EVALUACION DE PROYECTOS Y TOMA DE DECISIONES
(del 6 al 28 de octubre de 1978)

Fecha	Duración	Tema	Profesor
6 de Oct.	17 a 21 h	CONCEPTOS DE INGENIERIA ECONOMICA	DR. VİCTOR GEREZ G.
7 de Oct.	$\begin{aligned} & \text { 9.a } 13 \mathrm{hyy} \\ & 14 \text { a } 17 \mathrm{~h} \end{aligned}$	CRITERIOS DE EVALUACION	" " "
13 de Oct.	17 a 21 h	EJEMPLOS DE PROYECTOS DE DESARROLLO	ING. JESUS GALERA
$14 \mathrm{de} \mathrm{Oct}$.	$\begin{aligned} & 9 \text { a } 13 \mathrm{~h} y \\ & 14 \text { a } 17 \mathrm{~h} \end{aligned}$	REPASO DE LA TEORIA DE PROBABILIDAD	M. en C. MARCIAL PORTILLA ROBERTSON
20 de Oct.	17 a 21 h	DECISIONES DE ACUERDO A LA TEORIA DEL VALOR	M. en C. RODOLFO FELIX
21 de Oct.	$9 \mathrm{al3h}$	" " " " " "	FLORES
21 de Oct.	14 a 17 h	LA TEORIA DE LA UTILIDAD	M. en C. LUIS PABLO
27 de Oct.	17 a 21 h	" " " "	GRIJALVA LOPEZ
28 de Oct.	$\begin{aligned} & 9 \text { a } 13 \mathrm{~h} \\ & 14 \text { a } 17 \mathrm{~h} \end{aligned}$	INTRODUCCION A LA TEORIA DE LOS JUEGOS	M. en C. CARLOS VALENCIA RODRIGUEZ
		CLAUSURA	

[^0]
DIRECTORIO DE PROFESORES DEL CURSO

EVALUACION DE PROYECTOS Y TOMA DE DECISIONES

LIC. JESUS GALERA LAMADRDGerencia de la División Comercial
Editorial Trillas, S.A.
Clzda. de la Viga No. 1162
México D.F.
Tel.657.91. 88 Ext. 21
M. EN C. RODOLFO FELIX FLORES GERENCIA DE INGENIERIA VIAL Y TRANSPORTE Comisión de Vialidad y Transporte Urbano Av. Juárez No. 42 Edif. B- 2°
México l, D.F.
Tel.: 585.10.11 Ext. 234
M. EN C. LUIS PABLO GRIJALVA LOPEZ
Investigador
División de Sistemas de Potencia
Instituto de Investigaciones Electricas
Shakesperare No. 6-3 ${ }^{\circ}$
México 5, D.F.
Tel.: 525.64.52
DR. VICTOR GEREZ GREISER
Profesor
Ingeniería Mecánica y Electrica
Facultad de Ingeniería
U. N. A. M.
México 20, D.F.
Tel. 550.52.15 Ext. 4750
M. EN C. MARCIAL PORTILLA ROBERTSON
Jofe de la Sección'de Computación
Edif. de Ing. Mec. y Eléctrica
Fac. de Ing., UNAM
Tel. 550.52.15 Ext. 3746
M. EN C. CARLOS VALENCIA RODRIGUEZ
Jofe del Depto. de Información de Planes y Programas
S. C. T.
Dirección General de Planeación
Centro SCOP Cuerpo H-3 ${ }^{\circ}$
Av. Univesidad y Xola
Tel. 538.37.72

centro de educación continua división de estudios superiores facultad ingenierla, unam

EVALUACION DE PROYECTOS Y TOMA DE DECISION ES

EJEMPLOS

DR. VICTOR GEREZ GREISER

Continuous Interest and Discounting

W. B. Hirschmann and J. R. Brauweiler

4.1 Logic for continuous interest

dmepest can be compoundednperiodically, e.g., atmually, stiniammally, or even cialy, or i: can-os-compounded-contmuously. Annuadiseruntmgrisappropriate formandling mostgages, bonds, and similar=financialdransactions, which require
 daciur throughout the vear; and these circunstances suggestrancontinuous fow of buney, for which contmous compounding and dis:ounting is more realistic dian wruxil compourding and discuunking.

This chapter develops formulas for discounting and compounding cast, nows on a contimuuus basis. It also illustrates how continuulus di.ejenting reavi, y and simpl! copes with the variety of cash flows that nin'י. ". "tult from ar. ite uctment ouer ins life.

4.2 Consinuazsoncerest as anoperator

If i is the nominal interest rate expressed as a decimal and compoundins oceurs r. times per year, then
$\operatorname{-a}\left(1+\frac{i}{F}\right)^{\prime}$
n

Table 4.2TI Comparison of Compounding Factors

Pa, med	Rehumomsit:p	Sir 1-000	Factur for 1-0.06
innually	$(1-i)^{2}$	$1.06{ }^{1}$	106000
Somuannually	$\left(1-\frac{i}{2}\right)^{2}$	103:	1.060\%0
Quarterly	$\left(1-\frac{i}{4}\right)^{\text {a }}$	$1.015{ }^{4}$	10613635
Monthly	$\left(1-\frac{i}{12}\right)^{12}$	$1.00{ }^{19}$	1.0616778
Daily	$\left(1 \div \frac{i}{365}\right)^{385}$	1.00016^{363}	1.0618305
Continuously	e^{1}	$e^{0.06}$	1.0618365

is the value of 1 at the end of 1 year, as developed in Sec. 2.1. Table 4.2T1 shows the effect of increasing the number of compounding periods in 1 year. Note that there is little difference between the factors for monthly and continuous compounding.

$$
\begin{aligned}
& \text { By Eq. }(2.1 \# 4) \\
& S=P\left(1+\frac{i}{p}\right)^{n p}
\end{aligned}
$$

where S is the future amount of a present amount P aiter n years with nominal decimal interest rate per yeardicompounded.p.times per:year. Inthedimit with.p equal to infinity for continuous compounding

$$
\begin{align*}
& 1+\frac{i}{p}=e^{i} \\
& R: P e^{t} r
\end{align*}
$$

Where e is the naperian constant $2.71828 \ldots$ Also solving for P in terms of S,

$$
P_{A}=S_{t}=i^{n}
$$

Thus the factor $e^{i n}$ is an operator that moves $\$ 1 n$ years with the calendar at a nominal decimal rate per year i. Similarly, the factor $e^{-i n}$ is an operator that moves $51 n$ years against the calendar at a nominal decimal rate per year i.

Generally there is no confusion between periodic and continuous interest inasmuch as the two are never used together. However, in this book a bar over a letter will be used when necessary to emphasize that continuous interest or continuous flow is intended. Thus in keeping with the terminology of Chap. 2,

$$
c=F_{r i s} ; \pi^{2}
$$

The factor $F_{P S, i, n}$ converts a single amount P to a future amount S, with continuous interest at nominal decimal rate i per year, n years with the calendar. The factor is tabulated in Appendix 2, Table 1. Similarly, the factor $F_{S P, i, n}$ converts S to P, is a present-worth factor for continuous compounding, and is tabulated in Appendix 2, Table 2.
λ useful characteristic of continuous compounding and discounting factors is evident from the tabulations. Note that in Appendix $2-T$ Tables i and $2, i$ and n appear as.at product in. Because of this circumstance, a continuous-discount function has the same value for each combination of interest rate and time period which has the same product. Consequently, continuous discounting requires an!) one table of factors, based on the product in, while annual discounting requires nien y wbles, one for each interest rate.

This mathematical characteristic also permits continuous factors to be placed on a discounted cash-flow slide rule so that present-worth and other calculations can be made even more simply because of-rot having to refer to tables of factors. ${ }^{1}$ The tables for continuous discounting are much more compact than those for periodic discounting. In addition, the continuous form combines readily with several functions describing common cash-flow patterns so that the summation (integral) of the present worth is easily found from one or two tabulated factors. This convenience is shown by the simple formulas and procedures develoned in this chanier.

It should te noted itai in this chapter i is a decimal annual rate. The discounting or compounding interval determines what the effective annual rate will be. The relationship between effective interest rate and nominal interest rate was given by Eq. (2.1\#5) and for continuous compounding becomes

Effective interest rate $=e^{i}-1$
The converse relationship is

$$
i_{\mathrm{nown}}=2.303 \log \left(1+i_{\mathrm{eff}}\right)
$$

In Eq. (4.2\#6) the reference is to common logarithms. Equations (4.2\#5) and (4.2\#6) permit conversions from nominal to effective rates and vice versa. They can be useful because at times a problem arises in terms of annual interest but discount factor tables ma; be available only for continuous interest, or the converse.

Figure 4.2FI shows a comparison of equivalent annual and continuous rates. Thus by the figure

$$
\begin{aligned}
5^{\circ} \text { annual } & =4.9 \% \text { contunuous } \\
10^{\circ} \text { annual } & -9.5 \% \text { continuous } \\
20^{\circ} \% \text { annual } & =15.20 .0 \text { continuous } \\
30^{\circ} \text { annual } & =26.20_{0} \text { continuous }
\end{aligned}
$$

[^1]

Fig. 4.2.1. Equivalent annual and continuous rates.
Tables 1 and 2 of Appendix 2 can be extended because of the properties of exponentials. Thus, from Appendix 2, Table 1, knowing further that $e^{0.003}=$ 1.6030,

$$
\begin{aligned}
c^{10.613} & =e^{5} e^{5} e^{0.61} e^{0.003} \\
& =148.41(148.41)(1.8404)(1.0030)=40,666
\end{aligned}
$$

Example 4.2EI If the discount rate is 10% per year, what is the present worth of $\$ 2,500$ to be received as a single payment 20 years hence?

By Eq. (4.2\#2) and Appendix 2, Table 2,
$P=S e^{-4 n}=2,500 e^{-(0.331: 0)}=2,500(0.1353)=5338.25$
Example 4.2E2 If 55 is received now, what will it amount to in 20 years at 30% per year interest? By Eq. (4.2\#1) and Appendix 2, Table 1,

$$
S=P e^{i n}=5 e^{(0.301,(50)}=5(400.4)=\$ 2,002
$$

4.3 Uniform=now

In ile previous section, compounding and discounting were performed on a single an,ount. In this section the operations will be performed on a continuous flow. Suppose that an amount flows at the rate \bar{R} per year for n years. Consider a small interval of time $d Y$ starting X years from now, as in Fig. 4.3F1. The flow durine this interval is given by rate multiplied by time and is $\bar{R} d X$. Theopsesent

$P_{\text {ielemin }}=\bar{A} \cdot d X=\operatorname{cod} X$

Fig. 4.3FI Discounting a uniform flow.

and Eorallatherelefnents

$$
\Leftrightarrow A=\bar{R} \cdot \int_{0}^{n} d x=\bar{R}\left[\begin{array}{c}
e^{-i X} \\
-i
\end{array}\right]_{0}^{n} \bar{R} \frac{1-e^{-i n}}{i}
$$

If the relationship above is raubiplied-andadixidech byatzitabecomes

The value $n \bar{R}$ is the total fow for the period. The factor within the brackets now appears as a function of in only and can be tabulated compactly. In the terminology of this book

$$
\begin{equation*}
F_{R P, \bar{i}, n}=\frac{1-e^{-i n}}{i n} \tag{4.3,43}
\end{equation*}
$$

and

$$
F_{P F, \mathrm{i}, \mathrm{n}}=\frac{i n}{1-e^{-i n}}
$$

$$
\left(\begin{array}{ll}
\because i & \bar{i}=i \\
\hdashline i & \prime
\end{array}\right)
$$

The factor $F_{R P ;, i, n}$, which converts $n \bar{R}$ to P, is tabulated in Appendix 2, Table 3, as the evaluation of $\left(1-e^{-x}\right) / x$, where $x=$ in.

Example 4.3EI A mine is expected to yield a cash income after taxes of 520,000 per year continuously for each of the next 15 years. If the minimum acceptable rate of return on investment is $12 \because$ per year, find the maximum amount that can be economically justified for buying the mine.

By Eq. (4.3\#2) and Appendix 2, Table 3.
$P=\left(n \mathcal{R}_{1} F_{R P_{\text {.0.12.13 }}}=15(20,000)\left(0.463^{\frac{7}{7}}\right)=\$ 139,110\right.$
Example 4.3E2 If SI per day is invested as received at 8% per year inicrest, what will the sum be in 15 years?
First find the present worth of the uniform flow of 5365 per year by Eq. (4.3.t2) and Appendix 2, Table 3.
$P=151365) F_{R P \cdot u .0 .6}=15(365)(0.5523)=3.188$
\ext convert to a future worth by Eq (4.2\#1) and Appendia 2. Table 1,
$S=3.158 c^{(00.001+13}=3.185(3.3201)=510.587$

 Tible 3 ,

$$
R=\text { si92. } 33 \text { per year }
$$

or

$$
\frac{492.83}{12}=541.07 \text { per month }
$$

4.4 Flow charging at an exponential rate

It is appropriate at this point to highlight an aspect that is often unrecognized or overlooked : the most important, and perhaps the mosidificult part? at an economic ana! ysis is making a realisticestimate of what the future cash flows w: prove to be. A.times; this:riep:zeemselementary, buthe-bmplicity can be dec rive. Consider a homeowner who has a 25 -year 5% mortgage requiring pu ments every month. This seems like a straightforward cash flow: money loaned in a lump sum and repaid regularly. But what about the initial fee for writing the mortgage? What happens if the homeowner loses his job and income or dies? What about the refinance charges if he sells his home and moves to a different one? W

Changes such as these are more likely to happen than not with the cash Rinjofanjo in: estment. Pesognizing that such changes occur is more appropriate than assuming that there will be no change; but projecting them realistically is a challenge.

During initial scoping studies, it can be convenient to assume level per-formance-to ignore change or assume there will be none-in order to simplify the analysis. It is important to recognize, though, that this assumption is being made and to interpret the results accordingly. In reallife or for a definitive analysis, stech an assumption can rarely be made with safety; it may not only be misleading but disastrous.

This chapter will not dwell on methods or techniques of projecting cash lows. As a point of departure, though, it is convenient to recognize that changes "hich seem erratic over the short term often move in regular trends over the long term. Wage rates seem to increase continuously, and competition conturaally erodes piofit margins. Such rends can be readily discounied or compounded by the continuous method.

If an initia! flow R_{0} dollars per year, increases contintously ai a rate g per vear expressed as a decimal, the rate of flow at any time X by analogy with Eq. (4.2若1) is

$-x_{x}$

Censider a smali interval of time d $\bar{\lambda}$ starling X years from now, as in Fig. 4.4FI. The fow for this interval is $R_{0} e^{v .} d X$. The present worth for this small element of

Fig. 4.4FI Discounting a flow changing at an exponential rate.
flow from Eq. (4.2H2) is

$$
P_{\mathrm{elem}}=R_{0} e^{g X} d X e^{-i X}=R_{0} e^{(0-1) X} d X
$$

and for all the elements

$$
\begin{align*}
P & =R_{U} \int_{0}^{n} e^{(g-i) X} d X=R_{0} \frac{e^{(\rho-i) n}-1}{g-i} \\
& =n R_{0} \frac{1-e^{-(i-g) n}}{(i-g) n}=\left(n R_{0}\right) F_{R P, i-\sigma, n}
\end{align*}
$$

Thus, the present worth is easily calculated from a knowledge of the initial flow rate and from the factors tibulated in Appendix 2. Table 3.

Equation (4.4\#1) hoids if g is negalive, i.e., the fink is decreasing ai a rate g per year, provided of course that g is introduced as a negative number.

Example 4.4E1 Repeat Example 4.3E1 but with a forecast that inflation will raise prices 3% per year continuously.
By Eq. (4.4,41) and Appendix 2, Table 3,
$P=n R_{0} F_{R P \cdot 0.12-0.03,1 \mathrm{~s}}=15(20,000)(0.5487)=\mathrm{s} 164,610$
Example 4.4E2 Repeat 4.3E1 with the condtion that the mine will tecome gradually depleted so that its net income declines at the rate of 5% per year.
Here $i=0.12$ and,$s=-0.05$. Thus $i-g=0.12-(-0.05)=0.17$. By Eq. (4.4\#1) $P=15(20,090) F_{R P \cdot 0.1: 13}=15(20,000)(0.3615)=\$ 108,450$

Example $4.4 E 3$ Repeat $4.3 E 1$ subject to both an inflation rate of 3% per year and a depletion.

$P=15(20,000) F_{R Y .0 ~}^{24 . i}:=15(20,000)(0.4179)=\$ 125.370$

4:50-flow-de-tining-in-straight-line to zero

Cimvider Fig. 4.SFl. in which an intial fow, \dot{R}_{0} dollars per vear, declines to zero ? A strught-line relationship in : years. At time Y the flow is R_{x}, and Ey similar tr.mels

$$
\because R_{y}
$$

Fig. 4.5F! Discoun!ing a flow jeclining in a straight line to zero.
or

$$
R_{x}=R_{0}\left(1-\frac{X}{n}\right)
$$

In a small interval of time $d X$ starting X years from now, the flow for the interval is

$$
R_{x} d Y=R_{0}\left(1-\frac{X}{n}\right) d X
$$

and the present worth for this small element of flow is, from Eq. (4.2\#2),

$$
P_{\mathrm{cl}=\mathrm{m}}=R_{n}\left(1-\frac{X}{n}\right) d \tilde{X}^{\prime} e^{-i \underline{i}} \cdots \cdots \cdots \cdots \cdot
$$

For all the elements

$$
P=R_{0} \int_{0}^{n}\left(1-\frac{X}{n}\right) e^{-i X} d X=R_{0} \int_{0}^{n} e^{-i X} d X-\frac{R_{0}}{n} \int_{0}^{n} X e^{-i X} d X^{-}
$$

The first integral on the right has already been evaluated and is

$$
R_{0} \frac{1-e^{-i n}}{i}
$$

Tables of integrals show

$$
\int X e^{-a X} d X=-\frac{e^{-a x}}{a^{2}}(a X+1)
$$

so that the second integral on the right of Eq. (4.5\#2) is

$$
-\frac{R_{0}}{n}\left[-\frac{e^{-i X}(i X+1)}{i^{2}}\right]_{0}^{n}=\frac{R_{0}}{i}\left(e^{-i n}+\frac{e^{-i n}}{i n}-\frac{1}{i n}\right)
$$

The combined integrals on-the right of Eq. (4.5\#2) become

$$
P=\frac{R_{0}}{i}\left(1-e^{-i n}+e^{-i n}+\frac{e^{-i n}}{i n}-\frac{1}{i n}\right)=\frac{R_{0}}{i}\left(1-\frac{1-e^{-i n}}{i n}\right)
$$

The latter can be written

$$
P=\frac{n R_{0}}{2} \frac{2}{i n}\left(1-\frac{1-e^{-i n}}{i n}\right)
$$

The total flow Q is the area of Fig. 4.5 Fl and is $n R_{0} / 2$. Finally, Eq. (4.5\#3) becomes

$$
P=Q\left[\frac{\Gamma}{[i n}\left(1-\frac{1-e^{-i n}}{i n}\right)\right]
$$

A table of discount factors for such a flow is the evaluation of the bracketed terms on the right, i.e.,

$$
\frac{2}{x}\left(1-\frac{1-e^{-x}}{x}\right) \quad \text { with } \quad x=\text { in }
$$

and is tabulated in Appendix 2, Table 4. This type of flow approximates sum-ofdigits ($S D$) depreciation and in symbols is

$$
F_{S D P, \mathrm{i}, 4}=\frac{2}{i n}\left(1-\frac{1-e^{-i n}}{i n}\right)
$$

Appendix 2, Table 4, is commonly referred to as the years-digits tubie.
 digits method of depreciation. Find the present worth of the depreciation, before taxes, if the discount rate is 16% per year.

$$
\text { By Eqs (4.5\#4) and (4.5\#5) and Appendix 2, Table } 4 .
$$

$$
\begin{aligned}
P=Q F_{S O P, \bar{i}, n} & =150,000 F_{\text {sDP } 0.0 .16,20}=150,000(0.4376) \\
& =\$ 65,640
\end{aligned}
$$

Internal Revenue Service regulations effectively require depreciation charges to begin at the middle of a calendar year. Consequently, if a plant begins operation just before the end of a calendar year, discounting of the actual depreciation cash flow is more closely approximated by substituting $n-1 / 2$ for n in the above function and $n-1$ if the plant goes on-stream just after the begiming of a year.

Example 4.5E2 Find the present worth of :he machine in Example 4.SE1 is it is expected to begin cuperation in December.
The previous caleulation becomes

$$
P=150.000 F_{, H \text { U u.to.:00-0.S }}=150.000 F_{د L \text { L } 3.12}=150,000(0.4446)=566,690
$$

4.6 Discounting with improving performance-learning

Evperience showi that practice mahes perfect-that a thing can atways be done pe:ter. not onl: the weond tume but cath succeding time by rying. This expe:i-

 more fully in Chap. 9. For the presentation here assume that the learning factor For a plant unit is manifested as an increase in profit margin . 1\%. Assume an exponential relationship such that

$$
M_{T}=M M_{0}\left(2-e^{-k T}\right) \quad!^{\prime}
$$

where $M_{T}=$ profit margin at lime T

$$
\begin{aligned}
M M_{0} & =\text { initial profit margin } \\
k & =\text { empirical constant }
\end{aligned}
$$

The present worth at i interest rate on such flow over T years is

$$
\begin{align*}
P & =\int_{0}^{T} M_{0}\left(2-e^{-k T}\right) e^{-i T} d T \\
& =2 M_{0} T \frac{1-e^{-i T}}{i T}-M_{0} T \frac{1-e^{-i(+i) T}}{(i+k) T} \\
& =2\left(M_{0} T\right) F_{A P, i, n}-\left(M_{0} T\right) F_{R P, \overline{i+k}, n}
\end{align*}
$$

Equation (4.6\#2) can be combined with a flow changing at an exponential rate. Suppose the selling price of each production unit changes such that the profit margin changes continuously at a rate g per year, then corresponding to Eq. ($4.0 \overline{i n} i$) the relationship is

$$
M_{T}=M_{0} e^{g T}\left(2-e^{-\kappa T}\right)
$$

which by an analogous procedure leads to

$$
\begin{equation*}
P=2\left(M_{0} T\right) F_{R P, \bar{i}-\psi, u}-\left(M_{0} T\right) F_{R P, \overline{i+k-v, n}} \tag{p}
\end{equation*}
$$

In practice g is usallly negative and in such cases must be introduced as a negative number.

Example 4.6EI A plant is expected to have an initial profit margin of 5100,000 per year. Find the present worth at 8% per year discount rate of this margin for 20 years of operation if:
(a) Profit margin and plant performance stay level.
(b) Performance traces an achievement curve such that

$$
. M_{T}=M_{0}\left(2-e^{-0.10 T}\right)
$$

(c) Performance traces the same curve, but margin shrinks 3% per year.

The following factors are available from Appendix 2, Table 3.

$$
\begin{aligned}
F_{R P .0 .08,20} & =0.4988 \\
F_{R P .0 .08-0.10 .2 n} & =0.2702 \\
F_{R P^{P} .0 .03+0.03 .20} & =0.4042 \\
F_{R y .0 .08+010+0.03 .20} & =0.2345
\end{aligned}
$$

Part (a) is given by Eq. (4.3\#2)

$$
P=100,000(20)(0.4988)=\$ 997,600
$$

Part (b) is given by Eq. (4.6\#2)

$$
P=2(100,000)(20)(0.4988)-100,000(20)(0.2702)=\$ 1,454,800
$$

Part (c) is given by Eq. (4.6\#4)

$$
P=2(100,000)(20)(0.4042)-100,000(20)(0.2345)=\$ 1,147,800
$$

4.7 Unaflow-capital-recovery factor

In Sec. 4.3 a uniform flow was converted to a present worth or present value. The inverse of that procedure, the conversion of a present value to a uniform flow, will be considered in this section. Solving Eq. (4.3\#2) for \bar{R} gives

$$
\bar{R}=\frac{P}{n} \frac{1}{\left(1-e^{-i n}\right) / i n}
$$

which by Eq. (4.3 43) becomes

$$
\bar{R}=\frac{P}{n} \frac{1}{F_{R F_{i, i, n}}}
$$

Equations (4.7\#1) and (4.7\#2) are important. They permit transforming a present value P having n years duration to a uniform flow. \bar{R} will be referred to as uncfor and is analogous to unacost in periodic compounding. \bar{R} could also be called the continuous capital-recovery amount.

Unafow is important because like unacost it can be made the basis for comparing articles or systems having different service lives. It reduces all service lives to a common denominator, equivalent uniform flow.

Example 4.7E1 A firm has the optoon oi getting a patent licease by a single payment of $\$ 50,000$ or royalty payments of $\$ 5,000$ per year for the 17 -year liie of the patent. If the payments can be expensed in enther case, and if the firm earns 15% per year befure taxes, wheh is the more atracuse chore?
Unaflow for royaly payments is 55,000 per year, as given. Unaflow for puichase of pation by Eq. (4.7\#2) and Appendix 2, Table 3, is
$R=\frac{50,000}{17} \frac{1}{F_{f_{1}, r_{0,15,1:}}^{50,000}} \frac{1}{17}=58,136$
Tile annual rowalters si 55000 per year are thus cheaper for this firm. The rathe at cusis.

 rate and wi" - ail ou ajarioltry butt alkreatnes equatly.
 1-:I.. the munthiy renmeats.

$R=\frac{15,000}{20} \frac{1}{F_{\text {A.P.0.00.20 }}}=\frac{15,000}{20} \frac{1}{0.5823}=\$ 1,289$
That is, the flow must be $\$ 3,2 S S$ per year, or
$\frac{51,2 \mathrm{~S} 8}{12}=\$ 107.33$ per month

4.8 Capitalized cost

Capitalized cost, like unaflow, can be used to compare articles or systems havin different service lives. It reduces all service lives to a common denominator, i.e present value on the basis, for mathenatical purposes, of service forever.

Consider an article that has an initial cost C and lasts n years. The presen worth of supplying service forever is

$$
P_{\infty}=C e^{-i 0}+C e^{-i n}+C e^{-2 i n}+C e^{-3 i n}+\cdots
$$

which is an infinite geometrical series with first term C and ratio $e^{-i n}$. The sun is given by Eq. (2.2\#2), and letting $P_{\infty}=K$,

$$
K=\left[\frac{1-\left(e^{-i n}\right)^{\infty}}{1-e^{-i n}}\right] C=\frac{1}{1-e^{-i n}} C
$$

The bracketed term on the right converts a present worth of n years duration to a capitalized cost; i.e.,

$$
K=P_{n} \frac{1}{1-e^{-i n}}
$$

or

$$
K=P_{n} \frac{e^{i n}}{e^{i n}-1}
$$

where the symbol P_{n} emphasizes that P is a present worth representing n years duration.

Equations (4.8\#2) and (4.8\#3) are important because they are the basis for using the capitalized-cost concept with continucus interest. Equation (4.8\#3) is the more convenient form if Tables for $e^{\prime \prime}$ are a ailable, as in the book, Appendix 2, Table 1. The reader is referred to Chap. 2 for a more complete discussion of capitalized cost.

A relationship between capitalized cost K and unaflow \bar{R} is easily derived. The present worth of a unaflow \bar{R} for n years is, by Eq. (4.3\#2),

$$
P_{\mathrm{n}}=n \bar{R} \frac{1-e^{2 n}}{i n}
$$

and the capitalizeu cost of this present worth becomes, by Eq. (4.8\#2),

$$
K=n \bar{K} \frac{1-e^{-i n}}{i n} \frac{1}{1-e^{-i n}}=\frac{\bar{R}}{i}
$$

that is,

$$
\bar{R}=i K
$$

Equation (4.8\#4) for continuous interest and unaflow is analogous to the corresponding relationship $R=i K$, Eq. (2.7\#6), for periodic interest and unacost.

Example 4.8EI Repeat Example 4.7E1 on the basis of capitalized cost. Capitalized cost of the royalty payments, by Eq. (4.SH4), is
$K=\frac{R}{i}=\frac{5,000}{0.15}=33,333$
Capitalized cost of purchase is given by Eq. (4.8\#3), which, using Appendix 2, Table 1, becomes
$K=50,000 \frac{e^{(0.151(12)}}{e^{(0.25)(12)}-1}=50,000 \cdot \frac{12.807}{12.807-1}=54,235$
It is cheaper to pay the royalties. The ratio of costs, purchase to lease, is $54,235 / 33,333=$ 1.6271. This checks the calculation by unafiow in Example 4.7E1.

Eニ̃r.p!c 4.8E2 !r a given exposure, a naint job lasts 4 years and costs $\$ 0.20$ per square foot. A supplier offers a rew coating which is claimied io last 20 years but costs 50.60 per square foot. Is it economically attractive to change to the coating which lasts five times as long and costs only three times as much, if money is worth 10% ? Neglect taxes.

Capitalized costs can be calculated from Eq. (4.8\#3) and Appendix 2, Table 3, and are for the 4- and 20-year jobs, respectively,
$K_{4}=\$ 0.20 \frac{e^{(0.10141}}{e^{(0.10)(141}-1}=0.20 \frac{1.4918}{0.4918}=0.6067$
$K_{20}=50.60 \frac{e^{10 \cdot 101 / 201}}{e^{10.001: 01}-1}=0.60 \frac{7.3891}{6.3891}=0.6939$
The 4 -year coating is the more economical. The savings as flow per year per square foot can be obramed from Eq. (4.8\#4) and is
$R=i\left(K_{20}-K_{\mathrm{s}}\right)=0.10(0.6939-0.6067)=0.00872$
That is, use of the $4-y e a r$ coating saves 50.00872 per year per square foot in comparison with the 20-year coating.

4.9 Income tax

The reader is referred to Chap. 3 for a detailed development of the effect of income tax using periodic interest. This section is concerned with the inclusion of income tax with continuous interest. Basically nothing new is involied. Suppose an item has a depreciable first cost $C_{\text {. }}$, that it lasts n years and can be written off in n sears ior ta purposes. lisu discountine whll be on a continunus basis at a decimal
 an be いrata

$$
P_{n}=C_{d}(1-(\psi)
$$

$(4.9 \div 1)$

 mihod of depreciation used and can be calculated for .me me:had. For the chapter only two methods are considered, straight line and sum oi dight.

Siraight-line depreciation (SL) is treated as a uniform flow. i.e.. as uniform continuous depreciation. For a total flow of unity, recalling that $;$ is a present Worth, Eq. (4.3\#2) gives, with n^{\prime} the life for tax purposes,

$$
\psi_{S L}=\frac{1-e^{-i n^{0}}}{i n^{\prime}}=F_{R P, i, n^{\prime}}
$$

and Appendix 2, Table 3, can be used.
Sum-of-digits depreciation ($\bar{S} D$) is approximated by a flow declining in a straight line to zero as developed in Sec. 4.5. For a total flow of unity, Eq. (4.5\#5) becomes

$$
\psi_{S D}=F_{S D P, \bar{i}, n^{\prime}}=\frac{2}{i n^{\prime}}\left(1-\frac{1-e^{-i n^{\prime}}}{i n^{\prime}}\right)
$$

where the right side is tabulated in Appendix 2, Table 4.
If an expenditure or receipt becomes cligible for tax credit at once, such as a maintenance expense, then for such items having no capitalization. for income tax purposes

$$
\psi=1
$$

regardless of the depreciation method.
Witn these considerations it becomes possible to use continuous interest on an after-tax basis with the same aase as for computations with periodic interest. All items of expenditure and receipt are considered on an after-tax basis.with proper regard to the timing of tax credits.

Example 4.9E1 A 51,000 investment has an expected life of 20 years and is to be depreciated cver a 15 -year life at a 52% tax rate using sum-of-digits depreciation; money is worth 10% per year after taxes. Find (a) the present worth of the capital charges after taxes and (b) unaflow.

By Eqs. (4.9\#1) and (4.9\#3), and Appendix 2, Table 4,
$P=1,000\left(1-0.52 F_{\text {SDP.0.10.15 }}\right)=1,000[1-0.52(0.6428)]$

- $P=\$ 678.60^{--}$ans. (a)
(4.9\#5)

If R is the unaflow before taxes, then $\varphi=1$ for this item by Eq. (4.9\#\#4), and the unafiow affer taxes is
$R(1-0.52)=0.48 R$
Equations (4.9\#5) and (4.9\#6) are both on an after-tax basis and mus: be equivalent. Using Eq. (4.7\#2) with $0.48 R$ in place of R, and Appendix 2, Table 3 .

$$
\begin{aligned}
0.48 R & =\frac{678.60}{20} \frac{1}{F_{R P \cdot 0.10 .20}}=\frac{678.60}{20} \frac{1}{0.4323} \\
R & =\$ 163.51 \text { per year before taxes ans. (b) }
\end{aligned}
$$

-4.10 Equivalence_

One of the major purposes of a firm is to show a profit, which it does by committing its funds to ventures which promise to do so. There are always alternatives for

Tahle 4.l0TI Summary of Relationships for Continuous Interest

$\begin{aligned} & \text { lum } \\ & n \prime \prime . \end{aligned}$	$11 \times m$	Description	Alychruic relationship	Factor rchationship	
1	$1 / \mathrm{n} S$	Moves a fixed sum P to another instant of time " years with calendar	$S=1 c^{i n}$	$S=P$ Fr.i.n \quad (App. 2, Table 1)	
?	$S 1010$	Moves a fixed sum S to another instant of time n years against calendar	$P=S e^{\prime \prime}$	$P=S F_{1, i, i, n}$ (App. 2, Table 2)	
1	$R 10 \%$	Converts a unafow R for n ycars to present worth al start of now	$P=n R \frac{1-e^{-i n}}{i n}$	$P=\\| R F_{H r_{1} \cdot \overline{1} \cdot n} \text { (App. 2, Table 3) }$	
\dagger	R for 1 year to P	Present worth of 1 year of unaflow starting λ years hence	$P=R c^{-1} \times \frac{1-e^{1}}{i}$	$P=R F_{A P, \bar{i}, \lambda} F_{\bar{R} P, \bar{i}, 1}$	
¢	I' of flow clanging at an exponential bate for n ye:irs	Present worth of $R_{z}=R_{0} e^{ \pm} x$ for 1 years	$P=n R_{0} \frac{1-e^{\left.-1, T_{0}\right)}}{i \mp g}$		
1	P of how declining in straight line to zero	Flow gocs from R_{0} at zero time to 0 in n years; total fow Q is $n R_{0} / 2$	$P=Q\left[\frac{2}{i n}\left(1-\frac{1-e^{-i n}}{i n}\right)\right]$	$P=\varrho F_{\mathrm{s} D P, \bar{i}, \mathrm{n}} \bullet$ (App. 2, Table 4)	
7	P to R	Converts a present worth to a unaflow of n years	$R=\frac{P}{n} \frac{1}{\left(1-e^{-i n}\right) / i n}$	$R=\frac{P}{n} \frac{1}{F_{A P, \bar{i}, n}^{-}}$	

8 ,	R to S	Converts a unaflow for n ycars to a future amount, n years hence	$S=n \mathbb{R} \mathbb{e}^{i n} \frac{1-e^{-i n}}{i n}$	$S=n R F_{r s, i, n} F_{u r, 1, n}$
91	S to R	Converts a fulure sum S, n years from now, to a unaflow; sinking-fund payment	$R=\frac{S e^{-i n}}{n} \frac{1}{\left(1-e^{-i n}\right) / i n}$	$R=\frac{S}{\cdot n} F_{r s, 1, n} \frac{1}{R_{n} r, i, n}$
10	\boldsymbol{J} to K	Converts a present worth represcnting n years to a cipitalized cost	$K=P \frac{c^{\prime n}}{e^{\text {m }}-1}$	
11.	K'to R	Converts a capitalized cost to a unallow	$R=i K$	
12	Before to after tax	Converts before-tax amount to allcr-lax amount, at tax rate t	After tax $=\left(1-y^{\prime} y^{\prime}\right)$ before tax	
13^{\prime}	r	Present value of $\$ 1$ of depreciation, "' years life for :ax purpose	$\begin{aligned} & Y_{\prime N L}=\frac{1-e^{-i n^{\prime}}}{i n^{\prime}} \\ & y_{y_{1 \prime}}=\frac{2}{i n^{\prime}}\left(1-\frac{1-e^{-i n^{\prime}}}{i n^{\prime}}\right) \end{aligned}$ $y=1$ for instantancous iax benefit $\psi=0$ for no depreciation, i.c. land	

making these investments and expenditures．The function of economic analysis is to help in making better choices between alternatives by placing dollar values on quality，quantity，time，and other characteristics of these alternatives．This quantifying needs to be done in a consistent way so that the dollar values are measured by the same yardstick，i．e．，expressed on an equivalent basis．Doing so highlights the better alternative，the one with the lowest economic cost or highest economic value．

Discountung and compounding at the same interest rate places the same dollar value on time．However，since the alternatives may have different lives， e．g．，low－cost short－life carbon steel vs．high－cosi long－ilife alloy steel，it is also necessary to compare them over the same time interval．Present worth compares equivalent values now；unaflow，the equivalent continuous annual cost，compares the values on a per－year basis；and capitalized cost compares them on a forever basis as a common denominator for all service lives．Comparisons can also be made on the basis of rate of return，discounted cash flow，as developed in the following chapter．

The method to be used for comparing alternatives or ventures and the choice between periodic and continuous interest is left to the analyst．There is no universal or intrinsic ansvier，and the choice varies with circumstances．Some analysts are more familiar with one approach and therefore prefer it．Some problems are so expressed that one solution is easier or more meaningful by one of the methods．Tine techrique which is felt best by the analyst for petiting the solution，however，is not necessarily the one best for presenting the solution to the client．Although an economic specialist may prefer one method or even be equally comfortable with all four，the client is often a manager，who is a generalist by necessity．Since he does not have time to be a specialist in every field，results must be presented in terms familiar to him－simpie enough to be grasped on the run．Experience shows that if a solution is presented in unfamiliar or seemingly unrealistic terms，it will not be understood；if not understood，it will not be believed；and if not believed，it will not be accepted．

This chapter has discussed the essence of continuous discounting and compounding，showed how to develop relationships for handling commonly encountered cash flows，including those which may change over time，and illus－ trated the ease of applying them by simple examples．Most real problems are more complex，not so much in computation，but in defining what the cash flows will prove to be．Often， 95% of the total time in solving a problem is required on such a determination for allocating costs and incomes，determining the applicaible tax and other government regulations，and projecting sales，costs，and so on．This circumstance does not mean that economic analysis of cash flows is insignificant， because eten with the right cash flows，a wrong analysis or interpretation can lead to the wrong choice of alternatives．Instead，the observation is intended to put the various parts of probiem solving ino meaningful perspective for understanding and coping beter with real situations when they arise．

A unmary of the arious relationship，using continuous interest is giver in Table thor！

：．1！Siomenclature

C：Depreciatie iirst cuil． 5
－aperiar，cons！ant 2．？1828．．．

$F_{\text {f．i．．}}$ Fuctor to converi P to 5 with continuous compounding．${ }^{\prime \prime}$ ，Appendix 2，Table 1. dintensionless
$F_{\bar{i} p, \bar{n}}$ Factor to conveit R to P uith continuous discounting：Appendix 2．Table 3，years
$F_{s P, i, n}$ Factor to convert S to P with continuous discounting．$e^{\cdots n}$ ，Appendix 2 ，Table 2. decimal，dimensionless
$F_{s L P .-\mathrm{i}}$ Factor to convert a unit total flow declining to zero at a constani rate over n years starting with the reference point and with contiruous tiscounting，decimal，dimension：－ less，approximates $\psi_{s d}$
Constant in exponential－rate fow change，dec：mal
Nominal interest rate，decimal／year
Empirical exponent in learning－curve relationship，decimal，dimensionless
Capitalized cost．s
Profit margin，$\$$
Time，years
Time for tax depreciation，years
Periods per year
Present worth，$\$$
Present worth for n years duration，\underline{s}
Total flow． 5
Nominal rate of retirn after taxes，decimal／year
$R \quad$ Uniform flow，unaflow，s per year－
$R_{0} \quad$ ．．Initial flow rate，S per year $:=-$
R_{1} ．Elew rate st time \mathcal{X}, ξ_{T} ner year
5ut：＝かoでh，s
Straight－line depreciation
$\begin{array}{ll}\text { SL } & \text { Straight－sine depreciation } \\ \text { SD } & \text { Sum－of－digits depreciation }\end{array}$
，－．Income tax fate，decima！
T ．Time；years
$\varphi \quad$ Factor associated with present worth of tax benefits arising from depreciation，dimen－ sionless
$\psi_{s L} \quad$ The ψ factor for straight－line depreciation
$\psi_{s D} \quad$ The φ factor for sum－of－digits depreciation

4．12 Problems

Pl．Develop a relationship for discounting a flow increasing in a straigh：line from zero at zero time to \bar{R}_{n} at time n ．
P2．Develop a relationship for discounting a flow increasing in a straight line from R_{1} at zero time to F_{2} at time r ．
P3．Develop a relationship for discounring a series of periodic cash flows of k payments，Y each， at intervals of n years，the first one beginning n years hence．
P4．in firm has a contrioutory savings plan whereby each employee can set aside 5% of his gross salary．The firm will maich this amount，invest the sums in its capital stoik，and reinvest all dividenos in capital stock．If an employee＇s salary is consisienily $\$ 12,000$ per year，how much will he accumulate after 20 years if the company＇s net earnings average 8% per ycar and the stock consisientiy sells a！book value？
P5．What is the average rate of growth of the employee＇s 5600 per year portion of the coniribu－ lion？

P6. Suppose the employee finds an alternative proposition which promises to double his money every 5 years. Will he be better off 10 participate in the savings plan or forego the company's contribution and invest his contritulton in the alternative?
P7. If the parents in Example 4.3 E 3 continue therr monthly savings during the 4 years their child allents co!lest, e.g.. for 2 limstead of 17 years, how much must their monthly savings be to permit $\$ 3,000$ per year :o be withdraun uniformly over the 4 years from the seventeenth to the tuentyfirsi burihday"
P8. A new machone cosis 58,000 and lasts 10 years, using sum-of-digits depreciation and a 10year life for tax purposes If money is worth 10% per year after a 52% tax, how much can be spent to reparr an old machine to chlend its hite 3 yeirs? The repair job can be written off at once for tax purposes. Compare vith Prob 3.15P6.
P9. Repeat Example ? 8 E6 using contınuous discounting. Money is worth 10% per year afier a 48% lax rate. U'se stratght-lıne deprectation. Machine A will be written off in 8 years for tax purposes, machine B in 10 years. Maintenance costs and savings from quality control are uniform flows in years in which they occur. The salvage value is anticipated and cannot be depreciated for tax purposes.

	A	B
First cost, s	10,000	95,000
Maintenance, s per year	3,000	1,000
Extra maintenance, year 3, S	4,000	
Exira mainienance, year 4, s -	1,500	
Sa:ings rram qualio ccn:rc!, 5 pá joar		6,000
Salvage value		20,000
Life, years	4	10

Pio. A company completed a plant 10 years ago. It was expected to be serviceable for 25 years, but technical advances and accumulated know-how suggest that obsolesence may have progressed faster than expected; so that it may be profitable to displace it now. A ssume for simplicity that (1) a new plant would have the same capacity as the old and would produce the same array of products with the same initral revenue for both, so that the advantage of the new is reflected only in its lower operating costs; (2) these savings in operating costs are $\$ 180,000$ per year; and (3) depreciation on the old plant is 535,000 per year on a straight-line basis, and present salvage value is zero, (4) the tax rate is 50% per year.

If the investment required for the new plant is SI milhon and both its useful life and life for tax purposes are 15 years with sum-of-digits depreciation, what is the rate of return to be earned by investment in a new plant?

4.13 References

RI. Hurschmann, W. B.: Profit from the Learning Curve, Hartard Business Rei., JanuaryFcbreary, 1964. pp 125-139.
R2. Hirschmann. U. B, and J. R. Brauvctier: Incesment Analysis: Coping unth Changa, Hartard Busates Rel., May-Junc, 1965, pp. 6こ-72.
RJ. Hirshmann. W^{\prime} B. and J R. Brawneiler: Continuous Discounting for Realistic Investment

present worth (P_{2}) of 53,000 from year 5 to infinity, using Eq. (8.3) and the P / F iactor, is

$$
P_{2}=\frac{3,000}{0.05}(P \mid F, 5 \%, 4)=\$ 49,362
$$

The two annual costs are converted to a capitalized cost $\left(P_{3}\right)$:

$$
P_{3}=\frac{A_{1}+A_{2}}{i}=\frac{847+5.000}{0.05}=\$ 116,940
$$

5 The total capitalized cost $\left(P_{T}\right)$ can now be obtained by addition:

$$
P_{T}=P_{1}+P_{2}+P_{3}=\$ 340,997
$$

Comment In calculating $P_{2}, n=4$ was used in the P / F factor because the present worth of the annual $\$ 3,000$ cost is computed in year 4 , since P is always one year ahead of the first A. You should rewor! the problem using the second method suggesied for calculaing P_{2}.

Pioblems P8.17-P8. 22

8.4 Capitalized-Cost Comparison of Two Alternatives

When two or more alternatives are compared on the exsis of their capitalized cost, the
 whal cosioffinancing and maintainting a given alternative torewershentlemenves mai Whom?ticall $y=$ be a comparedufor the Δ same . mumber of: years (i.e., infinity). The alternative with the smaller capitalized cost will represent the most economical one.
 difienences-inecsh flow betweer the alrernativeswhichit must-be-considered. Fhereiore, wheneverppossible, the catculations should be simplificd by eliminating the elements of cash flowe which.are commen to both alrematives. Example . 4 shows: Lhe prosedure Ero comparing wo alternatives-ainthe basis of cheis cap italized cost.

Example=8.4 Two sites are currently under consideration for a bridge to cross the Ohio River. The north site would connect a major state highway' with an interstate loup around the city and would alleviate much of the local through traffic. The disadvantages of this site are that the bridge would do little to ease !ocal trafic congestion during rush hours, and the bridge would lave to stratch from one hill to another to span the widest part of the river, railroad tracks, and local high ways below. This bridge would therefore be a suspension brid \mathfrak{E} e. The south sie would require a much shorter span allowing for construction of a truss bridge, but would require new rodd construction.

The suspension bridge would have a first cost of $\$ 30$ milliun with annual - pection and mainenance costs of 515,000 . In addition, the concrete k will have be resurfaced every ten years at a cost of 350,000 . The truss bridge ...d approach
roads are expected to cost $\$ 12$ million and will have annual maintenance costs of $\$ 8,000$. The bridge will have to be painted every three years at a cost of $\$ 10,000$. In addition, the bridge will have to be sandblasted and painted every ten years at a cost of $\$ 45,000$. The cost of purchasing right-of-way is expected to be $\$ 800,000$ for the suspension bridge and $\$ 10.3$ million for the truss brigge.
the basis of their capia!
solution Construct the cash-flow diagrams before you attempt to solve the problem. You should do this now.

Capitalized cost of suspension bridge
 $$
P_{1}=\text { present worth of initial cost }=30.0+0.8=\$ 30.8 \text { million }
$$

The recurring operating cost is $A_{1}=\$ 15,000$, white the anrual equivalent of the rosurface cost is

$$
\begin{aligned}
A_{2} & =50,000(A / F, 6 \%, 10)=53,794 \\
P_{2} & =\text { capitalized cost of recurring cosis }=\frac{A_{1}+A_{2}}{i} \\
& =\frac{15,000+3,794}{0.06} \\
& =5513,233
\end{aligned}
$$

Finally, the total capitaized cost $\left(P_{\mathrm{S}}\right)$ is

$$
\left.P_{S}=P_{1}+P_{2}=\S 31,1!3,233 \quad \text { (} \$ 31.1 \text { million }\right)
$$

Capitalized cost of truss tridge

$$
\begin{aligned}
P_{1} & =12.0+10.3=\$ 22.3 \text { million } \\
A_{1} & =\$ 8,000 \\
A_{2} & =\text { annua! cost of painting }=10,000(A / F, 6 \%, 3) \\
& =\$ 3,141 \\
A_{3} & =\text { annual cost of sandolasting }=45,000(A / F, 6 \%, 10) \\
& =\$ 3,414 \\
P_{2} & =\frac{A_{1}+A_{2}+A_{3}}{i}=\$ 242,583
\end{aligned}
$$

The total capitalized $\operatorname{cost}\left(P_{\mathrm{T}}\right)$ is

$$
P_{\mathrm{T}}=P_{1}+F_{2}=\$ 22,542,583 \quad(\$ 22.5 \text { million })
$$

Since $P_{\mathrm{T}}<P_{\mathrm{S}}$, the truss bridge should be constructed.

Example-11.2 Two routes are under consideration for a new interstate highway. The nortierly route (N) would be located abuut five miles from the central business district and would require longer travel distances by local commuter trafic. The southerly rouie (S) would pass directly through the downtown area and, although its construction cost would be higher, it would reduce the travel time and disiance for local commuters. Assume the costs for the two routes are as follows:

[^2][^3]| | Route N | Route S |
| :--- | ---: | ---: |
| Initial cost | $\$ 10,000,000$ | $\$ 15,000,000$ |
| Maintenance cost per year | 35,000 | 55,000 |
| Road-user cost per year | 450,000 | 200,000 |

SOLUTION Sinemmosionfathamasis.aranalreadyannuslized; the-EUACmethod willabexisedstoobtain the equivalent antual cos. Thacostspo be used in the B/C ratio

$$
\begin{aligned}
\mathrm{EUAC}_{\mathrm{N}} & =10,000,000(A / P, 5 \%, 30)+35,000 \\
\mathrm{EUAC}_{\mathrm{S}} & =15,000,000(A / P, 5 \%, 30)+55,000
\end{aligned}=\$ 1,030,750 .
$$

 cosics "1a-thequblie." Thebenerits, liowever, are-notheroad-user-costs-themselses

 chosen_instead-of-Rout-xid. Therefore, E'temenefit-(B)-of-Route S-over Route N-s $\$ 250,000$ pervear. On the otherthand, the cosis. (C) associated with these.benefits are represented bye he difference-between the annual costs of Routes N and S -Thus,

$$
\sigma_{m}=E U A G_{5}-E U A C_{\bar{N}}=3345 ; 250 \text { per year }
$$

Note that the route that costs more (Route S) is the one that provides the benefits. Hence, the B/C ratio can now be computed by Eq. (11.1).

$$
-B / E=\frac{250,000}{345,250}=0,724
$$

The B/C cationof less than-LOindicates that the extra benenuts associated with Route S^{e} are less than the extra costs associated with this route. Therefore, Route N would'be selected forconstruction Note that there is no "do nothing" alternative in this cast, since-onsectithe roads must be constructed.
comment if there had been disbeneñts associated with each route, the difference between the disbenefits wuuld have to be added or subtracted from the net benetis ($\$ 250,000$) for Route S, depending on whether the disbenefits for Route S were less than or greater than the disbensfits for Route N. That is, if the disbenefits for Route S were less than those for Route N, the difference between the two would
have to be added to the $\$ 250,000$ benefit for Route S, since the disbenefits involved would also favor Route S. However, if the disbenefits for Route S were greater than those for Route N, their difference should be subtracted from the benefits associated with Route S, since the disbeneits involved would favor Route N instead of Route S . Example 11.6 illustrates the calculations when disberiefits must be considered. IIII

Example 11.6
Problems P11.8-P11.12

11.4 Benefit/Cost Analysis for Multiple Alternatives

When only one alternative must be selected from three or more mutually exclusive (stand-alone) alternatives, a multiple alternative evaluation is required. In this case, it is necessary to conduct an analysis on the incremental benefits and costs similar to the method used in Chap. 10 for incremental rates of return. The "do nothing" altemative may be one of the considerations.
 alternative-analysis-by-the-benefit/cost-method-In-che-first.case,-if.funds-are-available
 6nly-ampare the altermativesagainst the "do nothing"-altemative. The alternatives are referred to as independent in this situation. For example, if several flood-control dams could be constructed on a particular river and adequate funding is available for all dams, the B / C ratios should be those associated with a particular dam versus no dam. That is, the result of the calculations could show that three dams along the river wouid be economicaily justifiabie on the oasis of reduced flood damane, recreation, etc., and, therefore, should be constructed.

 agaiastotherdonothing".naltemative. The exact procedure for doing this is discussed in Chap. 17. However, it is important for you to understand at this time the difference between the procedure to be followed when multiple projects are mutually exclusive and when they are not. In the case of mutually exclusive projects, it is necessary to compare them against each other, while in the case of projects that are not mutually exclusive (independent projects), it is necessary only to compare them reainst the "do nothing" alternative.

Problem Pl1.13

 Gash Nowand anvagevalue. The analysis should be periormed using after-iax cash.fow values (CF) (Chaps. is and 16), so that the results are more realistic. To find the econonuc serrice life of a.: 25set, the following model is utilized.

$$
\begin{equation*}
-\Omega=-P+\sum_{j=1}^{n^{\prime}}(C F),(P / F, i r o, j) \tag{11.2}
\end{equation*}
$$

where $(C E)_{p}=$ net.cash flow at the end of year $j(j=1,2,2, n$ ' . For a given interest cate (i), the value of- n^{\prime}. is sought: Aftern' 7 'ears (not necessarily an integer), the cash flows will recover the inst cost (P) and a return of ice Acommon, but incorract, industrial practice is-to determine $n-\mathrm{nt} \cdot i=0,0 \cdot$ that is, with no return accounted-for wis is illustuatedin the Solked Examples sectionmin-this case Eq. ($1+2$) becomes

$$
\begin{equation*}
0=-P+\sum_{j=1}^{n^{\prime}}(\mathrm{CF})_{i} \tag{11.3}
\end{equation*}
$$

which-asusedulacemputemo-tnteres-servicedifetamore-commonlycalled payback-or parout-period. If the cash flow (CF) is the same for each year, Eq. (11.3) is usually solved for n^{\prime} directly.

$$
\begin{equation*}
n^{\prime}=\frac{p}{C F} \tag{11.4}
\end{equation*}
$$

For a brief look at payback and some of its fallacies see Solved Examples, after you read the next section.

Problem P11.14

Het-Use-of Scrice-Eifento Determine:RequiredLife

 cast-at-a-stated-rate-of return. If the-service life (n^{\prime} ') is less than the time you woutd expect-to-be-able-to-employ-or-retain-the-asset, it-should be-bought. If. $n^{\prime} \times$ is greater thar the expected table-life-therasset should not be bought, since there will not be enoughtimetorecover the-investment plus.the.stated-return during the usable life.

Example- 4.500 A semiautomatic assembly machine can be purchased for $\$ 18,000$ with a salvage vaiue of $\$ 3,000$ and an annual cash flow of $\$ 3,000$. If a return of 15% is required and the company would never expect such a machine to be used for more than ten years, should it be purchased?
solution Qrearifecherereserimays manswerthis question presentwarthe EbAG,afateofreturnanaly sis.-But-ret'sure-the service-life approach. Using Ec. (11.2), we have

$$
0=-18,000+\sum_{j=1}^{n^{\prime}}(C F)_{j}(P / F, 15 \%, j)
$$

We assume the salvage value of 53,000 is correct regardless of how long the asset is : retained. We, therefore, can modify the above relation as follows:

$$
0=-18,000+\operatorname{CF}(P / A, 15 \%, n)+S V(P / F, 15 \% .
$$

where $\operatorname{SV}(P / F, 15 \%, n)$ is the present worth of the salvage after n years and the $P / . A$ fastor has been used where possible. At $n=15$ years we have

$$
\begin{aligned}
P & =-18,000+3,000(P / A, 15 \%, 15)+3,000(P / F, 15 \%, 15) \\
& =\S-89.10
\end{aligned}
$$

For $n=16$, the result is $\$+183.30$. Interpolation indicates that in $n^{\prime}=15.3$ years the first cost plus 15% will be recovered. Since a fair estimate of usability is ten years, the machine should not be purchased.
comment The salvage value and cash flows will be allowed to vary in the material of Chap. 12.

Example 11.7
Problems P11.15-P11.20

11.7 Comparison of Two Alternatives Using Service Life Computation

If capital is tight and the future uncertain (about available money and proposed investments), a breakeven (or equivalent-point) service life of two proposals may be computed for use in decision-making. Still, other evaluation methods, such as present-worth, should be pursued, because service-life analysis is considered only a supplemèntary tool. If a firm is short of capital and requires quick recovery of investment capital, the service-life computations can indicate the speed with which the project will "pay for itself." Tharefore, capital ricovery being inportant, serviee life at a stated rate of return is found by equating alternative present-worth or EUAC values and finding n^{\prime} by trial and error. Bepenting-orrtrowmany-years.the-puschase-will reconablumbused, -ihanpreposal-withrthe-smailer-mpesentaworth-or-EUAG-waiue is seloced. The method is the same as that used in rate-of-return breakeven analysis (Sec. 10.5), but with the value of n sought here.
*ExarnpemTe A dirt-moving company requires the service of dir-moving equipment. The service may be acquired by purchasing a mover for $\$ 25,000$ having a negligible salvage value, $\$ 5,000$ annual operating cost, and a $\$ 12,000$ overhaul cost in year 10. Alternatively, the company may lease the mover at a total cost of $\$ 10,000$ per year. If all other costs are equal and service is needed for 12 years at a 12% rate of return, use service-life analysis to determine whether the mover should be purchased or leased.
solution We use the relation $E U A C_{\text {buy }}=E U A C_{\text {lease }}$ and find the breakeven n value (n ').

$$
\begin{aligned}
\mathrm{EUAC}_{\text {buy }}= & 25,000(A / P, 12 \%, n)+5,000 \\
& +12,000(P / F, 12 \%, 10)(A / P, 12 \%, n) \\
E U A C_{\text {lease }}= & \$ 10,000
\end{aligned}
$$

The last term of $E U A C_{b u y}$ is used only when $n \geqslant 10$. Then when $n<10$, equating EUAC relations ofives

FIG. 12.1 Graplical Ilustration of breakeven.

сperating cost or productioni cost. Figure 12.i grapiutally dilusiratés the breaneven concept for two proposals (identified as Proposal 1 and Proposal 2). As shown in the figure, the fixed cost (which may be simply the initial investment cost) of Proposal 2 is greater than that of Proposal 1, but Proposal 2 has a lower variable cost (as shown by its smaller slope). The point of intersection (B) of the two lines represents the breakeven point between the two proposals. Thus, if the variable units (sucin as hours of operation or level of output) are expected to be greater than the breakeven amount, Proposal 2 would be selected, since the total cost of the operation would be lower with this alternative. Conversely, an anticipated level of operation below the breakeven number of variable units would favor Proposal 1.

Instead of plotting the total costs of each alternative and finding the breakeven point graphically, it is generally easier to calculate the breakeven point algebraically. Although the total cost can be expressed as either a present worth or equivalent uniform annual cost, the latter is generally preferable because the variable units are oftentimes expressed on a yearly basis. Additionally, EUAC calculations are simpler when the alternatives under consideration have different lives. In either case, however, the first step in calculating the breakeven point is to express herotatcostrofeach atientiveranfunction-of-ihemiziable_thatismsought. Example 12.7 illustrates breakeven calculations.

Example-12-5 A sheet metal company is considering the purchase of an automatic machine for a certain phase of the finishing process. The machine has in
initial cost of 523,000 , a salvage value of 54,000 , and a life of ten years. If the machine is purchased, one operator will be required at a cost of $\$ 12$ an hour. The output with this machine would be 8 , tons per hour. Annual maintenance and operstion cost of the machine is expected to be $\$ 3,500$.

Alternatively, the company can purchase a less sophisticated machine for \$8,000, which has no salvage value and a life of five years. However, with this alternative, three laborers will be required at a cost of 58 an hour and the machine will have an annual maintenance and operaticn cost of $\$ 1,500$. Output is expected to be 6 tons per hour for this machine. All invested capital must retum 10\%. (a) How many tons of sheet metal must be finished per year in order to justify the purchase of the automatic macline? (b) If management anticipates a requirement to finish 2,000 tons per year, whicly machine should be purchased?

SOLUTION

(a) The first step is to express each of the variable costs in terms of the unit? sougnt, which is tons per year in this case. Thus, for the automatic machine, thi annual cost per ton would be

$$
\text { Annual cost per ion }=\left(\frac{\$ 12}{\text { hour }}\right)\left(\frac{1 \text { hour }}{x \text { !ons }}\right)\left(\frac{x \text { tons }}{\text { year }}\right)=\frac{12}{8} x
$$

where $x=$ number of tons per year for break even. Note that the final units art in dollars per year, which is what we want since we are trying to obtain the EUAC. The totai EUAC for the automatic machine is

$$
\begin{aligned}
\text { EUAC }_{\mathrm{auto}}= & 23,000(A / P, 10 \%, \mathrm{i} 0)-4,000(A / F, 10 \%, 10) \\
& +3,500+\frac{12}{8} x \\
= & 56,992+1.5 x
\end{aligned}
$$

Similarly, the EUAC of the manual machine is

$$
\begin{aligned}
\text { EUAC }_{\text {mantal }} & =8,000(A / P, 10 \%, 5)+1,500+\frac{3(8)}{6} x \\
& =53,610+4 x
\end{aligned}
$$

Equating the two costs and solving for x yields

$$
\begin{aligned}
E \cup A C_{2 u t o} & =E U A C_{\text {mã nua! }} \\
6,992+1.5 x & =3,610+4 x \\
x & =1,352.8 \text { tons per year }
\end{aligned}
$$

Thus, at an output of $1,352.8$ tons per year, the EUAC of each method is the same. If the output is expected to be greater than this figure, the aytornatio machine should be purchased; if the output is to be iess, then tie lejs sophisticated chine should be purchased.

FIG. 12.2 Breakeven points for three proposils.
(b) Substituting the expected production level of 2,000 tons per year into the EUAC relations, we have $E U A C_{\text {auto }}=\$ 9,992$ and $E U A C_{\text {manual }}=\$ 11,610$. Therefore, purchase the automatic machine.
comment Work the problem on a present-worth basis to satisfy yourself that either method results in the same b̀reakeven point. A question that sometimes arises after the breakeven point is calculated is: How do you know which alternative should be selected when you are either above or below the breakeven point? As snown in Fig. 12.1, the alternative with the smalle: slope (i.e., lower variable cost) should be selected wher the variabie units are aoove the breakeven point (and wice versa).

 womparethealternatives with each cther in order-iofind their-respective.briutiven painta The results reveal the ranges through which each alternative would be the most? economical one. For example, in Fig. 12.2, if the output is expected to be less than 40 units per hour, Proposal 1 should be selected. Between 40 and 60 its per hour 'roposal 2 would be the most economical, and above 60 units per . s Proposal 3 would be favored.

13.2 Selection Using Incremental Rate of Return

You will recall from Secs:-10.5 and 10.0 that the meremental-analysis procedure detemmes rate-oi return on the extra investment that is required by the plan having the hehter-mvestment cost. As discussed there. if the rate of reum on the extra invésiment is greater than the MARR, the plan requring the extra investment should be selecied. Thus same procedure is fo'lowed when analyzing mutually exclusive alternatuves, but now it becomes important to determine witcit:atternatives-must:be compared whtheach orther (and therefore, which increments will be involved). drothis theard. the mazt importantrule that must beremembered when evaluating altematives by the incremental-mivestment rate-af-return method is that an alternative can never be compared with one for which the incremental invesimeni has nor obeen justified. The procedure to be used when evaluating multiple, mutually exclusive alternatives can conveniently be summarized as follows:

1 Rank the alternatives in terms of embanimetnitutimestiment.
2 Considering the "do nothing" alternative as a defender, compuie the overall ratenfactump formealfenfalive avith the lowest initial investment.
3 If consideration and cormputer the overal!, rate of return for the next-higher investmentralternative. Repeat the step unil: \geq MARR for one of the alternatives. When defender and the next higher investment alternative is the challenger.
\rightarrow Determine the incicmental costs and incomes termenthe challonger and the

deremdar.

 ohallenger.
6 If the rate of return calculated (on the increment of investment) in step 5 is greater than the MARR, the challenger becomes the defender and the previous defender is removed from further consideration. Conversely, if the rate of retum in step 5 is less than the MARR, the challenger is removed from further consideration and the defender remains as the defender against a new challenger. 7 Repeat steps 4-6 until only one alternative remains.
Note that in the incremental analysis (steps 4-6), only two alternatives are compared at any one time. It is very important, therefore, that the correct altematives be compared. Unless the procedure is followed as presented above, the wrong alternative can be selected from the incremental analyss. The procedure detailed above is illustrated in Excmples 17.1 and 17.2.

EEntriperan 1 Four different building locations have been suggested, of which only one wll te selected. Data for each site are detaled in Table 17.1. Annual CFAT vanjes due to different tax structures, labor costs, and transportation charges resulting

Table 17.1 FOUR ALTERNATE BUILDING LOCATIONS

	Location			
	A	B	C	D
Building cost	$\$-200,000$	$\$-275,000$	$\$-190,000$	$\$-350,000$
Annual CFAT	$+22,000$	$+35,000$	$+19,500$	$+42,000$
Life, years	30	30	30	30

SOLUTION The steps outlined above result in the following procedure:
1 Order the alternatives according to increasing initial investment. This is done in the first line of Table 17.2.
2 The next step is to find the lowest invesiment altemative that has an overall rate of return of at least 10%. Table 17.2 indicates a rate of return of 9.63% for Location C, resulting in its elimination from further consideration. The-nixt altematye,-L ocation' A;' has an i of 10.49% and -replaces" "do nothing" as the defender.
3 The incremental investment between altematives must now be considered. Since all locations have a 30 -year life, the relation used to find the incrementali i is

$$
\begin{equation*}
0=\text { inctemental cost }+ \text { incremental CFAT }(P / A, i \%, 30) \tag{17.1}
\end{equation*}
$$

where i is found by trial and emor. Note that $(P / A, 10 \%, 30)=9.4269$; thus any

 Location A, using Eq. (17.1), results in the equation $0=-75,000+$ $13,000(P / A, 7 \%, 30)$. A rate of retum of 17.28% on the extra investment justifies Location B, thereby eliminating Location A.
4 With B as the defender and D the challenger, the incremental investment yields 8.55%, which is less than 10% and eliminates Location D. Only Locations

Table 17.2 COMPUTATION OF INCREMENTAL RATE OF RETURN FOR mutlially exclusive equal-lNed proiects

	C	A	B	D
Building cost	\$-190,000	\$-200,600	\$-275,000	\$-350,000
Annual CFAT	19,500	22,000	35,000	42,000
Frojects compared	C ionone	A to none	B to A	D tor
Incrementel cosi	\$-190,000	\$-200,000	\$ -75,000	S $-75,000$
Incremental CFAT	19,500	22,000	13,000	7,000
($P / A, C \%$ 30)	9.7436	9.0905	5.7692	10.7143
Incrementali	9.63\%	1049\%	17.28\%	8.55\%
Increment justified?	No	Yes	Yes	No
Project selected	None	A	B	B

COMment We should mention here again, just as a word of waming, that an alternative should aiwal's be compared with an acceptable alternative, noting that the "do nothing" alternative may be the acceptable one. Since C was not justified, Lucation A was not compared to C. Thus, if the B-to-A comparison had not indicated that B was incrementally justified, then the comparison D-to-A would have been made, instead of D-to-B.

Itrisaimportaniotw-anderstand the atse-of-incremental rate-of-return selection because.if it--is.not properly applied in mutuallyexclusive-altemative evaluation, the wrong alternatives may be selected-If the overab rate of tetum of each altemative is computed the results abe

Eocation	C	A	B	D
Overall i	9.63%	10.49%	12.40%	11.59%

 investment that has a MARR of 10% or more, we would choose Location D. But, as shown-above;-this-is-the-wrong-selection - because the extra-investment of- $\$ 75,000$ between Locrations-B"and-D will not earn the MARR. In.fact, it will earn only 8.55% (Table 17.2). Remember, Therefore, that incremental analysis is necessary for selection of, one alternative from several when the-rate-of-return evaluation method is used.

When the alternatives under consineration consist of disbursements only, the "income" is the difference between costs for two alternatives. In this case, there is no need 10 compare any of the alternatives again the "do nothing" alternative. The lowest-investment-cost alternative is the defender..against the .next-lowest-investment-cost -alternative. (challenger). This procedure is illustrated in Example 17.2.

Example 17.2 Eathrmachines can-beused for-a certain:stamping operation. The poits for each machine are shown in-Table-17.3. Determine which machine should be selected if thit company's. NAARR is 12%.

Table 17.3 FOUR MUTUALLY EXCLUSIVE ALTERNATIVES

	Machine			
	1	2	3	4
First cost	\$-5,000	5-6,500	S-10,000	\$-15,000
Annual operating cost	-3,500	-3,200	-3,000	-1,400
Salvage value	+500	+900	+700	$+1,000$
Life, years	8	8	8	8

EJEMPLO 3.- CONSTRUITROS UN DADO DE SCARAS (TETRAGEDRO) Y EL RESULTADD E CAOA TILAOA se ve 'por abajo de una mesa de vidrio.

veo ex resu ltado. (solamente)
so ponatimos alsé e ardo es laneado zveces, y nas dicen ane al producto der resultado osirnioo es HGNOR OUS SIEE.
a) cual es va probtsicioto de ané almanos se odisnat un dos?
b) ba provarilida ale en zirizanas induma el resucition se miwor ane?.
c) Jinas dican owe le sumn y a peooncio jan
 detecmine la proobbilion oe cition posisce sowcion Diferwic.? (DEA oneo panol

Sowcion.

espacio de EUENTOS

$$
x_{1} \cdot x_{2}<7
$$

a) La probabilidad pe obtange un dos fio UN DAOO ES DE $1 / 4$ y la PLOB. OBINCA un cos en ol jegundo OADO ts ranuition ob Y_{4} (EUENTOS inde andinites)

$$
\begin{aligned}
& 10 \text { exuros } \\
& 0_{0}^{\prime} 5 \times 0.1=0.5
\end{aligned}
$$ $0,5 \times 0.1=0.5$

\rangle_{∞}
b) EJENTO sequeo , perbasiciono $=1$.
c)
 $\frac{2}{5}$ D la prob. wé er vawe oorewics es uno, o TR $j \frac{1}{5}$ dras 002

TEOREMA DE BAYES.
sheupre y cuavoo in meansicions avoiciona on pocios EUENTOS JEA DIFERfute α creo, $s \in$ roworn.

$$
P(A B)=P(A) P(B / A)=P(B) P(A / B)
$$

İ aricamos la necnicion antelioz hl catso awf
 exciosivos 7 chartainivanefure cocfecrives, pacat co whl CONSiDERACEMOS UN ESPACIO UNIUERSAL. y val JUAGSPACIO B.

sumuartos ang $P\left(A_{i}\right)$ y $P\left(B \mid A_{i}\right)$ son conocions paca toA $1 \leq i \leq N$ y arelemos veizeminale $P\left(A_{i} \mid 8\right)$

Para exemplificar in anizliar combicremos de e A_{i} eepressenta el eatnio due unat manzana roviculiDEL RANCHOi. sexa bel EUSNTO En or cual ca MANEANA SE vUELU ABUL, AMANIZ EL TRANSPORTE.
$P(B / A ;): G S C A$ PROMABCIOAO QUGCA MANJGNA
 IN UNA PAGGUNM MAS INREESANTE SERA:

DACD RUE LAMANJONA $d E$ NOCVIO NZUL, CUALES LA PMOBASiLiato and PROUENGA at ocr RANCHO:
$P\left(A_{i} / B\right)$ satisaes y cuanoo $P(B) \ngtr 0$ y PCAildo pren toar:. sugrinyewoo Ai poe A. posthos tucrisil.

$$
\begin{aligned}
P\left(A_{i} / B\right) & =\frac{P\left(A_{i}\right) P\left(B / A_{i}\right)}{P(B)} \\
P(B)=P(U B) & =P\left[\left(A_{1}+A_{2}+\cdots \cdot A_{N}\right) B\right)= \\
& =\sum_{i=1}^{n} P\left(A_{i} B\right)=\sum_{i}^{n} P\left(A_{i}\right) P\left(B / A_{i}\right)
\end{aligned}
$$

 ai teorsuni x x aryes

$$
\left.P\left(A_{i}\right) B\right)=\frac{P\left(A_{i}\right) P\left(B / A_{i}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(A_{i} A_{i}\right)}
$$

 a
 Formbriones y corvindriouser.

$$
\begin{array}{ccccc}
A & 6 & 00 & C Q & D B \\
A C & 0 C & C B & D B \\
A & 0 & 00 & C O & D C
\end{array}
$$

marematicamontr lo poderlos esceibic como:

$$
{ }_{n} P_{k}=\binom{n}{k}=\frac{n!}{(n-r)!}
$$

COMBINACIONES.
EuGE EJGMPLo Anteior vimos los posisces ARRGLOS DG COATROD LETRATS, TOMATDAS DE 2 encos , y $A B \in R A$ OFERGNTL $D \in E A$, SIN Gu ASRELD
 choa grupe son igunces li. b. BoLAS Bunncis y NGFRAS). - O.TAMAITN PONHEOS CONSIPERAC $A B y$ BA GN la misula ccase.

$$
{ }_{n} C_{k}=\left(\frac{n!}{k!(n-k)!}\right)=\frac{{ }_{n} P_{k}}{k!}
$$

EJEMPLO. OECMANTAS MANERAS DIREENTES PUEAN ESCOJER 3 BARATAS DE UN CONJTAE P

$$
{ }_{8} C_{3}=\frac{8!}{3!(5!)}=\frac{8 \cdot 7 \cdot 6 \times 5!}{(3!) 5!}=56
$$

SE CNIERE PORMAR UNCOMIIG DE cenaico HIEHAROS, TC WAL DESE Ot SERESCOGiDO DE W GRUD DE 4 HOMBRES R,S,T,4y DE ax 5 MUJERES V, ω, x, y, z.

R,S, wo pueds purhal pale of comite, A HENOS WNE EXISA UNA MUJEE KN ELWIMOD

- cuantos comites difcrinutas podicos jazabid.
notacion excnio X, X ESAAGN Re comiit.
evento f_{n}^{\prime}, n nujeres bas coride.

si wo insus retcieciones a numen piferentors do momires afomar seat.

$$
\binom{9}{4}=\frac{9!}{41(81)}=\frac{9 \times 8 \times 7 \times 6 \times 100}{4 \times 8 \times 8 \times 1}=126
$$

¿ENTENDIMOS?

BIEN UANOS A UER RGGUNOS PROECEMAS, pAPA reafirmar los concepro visios. (no hcceiflidinizEN ORDEN).
se lanja un amdo zueces, cuaces la proge de gerearar

se A, priveen tiracas
A_{2} sequnon tierrar.

$$
\begin{aligned}
& P\left(A_{1} A_{2}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \\
& =\left(\frac{3}{6}\right)\left(\frac{4}{6}\right)=\frac{1}{3}
\end{aligned}
$$

- cuales laprob. de no obizner un 7 oun $\$ 1 /$ ac tirar 2 daoos.

$$
P\left(A^{\prime}\right)=1-P(A)=1-\frac{8}{36}=\frac{7}{9}
$$

silos dados jetizan zueceb. (?)

$$
\left(\frac{1}{9}\right)\left(\frac{2}{8}\right)=\frac{49}{81}
$$

VUA bousa contiene 4 aolas blan:cas y 2negiais, cyinA
 SACA UNA BOLa DECAPA cUCSA, with \&ila probabisiono asó:
a) AMBAS scim Beentas,
b) \sim $\quad N E 12 a s$
c) una ounca y unañgan.

a) $\left.\rho\left(B, \cap \beta_{2}\right)=P \operatorname{cop} \beta_{\varepsilon}\right):\left(\frac{4}{4-2}\right)\left(\frac{5}{315}\right)=\frac{1}{4}$
b) $P^{\prime}\left(\theta_{1}^{\prime}, B_{C}^{\prime}\right)=\left(\frac{2}{4+2}\right)\left(\frac{5}{3+5}\right)=\frac{5}{24}$
c) $1-P\left(B, \cap \beta_{2}\right)-P\left(B_{1}^{\prime} \cap B_{i}^{\prime}\right)=$

$$
=1-\frac{1}{4}-\frac{5}{24}=\frac{13}{24}
$$

 ocuper los curés PARES. -... $\alpha \in$ winvitas

$$
{ }_{5} P_{5}{ }_{4} P_{4}=5!4!=(100)(84)=2880
$$

ENUN GRUPD DG 2000 RERSONAS HAY

612 Fumadoers
670.7 of saños

960 BEDEDORES
86 Beacdoets we Fuinan
2 YO BEAGDRES $>a \in 25 \mathrm{ANLO}$
158 Fumacces > © e es AÑas
44 PERBONAS >25 BEBGROCGS I FUMADSEES
250 prejonas <25 años queni fuman ni beasm

Ed POSIBLE WANTERIOR?
capinvo
2 VARIABLES
ALEATORIAS
 UNA PUNCTON LA CWAL ASIGNA OL BCOE CAB
 w ERPER NEWTO.

 wire e veces y consioreames:

$$
\text { evento } \left.\left\{\begin{array}{l}
A_{N} \\
S_{N}
\end{array}\right\}: \int_{d O C}^{A G N B A}\right\}
$$

GNCA TTENOM

 LAS siruicures:

r - LONGITVONAMAA DE GPS OTIRAOAS

preanremos un espacio huesira ettouetado para edie EXMERIMANTO, EL CUALJERA

 y a resurinot jerin al evonto $A_{1} S_{2} S_{3}$, niriamos aue para esse caso en westion il eacor oe las variables aloatorias ay r scria po $/ 12$ eespectivaminiz. nortaro awi tuvinos qué constavir todo áz espacio muesien dà exptriminio, ane co describe probacisticeambutz. in tmbarqo mugstro intraes se relacionara conlos vacures resulitantios do GAOA EXAELNALTO, DE UNA ONAS U.A.

PROBABLIDTDES OE FINCIUNES OİCRETAS.
sesa x una u.a. discreita, y jupanga aue las lacores and pueor tence don $X_{1}, X_{2}, X_{3}, \ldots$. Arechurdos in nagniono creciguiz, suponga duẼ A estos uarores, se Les asignan las sig. probadilioarmes

$$
\begin{equation*}
P\left(x=x_{n}\right)=f(x) \quad \ll 1,2,3 . \tag{1}
\end{equation*}
$$

Presentanos Artoca ec concepio DE funcion oe paisabiciono (f.p) o foweion of oistribucion α-peosnsilioan ($f d p$) CA CUM GSA OADA POR.

$$
P(x=\pi)=f(x)
$$

paea $x=X_{K}$ le tíne in foarula (1), parat otioos uacores di a $f(x)=0$. En senusear ji $f(x)$ \& UNA $f \cdot d p$.
1.- $f(x) \geq 0$
2.- $\sum_{x} f(x)=1$

 $P(x)=.125+.125, \cdots+.125=1$ UNA YRatich de $f(x)$ se unuma Grafica ae progiaicuind.
 y su espacio nuesilea es $\left.\int_{x}^{A A}, A S, S A, S S / a\right)$ ENUENTRE «A f.p. oG la v.a. X.

$$
P(A A)=\frac{1}{4} \quad P(A S)=\frac{1}{4} \quad P(\delta A)=\frac{1}{4} \quad P(S S)=\frac{1}{4}
$$

EnBNGS.

$$
\begin{array}{ll}
\text { si } P(x=0)=P(B A)=\frac{1}{4} \\
P(x=1) \\
P(x=2)=P(A S)=\frac{1}{4}
\end{array}
$$

ENforma tabular.

x	0	1	2
$f(x)$	$1 / 4$	y_{2}	$1 / 4$.

4) contine ya una hentica de prodabicioats.

:iareama de bachs.

histatama.
\& JEREJ FOTA 31 bIS ANTES DEL 5 S 2.
 of niños y wiñts in micias con oitrjos, sumonicupo iquatb rouencrieste a lor minos y las niñas. 6) cavianya LA GRARIGA PROE.
 5 TIEARAS RUN MACO.
 jei cre -... Tenremes 606^{\prime}

$$
P\left(l 60^{\prime} 6 \theta^{\prime}\right)=\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{5}{6} \cdot \frac{1}{6}=\left(\frac{1}{6}\right)^{\frac{\theta}{6}}\left(\frac{e^{\prime}}{6}\right.
$$

$$
r=\left(\frac{1}{6}\right)^{3}\left(\frac{5}{0}\right)^{2}
$$

Col GENCRA:

$$
\begin{aligned}
& 9 \because r \quad x \div 3 \quad p: \therefore
\end{aligned}
$$

 si X es uns U.A. coninut, la paongicioro lof x pors un uamr particuene es CEKU, pie
 Solarmatt.
 exeprs ous.

$$
\begin{aligned}
& f(x)=0 \\
& \int_{-\infty}^{\infty} f(x) d x=1
\end{aligned}
$$

$$
\rho(\theta \alpha \times<\theta)=\int_{6}^{t} f(a) d x
$$

3!

$$
f(x)=\left\{\begin{array}{cl}
c x^{2} & 0<\sigma^{2}<5 \\
0 & 0,06
\end{array}\right.
$$

b) $\cos +\boldsymbol{c}+\sin \theta(c<x+2)$

TENEHOS n EVEWTOS MUTUAMFART AKCGUSIVOS, EN
 mojer) con probabiciondes:

$$
A=\quad P=\frac{1}{2}=\frac{p}{2}=0.5
$$

$\angle A$ PROBAGICIDAD DG OBIENER IKACITMMANTE I AS' (i) I Pruebas Gs of

$$
{ }_{n} C_{x} p^{x} q^{n-x}
$$

suronga out A as un niño, paca $n=3$ tenguos.

$$
P \text { (enctaminto rininos })=P(K=Z)=C_{x} C_{X}\left(\frac{1}{2}\right)^{x}\binom{1}{2}^{B-\pi}
$$ DONDG LA UACIABCE ACEADRIA X REPREA ENM EC FB deniños en caon pamilia.

in suncion ex proba blliono de X scen:

$$
f(x)=C_{x}\left(\frac{1}{2}\right)^{3}
$$

x	0	1	2	3
4	$1 / 8$	$2 / 8$	$8 / 8$	$1 / 8$

I su grafigh sera

funcion de Disiribucion paed variables ALEATORIAS DISCRETAS.

LA fucion oe distribucion at probabicioas acumulativa (FDPA) - Funcion DE Disitisucion (FDP) aeun U.A. ESM DEfrnion por

$$
P(x \leq x)=F(x) \quad P(A \leq x)=F(x)
$$

SOUDE x GSUNZGAL IC $-\infty<\alpha<\infty<1$ FDPA SE POEBE OBRENER DECA FIUCION DR PROGASILIOADD

$$
F(x)=P(x \leq x)=\sum_{u \leq x} f(u)
$$

danog la sumatocia aese curriatenz 7000 uAcoedey.
di X toma finitos su foples ejit oand por.

$$
F(x)=\left\{\begin{array}{cc}
0 & \\
f\left(x_{1}\right) & -\infty<x<x_{1} \\
f\left(x_{1}\right)+f\left(x_{2}\right) & x_{2} \leq x<x<x_{3} \\
\vdots & \cdots \\
f\left(x_{1}\right)+\cdots \cdots+f\left(x_{1}\right) \quad x_{1} \leq 1<\infty
\end{array}\right.
$$

EJGAPLO - GNCNTNTRE LA FOA oG4 U.D. X ofl
 grafita.
cove $f(x)$ comple cowch condicionl st $c \geq 0$ DGO SATISATACER UA CONDCION 2.
y aco awe cest vacoz / tumenas ave ca $\frac{1}{9}$

$$
\begin{gathered}
P(1<x<2)=\int_{0}^{2} \frac{1}{7} x^{2} d x=\left.\frac{x^{2}}{27}\right|_{1} ^{2}= \\
=\frac{8}{27}-\frac{1}{27}=\frac{7}{27} \\
P(1<x<2)=\frac{7}{27} .
\end{gathered}
$$

EJEMPLO. UNA $0.1 \times$ TIENG Funcion OC EENSIOATS

$$
f(x)=\frac{c}{x^{2}+1} \quad \text { nas }-\infty<x<\infty
$$

a) oermeraing le uacoe oce C
 sowrion.
a) $\int_{-\infty}^{\infty} f(x) d x=1$

$$
\frac{2 \pi}{2}-\pi
$$

$$
\left.\int_{-\infty}^{\infty} \frac{c d x}{x^{2}+1}=\left.c \tan ^{-1} x\right|_{-\infty} ^{\infty} \cdot c \int \frac{\pi}{2} \cdot\left(-\frac{\pi}{2}\right)\right]=1
$$

poeco anc $c=\frac{1}{7}$
b) si $\frac{1}{3} \leq x^{2} \leq 1$ Envow cas $\frac{\sqrt{3}}{3} \leq x \leq 10^{\prime}-1 \leq x \leq-\frac{\sqrt{3}}{3}$

$$
\begin{aligned}
& q_{c} \ldots \int_{-\infty}^{0} f(x) d x=\int_{0}^{3} c x^{2} d x=c \int x^{2} d x=\frac{c x^{3}}{3} /_{0}^{3} \\
& =9 c
\end{aligned}
$$

a) LA FAD GS

NOTESE W : :
sc teaina deuna funcion 'escalon' la cual Deinca far los uabees $0,1,2$

- a monotonicamente creciente
 wî̃os (as) $D \in$ ranlias $x \in 3$. y Jugrafica

$$
F(x)=\quad \begin{aligned}
& 0 \quad-\infty<x<0 \\
& 1 / 8 \leq x<1 \\
& 1 / 2 \leq x<2 \\
& 7 / 2 \leq x<3 \\
& 1 \quad 3 \leq x<\infty
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{\pi} \int_{-1}^{-\sqrt{3} / 3} \frac{d x}{x^{2}+1}+\frac{1}{\pi} \int_{\sqrt{3} / 3}^{1} & \frac{d x}{x^{2}+1}=\frac{2}{\pi} \int_{\sqrt{3} / 3}^{1} \frac{d x}{x^{2}+1} \\
& =\frac{2}{\pi}\left[\tan ^{-1}(1)-\tan ^{-1}\left(\frac{\sqrt{3}}{3}\right)\right) \\
& =\frac{2}{\pi}\left(\frac{\pi}{4}-\frac{\pi}{6}\right)=\frac{1}{6} .
\end{aligned}
$$

dereming ut puncion ar oistaisucion oe la funcion DE andiono act proplema antelior.

$$
\begin{aligned}
F(x)=\int_{-\infty}^{x} f(a) d x & =\frac{1}{\pi} \int_{-\infty}^{x} \frac{d u}{4+1}=\frac{1}{\pi}\left[\left.\tan ^{-1} u\right|_{-\infty} ^{x}\right] \\
& =\frac{1}{\pi}\left[\tan ^{-1} x-\tan ^{-1}(-\infty)\right]=\frac{1}{n}\left[\tan ^{-1} x+\frac{T}{2}\right] \\
& =\frac{1}{2}+\frac{1}{\pi} \tan ^{-1} x
\end{aligned}
$$

$$
F(x)= \begin{cases}1-e^{-2 x} & x \geq 0 \\ 0 & x<0\end{cases}
$$

a) ancruree do nucion of arubiens.

$$
f(x)=\frac{d F(x)}{d x}= \begin{cases}\frac{2 e^{-R x}}{0} & x>0 \\ x<0\end{cases}
$$

Encuentie in procasiciano onie $x>2$

$$
\begin{aligned}
& p(x) 2)=\int_{2}^{\infty} 2 e^{-24} d u=-e^{-2 u} /_{2}^{\infty}=c^{-4} \\
& 0 \quad p(x \leq 2)=F(2)=1-e^{-4} \\
& p(x \leq 2)=1-\left(1-e^{-4}\right)=e^{-4}
\end{aligned}
$$

FUNCIONES DE ORSIRIBUCION PARA U.A CONTINKAS.

$$
F(x)=P(x \subseteq x)=P(-\infty<x \leq x)=\int_{-\infty}^{x} f(u) d u .
$$

 DG:

$$
f(x)= \begin{cases}c x^{2} & 0<x<3 \\ 0 & \text { ov ores caso }\end{cases}
$$

si $f(x)=P(x \leq x)=\int_{-\infty}^{\lambda} f(a) d u$. $\sin 0 \leq x<3$ ascrs

$$
F(x)=\int_{0}^{a} f(a) l_{4}=\int_{0}^{\pi} \frac{1}{9} u^{8} d u=\frac{x^{3}}{27}
$$

si $x \geq 5$

$$
\begin{aligned}
& F(x)=\int_{0}^{3} f(x)+\int_{3}^{x} f(u) d u=\int_{0}^{3} \frac{1}{8} u^{2} d x+\int_{0}^{x} d u=1 \\
& F(x)= \begin{cases}0 & x<0 \\
\frac{x^{3}}{23} & 0 \leq x<3 \\
1 & x>3\end{cases}
\end{aligned}
$$

UALE LAPGUA ENESTE PUNTO rEGOMONE GJj.

$$
\frac{d F(x)}{d x}=f(x)
$$

para cualquier punto doade. x es continuo.
 pelo ore neres sisto:
$\therefore f(x)$ esusig func $a \in$ ánusiono α und u.s x
 y un prosabiciago coir X ene usti ivnerusco a, b, esio $\in S(a<X<b)$ LE Muesmas WCA Fig. jiquigutz.

fup

Fifoumulra.

DISTRIGUCIONES CONJUNTAS.
 cais ol has á una U.A. q vearos tecaso de 2 U.A d.- CASO orsCRETO.
si $x_{y} y$ sow U.A Qisfretims, aefinires so feswaion

$$
P(x=x, y=y)=f(x, y)
$$

00NOG

$$
\begin{aligned}
& \text { 2.- } \sum_{x} \sum_{y} f(x, y) \geq 0 \\
& f(x, y)=1
\end{aligned}
$$

palate caso continco - $\angle a$ funcion de progacilionto awjunta pren aceaso continuo seen:

$$
\begin{aligned}
& \text { 1.- } f(x, y) \geq 0 \\
& 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1
\end{aligned}
$$

 $X_{y} y$ tara onion pop $f(x, y)=c(2 x+y)$ conde x, y y pugian TONAR LOS lig. AANRES $\sigma \leq x \leq 2,0 \leq y \leq 3 y$ $f(x, y)=0$ an otes cado.
a) enwoune te calor occ.

b) aerelnino $p(x=2, y=1)$ of un TAGM Anterior

$$
\begin{equation*}
P(x=2, y=1)=5_{c}=\frac{5}{42} \tag{8}
\end{equation*}
$$

$$
\begin{aligned}
P(x \geq 1, y \leq 2) & =\sum_{x=1} \sum_{y+2} f(x, y) \\
& =(2 c+3 c+4 c)+(4 c+5 c+6 c) \\
& =24 c=\frac{24}{42}=\frac{4}{2}
\end{aligned}
$$

$$
f(x, y)= \begin{cases}c x y & 0<x<4 \\ 0 & 1<y<d- \\ \hline 00 y o c y s & \end{cases}
$$

a) octernine unctic.

$$
\begin{aligned}
& \int_{x=0}^{1} \int_{y=1}^{5} c x y d y d x=\left.c \int_{0}^{1} \frac{x}{2} y_{d x}^{2}\right|_{y=1} ^{5}=c \int_{x=0}^{4}\left(25 x-\left.\frac{x}{2}\right|_{x} ^{1}\right. \\
& =\frac{1}{4} \int_{x=0}^{4} e d x d x=\left.c\left(6 x^{2}\right)\right|_{0} ^{4}=9 t_{c} \quad c=\frac{1}{76}
\end{aligned}
$$

b) $P(1<x<2, z<y<3)$

$$
\begin{aligned}
& =\int_{x=1}^{2} \int_{y=2}^{3} \frac{x y}{96} d x d y=\frac{1}{90} \int_{x=1}^{2} \frac{x y^{2}}{2} \int_{1=2}^{3} d x \\
& \left.=\frac{1}{96} \int_{1}^{2} \frac{5 x}{2} d x=\frac{5}{182}\left(\frac{x^{2}}{2}\right)\right)_{0}^{2}=\frac{5}{12}
\end{aligned}
$$

DISTRIBUCIDNES COUDICIDNMLES.
LASEDCS au-s; ((ti) >0

$$
P(A / A)=\frac{P(B B)}{P(A)}
$$

 sepicit corpion o.i:'

$$
P(\gamma=y / X=x)=\frac{f(x y)}{f(x)}
$$

oonor $f(x, y)=P(x=x, y=y) \in s$ has pisksticiono conjunin y $f(x)$ esca piobraciciono angiviuliz. $\propto X$.

DEFINDMOS

$$
f(x)=\frac{f(x, y)}{f(x)}
$$

 O y onoo x. EN FOCMA simiche roxioss estuiain

$$
f(x / y)=\frac{f(x, y)}{f_{2}(y)}
$$

Ejerine:
si Xy y jintiol funcion or cersiano as cedeatiliaro conjusiat auc ez:

$$
f(x, y)= \begin{cases}\frac{3}{4}+x y & 0<x<1,0<y<1 \\ 0 & \cos 0,3 \pi 0\end{cases}
$$

a<kering $f(y / x)$ pasa $0<x<1$

$$
\begin{aligned}
& f(x)=\int_{0}^{1}\left(\frac{3}{4}+x y\right) d y=\frac{3}{4}+\frac{x}{2} \\
& f(y / x)=\frac{f(x, y)}{f(x)}= \begin{cases}\frac{3+1 a y}{3+2 x} & \text { ocyen } \\
0 \quad \text { orav wateney }\end{cases}
\end{aligned}
$$

 6Th ans mion.

A. AThows seonsmin ac vez curas cis

 se enduospen ?
s.d.

 OROAS PUS:

$$
\begin{aligned}
& f(x)= \begin{cases}1 & 0 \leq x \leq 1 \\
0 & \text { costochs }\end{cases} \\
& f_{2}(y)= \begin{cases}1 & 0 \leq \gamma \leq 1 \\
c & \text { coscocsi}\end{cases}
\end{aligned}
$$

 Axsider angunt dent:

$$
f(x, y)=f(0) f(x)= \begin{cases}1 & 0 \leq 8 \leq 0,0 \leq y=7 \\ 0 & \text { cowe chat }\end{cases}
$$

 fobghibiotso afoweridites

$$
P\left(|x-y| \leq \frac{1}{\infty}\right)=\int d x d x
$$

$$
P\left(|x-y| \geq \frac{1}{4}\right)=1-\left(\frac{3}{4}\right)\left(\frac{3}{4}\right)=\frac{7}{16} \quad 0 \pi 000
$$

EXPELTACION (ESPERANZA) MATOSANIIG á valor usperado. pazn una v.A. X, lacud pusde romer veloces $x_{1}, x_{2}, \ldots x_{1}$ an expecracion maizaticos. se oerine core.

$$
\begin{aligned}
& E(x)=x p(x=x)+\cdots \cdots x_{n} P\left(x-x_{0}\right)=\sum_{j=1}^{n} x ; P\left(x=x_{j}\right) \\
& 口_{j} E(x)=x_{1} f\left(x_{1}\right), \cdots k_{n} f\left(x_{0}\right)=\sum_{j=1}^{n} x_{j} f\left(x_{j}\right)=\sum x f(x)
\end{aligned}
$$

$$
E(x)=\frac{x_{1}+x_{3}+\cdots x_{1}}{n}
$$

Pare ume u.A cowrinua con f.dp $f(x)$ or earsannaza mar. sees

$$
E(x)=\int_{-\infty}^{\infty} x f(x) d x \text {. }
$$

 cono $\mu_{x} \therefore$ simpesumes μ.

Ejerpeo. setitue unanou, conar cury sejuest ouca sib. mantan, si sale un 2 atwai A 20 sisace A 4nna $\left(40^{\circ}\right.$ di stece 6 nceot $(30$, y vigawa
 canapao af cineso ave espeed canar.

$$
E(x)=0\left(\frac{1}{6}\right)+20\left(\frac{1}{6}\right)+40\left(\frac{1}{0}\right)+0\left(\frac{1}{6}\right)+(-\infty)\left(\frac{1}{6}\right)=5
$$

$$
f(x)= \begin{cases}\frac{1}{2} x & 0<x<2 \\ 0 & \in N \text { orecocaso. }\end{cases}
$$

ecuacoe estelano de x sera:

$$
E(x)=\int_{-\infty}^{\infty} x x^{\prime \prime}(x)=\int_{0}^{2} x\left(\frac{1}{2} x\right) d x=\int_{0}^{2} \frac{x^{2}}{2} d x=\frac{x^{3}}{6} \int_{0}^{2}=\frac{4}{3}
$$

vamos akunos teomas inzersanizs.
(1) si cecic E ' $C x)=C E(x)$.
(2) Ir x "" son v. A. inoerenoigutes $E(x \cdots)=E x)+C(y)$
(3) si $x_{y} y$ son u.a. inotanaikuizs $E(x y)=E(x) E(y)$

$$
0
$$

VARIANZA: Y DESVIACION STANOARD (EsiANOTN) definatios la vacianza ofana u.a \times como

$$
\operatorname{VAR}(x)=E\left[(x-\mu)^{2}\right]
$$

ave ctud anmeno >o
y La agiadon emtanoar cumo

$$
\sigma_{x}=\sqrt{\operatorname{und}(x)}=\sqrt{\left.E[x-\mu)^{2}\right]}
$$

$4 y$ uAzifacial $s \in$ axcrise mansion conco σ^{2}.
EN ECCASO ESPACITK ENE CNAL rDCOS LOS EVEUSO: TlENEU watismA pers.

$$
\sigma^{2}=\left[\left(x_{1}-\mu\right)^{2}+\left(\left(x_{2}-\mu\right)^{2}+\cdots \quad \theta_{0}+\cdots\right]\right.
$$

si Xes una U.A conitinua.

$$
\sigma_{x}^{2}=E\left[\left(x-\mu^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x\right.
$$

$\angle A$ vaciacia y LA DESU. sTAmparco (DS) DON Meoidas nc ols fension con cespecto A-CA mevin

ej. ecuignte la uapidinea

$$
\begin{aligned}
& \sigma^{2}=E\left[\left(x-\frac{4}{3}\right)^{2}\right]=\int_{-\infty}^{x}\left(x-\frac{4}{3}\right)^{2} f(x) d x \\
& =\int_{0}^{2}\left(x-\frac{4}{3}\right)^{2}\left(\frac{1}{2} x\right) d x=\frac{2}{4}=\text { unginnea }=6^{2} \\
& \sigma=\sqrt{\frac{2}{9}}=\frac{\sqrt{x}}{3} \quad \text {-D.S. }
\end{aligned}
$$

veardos alcundos roderatas sobre la uncianea.

$$
\sigma^{2}-E\left[(x-\mu)^{2}\right]=E\left(x^{2}\right)-\mu^{2}=E\left(x^{2}\right)-[E(x)]^{2}
$$

si $c=c \pi$.

$$
\text { * } \operatorname{Var}(a x)=c^{2} \operatorname{Uar}(x) .
$$

veanas a contination algumos oiteos anvepios interesantes anics a rapalz a utsouse alamor proscemas.

sean $x_{y} y$ cos O.A. Continuts con fewe. de envioins

$$
\begin{aligned}
& \mu_{x}=\varepsilon(x)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f\left(x_{y}\right) d x d y \\
& \mu_{y}=\varepsilon(y)=\int_{-\infty}^{\infty} y f(x y) d x, y / .
\end{aligned}
$$

sus varianzas.

$$
\begin{aligned}
& \sigma_{x}^{2}=E\left[\left(x-\mu_{x}\right)^{2}\right]=\int_{-\infty}^{\infty}\left(x-\mu_{0}\right)^{2} f(x, y) d x d y \\
& \sigma_{y}^{2}=E\left[\left(y-\mu_{y}\right)^{2}\right]=\iint(y-\mu)^{2} f(x, y) d y y
\end{aligned}
$$

y su contcianza estaza ogfinioa pos:

$$
\begin{aligned}
& \sigma_{x y}=C_{a}(x, y)=E\left[\left(x-\mu_{x}\right)\left(y=\mu_{y}\right]\right. \\
& \sigma_{x y}=\int_{-\infty}^{\infty} \int_{-}^{\bullet}\left(x-\mu_{x}\right)\left(y-\mu_{y}\right) f(x, y) d x d y
\end{aligned}
$$

coeficieniz de carzecacion.
$\therefore x_{y} y$ son U.A. inaeprovicuizs su

$$
\operatorname{cov}(x, y)=\sigma_{x y}=0
$$

si x, y son romeracur of Rucientes is $x=y$

$$
\operatorname{cov}(x, y)=\sigma_{x y}=\sigma_{x} \sigma_{y}
$$

DE AQNi PODAMOS MEDIR DEPEREUDGNCIA EXITENAR enter $x \in y$ y esro es.

$$
\rho=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}} . \quad \cos =.
$$

$$
-1 \leq \rho \leq 1
$$

si $\rho=0$ no GSAN arecricioundass.
Qearos a consiunacion uacios ejermplos.
gj. .- gana loteria da tientin $2 l o$ pesmios os. $\$ 5^{-}, 20$ premios of $/ 25^{-}, 5$ premias de -100-. suponga ave la sorthia Vowoc ro0080ceros ¿WAL SERIA IN PRECIO JUSID A PAGAR POR SOCETO?

$x(\$)$	5	25	100	0
$P(x=x)$	0.02	0.002	0.0005	0.970

$$
G(x)=5(0.008)+25(0.008)+100(0.0005)+0(.5725)
$$

$$
E(x)=0.2 .
$$

HO2 10 ae acasein neser a 0.20 fi , sin eregect coro anceral gavie pinter, secs vil moo dratol. Ej Ca func. θ aeusiano atuNA v.A it chat aron poe

$$
f(x)= \begin{cases}2 e^{-2 x} & x>0 \\ 0 & x \leq 0\end{cases}
$$

cucutate
a) $E(x)$

$$
\begin{aligned}
F(x) & \left.=\int_{-}^{\infty} x f(x) d x=\int_{0}^{\infty} x / 2 c^{-2 x}\right) d x-2 / x e^{-2 x} d x \\
& =2\left[x\left(\frac{e^{-2 x}}{-2}\right)-(-1)\left(\frac{e^{-2 x}}{4}\right)\right]_{0}^{\infty}=\frac{1}{2}
\end{aligned}
$$

6) $E\left(x^{2}\right)$

$$
\begin{aligned}
E\left(x^{2}\right) & =\int_{\infty}^{\infty} x^{2} f(x) d x=\int_{0}^{\infty} x^{2} e^{-2 x} d x \\
& =2\left[x^{2}\left(\frac{c^{-2 x}}{-2}\right)-2 x\left(\frac{e^{-2 x}}{4}\right)+2\left(\frac{c^{-2 x}}{-8^{2}}\right)\right]_{0}^{\infty} \\
& =\frac{1}{2}
\end{aligned}
$$

WEARES ALGMOS PMBLGMAS COU UARIANEA 7 OS.
Ej.- ENCURURRG CA VARIANZA y O.S. DECASUNAT OSNENIAG $a \in$ CANEAR 2 DAOOS AL ATRE.
$36 A 1 x$ ey atoceana mpo

$$
\begin{aligned}
& E(x)=C(y)=1\left(\frac{1}{6}\right)+2\left(\frac{1}{6}\right)+\cdots \quad 6\left(\frac{1}{6}\right)=\frac{2}{2} \\
& E(x+y)=E(x)+E(y)=\frac{7}{2}+\frac{7}{2}=7 \text { ave es ussotenses } \\
& E\left(x^{2}\right)=E\left(y^{2}\right)=12\left(\frac{1}{2}\right)+2^{2}\left(\frac{1}{6}\right)+\cdots \cdot 6^{2}\left(\frac{1}{6}\right)=\frac{g y}{6} \\
& \operatorname{UAR}(x)=\operatorname{VaR}(y)=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12}
\end{aligned}
$$

arco oue $X=Y$ san inot rewaimes

$$
\begin{aligned}
& \operatorname{VAR}(x+y): \operatorname{Var}(x)+\operatorname{Var}(y)=\frac{35}{6} \\
& \sigma_{x+y}=\sqrt{\operatorname{Var}(x+y)}=\sqrt{35 / 6} \quad P=\frac{V_{x y}}{1+V_{y}} .
\end{aligned}
$$

Gjermo
deterrine la undianza fas. oxca v.A

$$
f(x)= \begin{cases}2 e^{-2 x} & x>0 \\ 0 & x \leqslant 0\end{cases}
$$

cono ya se cacans con anderiariaso
$\mu=E(x)=\frac{1}{2}$ prowave u undianza seem:

$$
\operatorname{van}(x)=E\left[\left(x-\mu^{2}\right)\right]=E\left[\left(x-\frac{1}{2}\right)^{2}\right]=\int_{-\infty}^{\infty}\left(x-\frac{1}{2}\right)^{2} f(x) d x
$$

$$
=\int_{0}^{\infty}\left(x-\frac{1}{2}\right)^{2}\left(2 e^{-2 x}\right) d x=\frac{1}{4}
$$

UTilitanco oreo meroou

$$
\begin{aligned}
\operatorname{UAR}(x) & =E\left[(x-\mu)^{2}\right]=E\left(x^{2}\right]-E[(x)]^{2}=\frac{1}{2} \cdot\left(\frac{1}{3}\right)=\frac{1}{6} \\
\sigma & =\sqrt{V A C(x)}=\sqrt{\frac{1}{4}}=\frac{1}{2} .
\end{aligned}
$$

a) $E(x)=$

$$
\begin{aligned}
& =\sum_{x} \sum_{y} x f(x, y)=\sum_{x} x\left[\sum_{y} f(x, y)\right] \\
& =0(6 a)+1(14 c)+2(22 c)=58 c_{c}=\frac{58}{42}=\frac{27}{21}
\end{aligned}
$$

b)

$$
\begin{aligned}
&\left.E(y)=\sum_{x} \sum_{x} y f(x, y)=\sum_{y} y\left[\sum_{x} f(x, y)\right]\right]^{+2} \\
&=0(b c)+1\left(y_{c}\right)+2(12 c)+3(w c)=286=\frac{78}{42}=\frac{13}{7}
\end{aligned}
$$

c)

$$
\begin{aligned}
& E(x y)=\sum_{x} \sum_{y} x y f(x, y) \\
& =(6)(0)(1)+(0)(1)(c)+(0)(2)(2 c)+(0)(8)(3 c)+ \\
& (1)(0)(2 c)+(1)(1)(3 c)+(1)(2)(3 c)+(1)\left(2 x+f_{c}\right)+ \\
& (1)(3)(5 c)+(2)(0)(4 c)+(2)(1)(5 c)+(2)(2)(c)+ \\
& (2)[3)(7 c)=102 c=\frac{102}{42}=\frac{17}{7}
\end{aligned}
$$

d) $E\left(x^{2}\right)=\sum_{x} \sum_{y} x^{2} f(x)=\sum_{x} x^{2}\left[\sum_{y} f(x, y)\right]$.

$$
=\left(11^{2}(b c)+\cos ^{2}\left(14_{c}\right)+(2)^{2}(12 c)=102 c=\frac{02}{42}=\frac{17}{7}\right.
$$

c) $E\left(y^{2}\right)=\sum_{Y} y^{2}\left[\sum_{x} f(x, y)\right]$

$$
=\left(\cot ^{2}(6 c)+\left(1+2 c+(2)^{2}(12 c)+6\right)^{2}(\Delta c)=122 c=\frac{12}{42}=\frac{32}{7}\right.
$$

f) $\int_{x}^{2}=\operatorname{var}(x)=E\left(x^{2}\right]-[E(x)]^{2}=\frac{17}{2}-\left(\frac{21}{21}\right)^{2}=\frac{280}{441}$
$g \| \sigma_{y}^{2}=\operatorname{arr}(y)=E\left(y^{2}\right)-[E(y)]^{2}=\frac{17}{7}-\left(\frac{13}{7}\right)^{2}=\frac{55}{49}$.
h) $\Gamma_{x y}=\operatorname{cov}(x y)=E(x y)-\sigma(x) E(y)=\frac{17}{7}-\left(\frac{29}{21}\right)\left(\frac{13}{7}\right)=-\frac{20}{147}$
i) $\rho=\frac{\sigma_{x y}}{\sigma_{x y}}$

FUNCIONES DE DISTRIBUCION DC
PROBABILIOAD．
1．－Funcion bindmiac ó distribucion de bernarmi． A principio del cieio pay vinos ó aeaveinos la funcion bitesminl．

 OA\＆Aj A Eil）
 Eufurt of zezanceli y $q=1-p<A$ fins．siviano a FAHA
la pingasilidao deew eucuid suceoa X veces （A）Hinti：tas EJTA oroo poe：

$$
\left\lvert\, \ldots f(x \cdot x)=\binom{n}{y} f^{6} q^{1 \cdot x}=\frac{11}{x!(n \cdot x!} \cdot p^{x} q^{n}\right.
$$

y sus pinfiegozes seceni：

$$
\begin{aligned}
& \text { MORA } \\
& \mu=n p \\
& \text { 1. } \because \because \% \\
& r=n F \% \\
& \sigma^{\circ}=\text { にんis. }
\end{aligned}
$$

 Cin 6 Tiradods．

$$
P(x=2)=\binom{6}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{6-2}=6!\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{4}=\frac{15}{6!}
$$

\because ENCANO que U FONCION SEA DIJCRETA SE PUEOE GSCRIUIL como al Expansion e BEZaio ULLi

$$
\begin{aligned}
& (q+p)^{n}=q^{n}+\binom{n}{1} q^{n-1} p+\binom{n}{2} q^{n-2} p^{2} \\
& =\sum_{x=0}^{n}\binom{\eta}{x} p^{x} q^{n-x}
\end{aligned}
$$

DISTRIBUCION NOIMAL.

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \mathbb{C}^{-(x-\mu)^{2} / 2 \pi}{ }^{2}-\cos x<0
$$

$$
f(x)-P(x \leq x)=\frac{1}{\sqrt{2}} \int_{-\infty}^{x} a^{-(x-2)^{2} / 20^{2}} C^{0}
$$

2 arrenos $z=\frac{x-\operatorname{li}}{\sigma} \quad$ y $\beta=0 \quad y \sigma=1$

$$
f(z)=\frac{1}{\sqrt{2 n}} e^{-e^{2} / 2}
$$

 D: owniond ó curve ansmaed inaf.

$$
\begin{aligned}
& P(-1 \leq z \leq 1)=0.6727 \\
& P(-2 \leq z \leq 2)=.9645 \\
& P(-3 \leq z \leq 3)=.9973
\end{aligned}
$$

DITRPBUCIDN DE PDISSON.
 TAL nec se pubion as fivendillo cimenor rez

$$
f(x)=f(x=x)=\frac{\lambda^{x} e^{-\lambda}}{x!}
$$

 siquisurs risicanas:

$$
\begin{array}{ll}
\text { MEOIA } & \mu=\lambda \\
\text { UMAAMZA } & 0=\lambda \\
\text { O.S } & \therefore \because \sqrt{\lambda}
\end{array}
$$

WW TEOREAA DC LMIT CENTRAL.
 La misha oistribucia, con meoint 4 y vationtio ${ }^{2}$ Fiwints.

$$
\begin{aligned}
& \text { si } \quad S_{11}=X_{1}+X_{24} \ldots+X_{4} \quad(a=1,8 \ldots) \\
& \lim _{n \rightarrow \infty} P\left(a \leq \frac{S_{n}-n \not a}{\sigma \sqrt{n}} \leq b\right)=\frac{1}{\sqrt{2 n}} \int_{a}^{b}-a^{2} / d x
\end{aligned}
$$

20 WAL SisniflGt act un U.A $\frac{s_{n}-n \mu}{\sigma \sqrt{n}} \Leftrightarrow$ NOZSAL estandarizaOa

Funcion of MISRIGUciau HiRerevrditica. sumava qiek una laja couticus bequiens arues y r canjicas injas. efervenes a cimedimentas. en las whes se sacog una conien, ge-casobua a

 aARO pJe:

$$
P(x=x)=(a) \frac{\theta^{x} p^{w x}}{(b+r)^{0}}
$$

di efeetuaros en prugba sin pergrazo.

$$
P(x=x)=\frac{\binom{b}{x}\binom{n-x}{n}}{\binom{b}{n}}
$$

wyA ucoiA $\mathrm{H}, \mu=\frac{n b}{0+\sim}$
y os. $\sigma^{2}=\frac{n b r(b+r-n)}{(b+r)^{2}(b+r)}$

DUSTRIBUIION UNIFORME.
SEA X UNA U.A. UNIFORMEUTOURE Distriguion su un interuaco $a \leq x \leq 5$ so f.d.e.es.

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{1}{b-a} & a \leq x \leq b \\
0 & \text { ewerecss }\end{cases} \\
& F(x)=P(x \leq x)=\left\{\begin{array}{cc}
0 & x<a \\
\frac{(x-a)}{b-a} & a \leq x<b \\
1 & x \geq b
\end{array}\right.
\end{aligned}
$$

Su moin sea, $\quad l=\frac{1}{2}(a+b)$

$$
\sigma^{2}=\frac{1}{12}(b-9)^{2}
$$

Existen muths ofody aisisisucisints. is $\begin{array}{ll}\text { quecty } & f(x)=\frac{a}{\pi\left(x^{2}+a^{2}\right)}-\infty>0 \\ -\infty<x<00\end{array}$
pistrisucion gama.

$$
f(x)= \begin{cases}\frac{x^{\alpha-1} \cdot e^{-x / \beta}}{\beta^{\alpha} \Gamma(\alpha)} & x>0 \\ 0 & x \leq 0\end{cases}
$$

disteibucion X^{2} CHi cuaceana.

$$
\begin{aligned}
& \operatorname{sen} x^{2}=x_{1}^{2}+x_{2}^{2}+\cdots x_{y}^{2} \\
& P\left(x^{2} \leq x\right)=\frac{1}{2^{v / 2} \Gamma(v / 2)} \int_{0}^{x} u^{(r / 6)-1} e^{-n / 2} d u .
\end{aligned}
$$

asnot $V=$ hramas $a \in$ liselino.
onseisucion stuafent (t)

$$
f(t)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v \pi} /\left(\frac{v}{2}\right)}\left(1+\frac{t^{2}}{v}\right)^{-(v+1)} \frac{(v)}{2}
$$

varos a continuqcion biens ejerpios.
 ec muers 3:
a) 16 т TNA 2 Lece.
 y OUE NO JACGA $q=1-p=\frac{5}{6}$

$$
P(x=2)=\binom{5}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{5}{6}\right)^{3}=\frac{625}{3808}
$$

b) OUG NO SALGA MAS O UNA UEL $=P(x \&)=P(x=0)+P(x=1)$

$$
=\binom{5}{0}\left(\frac{1}{8}\right)^{0}\left(\frac{5}{6}\right)^{5}+\binom{5}{1}\left(\frac{1}{6}\right)^{1}\left(\frac{5}{6}\right)^{-}=\frac{3185}{88000} .
$$

c) deve sacga cuando nefoos $2 v \in L E A . \quad P(X \geq 8)$

$$
\begin{gathered}
P(x=8)+P(x=3)+P(x=4)+P(x=5) \\
\binom{5}{2}\left(\frac{1}{6}\right)^{2}\left(\frac{8}{6}\right)^{3}+\binom{5}{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{2}+\binom{5}{4}\left(\frac{1}{4}\right)^{8}\left(\frac{5}{6}\right)^{1}+\binom{5}{5}\left(\frac{1}{6}\right)^{5}\left(\frac{5}{6}\right)^{0} \\
=\frac{763}{3888}
\end{gathered}
$$

2) SE Thenex 2000 Farricias can Ifdijos c/u cuanms renoran
a) waveo htwos un niño
$P(1$ NiÑO $)+P(2$ NiÑO $)+P(3$ niñol $)+P($ \&ninos $)$

$$
\begin{gathered}
=\binom{4}{1}\left(\frac{1}{2}\right)^{1}(1 / 2)^{3}+\binom{4}{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}+\binom{4}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{0}+\binom{6}{6}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{0} \\
=\left(\frac{13}{16}\right) \quad 2000\left(\frac{15}{18} 5=750\right.
\end{gathered}
$$

3) 20% relas tuezcas ave proovar una momina sond cefecizosas, de toman algatoriameure \&turecas, oual es ca probabiciono de ove je tenga
a) un PZA. DEEECTUOSA.

$$
P(x=1)=\binom{4}{1}(0.8)^{\prime}(0.8)^{3}=0.4896
$$

b) ninguna exiecivosa.

$$
P\left(x=\binom{4}{0}(0.2)^{0}(0.8)^{4}=0.4096\right.
$$

c) $2 . \quad P(x<2)=P(x=0)+P(x+1)$

$$
=0.4096+0.4096=0.8192
$$

OPOA UNA CIRUA HORAAL ENCUFWRR EL AEEA
a) cortec $z=0$ y $z=1.2$.
ce las tardss.

$$
P(0 \leq z \leq 2)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{1.2} e^{-a / 2} d u=0.8889 .
$$

b) $60126 \quad z=-0.68$ y $z=0$
pano ane Clacueva es

sivererca de in taela:

$$
P(-0.68 \leq \pm \leq 0)=\int_{-0.67}^{x} \frac{1}{\sqrt{28}} e^{-u^{2} / 2} d x .=0.2517 .
$$

c) Eure6 - 0.46 y 2.21

$$
\begin{aligned}
& P(-0.46 \leq 2 \leq a .21) \\
&=\frac{1}{\sqrt{2 a}} \int_{-0.46}^{221} e^{-4 \% / 2}=\frac{1}{\sqrt{217}} \int_{-0.46}^{0} e^{-42 / 2}+\frac{1}{\sqrt{2 \pi 1}} \int_{0}^{221} e^{-42 / 2} \\
&=0.1772+0.4864
\end{aligned}
$$

d) $P(0.7 \leq \in \leq 1.94)$
(area of oa 1.94) -

(rean oxe o a.81)

$$
=0.4738-0.2910=.1828
$$

$R \quad P(z \geq-1.28)=($ A2ed -1.28 y 0$) r($ arce alancecumed $)$

$$
=0.3997+0.5=0.8997
$$

 a a) cianto esruditurts aejan enierlia.5 yisishas.
119.8 v. smaner

$$
\begin{aligned}
& =(119-5-151) / 10 \\
& 2-8.10
\end{aligned}
$$

158.8 eace struater $=(155.5-181) / 15=0.30$

$$
=0.4841+0.1199 .=0.0000
$$

 enTRE $11 \%{ }^{\circ}$ y 185.8 as :

$$
500(0.600)=300
$$

 (010600s 185.5)

$$
185.5 \text { un 3nmasa }=(185.5 \cdot 151) / 1.5=880
$$

Azen ALA pecsim 8.80

$$
\begin{array}{r}
=0.5-.4893=0.0807 \\
500(0.0107)=5
\end{array}
$$

DETERMINE IA PROBABICIDAD DE OBRNEEEVB y (linciuside) AGUILAS GOS 10 TIRAOAS.
a) usando didiribucion sinomial.

$$
\begin{aligned}
& P(x=3)=\binom{10}{3}\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right)^{7}=\frac{15}{182} \\
& P(x=6)=\binom{10}{4}\left(\frac{1}{2}\right)^{4}\left(\frac{1}{2}\right)^{6}=\frac{105}{382} \\
& P(x=5)=\binom{10}{5}\left(\frac{1}{2}\right)^{5}\left(\frac{1}{2}\right)^{5}=\frac{63}{256} \\
& P(x=6)\binom{10}{6}\left(\frac{1}{2}\right)^{6}\left(\frac{1}{2}\right)^{4}=\frac{105}{512} \\
& P(3 \leq x \leq 6)=\frac{15}{124}+\frac{105}{512}+\frac{63}{256}+\frac{105}{512}
\end{aligned}
$$

UNA TA CONTIENG GCANICAS VERDES Y 4 ROJAS. SE roma una canica deca caja, je ANOTM el cOLOR. Y no es deuvecia alachya, cual esca probabicioño DESANES DEACAC 5 CANICAS (Sveces se efecina eo

 x cas 4 eojas ar (4), Neco owg ec at roma demanteas de oirton 3 verngs y 2 20JAS G $D C \quad\binom{6}{3}\binom{4}{2}$

$$
\binom{6}{3}\binom{4}{2}
$$

$$
6+4=
$$

aADO ONE G DE DEceccional 5 canicas De 10 eqd de.

$$
\binom{60}{5}
$$

$$
\frac{\binom{6}{3}\binom{4}{2}}{\binom{10}{5}}=\frac{10}{21}
$$

oneoretono $6=6, r=4, a=5, x=3$

$$
\frac{\binom{6}{3}\binom{4}{2}}{\binom{10}{5}}=(p x=3)
$$

centro de educación continua división de estudios superiores
facultad de ingenierla, unam

centro de educación continua división de estudios superiores facultad de estudios superiores de ingenierla, unam

LVALUACION DE PROYECTOS Y TOMA DE DECISIONES
M. EN C. MARCIAL PORTILLA ROBERTSON

CEMTRO DE EDUCACION continua.
dikision de estudios sureriores tac. de ing.
U.N.A.M.

REPASO dE PRDBABiLIDAD.

LA INTEN ION AF ESE CURSO, ES CN PPESENTAR LOS COWCEPTOS FWN UAMENPDEES DE CA TEORIA DE

 s/rusciones mearsiulsrieds.

CAPITUCO
teoria penoakental aects pmabAbllipatess.
reprema ar anyes
crancios de EutwTos

CAPITNO 2.
MrAA SCE ACEATORIAS

nNciones pe distrioucior.

CAMTVLO :
ORNOY又Ci
PoISSOiN.
ejtuples. notrng, Ainomint, sirolt ctajeA 4

Cnpinco 4.
paceros, Molerocinuld oiscreios
cjutions.
repowin at cirire efalrate
C.2Rifoto 6.

DEFINICIO NES
(A) 8

Eviwho (o anjonas) son unn coreccion oepontos - amers tur en ermicio

EUTuTO - GSPACiO universec 4 t a canjunto ae doos cas monros toy of espocio.

EuGuro A g so compleatairo A' ESARCIO Nuco o uacio of (4')

La intrasecion as oos conjowitas - entinar (AnB) el ca cocecion at prowo anc essan monewicos © A y un 3 .
$A A B$

- unon oc oos cuswios ay 8 (AUB) Es L oxcction
 acon eonmeos.
B dincrama $x \in N N \quad A+B \quad A V B$

 ANTERIOROS Y EEFINAKO UNA ALGEBRA

$$
\begin{aligned}
& A+B=B+A \quad \text { <Ey conpeutoriva } \\
& A+(B+C)=(A+B)+C \quad \text { ASOCNATIUA: } \\
& A(B+C)=A C+A C \quad \text { oldrasunin. } \\
& \left(0^{\prime}\right)^{\prime}=a \\
& (A B)^{\prime}=A^{\prime}+0^{\prime}, \quad 7 \in \cot \theta a \operatorname{cosin} \alpha
\end{aligned}
$$

$$
\begin{aligned}
& A!=A
\end{aligned}
$$

Dandar argons orias recaciones las wales defition

$$
\begin{aligned}
& A+A=A \\
& A B O=A \\
& A+A^{\prime}=A+B \\
& A+A=C \\
& A+C=C \\
& A+C C=(A+O)(A+C) \\
& A A_{0}^{\prime}=(A B) C
\end{aligned}
$$

 vipursi Crecurivos si y soco si

Ejenno of oventos mutuantiurt exclusivos.
 exaustives as socosi

$$
A_{1}+A_{2}+A_{3}+\cdots \quad A_{N}=U .
$$

2me cocectivanentr cmerrivos.

EspAciar MuEsTR y MDOELOS OE EXPERINENTOS

 al resciptiou of tirat una mawera achaise.
 orferikituia ac un meoce l kibinnoo was Reduchaoj

(A) CONJicere a experimputo at tirar una mowtor al AIRC, y st Uricizamos la sig. nomicion $S_{n} \sim$ SOL EN CA ENESIMA TIRAOA
An - aquica.

La union de enos oos Muntas nuestrat corens. MOWDE AC EUEWTO OS unim aquica wo i tiradas - NE en 2 tiranas no Repita cat misha OACA. ESDGS

$$
A+B=B+A
$$

$$
\left(H, S_{2}+S_{2} A_{E}\right) \quad 0
$$

$\left(A_{1}+s_{2}\right)^{\prime} \sim$
$\left(A_{1} A_{2}+S_{1} s_{2}\right)^{\prime}=$
(B) CONSICRE EL GXARIMENTO DE CNEAR UN OPOO (A, 6 cainAs maRcmans $(2,3,4,5,6$) 2 veces.
 con X_{2}.

 EvENTOS afRa undios cexpsizinfuios.

Ex: $2=10101$.

$$
A A_{0}, A_{1} S_{6}
$$

Gevacio virnes.

$$
\left\{\begin{array}{l}
A_{1} A_{2}, A_{1} s_{2} \\
s_{1} A_{2}, \quad S_{1} s_{2}
\end{array}\right.
$$

 A, S,

OTED EJGMPLO OE EUENTD, PERO vo IE GPALIO MUESTZA LERIA

$$
A, J_{2},\left(A S_{2}\right)^{\prime}
$$

- $A_{1} \quad \cdot S_{1} A_{2} \quad \bullet S_{1} S_{2} A_{3} \quad S_{1} S_{2} S_{2} A_{4} \cdot \cdots \cdot S_{1} S_{2} S_{1} S_{A}$

GAOA POSigle zeHulitido $\left(x, x_{2}\right)$ Esia repgesentico mrun punto en ce espacio.

COMO MEDIR LA PROBABLLIOAD (?).
 posibles rescrimeos. In probadilioto af un euento es un nomero, we remeesonim dan 'puibiliato', wo a
 (pesenco)
designtuos con P(A) la peosabiliond de euswro A. Y AYREYEMOS 3 AXIOMAS MAS AL ALGESRA DE EUGNTOS.

1- PARA walquVER $A, P(A) \geq 0$
2.- $P(u)=1$ - 3nué.
$\rightarrow 3$, si $A B=\varnothing$ tntoucEs $P(A+B)=P(A)+P(B)$
 se putarn pincil neture emostate, y tsos joni:

$$
\begin{aligned}
& \left.\operatorname{Ar} M H^{\circ}\right)=1-\mathrm{HCA} \\
& 5-P(\%)=0 \\
& 6,-P(A+B)=P(A)+P(B)-P(A B) \\
& >-P(A+B+C)=1-P\left(A^{\prime} A^{\prime} C^{\prime}\right)
\end{aligned}
$$

44. Existen uarias maneras ocescribir ca mivat FORSULA, POR EJGHPLO:

$$
\begin{aligned}
& P(A+B r C)= P(A)+P\left(A^{\prime} B\right)+P\left(A^{\prime} B^{\prime} C\right) \\
& P(A+B C):P(A)+P C B) P(C C) P(A Q)-P(B C) \\
&-P(A C)+P(A B C) \\
& P(A B C C)= P\left(A B^{\prime} C^{\prime}\right)+P\left(A^{\prime} B C^{\prime}\right) \\
&+P\left(A^{\prime} A^{\prime} C\right)+P(A B)+P\left(A B^{\prime} C\right) \\
&+P\left(A^{\prime} B C\right) \\
& y \text { HAY MAS. }
\end{aligned}
$$

sin thbARGD.
1.- ROS EUGUTOS SON OPERACOS I COMBINADOS OEL AWEROO ALOS 7 AWIOARAS OE ALBEGEA DE PROBASicion:.
2.- LAS PRORAGUANTOS aFCOS ENENOS SON NUMEROS Y PUEPGU ER COHPUTAOOS OG AWEROO A COS 3 PRIKEROS AXOMAS

3- $\angle A$ ARITMETCA ES OTRO ROLLO.
la progabicioat conotcionada se qefink cono
$P(A / B)$ (je le como, A promerlians OE A onoo B)

$$
P(A / B)=\frac{P(A B)}{P(B)} \text { si } P(B) \neq 0
$$

GJEMPLO: SE TIRA UNA RONEOA 2UECES, Y REA QWiN vio al RESUCFADD aEL EXPERIMGUTO OLLE NUG "IALIO SOL EN CWANDO NEWOS UNA TIRAOA', DADA ESDA INTOEMACION PABCIAL, WEREAOS DEERMINAR. LA PRDPABiLIOND QE QUG eAcio sOL ENCAS DOS TIRACASS.
pas)

$$
\begin{aligned}
& P(B / A)=\frac{P(A B)}{P(A)}=\frac{0.25}{0.75}=\frac{1}{3} \\
& P(B / A)=\frac{P(16)}{P C A}=\frac{0.25}{0.25}=\frac{10}{3}
\end{aligned}
$$

ARBOLES PROBABILISTICOJ PIIRA EXRERIMFUTOS secuenciales.

ESTE TiPO Xearboces se vio intormacmanie curnoo se hierno las wheacios muesien y modeco de Experimtuio:;

- A.

 aniegn cos eusutos we owrzirion enta calitino DESO: EF, OZiqEw 'O' hasia \&e pOnto TECMINAL (ande

 con su pisoliciono í pridel', wos "rins esinn ÉTVantanOS CON PROBABILIDAOES CONOICIONAOAS. LA

EVENTOS INDEPGNDIWUTES.
DOS EUENTOS SON INOEPENORENTES, DI y saco $2 i^{\circ}$ $P(A \mid B)=P(A)$

$$
S^{\prime} P(A)=\frac{P(A B)}{P(B)}
$$

HASTA AQUS HENOS TERMINADO CON COS CONLEPTOS ELEMENTALES DE CADITULO/, VEAMOS A TERES DE UNA SERE DE EjGíADOS Y PROBCEMAS SI ES dUE ENTEUDINOS Y SABENOS 10 ANTES UISTO.
 CUTLES CLAMARGMES LIJTA 1, LISTA 2 y LSDA 3 ,

 prosntiliasd liso.

 cangustivos.

La LISTA 2 contione los zuentes $B_{1,}, E_{2} \ldots B_{K}$ nutuanewe Exculivos y cococrivareiwiz exanesituos.
La lisin 3 contiené los eubuios $C_{1}, C_{2} \ldots C_{k}$
 axhtantivos.
evalue.

$$
\sum_{i=1}^{5} P\left(c_{i}\right)
$$

(1) wos piosn eualual ia suma egeas peobsoicieats nocirons

 LA WAL DEBC x SER DIFERSTA x cero (ADYOR) no lleya a ser el espacio univeranc, edro es.

$$
0.0<\sum_{i=1}^{m} P\left(c_{i}\right)<1.0
$$

6) $\sum_{j=1}^{1 /} P\left(A_{2} \mid A_{j}\right)$
sabshas aws las A_{i} son muturnefuiz exciusivas, nozco ovenotaras ave $P\left(A_{2} / A_{j}\right) \in s i g u \pi ~ a ~<B C o$, Arenos ave $j=2$ - CuANo $j=2$ TENerios an E $P\left(A_{2} / d_{2}\right)=1$ polcowa

$$
\sum_{j=1}^{k} P\left(A_{e} / A_{j}\right)=1
$$

c) $\sum_{i=1}^{k} \sum_{j=1}^{k} P\left(A_{j} A_{j}\right)$
 Resulte ac $P\left(A_{j} A_{j}\right)=0$ AMenos ave $j=i$, si $j=1$ TENAHOS $P\left(A_{j} A_{j}\right)=P\left(A_{j}\right)$

EJEHPKO 2.
POR 40 voEsabemos, COA PROBAOViciortod 0.8 Alfonso es cucparace of warire y va a sez Enjuicinoo, Bcaito Carlos har sido lhema dos como tertigos, y saben si. Alfonso as culbabla - inocente.

Beaito os amigo de aconso, y diza ca verono sl alfouso es indcente, y mewriah con prosabicians oE 0.2 di A ffoaso gs cucnuce. Callos odia a todo al mundo. Exepro al suct, y aiza uruconso si ALËONse ES TULPABCE, Y MENTIRA CON PROBNBIGOAO DE O.S I) ACPONSN ES inocente.
a) derermine latprobabicta ane las restiaos den TESTINCONIOS CONTRTDICTORIOS
b) WAL DES DS TENTGDS SERA MAS PROMENSO A Moutie un El JUsGADO
c) CuAt ES la prosariciano convilowaton duE a lfanso \leftrightarrow imecaniz, si Bcuito y Carlos riadieron furimanios continn orcrarids
d) i dow cos eventos 'Bcuito miente'y 'arzcas minuz' inNG PENDGURES?
4) iesitan estos ercutos (punta 1) conorcionatimeniz
 Es wlpablc?

Sowcion :

EUGuro A : A ES inocente
EUENTO B: B TESTIFICA QUE A ES INO EENTE
Euknid C: C Testifica aus A Es ino ceute
EUEND X : $20 s$ TESTigos an TESTHTONiO conflicilivos

$$
P(A \mid X)=\frac{P(A A)}{P(N}=\frac{0.06}{0.22}=\frac{3}{11}
$$

Punto mossrea $P(\cdot) x \quad y \quad z \quad A x$

0.14
0.06
0.16
0.64

$P(x):$	$P(y)=$	$P(z)=$	$P(1 x)$
$=0.22$	0.16	0.06	$=0.06$

Para peierminar las prospbilidades pe capaio muejrra.
sumcimer sumemos los mutos rewerte aEl Gigit en WESTION
a) $P(x)=P\left(B C^{\prime}+B^{\circ} C\right)=P\left(\sigma \sigma^{\prime}\right)+P\left(B^{\prime} C\right)=0.22$
b) $P(Y)=P\left(A A^{\prime}+A_{B}^{\prime}\right)=0.0+0.16=0.16$

$$
P(2)=P\left(A C^{\prime}+A^{\prime} C\right)=P\left(A C^{\prime}\right)+P\left(A^{\prime} C\right)=0.06+00=0 .
$$

 Falso Testionowio
c) $P(A / X)=\frac{P(A x)}{P(x)}=\frac{0.06}{0.06+0.16}=\frac{3}{11}$

 CNE OCUREIO X, SE DEEERAD RUKHUTAR LA PROSA. allions ewo acpouso ts inochute.
Gu G8/z caso

$$
\begin{array}{ll}
\frac{8}{11}>\frac{1}{5} & P(A \mid x)=\frac{3}{11} \\
& P(A d)=\frac{1}{5}
\end{array}
$$

c) siucion acternativa.
ondo oue ocureio x, wos uamos al espacio muestan, y Examinamos acuelos mendos can atributo x La PRoDa biluend conoicional pmat hids punios de deremaina 'Escmianooi las perangilionoas oritidatés apridei, the la misma consiant $[1 / P(x)]$ pRCO NE SUNGN JNO

ESPACiO eE PROBA BIVIDAS condiliontroo a eat ocuzesucin og K.
geseacio opiginal

$$
\begin{aligned}
& \frac{A B C^{\prime}}{x}=\frac{0.06}{0.22}=\frac{6}{E_{2}} \\
& \frac{A^{\prime} B C^{\prime}}{X}=\frac{0.60}{\Sigma_{E}}=\frac{16}{\Sigma_{2}}
\end{aligned}
$$

Lo COENOS RESTA HACER, ES SUMAR SUAARCAS
 Te ESPACOO NUESTRA AALA DETREMINAL LA PZOB. CONDICIONA: pet cugoto

$$
\left.P(A \mid x)=P\left(A 8 C^{\prime}\right) x\right)=\frac{0.06}{0.22}=\frac{3}{1}
$$

4

$$
p(y z)=p(y) p(z)
$$

pces $P(y z)>0$ sin GrBoryo $P(y)>0$ y $P(z)>0$, Pon

 $P(y z / A)^{p} p(y / A) P(z / A)$ y aws

 yuncenth nch reecig son cero, As: tuO

its importance been more widely appreciated until now? The answer is that many users of probability theory (but certainly not the original developers) considered probabilities to be physical parameters of objects, such as weight, volume, or hardness. For example, there was much mention of "fair" coins and "fair" dice, with the underlying notion that the probability of events associated with these objects could be measured in the real world.

For the past 15 years, however, an important minority of experts on the subject have been advancing the view that probabilities measure a person's state of knowledge about phenomena rather than the phenomena themselves. They would say, for example, that when someone describes a coin as "fair" he really means that on the basis of all evidence presented to him he has no reason for asserting that the coin is more likely to fall heads than tails. This view is modern, but not a I luct of modern times. It was studied clearly and convincingly 200 years ago but remained buried for a long time.

An example illustrating this view of probability follows: An astronaut is about to be fired into space on a globe-circling mission. As he is strapping himself into his capsule on top of a gleaming rocket, he asks the launch supervisor, "By the way, what's the reliabilty of this rocket?" The launch supervisor replies "Ninety nine percent-we expect only one rocket in one hundred to fail." The astronaut is reassured but still has some doubts about the success of his mission. He asks, "Are these rockets around the edge of the field the same type as the one I'm sitting on?'" The supervisor replies, "They're identical." The astronaut suggests, "Let's shoot up a few just to give me some courage."

The rocket is fitted with a dummy payload, prepared for launching, and fired. It falls in the ocean, a complete failure. The supervisor comments, "Unlucky break, let's try an(." r." Unfortunately, that one also fails by '. roding in mid-air. A third is tried with disastrous results as it disintegrates on its
pad. By this time, the astronaut has probably handed in his resignation and headed home. Nothing could convince him that the reliability of his rocket is still 99%.

But, in reality, what has changed? His rocket is physically unaffected by the failure of the other rockets. Its guidance system, rocket engine, and life support system are all exactly the same as they were before the other tests. If probability were a state of things, then the reliability of his rocket should still be 0.99 . But, of course, it is not. After observing the failure of the first rocket, he might have evaluated the reliability of his rocket at, say, 0.90 ; after the second failure, at 0.70 ; and finally after the third failure, at perhaps 0.30 . What happened was that his state of knowledge of his own rocket was influenced by what happened to its sister ships, and therefore his estimate of its reliability must decrease. His final view of its reliability is so low that he does not choose to risk his life.

The view of probability as a state of things is just not tenable. Probability should be considered as the reading of a kind of mental thermometer that measures uncertainty rather than temperature. The reading goes up if, as data accumulate, it tends to increase the likelihood of the event under consideration. The reading of 1 corresponds to certainty that the event will occur, the reading of 0 to certainty that it will not occur. The inferential theory of probability is concerned with the question of how the reading ought to fluctuate in the face of new data.

Encoding Experience

Most persons would agree that it would be unwise to make a decision without considering all available knowledge before acting. If someone were offered an opportunity to participate in a game of chance by his best friend, by a tramp, and by a business associate, he would generally have different feelings about the fairness of the game in each case. A major problem is how to encode the knowledge he has in a usable form. This problem is solved
by the observation that probability is the appropriate way to measure his uncertainty.

All prior experience must be used in assessing probabilities. The difficulty in encoding prior knowledge as probability is that the prior information available may range in form from a strong belief that results from many years of experience to a vague feeling that arises from a few haphazard observations. Yet there is probably not a person who had no information about an event that was important to him. People who start out saying that they have no idea about what is going to happen can always, when pressed, provide probability assignments that show considerable information about the event in question. The problem of those who would aid decisionmakers is to make the process of assigning probabilities as simple, efficient, and accurate as possible.

The Practical Encoding of Knowledge

In the probabilistic phase of decision analysis, we face the problem of encoding the uncertainty in each of the aleatory variables. In organizational decision-making, prior probability distributions (or priors) should be assigned by the people within the organization who are most knowledgeable about each state variable. Thus, the priors on engineering variables will typically be assigned by the engineering department; on marketing variables, by the marketing department; and so on. However, since each case is an attempt to encode a probability distribution that reflects a state of mind and since most individuals have real difficulty in thinking about uncertainty, the method of extracting the priors is extremely important. As people participate in the prior-gathering process, their attitudes are indicated successively by: "This is ridiculous." "It can't be done." "I have told you what you want to know, but it doesn't mean anything." "Yes, it seems to reflect the way I feel." And "Why doesn't everybody do this?" In gathering the information, the analyst must be careful to overcome the defenses the
individual develops as a result of being askt. for estimates that are often a combination of targets, wishful thinking, and expectations. The biggest difficulty is in conveying to the man that the analyst is interested in his state of knowledge and not in measuring him or setting a goal for him.

If the subject has some experience with probability, he often attempts to make all his priors look like normal distributions, a characteristic known as "bell-shaped" thinking. Although normal distributions are appropriate priors in some circumstances, they should not become foregone conclusions.

Experience has shown certain procedures to be effective in this almost psychoanalytic process of prior measurement. One procedure is to make the measurement in a private interview to eliminate group pressure and to overcome the vague notions that most people exhibit about probabilistic matters. Unless the subjects are already experienced in decision analysis, the distribution of forms on which they are supposed to draw their priors has proved worse than useless.

The interview begins with such questions as "What are the chances that x will exceed ten?" This approach is taken because people seem much more comfortable in assigning probabilities to events than they are in sketching a probability density function. The interviewer also skips around, asking the probability that x will be "greater than 50 ," "less than ten," "greater than 30 ," often asking the same question again later in the interview. The replies are recorded out of the view of the subject so as to frustrate any attempt at forced consistency on his part. As the interview proceeds, the subject often considers the questions with greater and greater care, so that his answers toward the end of the interview may represent his feelings much better than did his initial answers.

The interviewer can change the form of the questions by asking the subject to divide the possible values of an aleatory variable into n, intervals of equal probability. The answers ts

11 these questions enable the analyst to draw the excess probability distribution for the alcatory variable, a form of representation that seems easy to convey to people without formal probabilistic training.
'The result of the interview must be a prior that the subject is willing to live with, regardless of whether it will describe a lottery on who buys coffee or on the disposal of his life savings. The analyst can test the prior by comparing it with known probabilistic mechanisms. For example, if the subject says that some aleatory variable x is equally likely to be less or greater than a, then he should be indifferent about whether he is paid $\$ 100$ if x exceed a or if he can call the toss of a coin. If he is noi. indifferent, then he must change a until he is. The end result of such questions is to produce a prior that the subject is not tempted to change in any way. Although the priorgathering process is not cheap, the analyst need perform it only on the aleatory variables.

In cases where the interview procedure is
t appropriate, the analyst can often obtain .. satisfactory prior by drawing one himself and then letting the subject change it until the subject is satisfied. This technique may also be useful as an educational device in preparation for the interview.

If two or more aleatory variables are dependent, then the procedure requires priors that reflect the dependencies. The technique of prior gathe.ing is generally the same but somewhat more involved. Since the treating of joint variables is a source of expense, the analyst should formulate the problem so as to avoid them whenever possible.

An Actual Probability Assessment

Figure 8 illustrates prior-gathering. The decision in a major problem was thought to depend primarily on the average lifetime of a new material. Since the material had never been made and test results would not be available until three years after the decision was required, it was necessary to encode how r. "h knowledge the company now had con-

Fig. 8-Priors on Material Lifetime

cerning the life of the material. This knowledge resided in three professional metallurgists who were exprerts in that field of technology. These men were interviewed separately according to the priṇciples described. They produced the points labeled "Subjects 1, 2, and 3 " in the figure. These results have several interesting features. For example, for $t=17$, Subject 2 assigned probabilities of 0.2 and 0.25 at various points in the interview. On the whole, however, the subjects were remarkably consistent in their assignments. Subject 3 was more pessimistic about the lifetime than was Subject 1.

Upon conclusion of the interviews, the three subjects were brought together, shown the results, and a vigorous discussion took place. Subjects 1 and 3 each brought forth information of which the other two members of the group were unaware. As the result of this information exchan se, the three subjects drew the consensus curve-each said that this curve represented the state of information about the material!'s life at the end of the meeting. Later, their supervisor said he understood their position on the new material for the first time.

It has been suggested that the proper way to reconcile divergent priors is to assign
weights to each, multiply, and add, but this experiment is convincing evidence that any such mechanistic procedure misses the point. Divergent priors are an excellent indicator of divergent states of information. The experience just described not only produced the company's present encoding of uncertainty about the material's lifetime, but at the same time encouraged and effected the exchange of information within the group.

Encoding New Information

Following the encoding of the original information about an aleatory variable by means of a prior probability distribution, or about an event by the assignment of a probability, the question naturally arises as to how these probability assignments should be changed in the light of new information. The answer to this question was provided by Bayes in 1763; it is most easily introduced by considering the case of an event. Suppose that we have assigned some probability $p(A)$ to an event A 's occurring and that another event B is statistically related to A. We describe this relationship by a conditional probability of B given A, $p(B \mid A)$, the probability of B if A occurs; assign this probability also. Now we are told that B has, in fact, occurred. How does this change the probability that A has occurred; in other words, what is the probability of A given $\mathrm{B}, p(A \mid B)$?

Bayes showed that to be logical in this situation, the probability of A given $B, p(A \mid B)$, must be proportional to the probability of A, $p(A)$, and the probability of B given A, $p(B \mid A)$. This relationship is expressed as $\boldsymbol{p}(A \mid B)$ is proportional to $\boldsymbol{p}(A)$ times $p(B \mid A)$.

The important thing to remember is that any posterior (after new information) probability assignment to an event is proportional to the product of the prior probability assignment and the probability of the new information given that the event in question occurred. The same idea carries over in the much more complicated situations encountered in practice.

Thus, Hayes' interpretation shows how new
information must be logically combined wi original feelings. Subjective probability as: signments are required both in describing the ! prior information and also in specifying hou, the new information is related to it. In fact. as already mentioned, Bayes' interpretatior is the only method of data processing that en-i sures that the final state of information will b the same regardless of the order of data presentation.

Encoding Values and Preferences

The other subjective issue that arises in de. cision analysis is the encoding of values anc preferences. It seems just as difficult to obtain an accurate measurement of desires a: of information.

The value issue penetrates the core of th: decision problem. Whether personal or organ. izational, the decision will ultimately depen: on how values are assigned. If each alternatis, could produce only a single outcome, it woul: only be necessary to rank the outcomes i value and then choose the alternative who: outcome was highest in value. However, typ: cally each alternative can produce many posible outcomes, outcomes that are distribute in time and also subject to uncertainty. Cor. sequently, most real decision problems re quire numerical measures of value and of tim and risk preference.

Measuring Value

The application of logic to any decisio: problem requires as one of its fundament. steps the construction of a value function. scale of values that specifies the preference . the decision-maker for one outcome compare with another. We can think of the problem a. analogous to the one we face if we have some one buy a car for us: We must tell our age!' what features of the car are important to t ? and to what extent. How do we value pe:. formance relative to comfort, appearan: relative to economy of operation, or oth: ratings?

To construct a value function in the car urchase problem, we can tell our agent the dollar value we assign to each component of a car's value. We might say, for example, that given our usage characteristics, a car that runs 18 miles to a gallon of gas is worth $\$ 40$ a year more to us than a car that runs only 15 miles and that foam rubber seats are worth $\$ 50$ more to us than ordinary seats. When we had similarly specified the dollar value of all the possible features of a car, including those whose values might not be additive, our agent would be able to go into the marketplace, determine the value and price of every offered car, and return with the most profitable car for us (which might, of course, be no car at all). In following this philosophy, we do not care if, in fact, there are any cars for sale that have all or any part of the features that we have valued. The establishment of the value function depends remotely, if at all, on the spectrum of cars available.

The main role of the value function is to serve as a framework of discussion for prefer-
ces. The value function encodes preferences consistently; it does not assign them. Consequently, the decision-maker or decision analyst can insert alternative value specifications to determine sensitivity of decisions to changes in value function. The process of assigning values will naturally be iterative, with components of value being added or eliminated as understanding of the problem grows.

A question that arises is, "Who should set the values?" In a corporate problem, to what extent do the values derive from management, stockholders, employees, customers, and the public? The process of constructing a value function brings into the open questions that have been avoided since the development of the corporate structure.

Establishing Time Preference

The general tendency of people and organizations is to value outcomes received sooner more highly than outcomes received later. In an organization, this phenomenon usually oc-
curs in connection with a time stream of profit. Time streams that show a greater share of their returns in earlier time periods are generally preferred.

A number of concepts have arisen to cope with time preference in corporations. To illustrate these concepts; let $x(n)$ be the cash flow in year n in the future, positive or negative, where $n=0$ is the beginning of the present year, $n=1$ next year, and so on. A positive cash flow indicates that income exceeds expenditures, a negative cash flow implies the reverse. Negative cash flows will usually occur in the early years of the project.

The most elementary approach, the payback period method, rests on the assumption that the cash flow will be negative in early periods and will then become and remain positive for the balance of the project. The payback period is the number of the period in which cumulative cash flow becomes positive.

The payback period came into common use when projects were typically investments in capital equipment, investments characterized by a high initial outlay gradually returned in the course of time. However, only a few modern investments have such a simple structure. The project may contain several interspersed periods of investment and return. There would seem to be little justification for use of the payback period in modern corporate de-cision-making.

The idea of internal rate of return was introduced as a more sophisticated time preference measure. The internal rate of return is derived from the present value of the project, defined by

$$
\begin{aligned}
P V(i)=x(0) & +x(1)\left(\frac{1}{1+i}\right) \\
& +x(2)\left(\frac{1}{1+i}\right)^{2}+\cdots
\end{aligned}
$$

where i is interpreted as an annual interest rate for funds connected with the project. The irternal rate of return is the value of i that makes the present value equal to zero; in
other words, the solution of the equation $P V(i)=0$.
A justification offered for the use of internal rate of return is that application of the method to an investment that pays a fixed interest.rate, like a bond or a bank deposit, produces an internal rate of return equal to the actual interest rate. Although this property is satisfying, it turns out to be insufficient justification for the method. One defect, for example, is that more than one interest rate may satisfy the equation; that is, it is possible for an investment to have two internal rates of return, such as 8% and 10%. In fact, it can have as many as the number of cash flows in the project minus one. A further criticism of the method is that it purports to provide a measure of the desirability of an investment that is independent of other opportunities and of the financial environment of the firm. Although meticulous use of internal rate of return methods can lead to appropriate time preference orderings, computing the present value of projects establishes the same ordering directly, without the disadvantages of internal rate of return. Furthermore, present value provides a measure of an investment such that the bigger the number, the better the investment. The question that arises is what interest rate i to use in the computation.

Much misunderstanding exists about the implications of choosing an interest rate. Some firms use interest rates like 20% or 25% in the belief that this will maintain profitability. Yet at the same time they find that they are actually investing most of their available capital in bank accounts. The overall earnings on capital investment will therefore be rather low. The general question of selecting i is too complicated to treat here, but the fundamental consideration is the relationship of the firm to its financial environment.

There is a cogent logical argument for the use of present value. If a decision-maker believes certain axioms regarding time streams -axioms that capture such human charac-
teristics as greediness and impatience-ther. the time preference of the decision-maker for cash streams that are certain must be characterized by the present value corresponding t_{s} some interest rate. Furthermore, if a bank is willing to receive and disburse money at some interest rate, then, for consistency, the deci-sion-maker must use this bank interest rate as his own interest rate in the calculation Present value is therefore a well-founded criterion for time preference.

In this discussion of time preference, there has been no uncertainty in the value of cast. streams. Undoubtedly, it was the existence of uncertainty that made payback periods and artificially high interest rate criteria seem more logical than they in fact are. Such procedures confuse the issues of time and risk preference by attempting to describe risk: preference as a requirement for even greater rapidity of return. Decision analysis requires a clear distinction between the time and risk preference aspects of decision-making.

Establishing Risk Preference

The phenomenon of risk preference was discussed in connection with the proposition of tossing a coin, double or nothing, for nex: year's salary: most people will not play. However, suppose they were offered some fraction of next year's salary as an inducement to play. If this fraction is zero, there is no inducement. and they will refuse. If the fraction is one they have nothing to lose by playing and thes have a .5 probability of ending up with three times next year's salary; clearly, only those with strange motivations would refuse. In experiments on groups of professional men, the fraction required to induce them to play varies from about 60% to 99%, depending on their financial obligations. Obviously, the foot-loose bachelor has a different attitude than does the married man with serious illnes.: in the family.

The characteristic measured in this experiment is risk aversion. Few persons are indif ferent to risk-i.e., willing to engage in a farr
gamble. Fewer still prefer risk-i.e., willing to engage in the kind of gambles that are unfair, such as those offered at professional gambling establishments. When considering sums that are significant with respect to their financial strength, most individuals and corporations are risk-averse.
A risk-averse decision-maker is willing to forego some expected value in order to be protected from the possibilities of poor outcomes. For example, a man buys life, accident, and liability insurance because he is risk-averse. These policies are unfair in the sense that they have a negative expected value computed as the difference between the premium and the expected loss. It is just this negative expected value that becomes the insurance company's profit from operations. Customers are willing to pay for this service because of their extreme aversion to large losses.

A logical way to treat the problem of risk aversion is to begin with the idea of a lottery. A lottery is a technical term that refers to a set of prizes or prospects with probabilities a'nched. Thus, tossing a coin for next year's
y is a lottery and so is buying a life insurance policy. The axioms that the decisionmaker must satisfy to use the theory are:

- Given any two prizes in a lottery, he must be able to state which he prefers or whether he is indifferent between them. His preferences must be transitive: if he prefers prize A to B and prize B to C, he must also prefer A to C. - If he prefers A to B and B to C, he must be mdifferent to receiving B for certain or participating in a lottery with A and C as prizes for some probability of winning A.
- If he prefers A to B, then given the choice of two lotteries that both have prizes A and B, he will prefer the one with the higher probablity of winning A.
- He treats as equivalent all lotteries with the same probabilities of achieving the same prizes, regardless of whether the prizes are won in one drawing, or as the result of several drawings that take place at the same time.

It is possible to show that an individual who wants to act in accordance with these axioms possesses a utility function that has two important properties. First, he can compute his utility for any lottery by computing the utility of each prize, multiplying by the probability of that prize, and then summing over all prizes. Second, if he prefers one lottery to another, then his utility for it will be higher.

If the prizes in a lottery are all measured in the same commodity, then, as discussed previously, the certain equivalent of the lottery is the amount of the commodity that has the same utility as the lottery. The concepts of utility and certain equivalent play a central role in understanding risk preference.

In the practical question of measuring risk preference, one approach is to present an individual with a lottery and to ask him his certain equivalent. Or, we can provide the certain equivalent and all prizes but one and let him adjust the remaining prize until the certain equivalent is correct in his view. Finally, we can fix the certain equivalent and prizes and let him adjust the probabilitics. All these questions permit us to establish the relationships between points on his utility curve and, ultimately, the curve itself. The interviewing in which the curve is measured is similar to that used for generating priors: the same need for education exists. The same types of inconsistency appear.

Although useful utility curves for individuals and organizations can be found in this manner, most decision-makers prefer to have some guidance in the selection of utility curves. The decision analyst can often provide this guidance by asking whether the de-cision-makers will accept additional axioms. One such axiom is: if all the prizes in the lottery are increased by some amount Δ, then the certain equivalent of the lottery will increase by Δ. The argument for the reasonableness of the axiom is very simple. The additional amount Δ is money in the bank, no matter which prize in the lottery is won. Therefore, the new lottery should be worth
more than the original lottery. The counter argument is that having Δ in the bank changes the psychological orientation to the original lottery.

If this Δ axiom is added to the original set, then it is possible to show not just that a utility curve exists but that it must have a special form called the exponential form. A useful property of this exponential form is that it is described by a single number. This means that the analyst can characterize the utility curve of any individual or organization that wants to subscribe to these axioms by a single num-ber-the risk aversion constant.

It is far easier to demonstrate to a decisionmaker the consequences of his having different risk aversion coefficients and to measure his coefficient than it is to attempt to find a complete utility curve that is not of the exponential form. Encoding risk aversion in a single number permits measuring the sensitivity to risk aversion, as discussed earlier. In most practical problems, the entire question of risk aversion appears to be adequately treated by using the exponential form with a risk aversion constant appropriate to the decision-maker.

A cautionary note on the problem of practical measurement of risk aversion: experiments have revealed that the certain equivalents offered by subjects in hypothetical situations differ markedly from those offered when the situations are made real. This diffculty shows that the analyst must treat risk preference phenomena with great care.

Joint Time and Risk Preference

In most problems, both time and risk preference measures are necessary to establish the best alternative. Typically each outcome is represented by a time sequence of dependent uncertain values.

The question of how to describe preferences in such problems is fundamentally related to the way in which information on successive outcomes is revealed and to the extent to which it can help in making future decisions.

Two approaches illustrate the nature of tl problem, each of which is appropriate under certain conditions. The first-that used in the original discussion of the probabilistic phase -is to compute the worth lottery irnplied by the model and then use the current utility function to develop the certain equivalent worth of the lottery. This approach is appropriate when there is no opportunity to utilize the information about outcomes as it is revealed, and thus where the prime interest is in the position occupied after all outcomes have been revealed.

Another approach is to imagine dealing with two agents. The first is a banker who will always pay immediately the amount specified by a particular company's time preference function applied to any time stream of values that is known with certainty. The other is a risk broker who will always pay the company's certain equivalent for any lottery. When faced with an uncertain stream of income, the company alternately deals with the risk broker to exchange lotteries for certain equivalents an with the banker to convert fixed future payments into present payments. The result of this alternating procedure is ultimately a single equivalent sum to represent the entire future process. Although appealing, the method may lead to the conclusion that the deci-sion-maker should be willing to pay for "peace of mind" even when it has no effect on his financial future.

Thus the time-risk preference question ultimately depends on the decision-maker's tastes and options. The decision analyst can provide guidance in selecting from the many available approaches the one whose implications are best suited to the particular situation.

APPLICATIONS

In brief form, two examples illustrate the accomplishments and potential of decision analysis. In each case, the focus is on the key decision to be made and on the problems peculiar to the dralysis.

New Product Introduction

A recent decision analysis was concerned with whether to develop and produce a new product. Although the actual problem was from another industry we shall suppose that it was concerned with aircraft. There were two major alternatives: to develop and sell a new aircraft (A_{2}) or to continue manufacturing and selling the present product $\left(A_{1}\right)$. The decision was to be based on worth computed as the present value of future expected profits at a discount rate of 10% per year over a 22 year period. Initially, the decision was supposed to rest on the lifetime of the material for which the prior probability distribution, or priors, were obtained (Figure 8); however, a complete decision analysis was desired. Since several hundred million dollars in present value of profits were at stake, the decision analysis was well justified.

In the general scheme of the analysis, the first step was to construct a model for the business, as shown in Figure 9, which was primarily a model of the market. The profit associated with each alternative was described in terms of the price of the product, its operating costs, its capital costs, the behavior of competitors, and the natural characteristics of customers. Suspicion grew that this model did not adequately capture the regional nature of demand. Consequently, a new model was constructed that included the market character-

istics region by region and customer by customer. Moving to the more detailed basis affected the predictions so much that the additional refinement was clearly justified. However, other attempts at refinement did not affect the results sufficiently to justify a still more refined model.

Next, a sensitivity analysis was performed to determine the aleatory variables. These turned out to be operating cost, capital cost, and a few market parameters. Because of the complexity of the original business model, an approximation was constructed showing how worth depended on these aleatory variables in the area of interest. The coefficients of the approximate business model were established by runs on the complete model.

The market priors were directly assigned with little trouble. However, because the operating and the capital costs were the two most important in the problem, their priors were assigned according to a more detailed procedure. First, the operating cost was related to various physical features of the design by the engineering department; this relationship was called the operating cost function. One of the many input physical variables was the average lifetime of the material whose prior appears in Figure 8. All but two of the 12 physical input variables were independent. The priors on the whole set were gathered and used together with the operating cost function in a Monte Carlo simulation that produced a prior for the operating cost of the product.

The engineering department also developed the capital cost function, which was much simpler in form. The aleatory variables in this case were the production costs for various parts of the product. A simulation produced a prior on capital cost.

With priors established on all inputs to the approximate business model, numerical analysis determined the worth lottery for each alternative. The worth lotteries for the two alternatives closely resembled those in Figure 4, Part A. The new product alternative A_{2} sto-
chastically dominated the alternative A_{1} (continuing to manufacture the present product). The result showed two interesting aspects of the problem. First, it had been expected that the worth lottery for the new product alternative would be considerably broader than it was for the old product. The image was that of a profitable and risky new venture compared with a less profitable, but less risky, standard venture. In fact the results revealed that the uncertainties in profit were about the same for both alternatives, thus showing how initial impressions may be misleading.

Second, the average lifetime of the material whose priors appear in Figure 8 was actually of little consequence in the decision. It was true enough that profits were critically dependent on this lifetime if the design were fixed. But leaving the design flexible to accommodate to different average material lifetimes was not an expensive alternative. The flexible design reduced sensitivity to material lifetime so much that its uncertainty ceased to be a major concern.

The problem did not yield as easily as this, however. Figure 10 shows the present value of profits through each number of years t for

each alternative. Note that if returns beyon, year 7 are ignored, the old product has a higher present value; but in considering returns over the entire 22 -year period, the relationship reverses. When managers saw these results they were considerably disturbed. The division in question had been under heavy pressure to show a profit in the near future, and alternative A_{2} would not meet that requirement. Thus, the question of time preference that had been quickly passed off as one of present value at 10% per year became the central issue in the decision. The question was whether the division was interested in the quick kill or the long pull.

This problem clearly illustrates the use of decision analysis in clarifying the issues surrounding a decision. A decision that might have been made on the basis of a material lifetime was shown to depend more fundamentally on the question of time preference for profit. The extensive effort devoted to this analysis was considered well spent by the company, which is now interested in instituting decision analysis procedures at several organizational levels.

Space Program Planning

A more recent application in a quite different area concerned planning a major space program. The problem was to determine the sequence of designs of rockets and payloads that should be used to pursue the goal of exploring Mars. It was considered desirable to place orbiters about Mars as well as to land vehicles on the planet to collect scientific data.

The project manager had to define the design for each mission-that is, the type and number of launch vehicles, orbiters, and landers. The choice of design for the first mission could not logically be made without considering the overall project objectives and the feasible alternatives. Key features of the problem were the time for the development of new orbiting and landing vehicles, cost of each

- mission, and chances of achieving objectives.

Approach to Solution

To apply decision analysis to the problem posed, a two-phase program was adopted. The first or pilot phase consisted of defining a simplified version of the decision. To the maximum extent possible, however, the essential features of the problem were accurately represented and only the complexity was reduced. This smaller problem allowed easier development of the modeling approach, and exercising of the model provided insight into the level of detail required in structuring the inputs to the decision. The second phase consisted of developing the more realistic and complex model required to decide on an actual mission.

The Pilot Phase

To begin the decision analysis, four possible designs were postulated to represent increasing levels of sophistication. Figure 11 shows these designs and their potential ac-

Fig. 11-Configurations and Performance

complishments. "The questions were: what design should be selected for the first opportunity, and what sequence of designs should be planned to follow the first choice? Should the project manager, for example, elect to provide the ultimate level of capability in the initial design in the face of uncertainties in the Martian environment and difficulties in developing complew equipment to survive the prelaunch sterilization enyironment? Or should he choose a much simpler design that could obtain some information about the Martian environenent to be used in developing subsequent, more complex, vehicles.

Decision Trees

The heart of the model used in analyzing the decision was a decision tree that represented the structure of all possible sequences of decisions and outcomes and provided for cost, value, and probability inputs. Such trees contain two types of nodes (decision nodes and chance nodess) and two types of branches (alternative braniches and outcome branches), as illustrated in Figure 12. Emanating from each decision node is a set of alternative branches, each branch representing one of the alternatives available for selection at that point of decision. Each chance node is fol-

Fig. 12-Tree Relationships

lowed by a set of outcome branches, one branch for each outcome that may be achieved following that chance node. Probabilities of occurrence and values are assigned to each of these outcomes; costs are assigned to each decision alternative.

Two fundamental operations, expectation and maximization, are used to determine the most economic decision from the tree. At each chance node, the expected profit is computed by summing the probabilities of each outcome, multiplied by the value of that outcome plus expected profit of the node following that outcome. At each decision node, the expected profit of each alternative is calculated as the expected profit of the following node ("successor node") less the cost of the alternative. The optimum decision is found by maximization of these values over the set of possible alternatives, i.e., by selecting the alternative of highest expected profit.

Order of Events

The particular sequence of mission decisions and outcomes was a significant feature of the pilot a nalysis. As illustrated in Figure 13, the initial event of significance was the selection of the 1973 mission configuration. However, since lead time considerations re-

Fig. 13 ORDER OF EVENTS													
	1968	1969	1970	1971	1972	1973	1974	19/5	1976	1977	1978	1979	*-
Firsi Flight	S					1	0						
Si:cond Flight					5			1	0				
Third Flight							S			L	0		
Fourth Fhight									S			L	0
Filth Flight											S		\cdots
S $=$ Select				L = Launch			O = Outcome						

quired that the 1975 configuration decision be made in 1972, the second mission decision had to be made prior to obtaining the first mission results. Similarly, the 1977 decision had to be made before obtaining the results of the 1975 mission, although after the 1973 mission results. In general, then, a mission configuration
was made in ignorance of the results of $t l$ previous mission.

Tree Example

A complete decision tree for the pilot pro ect, with the additional assumption that L? the highest level of success, is presented : Figure 14. The model that produces the : merical probabilities, values, and costs us= in the example will be discussed later. Node at the left side of the tree is the initial decis:to select either a $C 1$ or a $C 2$ for the first laur: opportunity. The box designated $L O$ abo: this node indicates that the state at this no. is the current level of achievement. Suppose $C 1$ is selected. The cost of that $C 1$ is $\$ 850 \mathrm{~m}$. lion, indicated by the " -850 " that is writte under that branch. As a result of this choic the next node is decision node 2. The box deignated $L O, C 1$ above this node indicates th.: the state of this node is the current level achievement and a $C 1$ is being constructed f. the first launch. Now either a $C 1$ or $C 2 \mathrm{mu}$ be selected for the second launch. If a $C 1$ selected, the cost is $\$ 575$ million, and the ne: node is chance node 7. The two branches f:lowing this node represent the possible ou: comes of the first launch. The $L O^{\prime}$ outcor: which would be failure to better $L O$ on $t:$ first try, occurs with probability 0.1 wheres: the $L 1$ outcome occurs with probability $0 .:$ The value of the $L O^{\prime}$ outcome is zero, wheres: the value of the $L O$ outcome is 1224 . Now fo. low the case of the $L 1$ outcome to decisic:: node 34. The state $L 1, C 1$ at this node, mea:that the highest level of success is $L 1$ and $t h s:$ a $C 1$ is being constructed for the next launc:Since $L 1$ has already been achieved at th:: point in the tree, a $C 2$ is the only design the: may be launched in the third opportunity, at : cost of $\$ 740$ million. This leads to decisio:node 35 , where the state is $L 1, C 2$.

Node 35 in the example tree illustrates coalescence of nodes, a feature vital to maintai:ing a manageable tree size. Node 35 on the upper path through the tree can be reache from four other paths through the tree as in-
dicated in the exhibit. If the coalescence did not occur, the portion of the tree following node 35 would have to be repeated four additional times. In the full pilot tree, coalescence results in a reduction of the number of branches in the tree by a factor of 30 .

Along the path 1-2-7-34-35, at decision node 35 , a C2 must be selected for the fourth opportunity. At chance node 36, the outcome of the third launch is either an $L 1^{\prime}$ (failure to better $L 1$ with one attempt, which leads to node 38), or an $L 2$ (which achieves a value of 1714 and successfully completes the program). These outcomes occur with probability 0.3 and 0.7 , respectively. If $L 1^{\prime}$ is the outcome, chance node 38 is reached, where the outcome of the fourth launch is represented. The probability
of $L 1^{\prime \prime}$ is 0.24 , and the probability of $L 2$ is 0.76 . Note that the probability of 12 has increased over that of node 36 (0.7 to 0.76) because of the experience gained previously.

One can similarly follow and interpret many other paths through the tree. A policy is a complete selection of particular alternatives at all decision nodes. This limits the set of all possible paths to a smaller subset. (It is not possible, for example, to reach node 26 if a C1 is chosen at node 1.) The probabilities, values, and cost of these paths then determine the characteristics of the decision policy.

The most economic policy, given the input data specifications, is defined as the policy that maximizes the expected profit of the project, i.e., expected value less expected cost.

Fig. 14

The technique illustrated here eliminates many of the nonoptimum policies from explicit consideration; it is the "roll back" technique that starts from the right side of the tree and progresses left to the beginning of the tree, making all decisions and calculations in reverse chronological order. Thus, when each decision is made, only policies that optimize decisions for the following decision nodes are considered.

Consider node 38 in Figure 14. At this chance node the probability of achieving $L 1^{\prime \prime}$, which is worth nothing, is 0.24 , and the probability of achieving $L 2$, which is worth 1714 , is 0.76 . Thus, the expected profit of node 38 is: $0.24(0)+0.76(1714)=1303$. This number is written near node 38 .

The calculations are carried out in this manner backwards through the tree. The first decision node with more than one choice is node 2. If a C1 is selected, it costs $\$ 575$ million. (-575) and leads to node 7 with an expected profit of 1408 , which yields $-575+1408=$ 833. If a $C 2$ is selected, it costs $\$ 740$ million (-740) and leads to node 12 with an expected profit of 2106 , which yields $-740+2106=$ 1366. Since 1366 is greater than 833, the most economic decision is to select a C2 at node 2 , which results in an expected profit of 1366 .

Finally, the first decision is a choice between a $C 1$ with an expected profit of 516 or a $C 2$ with an expected profit of 832 . Maximum expected profit is achieved by the choice of a $C 2$ resulting in an expected profit of 832 . This

the expected profit of the entire project at ne time the first decision is made.

Figure 15 illustrates the complexity of the completed decision tree for the pilot phase of the analysis.

Velue Assignment

A particularly important part of this study was the specification of the value to be atlached to the outcomes of the program. Since the decision-makers were reluctant to state values in dollar terms, a tree of point values was employed. The value tree is simply a convenient way of showing how the total value of the project is to be broken down into its component outcomes. Figure 16 shows a value tree for the pilot analysis. The points assigned to each tip of the tree are the fraction of total program value assigned to this accomplish-

Fig. 16-The Value Tree

ment; the values accumulate as the program progresses. A total dollar value assigned to a perfect program therefore determines the dollar values used in the decision tree.

To derive a value measure, a value tree is constructed by considering first the major components of value and then the subcategories of each type, which are identified in more and more detail until no further distinction is necessary. Then each tip of the tree (constructed as above) is subdivided into four categories, each corresponding to the contribution of one of the four levels of achievement within the value subcategory represented by that tip.

The number 1.0 attached to the node at the extreme left of the value tree for the pilot analysis represents the total value of all the objectives of the pilot project (thus, the value of achieving $L 1, L 2, L 3$, and $L 4$). The four branches emanating from this node represent the four major categories of value recognized by the pilot model. The figure 0.62 attached to the upper branch represents the fraction of total value assigned to science. Two branches emanate from the science node, and 60% of the science value falls into the category of biological science. The 0.37 attached to the biological science node represents the fraction of total value attached to biological science, and is obtained by taking 60% of 0.62 (the fraction of total value attached to all science). Finally, the bottom branch following the biological science node indicates that 78% of the biological science value is achieved by jumping from $L 3$ to $L 4$.

The final step in value modeling is to obtain the fraction of total value to be attached to achieving each of the four levels. If all the contributions to achieving $L 1$ (e.g., contributions to world opinion, U.S. public favor, physical science) are added, the result is the fraction of value that should be attached to achieving $L 1$. The same process is followed for reaching $L 2$ from $L 1, L 3$ from $L 2$, and $L 4$ from $L 3$. The results of such a calculation are presented in the lower left corner of Figure 16.

Summery

On the basis of the promising results of working with the pilot model, a more complete model was developed to encompass nearly all of the factors involved in selecting the actual mission. It provided a more precise structure for assigning initial values, probabilities, and costs, and for updating probabilities and costs based on results achieved. The following tabulation shows a summary comparison of the complexity of the pilot model with the more complete model.

DECISION TREE COMPARISON TABLE

Pllot	Foature	Full Scale
4	Mission Designs	14
5	Outcomes	56
56	Decision Tree Nodes	3153
1592	Paths Through Tree	354.671 .693

Clearly, the full-scale decision tree could not be represented graphically. The tree was constructed and evaluated by computer program specially developed for this application.

A model such as the one described here can be a valuable tool throughout the life of a project. As the project progresses, the knowledge of costs, probabilities, and values will improve as a result of development programs and flights. Improved knowledge can be used in the decision process each time a design must be selected for the next opportunity.

An important additional benefit of this analysis is that it provides a language for communicating the structure of the space project and the data factors relevant to the project decisions. It provides a valuable mechanism for discourse and interchange of information, as well as a means of delegating the responsibility for determining these factors.

FUTURE TRENDS

Decision analysis should show major growth, both in its scope of applications and in its effect on organizational procedures.

This section presents various speculations about the future.

Applications

Market Strategy Planning

The importance of decision-making in a competitive environment has stimulated the use of decision analysis in both strategic anc tactical marketing planning. The strategic problems are typically more significant be. cause they affect the operations of the enterprise over many years. Strategic analysis entails building models of the company and oi its competitors and customers, analyzinc their interactions, and selecting strategies: that will fare well in the face of competitive activities. Since most of this work is of a highly confidential nature, little has appeared in the public literature; nevertheless, there 1 reason to believe that many large L'.S. corporations are performing work of this kind, how ever rudimentary it may be. The competitiv analyses of a few quite sophisticated compa nies might rival those conducted in militar: circles.

Resource Exploration and Development

Resource exploration by minerai industrie: is a most natural application for decision anaiysis. Here the uncertainty is high, costs are great, and the potential benefits extremel? handsome. At all levels of exploration-from conducting aerial surveys, through obtainins options on drill-test locations, to bidding ani: site development-decision analysis can mak. an important contribution. Organizations approaching these problems on a logical, quanti tative basis should attain a major competitiv: advantage.

Capital Budgeting

In a sense, all strategic decision problems; o^{\prime} a corporation are capital budgeting problem* for its ultimate success depends upon how : allocates its resources. Decision analysishould play an increasingly important role is
the selection of projects and in objective comparisons among them. Problems in spending for research and development programs, investment in new facilities, and acquisitions of other businesses will all receive the logical scrutiny of decision analysis. The methodology for treating these problems already exists; it now remains for it to be appreciated and implemented.

Portfolio Management

The quantitative treatment of portfolio management has already begun but it will receive even more formal treatment in the hands of decision analysts. The desires of the investing individual or organization will be measured quantitatively rather than qualitatively. Information on each alternative investment will be encoded numerically so that the effect of adding each to the portfolio can be determined immediately in terms of the expressed desires. The human will perform the tasks for which he is uniquely qualified: providing information and desires. The formal system will complement these by applying rapid logic.

Social Plenning

On the frontiers of decision analysis are the problems of social planning. Difficult as it may be to specify the values and the criteria of the business organization, this problem is minor compared with those encountered in the public arena. Yet if decision-making in the public sector is to be logical, there is no alternative.

The problems to which a contribution can be made even at the current stage of development are virtually endless: in decisions associated with park systems, farm subsidies, transportation facilities, educational policy, taxation, defense, medical care, and foreign aid, the question of values is central in every case.

The time may come when every major public decision is accompanied by a decision analysis on public record, where the executive branch makes the decision using values specified by the people through the legislative
branch. The breakdown of a public decision problem into its elements can only serve to focus appropriate concern on the issues that are crucial. For the first time, the public interest could be placed "on file" and proposals measured against it. A democracy governed in this fashion is probably not near at hand, but the idea is most intriguing.

Procedures

The effect of decision analysis on organizational procedures should be as impressive as its new applications. Some of the changes will be obvious, others quite subtle.

Application Procedures

Standardization by type of application will produce special forms of analyses for various types of decisions-for example, marketing strategy, new product introduction, research expenditures. This standardization will mean special computer programs, terminology, and specialization of concepts for each application. It will also mean that the important classes of decisions will receive much more effective attention than they do now.

Analytical Procedures

Certain techniques, such as deterministic, stochastic, and economic sensitivity analyses that may be performed with the same logic regardless of the application will be carried out by general computer programs. In fact, the process of development is well under way at the present time. Soon the logical structure of any decision analysis might be assembled from standard components.

Probabilistic Reporting

The introduction of decision analysis should have a major impact on the way organizational reporting is performed externally and internally. Externally, the organization will be able to illustrate its performance not just historically by means of balance sheets and operating statements, but also projectively by
showing management's probability distributions on future value. Since these projections would be the result of a decision analysis, each component could be reviewed by interested parties and modified by them for their own purposes. However, management would have a profitable new tool to justify investments whose payoffs lie far in the future.
Organizational management will acquire new and more effective information systems as a result of decision analysis. Internal reporting will emphasize the encoding of knowledge in quantitative form. Instead of sales forecasts for next year, there will be probability distributions of sales. Thus, the state of information about future events will be clearly distinguished from performance goals.

Delegation by Velue Function

An important logical consequence of decision analysis is that delegation of a decision requires only transmission of the delegator's present state of information and desires. Since both of these quantities can be made explicit through decision analysis, there should be an increase in the extent and success of delegation. In the external relationships of the firm, the delegation will no doubt appear as an increased emphasis on incentive contracts, where the incentives reflect the value function of the organization to the contractor. This trend is already evident in defense contracting.

Internally, the use of the value function for delegation should facilitate better coordination of the units of the organization. If explicit and consistent values are placed on the outcomes of production, sales, and engineering departments, then the firm can be sure that decisions in each unit are being made consistently with the best overall interests of the firm. The goal is to surround each component of the organization with a value structure on its outputs that encourages it to make decisions as would the chief decision-maker of the organization if he were closely acquainted with the operations of the component.

Organizational Changes and Management Development

The introduction of decision analysis wil cause changes in organizational behavior anr: structure. A change should take place in thr language of management, for the concepts dis. cussed in this report are so relevant to the decision-making process that, once experi enced in using them, it is difficult to think ir any other terms. The explicit recognition o^{*} uncertainty and value questions in management discussions will in itself do much to improve the decision-making process.

Special corporate staffs concerned with the: performance of decision analysis are already beginning to appear. These people would be specially trained in decision analysis, probability, economics, modeling, and computer implementation. They would be responsible for ensuring that the highest professional standards of logic and ethics are observed in any decision analysis.

Special training for decision analysts will be accompanied by special training for managers. They will need to know much more than they do now about logical structure and probability, if they are to obtain full advantage from the decision analyst and his tools. No doubt much of this training will occur in special courses devoted to introducing decision analysis to management. These courses will be similar to. but more fundamental than, the courses that accompanied the introduction of computers into the U.S. economy.

Management Reward

Encouraging managers to be consistent with organizational objectives in decisionmaking requires adjusting the basis for their rewards to that objective. If rewarded only for short run outcomes, they will have no incentive to undertake the long range projects that may be in the best interest of the organization. It follows that any incentive structure for management will have to reward the qual-
ity of decisions rather than the quality of outcomes. The new financial statements that show probability distributions on future profit would be the key to the reward struccure. After these distributions had been "gudited" for realism, the manager would receive a reward based upon them in a predetermined way. Thus, the manager who created many new investment opportunities for a company could be rewarded for his efforts even before any were fully realized.
To make this system feasible requires distinguishing between two kinds of managers: the one who looks to the future and prepares for it; and the one who makes sure that today's operations are effective and profitable. The distinction is that between an admiral and
a captain, or between the general staff and the field commanders. Specialization of function in corporate management with significant rewards and prestige attached to both planning and execution could be the most important benefit of decision analysis.

CONCLUSION

Although an organization can achieve ultimate success only by enjoying favorable outcomes, it can control only the quality of its decisions. Decision analysis is the most powerful tool yet discovered for ensuring the quality of the decision-making process: its ultimate limit is the desire of the decision-maker to be rational.

THE USED CAR BUYER

Man is called upon to make decisions about his home, his business, and his pleasure. These decisions vary in importance, but they have one property in common: most people do not have an orderly procedure for thinking ahout them. Of course, it is not practical to spend much time and effort thinking about the minor decisions in our lives--yet how can we judge what is practical until we develop a logical framework for decision problems? Our present task is the construction of such a decision procedure.

There are three main points we shall attempt to make about the science of decision making.

1. Probabilistic considerations are essential in the decisionmaking process;
2. The lessons of the past must be included;
3. The implications of the present decision for the future must be considered.

Let us discuss each of these points. The importance of probability is revealed when we realize that decisions in situations where there is no random element can usually be made with little difficulty. It is only when we are uncertain about which of a number of possible outcomes will occur that we find ourselves with a real decision problem. Consequently, much of our discussion of decision-making will be concerned with the question of how best to incorporate probabilistic notions in our decision procedure.

The question of using pievious information in making decisions seems to incite some statisticians to riot, but most of the rest of us think it would be unwise to make a decision without using all our knowledge. If we were offered an opportunity to participate in a game of chance by our best friend, a tramp, and a business associate, we would generally have different feelings about the fairness of the game in each case. Although we might agree on the necessity of considering prior information, it is not clear just how we shall accomplish this objective. The problem is intensified becruse the prior information available to us may range in form from a strong belief that results from many years of experience to a vague feeling that arises from a few haphazard observations. The decision formalism to be described will allow us to include prior information of any form.

The influence of present decisions upon the future is a point often disrcgarded by decision-makers. Unfortunately, a decision that seems appropriate in the short run may, in fact, place the decision-maker in a
very unfavorable position with respect to the future. For example, a naive taxi driver might be persuaded to take a customer on a long t.rip to the suburbs by the prospect of the higher fare for such a trip. He might not realize, however, that he will have to return in all likeliho without a paying passenger, and that when all alternatives are consider: it could be more profitable for him to refuse the long trip in favor of number of shorter trips that could be made within the city during the s. time period. The solution of such problems requires slightly more sophi ticated reasoning than the first two points we have discussed, but it is just as amenable to an analytic approach.

Let us now begin our analysis of decision problems with an example that is so commonplace that there will be every possibility of understar. ing the environment of the problem, and yet is sufficiently detailed the: it is not obvious at first glance just how the decision should be approached. A fellow named Joe, of our acquaintance, is in the market for a new car. He has decided to buy a three-year-old Spartan Six sedan, an: has surveyed the used-car dealers for such a car. After searching for u while, he has found a car like the one he wants on one dealer's lot. Thi going rate for a three-year-old Spartan is $\$ 1100$, but the price asked by the dealer is only $\$ 1000$. Consequently, Joe figures that he will make $\$ 100$ profit by buying this particular car.

Unfortunately, just as Joe is about to close the deal, he overhears the salesman who has been serving him talking with another salesman. Hisalesman says, "This used-car business is a tough racket. I have a customer interested in the Spartan on our lot, but the practices of our bus:ness prevent me from warning him that he may get stuck if he buys it." The other salesman asks, "What do you mean?" Joe's salesman replies, "I worked at a Spartan dealership when that car first came on the market. Spartan made 20% of its cars in a new plant where they were still havin; production line troubles; those cars were lemons. The other 80% of tota! production were pretty good cars." The other salesman asks, "What is tis difference between a 'lemon' and a 'peach'?" "Well," says Joe's salesin." "every car has 10 major mechanical systems-steering, brakes, transmissi differential, fuel, electric, etc. The peaches all had a serious defect in only one of these 10 systems, but the lemons had serious defects in " of the 10 systems." The other salesman replies, "Well, don't feel so b." maybe some cars didn't have any defects, or maybe the defects in this c. have already been fixed."
"No, that's just it," says Joe's salesman. "Every car produced has! either 1 or 6 defects in the ratio I mentioned; and I happen to know, bcause the previous owner was a friend of mine, that this particular car has never been repaired." "If it is bothering you so much, why don't j"

7
tell the guy it's a lemon and forget about it?" says the other salesman. "Ah," answers Joe's man, "that's the trouble. I personally don't know whether or not it is a lenon, and I'm certainly not going to take the chance of losing a sale by worrying a customer unnecessarily." To which the other salesman replies, "It's time for coffee."

We can now imagine the state of our friend Joe. What seemed like a real bargain has turned into a potential nightmare; he can no longer make the $\$ 100$ prolit he had hoped for. Joc's first reaction is to turn and flee, but he has the icy nerves of a decision-maker and so soon regains his composurc. Joe realizes that he would be foolish to forego the chance to buy the car he thought he wanted, at this price, without good reason. lle decides to call an acquaintance who is a mechanic and get his estimate of what the possible repairs might cost. The mechanic reports that it costs about $\$ 40$ to repair a single serious defect in one of a car's major systems, but that if 6 defects were to be repaired, the price for all 6 would be only $\$ 200$.

Now Joe considers the possibilities open to him. He can either buy the car or refuse it. If he decides to buy the car, then his outcome is uncertain. If the car turns out to be a peach, then only one defect will develop and Joe will have made a profit of $\$ 60$: $\$ 100$ from buying the car at a low price, less $\$ 40$ for repairing the one defect. However, if the car should be a lemon, then Joe will lose $\$ 100$ because it will cost him $\$ 200$ to repair the 6 defects to be found in a lemon. If, on the other hand, he refuses to buy, then he gains and loses nothing.

We can represent the decision structure of Joe's probiem by drawing a decision tree like that shown in Figure 1. The direction of the arrows refers to the time flow of the decision process. In this figure, each directed line segment represents some event in the decision problem. We have used B to indicate the event of Joe's buying the car, and R to indicate his refusing it. P is the event of the car's ultimately turning out to be a peach, while L is the event of the car's being a lemon. The tree as drawn in Figure 1 shows that the car may turn out to be a peach or a lemon regardless of Joe's action. Note that different symbols are used for the node joining the B-R branches and the nodes joining the P-L branches. The X is used to indicate points in the decision tree where the decision-maker must decide on some act; the is used for nodes where the branch to be Laken is subject to chance rather than decision. We shall call these two types of nodes "decision" nodes and "chance" nodes, respectively. In this example, Joe's only decision is whether to buy or refuse to buy; consequently, only the node joining the $B-R$ branches requires an X. The ultimate outcome as to whether the car is a peach or a lemon is governed only by chance and so the P-L branches are joined by a •.

> B: Joe buys the car
> R: Joe refuses to buy
> P: Car is a peach
> L: Car is a lemon

Joe's Original Decision Tree
FIGURE 1

Generally, traversing each branch on the decision tree will bring some reward, positive or negative, to the decision-maker. We shall chos as a convention to write this reward under each branch. In Figure 1 we have written 100 under the branch labeled B to represent the immediate profit to Joe in buying the car; 0 is written under R branch, because Joe will neither gain nor lose by refusing to buy. The numbers under the P and L branches refer to the cost of repairing a peach and a lemon. respectively. If the decision-maker follows a tree from its unique star. ing node to all of its tips, then he will experience some pattern of g^{3} : and losses according to the branches he actually traverses. The net prof all such traversals is written at each tip of the tree. Each tip nd: designated by the sequence of branches that lead to it. Thus in this c. the tip BP is given the value $\$ 60$ as the net profit in buying the car ar then finding that it is a peach. The tip BL corresponds to a loss of si from buying a lemon, while the tip R is evaluated at zero because the c.: is refused. These three tips of the tree represent the three possible $1:$ comes of this decision problem. The outcome BP is favorable to Joe, thir outcome BL is unfavorable, and the outcome R is indifferent.

Naturally, Joe would like the outcome to be BP with a profit of stry. but after hearing the salesmen's conversation he realizes that the lik. l:hood of this outcome will be controlled by Nature rather than by himscit We can think of Nature as playing a game with Joe, as follows. When shi
placed the car on the used-car lot, she made it a lemon with probability 0.2 and a peach with probability 0.8 . She performed her selection by cossing a coln with probability of "heads" equal to 0.8 and made the car a lemon if the coin came up "tails." Thus the nodes that were chance nodes in Joe's decision tree we can imagine to have been performed by an opponent called Nature who is not malevolent and who selects actions using chance mechanisms.

We can draw a tree to show Nature's options, as is done in Figure 2. In Nature's tree, all nodes are chance nodes. We shall write above the beginning of each branch the probability that Nature will follow that branch. In the present example, we know that the probability of a peach is 0.8 , the probability of a lemon is 0.2 . We also write at each tip of Nature's tree the probability that Nature will produce an outcome corresponding to that tip. In general, these probabilities are calculated by multiplying together the probabilities on all the branches that lead from the initial node on Nature's tree to each tip. In this simple case, all we must do is write 0.8 and 0.2 at the end of both the P and L branches.

The importance of Nature's tree, as we shall see, is that it provides all the probabilistic information that is necessary for the decision tree. To illustrate this point, we recall that we have yet to write probabilities on each chance node of the decision tree. The results of the calculations in Nature's tree allow us to draw Figure l in the form of Figure 3. The various features of Figure 3 will be explained gradually. At the moment, our example has such a simple form that it is not at all clear why it is necessary to consider a separate tree for Nature. As our example becomes more complex, the need for Nature's tree will be evident. The numbers in the square boxes at each node in Figure 3 represent the

Nature's Tree
FIGURE 2

Joe's Decision Tree with Probabilities from Nature's Tree
FIGURE 3
net profit to Joe from future activities if he should arrive at such a node. Thus, if Joe is at node B (we label nodes by the branches that must be traversed to reach them), then he expects to earn $\$ 60$ with the probability 0.8 , and lose $\$ 100$ with probability 0.2 . His expected earnings are $0.8(60)+0.2(-100)=\$ 28$. Of course, if Joe decides not to $:$ the car, then he will earn nothing, and so 0 appears in the square box appended to node R.

As a result of evaluating each possible action that Joe might take in terms of its expected value equivalent, we are in a position to help Jon with his decision. If Joe buys the car, then he expects to earn $s ?$ if he refuses to buy; he will earn nothing. If Joe is an expected-vall: decision-maker, he should decide to buy the car. His recommended actha is shown by drawing a solid arrowhead on the B branch leading from the decision node. We then write his expected profit from taking that acth $\$ 28$, in the square box over the decision node.

As a result of this analysis of the problem, Joe feels a little tr: than he did before. He has forsaken all hope of a $\$ 100$ profit and is c ing around to the idea that it might be wise to settle for an expectcd profit of $\$ 28$. However, while he is becoming reconciled to the forcc: fate, a stranger approaches him and says, "I couldn't help overhcarin: talking to yourself about your problems. Perhaps I can help you. You I worked in the factory where the substandard Spartans, or lemons as: called them, were made. I can tell you whether the car sitting on thi is a lemon simply by looking at the serial number." Joe can hardly la: his ears. At last, a possibility of finding out whether the car is 1 ." before buying it.

Joe looks at the man, decides he has an honest appearance, and says, "You are just the kind of help I need. Let's go over to the car and take a look at it. I am eager to find out whether or not it is a good deal:" The stranger smiles and replies, "I am sure you are, but you can hardly expect me to go to all the trouble of examining the car and getting myself dirty without some financial consideration." At first Joe is angry about the stranger's mercenary attitude, but then he remembers he is not in a position to throw away potentially useful information if it can be obtained at a reasonable price. He asks for and is granted a few moments to think over the stranger's offer.

The problem is this; how much is Joe willing to pay the stranger for his information? He reasons as follows. On the basis of the stranger's appearance and manner, Joe decides that he can be trusted in his claim of being able to distinguish peaches from lemons. If the stranger reports that the car is a peach, then Joe will buy it and make an expected profit of $\$ 60$. If the stranger says it is a lemon, then Joe will refuse to buy it and make nothing. The probability that the stranger will find a peach is 0.8 ; the probability of finding a lemon is 0.2. Consequently, Joe's expected profit after receiving the information is $0.8(60)+0.2(0)=\$ 48$. Therefore, is the information worth $\$ 48$? No, because even without it Joe expects to make $\$ 28$, according to our original analysis. Hence, the net value of the stranger's information to Joe is $\$ 20$. That is, Joe as an expected-value decision-maker should be willing to pay any amount up to $\$ 20$ for the stranger's advice.

This figure of $\$ 20$ seem: high to Joe, so he decides to check it in the following way. Joe thinks, without this new information I would buy the car and make an expected profit of $\$ 28$. If I buy the information, then with probability 0.8 the stranger will report that the car is a peach and his information will be worthless because I am going to buy the car anyway. On the other hand, with probability 0.2 the stranger will find that the car is a lemon, and in this case the information is worth $\$ 100$ since that i:i the amount that I would lose if I bought the car and it turned out to be a lemon. Consequently, the expected value of the information to me is $0.8(0)+0.2(100)=\$ 20$, the same as before. Now Joe is convinced that he should pay as much as $\$ 20$.

We shall call this quantity the expected value of perfect information, or the EVPI. It represents the maximum price that should be paid for any experimental results in a statistical decision situation. This follows since no partial knowledge could ever be worth more than a report of the actual outcome of nature's process. We shall have much more to say of this quantity in our later discussion.

Joe now decides to offer the stranger $\$ 15$ in hopes of getting the information at a bargain price. However, when he confronts the stranger with this offer, the stranger replies that he couldn't consider the jot for less than $\$ 25$ and suggests that Joe think it over for a while. Joe is upset by this turn of events, but quickly regains his composure. He thinks to himself that the real reason for his difficulties is that he döesn't have a wide enough range of alternatives from which to select an appropriate action. Suddenly he has a brainstorm-maybe he can get the dealer to give him the guarantee on the car! He inquires of the deal, whether a guarantee is available. The dealer says; "Yes, there is a guarantec plan; it costs $\$ 60$ and covers 50% of repair cost." Joe thinks fast and replies, "You certainly don't have much confidence in your cars. If I bought a car and it turned out to be a lemon, I could go broke even on my 50\%." The dealer says, "All right. Just for you I will include an anti-lemon feature in the guarantee. If total repairs on the car cost you $\$ 100$ or more, I will make no charge for any of the repairs. How's that for meeting a customer half-way?" Joe says that's fine and now he would like to think it over again.

At this point Joe realizes that he has a new decision tree. It is shown in Figure 4. This tree differs from the preceding one because thi: are now three possible actions at the decision node. The new alternativ. is to buy the car with the guarantee; that is, to hedge against the possibility of getting a lemon by spending $\$ 60$. This alternative is given th. symbol G. We see that although the car might still turn out to be a lei: If this alternative is followed, the costs associated with the two outcr

Joe's Decision Tree Including Guarantee Possibility
FIGURE
are strikingly different from what they are in the case where the car is bought without such a guarantee.

Let us examine Figure 4 in some detail. The figures written below each branch are again the expected profit from traversing that branch. The numbers on the tips are the total expected profit of the chain of branches leading to that tip. Now, as before, we shall choose to calculate the expected value of each node by using the number on the tips. rather than on the branches. However, this caoice is arbitrary and will be reversed when a reversal is convenient.

The expected value of the nodes B and R are calculated as before. The value of $\$ 40$ written under the G branch refers to the fact that our initial profit from buying the car with the guarantee is only $\$ 40$ because the guarantee itsclf costs $\$ 60$. The value of $-\$ 20$ over the P branch following the G action arises because even a peach will require one repair at at cost of $\$ 40$, but half of this $\$ 40$ will be paid by the guarantee. The 0 under the corresponding L branch is a result of the anti-lemon feature of the guarantee. Since the cost of repairs on a lemon will exceed $\$ 100$, there will be no charge for repairs. Thus the net profit of buying the car with a guarantee and having it turn out to be a peach is $\$ 20$, while the profit if it turns out to be a lemon is $\$ 40$. Since Nature's tree of figure 2 still applies to this case, the probabilities of these two events have values of 0.8 and 0.2 , respectively. Hence, the expected earnings from buying the car with the guarantee is $0.8(20)+0.2(40)=\$ 24$. Since this is less than the $\$ 28$ profit to be expected if the car is bought without the guarantee, the guarantee does not look like a good idea. The choice should once more be to buy the car without any protection, as is indicated by the heavy arrowhead on the B branch.

At this point our knowledgeable stranger returns and once more offers his advice--for a price. Has the advent of the guarantee changed what Joe should pay? Let's find out. If the information is bought, the stranger will find that the car is a peach with probability 0.8 . If a peach is reported, then Joe will buy it without a guarantee and make an expected profit of $\$ 60$. With probability 0.2 the stranger will discover a lemon. In this casc, however, Joe is best advised not to refuse the car and make nothing as he did before, but rather to buy it with the guarantee. As the number on the tip of the branch GL in Figure 4 indicates, by taking this action he will earn an expected profit of $\$ 40$. Thus, the amount that Joe expects to earn by buying the car is $0.8(60)+0.2(40)=\$ 56$. Since Joe expects to ϵ arn $\$ 28$ anyway by buying the car without this information, the value of the additional information to him is $\mathbf{\$ 2 8}$.

It may at first seem strange that the expected value of perfect information, or EVPI, should increase simply because an alternative has b_{1}. added to those already available to Joe. However, such an increase has taken place as a result of the fact that Joe is in a better position to make use of information that the car is a lemon than he was previously. We can verify the figure of $\$ 28$ using the same method employed before. If the stranger reports a peach, then Joe's decision to buy the car will be unchanged; but if a lemon is reported, then Joe will buy the car with. rather than without, the guarantee and will turn a loss of $\$ 100$ into profit of $\$ 40$. Consequently, his expected profit will increase by $\$ 140$ with probability 0.2. Thus, the information is worth $0.2(140)=\$ 28$ to Joe.

Now, of course, the stranger's asking price of $\$ 25$ for the perfect information seems quite reasonable. Jowe is about to purchase the infor tion when he has another brainstorm. $\begin{array}{ll}\text { me knows that perfect information }\end{array}$ worth $\$ 28$ to him, and so he reasons that if he can get partial informati at a price sufficiently lower than $\$ 28$ the may be able to increase his pr its. He first asks the dealer if he cam take the car to his mechanic fr: for a checkup. The dealer is willing to allow this, but places a time 1 : of one hour on the car's absence from the lot. Somewhat elated, Joe cali his friend to ask what kind of tests comld be performed in an hour and h much they would cost. The mechanic says that he can only do at the most one or two tests on the car in the time available. He then supplies Joc with the following test alternatives:

1. He can test the steering system alone, at a cost of $\$ 9$;
2. He can test two systems--the fuel and electrical systems-for a total cost of \$13;
3. He can perform a two-test sequence, in which Joe will be able to authorize the second west after the result of the first test is known. Thus, umder this alternative, the mechanic will test the transmiiission, at a cost of $\$ 10$, report the outcome of the tesit to Joe, and then proceed to check the differential, at an additional cost of $\$ 4$, if he is requested to do so.

All the tests will find a defect in eacll system tested, if a defect exi: The test alternatives are summarized in Table 1.

Including the possibility of no testing, Joe now looks over these test alternatives and decides that it is worthwhile at least to considur testing because the cost of each of these tests is significantly less than the $\$ 28$ value of perfect information. If all tests had cost over

Te, t	Description	Cost
11	Peilorm no tests	\$ 0
T_{2}	Test sleering system	9
T_{3}	Test fuel and electrical systems (2 systemis)	13
T_{4}	Test lransmassion with option on testing differential for	10 4

$\$ 28$, then there would be no point in considering a testing program because cach test will general.ly provide only partial information, and even perfect information is worth a maximum of $\$ 28$. However, it is still not clear which test, if any, should be performed. Furthermore, Joe would like to know th. value of the stranger's information under these new circumst:ances. These problems will be approached by drawing a new decision tree for Joo and a new tree for Nature. The general structure of the decision tree is shown in Figure 5.

This trec is quite complicated, so we shall explain it in gradual strps. Notice that the first decision to be made is which of the four test options--T1, $T_{2}, T_{3}, T_{4}-$ to follow. If some tests are made, the mechanic will report the results, and then a decision about buying the car must be madr. If the test T_{4} is used, of course, then there will also be a step in which the mechanic is advised whether or not to continue the lest procodure. Let us now examine the situation resulting from each test in more detail.

If test $T_{\text {, }}$ is selected, then no physical test is made and Joe is requi.red to make a decision about buying the car immediately. The decision trof from this point on looks just like that of Figure 4 . In fact, the numbers Lhat appear in Figure 4 have been reproduced exactly in Figure 5 , with the exception that only the numbers on the tips of the branches have becn copied becanse they are sufficient for our purposes. Indeed, a little reflection will reveal that regardless of the test program we follow, we must end up with a decision tree like that of Figure 4. However, although the numbers on the tips of the branches will be the same in all cases, the

(EVPI)
Joe's Complete Expected Value Decision Tree

FIGURE 5
prohabilitios lo be written on the branches will differ in each case. The probibility of the finul vutcome of a peach or a lemon will generally depend on the finding; of the experimental program until the time the decision on buying the car must be made. For example, if two defects have been found, then the car is a lemon with probability one.

We: sice that what is now required is a mechanism that will give for cach possible result of the axperimental program the appropriate probabilities for the ullimate outcome of a peach and a lemon. Nature's tree is ju:: such a mechanism. It is drawn for this problem in Figure 6. In this firurr we have used D_{1} to represent the event that a defect is discovared in the first lest on the car, if such a test is performed, and D_{2} is used simi larly to indicate the finding of a defect on a second test, if any. The numbers on each branch represent the conditional probabilities of going to cach following node, given that the present node has been reached. The numbers on the nodes represent the unconditional probability of occupying that nole. The tree can then be explained as follows. Nature lirst decides whether the car is to be a peach or a lemon with probabilities 0.8 ind 0.2 , respectively, using some random process linke the biased coinflipping described earlier; thus, $p(P)=0.8, p(L)=0.2$.

Suppose that the car has turned out to be a peach. Then, using our convontion that a node is labeled by the letters on the branches that must be Lraversed to reach it, we are at node P. Now suppose that one major system of the car is tested. Since the car is a peach. there is probabilily 1 in 10 , or 0.1 , that the one defective system will be checked and Eonnd defective; thus $p\left(D_{1} \mid P\right)=0.1$. If this happens, we proceed to the nod. $\mathrm{PD} \mathrm{I}_{\mathrm{L}}$; then, $\mathrm{P}\left(\mathrm{PD}_{1}\right)=\mathrm{p}(\mathrm{P}) \mathrm{p}\left(\mathrm{D}_{1} \mid \mathrm{P}\right)=0.08$. On the other hand, with probability 0.9 no defect is discovered and we reach mode PD ${ }_{1}$. Suppose, further, that a second test on another system is now performed. If we arr at node $P D_{1}$, then the only defective system in the car has already becn discovered and there is probability 0 of finding another defect and reachinf node $\mathrm{PD}_{1} \mathrm{D}_{2}$. Under these circumstances, we shall be certain to proced Lo nod, PD $L_{2}{ }^{\prime}$. The overall probability of such event as $\mathrm{PD}_{1} \mathrm{D}_{2}$ is determined by mulifiplying together the probabilities on all the branches that lead to that tip of the tree. Thus, $P\left(\mathrm{PD}_{1} \mathrm{D}_{2}\right)=0$ and $\mathrm{P}\left(\mathrm{PD}_{1} \mathrm{D}_{2}{ }^{\prime}\right)=0.08$.

If the car were a peach, but no defect had been found on the first test, then we would be at node $\mathrm{PD}_{1}{ }^{\prime}$. If, now, a second test is performed, it will yield a defect with the probability that the system tested is the one defective system in the remaining nine, or $1 / 9$. Of course, the probability of finding no defect in this situation is them 8/9. The overall poobabilitios $p\left(P_{1}^{\prime} D_{2}\right)=0.08$ and $p\left(P_{1}^{\prime} D_{2}^{\prime}\right)=0.64$ can then be calculated.

Nature's Tree for Complete Decision Problem
FIGURE 6

If Nature selects a lemon initially, then the same sort of reasoning applies. The probability of finding a defect in the first test on lemon is equal to the chance of testing one of the 6 defective systems out of the 10 systems on the car, or 0.6 . If one defect has been found in a lemon, then the probability of finding another is the chance that one of the 5 defective systems among the remaining 9 systems will be inspected, or 5/9. If, on the other hand, no defect is found in the first test on a lemon, then the probability of finding one during the second test is the chance of testing one of the 6 defective systems among the 9 systems remaining, or $2 / 3$. The probabilities of all final outcomes pertaining to the lemon branch of the tree are then computed and written on the tips of the branches.

Figure 6 contains all the information necessary to answer any question about the probabjlistic structure of the decision process. We can best see this by returning at this point to our discussion of the test alternatives in Figure 5.

If the alternative T_{2}, test one system is followed, then the first requirement is that Joe pay $\$ 9$ for the services of the mechanic. This payment is indicated by the -9 on the T_{2} branch. The next event to take place is the report of the mechanic on whether or not he found a defect. His report is a chance event, so indicated by the solid dot that follows branch T_{2}. The mechanic reports either that he found a defect, D_{1}, or did not find a defect, D_{1}^{\prime}. However, the probability, that each of the branches D_{1} or D_{1}^{\prime} will occur must yet be determined. But $p\left(D_{1}\right)=p\left(P D_{1}\right)$ $+P\left(L D_{1}\right)$ since P and L are mutually exclusive and collectively exhaustive events. By using the results of Nature's tree in Figure 4, we have $p\left(P D_{1}\right)=0.08, p\left(L D_{1}\right)=0.12$ and so $p\left(D_{1}\right)=0.2$; of course, $p\left(D_{1}^{\prime}\right)=0.8$. These two probabilities are recorded on the branches D_{1} and D_{1}^{\prime} that follow branch T_{2} to indicate the nature of the chance point. Once D_{1} or D_{1}^{\prime} has occurred, Joe faces a decision tree like that of Figure 4 , but with different probabilities that will be calculated from Nature's tree in Figure 6. In particular, we require the probabilities $p\left(P \mid D_{1}\right), p\left(P \mid D_{1}^{\prime}\right)$ and their complements. These probabilities are easy to obtain because $p\left(P \mid D_{1}\right)=p\left(P D_{1}\right) / p\left(D_{1}\right)$ by definition, and we have just calculated both probabilities involved in this expression. Thus, $p\left(P \mid D_{1}\right)=0.08 / 0.2=$ 0.4 , and $p\left(L \mid D_{1}\right)=0.6$. These numbers are entered as the probabilities of a peach and a lemon, respectively, on the branches that follow' node $T_{2} D_{1}$ in Figure 5. Similarly,' $p\left(P \mid D_{1}^{\prime}\right)={ }^{\prime} p\left(P_{1}^{\prime}\right) / p\left(D_{1}^{\prime}\right)=0.72 / 0.80=0.9$, again using the results of Figure 6 , and $p\left(L \mid D_{1}^{\prime}\right)=0.1$. The branches for peach and lemon that follow node $\mathrm{T}_{2} \mathrm{D}_{1}^{\prime}$ in Figure 5 are labeled with these probabilities.

We have now obtained the complete probabilistic structure of the test \mathbf{T}_{2}. The branches emanating from every chance point have been assigned th. appropriate probabilities. It is now possible to determine the expected profit to be obtained by following test T_{2}. First, we shall compute the decision to be made if a defect is reported. If, in this case, Joe decid.s to buy the car without a guarantee, he will earn $\$ 60$ with probability $0 . \therefore$ and lose $\$ 100$ with probability 0.6 . His expected profit is then $-\$ 36$. 1 : he hedges by buying' with the guarantee, his expected profit is $0.4(20)+$ $0.6(40)=\$ 32$. If he refuses to buy, he earns nothing. Since $\$ 32$ is a better result than no earnings or a loss, Joe should decide to buy the car with a guarantee if he finds himself at this situation. His expected return will be $\$ 32$, as indicated in the square boxes following node $\mathrm{T}_{2} \mathrm{D}_{1}$.

On the other hand, if the mechanic finds no defect in the steering, then Joe will be at node $\mathrm{T}_{2} \mathrm{D}_{1}^{\prime}$ and will again be faced by a decision. If he buys without guarantee, his expected profit is $0.9(60)+0.1(-100)$. $\$ 44$. If he buys with a guarantee, his expected profit is $0.9(20)+$ $0.1(40)=\$ 22$. Again, he makes nothing if he refuses to buy. Since $\$ 44$ is the maximum return, he should decide to buy the car without the guarantee. The expected earnings of $\$ 44$ are written at the end of branch $T_{2} D_{1}^{\prime}$.

There is but one step remaining in the analysis of test option T_{2}. If the mechanic reports a defect, Joe expects to earn $\$ 32$. If he reports no defect, then Joe expects to earn \$44. These two events happen with probability 0.2 and 0.8 , respectively, according to the earlier calculations using Nature's tree. Hence, the expected profit before the results of the test are known, but after the test has been paid for, is $0.2(32)+$ $0,8(44)=\$ 41.60$. Since Joe must pay the mechanic $\$ 9$ to reach this position, his expected earnings from test T_{2}, including the payment to the mechanic, are $\$ 41.60$ - $\$ 9=32.60$. This number is entered at the left of branch T_{2} to indicate the expected profit from following this test program. Since we have already calculated the expected profit of program T_{1} to be $\$ 28$, it is clear that Joe is better advised to proceed with the test on the stearing rather than to make the decision in the absence of this information. By so doing he will increase his expected earnings by \$4.60. Of course, it is still not proved that T_{2} is the best test alternative to follow--we have only shown that it is better than T_{1}. It remains to investigate T_{3} and T_{4}.

Before we do so, however, let us return once more to the concept of the value of perfect information. We have already shown that the parti.l information supplied by option T_{2} is more valuable than its cost. How has this revelation affected our evaluation of the stranger's informatio: Before the test alternatives were introduced, Joe had calculated that the expected value of perfect information was $\$ 28$. As you recall, this figur
was determined by calculating first the amount of money Joe could make if the perfect information was available to him ($\$ 56$) and then subtracting from this quantity the amount he could expect to earn in the absence of this information ($\$ 28$); thus, EVPI equalled $\$ 56-\$ 28$. Now what has changed in these ealculations? The $\$ 56$ profit to be expected by using perfect information has remained unchanged since the introduction of the guarantee plan. However, Joe's expectation without the stranger's information has been increased from $\$ 28$ to $\$ 32.60$. Hence, the expected value of perfect information has been lowered to $\$ 56-\$ 32.60=\$ 23.40$.

It is interesting to note how we have vacillated about the value of the stranger's information. Before the advent of the guarantee pian, it was $\$ 20$ and the stranger's price of $\$ 25$ seemed too high. Then the guarantee possibillty was introduced and the value of perfect information rose to $\$ 28$. At that point the stranger's $\$ 25$ price seemed like a bargain. Finally, however, Joe calculated the results to be expected using the test alternative T_{2} and saw that the value of perfect information had decreased to $\$ 23.40$, a figure below the stranger's price. Consequently, Joe is not in a mood to buy at the moment. Although he has not yet evaluated the value of perfect information under test plans T_{3} and T_{4}, at this point he is sure that it cannot possibly be greater than $\$ 23.40$.

The value of perfect information at each point in the tree will be shown in Figure 5 in the ovals at pertinent nodes. In every case the EVPI is calculated simply by subtracting the expected earnings at each node from the profit to be expected if the perfect information were available. At the two nodes that begin and end branch T_{2}, the result of the test is not known and so the expected profit using perfect information is still \$56. Thus the node to the right of branch T_{2} bears the EVPI $\$ 14.40$ since $\$ 56$ $\$ 41.60=\$ 14.40$. Perfect information is worth $\$ 9$ less than it was to the right of branch T_{2} because of the payment to the mechanic.

The calculation of the value of perfect information is performed in the same way when the test results are known, but in this case, the expected profit from using the perfect information is different. Consider the situation where a defect has been reported. Joe knows that if the car is a peach he should buy it without the guarantee and make $\$ 60$, and that if it is a lemon he should buy it with the guarantee and make $\$ 40$. In the absence of any test result, the stranger would report a peach with probability 0.8 and a lemon with probability 0.2 , so that Joe's expected profit would be $0.8(60)+0.2(40)=\$ 56$. However, now that a defect has been reported, the probabilities of a peach and a lemon have changed to 0.4 and 0.6 , respectively. Thus, the expected profit using perfect information is now $0.4(60)+0.6(40)=\$ 48$. It is from this quantity that
the expected value of state $\mathrm{T}_{2} \mathrm{D}_{1}, \$ 32$, must be subtracted in order to obtain the EVPI of $\$ 16$ entered in the oval above node $T_{2} D_{1}$.

Similarly, we see that if no defect had been reported, the probabilities of peach and lemon would be 0.9 and 0.1 , and the expected profit of using perfect information would be $0.9(60)+0.1(40)=\$ 58$. When we subtract the $\$ 44$ value of node $T_{2} D_{1}^{\prime}$, we obtain the $\$ 14$ figure for the EVPI that is pertinent to that node.

There is one other observation we should make. The values of perfec: information at nodes $\mathrm{T}_{2} \mathrm{D}_{1}$ and $\mathrm{T}_{2} \mathrm{D}_{1}^{\prime}$ are $\$ 16$ and $\$ 14$. The probabilities of arriving in each of these states is 0.2 and 0.8 , respectively. Consequently, the expected value of what the expected value of perfect information will be after the mechanic report is $0.2(16)+0.8(14)=\$ 14.40$, in agreement with our previous value for this quantity entered in the oval at node T_{2}. Thus, it is possible to compute the expected value of perfec: information at each point in the tree by using only the values of perfect information pertinent to the final decision on buying the car and the probabilistic structure of the tree. We shall have more to say of these quant.. ties later.

Let us now move forward to an analysis of test option T_{3}. In this case, as you recall, two systems on the car--the fuel and electrical sys-tems--are subjected to test and then the results of both tests are reported to Joe. The possible reports are that 2 , 1 , or 0 defects were found. These three events are represented by the three branches, $D_{1} D_{2}$, $D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2}$, and $D_{1}^{\prime} D_{2}^{\prime}$ that are drawn to the right of node T_{3} in the tree of Figure 5. Note that once more we have written under branch T_{3} the amount to be paid to the mechanic for performing the tests. When the mechanic's report is known, Joe must make a decision on buying the car, using a decision tree similar to that shown in Figure 4. The expected earnings at the tips of the tree remain the same, but once more we requíre a new assignment of the ultimate probabilities of a peach and a lemon as a result of the mechanic's report. These probabilities may be found from Nature's tree in Figure 6. The probabilities necessary are: $p\left(D_{1} D_{2}\right), p\left(D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2}\right), p\left(D_{1}^{\prime} D_{2}^{\prime}\right), p\left(P \mid D_{1} D_{2}\right), p\left(P \mid D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2}\right)$ and $P\left(P \mid D_{1}^{\prime} D_{2}^{\prime}\right)$. By using the numbers on the nodes of Nature's tree and the basic relations of probability theory, we obtain the following results:

$$
\begin{aligned}
& p\left(D_{1} D_{2}\right)=p\left(P D_{1} D_{2}\right)+p\left(L D_{1} D_{2}\right)=0+1 / 15=1 / 15=0.067 \\
& p\left(D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2}\right)=p\left(P D_{1} D_{2}^{\prime}\right)+p\left(L D_{1} D_{2}^{\prime}\right)+p\left(P D_{1}^{\prime} D_{2}\right)+p\left(L D_{1}^{\prime} D_{2}\right) \\
& =5 / 75+4 / 75+6 / 75+4 / 75=4 / 15=0.266
\end{aligned} \quad \begin{array}{r}
p\left(D_{1}^{\prime} D_{2}^{\prime}\right)=p\left(P D_{2}^{\prime} D_{2}^{\prime}\right)+p\left(L D_{2}^{\prime} D_{2}^{\prime}\right)=48 / 75+2 / 75=2 / 3=0.667 \\
p\left(P \mid D_{1} D_{2}\right)=p\left(P D_{1} D_{2}\right) / p\left(D_{1} D_{2}\right)=\frac{0}{1 / 15}=0 \\
p\left(P \mid D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2}\right)=\left[p\left(P D_{1} D_{2}^{\prime}\right)+p\left(P D_{1}^{\prime} D_{2}\right)\right] / p\left(D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2}\right) \\
=\left[\frac{6 / 75+6 / 75}{4 / 15}\right]=3 / 5=0.6
\end{array}
$$

Thus, we see that after Joe has committed himself to the test, there are prohabilities of $0.067,0.266$, and 0.667 that the mechanic will report 2 , 1 , or 0 defects. These numbers are entered in Figure 5 on the three branches leaving the chance node T_{3}. If two defects are reported, $p\left(P \mid D_{1} D_{2}\right)$ shows that Joe will make his decision with the satisfying, but disappointing, knowledge that the car is certain to be a lemon. This information is indicated on the tree by the 0 and 1 entered on the branches P and L that originate in chance nodes $T_{3} D_{1} D_{2} B, T_{3} D_{1} D_{2} G$, and $T_{3} D_{1} D{ }_{2} R$. The expected earnings from making each of the decisions B, G, and R are $-100,40$, and 0 . Consequently, the most profitable act for Joe is to buy the car with the guarantee, even though it is a lemon, and thus earn the $\$ 40$ profit. This preferred decision is shown by the solid arrowhead on the branch G following node $T_{3} D_{1} D_{2}$; the profit of $\$ 40$ is recorded in the square box above that node.

The situation when only one defect is reported is very similar. In this case, we observe from $p\left(P \mid D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2}\right)$ that the probabilities of a peach and a lemon are 0.6 and 0.4. These probabilities appear on the P and L branches at the ends of the sub-tree that follows node $T_{3}\left(D_{1} D_{2}^{\prime}+\right.$ $D_{1}^{\prime} D_{2}$). The expected earnings of the three acts B, G, and R are $0.6(60)+$ $0.4(-100)=-\$ 4 ; 0.6(20)+0.4(40)=\$ 28 ;$ and $\$ 0$. Once more, the highest expected profit will result if Joe buys the car with the guarantec. Note that he does this even though the car is still more likely to be a peach
than a lemon. Again we record the expected profit of $\$ 28$ in the square boxcs over the decision node and indicate the preferred decision with a solid arrowhead.

If no defects are reported, the car is almost certain to be a peach; there is only a 4 percent chance of its being a lemon. When we compute the expected profit of the three decisions following node $T_{3} D_{1}^{\prime} D_{2}^{\prime}$, using the probability 0.96 for a peach and 0.04 for a lemon, we find that buyin. the car without a guarantee pays $\$ 53.60$, buying it with a guarantee pays $\$ 20.00$, and not buying it at all pays nothing. Thus, Joe is best adviscd to buy the car without the guarantee, as represented by the solid arrowhead on the B branch following node $\mathrm{T}_{2} \mathrm{D}_{1}^{\prime} \mathrm{D}_{2}^{\prime}$ and by the $\$ 53.60$ entered in the square box over that node.

We have now calculated the optimum decision and maximum expected earnings for each possible mechanic's report under test plan T_{3}. As we know, chance determines the actual reporting, but we also have learned the probabilities of the mechanic's reporting 2 , 1 , or 0 defects, and have entered them in the decision tree. The expected profit to Joe when he is waiting to learn the test results is thus $0.067(40)+0.266(28)+$ $0.667(53.60)$, or $\$ 45.87$. Of course, in order to reach a situation with this expected value, Joe had to pay out $\$ 13$. Hence, his expected earning., from test T_{3} are $\$ 32.87$. Since this number is higher than the expected profit under either the policy of no testing or of testing only one system, the option of testing two systems for $\$ 13$ is the most favorable yet evaluated. However, its margin over test plan T_{2} is only $\$ 0.28$.

We might, at this point, examine once again the value of the perfect information offered by the stranger. As we found earlier, this quantity can be calculated at each node of the decision tree simply by subtractin: from the expected earnings with perfect information the expected earninc. at that node as given in the pertinent square boxes. Accordingly, sirce the expected profit using perfect information is still $\$ 56$ before the te $:$: results are known, the value of perfect information when Joe has decided to use test T_{3} is $\$ 23.13$ (i.e., $\$ 56-\$ 32.87$) before he has paid the mechanic, and $\$ 10.13$ (i.e., $\$ 56-\$ 45.87$) after the mechanic has received his $\$ 13$.

However, after the test results have been reported, the expected profit using perfect information is different from $\$ 56$. Remember that Joe can make a profit of $\$ 60$ if he knows the car is a peach, and of $\$ 40$ if he knows it is a lemon. From our tree we see that the pair $\left[p(p), p\left(1,{ }^{\prime}\right.\right.$ takes on the values $(0,1),(0.6,0.4)$, and $(0.96,0.04)$ according to whet : 2,1 , or 0 defects were discovered. Joe's expected profit using perfect information is thus $\$ 40$, $\$ 52$, or $\$ 59.20$, depending on the defect siturti,

Since we have already calculated the expected values of these states to be $\$ 40$, $\$ 28$, and $\$ 53.60$ without perfect information, the EVPI's for them must be $\$ 0, \$ 24$, and $\$ 5.60$, respectively. As before, if we weigh these three numbers with the respective probabilities of 2 , 1 , or 0 defects being reported, namely, $0.067,0.266$, and 0.667 , we obtain the figure of $\$ 10.13$, formerly computed as the value of perfect information at node T_{3}.

An observation of particular importance may be based on these numbers: Although we would expect the amount Joe would be willing to pay the stranger for his perfect information to decrease after he is committed to a test plan, it is not necessary for this situation to obtain for any experimental outcome, but only on the average. Thus, after Joe has decided to follow test plan T_{3}, he establishes that the value of perfect information to him is only $\$ 23.13$. However, if the mechanic should report that he had found exactly one defect in the car, Joe now notices that the value of perfect information has increased to $\$ 24$, a net gain of $\$ 0.87$. This means that if Joe had decided on T_{3}, and the stranger's price for his information was $\$ 23.50$, Joe would refuse the information and go ahead with the test, but then willingly pay $\$ 24$ for the same information if the mechanic reports only one defect.

This result is really not too surprising when we realize that Joe had already considered the change of being placed in a situation where the expected value of perfect information is $\$ 24$ when he made his optimum decision at node T_{3}. When Joe contracted for test $p l a n T_{3}$ he had to consider how every possible outcome of the test--2, 1, or 0 defects--would affect his state of knowledge about the type of car on the lot. If no defects were found, then Joe would be very confident that the car is a peach and would be willing to pay only $\$ 5.60$ to remove his remaining uncertainty. If two defects were found, then the car is surely a lemon and the stranger cannot tell Joe anything of value. However, if the mechanic reports one defect, then Joe does not expect to make any more money from this point into the future than he would have made if no tests whatever had been performed; \$28. It is important to note that the value of perfect information is $\$ 24$ in this situation rather than the $\$ 28$ figure applicable in the absence of tests. This difference is, of course, due to the fact that the probability that the stranger will discover that the car is good has fallen from 0.8 to 0.6 . Thus, we see that although the expected value of perfect information cannot increase on an average value basis in such trees, it is possible for it to increase for some of the chance outcomes.

Now let us turn to the evaluation of test plan T_{4}. Under this option the transmission is tested for $\$ 10$; when the outcome of this test is reported, it is possible to have the mechanic test the differential
for an additional cost of $\$ 4$. Such a test procedure is representative of a large class of experimental plans which we may call sequential test Such processes are characterized by the option to decide whether or not to continue testing after the results of the initial tests are known.

The decision tree pertinent to T_{4} is shown in Figure 5. The develo, ment of this tree is once more most easily understood by considering th. . chronological sequence of the decisions that must be made and their outcomes. The payment of $\$ 10$ to initiate this test plan is indicated by a -10 under the branch T_{4}. The next event that will occur is the report of the mechanic about whether he found a defect in the transmission. Tr we establish a chance point that generates branches D_{1} and D_{1}^{\prime}. Regardla of whether or not a defect has been found, Joe must make a decision on t : continuation of the test. His two possible actions, continue on to test the differential, and stop testing, are shown by the two branches named CONTINUE and STOP that leave decision nodes $\mathrm{T}_{4} \mathrm{D}_{1}$ and $\mathrm{T}_{4} \mathrm{D}_{1}^{\prime}$. Both of the CONTINUE branches are labeled -4 to indicate the cost of requesting the testing of the differential.

If Joe decides to stop the testing program after hearing the report on the transmission, he will have to make his final decision on buying : car having only the information that either a defect was or was not foun! But these two situations were also encountered under test plan T_{2} after t mechanic had made his report. Since Joe finds himself in the same positl they must have the same value to him. (Remember that the money paid out for the performance of the test is a fixed cost at this point and so dec. not affect the future expected earnings.) Consequently, we should enter In the tree at the tips of the $\mathrm{T}_{4} \mathrm{D}_{1}$ STOP and $\mathrm{T}_{4} \mathrm{D}_{1}^{\prime}$ STOP branches the same values to be found at nodes $T_{2} D_{1}$ and $T_{2} D_{1}^{\prime}$, respectively. We shall denot: these values by $v\left(T_{2} D_{1}\right)$ and $v\left(T_{2} D_{1}^{\prime}\right)$; we see that $v\left(T_{2} D_{1}\right)=\$ 32, v\left(\Gamma_{2} D_{1}^{\prime}\right)$. $\$ 44$.

The situation if Joe decides to continue testing after hearing thi mechanic's report on his first test is analogous but not identical. If the CONTINUE option is followed, the next event to take place is the report by the mechanic on whether he found a defect on his second test. Thus, we create chance points at the $\mathrm{T}_{4} \mathrm{D}_{1}$ CONTINUE and $\mathrm{T}_{4} \mathrm{D}_{1}^{\prime}$ CONTINUE nodes and D_{2} and D_{2}^{\prime} branches emanating from them. However, when we receive the second report from the mechanic, our total information is lh.lt in two tests 2,1 , or 0 defects have been found in the car. Thus, we al in the same positions as we were under test option T_{3} after the mechanl, report was known. The appropriate value for $T_{4} D_{1}$ CONTINUE D_{2} is, therit, $v\left(T_{3} D_{1} D_{2}\right)=40$; for $T_{4} D_{1}$ CONTINUE D_{2}^{\prime} and $T_{4} D_{1}^{\prime}$ CONTINUE D_{2} it is $v\left(T_{3} D_{1}{ }^{\mathrm{D}}\right.$! $\mathrm{D}_{1}^{\prime} \mathrm{D}_{2}$) $=28$; and for $\mathrm{T}_{4} \mathrm{D}_{1}^{\prime}$ CONTINUE D_{2}^{\prime} it is $\mathrm{v}\left(\mathrm{T}_{3} \mathrm{D}_{1}^{\prime} \mathrm{D}_{2}^{\prime}\right)=53.60$. Thesc mu" have been placed at the pertinent tips of the T_{4} test plan tree.

We have now been able to evaluate the terminal points of the T_{4} tree by identifying them with nodes that had been considered earlier. It remains to place the relevant probabilities on the chance nodes in this tree so that we can proceed to make a judgment about the utility of this option. Once more we find that Nature's tree of Figure 6 supplies the probabilistic information we require. The probabilities of the branches D_{1} and D_{1}^{\prime} that leave node T_{4} have already been computed in the tree for test plan T_{2}; they are 0.2 and 0.8 . The only remaining probabilities are $p\left(D_{2} \mid D_{1}\right)$ and $p\left(D_{2}^{\prime} \mid D_{1}\right)$ to go to the right of node $T_{4} D_{1}$ CONTINUE and the probabilitics $p\left(D_{2} \mid D_{1}^{\prime}\right)$ and $p\left(D_{2}^{\prime} \mid D_{1}^{\prime}\right)$ to go in the analogous place on the D_{1}^{\prime} fork. Our task is again simplified by the fact that the sum of all probabilitics emerging from a chance node must be 1 . From the definition of conditional probability we can write:

$$
\mathrm{p}\left(\mathrm{D}_{2} \mid \mathrm{D}_{1}\right)=\mathrm{p}\left(\mathrm{D}_{1} \mathrm{D}_{2}\right) / \mathrm{p}\left(\mathrm{D}_{1}\right)
$$

and

$$
p\left(D_{2} \mid D_{1}^{\prime}\right)=p\left(D_{1}^{\prime} D_{2}\right) / p\left(D_{1}^{\prime}\right)
$$

From Figure 6 we find

$$
\begin{aligned}
p\left(D_{2} \mid D_{1}\right) & =\frac{p\left(D_{1} D_{2}\right)}{p\left(D_{1}\right)}=\frac{p\left(P D_{1} D_{2}\right)+p\left(L D_{1} D_{2}\right)}{p\left(P D_{1} D_{2}\right)+p\left(L D_{1} D_{2}\right)+p\left(P D_{1} D_{2}^{\prime}\right)+p\left(L D_{1} D_{2}^{\prime}\right)} \\
& =\frac{1 / 15}{1 / 5}=1 / 3
\end{aligned}
$$

and

$$
\begin{aligned}
p\left(D_{2} \mid D_{1}^{\prime}\right) & =\frac{p\left(D_{1}^{\prime} D_{2}\right)}{p\left(D_{1}^{\prime}\right)}=\frac{p\left(P D_{1}^{\prime} D_{2}\right)+p\left(L D_{1}^{\prime} D_{2}\right)}{p\left(P D_{1}^{\prime} D_{2}\right)+p\left(L D_{1}^{\prime} D_{2}\right)+p\left(P D_{1}^{\prime} D_{2}^{\prime}\right)+p\left(L D_{1}^{\prime} D_{2}^{\prime}\right)} \\
& =\frac{2 / 15}{4 / 5}=1 / 6
\end{aligned}
$$

Of course, most of the probabilities in this calculation were computed carlier in the evaluation of test options T_{2} and T_{3}. However, their repetition at this time serves to emphasize the basic role of Nature's tree. Finally we have

$$
p\left(D_{2}^{\prime} \mid D_{1}\right)=1-p\left(D_{2} \mid D_{1}\right)=2 / 3
$$

and

$$
p\left(D_{2}^{\prime} \mid D_{1}^{\prime}\right)=1-p\left(D_{2} \mid D_{1}^{\prime}\right)=5 / 6
$$

When the four conditional probabilities we have just found are entered i, their appropriate places in the tree for test option T_{4}, we are ready to proceed with the expected value computation.

At node $T_{4} D_{1}^{\prime}$ CONTINUE there is a $1 / 3$ probability of the value $40 \mathrm{an}_{\mathrm{n}}$: a $2 / 3$ probability of the value 28 . The expected value of this node is thus $1 / 3(40)+2 / 3(28)=\$ 32$, as indicated in the square box. The node $\mathrm{T}_{4} \mathrm{D} 1$ STOP also has a value of $\$ 32$; however, in order to reach node $\mathrm{T}_{4} \mathrm{D}_{1}$ CONTINUE, $\$ 4$ must be paid and so when viewed from the left end of the T_{4} CONTINUE branch, this action is worth only \$28. Consequently, Joe is b, advised to take the stop branch at this juncture and thereby make the value of decision node $T_{4} D_{1}$ equal to $\$ 32$. Such a decision has been indicated on the tree.

At node $T_{4} D_{1}^{\prime}$ CONTINUE we see a $1 / 6$ probability of the value 28 and a $5 / 6$ probability of the value 53.60 . The expected value of node $\mathrm{T}_{4} \mathrm{D}_{1}^{\prime}$ CONTINUE is $1 / 6(28)+5 / 6(53.60)=\$ 49.33$. Even after the $\$ 4$ expense $i=$ continuing the test has been included, this act still has an expected value of $\$ 45.33$, an amount slightly in excess of the $\$ 44$ value to be expected if branch $T_{4} D_{1}^{\prime}$ STOP is followed. The solid arrowhead and the number in the square box at node $T_{4} D_{1}^{\prime}$ correspond to this decision.

At chance node T_{4} there is an 0.2 probability of the mechanic's rporting that he found a defect on the first test and thus causing us (1) expect a profit of $\$ 32$. With probability 0.8 we shall expect earnings $\$ 45.33$ because he has reported no defect. Therefore, the expected val:" of being at decision node T_{4} is $0.2(32)+0.8(45.33)=\$ 42.66$. Since it is necessary to pay $\$ 10$ for the first test, the expected value of test plan T_{4} is $\$ 32.66$, as shown in the square box to the left of branch T_{4}.

The expected value of perfect information can be easily calculatcd for this test plan. All that is necessary is to copy the EVPI numbers corresponding to the value expressions at the tips of the T_{3} tree. Fr: example, the EVII in the oval at node $T_{3} D_{1} D_{2}$ is 0 ; this figure is pla. : in the oval at the node $T_{4} D_{1}$ CONTINUE D_{2} where $v\left(T_{3} D_{1} D_{2}\right)$ has already been copied. When this has been done for all six terminating nodes a : the T_{4} tree, the EVPI of all other nodes in the tree can be obtaincd taking expected values of these quantities at chance nodes and takin: the route indicated by the solid arrowhead at decision nodes. The sill: arrowhead will always correspond to the act that minimizes the expect.: value of perfect information. To illustrate, at node $\mathrm{T}_{4} \mathrm{D}_{1}$ CONTINU: : : value of perfect information will be 0 if a second defect is reportul 24 if not. Weighting with the ($1 / 3,2 / 3$) probabilities of these curn:. we obtain $\$ 16$ at this node, or $\$ 20$ before the $\$ 4$ cost of the seconl : • is paid. At node $\mathrm{T}_{4} \mathrm{D}_{1}$ STOP the expected value of perfect informall:? .
\$16--therefore, the STOP alternative should be selected and the EVPI at node $\mathrm{T}_{4} \mathrm{D}_{1}$ i.s $\$ 16$. The reader should finish the calculation of the EVPI's in the T_{4} tree to satisfy himself that the entries in Figure 5 are correct.

We have now evaluated all four test plans. From Figure 5 we can see that the expected profits from options T_{1}, T_{2}, T_{3}, and T_{4} are, respectively, $\$ 28, \$ 32.60, \$ 32.87$, and $\$ 32.66$. Since plan T_{3}, that of testing two systems, has the highest expected profit, it is the one indicated by a solid arrowhead after the initial decision node. However, the evidence of the tree should be interpreted not to mean that T_{3} is the best test plan, but rather that any of the plans $\mathrm{T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}$ will be slightly less than $\$ 5$ better than the option of no testing, on the average. The big payoff is not in the selection of a particular test plan, but rather in the decision to do some testing.

Let us review these test plans to show their operational character. If Joe docs no testing, he will buy the car without a guarantee. If he follows plan T_{2}, he will buy the car with the guarantee if a defect is found in the system tested and he will buy it without the guarantee if no defect is discovered. Our evaluation of plan T_{3} shows that Joe should buy the car without a guarantee only if no defects are found in the two systems tested, and buy it with the guarantee otherwise.

Finally, if T_{4} is chosen, Joe should stop further testing if a defect is discovered on the first test and continue testing otherwise. If a defect is found in the first test on the transmission, then Joe should buy the car with a guarantee, as we see from the decision at node $\mathrm{T}_{4} \mathrm{D}_{1}$. However, if the transmission is not defective, then depending on whether the further test of the differential does or does not reveal a defect, Joe will either buy the car with or without the guarantee, in that order. This is determined by locating the ultimate outcomes of the $T_{4} D_{1}^{\prime}$ CONTINUE ${ }^{1} 2_{2}$ and $T_{4}{ }^{D}{ }_{1}^{\prime}$ CONTINUE D_{2}^{\prime} branches in the T_{3} tree. It is interesting to note that the reason the nodes $T_{4} D_{1}$ CONTINUE and $T_{4} D_{1}$ STOP have the same values is that even if the tests were continued at this point, Joe's decision would be to buy the car with a guarantee regardless of how the second test came out. Since the test cannot affect the decision, it is not worthwhile to pay anything for the privilege of making it. The tree implies just this result.

We have now seen that after all the calculations have been performed, the final decision offers no real problem. Since test plan T_{3} is most favorable by a small amount, Joe will probably decide to follow it. The expected value of perfect information is $\$ 23.13$ when plan T_{3} is used; therefore, the stranger's \$25 price for this information once more looks too high. Unless the price is lowered below $\$ 23.13$, Joe should proceed
with having the luel and electrical systems tested at a cost of $\$ 13$. He will buy the car without the guarantee only if no defects are found and with it otherwise. Joe's expected profit from this plan of action is $\$ 32.87$, an increase of $\$ 4.87$ over what he rexpected to make without considering testing. Of course, by this time Joe may have decided that he would rather walk than do all this calculation:

The stranger with the perfect information has witnessed a good deal of vacillation in what Joe is willing to pray him. The EVPI was $\$ 20$ initially, $\$ 28$ after the guarantee was introduced, and $\$ 23.13$ under test plan T_{3}. From the stranger's point of view, the guarantee was good news, but the test options were bad news. However, even if Joe decides to follow T_{3}, the stranger can still sell his knowledge to Joe by reducing its price below \$23.13. Joe will realize an increase in profit equal to the difference between $\$ 23.13$ and what he pays the stranger.

Let's suppose, however, that the stranger had stepped away by the time Joe had completed his deliberations amd that when he had reappeared, Joe had already paid the mechanic the $\$ 13$ mecessary to carry out test plan T_{3}. Even at this point, the stranger can make some money if he considers this situation carefully. His immediate problem is that: should he offer his perfect information to Joe at a reduced price before or aftri Joe has received the test results from the mechanic, and what should his price be? Since Joe already has paid the mechanic, the EVPI to Joe is now $\$ 10.13$ according to the figure in the rounded box above node T_{3}; Joc will presumably pay any amount less than $\$ 10.13$ to get perfect information. Now the probabilities that the mechanic will report 2 , 1 , or 0 defects are $1 / 15,4 / 15$, and $2 / 3$. In fact, $i t i t$ is on the basis of these probe abilities and the EVPI of 0,24 , and 5.60 necorded at nodes $T_{3} D_{1} D_{2}, T_{3} \mathrm{D}_{1}$! $+D_{1}^{\prime} D_{2}$) and $T_{3} D_{1}^{\prime} D_{2}^{\prime}$ that Joe established the EVPI at node T_{3} to be $\$ 10.13$. However, let us suppose that the stranger thad determined the one piece al information that Joe does not have; namely, he has found out whether or ; the car is a lemon simply by observing the serial number. Using this it: mation, the stranger can calculate new probabilities of the various rep.. of the mechanic according to whether the car is, a peach or a lemon. He . thus obtain an expected value of EVPI after the report is known that will different from Joe's estimate of $\$ 10.13$. If the stranger's estimate i © higher than Joe's, he will do better in hiis expected value by not offerl his perfect information until the outcome of the test is known. On the other hand, if the stranger's estimate is lower than Joe's, he should of' his information immediately.

The calculations involved are quite straightforward. If the strinn: : determines that the car is a peach, then the three probabilities that should be used to weigh the numbers 0,24 , and 5.60 should be $p\left(D_{1} D_{2} \mid p^{\prime}\right)$.
$P\left(D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2}^{\prime} \mid P\right)$, and $P\left(D_{1}^{\prime} D_{2}^{\prime} \mid P\right)$. If the car is found to be a lemon, then the appropriate probabilities are $p\left(D_{1} D_{2} \mid L\right), p\left(D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2} \mid L\right)$, and $p\left(D_{1}^{\prime} D_{2}^{\prime} \mid L\right)$. These probabilities are computed from Nature's tree of Figure 6 as follows:

$$
\begin{aligned}
& p\left(D_{1} D_{2} \mid P\right)=\frac{p\left(P D_{1} D_{2}\right)}{p(P)}=\frac{0}{0.8}=0 \\
& p\left(D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2} \mid P\right)=\frac{p\left(P D_{1} D_{2}^{\prime}\right)+p\left(P D_{1}^{\prime} D_{2}\right)}{p(P)}=\frac{0.08+0.08}{0.08}=1 / 5 \\
& p\left(D_{1}^{\prime} D_{2}^{\prime} \mid P\right)=\frac{p\left(P D_{1}^{\prime} D_{2}^{\prime}\right)}{p(P)}=\frac{0.64}{0.8}=4 / 5 \\
& p\left(D_{1} D_{2} \mid L\right)=\frac{p\left(L D_{1} D_{2}\right)}{p(L)}=\frac{5 / 75}{0.2}=1 / 3 \\
& p\left(D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2} \mid L\right)=\frac{p\left(L D_{1} D_{2}^{\prime}\right)+p\left(L D_{1}^{\prime} D_{2}\right)}{p(L)}=\frac{8 / 75}{0.2}=8 / 15 \\
& p\left(D_{1}^{\prime} D_{2}^{\prime} \mid L\right)=\frac{p\left(L D_{1}^{\prime} D_{2}^{\prime}\right)}{p(L)}=\frac{2 / 75}{0.2}=2 / 15
\end{aligned}
$$

The expected value of the expected value of perfect information that will exist after the results of the test are known is computed for the states of knowledge of Joe, of the stranger when the car is a peach, and of the stranger when the car is a lemon in Table II.

The important thing to note is that the stranger expects the EVPI to be only $\$ 9.28$ after the results of the experiment are known if the car is a peach, but $\$ 13.55$ if the car is a lemon. In other words, considering that the EVPI of perfect information is $\$ 10.13$ in Joe's eyes, the stranger expects the EVPI to be lower than Joe's when the results are reported if the car is a peach and higher if it is a lemon. It is, therefore, prudent for the stranger to sell the perfect information to Joe before the mechanic calls for, say, $\$ 10$ if the car is a peach, but to wait until after the mechanic's report before offering it if the car is a lemon. Since $p\left(D_{1} D_{2}\right)=$ $P\left(D_{1} D_{2} \mid P\right) \times p(P)+p\left(D_{1} D_{2} \mid L\right) \times p(L)$, etc., and since $p(P)=0.8, p(L)=0.2$, $10.13=0.8(9.28)+0.2(13.55)$. That is, the expectation of the EVPI from Joe's point of view is the expected value of the EVPI from the stranger's

Table II
Thi: expected value of what the expected value of perfect incormation will be when the results of test T_{3} are known.

Probabilities of the Report as Seen by
EVPI of
Report
The stranger when

The stranger it. the car is a peach the car ls a le-

Two defects, $\mathrm{D}_{1} \mathrm{D}_{2}$	0	$p\left(D_{1} D_{2}\right)=1 / 15$	$p\left(D_{1} D_{2} \mid P\right)=0$	$p\left(D_{1} D_{2} \mid L\right)=1,3$
One defect,	24	$p\left(D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2}\right)$	$p\left(D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2} \mid P\right)$	$p\left(D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2} L^{\prime}\right.$
$D_{1} D_{2}^{\prime}+D_{1}^{\prime} D_{2}$		$=4 / 15$	$=1 / 5$	$=8 / 15$
No defects, $D_{1}^{\prime} D_{2}^{\prime}$	5.60	$p\left(D_{1}^{\prime} D_{2}^{\prime}\right)=2 / 3$	$p\left(D_{1}^{\prime} D_{2}^{\prime} \mid P\right)=4 / 15$	$p\left(D_{1}^{\prime} D_{2}^{\prime} \mid L\right)=2$
EVPIs weighed with probabilities		10.13	9.28	13.55

point of view. This computation provides the essential reconciliation between the viewpoints of the buyer and seller of perfect information.

However, to show that our proplem still has hidden facets, we suddenly realize that a competitive-game aspect has appeared. If the stra:is: offers his information before the test results are known, and if Joe know: that the stranger has reasoned according to the previous paragraph, then Joe is certain that the car is a peach. Similarly, if the offer is made after the test, Joe is certain that the car is a lemon. In either case, Joe will have received perfect information without paying for it. This forces the stranger to randomize his strategy, and so on and on and on. We shall give up trying to help Joe at this point.

Well, at last Joe is driving away in his Spartan, having used test plan. T_{3} and abided by the results. A most human question is: Did he na $:$ a good decision or didn't he? The answer to this question does not depi.: at all on whether his new car is actually a peach or a lemon. We must ra. f a distinction between a good decision and a good outcome. Joe made a gi decision because he based it on logic and his available knowledge. Whel. : or not the outcome is good depends on the vagaries of chance. the upcertainty might be worth.

For example, if we find in the medical problem that the value of clairvoyance on whether or not we are going to die fropn the drug is $\$ 500$, then that means that we should not pay more than $\$ 500$ for any literature seath or anything else that would provje only imperfect information with respect to whether or not we ane going to have this problem.

That is a revelation in itself to many people-the fact that one can establish a hard dollars end cents number on the value of information to us in making a decisiok, and hence can use that number to guide what information-gathering processes we/might participate in.

The Medical Problem Evaliteted. It is hard to demonstrate very simply how to do such a calculatiny, but let us try by taking the medical example and putting some numbers in it (see Fig. 6). The patient has the choice of taking the mofic medicine or not. If he does not take it, then he is going to get the pain; we will consider that as a reference point of value $\$ 0$. If he dofs take the medicine, let us suppose he has one chance in a thousand of dying and 999 in a thousand of getting the instant cure. We have g so put in numbers here saying that the cure is worth $\$ 100$ more thar the pain. He is a relatively poor person, but he would pay $\$ 100$ mope for the painless cure than te would for spending a painful day in the hospital. Now for death-wha is the value of life to a person? This person has set the value of his life dt $\$ 100.000$.

Notice that ve "set" the value of his life. What is meant by this is that he wants the designers of public highway systems and airplanes to use the number $\$ 100,000$ in valuing his life. Why does he not make it a milliop dollars? If he does, he will have more expensive rides in airplanes more expensive automobiles, and so forth. He dides not get something for nothing. If he makes it too small, he had better be

Figure 6 The medical decision.

Decision Analysis

Maspital with pain, then the number p would certainly give μs insightinto their attitude toward risk and would allow us indeed to start building a description of their risk preference.

The Logkal Decision. When this has been done, when we have carried out this procedure and have established preferences, the values placed on outcomef, the attitude toward time, the attitude toward risk (and there is a methodology for doing all of this), when we have established the models necessary for the decision one is making and have assessed probabilities as required on the uncertain variables, then we need nothing but logic to arrine at decision. And a good decision is now very simply defined as the (ecision that is logically implied by the choices, information, and preferences that we have expressed. There is no ambiguity from that poind on-there is only one logical decision.
This allows us to begin to assign praise or blame to the process of making the decision rather than to the ultimate uutcome. We can do an analysis of the decision and make sure it is a hig quality decision before we hearn whether or not it produced a good outcome. This gives us many opportunities. It gives us the opportunity to revise the analyois-to look for weak spots in it-in other words, to tinker with it inthe same way we can tinker with an engineering model of any other process.

The Value of Information

If this were all decision analysis did, it would be impressive enough, but from it we also get other benefits. We obtain sensitivities to the various features of the problem and we learn something that I think is unique to decision analysis called the "value of information." The value of information is what it would be worth to resolve uncertainty once and for all on one or more of the variables of the problem. In other words, suppose we are uncertain about something and do not know what to do. We postulate a person called a "clairvoyant." The clairvoyant is competent and truthful. He will tell us what is going to happen-for a price. The question is what should that price be. What can we afford to pay to eliminate uncertainty for the purpose of making this decision?

Of course we do not have real clairvoyants in the world-at least not very often-but the clairvoyant plays the same role in decision analysis as does the Carnot engine in thermodynamics. It is not the fact that we can or cannot make it, but that it serves as a bench mark for any other practical procedure against which it is compared. So the
value of clairvoyance on any uncertainty represents an upper bound on what any information-gathering process that offers to shed light on the uncertainty might be worth.

For example, if we find in the medical problem that the value of clairvoyance on whether or not we are going to die from the drug is $\$ 500$, then that means that we should not pay more than $\$ 500$ for any literature search or anything else that would provide only imperfect information with respect to whether or not we are going to have this problem.

That is a revelation in itself to many people-the fact that one can establish a hard dollars and cents number on the value of information to us in making a decision, and hence can use that number to guide what information-gathering processes we might participate in.

The Medical Problem Evaluated. It is hard to demonstrate very simply how to do such a calculation, but let us try by taking the medical example and putting some numbers in it (see Fig. 6). The patient has the choice of taking the magic medicine or not. If he does not take it, then he is going to get the pain; we will consider that as a reference point of value $\$ 0$. If he does take the medicine, let us suppose he has one chance in a thousand of dying and 999 in a thousand of getting the instant cure. We have also put in numbers here saying that the cure is worth $\$ 100$ more than the pain. He is a relatively poor person, but he would pay $\$ 100$ more for the painless cure than he would for spending a painful day in the hospital. Now for death-what is the value of life to a person? This person has set the value of his life at $\$ 100,000$.

Notice that we "set" the value of his life. What is meant by this is that he wants the designers of public highway systems and airplanes to use the number $\$ 100,000$ in valuing his life. Why does he not make it a million dollars? If he does, he will have more expensive rides in airplanes, more expensive automobiles, and so forth. He does not get something for nothing. If he makes it too small, he had better be

Figure 6 The medical decision.

Decision Analysis

The value of clairvoyance is $\$ 99$
Figure. 7 Value of clairvoyance computation.
wearing a helmet every time he enters his car. So it is a decision for him as to what number he wants the decision makers to use in this completely logical world that we are talking about.

The number $-\$ 100$ in quotes (in Fig. 6) means that our patient has said that one chance in a thousand of losing $\$ 100,000$ and 999 chances in a thousand of winning $\$ 100$ has a value to him of $-\$ 100$. In other words, we have to pay him $\$ 100$ to get him to take on this uncertain proposition. It is clear that, comparing $-\$ 100$ to $\$ 0$, he is better off deciding not to take the medicine. So for him the probabilities, values, and attitude toward risk leading to the $-\$ 100$ assessment of this whole uncertain proposition, the best decision is to forget about the medicine.

Clairvoyance. Now the clairvoyant arrives. If the individual we are talking about does not patronize the clairvoyant, then he does not take the medicine and makes nothing. If, on the other hand, he does buy the clairvoyance on the question of whether death will occur, what will happen?' First; the clairvoyant will tell him whether he is going to die if he takes the medicine (see Fig. 7). We have " D " in quotes here, meaning that the clairvoyant says he is going to die, equivalent to his actually dying because the clairvoyant is truly prophetic. "C" means the clairvoyant says he is going to be cured. Since the probability the clairvoyant will say he is going to die has to be the same as the proba-
bility that he really will die, he has to assign one chance in a thousand to getting that report from the clairvoyant. Now suppose the clairvoyant says he is going to die. Obviously, he ought not to take the medicine in that case, and he will make nothing. If the clairvoyant says he is going to be cured without dying, then he is better, off taking the medicine, and he will make $\$ 100$. Since the payoff from the clairvoyant's saying that he is going to die is $\$ 0$ and from not going to die is $\$ 100$, and since there are 999 chances out of a 1000 that the clairvoyant will say he is not-going to die, just by looking at that lottery we can see it will be worth almost $\$ 100$ to him. . He has 999 chances out of a 1000 of winning $\$ 100$, and only one chance in 1000 in winning $\$ 0$.

Let us suppose he evaluates the whole uncertain proposition at $\$ 99$. If he does not buy the clairvoyance, he is looking at $\$ 0$; if he does buy it, he is looking at a proposition that is worth about $\$ 99$ to him. Thus, the value of the clairvoyance would be $\$ 99$.

So here is an uncertain proposition with all kinds of big numbers running around in it, yet a very simple calculation based on his attitudes toward risk, life, death, and pain says he should not be willing to pay more than $\$ 99$ to know for sure whether he would get the unfortunate event of death if he should take the drug.

Similarly, in any other decision problem-and there are some very, very complicated ônes, involving many jointly-related variables-we can establish an upper bound on the value of information-gathering on any aspect of that problem. We can subsequently determine the best information gathering strategy to precede the actual making of the decision.

The Decision Analysis Cycle

Let us begin with a word on methodology and then go on to an example. When doing a decision analysis it helps to organize your thoughts along the following lines. First, constructing a deterministic model of the problem and then measuring the sensitivity to each of the problem variables will reveal which uncertainties are important. Next, assessing probabilities on these uncertainties and establishing risk preference will determine the best decision. Finally, performing a value of clairveyance analysis allows us to evaluate getting information on each of the uncertainties in the problem. The problem could be very complicated, involving many variables and months of modelling and analysis, but the basic logic is the same. The phases are: deterministic to evaluate sensitivities, probabilistic to find the best decision, and informational to determine in what direction new infor-

Decision Analysis

mation would be most valuable. Of course you can repeat the process as many times as is economically valuable.

That is just to give an idea of how one does a professional decision analysis. Let us now turn to a case history to demonstrate the kind of problem that can be attacked in this way. Everything said so far has a naive ring to it. We can talk about betting on next year's salary, but we are really interested in not just the theory of decision analysis, but the practice of it.

A Power System Expansion Decision

Let us take an example from the public area. It concerns the planning of the electrical system of Mexico and is one of the largest decision analyses that has been done. It has been chosen because it comes closest to a problem in systems engineering. The specific question posed was: Should the Mexican electrical system install a nuclear plant and, if so, what should its policy toward nuclear plants in general be? Of course, we can not really answer that question without deciding how they are going to expand, operate, and price their system over time from here on out. So the real question is how to run the electrical system of Mexico for the rest of the century (see Fig. 8).

The Mexican electrical system is nationalized and very large-the size of several United States state-sized electrical systems. Because it is a complete national system, its planners have unique problems and also unique opportunities. The basic idea in working this problem was to look first of all at the various environmental factors that might influence the decision and then to look at the various measures of value that would result from particular methods of operation.

The Inputs

First, let us discuss the inputs. There are four input models: financial, energy, technology, and market. The financial models are concerned with the financial environment of the Mexican electrical system both in the world and the Mexican financial market. The inputs that these models provide are the amounts of money and the rates at which money can be borrowed from that source over time, with uncertainty if necessary. An input to this model is something called x which is picked up from the lower right. It is the book profit of the system. There is a feedback between the profitability of the system over time and the amount that it can borrow to support future

Figure 8 A decision analysis model of the Mexican electrical system.

A Power System Expansion Decision

expansion. The current amounts of debt and investment are also fed back.
The second type of input is energy costs, both in the world market and in the Mexican market. The interesting thing about Mexico is that it has just about every type of energy available: coal, oil, uranium, and thermal fields, and, of course, there are world markets in uranium and oil, at least, whose price movements over time would influence the economics of the Mexican system.
Next comes technology. This model describes generation and transmission equipment according to type, cost, efficiency, reliability. It includes such features as the advent of better reactors in the future and the possibilities of new and improved transmission systems which might make some of their remote hydro locations more desirable.
The last input model is the demand or market model, indicating by type and region the amount of electricity that would be consumed, given a pricing policy and given a quality of service. So these are the inputs to the model of the Mexican electrical system, which can then be run.

The Outputs

We will not go into the details of the rather sophisticated model which was prepared to describe operation and expansion of the Mexican electrical system. Of more interest in this discussion is the kind of outputs that were produced. There were the very logical ones of the consumption of electricity and the cost of producing the electricity by region to give a profit for the electrical system. This profit was what might be called the operating profit or book profit of the system, and is what the investor would see if he looked at the books of the Mexican electrical system. One modification to that profit which was considered was an economic penalty for system outages. A measure of the service provided by the system is added to the book profit to give something called system profit--which the investor does not see, but which the designer of the system does see. This penalty makes him unwilling to make a system that has outages for hours at a time, even though it might be more profitable if he looked only at the book profit.

The Social Value Function. But what is unusual about the outputs here is that many of them do not appear on the balance sheet of the corporation at all, but are what we might call social outputs; they enter into something called the social value function.
The decision maker in this case was the head of the Mexican electrical system. He felt many pressures on his position--not just the reg-
ular financial pressures of operating an electrical system, but social pressures coming about from the fact that his is a nationalized industry. For example, one of the things that was of concern to him was the benefit to Mexican industry. What would be the Mexican manufactured component of any system that might be installed? Another one was employment. How many Mexicans would be employed at what level if they went one route as opposed to another? Now we can see that the way we design the system is going to have major impacts on these kinds of outputs. If we have a nuclear system, then we might provide training for a few high-level technicians, but most of the components would be manufactured abroad; we do not have the army of Mexican laborers that we would if we built a hydro system in a remote location.

Another side effect is the public works that are produced by the generation choice. For example, with hydro you have roads and dams-that is access, flood control, and so on, that we would not have if we installed a large nuclear plant in the central valley of Mexico. Balance of payments is still another consideration. Mexico at that time had not devalued its currency; the currency was artificially pegged with respect to the free world rate. The question is, if we are going to have an import quota system to try to maintain this kind of disparity in the price of money, should we include that mechanism within the model or should we say other parts of the government are going to be responsible for making such adjustments. That is what the balance of payment effect is all about.

There are two outputs left that illustrate two different points. One is called dependence on foreign supply. At the time that this study started, there was a worry in the minds of the Mexicans that a nation supplying nuclear equipment might become hortile for some political reason and cut off the supply of repair parts, fuel, or maintenance facilities, much as the United States did with respect to Cuba. If that happened, of course Mexico would be in trouble.. The question was, would this have a major effect on the decision, or would it not. They could buy insurance against it by stock-piling uramium until such time as they were able to establish alternate sourcess of supply. But it was a real worry, because they wanted to make sure they would be protected against any politically generated stoppage off equipment or supphes. By the end of the study, this whole area was off much less importance.

The other output was pollution. Originally the decision makers were not too interested in pollution. They said they could not afford to worry about it. And yet, if you have visited Mexico City, you know that atmospheric polution is very high. By the time this study was

A Power System Expansion Decision

over, about one year later, they were very glad that they had provided a place in the model for pollution because they were now getting the same kind of citizen complaint that we get in the United States. Some of the things they were planning, like giant coal plants in the middle of Mexico City, were not acceptable any more.

The social outputs from the operating model entered the social value function to produce what we call "social profit." It represents social effects that do not appear on the balance sheet of the electrical system, per se. Social profit is combined with the system profit to produce national profit. Time and risk preference are expressed on national profit to give an evaluation of the system as a whole.

The problem that remaned was to find a way to expand the Mexican electrical system that would produce the highest overall evaluation. Various optimization procedures were used to suggest installations of different types (gas turbines, nuclear, conventional, and hydro plants) to achieve this objective over the rest of the century.

The Nature of Policy

Let us briefly examine the question of what a policy for expansion of such a system means. A common policy in the past had been to establish a so-called plant list, which was a list of when each type of plant would be installed-in 1979 we are going to have an X-type plant in location Y. That is a little bit like asking a new father, "When is your son going to wear size-ten pants?" He could look at projected growth charts and say, "Well, I think it will be when he is nine years old." Another way to answer the question is to say, "Well, I will buy him size-ten pants when his measurements get into such and such a region." This is what we might call a closed-loop policy because we cannot say in advance when we are going to do it, but we have built a rule that will tell us the right time to do it.

So when we ask how is the system going to be expanded from here on out, no one can tell us: They can show us expected times for different things to happen, but indeed, only the program can determine what the effect on expansion of the future evolution of the system's environment will be. It has what we might call a self-healing property. If we foul it up by forcing it to put in a giant plant that it cannot immediately assimilate, then it is self-healing in the sense that it will delay and adjust the sizes and types of future plants until it gets back on the optimum track again. As a matter of fact, it is so much selfhealing that it is hard to foul it up very much no matter what we do, because in the course of time it is a growing system that finds a way to get around any of our idiocies. In actuality, when they compared what
this optimization system was doing with the designs produced by their conventional techniques, using the same information, this system yielded superior results in every case.

The size of the Mexican study is interesting. It took approximately eight man-years, and was completed in one calendar year by a staff of decision analysts from the Stanford Research Institute Decision Analysis Group, plus four representatives of the Mexican Electricity Commission who were very competent in nuclear engineering and power system design. The programs and analyses are now being used in Mexico for continued planning of system expansion.

Other Applications

Other applications include industrial projects-should companies merge, should they bring out a new product, or should they bring a mine into production? All of these things are what we might call fairly conventional decision analyses by the criteria that we in the profession use.

Some interesting decision analyses have been done in the medical area, such as one recently performed on the treatment of pleural effusion, that is, water in the cavity between the lung and the chest wall. This was a one-year study done by a graduate student who, as far as the doctor (who was the lung expert) is concerned, completely encoded everything the doctor knew about pleural effusion. Later the doctor was asked if he developed this symptom would he prefer to be treated by this large decision model or by one of his colleagues. He said, without hesitation, he would rather use the model.

Another study that has just recently been completed is whether to seed a hurricane threatening the coast of the United States. It was based on a large experiment a few years ago on hurricane "Debbie" which indicated, but certainly not conclusively, that seeding a hurricane with silver iodide crystals would cause the wind to diminish about 15 percent. This in turn would lead to something like a 50 percent decrease in damage. The question now is-if you are the decision maker in the White House and here comes a big one, hurricane "Zazie," headed right for Miami-what do you do? Should you send the planes out to seed it knowing that, even so, there is a chance that it might get worse just because of natural causes and wipe out two cities instead of one? Or should you sit on your hands and possibly watch people get killed and property destroyed when they might have been saved? There is a tough problem. It has severe social impacts

Other Applications

and is definitely a decision under uncertainty. Study of this problem was presented very recently to the President's Scientific Advisory Committee. They have formed a subpanel to see whether the conclusions should be put into effect.

Conclusion

We have tried to characterize what is a new profession-a profession that brings to the making of decisions the same kind of engineering concern and competence applied to other engineering questions.- It seems fair to say that the profession has now come of age. We are able to work on virtually any decision where there is a decision maker who is worried about making that decision, regardless of the context in which it may arise. The only proviso is that the resources that he is allocating must be real world resources. We are not competent to allocate prayer because we can not get our hands on it-or love, which is infinite: But when it comes down to allocating money, or time, or anything else that a person or organization might have to allocate, this logic has a lot to be said for it. And indeed, as we have seen, the key is the idea of separating the good decision from the good outcome. Once we have done that then we have the same ability to analyze, to measure, to compare that gives strength to any other engineering discipline.

Question-Period

question. Is the professional decision maker the man-who is right out in the fonefront making the decisions in his own name, or will there be a professional decision analyst who is like the ghost writer standing behind the man, the president, the corporate executive?
ANSWER. That is a good question/n the legal profession there is a maxim that the lawyot who defends himself in court has a fool for a client. And I think the same is true of decision analysis. I know that I would never wayt to be my own decision anjlyst because I am not detached I want the answer to come out certain ways, subconsciously. For example; if I want to make a case for why I should buy a new stereo system, I will work like a dog to make sure that I have lots of variables in the analysis indicating that I am

BRUNSWICK CORPORATION*

El "Snurfer"

A mediados de Abril de 1967, Gerry 0'keefe, Vicepresidente de mercadotecnia de la compañía Brunswick se encontro con que tenia que decidir cuantos Snurfers se deberian fabricar para la estación de invierno 1967-1968.

El Snurfer era un nuevo producto: introducido por primera vez al mercado por la compañia durante Julio y Agosto de 1966, pero debido a la dificultad para predecir los requerimientos de ventas, la compañfa fabriç más Snurfers de los que en realidać se vendieron. o'keefe, no queria volver a enfrentarse a la mis ma situacion en el siguiente periodo, por lo que se encontraba tratando de manejarla.

El Snurfer

El Snurfer no era otra cosa que una patineta (skate board) para ser utilizada en la nieve. Consistia en una tabla de made ra moddeada de 1.20 m . de largo y 17 cms . de ancho, sobre la cual el patinador esqujaba o mas bien patinaba sobre la nieve. La compañia en un folleto de publicidad lo anuncio como sigue:

Disfrute de la gran emocion que le proporcionara el nuevó
gran deporte de patinar sobre la nieve. Los niñ̃os, jovenes y adultos podrán combinar toda clase de habilidades para sortear las dificultades de esquiar sobre el nuevo Snurfer Brunswick. Es facil de aprender a manejar y muy divertido. El Snurfer es simplemente el nuevo deporte de moda.

El Snurfer se fabric 8 de 2 formas,la regular y la super. El modelo regular consistia de madera laminada pintada de amarillo con rayas negras, y huellas de metal para colocar los pies. El super era similar pero tenía írcorporada una quilla de metal para mejor naneobrabilidad; en lugar de estar pintado ela barnizado para presentar la apariencia natural de la madera y las huellas para los pies eran más lujosas. Ademas su venta incluia cera para el Snurfer, ia cual al colocarse en el parte baja de este, permitia aumentar la velocidad.

La idea del Snurfer se originర en Muskegon, Michigan en Enero de 1966, cuando un plomero decidio convertir un esquí para agua en patineta para la nieve, con la finalidad de que sus niños jugaran. La idea le gustठ, y experimento varias formas y tamaños y bautizठ al artefacto con el nombre de Snurfer.

Durante el mes de Febrero, un empleado de Brunsqick Corporation, se percato del juguete y penso que este sería de interés para la compañia. En Abril de 1966, la compañía negociOo la compra de los derechos del diseño y nombre proporciona dos por el plomero. El contrato involucraba una suma inicial y un porcentaje sobre las ventas totales del producto. El por centaje no era valido a penos que se produjeran un minimo de ventas predeterminado.

Posterior a la forma del contrato, los ingenieros de la compañía iniciaron el estudio para la optimizacion del modelo. Algunas pruebas se llavaron a cabo en los ultimos terrenos nevados, pues el Invierno ya habia terminado. Al final de Abril, el proyecto estaba terminado y listo para ser entregado al personal de produccion.

Mientaas los inganịeros estaban ocupados en el diseño, Noel Biery Jefe de producción y o'keefe estaban tratando de determinar el tamaño del mercado potencial y los canales de distribuci8n. Debido a que el producto aparentemente resultaba más atractivo a los niños se decidiठ canal@zarlo mediante jugueterias. Sin embargo, al encontrarse con un desarrollo lento de la canalizacion se realizo una demostracion en la exposición del juguete en Nueva York. Solo se tenian modelos prototipo en aquella exposición (Marzo 66) y se encontrb que aln asi, los re sultados eran alentadores. Durante la exposicion, el modelo que entonces era linico y que despues se convirtio en el regular, fue vendido con un precio de fabrica de $\$ 3.60$ y se sugeria un precio al pablico equivalente a $\$ 5.95$ (dolares).

Debido a que a mediados de Abril, los prototipos y sus especificaciones se encontraban muy adelatados, los representantes de la compañia fueron entonces enviados a infestigar el mercado y a presionar para lograr las ventas durante el resto del mes.

Al final de Abril, \emptyset 'keefe tenla que tomar la decision de continuar o no con el Snurfer, y en caso afirmativo decidir el numero de unidades por fabricar. El Departamento de Producción de la compañia, determin8 que para realizar el producto antes de la estacion de inviermo, era necesario tener los requerimien-
tos de produccion al final de Abril, por lo que o'keefe se lanz 8 a ordenar 60,000 unidades, aun cuando solo se tenia la prome sa de compra de 3000 de ellas. 50,000 iban a ser de tipo regū lar el resto super.

Considerando 10 anterior, una maquinaria con capacidad para producir 150,000 unidades, se orden8, con un costo de $\$ 50,000.00$ (dolaresф y con esto, el departamento de produccion program8 la iniciación del proceso para principios de Septiembre de 1966.

Sin embargo, en Junio ni una orden más aparte de las 3000 se habia recibido y 0'keefe, preocupado, se enfrentaba a la toma de una dificil direccion a seguir. Se investigb la causa del fracaso en las ventias, y mediante la vista a varias tiendas de deportes, se encontro una magnifica reaccion; en contraste con las jugueterias donde nos se lograban las ventas. Se decidio, por lo tanto, que utilizar las jugueterlas como canales de distribución era un error, consecuentemente se cerraron estos cana les y se trato de promever la venta atraves de las tiendas de deportes. Desafortunadamente, para esa fecha, este tipo de tien das habian practicamente completado su inventario para las ventas de invierno, por lo que, aun cuando la reaccion era buena, no existia el deseo de ordenar para la estacion en puerta. Asi, la gerencia decidi8 cortar la produccion de 60,000 unidades a solo 50,000 y se cambio la proporcion entre regulares y super.

El nkmero total de Snurfers vendidos durante la estacion de invierno 1966-67 fue menor a 35,000 unidades de las cuales el 60% fueron super. A mediados de Marzo de 1967 se tenian en inventario unos 17,000 Snurfers de los cuales 12,000 eran regulares y 5000 Super.

Produccion para 1962-Abril 1967

Debido a las dificultades y problemas qu 0'keefe y Biery experimentaror en 1966, decidieron que los planes para 1967 deberlan estar firmemente basados en la experiencia anterior.

Al revisar la situacion, se tuvueron razones para pensar que los problemas habian surgido a raiz de canalizar las ventas por jugueterias. Se observठ por otra parte, que se podia desarrollar un fuerte grado de habilidad por parte de los entusiastas del Snurfer y que se podian bbtener velocidades superiores a los $50 \mathrm{Km} \% \mathrm{hr}$. Este hecho, aunado a la magnifica respuesta, aun cuando tardia, recibida por las tiendas de deportes sugiriठ

INTRODUCTION

Decision analysis is a term used to describe a liody of knowledge and professional practie: for the logical illumination of decision problems. It is the latest link in a long chain of quantitative advances in management that have emerged from the operations research/ management science heritage. It is the result of combining aspects of systems analysis and statistical decision theory. Systems analysis rrew as a branch of engineering whose streng th was consideration of the interactions and dynamic behavior of complex situations. Statistical decision theory was concerned with how to be logical in simple uncertain situations. When their concepts are merged, they can reveal how to be logical in complex, dynamic, and uncertain situations; this is the province of decision analysis.

Thus, decision analysis focuses logical
power to reduce confusing and worrisome problems to their elemental form. It does this not only by capturing structure, but by providing conceptual and practical methods for measuring and using whatever knowledge regarding uncertainty is available, no matter how vague. When all available knowledge has been applied, the problem is reduced to one of preference; thus the best alternative will depend on the desires of the decision-maker. Here again, decision analysis provides conceptual and practical methods for measuring preferences. The problem may require expressing the relative desirability of various outcomes, the effect on desirability of changes in timing, and the tolerance for uncertainty in receiving outcomes. In particular, the impact of uncertainty upon the decision can be measured and interpreted - not left to intuition.

BACKGROUND

History of Quantitative Decision-Making
Operations Research
Operations research was the first organized activity in the scientific analysis of decisionmaking. It originated in the application of scientific methods to the study of air defense during the Battle of Britain. The development of operations research continued in the U.S. in the Navy's study of antisubmarine and flect protection problems. After World War 11, many of the scientists experienced in operations research decided to apply their new tools to the problems of management.

However, an examination of the cransition of operations research from military to civillan problems shows that the limitations inherent in the military application.i carried over to the civilian work. Miny of the opera-
tions researchers trained in the military environment had become used to working only on operationally repetitive problems. In these constantly recurring problems, the impact of the formalfanalysis became evident to even the most skeptical observers. Some of the researchers, however, concluded that only this type of problem was susceptible to scientific analysis-that is they limited operations research to the study of repetitive processes.

Since repetitive decisions are also important to the civilian world, operations research made substantial headway in its new environment. Yet, the insistence on repetition confined the efforts of operations researchers within the province of lower and middle management, such as inventory control, production scheduling, and tactical marketing. Seldom did the analysts study decision problems relevant to the top executive.

In the mid-1950s, operations research spawned an offshoot-managemient science. 'This discipline developed in response to a deep, concern that the special problems of management were not receiving sufficient attention in operations research circles. This now ficld grew to emphasize science more than management, however. Management scientists have been accused of having more interest in those problems that are subject to elequal mathematical treatment than in those of the top executive, which are generally less easily quantified.

Although many students of business have considered the problems of top management, they have not generally had the scientific and mathematical training necessary to give substance to their ideas and to allow their application in new situations. When the top manager sought help on a problem, he often had to choose between a mathematician who was more concerned with the idiosyncrasies of the situation than with its essence and an experienced "expert" who might be tempted to apply an old solution to a radically new problem. Thus, the early promise of scientific aids for the executive was slow in materializing.

Decision Analysis
In the last few years, a new discipline, called "decision analysis," has developed from these predecessors. İt seeks to apply logical, mathematical, and scientific procedures to the decision problems of top management that are characterized by the following:

- Uniqueness. Each is one of a kind, perhaps similar to-but never identical with-previous situations.
- Importance. A significant portion of the organization's resources is in question.
- Uncertainty. Many of the key factors that must be taken into account are imperfectly known.
-Long run implicatıons. The enterprise will be forced to live with the results of the situa-
tion for many years, perhaps even beyond thr lifetimes of all individuals involved.
- Complex preferences. The task of incorporating the decision-maker's preferences about time and rask assumes great importance.

Decision analysis provides a logical framework for balancing all these considerations. It permits mathematical modeling of the decision, computational implementation of the model, and quantitative evaluation of the various courses of action. This report describes and delineates the potential of decision analysis as an aid to top management.

The Timeliness of Decision Analysis

An appropriate question is why decision analysis has only recently emerged as a discipline capable of treating the complexities of significant decision problems. The answer is found in the combination of three factors. historical circumstance, development of complementary capabilities, and the need for increased formalism.

The Computer Revolution

Despite the elaborateness of its logical foundations, decision analysis would be merely an intellectual curiosity rather than a powerful tool if the means were not available to build models and to manipulate them economically. The rapid development of the electronic computer in the past two decades has made feasible what would have been impossible only a quarter of a century-ago. The availability of electronic computation is an essential condition for the growth of the decision analysis field.

The Tyranny of the Computer

A powerful tool is always subject to misuse. The widespread use of computers has led some managers to feel that they are losing rather than gaining control over the operations of their organizations. These feelings can lead to a defensive attitude toward the sug-
tion that computers should be included in the decision-making process.

Jecision analysis can play a major role in providing the focus that management requires to control application of computers (1) mallagement activities. When examined through decision analysis, the problem is not one of management information systems, but one of providing management with structured decosion alternatives in which management experience, judgment, and preference have aheady been incorporated. Since properly applied decision analysis produces insight as well as answers, it places control in, rather than out of, the hands of the decision-maker.

Tho Nead for Formalism

A final force in the current development of decision analysis is the trend toward professional manarement in present organizations. The one-man show is giving way to committees and boards, and the individual entrepreneur ... becoming relatively less important. A con-
litant of this change is the need for new professional managers to present evidence of more carefully reasoned and documented derisions. Fven the good intuitive decisionmaker will have to convince others of the lugic of his decisions.

However, the need for more formalism may Isn be imposed from outside the organizalwn. The nature of competition will mean that when one company in an industry capitalizes in the efficacy of decision analysis, the others $u_{i l}$ be under presisure to become more orderly II their own decision-making. To an increasing extent, good outcomes resulting from intuitive decisions will be regarded in the same hight as winnings at the races-that is, as the result of luck rather than of prudent manaberial practice.

The Essence of Decision Analysis
 Definition of Decision

In describing decision analysis, the first , is to define a decision. In this report, a
decision is considered an irrevocable allocation of resources, in the sense that it would lake additionalresources, perhaps prohbitive in amount, to change the allocation. Some decisions are inherently irrevocable, such as whether or not to amputate a pianist's hand; others are essentially irrevocable, such as the decision by a major company to enter a new field of endeavor.

Clearly, no one can make a decision unless he has resources to allocate. For example, a manufacturer may be concerned about whether his competition will cut prices, but unless he can change something about the way he does business, he has no decisions to make. Concern without the ability to make decisions is simply "worry." It is not unusual in practice to encounter decision problems that are really worries. Exposing a decision problem as a worry may be very helpful if it allows the resources of the decision-maker to be devoted more profitably to other concerns.

Another coinmon phenomenon is the study, which is an investigation that does not focus on a decision. Until a decision must be made, how can the economic balance of the study be determined? For example, suppose someone requested a study of the automobile in his particular community. The person conducting the study might survey cars' weight, horsepower, displacement, braking ability, seating capacity, make, type, color, age, origin, and on and on. However, if a decision were required concernimg the size of stalls in a parking facility, or the length of a highway acceleration lane, the pertinent characteristics would become cilear. Further, decision analysis could even determine how extensive a survey, if any, w:ould be economic. Thus, concentrating on a decision to be made provides a direct focus to the amalysis that is achierable in no other way. Studies, like worries, are not our concern: decisions are.

The next step is to define a decision-maker: an individual wino has the power to commit the resources of the organization. In some cases, the decision-maker may be an organiza-
tional cintity, such as an executive committee. It is important, however, to distinguish advisory individuals or bodies from those with the power to commit the organization. Study upon study may be performed within an organization advocating or decrying a certain course of action, but until resources are committed, no decision has been made. The first step in any decision analysis is the identification of the responsible party.

Tho Distinction Between a Good Decision and a Good Outcome

Before there can be a formal discussion of decision analysis, the distinction between a good decision and a good outcome must beunderstood. A good decision is one based on the information, values, and preferences of a decision-maker. A good outcome is one that is favorably regarded by a decision-maker. It is possible to hàve gööd deccisions proaūe eithēr gṑd ör Ђad outcomes. Most pèrsons follow logical decision procedures because they believe that these procedures, speaking loosely, produce the best chance of obtaining good outcomes.

To illustrate this point, suppose that we had agreed to serve as decision analysis consultants to a person who said that he would engage only in gambles that were weighted in his favor. Then this person informed us that he had purchased a ticket in a lottery. There were 100 tickets in the lottery, the prize was $\$ 100$, and he paid $\$ 10$ for the ticket. We demonstrate to him that with 1 chance in 100 of winning the $\$ 100$, his expected income fromthe ticket is only $1 / 100$ of $\$ 100$ or $\$ 1$, so that having paid $\$ 10$ for the ticket, his expected loss on the entire prospect is $\$ 9$. Consequently, in view of this person's expressed desire to avoid unfavorable gambles, we say that he has made a bad decision.

However, the next day he receives a check for $\$ 100$ as a consequence of having won the lottery; everyone arrees that this is a good outcome for him. Yet we must report that his decision was bad in spite of the good outcome,
or, perhaps better, that his outcome was good in spite of the bad decision. This would be proper situation to be described as "lucky."

Suppose, however, that the person had pard only 10 cents for his ticket. In this case, his expected income is still $\$ 1$, but because he spent only 10 cents for the ticket, his net expected earnings are 90 cents. Consequently. we would compliment him on his good decision. Yet if no winnings check appears on the next day, the client has now experienced a bad outcome from his good decision.

The distinction between good outcomes and good decisions is especially important m maintaining a detached, professional attitude toward decision problems. Recriminations based on hindsight in the form of "Why didn'i it work?" are pointless unless they reveal that available information was not used, that logic was faulty, or that the preferences of the de-cision-maker were not properly encoded. The proper framework for discussing the quality of decisions and outcomes is a major aid in using hindsight effectively.

Decision Analysis as a Language and a Philosophy

The decision analysis formalism serves both as a language for describing decision problems and as a philosophical guide to their solution. The existence of the language permits precision in specifying the many factors that influence a decision.

The most important feature of the language is its ability to represent the uncertainty that inevitably permeates a decision problem. The language of probability theory is used with only minor changes in terminology that reflect a subjective interpretation of probabilistic measurement. We regard probability as a state of mind rather than of things. The operational justification for this interpretatio: can be as simple as noting the changing odd'; on a sporting contest posted by gamblers as information about the event changes. As new information arrives, a new probability assigu:ment is made. Decisior. analysis uses the
s:anc subjective view of probability. By so doing, statements regarding uncertainty can be much more precise. Rather than saying, "There is some chance that a bad result is likely," or an equivalent ambiguous statement, we shall be able to speak directly of the probability of a bad result. There is no need for vagueness in the language that describes uncertainty. Putling what is not known on the record is the first step to new knowledge.

Decision analysis can also make a major contribution to the understanding of decision problems by providing a language and philosophy for treating values and preferences. "Values" mean the desirability of each outoutcome: "preferences" refer to the attitudes of the decision-inaker toward postponement or uncertainty in the outcomes he receives. Placing values and preferences in unambiguous terms is as unusual in current decisionmaking as is the use of direct probability assignments. Yet both must be done if the proedure is to be used to full advantage.
Jater sections of this report describe the theory and practice of assigning probabilities, values, and preferences, but the impact of thinking in such terms can be indicated here. A most important consequence of formal thought is the spontaneous resolution of individual differences that often occurs when the protagonists can deal in unambiguous terms. Two people who differ over the best alternative may find their disagreements in the areas of probability assignment, value, or preference. Thus, two men who are equally willing to take a risk may disagree because they assign different probabilities to various outcomes; or two men who assign the same probability to the outcomes may differ in their aversion to risk. It is unlikely that the nature of the disagreement will emerge without the formal language. More likely, epithets such as "foolhardy" or "rock-bound conservative," will prevent any communication at all.

The decision analyst must play a detached role in illuminating the decision problem if he is to resolve differences. He must be impar-
tial, never committing himself to any alternative, but rather showing how new information or changes in preference affect the desirability of available alternatives. The effectiveness of the decision analyst depends as much on his emotional detachment as on his knowledge of formal tools.

Decision analysis is a normative, rather than a descriptive, approach to decision problems. The decision analyst is not particularly interested in describing how decision-makers currently make decisions; rather he is trying to show how a person subscribing to certain logical rules would make these decisions in order to maximize attainment of his objectives. The decision procedures are derived from logic and from the desires of the decisionmaker and are in this sense prescriptive.

Decision analysis is more than a language and a philosophy, but the experience of its users justifies it on this basis alone. By focusing on central issues, the approach often illuminates the best course of action in a way that makes discord evaporate.

Decision Analysis as a Logical and Quantitative Procedure

Decision analysis provides not only the philosophical foundations, but also a logical and quantitative procedure for decisionmaking. Since decision analysis encodes information, values, and preferences numerically, it permits quantitative evaluation of the various courses of action. Further, it documents the state of information at any stage of the problem and determines whether the gathering of further information is economically justifiable. The actual implementation of decision analysis models is typically a computer program that enables the many facets of the problem to be examined together. Most of this report will describe how the philosophy of decision analysis carries over into practice.

Delegation of Responsibility

Decision analysis provides both philosophical and operational guidelines for delegating
responsibility in an organization. If we want someone to make a good decision, we must. provide that individual not only with the information but also with the values and preferences that are relevant to the decision. The key principle is that the delegator must supply a subordinate decision-maker with whatever information, values, and preferences required for him to reach the same decision that the delegating individual would have reached in the same situation. While few organizations currently use decision analysis principles in handling the problem of delegation, these principles are available when needed. It is rare that an organization performs a decision analysis on one of its major decisions without simultaneously obtaining new insight into its organizational structure.

THE DECISION ANALYSIS CYCLE

Decision analysis as a procedure for analyzing a decision is described below. This procedure is not an inviolable method of attacking the problem, but is a means of ensuring that essential steps have been consciously considered.

The figure describes decision analysis in the broadest terms. The procedure is iterative and comprises three phases. The first is a deterministic phase, in which the variables affecting the decision are defined and related, values are assigned, and the importance of the

Fig. 1 - The Decision Analysis Cycle
 peat the cycle or it may be more advisable to act. Eventually, the value of new analysis and information-gathering will be less than its cost, and the decision to act will then be made.

This procedure will apply to a variety of decision situations: in the commercial area. to the-introduction-of a-new-product-or-the change in design of an old one; in the militar: area, to the acquisition of a new weapon or the best defense against that of a potential enemy: in the medical area, to the selection of a med-
H... or surgical procedure for a patient; in the social area, to the regulation and operation of public utilities; and finally, in the personal area to selection of a new car, home or career. In short, the procedure can be applied to any decision susceptible to logical analysis.

The Deterministic Phase

Descriptions of the various phases of the procedure follow beginning with the deterministic phase. The deterministic phase is essentially a systems analysis of the problem. Within this phase, efforts devoted to modeling are distinguished from efforts devoted to analysis. The elements of the phase appear in Figure 2.

Modeling

Modeling is the process of representing the various relationships of the problem in formal, mathematical terms. The first step in modeling is to bound the decision, to specify precisely just what decision must be made. This requires listing in detail the perceived
alternatives. Identification of the alternatives will separate an actual decision problem from a worry.

The next step-finding new alternativesis the most creative part of decision analysis. New alternatives can spring from radically new concepts; more often they may be careful combinations of existing alternatives. Discovering a new alternative can never make the problem less attractive to the decisionmaker; it can only enhance it or leave it unchanged. Often the difficulty of a decision problem disappears when a new alternative is generated.

The next step is to specify the various outcomes that the set of alternatives could produce. These outcomes are the subsequent $\overline{\text { events that will determine the ultimate desir- }}$ ability of the whole issue. In a new product introduction, for example, the outcomes might be specified by sales levels and costs of production or even more simply by yearly profits. Thus, there is a certain amount of arbitrariness in what to call an outcome. For decision analysis, however, an outcome is whatever the decision-maker would like to know in retrospect to determine how the problem came out. In a military problem, the outcome could be a complicated list of casualties, destruction, and armament expenditures; in a medical problem, it could be as simple as whether or not the patient dies.

Now comes the challenging process of selecting the system variables for the analysis, which are all those variables on which the outcomes depend. We can ldentify the system variables by magining that we have a crystal ball that will answer any numerical questions relative to the decision problem, except, of course, which alternative to select. We could ask it questions abmout the outcome variables directly, thereby making them the only system variables in the problem. But typically outcome variables are difficult to think about in advance in the real world, and so we might choose to relate the outcome variables to others that are easier to comprehend. For
example, we might like to know the sales level of a new product. Or in lieu of this, we might attempt to relate the sales to our own price and quality and the competitors' price and quality, factors that we might regard as more accessible. These factors would then become system variables in the analysis.

The selection of system variables is therefore a process of successive refinement, wherein the generation of new system variables is curtailed by considering the importance of the problem and the contributions of the variables. Clearly, allocation of the national budget can economically justify the use of many more system variables than can the selection of a new car.

Once we have decided on the system variables to use in the problem, each one must be distinguished either as a variable under the decision-maker's control or as a variable determined by the environment of the problem. System variables that are under the decisionmaker's control are called decision variables. The selection of an alternative in a decision problem is really the specification of the setting of the decision variables. For example, in the new product introduction problem, the product price and the size of production facilities would both be decision variables.

System variables in the problem that are determined by the environment are known as state variables. Although state variables may have a drastic effect on the outcomes, they are autonomous, beyond the control of the deci-sion-maker. For example, in the new product introduction, the cost of a crucial raw material or the competitor's advertising level might be state variables.

We shall want to examine the effect of fluctuations in all system variables, whether decision variables or state variables. To aid in this task, the decision-maker or his surrogate must specify for each system variable a nominal value and a range of values that the variable may take on. In the case of a decision variable, the nominal value and range are determined by the decision-maker's preconcep-
tions regarding the interesting alternatives In the case of state variables, the nomin. value and range reflect the uncertainty assigned to the variables. For convenience, we can often think of the nominal value of a state variable as its expected value in the mathematical sense and of the range as the 10th percentile and 90 th percentile points of its probability distribution.

Selecting system variables and setting nominal values and ranges require extensive consultation between the decision-maker and the decision analyst. At this stage, it is better to err by including a variable that will later prove to be unimportant than it is to eliminate a variable prematurely.

The next step is to specify the relationships among the system variables. This is the heart of the modeling process-i.e., creating a structural model that captures the essential interdependencies of the problem. This model should be expressed in the language of logic-mathematics-typically by a set of equations relating the system variables. In most decisions of professional interest, these equation will form the basis for a computer program to represent the model. The program provides rapid evaluation of model characteristics at modest cost.

Constructing a model of this type requires a certain sophistication in the process of orderly description and a facility for careful simplification. The procedure is elementary, but not trivial; straightforward, but not pedestrian.

Now the decision-maker must assign values to outcomes. Just as there was difficulty in defining an outcome, so there may be some question about the distinction between an outcome and its value. For example, in a business problem, the decision-maker may think of his future profit as both the outcome and the value associated with it. However, maintaining the generality of the formulation requires creating a distinction between the two.

To illustrate the necessity for this, consider a medical question involving the amputation
f an arm. The outcomes of interest might be omplete recovery, partial recovery, or death, each with or without the operation. These outcomes would describe the results but would not reveal their value. For example, if the patient were a lawyer, he might consider death by far the most serious outcome and be willing to undergo the amputation if it sufficiently reduced the probability of death. 'These feelings might be based on the observation that an arm is not essential to his career. 'To a concert pianist, however, amputation might be worse than death itself, since life without being able to play might be unbearable. Consequently, he would be rational in refusing the amputation even if this choice made his death more likely.

Although in some cases the decision can be reached as a result of ordering outcomes in terms of desirability, most problems of practical interest require a numerical (cardinal) ranking system. 'Therefore, assigning a value means assigning a numerical value to an outcome. Though there may be many elements of alue in the outcome, the final value assignment is a single number associated with that outcone.
In commercial situations, the value assigned to an outcome will typically be some form of profit. In social and military problems, however, the value assignment is more diflicull becaluse it requires measuring the value of a haman life, or a cultured life, or a healthy lifemdollats and cents terms. Though these questions of evaluation may be difficult, logic demands that they be approached direculy in monetary terms if monetary resources are to be allocated.

The fimal step in creating the deterministic model is to specify the time preference of the decisiom-maker. Time preference is the term ased to describe the human phenomenon of impatience. Everyone wants good things to happen to him sooner rather than later. This mapatience is reflected in a wilhngness to consume less now rather than postpone the consumption. The payment of interest on savings
accounts and the collection of interest on loans are mere reflections of this phenomenon. Consequently, reptesenting the desires of a decision-maker rec, uires a realistic mechanism for describing his time preference, a mechanism that reduces any time stream of value to a single number colled worth.

For a corporate financial decision, worth will often be simply the discounted difference between future income and expenditures using an interest rite that depends upon the relationship of the corporation to its financial environment. In the mulitary or medical fields, worth may be mo :e difficult to establish.

The modeling part of the deterministic phase thus progre:ses from the original statement of the decision problem to a formal description suitable for detailed examination by logical and compratational analysis: The de-cision-maker's val ue assignments and his time preference permit rating any outcome that appears as a time stream first as a set of values in time and tlen as an equivalent worth.

Analysis

Analysis based on the deterministic phase centers on observing how changes in the variables affect wort ${ }^{1}$. Experimentation of this type is known a:; sensitivity analysis; it is highly effective in refining the formulation of the problem.
The first sensit, vity analysis we perform is associated with the decision variables. First, fixing all other state variables in the problem at their nominal "'alues, we then allow one of the decision varia oles to traverse its assigned range and observe how worth changes. Of course, these obstervations are usually carried out by computer program. If we find that a particular decision variable has a major effect, then we know that we were correct in including it in the origmal formulation. But if a decision variable hais little or no effect, we are justified in consulering its removal as a decision variable. It: reflection reveals that the latter is the case". we would say that we have eliminated an impotent decision variable. For
example, the time of introduction of a new product might seem to be a decision variable of major importance, but because of the combined effects of compctitive reaction and the gaining of production experience, it might turn out to have very little effect. The timing of entry would then be an impotent variable.

Next, we perform sensitivity analyses on the state variables, which are uncertain and over which the decision-maker has no control. With all other system variables at their nominal values, we observe the change in worth while sweeping one state variable over its range. If a state variable has a major effect, then the uncertainty in the variable deserves special attention. Such variables are called aleatory variables to emphasize their uncertainty.

If, however, varying a state variable over its range produces only a minor change in worth, then that variable might well be fixed at its nominal value. In this case, we say that the state variable has become a fixated variable. A state variable may become fixated either because it has an important influence on the worth per unit of its range, but an extremely small range, or because it has little influence on the worth per unit of its range, even though it has a broad range.

There is no reason to conclude that a fixated variable is unimportant in an absolute sense. For example, the corporate tax rate may be a fixated variable in a problem because no change in it is anticipated within the time period under consideration. Yet it is possible that an unforescen large change in this rate could change a favorable venture into an unfavorable one.

Although sensitivity analysis has been described as if it concerns only changes in one variable at a time, some of the most interesting sensitivity results are often observed when there are simultancous changes in state variables. Since the possibilities of changing state variables jointly grows rapidly, with the number of state variables, an important matter of judgment for the decision analyst is to
determine the amount of simultaneous se tivity analysis that is economic.

The Probabilistic Phase

The net result of the deterministic sensitivity analysis on the autonomous state variables is to divide them into aleatory and fixated classes. The probabilistic phase determines the uncertainty in value and worth due to the aleatory variables. The phase will be divided into steps of modeling and analysis; Figure 3 illustrates its internal structure.

Modeling Probability Distributions
The first modeling step in the probabilistic phase is the assignment of probability distributions to the aleatory variables. Either the decision-maker or someone he designates must assign the probability thateach aleatory variable will exceed any given value. If any set of aleatory variables is dependent, in the sense that knowledge of one would provide information about the others, then the probability assignments on any one variable must
be conditional on the values of the others. Gathering these assignments amounts to asking such questions as, "What are the odds that sales will exceed 10 million units in the first year?" (See section entitled "Encoding Knowledge and Preferences.") Strange as such questions may be in the current business world, they could be the standard executive language of tomorrow.

Anelysis

With knowledge from the deterministic phase of how the worth depends on the state variables and assigned probability distributions on the aleatory variables, it is a straightforward calculation to determine the probability distribution of worth for any setting of the decision variables; this probability distribution is the "worth lottery." The worth lottery describes the uncertainty in worth that results from the probability assignments to the aleatory variables for any given alternative (setting of decision variables.) Of course, the values of the fixated variables are never changed.

To select a course of action, the analyst could generate a worth lottery for each alternative and then select the one that is more desirable. But how would he know which worth lottery is most desirable to the deci-sion-maker?

One important principle that allows judging one worth lottery as being better than an, ther is that of stochastic dominance, which is illustrated in Figure 4. Part A of this figure shows the worth lottery for two alternatives in both probability densities and excess probability distribution forms. The excess probability distribution, or excess distribution, is the probability that the variable will exceed any given value plotted as a function of that value. Its height at any point is the area under the probability density function to the right of that point. Comparison of the excess distributions for the two alternatives reveals that, for any value of X, there is a higher probabily that alternative 2 will produce a worth in

Fig. 4
Part A-Stochastic Dominance

Part B-Lack of Stochastic Dominance

excess of that X than will alternative 1. Consequently, a decision-maker preferring more worth to less would prefer alternative 2. If alternative A has an excess distribution that is at least as great as that of alternative B at any point and greater than B at at least one point, alternative A stochastically dominates alternative B. If stochastic dominance exists between two competing alternatives, there is no need to inquire into the risk preference of the decision-maker, who rationally must rule out the stochastiacally dominated alternatives.

Part B of Figure 4 illustrates a case in which stochastic dominance does not exist. The excess distributions on worth for the two alternatives cross. If the decision-maker wants to maxinize his chance of receiving at
least a small amount of worth, he would prefer alternative 1 ; if he wants to maximize his chance of receiving at least a large amount of worth, he would prefer alternative 2. In situations like this, where stochastic dominance does not apply, the risk preference of the de-cision-maker must be encoded formally, as shown below.

Just because alternative A stochastically dominates alternative B does not mean that the decision-maker will necessarily achieve a higher worth by following alternative A. For example, if alternative A produces worths of five to 15 with equal probability and alternative B produces worths of zero and ten with equal probability, then A stochastically dominates B. Yet it is possible that A will produce a worth of five while B will produce a worth of ten. However, not knowing how the lottery will turn out, the rational man would prefer alternative A.

Modeling Risk Preference

If stochastic dominance has not determined the bestalternative, the analyst must turn to the question of risk preference. To demonstrate that most individuals are averse to risk, it is only necessary to note that few, if any, are willing to toss a coin, double or nothing, for a year's salary. Organizations typically act in the same way. A realistic analysis of decisions requires capturing this aversion to risk in the formal model.

Forlunately, if the decision-maker agrees to a set of axioms about risk taking (to be described in the following section), his risk preference can be represented by a utility curve like that shown in Figure 5. This curve assigns a utility to any value of worth. As a consequence of the risk preference axioms, the decision-maker's-rating-of-any worth_lottery can be computed by multiplying the utility of any possible worth in the lottery by the probability of that worth and then summing over all possible worths. This rating is called the expected utility of the worth lottery.

If one worth lottery has a higher expected

utility than another, then it must be preferred by the decision-maker if he is to remain consistent with the axioms. The analyst is nor telling the decision-maker which worth lotter: he should prefer but only pointing out to him a way to be consistent with a very reasonable set of properties he would like his preferences to enjoy.
Thus, the utility curve provides a practica method of incorporating risk preference int, the model. When faced with a choice between two alternatives whose worth lotteries do mo exhibit stochastic dominance, the analyst c putes the expected utility of each and choosethe one with the higher expected utility.

Although the expected utility rating doe serve to make the choice between alternativeits numerical value has no particular intuitive meaning. Therefore, after computing the ex pected utility of a worth lottery, the analys: often returns to the utility curve to see whal worth corresponds to this expected utility; w. call this quantity the certain equivalent wort of the worth lottery. The name arises as fol lows: if another worth lottery produced th certain equivalent worth with probabilit: one, thien it and the original lottery woul: have the same expected utilities and hen. would be equally preferred by the decision: maker. Consequently, the certain equivalen worth of any worth lottery is the amount " worth received for certain, so that the dect sion-maker would be indifferent between $: "$ ceiving this worth and participating in th lottery. Since almost all utility curves sho
that utility increases as worth increases, worth lotteries can be ranked in terms of their certain equivalent worths. The best alternative is the one whose worth lottery has the highest certain equivalent worth.

Analysis

In returning to the analysis of the probabilistic phase, the first step is to compute the certain equivalent worth of each of the alternatives. Since the best decision would be-the alternative with the highest certain equivalent worth, the decision probably could be considered solved at this point. The careful analyst, however, will examine the properties of the model to establish its validity and so would not stop here. The introduction of risk preference is another point at which to check the sensitivity of the problem. For example, by setting all decision variables but one to their nominal values and then sweeping this one decision variable through its range, the analyst may find that although this variation changes the worth lottery it does not signifiantly change the certain equivalent worth. This result would indicate that the decision variable could be fixed at its nominal value.

Aleatory variables receive the same sensitivity analysis by setting one of them equal to a trial value within the range and then allowing the others to have the appropriate conditional joint probability distribution. When the decision variables are given their nominal values, the program will produce a worth lottery and hence a certain equivalent worth for the trial value. Sweeping the trial value from one end of its range to the other shows how much certain equivalent worth is changed. If the change is small, there is evidence that the particular aleatory variable may be changed to : fixated variable. We call this procedure measurement of the stochastic sensitivity of a variable. It is possible that an aleatory variahle showing a large deterministic sensitivity could reveal only a small stochastic sensitivity and vice versa. Consequently, any decisions to remove variables from aleatory status on
the basis of deterministic sensitivity might well be reviewed at this time by measurement of stochastic sensitivity.

As in the case of deterministic sensitivity, we can measure the stochastic sensitivity of many variables, simultaneously. Once more, the decision analyst must judge how far it is profitable to proceed. Measurement of stochastic sensitivity is a powerful tool for locating the important variables of the problem.

There is one other form of sensitivity analysis available at this point: risk sensitivity. In some cases, it is possible to characterize the utility curve by a single number-the risk aversion constant (just when this is possible will be discussed later). However, when the risk aversion constant is applicable we can interpret it as a direct measure of a decisionmaker's willingness to accept a risk. An individual with a small risk aversion constant is quite willing to engage in a fair gamble; he has a tolerant attitude toward risk. As his risk aversion constant increases, he becomes more and more unwilling to participate. If two men share responsibility for a decision problem, the less risk tolerant will assign a lower certain equivalent worth for any given worth lottery than will the other. Perhaps, however, when the certain equivalent worths are computed for all alternatives for both men, the ranking of certain equivalent worths might be the same for both, or at least the same alternative would appear at the top of both lists. Then there would hardly be any point in their arguing over the desirable extent of risk aversion and a possible source of controversy would have been eliminated.

The measurement of risk sensitivity determines how the certain equivalent worths of the most favorable alternatives depend on the risk aversion constant. The issue of risk aversion can often be quickly resolved.

The problem structure, the set of alternatives generated, the probability assignment to aleatory variables, the value assesisments, the statement of time preference, and the specification of risk preference combine to indicate

Fig. 6-The Decision Analysis Hierarchy.

the best alternative in the problem. The overall procedure is illustrated by the decision analysis pyramid in Figure 6. However, it still may be best to obtain more information rather than to act. This determination is made in the third phase, as described below.

The Informational Phase

The informational phase is devoted to finding out whether it is worthwhile to engage in a possibly expensive information-gathering activity before making a decision. It is, in the broadest sense, an experimental design procedure from which one very possible result is the decision to perform no experiment at all. Figure 7 shows the steps in the phase.

Informational Phase

ANALYSIS:

- Measure Economic Sensitivity (Determine Value of Eliminating Uncertainty in Aleatory Variables)

MODELING:

- Explore Feasibility of Information Gathering

Analysis

The fundamental idea in the informational phase is that of placing a monetary value on additional information. A key concept in approaching this value is that of clairvoyance. Suppose someone exists who knows in advance just what value a particular aleatory variable would assume in the decision problem-a clairvoyant. How much should the decisionmaker be willing to pay him for his services?

To answer this question, recall that the di:cussion of stochastic sensitivity descrıbed how to compute the certain equivalent worth given that an aleatory variable took on a value s. In that procedure, the decision variables were set equal to their best values from the probabilistic phase. Suppose now that we engage the clairvoyant at a $\operatorname{cost} k$, and then he tells u : that the aleatory variable will take on the value s. Virst, we would set the decision variables to take best advantage of this information. However, since the other aleatory fa: iables are still uncertain, they would be described by the appropriate distributions:
en the available information. The computer program would then determine the expected utility of the entire decision problem including the payment to the clairvoyant, all conditional on his reporting s.

Before engaging the clairvoyant, however, the probability to be assigned to his reporting s as the value of the particular aleatory variable is described by the probability distribution showing the current state of knowledge on this variable. Consequently, we obtain the expected utility of purchasing his information on the variable at a cost k by multiplying the expected utility of the information given that he reports s and costs k, by the current probability that he will report s and then summing over all values of s. The analyst uses the current probability in this calculation because if the clairvoyant is reliable, the chance of his reporting that the variable falls in any range is just the chance that it will fall in that range.

Knowing the expected utility of purchasing the information from the clairvoyant at a cost - " k, we can gradually increase k from zero
.i) the expected utility of purchasing the information is just equal to the expected util,ity of proceeding with the decision without clairvoyant information. The value of k that establishes this equivalence is the value of darvoyance on the aleatory variable.

The value of clairvoyance on an aleatory variable represents an upper bound on the payment for any experimental program-designed to provide information on this variable, for no such program could be worth more than clairvoyance. The actual existence of a clairvoyant is not material to this discussion; he is merely a construct to guide our thinking.

We call the process of measuring the value of clairvoyance the measurement of economic sensitivity. If any aleatory variable exhibits high economic sensitivity, it is a prime candidate for an information-gathering program. It is, possible, however, for a variable to have \therefore high stochastic sensitivity and a low eco-nomi- senstivity because the available alterwitives cannot take advantage of the informa-
tion received about the variable. To determine the importance of joint information, the analyst can measure the value of clairvoyance on more than one variable at a time.

The actual information-gathering programs available will seldom provide perfect information, so they will be less valuable than clairvoyance. Extension of the discussion of clairvoyance shows how their value can be measured. Whereas the clairvoyant reported a particular value s for an aleatory variable, a typical experimental program will provide only a new probability distribution for the aleatory variable. The analyst would then determine the best decision, given this new information, and compute the expected utility of the decision problem. He would next multiply the expected utility by the probability that the exerimental program would come out in this way and then sum over all possible outcomes of the experimental program. The result would be the expected utility of the experimental program at a given cost. The cost that would make the expected utility just equal to the expected utility of the problem without the experimental program would be the value of the experimental program. If the value is positive, it represents the maximum that one should pay for the program. If the value is negative, it means that the experimental program is expected to be unprofitable. Consequently, even though it would provide useful information, it would not be conducted.

Modeling

$\stackrel{8}{8}$
At this stage, the decision-maker and the analyst must identify the relevant informa-tion-gathering alternatives, from surveys to laboratory programs, and find which, if any, are expected to make a profitable contribution to the decision problem. In considering alternatives, they must take into account any deleterious effect a^{\prime} delay in making the primary decision. When the preferred informa-tion-gathering program is performed, it will lead, at least, to new probability assignments
on the aleatory variables; it might also result in changing the basic structure of the model. When all changes that have been implied by the outcome of the experimental program are incorporated into the model, the deterministic and probabilistic phases are repeated to check sensitivities. Finally, the informational phase determines whether further informa-tion-gathering is profitable. At some point, further information will cost more than it is worth, and the alternative that currently has the highest certainty equivalent will be selected for implementation.

The iterative decision analysis described above is not intended to fit any particular situation exactly but, rather, all situations conceptually. A discussion follows on two procedures required to carry out the analysis: encoding knowledge and preferences.

ENCODING KNOWLEDGE AND PREFERENCES

Encoding Knowledge as Probability Distributions

Perhaps the single most unusual aspect of decision analysis is its treatment of uncertainty. Since uncertainty is the central problem in decision-making, it is essential to understand the conceptual and logical foundations of the approach to this issue.

The Importance of Uncertainty

The importance of uncertainty is revealed by the realization that decisions in situations where there is no random element can usually be made with little difficulty. Only when uncertainty exists about which outcome will occur is there a real decision problem.

For example, suppose that we are planning to take a-trip tomorrow and that bad weather is forecast. We have the choice of flying or of taking a train. If a clairvoyant told us the consequences of each of these acts, then our decision would be very simple. Thus, if he said that the train would depart at $9: 13$ A.m. and arrive at 5:43 P.m. and if he described in detail
the nature of the train accommodations, the dining car, and the people whom we would meet as traveling companions, then we would have a very clear idea of what taking the train implied. If he further specified that the plane would leave 2 hours late and arrive $21 / 2$ hours late, stated that the flight would be especially bumpy during a certain portion of the trip. and described the meals that would be served and the acquaintances we would meet, then the flying alternative would be described as well.

Most of us would have little trouble in making a decision about our means of travel when we considered these carefully specified outcomes in terms of our tastes and desires. The decision problem is difficult because of the uncertainty of departure and arrival times and, in the case of the plane, even whether the trip would be possible at all. The factors of personal convenience and pleasure will be more or less important depending upon the urgency of the trip and, consequently, so will the uncertainties in these factors. Thus we cannot make a meaningful study of decisionmaking unless we understand how to deal with uncertainty. Of course, in the problems that are of major practical interest to the decision analyst, the treatment of uncertainty is even more pressing.

It is possible to show that the only consistent theory of uncertainty is the theory of probability invented 300 years ago and studied seriously by mathematicians the world over. This theory of probability is the only one that has the following important property: the likelihood of any event's following the presentation of a sequence of points of data does not depend upon the order in which those data are presented.. So fundamental-is this property that many would use it as a defining basis for the theory.

The Subjective Interpretation of Probability

A reasonable question is: If probability is so essential to decision-making, why hasn't
que mediante una distribucion cuidadosa acompañada de una buena promocion, se tendrlan ventas potanciales excedentes a las proyectadas en 1956. Aunque Biery y o'keefe estaban completamente convencidos del exizo futuro del Snurfer, se encontraban ante la incertidumbre de la demanda total del producto para el afio en cues tion, asi como la parte correspondiente por destinar a supers. Estaban seguros, eso si, que para maximizar las ganancias del pro ducto, sería necesario estimar el tamaño de la producción de mane ra cuidadosa y sistemática. Como era de esperarse, la orden de produccion tenia que enviarse al Departamento de Produccion al fi nal de Abril de 1967.

El primer paso para determinar tal cantidad, fue revisar las estimaciones recientes del costo de los dos modelos. El jefe de produccion injorm8 que la maquinaria existente cuyo costo era de $\$ 50,000$ se encontraba en buents condiciones y sería capaz de producir 150,000 unidades de cualquier tipo y en cualquier combinacion. Para producir entre 150,000 y 200,000 unidades se requeria una inversion extra de $\$ 15,000$. Incrementar la producción sobre las 200,000 unidades requeriria otros $\$ 55,000$ pero permitiria a la fábrica producir hasta 500,000 unidades al año. Biery decidis que los costos de inversion en maquinaria deberian amortizarse en el aío de su adquisicion.

Posterior a una consulta con los agentes de ventas, se considerb vender los Sinurfers en 1967 a un precio promedio de fabrica (al aumentar o disminuir la cantidad el precio varia) de $\$ 4.30$ el regular y $\$ 5.50 \mathrm{el}$ super. Los costos directos para la compañia fueron $\$ 2.50$ y $\$ 3.20$ respectivamente. Por otra parte, los costos indirectos se calcularon para ambos modelos como un 9% sobre la ganancia, los cuales incluian gastos por administracion, renta de inmuebles etc., mientras que un 3% adicional se dedic8 a gastos por publicidad. El costo por almacenaje del inventario, se cargs a 2% al mes sobre los costos directos y se estimb que todo inventario en exceso tendria que almacenarse por lo regular un promedio de 6 meses.

Con los costos involucrados definidos, Biery se puso a analizar la demarda. Aunque no estaba seguro de qué cigra seleccionar£a, estaba consciente de la improbabilidad de introduccion de competencia. en el mercado. Aun măs, se dib cuenta que el Snurfer era ur articulo de novedad y que de seguro seguiria la ten dencia caracteristica de ese tipo de articulos, como las patinetas y el hula-hula con ventas muy altas por un par de años y disminuyendo rapidamente hasta desaparecer. Por esto. Biery solo se concentr8 en la venta del producto para la temporada.1967-1968.

Para determinar la demanda, Biery se reunis con o'keefe y juntos analizaron las posibilidades de los Snurfers. Finalmente concluyeron que la demanda media seria de 150,000 unidades. Un hecho era seguro, que no estarla por debajo de las $50,000 \mathrm{ni}$ en exceso de las $=00,000$, tambien consideraron que habla una oportunidad en 4 de' que la demanda seria de al menos 190,000 unidades y que existilan 3 oportunidades en 4 de que al menos fuera de 125,000 unicades.

Para poder decidir la cantidad de unidades a ordenar, tenian por otro lado que estimar la demanda para los regulares y para los super. Esto, era obviamente necesario pues, se debian adquirir diferentes materias primas y por otra parte no se desea ba que se tuvuiera un resultado final de regulares inventariados con demanda insatisfecha de super; o viceversa. Ambos coincidie ron en que la demanda entre modelos podia considerarse independiente de la demanda total: bajo el razonamiento de que el consumidor seleccionaria entre un modelo u otro, exclusivamente de acuerdo a las diferencias entre estos, y que la decision sobre cual modelo comprar no se encontraba influenciada por el numero total de Snurfers vendidos.

Biery y o'keefe estimaron que el super Snurfer probablemente seria demandado en un 40\% del total pero que se podria llegar hasta un 60\%. De cualquier forma, la demanda no caeria por debajo del 30% en ninguna circunstancia. Por otra parte, consideraron que existia ur 75% de oportunidades de que ia demanda fuera de un 45% y un 25% de oportunidades de que los supers formaran un 36% de la demanda total.

Resumen de Costos pcr Unidad

		Costo MODELO	PRECIO	COSTO INDIRECTO VAFIABLE	Y PUBLICIDAD	
TOTAL		Almacen INVENTARIO				
Regular	$\$ 4.30$	2.50	0.22	2.72	0.30	
Super	$\$ 5.50$	3.20	0.28	3.48	0.38	

Cantidades a Pj:oducj.r

Para dete:minar las cantidades de producción a considerar, Biery decidib estudjar las sugerencias presentadas por diferentes personas involucradas con el proyecto. El siguiente resumen muestra las recomenclaciones de oficios me y memoranda cnviados.

El personial de ventas argumenta que las ganancias totales en ambos modelos, hacen que el costo por almacenamiento de las unidades : 10 verıdidas sea practicamente despreciable, por lo que pretenden cue una cantidad total de 225,000 Snurfers sea ordenada. De estos 130,000 deberán ser reguiares y 95,000 super.

Por otra parte el jefe de produccion sugiere 150,000 unidades, 70,000 super y 80,000 regulares, argumentando que la cantidad 10 se requeriŕ́ ninguna inversión adicional, y que aumentar la proporcion de lpss super a 47% en lugar de 40% era conveniente, $\ddagger \ddagger$ ya que estas tenian un mayor margen de ganancia y que la proporcion era más acorde con la experiencia de las ventas anteriores.

Biery considerl que ambos argumentos eran meritorios, pero estaba un poco escejtico al respecto por lo que proponia que una produccion de 200,000 unidades repartidas en 85,000 super y 115,000 regulares disminuiria el costo deve ventas perdidas sin incurrir en una mayor inversion en maquinaria. Para asegurarse de lograr la decision correcta, se propuso realizar un andlisis de las 3 alternativas para determinar cual era la mejor. Para ello, se hizo asistir de un cuerpo de asesores expertos en analisis de decisiores, en particular investigadores de la "Business School" de la Universidad de Harvard.

Preguntas Guia

1) Que hubiera hecho usted, en caso de haber sido llamado por Mr. Biery?
2) Hubiera usted analizado todas las alternativas?
3). Cuanto es lo que usted le cecomendarla a Mr. Biery, pagar por obtener informacion extra?
3) Seria posible obtener la solucion 8ptima/.
(Asuma en su analisis, que los productos no vendidos en la edici8n 1967-1968 se venderån durante 1968-1969)

EVALUACIONDE PROYECTOS Y TOMA DE
 DECISIONES

Cinaplee 11

Games and competitive situations

Cempeltiane situation, oecur when individuals or institutions are at cross-purposes. They are situations in which there is at least some element ci combet. Two firms bathleg for market share are clearly at crow-
 ard a cu-toner h stinge ore mive and options. a number of companes bidding for a NASt contract, the writer of an incurance contract and the insured. and an IBM representative and a customer working out the detaits of a multimil:tion-dollar computer instatlation.

In most of these e vamples the induriduals or institutions are not entirely at crosispurpowes, however. The car dealer and customer, for example. while at cross-purposes regarding price, stare the objective of closing a mutually advantayeous deal. Most competitive situations, in fact, contain elements of both mutual interest and cross-purpose. This mixture is part of what makes their analysis so challenging.

Competitive situations pervade every sphere of human activitymilitary strateg\}. dipiomacy, government, polities, business, sporis. and prosate lives are obvions examples. Because they are so pervasive, con:pettive situations have been studied from many viewpoints, including ecor.onies, politics, history, sociology. psschology, military'strategy. and the mathernatical theory of games. Defeneing on the administrative situation under consideration, any one or a combination of these viewpoinis may add decision making.

In desiding on which vieupoints to bring to bear on a particuiar simation-or. indeed. which a apects of a partisular viewpoint are rela.an-it helps to be atwere of the dimensions on which competitive siturans datier. Fon exampis. two situations may differ in the degree to
"hich the parties hate mutual interests. To facilitate thinking about compeitue problems in general, it is liell to be awate of the elements shared by all such situations.

This chapter addresses these issues. The first section explores the common elements of competitive situations and the significant dimensions on which they difier by deseribing in detail the hattle among airlines for tanscontinental passengers. The next section provides a framework for analyzing some competitive situations by describing how to analyze twoperson zero-sum games. In the last section this framework is eviended to nonzero-sum games in order to address issues of cooperation and communications.

AN EXAMPLE: THE BATTLE FOR TRANSCONTINENTAL AIR PASSENGERS'

Consider the airlines batle for transcontinental passengers that has been going on since the early 1960s. The long hauts are the routes of greatest profitability. and the New York-California runs have been termed the "éssence of the essence." Thus, competition has been fierce among the three largest airlines. American. TW'A, and United, which collectively control about 90 percent of the market. In the days of piston aircraft, just before the batte started, TWA was the dominant transcontinental carrier. However. American, then in second place, was more aggressive than the others in introducing jet aircraft. As a result, it surpassed TWA in the early sixties. achieving 38 percent of the market by 1962. For a while TWA. awaiting delivery of its Convair jets. and United, awaiting DC-8s, emphasized services to counter American's jets. 'This competitive weapon continued to be used after TWA and United became competitive with aircraft. Since the industry is regulated, price competition was largely ruled out.

About 1963, TWA introduced in-flight motion pictures. and it was some two years before American and United follc יed suit. Later. TWA was to offer a choice of two movies. Shortly thereafter. United introduced stereo entertainment. and the others soon followed. During the mid sixties. United tried single-class service, and after several disastrous years reverted to the traditional coach and first-class service. In a series of moves and countermoves, the three competitors offered increasingly elaborate meal service. including chore of entrees or steah cooked in flyght. By 1967. TWA was touting choice of seven entrees in its first-class service, all cooked in flight. United increased the number of main course choices from two to four in its coach section. Each carrier. as it introduced a new innovation, featured it in its advertising, which "as constantly being used

[^4]to diflerentiate thi: line's service in the eyes of the public. Amterican was the businew, Iraveler's line, l'nited the vacation traveler's.

Once all the carrier, had sufficient jets. they began to escalate the frequencs of their flights, in part in response to growing passenger demand. More importantly. the escalation stemmed from the widespread heliet that the carrier with the greatest number of departures would get a share of market more than proportionate to its share of departures. This uas so because many travelers initially contact the carrier offering the most flights to their destinations when they make reservations. Consequently, number of departures became one of the most competitive Heapons.

By the late 1960s, just before the introduction of the wide-body jets. however, airline capacity became scarce. Nonetheless. the carriers continued theis capacity war on the transcontinental routes. at some sacrifice to their less desirable routes. For instance, when American added another New York-California flight in 1967. TWA felt it had to delay the introduction of its new Cincinnati-Los Angeles nonstop service to match American's fight. By 1967. flights were so frequent from New York to California that Aviation Week (August 14, 1967) called them a "shuttle." American had 16 of the +3 flights a day, TW'A had 14 , and United had 13. Their market shares were ranked in the same order. Timing of schedules was also important: the lines constantly jockeyed with one another for the more favorable departure times.

The capacity battle intersifi-d with the introduction of the 747s about 1970. Formerly capacity constrained. the carriers suddenly' found excess capacity. because the introduction coincided with an economic recession After load tictors (percentage of occupied seats) had fallen under 40 percent. Americ tn finally tried to break the cycle by unilaterally cutting back on capacity. It hoped the others would follow. However. United stood pat and TW'A increased capacity. Month by month American watched, waited for the other carriers to revise themselves. and lost market share and large sums of money. Finally, it relented and again entered the fray.

In the meantime, plane configuration became the chief competitive Heapon: the "battle of the coach lounges" took place. Spurred by empty seats. in 1972 Continental Airlines removed some yeats from planes on its Chicago-Los Angeles run and installed a lounge in the coach sections. The big three quichly followed suit on the transcontinental routes. Soon one carrier featured two lounges. Then came the piano bars; first American and then the others added pianos to their lounges, so passengers could gather, play the piano, sing songs, and inbibe. The battle of the lounges abated in mid-1973.

In 1972 there also was a wave of reoutfitting hight attendants, with first one carier and then another introducing new uniforms. More moves and countermoves on food took place, with one carrier touting Trader Vic food.

Faced with excess capacity. the carriers then tried fare reductions. TW'A filed an application with the Civil Aeronautics Board ($C A B$) for spectal book-ahead fares where. if the customer hooked 90 day's in advance, the fare paid was approximately one half. In defense. American soon filed an application for an identical plan. Not to be outclassed, L'nited filed for similar fares with seven-days-ahead booking, but a minimum seven, maximum nine-day stay. Defensively, the others matlched the United plan. The United plan met with the greatest success and finally was adopted by all carriers. The net effect, of course, was to lower the average fare collected by each carrier.

Up to this point in the battle. the carriers had been making capacity decisions independently, without consulting one another. Load factors had dropped below break-even to 36 to 38 percent: competition was so fierce that running planes through maintenance and scheduling crews was a problem. In 1972, the CAB began to encourage negotiations among the carriers to limit capacity. The negotiations started in the summer, under protest from the Justice Department and various consumer groups, and by October 1972, the first capacity reductions led to a 10 percent improvement in load factors. Starting in June 1973 fuel shortages provided further incentives to get together, and, after protracted negotiations, further capacity reductions followed. A's capacity was being cut back, TW. was hit by' a six-week strike, giving a major assist to the two remaining carriers. In early 1973, the carriers used advertising to vie for market share on the basis of quality of service. This was spurred by American, which was trying to recoup market share lost due to poor service stemming from a pilot slowdown in December 1972 to January 1973. Beginning in February 1973, it started touting the improvement in its service, and the others countered by praising their own.

This particular competitive battle well illustrates the richness of competitive situations: the wide variety of weapons used: the constant moves and countermoves, both offensive and defensive: the importance of timing: the uncertainty about opponents' moves, and whether they will succeed; and the great complexity of the total \therefore atation.

Elements shared by all competitive situations

Several of the elements common to all competitive situations which are illustrated by the transcontinental air passenger example are discussed below.

The rules of the game. Perhaps most important of all, there are specific rules that govern the behavior of the competitors. These competitive practices are generally agreed upon, general laws as well as specific industry regulations. For instance, the airline industry is a heavily regulated one; competitors may not change fares without prior approva! of the CAB.

Potential payotts and utitimate outcomes. There is a range of outcomes or paraffs that can uccur for each competitor-in the case of the airlines, the various market shares, passengers carried, or profits. As a result of the actions of the competitors and possibly of events beyond their control. there is an outcome of the situation-one of the potental payoffs. Each competitor considers some outcomes to be more desirable than others-for instance. more market share is better than less. While this seems ubvious, each has relative preferences for the various dimensiuns of the payoff: market share, immediate profits, long-range profits, casl. flou. and so forth.

Outcomes determined by competitor choices alnd other events. Each competitor has open to it a range of potential strategies it can employ. In the airline example a strategy consists of a stance regarding number of departures. schedules, plane configurations, in-fight services, adierising. and so forth. Each competitor has some control over the situation. but it does not have full control. Some of this control is in the hands of the other competitors. American's success, for example, depends in part on its strategy. but it is heavily influenced by what TWA and United do. Furtheimore, some elements may not be in the control of any competitor, such as the strike closing TWA in 1973, the economic dow nturn of 1970, and the pilot slowdown that hit American in December 1972.

Significant differences aim. ng competitive situations

There are also various dimensions on which competitive situations can differ significantly. The way these factors can affect the analysis of the competitive situation are noted in the sections below.
Number of competitors. The number of competitors, or distinct sets of interests, is one of the fundamental ways to categorize competitive situations. It is customary to speak of a conflict situation having two competitors as tro-person and one with more than two competitors as n-person. although it may just as well be called a many-person situation. The word person is game-theory shorthand for a party at interest in a competitive situation: in short, one of the conflicting "sides." In this sense. a person may be an individual, a group of individuals, a corporation, or a nation.

The two-person conflict situation is the common one in which one person and an adversary have conficting interests. Certainly the seller of a house you would like to buy does not share your interest in a lower price. Two contractors have clear conflicting interests in bidding for a construction contract.

When there are miore than two interested parties, the situation becomes more complev. First. there is simply more to keep track of. Second, and more important. there is the possibility that some of the competitors might
form coalitions to deal more effectively with the others. F. .nstance. the Arat nations banded together 10 set a common oil policy with the dereloped nations in 1973. even though the individual nations had somewhat differing interests. Similarly. companies form trade associations to lobby for common interests, workers form unions. and nattiuns șign mutual add treaties. Sometimes the coalitions are only implicit and tacit, such as banks following common policies in setting their prime rates. Also. workers sometimes band together in informal groups to socially conirol "rate busters." and card players will gang up on the leader to keep anyone from amassing the number of points necessary to win the game.
When one is faced with coalitions, an important analytical issue is their stability. How likely is it that members of the coalition will break with their original coalitions to join others. form new ones, or strike out on their own? Is it advantageous to encourage or discourage this? Which gioup is advantageous for you to join?

Another implication of n-person situations is simply the need to recognize the number of different interests. For instance, suppose you are negotiating to purchase a small machine shop from its founders and their children. The founders want to retire and divorce themselves financially from the enterprise. The children would like to continue in its management and, if they are successful, share in the rewards. If you fail to recognize these different interests, if you consider "the owners" to be monolithic, you risk missing an appropriately structured dea! which will be more in the interests of all parties-including yourself.

Degree of mutual versus opposing interest. There are some situations in which the interests of the competitors are strictly opposed. At the end of a poker game, for example, there is usually just an exchange of assets. Since winnings are balanced by losses, their net is equal to zero. In game theory terms, this type of competitive situation is called a zero-sum game.
The zero-sum game may be thought of as one extreme-that of pure conflict. At the other extreme are situations of pure common interest, in which the "competitors" win or lose together, and both prefer the same outcome. For instance, in bridge the two partners do their utmost toward achieving full cooperation. Their fates are inextricably intertwined.
lt is difficult to find administrative examples of either pure cooperatior or pure conflict, since the vast majority of competitive situations lie between these extremes. In most situations the opponents exhibit varying degrees of common interest and competition. Formally, any game that is not strictly competitive is designated a nonsero-sum game.

In a labor negotiation, for instance, labor and management may not agree concerning the division of their joint profit, but both probably want to make the joint profit as large as possible. Thus they have both conflict ing and common interests. Similarly, the three airlines competing for transcontinental passengers, while they would prefer gaining market shars
at the others expense, would mutually prefer competitive alternatives that prohitabiy stimulate passenger demand. or those that permit handling a given nimber of passengers at lower cost.

The competitive aspects of most business. political. and military conficts can only be analyzed in a realistic way if the elements of common interest as well as contlict are taken into consideration.

Communication or agreement about actions. In the airline example. the competing carriers first made independent decisions on departures. The eventual result was that departures escalated and load factors dipped below break-even. When the carriers were permitted to decide jointly on departures. the number of fights was reduced to a profitable level.

This difference in behavior illustrates the significance of perhaps the most important distinction that can be made about competitive situations-whether or not the competitors are allowed to communicate explicitly before mahing their moves. If so, the situation is said to be cooperutine; otherwise, it is designated nomcooperative.

In general. the more the players" interests coincide. the more significant is their ability (or mability) to communicate. Where there is pure common interest. the problem is entirely one of communication. In competitive situations in which the decision makers have some common interests and some conflicting interests, communication, if permitted, plays a complex role in determıning the outcome. In two-person, pure-conflict situations, communication cannot benefit either competitor

Sometimes the competitors i.must take action in the complete absence of comrnunication. as do participants in a sealed bid auction. Under such noncooperative circumstances, the analysis of a competitor's potential actions should influence the other party's actions. Sometimes competiturs can communicate to a limited degree, as with public pronouncements, but must stop short of actual agreement on a mutual course of action. For example, the president of TWA might announce that TWA will match dmerican's departures plane for plane. The purpose of this type of communication-threat, promise, or bluff-is to attempt to influence the opponent's behavior. The effect of these limited communications then enters the competitive analysis.

Finally, there is the cooperative situation where the competitors are in full communication and jointly attempt to reach agreement. Promises, threats, and bluffs continue to play a role in attempting to change each uther's preferences and attitudes. However, now the adversaries, through dialogue, also attempt to create new alternatives while trying to reach agreement. This is the bargaining situation.

Betore leaving the subject of communication, the role of tacit communication bears mentioning. In most marketplace competition, the law forbids collusion. Nonetheless. although competitors do not communicate directly with one another. "understandings" often develop. Price leader-
ship in the steel industry is a good example. The kinds of understandings that emerge and ther stability is an important aspect of such competitive utuations. So is the was that contretitors "signal" their intent to oneanother, without explicitly communicating. For example. American was apparently unsuccessful in signaling the other airlmes to cut back capacity in 1971.

Repeating the competitive situation. Another important dimension of difference is whether the same participants will be involved in a similar situation in the future. For instance. the buyer and seller of a house most likely will not, whereas a particular union and company will be back at the bargaining table at the completion of a just-negotiated contract. Similarly, the competition between the airlines is an ongoing one.

In one-shot situations, competitors are usually out for all they can get. In an ongoing situation, they often behave much differently. All they can get is tempered by what the impact will be on what they might get in the future. If management negotiates too stringent a contract this time, the union may be more militant the next time.

Amount of information each competitor has. Information is one of the most important commodities in a competitive situation. If this were not the case, we would not see the tremendous secrecy with which Detroit's automakers treat their new designs. We would not see a petrochemical manufacturer photographing a compettor's outdoor chemical facilities from the air, so that its chemical engineers could infer the production process from the configuration of the facility and thus estimate the competitor's costs. We would not see frogmen from one oil company checking on the offshore drilling rigs of another.

Indeed, some feel that much can be gained by analyzing a competitive situation. particularly a bargaining one, in terms of exchange of information. What would you like to know about your competitor? What would you like your competitor to believe about you?

There is a host of things about which you might have relatively abundant or limited information. For instance, 'nu may' know specifically who your competitor is, or you may not. If you are building contractor submitting a bid to the city of Hartford for the construction of its proposed civic center, you may not know who your competitors are. In order to make a decision about how much to bid, you may have to hypothesize about the typical competitors facing you.

More frequently you know who your competitors are, but there may still be substantial information gaps. You may not know what competitive options your competitors are considering. much less which ones they will choose. Nor will you have a clear understanding of their objectives. or of their views-sanguine or pessimistic-of future conditions in the markets for which you are competing. You may not have information about the innermost workings of your competitor's organization, such as $r^{-c t s}$ or

Somentnes there is uncertamt! about the value of the item for which but are compeung in iompeting for oil nghts leases. for example. bidjers lismally do not know for certain the value of the reserves on the propet!. To maki manters worse. some competitors may have a better ide. than others about the value of the item. For instance. the seller of a compuny oflen has impontant information unavailable to the buyer.

Sometimes, unfortunately, you fail to have complete information about yourself and your organization. What are your objectuves? Do you have the resources necessary for the competitive battle that might ensue if a particular course of action is chosen? Apparently GE and RC.A did not when they announced plans to become greater factors in the computer indaitry and then withdrew:

From the discussion and examples cited above, it is evident that deciwon naking in compettite situations is a tricky, delicate. difficult busines. In the following sections some formal structure is presented to assist in analjzing competitive situations.

TWO-PERSON ZERO-SUM GAMES

To introduce some of the key elements in the analysis of competitive vituations and to put these elements as starhly as possible, we have chowh the simplest of competitive situations. This is the mo-person zero-sum :cume, so named becatise two parties compete for the same resource: "hat one gains. the other loses.
thhough this hind of situation is somewhat rare, many of the basic an, ly tic ideas carry over to the more realistic nonzero-sum context. Furthen mure. many people treat competitive situations that are not zero-sum .r thougt, thes were. It pay's to know a litule about the zero-sum setting to understand what is "rong with their thinking.

We will use as examples pseudo-administrative problems in contexts "uh which you are familiar and will place you directly in the position of the decision maker. We use the word "pseudo" advisedly. because we h.achad to distort real administrative facts somewhat in order to achieve vmple. zero-sum settings. First. we look at a situation in which two competitors vie for market share through television advertising. We .n.alye this situation only in part and then digress to consider three simpher siluations which illustrate various solution techniques. We will comriete the analysis of the marketing example after discussing these three vtlutions.

[^5]
A marn_..ing example: General Edison versus Westvania

General Edison. the largest manufacturer of electric light bulbs for home use, has as its sole competitor the Westvania Corporation. Consumers purchase their slightly differentiated products infrequently. and both brands are available widely. About three quarters of the purchases are made by consumers who are extremely loyal to one brand or the other; the other customers are not at all brand loyal. The brand these consumers selsct is exclusively influenced by the advertising to which they have been expoied just prior to each purchase.

The two companies vie for these uncommitted customers (whom we call the market) solely through television spot commercials, with advertising commitments made monthly. The Federal Trade Commission watches competition carefully and sees to it that the networks keep the advertising plans of the competitors confidential. It is a long-standing industry tradition that GE buys three spots a day on each network and Westvania purchasestwo a day.

The television advertising day is divided into three segmentsmorning, afternoon, and evening. Twenty percent of the bulbs are purchased on the basis of viewing morning advertising, 30 percent on the basis of afternoon viewing, and 50 percent on the basis of evening viewing. Whichever firm buys the most spots during a segment captures the cmire market resulting from that period. If GE and Westvania buy the same number of spots during any one period, each gets half the purchasing audience; this is the case even if neither buys spots. Since use of bulbs is unaffected by advertising, neither company's advertising affects the size of the market-only market share is related to advertising efforts.

Suppose that you are the advertising director of General Edison and you must decide on its advertising plan for the coming month. Given the situation and industry traditions, you are in a zero-sum situation. Your interests are strictly opposed to Westvania's: what you gain in market share West vania loses, and vice versa. What will youradvertising schedule be? And how much of the coming month's market will you expect to capture as a result?

Let us speculate on how you might think about these questions. You might consider putting all your advertising in the evening. That way you are assured of at least half the market-how much more you get depends on when Westvania uses its two spots. If, for example, Westvania uses ${ }^{*}$ one in the morning and one in the afternoon, you will get exactly 50 percent of the market, since you have the majority of evening spots and they have the majority of morning and afternoon spots. Or, if you are lucky, Westvania will put both of its spots in the afternoon. In this case you could get all of the evening plus half of the morning, for a total of 60 percent of the market. - .

Your thoughts about using all yourspots in the evening might tempt you to conclude that Westvania would never use its two spots in the
con-r: C. sou might decide w nut ma in the evening and one in the morning. That "ay. If West vania puts its wo spots in the afternoon. you will "in both the morning and evening purchasers, for a total of 70 percent of the market. However. if Westrania splits its spots between morning and afternoon. you will get 60 percent of the market. Figuring that W'estrania might do this. you then think of putting two spots in the afternoon and one in the evening: that way you get 80 percent of the market. But if Weswania knew you were thinking seriously of doing that, it might go with two in the evening-to get 60 percent of the market. leaving you with a mere 40 percent. On the other hand. you could counter their move by going back to your original idea-three spots in the evening-and thereby capture a whopping 75 percent of the market. And so it goes.

A pattern emerges. How well you do with your advertising schedule depends on what your opponent does. You must, therefore, take into account possible competitive moves in deciding on your strategy. And your compentor will take your moves into account. There is a possibility for an endless choir of "I think that they think that I think that they think . . ." Your destinies are ine toritbly intertwined. How can we make progress in analyzing thes problem?

Toward resolving the dilemma

There are three major steps in analyzing a game: (1) understanding the opluons open to you and your opponent. (2) understanding the well-being of you and your opponent in every combination of strategies, and (3) analy zing and choosing a strategy.

The first thing you need to do is get a clear picture of the choices open to you and to your opponent. It turns out that there are ten distinct options upen 10 y 0 a and sit open to your opponent in this example. Your options alle for two evening spots and one afternoon spot, two evening spots and one morming spot, and so forth. Since there are 16 options for you and your opponent. you need a shouthand to list them succinctly: Let E stand for an elening spot. A for afternoon, and M for morning. Now if you want to represent iwo esening spots and one afternoon spot, you can simply "rite EE.A. Using this shorthand, your options and your opponent's can be listed. as in Table $11-1$. Each option is called a strateg.:

In any competitive stution. you need to he aw are of all the strategies upen to your opponent. or your opponent could posisbly slip one past you. Y'ou need to also understand your options or you might miss out on a good one. simply because you did not consider it. (Later on we will see that we really have not histed all the options open to you and your opponent in this particular situation, and failure to consider the omitted strategies can result in leaving money on the table.)
The second thing you need to do is to consider how well off you and your opponent would be for any combination of your respective strate@les. For example, EEE against AA yield 40 percent market share to your opponent and 60 percent to you. There are lots of ways to indicate how well off each of you would be-tables. graphs, formulas, and words can all be used. The best way depends upon the particular competitive situation. In this case a table seems most useful. Across the top you can list your competitor's strategies, and along the side you can list jours. At each intersection you can list your market share and your competitor's, that is, the two payoffs.

Actually you do not have to list both your own and your competitor's payoffs, since this is a zero-sum game. If you list yours, then your competitor's payoffs will be known.automatically-if yours is 60 percent, then theirs must be 40 percent. Such a table. called a payoff table, is presented for your problem as Table 11-2. For instance, the entry in row EEE and column EM says General Edison gets 65 percent of the market (and Westvania gets 35 percent) if General Edison follows strategy EEE and Westvania chooses EM.

Table 11-2
Market share captured by General Edison

.			namt	strate		
	$E E$	EA	EM	AA	AM	MM
EEE	75	60	65	60^{\prime}	50	65
EEA	65	75	80	60	. 65	80
EEM	60	70	75	70	60	65
EAA	40	6.5	55	75	80	80
EAM	50	60	65	70	75	80
EMM	35	45	60	70	70	75
AAA	40	40	30	65	55	55
AAM	50	50	40	60	65	55
AMM	50	35	50	45	60	65
MMM	35	20	35	45	\cdots	60

Now that you have a reasonably succinct statement of your problem. you can begin to analyze it in order to chouse a strategy. Before doing so. we will consider a serıés of three simpler competitive stluations tha: illustrate analytical approaches, then return to use them on this problem.

Situation 1: Board of directors meeting, Jimenez versus Smith

The Giant Corporation will soon have a vacancy on its board of directors. and the current 12 directors will meet early next month to choose the eompany's candidate for the position. Pedro Jimenez and Hamilton Smith are the only two being considered. Whoever wins the greater number of votes captures the nomination. and such a nomination is usually tantamount to election. At a subsequent meeting, the board will make a final decision about whether Giant will follow a slow, moderate, or rapid five-year grouth plan.

It-is thought that a nominee's position on which growth plan Giant should follow will be the biggest factor in determining the number of votes received. since the two are about equally qualified for the position. Jimenez. however, has a slight edge over Smith since he is a MexicanAmerican, and the board is eager to have an additional minority-group member.

You are Jimenez. After informal conversations with individual directors, you put together Table 11-3. which show's the number of votes you expect to receive if you and Smith take the positions shown. You are the Row player. If. for exau; le. you favor moderate growth, R_{14}, and the Column player. Smith. favors rapid growth. C_{R}. then you expect to receive eight votes. Smith, of course, wins the remaining four votes, since this is a zero-sum situation.

Table 11-3
Number of votes won by Jimenez*
Column's (Smith's) chuices

	c,	C_{4}	C_{B}
R,	7	9	10
R_{u}	5	7	8
R_{*}^{*}	4	5	7

- Seven voles are necessary ior a majority.

You have no a priori reasons to favor one growth plan over another. Your only concern is to w in the nomination. Which plan should you favor?

Analysis by dominance. Observe that you win the most votes if you favor the slow-grow th plan, R.-regardless of Column's choice. Strategy
R, is sud to be your dominum strategy. Your chone is eas) . au would be bulinh w choose a strategs other than R,

What will Co!amn do? For Smith, the strategies C_{1} and C_{1} are both dominated by C, (Remember-he likes the smaller entries.) If Smith's only concern is to maximize his oun votes, and, if he perceives the situalion an you do in Table 11-3, he will be acting in his best interest if he atso chooses 10 favor the slow-growth plan. Thus, tf each player chooses his dominant stratesy, the final outcome is seven votes for you and five for Smith.

In this brief analysis we have assumed that each player as his sole objective wishes to maximize the number of votes receised. In other words, we have assumed that both Row and Column are so-called rational players-that each will endeavor to choose a strategy that will maximize his own ends.

We also have assumed that each player perceived the situation in the same way. That is, we assumed Row and Column both constructed the same payoff table. Of course, there are situations in which this fundamental assumption does not hold. For example, if Smith is already a mémber of several other boards and feels he is too busy to hold an additional directorship. he may decide to help Jimenez win by as large a vote as possible. In such a situation. Jimenez and Smith do not have the same payoff-tables. Jimenez will use Table 11-3, but Smith will construct a payolf table whose entries reflect a different utility of winning each number of votes. In other words, the entries in Smith's table must be weighted to show that he prefers to win as few votes as possible.

In our analysis of zero-sum games we will always make these two fundamental assumptions: (1) perfect rationality-each player is rational, seeking only to maximize his own gain, and (2) perfect information-both players have the same payoff table, and they both know it.

Analysis by iterated dominance. As the date of the meeting approaches, the business outlook for the next few years is growing increasingly rosy due to unexpected events at home and abroad, and you, as Jimenez, feel that fewer of the directors will favor slow growth over the next five years. Accordingly, you decide t : shange your payoff table to that shown in Table 11-4.

Table 11-4

Revised number of vates won by Jimenez

	Column's chooces		
	C.	C^{\prime}	C_{R}
R,	9	5	7
R_{3}	8	. 7	8
R_{H}	10	6	5

This time you as Row do not have a clearly dominant strategy. Neither does Column, but Column has a strategy he does not want to choose, his dominated strategy. C, Since every vote not cast for Row is cast for Column, Column always does better by choosing either C_{14} or C_{K}, depending on which strateg! Row chose.

Aisuming Column is a rational player, it follows that he will not choose C_{2}. so the firut column can be eliminated from Table 11-4. The rediced sume is shown in Table $11-5$. In this reduced game you will do best to follow your dominant strategy, R_{11}. since you always do best by favoring moderate growih.

Table 1t-5
Reduced payoff table

Now, what do you think Column's position will be? Well, if he refers To Table ll-5 he will observe that he does not have a dominant strategy. However, if he notices that you do hate one, R_{1}, and if he assumes you will follow it. :hen essemilly Column is confronted with the reduced game shown in Table 11-6.

Table 11-6

Payoff table reduced again
Column's choices

Now. of course. Column wins more voles if he favors moderate growth over rapid growth. However, you win the nomination since, in the reduced game shown in̂ Table $11-6$, you capture a majority of the votes resardle's of Column's choice.

Reducion of a game by dominance is a useful first step in analyzing a game. Sometumes the reduced game can be reduced again. as in this situation: Sometımes the second reductwon can be reduced still further. and so torth This is called andlys be mertied dmminame e. In some cases. its applicition lead to the chore of a best strategy for each player. But wowity !o: tre nut so luch!. as illustrated b! the nev eample.

Situation 2: Selection of an adyertising package, General Truck versus National Motors

General Truck and National Motors comprise a duopoly in the sale of replacement parts for diesel engines. Bẹcause of a persistent sluggishness In the U.S. economy during the past few years, replacement part sales have remained fairly constant. While neither General Truck nor National Motors has ever captured more than 65 percent of total industry sales, year-to-year fluctuations in market share have often been dramatic.

Replacement part sales have shown little sensitivity to either price increases or technological innovation. The diesel engine manufacturers supply their customers with a complete maintenance schedule specifying how often each part should be replaced. Moreover, union contracts and ICC regulations require that parts be replaced according to the maintenance schedule. Therefore, replacement part sales are a forced rather than a discretionary purchase.

Over the last ten years technological innovation has usually represented only minor changes in design or materials. These changes thave not been the focus of any attempt to create product differentiation.
The principal vehicle for selling replacement parts for diesel engines is advertising. Both General Truck and National Motors advertise extenswely in Modern Diesel Design, the largest publication devoted entirely to reporting trends and developments in diesel engines and diesel parts. Every November the editors of Modern Diesel Design meet with the marketing directors of General Truck and National Motors to agree on an advertising package for the next issue. Because of spacing requirements (neither General Truck nor National Motors wants their advertisements to appear withn seven pages of their competitor's advertisements) and Mocdern Diesel Design's policy of limiting advertising copy to 25 pages, the editors usually submit three different package proposals to each company. Each package specifies the size, position, and page of the various advertisements in the issue.

Both General Truck and National Motor: may choose any one of the three packages which the edtors of Modern Diesel Desigit have proposed. While one package may offer the advantage of more advertising space at the very beginning or end of the issue. another package may propose several positions close to an editorial discussing the diesel parts replacement market.

Each firm is aware of the three packages which the editors of Modern Diesel Design hat e proposed to its competitor. Suppose that you are the marketing director of Genera! Truck. You have just reviewed your three pachages and the three packages uhich the editors have offiered National Motors. Which package would you choose?

Several factors will influence your choice. First of all, it will denend

De:se has cfife you S. ond yoir chonce wil vegend upon your perceptur of how well ear' $\}$. chate wil! fale in ligat of the the wrions open to National Motors. Finally your choice whl depend uponjour estumation of whieh pachage National Motors will choose.

The chulees open to each firm and the market share gain or loss which you. as the marketing director of General Truck, have assigned to each pair of choices are shown in Table 11-7. For example, if General Truck chooves pachage G_{1} and National Motors chooses package N_{3}, then General Truch will gain 8 percent of the total replacement marhet and National Motors will lose 8 percent of the market. As we noted earlier, replacement part sales have remained relatively constant during the past few years. Thus any gain in sales for either company must come at the expense of its competitor. In other words, we have the basis of a zero-sum game - what General Truck gains (loses), National Motors will lose (gain).

Table 11-7
Payoff to General Truck

National Mators' choices			
N_{1}	$N_{:}$	N_{1}	
G_{1}	-1	-4	8
G_{2}	0	3	6
G_{3}	-3	5	-7

As you survey this matrix, or payoff table, you must consider two features of the game while choosing a strategy. First, you must assume that the compettion is rational; that is, no matter which package General Truck chooses. National Motors will behave in a manner which will maximize their gain and minimize their risk of loss of market share. This idea of rational behavior also points up another important feature of zerosum games. Since this is a zero-sum game, whatever General Truck gains National Motors must lose. There is no room for bargaining in any zerosum g.me, since neither player has anything to offer his opponent. (We elıminaic magnimimous gestures of generosity as irrational.)

Survesing the putyoff table, you. first examine the matrix to determine if dominant strategies exist for either General Truck or National Motors. Since you do not find any dominant strategies. the worst possible outcomes which can result for each of General Truck's three choices are listed. In the payoft table these are the minimum values in each row-the security lex el for each strategy. Of these three minimum values, you prefer the value 0 (the minimum of G_{9}). which is greater than -4 (the minimum of G_{1}) or -7 (the minumum of G :. This value 0 . is the maximum of the minimum values. or the maximin value. in Table 11-8 we have reconitructed the original payoff table and have listed the three security levels

Table 11-8
General Truck's secuirity levers

	Natiomal Motors 'hoices		
	N_{1}	N^{\prime}	N_{1}
G,	-1	-4	8
$G:$	0	3	6
G_{3}	-3	5	-7

- General Truch's maximın value.

Ginteal Truch' security lesels
-4 . 0*
-7
for General Truck in the margin. We have also placed an asterisk next to the maximin value.

You know that if strategy G_{2} is chosen, then the worst outcome that can occur is neither a gain nor a loss in market share. Although strategy G_{1} might result in the largest gain in market share (8 percent), strategy G_{1} might lead to a loss of 4 percent.

To determine the outcome of the game. you must look at the game from the point of view of the competition at National Motors. The marketing director of National Motors will follow a plan of attack similar to the one you followed for General Truck. Since National Motors has no dominant strategies, the worst possible outcomes that can occur for each strategy are listed. However, instead of finding the minimum values for each row, the marketing director of National Motors will list the maximum value of each column. Remembering that the payoffs in the table represent the market share gain (or loss) to General Truck, the marketing director of National Motors must find the maximum value of each column. These maximum values are the maximum loss which could occur from each strategy. Table 11-9 shows that strategy N_{1} could result in a maximum loss of 0 , strategy N_{2} in a maximum loss of 5 , and strategy N_{3} in a maximum loss of 8 .

Of these three maximum values (security levels of National Motors), the marketing director of National Mote ; prefers the value 0 (the maximum of N_{1}), which is less than 5 (the maximum of N_{2}) or 8 (the maximum of N_{3}). This value, 0 , is the minimum of the maximum values, or simply, the minimax volue. (We have indicated with an asterisk the minimax value in Table 11-9.)

If you, as the marketing director of General Truck, play the maximin strategy $\left(G_{2}\right)$, and the marketing director of National Motors plays the minimax strategy $\left(N_{1}\right)$, neither player will gain nor lose any market share-the market share positions will remain the same.

This game illustrates a special case of two-person zero-sum games where the optimal strategy for each player is to select a single option: the single option is cal!ed a pure strategy. Row chooses Row's maximin strategy and Column chooses Column's minimax strategy. It turns out that the

Tabie 11-9
National Moters' security levels

Generul Triuch's chures		Nutional Motors' choices		
		N_{1}	$\mathrm{N}_{\mathbf{2}}$	N_{3}
	G_{1}	-1	-4	8
	$G:$	0	3	6
	G_{3}	-3	5	-7
Numunal Motors secuntivels		0 *	5	8

General Truch's security leiels

-4

0
-7
maximin value equals the minimax value: this is often called a saddle poimt. In addition. neither player has any incentive to alter its strategy as long as the other player chooses its maximin or minimax strategy. For example, if General Truck play's a maximin strategy, National Motors can only lose by playing a nonminimax strategy: N_{2} would lead to a loss of 3 percent of the market. and V_{3} would lead to a loss of 6 percent of the market. Similarly, it National Motors plays a minimax strategy, General Truck can only lose by playing a nonmaximin strategy: G_{1} would lead to a loss of I percent of the market. and G_{3} would lead to a loss of 3 percent of the market.

After each player has chocen the appropriate maximin or minimax strategy, both have arrived at a stable outcome. Neither player can gain from unilaterally changing strategy: the players have reached an equilibrium point, and the game is over. This situation, unfortunately, does not always happen this simply, as we shall see in the following example.

Situation 3: The fighter aircraft proposal, Excalibur Aviation versus Western Aircraft

For the past three decades Excalibur Aviation and Western Aircraft have dominated the military defense market for bombers, fighters, and emack aircraft. Erch firm has worked closely with the Navy, Army, and Ai: Force in research and development projects geared to maintain U.S. air superiority.
To reduce the risk of dependence on any one company. the military allocate, its aircraft demand between the two companies. It does. however, choose a primary supplier and a secondary supplier. In the past, a compans's selection as primary supplier has implied a 60 to 65° percent share of the military's demands, with the balance of the total requirement accruing to the secondary supplier. Recently. the military announced that it will not be bound to any fired allotment of aircratt between the primary and secondary suppliers.

Although Congress annuath debates and approves the U.S. level of milatary defense spending. the effects of detente have substantially limited the number (though not the capability) of arcraft of hath the United States and the Soviet Union. Since the Kiev Agreements several years ago. the aircrati arsenals of both nations have remained constant. .

Over the vears the aircraft division of the Navy. Nival Air Systems Command, has invited both Evaalibur and Western to propose the specifications of a fighter aircraft superior to the most modern Soviet design. While the capabilities of the Soviet M1G-28 (the vanguard of their seato-air defense system) are well documented. the Nave's request for proposal has failed to define its basic measure of superiority.

The effectiveness of a fighter aircraft is dependent upon maximum speed and range, weapons load, and avionics gear. However. there are tradeoffs in the design of such aircraft. Because no single model can incorporate every advanced technological feature, and because no manufacturer can judge the extent of these tradeoffs until after the prototype stage, it is not unusual for a manufacturer to independently design two 'different aircraft.

In response to the Navy's newest request for proposal, Excalibur and W'estern have each developed wo different aircraft. While neither company knows which aircraft its competitor will propose to the Navy, both Encalibur and Western know the general characteristics of their compeittor's designs.

Suppose that you are the director of military sales for Excalibur Avialion. Your company has just completed testing the new E-11 and E-12 fighters which were developed for the Navy. Which aircraft will you propose to Naval Air Systems Command?

Even though you believe that Excalibur"s fighters are superior to either of Western's two new aircraft, your choice of the E-11 or the E-12 will rest on three criteria: (1) the capabilities of each aircraft, (2) an estimation of the performance of each aircraft in comparison with Western's two aircraft, and (3) an estimation of which aircraft Western will propose.

The choices open to each company (either the E-11 or E-12 for Excalibur and either the W-7 or the W-17 for Western) and the gain in Naval fighter aircraft market share which you have assigned to each pair of choices are shown in Table 11-10. For example, if Excalibur chooses

Table 11-10

Market share gain for Excalibur Aviation

stratesy E-ll al estern chooses strategy W-17. Excalibur will gain a? percent ihare of the fighter market, and Western will lose a I percent share of the market.

Since the number of miltary fighters has remained consiant since the Kič Agreements. any gan (toss) in one company's market share musi represent an equal loss (gain) to the other company. In other mords, we have the binis of a zero-sum game.

As director of military sales for Excalibur. your first step in solving this game is to e tamine the payoff table for dominant strategies. However, sinee no dominant strategies exist, you then proceed to identify the security levels for each company's strategies and the respective maximin and inınimax values. Table $11-11$ lists the security levels for both companies and indicates Excalibur's pure maximin value and W'estern's pure minimax value.

If Excalibur plays its pure maximin strategy, E-12, and Western plays its pure minimas strategy. $\mathrm{W}-17$. Excalibur will gain 7 percent of the market and Westem will lose 7 percent of the market. However, the pure maximin value is not equal to the pure minimax value. If Western knew for sure that Excalibur would follow its pure maximin strategy, a rational dectsion would dictate that W'estern abandon its pure minimax strategy, W.17. and follow strategy W-7. In this \mathbf{W} ay Western could reduce its loss from 7 percent of the market to only 3 percent of the market. But, on the other hand, if Excalibur knew for sure that Western would not follow its pure minmax strategy, W^{-17}. but rather would follow strategy $W-7$, an equally rational decision would dictate that Excalibur follow strategy E-11. whth a resulting gain of market share from 3 to 9 percent.

We can extend this type of analysis indefinitely for either company by adopting the train of reasoning "If I knew that they knew that I knew that they kinew. . . " However, before you rush to conclude that, as director of military sales at Excalibur, you have no concrete rationale for choosing either, trategy. let us ree wamine what we know about the characteristics ot the game. We know that no dominant strategies exist and that no pure
strat Will yield an equilibrium solution with mavimin equal to minimas We have also demonstrated that either company can gain from knowing which vrategy its competitor will follow. Therefore, under no circumstances will either company have any incentive to reveal its strategy.

The mixed strategy. Because no pure equilibrium strategy exists, any of the four payolls is possible. Moreover, in the absence of an equilitrium point, it might be reasonable for Eacalibur to consider a different type of strategy in order to keep its opponent from guessing what it plans 10 do. For example, consider the following plan: You fip a coin. If heads appear. E-11, is chosen: if tails. E-12. This strategy scrpected payolfs can be incorporated into the payoff table shown in Table 11-12. Notice that by playing this mired strategy ${ }^{3}$, Excalibur has at least an expecred 4! 2 percent larger market, a higher value than either pure strateg.

Table 11-12
Payoff table with a mixed strategy

- There is nothing sacred, of course, about a $50 / 50$ mixed strategy. your task is to find that combination of pure strategies which will maximize Excalibur's long-run expected payoff. You must also recognize that Western is searching for some combination of its pure strategies which will minimize its long-run loss of market share. It turns out that the optimal strategy ${ }^{4}$ for Excalibur is to choose E-11 winu E-12 in the ratio of 4 to 7 , while the optimal strategy for Western is to play $\mathrm{W}-7$ and $\mathrm{W}-17$ in the ratio of 5 to 6 . These strategies have equal expected payoffs to each company, as shown in Table 11-13. In addition, they are characterized by

[^6]
the same property found with pure strategies in the previous example: Ether company will do worse if it unilaterally moves away from its optimal mived strategy. Thus there is no incentive to do so.
Although you now know the appropriate combination mix for each player. you are still faced with the problem of choosing one strategy or the other for Evcalibur. Remiembering that either company can gain by knowing which strategy its competitor will follow, you must guard against any internal or external influences. preferences, or pressures which would give Western any indication of your choice of aircraft. The only fail-safe method of maintaining the secrecy of your choice and of reflecting the appropriate combination of strategies in your decision-making process is to allow some random device '", make your decision for you. For example, you could place four red balls (corresponding to strategy E-11) and se ven white balls (corresponding to strategy E-12) in an urn and draw one of the balls. The color of the ball will indicate which strategy you will follow. Although it may seem irresponsible to relinquish control of your decision to a random device. such a device is only a method of ensuring that your choice is made purely and exclusively on the basis of the optimal combination of strategies.

Solution to the marketing example

Earlier in this section, we began to analyze a marketing problem involving two light bulb manufacturers. General Edison and Westvania, in which you were the advertising director for General Edison. Now that we have examined the concepts of iteratise dominance. minimax, equilibrium points, and pure and mixed strategies, we are equipped to finish the analysis.

The payoff table for this problem. Table 11-2, shows that some strategies are clearly bad and can be rejected immediately. Considering Table 11-2. General Edison would never want to play strategy AAA, since it is dominated by EEM: GE does betier to play EEM instead of AAA.
regardess of what Westvania does. EEM dominates AMM and MMM as "ell as AAA: and EAM dominates AAM. Thus GE's last five strategies can he effectively deleted. Once this is done. MM can be deleted for Westrania. Using iterated dominance. the table has heen reduced to one in which each player has five strategies, as shown in Table 11-14. .

Table 11-14
The reduced marketing game

			Wesn	a's	gies	
		EE	EA	Ev	AA	A 4
	EEE	75	60	65	60	50
	EEA	65	75	80	60	65
General Edison's strategies	EEM	60	70	75	70	60
	EAA	40	65	55	75	80
	EA. 17	50	60	65	70	75

Next you would analyze the reduced table by finding security levels, as indicated in Table 11-15. You, as advertising director for GE, can expect at least a 60 percent market share if you follow EEA or EEM: Westvania can expect at least 25 percent (that is, no more than 75 percent for $G E$) if it adopts EE, EA, or AA.
If you adopt a pure strategy and Westvania figures it out, then the best you can expect to do is to win 60 percent of the market. By appropriately choosing sometimes one strategy, sometir:ss another, however, you can expect to do better than this. The same is true for Westvania. The largest share it can expect to win for any choice of pure strategy is 25 percent, but by following a mixed strategy, it can gain an expected share greater than 25 percent.
Since no optimal pure strategy exists, each company can expect on average to do better than its security level if it follows a suitable mixed strategy. There is an equilibrium outcome (in between the 60:40 and 75/25 split) which is found by adopting appropriate mixed strategies. If you were to do the calculations necessary to determine the optimal mixed strategy, you would find that GE should follow each of the strategies EEE, EEA, and EAM one third of the time, and Westrania should adopt EE 6 out of 15 times, AA 5 out of 15 , and AM. 4 out of 15 . Then the

Tavale 11-15
The reduced inarketing game wit! sectrity levels

- Pure strategies having puntive welghtsin optimal mixed strategres
expected pay off at GE will be $631 / 3$ percent of the market: Westvania's payoff will be 36% percent.

Notice that our analysis of this and the previous example has assumed that both opponents are rational. We have said nothing about how to exploit irrational play on the part of one's opponent. It is, however, true that if you follow your optimal strategy, then having an irrational opponent (i.e., one who does not play his "best" strategy) will only increase your expected payoff over what it would have been with a rational opponent.

Summary

In this section' "e have taken a look at how to analyze a competitive situation. using the well-hnown two-person zero-sum game as a setting. In the process we have introduced the important concepts of pure strategy. payoff table, dominance. security lesel. equilibnum. and mixed strategy. In spite of the fact that few administrative settings are zero-sum situations. these concepts serve well in more realistic nonzero-sum situations.

In addition., "e" have begun to suggest a procedure for analyzing competitive situations. If consists of these steps:

1. Understand the strategies open to you and your opponent.

Understand how well off each of you will he for all combini s of strategies by dapldying this information in a useful way.
3. Analyze the display to arrive at a preferred course of action, taking into account your opponent's likely strategy.
The particular ways of handling the last step in this procedure are quite mechannical in the case of zero-sum games. In the next scction we will show that the analysis of nonzero-sum situations is not so easy.

NONZERO-SUM GAMES

In the preceding section we discussed situations in which persons or organizations were entirely at cross-purposes. In most competitive situations, however, there are elements of mutual interest as well as crosspurpose. The potential value of entering into prechoice communication and making binding agreements is a major difference between zero-sum and nonzero-sum situations. While this section will primarily consider noncooperative situations, in which the competitors may not communicate before making their moves. it will also consider cooperative situathons in which the opponents are allowed to make joint decisions and the impact of communication. Threatening, promising, bluffing, bargaining, colluding, and preempting all may play a role, depending on the exact nature of the situation.

We will introduce these concepts in the context of five prototypical competitive situations. Two predominant ones are known as the Prisoner's Dilemma and the Battle of the Sexes. The others can be called no-conflict situations, threat-vulnerable situations, and force-vulnerablesituations.

Games with little or no conflict

In nonzero-sum games, the payoff tables contain two entries in each cell: the first is the payoff to the Row player and the second is the payoff to the Column player. Game A shown in Table $1.1-16$ is rather easy to

Table 11-16
Matrix games with Pareto-optimal dutcomes

Game A
analyze This game represents a no-confict situation because both players do as well as possible when each maximizes his or her own return. Mutual interest is overuhelming. Notice, in this game, that by a slight extension of the concept of dominance. the outcome (12.8) can be said to dominate all other outcomes. It is better, for borh players, than any other outcome.

Now consider game B in Table 11-16. In this game, there is an element of conflict. but it is very weak. Both players still have dominant strategies. and the equitibnum outcome $(12,8)$ remains, in some sense, the "naturul" outcome. Note, however, that Row prefers $(13,5)$ to the equilibrium outcome. and Column prefers (10,9). All three of these outcomes have an important property known as Pareto optimulin. An outcome is said to be Pareto opumal whenever it is not dominated by any other outcome. None of the three Pareto-optimal outcomes in game B are dominated by any other oulcome. In game A, note that $(12,8)$ is the only Pareto-optimal outcome.

Threat and forcing potentials

Two similar types of competitive situations are referred to as threat valnerability and force vulnerability. Suppose a buyer and a seller repeatedly negotiate a contract in the following way. The seller sends a written notice to the buyer indicating the selling price per unit. In reply. the buyer indicates the quantity that will be purchased at the established price. If the buyer is a retailer $w: 10$ mus! then resell the goods, a hypothetical payoff table might be Table 11-17. If each player chooses his or her

Table 11-17
Threat vulnerability game, profit to buyer and seller
(S thousands)

Buyer's yuantuy choices	$Q_{1}=H i g h$	Seller's price choices$P_{\mathrm{t}}=H_{\mathrm{tgh}} \quad P_{2}=L o w$	
		2.4	4.3
	$Q:=L o w$.	1.2	3.1

dominant strategy, the payoff will be (2, H) . Neither player is motivated to make a unilateral shift from this outcome. However, the buyer is not satisfied with the outcome (2,4) since $(4,3)$ is more attractive. If the game is to be rencated several times. the buyer would like the seller to choose P_{2} to give suyer a chance at winning 4 .

If the players are altowed to communicate, the buyer can threaten the selfer into lowering the price that is. theaten the seller moto sixas the buyer a chance at th by saying he or she will only buy the sma!ler quantity. Q., if the seller does not choose P_{2}. The buyer's threat is elfective as long as it is not carried out. Once ($Q_{2} . P_{1}$) occurs. howeser, it is not in the seller's interest to shift to P. Nevertheless. the seller is better off to give in rather than to suffer the consequences of the buyer's shift.

Consider now a situation known as a force vulnerability game. As shown in Table 11-18, only Row has a dominant strateg. If Row uses this dominant strategy', the natural outcome is (0.2). Row is less satisfied with this result than is Column. If the game is played repeatedly. Row can communicate his or her dissatisfaction and try toforce Column into chinging his or her strategy. Since Column prefers $\left(R_{2} . C_{2}\right)$ to $\left(R_{2}, C_{1}\right)$, Row can force Column to switch to C_{2} by switching from R_{1} to R_{2}.

Table 11-18
Force vulnerability game
(S thousands)

As you can see, threats and force are in many ways similar. The key difference is how Row tries to influence Column's behavior. In the force situation, Row tries to get what he wants by playing the strategy that leads to his best outcome, thereby forcing Column to do what Row wants. In the threat situation, Row must threaten to make a move which will punish Column if Column does not comply. The Row strategy used for threatening is not the one that leads to Row's bes. stitcome, so Row hopes that it will not have to be used.

Opportunities for using threats and force in real-world situations are widespread. Generally, however, they are not obvious. The existence of threat and force potentials can be extremely subtle, and often they are noticed by only one of the players. These simple examples should increase both your awareness of such situations and your understanding of their structure. A worthwhile exercise is to try to conceive of real-world situations where threat and forcing potentials exist.

The Prisoner's Dilemma

A class of situations which are not strictly competitive is popularly known as the Prisoner's Dilemma. These are situations in whic' e best

Oetconte for all cuncerned results when each competitor refrains from tr) $n=$ to matinize his own payof. A classic example is the airline batle for a share af pasiseneers on a paiticular route. As discussed in the first section of this chapter, many believe that the carrier with the largest share of dep.rnures gets a share of market disproportionately larger than its percentage of departures. For instance, 60 percent of the departures might yield 70 percent of the market. Consequently, airlines have often used the number of departures as a major competitive tool, especially on the longhaul routes such as New York-California. If one of the carriers-say American Airlines-unilaterally increases capacity, hoping to increase its market share. the other carriers, United and TW.A, must decide whether or not to follow suit. The nature of the dilemma is this: If they match the increase. all will be worse off, since little new demand will be stimulated, and the arlines w ill end up lying more empty seats. If the competitors do not match the increase, however, they will be worse off compared to the carrier that increases capacity.

Situations of this type occur so often that they have been studied in detail; in fact. a whole book has been written on the subject.' They all share a common structure, that of the so-called Prisoner's Dilemma.

We will first analyze the Prisoner's Dilemma in the context from which it derives its name. Two suspects. Sam and Harry, are taken into custody and separated. The district attorney is certain they are guilty of a particular crime. and the suspects know they are guilty, but the district attorney does not have adequate evidence to convict them.

Each prisoner has wo alternatives, to confess to the crime or not to confess. If nether confesses, then the DA will book them on some very minor trumped-up charge, such as illegal possession of a weapon, and they will both receive minor sentences. If they both confess, he will recommend less than the most severe sentence; but if one confesses and the other does not, then the confessor will receive lenient treatment for turning state's evidence, whereas the latter will get the book thrown at him. In terms of years in a penitentiary, the situation may be described by the payoffs in Tatle 11-19. The problem for each prisoner is to decide whether or not to confess. Since they are in separate cells, they cannot communicate before deciding.

Let us look it the problem from Sam's viewpoint. If he could be sure Harry will not contess, perbins he should not do so either. But on second thought, if Harry does not contess, why shouldn't he, Sam, confess and spend only a half year in prison?

In fact. no matterwhit Harry does, Sam is better off if he confesses. In other words. Sam's confess strategy dominates his do not confess strategy. The only dificulls is. Harry may reason the same way. Thus. if each chooses his dominant strategy, both prisoners end up with eight years.

[^7]Table 11-19
Payolf table ior prisoner's dilemma (years in penitentiary)
Harry's chones

		Har	chomes
		$\begin{gathered} H_{1} \\ \text { Confiss } \end{gathered}$	$\begin{gathered} H_{2} \\ \text { Do mol confess } \end{gathered}$
Sam's cheices	S_{1} Confess	8. 8	12.10
	S Do not confess	10.1/2	1.1

This result is not the best possible, since both prisoners would be better off if neither confesses. In other words, the strategy pair $\left(S_{2}, H_{2}\right)$ is Pareto optimal. So are the pairs (S_{1}, H_{2}) and (S_{2}, H_{2}. The final outcome, the only non-Pareto-optimal pair, is inferior for both players.

If the prisoners were allowed to communicate, they might agree to choose the Pareto-optimal pair $\left(S_{2}, H_{2}\right)$. Notice, however, that this is not an equilibrium pair. Sam and Harry can each do better by making a unilaterai change of choice. so there would be good reason for each of them to defect on them bargain. It is to everyone's advantage if no one cheats. and it is to every prisoner's advantage to cheat unilaterally-a very unstable situation. Prechoice communication cannot help in solving the dilemma unless there is some legal or moral force to bind the prisoners to their agreement.

It might be that in this situation the prisoners will choose (S_{2}, H_{2}) even if they are not allowed to communicate. Instead of each prisoner asking "When am I best off?" and assuming his opponent will do the same, each prisoner asks, "When are we both best off?" If the prisoners held social values that prompted each to ask this question, they then might choose $\left(S_{2}, H_{2}\right)$." In this case there is an implicit s.hange in the entries in the payoff table, since they must now reflect both length of term and feelings about the common good.

We can apply the insight gained from studying the one-time dilemma facing the two prisoners to a Prisoner's Dilemma situation which is being repeated in time-a battle over advertising radial tires. The heavily watched Monday night NFL football games on $\mathrm{ABC}-\mathrm{TV}$ represent prime advertising time for this product. For several years, Goodyear was the only tire advertiser during this time. Then Sears also began advertising during the games and continued to share the time with Goodyear for two

[^8]seasor \because atter which the latter withdrew, leaving Sears as the only tire duertiser.

The shuation facing Sears and Goodyear is shown in Table 11-20. Each manufacturer must decide each year whether (yes $=Y$) or not (no $=N$) to adertise radials during the game. Some purely hypothetical payoffs (in million, o! dollars of annual contribution, taking advertising into account) are shown. Nullce that if both companies advertise. each loses contribution. Apparently the message gets washed out if there is more than one ad ertiser in a short time period. In this case. neither Sears nor Goodyear stichs in the consumer's mind.

Table 11-20
Change in annual contribution due to TV advertising
during NFL game (S millions)

Why is this a Prisoner's Dilemma? Observe that if each manufacturer chooses his dorninant s:rategy, ラ1, S_{1}, both end up worse off than if they had made the opposite choices. The pair $\left(G_{1}, S_{, ~}\right)$ is not an equilibrium pair, however. So it is to both companies" advantage if neither advertises, but it is to each company's advantage to unilaterally decide to advertise.

For several years Goodyear was the only radial tire advertiser during the game. One jear Sears also advertised. This amounted to a choice of $\left(G_{1}, S_{1}\right)$ for a pay off of $(-1 .-1)$. The next year. Goodyear decided to stay put and continue to advertise, and so did Sears. Once again. the comparies lost contribution when each tried to maximize its own return. Finally, in the third year Goodyear withdrew, the choice being (G_{1}, S_{μ} The game is not yet over. however, since Goodyear may decide to advertise radials during a subsequent year. In the meantime. Sears has no incentive to change its strategy.

Since we do not have access to what the companies were actually thinking. we can only coniecture about what they were trying to do. Did Sears choose to advertise during the game because it knew Goodyear would be forced to withdraw after deadlocking at $\left(G_{r}, S_{y}\right)$ for a few years? Or were they just lucky"? Did Sears really understand the situation. or did they think that since it was profitable for Goodyear to advertise during the game it would be profitable for them to do so too?

This example serves to point out that you can go astray by assuming
your opponent hnow's as much about the game as jou do. On the other find, you can also go astray by not ascribing this much understanding to an opponent who underitands the çame as well is you do-or maybe even betler.

In the Prisoner's Dilemma type of competitive situation. the strategy part that leaves both players best off is not an equilibrium pair. Thus it is to each individual's advantage to defect: but if both defect, both are worse off. If the situation is to be repeated, the competitors may wish to reach an agrement-an explicit or implicit one, depending on the rules of the game-about their respective moves. But with strong incentives to defect, such agreements may turn out to be tenuous.

'The Battle of the Sexes situation: American Chemical versus Boston Pharmaceutical

Another important type of competitive situation is illustrated by the following scenario: A husband and wife have two choices for an evening's entertainment, to go to a prize fight or to a ballet. The man prefers the fight and the woman the ballet: however, to both it is more important that they go out together than that they enjoy their preferred entertainment. Any competitive situation which has a payoff table with the same properties as the one for this situation is popularly known as a Battle of the Sexes situation. The following hypothetical new product introduction is an example.

American Chemical Company must decide whet her or not to introduce its newest product, so far designated only as Compound K. The company believes that its major competitor, Boston Pharmaceutical, has a very similar product ready to market. Each company has two choices-to introduce the product or not to introduce it. American's new product manager has calculated the expected payoff (present value) to each company for each alternative. The results are shown in Table 11-21. High fixed costs account for the negative entries in the lower right-hand corner. The subscript N indicates the company has decided not to introduce the product: a Y indicates that the con, rany has decided to introduce the product.

Table 11-21
Payoff table for introduction of
compound K (millions of dallars
of contribution)
Boston

Votice hat wot: pars of choices, American introduces and Boston doss tot $\left(A, B_{v}\right.$. and Boston introduces and American does not, IA: $\mathcal{E}_{:}$, are equilibrium pairs since for each pair American's choice is best agrinst Boston's, and vice versa. Ne:ther (A_{y}, B_{y}) nor (A_{s}, B_{V}) are equilitrium pairs. While there are iwo equilibrium pairs, each due's not lield the same return to the players. This is in contrast to those staclly competitive situations for which there is more than one equilibrium parr. and every equilibrium pair gives identical returns to each party.

Obviously. American and Boston must make their decisions regarding the introduction of Compound K without conferring. For the sake of discussion. first let us suppose this is the only time the two companies expect 10 be opposing each other in this type of situation. What should American do? What will Boston do?

Buth companies must realize the market is only big enough for one. If they both introduce Compound K. each will lose several million dollars. If Boston, therefore, chooses B, to prevent a large loss, it is best for American to choose A_{1}. But what if Boston expects American to give in? Then both may lose with $\left(A_{1}, B_{1}\right)$ since the unhappy state of affairs is that whatever rationslization Boston has for choosing either B_{y} or B_{1}, there is a simalar rationahzation for American.

Even though they may not confer, however, there are ways in which the two companies can communicate to influence the outcome. American. for example. may announce that it will introduce Compound K this coming fall. If Boston belieres thi- announcement and interprets it to mean Americin has detinutely committed itself to introducing the product, then. acting in its own best interest. it will probably not choose B_{r}. Disclosing its plan ahead of time may allow American to preempt the market.

If dmerican intends to beat Boston to the market by announcing that its product will be forthcoming, it must make its announcement credible. For instance, if American lets it be known that it has committed several million dollars to the building of facilities to produce the new product, it will be clear in Boston that its competitor has taken an irrevocable step. In that case. Boston will probably leave the market to American.

In a one-time Batle of the Sexes situation, it is all-important to preeripit the wher party. If, on the other hand, the companies expect to be in this type of situation repeatedly with various new products, as may well be the case, they would do well to cooperate to try to obtain either $\left(A_{1}, B_{1}\right)$ or $\left(A_{1}, B_{1}\right)$, since they are both best off with one or the other of these two Pareto-oplimal pairs. How they would go about this is the question.

Since the two companies are prohibited from bargaining, they may not arrange to take turns (American totally capturing this market, Boston another, for e vample) nor may American pay Boston to stay out of the market (for example, make Boston a $\$ 1$ million side payment in exchange for utiching to $\left.A_{1}, B_{1}\right)$. Even in the absence of prechoice agreements, however. the companies may effectively sette on a pattern of alternation belween A_{1}, B_{1}) and $\left(A_{1}, B_{1}\right)$. If they are constantly introducing new prod-
ucts of similar profitabilities, and if each introduction involves high startup costs, then after one company has spent several million dollars, siay. it may not have the resources to introduce another new product immediately. In the meantime. Boston can seize the opportunity to do so. Once American has commitled itself to producing Compound K. for example. Boston can introduce another product without immediate direct competition.

The companies might also consider using mixed strategies. Of course, each company has a host of combinations it can consider. A good way to see the complexities of this situation is to make a geometric plot of the possible payoffs, as in Figure 11-1. Along the horizontal axis American's
figure 11-1
Battle of the Sexes graph for American and Boston
new product intraduction

payoffs are plotted, and along the verticai axis, Boston's payoffs. Only certain combinations are possible: these are shown in the shaded region. To each point in the shaded region there is at least one corresponding pair of strategies having this point as payoffs. Conversely, to each pair of mixed strategies there corresponds a payoff which is one of the points in the shaded region.

If American follows the mixed strategy .8.A, , $2 A_{4}$ then their expected payoff is $(.4,0)$ if Boston chooses not to introduce its new product and $(-.6,1.0)$ if Boston does introduce its product. If Boston has any idea American will follow this strategy, Boston would prefer B_{5}. But in that case American does best to choose A_{1}.

If Boston follows the mixed strategy $.8 B_{1},: 2 B_{Y}$, then their expected returns are $(0, .4)$ if American chooses A_{4} and $(1.0,-.6)$ if it chooses A_{5}. Thus,
if American expects Boston to follow this mixed strategy, American should choose A. But in that case, it is besi for Boston io choose B_{1}. So if each company expects the other to follow its mexed strategy. the return is $(-3$. -3). which is all the more reason to play the mixed strategy, which is all the more reason to defect. and so forth.

The difficulty is that this pair of mixed strategies is not in equilibrium. However for any Batle of the Sexes situation. there is a pair of mined strategies that is in equilibrium. These mixed strategies have the desirable property that they prevent the other player from trying to get more by preempling.

In the situation facing American Chemical and Boston Pharmaceutical, the equilibrium pair of mixed strategies is $3 / 5 A_{1}$, $\% A_{4}$ and $3 /, B_{5}, ~ \% B_{4}$. If Americ:an follows this mixed strategy and Boston chooses B_{1}, the returns are ($2 / 3.0$): if Boston chooses B_{1}. the retums are $(-6 / 3,0)$. Each of Boston's pure strategies is equally good against American's mixed strategy. in the sense that each has an expected return of 0 . Thus, there is no incentive to preempt by Boston.

Similarly, an equilibrium mixed strategy removes American's incentive to preempt. As long as one of the companies chooses this mixed strategy, the pay off to the other company does not depend on the strategy chosen.

Regardless of the specific application, any competitive situation which can be described by a payoff table similar to Table $11-21$ can be thought about in the same way as this example of new product introduction.' In a one-time situation, premptive is all-important. In repeated choice problems, each might also consider choosing this equilibrium pair of mixed strategis's. Or, better yet, they might alternate between the equilibrium pairs through either a tacit or an explicit understanding.

Sụmmarý

This section introduced the analysis of situations that are not strictly competituc. and the approach differed significantly from that of the stred! competitise situations of zero-sum games. Whereas in the zerosum case it is never advantageous to disclose one's strategy, in a Battle of the Sexes situation it is all-important to preempt the other party. The zero-sum case is also characterized by the fact that all equilibrium pairs yield the same return to an individual player, whereas in a Battle of the Sexes situation the return to a particular competitor depends on which equitibrium pair is selected. Furthermore, the ability to communicate and collude becomes important in some situations. In others, whether a situation will be repeated many times or is a one-shot decision makes a critical difference. The concept of Pareto optimalit; is useful in analyzing such situations. A Pareto-optimal outcome is such that neither player can do

[^9]better, except at his or her opponent's expense. All the common ground has been squeezed out.

When a not strictly competitive, noncooperative situation is repeated many times, certain aspects change. For example, even though formal preplay communication is not allowed. the competitors may develop some form of temporal collusion. Decision makers in a Battle of the Sexes situation mat' setule into a pattern of choosing bewwen the equitibrium pairs. In the Prisoner’s Dilemma, the players may, after a few repetitions, . repeatedly choose the Pareto-optimal strategy pair. This situation is unstable. however. since it is to each individual's advantage to cheat unilaterally.

When all is said and done, it is difficult to choose a course of action in a not strictly competitive situation, since one can never be sure what one's opponent will do. However. analysis can provide a framework for thinking about these situations, help prevent foolish moves, suggest creative moves, and give some insight into each situation.

EXERCISES

11.1. In the next classroom session you will be asked to play the role of player I or player? in a game about to be described. At this point you donit know which role you will actually play. Think hard about the problem now so that when the tume comes you will be prepared to act.
The description of the game is:

1. Player I has 6 strategies: $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{3}$, and α_{6}.
2. Player 2 has 4 strategies: $\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}$.
3. Each player must choose exactly one of his strategies without any knowledge of the choice made by his adversary.
4. Depending on the choice of strategies (one for each player) there will be a monetary payment from one player to the other. Table A describes the payments from player 2 to player 1 . For example, if player 1 chooses a_{2} and player 2 chooses β_{3}, then player 2 must pay player 1 an amount of S15. As another example, if player 1 chooses a_{3} and player 2 chooses β_{4}, then player 2 siles $-S 12$ to player 1 -this. of course, means that player 2 gets a positive S12 from player 1.
Table A
Payofis from player 2 to player 1

α_{1}
α_{1}
α_{2}
α_{3}
α_{4}
α_{3}
α_{6}

4 \& 0 \& 0 \& 13

9 \& 2 \& 4 \& -12

3 \& 3 \& 4 \& 5

1 \& 2 \& 12 \& 3

1 \& 0 \& 10 \& -4\end{array}\right]\)

Think about the following questions in turn. Do not read the second

Question until you have responded to the first question, and so on. Record your inatal responses.

Imagine that in the ne xt classroom session you and arioiner ciassroom pirticipant are cthosen to play. A fair conn is tossed and you happen to be chasen for plaser lis role The game ull be played just once.
4. What strategy will you choose? (Be prepared to rationatize or justify your choice when the game is discussed in class.)
b. Before the game is actually e xecured, suppose that someone asks you. as the desienated player 1 . to sell your rights to play this game for some amount. say \bar{X}. How large does X have to be before you will agree to sell?
c. What do you think player 2 will do? (Use probability assessments to reflect your juúgments.)
11.2. The same instructions as in Evercise 11.1 apply, but with the payoffs given in Table B. In this evercise, each player has two strategies.

Table B
 Payoffs from player 2
 to player 1
 $\beta_{1} \quad \beta_{2}$
 $\alpha_{1}\left[\begin{array}{rr}0 & 5 \\ 10 & -2\end{array}\right]$

Imagine that in the next classroom session you and another classroom partsipant are chosen to play. A fair coin is tossed and you happen to be chosen for plower l's rule. The game will be played just once.
a. What strategy whi \therefore. choose? (Be prepared to ratıonalize or justify your choice when the game is discussed in class.)
b. Before the game is actually executed, suppose that someone asks you, as the designated player $1, t 0$ sell your rights to play this game for some amount, say $S X$. How large does X have to be before you will agree to sell?
c. What do sou think player ? will do? (Use probability assessments to reflect your judgments.)
d. Would it be worth any premium to you to be able to talk to your adversary in order to make a deal with him or her before choosing?
e. If your adversary had to announce his or her choice before you were obliged to announce yours, would you gain an appreciable strategic advantage?
11.3. Select a fellow participant to work with you on this exercise. Designate one of you as the A plater, the other as the B player.
a. The A player will seleet etther strategy a_{1} or a_{2}. Simultaneously and without communicution the B player will select either b_{1} or b_{2}. The payoff will be show n in the cell of Table C corresponding to the two choices. For evample. If A picks a_{1} and B picks b_{2}, then the payoff is shown in the upper-right-hand corner of the table as $(-5,10)$. The first of the two numbers in the cell entry is the gain or loss (-) to the A player. the second the gain or loss $(-)$ to the B player. In this example. A would lose 55 and B would gain $\$ 10$.

In lian part aname you will piay the eame only once and that
 no vindicive with respect to your compelitor.

Plaver B		
Plaver A	b_{1}	$b:$
a_{1}	(5.5)	(-5.10)
	$(10,-5)=$	$(-2,-2)$

b. Now play the same game assuming you will play this game an indefinite number of times with your competitor. The rest of the rules are the same as (a). Rememter your goat is to get the most in the long run for yourself. Your objective is neither to do your competitor in or to help him, nor is it to do well relarive to him.
c. Now play the same game assuming you will play the game with your competitor exactly 20 limes. Remember, try to maximize lour take.
11.4. Compare how. you behaved in part c of Exercise 11.3 with how you would behave in each of the follouing games under the same rules as Exercise 11.3 (20 plays, no communication).
a.

	b_{1}	b_{2}
$a)$	(5,5)	$(-50,50)$
$a=$	(50, -50) ${ }^{2}$	- $i-3 .-3)^{\text {. }}$

b.

Player B		
	b_{1}	b_{2}
a_{1}	$(5,5)$	$(-4,6)$
a_{2}	$(6,-4)$	$(-3,-3)$

11.5. Play the following game once with no communication:

Plaser B		
a_{1}	b_{1}	b_{1}
a_{2}	$(1,2)$	$(3,1)$
	$(0,-200)$	$(2 .-300)$

11.6. Play the game deserbed in Exercise 11.5. but make your decision at a bargaining table with binding contracts. What happened?

Case 11-1A

Fouraker Mining \& Metals Corp.

Fouraker Mining \& Metals, operator of a medium-scale molybdenum mine in the western United States, was a technically sophisticated but marginally profitable producer of molybdenum ore concentrate. In its efiorts to improve operating profits. Fouraker had just entered into an exclusive supply arrangement with Siegel \& Company, Inc., to purchase a biochemically produced material called "Flozyme," which greatly increased molybdenum mineral recovery from each ton of ore mined. The arrangement required Fouraker to purchase the additive weekly, in small lots. at a price set each week by Siegel. Walter Lightdale Fouraker's purchasing manager, was in the process of establishing a purchasing strategy under the new arrangement.

Fouraker Mining

Fouraker Mining was started in 1952 by a consulting geologist, Mr. L. Fouraker, and a research metallurgist, Dr. Henry Holmes. It was founded to develop a large, low-grade deposit of molybdenum ore on which Mr. Fouraker had long held mining claims, using chemical processes pioneered by Dr. Holmes.

For the next six years, they struggled to finance both the rapidly expanding pilot plant operation and the exploration and development of the ore bodly. By 1958 the process had been adequately tested and the mining operation had expanded to the point at which the company was almost breaking even.

In order to develop the ore body fully and to expand the plant to its most efficient size, Mr. Fouraker obtained a commitment for $\$ 16$ million from a large international mining company in return for a 45 percent interest in the firm. Holmes and Fouraker personally held 10 percent each of the equity, with the remaining interest widely dispersed among individtals who had helped finance Fouraker Mining's first ten years. The balance of the $\$ 60$ million capitalization was provided by banks and various equipment suppliers. In subsequent years there was a marked increase in scale of operations but the company was only barely profitable ($\$ 1.2$ million before-tax profit on $\$ 37.7$ million in sales in 1973.).

Siegel \& Company, Inc.

Sicgel \& Company was a small West Coast producer of proprictary cartohy drate deravatives used in the manufacture of certan prepared foods and drugs. It had been founded shortly after World Wir II by a young hochemint. Sydncy Siegel, in order to commercialize a number of promising new biologically active substances on which he had obtainced patents

Desfite the smallness and informality of its operation, Siegel \& Company had beconce extremely profitable in recent years as sienifuant marhets begin to develop for its highly specialized, costly products. Produced in carefully scheduled and interdependent batches. most of its products were sold exclusively to single users, a consequence of Siegel's past jornt-venture method of funding the majority of its research programs. Typically, the joint-venture agreements allowed Siegel to retain patents and the rights to manufacture any resulting products, while the sponsor held exclusive nghts to use and/or distribute the products.

Flozyme

Although the basic extractive process for molybdenum was well known and in widespread use, Fouraker Mining had succeeded in greally enhancing us efficiency by special techniques, including the use of special addilues to inctiase yields. Its continuing research had revealed that use of Flozyme made for a substantial improvement in its recovery of molybdenum minerals with Flozyme was introduced into the process at rates equivalent to a few hundred pounds per week.

An eatremely light and chemically unstable powder. Flozyme was a by-product of a complex, biological-organic chemical process. Dr. Holmes had learned of Flozyme's surface-activating behavior from a bricf description of the process in a professional journal. On the strength of a few laboratory-scale tests, Holmes recommended that Fouraker Mining undertake large-scale process testing of Flozyme so that its procise eflect on molybdenum recovery and the economics associated with its use could be accurately entablished.

In return for exclusive rights to buy Siegel's entire output of Flocyne-should it prove successful in this application-louraker Mining agreed to fund a rescarch program in which both the production and application of the Flocyme by-product were to be investignted. Atter several ycars of sporadic activity on this program, Florymés eltecticnes was proven to Fonraker's satisfaction.

Becanse lloryme was a by-product, the yich of the main product wis greally affected by the amount of Flozyme desired. Volume production of Flozyne was possible only through extensive and costly recesling of the main product. Fouraker had learned that Flozyme production added con-
siderably to lotal process costs-the cost increment becoming larger as Fhoyyme nufpul increased. Prior to the sale of Flozyme, any by-product material had been disposed of as a waste produce.

The purchasing arrangement

The absence of a market for Flozyme outside Fouraker Mining meant that its price would have to be established by negotiation. After lengthy dincussions with Fouraker mallagement, Siegel had decided that the simplest approach for the present was to quote weckly an appropriate unit price for the reagent and to let Fouraker place its order based on that puce. Both lomaker and Siegel hoped that prices and yuantities would eventually stabilize at levels acceptable to both fitms. With this procedure decided upon, Mr. Fouraker assigned the purchase responsibility to his purchasing manager, Mr. Lightdale. Mr. Lightdale was to base his weekly decisions solely on the profit contribution information (Exhibit 1) developed by Fouraker's production superintendent, the chief process engincer, and hinself during the final Flozyme tests.

An equivalent tabulation of incremental profits for Siegel \& Company, shown in Exhibit 2, was also available from a project report prepared by Sicgel chemicts at the test program's conclusion. The report was regarded an very reliahle and would undoubtedly be used by Sicgel in its pricing decision. The same report contained the information shown in Exhibit 1.

Hecause of Flozyme's greal effect on the main process, Sydney Siegel had decided to hiandle its sale personally in order to keep close watch on the joint prosess and its combined economics. Weekly, Mr. Siegel would teles a price, in dollars per pound, to Fouraker and Fouraker would, in turn, tranmmit an order quantity, in 20-pound drums, for delivery two weeks hence. Fuuraker had been advised that batches of up to 18 drums per weck could be produced and that each batch had an active life of ten days at most. This meant that shipments would have to be used within ten dias of mamutacture or discarded.
Exhibit 1
Weekly contribution to Fouraker Mining proflis resulting from use of Flozyme reagent (in dollars)

$=$ =

Exhibit 2
年

('itse $11-: 3$

PART I

Maxco. Inc., and the Gambit Company were fully inteyated, najor oil companies. each with annual sales of over \$1 billion and exploration and development budgets of over $\$ 100$ million. Both tirms were preparing seated bids for an oil rights lease on block A-512 off the Louisianat Gult Cuast. Although the deadine for the submission of bids was only three weeks aw:ly, neither firm was very close to a final determination of its bid. Inked, mamaement at Maxco had yet to decide whether to bid at all, let alone how much to bid. Although Gambit was virtually certain to submit : bid, the level of Gambit's bid was far from settled. This uncharacteristic hesitancy in the preparation of both firms' bids was a direct result of certain peculiarities in the situation surrounding the bidding for block A-512.
Block A-512 lay in the Alligator Reef area immediately to the south of a known oil-producing region (sce Exhibit 1). Just to the north were blocks A-497 and A-498, both of which were already under lease to the Gambit Cumpany. On its leasehold Gambit had two completed wells which had been in production for some time. In addition Gambit had an offset control "ell in progress near the boundary between its leasehold and block A-S12. When this well was completed, Gambit would have access to ditect information concerning the value of any oil reserves lying beneath block A-512. Maxco's nearest leasehold, on the other hand, was some seven mile, to the southeast. Any bid submitted by Maxco, therefore, would necesarity be based solely on indirect information.

The role of information in bidding oil rights leases

In any bidding situation, information concerning either the object of the bidding or the notions of competing bidders is highly prized. This is ever more the case in bidding for the rights to oil reserves lying, perhaps, thousands of lieet below the surface. There are, of course, various kinds ol information available to bidders for oil rights. To summarize these various types of information briefly. two categories-direct and indirect-may be est:blished.
Information obtained by drilling on a parcel of land is called direct information. Obviously this is the most precise information obtainable concerning the subsurface structure. From core samples tiaken up during the drilling operation, and from careful laboratory analysis of these

Exhibit !
Subsuriace m_{i} the Alligator Reet area

samples, considerable information may be accumulated not only about the presence or absence of oil, but also about the type. thickness, composition, and physical properties of each of the various geologic strata encountered. Such information then provides the diller with a relatively accurate estimate of the oil reserves lying beneith the parcel. Direct information concerning adjacent parcels may be obtained by drilling offiset control wells. These wells are offset from the principal producing areas
are localled near the bound aies of the leased parcel. Such watl
a provide a particular lessce with precise and valuahle inform.. on about adjacent parcels.

Indirect mformation is obtained from sources other than driiting and may be lomghly divided into two kinds: scouting and nonscouting. Scouting information is gained by observing the operations of other drillers. By counting the sections of drill pipe-each of known length-introduced into a hole, an observer maly inter the depth of the hole. By observing the quantity of cement-required by law-used to plug the various porous stata that ate encountered, the thicknesses of these strata may be determined. Nomally, however, this type of scouting information will not sield neally the precision avaitable to the driller. It can ledp in the determination of whether or not oil reserves exist at a particular lecation, but it in much less useful in determining the size of the reserves.

More definite scouting information may sometimes be obtained by more clandestine means. Eavesdropping on informal conversations in public places, subtle forms of bribery and interrogation, even forcible entry onto a competitor's drilling site may provide much more detailedand more valuable-information. An extreme anecdote tells of two men who were catugh while inspecting a competitor's drilling log-the source document of a driller's direct information. The men were reportedly held al gumpoint for several days in anticipation of the approaching deidline for the submission of bids. Managing to escape the day before the readline, the two men were able to report back what they had seen in the log. As a result, the operator whose log had been compromised was forced to raise his bid by $\$ 7$ million.
l.ess melodramatic, but highly significant, sources of indirect information are availathe through means other than scouting. Nonscouting information in olataned, first, from published sources, such as government geologic and geophysical surveys, and from reports of previous explorations. Second, nonscouting information "may be obtained from local seismic surveys conducted either by in-house personnel' or by private contractors. A third source of nonscouting information is found in the trading of dry hole information. The tradition among drilling operators is to reveal their dry hole experiences. The feeling seems to be that there is far more to be gained from the reciprocal exchange of dry hole information than could be gained from watching a competitor pour a considerable investment into a site that in known to be batren. Finally, nonscouting information may also be obtained fróm independent prospecturs, promoter, and traders who may have become familiar with certain tracts in the past and are willing to trade this information. again on a reciprocal hasis.

As might be suspected in an environment where information has such a high-ainiá immediate-valuc, internal security presents a clear and everpresent problen. Bank-type valts, armed guards, and electrifird fences
are commonplace. On occasion, entire drilling rig have been encased in canvas to thwart the efforts of prying eyes. Substintial slowdowns in operations, however, under almost unbearable working conditions have also resulted. Furthermore, a blanket of security must also be placed over the derivation and submission ul bids. Intormation on the level of a parlicular bid can be even more valuable than information on the value of reserves. When bids were being prepared for the lracts surrounding Prudhoe Bay on Alaska's North Slope, one company packed its entire bidding organization onto a railroad train and ran it back and forth over the same stretch of track until bids had been prepared and submitted and the bidding deadline had passed.

Finally, with information such a prime concern, circulation of false information is often attempted. If operators are successfal in leaking false negative information about a particular parcel, they may be able to later "steal" the parcel with a relatively low bid. On the other hand, to divert' attention from a particular parcel, operators may feign interest in another one by seeming to conduct tests there.

Maxco's bidding problem

Mr. E. P. Buchanan, Vice President for Exploration and Development, had primary responsibility for preparing Maxco`s bid. Mr. Buchanan’s information of block A-512 was, as indicated previously, indirect in nalure. Although some scouting information on Gambit's offset control well was available to him, the primary basis of his information was a private seismic survey, together with published government geologic maps and reports. Maxco had acquired the survey data, in a jointly financed effort with Gambit. through the use of a private contractor. The contractor, Nuble and Stevens, had prepared a detailed survey of the entire Alligator Reef area several years previously when blocks A-497 and A-498 were up for bid. Under the joint financing arrangement, identical copies of the completed report had then been submitted to both Maxco and Gambit. Such an arrangement, while unusual, was not without precedent in known oil-producing areas. Exhibit I represents an updated version of a subsurface map included in Noble and Stevens' report.

Based on all of the intormation available to him. Mr. Buchanan's judgment concerning the monetary value of the oil reserves under block A-512 war essentially captured by the probability mass function given in Exhibit 2. Furthermore, Mr. Buchanan held that Maxco's bid should be based solely on this monetary value of the oil reserves. Since it was known that no nearby blocks were to be put up for bid for at least ten years, Mr. Buchanat did not ascribe any informational valuc to owning a leatse on block A-512.

Mr. Buct in also felt-for the present at least-that Gambit's uncertainty was dally identical to his own. He was sure, however, that
(iambit` well would be completed by the deadtine for the submission of hids. At tiatl time Gambit would know the value of the reserves up to. perhaps. \therefore percent or ± 10 pereent.
lor the past several years, Mr. Buchanan had refused to bid on any parcels ol land where he felt he was at a distinct disadvantage to a competing bidder. If a competitor had superior (direct) information about a parcel While Madco had only indireat information, then Mr. Buchanan preferred rot to bid at all.

Less thanl live months ago, however, in an area not far from Alligator Reef, Mr. Buchanan had lost a bid on a block adjacent to a Maxco keavehold. Maxco had gone to the expense of drilling an offset control well on its ow'n block and had found a reasonably large oil reserve. Maxco had then lost the bid, however, to a competitor who was operating solely on the basis ol indirect information. In addition, the competitor's winning bid had still been low enough to provide for a substantial profit on the venture.
Thus Mr. Buchanan was considering a change in his policy. While he very much doubted that anyone else would enter the bidding for block A-512, he wis beginning to feel that he himself should do so. If he did decide to bid, he then wondered what sort of bid might be reasonable.

PART II

Gambit's bidding problem

Mr. Buchanan's counterpart in the Gambit Company was a Mr. K. R. Mason; primary responsibility for preparing Gambit's bid thus rested with him.

Until Gambit's well on the Alligator Recf leaschold was completed, Mls, Mason's information concerning block A-512 would be indirect in niture. The primary basis of that information was still the private seismic survey, for which Gambit had contracted jointly with Maxco, iogether with published government geologic maps and reports.

Although Mr. Mason also had detailed production logs on the two producing wells on Gambit's leasehold, he felt that this information was not relevant to the problem of assessing the potential value of bluck A-512. There was almost certainly some cross-faulting in the Alligator Reef area (see Exhibit I). Since this cross-faulting would probably terminate the producing area, the principal uncertainty surrounding the value of block $A-512$ was the precise location of the northernmoit crois fault. Thus, Mr. Mason's judgnent was also essentially captured by the probability mass function given in Exhibit 2. Although Mr. Manon's judgment cortainly did not coincide precisely with Mr. Buchanan’s, the facts avaitWe to the iwo men and the economics in the two companies wer gely
'an's estimatie of the athation. Hierefore, differed . גhibit 2.

\section*{Exhibit 2
 Probabillty distribution of monetary values
 | Monctury value of oil resences (s millions)" | Probability |
| :---: | :---: |
| \$ 1.7. | . 03 |
| 2.7 | . 10 |
| 3.7 | . 10 |
| 4.7 | 17 |
| 5.7 | .28 |
| 6.7 | IS |
| 7.7 | . 0 |
| 8.7 | . 14 |
| 9.7 | . 02 |
| 10.7 | . 01 |
| 11.7 | . 01 |
| 13.7.. | . 01 |
| 13.7 | . 01 |

Me.an value $=\$ 583$.

- Net present value it 10 percent

This would, of course, change dramatically when Gambit's offset control well was completed. At that time Mir. Mason would be able to reevalwate the property with a much higher degree of precision.

Normally Mr. Mason would then be in a position to submit a bid relalively close to the true value of the block while still allowing a gencrous margin for profit. Other bidders, not knowing the true value of the block, would be unable to adopt such a strategy. If they bid at all, they would have to either bid relatively low or risk the possibility of "buying in high" 10 a disastrously unprofinble situation.

Over the past year, however, several operators in the Louisiana Gulf Coast had narrowly lost out when bidding for blocks on which they had direct information. Granted that in no case were extremely large reserves lost, nevertheless operators bidding with nothing but indirect information had been able to "steal away" substantial reserves fiom operators who were basing their bids on direct information.

With a view toward reassessing his approach to this kind of situation, Mr. Mirson thought that it might be usefill to prepare a whole schedule of bids. For each possible "true value" of the reserves, Mr. Mason fell that he should be able to establish an appropriate bid-given that value of the reserves. Thus, Mr. Mason fell that he ought to be able to complete a bid schedule similar to that given in Exhibit 3. He was wondering, however, what a reasonable schedule of bids might be like.

Exhibit 3
Gambit's bid schedule

If ine truc value of the rescries is:	Then Ciambir's hid whould be:
$\$ 1.7$ million	\$_____ million
2.7 milhon	imillion
3.7 milhon	_ million
4.7 million	million
5.7 milhon	million
6.7 million	- million
7.7 milhon	milhon
8.7 milhon	million
9.7 million	million
10.7 million	million
11.7 millın	millon
12.7 milhon	million
13.7 millom	million
	\square

Case $11-11$

American Giociery Products (A)

In late January 1970, Mr. John Roberts, Product Manager for American Grocery Products new hot instant breakfast (code name Product 13-14). was formulaing a matr ket strategy for introducing his new product. The product had been successfully designed, and limited consumption lests had been conducted to provide some data for predicting its maket putential. The New Products Committee, which Mr. Roberts reported to. wais then at the stage at which it had to decide whether to test-markel of to actually launch the new product.
In 1970. American Grocery Products was one of the largest intequat manufacturess of packaged food products in the United States. The company marketed a wide and diversified line of food and allied prodich under many major brand names.

Product B-14

B-14 was conceived as a product fulfilling a peccific need in the marrketplace. In essence, B-14 was almost identical to the cold inutam burah fast products that were promoted as meal replacemems, but its importioll contribution was the fact that it was designed to be used with hot or warm water, thus giving a her meal replacement. The posdued development liod been based on the concent thin, while many consumers aceepled the idea

Are OR techn'ques being used?

Highlights from recent OR utilization survey of 176 Fortune 500 firms show which methods are used a lot - and which are not. Study focuses on the production industries. Regression analysis, linear programming, and simulation are the most popular.
The 500 largest U.S. industrial firms (Fortune's 1975 listing) were selected for study on the assumption that they were most likely to represent "state-of-the-art" utilization of operations research (OR) techniques. This project was one part of a larger study covering a number of aspects of the OR function. The firms were randomily divided into two equal groups. A separate survey instrument was developed for each group to examine different aspects of the $O R$ function. One instrument examined, among other things, the use of various OR techniques, while the second examined specific areas of OR application. as well as other topics. A total of 176 firms re. aponded on the sumes.
In Table I, the compinative use of the seven OR techniques is shown. Respondents were asked to indicate the frequency of use for each tech-

1) W. Whany N. I.mbearer Aman iatu Policoma 1) h. Jallisf. (sex . Wivatur Pullesern

 Dibuiti. AI.

Reiative use of operations research techniques (degree of usc in \%)							
Tin fimigues	$\begin{aligned} & \text { Niunte: } \\ & \text { of } \\ & \text { repuoudents } \end{aligned}$	$\underset{1}{\text { Never }}$				$\begin{gathered} \text { Fiot } \\ \text { Frequent } \\ j \end{gathered}$	Mean
	7.1	9.5	2.7	17.6	21.6	tre 6	3.97
I.inc:.. Pagt:mmone	78	15. t			16.7	32.0	3.36
Simulation (li) Produrtion)	10	11.4		25.7	21.3	29.9	3.31
Nicworth Moudeh		34.1	99.	15.9	10.1	$\underline{5.8}$	011
Gumbing thern	71	36.6	39.1	16.9	5.6	1.1	1.96
	(6)	33.6	36.2			9.9	1.69
	${ }^{19}$		$\begin{aligned} & 93.1 \\ & 17 \end{aligned}$	8.9	16	0.0	1.61

 tall ter humetue.

 ste varied slightly as many of the respondents only checked wome of the techmques and beft oshow blamh. The blank couldper-

 tar appocath ol onl amalvons atobel reypomen was ratern. The lisume in the rable cells ater the

 Ih. dins imticated thot a wate

These figures were based on the 73 respondents who completed the production applications portion of the questionnaire.

Iineat programming shows a relatively high utilization over a taher wide range of epplecasons Nore than 40% of the respondents indicated they used linear programming in analyzing problems in the areas of blending (45.8%). plant location ($1.3 .3^{\sigma}$ j, and production scheduling (41.1\%). Also showing a fairly high utilication was the broad area of logistics (37°), as well as production planning and control ($26^{\circ} \%$. Such a diversity of applications is obviously a major reason for the popularity of linear programming.

Simulation showed by far the greatest breadth of coverage, with only one application area having less than 8^{σ} utilizatoon. Six applicalion areas had a $24^{\%}$ or higher utilization rate: inventory analysis and control ($37^{\circ} \%$), pioduction scheduling (35.6%, logistics (32.9%). plant location (31.5%), plant layout (26°), and production planning and control (24.7\%).

Quencing theory showed a fairly wide range of application areas but a rather low percentage of utilization. The most frequent! mentioned application areas were production scheduling (12.3\%) and plant layout ($6.8^{\circ \%}$). It is quite probable that many queucing-type "pplacatoms at hambled with a smulation appogeh and were thus indicated under the simulation response choice.

As was shown in Table I, regression analysis received the highest rating on overall degrec of use within the firm. However, within the procluction function it was not as extensively used as either simulation. linear poogramming. or ret-
 showed a morlest amonamt of application within most of the 11 areas with the heaviest concentration in quality conerol (20.5°) and imsentors analvis and control (161%).
linder the "orther" technigues columm, a fanly lange number of different techniques were mentionced, includng mans upechatied "ehnigues fon pantoutir atras. Ahbough the weymotents were allowed the oplion of lames appliraton abay other that the deven jpowided. wos few were

deven prowides fainly complete asserage of application withen the prestucton hanctiont.

Ihe d.as lom Itable II prosiden ati mberevtmg inseght mets the

 followe mather closely the findings requrted in Table: I on relative ckegrer ol mitization of the tech-
mogury within the firm.

How well are they utilized?

As shown in lable [II, the number st espormelents to a giben ane bungedtrom:ahigh of obter ponduclion scheduling to a low of 16 for maintenance and repair. Of the 56 espmodents to the prortuction
scherduling area, slightly over half indicated they used linear programming in dealing with problems of this type. and almost half indirated they used simulatom. The next most herpuently menaioned was the "orher" category of terhomgu. which included heuristic programming and material requirements plamning.

Application of Operations Research Techniques in Production								
Application Areas	Linear Programming	Dynamic Programming	Network Model.s	Simulation	Queueing Theory	Game Theory	Regression Analysis	Other
Panduenou Schedulug	$30(41.1)$	7 (9.6)	6(8.2)	26(35.6)	9(12.3)	0 (0.0)	5(6.8)	10(13.7)
Padaetoon Plamming' ((mimo)	19(26.0)	3(+1)	7(9.6)	18(24.7)	4(5.5)	0(0.0)	3(4.1)	$3(4.1)$
(M1/木)	10(13.7)	1(1.4)	28(38.4)	9(12.3)	2(2.7)	0 (0.0)	O(0.0)	3(4.1)
hambons Vnolviv: (1 !nin)	1115.1)	3111)	$3(41)$	$27(37.0)$	4(5.5)	1(1.4)	12(16.1)	7 (9.6)
Quatme (immen	$2(27)$	0 (0.0)	1(1.1)	2(2.7)	0(0.0)	$0(0.0)$	15(20.3)	9(12.3)
Vathenturce E Rep.un	0(0.0)	$1(1)$	$3(4.1)$	8(11.0)	3(4.1)	1(1.4)	4(5.5)	3(4.1)
Platil avent	13(17.8)	$0(0.0)$	5(6.8)	19(26.0)	$5(6.8)$	1(1.4)	2(2.7)	3(4.1)
 Rephememble	- 4 (5.3)	$0(0.0)$	1(1.1)	11(15.1)	1(1.4)	$0(0.0)$	O(0.0)	7(9.6)
Bi nding	32(3. ${ }^{(1)}$	$0(0.0)$	1 (1.1)	6(8.2)	1(1.4)	$0(0.0)$	3(4.1)	1(1.4)
	27(37.0)	1(1.1)	$8(110)$	24(32.9)	$3(1.1)$	$2(2.7)$	6(8.2)	2(2.7)
Plam I.mation	32(138)	2(2.7)	$8(110)$	23(31.5)	1(1.4)	O(0.0)	5(6.8)	$4(5.5)$
($1 / \mathrm{lm}$	7 (9.6)	1(1.4)	$9(2.7)$	7 (9.6)	1(1.1)	1(1.4)	$3(1.1)$	4(5.5)

Tilile ll. Numbers in parentheses are percentages based on 73 responses. The percentages do not total 100% beituse many uspondents melicated they used more than one techinigur in a given application area.

[1] J. von Keuman and 0. Morgerstern, Theov of Games and Economie Zohavice, 1G4

Historiceliy irysresting as the first book on the sidiect, and a ver. surgrebensive one.
 $=06$.

An elementary whenterfaining bool, to be read for anjoyment.

 gamos lia extensive forn.
 Eco:omica, Vois. I wh U. DV, Adinon-testey Publisning Co.

A nodecately divaced text, comiete ard clegr and a good suruey of the early literntine. Vol. II is on infinita games.
[5] G. Owt, Gasampory, 1568 , w. B. Sunders Company.
A mederately advo:ccid text, containing a treatiment of n-person games.
[6] Noivin Drosher, Theory and foplications of Games of Stratesy, 3961, Pientice-raill, iric.

Not ε te:y: but eieer erit treciss mathematiceiny,
[7] R. D. Luce and H. Rifia, fams snd Decisions, Ij57, Johr wiley ald Sore.
A Lucia text vith a sormenencisire treatmat.

 1971, Amescen blevinr Pabiisuing io.

 ALn Arby aie.

Wordir hat irsll-w:icten.

1.matrodicive. The construction of a whthematical mador of a Iivid or enteajor in criar to wderstand wore fully the phenomens of Shat fielt and to sise better judgxaris of what course of fotion to
 aff:ニちa suci divers: disciplines as chemijury, engineering, medicine,
 this deve?opent are several new manarical fields auch as linear Frouramminj, statisticai decision tieory: control theory, aja so on, tinat are concorned with the sare unisriving objective - to nnaiyas uati: amatizal.2y varisus possible couses of astion in order to determine which course is best according to scise criterion. The themy of games is che cf these fleids. It is ctarnoterized by its involveadat ci two
 choose cources cf autica to prorote their own inturests. It has epplicaticn to the araigis of cathrificai mociens of compentire econonic problete, or militazy stri:e, of confinating political jatereata
 for anothur. Ganeray, there is m"best" course or action for a pleyer since cuecous duync dpon the astions ehcsen by the other playarn.

The individuaz aost cioseiy associated with the creatzon of the

 20ミ3 the papu the: lijt the roundericn for the thtory ce ganes as it i: knom rosidy. Von Neumann's woris muninated in a fundamentat bools
 Thejry of Gcres Eid zocnozic Bohayiza [1].

Von Teuman's tinsory is mast complete for the clas: of games ca.li:a
 plaver win:s whet the otiner plajer ioses. For the time being, we restivet attention to sucin sares.
 (A, Y, L), where
(I) X is a sot: the soi of s+rftusi es of pleyer I

the absciute valua 0 this amount to IF. Thus, $L(x, y)$ represents tije winnurg or I z". ing losces Ci II.
 to ancorgass gazia Buch as tic-tan-5oe and chess. This is dore bif being sumpaipetiy hundarnad about tha deinnition os a strategy, A stratyay
 piay the grime of ant rove to asia in every possible situation that
 goci or bad, for the anme of chess. for instrdeting a machine to play ohess hare been written. Each program constitutes one strョtegy. The set of all sich strateqies for noyyer a is denoted by X . Natureizy, in tre gase cs chess it is physiculy impossibie to deacrive ali pousinie stritegies since there ere to tany; in fa:t, there wre more strategies then there are athos in the rown universe. On the other hand, the thener of garas of tic-tac-tos is retion

lober is alwejs the sin ef the numbers in ioilsrs. Hence, $X=\{1,2\}$, $¥=\{1,0\}$, and I tis given in the followinis table.

$$
\therefore \text { I (cren) } \quad y
$$

I (odd)

$$
x
$$

$$
L(x, y)=I^{\prime} s \text { winainge }=I I^{\prime} \text { s losses }
$$

It turas out that one of the aypers nez a disifnct adrantage in this gevag. Con you teli minch onc it is:

 In Enis cest:
1.

Then is, if I rices his choices in the wiven way, the geme is even every tims II cesls one, but I witis af on tine avorage every time
 Yeas: kyexrines oven on the averagu. Lan plaver I fix it so that he

Let y iexuce the pruporion of ticis thet plever I caifs ore.
Leit in tiry to chcose, so trint pleyex I yins tise sene amount or the everags whother II collu one or tro. Insin einoe I's average pionirgs when II salls one is -2p + 只l-pj, and his average winninps when II

$$
\begin{aligned}
-2 p+3(1-0) & =3 p-4(1-p) \\
3-5 p & =7 p-4 \\
12 \underline{p} & =7 \\
\square & =1 / 12
\end{aligned}
$$

 the avorure, and II hes a procedure tiant まeeps his average loss to at mest I/I2. I/12 is called the ianie o: the gers, and the provedure

 guaruntees hia tout much co the averige no matter whet II does. On the other eand II could argui that he shoule not hive to pay more than G $\frac{1}{3} \%$ sinh: he has a streteg that iceeps his averaje loss to at post that amount ros betier what I do心s.

It is useful to raje 3 italiret on between a. puse strategy ana a

rardom rachanisus. sue. es tossing a coin, rolling dice, drawing a
 a simpie metrod of in comeation provided it is not used too fregretiy. For cara?e, Pierey I oz Ocdur-Ever, gats un outside randor evert wi \therefore

 1 and 35 , he wo Br call one, wine if it were betwed $3 j$ and 60 , be would call two.
 if botn stratejy nets Z and Y are firite sets. The fundameni三人
 encountered in the gawe of odu-or-Eyn hoids for ail finite two-pzrsou zeco-n gaves - namely, for every siah game,
there is a nourer v criled the vatua of the geme,
(1) Itiere is a mixad itutegy foc I suca that r's average eain is

(2) thare is e aivad stanogy for il whe that II's ayarage loss

 $\because \because \because I$.

2. Matrix fane. Consider a two-ferson zero-sum game in normal form, (X, X, L), with X end Y finite sets. Such games are icestimes called matrix games because the payoff function L can b: represented y_{y} a matrix. If $X=\left\{x_{1}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{n}\right\}$, then by the gape : trig or profirizutix we mean the matrix

$$
A=\left(\begin{array}{rrr}
a_{11} & \cdots a_{1 n} \\
\vdots & \vdots \\
a_{31} & \cdots a_{m n}
\end{array}\right) \text { where } a_{1 j}=L\left(x_{i}, y_{j}\right)
$$

In this form, player I chooses a row, player II choossa a column, and II pays I the entry in the chosen. row and colvizi.
 eatery $a_{i j}$ of the matrix A dis the property that
(1) $e_{\text {is }}$ is the miniturn of the $i^{\text {th }}$ rona, and
(2) $a_{i j}$ is to matron op tie $j^{\text {th }}$ column,

 at most ${ }^{\circ}$ if by choosing conan it Hens $a_{i f}$ is tia value o: ie gas.

2xacer $\left(\begin{array}{rrr}5 & 0 & -4 \\ 2 & 1 & 4 \\ -1 & 0 & 5\end{array}\right)$
The centrai ectey is y acidis pinion since it is a rininn os dits row aucieminim or its celum.

 It is ee"fer to comple the mintrin of each row and the mandras of accin solum.

Since ao you minimuan ia eq: to a colum maximu tinere :s no saddle point. If the 2 in rosition a_{12} yere changed to a $1, a_{12}$ worla

$\therefore=n$.

Solution of 2×2 matrlx gaten. Consider the 2×2 gane watrix $\left(\begin{array}{ll}a & b \\ d & c\end{array}\right)$. To noive this gese (i.e: to find the value
 43 gollows.

To poove the retiod of section 1 worts winenever there is 20 andie point, wo use tice folionirs observation.

Aonam there is no andia prit. if $a \geq b$, then $b<c$; otherwiaz b is a sacile paint. Fhace $b<c$, we gat hive $a>c$,
 $a<e$ ari $a>b$. In other woris, if $a \leq b$, inen $a>b<c>a<a$.
 10 therg fsparidie pose, tros

$$
n p+d(a-p)=a!+c(\underline{a}-p)
$$

$$
\begin{equation*}
y=\frac{2}{\pi}+\frac{d}{i-\sigma} \tag{i}
\end{equation*}
$$

Since thare is no sadila point, ($a-b$) and ($c-a$) are eithor both rositive of reti regasite; heace, $0<p<1$. Flayer I's average return uning this stiateg is

$$
v=a p+(1-2)=\frac{a c-b d}{a-b-c-d} .
$$

II II choosas tio fizot aolun rith prozabinity q (i.e. uses the stretesy (q, 1-q)), we equate his averege locies when I uses rows 1 and 2.

$$
q q+b(1-q)=d q \div c(1-q)
$$

Hence,

$$
\begin{equation*}
a=\frac{c-b}{a-b+2-d}=\frac{c-b}{(a-d)+(c-b)}= \tag{2}
\end{equation*}
$$

 avereve loss waing this stratsef is

$$
\begin{equation*}
\mathrm{aq}+b(a-q)=\frac{\varepsilon a-k d}{3-b+c-d}=\gamma, \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& q=\frac{-4-3}{-2-2-4-3}=\frac{7}{12} \\
& q=\text { serg }
\end{aligned}
$$

$$
T=\frac{8-9}{-2-3-4=3}=\frac{1}{12}
$$

$$
\text { 2. } A=\left(\begin{array}{cc}
0 & -20 \\
1 & 2
\end{array}\right) \quad E=\frac{2-3}{10+2-1}=\frac{1}{11}
$$

$$
q=\frac{2+10}{10+2-1}=\frac{12}{11}
$$

 Is ar " forgot to telit this zatric for a sadie posit; so of

 cornar 10 a asidle point. So. $v=1, D=0$ adi $q=1$. 2xacisen 3. Sclve the naw with catrix $\left(\begin{array}{cc}-1 . & -3 \\ -2 & 2\end{array}\right)$. 2. Solve the gean onti sititux $\left(\begin{array}{ll}1 & 2 \\ 4 & 0\end{array}\right)$
 $0 s=$ inustion oit t.
 thyy have squal velues.

Definition. The $1^{\text {th }}$ rou doninatisn the $\underline{s}^{\text {th }}$ row if
 conm in $x_{i j} \leq a_{i s}$ for all 1.
 geisted tran the watrix. Blarer I can do at last as well chocising
 $x^{\text {ti }}$ colurn is dorinxted it ray be rezoved.

Exfriple. Conszder the matrix,

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2 \\
4 & 1
\end{array}\right) \\
& \text { Tins } 2 \times 2 \text { untris dives not have a sadcise } \\
& \text { point, so } I=\frac{3}{4}, \quad,=\frac{1}{5} \quad \text { v }=\frac{7}{4} \text {. I's opticil }
\end{aligned}
$$

$$
\begin{aligned}
& \text { II's is (} \frac{7}{2}, \frac{3}{3}, 0 \text {) }
\end{aligned}
$$

 cboouing rou i. (In addition, afy mired strategy choosing rear Is with probibility in may be replaced by the one in wifich
 is increasid by $p \cdot p_{k}$ and $i_{2}^{\prime} a$ probabijity 18 incraaced by

 deletes, the riddle row is dnas ratisa by the
 $1 / 3$ ant! the botton zox wity Frokvesiniy $2 / 3$. The re!uced mation la asily solven. The yolua is $V=54,12=9 / 2$. Of course, fixtures of Enre then

 tive inst colure may be rexryed.

(2) $\left\{\begin{array}{cccc}5 & 4 & 1 & 0 \\ 4 & 3 & 2 & -2 \\ 0 & -1 & 4 & 3 \\ 2 & -2 & 1 & 2\end{array}\right\}$
(0) $\quad\left(\left.\begin{array}{llll}20 & 0 & 7 & 1 \\ 2 & 6 & 4 & 7 \\ 6 & 3 & 3 & 5\end{array} \right\rvert\,\right.$

Solving $2 \times n$ and $m \times 2$ gemae. Gemes with matrices cos
 1n erpratation. Taxe the tollcwing examide.

$$
\begin{gathered}
p \\
1-p
\end{gathered}\left(\begin{array}{llll}
2 & 3 & 1 & 5 \\
4 & 1 & 5 & 0
\end{array}\right) \begin{aligned}
& 2 \times n \\
& \text { lower envelope } \\
& \text { maximin }
\end{aligned}
$$

Sujpons Plerer I chooses the first row witio probability p and the seconi rca with probubility 1. - p. If II cheessa Colum 1, I's averase ayoff is $20+h(2-y)$. Similarly, cholces of C:ILing ? , 3 aid 4 result in average pivofis of $3 p+(1-p)$, $p+6(1-p)$, and $5 p$ respectivaly. We greph these four Lilisar functiona of p for $0 \leq p \leq 1$. Fin sflusd value on p, Fi:ver I can be sure that 5ts average mandias is at Inset the onalma 0 these fin functions evaluated at \therefore Thls is dnome as tire :aser finelore of thene furctions. Siace I wats ;o nerinlze mis zuarnnterd

 Cclamal, 2, 3 and 4, is $\frac{18}{7}, \frac{27}{7} \frac{17}{7}$ and $\frac{25}{7}$ xespectively.

 $\frac{17}{7}$. Ihus, $\frac{17}{7}$ is the voluan, and these atrategles are opition.

We note that tice line for conm i pisy no role in the

 4 esn $n \sigma=160$ drcizaced.
$m \times 2$

ayereje losses for a given q. This is the upper envelope of the function. II wants to find o that minimizes this utter envelope. From the graph, we see that ar value of q between $1 / 4$ sard $2 / \bar{j}$ inclusive achieves this minimum. fine
 value 0 e the gave is 4 , and I has an optimal pure strategy: ron 2.

Exercise 5. Solve

$$
\left(\begin{array}{cccc}
3 & 2 & 4 & 1 \\
-2 & 1 & 4 & 5
\end{array}\right)
$$

Exercise 6. Reduce to 3×2 by dominance and solve.

$$
\left(\begin{array}{ccc}
0 & 3 & 5 \\
0 & 4 & 6 \\
12 & -4 & 3
\end{array}\right)
$$

In general, the surefire test way be stated thus. For a given gre, conjectured optimal strategies (p_{1}, \cdots, F_{m}) and (A_{2}, \cdots, q_{n}) are indeed apian if the minima of I 's average payoffs using ($p_{1}, \cdots, y_{i s}$) in

 II Recreation Vi. Fat is the valve?

3. Uper and lower values. Consider an arioitrary finite two-

 person zero-sum giza ($\mathrm{X}, \mathrm{Y}, \mathrm{L}$) witi $\mathrm{n} \times \mathrm{n}$ game ratrix A. The sets of rixed strategies of players I and II wiil be denoted respectively by X^{*} and Y^{*},$$
\begin{aligned}
& x^{*}=\left\{p=\left(p_{1}, \ldots, p_{\text {m }}\right): p_{i} \geq j, i=1, \ldots, n \text { and } \sum_{1}^{x_{p_{i}}}=1\right\} \\
& y^{*}=\left\{q=\left(q_{1}, \ldots, q_{1}\right): q_{i} \geq 1, j=1, \ldots, n \text { and } \sum_{1}^{n_{j}} q_{j}=1\right\} .
\end{aligned}
$$

It in noeful to thin!: of the elezsets of X^{*} and Y^{*} as row vectors.

 row (1. Thus, in mat consider X to be a subset of X^{*}. Similarly, Y

$$
\sum_{j=1}^{n} a_{i, j} q_{j} .
$$

 pavorf to I becomes

$$
\begin{equation*}
\sum_{i=1}^{m}\left(\sum_{j=1}^{n} \varepsilon_{i j} q_{j}\right) p_{i}=\sum_{i=1}^{[=1} \sum_{j=1}^{n} p_{i} a_{i j} q_{j}=\underline{\sim} \dot{i} \dot{\dot{a}} q^{T} \tag{2}
\end{equation*}
$$

Suppose the I were able to es eorreetiy that II has resided to use $g \in Y^{*}$. There he would choose that row i that maximize: (I); or, equivalently, he would choose that $\underset{\sim}{E} E \exists^{*}$ that maximize $=$ (2). Sis average mayor your be
(3)

$$
\max _{1 \leq i \leq 1} \sum_{j=1}^{n} a_{i j} q_{j}=\max _{\underset{\sim}{\max }} \underset{\sim}{\underset{\sim}{A}} \underset{\sim}{q}{\underset{\sim}{T}}^{T}
$$

To ane that these quantities are equal, note that the left sic is the
 tran or equal to the right side. The reverse inequality foilist since (2) is an average of the quantities in (1) and so must be les: thar or equal to tie leary: of the values in (1).

Nay $p \in X^{*}$ that achieves the maximum in (3) is called a Bayes stacuremaingt g. In particular, any row i that achieves tho maximum Cf (3) is a (fur) Bayes strategy =against g. There always exist pan Earn: ctrategine against q for avery q a x^{*} in finite gar as.

This notiulurpoens a practical way of plying a gan: : Oke \equiv guess at, the probabilities that you tisink your opponent will play his various pure strategies, and choose a Bayes strategy against this. Of cons= "his cay be 3 dangerous prccajure. Your opponent may be better ats his one of guessing than you. (sod Exercise 1.)

Lat us no: same the general matrix game from player il's viensui.: ;
 We cull lose ais mount on the avenue if, for example, fere to use

 Li: : of $\because: \in$ gare.
 $x>$

One any think of $\overline{\mathrm{V}}$ as the smallest averag. iloss that player II can ascure for himseif : o mother what I dees. Any $\underset{\sim}{q} s Y^{*}$ that acioven the ainimum in (4) is called a minimestrategy for II. It miniofzes his rucimum loss. There aligys exists a minimax strategy in finite ganes: the luantity (3), being the caximum of m linear functions of g is a contlancus function of $\underset{\sim}{q}$ and since Ψ^{*} is a closed bounded set, this function essumes 1 ta minimus over Y^{+}at some point of Y^{*}.
 If 1 nees $p^{s \prime} x^{\prime \prime}$, he is assured of winning on the average at Ieast ($5 \cdot 1$

$$
\min _{1 \leq j \leq m} \sum_{i=1}^{\mathbb{I}} \cdot p_{i} a_{i, j}=\frac{\min }{q \in Y^{*}} \underset{\sim}{p} \underset{\sim}{q} q^{T} .
$$

The culunin f ur the mixed strategy ? that achieres the minimum in (5) is anlled a Bayes strategy for II agginst $\underset{\sim}{p}$. Therefore, the best that

- I can be sure of vinning on the quernge by the use of any $p \in X^{*}$ is

$$
\begin{equation*}
\underline{V}=\max _{n \in X^{*}}^{\min _{\leq j \leq n}} \sum_{i=1} p_{i} a_{i j}=\operatorname{mix}_{\sum_{0} \in X^{*}}^{\min \in X^{*}} \underset{\sim}{A} q^{T} . \tag{6}
\end{equation*}
$$

The quantity \underline{V} is called the lomer value of the mame. It is the maximur amount that i can guexsatez hicself no waticer what $I I$ does. Any $\underset{\sim}{p} X^{*}$ that achieves the marienu in (6) is cailed a minizai stroteny for I. Merheps peximin stratugy would be are eppropriate terminology in view of (6), but from jymesry (either player may conaider himself player II for purposer of analysis) the seme word to describe the same icea ray be preferraije and it is certeinay the cuatomary termology. As in the andysis for piayer iI, we see that plover I abuys has a minimax strategy. This obsfivation is worth strting as e .erure.

Iemag 1. In a matriv mma, both Dlayrs reve minimar strategies.

Iะ is ansy to a:gis that the 10 er valua is less then or equal to the uppor valun. For if $\bar{V}<V$ ardif T cam assure himselt of winning. at luast Y, pirge ir canct ass reviarelf of losing at most \bar{V}. Ir. is woreh statiag thin fant es a lease too.

Leras 2. $\quad \underline{\leq} \leq \bar{V}$.

This lewa also follews fron the geraral matberatical princigie that $\max _{x} \ln n_{y} f(x, y) \leq \min _{y} \max _{x} f(x, y)$. To sea this principle, note that
 on the left does not chage the inecinivi, nor does taking ming on the rigint, which gives the result.

When $\underline{V}=\bar{V}$ a very nice sitiontion exists. Ylayer . II can assure h1uselt of not luaing more on the everege than player I can asoure himseli of winnlag.

Defirition. If $V: \bar{V}$, we ser the vilue of the aspe exists und is esisl to the comen voive of v and \bar{v} : innoted simguriv. Is the valize ni the cace exjts, we refer to rijina strateries as critirg sumberies.

Ald the wimpe eaths studied in Ertion 2 vere seen to izoe whes. In the nove section we prove the minwex theoran, that all motrix game heva values.

Another aizale obervation is daful in this regara. Tins concerne

constant to each entry of the game matrix, and of multiplying each entry - uf the gare catrix by a positive constant. The game having matrix $\underset{\sim}{A}=\left(a_{i j}\right)$ and the game having matrix $\underset{\sim}{A^{\prime}}=\left(a_{i j}^{\prime}\right)$ with $a_{i j}^{\prime}=a_{i j}+b$; where b is an arbitrary real number, are very closely related. In fact, the game with matrix ${\underset{\sim}{\prime}}^{\prime}$ is equivalent to the game in which II pays I the amount b (or I pays II the amount $-b=$), and then I and II play the game with matrix A. Clearly any strategies used in the game with matrix A^{\prime} give $I \quad b$ plus the payoff using the same strategies in the game with ratrix A. Thus, any minimax strategy for either player in one game is also minimax in the other, and the upper (lower) value of the g^{\prime} mue with matrix ${\underset{\sim}{A}}_{A^{\prime}}$ is b plus tin upper (lower) value of the game with mutrix $\underset{\sim}{\text { A }}$

Hinilarly, the game having matrix ${\underset{\sim}{\prime \prime}}_{\prime \prime}^{\sim}=\left(a_{i j}^{\prime \prime}\right)$ with $a_{i j}^{\prime \prime}=c \bar{a}_{i j}$, where c is a positive constant, may be considered as the game with matrix $\underset{\sim}{A}$ with a change of scale (a change of monetary unit if you prefer). Again, minimax strategies do not change, and the upper (lower) value of ${\underset{\sim}{A}}^{\prime \prime}$ is c times the upper (lower) value of $\underset{\sim}{A}$. We combine these observations as follows.

Lemma 3. If $\underset{\sim}{A}=\left(a_{i j}\right)$ and $\underset{\sim}{A^{\prime}}=\left(a_{i j}^{\prime}\right)$ arematrices with $a_{i j}^{\prime}=c a_{i j}+b$, where $c>0$, then the game with ratrix A has the same minimax strategies for I and $I I$ as the game with matrix A_{\sim}^{\prime}. If V and \bar{V} are the lower and unoer values oi the game with catrix $\underset{\sim}{A}$, then game with matrix A^{\prime} has lower value $\underline{V}^{\prime}=c \underline{V}+b$, and uopar value $\bar{v}^{\prime}=c \bar{V}+b$.

In particular, the value V of the game with matrix A exists if and only if the vane V^{\prime} of the game with matrix A^{\prime} exists, ana then $V^{\prime}=c \bar{v}+b$.

Everciaes

1. Consider the gere with matrix Pest experience in playing tie e game with

$$
\left(\begin{array}{rrrr}
0 & 7 & 2 & 4 \\
1 & 4 & 9 & 2 \\
9 & 3 & -1 & 6
\end{array}\right)
$$

player Ir enables player I to arise at a set of probabilities reflecting his belief of the column that II rill choose. I thinks that with probubllitios $1 / 5,1 / 5, i / 5$, end $2 / 5$, II Fill choose colum $1,2,3$, ami 4 respactivei.j.
(4) Find :nc i a Eaves siraten against $\{1 / 5,1 / 5,1 / 5,2 / 5)$:
(11) Supijese $5 I$ grasses correction that I is going to use a Bayes stratum against ($1 / / 5,1 / 5,1 / 5,2 / 5$). Instruct I on the strategy he should use - that is, find II's Bayes strategy against J's Reyes strategy against (1/5,1/5,2/5,2/5).
<compat>ᄅ. The froe with matrix if toes value zero, and $(5 / 15,3 / 21,2 / 21)$ is

$$
A=\left(\begin{array}{rrr}
0 & -1 & 1 \\
2 & 0 & -2 \\
-3 & 3 & 0
\end{array}\right)
$$

optime for I.
(a) arad tres value o? the came with ratal. \therefore^{\prime} and ar cotta. $\quad . \quad{\underset{\sim}{A}}^{\prime}=\left(\begin{array}{rrr}5 & 3 & 7 \\ 9 & 5 & 1 \\ -1 & 21 & 5\end{array}\right)$ stradery for I.
(b) Ind an optical strategy ix e II in both genes.
3. Solve the extort muir site $a=0$ and $b=0$.

$$
\left(\begin{array}{rrr}
0 & -1 & 1 \\
a & 0 & -a \\
-b & b & 0
\end{array}\right)
$$

MOTH 24

i. The minimat theorem. ve sat out now to prove the minimax theorem. Our etnoine pant is the esicurated sexaratine heperpiane theorem which we stete wituout proor. Later, we will give a constructive method of ainging the value and optist strategics of a mation gan via the simplex methol. When we sho: tioj this rethod works for all matrix
 theoren. Hewever, tha zollowine geartric proof has more fouitive appee:

Let \mathbb{R} derote the real linc, and If^{k} denote k-dimensional real vector space (tre sat of ail i-twises of roil numbers). The seperations huperfanc theores etites that any t:0 die,joint convex sets can be separated by a fonerplane. We firs dosin: the notion of a convex sut. Derinitinn. Aset S cok is

 of tes poinds.

cone:

:urcos.

conez

NOM COVES

covix

Tho cots are said tu be disioirt if they have as points in cornca.

 or Eerperdicuan: so this hiperyane.

 of wioich contoins S_{1} and the othes S_{2}. The hyperplane ray contain poincs of S_{1} and points of S_{2}. Exc Xarlin [4] Vol I, Appezdix B.2, 02. 3lackwell ard Girshick i8] for : woon.

Fow sonsider a finite gaie (x, π, π) with $x a$ game ratrix A. I:

 the roctor of arazes zyofs to \bar{A} is

$$
\begin{equation*}
\sum_{i=1}^{n} y_{i} \because_{i}=p A_{i} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
s=\left\{\underset{\sim}{z}=X \underset{\sim}{A}: \underline{\sim} \in x^{*}\right\} \tag{2}
\end{equation*}
$$

or s.ancon : : : vi

The set $S \subset \mathbb{R}^{\mathrm{n}}$ is tine set of aver ae patin veter available to 1 trorrigh the usa of rived strategies. The original came (X, Y, I) with I being allowed the use of mixed strategies is equivalent to the following game: I chooses a point $z \in S$ and simityngousju II chocess a cocrenate $j \in\{1,2, \ldots, n\}$. Then II nevis I the $j^{\text {th }}$ emordinste of z.

The first indication that the separating hyperplane theorem night have sore use in analvis oi genes is that S is convex.

Leman 2. s is convex.

Hoof. Let $z \in S$ and $z^{\prime} E S$ and $\Gamma^{\prime} \leq \alpha \leq 1$. We are to asimov that $\underset{\sim}{z}+\left(1-(x) z_{i}^{\prime}: S\right.$. Since $\underset{\sim}{z} \varepsilon$ a and ${\underset{\sim}{\prime}}^{\prime} \in S$ there is a $p \in X^{*}$

 to show the $\alpha \underset{\sim}{p}+(1-a) \underset{\sim}{f} \in X^{*}$. The $i^{\text {th }}$ coordinate is $a p_{i}+\left(1-x^{\prime}\right) p_{i}^{f}$ which is an-ragetive, and the sum 0 the coordinates is

$$
\text { Pie set } s \text { as defines w ib) is known as the convex }
$$

exnmple, consider the gere with metryx A. $A=\left(\begin{array}{rr}2 & -2 \\ -1 & 2 \\ 1 & 0\end{array}\right)$

Dlus diea vawancy; formeá by joinaris
the three points ${\underset{\sim}{\sim}}_{1}=(\hat{c},-2),{\underset{\sim}{2}}_{2}=(-1,1)$ and ${\underset{\sim}{a}}_{3}=(1,0)$. I chooses a point Z εS, End II chooses a coorinesion $J \in\{1,2\}$, and II pays $I z_{j}$. To attain the loner value of the gains I woild choose. $\underset{\sim}{z}$ so that $\mathrm{min}_{\mathrm{j}} \ddot{j}_{j}$ is

a marimin; that is, he would choose thet $\underset{\sim}{z} \in S$ whose minimum coordinaite is a maximum. The minimu coordinate of $(2,-2)$ is -2 . The frint $(1,0)$ is better; its arimum cocsinato is c. Travaling up the line frow (1,0) to $(-1,1)$ the minimu coordinate increases untis we reacia ($1 / 3,2 / 3$); then it staris to decrase. We cannot obtain a point of s with minimum cocrlinate 20.1 erer than $1 / 3$, since the set of points ubose
 value is thus $1 / 3$; it is etteined if I chocses $(1 / 3,1 / 3) \varepsilon$. This point is a probability aixiure o: the pure strategies for z of choosing row tro and rov tluce, since (l/: J/3) is on the line seanent joirinit $(-1,1)$ and $(1,0)$. ro find the conect inture se solve $P(-2, i)+(1-n) i, a)=(1 / j, 1 j\}$ for $p: p=1 / 3$. Therefore the mivi stratey $\left(0, y^{\prime}, x i j\right)$ as mini:mx for I.
 far bes ivola.

Proof. We are to show $\underline{V}=\overline{\mathrm{V}}$. It is always true that $\underline{\mathrm{V}} \leq \overline{\mathrm{V}}$ (Lemma 2 of Section 3). We are to show $\overline{\mathbf{V}} \leq \underline{V}$. We may assume without

 (Lemma 3 of Section 3).

Therefore, we assure $V=0$ ard attempt to show $\bar{V} \leq 0$. That is, we sitcret to shows that there is a mixed strategy $\underset{\sim}{\underset{\sim}{f}}$ for II such the $\underset{\sim}{A} \mathcal{Z}^{T} \leq 0$ for all $p \in X^{*}$, or equivalarty $z g^{T} \leq 0$ for ell $z \in S$. Rut

means that for every $\underset{\sim}{Z} \in S$ there is a $j \in\{1, \ldots, n\}$ such that $z_{j} \leq 0$. In other words, no point of S has il coudinates positive; that is, S and the positive quartan $Q=\left\{\underset{\sim}{y} \leq \mathbb{R}^{n}: y_{j}>0, f=1, \ldots, n\right\}$ are disjoint. Since both gre comer, the rejoratine hiperpiane thecrein states that there is a vector $\underset{\sim}{f} \ddagger$ such the

$$
\begin{equation*}
\pi{\underset{\sim}{r}}^{T} \leq \underset{\sim}{x}{\underset{\sim}{r}}^{T} \text { for all } Z=S \text { and ail } \underset{\sim}{\sim} c \text { Q. } \tag{5}
\end{equation*}
$$

Letting y y e tend to n, we sezthat

$$
\begin{equation*}
\therefore x^{2} \leq 0 \quad \because \quad a \leq 1 \geq 0 \tag{1}
\end{equation*}
$$

Note that no corwnent of fin festive. For if $r_{k}<0$, then

the rest of the components fixed would entail $\underset{\sim}{\underset{\sim}{2}}{ }^{T}$ tending to $-\infty$, thes onntrandetiry (e). lict oll comomente of $\bar{\sim}$ wre zero (sinno

 to be shown. TE1s completes the proof.

Rearak 1. In this proos, the minifux strategy 9 for if is seen to te the norial to the separatinz hyperpiane, divided by a constait to wate the sum of its caporents equal io cne. In the erancie preveatro the minimax theorem, the separating inperplens, must be the line containias the Line segment from $(1,0)$ to $(-1 ; 1)$. This has slope $-1 / 2$. The slope of the line perpencicular to this is thererore 2. One normal to
 ponents is 3 so that $(1 / 3,2 / 3)$ is minimar for II. One way easijy use the methors of soction 2 to chens thase calculiutions.

 get of $\mathbb{I R}^{n}, Y$ is $\{1,2, \ldots, n\}$ ari $Z(z, j)=z_{j}$. The proof sions thitic the game has a value and play: II has a minimax streteg. If δ is closec and bourcied as veli as conci\%, then player i ins o (pure) minies strategy $z=S$.

Exersi=cs.

1. Consider tie Bate with matrix A.
(2) Draw a rough plot of the set S of equation (3).

$$
A=\left(\begin{array}{rr}
2 & 4 \\
6 & -2 \\
5 & -1 \\
4 & 3 \\
7 & 0
\end{array}\right)
$$

(b) Note trot row 2 is dominated by row 5. ENOw can you vel this fact from the plot:
(c) Ho te that row 3 is anomisted by a rixime of mows 4 arr, How can you tell tints fave from the plot?
(d) Find player I's minimax $\underset{\sim}{z} \in S$. To what mixed strategy over the rows of A does it correspond?
(e) Fine player II's winding strategy.
2. Let $S=\left\{z=\left(z_{1}, z_{2}\right):\left(z_{2}-1\right)^{2}+z_{2}^{2} \leq 25\right\}$ (the circular disc of radius 5 centares at (1, 0).) Consider the give (3, 11,2$\}, I)$ where $\mathcal{L}(\underset{z}{2}, j)=z_{j}, j=1,2$. Find the value, an optimal pure strategy for I er i an optimal strategy for II.
5. The rinciple of equilibriuin. For a watrix game vith m $\times \mathrm{a}$ matrix $\underset{\sim}{A}$ and value V, an optimal atrategy $P=\left(p_{1}, \ldots, p_{m}\right)$ for I 1s siveractorasad oy tite propurty that

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} a_{i j} \geq v \quad \text { for all } j=1, \ldots, a^{\prime} \tag{I}
\end{equation*}
$$

Simiarly, a strategy $\mathcal{Z}=\left(q_{1}, \ldots, q_{2}\right)$ is optimal for II if and oniy 11

$$
\begin{equation*}
\sum_{j=1}^{n} a_{1 j} q_{j} \leq V \quad \text { for all } i=1, \ldots, \ldots \tag{2}
\end{equation*}
$$

Whan both playera uee their optimal itrategies the average payofe: $\sum \sum p_{1} a_{1 j} g_{j}$, is exactiy V. This tyy be eeen frow tha loequalities

$$
v=\sum_{j=1}^{n} v a_{j} \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} p_{i} a_{i j}\right) a_{j}=\sum_{i=1}^{m} \sum_{j=1}^{n} p_{1} a_{i j} a_{j}
$$

(3)

$$
=\sum_{i=1}^{m} p_{i}\left(\sum_{j=1}^{n} a_{1 j} a_{j}\right) \leq \sum_{i=1}^{m} p_{i} V=V
$$

Ginca triv megirs and ends with V wa sast have equsility througbout.
The sohlowing innole treorem - the principle of equilibrium = gives condition for equality to be achieveli in (l) for certsin veluea of j, and in (2) for certain values of 1 .

 any optimi strategy for in. Tin
(4)

$$
\sum_{j=1}^{n} a_{1 j} a_{j}=v \quad \text { for } \varepsilon I 2 \text { ios whing } p_{i}>0 \text { enz }
$$

(5) $\quad \sum_{i=1}^{m} p_{i} a_{i j}=V$ for $a 11$ f for inich $q_{j}>0$.

$$
V=\sum_{i=1}^{m} r_{i}\left(\sum_{j=1}^{N} i_{i, j}^{n}\right)<\sum_{i=1}^{m} p_{i} V=V .
$$

 there exists an optiral etratestig fc. I giving positive probsbility to row i, then every optimal stretegt of II dives I the value of the geste is he usea row 1 :

Athough tris thocrem will not zive us e mothod os eoiving en ariotesin gime it is ouite lueful in cartain clazses of games for helping direst us toxard the solution. The proesdure this theorem sujgeste is so try to
 you think it likein that $p_{i}>0$. r try to solve the set of equations (j) Pormad by those f for whtck you thinis it likely that. $g_{j}>0$. As an exampo of thig consider the game of odd-cr-ever in wish ithin plofars sizultaresony call out one ne the numers zero, ore, or two. rice atrote is

Eves.
$\operatorname{cod}\left(\begin{array}{rrr}0 & 1 & -2 \\ 2 & -2 & 3 \\ \cdots & 3 & -2\end{array}\right)$

Again it is difficult to gress who hes the advantage. If we play the gare e fow tires we might become convinced that Even's optimel
 If so, Oda's aptival itreregy p wit satisfer
$p_{2}-2 p_{3}=v$
(6)

$$
\begin{array}{r}
p_{1}-2 p_{2}+3 p_{3}=v \\
-6 p_{1}+3 p_{2}-4 p_{3}=v
\end{array}
$$

thee eguitions in four unloumas. Eint don't forget thet p is X^{*} imple:

$$
\begin{equation*}
p_{1}+p_{2} \div p_{3}=1 \tag{7}
\end{equation*}
$$

This gives forr ecueticta is Pour virnvi: 3. Sopefullv, we can gelve this synten of equations. First we wosk sitt (6); ada the firsit equation to the second,

$$
p_{1}-p_{2}+p_{3}=2 V
$$

Then the second equistion to the thira.

$$
\begin{equation*}
-p_{1}+p_{2}-p_{3}=2 V \tag{9}
\end{equation*}
$$

Taken together (3) sad (9) inply thit, $V=0$. Eut oefora se can sey anjuileg, we mist complete the solution for the p_{1} to gee if $y_{i} \geq 0$.

$$
\begin{equation*}
E=(3 / 4,1 / 2,1 / 4) \tag{10}
\end{equation*}
$$

is a strategy for I thet keeps his averaige gain to zero no matter what II does. Hence the value of the gare is at least zero, and of ccurae,
 to ell cojams is eareat. To cripl ate the solution, we note thet if the optizal p for I gives poritive weigint to all rows, then IJ.g optimal etratery \mathcal{Z} ganet setisfy the same set of equations (6) and (7) With p repisced by q (because the eace butrix bere is symuetocic). Therefore,

$$
\begin{equation*}
q=(1 / 4,1 / 2,1 / 4) \tag{11}
\end{equation*}
$$

is a strgteza fur If thet iseeps his averege loss to gero no matar wint I does. Tte value of the gane is zerr and (10) and (12) are optizu ioc I and II respactively.

Nomanalnt opremaricen. I.at us extend the esthod used to aches

 each of ing roimas. rhen every or fimal etratey R for I satisiles

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} a_{i j}=V \quad \text { eor } \quad j=1, \ldots, m \tag{12}
\end{equation*}
$$

This wiy be repesented in vesto wnotion e3

$$
\begin{equation*}
\underset{\sim}{P} A=V \underset{\sim}{1} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\underset{\sim}{D}=V \underset{\sim}{A} A^{-1} . \tag{14}
\end{equation*}
$$

 by i^{T} y yeles

$$
\begin{equation*}
I=V \underset{\sim}{2} A^{-1}{\underset{\sim}{1}}^{T} \text { or } V=1 / 2 A_{\sim}^{A}{\underset{\sim}{2}}^{T} . \tag{25}
\end{equation*}
$$

 unique optimai strateg for I is ticerefore

$$
\begin{equation*}
\underset{\sim}{p}=\underset{\sim}{1} A^{-1} / \underset{\sim}{2}{\underset{\sim}{s}}^{-2}{\underset{\sim}{c}}^{T} . \tag{15}
\end{equation*}
$$

II noy $p_{1}>0$ for all i, we cen find the optimel sirateay for II $\begin{gathered} \\ y\end{gathered}$ the sare mathos. The reanit wolid be

$$
\begin{equation*}
q^{T}=A^{-1}{\underset{\sim}{2}}^{T} / 2 A^{-1}{\underset{\sim}{2}}^{T} . \tag{27}
\end{equation*}
$$

Ono adght expect this to work for ell ganen witio syaze retrises for which A^{-1} existig, becauce the 2 of (15) gives $\sum E_{i} a_{i j}=V$ for ail t, and the $\underset{\sim}{q}$ on(17) gives $\sum s_{i j} \eta_{j}=V$ for all i there y satisiden (15). The trouble is tiat either D or q or both x

 y of (15) is the value ot the gate.

If the ralue ce a man is zero, this mothou cennot powis afectiy

यa.y change the gste tatrix into betrig nonkingular. The previous rawhs

 of the matrix to obtain the matrix A, then A is noraline 3 ar wice tre my epphy the ebove rethor. Let us csiry

Cisougin the conjutaticus. Dy zoza hiethod

$$
\underset{\sim}{A}=\left(\begin{array}{rrr}
1 & 2 & -1 \\
2 & -1 & 4 \\
-1 & 4 & -3
\end{array}\right)
$$ or another ${\underset{\sim}{A}}^{-1}$ is otteioned. Then

A^{-1}, is found to be 1 . Therviscre, we

$$
{\underset{A}{ }}^{-1}=\frac{1}{16}\left(\begin{array}{ccc}
13 & -2 & -7 \\
-2 & 4 & 5 \\
-7 & 5 & 5
\end{array}\right)
$$

 Suce both are annegative, joth er optival and 1 la the value or

 order $x \times k$, arid aprijitg the ebeve rethocis and formiles (15), (16), and (17). This is known as the Sheley-Snos Theorem. See Karlin [4] Vol. I, Section $2 . \sin$ for diseusaion and proof. We will eventueliy
 is en efficient methoi not only for solviag equatione of the fors (10),

$$
A=\left(\begin{array}{cccc}
a_{2} & 0 & \ldots & 0 \tag{i}\\
0 & d_{2} & \cdots & 0 \\
\vdots & & \ddots & \\
0 & 0 & & \&_{2}
\end{array}\right)
$$

Suppose all diaconel terms are positive, $d_{1}>0$. The set oi equinticas
(2?) $\mathrm{E}=2 \mathrm{ma}$

$$
\begin{equation*}
z_{i} a_{i}=v \quad i=1, \ldots, \pi \tag{19}
\end{equation*}
$$

whose solution is simyy

$$
\begin{equation*}
P_{i}=v / d_{i} \quad i=1, \ldots, i n . \tag{20}
\end{equation*}
$$

To find V, we sum both sices ryer i to find

$$
\begin{equation*}
1=v \sum_{i=1}^{m} 1 / i_{i} \quad 0 \quad v=\left(\sum_{i=1}^{m} i / a_{i}\right)^{-1} . \tag{21}
\end{equation*}
$$

Sisilarly, the equarions for prayer II yield

$$
\begin{equation*}
a_{1}=v / \varepsilon_{i} \quad i=1, \ldots, m \tag{22}
\end{equation*}
$$

 that (20) and ($\because 2$) giye optinil stratesies for I and in respe:tiveIy, and (2i.) giver tise value of the zana.

As an example, consider the ghaz with
 oftimisl atriesey is propertional to tix

$$
\underset{\sim}{\mathcal{L}}=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

$1,1 / 2,1 / 3,1 / 4$. Siae sum of insa recipromin is $1+1 / 2+1 / 3 \cdots 1 / 2=$

$$
B=g=(22 / 25,6 / 25,4,25 \quad 3 / 25) .
$$

Trienguler games. A class of pemea for which the equations (12;
 zercs above or bulow the ain diagoral. Unike for diagozai gazen, tia method doee not sings work to solve tricmbuiar ammes because the refultirg $i x$ or g may luve negative component. Wevertheless, it woys onten enough to merit special mation. Cowider the zise with triesis:lar

$$
I=\left(\begin{array}{cccc}
1 & -2 & 3 & -1 \\
0 & 1 & -2 & 3 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & i
\end{array}\right)
$$

metrix T. The equations (12) beoove

$$
\begin{aligned}
p_{1} & =V \\
-2 p_{1}+p_{2} & =V \\
3 p_{1}-2 p_{2}+p_{3} & =v \\
-4 p_{1}+3 p_{2}-2 p_{3}+p_{4} & =V
\end{aligned}
$$

$$
p_{i}=v \quad p_{2}=3 i \quad p_{i j}=4 V \quad I_{2}=4 V .
$$

Since $\sum p_{i}=1$, we find $V=1 / 15$ erid $p=(1 / 12,1 / 4,1 / 3,1 / 3)$. The equaticns for the q's are

$$
\left.\because \quad \begin{array}{rl}
q_{1}-2 q_{2}+3 q_{3}-4 q_{4} & =v \\
q_{2}-2 q_{j}+3 q_{4} & =v \\
q_{3}-2 q_{4} & =v \\
q_{4} & =v
\end{array}\right\}\left\{\begin{array}{r}
q_{1}=4 v \\
q_{2}=4 v \\
q_{3}=3 v \\
q_{4}=v
\end{array}\right.
$$

Sinee the p 's and g 's sare nor-nejative, $V=1 / 12$ is tie value $\underset{\sim}{D}=(1 / 12,1 / 4,1 / 3,1 / 3)$ is optimei for I, and $\mathcal{O}=(1 / 3,1 / 3,1 / 1 / 1 / 12)$ is optimil for II.

Brariges

1. Coraicar the game with metrix $\quad\left(\begin{array}{ccc}-2 & 2 & -1 \\ 1 & 1 & 1 \\ 3 & 0 & 1\end{array}\right)$.
(a) Note thet this game lis a saciale point.
(b) Show thet the inverea of the matrix exiote.
(c) Show that II kes an optival atrategy eiving poaitiva veight to eech of his columas.
(d) Why then, don't equativas (i7) give an optimal somatezy for II?
2. Comeser the diagorei mivit zane with mistir (23).
(a) suppose one of the dianjonsi berus 1a zeno. Whet is this value or the game?
(b) Supnose me of the diagoni terns is pozitive ens exictior is negative. What in the value of the gamer
(c) surpoe aly diagotar terns are negation. Wiat is the velue of the gatur
3. Playner TI choneer a nurhor $f:\{1,2,3,4\}$, and plaver I

 II. Citarwise there is to fejoff. Set up the matrix of bist groe and solive.
 it 1s. If haguenoos correitly, he wine 1 from II. If he overeatifates he wins $1 / 2$ form II. If ce uncoresiliasos, there is no paroif. Set dip the mirix of this geme and zolva.
 it is. If he gueeseb corretily, there is ne pagroff. If ie Euage:; tco low, he loges 1 to I. If he gussses too bigh , he loses $1 / 2$ to I. Solva.
4. Solve tice gram with the foliowne matrices.
(a) $\quad\left(\begin{array}{rrr}1 & -1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right)$
(b) $\left(\begin{array}{cccc}2 & 1 & 1 & 1 \\ 1 & 3 / 2 & 1 & 1 \\ 1 & 1 & 4 / 3 & 1 \\ 1 & 1 & 1 & 5 / 4\end{array}\right)$
(0) $\quad\left(\left.\begin{array}{llll}2 & 0 & 0 & 2 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 3 \\ 1 & 1 & 0 & 1\end{array} \right\rvert\,\right.$.
5. Simptric sares. A zane is symmetric if the rules do not distingilsl betwen the players. For symetric games, both piajers shojet hive the saine options (the game satrix should be square), end the payoft if I uses i and $I I$ uses f shouid be the negaitve oi the gyyofi if I azas j and II uses 1 . (The

Efinition. A finite fume is seicito be sumatric if its gate

Stricthy sforkiff, we should say the gate is sucmetric if apter some rearragencht of the rows and colums the game matrix is shew-symutric.

The gara of rara-scissors-xcos is an evemple. Plajers I anc II simintaneousjy disricy one of the thee objects: paper, selssors, or rock. If they both encose the sin- object to display, Etare is ro Fuycre. It thav chocse differnt ebjents, then scissors ain ouer papar (scissors cut faper): ront ains over scibsors (rocir ureqis scisiors), and faper wins ovar rocis (paper covers rocis). If the payofi ugor rinaing of lostrg is s.as unit, then the ratrix of the gate is as folluws.

II

This matrix is siew-symmetric so the game is symmetric: The diaforen elements oi' the matrix are zero. This is true of any biersymmetric matrix, sines $a_{i j}=-a_{i j}$ implies $a_{i i}=0$.

A contrasting couple is the gage of matching penned. The two players sumitanoong choose to show a perry with either the heads of the tais sita inning up. One of the players, say player I, wing if the choices match. The other flayer, player II, wins in the choices difior. Although there is e great deal of symmetry in this game, wo de not call it a symetric gate. Its matrix is

II

This matrix is not skew-sjumetaic.
We expect a symmetric giro to be fair ($\mathrm{V}=0$). That is indeed the casa.

 strategy the exarate naycif is asp:

$$
\begin{equation*}
\underset{\sim}{A} E^{T}=-A^{T} E^{T}=-\left(E E^{T}\right)^{T}=-D A D^{M}=0 . \tag{3}
\end{equation*}
$$

It follows that ming $\underset{\sim}{p} \underset{\sim}{A} q^{T} \leq 0$ for $\operatorname{sil} p$ so that $\underline{v} \leq 0$. Simllarly, $\max _{\sim} \geq \underset{\sim}{\sim}{\underset{\sim}{o}}^{T} \geq 1$ for ail $\underset{\sim}{q}$ so that $\overline{\mathrm{v}} \geq 0$. Since the volics of the garee exists, it must be equal to zero. Now 3uppose R is optimal ict I. Then $\sum_{i=1}^{m} p_{i} a_{i j} \geq 0$ for sil j. Hence
 for IJ. By symetry, is q is ortimal for II, it is optinel sor I also, ara the pronf is completa.

Eramine. Two plajers simultancously choose an integer between 1 and n inclusive, $(r \geq 3)$. In the numbers are equal there is no payof1. The glayer that chooses a number one larger than that crosen by his omponent wins 1 . The piayer that chooses a number two or mese lerger then his opponent loses 2. The payofemetrix is
(4)

The geas is struetiac so tre - In:e is zevo and the players bave

 suspert thet rhere is an opos-ul strate for I with $p_{2}>0, p_{2}>0$
 (asec $G_{2}=F_{1}>0, a_{2}=F_{2}>0, G_{3}=p_{3}>0$ is optimal for iI) ins

$$
\begin{aligned}
p_{2}-2 p_{3} & =0 \\
+p_{1}+p_{3} & =0 \\
2 p_{1}-p_{2} & =0
\end{aligned} .
$$

We find $p_{2}=2 p_{j}$ and $p_{1}=p_{3}$ from the first two equations, and the third equation sis redundant. Since $p_{1}+p_{2}+p_{3}=1$, we rove $4 p_{3}=1$; so $p_{1}=1 / 4, p_{2}=1 / 2, p_{3}=1 / 4$. Since p_{2}, p_{2} end p_{3} are positive, tins gives the solution: $z=q=(1 / 4,1 / 2,1 / 4,0,0, \ldots)$ is option l fo. both revers.

Latin gauare gates. A Latin square is an n by n array or I Cifforent letiters such that each letter . occurs ince and only once in each row and each colvan. The $5 \% 5$ array at the
$\left(\begin{array}{lllll}a & b & c & d & e \\ b & e & a & c & d \\ c & a & d & e & b \\ d & c & a & b & a \\ e & d & b & a & c\end{array}\right)$ $a=1 \quad b=2$ $c=d=3 \quad e=6$ $\left(\begin{array}{lllll}1 & 2 & 3 & 3 & 5 \\ 2 & 6 & 1 & 3 & 3 \\ 3 & 1 & 3 & 6 & 2 \\ 3 & 3 & 5 & 2 & 1 \\ 6 & 3 & 2 & 1 & 3\end{array}\right)$ solutions. The velue is the errerage of the numers in 2 row, aild the etcategy thet chooses each pure stretegy with ealian robability $1 / 0$ is optimal for both players. The reason is not very deep. The conditions for optimality are satisfied.

In the exarmpe cioove, the vailis is $(1+2+3+3+6) / 5=3$, and $(1 / 5,1 / 5,1 / 5,1 / 5 ; 1 / 5)$ is optiral for joth players. The zame of matching pennies is a Latin square game. Its vaiue is zero and ($1 / 2,1 / 2$) in nptimai for both $j 1 \approx \because e r s$.

Excreise3

1. [rwo flevars simiLivancuily choose ga integer between I and a incinaive, (azj. If the numers ere equal there is no Eayof:. The player thsi chorces n namer one larger than thet chonen by his orgenent wins 2 . The player that chooses at numer tho or more lercer timn that chosen by bis oveneris joses 1. (a) Set ug ti:e zase wataix. (o) It turns out that

Solve for the optimal p. (It is not too difficult since you con siscie $p_{1}=p_{5}$ ard $p_{2}=p_{1}$. by symatry.) Cherk tirat in fact the atrategy you find is optimal. -
E. Soive.
(a) $\left(\begin{array}{ccc}0 & 1 & -2 \\ -1 & 0 & 3 \\ 2 & -3 & 0\end{array}\right)$
(b) $\left(\begin{array}{rrr}0 & 1 & -2 \\ -2 & 0 & 1 \\ 1 & -2 & 0\end{array}\right)$
(c) $\left(\begin{array}{rrrr}1 & 4 & -1 & 5 \\ 4 & -1 & 5 & 1 \\ -1 & 5 & 1 & 4 \\ 5 & 1 & 4 & -1 \\ 2 & 2 & 2 & 2\end{array}\right)$
 tise first n^{2} integers aitn the property tiat all rci and colum gumb are equa. Sinn bod to solve all getes with mugiz square jeme moricos. Solve the example.

$$
\left(\begin{array}{rrrr}
13 & 2 & 7 & 12 \\
11 & 8 & 2 & 14 \\
4 & 15 & 10 & 5 \\
6 & 5 & 35 & 3
\end{array}\right)
$$

Tim The axtengive firm of a gema. The normal form of a girse is a sompact way on describing a game snd it is very convenient mathe-
 refill. The retions of acve end position, of bluffing and signaing arat so 0 are net snoment in the normil form of a game. There 10 mother metheraticai wrdel of a gama that is built on the basic notions of position and wove This model we coll the extensive form of mane. There new concents make their apperiance in the exteasive forin of a ga?e: the seine tree, chance movea, and inoormetion sets.

The gare tree. Van games can be zodeled es a dirsited graph in which vercices represent positions end espes : apresent poves. A dirscted grazh is a set I of points called vertices together with a set g of crdered pairs of points oin 2 es.lied erges. Thas (T, B) is 3 directed graph if $T^{\prime}=\{a, b, c, i, e\}$ and $E=\{(a, b),(b, c)(a, c),(c, b)$,
 gad endirg at a vertex $t_{2} 6 i$ is ε_{0} seguerce of enors $e_{1}, \ldots, E_{n_{4}}$ \& E such that t_{1} is the first comporent of a_{1}, t_{2} is the second asmenent of e_{n}, and

Figure 2. for $j=i, \ldots, n-1$, the eecond corpozent oi e_{j} is the same sis the

 veriex.

In game theory we deal with a particular type of diracted graph called a tree. A tree is a directed graph in which there is an inlcial vistex t_{0} such that for every rertex $t \in T$, there is 1 uni.que patia beginning at t_{0} and eadyaz at κ.

The enistence and uniqueness of the patin imples that a wes is corvocted,

Fienta 2. hao a uique inftial vertex, and bis no loops

Figure 2 dhows a tree. In a gase on auch a graph, each vertax (positisu) is asshered to one of the players wio $i 3$ to choose the next edse (more) from thet position. Some vertices, however, will be singled out ad poaitions from which a chance rove is mede.

Cinnes novej. Nany eamen ingolve chance moves. The rolinin of alce. the dealing ois cards, and the cpinging of the wheel of fritume 25031 ex:pies of ctance moves oceurring in gawes. Poker and brider are typical of siree in which chance woves iliay an important role. Even in susaz, thare is generejly z shaca wove to deteraine which pinyer gats the wita pieces (anithireicie the Hirst mave). It is essured
 geanting tyon a crana mora.
 this extandive form of geme is the anont of information arailable so

first move is the chance move of shuppling and dealing the cards; each player is awere of certsin aspacts of the outcome of this move (the cards he received) but he is ritt informed of the complete outcoue (the cards received by the other piayers). This leads to the posaibility of "blurilug." The following example inviving charce moves and insoreation is a model of a sitimion tinet sometrmes occurs in the game of stud poker.

The game ni bluffiras. Player I is dealt a ard from a leces. It io a wiming arad with porebility $1 / 4$ and a losing card uith probability 3/4. Prayer I may then check or bet. If he chechs, then he wins 1 dollas (the ante) from.II if he lata a vinning card, edu he Iosee I dollan to II otherwise. If I Ueta, player II - not knomine what card player i has - thay fold or call. If II folds, he loses 1 dollar to I no ratter wat aard I has. If II calls, I wiss 3 dollara (tre ante plus the bet) from II if he has a pinaing card, and lo:ses 3 doilars to II cthervise.

Det in drew the tree for tre arme of bufuting. There are zt mot three moves in this amar (1) the chance nove that chooess a coid :or I, (2) I's mave fromich he checiss or beta, ara (3) II'a rgire in which he folis or calle. 'ra esch vertex of the zene tree, wottan a lebel incicatris wich pioyor is to move froin that positici:. Craries zores re genereliny rafe: to as moves by nature end usc the liveri N. The tron becoros

 (IE's 2n:35a).

since be is told the outcone of the chance move. This must aiso be indisated on the diagran by drawing smeli circles ebout these veritians. We may delete ore of the labels indicating II's yerifes sirce they belcis to the serce incration aet. It is really the finformetion set that mast be iabeled. The completed game tree becothes

The diagram now contaliss ail the egsential miles of the geine. It is azourec that both ila:sis know the mies of the pare. That is, both plajers are assured to inow the gems tree. Games in which one (or bita) of the whera does not know some of the
 of the infonentine sets, os even mele oranches of the tree, sice

Mot every set of verticez can form an information eet. In order for a plaver not to be augre of whici vertex of a given informion get the gam ins come to, each vaxtex in that informetion aet muet

 sime set of i=bels. The pleyer moving from auch an fnformitoriget がen?

Va abimainie trese idsus sormily.
 given by

 ecose lealints from t,
4) a partition uf tion rext oithe vertines (not terminel anj nyt it

 eraes leading from t.

The information structure in a

 garre in extensive form can be quite complex. It ney involve lack o? inowledge of the other player's moves or of some of the chance troves. It may indicate a lack of morledge of how ingy moves have siresty been made in tiae gaire (as is the case with player II in

Figure 3.

Figure 3). It way deacrioe situations in which one player bes forgottex a mova he han made emrlier (es is the case with playcr I in pigure 4). In eact, one way to tiry to axdel the gama or baidje as a two-perscin zero-sum gerse involvesthe use or thic idas. In bridsa, bese are four fnemvidanas forming tan tean or pertaerowes os tyo playere each. The interemez of the minders of a perimershif aze 1utcricai, wo it mikes sengo to

Figure 4.

Dut the pabess as one partacreve?
 other does not. This iny da descricizd a3 a angie gleyer who alumatiny

A hind of degenergte situation exists

when an information set contains tro vertices Bafcia joinea by a path, an is the case
 tere it as a corverion that a plaver makes gho chotes mon exh ingoration ast durirg
 x:3y tima the inforrition set is reached. II F1gner 5, if I chooses a there is no probien. If I chooses b, tion in tio 20 rex of I's two roxtices tes a is superiluous, and the tree may really be redidead to Figure 6 . Inctead $0:$ usizs the above convention, ve may if we ijire 8.sauna in ticc derintition os a gave in exteasive form tidt no infornation get continas tor verotices joined by a poti.

Figure 5.

Figue 6.

Fswisis.

1. Mayer II choosea one op two bovels in minch to kjee an object.

and with probability $2 / 3$ be is given no inforwation. Also, If the searches the wreng bcx, he 1ε given no information. I wion one from II if te finds the coject; otherwiae there is no payoff. Draw the gane tree.
2. Lres the game tree Por problem 1 , if when I is unguccessful in hio atterpt to pinci tha object, he is given a seciad cipnce to search for the coject with the saxe probsbilities af excceas. (Plaver II does not gat to hide tha object again.)
3. Antetisticel Enre. Player I hes two ccing. One is fail: (probability $1 / 2$ of reads and $1 / 2$ of teils) asal tbe cinex is biecea with prooability $1 / 3$ of heads and $2 / 3$ of taile. Pi:yav. I knows which coin is fisir and which is biased. He selecin One of the coing and tosses it. The outcome of the tosa ia sanounced to II. Then II must guess whether I chose th. fair or bsised soin. If II is correct there is no payoff. If II is incorrect, be loces 1. Draw the geme tree.
4. A eair coin (Frocibility $i / 2$ or heans and $1 / 200$ tails) is tossed end the outcore is sbrra to player I. On the besia of the outcome of this tose, I cecidea whether to bet 1 or 2 . Then player IJ teering the pnount bet buit not innwing the ous, come os tiae tois, wate geses whether the coln wiss heeds or tains. Zinaiy, player I (or, nore realisticaliy, hes partace),
 the outcoze on tice cons, ay doubla or pess. II wins if his gunss lo rowect nimi lobes in his guash is incorject. Tha
absolute velue of the amount won is [the arouns bet (+1 if the coin cones u hests) ($\times 2$ if I doubled). inces the zine tree.
5. The Than zoker ractol. Two players are each deaji ozs cara at ranen fror a dect of three cards $\{1,2,3\}$. (Thera are

 If I cinclis, iI wy checis or ket. If I chasics and in bets, then I may cilu or sold. If both playera check, the plager

 and the ciner cans, the plsyar uith the nigher care otar e. Draw the gam trea. (\#. W. Kuhn, "A simplified toro-ixrsen
 -
6. Relation vethecn the nercal 271 Extensive forms or a game. The notion of a cean in norman form is zuite simple. It is described by a triplet (X, Y, y as in inccion 1 . The extensive form of a game on the other hand is onits complex. It is described by the game trae with non-terminal viticis labeided as a cance move or as a wove of one of the players, witr all iriormation sets specified, with probability distributions given sor all chance moves, and yith a payoff sttachad to each terminnl vertex. It warid seem that the theory of game in extenaive is muck more comprofinive thin the therey of games in normal rorm. This is not the case.

First, let us check that a eare in norinil form cer je put into extensive form. In the rormal forin of a gene, the piavere are considead to malre their choices similtanecusly, while in the extensive porm ois a game simultaneous mas are not ullowed. 末owe;er, simulaneows mores may de made sequen+iaily cas follurs. We let one player, say piayer i, move first, and then jet pleyer II move without biowing the outcome of I's move. This lack of monleder may de described by the use of an eppropriate informacion sot. The cxample balca illustrates this.

$$
\left(\begin{array}{rrr}
3 & 0 & 1 \\
-1 & 2 & 0
\end{array}\right)
$$

matrix eance

equiralent extersive Pora

To go in the reverse diroction from the extensive form of a gam to the renmei form regures consionation of the notion oi a pura

 Y, sie asiz of pure streregies or the players to be used in tide noridu torm. A. Fire suraeay for payer I is a rule that telia hin exactly
 the informition auts for player I and let $I_{11}, \ldots, I_{1 k y}$ be the comespode-

 u_{1} eiewants in $I_{1 i}$, the iumer of such k_{1} tupios and nemon the number of I's pura strategias is $M_{1} \cdot m_{2} \cdot \ldots$. $n_{i I}$. The get of sil such.
 tion sets and $I_{21}, \ldots, t_{2 k_{2}}$ the somoagnaing bets or inbeis, a pure

 5: 25.

 xys?

W上

third fow ta arginated by the first row, and the foumb reid iu coainsted by tha caconci ran. In verm of the original fom of the gem, thes sfas something

$$
\left.\begin{array}{ccc}
& c & 1 \\
(b, b) & -3 / 2 & 1 \\
(b, c) & 0 & -1 / 2 \\
(c, b) & -2 & 1 \\
(c, c) & -1 / 2 & -1 / 2
\end{array}\right)
$$

 fond. The value is $V=-2 / 4$. I's uptimel stretegy is to zir (b, b)

In \geqslant gase ceprafect intornation, tine playere knoy all tion pat troyes

 20t yet :

2eneiser

(b) suive tive yaze.
2. (a). zind the equircient nowal jora of the owe with ar

(b). Solve the eane.

(c) $\because \pm$ ロー


```
    (2) マーエロic゙ミI.
    \therefore0) Tumzine 2.
    (*) Mrozise j.
    (i) En=T泣年4.
```


EVALUACION DE PROYECIOS Y TOMA DE DECISIONES

EES 231

DECISION ANALYSIS

Professor Ronald A. Howard
Department of Engineering-Economic Systems Stanford University

VALUE

> P: ONE DAY IN HOSPITAL WITH SEVERE PAIN, THEN CORF SEVERE PAIN = PULLING WISDOM TOOTH WITHOUT ANESTHETIC r: INSTANT CURE

LIME

BISK

TOWARD A THEORY OF DECISION

THE DEFINITION OF A DECISION
DECISIONS \neq WORRIES
ELEMENTS OF DECISION MAKING- UNCERTAINTY
THE JOURMEY
AXIOMS PROBABILITY THEORY
PROBABILITY = STATE OF MIND,
NOT OF THINGS
THE ASTRONAUTENCODING OF EXPERIENCE- VALUESPREFERENCES FOR OUTCOMESECONOMICLIFE AND LIMP

- CRITERIATIME PREFERENCEGREED - IMPATIENCE
RISK TOLERANCE
COMPARISON OF LOTTERIESBETTING ON SALARY- STRUCTURECAPTURING PROBLEM RELATIONSHIPSTHE EMBODIMENT OF LOGIC

CAVEATS

I. GOOD DECISIONS $\neq \quad$ GOOD OUTCOMES
(LOGICAL)
(DESIRABLE)

- THE LOTTERY TICKET
- ORGANIZATIONAL REWARD
- THE CAPTAIN AND THE ADMIRAL - THE C.P.D.A.

1I. THEORY IS NORMATIVE, PRESCRIPTIVE NOI DESCRIPTIVE

INDIVIDUAL FREEDOM AND
MY GAMBLING BANKER

$$
-6-
$$

A PARTY PROBLEM

Value of clairvoyance - alternate method

"EFFECT ON DECISION"

-7-

A PARTY PROBLEM

'Value of clairvoyance

$$
-8-
$$

$$
-9-
$$

A PARTY PROBLEM

 EFFECT OF RISK TOLERANCE ON VALUE OF INFORMATIONWITH $p=0.4$
RISK INDIFFERENCE
RISK AVERSION

BEST PRIOR
ALTERNATIVE

VHALUE OF
CLAIRVOYANCE

I ALTERNATIVE IN THE ABSENCE OF CLAIRVOYANCE
HOWEVER,
WITH $p=0.5$
RISK INDIFFERENCE
RISK AVERSION

RISK SENSITIVITY PROFILE

A PARTY PROBLEM

ACME RAIN DETECTOR

- CORRECTLY INDICATES TOMORROW'S WEATHER WITH PROBABILITY 0.8
- "S" INDICATES SUNSHINE
- "R" INDICATES RAIN

EXPECTED PROFIT WITHOUT ACME $=\underline{48.00}$

EXPECTED PROFIT INCREASE
11.19
$-14-$

EFFECT OF EXPERIMENTATION

$c=$ PROBABILITY OF CORRECT INDICATION

$$
-15 .
$$

Problem: Adminusteie Rabies Vaccins?
V: ADninister Vaccione (assumg conpletely epritetinio)

$$
-16-
$$

Problem: Aboet Pacriber Diegective Fetus?

ERS 231

Pay to the bearer the sum of Q/000 IF THE WEIGHT OF THE Projector satisfies the pequrgnogut: (\cdots)

Pay to the bearer the sum of. 1000 IF THE TOSSING OF A
SATISFIES THE REOUIEEMENT: COIN SATISFIES THE REQUIREMENT:

$$
(
$$

DEFINE FRACTILE $\leqslant_{x}(f)$

$$
\{x \ll x(f) \mid 8\}=f
$$

f	$G_{x}(f)$
0.01	-26
0.25	-4
0.50	11
0.75	27
0.98	54

$$
\begin{aligned}
\left\{\&_{x}(0.25)<x \ll_{x}(0.75) \mid \&\right\} & =\{x<\leqslant x(0.75) \mid \&\} \\
& -\left\{x<\leqslant_{x(0.25) \mid \&\}}\right. \\
& =0.75-0.25=0.50
\end{aligned}
$$

INTERVAL $\leqslant_{x}(0.25),<_{x}(0.75) \mid$ IS CALLED INTERQUARTILE INTERVAL.
$\{x$ IN INTERQUARTILE INTERVAL I\& $\}=0.50$.

Probnbility Assessmeat

Notations
x: roudan varioble
A: event
A: state of infirmation
$\{x 18\}:$ cleasity fonction of x game d
$\{A \mid S\}:$ probobility of A gios O
$\langle x \mid A\rangle=$ expectolien of x given $A=\int x\{\alpha \mid A\}$
$\left\langle x^{\prime \prime} \mid S\right\rangle=n^{\text {th }}$ morment of x giose $A=\int_{x} x^{n}\{x \mid S\}$
$'\langle x \mid S\rangle=$ rorrance of x given $A=\left\langle x^{2} / A\right\rangle-\langle\pi \mid A\rangle^{2}$
$\{x, y \mid \Delta\}=$ joint densify function of youd y
ε : total experience
$\{x \mid \varepsilon\}:$ "prier" on x

$$
\begin{aligned}
& \{x \mid D\}=\int_{y}\{x, y \mid d\} \\
& \{x \mid \dot{B}\}=\int_{y}\{x \mid y \mathcal{A}\}\{y \mid \delta\} \quad \text { exponsion }
\end{aligned}
$$

FIC. 3 Fialo.is On material lifetime
rosediblity or
LFETRAE EXCEEDING:

\qquad

VARIABLE

Probability Assessment

Consider repeated tossing of a lair coin

$$
\mathbf{H}=\text { Head } \quad \mathbf{T}=\text { Tail }
$$

Let $n x$ number of tosses required to complete first H H H sequence

Ex. HTTHHHTH $\cdot \cdots n=6$

$$
\left\{n \leq x_{n(f)} \mid \varepsilon\right\}=f
$$

1	0.01	0.25	0.50	0.75	0.99
$\leqslant_{n(f)}$					

FILLED FROM LARGE SUPPLY OF BOTH RED AND BLUE BALLS BY COLOR BLIND CHILD.

A BALL IS DRAWN - IF YOU GUESS ITS COLOR CORRECTLY YOU WIN $\$ 100$, OTHERWISE NOTHING.

WOULD YOU PREFER TO PLAY THIS GAME EXACTLY ONCE
A) WITH URN I

OR
B) WITH URN II

THE COLORBLIND CHILD STRIKES AGAIN.

We play a game with the following payoff choice exactly ONCE

TWO OTHER PAYOFF SCHEMES MIGHT BE:

now we make the payoff scheme depend on the outcome of the TOSS OF A FAIR COIN, AND ON WHICH OF TWO OPTIONS WE SELECT.

$$
\text { IF } \mathrm{I}>\mathrm{II}, \text { III }>\text { IV THEN } A>B
$$

BUT

[NOTE: (x, y) MEANS LOTTERY: $\begin{aligned} & p \\ & p\end{aligned}\left\{\begin{array}{ll}\text { win } x\} \\ \text { win } & y\}\end{array}\right\}=1 / 21$ 1
"A lie that you have heard a hundred times is much more CREDIble than a fact you have never heard before,"

Old Adage
"OUR PASSIONS, OUR PREJUDICES, AND dominating opinions, by exaggerating the probabilities which are favorable to THEM AND BY ATTENUATING THE CONTRARY PROBABILITIES, ARE the abundant sources of dangerous illusions."

It is seen in this essay that the theory of probabilitites is at bottom only common sense reduced to calculus: it MAKES US APPRECIATE WITH EXACTITUDE THAT WHICH EXACT MINDS FEEL BY A SORT OF INSTINCT WITHOUT BEING ABLE, OFTTIMES, TO GIVE A REASON FOR IT.

Laplace
 a Philosophical Essay on Probabillities

"A NEW TRUTH DOES NOT TRIUMPH BY CONVINCING ITS OPPONENTS and making them see the light. But rather because its OPPONENTS EVENTUALLY DIE AND A NEW GENERATION GROWS UP that is familiar with it."

UTILITY

NOTATION

PRIZES A, B
$A>B \quad$ I prefer A to B
$A \sim B \quad$ I am indifferent between A and B
$A \geq B$ I like A at least as much as B

- 28-

LOTTERY

```
A lottery is a set of prizes (prospects)
    with ASSOCIATED PROBABILITIES
```


If the prizes in a lottery are all measured in terms of a single commodity (like money), then we can think of A lottery as a random variable.

$$
F_{X}(\cdot)
$$

CONTINUOUS $\quad X: F_{X}\left(X_{0}\right)=F_{N}\left(X_{0} / M, \sigma\right)$

-29-

CERTAIN EQUIVALENT

The certain equivalent of a lottery is a prize SUCH ThAT THE INDIVIDUAL IS INDIFFERENT BETWEEN RECEIVING the prize and participating in the lottery.
notation: $\quad \tau \quad$ is the certain equivalent of a lottery L

THEN

$$
\widetilde{L}=D
$$

If the lottery is a random variable X then \widetilde{x} is its certain equivalent

UTILITY

AXIOMS

1) ordebablutiy of prizes
```
A>B, A}< B,\quadA~R,\quadA\leqslantB,\quadA<
```

TRANSITIVITY IF $A>B, \quad B>C$ THEN $A>C$
2) continulty

$$
\text { IF } \quad A>B>C
$$

THEN FOR SOME P

B IS THEN CALLED THE CERTAIN EQUIVALENT OF THE LOTTERY
3) SUBSTITUTABILITY

A LOTTERY AND ITS CERTAIN EQUIVALENT ARE INTERCHANGEABLE WITHOUT AFFECTING PREFERENCES

4) MONOTONLCITY

IF AND ONLY IF $P>P^{\prime}$
5) DECOMPOSABILITY

$$
1-P: P-P Q
$$

- 3/-

UTILITY

An individual whose preferences satisfy the UTILITY AXIOMS MAY ENCODE THESE PREFERENCES IN A utility function u($)$ defined on the prizes, the function u(.) has two important properties:

1) the utility of any lottery is the expected utility of its prizes
2) If lottery L_{1} is preferred to lottery L_{2}

$$
L_{1}>L_{2}
$$

THEN $u\left(L_{1}\right)>u\left(L_{2}\right)$
the utility function is a preference thermometer
the preferences represented by the utility FUNCTION ARE UNCHANGED IF THE FUNCTION IS subjected to a linear transformation of the FORM

$$
u^{\prime}(x)=\alpha+\beta u(x), \beta>0
$$

$$
-32-
$$

Utictir

Eupected Ctulut Disevation
Consuder finte auchtar of prizes (venords) - $R_{1}, R_{B}, \ldots, R_{Q}$

Orclerability allavs babelling the pries so that

$$
R_{1}>R_{2}>\ldots>R_{N}
$$

perhops sovere \geq
Contivity provides thot to soe $\psi_{i}, 0 \leq \mathscr{L}_{i} \leq 1$

$$
R_{i} \sim
$$

Decamposability implics that all libtericics asin de reduced to sigh sibge fires

Define
Lottiry A
$L^{A}:$

$U_{\text {TILITY }}$

Eupected Ctiuiry Deerastaw

Substitutability requires

Decomposebility allous

Munctunisity forces

$$
\begin{aligned}
& L^{A} \succ L^{B} \text { if and only if } \sum_{i=1}^{N} p_{i}^{A} U_{i}>\sum_{i=1}^{N} p_{i}^{B} \varphi_{i} \\
& \left\langle^{A}\right\rangle\left\langle^{B} \quad \Leftrightarrow \quad\left\langle u \mid l^{A}, \varepsilon\right\rangle>\left\langle u \mid L^{R}, \Delta\right\rangle\right.
\end{aligned}
$$

Uncity
UTILAT

$$
\because f .<17 \%
$$

EsTA3LISHME』T OF UTILTH GqRES

ASSIGNMEIT of. PeCSAEICITY
laterpuchte
Extramanato
EOTRAPCATAF
Downevalid
 utuncer

THIS METHED CAAA EUNQUATG TIE NTLATH OF
ANY POIETT \bigcirc IA TGRNOS OF TNOVN UTMITIES

-37-

Measurement ef
Risa Tocerance

$$
u(0)=0 \quad u(100)=1
$$

...- Resfonse

$$
u(25)=\frac{i}{2} u(100)-(z u(0)
$$

$$
u(10)=\frac{1}{2} u(25)+\frac{1}{2}(40)
$$

$$
u(25)=0.5
$$

$4(10)=0.25$
$(a n=0)=\frac{1}{2} u(m)+\frac{1}{2}$ ches $)$
u(to) 00.75

$$
\begin{array}{ccc}
u(0)=\frac{1}{2} u(100)+\frac{1}{2} u(-30) & u(00)=\frac{1}{2} u(400)+\frac{1}{2} u(0) \quad u(10)=0.8 u(1-0)+a 2 u(10) \\
u(-30)=-1 & u(400)=2 & =0.8 ?
\end{array}
$$

Inconsisterch

Viocates Monotavicity since Letreny
 Must FG FNEFENRED.

Otルity

Consider a Possible $6^{\text {th }}$ Axiont, The Decta prepertr:
an increase of ach peites in A cotrear $B Y$ AN Anount \triangle ancreases the cerctan equivacent BY \triangle.

THEN

Comsequences

1) The Utimty cueve hust be eithen

A streaigut ciaje de an Exporenting.

$$
U(x)=a+b x \quad \text { or } \quad u(x)=a+b c^{-b x}
$$

γ is called the risi: aversion coefficiont
 WICl be tie same as Th:= Certair Equisurent.

Unルハт

The Decta , Precperty

Then his breadeven parmont b and Cértain Equivibutte are equale

Consider O-100 Lottcrey:

UTILITY
/implications of Delta Properer
L: *

$$
\begin{aligned}
\tilde{\zeta}\langle x+\Delta\rangle & =\sim \Delta\rangle+\Delta \\
u^{-1}(\langle u(x+\Delta)\rangle) & =u^{-1}(\langle u(x)\rangle)+\Delta \\
\langle u(x+\Delta)\rangle & =u\left[u^{-1}(\langle u(x)\rangle)+\Delta\right] \\
& =u[\sim\langle x\rangle+\Delta]
\end{aligned}
$$

$$
\left.\langle u(x)\rangle=\int d f_{i} f_{x}(x) u f_{x}\right) \quad\langle u(x+\Delta)\rangle=\int\left(l_{x} f_{x}\left(f_{0}\right) u(x+\Delta)\right.
$$

1) $\frac{d}{d \Delta}\langle u(x+\Delta)\rangle=\int d x f_{0}\left(x_{0}\right) u^{\prime}\left(x_{t}+\Delta\right)=u^{\prime}(\sim\langle x\rangle+\Delta)$
2) $\frac{d \pi}{d \Delta^{2}}\langle u(x+\Delta)\rangle=\int c_{0}^{\prime} f_{x}(x) u^{\prime \prime}(x+\Delta)=u^{\prime \prime}(\sim\langle x\rangle+\Delta)$
3) 11) $\quad \frac{\int d x_{0} f_{x}\left(x_{0}\right) u\left(x_{0}+\Delta\right)}{\int d x_{0} f_{1}\left(x_{0}\right) u^{\prime}\left(x_{0}+\Delta\right)}=\frac{u^{\prime \prime}(\sim\langle x\rangle+\Delta)}{u^{\prime}(\sim\langle x\rangle+\Delta)}$
with $\Delta=0$

$$
\frac{\int d x_{x} f_{x}(x) u^{\prime}\left(x_{0}\right)}{\int\left(d x_{x} f_{x}\left(x_{0}\right) u^{\prime}\left(x_{0}\right)\right.}=\frac{u^{\prime \prime}(\sim\langle x\rangle)}{\left.u^{\prime}\left(v_{x}\right)\right)}
$$

Many different $f_{x}(\cdot)$ will generate sate $\sim\langle x\rangle$ and hence same right hind side. For consistency, $\frac{c^{i / 1 \cdot} \cdot}{u^{1 /}(x)}$ must be a constant.

UTILITY

Imislicatans of Decta Peopertity

$$
\frac{u^{\prime}(x)}{u^{\prime}(x)}=-\gamma
$$

lutey rete

$$
\begin{array}{rlrl}
\text { In } u^{\prime}(x) & =-\gamma x+k_{0} & & y(\gamma=0 \\
u^{\prime}(x) & =k_{1} e^{-\gamma x} & & u^{\prime}(x)=k_{1} \\
u(x) & =k_{2} e^{-\gamma x}+k_{3} & u(x)=h_{1} x+k_{4}
\end{array}
$$

Extonevtias
Lidear

Otוcity

Enpowertiac Uticity

$$
u(x)=a+b e^{-\gamma x}
$$

A Converiout moen is

$$
u(x)=\frac{1-e^{-\sigma x}}{1-e^{-\sigma}}
$$

FOR warche $u(0)=0, \psi(1)=1$.
As $\gamma \rightarrow 0$, ue Fiod $\lim _{\gamma \rightarrow 0} u(x)=\lim _{\gamma \rightarrow 0} \frac{1-e^{-\gamma x}}{1-e^{-\gamma}}=x$
Thprefire, when the reisk anersita COGFFICIEAT is eERD, Tile UTIGitr Cunver IS. A STRAIGIT LINE RAD THE INDIUIDUAL is RISK INDIFFERENT.

WHEN THE RISH AVERSION COEFEICIONT
γ is $\left\{\begin{array}{l}\text { POSITIVE } \\ \text { NEGATINE }\end{array}\right\}$, TITE individunc
IS RISM- $\left\{\begin{array}{l}\text { AVERTINS } \\ \text { PREFERRING }\end{array}\right\}$.

Exponential: determination of γ and ρ
suppose

$$
\begin{aligned}
& 0 \sim \\
& u(x)=\frac{1-e^{-d x}}{1-e^{-6}} \\
& \text { or } \\
& u(x)=-e^{-\sigma x} \\
& \gamma=\frac{1}{\rho} \\
& u(0)=0.5 u(n)+0.5 u(-n / 2)
\end{aligned}
$$

$$
\begin{aligned}
u(0) & =0.5 u(n)+0.5 u(-n / 2) \\
\text { use } u(x) & =-e^{-\gamma x} \\
\text { v } & =1=-0.5 e^{-\gamma n}-0.5 e^{\gamma 1 / 2} \\
2 & =e^{-\gamma / n}+e^{-\gamma / 2}
\end{aligned}
$$

Let $\alpha=\gamma_{n}$

$$
z=e^{-\alpha}+e^{\alpha / 2}
$$

SOlve: $\quad \alpha=0.96242365=\gamma \pi=\pi / \rho$

$$
\therefore \rho=\frac{R}{\alpha}=11039043461 \Omega
$$

ATpiecximately,

$$
\rho=\Omega
$$

BETTER,

$$
\begin{gathered}
\rho=1.04 \mathrm{n} \quad(\text { ADD } 4 \%) \\
\therefore-44-
\end{gathered}
$$

CERTAIA
EOJIVALENT

$-46-$

The Projector Story

$$
\begin{aligned}
& w=\text { Weight of Propector (pands) } \\
& \text { otwo Contrat payoff gionem tom (dollors) } \\
& u(x)=\text { Utility of } x \text { dollars }
\end{aligned}
$$

Catrect: ${ }^{281000}$ of w> V

$$
u=\int_{w}\langle u \mid v(\dot{u})<\rangle\{v \mid \varepsilon\}
$$

The Loptary

Certing Equvaicant, 4^{n}
(or Brenimitar Paymart)

Rish Toceender

Do. You Prester L_{y} or Le?
L_{1} : Certadoty of receiving $1 /$ million

$$
L_{2}:\left\{\begin{array}{cc}
10 & \text { chouces in } 100 \text { of receiving sorition } \\
09 & \text { chonanis in } 100 \text { of recewing is } \\
1 & \text { chance in } 100 \text { of reccionition tho }
\end{array}\right.
$$

Do you prester L_{3} one L_{4} ?

$$
A_{3}:\left\{\begin{array}{l}
10 \\
90 \text { chonces in } 100 \text { of recoing ty somillion } \\
90 \text { chancs in } 100 \text { of receiving th } 0
\end{array}\right.
$$

L4: $\left\{\begin{array}{l}11 \\ 09 \text { ehances in } 100 \text { of recosting sonces in } 100 \text { of recining } \$ 0\end{array}\right.$

Risif Tclowivce

$$
\begin{aligned}
& L_{1}=[1,1] \quad L_{2}=[0.10,5 ; 0.09,1 ; 0.01,0] \\
& \text { (parbers in Dincurus) } \\
& L_{1}>L_{2} \Rightarrow u\left(L_{1}\right)>u\left(L_{2}\right) \\
& u(1)>0.104(5)+0.89 u(1)+0.01 u(1) \\
& 0.1(u(1)>0.104(5)+0.014(0)
\end{aligned}
$$

$$
\begin{aligned}
& L_{3}= {[0.10,5 ; 0.90,0] \quad L_{4}=[0.11,1 ; 0.89,0] } \\
& L_{3}>L_{4} \Rightarrow \quad u\left(L_{3}\right)>u\left(L_{4}\right) \\
& 0.00 u(5)+0.90 u(0)>0.11 u(1) ;-0.09 u(0) \\
& 0.0 u(5)+0.01 u(0)>0.11(u(1)
\end{aligned}
$$

A Cormandiciors
"Sunis Preaces."
Onier Represenmtiors
apateige (sanabe)

"sertain latteries ave specia!"
"tough hak" ticket

THe certain Equivalents are e $\rho=0.0 i, \dot{O}, \dot{i}$

$$
\tilde{L}_{1}=\$ 1,000,000 \quad \tilde{\tau}_{2}=\frac{L_{3}}{46,052}=\$ 1054 . \quad \tilde{L}_{4}=
$$

Ail rights of reproduction reserved by Ronald A. Howard.

Rバメ Mォットリーロ

Prefirences $L_{1}>L_{2}, L_{g}>L_{4}$ wee imbersistiont win oith wation rouef：

Byorderatility， $5>1>0$
By cuntimuty，for some F,

Substitutibulity

By mandinicity，

$$
\begin{aligned}
L_{1}>L_{2} \Rightarrow \quad p & >0.10+0.89 p \\
0.11 p & >0.10 \\
p & >10 / 11
\end{aligned}
$$

Substitutionlity
$\frac{\text { Decumpsobinty }}{f}$

By monitinic．t,$\quad L_{3}>L_{4} \Rightarrow \quad 0.10>0.11 p$

Pisk Attitude
Surec-Tiring Premeiple (Sivalig)

$$
\text { IF }\left[A_{1}>A_{2} \mid E^{-}\right] \text {AND }\left[A_{1} \succ A_{2} I^{\prime}\right]
$$

rried $\Lambda_{1}>A_{2}$

Prouf From Risk Axicars:

1) $\left.\left[A_{1}\right\rangle A_{2} \mid E\right] \Rightarrow\left\langle u \mid A_{1} \in \epsilon^{\circ}\right\rangle>\left\langle u \mid A_{2} \in \hat{c}\right\rangle$
2) $\left.\left.\left[A_{1}\right\rangle A_{2} \mid E^{\prime}\right] \Rightarrow\left\langle u \mid A_{1} E^{\prime} \hat{\varepsilon}\right\rangle\right\rangle\left\langle u \mid A_{2} E^{\prime} \#\right\rangle$

By expansion

$$
\begin{aligned}
\left\langle u \mid A_{i} \varepsilon\right\rangle & =\left\langle u \mid A_{i} E \varepsilon\right\rangle\left\{E \mid A_{i} \varepsilon\right\}+\left\langle u \mid A_{i} E^{\prime} \varepsilon\right\rangle{ }^{\prime} \epsilon^{\prime} \\
& =\left\langle u \mid A_{i} E \varepsilon\right\rangle\{E \mid \varepsilon\}+\left\langle u \mid A_{i} E^{\prime} \varepsilon\right\rangle_{1}
\end{aligned}
$$

Multiply 1) by $\{E \mid \varepsilon\}$, 2) by $\left\{E^{\prime} \mid \varepsilon\right\}$, and acld to $a b t=i m$

$$
\left\langle u \mid A_{1}, \varepsilon\right\rangle>\left\langle u \mid A_{2} \varepsilon\right\rangle
$$

Therefure, $\quad A_{1}>A_{2}$

$$
\because r \quad i_{1}=-
$$

All rights of reproduction reserved by Ronald A. lloward.

Riser Aッルルロー
A．ind
Consider

Suppose $A_{1} \diamond A_{2}$ where \diamond is one of $[\rangle, \sim\langle]$ Original Trees for L_{1}, L_{2}
for L_{3}, L_{4}

Reversed Trees

Therefore，$L_{1} \diamond L_{2}$ if and oncrif $L_{4} \diamond L_{3}$
All rights of publication and reproduction reserved by Ronald A．Howard．

```
PILOT PHASE
    PURPOSE: TO UNDERSTAND AND ESTABLISH EFFECTIVE
            COMMUNICATION REGARDING THE NATURE OF THE
            DECISIONS AND THE MAJOR ISSUES AND UNCERTAINTIES
            SURROUNDING THEM.
    CONTENT:
            - SIMPLIFIED DECISION MODEL
            - TENTATIVE PREFERENCE STRUCTURE
                            - ROUGH CHARACTERIZATION OF UNCERTAINTY
    RESULTS:
            - PRELIMINARY RECOMMENDATIONS
            - GUIDANCE IN CONSTRUCTING FULL-SCALE MODEL
FULLSCALE MODEL
    PURPOSE: TO DETERMINE THE MOST DESIRABLE STRATEGIES
            GIVEN THE AVAILABLE ALTERNATIVES, INFORMATION
            AND PREFERENCES.
    CONTENT:
            - BALANCED,REALISTIC DECISION MODEL
                            - CERTIFIED PREFERENCES
                            - CAREFUL REPRESENTATION OF IMPORTANT
                UNCERTAINTIES
    RESULT:
        - DECISION RECOMMENDATIONS
```

 \(-54-\)
 CASH FLOWS FOR INVESTMENTS A, B, AND C

Stochastic Dominance: Proof

$\underbrace{\substack{\text { Utility } \\ \text { Function. } \\ u}}_{x}$
$U(x)$ Monotonically nom-rinernexi.a::

$$
\begin{aligned}
& u\left(r_{2}\right)>\left(u\left(c_{1}\right)\right. \\
& \text { If } c_{2}>c_{1} \\
& \text { and } u^{\prime}\left(r_{1}\right) \geqslant 0 \quad \text {. }
\end{aligned}
$$

For any L, $\langle u \mid L 1\rangle=\int_{r}\langle u \mid L x A\rangle\{x \mid<1\}=\int_{x}\langle u \mid x 1\rangle\{x \mid 1 j=$
To Prove: If $\left.\left.\{x\rangle \subset \mid L_{2} S\right\} \geq\{x\rangle \subset \mid L_{1} S\right\}$ forallc, then $\left\langle u \mid L_{2}, i\right\rangle \geq\left\langle\ldots \mid L_{1}, .,\right\rangle$
Proof: $\left\langle u \mid L_{2} \Delta\right\rangle \geqq\left\langle u \mid L_{1} A\right\rangle$. If. $\int_{x}\langle u \mid x \Delta\rangle\left\{x \mid L_{2} A\right\} \geq \int_{x}\langle u \mid x A\rangle\left\{x i, i i^{i}\right.$
OR IF $d=\int_{x}\langle u \mid x A\rangle\left(\left\{x \mid L_{2} D\right\}-\{x \mid L, D\}\right) \stackrel{x}{\geq} 0$
$\operatorname{LeT}(i=1,2) \quad f_{i}(\cdot)=\left\{x \mid L_{i} B\right\} ; \quad P_{i}(c)=\int_{-\infty}^{x} d x f_{i}(x) ; \quad P_{i}(c)=1-=P / c$
Hypothesis implies $\quad P_{p}(c) \geq{ }^{\geq} P_{1}(c)$ for all c

$$
\therefore d \geqslant 0 \quad \text { Q } \quad \therefore \quad 0
$$

$$
\begin{aligned}
& d=\int_{x}\langle u \mid x A\rangle\left(\left\{x \mid L_{2} D\right\}-\{x \mid L, \Delta\}\right)=\int_{-\infty}^{\infty} d x d(x)\left[f_{2}(x)-f_{1}(x)\right] \\
& \text { by } \stackrel{r^{2 r+t s}}{=} \underbrace{u(x)\left[\left[P_{2}(x)-\leq P_{1}(x)\right]-\int_{-\infty}^{\infty} \therefore\left[\leq p_{2}(x)-\right.\right.}_{0} \\
& d=\int_{-\infty}^{\infty} \theta \pi\left[\leq P_{1}(x)-\leq P_{2}(x)\right] u^{\prime}(x)=\int_{-\infty}^{\infty}\left[\left(1-P_{1}(x)\right)-\left(1-P_{2}(x)\right)\right](u \%)=\int_{-\infty}^{\infty} i_{2}^{\infty} P_{2}(x)-i_{1}, \cdots, v^{\prime}
\end{aligned}
$$

FIG. 1 A DECISION ANALYSIS MODEL OF THE ELECTRICAL SYSTEM

fig. 2 The mplenented veasion of the model
-58 -

Esproued exps abant

.\therefore An

$$
\begin{aligned}
& \tilde{x}-\frac{1}{8} \times\left(-\frac{0 / x^{2}}{\cot }\right)
\end{aligned}
$$

Answant to \&iocar trausformation
The $\tilde{x} \bar{x}-\frac{1}{E x} \cdot R(\bar{x})$

$$
\begin{aligned}
& -\operatorname{An} \cos / 410 \operatorname{tr}+c \\
& x \approx 8-\frac{1}{2} x \\
& \dot{c}(x)=e^{-(\gamma x i c)} \\
& c a(x)=a+b e^{-\gamma k} \\
& \text { Erposintal }
\end{aligned}
$$

Usicitr
Eraonentian

$$
u(x)=\frac{1-e^{-\gamma x}}{1-e^{-\gamma}}
$$

Cousicler a. lithey or descrebal by fre:)

$$
\begin{aligned}
& u_{v}=\int_{-\infty}^{\infty} d v_{0}^{\infty} u\left(v_{0}\right) f_{v}\left(v_{0}\right) \\
& =\int_{-\infty}^{\infty} v_{c} \frac{1-e^{-r_{2}}}{1-e^{-r}} f_{v}\left(v_{c}\right) \\
& \left.=\frac{1}{1-e^{-r}}\left[\int_{-\infty}^{\infty} \alpha_{0}^{\infty} f_{v}\left(v_{c}\right)-\int_{-\infty}^{\infty} d_{0} e^{-\gamma v_{0}} f_{v} w_{0}\right)\right] \\
& \alpha_{\infty}=\frac{1}{1-e^{-\gamma}}\left[1-\int_{-\infty}^{\infty} e_{0}^{-v_{0}} f_{v}\left(v_{2}\right)\right]
\end{aligned}
$$

st

$$
\begin{array}{ll}
& f_{v}^{e}(s) \\
\therefore & u_{v}=\frac{1}{1-e^{-\gamma}}\left[1-f_{2}(\gamma)\right]
\end{array}
$$

Now $u(\sim)=\frac{1-e^{-\gamma \tilde{r}}}{1-e^{-\gamma}}=u_{2}$

$$
\begin{aligned}
\therefore \quad & e^{-v v} \cdot f_{v}^{e}(\gamma) \\
& \sqrt{v}=-\frac{1}{\gamma} \ln f_{2}(\gamma)
\end{aligned}
$$

As $r \rightarrow 0$

$$
\begin{aligned}
\tau & =\lim _{\gamma \rightarrow 0}-\frac{\ell f_{\gamma}^{e}(\gamma)}{\gamma} \cdot \operatorname{lic}_{\gamma \rightarrow 0}-\frac{f_{v}^{e^{\prime}}(\gamma)}{f_{\gamma}(\gamma)} \\
& =\lim _{\gamma \rightarrow 0}-f_{\gamma}^{e}(\gamma)=v \\
& -60-
\end{aligned}
$$

Uticity

Ermacentuas
Coosideo too iactopandiot lattecies v_{2}, v_{2}

$$
\begin{aligned}
& \overline{v_{1}}=-\frac{1}{r} \Leftrightarrow f_{2}^{e}(r) \\
& v_{2}=-\frac{1}{\gamma} \Leftrightarrow f_{v_{2}}^{e}(r)
\end{aligned}
$$

Let $v_{1}=v_{1}+v_{2}$

$$
\begin{aligned}
\tilde{v}= & -\frac{1}{r} \ln f_{v}^{e}(r) \\
& \left.\left.\left.f_{v} e / s\right)=f_{v_{1}}^{e} / s\right) f_{r_{2}}^{e} / s\right) \\
\tilde{v}= & -\frac{1}{r} \ln \left(f_{v_{1}}^{e}(\gamma) f_{v_{2}}^{e}(\gamma)\right] \\
= & -\frac{1}{r} \ln f_{2} e(r)-\frac{1}{r} \ln f_{\nu_{0}}^{e}(\gamma) \\
\tilde{v}= & \tilde{v_{1}}+\tilde{v_{2}}
\end{aligned}
$$

Uticitr
Consopen Two Lortcues

8: Puntiag one huadecs tines rin

Uticity

$$
\begin{aligned}
& 8:
\end{aligned}
$$

FOR constant risn andercie $\tilde{x}_{B}=100 \tilde{y}$
Exampse $r=0$ chs 6

$$
\begin{aligned}
\tilde{x}_{A}=34 \approx \bar{x}_{A}-\frac{1}{2} \gamma \bar{x}_{A} & =50-\frac{1}{2} \operatorname{log1386)} 2500 \\
& =50-17.33 \\
& =32.67
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{x}_{0}-100 \tilde{y}=100\left(\bar{y}-\frac{1}{2} r y\right)=100\left(0.5-\frac{1}{2}(00138 t) 0.25\right) \\
& L_{2}=\bar{x}_{0}-\frac{1}{2} \gamma y_{0}=50-\frac{1}{2}(0033)_{2 s}!=50-0.1733 \\
& =49.83
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cost of Risn Beacing }=\text { Risx Pecracus } \\
&=\bar{x}-\bar{x} \\
& \approx \frac{1}{2} \gamma \dot{x}
\end{aligned}
$$

If ${ }^{n}$ plapers with some γ share rist equally, x and

Uticity

Ceraminty Equivaleat of Norame Loticey
UTing: $u(x)=\frac{1-e^{-\gamma x}}{1-e^{-\gamma}} \quad$ Lorrone, $\gamma \sim f_{L}(1)$ Erp. TRavsfan' fuefs)
cortanty Equvacout, $\tilde{v}=-\frac{1}{\gamma} \ln f_{0}(\gamma)$
Consider Normal vo

$$
\approx=\mu \quad \sigma v=\infty<\infty<\infty
$$

$$
\begin{aligned}
& \bar{v}=\mu \\
& v^{2}=\sigma^{2}+\mu^{2} \quad f_{v}^{e}(s)=e^{-\mu s+\frac{\sigma^{2}}{2}}
\end{aligned}
$$

$$
\sigma=\sigma^{2}
$$

$$
\frac{\tilde{v}}{\bar{v}}=1-2 \frac{v^{w}}{\tilde{w}} \gamma
$$

Utuity

Lagariamaric
bet y - total worth so for everyege

$u=a \mathbb{L}_{y}+b$, oo $\mathcal{L}_{\boldsymbol{L}}$ by lioear trimenormation
Let ed a total corth befoee boteop x - kitheoy

$$
\text { Thew } u(x)=\ln (x+\alpha)
$$

Rise Aversion Cigopicient

$$
\begin{gathered}
\omega(x)=\frac{1}{x+\alpha} \quad u^{\prime}(x)-\frac{-1}{(x+\alpha)^{2}} \\
\Omega(x)=\frac{-\omega^{\prime}(\alpha)}{a^{\prime}(x)}-\frac{1}{x+\alpha}
\end{gathered}
$$

Risk Augresion Decrecases wita Capitic.
Coranar Eenomient

$$
\begin{aligned}
& u(\tilde{x})=\langle u(x)\rangle \\
& h(x+\alpha)=\overline{\operatorname{l}(x+\alpha)} \\
& \tilde{x}+\alpha=e^{\overline{h(x+\alpha)}} \\
& \hat{x}=e^{\overline{l(x+\alpha)}}-\alpha \\
& \overline{\ln (x+\alpha)}=\int_{-\alpha}^{\infty} f_{s}\left(x_{0}\right) \ln \left(x_{0}+\alpha\right) \\
&-65
\end{aligned}
$$

Uniciry

Logarmamic

$$
\begin{aligned}
& \text { of fos discuete , } p_{i}=p\left(x \in x_{0}\right) \\
& \text { Then } \bar{L}(x+\alpha)=\sum_{j} p_{i} A\left(k_{i}+\alpha\right) \\
& -\sum_{i} \sin (x+\alpha)^{p-} \\
& e^{\overline{R_{1}(x+a)}}=e^{\sum_{i} \mathcal{L}\left(x_{i}+\alpha\right)^{p_{i}}} \\
& =\frac{\pi}{4} e^{\operatorname{La}(\alpha \cdot \alpha)^{P_{i}}} \\
& =\frac{\pi}{i}\left(x_{i}+\alpha\right)^{P_{i}} \\
& \tilde{y}+\alpha=e^{\overline{R(x+\alpha)}}=\prod_{i}\left(x_{i}+\alpha\right)^{P_{i}} \\
& \tilde{x}=\frac{\prod}{i}\left(x_{i}+\alpha\right)^{p i}-\alpha
\end{aligned}
$$

$\therefore \bar{x}, \alpha$ is geometric meom of chsulute payments to an individual wita a cogaritamic Utuitr Curve Lotieries are Equal if tufir Gomatric Means arf Egual $\xi+\alpha$ is arithmafic mean of abrcicte popnents

Since geometric mear is always less than or equal t the corthartic asean

$$
\begin{gathered}
x+\bar{x}+2 \\
x \leq \bar{x} \\
-66-
\end{gathered}
$$

UールバT

Cogarearnale
mSURAARE

Mreat iasuraples Wratent lasuenace

$$
\alpha=5043
$$

WADT ANST BE TAG wORTN β OF TNE MASURER？
with insumenare

$$
(\beta+800)^{0.95}(\beta-9200)^{06}=\beta
$$

obvioustr，$\beta=\alpha+9200=18243$
ASURER AND inSURED jFACE SAME SOT OE LOTTARIES

Logarmamie

IABURAGCE CCOAT.)

IE TAE PREMIUM wERE 600 , TAEN

$$
\alpha=20478 \quad \beta=29878
$$

 THAN 500, SANEE TMIS is PTO EIPGETED COB

Division OP RUM
$4 A O$ INDUIDVAR AAS GOCDB NETETA GOOC in

AIS OWN COWTRE ANS BeOO ABRGAD SAIBS mitw

PRET OE HIS: FAREIGN GOODS MONE. WAAT ARG MIS Poerign HecDiess woretw? dif uses 1 saip

$$
(12000)^{0.9}(4000)^{01}=4000+x^{0}
$$

$$
\tilde{z}=6751
$$

2) IF CSES 2 SAIPS

IN EITMER CASE, $\bar{\otimes}=7200$

UTicity

Expositica on a nem tracery UN THG MGASUREMEAT ON. RISt 4) Danuel Bervodu!
"Specimen Theorine Nove de Mensura Surtis" Comonontario Acadomiae Scientionom Iraperialis Petropulitanac, Tonus I [Papers of the Imperial Acadery of Eunaces in Petersburg, Vol. D], 1738, fp. 175-192

Danve 8eracel FLuid Mocnowies (1700-782)

C゙』ナナ

Logariamaic
WANT FRACTION fop NETV r－AR＇s SACAET MUST AN INBIDIDVAS BECEIVE TO MONCO AIN TO PGAT DOVELE AR NOTAING BITM NGET VEAR＇S SACARY？

$0 R$

$$
\begin{aligned}
& f^{4}+2(\alpha+1) f-1=0 \\
& f=\frac{1}{2}\left[-2(-1+1) \pm \sqrt{4(6+1)^{2}+4}\right]
\end{aligned}
$$

$$
=-(\alpha+1)+\sqrt{(\alpha+1)^{2}+1} \text {. cloose phs sign }
$$

2
-1
0
1
2
3
4
5

$$
\begin{gathered}
\frac{f}{1.0} \\
-1+\sqrt{2}=0.814 \\
-2+\sqrt{8}=0.236 \\
-3+\sqrt{20}=0.162 \\
-4+\sqrt{17}=0.123 \\
-5+\sqrt{28}=0.099 \\
-6+\sqrt{37}=0.083
\end{gathered}
$$

α	$\frac{\alpha}{\alpha}$
-0.805	
-0.8	0.820
-0.7	0.744
-0.6	0.677
-0.8	0.618
-0.4	0.566
-0.8	0.521
-0.2	0.481
-0.1	0.445

Expudeartial

$$
\begin{aligned}
& u(x)=\frac{1-e^{-8 x}}{1-e^{-8}} \\
& \omega^{\prime}(r)=\frac{r e^{-r x}}{1-e^{-r}} \\
& \text { (} \because \cdot{ }^{(x)}=\frac{-x^{2} e^{-\gamma x}}{1-e^{-\gamma}} \\
& \Delta(x)=-\frac{\omega^{n}(\gamma)}{\omega^{\prime} /(x)}=\gamma
\end{aligned}
$$

Sactan tien micet

$$
\begin{gathered}
u(x)=\int d x(x) f_{x}(x) \int d x \cdot \frac{1-e^{-x_{x}}}{1-f_{x}}(x) \quad 0 \\
\frac{1-e^{-\gamma}(x)}{0-e^{-\gamma}}=\frac{1}{1-e^{-\gamma}}\left[\int d x f_{x}(x)-\int d x e^{-x_{0}} f_{y}(x)\right]=\frac{1}{1-e^{-\gamma}}\left[1-f_{x}^{e}(\gamma)\right] \\
e^{-\gamma \tilde{x}}=f_{x}^{e}(y) \\
\tilde{x}=-\frac{1}{\gamma} \ln f_{x}^{e}(\gamma)
\end{gathered}
$$

As $x^{\circ} \rightarrow 0, f_{x}(x)-\delta(x-\bar{x}), f_{x}^{e}(r) \rightarrow e^{-\gamma \bar{x}}, \bar{x} \rightarrow \bar{x}$
As $\left.\gamma \rightarrow 0, \quad f_{x}^{e}(\gamma) \rightarrow 1+\gamma f_{x}^{0}(\beta)+\frac{1}{2} \gamma^{2} f_{x}^{e} \%\right)=-\gamma \bar{x}+\frac{1}{2} \gamma^{2} \overline{x^{2}}$,

$$
\begin{gathered}
\ln f_{x}^{\prime}(\gamma) \rightarrow\left(-\gamma \bar{x}+\frac{1}{2} \gamma^{2} \bar{x}^{2}\right)-\frac{1}{2}\left(-\gamma_{\bar{x}}+\frac{1}{2} \gamma^{2} \overline{x^{2}}\right)^{2} \\
\ln f_{x}^{e}(\gamma) \rightarrow-\gamma \bar{x}+\frac{1}{2} \gamma^{2}\left(\overline{x^{2}}-\bar{x}^{2}\right)=-\gamma \bar{x}+\frac{1}{2} \gamma^{2} x^{2} \\
x=-\frac{1}{\gamma} \ln f_{x}^{e}(\gamma)-\bar{x}-\frac{1}{2} \gamma x^{\gamma} \\
-71-
\end{gathered}
$$

Uticity

Lasierntanc

$$
\begin{aligned}
& u(x)=\ln (x+\alpha) \\
& u^{\prime}(x)=\frac{1}{x+\alpha} \\
& u^{\prime \prime}(x)=\frac{-1}{(x+\alpha)^{2}} \\
& n(x)=\frac{-\alpha(x)}{L^{\prime}(x)}=\frac{1}{x+\alpha}
\end{aligned}
$$

Cgetan Equmaceat

$$
\begin{aligned}
& u(x)=\int d x u(x) f_{1}(x)=\int d x_{0} \ln (x+\alpha) f_{x}(x) \\
& \ln (x+\alpha)=\frac{\alpha}{\ln (x+\alpha)} \\
& \tilde{x}+\alpha \cdot e^{-\overline{\ln (x+\alpha)}} \\
& \tilde{x}=e^{-\overline{\ln (x+\alpha)}}-\alpha
\end{aligned}
$$

ERFCT of ∞ ar Cecran EOndachy
Cossouter Laftery R. Increase payoffs by a
 cquivaleot stal of i(A) cmopore aith
 cortain genosleat z of $x(=x(s))$.

Po approxiention,

$$
\begin{aligned}
& x=\bar{x}-\frac{1}{2} r(\bar{x}) \dot{x} \\
& x\left(\sin =\bar{x}(\Delta)-\frac{1}{2} r(\bar{x}(\Delta)) \times(0)\right.
\end{aligned}
$$

Sance $x(\Delta)=x+\infty, \quad \bar{x}(A)=\bar{x}+0, \quad x(0)=x$

$$
\begin{aligned}
\tilde{x}(\Delta) & =\bar{z}+\infty-\frac{1}{2} r(\bar{x}+\infty) \tilde{x}^{2} \\
& \approx \bar{x}+\Delta-\frac{1}{2}\left[r(\bar{y})+\Delta r^{\prime}(\bar{x})\right] \dot{x} \\
& \approx \tilde{x}+\infty \underbrace{\left[1-\frac{i}{2} r^{\prime}(\bar{x})\right.}_{2} \tilde{x}^{2}]
\end{aligned}
$$

exponeatiol u(s), $r^{\prime}(x)=0, f=1, \quad x(A)=\tilde{x}+\infty$

Comple: Aegocotionc: $\left.r(x)=\frac{1}{x+\alpha}, r / p\right)=\frac{-1}{x+\alpha)^{2}}$

$$
t=1+\frac{x}{2(5+\alpha)^{2}}>1
$$

Uticity

Quadratic

$$
\begin{aligned}
& u(x)=x-\frac{1}{2} q x^{2} \\
& u^{\prime}(x)=1-g^{x} \\
& u \%)=-q \\
& n(x)=-\frac{u^{u}(x)}{u^{\prime}(x)}=\frac{f}{\frac{g}{g}}
\end{aligned}
$$

Cenoram Epumencoser

$$
\begin{aligned}
& \begin{array}{l}
u(x)=\int d x u(x) f_{x}(x)=\int\left(x x_{0}-\frac{1}{q} x\right) f_{x} \\
\widetilde{x}-\frac{1}{2} q \bar{x}^{2}=\bar{x}-\frac{1}{2} q \overline{x^{2}}
\end{array} \\
& -\frac{1}{2} f \vec{x}^{2}+\bar{x}-\bar{x}+\frac{1}{2} f \bar{x}^{2}=0 \\
& \tilde{x}=-\frac{1}{q}\left[-1 \pm \sqrt{1-2 q^{\bar{x}}+q^{2 \bar{x}}}\right] \\
& =\frac{1}{\eta}\left[1 \pm \sqrt{(1-q \bar{x})^{2}+\varphi^{2}\left(\overline{x^{2}}-\bar{x}^{2}\right)}\right] \\
& \tilde{x}=\frac{1}{l}\left[1-\sqrt{(1-y \bar{x})^{2}+y^{2} \dot{x}}\right] \quad \text { Exact } \\
& \tilde{x}=\frac{1}{q}\left[1-\left(1-g^{\bar{x}}\right) \sqrt{1+\frac{g^{2}}{\left(1-g^{\bar{x}}\right)^{n}}}\right]
\end{aligned}
$$

As $x_{x} \rightarrow 0$,

$$
\begin{aligned}
\tilde{x} & \approx \frac{1}{g}\left[1-(1-g \bar{x})\left(1+\frac{1}{2} \frac{g^{2}}{\left(1-q^{x}\right)^{2}} \dot{x}\right)\right] \\
& \approx \bar{x}-\frac{1}{2} \frac{g}{1-g^{x}} \dot{x} \\
& \approx \bar{x}-\frac{1}{2} \pi(\bar{x}) \dot{x} \\
& -74-
\end{aligned}
$$

Uticmr

A) Fundameñok Thinner

The effect of increased : vi...ning Dispersion of the posterior mean ariel contraction ; of the posterior variance. With no sampling $x^{\prime}=\begin{aligned} & \bar{x}^{\prime \prime} \\ & x^{\prime} \\ & v\end{aligned}, \bar{x}^{\prime \prime}-0$ With infinite sampling $x^{\prime \prime}=\underline{V}^{\prime \prime}, \bar{x}^{\prime \prime}=0$

ASISTENTES AL CURSO EVALUACIONDE PROYECTOS Y TOMA DE DECISIONES OC'TUBRE DE 1.978.

1. FRANCISCO baIIAMONDE TORRES
'3.A.R.II.
DIR. GRAL. DE PROTECCION Y ORD. ECO. RLEORMA 107-1 ${ }^{\circ}$
MEXICO, D.F.
TEL. 566.06. 88 EXT. 154
2. ARIEL BAUTISTA GARCIA

Centro sahop
dilligacion asent. humanos
IGILESLAS 202 P.A.
PACIILCA, HGO.
TEL. 2.45. 80
3. ENRI QUE BETANCOURT GONZALEZ

COLLEGIO DE BACHILLERLS
AV. CUALIITLMOC 1236
MEXICO 13, D.F.
TEL. .559.76.97
4. RAUL CASTLLLO GUERRERO

- FIDEICOMISO LAZARO CARDENAS

MIGUEL A. DE QUEVEDO 276
MEXICO 21, D.F.
TEL. 554.11.45
5. ROBERTO COL SA DIAZ

CIA. DE LUZ Y FZA. DEL CENTRO, S.A.
MLLCHOR OCAMPO 171
MEXICO 17, D.F.
TEL. 566.47.13
6. VICTOR CASTORENA DAVIS
iguala 36-2
COL. ROMA SUR
MEYICO 7, D.F.
TEL. 574.44.32
7. JOSE CARMEN CONTRERAS GUTIERREZ
S.A.R.H.

PL. \backslash ZA DEE LA REP. 31
MLEXICO I, D.F.
TLL. 592.18.44
:
8. PORFIRIO CORDOVA SANCHEZ

SUWDIRLCCIONDE INVERSIONES DEL
GOBILRNO DEL EDO. DE MEX.
Palacio de GOberno, TOLUCA
LSTADO DE MEX.
TLiL. +06.13 y +0690

EDIF. 1 ENTRADA B DEPTO. 501
UNIDAD LINDAVISTA VALLEEJO
MEXICO 14, D.F.
TEL. 587.37.92

TIBO PARAISO 105
REAL DE MINAS
PACIJUGA, HGO.
TEL. 2. 11.31

AV. SN. JERONIMO 1491
MEXICO 20, D.F.
TEL. 595.09.93

REP. DE ARGENTINA 96-14
MEXICO I, D.F.
TEL. 554.11.45
J. SANCHEZ AZCONA 1412 No. 401

COL. DEL VALLE
MEXXICO I2, D.F. TEL. 566.47.13

JOSE MA. MOREL_OS 215
COL. LOMABONJTA
N'TEZATHUALCOYOTL, EDO. DE MEX.

ๆ．CARLOS DE ICAZA LOZANO
S．A．R．H．
REFORMA 20－1 ${ }^{\circ}$
MLXCO，D．F．
TEL．591．14．61
AV．CORDOt？A 511
COL．VALLE＇DORADO
TLALNEPANTLA，EDO．DE MEX．
TELL．379．06． 82
10．MA．MARGARITA DEL VALLE
DIR．GRAL．DE BIBLIOTECAS
U．N．A．M．
TレL．548．65．60 EXT． 525
AV．COPILCO 300－11－203
COL．COPILCO
MEXICO 20，D．F．
TEL．548．23．41
11．ANTOYOVICTOR ECHEGOYEN GUZMAN HILJS MEXICANOS S．A．
LELBNITZ 14
MEXICO 5，D．F．

12．RICARDO ESCOBEDO VILLALON
LSTLIDIOS Y PROYECTOS INTEGRALES S．
DIRIECTOR
GALILAEO 20－401
MEXICO 5，D．F．
TEL．5：31． 82.42 y 43
OSA MAYOR 43
COL．PRADO CHUR！JBUSCO
TEL．670．54．12

MONTE CHIMEORAZO 513－5
LOMAS DE CHAPULTEPEC
MEXICO 10，D．E．
TEL．540．21．78

13．JORGE FLORLS CANCHE
S．A．R．ll．
REFOR MA 51－15
MLXICOI，D．F．
TEL．535．54．83
MORAS 345－1
MEXICO 12，D．F．
TEL．575．48．73

14．FRANCO DEL VALLE TEOBALDO N．
S．A．l＇P．
XOLA $1755-4^{\circ}$
MLXICO 12，D．F．
「LEL．519．80．48
15．PALILINO ALBERTO ERIAS RODRRIGUEZ
FIDEICOMISO DE PROGRAMACION Y PRESUPLESTO
MOBLI A．DE QUEVEDO 276
NEXICO 21，D．17．
TLLL． 5.54 .11 .45
16．MICUEL ANGLIL GALAVIZ HIGUERA
S．A．H．O．P．
RLFRMA 77－10
MLXICO，D．F．
「LLL．591．18．69
17．AIFRREDO GAMLZ LOPEZ
UNIVLLRIDAD VERACRUZANA
「ACLLTAD D：INGENIERIA
XA！APA，VE゙R。
「以゙，7．32．14

CALLE 5 \＃ 339
COL．ALDAMA ．
MEXICO 15，D．F．
TEL．355．29．77

VALLE DE ATENCO 19
FRACC．VERGEL DE COYOACA N MIEXICO 22，D．F．

MEDELLIN 155－202
COL．ROMA
MEXICO 7，D．F．
TEL．564．59．66

BETTANCOURT 67
XALAPA，VER．
TEL． 772.34
18. MANULL GARCIA CARMONA SANTIESTEBAN

SECRETARIA DE MARINA
AZUETA NO. l
MEXICO I, D.F.
TLL. 521.79.95
19. ERNESTO CONZALEZ OCAÑA
S.A.R.H.
P. DE LA REFORMA 51

MEXICO 1, D.F.
TLEL. 535.54 .83
20. RAUI, CONZALEZZ VELASCO

CIA. DE LUZ Y FUERZA DEL CENTRO
MLLCHIOR OCAMPO NO. 171
MEXICO 17, D.F.
TEL. 518.00.80
21. THELMA GUTIERREZ SANCHEZ

PLEMEX
MARINA NAL. 329
DEPTO. DE SISTLMAS ECONOMISTA
MEXICO 17, D.F.
TEL. 531.37 .95
22 JORGE HERNANDEZ R.
I.S.T.M.E.

AV. LEGARIA
COL. PENSL
MEXICO, D.F.
TLLL. 399.69.22 EXT. 124
23. SAMUEL HUERTA PARRA
S.C.T.

INSURCENTES SUR 465
MEXICO, D.F.
24. PABLO JARDON HERRERA

CIA. DE LUZ Y FZA. DEL CENTRO S.A.
MELCIOR OCAMPO 171
MEXICO 17, D.F.
TEL. 518.00. 80 ЕХГ. 213
25. JACINTO LIMA M.
banco intiramericano de desarrolloo
REFORMA 379-7
MEXICO I, D.F.
TEL. 33.57.09
26. MATIAS LOPEZ IMMENEZ

IIR. GRAL. DE AEROPUERTOS $\therefore . \therefore .11 .1 .1$.

CAPRICORNIO 75
COL. PRADO CHURUBUSCO
MEXICO 13, D.F.
TEL. 581.47.49
la. CERRADA AV. 599° No. 4
U. ARAGON

MEXICO 14, D.F.
TEL. 760.06.79

CON TADORES' 56
JARDINES DE CHURUBUSCO
MEXICO 8, D.F.
TEL. 670.29.73

TEJOMULCO 22
STA. CRUZ A.
XOCHIMILCO
MEXICO 23,D.F.

ANDIADOR 28 DIV. DELNTE. 21
VILLA COAPA
MEXICO 22, D.F. TEL. 594.09 .60

HIDALGO 28
TLACOPAC
MEXICO 20, D.F.

SUR 113 \# 514
SECTIOR POPULAR
MEXICO, D.F.
TET. 670.50 .93
CALLE SUR 111 A \# 328
fileroes de churubusco
MEXICO 13, D.F. 519.80 .46
27. JORGE ROBERTO LOPEZ RAMIREZ S.A.R.H.

PLAZA DE LA REP. $31-7^{\circ}$
ME XICO, D.F.
TEL. 535.1325
28. JOSE LUS LUJAN HUERTA
S. C. T.

DIR. GRAL. DE OBRAS MARITIMAS INSURGENTES SUR 465
MEXICO, D.F.
TEL. 564.76.68
29. MARIO GERARDO MACAY LIM S. A. R. H.

REFORMA 51-15 ${ }^{\circ}$
MEXICO 1, D.F.
TEL. 566.97.69
30. JOSE LUS MADRD FRANCO
S.A.H.O.P.

XOLA 1755
MEXICO,D.F.
TEL. 530.99.71
31. SALVADOR MANRIQUE LEIJA DIR. RAL. DE PLANIFICACION D. D. F.

SUBJEFE DE OFICINA
PINO SUAREZ NO. $15-1^{\circ}$
MEXICO 1, D.F.
32. CESAR R. MARGAIN Y R.S.
D. D. F.

DIR. GRAL. DE PLANIFICACION
PLAZA DE LA CONSTITUCION
MEXICO I, D.F.
TEL. 521. 30.94
33. MANUEL MARTINEZ GARRDO PROFESOR
U. N. A. M.

TEL. 548.99.42
34. IGNACIO MONSALVO ESCAMILLA S. A. R. H.

REFORMA 20-1으응
MEXICO 1, D.F.
TEL. 546.64.84

FCO. PIMENTEL 27 ALTOS 5 COL. SAN RAFAEL MEXICO 4, D.F. TEL. 535.36.11

RET 9 FCO. DEL PASO Y T. EDIF. 19 A-201 MEXICO 9, D.F. TEL. 552.78 .63

CALLE BARRILITO 279
COL. ESPERANZA
NETZAHUALCOYOTL, EDO.DE MEX.

AV. CHAPULTEPEC 456
MEXICO 7,D.F.
TEL. 521.30.94

CERRO DEL PEÑON 117-4
MEXICO 2l, D.F. TEL. 689.13.56

GPE. VICTORIA 286
MEXICO 14, D.F.
TEL. 781.45.69
35. MARRON HERNANDEZ RIGOBERTO S.A.R.H:

IGNACIO RAMIREZ No. 20
MEXICO, D.F.
TEL: 592-36-84
36. JESUS LUMBRERAS GUERRERO

COLEGIO DE BACHILLERES
AV. CUAUHTEMOC No. 1236-80. PISO
STA. CRUZ ATOYAC
MEXICO 12, D.F.
TEL: 559-55-22
37. MANUEL ARTEMIO MIRANDA MENDEZ

COCA COLA DE MEXICO
RIO AMAZONAS No. 43-4o. PISO
MEXICO 5, D.F.
TEL: 591-00-66
38. MARTHA MARGARITA MONOBE HDEZ.
S.A.R.H.

REFORMA No. 51-150. PISO
COL. SAN RAFAEL
MEXICO 4, D.F.
TEL: 566-97-92
39. MARIO MONTERO MANJARREZ

DIREC. GRAL. DE OBRAS PUBLICAS-DDF
TLALOC No. 1, ler. PISO
MEXICO, D.F.
TEL: 592-31-96
40. GABINO GASPAR MONTERROSA REYES S.A.R.H.

REFORMA 107-1er. PISO
MEXICO 13, D.F.
TEL: 566-95-58
41. IGNACIO NIEVA CALDERON

BCO. INTERAMERICANO DE DESARROLLO
REFORMA No. 379-1er. PISO
, COL. CUAJHTEMOC
MEXICO 5, D.F.
TEL: 533-57-09
42. JUAN MANUEL ORENDAY GONZALEZ
S.A.H.O.P.

XOLA 1755-4o. PISO -DEPTO. TECNICO MEXICO 12, D.F.
TEL: 519-80-46

CABQ SAN ROQUE No. 49
COL. GABRIEL HERNANDEZ
MEXICO 14, D.F.
TEL: 577-19-25

ANTILLAS No. 507-1
COL. PORTALES
MEXICO 13, D. F.
TEL: 532-89-97

GUERRERO No. 325
EDIF. IGNACIO RAMIREZ
ENT. "E", DEPTO. 1217
MEXICO 3, D.F.
TEL: 597-19-04

AV. AMERICAS No. 81-201
COL. MODERNA
MEXICO 13, D.F.
TEL: 566-60-27

ORIENTE 53 No. 338-4
COL. VILLA DE CORTES MEXICO 13, D.F.
TEL: 590-37-61
SARATOGA No. 1017-202
COL. PORTALES
MEXICO 13, D.F.
TEL: 532-46-59

ING. CARLOS DAZA No. 212-12
COL. GPE. INSURGENTES
MEXICO 14, D.F.
TEL: 759-19-04 533-57-09
DIV. DEL NORTE No. 1251-103

COL. VERTIZ NARVARTE
MEXICO 13, D.F.
TEL: 519-80-46
43. JAVIER PALACIOS MONTOYA

COM. PLAN NAL. HIDRAULICO -SARH TEPIC No. 40
COL. ROMA
MEXICO 7, D.F.
TEL:
44. MAURO PEÑA V.

COLEGIO DE BACHILLERES
AV. CUAUHTEMOC 1236
MEXICO 13, D.F.
TEL: 559-66-73
45. WALTER PINEDA PINEDA

THE COCA COLA EXPORT COORP.
AMAZONAS No. 43-4o. PISO
COL. CUAUHTEMOC
MEXICO 5, D.F.
TEL: 591-00-66
46. HECTOR F. QUIROZ V ILCHIS
S.A.R.H.

PLAZA DE LA REPUBLICA 31-7o. PISO
MEXICO 1, D.F.
TEL: 535-13-25
47. TARSICIO RAMIREZ CARREÑO
S.A.H.O.P.

BLVD. XOLA No. 1755
MEXICO 13, D.F.
TEL: 519-18-02
48. LUCIO RIOS AVILES

DIREC. GRAL. AEROPUERTOS-SAHOP
XOLA 1755
COL. NARVARTE
ME XICO 12, D. F.
49. FRANCISCO RIOS HERNANDEZ
S.A.R.H.
P. DE LA REFORMA 51-15o. PISO

MEXICO 4, D.F.
TEL: 566-97-83
50. ROBERTO RIVERA RIOS

DIREC.GRAL. CARRET. FEDERALES S.A.H.O.P.

XOLA Y UNIVERSIDAD
MEXICO 12, D.F.
TEL: 519-92-21

JUAN A. GUTIERREZ No. 67-4
COL. MOCTEZUMA
MEXICO 9,D.F.
TEL: 762-32-03

ATLETAS 51-101
COL. COUNTRY CLUB
MEXICO 21, D.F.
TEL: 544-59-45

EDIF. PEDRO MORENO ENT. "C" DEPTO. 309 - TLATELOLCO ME XICO 3, D.F.
TEL: 583-18-31

BELGICA No. 1003
COL. PORTALES
MEXICO 13, D. F.
TEL: 532-26-00

AV. MORELOS No. 605, EDIF. C-2 COL. BALBUENA MEXICO 8, D.F. TEL: 768-73-09

FCO. MORAZAN 490-4
JAMAICA MEXICO 8, D.F. TEL: 530-30-53

CLAVELINAS No. 181
COL. NUEVA STA. MARIA
MEXICO 16, D.F.
TEL: 556-46-03

ANICETO ORTEGA No. 1044-6
COL. DEL VALLE
MEXICO 12, D.F.
559-24-68
51. ROGELIO RIVERO CARRARO

SECRET ARIA DE PROGRAM. Y PRES.
IZAZAGA No. 38
MEXICO 1, D.F.
TEL: 521-69-27
52. JAVIER ROMERO VIGUERAS
S.A.H.O.P.

REFORMA 77-100.
MEXICO 4, D.F.
TEL: 546-80-17
53. LUÇAS RUIZ GONZALEZ
I.S.T.M.E

AV. LEGARIA No. COL. PENSIL
MEXICO, D.F.
TEL: 399-69-22-124

FERROCARRIL INDUSTRIAL \# 56
COL. LA RAZA MEXICO 15, D.F. TEL: 355-17-56

LUIS QUINTERO No. 43
ATZACOALCO
MEXICO 14, D.F. TEL:

AV. UNIVERSIDAD No. 903-15
COL. DEL VALLE MEXICO 12, D.F.
54. VICTOR MANUEL RUIZ PADILLA

DESARROLLO DE SERV. CORPORATIVOS, S.C. CHOLULTECAS No. 62 CULIACAN No. 108-2o. PISO COL. HIPODROMO CONDESA
\therefore MEXICO 11, D.F.
TEL: 564-85-00
55. JOSE LUIS SANCHEZ CONTRERAS SECRETARIA DE PROGRAM. Y PRESUP. SAN DIEGO No. 32 JOSE MA. IZAZAGA 38-5o. PISO MEXICO 1, D.F.
TEL: 521-62-41 MEXICO 15, D.F. TEL: 583-60-84
56. RAFAEL SAINZ ZAMORA S.A.R.H.
P. DE LA REFORMA No. 20-105

MEXICO 1, D.F.
PENNSYLVANIA No. 280-40.-2B
COL. NAPOLES MEXICO 18, D.F.
57. LUIS ALFONSO SOSA VILLASEÑOR PEMEX
MARINA NACIONAL No。329
MEXICO, D.F.
TEL: 531-37-95
58. ADAN SOTO GOMEZ
S.A.H.O.P.

AV. REFORMA 77-7o. PISO
MEXICO, D.F.
TEL: 546-80-17
CARR. DESIERTO LEONES 6563
COL. V. ALVARO OBREGON MEXICO 20, D.F.
TEL: 566-67-77 Clave 5326

SUR 143 No. 1903
COL. GABRIEL R. MILLAN
MEXICO 8, D.F.
TEL: 657-04-73
59. ROBERTO TAVERA CARMONA
S.A.H.O.P.

XOLA YAV. UNIVERSIDAD
MEXICO 12, D.F.
TEL: 530-33-11
60. VICTOR MANUEL TORRES DELGADO D.D.F. - DELEG. XOCHIMLCCO

PROLONG. GLADIOLAS No. 161
COL. XOCHIMILCO
MEXICO 23, D.F.
TEL: 676-06-68 676-05-76
61. JAVIER VALADEZ BECERRA

ESC. CIENC. QUIM. DE LA U.A.Z.
ANTONIO DOVALI S/N
ZACATECAS, ZAC.
TEL: 2 19-99
62. MANUEL VARELA CAMAOHO BUFETE INDUSTRIAL
TOLSTOI No. 22
MEXICO 5, D.F.
TEL: 533-15-00
63. GANDHI ZILLI V.

SECRETARIA DE MARINA
REFORMA No. 40
MEXICO 1, D.F.
TEL: 535-23-51
64. JESUS ZUÑIGA RUIZ

COM.AGUAS DEL V. DE MEX.S.A.R.H. BALDERAS 55-4o. PISO MEXICO 1, D.F. TEL: 585-50-66

ESCULTORES No. 80
CD. SATELITE, EDO. DE MEX.

TEL: 562-82-62

RAYON NORTE No. 213-409
TOLUCA, MEX.
TEL: 559-91

DR. IGNACIO HIERRO No. 407 ZACATECAS, ZAC.
TEL: 2 50-15

MANUEL GAMIO No. 557
COL. SINATEL MEXICO 13, D.F. TEL: 581-07-80

REFORMA No. 40
MEXICO 1, D.F.
TEL: 535-23-51

ADOLFO PRIETO No. 125-404-B
COL. DEL VALLE
MEXICO 12, D.F.
TEL:

[^0]: 'edcs.

[^1]: ${ }^{1}$ Asailable from the Graphic Calcutator Co.. Barringion, Ill.

[^2]: \bullet

[^3]:

[^4]: 'We are grateful to Laurence Doty of Aliation Wreh and Sinace Technolog, for providing much of the factual material for this section.

[^5]: "illiam Fruhan. "P3rrhic Vecones for Market Share." Hurıard Business Revien. -ricmter-Oiluter. 1972.

[^6]: 'Recall that a pure strategy is one that dictates the selection of a singie option. We can define a mixed strategy as one that directs the player to choose from twio or more options according to some probabilistic rule which details with what probabhty each option is to be selected.
 'For this simple 2×2 payoff table, there is an easy graphical method to compute this mis. In general. for any two-person zero-sum game, mined strategies can be determined by formulating and solving an appropriate linear program. It is not necessary to acquaint jou with the computational deitails of finding mixed strategies, but we w'ant to point out that there are situations in which it is worthwhile to consider mixed strategies.

[^7]: - Anatol Rípoport and A. V. Chamnah. Prisener's Dilemma: A Study of Confica and Couperatuon (Ann Arbur: Uinnersity of Michgean Press. 1965).

[^8]: " anatol Rapoport, Fights, Games and Debates (Aan Arbor: University of Michigan Press. 1960), p. 177.

[^9]: tll ne"l prod " introductions. however. cannot be andyzed this way: sume, for invance. huseal iriv Dilemma character.

