

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Vniver4dad Nacional AvFr>ma de Mexico

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

FACULTAD DE INGENIERÍA

ANÁLISIS TÉRMICO DEL EFECTO DE LA TEMPERATURA EN EL GASTO DE PRODUCCIÓN

TESIS

QUE PARA OPTAR POR EL GRADO DE:

MAESTRO EN INGENIERÍA

PETROLERA Y DE GAS NATURAL - PRODUCCIÓN

PRESENTA:

EVER LOPEZ SANTOS

Tutor:

M. EN I. JOSE ANGEL GOMEZ CABRERA

2012

JURADO ASIGNADO:

Presidente:	Dr. Domínguez Vargas Guillermo Cruz
Secretario:	Dr. Samaniego Verduzco Fernando
Vocal:	M.I Gómez Cabrera José Ángel
1er Suplente:	Dr. Fairuzov Yuri Valerievich
2do Suplente:	Dr. Rangel Germán Edgar René

Lugar o lugares donde se realizó la tesis: México, D.F.

TUTOR DE TESIS:

M.I Gómez Cabrera José Ángel

FIRMA

DEDICATORIA

A mis niños Vivian, Diana y Heber con la esperanza de ser un ejemplo para ellos.

A mi esposa Teresa por todo su amor y apoyo para alcanzar esta meta de mi vida.

A mis padres y hermanos por sembrarme la inquietud de superarme constantemente.

AGRADECIMIENTOS

Al M. en I. José ángel Gómez Cabrera por brindarme su apoyo durante la maestría y compartirme sus conocimientos.

De manera muy especial al Dr. Fernando Ascencio Cendejas, por apoyarme y compartirme sus conocimientos para elaborar el presente trabajo de Tesis.

A los Ingenieros J. Javier Hinojosa Puebla, Gustavo Hernández García y de manera muy especial a Norma López Alcalá y Judith Martínez García por su apoyo incondicional para llevar a cabo el proyecto de realizar los estudios de maestría.

A mis compañeros de generación Giuseppe, Diego, Ethiel, Eduardo, Marco, Alfonso, Oscar, Vladimir, Mónica y Fany por brindarme su amistad y compartirme sus conocimientos y experiencia.

A mis profesores por transferirme sus conocimientos y ayudarme a desarrollarme profesionalmente.

CONTENIDO

Lista de figuras	i
Lista de tablas	ii
Resumen	iii
Abstract	iv

Capítulo I. Introducción	. 1
1.1 Planteamiento del problema	. 1
1.2 Objetivos	. 2
Capítulo II. Conceptos básicos	. 3
2.1 Crudos extra pesados	3
2.2 Mecanismos de transferencia de calor en un pozo marino	. 7
Capítulo III. Modelos existentes para estimar la temperatura en pozos	9
3.1 Modelo de Ramey, H. J. Jr	. 9
3.2 Modelo de Hagoort, J	10
3.3 Modelo de Wu, Y.S. y Pruess, K.	10
3.4 Modelo de Guo, B., Duan, S. y Ghalambor, A.	11
Capítulo IV. Modelo para estimar la temperatura en el pozo	12
4.1 Coeficiente total de transferencia de calor	12
4.2 Estimación de la temperatura desde el fondo del pozo hasta el lecho	
marino	15
4.3 Estimación de la temperatura en el riser	21
4.4 Validación	24

Capítulo V. Aplicación de campo y análisis de resultados	25
5.1 Estimación de la temperatura en el pozo	27
5.2 Efecto de la temperatura en la viscosidad	28
5.3 Comportamiento del número de Reynolds	30
5.4 Efecto del Coeficiente total de transferencia de calor en el gasto de	
producción	32
5.5 Efecto de la temperatura en el gasto de producción con análisis noda	ıl
	33
Capítulo VI. Conclusiones y recomendaciones	37
6.1 Contribución	37
6.2 Conclusiones	37
6.3 Recomendaciones para trabajos futuros	38

omenclatura

Bibliografía	41
--------------	----

Apéndice B. Progr	ama de simulación	para el cálculo de la	temperatura 52
-------------------	-------------------	-----------------------	----------------

LISTA DE FIGURAS

Fig. 2.1	Variedad de petróleos a nivel mundial en función de grados API y viscosidad	4
Fig. 2.2	Reservas de petróleo en el mundo por tipo de crudo	. 5
Fig. 2.3	Mecanismos de transferencia de calor en un pozo costa afuera	. 8
Fig. 4.1	Distribución de la temperatura del pozo	13
Fig. 4.2	Modelo de pozo para estimación de la temperatura	16
Fig. 4.3	Datos medidos y calculados para inyección de agua	24
Fig. 5.1	Comportamiento de la temperatura en el pozo	27
Fig. 5.2	Comportamiento de la viscosidad	29
Fig. 5.3	Comportamiento del número de Reynolds	31
Fig. 5.4	Efecto del Coeficiente total de transferencia de calor en el gasto de producción	32
Fig. 5.5	Caídas de presión en el sistema integral de producción	34
Fig. 5.6	Análisis nodal del efecto de la temperatura en el gasto	36

LISTA DE TABLAS

 Tabla 2.1 Clasificación del aceite por tipo de crudo
 3

Tabla 2.2 Propiedad de los campos de crudo extra pesado en la Región Marina	
Noreste	6

 Tabla 5.1 Datos de entrada para la aplicación de campo
 25

 Tabla 5.2 Prueba de producción para la aplicación de campo
 26

Tabla 5.3 Propiedades de materiales aislantes para análisis de sensibilidad 26

RESUMEN

Análisis Térmico del Efecto de la Temperatura en el Gasto de Producción

La industria petrolera mundial se enfrenta al reto de producir crudos de alta viscosidad y baja gravedad API denominado petróleo no convencional. El presente trabajo está enfocado al estudio de la temperatura y su impacto en el gasto de producción de estos tipos de crudos, considerando que la temperatura del fluido empieza a disminuir cuando se transporta hacia la superficie, a través de las paredes de las tuberías, recubrimientos del pozo, la formación y la baja temperatura del mar para pozos marinos.

La disminución de la temperatura en el fluido, tiene un efecto en el aumento de la viscosidad, lo que provoca que el fluidos comience a detenerse en su trayectoria hacia los centros de procesado o exportación.

Se presenta un modelo que permite estimar la temperatura en el pozo, desde el fondo hasta el lecho marino, en estado transitorio y en lo que corresponde al riser en estado estacionario. Para realizar la simulación y análisis de sensibilidad, se programó en Fortran 90 el modelo planteado.

Mediante análisis nodal y con un ejemplo de campo, se muestra el efecto de la temperatura en el gasto de producción y la importancia de aislar la tubería de producción para mantener la temperatura en el pozo.

Abstract

Thermal Analysis of Temperature Effect on Production Rate

The global oil industry faces the challenge of producing crude oil with high viscosity and low API gravity known as unconventional oil; this study analyzes the temperature and its impact on production rate of those crude oil types, taking into account that temperature of produced fluid begin to decrease while this flows to surface due to temperature interchange with casing, tubing, cement and also due to low temperature of the sea in offshore wells.

The viscosity of produced fluid increases with decreasing fluid temperature, therefore, flow rate will decrease in a pipe on its way to the processing facilities.

The aim of this study was therefore to develop a model to estimate both the produced fluid temperature, in the well from the bottom to seabed, in transient state and with regard to the riser at steady state. In the second place, a numerical simulation was conducted, by using Fortran 90, and to conclude a sensitivity analysis was done.

The result from nodal analysis and one field case showed that tubing isolation is a key issue on produced fluid flow rate, clearly, temperature have a direct effect on flow rate in heavy crude field with high viscosity.

Capítulo I. Introducción.

1.1 Planteamiento del problema.

La producción de crudo en un pozo generalmente presenta una pérdida de temperatura a medida que el fluido avanza a lo largo de la tubería de producción misma que tiene un efecto en la viscosidad.

Esta situación presenta un problema de aseguramiento de flujo y es un problema crítico cuando se interrumpe la producción de un pozo con las características de fluidos mostrados en la Tabla 2.1 al querer arrancar nuevamente la producción.

Para poder estimar el comportamiento de la temperatura a lo largo del pozo, se plantea un modelo en estado transitorio hasta el lecho marino y un modelo en estado estacionario para la parte correspondiente al riser (desde el lecho marino hasta la superficie).

Una vez que se tiene la estimación de la temperatura en cualquier punto de la tubería de producción, se calcula la viscosidad del aceite (que depende de la temperatura) y se calcula el número de Reynolds para analizar el régimen de flujo.

Con estos datos se realiza un análisis nodal para determinar el impacto de la temperatura en el gasto de producción, simulando la inclusión de diversos materiales aislantes en el espacio anular.

1.2 Objetivos.

El trabajo presente de tesis tiene como objetivo analizar el comportamiento de la temperatura en estado transitorio en un pozo marino, enfocado a estimar la viscosidad en el caso de un crudo extra pesado, que presenta baja RGA, presión mayor a la de saturación, por lo tanto se considera una sola fase (monofásico), tal y como se muestra en la Tabla 2.1. La solución propuesta permitirá estimar la temperatura durante la producción de aceite que depende de la profundidad y tiempo, estimar la viscosidad del fluido y mediante análisis nodal, cuantificar el impacto que se tendría en el gasto de producción por la pérdida de temperatura.

Objetivos específicos:

- ✓ Definir el modelo para estimar la temperatura desde el fondo hasta el lecho marino en estado transitorio y desde éste hasta el riser en estado estacionario.
- ✓ Estimar el impacto de la temperatura en la viscosidad del crudo.
- Predecir mediante análisis nodal el impacto de la pérdida de temperatura en el gasto de producción.
- Realizar análisis de sensibilidad para mostrar la importancia de usar materiales aislantes en el espacio anular a fin de abatir la pérdida de temperatura en el pozo.

Capítulo II. Conceptos básicos.

2.1 Crudos extra pesados.

Se sabe que las características primarias de la formación, tales como: la porosidad, la permeabilidad y la presión definen el comportamiento de la producción del yacimiento, mientras que el método de producción es primariamente condicionado por la densidad y viscosidad del fluido.

Para el caso del presente proyecto de tesis se enfoca en estudiar el efecto de la temperatura en la viscosidad y por consecuencia en el gasto de producción, de acuerdo a la clasificación de la American Institute Petroleum (API) la clasificación del petróleo por tipo está dada de acuerdo a la tabla siguiente:

	°API	Peso específico	Viscosidad (cp)
Superligero	> 31.1	< 0.8702	< 100
Ligero	22.3 – 31.1	0.8702 –0.9200	< 100
Pesado	10 - 22.3	0.9200 -1.0000	< 100
Extra pesado	< 10	> 1.000	100 – 10,000
Bitumen (Oil Sands)	< 10	> 1.000	> 10,000

Tabla 2.1 Clasificación por tipo de crudo (IEA, Conference on non-conventional oil/ Calgary, 2002)

Las características principales de este tipo de crudo son las siguientes:

✓ Alta gravedad específica (densidad) y viscosidad.

- ✓ Baja relación hidrógeno-carbono.
- ✓ Baja relación gas aceite (RGA)

- Alto contenido de asfaltenos, azufre, nitrógeno y metales pesados así como números ácidos altos.
- ✓ Alto porcentaje de residuos.

En la Fig. 2.1, se muestran algunos tipos de crudos existentes a nivel mundial en función de la Gravedad API y la viscosidad.

Fig. 2.1 Variedad de petróleo crudo a nivel mundial en función de grados API y viscosidad (Oil and Gas Journal, *EOR Survey*, 2004)

En el yacimiento, las altas temperaturas permiten el flujo del aceite extra pesado (gravedad API menor a diez) a través de la formación porosa con una baja viscosidad. Sin embargo, sin los medios necesarios para evitar la pérdida de calor del líquido y por ende la disminución de la temperatura en su camino hacia la superficie y las instalaciones de proceso, el aumento en la viscosidad de los aceites extra pesados (una propiedad fundamental en la predicción de la recuperación del aceite) cobra importancia en el proceso de producción y manejo en superficie.

El objetivo del presente proyecto de tesis es generar un método que permita determinar la temperatura en el pozo bajo condiciones transitorias, debido a que la predicción de la temperatura en el pozo se usa para: análisis de esfuerzo en la TP, selección de materiales en la terminación (metales y elastómeros), química de producción, predicción del desempeño del pozo y aseguramiento de flujo. Adicionalmente el conocimiento de la temperatura en la cabeza del pozo sirve como dato para el diseño y la operación de las instalaciones superficiales de producción, así como para el desarrollo de campos de alta presión y temperatura, campos costa fuera y producción de crudos altamente viscosos.

La principal motivación para desarrollar el presente tema de tesis se debe a que los campos descubiertos recientemente a nivel mundial (ver Fig. 2.2) contienen crudos que son altamente viscosos y de baja gravedad API, con el alza de los precios en los años recientes el desarrollo de estos campos se ha hecho atractivo.

Reservas mundiales por tipo de crudo

Fig. 2.2 Reservas de petróleo en el mundo por tipo de crudo (Schlumberger, La importancia del petróleo pesado, 2007)

En México no es la excepción ya que los últimos descubrimientos de reservas apuntan a este tipo de crudos; como ejemplo se puede mencionar que en la Región Marina Noreste de Pemex Exploración y Producción durante 2004 y 2005 se perforaron 12 pozos exploratorios en la porción noroeste del Proyecto de Incorporación de Reservas Campeche Oriente perteneciente al Activo Integral Ku-Maloob-Zaap, en su mayoría en tirantes de agua entre los 100 y 500 metros; el pozo Nab-1, ubicado en el extremo noroccidental del proyecto, se perforó en un tirante de agua de 680 metros, siendo el primer pozo perforado en la Sonda de Campeche en un tirante mayor 500 metros. Los yacimientos descubiertos corresponden a la Brecha del Cretácico Superior, Cretácico Medio e Inferior y Jurásico Superior Kimmeridgiano, sólo se descubrieron dos yacimientos en este último nivel geológico y se encuentran en las estructuras Tson y Pohp. Los aceites descubiertos varían en calidad de seis a doce °API.

En la Tabla 2.2 se presentan las propiedades de los campos de crudo extra pesado de la Región Marina Noreste de PEMEX Exploración y Producción.

Como se podrá observar en algunos casos se presentan viscosidades muy altas y en la mayoría la RGA es muy baja.

Campo	Profundidad	° API	p _i	p_b	μ	T_y	RGA
	(m)		(kg/cm ²)	(kg/cm ²)	(cp) @ <i>P_y</i> , <i>T_y</i>	(°C)	(m ³ /m ³)@P _b
Ayatsil	4235	11.1	261.8	55.05	42	122	21.7
Tekel	3285	11.0	186	42.09	42	110	16.6
Baksha	3005	9.6	316	42	292	82	18.2
Pit	3820	8.8	387	82.5	46.6	112	22.7
Tson	2883	8.0	249	151.3	59	102.	45.7
						9	
Pohp	3070	8.5	147	92	35	98	35.4
Kayab	2570	8.1	310	37	550	85	14.1
Kanche	2577	6.0	283	33	1539	78	16.5
Nab	2590	8.8	272	34	310	71	142
Numan	2425	8.8	291	34	2437	80	15
Yaxiltum	3081	9.0	376	54	112	103.	28.8
						1	

Tabla. 2.2 Propiedades de los campos de crudo extra pesado en la Región Marina Noreste.

2.2 Mecanismos de transferencia de calor en un pozo marino.

En la Fig. 2.3 se muestran los mecanismos de transferencia de calor en un pozo costa afuera⁴ y que son los siguientes:

- Conducción entre el mar y el aire, y transferencia de calor vía corrientes y vientos.
- Transferencia de calor vertical vía convección y conducción. Es relevante solo en áreas de flujo de calor alto, como por ejemplo en las cercanías del lecho marino.
- ✓ Convección libre en líquidos creando transferencia de calor radial y vertical.
- Transferencia de calor por conducción en la formación a través de líquidos lodos, tuberías de revestimiento y cementos.
- Convección forzada en la TP, calentamiento por fricción y conversión de energía mecánica.
- ✓ Cambios de temperatura ocasionados por la expansión del fluido.

Fig. 2.3 Mecanismos de transferencia de calor en un pozo costa afuera⁴.

Capítulo III. Modelos existentes para predecir el perfil de temperatura en pozos.

La estimación de la temperatura durante la producción de un pozo es un problema frecuente en la ingeniería petrolera, esta depende de la posición y tiempo. La mayoría de los métodos para la estimación de la temperatura en el pozo están fundamentados en el artículo clásico de Ramey¹⁰ "Wellbore Heat Transmission", publicado en los años 60's. A fin de tener una base para la definición del modelo, se presentan a continuación los antecedentes de trabajos referentes a la estimación de la temperatura en el pozo.

3.1 Modelo de Ramey, H. J. Jr.

En su artículo, Ramey, H. J. Jr.¹⁰ presentó una ecuación analítica simple para estimar la temperatura en pozos basada en un balance simplificado de energía. Adicional a esta ecuación analítica, Ramey propuso un procedimiento simple para estimar un Coeficiente total de transferencia de calor (*U*), mismo que comprende: la resistencia de calor a lo largo de la TP y la resistencia de calor en la cara del pozo y la formación.

Las consideraciones que Ramey utilizó para la elaboración del método fueron las siguientes:

- ✓ Fluido de una sola fase e incompresible.
- ✓ En el caso de que el fluido es gas lo consideró un gas real.
- Transferencia de calor entre la TP, espacio anular y la zona de cementación en condiciones de estado estacionario.

- ✓ Transferencia de calor en estado transitorio entre el pozo y la formación.
- ✓ Flujo másico constante y en una sola dirección (z).
- Propiedades físicas y térmicas de la formación y el fluido no varían con la temperatura.

3.2 Modelo de Hagoort, J.

En su artículo, Hagoort, J.⁹ evalúa el modelo de Ramey para la estimación de la temperatura durante la producción e inyección de fluidos en pozos. En el artículo se demuestra que el modelo de Ramey es una aproximación excelente para tiempos largos, sin embargo para tiempos cortos existe una sobre estimación en la temperatura; se presenta una correlación gráfica para calcular este valor.

3.3 Modelo de Wu, Y.S. y Pruess, K.

En 1990 Wu, Y.S. y Pruess, K.¹⁵ presentaron una solución analítica para la transferencia de calor en pozos considerando las propiedades térmicas de la formación no constantes es decir utilizando capas que tienen diferentes propiedades térmicas. Observaron que de acuerdo a sus ejemplos de cálculo el método de Ramey es válido para tiempos largos, sin embargo para tiempos cortos puede generar errores en la estimación de la temperatura en el pozo.

Las consideraciones que utilizaron para la elaboración del modelo fueron:

- ✓ Flujo másico constante y en una sola dirección (z).
- ✓ En la TP no se considera conducción, únicamente convección.
- ✓ En la formación se considera conducción en una sola dirección (horizontal)
- ✓ El flujo de calor entre el pozo y la formación se considera en estado estacionario.

La principal aportación del artículo es la de definir capas en la formación con diferentes propiedades térmicas, para cuando la formación no es homogénea. Esto permite tener mayor exactitud en la estimación de la temperatura en el pozo.

3.4 Modelo de Guo, B., Duan, S. y Ghalambor, A.

En su artículo Guo, B., Duan, S. y Ghalambor, A.⁸ presentaron tres soluciones analíticas a fin de predecir la transferencia de calor y perfiles de temperatura durante el transporte de fluidos en ductos las soluciones consisten en: una en estado estacionario y las otras dos en estado transitorio (una para arranque y la otra para en el caso de un paro cuando el flujo se lleva hasta cero). En este artículo se presenta un ejemplo donde utilizan materiales aislantes en el ducto.

Capítulo IV. Modelo para estimar la temperatura en el pozo.

4.1 Coeficiente total de transferencia de calor ^{6,14}.

En estado estacionario la transferencia de calor a través de un pozo es proporcional a la diferencia de temperatura entre el fluido y la formación y el área de la sección transversal de la dirección del flujo de calor. El factor de proporcionalidad se llama Coeficiente total de transferencia de calor *U* y representa la resistencia total que se opone al flujo de calor (TP, la pared de la TP, espacio anular, la pared del espacio anular, zona de cementación y la formación) por unidad de área, de esta forma se puede escribir el flujo de calor de la manera siguiente:

$$Q = U_j A_j \Delta T_j. \tag{1}$$

La ecuación anterior define U_j basado en las características del área A_j y la diferencia de temperatura identifica la superficie sobre la cual se basan estas cantidades. En teoría cualquier superficie radial podría ser usada para definir el área característica. Por ejemplo si el fluido está fluyendo a través de la TP, es conveniente utilizar el área $2\pi r_{to}\Delta z$ y utilizar la diferencia de temperatura del fluido (T_f) y la temperatura de la interface entre la zona cementada y la formación (T_h) , de esta forma la ecuación 1 queda como:

$$Q = 2\pi r_{to} U_{to} (T_f - T_h) \Delta z.$$
(2)

Fig. 4.1 Distribución de la temperatura del pozo¹⁵.

A fin de definir U_{to} se analizan las formas de transferencia de calor que se dan en el sistema acorde a la Fig. 4.1 y que están definidas por:

a) Transferencia de flujo de calor por convección entre el fluido fluyendo y la pared de la TP

$$Q = 2\pi r_{i}h_f \left(T_f - T_{i}\right)\Delta z.$$
(3)

b) Transferencia de calor por conducción a través de la pared de la TP

$$Q = \frac{2\pi k_{tub} (T_{ti} - T_{to})\Delta z}{\ln \frac{r_{to}}{r_{ti}}}.$$
 (4)

 c) Transferencia de calor por conducción a través del espacio anular (si el fluido no se está moviendo)

$$Q = \frac{2\pi k_{tub} (T_{to} - T_{ci}) \Delta z}{\ln \frac{r_{ci}}{r_{to}}}.$$
 (5)

Si el fluido que se encuentra en el espacio anular se encuentra en movimiento, como en el caso de inyección de agua, la transferencia de calor por convección se define como:

$$Q = 2\pi r_{ci} h_{cas} (T_{to} - T_{tci}) \Delta z.$$
(6)

d) Transferencia de calor por conducción en la pared del espacio anular

$$Q = \frac{2\pi k_{cas} (T_{ci} - T_{co})\Delta z}{\ln \frac{r_{co}}{r_{ci}}}.$$
 (7)

e) Transferencia de calor por conducción en la zona cementada

$$Q = \frac{2\pi k_{cem} (T_{co} - T_h) \Delta z}{\ln \frac{r_h}{r_{co}}}.$$
 (8)

f) Transferencia de calor por conducción a través de la formación

$$Q = \frac{2\pi k_e (T_h - T_e)\Delta z}{f(t)}.$$
 (9)

La resistencia térmica total (haciendo una analogía con la ley de Ohm) se expresa como:

$$R_{total} = 2\pi\Delta z \left[\frac{1}{r_{ti}h_f} + \frac{\ln\left(\frac{r_{to}}{r_{ti}}\right)}{k_{tub}} + \frac{\ln\left(\frac{r_{ci}}{r_{to}}\right)}{k_{m_an}} + \frac{\ln\left(\frac{r_{co}}{r_{ci}}\right)}{k_{an}} + \frac{\ln\left(\frac{r_h}{r_{co}}\right)}{k_{cem}} \right].$$
(10)

De acuerdo a la definición del Coeficiente total de transferencia de calor:

$$UA = \frac{1}{R_{total}}.$$
 (11)

Sustituyendo el valor de A y R_{total} . El Coeficiente total de transferencia de calor queda finalmente como:

$$\left[U_{to}r_{to}\right]^{-1} = \left[\frac{1}{r_{ti}h_{f}} + \frac{\ln\left(\frac{r_{to}}{r_{ti}}\right)}{k_{tub}} + \frac{\ln\left(\frac{r_{ci}}{r_{to}}\right)}{k_{m_{an}}} + \frac{\ln\left(\frac{r_{co}}{r_{ci}}\right)}{k_{an}} + \frac{\ln\left(\frac{r_{h}}{r_{co}}\right)}{k_{cem}} + \frac{f(t)}{k_{e}}\right].$$
 (12)

En el riser:

$$(U_{to}r_{to})^{-1} = \left[\frac{1}{r_{ti}h_{f}} + \frac{\ln\left(\frac{r_{to}}{r_{ti}}\right)}{k_{tub}} + \frac{\ln\left(\frac{r_{ci}}{r_{to}}\right)}{k_{m_{an}}} + \frac{\ln\left(\frac{r_{co}}{r_{ci}}\right)}{k_{an}} + \frac{\ln\left(\frac{r_{h}}{r_{co}}\right)}{k_{cem}} + \frac{1}{hagua*rco}\right].$$
 (13)

4.2 Estimación de la temperatura desde el fondo del pozo hasta el lecho marino⁹.

El modelo de pozo para estimar la temperatura desde el fondo del pozo hasta el lecho marino se muestra en la Fig. 4.2 y consiste de un pozo recto y revestido que es cementado hasta la formación y equipado con tubería de producción y de revestimiento para la transferencia de fluidos desde el fondo hacia la superficie.

Fig. 4.2 Modelo de pozo para estimación de la temperatura.

Consideraciones:

- ✓ Dirección de flujo en una sola dirección (z).
- ✓ Flujo másico constante.
- ✓ El fluido tiene densidad y capacidad calorífica constante.
- ✓ La temperatura del fluido en el fondo del pozo es igual a la de la formación.
- ✓ Conducción de calor radial.
- ✓ La longitud de la formación se supone infinita.
- ✓ Gradiente geotérmico constante.
- \checkmark Coeficiente total de transferencia de calor (*U*) en estado estacionario.

La distribución de temperatura para el modelo físico está basado en el artículo de Hagoort, J.⁹ y se rige por dos balances de energía: uno para la TP y otro para los alrededores de la formación y la cara del pozo.

Acorde al Apéndice A, el balance de energía para la TP en forma adimensional está dado por:

$$\frac{\partial T_D}{\partial t_D} + \frac{\partial T_D}{\partial z_D} = -N_{RA} \int_0^{t_D} \frac{\partial T_D(\tau)}{\partial \tau} q_{uD} \Big[N_{Gz}(t_D - \tau); U_D \Big] d\tau.$$
(14)

Se definen la condición inicial y de frontera respectivamente como:

$$t_D = 0:$$
 $T_D = 1 - z_D;$ (15)

У

$$t_D > 0, z_D = 0:$$
 $T_D = 1;$ (16)

Así mismo estas variables adimensionales tienen las consideraciones siguientes:

- La distancia adimensional Z_D va de cero a uno, del fondo hasta la cabeza del pozo.
- La temperatura adimensional T_D va de cero a uno, del fondo hasta la cabeza del pozo.

El término de la derecha de la ecuación 14, representa la pérdida de calor del fluido hacia la TP y los alrededores, y es esencialmente la superposición de la pérdida de temperatura que varía con el tiempo, para lo cual utilizamos una función de pérdida de calor q_u entre la TP y la formación, es decir en la cara del pozo.

La función q_u puede ser derivada de un balance de energía entre la formación y la cara del pozo y se reduce a la ecuación de conducción radial de calor de Fourier, de acuerdo al Apéndice A se expresa de la forma siguiente:

$$\frac{1}{r_D} \frac{\partial}{\partial r_D} \left(r_D \frac{\partial T_{fD}}{\partial r_D} \right) = \frac{\partial T_{fD}}{\partial t_{DFo}}.$$
 (17)

La condición inicial es definida como:

$$t_{DFo} = 0, \quad r_D \ge 1: \quad T_{fD} = 0;$$
 (18)

y la condición de frontera interna y externa:

$$t_{DFo} > 0, \quad r_D = 1: \quad r_D = 1: \quad -\frac{\partial T_{fD}}{\partial r_D} = U_D (1 - T_{fD}).$$
 (19)

$$t_{DFo} > 0, \quad r_D = \infty : \quad T_{fD} = 0.$$
 (20)

El tiempo adimensional t_{DFo} de la ecuación 17 está determinado por la difusividad térmica de la formación, por lo que es diferente a la del balance de energía en la TP (ecuación 14).

El valor de r_D es medido desde el centro de la TP y va de la unidad hasta el infinito, la unidad corresponde a la frontera entre la zona de cementación y la formación.

 T_{fD} de la ecuación 17 está definida como la diferencia de la temperatura de la TP y la temperatura inicial de la formación, esta varía de cero (temperatura de la formación) a uno (temperatura en la TP)

 U_D es definido como el Coeficiente total de transferencia de calor adimensional, para valores infinitos la temperatura tiende a caer hasta cero, por lo que la condición de frontera se reduce a una constante.

La solución de la ecuación 17 sujeta a las condiciones de frontera da como resultado la distribución de temperatura en la formación como función del tiempo, quedando q_{uD} de la forma siguiente:

$$q_{uD}(t_{DFo}, U_D) = -\left(\frac{\partial T_{fD}}{\partial r_D}\right)_{r_D=1} = U_D \left[1 - T_{fD}(r_D = 1)\right]$$
(21)

En las ecuaciones anteriores se puede observar que la distribución de temperatura en la TP, está gobernada por las tres variables adimensionales siguientes:

$$N_{Gz} = \frac{t_{DFo}}{t_D} = \frac{L\alpha}{ur_{cf}^2};$$
(22)

$$N_{Ra} = \frac{2k_{f}L}{\rho cur_{t}^{2}} = \frac{2\pi k_{f}L}{cw};$$
 (23)

$$U_D = \frac{Ur_{cf}}{k_f}.$$
 (24)

La ecuación 22 se como el número de Graetz y define la relación que existe entre el tiempo adimensional de conducción de calor en la formación y la conducción de calor en la TP.

La ecuación 23 se como el número de Ramey, expresa la relación que existe entre la pérdida de calor por conducción en la formación y la conducción de calor en la TP, cuando el fluido fluye hacia la superficie. En el caso de la ecuación 23, el recíprocos de U_D se conoce como daño térmico.

Las ecuaciones 14 y 17 se resuelven utilizando la transformada de Laplace (Apéndice A), quedando la solución como:

$$T_D^* = \frac{1}{s^2 (N_{Ra} q_{uDc}^* + 1)} \{1 - \exp[-(N_{Ra} q_{uDc}^* + 1) s z_D]\} + \frac{1 - z_D}{s};$$
(25)

donde:

$$q_{uDc}^{*} = \frac{1}{N_{Gz}} \frac{U_{D}}{s / N_{Gz} + U_{D} \sqrt{s / N_{Gz}}}.$$
 (26)

Para tiempos cortos la función unitaria de pérdida de calor es prácticamente despreciable, pudiendo expresarse la ecuación 25 como:

$$T_D^* = \frac{1}{s^2} [1 - \exp(-sz_D)] + \frac{1 - z_D}{s};$$
 (27)

y en el espacio real:

$$T_D = t_D + 1 - z_D.$$
 (28)

Para tiempos largos, s tiende a valores pequeños; la ecuación 25 puede expresarse como:

$$T_D^*(z_D) = \frac{1 - z_D}{s} + \frac{z_D}{s} - \frac{1}{2!} N_{Ra} q_{uDc}^* z_D^{-2} = \frac{1}{s} - \frac{1}{2!} N_{Ra} q_{uDc}^* z_D^{-2};$$
(29)

y en el espacio real:

$$T_D(z_D, t_{DFo}) = 1 - \frac{1}{2!} N_{Ra} q_{uDc}^*(t_{DFo}) z_D^{-2}.$$
 (30)

La ecuación 30 expresa el perfil de temperatura en el pozo de producción y es la que se utiliza en el programa de simulación (ver Apéndice B).

4.3 Estimación de la temperatura en el riser.

A fin de obtener la temperatura en el riser se considera la temperatura obtenida en el punto anterior como la temperatura de entrada. A partir de un balance de energía se deriva la ecuación de distribución de temperatura:

$$\begin{cases} Entrada \\ de \ calor \ a \ través \ de \ la \\ superficie \ circular \ en \ z \end{pmatrix} - \begin{cases} Salida \\ de \ calor \ a \ través \ de \ la \\ superficie \ circular \ en \ z + \Delta z \end{cases}$$

$$- \begin{cases} P\acute{e}rdida \\ de \ calor \ por \ convección \\ hacia \ el \ exterior \end{cases} = Acumulación \ de \ calor$$

$$wC_{p}T\Big|_{z} - wC_{p}T\Big|_{z+\Delta z} - 2\pi r\Delta z U_{to}(T - T_{\infty}) = \rho VC_{p} \frac{\partial T}{\partial t}.$$
 (31)

$$\pi r^{2} \rho u_{z} C_{p} T \Big|_{z} - \pi r^{2} \rho u_{z} C_{p} T \Big|_{z+\Delta z} - 2\pi r \Delta z U_{to} (T-T_{\infty}) = \rho V C_{p} \frac{\partial T}{\partial t}.$$
 (32)

Se divide entre $\pi r^2 \Delta z C_p$.

$$\frac{u_z T|_z - u_z T|_{z+\Delta z}}{\Delta Z} - \frac{2U_{to}(T - T_{\infty})}{r\rho C_p} = \frac{\partial T}{\partial t}.$$
 (33)

Tomando límites:

$$-\frac{\partial T}{\partial z} - \frac{2U_{to}(T - T_{\infty})}{r\rho C_p} = \frac{\partial T}{\partial t}.$$
 (34)

Al multiplicar la ecuación anterior por $1/u_z$ y se definen las variables $\lambda = \frac{2U_{t0}}{\rho_f C_f r u_z}$ y $\Delta T = (T - T_{\infty})$, se obtiene:

$$\frac{\partial \Delta T}{\partial z} + \lambda \Delta T = -\frac{1}{u_z} \frac{\partial \Delta T}{\partial t}.$$
 (35)

Con la condición inicial:

$$T(z,t=0) = T_{\infty};$$
 (36)

y la condición de frontera:

$$T(z=0,t) = T_o.$$
 (37)

La ecuación 35 puede resolverse mediante la transformada de Laplace.

$$\mathcal{L}\left\{\frac{\partial\Delta T}{\partial z}\right\} + \mathcal{L}\left\{\lambda\Delta T\right\} = \frac{1}{u_z}\mathcal{L}\left\{\frac{\partial\Delta T}{\partial t}\right\}.$$
 (38)

La condición inicial:

$$\mathcal{L}{T(z,t=0)} = 0;$$
 (39)

y la condición de frontera:

$$\mathcal{L}\{T(z=0,t)\} = \frac{\Delta T_1}{s}; \tag{40}$$

donde $\Delta T_1 = T_o - T_\infty$.

Se aplica la expresión para la transformada de Laplace de la derivada con respecto al tiempo y considerando la condición inicial expresada por la ecuación 39:

$$\frac{d\,\overline{\Delta T}}{dz} + \lambda\,\overline{\Delta T} = -\frac{s\,\overline{\Delta T}}{u_z}.$$
(41)

Arreglando los términos y separando las variables:

$$\frac{d\,\overline{\Delta T}}{\overline{\Delta T}} = -\left(\frac{s}{u_z} + \lambda\right) dz. \tag{42}$$

Al integrar la ecuación anterior se obtiene:

$$\ln \overline{\Delta T} = -\left(\frac{s}{u_z} + \lambda\right)z + C_1.$$
 (43)

Se aplican propiedades de logaritmos:

$$\overline{\Delta T} = C_1 e^{-\left(\frac{s}{u_z} + \lambda\right)z}.$$
 (44)

A fin de obtener el valor de la constante se aplica la condición de frontera, ecuación 40:

$$C_1 = \frac{\Delta T_1}{s}.$$
 (44)

Se sustituye el valor de la constante en la solución general, ecuación 44:

$$\overline{\Delta T} = \frac{\Delta T_1}{s} e^{-\left(\frac{s}{u_z} + \lambda\right)^z}.$$
 (45)

Se aplica la regla de los exponentes a la ecuación 45:

$$\overline{\Delta T} = \frac{1}{e^{\lambda z}} \frac{\Delta T_1}{s} e^{-\frac{z}{u_z}s}.$$
 (46)

La ecuación anterior describe la función escalón unitaria de Heaviside, cuya solución en el espacio real, es:

$$\frac{1}{s}e^{-ps} \to u(t-p). \tag{47}$$

La ecuación general que define la variación de la temperatura es:

$$T - T_{\infty} = \frac{T_o - T_{\infty}}{e^{\lambda Z}} u(t - \frac{z}{u}).$$
(48)

4.4 Validación.

Para validar el modelo propuesto con datos de campo, se tomaron del artículo de Ramey¹ los datos medidos tal y como se muestra en la Fig. 4.3, mismos que corresponde a inyección de agua en un pozo con un gasto de 4,790 barriles por día con un tiempo de inyección de 75 días.

La temperatura inicial del agua inyectada fue de 58.5 °C, en general se observa que de acuerdo a los datos calculados se tiene una diferencia muy pequeña que corresponde a \pm 1.5 °C.

Fig. 4.3 Datos medidos y calculados para inyección de agua

Capítulo V. Aplicación de campo y análisis de resultados.

A fin de analizar los resultados del modelo presentado en el Capítulo IV, se elaboró un ejemplo con datos de campo de un pozo típico de aguas someras (temperatura constante en el riser), que transporta crudo extra pesado (monofásico por baja RGA) tal y como se muestra en la Tabla 5.1. El tiempo de producción bajo el cual se realizan los cálculos es de dos semanas.

En la tabla siguiente se muestran los datos de entrada para el ejemplo de campo⁵.

Variable	Valor	Unidades
K _{cem}	0.73	W/m°C
K _t	43.27	W/m°C
K _f	2.42	W/m°C
K _o	0.14	W/m°C
K _{an}	43.27	W/m°C
R _{ti}	0.0621	metros
R _{to}	0.0699	metros
R _{ci}	0.0889	metros
R _{co}	0.0966	metros
R _{cf}	0.1016	Metros
α_f	1.03 x 10 ⁻⁶	m ² /seg
ρο	876.2	Kg/ m ³
C _{po}	2721.42	J/Kg°C
h _{agua}	20	W/m°C

Tabla 5.1 Datos de entrada para la aplicación de campo⁵

La prueba de producción para calcular la gráfica IPR, se muestra en la tabla siguiente:

q_o (bd)	<i>pwf</i> (kg/cm²)
0	351
3000	267
2500	281
1500	309
1000	323
500	337
100	349
50	350

Tabla 5.2 Prueba de producción para la aplicación de campo

Los materiales aislantes tienen las propiedades siguientes:

Nombre	Conductividad
	térmica (W/m °C)
Vacío	0.003
Aire	0.026
Perlita	0.076
Diesel	0.1768

Tabla 5.3 Propiedades de materiales aislantes para análisis de sensibilidad

5.1 Estimación de la temperatura en el pozo.

En la Fig. 5.1 se muestra el comportamiento de la temperatura en el pozo, con el análisis de sensibilidad de los diferentes materiales aislantes de la Tabla 5.2, como se podrá observar ésta va decreciendo hasta llegar a los 20°C, si no se usa ningún material aislante en el espacio anular, y prácticamente se mantiene si se utiliza vacío; es importante señalar que el material que también tiene un buen desempeño es el aire (pérdida de 5°C).

Fig. 5.1 Comportamiento de la temperatura en el pozo.

5.2 Efecto de la temperatura en la viscosidad.

La viscosidad es una medida de la resistencia al flujo por parte de un fluido, está afectada por:

- Velocidad de deformación.
- Tiempo de exposición al esfuerzo cortante.
- Temperatura.
- Presión.

Un aumento de la temperatura causa una disminución de la viscosidad. Una disminución en la presión causa un descenso en la viscosidad, siempre que el único efecto de la presión sea el de comprimir el líquido.

El modelo utilizado para estimar el cambio en la viscosidad del fluido es el de *Arrhenius*³, mismo que define cambio de la viscosidad por variación de la temperatura. El modelo de Arrhenius³ está definido por la ecuación:

$$\mu = Ae^{-B*T}; \tag{49}$$

T: Temperatura absoluta.

A y B: Son constantes que se obtienen de acuerdo a datos de laboratorio.

Para este ejemplo de campo los valores de las constantes se obtienen de los datos medidos para la viscosidad, y que se muestran en la tabla siguiente:

Temperatura (°C)	Viscosidad (cp)
80	30
30	5000

Utilizando la ecuación 49 y resolviendo el sistema de dos ecuaciones se obtienen los valores siguientes:

A=26736.22

B=0.055886043

De acuerdo al modelo planteado para la viscosidad, en la Fig. 5.2 se muestran los resultados obtenidos; como se observa su comportamiento es exponencial si no se utiliza ningún material aislante y puede aumentar a tal grado que puede ocasionar que el pozo no fluya.

Fig. 5.2 Comportamiento de la viscosidad

5.3. Comportamiento del número de Reynolds.

El flujo del fluido en la tubería de producción puede ser laminar o turbulento, dependiendo de las condiciones del mismo. El flujo de fluidos sigue líneas de corriente y como consecuencia es laminar a velocidades bajas; sin embargo se vuelve turbulento conforme se incrementa la velocidad más allá de un valor crítico. La mayor parte de los flujos en tuberías que se encuentran en la práctica son turbulentos. El flujo laminar se presenta cuando el fluido es altamente viscoso (tal es el caso de los crudos extra pesados).

Para el flujo en una tubería circular el número de Reynolds se define como:

$$Re = \frac{\rho V promD}{\mu} = \frac{V promD}{v}; \qquad (50)$$

donde:

Vprom es la velocidad promedio del flujo.

D es el diámetro del tubo.

 $v = \mu/\rho$ es la viscosidad cinemática del fluido.

En condiciones prácticas el flujo en un tubo es laminar para *Re*<2300; turbulento para *Re*>10000; en los valores intermedios se considera como de transición.

De acuerdo a los datos obtenidos con el modelo planteado para el ejemplo de campo, se puede observar en la Fig. 5.3 que los valores del número de Reynolds son menores a 230, por lo que el flujo es laminar.

Fig. 5.3 Comportamiento del número de Reynolds

5.4. Efecto del Coeficiente total de transferencia de calor en el gasto de producción.

En la Fig. 5.4 se muestra el efecto del Coeficiente total de transferencia de calor en el gasto de producción, como se observa conforme *U* aumenta el gasto decrece.

Fig. 5.4 Efecto del Coeficiente total de transferencia de calor en el gasto de producción.

5.5 Efecto de la temperatura en el gasto de producción con análisis nodal.

El análisis nodal es el estudio del flujo de fluidos en un sistema de producción, generalmente se divide en tres subsistemas, que son: flujo en el yacimiento, flujo en la tubería vertical y flujo en la tubería horizontal. Se le llama análisis nodal por que se divide el sistema de flujo en partes, con la finalidad de predecir el gasto y la presión en los nodos de unión de los subsistemas, o bien en los extremos del mismo.

Los principales componentes del análisis nodal son:

- Curva de afluencia del yacimiento (IPR). Gasto de aceite o gas vs presión de fondo fluyendo, obtenidas de una prueba de producción.
- Curva de capacidad de transporte (entrada a TP). Curvas dominadas por presión de cabeza y levantamiento artificial.

Con la intersección de las dos curvas se obtiene p_{wf} (kg/cm²) y q_o (bd). Para obtener los datos de intersección se utilizó como nodo solución la cabeza del pozo, tal y como se muestra en la figura siguiente:

Fig. 5.5 Caídas de presión en el sistema integral de producción

Para calcular las caídas de presión se utiliza la ecuación de Hagen-Poiseuille¹² para flujo a través de tuberías circulares, misma que está dada por:

$$w = \frac{\pi (\mathcal{G}_{\circ} - \mathcal{G}_{L}) R^{4} \rho}{8 \mu L};$$
(51)

donde:

$$\mathcal{G} = P - \rho gz. \tag{52}$$

Sustituyendo los valores de $\mathscr{P}_{\!_{o}} - \mathscr{P}_{\!_{L}}$ la expresión para el gasto másico queda como:

$$w = \frac{\pi (p_{wf} - \rho g z - p_{wh}) R^4 \rho}{8 \mu L}.$$
 (53)

Se resuelve para p_{wh} :

$$p_{wh} = p_{wf} - \rho gz - \frac{w8\mu L}{\pi\rho R^4} \tag{54}$$

Con esta expresión para encontrar los puntos de intersección se sigue el procedimiento siguiente:

- ✓ Se supone un gasto inicial
- \checkmark Se calcula p_{wf}
- \checkmark Se obtiene el valor de p_{wh}

Si el valor obtenido de p_{wh} es mayor al fijado, entonces el gasto supuesto se incrementa, en caso contrario se decrementa; se repite el ciclo hasta que el valor de p_{wh} coincida con el valor fijado.

En la Fig. 5.6 se muestran los diferentes valores obtenidos con diversos materiales aislantes, pudiéndose observar la conveniencia de utilizarlos a fin de conseguir que la temperatura se mantenga, la viscosidad no aumente y no afecte el gasto de producción.

Fig. 5.6 Análisis nodal del efecto de la temperatura en el gasto de producción.

Capítulo VI. Conclusiones y recomendaciones.

6.1 Contribución.

- Con el presente trabajo de tesis, se presenta un modelo que permite estimar la temperatura en un pozo marino, variable necesaria para poder calcular la viscosidad del fluido y posteriormente con análisis nodal se cuantificó el impacto en el gasto de producción.
- Se programó un simulador en Fortran donde se calcula la temperatura con el modelo definido y se elaboraron gráficas en Excel para poder visualizar el impacto de la temperatura en el gasto de producción.
- A fin de poder mostrar la utilidad del modelo, se aplicó en un ejemplo de campo donde se muestran los resultados obtenidos.

6.2 Conclusiones.

Con base al modelo y a los resultados obtenidos en la aplicación de campo se pueden establecer las conclusiones siguientes.

- a) Se presenta un modelo en estado transitorio que permite estimar la temperatura en cualquier punto de la tubería de producción.
- b) La solución planteada considera el concepto del Coeficiente total de transferencia de calor (*U*).
- c) Para el caso del riser el efecto del estado transitorio es muy pequeño por lo que se pudo considerar en estado estacionario.

- d) A fin de evitar las pérdidas de temperatura en el pozo se ha demostrado que es conveniente utilizar materiales aislantes para evitar la pérdida de producción e inclusive que el pozo no fluya.
- e) De acuerdo a los resultados se mostró que el Coeficiente total de transferencia de calor es un factor muy importante conforme este aumenta afecta en el gasto de producción.

6.3 Recomendaciones para trabajos futuros.

El modelo planteado es factible aplicarlo en campos de crudo extra pesado de la Región Marina Noreste, considerando que contienen baja RGA y son relativamente someros.

Se recomienda en un futuro elaborar un modelo para flujo multifásico y definir el coeficiente de convección del agua del mar a fin de poder aplicarlo en pozos con alta RGA, que presenten producción de agua y que sean en aguas profundas.

Nomenclatura.

Α	Área de la sección transversal	(m²)
С	Capacidad calorífica del fluido	(J/kg K)
C_f	Capacidad calorífica de la formación	(J/kg K)
C_p	Calor específico a presión constante	(kJ/kg·°C)
D	Diámetro de la TP	(metros)
f(t)	Función dependiente del tiempo	(adim)
g	Constante gravitacional	(m/s ²)
h _{agua}	Coeficiente de transferencia de calor por convección del agua del mar	(W/m ² °C)
<i>h_{cas}</i>	Coeficiente de transferencia de calor por convección en la TR	(W/m ² °C)
h_f	Coeficiente de transferencia de calor por convección del fluido	(W/m ² °C)
k	Conductividad térmica	(W/m·°C)
k _{an}	Conductividad térmica del material del espacio anular	(W/m °C)
<i>k_{cas}</i>	Conductividad térmica del material de la TR	(W/m °C)
k _{cem}	Conductividad térmica de la zona de cementación	(W/m °C)
k_e	Conductividad térmica de la formación	(W/m °C)
k_{m_an}	Conductividad térmica del material en el espacio anular	(W/m °C)
k _{tub}	Conductividad térmica del material de la TP	(W/m °C)
Н	Función de Heaviside	
L	Longitud de la tubería	(metros)
N_{GZ}	Número de Graetz	(adim)
N_{Ra}	Número de Ramey	(adim)
$p_{\scriptscriptstyle wf}$	Presión de fondo fluyendo	(kg/cm ²)
$p_{\scriptscriptstyle wh}$	Presión en la cabeza del pozo	(kg/cm ²)
Q	Transferencia de calor	(W/m ²)
q	Transferencia de calor por unidad de longitud	(W/m²)
q_o	Gasto de aceite	(m³/s)
q_u	Función unitaria de transferencia de calor	(W/m²)
$q_{\scriptscriptstyle uD}$	Función unitaria de transferencia de calor adimensional	(adim)
r	Distancia radial del centro de la TP	(metros)
r _{cf}	Radio desde el centro de la TP hasta el final de la zona de cementació	on (metros)
r _{ci}	Radio interno de la TR	(metros)
r _{co}	Radio externo de la TR	(metros)
<i>r</i> _D	Radio adimensional	(adim)
r_h	Radio hasta la zona de cementación	(metros)

r _i	Radio interno (cilindro circular)	(metros)
r _o	Radio externo (cilindro circular)	(metros)
r _{ti}	Radio interno de la TP	(metros)
r _{to}	Radio externo de la TP	(metros)
Re	Número de Reynolds	(adim)
R_{total}	Resistencia total	(°C/W)
S	Variable del espacio de Laplace	
t	Tiempo	(segundos)
t_{DFo}	Tiempo adimensional para transferencia de calor por conducción	(adim)
t _{DFoi}	Tiempo para el período transitorio	(adim)
t_{fD}	Tiempo adimensional	(adim)
Т	Temperatura en la TP	(°C)
T_{bot}	Temperatura en el fondo del pozo	(°C)
T _{ci}	Temperatura en la TR diámetro interno	(°C)
T_{co}	Temperatura en la TR diámetro externo	(°C)
T_D	Tiempo adimensional para transferencia de calor por convección	(adim)
T_e	Temperatura en la formación	(°C)
T_f	Temperatura del fluido	(°C)
T_{fD}	Temperatura del fluido adimensional	(adim)
T_h	Temperatura entre la formación y la zona de cementación	(°C)
T _{ti}	Temperatura en la TP diámetro interno	(°C)
T _{to}	Temperatura en la TP diámetro externo	(°C)
T_{top}	Temperatura en la superficie del pozo	(°C)
T_0	Temperatura inicial de la formación	(°C)
T_1	Temperatura en el radio interno de la TP	(°C)
T_{∞}	Temperatura en el medio de convección	(°C)
U_Z	Velocidad del fluido en la dirección z	(m/s)
U	Coeficiente total de transferencia de calor	(W/m ² °C)
W	Flujo másico del fluido en la TP	(kg/s)
Ζ	Distancia desde el fondo de la TP	(metros)
α	Difusividad térmica de la formación	(m²/s)
W_L	Gasto másico del líquido	(kg/s)
ρ	Densidad del fluido	(kg/m ³)
$ ho_f$	Densidad de la formación	(kg/m ³)
μ	Viscosidad del fluido	(cp)

-

Bibliografía.

- 1. Abramowitz, M. y Stegun, I.A. 1970. *Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables.* Washington, D.C.: Dover Publications.
- Alves, I.N., Alhanati, F.J.S y Shoham, O. 1992. A Unified Model for Predicting Flowing Temperature Distribution in Wellbores and Pipeline. SPE Prod Eng 7 (4): 363-367. SPE 20632-PA. <u>http://dx.doi.org/10.2118/20632-PA</u>.
- 3. Arrhenius, S. 1887. Über die Innere Reibung Verdünnter Wässeriger Lösungen. Zeitschrift fur Physikalische Chemie-Leipzig 1: 285-298.
- 4. Bellarby, J. 2009. *Well Completion Design.* Amsterdam: Elsevier.
- 5. Bird, R. B., Stewart, W.E. y Lightfoot, E.N. 2007. *Transport Phenomena*, revised second edition. New York: John Wiley and Sons.
- 6. Brill, J. P. y Beggs, H. D. 1998. *Two Phase Flow in Pipes*, fifth edition. Tulsa. Oklahoma: University of Tulsa.
- 7. Cengel, Y.A. 2007. *Transferencia de Calor y Masa: un Enfoque Práctico*. México: McGraw-Hill.
- Guo, B., Duan, S. y Ghalambor, A. 2006. A Simple Model for Predicting Heat Loss and Temperature Profiles in Insulated Pipelines. *SPE Prod & Oper* 21 (1): 107-113. SPE 86983-PA. <u>http://dx.doi.org/10.2118/86983-PA</u>.
- Hagoort, J. 2004. Ramey's Wellbore Heat Transmission Revisited, SPE J. 9 (4): 465-474. SPE 87305-PA. <u>http://dx.doi.org/10.2118/87305-PA</u>.
- 10. Ramey Jr., H.J. 1962. Wellbore Heat Transmission. *J. Pet Tech* **14** (4): 427-435. SPE 96-PA. <u>http://dx.doi.org/10.2118/96-PA</u>.
- Rodríguez, R., Bashbush, J.L. y Rincón, A. 2008. Feasibility of Using Electrical Downhole Heaters in Faja Heavy Oil Reservoirs. Artículo SPE 117682, presentado en International Thermal Operations and Heavy Oil Symposium, Calgary, Alberta, octubre 20-23. <u>http://dx.doi.org/10.2118/117682-MS</u>.
- 12. Sagar, R., Doty, D.R. y Schmidt, Z. 1991.Predicting Temperature Profiles in a Flowing Well. SPE Prod Eng 6 (4): 441-448. SPE 19702-PA. <u>http://dx.doi.org/10.2118/19702-PA</u>.
- 13. Stehfest, H. 1970. Algorithm 368: Numerical Inversion of Laplace Transform [D5]. *Communications of the ACM* **13** (1): 47-49.

- 14. Willhite, G.P. 1967. Over-all Heat Transfer Coefficients in Steam and Hot Water Injections Wells. *J. Pet Tech* **19** (5):607-615. SPE1449-PA. http://dx.doi.org/10.2118/1449-PA.
- 15. Wu, Y.S. y Pruess, K. 1990. An Analytical Solution for Wellbore Heat Transmission in Layered Formations. *SPE Res Eng 5 (4): 531-538.* SPE 17497-PA. <u>http://dx.doi.org/10.2118/17497-PA</u>.

Apéndice A. Deducción del modelo para estimar la temperatura hasta el lecho marino⁹.

El modelo para estimar la temperatura desde el fondo del pozo hasta el lecho marino está basado en el artículo de Hagoort, J.⁹

Para el modelo de pozo descrito en el Capítulo IV, el balance de energía en la TP está dado por:

$$\rho c u_{z} \frac{\partial T}{\partial z} + \rho c \frac{\partial T}{\partial t} = -\frac{q(T, z, t)}{\pi r_{t}^{2}}, \qquad (1a)$$

donde q es el flujo de calor de la TP hacia la formación y depende de la temperatura, posición y tiempo; cuando la temperatura es constante y uniforme en la TP se puede expresar de la forma siguiente:

$$q_{u} = \frac{q}{T_{1} - T_{o}} = -\frac{2\pi r_{cf} \lambda_{f}}{T_{1} - T_{o}} \left(\frac{dT}{dr}\right)_{r=r_{cf}};$$
 (2a)

donde T_o es la temperatura de la formación y T_1 la temperatura (constante) en la TP. Cuando la temperatura en la TP no es constante y varía con el tiempo, como en el problema presente, la pérdida de calor por unidad de longitud puede estimarse por medio del teorema de convolución de Duhamel's y que está dado por:

$$q = \int_{0}^{t} \frac{\partial T(\tau)}{\partial \tau} q_{u}(t-\tau) d\tau.$$
 (3a)

Insertando la ecuación 3a en la 1a, se obtiene la expresión siguiente:

$$\rho c u_{z} \frac{\partial T}{\partial z} + \rho c \frac{\partial T}{\partial t} = -\frac{1}{\pi r_{t}^{2}} \left[\int_{0}^{t} \frac{\partial T(\tau)}{\partial \tau} q_{u}(t-\tau) d\tau \right].$$
(4a)

Se define la condición inicial:

$$t = 0: T = T_{bot} - (T_{bot} - T_{top}) \frac{z}{L}.$$
 (5a)

La condición de frontera en la entrada de la TP está dada por:

$$t > 0, z = 0: T = T_{bot}.$$
 (6a)

La función q_u de la ecuación 4a se deriva de la solución de conducción de calor radial de Fourier en los alrededores de la formación, en particular para la cara del pozo:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T_f}{\partial r}\right) = \frac{1}{\alpha}\frac{\partial T_f}{\partial t};$$
(7a)

donde:

$$\alpha = \frac{k_f}{\rho_f c_f}.$$
 (8a)

Se define la condición inicial:

$$t = 0: T_f = T_0$$
 (9a)

Para la condición de frontera interna en la interface entre la zona cementada y la formación, se tiene:

$$t > 0, r = r_{cf} : -k_f \frac{\partial T_f}{\partial r} = U(T_1 - T_f).$$
 (10a)

Para la condición de frontera externa se tiene:

$$t > 0, r = \infty : T_f = T_0.$$
 (11a)

Se definen las variables adimensionales siguientes:

$$T_{D} = \frac{(T - T_{top})}{(T_{bot} - T_{top})}; T_{fD} = \frac{(T_{f} - T_{0})}{(T_{1} - T_{0})}; z_{D} = \frac{z}{L}, r_{D} = \frac{r}{r_{cf}};$$
$$t_{D} = \frac{u}{L}t; t_{DFo} = \frac{\alpha}{r_{cf}^{2}}t; \quad y \quad q_{uD}(t_{DFo}) = \frac{1}{2\pi k_{f}}q_{u}.$$
(12a)

Utilizando estas variables las ecuaciones: 4a (Balance de energía en la TP) y la condición inicial y de frontera (ecuaciones 5a y 6a) pueden expresarse en forma adimensional de la forma siguiente:

$$\frac{\partial T_D}{\partial t_D} + \frac{\partial T_D}{\partial z_D} = -N_{RA} \int_0^{t_D} \frac{\partial T_D(\tau)}{\partial \tau} q_{uD} \Big[N_{Gz}(t_D - \tau) \Big] d\tau;$$
(13a)

$$t_D = 0: T_D = 1 - z_D;$$
(14a)

$$t_D > 0, z_D = 0: T_D = 1.$$
 (15a)

Asimismo, las ecuaciones para conducción de calor de Fourier (7a), la condición inicial (ecuación 9a), y las condiciones de frontera (ecuaciones 10a y 11a), pueden expresarse de la forma siguiente:

$$\frac{1}{r_D}\frac{\partial}{\partial r_D} \left(r_D \frac{\partial T_{fD}}{\partial r_D} \right) = \frac{\partial T_{fD}}{\partial t_{DFo}};$$
(16a)

$$t_{DFo} = 0; r_D \ge 1; T_{fD} = 0;$$
 (17a)

$$t_{DFo} > 0; r_D = 1: -\frac{\partial T_{fD.}}{\partial r_D} = U_D (1 - T_{fD}).$$
 (18a)

$$t_{DFo} > 0; r_D = \infty; T_{fD} = 0.$$
 (19a)

La función q_u en forma adimensional se expresa de la forma siguiente:

$$q_{uD}(t_{DFo}; U_D) = -\left(\frac{\partial T_{fD}}{\partial r_D}\right)_{F_{D}=1} = U_D[1 - T_{fD}(r_D = 1)].$$
(20a)

Los números adimensionales N_{Ra} y N_{Gz} en la ecuación 13a y U_D en la 18a se definen respectivamente como:

$$N_{Ra} = \frac{2k_f L}{\rho c u r_t^2} = \frac{2\pi k_f L}{c w};$$
 (21a)

$$N_{Gz} = \frac{t_{DFo}}{t_D} = \frac{L\alpha}{ur_{cf}^2};$$
 (22a)

у

$$U_D = \frac{Ur_{cf}}{k_f}.$$
 (23a)

La ecuación 21a se como el número de Ramey, expresa la relación que existe entre la pérdida de calor por conducción en la formación y la conducción de calor en la TP, cuando el fluido fluye hacia la superficie.

La ecuación 22a se como el número de Graetz y define la relación que existe entre el tiempo adimensional de conducción de calor en la formación y la conducción de calor en la TP. En el caso de la ecuación 23a, el recíprocos de U_D se conoce como daño térmico.

Solución de la ecuación radial de Fourier

La ecuación radial de Fourier y su condición inicial y de frontera se resuelven por medio de la transformada de Laplace.

Se aplica la expresión para la transformada de Laplace de la derivada con respecto al tiempo a la ecuación 16a y considerando la condición inicial expresada por la ecuación 17a, se obtiene la ecuación diferencial ordinaria siguiente:

$$\frac{1}{r_D} \frac{d}{dr_D} \left(r_D \frac{dT_D^*}{dr_D} \right) = sT_D^*.$$
 (24a)

Aplicando la transformada de Laplace a la condición de frontera interna expresada en la ecuación 18a, se obtiene:

$$r_D = 1: \frac{dT_D^*}{dr_D} = -U_D \left(\frac{1}{s} - T_D^*\right).$$
 (25a)

De la misma forma se aplica la transformada de Laplace a la condición de frontera externa expresada en la ecuación 19a, donde se obtiene:

$$r_D = \infty : T_D^* = 0.$$
 (26a)

Como se puede observar la ecuación 24a corresponde a una función Bessel¹ de orden cero.

La solución general¹ de esta ecuación es:

$$T_{D}^{*} = aI_{o}(r_{D}\sqrt{s}) + bK_{o}(r_{D}\sqrt{s}).$$
 (27a)

De acuerdo a la solución de la ecuación 27a, a = 0 y b toma el valor siguiente:

$$b = \frac{U_D}{s[K_1(\sqrt{s})\sqrt{s} + U_D K_0(\sqrt{s})]}.$$
 (28a)

La función unitaria de pérdida de calor expresada en el espacio de Laplace queda como:

$$q_{uD}^* = -\left(\frac{\partial T_D^*}{\partial r_D}\right)_{r_{D=1}} = \frac{U_D}{s[K_1(\sqrt{s})\sqrt{s} + U_D K_0(\sqrt{s})]}.$$
 (29a)

Para invertir la función q_{uD}^* denotada por la ecuación 29, al espacio real, se utiliza el algoritmo de Stehfest¹³. En el programa de simulación (ver Apéndice B) se usan 12 números de Stehfest para obtener los valores de q_{uD} .

Solución rigurosa del balance de energía para la TP y la formación

Para encontrar la solución al balance de energía en la TP denotada por la ecuación 13a, se aplica la expresión para la transformada de Laplace de la derivada y convolución con respecto al tiempo a la ecuación 16a y considerando la condición inicial expresada por la ecuación 17a, se obtiene la ecuación siguiente:

$$sT_D^* - (1 - z_D) + \frac{dT_D^*}{dz_D} = -N_{Ra}[sT_D^* - (1 - z_D)]q_{uDc}^*$$
; (30a)

donde:

$$q_{uDc}^* = \mathcal{L}\{q_{uD}(N_{Gz}t_D)\}.$$
 (31a)

Aplicando la transformada de Laplace a la condición de frontera expresada en la ecuación 14a, se obtiene:

$$z_D = 0: T_D^* = \frac{1}{s}.$$
 (32a)

Rearreglando la ecuación 30a, se obtiene la ecuación diferencial ordinaria siguiente:

$$\frac{dT_D^*}{dz_D} = -(N_{Ra}q_{uDc}^* + 1)[sT_D^* - (1 - z_D).]$$
(33a)

Integrando la ecuación 33a sujeta a la condición de frontera expresada en la ecuación 32a, se obtiene:

$$\ln\{s[-(N_{Ra}q_{uDc}^{*}+1)(sT_{D}^{*}-1+z_{D})+1]\} = -s(N_{Ra}q_{uDc}^{*}+1)z_{D}.$$
 (34a)

Despejando T_D^* , se obtiene:

$$T_D^* = \frac{1}{s^2 (N_{Ra} q_{uDc}^* + 1)} \{1 - \exp[-(N_{Ra} q_{uDc}^* + 1) s z_D]\} + \frac{1 - z_D}{s}.$$
 (35a)

Para completar la solución en el espacio de Laplace de la ecuación anterior se tiene que resolver q_{uDc}^* (ecuación 31a), usando el valor q_{uD}^* (ecuación 29a) y la expresión de la transformada de Laplace siguiente:

$$\mathcal{L}{F(at)} = \frac{1}{a} \mathcal{L}{F(t)}|_{s \to s/a}.$$
 (36a)

Quedando la solución en el espacio de Laplace de la ecuación 31a como:

$$q_{uDc}^* = -\frac{1}{N_{Gz}} q_{uD}^*|_{s \to s/N_{Gz}}$$

$$q_{uDc}^{*} = \frac{1}{N_{Gz}} \frac{U_D K_1(\sqrt{s/N_{Gz}})}{\sqrt{s/N_{Gz}} [K_1(\sqrt{s/N_{Gz}})\sqrt{s/N_{Gz}} + U_D K_0(\sqrt{s/N_{Gz}})]}$$
(37a)

Para tiempos cortos, lo que significa valores grandes de s, la relación K_o/K_1 , tiende a uno, pudiendo simplificarse la ecuación 37a, en la forma siguiente:

$$q_{uDc}^{*} = \frac{1}{N_{Gz}} \frac{U_{D}}{s / N_{Gz} + U_{D} \sqrt{s / N_{Gz}}}.$$
 (38a)

Para tiempos cortos la función unitaria de pérdida de calor es prácticamente despreciable, pudiendo simplificarse la ecuación 35a como:

$$T_D^* = \frac{1}{s^2} [1 - \exp(-sz_D)] + \frac{1 - z_D}{s}.$$
 (39a)

La transformación al espacio real de la ecuación 39a proporciona la temperatura del frente del fluido ($t_D < z_D$):

$$T_D = t_D + 1 - z_D.$$
 (40a)

Para tiempos largos, s tiende a valores pequeños, la ecuación 35a se expresa como:

$$T_D^*(z_D) = \frac{1}{s^2 (N_{Ra} q_{uDc}^*)} [1 - \exp(-N_{Ra} q_{uDc}^* s z_D) + \frac{1 - z_D}{s}.$$
 (41a)

Empleando la expansión para la exponencial:

$$T_D^*(z_D) = \frac{1 - z_D}{s} + \frac{1}{s^2 (N_{Ra} q_{uD}^*)} \{1 - [1 - N_{Ra} q_{uD}^* s z_D + \frac{1}{2!} (N_{Ra} q_{uD}^* s z_D)^2 + \dots]\}.$$
 (42a)

Despreciando los últimos términos a partir del cuadrático:

$$T_D^*(z_D) = \frac{1 - z_D}{s} + \frac{z_D}{s} - \frac{1}{2!} N_{Ra} q_{uDc}^* z_D^2 = \frac{1}{s} - \frac{1}{2!} N_{Ra} q_{uDc}^* z_D^2.$$
(43a)

Invirtiendo la ecuación 43a al espacio real:

$$T_D(z_D, t_{DFo}) = 1 - \frac{1}{2!} N_{Ra} q_{uD}^*(t_{DFo}) z_D^{-2}.$$
 (44a)

La ecuación 44a expresa el perfil de temperatura en el pozo de producción y es la que se utiliza en el programa de simulación (ver Apéndice B) desde el fondo del pozo hasta el lecho marino.

Apéndice B. Programa de simulación para el cálculo de la temperatura

program temperatura

implicit none

REAL(8)::

pi,Tbot,Ttop,qo,c,rho,rcf,kf,alphaf,t,tDFo,areatp,u,NGz,tD,rti,NRa,landaf,w,x,qud_R,xd,tiempo real::

INTEGER::N,i,dist,decremento,acudecre

REAL:: Kcem,Kt,Ko,Kan,km_an,rci,rco,rto,mhui,U_antes1,mhup,L,unitstep,Triser

REAL::Piy,pws,pwf,ps,g,IP,pwh,qo_s,mhu1,mhu2,qo_incre,ps_tol,Uriser,Tagua,h_agua,Ter,Lriser,Utor,vz,landa,deltaLR

! Datos de conductividades y propiedades

Kcem=0.42/0.57782 !Conductividad térmica de la zona de cementacion BTU/hr-ft-°F convertida a W/m°C

Kt=25.0/0.57782 ! Conductividad térmica del tubing en Btu/hr-ft-°F convertida a W/m°C Kf=1.4/0.57782 !Conductividad térmica de la formacion en BTU/hr-ft-°F convertida a W/m°C Ko=0.08/0.57782 !Conductividad térmica del aceite en BTU/hr-ft-°F convertida a W/m°C kan=25./0.57782 ! Conductividad térmica del material de la tubería del espacio anular km_an=25./0.57782 !Conductividad térmica del material en el espacio anular rto=1.75*.0254 ! Radio externo de la tp en pulgadas, convertidas a metros rco=4.9375*.0254 !Radio externo del casing, en pulgadas, convertidas a metros rci=4.2125*.0254 !Radio interno del casing en pulgadas, convertidas a metros

rcf=11.875*.0254 ! Radio hasta el final de la zona de cementación, equivalente a rh en pulgadas, convertidas a metro

alphaf=0.04*(0.3048**2.0)/3600.0 !Difusividad térmica de la formación en ft²/hr, igual a alphae tiempo=52.0*168.0*3600.0 ! Tiempo de producción en semanas convertidas a segundos

rho=54.7/0.062428 ! en lbm/ft³, convertidas a kg/m³

mhui=0.1 ! Viscosidad inicial igual a un cp, convertida a pa.s

C=0.65*4.1868*1000.0 ! Capacidad calorífica del aceite en Btu/lbm-°F, convertidas a KJ/Kg.°C landaf=1.4/0.57782 !Conductividad térmica de la formación en Btu/hr-ft-°F convertidas a W/m°C

pi=3.1416 gama=0.8 ! L=10000.0*0.3048 ! Longitud de la tubería en pies, convertidos a metros Tbot=(220.-32.)*5./9. ! Temperatura en el fondo del pozo en °F, convertidas a °C LP=L/.3048 ! convertir la longitud a pies para el cálculo de la temperatura en superficie TbotF=(Tbot*(9./5.))+32.!Conversión de la temperatura en °F TtopF=TbotF-(LP*cos(pi*15.0/180.0)*0.015) !. Ttop=(TtopF-32.)*(5./9.) Tagua = 15. ! Temperatura del agua en °C h_agua=20.0 ! W/m K

Re=8.259E4

L Detec nore al single del soste con la presión file en eshere a $100 \text{ lb} (s s^2)$
! Datos para el ajuste del gasto con la presion fija en cabeza a 100 lb/pg
Piy=34482758.62 ! Presión inicial del yacimiento en pascal
pws=34482758.62 ! Presión estática en pascal
pwf=27586206.90 ! P _{wf} en pascal
Ps=689655.17 ! Presión en superficie en pascal, fijada a 100 lb/pg ²
g= 9.81
IP=6.67012172E-10 ! Índice de productividad,
U_antes1=U_antes
U_mayuscula=1.0/(rcf*U_antes1) ! Coeficiente global de transferencia de calor en la cara del pozo
OPEN(UNIT=100,FILE='c:/fortran/tesis/salida_temp_hagoort.txt',ACTION='write',
STATUS='unknown')
OPEN(UNIT=300,FILE='c:/fortran/tesis/salida_temp_hagoort_visco.txt',ACTION='write',
STATUS='unknown')
! Calculo de la viscosidad
! Ejemplo para viscosidad=100 cp @ 80, =30000@ 30
a=26736.22
b=0.055886043
!Calcula temperatura utilizando el método de Hagoort
dist=L

decremento=24.

qo_s=(1700.*42.0/264.186)*(1.0/86400.0)

qo_incre= (1.0*42.0/264.186)*(1.0/86400.0)

ps_tol=0.5/0.000145

 $\label{eq:pwh} Pwh=100.0/0.000145 \quad ! \mbox{ Presión en cabeza fijada a 100 lb/pg2 convertida a pascal qo=qo_s !Gasto de aceite en bd convertidos a m^3/s$

```
do
tDFo=alphaf*tiempo/(rcf**2.0)
areatp=pi*(rti**2.0)
u=qo/areatp
!NGz=alphaf*L/((rcf**2.0)*u)
tD=u*tiempo/L
NGz=tDFo/tD
w=rho*qo
```

```
NRa=2.0*pi*landaf*L/(c*w)
UD=U_mayuscula*rcf/landaf
```

```
if (tDFo < 1.0)then
qouD=(1.0/sqrt(pi*tDFo))+0.5-((0.79526/4.0)*(sqrt(tDFo/pi)))
elseif (tDFo >=1.0 .and. tDFo < 10**5.0)then
qouD=1.0/((-0.0012*(log(tDFo)**3.0)) +(0.0249*(log(tDFo)**2.0))+( 0.3083*log(tDFo))+1.0504)
else
qouD=1.0/(0.5*log(4.*tDFo/gama))
end if
```

```
qud_R=1.0/( (1.0/qouD)+(1.0/UD))
```

```
N=18
!tDFo=120.96
!NRa=2.115
x=L
qud=V_Stehfest(N,tDFo,Ud)
```

```
mhu1=mhui
mhu2=mhui
pwf=pws-(qo/IP)
do i=decremento,L,decremento
T= ((Tbot-Ttop)*(1.-NRa*qud*(i**2.)/((L**2.)*factorial(2))))+Ttop
WRITE(100,*) dist,T
```

```
! Calculo de la viscosidad en cp
    mhu1=mhu2
       mhu=a*EXP(-b*T)
    mhu2=mhu
       !conversion de la viscosidad en pa.s
       mhup=((mhu1+mhu2)/2.)*0.001
       ! Calculo de la presión superficial
    ps=pwf-(rho*g*i)-(w*8.0*mhup*i/(pi*rho*(rti**4.0)))
       ! Para el ajuste del gasto de acuerdo a la presión fijada en cabeza
     Re=(rho*u*rti*2.0/mhup)
       f=64.0/Re
       WRITE(300,*)
i,T,mhu,Re,ps*0.000145,mhup,mhu1*.001,mhu2*0.001,(qo*264.186/42.0)*(86400),U_mayuscula
       dist=dist-decremento
END do
if ((ABS(ps-pwh)<=ps_tol).OR.(ps<0)) exit
if (ps> pwh) then
qo=qo+qo_incre
else
qo=qo-qo_incre
end if
dist=L
END do
```

```
! Calculo de la temperatura en el riser
OPEN(UNIT=400, FILE='c:/fortran/tesis/salida_riser.txt',ACTION='write', STATUS='unknown')
```

```
Ter=T ! "Temperatura de entrada al riser"

mhu=a*EXP(-b*Ter)

Re=8.259E4

Lriser = 500. !Longitud riser en metros

! qo = (2900.*42.0/264.186)*(1.0/86400.0) ! "Gasto en m3/s";

Uriser=Uriser_a(Ko,Kt,km_an,kan,Kcem,rto,rci,rco,Re,mhu*.001,h_agua,C,rti)

Utor = 1./(rto*Uriser);

vz = qo/areatp

landa = 2.*Utor/(rho*C*rto*vz)

deltaLR = 25.; !en metros
```

```
do i=0,Lriser,deltaLR
x = tiempo - (i/vz)
if (x<=0) then
unitstep=0
else
unitstep=1
end if
Triser = Tagua + (((Ter - Tagua)/EXP(landa*i))*UnitStep);
mhu=a*EXP(-b*Triser)
write (400,*) i,Triser,mhu
end do
close (100)
close (200)
close (300)
close (400)
contains
REAL function U_antes(Ko,Kt,km_an,kan,Kcem,Ke,rti,rto,rci,rco,rh,Cpo,alpha_e,rho,t,Nre,mhui)
implicit none
Real,INTENT(IN)::Ko,Kt,km_an,kan,Kcem,rto,rci,rco,Nre,mhui
REAL(8),INTENT(IN)::rh,Cpo,alpha_e,rho,t,Ke,rti
REAL::NNu,hf, Npr,tdw,f_t
tdw=alpha_e*t/(rh**2.0)
if (tdw<=1.5) then
 f_t=(1.1281*SQRT(tdw))*(1.-(0.3*SQRT(tdw)))
else
 f_t=(0.4063+0.5*LOG(tdw))*(1.+(.6/tdw))
end if
NPr= mhui*Cpo/Ko
! Para flujo turbulento
NNu=0.023*(Nre**0.8)*(NPr**0.3)
hf=NNu*Ko/(2.0*rti)
U_antes=(1.0/(rti*hf))+(LOG(rto/rti)/kt)+(log(rci/rto)/km_an)+(LOG(rco/rci)/kan)+(LOG(rh/rco)/Kcem)
+(f_t/Ke)
```

end function

REAL function Uriser_a(Ko,Kt,km_an,kan,Kcem,rto,rci,rco,Nre,mhui,h_agua,Cpo,rti) implicit none

REAL(8),INTENT(IN)::rti,Cpo

Real,INTENT(IN)::Ko,Kt,km_an,kan,Kcem,rto,rci,rco,Nre,mhui,h_agua

REAL::NNu,hf, Npr

NPr= mhui*Cpo/Ko

! Para flujo turbulento

NNu=0.023*(Nre**0.8)*(NPr**0.3)

hf=NNu*Ko/(2.0*rti)

Uriser_a=(1.0/(rti*hf))+(LOG(rto/rti)/kt)+(log(rci/rto)/km_an)+(LOG(rco/rci)/kan)+(1./h_agua*rco) END function

real function ajusta_pwh(Piy, IP, L, g, R, qoi,pws, rho,mhu1,mhu2,deltaL,pwh,qo_s)

implicit none

REAL(8),INTENT(IN) ::qoi,rho,R

Real,INTENT(IN)::Piy, IP, L, g, mhu1,mhu2,pws,pwh,qo_s

INTEGER, INTENT(IN)::deltaL

 ${\sf REAL:: w, pii, deltaLL, qo_incre, qob, pwf, ps, ps_tol}$

Ps=689655.17 ! Presion superficial fijada a 100 lb/pg2

! Para calcular pwf y w con Hagen Poiseuille

pii=3.1416

mhup=(mhu1+mhu2)/2.0 !Viscosidad promedio en pa.s

OPEN(UNIT=100, FILE='c:/fortran/tesis/presiones.txt',ACTION='write', STATUS='unknown')

w=rho*qo

```
!w=rho*IP*(Piy-Pwf)
qo_incre= (1.0*42.0/264.186)*(1.0/86400.0)
qo=(qo_s *42.0/264.186)*(1.0/86400.0) ! en m3/s
ps_tol=0.5/0.000145
do
pwf=pws-(qo/IP)
do deltaLL=deltaL,L,deltaL
ps=pwf-(rho*g*deltaLL)-(w*8.0*mhup*deltaLL/(pii*rho*(R**4.0)))
qob=(qo*264.186/42.0)*(86400)
write (100,*) deltaL,pwf*0.000145, ps*0.000145,qob
end do
if (ABS(ps-pwh)<=ps_tol) exit</pre>
```

```
if (ps> pwh) then
qo=qo+qo_incre
else
qo=qo-qo_incre
end if
END do
close (100)
ajusta_pwh=1.0
end function
! Para Ko utilizar las ecuaciones 9.8.5 y 9.8.6 del libro de Abramowitz página 379
REAL(8) function V_Stehfest(N,t,Ud)
implicit none
INTEGER, INTENT(IN)::n
REAL(8), INTENT(IN)::t ! n se refiere al número de coeficientes de Stehfest
REAL, INTENT(IN)::Ud
INTEGER::i,N2,k, kmin !n2 se refiere al valor de n entre 2
REAL(8), DIMENSION(N)::V
REAL(8)::In2,f_t_paso,sumav
N2 = N / 2
In2=LOG(2.0)
f_t_paso=0
do i=1,N
sumav=0
kmin=MIN(i,N2)
        do k = (i+1)/2, kmin
          sumav = sumav +(((k**n2)*factorial(2*k)) /( factorial(N2 - k)* factorial(k) * factorial(k - 1)* &
          factorial(i-k)*factorial((2 * k) - i)))
     END do
V(i)=((-1.0)**(N2+i))*sumav
!write (*,*) "i=", i, "V(i)=", V(i)
f_t_paso=f_t_paso+(V(i)*f_en_s((ln2/t)*i,Ud))
END do
V_Stehfest=(In2/t)*f_t_paso
END function
```

REAL(8) function f_en_s(s,Ud) implicit none REAL(8), INTENT(IN):: s REAL,INTENT(IN)::Ud ! Función para evaluar s del resultado obtenido para el espacio de Laplace f_en_s=(Ud*xk1(SQRT(s)))/(SQRT(s)*((xk1(SQRT(s))*SQRT(s))+(Ud*xK0(SQRT(s))))) END function

```
REAL(8) function factorial(numero)

implicit none

INTEGER,INTENT(IN)::numero

REAL(8)::fact

INTEGER:: i

fact=1.0

if (numero >1) then

do i=2,numero

fact=fact*i

end do

end if

factorial=fact

end function
```

```
! Para Ko utilizar las ecuaciones 9.8.5 y 9.8.6 del libro de Abramowitz página 379 function xk0(x)
implicit double precision (a-h,o-z)
data a1,a2,a3,a4,a5,a6,a7/-.57721 566d0,.42278 420d0,.23069 756d0,&
.03488 590d0,.00262 698d0,.00010 750d0,&
.00000 740d0/
```

data b1,b2,b3,b4,b5,b6,b7/1.25331 414d0,-.07832 358d0,.02189568d0, &

-.01062 446d0,+.00587 872d0,-.00251 540,& .00053 208d0/

```
if( x .gt. 0.d0 .and. x .le. 2.d0) then

xx=x/2.

xk0=-dlog(xx)*xi0(x)+a1+a2*xx**2+a3*xx**4+a4*xx**6+a5*xx**8+&

a6*xx**10+a7*xx**12

else

xx=2./x
```

```
! Para K1 utilizar las ecuaciones 9.8.1 y 9.8.2 del libro de Abramowitz página 378
function xk1(x)
implicit double precision (a-h,o-z)
data a1,a2,a3,a4,a5,a6/.15443 144d0,-.67278 579d0,-.18156 897d0,&
-.01919 402d0,-.00110 404d0,-.00004 686d0/
data b1,b2,b3,b4,b5,b6,b7/1.25331 414d0,.23498 619d0,-.03655 620d0, &
.01504 268d0,-.00780 353d0,.00325 614,&
-.00068 245d0/
```

```
if( x .gt. 0.d0 .and. x .le. 2.d0) then
    xx=x/2.
    xtemp=x*dlog(xx)*xi1(x)+1.+a1*xx**2+a2*xx**4+a3*xx**6+a4*xx**8+&
        a5*xx**10+a6*xx**12
        xk1=xtemp/x
    else
        xx=2./x
        xtemp=b1+b2*xx+b3*xx**2+b4*xx**3+b5*xx**4+b6*xx**5+b7*xx**6
        xk1=xtemp/(dsqrt(x)*dexp(x))
```

endif

end function

```
! Para lo utilizar las ecuaciones 9.8.1 y 9.8.2 del libro de Abramowitz página 378 function xi0(x)
implicit double precision (a-h,o-z)
data a1,a2,a3,a4,a5,a6/ &
3.51562 29d0, 3.08994 24d0, 1.20674 92d0,&
0.26597 32d0, .03607 68d0, .00458 13d0/
data b1,b2,b3,b4,b5,b6,b7,b8,b9/ &
0.39894 228d0, .01328 592d0, .00225 319d0, &
-0.00157 565d0, .00916 281d0,-0.02057 706d0, &
0.02635 537d0,-0.01647 633d0, 0.00392 377d0/
t=x/3.75
```

```
if(x .le. 3.75d0 .and. x .ge. -3.75d0) then
    xi0=1.+a1*t**2.+a2*t**4.+ a3*t**6.+ a4*t**8.+ a5*t**10.+ &
        a6*t**12.
    else
    xi0=b1+b2/t+b3/t**2.+b4/t**3.+b5/t**4.+b6/t**5.+b7/t**6.+ &
        b8/t**7.+b9/t**8.
    xi0=dexp(x)*xi0/dsqrt(x)
    endif
END function
```

! Para I1 utilizar las ecuaciones 9.8.3 y 9.8.4 de Abramowitz página 378 del libro function xi1(x) implicit double precision (a-h,o-z) data a1,a2,a3,a4,a5,a6/ &

0.87890 594d0, 0.51498 869d0, 0.15084 934d0,& 0.02658 733d0, 0.00301 532d0, 0.00032 411d0/

```
data b1,b2,b3,b4,b5,b6,b7,b8,b9/ &
0.39894 228d0,-0.03988 024d0,-0.00362 018d0, &
0.00163 801d0,-0.01031 555d0, 0.02282 967d0, &
-0.02895 312d0, 0.01787 654d0,-0.00420 059d0/
```

t=x/3.75

```
if(x .le. 3.75d0 .and. x .ge. -3.75d0) then
```

```
xi1=0.5+a1*t**2.+a2*t**4.+a3*t**6.+a4*t**8.+a5*t**10. &
        +a6*t**12.
        xi1=xi1*x
        else
        xi1=b1+b2/t+b3/t**2.+b4/t**3.+b5/t**4.+b6/t**5.+&
        b7/t**6.+b8/t**7.+ b9/t**8.
        xi1=dexp(x)*xi1/dsqrt(x)
        endif
    END function
end program
```