

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

DISEÑO DE MECANISMO PARA UNA MÁQUINA CORTADORA DE NOPAL.

TESIS

QUE PARA OBTENER EL TITULO DE INGENIERO MECÁNICO

PRESENTA:

CANTERO MEDINA MICHAEL

ASESOR DE TESIS:

M.C. UBALDO EDUARDO MÁRQUEZ AMADOR

MÉXICO, D.F. 2013

Agradecimientos.

Agradezco a mis padres José Alfredo y Margarita que me brindaron todo su apoyo incondicional, siempre otorgándome sabios consejos para hacer las cosas de la mejor manera y viendo hacia adelante. Nunca olvidaré todo lo que he aprendido de ustedes y lo que sigo aprendiendo; en todo momento daré lo mejor de mí para ser una mejor persona en todos los aspectos.

Gracias a la vida por tener buena salud, por todas las oportunidades que he tenido para alcanzar este gran logro, por todo lo que he aprendido y por tantas cosas que falta por aprender.

Agradezco a la UNAM y a la Facultad de I ngeniería, por darme la oportunidad de realizar mis estudios y por la formación que desarrolle. Gracias a todos los profesores que me dieron cátedra y los que me brindaron su conocimiento.

Muchas gracias a mi asesor el M.C. Ubaldo Eduardo Márquez Amador quien tomo parte de su tiempo para darle seguimiento a este trabajo.

Gracias al I ng. Miguel Ángel Hernández Alcántara por brindarme la asesoría en la manufactura del elemento sujetador para la instron, por sus consejos y por el gran estima que le tengo, un profesor que aporta su conocimiento y experiencia a los alumnos de la Facultad.

Gracias a Lili por su apoyo y por concederme su confianza.

Muchas Gracias a todos.

Atentamente

Michael Cantero Medina

Índice

IN	TRODU	CCIÓN	
C	APÍTUL	0 1	
1	ASPI	ECTOS RELEVANTES ACERCA DEL NOPAL	
		Taxonomía	
		PROPIEDADES QUÍMICAS DEL NOPAL.	
		PRODUCCIÓN DE NOPAL EN MÉXICO.	
		CULTIVO DEL NOPAL	
		Cosecha	
		MANEJO POST-COSECHA.	
	-	INDUSTRIALIZACIÓN DEL NOPAL.	
	1.7.1		
	1.7.2		
	1.7.3		
_	ADÍTIII A	0 2	
C,			
2	PLAN	NTEAMIENTO Y ENSAYO DE PENETRACIÓN	18
	2.1	Objetivo y definición del problema.	19
		ESPECIFICACIONES DE CORTE	
		Ensayo de penetración.	
		Experimentación.	
		Materiales.	
	2.6	Metodología	23
		GRÁFICAS Y RESULTADOS	
		Análisis de resultados de la prueba	
	2.9	Antecedentes de diseño	
	2.9.1	Factor de seguridad	30
C	APÍTUL	O 3	38
3	DISE	ÑO DE LOS ELEMENTOS DE CORTE Y MECANISMO	38
	3.1	CUCHILLAS DE CORTE	30
	3.1.1	Fuerza de cizalladura	
	3.1.2		
	_	DISEÑO DEL PUNZÓN	
	3.2.1		
	3.2.2		
	3.2.3	,	
		DISEÑO DEL MECANISMO.	
	3.3.1		
	Α.	Tipos de leva.	
	В.	Tipos de seguidor	
	3.3.2	Funciones del perfil de levas	5
	A.	Determinación de la función.	6 ⁻
	В.	Dimensiones de la leva.	6.

3.3	3.3 Material de fabricación de la leva	72
3.3	3.4 Fuerzas dinámicas	73
CAPÍTU	ILO 4	81
4 SIS	STEMA MOTRIZ, TRANSMISIÓN DE POTENCIA, SUJECIÓN Y ENSAMBLE	81
4.1	DISEÑO DEL EJE.	81
4.2	CASQUILLO DE SUJECIÓN.	89
4.3	CHUMACERAS.	91
4.4	SELECCIÓN DE LA TRANSMISIÓN DE POTENCIA.	92
4.5	Ensamble	94
CONCL	USIONES.	98
BIBLIO	GRAFÍA	100
MESOG	RAFÍA	102
APÉND	ICE A. PERFILES DE LEVA	103
APÉND	ICE B. SEGUIDOR	109
APÉND	ICE C. CASQUILLO DE SUJECIÓN	111
APÉND	ICE D. CHUMACERAS.	112
APÉND	ICE E. MOTORREDUCTOR	114
APÉND	ICE F. CADENA Y PIÑÓN	117
APÉND	ICE G. PLANOS	119

Objetivo: Diseñar un mecanismo para el corte de nopal. *Objetivos particulares:*

- 1. Obtener la fuerza de cizallado del nopal.
- 2. Diseñar los elementos de corte.
- 3. Diseñar el mecanismo motriz.
- 4. Diseñar el eje.
- 5. Seleccionar el motorreductor.
- 6. Diseñar la estructura.

Introducción.

El presente trabajo representa la proyección de un prototipo para una máquina cortadora de nopal, en donde se diseñaron algunos de los elementos para su posterior manufactura y ensamble. Considerando además, que este prototipo solo contempla los elementos básicos para su funcionamiento; dicho de otro modo, no se tomaron en cuenta condiciones como distribución eléctrica, componentes de seguridad, cubierta para aislar el mecanismo u otros medios para su total operación.

El capítulo 1 aborda acerca de las características físicas y químicas del nopal, la producción en nuestro país y la manera en como se ha diversificado alrededor del mundo. Dando a conocer algunos métodos para su industrialización, en donde uno de los principales problemas para su industrialización es el corte del nopal.

Antes de iniciar el diseño fue necesario conocer las características y magnitudes para el corte de nopal. Es por ello que en el capítulo 2 se definen las dimensiones de un nopal de acuerdo a las normas mexicanas y se obtiene la resistencia de corte del nopal mediante pruebas de penetración de acuerdo a condiciones similares a las que se diseñó la máquina.

En el capítulo 3 y con los resultados del capítulo 2, se seleccionó la configuración que requiere de una menor fuerza de cizalla y se generó el diseño de los primeros modelos de acuerdo a la fuerza de corte del nopal. También se diseñó el mecanismo bajo determinado tipo de operación y fuerza de corte, con lo que se obtuvo la potencia requerida por el mecanismo.

Para el sistema motriz, en el capítulo 4 se obtienen las dimensiones correspondientes al eje de acuerdo a la configuración de los soportes y los elementos que transmitirán la potencia. Se diseñó una estructura que contempla la ubicación y ensamble de todos los elementos que conforman la máquina.

Capítulo 1

1 Aspectos relevantes acerca del nopal.

El nopal data desde la prehistoria, su origen está ligado con las antiguas civilizaciones mesoamericanas; además hay evidencias arqueológicas que comprueban que las poblaciones indígenas mesoamericanas fueron las pioneras en el cultivo del nopal, en particular la civilización azteca.

Los nopales son originarios de América tropical y subtropical y hoy día se encuentran en una gran variedad de condiciones agroclimáticas, en forma silvestre o cultivada, en todo el continente americano. Además, se han difundido a África, Asia, Europa y Oceanía donde también se cultivan o se encuentran en forma silvestre. En la figura 1.1 se muestra la diversificación del nopal en otros continentes.

Figura 1.1. Extensión que ha alcanzado el nopal en todo el mundo. Se observa como el nopal se ha diversificado en todos los continentes.

El nopal es una cactácea endémica del Continente Americano que se desarrolló en regiones áridas y semiáridas de nuestro país. Existen 258 especies reconocidas, 100 de las cuales se encuentran en México, que cuenta con una superficie aproximada de 10,000 Ha de plantaciones especializadas en Nopal para consumo humano.

El nopal pertenece al género llamado *Opuntia*. Su propio y antiguo nombre es Tenochtitlán, que significa fruta de piedra (porque está compuesto de Tetl, que es

piedra, y de Nochtli, fruta); los aztecas, que fueron los que más lo emplearon, le dieron el nombre de "Nochtli" o "Nopalli" que es la fruta, llamada tuna (Ramos, 2004).

1.1 Taxonomía.

La familia de los nopales pertenece a la familia *Cactaceae*. La taxonomía de los nopales es sumamente compleja debido a múltiples razones, se reproducen en forma sexual o asexual y existen numerosos híbridos interespecíficos (Saenz, 2006).

La taxonomía más usada para la clasificación de las cactáceas es el sistema Britton and Rose, el cual clasifica las *Opuntias*, de la forma siguiente:

Tabla 1.1. Taxonomía			
Reino	Vegetal		
Subreino	Embryophyta		
División	Angiosperma		
Clase	Dicotiledónea		
Subclase	Dialipétalas		
Orden	Opuntiales		
Familia	Cactaceae		
Tribu	Opuntiae		
Género	Opuntia y Nopalea		
Especies	Varios nombres		

Se conocen casi 300 especies del genero *Opuntia*. Sin embargo, hay solo 10 o 12 especies hasta ahora utilizadas por el hombre, ya sea para producción de fruta y/o nopalitos para alimentación humana, forraje o cochinilla para obtención de colorante. Entre ellas se encuentran, como especies cultivadas para producción de fruta: *Opuntiaficus-indica*, *O. amyclaea*, *O. xoconostle*, *O. megacanthay O.* streptacantha. Como especies silvestres: *Opuntia hyptiacantha*, *O. leucotrichay O. robusta*. De las especies citadas, la más ampliamente cultivada en distintas partes del mundo es *Opuntia ficus-indica*; es más, en la cuenca del Mediterráneo es la única *Opuntia* que se cultiva y se emplea con diferentes propósitos.

1.2 Propiedades químicas del nopal.

Los nopales no constituyen en sí un alimento completo, sin embargo, forman parte, al igual que otras verduras, del menú cotidiano de muchas familias de escasos recursos, sobre todo en las zonas áridas del país y proporcionar algunos elementos nutritivos necesarios de la dieta(Morales, 2004).

Tabla 1.2. Valor nutrimental del nopal verdura (cantidad respecto a 100 g de nopales crudos).

	Contenido
Porción comestible	78.00%
Energía	27.00 Kcal
Proteínas	0.17 g
Grasas	0.30 g
Carbohidratos	5.60 g
Calcio	93.00 mg
Hierro	1.60 mg
Tiamina	0.03 mg
Riboflavina	0.06 mg
Niacina	0.03 mg
Ácido ascórbico	8.00 mg
Retinol mg Eq.	41.00 mg
Fibra cruda	1.1 g

Dentro de la composición química del nopal, se encuentra un alto contenido de agua, que está en el orden de 90 – 92.5 %. Entre los minerales que contiene, los principales son el calcio y el potasio además de magnesio, sílice, sodio y pequeñas cantidades de hierro y aluminio entre algunos otros. El nopal contiene también, en varias proporciones, diferentes glúcidos o carbohidratos y componentes nitrogenados.

El contenido de proteínas es mayor en los brotes o renuevos; la fibra cruda aumenta con la edad del cladodio, llegando a 16.1 por ciento, pero siendo cercana a 8 % en promedio en los renuevos (Saenz, 2006).

Tabla 1.3: Variación de algunas propiedades químicas del nopal en su etapa de crecimiento (Saenz, 2006).

Composición química de ciadodios de distintas edades (porcentaje de materia seca)				seca)		
Edad	Descripción	Proteína	Grasa	Cenizas	Fibra cruda	Extracto no
(años)						nitrogenado
0.5	Renuevos o nopalitos	9.4	1	21	8	60.6
1	Penca	5.4	1.29	18.2	12	63.1
2	Penca	4.2	1.4	13.2	14.5	66.7
3	Penca	3.7	1.33	14.2	17	63.7
4	Tallos suberificados	2.5	1.67	14.4	17.5	63.9

Dado que el nopal es una planta con mecanismo fotosintético CAM, el contenido de ácidos orgánicos varía durante el día. El pH varía de 5.2 en la noche a 4.4 en la mañana.

1.3 Producción de nopal en México.

El mercado mundial del nopal fresco es un mercado fragmentado con características de nichos de mercado. México es el principal exportador mundial, exporta alrededor de 1,500 toneladas en fresco y unas 3,500 toneladas procesadas a E.U.A. y cantidades menores a otros países (Valdez, 1995).

Tabla 1.4. Producción agrícola, cíclicos y perennes, (Servicio de Información Agroalimentaria y Pesquera (SIAP), 2009).

(SIAF), 2007).			
Cultivo	Sup. cosechada	Producción	Rendimiento
	(Ha)	(Ton)	(Ton/Ha)
CALABACITA	25,840.51	464,095.83	17.96
CEBOLLA	41,725.85	1,195,818.11	28.66
CHILE VERDE	140,439.60	1,981,564.45	14.11
COL (REPOLLO)	5,422.80	179,873.95	33.17
ESPARRAGO	12,602.00	63,950.18	5.08
FRESA	6,678.20	233,041.30	34.9
LECHUGA	15,794.60	317,780.92	20.12
MAIZ GRANO	6,223,046.54	20,142,815.76	3.24
MELON	21,024.10	552,371.27	26.27
NOPALITOS	11,746.50	744,250.41	63.36
PAPA	54,096.86	1,500,497.23	27.74
PEPINO	14,621.45	433,640.50	29.66
SANDIA	40,455.62	1,007,154.73	24.9
TOMATE ROJO (JITOMATE)	52,383.63	2,043,814.55	39.02
TOMATE VERDE	45,704.85	647,580.13	14.17
ZANAHORIA	14,140.30	368,600.14	26.07

México es el país líder en la producción de nopal verdura, en el año 2009 se obtuvo una producción en más de 11,000 ha. El único país competidor es E.U.A. con una superficie mucho menor de 100 ha. México también es el líder en el comercio mundial al ser exportador a E.U.A., Canadá, Japón y países europeos.

Tabla 1.5. Producción agrícola, cíclicos y perennes (Servicio de Información Agroalimentaria y Pesquera (SIAP), 2009).

Ubicación	Sup. Cosechada	Producción	Rendimiento	PMR	Valor Producción
	(Ha)	(t)	(Ton/Ha)	(\$/Ton)	(Miles de Pesos)
AGUASCALIENTES	198	9,742.00	49.2	1,388.83	13,529.98
BAJA CALIFORNIA	649	32,522.29	50.11	2,794.45	90,881.99
BAJA CALIFORNIA SUR	14.5	101.5	7	6,000.00	609
CHIHUAHUA	38	245	6.45	5,644.90	1,383.00
COLIMA	11.5	197.5	17.17	2,311.65	456.55
DISTRITO FEDERAL	4,337.00	322,102.30	74.27	2,406.86	775,254.17
DURANGO	102	4,485.00	43.97	3,636.12	16,308.00
GUANAJUATO	214	4,953.76	23.15	1,574.57	7,800.04
GUERRERO	9	159	17.67	4,720.75	750.6
HIDALGO	49.5	3,878.10	78.34	4,456.98	17,284.62
JALISCO	441.27	4,494.90	10.19	3,210.20	14,429.52
MEXICO	735	51,697.15	70.34	1,911.92	98,841.07
MICHOACAN	266.5	4,846.40	18.18	1,554.99	7,536.08
MORELOS	2,745.00	274,300.00	99.93	1,109.21	304,255.00
NAYARIT	42	204.5	4.87	5,647.43	1,154.90
OAXACA	108	1,208.90	11.19	3,478.67	4,205.36
PUEBLA	171.5	13,037.50	76.02	3,448.54	44,960.30
QUERETARO	30	295.56	9.85	2,149.81	635.4
SAN LUIS POTOSI	416	1,148.52	2.76	490.68	563.56
SINALOA	8	112.9	14.11	2,399.48	270.9
SONORA	106	1,051.00	9.92	3,547.10	3,728.00
TAMAULIPAS	618.48	4,795.88	7.75	2,057.21	9,866.14
TLAXCALA	11	34	3.09	2,889.71	98.25
VERACRUZ	16	365	22.81	3,723.29	1,359.00
YUCATAN	5	100	20	2,300.00	230
ZACATECAS	404.25	8,171.75	20.22	2,022.76	16,529.52
	11,746.50	744,250.41	63.36	1,925.32	1,432,920.96

Hasta épocas recientes, el nopal era considerado en amplias extensiones del país, principalmente como un elemento más del paisaje natural y era subestimada su importancia real en la producción de alimentos. En la actualidad, se reconoce que el nopal tiene gran importancia socioeconómica, pues representa una fuente alimenticia. No obstante, la utilización del nopal, su amplia distribución, su fácil cultivo, su adaptabilidad a ambientes diversos, así como su crecimiento rápido y

rendimiento alto (tabla 1.4 y tabla 1.5), no se ha reconocido suficiente la importancia que tiene; aunado a esto, nuestro país cuenta con 95 millones de hectáreas de zonas áridas, en las que el cultivo de nopal resultaría de gran relevancia.

1.4 Cultivo del nopal.

Preparación del terreno. Después de limpiar el terreno de arbustos, hierbas o restos de cosechas anteriores se procede a la preparación del terreno, labor que se realiza en la mayoría de las regiones con tractor y arado; posteriormente se dan uno o dos pasos de rastra. Para el establecimiento de las plantaciones, el terreno se debe preparar y barbechar a una profundidad de 25 a 30 cm, con el objeto de remover la capa inferior del suelo y eliminar las plagas y nematodos que atacan este cultivo; se sugiere dejar alrededor de cinco días para airear el suelo y exponer las plagas y enfermedades para eliminarlas(Fuentes, 2009). Se debe pasar una rastra con el fin de acondicionar la capa arable, nivelar el terreno para evitar que se encharque el agua o que se reseque en las partes bajas y altas respectivamente (Ramos, 2004).

Selección del material vegetativo. Para su plantación, el clima y suelo debe ser lo más parecido en el que se encontraba la planta madre. La colecta de la planta madre se realiza con el uso de un cuchillo, cortando en la base de la penca. El material vegetativo deberá tener un buen manejo (Fuentes, 2009).

Los cladodios deberán presentar las siguientes características:

- Buen vigor.
- Libre de plagas y enfermedades.
- Que no presente malformaciones físicas.
- Que tenga de 6 meses a 1 año de edad.
- Que posea como mínimo 30 cm de largo y 20 cm de ancho con un grosor de 1.5 a 3 cm.
- Que presente el corte en la parte de unión de la planta madre.

 Se recomienda no maltratar las pencas, para evitar daños mecánicos que provoquen pudriciones posteriores en la plantación.

Si el cladodio cumple con estos requisitos, se corta y se lleva a la sombra para evitar su deshidratación.

Para su plantación debe antes desinfectarse con caldo de Bordelés, mezclando en un recipiente 100 partes de agua 2 partes de carbonato de calcio 2 partes de sulfato de cobre pentahidratado. Los cladodios se sumergen en esta mezcla durante cinco minutos, se colocan a la sombra durante 10 a 15 días para que cicatricen (Fuentes, 2009).

Plantación. La siembra se realiza colocando una tercera parte de la penca dentro del suelo. Se efectúa un trazado de 1 m de ancho (melga), cada cladodio se coloca dentro de la melga a una distancia de 0.25 m entre hileras y 0.30 m entre plantas, lo cual da una densidad de 12 plantas/m²; al lado de la melga se deja una calle de 1.4 m que permitirá el paso de equipo y personas; cada dos melgas se deja otra calle de 3.10 m para equipo de mayores dimensiones. La plantación debe tener una orientación norte-sur, en la que los cladodios estarán con sus caras hacia el este-oeste.

Fertilización. En la producción de nopal se utilizan grandes cantidades de abono. En las plantaciones tradicionales, se cubren las calles con abono de 10 a 15 cm (generalmente bovino) cada dos o tres años, y muchos productores aplican abono químico, de una a tres veces por año; usualmente utilizan urea o sulfato de amonio. En el sistema intensivo, la aplicación de abono se lleva a cabo cada año. Los niveles de estiércol por hectárea varían de 100 a 200 toneladas, aplicándose de 100 a 200 kg de Nitrógeno y de 80 a 100 kg de Fósforo por hectárea (Ramos, 2004).

Riego. El nopal es una planta que sobrevive con poca humedad; en estas condiciones la emisión de brotes se reduce y se restringe en la época seca del

año. Pero cuando se establece como cultivo es necesario que la planta presente una emisión permanente de brotes durante todo el año, lo que repercute en el incremento de su demanda de agua. Para tener una producción constante de nopalitos, se recomienda utilizar sistemas de riego presurizado (goteo, microaspersión).

Debido a que el nopal es un cultivo tolerante a la sequía, los riegos son casi nulos, pero en caso de que se necesite (por sequía muy prolongada), se debe aplicar una lámina de riego de 10 cm.

1.5 Cosecha.

El índice de cosecha más empleado para el nopal es el tamaño de la penca o cladodio, el cual se corta por lo regular cuando presenta una longitud de 18 a 23 cm; si la venta es por peso, es más conveniente el mayor tamaño, pero se debe tener en cuenta que entre más tiempo se dejen crecer, los nopales se tornan fibrosos, debido a la producción de lignina en los tejidos, causando que el producto pierda uno de sus principales atributos de calidad, que es su terneza (condición de frescura).

Luego de haber sido cortados y depositados en canastos, los nopalitos se pueden llevar directamente al mercado local sin ningún tipo de acondicionamiento e incluso con todo y espinas. Cuando los mercados están distantes, entonces los canastos se llevan a un área sombreada, donde se realiza el acondicionamiento y empacado del producto para su protección y facilitar su manejo, transporte y comercialización (Valdez, 1995).

El brote y cosecha de nopalitos depende de la estacionalidad y el manejo de cultivo que este tenga. Dicho de otro modo, que la cosecha de nopal puede ser durante todo el año si los cladodios cuentan con las condiciones adecuadas de temperatura, aqua y fertilización.

Si el cultivo es a cielo abierto y de manera temporal, el brote será durante los meses de marzo a octubre (en algunos casos se extiende hasta principios de noviembre).

Para el caso de cultivos con un sistema de micro-túnel y de riego, la cosecha es durante todo el año contando con un buen manejo de fertilizante.

1.6 Manejo post-cosecha.

Los brotes tiernos del nopal no son hojas verdaderas, sino más bien tallos aplanados o *cladodios* de alta actividad metabólica y de rápido crecimiento; al cosecharlos se vuelven productos altamente perecederos y presentan un proceso de deterioro acelerado e irreversible que merma su calidad y culmina con la muerte de los mismos. En este deterioro intervienen tanto factores biológicos (respiración, etileno, cambios en la composición de acidez y formación de lignina, lesiones y enfermedades patológicas y fisiológicas) como ambientales (temperatura, humedad relativa, composición atmosférica circundante al producto, etileno exógeno, otros compuestos químicos y la luz); factores que interactúan entre sí provocando efectos que algunas veces resultan desastrosos porque acaban con la calidad del producto en un lapso de tiempo muy corto (Valdez, 1995). Los nopales a temperatura ambiente mantienen una calidad aceptable por no más de tres días (Corrales, 1992).

La forma en que se transporta el nopalito para su venta depende del lugar donde se produce y a donde se va a vender, existiendo cinco formas básicas:

- a) A granel en camioneta. Nopales con espinas acomodados en una camioneta que los transporta distancias cortas para su venta en mercados locales.
- b) Canastos o colotes. Son usados cuando el nopalito se vende (con espinas) en los mercados locales. La capacidad de los canastos es de aproximadamente 200 nopalitos de 18 a 23 cm de longitud.

- c) Costales. Son usados cuando el producto se vende en la central de abastos de la ciudad de México y otros mercados urbanos. El nopalito debe ir sin espinas, en una cantidad que fluctúa entre 500 y 550 piezas.
- d) **Cajas de cartón.** Son usadas para el transporte y la comercialización de los nopalitos producidos en California, EUA, o bien para transportar el nopalito que se produce en el norte de México (cerca de la frontera) y que se exporta a E.U.A. Son empaques de 10 a 15kg de capacidad.
- e) **Rejas.** Son usadas en el nopalito que se vende en Milpa Alta para los mercados de ciudades lejanas: Torreón Coah., Monterrey N.L., Morelia Mich., Guadalajara Jal. En la mayoría de las zonas productoras se utiliza este tipo de envase.
- f) Paca cilíndrica. Forma o estructura que surgió a mediados de los años sesentas, en sustitución de la paca cuadrada que se utilizaba anteriormente. Se utiliza cuando el producto se vende en la central de abastos del D.F. o de alguna otra ciudad del centro del país. Este empaque consiste en una estructura cilíndrica vertical cuya altura puede ser de 1.6 a 1.75 m, con un diámetro de 0.7 a 0.8 m; en esta paca se pueden manejar de 2,500 a 3,000nopalitos de 18 a 23 cm de longitud.

1.7 Industrialización del nopal.

Al realizar un análisis de todo el proceso desde el cultivo hasta su manejo postcosecha, se ha encontrado que para mantener el producto en un estado de consumo es necesaria su industrialización, lo cual da grandes beneficios como una ampliación de mercado de sus diferentes derivados, además de generar empleos y aprovechar al máximo sus características.

El procesamiento e industrialización del nopal resulta de gran interés, dado que es tecnológicamente posible y que puede ser económicamente viable y rentable dependiendo de algunos factores mercadotécnicos y organizacionales; además constituye un beneficio para los productores agrícolas marginales de las zonas áridas.

A continuación se presenta la experiencia existente en la transformación y uso del nopal para producción de alimentos, utilizando tanto los nopales tiernos como los maduros. Los principales productos de la industria alimentaria asociada al nopal son los nopalitos (nopal verdura) preparados en salmuera o en escabeche, salsas de nopalito, otros alimentos con nopalitos, mermeladas, dulces de nopalito, bebidas y jugos, harina de nopal.

En México han surgido una serie de alimentos procesados a base de nopal, como los siguientes:

- Nopalitos en salsa: Son nopalitos enlatados con diversas salsas, como nopalitos en salsa de chile o ají picante.
- Pate de nopal con soya: Es un puré de nopalitos con soya texturizada y con sabor a carne de res o pollo; este producto se envasa en frascos.
- Nopalitos con atún: Es una ensalada denominada "Azteca" que contiene atún, frijoles, nopalitos y chiles o ajíes picantes tipo jalapeño; la presentación comercial de este producto es enlatado.
- Los nopalitos en salsa, con atún, champiñones, embutidos o verduras, forman un grupo de productos que se pueden denominar nopalitos adicionados con alimentos, presentaciones que ya están aceptadas por el mercado mexicano.
- Cereal con nopal: Es un peletizado de harina y salvado de trigo y polvo de nopal deshidratado, cuyo principal aporte es fibra hidrosoluble; se envasa en polietileno y cajas de cartón.
- Harina de cereal y nopal: Es un polvo fino, resultado de la molienda del nopal deshidratado y de granos de cereales, especialmente del que se ha cernido para separar el salvado y otros; el nombre de harina es dado por extensión a muchas materias finamente pulverizadas (Saenz, 2006).

En nuestro país existe un gran número de empresas que se dedican a industrializar el nopal en una gran variedad de productos, estas empresas son:

Tabla 1.6. Empresas relacionadas con la industrialización del nopal en nuestro país (Flores, 1995).

Marcas	Formas de presentación
Frugo	Salmuera, penquitas en escabeche
Envasa pueblito la gloria	Salmuera
Ann O'Brien	Salmuera
Doña maría	Escabeche
Coronado	Salmuera y escabeche
La costeña	Escabeche
Clemente jaques	Salmuera
Lupita	Escabeche
Delicius	Escabeche y mermelada
San Joaquín	Escabeche
Milpa alta	Escabeche

En la figura 1.2 se muestran algunos de los derivados que pueden lograrse con el procesamiento de nopal y la tuna.

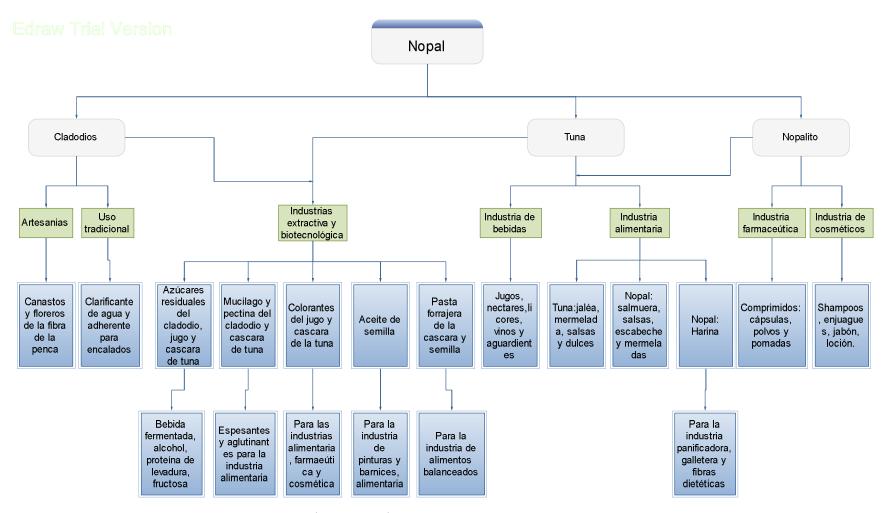


Figura 1.2. Productos del procesamiento industrial del nopal (Morales, 2004).

1.7.1 Principales problemas en la industrialización del nopal.

- Un problema importante para las plantas procesadoras es el desespinado y
 el picado (cortado en tiras o cuadros) del producto porque implica la
 contratación de mucha mano de obra especializada en esta labor; además
 al realizarse manualmente, implica poca uniformidad en el corte.
- El uso de pacas para empaque es un método de bajo costo pues son pacas de 300 a 350 kg de producto, sin embargo, si la paca no se deshace antes de 24 horas, por no venderse o por llevarse a mercados lejanos, el nopal del centro se calienta y se deteriora. En la mayoría de las zonas de producción se empaca en rejas de madera o cajas de cartón, cuya principal ventaja es que protege más al producto pero es una modalidad más cara que la anterior.
- Con frecuencia no se tiene plena conciencia de la importancia de estandarizar el proceso de acondicionamiento del producto antes de su procesamiento, principalmente en cuanto al tiempo y temperatura del escalde. Se debe tener presente que no todos los nopales tienen la misma resistencia.
- La falta de control del proceso en cuanto a sanidad, estabilidad de salmuera, fermentación, uniformidad del escabeche (en su formulación, nivel de vinagre y condimentos); y falta de control de calidad desde la recepción de la materia prima, también son problemas comunes.
- El proceso técnico para la elaboración de productos medicinales (deshidratado o secado simple del nopal) no es el más adecuado, porque tiende a destruir los principios activos naturales que contiene.

Aunque los procesos para obtener mucílagos, pectinas y celulosa ya se han probado a baja escala, el problema es que aún no se han desarrollado industrialmente, por razones que pueden ser la incosteabilidad por bajos volúmenes y la discontinuidad en los procesos (Valdez, 1995).

1.7.2 Productos industriales alimenticios.

Nopalitos en salmuera y escabeche: Son los de mayor antigüedad, su producción industrial se inicia aproximadamente en la década de 1970 y son los más importantes por los volúmenes procesados y consumidos. El proceso consiste básicamente en cortar o picar los nopalitos previamente acondicionados (limpios y desespinados), de tal forma que se obtengan la misma presentación de los nopalitos en salmuera (Saenz, 2006).

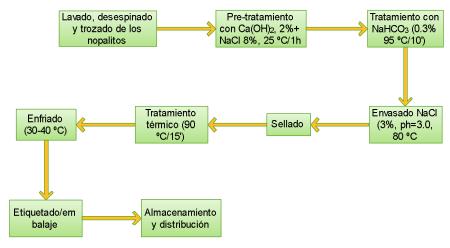


Figura 1.3. Diagrama de bloques para el proceso de nopales en salmuera (Montoya, 2001).

Jugos y bebidas: Consiste en moler en un equipo industrial los nopales previamente desespinados y cortados (para facilitar su proceso), además se adiciona agua y se filtra para separar los sólidos en suspensión del líquido.

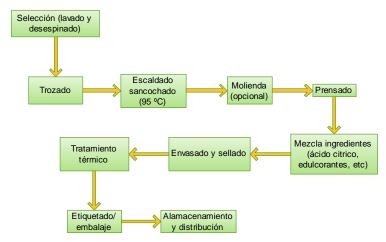


Figura 1.4. Diagrama de bloques para la elaboración de jugo de nopal.

Mermeladas y dulces: En términos generales, su procesamiento consiste en picar el material previamente escaldado y después someterlo a cocción y a molienda; luego se calienta para agregar gradualmente el azúcar a partir del punto de ebullición. Antes de terminar de agregar el azúcar se adiciona pectina, benzoato de sodio y ácido cítrico en diferentes proporciones, se mezcla y se termina de agregar el azúcar. La mezcla se calienta hasta una concentración de 65° Brix y la pectina se agrega disuelta en un jarabe.

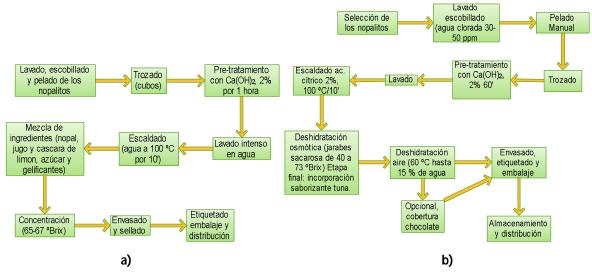


Figura 1.5.Diagrama de bloques para el proceso de a) mermeladas y b) confitados (dulces).

Harinas: La harina de nopal se obtiene por deshidratación y molienda de los cladodios, los que pueden ser de distintas edades; esto influirá en sus características. Esta harina tiene aplicación reciente en la industria panificadora en la preparación de galletas, pastas, cremas y postres o bien en la industria de fibras dietéticas peletizadas.

Figura 1.6. Proceso para la elaboración de harina de nopal (Sepúlveda, 1995).

1.7.3 Productos industriales no alimenticios.

Elaboración de cápsulas y tabletas de nopal: Tienen como base la harina o polvo obtenido de los cladodios del nopal, cuyo diagrama de bloques se presentó anteriormente (figura 1.6). La elaboración de tabletas y cápsulas de polvo de nopal, sigue la línea de sus similares complementos alimenticios de la industria farmacéutica (los cuales se manejan de manera confidencial por cada una de las empresas productoras).

Extracción de mucilago (hidrocoloides): Un producto que está cobrando interés desde el punto de la investigación médica y que también podría tenerlo para el sector industrial, son los hidrocoloides o mucilagos que se pueden extraer de las pencas y de las cascaras de los frutos de los nopales. (1) El mucilago de nopal se considera importante para la industria de alimentos debido a sus propiedades de viscosidad (2). Tiene la capacidad de formar redes moleculares y retener fuertemente grandes cantidades de agua (3), así como de modificar propiedades como viscosidad, elasticidad, textura, retención de agua, además de que es un buen gelificante, espesante, y emulsificante (4).

El método para la extracción de mucilago consiste en: limpieza inicial del nopal, pelado y eliminado de espinas, cortado en cuadros de 2 cm, para posteriormente ser molido con agua 1:2 (w/v), y calentado a 80±2°C/1h, centrifugación a 3500 rpm por 20 min, el sobrenadante se concentró a baño maría por 150 min, y finalmente se precipitó con etanol al 96% en una relación 1:4 (v/v), se deshidrató, se molió y se obtuvo el mucílago en polvo(Rodríguez).

Productos cosméticos: La crema, el champú y el jabón a base de nopal, se producen normalmente del jugo extraído de las pencas. El jugo se extrae, tal como se indicó en el subtema anterior figura 1.4.

Capítulo 2

2 Planteamiento y ensayo de penetración.

El nopal requiere de ciertas normas de calidad para su venta y comercialización. En México se encuentra la norma **NMX-FF-068-SCFI-2006**, establece las condiciones y características que debe reunir el nopal verdura de los géneros *Opuntia* spp. y *Nopalea* spp. destinados para el consumo humano que se comercializan en el territorio nacional.

Ahora bien de acuerdo a esta norma, el tamaño está en función de su longitud (tabla 2.1) y de la variedad del nopalito.

Tabla 2.1. Longitudes de nopalitos para su comercialización establecidas por la Norma Mexicana.

Tamaño	Longitud [cm]
Α	25.1 o más
В	18.1 a 25.0
С	11.1 a 18.0
Cambray	7.0 a 11.0

La norma solo está enfocada a la longitud y para el diseño de la máquina se requiere las dimensiones del ancho y espesor. De acuerdo a (Fuentes, 2009) el tamaño mínimo de una penca o planta madre figura 2.1 debe tener un mínimo 30 cm de largo x 20 cm de ancho y (1.5-3) cm de espesor (valores de referencia para dimensionar la máquina). Para el caso del espesor se tomará un valor medio de 2 cm.

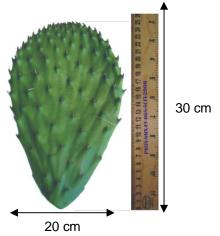


Figura 2.1.Dimensiones máximas de un nopal comestible

Además se deben tomar las consideraciones que establece la norma **NOM-093-SSA1-1994** (*Prácticas de higiene y sanidad en la preparación de alimentos que se ofrecen en establecimientos fijos*), donde establece que:

Los materiales utilizados para recipientes de contacto directo con los alimentos deben tener las siguientes características: superficie lisa, continua, sin porosidad ni revestimientos, no deben modificar el olor, color y sabor de los alimentos, no ser tóxicos ni reaccionar con los alimentos, se puede utilizar el vidrio, acero inoxidable, resinas de nylon, polipropileno, policloruro de vinilo y aluminio, polietileno de alta densidad y polietilenteraftalato; o materiales que bajo condiciones de uso continuo presenten características iguales a las de estos materiales.

2.1 Objetivo y definición del problema.

El corte del nopal es uno de los procesos y principales problemas para su industrialización. Así es como surge la necesidad de diseñar una máquina que realice el corte de nopal, más rápido y eficiente, que de manera manual; procesando el nopal en otros derivados y evitar que el producto pierda sus propiedades para su aprovechamiento.

El objetivo general de este trabajo es diseñar un mecanismo para el corte de nopal. Para lograr dicho objetivo se mencionan los siguientes objetivos particulares:

- 7. Obtener la fuerza de cizallado del nopal. Es necesario realizar pruebas de penetración en condiciones similares a las que operará la máquina. Este punto es importante para determinar los materiales y geometrías.
- 8. Diseñar los elementos de corte. Se diseñarán las cuchillas de corte y se seleccionará la configuración más óptima en cuanto a la fuerza de corte, donde la geometría del punzón será primordial.
- Diseñar el mecanismo motriz. Se determinará el mecanismo y elementos que permitan un buen funcionamiento calculando el par y potencia necesarios.

- **10. Diseñar el eje.** Para esta pieza será necesario la consideración de los elementos que lo sostendrán (cojinetes), transmisión de la potencia, elementos sujetadores (para acoplar el mecanismo motriz y transmisión).
- 11. Seleccionar el Motorreductor. Mediante la obtención de la potencia, el par y velocidad angular se seleccionará el motorreductor, así como los elementos que transmitirán la potencia.
- **12. Diseñar la estructura.** La estructura será el elemento que le dará el soporte a toda la máquina y donde se alojarán cada uno de los elementos, su dimensión dependerá de los elementos antes mencionados.

De manera escueta se presentan los elementos principales que permitirán el corte de nopal en forma de rectángulos figura 2.2. Las cuchillas estarán colocadas de alguna manera para permitir el corte rectangular de los nopales. Para su funcionamiento es necesario un mecanismo que le aplique movimiento al punzón, de descenso para cortar el nopal y de ascenso para permitir la colocación del siguiente nopal. En esta última parte, el mecanismo debe tener un punto estacionario para la colocación segura de los nopales.

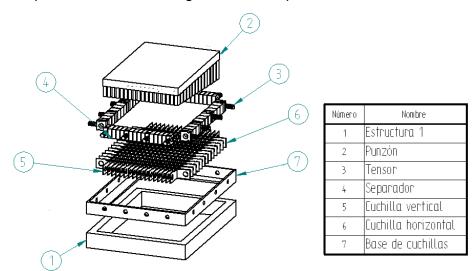


Figura 2.2. Elementos básicos para el funcionamiento de la máquina.

2.2 Especificaciones de corte.

Una de las consideraciones importantes para el diseño es que la máquina pueda ser acoplada sobre una línea trasportadora y que tenga la factibilidad de automatizarse. Esta parte se puede considerar como un proyecto posterior a este trabajo, pero es necesario mencionarlo para que el diseño de la máquina siga dentro de esa línea de diseño para que sus componentes cumplan dicho funcionamiento.

Además, es necesario especificar las dimensiones de corte, para ello se definirá el uso final del producto, en este caso se utilizará para la industria alimentaria, específicamente para escabeche y salmuera (aunque puede ser utilizado para cualquier otro proceso donde requiera del corte). De acuerdo a diversos lugares de comida se observa que generalmente la preparación de nopales se cortan en forma de rectángulos de (0.5-1) cm x (2-3) cm. Por lo que se propondrá un corte rectangular de 1 x 2 [cm], una medida adecuada para poder ser degustada por cualquier persona.

2.3 Ensayo de penetración.

Debido a la complejidad de los procesos modernos de manufactura de alimentos y la importancia que se le otorga a la calidad, exige entender mejor la función de las propiedades de los materiales que constituyen los alimentos sólidos y los semisólidos. Las propiedades mecánicas se definen por lo general como el comportamiento en cuanto a esfuerzo-deformación de un material en condiciones de carga estática o carga dinámica.

La reología es la ciencia que estudia la deformación de la materia, existiendo cuatro razones principales para su estudio; primero, contribuye al conocimiento de la estructura; segundo, apoya el control de los procesos de elaboración; tercero, aporta las bases para el diseño y aplicación de máquinas y equipos, y por último,

se relaciona de forma directa con la calidad y aceptación de los productos (Sharma, 2003).

Los procedimientos para probar los materiales consisten en pruebas no destructivas y pruebas destructivas.

Las pruebas no destructivas son técnicas de inspección que se utilizan para la detección y evaluación de las posibles discontinuidades que puedan existir tanto en la superficie, como en el interior de los materiales. Se les llama pruebas no destructivas porque al aplicarlas, los materiales no se destruyen ni se ven afectadas sus propiedades físicas, químicas, mecánicas y/o dimensiónales.

Las pruebas mecánicas son pruebas en donde los materiales de estudio son sometidos a esfuerzos mediante la aplicación de una fuerza externa hasta su deformación y/o ruptura, para determinar sus propiedades de dureza, elasticidad, fragilidad y resistencia a la penetración.

Para el diseño de la máquina, será necesario realizar pruebas mecánicas mediante ensayos de penetración, obteniendo la resistencia al cizallamiento del nopal. Este dato será de gran importancia para estimar la fuerza requerida y lograr el diseño adecuado mediante geometrías sencillas, disminuyendo costos de manufactura y materiales.

2.4 Experimentación.

Para el ensayo es necesario obtener muestras de nopal, estas han sido seleccionadas del cultivo de la Facultad de Estudios Superiores Cuautitlán Campo 4. Su selección fue de acuerdo a lo que rige la norma NMX-FF-068-SCFI-2006 10/22 y un tamaño tipo A. Para la experimentación se les quitaron las espinas e inmediatamente se procedió a la realización de los ensayos.

2.5 Materiales.

 Máquina de pruebas mecánicas: Máquina electromecánica marca Instron modelo 4206 con capacidad de carga 15 t.

- Dispositivo de sujeción de cuchillas. Para la realización de los ensayos se diseñó y manufacturó una barra cilíndrica de acero 1018 en torno y fresa. El dispositivo se utilizó como elemento de fijación al eje de la máquina de pruebas y sujeción de las cuchillas.
- Cuchilla. La cuchilla fue manufacturada de acero al carbono 1018 con lámina calibre 18 (1.22 mm), con un ángulo de afilado de 15º (ángulo entre caras de 30º), longitud de 100 mm y ancho 33 mm.
- **Base.** Es una base de madera de 335x153x38 [mm] con 2 placas de acrílico de 3/8" para tener un ajuste del claro de corte figura 2.3.

Figura 2.3.Base para el desarrollo de las pruebas de penetración del nopal.

2.6 Metodología.

- i. Se puso en marcha la máquina de pruebas mecánicas y la PC que controla y captura los datos de la carga ejercida por la máquina.
- ii. Se sujetó la cuchilla en el dispositivo de sujeción con una plantilla a (5º y 10º) según sea el caso.
- iii. Se montó la base de madera donde las muestras serán colocadas para su ensayo.
- iv. Se calibraron las placas de acrílico a una distancia de 3.5 mm, se verifica que la cuchilla este alineada, centrada y no este contacto con las placas de acrílico o con la base de madera.

- v. Se posicionó la celda de carga y se colocó una muestra vegetativa de nopal y se verificando que el corte será en toda la longitud de la cuchilla.
- vi. Se posiciona la celda de carga tomando en cuenta que la cuchilla debe estar a punto de tocar la superficie de la muestra.
- vii. Se inicia la carga a una velocidad constante de 10 mm/min.

2.7 Gráficas y resultados.

Se realizaron 4 tipos de ensayos en los cuales se ha tomado como referencia la posición de la cuchilla (ángulo), y la dirección en la que se realizó la penetración, es decir, si el ensayo se ha realizado con la cuchilla paralela o perpendicular (figura 2.4) al crecimiento del nopal.

Figura 2.4. Ensayo con cuchilla perpendicular al crecimiento del nopal y 0° de inclinación.

Ensayo A: Se colocó la cuchilla con una inclinación de 5º teniendo una penetración perpendicular al crecimiento del nopal.

Ensayo B: Se colocó la cuchilla con una inclinación de 10º teniendo una penetración perpendicular al crecimiento del nopal.

Ensayo C: Se colocó la cuchilla con una inclinación de 5º teniendo una penetración paralela al crecimiento del nopal.

Ensayo D: Se colocó la cuchilla sin ninguna inclinación con una penetración perpendicular al crecimiento del nopal.

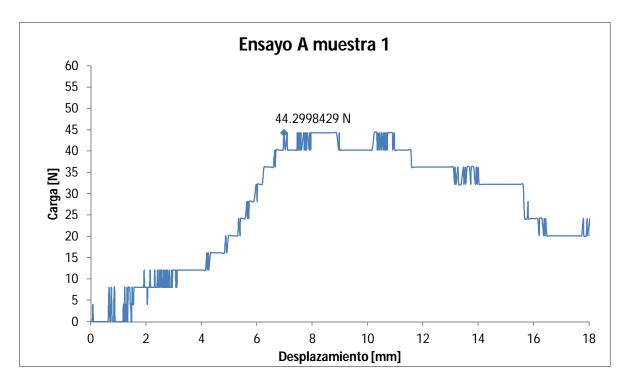


Figura 2.5. Gráfica carga vs desplazamiento, ensayo A, muestra 1.

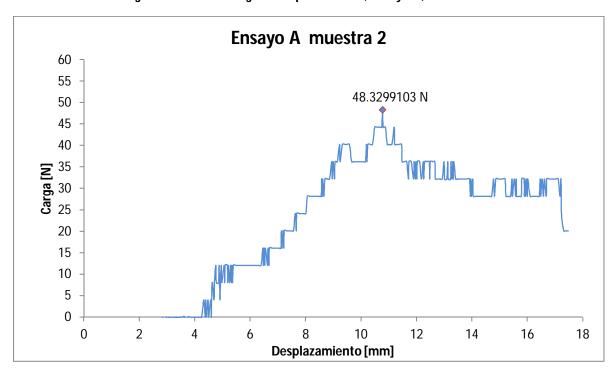


Figura 2.6. Gráfica carga vs desplazamiento, ensayo A, muestra 2.

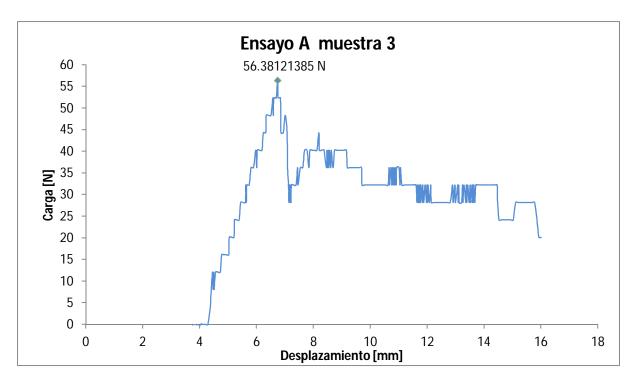


Figura 2.7. Gráfica carga vs desplazamiento, ensayo A, muestra 3.

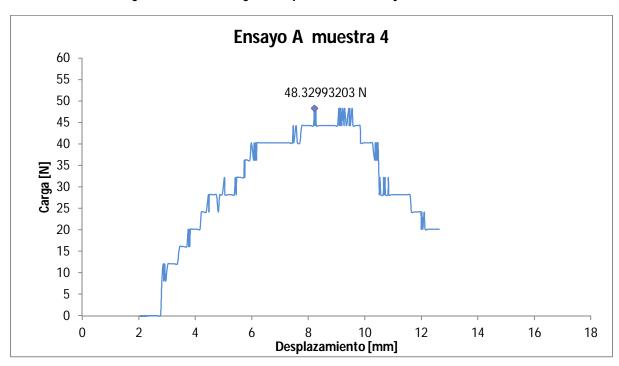


Figura 2.8. Gráfica carga vs desplazamiento, ensayo A, muestra 4.

Tabla 2.2. Ensayo A, resultados significativos.

No.	Espesor de nopal (Pie de rey) [mm]	Máxima carga [N]	Desplazamiento máxima carga (Máquina) [mm]
1	14	44.3	6.9745
2	16.8	48.3	10.7754
3	15.5	56.4	6.7388
4	9	48.3	8.2121
X'	13.825	49.325	8.1752
σ	3.41406405	5.07961613	1.849984423

x': Promedio.

σ: Desviación estándar.

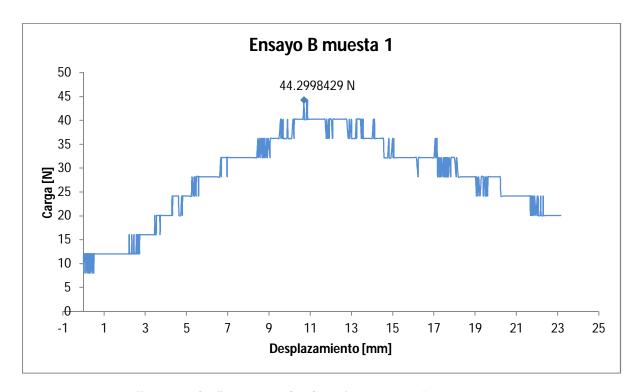


Figura 2.9. Gráfica carga vs desplazamiento, ensayo B, muestra 1.

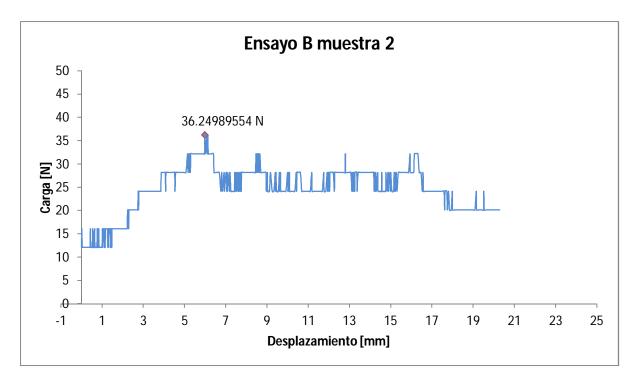


Figura 2.10. Gráfica carga vs desplazamiento, ensayo B, muestra 2.

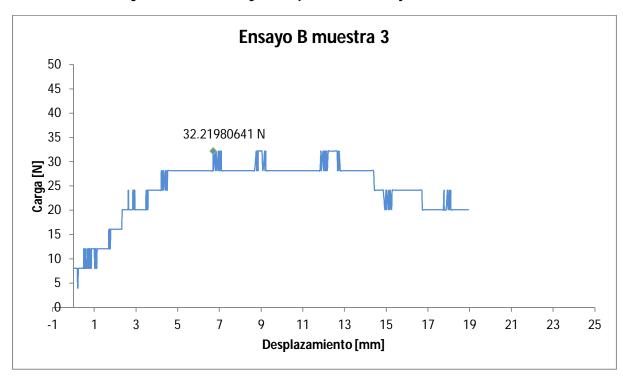


Figura 2.11. Gráfica carga vs desplazamiento, ensayo B, muestra 3.

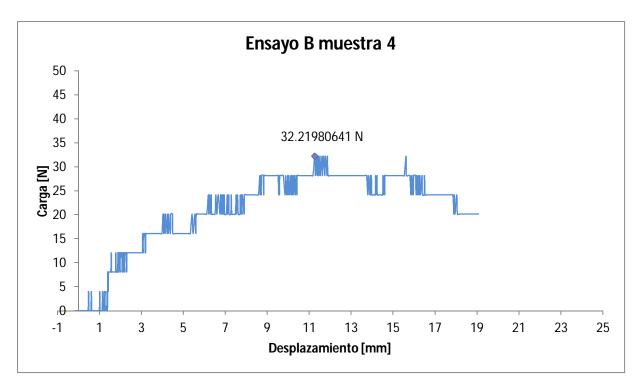


Figura 2.12. Gráfica carga vs desplazamiento, ensayo B, muestra 3.

Tabla 2.3. Ensayo B, resultados significativos

No.	Espesor de nopal (Pie de rey) [mm]	Máxima carga [N]	Desplazamiento máxima carga (Máquina) [mm]
1	16	44.3	10.693654
2	14	36.2	5.979414
3	16	32.2	6.695186
4	16	32.2	11.25
X'	15.5	36.225	8.6545635
σ	1	5.70401905	2.70121983

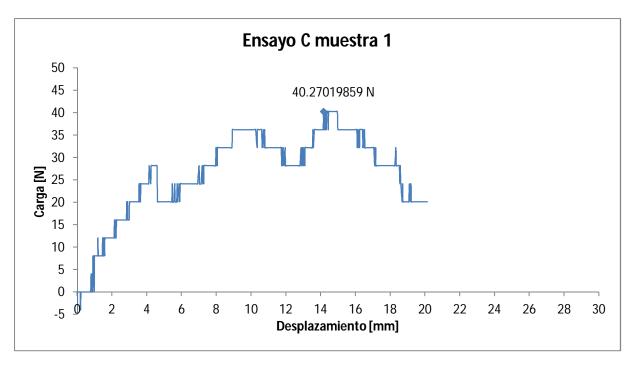


Figura 2.13. Gráfica carga vs desplazamiento, ensayo C, muestra 1.

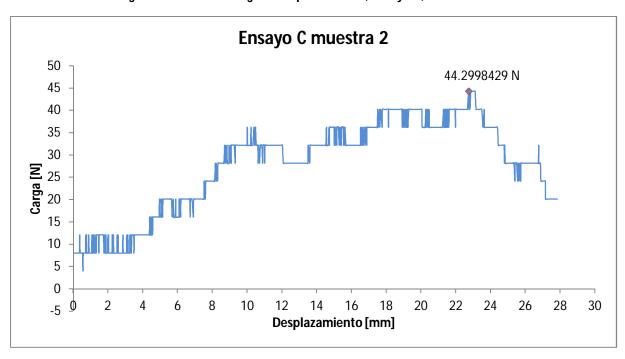


Figura 2.14. Gráfica carga vs desplazamiento, ensayo C, muestra 2.

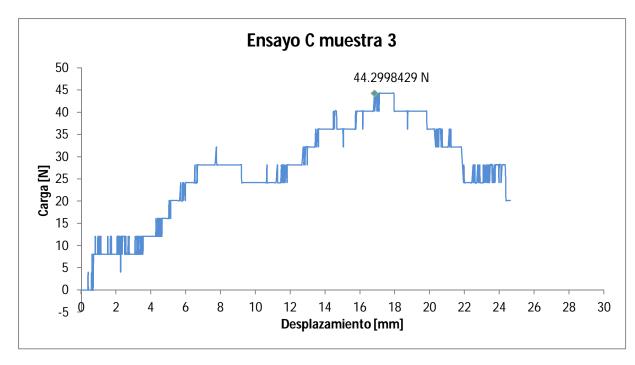


Figura 2.15. Gráfica carga vs desplazamiento, ensayo C, muestra 3.

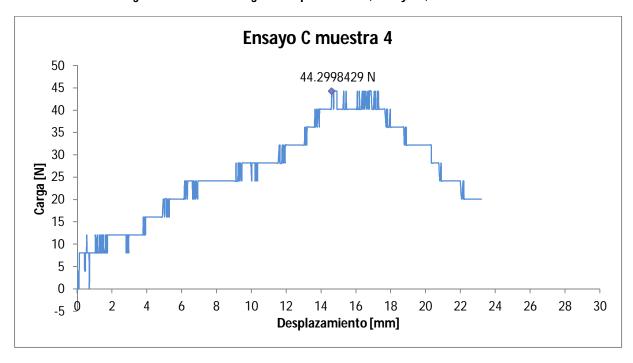


Figura 2.16. Gráfica carga vs desplazamiento, ensayo C, muestra 4.

Tabla 2.4. Ensayo C, resultados significativos.

No.	Espesor de nopal (Pie de rey) [mm]	Máxima carga [N]	Desplazamiento máxima carga (Máquina) [mm]
1	17.5	40.3	14.95
2	23	44.3	23.15
3	21	44.3	17.56
4	19.5	44.3	17.55
Χ'	20.25	43.3	18.3025
σ	2.32737334	2	3.45712188

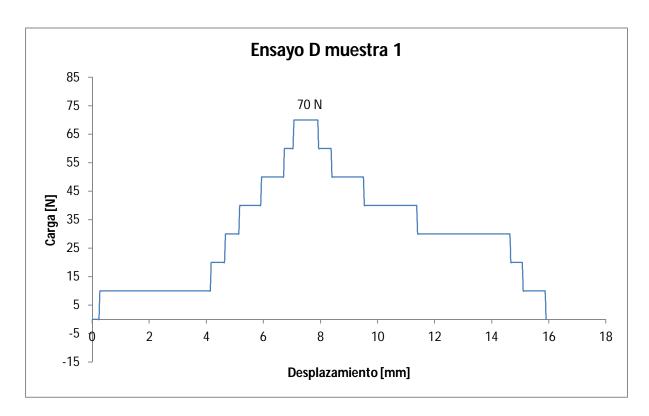


Figura 2.17. Gráfica carga vs desplazamiento, ensayo D, muestra 1.

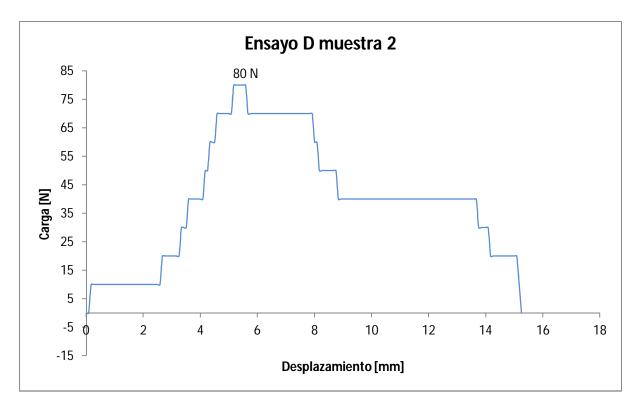


Figura 2.18. Gráfica carga vs desplazamiento, ensayo D, muestra 2.

Tabla 2.5. Ensayo D, resultados significativos.

No.	Espesor de nopal (Pie de rey) [mm]	Máxima carga [N]	Desplazamiento máxima carga (Máquina) [mm]
1	13.3	70	7.06667
2	11.8	80	5.1666
X'	12.55	75	6.116635
σ	1.06066017	7.07106781	1.34355238

2.8 Análisis de resultados de la prueba.

La fibra del nopal es prácticamente la estructura de la planta, por lo que fue un factor a considerar. Si el corte es perpendicular al crecimiento de la planta, la cuchilla (de manera hipotética) cortará más fibras; de otra forma si la penetración de la cuchilla es paralela al crecimiento, la cantidad de fibras a cortar será menor. Aunque los resultados nos muestran que no hay una diferencia significativa, esto nos indica que las fibras aún no han crecido lo suficiente como para lograr un cambio pronunciado en su resistencia.

Si observamos los resultados significativos de los desplazamientos de la máquina en los ensayos a, b y d (donde se aplica una penetración perpendicular al crecimiento del nopal) tenemos:

Ensayo A 8.17 ± 1.85

Ensayo B 8.65 ± 2.70

Ensayo D 6.11±1.34

La carga máxima está en una longitud entre [4.77 - 11.35] mm, este rango se puede considerar la parte de mayor dureza lo que se puede determinar como el centro del nopal. La fuerza de corte para el ensayo C es menor que el ensayo A (ambas con inclinación de 5º), pero en un desplazamiento mayor debido a que la penetración de la cuchilla se realiza paralela al crecimiento del nopal, además de que en esa dirección el espesor del nopal es más variable por su crecimiento.

El ensayo A nos representa una carga máxima de penetración de 56.4 [N]. Es notable que para el ensayo B a 10 [º] sea menor, con un valor máximo de 44.3 [N]; a pesar de ello el cambio no es tan significativo. Para el ensayo D, es evidente que se requiere de una mayor carga para lograr la penetración, donde se registró un valor máximo de 80 [N] en la cuchilla de 100 [mm], con lo que la fuerza distribuida longitudinalmente es de 0.8 [N/mm].

2.9 Antecedentes de diseño.

La ingeniería de diseño es el proceso mediante el cual, se hace uso de las matemáticas, la ciencia aplicada y la ciencia de los materiales al enfoque de un dispositivo funcional para satisfacer una necesidad.

Para la realización del diseño diversos autores proponen un método o pasos a seguir, generalmente estos pasos se vuelven iterativos en la práctica de diseño, es decir, se genera una serie de ciclo o ciclos en donde se puede avanzar algunos pasos y después retroceder con el fin de mejorar la idea primaria. Un método descrito por (Norton, 2000) tiene 10 pasos, estos se enuncian a continuación:

- 1. Identificación de la necesidad. Generalmente la necesidad no es del todo evidente, pero va acompañada del problema que se quiere resolver, por ejemplo para este caso la necesidad de este proyecto es cortar el nopal, punto que ya se ha tomado en consideración.
- **2. Investigación preliminar.** Se trata básicamente de reunir información sobre dispositivos, patentes, publicaciones y/o tecnología existente, es decir, conocer si dicha necesidad ya ha sido resuelta.
- 3. Planteamiento de la meta. Después de investigar toda la gama de recursos que se han elaborado, se puede enunciar de manera concreta y clara la principal función del dispositivo. Este paso se puede se puede considerar como el objetivo.
- 4. Especificaciones de funcionamiento. Definen lo que el sistema debe de hacer, en otras palabras son las características del dispositivo, esto es si el dispositivo debe ser resistente a la corrosión ó si el dispositivo debe utilizar corriente eléctrica, rendimiento, etc.
- 5. Ideación e invención. Se trata básicamente de la creatividad e ingenio para desarrollar un gran cúmulo de ideas con el fin de que algunas o varias de ellas puedan ser funcionales.
- 6. Análisis. En esta etapa ya se pueden aplicar técnicas de análisis más refinadas, con el fin de determinar si su funcionamiento cumplirá con las especificaciones antes mencionadas. Este paso revelará si el sistema es o no el óptimo, en caso de que no, será necesario regresar pasos anteriores.
- **7. Selección.** De los diseños potencialmente viables se debe seleccionar el óptimo, generalmente se incluye un análisis comparativo de las soluciones.
- **8. Diseño detallado.** Incluye un conjunto de dibujos de cada una de las piezas y el ensamble de las mismas. Cada pieza debe especificar las dimensiones y especificaciones del material.
- 9. Prototipos y pruebas. Se requiere de la fabricación de un modelo físico. El prototipo puede tomar muchas formas, desde modelos a escala de trabajo hasta representaciones del concepto.

10. Producción. Consiste en la versión final del diseño. El peligro de encontrar errores en el diseño después de haber fabricado una gran cantidad de artículos se debe al no tener el cuidado dentro del proceso de diseño.

2.9.1 Factor de seguridad.

Para cualquier diseño de máquina es necesario garantizar que el material elegido y sus dimensiones sean las adecuadas para que la pieza a utilizar no falle. Los materiales pueden fallar por diversas razones, ya sea por imperfecciones en el material, concentraciones de esfuerzos, fatiga, defectos en el maquinado, tratamiento térmico inadecuado, etc. Así que, por estas razones debe mantenerse una tolerancia entre el esfuerzo último y el esfuerzo de trabajo.

El factor de seguridad es la relación de la resistencia última del material y el esfuerzo de trabajo ec. 1. El factor de seguridad es adimensional.

$$N_{S} = \frac{esfuerzo \ \'ultimo}{esfuerzo \ de \ trabajo}$$
......Ec. 1

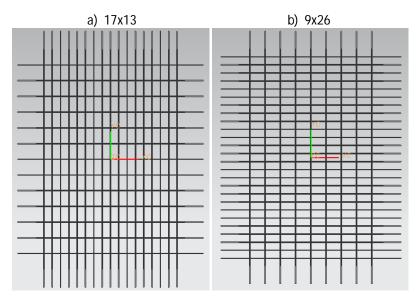
Tabla 2.6. Factores de seguridad (Deutschman, 1987) y (Mott, 2006).

	Factor de seguridad N	Descripción
1	1.25 - 1.5	Para materiales excepcionalmente confiables usados bajo condiciones controladas y sujetos a carga y esfuerzos que pueda determinarse con exactitud. Una consideración muy importante es que casi siempre se usan para pesos pequeños.
2	1.5 - 2	Para materiales bien conocidos, para condiciones de medio ambiente razonablemente constante y sujetos a carga y esfuerzos que puedan calcularse con facilidad.
3	2 - 2.5	Para materiales promedio que trabajen en condiciones de medio ambiente ordinarias sujetos a carga y esfuerzos que puedan calcularse.
4	2.5 - 3	Para materiales poco experimentados o para materiales frágiles en condiciones promedio de medio ambiente, carga y esfuerzo.
5	3 - 4	Para materiales no experimentados usados para condiciones promedio de medio ambiente, carga y esfuerzo.
6	3 - 4	Deberá también usarse con materiales mejor conocidos que vayan a usarse en condiciones ambientales inciertas o sujetos a esfuerzos inciertos.
lím	ite de ruptura	as: Son aceptables los factores indicados en los puntos 1 a 6 pero debe aplicarse el por carga cíclica o esfuerzo de fatiga en lugar del esfuerzo de cedencia del material. cto: Son aceptable los factores dados en los puntos 3 al 6, pero deberá incluirse un

factor por impacto. **Materiales frágiles:** Si se considera a la resistencia última como la máxima teórica, los factores indicados en los puntos 1 al 6 deberán multiplicarse por 2.

Para el caso deseable de tener factores elevados, deberá efectuarse un análisis muy completo del problema antes de decidir sobre su uso.

Algunas ocasiones es necesario que el elemento de máquina no sufra por pandeo o flexión permanente, sea por ello que se toma como referencia el esfuerzo de cedencia o resistencia a la fluencia de la ecuación 2; en la (tabla 2.6) se muestra factores de seguridad basados en la resistencia a la cedencia.


$$N_s = \frac{esfuerzo\ de\ cedencia}{esfuerzo\ de\ trabajo}$$
......Ec. 2

Capítulo 3

3 Diseño de los elementos de corte y mecanismo.

Como primer paso para el diseño, se ha elegido el dimensionamiento y forma de las cuchillas, ya que es una parte fundamental para el diseño de las demás partes de la máquina. Se había determinado anteriormente la forma y tamaño del corte de nopal (sección 2.2), se requiere un corte rectangular de 1x2 [cm]; y longitud máxima de un nopal comestible (sección 2) de 20x30 [cm] (ancho y largo respectivamente.

De acuerdo a estas consideraciones se han diseñado dos configuraciones de mallado de las cuchillas:

a) Vertical 295.86 mm, horizontal 200.74 mm. **b)** Vertical 301.72 mm, horizontal 200.98 mm. **Figura 3.1.Configuración de mallado para las cuchillas.**

Ambos arreglos son cuchillas con un espesor de 1.22 mm (calibre 18) y el filo tiene un ángulo entre caras de 30°. Basado de fabricantes de cuchillas, navajas (Aceros Hispania) y datos de técnicos de afilado de cuchillos (Cuchillos Global Ecuador, 2013).

La altura de la cuchilla se determinará más adelante ya que la fuerza de flexión será un factor a considerar.

3.1 Cuchillas de corte.

Es necesario hacer hincapié que los materiales que estén en contacto directo con el nopal deben cumplir las normas de calidad e inocuidad como lo rige la norma NOM-093-SSA1-1994.

Así entonces, para el diseño del prototipo se utilizó un acero inoxidable 410 (tabla 3.1). Su amplia variedad de características como buena resistencia mecánica, alta dureza (puede ser tratado térmicamente), dúctil en su estado de recocido, además de contar con buena resistencia a la corrosión, son razones por las cuales el acero 410 deba ser utilizado.

TRATAMIENTO TEMP. DE **RESISTENCIA A** LÍMITE DE **ALARGAMIENTO REDUCCIÓN REVENIDO** LA TRACCIÓN **FLUENCIA** EN 2" % **DE ÁREA** % °C [MPa] [MPa] RECOCIDO [690 -780] °C, enfriar 480 274 20 45 al aire o al horno 1000 204 1310 15 55 **TEMPLE** [950-315 1241 965 15 55 1010] °C, enfriar 1344 1034 17 426* 55 538* 1000 793 20 65 al aire o en 23 648 758 586 65 aceite

414

30

70

Tabla 3.1. Propiedades mecánicas acero inoxidable 410, (Aceros Palmexico).

Notas: *No se recomienda el revenido dentro de la gama de 399 a 565 °C, ya que este tratamiento disminuirá las propiedades de impacto y resistencia a la corrosión.

621

760

Al utilizar lámina calibre 18, su disponibilidad en esta presentación en el mercado es baja, pero en todo caso es el material más adecuado y el más costeable dentro de la gama. Ya que otros que se utilizan para la fabricación de cuchillas como el 440 C que no se comercializa en México y el 420 que es el más utilizado para la fabricación de cuchillas tienen mayor costo comparado con el 410. En la tabla 3.2 se tiene la comparativa de estos aceros.

Las aplicaciones más comunes del acero 410 son: fabricación de tuercas, tornillos, bushings, cubiertos, herramientas de cocina, partes de horno a bajas temperaturas, equipo para refinación del petróleo, partes para bombas, válvulas, partes para turbinas a gas o vapor, vajillas, pernos, flechas, partes micrométricas.

Este acero es de tipo martensítico, lo cual logra una magnifica dureza de 44 HRc al ser tratado térmicamente.

Tabla 3.2. Propiedades de los aceros 410, 420 y 440 C

Acero	410	420	440 C
Resistencia a la tensión templado y revenido [MPa]	1310	1724	1961
Límite de fluencia templado y revenido [MPa]	1000	1482	1863
% C	0.15	0.15	0.95
% Cr	11.5-13.5	12.0-14.0	16-18
% Ni	0.75	0.75	
% Si	1	1	1
% Mn	1	1	1
% P	0.04	0.04	0.04
% S	0.03	0.03	0.03
% Mo		0.5	0.75

Para esta aplicación se usará el acero 410 con una temperatura de temple [950º-1010º] enfriado en aceite y un revenido a 204 [°C].

3.1.1 Fuerza de cizalladura.

Utilizar un ángulo en la cuchilla para el cizallamiento es un gran beneficio para disminuir la carga en el corte de nopal, ya que en un corte horizontal a todo lo largo demanda una fuerza de corte máximo (como se ha observado en los ensayos). Por lo que al diseñar un ángulo para un corte gradual del nopal, disminuyó la geometría de los elementos y menor potencia para el motor.

Ahora bien, debido a que el corte es en forma rectangular, de alguna manera al elegirse el corte angular también generó que las cuchillas perpendiculares, estuviesen sujetas a realizar un corte horizontal. El número de cuchillas que realizaron el corte horizontal dependió de la configuración de mallado (figura 3.1), del ángulo de empuje del punzón y del espesor del nopal. Para este último caso, es necesario asignar un valor estimado máximo de espesor del nopal, como se mencionó se tomara como referencia 20 mm. Con base en este dato se puede estimar el número de cuchillas que intervendrán en el corte horizontal.

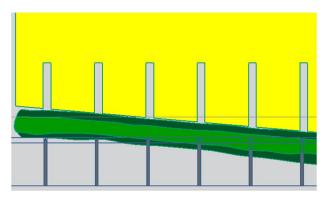


Figura 3.2. Sección de cizallamiento del nopal. Solo algunas cuchillas realizan un corte horizontal y depende del grosor del nopal y del ángulo cizallado.

e = 20 mm

, entonces para obtener el número de cuchillas:

$$\tan \theta = \frac{e}{L}$$
 donde $\theta = 5^{\circ}$, entonces despejando L

$$L = \frac{e}{\tan \theta} \to L = \frac{20[mm]}{\tan(5^{\circ})} = 228.60[mm]$$

Para una distancia entre cuchillas de 10 mm falta agregar el espesor de la cuchilla; en calibre 18 el espesor en milímetros es de 1.22 [mm], así entonces la distancia real entre cuchillas es de 11.22 mm.

Figura 3.3. Distancia entre cuchillas para el corte de 10 mm.

Así con ello el número de cuchillas que cortarán de forma horizontal a todo lo largo de la cuchilla es:

$$C_h = \frac{L}{d_c}$$
 donde d_c es la distancia entre cuchillas

$$C_h = \frac{228.60[mm]}{11.22[mm]} = 20.37 \rightarrow 20 \text{ cuchillas}$$

Así mismo para las cuchillas que con un corte de 20 mm, la distancia entre cuchillas es de 21.22 mm. Y el número de cuchillas es el siguiente.

41

$$C_h = \frac{228.60[mm]}{21.22[mm]} = 10.77 \rightarrow 11 \text{ cuchillas}$$

En consideración de ello se tomó en cuenta los arreglos anteriormente propuestos, para conocer cuál de estos requerirá de una menor carga.

La fuerza de corte angular máxima (de acuerdo a los ensayos obtenidos) depende del número de cuchillas C_a que realizarán el corte, entonces

$$F_a = Q_a \cdot C_a$$
Ec. 3

Donde Q_a es la carga máxima de corte angular obtenida con un valor de 56.4 [N] (esto ya sea en corte paralelo o perpendicular al crecimiento de la fibra).

La fuerza de corte horizontal es igual:

$$F_h = w \cdot L_c \cdot C_h \cdot \dots \cdot Ec. 4$$

Donde w. Fuerza distribuida = 0.8 [N/mm].

L_c: Longitud de corte.

Ch: Número de cuchillas horizontales.

Así entonces, la fuerza total requerida en el punzón F_T:

$$F_T = F_a + F_h$$
......Ec. 5

En la siguiente tabla 3.3 se muestra el cálculo de cada uno de los arreglos donde se obtuvo la fuerza requerida por el punzón. Los arreglos donde demandó menor carga es la configuración de 17 x 13 y de 9 x 26 cuchillas. Ahora bien, se optó por la configuración 17 x 13 que es en la que resulta una menor carga de corte.

Tabla 3.3. Fuerza requerida por el punzón para diferentes configuraciones de mallado

Configuración de cuchillas de corte angular x cuchillas de corte horizontal	Cuchilla corte angular C _a [mm]	Cuchilla corte horizontal C _h [mm]	Fuerza angular F _a [N]	Numero de cuchillas de corte horizontal C _h	Fuerza horizontal F _h [N]	Fuerza total F _⊤ [N]
17x13	295.86	200.74	958.8	11	1766.5120	2725.3120
13x17	200.74	295.86	733.2	17	4023.6960	4756.8960
26x9	200.98	301.72	1466.4	9	2172.3840	3638.7840
9x26	301.72	200.98	507.6	20	3215.6800	3723.2800

Nota: Q_a= 56.4 [N]

3.1.2 Fuerza de flexión en la cuchillas.

Sabemos que la carga que aplicará el punzón sobre el nopal se distribuirá sobre las cuchillas lo cual generará una flexión en cada una de ellas, por ello es necesario calcular el esfuerzo causado por dicha flexión y evitar que las cuchillas tengan una flexión permanente o que lleguen a su punto de ruptura.

Como se observa en la figura 3.4, la geometría de las cuchillas debe ser de tal manera que formen entre ellas un mallado y queden superpuestas unas de forma vertical y otras de forma horizontal (como anteriormente se había mostrado), para ensamblarse se debe maquinar las muescas en las cuales se colocaran las otras cuchillas.

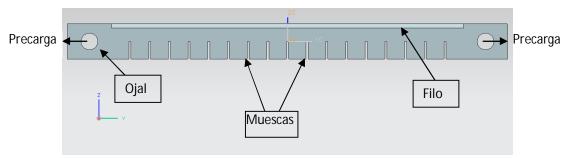


Figura 3.4. Cuchilla de corte horizontal con ranuras troqueladas o manufacturadas con piedra de desbaste.

Los ojales servirán para sujetar las cuchillas y también para tensionar las cuchillas, ya que esta (precarga) brindará mayor firmeza y evitará a menor escala la deformación por flexión.

Es necesario mencionar que debido a su geometría, la zona de las muescas estará sujeta a una concentración de esfuerzos, más aún en la parte central de las cuchillas.

Obtendremos el esfuerzo de flexión debido a la fuerza distribuida con la siguiente ecuación.

$$\sigma = \frac{Mc}{I}$$
.....Ec. 6

Donde σ : Esfuerzo.

M: Momento flexionant e.

c: Distancia del centroide geometrico a la superficie.

I: Momento de inercia de la sección transversal.

Para efectos de simplificación se calculó el momento de flexión para la cuchilla de mayor longitud y en todo caso se supuso que está sujeta a la carga lineal de 0.8 N/mm (que en realidad esta cuchilla realizará el corte gradualmente debida a la geometría del punzón figura 3.2), con esto garantizamos que la cuchilla de menor longitud resistirá sin problemas la carga.

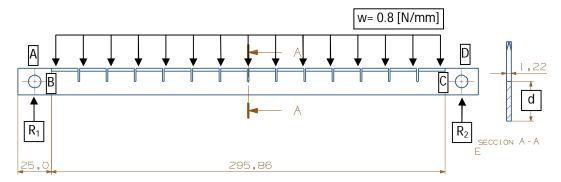


Figura 3.5. Distribución de las cargas en la cuchilla de mayor longitud.

$$F = 0.8 \left[\frac{N}{mm} \right] \cdot 295.86 [mm] = 236.688 [N]$$

Las reacciones estarán dadas de la siguiente manera.

$$R_1 = R_2 = \frac{F}{2} = 118.344[N]$$

Para el tramo A - B

$$\Sigma F = 0$$

$$118.344 - V = 0 \qquad V = 118.344[N]$$

$$\Sigma M = 0$$

$$-118.344x + M = 0 \qquad M = 118.344x \begin{cases} x = 0 \to M = 0[N \cdot mm] \\ x = 12.5 \to M = 1479.3[N \cdot mm] \end{cases}$$

$$\Sigma F = 0$$

$$118.344 - 0.8(x - 12.5) - V = 0 \qquad V = 128.344 - 0.8x \begin{cases} x = 12.5 \rightarrow V = 118.344[N] \\ x = 308.36 \rightarrow V = -118.344[N] \end{cases}$$

$$\Sigma M = 0$$

$$-118.344x + 0.8(x - 12.5) \left(\frac{x - 12.5}{2}\right) + M = 0$$

$$M = -0.4x^{2} + 128.344x - 62.5 \begin{cases} x = 12.5 \rightarrow M = 1479.3[N \cdot mm] \\ x = 112.87 \rightarrow M = 10232.614[N \cdot mm] \\ x = 213.24 \rightarrow M = 1479.3[N \cdot mm] \end{cases}$$

Tramo C - D

$$\Sigma F = 0$$

$$118.344 - 236.688 - V = 0 \qquad V = -118.344[N]$$

$$\Sigma M = 0$$

$$-118.344x + 236.688(x - 160.43) + M = 0$$

$$M = 118.344x - 37971.856 \qquad M = -80.296x \begin{cases} x = 308.36 \rightarrow M = 1479.3[N \cdot mm] \\ x = 320.86 \rightarrow M = 0[N \cdot mm] \end{cases}$$

En la figura 3.6 se observa el diagrama cortante y momento flector.

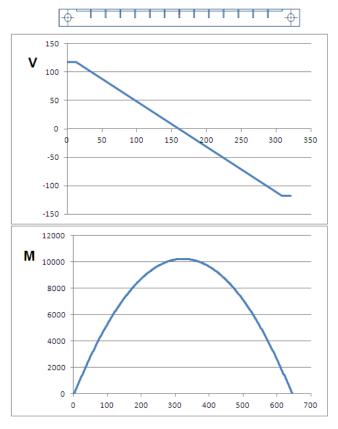


Figura 3.6. Diagrama cortante y momento flector.

Al realizar el cálculo pertinente del esfuerzo debido al momento flector máximo de 10232.614 [N*mm]. Se propondrá un valor de 25 [mm] para la altura de las cuchillas por efectos del diseño.

$$I_{x'} = \frac{bh^3}{12} = \frac{(1.22[mm]) \cdot (12.5[mm])^3}{12} = 198.5677[mm]$$

$$\sigma = \frac{10232.614[N \cdot mm] \cdot 6.25[mm]}{198.5677[mm^4]} = 322.0757[MPa]$$

Así mismo este valor solo se toma como un valor de referencia, ya que las cuchillas presentaron (por su diseño) concentraciones de esfuerzos en la zona de las muescas, por lo que se debe determinar un factor de concentración de esfuerzos K_t . En la figura 3.7 se muestran la gráfica de una barra plana con ranuras transversales sometida a flexión.

Para encontrar el factor entramos con los siguientes datos:

$$r = \text{radio del filete} = 0.61 [\text{mm}]$$

 $d = \text{reducción de altura} = 12.5 [\text{mm}]$
 $w = \text{altura} = 25 [\text{mm}]$

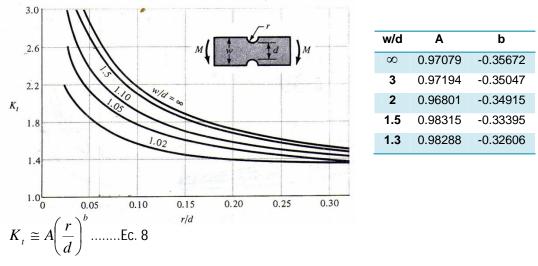


Figura 3.7. Factor de concentración de esfuerzo para una barra plana con muesca, sometida a flexión.

$$K_t \cong 0.96801 \left(\frac{0.61}{12.5}\right)^{-0.34915} \cong 2.78$$

Por lo que el factor de concentración de esfuerzo K_t es aproximadamente 2.78. Además las cuchillas estarán sometidas a ciclos de trabajo que harán que el material se fatigue, lo cual generará fallas en el material en un determinado tiempo de trabajo o en este caso ciclos de trabajo. Para ello se realiza un cálculo del límite de resistencia a la fatiga.

$$S_{e}' = \begin{cases} 0.504S_{u} & S_{u} \le 1400[MPa] \\ 700[MPa] & S_{u} > 1400[MPa] \end{cases}$$
......Ec. 9

Es necesario hacer hincapié que el valor de S'_e, teóricamente es para un número infinito de ciclos. Como lo muestra la figura 3.8.

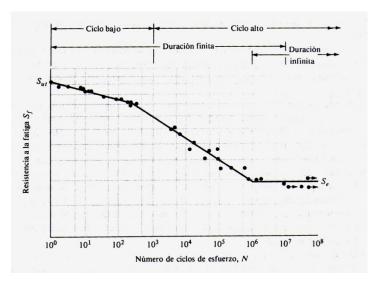


Figura 3.8. Diagrama S-N de pruebas de fatiga. Acero UNS G41300 normalizado

De acuerdo a las propiedades del acero inoxidable 410 la resistencia a la tensión es de 1310 [MPa], tenemos entonces.

$$S_e = 0.5(1310[MPa]) = 655[MPa]$$

Existen factores que modifican el límite de resistencia a la fatiga, de acuerdo a (Shigley J. E., 1992) usamos la siguiente expresión:

$$S_e = k_a k_b k_c k_d k_e S_e$$

donde S_e = limite de resistencia a la fatiga del elemento mecánico.

 $S_e^{'}$ = limite de resistencia a la fatiga de la muestra de ensayo.Ec. 10

 \boldsymbol{k}_{a} = factor de superficie, \boldsymbol{k}_{b} = factor de tamaño, \boldsymbol{k}_{c} = factor de carga,

 $\boldsymbol{k}_{\scriptscriptstyle d}$ = factor de temperatura, $\boldsymbol{k}_{\scriptscriptstyle e}$ = factor de efectos diversos.

El **factor de superficie**, dado que las cuchillas serán maquinadas y laminadas se usará el facto a = 4.51 y b = -0.265 (tabla 3.4).

Tabla 3.4 Factores de acabado de superficies.

Acabado de superficie	Factor a [MPa]	Exponente b
Esmerilado (rectificado)	1.58	-0.085
Maquinado o estirado en frio	4.51	-0.265
Laminado en caliente	57.7	-0.718
Forjado	272	-0.995

Estos factores son aplicables a la siguiente ecuación.

$$k_a = aS_u^b$$
......Ec. 11

De esta manera el factor de superficie fue.

$$k_a = (4.51)(1310)^{-0.265} = 0.6731$$

Para el factor de tamaño se tiene que

$$k_b = \left(\frac{d}{7.62}\right)^{-0.1133} [mm]$$
 $2.79 \le d \le 51 [mm]$Ec. 12

Esta ecuación es válida solo para secciones circulares, es por ello se emplea una dimensión efectiva de para poder usarse en geometrías prismática

$$d_e = 0.808(hb)^{1/2}$$
......Ec. 13

Donde h es la altura y b la base,

$$d_e = 0.808(25[mm] \cdot 1.22[mm])^{1/2} = 4.46[mm]$$

El valor se encuentra dentro del intervalo de la ecuación 12, sustituyendo.

$$k_b = \left(\frac{4.46[mm]}{7.62}\right)^{-0.1133} = 1.06 = 1$$

El factor de carga se representa por lo siguiente.

$$k_c = \begin{cases} 0.923 & \text{carga axial} & S_u \leq 1520 [MPa] \\ 1 & \text{carga axial} & S_u > 1520 [MPa] \\ 1 & \text{flexión} \\ 0.577 & \text{torsión y cortante} \end{cases}$$
......Ec. 14

Dado que se supone cargas por flexión el factor de carga para las cuchillas es $k_c = 1$.

Factor temperatura. La máquina no estará expuesta a cambios severos de temperatura, por lo que estará a una temperatura ambiente aproximadamente de 20 °C, el factor temperatura está determinado por la ecuación 15 y los valores de la tabla 3.5.

$$k_d = \frac{S_T}{S_{RT}} \dots \text{Ec. 15}$$

Tabla 3.5 Efecto de la temperatura de operación sobre la resistencia a la tensión del acero.

Temperatura °C	S_T/S_{RT}
20	1
50	1.01
100	1.02
150	1.025
200	1.02
250	1
300	0.975
350	0.927
400	0.922
450	0.84
500	0.766
550	0.67
600	0.546

Por lo cual, el factor temperatura es $k_e = 1$.

El último factor considerado es el **factor de efectos diversos**, el cual incluye varios tratamientos al material que disminuyen el límite de resistencia a la fatiga, como los recubrimientos electrolíticos (reducción en un 39% oxidación anódica y hasta el 50% en procesos de cromado y niquelado), metalizado por aspersión (disminución del 14%). También de piezas que por algún motivo trabajan en ambientes corrosivos o que presentan corrosión por apriete el cual k_e puede variar entre 0.24 a 0.90.

El efecto de concentración de esfuerzo también es incluido a este factor. Para ello es necesario que el número de ciclos sea $N \ge 10^3$, de lo contrario se establece que es una carga estática. El objetivo de la máquina es que sea de ciclos de trabajo altos o superior a 10^3 ciclos, para ello se tiene la siguiente ecuación.

$$k_e = \frac{1}{K_f}$$

Donde K_f es el factor de reducción de la resistencia a la fatiga y está relacionada con el factor de concentración de esfuerzos K_f los cuales se pueden considerar iguales, por tanto K_f = 2.78.

Así entonces,
$$k_e = \frac{1}{2.78} = 0.36$$

De la ecuación 10

$$S_e = k_a k_b k_c k_d k_e S_e$$
 $S_e' = 655[MPa]k_a = 0.6731, k_b = 1, k_c = 1, k_d = 1, k_e = 0.36$
 $S_e = (0.6731)(1)(1)(1)(0.36)(655) = 158.72[MPa]$

Con esto se aseguró que la vida de las cuchillas es finita ya que el esfuerzo máximo a flexión de 322.08 [MPa] es mayor, así entonces se calculará el número de ciclos de vida.

$$a = \frac{(0.9S_u)^2}{S_e}$$

$$b = -\frac{1}{3}\log\frac{0.9S_u}{S_e}$$
Ec. 16 $N = \left(\frac{\sigma}{a}\right)^{\frac{1}{b}}$ Ec. 17

Entonces,

$$a = \frac{(0.9 \cdot 1310[MPa])^2}{158.72[MPa]} = 8757.82[MPa]$$
$$b = -\frac{1}{3}\log\frac{0.9 \cdot 1310[MPa]}{158.72[MPa]} = -.2903$$

El valor de σ se toma del esfuerzo flector de la cuchilla (resultado de la ecuación 7) 322.0757 [MPa].

$$N = \left(\frac{322.0757[MPa]}{8757.82[MPa]}\right)^{-\frac{1}{0.2903}} = 87342[ciclos]$$

Además el factor de seguridad que se tiene con respecto al esfuerzo de cedencia es:

$$N_S = \left(\frac{1000[MPa]}{322.0757[MPa]}\right) = 3.11$$

Reiterando que el esfuerzo de flexión al que estará sometida la cuchilla será menor y que estos datos serían los más críticos. Con esto corroboró que la altura

de 25 [mm] soportará la máxima carga de corte, es decir, cuando toda el área este trabajando y que las cuchillas estén cizallando sin ninguna inclinación [0º].

3.2 Diseño del punzón.

La función principal del punzón es la de ejercer una fuerza sobre el nopal para lograr el cizallamiento. Además, el punzón de la máquina debe ajustarse y cumplir con las dimensiones de corte anteriormente propuestas, así también se debe guardar la tolerancia necesaria para evitar una colisión con las cuchillas, donde el claro de corte estará involucrado

El material será clave dentro del diseño, ya que estará en contacto directo con el nopal, por lo que es necesario que el material no sufra reacción alguna, que altere las propiedades de sabor y/o color del nopal; también este material debe ser resistente a la corrosión.

3.2.1 Claro de corte.

Los claros comúnmente utilizados en máquinas de corte se encuentran en un intervalo entre 4% a 13% del espesor del material, este intervalo varía de acuerdo a las necesidades de la calidad de corte, el tipo de material y espesor. Si se elige un claro pequeño el corte es más definido pero la fuerza de corte se incrementa. Si el claro es grande el corte pierde uniformidad y en este caso puede ocasionar que el nopal se rompa en lugares donde no están interviniendo los filos de las cuchillas; incluso la fuerza de corte podría aumentar debido a la absorción debida a la flexión del nopal.

Como comparativo, en las prensas para el corte de papel se utiliza un porcentaje del 5 % con respecto al espesor del material. Se utilizó el mismo valor para el claro entre las cuchillas y el punzón con la siguiente ecuación.

$$c = a \cdot t$$
Ec. 18

Donde "c" es el claro "a" la tolerancia (0.05) y "t" el espesor considerando un valor de 20 [mm], entonces:

$$c = 0.05 \cdot 20[mm] = 1[mm]$$

52

3.2.2 Material del punzón.

De la misma forma que las cuchillas, el punzón debe ser de un material inocuo, es decir, que no reaccione químicamente con los alimentos (en este caso el nopal) y que sea resistente a la corrosión. Para ello podemos elegir entre las siguientes opciones, acero inoxidable, nylon, aluminio, y policloruro de vinilo.

Para ello se muestra una comparativa de algunos materiales que se adecuan a nuestro requerimiento.

Resistencia Densidad Resistencia a la Maquinabilidad Material Mecánica Costo [q/cm³] corrosión [MPa] Acero inoxidable 565 7.88 Buena Limitado Alto 316 Nylon (Nylamid 70.632 1.14 Buena ++ Buena+ Bajo M) Aluminio (1200, 90 2.72 Buena + Buena Medio 6063, 5154A) Policloruro de 50 1.4 Medio Buena ++ Buena vinilo

Tabla 3.6. Materiales para la fabricación del punzón.

De acuerdo a la comparativa de la (tabla 3.6) tenemos que el material con mejores prestaciones (de acuerdo a nuestras necesidades) es el nylamid M; tiene baja resistencia mecánica comparado con el acero inoxidable, pero suficiente para nuestro requerimiento, ya que prácticamente estará sometido a esfuerzos de compresión. Además la densidad es óptima para reducir peso.

3.2.3 Dimensiones del punzón.

Con la determinación del material ahora entonces se definirá las dimensiones del punzón (figura 3.9) tomando como premisa la longitud de corte de las cuchillas.

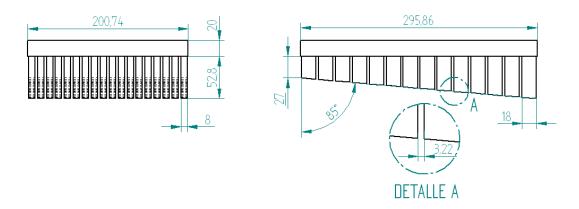


Figura 3.9. Dimensiones del punzón en [mm].

Con estas dimensiones y la referencia del espesor del nopal se puede obtener la carrera que se necesita para que funcione adecuadamente el punzón. En este caso la altura máxima del punzón h_p de 52.8 mm y el espesor del nopal e_n de 20 mm.

Así entonces:

Carrera punzón =
$$h_p + e_n$$
Ec. 19

Carrera punzón =
$$52.8[mm] + 20[mm] = 72.8[mm]$$

Cabe señalar que este valor de carrera es el valor mínimo, ya que también debe tener accesibilidad para colocar el nopal y limpieza de la máquina por lo que una longitud de 80 mm puede ser un valor adecuado.

3.3 Diseño del mecanismo.

Este es uno de los pasos fundamentales para el funcionamiento de la máquina ya que permitirá el movimiento del punzón para que de alguna manera empuje el nopal contra las cuchillas y se presente el cizallamiento o corte.

Cabe el preguntar ciertas características que son fundamentales en la máquina, por ejemplo ¿cómo va a operar?, o más específicamente, ¿cuál será la velocidad de operación requerida? Para su funcionamiento se utilizará un motor eléctrico, el cual posteriormente se elegirá (sección 4.4) de acuerdo a la potencia requerida por el mecanismo motriz.

¿Cuál será su rendimiento? Es decir, la cantidad de nopales cortados en cierto tiempo. Cabe señalar que dicha máquina tiene el propósito de cortar 1 nopal a la vez. Para ello es conveniente considerar el tiempo de corte manual. Se realizaron algunas pruebas del corte manual de un nopal tabla 3.7, para ello se eligió una persona hábil para el ensayo y se eliminó el tiempo más bajo y el más alto, además se seleccionaron nopales del tipo A.

Tabla 3.7. Tiempo de corte manual.

No	Tiempo [s]
1	50
2	37
3	30
4	39
Promedio	39

.

Ahora bien, se propuso que la máquina corte 1 nopal en 3 [s] lo cual será 13 veces más rápido que el promedio del método manual, además de generar un corte con mejor uniformidad.

La velocidad angular ω [rad/s] del eje del motor al que necesita girar se puede obtener de la siguiente manera.

$$\omega = \frac{\theta}{t}$$
.....Ec. 20

Donde θ es el número de vueltas en radianes, es decir 2 π y t de 3 [s].

$$\omega = \frac{2 \cdot \pi [rad]}{3[s]} = 2.09 \left[\frac{rad}{s} \right]$$

Así entonces, 2.09 [rad/s] es la velocidad angular que se utilizó para los cálculos siguientes.

Los mecanismos que son más viables y fáciles de construir son por medio del usual mecanismo manivela biela corredera o el uso de una leva.

El uso del mecanismo manivela-biela-corredera tiene ciertas características que para la máquina no serían viables, por ejemplo; este mecanismo no tiene lapsos de paro, es decir, su movimiento es continuo; lo que implica un paro abrupto para mantener el punzón en la posición superior para colocar otro nopal. Además sus elementos (manivela-biela) están conectados por medio de una junta, lo cual generará mayor inercia por el número de elementos conectados.

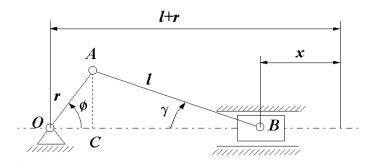


Figura 3.10. Manivela biela corredera. Los elementos que forman el mecanismo (manivela-biela) están unidos por medio de juntas.

3.3.1 Leva.

Una leva es un elemento mecánico para transformar un movimiento en otro impulsando a un elemento llamado seguidor; la leva le imprime movimiento al seguidor por contacto directo. Las levas son una forma de eslabonamiento de cuatro barras degradado en el que el eslabón acoplador se remplazó por una semijunta (Norton, 2000). La diferencia es que una leva comparativamente es un eslabonamiento de longitud variable (efectiva), lo cual hace de la leva-seguidor un generador de función flexible y útil. La utilización de levas es una de las formas más simples de generar movimientos complejos periódicos con precisión, obteniéndose a un costo razonable.

A. Tipos de leva.

Existen varios tipos de leva, esto depende del tipo de movimiento que se requiere, por lo que se clasifican de la siguiente manera

- Leva de placa.
- Leva de cuña.
- Leva cilíndrica o de barrilete.
- Leva lateral o de cara.

En la figura 3.11 se muestra los tipos de levas más usuales. También se indica si el movimiento del seguidor respecto al eje de rotación de la leva es radial figura 3.11a o axial figura 3.11d.

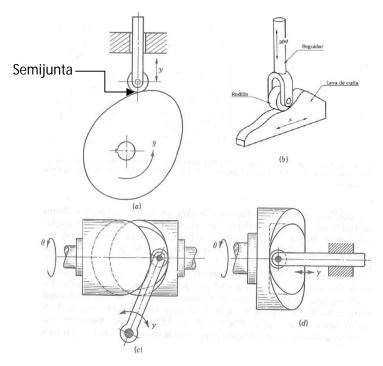


Figura 3.11. Tipos de leva: a) Placa, b) cuña, c) cilíndrica o de barrilete, d) de cara.

B. Tipos de seguidor.

Los seguidores se pueden clasificar de varias maneras, los más comunes son los de cara plana, de hongo y de rodillo. De entre estos el seguidor de rodillo por tratarse regularmente de un rodamiento de bolas o cilíndrico tiene una menor fricción que los otros dos. Por lo regular los seguidores de cara plana o de hongo están diseñados a la medida lo cual es una desventaja contra los de rodillo que hay una mayor disponibilidad, lo que implica una mayor facilidad para reemplazarse, en la figura 3.12 se muestra cada uno de ellos.

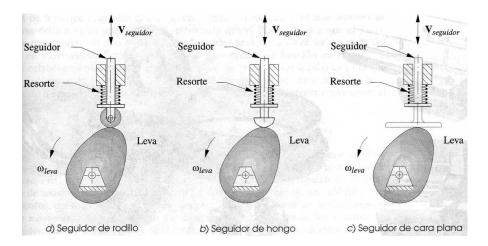
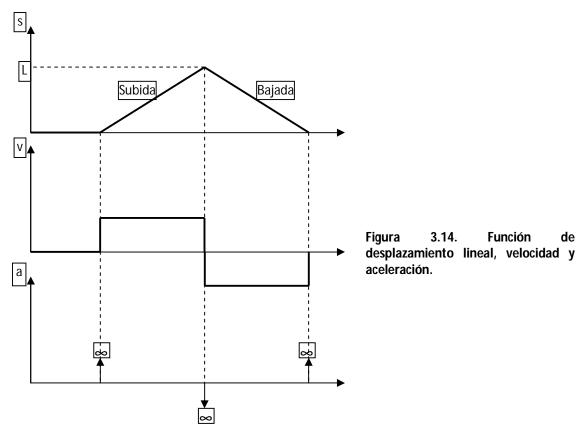


Figura 3.12. Tipos de seguidor más comunes, en el diseño de máquinas.

Además, los seguidores se pueden clasificar de acuerdo al tipo de movimiento: alternativo como los que se muestran en la figura 3.12 y los oscilatorios figura 3.13.

Figura 3.13. Leva radial con seguidor oscilante.


Para la máquina, se elegió un seguidor de rodillo con movimiento alternativo ya que se requiere que el punzón tenga un movimiento descendente para empujar el nopal hacia las cuchillas y ascendente para regresar nuevamente a su punto inicial.

3.3.2 Funciones del perfil de levas.

Para el dimensionamiento de una leva, se utilizan varios tipos de funciones las cuales se eligen de acuerdo al tipo de movimiento que se requiere en el seguidor. Es necesario que para diseñar la leva se seleccionen las condiciones de la posición del seguidor, es decir, conocer los instantes en los que se quiere una

subida, bajada o detención, así como la longitud de la subida, un parámetro importante (como se verá más adelante) para definir el tamaño de la leva.

De manera burda se puede construir una leva con una ecuación lineal, en donde la ecuación de desplazamiento para la subida sea $s = m^*\theta$ donde m es la pendiente y θ es el ángulo de giro del árbol de leva. Al analizar la velocidad y aceleración (figura 3.14), se observa que la aceleración es muy grande en las fronteras de los segmentos, esto generará altos esfuerzos y un deterioro rápido de la leva.

De manera similar sucede con la función armónica simple (tabla 3.8), ya que en los extremos de las funciones de detención existen discontinuidades en la aceleración, por lo tanto, en la rapidez de aceleración, estas discontinuidades generan picos infinitos, por lo que también esta función no es aceptable.

En la siguiente tabla se presentan las funciones más comunes en el diseño de levas.

Tabla 3.8. Funciones estándar para el perfil de levas.

Función	Subida	Bajada
Armónica	$S = \frac{L}{2} \left(1 - \cos \left(\frac{\pi \theta}{\beta} \right) \right)$	$S = \frac{L}{2} \left(1 + \cos \left(\frac{\pi \theta}{\beta} \right) \right)$
Cicloidal	$S = L \left(\frac{\theta}{\beta} - \frac{1}{2\pi} sen\left(\frac{2\pi\theta}{\beta} \right) \right)$	$S = L \left(1 - \frac{\theta}{\beta} - \frac{1}{2\pi} sen\left(\frac{2\pi\theta}{\beta}\right) \right)$
Armónica modificada (detención simple)	$S = \frac{L}{2} \left(\left(1 - \cos \frac{\pi \theta}{\beta} \right) - \frac{1}{4} \left(1 - \cos \frac{2\pi \theta}{\beta} \right) \right)$	$S = \frac{L}{2} \left(\left(1 + \cos \frac{\pi \theta}{\beta} \right) - \frac{1}{4} \left(1 - \cos \frac{2\pi \theta}{\beta} \right) \right)$

Para las ecuaciones de la tabla 3.8, θ es la posición de la leva y β el periodo al cual se quiere utilizar la función. Por lo que θ/β va a tener una variación entre 0 y 1.

De la tabla la función armónica y cicloidal solo son efectivas para doble detención, mientras que la función armónica modificada es eficaz para una leva en la que se tiene una solo paro, es decir, una leva en la que tiene detención, subida y bajada. Para el diseño de la máquina solo se requiere una detención baja, así que la armónica modificada entre estas tres es la que podría ser la función más correcta, desafortunadamente no es muy recomendada debido a que suele desarrollar aceleraciones altas.

Para ello existen funciones polinomiales las cuales son más versátiles, además pueden ajustarse a muchas especificaciones de diseño. La forma general de una función polinomial es la siguiente:

$$s = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + C_4 x^4 + \dots + C_n x^n$$
Ec. 21

Donde "s" es el desplazamiento y "x" se remplaza por el cociente entre θ y β .

El grado del polinomio depende directamente del número de condiciones de frontera que se desean especificar para el diseño de la leva. Así que la función más adecuada para nuestra necesidad es mediante una función polinomial.

A. Determinación de la función.

Con lo antes expuesto se puede obtener la función que dará el perfil de la leva, además con esta función se analizará la dinámica del seguidor obteniendo la velocidad y aceleración. Como anteriormente se planteó el desplazamiento o carrera del punzón deberá ser de 80 [mm].

Para obtener la función fue necesario proponer los valores de subida, bajada y detención.

Subida	0	90	L= 80[mm]
Bajada	90	180	
Detención	180	360	

Con estas condiciones podemos obtener un polinomio de sexto grado así entonces. Para este caso el periodo o segmento β =180.

$$s = C_0 + C_1 \left(\frac{\theta}{\beta}\right) + C_2 \left(\frac{\theta}{\beta}\right)^2 + C_3 \left(\frac{\theta}{\beta}\right)^3 + C_4 \left(\frac{\theta}{\beta}\right)^4 + C_5 \left(\frac{\theta}{\beta}\right)^5 + C_6 \left(\frac{\theta}{\beta}\right)^6 \dots \text{Ec. 22}$$

$$v = C_1 + 2C_2 \left(\frac{\theta}{\beta}\right) + 3C_3 \left(\frac{\theta}{\beta}\right)^2 + 4C_4 \left(\frac{\theta}{\beta}\right)^3 + 5C_5 \left(\frac{\theta}{\beta}\right)^4 + 6C_6 \left(\frac{\theta}{\beta}\right)^5 \dots \text{Ec. 23}$$

$$a = 2C_2 + 6C_3 \left(\frac{\theta}{\beta}\right) + 12C_4 \left(\frac{\theta}{\beta}\right)^2 + 20C_5 \left(\frac{\theta}{\beta}\right)^3 + 30C_6 \left(\frac{\theta}{\beta}\right)^4 \dots \text{Ec. 24}$$

$$\text{Condición 1; } \theta = 0; \quad s = 0; \quad C_0 = 0$$

$$v = 0; \quad C_1 = 0$$

$$a = 0: \quad C_2 = 0$$

Condición 2;
$$\theta$$
=180; s=0; C_3 + C_4 + C_5 + C_6 =0.......Ec. 25
 V =0; $3C_3$ + $4C_4$ + $5C_5$ + $6C_6$ =0......Ec. 26
 a =0; $6C_3$ + 12 C_4 + $20C_5$ + $30C_6$ =0......Ec. 27
Condición 3; θ =90; s= L ; $8C_3$ + 4 C_4 + $2C_5$ + C_6 = $64L$Ec. 28

Al obtener la solución de las ecuaciones 25 a 28 tenemos que

$$C_3=64L$$
; $C_4=-192L$; $C_5=192L$; $C_6=-64L$

Entonces la ecuación de desplazamiento queda como:

$$s = L \left[64 \left(\frac{\theta}{\beta} \right)^3 - 192 \left(\frac{\theta}{\beta} \right)^4 + 192 \left(\frac{\theta}{\beta} \right)^5 - 64 \left(\frac{\theta}{\beta} \right)^6 \right] \dots Ec. 29$$

Para la velocidad; $v = \frac{ds}{d\theta}$

$$v = \frac{L}{\beta} \left[192 \left(\frac{\theta}{\beta} \right)^2 - 768 \left(\frac{\theta}{\beta} \right)^3 + 960 \left(\frac{\theta}{\beta} \right)^4 - 384 \left(\frac{\theta}{\beta} \right)^5 \right] \dots Ec. 30$$

y aceleración; $a = \frac{dv}{d\theta}$

$$a = \frac{L}{\beta^2} \left[384 \left(\frac{\theta}{\beta} \right) - 2304 \left(\frac{\theta}{\beta} \right)^2 + 3840 \left(\frac{\theta}{\beta} \right)^3 - 1920 \left(\frac{\theta}{\beta} \right)^4 \right] \dots \text{Ec. 31}$$

Al sustituir los valores de θ , β y L, en las ec. 29 a 31, se obtienen las siguientes gráficas figura 3.15.

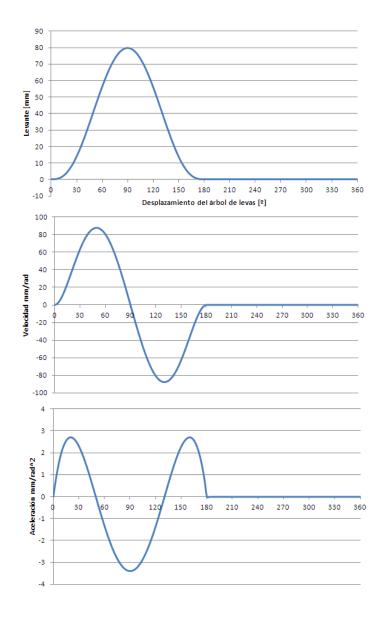


Figura 3.15. Gráficas de desplazamiento, velocidad y aceleración para un segmento de 180° y levante de 80[mm].

B. Dimensiones de la leva.

Existen 2 factores escensiales para definir el perfil de una leva, el ángulo de presión "Φ" y el radio del circulo primitivo "R_p", en el caso de seguidores de rodillo. El circulo primitivo "R_p" y e el circulo base "R_b" tienen el mismo centro, además son el centro de rotación de la leva (figura 3.16). El circulo base se define como *el circulo más pequeño que puede trazarse tangente a la superficie física de la leva*, en general, todas las levas de tipo radial tienen un circulo base.

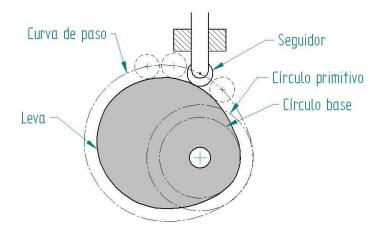


Figura 3.16. Curva de paso ρ , radio del seguidor R_r , círculo primitivo R_p , círculo base R_b .

El ángulo de presión Φ es el ángulo entre la dirección del movimiento (velocidad) del seguidor y la dirección del eje de transmisión(Norton, 2000).

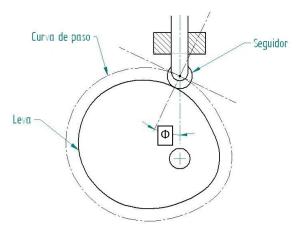


Figura 3.17. Ángulo de presión de una leva con seguidor de rodillo, traslacional, sin excentricidad (ε).

Es necesario que para el diseño de la leva el ángulo de presión este en un intervalo de 0 a 30º para los seguidores alternativos o de movimiento traslacional y de hasta 35º es aceptable para seguidores oscilatorios. Este dato es empírico por diversos autores, cuando el ángulo de presión es mayor, se incrementa la carga del seguidor sobre la leva y biceversa, lo cual puede provocar atascamiento y/o desgaste prematuro en la leva-seguidor.

Así entonces, la ecuación que corresponde al ángulo de presión es:

$$\phi = ang \tan \frac{v - \varepsilon}{s + \sqrt{R_p^2 - \varepsilon^2}} \le 30^{\circ} \dots$$
 Ec. 32

Donde "s" y "v" son el desplazamiento y la velocidad respectivamente del seguidor de las funciones ya seleccionadas, en este caso de las ec. 29, 30 y 31. Para este caso en cada instante de giro θ de la leva hay un ángulo Φ tal que debe ser menor o igual a 30°.

Dado que Φ depende también de la excentricidad ϵ , si se tiene una velocidad angular ω positiva y un valor de ϵ positivo disminuirá el ángulo de presión en la subida, pero se incrementará en la bajada; así también si la excentricidad es negativa provocará lo contrario.

Para determinar el valor de R_p, es necesario realizar un proceso iterativo para que el ángulo de presión cumpla dichas características. Para un primer cálculo simplificaremos la ec. 32 con una excentricidad de cero, además de que no es requerida para el diseño.

Al obtener el ángulo de presión se utilizó una hoja de cálculo y con las condiciones anteriormente mencionadas se obtuvo que el radio del circulo primo el cumple con un ángulo de presión menor a 30° es de 11.75 cm o sea un diametro de 23.5 [cm]. En el apéndice A se muestran los resultados del ángulo de presión con subida y bajada en 180 [°]

Lo que se observó al realizar las iteraciónes es que si el angulo de presión supera los 30° al incrementar el radio del circulo primo R_p , el ángulo de presión Φ se reduce. Esto tiene sus limitaciones ya que un R_p grande se traduce en una leva ostentosa, como sucede en esta iteración. A pesar de ello se obtuvo el perfil de la leva y la curva de paso figura 3.18, esto para efectos de comparación.

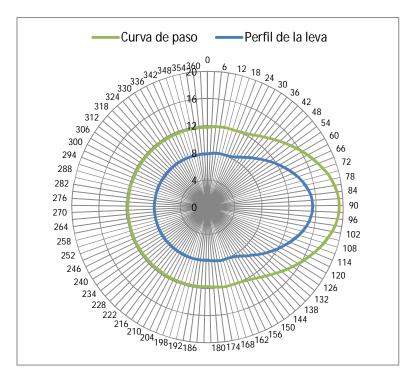


Figura 3.18. Perfil de la curva de paso, con subida y bajada en 180°

La curva de paso para un seguidor de rodillo es en realidad *el lugar geométrico del* centro del seguidor, através del contorno de la leva. Y se define por la siguiente ecuación.

$$\rho_{paso} = \frac{\left[\left(R_p + s \right)^2 + v^2 \right]^{3/2}}{\left(R_p + s \right)^2 + 2v^2 - a \left(R_p + s \right)} \dots \text{Ec. 33}$$

Algo muy importante es que si ya se ha encontrado un valor de R_p , se realice el cálculo de la curva de paso con la ecuación 33 y con ella obtener el radio de paso mínimo. El radio de paso mínimo, es el menor valor que se obtiene al evaluar los resultados que se obutvieron de s, v, a y el valor elegido de R_p ; de este modo el radio del seguidor R_r debe ser menor que el radio de paso mínimo ec. 34.

$$|
ho_{\it minimo}| >> R_r$$
Ec. 34

El método empírico consiste en mantener el valor absoluto del radio mínimo de curvatura $\rho_{mínimo}$ de la curva de paso de la leva, preferentemente al menos 2 o 3 veces del tamaño del radio del seguidor R_r (Norton, 2000).

La ecuación 34 debe respetarse, ya que cuando se manufactura una leva se realiza con un cortador del mismo radio que el del seguidor, así entonces si se elige un radio de seguidor igual o mayor que el radio mínimo de curvatura de la leva, se formará una cúspide, lo cual no se lograría un buen perfil de leva figura 3.19.

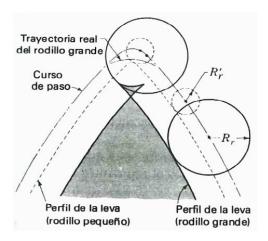


Figura 3.19. Inconvenientes de un radio de seguidor mayor al radio de curvatura mínima.

Para la primera iteración tenemos que el radio mínimo de la leva es el mismo que el radio de circulo primo R_p (11.75 [cm]). Entonces el radio del seguidor, de acuerdo a una proporción de 3 veces menor que ρ_{min} de 11.75 cm , se obtuvo un radio de seguidor:

$$R_r = \frac{11.75[cm]}{3} = 3.92[cm]$$

Con este dato obtenemos el perfil de la leva de la figura 3.18. Como se ha mencionado esta leva es muy grande y de ser posible, es necesario disminuir sus dimensiones.

Se requiere definir nuevos segmentos de subida-bajada-detención, pero también se tiene que tomar en cuenta un ángulo de detención adecuado en el que la máquina pueda tener una tolerancia significativa en su detención total.

Para ello se establecieron 3 tipos de levas, la leva 1 es la que ya se realizó figura 3.18 y la leva 2 y 3, donde el ángulo de detención se redujo.

Tabla 3.9. Comparativa entre 3 tipos de leva, con distintos ángulos de segmentación, para la subida, bajada y detención.

Leva 1			Leva 2			Leva 3		
R _p Circulo prim	nitivo [cm]	11.75	R _p Circulo prim	R _p Circulo primitivo [cm] 6.75		R _p Circulo primitivo [cm]		5.5
Altura máxima [cm]		8	Altura máxima de la leva [cm]		8	Altura máxima de la leva [cm]		8
Excentricida	ad [cm]	0	Excentricida	cidad [cm] 0 Excei		Excentricid	ad [cm]	0
Radio del segu	uidor [cm]	3.916667	Radio del segu	uidor [cm]	2.25	Radio del seguidor [cm]		1.833
Longitud tota [cm]	-	23.333	Longitud tota [cm]	-	16.85	Longitud total aprox. [cm]		15.334
Subida	0	90	Subida	0	135	Subida	0	157.5
Bajada	90	180	Bajada	135	270	Bajada	157.5	315
Detención	180	360	Detención	270	360	Detención	315	360

Así pues, cuando s=L, θ/β = 0.5 en las 3 levas propuestas, al sustituir las condiciones de frontera se obtendrá una ecuación igual a la ec. 29, retomada nuevamente.

$$s = L \left[64 \left(\frac{\theta}{\beta} \right)^3 - 192 \left(\frac{\theta}{\beta} \right)^4 + 192 \left(\frac{\theta}{\beta} \right)^5 - 64 \left(\frac{\theta}{\beta} \right)^6 \right]$$

Por lo que de la misma manera su velocidad y aceleración son las ecuaciones 30 y 31 respectivamente. De esta manera obtenemos los siguientes perfiles de leva figura 3.20. En donde se observa como la leva 1 es demasiado ostentosa teniendo una longitud aproximada de 23.66 [cm], seguida por la leva 2 con una longitud 17 [cm] y 15.334[cm] para la leva 3.

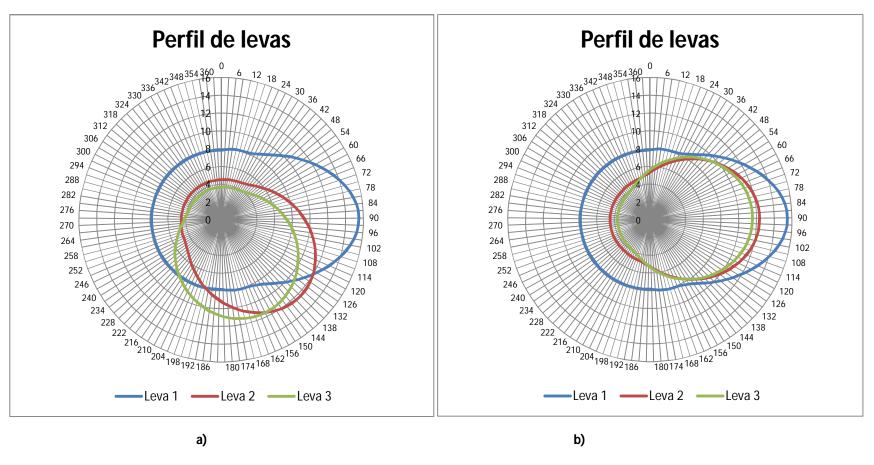


Figura 3.20. Perfil de levas. a) Grafica original, de acuerdo a los ángulos de segmentación β. b) Perfiles girados, con el objetivo de tener una mejor comparativa de sus dimensiones.

Ahora se tomó en cuenta la velocidad y aceleración que cada uno de los perfiles genera (figura 3.21). Se observa que la velocidad y aceleración de la leva 3, fue de una magnitud menor, por lo que producirá un menor desgaste y las fuerzas dinámicas tambíen disminuiran; además de que contó con menores dimensiones.

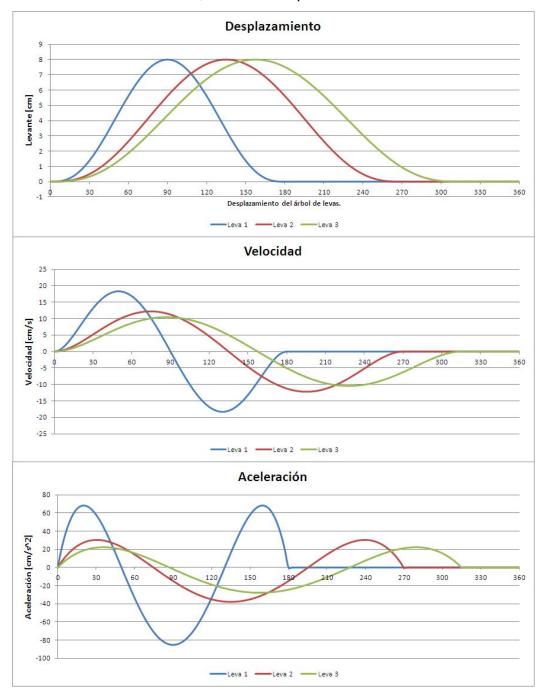


Figura 3.21. Comparación del desplazamiento, velocidad y aceleración, levas 1, 2 y 3.

Cabe señalar que las dimensiones de longitud y ancho de la leva fueron obtenidas con un radio de seguidor 3 veces menor que el radio de paso mínimo de cada leva, es evidente que se deben tomar en consideración las dimensiones de algún fabricante en particular para la selección del seguidor, por lo que es necesario que dicho seguidor tenga dimensiones menores a las que se han obtenido de la tabla 3.9.

Los fabricantes de seguidores manejan una gran variedad de tamaños y para distintos tipos de trabajo; algunos mas sencillos que otros, incluso hay algunos que tienen ranuras en la cabeza para facilitar su montaje. Cuando existe una carga axial, paralela al pasador, se utilizan rodillos de empuje de bola, para resistir pequeños esfuerzos axiales.

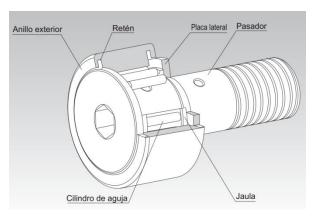


Figura 3.22. Partes de un seguidor de levas de rodillo cortesía (THK).

Existen otros factores para la selección correcta del seguidor como la carga estática y dinámica de trabajo, por ahora solo se tomarán en cuenta las dimensiones del radio del seguidor, para poder definir el perfil de leva.

El radio del seguidor de la leva 3 de acuerdo al cálculo de la tabla 3.9, es de un valor máximo de 18.33 [mm]. La medida del fabricante más cercana es de un radio de 17.5 [mm] ó un diámetro de 35 [mm]. En base a las medidas de este seguidor obtenemos el perfil de leva con una longitud de 153.9 [mm] y 139.77 [mm] de ancho, en el apéndice G se puede observar con más detalle sus dimensiones.

Al haber seleccionado el diámetro del seguidor es necesario conocer las dimensiones a detalle como dato para el diseño del vastago, el cual le transmite la

fuerza al punzón. En el apéndice B se muestran la dimensiones de los seguidores THK y algunas recomendaciones de instalación por parte del fabricante.

3.3.3 Material de fabricación de la leva.

Uno de los inconvenientes para la fabricación de las levas es su manufactura, simplemente su forma requiere de una gran precisión para evitar sobresaltos en su superficie. Además su superficie está expuesta a fuerzas concentradas en un punto, lo cuál demanda que dicha superficie tenga una alta dureza para evitar deformaciones. Por ello se requieren materiales de mediana a alta dureza con temple superficial o total. En aplicaciones donde solo se utilizan como mecanismo temporizador para el accionamiento de algún interruptor, son fabricadas de polimeros, ya que no demanda de alta dureza para desempeñar su función.

Dado que la aplicación a la que será sometida la leva es el accionamiento y fuerza para cizallar, es necesario que el material no ceda o fracture y mantenga su contorno liso y trayectoria definida, por lo que requerirá de una alta dureza superficial para evitar desgaste.

Algunos de los materiales más utilizados para la fabricación de levas es el acero aleado al cromo-molibdeno 4140 y los triplemente aleados (cromo-niquel-molibdeno) como el 4320 y 4340, los tres son ampliamente utilizados para flechas, engranes, válvulas, pernos, coples, ejes, árbol de levas, cigüeñales, etc.

Al tratarse de una máquina para proceso alimenticio, es necesario que los elementos conformados puedan ser limpiados con cierta frecuencia sin que estos tiendan a corroerse. Un acero inoxidable que pueda ser templado y adquiera una dureza superior o cercana a los 50 HRc es el 420 a continuación en la tabla 3.10 se muestran las características químicas y mecánicas de este acero. Dentro de las aplicaciones del acero inoxidable 420 son la cuchillería, instrumentos médicos, hojas de navajas, partes de válvulas, engranes, flechas y en los moldes por su excelente acabado a espejo y por su estabilidad en el tratamiento térmico.

Al utilizar un acero inoxidable se garantiza una mayor vida útil de los componentes como el seguidor, eje y vástago, evitando la corrosión galvánica de los elementos y contaminación con los nopales.

Tabla 3.10. Propiedades y composición química acero inoxidable AISI 420 (Suministros Técnicos S.A.), (IIRSACERO S.A de C.V.)

Composición química							
% C	% Mn	% Si	% Cr	% Ni	% Mo		
0.15 min	1	1	12 - 14	0.75	0.5		
		Propiedades	mecánicas				
	Resistencia a Punto de la tensión cedencia Dureza [MPa] [MPa]						
Recocido 81	Recocido 815 [°C] 690 345 235 HB				5 HB		
Templado 1010- 1 revenido 204		1724	1482	512 HB 48 - 56 HRc			

3.3.4 Fuerzas dinámicas.

Con anterioridad se presentó la cinemática de la leva-seguidor que involucra los desplazamientos, velocidades y aceleraciones, ahora es necesario utilizar la cinemática para para conocer la frecuencia natural y par torsional al que será sometido el mecanismo. Así mismo obtener un parámetro adecuado para la constante del resorte, el cual es de gran importancia para obtener un mecanismo que tenga un comportamiento óptimo.

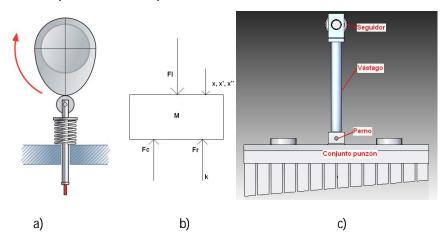


Figura 3.23. a) Modelo físico. b) Modelo de un sistema leva – seguidor sin amortiguamiento. c) Consideraciones de masa.

En la figura 3.23 a y b, se muestra el modelo del sistema físico leva-seguidor, en donde F_l es la fuerza de la leva. F_r es la fuerza debida a la elasticidad de todo el mecanismo, para tal caso se puede considerar simplemente la del resorte con una constante k, m es la masa de los componentes que actúan con el resorte (seguidor, vastago, el conjunto del punzón y perno).

Las fuerzas restantes F_c se considera a la resistencia de penetración o de cizallamiento y la precarga. Se puede considerar la fuerza de cizallamiento máxima como una fuerza constante (ya obtenida 2725. 312 [N]), con el objetivo de encontrar la fuerza empuje de la leva para realizar el corte. La precarga es la fuerza inicial del resorte para mantener el seguidor en contacto a la leva, además se debe considerar la compresión debida a la masa "m". Entonces de acuerdo a la figura 3.23 se obtuvo la suma de fuerzas.

$$\Sigma F_y = ma = -mx''$$

$$F_c + F_r - F_l = -mx'' \rightarrow -F_c - F_r + F_l = mx'' - F_c + F_l = mx'' + F_r$$

Considerando que la fuerza del resorte F_r es lineal de acuerdo a su constante k, se tiene:

$$-F_c + F_l = mx'' + kx$$
Ec. 35
 $C = mx'' + kx$

De esta manera se ha considerado un sistema no amortiguado, es decir sin fuerzas de fricción o fuerzas de resistencia al movimiento.

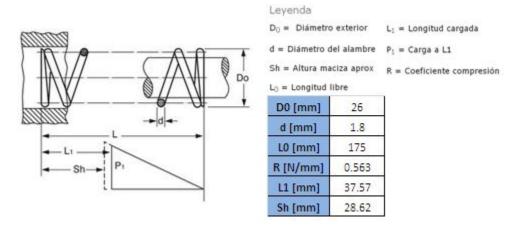


Figura 3.24. Características del resorte

Las dimensiones(figura 3.24) del resorte deben corresponder con la geometría donde será montado, es decir, la longitud de máxima compresión debe ser mayor a la longitud cargada o permitida (L₁), además de contemplar la compresión debida a la masa que actuará con el resorte, para que se tenga una longitud de trabajo de 80 [mm], también fue necesario definir las dimensiones del vástago y su guía (apéndice G), además de otros elementos para aproximar la cantidad de masa que actuará con el resorte.

La cantidad de masa aproximada se determinará con ayuda del programa de CAD Solid Edge de acuerdo a los elementos mostrados en la figura 3.23c.

Pieza	Cantidad	Material	Densidad [g/cm ³]	Volumen [cm³]	Masa [g]
Seguidor	1	Acero inoxidable	Dato de	fabricante	170
Vástago	1	Acero inoxidable 410	8.027	45.245844	483
		Conjunto	punzón		
Punzón	1	Nylamid M	1.14	2637.241209	3007
Refuerzo	1	Aluminio 6061 ó 6063	2.71	597.405866	1375
Guías	2	Aluminio 6061 ó 6063	2.71	134.733184	752
			Total		5787

Tabla 3.11. Masa de los elementos que intervienen con el resorte.

Dado que solo se han calculado las piezas de mayor tamaño, se tomará como dato una masa de 6 [Kg], porque las piezas de sujeción y/o unión (soldadura), como tornillos, tuerca del seguidor y perno no fueron considerados. Para ello se verifica cual es la distancia que comprime la masa con la siguiente ecuación.

$$F = k \cdot d \rightarrow d = \frac{F}{k}$$
Ec. 36

Para la construcción de la máquina se utilizarán 4 resortes los cuales se colocaran en los 4 postes guía. Podemos ver que las dimensiones del resorte son aceptables para ser acoplados en cada uno de los postes.

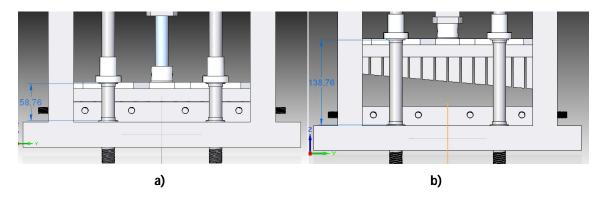


Figura 3.25. Distancia de trabajo del resorte [mm]. a) distancia de máxima compresión, b) distancia mínima de compresión.

Verificando la distancia comprimida debido a la masa de 6 [Kg] tenemos:

$$k = 0.563 \left[\frac{N}{mm} \right] \to 4k = 2.252 \left[\frac{N}{mm} \right]$$

$$d = \frac{F}{k} = \frac{6[Kg] \cdot 9.81 \left[\frac{m}{s^2} \right]}{2.252 \left[\frac{N}{mm} \right]} = 26.14[mm]$$

$$L_c = L_0 - d = 175[mm] - 26.14[mm] = 148.86[mm]$$

Observando que la longitud comprimida L_c es mayor que la distancia mínima (138.76 mm) de compresión, lo cual es aceptable para lograr la precarga. De acuerdo a la distancia de la figura 3.25b tendremos una precarga correspondiente a 10.1 [mm] lo que es igual a 22.75 [N] respecto a la constante del resorte que proporciona el fabricante de la figura 3.24.

Retomando la ecuación 35 y resolviendo la ecuación diferencial ordinaria homogénea.

$$mx''+kx = 0$$

$$x'' = -\frac{k}{m}x$$
Ec. 37

Donde

$$x = C_1 \cos(\omega t) + C_2 sen(\omega t)$$

Derivando

$$x' = -w \cdot C_1 sen(\omega t) + w \cdot C_2 \cos(\omega t)$$

$$x'' = -w^2 \cdot C_1 \cos(\omega t) - w^2 \cdot C_2 sen(\omega t) \rightarrow -w^2 [C_1 \cos(\omega t) + C_2 sen(\omega t)]$$

Sustituyendo x y x" en la ecuación

$$-w^{2}[C_{1}\cos(\omega t) + C_{2}sen(\omega t)] = -\frac{k}{m} \cdot [C_{1}\cos(\omega t) + C_{2}sen(\omega t)]$$

Para que esto se cumpla entonces

$$\omega^2 = \frac{k}{m} \rightarrow \omega_n = \sqrt{\frac{k}{m}}$$
Ec. 38

A ω_n se le conoce como frecuencia circular natural del sistema y es la frecuencia a la que vibraría el sistema si este no cambia. Esta es la representación de la frecuencia natural no amortiguada, mientras que la frecuencia natural amortiguada está solo un poco por debajo de esta.

Es necesario mencionar que la cantidad de masa afecta directamente, si la cantidad de masa es demasiado grande, entonces las vibraciones se desarrollaran a velocidades más bajas, por lo que un resorte con una constante elástica k mayor solucionaría el problema.

De este modo la frecuencia natural no amortiguada se obtuvo de la siguiente manera:

$$k = 2252 \left\lfloor \frac{N}{m} \right\rfloor$$

$$m = 6[Kg]$$

$$\omega_n = \sqrt{\frac{2252 \left\lfloor \frac{N}{m} \right\rfloor}{6[Kg]}} = 19.37 \left\lfloor \frac{rad}{s} \right\rfloor \qquad \text{análisis de unidades } \left\lceil \frac{Kg \cdot m}{s^2 \cdot m} \right\rceil^{\frac{1}{2}} = \left\lfloor \frac{1}{s} \right\rfloor$$

Para obtener la frecuencia natural amortiguada, fué necesario considerar el factor de amortiguamiento "c" el cual interviene directamente con la velocidad y en sentido contrario a la fuerza de la leva.

$$F_1 = mx'' + cx' + kx + F_c$$
.....Ec. 39

Para obtener el valor de c se hace uso de la relación de amortiguamiento

$$\xi = \frac{c}{c_c}$$

$$c_c = 2m\omega_n \to 2m\sqrt{\frac{k}{m}}$$

$$\zeta = \frac{c}{2m\sqrt{\frac{k}{m}}}$$

$$c=2\xi\sqrt{km}$$
Ec. 40

En la ecuación 40 los únicos términos conocidos son k y m, por lo que de acuerdo a (Koster, 1974) encontró un valor común para la relación de amortiguamiento en sistemas de leva-seguidor, ζ = 0.06. Con lo que este valor se sustituye para obtener la constante de amortiguamiento.

Por otro lado la frecuencia natural de amortiguamiento ω_d se obtiene de la siguiente manera.

$$\omega_d = \sqrt{\frac{k}{m} - \left(\frac{c}{2m}\right)^2} \dots \text{Ec. 41}$$

Al realizar el cálculo de acuerdo a las ecuaciones 40, 41 y el valor obtenido de ω_n tenemos los resultados de la tabla 3.12.

Tabla 3.12. Frecuencia natural de amortiguamiento ω_d y frecuencia natural sin amortiguamiento ω_n .

Parámetros de entra	Datos arrojados		
Velocidad angular, ω [rad/s]	2.094395102	С	13.9489
Masa efectiva, m [Kg]	6	ωn [rad/s]	19.3935
Amortiguamiento, ζ	0.06	ωd [rad/s]	19.3386
Constante del resorte, k [N/m]	2252		
Precarga, Fpl [N]	2748.06		

Se observa que la frecuencia natural (amortiguada y sin amortiguamiento) excede por gran margen la velocidad de trabajo de 2.09 [rad/s] algo esencial para la máquina y con ello se puede garantizar que el mecanismo no sufrirá sobresaltos entre el seguidor y la leva.

Se calculó la fuerza de la leva F_1 de la ecuación 39. La aceleración x" y velocidad x' se obtuvo con la cinemática de la leva y minetras que x es el desplazamiento. Por lo que se generó la gráfica siguiente figura 3.26.

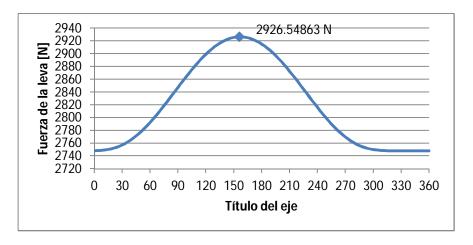


Figura 3.26. Fuerza requerida por la leva.

Por lo que la fuerza máxima de la leva necesaria para mover el mecanismo y cizallar los nopales en toda el área de corte es de 2926.54 [N]. Para efectos prácticos se puede redondear a 3000 [N].

El par torsional que requiere nuestro sistema se puede calcular con la ecuación de la relación de potencia, sin tomar encuenta las perdidas.

Potencia de entrada = Potencia de salida

$$T \cdot \omega = F \cdot v$$

$$T = \frac{F_l \cdot v}{\omega}$$
.....Ec. 42

Donde v es la velocidad en cada instante del perfil de la leva, F_l es la fuerza de la leva y ω la velocidad angular del eje.

En la (figura 3.27a) se puede observar el par de torsión considerando que la fuerza de cizallamiento se presentará en todo momento de manera constante, esto es erróneo ya que la fuerza de cizallamiento solo se va a presentar en la subida (figura 3.27b), además que la fuerza de cizallamiento no es constante en el segmento de subida. En realidad la fuerza de cizallamiento va incrementándose de acuerdo a la resistencia de corte que presenta la cuchilla, en todo caso en el segmento que va de 0 a 157.5 [º] se encontrará por debajo o en la línea del par de torsión calculado. Para la misma figura el segmento que va de 157.5 a 315 [º] se observa un par negativo debido la fuerza del resorte que empuja al mecanismo en

sentido contrario. Mientras que el segmento de 315 a 360 [º] la leva está en detención.

El par máximo de acuerdo a la fuerza de 3000 [N] y una velocidad máxima de 104.67 [mm/s] a 87 [°] de posición del árbol de la leva es de:

$$T = \frac{3000[N] \cdot 0.1046 \left[\frac{m}{s}\right]}{2.094 \left[\frac{rad}{s}\right]} = 149.86[N \cdot m] \rightarrow 150[N \cdot m] \dots \text{Ec. 43}$$

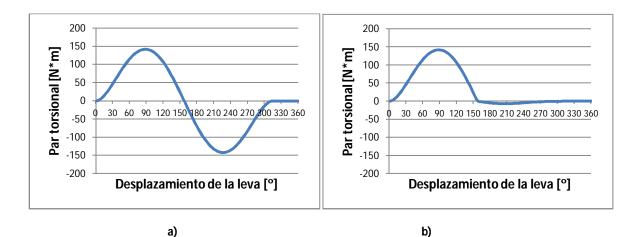


Figura 3.27. a) Par de torsión con fuerza de cizallamiento constante. b) Par de torsión con fuerza de cizallamiento solo en la subida del perfil de la leva.

Capítulo 4

4 Sistema motriz, transmisión de potencia, sujeción y ensamble.

Los elementos que acontinuación se presentan son de gran impontancia para el desempeño de la máquina. La correcta selección de cada uno de estos componentes le brindará la velocidad requerida de funcionamiento, además de garantizar que estos elementos no fallen por fatiga por pequeñas sobrecargas, por lo que es necesario que la potencia y par transmitidos sea elegida acorde a su plan de trabajo.

4.1 Diseño del eje.

Para el diseño del eje es primordial seleccionar el material adecuado, por lo que se usará un acero inoxidable 410, como se habia mencionado con anterioridad, una de sus aplicaciones es la manufactura de ejes o flechas, donde la exigencia o prevención contra la corrosión es de gran relevancia.

Para realizar los cálculos del eje, se requiere definir las distancias donde se colocarán los cojitenes, además seleccionar el tipo de elemento de sujeción más adecuado para optimizar el espacio sin dejar a flote las cargas que acturán sobre el eje.

De acuerdo a algunas iteraciones y análisis de dimensiones de algunos fabricantes de rodamientos y chumaceras (apéndice D) se propuso un eje como el de la figura 4.1.

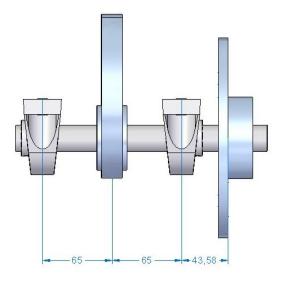


Figura 4.1. Dimensiones propuestas para el eje.

Para obtener las reacciones en los cojinetes se calculó la fuerza que produce la tensión de la cadena con la siguiente expresión.

$$F_p = \frac{2 \cdot T}{d}$$
Ec. 44

Donde T es el par de torsión (ya calculado) y d es el diámetro del piñón, al analizar un piñon con diametro menor a 10 cm se obtine una fuerza superior a la que nos representa la fuerza de la leva.

Sid = 10 cm

$$F_p = \frac{2 \cdot 150[N \cdot m]}{0.1[m]} = 3000[N]$$

Lo cual no es conveniente, así entonces una catarina o piñon de 15 cm, sería un diametro mas conveniente el cual nos resultaría en una fuerza de flexión sobre el eje de 2000 [N]. Como valor de referencia del piñon se tomará el diametro de 15 cm, por lo que al seleccionar alguno de fabrica este tendrá que ser mayor de 15 cm sin llegar a sobredimencionar sus medidas. Por lo que tendremos el siguiente DCL.

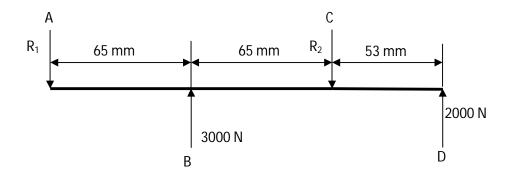


Figura 4.2. Diagrama de cuerpo libre, fuerzas en el árbol de leva. Para el piñón se consideró una distancia de 53 mm como valor de tolerancia para el ensamble.

Obteniendo las reacciones en cada uno de los cojinetes.

$$\sum F = 0$$

$$-R_1 + 3000 - R_2 + 2000 = 0$$

$$R_1 + R_2 = 5000....E1$$
ahora,
$$\sum M_{R1} = 0$$

$$3000(65) - 130R_2 + 2000(183) = 0$$

$$-130R_2 = -561000$$

$$R_2 = 4315.38....E2$$

Sustituyendo E2 en E1 tenemos que:

$$R_1 = 684.615 [N]$$

Calculando el momento tenemos:

Para el tramo A - B

$$\begin{split} \Sigma F_y &= 0 \\ -684.615 - V &= 0 \\ V &= -684.615 \begin{bmatrix} N \end{bmatrix} \\ \Sigma M &= 0 \\ 684.615x + M &= 0 \\ M &= -684.615x \begin{cases} x = 0 \to M = 0 \begin{bmatrix} N \cdot mm \end{bmatrix} \\ x = 65 \to M = -44,500 \begin{bmatrix} N \cdot mm \end{bmatrix} \end{split}$$

Para el tramo B - C

$$\Sigma F_y = 0$$

 $3000 - 684.615 - V = 0$ $V = 2315.385[N]$

$$\Sigma M = 0$$

$$684.615x - 3000(x - 65) + M = 0$$

$$M = 2315.385x - 195000 \begin{cases} x = 65 \rightarrow M = -44,500[N \cdot mm] \\ x = 130 \rightarrow M = -106,000[N \cdot mm] \end{cases}$$
Para el tramo C - D
$$\Sigma F_{y} = 0$$

$$-684.615 + 3000 - 4315.38 - V = 0 \qquad V = -2000[N]$$

$$\Sigma M = 0$$

$$684.615x - 3000(x - 65) + 4315.38(x - 130) + M = 0$$

$$M = -2000x + 366000 \begin{cases} x = 130 \rightarrow M = 106,000[N \cdot mm] \\ x = 183 \rightarrow M = 0[N \cdot mm] \end{cases}$$
Para el tramo D - E
$$\Sigma F = 0$$

-2513.53 + 3000 - 184.01 + 1697.54 - V = 0 V = 2000[N]

Así obtenemos el siguiente diagrama de momento cortante y momento flector.

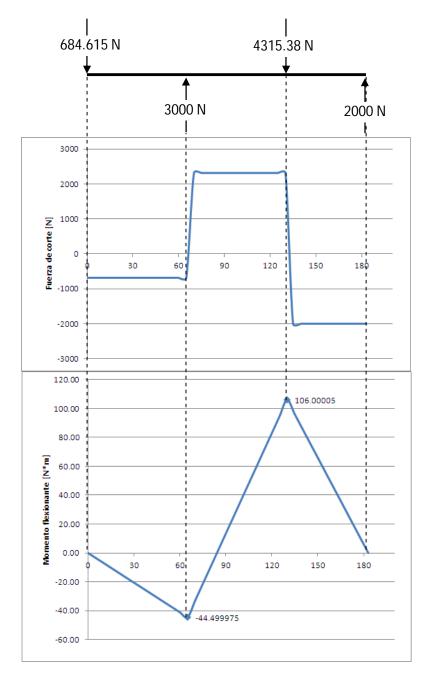


Figura 4.3. Diagrama de corte y momento flector para el eje. La máxima fuerza de flexión se localiza en el segundo cojinete con 106 [N*m].

Realmente el momento flexionante estará por debajo del máximo esfuerzo flector que muestra el diagrama, ya que los cálculos corresponden a la máxima carga de resistencia al corte del nopal.

La flexión y la torsión variarán repetidamente lo cual podría generar fatiga en el material y por consecuencia una falla o rotura en caso de no asignar un valor adecuado al diametro del eje. Obtendremos el esfuerzo debido al momento flexionante de acuerdo a la ecuación 6.

$$\sigma = \frac{Mc}{I}$$
, donde $I = \frac{\pi d^4}{64}$ y $c = \frac{d}{2}$

Sustituyendo y simplificando tenemos entonces que:

$$\sigma = \frac{32M}{\pi d^3} \dots \text{Ec. 45}$$

Es necesario obtener un valor estimado del diámetro para obtener el factor de fatiga S_e (criterio utilizado anteriormente para determinar la altura de la cuchilla) y compararlo con el esfuerzo de flexión para saber si el eje tendrá un número de ciclos finitos. El diámetro estimado será de 25 [mm], entonces:

$$\sigma = \frac{32(106,000[N \cdot mm])}{\pi (25[mm])^3} = 69.1[MPa]......Ec. 46$$

Existen varios criterios de falla los cuales se enfocan tanto a cargas estáticas como a cargas variables. Estos criterios principalmente toman como referencia la resistencia a la tensión del material S_u , esfuerzo de cedencia S_y y están involucrados de manera combinada con el factor de fatiga S_e .

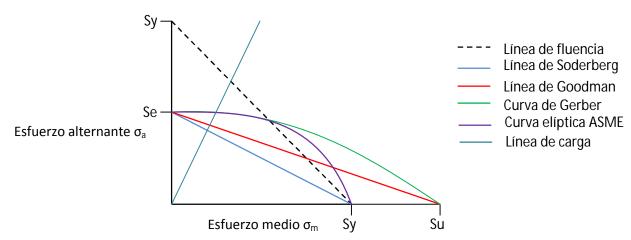


Figura 4.4. Criterios de falla más usuales para ejes.

Para el cálculo del diámetro se utilizaron criterios de falla por fatiga empleados con frecuencia en el diseño de ejes. En la tabla 4.1 se tiene despejado al diamétro

para determinar su dimensión a partir de un factor de seguridad establecido, el cuál se definirá con un valor de 2.5. Para obtener el factor de fatiga S_e se utilizaron los datos de acuerdo a las propiedades mecánicas del acero inoxidable 410 (tabla 3.1) con un temple a [950 $^{\circ}$ -1010 $^{\circ}$] enfriado en aceite y un revenido a 204 [$^{\circ}$ C].

Al comparar S_e (tabla 4.2) con el resultado de la ecuación 46, donde el esfuerzo de flexión es menor y de acuerdo a la resistencia a la fatiga se puede determinar que tendrá una duración de ciclos infinito.

Tabla 4.1. Evaluación del diámetro para distintos criterios de falla.

Criterio	Ecuación	Caracterísiticas
Línea de Goodman modificada	$d = \left[\frac{32n}{\pi} \left(\left(\frac{K_f M}{S_e} \right)^2 + \left(\frac{T}{S_u} \right)^2 \right)^{\frac{1}{2}} \right]^{\frac{1}{3}}$	Esfuerzo fluctuante en materiales dúctiles. [Un poco conservador]
Soderberg	$d = \left[\frac{32n}{\pi} \left(\left(\frac{K_f M}{S_e} \right)^2 + \left(\frac{T}{S_y} \right)^2 \right)^{\frac{1}{2}} \right]^{\frac{1}{3}}$	Esfuerzo fluctuante en materiales dúctiles. [Moderadamente conservador]
Teoría de la energía de distorsión – línea parabólica de Gerber	$d = \left(\frac{16nK_f M}{\pi S_e} \left\{ 1 + \left[1 + 3\left(\frac{TS_e}{K_f MS_u}\right)^2 \right]^{\frac{1}{2}} \right\} \right)^{\frac{1}{3}}$	Esfuerzo fluctuante en materiales dúctiles. [Buen método]
Relación elíptica ASME para la fatiga y energía de distorsión para el esfuerzo.	$d = \left[\frac{32n}{\pi} \left(\left(\frac{K_f M}{S_e} \right)^2 + \frac{3}{4} \left(\frac{T}{S_y} \right)^2 \right)^{\frac{1}{2}} \right]^{\frac{1}{3}}$	Esfuerzo fluctuante en materiales dúctiles.

Tabla 4.2. Cálculo del factor de fatiga.

Factor de fatiga				
S _e ' [N]	660.24			
Factor superficie k _a , (Maquinado o estirado en frío)	0.6731			
Factor tamaño k _b	0.8741			
Factor carga k _c , (torsión y cortante)	0.577			
Factor temperatura k _d	1			
Factores diversos k _e , (sin concentradores de esfuerzos)	N/a			
S _e	224.1384 [MPa]			

Con estos datos puede realizarse el cálculo del diámetro según los criterios de falla mencionados, cabe señalar que el factor de concentración de esfuerzos K_f se ha despreciado.

Tabla 4.3. Resultado del diámetro del eje de acuerdo a diferentes criterios de falla.

Datos	
Esfuerzo de flexión [Mpa]	69.101
M [N*mm]	106000
T [N*mm]	150000
Factor de seguridad n	2.5
Esfuerzo de fluencia Sy [MPa]	1000
Resistencia a la tención S _u [MPa]	1310

Método	d [mm]
Esfuerzo cortante máximo.	16.72
Teoría de la energía de distorsión.	16.22
Goodman modificada	23.14
Fatiga Soderberg.	23.29
Línea parabólica de Gerber.	23.24
ASME y energía de distorsión.	23.20

Cabe señalar que estas dimensiones no estan estandarizadas, por lo que no existirá de fabrica. Para que la máquina pueda ser facilmente reparada y por la disposición de piezas, es necesario adaptar estas dimensiones a una medida convencional, así el diámentro del eje se puede utilizar con una medida de 1" o 25 mm, siendo esta la más conveniente por ser del SI.

4.2 Casquillo de sujeción.

La sujeción tanto de la leva como del piñon será a travéz de casquillos de sujeción. El principio de funcionamiento se basa en la deformación radial de las piezas, de perfil tronco-cónico, que les componen.

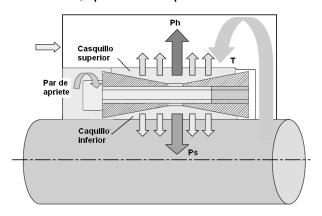


Figura 4.5. Funcionamiento de los casquillos de sujeción.

El par de apriete aplicado en los tornillos de conexión provoca un movimiento axial de las piezas en contacto entre sí y, en función de la conicidad inversa y de los cortes longitudinales realizados en los mismos, se produce un aumento de diámetro (en el anillo externo) y una reducción del mismo figura 4.5 (en el anillo interno). Esta variación (en virtud de la presión específica entre los cuerpos en contacto), permite la transmisión de un par entre el eje y el órgano conectado (leva, engrane, polea dentada, polea trapezoidal, etc).

Figura 4.6. Casquillos de sujeción, cortesía (Lovejoy, Inc.).

Las principales ventajas que se obtienen al utilizar este tipo de dispositivos son los siguientes:

- Eliminación de la holgura entre eje y órgano conducido
- Distribución uniforme de la carga en todo el diámetro
- Facilidad de sincronización y ensamble entre las partes.
- Reducción del diámetro (de proyecto) del eje conductor, en comparación con cuñas y/o pasadores.
- Aumento de la sección resistente del eje conductor.
- Facilidad de mantenimiento
- Facilidad de adquirir para compra con proveedor.

Desventajas:

- El diámetro del mecanismo a sujetar debe ser superior al del eje y debe contemplar las dimensiones especificadas por el fabricante del casquillo.
- El mecanismo a sujetar debe tener un espesor específico para tener una longitud de contacto establecida por el fabricante.
- La zona de contacto entre el casquillo y el mecanismo o eje requiere de un coeficiente de fricción establecido por el fabricante.

El fabricante recomienda que el área donde se sujetará con el eje cuente con un coeficiente de fricción μ = 0.12 para casquillo de fijación lubricado y 0.15 en seco, lo que puede ser equivalente a un acabado superficial de 1.6 μ m o 63 μ in. Además especifica una tolerancia H8 entre el casquillo y la leva, y h8 entre el casquillo y el eje.

En el apéndice C, se muestran las medidas del tipo de casquillo de sujeción que se utilizará, para este caso específico se utilizará el modelo SLD 1850 serie metrica de Lovejoy con dimensiones de 25 x 50, cuenta con un par máximo de transmisión de 378 lb-pie, equivalente a 512.5 [N*m] suficiente para garantizar que el par calculado (150 N*m) será transmitido sin causar deslizamiento. Este modelo de casquillo es autocentrante, es decir que al fijarse practicamente es concentrico al eje al que es colocado.

4.3 Chumaceras.

Por la manera en como se transmite la fuerza entre el seguidor y la leva, se puede determinar que practicamente no existirán cargas axiales, ya que la semijunta entre el seguidor y la leva no forman un mismo elemento que permita la transmisión de la fuerza axial, de esta forma las fuerzas axiales se pueden despreciar. Los cojinetes que sostendrán y que le permitiran girar al eje, tendrán reacciones perpendiculares al eje, lo que nos dirige a seleccionar cojinetes de bolas, además este tipo de cojinete soporta pequeñas cargas axiales que se pueden deber al ensamble de la máquina.

Los fabricantes de rodamientos cuentan con chumaceras, las cuales de manera general son bases en las que son ensamblados los rodamientos. Por lo general y dependiendo de su aplicación, las chumaceras se clasifican en dos tipos, a saber:

- a) No relubricables
- b) Relubricables

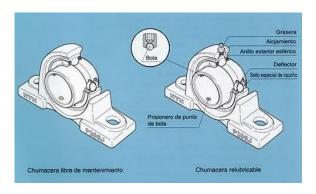


Figura 4.7. Chumacera relubricable y no relubricable cortesía (Dodge bearings).

La chumacera tipo relubricables es necesaria cuando se presentan situaciones como las siguientes:

- Temperatura de operación que alcanza los 100° C.
- Salpicadura de agua y/o cualquier otro liquido nocivo al rodamiento.
- Maquinaria de uso intermitente operando en áreas con alta humedad.

Para el caso del diseño de la máquina lo más recomendable es que la chumacera sea relubricable, ya que cada que se realice cualquier tipo de mantenimiento de limpieza puede ocurrir que caiga agua o restos de polvo, además es de uso

intermitente ya que el funcionamiento de la máquina no es continuo. En elapéndice D se puede ver las especificaciones de la chumacera seleccionada.

Se utilizará la chumacera con tamaño de aro 205 métrico, donde podemos ver su capacidad de carga estática y dinámica con 6.994 y 13.995 [KN] respectivamente, ambas cargas son superiores a nuestro cálculo donde la chumacera 2 tendrá una carga radial máxima de 4315.38 [N], para obtener el tiempo de vida de las chumaceras el fabricante sugiere utilizar la siguiente ecuación.

$$L_{10} = \left(\frac{C}{P}\right)^3 \times \frac{16667}{RPM}$$
Ec. 47

Donde L₁₀ son las horas de vida, C capacidad de carga dinámica (rodamiento), P es el equivalente de carga radial dado que no existe carga axial entonces P= 4315.38 [N] y el numero de rpms = 20 (de acuerdo al número de revoluciones que realizaría en 1 minuto de trabajo continuo).

$$L_{10} = \left(\frac{13995}{4315.38}\right)^3 \times \frac{16667}{20} = 28424.25[hrs]$$

4.4 Selección de la transmisión de potencia.

Para la correcta selección del motorreductor y transmisión de potencia (piñon, cadena) es preciso obtener un margen compensatorio de seguridad, para ello se ocupan algunos factores que multiplican la potencia de acuerdo a las necesidades de funcionalidad de la máquina.

Tabla 4.4. Factores del margen compensatorio de seguridad.

	Clase de la fuente de potencia						
Tipo de carga	Motor de combustión interna con convertidor hidraúlico	Motor eléctrico o turbina	Motor de combustión interna con embrague o caja mecánica.				
Uniforme	1.0	1.0	1.2				
Fluctuánte	1.2	1.3	1.4				
Muy fluctuánte	1.4	1.5	1.7				

La potencia es simplemente

$$P = F \cdot v$$
Ec. 48

donde F es la fuerza y v la velocidad, asi entonces

$$P = 3000[N] \cdot 0.1046 \left\lceil \frac{m}{s} \right\rceil = 313.8[W]$$

Ahora la potencia de acuerdo a un margen compensatorio fluctuánte de un motor eléctrico es de 1.3, por lo que la potencia del motorreductor es de:

$$1.3 \cdot P = 407.94[W] = 0.55[Hp]$$

Con estos datos podemos entrar al catálogo de un fabricante y seleccionar el motorreductor de acuerdo a esta potencia. Dado que los fabricantes cuentan con potencias establecidas, la potencia que está por arriba más cercana es un motorreductor de 550 [W]. La velocidad angular de la máquina es de 2.09 [rad/s] equivalente a 20 rpm, por lo que el motor se debe seleccionar con una velocidad angular mayor para la reducción correspondiente de las catarinas (piñones).

Las especificaciones del motor se muestran en la tabla 4.5:

Tabla 4.5. Prestaciones del motorreductor(Motovario).

Potencia [W]	ω [rpm]	Par T [N*m]	Factor de servicio f.s.	Reducción i	Carga radial Fr2 [N]
550	31.1	162	1.7	44.95	5855

De acuerdo a la selección de la versión y el tipo de motorreductor el diámetro del eje es de 30 [mm] (para datos más precisos del motorreductor vease el apéndice E), dato a considerar para nuestro piñón conductor. Ahora para calcular la fuerza radial es necesario considerarla usando la ecuación siguiente que proporciona el fabricante:

$$Fre = \frac{2000 \cdot M \cdot fz}{D} \le Fr_1 \text{ ó } Fr_2 \dots Ec. 49$$

Donde M es el par $[N^*m]$, fz = 1.4 (piñón de cadena), D es el diámetro del elemento montado sobre el eje (en este caso el piñón), para ello es necesario obtener el piñon conductor y verificar si la fuerza radial es aceptable.

En las tablas de capacidad (apéndice F) del fabricante de la cadena se busca a travéz de la potencia transmitida (0.55 Hp) y las r.p.m. (31.1 rpm) del motorreductor. Para lo cuál se encontro que un piñón con paso de 5/8", 24 dientes y diámetro de 129 [mm], se adapta a las necesidades requeridas.

La relación de velocidades es la siguiente:

$$e = \frac{\omega_e}{\omega_s} = \frac{31.1[rpm]}{20[rpm]} = 1.555$$

Por lo que nuestro piñon conducido debe ser de:

$$N_s = 1.555 \cdot 24 = 37.32 \rightarrow 37$$
 dientes y 195 mm de diámetro

Las dimensiones de cada uno de los piñones se pueden observar en el apéndice F. Al verificar la fuerza radial tenemos entonces que el diámetro del elemento de transmisión(D= 129 [mm]). Para el cálculo,las dimensiones de D se manejan en [mm] y el par en [N*m]

$$Fre = \frac{2000 \cdot 150[N \cdot m] \cdot 1.4}{129[mm]} = 3255.81[N] \le 5855[N]$$

Lo cual el motoreductor tiene la capacidad adecuada para dicha fuerza radial.

De acuerdo a este arreglo de piñones vamos a lograr una velocidad angular de salida de 20.57 [rpm], 2.9% mayor a la requerida, por lo que es un valor aceptable.

4.5 Ensamble.

La estructura de la máquina básicamente depende de la colocación de cada una de las partes para su ensamble, es por ello que esta parte fue diseñada en CAD al final. Estrictamente el material de la estructura debe ser de acero inoxidable estructural 304 siendo uno de los aceros inoxidables de precio módico y comúnmente llamado como "todo propósito". Tiene buenas características de soldabilidad y buena resistencia a la corrosión; además dentro de sus aplicaciones es ampliamente recomendado para la industria alimentaria.

Tabla 4.6. Composición química (Suministros Técnicos S.A.)y propiedades mecánicas acero inoxidable 304 (Shigley J. E., 1992).

Composición química							
% C	% Mn	% Si	% Cr	% Ni			
0.08 min	2	1	18-20	8 - 10.5			
	Propiedades mecánicas						
Resistencia a Punto de cedencia la tensión [MPa]							
Recocido	815 [°C]	568	2	76			

Para ello fue también necesario identificar la zona más crítica de la estructura, la cual se encuentra en los soportes donde se alojarán los cojinetes (figura 59).

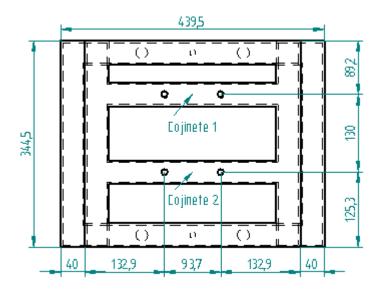


Figura 4.8. Colocación de cojinetes en la estructura (vista de planta).

En el apéndice G se muestra con más detalle las medidas de la estructura y se puede analizar comparativamente con los resultados de las reacciones de los cojinetes figura 54. Por lo que el soporte donde se colocará el cojinete 2 tendrá la mayor carga figura 59, así de esta manera analizamos por elemento finito esa sección de la estructura con ayuda de Solid Edge.

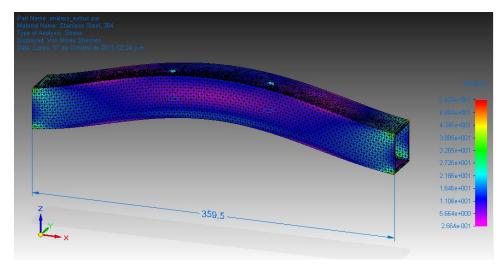


Figura 4.9. Análisis por elemento finito del perfil que sostiene al cojinete de mayor carga. Perfil cuadrado 40x40x3 [mm].

El esfuerzo máximo observado en la figura 4.9 (52.24 [MPa]) es evidente que se encuentra en los extremos o en el área donde se encuentra la soldadura. Cabe señalar que es recomendable que la estructura tenga una soldadura uniforme y sin cavidades, con el objetivo de grarantizar una buena unión entre las partes.

El perfil de la estructura es cuadrado de acero inoxidable 304 con dimensiones 40x40x3 [mm]. A continuación se presenta el ensamble completo de la máquina y su explosión.

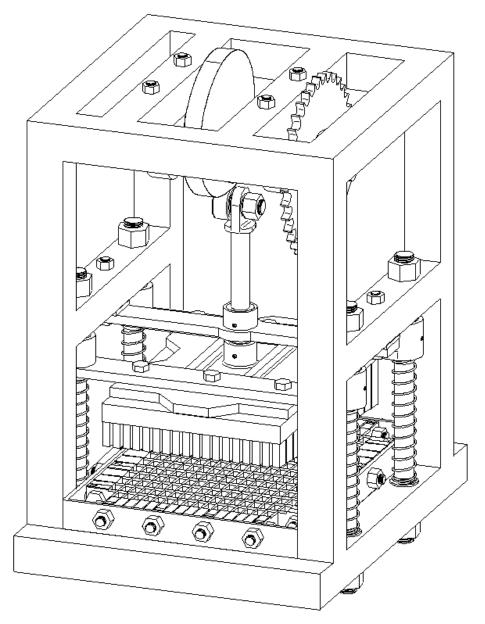
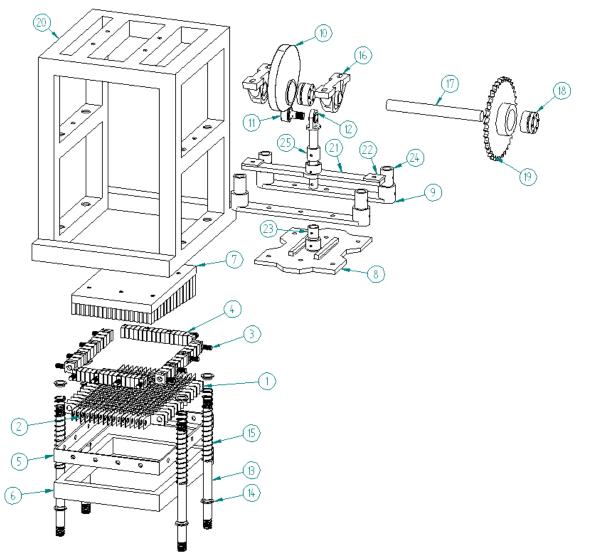



Figura 4.10. Ensamble completo del prototipo de la máquina cortadora de nopal.

Número	Nombre	Cantidad
1	Cuchilla horizontal	13
2	Cuchilla vertical	17
3	Tensor	16
4	Separador 1	32
5	Base cuchillas	1
6	Estructura 1	1
7	Punzón	1
8	Refuerzo punzón	1
9	Guía.	2
10	Leva.	1
11	Seguidor	1
12	Vástago	1
13	Soporte guía	4
14	Retén	8
15	Resorte	4
16	Chumacera	2
17	Eje	1
18	Casquillo de suj.	2
19	Catarina	1
20	Estructura general	1
21	Guía vástago	1
22	Separador 2	2
23	Aislante	1
24	Buje	4
25	Buje vá stago	1

Figura 4.11. Explosión de cada uno de los componentes de la máquina cortadora de nopal.

Conclusiones.

- Se logró obtener un prototipo de una máquina cortadora de nopal, la cuál genera cortes uniformes de 1 x 2 cm, además puede cortar 1,234 nopales por hora y 9,873 nopales en una jornada de 8 horas.
- Se obtuvo la fuerza de cizallamiento del nopal, con cual, se determinó que al realizar un corte gradual se requiere de una menor fuerza para su penetración. Este resultado fue de gran relevancia para el desarrollo de una correcta selección de materiales, geometrías y sistema motriz.
- A partir de la determinación de la fuerza de cizallamiento se seleccionó la configuración de cuchillas y geometría del punzón. De esta manera se obtuvieron las dimensiones de las cuchillas para una máxima carga.
- Se diseñó el mecanismo motriz a partir de una configuración leva-seguidor utilizando una función polinomial con detención simple para el contorno del perfil.
- Se determinó que al disminuir el intervalo del ángulo de detención, se pudieron generar perfiles de leva con menores dimensiones para un mismo desplazamiento. Aunado a esto, es notable que la velocidad y aceleración también disminuyeran debido a que hay un menor recorrido a través del perfil con una misma velocidad angular.
- De acuerdo al mecanismo motriz y selección del resorte, se logró tener una amplia tolerancia entre la velocidad angular de trabajo y la frecuencia natural amortiguada, evitando fuertes vibraciones para el eje. Además, se determinó el par y potencia necesarios para impulsar a este tipo de mecanismo.
- Se obtuvo una configuración entre el eje y los elementos que transmitirán la potencia. Agregando que, fue más conveniente utilizar un piñón dentado ya que demanda de una menor carga por flexión en el eje, con lo cual, se determinó un diámetro que soporte las cargas máximas de acuerdo a la fuerza de cizallamiento del nopal.

- Se seleccionó un motorreductor para impulsar al eje de la máquina, logrando una velocidad angular en la máquina de 20.57 [rpm] de acuerdo a las especificaciones del motorreductor y la relación de la transmisión de potencia.
- Se diseñó una distribución geométrica para la estructura acorde a los elementos y ubicación de las partes que integran la máquina.

Bibliografía.

- Avner, S. H. (1988). Introducción a la metalurgia física. México: McGRAW-HILL.
- CENTRO NACIONAL PARA EL DESARROLLO DEL ACERO INOXIDABLE, A.C. (2002). Acero inoxidable, clasificación y características.
 1. San Luis Potosí, México.
- CENTRO NACIONAL PARA EL DESARROLLO DEL ACERO INOXIDABLE, A.C. (2003). Aceros inoxidables, resistencia a la corrosión de los aceros inoxidables. 2. San Luis Potosí, México.
- Corrales, G. (1992). Descripción y análisis de la cosecha y del manejo en fresco de nopalito y tuna. México: CIESTAAM.
- Deutschman, A. D. (1987). Diseño de máquinas teoría y práctica. México: Compañia editorial continental.
- Erdman, A. G. (1988). Diseño de mecanismos. México: Prentice Hall.
- Faires, V. M. Diseño de elementos de máquinas (Cuarta edición ed.).
 Barcelona: Montaner y Simon.
- Flores, V. A. (1995). La producción de nopal verdura en México conocimiento y aprovechamiento del nopal 6º Congreso Nacional y 4º Internacional. *Memorias de resumenes*. México: Universidad de Guadalajara.
- Fuentes, H. R. (2009). Cultivo orgánico del nopal. México: Trillas.
- Montoya, L. C. (2001). Cactus cladodes (Opuntia ficus-indica) cultivated in Chile: a potential source for a brined product. Estados Unidos de America.
- Morales, F. B. (2004). Efecto de dos atmósferas modificadas sobre la calidad comercial del nopalito (Opuntia sp.) minimamente procesado. México: Tesis profesional Universidad Autónoma Chapingo.
- Mott, R. L. (2006). Diseño de elementos de máquinas. México: Pearson Educación.
- NOM-093-SSA1-1994. (1994). Bienes y servicios. Prácticas de higiene y sanidad en la preparación de alimentos que se ofrecen en establecimientos fijos. México: Secretaria de Salud.

- Norton, R. L. (2000). Diseño de maquinaria. México: McGRAW-HILL.
- Norton, R. L. (1999). Diseño de máquinas. México: Prentice Hall.
- Ramos, J. R. (2004). Manejo general del cultivo del nopal. México: Colegio de Posgraduados.
- Saenz, C. (2006). Utilización agroindustrial del nopal. Roma: Organización de las Naciones Unidas para la Agricultura y la Alimentación.
- Sepúlveda, E. S. (1995). Obtención y caracterización de harina de nopal. VI Congreso Nacional y IV Congreso Internacional sobre Conocimiento y Aprovechamiento del Nopal. Jalisco, México.
- Sharma, S. K. (2003). Ingeniería de alimentos. México: Limusa.
- Shigley, J. E. (1992). Diseño en Ingeniería Mecánica. México: McGRAW-HILL.
- Shigley, J. E. (1988). Teoría de Máquinas y Mecanismos. México: McGraw-Hill.
- Spotts, M. (1998). Elementos de máquinas. México: Pearson Educación.
- Valdez, C. A. (1995). Mercado mundial del nopalito. México: ASERCA, CIESTAAM, UACh.
- Vidosic, J. P. (1957). Machine Design Projects. New York: The Ronald Press.

Mesografía.

- Aceros Hispania. (s.f.). Recuperado el 2013, de http://www.aceros-dehispania.com/afilado-cuchillos.htm
- Aceros Otero. (s.f.). Obtenido de http://www.acerosotero.cl/acero_cementacion_sae_4320.html
- Aceros Palmexico. (s.f.). Obtenido de http://www.acerospalmexico.com.mx/
- Alu-Stock. (s.f.). Obtenido de http://www.alu-stock.es/catalogo/pdf/libro/Alu-Stock-LA4-11-Aleaciones.pdf
- Cuchillos Global Ecuador. (enero de 2013). Obtenido de http://cuchillosglobal.com/minosharp/afilado_en_piedra
- Dodge bearings. (s.f.). Obtenido de http://www.baleromex.com/catalogos.html
- IIRSACERO S.A de C.V. (s.f.). Obtenido de http://iirsacero.com.mx/index.php?option=com_content&task=view&id=33&It emid=48
- Lovejoy, Inc. (s.f.). Obtenido de http://www.lovejoy-inc.com/products/shaft-locking-devices.aspx
- Mar Industrial Distribuidora S.A. de C.V. (s.f.). Obtenido de http://www.midsa.com.mx/NYLAMID-M.pdf
- Motovario. (s.f.). Obtenido de http://www.motovario.com.mx/
- Rodríguez, S. G. (s.f.). XIV Congreso Nacional de Biotecnología y Bioingeniería. Obtenido de http://www.smbb.com.mx/congresos%20smbb/queretaro11/TRABAJOS/trab ajos/III/carteles/CIII-71.pdf
- Servicio de Información Agroalimentaria y Pesquera (SIAP). (2009).
 Servicio de Información Agroalimentaria y Pesquera. Recuperado el 2010, de http://www.siap.gob.mx/
- Suministros Técnicos S.A. (s.f.). Obtenido de http://www.sumiteccr.com/Aplicaciones/Articulos/pdfs/AISI%20304.pdf
- THK. (s.f.). Obtenido de http://www.thk.com/?q=mexico/node/7532

Apéndice A. Perfiles de leva.

Leva 1

Para	ámetros de er	itrada	Datos arrojado	S
R Circulo p	rimitivo [mm]	117.5	Ángulo de presión Φ	29.61368739
Altura máxima	a de la leva [mm]	80	Pmínimo	117.5
Excentrio	cidad [mm]	0	Radio del seguidor	39.1666667
Velocidad a	ngular [rad/s]	2.094395102		
	Segmentos [·]		
Subida	0	90		
Bajada	90	180		
Detención	180	360		

Posición	θ	S [mm]	V [mm/s]	A [mm/s^2]	J [mm/s^3]	Φ[°]	ρ paso [mm]
Subida	0	0	0	0	13653.33333	0	117.5
Subida	3	0.022538162	2.658739095	205.4268313	11035.18025	0.618873216	118.3385348
Subida	6	0.171291742	9.923107819	369.0613992	8636.997531	2.3057206	119.057274
Subida	9	0.54872	20.7936	494.5066667	6451.2	4.807414705	119.6049403
Subida	12	1.233407298	34.35920329	585.239177	4470.202469	7.866709303	119.9227357
Subida	15	2.28223594	49.79423868	644.6090535	2686.419753	11.22645315	120.0419259
Subida	18	3.73248	66.3552	675.84	1092.266667	14.64583239	120.1188305
Subida	21	5.603820137	83.37759342	682.0293004	-319.8419753	17.92040379	120.3855904
Subida	24	7.900279396	100.272777	666.1478189	-1557.491358	20.89641671	121.0608194
Subida	27	10.61208	116.5248	631.04	-2628.266667	23.47433448	122.284529
Subida	30	13.71742112	131.6872428	579.4238683	-3539.753086	25.60254714	124.1031481
Subida	33	17.18417767	145.380056	513.8910288	-4299.535802	27.26578472	126.4898464
Subida	36	20.97152	157.2864	436.9066667	-4915.2	28.47277343	129.3754936
Subida	39	25.03145471	167.1494848	350.8095473	-5394.330864	29.24588405	132.6750456
Subida	42	29.31028631	174.7694091	257.8120165	-5744.51358	29.61368739	136.3048103
Subida	45	33.75	180	160	-5973.333333	29.60621739	140.1915401
Subida	48	38.28956532	182.7456527	59.33300412	-6088.375309	29.2523162	144.2757489
Subida	51	42.86616088	182.9581695	-42.35588477	-6097.224691	28.57840933	148.511332
Subida	54	47.41632	180.6336	-143.36	-6007.466667	27.60819104	152.8628586
Subida	57	51.87699742	175.8090798	-242.0990947	-5826.68642	26.3628557	157.3013107
Subida	60	56.18655693	168.5596708	-337.1193416	-5562.469136	24.8616387	161.7986876
Subida	63	60.28568	158.9952	-427.0933333	-5222.4	23.12251778	166.3217728
Subida	66	64.11819545	147.2570996	-510.8200823	-4814.064198	21.16297959	170.8254519
Subida	69	67.63183001	133.5152461	-587.2250206	-4345.046914	19.00078384	175.2462566
Subida	72	70.77888	117.9648	-655.36	-3822.933333	16.65466983	179.4972464
Subida	75	73.51680384	100.8230453	-714.4032922	-3255.308642	14.14495265	183.4657995
Subida	78	75.80873569	82.32622881	-763.6595885	-2649.758025	11.49395808	187.0161293
Subida	81	77.62392	62.7264	-802.56	-2013.866667	8.726249676	189.9980116
Subida	84	78.93806705	42.28825021	-830.6620576	-1355.219753	5.868614656	192.2619921
Subida	87	79.73362952	21.28595226	-847.6497119	-681.4024691	2.949797405	193.6792616
Bajada	90	80	0	-853.3333333	0	0	194.1620782
Bajada	93	79.73362952	-21.28595226	-847.6497119	681.4024691	-2.949797405	193.6792616
Bajada	96	78.93806705	-42.28825021	-830.6620576	1355.219753	-5.868614656	192.2619921
Bajada	99	77.62392	-62.7264	-802.56	2013.866667	-8.726249676	189.9980116
Bajada	102	75.80873569	-82.32622881	-763.6595885	2649.758025	-11.49395808	187.0161293
Bajada	105	73.51680384	-100.8230453	-714.4032922	3255.308642	-14.14495265	183.4657995
Bajada	108	70.77888	-117.9648	-655.36	3822.933333	-16.65466983	179.4972464

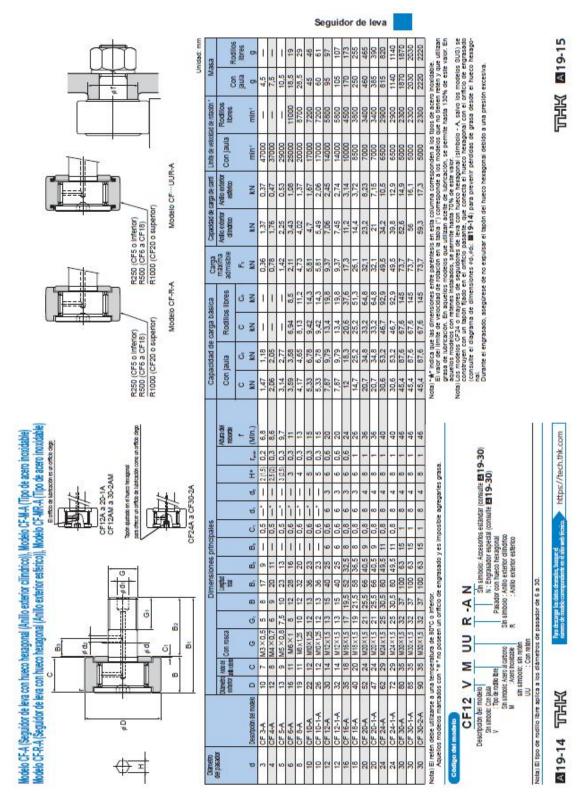
Bajada 111 67.63183001 -133.5152461 -587.2250206 4345.046914 -19.00078	
Bajada 114 64.11819545 -147.2570996 -510.8200823 4814.064198 -21.16297	
Bajada 117 60.28568 -158.9952 -427.0933333 5222.4 -23.12251	
Bajada 120 56.18655693 -168.5596708 -337.1193416 5562.469136 -24.86163	
Bajada 123 51.87699742 -175.8090798 -242.0990947 5826.68642 -26.36285	
Bajada 126 47.41632 -180.6336 -143.36 6007.466667 -27.60819	
Bajada 129 42.86616088 -182.9581695 -42.35588477 6097.224691 -28.57840	
Bajada 132 38.28956532 -182.7456527 59.33300412 6088.375309 -29.25231	
Bajada 135 33.75 -180 160 5973.333333 -29.60621	
Bajada 138 29.31028631 -174.7694091 257.8120165 5744.51358 -29.61368	
Bajada 141 25.03145471 -167.1494848 350.8095473 5394.330864 -29.24588	
Bajada 144 20.97152 -157.2864 436.9066667 4915.2 -28.47277	
Bajada 147 17.18417767 -145.380056 513.8910288 4299.535802 -27.26578	
Bajada 150 13.71742112 -131.6872428 579.4238683 3539.753086 -25.60254	
Bajada 153 10.61208 -116.5248 631.04 2628.266667 -23.47433	
Bajada 156 7.900279396 -100.272777 6666.1478189 1557.491358 -20.89641	
Bajada 159 5.603820137 -83.37759342 682.0293004 319.8419753 -17.92040	
Bajada 162 3.73248 -66.3552 675.84 -1092.266667 -14.64583	
Bajada 165 2.28223594 -49.79423868 644.6090535 -2686.419753 -11.22645	
Bajada 168 1.233407298 -34.35920329 585.239177 -4470.202469 -7.866709	
Bajada 171 0.54872 -20.7936 494.5066667 -6451.2 -4.807414	
Bajada 174 0.171291742 -9.923107819 369.0613992 -8636.997531 -2.30572	
Bajada 177 0.022538162 -2.658739095 205.4268313 -11035.18025 -0.618873	
Detención 180 0 0 -13653.33333 0	117.5
Detención 183 0 0 0 0 0	117.5
Detención 186 0 0 0 0	117.5
Detención 189 0 0 0 0 0	117.5
Detención 192 0 0 0 0	117.5
Detención 195 0 0 0 0	117.5
Detención 198 0 0 0 0	117.5
Detención 201 0 0 0 0	117.5
Detención 204 0 0 0 0	117.5
Detención 207 0 0 0 0	117.5
Detención 210 0 0 0 0	117.5
Detención 213 0 0 0 0 0	117.5
Detención 216 0 0 0 0	117.5
Detención 219 0 0 0 0	117.5
Detención 222 0 0 0 0	117.5
Detención 225 0 0 0 0 0	117.5
Detención 228 0 0 0 0 0	117.5
Detención 231 0 0 0 0	117.5
Detención 234 0 0 0 0	117.5
Detención 237 0 0 0 0 0	117.5
Detención 240 0 0 0 0	117.5
Detención 243 0 0 0 0 0	117.5
Detención 246 0 0 0 0	117.5
Detención 249 0 0 0 0	117.5
Detención 252 0 0 0 0	117.5
Detención 255 0 0 0 0 0	117.5
Detención 258 0 0 0 0 0	117.5
Detención 261 0 0 0 0	117.5
Detención 264 0 0 0 0	117.5
	117.5
Detención 267 0 0 0 0	
Detención 267 0 0 0 0 0 Detención 270 0 0 0 0 0 Detención 273 0 0 0 0 0	117.5 117.5 117.5

104

Detención	276	0	0	0	0	0	117.5
Detención	279	0	0	0	0	0	117.5
Detención	282	0	0	0	0	0	117.5
Detención	285	0	0	0	0	0	117.5
Detención	288	0	0	0	0	0	117.5
Detención	291	0	0	0	0	0	117.5
Detención	294	0	0	0	0	0	117.5
Detención	297	0	0	0	0	0	117.5
Detención	300	0	0	0	0	0	117.5
Detención	303	0	0	0	0	0	117.5
Detención	306	0	0	0	0	0	117.5
Detención	309	0	0	0	0	0	117.5
Detención	312	0	0	0	0	0	117.5
Detención	315	0	0	0	0	0	117.5
Detención	318	0	0	0	0	0	117.5
Detención	321	0	0	0	0	0	117.5
Detención	324	0	0	0	0	0	117.5
Detención	327	0	0	0	0	0	117.5
Detención	330	0	0	0	0	0	117.5
Detención	333	0	0	0	0	0	117.5
Detención	336	0	0	0	0	0	117.5
Detención	339	0	0	0	0	0	117.5
Detención	342	0	0	0	0	0	117.5
Detención	345	0	0	0	0	0	117.5
Detención	348	0	0	0	0	0	117.5
Detención	351	0	0	0	0	0	117.5
Detención	354	0	0	0	0	0	117.5
Detención	357	0	0	0	0	0	117.5
Detención	360	0	0	0	0	0	117.5

Leva 3

Pará	imetros de ei	ntrada	Datos arrojados	S
R Circulo pri	imitivo [mm]	55	Ángulo de presión Ф	29.67277121
Altura máxima	de la leva [mm]	80	Pmínimo	55
Excentric	idad [mm]	0	Radio del seguidor	18.33333333
Velocidad ar	ngular [rad/s]	2.094395102	Radio del seguidor del fabricante	17.5
	Segmentos [°]		_
Subida	0	157.5		
Bajada	157.5	315		
Detención	315	360		


Posición	θ	S [mm]	V [mm/s]	A [mm/s^2]	J [mm/s^3]	Ф[°]	ρ paso [mm]
Subida	0	0	0	0	4458.231293	0	55
Subida	3	0.004297681	0.510762867	40.07142581	3960.773363	0.254029331	55.16365185
Subida	6	0.033399182	1.965039239	75.51885878	3487.115773	0.976712705	55.32731707
Subida	9	0.109470839	4.250044332	106.5667682	3036.796382	2.108798438	55.49810023
Subida	12	0.251929057	7.258550072	133.4352218	2609.353047	3.589201532	55.67521417
Subida	15	0.477577854	10.88877507	156.3398862	2204.323625	5.353761314	55.85522898
Subida	18	0.800743647	15.04427457	175.4920266	1821.245973	7.335225285	56.03751677
Subida	21	1.233407298	19.63383045	191.0985068	1459.657949	9.464531879	56.22877972
Subida	24	1.785333402	24.57134115	203.3617891	1119.097411	11.67317258	56.44527384
Subida	27	2.464196827	29.77571166	212.4799347	799.1022153	13.89615171	56.71192757
Subida	30	3.2757065	35.17074347	218.6466034	499.2102203	16.07492477	57.05875385
Subida	33	4.223726445	40.68502456	222.0510534	218.9592831	18.15974031	57.51600053
Subida	36	5.310394073	46.25181935	222.8781418	-42.11273874	20.11101394	58.10973558
Subida	39	6.536235712	51.80895866	221.3083243	-284.4679878	21.89963726	58.85900994
Subida	42	7.900279396	57.29872969	217.5176552	-508.5686067	23.5063644	59.77488255
Subida	45	9.400164897	62.66776598	211.6777873	-714.8767379	24.92055971	60.86093713
Subida	48	11.03225101	67.86693738	203.9559724	-903.8545239	26.13862048	62.11466225
Subida	51	12.79172008	72.85124002	194.5150605	-1075.964107	27.16234144	63.5291218
Subida	54	14.67267979	77.57968623	183.5135007	-1231.667631	27.99740389	65.09453304
Subida	57	16.66826219	82.0151946	171.1053403	-1371.427236	28.65208919	66.79956277
Subida	60	18.77071997	86.12447985	157.4402256	-1495.705067	29.13624995	68.6322895
Subida	63	20.97152	89.87794286	142.6634014	-1604.963265	29.46052981	70.58085625
Subida	66	23.2614341	93.24956059	126.915711	-1699.663974	29.6357998	72.63387
Subida	69	25.63062708	96.2167761	110.3335966	-1780.269335	29.67277121	74.78060905
Subida	72	28.06874198	98.76038845	93.04909893	-1847.241491	29.58174502	77.01109247
Subida	75	30.56498265	100.8644427	75.18985731	-1901.042584	29.37246278	79.31605439
Subida	78	33.10819347	102.51612	56.87910977	-1942.134758	29.05403033	81.6868552
Subida	81	35.68693642	103.7056272	38.23569295	-1970.980155	28.63489181	84.11535218
Subida	84	38.28956532	104.4260872	19.37404216	-1988.040917	28.12283714	86.59374556
Subida	87	40.90429738	104.6734289	0.404191331	-1993.779187	27.52503077	89.11441068
Subida	90	43.51928193	104.4462766	-18.56822696	-1988.657107	26.84805287	91.66972415
Subida	93	46.12266649	103.7458409	-37.44198148	-1973.13682	26.097947	94.25188946
Subida	96	48.70266001	102.5758079	-56.12024238	-1947.680469	25.28027013	96.85276684
Subida	99	51.24759338	100.9422294	-74.51058114	-1912.750195	24.40014243	99.46371153
Subida	102	53.74597723	98.85341298	-92.52497061	-1868.808142	23.46229501	102.0754249
Subida	105	56.18655693	96.31981188	-110.079785	-1816.316453	22.47111484	104.677823
Subida	108	58.55836483	93.35391494	-127.0957999	-1755.737268	21.43068621	107.259928
Subida	111	60.85076983	89.97013663	-143.4981922	-1687.532732	20.34482844	109.8097884
Subida	114	63.05352409	86.18470693	-159.2165401	-1612.164987	19.21713016	112.3144336

Subida	117	65.1568071	82.01556138	-174.1848234	-1530.096174	18.0509799	114.7598704
Subida	120	67.15126687	77.48223101	-188.3414231	-1441.788438	16.84959348	117.1311263
Subida	123	69.02805853	72.60573229	-201.6291214	-1347.703919	15.61603828	119.4123462
Subida	126	70.77888	67.40845714	-213.995102	-1248.304762	14.3532547	121.5869453
Subida	129	72.39600507	61.91406285	-225.3909502	-1144.053108	13.06407512	123.6378212
Subida	132	73.87231363	56.14736207	-235.7726522	-1035.4111	11.75124048	125.5476234
Subida	135	75.20131918	50.13421279	-245.1005958	-922.8408798	10.41741485	127.2990761
Subida	138	76.37719358	43.90140825	-253.3395703	-806.804591	9.065198214	128.8753466
Subida	141	77.39478909	37.47656698	-260.4587661	-687.7643757	7.697137578	130.2604451
Subida	144	78.24965757	30.88802273	-266.431775	-566.1823764	6.315736772	131.4396428
Subida	147	78.93806705	24.1647144	-271.2365902	-442.5207357	4.92346503	132.3998864
Subida	150	79.45701543	17.33607609	-274.8556064	-317.2415961	3.522764605	133.1301889
Subida	153	79.80424152	10.431927	-277.2756195	-190.8071002	2.116057578	133.6219758
Subida	156	79.97823327	3.48236139	-278.4878267	-63.67939049	0.705752058	133.8693652
Bajada	159	79.97823327	-3.48236139	-278.4878267	63.67939049	-0.705752058	133.8693652
Bajada	162	79.80424152	-10.431927	-277.2756195	190.8071002	-2.116057578	133.6219758
Bajada	165	79.45701543	-17.33607609	-274.8556064	317.2415961	-3.522764605	133.1301889
Bajada	168	78.93806705	-24.1647144	-271.2365902	442.5207357	-4.92346503	132.3998864
Bajada	171	78.24965757	-30.88802273	-266.431775	566.1823764	-6.315736772	131.4396428
Bajada	174	77.39478909	-37.47656698	-260.4587661	687.7643757	-7.697137578	130.2604451
Bajada	177	76.37719358	-43.90140825	-253.3395703	806.804591	-9.065198214	128.8753466
Bajada	180	75.20131918	-50.13421279	-245.1005958	922.8408798	-10.41741485	127.2990761
Bajada	183	73.87231363	-56.14736207	-235.7726522	1035.4111	-11.75124048	125.5476234
Bajada	186	72.39600507	-61.91406285	-225.3909502	1144.053108	-13.06407512	123.6378212
Bajada	189	70.77888	-67.40845714	-213.995102	1248.304762	-14.3532547	121.5869453
Bajada	192	69.02805853	-72.60573229	-201.6291214	1347.703919	-15.61603828	119.4123462
Bajada	195	67.15126687	-77.48223101	-188.3414231	1441.788438	-16.84959348	117.1311263
Bajada	198	65.1568071	-82.01556138	-174.1848234	1530.096174	-18.0509799	114.7598704
Bajada	201	63.05352409	-86.18470693	-159.2165401	1612.164987	-19.21713016	112.3144336
Bajada	204	60.85076983	-89.97013663	-143.4981922	1687.532732	-20.34482844	109.8097884
Bajada	207	58.55836483	-93.35391494	-127.0957999	1755.737268	-21.43068621	107.259928
Bajada	210	56.18655693	-96.31981188	-110.079785	1816.316453	-22.47111484	104.677823
Bajada	213	53.74597723	-98.85341298	-92.52497061	1868.808142	-23.46229501	102.0754249
Bajada	216	51.24759338	-100.9422294	-74.51058114	1912.750195	-24.40014243	99.46371153
Bajada	219	48.70266001	-102.5758079	-56.12024238	1947.680469	-25.28027013	96.85276684
Bajada Bajada	222 225	46.12266649 43.51928193	-103.7458409 -104.4462766	-37.44198148 -18.56822696	1973.13682 1988.657107	-26.097947 -26.84805287	94.25188946 91.66972415
Bajada	228	40.90429738	-104.4462766	0.404191331	1993.779187	-27.52503077	89.11441068
Bajada	231	38.28956532	-104.0734289		1988.040917	-28.12283714	86.59374556
Bajada	234	35.68693642	-104.4200672	38.23569295	1970.980155	-28.63489181	84.11535218
Bajada	237	33.10819347	-103.7030272	56.87910977	1942.134758	-29.05403033	81.6868552
Bajada	240	30.56498265	-102.31012	75.18985731	1901.042584	-29.37246278	79.31605439
Bajada	243	28.06874198	-98.76038845	93.04909893	1847.241491	-29.58174502	77.01109247
Bajada	246	25.63062708	-96.2167761	110.3335966	1780.269335	-29.67277121	74.78060905
Bajada	249	23.2614341	-93.24956059	126.915711	1699.663974	-29.6357998	72.63387
Bajada	252	20.97152	-89.87794286	142.6634014	1604.963265	-29.46052981	70.58085625
Bajada	255	18.77071997	-86.12447985	157.4402256	1495.705067	-29.13624995	68.6322895
Bajada	258	16.66826219	-82.0151946	171.1053403	1371.427236	-28.65208919	66.79956277
Bajada	261	14.67267979	-77.57968623	183.5135007	1231.667631	-27.99740389	65.09453304
Bajada	264	12.79172008	-72.85124002	194.5150605	1075.964107	-27.16234144	63.5291218
Bajada	267	11.03225101	-67.86693738	203.9559724	903.8545239	-26.13862048	62.11466225
Bajada	270	9.400164897	-62.66776598	211.6777873	714.8767379	-24.92055971	60.86093713
Bajada	273	7.900279396	-57.29872969	217.5176552	508.5686067	-23.5063644	59.77488255
Bajada	276	6.536235712	-51.80895866	221.3083243	284.4679878	-21.89963726	58.85900994
Bajada	279	5.310394073	-46.25181935	222.8781418	42.11273874	-20.11101394	58.10973558
		<u> </u>		· · · · · · · · · · · · · · · · · · ·			

107

Bajada	282	4.223726445	-40.68502456	222.0510534	-218.9592831	-18.15974031	57.51600053
Bajada	285	3.2757065	-35.17074347	218.6466034	-499.2102203	-16.07492477	57.05875385
Bajada	288	2.464196827	-29.77571166	212.4799347	-799.1022153	-13.89615171	56.71192757
Bajada	291	1.785333402	-24.57134115	203.3617891	-1119.097411	-11.67317258	56.44527384
Bajada	294	1.233407298	-19.63383045	191.0985068	-1459.657949	-9.464531879	56.22877972
Bajada	297	0.800743647	-15.04427457	175.4920266	-1821.245973	-7.335225285	56.03751677
Bajada	300	0.477577854	-10.88877507	156.3398862	-2204.323625	-5.353761314	55.85522898
Bajada	303	0.251929057	-7.258550072	133.4352218	-2609.353047	-3.589201532	55.67521417
Bajada	306	0.109470839	-4.250044332	106.5667682	-3036.796382	-2.108798438	55.49810023
Bajada	309	0.033399182	-1.965039239	75.51885878	-3487.115773	-0.976712705	55.32731707
Bajada	312	0.004297681	-0.510762867	40.07142581	-3960.773363	-0.254029331	55.16365185
Detención	315	0	0	0	0	0	55
Detención	318	0	0	0	0	0	55
Detención	321	0	0	0	0	0	55
Detención	324	0	0	0	0	0	55
Detención	327	0	0	0	0	0	55
Detención	330	0	0	0	0	0	55
Detención	333	0	0	0	0	0	55
Detención	336	0	0	0	0	0	55
Detención	339	0	0	0	0	0	55
Detención	342	0	0	0	0	0	55
Detención	345	0	0	0	0	0	55
Detención	348	0	0	0	0	0	55
Detención	351	0	0	0	0	0	55
Detención	354	0	0	0	0	0	55
Detención	357	0	0	0	0	0	55
Detención	360	0	0	0	0	0	55

Apéndice B. Seguidor

Fijación

Para la tolerancia dimensional del seguidor de leva en el orificio de montaje del pasador, recomendamos el siguiente ajuste.

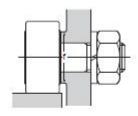
Tabla1 La tolerancia dimensional del orificio de montaje del pasador

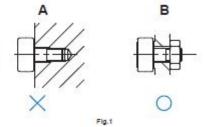
Descripción del modelo	La tolerancia dimensional del orificio de montaje del pasador
Modelos CF, CFN, CFH, CFT , CFHT y CF-SFU	H7
Modelo CFS	H6

Instalación

[Sección de montaje]

Establezca una perpendicularidad entre el orificio de montaje del pasador y la superficie de montaje, e achanflane la boca del orificio al radio más pequeño posible, preferentemente C0,5. Además, es preferible dejar un diámetro para la superficie de montaje al menos idéntico a la dimensión "f" indicada en la tabla de especificación.


Si el anillo exterior establece un contacto unilateral o irregular con la ranura de contacto, recomendamos utilizar el modelo CF-R cuya circunferencia de anillo exterior se rectifica de manera esférica.



Para obtener información sobre el material de la ranura de contacto, consulte Capacidad de carga de carril en **B19-11**.

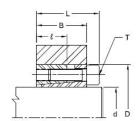
[Precauciones de montaje]

No rosque la abrazadera y apriete el producto directamente sin utilizar una tuerca, como se muestra en la Fig.1. Si lo hace, puede resultar en un par de torsión de ajuste insuficiente o puede concentrar el esfuerzo de flexión en la rosca macho y dañar el pasador si la rosca se afloja.

△19-28 〒出版

Apéndice C. Casquillo de sujeción.

Shaft Locking Devices


SLD 1850 Metric Series Dimensional Data

- = total width (relaxed state) = width of thrust rings (relaxed state)

- width of thrust rings (relaxed state) length of contact
 looking screw specifications
 screw tightening torque
 outer diameter of shaft locking device
 shaft dameter
 maximum transmissible axial force
 maximum transmissible torque
 recessive on the high

- = pressure on the hub = pressure on the shaft
- = tolerance of shaft = tolerance of hub bore

SLD 1850 Metric Series Dimensional Data

	d		D		В	e	L	Max	Max	Pres	sures	Loc	T cking Sc	rews
Size	in	T ₁ in	in	T ₂ in	in	in	in	F lbf	Mt ft-lb	pH psi	pS psi	Qty	Size	MA ft-lb
18x47	0.709		1.850		1.102	0.669	1.339	9,242	273	19,725	38,870	6	M6	10
19x47	0.748		1.850		1.102	0.669	1.339	9,253	288	19,725	36,840	6	M6	10
20x47	0.787		1.850		1.102	0.669	1.339	9,217	302	19,725	34,954	6	M6	10
22x47	0.866	0.00040	1.850	-0 +0.0015	1.102	0.669	1.339	9,197	332	19,725	31,763	6	M6	10
24x50	0.945	+0 -0.0013	1.969		1.102	0.669	1.339	9,198	362	18,565	29,153	6	M6	10
25x50	0.984		1.969		1.102	0.669	1.339	9,208	378	18,565	27,992	6	M6	10
28x55	1.102		2.165		1.102	0.669	1.339	9,201	423	16,824	24,947	6	M6	10
30x55	1.181		2.165		1.102	0.669	1.339	9,202	453	16,824	23,351	6	M6	10

Duty Factor

The values Mt and F must be adjusted with a duty factor depending on the setup:

1 42419 1529		Load	
Motor Type	Constant	Light overloads	Heavy overloads
Electric	1.0	1.5	2.0
Combustion	1.5	2.0	2.5

SLD 1850

- High torque
- Exceptional concentricity
- Self-centering
 Axial hub position can move during clamping

Metric shafts 18mm to 200mm Inch shafts 3/4 to 4 inch Larger sizes on request 273 - 44,625 ft-lb

Apéndice D. Chumaceras.

SELECTION

Setscrew Ball Bearings - Metric

Table 2 (Continued): Easy Selection Table For Ball Bearing Mounted Units

RING-	SHAFT SIZE		DYMANIC	STATIC	L10 LIFE-		VABLEE	QUIVALE	NT RADIA	AL LOAD	RATING	(N.) AT V	ALLOWABLE EQUIVALENT RADIAL LOAD RATING (N.) AT VARIOUS RPM	RPM*
SIZE	SC, VSC, SL, CC	SCM	CAPACITY C, N.	CAPACITY CO, N.	HOURS	20	150	250	200	750	1000	1500	1750	2000
					20000	2446	1690	1423	1134	1001	912	178	756	712
					30000	2135	1490	1245	1001	198	778	689	645	623
203	17mm		0096	4450	40000	1957	1357	1134	912	778	712	623	009	578
					00009	1690	1179	1001	778	689	623	556	512	489
					100000	1423	1001	845	299	578	534	467	445	423
					20000	3292	2291	1935	1535	1334	1223	1068	1001	926
					30000	2869	2002	1690	1334	1156	1068	934	890	845
204	20mm		12895	6185	40000	2624	1824	1535	1223	1068	926	845	801	756
					00009	2291	1579	1334	1068	934	845	734	689	299
					100000	1935	1334	1134	890	778	712	623	578	556
					20000	3581	2491	2091	1668	1446	1312	1156	1090	1045
					30000	3136	2157	1824	1446	1268	1156	1001	926	912
205	25mm		13995	6964	40000	2847	1979	1668	1312	1156	1045	912	298	823
					00009	2491	1712	1446	1156	1001	912	801	756	734
					100000	2091	1446	1223	626	845	778	299	645	009
					20000	4960	3447	2913	2313	2024	1824	1601	1512	1446
				1 2 3 4 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30000	4337	3002	2535	2024	1757	1601	1401	1334	1268
206	30mm	25mm	18993	10013	40000	3936	2736	2313	1824	1601	1446	1268	1201	1156
					00009	3447	2380	2024	1601	1401	1268	1112	1045	1001
					100000	2913	2004	1690	1357	1179	1068	934	890	845

To determine the L₁₀ hours life for loads and RPM's not listed use $L_{10} = \left(\frac{C}{P}\right)^3 \times \frac{1}{P}$ the following equation:

C = Dynamic Capacity, lbs. or N P = Equivalent Radial Load, lbs. or N L₁₀ = Life, hours

When the load on a ball bearing is solely a radial load with no thrust (axial) load, the Equivalent Radial Load (P) is equal to the actual radial load. However, when a thrust (axial) load is spiled, the radial and thrust loads applied must be converted into an Equivalent Radial Load. The use of the X (radial factor) and Y (thrust factor) from Table 1 convert the actual applied thrust and radial loads to an Equivalent Radial Load which has the same effect on the life of a bearing as a radial load of this magnitude.

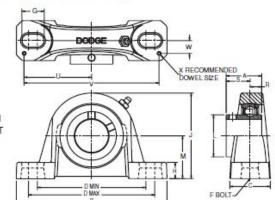
 $P = (X \times F_R) + (Y \times F_A)$

P = Equivalent Radial Load, Ibs.				Radial/Thr	Radial/Thrust Factors	
F _R = Radial load, lbs.	F _A	a	If F _A /F _R is eq tha	If F _A /F _R is equal to or less than e	If FA/FR IS 9	If FA/F _R is greater than e
e = Thrust load to radial load factor (Table 1)	లి	,	FA/F	F _A /F _R = e	F _A /F	FA/FR > 8
X = Radial load factor (Table 1)			×	٨	×	٨
T = Inrust Factor (Table 1)	.014	-19	-	0	0.56	2.30
CO = Dasic static capacity	120	21	-	0	0.56	2.15
To find X and Y first calculate E./C. to determine a Calculate E./	.028	22	-	0	0.56	1.99
A common of the	.042	24	-	0	0.56	1.85
FR and compare to e to determine the X and Y factors to use from	.056	-26	-	0	0.56	1.71
Table 1.	070.	27	-	0	0.56	1.63
Suboth to all brown values into the Equivalent Dadial Load cours.	.084	.28	-	0	0.56	1.55
Substitute all Miowil Values IIIto life Equivalent hadial Load equa-	.110	.30	-	0	0.56	1.45
tion. The Equivalent Hadial loads (P) thus determined can be used	.170	.34	-	0	0.56	1.31
in the L ₁₀ life formula or compared to the allowable Equivalent	.280	.38	-	0	0.56	1.15
Radial Load rating desired in the expanded rating chart to select a	.420	.42	-	0	0.56	1.04
bearing (Table 2).	280	44	1	0	0.56	1.00

If calculated value of P is less than F_R, use P=F_R.

Lubrication-DODGE Ball Bearings are lubricated at the factory and are ready to run. The bearings are initially lubricated with Shell Alvania #2 and should be relubricated with the same or some equivalent. For high speeds, high loads, extreme temperatures and other abnormal operating conditions, special greases may be required. Contact DODGE Application Engineering for recommendations on these types of applications.

imum of ± 2° statio misalignment. These bearings are not suitable for dynamic misalignment. To ensure good alignment, mounting surfaces must be checked for flatness and must lie in the same plane. When tightening base botts, each bolt should be alternately tightened in incremental torque values until full torque is achieved to pervent the angular shifting of the pilliow block that occurs when one bolt is tightened to its full torque. Shimming may be required to minimize misalignment. Misalignment-DODGE Ball Bearings are designed to allow a max


and are les	Alvania #2 equivalent.	other abno	required. C	dations on
	Recommended Shaff Tolerances Set Screw Ball Bearings Inches	+0.0000 -0.0005	+0.0000 -0.0010	+0.0000 -0.0010
	Commercial Shaft Tolerances Inches	+0.000 -0.002	+0.000 -0.003	+0.000 -0.004
	Normal Shaff Size Inches	Up to 1-1/2"	Over 1-1/2" to 2-1/2"	Over 2-1/2" to 4"

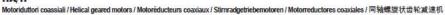
DCDGE,

SELECTION/DIMENSIONS

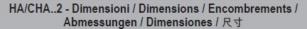
Setscrew Ball Bearings SC AND SCU NORMAL DUTY PILLOW BLOCKS

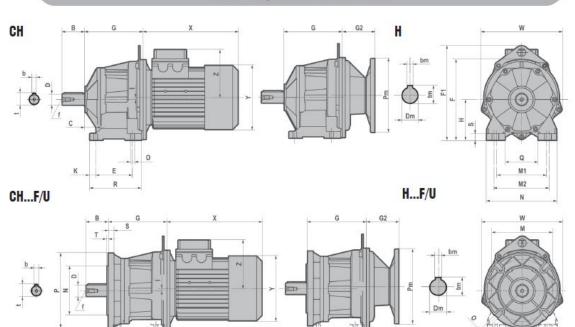
Lube Fitting 203 series - 1/4-28 tapered thread 204 series and larger - 1/8-27 NPT

Serie	S	haft	75. 9		Standa	rd	S-10		No-Li	ibe/Se	aled fo	r Life (-NL)		7500	With	Flinger	S	
serie	5 8	ize	Part	No.	D	escrip	tion		Part No).	De	scripti	on	Pa	art No.		Desc	ription	
	1/	2	1238	30	P28	3-SC-0	08		12393	2	P2B-	SC-008	-NL		@		P2B-S0	C-008-F	F
203	5/	В	1238	31	P28	3-SC-0	10		12650	0	P2B-	SC-010	-NL	1	24575		P2B-S0	C-010-F	F
	17	mm	0531	70	P21	B-SC-1	7M		@		P2B-	SC-171	M-NL		@		P2B-SC	C-17M-	FF
203	1/	2	1237	53	P28	3-SCU-	008		@		P2B-	SCU-00	08-NL		@		P2B-S0	CU-008	FF
(SCU	5/	8	1237	54	P28	3-SCU-	010		@		P2B-	SCU-0	10-NL		@		P2B-S0	U-010	-FF
(300	17	mm	1258	350	P21	B-SCU-	17M		@		P2B-	SCU-1	7M-NL		@		P2B-SC	CU-17N	1-FF
	1/	2	1238	35	P28	3-SC-0	08L	- 1	05210	1	P2B-	SC-008	BL-NL	3	@		P2B-S0	-008L-	FF
204	5/	8	1238	36	P28	3-SC-0	10L		@		P2B-	SC-010	L-NL		@		P2B-S0	C-010L-	FF
204	3/	4	1238	03	P28	3-SC-0	12		052013	2	P2B-	SC-012	-NL	0	53256		P2B-S0	C-012-F	F
	20	mm	1258	351	P21	B-SC-2	OM		@	311	P2B-	SC-201	M-NL	8	@		P2B-S	2-20M-	FF
	7/	8	1238	04	P28	3-SC-0	14		12650	2	P2B-	SC-014	-NL		@		P2B-S0	C-014-F	F
205	15	/16	1238	05	P28	3-SC-0	15		12650	3	P2B-	SC-015	-NL	1	24029		P2B-S0	C-015-F	F
200	1	56745	1238	06	P28	3-SC-1	00		12382	4	P2B-	SC-100	-NL	1	23779		P2B-S0	C-100-F	F
	25	mm	1258	352	P21	B-SC-2	5M		05674	4	P2B-	SC-251	M-NL		@		P2B-SC	C-25M-	FF
	Shaft	Weight)	F	200					riek P		000			
Series	Size	lbs. kgs.	A	В	С	Min.	Max.	Bolt Dia.	G	Н	J	L	M	R	S	U	V	W	X
	1/2	1.1	1	5	1-13/64	3-1/4	4-1/16	3/8	27/32	15/32	2-9/64	31/32	1-1/16	23/64	41/64	2-1/4	4-1/2	3/8	1/8
203	5/8	1.0	U\$2550	2355	302232	2292	1000	2008	1 3/22	323233	1200	1200	100000	233	22.50	0.20	200000	25	102.02
	17mm	0.4	25.4	127.0	30.6	82.6	103.2	M10	21.4	11.9	54.4	24.6	27.0	9.1	16.3	57.2	114.3	9.5	3.2
203	1/2	1.2	1	5	1-13/64	3-1/4	4-1/16	3/8	21132	19/32	2-17/64	31/32	1-3/16	23/64	41/64	2-1/4	4-1/2	3/8	1/8
(SCU)	17mm	0.4	25.4	127.0	30.6	82.6	103.2	M10	21.4	15.1	57.5	24.6	30.2	9.1	16.3	57.2	114.3	9.5	3.2
	1/2	1.6	1-5/32	5-1/4	1-21/64	3-3/8	4-3/16	3/8	27/32	33/64	2-9/16	1-1/8	1-5/16	27/64	47/64	2-1/4	4-1/2	1/2	1/8
004	5/8	1.5											.,						
204	3/4	1.4																	
	20mm	0.7	29.4	133.4	33.7	85.7	106.4	M10	21.4	13.1	65.1	28.6	33.3	10.7	18.7	57.2	114.3	12.7	3.2
	7/8	1.8	1-3/16	5-1/2	1-13/32	3-11/16	4-1/2	3/8	27/32	37/64	2-25/32	1-5/16	1-7/16	27/64	49/64	2-1/2	5	1/2	3/16
205	15/16	1.7																	
N. (200)	1	1.6	20.0	1007	or 7	m 7	****	Hen	04.4	447	70.0	20.0	20.5	107	10.6	00.5	407.0	107	
	25mm	0.7	30.2	139.7	35.7	93.7	114.3	M10	21.4	14.7	70.6	33.3	36.5	10.7	19.4	63.5	127.0	12.7	4.8


Apéndice E. Motorreductor.

HA/H Motoriduttori / Motoreducers / Motoreducteurs / Getriebemotoren / Motorreductores coaxiales / 变速器




			0,37 KI	N					(),55 k\	N		
n2 [1/min]	M2 [Nm]	f.s.	i		4	Fr2 [N]	n2 [1/min]	M2 [Nm]	f.s.	i	4]	4	Fr2
18,1	188	1,6	49,78	HA52	80A6	6000	82,3	61	1,5	10,94	HA32	80B6	1609
14,5	233	1,2	61,87	HA52	80A6	6000	67,9	74	1,1	13,25	HA32	80B6	1716
23,2	143	2,1	60,25	HA53	71B4	6000	54,6	92	0,9	16,49	HA32	80B6	1845
18,7	178	1,7	74,88	HA53	71B4	6000	44,4	114	0,8	20,26	HA32	80B6	1976
15,9	209	1,4	88,02	HA53	71B4	6000	966,7	5	4,7	1,45	HA41	80A4	512
12,5	265	1,1	111,61	HA53	71B4	6000	475,5	11	2,3	2,94	HA41	80A4	648
10,1	329	0,9	138,71	HA53	71B4	6000	294,7	17	1,7	4,75	HA41	80A4	760
8,6	387	0,8	163,05	HA53	71B4	6000	256,7	20	1,5	5,45	HA41	80A4	796
15,9	209	2,3	88,02	HA63	71B4	8000	69,1	73	2,1	20,26	HA42	80A4	3591
12,5	265	1,8	111,61	HA63	71B4	8000	57,0	88	1,8	24,55	HA42	80A4	3828
10,1	329	1,5	138,71	HA63	71B4	8000	45,8	110	1,3	30,55	HA42	80A4	4118
8,6	387	1,2	163,05	HA63	71B4	8000	36,7	138	1,1	24,55	HA42	80B6	4300
7,0	475	1,0	200,27	HA63	71B4	8000	29,5	171	0,8	30,55	HA42	80B6	4300
5,9	558	0,9	235,41	HA63	71B4	8000	475,5	11	3,7	2,94	HA51	80A4	1786
36,9	92	2,2	37,92	H032	71B4	5500	294,7	17	2,9	4,75	HA51	80A4	2095
33,8	100	2,0	41,40	H032	71B4	5500	256,7	20	2,5	5,45	HA51	80A4	2194
29,6	114	1,7	47,25	H032	71B4	5500	38,7	130	2,3	36,17	HA52	80A4	5445
26,1	127	1,6	53,59	H033	71B4	5500	31,1	162	1,7	44,95	HA52	80A4	5855
21,0	158	1,3	66,78	H033	71B4	5500	28,1	179	1,7	49,78	HA52	80A4	6000
18,7	178	1,1	74,84	H033	71B4	5500	22,6	223	1,3	61,87	HA52	80A4	6000
14,1	236	0.8	99,27	H033	71B4	5500	30,1	167	1,8	29.89	HA52	80B6	5921
229,9	15	3,4	6,09	H041	71B4	1000	24,9	203	1,5	36,17	HA52	80B6	6000
182,6	19	2,7	7,67	H041	71B4	1000	20,0	252	1,1	44,95	HA52	80B6	6000
160,0	21	2,6	8,75	H041	71B4	1000	18,1	279	1,1	49,78	HA52	80B6	6000
29,5	115	2,4	47,53	H042	71B4	6600	14,5	347	0,8	61,87	HA52	80B6	6000
25,8	131	2,1	54,25	H042	71B4	6600	28,1	176	1,7	49,80	HA53	80A4	6000
22,6	147	2,0	61,83	H043	71B4	6600	23.2	212	1,4	60,25	HA53	80A4	6000
18,3	182	1,6	76,67	H043	71B4	6600	18,7	264	1,1	74,88	HA53	80A4	6000
16,1	207	1,5	87,05	H043	71B4	6600	15.9	310	1,0	88,02	HA53	80A4	6000
12,2	272	1,1	114,55	H043	71B4	6600	12,5	394	0,8	111,61	HA53	80A4	6000
11,1	298	1,0	125,69	H043	71B4	6600	180.6	28	3,2	7,75	HA61	80A4	3691
12,9	258	1,9	108,95	H053	71B4	8000	131,3	39	1,8	10,67	HA61	80A4	4106
10.4	320	1,6	134,76	H053	71B4	8000	20,0	252	1,7	44,95	HA62	80B6	8000
8,9	373	1,3	157,29	H053	71B4	8000	18,1	279	1,3	49,78	HA62	80B6	8000
7.2	462	1,1	194,56	H053	71B4	8000	14,5	347	1,3	61,87	HA62	80B6	8000
6,5	513	1,0	216,38	H053	71B4	8000	18,7	264	1,8	74,88	HA63	80A4	8000
8,2	405	2,1	170,67	H063	71B4	12000	15.9	310	1,5	88,02	HA63	80A4	8000
7,5	442	1,9	186,18	H063	71B4	12000	12,5	394	1,2	111,61	HA63	80A4	800
6,5	511	1,7	215,21	H063	71B4	12000	10,1	489	1,0	138,71	HA63	80A4	8000
6.0	557	1,5	234,67	H063	71B4	12000	8,6	575	0,8	163,05	HA63	80A4	8000
5,2	636	1,3	268,00	H063	71B4	12000	53,0	95	2,1	26,39	H032	80A4	5500
							47,1	107	1,9	29,70	H032	80A4	5500
		(0,55 KI	N			42,6	118	1,7	32,89	H032	80A4	5500
				<u>ं</u>			36,9	137	1,5	37,92	H032	80A4	5500
	egywor i			The same	0		33,8	149	1,3	41,40	H032	80A4	5500
n2	M2	f.s.	i	-5		Fr2	29,6	170	1,2	47,25	H032	80A4	550
[1/min]	[Nm]	1101	,			[N]	26,1	189	1,1	53,59	H033	80A4	550
260.3	10	11	5.20	ЦАЗЗ	0044	1000	21,0	236	0,8	66,78	H033	80A4	550
260,3	19	4,1	5,38	HA32	80A4	1096	280,0	18	2,5	5,00	H041	80A4	990
214,8	23 29	3,4 2,6	6,52	HA32	80A4	1169	254,5	20	2,5	5,50	H041	80A4	100
172,6			8,11	HA32	80A4	1257	229,9	22	2,3	6,09	H041	80A4	100
128,0	39	2,3	10,94	HA32	80A4	1389	182,6	28	1,8	7,67	H041	80A4	100
105,7	48	1,7	13,25	HA32	80A4	1481	160,0	32	1,7	8,75	H041	80A4	100
84,9	59	1,3	16,49	HA32	80A4	1593	41,1	123	2,3	34,10	H042	80A4	660
69,1	73	1,2	20,26	HA32	80A4	1706	37,1	136	2,1	37,76	H042	80A4	660
57,0	88	1,0	24,55	HA32	80A4	1818	32,0	158	1,8	43,75	H042	80A4	660
167,3	30	2,7	5,38	HA32	80B6	1270	29,5	171	1,6	47,53	H042	80A4	660
138,1	37	2,2	6,52	HA32	80B6	1354	23,3	111	1,0	41,00	11042	00/14	000

HA/H

H... - CH...

	D	В	b	t	f	C	E	F	F1	G	H	1	K	M1	M2	N	0	Q	R	S	W
	20 j6	40	6	22.5	M6																
820	(19 j6)	40	6	21.5	M6	40	00	455	- 10	447 E	75	10	42	440	100	145	0	75	444	45	150
A32	(16 j6)	40	5	18	M6	18	80	155	- 1	117.5	75	10	13	110	120	145	9	75	111	15	152
	(14 j6)	30	5	16	M6	Ī															
	25 j6	50	8	28	M10																
A42	(24 j6)	50	8	27	M8	25	85	160	1	124.5	80	10	13	110	120	145	9	75	111	15	152
	(19 j6)	40	6	21.5	M6																
	30 j6	60	8	33	M10																
A52	(35 j6)	70	10	38	M12	30	100	217.5	255.5	159	110	5.5	15.5	135	150	190	11	90	140	18	218
	(24 j6)	50	8	27	M8		(3)	a seem		3		5575	3	3	10.010	5 A. See S	(A) (A) (A)	5385	100 miles	2000	
	40 j6	80	12	43	M16				11111												
A62	(30 j6)	60	8	33	M10	35	110	237.5	275.5	168	120	15.5	20	170	185	230	14	120	150	20	218
	(28 j6)	60	8	31	M10	Ī															

H...F/U - CH...F/U

	P	M	N f8	0	G		S	T	W
8005	140	115	95	9	417.5	10	10	3	152
A32F	(120)	100	80	9	117.5	10	10	3	132
ALOT.	160	130	110	9	404 E	40	40	2.5	450
A42F	(140)	115	95	9	124.5	10	10	3.5	152
AFOF	200	165	130	11	450		45	2.5	040
A52F	(160)	130	110	11	159	5.5	15	3.5	218
ACOF	250	215	180	14	100	45.5	45		240
A62F	(200)	165	130	14	168	15.5	15	4	218

	G	2
	A32-A42	A52-A62
063	55	1
071	55	1
080	86	87.5
090	86	87.5
100-112	1	87.5

	-	- kg		
	A32	A42	A52	A62
063	4,2	5,2	1	- 1
071	4,3	5,3	1	1
080-090	4,6	5,5	9,5	11,3
100-112	1	- 1	13,0	14,8

Kg senza olio / Kg w/o oil / Kg sans huile Kg ohne Öl / Kg sin aceite / Kg 无油

HA/H

CHA..1/2/3 - Dimensioni / Dimensions / Encombrements / Abmessungen / Dimensiones / 尺寸

CHA... - CHA...F

T - Motore / Motor / Moteur/ Motor / Notor / 电机

CH	T	063	071	080	0908	090L	100	112
A41-A51	Х	180	205	223	232	257	1	1
A32-A42	Y	121	139	158	173	173	1	1
A33-A43-A53-A63	Z	104	112	122	130	130	1	1
	X	1	1.	218	232	257	290	302
A52-A61-A62	Υ	1	- 1	158	173	173	191	211
	Z	1	1	122	130	130	139	154

Cargas radiales

ES

El valor de carga radial (N) admisibile se indica en las tablas de prestaciones de los reductores y se refiere a la carga aplicada sobre la línea de centro del eje y en las condiciones más desfavorables como ángulo de aplicación y sentido de rotación.

Las cargas axiales máximas admisibles son 1/5 del valor de carga radial indicado, cuando están aplicadas en combinación con la carga radial misma. En las tablas relacionadas a los ejes de salida se indica el valor máximo admisible; nunca se debe superar este valor, porque se refiere a la resistencia de la carcasa.

Podrían presentarse condiciones particulares de carga radial superiores a los límites de catálogo; en este caso, ponerse en contacto con nuestro Servicio técnico e indicar todos los datos de la aplicación: dirección de carga, sentido de rotación del eje, tipo de servicio.

En caso de ejes dobles o huecos sobre los que se prevea la aplicación de cargas radiales sobre ambos extremos, las cargas máximas admisibles se deben definir en función de las características de la aplicación, en ese caso contactar a nuestro Servicio Técnico.

La carga radial sobre el eje se calcula con la siguiente fórmula:

$$Fre = \frac{2000 \cdot M \cdot fz}{D} \le Fr_1 \circ Fr_2$$

Fre (N) Carga radial resultante

M (Nm) Par de torsión sobre el eje

D (mm) Diámetro del elemento de transmisión montado sobre el eje

Fr (N) Valor de carga radial máximo admitido

Fr1-Fr2 (ver tablas correspondientes)

fz = 1,1 piñón dentado 1,4 piñon de cadena

1,7 polea para correa trapezoidal

2,5 polea plana

Cuando la carga radial resultante no se aplica sobre el centro del eje de salida, se debe corregir la carga radial admisible Fr1-2 mediante la siguiente fórmula:

$$Frx = \frac{Fr_{1-2} \cdot a}{(b+x)}$$

a , b = valores indicados en las tablas pág. 13 - 14
 x = distancia desde el punto de aplicación de la carga hasta la base del eje

116

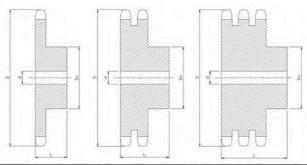
Apéndice F. Cadena y piñón.

www.intermec.com.co

TABLA DE CAPACIDAD

CADENA ESTANDAR SENCILLA DE RODILLOS No. 50 PASO 5/8"

No. de	- 1						5374 858			PE	M DI	EI DIN	NON (ONE	ист	OR						08 55-5			10.00
dientes piñón onductor	10	25	50	100	200	300	400	500	700	900	1000	1200	1400	1600	1800	2100	2400	2700	3000	3500	4000	4500	5000	5500	600
	10	23	30	100	200	300	400	300	700	500	1000	1200	1400	1000	1000	2100	2400	2700	3000	3300	4000	4000	5000	3300	ouc
9	0.09	0.19	0.36	0.67	1.26	1.81	2.35	2.87	3.89	4.88	5.36	6.32	6.02	4.92	4.13	3.27	2.68	2.25	1.92	1.52	1.25	1.04	0.89	0.77	0.5
10	0.10	0.22	0.41	0.76	1.41	2.03	2.63	3.22	4.36	5.46	6.01	7.08	7.05	5.77	4.83	3.84	3.14	2.63	2.25	1.78	1.46	1.22	1.04	0.90	0.7
11	0.11	0.24	0.45	0.84	1.56	2.25	2.92	3.57	4.83	6.06	6.66	7.85	8.13	6.65	5.58	4.42	3.62	3.04	2.59	2.06	1.68	1.41	1.20	1.04	0.9
12	0.12	0.26	0.49	0.92	1.72	2.47	3.21	3.92	5.31	6.65	7.31	8.62	9.26	7.58	6.35	5.04	4.13	3.46	2.95	2.34	1.92	1.61	1.37	1.19	1.0
13	0.13	0.29	0.54	1.00	1.87	2.70	3.50	4.27	5.78	7.25	7.97	9.40	10.4	8.55	7.16	5.69	4.65	3.90	3.33	2.64	2.16	1.81	1.55	1.34	0
14	0.14	0.31	0.58	1.09	2.03	2.92	3.79	4.63	6.27	7.86	8.64	10.2	11.7	9.55	8.01	6.35	5.20	4.36	3.72	2.95	2.42	2.03	1.73	1.50	0
15	0.15	0.34	0.63	1.17	2.19	3.15	4.08	4.99	6.75	8.47	9.31	11.0	12.6	10.6	8.88	7.05	5.77	4.83	4.13	3.27	2.68	2.25	1.92	1.66	0
16	0.16	0.36	0.67	1.26	2.34	3.38	4.37	5.35	7.24	9.08	9.98	11.8	13.5	11.7	9.78	7.76	6.35	5.32	4.55	3.61	2.95	2.47	2.11	1.83	0
17	0.17	0.39	0.72	1.34	2.50	3.61	4.67	5.71	7.73	9.69	10.7	12.6	14.4	12.8	10.7	8.50	6.96	5.83	4.98	3.95	3.23	2.71	2.31	2.01	0
******							1700 (180 - 201	neroce.	-	1000001	NO CONTRACT					0100									
18	0.18	0.41	0.76	1.43	2.65	3.83	4.97	6.07	8.22	10.3	11.3	13.4	15.3	13.9	11.7	9.26	7.58	6.35	5.42	4.30	3.52	2.95	2.52.	0	
19 20	0.19	0.43	0.81	1.51	2.82	4.07	5.27	6.44	8.72	10.9	12.0	14.2	16.3	15.1	12.7	10.0	8.22	6.89 7.44	5.88	4.67 5.04	3.82 4.13	3.20	2.73	0	
20	0.20	0.46	0.86	1.50	2.98	4.30	5.57	6.80	9.21	11.5	12.7	15.0	17.2	16.3	13.7	10.8	8.88	7.44	6.35	5.04	4.13	3.46	2.93	U	
21	0.21	0.48	0.90	1.69	3.14	4.53	5.87	7.17	9.71	12.2	13.4	15.8	18.1	17.6	14.7	11.7	9.55	8.01	6.84	5.42	4.44	3.72	3.18	0	
22	0.22	0.51	0.95	1.77	3.31	4.76	6.17	7.54	10.2	12.8	14.1	16.6	19.1	18.8	15.8	12.5	10.2	8.59	7.33	5.82	4.76	3.99	3.41	0	
23	0.23	0.53	1.00	1.86	3.47	5.00	6.47	7.91	10.7	13.4	14.8	17.4	20.0	20.1	16.9	13.4	11.0	9.18	7.84	6.22	5.09	4.27	0		
24	0.25	0.56	1.04	1.95	3.63	5.23	6.78	8.29	11.2	14.1	15.5	18.2	20.9	21.4	18.0	14.3	11.7	9.78	8.35	6.63	5.42	4.55	0		
25	0.26	0.58	1.09	2.03	3.80	5.47	7.08	8.66	11.7	14.7	16.2	19.0	21.9	22.8	19.1	15.2	12.4	10.4	8.88	7.05	5.77	4.83	0		
26	0.27	0.61	1.14	2.12	3.96	5.70	7.39	9.03	12.2	15.3	16.9	19.9	22.8	24.2	20.3	16.1	13.2	11.0	9.42	7.47	6.12	5.13	0		
28	0.29	0.66	1.23	2.30	4.29	6.18	8.01	9.72	13.2	16.6	18.3	21.5	24.7	27.0	22.6	18.0	14.7	12.3	10.5	8,35	6.84	5.73	0		
30	0.31	0.71	1.33	2.49	4.62	6.66	8.63	10.5	14.3	17.9	19.7	23.2	26.6	30.0	25.1	19.9	16.3	13.7	11.7	9.26	7.58	0			
32	0.33	0.76	1.42	2.66	4.96	7.14	9.25	11.3	15.3	19.2	21.1	24.9	28.6	32.2	27.7	22.0	18.0	15.1	12.9	10.2	8.35	0			
35	0.37	0.84	1.57	2.93	5.46	7.86	10.2	12.5	16.9	21.1	23.2	27.4	31.5	35.5	31.6	25.1	20.6	17.2	14.7	11.7	9.55	0			
40	0.43	0.97	1.81	3.38	6.31	9.08	11.8	14.4	19.5	24.4	26.8	31.6	36.3	41.0	38.7	30.7	25.1	21.0	18.0	14.3	0				
45	0.48	1.10	2.06	3.84	7.16	10.3	13.4	16.3	22.1	27.7	30.5	35.9	41.3	46.5	46.1	36.6	30.0	25.1	21.4	0					
		Lubricaci	ón Tipo A	١		Lubr	icación T	ро В								1	Lubricacio	in Tipo (3						
Hibr	RICACI	ÓNTI	PO 4	Aman	o cor	aceiter	a o bro	-ha												nilera m	núltiple	de este	paso,		
LUBF	ICACI	ÓN TI I	PO B: 1	En bañ	o de ac	eite o p	or salpi										la capa HILE		por:		FACT	OR		-	
			PO C:											and the second											
							stá bas							and the same of th										į	
	iation).	AN AMI	EKICA	NA DE	rabki	CANI	ES DE							-										į	
. 2000								INF	ORMAC	CIÓN IN	TERM	EC		-			6				4.	6			

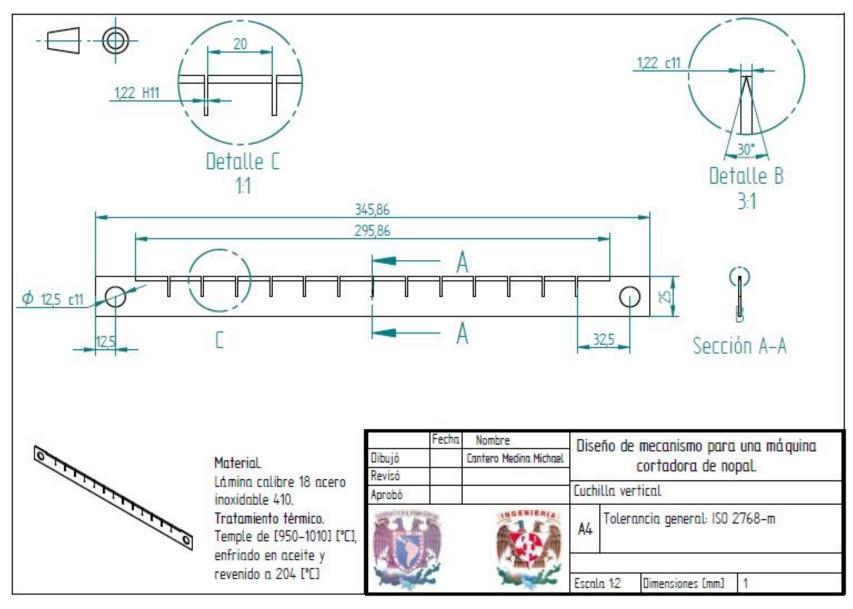

NTERMEC www.intermec.com.co

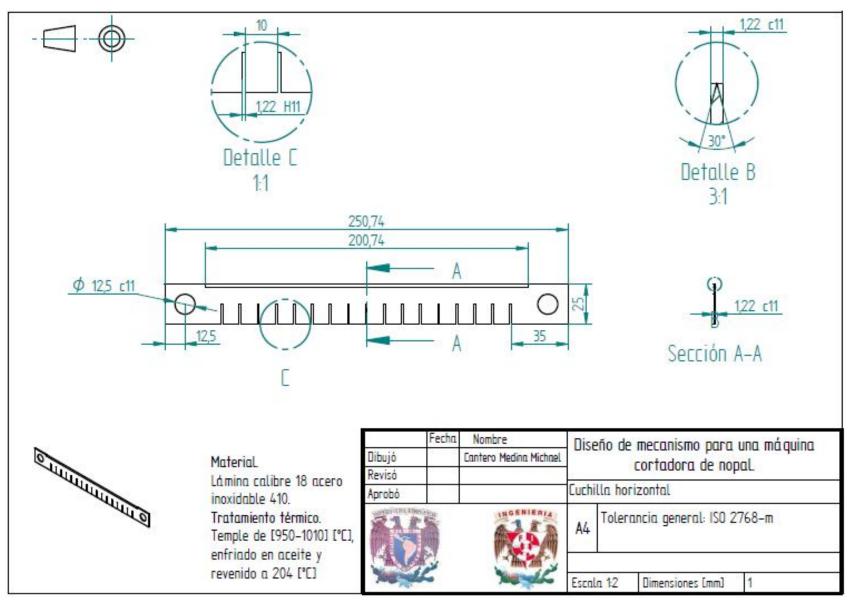
PIÑONES **5/8 (50)**

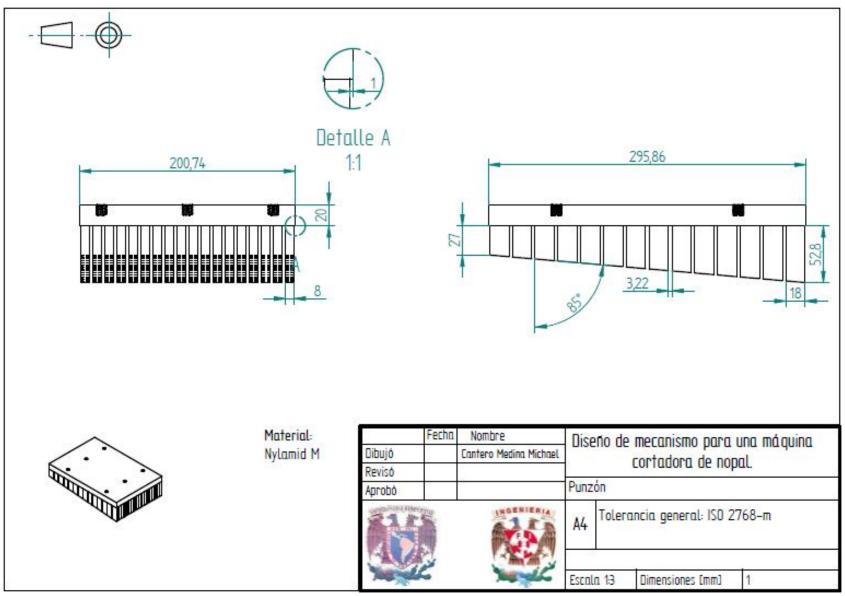
TABLA DE DIMENSIONES

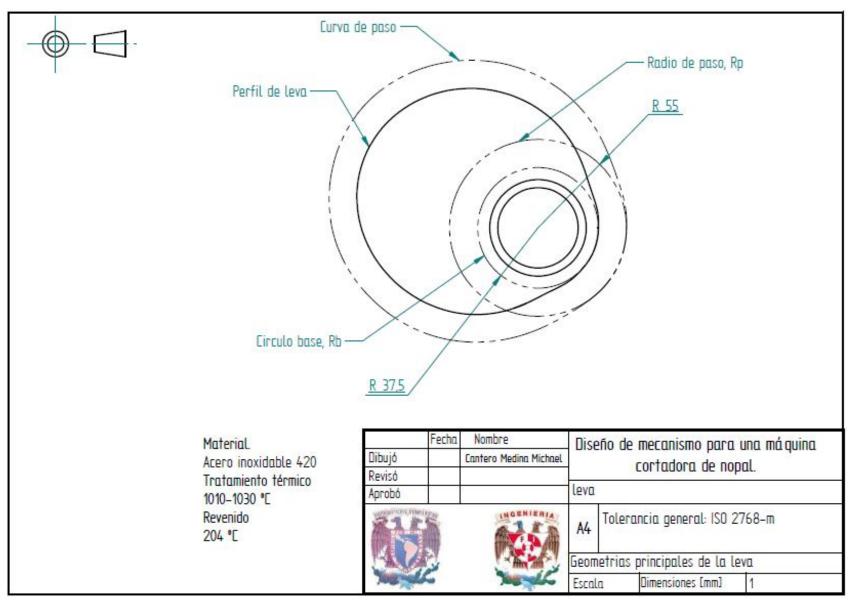
DE LOS PIÑONES INTERMEC PASO 5/8" (15.87 mm) para Cadena ANSI No. 50 Tipo B Sencillos, Dobles y Triples

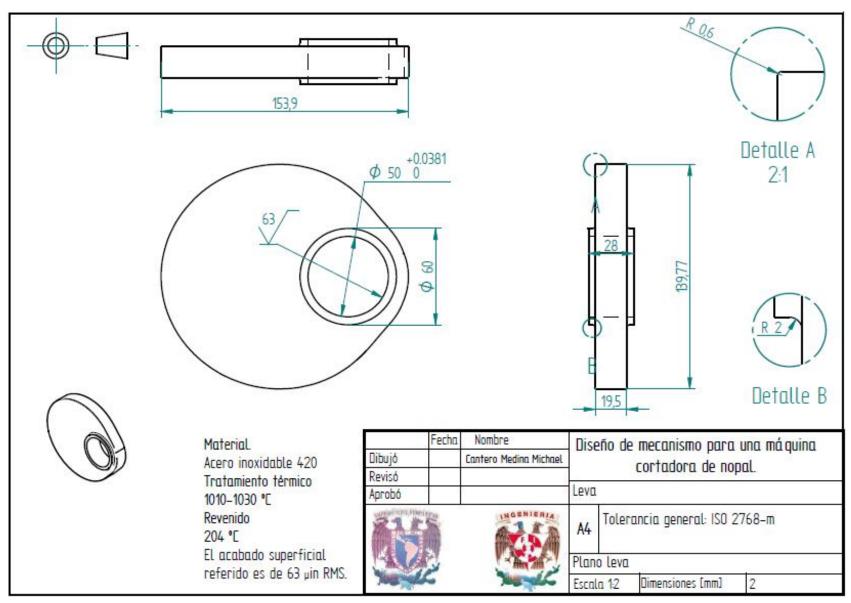
Dimensiones en Milimetros


			SENCILLO	25			DOBLES				TRIPLES	
REF	D	Dm	1	d	REF	Dm	L	d	REF	Dm	L	d
50B9R	52,1	41	26	15,88	50-2B9 R	29-44	41	15,88	50-3B9 R	29-44	64	15,88
50B10R	57,4	40	26	15,88	50-2810	34	44	15,88	50-3B10 R	34	64	15,88
50B11R	62,5	45	26	15,88	50-2B11	38	45	15,88	50-3B11 R	38	64	15,88
50B12R	67,8	51	26	15,88	50-2B12	43	45	15,88	50-3B12R	43	64	15,88
50B13	72,9	48	26	15,88	50-2B13	48	45	15,88	50-3B13R	48	64	15,88
50B14	78,2	54	26	15,88	50-2814	52	54	15,88	50-3814	52	64	15,88
50B15	83,3	60	26	15,88	50-2815	59	45	19,05	50-3B15	59	64	19,05
50B16	88,4	63	26	15,88	50-2816	64	44	19,05	50-3816	64	64	19,05
50B17	93,5	68	25	15,88	50-2817	68	44	19,05	50-3B17	68	64	19,05
50B18	98,6	68	25	15,88	50-2B18	75	45	19,05	50-3818	75	64	19,05
50B19	103,6	73	25	15,88	50-2819	79	45	25,40	50-3B19	79	64	25,40
50B20	108,7	76	25	19,05	50-2B20	82	44	25,40	50-3B20	82	64	25,40
50B21	113,8	76	25	19,05	50-2B21	89	45	25,40	50-3821	89	67	25,40
50B22	118,9	76	25	19,05	50-2822	91	48	25,40	50-3B22	91	67	25,40
50B23	124,0	76	25	19,05	50-2823	92	48	25,40	50-3B23	92	67	25,40
50B24	129,0	76	32	19,05	50-2B24	92	48	25,40	50-3B24	92	67	25,40
50B25	134,1	76	32	19,05	50-2825	92	47	25,40	50-3825	92	67	25,40
50B26	139,2	76	32	19,05	50-2826	95	48	25,40	50-3B26	95	67	25,40
50B27	144,3	76	32	19,05	50-2827	95	48	25,40	50-3827	95	67	25,40
50B28	149,4	76	32	19,05	50-2B28	95	48	25,40	50-3B28	95	67	25,40
50B29	154,4	90	25	19,05	50-2B29	95	48	25,40	50-3B29	95	67	25,40
50B30	159,5	82	32	19,05	50-2B30	95	48	25,40	50-3B30	95	67	25,40
50B31	164,6	83	32	19,05	50-2831	95	48	25,40	50-3B31	95	67	25,40
50B32	169,7	83	32	19,05	50-2B32	95	49	25,40	50-3B32	95	67	25,40
50B33	175,7	83	32	19,05	50-2833	95	48	25,40	50-3B33	95	67	25,40
50B34	179,8	83	32	19,05	50-2834	95	48	25,40	50-3B34	95	67	25,40
50B35	184,9	83	32	19,05	50-2835	95	48	25,40	50-3B35	95	67	25,40
50B36	190,0	83	35	15,88	50-2836	102	54.	30,16	50-3836	102	67	30,16
50B37	195,0	83	32	19,05	50-2B37	102	54	30,16	50-3837	102	70	30,16
50B38	200,2	83	32	19,05	50-2B38	102	54	30,16	50-3B38	102	70	30,16
50B39	205,2	83	35	19,05	50-2B39	102	54	30,16	50-3B39	102	70	30,16
50B40	210,3	83	32	19,05	50-2B40	102	54	30,16	50-3B40	102	70	30,16
50B41	215,4	83	32	19,05	50-2B41	102	54	30,16	50-3B41	102	70	30,16
50B42	220,2	83	32	19,05	50-2B42	102	54	30,16	50-3B42	102	70	30,16
50B43	225,3	82	32	19,05	50-2843	102	54	30,16	50-3B43	102	70	30,16
50B44	230,4	83	32	19,05	50-2844	102	54	30,16	50-3B44	102	70	30,16
50B45	235,5	95	32	19,05	50-2B45	102	54	30,16	50-3B45	102	70	30,16


(Esta tabla continúa en la siguiente página)


24


TABLA DE DIMENSIONES


Apéndice G. Planos.

