlation 
coefficient, and derived the following analytical expressions to evaluate the asymmetry at the 
exceedance level given by the median c=0.5: 
 

1 
τ-=          + 1 (2.16) 

C(0.5,0.5) E[4C(u,v) – 2C(u,0.5) – 2C(0.5,v)|u < 0.5, v < 0.5] 
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1 
τ+=          + 1 (2.17) 

C(0.5,0.5) E[4C(u,v) – 2C(u,0.5) – 2C(0.5,v) - 1|u > 0.5, v > 0.5] 
 
 
where τ- and τ+ stand for the correlation of the values below and above the median, respectively. 
the asymmetry of the dependence is given thus by |τ--τ+|. 
 
For example, Fig. 2.5 shows the asymmetry of a theoretical V-transform copula C(u,v) with 
parameters m=0, k=2.5 and α=0.25 over a sequence of τ values. Such copula was implemented 
in the program provided by Manner (2010) to evaluate Eqs. 2.16 and 2.17. It can be seen that 
the spatial dependence of the transformed field Y(x) will be indeed asymmetric, with a stronger 
correlation for values above the median than for values below the median. Note that the 
opposite asymmetry can be obtained simply by taking Y(x)=-Y(x), and that marginal distribution 
and rank correlation function will be preserved because such transformation is monotonous. 
 
2.3.3 The marginal distribution 
 
The rank values of the marginal distribution of Y(x) can be used to impose a marginal 
distribution of any kind by a memoryless transformation like: Y(x)=Φ-1(u=FY(y(x))) where Φ(·) 
is the univariate Gaussian distribution. Therefore, a random field Y(x) may have marginal 
Gaussian distributions, the prescribed rank correlation function of the conductivity field Ks(x) 
and non multi-Gaussian dependence as controlled by the parameters m, v and α in the V-
transform. Moreover, by taking: Y’(x)=-Y(x) both random fields can share first and second 
moments but exhibit the opposite asymmetry. 
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Fig. 2.5 Conditional Kendall’s tau correlation functions for values below the median t-(0.5) and above the 
median t+(0.5) for the V-transformed copula with parameters m=0.0, k=2.5 and α=0.25. 
 
 
2.3.4 Illustrative examples 
 
The distribution of log-hydraulic conductivities Y(x)=ln(Ks(x)) in a triangular domain is 
interpreted as a realization of a non multi-Gaussian random field with marginal Gaussian 
distribution functions. The mean of such field is zero and the variance is unity. Thus, the 
distribution of the saturated hydraulic conductivities has a geometric mean KG=1.0 m/day and a 
coefficient of variation CV=131%. The hydraulic conductivity field is also assumed to be 
strictly stationary with rank correlation function given by: 
 

ρs(h)= 6 / π sin-1(ρ(h) / 2)                                              (2.18) 
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where ρ(h) is a spherical correlogram with correlation range a =20 m (Deutsch and Journel, 
1992). h is the separation vector. The above equation simply expresses the Spearman rank 
correlation function in terms of the Pearson correlation function (Krusal, 1954) because, strictly 
speaking, there are no correlation functions in terms of the Spearman rank correlation 
coefficient. Note that the differences in both sides of the equation are too small for practical 
purposes. 
 
The asymmetry of the dependence structure of the field is assumed to be described by the V-
transform copula with parameters m=0.0, k=2.5 and α=0.25. The prescribed rank correlation 
function in Eq. 2.18 for the field Y(x) is achieved with a nested correlation model corresponding 
to the Gaussian and Spherical covariances. The variance contribution functions are w1=0.90, 
w2=0.10 and the isotropic correlation ranges are a1=21.5m and a2=20.0m, respectively. Ten 
unconditional multi-Gaussian realizations are generated over a square domain with side of 
102.5m evenly discretized in 41x41 elements using the SGSIM code (Deutsch and Journel, 
1992). The realizations are then transformed by means of the V-transform copula. 
 
Fig. 2.6 shows the rank correlation functions in the horizontal direction of all ten realizations. 
The theoretical correlation function is also shown for comparison purposes. One representative 
realization is then selected and only the values over the upper triangular section of the image are 
subsequently considered. A second realization is generated from the former as: Y(x)=-Y(x). 
Thus, both realizations share first and second statistical descriptors but exhibit an opposite non 
multi-Gaussian asymmetry. 
 
The realizations of the random field over the aforementioned triangular domain are shown in 
Fig. 2.7 and their statistical descriptors in Fig. 2.8. Fig. 2.7(a) shows isolated low values within 
a more continuous spatial structure of high values. Fig. 2.7(b) exhibits the opposite asymmetry. 
Fig. 2.8(b) indicates a slight anisotropy with higher continuity in the horizontal than in the 
vertical direction. However, the dependence structure of the realizations cannot be explained by 
such anisotropy. It should be emphasized that it is the asymmetry in the dependence (Fig. 
2.8(c)) which generate such structures, since the more continuous zones in the realizations are 
clearly associated to the high (Fig. 2.7(a)) or low (Fig. 2.7(b)) values. 
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Fig. 2.6 Spearman rank correlation functions of 10 unconditional non multi-Gaussian realizations (dashed 
lines) and the theoretical rank correlation function of a spherical model (Deutsch and Journel, 1998) 
(solid line). 
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Fig. 2.7 Representative realizations of the log-conductivity random field Y(x)=ln(Ks(x)). a) High values 
better structured. b) Low values better structured. 
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Fig. 2.8 Statistical descriptors of the realizations in Fig 2.7. a) Histogram. b) Experimental rank 
correlation functions in the horizontal and vertical directions. c) Experimental conditional Kendall’s tau 
correlation functions in the horizontal direction (Manner, 2010). 
 
 
2.4 Conditional simulation 
 
An algorithm for simulating conditional random fields by copulas is proposed in this section. To 
validate the simulator, the spatial empirical copulas and connectivity functions of a set of 
simulated realizations is analyzed. 
 
2.4.1 Statement of the problem 
 
Consider the conditioning of the random field Z(x) at N locations i by the set α with n 
observations. The corresponding N-variate conditional cumulative distribution function (CCDF) 
of Z(x) can be written: 
 

FN(Z(x1),…,Z(xN) (n))= P(Z(xi) ≤ z(xi), i=1,…N Z(xα)=z(xα), α=1,…,n)    (2.19) 
 
The above equation is the general expression for a CCDF. It shows that a value at each 
simulated location i for i=1,…,N can be generated by drawing a sample from the CCDF in 
successive steps, involving a univariate CCDF at each location i with increasing level of 
conditioning; that is: 
 

F1(x,z1)=P(Z(x1)≤ z(x1) Z(xα)=z(xα), α=1,…,n) 
 

F2(x,z2)=P(Z(x2)≤ z(x2) Z(xα)=z(xα), α=1,…,n+1) 
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F3(x,z3)=P(Z(x3)≤ z(x3) Z(xα)=z(xα), α=1,…,n+2) 

 
 

FN(x,zN)=P(Z(xN)≤ z(xN) Z(xα)=z(xα), α=1,…,n+N-1)  (2.20) 
 
Equations 2.20 describe in fact a very general simulation process known as sequential 
simulation approach (Devroye, 1983). Such approach presents the following principal 
characteristics: 
 

1) It is independent of the kind of random function used to establish the sequence in Eq. 
2.20. 

2) It requires simply the determination of the i for i=1,…,N univariate CCDF’s at each 
simulated location. 

3) The univariate CCDF’s can be of any type. 
 
These properties let to readily formulate a copula based approach for simulation purposes 
without additional assumptions regarding the shape of the univariate CCDF’s or their 
monotonicity (as in multiple indicator and isofactorial representation formalisms). Moreover, in 
a copula model both bivariate and multivariate distributions are defined. This is not the case of 
the isofactorial representation which only relies on the bivariate distribution. All these 
arguments seem to provide sufficient bases for the generation of random fields by copulas 
adopting a sequential simulation scheme. 
 
 
Comment: 
 

• In the context of random field simulation methods, some authors seek for an exact 
reproduction of the statistical descriptors of the realizations (histogram and 
experimental autocovariance function). They argue that if certain statistical descriptors 
are specified, then they have to be reproduced exactly. It should be recognized however 
that because statistical descriptors are inferred in practice from a limited number of 
samples, they cannot be considered exact estimators of the population statistics. The 
departures from the model statistics, called ergodic fluctuations (Deutsch and Journel, 
1992) become smaller as the relative dimension of the random field with respect to the 
range increases. Such ergodic fluctuations provide in fact more conservative 
assessments of uncertainty in schemes of the Monte Carlo type. 

 
 
2.4.2 Simulation process 
 
It terms of copulas, the sequential simulation approach can be formulated as follows (Vázquez 
and Auvinet, 2014): 
 

F1(x,z1)=Cxn(u1=F(Z(x1)≤ z(x1))uα=F(z(xα)),α=1,…,n) 
 

F2(x,z2)=Cxn(u2=F(Z(x2)≤ z(x2))uα=F(z(xα)),α=1,…,n+1) 
 

F3(x,z3)=Cxn(u3=F(Z(x3)≤ z(x3))uα=F(z(xα)),α=1,…,n+2) 
 

FN(x,zN)=Cxn(uN=F(Z(xN)≤ z(xN))uα=F(z(xα)),α=1,…,n+N-1)        (2.21) 
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where: F(·) is the marginal distribution and Cxn(·) is the conditional copula (Appendix C). The 
simulation process is restricted to local neighborhoods xi, for i=1,…,n closest to the node to be 
simulated. The argument is that further away conditioning data is “screened” by the information 
content of nearest data. The values uα, include both original data (prior distribution) and 
previously simulated nodes. The simulation process can be performed by visiting unsampled 
locations at random over a mesh. After visiting all nodes of the mesh the process is completed. 
 
2.4.3 Algorithm 
 
The conditional simulation of random fields by copulas can be performed according to the 
following self explained scheme. For illustrative purposes, the multivariate V-transformed 
copula model is considered. 
 

1) Obtain the CDF values ui∈[0,1], for i=1,…,n from the empirical one-dimensional 
distribution of the random field Z(x), by ui= F̂ (zi). 

2) Obtain the theoretical values t
iz , using the iu ’s values and the one-dimensional 

distribution of the theoretical copula, for example, the V-transformed copula by      
zt

i=F-1
Y(ui) for i=1,…,n. 

3) Set each node j for j=1,…,N to be simulated over a random path l. 
4) Set j=1. 
5) Select n  closest observations to the simulated node j and obtain the conditional copula 

over the entire interval of values of ui∈[0,1] by (Appendix C): 
 

Cxn(uu1=FY(zt
1),…,un=FY(zt

n))    (2.22) 
 

6) Draw a CDF value u*
j from the conditional copula by Monte Carlo simulation: 

 
u*

j=C-1
xn(p u1=FY(zt

1),…,un= FY(zt
n))    (2.23) 

 
where p is an uniform random variate p∈[0,1]. 

7) Assign the sampled value u*
j to the corresponding node j. Now, it can be considered in 

the neighborhood of subsequent simulated nodes. 
8) Set j=j+1. 
9) If j≤ N, get zt

j=F-1
Y(u*

j) and go through steps 5 to 7. Otherwise go to step 10. 
10) Obtain the simulated value zl

j at each location j for the realization l using the empirical 
marginal distribution: 

 
zl

j= F̂ -1
Z(u*

j)                                                   (2.24) 
 
Multiple, independent realizations are obtained by visiting the nodes in distinct random 
sequences l. Note that the first node to be simulated at each new realization is conditioned to n 
closest available observations. Moreover, it can be observed from step 6 that the simulated 
value u*

j∈[0,1]. Therefore, the univariate distribution of the simulated random field is the 
uniform distribution. Then using the prior distribution at step 10 the original marginal 
distribution is retrieved. 
 
The search strategies to establish which nearby data should be considered in the simulation 
sequence are those implemented in the program SGSIM from the GSLIB library (Deutsch and 
Journel, 1992). To show some results provided by the simulator, consider the following 
examples. 
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2.4.4 Illustrative examples 
 
The point is to generate realizations of a random field Z(x) with marginal Gaussian distribution 
functions and spatial structure given by a Spearman rank correlation function, such that: 
ρs(h)=6/π·sin-1(ρ(h)/2) with ρ(h) given by the exponential correlogram with isotropic range 
a=10 units. It is of interest to generate a set of realizations for different sets of copula 
parameters λ={m,k,α}, but matching prescribed marginal distributions and Spearman rank 
correlation function. 
 
Given the constrained statistics for the realizations in terms of the Spearman rank correlation 
function, the correlation structure Γ of the multivariate V-transformed copula ,

VCλ Γ  has to be 
parameterized as discussed in section 2.3. The prescribed function in each case was achieved 
with the nested correlation model indicated in Table 2.1. 
 
 

Table 2.1 Nested correlation model for each analyzed case. The contribution variances and 
correlation ranges correspond to the Gaussian, spherical and exponential auto-covariance 
functions, respectively. 

 
Case Copula parameters Contribution variances  Correlation ranges1 

  m k α w1 w2 w3  a1 a2 a3 
 

1 0 1 1 0.4 0.2 0.4  20 13 20 
2 0 0.1 1 0.7 0.05 0.25  15 11 15 
3 5 2 1 0.1 0.1 0.8  9 9 11 

 
1The correlation ranges are isotropic and given in any consistent units. 

 
 
15 realizations of each random field indicated in Table 2.1 were generated. The simulation was 
performed over a square mesh with size equal to 75 units consisting of regularly spaced nodes at 
every 1 unit. The second realization of each set was selected. For illustration purposes, these are 
shown in Fig 2.9(b). The histogram and experimental rank correlation functions of each 
realization are shown on top of such figure (Fig. 2.9(a)). The spatial copula densities of the 
selected realizations were examined at several distances but only those corresponding to the 
distance |h|=1 units, that is, where ρs(1)≈0.74, are shown for illustration purposes in Fig. 2.9. To 
the left of the empirical copula densities, the corresponding theoretical densities are shown for 
visual reference. 
 
As can be seen in Fig. 2.9(a), the histograms of the realizations are very close to the Gaussian 
density. This means that the distribution of values of the realizations is quite approximate to the 
uniform distribution, as expected. In addition, the experimental rank correlation function of each 
realization follows approximately the corresponding prescribed theoretical function (Fig. 
2.9(a)). As observed from a visual inspection of the realizations in the copula space, the 
continuity at high quantiles seems to be higher than at low quantiles except for the case 3, that 
is, where m=5, k=2 and α=1. In this case, high/low quantiles appears as isolated clusters. In 
fact, this case approximately corresponds to a Gaussian random field. 
 
The bivariate empirical copula densities of the realizations clearly show the characteristics of 
the dependence. All empirical copula densities resemble very well their corresponding 
theoretical versions. The asymmetry observed at the empirical copulas confirms what the visual 
inspection of the realizations in the copula space initially suggested, namely higher continuity at 
high quantiles. The propose scheme seems to provide thus satisfactory results in that the 
bivariate copula densities of the realizations are rather well approximated. 
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Fig. 2.9 Representative realizations of RFs generated by copulas with the sequential simulation approach. 
All RFs share identical Gaussian marginal distributions and Spearman rank correlation functions yet 
differ in the asymmetry that imposes the copula parameters m, k and α. a) The corresponding histograms 
and empirical rank correlation functions in the horizontal direction. b) Realizations from the RFs whose 
copula parameters are indicated below them. c) Empirical copula densities (right) and the corresponding 
theoretical versions (left). 
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Fig. 2.10 Euler number as a function of the threshold p and the corresponding binary images at χ(p)=0. a) 
Euler functions for the simulated realizations with the V-transformed copula whose parameters are 
indicated below each figure. b) Binary images at χ(p)=0. 
 
 
To explore the connectivity characteristics of the realizations, connectivity functions were 
constructed by computing the Euler characteristic at different thresholds (Mecke and Wagner, 
1991; Vögel, 2002). The thresholds correspond to a set of quantiles. At each threshold a binary 
image is obtained by separating the values below (white phase) and above (black phase) that 
threshold. Then the Euler number is obtained at each threshold (Fig. 2.10(a)). The set of values 
thus obtained is known as the connectivity function. A value of the function equal to zero means 
the field begins to be well connected with perhaps a continuous loop spanning two opposite 
sides of the field (see binary plots in Fig. 2.10(b)). The minimum value of the function 
corresponds to the threshold at which the image becomes intensely connected. 
 
The realizations with asymmetric dependence clearly become more intensely connected than the 
realization with symmetric dependence (Fig. 2.10(a)). The structures more intensely connected 
appear at significant higher quantiles. The verge of connectivity (χ(p)=0) in these cases occurs 
at quantiles higher than the median and the connected phase is wider (Fig. 2.10(b)). Therefore, it 
can be argued that the proposed algorithm indeed generate realizations whose connectivity 
functions deviate from the connectivity functions of the mutli-Gaussian realizations (chapter 1). 
 
The higher connectivity of the asymmetric dependences can be related to the higher spread of 
density values at high quantiles (Fig. 2.9(c)). It would be very interesting to formulate a 
measure of connectivity in terms of the bivariate copula density. 
 
2.5 Conclusions 
 
Along this chapter some basic concepts about copulas were introduced. The emphasis was paid 
on concepts like dependence and asymmetry. The spatial modeling process via copulas was 
addressed in some detail. An algorithm for the simulation of random fields by copulas was 
proposed. Random fields were simulated with such algorithm and the spatial empirical copula 
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densities of the realizations were examined. Satisfactory results were found in terms of the 
reproduction of the corresponding theoretical densities. 
 
Characteristics of the spatial structure such as dependence and asymmetry were described 
quantitatively by means of single scalars which only depend on the bivariate copulas. By 
expressing such scalars over different distances, dependence and asymmetry functions were 
constructed. These functions and plots of bivariate copula densities were used to examine and 
visualize the spatial structure of the simulated realizations. The connectivity functions of the 
realizations were also determined in terms of the Euler number. 
 
The spatial variability modeling process by copulas differs from more traditional geostatistical 
approaches such as the multiple indicator formalism, in that copulas make use of the entire 
bivariate probability law and not only of an approximation based on indicator covariances. 
 
It should be recognized however that the simulation of random fields by copulas may be very 
time consuming particularly for large meshes. The computational time needed for simulating 
non multi-Gaussian random fields is often considerably higher than the time needed for 
simulating multi-Gaussian random fields. Further research is needed in order to reduce the 
computational burden. 
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CHAPTER 3 
 

SOLUTION TO THE INVERSE 
PROBLEM WITH A MODIFIED 
ENSEMBLE KALMAN FILTER 
 
 
 
 
 
 
 
The Ensemble Kalman Filter (EnKF) is a technique utilized in science an engineering to update 
(in a Bayesian sense) estimates of physical variables consistently with the physics of the 
phenomena under study and also with measurements available at specific locations and times. 
The method was originally developed for Geophysical applications by Evensen (1994) but in 
the last decade it has been transferred and adapted to address estimation problems in a variety of 
disciplines where EnKFs are coupled to physical models to update estimates of estate variables, 
parameter variables or both (Evensen, 2003; Ghanem and Ferro, 2006; Butala et al., 2009). The 
estimation of parameter variables is also known in engineering as parameter identification and 
inverse modeling. 
 
The functional relationship between response variables and parameter variables in the EnKF 
approach is represented by the equations of the system dynamics, which are often in the form of 
some kind of stochastic partial differential equations. The EnKF method can be summarized in 
two main steps which include a forecast step and an update step. The forecast step utilizes the 
method of Monte Carlo to approximate the probability density function (PDF) of the system 
response through an ensemble of realizations. The update step approximates the posterior PDF 
of the parameter to be estimated by conditioning of each prior realization to available time 
series of observations using a linear estimation technique. As EnKF is in fact a Monte Carlo 
method, it is suitable even for complicated non-linear systems, but because of the linear update 
step, it is exact only when the random variables involved are jointly Gaussian. 
 
For applications of EnKFs in the context of random fields, Bertino et al. (2003) proposed to 
apply univariate transformation techniques before the update step to generate a geometrical 
space in which, at least, the marginal distributions are Gaussian. The Gaussian transformation is 
in fact a standard procedure in geostatistical applications known as normal-score transform 
(Deutsch and Journel 1996). Although recent research in the field of groundwater flow in 
random porous media has found this variant of the EnKF to perform better than the original one 
and also to be more convenient to handle non Gaussian distributions of parameter variables 
(Zhu et al., 2011; Shöniger et al., 2012; Xu et al., 2013), the method remains suboptimal and 
some deficiencies associated to linear estimation techniques such as the use of the covariance 
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function as the solely descriptor of an evolving spatial dependence are transferred to this 
alternative (Vázquez and Auvinet, 2015). 
 
In the update step of the EnKF method applied to random fields, instead of modeling the N-
variate Conditional Cumulative Distribution Function (CCDF), a univariate CCDF is 
established at each of the N locations to be estimated taking into account only the available time 
series of observations. This strategy lends the scheme to be efficient computationally and also 
advisable for large dimensional problems. In addition, such scheme enables the incorporation of 
a simulation technique known as p-field simulation (Srivastava, 1992; Froidevaux, 1993) 
without altering the computational efficiency of the method. In p-field simulation, samples from 
the local Conditional Cumulative Distribution Function (CCDF) are drawn using uniformly 
distributed, auto-correlated random numbers (p-values) so that the resulting simulated values 
approximate the local CCDF over the ensemble of realizations. 
 
In this chapter is shown how an update step based on p-field simulation can be readily 
implemented within the EnKF context. To develop this approach, the local CCDFs of the 
random field to be estimated are determined first with the EnKF method and realizations from 
these distributions are generated then by p-field simulation. The proposed scheme denoted here 
by pf-EnKF, is expected to be more flexible than the EnKF in the sense that the former may 
refine the EnKF approximation by introducing fluctuations around the mean estimates. The 
performance of the proposed scheme will be evaluated with respect to different quantitative 
criteria. 
 
An alternative formulation of the EnKF procedure based on available results of linear estimation 
theory applied to random functions is used to incorporate the proposed methodology. A one-
dimensional, single phase flow problem in continuous random porous media is considered to 
illustrate the effects of the update step of the pf-EnKF and to compare the results with those 
from the EnKF, in the estimation of conductivities and heads. 
 
3.1 Groundwater flow equations 
 
In the following analysis, the dynamic model describing fluid flow in a one-dimensional, fully 
saturated porous media with spatially variable hydraulic conductivity is considered: 
 

( )s s
H HK S

x x t
∂ ∂ ∂  = ∂ ∂ ∂ 

x                                                   (3.1) 

 
subject to initial and boundary conditions: 
 

0 0 1,    
DtH h H h= Γ= =                                                       (3.2) 

 
where, H is the hydraulic head [L] in the domain Ωx, x is the spatial coordinate (x=x3 [L], where 
x3 represents the vertical coordinate which is positive upward), Ks(x) is the saturated hydraulic 
conductivity [L/T], Ss is the specific storage [L-1], h0 represents the initial head and h1 the 
prescribed head at Dirichlet boundary ΓD. 
 
Although initial and boundary conditions are considered deterministic constants, the hydraulic 
conductivity Ks(x) is considered a random field. Therefore, equation 3.1 becomes a stochastic 
differential equation and the flow response H will also be a random field. To obtain the response 
of the model dynamics satisfying equations 3.1 and 3.2, the method of Monte Carlo is utilized. 
First, independent realizations of the hydraulic conductivity random field are generated and 
flow equations are solved numerically with the deterministic values of each realization using a 
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modified version of a finite element code (Smith and Griffiths, 2004). Statistics of the flow 
response such as auto and cross-covariance functions between conductivities and heads are 
determined over the ensemble of realizations through well-known formulas of descriptive 
statistics, at each time the conductivity fields are updated by the following simulation process. 
 
3.2 Simulation of spatiotemporal random fields 
 
In this section, an alternative formulation of the EnKF method is presented. Additionally, it is 
shown how an update step based on p-field simulation can be readily implemented within the 
EnKF method. 
 
3.2.1 Definitions 
 
Let Yt(x) denote the collection of n continuous random variables of the natural logarithm of the 
saturated hydraulic conductivity Ks i.e. Y=ln(Ks) indexed at the spatial locations x in the domain 
Ωx with Ωx⊂

d  for d=1,2 or 3 and at the discrete index of times t∈{0,1,2,…}. This n-variate 
spatio-temporal random field of the log-conductivity is written by: 
 

( ){ }: , 0,1, 2,t xY t∈Ω =x x …                                               (3.3) 
 
Define Ht(χ) the collection of N continuous random variables of the hydraulic head indexed at 
the spatial locations χ in the domain Ωχ with Ωχ⊂

d  for d=1,2 or 3 and at the discrete index of 
times t∈{0,1,2,…}. This N-variate spatio-temporal random field of the hydraulic head is 
written: 
 

( ){ }: , 0,1, 2,tH tχ∈Ω =χ χ …                                             (3.4) 

 
The multivariate Cumulative Distribution Function (CDF) of Ht(χ) at the particular time t 
depends on the multivariate distributions at all previous times. However, the evolution of such 
function can be determined assuming the dynamic model in Eqs. 3.1-3.2 behaves like a first 
order Markov process i.e. P[Ht(χ)|Ht-1(χ),Ht-2(χ),Ht-3(χ),…]=P[Ht(χ)|Ht-1(χ)]. Hence, only the 
most recent past determine the multivariate conditional CDF of Ht(χ) given the whole past. This 
simplified evolution of Ht(χ) is given by: 
 

( ) ( ) ( )( )1 1,t t tH H Y− −= ℑχ χ x                                              (3.5) 
 
where ℑ(·) represents the equations of the model dynamics. Observe in Eq. 3.5 that in order to 
advance Ht(χ) to the first time i.e. H1(χ), the initial conditions H0(χ), the random field of 
parameters Y0(x) and the boundary conditions have to be specified. 
 
Suppose now that Nh observations of Ht(χ) are taken with no error at the spatial locations χα, for 
α∈{1,…,Nh} and at the discrete index of times t∈{1,2,3,…}. The set of histories of available 
observations is hence represented by: 
 

( ){ }, , 1, 2, , ,  1, 2,3,t t hH h N tα α α= = = …χ …                                (3.6) 

 
A random field that is made specific to a set of direct/indirect observations at their exact 
locations is called conditional. The random fields Yt(x) and Ht(χ) given the set of observations 
Ht(χα) are written as: 
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( ) ( ){ }:  , , 1, 2, , ,  1, 2,3,t t x hY H N tα α χ α∈Ω ∈Ω = =x χ x χ … …                  (3.7) 

 

( ) ( ){ }:  ,  1, 2, , ,  1, 2,3,t t hH H N tα α χ α∈Ω = =χ χ χ … …                       (3.8) 

 
The analysis of the conditional random fields in equations 3.7 and 3.8 involves the 
determination of all marginal Conditional Cumulative Distribution Functions (CCDF) and all n-
variate (and N-variate) CCDFs at each location x or χ and at the particular time t. This task is 
simplified by replacing each n-variate (and N-variate) CCDF with a univariate CCDF at each of 
the n or N spatial locations at the particular time t. The conditional random fields of Eqs. 3.7 and 
3.8 can thus be written: 
 

( ) ( ){ }: , ,  1, 2, , ,  1, 2, , ,  1, 2,3,t i t x hY H i n N tα α χ α∈Ω ∈Ω = = =x χ x χ … … …   (3.9) 

 

( ) ( ){ }: ,  1, 2, , , 1, 2, , ,  1, 2,3,t i t hH H i N N tα α χ α∈Ω = = =χ χ χ … … …      (3.10) 

 
If the joint relationship of ( )Y x  and ( )H χ  is assumed to be multi-Gaussian (i.e. if a multi-
Gaussian model is assumed), then the conditional random field ( ) ( )t i tY H αx χ  can be written 
as a sum of the two independent random fields (Journel and Huijbregts, 1978): 
 

( ) ( ) ( ) ( )* *
t i i s i s iY Z Y Y = + − x x x x                                      (3.11) 

 
and both random fields in Eq. 3.11 can be calculated with the Kriging technique: 
 

( ) ( )*
,

1 1

hNn

i i t
i

Z hα α
α

λ
= =

= ∑∑x χ  

( ) ( )1s i t iY Y −=x x                                                            (3.12) 

                                                       ( ) ( ) ( )*

1 1

hNn

s i i t
i

Y Hα α
α

λ
= =

= ∑∑x χ χ  

 
Substituting Eqs. 3.12 into Eq. 3.11 yields: 
 

( ) ( ) ( ) ( )1 ,
1 1

hNn

t i t i i t t
i

Y Y h Hα α α
α

λ−
= =

 = + − ∑∑x x χ χ                             (3.13) 

 
where λi(xα) are weighting functions representing the relative importance of the observations 
Ht(χα) in estimating the value of Yt(xi). The weighting functions are solutions of the following 
systems of linear equations: 
 

( ) ( ) ( )
1 1

, ; , , ; 1, ,     1, 2, ,
hNn

i H j YH i h
i

C t t C t t j Nα α α
α

λ
= =

= − = …∑∑ χ χ χ x χ           (3.14) 

 
with CH(χα,χj;t,t) representing the spatio-temporal auto-covariance functions between hydraulic 
heads; CYH(xi,χα;t-1,t) represents the spatio-temporal cross-covariance functions between log-
conductivities and hydraulic heads. In order the solution of Eq. 3.14 to be unique, the spatio-
temporal covariance functions involved have to be strictly positive definite. The equations like 
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3.13 and 3.14 can be written for the conditional random field ( ) ( )t i tH H αχ χ  (Vázquez and 
Auvinet, 2015). 
 
The determination of the spatio-temporal covariance functions in Eq. 3.14 is however far from 
being trivial because non linear effects associated to the flow problem impact the statistical 
relationships between Yt(x) and Ht(χ). Although some general theoretical models of spatio-
temporal covariance functions could be adopted to quantify the dependences, it remains unclear 
how suitability such models are to address transient flow problems in porous media with non 
multi-Gaussian properties. Thereby, the method of Monte Carlo is used to solve Eq. 3.5 and the 
necessary covariance functions are then determined over the ensemble of realizations. This is 
the core of the ensemble methods. The covariance functions thus obtained are in fact empirical, 
but on the average over several realizations they lead to positive definite matrices and may be 
used directly without modeling. 
 
It is worth mentioning that Eq. 3.13 can be interpreted as a Bayessian mechanism in the sense 
that the conditional random field ( )tY x  is dependent on the a priori knowledge consisting of the 
random field 1( )tY − x , covariance functions and observations. 
 
3.2.2 The EnKF method 
 
The Ensemble Kalman Filter (EnKF) utilizes the method of Monte Carlo to approximate the 
marginal distributions of Ht(χ) assuming the flow model is a first order Markov process. Then 
simulates the distributions of Yt(xi) conditioning each realization of Yt-1(xi) to the observations of 
Ht(χα) assuming a multi-Gaussian model. This update step can be written: 
 

0
u f
t t t t = + − U U K Z H                                                 (3.15) 

 
where u

tU =[ŷt(x1), ŷt(x2),…,ŷt(xn)] is a n-dimensional vector of updated realizations of the log-
conductivity, U0=[yt-1(x1),yt-1(x2),…,yt-1(xn)] is a n-dimensional vector of simulated realizations 
of the log-conductivity (realizations a priori), Zt=[h1,t,h2,t,…,hNh,t] is the vector of observations 
with dimension Nh and Hf

t=[ht(χ1),ht(χ2),…,ht(χNh)] is a reduced vector of forecasted states 
(realizations of the hydraulic head at the locations of the observations) of dimension Nh. 
 
The matrix Kt (nxNh) is the so-called “Kalman gain”, which can be assembled after obtaining 
the weighting functions associated to each location xi at the updating time t, as: 
 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

1 2

h

h

N

t

n n n N

λ λ λ

λ λ λ

 
 
 =
 
  

x x x

K

x x x

…

…

                                   (3.16) 

 
The update step of the EnKF is repeated at the next time for which observations are available 
but the new a prior random field of the log-conductivity is the a posteriori one. The update step 
is thereby performed sequentially incorporating past observations well as current observations 
in the inference process. 
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3.2.3 The modified EnKF method 
 
This variant of the EnKF method performs the update step within a transformed space in which 
the marginal distributions of the random fields involved are Gaussian with zero mean and unit 
variance. After performing the update step the distributions of the variables are back-
transformed to their original distributions. The additional steps of the modified EnKF method 
are explained in the sequel. 
 
3.2.3.1 Gaussian transformations 
 
For the purpose of Gaussian transformations, CDFs of log-conductivities at locations x i.e. 
FY(y;xi) for i=1,2,…,n and CDFs of hydraulic heads at locations χ i.e. FH(h;χj) for j=1,2,…,N 
are established statistically over the ensemble of realizations. Then, the Gaussian transformation 
G-1 (with zero mean and unity variance) is applied to each case i.e. y’=G-1[FY(y;xi)] and h’=G-

1[FH(h;χj)], where y’ and h’ are the transformed Gaussian values. In addition, a standardization 
of the observations using the forecasted values at each location χα for α=1,…, Nh is applied. The 
function relating y to y’ or h to h’ in the x-y Cartesian plane, is called the Gaussian 
anamorphosis function (Fig. 3.1(a)). 
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Fig. 3.1 Transformation step of the EnKF and pf-EnKF. a) Gaussian transformation process. b) Back-
transformation process. 
 
 
3.2.3.2 Update step 
 
After performing all transformations described in the previous section, the update step of the 
modified EnKF can now be written by: 
 

0
u f
t t t t = + − U U K Z H                                                 (3.17) 
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where u

tU =[ŷ’t(x1),ŷ’t(x2),…,ŷ’t(xn)] is a n-dimensional vector of updated realizations of the log-

conductivity, 0U =[y’t-1(x1),y’t-1(x2),…,y’t-1(xn)] is a n-dimensional vector of simulated 

realizations of the log-conductivity (realizations a priori), tZ =[h’1,t,h’2,t,…,h’Nh,t] is the vector 

of observations with dimension Nh and f
tH =[h’t(χ1),h’t(χ2),…,h’t(χNh)] is a reduced vector of 

forecasted states (realizations of the hydraulic head at the locations of the observations) of 
dimension Nh. The matrix Kt (nxNh) is assembled after obtaining the weighting functions 
associated to each location xi at the updating time t, using the transformed values. The update 
step of the modified EnKF is also performed sequentially. 
 
3.2.3.3 Back-transformations 
 
The conditional values corresponding to the original variables can be retrieved by means of a 
back-transformation process in which the CCDF of back-transform values of the log-
conductivities at each location x i.e. FŶ(y;x) is obtained by doing FŶ(y;x)=FŶ’(ŷ’;x). This means 
that the CCDF value of the original variable y (see section 3.2.3.1) is identified with the CCDF 
value at its corresponding Gaussian transform value ŷ’. This process is illustrated in Fig. 3.1(b). 
 
3.2.4 The proposed pf-EnKF method 
 
In addition to the update step of the modified EnKF method presented above, an update step 
based on p-field simulation can be performed as proposed in this chapter. This extension of the 
modified EnKF method is called here pf-EnKF method and is presented in the following 
paragraphs. 
 
A CCDF of log-conductivities at each location x i.e. FŶ’(ŷ’;xi) for i=1,2,…,n is established 
statistically over the ensemble of realizations updated with the modified EnKF method (Eq. 
3.17). Samples of log-conductivities at each location x i.e. ŷ’t(xi) for i=1,2,…,n can then be 
drawn from their corresponding conditional distributions by the p-field simulation technique as 
(Srivastava, 1992; Froidevaux, 1993): 
 

( ) ( )( )' 1
ˆ 1'

ˆ ,      1, 2, ,t i t iY
y F p i n−

−= = …x x                               (3.18) 

 
where pt-1(xi)  are so-called probability fields (p-fields) of the log-conductivity. The p-fields can 
be established with the values of the empirical distribution functions of each realization before 
the update step. Namely, if the update step is at t=1, then the p-fields are derived from the 
realizations at t=0. The simulation process described by equation 3.18 is illustrated in Fig. 3.2. 
 
The correlation structure of the updated simulated fields ŷ’t(x) is accounted for by the 
correlation structure of the fields pt-1(x), as explained by Goovaerst (1997). The back-
transformation process of the simulated values ŷ’t(xi) is performed as explained in section 
3.2.3.3. 
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Fig. 3.2 Simulation process described by equation 3.16. a) Generation of p-fields. b) Sampling by p-field simulation. 
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3.3 Description of the numerical experiment 
 
To explore the performance of the proposed pf-EnKF method, a hypothetical, one dimensional, 
vertical, heterogeneous, fully saturated aquifer is considered. The aquifer is 40 m depth and is 
discretized into 80 finite elements each of which with a length of 0.5 m. Each finite element ei 
for i=1,…,80 is assigned a log-conductivity value yref(xi) according to the following procedure. 
First, a multi-Gaussian field g(x) with exponential autocovariance function and correlation scale 
ax=2.5 m is simulated using a modified version of the SGSIM random field generator (Deutsch 
and Journel, 1996) (Fig. 3.3(a)). Second, the V-transform (Bárdossy and Li, 2008): 
 

( )
( )

( ) if ( )
( )       if ( )

( ) k g m g m
m g g m

v
α− ≥

− <
= x x

x x
x                                               (3.19) 

 
with arbitrarily chosen parameters m=0, k=1 and α=2 is applied to the g(x) field to obtain the 
transformed v(x) field shown in Fig. 3.3(b). Third, a Gaussian distribution is imposed to the v(x) 
field as y’=G-1[FV(v)] where FV(v) is the empirical CDF of the v(x) field and G the theoretical 
Gaussian CDF. Finally, such y’(x) field is scaled to a normally distributed yref(x) field with 
mean value µY=-1.654 and variance σ2

Y=1 as: yref(x)=µY+y’(x)σY. Each one of these values is 
assumed to be constant within its finite element ei. This log-conductivity field, which is 
displayed in Fig. 3.3(c), is considered a “true state of nature” and is called the reference aquifer. 
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Fig. 3.3 One dimensional fields. a) Initial Gaussian field. b) Field after applying the V-transform with 
parameters m=0, k=1 and α=2 to the initial Gaussian field. c) Final log-conductivity field after imposing a 
marginal normal distribution with expected value µY=-1.654 and variance σY

2=1 to the V-transformed 
field. Statistics of sampled values (empty squares) are also reported. 
 
 
Several interesting properties of the V-transformation should be mentioned. Firstly, the 
symmetric density function of the Gaussian field g(x) is transformed into a non symmetric 
density function through the parameters m, k and α. Secondly, the empirical autocovariance 
function of g(x) is not preserved in v(x) because the V-transformation is non monotonous (Fig. 
3.4). Thirdly, the spatial correlation of v(x) is stronger for the values above the median than for 
the values below the median i.e. the spatial correlation of v(x) is asymmetric. This last 
characteristic of the field holds after imposing to it the Gaussian (normal) distribution function 
because the Gaussian transformation is monotonous (Deustch and Journel, 1996). Since yref(x) is 
normal distributed, ks(x)=exp(yref(x)) is lognormal distributed with expected value µKs=0.315 
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m/day and coefficient of variation CVKs= 1.31. Conductivity fields with one-dimensional 
lognormal distributions and asymmetric correlation structures are considered to be more 
representative of the natural aquifers (Gómez-Hernández and Wen, 1998; Journel and Zhang, 
2006), as discussed in chapter 1. 
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Fig. 3.4 Standardized auto-covariance functions of the initial Gaussian field and reference log-
conductivity field. An exponential function is also shown for comparison. 
 
 
Using the reference aquifer of conductivities, groundwater head responses are generated by 
solving a transient flow condition with finite elements. At t=0 days, the initial distribution of 
heads is hydrostatic. At t≥0 days, hydraulic head decreases with time at a rate of 0.15 m per day 
during 150 days at the lower boundary. For the purpose of the present numerical example, the 
distribution of heads at t=90 days is assumed to be the initial condition (denoted as t=0 days in 
Fig. 3.5 and henceforth). It is further assumed that groundwater head responses are available at 
times t=3, t=18 and t=60 days at the two locations indicated in Fig. 3.5. Thus, two histories with 
three hydraulic head values are generated. These indirect, informative variables of the hydraulic 
conductivity of the aquifer are considered available transient piezometric observations. At each 
one of those three times, the updating process of both the EnKF and pf-EnKF schemes is 
performed. Storage coefficient is assumed to be equal to 0.001 overall the aquifer. 
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Fig. 3.5 Profile of hydraulic heads in the reference aquifer at t=0 days. The depths of the tips of two 
piezometers (Pz-1 and Pz-2) are also indicated with filled squares. 
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The reference yref(x) aquifer is sampled at four locations indicated in Fig. 3.3(c) and the values 
are considered direct log-conductivity measurements. The mean and variance of the set of 
sampled values are reported in the same figure. Observe that these statistics overestimate the 
mean and variance of the reference aquifer. Note in Fig. 3.4 that an exponential autocovariance 
function with correlation scale ax=2.5 m overestimate the correlation scale of the reference 
aquifer. 
 
To model a situation in which the statistical parameters of the aquifer are only roughly known a 
priori, the sampled mean and variance as well as the autocovariance function mentioned above 
are used to simulate two thousand, conditional multi-Gaussian log-conductivity realizations. 
The number of simulated realizations was established to ensure the stability of the following 
two error measures, according to some preliminary computations. 
 
To assess the performance of both the EnKF and pf-EnKF filters in the estimation of log-
conductivities and hydraulic heads, the root mean square error (RMSE) and the SPREAD 
measure are considered in this work. The RMSE is evaluated by: 
 

( ) ( )( )21 *
1

n refy yi in i
RMSE −∑

=
= x x                                               (3.20) 

 
where n is the number of log-conductivities in the flow domain; y*(xi) is the estimated mean 
log-conductivity at location xi and yref(xi) is the reference log-conductivity also at location xi. 
 
The SPREAD is computed as: 
 

( )1 2
1

n
sen in i

SPREAD ∑
=

= x                                                    (3.21) 

 
where s2

en(xi) is the variance of the estimation of the log-conductivity at location xi computed 
statistically over the ensemble of realizations. 
 
RMSE is a measure of the difference of the means of the estimated and the reference fields and 
SPREAD is a measure of the dispersion of the estimated field around the reference field. 
Therefore, they can be viewed as measures of accuracy and precision of the estimations, 
respectively. 
 
3.4 Results and discussion 
 
The characteristics of the realizations of the conditional mean value of the log-conductivity and 
hydraulic head fields are discussed in this section. The results from the modified EnKF against 
those from the proposed pf-EnKF are compared. Before analyzing the effects of conditioning, 
the effects of the Gaussian transformation are analyzed. 
 
3.4.1 Effects of the Gaussian transformation 
 
Fig. 3.6 illustrates the effect of the Gaussian transformation process of the hydraulic heads at an 
arbitrarily selected node before the first updating step. In the general case, the shape of the local 
distributions will depend on the location of the node in the flow domain and on the boundary 
conditions of the problem at hand. In any case, the local distribution functions can be 
transformed into Gaussian distributions by building local Gaussian anamorphosis functions 
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numerically, as explained. For example, observe in Fig. 3.6(a) that although the original values 
exhibit a skewed distribution, the transformed variable becomes symmetric around the mean 
showing the well-known bell-shape after the Gaussian anamorphosis (Figs. 3.6(b),(c)). 
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Fig. 3.6 Gaussian transformation of hydraulic heads at node 61. a) Histogram of untransformed hydraulic 
heads. b) Gaussian anamorphosis function (with zero mean and unity variance). c) Histogram of hydraulic 
heads after the Gaussian anamorphosis. 
 
 
Fig. 3.7 represents the relationship between log-conductivities and heads at arbitrarily selected 
locations, before (Fig. 3.7(a)) and after (Fig. 3.7(b)) applying the respective Gaussian 
transformations. Given that the Gaussian transformation is monotonous, the bivariate 
characteristics of the dependence such as the correlation structure at different percentiles are no 
modified (Deutsch and Journel, 1996; Chilès and Delfiner, 1999). However, the linear 
correlation coefficient of Pearson, which depends on the kind of marginal distributions of the 
random variables, might be different before and after transformations. In the particular case of 
the variables at the locations indicated in Fig. 3.7, it is noted, at the upper right corner of each 
figure, that such coefficient presents nearly the same value before and after transformations. 
Therefore, the implicit pseudo-linearization effect associated to the Gaussian anamorphosis 
reported by Shöniger et al. (2012) should be considered application dependent. 
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Fig. 3.7 Relationship between log-conductivity and hydraulic head at two arbitrary selected locations (ρ 
is the Pearson correlation coefficient). a) Before the Gaussian transformation of both variables. b) After 
the Gaussian transformation of both variables. 
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3.4.2 Effects of conditioning on log-conductivities alone 
 
The impact of conditioning realizations of log-conductivities to direct measurements only is 
first analyzed. Figs. 3.8(a),(b) display comparisons of the reference field of log-conductivities 
against the mean of the conditional realizations of log-conductivities of the EnKF and pf-EnKF 
filters, respectively. Contrasting both conditional fields, it is observed that the pf-EnKF filter 
yields, to some extent, more variability between measurements than the EnKF filter. Looking at 
the RMSE and SPREAD values shown at the bottom right corner of the Figures, it can be 
established that the EnKF filter is more accurate and that the pf-EnKF is more precise. 
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Fig. 3.8 Log-conductivity fields conditional to log-conductivities alone. a) With the EnKF method. a) 
With the pf-EnKF. The reference field is also shown. 
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Fig. 3.9 Profiles of conditional standard deviations of log-conductivities with respect to depth at different 
times (empty squares indicate the locations of known values). a) From the fields of the EnKF. b) From the 
fields of the pf-EnKF. 
 
 
Figs. 3.9(a),(b) reproduce profiles of standard deviations (uncertainty) computed with the 
conditional realizations of log-conductivities of the EnKF and pf-EnKF filters, respectively. 
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Observe that the effect of conditioning is to reduce, overall, the prior uncertainty and to collapse 
it to zero at the locations of the measurements. The profiles of both filters are quite similar. 
 
3.4.3 Effects of conditioning on log-conductivities and transient heads 
 
The additional impact of conditioning the realizations of log-conductivities to transient heads 
responses is now examined. Comparisons of the reference field of log-conductivities with the 
mean of the conditional realizations of log-conductivities of the EnKF at times t=3 days, t= 18 
days and t=60 days are shown in Figs. 3.10(a),(b),(c), respectively. Figs. 3.11(a),(b),(c) shown 
the same comparisons but the conditional mean field is obtained with the realizations of the pf-
EnKF. 
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Fig. 3.10 Log-conductivity fields conditional to histories of hydraulic heads with the EnKF method. The 
reference field is also shown. a) At t=3 days. b) At t=18 days. c) At t=60 days. 
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Fig. 3.11 Log-conductivity fields conditional to histories of hydraulic heads with the pf-EnKF method. 
The reference field is also shown. a) At t=3 days. b) At t=18 days. c) At t=60 days. 
 
 
Looking at the RMSE and SPREAD measures indicated in each Figure (bottom right corner), it 
can be noticed that the EnKF yields more accurate results than the pf-EnKF at all times, 
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although the estimates of the pf-EnKF are more precise. As an example, the RMSE and 
SPREAD values for the conditional mean log-conductivity field of the EnKF at time t=60 are 
0.964 and 1.080, respectively, whereas the values of such measures for the conditional mean 
log-conductivity field of the pf-EnKF are 1.086 and 0.988, respectively. The higher accuracy of 
the EnKF can be attributed to the fact that the pf-EnKF produces higher fluctuations between 
measurements that do not follow closer the variability of the reference aquifer. However, it 
should be recalled that the RMSE and SPREAD values measure the quality of the local 
estimation only, i.e. they do not indicate anything about the quality of the multivariate 
estimation. To explore the quality of the multivariate estimation, bivariate empirical copulas 
will be examined in chapter 4. 
 
The profiles of standard deviations calculated with the realizations of log-conductivities of the 
EnKF and pf-EnKF are reported in Figures 3.12(a),(b), respectively. The overall uncertainty in 
both cases decreases as groundwater heads observations in more times are used into the 
updating process, except at the locations of direct measurements where uncertainty is zero at all 
times. It is illustrated in those Figures that uncertainty becomes smaller around depths 17 m and 
26 m (where the tips of the two piezometers are located) than at other depths and that this 
reduction is more significant in the profile of the pf-EnKF than in the profile of the EnKF. 
 
 

0

10

20

30

40

0 0.25 0.5 0.75 1 1.25

Measurements
t=3 [days]
t=18 [days]
t=60 [days]
Prior SD

pf-EnKF

t =3 days
t =18 days
t =60 days

(b)

Standard deviation of log-conductivity 
(ln(m/day))

0

10

20

30

40

0 0.25 0.5 0.75 1 1.25

D
ep

th
 [m

]

Measurements
t=3 [days]
t=18 [days]
t=60 [days]
Prior SD

EnKF

t =3 days
t =18 days
t =60 days

(a)

Standard deviation of log-conductivity 
(ln(m/day))

 
 
Fig. 3.12 Profiles of conditional standard deviations of log-conductivities with respect to depth at 
different times (empty squares indicate the locations of known values). a) From the fields of the EnKF. b) 
From the fields of the pf-EnKF. 
 
 
Fig. 3.13 displays the frequency distributions of log-conductivities of the reference field, prior 
ensemble and posterior ensembles at the end of the conditioning process. Recall that the mean 
value of the conductivity of the reference aquifer was overestimated by the prior random field 
hence the distribution function of this field is located to the right of the aquifer’s distribution 
function. Looking at the distributions of the posterior fields, it is observed that they exhibit 
some features of the reference distribution (like some of the “peaks” of both branches) and that 
are slightly displaced toward the left of the distribution of the prior random field. This indicates 
the attempt of the conditioning process of both filters to lead their prior distributions toward the 
reference distribution. Observe that the posterior distributions of both filters are very similar. 
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Fig. 3.13 Frequency distributions of log-conductivities of the reference field, set of prior realizations and 
sets of posterior realizations of the EnKF and pf-EnKF at t=60 days. 
 
 
The conditional pressure head fields are now reviewed. Fig. 3.14(a),(b) and (c) plot comparisons 
of reference profiles with the mean profiles calculated with the conditional realizations of 
hydraulic heads of the EnKF at times t=3, t=18 and t=60 days, respectively. It is seen that such 
profiles become closer to the reference ones as a higher number of observations of the 
piezometric heads records are taken into account in the update step. The same behavior is 
observed in Figs. 3.15(a),(b) and (c), where comparisons of the reference profiles with the 
conditional mean profiles of the pf-EnKF at the aforementioned times are shown, except that in 
this case the pf-EnKF introduces higher fluctuations between observations that deviate more 
from the reference values. Hence, the estimations of the pf-EnKF are less accurate than those of 
the EnKF. This can be verified by observing the values of the RMSE measure indicated in the 
figures. The estimated pressure head profiles of the pf-EnKF nevertheless correspond well with 
the reference profiles. It can also be noted from the SPREAD values at the specified times that 
the estimations of the pf-EnKF are more precise. 
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Fig. 3.14 Conditional pressure head fields of the EnKF method. The reference field is also shown. a) At 
t=3 days. b) At t=18 days. c) At t=60 days. 
 
 
 



 51

0

10

20

30

40
0 10 20 30

Hydraulic head [m]

El
ev

at
io

n 
[m

]

0

10

20

30

40

0 10 20 30 40

Pressure head [m]

RMSE=0.784
SPREAD=0.657

t=60 days

(c)

0

10

20

30

40

0 10 20 30 40

Pressure head [m]

RMSE=1.097
SPREAD=0.823

t=18 days

(b)

0

10

20

30

40

0 10 20 30 40

Pressure head [m]

D
ep

th
 [m

]

Reference
Observations
pf-EnKF

RMSE=0.928
SPREAD=0.933

t =3 days

(a)

 
 
Fig. 3.15 Conditional pressure head fields of the pf-EnKF method. The reference field is also shown. a) 
At t=3 days. b) At t=18 days. c) At t=60 days. 
 
 
Figs. 3.16(a),(b) illustrate profiles of conditional standard deviations of pressure heads at times 
t=3, t=18 and t=60 days quantified with the realizations of the EnKF and of the pf-EnKF, 
respectively. As expected, uncertainty is nil at depths where pressure heads are recorded and at 
the upper and lower boundaries where hydraulic heads are prescribed. As depicted in both 
Figures, standard deviation decreases overall with time, but locally it increases at a few depths. 
This behavior is evident in the profile calculated with the fields of the pf-EnKF. Such behavior 
may be explained by the numerical nature of the calculated covariance functions in the EnKF 
schemes. As explained by Xu et al. (2013), numerically calculated covariance functions result in 
fluctuating covariance estimates about zero at distances for which it should be zero. One way to 
overcome this problem is through the use of covariance localization techniques. 
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Fig. 3.16 Profiles of conditional standard deviations of pressure heads with respect to depth at different 
times (solid squares indicate the locations of two observations). a) From the fields of the EnKF. b) From 
the fields of the pf-EnKF. 
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3.5 Conclusions 
 
Details about the implementation of an update step within the EnKF procedure based on p-field 
simulation were described in this chapter. This extension of the EnKF method was called pf-
EnKF method. To illustrate the effects and to compare the results of the proposed method 
against those from the modified EnKF, a one-dimensional, single phase flow problem in 
continuous random porous media was considered. 
 
The modified EnKF and pf-EnKF methods involve transformations of the local distribution 
functions into standard Gaussian distribution functions before the update steps. Each update step 
is thus performed within a geometrical space of univariate Gaussian distributions. This provides 
the filters more numerical stability during the update steps and the possibility of utilizing non 
Gaussian distributions for the parameters of the dynamic model. The back-transformation of the 
local conditional distributions to their original distributions after the update steps is also 
required by both filters. 
 
The most notorious result of the proposed methodology is that induces higher fluctuations 
between observations in the conditional realizations. It was found however that inducing higher 
fluctuations around the mean estimates did not provide better results (in terms of local accuracy) 
at estimating log-conductivities and hydraulic heads. These conclusions can be explained by the 
fact that the fluctuations did not necessarily follow closer the variability of the corresponding 
reference fields. Further research is needed to fully assess the performance of the proposed 
filter. Chapter 4 will explore the performance of the proposed methodology on the reproduction 
of the spatial copulas of a reference 2D log-conductivity field. 
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CHAPTER 4 
 

CHARACTERIZATION OF NON-
HOMOGENEOUS HYDRAULIC 
CONDUCTIVITY FIELDS 
 
 
 
 
 
 
 
It was established since the beginning of this study that the hydraulic conductivity of porous 
formations is very sensitive to variations of internal structure. It was mentioned that even in a 
same type of soil, hydraulic conductivity may vary by several orders of magnitude. 
Furthermore, it was pointed out that the number of available measurements for determining the 
hydraulic conductivity of a particular site is usually limited. It has also been mentioned that 
available measurements shown that, for practical purposes, heterogeneity of the hydraulic 
conductivity in the porous formations can be best characterized in a probabilistic manner. 
 
Several authors have accepted that the conductivity of natural porous formations can be 
interpreted as a realization of a random field (Dagan, 1989; Gelhar, 1993; Zhang, 2002; Rubin, 
2003). The descriptive parameters of the random field can be obtained from the realization itself 
assuming the field is ergodic (Chilès and Delfiner, 1999). Estimates of the hydraulic 
conductivity of the porous formation at unsampled locations as well as a measure of the 
uncertainty of the estimation can then be made by estimation or simulation geostatistical 
techniques (Chilès and Delfiner, 1999). 
 
A random field that is made specific to a set of location dependent direct measurements or 
indirect observations of the hydraulic conductivity of the porous formation such as sets of 
hydraulic heads is called conditional random field. In practice, conditional random fields are 
often desirable because they provide site-specific estimates of the conductivity of the porous 
formation and because conditioning reduces, on average, the prior uncertainties. 
 
As mentioned before, conditional random fields can be generated by estimation or simulation 
techniques (Deutsch and Journel, 1996). In the later case, the challenge is to integrate the 
available information into a prior model of uncertainty to obtain posterior estimates of the 
conductivity of the porous media. Different schemes can be found in the scientific literature to 
address this problem under steady state flow conditions (RamaRao et al., 1995; Gómez-
Hernández et al., 1997; Janssen et al., 2006; Hendricks and Gómez-Hernández, 2002) and under 
transient flow conditions (Hendricks-Franssen et al., 1999; Zhu and Yeh, 2005; Capilla and 
Llopis-Albert, 2009). In the last decade, Ensemble Kalman Filters have captured more attention 
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to perform the stochastic simulation of random fields conditional to dynamic observations due 
to its easy of implementation and acceptable computational time at dealing with large 
dimensional problems. The method is based on a Monte Carlo framework and permits the 
physical model to be incorporated in the characterization process. Thus predictions with the 
groundwater flow model can also be conducted. 
 
In this chapter, the modified EnKF and the proposed pf-EnKF presented in chapter 3 are 
employed to perform the characterization of a non-homogeneous hypothetic aquifer with respect 
to their hydraulic conductivities. The distribution of conductivities in the aquifer is generated by 
simulation of a random field. A simulated field, as opposite to a real one, is entirely known and 
it is thus possible to evaluate the performance of both techniques at recovering some of their 
relevant statistical descriptors such as histogram, rank correlation functions and bivariate 
copulas. To generate the simulated field, the V-transformed normal copula is utilized. The 
hypothetic aquifer is used to generate histories of hydraulic heads by simulating a pumping test. 
A sub-set of such histories, which are associated to certain observations locations, is used to 
perform the conditioning process of both filters. To evaluate the quality of the characterization, 
different quantitative criteria are employed. 
 
4.1 Statement of the problem 
 
In the following analysis, it is considered groundwater flow in two-dimensional, fully saturated, 
continuous porous media with spatially variable hydraulic conductivity described by the 
equation: 
 

( ) ( )s s
HK H Q S
t

∂
∇ ⋅∇ + =   ∂

x x                                        (4.1) 

 
subject to: 
 
initial condition;                                   H|t=0=h0                                                                      (4.2) 
 
and boundary conditions: 
 
Constant pressure head;                      H|

D DhΓ =                                                                      (4.3) 
 
No normal flow, specific discharge;     q(x,t)·n(x)=0         x∈ΓN                                         (4.4) 
 
where: ∇ is the gradient operator; H is the hydraulic head [L], h0 is the initial head in domain Ω 
[L], hD is the prescribed head on Diritchlet boundary segments ΓD [L]; Q(x) is the pumping rate 
per unit volume of the aquifer [1/T]; Ks(x) is the hydraulic conductivity [L/T], q(x,t) is the 
prescribed flux across Neumann boundary segments ΓN, n(x) is an outward vector normal to the 
boundary ΓN and Ss is the specific storage [L-1]. 
 
Since hydraulic conductivity Ks(x) is a random field, equation 4.1 becomes a stochastic 
differential equation and the flow response H will also be a random field at a specific time. To 
obtain the response of the model dynamics satisfying equations 4.1 to 4.4 in the EnKF contexts, 
the method of Monte Carlo is utilized in this study. First, independent, identically distributed 
realizations of a prior conductivity random field are generated and flow equations are solved 
numerically with the deterministic values of each realization using a modified version of a finite 
element code (Smith and Griffiths, 2004). The expectation and variance of the flow response as 
well as auto and cross-covariance functions between conductivities and heads are determined 
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over the ensembles of realizations through well-known formulas of descriptive statistics, at each 
time the prior random fields are updated with the EnKF and pf-EnKF. 
 
4.2 Description of the numerical experiment 
 
4.2.1 Spatial distribution of conductivities 
 
The aquifer is a square domain with side of 1280 m discretized into 64x64 finite elements each 
of which with a length of 20 m (Fig. 4.1). A log-conductivity value yref(xi) is assigned to each 
finite element ei for i=1,…,4096 according to the following procedure. First, an unconditional 
multi-Gaussian random field with exponential autocovariance function and isotropic correlation 
scale ax=ay=160 m is simulated using a modified version of the random field generator SGSIM 
(Deutsch and Journel, 1996). Second, the V-transform (Bárdossy, 2006): 
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with arbitrarily chosen parameters m=5, k=2 and α=1 is applied to a realization g(x) of the 
multi-Gaussian random field to obtain the transformed v(x) field of equation 4.5. Third, the 
Gaussian distribution is imposed to the v(x) field as y’=G-1[FV(v)] where FV(v) is the empirical 
CDF of the v(x) field and G[·] the theoretical Gaussian CDF. Finally, such y’(x) field is scaled 
to a normally distributed y field with mean value µY=1.223 and standard deviation σY=1 as: 
yref(x)=µY+y’(x)σY. Each one of these values is assumed to be constant within its finite element 
ei. It is worth mentioning that since yref(x) is normal distributed, ks(x)=exp(yref(x)) is lognormal 
distributed. 
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Fig. 4.1 Dimensions of the flow domain. The locations of conductivity measurements (empty circles) and 
of hydraulic heads observations (filled circles) are indicated. The triangle marks the location of the 
pumping well. Boundary conditions of the problem at t≥0 are indicated on the sides of the flow domain. 
 
 
Because the statistical parameters of a simulated random field are reproduced over an ensemble 
of realizations, the individual realizations may show slightly different statistics but all will 
preserve the same characteristics of spatial dependence. These characteristics are given by the 
copula model with the aforementioned parameters. The bivariate density plot of this theoretical 
copula model is displayed in Fig. 4.2. Note that this copula density is very close to the Gaussian 
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copula density. Therefore, the results of the present study are limited to those cases of non-
homogeneous aquifers with symmetric spatial structure of conductivities. The resulting log-
conductivity field yref(x) mentioned above is considered to represent a “true state of the nature” 
and is called in this study the reference field. This represents the distribution of conductivities in 
a hypothetic aquifer. Their statistical descriptors will be shown later (Table 4.1). 
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Fig. 4.2 Bivariate V-transformed theoretical copula density model with parameters m=5.0; k=2.0 and 
α=1.0 used to generate the reference field (hypothetic aquifer). 
 
 
4.2.2 Histories of hydraulic heads 
 
The reference field of the synthetic aquifer is utilized to generate groundwater head responses 
by solving a transient flow condition with finite elements. The north and south sides of the 
aquifer are considered no-flow boundaries whereas east and west sides are Dirichlet boundaries 
with prescribed heads of 200 m and 198 m, respectively. At t=0 days the initial hydraulic head 
is of 200 m at each node and for t>0 days a volumetric constant rate of 150 m3/day is pumped 
out of the aquifer with a well located at X=640 m and Y=640 m until flow reaches steady state at 
approximately t=5 days. This period of time is subdivided in 20 equally sized time steps of 
∆t=0.25 days intervals. For the purpose of the present numerical example, it is assumed that 
groundwater head responses are available at times t=0.25, t=0.75, t=1.5, t=2.5, t=3.75 and t=5 
days at the 36 locations indicated with filled circles in Fig. 4.1. Thus, 36 records with six head 
responses are generated. These indirect, informative variables of the hydraulic conductivity of 
the aquifer are considered available transient piezometric observations. At each one of the 
aforementioned six times, the updating process of both the EnKF and pf-EnKF schemes is 
performed, at the other times only the forecast step is performed. Storage coefficient is assumed 
to be equal to 0.0001 overall the aquifer. 
 
4.2.3 Definition of the prior ensemble of realizations 
 
The reference field is sampled at the locations marked with empty circles in Fig. 4.1. Such 
values are considered direct conductivity measurements. The mean and variance of these 
samples as well as the frequency distributions are reported in Fig. 4.3(a). The empirical rank 
correlation functions of the samples in the directions X, Y and in all directions are shown in Fig. 
4.3(b). It can be observed in this figure that it is possible to fit a common theoretical correlation 
model to all functions, since the reference field steam from an isotropic random field. The 
statistical parameters of mean, variance and correlation function displayed in Fig. 4.3(a),(b), are 
used to parameterize a multi-Gaussian random field and generate two thousand unconditional 
realizations with a modified SGSIM random field simulator (Deutsch and Journel, 1996). Such 
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set of realizations represents an initial approximation to the hydraulic conductivity of the 
reference aquifer. In this way, a practical situation is modeled in which the descriptive 
parameters of the aquifer are roughly estimated a priori in the sense that they differs from the 
real statistics of the reference field (Table 4.1). The number of simulated realizations of the 
prior field ensures the stability of the error measures presented next, according to some 
preliminary simulations. 
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Fig. 4.3 Statistical parameters of the samples taken from the reference field. a) Histogram of the log-
conductivity of the sampled field. The solid thick-line represents the fitted normal distribution function 
with mean and variance indicated in the figure. b) Empirical rank correlation functions of the sampled 
field in the X-direction (X) and Y-direction (Y). The omni-directional (O) empirical rank correlation 
function is also indicated. The solid thick-line represents the fitted theoretical auto-correlation model 
corresponding to the exponential function with the indicated correlation scale a. 
 
 
4.3 Performance assessment criteria 
 
The average at each location over the set of conditional realizations of any of the filters at a 
particular time provides an estimate of the conditional expected value of the random field at that 
spatiotemporal location. The map of such values is referred to as the mean log-conductivity 
field and it can be viewed as a “minimum variance” estimated map of the corresponding random 
field. 
 
To evaluate quantitatively the accuracy of the estimation, three error measures are considered: 
the root mean square error (RMSE), mean absolute error (MAE) and linear error in probability 
space (LEPS). 
 
The RMSE (L1) is evaluated by: 
 

( ) ( )( )21 *
1

1
n refy yi in i

L −∑
=

= x x                                        (4.6) 

 
where yref(xi) is the reference log-conductivity at location xi; y*(xi) is the estimated mean log-
conductivity at location xi and n is the number of log-conductivities in the flow domain. RMSE 
is therefore a measure of the spread of the estimated field around the reference field. 
 
The MAE (L2) is computed by: 
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The MAE is a measure of the difference of the means of the estimated and reference fields. 
 
The LEPS (L3) is calculated by (Bárdossy and Li, 2008): 
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where F(yref(xi)) is the value of the empirical distribution function of the reference field 
associated to the log-conductivity at location xi; F(y*(xi)) is the value of the empirical 
distribution function of the estimated mean field associated to the log-conductivity at the same 
location xi. Different from the RMSE and MAE, the LEPS is no affected by the units of the 
variables. It varies from zero to one representing a perfect and an imperfect estimation, 
respectively. 
 
To evaluate the variance of the estimation (precision), three additional error measures are 
determined: The SPREAD, average absolute deviation (AAD) and total (spatially averaged) 
estimation variance (Vartot). 
 
The SPREAD (L4) is computed as: 
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where s2

en(xi) is the variance of the estimation obtained statistically over the ensemble of 
realizations at location xi. SPREAD is thus a measure of the dispersion of the estimated field 
around the reference field. 
 
The AAD (L5) is defined as (Zhou et al., 2011): 
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where m*(xi) is the average of the estimation over the ensemble of realizations at location xi and 
y*(xij) is the estimated log-conductivity at location xi of realization j. 
 
The Vartot (L6) is defined as (Shöniger et al., 2012): 
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Vartot is often interpreted as a measure of the absorbed information in spatial estimation. 
 
As mentioned earlier, criteria L1 to L3 and L4 to L6 are measures of the local accuracy and 
precision of the estimations, respectively. Generally speaking, the smaller the values of such 
norms, the more locally accurate and precise the estimations. However, these measures do not 
provide any information about the goodness of the estimation in terms of the reproduction of the 
patterns of spatial variability in the reference field. Indeed, several characteristics of the spatial 



 59

variability can be analyzed (asymmetry, entropy, connectivity, etc.) but in this study the analysis 
is limited to evaluate the reproduction of the empirical rank correlation functions and bivariate 
empirical copulas of the reference field. 
 
To evaluate the reproduction of the rank correlation functions, correlation scales are determined: 
 

( )
0 sI dρ
∞

= ∫ h h                                                       (4.12) 

 
where ρs(h) is the empirical rank correlation function associated to a vector h. Integral scales of 
the mean rank correlation functions over all functions of the conditional fields are compared to 
the integral scales of the reference field. The smaller the differences between both scales, the 
closer the reproduction of the rank correlation function. 
 
The rank correlation function is comparable to the semivariogram or correlogram. It expresses 
the Spearman correlation coefficient among pairs of rank values for various vectors h. The 
distance where the function reaches zero is in fact the correlation scale (range) defined in 
geostatistics. Empirical rank correlation functions can be calculated by: 
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where R(xi) and R(xj) are values of the empirical distribution functions associated to the log-
conductivity at locations xi and xj respectively; σR(xi) and σR(xj) are standard deviations of such 
values and n(h) is the number of pair of values approximately separated by vector h. 
 
To check the reproduction of the bivariate distributions, Kolmogorov distances are computed: 
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where Ĉ(u1,u2) is the mean empirical copula over all copulas of the conditional fields and 
C(u1,u2) is the copula of the reference field. These copulas are determined for different vectors 
h. 
 
4.4 Results and discussions 
 
This section shows that groundwater head responses are worth to be taken into account in prior 
uncertainty models to reveal information about the spatial variability of the hydraulic 
conductivity of its source field. This fact is illustrated with the results of the evolution of the 
conditional mean estimates and of its uncertainty as well as with the results of the reproduction 
of the spatial variability of the so-called reference field once the conditioning process is 
completed (t=5 days). 
 
4.4.1 Estimations of the conditional mean and of its uncertainty 
 
In the experiment established in the previous section, at the end of each update step, an 
ensemble consisting of two thousand realizations of the log-conductivity conditional to 
hydraulic heads is obtained with each filter. Each set of realizations is utilized separately to 
calculate the conditional mean and standard deviation (uncertainty) at each location. 
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Fig. 4.4 plots the estimated mean log-conductivity fields of the EnKF and pf-EnKF after 
integrating groundwater head observations until times t= 0.75 days and t= 2.5 days. The mean 
log-conductivity field of the prior ensemble of realizations is also illustrated for comparison 
purposes. Since the prior random field is unconditional, local mean values over its ensemble of 
realizations approach to the expectation of the prior random field, consequently the mean prior 
field appears to be homogeneous. However, the information provided by groundwater head 
responses gradually modifies the prior spatial distribution of log-conductivities. Observe that 
the values of all measures of error reported to the right of the mean fields of the EnKF indicate 
that such fields become closer to the reference field. This does not occur with the estimated 
mean fields of the pf-EnKF. As a matter of fact, the norms indicate greater errors than the prior 
errors. Nevertheless, it will be shown further that the estimates of the pf-EnKF reproduce better 
the statistical parameters of the reference field than the prior estimates despite of the behavior of 
the norms reported in figure 4.4. 
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Fig. 4.4 The estimated mean log-conductivity fields of the EnKF (middle) and pf-EnKF (right) at times t= 
0.75 days and t= 2.5 days. The mean prior log-conductivity field is also shown for comparison (left). The 
numerical values of the measures of local accuracy of the estimation are indicated to the right of the 
estimated mean fields. L1=RMSE (root mean square error), L2=MAE (mean absolute error) and 
L3=LEPS (linear error in probability space). 
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Fig. 4.5 The estimated mean log-conductivity fields of the EnKF (middle) and of the pf-EnKF (right) at 
time t=5 days. The reference field is shown for comparison purposes (left). The numerical values of the 
measures of local accuracy of the estimation are indicated to the right of the estimated mean fields. The 
meaning of L1, L2 and L3 is explained in Fig. 4.4. 
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After the conditioning process is completed, that is, after integrating the six groundwater head 
responses of each piezometer, the estimated mean log-conductivity fields reaches the final 
patterns displayed in Fig. 4.5. It is evident that the spatial distribution of conductivities observed 
at previous times (Fig. 4.4) evolve and more details of the reference field are reveled. The 
measures of local accuracy reported to the right of the fields, indicate that the estimation of the 
EnKF is more accurate than that of the pf-EnKF however the spatial distribution of 
conductivities of the later appears to be closer to the spatial structure of the reference field. This 
will be evaluated quantitatively further. 
 
As groundwater head responses are integrated in the conditioning process, an evolution of the 
local prior variances also occurs. Fig. 4.6 shows the evolution of the standard deviation 
(uncertainty) of the log-conductivity field. It can be seen in the pictures that, overall, standard 
deviation decreases with time. Looking at the measures of uncertainty reported to the right of 
each picture, it is found that this reduction is more significant in the estimates of the pf-EnKF 
than in the estimates of the EnKF. The pf-EnKF is therefore more efficient than the EnKF but 
this efficiency does not correspond to higher accuracy, as mentioned earlier. The evolution of 
the standard deviation in the general case will depend on a number of factors: error in the initial 
approximation, number and location of piezometers, boundary conditions, etc. and the pf-EnKF 
seems to provide more precise estimates, although no necessarily such estimates will be more 
accurate locally. 
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Fig. 4.6 Evolution of the standard deviation of the estimation of the log-conductivity at times t= 0.75 
days, t=2.5 days and t=5 days which is calculated with the estimates of the EnKF (left) and pf-EnKF 
(right). The measures of the uncertainty of the estimation are reported to the right of each image. 
L1=SPREAD, L2=AAD (average absolute deviation) and L4=Vartot (total prediction variance). 
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Figs. 4.7(a),(b) display the frequency distributions of log-conductivities of the reference field, 
prior ensemble and final posterior ensembles of the EnKF and pf-EnKF respectively. The global 
mean and global variance of each set of realizations are used to fit a theoretical normal 
distribution function to each frequency distribution. Observe that the prior distribution function 
is located to the left of the distribution of the reference field indicating that the prior distribution 
underestimates the global mean of the log-conductivity of the reference field. It is also noticed 
that the posterior distributions functions are displaced toward the right of the prior distribution 
function. This indicates the attempt of the conditioning process to lead the prior distribution 
function toward the distribution function of the reference field. It is worth to mention that the 
posterior distribution function of the pf-EnKF encompasses better the frequencies of extreme 
values of the reference field, but its variance is larger than the variance of the reference field. 
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Fig. 4.7 Frequency distributions of log-conductivities. a) From the reference field, the set of prior 
realizations and of the set of posterior realizations of the EnKF at time t=5 days. b) From the reference 
field, the set of prior realizations and of the set of posterior realizations of the pf-EnKF at time t= 5 days. 
 
 
4.4.2 Reproduction of the spatial variability 
 
The empirical rank correlation functions of a set of conditional realizations at time t=5 days are 
compared against those of the reference field for the X-direction in Fig. 4.8(a) and for the Y-
direction in Fig. 4.8(b). The average rank correlation functions of the two thousand conditional 
realizations of the EnKF and of the pf-EnKF are also illustrated in that figures. The average 
rank correlation functions of both filters exhibit stronger correlation than the correlation of the 
reference field in both directions, particularly at short distances. This can be explained by the 
performance of the linear interpolation technique of both filters. In fact, this technique utilizes a 
single autocovariance function as the solely descriptor of spatial variability optimizing thus the 
interpolation around mean values, but disregarding the interpolation at specific percentiles 
making the interpolation coarser. Nevertheless, the average rank correlation functions of the 
conditional realizations of both filters approximate better the rank correlation of the reference 
field than the average rank correlation functions of the prior field. Therefore, groundwater head 
responses certainly help to identify the spatial variability of its source field. 
 
The results of the reproduction of the empirical copulas of the reference field are now examined. 
Plots of empirical copula densities (ECD) for a distance of 20 m in the X-direction are shown in 
Fig. 4.9. The ECD of the reference field is shown for comparison purposes in Fig. 4.9(a). Figs. 
4.9(b),(c) are ECD of the mean fields of the EnKF and pf-EnKF, respectively. Observe that the 
higher densities of these copulas correspond well with the higher densities of the ECD of the 
reference field yet the ECD of the mean fields are narrower. This indicates that the correlation 
of the estimated mean fields is stronger than the correlation of the reference field at that 
distance. The correlation of the mean field of the pf-EnKF is slightly stronger than that of the 
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mean field of the EnKF because its ECD is narrower, but the shape of its copula resembles 
better the copula density of the reference field. The better reproduction of this copula density 
will be confirmed quantitatively further. Figs. 4.9(d),(e) illustrate the mean ECD of an ensemble 
of two thousand copula densities each of which established with the values of each conditional 
realization of the EnKF and pf-EnKF, respectively. It is evident that the shape of these ECD is 
quite better defined than the ECD of the mean fields. Note that these plots make more evident 
what has been mentioned previously in this paragraph. 
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Fig. 4.8 Empirical rank correlation functions of the reference field (line with symbols), of a set of 
conditional realizations at time t= 5 days (thin lines) and of the average of two thousand rank correlation 
functions at time t= 5 days (thick lines). a) In the X-direction. b) In the Y-direction. 
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Fig. 4.9 Bivariate empirical copula densities in the X-direction direction for a distance of 20 m. a) From 
the reference field. b) and c) From the estimated mean field at time t= 5 days. d) and e) Average of two 
thousand copula densities from the conditional realizations at time t=5 days. 
 
 
Fig. 4.10 displays comparisons between the copulas of the reference field and the mean copulas 
of an ensemble of two thousand copulas. The comparisons are representative of the copulas in 
the X-direction for distances of 20 m, 40 m and 80 m. To evaluate quantitatively the goodness of 
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the reproduction of the copulas of the reference field, the value of the Kolmogorov distance 
(D1) is indicated at the lower left corner of each figure. Based on these numerical values, it can 
be say that the fields of the pf-EnKF reproduce better the copulas of the reference field than the 
fields of the EnKF. Therefore, the bivariate spatial structure of the reference field appears to be 
better captured by the pf-EnKF. 
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Fig. 4.10 Bivariate empirical copulas for three different distances in the X-direction at time t=5 days. In 
the first column are shown the mean copulas from the conditional realizations of the EnKF. In the second 
column are reported the mean copulas from the conditional realizations of the pf-EnKF. The values at the 
lower left corner of each figure are the Kolmogorov distances (D1). 
 
 
The values of the criteria D1 between the copulas of the reference field and the mean copulas of 
an ensemble of two thousand copulas with respect to several distances in the X-direction is 
shown in Fig. 4.11(a). The same results but now from the copulas in the Y-direction are shown 
in Fig. 4.11(b). It is clear that the fields of the pf-EnKF reproduce better the copulas of the 
reference field at short distances in the X-direction and at all distances in the Y-direction. At 
long distances in the X-direction, the bivariate copulas of the reference field are better 
approximated by the fields of the EnKF. 
 
4.4.2 Summary of results 
 
At last, the statistical parameters of the estimated fields are compared against those of the 
reference field in Table 4.1. Generally speaking, the global mean of the reference field is rather 
well captured by both filters however its variance is underestimated by the EnKF and 
overestimated by the pf-EnKF. The correlation scales of the reference field are overestimated by 
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both filters. Observe in Table 4.1 that none of both filters performs consistently better, but they 
provide better estimates of the spatial structure of the reference field than the prior estimates. 
Therefore it seems to be convenient to consider both filters in applications. 
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Fig. 4.11 Average of the Kolmogorov distance (D1) computed with two thousand copulas from the 
conditional realizations of the log-conductivity at time t= 5 days for ten different separations. a) In the X-
direction. b) In the Y-direction. 
 
 
 

Table 4.1 Comparison of the statistical parameters of the reference field against those of the 
prior and estimated fields after completed the conditioning process (t= 5days). 

 
Reference Prior Estimated Estimated 
Field Fields Fields (EnKF) Fields (pf-EnKF) 

 
Mean, ln(Ks(m/day))     1.19     0.87     1.16     1.20 
Standard dev., ln(Ks(m/day))     0.90     0.75     0.72     1.29 
Correlation scale in dir. X, m 147.5 230.0 162.1 196.5 
Correlation scale in dir. Y, m 190.0 230.0 188.0 188.2 

 
 
 
4.5 Conclusions 
 
The benefits of integrate groundwater head responses into prior uncertainty models to 
characterize non-homogeneous aquifers with respect to their hydraulic conductivities employing 
the modified EnKF and the proposed pf-EnKF presented in chapter 3 were illustrated in this 
chapter. A hypothetic aquifer, called the reference field, wherein the distribution of 
conductivities was generated by simulation of a random field with the V-transformed normal 
copula was considered for illustrative purposes. The descriptive parameters of a prior multi-
Gaussian model were estimated by sampling of the reference field. Groundwater head responses 
were generated from the solution of a transient groundwater flow problem over the reference 
field and a set of histories of heads recorded at specified locations was integrated with the 
conditioning process of both filters. 
 
The quality of the reproduction of the univariate and bivariate statistics of the reference field 
was evaluated with different quantitative criteria. None of both filters was found to perform 
consistently better, but the results provided by them showed that groundwater head responses 
were capable of revealing information about the spatial variability of the distribution of 
conductivities in the reference field. The conditioning processes of both filters enhanced the 
prior estimates. 
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The reference field used in this study was in fact only an idealization of a true aquifer which 
will certainly be quite more intricate and also three-dimensional, but the numerical techniques 
that have been presented will provide useful approximations in practical situations. 
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CHAPTER 5 
 

DETECTION OF PREFERENTIAL 
SEEPAGE PATHS IN A TRIANGULAR 
DAM CORE 
 
 
 
 
 
 
 
Preferential seepage is a term utilized to describe concentrated movements of fluid in the flow 
domain at contrastingly high seepage velocities. This type of seepage occurs in heterogeneous 
media because fluid moves faster along paths of least resistance. The least resistive pathways 
are associated to continuous zones of higher hydraulic conductivities than those of the 
surrounded zones. The presence of continuous high conductive zones in earthen structures has 
different sources (ICOLD, 1995, 1997, 2004; Fell and Wan, 2005). They can be the result of 
one or some of the following events: soil cracking, ongoing internal erosion and continuous 
permeable zones containing coarse and/or poorly compacted materials, to mention a few. 
 
To observe preferential seepage paths in the core of an earth dam, it is sufficient in principle to 
characterize the distribution of conductivities and to analyze seepage velocities for a specific 
seepage condition. However, this is not a simple matter because in practice only a limited 
number of direct conductivity measurements are available. In addition, the distribution of 
conductivities in embankments does not depend on the intrinsic properties of materials and 
compaction quality only, but also on events such as those aforementioned. 
 
To characterize hydraulic conductivity fields, its spatial variability is often interpreted as a 
realization of a random field (Dagan, 1989; Gelhar, 1993; Zhang, 2002; Rubin, 2003). The 
parameterization of the random field is obtained based on the observations of the realization 
itself assuming the field is ergodic (Deutsch and Journel, 1992; Chilés and Delfiner, 1999). 
Then estimations and the uncertainty associated to them are determined at unobserved locations 
by either estimation or simulation geostatistical techniques (e.g. Journel and Huijbregts, 1978; 
Deutsch and Journel, 1992; Chilés and Delfiner, 1999). 
 
The multi-Gaussian random field model has been widely used for representing spatial variations 
of the hydraulic conductivity of soils (Fenton and Griffiths, 1996, 1997; Gui et al., 2000; López-
Acosta and Auvinet, 2003, 2004; Ahmed, 2009). Such model is often justified in practice only 
on the basis of a univariate lognormal distribution of conductivities (e.g. Freeze, 1975; 
Hoeksema and Kitanidis, 1985; Fogg, 1986; Woodbury and Zudicky, 1986; Gelhar, 1993; 
López-Acosta and Auvinet, 2011). The higher order densities, i.e., the bivariate, trivariate, n-
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variate densities are “sightlessly” assumed. In other words, the decision of considering multi-
Gaussian dependence is not data based but it has the advantage of its mathematical simplicity 
and easy inference. 
 
The phenomena of preferential seepage paths suggest that spatial variability of conductivities 
holds characteristics of non multi-Gaussian dependence (Ch. 1). In fact, it is well-known that in 
multi-Gaussian random fields the most continuous paths have conductivities around the mean 
(Silliman and Wright, 1988). Thus, connected paths of extreme values do not occur in multi-
Gaussian random fields (Journel and Alabert, 1989; Journel and Deutsch, 1993; Gómez-
Hernández and Wen, 1998; Journel and Zhang, 2006). However, preferential seepage paths are 
the result of the way high and low conductivities are spatially interconnected over the flow 
domain (Fogg, 1986; Bradbury and Muldoon, 1990; Webb and Anderson, 1996; Teles et al., 
2004; Zappa et al., 2006; Sánchez-Vila et al., 2006). Therefore, random fields with non multi-
Gaussian dependence have to be considered to conveniently represent continuity of extreme 
values in hydraulic conductivity fields. 
 
Conductivity random fields with non multi-Gaussian dependence characteristics such as higher 
continuity for high/low values can be generated using different approaches (Journel and 
Huijbregts, 1978; Journel, 1983; Yamazaki and Shinozuka, 1988; Christakos, 1990; Grigoriu, 
1998; Sánchez-Vila et al., 1996; Popescu et al., 1998; Chilès and Delfiner, 1999; Emery, 2008). 
In practice, the parameterization of these models is not always straightforward due to lack or 
inexistence of direct conductivity measurements. Therefore, multi-Gaussian models have to be 
considered a priori most of the times. These models however can be improved by integrating 
indirect observations of the hydraulic conductivity. 
 
In fact, hydraulic head observations can be related to the actual distribution of conductivities by 
solving the inverse problem. An inverse solution requires that the hydraulic head field obtained 
from the seepage model honor observations of the hydraulic head themselves at the observed 
locations. Different inversion techniques are found in the scientific literature yet the stochastic 
simulation of conductivity fields conditional to dynamic variables such as piezometric heads has 
received considerable attention (e.g. Gómez-Hernández et al., 1997; Zhu and Yeh, 2005; 
Alcolea et al., 2006; Capilla and Llopis-Albert, 2009). 
 
The purpose of this chapter is to characterize a non multi-Gaussian field that mimics continuous 
zones of high hydraulic conductivities inside a hypothetic earth dam. The characterization of 
such conductivity field is of great interest in practice because this would permit the detection of 
preferential seepage paths by visual inspection of the associated velocity field. For such 
purpose, a solution to the stochastic inverse problem is obtained by means of the modified 
Ensemble Kalman Filter (EnKF) presented in chapter 3. The results are compared against those 
obtained from the proposed pf-EnKF. In the examples presented in this chapter, the prior 
distribution of conductivities in the flow domain is represented by an ensemble of unconditional 
multi-Gaussian realizations. Hence a situation will be modeled wherein the presence of 
continuous zones of high conductivities is ignored a priori and the only source of information 
about the actual distribution of conductivities in the core will be provided by histories of 
piezometric heads. 
 
The methodology is illustrated on a reference synthetic field that describes the distribution of 
saturated log-conductivities in a triangular dam core (Harr, 1962; Poluvarinova-Kochina, 1962; 
Bear et al., 1968). Such field is assumed to represent a “true state of the nature” in which 
continuous zones of high conductivities are apparent. To generate synthetic histories of 
hydraulic heads, a transient flow condition is solved by modeling a “rapid” drawdown of the 
reservoir. Then the hydraulic head field is sampled at selected locations with specified intervals 
of times. The set of conductivity realizations conditional to hydraulic head observations are used 
to make predictions of velocity fields. Preferential seepage paths are identified by visual 
inspection of these fields. The error of the predictions is also analyzed. 
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The chapter is organized as follows. The problem is stated in section 5.1; both reference fields 
of conductivities and hydraulic heads are described in section 5.2 and the stochastic inversion 
methods are presented in section 5.3; results are discussed in section 5.4, before concluding the 
study in section 5.5. 
 
5.1 Statement of the problem 
 
The study is conducted on the internal core of a rockfill dam which is idealized with a triangular 
cross-section with full head of water as in Harr (1962) (Fig. 5.1). Seepage through triangular 
sections has been considered by several authors (Poluvarinova-Kochina, 1962; Bear et al., 1968; 
Collins, 1971). In these cases seepage through the internal core is analyzed only, since hydraulic 
head losses through rock slopes are negligible for practical purposes. 
 
 

 
 
Fig. 5.1 Rockfill dam and the idealization of the cross-section of its internal core (Harr, 1962). a) Rockfill 
dam. b) Idealization. 
 
 
In the following analysis, it is assumed that seepage through the dam core is described by the 
following continuity equation and Darcy’s law (e.g. Bear, 1972; Freeze and Cherry, 1979; de 
Marsily, 1986): 
 

( ) ( )s s s
H H HK K S

x x y y t
 ∂ ∂ ∂ ∂ ∂  + =  ∂ ∂ ∂ ∂ ∂   

x x   (5.1) 

 
subject to: 
 
initial condition;                                     Ht=0=h0                                                                     (5.2) 
 
and boundary conditions: 
 
Constant hydraulic head;                       

D DH hΓ =                                                                   (5.3) 
 
No normal flow, specific discharge;     q(x,t)·n(x)=0         x∈ΓN                                         (5.4) 
 
Seepage face;                                         

D DH zΓ =                                                                   (5.5) 
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where: H is the hydraulic head [L], h0 is the initial head in domain Ω [L], hD is the prescribed 
head on Diritchlet boundary segments ΓD [L]; Ks(x) is the hydraulic conductivity [L/T], q(x,t) is 
the prescribed flux across Neumann boundary segments ΓN, n(x) is an outward vector normal to 
the boundary ΓN and Ss is the specific storage [L-1]. In this study, the log-hydraulic conductivity 
is considered as a random field, while specific storage is treated as a deterministic constant. The 
numerical solution of the seepage problem described by equations 5.1-5.5 is obtained by finite 
elements (Istok, 1989; Smith and Griffiths, 2004). 
 
5.2 Description of the numerical experiment 
 
5.2.1 Log- conductivity field 
 
The distribution of saturated log-conductivities Y(x)=ln(Ks(x)) in the core is assumed to be 
described by a non multi-Gaussian random field with marginal Gaussian distribution functions. 
The mean of such field is -1.193 and its variance is unity. Thus the distribution of saturated 
conductivities have a mean of Ks=0.5 m/day and a coefficient of variation CV=131%. The 
random field is also assumed to be strictly stationary characterized by a Spearman rank 
correlation function given by the spherical correlogram with isotropic correlation range a=15 m 
(Deutsch and Journel, 1992; Genest and Favre, 2007). In addition, the random field is 
considered to present an asymmetric dependence structure which can be described by means of 
the V-transformed copula (Bárdossy and Li, 2008; Li and Bárdossy, 2009) with parameters 
m=0.0, k=2.5 and α=0.25. 
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Fig. 5.2 Log-conductivity realization of a random field generated by means of the V-transformed copula 
with parameters m=0.0; k=2.5 and α=0.25. Their statistical descriptors are also shown. a) Realization of 
log-conductivities Y(x)=ln(Ks(x)). b) Histogram. c) Rank correlation functions in the horizontal and 
vertical directions. d) Conditional Kendall's tau correlation functions (Manner, 2010) in the horizontal 
direction. 
 
 
Based on the aforementioned information, the V-transformed copula is used to generate a set of 
unconditional log-conductivity realizations over a square domain of 102.5 m of side evenly 
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subdivided in 41x41 square elements. One representative realization of that set is chosen and the 
values over the dam core are mapped onto a finite element mesh assuming each value remains 
constant within its element. The characteristic of the finite element mesh are explained further. 
This realization is assumed to represent a “state of the nature” in which continuous zones of 
high conductivities are present in the core. Another realization in the ensemble would in fact 
show a different distribution of log-conductivities but it would preserve the same characteristics 
of the spatial variability structure. 
 
The representative realization and its statistical descriptors are shown in Fig. 5.2. An 
exceedance correlation definition based on the Kendall's tau correlation coefficient is 
considered for quantifying the asymmetry of such field (Manner, 2010). The solid line in Fig. 
5.2(d) represents the asymmetry of the spatial dependence. The more continuous and pervious 
zones in the realization have conductivities Ks(x) about 20 times higher than the mean. This 
characteristic is consistent with a recent study on the spatial distribution of conductivities in the 
core of an actual earth dam where preferential seepage has been detected (Smith and Konrad, 
2011). In addition, the specified correlation range is believed to be reasonable because under 
current construction practices, no significant continuity of log-conductivities is expected in the 
cross-section of the core, since material is compacted in lifts along its longitudinal section. 
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Fig. 5.3 The discretized flow domain and the locations of nine piezometers (filled circles). 
 
 
5.2.2 Histories of hydraulic heads 
 
To generate histories of hydraulic heads, a transient flow condition in the core is solved by 
prescribing hydraulic heads at upstream and downstream surfaces and assuming an impervious 
boundary at the base. The core is subdivided in 861 isoparametric finite elements of 2.5x2.5 m 
per side (Fig. 5.3). These are populated with the log-conductivity field of Fig. 5.2(a), as 
explained. The transient flow condition is modeled as follows. At t=0 day, the initial head is at 
steady state (Fig. 5.4(a)). At t>0 day, a drawdown with constant rate of 0.81 m/day is prescribed 
to the upstream surface until it reaches the elevation shown in Fig. 5.3. This transitory seepage 
condition is modeled assuming full saturation of the core during the drawdown of the reservoir 
(rapid drawdown) (Fig. 5.4(b)). 
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Fig. 5.4 The hydraulic head reference fields [m]. a) At steady state. b) At transient state after a “rapid 
drawdown” of the reservoir i.e. assuming the material remains saturated. 
 
 
The prescribed drawdown is reached at t=70 days. This period is chosen as the simulation 
duration and is subdivided in 40 time steps of 1.75 days interval. Piezometric heads are 
observed at the nine locations shown in Fig. 5.3, at times t=t1, t=t2 and thereafter at an evenly 
spanned time interval of 3.5 days. Hence each data set considered for stochastic inversion 
consists of 21 observations. The history of each piezometer is shown in Fig. 5.5. The 
observations are assumed to be error-free. 
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Fig. 5.5 Histories of hydraulic heads. 
 
 
5.2.3 Initial ensembles of log-conductivities 
 
Two sets of one thousand unconditional realizations of the log-conductivity random field are 
generated with a modified version of the SGSIM code (Deutsch and Journel, 1992). The 
statistical descriptors of each ensemble are shown in Table 5.1. The ensemble size is chosen 
based on the stability of the numerical results to different error measures (chapter 3). Note that 
in both cases considered in Table 5.1 the actual asymmetry of the reference field is ignored, 
since the realizations are multi-Gaussian. In other words, the presence of continuous zones of 
high conductivities in the core is ignored a priori. For case 2, is also assumed a less 
heterogeneous and less continuous spatial structure than that of the reference field. It is worth to 
mention also that in both cases shown in Table 5.1, only the histories of hydraulic heads by 
themselves will modify the prior spatial structure of log-conductivities in the core; that is, it is 
considered that direct conductivity measurements are unavailable or inexistent. 
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Table 5.1 Statistics of the initial ensembles of unconditional log-conductivities Y(x)=ln(Ks(x)) 
used for inverse modeling. 

 
Case Ensemble  Ensemble  Correlation Asymmetry 

   Mean  variance  structure1  structure 
 

1 -1.193  1.0  a=15 m  none 
2 -1.193  0.8  a=13 m  none 

 
1Spherical with isotropic correlation range a 

 
 
5.2.4 Numerical implementation 
 
The stochastic inverse model is coded in FORTRAN programming language on LINUX 
platform and run in the HPC cluster “Tonatiuh” at the Institute of Engineering, UNAM. 
 
5.3 Conductivity fields conditional to histories of hydraulic heads 
 
In the subsequent analysis, an ensemble of nr realizations of the prior random field of the log-
conductivity at a particular time t=0 i.e. Y0(x) is considered. The dimension of this field is n. 
Each realization of such random field is used to solve flow equations of the seepage model and 
an ensemble of realizations of the random field of hydraulic heads at time t=1 i.e. H1(χ) is thus 
obtained. The dimension of this field is N. 
 
Once all marginal distributions of both Y0(x) and H1(χ) have been transformed numerically into 
Gaussian distributions according to the procedure discussed in chapter 3, one can define for 
each realization in the ensemble, a vector of dimension n having prior values of the log-
conductivity i.e. 0U =[y’t-1(x1),y’t-1(x2),…,y’t-1(xn)], a vector of dimension Nh constituting by 

observations i.e tZ =[h’1,t,h’2,t,…,h’Nh,t] and a reduced vector of dimension Nh comprising 
forecasted states (prior values of the hydraulic head at the locations of the observations) i.e. 

f
tH =[h’t(χ1),h’t(χ2),…,h’t(χNh)]. 

 
An updated realization of log-conductivities at time t=1 i.e. u

tU =[ŷ’t(x1), ŷ’t(x2),…,ŷ’t(xn)] can 
be computed by (Vázquez et al., 2014): 
 

0
u f
t t t t = + − U U K Z H                                                   (5.6) 

 
where Kt is a matrix of size n x Nh consisting of weighting functions λl(χα) obtained from the 
solutions of the following system of equations: 
 

( ) ( ) ( )' ' '

1 1

, ,
hNn

l H Y H
l

C s C sα
α

λ τ τ
= =

=∑∑ χ   (5.7) 

 
where CH’(s,τ) are auto-covariance functions between piezometric heads at s=(χα,χj) for 
j=1,…,N and τ=t=1; CY’H’(s,τ) are cross-covariance functions between log-conductivities and 
hydraulic heads at s=(x,χj) and τ=(t=0,t=1). The functions are determined statistically over the 
ensembles of realizations. 
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After obtaining the weighting functions λl(χα) for each location x, the matrix Kt can be 
assembled as: 
 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

1 2

h

h

N

t

n n n N

λ λ λ

λ λ λ

 
 
 =
 
  

χ χ χ

K

χ χ χ

…

…

  (5.8) 

 
In addition to the update step of the EnKF method presented above, an update step based on p-
field simulation can be performed as proposed in chapter 3. This extension of the EnKF method 
is called from now on pf-EnKF method. 
 
A CCDF of log-conductivities at each location x i.e. FŶ’(ŷ’;xi) for i=1,2,…,n is established 
statistically over the ensemble of realizations updated with the modified EnKF method and 
samples of log-conductivities at each location x i.e. ŷ’t(xi) for i=1,2,…,n can then be drawn from 
their corresponding conditional distributions by the p-field simulation technique as (Srivastava, 
1992; Froidevaux, 1993): 
 

( ) ( )( )' 1
ˆ 1'

ˆ ,      1, 2, ,t i t iYy F p i n−
−= = …x x                               (5.9) 

 
where pt-1(xi)  are so-called probability fields (p-fields) of the log-conductivity. The p-fields can 
be established with the values of the empirical distribution functions of each realization before 
the update step as explained in Ch. 3. 
 
After back-transforming each local cumulative distribution of the updated log-conductivity 
random field following the procedure described in chapter 3, a vector u

tY (ŷ1(x),r) of dimension 
n consisting of nr back-transformed, log-conductivity realizations ŷ1(x) is formed. Such vector 
consist of an ensemble of posterior realizations of the random field of the log-conductivity at 
time t=1 i.e. Y1(x). The conditional mean 1ˆ ( ; )Y H tµ x  and conditional variance 2

1ˆ ( ; )Y H tσ x  of 

such random field can be estimated statistically over the set of realizations in u
tY : 

( ) ( )( )

( ) ( )( ) ( )( )

1 1
1
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1 1 1
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rr

t y t r
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t y t r m t
n

µ

σ

=

=

=

= −

∑

∑

x Y x

x Y x x
  (5.10) 

 
where m(x;t1) is the arithmetic mean at x and time t1; nr is the number of realizations in the 
ensemble. 
 
The process described above is repeated at the next time for which observations are available 
but the new prior ensemble of log-conductivity realizations is the posterior one at time t=1 i.e. 
Y1(x). 
 
5.4 Results and discussion 
 
The results in this section shown that the mean of the velocity fields obtained from ensembles of 
log-conductivity realizations conditional to histories of hydraulic heads provide useful 
information on the existence and location of preferential seepage paths in the core, despite of the 
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incomplete prior knowledge of the statistical parameters of the reference log-conductivity field. 
The confidence and the error of the estimations are also analyzed in this section. 
 
5.4.1 Prediction of velocity fields 
 
In the experiments of this chapter, at the end of each update step, an ensemble consisting of 
1000 thousand realizations of log-conductivities conditional to piezometric observations is 
obtained for each analyzed case. The set of realizations after the conditioning process is 
completed (at t=70 days) is used within a Monte Carlo framework to predict seepage velocities 
and to quantify the uncertainty of the prediction. In the method of Monte Carlo, the forward 
seepage problem is solved numerically by finite elements for the seepage and boundary 
conditions of equations 5.1 to 5.5 and using the conductivity values of each conditional 
realization. The mean and variance of the velocity field are determined statistically over the 
ensemble of realizations. 
 
In the following discussion, only the mean velocity field at the end of the drawdown (at t=70 
days) is used to detect, by visual inspection, preferential seepage paths in the core and to 
compare the locations of such paths against those in the velocity field associated to the reference 
field of conductivities. Both the EnKF and the pf-EnKF methods are employed for this purpose. 
 
Fig. 5.6(a) shows the velocity field associated to the reference conductivity field at the end of 
the drawdown (at t=70 days). The patterns of preferential seepage in such figure clearly 
correspond to the continuous zones with higher log-conductivities in the reference field of Fig. 
5.2(a). The analysis of a velocity field is therefore useful to detect preferential seepage paths. 
The reference velocity field is illustrated for the purpose of comparing the mean of the velocity 
fields obtained from the conditional realizations of conductivities at that particular time. 
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Fig. 5.6 Mean velocity fields [m/day] obtained from the conductivity realizations conditional to nine 
histories of hydraulic heads. The velocity field of the reference field is also shown for comparison 
purposes. 
 
 
Figures 5.6(b),(c) shown the mean of the velocity fields corresponding to the conditional 
ensembles of the log-conductivity of case 1 that are obtained with the EnKF and pf-EnKF, 
respectively, after integrating the nine histories of hydraulic heads sequentially until time t=70 
days. It can be noticed on such figures that the velocity fields shown preferential seepage 
pathways in the core (clearer zones). This observation holds also for the velocity fields of case 2 
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(Fig. 5.6(d),(e)). As can be observed in all aforementioned figures, the results of both filters are 
very similar in both analyzed cases. 
 
5.4.2 Confidence intervals 
 
The confidence of the predicted velocity field after the conditioning process is completed (at 
t=70 days) is also considered in the analysis. Confidence intervals with the mean estimation 
plus and minus one standard deviation are determined. The results in two control sections are 
discussed next. One of such sections is along the upstream surface and other is at the middle of 
the core. 
 
The confidence interval of the velocities along the upstream surface that is obtained for case 1 
with the conditional realizations of the EnKF shows that overall the reference velocities are 
included in the interval, except at some elevations with extreme velocities that corresponds to 
seepage pathways that leaves the upstream surface of the core (Fig. 5.7(a)). At the middle of the 
core the reference velocities are well bracket in the confidence interval (Fig. 5.7(b)). The 
confidence intervals calculated with the conditional realizations of the pf-EnKF are narrowed 
than those of the EnKF and failed to include reference velocities in several elevations of the 
control sections, as can be seen in Figs. 5.7(c),(d). 
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Fig. 5.7 Case 1. Confidence intervals for the forecasted velocities at time t=70 days (dashed lines). 
Reference velocities are indicated by solid lines. Confidence intervals of the EnKF (left). Confidence 
intervals of the pf-EnKF (right). a) and c) Profiles along the upstream plane. b) and d) Profiles along the 
middle core plane. 
 
 
For case 2, confidence intervals obtained with the conditional realizations of the EnKF shown 
more irregular profiles that deviate more of the reference velocities than in case 1. This behavior 
may be explained by the poorer initial approximation assumed in case 2. However, the 
estimated confidence interval is still representative of the reference velocities (Fig. 5.8(a),(b)). 
The confidence intervals of the pf-EnKF are narrowed and failed to include the reference 
velocities at several elevations. Therefore, despite the velocity fields of Fig. 5.6 looks very 
similar, the velocity fields of the EnKF are closer to the reference velocity field than that of the 
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pf-EnKF. This conclusion will be reviewed next by means of an error analysis of the estimation 
of the reference velocity field. 
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Fig. 5.8 Case 2. Confidence intervals for the forecasted velocities at time t=70 days (dashed lines). 
Reference velocities are indicated by solid lines. Confidence intervals of the EnKF (left). Confidence 
intervals of the pf-EnKF (right). a) and c) Profiles along the upstream plane. b) and d) Profiles along the 
middle core plane. 
 
 
5.4.3 Cross-validation 
 
In this section, the cross-validation between of the estimated and reference velocity fields is 
conducted. For the sake of completeness, cross-validations of the estimated log-conductivity 
and hydraulic head fields are also considered. Besides two well-known measures of goodness-
of-fit, namely the mean absolute error (MAE) and the square root of the mean square error 
(RMSE), the so-called linear error in probability space (LEPS) is evaluated (Bárdossy and Li, 
2008). It is defined by: 
 

LEPS= 1/n ∑
=

n

i 1
|F(y*(xi)) – F(yref(xi))|   (5.10) 

 
where |·| means absolute value; F(yref(xi)) is the value of the cumulative distribution function 
(CDF) corresponding to location xi of the reference field; F(y*(xi)) is the value of the CDF also 
at location xi of the estimated field. The fields y*(xi) and yref(xi) represent, interchangeably, the 
estimated and reference fields respectively of hydraulic log-conductivity, hydraulic head and 
velocity. 
 
The results of cross-validation of each analyzed case are shown in Table 5.2. The cross-
validation is performed after completing the conditioning process (at t=70 days). The LEPS is 
easier to compare than the MAE or RMSE because the former is not affected by the units of the 
variables. It varies from zero to one representing a perfect and an imperfect estimation 
respectively. 
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Table 5.2 Results of crossvalidation of the estimated mean log-conductivity Y(x) field and 
predicted mean hydraulic head H(x) and velocity V(x) fields after complete the conditioning 
process (t=70 days). The mean hydraulic head and velocity fields were obtained statistically 
from the results of the forward solution using the conditional fields of hydraulic conductivities. 
Results of each analyzed case are indicated. 

 
EnKF  pf-EnKF 

 Case Field 
   RMSE MAE LEPS RMSE MAE LEPS 
 
  y(x) 0.887 0.674 0.211 0.933 0.715 0.207 
 1 h(x) 1.519 1.242 0.016 1.377 1.151 0.017 
  v(x) 0.015 0.008 0.142 0.018 0.010 0.155 
  
  y(x) 0.897 0.688 0.215 1.066 0.827 0.247 
 2 h(x) 1.699 1.406 0.018 2.035 1.477 0.025 
  v(x) 0.015 0.008 0.138 0.016 0.009 0.155 

 
 
 
In terms of the LEPS, the best estimation corresponds to the hydraulic head field in both 
analyzed cases. The estimated log-conductivity field presents the highest errors in both cases. 
These results illustrate the well-known “smoothing effect” of the flow equations; namely similar 
hydraulic head behaviors can be produced by different hydraulic conductivity fields 
(Delhomme, 1979; Chilès and Delfiner, 1999). The LEPS suggests that one should expect 
similar errors in the estimation of both the log-conductivity and velocity fields, although some 
statistical compensation effect may be present at estimating velocities. The LEPS also indicates 
that overall the EnKF performs better than the pf-EnKF, except at estimating the log-
conductivity of the reference field of case 1. Results from the other measures shown very 
similar trends. 
 
5.5 Conclusions 
 
In this chapter, a stochastic inverse modeling approach to address the issue of preferential 
seepage paths detection in earth dams was presented. A simulated field with apparent 
continuous zones of high hydraulic conductivities was assumed to represent the actual 
distribution of conductivities in the core of a hypothetic earth dam. Such reference field was 
used to generate histories of piezometric heads by solving a transient flow condition associated 
to a “rapid” drawdown of the reservoir. Then solutions to the stochastic inverse problem were 
obtained via the modified EnKF and the proposed pf-EnKF methods. Both methods provided 
realizations of the log-conductivity field conditional to piezometric heads at specified times. 
 
The results of both filters showed that even an incomplete prior knowledge of the actual 
statistical parameters of the reference field as well as in the absence of direct conductivity 
measures, the identification of the main features of the spatial distribution of conductivities in 
the core is possible by integrating a limited set of hydraulic head observations in the prior multi-
Gaussian model. The mean velocity fields associated to the characterizations were able to 
provide useful information about the existence and location of preferential seepage paths in the 
core. 
 
The spatial variability of the hydraulic conductivity in actual earthen structures is in fact three-
dimensional and more complicated seepage patterns than a merely “rapid” drawdown of the 
reservoir take place during their life time period. The presented methodology can readily be 
extended to address such conditions. 
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GENERAL CONCLUSIONS  
AND PERSPECTIVES 
 
 
 
 
 
 
 
Summary 
 
This thesis focused on the development of numerical tools to characterize heterogeneous soil 
masses with respect to their hydraulic conductivities from a probabilistic perspective of 
analysis. For this purpose, two algorithms were developed; one based on the so-called V-
transformed copula and other based on the Ensemble Kalman Filter (EnKF) method. The 
algorithms were validated through numerical experiments. 
 
The discussion was first oriented to the study of the concept of dependence defined in the 
context of random fields. This examination paid on evidence the necessity of considering 
random fields with non multi-Gaussian dependence to represent uncertainty due to spatial 
variability of the hydraulic conductivity of soil masses. The V-transformed copula was adopted 
for this purpose. 
 
An inversion technique based on the Ensemble Kalman Filter was proposed. Both the original 
(EnKF) and the proposed (pf-EnKF) techniques were used to simulate conductivity random 
fields conditional to histories of hydraulic heads. In one numerical experiment, the conditional 
conductivity fields were used to predict seepage velocities in a transversal cross-section of the 
internal core of an idealized earth dam to identify preferential seepage paths. 
 
Findings and discussions 
 
The numerical experiments conducted in this research have shown that: 
 

• The V-transformed copula model is indeed a very flexible tool to represent structures of 
heterogeneity of soil hydraulic conductivity, in the sense that the maps generated with 
this model exhibit realistic characteristics of conductivity fields such as asymmetry and 
connectivity. It is recommended therefore for estimation and simulation purposes in 
geostatistical applications. 

 
• In the experiments aimed to characterize heterogeneous hydraulic conductivities, the 

original filter (EnKF) outperformed the proposed one (pf-EnKF) in terms of local 
accuracy, but the last captured better the bivariate empirical copulas of the reference 
field. It would be desirable to develop methods that are not only more accurate globally, 
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but also more accurate locally than their predecessors. However, this challenge is left 
for further research. The proposed method provided more accurate estimates of the 
histogram and correlation functions of the reference field than the prior estimates. Both 
the original and proposed filtering techniques were found to yield useful results even in 
conductivity fields with non multi-Gaussian dependence. 

 
• Histories of hydraulic heads are definitely worth to be taken into account in 

characterization process of the hydraulic conductivity of soil masses. All experiments 
showed that estimates of the hydraulic conductivity are improved at integrating 
hydraulic head responses in the characterization task. 

 
• Since the developed tools are based on the Monte Carlo simulation method, their 

execution may be time consuming in large dimensional problems. The use of high 
performance computing should be considered for their implementation. 

 
 
Recommendations for future research 
 

• The quality of the realizations generated with the models based on Ensemble Kalman 
Filtering could be improved by incorporating non lineal estimation techniques in the 
update step such as the indicator Kriging technique. 

 
• The models based on Ensemble Kalman Filtering could be extended to analyze more 

elaborated seepage patterns that occur in earthen dams like the first filling of the 
reservoir. 

 
• It is recommended to investigate in more detail the effect of the initial approximation on 

the performance of both inversion techniques based on the Ensemble Kalman Filter. 
 

• The copula and filtering models were used separately in the experiments but they could 
be combined in practical applications. For example, conductivity fields conditional to 
available measurements of conductivities themselves could be simulated first with the 
copula model then they could be made conditional to histories of hydraulic heads 
through Ensemble Kalman Filtering. 

 
• Tools based on the Ensemble Kalman Filter developed in this research were able to 

estimate hydraulic heads at different locations and times taken into account histories of 
the hydraulic head itself. In these cases non deformable porous media were considered. 
Histories of settlements could be incorporated into a model that account for 
deformability of the media in an analogous manner to that presented in this research to 
predict subsidence in soil masses subjected to withdraw of groundwater and to estimate 
uncertainty of the prediction. 
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APPENDIX A 
 

BASIC CONCEPTS OF SEEPAGE IN 
SATURATED RANDOM MEDIA 
 
 
 
 
 
 
 
 
 
A.1 Darcy’s law 
 
The experimentally derived form of Darcy’s law was limited to one-dimensional flow. When 
the flow is three dimensional, one possible generalization of this is (Bear, 1972): 
 

s sK K grad ϕ= = −q J                                               (A.1) 
 
where; q  is the specific flux vector with components qx, qy, qz in the directions of the Cartesian 
x, y, z coordinates, respectively, and J is the hydraulic gradient with components in the x, y, z 
directions, respectively. The flow described by Darcy’s law is irrotational and laminar. 
Equation A.1 remains valid for three-dimensional flow in heterogeneous isotropic media. In 
such cases: Ks=Ks(x,y,z). The coefficient of proportionality Ks is called the hydraulic 
conductivity. In isotropic media, it is a scalar (dimensions L/T). When expressed solely on 
properties of the solid matrix the term permeability or intrinsic permeability (dimension L2) is 
used. Under certain conditions permeability may also vary with time. Subsidence and 
consolidation are phenomena associated with changes in permeability with time. In the present 
work, the term permeability or hydraulic conductivity is used evenly to refer to the hydraulic 
conductivity concept and only 1D and 2D analyses of seepage are considered. 
 
A.2 Hydraulic conductivity tensors 
 
Natural soil formations and embankment structures are, in fact, anisotropic with respect to 
hydraulic conductivity; that is, the magnitude of this property depends on direction. 
Permeability and hydraulic conductivity in these cases are, in fact, symmetric second rank 
tensors; therefore they need six independent experiments in order to be fully determined. In 
practice, principal directions of anisotropy are unknown both with respect to the direction of 
flow and to the direction of the gradient. Therefore, it is necessary to assume three major axes in 
which case only three independent experiments are needed. In certain porous media the 
complexity of the problem can be further reduced assuming only two principal directions, say x-
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y and z. In such cases, any direction in the x-y plane is a principal direction and only two 
independent experiments are needed. 
 
In practice, hydraulic conductivity measurements are often scarce and their corresponding 
directional measurements are virtually never determined. For this reason, geostatistical analyses 
of hydraulic conductivity tensors are practically impossible to carry out, although scalar 
hydraulic conductivity values can be used to represent anisotropic hydraulic conductivity 
through ellipses of anisotropy. An ellipse of anisotropy can be defined such that it describes 
higher continuity in the horizontal direction than in the vertical direction. Continuity is defined 
in geostatistics by the so-called correlation scale of the directional variograms or covariance 
functions. The numerical experiments presented in this thesis could be extended to incorporate 
Ellipses of anisotropy in further researches. 
 
A.3 Filtration velocity 
 
Hydraulic conductivity either a scalar or a tensor is a macroscopic characteristic of the porous 
medium. Thus, Aqv =  is a filtration velocity and not the mean flow velocity in the pores. At 
the microscopic scale the flow is governed by the equations of Navier-Stokes. These equations 
are valid at the pore scale and are subjected to intricate boundary conditions. The effective 
integration of these equations would require a detailed description of the geometry of the pore 
space. Only macroscopic seepage flow is considered in this work. 
 
A.4 Scale effects 
 
The hydraulic conductivity of porous media depends on the scale of observation. Dagan (1989) 
defines three different scales: the macroscopic scale of soil samples tested in the laboratory, the 
megascopic scale that involves the entire aquifer and several pumping wells and the scale of 
blocks in models of the finite element type (value defined inside an element of a finite element 
mesh). Different tensors of conductivities are defined at these scales. The reason for this scale 
effect to appear can be explained by the fact that hydraulic conductivity is not an additive 
variable. For example, two hydraulic conductivity values in series combine by harmonic 
averaging. Additive variables are water content and porosity since either both of those quantities 
combine by simple arithmetic means. 
 
At passing from the microscopic scale to the macroscopic scale of a specimen of laboratory, 
heterogeneity of the pore space is averaged and a single hydraulic conductivity value appears in 
the Darcy’s law. An interesting question that arises is whether a new Darcy’s law would emerge 
at passing from the macroscopic to the megascopic scales such that it makes possible to 
characterize the global formation with a single scalar “average” value of the hydraulic 
conductivity. This leads to the concept of effective conductivity. 
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APPENDIX B 
 

EFFECTIVE CONDUCTIVITY AND 
EQUIVALENT CONDUCTIVITY 
 
 
 
 
 
 
 
 
 
B.1 Effective hydraulic conductivity 
 
Effective hydraulic conductivity Keff, is defined as the second order tensor that relates the 
expected values of flux and hydraulic head through the generalized Darcy’s law: 
 

{ } { }ϕ∇−= EKqE eff                                              (B.1) 
 
where expectations mean averaging all the possible head and specific discharge fields that could 
be obtained with the ensemble of hydraulic conductivity fields. 
 
There are only two exact results for Keff available in the literature. The first one is that Keff is 

bounded by the harmonic mean [ ]( ) 11 −−= KEKh  and the arithmetic mean [ ]KEKa =  of the 
local hydraulic conductivities (Matheron; 1967): 
 

[ ]( ) [ ]KEKKE eff ≤≤
−− 11                                             (B.2) 

 
The second exact result is also due to Matheron (1967) who demonstrated that in a two-
dimensional infinite domain, effK  is equal to the geometric mean [ ]( )YEKG exp= , provided 
that Y is a multi-Gaussian random field with isotropic correlation function. 
 
The name effective is used only when the value effK  is constant throughout the domain. In this 
case, it is considered as a characteristic property of the medium. The presence of boundaries or 
sink/sources would cause effK  to be variable in space. In such cases, the term pseudoeffective 
conductivity is used, which emphasizes its local nature (e.g. Sánchez-Vila, 1997). 
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B.2 Equivalent conductivity 
 
Equivalent conductivity is defined as the conductivity of a fictitious homogeneous medium that 
conveys the same discharge as the actual, heterogeneous one for a given pressure head drop. It 
is also called the upscaled or block conductivity when it is used to replace a block of 
heterogeneous media by an equivalent, homogeneous one in numerical simulations. In this case, 
ensemble averages are replaced by spatial (in the volumetric sense) averages: 
 

ϕ∇−= bKq                                                       (B.3) 
where: 

∫=
V

qdV
V

q 1
   ∫∇=∇

V

dV
V

ϕϕ 1
                         (B.4) 

 
When the averaging volume is very large, with a representative size that is several times larger 
than the volume given by the integral scale of the heterogeneous (random) parameter, the 
averaging volume comprises all scales of heterogeneity. In such a case, a stationary random 
function that represents the media heterogeneity is called ergodic. Ergodicity imply hence that 
equivalent and effective (or pseudoeffective) parameters are identical. 
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APPENDIX C 
 

SOME DEFINITIONS AND PROPERTIES 
OF MULTIVARIATE COPULAS 
 
 
 
 
 
 
 
 
 
C.1 Multivariate copulas 
 

An n-variate copula (n-copula) is a mapping C  from the unit hypercube [ ] n
1,0  onto the unit 

interval [ ]1,0 ; that is: 
 

[ ] [ ]1,01,0: →
n

C                                                      (C.1) 
 
with the following properties: 
 

1) The range of ( )nuuC ,,1 …  is the unit interval [ ]1,0 ; 
2) ( ) 0,,0,,1 =nuuC ……  if any 0=iu , for ni ,,2,1 …= ; 
3) ( ) ii uuC =1,,,,1 …… , for all [ ]1,0∈iu ; 
4) ( )nuuC ,,1 …  is n -increasing in the sense that for every n -dimensional hypercube in 

the unit cube the corresponding measure assigned by C  has to be nonnegative. 
Bárdossy (2006) writes such condition by: 

 

( ) ( )∑
−

=

− ≥∆+∆+∑− =

12

0
111 0,,1 1

n
n

i i

i
nnn

jn jujuC …  

                                     If 10 ≤∆+≤≤ iii uu  and ∑
−

=

=
1

0

2
n

k

k
kji  

(C.2) 
 
From the properties above, it follows that C  is non-decreasing in each variable and uniformly 
continuous. Existence (almost everywhere) of all partial derivatives is also a useful property of 
copulas (Nelsen 2006). 
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C.2 Copulas and multivariate distributions 
 
Multivariate distribution functions and one dimensional distribution functions are linked to each 
other through a copula. Let consider an n -variate distribution ( ))(,),( 1 nZ zFzFFF …∈  with 

thj  univariate margins )( jzF . By a multidimensional version of Sklar (1959) theorem (e.g. 

Nelsen, 2006), it is proved that there is an associate copula [ ] [ ]1,01,0: →
n

C  that satisfies: 
 

( )nZ zzF ,,1 … ( ) ( )( )nzFzFC ,,1 …=  
                                                              { }nn zZzZP ≤≤= ,,11 …  
                                                              { } { }( )nn zZPzZPC ≤≤= ,,11 …  

(C.3) 
 
If the distribution is continuous, then the copula is unique. Conversely, if (·)ZF  is a continuous 
n -variate distribution function with univariate margins )(,),( 1 nzFzF …  and quantile functions 

)(,),( 1
1

1
nzFzF −− … , then: 

 
( ) ( ) ( ) ( )( )nZn uFuFFuuCuC 1

1
1

1 ,,,, −−== ……                           (C.4) 
 
C.3 Copula densities 
 
Reminding that the derivative of a probability distribution function ( )zFZ , equals the 
probability density function ( )zfZ , by differentiation of eq. C.4 with respect to all variables, the 
multivariate copula density is obtained as follows: 
 

( ) ( ) ( )( )
( ) ( ) ( )ii

n

in

n
n

nZ zf
zFzF
zFzFC

zzf Π
=∂∂

∂
=

11

1
1 ,,

,,
,,

…
…

…  

                                                    ( ) ( )( ) ( )ii

n

i
n zfzFzFc Π

=

⋅=
1

1 ,,…  

(C.5) 
 
where ( )nZ zzf ,,1 …  is the joint probability density function. Thus, defining 

( ) ( )nn zFuzFu == ,,11 … , the multivariate copula density can be expressed by: 
 

( ) ( )
n

n
n

n uu
uuCuuc

∂∂
∂

=
,,

,,,,
1

1
1 …

……                                     (C.6) 

 
Then, the multivariate copula density is: 
 

( ) ( )( ) ( )
( )ii

n

i

nZ
n

zf

zzfzFzFc
Π
=

=

1

1
1

,,,, ……                             (C.7) 
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C.4 Conditional copula density 
 
The multivariate conditional copula density can be expressed by (Bárdossy and Li, 2008; 
Salvadori et al., 2007): 
 

( ) ( )( )nn zFuzFuuc == ,,11 …
( )

( ) ( ) ( ) ( )nnn

nn

uuuczfzfzf

zzzf

,,,

1

··

,,,

211111

11

……

…+=  

                                                              
( )

( ) ( ) ( )n

nn

zfzfzf

zzzf

1111

11

··

,,,

…

…+∝  

(C.8) 
 
which expresses the relationship among the conditional joint density function ( )nn zzzf ,,, 11 …+ , 
of the n  conditioned measurements plus one, divided by the product of the 1+n  corresponding 
one-dimensional density functions ( )izf1 ; ni ,2,1 …= . The 1+n  variable is that of the 
variable u  at the conditioned point. The conditional copula density can then be viewed as the 
conditional joint distribution of n  conditionally uniform random variables. The value u  at the 
conditioned point can be obtained by evaluating the conditional copula density over the entire 
interval of values of ∈u [ ]1,0 . 
 
It is noteworthy that eq. C.8 defines a conditional copula density. For interpolation or simulation 
purposes, any sample at a target point should be drawn from the conditional copula which is 
equivalent to the conditional distribution function. Such conditional copula can be computed 
numerically by integration of the conditional copula density. Using a finite difference scheme 
the final equation for the conditional copula can be written: 
 

( ) ( ) uzFuzFuucuuuC
u

u
nnn ∆==∝∑

=

·)(,),(,,
*

0
111

* ……                           (C.9) 

 
for u∆ , small. More explicitly: 
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( ) ( ) ( )
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APPENDIX D 
 

MULTIVARIATE FUNCTIONS FOR THE 
V-TRANSFORMED COPULA 
 
 
 
 
 
 
 
 
 
D.1 The multivariate distribution function 
 
Bárdossy and Li (2008), Li and Bárdossy (2009), Bárdossy and Pegram, 2009 write the 
multivariate distribution function of the random field V(x) in eq. 2.7 of chapter 2 as (see foot 
note)1: 
 

( ) { }nnnn xXxXPxxH ≤≤= ,,,, 111 ……  

( ) ( )∑
−

=

+Φ∑−= =

12

0

11
n

n

j j

i
i

i mζ                                          (D.1) 

 
where: 

( )( ) ( )( )( )a
n

iaiT
i xbxb n1,,1 1

1 −−= …ζ                                       (D.2) 
 

0=ji  or  1; and 

∑
=

−=
n

j

j
jii

1

12                                                     (D.3) 

with: 

1)1(

1)1(

1

1

=−

−=−










−

=
ij

ij

if

if

v

b                                                (D.4) 

and 

                                                 
1 The variable X is used in this appendix instead of the variable V(x) in eq. 2.7 of chapter 2 in order to 
facilitate the reader to follows the original formulation more easily. 
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                                               (D.5) 

 
All elements in the vector m  are assumed to be equal2. 
 
D.1.1 Expansion of the series in eq. D.1 for the bivariate case 
 
In order to evaluate eq. D.1, the coefficients i , in eq. D.3 have to be determined. Then, the 
vectors T

iζ , in eq. D.2 can be constructed with both coefficients b  and a  in eq. D.4, which in 
turn depend on whether the transformed values ix , are positive or negative and depending on 

the signs in front of each term in T
iζ , determined by the superscripts i 's in ( ) ( ) nii 1,,1 1 −− … . 

Now, to obtain the i 's in eq. D.1, the ji ’s have to be make either 0 or 1 in order to fulfill both 
sides of the equality. The sequence is explicitly written for the bivariate case as follows: 
 
Para 2=n : 
 

∑
=

−=
2

1

12
j

j
jii  

 
Expanding the expression above, it is obtained: 
 

1
2

0
1 22 iii +=  

 
From eq. D.1, i  ranges from 0  to 3 . So, it can be written: 
 

1
2

0
1 20200 += →      2000 21 += →      001 ==ji ; 002 ==ji  

                     1
2

0
1 21211 +=   →      2111 21 +=   →      111 ==ji ;  012 ==ji  

                    1
2

0
1 22222 +=  →     2222 21 +=  →      021 ==ji ; 122 ==ji  

                    1
2

0
1 23233 +=   →     2333 21 +=  →       131 ==ji ; 132 ==ji  

 
Making the ji ’s either 0  or 1, the signs in front of the x ’s as well as the values of the b ’s and 
a ’s  can be determined. For example: 
 

            ( ) 11 10 =−       →    
v

b 1
= , 

α
1

=a  ; ( ) 11 20 =−      →    
v

b 1
= , 

α
1

=a  

                                                 
2 Note that equation ∑

−

=

=
1

0
2

n

j

j
jii , in Bárdossy and Li’s (2008) paper is replaced here by eq. D.3 for 

consistency. Moreover, the superscript i , of eq. D.1 in Bárdossy and Li’s (2008) paper is corrected here 

by writing ∑ =

n

j ji
1

 in order to get the correct sequence of signs in the expansion. 
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            ( ) 11 11 −=−    →    1−=b , 1=a  ; ( ) 11 21 =−      →    
v

b 1
= , 

v
a 1
=  

            ( ) 11 12 =−       →    
v

b 1
= , 

α
1

=a  ; ( ) 11 22 −=−   →    1−=b , 1=a  

            ( ) 11 13 −=−     →    1−=b , 1=a  ; ( ) 11 23 −=−    →   1−=b , 1=a  
 
Then, the vectors T

iζ , can be constructed by: 
 


























=

αα

ζ
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2
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1
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v
x

v
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ζ
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2
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v
xxT  
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= 2
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1

2 ; x
v
xT
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                                                   [ ]213 ; xxT −−=ζ  
 
Finally, the expansion of eq. D.1 for n=2 results: 
 

( ) { }2211212 ,, xXxXPxxH ≤≤=  
                                                             ( ) ( ) ( ) ( )mmmm +Φ++Φ−+Φ−+Φ= 3210 ζζζζ  

(D.6) 
 
A central step is then the determination of the sequence of 0 ’s and 1’s, of the ji ’s, which in 

turn determine the signs in front of the values for the x ’s inside the vectors T
iζ . Such sequence 

is presented in the table below for 3=n . 
 
 

Table E.1 Binary combinations of ij and resulting signs for n=3. 
 

i ij x1 x2 x3 

0 000 + + + 
1 100 - + + 
2 010 + - + 
3 110 - - + 
4 001 + + - 
5 101 - + - 
6 011 + - - 
7 111 - - - 

 
D.2 The multivariate density function 
 
The corresponding multivariate density function of jX  is obtained by differentiation of eq. D.1 
(Bárdossy and Li, 2008; Li and Bárdossy, 2009; Bárdossy and Pegram, 2009): 
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(D.7) 
 
where 1−Γ , denotes the determinant of the inverse matrix of Pearson correlation coefficients of 

the Y  normal random field to be transformed, T , is the transpose of the vectors ( )mi +ζ  and 

px  is the product of the x ’s variables according to the sequence exemplified below. 
 
D.2.1 Expansion of eq. D.7 for the bivariate case 
 
For 2=n , the expansion of eq. D.7 is: 
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APPENDIX E 
 

EQUATIONS OF SOME CONNECTIVITY 
FUNCTIONS 
 
 
 
 
 
 
 
 
 
E.1 The connectivity function and the two-point cluster function 
 
In addition to the Euler function used in chapters 1 and 2, the connectivity of simulated 
realizations can be quantified through connectivity functions. Although there is not a single 
mathematical definition for this concept (Renard & Allard, 2013), the so-called connectivity 
function of Allard (1994) is also employed in applications. The connectivity function of a 
stationary random field is defined as: 
 

( ) ( ) ( )1 ; | , Xz P Z Zτ = ↔ + + ∈  h x x h x x h                                   (E.1) 

 
The connectivity function express the probability that a value at x of X is connected “↔” with 
another value of X at x+h; where X is the subset of Ω with Ω in ℜ1,2 o 3 in which I(x;z)=1. I(x;z) 
is a binary indicator random variable such that: I(x;z)=1 if Z(x)≤z or I(x;z)=0 if Z(x)>z. 
 
In equation (E.1), { }↔ +x x h  necessitates { }( ), ( ) XZ Z + ∈x x h , therefore the unconditional 

probability [ ]P ↔ +x x h  can be decomposed by (Torquato et al., 1988): 
 

[ ] [ ] [ ]| , X , XP P P↔ + = ↔ + + ∈ + ∈x x h x x h x x h x x h  

( ) ( ) ( )2 1; ; Iz z Kτ τ=h h h                                                                  (E.2) 
 
where ( )IK h  is the non centered covariance function of X . Equation (E.2) is called the two-
point cluster function (Torquato et al., 1988). 
 
Recalling that: 1 2( ) [ ( ) ; ( ) ]IK P Z z Z z= ≤ + ≤h x x h ; equation (E.2) can be writing in terms of 
copulas as: 
 



 E-2

( ) ( ) ( )1 22 1 1 1 2 2; ; ( ), ( )Z Zz z C u F z u F zτ τ= = =h h                                      (E.3) 

 
where: 1 2( , )C u u  is the bivariate copula. 
 
To evaluate the average distance over which two points are connected, the integral scale of eq. 
(E.3) can be computed: 
 

( )
2 2

0

;I z dhτ τ
∞

= ∫ h                                                                 (E.4) 

 
 
 
 
 




