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ABSTRACT

The objective in this thesis project was design and to implement an algorithm based on
Granular Tabu Search (GTS) for the vehicle routing problem with capacity and route length
restrictions. The algorithm integrated in two phases: initial solution and improvement solution.
In the initial solution has been obtained by using the parameterized parallel saving method.
The improvement phase includes GTS; it considers a sequence of inter-route adjacent
solutions obtained by repeatedly removing a vertex from its current route and reinserting it
into another route, called relocate like procedure to less the vehicles number and, 2-optimal
technique use to earn another intra-route solution. Two different search strategies for selecting
the next movement were implemented, the first admissible movement and best admissible
move. Intensification and diversification of the search was achieved through frequency
penalization. Computational results were reported for a set of the 34 instances, which are 14
classical and 20 large-scale instances with between 51 and 484 customers. In tree instances
was obtained the optimal solution and significantly reduced the runtime in all instances.

Keywords: Distance Constrained Vehicle Routing Problem, Granular Tabu Search,
Metaheuristic, Saving Algorithm.

RESUMEN

En esta tesis se desarroll6 e implemento un algoritmo para el Problema de Ruteo de Vehiculos
con Restricciones de Distancia, basado en Busqueda TablU Granular (BTG). El algoritmo se
compone de dos fases. En la primera se construye una solucién inicial basada en el método de
los ahorros parametrizado; mientras que en la segunda fase, de mejora, se implementa la
basqueda tabu granular; asi como la generacion de dos vecindarios: ‘“relocate ‘“para
movimientos entre rutas y 2-optimal para movimientos dentro de la ruta. Dos estrategias de
busqueda son usadas para seleccionar un movimiento admisible y el mejor. La busqueda se
intensifica y diversifica mediante una frecuencia de penalizacién. Los resultados
computacionales son probados en un conjunto de 34 instancias: 14 instancias clasicas y 20 de
larga escala, las cuales contienen entre 51 y 484 clientes. Se obtuvo la solucion optima para
tres instancias y se redujo significativamente el tiempo de ejecucidn en todas las instancias.

Palabras clave: Problema de Ruteo Vehicular con Restricciones de Distancia, Busqueda Tabu
Granular, Metaheuristicas, Algoritmo de Ahorros.



INTRODUCTION

The vehicle routing problem (VRP) was proposed by Dantzig and Ramser (1959); it is
considerate like a combinatorial optimization and integer programming problem seeking to
service a number of customers with a fleet of vehicles. The VRP forms the core of logistics
planning and has been extensively studied by the operations research community. Often the
context is that of delivering goods located at a central depot to customers who have placed
orders for such goods. Implicit is the goal of minimizing the cost of distributing the goods.
The last five decades have seen enormous improvements in the research community’s ability
to solve these problems, due to better algorithms as well as better computational capabilities.
Toth and Vigo (2002) provide an up to date survey of problem variants, exact solution
techniques, and heuristics for the vehicle routing as well important advances and new
challenges techniques for modeling and solving the standard VRP and its many variants has
advanced significantly ( Laporte, 2009).

In this thesis project, is considering a variant of VRP called Distance Constrained Vehicle
Routing Problem (DCVRP) concerning to the commodities distribution between depots and
end users (customers), in which a set of vertices (customers), one depot D, homogeneous fleet
K and a maximum route length L. In particular, the solution of a VRP calls for the
determination of a set of routes, each performed by a single vehicle that starts and ends at its
same depot, to the DCVRP has to satisfy the vehicle capacity, and maximum route length, so
that all the requirements of the customers are fulfilled, all the operational constraints satisfied,
and the overall transportation cost is minimized (Toth and Vigo, 2002).

For this problem has provided several techniques; therefore, an interesting question is whether
the DCVRP can be solved more efficiently using new methods. The DCVRP was shown like
NP—-hard (non-deterministic polynomial-time hard). Hence, DCVRP be must look to means
such as integer programming. Previous work on exacts methods to the VRP and its variant
DCVRP; however these resolved relatively small instances, so that to implement approximate
algorithms has been a hard work, because these should efficient models, which have the ability
to solve large-scale problems. For the past two decades, the attention has been on approximate
method called Heuristics and Metaheuristics, which are methods used to obtain imports
solutions quickly(Cordeau et al., 2005).

The last ten years previous works on exact solutions have been proposed to VRP, and its
variants, for the best exact algorithms for the Capacitated Vehicle Routing Problem (CVRP)
have been based on either branch-and-cut or Lagrange relaxation/column generation. The
resulting branch-and-cut algorithm can solve to optimality all instances from the literature
with up to 135 vertices (Fukasawa et al. 2003). A branch-and-cut algorithm has described by
(R. Baldacci, Hadjiconstantinou, and Mingozzi 2004), which base in two commodity network
flow formulation of the CVRP. They used a variety of valid inequalities, including capacity,
framed capacity, partial multistar, hypotour and classical Gomory mixed integer cuts.
However, recent survey of the CVRP shows that the most promising exact algorithms for the
symmetric CVRP version are based on covering both exact and heuristic algorithms. An
example is the proposed algorithm by Franceschi, Fischetti and Toth (2006), which proposed a



new ILP-based refinement heuristic for Vehicle Routing Problems. They considerate the
DCVRP, where k minimum-cost routes through a central depot have to be constructed so as to
cover all customers while satisfying, for each route, both a capacity and a total-distance-
travelled limit. Their algorithm involves a procedure to generate a large number of new
sequences through the extracted nodes, as well as a more sophisticated Integer Linear
Programming (ILP) model for the reallocation of some of these sequences. An important
feature of their method is that it does not rely on any specialized ILP code, as any general-
purpose ILP solver can be used to solve the reallocation model. They reported computational
results on a large set of CVRP instances from the literature (with symmetric/asymmetric costs
and with/without distance constraints), along with an analysis of the performance of the new
method and its features. Interestingly, in 13 cases the new method was able to improve the
best-know solution available from the literature (Franceschi, Fischetti, and Toth 2006).

Many heuristics have been put forward. Some are purely constructive but most also include an
improvement phase, these are called heuristics “classical” because they do not contain
mechanisms allowing the objective function to deteriorate from one iteration to the next , these
are : Saving Algorithm, Set Partitioning Heuristics and Cluster-First, Route-Second Heuristics
(Laporte 2009), which will be described in the next section 1.5. So, there are Improvement
Heuristics, which can be employed to post-optimize a VRP solution. The first is called Intra-
route moves consist of improving each route separately by means of a TSP algorithm;
whereas, inter-route, the second, moves act on several routes simultaneously. It is common to
alternate between these two schemes within the same improvement heuristic.

The Metaheuristics can be broadly classified into local search, population search, and learning
mechanisms. Most Metaheuristics can be regarded as improvement methods. The best ones are
rather robust and perform extremely well even if they are initiated from a low-quality solution.
The number of variants of VRP Metaheuristics published in recent years; the most important
for the VRP and it is variant DCVRP are: tabu search, Toth and Vigo (2003) proposed a
granular tabu search, will be described in the chapter 2.So, Gendreau, Hertz and Laporte
(1994) proposed a new tabu search heuristic called TABUROUTE for the vehicle routing
problem with capacity and route length restrictions. The algorithm considers a sequence of
adjacent solutions obtained by repeatedly removing a vertex from its current route and
reinserting it into another route. This is done by means of a generalized insertion procedure
previously developed by the authors. During the course of the algorithm, infeasible solutions
are allowed (Gendreau, Hertz, and Gilbert Laporte 1994b). A variable neighborhood search
(Kytojoki et al. 2007) and adaptive large neighborhood search (Ropke and Pisinger 2006).
Finally, Nagata and Brdysy (20010) proposed a Memetic algorithm upon an existing edge
assembly crossover (Nagata, Braysy, and Dullaert 2010).

As we see it, many techniques have been proposed to solve the VRP and its variant DCVRP,
however in thesis project is based on tabu search (TS), which is one of the most widely used
and effective heuristic approaches available for the solution of optimization problems (Toth
and Vigo 2003), for this reason in this thesis project is used TS and with the suggestion of
Toth and Vigo (2003) called Granular Tabu Search (GTS), which is based on the use of
drastically restricted neighborhoods, not containing the moves that involve only elements that



are not likely to belong to good feasible solutions. These restricted neighborhoods are called
granular, and may be seen as an efficient implementation of candidate-list strategies proposed
for tabu-search algorithms(Gendreau 2003).

At the difference of Toth and Vigo (2003), this thesis project has two phases: Initial solution
and Improvement solution. The initial solution generated with Enhancements of the Parallel
Clarke and Wright Algorithm and TABUROUTE, for the capacity and route length restrictions.
The Improvement solution uses GTS like a local search method, what use a 2-optimal and
relocate mechanisms to generate move generation and consequently create the neighboring
solutions by changing one attribute or a combination of attributes of the initial solution given.
The attribute is concerned to arcs connecting a pair of customers. Once a neighboring solution
iIs identified, it is compared against the current solution. If the neighboring solution is better, it
replaces the current solution, and the search continues. The results obtained are evaluated in
14 classical instances and 20 size large instances (Toth P., A. Tramontani, 2008).
Subsequently will be use Local Search through GTS introduced by Toth and Vigo and has
yielded excellent results on the VRP (Toth and Vigo, 2003).

GENERAL OBJECTIVE

Design, development and implement a Metaheuristic based on Granular Tabu Search to solve
the Distance Constrained Vehicle Routing Problem.

The specific objectives were:

+ Make an examination of state of the art of the distance constrained vehicle
routing problem from the methods so commonly used to solve it.

» Search benchmarking instances and the best know solution according to
state of the art.

» Evaluate strategies using different parameters to the saving algorithm to
produce a good initial solution.

* Implement GTS and insert move to solve DCVRP, with the issue of
proposed ideas that are necessaries to explain the algorithm.

* Make a comparison of solutions according to reports.

* Propose future writings about DCVRP.

To meet the proposed objectives, the thesis project was organized as follows. In Chapter 1 is
presented the classical Vehicle Routing Problem and it is derived DCVRP, including some
exact and approximate resolution methods and mathematical formulation. Chapter 2 describes
the initial solution, obtained to implement parameterized saving parallel algorithm. Then,
Chapter 3 introduces the ideas about Tabu Search heuristic, Granular Tabu Search, Relocate
and 2-Optimal, which were implemented in this thesis project. Chapter 4 presents the
Metaheuristic proposed, including through first and second phase development, where was
forming the Construction and Route Improvement Metaheuristic. Here, results in terms of
solution quality as well as computation time are presented and discussed. Chapter 5 shows the
computational experiments and the obtained results. Finally, Chapter 6 outlines the

v



conclusions and further research in this field. Appendices, bibliographies are included at the
end.

SCOPE AND LIMITATIONS OF RESEARCH

The scope of this thesis project is limited to instances proposed from literature that are
generally used as a standard benchmark for the VRP and its variant DCVRP. The 14 standard
test problems are proposed by Christofides and Eilon (Christofides and Eilon 1969), which
include from 201 to 484 customers (Christofides, Mingozzi, and Toth 1979) and 20 large scale
instances (Feiyue Li, Bruce Golden, and Edward Wasil 2005) from 201 to 484 customers
proposed, which used :

e Distance matrix calculated by Euclidian Distance.
e Deterministic Local Search

The model can be applied, with minor modifications, for solving other pickup and delivery
problems, even as research project to PhD will be applied to the Single Vehicle Routing
Problem with Deliveries and Selective Pickups.



CHAPTER 1 VEHICLE ROUTING PROBLEM

In this section, are describe the typical characteristics of the vehicle routing problems by
considering their main components (road network, customers, depots, vehicles, and drivers),
the different functional constraints that can be imposed on the construction of the routes, and
the possible objectives to be achieved in the optimization process pertinent like introducing to
DCVRP, after their mathematical formulation and solution methods are given.

1.1 ASSOCIATED CONCEPTS

The distribution of commodities concerns the service, in a given time period, of a set of
customers by a set of vehicles, which are located in one or more depots, are operated by a set
of crews (drivers), and perform their movements by using an suitable road network. In
particular, the solution of a VRP calls for the determination of a set of routes, each performed
by a single vehicle that starts and ends at its own depot, such that all the requirements of the
customers are fulfilled, all the operational constraints are satisfied, and the overall
transportation cost is minimized (Toth and Vigo, 2002)

The road network, used for the transportation of goods, is usually described through a graph,
whose arcs represent the road sections, and whose vertices correspond to the road junctions
and to the depot and customer locations. The arcs (and hence the corresponding graphs) can be
directed or undirected, depending on whether they can be traversed in only one or in both
directions, respectively. Each arc is associated with a cost, which usually represents its length,
and a travel time, which is possibly based on the vehicle type or on the period during which
the arc is traversed(Bramel and Simchi-Levi ,1997).

The vehicle routing problem is composed by:

(i)  Customers: each customer has a demand, which should be satisfied
completely. Typical characteristics of customers are:
= Vertex of the road graph in which the customer is located;
=  Amount of commodities (demand), possibly of different types, which
must be delivered or collected at the customer;
= Times of the day (time windows) during which the customer can be
served (for instance, because of specific periods during which the
customer is available or the location can be reached, due to traffic
limitations);
= Times required to deliver or collect the goods at the customer location
(unloading or loading times, respectively), possibly dependent on the
vehicle type; and subset of the available vehicles that can be used to
serve the customer (for instance, because of possible access limitations
or loading and unloading requirements).
(i)  Depot: is the home depot of the vehicles and commodities, which can be
one or more that one. The route should start and finish in the same depot.



(iii)

Vehicles: Transportation of goods is performed by using a fleet of vehicles
whose composition and size can be fixed or can be defined according to the
requirements of the customers. Typical characteristics of the vehicles are:

= Capacity of the vehicle, expressed as the maximum weight, or
volume, or number of pallets, the vehicle can load,;

= Possible subdivision of the vehicle into compartments, each
characterized by its capacity and by the types of goods that can be
carried;

= Devices available for the loading and unloading operations;

= Subset of arcs of the road graph which can be traversed by the
vehicle; and

= Costs associated with utilization of the vehicle (per distance unit,
per time unit, per route, etc.).

= These are transport modality whereby goods are distributed to the
customers, can be a vehicles set with same capacity (homogeneous
fleet) or different capacity (heterogeneous fleet).

The most common side constraints include Capacity restrictions: a non-negative weight (or
demand) d; is attached to each city i > 1 and the sum of weights of any vehicle route may not
exceed the vehicle capacity. Capacity constrained VRP will be referred to as Capacitated
Vehicle Routing Problem (CVRP);

The number of cities on any route is bounded above by q (this is a special
case of (i) with d; =1 for all i > land D = q);

Total time restrictions: the length of any route may not exceed a prescribed
bound L; this length is made up of intercity travel times c; and of stopping
times §; at each city i on the route. Time or distance constrained VRP will
be referred to as DVRP;

Time windows: city i must be visited within the time interval [q;, b;] and
waiting is allowed at city i;

Precedence relations between pairs of cities: city i may have to be visited
before city j.

Obijectives considered (Toth and Vigo, 2002)in VRP are:

1. Minimization of the global transportation cost, dependent on the global

distance traveled (or on the global travel time) and on the fixed costs
associated with the used vehicles (and with the corresponding drivers).

Minimization of the number of vehicles (or drivers) required to serve all
the customers; balancing of the routes, for travel time and vehicle load.



The next picture (Figure 1.1) summarizes the VRP and their variants with. Describe the
Capacitated Vehicle Routing Problem CVRP, which is the simplest and most studied member
of the family, Distance-Constrained VRP, the VRP with Time Windows, the VRP with
Backhauls, and the VRP with Pickup and Delivery. For each of these problems, several minor
variants have been proposed and examined in the literature, and often different problems are
given the same name.

. Route length
[ CVRP » DCVRP

Backhauling Mixed service

Time Windows

VRPPD

[ VRPPDTW ]

Figure 1.1 The basic problems of the VRP class and their interconnections.

The most basic Vehicle Routing Problem (VRP) with one depot is called Capacitated Vehicle
Routing Problem (CVRP), which can be described as follows. A set of customers has to be
served by a fleet of identical vehicles of limited capacity. The vehicles are initially located at a
given depot. The objective is to find a set of routes for vehicles with minimal total length.
Each route begins at the depot, visits a subset of the customers and returns to the depot without
violating the capacity constraint. This thesis project considers a variation of CVRP called
Distance Constrains Vehicle Routing Problem (DCVRP), as a variant of VRP, which will be
described in the next section(Toth and Vigo ,2002).

1.2 DISTANCE CONSTRAINED VEHICLE ROUTING PROBLEM

The Distance Constrained vehicle Routing Problem has several minor variant of VRP, starting
of CVRP may be described as the following graph theoretic problem. Let G = (V, A) where V
= {0,..., n} is the vertex set and A is the arc set. Vertices i = 1,..., n correspond to the
customers, whereas vertex 0 corresponds to the depot. Sometimes the depot is associated with
vertex n + 1(Gilbert Laporte, Yves Nobert, and Martin Desrochers 1985).

A nonnegative cost, ¢;;, is associated with each arc (i, j) € A and represents the travel cost
spent to go from vertex i to vertex j. If G is a directed graph, the cost matrix ¢ is symmetric,
this thesis project considerate a symmetric matrix, the corresponding problem is called
Asymmetric Capacitated Vehicle Routing Problem (ACVRP). Otherwise, costs matrix have a
cost ¢; =c;;, for all (i, j) € A. In several practical cases, the cost matrix satisfies the triangle
inequality ¢, +c,; >c; for all i, j, k € A For some instances the vertices are associated with



points of the plane having given coordinates, and the cost c;, for each arc (i, j) €A, is defined

as the Euclidean distance between the two points corresponding to vertices i and j. In this case
the cost matrix is symmetric and satisfies the triangle inequality, and the resulting problem
called Euclidean SCVRP.

Each customer i (i = 1, ...,n) is associated with a known nonnegative demand, d;, to be
delivered, and the depot has a fictitious demand d , = 0. Given a vertex set S < V, let d(S) =
Y.i e s d; denote the total demand of the set.

A set of K identical vehicles, each with capacity Q, is available at the depot. To ensure
feasibility we assume that d;< C for each i = 1,..., n. In the case of DCVRP },,,..d;<Q;
where d; represents d demand each customer i, so the route should satisfy the capacity
requirement Q, i = 1...n .So, each vehicle based at the depot capacity D, {D > max(d ;) }.

The CVRP, as antecedent to DCVRP (See Figure 1.2), consists of finding a collection of
exactly K simple circuits (each corresponding to a vehicle route) with minimum cost, defined
as the sum of the costs of the arcs belonging to the circuits, and such that:

i.  Each circuit visits the depot vertex;
ii.  Each customer vertex is visited by exactly one circuit;
iii.  The sum of the demands of the vertices visited by a circuit does not exceed
the vehicle capacity, Q.

The first variant of CVRP is called Distance Constrained Vehicle Routing Problem, where for
each route the capacity constraint is replaced by a maximum length constraint. In particular, a
nonnegative length, is associated with each arc (i, j) € A, and the total length of the arcs of
each route cannot exceed the maximum route length, L.

Formally, DCVRP can be defined as follow:

Let a set of vertices (customers),one depot D, homogeneous fleet K and a maximum route
length L, find a minimum cardinality set of tours originating at the depot covers all vertices,
such that each tour (route) has length at most L (Ralphs et al. 2003) subject to :

e Each city, except the depot, must be visited exactly once and by a single
vehicle.

e Each vehicle starts and ends its journey at the depot. The sum of demands
contained on a vehicle's route may not exceed Q and the total length of the
route may not exceed a pre-specified upper bound L.

e The objective is to minimize the total distance or cost traveled while
satisfying all constraints.

The Figure 1.2 shows to L as maximal route length constraint (duration), which will be
satisfied, as soon demand associated each customer determinate by d; , it have to less or equal
to vehicle's route Q.



Figure 1.2 Visual representations of distance and demand constrains in DCVRP.

In following section is presented the formulation model of the DCVRP base on VRP as
Integer Programming Model. In this formulation is added Distance (cost) constrain as soon all
constraints above mentioned.

1.3 FORMULATION MODEL

The mathematical formulation to VRP and its variant DCVRP, use integer variables associated
with each arc or edge of the graph, which count the number of times the arc is traversed by a
vehicle. This mathematical formulation considers cases in which the cost of the solution can
be expressed as the sum of the costs associated with the arcs, and when the most relevant
constraints concern the direct transition between the customers within the route(Chung-Lun
Li, Simchi-Levi, and Martin Desrochers 1992).

The Mathematical Formulation to symmetric version more general DCVRP was proposed
Laporte, Norbert, and Desrochers, which assumed as usual, that the cost and the length
matrices coincide, ¢; = c; , for each i, j € A, i <] and a maximum length constraint. In
particular, a nonnegative length, ¢, associated with each arc i, j € A and the total length of the
arcs of each route cannot exceed the maximum route length, L. In this, thesis project was
considerate when arc lengths represent a service times, , it is associated with each customer i,

denoting the time period for which the vehicle must stop at its location.
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The formulation model is:

Min Z2(X) = Z Zcijxij (1.1)
ieV\{n} j>i

D X+ D% =2VieV\{0}, (1.2)
h<i j>i

D % =2K, (1.3)
jEV\{O}
D> % <Js|-r'(S)VS =V \{0},S =@ (1.4)
ieS }:S
x; €{0,1} Vi, j eV \{0},i< j, (1.5)
X,; €{0,1,2} Vj eV \{0} (1.6)
Notation:

The constraint (1.1) minimize the objective function, the degree constraints (1.2) and (1.3)
impose that exactly two arcs are incident into each vertex associated with a customer and that
2K arcs are incident into the depot vertex, respectively. The restriction (1.4) imposes the
connectivity of the solution, the vehicle capacity, and the maximum route length requirements,
by forcing that a sufficient number of arcs leave each subset of vertices. Given a subset S of
customer vertices, the quantity r’(S) represents the minimum number of vehicles needed to
serve all customers in S. This quantity is given by the maximum between r(S), which takes
into account the capacity constraints, and the smallest value v satisfying:

v=/H, (S)IL] ,v=r(S),..., min {K, |S[}, (1.7)

Where is the optimal cost of a multiple TSP visiting all customers in S and using exactly v
tours passing through the depot. Since the multiple TSP is an NP-hard problem, an
approximation from below of the above value may be obtained by using any lower bound on
the value of H, (S) (G. Laporte, M. Desrochers, and Y. Nobert 1984).

1.4 EXACT ALGORITHM

In this section are presented the most common exact algorithms used to solve the
DCVRP(Roberto Baldacci et al., 2010).

1.4.1 Branch and Bound

Branch & Bound (B&B) is a general algorithm for finding optimal solutions of various
optimization problems, especially in discrete and combinatorial optimization. It consists of a
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systematic enumeration of all candidate solutions, where large subsets of fruitless candidates
are discarded in masse, by using upper and lower estimated bounds of the quantity being
optimized(Barnhart et al. 1998).

It is a general algorithm for founding optimal solutions of various optimization problems,
especially in discrete and combinatorial optimization. It consists of a systematic enumeration
of all candidate solutions, where large subsets of fruitless candidates are discarded en masse,
by using upper and lower estimated bounds of the quantity being optimized.

1.4.2 Branch and Cut

The method is a hybrid of branch & bound plus cutting plane methods. The method solves the
linear program without the integer constraint using the regular simplex algorithm. When an
optimal solution is obtained, and this solution has a non-integer value for a variable that is
supposed to be an integer, a cutting plane algorithm is used to find further linear constraints
which are satisfied by all feasible integer points but violated by the current fractional solution.
If such an inequality is found, it is added to the linear program, such that resolving it will yield
a different solution which is hopefully "less fractional". This process is repeated until either an
integer solution is found (which is then known to be optimal) or until no more cutting planes
are found (Savelsbergh, 1997).

1.4.3 Branch and Price

Branch & Price, is a method that the procedure is based on Column Generation rather than
Row Generation, which sets of columns are left out of the LP relaxation of large Integer
Programming because there are too many columns to handle efficiently and most of them will
have their associated variables equal to zero in an optimal solution anyway. Then to check
optimality, a sub problem, also called the “pricing problem” is solved to identify columns to
enter the basis. If such columns are found, the LP is optimized. Branching occurs when no
columns “price” out to enter the basis and the LP solution does not satisfy integrality
conditions (Barnhart et al., 1998)

1.5 APPROXIMATE ALGORITHMS

Because of the VRP is so hard to solve exactly and algorithmic behavior is highly
unpredictable, a great deal of effort has been invested on the design of heuristics. The classical
heuristics usually consisting in construction phase followed by a relatively simple post
optimization phase, and Metaheuristics based on new optimization concepts developed over
the past fifteen to twenty years. Since the performance of heuristics can only be assessed
experimentally it is common to make comparisons on a set of four- teen benchmark instances
proposed by Christofides, Mingozzi and Toth (1979) (CMT) which range from 50 to 199
cities. The best known solution values for these instances have been obtained by Taillard
(1993) and Rochat and Taillard (1995). We first describe some of the most representative
classical heuristics. An extensive survey is provided by Laporte and Semet (2002).
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Methods or approximation algorithms also can be derived directly from optimization
algorithms, by heuristically solving different phases of the process. The approximation
algorithm much of the emphasis was put on quickly obtaining a feasible solution and possibly
applying to it a post optimization procedure. These methods considered the following:

e Flexibility to use good starting solutions (which the practitioner can usually
provide, based on his/her knowledge of the problem, or based on a known
solution of some similar problem).

e The ability to perform sensitivity analysis (resolve the problem with
slightly different problem data) quickly.

e To find algorithms with probably good run times and with possibly good
(optimal) solution quality.

1.5.1 Classical Heuristics for the Vehicle Routing Problem

Several families of heuristics have been proposed for the VRP. These can be broadly classified
into two main classes: classical heuristics, developed mostly between 1960 and 1990, and
Metaheuristics, whose growth has occurred in the last decade. Most standard construction and
improvement procedures in use today belong to the first class(Bramel and Simchi-Levi 1995).

These methods perform a relatively limited exploration of the search space and typically
produce good quality solutions within modest computing times. Moreover, most of them can
be easily extended to account for the diversity of constraints encountered in real life contexts.
Therefore, they are still widely used in commercial packages. In Metaheuristics, the emphasis
is on performing a deep exploration of the most promising regions of the solution space. These
methods typically combine sophisticated neighborhood search rules, data structures, and
recombination of solutions (Bruce L. Golden et al. 1998)

The quality of solutions produced by these methods is much higher than that obtained by
classical heuristics, but the price to pay is increased computing time. Moreover, the procedures
usually are context dependent and require finely tuned parameters, which may make their
extension to other difficult situations. In a sense, Metaheuristics are no more than
sophisticated improvement procedures, and they can simply be viewed as natural
enhancements of classical heuristics and they can be broadly classified into three categories
(Toth and Vigo, 2002):

» Constructive heuristics
* Two-phase heuristics
* Improvement methods

Most of the heuristics developed for the VRP apply directly to capacity constrained problems
(CVRP) and normally can be extended to the case where an upper bound is also imposed on
the length of any vehicle route (DCVRP), even if this is not always explicitly mentioned in the
algorithm description. Most heuristics work with an unspecified number K of vehicles, but
there are some exceptions to this rule. This is clarified for each case.
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e Constructive Methods

Gradually this method builds a feasible solution while keeping an eye on solution cost, but
they do not contain an improvement phase per se. Two main techniques are used for
constructing DCVRP solutions: merging existing routes using a savings criterion, and
gradually assigning vertices to vehicle routes using an insertion cost.

e Clarke and Wright Savings Algorithm

This algorithm is one of the earliest and most widely used heuristics due to its speed,
simplicity, and ease of adjustment to handle various constraints in real-life applications. It is
based on the feasible merging of sub tours using a savings criterion, which refers to the cost
saving achieved by combining two routes and using one vehicle rather than two. The Clarke
and Wright algorithm can also be time consuming since all savings must be computed, stored,
and sorted. Various enhancements have been proposed by a number of authors to speed up
computations and to reduce memory requirements(Clarke and Wright ,1964).

e Sequential Insertion Heuristic

The algorithms are based on sequential to problems with an unspecified number of vehicles.
The first expands one route at a time. The second applies in turn sequential and parallel route
construction procedures. Both methods contain a 3-opt improvement phase.

e Two-Phase Method

The problem is decomposed into its two natural components, clustering of vertices into
feasible routes and route construction, with possible feedback between the two stages. Two-
phase heuristics are divided into two classes: cluster-first, route-second methods and route-
first, cluster-second methods. In the first case, vertices are first organized into feasible
clusters, and a vehicle route is constructed for each of them. In the second case, a tour is first
built on all vertices and is then segmented into feasible vehicle routes. For example the sweep
algorithm applies to planar instances of the VRP. Feasible clusters are initially formed by
rotating a ray centered at the depot. A vehicle route is then obtained for each cluster by solving
a TSP. Some implementations include a post optimization phase in which vertices are
exchanged between adjacent clusters, and routes are optimized(Toth and Vigo, 2002).

e Route-First, Cluster-Second Methods

This method attempts to upgrade any feasible solution by performing a sequence of edge or
vertex exchanges within or between vehicle routes. Route-first, cluster-second methods
construct in a first phase a giant TSP tour, disregarding side constraints, and decompose this
tour into feasible vehicle routes in a second phase. This idea applies to problems with a free
number of vehicles.
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1.5.2 Metaheuristics for the DCVRP

In recent years several Metaheuristics have been proposed for the VRP. These are general
solution procedures that explore the solution space to identify good solutions and often embed
some of the standard route construction and improvement heuristics described previously. In a
major departure from classical approaches, Metaheuristics allow deteriorating and even
infeasible intermediary solutions in the course of the search process. The best-known
Metaheuristics developed for the VRP typically identify better local optima than earlier
heuristics, but they also tend to be more time consuming(Vega, Batista, and Pérez 2003).

Different types of Metaheuristic that have been applied to solve the VRP: Simulated
Annealing (SA), Deterministic Annealing (DA), Tabu Search (TS), Genetic Algorithms (GA),
Ant Systems (AS), and Neural Networks (NN). The first three algorithms start from an initial
solution x; and move at each iteration t from to x, a solution x,,; in the neighborhood N( x; )
of x, until a stopping condition is satisfied. If f(x) denotes the cost of x, then f (x,.; ) is not
necessarily less than f ( x,). As a result, care must be taken to avoid cycling. GA examines at
each step a population of solutions(Bruce L. Golden et al. 1998). Each population is derived
from the preceding one by combining its best elements and discarding the worst. In the
following sections are described the common Metaheuristics useful in this thesis project.

Simulated Annealing

Simulated annealing was first proposed by Kirkpatrick, Gelatt, and Vecchi (1983). It is a
randomized local search procedure where a modification to the current solution leading to an
increase in solution cost can be accepted with some probability. This algorithm is motivated
from an analogy with the physical annealing process used to find low-energy states of solids.
In condensed matter physics, annealing denotes a process in which a solid is first melted by
increasing its temperature; this is followed by a progressive temperature reduction aimed at
recovering a solid state of lower energy. If the cooling is done too fast, widespread
irregularities emerge in the structure of the solid, thus leading to relatively high energy states.
Conversely, a careful annealing through a series of levels, where the temperature is held long
enough at each level to reach equilibrium, leads to more regular structures associated with
low-energy states. Basically, the process is less likely to get trapped in a high-energy state
when the temperature is prevented from getting too far from the current energy level.

Their strategic belongs to a class of the local search algorithms that are known as threshold
algorithms. These algorithms play a special role with local search for two reasons. First, they
appear to be quite successful when applied to a broad range of practical problems. Second,
some threshold algorithms such a simulated annealing have a stochastic component, which
facilitates a theoretical analysis of their asymptotic convergence (Gendreau and Potvin, 2005).

Tabu Search

Tabu Search is basically a deterministic local search strategy where at each iteration, the best
solution in the neighborhood of the current solution is selected as the new current solution,
even if it leads to an increase in solution cost(Glover 1989). As opposed to a pure local
descent, the method will thus escape from a local optimum. A short-term memory, known as
the tabu list, stores recently visited solutions (or attributes of recently visited solutions) to
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avoid short-term cycling. Typically, the search stops after a fixed number of iterations or a
maximum number of consecutive iterations without any improvement to the incumbent (best
known) solution. The principle of the method originates from the work of Glover (1986).

Two Early Tabu Search Algorithms

In this algorithm, the solution is first transformed into a giant tour by replication of the depot,
and neighborhoods are defined as all feasible solutions that can be reached from the current
solution by means of 2-opt or 3-opt exchanges. The next solution is determined by the best
non tabu move. The best non tabu feasible move is selected at each iteration. While better than
Willard's algorithm, this implementation did not produce especially good results. Further
research has shown that more sophisticated search mechanisms are required to make tabu
search work (Toth and Vigo, 2002)

Taburoute

The Taburoute algorithm of Gendreau (1994) is rather involved and contains several
innovative features. The neighborhood structure is defined by all solutions that can be reached
from the current solution by removing a vertex from its current route, and inserting it into
another route containing one of its p nearest neighbours using GENI, a Generalized Insertion
procedure developed for the TSP. This may result in eliminating an existing route or in
creating a new one. A second important feature of Taburoute is that the search process
examines solutions that may be infeasible with respect to the capacity or maximum route
length constraints. More precisely, the objective function contains two penalty terms, one
measuring overcapacity, the other measuring over duration, each weighted by a self-adjusting
parameter: every 10 iterations, each parameter is divided by 2 if all 10 previous solutions were
feasible, or multiplied by 2 if they were all infeasible. This way of proceeding produces a mix
of feasible and infeasible solutions and lessens the likelihood of being trapped in a local
minimum (Laporte, 2000).

Taillard's algorithm

The Taillard did an implementation, which contains some of the features of Taburoute, namely
random tabu durations and diversification. It defines neighborhood using the A-interchange
generation mechanism. Rather than executing the insertions with GENI, the algorithm uses
standard insertions, thus enabling each insertion to be carried out in less time, and feasibility is
always maintained.

Xu and Kelly's algorithm

This algorithm uses a more sophisticated neighborhood structure. They consider swaps of
vertices between two routes, a global repositioning of some vertices into other routes, and
local route improvements. The global repositioning strategy solves a network flow model to
optimally relocate given numbers of vertices into different routes. Approximations are
developed to compute the ejection and insertion costs, taking vehicle capacity into account.
Route optimizations are performed by means of 3-opt exchanges and a Tabu Search
improvement routine. The algorithm is governed by several parameters, which are
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dynamically adjusted through the search. A pool of best solutions is memorized and
periodically used to reinitiate the search with new parameter values. Overall, this algorithm
has produced several best-known solutions on benchmark instances, but it is fair to say that it
Is not as effective as some other Tabu Search implementations (Gilbert Laporte et al., 2000).

The following section presents fundamental theoretical principles, which provides support for
this thesis project.
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CHAPTER 2 METHODOLY

This chapter deals with basic theory needed in the remainder of the thesis project. The Clarke
and Write heuristic, Tabu Search Metaheuristic, Granular Tabu Search, 2-optimal and relocate
techniques are mentioned. This chapter describes the basic theory of Tabu Search (TS) and
Granular Tabu Search (GTS), local search algorithm both. So, is presented the concepts about
2-optimal and relocate procedure.

2.1 CLARK AND WRIGHT HEURISTIC

The Clarke and Wright algorithm also called Saving Algorithm is one of the first originally
developed heuristics for CVRP and it is frequently used, since this algorithm has been one of
the earliest and most widely used heuristics due to its speed, simplicity, and ease of adjustment
to handle various constraints in real life applications. It is based on the feasible merging of
sub-tours using a savings criterion, which refers to the cost saving achieved by combining two
routes and using one vehicle rather than two (Doyuran and Catay, 2010).

The basic savings concept expresses the cost savings obtained by joining two routes into one
route as illustrated in Figure 2.1, where point O represents the depot.

Figure 2.1 lllustration of Saving Concept (Lysgaard, 1997)

The algorithm starts from the initial solution where each route has only one customer and a
corresponding vehicle. At the start, the number of vehicles is equal to the number of
customers. New iteration each should reduce the number of vehicles unifying two routes that
give maximal savings, e.g. reduction of the overall distance or time. There are two variants of
algorithm: one with sequential and other with parallel construction of routes (Clarke and
Wright, 1964).

Initially in Figure 2.1 (a) customers i and j are visited on separate routes. An alternative to this

is to visit the two customers on the same route, for example in the sequence i-; as illustrated in
(b). Because the transportation costs are given, the savings that result from driving the route in
(b) instead of the two routes in Figure 2.1 (a) can be calculated.
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By denoting the transportation cost between two given points i and j by c; , the total

transportation cost D, in (2.1) is:
Da = Coi + Cio + Coj + Cjo (2.1)

Equivalently, the transportation cost D, in Figure 2.1, which corresponds to follow equation:
Dp=coi + Cij+ Cjo (2.2)

By combining the two routes one obtains the savings obtained is S, :

Sij= Da- Dp = Cip + Cgj - Gjj (2.3)
Where:

Cio . distance between node i and 0.
Coj : distance between node 0 and j.
cij : distance between node i and j.

Relatively large values of S;; indicate that it is attractive, with regard to costs, to visit points i
and j on the same route, such that point j is visited immediately after point i.

When two routes (0,...,i,0) and (0,,..., 0) can feasibly be merged in to a single route
(0,...,i,j,...,0) ,a distance savings is generated. This version is known like version sequential.

Steps in Sequential Saving Algorithm

Stepl.  Savings Computation. Compute the savings S; = c;+ cy-c; for all
i,j=1, ..,nandi+#j .Create n vehicles routes (0,;,0) for i =1, ...,n. Order the savings
in descending order.

Step 2.  Best Feasible Merge. Starting from the top of the savings list, execute the
following. Given a saving S; , determine whether there exist two routes, one containing
arc or edge (0, j) , the other containing arc or edge (0,i) that can feasibly be merged
(i, j) - If so, combine these two routes by deleting (0, ;) and (i,0) and introducing

Step 3.  Route Extension. Consider in turn each route (O,i,...j,O) Determine the first

saving Sy ; or S;, that can feasibly be used to merge the current route with another route

containing arc or edge (%, 0) or containing arc or edge (0,7). Implement the merge and
repeat this operation to the current route. If no feasible merge exists, considerer the
next route and reapply the same operations. Stop when no route merge is feasible.
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The Algorithm 2.1 shows the description of the operating principle of saving algorithm
sequential.

Algorithm 2.1 Pseud-code of Sequential Algorithm (Batarra and Vigo, 2007)

1 Fori,j,( >i)« (i=1,j=2) to (i=n—1,j =n)

2 do ;< ¢t Gy — ¢, 'Fill Matrix M
3 Sort Matrix M, f£illing list L

4  §pp<«Firs saving inlL

5 Nroutes « n

6 While ((List L not void) and($,;>0))
7

8

do
Sk First §;; € L not yet considered
9 if (Merge Feasibility (h, k) ==YES)
10 Merge(Route;, ,Route;,)
11 Nyoutes

12 return Nroutes

The Algorithm 2.1 is able to quickly found high-quality solutions to standard benchmarking
problems; in this context benchmarking is defined as a point of reference by which the results
can be measured in terms of execution time and quality solution. However, there is a version a
parallel of saving algorithm, which provides a better solution and it is described in the
following section (M.Battarra, 2007).

2.1.1 Parallel Saving Algorithm

Two versions of the Clarke & Wright algorithm are proposed in the literature: parallel and
sequential. The best feasible merges of sub-tours are performed in the parallel approach,
whereas the route extension is considered in the sequential approach. Therefore, the parallel
version dominates the sequential saving method (Laporte and Semet, 2001). In this method m
routes at a time are built, which are built simultaneously, choosing at each iteration the “best
unrouted customer”, and inserting him in the “best position of the best route” among the m
current routes, when the m current routes are completed, the procedure is iterated by
considering m new routes.

General Specifications

e Internal customers: A customer who is neither the first nor the last at a
route cannot be involved in merge operations.

e Customers in the same route: If the customers suggested by the saving

S; ; are the extremes of the same route (the first or the last) the merge
operation cannot be performed (no sub-tour are allowed)
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Steps in Parallel Saving Algorithm

In this section is described the parallels saving algorithm proposed by Paessens 1988, which
has two important phases, the first phase of this algorithm is: all pairs of customers are
calculated, and all pairs of customer points are sorted in descending order of the savings.
Second phase, from the top of the sorted list of point pairs one pair of points is considered at a
time. When a pair of points i-j is considered, the two routes that visit i and j are combined
(such that j is visited immediately after i on the resulting route), if this can be done without
deleting a previously established direct connection between two customer points, and if the
total demand on the resulting route does not exceed the vehicle capacity. In this case was only
required one pass through the list.

Parallel Saving Algorithm (Paessens, 1988)
Step 1. Initialization. Initial route for each client i, through route construction (0, i, 0).

Step2.  Saving Calculate. Calculate S;; for each pair of clients i and j.
Step 3. Ordering. Sort the pairs (i, J) according to non-increasing values of S;.

Step4.  Next pair customers. Consider the next pair (i, ) with increase cost.

Step5.  Merge. If i* and j* are extreme vertices of two partial routes and these two
routes can be merged: insert arc (i* j*) in the solution.

Step 6.  Best union. If Si is the maximum value S;; and it is not considered yet and 7;«
and r;« are respectively the routes containing the clients i* and j*. If i is the last
client of r;« and j* is the first client of r;« and the combination of ;. and r;« is feasible
so, combine both routes. Delete Si«considerations future, if yet there are saving to be
examined go to step 3, the other way finish.

Step 7.  Not considerate. If not yet considered pairs exist: repat step 5.

Step 8.  Completed. Complete the routes by connecting the corresponding extreme
vertices with the depot.

2.2 ENHANCEMENTS OF THE PARALLEL CLARKE AND WRIGHT
ALGORITHM

Several authors proposed developments of the algorithm savings. These developments may be
categorized as adaptations to the savings formula, methods to speed up computation time and
improvements to the route merging process. In this section is introducing the parameters (A
and ) proposed by Gaskell and Yellow.

The enhancements proposed by (Gaskel, 1967) and (Yellow, 1970) show that the formula
becomes higher when the distance between customers i and ; is smaller relative to their
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distances to the depot. As a consequence, the saving method tends to produce good routes at
the beginning. In the case when the distances of customers i and j to the depot are long
whereas the distance between them is short the corresponding savings value will be large,
placing it at the top of the savings list. In other words, the outermost customers (by example
the customers with shorter distance between relative to their distances to the depot) are forced
to be placing in the same route at the early stages. Eventually, the algorithm constructs
circular-shaped routes beginning from the outermost customers and proceeds towards the
inner customers. Having noticed this weakness of CW method, which prevents the merging of
possible less expensive routes, (Gaskel, 1967) and (Yellow, 1970) parameterized the savings
formulation as follows:

Sy= cipt coh ¢y (2.4)

As the parameter A increases from zero, more emphasis is placed on the distance between the
customers rather than their distances to the depot.

Alternatively Paessens (1988) introduced a second term to the Gaskell and Yellow’s formula
in an attempt to collect more information about the distribution. To find better solutions it is a
better approach to make use of the following savings function:

SU:[ cl'0+ ch_ iclj]_"[,ulclo‘l' C()jl] (25)

Where w is in the second term, which is a positive constant. The inclusion of the new term in
(3) may exploit the asymmetry information between customers i and ; regarding their
distances to the depot. Nevertheless, this information adds an unfair savings to the certain
customer pairs in many cases, a customer extremely close to the depot and another one very
distant from the depot as such.

The next section describes the basic theory about Tabu Search and Granular Tabu Search as a
part of development the improvement phase.

2.3 LOCAL SEARCH

Local search is a method for solving computationally hard optimization problems; it can be
used on problems that can be formulated as finding a solution maximizing a criterion among a
number of candidate solutions. Local search algorithms move from solution to another
solution in the space of candidate solutions (search space) by applying local changes until a
solution considered optimal is found or a time bound is elapsed (Arts and Lenstra, (2003) .

The shows the method of local search, which is an iterative method that start to initial solution

Sy, generally feasible, which generate a sequence of solutions .S; choosing new iteration each
the best neighbouring solution.
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Figure 2.2 Graphic Representation of Local Search Method

Each S solution in the solutions space has an associated cost z(S), where S, is better than other
S, if z(S,) <z(S,) .Therefore, each z(S;) < Z(Si-i) V i, each new solution is better than

before. In some iteration of this procedure find it a local minimum and cannot find a better
solution, here procedures of search stop, obtained the best solution find it (Aarts & Lenstra,
2003).

The neighborhood solution is a set of others solutions that can find it from the initial solution,
through of some movement, generally simple. The cardinality of a neighborhood is the
number of moves that are neighbours of a generic solution. At each iteration, the best solution
of the neighborhood that improves the current one is selected as the new current solution and
the process is iterated until no improving move exists, for example until the current solution is
a local optimum with respect to the current neighborhood. The time required by iteration each
of a local search algorithm depends on both the cardinality of the neighborhood and on the
time needed to generate each solution, check it is feasibility, and evaluate its cost. In most
cases, the time per iteration is bounded by a polynomial function of the instance size. The
number of iterations to be performed to reach the local optimum may be large and, in the
worst case, generally grows exponentially with the instance size (Toth and Vigo, 2003).

Therefore, local search fall into the error of find a local minimum, which can be so far of the
global minimum. A way to forbidden it is include movements which do not improve and
change the selection condition of neighbouring solutions, allowing worse solutions. So, the
next iteration the method will choose the solution with a local minimum in that it will have the
minimum cost, generating a continuous cycle (Glover,1995). A way to forbidden this
behaviour is including a memory mechanism to remember the visited solutions and forbidden
it a definite quantity iterations, by the way the search carry out an exploration by other zones
of solutions space, such can be execute tabu search (See Figure 2.2).
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Algorithm 2.2 Pseudo code of Local Search

1 Sy= Initial Solution
2 S§'=5,
3 While Not Stop Criterion

S =Best move of neighborhood (S*)

if§ <S)

§=5

End if

End While

o ~J o U1 Wb

24 TABU SEARCH

According to Oklobdzija (2002) TS is a Metaheuristics that can be superimposed on any
algorithmic method if this method constructs new solutions from already existing solutions by
applying a sequence of moves. Such moves can be of a different nature: adding or removing a
vertex from a route, adding or removing an item from a knapsack, etc. What will be
considered as a move depends on a particular problem instance and on a context in which it is
used. To avoid cycling TS uses tabu tenure restriction of some moves for a number of
algorithm iterations. Then one says that these moves are declared tabu. Tabu tenure can be
either fixed or dynamic. A fixed tabu tenure mean that moves are always penalized for a
predefined number of iterations and dynamic tabu tenure means that this number of iterations
changes while algorithm runs. According to Glover and Laguna (1997) dynamic tabu tenure
can be changed every selected number of iterations during which it remains unchanged. It can
also be changed each time some attribute becomes tabu.

The method performs an exploration of the solution space by moving from a solution S;
identified at iteration i to the best solution S;.; in a subset of the neighborhood N (S;) of S,.
Since S;,; does not necessarily improve upon S, a tabu mechanism is put in place to prevent

the process from cycling over a sequence of solutions. The Figure 2.3 shows the cycle
originated by allows a not improve move.
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Figure 2.3 Representation of a not-improvement move.
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2.4.1 Cyclein local Search

Therefore, S;, ; would not the best solution, will be implement a mechanism to prevent cycles
is forbidden the process from going back to previously encountered solutions, but doing so
would typically require excessive bookkeeping.

Instead, some attributes of past solutions are registered and any solution possessing these
attributes may not be considered for 6 iterations, to that effect tabu search maintains a memory
structure called tabu list with the solutions historical visited or realised movements in the past.
Thus, store all historical visited is so expensive, in terms memory and time, to choose just
store the attributes that identified the movements that originated these solutions(Glover, 1990).

Moreover, the algorithm try to carry out a movement that belongs to tabu list (tabu
movement), this movement is force to algorithm to exploit other solutions (See Figure 2.4).
These prohibitions do not be definitive; just stay tuned by a quantity of iterations (tenure).

Minimum
local

Figure 2.4 Local Search iterate until finds the best solution

It is basically a deterministic local search strategy where, at each iteration, the best solution in
the neighborhood of the current solution is selected as the new current solution, even if it leads
to an increase in solution cost. To avoid cycling, solutions possessing some attributes of
recently visited solutions are declared forbidden or tabu for a given number of iterations,
called the tabu tenure. The algorithm stops whenever a present stop criterion is satisfied. As
opposed to a pure local descent, the method will thus escape from a local optimum. A short-
term memory, known as the tabu list, stores recently visited solutions (or attributes of recently
visited solutions) to avoid short term cycling. Typically, the search stops after a fixed number
of iterations or a maximum number of consecutive iterations without any improvement to the
incumbent (best known) solution (Glover, 1989).
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2.4.2 Tabu Search Elements

(i)  Search space and neighborhood structure

Tabu Search can be seen as simply the combination local search with short-term memories. It
follows that two first basic elements of any Tabu Search heuristic are the definition of its
search space and its neighborhood structure(Glover , 1995).

The search space of Local Search or Tabu Search heuristic is simply the space of all possible
solutions that can be considered (visited) during the search. At each iteration of Local Search
or Tabu Search, the local transformations that can be applied to the current solution, denoted
S, define a set of neighboring solutions in the search space, denoted N (S) (the neighborhood
of S). Formally, N (S) is a subset of the search space defined by (Glover, 1995):

N(S) ={Solutions obtained by applying asin gle local transformation to S}

(i)  Tabu List

Tabu list is one of the distinctive elements of Tabu Search when compared to Local Search.
As we already mentioned, movements are used to prevent cycling when moving away from
local optimal through non-improving moves. The key realization here is that when this
situation occurs, something needs to be done to prevent the search from tracing back its steps
to where it came from. This is achieved by declaring tabu (disallowing) moves that reverse the
effect of recent moves.

Tabu List stored in a short-term memory of the search (the tabu list) and usually only a fixed
and fairly limited quantity of information is recorded. In any given context, there are several
possibilities regarding the specific information that is recorded. One could record complete
solutions, but this requires a lot of storage and makes it expensive to check whether a potential
move is tabu or not; it is therefore seldom used. The most commonly used movements involve
recording the last few transformations performed on the current solution and prohibiting
reverse transformations; others are based on key characteristics of the solutions themselves or
of the moves.
(i)  Memory

An important distinction in Tabu Search arises by differentiating between short-term memory
and longer-term memory. Each type of memory is accompanied by its own special strategies.
The most commonly used short-term memory keeps track of solution attributes that have
changed during the recent past, and is called regency-based memory.

(iv)  Tabu Tenure

Managing Regency-Based Memory: The process is managed by creating one or several tabu
lists, which record the tabu attributes and implicitly or explicitly identify their current status.
The duration that an attribute remains tabu (measured in numbers of iterations) is called its
tabu tenure. Tabu tenure can vary for different types or combinations of attributes, and can
also vary over different intervals of time or stages of search.
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(v)  Aspiration Levels and Aspiration Criteria

Expanding the issue of defining tabu conditions at various levels of restrictiveness, an
important element of flexibility in tabu search is introduced by means of aspiration criteria.
The tabu status of a solution is not an absolute, but can be overruled if certain conditions are
met, expressed in the form of aspiration levels. In effect, these aspiration levels provide
thresholds of attractiveness that govern whether the solutions may be considered admissible in
spite of being classified tabu. Clearly a solution better than any previously seen deserves to be
considered admissible.

So, Tabu List is sometimes too powerful: they may prohibit attractive moves, even when there
IS no danger of cycling, or they may lead to an overall stagnation of the searching process. It is
thus necessary to use algorithmic devices that will allow one to revoke (cancel) tabu. These
are called aspiration criteria. The simplest and most commonly used aspiration criterion
(found in almost all TS implementations) consists in allowing a move, even if it is tabu, if it
results in a solution with an objective value better than that of the current best-known solution
(since the new solution has obviously not been previously visited). The key rule in this respect
is that if cycling cannot occur, tabu can be disregarded. Therefore, aspiration criteria can be
defined over subsets of solutions that belong to common regions or that share specified
features (such as a particular functional value or level of infeasibility).

(vi)  Candidate List Strategies

The aggressive aspect of TS is reinforced by seeking the best available move that can be
determined with an appropriate amount of effort. It should be kept in mind that the meaning of
best is not limited to the objective function evaluation. (As already noted, tabu evaluations are
affected by penalties and inducements determined by the search history. They are also affected
by considerations of influence as subsequently characterized.) For situations where N (x) is
large or its elements are expensive to evaluate, candidate list strategies are used to restrict the
number of solutions examined on a given iteration.
(vii)  Termination Criteria

The following termination criteria can be used with TS. So, TS stops when:
e the iterations limit is reached
o the specified objective function value is reached
e Solution is not improved for a particular number of iterations
e The algorithm running time limit is reached

TS described above, sometimes can successfully solve difficult problems, but in most cases,
additional elements have to be included in the search strategy to make it fully effective. The
most important of these are:

(viii)  Intensification

The idea behind the concept of search intensification is that, as an intelligent human being
would probably do, one should explore more thoroughly the portions of the search space that
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seem “promising” in order to make sure that the best solutions in these areas are indeed found.
From time to time, one would thus stop the normal searching process to perform an
intensification phase. In general, intensification is based on some intermediate-term memory,
such as a regency memory, in which one records the number of consecutive iterations, that
various “solution components” have been present in the current solution without interruption.
Intensification is used in many Tabu Search implementations, but it is not always necessary.
This is because there are many situations where the search performed by the normal searching
process is thorough enough. There is thus no need to spend time exploring more carefully the
portions of the search space that have already been visited, and this time can be used more
effectively as we shall see right now (Gendreau, 2002).

(ix)  Diversification

Diversification technique makes TS extremely powerful. It diversifies the search process and
helps it to move to the new regions where possibly better solutions can be found. If a solution
space is highly volatile — has a lot of local optimums, then diversification is especially helpful
because it helps to overcome peaks and troughs in the solution space. So, this algorithmic
mechanism that tries to alleviate this problem by forcing the search into previously unexplored
areas of the search space. It is usually based on some form of long-term memory of the search,
such as a frequency memory, in which one records the total number of iterations (since the
beginning of the search) that various “solution components” have been present in the current
solution or have been involved in the selected moves.

There are several approaches for implementation of the diversification. The first approach is to
use a restart method. The method consists in applying rarely use attributes to the current or
best known solution and restarting the search process. The second approach is to use a
continuous diversification. This method diversifies the search process when the algorithm
runs. As Klein (2000) states one can use a frequency based memory to continuously diversify
the search. Using information provided by this frequency based memory one can ban attributes
that were frequently used during the search process for a number of iterations. This will lead
to diversification, for rarely used attributes will be used more often, and thus new solutions
will be explored.

A large part of the recent research in TS deals with various techniques for making the search
more effective. These include methods for exploiting better the information that becomes
available during search and creating better starting points. One of them techniques is Granular
Tabu Search proposed by (Toth and Vigo, 2003).

2.5 GRANULAR TABU SEARCH

In the last fifteen years, several Metaheuristics have been put forward for the solution of the
VRP; many tabu search heuristics have been proposed to the vehicle routing problem and
theirs variants. Therefore, typically perform a thorough exploration of the solution space is
necessary carry out thousand iterations to obtain high-quality solutions which demand a large
computing time (Toth and Vigo, 2003). Each iteration generally consists of the exploration
neighborhoods and exchange neighboors.
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Tabu search clearly stands out as the best heuristic for the VRP like above was mentioned.
Over the last ten years, several implementations have been developed and tested. It is fair to
say they have been highly successful in tackling this difficult problem. This success is due in
part to a number of key ideas contained in several implementations: the allowance of
infeasible solutions during the search, the use of self-adjusting parameters, continuous
diversification, adaptive memory and granularity.

Toth and Vigo (2003) define an effective implementation, which belongs to candidate-list
family called Granular Tabu Search (GTS), which is defined like a mechanism, which is able
to reduce the computational effort, especially for large instances by not considering some of
the unpromising solution components (in their case, the long edges). It is to select a set of the
nearest neighboors (plus the depot) for each customer, and at each iteration, only moves
involving one member of the nearest neighboors set will be considered where the size of the
set of the nearest neighboors can be selected by considering the instance characteristics and
the requirements of the solution quality (or the time available for computation).

This method allows drastic reduction in the computational time requested in each iteration of
Tabu Search since the list of possible moves in the neighborhood is restricted, removing
elements that have no real chance of belonging to the optimal solution. This can be seen as an
intensification mechanism, by reason of is because Granular Tabu Search searches a smaller
neighborhood, which it is faster than the original Tabu Search.

The objective to implement Granular Tabu Search is reached by using neighborhoods that can
be examined in much less time than the traditional ones but without considerably affecting the
quality of the solutions found. This method proposes to derive granular neighborhoods as
restrictions of other known neighborhoods, by discarding a large quantity of unpromising
moves and actually exploring only a small subset of them, containing the most promising ones
(Toth and Vigo, 2003).

The advantages of this method in firs to fall, it is found to be one of the least “intrusive” ways
of modifying a successful solution approach while keeping its main features intact, and
particularly the basic structure of the neighborhoods used within the search. Moreover, it
increases applicability of the proposed method and simplifies its extension to other problems
for which tabu search and other Metaheuristics proved to be effective, but not efficient in
terms of time requirements. Last but not least, it allows one to evaluate in a direct way the
benefits of the proposed method with respect to a tabu search algorithm that uses the same
neighborhoods.

2.5.1 Granular Tabu Search to Vehicle Routing Problem

When, as is generally the case, the VRP is defined on a complete graph, it may be observed
that “long” (in others word high cost) arcs have a small probability of being part of high
quality solutions. The Shows test problem classical of CVRP (Toth and Vigo, 2003), through
of this Table 2.1 the authors give the key of implement granular neighborhood. This Table 2.1
contains the instance name, the number of customers n, the number of available vehicles K,

and the value of the best know solutionz™. In addition, the average cost of arcs in the best
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know solution, z*=z"/ (n+k), is compared with the minimum, maximum, and average arc cost
in the complete graph.

Table 2.1 Comparison of the Average Arc Cost in the Best-Known Solution with Respect to the
Minimum, Maximum, and Average Arc Cost in the Graph for Some Classic Euclidean
VRP Instances.

Arc Cost
Problem n k 7 r Min Max Average
E051-05e 50 5 524.61 9.54 2.24 85.63 33.75
E076-10e 75 10 835.26 9.83 2.24 85.28 34.13
E101-08e 100 8 826.14 7.65 141 91.83 34.64
E151-12¢ 150 12 1028.42 6.35 0.00 91.83 33.92
E200-17¢ 199 17 1291.29 5.98 0.00 91.83 33.24
E101-10c 100 10 819.56 7.45 1.00 96.18 40.27
E121-07c 120 7 1042.11 8.21 0.00 114.98 54.52

The Table 2.1 considers some classic Euclidean VRP test problems. By considering the
distribution of the arc costs associated with this type of test problem it may be easily seen that
the majority of the large arcs have cost larger than z*. A similar behavior can be observed in
almost all known test problems for VRP and DCVRP. Therefore, a possible way to speed up
the search of a neighborhood is to limit as much as possible the evaluation of moves that try to
insert “long” arcs in the current solution.

Z!

The procedure to generate granular neighborhoods starts from the original complete graph
G=(V, 4), later define a new sparse graph, G'=(V,A) with |A| <'n®, where »? is the

problem algorithm complexity. This sparse graph includes all the arcs that should be
considered for inclusion in the current solution: for example, all the “short” arcs and relevant
subset of other important arcs and a set / of other important arcs, such as those incident to the
depot or belonging to high-quality solutions founded until the moment. This is:

A ={(i,j)eA:c; <pjUl (2.6)
By the way, the search in granular neighborhood considers just the moves can be generated by
arcs belonging toG’, that is the moves that implicate at least some “short” arc. These arcs of

A’ are directly used as move generators to determine the other arcs involved in a particular
move of the original neighborhood.

An arc is “short”; hence it belongs to the sparse graphic in A’ if its cost is not greater than the
granularity threshold value, defined as:

!

z

=P ey

(2.7)
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Where f is a suitable positive sparsification parameter, and z' is the value of a heuristic
solution, for example, determined by the heuristic Clarke and Wright (1964).

The computational experience carry out by Toth and Vigo (2003) confirmed a basic tabu
search algorithm that uses the granular version of basic neighborhoods was able to determine
high quality solutions within running times comparable to those of constructive heuristics.

In terms of quality of the solution obtained based on basic Tabu Search algorithm using
granular neighborhoods defined by different values of the sparsification parameter f ranging
from 0.5 to 5.0. Perhaps surprisingly, the solution quality is not a monotone increasing
function of the sparsification parameter, in other words, of the overall computational effort.

2.5.2 Efficient Search and Diversification

The key factor in the granular paradigm is that the search of granular neighborhoods may be
efficiently implemented, in quite a natural way, by explicitly taking into account the sparse
graph G’ associated with the neighborhood.

Another crucial issue connected with the granular paradigm is that a dynamic modification of
the structure of the sparse graph associated with the granular neighborhood provides a easy
way of including intensification and diversification during the search. For example, by
modifying the sparsification parameter “f”, the number of arcs currently included in the
sparse graph is altered; hence a possibly different new solution is obtained at the end of the
search. To this end, the Tabu search algorithm may alternate between long intensification
steps, associated with a small "f" value, and short diversification steps in which “f ” is
considerably increased, and evaluation of the moves is possibly modified to favor the possible
inclusion of new (longer) arcs in the solution evaluated.

The next chapter describes the implementation of the metaheuristic development in this thesis
project.
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CHAPTER 3 IMPLEMENTATION

This chapter describes in detail the design and execution of the proposed algorithm in this
thesis project, which includes solution initial, where employment Parameterized Saving
Algorithm and improvement phase was as well the routes building. The second phase or
improvement carried out the implementation of GTS and neighboors buildings defined by
moves 2-optimal and relocate procedures. The platform and tools used for development of the
code C++ and the test instances evaluated on 34 instances with 51 to 484 customers.

3.1 GENERAL FRAMEWORK

Toth and Vigo (2003) introduced GTS, which thesis project was based on. The general
framework describes all procedure carried out for the construction of algorithm Metaheuristic
proposed. It is composed of two phases, the first one initial solution and second one improve
phase; chapter 4 describes the theoretical foundations, which provide an easy to understand its
description. The algorithm 5.1 shows the pseudo code used to solve the proposed problem
DCRVP; it be tested in 34 benchmark instances.

IAlgorithm 3.1 Pseudo code of proposed algorithm for the DCVRP

1 Read instance

2 Read specific parameters

3 Generate initial solution S, by ECW
4 S§'=§,

5 Initialization of tabu list

6 Initialization Candidate List

7 i=0

8 While non-accur criteria do

9 Generate neighborhood of §; based on Candidate List
10 Choose best move no Tabu S,

11 Apply best move generate

12 Update Candidate List

13 Update penalization

14 Update Tabu List

15 I£z(S.,)<z(S'S")then

16 S" =58,
17 End If
18 =i+l

19 End While
20 return S

The Algorithm 3.1 starts reading instances to Capacitated Vehicle Routing Problem and
Distance Constrains Vehicle Routing Problem, in the code implementation detect the problem
type through of one instruction; by the way start to read the parameters. In the case of CVRP,
the service time was equal to zero and length route equal to a big number (infinity).
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This Algorithm 3.1 can be implemented a particular instance, or instances set, which reads the
necessaries parameter to execute the code; this is instance name, type (DCVRP or CVRP),
capacity, maximum length, service time, vehicles and nodes. The initial solution will be
explained in the section 3.2.

The next step is the implementation of tabu search, which explore the solution space
attempting in each step improve the current solution through of the move generation
mechanism creates the neighboring solutions by changing one attribute or a combination of
attributes of the initial solution.

The Tabu List attribute could refer, for example, to arcs connecting a pair of customers. Once
a neighboring solution is identified, it is compared against the current solution. If the
neighboring solution is better, it replaces the current solution, and the search continues.

The Algorithm 3.1 generates a neighborhood of the current solution S; through generation and
evaluation of neighborhoods obtained to implement Two-opt and relocate. In this thesis
project, just the local search was carried out in the neighborhood composed by 2-optimal and
Relocate procedure, which will be explained in the next section. The neighborhood obtained
will contain valid solution of S; with the objective of found a new solution S, that replace
to S; . The solution S;,; may be lower cost and it not is tabu. The current solution S;.; will be
marked like tabu by tenure iterations to forbidden that came back in the last solution S; by
tenure iterations. Finally, decrease the value of tenure in the tabu list and if the current solution

is the better found it up to the present time; it will be update of S” by S,,,. This iterative
procedure carries out until found a stop criterion, which can be a maximum number of
iterations without obtained improvement solution.

More detailed, the next sections explain the above. So, is included the implemented code in
C++, to explain overall design and implementation of this Metaheuristics proposed like thesis
project.

3.1.1.1 Execute mode

In this thesis project, the proposed algorithm starts with execution of instances set downloaded
from: http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html web
site, which belongs, DEIS (Dipartimento di Elettronica, Informatica e Sistemistica, Bologna
Italy) - Operations Research Group, which 14 classical instances were proposed by
Christofides, Mingozzi and Toth (1979) and 20 large-scale instances (with |V| varying from
201 to 484) proposed by Golden, Wasil, Kelly and Chao (GWKC instances) (Bruce, Edward,
James, and Ming 1998).

For execute mode, the program reads by one-instruction the file with txt extension. The first
line reads instance name the next instruction decides if it is CVRP or DCVRP type, if it is
DCVRP the parameters to execute are:

. NAME: D051-06c (instance name)
. COMMENT: Christofides, Mingozzi and Toth, 1979 (Who proposed the instance)
. TYPE: DCVRP (vehicle routing problem variant)
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. DIMENSION: 51 (number of customers plus one depot)

. EDGE_WEIGHT_TYPE: EUC_2D (Euclidean Distances)

. CAPACITY: 160 (vehicle capacity)

. MAX. LENGTH: 200 (maximum length route)

. SERV. TIME: 10 (service time of each customer)

. VEHICLES: 6 (numbers of vehicles available)

. NODE_COORD_SECTION (for each node there are id, X, y)
. DEMAND (for each node are id, demand)

Parameters to CVRP are:

. NAME: D051-05e (instance name)

. COMMENT: Christofides, Mingozzi and Toth, 1979 (Who proposed the instance)
. TYPE: CVRP (vehicle routing problem variant)

. DIMENSION: 51 (customers quantity)

. EDGE_WEIGHT_TYPE: EUC_2D (Euclidean Distances)

. CAPACITY: 160 (vehicle capacity)

. VEHICLES: 5 (numbers of vehicles available)

. NODE_COORD_SECTION (for each node there are id, X, y)

. DEMAND (for each node are id, demand)

3.2 CONSTRUCTION OF INITIAL SOLUTION

Initial solution development in this thesis project was obtained implementing Enhancement of
Parallel Clarke and Wright Algorithm proposed by Passens (1988), who adding two
parameters to classical saving formula A and . In this thesis project was used it, A like route
shape parameter, which avoid circumference formation of routes that are usually produced by
the original saving algorithm parallel. So, their motivation in using the positive parameter 1 is
to avoid circumference formation of routes that are usually produced by the original CW
algorithm. In other words, this parameter helps to reshape the routes by taking only non-
negative values in order to find better quality solutions (Doyuran and Catay, 2010).
Consequently, with the aim of expanding the exploration ability of the algorithm is added a
second parameter, u, to Gaskell and Yellow formula in an attempt to collect more information
about the distribution of the customers.

McDonald (1972) shown that with any fixed A, results, which are far from optimum, may be
obtained and that there was no value of A, which was significantly, better than any other value.
Paessens (1988) proposed ranges 0 <A <3 and 0 < p <1, respectively.

First, was used Euclidean Distance to calculate the distance matrix base on coordinates (x;, y,)
belong to n customers and the depot(X,, Y, ), Which is a square matrix order n+1, with distance

d (i, j) between two points (xi, yi)and(xj Y ) the Euclidean Distance formula is:

2 2
Joe w003 (3.)
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Algorithm 3.2 Pseudocode Saving Algorithm Parallel with 4 and p parameters
1 Build N,y

2 r=1(010)

3 Forij, (j>i)« (i=1j=2) to(i=n—1,j=n)

4 do S ;< [ciptcy~ /lcij]-i-[,u|c,~0+ CO/'|] 'Fill Matrix M

5 Sort Matrix M descendent order, filling list L

6 Sy k< First saving inl
7

8

9

Nroutes < n
while ((List L not void) && (S, ;> 0)) && (( 7+ .7+ < Q )&&(r;x 7« < TimeService)
&&(1y., 75 < RoutelLarge))

10 do

11 if((0,i...,0) && (0,,..., 0) || (0,i,...,0) && (0....,j,0) || (0....,i,0)&&(0,j,...,0) ||
12 O...., i, 0) && (0....,j,0))

11 Six j» =max §; ;

12 Let 7, be the route containingh#h
13 Let7j,be the route containingk

14 If (((*is the last inr+andj* is the first shop inr7j,) &&
15 (the combination is feasible))

16 then combine r;xandr;x

17 Sjx jx<— First S« € Lnot yet considered

18 do

19 Merge(Route,-*,Routej*)

20 if (Merge Feasibility (i*, j*) == YES)

21 Merge Feasibility =N,

22 End While

23 End For

McDonald (1972) shown that with any fixed A, results, which are far from optimum, may be
obtained and that there was no value of A, which was significantly, better than any other value,
therefore by using factorial analysis was found the parameters values A and y, which is base on
ranges 0 < A <3 and 0 <u <1, respectively proposed by Paessens (1988).

The values parameters were found it with base on values proposed by Passens (1988), and
increasing his interval. For this reason was used a factorial analysis above mentioned with the
[0.0, 2.0] interval.

3.2.1 ROUTE CONSTRUCTION APPROACHES

In the first step of the savings algorithm the savings for all pairs of customers are calculated,
and all pairs of customer points are sorted in descending order of the savings. Subsequently,
from the top of the sorted list of point pairs one pair of points is considered at a time. The
route construction select arcs simultaneously until solution have been created if these can be
done without deleting a previously established direct connection between two customer points,
and if the total demand on the resulting route does not exceed the vehicle capacity.
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In this, thesis project was found the values parameter established by Passens (1988),
Enhancement of Parallel Clarke and Wright Algorithm, for almost all instances. So, do not
create a violation of vehicle capacity, maximum length, and vehicles number. The vehicles
number restriction was established by instances set proposed by Toth and Vigo (2003), which
was used like benchmark in this thesis project. Others requirements constraints are:

One route is valid if start and finish in the same depot and satisfy the conditions before
mentioned and considering the follow:

a) Each customer has a service time, and it is considering on maximum route length.

b) At each iteration, the “best feasible route merge” is chosen, and the route is joined.

c) The current route is ended when no more customers can be inserted.

d) The approach does not consider if it is better to insert a customer in the current route or
to wait, and to insert the customer in one of the following routes.

Cases considered were:

Case 1. When two routes (0,,...,0) and (0,,..., 0) can feasibly be merged in to a single
route (0,...,i,j,...,0) , a distance savings is generated.

Case 2.  When two routes (0,i,...,0) and (0....,j,0) can feasibly be merged in to a single
route (0,...,i,j,...,0) , a distance savings is generated.

Case 3.  When two routes (0,...,,0) and (0,,...,0) can feasibly be merged in to a single
route (0,...,i,j,...,0) , a distance savings is generated.

Case 4.  When two routes (0,...,;,0) and (0....,j,0) can feasibly be merged in to a single
route (0,...,i,j,...,0) , a distance savings is generated.

Considering the previous analysis, the obtained results in the initial solution are presented in
the Table 3.1. It table contains in the column one instances set, which was used in this thesis
project, column 2 shows the best solution based on review literature, 3 and 4 columns has the
fixed parameters values found so factorial analysis (A, u), respectively. The constrain routes
number is in the column 4, column 5 contains the objective function values in this first phase;
the difference in percentage respect to best known solution is in the column 6.
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Table 3.1 Results obtained in Initial Solution to the Distance Constrained Vehicle Routing

Problem.
Initial Solution obtained by Clark & Wright Algorithm
Instance Best Kpow 1 u Routes Distance %GAP
Solution C&W C&W C&W
D051-06¢ 553.43 1.3 0.3 6 595.31 7.57%
D076-11c 909.68 0.9 0.4 Infeasible
D101-09¢c 865.94 1.7 0.3 9 942.70 8.86%
D101-11c 866.37 1.2 0.2 11 869.62 0.37%
D121-11c 1541.14 0.7 0.1 11 1,583.25 2.73%
D151-14c 1162.55 1.3 0.0 14 1,222.06 5.12%
D200-18c¢ 1395.85 1.0 0.0 Infeasible
D201-05k 6460.98 1.7 0.5 5 6,691.04 3.56%
D241-10k 5627.54 0.2 0.6 10 5,807.07 3.19%
D281-08k 8412.8 1.2 0.4 7 8,665.56 3.00%
D321-10k 8447.92 0.8 0.1 Infeasible
D361-09k 10181.75 1.8 0.9 9 10,614.61 4.25%
D401-10k 11036.22 0.7 0.9 10 11,414.50 3.43%
D441-11K 11663.55 1.3 0.8 11 12,409.47 6.40%
D481-12k 13624.52 1.9 1.1 11 14,109.85 3.56%
E051-05e 524.61 0.8 0.9 5 563.90 7.49%
E076-10e 835.26 1.0 0.1 10 866.30 3.72%
E101-08e 826.14 1.6 0.3 8 865.60 4.78%
E101-10c 819.56 1.2 0.4 10 826.00 0.79%
E121-07c 1042.11 1.6 0.6 7 1,065.08 2.20%
E151-12c 1028.42 2.0 0.7 12 1,101.82 7.14%
E200-17c 1291.29 1.4 0.2 17 1,370.05 6.10%
E241-22k 707.79 1.8 0.9 22 746.22 5.43%
E253-27k 859.11 1.3 0.9 26 896.56 4.36%
E256-14k 583.39 0.8 1.3 14 610.39 4.63%
E301-28k 997.52 15 1.2 28 1,051.51 5.41%
E321-30k 1081.31 1.2 0.4 30 1,144.23 5.82%
E324-16k 741.56 0.6 1.2 16 763.31 2.93%
E361-33k 1366.86 1.4 0.3 33 1,441.40 5.45%
E397-34k 1345.23 1.8 1.1 34 1,411.05 4.89%
E400-18k 918.42 1.0 1.1 18 966.93 5.28%
E421-41k 1820.09 1.4 1.0 38 1,917.83 5.37%
E481-38k 1622.69 1.2 1.2 38 1,709.72 5.36%
E484-19k 1107.19 0.4 15 19 7,599.06 586.34%

However, the results found it on the first phase were not able feasible for all the instances.
Since, D076-11c, D200-18c, and D321-10k (indicated in grey colour in the Table 3.1) these
instances were by vehicles number, vehicle capacity and maximum length. For this reason in
the second phase are applied, section 3.3, capacity and maximum length penalties proposed by
Gendreau, Hertz and Laporte (1994) and relocate procedure to vehicle number constraint.
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The next chapter describes the improvement phase, it was introduced GTS, building
neighbourhoods and implementation of as soon a constraint to eliminate excess routes as well
the implementation of capacity and maximum length penalties.

3.3 IMPROVEMENT PHASE

In the improvement phase of the developed Metaheuristic proposed in this thesis project, the
TS was applied for enhancement the initial solution and to find a feasible solution for all
instances set. The base of this TS solution was the granularity proposed by Toth and Vigo
(2003). So, in this phase, was implemented 2-Optimal and Relocate as neighbourhoods to
local search. 2-Optimal is a procedure carries out exchanges between arcs and Relocate like
procedure to transfers a customer from one route to another route. Iteratively the customers are
removed from infeasible circuits and connected with the best in the best position of a feasible
circuit (route) considering they do not overload the target route.

The neighborhood that results consists only of all the solutions that can be obtained by
transferring one node from its current position to another one and in routes different.

From the initial solution S, the next step is to execute the implementation algorithm based on
Tabu Search and implementing granularity. Each step of this general procedure attempts
improving the current solution according to cost visiting neighbors solution defined by the
operations set mentioned in the section 4.2.

The neighborhoods structures # are used within the proposed implementation are based on
traditional arc-exchange local moves, namely inter and intra route 2-Optimal and Relocate.
The selection of neighborhood structures is dynamic. At each iteration, given the allowed set

of neighbors ¢”(SO), the best admissible neighbor s replaces the current solution (s, ), while

the forward and reversal attributes of the corresponding local move are stored within the tabu
list. During the exploration of the neighboring space, the typical aspiration criterion is
followed, that is, higher evaluation of the neighbour compared to the current solution found
during the exploration of the solution space. Finally, the termination condition maxiter bounds
the maximum number of TS iterations without observing any further improvement.

3.3.1 2-Optimal procedure

The 2-Optimal neighborhood consists of all feasible solutions that can be obtained by
removing two connections between customers, and connecting them in another way. These
customers can be in two different routes or within the same route (Helsgaun 2000). It is
considered like an edge exchange heuristics and is widely used to improve vehicle routing
solutions.

The 2-Optimal eliminates two edges and reconnected the paths to obtain a new cycle. This
procedure tries to improve the tour replacing two of it is edges by other two edges, finally
iterates until do not find a possible improvement. Basically, it works as follow:

1. Start with an initial solution and define this solution to be the current solution.
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2. Generate all solutions in the neighborhood of the current solution by applying all
modifications associated with the method under consideration.

3. Select the best solution in this neighborhood and define this solution to be the new
current solution.

4. Go back to step 2.

The time required to solve the problem using this procedure can be increased faster as the size
of the problem grows; the neighborhood generated in the step 2 is typically polynomial.
Dramatically to implement Granular Tabu Search and diversification and intensification
strategies reduce the computational time.

In this thesis project was considerate moves in the same tour, called intra- route and inter-
routes in two different tours.

The intra —route exchanges arcs in the same route that is to say if a route k has the costumers i-
i+1 and j - j+1, the arc that marge to i with j+1 is replacing by the arc that merge to i and i+1.
So, the arc that merges j and i+1 is exchanged by the arc j and j+1 (See Figure 3.1).

Depot Depot

Route & Route &
Figure 3.1 A 2-Optimal move intra-route.
The inter-route was applied in two different routes, which the arcs from one route to another.

It can be implemented if exist a route k with i-i+1 arcs and another route m, which has j-j+1
arcs (See Figure 3.2).

Route m

Potentia)
Depot

Figure 3.2 Two routes k, m with i-i+1 and j-j+1, respectively.

39



In the route k the arc i+1 is merged with j (i+1-j) and route m the arc j+1 is merged with i (j+1-
1). See Figure 3.3.

——
-

Route m

Potentig)
Depot

Figure 3.3 2-Optimal moves inter route.

The pseudo code shows in the Algorithm 3.3 the general heuristic algorithm 2-Optimal. It
consists in analyze all the vertices; in each step choose the best move 2-Optimal associate each
arc.

IAlgorithm 3.3 Pseudo code of general procedure 2-Optimal

1 Initialization
2 Consider a Hamiltonian initial cycle
3 move =1

4 While (move=1l)

5 move = 0. Labeled all vertex as non-explored

6 While (exist vertex non explored)

7 Select the vertex i non-explored

8 Explore all movements 2-opt that included the arc
9 from the node i to the next node

10 If some movement explored reduce the length of cycle
11 execute the best move

12 move = 1

13 Else labeled i like explored

14 End If

15 End While

16 End While

In the next section is implemented Relocate like to place customers in a strategic position
with the aim of decrease the vehicle number.

3.3.2 Relocate

Relocate is a procedure used commonly, to minimizing the number of routes or, equivalently,
the number of vehicles used. It insertion procedure was executed to constraint vehicles
number, Relocate, because in the initial solution tree instances were infeasible. It tries to build
a feasible one.
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In this phase customers are iteratively removed from infeasible circuits and inserted in the best
position of a feasible route. Possible insertions are considered only if they do not overload the
target route.

In this, thesis project considerate a solution as a set S of v routes s a set like a solution
R,,....R, where v €[13], R,= (V,,V,,V, ,...V,) , and each vertex v; (i >1 ) belongs to exactly
one route. These routes may be feasible or infeasible with respect to the capacity and length
constraints. For convenience, is write v; € R, if v; is a component of R, and (v;,v;) € R, if
v;and v; are two consecutive vertices of R . With any feasible solution S, is associated the

objective function (Gendreau, Hertz, and Gilbert Laporte 1994a):

Fl(S):Z, ( 2. G (32)

Vi ,Vj)e Rr

Also, with any solution S (feasible or not), is associated the objective:

+

F(S)= Fl(S)WZ Zqi -Q +'BZ Z Cij+25i -L1 3

(Vi le) R Vi Ry

Where [x]* = max (0, X) and « and S are two positive parameters. In the solution is feasible
F,(S) and F;(S) coincides; otherwise, F,(S) incorporates two penalties terms for the excess
vehicle capacity and excess route duration. At any step of the algorithm, F; and F, denote
respectively the lowest value of F;(S) and F,(S) so far encountered. Also, S* is the best

know feasible solution and S”, the best know solution (feasible or not).

Where r={R,,...,R,} are the set of routes. Let S be the set of routes for which exist an

optimal solution. Each solution ¢ € S has an associated set of neighbors, N(s) €S, called the
neighborhood de ¢. Each solution 6" € N(o) can be reached directly from o by a move. A
move is a transition from ¢ to o” by means of a move operator.

In this algorithm proposed was considerate the mentioned before as soon the rule based on
smallest cardinality route, which force to eliminate customers smallest cardinality route to be
inserted another route, of this way eliminate routes to converge to a feasible solution by the
number of routes.

The penalty used was:

0, r<vy
Min;c,, |ri| r>v

ves) ={ (3.4)
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Where r = number of routes, v = number of vehicle, Min; ., is the smallest cardinality route k
and y (S) route number feasible.

The penalty used y(S) was planted as follow:

If a route k, exists, it moves a customer or customer another routes. More specifically, the
vehicle routes with the smallest cardinality are removed iteratively fro the routing plans and all
corresponding customers are placed into a waiting list. At iteration of TS, the possibility of the
feasible relocation of the waiting listed customer is examined to the vehicle routes modified by
the local search. If one or more feasible relocation moves (insertion positions) are found, these
are immediately executed, and corresponding solution is denoted as new TS local optimum
solution. The above procedure is repeated until all waiting listed customers are served. The
major advantage of this classic route elimination procedure is that TS deal only with feasible
solutions whether the best solution found upon termination is sub-optimal or optimal in terms
of fleet size.

34 IMPLEMENTATION OF GRANULAR TABU SEARCH

Actually is one of the principal ideas in Metaheuristics, Tabu Search specifically, because of
the simplicity of its structure.

In this section is explained of Granular Tabu Search (GTS) applied to CVRP and the DCVRP.
The algorithm Granular Tabu Search was initialized with the heuristic solution obtained to use
Clarke and Wright (1964) with enhancement, above mentioned in the section 3.2.

In the initial solution was infeasible to tree instances by vehicle constraint, for this reason in
the improvement phase was applied Relocate to less route, which was executed violating the
vehicle capacity or the maximum route length constraints, for this reason was implemented the
penalties proposed by Gendreau, Hertz and Laporte (1994). So, 2-optimal like neighborhood
of GTS, which contains all arcs exchanges selecting the best according to this heuristic.

By visiting of infeasible solutions is allowed during the search and, as usual, their costs are
modified by adding to the routing cost a penalty . multiplied by the sum of the excess loads

of the overloaded routes, plus a penalty o, multiplied by the sum of the excess lengths of

infeasible routes with respect to the maximum length constraint (Gendreau, Hertz, & Laporte,
1994) and a new penalty for excess routes o .

The values of the penalties dynamically, o, a, and az were updated during the search in the
range [, e |- I Particular, every iterations, if the previous visited solution was feasible

with respect to the capacity constraints, then o is set to max{amm,

were infeasible it is set to {a,,,,, /. *a.}. The updating rules for ap is analogous. In our
computational testing, «,,;,= 1 and a,,,, = 10 * value of the solution Clarke & Wright; oy is set to
or = 100 * value of the solution Clarke & Wright.

a. 1.1}, whereas if all
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The excess of capacity is calculated like as:

Y € Routes Max (0.0, Maximum Capacity Route - Route Demandr) (3.5)

The excess of length of route is calculated like as:
Y € Routes Max (0.0, Maximum Length - Time Service Route, — Length Router) (3.6)

The excess of the number of routes is calculated like:

0, RoutesNumber <Vehicles Number
V= (3.7)

Min Customers, , RoutesNumber >Vehicles Number

reRoutes

3.4.1.1 Other strategies of diversification

A strategy implement proposed algorithm was: starting of the current solution, if many
iterations with granular tabu search were carried out, the algorithm is not able to come back to
be feasible found or it is infeasible yet, the current solution is update to the best feasible
solution found it in all iterations and the list tabu come back real size, magic number 7, by
default.

This algorithm proposed uses a multiple granular neighborhood based on neighborhoods 2-
Optimal and Relocate. The granular neighborhood is obtained by considering the arcs in the
sparse graph defined by all the arcs below the current granularity threshold, plus all arcs
incident to the depot, and those belonging to the best solution found and to the current
one.

After each iteration, the arcs inserted by the performed move are added to the sparse graph.
The sparse graph is rebuilt from scratch every time the current solutions change between
feasible to infeasible solutions. | used a sparsification factor g =1.25, which computationally
gave the best performance. However, for Euclidean VRP and DVRP instances, f values
between 1.25 and 2.50 are generally appropriate.

A move is considered Tabu if it tries to reinsert an arc removed in one of the previous moves.
The Tabu tenure t for each move performed is an integer uniformly distributed random

variable in the interval [tmin ,tmax]. | used ¢,;,= 7 when the solution is feasible or infeasible;
but ¢,,,.= 7 for the feasible solution and ¢,,,,= 50 for infeasible solution.

Finally, | used the granularity-based diversification described in the previous section.
Whenever the current best solution is not improved after n, iterations, the sparsification factor
is increased to §,, a new sparse graph is determined and n, iterations are performed starting
from the best solution found. Then, the sparsification factor is resetting to the original value
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and the search continues. We used n, = 15 * number of customers, # = 1.75, and n;, = number
of customers.

This algorithm is a dynamically updated, so infeasibility penalties and the tabu tenure
definition. The values of the remaining parameters were experimentally determined as those
allowing for the best compromise between solution quality and computational effort. Clearly,
the Figure 3.4 and Figure 3.5 show efficient algorithm design, so time computational less
used.

Figure 3.5 Initial solution to implement Figure 3.4 Optimal solution obtained by to
saving algorithm enhancement implement granular tabu search in
(4 = 13, u = 0.3) to instance instance D051-06¢c with Z* = 560.24,
D051-06¢c with Z*=593.31, 0.001 0.01 seconds.
seconds.
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CHAPTER 4 ANALYSIS OF THE RESULTS

The initial solution was used values lambda (A) and mu (i), both were evaluated in the
interval [0.0, 2.0]. Beta (p) is the parameter of granularity and maxiter * number of customers
Is the number of iterations that execute Tabu Search.

In this thesis project, the Tabu Search Elements applied were:

Tenure: contains Tabu search tenure, iterations quantity, which a movement is considered
Tabu, in my case was called magic, this implementation iteration quantity was used the magic
number seven, which can grow slowly when explore infeasible regions to maximum size of
50. As a general principle, Tabu restrictions that are more stringent, as measured by the degree
to which they limit the range of admissible moves, lead to somewhat smaller values for best
Tabu list sizes than restrictions that are less stringent (Glover, 1990).

Quantity iterations: denote the maximum operations quantity of principal cycle of Tabu
Search. This algorithm considered maxiter * number of clients, maxiter is configured with 10
value.

Value (B)

My parameter called beta, is used to calculate the maximum value of the distances between
customers that will belong in neighborhood granular.

This value includes all the “short” arcs and a relevant subset of other important arcs, such as
those incidents to the depot and those belonging to the best solutions encountered so far.
Therefore, this does not mean “long” arcs are never inserted in the current solution, but that
moves involving only “long” arcs are not considered.

Increasing factor g

The maximum distance was calculated with the factor £, which increases continuously. It
factor £ is actualized dynamically, this way modify the structure of the sparse graph
associated with the granular neighborhood provides a simple way of including intensification
and diversification during the search. For example, by modifying the sparsification
parameter 8, the number of arcs currently included in the sparse graph is altered; hence a
possibly different new solution is obtained at the end of the search. To this end, the tabu-
search algorithm may alternate between long intensification steps, associated with a small
value 3, and short diversification steps in which g is considerably increased and the evaluation
of the moves is possibly modified to favour the possible inclusion of new (longer) arcs in the
solution.
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The results show a typical behaviour, in terms of quality of the solution obtained within
maxiter*number of clients, mentioned before, of the basic tabu search algorithm using granular
neighborhoods defined by different values of the sparsification parameter g ranging from 0.5
to 5.0. Perhaps surprisingly, the solution quality is not a monotone increasing function of the
sparsification parameter. In fact, with the benchmark problems in the literature considered in,
the best results are typically obtained with g values between 1.0 and 3.5, which select about
10- 20% of the arcs of the complete graph.
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Figure 4.1 Performance of Tabu-Search applied Granular Neighborhoods and
different values of the sparsification parameter B to Distance
Constraints Vehicle Routing Problem (DCVRP).
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Figure 4.2 Performance of Tabu-Search applied Granular Neighborhoods and different values of
the sparsification parameter, to Capacitated Vehicle Routing Problem (CVRP).

4.1 PROCEDURES

The Granular Tabu Search algorithm proposed by Toth and Vigo (2003) uses a multiple
granular neighborhood based on four basic neighbourhoods. In this project was implemented a
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multiple granular neighborhood based in two operations 2—opt in inter routes (between 2
routes) and intra route (TSP). Relocate as inter route considering penalty proposed and
mentioned before.

So, the granular neighborhood is obtained by considering the arcs in the sparse graph defined
by all the arcs below the current granularity threshold, plus all arcs incident to the depot, and
those belonging to the best solution found and to the current one. After each iteration, the arcs
inserted by the performed move are added to the sparse graph. The sparse graph is rebuilt from
scratch every maxiter, defined before. I used a sparsification proposed by Toth and Vigo factor
£ =1.25, which computationally gave the best performance. To my case DCVRP instances, S
values used values of 1.25 and 2.50, arcs “short” 1.25 and arcs “long” 2.50.

42 COMPUTATIONAL EXPERIMENTS

Algorithm development described in the previous sections, based on Metaheuristic proposed
by (Toth & Vigo, 2003), was implemented in C++ and compiled in the IDE Qt creator 2.4.1
and the GNU GCC compiler of Xcode 4.3 on Mac OS X Lion 10.7.4 compiler. All
experiments were performed on MacBook Pro 8.1 with name machine Intel Core i5 2.4 GHz
clock and 4 MB RAM memory.

The graphic representation of results was generated so instructions in general code and making
a link with Graph editor yEd version 3.9.1, which generate a file (.gml), that contains
corresponding graphs each instance proposed.

The computational testing considered several Euclidean CVRP and DCVRP instances from
the literature with up to about 484 customers, which are generally used as a standard
benchmark for VRP algorithms. The first set consists of the 14 instances (with |V| varying
from 51 to 200) proposed by Christofides, Mingozzi and Toth (CMT instances) (Christofides,
1979). The second set consists of the 20 large-scale instances (with |V| varying from 201 to
484) proposed by Golden, Wasil, Kelly and Chao (GWKC instances) (Bruce et al., 1998)

Toth and Vigo (2003) show the test instances are denoted by a name that allows one to
determine their characteristics quickly. The instances are divided in two groups the first one is
the group ‘E”’ for Euclidean, which corresponding to VRP, without constraints length distance,
and time service; in this case when the code is executed the length service is equal to biggest
value and the service time is equal to zero. The second one group ‘D’ for Euclidean DCVRP
with constraints of length distance and service time your values are reading from
corresponding instance. The set of instances ‘E’ belongs to CVRP and ‘D’ belongs to
DCVRP; n is the number of vertices of the corresponding graph (including the depot vertex); k
is the number of available vehicles, the vehicle capacity (C) and, for DVRP instances, the
route maximum length (L), the service time (g) for each customer; data source identifies the
paper where the instance data were first described. For example, E051-05e denotes the classic
50-customer instance proposed by Christofides and Eilon (1969).
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Table 4.1 Summary of the data to VRP and DVRP instances used for computational testing

Name _ Data Prev. :
Instance n k C L q Source SoBIStSi:)n Solution

D051-06¢ 50 6 160 200 10 Christofides et al. (1979) 553.43 Taillard (1993), Gendrau et al. (1994)
D076-11c 75 11 140 160 10 Christofides et al. (1979) 909.68 Taillard (1993)

D101-09¢c 100 9 200 230 10 Christofides et al. (1979) 865.94 Taillard (1993), Gendrau et al. (1994)
D101-11c 100 11 200 1040 90 Christofides et al. (1979) 866.37 Osman (1993)

D121-11c 120 11 200 720 50 Christofides et al. (1979) 1541.14 Taillard (1993)

D151-14c 150 14 200 200 10 Christofides et al. (1979) 1162.55 Taillard (1993)

D200-18c 199 18 200 200 10 Christofides et al. (1979) 1395.85 Rochat and Taillard (1995)
D201-05k 200 5 900 1800 0 Golden et al. (1998) 6460.98 Golden, Wasil Kelly and Chao (1998)
D241-10k 240 10 550 650 0 Golden et al. (1998) 5627.54 Golden, Wasil Kelly and Chao (1998)
D281-08k 280 8 900 1500 0 Golden et al. (1998) 8412.8 Golden, Wasil Kelly and Chao (1998)
D321-10k 320 10 700 900 0 Golden et al. (1998) 8447.92 Golden, Wasil Kelly and Chao (1998)
D361-09k 360 9 900 1300 0 Golden et al. (1998) 10181.75 Golden, Wasil Kelly and Chao (1998)
D401-10k 400 10 900 1200 0 Golden et al. (1998) 11036.22 G;’rizegh‘;\ga(sl"ggg')'y

D441-11K 440 11 900 1200 0 Golden et al. (1998) 11663.55 Golden, Wasil Kelly and Chao (1998)
D481-12k 480 12 1000 1600 0 Golden et al. (1998) 13624.52 Golden, Wasil Kelly and Chao (1998)
E051-05e 50 5 160 - Christofides and Eilon (1969) 524.61 Gendreau et al. (1994)
E076-10e 75 10 140 - Christofides and Eilon (1969) 835.26 Taillard (1993)

E101-08¢ 100 8 200 ; Christofides and Eilon (1969)  826.14 Taillard (199(?’l)é§4‘“3)”d’ea” etal.
E101-10c 100 10 200 - Christofides et al. (1979) 819.56 Taillard (1993)

E121-07c 120 7 200 - Christofides et al. (1979) 1042.11 Taillard (1993)

E151-12c 150 12 200 - Christofides et al. (1979) 1028.42 Taillard (1993)

E200-17c 199 17 200 - Christofides et al. (1979) 1291.29 Rochat and Taillard (1995)
E241-22k 240 22 200 - Golden et al. (1998) 707.79 Golden, Wasil Kelly and Chao (1998)
E253-27k 252 27 1000 - Golden et al. (1998) 859.11 Golden, Wasil Kelly and Chao (1998)
E256-14k 255 14 1000 - Golden et al. (1998) 583.39 Golden, Wasil Kelly and Chao (1998)
E301-28k 300 28 200 - Golden et al. (1998) 997.52 Golden, Wasil Kelly and Chao (1998)
E324-16k 323 16 1000 - Golden et al. (1998) 741.56 Golden, Wasil Kelly and Chao (1998)
E361-33k 360 33 200 - Golden et al. (1998) 1366.86 Golden, Wasil Kelly and Chao (1998)
E397-34k 396 34 1000 - Golden et al. (1998) 1345.23 Golden, Wasil Kelly and Chao (1998)
E400-18k 399 18 1000 - Golden et al. (1998) 918.42 Golden, Wasil Kelly and Chao (1998)
E421-41k 420 41 200 - Golden et al. (1998) 1820.09 Golden, Wasil Kelly and Chao (1998)
E481-38k 480 38 1000 - Golden et al. (1998) 1622.69 Golden, Wasil Kelly and Chao (1998)
E484-19k 483 19 1000 - Golden et al. (1998) 1107.19 Golden, Wasil Kelly and Chao (1998)

The best value solution known found reported in the literature, actually. The last column of the
table contains the values of the new best solution found during our overall testing activity. All
test instance data, as well the most of the best known solution data, had been attained from the
authors.
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In the last file can look the solution values marked by (*) in were obtained values optimums to
instances D101-11c and E051-05e and E051-05c¢ according to results obtained by (Toth and
Tramontani, 2008)

The objective of computational testing was to evaluate the behaviour of the MXGTS
algorithm designed and implemented. Table 4.2 compares the results obtained on the fourteen
classic CVRP and DCVRP to classical test instances 14 and 20 large-scale instances proposed
by Paolo Toth and Tramontani (2008).

The implemented algorithm in this thesis project was called MXGTS (columns marked
MXGTS), which was compared with Granular Tabu Search proposed by Paolo Toth and
Daniele Vigo (2003), Xu and Kelly (KH) (Xu & Kelly, 1996) and Rego and Roucairol (Rego
and Rouncairol, 1996), the columns marked GTS, XK, and RR, respectively.

In this thesis project is possible look the time of MXGTS is usually small compared with the
other algorithms; however the quality solution is less competitive compared with the others
algorithms, because in this thesis project just was implemented 2-optimal and relocate
procedures.

For each instance of Table 4.2, Table 4.3 and Table 4.4 are reported the percentage ratio of the

solution value obtained by each algorithm with respect to the best-known solution value, as
well the computing time, which was expressed in seconds.
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Table 4.2 Comparison of the Results of 14 instances classical on the test proposed by Golden et

al. (1998)

MXGTS GTS GHL XK RR

Intance zgﬁt

Sol. % Time % Time % Time % Time % Time
E051-05e 524.61 524.61 100.00 0.40 100.00 48.60 100.00 360.00 100.00 1795.20 100.00 51.00
E076-10e 835.26 865.49 103.62 0.20 100.40 132.60 100.06 3228.00 100.00 2928.00 100.27 1008.00
E101-08e 826.14 861.02 104.22 0.27 100.29 143.40 100.40 1104.00 100.00 4315.80 100.17 2034.00
E101-10c 819.56 822.78 100.39 0.30 100.00 66.00 100.00 960.00 100.00 3396.60 100.00 73.20
E121-07c 1042.11 1049.24 100.68 0.55 100.07 190.80 103.01 1332.00 100.00 5473.80 100.14 378.00
E151-12¢ 1028.42 1091.08 106.09 0.83 100.47 270.60 100.75 3528.00 100.11 8994.00 102.52 1632.00
E200-17c 1291.29 1357.65 105.14 2.56 102.08 450.00 102.42 5454.00 100.55 16351.20 103.64 975.00
VRP average 102.88 0.73 100.47 186.00 100.95 2280.86 100.09 6179.23 100.96 878.74
D051-06¢ 553.43 560.24 101.23 0.10 100.00 51.60 100.00 810.00 100.00 1840.20 100.00 190.20
DO076-11c 909.68 972.98 106.96 1.75 101.21 165.00 100.39 3276.00 106.15 6127.80 100.00 1386.00
D101-09¢c 865.94 889.01 102.66 0.62 100.41 174.00 100.00 1536.00 101.78 5889.00 100.27 516.00
D101-11c 866.37 866.86 100.06 0.58 100.00 84.60 100.00 3942.00 105.64 9178.80 100.02 565.20
D121-11c 1541.14 1,573.22 102.08 1.14 100.28 560.40 102.12 3552.00 105.02 12105.00 100.59 120.00
D151-14c 1162.55 1,222.06 105.12 5.60 100.91 340.20 101.31 4260.00 - 10084.80 101.40 933.00
D200-18c 1395.85 1,472.27 105.47 6.38 102.86 546.60 101.62 5988.00 103.11 22102.20 101.79 3121.20
DVRP average 103.37 231 100.81 274.63 100.78 3337.71 103.62 9618.26 100.58 975.94
Overall average 103.12 1.52 100.64 230.31 100.86 2809.29 101.86 7898.74 100.77 927.34
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Table 4.3 Comparison of the Results on the Very Large Instances.

Instances Bsislt MXGTS _ GTS. XK- RTR.
Sol. % Time % Time % Time % Time

E241.22k  707.79 740.76 10466  4.79 98.70  857.40 10372 138840.00 100.00  341.40
E253-27k  859.11 889.38 10352 471 98.61  685.80 10000  87946.20 100.00  360.60
E256-14k  583.39 604.69 10365  3.71 10107  700.20 10034  20412.00 100.00  1380.60
E301-28k  997.52 1,049.45 10521  10.07 98.80  1287.00 10363  246061.20 100.00  489.00
E321-30k 108131  1,141.22 10554  9.03 99.32  870.60 10130 94638.00 100.00  1309.80
E324-16k  741.56 758.05 10222 731 10068  949.80 10000  30109.20 10035  1889.40
E361-33k  1366.86 143843 10524  19.45 99.85  1803.60 10234 343102.80 100.00  745.20
E397-34k 134523  1400.28 10409  17.01 10038 1107.00 10099  260404.20 100.00  1957.20
E400-18k  918.42 957.91 10430  13.40 10036  1987.20 10000  51163.20 10018  4151.40
E421-41k 182009  1,911.37 10501  32.71 10217 2583.00 10319  650383.80 100.00  1863.00
E481-38k 162260  1,687.34 10398  25.38 99.74  1384.20 10000  536607.00 100.08  2853.00
E484-10k 110719 121847 11005  524.92 10088  2574.00 10031  69066.00 100.00  6065.40
VRP average 10479 56.04 10005  1399.15 10132 210727.80 100.05  1950.50
D201-05k 646098  6,676.19 10333 197 99.92  142.80 - 35484.00 100.00  674.40
D241-10k 562754 572526  101.74 541 9831  298.80 - 48172.20 100.00  220.80
D281-08k  8412.8 865376 10286  3.15 99.41  279.00 - 54822.00 100.00  1127.40
D321-10k 844792 891370 10551  12.28 99.85  496.80 - 53911.80 10509  1359.60
D361-09k 1018175 10,471.08 102.84 1594 9547  699.60 - 63763.80 10150  1353.00
D401-10k 1103622  11,351.06 102.85  9.74 97.89  776.40 - 104956.20 101.98  2402.40
D441-11K 1166355 12,312.63 10557  27.89 98.25  664.80 - 95172.00 10216  6682.20
D481-12k 1362452  14,083.65 10337  16.02 101.85  907.80 - 145945.20 100.00  7356.60
DVRP average 10351 1155 98.87  533.25 - 75278.40 10134  2647.05
Overall average 104.15  33.80 99.46  966.20 10132 143003.10 10070 2298.78
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Table 4.4 Comparison general results

Initial Solution obtained by Clark & Wright

Improvement Phase obtained Tabu Search and

Algorithm Granular Tabu Search
Instance KBneOS\}v A Routes Cost &GAP Routes Time Cost %GAP Routes Time Distance %GAP
Name Solution C&W C&W C&W GTS GTS GTS GTS TS TS TS TS

D051-06¢ 553.43 1.3 0.3 6 595.31 7.57% 6 0.10 560.24 1.23% 6 0.38 568.39 2.70%
D076-11c 909.68 0.9 0.4 = = = 11 1.75 972.98 6.96% 11 4.10 958.60 5.38%
D101-09¢c 865.94 1.7 0.3 9 942.70 8.86% 9 0.62 889.01 2.66% 9 4.20 880.67 1.70%
D101-11c 866.37 1.2 0.2 11 869.62 0.37% 11 0.58 866.86 0.06% 11 4.36 866.37 0.00%
D121-11c 1541.14 0.7 0.1 11 1,583.25 2.73% 11 114 1,573.22 2.08% 11 8.13 1,556.33 0.99%
D151-14c 1162.55 13 0.0 14 1,222.06 5.12% 14 5.60 1,222.06 5.12% 14 27.69 1,222.06 5.12%
D200-18¢c 1395.85 1.0 0.0 = = = 18 6.38 1,472.27 5.47% 18 49.28 1,452.44 4.05%
D201-05k 6460.98 1.7 0.5 5 6,691.04 3.56% 5 1.97 6,676.19 3.33% 5 43.65 6,554.33 1.44%
D241-10k 5627.54 0.2 0.6 10 5,807.07 3.19% 10 5.41 5,725.26 1.74% 10 73.80 5,725.87 1.75%
D281-08k 8412.8 1.2 0.4 7 8,665.56 3.00% 7 3.15 8,653.76 2.86% 7 115.38 8,649.98 2.82%
D321-10k 8447.92 0.8 0.1 = = = 10 12.28 8,913.70 5.51% 10 187.76 8,917.81 5.56%
D361-09k 10181.75 1.8 0.9 9 10,614.61 4.25% 9 15.94 10,471.08 2.84% 9 378.82 10,422.68 2.37%
D401-10k  11036.22 0.7 0.9 10 11,414.50 3.43% 10 9.74 11,351.06 2.85% 10 384.11  11,312.36 2.50%
D441-11K  11663.55 13 0.8 11 12,409.47 6.40% 11 27.89 12,312.63 5.57% 11 677.48  12,308.27 5.53%
D481-12k  13624.52 1.9 11 11 14,109.85 3.56% 11 16.02 14,083.65 3.37% 11 746.43  13,986.34 2.66%
E051-05e 524.61 0.8 0.9 5 563.90 7.49% 5 0.08 535.12 2.00% 5 0.40 524.61 0.00%
E076-10e 835.26 1.0 0.1 10 866.30 3.72% 10 0.20 865.49 3.62% 10 1.78 848.14 1.54%
E101-08e 826.14 16 0.3 8 865.60 4.78% 8 0.27 861.02 4.22% 8 3.52 856.21 3.64%
E101-10c 819.56 12 0.4 10 826.00 0.79% 10 0.30 822.78 0.39% 10 3.62 822.78 0.39%
E121-07c 1042.11 1.6 0.6 7 1,065.08 2.20% 7 0.55 1,049.24 0.68% 7 8.17 1,043.89 0.17%
E151-12¢ 1028.42 2.0 0.7 12 1,101.82 7.14% 12 0.83 1,091.08 6.09% 12 13.69 1,086.46 5.64%
E200-17¢c 1291.29 1.4 0.2 17 1,370.05 6.10% 17 2.56 1,357.65 5.14% 17 39.60 1,358.59 5.21%
E241-22k 707.79 1.8 0.9 22 746.22 5.43% 22 4.79 740.76 4.66% 22 67.28 740.76 4.66%
E253-27k 859.11 13 0.9 26 896.56 4.36% 26 471 889.38 3.52% 26 85.29 888.08 3.37%
E256-14k 583.39 0.8 13 14 610.39 4.63% 14 3.71 604.69 3.65% 14 82.38 602.62 3.30%
E301-28k 997.52 15 1.2 28 1,051.51 5.41% 28 10.07 1,049.45 5.21% 28 149.52 1,049.45 5.21%
E321-30k 1081.31 1.2 0.4 30 1,144.23 5.82% 30 9.03 1,141.22 5.54% 30 194.19 1,139.58 5.39%
E324-16k 741.56 0.6 1.2 16 763.31 2.93% 16 7.31 758.05 2.22% 16 173.24 759.04 2.36%
E361-33k 1366.86 1.4 0.3 33 1,441.40 5.45% 33 19.45 1,438.43 5.24% 33 284.79 1,438.43 5.24%
E397-34k 1345.23 1.8 1.1 34 1,411.05 4.89% 34 17.01 1,400.28 4.09% 34 466.61 1,392.58 3.52%
E400-18k 918.42 1.0 11 18 966.93 5.28% 18 13.40 957.91 4.30% 18 349.33 958.79 4.40%
E421-41k 1820.09 14 1.0 38 1,917.83 5.37% 38 32.71 1,911.37 5.01% 38 484.68 1,911.56 5.03%
E481-38k 1622.69 1.2 1.2 38 1,709.72 5.36% 38 25.38 1,687.34 3.98% 38 755.74 1,678.11 3.42%
E484-19k 1107.19 0.4 15 19 7,599.06 586.34% 19 524.92 1,218.47 10.05% 19 816.35 1,218.47 10.05%

Average 23.40% 23.11 3.86% 196.64 3.44%

The instances D101-11c and E051-05e were founded optimal solution equal to
solution by so exact methods reported in Toth and Tramontani (2008).

the optimal
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The Table 4.4 with the instances D076-11c, D200-18c and D321-10k shows tree important
phases, the first one is which start with an initial solution parameterized (4, f). This initial
solution was infeasible by number of routes, however to implement tabu search it accomplish
the feasibility considering the penalty proposed as soon strategies of diversification. However,
the computational time to tabu search is highly, here is the importance of introduce granularity
with granular neighborhoods, which were implemented this way the results respect to time
was excellents compared with just use tabu search (See Figure 4.3).

In the instance E484-19k start with a feasible initial solution but with a GAP of 586.45 %;
homever to apply Granular Tabu Search there was obtained a GAP of 10.05%.

The computational times of Clarke and Wright do not presented because is very closed to cero.
The time of Granular Tabu Search is so less compared with Tabu Search because the number
or arcs is reduced by the candidate list in or the Granular neighborhoods Tabu Search. The
quality of the solution of Granular Tabu Search is competitive with high quality paper. The
results of the XK algorithm for the DVRP instances are those reported in Golden et al. (1998),
since Xu and Kelly (1996) had not tested their algorithm on DCVRP instances.

Granular Tabu Search designed in this project is proved able to determine, in a quite short
computing time, good solutions, but do not better to solutions reported by Granular Tabu
Search (Toth and Vigo, 2003), whose the quality was compared with the best solutions
obtained by other tabu search approaches from the literature.

In particular, the Granular Tabu Search proposed solution is worse than the GHL only in one
of the seven VRP instances, and the GAP with respect to the best known solutions of Granular
Tabu Search is half that of GHL. For the DCVRP instances, GHL is strictly better than
Granular Tabu Search in three out of seven cases, and the average percentage ratios for the
two algorithms are almost the same. The computing times of the Granular Tabu Search
algorithm is on average about one fifth the equivalent computing times of GHL.

The comparison between Granular Tabu Search and XK on the seven classic VRP instances,
XK generally obtains better solutions, whereas Granular Tabu Search is considerably more
effective than XK on the DVRP and the Fisher’s VRP instances. The computing times of the
Granular Tabu Search algorithm implemented are on average 80-83 times smaller than the
equivalent computing times of Paolo Toth and Daniele Vigo (Toth & Vigo, 2003).

Finally, the performance of Granular Tabu Search designed in this project is quite similar to
that of algorithm RR both in terms of solution quality and overall computing times. In
particular, Granular Tabu Search performs slightly better on CVRP instances and slightly
worse on DCVRP ones and the average equivalent computing times are almost the same.
When it runs with the complete neighborhoods, the tabu search used as a basis for the
Granular Tabu Search algorithm obtained solutions on average slightly better than those of
MXGTS, but required computing times of the same order of magnitude as the XK and GHL
algorithms. This clearly illustrates the positive impact of candidate-list strategies within the
local search methods. On the one hand, granular neighborhoods may be easily introduced into
any existing local search algorithm and lead to drastic reductions of the computational effort:
The Granular Tabu Search algorithm is several orders of magnitude faster than a basic tabu
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search using complete neighborhoods, and requires on large-scale instances about the same
amount of computing times as effective constructive heuristics. On the other hand, the
introduction of granular neighborhoods does not substantially affect the overall efficacy of the
approach: the quality of the solutions obtained by Granular Tabu Search is comparable to
those of the best available algorithms.

So, the Figure 4.3 shows correlation coefficients of 0.98, which denote that 98% dates,
are adapted to third grade polynomial. Because of execution of general tabu of » times
with computational time of 0(n) and execution of neighborhoods (2-opt and relocate)

with computational time of 0(n?) so 0()* 0(n’) = 0(n”).
The importance to implement granularity concept in vehicle routing problem, in this

case with constraint distance is that the time necessary is lees that used in Tabu Search
like can be seen in Figure 4.3.

54



Instance Time Time
GTS TS

D051-06¢ 0.10 0.38
D076-11c 1.75 4.10
D101-09¢c 0.62 4.20
D101-11c 0.58 4.36
D121-11c 1.14 8.13
D151-14c 5.60 27.69
D200-18c 6.38 49.28
D201-05k 1.97 43.65
D241-10k 5.41 73.80
D281-08k 3.15 115.38
D321-10k 12.28 187.76
D361-09k 15.94 378.82
D401-10k 9.74 384.11
D441-
11K 27.89 677.48
D481-12k 16.02 746.43
E051-05e 0.08 0.40
E076-10e 0.20 1.78
E101-08e 0.27 3.52
E101-10c 0.30 3.62
E121-07c 0.55 8.17
E151-12¢ 0.83 13.69
E200-17c 2.56 39.60
E241-22k 4.79 67.28
E253-27k 4.71 85.29
E256-14k 3.71 82.38
E301-28k 10.07 149.52
E321-30k 9.03 194.19
E324-16k 7.31 173.24
E361-33k 19.45 284.79
E397-34k 17.01 466.61
E400-18k 13.40 349.33
E421-41k 32.71 484.68
E481-38k 25.38 755.74
E484-19k  524.92  816.35
Average 23.11 196.64
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CONCLUSIONS AND FUTURE WORK

In this final section presents the coclusions and future work about this project, which was the
result of the implemented algorithm.

Conclusions

For the purpose of selecting an efficient method so solve the Distance Constrained Vehicle
Routing Problem was make a review of state art was made it. So, this review helped in the
search benchmarking instances and best know solution according. This way was evaluated
strategies as factorial analysis to find the saving algorithm parameters, which produced a good
initial solution.

In this thesis project was implement GTS and insert move 2-Optimal to solve DCVRP, in this
case was necessary to implement relocate by the results obtained in the initial solution, with
the issue to obtain good solution in all instances, which ware compared with the best solutions
according to reports of literature.

In this thesis project was presented and tested an effective implementation of candidate-list
strategies to be used within Tabu-search algorithms for a wide class of graph-theoretic and
combinatorial optimization problems.

The proposed approach, called granular Tabu search, was applied to the well-known
symmetric capacitated and distance constrained vehicle routing problem for which several
Tabu search algorithms have been presented in the literature.

These algorithms are able to obtain high-quality solutions but often require a large amount of
computing time to solve large instances. Granular Tabu search is based on the use of granular
neighborhoods, which include a small number of “promising” moves. Which use a simple
strategy to obtain granular neighborhoods from standard ones and discussed their efficient
search.

The computational testing shows the importance of using appropriate candidate-list strategies
and their impact in creating better methods: on standard test instances from the literature,
granular Tabu search is able to determine very good solutions within short computing times.

Attainment of initial solution competitive was obtained by a search exhaustive of a set of right
parameters to find the majority of initial feasible solutions, considering value best objective
function (minimize distance) and using a right and efficient implementation on C++. At
difference Professor Toth and Professor Vigo, algorithm in initial solution, they used Clarke &
Wright plus Patching, | use a Clarke & Wright parameterized, which use parameters 1 and g,
these used to expanding the exploration ability of the algorithm, A to design shape elliptic
routes and u to attempt to collect more information about the distribution of the customers as
to whether depot.
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In this algorithm was design and implemented a new strategy and penalty appropriate to
eliminate automatically so Tabu Search and procedure relocate the routes of less cardinality.
In the initial solution some instances were infeasible by routes numbers, whereby was
designed an appropriate penalty to eliminate less routes loaded automatically by Tabu Search
and the procedure Relocate so of added a penalty competent, when routes number major
vehicles number eliminated.

Penalties proposed by Gendrau (Gendreau, Hertz, & Laporte, 1994) when routes that may
feasible or infeasible with respect to the capacity and length constraints. This penalties
implemented were using by way light with small updates in each iteration.

Implementation efficient neighborhoods with evaluation time 0(1) in each movement.

Update strategy automatically of tabu list in Tabu Search in an interval [7,50] when it moves
by infeasible regions tabu list can grow until 50, when search move by feasible solution tabu
list size use “magic number “ seven. Like diversification strategy, if Tabu Search does not
accomplish come back to feasible solution it returns the last best solution feasible find it.

This methodology can be implement whichever variant belongs to general VRP, these are:

Capacitated Vehicle Routing Problem (CVRP)

Distance Constraints Vehicle Routing Problem (CVRP)

Vehicle Routing Problem with Backhauls (VRPB)

Vehicle Routing Problem with Time Windows (VRPTW)

Vehicle Routing Problem with Pick up and Deliveries (VRPPD)

Vehicle Routing Problem with Backhauls and Time Windows (VRPBTW)
Vehicle Routing Problem with Pick up and Deliveries and Time Windows
(VRPPDTW).

Future Work

In this project just was implemented like neighborhoods 2-opt (TSP cross, inter route parallel
and cross) and relocate between routes. However, the quality solution is bad compared with
results obtained by Paolo Toth and Daniele Vigo whereby | propose implemented in future
work Cross exchange, Flip, One point move (OPM), Or-opt, Swap, Sweep and 3-opt.

So, use other Metaheuristics like Simulated Annealing, Neighborhood Variable and Scatter
Search.

Otherwise, through excellent results obtained in computational time a good idea will be
implement in other new variant of vehicle routing problem like the single vehicle routing
problem with deliveries and selective pickups (SVRPDSP), which is defined on a graph in
which pickup and delivery demands are associated with customer vertices. The difference
between this problem and the single vehicle routing problem with pickups and deliveries
(SVRPPD) lies in the fact that it is no longer necessary to satisfy all pickup demands. In the
SVRPDSP pickup revenue is associated with each vertex, and the pickup demand at that
vertex will be collected only if it is profitable to do so. The net cost of a route is equal to the
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sum of routing costs, minus the total collected revenue. The aim is to design a vehicle route of
minimum net cost, visiting each customer, performing all deliveries, and a subset of the
pickups. A mixed integer linear programming formulation is proposed for the SVRPDSP.
Classical construction and improvement heuristics, as well as a tabu search heuristic (TS), are
developed and tested on a number of instances derived from VRPLIB.
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APPENDIX A

Function Mu ()

Lambda
(l) 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 11 12 13 14 15 16 1.7 18 19 20

D051-06¢
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf InfInf Inf Inf Inf
0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf 638.12 Inf Inf Inf Inf Inf Inf InfInf Inf Inf Inf
0.2 661.57 653.43 653.34 Inf Inf Inf Inf Inf 643.20 618.45 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 661.57 636.93 632.09 631.58  622.27  622.27 61521  618.67 605.97 625.82 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.4 632.09 632.09 622.79 622.79 615.72 615.72 621.50 605.97 613.33 613.33 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 622.79 622.79 622.79 615.72 61572  621.50  605.97 Inf 613.33 613.33 633.22 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 615.72 615.72 615.72 615.72  621.50  619.18 60597  613.33 613.33 613.33 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 618.39 615.72 615.72 619.71  619.18  605.97 642.03  613.33 613.33 613.33 623.45 620.75 630.32 Inf Inf Inf Inf - Inf Inf Inf Inf
0.8 618.39 618.39 619.71 619.71 605.97 605.97 642.03 630.54 619.43 624.52 621.79 618.34 616.41 Inf Inf Inf Inf Inf Inf Inf Inf
0.9 618.39 618.39 619.71 605.97 60597 63560  626.28  619.43 624.52 621.11 621.79 621.79 619.44 622.06 Inf Inf Inf Inf Inf Inf Inf
1.0 618.39 618.39 600.38 602.60 63560 63560  613.85 Inf Inf 637.74 Inf Inf 634.29 645.68 Inf Inf Inf Inf Inf Inf Inf
1.1 618.39 618.39 599.45 599.80 602.07 613.85 630.64 Inf Inf 637.33 637.33 Inf 639.20 634.67 Inf Inf Inf Inf Inf Inf Inf
1.2 622.63 599.45 599.80 599.84 599.84 599.92 630.64 630.64 Inf 637.33 637.33 637.33 644.24 626.31 643.97 Inf Inf Inf Inf Inf Inf
1.3 600.77 599.45 599.80 595.31 599.84 603.41 615.50 630.64 Inf 629.39 629.39 629.39 630.14 643.88 Inf Inf Inf Inf Inf Inf Inf
14 601.12 601.12 595.31 595.31 59531  603.41 603.41  615.50 630.64 629.39 629.39 629.39 629.39 630.14 640.86 Inf Inf Inf Inf Inf Inf
15 601.99 601.76 601.76 595.31  603.41  603.41 603.41  603.41 614.83 627.73 629.39 629.39 629.39 630.14 640.86 Inf Inf Inf Inf Inf Inf
1.6 Inf 602.63 601.76 601.76 603.41 603.41 603.41 603.41 608.72 621.05 627.73 629.39 629.39 630.14 626.76 Inf Inf Inf Inf Inf Inf
1.7 601.55 616.50 604.67 616.51 603.41 603.41 603.41 603.41 614.94 621.05 621.05 626.40 629.39 630.14 629.78 649.89 Inf Inf Inf Inf Inf
1.8 601.55 602.79 616.50 616.51 616.51 615.20 615.20 615.20 603.97 603.01 608.48 617.06 625.59 630.14 629.78 649.89 Inf Inf Inf Inf Inf
19 622.14 601.55 605.85 625.61 616.51 616.51 615.20 615.20 620.51 603.01 603.01 608.48 608.48 631.28 630.14 649.89 Inf Inf Inf Inf Inf
2.0 622.14 601.55 605.85 605.85  619.60  616.51 616.51  615.20 619.55 619.55 603.01 603.01 608.48 608.48 608.48 649.89 Inf Inf Inf Inf Inf

Figure 4.4 Parameterized of instance D056-06c¢, feasible to Initial Solution with of A=1.3 and x=0.3 values.
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APPENDIX B

Funuon Mu (1
Lambda
) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 14 15 1.6 17 1.8 1.9 2.0
DO076-11c
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
11 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
14 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.5 Parameterized of instance D076-11c, infeasible for the Initial Solution.

63



APPENDIX C

Qufcie Mu 1)

Lambda
) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 14 15 16 1.7 18 1.9 2.0

D101-09¢
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf
0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf 1017.8 Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf
0.2 Inf Inf Inf Inf Inf Inf Inf Inf 1025.67 575.72 Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf
0.3 Inf Inf 1038.78 Inf Inf Inf Inf 1008.99  971.11 975.76 Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf
0.4 Inf Inf Inf 993.19 Inf 1024.0 1008.9 991.83 983.08 963.19 Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf
0.5 Inf Inf Inf Inf Inf 1019.8 1000.2 962.67 970.96 974.67 Inf Inf 987.57 Inf Inf Inf Inf Inf  Inf Inf Inf
0.6 1014.82 984.47 1007.60 1019.23 1021.51 987.05 974.91 986.78 Inf 993.28 989.31 Inf 975.62 Inf Inf Inf Inf Inf  Inf Inf Inf
0.7 970.97 Inf Inf 990.48 987.56 983.00 986.23 976.67 983.47 974.17 981.05 988.22 Inf 99256 Inf Inf Inf Inf  Inf Inf Inf
0.8 Inf Inf 997.13 985.86 Inf 986.23 986.78 976.67 983.47 Inf 1002.48 Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf
0.9 Inf Inf Inf 981.22 967.98 968.53 981.24 981.24 981.13 977.59 1002.48 Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf
1.0 973.94 Inf 975.62 971.10 967.98 968.53 973.26 973.26 975.67 974.99 968.77 997.43 979.32 97841 Inf Inf Inf Inf  Inf Inf Inf
11 969.64 975.62 971.10 982.05 965.95 973.26 Inf Inf Inf 980.37  988.99 997.43 97312 Inf Inf Inf  Inf Inf  Inf Inf Inf
1.2 976.47 974.07 965.84 965.54 965.95 Inf Inf Inf Inf 977.65 967.47 999.01 Inf Inf Inf Inf Inf Inf  Inf Inf Inf
13 976.47 969.73 969.55 970.16 969.86 Inf Inf Inf 972.33 977.65 972.50 999.01 Inf Inf Inf Inf Inf Inf  Inf Inf Inf
1.4 976.47 969.73 969.73 971.34 Inf Inf Inf Inf 972.33 972.33 984.11 994.14  999.01 979.32 Inf Inf Inf Inf  Inf Inf Inf
15 976.47 976.47 973.66 973.66 Inf Inf Inf Inf 976.74 973.06 971.58 981.40 98549 Inf Inf Inf Inf Inf  Inf Inf Inf
1.6 992.36 992.36 973.66 973.66 947.67 Inf Inf 972.95 976.74 968.64 965.88 971.66 98549 97244 Inf Inf Inf Inf  Inf Inf Inf
1.7 992.36 977.50 956.27 942.70 944.10 947.67 Inf 966.65 976.74 968.64 959.62 971.66 981.38 966.54 Inf Inf Inf Inf  Inf Inf Inf
1.8 967.97 956.27 956.27 953.48 944.10 944.10 Inf 973.15 976.74 976.74 968.66 975.74  977.30 Inf Inf Inf 974. Inf  Inf Inf Inf
1.9 952.75 952.75 952.75 953.48 953.48 945.97 952.26 968.60 976.74 976.74 959.62 971.66 981.38 Inf Inf Inf 323 Inf  Inf Inf Inf
2.0 952.72 952.75 952.75 Inf 953.48 956.02 948.69 985.68 984.52 983.78 958.93 98453 977.30 Inf Inf Inf ilr71f Inf 101 Inf Inf

;.4

Figure 4.6 Parameterized of instance D101-09c, feasible to Initial Solution with of A=1.3 and x=0.3 values.
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Objective

APPENDIX D

Function Mu (ﬂ)
Lambda
(;\I) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 1.3 1.4 15 1.6 1.7 1.8 1.9 2.0

D101-11c
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 1374.72 1202.7 1202.40 11447 1063.98 985.82 1028.99 1021.27 1020.58 981.78 952.31 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.2 963.89 999.22 1012.41 1003.9 1004.69 1004.69 1004.00 982.78 964.64 956.40 939.51 986.88 Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 948.07 964.27 964.27 956.62 981.44 977.94 958.47 921.65 935.36 939.89 932.07 939.20 999.81 Inf Inf Inf Inf Inf Inf Inf Inf
0.4 930.03 955.0 943.77 963.07 959.42 948.29 941.03 932.24 912.55 901.73 907.22 914.85 985.57 1080.08 Inf Inf Inf Inf Inf Inf Inf
0.5 922.78 930.8 941.30 928.23 920.76 923.96 916.50 927.80 926.06 900.95 900.33 912.99 929.52 987.61 Inf Inf Inf Inf Inf Inf Inf
0.6 903.38 927.4 898.82 910.01 907.87 906.43 906.82 914.02 926.06 900.63 908.16 905.67 915.49 973.81 987.61 Inf Inf Inf Inf Inf Inf
0.7 891.25 892.47 897.92 899.04 899.81 905.71 908.27 913.61 916.76 929.35 901.98 905.67 909.42 953.54 974.82 1004.58 1130.46 Inf Inf Inf Inf
0.8 876.86 892.35 893.45 893.45 900.18 889.31 897.72 910.37 921.24 921.59 901.98 898.21 901.65 907.97 973.81 987.50 1038.44 1117.71 Inf Inf Inf
0.9 878.09 877.84 889.14 899.52 889.31 889.31 896.55 896.55 909.62 918.85 907.70 898.21 901.65 908.56 959.19 974.71 987.50 1058.23 1183.07 Inf Inf
1.0 875.75 877.98 879.30 908.59 878.23 891.36 896.55 897.32 904.96 904.88 907.70 909.14 898.21 902.49 942.15 968.37 979.23 992.81 1068.35 1187.23 Inf
11 877.26 877.06 879.30 873.84 873.84 884.81 885.52 897.46 905.09 904.88 912.24 908.37 898.21 902.19 908.89 937.49 952.69 961.81 0.00 1090.63 1186.52
12 907.98 878.57 869.62 873.84 876.55 880.42 880.42 887.21 895.14 905.02 906.27 908.37 908.37 900.88 905.60 930.42 946.06 961.81 968.04 1024.50 1090.63
13 912.75 885.79 871.67 869.62 878.25 880.42 881.19 882.83 887.05 893.05 894.08 897.43 908.37 911.81 904.83 908.12 944.32 952.69 961.81 973.45 1050.10
14 915.89 907.17 880.33 880.33 871.64 876.15 876.92 882.83 882.66 887.05 886.78 896.18 896.18 897.43 901.16 910.85 936.72 946.06 952.69 961.81 985.01
15 910.44 909.01 907.17 880.33 884.60 871.64 876.66 878.55 882.66 878.55 888.48 894.96 894.96 896.18 900.88 904.27 931.38 940.57 951.91 961.81 968.04
16 910.44 910.44 907.94 907.33 884.60 885.37 874.05 878.30 878.55 878.55 882.39 890.58 894.96 894.96 899.62 903.01 907.56 933.74 945.29 949.36 961.04
17 910.44 910.44 910.44 907.33 886.44 885.37 887.01 874.05 878.30 878.55 888.48 890.58 890.58 894.96 898.41 898.02 909.59 926.67 945.29 949.36 958.48
18 910.44 910.44 909.17 909.17 907.33 885.37 887.01 887.01 874.55 877.63 882.39 890.58 890.58 890.58 894.02 898.95 907.98 906.30 933.74 945.29 949.36
19 910.44 910.44 909.17 909.17 909.94 908.10 887.01 887.01 887.01 874.55 887.72 890.58 890.58 892.61 892.61 896.05 901.40 904.69 933.74 945.29 949.36
2.0 911.83 909.17 909.17 909.17 909.94 910.51 909.74 887.01 887.01 887.01 882.49 891.68 892.61 892.61 892.61 896.05 893.64 907.98 930.44 932.79 945.29

Figure 4.7 Parameterized of instance D101-11c, feasible to Initial Solution with of A=1.3 and x=0.3 values.
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APPENDIX E

Function Mu ()

Lambda
(;\‘) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 12 13 14 15 1.6 17 18 19 2.0

D121-11c
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 1664.08 1664.08 1662.71 0.00 0.00 0.00 0.00 1617.15 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
04 1644.15 1645.06 1642.25 1600.93 1622.97 1609.26  1609.84  1612.81 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 1596.04 1597.81 1599.23 1599.85 1587.79 1593.87 1590.42 0.00 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 1598.38 1599.07 1584.20 1584.20 1592.75 1589.67 0.00 0.00 1619.79 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 1598.27 1583.25 1583.77 1587.96 1585.86 1585.86 0.00 1673.25  1622.80 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.8 1592.94 1594.84 1601.38 1591.49 1591.49 0.00 0.00 1616.76 1623.94 Inf Inf Inf 1649.31 Inf 1650.59 1664.70 Inf Inf Inf Inf Inf
0.9 1591.24 1596.72 1602.17 1602.17 1625.01 0.00 0.00 0.00 1622.79 Inf Inf Inf Inf Inf Inf 1653.82 Inf Inf Inf Inf Inf
1.0 1596.72 1592.64 1591.02 1625.29 1617.35 1627.59 0.00 0.00 0.00 165127  1675.05 Inf Inf Inf Inf 1649.59  1658.62 Inf Inf Inf Inf
11 1593.78 1591.02 1591.26 1597.15 1619.49 1622.63 0.00 0.00 0.00 1639.33 0.00 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 1593.09 1589.72 1617.77 1607.62 0.00 0.00 0.00 0.00 0.00 1629.95 1634.65 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
13 Inf Inf 1600.51 1604.16 1607.56 0.00 0.00 0.00 1632.53  1626.80  1643.87  1643.87  1630.22 Inf Inf Inf Inf Inf Inf Inf Inf
14 1629.33 1611.24 0.00 1605.05 1606.59 1610.05 0.00 0.00 1621.28 1625.30 1629.55 1643.87 1634.10 1628.02 1632.22 Inf Inf Inf Inf Inf Inf
15 Inf Inf 1618.82 0.00 1603.01 1605.30 1612.68 0.00 1617.23 1617.23 1625.98 1640.71 1630.68 1632.55 1631.11 1635.30 Inf Inf Inf Inf Inf
16 Inf Inf Inf 1623.26 0.00 1603.01  1607.93  1613.77  1620.42  1618.18  1621.49  1633.40  1637.53 1630.68 1631.11  1632.22  1636.87  1644.55 Inf Inf Inf
17 Inf Inf Inf Inf 1624.33 0.00 1604.54 1607.26 1612.74 1617.94 1616.64 1625.97 1629.29 1622.30 1623.82 1628.11 1631.19 Inf 1640.00 1644.47 Inf
1.8 Inf Inf Inf Inf Inf 1624.33 1641.06 1610.23 1609.15 1612.74 0.00 1625.97 1625.97 1622.30 1620.74 1624.93 1628.01 1632.76 1638.02 1644.47 1647.71
1.9 Inf Inf Inf Inf Inf Inf Inf 1626.96  1612.12  1614.92 161291  1626.74 0.00 1617.80 1621.15 1623.82  1624.93  1629.58  1634.84 1640.00 1644.47
2.0 Inf Inf Inf Inf Inf Inf Inf Inf 1626.96 1608.54 Inf Inf 1626.74 1621.88 1620.33 1624.23 1624.93 1628.01 Inf 1634.84 1644.47

Figure 4.8 Parameterized of instance D121-11c, feasible to Initial Solution with of A=0.6 and £=0.3 values.
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APPENDIX F

Function Mu )

Lagj)da 0.0 0.1 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 2.0

D151-14c
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
11 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
13 1222.06 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
14 Inf 122351 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 1234.45 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.6 1236.24 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.7 1243.73 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
18 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
19 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.9 Parameterized of instance D151-14c, feasible to Initial Solution with of A=0.6 and £=0.0 values.
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Objective

APPENDIX G

Function Mu (1)

La;}]j)da 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 11 12 13 14 15 1.6 17 1.8 19 2.0

D200-18c
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
11 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
13 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
14 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.10 Parameterized of instance D200-18c, infeasible for the Initial Solution.
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APPENDIX H

Function Mu ()
Lambda
) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 14 15 1.6 1.7 1.8 1.9 20
E051-05e
0.0 1620.91 16(;4'6 16‘;2'3 1606.6 16%2'1 1572.56 1592.9 1572.46 1609.5 1586.65 Inf 1647.25 1719.70 1719.87 1731.40 1730.26 1660.40 1546.72 1575.41 1693.32 1607.51
0.1 904.76 904.76 976.74 874.77 858.38 775.69 681.94 655.89 649.20 635.25 600.52 0.00 Inf 1217.24 1241.23 1225.10 1249.33 1281.72 1281.74 1283.81 1308.43
0.2 721.57 707.06 702.51 681.11 661.07 629.13 629.13 622.21 606.47 Inf 589.90 628.56 Inf 1127.54 Inf 1146.13 1139.99 1151.07 1210.12 1210.12 Inf
0.3 641.24 628.22 628.91 628.91 617.25 601.07 581.45 581.45 596.26 Inf 589.90 580.17 694.00 Inf Inf Inf Inf 1146.13 1145.38 1148.42 1148.42
0.4 616.91 616.91 620.80 Inf 594.14 581.45 581.45 588.89 Inf 581.42 589.90 585.08 628.56 696.46 Inf Inf 1127.54 Inf Inf 1137.60 1146.13
0.5 598.35 598.35 594.14 594.14 581.45 581.45 588.89 570.48 Inf Inf 584.47 582.14 602.82 676.11 696.46 Inf Inf 1127.54 Inf Inf Inf
0.6 Inf Inf Inf Inf 581.45 575.58 588.89 570.48 Inf Inf 584.47 582.14 580.17 628.56 Inf 712.74 Inf Inf Inf 1128.90 Inf
0.7 Inf Inf Inf Inf Inf 568.81 570.48 Inf Inf Inf 584.47 582.14 Inf 602.82 Inf Inf 712.74 Inf Inf Inf 1128.90
0.8 Inf Inf Inf Inf 568.81 568.81 Inf Inf Inf 563.90 583.12 582.14 Inf 0.00 628.56 Inf 710.19 Inf Inf Inf Inf
0.9 Inf Inf Inf 568.83 568.81 Inf Inf Inf Inf 583.12 583.12 Inf Inf 592.92 604.11 652.26 Inf 710.19 Inf Inf Inf
1.0 Inf Inf 577.09 568.83 Inf Inf Inf Inf Inf 572.93 587.35 Inf Inf 592.92 Inf 628.56 676.11 Inf 710.19 Inf Inf
1.1 Inf Inf 577.09 568.83 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 615.86 652.26 Inf Inf Inf Inf
12 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 592.92 Inf 628.56 Inf Inf 710.19 Inf
1.3 577.09 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 577.38 Inf 618.62 638.94 Inf Inf 710.19
1.4 578.69 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 582.09 Inf 628.56 Inf Inf Inf
15 579.56 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 577.38 603.48 628.22 638.94 Inf Inf
1.6 587.08 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 577.38 582.09 603.48 638.08 675.28 Inf
1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 582.09 603.48 628.22 Inf 675.28
1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 577.38 582.09 628.22 Inf Inf
1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 577.38 582.09 592.03 Inf Inf
2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 577.38 582.09 592.03 Inf Inf

Figure 4.11 Parameterized of instance E051-05e, feasible to Initial Solution with of 2=0.8 and #=0.9 values.
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APPENDIX |

Funuon Mu (1

Lambda
(Z) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 1.3 1.4 15 1.6 1.7 1.8 19 2.0

E076-10e
0.0 2542.16  2505.74  2550.47 2540.90 2477.99  2469.94 249587 247559 2512.01 244771 Inf 2699.31 2719.04 2763.25 2846.19 2782.62 2906.93 2758.60 2918.89 2816.29 2786.94
0.1 142552 135471 1393.32 1258.74 1185.60 1149.76  1112.16 Inf Inf 936.24  Inf Inf Inf Inf Inf Inf Inf Inf Inf 2220.83  2233.59
0.2 1101.94 1074.67 107553  1032.42 Inf 968.59 Inf Inf 936.24 938.61 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 993.52 Inf 984.98 984.98 Inf 946.36 943.68 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1930.43
0.4 948.16 951.95 930.13 930.13 942.92 Inf Inf Inf 869.62 890.89 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 Inf Inf Inf Inf Inf 897.34 888.01 869.62 905.37 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 Inf Inf Inf 913.70 897.34 873.02 876.61 882.65 905.37 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 Inf Inf Inf 886.76 876.11 876.61 892.84 900.21 924.24 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.8 Inf 893.70 886.76 879.69 879.69 876.61 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.9 896.46 890.35 869.52 869.52 869.52 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 907.39 866.30  869.52 880.40 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
11 866.32 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 893.81 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
13 888.65 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.12 Parameterized of instance E076-10c, feasible to Initial Solution with of 4=1.0 and #=0.1 values.
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APPENDIX J

Ponetion Mu (n)

Lambda
(l) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 1.3 1.4 15 1.6 1.7 1.8 1.9 2.0

E101-08e
0.0 3556.88 3383.36 3306.07 3454.43 3287.51 3452.43 3231.18 3414.31 3431.07 3437.59 3367.60 3953.42 3846.25 3765.15 3890.33 3830.42 3774.57 3746.35 3709.05 3764.70 3755.97
0.1 1508.80 1471.53 1452.14 1450.40  1355.80 1172.06 1169.84 1113.65 1001.50 988.44 944.76 1706.07 2090.99 2166.41 2194.03 2310.58 2353.06  2434.08 2500.94  2546.28 2548.82
0.2 1186.96 1134.74 1087.59 1080.18 1081.47 1023.99 987.15 974.54 985.38 946.04 908.03 972.83 Inf 1966.52 2051.03 2092.69 2148.57 2187.46 2198.94 2279.97 2282.57
0.3 1034.13 991.59 1015.43 982.00 935.04 978.85 978.85 981.39 952.57 918.81 923.38 945.53 980.69 1712.64 2011.44 2014.58 2009.88  2047.90 2210.12 2220.20 2211.93
0.4 991.87 930.26 935.04 935.04 912.03 931.33 919.72 948.72 939.90 917.22 900.38 934.25 989.65 1058.82 1675.59 1907.73 1973.28 1975.20 2000.09 2007.49 2080.29
0.5 957.94 957.94 954.54 963.56 921.97 908.94 941.34 920.28 911.10 918.01 905.97 937.21 950.74 969.21 Inf Inf Inf 1951.67 1984.67 1974.09 2000.09
0.6 940.14 936.12 949.46 924.66 908.94 927.99 912.56 883.68 880.23 928.36 899.12 916.52 927.06 973.27 995.29 Inf Inf 1917.46 1970.87 1957.50 1981.42
0.7 944.56 918.84 912.32 902.27 889.93 887.27 903.10 892.35 888.64 900.10 914,51 916.52 930.53 936.81 976.83 1064.20 Inf 1675.59 1915.47 1907.21 1958.89
0.8 912.33 909.34 894.15 889.93 896.13 903.89 883.37 880.23 889.10 905.14 927.10 914.21 924.75 934.52 975.88 966.52 1060.62 Inf Inf 1929.06 1893.51
0.9 903.49 902.09 902.09 905.57 899.68 878.86 880.23 894.90 892.68 908.68 927.10 914.21 922.79 920.43 941.56 976.67 1003.20 1069.04 1200.59 1675.59 1920.06
1.0 889.00 889.00 898.31 888.73 888.66 896.75 886.15 889.60 892.67 908.61 914.57 927.10 922.56 918.47 925.31 952.40 971.42 1031.39 Inf Inf Inf
11 886.95 878.87 885.21 890.59 891.14 885.21 877.25 889.60 910.92 912.30 926.01 922.87 914.03 912.05 920.43 951.98 970.41 954.42 1054.21 Inf Inf
1.2 883.60 876.98 887.63 890.59 891.14 877.54 885.21 904.01 910.92 908.55 922.28 921.94 922.87 914.66 931.68 933.20 959.84 954.14 1003.20 1060.01 Inf
13 879.37 895.77 885.75 888.98 891.94 877.54 883.38 886.81 904.98 897.28 909.48 921.94 927.89 912.05 919.51 922.45 951.06 965.24 966.52 1013.33 1068.43
14 886.41 891.90 891.90 880.05 877.65 877.54 883.38 889.37 897.28 904.98 903.95 913.57 921.50 918.88 915.90 919.51 937.59 949.79 951.92 956.45 1054.21
15 890.11 887.55 880.05 880.05 865.60 886.16 889.61 895.60 897.28 897.28 909.48 913.57 903.95 904.42 912.09 0.00 937.59 943.62 964.84 956.25 Inf
16 890.11 890.11 880.05 865.60 886.95 892.29 892.13 897.28 897.28 897.28 909.48 903.95 903.95 905.54 912.99 919.51 Inf 933.20 949.79 958.87 965.60
17 892.13 887.99 879.26 881.74 883.98 892.29 893.04 905.63 899.69 897.28 909.48 903.95 903.95 903.95 912.99 910.29 923.45 936.52 950.52 956.83 956.25
18 896.95 885.76 879.03 884.00 883.98 883.15 893.04 905.63 901.15 901.88 909.48 903.95 903.95 903.95 905.76 912.99 926.29 934.26 940.91 956.83 957.96
1.9 898.77 893.68 893.68 875.53 875.53 883.15 890.20 903.83 903.83 901.15 909.48 903.95 903.95 903.95 905.18 905.18 926.29 935.66 940.11 954.17 954.17
2.0 891.97 893.68 893.68 878.39 875.53 875.53 893.25 904.00 903.83 903.83 904.70 902.60 902.60 903.95 905.18 905.18 917.47 922.35 939.40 953.98 954.17

Figure 4.13 Parameterized of instance E101-08e, feasible to Initial Solution with of 4=1.6 and #=0.3 values.
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APPENDIX K

o Mu ()

Lambda

) 0.0 01 0.2 03 04 05 0.6 07 08 0.9 1.0 11 12 13 14 15 16 17 18 19 2.0

E101-10¢
00 3250 34036 3144 3404 ggngy 3345 JISL6 3205 3ABS 3B IG02  4STSS 469 4AUS 4482 43 44165 4S063 4S20 4702 4609
ol 1208 1205 1055 1278 i LA 1127 109 gpn  gper  epop 94 2883 3087 30603 3191 32060 33 3NS4 I|T 34758
0.2 94368 95455 98348 98428 98428 98428 96879 95679 91639 90068  sogo2  oazgp o078 2BBAS 28540 28028 30192 29286 80762 31071 32021
03 93467 93254 94153 92890 93127 93226 91790 90234 90880 89575 89988 91387  oas72 ;08 27071 27806 28538 28212 29815 29530 29652
04 0156 90719 91003 90886 91646 90640 89914 89636 89230 89727 90458 87829 93665 00 inf 26002 2845 27888 28020 28212 28627
05 87453 89766 88812 89466 89200 89528 89060 89060 89331 89955 89004 87485 91396 93736 00T s os24d 27228 2724l ZBTLS 28447
0.6 84273 85086 86019 87760 87526 87381 88310 88480 89331 89960 89221 88935 89510 93152 93736 0%t 2302 26%3 2887 27293
07 84013 84273 86173 86213 86118 87330 87330 88343 68658 69060 69008  809.35 80903 92279 93022 95075 102 nf GLL 20999 26979
08 83575 84123 84371 84371 86399 85240 85008  B7479 87406 87483 88663 87585 83530 88872 93267 93691  oea1r ONh yr Inf 25094
0.9 83640 83673 83673 84636  830.57 83057  847.49 85546 86567 87440 86243 86275  866.19 86858 92824 90337  927.25 §’°1°'7 é’°55'° Inf %’269'1
1.0 83351 83620  837.60 84484  837.11 84162 84263 84826 85212 86044 85612 86275 86275 86252 89278  898.47 01703 92333 3’013'0 é,osa.a Inf
11 83025 83482 83350 83214 83273 84084 84156 84354 85226 85247 @671  G57.39 85644 86673 86892 90216 90503 91416  oarg0 o0 11269
12 83313 83156 82738 82813 826,00 83645 83645 84324 84740 85204 85118 85328 85739 86542 85932 89383 89985 91416 91205 97018 OO0
13 83780  839.10 82849 82738 82701 82701 83629 83386 84308 84530 85118 85328 85328 85672  860.27  868.15 90077 90503 91416 91932 99456
14 84402 83449 83364 82606 82600 82701  827.78  830.00 84241 84308 84593 85328 85328 85328 85650  866.20 89554 89354 89872  907.85  930.89
15 83856 83856 83449 83364 83571  827.07 82753 82942 82942 83580 85136 85412 85206 85328 85672 85971 87998 00063  899.67 90785  912.05
16 838.56 83856 83527 83551 83576 83648 82947 829016 82942 82942 83593 85345  857.84 85206 5672  860.37  €63.00 89446 89393  899.67  908.80
17 838.56 83856 83856 83625  837.23 83616  837.80  820.16 82885 82042 83555 84412 84412  857.84 86128 86182 86629  887.30 89323  899.67  908.80
18 838.56 83856  830.21 83921 83625 83616  837.80  837.80 82016 82885 82046  837.65 84175 84412 85690 86182  864.68 86300 89486 89323  899.67
19 838.56 83856  830.21 83921  830.98  837.02  837.80  837.80 83780 82016 83546  837.65  837.65 84378 84615  857.17 86520 86139 89486 89323  899.67
2.0 83096 83921 83921 83021 83998  839.43 83865  837.80  837.80  837.80 83604 83043  830.68 83068 84320 84950 85033 86468  879.04 89391 89323

Figure 4.14 Parameterized of instance E101-10c, feasible to Initial Solution with of 2=1.2 and #=0.4 values.
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APPENDIX L

Objective

Function Mu ('”)

Lambda
) 0.0 01 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0 11 12 13 14 15 16 17 18 19 2.0

E121-07¢
0.0 333020 327038 338274 310371 309456 3193.40 308121 310571 341605 312027 Inf 8680.73 8649.37 874400 873559 867023 872913 8817.41 8799.49 8744.84  8743.11
0.1 1577.77 157307 157615 157107 1524.43 1309.69 1305.38 1287.26 125536 1177.45 Inf 5385.67 7611.63 777357 774199 791072 7818.09 782212 7849.26 7934.44  7934.54
0.2 126548 126822 126949 120945 120230 119052 119310 117697 116578 1149.83 113677 116811 515652 7146.88 767178 771152 764419 770430 771691 7788.67  7790.34
0.3 115956 117384 117213 117252 117252 117598 116630 115443 114489 115107 113544 Inf 1182.85 534421 729257 726820 759172 7650.75 Inf 7461.93  7478.49
0.4 1151.02 113616 114078 1131.83 115827 115371 114679 1137.92 114488 Inf 113308  Inf 1162.60  Inf 543622 6806.24 7098.21 7280.87 7564.36 7677.15 7717.81
05 113619 1126.82 113467 113055 112905 112443 Inf Inf Inf Inf 113441 114598 Inf 116202 Inf 5350.94 691659 7172.87 725915 742628  7489.10
0.6 110502 111892 112826 112759 1127.68 Inf Inf Inf 112294 112803 113111 114400 Inf 116260 Inf 1283.83 543177 703650 702851 716132  7398.48
0.7 110171 110141 110591 113081 Inf Inf Inf 111258 111396 113111 113696 114400 Inf Inf 116352  Inf 1292.690 540525 6793.84 Inf 7192.22
0.8 1094.87 109853 1114.63 1106.84 110016 1129.06 112859 Inf Inf 112162 112516 113307 Inf Inf 116471 1176.63  Inf 1297.00 541599 6993.64  6929.98
0.9 107542 108200 109146 1106.08 110820 110201 110201 Inf Inf 111181 111082 113307 1137.54 Inf Inf 116247  Inf Inf 1296.97 543177 6826.03
1.0 1071.07  1070.08 107151 109355 1102.02 Inf Inf Inf Inf 110920 1109.98 112191 112638 113255 113040 1157.65 115225 Inf Inf 1305.28  5338.79
11 Inf 1068.14 107571 1073.38 108114 Inf Inf Inf 111574 111574 111133 111399 1127.93 1127.92 113041 1147.82 114931 117689 I'nf 1273.08  Inf
1.2 Inf Inf 1070.68 1072.63 1079.81 107912 Inf Inf 1109.00 111574 1117.87 112301 113327 1127.92 113255 114926 116006 116272 Inf Inf 1283.12
13 Inf Inf Inf 1066.43 107594 1079.12 1079.01 1082.92 1106.68 1107.60 111114 1123.01 113229 114129 114746 113892 115633 1160.06 116355 115584 Inf
14 Inf Inf Inf Inf 106659 1071.52 1079.01 1079.01 1082.43 1094.49 111968 1130.36 113229 114098 1147.15 114313 1151.84 116371 1157.82 117689 1154.57
15 Inf Inf Inf Inf Inf 1065.08 1071.88 1078.82 1079.01 108243 1102.21 1130.36 112555 114326 114252 114282 1142.82 116371 116371 117339 1155.84
16 Inf Inf Inf Inf Inf Inf 1065.08 1072.62 107955 1079.74 1081.68 110670 112555 112555 114416 114490 114282 115868 116511 116147 117550
17 Inf Inf Inf Inf Inf Inf Inf 107013 107672 107955 108111 109145 1123.33 1117.17 114538 114879 114446 112929 1151.68 1165.11 116585
18 Inf Inf Inf Inf Inf Inf Inf Inf 107402 107672 1082.86 109145 111342 110630 112491 114879 1144.46 114446 115806 1152.36 1162.86
1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf 107402 1078.09 1087.31 1112.99 111342 110751 1123.68 1131.91 114446 1153.61 1160.03 1152.36
2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1075.95 1082.89 1101.03 1112.99 111144 1111.87 112832 112386 1129.77 1158.06 1160.03

Figure 4.15 Parameterized of instance E121-07c, feasible to Initial Solution with of 2=1.6 and #=0.6 values.
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APPENDIX M

Funcion Mu ()

Lambda
0\') 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 1.4 15 1.6 17 18 19 2.0

E151-12¢
0.0 4665.66 4700.65 4578.43 461578 4786.26  4570.62 4573.87 4580.11 4606.84  4590.66  Inf 5357.08 523477 5164.89 5371.69 5210.16 545573 5489.95 5463.01 5371.75 5505.74
0.1 1730.97 1719.29 1685.62 1687.31 1681.66 1646.24  1540.43 1438.29 1314.84 1302.08 1164.39 Inf 3078.97 3186.95 3216.84 3243.40 3390.92 345854 348545 3557.05 3516.11
0.2 1530.67 1481.62 1441.01 1385.65 1407.76 1309.87 1286.54 1254.21 1238.95 1253.17 1162.49 123558 Inf 3012.92 3077.89 309851 3221.77 328135 331347 3385.04 3424.37
0.3 1316.66 ~ 1312.76  1283.57 1341.11 1331.34 1272.63 1231.26 1246.46 1212.14 1217.86 115358 1168.70 1314.79 Inf 288459 2981.24 2976.55 3029.42 3084.80 3277.80 3282.84
0.4 1261.05 1224.83 1252.20 1256.68  1198.55 1206.04 123497 1154.09 1200.59 121341 115531 1162.69 1226.29 1384.10 Inf 2962.88 3004.24 3022.16 3021.26  3014.75 3091.34
0.5 1187.36  1180.20 1181.64 1209.69 1214.43 118481 1151.66 1163.16 1159.27 1151.79 1147.14 1169.96 115448 131328 Inf Inf Inf 292190 2927.46  3000.71  3046.87
0.6 1162.07 119199 1200.90 1186.40 1179.55 1162.87 1160.54 1166.25 116585 1151.79 1129.06 1136.20 1158.07 1208.17  1296.10  0.00 Inf Inf Inf 3025.74  2926.17
0.7 1159.77  1161.37 1193.12 1165.28 1162.48 1155.65 1121.79 1153.96 1134.17 112593 113325 1153.32 1157.94 1187.51 125755 1308.03 Inf Inf Inf Inf 2933.91
0.8 1147.66  1187.39 1151.95 1158.05 116541 114727 112598 1123.26 1108.10  1120.00 1127.74 1130.34 115845 115295 Inf 1300.65 1381.12 Inf Inf 2881.24  2924.30
0.9 1157.43  1147.10 1129.35 1153.16 1153.66 1158.58 1135.65 1136.32 1116.96 1117.08 1117.08 1121.24 1146.66 1155.44 Inf 1249.75  1289.77 1381.13 1493.76 Inf Inf
1.0 1133.43 112857 113842 113842 1131.04 1158.58 1143.69 1146.72 1127.54 1126.93 1117.69 1117.69 114503 1166.59 117558 0.00 1288.89  1303.18 0.00 Inf Inf
11 1115.67 1116.33 1131.88 1126.95 1129.02 1131.99 1129.52 1124.71 114246 1123.72 112693 114151 114177 116540 117558 0.00 Inf 1309.78  1341.32  Inf Inf
1.2 1123.02 1110.32 1127.36 1122.73 1122.73 1129.02 1103.85 1143.83 114173 1153.11 Inf 114045 114598 1169.24 1186.32 1185.63 Inf 1313.54 129891 1365.32 Inf
13 1132.48 1119.04 1109.72 1121.92 1111.38 1111.93 1117.48 1131.75 114149 1153.08 1148.31 1155.08 117196 1157.15 1176.78 1182.92 Inf 123478 131354 1322.60 1370.81
1.4 1133.68 111315 110843 1121.92 1121.92 111111 1137.32 113293 1129.27 1140.96 1146.78 1148.46 1166.48 1182.82 1183.37 1183.04 119156 0.00 1264.99  1304.20 1322.60
15 113359 1120.19 1113.60 112248 1112.67 1116.79 1131.39 1124.72 1138.74 1122.85 1148.14 1146.78 114427 1181.37 118721 1196.74 117835 0.00 123478  1313.27 1301.41
1.6 111453  1131.11 111990 1113.60 1119.18 1128.36 1131.67 111840 111578 111595 1126.82 1148.14 114566 1159.14 Inf 118455 1192.77  0.00 1240.14 125474  1304.33
1.7 1147.13 113413  1128.06 1120.15 111358 112146 1131.72 1131.16 1106.08 1108.39 1128.89 1142.16 1146.78 1156.94 Inf 1189.54  1186.10 120142 Inf 1234.78  1313.27
1.8 1147.70 113478 1136.22 1124.18 112836 1117.47 1108.65 1130.32 1123.72 1119.58 1121.33 1142.16 1157.74 1139.17 117161 1187.05 1187.99 1190.76 Inf 1240.14  1260.21
1.9 1135.36  1134.78  1135.03 113299 1127.76 1131.30 1102.34 1107.37 1116.47 1111.33 110525 1121.89 1159.01 Inf 1182.47 1164.96 1185.77 1182.90 119351 1233.12 1259.82
2.0 1134.02 113536 1124.00 1118.07 1130.78 113542 1129.88 1101.82 1107.93 1125.98 1108.33  1105.25 1148.19 114290 115841 1187.57 1186.54 1181.80 Inf Inf Inf

Figure 4.16 Parameterized of instance E151-12c, feasible to Initial Solution with of 2=2.0 and #=0.7 values.
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APPENDIX N

e o

Lambda
(Z) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 1.4 15 1.6 1.7 18 19 2.0

E200-17c
0.0 5919.27 6123.63 592446 5981.57 6029.12 577448 570322 5936.09 601248 6009.96 6327.47 7011.19 693579 721091 7156.24 7296.26 7003.84 6932.02 6852.16 688550 7123.85
0.1 227358 218315 2139.70 2022.76  1968.46  1938.49 1896.37 182456 1640.37 1632.92 142538 Inf 3971.71  4058.22  4247.70  4263.70  4389.17 4414.07 447795 453342 451175
0.2 1836.47 181539  1811.67 174549 1680.98 1602.10 1637.83 1652.00 1568.10 1530.84 144251 1550.24 Inf 3915.03  3921.44 3935.32 4083.85 4074.97 4228.37 4229.75  4238.49
0.3 1636.64 156551 1639.80 1629.76  1533.23  1534.73  1571.83  1555.81 1521.39  1477.96 1440.54 1499.65 1596.67 Inf 3868.04 Inf 390858  3926.88 3996.12  4006.57  4094.61
0.4 1575.41 1593.51 1547.39 1526.61 1576.63 1560.43 1534.89 1483.15 1496.56 144527 1420.02 1486.67 1528.51  1639.00 Inf 3772.38  3850.14 3884.76  3900.25 Inf 3955.02
0.5 1549.84 147426  1481.85 1469.65 1481.72 1499.79  1499.62  1458.03  1462.94 144516 141394 1455.01 1512.29 1587.58 Inf Inf 3772.69 Inf Inf 3946.57  3940.64
0.6 1471.78  1458.75 144840 1455.10 1484.81 1459.87 1461.76 1466.13 1467.85 144292 141522 145456 147529 1563.06 1616.39 1703.41 Inf 3659.02 3772.04 Inf 3922.29
0.7 1421.85 144242 1469.76  1468.94 1438.16 1449.55 1460.99 1437.93 147460 1469.66 1416.75 1451.89 148290 151550 1580.13  1592.13 Inf Inf 3721.64 3716.64 378293
0.8 1420.85 1436.18  1444.47 1418.76 142311 1427.10 1447.38 1451.69 1457.16 1447.06 141113 1447.78 147471 1502.30 1559.91 1564.80 1634.47 Inf Inf Inf Inf
0.9 1429.93  1433.88  1433.23  1420.47 143340 1441.08 1436.57 1440.13 142487 1426.13 142822 143499 144837 148571 154297 1557.30 1590.74 1639.63 Inf Inf Inf
1.0 1395.74  1409.47  1423.67 1429.29 144436 1432.33 1429.45 143545 142145 141891 141575 143399 144846  1493.66 1540.22 1547.41 154434 1591.62 Inf Inf Inf
11 1381.03 1379.05 1391.97 140853  1412.83 1427.34 1428.74 1409.39 142873  1432.75 1405.01 144511 144350 1436.48 1511.20 154480 1556.43 1588.85 1616.63 Inf Inf
1.2 139250 1381.03 137157 1403.95 1408.69 1412.30 1418.99 1416.03 1427.48 1434.80 1439.02 1443.33  1467.37 144425 148443 154385 1550.11 1599.81 1602.19 1627.10 1704.95
13 1402.11  1376.30 1389.74 1389.55 1386.08 1393.34 1398.52 1403.14 1426.04 1420.26 1409.43 145556  1452.78 1462.03 148544 1516.68 1531.93 1552.10 1540.39 1564.01 1638.20
1.4 1386.87  1384.23  1370.05 1380.02  1383.78  1399.37 141533 1402.60 1396.85 1409.54 1427.80  1449.37  1449.19 1464.64 Inf 1497.01  1521.83 1539.30  1540.09 1567.64  1560.01
15 1387.76  1381.78 1405.86 1393.58 1406.70  1407.35 1400.30 1404.56 1405.88 1397.24 1398.18 1449.37  1449.37 145735 1460.28 1478.20 1532.47 1550.48 1531.27 1559.86  1590.97
1.6 1408.80 1387.22  1390.98 1391.57 1408.20 1407.19 1394.95 1392.25 1402.63 1396.28 1387.51 1424.07 144945 145540 144888 147165 1519.17 1521.83 1551.66 1550.73  1559.65
1.7 1400.04 1386.00 1379.19 Inf 1383.77  1405.21 1394.66 1401.74 1398.82 1395.96 1400.82 1422.01 1423.80 1441.11 147518 145527 147512 1537.17 1557.64 154190 1591.22
1.8 1412.36  1396.49 1387.85 1379.19 Inf 1404.04  1390.27 139845 139459 1390.75 1389.57 1421.47 142576 1436.08 1440.84 1452.04 1461.05 1510.04 1526.98 1551.67  1539.97
1.9 1404.23 140559 1395.68 1388.13 1380.42 1387.55 1389.14 1392.31 140045 138550 1383.79  1395.01 1418.48 143145 1442.01 1456.56 1457.74 1529.66 1548.46  1553.43  1533.85
2.0 142431 1401.12 1405.54 1377.89 1381.91 1382.81 1389.59 1390.14 1376.03 1395.05 1388.63 143530 1411.18 1416.45 144396 1452.84 1450.11 147147 153795 1536.88 1533.74

Figure 4.17 Parameterized of instance E200-17c, feasible to Initial Solution with of 4=1.4 and x#=0.2 values.

75



Objective

APPENDIX N

Function Mu (:”)

Lambda
(ﬂ) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 1.3 14 15 1.6 1.7 18 19 2.0

D201-05k
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 Inf Inf Inf Inf Inf Inf Inf Inf 8683.68  7400.31 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.2 Inf Inf Inf Inf Inf Inf 8617.23  7542.61 7384.99  7200.15 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 Inf Inf Inf Inf 8632.01  7813.13  7352.07 7384.99 701520  7705.34 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.4 Inf Inf Inf 7940.09 7462.61  7361.22 724467 687499  7252.69 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 Inf 7968.37  8159.75  7640.60  7440.51 7128.63 7153.12  7000.47  7723.65 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 796451 766157 7610.46 7291.14  7336.06 7051.51 6776.90 717245 7915.10 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 7650.34  7504.03 7291.14 7250.29 7056.97  7062.33  6940.06 7172.45 7916.23 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.8 7452.19 739248 7367.20 714446 6954.14 7166.72 7270.54  7885.80 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.9 7217.01 7161.72 7160.40 7043.70  6977.62 7187.51 7202.77  7916.23 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 7296.89  7402.35 6954.14 6990.20 6975.44 7221.08 7970.74  7913.67 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
11 7218.03 711211 7209.23  7180.48 7172.45 7221.08 7858.79  7886.21 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 6913.05 7129.17 7081.19 723189 7172.45 7235.18 7904.06 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
13 6928.61 6919.04  7075.79 Inf 7234.61 7919.30 8015.60 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.4 7139.43  6960.01 708529  6702.49 Inf 7862.23 7920.61 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 7386.02 7118.33  6949.72  6936.08  6984.53 7483.00 7962.24 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.6 722321 7013.68 7316.42 7023.02 6936.08 6733.99 7504.07 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.7 Inf Inf 7394.04 7013.68 6722.10 6691.04 687127  7521.65 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.8 Inf Inf Inf 7403.43  7428.00 7316.42 Inf 6715.07  7539.51 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.9 Inf Inf Inf Inf 6958.05 6954.60 7375.89  6937.21  6700.08 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 Inf 7000.13  7440.68 Inf 7013.68 7310.37 7310.37 694222 6700.08 6729.73  7584.78 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.18 Parameterized of instance E201-05k, feasible to Initial Solution with of 4=1.7 and x#=0.5 values.
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Objective

APPENDIX O

Function Mu ('”)
Lambda
(Z) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 14 15 1.6 17 1.8 1.9 2.0
D241-10k
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 5837.15 584242  5825.10 5820.39  5882.23  5830.30 5830.30  5876.76  5882.23  5932.09  Inf Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf
0.2 6066.95 5901.97 6360.34 5864.38 5818.97 5881.18 5807.07 5830.30 5865.40 5910.40 5924.09 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 5853.02  6056.42  6236.34  6182.32  6022.29  6109.04 598335  5953.00 5981.13 Inf 5877.20  Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf
04 6159.01  6163.43  Inf 5955.12  5967.86  5926.87  5903.68  5957.89  Inf 6093.81  6101.44 Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf
0.5 5989.53  6022.78 599555  5957.39  5972.05  Inf 5992.22  5987.83  5939.19  5954.88  6008.01  6142.05 Inf Inf Inf Inf Inf Inf Inf  Inf Inf
0.6 6058.96  6108.32 598141  6116.49  5951.01 597341  5966.60  6098.43 Inf Inf 6009.85  Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf
0.7 6084.04  6084.04 594145  6085.67  6078.39  5976.79  5918.87  5950.63  5975.19  5941.67  6100.60  6245.84  Inf Inf Inf Inf Inf Inf Inf  Inf Inf
0.8 6057.31  6081.25  6109.31  5953.00  5977.12  6087.50  6121.09  6086.80  5982.73  6125.77  6091.55 Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf
0.9 5952.77  5972.05  5981.04 597341  6087.64  5939.99  6087.35  6093.68  6078.11  5941.93 599151 Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf
1.0 6027.56  6075.34  Inf 5952.77  6083.69  6100.60  6129.32  5976.79  6001.33  6100.85  6100.85  Inf 6164.3 Inf Inf Inf Inf Inf Inf  Inf Inf
11 6079.94 6000.45 5967.21 Inf 5981.41 6125.77 5980.67 6096.65 5997.05 6125.77 5991.51 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 Inf 6089.51 5972.17 Inf 5976.65 6089.73 6149.18 6087.61 6072.76 6144.50 6140.56 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
13 Inf 6121.31 6125.84 6104.21 6001.31 6090.74 6144.50 6068.81 6129.72 5954.88 6125.77 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.4 Inf Inf 5979.55 5955.78 6172.76 5931.82 5990.94 5982.73 Inf 6125.77 5941.93 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 Inf Inf Inf 6084.92 6084.89 5964.85 6145.23 6069.06 5950.46 6149.18 5995.93 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.6 Inf Inf Inf Inf 5961.91 6171.88 5948.09 5986.25 6016.03 6100.85 6073.01 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.7 Inf Inf Inf Inf Inf 5960.32 6001.00 6000.46 5991.51 6124.07 6091.55 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.8 Inf Inf Inf Inf Inf Inf 6026.28 6084.15 5983.10 5964.48 6004.77 5991.51 Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.9 Inf Inf Inf Inf Inf Inf Inf 6033.59 6016.50 6005.74 6002.92 6002.92 Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 Inf Inf Inf Inf Inf Inf Inf 6026.21 5972.78 6001.04 6042.36 5965.12 Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.19: Parameterized of instance D241-10k, feasible to Initial Solution with of 4=0.2 and x#=0.6 values.

77



APPENDIX P

Function Mu ()

Lambda
(Z) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 14 15 1.6 17 1.8 19 2.0

D281-08k
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 11645.05 11645.05 11746.34 11113.72 11099.10 11010.12 11074.12 11026.67 10832.56 9388.62 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.2 11036.65 11039.56 11064.57 11039.77 11124.16 10908.15 10820.21 10770.62 9440.89 8764.39 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 10833.31 10787.55 10833.31 10770.62 10770.62 10770.62 10770.62 9374.08 9086.45 8842.57 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.4 10770.62 10770.62 10770.62 10770.62 10770.62 10770.62 9351.85 8899.53 8707.03 8969.93 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 10770.62 10770.62 10770.62 10770.62 9786.18 9358.89 9514.13 9070.78 8879.93 8871.28 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 10770.62 10770.62 10770.62 9906.24 9444.91 9391.92 8996.62 8835.15 8890.61 8911.13 10167.64 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 10770.62 10770.62 9894.34 9449.17 9395.85 9077.49 8956.72 8832.48 8817.13 9006.88 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.8 10770.62 9942.30 9358.33 9391.92 8996.62 9071.29 8716.07 8923.56 8739.54 9006.88 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.9 9902.07 9351.86 9401.10 9014.97 9062.10 8751.98 8716.07 8776.73 8817.13 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 9351.86 9403.80 9449.17 9062.10 9071.29 8716.07 8867.34 8897.03 8897.03 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.1 9449.17 9442.40 8968.83 8996.62 8716.95 8724.94 8840.81 8817.13 8810.41 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 9358.89 8968.83 8996.62 9071.29 8665.56 8848.54 8869.10 8836.99 8770.10 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.3 9127.81 9071.29 8968.83 8688.00 8688.00 8841.77 8775.03 8809.61 8817.13 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.4 9070.89 8968.83 8996.62 8766.21 8665.56 8840.35 8917.60 8884.38 8927.19 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 9135.90 9154.87 8858.95 8903.46 8997.15 8700.51 8908.41 8917.60 8966.87 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.6 9162.10 8990.22 8956.55 8892.16 9064.14 8797.72 8811.15 8817.13 9018.52 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.7 9446.72 9076.32 8941.93 9072.09 8997.15 8717.63 8752.42 8813.85 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.8 9567.41 9102.52 9463.19 9143.48 8765.14 8752.42 8691.01 8719.38 9312.92 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.9 Inf 9541.21 9574.27 9561.12 9390.78 8804.35 8752.42 8792.14 8844.94 9236.01 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 9238.49 Inf 9608.06 9650.82 9443.43 9478.19 8788.03 8752.42 8812.12 8787.38 9282.25 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.20: Parameterized of instance D281-08k, feasible to Initial Solution with of A=1.2 and #=0.4 values.
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APPENDIX Q

oy Mu Gy

Lambda
) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 12 1.3 14 15 16 1.7 1.8 19 20

D321-10k
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
09 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
19 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.21: Parameterized of instance D321-10Kk, infeasible for the Initial Solution.
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Objective

APPENDIX R

Function Mu ('”)

Lambda
(ﬂ) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 1.4 15 1.6 1.7 18 19 2.0

D361-09k
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 10792.75 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 10692.53 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 10779.54 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.4 Inf Inf Inf Inf Inf Inf Inf Inf 10926.34 Inf 10696.86 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 10813.79 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 Inf Inf Inf Inf Inf Inf Inf 11015.30 Inf Inf 10741.21 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 Inf Inf Inf Inf Inf Inf 11267.24 0.00 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.8 Inf Inf Inf Inf Inf Inf Inf 10734.29 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.9 Inf Inf Inf Inf 11194.09 Inf Inf Inf Inf Inf 10707.24 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10675.16 10825.28 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
11 Inf Inf Inf Inf 10991.57 Inf Inf Inf Inf 10644.41 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10646.15 Inf 11110.01 Inf Inf Inf Inf Inf Inf Inf Inf Inf
13 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 11107.99 Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10677.86 10929.14  11107.99 Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10624.91 10925.72  10936.02 Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10643.51 Inf 10864.89 Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10624.09 Inf 10864.89 Inf Inf Inf Inf Inf Inf Inf Inf Inf
18 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10614.61 Inf 0.00 Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.9 Inf Inf Inf Inf Inf Inf Inf Inf 10649.11 10649.11 Inf 10875.23 Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 Inf Inf Inf Inf Inf Inf Inf Inf 10625.35 10783.56 Inf 10949.74 Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.22: Parameterized of instance D361-09k, feasible to Initial Solution with of 4=1.8 and #=0.9 values.

80



Objective

APPENDIX S

Function Mu (:”)

Lambda
(Z) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 14 15 1.6 1.7 1.8 1.9 2.0

D401-10k
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf 11414.50 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf 11559.33 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf 11414.50 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.9 Inf Inf Inf Inf Inf Inf Inf Inf 11416.27 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 Inf Inf Inf Inf Inf Inf Inf Inf 11416.27 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
11 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.3 Inf Inf Inf Inf Inf Inf 11479.60 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 Inf Inf Inf Inf Inf Inf 11416.16 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.6 Inf Inf Inf Inf 11617.16  11540.67 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.23: Parameterized of instance D401-10k, feasible to Initial Solution with of 4=0.7 and #=0.9 values.

81



Objective

APPENDIX T

Function Mu (:”)

Lambda
(ﬂ) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 1.3 1.4 15 1.6 1.7 1.8 19 2.0

D441-11K
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf 12553.56 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 Inf Inf Inf Inf Inf Inf Inf Inf 12419.71 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 Inf Inf Inf Inf Inf Inf Inf Inf 12566.17 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.8 Inf Inf Inf Inf Inf Inf Inf Inf 12483.22 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.9 Inf Inf Inf Inf Inf Inf Inf 12603.01 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 Inf Inf Inf Inf Inf Inf 12585.70  12573.27 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
11 Inf Inf Inf Inf Inf Inf 12546.28  12470.63 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
13 Inf Inf Inf Inf Inf Inf Inf Inf 12409.47 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.4 Inf Inf Inf Inf Inf Inf 12559.68 Inf 12426.97 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 Inf Inf Inf Inf 12476.65 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.7 Inf Inf Inf Inf Inf Inf 12454.29 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
18 Inf Inf Inf Inf Inf Inf 12455.09 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.24: Parameterized of instance D441-11k, feasible to Initial Solution with of 4=1.3 and #=0.8 values.
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APPENDIX U

Function Mu ()

Lambda
) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 14 15 16 17 18 19 20

D481-12k
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.1 17783.92 18503.76 17576.05 17578.99 17546.12 17981.66 16859.08 17188.45 16606.36 16325.68 14375.44 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.2 17386.35 17612.22 17126.33 17514.82 16953.82 16795.39 16398.02 16136.13 16343.79 14503.81 14227.74 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.3 16962.64 16990.10 16917.92 16723.31 16561.98 16470.29 16271.10 16015.70 14933.33 14344.28 14278.77 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.4 16811.52 17022.47 16638.18 16151.55 16717.26 16271.23 16479.26 15379.84 14597.00 14252.50 14224.30 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
05 16342.34 16398.74 16414.31 16348.26 16076.65 16173.76 15359.23 15049.35 14429.69 14155.77 14235.81 16384.17 Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 16491.25 16236.35 16330.44 16292.47 16178.93 15189.16 14921.03 14363.93 14222.75 14363.17 14393.30 16384.17 Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.7 16184.89 16515.00 16240.95 16355.51 15448.42 14683.19 14817.21 14724.50 14438.92 14343.49 14111.68 16374.82 Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.8 16086.59 16350.62 16325.19 15448.42 15696.34 14744.20 14566.07 14257.85 14503.79 14310.14 14353.17 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.9 16052.22 16020.12 15953.63 15400.91 14986.26 14612.63 14567.70 14265.09 14162.61 14457.12 14237.74 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 16181.31 16223.66 15342.14 15014.02 14959.40 14741.51 14368.93 14387.63 14458.43 14228.58 14251.81 15177.17 16365.46 Inf Inf Inf Inf Inf Inf Inf Inf
1.1 16498.34 15342.14 15535.52 15032.67 14526.17 14785.93 14297.98 14497.31 14328.96 14428.94 14338.58 15177.17 16365.46 Inf Inf Inf Inf Inf Inf Inf Inf
1.2 15512.09 15440.50 15056.84 14927.91 14719.83 14550.34 14440.05 14430.88 14385.16 14352.90 14306.91 15177.17 16365.46 Inf Inf Inf Inf Inf Inf Inf Inf
1.3 15495.97 15038.26 14985.79 14834.97 14710.12 14426.16 14396.64 14468.68 14465.94 14148.96 14300.55 15177.17 16365.46 Inf Inf Inf Inf Inf Inf Inf Inf
14 14920.05 15164.13 14855.92 14601.23 14493.55 14387.51 14398.25 14230.14 14565.99 14331.10 14304.77 15177.17 Inf 16384.96 Inf Inf Inf Inf Inf Inf Inf
15 15186.34 15001.16 14548.50 14393.12 14485.77 14502.68 14478.71 14356.84 14395.02 14435.36 14310.31 15177.17 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf
1.6 15162.10 14608.30 14650.33 14594.00 14638.86 14321.46 14307.39 14384.76 14395.02 14128.15 14259.43 15177.17 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf
1.7 15253.00 14850.76 14427.59 14309.20 14467.44 14325.60 14279.09 14132.35 14329.04 14252.20 14206.03 15177.17 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf
1.8 14886.69 14821.16 14838.56 14637.60 14424.40 14469.58 14352.84 14394.65 14394.25 14395.41 14356.93 14153.42 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf
1.9 Inf Inf 14896.32 14682.90 14693.73 14520.34 14279.72 14229.97 14323.30 14400.33 14322.27 14109.85 15177.17 Inf 16384.96 Inf Inf Inf Inf Inf Inf
2.0 Inf Inf Inf 14616.92 14366.04 14484.26 14496.35 14333.65 14277.04 14260.85 14283.77 14244.96 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.25: Parameterized of instance D481-12k, feasible to Initial Solution with of 4=1.9 and u=1.1values.
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APPENDIX V

Peeaion Mu (u)

Lambda
) 0.0 0.1 0.2 03 0.4 05 0.6 0.7 08 0.9 1.0 11 12 13 14 15 16 17 18 19 2.0

E241-22k
0.0 78534 379405 372851 391019 372296 369201 369081 370340 390971 350715  Soor° 350600 0o 350079 372199 355220 360975 370483 366805 361951  3655.40
01 100797 110052 110073 97970 95526  869.36  862.20 0.00 810.29 Inf 78417 Inf Inf Inf 180531 0.0 184274 184658 187349  1858.95  1894.00
0.2 87345 86846 86131  83L19 Inf Inf 806.16 0.00 784.20 Inf Inf Inf Inf Inf Inf 179126 000 179719 000 183415  1853.00
03 83172 81644  809.62 81876  770.31 Inf 780.36 0.00 77481 76338 Inf Inf Inf Inf Inf Inf Inf Inf 181162 Inf Inf
04 79527 797.64 Inf Inf Inf 78241 77351 77419 769.10 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.5 Inf Inf 780.19 773.69 Inf Inf Inf Inf Inf Inf 773.64 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.6 Inf 78218 78176 0.00 0.00 77876 77123 Inf 763.47 Inf 757.50 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
07 Inf 773.69 0.00 76898 76572 76572 767.98 Inf 0.00 Inf Inf inf 77121 Inf Inf Inf Inf Inf Inf Inf Inf
08 785.49 Inf 77053 76572 76572 77075 0.00 Inf 75408 75078  749.78 inf 77121 Inf Inf Inf Inf Inf Inf Inf Inf
0.9 Inf 76376 76885 76885  768.85 Inf Inf 75622 754.86 Inf 75828 75069  0.00 Inf Inf Inf Inf Inf Inf Inf Inf
1.0 77118 770.00 Inf 768.22 Inf Inf Inf Inf 75194 75095 75547 75194  768.36 Inf Inf Inf Inf Inf Inf Inf Inf
11 77017 77170 Inf Inf 74824 75035  755.58 75645 75645 75275 75457 75447 77282  768.42 Inf Inf Inf Inf Inf Inf Inf
12 77070 77000 77118 75442  750.36 75003 75030 75232 75095 75350  755.93 75642  750.64  768.48 Inf Inf Inf Inf Inf Inf Inf
13 77118 76565  77L70 74855 74942 75404 75223 75290 75003 75218 75194 75642 75287  769.42 Inf Inf Inf Inf Inf Inf Inf
14 77000 77017 747.27 Inf 75176 75439 749.76 75613 74982 75178 76019 75258 000 76672  768.61 Inf Inf Inf Inf Inf Inf
15 76860 76619  759.44 Inf Inf 75297 75386 74078 75364 75721 75580  758.62  755.37 Inf Inf 779.84 Inf Inf Inf Inf Inf
16 77017 76157  776.34 Inf Inf Inf 757.19 74080 75000 74863 75631 75337  0.00 Inf Inf Inf Inf Inf Inf Inf Inf
17 75233 76157  782.84 Inf Inf Inf 756.30 75630 75941 75778 75880 000  753.82 Inf Inf 750,11 Inf Inf Inf Inf Inf
18 75717 77153 77319 784.15 Inf Inf Inf 75341 75093 74622 75675  757.97 75011  760.74 Inf Inf Inf Inf Inf Inf Inf
1.9 Inf 77310 77562 777.64 Inf Inf Inf Inf Inf 75630 75364 75292 75302  755.07 Inf Inf Inf Inf Inf Inf Inf
2.0 77153 77984 77528 TII7L Inf Inf Inf Inf Inf Inf 75677 75284 75284  750.63 Inf Inf Inf Inf Inf Inf Inf

Figure 4.26: Parameterized of instance E241-22k, feasible to Initial Solution with of 2=1.8 and #=0.9 values.
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Objective

APPENDIX W

Function Mu (:”)

Lambda
(Z) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 1.4 15 1.6 17 18 1.9 2.0

E253-27-k
0.0 4504.61 4417.25 429471  4388.81 4449.75 451416 470356 441198 4516.61 445 7. 4482.02 461098 4551.79 462526  4527.74  4679.57 4587.06  4636.79  4548.63 4593.91 4528.75
0.1 Inf 1222.16  1226.41 1192.34 116299  1121.67 Inf 1076.64  988.14 962.49 Inf Inf Inf 2364.42 2406.94 246255 244345 251361 254349 2565.41  2594.10
0.2 1127.70  1080.18 114139 1053.50 1069.71 Inf 998.61 958.32 955.07 901.82 Inf 1015.25 Inf 2334.07 2467.61 2375.19 2400.62 2438.66 2486.72 2481.71  2508.37
0.3 104351 1055.25 1023.17 101543 1001.43  976.07 980.91 968.27 902.11 901.79 932.11 Inf Inf Inf 2362.70  2368.22 Inf 2410.29 238535 2393.49  2410.15
0.4 Inf 992.36  1015.93  990.69 963.71 Inf 959.03 938.59 899.03 902.05 919.75 Inf Inf Inf Inf Inf 2320.56  2368.99 Inf 241544  2394.83
0.5 997.55 978.39 970.23 977.71 963.72 968.27 930.67 903.63 899.03 904.39 Inf Inf Inf Inf Inf Inf 2360.50 2338.30 2349.13 2363.97 2455.34
0.6 972.56 973.98 963.11 950.39 957.77 930.67 900.27 Inf 901.63 Inf 918.66 Inf Inf Inf Inf Inf Inf 2350.39 2350.07 2351.52  2365.96
0.7 967.03 963.29 958.49 963.44 929.72 903.54 902.94 903.73 901.48 Inf 907.70 Inf Inf Inf Inf Inf Inf Inf Inf 2367.11  2359.56
0.8 971.68 Inf Inf 937.15 930.67 Inf Inf 899.03 Inf 906.69 Inf Inf 908.69 Inf Inf Inf Inf Inf Inf Inf Inf
0.9 967.33 956.66 930.99 930.67 902.30 902.37 899.03 Inf 901.32 901.79 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 963.86 939.78 935.12 900.75 900.96 903.15 902.28 Inf 903.73 899.03 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
11 941.34 Inf Inf Inf 903.54 899.15 901.63 904.30 903.69 904.49 909.70 908.69 Inf Inf Inf 949.65 Inf Inf Inf Inf Inf
1.2 933.16 930.67 Inf Inf 901.92 Inf 902.05 899.07 899.03 902.96 Inf Inf Inf Inf Inf 929.56 Inf Inf Inf Inf Inf
1.3 939.91 Inf 905.86 Inf Inf 906.24 899.10 904.39 901.82 896.56 910.46 Inf Inf Inf Inf Inf 958.86 Inf Inf Inf Inf
1.4 907.52 909.77 904.75 911.05 905.07 Inf 899.03 902.28 899.25 Inf 907.31 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 910.19 910.50 911.43 911.05 Inf Inf Inf 902.28 900.49 Inf Inf Inf Inf Inf Inf Inf 908.69 Inf Inf Inf Inf
1.6 Inf Inf Inf Inf Inf 909.39 Inf Inf 905.59 Inf Inf Inf Inf Inf Inf Inf 908.69 Inf Inf Inf Inf
1.7 Inf Inf 910.18 Inf 908.49 909.39 909.80 Inf Inf 899.00 917.94 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.8 908.54 908.20 Inf Inf Inf 906.21 Inf 906.40 902.91 Inf Inf 914.72 Inf Inf Inf Inf Inf Inf Inf Inf Inf
19 909.43 910.19 Inf 907.58 909.77 911.43 908.14 Inf 905.86 Inf 921.92 Inf Inf Inf Inf Inf Inf Inf 923.36 Inf Inf
2.0 908.93 Inf 912.20 Inf Inf Inf 911.10 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 945.69 Inf

Figure 4.27: Parameterized of instance E253-27k, feasible to Initial Solution with of 2=1.3 and #=0.9 values.
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APPENDIX X

i M )

Lambda
(Z) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 1.4 15 1.6 17 18 19 2.0

E256-14k
0.0 2102.90 217121 2046.77 2283.07 2341.39 2187.15 226852 2185.87 2190.44 237749 3068.27 3940.87 3973.38 3932.17 3901.52 3974.27 3939.78 3923.98  4040.23 3952.26  3954.70
0.1 938.65 941.51 925.88 914.87 892.71 816.78 777.47 751.06 700.53 661.17 634.58 Inf 3033.17 3113.93 313145 310587 3153.89 3201.41 3217.35 3209.59  3209.10
0.2 793.88 783.10 774.96 751.64 738.44 698.59 702.95 682.78 659.72 625.68 Inf 687.13 Inf 3015.12  3035.28 3059.07 3105.16 3070.04 3086.14 3114.02 3117.08
0.3 722.32 707.83 689.84 696.48 704.73 692.55 686.80 663.93 623.96 624.53 Inf Inf 734.94 Inf 3012.96 3041.90 3055.14 3087.25 3053.87 3047.30 3077.91
04 Inf 696.94 704.17 Inf 698.15 672.23 655.88 647.55 619.23 623.14 Inf 612.47 687.13 Inf Inf 3015.67 Inf 307121 3052.89 3067.89  3079.50
0.5 694.51 686.86 Inf 677.58 676.50 661.49 656.40 620.03 628.04 624.19 Inf Inf 612.46 708.87 Inf Inf 3022.61 2997.61 3032.20 3048.24  3059.66
0.6 Inf 685.17 686.93 675.47 655.95 659.82 623.99 620.03 624.19 Inf 635.60 612.47 Inf 687.13 733.41 Inf Inf 2970.45 3015.38  3050.43  3013.54
0.7 677.62 674.63 659.56 656.64 Inf 626.86 620.03 620.90 623.96 624.89 Inf Inf 612.46 631.76 Inf 736.84 Inf Inf 3033.26  2985.00 2975.55
0.8 675.62 665.65 666.05 Inf 647.04 624.53 620.03 624.89 624.53 Inf Inf 610.39 612.46  610.39 Inf Inf 743.55 Inf Inf 3024.68  3043.91
0.9 666.57 663.96 664.98 651.59 620.82 624.65 624.69 624.19 624.19 Inf Inf Inf 612.22 Inf 655.73 714.22 73131 Inf 851.46  2332.62 3030.32
1.0 Inf 665.19 652.63 624.30 620.10 627.12 Inf 621.18 619.23 Inf Inf 613.48 Inf 613.22 612.22 690.29 722.84 748.02 Inf 853.28 Inf
11 657.66 652.98 626.86 623.88 620.03 623.97 620.03 619.23 624.19 619.23 630.94 Inf Inf Inf Inf 664.10 Inf 724.19 745.89 750.23 Inf
1.2 636.29 Inf 626.69 620.03 625.04 624.19 624.19 624.19 624.19 Inf Inf 612.47 Inf Inf 613.22 Inf 688.45 Inf Inf 739.44 Inf
13 Inf 632.93 624.19 625.37 620.82 624.19 624.19 622.89 620.10 619.23 633.56 Inf Inf Inf 613.46 Inf 671.13 706.92 728.51 747.92 Inf
1.4 636.69 624.19 623.80 622.89 625.04 Inf Inf 617.52 623.97 624.53 Inf Inf Inf Inf 612.54 613.22 Inf 688.16 Inf Inf Inf
15 624.19 623.07 625.37 Inf 625.53 Inf Inf 628.35 619.82 Inf 636.24 Inf 612.46 Inf Inf 613.22 Inf 678.04 689.44 717.18 Inf
1.6 624.19 623.80 628.35 Inf 623.96 Inf Inf Inf 619.23 Inf Inf 612.47 Inf Inf Inf Inf Inf Inf Inf 711.33 728.51
1.7 Inf 623.35 622.89 628.35 Inf Inf Inf 625.53 Inf 621.42 Inf Inf Inf Inf Inf Inf Inf Inf 672.97 Inf Inf
1.8 620.82 624.19 Inf Inf Inf 624.19 619.82 624.19 620.90 Inf Inf 611.51 Inf Inf Inf Inf Inf Inf Inf Inf 697.32
1.9 Inf Inf 624.19 620.82 628.39 620.82 619.23 624.39 619.23 Inf Inf Inf Inf 611.50 Inf Inf Inf Inf Inf 681.25 Inf
2.0 623.97 624.19 Inf 624.19 624.19 Inf Inf Inf Inf Inf 637.00 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.28: Parameterized of instance E256-14k, feasible to Initial Solution with of 2=0.8 and x=1.3 values.
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APPENDIXY

Puncton Mu

Lambda
(l) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 12 13 1.4 15 1.6 17 18 1.9 2.0

E301-28k
0.0 5259.57 555525 5330.05 5401.32 5433.11 5353.61 5468.80 5200.95 532545 5392.82 5061.17 526520  5257.24  5333.88 5201.92 5013.79 5479.49 5316.15 522398 5253.00 5470.44
0.1 1538.22  1603.68 1553.12 137533 1307.01 127469 123556 1162.36 1132.92 1083.09 1099.22 2313.77  2801.71  2831.85 2803.01 2820.01 2852.32 289511 2865.95 289232 2942.55
0.2 124528  1253.79 124456 1179.44 1161.67 114213 112826 111414 1082.19 1082.70 1099.68 1121.93  2283.96 2759.78  2790.38  2776.63 282295 2809.96 2806.88 2807.32  2840.62
0.3 1159.52 110953 1101.89 1118.62 111579 1137.09 1123.75 108219 1104.30 Inf 1103.47 112496 111856  2296.16 274534 2767.48 2789.68 2778.32 2810.38  2839.53 Inf
0.4 1118.79  1109.69 1118.03 1100.99 1101.73 1091.85 1079.53 1093.23 1077.68 1087.12 1092.45 1104.95 110561  1207.24  2296.16 Inf Inf 2792.13  2790.38 2784.75  2786.64
0.5 1099.20  1102.24  1090.80  1090.55  1096.27 1080.89  1079.53  1072.05 1086.03 Inf 1087.34  1113.57 1132.01 1127.39  1207.24 228391 2750.40 2779.14 2788.62 2773.21  2791.37
0.6 1120.03 1089.82 1087.73  1079.04 1077.73 1079.53 1077.55 1081.43 1094.91  1095.77 Inf 1095.35 Inf 111142 1120.36 Inf 2287.76 Inf Inf 2759.95  2777.41
0.7 1108.84 1110.10 1079.04 1076.91 107180 107449 1073.92 1094.80 1092.13 1087.05 1097.60  1094.70 1104.24 111427  1116.97 1189.76  1321.48  2278.50 Inf Inf 2767.27
0.8 1095.49  1079.04 1071.80 1071.80 1071.80 1071.80  1065.00 Inf 1092.89  1087.58  1084.15 Inf 1106.76 1113.04 111053 112477  1207.24 Inf 2282.10 Inf Inf
0.9 107850 1073.78 1071.80 107850 107250 1067.17 1086.75 1091.62 1091.03 108571 1088.41  1098.51 Inf 1119.32  1109.82 112554  1126.37  1207.24 0.00 2287.17 Inf
1.0 1069.29  1067.77 1068.73 1070.76  1066.78 1079.76  1096.54 1095.00 1098.51  1098.37 1089.94 1079.07  1109.45 111418 1127.29 111265 1116.97 1151.70 1207.24 Inf 2317.62
11 1067.93  1071.57 1071.87 1068.83 1076.31 1070.09 1088.98 1082.67 1097.32 1091.55 1098.37  1099.31 1103.97 1097.33  1137.58  1109.45 112056 1126.56 1187.14 Inf Inf
1.2 1069.61  1067.77  1073.09 1066.52 1072.07  1070.42 Inf 1066.00 1080.74 1093.33 1077.58  1093.28 1075.81 1106.00 1105.64 1103.79 1110.62 1118.76 111856 1207.24 0.00
13 1067.93 107359  1067.77 1063.11  1064.01 Inf 1061.35 1076.37 1067.08 1068.55 1096.05  1094.40 1083.91 1107.51 Inf 111232 1106.19  1116.97 112511 112216 1203.94
1.4 1071.90  1069.61  1063.26  1064.96 Inf 1063.68  1062.99  1063.04  1068.53 Inf 1055.87 Inf 1084.56 1090.33  1092.45 1139.61 1107.28 1103.51 112428 1127.07 1180.64
15 1069.61 106455 1064.12 Inf 1063.02 Inf 1062.16  1066.68 1064.01  1072.15 1051.58 Inf 1051.51 1076.54 1093.71 1088.92 1107.41 1099.94 1126.11 112271 1127.82
1.6 1069.61  1063.47  1097.63 Inf Inf 1062.74  1065.01 Inf 1062.25 1065.61  1056.59 Inf 1057.23 1080.15  1083.62 Inf 1105.24 111043 110553 112451 1125.70
17 1081.60  1071.90 Inf 1097.69 Inf Inf Inf 1057.33  1063.80  1065.99  1058.50 Inf Inf 107431 1081.91  1077.13 Inf 1106.47  1108.71 111588  1124.28
18 1074.35  1104.68 Inf Inf Inf Inf Inf Inf 0.00 1062.30  1062.02  1060.80 Inf 1060.87 1074.31  1074.76 Inf 1105.53 110047 1113.16  1122.47
1.9 1075.17 Inf Inf Inf Inf Inf Inf Inf Inf Inf 1061.38  1061.31 1060.80 1061.07 0.00 1080.27 Inf Inf 111522 111057 112357
2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1055.88  1053.15 1054.34 1067.26  1079.27  1074.76  1094.41 Inf 111355 1108.66  1103.85

Figure 4.29: Parameterized of instance E301-28k, feasible to Initial Solution with of 2=1.5 and x=1.2 values.
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APPENDIX Z

oy Mu
Lambda
(l) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 14 15 1.6 1.7 1.8 1.9 2.0
E321-30k
0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 6223.7 6602.8 6677.79 6579.72 6290.44 6605.21  6847.26 6639.16 6454.59 6515.95 6601.23
0.1 Inf Inf Inf Inf Inf Inf 14513  Inf Inf Inf :Ilnf I2nf 3277.53 3230.94 3442.10 3425.32  3450.49 3553.40 3603.50 3583.49 3657.06
0.2 Inf Inf Inf Inf Inf Inf (I)nf Inf Inf Inf Inf 1243.7 Inf Inf 3271.09 0.00 3369.27 Inf 0.00 0.00 3431.85
0.3 Inf Inf Inf Inf  1287.32 Inf Inf Inf Inf Inf  Inf ?nf Inf Inf Inf 3252.39  3343.39 Inf 0.00 3438.29 3460.54
0.4 Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf 1246.62 Inf Inf Inf Inf Inf 3314.22 3367.71 Inf
0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf 1294.99 Inf Inf 3276.80 0.00 3295.82 Inf Inf
0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1243.79 1307.71 Inf Inf 3216.53 0.00 3312.67 3273.97
0.7 Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf Inf Inf 1284.61 1300.24  Inf Inf Inf Inf 3322.39
0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf 1243.79 Inf Inf Inf Inf Inf Inf
0.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf Inf Inf Inf 1243.79  1284.04 1302.71 Inf Inf Inf
11 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf 1267.45 Inf Inf Inf 1534.20
1.2 Inf Inf Inf Inf 1144.23 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1252.27 1281.07 Inf Inf Inf
13 Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1238.97 1272.75 Inf Inf Inf
14 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf Inf 1252.27 Inf Inf Inf
15 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf 1144.66 0.00 Inf Inf Inf
1.6 Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1252.27 Inf Inf
1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf Inf Inf Inf 1246.86 Inf
1.9 Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf  Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1246.94

Figure 4.30: Parameterized of instance E321-30k, feasible to Initial Solution with of 2=0.8 and #=1.3 values.
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APPENDIX Al

e Mu ()

Lambda
(l) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 15 1.6 1.7 1.8 1.9 2.0

E324-16k
0.0 3235.39 306451 2955.86 3029.09 3087.58 3101.73 3097.93 3150.33 3231.95 2964.08 Inf 547470  5690.80 5519.55 5536.62 5557.88 5676.29 5531.86 5610.06 5535.13 5628.03
0.1 1169.01 1184.26 1196.16 1137.23 1100.22 1029.23 996.20 955.20 872.09 860.75 798.83 Inf 4345.15  4406.69  4385.75  4439.38  4457.47  4436.48 449197 4508.38  4487.86
0.2 1005.04  998.94 996.53 953.95 929.22 911.35 878.92 869.35 841.36 787.92 807.93 877.87 Inf 4267.85 4353.83 4384.60 4391.85 4430.36 4380.09 445449  4446.10
0.3 936.09 924.03 892.33 896.33 871.03 880.06 876.66 843.60 794.05 788.05 817.11  767.97 939.53 Inf 4301.19  4254.46  4362.45 4332.02 4390.81 4383.90 4414.32
0.4 912.27 891.76 874.54 872.05 868.83 868.66 846.39 823.39 790.48 785.07 813.96 764.61 878.22 953.04 Inf 4221.15  4275.05 4326.78 4322.62 4360.96 4289.01
0.5 884.12 870.27 873.62 865.81 850.79 841.87 830.33 803.95 794.54 788.77 807.88  765.74 764.14 908.79 964.70 Inf 421434  4328.12  4292.04 439497  4267.71
0.6 873.62 853.64 866.52 863.27 855.08 822.46 802.48 792.09 788.05 784.44 808.59  765.74 763.31 875.03 940.06 959.29 Inf 4231.22  4311.57 4257.18 4261.06
0.7 863.98 861.37 848.59 838.82 832.55 813.99 800.67 803.95 787.01 786.03 797.05 764.14 764.14 798.58 Inf 947.52 984.57 Inf 427756  4280.42  4337.90
0.8 863.88 856.73 845.59 842.64 805.08 798.58 798.55 800.92 794.54 788.77 809.50 766.71 765.11 766.35 874.82 918.98 953.04 1007.65 Inf 4349.38  4315.74
0.9 856.48 851.79 833.90 827.61 803.17 800.67 798.55 798.74 786.03 794.54 802.98  770.25 772.81 765.11 831.42 882.08 940.06 961.12 1029.83  Inf 4341.48
1.0 826.15 831.57 817.54 800.83 797.65 798.49 790.66 798.55 782.10 788.00 806.85  767.17 771.78 775.29 770.98 875.01 903.98 944,71 Inf 1094.74  Inf
1.1 842.98 821.25 816.77 803.51 797.65 798.49 800.95 798.49 788.52 785.07 806.88  772.59 771.78 771.46 771.78 830.09 870.80 920.38 946.99 Inf Inf
1.2 825.01 819.72 802.48 800.67 791.59 800.92 798.49 798.49 785.03 782.10 811.32  772.59 772.59 769.28 771.78 777.78 0.00 901.02 937.51 955.19 Inf
13 820.50 815.85 801.49 803.95 791.59 803.95 800.95 800.92 786.76 782.94 805.41  770.35 769.27 769.28 769.28 773.31 840.54 879.55 918.71 940.34 962.45
14 818.72 798.58 800.67 798.22 797.05 798.49 789.96 803.95 782.94 794.54 810.54 767.54 769.27 769.27 769.28 769.28 801.14 886.60 896.01 Inf 947.52
15 802.48 800.46 799.91 789.73 800.92 800.95 798.49 803.95 794.54 794.54 800.01  763.62 767.58 767.58 771.48 769.27 770.41 840.66 888.24 901.02 937.51
1.6 799.81 797.05 798.22 790.87 792.21 800.95 800.16 799.08 794.54 794.54 0.00 763.75 766.80 767.58 766.45 771.48 769.27 816.20 Inf 894.81 912.80
1.7 799.05 797.05 800.16 797.05 791.59 798.49 791.17 800.16 784.70 784.70 808.16 766.64 763.75 766.80 763.62 767.58 763.62 769.27 837.07 895.01 901.02
1.8 799.05 790.81 800.16 798.55 798.22 789.73 803.95 800.16 782.94 784.70 808.97  766.20 769.48 763.75 763.75 763.75 767.58 767.58 832.76 Inf 895.56
19 800.50 794.46 798.55 804.21 798.55 804.21 800.16 803.95 794.54 784.70 820.89 767.81 766.16 766.16 766.80 766.80 766.80 765.12 784.93 861.47 884.42
2.0 795.47 798.55 798.55 804.21 804.21 801.20 790.00 790.66 786.79 784.70 815.10 765.13 767.04 766.20 766.20 766.64 766.80 765.25 767.94 829.16 Inf

Figure 4.31: Parameterized of instance E324-16k, feasible to Initial Solution with of 2=0.6 and x=1.2 values.
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APPENDIX B1

Peaion Mu (n)

Lambda
) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 15 1.6 1.7 18 1.9 2.0

E361-33k
0.0 7108.16 7237.96 7129.38 7474.79 7319.61 7358.97 7338.98 7561.57 7253.54 7020.63 6935.71 7207.33 7485.54 7453.74 7214.62 7291.21 7482.18 7571.09 7428.10 7223.14 7482.58
0.1 2119.44 2067.08 2076.59 1901.10 1819.32 1699.13 1692.65 1567.38 1537.47 1482.78 1496.06 Inf Inf 4225.23 4161.57 4230.16 4275.39 4272.18 4347.70 4326.63 4348.93
0.2 1716.97 1717.95 1681.94 1603.72 1592.66 1546.89 1552.85 1529.14 1486.81 1472.93 Inf Inf Inf Inf Inf 4219.90 4239.08 4194.76 4191.68 4215.89 4218.42
03 1553.95 1519.19 1513.84 1492.43 1520.47 1542.87 1504.76 Inf 1508.56 1492.58 1507.49 1512.86 1520.75 Inf Inf 4190.10 4192.59 Inf Inf 4235.79 4200.12
0.4 Inf 1505.37 1506.63 1507.52 1492.28 Inf 1477.62 Inf 1482.14 1487.29 1501.39 Inf Inf Inf Inf Inf Inf Inf 4188.82 4185.21 4212.45
05 1503.72 Inf 1490.60 1513.74 Inf 1466.25 1475.83 1482.96 1479.87 Inf 1480.31 Inf 1518.80 1515.15 Inf Inf Inf Inf Inf 4181.99 4190.50
0.6 1512.91 1479.35 1482.55 1482.10 1484.20 1468.35 1472.67 1461.76 1492.12 Inf 1491.76 1501.99 1510.24 Inf 1523.48 Inf Inf Inf Inf Inf Inf
0.7 1507.11 Inf 1482.46 1482.65 1474.58 1471.33 1472.05 1463.66 1465.45 1467.59 Inf 1498.07 1488.60 1516.28 1515.15 1607.94 Inf Inf Inf Inf Inf
0.8 1494.36 1470.04 1468.40 1463.49 1467.55 Inf 1461.18 1459.28 Inf Inf Inf Inf Inf 1509.85 Inf 1524.49 Inf Inf Inf Inf Inf
09 Inf Inf 1463.49 Inf Inf 1462.14 Inf 1462.12 1464.61 1463.49 1467.37 Inf 1503.99 1531.00 1502.11 1518.74 1518.01 Inf Inf Inf Inf
1.0 1469.38 Inf Inf Inf 1457.02 Inf Inf Inf 1460.39 Inf 1455.63 1475.36 1510.98 1496.77 1503.76 Inf 1520.89 1566.97 Inf Inf Inf
1.1 1467.47 1464.13 1458.21 1457.11 1468.26 Inf 1459.71 1466.80 1463.03 1456.00 Inf 1471.97 1504.52 1495.42 1530.19 Inf 1524.49 1524.49 1608.10 Inf Inf
1.2 1461.79 Inf 1460.53 Inf Inf 1453.69 1461.10 1467.53 1462.11 1470.27 Inf Inf 1461.98 1496.01 Inf Inf Inf 1521.37 1523.81 Inf Inf
1.3 Inf 1466.53 Inf Inf 1465.29 1460.66 1455.90 1461.02 1461.07 1462.64 1455.26 Inf 1466.98 Inf 1527.31 Inf Inf 1523.19 1520.55 1522.51 Inf
1.4 1464.00 Inf 1449.49 1441.40 1454.69 1453.48 1453.99 1458.89 1458.82 1458.06 0.00 Inf Inf 1489.54 Inf 1527.34 Inf Inf 1523.19 1520.32 1611.06
15 1468.89 1463.68 1450.66 1443.31 Inf 1460.66 1463.98 1460.48 1459.30 1460.58 1450.76 1459.59 1455.00 1451.77 1487.41 Inf Inf Inf 1517.44 1517.44 1528.26
1.6 Inf 1480.23 Inf Inf Inf 144413 1461.30 1472.44 1455.55 1463.74 1463.17 Inf Inf Inf Inf 1457.88 Inf Inf Inf 1515.15 1523.19
1.7 1480.68 Inf Inf Inf 1489.96 1481.02 Inf Inf 1453.94 1454.29 Inf 1464.78 Inf Inf 1460.99 Inf 1461.11 Inf Inf 1524.80 1515.15
1.8 1477.23 1498.63 Inf Inf Inf 1489.13 1485.87 1452.45 Inf 1452.98 1461.96 1453.85 1451.22 Inf Inf 1457.87 Inf Inf Inf Inf 1523.19
1.9 1480.66 Inf Inf Inf Inf 1477.75 1485.87 1482.60 Inf 1462.54 1451.06 Inf Inf 1463.95 1456.46 1461.73 Inf 1462.73 Inf Inf 1523.19
2.0 Inf Inf Inf Inf Inf Inf 1481.36 1481.02 Inf Inf Inf Inf Inf Inf Inf 1458.81 1449.36 1460.81 1498.95 Inf Inf

Figure 4.32: Parameterized of instance E361-33k, feasible to Initial Solution with of 2=1.4 and #=0.3 values.
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APPENDIX C1

Functon Mu ()

Lambda
(l) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 1.4 15 1.6 17 18 19 2.0

E397-34k
0.0 8408.87 8673.77 8861.33 8787.54 8321.22 8519.62 842331 8807.25 8656.44 8286.69 8517.18 8972.65 8879.40 9303.00 8703.97 8583.45 9024.89 9077.77 9158.63 868135 8933.15
0.1 Inf Inf 1988.80  1944.64  1930.07 1822.10 Inf 1647.62 Inf Inf 1469.89 Inf 449543  4490.65 4524.01 4701.08 4647.53  4660.64 4708.49  4859.47  4728.35
0.2 Inf 1796.66 Inf Inf Inf 1644.00  1563.42 Inf Inf 144151 Inf Inf Inf 4397.88  4443.17 447468 455190 455578  4573.82 4529.53  4651.49
0.3 Inf Inf Inf 1613.44  1569.33  1550.34 Inf Inf 1446.45  1442.38 Inf Inf Inf Inf 4465.16  4437.93  4500.26  4537.50 4573.64 4507.16  4545.57
0.4 1613.50  1588.91 Inf 1569.94 Inf Inf 1520.77  1440.23  1444.72 Inf 1432.87 Inf Inf Inf Inf 449149  4406.49 452331 4491.14 4587.69  4515.24
0.5 Inf Inf 1540.43 Inf Inf Inf 1450.93 Inf 1444.16 Inf Inf 1418.32 Inf Inf Inf Inf 4466.14  4438.89  4483.87 4467.98 452591
0.6 1554.81 Inf Inf 1505.31  1503.29 Inf 1438.37 Inf 1444.16  1436.85 Inf Inf Inf Inf Inf Inf Inf 4486.70  4446.75  4463.05  4481.77
0.7 Inf Inf Inf 1512.44 Inf Inf 1448.19 Inf Inf 1438.03 Inf Inf 1433.31  1460.12 Inf Inf Inf Inf 4452.40 Inf 4449.64
0.8 Inf 1504.00 1519.72 Inf 1446.62  1444.18 Inf 1442.19 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 444591  4449.16
0.9 Inf Inf Inf 144217  1443.78 Inf 1440.33 Inf Inf Inf Inf 1433.28  1419.70 Inf Inf Inf Inf Inf Inf Inf Inf
1.0 Inf Inf Inf 1446.61 144248  1442.99 Inf 1438.05 Inf Inf Inf Inf 1423.37 Inf Inf Inf Inf Inf Inf Inf Inf
11 Inf Inf 144194  1443.75 Inf 1442.47 Inf Inf Inf 1441.00 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 Inf 1446.82 Inf Inf Inf Inf 1444.62 Inf 1444.62 Inf Inf Inf Inf Inf Inf 1449.06 Inf Inf Inf Inf Inf
13 Inf 1442.48 Inf 1439.77 Inf Inf Inf Inf 1440.42 Inf Inf Inf 1433.66 Inf 1426.17 Inf Inf Inf Inf Inf Inf
1.4 1440.98  1439.79 144412  1442.92 Inf 1438.59 Inf Inf Inf 1440.42  1438.90 Inf 1419.68 Inf Inf Inf 1466.82 Inf Inf Inf Inf
15 Inf Inf Inf Inf Inf Inf 1436.18 Inf 1440.34 Inf Inf Inf Inf 1426.53 Inf Inf Inf Inf Inf Inf Inf
1.6 Inf Inf Inf 1444.59 Inf 144299  1437.03 143479 144346  1438.63 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
17 Inf Inf 1441.62 1442.48  1441.37 Inf 1434.99 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.8 Inf Inf 1439.23 Inf Inf 1438.54 Inf Inf 1438.83  1441.42 Inf 1411.05 Inf Inf Inf 1429.23  1426.17 Inf Inf Inf Inf
1.9 Inf Inf Inf Inf 1439.23 Inf Inf Inf Inf 1440.56 Inf Inf Inf Inf Inf Inf 1422.75 Inf Inf Inf Inf
2.0 Inf 1441.62 Inf Inf Inf 1432.50 Inf Inf Inf 144056  1429.91 Inf Inf Inf Inf Inf Inf Inf Inf 1496.40 Inf

Figure 4.33: Parameterized of instance E397-34k, feasible to Initial Solution with of 2=1.8 and x=1.1 values.
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APPENDIX D1

i M )

Lambda
(Z) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 13 1.4 15 1.6 17 18 19 2.0

E400-18k
0.0 4179.05 394135 437418 4191.76 4376.95 4299.33 4061.59 4162.48 432591 4078.79 5669.71 761550 7576.15 7621.91 7631.42 777491 7663.35 776537 7626.79 7631.80  7682.67
0.1 1523.70  1507.15 145296 1436.40 1353.34 1311.77 123251 1151.71 1089.37 1061.33  1011.58 Inf 5807.88 5901.64 5978.24 5997.54 604251 6105.35 6119.95 6145.66 6182.43
0.2 1264.22 127218 121548 1167.74 1163.43 1136.62 1103.03 1077.02  1049.12 987.78 1003.51  1080.09 Inf 5716.37 5820.16 5861.52 5962.92 6019.56 6069.45 6069.23  6019.79
0.3 1180.45 113567 1105.18 1121.15 1102.67 1088.86 1074.09 1062.77 1002.95  987.78  1002.33  970.13 Inf Inf 5729.89 5742.06 5801.02 5812.98 5960.93 5946.87  6002.17
04 1118.87  1112.67 1102.89 1082.39 1090.23 1061.67 1047.41 1022.84  988.32 989.19  1011.34 97147  1081.15 1190.84 4793.08 5812.13 5688.37 5768.23 5820.61 5808.25 5897.25
0.5 1093.14  1082.17 1102.37 1071.32 1062.48 1056.02  1021.72 993.07 987.78 988.72 992.72 970.45 970.45 1126.47  1194.32 Inf 5848.34 5772.00 5810.60 5811.60 5796.27
0.6 1078.46  1078.99 1078.63 1071.47 1049.02 1025.89  998.87 993.07 987.78 989.19  1010.13  968.35 968.35  1078.99 Inf 1203.36 Inf 5745.14 5771.64 5793.13 5777.99
0.7 1075.00 106157 1061.91 1050.55 1026.34 1005.05 1001.22  999.66 989.19 988.72 989.43 968.35 968.35 997.07  1123.48 Inf 1210.37 Inf 5771.02 5852.86 5786.56
0.8 1051.92 105341 1050.29 1038.06 1022.13  987.43 992.45 989.34 989.19 985.90 100433  968.35 968.35 969.59  1077.26  1145.88  1192.13 Inf Inf 5796.75  5807.74
0.9 1061.19  1064.74 1033.16 1020.12  989.34 987.43 992.45 986.31 987.56 982.22 996.92 968.35 968.35 969.59  1059.03  1090.08 Inf 1187.90  1336.66 Inf 5804.65
1.0 1064.74  1024.24  1025.07 1015.87  987.43 988.53 989.34 986.31 987.38 982.22 997.79  966.93  966.93 969.59 969.59  1076.60 1126.81 1167.97 1201.55 1323.23 Inf
11 1039.81  1021.89  1004.32  990.95 988.53 988.53 989.34 989.34 981.41 989.86 997.14 966.93 966.93 968.17 968.17  1048.75 1105.86 1145.09 1182.70  1202.47  1359.55
1.2 1017.49  1013.65 990.63 987.43 988.53 988.53 989.34 989.34 982.22 987.38 994.27 966.93 966.93 968.17 968.17 981.10 1057.68 1126.09 1164.06 1190.71 1203.17
13 1019.37  1012.33 989.34 988.53 989.34 989.34 992.19 989.34 981.41 982.22 998.58 966.93 966.93 968.17 968.17 968.17 1053.25 1116.17 1142.28 Inf 1182.50
14 1015.72  990.05 987.43 989.34 988.53 989.34 986.31 989.34 997.07 989.86 995.35 966.93 966.93 968.17 968.17 968.17 997.07  1070.27 1096.15  1149.65 Inf
15 992.54 989.59 989.59 988.53 989.34 988.53 989.34 989.34 989.18 982.22 1012.94 966.93 966.93 968.17 968.17 968.17 968.17 1053.25 1092.04 1101.69 Inf
1.6 987.43 989.59 989.59 989.59 988.53 988.53 986.31 989.34 990.93 982.22 997.69 Inf 968.41 968.17 968.17 968.17 968.17 1042.93 1072.01 1100.24 1143.17
17 989.59 988.53 989.59 989.59 989.34 989.34 986.31 989.34 988.17 981.41 996.96 Inf 969.49 Inf 968.17 968.17 968.17 967.35  1046.02 1065.62  1101.69
1.8 989.59 988.53 989.59 988.53 988.53 989.34 986.63 989.34 984.80 980.85 984.36 Inf Inf Inf 970.47 Inf 968.17 967.35 1059.38  1072.01  1098.05
1.9 988.53 988.53 989.59 989.59 988.53 989.59 992.19 986.31 997.07 986.80 1009.81 Inf Inf 971.55 Inf Inf Inf 967.35 985.40 1042.23  1056.83
2.0 989.59 989.59 989.59 988.53 988.53 988.53 986.63 989.34 987.56 981.41 994.84 969.49 Inf Inf 970.47 970.47 Inf Inf 967.35  1073.16 1071.54

Figure 4.34: Parameterized of instance E400-18Kk, feasible to Initial Solution with of 2=1.0 and #=1.1 values.
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APPENDIX E1

Pantion Mu (u)

Lambda
(Z) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 14 15 1.6 1.7 1.8 1.9 2.0

E421-41k
0.0 9798.40 9807.69 9375.47 9673.82 9871.35 9817.12 9629.85 9521.69 9672.74 9908.73 9371.60 10066.83 10159.25 10099.46 10032.71 10170.38 10178.87 9813.91 10241.46 10101.91 9972.63
0.1 2882.04 2807.54 2814.30 2419.98 2402.38 2334.74 2335.73 2053.47 2082.19 1972.16 1960.23 Inf 6110.58 6126.34 6085.67 6164.48 6164.74 6224.04 6200.24 6343.03 6325.26
0.2 2311.89 2292.82 2232.06 2156.88 2063.98 2060.62 2071.90 2024.43 1973.43 1961.83 1966.61 2000.24 4820.34 6116.72 6097.15 6117.79 6123.34 6046.05 6089.35 6110.27 6130.19
0.3 2088.50 2009.77 2013.46 2007.91 2033.21 2067.56 2035.07 1971.24 2023.82 1956.89 1960.45 2014.66 2035.33 4748.20 6030.40 6097.55 6120.52 6140.01 6145.31 6143.84 6097.75
0.4 2008.89 2004.92 2007.96 1985.76 1996.07 1980.87 1978.25 2022.10 1954.38 1973.74 1965.97 1992.13 2000.72 Inf 4765.42 6019.31 6127.16 6094.21 6094.77 6154.52 6140.97
0.5 2023.49 2007.86 2014.36 1988.31 2004.99 1970.86 1970.16 1972.25 1962.88 1957.94 1969.10 1995.25 2007.85 2010.46 Inf 4768.48 6097.38 6040.66 6081.10 6104.06 6112.08
0.6 2011.42 1987.69 2003.04 1959.91 1970.88 1956.70 1966.10 1954.33 1968.38 1960.70 1962.99 1978.18 2015.73 2009.04 2019.71 Inf 4839.15 5981.01 6030.45 6105.63 6101.11
0.7 1987.68 1976.21 1977.63 1952.78 1959.40 1968.37 1954.41 1953.79 1950.94 1967.99 1959.27 1952.39 1994.93 2003.97 2016.35 2177.28 Inf 4790.35 6001.30 6011.75 6070.03
0.8 2003.61 1964.84 1963.72 1960.24 1967.08 1961.65 1935.28 1947.55 1961.42 1953.27 1959.15 1970.88 1990.28 2014.68 1990.83 2009.16 Inf Inf Inf 6066.23 6016.51
0.9 1957.12 1951.19 1960.44 1959.54 1970.93 1946.55 1951.89 1942.43 1957.54 1946.04 1963.33 1959.04 1989.41 2003.27 2001.32 2016.51 2027.61 Inf Inf 4744.39 6012.85
1.0 1957.87 1964.82 1954.30 1960.13 1949.47 1945.82 1941.25 1941.59 1948.79 1959.28 1953.52 1946.72 1994.61 1988.18 2014.49 1992.70 2009.16 2111.46 Inf Inf 4713.15
1.1 1961.97 1956.48 1953.50 1958.09 1938.67 1928.13 1956.79 1939.60 1946.30 1961.06 1959.53 1964.09 1990.97 1974.00 2053.08 1994.84 2016.18 2009.68 2170.53 Inf Inf
1.2 1951.88 1956.86 1954.85 1940.91 1933.57 1933.63 1924.86 1942.21 1958.30 1951.77 1957.41 1956.90 1959.15 1973.72 1977.75 2012.83 1993.55 2009.95 2027.45 Inf Inf
1.3 1956.68 1960.21 1952.41 1924.65 1939.28 1936.48 1935.48 1930.87 1940.66 1931.93 1951.51 1953.23 1963.25 1959.60 2014.46 1997.06 1997.71 2022.06 2022.68 2027.61 Inf
14 1960.87 1963.44 1920.51 1929.85 1931.43 1928.67 1934.60 1939.58 1936.74 1938.18 1917.83 1945.06 1965.27 1952.50 1977.25 2060.77 2010.25 1989.58 2016.51 2027.45 2177.59
15 1965.89 1951.20 1939.63 1926.36 1930.24 1920.59 1935.06 1936.00 1942.09 1918.77 1927.65 1938.71 1930.79 1943.80 1975.57 1964.56 2008.88 1984.07 2015.18 2022.68 2019.71
1.6 1960.61 1978.87 1969.11 1981.93 1930.47 1936.54 1921.48 1931.09 1930.95 1929.17 1952.76 1932.74 1932.57 1940.59 1935.88 1940.90 1991.30 1992.69 1994.82 2010.44 2014.65
17 1942.07 1948.04 1993.07 1983.86 1985.15 1988.54 1920.06 1929.66 1920.82 1936.26 1940.34 1931.04 1937.98 1938.99 1942.48 1943.51 1953.47 2005.30 2007.17 2015.02 2014.65
1.8 1946.83 2018.13 2013.44 1993.42 1992.66 1979.08 1984.75 1927.53 1934.93 1929.35 1932.49 1931.36 1934.17 1940.12 1945.09 1942.65 1952.20 2007.66 2002.33 1999.57 2015.02
19 1929.64 2009.52 2012.83 1993.41 1998.70 1978.88 1985.48 1987.03 2005.36 1931.31 1927.53 1941.12 1932.05 1949.51 1939.97 1941.54 1943.12 1953.28 1997.81 1984.85 2010.44
2.0 2006.30 2005.76 2009.52 2014.57 1999.87 1992.89 1977.29 1984.06 2002.33 2009.90 1928.20 1937.61 1926.05 1941.40 1941.63 1949.96 1938.37 1951.26 1994.58 1995.35 1985.31

Figure 4.35: Parameterized of instance E421-41k, feasible to Initial Solution with of 2=1.4 and #=1.0 values.
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APPENDIX F1

Function Mu ()

Lambda
(}») 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 11 1.2 1.3 1.4 15 1.6 1.7 1.8 1.9 2.0

E481-38k
0.0 11503.83 11878.76 11799.74 11022.72 11104.18 11306.15 11712.31 11292.39 11432.83 11138.79 11428.71 11877.79 11854.58 11993.70 12116.44 11539.56 11428.68 12125.90 12003.44 12008.13 11787.06
0.1 2447.13 2361.95 Inf 2241.98 2215.04 Inf Inf 2030.60 1923.40 1820.20 1775.19 Inf 5789.60 5872.79 5860.33 6071.75 6073.13 6246.49 6292.33 6295.31 6197.85
0.2 2160.19 2109.12 2076.42 2040.56 2000.81 1990.96 1915.15 1851.07 1823.60 1743.75 1760.62 1942.37 Inf 5773.20 5812.80 5895.73 5839.51 5878.22 6099.37 6166.01 6141.57
0.3 2014.57 2030.68 1961.06 1959.05 1944.24 1913.28 1842.55 Inf Inf 1744.01 1754.88 Inf Inf Inf 5748.66 5858.41 5811.90 5845.81 5816.95 6067.15 5984.53
0.4 Inf 1974.34 1906.83 1899.62 1857.35 1867.31 1792.39 1722.43 1745.78 Inf Inf Inf 1940.97 Inf Inf 5784.60 5841.86 5822.49 Inf 5875.31 5871.31
0.5 1936.19 1906.95 1857.49 1859.27 1852.47 Inf 1781.43 1741.75 1744.81 Inf 1759.52 Inf Inf 1937.03 2033.95 Inf 5850.94 5819.45 5873.82 Inf Inf
0.6 1913.24 1871.69 1863.51 1864.32 1794.10 1782.37 1742.71 Inf 1750.98 Inf 1747.57 Inf Inf 1953.62 Inf 2045.07 Inf Inf Inf 5841.23 5870.82
0.7 1859.75 1849.62 1834.53 1812.16 1792.15 1744.53 Inf Inf 1744.18 Inf Inf Inf Inf Inf Inf 2022.73 2165.69 Inf 5787.65 5783.79 5862.65
0.8 1831.90 1819.23 1803.94 1801.79 1745.94 1742.24 1742.36 174454 1746.26 1745.77 Inf Inf Inf Inf 1910.30 1934.46 Inf Inf Inf 5770.93 5786.18
0.9 1849.18 1806.29 1809.21 1737.89 Inf Inf Inf Inf 1738.18 Inf Inf Inf Inf Inf Inf 1937.53 Inf Inf Inf Inf 5799.82
1.0 Inf 1810.84 1781.07 1738.54 Inf 1752.95 1748.19 1744.63 1745.78 Inf 1758.14 1711.31 Inf Inf Inf 1913.80 1933.80 Inf Inf Inf Inf
11 1803.09 Inf 1734.65 1745.47 Inf 1744.30 Inf Inf 1740.13 Inf 1720.16 Inf Inf Inf Inf Inf Inf 1933.80 Inf 2026.55 Inf
1.2 1776.29 1735.13 1738.94 1744.03 1745.60 1744.23 1740.67 Inf 1745.15 Inf Inf Inf 1709.72 Inf Inf Inf 1910.30 1951.89 Inf Inf Inf
13 1729.73 1736.00 1749.29 Inf 1743.64 Inf 1744.23 Inf Inf 1746.17 Inf Inf Inf Inf 1709.72 1711.31 Inf Inf 1933.80 Inf Inf
1.4 Inf 1722.89 1753.09 Inf 1735.89 1748.93 1743.26 Inf Inf Inf 1758.95 1709.72 Inf Inf Inf Inf Inf 1929.75 Inf Inf Inf
15 1737.99 Inf 1742.36 1745.28 1742.30 1739.71 1742.29 Inf 1744.66 1742.60 1759.38 Inf Inf Inf Inf Inf 1709.72 Inf Inf 1948.99 Inf
1.6 Inf Inf 1746.78 1742.23 1742.03 Inf 1730.11 Inf 1743.24 Inf 1758.90 Inf Inf Inf Inf Inf Inf Inf 1930.78 Inf Inf
1.7 1739.07 1736.97 1750.82 Inf 1748.72 1746.74 1745.69 1750.99 1745.40 1736.46 Inf 1748.87 Inf Inf Inf Inf Inf Inf Inf 1925.96 Inf
1.8 Inf Inf 1741.08 Inf 1747.82 1737.15 1748.46 Inf Inf 1740.79 1761.16 Inf Inf Inf Inf Inf Inf Inf Inf 1927.38 Inf
1.9 1751.61 1740.54 1735.63 Inf Inf Inf Inf 1740.58 1740.39 1743.15 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1923.58
2.0 1740.27 Inf 1737.55 1743.40 1742.15 1745.08 1743.68 1735.32 1739.30 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1925.75

Figure 4.36: Parameterized of instance E481-38Kk, feasible to Initial Solution with of 2=1.2 and x=1.2 values.
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APPENDIX G1

Fungiion Mu (1

Lambda
(l) 00 01 02 03 04 05 06 07 08 09 10 11 1.2 13 1.4 15 1.6 1.7 1.8 19 2.0

E484-19k
0.0 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1031093 10222.10 10031.38 10288.51 10345.80 10275.61 10186.28 10207.10  10386.44  10210.87
0.1 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7670.60 Inf 7890.65 7928.29 8110.75 8092.86 8076.24 8078.44 8126.92
0.2 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7805.53 7818.81 7810.82 7980.41 7988.17 Inf
0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7642.57 7783.06 7784.30 7880.29 Inf 7880.33
0.4 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7616.60 Inf Inf 7868.69 7859.60
0.5 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7627.81 7617.26 7715.78 7790.71
0.6 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7663.83 Inf Inf
0.7 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7647.95 Inf 7721.32
0.8 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
0.9 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.0 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
11 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
13 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.4 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
15 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.6 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
17 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
1.9 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf
2.0 InfInf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

Figure 4.37 Parameterized of instance E484-19k, feasible to Initial Solution with of 42=0.4 and x#=1.6 values.
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