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PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA
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DR. JOSÉ LUIS MARROQUÍN ZALETA, CENTRO DE INVESTIGACIÓN EN
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Lugar donde se realizó la tesis: FACULTAD DE INGENIERÍA, C.U.
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Estimación de flujo óptico por medio de la transformada de Hermite

Resumen
Esta tesis describe un nuevo método para estimar el movimiento del corazón en

imágenes de tomograf́ıa por computadora con la inclusión de un modelo bio–inspirado

de representación de imágenes. Nuestra propuesta está basada en la descomposición

polinomial de cada imagen usando la transformada de Hermite rotada como una rep-

resentación de las caracteŕısticas locales de las imágenes desde un punto de vista

perceptivo y dentro de un esquema multiresolución.

La transformada de Hermite es un modelo que incorpora algunas de las más

importantes propiedades de las primeras etapas del sistema de visión humano, tales

como el traslape Gaussiano de los campos receptivos, el modelo de visión basado

en derivadas de Gaussianas a nivel retinal o corteza visual y el análisis a diferentes

resoluciones.

Proponemos un enfoque para la estimación de flujo óptico que incorpora la in-

formación extráıda de las estructuras a partir de los coeficientes de Hermite rotados,

la cual se usa posteriormente como restricciones locales de movimiento dentro de un

método de estimación diferencial que involucra algunos de los elementos observados

en los métodos diferenciales actuales para obtener flujos más exactos.

Considerando la importancia de comprender el movimiento de ciertas estructuras

del corazón tales como el ventŕıculo izquierdo y la pared del miocardio para un mejor

diagnóstico médico, nuestra meta principal es encontrar un método de estimación

útil para asistir en las tareas de diagnóstico de imágenes card́ıacas de tomograf́ıa por

computadora.
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Optical flow estimation using the Hermite transform

Abstract
This thesis describes a new method to estimate the heart’s motion in computer to-

mography images with the inclusion of a bio–inspired image representation model.

Our proposal is based on the polynomial decomposition of each of the images us-

ing the steered Hermite transform as a representation of the local characteristics of

images from an perceptual approach within a multiresolution scheme.

The Hermite transform is a model that incorporates some of the more important

properties of the first stages of the human visual system, such as the overlapping

Gaussian receptive fields, the Gaussian derivative model of early vision and the mul-

tiresolution analysis.

We propose an approach for optical flow estimation that incorporates image struc-

ture information extracted from the steered Hermite coefficients, that is later used

as local motion constraints in a differential estimation method that involves several

of the constraints seen in the current differential methods, which allows obtaining

accurate flows.

Considering the importance of understanding the movement of certain structures

such as left ventricular and myocardial wall for better medical diagnosis, our main

goal is to find an estimation method useful to assist diagnosis tasks in computer

tomography images.
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Chapter 1

Introduction

The fool who thinks he is wise is

just a fool. The fool who knows he

is a fool is wise indeed.

Sidhartha Gautama (563–483 b.c).

Dhammapada.

Congestive heart failure has increased worldwide due to both left ventricular and

right ventricular failure. In the United States, about 5 million patients suffer from

this problem and about 500,000 patients develop this condition each year. Previously

it was due to the left ventricle (LV) pumping blood inefficiently (systolic ventricular

failure). More recently, there has been emphasis on diastolic ventricular failure, where

the systolic function appears to be normal, but diastolic ventricular function is im-

paired, being the cause of 50% of congestive heart failure in these patients. In order

to develop better treatments for congestive heart failure, it is necessary to first under-

stand the basic physiology and movement of both normal and abnormal ventricular

relaxation and contraction [18].

Understanding the movement of certain structures such as left ventricle and my-

ocardial wall is fundamental for better medical diagnosis. This thesis describes a new

method to estimate the heart’s motion in computed tomography (CT) images. We

propose a differential approach to optical flow estimation using the steered Hermite

1
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transform, which is a tool that performs a decomposition of the images into visual

patterns that are relevant to the human vision system (HVS), such as directional

edges, textures, etc. The Hermite transform is an image representation model that

mimics some of the more important properties of early vision such as local processing

and the Gaussian derivative models of receptive fields [85, 52, 51].

Although physicians are often interested in the boundaries of structures, our

method can also estimate motion in homogeneous areas that are also of interest for

medical diagnosis.

The Hermite transform uses a Gaussian window to extract local information from

a image. This information is expanded in terms of a family of orthogonal poly-

nomials. There are reasons why a Gaussian window is used. From a perceptual

standpoint the Gaussian window is a good model of the overlapping receptive fields

found in physiological experiments [67, 44]. According to the scale-space theory, the

Gaussian window minimizes the uncertainty product in the spatial and frequency

domain [83]. It is also mathematically tractable and there is an approximation of

the Gaussian function in the discrete case. The polynomials used to approximate the

local information are determined by the analysis window. For the case of a Gaus-

sian window these polynomials involve the Gaussian derivative operators, found in

the psychophysical modeling of the HVS [50, 12] which provides natural operators

in agreement with the theory scale-space [43]. In [85, 86, 87] it is showed that these

functions model the measured receptive field data more accurately than the Gabor

functions do, with the additional advantage of being orthogonal at the same location

of analysis. Like the receptive fields, both Gabor functions and Gaussian derivatives

are spatially local and consist of alternating excitatory and inhibitory regions within

a decaying envelope.

A multiresolution decomposition using the Hermite transform can be obtained

through a pyramidal scheme [24, 73], where the image is decomposed into a number

of band-pass or low-pass subimages, which are then subsampled in proportion to their

spatial resolution offering a way of relating image structures between different scales.

Like [78] where the retinal image is represented through a wavelet-like transform

with difference of two Gaussian functions (DoG) as basis filters. We use the Hermite



Chapter 1: Introduction 3

transform for the multiscale decomposition to emulate the behavior of retinal ganglion

cell receptive fields that can be described using the DoG at different scales [66]. A

multiresolution approach allows using small windows to better detect fine details and

large windows to analyze low resolution objects, which is one of the main properties

of the HVS.

A rotated version of the Hermite transform provides a very efficient representa-

tion of oriented patterns which enables an adaptation to local orientation content

at each window position over the image, indicating the direction of one-dimensional

pattern. The steered Hermite coefficients are obtained projecting the cartesian Her-

mite coefficients onto one-dimensional coefficients on an axis that makes an angle θ

with the x axis, where the angle θ represents the direction of maximum energy. The

Hermite filters form a steerable basis because they are products of polynomials with a

radially symmetric Gaussian window. Filters of increasing order analyze successively

higher radial frequencies and filters of the same order and different (directional) in-

dex distinguish between different orientations in the image, which is relevant from a

psychophysical approach considering that the HVS calculates Gaussian derivatives at

different scales and different directions.

Optical flow estimation methods calculate apparent velocities that can be associ-

ated with a variation of brightness patterns in a sequence of images. In general these

methods consider that motion is due to the change in position of different cardiac

structures and not due to the relative motion between the observer and the scene or

to variations in scene illumination. Many of the differential optical flow approaches

are based on the work of Horn and Schunck [38], and Lucas and Kanade [49], which

incorporated certain constraints in order to handle the Ill-posed Aperture problem.

We propose an approach for optical flow estimation that involves several of the

constraints seen in the current differential methods, which allows obtaining an accu-

rate optical flow [16, 17, 63]. We use local image constraints as mentioned in [38, 63]

and assume that the flow is piecewise smooth as in [16, 15, 17]. Similarly to [11, 17],

the proposed optimization function is robust to outliers and a multiresolution strategy

was implemented to handle large displacements as mentioned in [11, 5, 53, 54].

Our contribution includes local constraints using the steered Hermite transform
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as a representation of the local image characteristics from an perceptual approach.

In [63] the effect of different local constraints on the data term (intensity, gradient,

Hessian, Laplacian) is described, but in our approach the steered Hermite coefficients

allow including polynomial decomposition of the image and take these parameters

as constraints that include intensity and higher order derivatives, which are useful

to analyze the image in a similar way as is done by the HVS. The use of Gaussian

derivatives allows incorporating image structure information from neighboring pixels

that is robust to noise [49, 10]. This feature is incorporated in a global differential

functional that allows obtaining dense flow fields [38, 57].

The nature of CT images compels the estimation of optical flow algorithms to

be robust in noisy environments, this complicates the accurate calculation of the

derivatives used in classical differential methods that usually uses a smoothing pre-

filter. Using Gaussian derivatives the estimation is more robust to noise because the

smoothing is implicitly included in the proposed functional applied at different scales

of analysis.

In order to expose the patient to less radiation CT cardiac images are captured in

a few discrete times of the cardiac cycle. Therefore there are large displacements of

the structures between two consecutive images. Including a Gaussian window in the

polynomial decomposition of the Hermite transform allows incorporating information

from neighboring pixels that helps finding optical flow in areas that change dramati-

cally from one image to another. Moreover the inclusion of a multiresolution analysis

in the proposed functional also helps dealing with large displacements. In this sense,

motion discontinuities are also dealt with using filters similar to those found in HVS.

In summary, our proposal includes a multiresolution HVS-inspired perspective to

optical flow estimation in CT images. The steered Hermite transform extracts the

local image characteristics, that are later used as motion constraints in a differential

estimation method, which allows obtaining accurate flows.

This thesis is structured as follows. In Chapter 2 we present the theory and

the mathematical foundations of the cartesian Hermite transform, which allows to

consider the Hermite transform as a good model for describing the images. In Section

2.2 we introduce the rotated version of the Hermite transform, which allows locally
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adapting the analysis to representative visual patterns. Related work and elements

of the state of the art of optical flow estimation are shown in Chapter 3. Chapter

4 presents our method differential optical flow estimation using the steered Hermite

coefficients as the main tool of analysis, which includes elements that allow obtaining

a robust optical flow in a perceptual framework. The results obtained are reported

in Chapter 5 and conclusions are given in Chapter 6. Appendixes A and B give

an introduction to CT images and its application to cardiac images. Appendix C

provides a proof for a Hermite transform property that allows us to simplify the

solution of the proposed functional. Finally, some simplifications of the numerical

solution are shown in the Appendixes D and E.





Chapter 2

The Hermite transform as a model

of image representation

The seeker after truth should be

humbler than the dust.

The world crushes the dust under

its feet, but the seeker after truth

should so humble himself that even

the dust could crush him.

Only then, and not till then, will he

have a glimpse of truth

Mahatma Gandhi (1869–1948).

The Hermite transform [52, 51] is a special case of polynomial transform, it can

be considered as an image description model. In order to calculate the Hermite

transform, the original image L(x, y) (where (x, y) are the coordinates of the pixels)

is located at various positions multiplying L(x, y) by: the window function v2(x −
x0, y − y0) at positions (x0, y0) that conform the sampling lattice S:

Lv(x− x0, y − y0) = L(x, y)v2(x− x0, y − y0) (2.1)

7
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By replicating the window function over the sampling lattice, we can define a

weight function different from zero for all (x, y):

V (x, y) =
∑

(x0,y0)∈S

v2(x− x0, y − y0) 6= 0 (2.2)

Therefore the original image is represented within the window by

L(x, y) =
1

V (x, y)

∑
(x0,y0)∈S

L(x, y)v2(x− x0, y − y0) (2.3)

The local information for each analysis window Lv(x − x0, y − y0) is expanded

in terms of a family of orthogonal polynomials Gm,n−m(x, y) of m degree in x and

(n−m) in y:

Lm,n−m(x0, y0) =

∫ ∞

−∞

∫ ∞

−∞

[
L(x, y)v2(x− x0, y − y0)

]
Gm,n−m(x− x0, y − y0)dxdy

(2.4)

The polynomials Gm,n−m(x, y) used to approximate the information within the

window are determined by the analysis window and satisfy the orthogonality condi-

tion: ∫ ∞

−∞

∫ ∞

−∞
v2(x, y)Gm,n−m(x, y)Gl,k−l(x, y)dxdy = Cnkδnkδml (2.5)

for n, k = 0, . . . ,∞, m = 0, . . . , n and l = 0, . . . , k; where δnk denotes the Kro-

necker function (δnk = 1 for n = k and δnk = 0 for n 6= k). The polynomials are

orthonormal after a normalization by the factor Cnk or when Cnk = 1.

For example, for a decomposition up to order N = 2 where N is the maximum

degree polynomial, we have that n = 0, 1, . . . , N and m = 0, . . . , n are the indexes of

the polynomials used in the decomposition as defined in Table 2.1.

2.1 Cartesian Hermite transform

We mentioned above that the polynomials Gm,n−m(x, y) are orthogonal with re-

spect to the window function. From a perceptual standpoint and according to the
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n m = 0, 1, . . . , n Gm,n−m(x, y)

n = 0 m = 0 G0,0−0(x, y) = G0,0(x, y)

n = 1
m = 0 G0,1−0(x, y) = G0,1(x, y)
m = 1 G1,1−1(x, y) = G1,0(x, y)

n = 2
m = 0 G0,2−0(x, y) = G0,2(x, y)
m = 1 G1,2−1(x, y) = G1,1(x, y)
m = 2 G2,2−2(x, y) = G2,0(x, y)

Table 2.1: Indexes of the polynomials used in a decomposition of order N = 2
(n = 0, 1, . . . , N and m = 0, . . . , n).

scale-space theory, our option would be a Gaussian window (Fig. 2.1):

v(x, y) =
1

σ
√
π
exp

(
−
(x2+y2)

2σ2

)
(2.6)

where the normalization factor defines a unitary energy for v2(x, y).

The reasons why a Gaussian window is of interest are numerous. First, the theory

related to the Gaussian function is mathematically tractable. In addition, there is

discrete approximation of the Gaussian function, which is useful for implementation

purposes. Secondly, adjacent Gaussian windows separated by twice the standard

deviation σ are a good model of overlapping receptive fields found in physiological

experiments [67, 44]. Third, a signal decomposition into orthogonal polynomials with

respect to the Gaussian window involves Gaussian derivative operators (Fig. 2.2),

which are found in the psychophysical modeling of the HVS [50, 12, 85, 86, 87]. In

the human eye the retina (Fig. 2.3) is made up of several layers of different kinds of

cells. The sensitive rods and cones are at the back of the retina, facing away from

the light. To reach them the light first has to travel through blood vessels, nerve

fibers and then several layers of retinal nerve cells. In contrast, in the octopus eye its

rods and cones face forwards, and blood supply and nerves come from behind. For

Richard Gregory [35] the ”design flaw” in the human eye is less serious than it seems.

He notes that the blood vessels and nerve fibers visible with an ophthalmoscope skirt

around the fovea centralis where visual acuity is crucial, so they interfere very little

with precise vision. It seems that we have a greater need for high acuity vision than
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Figure 2.1: Gaussian window v(x, y).

the octopus does and accordingly our eyes have a richer supply of nutrients than the

octopus does. The retinas of our eyes gets nutrition both from the blood vessels in

front and from the choroid layer directly behind the rods and cones. The blood vessels

in front supplement the supply from behind. The retina responds to changes of light

and not directly to light. Apparently this is based on studies which showed that when

the tremor of the eye was switched off, the person went blind. This indicates that the

eye works like a spatial differentiator of the scene [65]. The ganglion cells (Fig. 2.4)

are known to be spot detectors that have receptive fields that look like [−1 2 1] or

[1 −2 1] so that they sense the local second derivative (Fig. 2.5). The ganglion

cells are involved in color vision, they compare signals from many different cones.

Finally, the Gaussian window minimizes the product of uncertainty in the spatial

and frequency domains [83].
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Figure 2.2: Second derivative of a 2D Gaussian.

Figure 2.3: Anatomy of the human eye [4].
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Figure 2.4: A cross section of the retina. The light has to pass through the ganglion–
cell and bipolar–cell layers before it gets to the rods and cones [22].

Figure 2.5: Receptive fields of the ganglion cells [23].



Chapter 2: The Hermite transform as a model of image representation 13

With a Gaussian window function, the associated orthogonal polynomials are the

Hermite polynomials [74]:

Gm,n−m(x, y) =
1√

2nm!(n−m)!
Hm

(x
σ

)
Hn−m

(y
σ

)
(2.7)

where Hn(x) denotes the nth Hermite polynomial given by Rodrigues’ formula [1]:

Hn(x) = (−1)n expx2 dn

dxn exp−x2

(2.8)

Substituting Gσ2(x) (with variance σ2) by exp− x2

σ2 in Eq. (2.8), we obtain the

generalized Hermite polynomials with respect to the Gaussian function Gσ2(x) :

Hn

(x
σ

)
= (−1)nG−1

σ2 (x)
dn

dxnGσ2(x) (2.9)

Thus, from Eq. (2.4):

Lm,n−m(x0, y0) =

∫ ∞

−∞

∫ ∞

−∞
L(x, y)Dm,n−m(x0 − x, y0 − y)dxdy (2.10)

n = 0, 1, . . . ,∞

m = 0, 1, · · · , n

the polynomial coefficients Lm,n−m(x, y) are calculated by a convolution of the original

image L(x, y) with the filter function Dm,n−m(x, y), followed by a subsampling (T ) at

position (x0, y0) of the sampling lattice S, where:

Dm,n−m(x, y) = Gm,n−m(−x,−y)v2(−x,−y) (2.11)

Lm,n−m(x, y) are the Hermite coefficients and m and (n−m) denote the analysis

order in x and y direction respectively. In Fig. 2.6 we show the analysis process of

the Hermite transform.

In Fig. 2.7 we show a typical graphical distribution of the Hermite coefficients in

function of the order of the polynomials in the x and y directions.

The filter function Dm,n−m(x, y) are separable because the Gaussian window is

rotationally symmetric, therefore:

Dm,n−m(x, y) = Dm(x)Dn−m(y) (2.12)
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Figure 2.8: First derivative of a 2D Gaussian.

The Hermite filters can be computed by:

Dn(x) =
(−1)n√
2nn!

1

σ
√
π
Hn

(x
σ

)
exp− x2

σ2 (2.13)

The analysis functions of the Hermite transform are similar to Gaussian derivatives

(Fig. 2.8), which, as argued before, are good models of some of the important retinal

and cortical cells of the HVS. They model filter operations in human vision with the

same accuracy as the Gabor filters, with the advantage that they accomplish this

task with fewer parameters [52, 85, 87]. Fig. 2.9 shows the Hermite filters Dn(x) for

N = 4 (n = 0, 1, 2, 3, 4).

Fig. 2.10 shows the House test image and in Fig. 2.11 we obtain the cartesian

Hermite coefficients for N = 3 (n = 0, 1, 2, 3).

In order to recover the original image the condition of the Eq. (2.2) is required

and under very general conditions for the original image L(x, y), we get that [52]:

v2(x− x0, y − y0)

[
L(x, y)−

∞∑
n=0

n∑
m=0

Lm,n−m(x0, y0)Dm,n−m(x− x0, y − y0)

]
= 0

(2.14)
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Figure 2.10: House test image [37].
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(a) L0,0(x, y) (b) L1,0(x, y) (c) L2,0(x, y) (d) L3,0(x, y)

(e) L0,1(x, y) (f) L1,1(x, y) (g) L2,1(x, y)

(h) L0,2(x, y) (i) L1,2(x, y)

(j) L0,3(x, y)

Figure 2.11: Cartesian Hermite coefficients of the House test image for N = 3 (n =
0, 1, 2, 3). (a) L0,0(x, y) (represents the DC Hermite coefficient). (b) L1,0(x, y). (c)
L2,0(x, y). (d) L3,0(x, y). (e) L0,1(x, y). (f) L1,1(x, y). (g) L2,1(x, y). (h) L0,2(x, y). (i)
L1,2(x, y). (j) L0,3(x, y).
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Combining Eq. (2.3) and Eq. (2.14) we get the following expansion for the

complete signal:

L(x, y) =
1

V (x, y)

∑
(x0,y0)∈S

L(x, y)v2(x− x0, y − y0)

=
1

V (x, y)

∑
(x0,y0)∈S

∞∑
n=0

n∑
m=0

Lm,n−m(x0, y0)Dm,n−m(x− x0, y − y0) (2.15)

The original image is recovered by performing an interpolation of the transform

coefficients with the synthesis filters Pm,n−m(x, y) followed by an oversampling and

adding all the elements:

L(x, y) =
∞∑
n=0

n∑
m=0

∑
(x0,y0)∈S

Lm,n−m(x0, y0)Pm,n−m(x− x0, y − y0) (2.16)

where

Pm,n−m(x, y) =
Dm,n−m(x, y)

V (x, y)
=

Gm,n−m(x, y)v
2(x, y)

V (x, y)
(2.17)

for n = 0, . . . ,∞ and m = 0, . . . , n. In Fig. 2.12 we show the synthesis process of the

Hermite transform.

The free parameters of the Hermite transform are the maximum derivative order

N , the subsampling factor and the scale σ which must be related to the spatial scale

of the image structures to be analyzed. Small windows are better to detect fine details
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and large windows allow analyzing low resolution objects. The Hermite transform has

a multiresolution extension that allows analyzing objects at different scales [24, 73].

2.2 Steered Hermite transform

Oriented filters are a class of filters that are rotated copies of each filter, con-

structed as a linear combination of a set of basis filters [31]. The orientation feature

of the Hermite filters explains why they are products of polynomials with a radially

symmetric window function (Gaussian function). The N + 1 Hermite filters of order

n form a steerable basis for each individual filter of order n. Because of this char-

acteristic, Hermite filters at each position in the image are adapted to local content

[77]. The resulting filters can be interpreted as directional derivatives of a Gaussian

function.

For orientation analysis purposes, it is convenient to work with a rotated version

of the Hermite transform. The polynomial coefficients can be computed through a

convolution of the image with the filter functions Dm(x)Dn−m(y). They are separable

in space and polar domains, and its Fourier transform can be expressed in polar

coordinates. If ωx = ωcos(θ) and ωy = ωsin(θ), then:

dm(ωx)dn−m(ωy) = gm,n−m(θ)dn(ω) (2.18)

where dn(ω) is the Fourier transform of each filter function, which expresses radial

frequency selectivity of the nth derivative of the Gaussian but with a radial coordinate

r for x:

dn(ω) =
1√
2nn!

(−jωσ)n exp

(
− (ωσ)2

4

)
(2.19)

and gm,n−m(θ) expresses the directional selectivity of the filter:

gm,n−m(θ) =

√( n

m

)(
cosm (θ)

)(
sinn−m (θ)

)
(2.20)

Filters of increasing order n analyze successively higher radial frequencies and

filters of the same order n and different (directional) index m distinguish between

different orientations in the image [52]. Note that the radial frequency selectivity
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dn(ω) is the same for all N + 1 filters of the order n and that these filters differ

only in their orientation selectivity. In terms of orientation frequency functions, this

property of the Hermite filters can be expressed by:

gm,n−m(θ − θ0) =
n∑

k=0

(
lk,n−k,θ0(x, y)

)(
gk,n−k(θ)

)
(2.21)

where lk,n−k,θ0(x, y) are the steered Hermite coefficients. The Hermite filter rotation

at each position over the image is an adaptation to local orientation content.

In order to obtain the steered Hermite coefficients, the Hermite coefficients are

rotated toward the estimated local orientation, according to a criterion of maximum

oriented energy at each window position. For local 1D patterns, the steered Hermite

transform provides a very efficient representation. This representation consists of

a parameter θ that indicates the orientation of the pattern and a small number of

coefficients that represent the profile of the pattern perpendicular to its orientation.

For a 1D pattern with orientation θ, the following relation holds:

lm,n−m,θ(x, y) =

{
n∑

k=0

(
Lk,n−k(x, y)

)(
gk,n−k(θ)

)
, m = 0

0, m > 0

(2.22)

For such pattern, steering over θ results in a compaction of energy into the coef-

ficients l0,n,θ(x, y) = ln,θ(x, y) , while all other coefficients are set to zero.

Using Hermite coefficients, the energy content can be expressed according to Par-

seval Theorem as:

EN =
N∑

n=0

n∑
m=0

[Lm,n−m(x, y)]
2 (2.23)

up to order N .

The steered Hermite transform offers a way to describe 1D patterns on the basis

of their orientation and profile. We can differentiate 1D energy terms and 2D energy

terms. That is, for each local signal:

E1D
N =

N∑
n=1

[l0,n,θ(x, y)]
2 (2.24)
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Figure 2.13: Angle θ of maximum energy ( ◦).

E2D
N =

N∑
n=0

n∑
m=0

[lm,n−m,θ(x, y)]
2 (2.25)

where the energy content of Eq. (2.23) can be expressed as:

EN = [L0,0(x, y)]
2 + E1D

N + E2D
N (2.26)

In Fig. 2.14 we steer the cartesian Hermite coefficients of Fig. 2.11 according to

maximum energy direction, the angle θ (Fig. 2.13) was estimated using the phase of

the gradient, which is a good indicator of the direction of the edges, for this we use

the coefficients L01 and L10:

θ(x, y) = arctan
L0,1(x, y)

L1,0(x, y)
(2.27)

where L01 and L10 are a good approach to optimal edge detectors in the horizontal

and vertical directions respectively.

It is noticeable that the energy is concentrated in only three coefficients (Fig.

2.14b-d), which represent the orientation of the different structures of the image.
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(a) L0,0(x, y) (b) l1,0(x, y, θ) (c) l2,0(x, y, θ) (d) l3,0(x, y, θ)

(e) l0,1(x, y, θ) (f) l1,1(x, y, θ) (g) l2,1(x, y, θ)

(h) l0,2(x, y, θ) (i) l1,2,θ(x, y)

(j) l0,3,θ(x, y)

Figure 2.14: Steered Hermite coefficients of the House test image for N = 3 (n =
0, 1, 2, 3). (a) l0,0(x, y) (represents the DC Hermite coefficient). (b) l1,0,θ(x, y). (c)
l2,0,θ(x, y). (d) l3,0,θ(x, y). (e) l0,1,θ(x, y). (f) l1,1,θ(x, y). (g) l2,1,θ(x, y). (h) l0,2,θ(x, y).
(i) l1,2,θ(x, y). (j) l0,3,θ(x, y).
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Optical flow estimation

The one who has conquered himself

is a far greater hero than he who

has defeated a thousand times a

thousand men.

Sidhartha Gautama (563–483 b.c).

Dhammapada.

Optical flow estimation is still one of the key problems in computer vision. Es-

timation of the displacement field between two images, applies in those situations

requiring the correspondence between the pixels of an image to another. Problems

of this type are not only restricted to motion estimation, they are also present in a

similar fashion in 3D reconstruction and image registration. Optical flow provides

not only a basis for motion–based image sequence interpretation but also for a second

generation of video algorithms and applications including, for instance, experimental

dynamics, meteorology, medical imaging, video compression, segmentation, object

and activity detection, key frame extraction and interpolation in time to mention a

few.

When we watch a movie, we see a sequence of images in which objects appear

in a number of positions. Although each frame represents a frozen instant of time,

the movie gives us a convincing impression of motion. Somehow the visual system

23
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(a) (b) (c) (d)

Figure 3.1: Apparent motion in a sequence of images.

interprets the succession of still images as a continuously moving scene [2] (Fig. 3.1).

The optical flow can be defined as 2D distribution of apparent velocities that can

be associated with a variation of brightness patterns in a sequence of images [33, 34].

It can be represented by a vector field induced by the motion of objects (or camera),

which encodes the displacement of each pixel in the image. For example in Fig. 3.2

we show the optical flow of Cameramotion sequence [47], Fig. 3.2(c) shows the vector

field between images Fig. 3.2(a) and Fig. 3.2(b) (see the displacement of the side view

mirror within of red circle). In Fig. 3.2(d) we show that the optical flow can be used

to segment the car in the sequence by grouping pixels with similar displacements.

To detect the optical flow in two images taken at different times we observe the

change from one image to another, due to:

• The motion of an object in the scene.

• The relative movement between the observer and the scene.

• Variations in scene illumination.

One of the first applications of optical flow estimation was made by [60] where

the discontinuities in the optical flow helped segmenting images into regions that

correspond to different objects. Others attempts to segmentation used differences

between successive image frames [41, 40, 42, 45, 56].
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(a) (b)

(c) (d)

Figure 3.2: Optical flow representation in a sequence of images. (a) Frame 43 of the
Cameramotion sequence. (b) Frame 44 of the Cameramotion sequence. (c) Optical
flow. (d) Segmentation of the car using displacement vectors.
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3.1 Methods of optical flow estimation

There are different ways to group the methods of optical flow estimation. In 1994

Barron et al. classified the existing techniques into four groups [7]:

• Differential methods

• Region–based matching methods

• Energy–based methods

• Phased–based methods

In [9] they grouped energy–based and phased–based methods into frequency–based

methods and added two new methods called multiple motion and temporal refinement

methods. The boundaries between groups are not always clear because there are

methods that incorporate more than one technique or their characteristics can not be

placed in a single class.

3.1.1 Differential methods

Differential techniques compute image velocity from spatiotemporal derivatives of

image intensities or filtered versions of the image [7].

The first approaches use first order derivatives and are based on image translation

[27, 38, 57]. Assuming intensity conservation the Optical Flow Constraint yields the

orientation and normal speed of spatial contours of constant intensity but the vertical

and horizontal components are constrained by one linear equation:

∂L(x, y, t)

∂x
u+

∂L(x, y, t)

∂y
v +

∂L(x, y, t)

∂t
= 0 (3.1)

where L(x, y, t) is an image sequence and the displacement field
(
u, v
)>

(x, y, t) is

called the optical flow.

Second order differential methods [58, 76], use second order derivatives (the Hes-

sian of the intensity function) to constrain 2–d velocity.
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Global and local first- and second-order methods based on Optical Flow Constraint

can be used to compute optical flow. Global methods use the Eq. (3.1) and an

additional global constraint, usually a smoothness regularization term, to compute

dense optical flows over large image regions. Local methods use normal velocity

information in local neighborhoods to perform a least squares minimization to find

the best fit for the vertical and horizontal components of displacement [9].

Differential approaches calculate optic flow as the minimizer of an energy func-

tional, which consists of a data term and a smoothness term.

The data term in the energy functional involves optic flow constraints such as the

assumption that corresponding pixels in different frames should reveal the same gray

value. The smoothness term usually requires that the optic flow field should vary

smoothly in space [38]. Such a term may be modified in an image–driven way in

order to suppress smoothing at or across image boundaries [57, 3]. As an alternative,

flow–driven modifications have been proposed which reduce smoothing across flow

discontinuities [11, 69, 80].

From both a theoretical and practical point of view, it can be attractive to use

energy functionals that are convex. They have a unique minimum, and this global

minimum can be found in a stable way by using standard techniques from convex

optimization, for instance gradient descent methods. Having a unique minimum

allows to use globally convergent algorithms, where every arbitrary flow initialization

leads to the same solution: the global minimum of the functional.

Minimizing continuous energy functionals leads in a natural way to partial differ-

ential equations (PDEs): applying gradient descent, for instance, yields a system of

coupled diffusion–reaction equations for the two flow components. The fastly emerg-

ing use of PDE–based image restoration methods has motivated many researchers to

apply similar ideas to estimate optic flow [3, 69, 80].

3.1.2 Region–based matching methods

Authors such as Burt et al. in 1982 ([39]) proposed region–based matching tech-

niques arguing that the exact numerical differentiation of the differential methods
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may be impractical because of the noise, this by having a small number of frames or

by the smoothed images in the acquisition process.

These methods assume a conservation of the local intensity distribution, they work

with two successive images finding the best match between the pixel being analyzed

(1st image) and pixels candidates (2nd image). They either to maximize a similarity

measure, such as the normalized cross–correlation or minimize a distance measure,

such as the sum–of–squared differences (SSD).

For large displacements, the region–based matching methods become sensitive

to false matches, due to increase of search spaces. In order to reduce the amount of

computations and the potential for mismatches, one may use coarse motions estimates

to direct the matching process [9].

In 1992, Ogata and Sato [61] propose the correlation computation with coarse

estimates of motion obtained from velocity–tuned Gabor filters. These estimates can

then be used to restrict the sizes of search areas and thereby reduce the number of

computations usually necessary to obtain disparities.

Anandan’s method [5] is based on a Laplacian pyramid and a coarse–to–fine SSD–

based matching strategy. The Laplacian pyramid allows for the estimation of large

inter frame disparities and helps to enhance image structures, such as edges.

3.1.3 Frequency–based methods

Frequency based methods rely on the use of velocity–tuned filters. These tech-

niques use orientation sensitive filters in the Fourier domain of time-varying images.

Among advantages brought by these methods, it is found that motion-sensitive mech-

anisms operating on spatiotemporally oriented energy in Fourier space can estimate

motion in image signals for which matching approaches would fail [9].

Adelson and Bergen in [2] propose a class of computational schemes that ex-

ploits the fact that detecting image motion is equivalent to extracting spatiotemporal

orientation. Gabor filtering1 is presented as a technique for extracting spatiotem-

poral energy. The filters oriented in space-time and tuned in spatial frequency are

1A Gabor filter is a Gaussian function multiplied by a sine or cosine wave.
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constructed in quadrature (two filters that are 90 deg out of phase) avoiding phase

sensitivity that exists at the output of each filter separately.

Watson and Ahumada in [79] defined an orientation-selective mechanism that

agrees with psychophysical measurements of human motion sensing. Their mechanism

uses a combination of 2D spatial Gabor functions and 1D temporal filters tuned to

several orientations for the estimation of local image velocity, noting that the elements

of motion sense appear tuned by two spatial frequencies and frequency spectrum of

the motion of an image.

The method developed by Heeger [36] presents a computational model for the

estimation of image velocity which uses quadrature pairs of spatiotemporal Gabor fil-

ters. They profit from energy contained in the visual stimulus, considering a textured

image. A family of Gabor-energy filters, tuned to the same spatial frequency band

but to different spatial orientations, is defined. Using 12 Gabor filters at each spatial

scale, the computations of image velocity is formulated as a least squares fit of the

filter energies to a plane in frequency space. First, a Gaussian Pyramid is built and

then, each pyramid level is band–pass filtered. Gabor filters are then applied to the

scale–specific channels, from which velocities are measured [7].

3.1.4 Phased–based methods

These methods are referred to as phased–based because velocity is defined in

terms of the phase behaviour of band–pass filter outputs [7]. The use of phase was

first proposed by [29, 30]. Their approach defines velocity components in terms of

the instantaneous motion of level phase contours in the output of band-pass velocity–

tuned filters. Band–pass filters are used to decompose the input signal according to

scale, speed and orientation.

3.1.5 Evaluation of the optical flow estimation methods

There are many approaches to determine the optical flow from a sequence of im-

ages. Differential methods and phase-based methods are the techniques with better

performance according to [7, 32] where a detailed review of computational method-
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ologies for motion analysis is presented. Their study emphasizes the measurement

accuracy and concludes that the most accurate methods are the differential proposals

where methods using global smooth constraint appear to produce visually attractive

flow fields.

3.2 Related work on differential methods

Many of the methods of differential optical flow estimation are based on the work

of Horn and Schunck ([38]) and Lucas and Kanade ([49]) both of 1981, which incor-

porated certain constraints in order to handle the Ill–posed Aperture Problem2.

Until a few years ago, it was considered that differential methods for optical flow

estimation were either unreliable or slow. In recent years, novel differential approaches

have emerged that have suggested some additional constraints to overcome these

problems [15, 14, 17, 63]:

• Local image constraints.

• Spatial coherence.

• Combining local and global methods.

• Statistical robust optimization functions.

• Multiresolution strategy.

3.2.1 Notation

Let L(x, y, t) be an image sequence, where (x, y) represents the location within

a rectangular image domain Ω, and t ∈ [0, τ ] denotes time. Let u and v be the

displacement of a pixel at position (x, y) between an image at time t and another

image at time (t+ 1) in the directions x and y respectively.

2Ill–posed problem in the sense of Hadamard, data only calculated the normal component of
optical flow. A problem is called Well–posed if it has a unique solution that depends in a continuous
(and therefore predictable) way on the input data.
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We define the following relations:

W := (u, v, 1)> ; |∇W |2 := |∇u|2 + |∇v|2; |∇3W |2 := |∇3u|2 + |∇3v|2;

∇u := (ux, uy)
> ; ∇3u := (ux, uy, ut)

> ; ∆u := (uxx, uyy)
> ;

X := (x, y, t)> ; L ∗ :=
∂L

∂ ∗
; ∇3L := (Lx, Ly, Lt)

>

3.2.2 Local image constraints

Horn and Schunck ([38]) assumes that the intensities of the pixels of the objects

remain constant: Constant Intensity Constraint :

L(x+ u, y + v, t+ 1)− L(x, y, t) = 0 (3.2)

Considering linear displacements, we can expand Eq. (3.2) by Taylor’s series

obtaining the Optical Flow Constraint equation:

W> (∇3L) = 0 (3.3)

In order to minimize Eq. (3.3), [49] considers the flow constant within a neigh-

borhood ρ (Gaussian function Kρ of standard deviation ρ), and determine the two

constants u and v at a point (x, y, t) using a weighted least squares approach:

ELK (W ) = W>Jρ(∇3L)W (3.4)

where

Jρ (∇3L) := Kρ ~
(
∇3L∇3L

>
)

(3.5)

and ~ represents the convolution operator.

The intensity does not always remain constant from one image to another, there-

fore an independent intensity change measure is required. In [57, 59] a Constant

Gradient Constraint (generally used in local methods to handle the aperture prob-

lem) is proposed:

∇L(x+ u, y + v, t+ 1)−∇L(x, y, t) = 0 (3.6)
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The disadvantages of considering only local constraints are observed in homoge-

neous areas where movement is observed locally and only the normal component of

the movement can be estimated (aperture problem). In Fig. 3.3 we show an example

of the aperture problem, in Fig. 3.3(a) we show a straight line in a xy plane, in Fig.

3.3(b) the viewing field is locally restricted using a circular window. If the line moves

to the right we can easily see in Fig. 3.3(c) the horizontal displacement through the

window, but if the movement is downward and to the right (3.3(d)) only the hori-

zontal displacement is observed (blue horizontal arrow in Fig. 3.3(e)) ignoring the

vertical displacement (red vertical arrow in Fig. 3.3(e)).

3.2.3 Spatial coherence

Eq. (3.3) is not sufficient to determine the two unknown functions u ans v uniquely.

In order to recover a unique flow field, an additional constraint is therefore required.

Regularization based optic flow methods additionally assume that the optical flow

field should be smooth (or at least piecewise smooth). The basic idea is to recover

the optic flow as a minimizer of some energy functional of type [82]:

E(W ) =

∫
Ω

(
W> (∇3L∇3L

>)W + αU(∇L,∇u,∇v)
)
dX (3.7)

The first term in Eq. (3.7) is a data term requiring that the Optical Flow Con-

straint equation be fulfilled, while the second term penalizes deviations from (piece-

wise) smoothness. The smoothness term U(∇L,∇u,∇v) is called regularizer, and

the positive smoothness weight α is the regularization parameter. One would expect

that the specific choice of the regularizer has a strong influence on the result.

It is a classic result from the calculus of variations [21] that – under mild regularity

conditions– a minimizer W of some energy functional3 F [82]:

E(W ) :=

∫
Ω

F
(
x, y, u, v,∇u,∇v

)
dxdy (3.8)

3The object of the calculus of variations is to find extrema of functionals rather than extrema
of functions of a finite number of independent variables. By a ”functional” we mean a quantity or
function which depends on the entire course of one or more functions rather than on a number of
discrete variables. The domain of a functional is a set or ”space” of admissible functions rather than
a region of a coordinate space [21].
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(a) (b)

(c) (d)

(e)

Figure 3.3: Aperture problem. (a) A straight line in a xy plane. (b) Viewing field
restricted locally by a circular window. (c) Horizontal displacement detected through
the window. (d) Only the horizontal displacement is detected through the window
ignoring the vertical displacement. (e) Actual displacement in (d).
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satisfies necessarily the so–called Euler–Lagrange equations:

∂x

(
∂F
∂ux

)
+ ∂y

(
∂F
∂uy

)
− ∂F

∂u
= 0,

∂x

(
∂F
∂vx

)
+ ∂y

(
∂F
∂vy

)
− ∂F

∂v
= 0 (3.9)

with homogeneous Neumann boundary conditions:

∂nu = 0 on ∂Ω,

∂nv = 0 on ∂Ω

where n is a vector normal to the image boundary ∂Ω.

Eqs. (3.9) can be regarded as the steady state (t → ∞) of the diffusion–reaction

system:

∂tu = ∂x

(
∂F
∂ux

)
+ ∂y

(
∂F
∂uy

)
− ∂F

∂u
,

∂tv = ∂x

(
∂F
∂vx

)
+ ∂y

(
∂F
∂vy

)
− ∂F

∂v
(3.10)

where t denotes an artificial evolution parameter which differs from the time t of the

image sequence.

The diffusion–reaction system from Eq. (3.10) can be seen as an analogy to the

equation of the anisotropic diffusion equation of Perona and Malik [64].

Homogeneous regularization

In 1981 Horn and Schunck [38] proposed the regularizer:

UHS (∇L,∇u,∇v) := |∇u|2 + |∇v|2 (3.11)

where it is assumed that the apparent speed of the intensity pattern in the image

varies smoothly, that is, neighboring points of the objects have similar velocities:

Smoothness Constraint, leading to the following energy functional:

EHS (W ) =

∫
Ω

(
W> (∇3L∇3L

>)W + α|∇W |2
)
dX (3.12)



Chapter 3: Optical flow estimation 35

Minimizing Eq. (3.12) leads to the PDEs:

∆u− 1

α
Lx

(
W> (∇3L)

)
= 0,

∆v − 1

α
Ly

(
W> (∇3L)

)
= 0 (3.13)

where ∆ denotes the Laplace operator.

Eqs. (3.13) lead to the corresponding diffusion–reaction equations given by:

∂tu = ∆u− 1

α
Lx

(
W> (∇3L)

)
,

∂tv = ∆v − 1

α
Ly

(
W> (∇3L)

)
(3.14)

The underlying diffusion process in the Horn and Schunck approach is the linear

diffusion equation:

∂tu = ∆u = div
(
g∇u

)
,

∂tv = ∆v = div
(
g∇v

)
(3.15)

with g := 1. div denoting the divergence operator:

div
(−→
F
)
:= ∇ ·

−→
F =

∂F(x)

∂x
+

∂F(y)

∂y

where
−→
F is a vector field4.

The Uniform Smoothness Constraint used in [38] causes an over–smoothing at

borders of objects, creating blurry optic flow fields due to the diffusivity g equal to 1

everywhere in Eq. (3.15), smoothing in a completely homogeneous way.

Isotropic image–driven regularization

A simple way to prevent smoothing at motion boundaries, which in most cases

are image boundaries, is introducing a weight function into the Horn and Schunck

regularizers that becomes small at image edges [3]. This modification yields the

regularizer:

4Let C be a subset on R2; a vector field on R2 is a function
−→
F that assigns to each point (x, y)

in C a two dimensional vector
−→
F (x, y) = F(x)(x, y)

−→
i + F(y)(x, y)

−→
j .
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UII (∇L,∇u,∇v) := g
(
|∇L|2

) (
|∇u|2 + |∇v|2

)
(3.16)

where g is a decreasing positive function.

Using the linearized data term of Eq. (3.7) and the regularizer from Eq. (3.16)

the energy functional to minimize is:

EII (W ) =

∫
Ω

(
W> (∇3L∇3L

>)W + αg
(
|∇L|2

) (
|∇u|2 + |∇v|2

))
dX (3.17)

where the corresponding diffusion–reaction equations are given by:

∂tu = div
(
g
(
|∇L|2

)
∇u
)
− 1

α
Lx

(
W> (∇3L)

)
,

∂tv = div
(
g
(
|∇L|2

)
∇v
)
− 1

α
Ly

(
W> (∇3L)

)
(3.18)

The underlying diffusion process is:

∂tu = div
(
g
(
|∇L|2

)
∇u
)
,

∂tv = div
(
g
(
|∇L|2

)
∇v
)

(3.19)

The scalar–valued diffusivity g depends on the image gradient, this method can

therefore be classified as inhomogeneous, isotropic and image–driven. Isotropic refers

to the fact that a scalar–valued diffusivity guarantees a direction–independent smooth-

ing behaviour, while inhomogeneous means that this behaviour may be space–dependent.

The diffusion process is linear, since the diffusivity does not depend on the flow [82].

When g
(
|∇L|2

)
= 1 the regularizer of the Eq. (3.16) becomes equal to the homoge-

neous regularizer of the Eq. (3.11).

Anisotropic image–driven regularization

An anisotropic modification of the Horn and Schunck functional due to Nagel and

Enkelmann [57] in 1986 (see also [57]), reduces smoothing across image boundaries,

while encouraging smoothing along image boundaries. This is achieved by considering

the regularizer:

UAI (∇L,∇u,∇v) := ∇u>D (∇L)∇u+∇v>D (∇L)∇v (3.20)
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where D (∇L) is a regularized projection matrix perpendicular to ∇L:

D(∇L) :=
1

|∇L|2 + 2λ2

(
∇L⊥∇L⊥> + λ2I

)
(3.21)

where I denotes the identity matrix.

The advantages of this method is that it inhibits blurring of the flow across bound-

aries of L at locations where L � λ.

Using the linearized data term of Eq. (3.7) and the regularizer from Eq. (3.20)

the energy functional to minimize is:

EAI (W ) =∫
Ω

(
W> (∇3L∇3L

>)W
+ α

(
∇u>D (∇L)∇u+∇v>D (∇L)∇v

))
dX (3.22)

This methods leads to the diffusion–reaction equations:

∂tu = div
(
D (∇L)∇u

)
− 1

α
Lx

(
W> (∇3L)

)
,

∂tv = div
(
D (∇L)∇v

)
− 1

α
Ly

(
W> (∇3L)

)
(3.23)

The underlying diffusion process is:

∂tu = div
(
D (∇L)∇u

)
,

∂tv = div
(
D (∇L)∇v

)
(3.24)

The usage of a diffusion tensor D (∇L) instead of a scalar–valued diffusivity al-

lows a direction–dependent smoothing behaviour (anisotropic). The diffusion tensor

depends on the image L but not on the unknown flow. It is an image–driven process

that is linear in its diffusion part [82].

The eigenvectors of D are e1 := ∇L, e2 := ∇L⊥ , and the corresponding eigenval-

ues are given by:

λ1(|∇L|) = λ2

|∇L|2 + 2λ2
,

λ2(|∇L|) = |∇L|2 + λ2

|∇L|2 + 2λ2
(3.25)
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We observe, that λ1+λ2 holds independently of ∇L. Inside the objects, |∇L| → 0

with λ1 → 1
2
and λ2 → 1

2
. At ideal edges |∇L| → ∞ with λ1 → 0 and λ2 → 1.

Thus, this regularizer presents an isotropic behaviour within regions, and at image

boundaries the process smoothes anisotropically along the edges.

Homogeneous and isotropic image–driven regularizers are special cases of Eq.

(3.20), where D(∇L) := I and D(∇L) := g (|∇L|2) I are chosen.

Isotropic flow–driven regularization

Image–driven regularization methods reduce the smoothing on the images edges,

but may create over–segmentations of the flow field for strongly textured objects

(there are much more image boundaries than motion boundaries). In order to re-

duce smoothing at motion boundaries, one may consider using a purely flow–driven

regularizer. In [68, 80], the authors considered regularizers of type [82]:

UIF (∇L,∇u,∇v) := Ψ
(
|∇u|2 + |∇v|2

)
(3.26)

where Ψ
(
s2
)
is a differentiable and increasing smooth function that is convex in s.

Using the linearized data term of Eq. (3.7) and the regularizer from Eq. (3.26)

the energy functional to minimize is:

EIF (W ) =∫
Ω

(
W> (∇3L∇3L

>)W + αΨ
(
|∇u|2 + |∇v|2

))
dX (3.27)

A regularizer of type of Eq.(3.26) leads to the diffusion–reaction system:

∂tu = div

(
Ψ′
(
|∇u|2 + |∇v|2

)
∇u

)
− 1

α
Lx

(
W> (∇3L)

)
,

∂tv = div

(
Ψ′
(
|∇u|2 + |∇v|2

)
∇v

)
− 1

α
Ly

(
W> (∇3L)

)
(3.28)
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The underlying diffusion process is:

∂tu = div

(
Ψ′
(
|∇u|2 + |∇v|2

)
∇u

)
,

∂tv = div

(
Ψ′
(
|∇u|2 + |∇v|2

)
∇v

)
(3.29)

where Ψ′ denotes the derivative of Ψ with respect to its argument. The scalar–valued

diffusivity Ψ′
(
|∇u|2 + |∇v|2

)
shows that this model is isotropic and flow–driven. In

general, the diffusion process is non–linear.

For the specific choice Ψ
(
s2
)
:= s2 homogeneous regularization with diffusivity

Ψ′
(
s2
)
= 1 is recovered.

The modified `1 ∗–norm (Fig. 3.4) presented in [11, 17] is robust in the presence

of flow discontinuities:

Ψ
(
s2
)
=
√
(s2 + ε2) (3.30)

where ε ensures the differentiability of Ψ (s2) in s = 0, so that it is chosen reasonably

small, for example ε ≈ 0.001 [63].

Anisotropic flow–driven regularization

In previous sections we have seen isotropic and anisotropic image–driven regu-

larizers as well as isotropic flow–driven ones. This section discusses the anisotropic

flow–driven regularizer.

In the context of non–linear diffusion filtering, anisotropic models with a diffusion

tensor instead of a scalar–valued diffusivity offer advantages for images with noisy

edges or interrupted structures [81].

In the anisotropic flow–driven regularizer one could expect a smoother behaviour

along flow discontinuities and less fluctuations than for isotropic flow–driven regular-

izers. In [82], Weickert and Schnörr propose a novel class of regularizer:

UAF (∇L,∇u,∇v) := trΨ
(
∇u∇u> +∇v∇v>

)
(3.31)
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Figure 3.4: Modified `1 norm: Ψ (s2) =
√

(s2 + ε2), ε = 0.001.

where tr is the trace operator5.

The scalar–valued function Ψ (s) is extended to a matrix–valued function Ψ (J ).

Let J denote some symmetricN×N matrix with orthonormal eigenvectors e1, . . . , eN

and corresponding eigenvalues µ1, . . . , µN :

Ψ (J ) =
∑
i

Ψ(µi) eie
>
i (3.32)

For Eq.(3.31) we define:

J := ∇u∇u> +∇v∇v> (3.33)

as a symmetric N × N matrix with two orthonormal eigenvectors e1, e2 and their

corresponding eigenvalues µ1, µ2. These eigenvalues specify the contrast of the vector–

value image (u, v) in the directions e1 and e2 respectively [82].

5For a an N ×N square matrix A: tr(A) :=
∑N

i=1 aii.
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A regularizer of type of Eq.(3.31) leads to the corresponding descent diffusion–

reaction system given by:

∂tu = div

(
Ψ′
(
∇u∇u> +∇v∇v>

)
∇u

)
− 1

α
Lx

(
W> (∇3L)

)
,

∂tv = div

(
Ψ′
(
∇u∇u> +∇v∇v>

)
∇v

)
− 1

α
Ly

(
W> (∇3L)

)
(3.34)

where Ψ′ is a matrix–valued function as in Eq. (3.32).

The underlying diffusion process is:

∂tu = div

(
Ψ′
(
∇u∇u> +∇v∇v>

)
∇u

)
,

∂tv = div

(
Ψ′
(
∇u∇u> +∇v∇v>

)
∇v

)
(3.35)

Notably, the isotropic flow–driven regularization from Eq. (3.26) is recovered by

just exchanging the trace operator and the penalty function Ψ in Eq. (3.31) [82]:

UIF (∇L,∇u,∇v) := Ψ
(
tr
(
∇u∇u> +∇v∇v>

))
(3.36)

An advantage of the anisotropic flow–driven regularization in noisy images is that

the diffusion tensor distinguishes the noise from important structures of the image.

Occlusion of objects

The most popular regularizers (isotropic and/or anisotropic smoothness operators)

have some drawbacks, when there are occlusions in the input images these methods

cannot correctly handle the flow estimation for the occluded region. An approach

taking into account the occlusions was proposed by [84] which uses bilateral filtering

[75] in space, intensity and flow.

3.2.4 Combining local and global methods

The smoothness term of Eq. (3.7) can get information from neighbors in regions

where the intensity gradient is zero, resulting in dense flow fields and making un-

necessary interpolation stages commonly found in local differential methods. In this
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context, [16, 15, 17] proposed a combination of local and global estimation, combin-

ing the robustness against noise of the local differential approaches [49, 10] and dense

flow fields of global differential methods [38, 57].

By rewriting the Eq. (3.12) to take the form of Eq. (3.4) we have the following

expression:

EHS (W ) =

∫
Ω

(
W>J0 (∇3L)W + α|∇W |2

)
dX (3.37)

where J0 (∇3L) := 1~
(
∇3L∇3L

>
)
.

In [16, 15, 17] a Combined Local–Global (CLG) method combining the Eq. (3.4)

and Eq. (3.37) is defined:

ECLG(W ) =

∫
Ω

(
W>Jρ (∇3L)W + α|∇W |2

)
dX (3.38)

In order to improve robustness to noise, a space–time formulation, performing a

convolution with a three–dimensional Gaussian function and considering soft flows in

the temporal direction was made by [16]:

ECLG3 (W ) =

∫
Ω×[0,τ ]

(
W>Jρ (∇3L)W + α|∇3W |2

)
dX (3.39)

3.2.5 Statistical robust optimization functions

Eq. (3.4) and Eq. (3.12) use quadratic optimization Ψ(s2) = s2 (`2–norm)

to assign considerable weight to outliers. This is shown in its associated influence

function6 (Ψ′ = ∂Ψ(s2)
∂s

), which increases linearly and without borders (Fig. 3.5). On

the other hand `1 norm has a constant value in its influence function but it is used

to a lesser extent because of the complexity to minimize the functional.

Optimization functions more lenient with respect to outliers and with influence

functions tending to zero, should be considered, e.g, the Geman–MacClure (Fig. 3.6)

and Lorentzian (Fig. 3.7) influence functions [11, 17].

6The influence function characterizes deviations of a particular measurement in the solution and
is proportional to the derivative of the optimization function.
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A non–linear approach to Eq. (3.39) is defined by [17]:

ECLG3−N(W ) =∫
Ω×[0,τ ]

(
Ψ1

(
W>Jρ(∇3L)W

)
+ αΨ2

(
|∇3W |2

))
dX (3.40)

with Charbonnier optimization function (Fig. 3.8) [20]:

Ψi(s
2) = 2β2

i

√√√√(1 + s2

β2
i

)
; i = 1, 2 (3.41)

where β is a scaling parameter.
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3.2.6 Multiresolution strategy

The equation of Optical Flow Constraint is valid when the displacements are

relatively small. In order to handle large displacements multiresolution strategies are

used [11, 5, 53, 54]. In this context, [17] proposes a functional where the estimated

flow in a coarse resolution is used to correct (warping) the original sequence before

going to the next finer level. In this way, it creates a hierarchy of problems, where

only small displacements are calculated at each stage.

The final displacement field is most accurate in comparison with the linearization

of the Optical Flow Constraint. The non–linear CLG multiscale approach is given by:

Em
CLG3−N(δW

m) =∫
Ω×[0,τ ]

(
Ψ1

(
δWm>Jρ

(
∇3L(X +Wm)

)
δWm

)
+ αΨ2

(
|∇3(W

m + δWm)|2
))

dX (3.42)

where Wm+1 = Wm+δWm and δWm denotes the motion increment at resolution level

m , with m = 0 being the coarsest level with initialization w0 = (0, 0, 0). The penalty

function Ψi is given by the Eq. (3.41).

In [63], Papenberg et al. proposes a functional that combines Constant Inten-

sity Constraint [59], Constant Gradient Constraint [76], Spatio–temporal Smoothness

Constraint and multiscale approach (warping):

EWarp(W ) =∫
Ω×[0,τ ]

Ψ
(
|L(X +W )− L(X)|2+

γ|∇L(X +W )−∇L(X)|2
)
dX

+ α

∫
Ω×[0,τ ]

Ψ
(
|∇3u|2 + |∇3v|2

)
dX (3.43)

where Ψ (s2) =
√
(s2 + ε2) which yields the total variation regularizer and γ is a

weight between the Constant Intensity Constraint and the Constant Gradient Con-

straint.
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Chapter 4

Optical flow estimation using the

steered Hermite transform

You do not really understand

something unless you can explain it

to your grandmother.

Albert Einstein (1879–1955).

There have been previous approaches to motion estimation based on the Hermite

transform. Liu et al. [48] propose a method that includes a spatio-temporal filter-

ing using the Hermite transform and generalized motion models, such as the affine

model, into a single spatial scale. In this scheme was proposed the classical Constant

Intensity Constraint of Horn and Schunck ([38]) considering small displacements.

More recently, in [72] a directional energy was defined in terms of the 1D Hermite

transform coefficients of local projections. Each projection was described by the Her-

mite transform in terms of a directional derivative analysis of the input at a given

scale. The Hermite transform coefficients were then used to detect 1D or 2D spatio-

temporal patterns within the 3D stack of images. In [25], a spatio-temporal energy

based method to estimate motion in an image sequences was presented. A directional

energy was defined in terms of the Radon projections of the Hermite transform. The

Radon transform provides a suitable representation for image orientation analysis,

47
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while the Hermite transform describes image features locally in terms of Gaussian

derivatives. A directional response derived from the directional energy is then used

to estimate local motion as well as to compute a confidence matrix. This matrix is

used to propagate the velocity information toward directions with high uncertainty.

Unlike the above methods of optical flow estimation using the Hermite transform

[48, 72, 25], the present proposal poses a differential approach to estimation. It has

been show that differential methods offer better optical flow estimation [7, 32].

In Section 3.1 we mentioned that the boundaries between groups of techniques of

optical flow estimation are not always clear because there are methods that incorpo-

rate more than one technique. Our differential approach to optical flow estimation

using the steered Hermite transform may be regarded as a frequency–based method

that incorporates a biological model of human vision, in this sense the Hermite trans-

form is a a model of image representation which performs a decomposition of the

images into visual patterns that are relevant to the human vision system.

4.1 Model

Given two consecutive images L(x, y, t) and L(x+u, y+ v, t+1) in a short period

of time, our proposal is based on the polynomial decomposition of each of the images

using the steered Hermite transform as a representation of the local characteristics

of images from an perceptual approach within a multiresolution scheme. We include

elements found in recents advances of differential methods which allow obtaining an

accurate optical flow [16, 17, 63].

4.1.1 Constancy assumptions

In [63] the effect of different local image constraints [38] on the data terms (in-

tensity, gradient, Hessian, Laplacian) of the differential methods are described. Our

contribution includes a polynomial decomposition of the image and takes as local

constraints the zero order coefficient of the Hermite transform which represents the

intensity of the image and the directional higher order derivatives implicitly contained
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in the steered Hermite coefficients to analyze the image in a similar way as it is done

in the HVS. The use of the derivatives of a Gaussian function allows incorporating

information from neighboring pixels to determine the local image constraints, similar

to local differential methods, as described in Eq. (3.4) which are robust to noise

[49, 10]. This feature is included in a global differential functional in order to obtain

dense flow fields as in [38, 57].

The local image constraints of our proposal are:

• Constant Intensity Constraint

The coefficient of order 0 of the Hermite transform L0,0 (L0 for simplicity)

contains a smoothed version of the original image, so it can be used to define

the Constant Intensity Constraint :

L0(x, y, t) = L0(x+ u, y + v, t+ 1) (4.1)

Where the smoothing implicit in the DC coefficient allows eliminate any com-

ponent of high frequency noise.

Fig. 4.1 shows the coefficients L0 from the image 42 and 43 of Cameramotion

sequence, where there is a displacement (u, v) of the pixels in the position (x, y)

between an image at time t and another image at time (t+ 1).

• Steered Hermite Coefficient Constraint

A global change of intensity of the images on two consecutive times violates

the Constant Intensity Constraint but not the gradient of the images, which

is only affected in the magnitude but not in its direction. Moreover, in [63]

the Constant Gradient Constraint considers higher order derivatives for the

formulation of constancy assumptions such as the constancy of the Hessian, the

constancy of the Laplacian, the constancy of the norm of the Hessian and the

constancy of the determinant of the Hessian. It is mentioned that derivatives

of order larger than two can also be considered. Therefore in our proposal

we include the steered Hermite coefficients ln,θ up to order N for dealing with

various movements, such as translational and rotational motions. This allows
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(a) (b)

Figure 4.1: Cartesian Hermite coefficients L00 from the image 42 and 43 of Camer-
amotion sequence. (a) L0,0(x, y, t). (b) L0,0(x+ u, y + v, t+ 1).

including higher derivatives simply by changing the maximum order N of the

decomposition of the Hermite transform.

In this sense we define the Steered Hermite Coefficient Constraint :

N∑
n=1

ln,θ(x, y, t) =
N∑

n=1

ln,θ(x+ u, y + v, t+ 1) (4.2)

where n = 1, 2, · · · , N and θ is the angle of maximum energy for the position

(x, y), which is given by the Eq. (2.27).

Using the steered Hermite coefficients we obtain rotation invariance as demons-

trated in [26]. This allows defining local image constraints considering constancy

in the polynomial decomposition of images and identifying perceptually relevant

visual patterns that represent the most important characteristics of the image.

Fig. 4.2 shows the coefficients ln,θ from the image 42 and 43 of Cameramotion

sequence.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Steered Hermite coefficients up to order N = 3 from the image 42 and 43
of Cameramotion sequence. (a) l1,θ(x, y, t). (b) l1,θ(x+u, y+ v, t+1). (c) l2,θ(x, y, t).
(d) l2,θ(x+ u, y + v, t+ 1). (e) l3,θ(x, y, t). (f) l3,θ(x+ u, y + v, t+ 1).
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• Smoothness Constraint

We assume that the flow is piecewise smooth as in [16, 15, 17] allowing to have

robustness to discontinuities of flow:

min

∫
Ω

Ψ
(
|∇u|2 + |∇v|2

)
dX (4.3)

where Ψ(s2) is a non-quadratic penalty function which enables capture also

locally non-smooth motion, allowing outliers in the smoothness assumption.

4.1.2 Energy

We define a functional that penalizes deviations from model assumptions. All

deviations from the assumption of Constant Intensity Constraint (Eq. (4.1)), Steered

Hermite Coefficient Constraint (Eq. (4.2)) and Smoothness Constraint (Eq. (4.3))

are measured by the energy:

E(u, v) = EData(u, v) + αESmooth(u, v) (4.4)

where the regularization parameter α > 0 is a smoothness weight.

The data term EData(u, v) is given by:

EData(u, v) =∫
Ω

Ψ
(
|L0(X +W )− L0(X)|2+

γ|
N∑

n=1

ln,θ(X +W )−
N∑

n=0

ln,θ(X)|2
)
dX (4.5)

where γ is a weight between the Constant Intensity Constraint and the Steered Her-

mite Coefficient Constraint.

As optimization function we use the modified `1 ∗–norm (Eq. (3.30)), which is

robust to outliers:

Ψ(s2) =
√
(s2 + ε2) (4.6)

where ε = 0.001 ensure the differentiability of Ψ (s2) in s = 0.
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We include the smoothness term of Eq. (4.3):

ESmooth(u, v) =

∫
Ω

Ψ
(
|∇u|2 + |∇v|2

)
dX (4.7)

Therefore, our global energy functional to minimize that includes the data and

smoothness term has the form:

E(u, v) =∫
Ω

Ψ

(∣∣∣L0(X +W )− L0(X)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣2))dX+

α

∫
Ω

Ψ
(
|∇u|2 + |∇v|2

)
dX (4.8)

The proposed functional, includes the coefficient of order 0 (n = 0) and the steered

Hermite coefficients of the Hermite transform as basic elements to define the local

image constraints through a polynomial decomposition of degree N (n = 1, 2, · · · , N).
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4.2 Numerical solution

The corresponding Euler–Lagrange equations that satisfy the minimization of Eq.

(4.8) in function of W are:

Ψ′

(∣∣∣L0(X +W )− L0(X)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣2))·[∣∣∣L0(X +W )− L0(X)

∣∣∣L10(X +W )

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣ln,θ(m)+1

(X +W )
)]

−

α div

(
Ψ′
(
|∇u|2 + |∇v|2

)
∇u

)
= 0 (4.9)

Ψ′

(∣∣∣L0(X +W )− L0(X)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣2))·[∣∣∣L0(X +W )− L0(X)

∣∣∣L01(X +W )

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣ln,θ(n)+1

(X +W )
)]

−

α div

(
Ψ′
(
|∇u|2 + |∇v|2

)
∇v

)
= 0 (4.10)

For a description of the simplification procedure see Appendix D.
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4.2.1 Iterative approach

Defining a fixed-point iterative scheme, as in [63], to find a solution for W in Eq.

(4.9) and Eq. (4.10), leads to the following equations:

Ψ′

(∣∣∣L0(X +W k+1)− L0(X)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W k+1)− ln,θ(X)
∣∣∣2))·[∣∣∣L0(X +W k+1)− L0(X)

∣∣∣L10(X +W k)

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W k+1)− ln,θ(X)
∣∣∣ln,θ(m)+1

(X +W k)
)]

−

α div

(
Ψ′
(
|∇uk+1|2 + |∇vk+1|2

)
∇uk+1

)
= 0 (4.11)

Ψ′

(∣∣∣L0(X +W k+1)− L0(X)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W k+1)− ln,θ(X)
∣∣∣2))·[∣∣∣L0(X +W k+1)− L0(X)

∣∣∣L01(X +W k)

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W k+1)− ln,θ(X)
∣∣∣ln,θ(n)+1

(X +W k)
)]

−

α div

(
Ψ′
(
|∇uk+1|2 + |∇vk+1|2

)
∇vk+1

)
= 0 (4.12)

where W k = (uk, vk, 1)T are the unknown variables uk and vk in the outer iteration

k , thus W k+1 is the solution for Eq. (4.11) and Eq. (4.12).
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Eqs. (4.11) and (4.12) are non–linear in the terms of the form f(X+W k+1)−f(X),

therefore we use a 1st order Taylor expansion of such terms (see Appendix E). The

resulting equation system reads:

Ψ′

(∣∣∣L0(X +W k)− L0(X)

+ dukL10(X +W k) + dvkL01(X +W k)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W k)− ln,θ(X)

+ dukln,θ(m)+1
(X +W k) + dvkln,θ(n)+1

(X +W k)
∣∣∣2))·[∣∣∣L0(X +W k)− L0(X)

+ dukL10(X +W k) + dvkL01(X +W k)
∣∣∣L10(X +W k)

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W k)− ln,θ(X)

+ dukln,θ(m)+1
(X +W k) + dvkln,θ(n)+1

(X +W k)
∣∣∣·

ln,θ(m)+1
(X +W k)

)]
−

α div

(
Ψ′
(∣∣∇(uk + duk)

∣∣2 + ∣∣∇(vk + dvk)
∣∣2)·

∇(uk + duk)

)
= 0 (4.13)
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Ψ′

(∣∣∣L0(X +W k)− L0(X)

+ dukL10(X +W k) + dvkL01(X +W k)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W k)− ln,θ(X)

+ dukln,θ(m)+1
(X +W k) + dvkln,θ(n)+1

(X +W k)
∣∣∣2))·[∣∣∣L0(X +W k)− L0(X)

+ dukL10(X +W k) + dvkL01(X +W k)
∣∣∣L01(X +W k)

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W k)− ln,θ(X)

+ dukln,θ(m)+1
(X +W k) + dvkln,θ(n)+1

(X +W k)
∣∣∣·

ln,θ(n)+1
(X +W k)

)]
−

α div

(
Ψ′
(∣∣∇(uk + duk)

∣∣2 + ∣∣∇(vk + dvk)
∣∣2)·

∇(vk + dvk)

)
= 0 (4.14)
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In order to remove the nonlinearity in Ψ′ we apply a second fixed-point iteration,

with index l for the inner iteration:

Ψ′

(∣∣∣L0(X +W k)− L0(X)

+ duk,lL10(X +W k) + dvk,lL01(X +W k)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W k)− ln,θ(X)

+ duk,lln,θ(m)+1
(X +W k) + dvk,lln,θ(n)+1

(X +W k)
∣∣∣2))·[∣∣∣L0(X +W k)− L0(X)

+ duk,l+1L10(X +W k) + dvk,l+1L01(X +W k)
∣∣∣L10(X +W k)

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W k)− ln,θ(X)

+ duk,l+1ln,θ(m)+1
(X +W k) + dvk,l+1ln,θ(n)+1

(X +W k)
∣∣∣·

ln,θ(m)+1
(X +W k)

)]
−

α div

(
Ψ′
(∣∣∇(uk + duk,l)

∣∣2 + ∣∣∇(vk + dvk,l)
∣∣2)·

∇(uk + duk,l+1)

)
= 0 (4.15)
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Ψ′

(∣∣∣L0(X +W k)− L0(X)

+ duk,lL10(X +W k) + dvk,lL01(X +W k)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W k)− ln,θ(X)

+ duk,lln,θ(m)+1
(X +W k) + dvk,lln,θ(n)+1

(X +W k)
∣∣∣2))·[∣∣∣L0(X +W k)− L0(X)

+ duk,l+1L10(X +W k) + dvk,l+1L01(X +W k)
∣∣∣L01(X +W k)

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W k)− ln,θ(X)

+ duk,l+1ln,θ(m)+1
(X +W k) + dvk,l+1ln,θ(n)+1

(X +W k)
∣∣∣·

ln,θ(n)+1
(X +W k)

)]
−

α div

(
Ψ′
(∣∣∇(uk + duk,l)

∣∣2 + ∣∣∇(vk + dvk,l)
∣∣2)·

∇(vk + dvk,l+1)

)
= 0 (4.16)
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4.2.2 Multiscale strategy

In order to consider large displacements in our approach we need to include a

multiscale strategy [11, 5, 53, 54] that does not contradict the linearization considered

in Eqs. (4.13) and (4.14).

For the multiresolution strategy a Gaussian pyramid of the image is generated

using a downsampling factor η ∈ (0, 1), where η remains constant for each stage. The

coarse grid is obtained by scaling the images L(x, y, t) and L(x+ u, y + v, t+ 1) by a

factor ηi for i = M−1,M−2, · · · , 0, whereM represents the number of decomposition

levels.

Starting at the coarse level (i = M − 1) with W 0 = (0, 0, 1)T , duk,0 = 0 and

dvk,0 = 0 the inner iteration (l) allows obtaining the increment duk for the outer

iteration (k), where uk+1 = uk + duk,l+1 is the solution for the linear system of the

Eqs.(4.15) and (4.16) in the current level [63]. Then, the solution is interpolated and

propagate to the next finer level (i = i− 1) where it is employed for the initialisation

of the outer iteration.
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Results

If my relativity theory is verified,

Germany will proclaim me a

German and France will call me a

citizen of the world. But if my

theory is proved false, France will

emphasize that I am a German and

Germany will say that I am a Jew.

Albert Einstein (1879–1955).

Speaking at the Sorbonne during

the 1930s.

5.1 Test images

In order to test the frame estimation performance of our method we used sequences

with ground truth as well as computed tomography (CT) images (see Appendix A).

In the sequences with ground truth we calculated the angular error between the

estimated optical flow and the ground truth. In the case of CT images, we ran

objective and subjective tests. Objective tests consisted of reconstructing sequential

images from their adjacent images and their motion vectors. We then measured the

backward reconstruction error.
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Parameter name Symbol Value

Hermite Polynomial degree N 3
Downsampling factor η 0.95

Regularization parameter α 50
Local constraint weight γ 90
Decomposition levels M 40

Outer iteration number k 15
Inner iteration number l 50

Table 5.1: Optical flow parameters using steered Hermite transform approach.

For the optical flow estimation using the steered Hermite transform, we used the

parameters of Table 5.1.

5.2 Algorithm validation

In order to validate our method we compared our implementation with the 2D

algorithm of [63] using several sequences of the new set of benchmarks of [6]. They de-

fined sequences with nonrigid motion where the ground truth flow was determined by

tracking hidden fluorescent texture. This methodology pushing the limits of current

technology, revealing where current algorithms fail, and evaluating the next genera-

tion of optical flow algorithms.

As a performance measure we calculate the angular error (AE ) proposed in [6].

The angular error is defined as the angle in 3D space between two normalized flow vec-

tors, we calculated the dot product which expresses the angular relationship between

the vectors −→u = (u0, u1) and
−→v = (v0, v1):

AE = arccos (−→u · −→v ) (5.1)

where
−→u · −→v = u0v0 + u1v1 (5.2)
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(a) (b)

(c)

Figure 5.1: Optical flow of the sequence Dimetrodon. (a) Frame 10 of the sequence.
(b) Ground truth. (c) Reference color wheel.

Fig. 5.1(a) shows the frame 10 of the Dimetrodon sequence and its ground truth

is displayed in Fig. 5.1(b). In Fig. 5.1(c) a reference color wheel is used to encode

the direction of the flow vector, where each color represents the direction and its tone

the magnitude of the vector.

In Fig. 5.2 we show the optical flow for the Dimetrodon sequence using the

approach of [63] (Fig. 5.2(a)) and the steered Hermite approach (Fig. 5.2(c)). For

the implementation of [63] we used the binaries of the author’s website published in

[13].

Figs. 5.2(b) and 5.2(d) show the average error for both approaches, namely AE =

3.03 ◦ for approach [63] and AE = 2.7 ◦ for our proposal. Noting that the error is

smaller with our approach.
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(a) (b)

(c) (d)

(e)

Figure 5.2: Optical flow fields of the Dimetrodon sequence. (a) Optical flow approach
of [63]. (b) Absolute error between the ground truth and the optical flow approach of
[63] AE = 3.03 ◦. (c) Optical flow using the steered Hermite coefficients. (d) Absolute
error between the ground truth and the optical flow using steered Hermite coefficients
AE = 2.7 ◦. (e) Reference color wheel.
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(a) (b)

(c)

Figure 5.3: Optical flow of the sequence Hydrangea. (a) Frame 10 of the sequence.
(b) Ground truth. (c) Reference color wheel.

Fig. 5.3(a) shows the frame 10 of the Hydrangea sequence and its ground truth is

displayed in Fig. 5.3(b). Fig. 5.3(c) shows its reference color wheel.

In Fig. 5.4 we show the optical flow for the Hydrangea sequence using the approach

of [63] (Fig. 5.4(a)) and the steered Hermite approach (Fig. 5.4(c)).

Figs. 5.4(b) and 5.4(d) show the average error for both approaches. The approach

[63] gets an error AE = 6.94 ◦ and using our proposal we get an error AE = 6.88 ◦

The frame 10 of the Rubberwhale sequence is shown in Fig. 5.5(a) whereas its

ground truth is displayed in Fig. 5.5(b). Fig. 5.5(c) represents the color coding for

the displacement.

The optical flow results are show in Fig. 5.6 for the approach of [63] (Fig. 5.6(a))

and using the steered Hermite approach (Fig. 5.6(c)). The corresponding errors

are shown in Fig. 5.6(b) for [63] (AE = 6.61 ◦) and Fig. 5.6(d) for our approach

(AE = 7.69 ◦).
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(a) (b)

(c) (d)

(e)

Figure 5.4: Optical flow fields of the Hydrangea sequence. (a) Optical flow approach
of [63]. (b) Absolute error between the ground truth and the optical flow approach of
[63] AE = 6.94 ◦. (c) Optical flow using the steered Hermite coefficients. (d) Absolute
error between the ground truth and the optical flow using steered Hermite coefficients
AE = 6.88 ◦. (e) Reference color wheel.
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(a) (b)

(c)

Figure 5.5: Optical flow of the sequence Rubberwhale. (a) Frame 10 of the sequence.
(b) Ground truth. (c) Reference color wheel.
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(a) (b)

(c) (d)

(e)

Figure 5.6: Optical flow fields of the Rubberwhale sequence. (a) Optical flow approach
of [63]. (b) Absolute error between the ground truth and the optical flow approach of
[63] AE = 6.61 ◦. (c) Optical flow using the steered Hermite coefficients. (d) Absolute
error between the ground truth and the optical flow using steered Hermite coefficients
AE = 7.69 ◦. (e) Reference color wheel.
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Sequence Angular error ( ◦) [63] Angular error ( ◦) Hermite

Dimetrodon 3.03 2.70
Hydrangea 6.94 6.88
Rubberwhale 6.61 7.69

Table 5.2: Angular errors.

Table 5.2 shows the angular error from Dimetrodon, Hydrangea and Rubberwhale

sequences, first applying the algorithm of [63] and then using the steered Hermite

transform.

5.3 Optical flow estimation in cardiac CT images

Getting a picture of the heart has always been a technical challenge because the

heart has a continuous movement. CT images of the heart in motion have been used

in the diagnosis with the development of MSCT synchronized with the Electrocar-

diography (ECG) examination. One of the main advantages of the introduction of

MSCT is the speed of acquisition of the images, thus shortening examination of the

patient to reduce the amount of contrast required to increase and enhance vascular

consistency. The use of MSCT of the heart synchronized with the patient’s ECG al-

lows reconstruction of transverse images of the entire cardiac volume during any phase

of the cardiac cycle. Usually, the entire stack of images is only reconstructed during

diastole to freeze the heart’s motion. By performing a reconstruction of the volume

during systole and diastole function it is possible to find basic parameters of cardiac

function, such as left and right ventricular ejection fraction and the myocardial wall

thickness [71].

The strongest cardiac movement is present during contraction of the atria and

ventricles in systole, approximately between 0% and 30% of cardiac cycle. The short

end–systolic rest phase is followed by a continuous filling phase of the ventricles during

diastole that slows down towards mid- and end–diastole. This movement is seen in

the displacement of the left ventricular wall, the aortic valve flaps, and the different
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Figure 5.7: Cardiac motion during the different phases of the cardiac cycle [62]. Left
ventricular wall (Wall). Aortic valve flaps (Valce). Left anterior descending coronary
artery (LAD). Right coronary artery (RCA).

segments of the coronary arteries in representative transaxial planes (Fig. 5.7). The

least amount of movement of the major cardiac anatomy and the coronary arteries,

and thus the least amount of dislocation over time, is observed in end-systole and

mid- to end–diastole of the cardiac cycle (Fig. 5.7) [62].

Due to the very complex 3D motion pattern of the heart, the intensity of movement

varies for different cardiac anatomies and different coronary vessels, and within the

cardiac cycle. Therefore, we evaluated the optical flow at different times of the cardiac

cycle.

In order to detect the optical flow in cardiac CT images taken at different times of

the cardiac cycle, we consider that the movement is due to the change of position of
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different cardiac structures and not due to the relative motion between the observer

and the scene or to the variations in scene illumination as is the case of synthetic

images. The images correspond to the axial plane (see Appendix B) of cardiac CT.

In Fig. 5.8 we show the cartesian Hermite coefficients of the slice 52 of the CT

sequence at 20% of the cardiac cycle.

In Fig. 5.9 we steered the cartesian Hermite coefficients of Fig. 5.8 according to

maximum energy direction.

To verify the constancy assumptions between two images in different times of the

cardiac cycle we compared their Hermite coefficients. Fig. 5.10 shows the coefficients

L0 of slice 52 of the CT sequence at 20% and 30% of the cardiac cycle, where there

is a displacement (u, v) of the pixels in the position (x, y) from a time t to a time

(t + 1). Fig. 5.11 shows the steered coefficients ln,θ for both periods of the cardiac

cycle.

In order to show the different movements of cardiac structures, we compute the

optical flow at different times of the cardiac cycle. In the following paragraphs we

show the optical flow obtained using our implementation and compared with the

implementation of [63] in 2D.

Due to constraints used we can determine the optical flow regularized in other

areas that not dependent on the textures or artifacts of the images, such as, homoge-

neous areas that are also of interest for medical diagnosis, despite the noise and the

irregular motion of the images used.

0% of the cardiac cycle

Figs. 5.12(a) and 5.12(b) show slice 52 of the CT sequence at 0% and 10% of the

cardiac cycle (systole) respectively.

The resulting optical flow applying the approach of [63] and the steered Hermite

transform approach are shown in Figs. 5.13(a) and 5.13(b) respectively.

From a visual evaluation we notice that our algorithm shows clearer and better

defined flows especially in areas close to the cavities, such as the left ventricle, being

the study of movement of this structure of major importance to physicians.
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(a) L0,0(x, y) (b) L1,0(x, y) (c) L2,0(x, y) (d) L3,0(x, y)

(e) L0,1(x, y) (f) L1,1(x, y) (g) L2,1(x, y)

(h) L0,2(x, y) (i) L1,2(x, y)

(j) L0,3(x, y)

Figure 5.8: Cartesian Hermite coefficients of the slice 52 of the CT sequence at 20% of
the cardiac cycle for N = 3 (n = 0, 1, 2, 3). (a) L0,0(x, y) (represents the DC Hermite
coefficient). (b) L1,0(x, y). (c) L2,0(x, y). (d) L3,0(x, y). (e) L0,1(x, y). (f) L1,1(x, y).
(g) L2,1(x, y). (h) L0,2(x, y). (i) L1,2(x, y). (j) L0,3(x, y).
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(a) L0,0(x, y) (b) l1,0(x, y, θ) (c) l2,0(x, y, θ) (d) l3,0(x, y, θ)

(e) l0,1(x, y, θ) (f) l1,1(x, y, θ) (g) l2,1(x, y, θ)

(h) l0,2(x, y, θ) (i) l1,2,θ(x, y)

(j) l0,3,θ(x, y)

Figure 5.9: Steered Hermite coefficients of the slice 52 of the CT sequence at 20% of
the cardiac cycle for N = 3 (n = 0, 1, 2, 3). (a) l0,0(x, y) (represents the DC Hermite
coefficient). (b) l1,0,θ(x, y). (c) l2,0,θ(x, y). (d) l3,0,θ(x, y). (e) l0,1,θ(x, y). (f) l1,1,θ(x, y).
(g) l2,1,θ(x, y). (h) l0,2,θ(x, y). (i) l1,2,θ(x, y). (j) l0,3,θ(x, y).
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(a) (b)

Figure 5.10: Cartesian Hermite coefficients L00 of the slice 52 of the CT sequence at
20% and 30% of the cardiac cycle. (a) L0,0(x, y, t). (b) L0,0(x+ u, y + v, t+ 1).

Fig. 5.14 shows the isolated displacements of the left ventricle. For this purpose

we use a binarization of the image and apply algorithms of mathematical morphology

for a simple segmentation of the left ventricle. Fig. 5.14(a) shows the optical flow

resulting from the algorithm of [63] and Fig. 5.14(b) the results of the steered Hermite

transform algorithm.

In the optical flow field the size of the arrows is proportional to the magnitude of

the displacement, which results in an overlap between the vectors. To avoid this we

show the velocity field using a color code (Fig. 5.15). Figs. 5.15(a) and 5.15(b) show

the color code results corresponding to the displacements of Fig. 5.14.

The left ventricular wall contraction in systole can be seen in Figs. 5.13, 5.14 and

5.15.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Steered Hermite coefficients up to order N = 3 of the slice 52 of the CT
sequence at 20% and 30% of the cardiac cycle. (a) l1,θ(x, y, t). (b) l1,θ(x+u, y+v, t+1).
(c) l2,θ(x, y, t). (d) l2,θ(x+ u, y + v, t+ 1). (e) l3,θ(x, y, t). (f) l3,θ(x+ u, y + v, t+ 1).
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20% of the cardiac cycle

Figs. 5.17, 5.18 and 5.19 show the estimated optical flow between 20% and 30%

corresponding to cardiac cycle of slice 52 shown on Fig. 5.16, also showing the left

ventricular wall contraction.

50% of the cardiac cycle

The movement of relaxation during diastole can be seen between 40% to 60% of

the cardiac cycle [62]. Figs. 5.21, 5.22 and 5.23 show the optical flow between 50%

and 60% of cardiac cycle of slice 52 shown on Fig. 5.20 using both the approach of [63]

and the steered Hermite transform. According to [62] the least amount of movement

is observed in end-systole and mid- to end-diastole of the cardiac cycle.

5.4 Quantitative evaluation of optical flow in car-

diac CT images

In order to provide a quantitative measure of our proposal we calculate the Root

Mean Squared RMS of the Backward reconstruction using the optical flow algorithm

of [63] and the steered Hermite coefficients. The computed optical flow for a particular

image in a sequence is used to estimate the next image in that sequence. Then the

RMS between this estimated image and the actual next image is calculated:

RMS error =

√√√√∑x

∑
y

(
L(x, y, t)− L̂(x, y, t)

)2
M×N

(5.3)

where L(x, y, t) and L̂(x, y, t) are the true and reconstructed images of size M×N
at time t.

For the reconstruction algorithm we used the Backward reconstruction [46]. Let

us consider two adjacent images in the CT sequence L(x, y, t) and L(x, y, t+ 1), and

the optical flow (u, v) between them. Given the values pixels of second image, we can

calculate the gray value at (x, y) in the first image using spline interpolation.
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(a)

(b)

Figure 5.12: Slice 52 of the CT sequence. (a) 0% of the cardiac cycle. (b) 10% of the
cardiac cycle.



78 Chapter 5: Results

(a)

(b)

Figure 5.13: Optical flow of slice 52 of the CT sequence between 0% and 10% of
the cardiac cycle. (a) Optical flow algorithm of [63]. (b) Optical flow using steered
Hermite transform approach.
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(a)

(b)

Figure 5.14: Optical flow left ventricle of slice 52 of the CT sequence between 0% and
10% of the cardiac cycle. (a) Optical flow left ventricle algorithm of [63]. (b) Optical
flow left ventricle using steered Hermite coefficients.
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(a) (b)

(c)

Figure 5.15: Optical flow left ventricle of slice 52 of the CT sequence between 0% and
10% of the cardiac cycle (color coding). (a) Optical flow left ventricle algorithm of
[63] (color coding). (b) Optical flow left ventricle using steered Hermite coefficients
(color coding). (c) Reference color wheel.
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(a)

(b)

Figure 5.16: Slice 52 of the CT sequence. (a) 20% of the cardiac cycle. (b) 30% of
the cardiac cycle.
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(a)

(b)

Figure 5.17: Optical flow of slice 52 of the CT sequence between 20% and 30% of
the cardiac cycle. (a) Optical flow algorithm of [63]. (b) Optical flow using steered
Hermite transform approach.
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(a)

(b)

Figure 5.18: Optical flow left ventricle of slice 52 of the CT sequence between 20%
and 30% of the cardiac cycle. (a) Optical flow left ventricle algorithm of [63]. (b)
Optical flow left ventricle using steered Hermite coefficients.
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(a) (b)

(c)

Figure 5.19: Optical flow left ventricle of slice 52 of the CT sequence between 20%
and 30% of the cardiac cycle (color coding). (a) Optical flow left ventricle algorithm
of [63] (color coding). (b) Optical flow left ventricle using steered Hermite coefficients
(color coding). (c) Reference color wheel.
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(a)

(b)

Figure 5.20: Slice 52 of the CT sequence. (a) 50% of the cardiac cycle. (b) 60% of
the cardiac cycle.
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(a)

(b)

Figure 5.21: Optical flow of slice 52 of the CT sequence between 50% and 60% of
the cardiac cycle. (a) Optical flow algorithm of [63]. (b) Optical flow using steered
Hermite transform approach.
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(a)

(b)

Figure 5.22: Optical flow left ventricle of slice 52 of the CT sequence between 50%
and 60% of the cardiac cycle. (a) Optical flow left ventricle algorithm of [63]. (b)
Optical flow left ventricle using steered Hermite coefficients.
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(a) (b)

(c)

Figure 5.23: Optical flow left ventricle of slice 52 of the CT sequence between 50%
and 60% of the cardiac cycle (color coding). (a) Optical flow left ventricle algorithm
of [63] (color coding). (b) Optical flow left ventricle using steered Hermite coefficients
(color coding). (c) Reference color wheel.
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% cardiac cycle RMS error [63] RMS error Hermite

0%-10% 28.6214 26.0571
20%-30% 17.5157 16.9614
50%-60% 19.5726 19.2855

Table 5.3: Reconstruction RMS error.

Fig. 5.24 shows the reconstruction error for the optical flow at 20% of the cardiac

cycle of the slice 52 for the approach of [63] and using the steered Hermite coefficients.

Table 5.3 shows the reconstruction error for the optical flow from 0%-10%, 20%-

30% and 50%-60% of the cardiac cycle images of slice 52, first applying the algorithm

of [63] and then using the steered Hermite transform.

In Table 5.3 we note that the RMS error is smaller in our approach, this is because

when using the coefficients of order larger than 2 the estimate is more robust to noise.

It is important to stress that in spite of the noisy nature of CT images our algorithm

has shown more accuracy.
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(a) (b)

(c) (d)

Figure 5.24: Reconstruction error slice 52 of the CT sequence 20% of the cardiac
cycle. (a) Backward reconstruction using the optical flow of [63]. (b) Absolute error
between the reconstructed first image and the true first image (20% of the cardiac
cycle) using approach of [63]. (c) Backward reconstruction using the steered Hermite
transform. (d) Absolute error between the reconstructed first image and the true first
image (20% of the cardiac cycle).
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Conclusions

Your beliefs become your thoughts,

Your thoughts become your words,

Your words become your actions,

Your actions become your habits,

Your habits become your values,

Your values become your destiny.

Mahatma Gandhi (1869–1948).

This thesis proposed a method of optical flow estimation using the steered Hermite

transform. The Hermite transform (Martens [52, 51]) is a model that incorporates

some of the more important properties of the first stages of the human visual system,

such as the overlapping Gaussian receptive fields, the Gaussian derivative model of

early vision (Young [85, 86, 87]), and the multiresolution analysis (Escalante-Ramı́rez

[24], Silván-Cárdenas [73]).

We have followed a continuous, rotationally invariant differential approach for

motion estimation which incorporates certain restrictions such as constraints of in-

tensity and gradient constant, and piecewise smooth optical flow field, in order to

handle the aperture problem. In order to improve the robustness of classical meth-

ods, our approach use additional non–linear constraints suggested by novel differen-

tial approaches. They include higher order derivatives on local image constraints to
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achieve intensity change invariance, the use of isotropic flow–driven regularization

to reduce smoothing at motion boundaries and robust optimization functions to be

more lenient with respect to outliers in the solution. These constancy assumptions

are not linearized thus allowing implementing a multiresolution strategy to handle

large displacements.

Image primitive structures extracted from the steered Hermite coefficients have

been used as local image constraints, in order to make the algorithm more robust

to noise. This has improved the estimation performance, allowing the algorithm to

analyze perceptually relevant oriented image structures. Varying the spatial scale of

the Gaussian window allows analyzing objects of different spatial dimensions. We use

this feature to build the estimation method on a multiresolution approach, starting

from the lowest resolution we define a linear system and the solution is interpolated

and propagated to the next finer level.

Estimation performance has been tested in several ways. Angular error was cal-

culated from several sequences with ground truth. Smaller values were found with

our method than with one of the best state-of-the-art competitive approaches in the

majority of cases.

For highly textured images our method allows obtaining an angular error smaller

than that obtained with the algorithm of [63]. This is due to the fact that the

steered Hermite transform obtains local orientations of structures with high local

intensity variation. We ran objective and subjective tests on CT images. From a

visual evaluation we notice that our algorithm shows clearer and better defined flows

especially in areas close to the cavities, such as the left ventricle, being the study of

movement of this structure of major importance to physicians. In order to perform an

objective test on these images we reconstructed sequential images from their adjacent

images and their motion vectors. We then measured the backward reconstruction

error and found smaller errors in our proposal than in competitive approaches. It is

important to stress the high accuracy obtained with our method, even in the presence

of noise of CT images.
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Computed tomography

Our reward is in the effort, not

outcome. A total effort is full

victory.

Mahatma Gandhi (1869–1948).

One of the most important advances in diagnostic radiology in recent decades has

been the cross-sectional imaging of the human body. After the introduction of com-

puted tomography (CT), ultrasound (US) and magnetic resonance imaging (MRI)

diagnostic proposals, treatment and monitoring of disease have changed completely.

In particular, spiral computed tomography has become a useful tool for cross-sectional

imaging, this due to its robustness, which is moderately invasive and relatively inex-

pensive. In particular, CT angiography was significantly enhanced by the rotational

speed of the order of sub-seconds and the fineness of the collimation [19].

In 1895, William Roentgen produced and detected electromagnetic radiation in

a wavelength range today known as x rays or Roentgen rays. While investigating

materials that could stop these rays he passed his hand in front of the x-ray source

and produced the first x-ray image. He was awarded the Nobel Prize for physics in

1901. Clinical CT itself was invented by Godfrey Hounsfield in 1972. He also received

the Nobel Prize (for medicine) in 1979 along with Allan Cormack (Fig. A.1) [8].
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1895 X-ray 

discovered by 

Roentgen

1958 First

coronary

angiogram

performed

1972 CT 

invented by

Hounsfield

2004 64-Slice 

CT available

1929 First 

cardiac 

catheterisation

1991 Twin-slice 

CT 

available

2006 Dual-

source CT

Figure A.1: CT timeline [8].

Figure A.2: CT schematic [8].

In a CT, an X-ray beam is rotated rapidly around the patient’s body, and the data

are transmitted to a computer, where an algorithm assigns to each point (voxel) of a

cross section of the image plane a value in a gray scale (Hounsfield unit), indicating

the attenuation of the X-rays on tissue (Fig. A.2) [70].

Initial CT scanners (Fig. A.3) were limited to tomographic sections of the brain

that took several minutes to acquire. Slip–ring technology replaced the cables of older

scanners and permitted fast spiral scanning whereby the x–ray source and detector

continuously rotate around the patient while the patient table moves through the

scanner [8].
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Figure A.3: Single CT scanner [8].

Spiral CT generates cross–sectional images of a volume by obtaining multiple

measurements of the x-rays attenuation from several projections. The requirement

for image reconstruction is that all the above-mentioned measurements should lie in

the same plane, which is not the case in spiral CT since scanning is performed with

simultaneous patient translation. The complete in–plane data set of measurements is

obtained through interpolation from the measurements that precede and follow that

plane. Given the need for interpolation, we should consider that the more distant the

measurements, the less accurate the interpolated values. The distance between the

measurements depends on the table feed and on the gantry rotation period [19].

In spiral CT, images can be reconstructed at any z–axis position within the

scanned volume since missing information is obtained through interpolation. In

MSCT, image reconstruction is performed using a filtered backprojection kernel1.

A convolution filtering before the backprojection is needed to overcome the additive

nature of the reconstruction technique. Image filtering is generally used to enhance

specific features such as edges. However, image filtering affects image pixel noise and,

1Backprojection is an approximated algorithm that assigns to a defined pixel the values that are
collected along projection lines passing through the same pixel.
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Figure A.4: Multislice CT scanner [8].

as a consequence, image contrast [19].

The scan speed was further improved by changing the shape of the radiation beam

(to a fan shape) and increasing the number and quality of x-ray detectors in what

are called multidetector (or multislice) CT scanners (Fig. A.4), where the rotation

speed has dropped to less than half a second and the resolution in the sub-millimeter

order, allowing scanned large areas in great detail. Developed in 1991, the Elscint

CT Twin was the first multislice (MSCT) scanner and had two parallel banks of x-

ray detectors to acquire two slices for each gantry rotation. Quickly the technology

developed with scanners with four slices, then 16 slices, and current scanners having

up to 64 slices and prototype 256-slice detectors in development. Recently, the first

dual-source MSCT was launched. This has two pairs of x-ray sources and multislice

detectors mounted at 90 degrees to each other [8].

The limitations of spiral CT have been significantly reduced with MSCT. Increased

number of detectors and faster gantry rotation speed permit an increase in the overall

scan speed ranging from 4 to more than 25 times, compared with single detector array

equipment.
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Cardiac CT images

There are only two mistakes one can

make along the road to truth; not

going all the way, and not starting.

Sidhartha Gautama (563–483 b.c).

Dhammapada.

The heart has been extensively evaluated radiologically, but mostly in standard

two-dimensional images (e.g., X–rays and angiograms of the chest). Standard radio-

graphs of the chest (anterior and posterior) may reveal the silhouette of the heart, as

well as the great arteries and pulmonary vasculature, but cannot show small struc-

tures and easily determine overlapping structures (Fig. B.1a). CT images can be

enhanced and manipulated in various ways. Generally an ionized contrast agent is

injected intravenously during scanning, allowing smaller structures become visible.

Moreover, the data can be reconstructed on the computer to provide images through

different planes of the body or 3-dimensional images (Fig. B.1b) [70].

MSCT for the evaluation of the heart and coronary arteries was introduced with

the generation of 4-row detector instruments in 1999 [19].

The human body can be viewed in three standard anatomic planes, which are

oriented perpendicular to each other: sagittal, coronal, and transverse (Fig. B.2a).

These planes are aligned with the thoracic midline structures, the aorta and esoph-
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(a) (b)

Figure B.1: Comparative images of X–ray and CT [70]. (a) Planar projection of stan-
dard chest radiograph. (b) Three-dimensional CT image revealing complex anatomy
and spatial relationships.

agus. In contrast, the heart is oriented obliquely in the chest and therefore imaging

in standard anatomic planes is suboptimal to visualize cardiac anatomy and pathol-

ogy. The heart’s three standard planes are its vertical and horizontal long axis and

its so-called short axis. These cardiac axes are tilted against the standard anatomic

planes, as shown in Fig. B.2b [28].

The axial plane is the first image plane in CT and usually gives a good overview of

cardiac and coronary anatomy (Fig. B.3(a) and B.3(b)). The long vertical axis (Fig.

B.4) or two-chamber view is easily produced from the axial plane, this corresponds

to a vertical plane through the cardiac apex and the center plane of the mitral valve

into the left atrium. This view is adequate to delineate the configuration of the left

ventricle and to evaluate contraction of the anterior and lower segment of ventricular

left myocardium [28].

The short axis view is oriented perpendicular to the vertical long axis and is

parallel with the mitral valve plane and the cardiac base (Fig. B.5). The short

axis therefore has a double-oblique angulation to account for the dorsoventral and

medioleftlateral tilt of the heart. Due to the alignment of the short axis view with

the atrioventricular grooves, it can be used to display the right coronary artery down

to the cardiac crux, the posterolateral branches of the distal right coronary artery,

and the left circumflex coronary artery in its course in the left atrioventricular groove.
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(a) (b)

Figure B.2: Human anatomical and cardiac planes. (a) Human standard anatomic
planes [55]. (b) Orientation of the vertical long axis and the short axis of the heart
in relation to the standard anatomic planes [28].

(a) (b)

Figure B.3: Axial anatomy of the heart. (a) Sample of the right atrial appendage,
the ascending aorta and pulmonary artery (*, Ao and PA, respectively). (b) Sample
of the right coronary artery and the mitral valve (RCA and MV).
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Figure B.4: Vertical long axis orientation. It is shown as a line from the cardiac apex
through the middle of the mitral valve plane.

Figure B.5: Short axis orientation as planned from a vertical long axis view [28].

The inferior facet of the right ventricle is parallel with the diaphragm and thus the

transverse plane has a sharp angle (also called the acute margin), with the anterior

free wall and the outflow tract of the right ventricle giving the right ventricle an

almost triangular shape in this view. The left ventricle has a circular aspect on short

axis view. Right and left ventricular motion can also be visualized with the short

axis view and it is the basis for volumetric measurements used in global ventricular

function evaluation [28].

The horizontal long axis corresponds to a tilted plane from cardiac apex through

the middle of the mitral valve plane to the cardiac base. It is perpendicular to the

vertical long axis and displays both ventricles and atria in their largest diameters.

This view is a frontal view onto the heart from the anterior aspect directed to the
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Figure B.6: Horizontal long axis orientation as planned from a vertical long axis view.
Note the S-shape of the interventricular septum and the thin membranous part of the
septum close to the cardiac base. [28].

inferior wall and thus gives a good overview of the size and configuration of both

ventricles. It can be used to delineate the mitral and tricuspid valves. As shown

in Fig. B.6, the horizontal long axis imaging plane displays the left main coronary

artery and the left anterior descending with its diagonal branches. The right coronary

artery, like the proximal left circumflex coronary artery, is depicted in an orthogonal

cut plane [28].





Appendix C

Relation between Gaussian

derivatives and the Hermite

coefficients

You have to do the right thing. It

may not be in your power, may not

be in your time, that there’ll be any

fruit. But that doesn’t mean you

stop doing the right thing. You may

never know what results come from

your action. But if you do nothing,

there will be no result.

Mahatma Gandhi (1869–1948).

The 1D Hermite coefficients are achieved by the inner product between the signal

located by the Gaussian window and the Hermite polynomials:

Lk =
〈
L(x), Hk

(x
σ

)〉
=

∫ ∞

−∞
G(x)L(x)Hk

(x
σ

)
dx (C.1)
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It can be shown that:

Lk =
〈
L(x), Hk

(x
σ

)〉
=
〈
L(1)(x), Hk−1

(x
σ

)〉
= · · ·

· · · =
〈
L(2)(x), Hk−2

(x
σ

)〉
= · · ·

· · · =
〈
L(k)(x), H0

(x
σ

)〉 (C.2)

where

L(k)(x) =
∂kL(x)

∂k

H0

(x
σ

)
= 1

(C.3)

Therefore

Lk =
〈
L(k)(x), 1

〉
= L(k)(x) (C.4)

The Eq. C.4 states that the kth order Gaussian derivative of the image is the

inner product of the image and the kth order Hermite polynomial [48].



Appendix D

Simplification of the

Euler-Lagrange equations

If you wish to know the past, then

look at the present which is the

result of it. If you wish to know the

future, then look at the present

which is the cause of it.

Albert Einstein (1879–1955).

The Euler-Lagrange equations for the Eq. (4.8) are:

Ψ′

(∣∣∣L0(X +W )− L0(X)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣2))·[∣∣∣L0(X +W )− L0(X)

∣∣∣∂L0(X +W )

∂u(x)

+γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣∂ln,θ(X +W )

∂u(x)

)]
−

α div

(
Ψ′
(
|∇u|2 + |∇v|2

)
∇u

)
= 0 (D.1)
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Ψ′

(∣∣∣L0(X +W )− L0(X)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣2))·[∣∣∣L0(X +W )− L0(X)

∣∣∣∂L0(X +W )

∂v(y)

+γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣∂ln,θ(X +W )

∂v(y)

)]
−

α div

(
Ψ′
(
|∇u|2 + |∇v|2

)
∇v

)
= 0 (D.2)

Applying the chain rule for partial derivatives to equation Eq. (D.1) we get:

∂L0(∗)
∂u(x)

=
∂L0(∗)
∂x

∂L0(∗)
∂v(y)

=
∂L0(∗)
∂y

∂ln,θ(∗)
∂u(x)

=
∂ln,θ(∗)

∂x

∂ln,θ(∗)
∂v(y)

=
∂ln,θ(∗)

∂y

from Eq. (C.4) of Appendix C we have that:

∂L0(X +W )

∂x
= L1,0(X +W ) (D.3)

and

∂

∂x

N∑
n=1

ln,θ(x) =
N∑

n=1

∂

∂x
Lm,n−m · gm,n−m(θ)

∂

∂x

N∑
n=1

ln,θ(x) =
N∑

n=1

L(m)+1,n−m · gm,n−m(θ)

∂

∂x

N∑
n=1

ln,θ(x) =
N∑

n=1

ln,θ(m)+1
(x) (D.4)

And in a similar way for partial derivatives to Eq. (D.2).
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Eq. (D.3) and Eq. (D.4) simplifies Eq. (D.1) and Eq. (D.2):

Ψ′

(∣∣∣L0(X +W )− L0(X)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣2))·[∣∣∣L0(X +W )− L0(X)

∣∣∣L10(X +W )

+γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣ln,θ(m)+1

(X +W )
)]

−

α div

(
Ψ′
(
|∇u|2 + |∇v|2

)
∇u

)
= 0 (D.5)

Ψ′

(∣∣∣L0(X +W )− L0(X)
∣∣∣2

+ γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣2))·[∣∣∣L0(X +W )− L0(X)

∣∣∣L01(X +W )

+γ
( N∑
n=1

∣∣∣ln,θ(X +W )− ln,θ(X)
∣∣∣ln,θ(n)+1

(X +W )
)]

−

α div

(
Ψ′
(
|∇u|2 + |∇v|2

)
∇v

)
= 0 (D.6)
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Linearization via Taylor expansion

Live as if you were to die tomorrow.

Learn as if you were to live forever.

Mahatma Gandhi (1869–1948).

There are non–linear terms in Eqs. (4.11) and (4.12) as:

L0(X +W k+1)− L0(X)

ln,θ(X +W k+1)− ln,θ(X)

Applying a first order Taylor expansion we get:

L0(X +W k+1)− L0(X) ≈(
L0(X +W k) + duk ∂L0(X)

∂x
+ dvk ∂L0(X)

∂y

)
− L0(X) ≈(

L0(X +W k) + dukL01(X) + dvkL10(X)
)
− L0(X) ≈(

L0(X +W k)− L0(X)
)
+ dukL01(X) + dvkL10(X) (E.1)
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and

N∑
n=1

(
ln,θ(X +W k+1)− ln,θ(X)

)
≈

N∑
n=1

([
ln,θ(X +W k) + duk ∂ln,θ(X)

∂x
+ dvk ∂ln,θ

∂y

]
− ln,θ

)
≈

N∑
n=1

([
ln,θ(X +W k) + dukln,θ(m)+1

(X) + dvkln,θ(n)+1
(X)

]
− ln,θ

)
≈

N∑
n=1

([
ln,θ(X +W k)− ln,θ(X)

]
+ dukln,θ(m)+1

(X) + dvkln,θ(n)+1
(X)

)
(E.2)
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