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ABSTRACT 

The objective in this thesis project was design and to implement an algorithm based on 

Granular Tabu Search (GTS) for the vehicle routing problem with capacity and route length 

restrictions. The algorithm integrated in two phases: initial solution and improvement solution. 

In the initial solution has been obtained by using the parameterized parallel saving method. 

The improvement phase includes GTS; it considers a sequence of inter-route adjacent 

solutions obtained by repeatedly removing a vertex from its current route and reinserting it 

into another route, called relocate like procedure to less the vehicles number and, 2-optimal 

technique use to earn another intra-route solution. Two different search strategies for selecting 

the next movement were implemented, the first admissible movement and best admissible 

move. Intensification and diversification of the search was achieved through frequency 

penalization. Computational results were reported for a set of the 34 instances, which are 14 

classical and 20 large-scale instances with between 51 and 484 customers. In tree instances 

was obtained the optimal solution and significantly reduced the runtime in all instances. 

 

Keywords: Distance Constrained Vehicle Routing Problem, Granular Tabu Search, 

Metaheuristic, Saving Algorithm. 

RESUMEN 

En esta tesis se desarrolló e implemento un algoritmo para el Problema de Ruteo de Vehículos 

con Restricciones de Distancia, basado en Búsqueda Tabú Granular (BTG). El algoritmo se 

compone de dos fases. En la primera se construye una solución inicial basada en el método de 

los ahorros parametrizado; mientras que en la segunda fase, de mejora, se implementa la 

búsqueda tabú granular; así como la generación de dos vecindarios: “relocate “para 

movimientos entre rutas y 2-optimal para movimientos dentro de la ruta. Dos estrategias de 

búsqueda son usadas para seleccionar un movimiento admisible y el mejor. La búsqueda se 

intensifica y diversifica mediante una frecuencia de penalización. Los resultados 

computacionales son probados en un conjunto de  34 instancias: 14 instancias clásicas y 20 de 

larga escala, las cuales contienen entre 51 y 484 clientes. Se obtuvo la solución óptima para 

tres instancias y se redujo significativamente el tiempo de ejecución en todas las instancias. 

 

Palabras clave: Problema de Ruteo Vehicular con Restricciones de Distancia, Búsqueda Tabú 

Granular, Metaheurísticas, Algoritmo de Ahorros. 
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INTRODUCTION 

The vehicle routing problem (VRP) was proposed by Dantzig and Ramser (1959); it is 

considerate like a combinatorial optimization and integer programming problem seeking to 

service a number of customers with a fleet of vehicles. The VRP forms the core of logistics 

planning and has been extensively studied by the operations research community. Often the 

context is that of delivering goods located at a central depot to customers who have placed 

orders for such goods. Implicit is the goal of minimizing the cost of distributing the goods. 

The last five decades have seen enormous improvements in the research community’s ability 

to solve these problems, due to better algorithms as well as better computational capabilities. 

Toth and Vigo (2002) provide an up to date survey of problem variants, exact solution 

techniques, and heuristics for the vehicle routing as well important advances and new 

challenges techniques for modeling and solving the standard VRP and its many variants has 

advanced significantly ( Laporte, 2009). 

 

In this thesis project, is considering a variant of VRP called Distance Constrained Vehicle 

Routing Problem (DCVRP) concerning to the commodities distribution between depots and 

end users (customers), in which a set of vertices (customers), one depot D, homogeneous fleet 

K and a maximum route length L. In particular, the solution of a VRP calls for the 

determination of a set of routes, each performed by a single vehicle that starts and ends at its 

same depot, to the DCVRP has to satisfy the vehicle capacity, and maximum route length, so 

that all the requirements of the customers are fulfilled, all the operational constraints satisfied, 

and the overall transportation cost is minimized (Toth and Vigo, 2002). 

 

For this problem has provided several techniques; therefore, an interesting question is whether 

the DCVRP can be solved more efficiently using new methods. The DCVRP was shown like 

NP–hard (non-deterministic polynomial-time hard). Hence, DCVRP be must look to means 

such as integer programming. Previous work on exacts methods to the VRP and its variant 

DCVRP; however these resolved relatively small instances, so that to implement approximate 

algorithms has been a hard work, because these should efficient models, which have the ability 

to solve large-scale problems. For the past two decades, the attention has been on approximate 

method called Heuristics and Metaheuristics, which are methods used to obtain imports 

solutions quickly(Cordeau et al., 2005).  

 

The last ten years previous works on exact solutions have been proposed to VRP, and its 

variants, for the best exact algorithms for the Capacitated Vehicle Routing Problem (CVRP) 

have been based on either branch-and-cut or Lagrange relaxation/column generation. The 

resulting branch-and-cut algorithm can solve to optimality all instances from the literature 

with up to 135 vertices (Fukasawa et al. 2003). A branch-and-cut algorithm has described by 

(R. Baldacci, Hadjiconstantinou, and Mingozzi 2004), which base in two commodity network 

flow formulation of the CVRP.  They used a variety of valid inequalities, including capacity, 

framed capacity, partial multistar, hypotour and classical Gomory mixed integer cuts. 

However, recent survey of the CVRP shows that the most promising exact algorithms for the 

symmetric CVRP version are based on covering both exact and heuristic algorithms. An 

example is the proposed algorithm by Franceschi, Fischetti and Toth (2006), which proposed a 
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new ILP-based refinement heuristic for Vehicle Routing Problems. They considerate the 

DCVRP, where k minimum-cost routes through a central depot have to be constructed so as to 

cover all customers while satisfying, for each route, both a capacity and a total-distance-

travelled limit. Their algorithm involves a procedure to generate a large number of new 

sequences through the extracted nodes, as well as a more sophisticated Integer Linear 

Programming (ILP) model for the reallocation of some of these sequences. An important 

feature of their method is that it does not rely on any specialized ILP code, as any general-

purpose ILP solver can be used to solve the reallocation model. They reported computational 

results on a large set of CVRP instances from the literature (with symmetric/asymmetric costs 

and with/without distance constraints), along with an analysis of the performance of the new 

method and its features. Interestingly, in 13 cases the new method was able to improve the 

best-know solution available from the literature (Franceschi, Fischetti, and Toth 2006). 

 

Many heuristics have been put forward. Some are purely constructive but most also include an 

improvement phase, these are called heuristics “classical” because they do not contain 

mechanisms allowing the objective function to deteriorate from one iteration to the next , these 

are : Saving Algorithm, Set Partitioning Heuristics and Cluster-First, Route-Second Heuristics 

(Laporte 2009), which will be described in the next section 1.5. So, there are Improvement 

Heuristics, which can be employed to post-optimize a VRP solution. The first is called Intra-

route moves consist of improving each route separately by means of a TSP algorithm; 

whereas, inter-route, the second, moves act on several routes simultaneously. It is common to 

alternate between these two schemes within the same improvement heuristic. 

 

The Metaheuristics can be broadly classified into local search, population search, and learning 

mechanisms. Most Metaheuristics can be regarded as improvement methods. The best ones are 

rather robust and perform extremely well even if they are initiated from a low-quality solution. 

The number of variants of VRP Metaheuristics published in recent years; the most important 

for the VRP and it is variant DCVRP are: tabu search, Toth and Vigo (2003) proposed a 

granular tabu search, will be described in the chapter 2.So, Gendreau, Hertz and Laporte 

(1994) proposed a new tabu search heuristic called TABUROUTE for the vehicle routing 

problem with capacity and route length restrictions. The algorithm considers a sequence of 

adjacent solutions obtained by repeatedly removing a vertex from its current route and 

reinserting it into another route. This is done by means of a generalized insertion procedure 

previously developed by the authors. During the course of the algorithm, infeasible solutions 

are allowed (Gendreau, Hertz, and Gilbert Laporte 1994b). A variable neighborhood search  

(Kytöjoki et al. 2007) and adaptive large neighborhood search  (Ropke and Pisinger 2006). 

Finally, Nagata and Bräysy (20010) proposed a Memetic algorithm upon an existing edge 

assembly crossover (Nagata, Bräysy, and Dullaert 2010). 

 

As we see it, many techniques have been proposed to solve the VRP and its variant DCVRP, 

however in thesis project is based on tabu search (TS), which is one of the most widely used 

and effective heuristic approaches available for the solution of optimization problems (Toth 

and Vigo 2003), for this reason in this thesis project is used TS and with the suggestion of 

Toth and Vigo (2003) called Granular Tabu Search (GTS), which is based on the use of 

drastically restricted neighborhoods, not containing the moves that involve only elements that 
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are not likely to belong to good feasible solutions. These restricted neighborhoods are called 

granular, and may be seen as an efficient implementation of candidate-list strategies proposed 

for tabu-search algorithms(Gendreau 2003). 

 

At the difference of Toth and Vigo (2003), this thesis project has two phases: Initial solution 

and Improvement solution. The initial solution generated with Enhancements of the Parallel 

Clarke and Wright Algorithm and TABUROUTE, for the capacity and route length restrictions. 

The Improvement solution uses GTS like a local search method, what use a 2-optimal and 

relocate mechanisms to generate move generation and consequently create the neighboring 

solutions by changing one attribute or a combination of attributes of the initial solution given. 

The attribute is concerned to arcs connecting a pair of customers. Once a neighboring solution 

is identified, it is compared against the current solution. If the neighboring solution is better, it 

replaces the current solution, and the search continues. The results obtained are evaluated in 

14 classical instances and 20 size large instances (Toth P., A. Tramontani, 2008). 

Subsequently will be use Local Search through GTS introduced by Toth and Vigo and has 

yielded excellent results on the VRP (Toth and Vigo, 2003). 

GENERAL OBJECTIVE 

Design, development and implement a Metaheuristic based on Granular Tabu Search to solve 

the Distance Constrained Vehicle Routing Problem. 

 

The specific objectives were: 

 

• Make an examination of state of the art of the distance constrained vehicle 

routing problem from the methods so commonly used to solve it. 

• Search benchmarking instances and the best know solution according to 

state of the art. 

• Evaluate strategies using different parameters to the saving algorithm to 

produce a good initial solution.   

• Implement GTS and insert move to solve DCVRP, with the issue of 

proposed ideas that are necessaries to explain the algorithm. 

• Make a comparison of solutions according to reports. 

• Propose future writings about DCVRP. 

 

To meet the proposed objectives, the thesis project was organized as follows. In Chapter 1 is 

presented the classical Vehicle Routing Problem and it is derived DCVRP, including some 

exact and approximate resolution methods and mathematical formulation.  Chapter 2 describes 

the initial solution, obtained to implement parameterized saving parallel algorithm. Then, 

Chapter 3 introduces the ideas about Tabu Search heuristic, Granular Tabu Search, Relocate 

and 2-Optimal, which were implemented in this thesis project. Chapter 4 presents the 

Metaheuristic proposed, including through first and second phase development, where was 

forming the Construction and Route Improvement Metaheuristic. Here, results in terms of 

solution quality as well as computation time are presented and discussed. Chapter 5 shows the 

computational experiments and the obtained results. Finally, Chapter 6 outlines the 
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conclusions and further research in this field. Appendices, bibliographies are included at the 

end. 

  

SCOPE AND LIMITATIONS OF RESEARCH 

The scope of this thesis project is limited to instances proposed from literature that are 

generally used as a standard benchmark for the VRP and its variant DCVRP. The 14 standard 

test problems are proposed by Christofides and Eilon (Christofides and Eilon 1969), which 

include from 201 to 484 customers (Christofides, Mingozzi, and Toth 1979) and 20 large scale 

instances (Feiyue Li, Bruce Golden, and Edward Wasil 2005) from 201 to 484 customers 

proposed, which used : 

 

 

 Distance matrix calculated by Euclidian Distance. 

 Deterministic Local Search 

 

 

The model can be applied, with minor modifications, for solving other pickup and delivery 

problems, even as research project to PhD will be applied to the Single Vehicle Routing 

Problem with Deliveries and Selective Pickups. 
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CHAPTER 1  VEHICLE ROUTING PROBLEM 

In this section, are describe the typical characteristics of the vehicle routing problems by 

considering their main components (road network, customers, depots, vehicles, and drivers), 

the different functional constraints that can be imposed on the construction of the routes, and 

the possible objectives to be achieved in the optimization process pertinent like introducing to 

DCVRP, after their mathematical formulation and solution methods are given.  

1.1 ASSOCIATED CONCEPTS 

The distribution of commodities concerns the service, in a given time period, of a set of 

customers by a set of vehicles, which are located in one or more depots, are operated by a set 

of crews (drivers), and perform their movements by using an suitable road network. In 

particular, the solution of a VRP calls for the determination of a set of routes, each performed 

by a single vehicle that starts and ends at its own depot, such that all the requirements of the 

customers are fulfilled, all the operational constraints are satisfied, and the overall 

transportation cost is minimized (Toth and Vigo, 2002) 

 

The road network, used for the transportation of goods, is usually described through a graph, 

whose arcs represent the road sections, and whose vertices correspond to the road junctions 

and to the depot and customer locations. The arcs (and hence the corresponding graphs) can be 

directed or undirected, depending on whether they can be traversed in only one or in both 

directions, respectively. Each arc is associated with a cost, which usually represents its length, 

and a travel time, which is possibly based on the vehicle type or on the period during which 

the arc is traversed(Bramel and Simchi-Levi ,1997). 

 

The vehicle routing problem is composed by:  

 

(i) Customers: each customer has a demand, which should be satisfied 

completely. Typical characteristics of customers are:  

 Vertex of the road graph in which the customer is located; 

 Amount of commodities (demand), possibly of different types, which 

must be delivered or collected at the customer; 

 Times of the day (time windows) during which the customer can be 

served (for instance, because of specific periods during which the 

customer is available or the location can be reached, due to traffic 

limitations); 

 Times required to deliver or collect the goods at the customer location 

(unloading or loading times, respectively), possibly dependent on the 

vehicle type; and subset of the available vehicles that can be used to 

serve the customer (for instance, because of possible access limitations 

or loading and unloading requirements). 

(ii) Depot: is the home depot of the vehicles and commodities, which can be 

one or more that one. The route should start and finish in the same depot. 
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(iii) Vehicles: Transportation of goods is performed by using a fleet of vehicles 

whose composition and size can be fixed or can be defined according to the 

requirements of the customers. Typical characteristics of the vehicles are:  

 

 Capacity of the vehicle, expressed as the maximum weight, or 

volume, or number of pallets, the vehicle can load; 

 Possible subdivision of the vehicle into compartments, each 

characterized by its capacity and by the types of goods that can be 

carried; 

 Devices available for the loading and unloading operations; 

 Subset of arcs of the road graph which can be traversed by the 

vehicle; and 

 Costs associated with utilization of the vehicle (per distance unit, 

per time unit, per route, etc.). 

 

 These are transport modality whereby goods are distributed to the 

customers, can be a vehicles set with same capacity (homogeneous 

fleet) or different capacity (heterogeneous fleet). 

 

The most common side constraints include Capacity restrictions: a non-negative weight (or 

demand)    is attached to each city i > 1 and the sum of weights of any vehicle route may not 

exceed the vehicle capacity. Capacity constrained VRP will be referred to as Capacitated 

Vehicle Routing Problem (CVRP); 

 

 The number of cities on any route is bounded above by q (this is a special 

case of (i) with    = 1 for all i > land D = q); 

 Total time restrictions: the length of any route may not exceed a prescribed 

bound L; this length is made up of intercity travel times     and of stopping 

times    at each city i on the route. Time or distance constrained VRP will 

be referred to as DVRP; 

 Time windows: city i must be visited within the time interval [       ] and 

waiting is allowed at city i; 

 Precedence relations between pairs of cities: city i may have to be visited 

before city j. 

 

 Objectives considered (Toth and Vigo, 2002)in VRP are: 

  

1. Minimization of the global transportation cost, dependent on the global 

distance traveled (or on the global travel time) and on the fixed costs 

associated with the used vehicles (and with the corresponding drivers). 

 

2. Minimization of the number of vehicles (or drivers) required to serve all 

the customers; balancing of the routes, for travel time and vehicle load. 

  



8 

 

The next picture (Figure 1.1) summarizes the VRP and their variants with. Describe the 

Capacitated Vehicle Routing Problem CVRP, which is the simplest and most studied member 

of the family, Distance-Constrained VRP, the VRP with Time Windows, the VRP with 

Backhauls, and the VRP with Pickup and Delivery. For each of these problems, several minor 

variants have been proposed and examined in the literature, and often different problems are 

given the same name.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most basic Vehicle Routing Problem (VRP) with one depot is called Capacitated Vehicle 

Routing Problem (CVRP), which can be described as follows. A set of customers has to be 

served by a fleet of identical vehicles of limited capacity. The vehicles are initially located at a 

given depot. The objective is to find a set of routes for vehicles with minimal total length. 

Each route begins at the depot, visits a subset of the customers and returns to the depot without 

violating the capacity constraint. This thesis project considers a variation of CVRP called 

Distance Constrains Vehicle Routing Problem (DCVRP), as a variant of VRP, which will be 

described in the next section(Toth  and Vigo ,2002). 

1.2 DISTANCE CONSTRAINED VEHICLE ROUTING PROBLEM 

The Distance Constrained vehicle Routing Problem has several minor variant of VRP, starting 

of CVRP may be described as the following graph theoretic problem.  Let G = (V, A) where V 

= {0,…, n} is the vertex set and A is the arc set. Vertices i = 1,..., n correspond to the 

customers, whereas vertex 0 corresponds to the depot. Sometimes the depot is associated with 

vertex n + 1(Gilbert Laporte, Yves Nobert, and Martin Desrochers 1985). 

 

A nonnegative cost,    , is associated with each arc (i, j) ∈ A and represents the travel cost 

spent to go from vertex i to vertex j. If G is a directed graph, the cost matrix c is symmetric, 

this thesis project considerate a symmetric matrix, the corresponding problem is called 

Asymmetric Capacitated Vehicle Routing Problem (ACVRP). Otherwise, costs matrix have a 

cost ij jic c , for all (i, j) ∈ A. In several practical cases, the cost matrix satisfies the triangle 

inequality ik kj jic c c   for all i, j, k ∈ A For some instances the vertices are associated with 

Route length 

DCVRP CVRP 

Backhauling 
Mixed service 

Time Windows 

VRPPD 
VRPTW 

VRPB 

VRPPDTW 
  

VRPBTW 

Figure 1.1 The basic problems of the VRP class and their interconnections. 
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points of the plane having given coordinates, and the cost 
ijc , for each arc (i, j) ∈ A, is defined 

as the Euclidean distance between the two points corresponding to vertices i and j. In this case 

the cost matrix is symmetric and satisfies the triangle inequality, and the resulting problem 

called Euclidean SCVRP.  

 

Each customer i (i = 1, …,n) is associated with a known nonnegative demand,     , to be 

delivered, and the depot has a fictitious demand      = 0. Given a vertex set S   V, let d(S) = 

∑      ∈   denote the total demand of the set.  

 

A set of K identical vehicles, each with capacity Q, is available at the depot. To ensure 

feasibility we assume that     < C for each i = 1,…, n. In the case of DCVRP ∑              ; 

where     represents d demand each customer i, so the route should satisfy the capacity 

requirement Q, i = 1…n .So, each vehicle based at the depot capacity D,        (    )    
 

The CVRP, as antecedent to DCVRP (See Figure 1.2), consists of finding a collection of 

exactly K simple circuits (each corresponding to a vehicle route) with minimum cost, defined 

as the sum of the costs of the arcs belonging to the circuits, and such that: 

 

i. Each circuit visits the depot vertex; 

ii. Each customer vertex is visited by exactly one circuit;  

iii. The sum of the demands of the vertices visited by a circuit does not exceed 

the vehicle capacity, Q. 

 

The first variant of CVRP is called Distance Constrained Vehicle Routing Problem, where for 

each route the capacity constraint is replaced by a maximum length constraint. In particular, a 

nonnegative length, is associated with each arc (i, j) ∈ A, and the total length of the arcs of 

each route cannot exceed the maximum route length, L. 

 

Formally, DCVRP can be defined as follow: 

 

Let a set of vertices (customers),one depot D, homogeneous fleet K and a maximum route 

length L, find a minimum cardinality set of tours originating at the depot covers all vertices, 

such that each tour (route) has length at most L (Ralphs et al. 2003) subject to : 

 

 Each city, except the depot, must be visited exactly once and by a single 

vehicle. 

 Each vehicle starts and ends its journey at the depot. The sum of demands 

contained on a vehicle's route may not exceed Q and the total length of the 

route may not exceed a pre-specified upper bound L. 

 

 The objective is to minimize the total distance or cost traveled while 

satisfying all constraints. 

 

The Figure 1.2 shows to L as maximal route length constraint (duration), which will be 

satisfied, as soon demand associated each customer determinate by    , it have to less or equal 

to vehicle's route Q. 
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In following section is presented the formulation model of the DCVRP base on VRP as 

Integer Programming Model. In this formulation is added Distance (cost) constrain as soon all 

constraints above mentioned. 

1.3 FORMULATION MODEL  

The mathematical formulation to VRP and its variant DCVRP, use integer variables associated 

with each arc or edge of the graph, which count the number of times the arc is traversed by a 

vehicle. This mathematical formulation considers cases in which the cost of the solution can 

be expressed as the sum of the costs associated with the arcs, and when the most relevant 

constraints concern the direct transition between the customers within the route(Chung-Lun 

Li, Simchi-Levi, and Martin Desrochers 1992). 

 

The Mathematical Formulation to symmetric version more general DCVRP was proposed 

Laporte, Norbert, and Desrochers, which assumed as usual, that the cost and the length 

matrices coincide,         , for each  i, j ∈ A, i < j and a maximum length constraint. In 

particular, a nonnegative length,     associated with each arc i, j ∈ A and the total length of the 

arcs of each route cannot exceed the maximum route length, L. In this, thesis project was 

considerate when arc lengths represent a service time is , it is associated with each customer i, 

denoting the time period for which the vehicle must stop at its location. 

  

 d i ≤ Q
route

 

d i  

Figure 1.2 Visual representations of distance and demand constrains in DCVRP. 
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The formulation model is: 
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Notation: 

 

The constraint (1.1) minimize the objective function, the degree constraints (1.2) and (1.3) 

impose that exactly two arcs are incident into each vertex associated with a customer and that 

2K arcs are incident into the depot vertex, respectively. The restriction (1.4) imposes the 

connectivity of the solution, the vehicle capacity, and the maximum route length requirements, 

by forcing that a sufficient number of arcs leave each subset of vertices. Given a subset S of 

customer vertices, the quantity r’(S) represents the minimum number of vehicles needed to 

serve all customers in S. This quantity is given by the maximum between r(S), which takes 

into account the capacity constraints, and the smallest value v satisfying:  

 

                           v =⌈    (S)/L⌉   , v= r(S),…, min {K, |S|},                                               (1.7) 

 

Where is the optimal cost of a multiple TSP visiting all customers in S and using exactly v 

tours passing through the depot. Since the multiple TSP is an NP-hard problem, an 

approximation from below of the above value may be obtained by using any lower bound on 

the value of     (S) (G. Laporte, M. Desrochers, and Y. Nobert 1984). 

1.4 EXACT ALGORITHM  

In this section are presented the most common exact algorithms used to solve the 

DCVRP(Roberto Baldacci et al., 2010). 

1.4.1 Branch and Bound 

Branch & Bound (B&B) is a general algorithm for finding optimal solutions of various 

optimization problems, especially in discrete and combinatorial optimization. It consists of a 
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systematic enumeration of all candidate solutions, where large subsets of fruitless candidates 

are discarded in masse, by using upper and lower estimated bounds of the quantity being 

optimized(Barnhart et al. 1998). 

 

 It is a general algorithm for founding optimal solutions of various optimization problems, 

especially in discrete and combinatorial optimization. It consists of a systematic enumeration 

of all candidate solutions, where large subsets of fruitless candidates are discarded en masse, 

by using upper and lower estimated bounds of the quantity being optimized. 

1.4.2 Branch and Cut 

The method is a hybrid of branch & bound plus cutting plane methods. The method solves the 

linear program without the integer constraint using the regular simplex algorithm. When an 

optimal solution is obtained, and this solution has a non-integer value for a variable that is 

supposed to be an integer, a cutting plane algorithm is used to find further linear constraints 

which are satisfied by all feasible integer points but violated by the current fractional solution. 

If such an inequality is found, it is added to the linear program, such that resolving it will yield 

a different solution which is hopefully "less fractional". This process is repeated until either an 

integer solution is found (which is then known to be optimal) or until no more cutting planes 

are found (Savelsbergh, 1997).  

1.4.3 Branch and Price 

Branch & Price, is a method that the procedure is based on Column Generation rather than 

Row Generation, which sets of columns are left out of the LP relaxation of large Integer 

Programming because there are too many columns to handle efficiently and most of them will 

have their associated variables equal to zero in an optimal solution anyway. Then to check 

optimality, a sub problem, also called the “pricing problem” is solved to identify columns to 

enter the basis. If such columns are found, the LP is optimized. Branching occurs when no 

columns “price” out to enter the basis and the LP solution does not satisfy integrality 

conditions (Barnhart et al., 1998) 

1.5 APPROXIMATE ALGORITHMS  

Because of the VRP is so hard to solve exactly and algorithmic behavior is highly 

unpredictable, a great deal of effort has been invested on the design of heuristics. The classical 

heuristics usually consisting in construction phase followed by a relatively simple post 

optimization phase, and Metaheuristics based on new optimization concepts developed over 

the past fifteen to twenty years. Since the performance of heuristics can only be assessed 

experimentally it is common to make comparisons on a set of four- teen benchmark instances 

proposed by Christofides, Mingozzi and Toth (1979) (CMT) which range from 50 to 199 

cities. The best known solution values for these instances have been obtained by Taillard 

(1993) and Rochat and Taillard (1995). We first describe some of the most representative 

classical heuristics. An extensive survey is provided by Laporte and Semet (2002). 
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Methods or approximation algorithms also can be derived directly from optimization 

algorithms, by heuristically solving different phases of the process. The approximation 

algorithm much of the emphasis was put on quickly obtaining a feasible solution and possibly 

applying to it a post optimization procedure. These methods considered the following: 

 

 Flexibility to use good starting solutions (which the practitioner can usually 

provide, based on his/her knowledge of the problem, or based on a known 

solution of some similar problem). 

 The ability to perform sensitivity analysis (resolve the problem with 

slightly different problem data) quickly. 

 To find algorithms with probably good run times and with possibly good 

(optimal) solution quality. 

 

1.5.1 Classical Heuristics for the Vehicle Routing Problem 

Several families of heuristics have been proposed for the VRP. These can be broadly classified 

into two main classes: classical heuristics, developed mostly between 1960 and 1990, and 

Metaheuristics, whose growth has occurred in the last decade. Most standard construction and 

improvement procedures in use today belong to the first class(Bramel and Simchi-Levi 1995).  

 

These methods perform a relatively limited exploration of the search space and typically 

produce good quality solutions within modest computing times. Moreover, most of them can 

be easily extended to account for the diversity of constraints encountered in real life contexts. 

Therefore, they are still widely used in commercial packages. In Metaheuristics, the emphasis 

is on performing a deep exploration of the most promising regions of the solution space. These 

methods typically combine sophisticated neighborhood search rules, data structures, and 

recombination of solutions (Bruce L. Golden et al. 1998)  

 

The quality of solutions produced by these methods is much higher than that obtained by 

classical heuristics, but the price to pay is increased computing time. Moreover, the procedures 

usually are context dependent and require finely tuned parameters, which may make their 

extension to other difficult situations. In a sense, Metaheuristics are no more than 

sophisticated improvement procedures, and they can simply be viewed as natural 

enhancements of classical heuristics and they can be broadly classified into three categories 

(Toth and Vigo, 2002): 

 

• Constructive heuristics 

• Two-phase heuristics 

• Improvement methods 

 

Most of the heuristics developed for the VRP apply directly to capacity constrained problems 

(CVRP) and normally can be extended to the case where an upper bound is also imposed on 

the length of any vehicle route (DCVRP), even if this is not always explicitly mentioned in the 

algorithm description. Most heuristics work with an unspecified number K of vehicles, but 

there are some exceptions to this rule. This is clarified for each case.   
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 Constructive Methods 

 

Gradually this method builds a feasible solution while keeping an eye on solution cost, but 

they do not contain an improvement phase per se. Two main techniques are used for 

constructing DCVRP solutions: merging existing routes using a savings criterion, and 

gradually assigning vertices to vehicle routes using an insertion cost. 

 

 Clarke and Wright Savings Algorithm 

 

This algorithm is one of the earliest and most widely used heuristics due to its speed, 

simplicity, and ease of adjustment to handle various constraints in real-life applications. It is 

based on the feasible merging of sub tours using a savings criterion, which refers to the cost 

saving achieved by combining two routes and using one vehicle rather than two. The Clarke 

and Wright algorithm can also be time consuming since all savings must be computed, stored, 

and sorted. Various enhancements have been proposed by a number of authors to speed up 

computations and to reduce memory requirements(Clarke and Wright ,1964). 

 

 Sequential Insertion Heuristic 

 

The algorithms are based on sequential to problems with an unspecified number of vehicles. 

The first expands one route at a time. The second applies in turn sequential and parallel route 

construction procedures. Both methods contain a 3-opt improvement phase. 

 

 Two-Phase Method 

 

The problem is decomposed into its two natural components, clustering of vertices into 

feasible routes and route construction, with possible feedback between the two stages. Two-

phase heuristics are divided into two classes: cluster-first, route-second methods and route-

first, cluster-second methods. In the first case, vertices are first organized into feasible 

clusters, and a vehicle route is constructed for each of them. In the second case, a tour is first 

built on all vertices and is then segmented into feasible vehicle routes. For example the sweep 

algorithm applies to planar instances of the VRP. Feasible clusters are initially formed by 

rotating a ray centered at the depot. A vehicle route is then obtained for each cluster by solving 

a TSP. Some implementations include a post optimization phase in which vertices are 

exchanged between adjacent clusters, and routes are optimized(Toth and Vigo, 2002). 

 

 Route-First, Cluster-Second Methods 

 

This method attempts to upgrade any feasible solution by performing a sequence of edge or 

vertex exchanges within or between vehicle routes. Route-first, cluster-second methods 

construct in a first phase a giant TSP tour, disregarding side constraints, and decompose this 

tour into feasible vehicle routes in a second phase. This idea applies to problems with a free 

number of vehicles.  
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1.5.2 Metaheuristics for the DCVRP 

In recent years several Metaheuristics have been proposed for the VRP. These are general 

solution procedures that explore the solution space to identify good solutions and often embed 

some of the standard route construction and improvement heuristics described previously. In a 

major departure from classical approaches, Metaheuristics allow deteriorating and even 

infeasible intermediary solutions in the course of the search process. The best-known 

Metaheuristics developed for the VRP typically identify better local optima than earlier 

heuristics, but they also tend to be more time consuming(Vega, Batista, and Pérez 2003). 

 

Different types of Metaheuristic that have been applied to solve the VRP: Simulated 

Annealing (SA), Deterministic Annealing (DA), Tabu Search (TS), Genetic Algorithms (GA), 

Ant Systems (AS), and Neural Networks (NN). The first three algorithms start from an initial 

solution    and move at each iteration t from to    a solution        in the neighborhood N(    ) 
of    until a stopping condition is satisfied. If f(x) denotes the cost of x, then f (       ) is not 

necessarily less than f (    ). As a result, care must be taken to avoid cycling. GA examines at 

each step a population of solutions(Bruce L. Golden et al. 1998). Each population is derived 

from the preceding one by combining its best elements and discarding the worst. In the 

following sections are described the common Metaheuristics useful in this thesis project. 

 

Simulated Annealing 

 

Simulated annealing was first proposed by Kirkpatrick, Gelatt, and Vecchi (1983). It is a 

randomized local search procedure where a modification to the current solution leading to an 

increase in solution cost can be accepted with some probability. This algorithm is motivated 

from an analogy with the physical annealing process used to find low-energy states of solids. 

In condensed matter physics, annealing denotes a process in which a solid is first melted by 

increasing its temperature; this is followed by a progressive temperature reduction aimed at 

recovering a solid state of lower energy. If the cooling is done too fast, widespread 

irregularities emerge in the structure of the solid, thus leading to relatively high energy states. 

Conversely, a careful annealing through a series of levels, where the temperature is held long 

enough at each level to reach equilibrium, leads to more regular structures associated with 

low-energy states. Basically, the process is less likely to get trapped in a high-energy state 

when the temperature is prevented from getting too far from the current energy level. 

Their strategic belongs to a class of the local search algorithms that are known as threshold 

algorithms. These algorithms play a special role with local search for two reasons. First, they 

appear to be quite successful when applied to a broad range of practical problems. Second, 

some threshold algorithms such a simulated annealing have a stochastic component, which 

facilitates a theoretical analysis of their asymptotic convergence (Gendreau and Potvin, 2005). 

 

Tabu Search  

 

Tabu Search is basically a deterministic local search strategy where at each iteration, the best 

solution in the neighborhood of the current solution is selected as the new current solution, 

even if it leads to an increase in solution cost(Glover 1989). As opposed to a pure local 

descent, the method will thus escape from a local optimum. A short-term memory, known as 

the tabu list, stores recently visited solutions (or attributes of recently visited solutions) to 
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avoid short-term cycling. Typically, the search stops after a fixed number of iterations or a 

maximum number of consecutive iterations without any improvement to the incumbent (best 

known) solution. The principle of the method originates from the work of Glover (1986).  

 

Two Early Tabu Search Algorithms 

 

In this algorithm, the solution is first transformed into a giant tour by replication of the depot, 

and neighborhoods are defined as all feasible solutions that can be reached from the current 

solution by means of 2-opt or 3-opt exchanges. The next solution is determined by the best 

non tabu move. The best non tabu feasible move is selected at each iteration. While better than 

Willard's algorithm, this implementation did not produce especially good results. Further 

research has shown that more sophisticated search mechanisms are required to make tabu 

search work (Toth and Vigo, 2002) 

 

Taburoute 

 

The Taburoute algorithm of Gendreau (1994) is rather involved and contains several 

innovative features. The neighborhood structure is defined by all solutions that can be reached 

from the current solution by removing a vertex from its current route, and inserting it into 

another route containing one of its p nearest neighbours using GENI, a Generalized Insertion 

procedure developed for the TSP. This may result in eliminating an existing route or in 

creating a new one. A second important feature of Taburoute is that the search process 

examines solutions that may be infeasible with respect to the capacity or maximum route 

length constraints. More precisely, the objective function contains two penalty terms, one 

measuring overcapacity, the other measuring over duration, each weighted by a self-adjusting 

parameter: every 10 iterations, each parameter is divided by 2 if all 10 previous solutions were 

feasible, or multiplied by 2 if they were all infeasible. This way of proceeding produces a mix 

of feasible and infeasible solutions and lessens the likelihood of being trapped in a local 

minimum (Laporte, 2000).  

 

Taillard's algorithm 

 

The Taillard did an implementation, which contains some of the features of Taburoute, namely 

random tabu durations and diversification. It defines neighborhood using the λ-interchange 

generation mechanism. Rather than executing the insertions with GENI, the algorithm uses 

standard insertions, thus enabling each insertion to be carried out in less time, and feasibility is 

always maintained.  

 

Xu and Kelly's algorithm 

 

This algorithm uses a more sophisticated neighborhood structure. They consider swaps of 

vertices between two routes, a global repositioning of some vertices into other routes, and 

local route improvements. The global repositioning strategy solves a network flow model to 

optimally relocate given numbers of vertices into different routes. Approximations are 

developed to compute the ejection and insertion costs, taking vehicle capacity into account. 

Route optimizations are performed by means of 3-opt exchanges and a Tabu Search 

improvement routine. The algorithm is governed by several parameters, which are 
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dynamically adjusted through the search. A pool of best solutions is memorized and 

periodically used to reinitiate the search with new parameter values. Overall, this algorithm 

has produced several best-known solutions on benchmark instances, but it is fair to say that it 

is not as effective as some other Tabu Search implementations (Gilbert Laporte et al., 2000).  

 

The following section presents fundamental theoretical principles, which provides support for 

this thesis project. 
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CHAPTER 2  METHODOLY 

This chapter deals with basic theory needed in the remainder of the thesis project. The Clarke 

and Write heuristic, Tabu Search Metaheuristic, Granular Tabu Search, 2-optimal and relocate 

techniques are mentioned. This chapter describes the basic theory of Tabu Search (TS) and 

Granular Tabu Search (GTS), local search algorithm both. So, is presented the concepts about 

2-optimal and relocate procedure.  

2.1 CLARK AND WRIGHT HEURISTIC  

The Clarke and Wright algorithm also called Saving Algorithm is one of the first originally 

developed heuristics for CVRP and it is frequently used, since this algorithm has been one of 

the earliest and most widely used heuristics due to its speed, simplicity, and ease of adjustment 

to handle various constraints in real life applications. It is based on the feasible merging of 

sub-tours using a savings criterion, which refers to the cost saving achieved by combining two 

routes and using one vehicle rather than two (Doyuran and Catay, 2010). 

 

The basic savings concept expresses the cost savings obtained by joining two routes into one 

route as illustrated in Figure 2.1, where point 0 represents the depot. 

 

 

 

 

 

 

 

 

 

 

 

The algorithm starts from the initial solution where each route has only one customer and a 

corresponding vehicle. At the start, the number of vehicles is equal to the number of 

customers. New iteration each should reduce the number of vehicles unifying two routes that 

give maximal savings, e.g. reduction of the overall distance or time. There are two variants of 

algorithm: one with sequential and other with parallel construction of routes (Clarke and 

Wright, 1964). 

 

Initially in Figure 2.1 (a) customers   and   are visited on separate routes. An alternative to this 

is to visit the two customers on the same route, for example in the sequence  -  as illustrated in 

(b). Because the transportation costs are given, the savings that result from driving the route in 

(b) instead of the two routes in Figure 2.1 (a) can be calculated.  

  

Figure 2.1 Illustration of Saving Concept (Lysgaard, 1997) 
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By denoting the transportation cost between two given points    and   by
ijc , the total 

transportation cost aD  in (2.1) is: 

 

Da = c0i + ci0 + c0j + cj0                                  (2.1) 

 

Equivalently, the transportation cost Db in Figure 2.1, which corresponds to follow equation: 

 

Db = c0i + cij + cj0                                           (2.2) 

 

By combining the two routes one obtains the savings obtained is Sij, : 

 

Sij = Da - Db = ci0 + c0j - cij                              (2.3) 

Where:  

 

ci0 : distance between node i and 0. 

 c0j : distance between node 0 and j. 

 cij  : distance between node i  and j. 

 

Relatively large values of     indicate that it is attractive, with regard to costs, to visit points i 

and j on the same route, such that point j is visited immediately after point i. 

When two routes (  ...    )  and (    ...   )  can feasibly be merged in to a single route 
(  ...     ...  ) ,a distance savings is generated. This version is known like version sequential. 

 

Steps in Sequential Saving Algorithm 

  

Step 1. Savings Computation. Compute the savings              -     for all 

           …  n and       .Create n vehicles routes (     ) for       … n. Order the savings 

in descending order. 

 

Step 2. Best Feasible Merge. Starting from the top of the savings list, execute the 

following. Given a saving
ijS , determine whether there exist two routes, one containing 

arc or edge (    ) , the other containing arc or edge (0, )i  that can feasibly be merged

( , )i j . If so, combine these two routes by deleting (    ) and (   ) and introducing  

 

Step 3. Route Extension. Consider in turn each route  0, ,... ,0i j  Determine the first 

saving      or     that can feasibly be used to merge the current route with another route 

containing arc or edge (    ) or containing arc or edge (   ). Implement the merge and 

repeat this operation to the current route. If no feasible merge exists, considerer the 

next route and reapply the same operations. Stop when no route merge is feasible. 
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The Algorithm 2.1 shows the description of the operating principle of saving algorithm 

sequential.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Algorithm 2.1 is able to quickly found high-quality solutions to standard benchmarking 

problems; in this context benchmarking is defined as a point of reference by which the results 

can be measured in terms of execution time and quality solution. However, there is a version a 

parallel of saving algorithm, which provides a better solution and it is described in the 

following section (M.Battarra, 2007). 

2.1.1 Parallel Saving Algorithm 

Two versions of the Clarke & Wright algorithm are proposed in the literature: parallel and 

sequential. The best feasible merges of sub-tours are performed in the parallel approach, 

whereas the route extension is considered in the sequential approach. Therefore, the parallel 

version dominates the sequential saving method (Laporte and Semet, 2001). In this method m 

routes at a time are built, which are built simultaneously, choosing at each iteration the “best 

unrouted customer”, and inserting him in the “best position of the best route” among the m 

current routes, when the m current routes are completed, the procedure is iterated by 

considering m new routes. 

 

General Specifications  

 

 Internal customers: A customer who is neither the first nor the last at a 

route cannot be involved in merge operations. 

 

 Customers in the same route: If the customers suggested by the saving 

      are the extremes of the same route (the first or the last) the merge 

operation cannot be performed (no sub-tour are allowed) 

  

   1 For     (    ) ← (        2) to (   n−     n) 

   2     do       ← c    + c     − c     !Fill Matrix M 

   3   Sort Matrix M, filling list L 

   4        h   ←Firs saving in L 
   5    Nroutes ← n 

   6   While ((List L not void) and ( h   > 0)) 
   7         do 

   8            h   ← First        ∈  L not yet considered 

   9              if (Merge Feasibility (h, k) ==YES)  

   10        Merge(R    h  R     ) 

   11         N     s  

   12 return Nroutes 

Algorithm 2.1 Pseud-code of Sequential Algorithm (Batarra and Vigo, 2007) 
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Steps in Parallel Saving Algorithm 

 

In this section is described the parallels saving algorithm proposed by Paessens 1988, which 

has two important phases, the first phase of this algorithm is: all pairs of customers are 

calculated, and all pairs of customer points are sorted in descending order of the savings. 

Second phase, from the top of the sorted list of point pairs one pair of points is considered at a 

time. When a pair of points i-j is considered, the two routes that visit i and j are combined 

(such that j is visited immediately after i on the resulting route), if this can be done without 

deleting a previously established direct connection between two customer points, and if the 

total demand on the resulting route does not exceed the vehicle capacity. In this case was only 

required one pass through the list. 

 

Parallel Saving Algorithm (Paessens, 1988) 

 

Step 1. Initialization. Initial route for each client i, through route construction (       ).  

 

Step 2. Saving Calculate. Calculate     for each pair of clients i and j. 

 

Step 3. Ordering. Sort the pairs (i, j) according to non-increasing values of    . 

 

Step 4. Next pair customers. Consider the next pair (    ) with increase cost. 

 

Step 5. Merge. If i* and j* are extreme vertices of two partial routes and these two 

routes can be merged: insert arc (      ) in the solution. 

 

Step 6. Best union. If Si*j* is the maximum value Sij and it is not considered yet and     

and     are respectively the routes containing the clients i* and j*. If   i* is the last 

client of     and j* is the first client of     and the combination of     and     is feasible 

so, combine both routes. Delete Si*j* considerations future, if yet there are saving to be 

examined go to step 3, the other way finish. 

 

Step 7. Not considerate. If not yet considered pairs exist: repat step 5. 

 

Step 8. Completed. Complete the routes by connecting the corresponding extreme 

vertices with the depot. 

2.2 ENHANCEMENTS OF THE PARALLEL CLARKE AND WRIGHT 

ALGORITHM 

Several authors proposed developments of the algorithm savings. These developments may be 

categorized as adaptations to the savings formula, methods to speed up computation time and 

improvements to the route merging process. In this section is introducing the parameters (λ 

and  ) proposed by Gaskell and Yellow. 

 

The enhancements proposed by (Gaskel, 1967) and (Yellow, 1970) show that the formula 

becomes higher when the distance between customers i and j is smaller relative to their 
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distances to the depot. As a consequence, the saving method tends to produce good routes at 

the beginning. In the case when the distances of customers i and j to the depot are long 

whereas the distance between them is short the corresponding savings value will be large, 

placing it at the top of the savings list. In other words, the outermost customers (by example 

the customers with shorter distance between relative to their distances to the depot) are forced 

to be placing in the same route at the early stages. Eventually, the algorithm constructs 

circular-shaped routes beginning from the outermost customers and proceeds towards the 

inner customers. Having noticed this weakness of CW method, which prevents the merging of 

possible less expensive routes, (Gaskel, 1967) and (Yellow, 1970) parameterized the savings 

formulation as follows: 

                                                                 -λ                                                                    (2.4) 

 

As the parameter λ increases from zero, more emphasis is placed on the distance between the 

customers rather than their distances to the depot.  

Alternatively Paessens (1988) introduced a second term to the Gaskell and Yellow’s formula 

in an attempt to collect more information about the distribution. To find better solutions it is a 

better approach to make use of the following savings function: 

 

                                                     -         |        |                                                   (2.5) 

 

Where   is in the second term, which is a positive constant. The inclusion of the new term in 

(3) may exploit the asymmetry information between customers i and j regarding their 

distances to the depot. Nevertheless, this information adds an unfair savings to the certain 

customer pairs in many cases, a customer extremely close to the depot and another one very 

distant from the depot as such.  

 

The next section describes the basic theory about Tabu Search and Granular Tabu Search as a 

part of development the improvement phase. 

2.3 LOCAL SEARCH 

Local search is a method for solving computationally hard optimization problems; it can be 

used on problems that can be formulated as finding a solution maximizing a criterion among a 

number of candidate solutions. Local search algorithms move from solution to another 

solution in the space of candidate solutions (search space) by applying local changes until a 

solution considered optimal is found or a time bound is elapsed (Arts and Lenstra, (2003) . 

 

The shows the method of local search, which is an iterative method that start to initial solution 

  , generally feasible, which generate a sequence of solutions    choosing new iteration each 

the best neighbouring solution.  
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Each S solution in the solutions space has an associated cost  ( ), where S1 is better than other 

 2  if 1 2( ) ( )z S z S .Therefore, each  (  )     (  - )  ∀  , each new solution is better than 

before. In some iteration of this procedure find it a local minimum and cannot find a better 

solution, here procedures of search stop, obtained the best solution find it (Aarts & Lenstra, 

2003). 

 

The neighborhood solution is a set of others solutions that can find it from the initial solution, 

through of some movement, generally simple. The cardinality of a neighborhood is the 

number of moves that are neighbours of a generic solution. At each iteration, the best solution 

of the neighborhood that improves the current one is selected as the new current solution and 

the process is iterated until no improving move exists, for example until the current solution is 

a local optimum with respect to the current neighborhood. The time required by iteration each 

of a local search algorithm depends on both the cardinality of the neighborhood and on the 

time needed to generate each solution, check it is feasibility, and evaluate its cost. In most 

cases, the time per iteration is bounded by a polynomial function of the instance size. The 

number of iterations to be performed to reach the local optimum may be large and, in the 

worst case, generally grows exponentially with the instance size (Toth and Vigo, 2003). 

 

Therefore, local search fall into the error of find a local minimum, which can be so far of the 

global minimum. A way to forbidden it is include movements which do not improve and 

change the selection condition of neighbouring solutions, allowing worse solutions. So, the 

next iteration the method will choose the solution with a local minimum in that it will have the 

minimum cost, generating a continuous cycle (Glover,1995). A way to forbidden this 

behaviour is including a memory mechanism to remember the visited solutions and forbidden 

it a definite quantity iterations, by the way the search carry out an exploration by other zones 

of solutions space, such can be execute tabu search (See Figure 2.2). 

  

Figure 2.2 Graphic Representation of Local Search Method 
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2.4 TABU SEARCH 

According to Oklobdzija (2002) TS is a Metaheuristics that can be superimposed on any 

algorithmic method if this method constructs new solutions from already existing solutions by 

applying a sequence of moves. Such moves can be of a different nature: adding or removing a 

vertex from a route, adding or removing an item from a knapsack, etc. What will be 

considered as a move depends on a particular problem instance and on a context in which it is 

used. To avoid cycling TS uses tabu tenure restriction of some moves for a number of 

algorithm iterations. Then one says that these moves are declared tabu. Tabu tenure can be 

either fixed or dynamic. A fixed tabu tenure mean that moves are always penalized for a 

predefined number of iterations and dynamic tabu tenure means that this number of iterations 

changes while algorithm runs. According to Glover and Laguna (1997) dynamic tabu tenure 

can be changed every selected number of iterations during which it remains unchanged. It can 

also be changed each time some attribute becomes tabu. 

 

The method performs an exploration of the solution space by moving from a solution    

identified at iteration i to the best solution      in a subset of the neighborhood N (  ) of iS . 

Since      does not necessarily improve upon iS , a tabu mechanism is put in place to prevent 

the process from cycling over a sequence of solutions. The Figure 2.3 shows the cycle 

originated by allows a not improve move.  

 

 

 

 

 

 

 

 

 

 

 

  

1        nitial   l ti n 

2         

3   While Not Stop Criterion 

4             ̅  Best move of neighborhood (   ) 

5     if (  ̅    
 
 ) 

6                    ̅ 
7         End if 
8  End While 

Algorithm 2.2 Pseudo code of Local Search 

Figure 2.3  Representation of a not-improvement move. 
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2.4.1 Cycle in local Search 

Therefore,      would not the best solution, will be implement a mechanism to prevent cycles 

is forbidden the process from going back to previously encountered solutions, but doing so 

would typically require excessive bookkeeping. 

  

Instead, some attributes of past solutions are registered and any solution possessing these 

attributes may not be considered for   iterations, to that effect tabu search maintains a memory 

structure called tabu list with the solutions historical visited or realised movements in the past. 

Thus, store all historical visited is so expensive, in terms memory and time, to choose just 

store the attributes that identified the movements that originated these solutions(Glover, 1990). 

 

Moreover, the algorithm try to carry out a movement that belongs to tabu list (tabu 

movement), this movement is force to algorithm to exploit other solutions (See Figure 2.4). 

These prohibitions do not be definitive; just stay tuned by a quantity of iterations (tenure). 

 

 

 

 

 

 

 

 

 

 

 

 
. 

 

It is basically a deterministic local search strategy where, at each iteration, the best solution in 

the neighborhood of the current solution is selected as the new current solution, even if it leads 

to an increase in solution cost. To avoid cycling, solutions possessing some attributes of 

recently visited solutions are declared forbidden or tabu for a given number of iterations, 

called the tabu tenure. The algorithm stops whenever a present stop criterion is satisfied. As 

opposed to a pure local descent, the method will thus escape from a local optimum. A short-

term memory, known as the tabu list, stores recently visited solutions (or attributes of recently 

visited solutions) to avoid short term cycling. Typically, the search stops after a fixed number 

of iterations or a maximum number of consecutive iterations without any improvement to the 

incumbent (best known) solution (Glover, 1989). 

  

Figure 2.4 Local Search iterate until finds the best solution 
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2.4.2 Tabu Search Elements 

(i) Search space and neighborhood structure 

 

Tabu Search can be seen as simply the combination local search with short-term memories. It 

follows that two first basic elements of any Tabu Search heuristic are the definition of its 

search space and its neighborhood structure(Glover , 1995). 

 

The search space of Local Search or Tabu Search heuristic is simply the space of all possible 

solutions that can be considered (visited) during the search. At each iteration of Local Search 

or Tabu Search, the local transformations that can be applied to the current solution, denoted 

S, define a set of neighboring solutions in the search space, denoted N (S) (the neighborhood 

of S). Formally, N (S) is a subset of the search space defined by (Glover, 1995): 

 

 ( ) sinN S Solutions obtained by applying a gle local transformation to S          

. 
(ii) Tabu List 

 

Tabu list is one of the distinctive elements of Tabu Search when compared to Local Search. 

As we already mentioned, movements are used to prevent cycling when moving away from 

local optimal through non-improving moves. The key realization here is that when this 

situation occurs, something needs to be done to prevent the search from tracing back its steps 

to where it came from. This is achieved by declaring tabu (disallowing) moves that reverse the 

effect of recent moves. 

 

Tabu List stored in a short-term memory of the search (the tabu list) and usually only a fixed 

and fairly limited quantity of information is recorded. In any given context, there are several 

possibilities regarding the specific information that is recorded. One could record complete 

solutions, but this requires a lot of storage and makes it expensive to check whether a potential 

move is tabu or not; it is therefore seldom used. The most commonly used movements involve 

recording the last few transformations performed on the current solution and prohibiting 

reverse transformations; others are based on key characteristics of the solutions themselves or 

of the moves. 

(iii) Memory 

 

An important distinction in Tabu Search arises by differentiating between short-term memory 

and longer-term memory. Each type of memory is accompanied by its own special strategies. 

The most commonly used short-term memory keeps track of solution attributes that have 

changed during the recent past, and is called regency-based memory.  

(iv) Tabu Tenure 

 

Managing Regency-Based Memory: The process is managed by creating one or several tabu 

lists, which record the tabu attributes and implicitly or explicitly identify their current status. 

The duration that an attribute remains tabu (measured in numbers of iterations) is called its 

tabu tenure. Tabu tenure can vary for different types or combinations of attributes, and can 

also vary over different intervals of time or stages of search.  
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(v) Aspiration Levels and Aspiration Criteria 

 

Expanding the issue of defining tabu conditions at various levels of restrictiveness, an 

important element of flexibility in tabu search is introduced by means of aspiration criteria. 

The tabu status of a solution is not an absolute, but can be overruled if certain conditions are 

met, expressed in the form of aspiration levels. In effect, these aspiration levels provide 

thresholds of attractiveness that govern whether the solutions may be considered admissible in 

spite of being classified tabu. Clearly a solution better than any previously seen deserves to be 

considered admissible.  

 

So, Tabu List is sometimes too powerful: they may prohibit attractive moves, even when there 

is no danger of cycling, or they may lead to an overall stagnation of the searching process. It is 

thus necessary to use algorithmic devices that will allow one to revoke (cancel) tabu. These 

are called aspiration criteria. The simplest and most commonly used aspiration criterion 

(found in almost all TS implementations) consists in allowing a move, even if it is tabu, if it 

results in a solution with an objective value better than that of the current best-known solution 

(since the new solution has obviously not been previously visited). The key rule in this respect 

is that if cycling cannot occur, tabu can be disregarded. Therefore, aspiration criteria can be 

defined over subsets of solutions that belong to common regions or that share specified 

features (such as a particular functional value or level of infeasibility). 

 

(vi) Candidate List Strategies 

 

The aggressive aspect of TS is reinforced by seeking the best available move that can be 

determined with an appropriate amount of effort. It should be kept in mind that the meaning of 

best is not limited to the objective function evaluation. (As already noted, tabu evaluations are 

affected by penalties and inducements determined by the search history. They are also affected 

by considerations of influence as subsequently characterized.) For situations where       is 

large or its elements are expensive to evaluate, candidate list strategies are used to restrict the 

number of solutions examined on a given iteration. 

(vii) Termination Criteria 

 

The following termination criteria can be used with TS. So, TS stops when: 

 the iterations limit is reached 

 the specified objective function value is reached 

 Solution is not improved for a particular number of iterations 

 The algorithm running time limit is reached 

 

TS described above, sometimes can successfully solve difficult problems, but in most cases, 

additional elements have to be included in the search strategy to make it fully effective. The 

most important of these are: 

 

(viii) Intensification  

 

The idea behind the concept of search intensification is that, as an intelligent human being 

would probably do, one should explore more thoroughly the portions of the search space that 
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seem “promising” in order to make sure that the best solutions in these areas are indeed found. 

From time to time, one would thus stop the normal searching process to perform an 

intensification phase. In general, intensification is based on some intermediate-term memory, 

such as a regency memory, in which one records the number of consecutive iterations, that 

various “solution components” have been present in the current solution without interruption. 

Intensification is used in many Tabu Search implementations, but it is not always necessary. 

This is because there are many situations where the search performed by the normal searching 

process is thorough enough. There is thus no need to spend time exploring more carefully the 

portions of the search space that have already been visited, and this time can be used more 

effectively as we shall see right now (Gendreau, 2002). 

 

(ix) Diversification  

 

Diversification technique makes TS extremely powerful. It diversifies the search process and 

helps it to move to the new regions where possibly better solutions can be found. If a solution 

space is highly volatile – has a lot of local optimums, then diversification is especially helpful 

because it helps to overcome peaks and troughs in the solution space. So, this algorithmic 

mechanism that tries to alleviate this problem by forcing the search into previously unexplored 

areas of the search space. It is usually based on some form of long-term memory of the search, 

such as a frequency memory, in which one records the total number of iterations (since the 

beginning of the search) that various “solution components” have been present in the current 

solution or have been involved in the selected moves. 

 

There are several approaches for implementation of the diversification. The first approach is to 

use a restart method. The method consists in applying rarely use attributes to the current or 

best known solution and restarting the search process. The second approach is to use a 

continuous diversification. This method diversifies the search process when the algorithm 

runs. As Klein (2000) states one can use a frequency based memory to continuously diversify 

the search. Using information provided by this frequency based memory one can ban attributes 

that were frequently used during the search process for a number of iterations. This will lead 

to diversification, for rarely used attributes will be used more often, and thus new solutions 

will be explored. 

 

A large part of the recent research in TS deals with various techniques for making the search 

more effective. These include methods for exploiting better the information that becomes 

available during search and creating better starting points. One of them techniques is Granular 

Tabu Search proposed by (Toth and Vigo, 2003). 

2.5 GRANULAR TABU SEARCH  

In the last fifteen years, several Metaheuristics have been put forward for the solution of the 

VRP; many tabu search heuristics have been proposed to the vehicle routing problem and 

theirs variants. Therefore, typically perform a thorough exploration of the solution space is 

necessary carry out thousand iterations to obtain high-quality solutions which demand a large 

computing time (Toth and Vigo, 2003). Each iteration generally consists of the exploration 

neighborhoods and exchange neighboors.  
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Tabu search clearly stands out as the best heuristic for the VRP like above was mentioned. 

Over the last ten years, several implementations have been developed and tested. It is fair to 

say they have been highly successful in tackling this difficult problem. This success is due in 

part to a number of key ideas contained in several implementations: the allowance of 

infeasible solutions during the search, the use of self-adjusting parameters, continuous 

diversification, adaptive memory and granularity.  

 

Toth and Vigo (2003) define an effective implementation, which belongs to candidate-list 

family called Granular Tabu Search (GTS), which is defined like a mechanism, which is able 

to reduce the computational effort, especially for large instances by not considering some of 

the unpromising solution components (in their case, the long edges). It is to select a set of the 

nearest neighboors (plus the depot) for each customer, and at each iteration, only moves 

involving one member of the nearest neighboors set will be considered where the size of the 

set of the nearest neighboors can be selected by considering the instance characteristics and 

the requirements of the solution quality (or the time available for computation).   

 

This method allows drastic reduction in the computational time requested in each iteration of 

Tabu Search since the list of possible moves in the neighborhood is restricted, removing 

elements that have no real chance of belonging to the optimal solution. This can be seen as an 

intensification mechanism, by reason of is because Granular Tabu Search searches a smaller 

neighborhood, which it is faster than the original Tabu Search.  

 

The objective to implement Granular Tabu Search is reached by using neighborhoods that can 

be examined in much less time than the traditional ones but without considerably affecting the 

quality of the solutions found. This method proposes to derive granular neighborhoods as 

restrictions of other known neighborhoods, by discarding a large quantity of unpromising 

moves and actually exploring only a small subset of them, containing the most promising ones 

(Toth and Vigo, 2003). 

 

The advantages of this method in firs to fall, it is found to be one of the least “intrusive” ways 

of modifying a successful solution approach while keeping its main features intact, and 

particularly the basic structure of the neighborhoods used within the search. Moreover, it 

increases applicability of the proposed method and simplifies its extension to other problems 

for which tabu search and other Metaheuristics proved to be effective, but not efficient in 

terms of time requirements. Last but not least, it allows one to evaluate in a direct way the 

benefits of the proposed method with respect to a tabu search algorithm that uses the same 

neighborhoods. 

2.5.1 Granular Tabu Search to Vehicle Routing Problem 

When, as is generally the case, the VRP is defined on a complete graph, it may be observed 

that “long” (in others word high cost) arcs have a small probability of being part of high 

quality solutions. The Shows test problem classical of CVRP (Toth and Vigo, 2003), through 

of this Table 2.1 the authors give the key of implement granular neighborhood. This Table 2.1 

contains the instance name, the number of customers n, the number of available vehicles K, 

and the value of the best know solution *z . In addition, the average cost of arcs in the best 
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Problem n k z* z̅* Min Max Average

E051-05e 50 5 524.61 9.54 2.24 85.63 33.75

E076-10e 75 10 835.26 9.83 2.24 85.28 34.13

E101-08e 100 8 826.14 7.65 1.41 91.83 34.64

E151-12c  150 12 1028.42 6.35 0.00 91.83 33.92

E200-17c 199 17 1291.29 5.98 0.00 91.83 33.24

E101-10c 100 10 819.56 7.45 1.00 96.18 40.27

E121-07c 120 7 1042.11 8.21 0.00 114.98 54.52

Arc Cost

know solution,  ̅      (n  ), is compared with the minimum, maximum, and average arc cost 

in the complete graph. 

 

Table 2.1 Comparison of the Average Arc Cost in the Best-Known Solution with Respect to the                                        

Minimum, Maximum, and Average Arc Cost in the Graph for Some Classic Euclidean 

VRP Instances. 

 

 

 

 

 

 

 

 

 

 

 

The Table 2.1 considers some classic Euclidean VRP test problems. By considering the 

distribution of the arc costs associated with this type of test problem it may be easily seen that 

the majority of the large arcs have cost larger than  ̅   A similar behavior can be observed in 

almost all known test problems for VRP and DCVRP. Therefore, a possible way to speed up 

the search of a neighborhood is to limit as much as possible the evaluation of moves that try to 

insert “long” arcs in the current solution. 

z   
The procedure to generate granular neighborhoods starts from the original complete graph 

   (    ) , later define a new sparse graph, ( , )G V A   with A  ≪ 2n , where  n  is the 

problem algorithm complexity. This sparse graph includes all the arcs that should be 

considered for inclusion in the current solution: for example, all the “short” arcs and relevant 

subset of other important arcs and a set I of other important arcs, such as those incident to the 

depot or belonging to high-quality solutions founded until the moment. This is: 
 

                               ( , ) : ijA i j A c I     …………………………… … (2.6) 

By the way, the search in granular neighborhood considers just the moves can be generated by 

arcs belonging to G , that is the moves that implicate at least some “short” arc. These arcs of 

A  are directly used as move generators to determine the other arcs involved in a particular 

move of the original neighborhood. 

 

An arc is “short”; hence it belongs to the sparse graphic in A  if its cost is not greater than the 

granularity threshold value, defined as: 

 

                                  *
( )

z

n k
 





………………………….…………. (2.7) 
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Where   is a suitable positive sparsification parameter, and z  is the value of a heuristic 

solution, for example, determined by the heuristic Clarke and Wright (1964).  

 

The computational experience carry out by Toth and Vigo (2003) confirmed a basic tabu 

search algorithm that uses the granular version of basic neighborhoods was able to determine 

high quality solutions within running times comparable to those of constructive heuristics.  

In terms of quality of the solution obtained based on basic Tabu Search algorithm using 

granular neighborhoods defined by different values of the sparsification parameter   ranging 

from 0.5 to 5.0. Perhaps surprisingly, the solution quality is not a monotone increasing 

function of the sparsification parameter, in other words, of the overall computational effort.  

2.5.2 Efficient Search and Diversification 

The key factor in the granular paradigm is that the search of granular neighborhoods may be 

efficiently implemented, in quite a natural way, by explicitly taking into account the sparse 

graph G  associated with the neighborhood.  

 

Another crucial issue connected with the granular paradigm is that a dynamic modification of 

the structure of the sparse graph associated with the granular neighborhood provides a easy 

way of including intensification and diversification during the search. For example, by 

modifying the sparsification parameter “ ”, the number of arcs currently included in the 

sparse graph is altered; hence a possibly different new solution is obtained at the end of the 

search. To this end, the Tabu search algorithm may alternate between long intensification 

steps, associated with a small " " value, and short diversification steps in which “  ” is 

considerably increased, and evaluation of the moves is possibly modified to favor the possible 

inclusion of new (longer) arcs in the solution evaluated. 

 

The next chapter describes the implementation of the metaheuristic development in this thesis 

project.  
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CHAPTER 3  IMPLEMENTATION 

This chapter describes in detail the design and execution of the proposed algorithm in this 

thesis project, which includes solution initial, where employment Parameterized Saving 

Algorithm and improvement phase was as well the routes building. The second phase or 

improvement carried out the implementation of GTS and neighboors buildings defined by 

moves 2-optimal and relocate procedures. The platform and tools used for development of the 

code C++ and the test instances evaluated on 34 instances with 51 to 484 customers. 

3.1 GENERAL FRAMEWORK 

Toth and Vigo (2003) introduced GTS, which thesis project was based on. The general 

framework describes all procedure carried out for the construction of algorithm Metaheuristic 

proposed. It is composed of two phases, the first one initial solution and second one improve 

phase; chapter 4 describes the theoretical foundations, which provide an easy to understand its 

description. The algorithm 5.1 shows the pseudo code used to solve the proposed problem 

DCRVP; it be tested in 34 benchmark instances.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Algorithm 3.1 starts reading instances to Capacitated Vehicle Routing Problem and 

Distance Constrains Vehicle Routing Problem, in the code implementation detect the problem 

type through of one instruction; by the way start to read the parameters. In the case of CVRP, 

the service time was equal to zero and length route equal to a big number (infinity). 

  

1 Read instance  

2 Read specific parameters  

3 Generate initial solution    by ECW 

4           
5 Initialization of tabu list  

6 Initialization Candidate List 

7    i = 0 
8   While non-accur criteria do 

9    Generate neighborhood of    based on Candidate List 

10   Choose best move no Tabu      
11   Apply best move generate  

12   Update Candidate List  

13   Update penalization 

14   Update Tabu List 

15    If z (  +1) < z (     ) then  

16                       +1 
17          End If 

18    i= i+1 
19   End While  

20 return     

Algorithm 3.1 Pseudo code of proposed algorithm for the DCVRP 
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This Algorithm 3.1 can be implemented a particular instance, or  instances set, which reads the 

necessaries parameter to execute the code; this is instance name, type (DCVRP or CVRP), 

capacity, maximum length, service time, vehicles and nodes. The initial solution will be 

explained in the section 3.2. 

 

The next step is the implementation of tabu search, which explore the solution space 

attempting in each step improve the current solution through of the move generation 

mechanism creates the neighboring solutions by changing one attribute or a combination of 

attributes of the initial solution. 

 

The Tabu List attribute could refer, for example, to arcs connecting a pair of customers. Once 

a neighboring solution is identified, it is compared against the current solution. If the 

neighboring solution is better, it replaces the current solution, and the search continues. 

 

The Algorithm 3.1 generates a neighborhood of the current solution    through generation and 

evaluation of neighborhoods obtained to implement Two-opt and relocate. In this thesis 

project, just the local search was carried out in the neighborhood composed by 2-optimal and 

Relocate procedure, which will be explained in the next section. The neighborhood obtained 

will contain valid solution of     with the objective of found a new solution     1 that replace 

to    . The solution     1 may be lower cost and it not is tabu. The current solution     1 will be 

marked like tabu by tenure iterations to forbidden that came back in the last solution     by 

tenure iterations. Finally, decrease the value of tenure in the tabu list and if the current solution 

is the better found it up to the present time; it will be update of     by     1. This iterative 

procedure carries out until found a stop criterion, which can be a maximum number of 

iterations without obtained improvement solution.  

 

More detailed, the next sections explain the above. So, is included the implemented code in 

C++, to explain overall design and implementation of this Metaheuristics proposed like thesis 

project. 

3.1.1.1 Execute mode 

In this thesis project, the proposed algorithm starts with execution of instances set downloaded 

from: http://www.or.deis.unibo.it/research_pages/ORinstances/VRPLIB/VRPLIB.html web 

site, which belongs, DEIS (Dipartimento di Elettronica, Informatica e Sistemistica, Bologna 

Italy) - Operations Research Group, which 14 classical instances were proposed by 

Christofides, Mingozzi and Toth (1979) and 20 large-scale instances (with |V| varying from 

201 to 484) proposed by Golden, Wasil, Kelly and Chao (GWKC instances) (Bruce, Edward, 

James, and Ming 1998). 

 

For execute mode, the program reads by one-instruction the file with txt extension. The first 

line reads instance name the next instruction decides if it is CVRP or DCVRP type, if it is 

DCVRP the parameters to execute are:  

 

• NAME: D051-06c (instance name) 

• COMMENT: Christofides, Mingozzi and Toth, 1979 (Who proposed the    instance) 

• TYPE: DCVRP (vehicle routing problem variant) 
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• DIMENSION: 51 (number of customers plus one depot) 

• EDGE_WEIGHT_TYPE: EUC_2D (Euclidean Distances) 

• CAPACITY: 160 (vehicle capacity) 

• MAX. LENGTH: 200 (maximum length route) 

• SERV. TIME: 10 (service time of each customer) 

• VEHICLES: 6 (numbers of vehicles available) 

• NODE_COORD_SECTION (for each node there are id, x, y) 

• DEMAND (for each node are id, demand) 

 

Parameters to CVRP are: 

 

• NAME: D051-05e (instance name) 

• COMMENT: Christofides, Mingozzi and Toth, 1979 (Who proposed the    instance) 

• TYPE: CVRP (vehicle routing problem variant) 

• DIMENSION: 51 (customers quantity) 

• EDGE_WEIGHT_TYPE: EUC_2D (Euclidean Distances) 

• CAPACITY: 160 (vehicle capacity) 

• VEHICLES: 5 (numbers of vehicles available) 

• NODE_COORD_SECTION (for each node there are id, x, y) 

• DEMAND (for each node are id, demand) 

3.2 CONSTRUCTION OF INITIAL SOLUTION 

Initial solution development in this thesis project was obtained implementing Enhancement of 

Parallel Clarke and Wright Algorithm proposed by Passens (1988), who adding two 

parameters to classical saving formula λ and  . In this thesis project was used it, λ like route 

shape parameter, which avoid circumference formation of routes that are usually produced by 

the original saving algorithm parallel. So, their motivation in using the positive parameter λ is 

to avoid circumference formation of routes that are usually produced by the original CW 

algorithm. In other words, this parameter helps to reshape the routes by taking only non-

negative values in order to find better quality solutions (Doyuran and Catay, 2010).   

Consequently, with the aim of expanding the exploration ability of the algorithm is added a 

second parameter,  , to Gaskell and Yellow formula in an attempt to collect more information 

about the distribution of the customers.  

 

 McDonald (1972) shown that with any fixed λ, results, which are far from optimum, may be 

obtained and that there was no value of λ, which was significantly, better than any other value. 

Paessens (1988) proposed ranges 0 < λ ≤ 3 and 0 ≤ μ ≤ 1, respectively.  

 

First, was used Euclidean Distance to calculate the distance matrix base on coordinates (      ) 

belong to n customers and the depot  0 0,x y , which is a square matrix order n+1, with distance 

d (i, j) between two points  ,i ix y and  ,j jx y , the Euclidean Distance formula is: 

                                                                    √(  -   )
2
 ( 

 
-  

 
)
2
………     …  ………….          (3.1) 
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McDonald (1972) shown that with any fixed λ, results, which are far from optimum, may be 

obtained and that there was no value of λ, which was significantly, better than any other value, 

therefore by using factorial analysis was found the parameters values λ and    which is base on 

ranges 0 <   ≤ 3 and 0 ≤   ≤ 1, respectively proposed by Paessens (1988).  

 

The values parameters were found it with base on values proposed by Passens (1988), and 

increasing his interval. For this reason was used a factorial analysis above mentioned with the 

[0.0, 2.0] interval.  

3.2.1 ROUTE CONSTRUCTION APPROACHES 

In the first step of the savings algorithm the savings for all pairs of customers are calculated, 

and all pairs of customer points are sorted in descending order of the savings. Subsequently, 

from the top of the sorted list of point pairs one pair of points is considered at a time. The 

route construction select arcs simultaneously until solution have been created if these can be 

done without deleting a previously established direct connection between two customer points, 

and if the total demand on the resulting route does not exceed the vehicle capacity. 

1 Build  N     s   

2       (       ) 
3 For i     (    ) ← (        2) to (   n−      n) 

4   do        ←           - λ      μ|        |  !Fill Matrix M 

5          Sort Matrix M descendent order, filling list    L 

6                   h    ← First saving in L 

7   N     s ← n 

8 while ((List L not void) && ( h    > 0)) && ((         ≤   )&&(         ≤ TimeService)                          

9              &&(𝑟𝑖∗  𝑟𝑗∗ ≤ RouteLarge)) 

10     do  

11      if ( (    ...  ) && (    ...   ) || (    ...  ) && (  ...    ) || (  ...    )&&(    ...  ) || 

12                                     (  ...      ) && (  ...    )) 
11              max          

12   Let 𝑟𝑖∗ be the route containing h  

13   Let 𝑟𝑗∗ be the route containing   

14    If ((i* is the last in     and j* is the first shop in 𝑟𝑗∗) &&  

15         (the   combination is feasible)) 

16      then combine     and     

17               ← First          ∈  L not yet considered 

18            do 

19              Merge(R       R      ) 

20        if (Merge Feasibility (i*, j*) == YES)  

21                                      Merge Feasibility   N
     s 

  

22         End While 

23 End For 

 

Algorithm 3.2 Pseudocode Saving Algorithm Parallel with λ and µ parameters 
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In this, thesis project was found the values parameter established by Passens (1988), 

Enhancement of Parallel Clarke and Wright Algorithm, for almost all instances. So, do not 

create a violation of vehicle capacity, maximum length, and vehicles number. The vehicles 

number restriction was established by instances set proposed by Toth and Vigo (2003), which 

was used like benchmark in this thesis project. Others requirements constraints are: 

 

One route is valid if start and finish in the same depot and satisfy the conditions before 

mentioned and considering the follow: 

 

a) Each customer has a service time, and it is considering on maximum route length. 

b) At each iteration, the “best feasible route merge” is chosen, and the route is joined. 

c) The current route is ended when no more customers can be inserted. 

d) The approach does not consider if it is better to insert a customer in the current route or 

to wait, and to insert the customer in one of the following routes. 

 

Cases considered were:  

 
Case 1. When two routes (    ...  ) and (    ...   ) can feasibly be merged in to a single 

route (  ...     ...  ) , a distance savings is generated. 

 

Case 2. When two routes (    ...  ) and (  ...    ) can feasibly be merged in to a single 

route (  ...     ...  ) , a distance savings is generated. 

 

 

Case 3. When two routes (  ...    ) and (    ...  ) can feasibly be merged in to a single 

route (  ...     ...  ) , a distance savings is generated. 

 

Case 4. When two routes (  ...    ) and (  ...    ) can feasibly be merged in to a single 

route (  ...     ...  ) , a distance savings is generated. 

 

Considering the previous analysis, the obtained results in the initial solution are presented in 

the Table 3.1. It table contains in the column one instances set, which was used in this thesis 

project, column 2 shows the best solution based on review literature, 3 and 4 columns has the 

fixed parameters values found so factorial analysis (λ,  ), respectively. The constrain routes 

number is in the column 4, column 5 contains the objective function values in this first phase; 

the difference in percentage respect to best known solution is in the column 6.  

  



37 

 

Table 3.1 Results obtained in Initial Solution to the Distance Constrained Vehicle Routing   ,,,,           

Problem. 

  
Initial Solution obtained by Clark & Wright Algorithm 

Instance 
Best Know 

Solution 
     

Routes       

C&W 

Distance  

C&W 

%GAP              

C&W 

D051-06c 553.43 1.3 0.3 6 595.31 7.57% 

D076-11c 909.68 0.9 0.4 Infeasible 

D101-09c 865.94 1.7 0.3 9 942.70 8.86% 

D101-11c 866.37 1.2 0.2 11 869.62 0.37% 

D121-11c 1541.14 0.7 0.1 11 1,583.25 2.73% 

D151-14c 1162.55 1.3 0.0 14 1,222.06 5.12% 

D200-18c 1395.85 1.0 0.0 Infeasible 

D201-05k 6460.98 1.7 0.5 5 6,691.04 3.56% 

D241-10k 5627.54 0.2 0.6 10 5,807.07 3.19% 

D281-08k 8412.8 1.2 0.4 7 8,665.56 3.00% 

D321-10k 8447.92 0.8 0.1 Infeasible 

D361-09k 10181.75 1.8 0.9 9 10,614.61 4.25% 

D401-10k 11036.22 0.7 0.9 10 11,414.50 3.43% 

D441-11K 11663.55 1.3 0.8 11 12,409.47 6.40% 

D481-12k 13624.52 1.9 1.1 11 14,109.85 3.56% 

       E051-05e 524.61 0.8 0.9 5 563.90 7.49% 

E076-10e 835.26 1.0 0.1 10 866.30 3.72% 

E101-08e 826.14 1.6 0.3 8 865.60 4.78% 

E101-10c 819.56 1.2 0.4 10 826.00 0.79% 

E121-07c 1042.11 1.6 0.6 7 1,065.08 2.20% 

E151-12c 1028.42 2.0 0.7 12 1,101.82 7.14% 

E200-17c 1291.29 1.4 0.2 17 1,370.05 6.10% 

E241-22k 707.79 1.8 0.9 22 746.22 5.43% 

E253-27k 859.11 1.3 0.9 26 896.56 4.36% 

E256-14k 583.39 0.8 1.3 14 610.39 4.63% 

E301-28k 997.52 1.5 1.2 28 1,051.51 5.41% 

E321-30k 1081.31 1.2 0.4 30 1,144.23 5.82% 

E324-16k 741.56 0.6 1.2 16 763.31 2.93% 

E361-33k 1366.86 1.4 0.3 33 1,441.40 5.45% 

E397-34k 1345.23 1.8 1.1 34 1,411.05 4.89% 

E400-18k 918.42 1.0 1.1 18 966.93 5.28% 

E421-41k 1820.09 1.4 1.0 38 1,917.83 5.37% 

E481-38k 1622.69 1.2 1.2 38 1,709.72 5.36% 

E484-19k 1107.19 0.4 1.5 19 7,599.06 586.34% 

 

However, the results found it on the first phase were not able feasible for all the instances. 

Since, D076-11c, D200-18c, and D321-10k (indicated in grey colour in the Table 3.1) these 

instances were by vehicles number, vehicle capacity and maximum length. For this reason in 

the second phase are applied, section 3.3, capacity and maximum length penalties proposed by 

Gendreau, Hertz and Laporte (1994) and relocate procedure to vehicle number constraint.  
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The next chapter describes the improvement phase, it was introduced GTS, building 

neighbourhoods and implementation of as soon a constraint to eliminate excess routes as well 

the implementation of capacity and maximum length penalties.  

3.3 IMPROVEMENT PHASE  

In the improvement phase of the developed Metaheuristic proposed in this thesis project, the 

TS was applied for enhancement the initial solution and to find a feasible solution for all 

instances set. The base of this TS solution was the granularity proposed by Toth and Vigo 

(2003). So, in this phase, was implemented 2-Optimal and Relocate as neighbourhoods to 

local search. 2-Optimal is a procedure carries out exchanges between arcs and Relocate like 

procedure to transfers a customer from one route to another route. Iteratively the customers are 

removed from infeasible circuits and connected with the best in the best position of a feasible 

circuit (route) considering they do not overload the target route. 

 

The neighborhood that results consists only of all the solutions that can be obtained by 

transferring one node from its current position to another one and in routes different. 

 

From the initial solution    the next step is to execute the implementation algorithm based on 

Tabu Search and implementing granularity. Each step of this general procedure attempts 

improving the current solution according to cost visiting neighbors solution defined by the 

operations set mentioned in the section 4.2. 

 

The neighborhoods structures η are used within the proposed implementation are based on 

traditional arc-exchange local moves, namely inter and intra route 2-Optimal and Relocate. 

The selection of neighborhood structures is dynamic. At each iteration, given the allowed set 

of neighbors  
η  0S , the best admissible neighbor s´ replaces the current solution  0s , while 

the forward and reversal attributes of the corresponding local move are stored within the tabu 

list. During the exploration of the neighboring space, the typical aspiration criterion is 

followed, that is, higher evaluation of the neighbour compared to the current solution found 

during the exploration of the solution space. Finally, the termination condition maxiter bounds 

the maximum number of TS iterations without observing any further improvement. 

3.3.1 2-Optimal procedure  

The 2-Optimal neighborhood consists of all feasible solutions that can be obtained by 

removing two connections between customers, and connecting them in another way. These 

customers can be in two different routes or within the same route (Helsgaun 2000). It is 

considered like an edge exchange heuristics and is widely used to improve vehicle routing 

solutions.  

The 2-Optimal eliminates two edges and reconnected the paths to obtain a new cycle. This 

procedure tries to improve the tour replacing two of it is edges by other two edges, finally 

iterates until do not find a possible improvement. Basically, it works as follow: 

 

1. Start with an initial solution and define this solution to be the current solution. 
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2. Generate all solutions in the neighborhood of the current solution by applying all 

modifications associated with the method under consideration. 

3. Select the best solution in this neighborhood and define this solution to be the new 

current solution. 

4. Go back to step 2. 

 

The time required to solve the problem using this procedure can be increased faster as the size 

of the problem grows; the neighborhood generated in the step 2 is typically polynomial. 

Dramatically to implement Granular Tabu Search and diversification and intensification 

strategies reduce the computational time. 

 

In this thesis project was considerate moves in the same tour, called intra- route and inter-

routes in two different tours. 

 

The intra –route exchanges arcs in the same route that is to say if a route k has the costumers i- 

i+1 and j - j+1, the arc that marge to i with j+1 is replacing by the arc that merge to i and i+1. 

So, the arc that merges j and i+1 is exchanged by the arc j and j+1 (See Figure 3.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The inter-route was applied in two different routes, which the arcs from one route to another. 

It can be implemented if exist a route k with i-i+1 arcs and another route m, which has j-j+1 

arcs (See Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.1 A 2-Optimal move intra-route. 

Figure 3.2 Two routes k, m with i-i+1 and j-j+1, respectively. 
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In the route k the arc i+1 is merged with j (i+1-j) and route m the arc j+1 is merged with i (j+1-

i). See Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

The pseudo code shows in the Algorithm 3.3 the general heuristic algorithm 2-Optimal. It 

consists in analyze all the vertices; in each step choose the best move 2-Optimal associate each 

arc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the next section is implemented Relocate like to place customers in a strategic position 

with the aim of decrease the vehicle number. 

3.3.2 Relocate 

Relocate is a procedure used commonly, to minimizing the number of routes or, equivalently, 

the number of vehicles used. It insertion procedure was executed to constraint vehicles 

number, Relocate, because in the initial solution tree instances were infeasible. It tries to build 

a feasible one. 

 

Figure 3.3  2-Optimal moves inter route. 

1 Initialization 

2 Consider a Hamiltonian initial cycle  

3 move =1 

4  While (move=1) 

5    move = 0. Labeled all vertex as non-explored 

6      While (exist vertex non explored) 

7        Select the vertex i non-explored 
8      Explore all movements 2-opt that included the arc 

9      from the node i to the next node        
10      If some movement explored reduce the length of cycle 

11         execute the best move  

12          move = 1 

13         Else labeled i like explored 
14       End If 

15      End While 

16    End While 

 

Algorithm 3.3 Pseudo code of general procedure 2-Optimal 
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In this phase customers are iteratively removed from infeasible circuits and inserted in the best 

position of a feasible route. Possible insertions are considered only if they do not overload the 

target route. 

 

In this, thesis project considerate a solution as a set S of v routes s a set like a solution 

1,..., vR R  where v [1, ̅] , vR = 
1 20 0( , , ,..., )r rv v v v  , and each vertex    (i ≥1 ) belongs to exactly 

one route. These routes may be feasible or infeasible with respect to the capacity and length 

constraints. For convenience, is write     rR  if    is a component of rR , and (     )  rR  if 

   and    are two consecutive vertices of rR . With any feasible solution S, is associated the 

objective function (Gendreau, Hertz, and Gilbert Laporte 1994a): 

 

 1

  ( , )   

 
i j r

ij

r v v R

F S c


                                                       (3.2) 

 

Also, with any solution S (feasible or not), is associated the objective: 

 

   2 1

   ( , )     

      ,
i r i j r i r

i ij i

r v R r v v R v R

F S F S q Q c L  


    

                   
        (3.3) 

 

Where [ ]  = max (0, x) and α and   are two positive parameters. In the solution is feasible 

  2( ) and   ( ) coincides; otherwise,   2( ) incorporates two penalties terms for the excess 

vehicle capacity and excess route duration. At any step of the algorithm,   
  and  2

  denote 

respectively the lowest value of    ( ) and   2( ) so far encountered. Also,   ∗  is the best 

know feasible solution and *S , the best know solution (feasible or not). 

 

Where  1,..., vr R R  are the set of routes. Let S be the set of routes for which exist an 

optimal solution. Each solution   ∈   has an associated set of neighbors,  N( ) ∈  , called the 

neighborhood de  . Each solution  ´ ∈ N( ) can be reached directly from   by a move. A 

move is a transition from   to    by means of a move operator. 

 

In this algorithm proposed was considerate the mentioned before as soon the rule based on 

smallest cardinality route, which force to eliminate customers smallest cardinality route to be 

inserted another route, of this way eliminate routes to converge to a feasible solution by the 

number of routes. 

 

The penalty used was: 

 

                                                  ( )  {
                          r ≤  
 i   ∈      |   |    r    

                                               (3.4) 
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Where r = number of routes, v = number of vehicle,   n  ∈   is the smallest cardinality route k 

and  ( ) route number feasible.  

 

The penalty used  ( ) was planted as follow: 

 

If a route k, exists, it moves a customer or customer another routes. More specifically, the 

vehicle routes with the smallest cardinality are removed iteratively fro the routing plans and all 

corresponding customers are placed into a waiting list. At iteration of TS, the possibility of the 

feasible relocation of the waiting listed customer is examined to the vehicle routes modified by 

the local search. If one or more feasible relocation moves (insertion positions) are found, these 

are immediately executed, and corresponding solution is denoted as new TS local optimum 

solution. The above procedure is repeated until all waiting listed customers are served. The 

major advantage of this classic route elimination procedure is that TS deal only with feasible 

solutions whether the best solution found upon termination is sub-optimal or optimal in terms 

of fleet size. 

3.4 IMPLEMENTATION OF GRANULAR TABU SEARCH 

Actually is one of the principal ideas in Metaheuristics, Tabu Search specifically, because of 

the simplicity of its structure.  

 

In this section is explained of Granular Tabu Search (GTS) applied to CVRP and the DCVRP. 

The algorithm Granular Tabu Search was initialized with the heuristic solution obtained to use 

Clarke and Wright (1964) with enhancement, above mentioned in the section 3.2.  

 

In the initial solution was infeasible to tree instances by vehicle constraint, for this reason in 

the improvement phase was applied Relocate to less route, which was executed violating the 

vehicle capacity or the maximum route length constraints, for this reason was implemented the 

penalties proposed by Gendreau, Hertz and Laporte (1994). So, 2-optimal like neighborhood 

of GTS, which contains all arcs exchanges selecting the best according to this heuristic.    

 

By visiting of infeasible solutions is allowed during the search and, as usual, their costs are 

modified by adding to the routing cost a penalty C multiplied by the sum of the excess loads 

of the overloaded routes, plus a penalty D  multiplied by the sum of the excess lengths of 

infeasible routes with respect to the maximum length constraint (Gendreau, Hertz, & Laporte, 

1994) and a new penalty for excess routes R . 

 

The values of the penalties dynamically, C , D  and αR were updated during the search in the 

range  min max,  . In particular, every iterations, if the previous visited solution was feasible 

with respect to the capacity constraints, then    is set to max min , /1.1C  , whereas if all 

were infeasible it is set to         1 1    . The updating rules for    is analogous. In our 

computational testing,    n= 1 and       10 * value of the solution Clarke & Wright;  R is set to 

 R   100 * value of the solution Clarke & Wright  
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The excess of capacity is calculated like as: 

 

∑     (                            -              )  ∈                                            (3.5) 

 

 

The excess of length of route is calculated like as: 

 

∑     (                    -                                 
 
)  ∈                        (3.6) 

 

The excess of the number of routes is calculated like: 

 

0,
 

,r Routes r

RoutesNumber Vehicles Number

Min Customers RoutesNumber Vehicles Number

  


 


 


                              (3.7) 

3.4.1.1 Other strategies of diversification 

A strategy implement proposed algorithm was: starting of the current solution, if many 

iterations with granular tabu search were carried out, the algorithm is not able to come back to 

be feasible found or it is infeasible yet, the current solution is update to the best feasible 

solution found it in all iterations and the list tabu come back real size, magic number 7, by 

default. 

 

This algorithm proposed uses a multiple granular neighborhood based on neighborhoods 2-

Optimal and Relocate. The granular neighborhood is obtained by considering the arcs in the 

sparse graph defined by all the arcs below the current granularity threshold, plus all arcs 

incident to the depot, and those belonging to the best solution found and to the current 

one. 

 

After each iteration, the arcs inserted by the performed move are added to the sparse graph. 

The sparse graph is rebuilt from scratch every time the current solutions change between 

feasible to infeasible solutions. I used a sparsification factor    1   , which computationally 

gave the best performance. However, for Euclidean VRP and DVRP instances,   values 

between 1.25 and 2.50 are generally appropriate. 

 

A move is considered Tabu if it tries to reinsert an arc removed in one of the previous moves. 

The Tabu tenure t for each move performed is an integer uniformly distributed random 

variable in the interval min max,t t . I used     = 7 when the solution is feasible or infeasible; 

but     = 7 for the feasible solution and     = 50 for infeasible solution. 

 

Finally, I used the granularity-based diversification described in the previous section. 

Whenever the current best solution is not improved after n  iterations, the sparsification factor 

is increased to  
 
, a new sparse graph is determined and nh iterations are performed starting 

from the best solution found. Then, the sparsification factor is resetting to the original value 
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and the search continues. We used n  = 15 * number of customers,  
 
= 1.75, and nh = number 

of customers. 

 

This algorithm is a dynamically updated, so infeasibility penalties and the tabu tenure 

definition. The values of the remaining parameters were experimentally determined as those 

allowing for the best compromise between solution quality and computational effort. Clearly, 

the Figure 3.4 and Figure 3.5 show efficient algorithm design, so time computational less 

used. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.4 Optimal solution obtained by to 

implement granular tabu search in 

instance D051-06c with Z* = 560.24, 

0.01 seconds. 

 

Figure 3.5 Initial solution to implement 

saving algorithm enhancement 

(λ = 1.3, μ = 0.3) to instance 

D051-06c with Z*=593.31, 0.001 

seconds. 
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CHAPTER 4  ANALYSIS OF THE RESULTS 

The initial solution was used values lambda ( ) and mu ( ), both were evaluated in the 

interval [0.0, 2.0]. Beta ( ) is the parameter of granularity and maxiter * number of customers 

is the number of iterations that execute Tabu Search. 

 

In this thesis project, the Tabu Search Elements applied were: 

 

Tenure: contains Tabu search tenure, iterations quantity, which a movement is considered 

Tabu, in my case was called magic, this implementation iteration quantity was used the magic 

number seven, which can grow slowly when explore infeasible regions to maximum size of 

50. As a general principle, Tabu restrictions that are more stringent, as measured by the degree 

to which they limit the range of admissible moves, lead to somewhat smaller values for best 

Tabu list sizes than restrictions that are less stringent (Glover, 1990).  

 

Quantity iterations: denote the maximum operations quantity of principal cycle of Tabu 

Search. This algorithm considered maxiter * number of clients, maxiter is configured with 10 

value.  

  

Value ( )  

 

My parameter called beta, is used to calculate the maximum value of the distances between 

customers that will belong in neighborhood granular. 

 

This value includes all the “short” arcs and a relevant subset of other important arcs, such as 

those incidents to the depot and those belonging to the best solutions encountered so far. 

Therefore, this does not mean “long” arcs are never inserted in the current solution, but that 

moves involving only “long” arcs are not considered. 

 
Increasing factor    

 

The maximum distance was calculated with the factor  , which increases continuously. It 

factor   is actualized dynamically, this way modify the structure of the sparse graph 

associated with the granular neighborhood provides a simple way of including intensification 

and diversification during the search. For example, by modifying the sparsification 

parameter  , the number of arcs currently included in the sparse graph is altered; hence a 

possibly different new solution is obtained at the end of the search. To this end, the tabu-

search algorithm may alternate between long intensification steps, associated with a small 

value  , and short diversification steps in which   is considerably increased and the evaluation 

of the moves is possibly modified to favour the possible inclusion of new (longer) arcs in the 

solution. 
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The results show a typical behaviour, in terms of quality of the solution obtained within 

maxiter*number of clients, mentioned before, of the basic tabu search algorithm using granular 

neighborhoods defined by different values of the sparsification parameter   ranging from 0.5 

to 5.0. Perhaps surprisingly, the solution quality is not a monotone increasing function of the 

sparsification parameter. In fact, with the benchmark problems in the literature considered in, 

the best results are typically obtained with   values between 1.0 and 3.5, which select about 

10– 20% of the arcs of the complete graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Performance of Tabu-Search applied Granular Neighborhoods and different values of 

the sparsification parameter , to Capacitated Vehicle Routing Problem (CVRP). 

4.1 PROCEDURES  

The Granular Tabu Search algorithm proposed by Toth and Vigo (2003) uses a multiple 

granular neighborhood based on four basic neighbourhoods. In this project was implemented a 
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Figure 4.1 Performance of Tabu-Search applied Granular Neighborhoods and 

different values of the sparsification parameter    to Distance 

Constraints Vehicle Routing Problem (DCVRP). 
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multiple granular neighborhood based in two operations 2–opt in inter routes (between 2 

routes) and intra route (TSP). Relocate as inter route considering penalty proposed and 

mentioned before. 

 

So, the granular neighborhood is obtained by considering the arcs in the sparse graph defined 

by all the arcs below the current granularity threshold, plus all arcs incident to the depot, and 

those belonging to the best solution found and to the current one. After each iteration, the arcs 

inserted by the performed move are added to the sparse graph. The sparse graph is rebuilt from 

scratch every maxiter, defined before. I used a sparsification proposed by Toth and Vigo factor 

  =1.25, which computationally gave the best performance. To my case DCVRP instances,   

values used values of 1.25 and 2.50, arcs “short” 1.25 and arcs “long” 2.50. 

4.2 COMPUTATIONAL EXPERIMENTS 

Algorithm development described in the previous sections, based on Metaheuristic proposed 

by (Toth & Vigo, 2003), was implemented in C++ and compiled in the IDE Qt creator 2.4.1 

and the GNU GCC compiler of Xcode 4.3 on Mac OS X Lion 10.7.4 compiler. All 

experiments were performed on MacBook Pro 8.1 with name machine Intel Core i5 2.4 GHz 

clock and 4 MB RAM memory.  

 

The graphic representation of results was generated so instructions in general code and making 

a link with Graph editor yEd version 3.9.1, which generate a file (.gml), that contains 

corresponding graphs each instance proposed. 

 

The computational testing considered several Euclidean CVRP and DCVRP instances from 

the literature with up to about 484 customers, which are generally used as a standard 

benchmark for VRP algorithms. The first set consists of the 14 instances (with |V| varying 

from 51 to 200) proposed by Christofides, Mingozzi and Toth (CMT instances) (Christofides, 

1979). The second set consists of the 20 large-scale instances (with |V| varying from 201 to 

484) proposed by Golden, Wasil, Kelly and Chao (GWKC instances) (Bruce et al., 1998) 

 

Toth and Vigo (2003) show the test instances are denoted by a name that allows one to 

determine their characteristics quickly. The instances are divided in two groups the first one is 

the group ‘E’ for Euclidean, which corresponding to VRP, without constraints length distance, 

and time service; in this case when the code is executed the length service is equal to biggest 

value and the service time is equal to zero. The second one group ‘D’ for Euclidean DCVRP 

with constraints of length distance and service time your values are reading from 

corresponding instance. The set of instances ‘E’ belongs to CVRP and ‘D’ belongs to 

DCVRP; n is the number of vertices of the corresponding graph (including the depot vertex); k 

is the number of available vehicles, the vehicle capacity (C) and, for DVRP instances, the 

route maximum length (L), the service time ( ̅) for each customer; data source identifies the 

paper where the instance data were first described. For example, E051-05e denotes the classic 

50-customer instance proposed by Christofides and Eilon (1969). 
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Table 4.1 Summary of the data to VRP and DVRP instances used for computational testing 

 

The best value solution known found reported in the literature, actually. The last column of the 

table contains the values of the new best solution found during our overall testing activity. All 

test instance data, as well the most of the best known solution data, had been attained from the 

authors.  

  

Name 
Instance 

 

n k C L  ̅ 
Data 

Source 

Prev. 
Best 

Solution 
Solution 

D051-06c 50 6 160 200 10 Christofides et al. (1979) 553.43 Taillard (1993), Gendrau et al. (1994) 
  

D076-11c 75 11 140 160 10 Christofides et al. (1979) 909.68 Taillard (1993) 
 

D101-09c 100 9 200 230 10 Christofides et al. (1979) 865.94 Taillard (1993), Gendrau et al. (1994) 
 

D101-11c 100 11 200 1040 90 Christofides et al. (1979) 866.37 Osman (1993) 
 

D121-11c 120 11 200 720 50 Christofides et al. (1979) 1541.14 Taillard (1993) 
 

D151-14c 150 14 200 200 10 Christofides et al. (1979) 1162.55 Taillard (1993) 
 

D200-18c 199 18 200 200 10 Christofides et al. (1979) 1395.85 Rochat and Taillard (1995) 
 

D201-05k 200 5 900 1800 0 Golden et al. (1998) 6460.98 Golden, Wasil Kelly and Chao (1998) 
 

D241-10k 240 10 550 650 0 Golden et al. (1998) 5627.54 Golden, Wasil Kelly and Chao (1998) 
 

D281-08k 280 8 900 1500 0 Golden et al. (1998) 8412.8 Golden, Wasil Kelly and Chao (1998) 
 

D321-10k 320 10 700 900 0 Golden et al. (1998) 8447.92 Golden, Wasil Kelly and Chao (1998) 
 

D361-09k 360 9 900 1300 0 Golden et al. (1998) 10181.75 Golden, Wasil Kelly and Chao (1998) 
 

D401-10k 400 10 900 1200 0 Golden et al. (1998) 11036.22 
Golden, Wasil Kelly 

and Chao (1998) 

 

D441-11K 440 11 900 1200 0 Golden et al. (1998) 11663.55 Golden, Wasil Kelly and Chao (1998) 
 

D481-12k 480 12 1000 1600 0 Golden et al. (1998) 13624.52 Golden, Wasil Kelly and Chao (1998) 
 

E051-05e 50 5 160 - 
 

Christofides and Eilon (1969) 524.61 Gendreau et al. (1994) 
 

E076-10e 75 10 140 - 
 

Christofides and Eilon (1969) 835.26 Taillard (1993) 
 

E101-08e 100 8 200 - 
 

Christofides and Eilon (1969) 826.14 
Taillard (1993), Gendreau et al. 

(1994) 

 

E101-10c 100 10 200 - 
 

Christofides et al. (1979) 819.56 Taillard (1993) 
 

E121-07c 120 7 200 - 
 

Christofides et al. (1979) 1042.11 Taillard (1993) 
 

E151-12c 150 12 200 - 
 

Christofides et al. (1979) 1028.42 Taillard (1993) 
 

E200-17c 199 17 200 - 
 

Christofides et al. (1979) 1291.29 Rochat and Taillard (1995) 
 

E241-22k 240 22 200 - 
 

Golden et al. (1998) 707.79 Golden, Wasil Kelly and Chao (1998) 
 

E253-27k 252 27 1000 - 
 

Golden et al. (1998) 859.11 Golden, Wasil Kelly and Chao (1998) 
 

E256-14k 255 14 1000 - 
 

Golden et al. (1998) 583.39 Golden, Wasil Kelly and Chao (1998) 
 

E301-28k 300 28 200 - 
 

Golden et al. (1998) 997.52 Golden, Wasil Kelly and Chao (1998) 
 

E324-16k 323 16 1000 - 
 

Golden et al. (1998) 741.56 Golden, Wasil Kelly and Chao (1998) 

 
E361-33k 360 33 200 - 

 
Golden et al. (1998) 1366.86 Golden, Wasil Kelly and Chao (1998) 

 
E397-34k 396 34 1000 - 

 
Golden et al. (1998) 1345.23 Golden, Wasil Kelly and Chao (1998) 

 
E400-18k 399 18 1000 - 

 
Golden et al. (1998) 918.42 Golden, Wasil Kelly and Chao (1998) 

 
E421-41k 420 41 200 - 

 
Golden et al. (1998) 1820.09 Golden, Wasil Kelly and Chao (1998) 

 
E481-38k 480 38 1000 - 

 
Golden et al. (1998) 1622.69 Golden, Wasil Kelly and Chao (1998) 

 
E484-19k 483 19 1000 - 

 
Golden et al. (1998) 1107.19 Golden, Wasil Kelly and Chao (1998) 
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In the last file can look the solution values marked by (*) in were obtained values optimums to 

instances D101-11c and E051-05e and E051-05c according to results obtained by (Toth and 

Tramontani, 2008) 

 

The objective of computational testing was to evaluate the behaviour of the MXGTS 

algorithm designed and implemented. Table 4.2 compares the results obtained on the fourteen 

classic CVRP and DCVRP to classical test instances 14 and 20 large-scale instances proposed 

by Paolo Toth and Tramontani (2008). 

 

The implemented algorithm in this thesis project was called MXGTS (columns marked 

MXGTS), which was compared with Granular Tabu Search proposed by  Paolo Toth and 

Daniele Vigo (2003), Xu and Kelly (KH) (Xu & Kelly, 1996) and Rego and Roucairol (Rego 

and Rouncairol, 1996), the columns marked GTS, XK, and RR, respectively.  

 

In this thesis project is possible look the time of MXGTS is usually small compared with the 

other algorithms; however the quality solution is less competitive compared with the others 

algorithms, because in this thesis project just was implemented 2-optimal and relocate 

procedures. 

 

For each instance of Table 4.2,Table 4.3 and Table 4.4 are reported the percentage ratio of the 

solution value obtained by each algorithm with respect to the best-known solution value, as 

well the computing time, which was expressed in seconds. 
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Table 4.2 Comparison of the Results of 14 instances classical on the test proposed by Golden et 

jjjjal. (1998) 

Intance 
Best                        
Sol. 

MXGTS 
 

GTS 
 

GHL 
 

XK 
 

RR 

Sol. % Time   % Time   % Time   % Time   % Time 

E051-05e 524.61 524.61 100.00 0.40 
 

100.00 48.60 
 

100.00 360.00 
 

100.00 1795.20 
 

100.00 51.00 

E076-10e 835.26 865.49 103.62 0.20 
 

100.40 132.60 
 

100.06 3228.00 
 

100.00 2928.00 
 

100.27 1008.00 

E101-08e 826.14 861.02 104.22 0.27 
 

100.29 143.40 
 

100.40 1104.00 
 

100.00 4315.80 
 

100.17 2034.00 

E101-10c 819.56 822.78 100.39 0.30 
 

100.00 66.00 
 

100.00 960.00 
 

100.00 3396.60 
 

100.00 73.20 

E121-07c 1042.11 1049.24 100.68 0.55 
 

100.07 190.80 
 

103.01 1332.00 
 

100.00 5473.80 
 

100.14 378.00 

E151-12c 1028.42 1091.08 106.09 0.83 
 

100.47 270.60 
 

100.75 3528.00 
 

100.11 8994.00 
 

102.52 1632.00 

E200-17c 1291.29 1357.65 105.14 2.56 
 

102.08 450.00 
 

102.42 5454.00 
 

100.55 16351.20 
 

103.64 975.00 

                 

VRP average 
 

102.88 0.73 
 

100.47 186.00 
 

100.95 2280.86 
 

100.09 6179.23 
 

100.96 878.74 

                 

D051-06c 553.43 560.24 101.23 0.10 
 

100.00 51.60 
 

100.00 810.00 
 

100.00 1840.20 
 

100.00 190.20 

D076-11c 909.68 972.98 106.96 1.75 
 

101.21 165.00 
 

100.39 3276.00 
 

106.15 6127.80 
 

100.00 1386.00 

D101-09c 865.94 889.01 102.66 0.62 
 

100.41 174.00 
 

100.00 1536.00 
 

101.78 5889.00 
 

100.27 516.00 

D101-11c 866.37 866.86 100.06 0.58 
 

100.00 84.60 
 

100.00 3942.00 
 

105.64 9178.80 
 

100.02 565.20 

D121-11c 1541.14 1,573.22 102.08 1.14 
 

100.28 560.40 
 

102.12 3552.00 
 

105.02 12105.00 
 

100.59 120.00 

D151-14c 1162.55 1,222.06 105.12 5.60 
 

100.91 340.20 
 

101.31 4260.00 
 

- 10084.80 
 

101.40 933.00 

D200-18c 1395.85 1,472.27 105.47 6.38 
 

102.86 546.60 
 

101.62 5988.00 
 

103.11 22102.20 
 

101.79 3121.20 

                 

DVRP average 
 

103.37 2.31 
 

100.81 274.63 
 

100.78 3337.71 
 

103.62 9618.26 
 

100.58 975.94 

                 

Overall average   103.12 1.52   100.64 230.31 
 

100.86 2809.29   101.86 7898.74   100.77 927.34 
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Table 4.3  Comparison of the Results on the Very Large Instances. 

 

  

Instances 
Best                        
Sol. 

MXGTS   GTS   XK   RTR 

Sol. % Time 
  

% Time 
  

% Time 
  

% Time 

E241-22k 707.79 740.76 104.66 4.79 
 

98.70 857.40 
 

103.72 138840.00 
 

100.00 341.40 

E253-27k 859.11 889.38 103.52 4.71 
 

98.61 685.80 
 

100.00 87946.20 
 

100.00 360.60 

E256-14k 583.39 604.69 103.65 3.71 
 

101.07 700.20 
 

100.34 20412.00 
 

100.00 1380.60 

E301-28k 997.52 1,049.45 105.21 10.07 
 

98.80 1287.00 
 

103.63 246061.20 
 

100.00 489.00 

E321-30k 1081.31 1,141.22 105.54 9.03 
 

99.32 870.60 
 

101.30 94638.00 
 

100.00 1309.80 

E324-16k 741.56 758.05 102.22 7.31 
 

100.68 949.80 
 

100.00 30109.20 
 

100.35 1889.40 

E361-33k 1366.86 1,438.43 105.24 19.45 
 

99.85 1803.60 
 

102.34 343102.80 
 

100.00 745.20 

E397-34k 1345.23 1,400.28 104.09 17.01 
 

100.38 1107.00 
 

100.99 260404.20 
 

100.00 1957.20 

E400-18k 918.42 957.91 104.30 13.40 
 

100.36 1987.20 
 

100.00 51163.20 
 

100.18 4151.40 

E421-41k 1820.09 1,911.37 105.01 32.71 
 

102.17 2583.00 
 

103.19 650383.80 
 

100.00 1863.00 

E481-38k 1622.69 1,687.34 103.98 25.38 
 

99.74 1384.20 
 

100.00 536607.00 
 

100.08 2853.00 

E484-19k 1107.19 1,218.47 110.05 524.92 
 

100.88 2574.00 
 

100.31 69066.00 
 

100.00 6065.40 

              
VRP average 

 
104.79 56.04 

 
100.05 1399.15 

 
101.32 210727.80 

 
100.05 1950.50 

              
D201-05k 6460.98 6,676.19 103.33 1.97 

 
99.92 142.80 

 
− 35484.00 

 
100.00 674.40 

D241-10k 5627.54 5,725.26 101.74 5.41 
 

98.31 298.80 
 

− 48172.20 
 

100.00 220.80 

D281-08k 8412.8 8,653.76 102.86 3.15 
 

99.41 279.00 
 

− 54822.00 
 

100.00 1127.40 

D321-10k 8447.92 8,913.70 105.51 12.28 
 

99.85 496.80 
 

− 53911.80 
 

105.09 1359.60 

D361-09k 10181.75 10,471.08 102.84 15.94 
 

95.47 699.60 
 

− 63763.80 
 

101.50 1353.00 

D401-10k 11036.22 11,351.06 102.85 9.74 
 

97.89 776.40 
 

− 104956.20 
 

101.98 2402.40 

D441-11K 11663.55 12,312.63 105.57 27.89 
 

98.25 664.80 
 

− 95172.00 
 

102.16 6682.20 

D481-12k 13624.52 14,083.65 103.37 16.02 
 

101.85 907.80 
 

− 145945.20 
 

100.00 7356.60 

              
DVRP average 

 
103.51 11.55 

 
98.87 533.25 

 
− 75278.40 

 
101.34 2647.05 

              
Overall average   104.15 33.80   99.46 966.20   101.32 143003.10   100.70 2298.78 
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Table 4.4 Comparison general results 

                

Improvement Phase obtained Tabu Search and  
Granular Tabu Search 

  

Initial Solution obtained by Clark & Wright 
Algorithm 

 

Instance 
Name 

Best 
Know 

Solution 
 λ μ 

Routes           
C&W 

Cost     
C&W 

&GAP              
C&W 

  
Routes    
GTS 

Time    
GTS 

Cost 
    GTS 

%GAP    
GTS 

Routes    
TS 

Time    
TS 

Distance    
TS 

%GAP    
TS 

D051-06c 553.43 1.3 0.3 6 595.31 7.57% 
 

6 0.10 560.24 1.23% 6 0.38 568.39 2.70% 

D076-11c 909.68 0.9 0.4 − − − 
 

11 1.75 972.98 6.96% 11 4.10 958.60 5.38% 

D101-09c 865.94 1.7 0.3 9 942.70 8.86% 
 

9 0.62 889.01 2.66% 9 4.20 880.67 1.70% 

D101-11c 866.37 1.2 0.2 11 869.62 0.37% 
 

11 0.58 866.86 0.06% 11 4.36 866.37 0.00% 

D121-11c 1541.14 0.7 0.1 11 1,583.25 2.73% 
 

11 1.14 1,573.22 2.08% 11 8.13 1,556.33 0.99% 

D151-14c 1162.55 1.3 0.0 14 1,222.06 5.12% 
 

14 5.60 1,222.06 5.12% 14 27.69 1,222.06 5.12% 

D200-18c 1395.85 1.0 0.0 − − − 
 

18 6.38 1,472.27 5.47% 18 49.28 1,452.44 4.05% 

D201-05k 6460.98 1.7 0.5 5 6,691.04 3.56% 
 

5 1.97 6,676.19 3.33% 5 43.65 6,554.33 1.44% 

D241-10k 5627.54 0.2 0.6 10 5,807.07 3.19% 
 

10 5.41 5,725.26 1.74% 10 73.80 5,725.87 1.75% 

D281-08k 8412.8 1.2 0.4 7 8,665.56 3.00% 
 

7 3.15 8,653.76 2.86% 7 115.38 8,649.98 2.82% 

D321-10k 8447.92 0.8 0.1 − − − 
 

10 12.28 8,913.70 5.51% 10 187.76 8,917.81 5.56% 

D361-09k 10181.75 1.8 0.9 9 10,614.61 4.25% 
 

9 15.94 10,471.08 2.84% 9 378.82 10,422.68 2.37% 

D401-10k 11036.22 0.7 0.9 10 11,414.50 3.43% 
 

10 9.74 11,351.06 2.85% 10 384.11 11,312.36 2.50% 

D441-11K 11663.55 1.3 0.8 11 12,409.47 6.40% 
 

11 27.89 12,312.63 5.57% 11 677.48 12,308.27 5.53% 

D481-12k 13624.52 1.9 1.1 11 14,109.85 3.56% 
 

11 16.02 14,083.65 3.37% 11 746.43 13,986.34 2.66% 

                

E051-05e 524.61 0.8 0.9 5 563.90 7.49% 
 

5 0.08 535.12 2.00% 5 0.40 524.61 0.00% 

E076-10e 835.26 1.0 0.1 10 866.30 3.72% 
 

10 0.20 865.49 3.62% 10 1.78 848.14 1.54% 

E101-08e 826.14 1.6 0.3 8 865.60 4.78% 
 

8 0.27 861.02 4.22% 8 3.52 856.21 3.64% 

E101-10c 819.56 1.2 0.4 10 826.00 0.79% 
 

10 0.30 822.78 0.39% 10 3.62 822.78 0.39% 

E121-07c 1042.11 1.6 0.6 7 1,065.08 2.20% 
 

7 0.55 1,049.24 0.68% 7 8.17 1,043.89 0.17% 

E151-12c 1028.42 2.0 0.7 12 1,101.82 7.14% 
 

12 0.83 1,091.08 6.09% 12 13.69 1,086.46 5.64% 

E200-17c 1291.29 1.4 0.2 17 1,370.05 6.10% 
 

17 2.56 1,357.65 5.14% 17 39.60 1,358.59 5.21% 

E241-22k 707.79 1.8 0.9 22 746.22 5.43% 
 

22 4.79 740.76 4.66% 22 67.28 740.76 4.66% 

E253-27k 859.11 1.3 0.9 26 896.56 4.36% 
 

26 4.71 889.38 3.52% 26 85.29 888.08 3.37% 

E256-14k 583.39 0.8 1.3 14 610.39 4.63% 
 

14 3.71 604.69 3.65% 14 82.38 602.62 3.30% 

E301-28k 997.52 1.5 1.2 28 1,051.51 5.41% 
 

28 10.07 1,049.45 5.21% 28 149.52 1,049.45 5.21% 

E321-30k 1081.31 1.2 0.4 30 1,144.23 5.82% 
 

30 9.03 1,141.22 5.54% 30 194.19 1,139.58 5.39% 

E324-16k 741.56 0.6 1.2 16 763.31 2.93% 
 

16 7.31 758.05 2.22% 16 173.24 759.04 2.36% 

E361-33k 1366.86 1.4 0.3 33 1,441.40 5.45% 
 

33 19.45 1,438.43 5.24% 33 284.79 1,438.43 5.24% 

E397-34k 1345.23 1.8 1.1 34 1,411.05 4.89% 
 

34 17.01 1,400.28 4.09% 34 466.61 1,392.58 3.52% 

E400-18k 918.42 1.0 1.1 18 966.93 5.28% 
 

18 13.40 957.91 4.30% 18 349.33 958.79 4.40% 

E421-41k 1820.09 1.4 1.0 38 1,917.83 5.37% 
 

38 32.71 1,911.37 5.01% 38 484.68 1,911.56 5.03% 

E481-38k 1622.69 1.2 1.2 38 1,709.72 5.36% 
 

38 25.38 1,687.34 3.98% 38 755.74 1,678.11 3.42% 

E484-19k 1107.19 0.4 1.5 19 7,599.06 586.34% 
 

19 524.92 1,218.47 10.05% 19 816.35 1,218.47 10.05% 

Average 
    

23.40% 
  

23.11 
 

3.86% 
 

196.64 
 

3.44% 

 

The instances D101-11c and E051-05e were founded optimal solution equal to the optimal 

solution by so exact methods reported in Toth and Tramontani (2008). 
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The Table 4.4 with the instances D076-11c, D200-18c and D321-10k shows tree important 

phases, the first one is which start with an initial solution parameterized (λ   ). This initial 

solution was infeasible by number of routes, however to implement tabu search it accomplish 

the feasibility considering the penalty proposed as soon strategies of diversification.  However, 

the computational time to tabu search is highly, here is the importance of introduce granularity 

with granular neighborhoods, which were implemented this way the results respect to time 

was excellents compared with just use tabu search (See Figure 4.3). 

 

In the instance E484-19k start with a feasible initial solution but with a GAP of 586.45 %; 

homever to apply Granular Tabu Search there was obtained a GAP of 10.05%. 

 

The computational times of Clarke and Wright do not presented because is very closed to cero. 

The time of Granular Tabu Search is so less compared with Tabu Search because the number 

or arcs is reduced by the candidate list in or the Granular neighborhoods Tabu Search. The 

quality of the solution of Granular Tabu Search is competitive with high quality paper. The 

results of the XK algorithm for the DVRP instances are those reported in Golden et al. (1998), 

since Xu and Kelly (1996) had not tested their algorithm on DCVRP instances. 

 

Granular Tabu Search designed in this project is proved able to determine, in a quite short 

computing time, good solutions, but do not better to solutions reported by Granular Tabu 

Search (Toth and Vigo, 2003), whose the quality was compared with the best solutions 

obtained by other tabu search approaches from the literature.  

 

In particular, the Granular Tabu Search proposed solution is worse than the GHL only in one 

of the seven VRP instances, and the GAP with respect to the best known solutions of Granular 

Tabu Search is half that of GHL. For the DCVRP instances, GHL is strictly better than 

Granular Tabu Search in three out of seven cases, and the average percentage ratios for the 

two algorithms are almost the same. The computing times of the Granular Tabu Search 

algorithm is on average about one fifth the equivalent computing times of GHL. 

 

The comparison between Granular Tabu Search and XK on the seven classic VRP instances, 

XK generally obtains better solutions, whereas Granular Tabu Search is considerably more 

effective than XK on the DVRP and the Fisher’s VRP instances. The computing times of the 

Granular Tabu Search algorithm implemented are on average 80–83 times smaller than the 

equivalent computing times of Paolo Toth and Daniele Vigo (Toth & Vigo, 2003). 

 

Finally, the performance of Granular Tabu Search designed in this project is quite similar to 

that of algorithm RR both in terms of solution quality and overall computing times. In 

particular, Granular Tabu Search performs slightly better on CVRP instances and slightly 

worse on DCVRP ones and the average equivalent computing times are almost the same. 

When it runs with the complete neighborhoods, the tabu search used as a basis for the 

Granular Tabu Search algorithm obtained solutions on average slightly better than those of 

MXGTS, but required computing times of the same order of magnitude as the XK and GHL 

algorithms. This clearly illustrates the positive impact of candidate-list strategies within the 

local search methods. On the one hand, granular neighborhoods may be easily introduced into 

any existing local search algorithm and lead to drastic reductions of the computational effort: 

The Granular Tabu Search algorithm is several orders of magnitude faster than a basic tabu 
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search using complete neighborhoods, and requires on large-scale instances about the same 

amount of computing times as effective constructive heuristics. On the other hand, the 

introduction of granular neighborhoods does not substantially affect the overall efficacy of the 

approach: the quality of the solutions obtained by Granular Tabu Search is comparable to 

those of the best available algorithms.  

 

So, the Figure 4.3 shows correlation coefficients of 0.98, which denote that 98% dates, 

are adapted to third grade polynomial. Because of execution of general tabu of n times 

with computational time of 0(n) and execution of neighborhoods (2-opt and relocate) 

with computational time of    
 
  so 0(n)*               

 . 
 

The importance to implement granularity concept in vehicle routing problem, in this 

case with constraint distance is that the time necessary is lees that used in Tabu Search 

like can be seen in Figure 4.3.  
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Instance 
Time    

GTS 

Time    

TS 

D051-06c 0.10 0.38 

D076-11c 1.75 4.10 

D101-09c 0.62 4.20 

D101-11c 0.58 4.36 

D121-11c 1.14 8.13 

D151-14c 5.60 27.69 

D200-18c 6.38 49.28 

D201-05k 1.97 43.65 

D241-10k 5.41 73.80 

D281-08k 3.15 115.38 

D321-10k 12.28 187.76 

D361-09k 15.94 378.82 

D401-10k 9.74 384.11 

D441-

11K 27.89 677.48 

D481-12k 16.02 746.43 

   E051-05e 0.08 0.40 

E076-10e 0.20 1.78 

E101-08e 0.27 3.52 

E101-10c 0.30 3.62 

E121-07c 0.55 8.17 

E151-12c 0.83 13.69 

E200-17c 2.56 39.60 

E241-22k 4.79 67.28 

E253-27k 4.71 85.29 

E256-14k 3.71 82.38 

E301-28k 10.07 149.52 

E321-30k 9.03 194.19 

E324-16k 7.31 173.24 

E361-33k 19.45 284.79 

E397-34k 17.01 466.61 

E400-18k 13.40 349.33 

E421-41k 32.71 484.68 

E481-38k 25.38 755.74 

E484-19k 524.92 816.35 

Average 23.11 196.64 

Figure 4.3 Computational time Granular Tabu Search 

vvvvv versus Tabu Search 
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CONCLUSIONS AND FUTURE WORK 

In this final section presents the coclusions and future work about this project, which was the 

result of the implemented algorithm. 

 

Conclusions  

 

For the purpose of selecting an efficient method so solve the Distance Constrained Vehicle 

Routing Problem was make a review of state art was made it. So, this review helped in the 

search benchmarking instances and best know solution according. This way was evaluated 

strategies as factorial analysis to find the saving algorithm parameters, which produced a good 

initial solution. 

 

In this thesis project was implement GTS and insert move 2-Optimal to solve DCVRP, in this 

case was necessary to implement relocate by the results obtained in the initial solution, with 

the issue to obtain good solution in all instances, which ware compared with the  best solutions 

according to reports of literature. 

 

 

In this thesis project was presented and tested an effective implementation of candidate-list 

strategies to be used within Tabu-search algorithms for a wide class of graph-theoretic and 

combinatorial optimization problems. 

 

The proposed approach, called granular Tabu search, was applied to the well-known 

symmetric capacitated and distance constrained vehicle routing problem for which several 

Tabu search algorithms have been presented in the literature. 

 

These algorithms are able to obtain high-quality solutions but often require a large amount of 

computing time to solve large instances. Granular Tabu search is based on the use of granular 

neighborhoods, which include a small number of “promising” moves. Which use a simple 

strategy to obtain granular neighborhoods from standard ones and discussed their efficient 

search. 

 

The computational testing shows the importance of using appropriate candidate-list strategies 

and their impact in creating better methods: on standard test instances from the literature, 

granular Tabu search is able to determine very good solutions within short computing times. 

 

Attainment of initial solution competitive was obtained by a search exhaustive of a set of right 

parameters to find the majority of initial feasible solutions, considering value best objective 

function (minimize distance) and using a right and efficient implementation on C++. At 

difference Professor Toth and Professor Vigo, algorithm in initial solution, they used Clarke & 

Wright plus Patching, I use a Clarke & Wright parameterized, which use parameters λ and μ, 

these used to expanding the exploration ability of the algorithm, λ to design shape elliptic 

routes and μ to attempt to collect more information about the distribution of the customers as 

to whether depot. 
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In this algorithm was design and implemented a new strategy and penalty appropriate to 

eliminate automatically so Tabu Search and procedure relocate the routes of less cardinality. 

In the initial solution some instances were infeasible by routes numbers, whereby was 

designed an appropriate penalty to eliminate less routes loaded automatically by Tabu Search 

and the procedure Relocate so of added a penalty competent, when routes number major 

vehicles number eliminated. 

 

Penalties proposed by Gendrau (Gendreau, Hertz, & Laporte, 1994) when routes that may 

feasible or infeasible with respect to the capacity and length constraints. This penalties 

implemented were using by way light with small updates in each iteration. 

 

Implementation efficient neighborhoods with evaluation time 0(1) in each movement.  

Update strategy automatically of tabu list in Tabu Search in an interval [7,50] when it moves 

by infeasible regions tabu list can grow until 50, when search move by feasible solution tabu 

list size use “magic number “ seven. Like diversification strategy, if Tabu Search does not 

accomplish come back to feasible solution it returns the last best solution feasible find it. 

 

This methodology can be implement whichever variant belongs to general VRP, these are: 

 

 Capacitated Vehicle Routing Problem (CVRP) 

 Distance Constraints Vehicle Routing Problem (CVRP) 

 Vehicle Routing Problem with Backhauls (VRPB) 

 Vehicle Routing Problem with Time Windows (VRPTW) 

 Vehicle Routing Problem with Pick up and Deliveries (VRPPD) 

 Vehicle Routing Problem with Backhauls and Time Windows (VRPBTW) 

 Vehicle Routing Problem with Pick up and Deliveries and Time Windows 

(VRPPDTW). 

 

Future Work 

 

In this project just was implemented like neighborhoods 2-opt (TSP cross, inter route parallel 

and cross) and relocate between routes. However, the quality solution is bad compared with 

results obtained by Paolo Toth and Daniele Vigo whereby I propose implemented in future 

work Cross exchange, Flip, One point move (OPM), Or-opt, Swap, Sweep and 3-opt. 

 

So, use other Metaheuristics like Simulated Annealing, Neighborhood Variable and Scatter 

Search. 

 

Otherwise, through excellent results obtained in computational time a good idea will be 

implement in other new variant of vehicle routing problem like the single vehicle routing 

problem with deliveries and selective pickups (SVRPDSP), which is defined on a graph in 

which pickup and delivery demands are associated with customer vertices. The difference 

between this problem and the single vehicle routing problem with pickups and deliveries 

(SVRPPD) lies in the fact that it is no longer necessary to satisfy all pickup demands. In the 

SVRPDSP pickup revenue is associated with each vertex, and the pickup demand at that 

vertex will be collected only if it is profitable to do so. The net cost of a route is equal to the 
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sum of routing costs, minus the total collected revenue. The aim is to design a vehicle route of 

minimum net cost, visiting each customer, performing all deliveries, and a subset of the 

pickups. A mixed integer linear programming formulation is proposed for the SVRPDSP. 

Classical construction and improvement heuristics, as well as a tabu search heuristic (TS), are 

developed and tested on a number of instances derived from VRPLIB. 
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APPENDIX A 

Objective 

Function Mu (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D051-06c 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf 638.12 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 661.57 653.43 653.34 Inf Inf Inf Inf Inf 643.20 618.45 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 661.57 636.93 632.09 631.58 622.27 622.27 615.21 618.67 605.97 625.82 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 632.09 632.09 622.79 622.79 615.72 615.72 621.50 605.97 613.33 613.33 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 622.79 622.79 622.79 615.72 615.72 621.50 605.97 Inf 613.33 613.33 633.22 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 615.72 615.72 615.72 615.72 621.50 619.18 605.97 613.33 613.33 613.33 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 618.39 615.72 615.72 619.71 619.18 605.97 642.03 613.33 613.33 613.33 623.45 620.75 630.32 Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 618.39 618.39 619.71 619.71 605.97 605.97 642.03 630.54 619.43 624.52 621.79 618.34 616.41 Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 618.39 618.39 619.71 605.97 605.97 635.60 626.28 619.43 624.52 621.11 621.79 621.79 619.44 622.06 Inf Inf Inf Inf Inf Inf Inf 

1.0 618.39 618.39 600.38 602.60 635.60 635.60 613.85 Inf Inf 637.74 Inf Inf 634.29 645.68 Inf Inf Inf Inf Inf Inf Inf 

1.1 618.39 618.39 599.45 599.80 602.07 613.85 630.64 Inf Inf 637.33 637.33 Inf 639.20 634.67 Inf Inf Inf Inf Inf Inf Inf 

1.2 622.63 599.45 599.80 599.84 599.84 599.92 630.64 630.64 Inf 637.33 637.33 637.33 644.24 626.31 643.97 Inf Inf Inf Inf Inf Inf 

1.3 600.77 599.45 599.80 595.31 599.84 603.41 615.50 630.64 Inf 629.39 629.39 629.39 630.14 643.88 Inf Inf Inf Inf Inf Inf Inf 

1.4 601.12 601.12 595.31 595.31 595.31 603.41 603.41 615.50 630.64 629.39 629.39 629.39 629.39 630.14 640.86 Inf Inf Inf Inf Inf Inf 

1.5 601.99 601.76 601.76 595.31 603.41 603.41 603.41 603.41 614.83 627.73 629.39 629.39 629.39 630.14 640.86 Inf Inf Inf Inf Inf Inf 

1.6 Inf 602.63 601.76 601.76 603.41 603.41 603.41 603.41 608.72 621.05 627.73 629.39 629.39 630.14 626.76 Inf Inf Inf Inf Inf Inf 

1.7 601.55 616.50 604.67 616.51 603.41 603.41 603.41 603.41 614.94 621.05 621.05 626.40 629.39 630.14 629.78 649.89 Inf Inf Inf Inf Inf 

1.8 601.55 602.79 616.50 616.51 616.51 615.20 615.20 615.20 603.97 603.01 608.48 617.06 625.59 630.14 629.78 649.89 Inf Inf Inf Inf Inf 

1.9 622.14 601.55 605.85 625.61 616.51 616.51 615.20 615.20 620.51 603.01 603.01 608.48 608.48 631.28 630.14 649.89 Inf Inf Inf Inf Inf 

2.0 622.14 601.55 605.85 605.85 619.60 616.51 616.51 615.20 619.55 619.55 603.01 603.01 608.48 608.48 608.48 649.89 Inf Inf Inf Inf Inf 

Figure 4.4 Parameterized of instance D056-06c, feasible to Initial Solution with of λ=1.3 and μ= .3 values. 
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APPENDIX B 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D076-11c 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

Figure 4.5 Parameterized of instance D076-11c, infeasible for the Initial Solution. 

.  
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APPENDIX C 

Objective 

Function 
 u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D101-09c                                           

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf 1017.8

2 

Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 Inf Inf Inf Inf Inf Inf Inf Inf 1025.67 975.72 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 Inf Inf 1038.78 Inf Inf Inf Inf 1008.99 971.11 975.76 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 Inf Inf Inf 993.19 Inf 1024.0 1008.9 991.83 983.08 963.19 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 Inf Inf Inf Inf Inf 1019.8 1000.2 962.67 970.96 974.67 Inf Inf 987.57 Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 1014.82 984.47 1007.60 1019.23 1021.51 987.05 974.91 986.78 Inf 993.28 989.31 Inf 975.62 Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 970.97 Inf Inf 990.48 987.56 983.00 986.23 976.67 983.47 974.17 981.05 988.22 Inf 992.56 Inf Inf Inf Inf Inf Inf Inf 

0.8 Inf Inf 997.13 985.86 Inf 986.23 986.78 976.67 983.47 Inf 1002.48 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 Inf Inf Inf 981.22 967.98 968.53 981.24 981.24 981.13 977.59 1002.48 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 973.94 Inf 975.62 971.10 967.98 968.53 973.26 973.26 975.67 974.99 968.77 997.43 979.32 978.41 Inf Inf Inf Inf Inf Inf Inf 

1.1 969.64 975.62 971.10 982.05 965.95 973.26 Inf Inf Inf 980.37 988.99 997.43 973.12 Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 976.47 974.07 965.84 965.54 965.95 Inf Inf Inf Inf 977.65 967.47 999.01 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 976.47 969.73 969.55 970.16 969.86 Inf Inf Inf 972.33 977.65 972.50 999.01 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 976.47 969.73 969.73 971.34 Inf Inf Inf Inf 972.33 972.33 984.11 994.14 999.01 979.32 Inf Inf Inf Inf Inf Inf Inf 

1.5 976.47 976.47 973.66 973.66 Inf Inf Inf Inf 976.74 973.06 971.58 981.40 985.49 Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 992.36 992.36 973.66 973.66 947.67 Inf Inf 972.95 976.74 968.64 965.88 971.66 985.49 972.44 Inf Inf Inf Inf Inf Inf Inf 

1.7 992.36 977.50 956.27 942.70 944.10 947.67 Inf 966.65 976.74 968.64 959.62 971.66 981.38 966.54 Inf Inf Inf Inf Inf Inf Inf 

1.8 967.97 956.27 956.27 953.48 944.10 944.10 Inf 973.15 976.74 976.74 968.66 975.74 977.30 Inf Inf Inf 974.

95 

Inf Inf Inf Inf 

1.9 952.75 952.75 952.75 953.48 953.48 945.97 952.26 968.60 976.74 976.74 959.62 971.66 981.38 Inf Inf Inf 983.

47 

Inf Inf Inf Inf 

2.0 952.72 952.75 952.75 Inf 953.48 956.02 948.69 985.68 984.52 983.78 958.93 984.53 977.30 Inf Inf Inf Inf Inf 101

1.4

2 

Inf Inf 

Figure 4.6 Parameterized of instance D101-09c, feasible to Initial Solution with of λ=1.3 and μ= .3 values. 
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APPENDIX D 

 
Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D101-11c 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 1374.72 1202.7 1202.40 1144.7 1063.98 985.82 1028.99 1021.27 1020.58 981.78 952.31 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 963.89 999.22 1012.41 1003.9 1004.69 1004.69 1004.00 982.78 964.64 956.40 939.51 986.88 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 948.07 964.27 964.27 956.62 981.44 977.94 958.47 921.65 935.36 939.89 932.07 939.20 999.81 Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 930.03 955.0 943.77 963.07 959.42 948.29 941.03 932.24 912.55 901.73 907.22 914.85 985.57 1080.08 Inf Inf Inf Inf Inf Inf Inf 

0.5 922.78 930.8 941.30 928.23 920.76 923.96 916.50 927.80 926.06 900.95 900.33 912.99 929.52 987.61 Inf Inf Inf Inf Inf Inf Inf 

0.6 903.38 927.4 898.82 910.01 907.87 906.43 906.82 914.02 926.06 900.63 908.16 905.67 915.49 973.81 987.61 Inf Inf Inf Inf Inf Inf 

0.7 891.25 892.47 897.92 899.04 899.81 905.71 908.27 913.61 916.76 929.35 901.98 905.67 909.42 953.54 974.82 1004.58 1130.46 Inf Inf Inf Inf 

0.8 876.86 892.35 893.45 893.45 900.18 889.31 897.72 910.37 921.24 921.59 901.98 898.21 901.65 907.97 973.81 987.50 1038.44 1117.71 Inf Inf Inf 

0.9 878.09 877.84 889.14 899.52 889.31 889.31 896.55 896.55 909.62 918.85 907.70 898.21 901.65 908.56 959.19 974.71 987.50 1058.23 1183.07 Inf Inf 

1.0 875.75 877.98 879.30 908.59 878.23 891.36 896.55 897.32 904.96 904.88 907.70 909.14 898.21 902.49 942.15 968.37 979.23 992.81 1068.35 1187.23 Inf 

1.1 877.26 877.06 879.30 873.84 873.84 884.81 885.52 897.46 905.09 904.88 912.24 908.37 898.21 902.19 908.89 937.49 952.69 961.81 0.00 1090.63 1186.52 

1.2 907.98 878.57 869.62 873.84 876.55 880.42 880.42 887.21 895.14 905.02 906.27 908.37 908.37 900.88 905.60 930.42 946.06 961.81 968.04 1024.50 1090.63 

1.3 912.75 885.79 871.67 869.62 878.25 880.42 881.19 882.83 887.05 893.05 894.08 897.43 908.37 911.81 904.83 908.12 944.32 952.69 961.81 973.45 1050.10 

1.4 915.89 907.17 880.33 880.33 871.64 876.15 876.92 882.83 882.66 887.05 886.78 896.18 896.18 897.43 901.16 910.85 936.72 946.06 952.69 961.81 985.01 

1.5 910.44 909.01 907.17 880.33 884.60 871.64 876.66 878.55 882.66 878.55 888.48 894.96 894.96 896.18 900.88 904.27 931.38 940.57 951.91 961.81 968.04 

1.6 910.44 910.44 907.94 907.33 884.60 885.37 874.05 878.30 878.55 878.55 882.39 890.58 894.96 894.96 899.62 903.01 907.56 933.74 945.29 949.36 961.04 

1.7 910.44 910.44 910.44 907.33 886.44 885.37 887.01 874.05 878.30 878.55 888.48 890.58 890.58 894.96 898.41 898.02 909.59 926.67 945.29 949.36 958.48 

1.8 910.44 910.44 909.17 909.17 907.33 885.37 887.01 887.01 874.55 877.63 882.39 890.58 890.58 890.58 894.02 898.95 907.98 906.30 933.74 945.29 949.36 

1.9 910.44 910.44 909.17 909.17 909.94 908.10 887.01 887.01 887.01 874.55 887.72 890.58 890.58 892.61 892.61 896.05 901.40 904.69 933.74 945.29 949.36 

2.0 911.83 909.17 909.17 909.17 909.94 910.51 909.74 887.01 887.01 887.01 882.49 891.68 892.61 892.61 892.61 896.05 893.64 907.98 930.44 932.79 945.29 

Figure 4.7 Parameterized of instance D101-11c, feasible to Initial Solution with of λ=1.3 and μ= .3 values. 
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APPENDIX E 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D121-11c 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 1664.08 1664.08 1662.71 0.00 0.00 0.00 0.00 1617.15 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 1644.15 1645.06 1642.25 1600.93 1622.97 1609.26 1609.84 1612.81 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 1596.04 1597.81 1599.23 1599.85 1587.79 1593.87 1590.42 0.00 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 1598.38 1599.07 1584.20 1584.20 1592.75 1589.67 0.00 0.00 1619.79 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 1598.27 1583.25 1583.77 1587.96 1585.86 1585.86 0.00 1673.25 1622.80 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 1592.94 1594.84 1601.38 1591.49 1591.49 0.00 0.00 1616.76 1623.94 Inf Inf Inf 1649.31 Inf 1650.59 1664.70 Inf Inf Inf Inf Inf 

0.9 1591.24 1596.72 1602.17 1602.17 1625.01 0.00 0.00 0.00 1622.79 Inf Inf Inf Inf Inf Inf 1653.82 Inf Inf Inf Inf Inf 

1.0 1596.72 1592.64 1591.02 1625.29 1617.35 1627.59 0.00 0.00 0.00 1651.27 1675.05 Inf Inf Inf Inf 1649.59 1658.62 Inf Inf Inf Inf 

1.1 1593.78 1591.02 1591.26 1597.15 1619.49 1622.63 0.00 0.00 0.00 1639.33 0.00 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 1593.09 1589.72 1617.77 1607.62 0.00 0.00 0.00 0.00 0.00 1629.95 1634.65 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 Inf Inf 1600.51 1604.16 1607.56 0.00 0.00 0.00 1632.53 1626.80 1643.87 1643.87 1630.22 Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 1629.33 1611.24 0.00 1605.05 1606.59 1610.05 0.00 0.00 1621.28 1625.30 1629.55 1643.87 1634.10 1628.02 1632.22 Inf Inf Inf Inf Inf Inf 

1.5 Inf Inf 1618.82 0.00 1603.01 1605.30 1612.68 0.00 1617.23 1617.23 1625.98 1640.71 1630.68 1632.55 1631.11 1635.30 Inf Inf Inf Inf Inf 

1.6 Inf Inf Inf 1623.26 0.00 1603.01 1607.93 1613.77 1620.42 1618.18 1621.49 1633.40 1637.53 1630.68 1631.11 1632.22 1636.87 1644.55 Inf Inf Inf 

1.7 Inf Inf Inf Inf 1624.33 0.00 1604.54 1607.26 1612.74 1617.94 1616.64 1625.97 1629.29 1622.30 1623.82 1628.11 1631.19 Inf 1640.00 1644.47 Inf 

1.8 Inf Inf Inf Inf Inf 1624.33 1641.06 1610.23 1609.15 1612.74 0.00 1625.97 1625.97 1622.30 1620.74 1624.93 1628.01 1632.76 1638.02 1644.47 1647.71 

1.9 Inf Inf Inf Inf Inf Inf Inf 1626.96 1612.12 1614.92 1612.91 1626.74 0.00 1617.80 1621.15 1623.82 1624.93 1629.58 1634.84 1640.00 1644.47 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf 1626.96 1608.54 Inf Inf 1626.74 1621.88 1620.33 1624.23 1624.93 1628.01 Inf 1634.84 1644.47 

Figure 4.8  Parameterized of instance D121-11c, feasible to Initial Solution with of λ=0.6 and μ=0.3 values. 
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APPENDIX F 

 
Objective 

Function 
Mu (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D151-14c 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 1222.06 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 Inf 1223.51 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 1234.45 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 1236.24 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 1243.73 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

Figure 4.9 Parameterized of instance D151-14c, feasible to Initial Solution with of λ=0.6 and μ=0.0 values. 
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APPENDIX G 

Objective 

Function 
 u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D200-18c 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

Figure 4.10 Parameterized of instance D200-18c, infeasible for the Initial Solution. 
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APPENDIX H 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E051-05e 
                     

0.0 1620.91 
1604.6

7 

1642.3

7 
1606.6 

1662.1

0 
1572.56 1592.9 1572.46 1609.5 1586.65 Inf 1647.25 1719.70 1719.87 1731.40 1730.26 1660.40 1546.72 1575.41 1693.32 1607.51 

0.1 904.76 904.76 976.74 874.77 858.38 775.69 681.94 655.89 649.20 635.25 600.52 0.00 Inf 1217.24 1241.23 1225.10 1249.33 1281.72 1281.74 1283.81 1308.43 

0.2 721.57 707.06 702.51 681.11 661.07 629.13 629.13 622.21 606.47 Inf 589.90 628.56 Inf 1127.54 Inf 1146.13 1139.99 1151.07 1210.12 1210.12 Inf 

0.3 641.24 628.22 628.91 628.91 617.25 601.07 581.45 581.45 596.26 Inf 589.90 580.17 694.00 Inf Inf Inf Inf 1146.13 1145.38 1148.42 1148.42 

0.4 616.91 616.91 620.80 Inf 594.14 581.45 581.45 588.89 Inf 581.42 589.90 585.08 628.56 696.46 Inf Inf 1127.54 Inf Inf 1137.60 1146.13 

0.5 598.35 598.35 594.14 594.14 581.45 581.45 588.89 570.48 Inf Inf 584.47 582.14 602.82 676.11 696.46 Inf Inf 1127.54 Inf Inf Inf 

0.6 Inf Inf Inf Inf 581.45 575.58 588.89 570.48 Inf Inf 584.47 582.14 580.17 628.56 Inf 712.74 Inf Inf Inf 1128.90 Inf 

0.7 Inf Inf Inf Inf Inf 568.81 570.48 Inf Inf Inf 584.47 582.14 Inf 602.82 Inf Inf 712.74 Inf Inf Inf 1128.90 

0.8 Inf Inf Inf Inf 568.81 568.81 Inf Inf Inf 563.90 583.12 582.14 Inf 0.00 628.56 Inf 710.19 Inf Inf Inf Inf 

0.9 Inf Inf Inf 568.83 568.81 Inf Inf Inf Inf 583.12 583.12 Inf Inf 592.92 604.11 652.26 Inf 710.19 Inf Inf Inf 

1.0 Inf Inf 577.09 568.83 Inf Inf Inf Inf Inf 572.93 587.35 Inf Inf 592.92 Inf 628.56 676.11 Inf 710.19 Inf Inf 

1.1 Inf Inf 577.09 568.83 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 615.86 652.26 Inf Inf Inf Inf 

1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 592.92 Inf 628.56 Inf Inf 710.19 Inf 

1.3 577.09 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 577.38 Inf 618.62 638.94 Inf Inf 710.19 

1.4 578.69 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 582.09 Inf 628.56 Inf Inf Inf 

1.5 579.56 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 577.38 603.48 628.22 638.94 Inf Inf 

1.6 587.08 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 577.38 582.09 603.48 638.08 675.28 Inf 

1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 582.09 603.48 628.22 Inf 675.28 

1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 577.38 582.09 628.22 Inf Inf 

1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 577.38 582.09 592.03 Inf Inf 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 577.38 582.09 592.03 Inf Inf 

Figure 4.11 Parameterized of instance E051-05e, feasible to Initial Solution with of λ=0.8 and μ=0.9 values. 
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APPENDIX I 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E076-10e 
                     

0.0 2542.16 2505.74 2550.47 2540.90 2477.99 2469.94 2495.87 2475.59 2512.01 2447.71 Inf 2699.31 2719.04 2763.25 2846.19 2782.62 2906.93 2758.60 2918.89 2816.29 2786.94 

0.1 1425.52 1354.71 1393.32 1258.74 1185.60 1149.76 1112.16 Inf Inf 936.24 Inf Inf Inf Inf Inf Inf Inf Inf Inf 2220.83 2233.59 

0.2 1101.94 1074.67 1075.53 1032.42 Inf 968.59 Inf Inf 936.24 938.61 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 993.52 Inf 984.98 984.98 Inf 946.36 943.68 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1930.43 

0.4 948.16 951.95 930.13 930.13 942.92 Inf Inf Inf 869.62 890.89 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 Inf Inf Inf Inf Inf 897.34 888.01 869.62 905.37 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 Inf Inf Inf 913.70 897.34 873.02 876.61 882.65 905.37 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 Inf Inf Inf 886.76 876.11 876.61 892.84 900.21 924.24 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 Inf 893.70 886.76 879.69 879.69 876.61 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 896.46 890.35 869.52 869.52 869.52 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 907.39 866.30 869.52 880.40 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 866.32 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 893.81 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 888.65 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

Figure 4.12 Parameterized of instance E076-10c, feasible to Initial Solution with of λ=1.0 and μ=0.1 values. 
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APPENDIX J 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E101-08e 
                     

0.0 3556.88 3383.36 3306.07 3454.43 3287.51 3452.43 3231.18 3414.31 3431.07 3437.59 3367.60 3953.42 3846.25 3765.15 3890.33 3830.42 3774.57 3746.35 3709.05 3764.70 3755.97 

0.1 1508.80 1471.53 1452.14 1450.40 1355.80 1172.06 1169.84 1113.65 1001.50 988.44 944.76 1706.07 2090.99 2166.41 2194.03 2310.58 2353.06 2434.08 2500.94 2546.28 2548.82 

0.2 1186.96 1134.74 1087.59 1080.18 1081.47 1023.99 987.15 974.54 985.38 946.04 908.03 972.83 Inf 1966.52 2051.03 2092.69 2148.57 2187.46 2198.94 2279.97 2282.57 

0.3 1034.13 991.59 1015.43 982.00 935.04 978.85 978.85 981.39 952.57 918.81 923.38 945.53 980.69 1712.64 2011.44 2014.58 2009.88 2047.90 2210.12 2220.20 2211.93 

0.4 991.87 930.26 935.04 935.04 912.03 931.33 919.72 948.72 939.90 917.22 900.38 934.25 989.65 1058.82 1675.59 1907.73 1973.28 1975.20 2000.09 2007.49 2080.29 

0.5 957.94 957.94 954.54 963.56 921.97 908.94 941.34 920.28 911.10 918.01 905.97 937.21 950.74 969.21 Inf Inf Inf 1951.67 1984.67 1974.09 2000.09 

0.6 940.14 936.12 949.46 924.66 908.94 927.99 912.56 883.68 880.23 928.36 899.12 916.52 927.06 973.27 995.29 Inf Inf 1917.46 1970.87 1957.50 1981.42 

0.7 944.56 918.84 912.32 902.27 889.93 887.27 903.10 892.35 888.64 900.10 914.51 916.52 930.53 936.81 976.83 1064.20 Inf 1675.59 1915.47 1907.21 1958.89 

0.8 912.33 909.34 894.15 889.93 896.13 903.89 883.37 880.23 889.10 905.14 927.10 914.21 924.75 934.52 975.88 966.52 1060.62 Inf Inf 1929.06 1893.51 

0.9 903.49 902.09 902.09 905.57 899.68 878.86 880.23 894.90 892.68 908.68 927.10 914.21 922.79 920.43 941.56 976.67 1003.20 1069.04 1200.59 1675.59 1920.06 

1.0 889.00 889.00 898.31 888.73 888.66 896.75 886.15 889.60 892.67 908.61 914.57 927.10 922.56 918.47 925.31 952.40 971.42 1031.39 Inf Inf Inf 

1.1 886.95 878.87 885.21 890.59 891.14 885.21 877.25 889.60 910.92 912.30 926.01 922.87 914.03 912.05 920.43 951.98 970.41 954.42 1054.21 Inf Inf 

1.2 883.60 876.98 887.63 890.59 891.14 877.54 885.21 904.01 910.92 908.55 922.28 921.94 922.87 914.66 931.68 933.20 959.84 954.14 1003.20 1060.01 Inf 

1.3 879.37 895.77 885.75 888.98 891.94 877.54 883.38 886.81 904.98 897.28 909.48 921.94 927.89 912.05 919.51 922.45 951.06 965.24 966.52 1013.33 1068.43 

1.4 886.41 891.90 891.90 880.05 877.65 877.54 883.38 889.37 897.28 904.98 903.95 913.57 921.50 918.88 915.90 919.51 937.59 949.79 951.92 956.45 1054.21 

1.5 890.11 887.55 880.05 880.05 865.60 886.16 889.61 895.60 897.28 897.28 909.48 913.57 903.95 904.42 912.09 0.00 937.59 943.62 964.84 956.25 Inf 

1.6 890.11 890.11 880.05 865.60 886.95 892.29 892.13 897.28 897.28 897.28 909.48 903.95 903.95 905.54 912.99 919.51 Inf 933.20 949.79 958.87 965.60 

1.7 892.13 887.99 879.26 881.74 883.98 892.29 893.04 905.63 899.69 897.28 909.48 903.95 903.95 903.95 912.99 910.29 923.45 936.52 950.52 956.83 956.25 

1.8 896.95 885.76 879.03 884.00 883.98 883.15 893.04 905.63 901.15 901.88 909.48 903.95 903.95 903.95 905.76 912.99 926.29 934.26 940.91 956.83 957.96 

1.9 898.77 893.68 893.68 875.53 875.53 883.15 890.20 903.83 903.83 901.15 909.48 903.95 903.95 903.95 905.18 905.18 926.29 935.66 940.11 954.17 954.17 

2.0 891.97 893.68 893.68 878.39 875.53 875.53 893.25 904.00 903.83 903.83 904.70 902.60 902.60 903.95 905.18 905.18 917.47 922.35 939.40 953.98 954.17 

Figure 4.13 Parameterized of instance E101-08e, feasible to Initial Solution with of λ=1.6 and μ=0.3 values. 
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APPENDIX K 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E101-10c 
                     

0.0 
3,245.9

8 

3,403.6

6 

3,124.4

2 

3,450.4

6 
3,301.50 

3,364.5

5 

3,151.6

4 

3,260.5

3 

3,203.5

5 

3,373.5

1 

3,960.2

9 

4,575.8

7 

4,632.9

5 

4,417.5

3 

4,458.2

2 

4,391.3

2 

4,416.5

2 

4,506.3

2 

4,592.0

9 

4,570.2

2 

4,609.5

1 

0.1 
1,229.8

2 

1,200.5

5 

1,305.5

8 

1,267.8

0 
1,197.50 

1,130.8

9 

1,129.7

9 

1,071.9

3 
987.28 942.01 922.09 

1,459.4

7 

2,858.3

8 

3,018.7

7 

3,066.3

4 

3,196.1

1 

3,206.0

0 

3,371.3

7 

3,309.4

4 

3,338.7

0 

3,475.8

0 

0.2 943.68 954.55 983.48 984.28 984.28 984.28 968.79 956.79 916.39 900.68 898.02 947.82 
1,467.8

5 

2,884.5

6 

2,854.0

6 

2,862.8

1 

3,019.2

2 

2,923.6

2 

3,076.2

4 

3,107.1

5 

3,202.1

3 

0.3 934.67 932.54 941.53 928.90 931.27 932.26 917.90 902.34 908.80 895.75 899.88 913.87 945.72 
1,459.8

7 

2,707.1

8 

2,759.6

0 

2,853.8

2 

2,821.2

5 

2,981.5

1 

2,953.0

7 

2,965.2

4 

0.4 901.56 907.19 910.03 908.86 916.46 906.40 899.14 896.36 892.30 897.27 904.58 878.29 936.65 
1,025.9

7 
Inf 

2,660.2

8 

2,854.5

9 

2,788.8

2 

2,842.0

7 

2,821.2

1 

2,862.7

8 

0.5 874.53 887.66 888.12 894.66 892.09 895.28 890.60 890.60 893.31 899.55 890.04 874.85 913.96 937.36 
1,040.7

3 
Inf 

2,524.4

2 

2,722.8

4 

2,724.1

4 

2,871.5

7 

2,844.7

7 

0.6 842.73 859.86 860.19 877.69 875.26 873.81 883.10 884.80 893.31 899.69 892.21 889.35 895.10 931.52 937.36 
1,073.8

7 
Inf 

2,395.2

9 

2,699.3

8 

2,808.7

0 

2,729.3

0 

0.7 840.13 842.73 861.73 862.13 861.18 873.39 873.39 883.43 886.58 899.69 899.08 889.35 889.03 922.79 930.22 950.75 
1,063.2

7 
Inf 

2,321.1

4 

2,659.9

1 

2,697.9

9 

0.8 835.75 841.23 843.71 843.71 863.99 852.40 859.08 874.79 874.06 874.83 886.63 875.85 885.30 888.72 932.67 936.91 984.11 
1,051.1

3 
Inf Inf 

2,549.4

7 

0.9 836.40 836.73 836.73 846.36 839.57 839.57 847.49 855.46 865.67 874.40 862.43 862.75 866.19 868.58 928.24 903.37 927.25 
1,010.7

2 

1,055.0

8 
Inf 

2,269.1

7 

1.0 833.51 836.29 837.60 844.84 837.11 841.62 842.63 848.26 852.12 860.44 856.12 862.75 862.75 862.52 892.78 898.47 917.03 923.33 
1,013.0

0 

1,058.8

6 
Inf 

1.1 830.25 834.82 833.59 832.14 832.73 840.84 841.56 843.54 852.26 852.47 857.51 857.39 856.44 866.73 868.92 902.16 905.03 914.16 937.80 
1,033.5

1 

1,126.9

1 

1.2 833.13 831.56 827.38 828.13 826.00 836.45 836.45 843.24 847.40 852.04 851.18 853.28 857.39 865.42 859.32 893.83 899.85 914.16 912.05 970.18 
1,033.5

1 

1.3 837.89 839.10 828.49 827.38 827.01 827.01 836.29 838.86 843.08 845.30 851.18 853.28 853.28 856.72 860.27 868.15 900.77 905.03 914.16 919.32 994.56 

1.4 844.02 834.49 833.64 826.06 826.00 827.01 827.78 830.00 842.41 843.08 845.93 853.28 853.28 853.28 856.59 866.29 895.54 893.54 898.72 907.85 930.89 

1.5 838.56 838.56 834.49 833.64 835.71 827.07 827.53 829.42 829.42 835.89 851.36 854.12 852.06 853.28 856.72 859.71 879.98 900.63 899.67 907.85 912.05 

1.6 838.56 838.56 835.27 835.51 835.76 836.48 829.47 829.16 829.42 829.42 835.93 853.45 857.84 852.06 856.72 860.37 863.00 894.46 893.93 899.67 908.80 

1.7 838.56 838.56 838.56 836.25 837.23 836.16 837.80 829.16 828.85 829.42 835.55 844.12 844.12 857.84 861.28 861.82 866.29 887.39 893.23 899.67 908.80 

1.8 838.56 838.56 839.21 839.21 836.25 836.16 837.80 837.80 829.16 828.85 829.46 837.65 841.75 844.12 856.90 861.82 864.68 863.00 894.86 893.23 899.67 

1.9 838.56 838.56 839.21 839.21 839.98 837.02 837.80 837.80 837.80 829.16 835.46 837.65 837.65 843.78 846.15 857.17 865.20 861.39 894.86 893.23 899.67 

2.0 839.96 839.21 839.21 839.21 839.98 839.43 838.65 837.80 837.80 837.80 836.04 839.43 839.68 839.68 843.20 849.59 850.33 864.68 879.04 893.91 893.23 

Figure 4.14 Parameterized of instance E101-10c, feasible to Initial Solution with of λ=1.2 and μ=0.4 values. 
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APPENDIX L 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E121-07c 
                     

0.0 3330.20 3270.38 3382.74 3103.71 3094.56 3193.40 3081.21 3105.71 3416.05 3120.27 Inf 8680.73 8649.37 8744.09 8735.59 8670.23 8729.13 8817.41 8799.49 8744.84 8743.11 

0.1 1577.77 1573.07 1576.15 1571.07 1524.43 1309.69 1305.38 1287.26 1255.36 1177.45 Inf 5385.67 7611.63 7773.57 7741.99 7910.72 7818.09 7822.12 7849.26 7934.44 7934.54 

0.2 1265.48 1268.22 1269.49 1209.45 1202.30 1190.52 1193.10 1176.97 1165.78 1149.83 1136.77 1168.11 5156.52 7146.88 7671.78 7711.52 7644.19 7704.30 7716.91 7788.67 7790.34 

0.3 1159.56 1173.84 1172.13 1172.52 1172.52 1175.98 1166.30 1154.43 1144.89 1151.07 1135.44 Inf 1182.85 5344.21 7292.57 7268.20 7591.72 7650.75 Inf 7461.93 7478.49 

0.4 1151.02 1136.16 1140.78 1131.83 1158.27 1153.71 1146.79 1137.92 1144.88 Inf 1133.08 Inf 1162.60 Inf 5436.22 6806.24 7098.21 7280.87 7564.36 7677.15 7717.81 

0.5 1136.19 1126.82 1134.67 1130.55 1129.05 1124.43 Inf Inf Inf Inf 1134.41 1145.98 Inf 1162.02 Inf 5359.94 6916.59 7172.87 7259.15 7426.28 7489.10 

0.6 1105.02 1118.92 1128.26 1127.59 1127.68 Inf Inf Inf 1122.94 1128.03 1131.11 1144.00 Inf 1162.60 Inf 1283.83 5431.77 7036.50 7028.51 7161.32 7398.48 

0.7 1101.71 1101.41 1105.91 1130.81 Inf Inf Inf 1112.58 1113.96 1131.11 1136.96 1144.00 Inf Inf 1163.52 Inf 1292.69 5405.25 6793.84 Inf 7192.22 

0.8 1094.87 1098.53 1114.63 1106.84 1100.16 1129.06 1128.59 Inf Inf 1121.62 1125.16 1133.07 Inf Inf 1164.71 1176.63 Inf 1297.00 5415.99 6993.64 6929.98 

0.9 1075.42 1082.00 1091.46 1106.08 1108.20 1102.01 1102.01 Inf Inf 1111.81 1110.82 1133.07 1137.54 Inf Inf 1162.47 Inf Inf 1296.97 5431.77 6826.03 

1.0 1071.07 1070.08 1071.51 1093.55 1102.02 Inf Inf Inf Inf 1109.20 1109.98 1121.91 1126.38 1132.55 1130.40 1157.65 1152.25 Inf Inf 1305.28 5338.79 

1.1 Inf 1068.14 1075.71 1073.38 1081.14 Inf Inf Inf 1115.74 1115.74 1111.33 1113.99 1127.93 1127.92 1130.41 1147.82 1149.31 1176.89 Inf 1273.08 Inf 

1.2 Inf Inf 1070.68 1072.63 1079.81 1079.12 Inf Inf 1109.00 1115.74 1117.87 1123.01 1133.27 1127.92 1132.55 1149.26 1160.06 1162.72 Inf Inf 1283.12 

1.3 Inf Inf Inf 1066.43 1075.94 1079.12 1079.01 1082.92 1106.68 1107.60 1111.14 1123.01 1132.29 1141.29 1147.46 1138.92 1156.33 1160.06 1163.55 1155.84 Inf 

1.4 Inf Inf Inf Inf 1066.59 1071.52 1079.01 1079.01 1082.43 1094.49 1119.68 1130.36 1132.29 1140.98 1147.15 1143.13 1151.84 1163.71 1157.82 1176.89 1154.57 

1.5 Inf Inf Inf Inf Inf 1065.08 1071.88 1078.82 1079.01 1082.43 1102.21 1130.36 1125.55 1143.26 1142.52 1142.82 1142.82 1163.71 1163.71 1173.39 1155.84 

1.6 Inf Inf Inf Inf Inf Inf 1065.08 1072.62 1079.55 1079.74 1081.68 1106.70 1125.55 1125.55 1144.16 1144.90 1142.82 1158.68 1165.11 1161.47 1175.50 

1.7 Inf Inf Inf Inf Inf Inf Inf 1070.13 1076.72 1079.55 1081.11 1091.45 1123.33 1117.17 1145.38 1148.79 1144.46 1129.29 1151.68 1165.11 1165.85 

1.8 Inf Inf Inf Inf Inf Inf Inf Inf 1074.02 1076.72 1082.86 1091.45 1113.42 1106.30 1124.91 1148.79 1144.46 1144.46 1158.06 1152.36 1162.86 

1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf 1074.02 1078.09 1087.31 1112.99 1113.42 1107.51 1123.68 1131.91 1144.46 1153.61 1160.03 1152.36 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1075.95 1082.89 1101.03 1112.99 1111.44 1111.87 1128.32 1123.86 1129.77 1158.06 1160.03 

Figure 4.15 Parameterized of instance E121-07c, feasible to Initial Solution with of λ=1.6 and μ=0.6 values. 
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APPENDIX M 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E151-12c                                           

0.0 4665.66 4700.65 4578.43 4615.78 4786.26 4570.62 4573.87 4580.11 4606.84 4590.66 Inf 5357.08 5234.77 5164.89 5371.69 5210.16 5455.73 5489.95 5463.01 5371.75 5505.74 

0.1 1730.97 1719.29 1685.62 1687.31 1681.66 1646.24 1540.43 1438.29 1314.84 1302.08 1164.39 Inf 3078.97 3186.95 3216.84 3243.40 3390.92 3458.54 3485.45 3557.05 3516.11 

0.2 1530.67 1481.62 1441.01 1385.65 1407.76 1309.87 1286.54 1254.21 1238.95 1253.17 1162.49 1235.58 Inf 3012.92 3077.89 3098.51 3221.77 3281.35 3313.47 3385.04 3424.37 

0.3 1316.66 1312.76 1283.57 1341.11 1331.34 1272.63 1231.26 1246.46 1212.14 1217.86 1153.58 1168.70 1314.79 Inf 2884.59 2981.24 2976.55 3029.42 3084.80 3277.80 3282.84 

0.4 1261.05 1224.83 1252.20 1256.68 1198.55 1206.04 1234.97 1154.09 1200.59 1213.41 1155.31 1162.69 1226.29 1384.10 Inf 2962.88 3004.24 3022.16 3021.26 3014.75 3091.34 

0.5 1187.36 1180.20 1181.64 1209.69 1214.43 1184.81 1151.66 1163.16 1159.27 1151.79 1147.14 1169.96 1154.48 1313.28 Inf Inf Inf 2921.90 2927.46 3000.71 3046.87 

0.6 1162.07 1191.99 1200.90 1186.40 1179.55 1162.87 1160.54 1166.25 1165.85 1151.79 1129.06 1136.20 1158.07 1208.17 1296.10 0.00 Inf Inf Inf 3025.74 2926.17 

0.7 1159.77 1161.37 1193.12 1165.28 1162.48 1155.65 1121.79 1153.96 1134.17 1125.93 1133.25 1153.32 1157.94 1187.51 1257.55 1308.03 Inf Inf Inf Inf 2933.91 

0.8 1147.66 1187.39 1151.95 1158.05 1165.41 1147.27 1125.98 1123.26 1108.10 1120.00 1127.74 1130.34 1158.45 1152.95 Inf 1300.65 1381.12 Inf Inf 2881.24 2924.30 

0.9 1157.43 1147.10 1129.35 1153.16 1153.66 1158.58 1135.65 1136.32 1116.96 1117.08 1117.08 1121.24 1146.66 1155.44 Inf 1249.75 1289.77 1381.13 1493.76 Inf Inf 

1.0 1133.43 1128.57 1138.42 1138.42 1131.04 1158.58 1143.69 1146.72 1127.54 1126.93 1117.69 1117.69 1145.03 1166.59 1175.58 0.00 1288.89 1303.18 0.00 Inf Inf 

1.1 1115.67 1116.33 1131.88 1126.95 1129.02 1131.99 1129.52 1124.71 1142.46 1123.72 1126.93 1141.51 1141.77 1165.40 1175.58 0.00 Inf 1309.78 1341.32 Inf Inf 

1.2 1123.02 1110.32 1127.36 1122.73 1122.73 1129.02 1103.85 1143.83 1141.73 1153.11 Inf 1140.45 1145.98 1169.24 1186.32 1185.63 Inf 1313.54 1298.91 1365.32 Inf 

1.3 1132.48 1119.04 1109.72 1121.92 1111.38 1111.93 1117.48 1131.75 1141.49 1153.08 1148.31 1155.08 1171.96 1157.15 1176.78 1182.92 Inf 1234.78 1313.54 1322.60 1370.81 

1.4 1133.68 1113.15 1108.43 1121.92 1121.92 1111.11 1137.32 1132.93 1129.27 1140.96 1146.78 1148.46 1166.48 1182.82 1183.37 1183.04 1191.56 0.00 1264.99 1304.20 1322.60 

1.5 1133.59 1120.19 1113.60 1122.48 1112.67 1116.79 1131.39 1124.72 1138.74 1122.85 1148.14 1146.78 1144.27 1181.37 1187.21 1196.74 1178.35 0.00 1234.78 1313.27 1301.41 

1.6 1114.53 1131.11 1119.90 1113.60 1119.18 1128.36 1131.67 1118.40 1115.78 1115.95 1126.82 1148.14 1145.66 1159.14 Inf 1184.55 1192.77 0.00 1240.14 1254.74 1304.33 

1.7 1147.13 1134.13 1128.06 1120.15 1113.58 1121.46 1131.72 1131.16 1106.08 1108.39 1128.89 1142.16 1146.78 1156.94 Inf 1189.54 1186.10 1201.42 Inf 1234.78 1313.27 

1.8 1147.70 1134.78 1136.22 1124.18 1128.36 1117.47 1108.65 1130.32 1123.72 1119.58 1121.33 1142.16 1157.74 1139.17 1171.61 1187.05 1187.99 1190.76 Inf 1240.14 1260.21 

1.9 1135.36 1134.78 1135.03 1132.99 1127.76 1131.30 1102.34 1107.37 1116.47 1111.33 1105.25 1121.89 1159.01 Inf 1182.47 1164.96 1185.77 1182.90 1193.51 1233.12 1259.82 

2.0 1134.02 1135.36 1124.00 1118.07 1130.78 1135.42 1129.88 1101.82 1107.93 1125.98 1108.33 1105.25 1148.19 1142.90 1158.41 1187.57 1186.54 1181.80 Inf Inf Inf 

Figure 4.16 Parameterized of instance E151-12c, feasible to Initial Solution with of λ=2.0 and μ=0.7 values. 
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APPENDIX N 

Objective 

Function 
 u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E200-17c                                           

0.0 5919.27 6123.63 5924.46 5981.57 6029.12 5774.48 5703.22 5936.09 6012.48 6009.96 6327.47 7011.19 6935.79 7210.91 7156.24 7296.26 7003.84 6932.02 6852.16 6885.50 7123.85 

0.1 2273.58 2183.15 2139.70 2022.76 1968.46 1938.49 1896.37 1824.56 1640.37 1632.92 1425.38 Inf 3971.71 4058.22 4247.70 4263.70 4389.17 4414.07 4477.95 4533.42 4511.75 

0.2 1836.47 1815.39 1811.67 1745.49 1680.98 1602.10 1637.83 1652.00 1568.10 1530.84 1442.51 1550.24 Inf 3915.03 3921.44 3935.32 4083.85 4074.97 4228.37 4229.75 4238.49 

0.3 1636.64 1565.51 1639.80 1629.76 1533.23 1534.73 1571.83 1555.81 1521.39 1477.96 1440.54 1499.65 1596.67 Inf 3868.04 Inf 3908.58 3926.88 3996.12 4006.57 4094.61 

0.4 1575.41 1593.51 1547.39 1526.61 1576.63 1560.43 1534.89 1483.15 1496.56 1445.27 1420.02 1486.67 1528.51 1639.00 Inf 3772.38 3850.14 3884.76 3900.25 Inf 3955.02 

0.5 1549.84 1474.26 1481.85 1469.65 1481.72 1499.79 1499.62 1458.03 1462.94 1445.16 1413.94 1455.01 1512.29 1587.58 Inf Inf 3772.69 Inf Inf 3946.57 3940.64 

0.6 1471.78 1458.75 1448.40 1455.10 1484.81 1459.87 1461.76 1466.13 1467.85 1442.92 1415.22 1454.56 1475.29 1563.06 1616.39 1703.41 Inf 3659.02 3772.04 Inf 3922.29 

0.7 1421.85 1442.42 1469.76 1468.94 1438.16 1449.55 1460.99 1437.93 1474.60 1469.66 1416.75 1451.89 1482.90 1515.50 1580.13 1592.13 Inf Inf 3721.64 3716.64 3782.93 

0.8 1420.85 1436.18 1444.47 1418.76 1423.11 1427.10 1447.38 1451.69 1457.16 1447.06 1411.13 1447.78 1474.71 1502.30 1559.91 1564.80 1634.47 Inf Inf Inf Inf 

0.9 1429.93 1433.88 1433.23 1420.47 1433.40 1441.08 1436.57 1440.13 1424.87 1426.13 1428.22 1434.99 1448.37 1485.71 1542.97 1557.30 1590.74 1639.63 Inf Inf Inf 

1.0 1395.74 1409.47 1423.67 1429.29 1444.36 1432.33 1429.45 1435.45 1421.45 1418.91 1415.75 1433.99 1448.46 1493.66 1540.22 1547.41 1544.34 1591.62 Inf Inf Inf 

1.1 1381.03 1379.05 1391.97 1408.53 1412.83 1427.34 1428.74 1409.39 1428.73 1432.75 1405.01 1445.11 1443.50 1436.48 1511.20 1544.80 1556.43 1588.85 1616.63 Inf Inf 

1.2 1392.50 1381.03 1371.57 1403.95 1408.69 1412.30 1418.99 1416.03 1427.48 1434.80 1439.02 1443.33 1467.37 1444.25 1484.43 1543.85 1550.11 1599.81 1602.19 1627.10 1704.95 

1.3 1402.11 1376.30 1389.74 1389.55 1386.08 1393.34 1398.52 1403.14 1426.04 1420.26 1409.43 1455.56 1452.78 1462.03 1485.44 1516.68 1531.93 1552.10 1540.39 1564.01 1638.20 

1.4 1386.87 1384.23 1370.05 1380.02 1383.78 1399.37 1415.33 1402.60 1396.85 1409.54 1427.80 1449.37 1449.19 1464.64 Inf 1497.01 1521.83 1539.30 1540.09 1567.64 1560.01 

1.5 1387.76 1381.78 1405.86 1393.58 1406.70 1407.35 1400.30 1404.56 1405.88 1397.24 1398.18 1449.37 1449.37 1457.35 1460.28 1478.20 1532.47 1550.48 1531.27 1559.86 1590.97 

1.6 1408.80 1387.22 1390.98 1391.57 1408.20 1407.19 1394.95 1392.25 1402.63 1396.28 1387.51 1424.07 1449.45 1455.40 1448.88 1471.65 1519.17 1521.83 1551.66 1550.73 1559.65 

1.7 1400.04 1386.00 1379.19 Inf 1383.77 1405.21 1394.66 1401.74 1398.82 1395.96 1400.82 1422.01 1423.80 1441.11 1475.18 1455.27 1475.12 1537.17 1557.64 1541.90 1591.22 

1.8 1412.36 1396.49 1387.85 1379.19 Inf 1404.04 1390.27 1398.45 1394.59 1390.75 1389.57 1421.47 1425.76 1436.08 1440.84 1452.04 1461.05 1510.04 1526.98 1551.67 1539.97 

1.9 1404.23 1405.59 1395.68 1388.13 1380.42 1387.55 1389.14 1392.31 1400.45 1385.50 1383.79 1395.01 1418.48 1431.45 1442.01 1456.56 1457.74 1529.66 1548.46 1553.43 1533.85 

2.0 1424.31 1401.12 1405.54 1377.89 1381.91 1382.81 1389.59 1390.14 1376.03 1395.05 1388.63 1435.30 1411.18 1416.45 1443.96 1452.84 1450.11 1471.47 1537.95 1536.88 1533.74 

Figure 4.17 Parameterized of instance E200-17c, feasible to Initial Solution with of λ=1.4 and μ=0.2 values. 
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APPENDIX Ñ 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D201-05k 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 Inf Inf Inf Inf Inf Inf Inf Inf 8683.68 7400.31 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 Inf Inf Inf Inf Inf Inf 8617.23 7542.61 7384.99 7200.15 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 Inf Inf Inf Inf 8632.01 7813.13 7352.07 7384.99 7015.20 7705.34 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 Inf Inf Inf 7940.09 7462.61 7361.22 7244.67 6874.99 7252.69 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 Inf 7968.37 8159.75 7640.60 7440.51 7128.63 7153.12 7000.47 7723.65 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 7964.51 7661.57 7610.46 7291.14 7336.06 7051.51 6776.90 7172.45 7915.10 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 7650.34 7504.03 7291.14 7250.29 7056.97 7062.33 6940.06 7172.45 7916.23 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 7452.19 7392.48 7367.20 7144.46 6954.14 7166.72 7270.54 7885.80 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 7217.01 7161.72 7160.40 7043.70 6977.62 7187.51 7202.77 7916.23 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 7296.89 7402.35 6954.14 6990.20 6975.44 7221.08 7970.74 7913.67 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 7218.03 7112.11 7209.23 7180.48 7172.45 7221.08 7858.79 7886.21 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 6913.05 7129.17 7081.19 7231.89 7172.45 7235.18 7904.06 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 6928.61 6919.04 7075.79 Inf 7234.61 7919.30 8015.60 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 7139.43 6960.01 7085.29 6702.49 Inf 7862.23 7920.61 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 7386.02 7118.33 6949.72 6936.08 6984.53 7483.00 7962.24 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 7223.21 7013.68 7316.42 7023.02 6936.08 6733.99 7504.07 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 Inf Inf 7394.04 7013.68 6722.10 6691.04 6871.27 7521.65 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf Inf 7403.43 7428.00 7316.42 Inf 6715.07 7539.51 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf Inf Inf Inf 6958.05 6954.60 7375.89 6937.21 6700.08 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 Inf 7000.13 7440.68 Inf 7013.68 7310.37 7310.37 6942.22 6700.08 6729.73 7584.78 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

Figure 4.18 Parameterized of instance E201-05k, feasible to Initial Solution with of λ=1.7 and μ=0.5 values. 
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APPENDIX O 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D241-10k                                           

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 5837.15 5842.42 5825.10 5820.39 5882.23 5830.30 5830.30 5876.76 5882.23 5932.09 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 6066.95 5901.97 6360.34 5864.38 5818.97 5881.18 5807.07 5830.30 5865.40 5910.40 5924.09 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 5853.02 6056.42 6236.34 6182.32 6022.29 6109.04 5983.35 5953.00 5981.13 Inf 5877.20 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 6159.01 6163.43 Inf 5955.12 5967.86 5926.87 5903.68 5957.89 Inf 6093.81 6101.44 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 5989.53 6022.78 5995.55 5957.39 5972.05 Inf 5992.22 5987.83 5939.19 5954.88 6008.01 6142.05 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 6058.96 6108.32 5981.41 6116.49 5951.01 5973.41 5966.60 6098.43 Inf Inf 6009.85 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 6084.04 6084.04 5941.45 6085.67 6078.39 5976.79 5918.87 5950.63 5975.19 5941.67 6100.60 6245.84 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 6057.31 6081.25 6109.31 5953.00 5977.12 6087.50 6121.09 6086.80 5982.73 6125.77 6091.55 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 5952.77 5972.05 5981.04 5973.41 6087.64 5939.99 6087.35 6093.68 6078.11 5941.93 5991.51 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 6027.56 6075.34 Inf 5952.77 6083.69 6100.60 6129.32 5976.79 6001.33 6100.85 6100.85 Inf 6164.3 Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 6079.94 6000.45 5967.21 Inf 5981.41 6125.77 5980.67 6096.65 5997.05 6125.77 5991.51 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 Inf 6089.51 5972.17 Inf 5976.65 6089.73 6149.18 6087.61 6072.76 6144.50 6140.56 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 Inf 6121.31 6125.84 6104.21 6001.31 6090.74 6144.50 6068.81 6129.72 5954.88 6125.77 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 Inf Inf 5979.55 5955.78 6172.76 5931.82 5990.94 5982.73 Inf 6125.77 5941.93 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 Inf Inf Inf 6084.92 6084.89 5964.85 6145.23 6069.06 5950.46 6149.18 5995.93 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 Inf Inf Inf Inf 5961.91 6171.88 5948.09 5986.25 6016.03 6100.85 6073.01 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 Inf Inf Inf Inf Inf 5960.32 6001.00 6000.46 5991.51 6124.07 6091.55 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf Inf Inf Inf Inf 6026.28 6084.15 5983.10 5964.48 6004.77 5991.51 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf Inf Inf Inf Inf Inf Inf 6033.59 6016.50 6005.74 6002.92 6002.92 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 Inf Inf Inf Inf Inf Inf Inf 6026.21 5972.78 6001.04 6042.36 5965.12 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

 

Figure 4.19: Parameterized of instance D241-10k, feasible to Initial Solution with of λ=0.2 and μ=0.6 values. 
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APPENDIX P 

Objective 

Function  u (μ) 
Lambda 

(λ) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D281-08k 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 11645.05 11645.05 11746.34 11113.72 11099.10 11010.12 11074.12 11026.67 10832.56 9388.62 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 11036.65 11039.56 11064.57 11039.77 11124.16 10908.15 10820.21 10770.62 9440.89 8764.39 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 10833.31 10787.55 10833.31 10770.62 10770.62 10770.62 10770.62 9374.08 9086.45 8842.57 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 10770.62 10770.62 10770.62 10770.62 10770.62 10770.62 9351.85 8899.53 8707.03 8969.93 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 10770.62 10770.62 10770.62 10770.62 9786.18 9358.89 9514.13 9070.78 8879.93 8871.28 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 10770.62 10770.62 10770.62 9906.24 9444.91 9391.92 8996.62 8835.15 8890.61 8911.13 10167.64 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 10770.62 10770.62 9894.34 9449.17 9395.85 9077.49 8956.72 8832.48 8817.13 9006.88 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 10770.62 9942.30 9358.33 9391.92 8996.62 9071.29 8716.07 8923.56 8739.54 9006.88 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 9902.07 9351.86 9401.10 9014.97 9062.10 8751.98 8716.07 8776.73 8817.13 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 9351.86 9403.80 9449.17 9062.10 9071.29 8716.07 8867.34 8897.03 8897.03 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 9449.17 9442.40 8968.83 8996.62 8716.95 8724.94 8840.81 8817.13 8810.41 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 9358.89 8968.83 8996.62 9071.29 8665.56 8848.54 8869.10 8836.99 8770.10 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 9127.81 9071.29 8968.83 8688.00 8688.00 8841.77 8775.03 8809.61 8817.13 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 9070.89 8968.83 8996.62 8766.21 8665.56 8840.35 8917.60 8884.38 8927.19 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 9135.90 9154.87 8858.95 8903.46 8997.15 8700.51 8908.41 8917.60 8966.87 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 9162.10 8990.22 8956.55 8892.16 9064.14 8797.72 8811.15 8817.13 9018.52 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 9446.72 9076.32 8941.93 9072.09 8997.15 8717.63 8752.42 8813.85 9651.58 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 9567.41 9102.52 9463.19 9143.48 8765.14 8752.42 8691.01 8719.38 9312.92 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf 9541.21 9574.27 9561.12 9390.78 8804.35 8752.42 8792.14 8844.94 9236.01 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 9238.49 Inf 9608.06 9650.82 9443.43 9478.19 8788.03 8752.42 8812.12 8787.38 9282.25 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

 

Figure 4.20: Parameterized of instance D281-08k, feasible to Initial Solution with of λ=1.2 and μ=0.4 values. 
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APPENDIX Q 

Objective 

Function 
 u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D321-10k                                           

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

Figure 4.21: Parameterized of instance D321-10k, infeasible for the Initial Solution. 
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APPENDIX R 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D361-09k 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 10792.75 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 10692.53 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 10779.54 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 Inf Inf Inf Inf Inf Inf Inf Inf 10926.34 Inf 10696.86 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 10813.79 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 Inf Inf Inf Inf Inf Inf Inf 11015.30 Inf Inf 10741.21 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 Inf Inf Inf Inf Inf Inf 11267.24 0.00 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 Inf Inf Inf Inf Inf Inf Inf 10734.29 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 Inf Inf Inf Inf 11194.09 Inf Inf Inf Inf Inf 10707.24 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10675.16 10825.28 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 Inf Inf Inf Inf 10991.57 Inf Inf Inf Inf 10644.41 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10646.15 Inf 11110.01 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 11107.99 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10677.86 10929.14 11107.99 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10624.91 10925.72 10936.02 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10643.51 Inf 10864.89 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10624.09 Inf 10864.89 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf 10614.61 Inf 0.00 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf Inf Inf Inf Inf Inf Inf Inf 10649.11 10649.11 Inf 10875.23 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf 10625.35 10783.56 Inf 10949.74 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

Figure 4.22: Parameterized of instance D361-09k, feasible to Initial Solution with of λ=1.8 and μ=0.9 values. 
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APPENDIX S 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D401-10k 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf 11414.50 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf 11559.33 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf 11414.50 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 Inf Inf Inf Inf Inf Inf Inf Inf 11416.27 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 Inf Inf Inf Inf Inf Inf Inf Inf 11416.27 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 Inf Inf Inf Inf Inf Inf 11479.60 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 Inf Inf Inf Inf Inf Inf 11416.16 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 Inf Inf Inf Inf 11617.16 11540.67 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

Figure 4.23: Parameterized of instance D401-10k, feasible to Initial Solution with of λ=0.7 and μ=0.9 values. 
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APPENDIX T 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D441-11K 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf 12553.56 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 Inf Inf Inf Inf Inf Inf Inf Inf 12419.71 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 Inf Inf Inf Inf Inf Inf Inf Inf 12566.17 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 Inf Inf Inf Inf Inf Inf Inf Inf 12483.22 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 Inf Inf Inf Inf Inf Inf Inf 12603.01 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 Inf Inf Inf Inf Inf Inf 12585.70 12573.27 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 Inf Inf Inf Inf Inf Inf 12546.28 12470.63 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 Inf Inf Inf Inf Inf Inf Inf Inf 12409.47 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 Inf Inf Inf Inf Inf Inf 12559.68 Inf 12426.97 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 Inf Inf Inf Inf 12476.65 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 Inf Inf Inf Inf Inf Inf 12454.29 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf Inf Inf Inf Inf 12455.09 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

Figure 4.24: Parameterized of instance D441-11k, feasible to Initial Solution with of λ=1.3 and μ=0.8 values. 
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APPENDIX U 

Objective 

Function  u (μ) 
Lambda 

(λ) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

D481-12k 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.1 17783.92 18503.76 17576.05 17578.99 17546.12 17981.66 16859.08 17188.45 16606.36 16325.68 14375.44 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.2 17386.35 17612.22 17126.33 17514.82 16953.82 16795.39 16398.02 16136.13 16343.79 14503.81 14227.74 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.3 16962.64 16990.10 16917.92 16723.31 16561.98 16470.29 16271.10 16015.70 14933.33 14344.28 14278.77 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.4 16811.52 17022.47 16638.18 16151.55 16717.26 16271.23 16479.26 15379.84 14597.00 14252.50 14224.30 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 16342.34 16398.74 16414.31 16348.26 16076.65 16173.76 15359.23 15049.35 14429.69 14155.77 14235.81 16384.17 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 16491.25 16236.35 16330.44 16292.47 16178.93 15189.16 14921.03 14363.93 14222.75 14363.17 14393.30 16384.17 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 16184.89 16515.00 16240.95 16355.51 15448.42 14683.19 14817.21 14724.50 14438.92 14343.49 14111.68 16374.82 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 16086.59 16350.62 16325.19 15448.42 15696.34 14744.20 14566.07 14257.85 14503.79 14310.14 14353.17 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 16052.22 16020.12 15953.63 15400.91 14986.26 14612.63 14567.70 14265.09 14162.61 14457.12 14237.74 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 16181.31 16223.66 15342.14 15014.02 14959.40 14741.51 14368.93 14387.63 14458.43 14228.58 14251.81 15177.17 16365.46 Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 16498.34 15342.14 15535.52 15032.67 14526.17 14785.93 14297.98 14497.31 14328.96 14428.94 14338.58 15177.17 16365.46 Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 15512.09 15440.50 15056.84 14927.91 14719.83 14550.34 14440.05 14430.88 14385.16 14352.90 14306.91 15177.17 16365.46 Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 15495.97 15038.26 14985.79 14834.97 14710.12 14426.16 14396.64 14468.68 14465.94 14148.96 14300.55 15177.17 16365.46 Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 14920.05 15164.13 14855.92 14601.23 14493.55 14387.51 14398.25 14230.14 14565.99 14331.10 14304.77 15177.17 Inf 16384.96 Inf Inf Inf Inf Inf Inf Inf 

1.5 15186.34 15001.16 14548.50 14393.12 14485.77 14502.68 14478.71 14356.84 14395.02 14435.36 14310.31 15177.17 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 15162.10 14608.30 14650.33 14594.00 14638.86 14321.46 14307.39 14384.76 14395.02 14128.15 14259.43 15177.17 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 15253.00 14850.76 14427.59 14309.20 14467.44 14325.60 14279.09 14132.35 14329.04 14252.20 14206.03 15177.17 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 14886.69 14821.16 14838.56 14637.60 14424.40 14469.58 14352.84 14394.65 14394.25 14395.41 14356.93 14153.42 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf Inf 14896.32 14682.90 14693.73 14520.34 14279.72 14229.97 14323.30 14400.33 14322.27 14109.85 15177.17 Inf 16384.96 Inf Inf Inf Inf Inf Inf 

2.0 Inf Inf Inf 14616.92 14366.04 14484.26 14496.35 14333.65 14277.04 14260.85 14283.77 14244.96 15177.17 Inf Inf Inf Inf Inf Inf Inf Inf 

Figure 4.25: Parameterized of instance D481-12k, feasible to Initial Solution with of λ=1.9 and μ=1.1values. 
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APPENDIX V 

Objective 

Function  u (μ) 
Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E241-22k 
                     

0.0 3785.34 3794.05 3723.51 3910.19 3722.96 3692.01 3690.81 3703.40 3909.71 3597.15 
3355.5

9 
3596.09 

3654.4

7 
3500.79 3721.99 3552.29 3609.75 3704.83 3668.05 3619.51 3655.40 

0.1 1097.97 1109.52 1100.73 979.70 955.26 869.36 862.20 0.00 810.29 Inf 784.17 Inf Inf Inf 1805.31 0.00 1842.74 1846.58 1873.49 1858.95 1894.00 

0.2 873.45 868.46 861.31 831.19 Inf Inf 806.16 0.00 784.20 Inf Inf Inf Inf Inf Inf 1791.26 0.00 1797.19 0.00 1834.15 1853.00 

0.3 831.72 816.44 809.62 818.76 770.31 Inf 789.36 0.00 774.81 763.38 Inf Inf Inf Inf Inf Inf Inf Inf 1811.62 Inf Inf 

0.4 795.27 797.64 Inf Inf Inf 782.41 773.51 774.19 769.10 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.5 Inf Inf 780.19 773.69 Inf Inf Inf Inf Inf Inf 773.64 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.6 Inf 782.18 781.76 0.00 0.00 778.76 771.23 Inf 763.47 Inf 757.59 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.7 Inf 773.69 0.00 768.98 765.72 765.72 767.98 Inf 0.00 Inf Inf Inf 771.21 Inf Inf Inf Inf Inf Inf Inf Inf 

0.8 785.49 Inf 770.53 765.72 765.72 770.75 0.00 Inf 754.08 759.78 749.78 Inf 771.21 Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 Inf 763.76 768.85 768.85 768.85 Inf Inf 755.22 754.86 Inf 758.28 750.69 0.00 Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 771.18 770.00 Inf 768.22 Inf Inf Inf Inf 751.94 750.95 755.47 751.94 768.36 Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 770.17 771.70 Inf Inf 748.24 750.35 755.58 756.45 756.45 752.75 754.57 754.47 772.82 768.42 Inf Inf Inf Inf Inf Inf Inf 

1.2 771.70 770.00 771.18 754.42 750.36 750.03 750.30 752.32 750.95 753.59 755.93 756.42 750.64 768.48 Inf Inf Inf Inf Inf Inf Inf 

1.3 771.18 765.65 771.70 748.55 749.42 754.04 752.23 752.90 750.03 752.18 751.94 756.42 752.87 769.42 Inf Inf Inf Inf Inf Inf Inf 

1.4 770.00 770.17 747.27 Inf 751.76 754.39 749.76 756.13 749.82 751.78 760.19 752.58 0.00 766.72 768.61 Inf Inf Inf Inf Inf Inf 

1.5 768.60 766.19 759.44 Inf Inf 752.97 753.86 749.78 753.64 757.21 755.89 758.62 755.37 Inf Inf 779.84 Inf Inf Inf Inf Inf 

1.6 770.17 761.57 776.34 Inf Inf Inf 757.19 749.89 750.09 748.63 756.31 753.37 0.00 Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 752.33 761.57 782.84 Inf Inf Inf 756.30 756.30 759.41 757.78 758.80 0.00 753.82 Inf Inf 750.11 Inf Inf Inf Inf Inf 

1.8 757.17 771.53 773.19 784.15 Inf Inf Inf 753.41 750.93 746.22 756.75 757.97 750.11 760.74 Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf 773.19 775.62 777.64 Inf Inf Inf Inf Inf 756.30 753.64 752.92 753.02 755.07 Inf Inf Inf Inf Inf Inf Inf 

2.0 771.53 779.84 775.28 777.71 Inf Inf Inf Inf Inf Inf 756.77 752.84 752.84 759.63 Inf Inf Inf Inf Inf Inf Inf 

Figure 4.26: Parameterized of instance E241-22k, feasible to Initial Solution with of λ=1.8 and μ=0.9 values. 
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APPENDIX W 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E253-27-k 
                     

0.0 4504.61 4417.25 4294.71 4388.81 4449.75 4514.16 4703.56 4411.98 4516.61 445   7.55 4482.02 4610.98 4551.79 4625.26 4527.74 4679.57 4587.06 4636.79 4548.63 4593.91 4528.75 

0.1 Inf 1222.16 1226.41 1192.34 1162.99 1121.67 Inf 1076.64 988.14 962.49 Inf Inf Inf 2364.42 2406.94 2462.55 2443.45 2513.61 2543.49 2565.41 2594.10 

0.2 1127.70 1080.18 1141.39 1053.50 1069.71 Inf 998.61 958.32 955.07 901.82 Inf 1015.25 Inf 2334.07 2467.61 2375.19 2400.62 2438.66 2486.72 2481.71 2508.37 

0.3 1043.51 1055.25 1023.17 1015.43 1001.43 976.07 980.91 968.27 902.11 901.79 932.11 Inf Inf Inf 2362.70 2368.22 Inf 2410.29 2385.35 2393.49 2410.15 

0.4 Inf 992.36 1015.93 990.69 963.71 Inf 959.03 938.59 899.03 902.05 919.75 Inf Inf Inf Inf Inf 2320.56 2368.99 Inf 2415.44 2394.83 

0.5 997.55 978.39 970.23 977.71 963.72 968.27 930.67 903.63 899.03 904.39 Inf Inf Inf Inf Inf Inf 2360.50 2338.30 2349.13 2363.97 2455.34 

0.6 972.56 973.98 963.11 950.39 957.77 930.67 900.27 Inf 901.63 Inf 918.66 Inf Inf Inf Inf Inf Inf 2350.39 2350.07 2351.52 2365.96 

0.7 967.03 963.29 958.49 963.44 929.72 903.54 902.94 903.73 901.48 Inf 907.70 Inf Inf Inf Inf Inf Inf Inf Inf 2367.11 2359.56 

0.8 971.68 Inf Inf 937.15 930.67 Inf Inf 899.03 Inf 906.69 Inf Inf 908.69 Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 967.33 956.66 930.99 930.67 902.30 902.37 899.03 Inf 901.32 901.79 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 963.86 939.78 935.12 900.75 900.96 903.15 902.28 Inf 903.73 899.03 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 941.34 Inf Inf Inf 903.54 899.15 901.63 904.30 903.69 904.49 909.70 908.69 Inf Inf Inf 949.65 Inf Inf Inf Inf Inf 

1.2 933.16 930.67 Inf Inf 901.92 Inf 902.05 899.07 899.03 902.96 Inf Inf Inf Inf Inf 929.56 Inf Inf Inf Inf Inf 

1.3 939.91 Inf 905.86 Inf Inf 906.24 899.10 904.39 901.82 896.56 910.46 Inf Inf Inf Inf Inf 958.86 Inf Inf Inf Inf 

1.4 907.52 909.77 904.75 911.05 905.07 Inf 899.03 902.28 899.25 Inf 907.31 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 910.19 910.50 911.43 911.05 Inf Inf Inf 902.28 900.49 Inf Inf Inf Inf Inf Inf Inf 908.69 Inf Inf Inf Inf 

1.6 Inf Inf Inf Inf Inf 909.39 Inf Inf 905.59 Inf Inf Inf Inf Inf Inf Inf 908.69 Inf Inf Inf Inf 

1.7 Inf Inf 910.18 Inf 908.49 909.39 909.80 Inf Inf 899.00 917.94 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 908.54 908.20 Inf Inf Inf 906.21 Inf 906.40 902.91 Inf Inf 914.72 Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 909.43 910.19 Inf 907.58 909.77 911.43 908.14 Inf 905.86 Inf 921.92 Inf Inf Inf Inf Inf Inf Inf 923.36 Inf Inf 

2.0 908.93 Inf 912.20 Inf Inf Inf 911.10 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 945.69 Inf 

Figure 4.27: Parameterized of instance E253-27k, feasible to Initial Solution with of λ=1.3 and μ=0.9 values. 
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APPENDIX X 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E256-14k 
                     

0.0 2102.90 2171.21 2046.77 2283.07 2341.39 2187.15 2268.52 2185.87 2190.44 2377.49 3068.27 3940.87 3973.38 3932.17 3901.52 3974.27 3939.78 3923.98 4040.23 3952.26 3954.70 

0.1 938.65 941.51 925.88 914.87 892.71 816.78 777.47 751.06 700.53 661.17 634.58 Inf 3033.17 3113.93 3131.45 3105.87 3153.89 3201.41 3217.35 3209.59 3209.10 

0.2 793.88 783.10 774.96 751.64 738.44 698.59 702.95 682.78 659.72 625.68 Inf 687.13 Inf 3015.12 3035.28 3059.07 3105.16 3070.04 3086.14 3114.02 3117.08 

0.3 722.32 707.83 689.84 696.48 704.73 692.55 686.80 663.93 623.96 624.53 Inf Inf 734.94 Inf 3012.96 3041.90 3055.14 3087.25 3053.87 3047.30 3077.91 

0.4 Inf 696.94 704.17 Inf 698.15 672.23 655.88 647.55 619.23 623.14 Inf 612.47 687.13 Inf Inf 3015.67 Inf 3071.21 3052.89 3067.89 3079.50 

0.5 694.51 686.86 Inf 677.58 676.50 661.49 656.40 620.03 628.04 624.19 Inf Inf 612.46 708.87 Inf Inf 3022.61 2997.61 3032.20 3048.24 3059.66 

0.6 Inf 685.17 686.93 675.47 655.95 659.82 623.99 620.03 624.19 Inf 635.60 612.47 Inf 687.13 733.41 Inf Inf 2970.45 3015.38 3050.43 3013.54 

0.7 677.62 674.63 659.56 656.64 Inf 626.86 620.03 620.90 623.96 624.89 Inf Inf 612.46 631.76 Inf 736.84 Inf Inf 3033.26 2985.00 2975.55 

0.8 675.62 665.65 666.05 Inf 647.04 624.53 620.03 624.89 624.53 Inf Inf 610.39 612.46 610.39 Inf Inf 743.55 Inf Inf 3024.68 3043.91 

0.9 666.57 663.96 664.98 651.59 620.82 624.65 624.69 624.19 624.19 Inf Inf Inf 612.22 Inf 655.73 714.22 731.31 Inf 851.46 2332.62 3030.32 

1.0 Inf 665.19 652.63 624.30 620.10 627.12 Inf 621.18 619.23 Inf Inf 613.48 Inf 613.22 612.22 690.29 722.84 748.02 Inf 853.28 Inf 

1.1 657.66 652.98 626.86 623.88 620.03 623.97 620.03 619.23 624.19 619.23 630.94 Inf Inf Inf Inf 664.10 Inf 724.19 745.89 750.23 Inf 

1.2 636.29 Inf 626.69 620.03 625.04 624.19 624.19 624.19 624.19 Inf Inf 612.47 Inf Inf 613.22 Inf 688.45 Inf Inf 739.44 Inf 

1.3 Inf 632.93 624.19 625.37 620.82 624.19 624.19 622.89 620.10 619.23 633.56 Inf Inf Inf 613.46 Inf 671.13 706.92 728.51 747.92 Inf 

1.4 636.69 624.19 623.80 622.89 625.04 Inf Inf 617.52 623.97 624.53 Inf Inf Inf Inf 612.54 613.22 Inf 688.16 Inf Inf Inf 

1.5 624.19 623.07 625.37 Inf 625.53 Inf Inf 628.35 619.82 Inf 636.24 Inf 612.46 Inf Inf 613.22 Inf 678.04 689.44 717.18 Inf 

1.6 624.19 623.80 628.35 Inf 623.96 Inf Inf Inf 619.23 Inf Inf 612.47 Inf Inf Inf Inf Inf Inf Inf 711.33 728.51 

1.7 Inf 623.35 622.89 628.35 Inf Inf Inf 625.53 Inf 621.42 Inf Inf Inf Inf Inf Inf Inf Inf 672.97 Inf Inf 

1.8 620.82 624.19 Inf Inf Inf 624.19 619.82 624.19 620.90 Inf Inf 611.51 Inf Inf Inf Inf Inf Inf Inf Inf 697.32 

1.9 Inf Inf 624.19 620.82 628.39 620.82 619.23 624.39 619.23 Inf Inf Inf Inf 611.50 Inf Inf Inf Inf Inf 681.25 Inf 

2.0 623.97 624.19 Inf 624.19 624.19 Inf Inf Inf Inf Inf 637.00 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

Figure 4.28: Parameterized of instance E256-14k, feasible to Initial Solution with of λ=0.8 and μ=1.3 values. 
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APPENDIX Y 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E301-28k 
                     

0.0 5259.57 5555.25 5330.05 5401.32 5433.11 5353.61 5468.80 5200.95 5325.45 5392.82 5061.17 5265.20 5257.24 5333.88 5201.92 5013.79 5479.49 5316.15 5223.98 5253.00 5470.44 

0.1 1538.22 1603.68 1553.12 1375.33 1307.01 1274.69 1235.56 1162.36 1132.92 1083.09 1099.22 2313.77 2801.71 2831.85 2803.01 2820.01 2852.32 2895.11 2865.95 2892.32 2942.55 

0.2 1245.28 1253.79 1244.56 1179.44 1161.67 1142.13 1128.26 1114.14 1082.19 1082.70 1099.68 1121.93 2283.96 2759.78 2790.38 2776.63 2822.95 2809.96 2806.88 2807.32 2840.62 

0.3 1159.52 1109.53 1101.89 1118.62 1115.79 1137.09 1123.75 1082.19 1104.30 Inf 1103.47 1124.96 1118.56 2296.16 2745.34 2767.48 2789.68 2778.32 2810.38 2839.53 Inf 

0.4 1118.79 1109.69 1118.03 1100.99 1101.73 1091.85 1079.53 1093.23 1077.68 1087.12 1092.45 1104.95 1105.61 1207.24 2296.16 Inf Inf 2792.13 2790.38 2784.75 2786.64 

0.5 1099.20 1102.24 1090.80 1090.55 1096.27 1080.89 1079.53 1072.05 1086.03 Inf 1087.34 1113.57 1132.01 1127.39 1207.24 2283.91 2750.40 2779.14 2788.62 2773.21 2791.37 

0.6 1120.03 1089.82 1087.73 1079.04 1077.73 1079.53 1077.55 1081.43 1094.91 1095.77 Inf 1095.35 Inf 1111.42 1120.36 Inf 2287.76 Inf Inf 2759.95 2777.41 

0.7 1108.84 1110.10 1079.04 1076.91 1071.80 1074.49 1073.92 1094.80 1092.13 1087.05 1097.60 1094.70 1104.24 1114.27 1116.97 1189.76 1321.48 2278.50 Inf Inf 2767.27 

0.8 1095.49 1079.04 1071.80 1071.80 1071.80 1071.80 1065.00 Inf 1092.89 1087.58 1084.15 Inf 1106.76 1113.04 1110.53 1124.77 1207.24 Inf 2282.10 Inf Inf 

0.9 1078.50 1073.78 1071.80 1078.50 1072.50 1067.17 1086.75 1091.62 1091.03 1085.71 1088.41 1098.51 Inf 1119.32 1109.82 1125.54 1126.37 1207.24 0.00 2287.17 Inf 

1.0 1069.29 1067.77 1068.73 1070.76 1066.78 1079.76 1096.54 1095.00 1098.51 1098.37 1089.94 1079.07 1109.45 1114.18 1127.29 1112.65 1116.97 1151.70 1207.24 Inf 2317.62 

1.1 1067.93 1071.57 1071.87 1068.83 1076.31 1070.09 1088.98 1082.67 1097.32 1091.55 1098.37 1099.31 1103.97 1097.33 1137.58 1109.45 1120.56 1126.56 1187.14 Inf Inf 

1.2 1069.61 1067.77 1073.09 1066.52 1072.07 1070.42 Inf 1066.00 1080.74 1093.33 1077.58 1093.28 1075.81 1106.00 1105.64 1103.79 1110.62 1118.76 1118.56 1207.24 0.00 

1.3 1067.93 1073.59 1067.77 1063.11 1064.01 Inf 1061.35 1076.37 1067.08 1068.55 1096.05 1094.40 1083.91 1107.51 Inf 1112.32 1106.19 1116.97 1125.11 1122.16 1203.94 

1.4 1071.90 1069.61 1063.26 1064.96 Inf 1063.68 1062.99 1063.04 1068.53 Inf 1055.87 Inf 1084.56 1090.33 1092.45 1139.61 1107.28 1103.51 1124.28 1127.07 1180.64 

1.5 1069.61 1064.55 1064.12 Inf 1063.02 Inf 1062.16 1066.68 1064.01 1072.15 1051.58 Inf 1051.51 1076.54 1093.71 1088.92 1107.41 1099.94 1126.11 1122.71 1127.82 

1.6 1069.61 1063.47 1097.63 Inf Inf 1062.74 1065.01 Inf 1062.25 1065.61 1056.59 Inf 1057.23 1080.15 1083.62 Inf 1105.24 1110.43 1105.53 1124.51 1125.70 

1.7 1081.60 1071.90 Inf 1097.69 Inf Inf Inf 1057.33 1063.80 1065.99 1058.50 Inf Inf 1074.31 1081.91 1077.13 Inf 1106.47 1108.71 1115.88 1124.28 

1.8 1074.35 1104.68 Inf Inf Inf Inf Inf Inf 0.00 1062.30 1062.02 1060.80 Inf 1060.87 1074.31 1074.76 Inf 1105.53 1100.47 1113.16 1122.47 

1.9 1075.17 Inf Inf Inf Inf Inf Inf Inf Inf Inf 1061.38 1061.31 1060.80 1061.07 0.00 1080.27 Inf Inf 1115.22 1110.57 1123.57 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1055.88 1053.15 1054.34 1067.26 1079.27 1074.76 1094.41 Inf 1113.55 1108.66 1103.85 

Figure 4.29: Parameterized of instance E301-28k, feasible to Initial Solution with of λ=1.5 and μ=1.2 values. 
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APPENDIX Z 

Objective 

Function 
 u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E321-30k                                           

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 6223.7

1 

6602.8

2 

6677.79 6579.72 6290.44 6605.21 6847.26 6639.16 6454.59 6515.95 6601.23 

0.1 Inf Inf Inf Inf Inf Inf 1451.3

0 

Inf Inf Inf Inf Inf 3277.53 3230.94 3442.10 3425.32 3450.49 3553.40 3603.50 3583.49 3657.06 

0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1243.7

9 

Inf Inf 3271.09 0.00 3369.27 Inf 0.00 0.00 3431.85 

0.3 Inf Inf Inf Inf 1287.32 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 3252.39 3343.39 Inf 0.00 3438.29 3460.54 

0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1246.62 Inf Inf Inf Inf Inf 3314.22 3367.71 Inf 

0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1294.99 Inf Inf 3276.80 0.00 3295.82 Inf Inf 

0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1243.79 1307.71 Inf Inf 3216.53 0.00 3312.67 3273.97 

0.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1284.61 1300.24 Inf Inf Inf Inf 3322.39 

0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1243.79 Inf Inf Inf Inf Inf Inf 

0.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1243.79 1284.04 1302.71 Inf Inf Inf 

1.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1267.45 Inf Inf Inf 1534.20 

1.2 Inf Inf Inf Inf 1144.23 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1252.27 1281.07 Inf Inf Inf 

1.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1238.97 1272.75 Inf Inf Inf 

1.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1252.27 Inf Inf Inf 

1.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1144.66 0.00 Inf Inf Inf 

1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1252.27 Inf Inf 

1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1246.86 Inf 

1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1246.94 

Figure 4.30: Parameterized of instance E321-30k, feasible to Initial Solution with of λ=0.8 and μ=1.3 values. 
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APPENDIX A1 

Objective 

Function 
 u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E324-16k                                           

0.0 3235.39 3064.51 2955.86 3029.09 3087.58 3101.73 3097.93 3150.33 3231.95 2964.08 Inf 5474.70 5690.80 5519.55 5536.62 5557.88 5676.29 5531.86 5610.06 5535.13 5628.03 

0.1 1169.01 1184.26 1196.16 1137.23 1100.22 1029.23 996.20 955.20 872.09 860.75 798.83 Inf 4345.15 4406.69 4385.75 4439.38 4457.47 4436.48 4491.97 4508.38 4487.86 

0.2 1005.04 998.94 996.53 953.95 929.22 911.35 878.92 869.35 841.36 787.92 807.93 877.87 Inf 4267.85 4353.83 4384.60 4391.85 4430.36 4380.09 4454.49 4446.10 

0.3 936.09 924.03 892.33 896.33 871.03 880.06 876.66 843.60 794.05 788.05 817.11 767.97 939.53 Inf 4301.19 4254.46 4362.45 4332.02 4390.81 4383.90 4414.32 

0.4 912.27 891.76 874.54 872.05 868.83 868.66 846.39 823.39 790.48 785.07 813.96 764.61 878.22 953.04 Inf 4221.15 4275.05 4326.78 4322.62 4360.96 4289.01 

0.5 884.12 870.27 873.62 865.81 850.79 841.87 830.33 803.95 794.54 788.77 807.88 765.74 764.14 908.79 964.70 Inf 4214.34 4328.12 4292.04 4394.97 4267.71 

0.6 873.62 853.64 866.52 863.27 855.08 822.46 802.48 792.09 788.05 784.44 808.59 765.74 763.31 875.03 940.06 959.29 Inf 4231.22 4311.57 4257.18 4261.06 

0.7 863.98 861.37 848.59 838.82 832.55 813.99 800.67 803.95 787.01 786.03 797.05 764.14 764.14 798.58 Inf 947.52 984.57 Inf 4277.56 4280.42 4337.90 

0.8 863.88 856.73 845.59 842.64 805.08 798.58 798.55 800.92 794.54 788.77 809.50 766.71 765.11 766.35 874.82 918.98 953.04 1007.65 Inf 4349.38 4315.74 

0.9 856.48 851.79 833.90 827.61 803.17 800.67 798.55 798.74 786.03 794.54 802.98 770.25 772.81 765.11 831.42 882.08 940.06 961.12 1029.83 Inf 4341.48 

1.0 826.15 831.57 817.54 800.83 797.65 798.49 790.66 798.55 782.10 788.00 806.85 767.17 771.78 775.29 770.98 875.01 903.98 944.71 Inf 1094.74 Inf 

1.1 842.98 821.25 816.77 803.51 797.65 798.49 800.95 798.49 788.52 785.07 806.88 772.59 771.78 771.46 771.78 830.09 870.80 920.38 946.99 Inf Inf 

1.2 825.01 819.72 802.48 800.67 791.59 800.92 798.49 798.49 785.03 782.10 811.32 772.59 772.59 769.28 771.78 777.78 0.00 901.02 937.51 955.19 Inf 

1.3 820.50 815.85 801.49 803.95 791.59 803.95 800.95 800.92 786.76 782.94 805.41 770.35 769.27 769.28 769.28 773.31 840.54 879.55 918.71 940.34 962.45 

1.4 818.72 798.58 800.67 798.22 797.05 798.49 789.96 803.95 782.94 794.54 810.54 767.54 769.27 769.27 769.28 769.28 801.14 886.60 896.01 Inf 947.52 

1.5 802.48 800.46 799.91 789.73 800.92 800.95 798.49 803.95 794.54 794.54 800.01 763.62 767.58 767.58 771.48 769.27 770.41 840.66 888.24 901.02 937.51 

1.6 799.81 797.05 798.22 790.87 792.21 800.95 800.16 799.08 794.54 794.54 0.00 763.75 766.80 767.58 766.45 771.48 769.27 816.20 Inf 894.81 912.80 

1.7 799.05 797.05 800.16 797.05 791.59 798.49 791.17 800.16 784.70 784.70 808.16 766.64 763.75 766.80 763.62 767.58 763.62 769.27 837.07 895.01 901.02 

1.8 799.05 790.81 800.16 798.55 798.22 789.73 803.95 800.16 782.94 784.70 808.97 766.20 769.48 763.75 763.75 763.75 767.58 767.58 832.76 Inf 895.56 

1.9 800.50 794.46 798.55 804.21 798.55 804.21 800.16 803.95 794.54 784.70 820.89 767.81 766.16 766.16 766.80 766.80 766.80 765.12 784.93 861.47 884.42 

2.0 795.47 798.55 798.55 804.21 804.21 801.20 790.00 790.66 786.79 784.70 815.10 765.13 767.04 766.20 766.20 766.64 766.80 765.25 767.94 829.16 Inf 

Figure 4.31: Parameterized of instance E324-16k, feasible to Initial Solution with of λ=0.6 and μ=1.2 values. 
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APPENDIX B1 

Objective 

Function  u (μ) 
Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E361-33k 
                     

0.0 7108.16 7237.96 7129.38 7474.79 7319.61 7358.97 7338.98 7561.57 7253.54 7020.63 6935.71 7207.33 7485.54 7453.74 7214.62 7291.21 7482.18 7571.09 7428.10 7223.14 7482.58 

0.1 2119.44 2067.08 2076.59 1901.10 1819.32 1699.13 1692.65 1567.38 1537.47 1482.78 1496.06 Inf Inf 4225.23 4161.57 4230.16 4275.39 4272.18 4347.70 4326.63 4348.93 

0.2 1716.97 1717.95 1681.94 1603.72 1592.66 1546.89 1552.85 1529.14 1486.81 1472.93 Inf Inf Inf Inf Inf 4219.90 4239.08 4194.76 4191.68 4215.89 4218.42 

0.3 1553.95 1519.19 1513.84 1492.43 1520.47 1542.87 1504.76 Inf 1508.56 1492.58 1507.49 1512.86 1520.75 Inf Inf 4190.10 4192.59 Inf Inf 4235.79 4200.12 

0.4 Inf 1505.37 1506.63 1507.52 1492.28 Inf 1477.62 Inf 1482.14 1487.29 1501.39 Inf Inf Inf Inf Inf Inf Inf 4188.82 4185.21 4212.45 

0.5 1503.72 Inf 1490.60 1513.74 Inf 1466.25 1475.83 1482.96 1479.87 Inf 1480.31 Inf 1518.80 1515.15 Inf Inf Inf Inf Inf 4181.99 4190.50 

0.6 1512.91 1479.35 1482.55 1482.10 1484.20 1468.35 1472.67 1461.76 1492.12 Inf 1491.76 1501.99 1510.24 Inf 1523.48 Inf Inf Inf Inf Inf Inf 

0.7 1507.11 Inf 1482.46 1482.65 1474.58 1471.33 1472.05 1463.66 1465.45 1467.59 Inf 1498.07 1488.60 1516.28 1515.15 1607.94 Inf Inf Inf Inf Inf 

0.8 1494.36 1470.04 1468.40 1463.49 1467.55 Inf 1461.18 1459.28 Inf Inf Inf Inf Inf 1509.85 Inf 1524.49 Inf Inf Inf Inf Inf 

0.9 Inf Inf 1463.49 Inf Inf 1462.14 Inf 1462.12 1464.61 1463.49 1467.37 Inf 1503.99 1531.00 1502.11 1518.74 1518.01 Inf Inf Inf Inf 

1.0 1469.38 Inf Inf Inf 1457.02 Inf Inf Inf 1460.39 Inf 1455.63 1475.36 1510.98 1496.77 1503.76 Inf 1520.89 1566.97 Inf Inf Inf 

1.1 1467.47 1464.13 1458.21 1457.11 1468.26 Inf 1459.71 1466.80 1463.03 1456.00 Inf 1471.97 1504.52 1495.42 1530.19 Inf 1524.49 1524.49 1608.10 Inf Inf 

1.2 1461.79 Inf 1460.53 Inf Inf 1453.69 1461.10 1467.53 1462.11 1470.27 Inf Inf 1461.98 1496.01 Inf Inf Inf 1521.37 1523.81 Inf Inf 

1.3 Inf 1466.53 Inf Inf 1465.29 1460.66 1455.90 1461.02 1461.07 1462.64 1455.26 Inf 1466.98 Inf 1527.31 Inf Inf 1523.19 1520.55 1522.51 Inf 

1.4 1464.00 Inf 1449.49 1441.40 1454.69 1453.48 1453.99 1458.89 1458.82 1458.06 0.00 Inf Inf 1489.54 Inf 1527.34 Inf Inf 1523.19 1520.32 1611.06 

1.5 1468.89 1463.68 1450.66 1443.31 Inf 1460.66 1463.98 1460.48 1459.30 1460.58 1450.76 1459.59 1455.00 1451.77 1487.41 Inf Inf Inf 1517.44 1517.44 1528.26 

1.6 Inf 1480.23 Inf Inf Inf 1444.13 1461.30 1472.44 1455.55 1463.74 1463.17 Inf Inf Inf Inf 1457.88 Inf Inf Inf 1515.15 1523.19 

1.7 1480.68 Inf Inf Inf 1489.96 1481.02 Inf Inf 1453.94 1454.29 Inf 1464.78 Inf Inf 1460.99 Inf 1461.11 Inf Inf 1524.80 1515.15 

1.8 1477.23 1498.63 Inf Inf Inf 1489.13 1485.87 1452.45 Inf 1452.98 1461.96 1453.85 1451.22 Inf Inf 1457.87 Inf Inf Inf Inf 1523.19 

1.9 1480.66 Inf Inf Inf Inf 1477.75 1485.87 1482.60 Inf 1462.54 1451.06 Inf Inf 1463.95 1456.46 1461.73 Inf 1462.73 Inf Inf 1523.19 

2.0 Inf Inf Inf Inf Inf Inf 1481.36 1481.02 Inf Inf Inf Inf Inf Inf Inf 1458.81 1449.36 1460.81 1498.95 Inf Inf 

Figure 4.32: Parameterized of instance E361-33k, feasible to Initial Solution with of λ=1.4 and μ=0.3 values. 
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APPENDIX C1 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E397-34k 
                     

0.0 8408.87 8673.77 8861.33 8787.54 8321.22 8519.62 8423.31 8807.25 8656.44 8286.69 8517.18 8972.65 8879.40 9303.00 8703.97 8583.45 9024.89 9077.77 9158.63 8681.35 8933.15 

0.1 Inf Inf 1988.80 1944.64 1930.07 1822.10 Inf 1647.62 Inf Inf 1469.89 Inf 4495.43 4490.65 4524.01 4701.08 4647.53 4660.64 4708.49 4859.47 4728.35 

0.2 Inf 1796.66 Inf Inf Inf 1644.00 1563.42 Inf Inf 1441.51 Inf Inf Inf 4397.88 4443.17 4474.68 4551.90 4555.78 4573.82 4529.53 4651.49 

0.3 Inf Inf Inf 1613.44 1569.33 1550.34 Inf Inf 1446.45 1442.38 Inf Inf Inf Inf 4465.16 4437.93 4500.26 4537.50 4573.64 4507.16 4545.57 

0.4 1613.50 1588.91 Inf 1569.94 Inf Inf 1520.77 1440.23 1444.72 Inf 1432.87 Inf Inf Inf Inf 4491.49 4406.49 4523.31 4491.14 4587.69 4515.24 

0.5 Inf Inf 1540.43 Inf Inf Inf 1450.93 Inf 1444.16 Inf Inf 1418.32 Inf Inf Inf Inf 4466.14 4438.89 4483.87 4467.98 4525.91 

0.6 1554.81 Inf Inf 1505.31 1503.29 Inf 1438.37 Inf 1444.16 1436.85 Inf Inf Inf Inf Inf Inf Inf 4486.70 4446.75 4463.05 4481.77 

0.7 Inf Inf Inf 1512.44 Inf Inf 1448.19 Inf Inf 1438.03 Inf Inf 1433.31 1460.12 Inf Inf Inf Inf 4452.40 Inf 4449.64 

0.8 Inf 1504.00 1519.72 Inf 1446.62 1444.18 Inf 1442.19 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 4445.91 4449.16 

0.9 Inf Inf Inf 1442.17 1443.78 Inf 1440.33 Inf Inf Inf Inf 1433.28 1419.70 Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 Inf Inf Inf 1446.61 1442.48 1442.99 Inf 1438.05 Inf Inf Inf Inf 1423.37 Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 Inf Inf 1441.94 1443.75 Inf 1442.47 Inf Inf Inf 1441.00 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 Inf 1446.82 Inf Inf Inf Inf 1444.62 Inf 1444.62 Inf Inf Inf Inf Inf Inf 1449.06 Inf Inf Inf Inf Inf 

1.3 Inf 1442.48 Inf 1439.77 Inf Inf Inf Inf 1440.42 Inf Inf Inf 1433.66 Inf 1426.17 Inf Inf Inf Inf Inf Inf 

1.4 1440.98 1439.79 1444.12 1442.92 Inf 1438.59 Inf Inf Inf 1440.42 1438.90 Inf 1419.68 Inf Inf Inf 1466.82 Inf Inf Inf Inf 

1.5 Inf Inf Inf Inf Inf Inf 1436.18 Inf 1440.34 Inf Inf Inf Inf 1426.53 Inf Inf Inf Inf Inf Inf Inf 

1.6 Inf Inf Inf 1444.59 Inf 1442.99 1437.03 1434.79 1443.46 1438.63 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 Inf Inf 1441.62 1442.48 1441.37 Inf 1434.99 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf 1439.23 Inf Inf 1438.54 Inf Inf 1438.83 1441.42 Inf 1411.05 Inf Inf Inf 1429.23 1426.17 Inf Inf Inf Inf 

1.9 Inf Inf Inf Inf 1439.23 Inf Inf Inf Inf 1440.56 Inf Inf Inf Inf Inf Inf 1422.75 Inf Inf Inf Inf 

2.0 Inf 1441.62 Inf Inf Inf 1432.50 Inf Inf Inf 1440.56 1429.91 Inf Inf Inf Inf Inf Inf Inf Inf 1496.40 Inf 

Figure 4.33: Parameterized of instance E397-34k, feasible to Initial Solution with of λ=1.8 and μ=1.1 values. 
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APPENDIX D1 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E400-18k 
                     

0.0 4179.05 3941.35 4374.18 4191.76 4376.95 4299.33 4061.59 4162.48 4325.91 4078.79 5669.71 7615.50 7576.15 7621.91 7631.42 7774.91 7663.35 7765.37 7626.79 7631.80 7682.67 

0.1 1523.70 1507.15 1452.96 1436.40 1353.34 1311.77 1232.51 1151.71 1089.37 1061.33 1011.58 Inf 5807.88 5901.64 5978.24 5997.54 6042.51 6105.35 6119.95 6145.66 6182.43 

0.2 1264.22 1272.18 1215.48 1167.74 1163.43 1136.62 1103.03 1077.02 1049.12 987.78 1003.51 1080.09 Inf 5716.37 5820.16 5861.52 5962.92 6019.56 6069.45 6069.23 6019.79 

0.3 1180.45 1135.67 1105.18 1121.15 1102.67 1088.86 1074.09 1062.77 1002.95 987.78 1002.33 970.13 Inf Inf 5729.89 5742.06 5801.02 5812.98 5960.93 5946.87 6002.17 

0.4 1118.87 1112.67 1102.89 1082.39 1090.23 1061.67 1047.41 1022.84 988.32 989.19 1011.34 971.47 1081.15 1190.84 4793.08 5812.13 5688.37 5768.23 5820.61 5808.25 5897.25 

0.5 1093.14 1082.17 1102.37 1071.32 1062.48 1056.02 1021.72 993.07 987.78 988.72 992.72 970.45 970.45 1126.47 1194.32 Inf 5848.34 5772.00 5810.60 5811.60 5796.27 

0.6 1078.46 1078.99 1078.63 1071.47 1049.02 1025.89 998.87 993.07 987.78 989.19 1010.13 968.35 968.35 1078.99 Inf 1203.36 Inf 5745.14 5771.64 5793.13 5777.99 

0.7 1075.00 1061.57 1061.91 1050.55 1026.34 1005.05 1001.22 999.66 989.19 988.72 989.43 968.35 968.35 997.07 1123.48 Inf 1210.37 Inf 5771.02 5852.86 5786.56 

0.8 1051.92 1053.41 1050.29 1038.06 1022.13 987.43 992.45 989.34 989.19 985.90 1004.33 968.35 968.35 969.59 1077.26 1145.88 1192.13 Inf Inf 5796.75 5807.74 

0.9 1061.19 1064.74 1033.16 1020.12 989.34 987.43 992.45 986.31 987.56 982.22 996.92 968.35 968.35 969.59 1059.03 1090.08 Inf 1187.90 1336.66 Inf 5804.65 

1.0 1064.74 1024.24 1025.07 1015.87 987.43 988.53 989.34 986.31 987.38 982.22 997.79 966.93 966.93 969.59 969.59 1076.60 1126.81 1167.97 1201.55 1323.23 Inf 

1.1 1039.81 1021.89 1004.32 990.95 988.53 988.53 989.34 989.34 981.41 989.86 997.14 966.93 966.93 968.17 968.17 1048.75 1105.86 1145.09 1182.70 1202.47 1359.55 

1.2 1017.49 1013.65 990.63 987.43 988.53 988.53 989.34 989.34 982.22 987.38 994.27 966.93 966.93 968.17 968.17 981.10 1057.68 1126.09 1164.06 1190.71 1203.17 

1.3 1019.37 1012.33 989.34 988.53 989.34 989.34 992.19 989.34 981.41 982.22 998.58 966.93 966.93 968.17 968.17 968.17 1053.25 1116.17 1142.28 Inf 1182.50 

1.4 1015.72 990.05 987.43 989.34 988.53 989.34 986.31 989.34 997.07 989.86 995.35 966.93 966.93 968.17 968.17 968.17 997.07 1070.27 1096.15 1149.65 Inf 

1.5 992.54 989.59 989.59 988.53 989.34 988.53 989.34 989.34 989.18 982.22 1012.94 966.93 966.93 968.17 968.17 968.17 968.17 1053.25 1092.04 1101.69 Inf 

1.6 987.43 989.59 989.59 989.59 988.53 988.53 986.31 989.34 990.93 982.22 997.69 Inf 968.41 968.17 968.17 968.17 968.17 1042.93 1072.01 1100.24 1143.17 

1.7 989.59 988.53 989.59 989.59 989.34 989.34 986.31 989.34 988.17 981.41 996.96 Inf 969.49 Inf 968.17 968.17 968.17 967.35 1046.02 1065.62 1101.69 

1.8 989.59 988.53 989.59 988.53 988.53 989.34 986.63 989.34 984.80 980.85 984.36 Inf Inf Inf 970.47 Inf 968.17 967.35 1059.38 1072.01 1098.05 

1.9 988.53 988.53 989.59 989.59 988.53 989.59 992.19 986.31 997.07 986.80 1009.81 Inf Inf 971.55 Inf Inf Inf 967.35 985.40 1042.23 1056.83 

2.0 989.59 989.59 989.59 988.53 988.53 988.53 986.63 989.34 987.56 981.41 994.84 969.49 Inf Inf 970.47 970.47 Inf Inf 967.35 1073.16 1071.54 

Figure 4.34: Parameterized of instance E400-18k, feasible to Initial Solution with of λ=1.0 and μ=1.1 values. 
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APPENDIX E1 

Objective 

Function  u (μ) 
Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E421-41k 
                     

0.0 9798.40 9807.69 9375.47 9673.82 9871.35 9817.12 9629.85 9521.69 9672.74 9908.73 9371.60 10066.83 10159.25 10099.46 10032.71 10170.38 10178.87 9813.91 10241.46 10101.91 9972.63 

0.1 2882.04 2807.54 2814.30 2419.98 2402.38 2334.74 2335.73 2053.47 2082.19 1972.16 1960.23 Inf 6110.58 6126.34 6085.67 6164.48 6164.74 6224.04 6200.24 6343.03 6325.26 

0.2 2311.89 2292.82 2232.06 2156.88 2063.98 2060.62 2071.90 2024.43 1973.43 1961.83 1966.61 2000.24 4820.34 6116.72 6097.15 6117.79 6123.34 6046.05 6089.35 6110.27 6130.19 

0.3 2088.50 2009.77 2013.46 2007.91 2033.21 2067.56 2035.07 1971.24 2023.82 1956.89 1960.45 2014.66 2035.33 4748.20 6030.40 6097.55 6120.52 6140.01 6145.31 6143.84 6097.75 

0.4 2008.89 2004.92 2007.96 1985.76 1996.07 1980.87 1978.25 2022.10 1954.38 1973.74 1965.97 1992.13 2000.72 Inf 4765.42 6019.31 6127.16 6094.21 6094.77 6154.52 6140.97 

0.5 2023.49 2007.86 2014.36 1988.31 2004.99 1970.86 1970.16 1972.25 1962.88 1957.94 1969.10 1995.25 2007.85 2010.46 Inf 4768.48 6097.38 6040.66 6081.10 6104.06 6112.08 

0.6 2011.42 1987.69 2003.04 1959.91 1970.88 1956.70 1966.10 1954.33 1968.38 1960.70 1962.99 1978.18 2015.73 2009.04 2019.71 Inf 4839.15 5981.01 6030.45 6105.63 6101.11 

0.7 1987.68 1976.21 1977.63 1952.78 1959.40 1968.37 1954.41 1953.79 1950.94 1967.99 1959.27 1952.39 1994.93 2003.97 2016.35 2177.28 Inf 4790.35 6001.30 6011.75 6070.03 

0.8 2003.61 1964.84 1963.72 1960.24 1967.08 1961.65 1935.28 1947.55 1961.42 1953.27 1959.15 1970.88 1990.28 2014.68 1990.83 2009.16 Inf Inf Inf 6066.23 6016.51 

0.9 1957.12 1951.19 1960.44 1959.54 1970.93 1946.55 1951.89 1942.43 1957.54 1946.04 1963.33 1959.04 1989.41 2003.27 2001.32 2016.51 2027.61 Inf Inf 4744.39 6012.85 

1.0 1957.87 1964.82 1954.30 1960.13 1949.47 1945.82 1941.25 1941.59 1948.79 1959.28 1953.52 1946.72 1994.61 1988.18 2014.49 1992.70 2009.16 2111.46 Inf Inf 4713.15 

1.1 1961.97 1956.48 1953.50 1958.09 1938.67 1928.13 1956.79 1939.60 1946.30 1961.06 1959.53 1964.09 1990.97 1974.00 2053.08 1994.84 2016.18 2009.68 2170.53 Inf Inf 

1.2 1951.88 1956.86 1954.85 1940.91 1933.57 1933.63 1924.86 1942.21 1958.30 1951.77 1957.41 1956.90 1959.15 1973.72 1977.75 2012.83 1993.55 2009.95 2027.45 Inf Inf 

1.3 1956.68 1960.21 1952.41 1924.65 1939.28 1936.48 1935.48 1930.87 1940.66 1931.93 1951.51 1953.23 1963.25 1959.60 2014.46 1997.06 1997.71 2022.06 2022.68 2027.61 Inf 

1.4 1960.87 1963.44 1920.51 1929.85 1931.43 1928.67 1934.60 1939.58 1936.74 1938.18 1917.83 1945.06 1965.27 1952.50 1977.25 2060.77 2010.25 1989.58 2016.51 2027.45 2177.59 

1.5 1965.89 1951.20 1939.63 1926.36 1930.24 1920.59 1935.06 1936.00 1942.09 1918.77 1927.65 1938.71 1930.79 1943.80 1975.57 1964.56 2008.88 1984.07 2015.18 2022.68 2019.71 

1.6 1960.61 1978.87 1969.11 1981.93 1930.47 1936.54 1921.48 1931.09 1930.95 1929.17 1952.76 1932.74 1932.57 1940.59 1935.88 1940.90 1991.30 1992.69 1994.82 2010.44 2014.65 

1.7 1942.07 1948.04 1993.07 1983.86 1985.15 1988.54 1920.06 1929.66 1920.82 1936.26 1940.34 1931.04 1937.98 1938.99 1942.48 1943.51 1953.47 2005.30 2007.17 2015.02 2014.65 

1.8 1946.83 2018.13 2013.44 1993.42 1992.66 1979.08 1984.75 1927.53 1934.93 1929.35 1932.49 1931.36 1934.17 1940.12 1945.09 1942.65 1952.20 2007.66 2002.33 1999.57 2015.02 

1.9 1929.64 2009.52 2012.83 1993.41 1998.70 1978.88 1985.48 1987.03 2005.36 1931.31 1927.53 1941.12 1932.05 1949.51 1939.97 1941.54 1943.12 1953.28 1997.81 1984.85 2010.44 

2.0 2006.30 2005.76 2009.52 2014.57 1999.87 1992.89 1977.29 1984.06 2002.33 2009.90 1928.20 1937.61 1926.05 1941.40 1941.63 1949.96 1938.37 1951.26 1994.58 1995.35 1985.31 

Figure 4.35: Parameterized of instance E421-41k, feasible to Initial Solution with of λ=1.4 and μ=1.0 values. 
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APPENDIX F1 

Objective 

Function  u (μ) 
Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E481-38k 
                     

0.0 11503.83 11878.76 11799.74 11022.72 11104.18 11306.15 11712.31 11292.39 11432.83 11138.79 11428.71 11877.79 11854.58 11993.70 12116.44 11539.56 11428.68 12125.90 12003.44 12008.13 11787.06 

0.1 2447.13 2361.95 Inf 2241.98 2215.04 Inf Inf 2030.60 1923.40 1820.20 1775.19 Inf 5789.60 5872.79 5860.33 6071.75 6073.13 6246.49 6292.33 6295.31 6197.85 

0.2 2160.19 2109.12 2076.42 2040.56 2000.81 1990.96 1915.15 1851.07 1823.60 1743.75 1760.62 1942.37 Inf 5773.20 5812.80 5895.73 5839.51 5878.22 6099.37 6166.01 6141.57 

0.3 2014.57 2030.68 1961.06 1959.05 1944.24 1913.28 1842.55 Inf Inf 1744.01 1754.88 Inf Inf Inf 5748.66 5858.41 5811.90 5845.81 5816.95 6067.15 5984.53 

0.4 Inf 1974.34 1906.83 1899.62 1857.35 1867.31 1792.39 1722.43 1745.78 Inf Inf Inf 1940.97 Inf Inf 5784.60 5841.86 5822.49 Inf 5875.31 5871.31 

0.5 1936.19 1906.95 1857.49 1859.27 1852.47 Inf 1781.43 1741.75 1744.81 Inf 1759.52 Inf Inf 1937.03 2033.95 Inf 5850.94 5819.45 5873.82 Inf Inf 

0.6 1913.24 1871.69 1863.51 1864.32 1794.10 1782.37 1742.71 Inf 1750.98 Inf 1747.57 Inf Inf 1953.62 Inf 2045.07 Inf Inf Inf 5841.23 5870.82 

0.7 1859.75 1849.62 1834.53 1812.16 1792.15 1744.53 Inf Inf 1744.18 Inf Inf Inf Inf Inf Inf 2022.73 2165.69 Inf 5787.65 5783.79 5862.65 

0.8 1831.90 1819.23 1803.94 1801.79 1745.94 1742.24 1742.36 1744.54 1746.26 1745.77 Inf Inf Inf Inf 1910.30 1934.46 Inf Inf Inf 5770.93 5786.18 

0.9 1849.18 1806.29 1809.21 1737.89 Inf Inf Inf Inf 1738.18 Inf Inf Inf Inf Inf Inf 1937.53 Inf Inf Inf Inf 5799.82 

1.0 Inf 1810.84 1781.07 1738.54 Inf 1752.95 1748.19 1744.63 1745.78 Inf 1758.14 1711.31 Inf Inf Inf 1913.80 1933.80 Inf Inf Inf Inf 

1.1 1803.09 Inf 1734.65 1745.47 Inf 1744.30 Inf Inf 1740.13 Inf 1720.16 Inf Inf Inf Inf Inf Inf 1933.80 Inf 2026.55 Inf 

1.2 1776.29 1735.13 1738.94 1744.03 1745.60 1744.23 1740.67 Inf 1745.15 Inf Inf Inf 1709.72 Inf Inf Inf 1910.30 1951.89 Inf Inf Inf 

1.3 1729.73 1736.00 1749.29 Inf 1743.64 Inf 1744.23 Inf Inf 1746.17 Inf Inf Inf Inf 1709.72 1711.31 Inf Inf 1933.80 Inf Inf 

1.4 Inf 1722.89 1753.09 Inf 1735.89 1748.93 1743.26 Inf Inf Inf 1758.95 1709.72 Inf Inf Inf Inf Inf 1929.75 Inf Inf Inf 

1.5 1737.99 Inf 1742.36 1745.28 1742.30 1739.71 1742.29 Inf 1744.66 1742.60 1759.38 Inf Inf Inf Inf Inf 1709.72 Inf Inf 1948.99 Inf 

1.6 Inf Inf 1746.78 1742.23 1742.03 Inf 1730.11 Inf 1743.24 Inf 1758.90 Inf Inf Inf Inf Inf Inf Inf 1930.78 Inf Inf 

1.7 1739.07 1736.97 1750.82 Inf 1748.72 1746.74 1745.69 1750.99 1745.40 1736.46 Inf 1748.87 Inf Inf Inf Inf Inf Inf Inf 1925.96 Inf 

1.8 Inf Inf 1741.08 Inf 1747.82 1737.15 1748.46 Inf Inf 1740.79 1761.16 Inf Inf Inf Inf Inf Inf Inf Inf 1927.38 Inf 

1.9 1751.61 1740.54 1735.63 Inf Inf Inf Inf 1740.58 1740.39 1743.15 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1923.58 

2.0 1740.27 Inf 1737.55 1743.40 1742.15 1745.08 1743.68 1735.32 1739.30 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 1925.75 

Figure 4.36: Parameterized of instance E481-38k, feasible to Initial Solution with of λ=1.2 and μ=1.2 values. 
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APPENDIX G1 

Objective 

Function  u (μ) 

Lambda 

(λ) 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 

E484-19k 
                     

0.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 10310.93 10222.10 10031.38 10288.51 10345.80 10275.61 10186.28 10207.10 10386.44 10210.87 

0.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7670.60 Inf 7890.65 7928.29 8110.75 8092.86 8076.24 8078.44 8126.92 

0.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7805.53 7818.81 7810.82 7980.41 7988.17 Inf 

0.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7642.57 7783.06 7784.30 7880.29 Inf 7880.33 

0.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7616.60 Inf Inf 7868.69 7859.60 

0.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7627.81 7617.26 7715.78 7790.71 

0.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7663.83 Inf Inf 

0.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 7647.95 Inf 7721.32 

0.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

0.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.1 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.2 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.3 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.4 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.5 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.6 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.7 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.8 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

1.9 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

2.0 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

Figure 4.37 Parameterized of instance E484-19k, feasible to Initial Solution with of λ=0.4 and μ=1.6 values. 

 


