Índice

Introdu	ıcciór	1	1
Capítul	o 1.	El sistema costero	6
1.1	Intr	oducción	6
1.2	Cor	nponentes del sistema costero morfodinámico	9
1.2.1		Condiciones externas del sistema costero	. 10
1.2	2	Condiciones internas del sistema costero	. 11
1.3	La j	playa	. 12
Capítul	lo 2.	Hidrodinámica de la zona de rompientes	. 14
2.1	Intr	oducción	. 14
2.2	La o	onda más grande posible sobre una profundidad	. 15
2.3	Des	cripción cualitativa de la rotura	. 17
2.3	.1	Análisis de la variación del momento (¿por qué rompen las olas?)	. 19
2.3	.2	Tipos de rotura	. 25
2.4	Car	acterísticas del oleaje en el punto de rotura.	. 29
2.5	Rev	risión del estado del arte sobre experimentos de laboratorio en la zona	de
romp	oiente	S	. 32
2.5	.1	Características cualitativas de la zona de rompientes	. 34
2.5.2		Perfiles de superficie libre $\eta(t)$. 35
2.5	.3	La elevación de la cresta $\eta c/H(t)$. 37
2.5	.4	La zona del roller	. 39
2.5	.5	Velocidad de partícula	. 41
2.5	.6	Intensidad de la turbulencia	. 43
2.6	Cor	rientes asociadas a la rotura	. 44
2.6.1		Corriente de resaca (undertow)	. 46

2.7 0	Gradiente de presiones y aceleración total	47
Capítulo	3. Metodología	49
3.1	Introducción	49
3.2	Experimentos en laboratorio-Ting y Kirby (1994)	51
3.3 I	Descripción del modelo numérico	55
3.3.1	Antecedentes del modelo	56
3.3.2	Características del modelo numérico	56
3.3.3	Ecuaciones de gobierno para el medio fluido	58
3.3.4	Condiciones iniciales y de frontera	62
3.3.5	Método de seguimiento de superficie libre (VOF)	65
3.3.6	Método de resolución	67
Capítulo	4. Análisis de resultados	69
4.1	Introducción	69
4.2	Rotura tipo Voluta	70
4.2.1	Validación	70
4.2.2	Términos de la ecuación de Euler	
4.3	Rotura tipo descrestamiento	81
4.3.1	Validación	81
4.3.2	Términos de la ecuación de Euler	89
4.4	Discusión de diferencias entre ambos tipos de rotura	92
Capítulo	5. Conclusiones	94
Capítulo	6. Futuras líneas de trabajo	96
Capítulo	7. Bibliografía	97

Índice de Figuras

Figura 1.1 Panel Izquierdo -Oleaje de tormenta; Panel derecho - Efectos erosivos sobre la costa				
tabasqueña en Sánchez Magallanes				
Figura 1.2 Componentes primarios involucrados en morfodinámica costera. La interacción				
iterativa entre la morfología y los procesos es responsable de la complejidad observada en				
la evolución costera (Pedrozo-Acuña, 2010)9				
Figura 1.3 Terminología del perfil de playas (Pedrozo-Acuña, 2010)				
Figura 2.1 Análisis del flujo de momento en un bore. (Svendsen, 2005)19				
Figura 2.2 Similitud entre los perfiles de velocidad en un bore (no rotura) y un bore en rotura				
visto desde un sistema de coordenadas moviéndose con la velocidad del bore/ de manera				
que el movimiento de la ola parece estable. La forma de la ola equivalente se muestra como				
una línea discontinua (Svendsen, 2005)				
Figura 2.3 Comparación de los valores del criterio de rotura				
Figura 2.4 Tipos de rotura en playas (paneles izquierdos-figuras esquemáticas; paneles				
derechos- fotografías)				
Figura 2.5 De izquierda a derecha se muestran los bocetos para la evolución de las roturas de				
descrestamiento, voluta y no rotura acercándose a la costa. (Tilen Kusterle, 2007)				
Figura 2.6 Índice de rotura contra la pendiente relativa de fondo $S = hxLhB$ (Svendsen y				
Hansen, 1976)				
Figura 2.7 Valores de L/h en la rotura contra la inclinación de las olas en aguas profundas H_0/L_0				
(Svendsen y Hansen, 1976)				
Figura 2.8 Representación esquemática de la zona de rompientes en una playa con pendiente				
suave. (Christensen et al, 2002)				
Figura 2.9 Desarrollo de los perfiles de la superficie de las olas en la zona de rompientes				
(Svendsen et al., 1978). La figura muestra como se propagan las olas hacia la costa, la parte				
trasera de las olas comienza a hacerse más rectas así que las olas eventualmente se				
aproximan a la forma de un diente de sierra				
Figura 2.10 Valores experimentales de $\eta_c/H\mathchar`-$ son los resultados de la ecuación 2.39 (Hansen,				
1990)				

Figura 2.11 Características hidrodinámicas de la zona de rompientes (modificada de Dally, 2000)					
Figura 2.12 Panel izquierdo Ilustración de las características del campo de velocidad bajo una					
ola en la zona de rompientes. Panel derechoCampo de velocidades visto en la zona de					
rompientes a partir de la ola. (Sevendsen, 2005) 40					
Figura 2.13 Mediciones de perfiles de velocidad bajo la cresta de las olas en rotura. Las					
mediciones son de Iwagaki and Sakai (1976), la curva corresponde a la ecuación 2.43 41					
Figura 2.14 Mediciones de velocidad en campo de una ola en la zona de rompientes. La parte					
delantera de la cresta se hace recta. (Cox et al., 1994)					
Figura 2.15 Gráfica de la intensidad promedio del remolino y periodo medio de las					
fluctuaciones					
Figura 2.16 A, B, C Patrones de circulación observados en la zona cercana a la costa en función					
del ángulo se aproximación del oleaje (Komar, 1998) 45					
Figura 2.17 Undertow o flujo de resaca en la zona de rompientes. Representa al flujo					
compensatorio del transporte de masa con dirección a la costa, producido por el oleaje 46					
Figura 3.1 Arreglo experimental. (Ting y Kirby ,1994)					
Figura 3.2 Ubicación de los sensores para la prueba en descrestamiento					
Figura 3.3 Ubicación de los sensores para la prueba en voluta					
Figura 3.4 Esquema del dominio de resolución, localización de las magnitudes resueltas,					
definición de la función VOF (Modificado de Guanche, 2008)66					
Figura 4.1 Comparación de envolvente máxima, media y mínima de la superficie libre para					
rotura tipo voluta; círculos azules - Ting y Kirby (1994); diamantes rojos -modelo numérico.					
Figura 4.2 Perfil de la superficie libre en el intervalo de tiempo (100-250 seg), obtenido por los					
sensores 2 al 12; en rotura en tipo voluta. Datos de laboratorio en color azul y datos modelo					
color rojo					
Figura 4.3 Perfil de la superficie libre en el intervalo de tiempo (100-250 seg), obtenido por los					
sensores 13 al 23; en rotura en tipo voluta. Datos de laboratorio en color azul y datos					
modelo color rojo73					
Figura 4.4 Campo de turbulencia obtenida por el modelo COBRAS en rotura en voluta, la escala					
de color representa la intensidad de turbulencia adimensional					

Figura 4.5 Campo de velocidad u obtenida por el modelo COBRAS en rotura en voluta, la escala					
de color representa la magnitud de velocidad u76					
Figura 4.6 Campo de velocidad w obtenida por el modelo COBRAS en rotura en voluta, la escala					
de color representa la magnitud de velocidad w77					
Figura 4.7 Campo de presiones obtenidas por el modelo COBRAS en rotura en voluta, la escala					
de color representa la magnitud de presión78					
Figura 4.8 Ubicación de los puntos de comparación para los términos de la ecuación de Euler,					
para rotura en voluta					
Figura 4.9 Gráficas de los términos de la ecuación de Euler para P-1 (x=7.5 m), P-2 (x=10.0 m) y					
P-3 (x=13.0 m); para rotura de tipo voluta					
Figura 4.10 Comparación de envolvente máxima, media y mínima de la superficie libre para					
rotura tipo descrestamiento; círculos azules - Ting y Kirby (1994); diamantes rojos -modelo					
numérico					
Figura 4.11 Perfil de la superficie libre en el intervalo de tiempo (110-160 seg), obtenido por los					
sensores 2 al 11; en rotura en tipo descrestamiento. Datos de laboratorio en color azul y					
datos modelo color rojo					
Figura 4.12 Perfil de la superficie libre en el intervalo de tiempo (110-160 seg), obtenido por los					
sensores 12 al 21; en rotura en tipo descrestamiento. Datos de laboratorio en color azul y					
datos modelo color rojo					
Figura 4.13 Campo de turbulencia obtenida por el modelo COBRAS en rotura en					
descrestamiento, la escala de color representa la intensidad de turbulencia adimensional 86					
Figura 4.14 Campo de velocidades horizontales u, obtenida por el modelo COBRAS en rotura en					
descrestamiento, la escala de color representa la magnitud de velocidad horizontal					
Figura 4.15 Campo de aceleración vertical w, obtenida por el modelo COBRAS en rotura en					
descrestamiento, la escala de color representa la magnitud de aceleración vertical					
Figura 4.16 Campo de presión, obtenida por el modelo COBRAS en rotura en descrestamiento,					
la escala de color representa la magnitud de presión					
Figura 4.17 Ubicación de los puntos de comparación para los términos de la ecuación de Euler,					
para rotura en descrestamiento					
Figura 4.18 Gráficas de los términos de la ecuación de Euler para P-1 (x=7.0 m), P-2 (x=10.0 m) y					
P-3 (x=12.0 m); para rotura de tipo descrestamiento					

Índice de tablas

Tabla 2.1 Datos obtenidos por diferentes auto	ores para la relación $(H/h)_{max}$ Svendsen (2005). 16				
Tabla 2.2 Datos obtenidos por diferentes autores para la relación $(H/L)_{max}$. Svendsen (2005) 16					
Tabla 3.1 Condiciones de oleaje para los tipos de rotura de los experimentos					
Tabla 3.2 Condiciones de la función $F = \frac{\rho}{\rho_f}$	para determinar el tipo de celda registrada por el				
programa					