

centro de educación continua división de estudios superiores facultad de Ingeniería, unam.

A LOS ASISTENTES A LOS CURSOS DEL CENTRO DE EDUCACION CONTINUA

Las autoridades de la Facultad de Ingeniería, por conducto dei Jefe del Centro de Educación Continua, Dr. Pedro Martínez Pereda, otorgan una constancia de asistencia a quienes cumplan con los requisitos establecidos para cada curso. Las personas que deseen que aparezca su título profesional precediendo a su nombre en el diploma, deberán entregar copia del mismo o de su cédula profesional a más tardar el SEGUNDO DIA de clases, en las oficinas del Centro, con la seborita Barraza, encargada de inscripciones, de lo contrario NO sezá posible.

El control de asistencia se efectuará a través de la persona encargada de entregar notas, en la mesa de entrega de material mediante listas especiales. Las cusencias serán computadas por las autoridades del Centro.

Se recomienda a los asistentes participar activamente con sus ideas y experiencias, pues los cursos que ofrece el Centro están planeados para que los profeso res expongan una tesis, pero sobre todo, para que coordinen las opiniones de to dos los interesados constituyendo verdaderos seminarios.

Es muy importante que todos los asistentes llenen y entreguen su hoja de inscripción al inicio del curso. Las personas comisionadas por alguna institución debarán pasar a inscribirse en las oficinas del Centro en la misma forma que los demás asistentes.

Con objeto de mejorar los servicios que el Centro de Educación Continua ofrece, se hará una evaluación del mismo a través de un cuestionario diseñado para emitir juicios anónimos por parte de los asistentes; esto se hará al finalizar el curso.

ATENTAMENTE

ING. SALVADOR MEDINA RIVERO COORDINADOR DE CURSOS ABIERTOS

UNIVERSIDAD FA DIVISI CENT	NACIONAL AUTO CULTAD DE INGE ION DE ESTUDIOS IRO DE EDUCAGIO DIRECTORIO GEI	ONOMA DE MEXICO NIERIA S SUPERIORES DN CONTINUA NERAL	0		-
C REGISTR	O DE ASISTENT	ES Y PROFESORES	•		
MBRE DEL CURSO:	Without any and an and any and any a	FOLIO	CLAVE	ASOC	5 7
13 14 NOMBRE (S) API	ELLIDO PATEKNÇ	APELLIO MATE	RNO 41		5
G. FED. CAUS. 42	CED. PROF	• 52 58	3		·
L. PARTICULAR 59 65 MARQUE CON UNA CRUZ	TEL. OFICINA	66 7		73	76
ASISTENTE PROFESOR		 77	د بر	· · · · ·	1 80
DOMICILIO PARTICULAR (CALLE.	NUMERO Y No.	INTERIOR)	41	- - -	•
		· 71	Z.P. 72 73	*	,
ESTADO	74 75	, , ,		د میروند بر ۲۰ ۱	v
TITULO PROFESIONAL	76 77	ESPECIALIDAI	D 7	ź 8 79	2 80
DOMICIUO DE OFICINA (CA	LLE, NUMERO Y I	No. INTERIOR)	41	in the second second	
			Z.P. 7273	12 , , , ,	,
ESTADO	74 75			」 アイ	3 80
CIACIONES A LAS QUE PERTENECE	ð			ž h	

·

--

,

.

;

.

;

DIRECTORIO DE PROFESORES DEL CURSO DINAMICA ESTRUCTURAL 1977

DR. PORFIRIO BALLESTEROS BAROCIO DIVISION DE ESTÚDIOS SUPERIORES, FACULTAD DE INGENIERIA, UNAM TEL.: 548.09.50

DR. LUIS ESTEVA MARABOTO INVESTIGADOR INSTITUTO DE INGENIERIA UNAM TEL.: 548.97.94

M. EN C. JORGE PRINCE ALFARO SUBDIRECTOR INSTITUTO DE INGENIERIA, UNAM TEL.: 548.11.35

DR. OCTAVIO A. RASCON CHAVEZ JEFE DE LA DIVISION DE ESTÚDIOS SUPERIORES FACULTAD DE INGENIERIA, UNAM TEL.: 548.09.50

'edcs. 21,VII.77.

~., ^

 \sum

·

centro de educación continua división de estudios superiores

facultad de ingeniería, unam

III CURSO INTERNACIONAL DE INGENIERIA SISMICA

DINAMICA ESTRUCTURAL

 INTRÓDUCCIÓN
 VIBRACIÓN DE SISTEMAS DE UN GRADO DE LIBERTAD

DR. OCTAVIO A. RASCON CHAVEZ

Julio de 1977.

-

DEFINICION.

GRADOS DE LIBERTAD = NUMERO DE COORDENADAS GENERALIZADAS (DESPLA- ' ZAMIENTOS O GIROS) QUE SE REQUIEREN PARA DEFINIR LA POSICION DEL SISTEMA EN CUALQUIER INSTANTE.

EJEMPLOS

HIBBRIND

n $\frac{x_n}{x_1}$ $\frac{x_1}{x_1}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_1}$ $\frac{x_2}{x_1}$

DOS GRADOS DE

LIBERTAD

Chimenea-777777 11711

DOS GRADOS DE LIBERTAD

n GRADOS DE LIBERTAD INFINITO NUMERO DE GRADOS DE LIBERTAD

DOS GRADOS DE LIBERTAD

, m

1.

×

 X_2

Xn

METODOS DE DISCRETIZACION DE SISTEMAS CONTINUOS

1. POR CONCENTRACION DE MASAS

2. EXPRESANDO LA CONFIGURACION DE VIBRACION DE LA ESTRUCTURA COMO UNA SERIE DE FUNCIONES ESPECIFICADAS. POR EJEMPLO, SI ESTAS FUNCIONES SON ARMONICAS:

$$Z(x,t) = \sum_{i=1}^{N} b_i \operatorname{sen} \frac{i\pi x}{L}$$

 $z(x,t) = \sum_{i=1}^{N} z_{i}(t)\psi_{i}(x)$

MEDIANTE ELEMENTOS FINITOS

mm

 $Z(x,t) = Z_A(t) \psi(x)$

. Je AL PLANTEAR LAS ECUACIONES DE EQUILIBRIO DE CUERPOS RIGIDOS ES A ME-NODO NECESARIO CONOCER LOS MOMENTOS DE INERCIA DE MASA. A CONTI-SUACION SE PRESENTAN ALGUNOS CAŜOS:

 \tilde{m} = MASA POR UNIDAD DE LONGITUD

BARRA UNIFORME

Y - L NA POE UNICAT DE AJER

m \sharp

PLACA UNIFORME TRIANGULAR

RESPUESTA DINAMICA DE SISTEMAS ELASTICOS LINEALES DE UN GRADO DE LI ÆRTAD CON AMORTIGUAMIENTO VISCOSO

X (t) = DESPLAZAMIENTO DEL SUELO

TAMORTIGUAMIENTO VISCOSO ES TAL QUE PRODUCE UNA FUERZA DE RESTAU-TACION PROPORCIONAL A LA VELOCIDAD RELATIVA DE LA MASA RESPECTO AL -0ELO.

TL AMORTIGUAMIENTO SE DEBE PRINCIPALMENTE A LA FRICCION INTERNA ENTRE LOS GRANOS O PARTICULAR DEL MATERIAL DE LA ESTRUCTURA, Y A FRICCION EN LAS JUNTAS Y CONEXIONES DE LA MISMA. ES EL ELEMENTO DEL SISTEMA QUE DISCIPA ENERGIA.

2a. LEY DE NEWTON:

"LA RAPIDEZ DE CAMBIO DEL MOMENTUM DE CUALQUIER MASA, m, ES IGUAL LA FUERZA QUE ACTUA SOBRE ELLA"

$$p(t) = \frac{2}{dt} (m\frac{dx}{dt}) = \frac{d}{dt} (mx)$$

- p(t) = FUERZA ACTUANTE
 - DESPLAZAMIENTO .
 - t = T.EMPO
 - J m ES CONSTANTE: p(t) = mx

PRINCIPIO DE D'ALAMEERT

SI LA 2a. LEY DE NEWTON LA ESCRIBIMOS COMO

p(t) - mx = 0

AL SEGUNDO TERMINO DE LA ECUACION SE LE CONOCE COMO FUERZA DE INERCIA; EL CONCEPTO DE QUE UNA MASA DESARROLLA UNA FUERZA DE INERCIA PROPOR-CIONAL A SU ACELERACION Y QUE SE OPONE A ELLA SE CONOCE COMO PRIN-CIPIO DE D'ALAMBERT, Y PERMITE QUE LAS ECUACIONES DE MOVIMIENTO SE EXPRESEN COMO ECUACIONES DE EQUILIBRIO DINAMICO.

DIAGRAMA DE CUERPO LIBRE

EQUILIBRIO:
$$f_e + f_i + f_i = p(t)$$
 (1)

PARA UN SISTEMA ELASTICO: $f_e = K(x - x_o) = ky$ MARA UN SISTEMA ELASTICO: $f_a = K(x - x_o) = ky$ MARA AMORTIGUAMIENTO VISCOSO: $f_a = c(x - x_o) = cy$ (2) MARA ELASTICO: $f_i = m\dot{x} = m(\dot{y} + \dot{x}_o)$ SUSTITUYENDO LAS ECS. 2 EN LA EC. 1 SE OBTIENE: $(y + x_0) + cy + ky = p(t)$

$$My + cy + y = p(t) - Mx_0$$
(3)

DAVIDIENDO ENTRE M AMBOS MIEMBROS DE LA EC.3:

$$\dot{y} + \frac{C}{M}\dot{y} + \frac{K}{M}y = \frac{p(t)}{M} - \dot{x}_{o}$$

SI $\frac{C}{M} = 2h$, $y \frac{K}{M} = \omega^2$, DONDE ω = FRECUENCIA CIRCULAR NATURAL, EN RAD/SEG:

$$y' + 2h y + \omega^2 y = \frac{p(t)}{M} - x_0$$
 (4)

CUANDO SE TIENEN EXCITACIONES EN EL SISTEMA SE TRATA DE UN PROBLEMA DE VIBRACIONES FORZADAS; EN CASO CONTRARIO EL PROBLEMA ES DE VIBRA-CIONES LIBRES.

VIERACIONES LIBRES

JN 2STE CASO LA ECUACION DIFERENCIAL DE EQUILIBRIO RESULTA SER

$$y' + 2n y' + \omega^2 y = 0$$

CUMPL SOLUCION ES

 $y(t) = e^{-ht} (C_1 \text{ sen } \omega' t + C_2 \cos \omega' t)$ (5) DONDE $\omega' = \sqrt{\omega^2 - h^2} = \text{FRECUENCIA CIRCULAR NATURAL AMORTIGUADA}$ $Y C_1 Y C_2 \text{ SON CONSTANTES QUE DEPENDEN DE LAS CONDICIONES INICIALES}$

0.

(EN t=0) DE DESPLAZAMIENTO Y VELOCIDAD QUE TENGA LA MASA DEL SIS-

ESTAS RESULTAN SER

REDUCE A

$$C_1 = \frac{y(0) + hy(0)}{\omega} \quad Y - C_2 = y(0)$$
 (6)

LA EC (5) SE PUEDE ESCRIBIR TAMBIEN COMO:

$$y(t) = Ae^{-ht} \cos (\omega't - \theta)$$
 (7)

DONDE A = $\sqrt{c_1^2 + c_2^2}$ Y $\theta = \tan^{-1} \frac{c_1}{c_2} = ANGULO DE FASE$

LA GRAFICA DE LA EC
$$(7)$$
 ES T' CANADA E LA EC (7) Y(0)

 $T' = \frac{2\pi}{\omega'}$ = PERIODO NATURAL AMORTIGUADO, SEG

 $f'' = \frac{1}{T'}$ = FRECUENCIA NATURAL AMORTIGUADA, cps VEAMOS EL CASO ESPECIAL DE LA EC. (5) EN QUE $h \rightarrow \omega$. EN TAL CASO, $\omega' = \sqrt{\omega^2 - h^2 + 0}$, cos $\omega' t \rightarrow 1$ Y sen $\omega' t \rightarrow \omega' t$, CON LO CUAL LA EC. (5) SE

$$y(t) = e^{-\omega t} \{ [(y(0) + hy(0))/\omega'](\omega't) + y(0) \}$$

$$= e^{-\omega t} [y(0)t + (1 + \omega t)y(0)]$$

LA GRAFICA DE ESTA ECUACION ES

1(0)

Y DEVIAMENTE NO REPRESENTA UN MOVIMIENTO OSCILATORIO. POR LO CUAL DI $h < \omega$ SE DICE QUE SE TIENE AMORTIGUAMIENTO CRITICO. EN TAL CASO:

$$h_{cr} = \omega = \frac{C_{cr}}{2M} = \sqrt[6]{\frac{K}{M}}$$

DE DONDE $C_{cr} = 2\sqrt{KM^{1}}$ (8) A LA RELACION $\zeta = C/C_{cr}$ SE LE LLAMA FRACCION DEL AMORTIGUAMIENTO CRITICO.

DESPEJANDO A M DE LA EC. (8) Y SUSTITUYENDOLA EN LA EC. h = C/(2M)SE OBTIENE:

$$h = \frac{C}{\frac{C^2}{2 \frac{C^2}{4K}}} = \frac{C}{C_{cr}} \frac{2K}{2\sqrt{KM}} = \zeta \sqrt{\frac{K}{M}} = \zeta \omega$$

ADEMAS:

$$\omega^{\circ} = \sqrt{\omega^2 - h^2} = \sqrt{\omega^2 - \omega^2 \zeta^2} = \omega \sqrt{1 - \zeta^2}$$

$$\omega^{\circ} = \omega \sqrt{1 - \zeta^2}$$
(9)

LOS VALORES USUALES EN ESTRUCTURAS QUE ASUME ζ VARIAN ENTRE 2 Y 5%. EN ESTE INTERVALO ω' Y ω SON CASI IGUALES; VEAMOS, POR EJEMPLO, EN CASO EN QUE $\zeta = 0.1$ OTRA FORMA DE MEDIR EL GRADO DE AMORTIGUAMIENTO QUE TIENE UNA ES-TRUCTURA ES MEDIANTE EL DECREMENTO LOGARITMICO, EL CUAL SE DEFINE COMO EL LOGARITMO DEL COCIENTE DE DOS AMPLITUDES CONSECUTIVAS

$$L = \ln \frac{y(t)}{y(t + T')} = \ln \frac{Ae^{-ht}\cos(\omega't - \theta)}{Ae^{-h}(t + T')\cos[\omega'(t + T') - \theta]}$$
$$= -\ln \{\frac{e^{-ht}}{e^{-h}(t + T')}, \frac{\cos(\omega't - \theta)}{\cos(\omega't + T' - \theta)}\}$$

 $\cos(\omega t - \theta)$

$$\ln e^{+hT'} = hT' = \zeta \omega T' = \zeta \omega \frac{2\pi}{\omega (1-\zeta^2)}$$

$$L = \frac{2\pi \zeta}{\sqrt{1-\zeta^2}}$$
(10)

SI ζ ES PEQUEÑO, Z COM

$$\mathbf{L} \stackrel{*}{=} 2\pi\zeta \tag{11}$$

ECUACION DE MOVIMIENTO GENERALIZADA.

HAY PROBLEMAS QUE APARENTEMENTE CORRESPONDE A VIBRAÇIONES DE SIS-TEMAS DE VARIOS GRADOS DE LIBERTAD PERO QUE EN REALIDAD SON DE UN GRADO SOLAMENTE.

$$\omega \sqrt{1. - 0.01} = 0.995 \omega$$

 $t_{12} = m_2 \frac{2}{3} \tilde{z}$ (t)

- ~

$$M = I_0 \frac{1}{4a} \vec{z}(t) = \frac{\vec{m}L}{4a} \frac{L^2}{3} \vec{x}(t) = \frac{4}{3} a^2 \vec{m} \vec{z}(t)$$

 $p_1 = 8\bar{p}a\zeta(t)$

LA ECUACION (E MOVIMIENTO DEL SISTEMA SE PUEDE ESTABLECER IGUALANDO A CIRO EL TRABAJO VIRTUAL REALIZADO POR TODAS 2-0 (INTAG AL DENNE AL SISTEMA UN DESPLAZAMIENTO VIRTUAL EN EL PUNTO B IGUAL A CAN EN F CL CASO

23

$$\delta W = -k_1 \frac{3}{4} Z(t) \left(\frac{3}{4} \delta Z\right) - K_2 \frac{1}{3} Z(t) \left(\frac{1}{3} \delta Z\right) - C_1 \frac{Z(t)}{4} \left(\frac{\delta Z}{4}\right) - C_2 Z(t) \left(\delta Z\right) - 2a\overline{m} Z(t) \left(\frac{\delta Z}{2}\right) - m_2 \frac{2Z(t)}{3} \left(\frac{2}{3}\delta Z\right) - \frac{4}{3} a^2 \overline{m} Z(t) \left(\frac{\delta Z}{4a}\right) + 8\overline{p}a_z(t) \left(\frac{2}{3}\delta Z\right) = 0$$

SIMPLIFICANDO SE OBTIENE

$$\left[\left(a\bar{m} + \frac{a\bar{m}}{3} + \frac{4m_2}{9}\right)\ddot{z}(t) + \left(\frac{C_1}{16} + C_2\right)\dot{z}(t) + \left(\frac{9}{16}k_1 + \frac{k_2}{9}\right)z(t) - \frac{16}{3}p\bar{a}z(t)\right]\delta z = 0$$
(A)

COMO EL DESPLAZAMIENTO VIRTUAL 6Z NO ES CERO, SE DEBE CUMPLIR QUE EL TERMINO ENTRE PARENTESIS ES CERO. EN TAL CASO:

Ċ

$$\tilde{M} Z(t) + \tilde{C} Z(t) + \tilde{K} Z(t) = \tilde{p}(t)$$

) III' DONDE

$$\tilde{m} = \frac{4}{3} \quad \bar{m}a + \frac{4}{9} \quad m_2$$
; $\tilde{c} = \frac{C_1}{16} + C_2$

$$\tilde{k} = \frac{9}{16} k_1 + \frac{k_2}{9}$$
; $\tilde{p}(t) = \frac{16}{3} \bar{p}a\zeta(t)$

ESTOS PARAMETRO: SE DENOMINAN MASA, AMORTIGUAMIENTO, RIGIDEZ Y FUERZA CENERPLIZADAS, RESPECTIVAMENTE.

JORSIDEREMOS AHORA EL CASO DE LA FUERZA NORMAL N SOLAMENTE;

EL TRABAJO VIRTUAL ES:

$$\delta W = N \delta e = \frac{7}{12} \frac{NZ}{a} (\delta Z)$$

COMO'EL SISTEMA ES LINEAL SE PUEDE SUMAR ESTE TRABAJO VIRTUAL AL DE

2-0

$$\vec{k} = \frac{9}{16} k_1 + \frac{1}{9} k_2 \begin{bmatrix} \frac{7}{12} & \vec{N} \\ -12 & \vec{a} \end{bmatrix}$$

DE ESTA RIGIDEZ SE PUEDE SACAR, DE PASO, LA CARGA CRITICA DE PANDEO HACIENDO $\tilde{k} = 0$:

 $N_{cr} = (\frac{27}{28}k_1 + \frac{4}{21}k_2)a$

DETERMINACION EXPERIMENTAL DE C EN ESTRUCTURAS REALES O EN MODELOS SI SE REALIZA UN EXPERIMENTO EN EL CUAL SE SACA A LA ESTRUCTURA DE SU POSICION SE SACA A LA ESTRUCTURA DE SU POSICION DE EQUILIBRIO ESTATICO Y SE DEJA VIBRANDO LIBREMENTE, EL REGISTRO DE LAS ACELERA-CIONES QUE SE REGISTREN EN LA MASA TENDRA LA MISMA FORMA QUE LA GRA-FICA DE LA EC.7.

SI DE DICHO REGISTRO SE MIDEN $\dot{y}(t + T')y \dot{y}(t)$ SE PUEDE OBTENER L Y, DE LA EC. (11), DESPEJAR A ζ

$$\zeta = \frac{L}{2\pi}$$

EJEMPLO

A UNA ESTRUCTURA DE UN PISO SE LE APLICA UNA CARGA HORIZONTAL DE 20 TON EN SU MASA, OBSERVANDOSE UN DESPLAZAMIENTO ESTATICO DE 0.2 CM. AL SOLTAR SUBITAMENTE LA FUERZA SE REGISTRA UN PERIODO DE OSCILACION DE 0.2 SEG, Y QUE LA AMPLITUD EN EL SEGUNDO CICLO ES DE 0.14 CM.

. t. .

CALCULAR ω , ω ', f', L y ζ

1. DE T'
$$\doteq \frac{2\pi}{\omega} = \frac{\pi 2}{\sqrt{K}} = \frac{2\pi\sqrt{W}}{\sqrt{Kg}} = 0.2$$
 Y $K = \frac{2.0}{0.2} = 100 \frac{\text{TON}}{\text{CM}}$

SE OBTIENE

$$W = T^{2} Kg/4\pi^{2} = (0.2)^{2} x 100 x 981/4\pi^{2} = \frac{0.04 x 100 x 981}{4} \frac{981}{9.87}$$

W = 99.4 TON

2.
$$\omega' = \frac{2\pi}{\frac{1}{1+1}} = \frac{2\pi}{0.2} = 10\pi \frac{\text{RAD}}{\text{SEG}}$$
; $f' = \frac{1}{T'} = \frac{1}{0.2} = 5 \text{ cps}$

3.
$$1 = \ln \frac{0.2}{0.14} = \ln 1.43 = 0.357$$

$$\zeta = \frac{L}{2\pi} = \frac{0.357}{2\pi} = 0.0568$$
 O $\zeta = 5.68$ %

$$\zeta_{cr} = \zeta_2 \sqrt{KM} = 0.1132 / 100 \times 99.4/981$$

 $= 1,132 \times 0.319 = 0.36$ TON SEG/CM

SOLUCION AL PROBLEMA DE VIBRACIONES FORZADAS

A. FUERZA EXTERNA

VEAMOS PRIMERO EL CASO EN QUE EXISTE p(t) Y QUE $\kappa_{0}(t) < 0$, SIENDO p(t) ARBITRARIA

PUESTO QUE d7<<T, LA FUERZA APLICADA EN t= \mathcal{T} producira un incremento INSTANTANEO EN LA VELOCIDAD DE LA MASA IGUAL A

$$y = \frac{p(\tau) d\tau}{M}$$

Y UN INCREMENTO INSTANTANEO NULO EN EL DESPLAZAMIENTO, ES DECIR, y=0. 'ODANDO ESTOS INCREMENTOS COMO CONDICIONES INICIALES EN t=', LA EC.5 DA COMO RESULTADO .

$$y(t) = \frac{p(\tau)d\tau}{M\omega'} \quad \text{sen } \omega'(t-\tau) e^{-h(t-\tau)} ; t \ge \tau$$

FUESTO QUE EL SISTEMA ES LINEAL ES POSIBLE SUPERPONER LOS EFECTOS OCASIONADOS POR LOS IMPULSOS APLICADOS EN CADA τ QUE HAYAN OCURRIDO ANTES DEL INSTANTE t DE INTERES; ES DECIR,

$$y(t) = \frac{1}{M\omega'} \int_{-\infty}^{t} p(\tau) e^{-h(t-\tau)} \sin\omega'(t-\tau) d\tau$$
(12)

LA FUNCION $\frac{1}{M\omega'} e^{-h(t-\tau)} sen\omega'(t-\tau)$, que es la respuesta a un impulso instantaneo de fuerza, se le conoce como *funcion de transferencia del* sistema.

LA SOLUCION DADA EN LA EC. (12) SE DENOMINA INTEGRAL DE DUHAMEL. ESTA CONSTITUYE LA SOLUCION PARTICULAR DE LA ECUACION DIFERENCIAL DE EQUI-LIBRIO; LA SOLUCION GENERAL ES:

$$y(t) = Ae^{-ht} \cos(\omega't-\theta) + \frac{1}{M\omega'} \int_{-\infty}^{t} p(\tau)e^{-h(\tau-\tau)} \sin\omega'(t-\tau)d\tau$$

EN DONDE A y θ DEPENDEN DE LAS CONDICIONES INICIALES DE DESPLAZAMIENTO Y VELOCIDAD, y(O) Y y(O), RESPECTIVAMENTE. EN GENERAL LA PARTE DE LA RESPUESTA DADA POR LA SOLUCION PARTICULAR ES LA MAS IMPORTANTE, YA QGE LA OTRA PARTE SE AMORTIGUA RAPIDAMENTE.

8. MOVINIENTO DEL SUELO

PARA ESCRIBIR LA SOLUCION PARTICULAR DE LA ECUACION DIFERENCIAL DE EQUILIBRIO PARA EL CASO DE VIBRACION FORZADA POR MOVIMIENTO DE LA BASE DE LA ESTRUCTURA, BASTA CAMBIAR $p(\tau)/M$ DE LA EC. (12) POR $-\dot{x}_{o}$, YA OUE EN DICHA ECUACION APARECE EN EL MIEMBRO DERECHO p(t)/M CUANDO TA ENCITACION ES P(t) Y APARECE \ddot{x}_{o} CUANDO LA EXCITACION ES POR MOVIMIENTO DEL SUELO. EN ESTE CASO LA SOLUCION ES, ENTONCES:

$$y(t) = \frac{-1}{\omega'} \int_{-\infty}^{t} x_{0}(\tau) e^{-h(t-\tau)} \operatorname{sen}_{\omega'} (t-\tau) d\tau \qquad (14)$$

EJEMPLO

CALCULAR LA RESPUESTA DE UN SISTEMA DE UN GRADO DO UNICONTAD COM AMOR-TIGUAMIENTO NULO, CUANDO LA EXCITACION ES LA SIGUIENTE:

CONSIDERESE QUE y(0)=0 Y y(0)=0. PUESTO QUE LAS CONDICIONES INICIALES SON NULAS SE TIENE QUE A=0 (UTILIZANDO LA EC. (13) Y LA SOLUCION PAR-TICULAR QUE SIGUE, EC. (A)):

$$y(t) = \frac{-1}{\omega} \int_{-\infty}^{t} a \, \operatorname{sen}_{\omega} (t-\tau) d\tau = \frac{-a}{\omega} \int_{0}^{t} \operatorname{sen}_{\omega} (t-\tau) d\tau$$
$$= \frac{-a}{\omega^{2}} = (1 - \cos\omega t) \qquad \text{SI} \quad 0 \le t \le t_{0} \qquad (A)$$

FARA FINES DE DISEÑO ESTRUCTURAL ES IMPORTANTE CONOCER LA RESPUESTA MAXIMA; ESTA OCURRE CUANDO $\cos\omega t = -1$, O SEA, CUANDO

$$\omega t = \pi$$
 O $t = \frac{\pi}{\omega} = \frac{\pi}{\frac{2\pi}{T}} = \frac{T}{2}$

VALE

MAX { | y(t) } =
$$\frac{2a}{\omega^2} = \frac{a}{2\pi^2} T^2$$
, SI $0 \le \frac{T}{2} \le t_0$ O $0 \le T \le 2t_0$

PATA $t > t_{0}$, O SEA PARA $T/2 > t_{0}$ ES NECESARIO ULTENER LA RESPUESTA EN VI-BRACION LIBRE CON LAS CONDICIONES INICIALES DE VELOCIDAD Y DESPLAZA-CIENTO CORRESPONDIENTES A $t=t_{0}$:

 $y(t_{o}) = \frac{-a}{\omega^{2}} (1 - \cos\omega t_{o}) ; y(t_{o}) = \frac{-a}{\omega} \operatorname{sen} \omega t_{o}$

APLICANDO LAS ECS. (5) Y (6) OBTENEMOS:

$$y(t) = \frac{-a}{\omega^2} |\operatorname{senwt}_0 \operatorname{senwt}' - (1 - \cos\omega t_0) \cos\omega t'|$$
$$= \frac{-a}{\omega^2} \sqrt{\operatorname{sen}^2 \omega t_0} + (1 - \cos\omega t_0)^2 \operatorname{sen} (\omega t' - \emptyset)$$
$$y(t) = \frac{-2a}{\omega^2} \operatorname{sen} \frac{\omega t_0}{2} \operatorname{sen} (\omega t' - \emptyset)$$

DONDE t' = t -t_o Y \emptyset = tan⁻¹ $\left(\frac{1 - \cos \omega t_o}{\sin \omega t_o}\right)$

EL VALOR MAXIMO DE LA RESPUESTA EN ESTE INTERVALO ES

MAX{
$$|y(t)|$$
} = $\frac{2a}{\omega^2} \left| \operatorname{sen} \frac{\omega t_o}{2} \right|$, SI t>t_o O T>2t_c

CAPO DE EXCITACION ARMONICA.

- 5.

CONSIDEREMOS AHORA EL CASO EN QUE LA ESTRUCTURA ES EXCITADA POR LA , FUERZA ARMONICA

$$p(t) = p_{n} \operatorname{sense}^{t}$$

J. SURACION INDEFINIDA.

LA SOLOCION DE ESTE PROBLEMA SE PUEDE ENCONTRAR SUSTITUYENDO λ $p(t) = p_0 sen \Omega t$ EN LA INTEGRAL DE DUHAMEL Y OBTENIENDO SU SOLUCION. SIN EMBARGO, EL RESULTADO LO OBTENDREMOS DE LA CONSIDERACION DE QUE PARA QUE EL MIEMBRO DERECHO DE LA ECUACION DIFERENCIAL DE EQUILIBRIO APAREZCA UN TERMINO ARMONICO ES NECESARIO QUE EN EL IZQUIERDO SE TENGAN COMBINACIONES DE TERMINOS TAMBIEN ARMONICOS. CONSIDEREMOS, POR LO TANTO, LA SOLUCION

$$y(t) = A \operatorname{sen}\Omega t + B \cos \Omega t$$
 (14)

Y DETERMINEMOS LOS VALORES QUE DEBEN TENER A Y B PARA SATISFACEE LA ECUACION DIFERENCIAL DE EQUILIBRIO, PARA LO CUAL HAY QUE SUSTITUIR $\dot{x} y(t)$, $\dot{y}(t)$ Y $\ddot{y}(t)$ EN LA ECUACION DIFERENCIAL. HACIENDO ESTO Y FAC-TORIZANDO:

 $(-A\Omega^{2} - 2h\Omega B + \omega^{2}A) \operatorname{sen}\Omega t +$ $(-B\Omega^{2} + 2hA\Omega + \omega^{2}B) \operatorname{cos}\Omega t = \frac{P_{O}}{M} \operatorname{sen}\Omega t + 0 \times \operatorname{cos}\Omega t$ PARA QUE ESTA IGUALDAD SE CUMPLA SE REQUIERE QUE $-A\Omega^{2} - 2h\Omega B + \omega^{2}A = \frac{P_{O}}{M}$ $-B\Omega^{2} + 2h\Omega A + \omega^{2}B = 0$

RESOLVIENDO ESTE SISTEMA DE ECUACIONES SE OBTIENE:

$$A = \frac{\frac{P_{0}}{M} (\alpha^{2} - \omega^{2})}{(\omega^{2} - \alpha^{2})^{2} + 4h^{2}\alpha^{2}}$$

$$B = \frac{-2h\Omega}{(\omega^2 - \Omega^2)^2 + 4h^2\Omega^2}$$

SUSTITUYENDO A Y B EN LA EC. (14):

$$y(t) = \frac{\frac{P_0}{M}}{(\omega^2 - \Omega^2)^2 + 4h^2\Omega^2} \{(\Omega - \omega^2) \operatorname{sen}\Omega t - 2h\Omega \cos\Omega t\}$$
(15)

O, TAMBIEN

$$y(t) = \frac{\frac{P_0}{M}}{\sqrt{(\omega^2 - \Omega^2)^2 + 4h^2 \Omega^2}} \operatorname{sen}(\Omega t - \emptyset)$$
(16)

UN DONDE \emptyset = ANG TAN $(\frac{-B}{A})$ = TAN⁻¹ $\frac{2h\Omega}{\omega^2 - \Omega^2}$ = ANGULO (17) DE FASE

DIVIDIENDO NUMERADOR Y DENOMINADOR DE LAS ECS. (16) Y (17) ENTRE ω^2 SE OBTIENE:

$$\gamma(t) = \frac{\frac{D_0}{k}}{\sqrt{(1 - \frac{\Omega^2}{\omega^2}) + (2\zeta -)^2}} \operatorname{sen}(\Omega t - \emptyset)$$
(18)

$$\emptyset = TAN^{-1} \frac{2\zeta_{\omega}^{\Omega}}{1-\frac{\Omega^{2}}{\omega^{2}}}$$
(19)

- 9 - 19 e

SI SE TIENE EXCITACION ARMONICA EN LA BASE DE LA ESTRUCTURA

$$x_{0}(t) = asenat, 0 SEA, x_{0} = an^{2} senat, BASTA CAMBIAR A DO'M EN LA
EC. (16) POR -an2; HACIENDO ESTO SE OBTIENE
 $y'(t) = \frac{(a/a)^{2}}{(1 - \frac{a^{2}}{a^{2}})^{2} + (2z\frac{a}{a})^{2}}$
(20)
FACTOR DE AMPLIFICACION DINAMICA DE DESPL.= $B_{d} = MAX \left\{ \frac{y(t)}{a} \right\}$
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 (12)
 $(12)$$$

 $MAX \left| \frac{y(t)}{a\omega} \right| = \left| \frac{\Omega}{\omega} \frac{\partial}{\partial t} \right|_{\omega} = \left| \frac{\Omega}{\omega} \frac{\partial}{\partial t} \right|_{\omega} = \left| \frac{\partial}{\partial t} \frac{\partial}{\partial t} \frac{\partial}{\partial t} \right|_{\omega} = \left| \frac{\partial}{\partial t} \frac{\partial}{\partial t} \frac{\partial}{\partial t} \right|_{\omega} = \left| \frac{\partial}{\partial t} \frac{\partial}{\partial t} \frac{\partial}{\partial t} \right|_{\omega} = \left| \frac{\partial}{\partial t} \frac{\partial}{\partial t} \frac{\partial}{\partial t} \right|_{\omega} = \left| \frac{\partial}{\partial t} \frac{\partial}{\partial t} \frac{\partial}{\partial t} \frac{\partial}{\partial t} \right|_{\omega} = \left| \frac{\partial}{\partial t} \frac{\partial}{\partial t} \frac{\partial}{\partial t} \frac{\partial}{\partial t} \right|_{\omega} = \left| \frac{\partial}{\partial t} \frac{\partial}{$

ر مارک

EJEMPLO

CON UNA MAQUINA VIBRATORIA PORTATIL QUE PRODUCE FUERZAS ARMONICAS SE PROBO UNA ESTRUCTURA, AJUSTANDO LA MAQUINA EN LAS FRECUENCIAS $\Omega_1 = 16 \frac{\text{RAD}}{\text{SEG}}$ Y $\Omega_2 = 25 \frac{\text{RAD}}{\text{SEG}}$, CON UNA FUEPZA MAXIMA DE 500 LB EN CADA CASO. LAS AMPLITUDES Y ANGULOS DE FASE DE LA DESPUESTA QUE SE MIDIE-RON FUERON:

EVALUAR LAS PROPIEDADES DINAMICAS DEL SISTEMA.

HACIENDO:

0

$$\rho_{i} = \frac{P_{o}}{k} B_{d_{i}} = \frac{P_{o}}{k} \frac{1}{1 - \beta^{2}} \left\{ \frac{1}{1 + \left[2\zeta\beta/(1 - \beta^{2}) \right]^{2}} \right\}^{1/2}_{i}$$

$$\rho_{i} = \frac{p_{o}}{k} \frac{\cos \theta_{i}}{1 - \beta^{2}} ; \beta = \Omega/\omega$$

$$k - k_{\beta}^{2} = \frac{p_{0} \cos \theta_{i}}{\rho_{i}} = k - \Omega^{2} m \qquad (23)$$

SUSTITUYENDO LOS VALORES EXPERIMENTALES DE LAS DOS PRUEBAS:

$$k - (16)^{2}m = \frac{500 (0.966)}{7.2 \times 10^{3}}$$

$$k - (25)^{2}m = \frac{500 (0.574)}{14.5 \times 10^{-3}}$$

$$k = 100 \ 000 \ \frac{16}{in}$$

$$m = 128.5 \ \frac{16 \ \text{SEG}^{2}}{in}$$

$$\omega = \sqrt{\frac{k}{m}} = 27.9 \ \frac{\text{RAD}}{\text{SEG}}$$

USANDO LAS ECS. (17) Y (23) 'SE OBTIENE:

$$\zeta = \frac{p_0 \, \text{sen} \vartheta_1}{2\beta_1 \, \text{k} \rho_1} ; \text{ DE DONDE } \zeta = \frac{500 \, (0.259)}{2\frac{16}{27.9} \, 100 \, 000 \, (7.2 \times 10^{-3})} = 15.7\%$$

CUANDO LA EXCITACION TIENE FRECUENCIA IGUAL A LA NATURAL DEL SIS-TEMA, SE DICE QUE SE PRESENTA EL CASO DE RESONANCIA. DE LA EC. (20) ES EVIDENTE QUE SI $8=\Omega/\omega=1$ SE TIENE

$$y(t) = \frac{1}{2\zeta} \left(\frac{\Omega}{\omega}\right)^2$$
 a sen $(\Omega t - \emptyset) = \underbrace{\frac{1}{2\zeta}}_{B_d}$ a sen $(\Omega t - \emptyset)$

0
$$(B_d)_{res} = \frac{(\Omega/\omega)^2}{2\zeta} = \frac{1}{2\zeta}$$
: EN CASO DE MOVIMIENTO DEL SUELO,

Y
$$(B_d)_{res} = \frac{1}{2\zeta}$$
, EN CASO DE FUERZA EXTERNA.

SIN EMBARGO, AUNQUE ESTA RESPUESTA ES CASI IGUAL A LA MAXIMA, ESTA OCU-RRE CUANDO $\Omega = \omega \sqrt{1-2^2}$. EN EL CASO DE y(t) Y y(t) EL MAXIMO OCURRE, RESPECTIVAMENTE, CUANDO

 $\Omega = \omega$ Y $\Omega = \frac{\omega}{\sqrt{1-2\zeta^2}}$ SI $\zeta \le 20$ %, LOS VALORES DE ESTAS Ω NO

DIFIEREN EN MAS DE 2%.

EL MAXIMO VALOR DE B_d (PARA $\Omega = \omega \sqrt{1-2\zeta^2}$) ES

$$(B_d)_{MAX} = \frac{1}{2\zeta \sqrt{1-\zeta^2}} \quad 0 \quad (B_d)_{MAX} = \frac{(\Omega/\omega)^2}{2\zeta \sqrt{1-\zeta^2}}$$

BI SE TIENE FUERZA EXTERNA O MOVIMIENTO DEL SUELO, RESPECTIVAMENTE. SE OBSERVA DE ESTAS ECUACIONES QUE SI $\zeta=0$, $(B_d)_{MAX} = \infty$. SI SE ANALIZA LA SOLUCION GENERAL DE LA ECUACION DIFERENCIAL DE MOVIMIENTO PARA EL CASO DE CONDICIONES INICIALES NULAS Y $\beta=1$ TIENE CUE:

$$y(t) = e^{-ht} (A \operatorname{sen} w't + B \cos w't) - \frac{P_0}{k} \frac{\cos \omega t}{2\zeta}$$

$$(0) = B - p_0 / (2\zeta k) = 0$$

DE DONDE, HACIENDO y(0)=0 Y y(0)=0, SE OBTIENEN:

$$A = \frac{P_{O}}{k} \frac{\omega}{2\omega'} = \frac{P_{O}}{k} \frac{1}{2\sqrt{1-z^{2}}} ; B = \frac{P_{O}}{k} \frac{1}{2\zeta}$$

POR LO QUE

$$y(t) = \frac{1}{2\zeta} \frac{p_0}{k} \left[e^{-ht} \left(\frac{\zeta}{\sqrt{1-\zeta^2}} \operatorname{sen}\omega't + \cos\omega't \right) - \cos\omega t \right]$$

PARA AMORTIGUAMIENTOS PEQUEÑOS:

51 6=0, APLICANDO LA REGLA DE L'HOSPITAL, SE OBTIENE:

$$\frac{v(t)}{p_0/k} = \frac{1}{2} (\text{sen}\omega t - \omega t \cos \omega t)$$

DE MAXIMÓ DE LA RESPUESTA TIENDE A INFINITO GRADUALMENTE.

CARACTERISTICAS DINAMICAS DE LOS REGISTRADORES DE SISMOS.

SI LA ACELERACION DE LA BASE DE UN INSTRUMENTO ES ARMÓNICA, DADA POR LA ECUACION

$$x_o(t) = a sen \Omega t$$

EL FACTOR DE AMPLIFICACION RESULTA SER

$$\overline{B}_{d} = \frac{1}{\sqrt{(1-\frac{\Omega^{2}}{\omega^{2}})^{2} + (2\zeta\frac{\Omega}{\omega})^{2}}} \quad \frac{1}{\omega^{2}} = \frac{B_{d}}{\omega^{2}}$$

PUESTO QUE LA FIG I CORRESPONDE A B_d , Y EN ELLA SE OBSERVA QUE PARA $\zeta = 0.7$ SE TIENE $B_d \doteq 1$ PARA $0 \le \Omega/\omega \le 0.6$, SE CONCLUYE QUE EL DESPLA-ZAMIENTO DE LA MASA DE UN SISTEMA ES PROPORCIONAL A LA ACELERACION DE SU BASE, SI ESTE TIENE AMORTIGUAMIENTO DEL 70% Y SI LAS EXCITACIONES QUE SE TRATAN DE REGISTRAR TIENEN FRECUENCIAS INFERIORES AL 60% DE LA FRECUENCÍA NATURAL DEL SISTEMA. SI ESTO SE CUMPLE, EL APARATO -RESULTA SER UN ACELEROMETRO.

EN INGENIERIA SISMICA LA MAXIMA FRECUENCIA DE INTERES ES DEL ORDEN DE 10 CPS (T = 0.1 SEG). POR LO QUE LOS ACELEROMETROS TIENEN FRECUENCIA NATURAL DE 16 A 20 CPS.

centro de educación continua división de estudios superiores

facultad de ingeniería, unam

III CURSO INTERNACIONAL DE INGENIERIA SISMICA

DINAMICA ESTRUCTURAL

(CONTINUACION)

DR' OCTAVIO A. RASCON CHAVEZ.

Palacio de Minería Calle de Tacuba 5,

primer piso

México 1, D.F. Tel: 521-40-20

/

. ,
EJEMPLO

CALCULAR LA RESPUESTA DE UN SISTEMA DE UN GRADO DE LIBERTAD SUJETO A LA SIGUIENTE EXCITACION:

$$\therefore x = \frac{p_0}{k} (1 - \cos \omega t);$$

B = FACTOR DE AMPLIFICACION DINAMICA = $\frac{k}{(\frac{p_o}{k})}$ = (1 - cos ω t)

 $B_{MAX} = 2$, EN t = T/2, 3T/2...

AHORA, SI LA EXCITACION ES DE DURACION to:

SI t>t,
$$x = A \cos \omega t' + B \sin \omega t'$$
, CON t' = t - to

5

EN t' = 0 (t = t_0), SE DEBEN CUMPLIR LAS CONDICIONES INICIALES AN-TERIORES, LO CUAL CONDUCE A

$$A = \frac{P_{0}}{k} (1 - \cos\omega t_{0}) \quad Y \qquad B = \frac{P_{0}}{k} \operatorname{senut}_{0}$$

POR LO QUE $x = \frac{P_{0}}{k} (1 - \cos\omega t_{0}) \cos\omega t' + \frac{P_{0}}{k} \operatorname{senut}_{0} \operatorname{senut}'$

$$= \frac{P_{0}}{k} \sqrt{(1 - \cos\omega t_{0})^{2} + \sin^{2}\omega t_{0}} \operatorname{sen}(\omega t' - \theta)$$

$$0 \quad x = \frac{P_{0}}{k} \sqrt{2(1 - \cos t_{0})} \operatorname{sen}(\omega t' - \theta)$$

$$B = FACTOR DE AMPLIFICACION$$

$$B_{MAX} = 2 \operatorname{sen}\frac{\omega t_{0}}{2} = 2 \operatorname{sen}(\pi \frac{t_{0}}{T})$$

CUANDO $\frac{\pi t_{0}}{T} = \frac{\pi}{2}$, $B_{MAX} = 2$

B = ACTOR DURANTE LA EXCITACION

$$B_{MAX} = 2 \operatorname{sen}\frac{\pi t_{0}}{T} = \pi t_{0}/T$$

EL MAXIMO OCURRE DURANTE LA EXCITACION
SI t_{0}/T ES MUY PEQUENO, $\operatorname{sen}\frac{\pi t_{0}}{T} = \pi t_{0}/T$

14''

$$Y x_{MAX} = \frac{2p_o}{k} \frac{\pi t_o}{T} \frac{2p_o}{\frac{mk}{m}} \frac{\omega t_o}{2} = \frac{p_o t_o}{m\omega} = \frac{I}{m\omega}$$

EN DONDE I = $p_0 t_0$ = AREA BAJO LA EXCITACION

EJEMPLO

SEA UN IMPULSO APLICADO DURANTE UN INTERVALO DE TIEMPO Δt MUY PEQUE-NO, TAL QUE $\Delta t/T << 1$:

POR EL PRINCIPIO IMPULSO - MOMENTO SE TIENE QUE

$$I = \int_{0}^{\Delta t} p(t) dt = mx$$

EN DONDE x ES LA VELOCIDAD QUE EL IMPULSO LE IMPRIME A LA MASA DEL SISTEMA. DESPUES DE Δt EL SISTEMA QUEDA VIBRANDO LIBREMENTE CON VELOCIDAD INICIAL $\dot{x}(0) = \frac{I}{m}$, MIDIENDO EL TIEMPO EN LA ESCALA DE t', Y CON DESPLAZAMIENTO INICIAL NULO, DEBIDO A QUE EN EL CORTO INTERVALO DE TIEMPO Δt LA MASA ADQUIERE UN DESPLAZAMIENTO DE MAG-NITUD DESPRECIABLE. EN TAL CASO LA RESPUESTA RESULTA SER

$$x(t') = \frac{x(o)}{\omega} \operatorname{sen}\omega t = \frac{I}{m\omega} \operatorname{sen}\omega t'$$

SI EL SISTEMA TIENE AMORTIGUAMIENTO,

 $x(t') \frac{1}{m\omega} e^{-\zeta \omega t} sen \omega't'$

--, · · · · · · · · . ` . **`** . .

centro de educación continua división de estudios superiores facultad de ingeniería, unam

III CURSO INTERNACIONAL DE INGENIERIA SISMICA

DINAMICA ESTRUCTURAL

(CONTINUACION)

DR' DCTAVID A. RASCON CHAVEZ.

· --

Palacio de Minería Calle de Tacuba 5,

Tel: 521-40-20

• •

. .

POR OTRA PARTE SI LA EXCITACION DEL SUELO ES $x_0 = a \ sen \Omega t$, O SEA, $\therefore = -a^2 \Omega sen \Omega t$, ENTONCES EL FACTOR DE AMPLIFICACION RESULTA SER EL SEÑALADO EN LA ECUACION (20), ES DECIR,

$$B_{d}' = \frac{(\Omega/\omega)^{2}}{\sqrt{(1-(\Omega/\omega)^{2}) + (2\zeta\Omega/\omega)^{2}}},$$

EN LA GRAFICA CORRESPONDIENTE SE OBSERVA QUE SI $\zeta=0.5$ Y $\Omega>\omega$ EL DES-PLAZAMIENTO DE LA MASA ES PROPORCIONAL AL DEL SUELO; SI ESTO SE CUMPLE, EL APARATO, CONSTITUYE UN DESPLAZOMETRO, CONOCIDO TAMBIEN COMO SISMOMETRO.

DETERMINACION EXPERIMENTAL DEL AMORTIGUAMIENTO DE UNA ESTRUCTURA ME-DIANTE VIBRACIONES FORZADAS ARMONICAS

SI SE DETERMINA B_d EXPERIMENTALMENTE MEDIANTE UNA SERIE DE PRUEBAS DE VIBRACION FORZADA CON FUERZAS ARMONICAS, Y ADEMAS SE DETERMINA ρ_{o} , ENTONCES

$$\zeta \doteq \frac{\rho_{\rm O}}{2(B_{\rm d})_{\rm MAX}}$$

OTRO METODO PARA DETERMINAR ζ CON BASE EN LA CURVA EXPERIMENTAL DE B_d SE CONOCE CON EL NOMBRE DE "METODO DEL ANCHO DE BANDA DE LA MITAD DE POTENCIA". ESTE SE BASA EN DETERMINAR LAS FRECUENCIAS QUE CORRES-PONDEN AL VALOR rms DE LA AMPLITUD EN RESONANCIA, EL CUAL VALE $(B_d)_{MAX}/\sqrt{2}$; SEAN β_2 Y β_1 ESTAS FRECUENCIAS. DE LA ECUACION DE B_d SE OBTIENE: rms = $\frac{A}{\sqrt{2}}$ = RAIZ CUADRADA DEL VALOR MEDIO CUADRATICO

$$\frac{1}{\sqrt{2}} \frac{\rho_{0}}{2\zeta} = \rho_{0} / \sqrt{(1-\beta^{2})^{2} + (2\zeta\beta)^{2}}$$

ELEVANDO AL CUADRADO AMBOS MIEMBROS:

$$\frac{1}{8\zeta^2} = \frac{1}{(1-\beta^2)^2 + (2\zeta\beta)^2}$$

DE DONDE $\beta^2 = 1 - 2\zeta^2 + 2\zeta \sqrt{1 + \zeta^2}$

DE AQUI, DESPRECIANDO EL TERMINO ζ^2 DEL RADICAL, SE OBTIENE

$$\beta_{1}^{2} \stackrel{:}{=} 1 - 2\zeta - 2\zeta^{2} ; \qquad \beta_{1} \stackrel{:}{=} 1 - \zeta - \zeta^{2}$$
$$\beta_{2}^{2} \stackrel{:}{=} 1 + 2\zeta - 2\zeta^{2} ; \qquad \beta_{2} \stackrel{:}{=} 1 + \zeta - \zeta^{2}$$
$$\beta_{2} - \beta_{1} \stackrel{:}{=} 2\zeta$$

(24)

DE LA EC (25)

$$A\Omega = \Omega_2 - \Omega_1 = 0.87 \frac{\text{RAD}}{\text{SEG}}$$

$$\zeta = \frac{\beta_2 - \beta_1}{2} = \frac{\Omega_2 - \Omega_1}{2} = \frac{\Omega_2 - \Omega_1}{\Omega_2 + \Omega_1} = \frac{0.87}{39.97} = 2.18\%$$

METODO NUMERICO β DE NEWMARK PARA RESOLVER EL PROBLEMA DE VIBRACIONES FORZADAS.

EL METODO QUE A CONTINUACION SE DESCRIBE ES ADAPTABLE A SISTEMAS NO LINEALES CON VARIOS GRADOS DE LIBERTAD.

PROCEDIMIENTO:

1. SEAN y_i , y_i , y_i , y_i , CONOCIDOS EN EL INSTANTE t_i , $y_{i+1}=t_i + \Delta t_i$. SUPONGAMOS EL VALOR DE y_{i+1}

2. CALCULEMOS
$$y_{i+1} \stackrel{!}{=} y_i + (y_i + y_{i+1}) \Delta t/2$$
 (26)

3. CALCULEMOS
$$y_{i+1} \doteq y_{i} + y_{i} \Delta t + (\frac{1}{2} - \beta) y_{i} (\Delta t)^{2} + \beta y_{i+1} (\Delta t)$$
 (27)

4. CALCULEMOS UNA NUEVA APROXIMACION PARA y_{i+1} A PARTIR DE LA ECUACION DIFERENCIAL DE EQUILIBRIO:

$$y_{i+1} = -2\zeta \omega y_{i+1} - \omega^2 (y_{i+1} - y_{est}) - (x_0)_{i+1}$$
(28)
DONDE $y_{est} = p(t_{i+1})/k$

5. REPITAMOS LAS ETAPAS 2 A 4 EMPEZANDO CON EL NUEVO VALOR y_{i+1} HASTA QUE EN DOS CICLOS CONSECUTIVOS SE TENGAN VALORES DE y_{i+1} CASI IGUALES.

SE RECOMIENDAN VALORES DE β DE 1/6 A 1/4 Y $\Delta t \doteq 0.1T$ PARA ASEGURAR CONVERGENCIA Y ESTABILIDAD.

CALCULAR LA RESPUESTA DE LA ESTRUCTURA APLICANDO EL METODO 6 DE NEWMARK

$$\omega = \sqrt{K/M} = \sqrt{36/4} = 3 \frac{RAD}{SEG}$$

$$h = \zeta \omega = 0.2 \times 3 = 0.6 ; T = \frac{2\pi}{3} = 2.09 SEG$$
TOMAREMOS $\beta = 0.2 Y \Delta t = 0.2 (= 0.1T)$ SUSTITUYENDO EN LAS ECS. (26),
(27) y (28):

$$\dot{y}_{i+1} = \dot{y}_i + 0.1 (\ddot{y}_i + \ddot{y}_{i+1})$$

$$y_{i+1} = \dot{y}_i + 0.2\dot{y}_i + 0.012\ddot{y}_i + 0.008\ddot{y}_{i+1}$$

$$\ddot{y}_{i+1} = -1.2\dot{y}_{i+1} - gy_{i+1} - (\ddot{x}_0)_{i+1}$$
EN t=0 SABEMOS QUE SE TIENE y=0, $\dot{y} = 0 Y \dot{y} = 0$
EN t=0 + $\Delta t = 0.2 SEG$; SUPONGAMOS $\ddot{y}_{i+1} = 5.0 IN/SEG^2$; $\ddot{x}_0 = -6$
 $y_i = 0$

y_i

= 0

t SEG	x o IN/SEG ²	Y ING/SEG ²	y ING/SEG	Y IN
0	0	0	0	0
0.2	-6	5.0000	0.5000	0.04000
		5.040	0.5040	0.04032
		5.033	0.5033	0.04026
		5.034	0.5034	0.04027
0.4 -	-12	8.0000	1.8078	0.26536
		7.442	1.7510	0.26079
		7.534	1.7602	0.26163
		7.533	1.7601	0.26162
0.4+	0	-4.467	1.7601	0.26162
0.6	0	-6.000	0.7134	0.51204
		-5.464	0.7670	0.51633
	٠	-5.550	0.7584	0.51564
	1		•	•
	1	•	•	• .
	i	•	•	•

ESTOS CALCULOS SE PUEDEN ORGANIZAR MEDIANTE UNA TABLA COMO LA SIGUIENTE:

t = 0.2 + Δ t = 0.4 SEG: $x_0 = -30 \times 0.4 = -12$ $y_i = 5.034$, $y_i = 0.5034$, $y_i = 0.04027$ \mathbf{EN}

SUPONIENDO $y_{i+1} = 8.000 \text{ SE OBTIENE}$: $\begin{cases} y_{i+1} = 0.5034 + 0.1 (5.034 + 8.000) = 1.8068 \\ y_{i+1} = 0.04027 + 0.2 \times 0.5034 + 0.012 \times 5.034 + 0.008 \times 8 = 0.26536 \\ y_{i+1} = -1.2 \times 1,8068 - 9 \times 0.26536 - (-12) = 7.442 \text{ IN/SEG}^2 \end{cases}$ EN $t = 0.4^+$ SOLO CAMBIA y_i : $y_{0.4+} = y_{0.4-} + x_0 = 7.533 - 12 = -4.467$. EN t = 0.6, $y_i = -4.467$) $y_i = 1.7601$; y = 0.26162

ESPECTROS DE RESPUESTA ESTRUCTURAL

RECORDEMOS QUE LA SOLUCIÓN DEL PROBLEMA DE VIBRACIONES FORZADAS CON EXCITACION SISMICA ÉS

$$Y(t) = \frac{-1}{\omega'} \int_{-\infty}^{t} x_{o}(t-\tau) e^{-\zeta \omega (t-\tau)} \sin \omega' (t-\tau) d\tau = \frac{1}{\omega'} \int_{-\infty}^{t} x_{o}(t-\tau) e^{-\zeta \omega (t-\tau)} \sin \omega' (t-\tau) d\tau$$

DE LA-OBSERVACION DE ESTA ECUACION SE CONCLUYE QUE EL DESPLAZAMIENTO RELATIVO, Y(t), ES FUNCION DEL TIEMPO, t, EL AMORTIGUAMÌENTO, ζ , Y LA FRECUENCIA CIRCULAR NATURAL, ω_{C} (O DEL PERIODO NATURAL): Y(t) = E(t, ω, ζ)

FIJEMOS UN VALOR DE ζ_{+} POR EJEMPLO $\zeta = 0, \forall \forall$ LUEGO ASIGNEMOS VALORES A ω , POR EJEMPLO 0.1, 0.2, 0.3 ETC, HASTA CUBRIR UN INTERVALO DE INTE-RES, Y PARA CADA CASO CALCULEMOS LA FUNCION RESULTANTE DE APLICAR LA ECUACION ANTERIOR, CON ESTA OBTENEMOS O' 30 DES (

$$y_{1}(t) = f_{1}(t, 0.1, 0) = f_{1}(t)$$

$$y_{2}(t) = f_{2}(t, 0.2, 0) = f_{2}(t)$$

$$y_{3}(t) = f_{3}(t, 0.2, 0) = f_{3}(t)$$

SEAN
$$D_1 = MAX | y_1(t) | = D(\omega_1, \zeta)$$

 $D_2 = MAX | y_2(t) | = D(\omega_2, \zeta)$
 $D_3 = MAX | y_2(t) | = D(\omega_2, \zeta)$

Respuesta de un sistema amortiguado simple con $T_1 = 1.0 \text{ seg y } \zeta = 0.10$, al sismo de El Centro, Cal., 1940, componente N-S

EN TAL CASO, LA GRAFICA

ES EL ESPECTRO DE RESPUESTA DE DESPLAZAMIENTOS PARA $\zeta = 0$. SI ESTE PROCESO DE REPITE FIJANDO OTROS VALORES DE ζ . POR EJEMPLO, $\zeta = 0.02$, 0.05; 0.1, 0.2, ETC, SE OBTENDRAN LOS ESPECTROS DE DESPLAZAMIENTOS CORRESPONDIENTES.

DE MANERA ANALOGA SE PUEDEN OBTENER LOS ESPECTROS PARA OTROS TIPOS DE RESPUESTA, TALES COMO VELOCIDAD RELATIVA, ACELERACION ABSOLUTA, ETC, QUE SON, RESPECTIVAMENTE

$$V = MAX |Y(t)|_{\zeta, \omega} ; A = MAX |X(t)|_{\zeta, \omega}$$
(29)

PSEUDO - ESPECTROS

ESTADISTICAMENTE SE HA ENCONTRADO QUE

$$S_{V} = \omega D \stackrel{*}{=} V$$

$$S_{A} = \omega^{2} D \stackrel{*}{=} A \stackrel{*}{=} \omega V$$
(30)
(31)

A S_V Y S_A SE LES LLAMA PSEUDOESPECTROS.

DE LA EC.(30): log D = log V - log ω = log V + log T - log 2 π DE LA EC.(31): log A = log V + log ω = log V - log T + log 2 π ESTAS ECUACIONES CORRESPONDEN A LINEAS RECTAS EN PAPEL LOGARITMICO; LA PRIMERA CON PENDIENTE -1 Y LA SEGUNDA CON PENDIENTE +1

36.

EJEMPLO

Y

CALCULAR EL ESPECTRO CORRESPONDIENTE A LA EXCITACION (CONSIDERESE $\zeta=0$)

EN UN EJEMPLO ANTERIOR SE OBTUVO

$$y(t) = \frac{-a}{\omega 2} (1 - \cos \omega t), \text{ SI } 0 \le t \le t_0$$

$$D = MAX | Y(t) | = \frac{2a}{\omega 2} ; 0 \le \frac{T}{2} \le t_0, (0 \le T \le 2t_0)$$

$$S_V = \omega D = \frac{2a}{\omega} , S_A = \omega V = 2a$$

$$D = MAX | y(t) | = \frac{2a}{\omega} \text{ son } \frac{\omega t_0}{\omega} \text{ SI } T > 2 t$$

$$D = MAR|Y(t)| = \frac{1}{\omega^2} Sen - \frac{1}{2}, SI = \frac{1}{2} C_0$$

$$S_v = \omega D = \frac{2a}{\omega} |sen - \frac{\omega t_0}{2}|; S_A = \omega V = 2a|sen - \frac{\omega t_0}{2}|$$

$$LIM_{\omega \to 0} S_v = \frac{LIM_{\omega \to 0}}{\omega + 0} \{at_0 - \frac{sen - \frac{\omega t_0}{2}}{\frac{\omega t_0}{2}}\} = at_0$$

CASO PARTICULAR: SI $t_0 = 1 \text{ SEG y a} = 100 \text{ IN/SEG}^2$

$$S_V = \frac{2 \times 100}{\frac{2\pi}{T}} = \frac{100}{\pi} T$$
, SI $0 \le T \le 2$ SEG

$$S_{V} = \frac{100T}{\pi} | \operatorname{sen} \frac{\frac{2\pi}{T} \times 1}{2} | =$$
$$= \frac{100T}{\pi} | \operatorname{sen} \frac{\pi}{T} | \text{ SI } T > 2 \text{ SEG}$$

 $\underset{T \rightarrow \infty}{\text{LJM S}} = 100 \text{ IN/SEG}$

0

÷.

50

Espectros de velocidades y de aceleraciones.Sismo de Tokachi-Oki, Japón (1968).Según H.Tsuchida, E.Kurata y K.Sudo, ref 4

Acelerogramas originales del sismo registrado el 11-V-1962 , en la ALAMEDA CENTRAL, Mex.D.F.

DISTRIBUCION DE LAS FUERZAS CORTANTES EN UN ENTREPISO

42, centro de gravedad____ (C.G) Fy fuérza de inarcia Fx Pu centro de rigideces -K+2 (C.R.) KXIT /y Kyn-2 Kyn - uay Kyz 곳 원 X Vy=Fy c.g. ⊙ C.G. V_x₌∓x 22.2 C.R ¢,

ι,

•

.

· · · ·

`

VEAMOS COMO SE DISTRIBUYEN LAS FUERZAS CORTANTES EN LOS MARCOS

POR LO QUE

$$F_{x_{i}} = M_{TX} \frac{K_{x_{i}} X_{i}^{\prime}}{\Sigma K_{x_{i}} X_{i}^{\prime 2} + K_{y_{i}} Y_{i}^{\prime 2}}; \quad F_{y_{i}} = M_{TX} \frac{K_{y_{i}} Y_{i}^{\prime \prime}}{\Sigma K_{x_{i}} X_{i}^{\prime 2} + \Sigma K_{y_{i}} Y_{i}^{\prime 2}}$$

SISTEMAS NO LINEALES DE UN GRADO DE LIBERTAD

ECUACION DE MOVIMIENTO.

Mx + Q(y,y) = P(t); $y = x-x_0 = DESPLAZAMIENTO RELATIVO$

SI $\Omega(y, y) = KY + CY$ SE TIENE EL SISTEMA ELASTICO LINEAL

MODELOS PARTICULARES

 $Q = Q_1 + Cy$, SI y<0 $Q = Q_2 + Cy$, SI y<0 EN DONDE C = CONSTANTE. SE HA EMPLEADO COMO MODELO EN EL ANALISIS DE TALUDES Y CORTINAS DE PRESAS DE TIERRA Y ENROCAMIENTO

 $Q = Q_1(y) + Cy$

2.

SE EMPLEA COMO MODELO EN EL ANALISIS DE ESTRUCTURAS DUCTILES. FACTOR DE DUCTIBILIDAD = $\mu = y_u/y_e$ $y_u = DESPLAZAMIENTO MAXIMO QUE PUEDE SOPORTAR EL SISTEMA SIN$

FALLAR.

4. TIPO MASING

CASO PARTICULAR DEL ESQUELETO

 $\frac{Y}{Y_{1}} = \frac{\Omega}{\Omega_{1}} + \alpha \left(\frac{\Omega}{\Omega_{1}}\right)^{r} \qquad (MODELO RAMBER - OSGOOD)$

DONDE y_1 , Q_1 , α y r son constantes positivas

PARA EL ANALISIS DE SISTEMAS NO LINEALES SE PUEDE USAR EL METODO β DE NEWMARK DESCRITO ANTERIORMENTE.

1

ECUACION DE EQUILIBRIO DINAMICO , MY + Q(Y) = P(t)

$$Y = \frac{P(t) - Q(Y)}{M} = \frac{P(t) - Q(Y)}{2}$$
 (1)

PARA LA APLICACION DEL METODO DE NEWMARK SE TIENEN LAS SIGUIENTES EXPRESIONES:

$$t_{i+1} = t_i + At$$

$$\dot{Y}_{i+1} = \dot{Y}_i + (\ddot{Y}_i + \ddot{Y}_{i+1}) \Delta t/2$$

$$\underline{Y}_{i+1} = Y_i + \dot{Y}_1 At + (0.5 - \beta) \ddot{Y}_i (\Delta t)^2 + \beta \ddot{Y}_{i+1} (\Delta t)^2$$
CONSIDERANDO $\Delta t = 0.10$ SEG. $\underline{Y} \beta = 1/6$ SE PUEDE ESCRIBIR;

$$Y_{i+1} = Y_i + \frac{1}{20} (Y_i + Y_{i+1})$$
 (II)

$$Y_{i+1} = Y_i + Y_i(0.10) + \frac{1}{600} (2Y_i + Y_{i+1})$$
 (III)

EL PROCEDIMIENTO DE CALCULO ES COMO SIGUE:

SE ASUME \ddot{Y}_{i+1} SE CALCULA \dot{Y}_{i+1} CON LA ECUACION (II) SE CALCULA \dot{Y}_{i+1} CON LA ECUACION (III) SE CALCULA \dot{Y}_{i+1} CON LA ECUACION (II) SE CALCULA UN MEJOR VALOR DE \ddot{Y}_{i+1} CON LA ECUACION (I), ETC.

PARA LA FUNCION DE RESISTENCIA Q SE TIENEN LOS SIGUIENTES CASOS:

ESTA ULTIMA EXPRESION MANTIENE SU VALIDEZ HASTA QUE, $(Y_{MAX} - Y) \leq ^{2}Y_{O}$

$$Y_{0} = 0.9375 \text{ CMS} \qquad ; \qquad Q_{0} = 30.0 \text{ TON}$$
PARA t = 0, $Y = \frac{P}{M} = \frac{50}{2} = 25$; $Y = 0$; $Y = 0$
PARA t = 0.10, $Y_{1} = Y_{1} = 0$; $Y_{1} = 25$
ler. CICLO
SEA $Y_{1+1} = 20$ COMO PRIMER TANTEO. EN TAL CASO
 $Y_{1+1} = 0 + \frac{1}{20} (0 + 25) = 2.25$
 $Y_{1+1} = 0 + 0.10 \times 0 + \frac{1}{600} (2 \times 25 + 20) = 0.1167$
 $Q = 32 \times 0.1167 = 3.7330$
 $Y_{1+1} = \frac{50 - 3.733}{2} = 23.134$

20. CICLO

 $Y_{i+1} = 23.134/2 = 16.567$ $y_{i+1} = 73.134/600 = 0.1219$ $Q = 32 \times 0.1219 = 3.9000$ \therefore $Y_{i+1} = (50 - 3.9)/2 = 23.050$

3er. CICLO

40. CICLO

 $Y_{i+1} = 23.052$ $y_{i+1} = 23.052/2 = 2.4026$ $Y_{i+1} = 73.052/600 = 0.12175$ $Q = 32 \times 0.12175 = 3.8960$ $Y_{i} = (50 - 3.8960)/2 = 23.052 \dots ETC.$

 $\langle \rangle$

LOS CALCULOS BASICOS SE MUESTRAN EN LA TABLA SIGUIENTE:

t SEGS	p TONS	Y CM SEG ⁻²	CM SEG ⁻¹	Y CMS	Ω TONS
0.0	50.00	25.000	0.00	0.00	0.00
0.10	50.00	20.000 23.134 23.050 23.052	2.2500 2.4070 2.4025 2.4026	0.1167 0.1219 0.12175 0.12175	3.733 3.900 3.396 3.896
0.20	50.00	20,000 17.445 17.513 17.511	4.5552 4.4270 4.4310 4.43075	0.4722 0.46793 0.46804 0.46204	15.11(14.97(14.97 14.97
0.30	50.00	10.000 9.560 9.569	5.8060 5.7840 5.7848	0.98610 0.98540 0.98543	30.87 30.86 30.86
0.40	50.00	$\begin{array}{c} 0.00 \\ 4.0750 \\ 4.0141 \\ 4.0150 \end{array}$	6.2630 6.4670 6.4640 6.4640	1.5958 1.6026 1.6025 1.60250	41.849 41.97 41.97 41.970
0.50	50.00	0.00 -1.9230 -1.9000 -1.3944 -1.8946	6.6650 6.56975 6.5700	2.2623 2.2591 2.25912	53.84(53.78) 53.78
0.50+	5.00	-24,3946	6,5700	2,25912	53.78
0.60	5.00	-30.000 -29.126 -29.136 -29.138	3.8503 3.8940 3.89347 3.89347	2.7848 2.78626 2.78624 2.78624	63.25 63.27 63.27 63.27
0.70	5.00	-32.000 -31.289 -31.320 -31.299 -31.301	0.83657 0.87057 0.87147	3.025127 3.02626 3.02641	67.57 67.59 67.60
0.7278	5.00	$ \begin{array}{r} -31.620 \\ -31.409 \\ -31.420 \\ -31.4093 \end{array} $	-0.00313 -0.000352 -0.000205	2.03850 3.03853 3.03853	67.81 67.81 67.81

En t=0.5 + SEG, $\Delta y = -45/2 = -22.5$ $\therefore -22.5 - 1.8946 = -24.3946$

t	ą	Ŷ	Ŷ	Ŷ	Q
0.80	5.0	-28.000 -30.146 -30.000 -30.118 -30.117	-2.1449 -2.21708 -2.22127	2.959611 2.957874 2.95777	65.293 65.237 65.234
0.90	5.0	-27.00 -24.236 -25.00 -24.290 -24.294 -24.308	-5.07712 -4.97712 -4.94182 -4.94242	2.59025 2.59358 2.59476 2.59474	53.473 53.580 53.617 53.617
1.00	5,0	$\begin{array}{r} -14.00 \\ -14.7305 \\ -14.7200 \\ -14.7120 \end{array}$	-6.85782 -6.89382 -6.89342	1.99614 1.99494 1.99495	34.461 34.423 34.423

CONTINUACION DEL CUADRO ANTERIOR

EN ESTOS CALCULOS SE INTRODUJO $t = 0.50^{-1} y 0.50^{+1}$ PORQUE PARA ESTE INSTANTE SE PRODUCE UN CAMBIO BRUSCO EN LA CARGA P(t) DE 50.00 TONS A 5.00 TONS, CON LO CUAL SE PRODUCE UN CAMBIO BRUSCO EN LA ACELERA-CION DEL SISTFMA Y. EN ESTE INSTANTE NO SE PRODUCEN CAMBIOS EN Y Y Y. EL TIEMPO t = 0.7273 SEC. SE INTRODUJO POR LA NECESIDAD DE `CALCULAR LOS VALORES DE Y Y DE Q, PUES A PARTIR DE DICHO INSTANTE SE INICIA LA DESCARGA DEL SISTEMA. ESTA CONDICION SE ENCONTRO SOBRE LA BASE DE APROXIMAR Y A CERO, OBTENIENDOSE Y_{MAX=3.03853} CMS y

 $Q_{MAX} = 67.818$ TON.

EN EL CUADRO SIGUIENTE SE PRESENTA UN RESUMEN DE LOS RESULTADOS.

ი ა

1

P.

₿″

t	Y (supuesta)	P	Y	Ω	Y(calculado)	Ý 2. 71	NOTAS
	Cill Deg	1011	Ciii.	1011	Cm Seg	Cm Seg	
0.0		50.00	0.00	0.00	25.00	0.00	
0.10	23.0520	50.00	0.12175	3.896	23.0520	2.40260	
0.20	17.5110	50.00	0.46804	14.977	17.5110	4.43075	
0.30	9.5690	50.00	0.98543	30.863	9.5690	5.78480 -	CAMBIO DE RIGIDEZ
0.40	4.0150	50.00	1.60250	41.970	4.0150	6.4640	
0.50	-1.8946	50.00	2.25912	53.789	-1,8946	6.5700	
0.50+		5.00	2.25912	53.789	-24.3945	6.5700 -	- CAMBIO DE CARGA
0.60	-29,1380	5.00	2,78624	63.277	-29.1380	3.89347	
0,70	-31.3010	5.00	3,02641	67.600	-31,3010	0.87147	
0.7278	-31,4093	5.00	3,03853	67.818	-31.4093	-0.000205 -	- Qmáx, Ymáx.
0.800	-30.1170	5.00	2.95777	65.234	-30.1170	-2.22127	
0.90	-24.3080	5.00	2.59474	53,617	-24.3080	-4.94242	
1.00	-14.7120	5.00	1.99495	34.423	-14.7120	-6.89342	

RESPUESTA MAXIMA

1

.

τ.

 $\begin{cases} Y \text{ max} = 3.03853 \text{ cms} \\ Q \text{ max} = 67.818 \text{ tons} \end{cases}$

54.

ß,

⇔,

Centro de educación continua división de estudios superiores facultad de ingeniería, junam

III CURSO INTERNACIONAL DE INGENIERIA SISMICA

DINAMICA ESTRUCTURAL

(CONTINUACION II)

DR. OCTAVIO A. RASCON CHAVEZ.

Jul. - Agos. 1977

` . -. , • . . **b** . -. . .

CRITERIOS PARA TRAZAR ESPECTROS DE DISENO ELÀSTOPLASTICOS A PARTIR DEL ELASTICO

CRITERIO DE IGUAL DESPLAZAMIENTO MAXIMO DEL S'STEMA ELASTICO 1. Y EL ELASTOPLASTICO DE IGUAL PERIODO:

$$\frac{Ky_e y_e}{2} = \frac{Ky_y y_y}{2} + Ky_y (y_p - y_y)$$
$$y_e^2 = y_y^2 + y_y y_p - y_y^2 = y_y y_p - \frac{y_y^2}{2}$$

$$\frac{1}{2} \left(\frac{y_e}{y_y}\right)^2 = \frac{y_p}{y_y} - \frac{1}{2} = \mu - \frac{1}{2}$$

$$\frac{y_e}{y_y} = \sqrt{2\mu - 1}$$

POR LO TANTO

 $D_{p} = D_{e}/\sqrt{2\mu - 1}$ Y $Q_{p} = Q_{e}/\sqrt{2\mu - 1}$

AMORTIGUAMIENTO HISTERETICO

SI SE CUENTA CON EQUIPO PARA MEDIR EL ANGULO DE FASE ENTRE LA FUERZA DE EXCI-TACION Y EL DESPLAZAMIENTO RESULTANTE, SE PUEDE EVALUAR EXPERIMEN-TALMENTE EL AMORTIGUAMIENTO DEL SISTEMA CON UNA SOLA PRUEBA DE VIBRACION ARMONICA EN RESONANCIA. ESTA SE LOGRA CUANDO SE AJUSTA LA FRECUENCIA DEL EXCITADOR DE TAL MANERA QUE EL ANGULO DE FASE SEA 90°, YA QUE:

EN ESTAS CONDICIONES LA FUERZA DE EXCITACION QUEDA EN FASE CON LA VELOCIDAD DE LA MASA YA QUE

 $y = A \operatorname{sen}(\omega t - \theta) = -A \operatorname{cos}\omega t$, SI $\theta = 90^{\circ}$ Y $y = A\omega \operatorname{sen}\omega t$; $y = A\omega^2 \operatorname{cos}\omega t$

Y DE LA ECUACION DIFERENCIAL DE EQUILIBRIO:

 $MA\omega^2 \cos \omega t + CA\omega \sin \omega t + K(-A \cos \omega t) = p_0 \sin \omega t$

SE VE QUE SE DEBE CUMPLIR QUE:

$$CA\omega = p_{o}$$
, DE DONDE $C = \frac{p_{o}}{A\omega}$ (I)

DE LAS ECUACIONES ANTERIORES SE DEDUCE QUE:

$$y^{2} = A^{2} \cos^{2} \omega^{2} ; \qquad \frac{y^{2}}{A^{2}} = \cos^{2} \omega t$$

$$y$$

$$p^{2} = p_{0}^{2} \operatorname{sen}^{2} \omega t ; \qquad \frac{p_{0}^{2}}{p_{0}^{2}} = \operatorname{sen}^{2} \omega t$$

$$SUMANDO: \qquad \frac{y^{2}}{A^{2}} + \frac{p_{0}^{2}}{p_{0}^{2}} = \operatorname{sen}^{2} \omega t + \cos^{2} \omega t$$

QUE ES LA ECUACION DE UNA ELIPSE CON LOS EJES COORDENADOS y Y p,

SI EL AMORTIGUAMIENTO NO ES EXACTAMENTE VISCOSO, LA GRAFICA QUE SE OBTENDRIA DE p CONTRA y NO SERIA EXACTAMENTE ELIPTICA, SINO ALGO COMO LA LINEA PUNTEADA AHI MOSTRADA. EN ESTE CASO SE PUEDE UTI-LIZAR UN AMORTIGUAMIENTO *VISCOSO EQUIVALENTE*, DE TAL MANERA QUE EL AREA W_d , DE ESTA CURVA SEA IGUAL A LA DE LA ELIPSE EQUIVALENTE, $W_{eq} = \pi A p_o$, ES DECIR

$$W_d = \pi A p_o$$
, DE DONDE $p_o = \frac{W_d}{\pi A}$

POR LO QUE, DE LA EC. (I)

$$C_{eq} = \frac{W_d}{\pi \omega A^2}$$
(II)

ADEMAS, $C_{cr} = 2\sqrt{KM} = 2K/\omega$; DE FIG. 2 : $C_{cr} = 2(\frac{2\omega S}{A^2})/\omega$, DE DONDE $\zeta_{eq} = \frac{C_{eq}}{C_{cr}}$

$$\zeta_{eq} = \omega_d / (4\pi\omega_S)$$
 (II')

DE LAS ÆCS. (I) Y (II) SE CONCLUYE QUE EL FACTOR DE AMORTIGUAMIENTO VISCOSO ES FUNCION DE LA FRECUENCIA, «.

EXISTE OTRO TIPO DE AMORTIGUAMIENTO QUE ES INDEPENDIENTE DE LA FRE-CUFNCIA. QUE SE CONOCE COMO <u>AMORTIGUA (LENTO HISTERETICO</u>, EL CUAL PRODUCE UNA FUERZA EN FASE CON LA VELOCIDAD RELATIVA DE LA MASA, PERO PROPORCIONAL AL DESPLAZAMIENTO, ES DECIR

$$f_{a} = \eta k | y(t) | \frac{y(t)}{|\dot{y}(t)|}$$
(III)

DONDE n ES EL COEFICIENTE DE AMORTIGUAMIENTO HISTERETICO. EL DIA-GRAMA DE É DURANTE UN CICLO ES

SI SE CONSIDERA QUE LA ENERGIA PERDIDA POR HISTERESIS SE PUEDE REPRE-SENTAR MEDIANTE UN AMORTIGUADOR VISCOSO, ENTONCES, DE LA EC. (II') Y FIG 2:

$$\zeta = \frac{2A^2 \eta k}{A \pi \frac{KA^2}{2}} = \frac{\eta}{\pi} \qquad C \qquad \boxed{\eta = \pi \zeta} \qquad (IV)$$

CENTRO CE ECUCACIÓN CONtinua división de estudios superiores facultad de lingenieria, unam

III CURSO INTERNACIONAL DE

INGENIERIA SISMICA

DINAMICA ESTRUCTURAL

VIBRACION DE SISTEMAS DISCRETOS DE VARIOS

GRADOS DE LIBERTAD

Julio 1977

JORGE PRINCE

~

<u>VIBRACION DE SISTEMAS DISCRETOS DE VARIOS</u> GRADOS DE LIBERTAD

Ejemplos de sistemas de n.GL

Caracteristicas:

nasas concentradas rígilas

 columnas solo se deforman lateralmente

- con una coordenada por masa queda definida la configu nación del sistema

Además, la consideramos elástica, lineal

Supongamos:

n

17-1

2

1

aislemos una masa:

 $F_{r1} = \sum fuerzas resistencia elásti$ ca a la deformación Las ecuaciones condensadàs de movimiento serán:

$$F_{I1} + F_{r1} = P_{1}(t)$$

$$F_{I2} + F_{r2} = P_{2}(t)$$

$$F_{13} + F_{r3} = P_{3}(t)$$

$$F_{13} + F_{r3} = P_{3}(t)$$
Fuerzas asociadas al desplazamiento,
NO al movimiento

. la determinación de estas fuerzas es un problema estático.

Coeficientes de influencia

f. = despl. de la coord. i debido a una carga unitaria en ij coord. j (desplazamiento y fuerza en = dirección)

Por superposición

- ,

 $X_{1} = f_{11} Q_{1} + f_{12} Q_{2} + f_{13} Q_{3}$ $X_{2} = f_{21} Q_{1} + f_{22} Q_{2} + f_{23} Q_{3}$ inv. (1) $X_{3} = f_{31} Q_{1} + f_{32} Q_{2} + f_{33} Q_{3}$

2. De rigidez:

Por superposición

$$Q_{1} = K_{11} X_{1} + K_{12} X_{2} + K_{13} X_{3}$$

$$Q_{2} = K_{21} X_{1} + K_{22} X_{2} + K_{23} X_{3}$$

$$Q_{3} = K_{31} X_{1} + K_{32} X_{2} + K_{33} X_{3}$$
(2)

Desde luego K_{ij} = K_{ji} (y f_{ij} = f_{ji}) (Maxwell-Mohr) La ecuación 2 también puede escribirse:

$$Q_i = \sum_{j=1}^{3'} \kappa_{ij} x_j$$

o bien, en notación matricial

$$\begin{pmatrix} Q_1 \\ Q_2 \\ Q_3 \end{pmatrix} = \begin{pmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$$

$$\begin{array}{c} \text{matriz de ri-} \\ \text{gideces} \end{pmatrix}$$

Ponemos:

$$\begin{cases} Q \\ \end{bmatrix} = \begin{bmatrix} K \end{bmatrix} \begin{cases} X \\ \end{bmatrix} \\ = \begin{bmatrix} F \end{bmatrix} = \begin{bmatrix} f_{ij} \end{bmatrix}$$

Claro•que $[K]^{-1} = [F]$

Sustituyendo (2) o (3) en ecuaciones de movimiento:

$$m_{1}\ddot{x}_{1} + K_{11}x_{1} + K_{12}x_{2} + K_{13}x_{3} = P_{1}(t)$$

$$m_{2}\ddot{x}_{2} + K_{21}x_{1} + K_{22}x_{2} + K_{23}x_{3} = P_{2}(t)$$

$$m_{3}\ddot{x}_{3} + K_{31}x_{1} + K_{32}x_{2} + K_{33}x_{3} = P_{3}(t)$$

ۇ

o bien:

$$\begin{bmatrix} m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3} \end{bmatrix} \begin{pmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \\ \ddot{x}_{3} \end{pmatrix} + \begin{bmatrix} K_{11} & K_{12} & K_{13} \\ K_{21} & K_{22} & K_{23} \\ K_{31} & K_{32} & K_{33} \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{3} \end{pmatrix} = \begin{pmatrix} P_{1}(t) \\ P_{2}(t) \\ P_{3}(t) \end{pmatrix}$$

o también:

$$\begin{bmatrix} M \end{bmatrix} \begin{cases} \ddot{X} \\ \dot{X} \\$$

1. VIBRACION LIBRE

 $\begin{bmatrix} M \end{bmatrix} \left\{ \ddot{X} \right\} + \begin{bmatrix} K \end{bmatrix} \left\{ X \right\} = \left\{ 0 \right\}$ (1.1)

Supongamos la solución

$$\begin{cases} X \\ = \underbrace{\{r\}} (A \text{ sen pt} + B \text{ sen pt}) = \begin{cases} r \\ Y (t) \end{cases}$$
constante
con t
escalar
- variación armónica
- amplitud

tenemos:

$$\begin{cases} x_{1}^{2} = \{r\} (A \text{ sen pt} + B \cos pt) = r \quad Y(t) \\ \{\dot{x}\}^{2} = \{r\} (Ap \cos pt - B p \text{ sen pt}) \\ \{\ddot{x}\}^{2} = \{\dot{r}\} (-Ap^{2} \text{ sen pt} - B p^{2} \cos pt) = -p^{2} \{r\} Y(t) \end{cases}$$

$$(1.2)$$

Sustituyendo 1.2 en 1.1 y dividiendo entre Y(t) nos queda:

$$-p^{2}[M] \{r\} + [K] \{r\} = \{0\}$$

o sea:

$$\begin{bmatrix} [K] - p^2 [M] \{r\} = \{0\}$$
(1.3)

$$\begin{bmatrix} K \end{bmatrix} \left\{ r \right\} = p^{2} \begin{bmatrix} M \end{bmatrix} \left\{ r \right\}$$

$$pre x \begin{bmatrix} M \end{bmatrix}^{-1}$$

$$\begin{bmatrix} M \end{bmatrix}^{-1} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}$$

$$pre x \begin{bmatrix} K \end{bmatrix}^{-1} \cdot \frac{1}{p^{2}}$$

$$\frac{1}{p^{2}} \left\{ r \right\} = \begin{bmatrix} K \end{bmatrix}^{-1} \begin{bmatrix} M \end{bmatrix} \left\{ r \right\}$$

5.

En las dos formas llegamos a un problema de VAC

$$\begin{bmatrix} L \end{bmatrix} \quad \{u\} = \lambda \quad \{u\}$$

Problema de valores característicos:

- Dada una matriz cuadrada de orden (nxn) [L], que representauna transformación lineal de vectores n-dimensionales, debe encontrarse un vector $\{u\}$ que transformado por [L] resulte en otro vector λ $\{u\}$ en la misma "dirección". O sea, [L] solo cambia la magnitud de $\{u\}$ sin cambiar la dirección. El vector es un vector característico (o eigenvector) de [L]. λ (escalar) representa la relación entre las "longitudes" antes y después de la transformación y para llegar a los VEC debe tomar valores de un conjunto de valores característicos (VAC) (o eigenvalores].

El problema de encontrar frecuencias y modos naturales puede considerarse un problema de VAC. - (STD)

Tenemos

5 F.

$$\left[\begin{bmatrix} K \end{bmatrix} - p^2 \begin{bmatrix} M \end{bmatrix} \right] \left\{ r \right\} = \left\{ 0 \right\}$$
(1.3)

Si en el sistema de ecuaciones

 $\begin{bmatrix} A \end{bmatrix} \quad \{x\} = \{0\}$

[A] es no singular, la solución única es la trivial

 $\{X\} = \{0\}$, de donde; nos interesa el caso en que [A] es singular. En este caso la adjunta* [A] existe y puede pre X por ella, con el resultado 5.

 $|A| \{X\} = \{0\}$ porque $[A] [A] = |A| [I] \neq [A] (nxn)$ Puesto que $|A| = 0, \{x\}$ no necesariamente es nulo, pero si se asigna un valor dado a uno de sus elementos los demás que dan determinados en forma única. También notamos que si $\{X\}$ es solución de $[A] \{X\} = \{0\}$ y \ll es una constante, entonces $\ll \{X\}$ es también solución. Por lo tanto, hay un número infinito de soluciones. Todos es-

tas se considerarán juntas y hablaremos de una "solución" como un conjunto de relaciones entre los elementos de $\{x\}$. Volvemos a $\begin{bmatrix} K & -p^2 & M \end{bmatrix} \{r\} = \{0\}$ (1.3)

Al desarrollar |E| = 0 llegamos a una ecuación de grado n en p², cuyas raíces son los VAC. - Como [K] y [M] son simétricas y positivas definidas*,

*Transpuesta de la matriz de cofactores. ** [A] es POS. DEF. si $\{\dot{q}\}$ [A] $\{\dot{q}\} > 0$ para todo $\{\dot{q}\}$ no nulo puede demostrarse que las raîces de la ecuación característica son reales y positivas. Las llamamos p_1^2 , p_2^2 ,..., p_n^2 .

Las n frecuencia3 naturales son los términos positivos de las raíces y la más baja es llamada frecuencia fundamental.

- Para la gran mayoría de los casos de interés las frecuencias son diferentes entre sí.
- Para cada frecuencia p, existe una VEC asociado:

 $\begin{bmatrix} K \end{bmatrix} \begin{cases} r_{i}^{2} & = p_{i}^{2} & \begin{bmatrix} M \end{bmatrix} \\ r_{i}^{2} & i = 1, \dots, n \\ \hline 0 \text{ sea para cada } p_{i} \text{ existe una solución } \\ r_{i}^{2} & no \text{ trivial} \\ \hline \hline 0 & \text{ ormalización (solo conveniencia, sin significado físico)} \\ \hline Varias formas: \\ \end{bmatrix}$

⁽modos normales)

- Los modos y frecuencias naturales del sistema son propiedades características derivados de las propiedades de inercia y rigidez expresados por los elementos de [M] y [K].
- Llamaremos <u>matriz modal</u> [R] a la que tiene los VEC, o vectores modales, como columnas.

ORTOGONALIDAD DE MODOS DE VIBRACION

Se dice que dos vectores $\{a\}$ y $\{b\}$ son <u>ortogonales</u> con respecto a la matriz simétrica [J] si

 $\{a\}$ ' [J], b = $\{b\}$ ' [J] $\{a\}$ = 0

Demostremos que dos vectores modales $\{r_{i}^{j}, y_{i}^{j}\}_{j}$, asociados a frecuencias diferentes ($P_{i} \neq P_{j}$) son ortogonales con respecto a las matrices de inercia y elástica.

- Cada uno de estos vectores satisface la ecuación 1.3

 $p^{2} [M] \{r\} = [K] \{r\} [M] \{r\} = \frac{1}{p^{2}} [K] \{r\}$

es decir:

 $P_{i}^{2} \begin{bmatrix} M \end{bmatrix} \left\{ \vec{r} \right\}_{i} = \begin{bmatrix} K \end{bmatrix} \left\{ \vec{r} \right\}_{i} \begin{bmatrix} M \end{bmatrix} \left\{ \vec{r} \right\}_{i} = \frac{1}{P_{i}^{2}} \begin{bmatrix} K \end{bmatrix} \left\{ \vec{r} \right\}_{i}^{2}$ $P_{j} \begin{bmatrix} M \end{bmatrix} \left\{ \vec{r} \right\}_{j} = \begin{bmatrix} K \end{bmatrix} \left\{ \vec{r} \right\}_{j} \begin{bmatrix} M \end{bmatrix} \left\{ \vec{r} \right\}_{j} = \frac{1}{P_{j}^{2}} \begin{bmatrix} K \end{bmatrix} \left\{ \vec{r} \right\}_{j}^{2}$

pre X i y j por $\left\{ r \right\}_{j}^{\prime}$ y $\left\{ r \right\}_{i}^{\prime}$ respectivamente $p_{i}^{2} \quad r_{j}^{\prime} \begin{bmatrix} M \end{bmatrix} \left\{ r \right\}_{i}^{\prime} = \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} M \end{bmatrix} \left\{ r \right\}_{i}^{\prime} = \frac{1}{P_{i}^{2}} \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} M \end{bmatrix} \left\{ r \right\}_{i}^{\prime} = \frac{1}{P_{i}^{2}} \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} M \end{bmatrix} \left\{ r \right\}_{i}^{\prime} = \frac{1}{P_{i}^{2}} \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} M \end{bmatrix} \left\{ r \right\}_{i}^{\prime} = \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} M \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} M \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{i}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{j}^{\prime} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{j}^{\prime} = \frac{1}{P_{j}^{2}} \left\{ r \right\}_{j}^{\prime} =$

pero como [M] y [K] son simétricas:

 $\begin{cases} \mathbf{r} \\ \mathbf{j} \\ \mathbf{k} \end{cases} \begin{bmatrix} \mathbf{K} \end{bmatrix} \quad \begin{cases} \mathbf{r} \\ \mathbf{j} \\ \mathbf{r} \end{cases} = \\ \begin{cases} \mathbf{r} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{K} \end{bmatrix} \begin{cases} \mathbf{r} \\ \mathbf{j} \\ \mathbf{r} \end{bmatrix} = \\ \begin{cases} \mathbf{r} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{M} \end{bmatrix} \\ \begin{cases} \mathbf{r} \\ \mathbf{j} \end{bmatrix} = \\ \begin{cases} \mathbf{r} \\ \mathbf{j} \end{bmatrix} \begin{bmatrix} \mathbf{M} \end{bmatrix} \\ \begin{cases} \mathbf{r} \\ \mathbf{j} \end{bmatrix} = \\ \end{cases}$

..., restando miembro a miembro en ecuaciones (a):

$$(p_{i}^{2} - p_{j}^{2}) \left(\left\{ r \right\}_{i}^{\prime} \left[M \right] \left[r \right\}_{j}^{\prime} \right) = 0 \quad 0 = \left(\frac{1}{p_{i}^{2}} - \frac{1}{p_{j}^{2}} \right) \left\{ r \right\}_{i}^{\prime} \left[K \right] \left\{ r \right\}_{j}^{\prime}$$

y como $p_{i}^{2} \neq p_{j}^{2}$

$$\left\{ \begin{array}{c} \mathbf{r} \\ \mathbf{j} \\ \mathbf{i} \end{array} \right\} \left[\mathbf{M} \right] \left\{ \mathbf{r} \\ \mathbf{j} \\ \mathbf{j} \end{array} \right] = 0 \qquad \left\{ \begin{array}{c} \mathbf{r} \\ \mathbf{j} \\ \mathbf{i} \end{array} \right\} \left[\mathbf{K} \\ \mathbf{j} \\ \mathbf{j} \end{array} \right] = 0$$

Tenemos ecuaciones de ortogonalidad:

$$\left\{ \begin{array}{c} r \\ j \\ i \end{array} \right\} \left[M \right] \left\{ r \\ j \\ j \end{array} \right\} = 0$$

$$\left\{ r \\ i \end{array} \left[K \right] \left\{ r \\ j \\ j \end{array} \right\} = 0$$

$$\begin{array}{c} \text{sii} \neq j \\ \text{sii} \neq j \end{array}$$

La ec

~

$$\begin{bmatrix} M \end{bmatrix} \left\{ \frac{1}{x} \right\} + \begin{bmatrix} K \end{bmatrix} \left\{ x \right\} = \left\{ 0 \right\}$$

y la matriz modal [R]

Hagamos:

$${x} = [R] {y}$$

y sustituyendo en (a):

$$\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \begin{cases} \dot{y} \\ \dot{y} \end{bmatrix} + \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \begin{cases} y \\ \dot{y} \end{bmatrix} = \begin{cases} 0 \\ \dot{y} \end{bmatrix}$$
premultiplicando por $\begin{bmatrix} R \\ \dot{y} \end{bmatrix}$:

$$\begin{bmatrix} R \end{bmatrix} \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \begin{bmatrix} Y \end{bmatrix} + \begin{bmatrix} R \end{bmatrix} \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \begin{bmatrix} Y \end{bmatrix} = \{0\}$$
(b)
diagonales

$$\begin{bmatrix} r \\ i \end{bmatrix} = \begin{bmatrix} M \\ i \end{bmatrix} =$$

1 ١ 9.

(a)

Llamemos

· · ·

que

$$\begin{bmatrix} R \end{bmatrix} \cdot \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} m & m \\ m \end{bmatrix}$$

$$\begin{bmatrix} R \end{bmatrix} \cdot \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} m & m \\ m & m \end{bmatrix}$$

$$\begin{bmatrix} M & m \\ m \end{bmatrix} \begin{bmatrix} Y \\ Y \end{bmatrix} + \begin{bmatrix} K & m \\ m \end{bmatrix} \begin{bmatrix} Y \\ Y \end{bmatrix} = \begin{bmatrix} m & m \\ m \end{bmatrix}$$

$$\begin{bmatrix} m & m \\ m \\ m \end{bmatrix} \begin{bmatrix} Y \\ m \\ m \end{bmatrix} + \begin{bmatrix} m \\ m \\ m \end{bmatrix}$$

$$\begin{bmatrix} m \\ m \\ m \end{bmatrix} = \begin{bmatrix} m \\ m \\ m \end{bmatrix}$$

$$\begin{bmatrix} m \\ m \end{bmatrix}$$

$$\begin{bmatrix}$$

{07

=

de las que

 $p_1^2 = \frac{k_{11}}{m_n}, \dots, p_n^2 = \frac{k_{nn}}{m_{nn}}$ $\begin{array}{c} & & \\ & &$ Recordar que para

 $m\mathbf{x} + k\mathbf{x} = 0$ $\dot{x} + p^2 x = 0 \quad y \quad p^2 = \frac{k}{m}$

O sea, con la transformación

 $\left\{ \mathbf{x} \right\} = \left[\mathbf{R} \right] \left\{ \mathbf{y} \right\}$

aplicada a la ecuación

$$\begin{bmatrix} M \end{bmatrix} \left\{ x \right\} + \begin{bmatrix} K \end{bmatrix} \left\{ x \right\} = \left\{ 0 \right\}$$

hemos descompuesto un sistema de ıGL en <u>n sistemas de 1GL in-</u> <u>dependientes</u>.

Consideremos el producto

$$\begin{bmatrix} M^{*} \end{bmatrix}^{-1} \begin{bmatrix} K^{*} \end{bmatrix} = \begin{pmatrix} [R] \cdot [M] [R] \end{pmatrix}^{-1} \qquad \begin{bmatrix} R \end{bmatrix}^{-1} \begin{bmatrix}$$

27] contiene las frecuencias naturales en la diagonal principal

. El problema de encontrar frecuencias y modos naturales equi vale al de encontrar la matriz [R] que diagonalice [M] y [K]de acuerdo con

$$\begin{bmatrix} R \end{bmatrix} \cdot \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} M \end{bmatrix}$$
$$\begin{bmatrix} R \end{bmatrix} \cdot \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} K \end{bmatrix}$$

Las frecuencias naturales se obtendrán de

 $[M^*]^{-1}$ $[K^*] = [K^*] [M^*]^{-1} = [P]$

Veámoslo en otra forma

$$\begin{bmatrix} M \end{bmatrix} \left\{ \begin{matrix} \mathbf{x} \\ \mathbf{x} \end{matrix} \right\} + \begin{bmatrix} K \end{bmatrix} \left\{ \mathbf{x} \\ \mathbf{x} \end{matrix} \right\} = \left\{ P(t) \right\}$$

Sustituyendo
$$\left\{ \begin{matrix} \mathbf{x} \\ \mathbf{x} \end{matrix} \right\} = \left\{ \begin{bmatrix} R \end{bmatrix} \left\{ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \end{matrix} \right\} = \left\{ \begin{bmatrix} R \end{bmatrix} \left\{ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix} = \left\{ P(t) \right\}$$

premultiplicando por $\frac{\sqrt{r}}{j}$ $\begin{bmatrix} \mathbf{r} \\ \mathbf{j} \\ \mathbf{(a)} \end{bmatrix} \begin{bmatrix} \mathbf{R} \\ \mathbf{y} \end{bmatrix} + \frac{\sqrt{r}}{j} \begin{bmatrix} \mathbf{K} \\ \mathbf{R} \end{bmatrix} \begin{bmatrix} \mathbf{y} \end{bmatrix} = \underbrace{\{\mathbf{r}\}}_{j} \begin{bmatrix} \mathbf{P}(\mathbf{t}) \end{bmatrix}$ (b) escalar En los productos (a) y (b) solo queda (por ortogonalidad): $\mathbf{r}_{j}^{*} \begin{bmatrix} \mathbf{M} \\ \mathbf{r}_{j}^{*} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{j}^{*} \\ \mathbf{y}_{j}^{*} + \begin{bmatrix} \mathbf{r} \end{bmatrix}_{j}^{*} \begin{bmatrix} \mathbf{K} \\ \mathbf{x} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{j}^{*} \\ \mathbf{y}_{j}^{*} \end{bmatrix} = \underbrace{\{\mathbf{r}\}}_{j}^{*} \begin{bmatrix} \mathbf{P}(\mathbf{t}) \end{bmatrix} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{p} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{y}_{j}^{*} \end{bmatrix} = \underbrace{\mathbf{r}}_{j}^{*} \begin{bmatrix} \mathbf{P}(\mathbf{t}) \end{bmatrix} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{p} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{p} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{r}_{j}^{*} \end{bmatrix} = \underbrace{\mathbf{p}}_{j}^{*} \begin{bmatrix} \mathbf{M} \\ \mathbf{p} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{p} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{p} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{p} \end{bmatrix} = \underbrace{\mathbf{p}}_{j}^{*} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{p} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{p} \end{bmatrix} = \underbrace{\mathbf{p}}_{j}^{*} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{p} \end{bmatrix} = \underbrace{\mathbf{r}}_{j}^{*} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{p} \end{bmatrix} = \underbrace{\mathbf{r}}_{j}^{*} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{p} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{p} \end{bmatrix} = \underbrace{\mathbf{r}}_{j}^{*} \begin{bmatrix} \mathbf{r}_{j} \\ \mathbf{r} \end{bmatrix} = \underbrace{\mathbf{r}}_{j}^{*} \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} = \underbrace{\mathbf{r$

y para el modo j tenemos:

 $M_{j}^{*} y_{j}^{*} + P_{j}^{2} M_{j}^{*} y_{j} = P_{j}^{*}(t)$

o bien

 $M_{j}^{*} \tilde{y}_{j} + K_{j}^{*} y_{j} = P_{j}^{*}(t)$

análoga a la ecuación de movimiento para 1 GL:

 $m\ddot{x} + kx = P(t)$

En (1.5) tenemos:

n ecuaciones`independientes para nGL

1 ecuación independiente para cada modo

Para vibración libre (1GL)

$$\dot{x} + p^2 x = 0$$
 $p^2 = \frac{k}{m}$

12.

(1.5)

la solución és:

y para el modo j tendremos $(P_j(t) = 0)$ y = A cos pjt + B sen Pjt (d)

Si en (c) hacemos

$$\mathbf{x}_{t=0} = \mathbf{x}_{0}$$

llegamos a

у

$$x(t) = X_{o} \cos pt + \frac{\dot{X}_{o}}{p} \operatorname{sen pt}$$

... en (d):

 $y_j = y_{oj} \cos p_j t + \frac{y_{oj}}{P_j} \sin p_j t$

Cualquier configuración del sistema puede expresarse como una suma de formas modales multiplicadas por ciertós coeficientes. Esquemáticamente:

$$\{X\} = \{\hat{r}\}_{1} + \{\hat{r}\}_{2} + \{\hat{r}\}_{3} + ...$$

estática
dinámica.
$$(Y = Y(t)$$

$$\left(\left\{ X \right\} = \left\{ X(t) \right\} \right)$$

13.

(°c)

En nuestra expresión

- $\{x\} = [R] \{y\}$ 1.4 {
 puede no ser función de t, pov ejemplo:
 - $\left\{1\right\} = \left[\frac{R}{R}\right] \left\{c\right\}$ (2) donde $\{c\}$ es el vector de constantes que prex [R] nos da la configuración $\{1\}$

De la ec. (e):

 $\{c\} = [R]^{-1} \{1\} ([R] NOSING)$

En 1.4 también podríamos hacer

$$\left\{ \mathbf{x} \right\}^{2} = \left[\mathbf{R} \right]^{-1} \left\{ \mathbf{x} \right\}$$

pero sigamos otro camino, premultiplicando por rigi M o por $\{r\}_{i}^{\prime}$ [K]

$$\mathbf{r}_{j}^{\dagger} [\mathbf{M}] \{\mathbf{x}_{j} = \{\mathbf{r}_{j}^{\dagger} [\mathbf{M}] [\mathbf{R}] \{\mathbf{y}\} = \{\mathbf{r}_{j}^{\dagger} [\mathbf{M}] \{\mathbf{r}_{j}^{\dagger} \mathbf{1} \mathbf{y}_{1} + \{\mathbf{r}_{j}^{\dagger}\}_{j}^{\dagger} [\mathbf{M}] \{\mathbf{r}_{j}^{\dagger} \mathbf{1} \mathbf{y}_{2} + \cdots$$
$$+ \{\mathbf{r}_{j}^{\dagger} [\mathbf{M}] \{\mathbf{r}_{n}^{\dagger} \mathbf{y}_{n}^{\dagger} + \cdots$$

Por ortogonalidad todos estos productos son nulos excepto el término (r

de donde tenemos

$$\{r\}_{j}' \cdot [M] \{x\} = \{r\}_{j}' [M] \{r\}_{j} y_{j}$$

de donde:

$$\mathbf{y}_{j} = \frac{\left\{ \mathbf{r} \right\}_{j}^{\prime} \quad \left[\mathbf{M} \right] \left\{ \mathbf{x} \right\}}{\left\{ \mathbf{r} \right\}_{j}^{\prime} \quad \left[\mathbf{M} \right] \left\{ \mathbf{r} \right\}_{j}^{\prime}} = \frac{\left\{ \mathbf{r} \right\}_{j}^{\prime} \left[\mathbf{M} \right] \left\{ \mathbf{x} \right\}}{\mathbf{M}_{j}^{\ast}} = \frac{\left\{ \mathbf{r} \right\}_{j}^{\prime} \left[\mathbf{K} \right] \left\{ \mathbf{x} \right\}}{\mathbf{K}_{j}^{\ast}} = \frac{\left\{ \mathbf{r} \right\}_{j}^{\prime} \left[\mathbf{K} \right] \left\{ \mathbf{x} \right\}}{\mathbf{P}_{j}^{2} \quad \mathbf{M}_{j}^{\ast}}$$

(coeficiente de participación)

Ejemplo (vigas rigidas)

	Nº3=1.0	1							
	m ₂ = 1.5	60	T/cm		Г	2.0	0	0	-
	m,=2.0	120	T/cm	[M] =	-	0	1.5	0	ton seg ²
		- ;180	T/cm		l	0	0	1.0	CM
77	7777777	<u>↓</u> →,							

مريد المتعندين يتعقبون بريات

Matriz de rigideces

$$\begin{bmatrix} \mathbf{F} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{K} \end{bmatrix} - \mathbf{p}^2 & \begin{bmatrix} \mathbf{M} \end{bmatrix} \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1.5 & 0 \\ 0 & \nu & 1 \end{bmatrix}$$

$$= 60 \begin{bmatrix} (5 - \frac{2}{60} & \mathbf{p}^2) & -2 & 0 \\ -2 & (3 - \frac{1 + 5}{60} & \mathbf{p}^2) & -1 \\ 0 & -1 \end{pmatrix} (1 - \frac{1}{60} & \mathbf{p}^2) \end{bmatrix}$$

$$si \ d = \mathbf{p}^2/60 :$$

$$\begin{bmatrix} \mathbf{F} \end{bmatrix} = 60 \begin{bmatrix} (5 - 2d) & -2 & 0 \\ -2 & (3 - 1.5 & d) & -1 \\ 0 & -1 & (1 - d) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{F} \end{bmatrix} = 0 = 60 \ (d^3 - 5.5 & d^2 + 7.5 & d - 2) = 0$$

$$d_1 = 0.35 \\ d_2 = 1.61 \\ d_3 = 3.54$$

$$\begin{bmatrix} \mathbf{P}^2 \\ 2 \\ 2 \end{bmatrix} = 60 \ d: \qquad \begin{bmatrix} \mathbf{P}_1^2 \\ 2 \\ 2 \\ 2 \end{bmatrix} = 212.4 \qquad \begin{bmatrix} \mathbf{P}_1 \\ 3 \\ 3 \end{bmatrix} = 14.56$$

$$frecuencias \\ naturales \\ naturales \end{bmatrix}$$

Modos:

١

١.

16.

`

0... 808.380

0...

· .

$$Y_{02} = \frac{\{r\}_{2} [M] \{x_{0}\}}{M_{2}^{*}} = \frac{2.0 + 2.697 - 4.422}{5.386} = 0.0511$$

 $Y_{03} = \frac{\left\{r \right\}_{3} \left[M\right] \left\{x_{0}\right\}}{M_{3}^{*}} = \frac{2.0 - 3.132 + 1.233}{3.804} = 0.0266$

٨

- $P_{1} = 4.58$
- $P_2 = 9.82$

 $P_3 = 14.56$

En p.

0.930	cm					
0.051	cm	son	amplitudes modos	de	los	
0.026	cm	,				

Para obtener los desplazamientos de las masas debemos multiplicar por las configuraciones modales:

$$x_{i1} = \begin{cases} r \\ 1 \end{cases} Y_{1}(t) = \begin{cases} 1.0 \\ 2.135 \\ 3.285 \end{cases} \quad 0.93 \cos 4.58 t$$

$$x_{i2} = \begin{cases} r \\ 2 \end{cases} Y_{2}(t) = \begin{pmatrix} 1.0 \\ 0.899 \\ -1.474 \end{cases} \quad 0.051 \cos 9.82 t$$

$$x_{i3} = \begin{cases} r \\ 3 \end{cases} Y_{3}(t) = \begin{pmatrix} 1.00 \\ -1.044 \\ 0.411 \end{cases} \quad 0.0266 \cos 14.56 t$$

<u>y sumar</u>. O sea los desplazamientos $x_i(t)$ de las masas serán $\{x(t)\} = [R] \{y(t)\}$

$$\begin{array}{rcl} x_{1}(t) &= r_{11} & Y_{1}(t) + r_{12} & Y_{3}(t) + r_{13} & Y_{3}(t) \\ x_{2}(t) &= r_{21} & Y_{1}(t) + r_{22} & Y_{2}(t) + r_{23} & Y_{3}(t) \\ x_{3}(t) &= r_{31} & Y_{1}(t) + r_{32} & Y_{2}(t) + r_{33} & Y_{3}(t) \end{array}$$

Otro ejemplo

La ec:

 $x + P^2 x = \frac{P(t)}{m} = \frac{P_0}{m}$

y para CI = 0 la solución

$$x = \frac{P_{o}}{K} \left(1 - \cos pt\right)$$

Tenemos ahora el problema de encontrar la respuesta de

Para el modo j:

Cálculo de P

Ahora bien,

$$P_{j}^{*} = \{r\}_{j}^{'} \{P(t)\} = \{r\}_{j}^{'} \{\begin{cases} 360\\ 120\\ 60 \end{cases}$$

modo $P_1^* = P_1r_{11} + P_2r_{21} + P_3r_{31} = 360+256.2+197.1 = 813.3$ $P_2^* = P_1r_{12} + P_2r_{22} + P_3r_{32} = 360+107.88-88.4 = 379.48$ $P_3^* = P_1r_{13} + P_2r_{23} + P_3r_{33} = 360-125.28+24.66 = 259.98$

$$Y_{j(st)} = \frac{P_{j}^{*}}{P_{j}^{2} M_{j}^{*}} = \frac{P_{j}^{*}}{K_{j}^{*}}$$

$$\begin{split} \mathbf{Y}_{1(st)} &= \frac{813.30}{21 \times 19.622} = 1.973 \ \mathrm{cm}^{33} \\ \mathbf{Y}_{2(st)} &= \frac{379.48}{966 \times 5.366} = 0.730 \ \mathrm{cm}^{33} \\ (x) & (x)$$

21.

р. С

EXCITACION SISMICA

Para P(t) cualquiera y para CI \neq 0 la solución de (a) es: x(t) = x_ocos pt + $\frac{\dot{x}_o}{p}$ sen pt + $\frac{1}{mp} \int_{0}^{t} P(z)$ sen p(t-Z)dZ

Para excitación sísmica:

De la comparación de (a) y (b), la solución completa de ésta es:

$$x(t) = x_0 \cos pt + \frac{\dot{x}_0}{P} \operatorname{sen pt} - \frac{1}{p} \int_0^{t} \ddot{u}(\zeta) \operatorname{sen p}(t-\zeta) d\zeta$$

B. Sistemas de nGL:

Es decir, tenemos: $\begin{bmatrix} M \end{bmatrix} \left\{ \dot{x} \right\} + \begin{bmatrix} K \end{bmatrix} \left\{ x \right\} = \left\{ P(t) \right\} = - \left\{ m \right\} \quad \dot{u}$ $\{x\} = [R] \{y\}$ sust. $\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \begin{cases} \ddot{y} \\ \end{pmatrix} + \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} R \end{bmatrix} \begin{cases} y \\ \end{pmatrix} = \begin{cases} P(t) \\ \end{pmatrix} = - \begin{cases} m \\ \end{bmatrix} \ddot{u}(t)$ pre x $\left\{r\right\}_{i}$ $\left\{ \mathbf{r} \right\}_{\mathbf{j}}^{\mathbf{r}} \left[\mathbf{M} \right] \left[\mathbf{R} \right] \left\{ \mathbf{y} \right\}^{\mathbf{r}} + \left\{ \mathbf{r} \right\}_{\mathbf{j}}^{\mathbf{r}} \left[\mathbf{K} \right] \left[\mathbf{R} \right] \left\{ \mathbf{y} \right\}^{\mathbf{r}} = \left\{ \mathbf{r} \right\}_{\mathbf{j}}^{\mathbf{r}} \left\{ \mathbf{P} \right\}_{\mathbf{j}}^{\mathbf{r}} = \left\{ \mathbf{r} \right\}_{\mathbf{j}}^{\mathbf{r}} \left\{ \mathbf{P} \right\}_{\mathbf{j}}^{\mathbf{r}} = \left\{ \mathbf{r} \right\}_{\mathbf{j}}^{\mathbf{r}} \left\{ \mathbf{P} \right\}_{\mathbf{j}}^{\mathbf{r}} = \left\{ \mathbf{P} \right\}_{\mathbf{j}}^{\mathbf{r}} \left\{ \mathbf{P} \right\}_{\mathbf{j}}^{\mathbf{r}} \left\{ \mathbf{P} \right\}_{\mathbf{j}}^{\mathbf{r}} = \left\{ \mathbf{P} \right\}_{\mathbf{j}}^{\mathbf{r}} \left\{ \mathbf{P} \right$ por ortogonalidad: $\left\{ \mathbf{r} \right\}_{j}^{\prime} \begin{bmatrix} \mathbf{M} \\ \mathbf{r} \end{bmatrix} \left\{ \mathbf{r} \right\}_{j}^{\prime} \mathbf{y}_{j}^{\prime} + \left\{ \mathbf{r} \right\}_{j}^{\prime} \begin{bmatrix} \mathbf{K} \\ \mathbf{r} \end{bmatrix} \left\{ \mathbf{r} \right\}_{j}^{\prime} \mathbf{y}_{j}^{\prime} = \mathbf{P}_{j}^{*} = \mathcal{U}_{j}^{*}$ y queda: M_{i}^{*} $y_{i}^{*} + K_{j}^{*}$ $y_{i}^{*} = P_{j}^{*} = U_{i}^{*} = -m_{j}^{*}$ \tilde{u} . . la solución (CI = 0) de esta ecuación es: Para P; : $y_{j}(t) = \frac{1}{\oint_{i} M_{i}^{*}} \int_{0}^{c} P_{j}^{*} (z) \operatorname{sen} \phi_{j}(t-z) dz$ Para $U_{,T}^*$: $y_{j}(t) = \frac{1}{P_{j}M_{j}^{*}} \int U_{j}^{*}(\zeta) \operatorname{sen} P_{j}(t-\zeta) d\zeta$

que puede escribirse:

$$y_{j}(t) = -\frac{m_{j}^{*}}{p_{j}M_{j}^{*}} \int_{0}^{t} \tilde{u}(Z) \operatorname{sen} p_{j}(t-Z) dZ$$

+ $y_{oj} \cos p_{j}t + \frac{\tilde{y}_{oj}}{p_{j}} \operatorname{sen} p_{j}t \qquad \text{terminola}$
 $CI \neq 0$

Una vez obtenidos los elementos de $\{y\}$ solo falta premultiplicar por [R] para obtener $\{x\}$:

 $\left\{ x(t) \right\} = \left[R \right] \left\{ y(t) \right\}$

GENERALIZACION DE LAS CONDICIONES DE ORTOGONALIDAD

Tenemos la ecuación:

$$\begin{bmatrix} K \end{bmatrix} - p^2 \begin{bmatrix} M \end{bmatrix} \left\{ X \right\} = \left\{ 0 \right\}$$

que convenimos en escribir en la forma:

$$(K - p^2 M) = 0$$

como los vectores modales la satisfacen:

•
$$K r_j = \oint_j^2 M r_j$$
 (a)
y premultiplicando por: $r'_i MM^{-1}$ tenemos:

$$r_{i}^{\prime} M M^{-1}$$
 $K r_{j} = \tilde{p}_{j}^{2} M M^{-1}$ $M r_{j} = p_{j}^{2} M M^{-1} K r_{j} = 0$

24。
que puede escribirse

$$r'_{i}$$
 M (M⁻¹ K)² $r_{j} = 0$

y asî podrîa seguirse para llegar a:

$$r'_{i} M (M^{-1}K)^{l} r_{j} = 0 - \begin{cases} l \text{ entero} \\ -\infty < l < \infty \end{cases}$$
$$r'_{i} M (M^{-1}K)^{l} r_{j} = 0 \qquad (b)$$

en forma análoga podemos obtener

$$r'_{i} (MF)^{l} M r_{j} = 0 \qquad (c)$$

$$r_{i}^{\prime}$$
 (K M⁻¹) ^{ℓ} K $r_{j} = 0$

En (b):

$$k = -2 \qquad M (M^{-1}K)^{-2} = M (M^{-1}K)^{-1} (M^{-1}K)^{-1}$$
(en (c), con $k = 2$) = $M K^{-1} M K^{-1} M = M F M F M$

$$Q = -I$$
 $M(M^{-1}K)^{-1} = MK^{-1}M = MFM$

$$\mathcal{L} = \boldsymbol{o} \qquad M \left(M^{-1} K \right)^{\boldsymbol{o}} = \underline{M}$$

$$\mathcal{L} = I \qquad M \ (M^{-1}K)^{1} = M \ M^{-1} \ K = \underline{K}$$

$$\mathcal{L} = Z \qquad M \ (M^{-1}K)^{2} = M \ M^{-1} \ K \ M^{-1} \ K = \underline{K} \ M^{-1} \ \underline{K}$$

$$\mathcal{L} = 3 \qquad M \ (M^{-1}K)^{3} = M \ M^{-1} \ K \ M^{-1} \ K \ M^{-1} \ K = K \ M^{-1} \ K \ M^{-1}$$

25.

к

VIBRACION LIBRE Y FORZADA DE SISTEMAS DE N GL CON AMORTIGUAMIENTO

26.

Las ecuaciones de equilibrio dinámico son:

$$\left\{ F_{I} \right\} + \left\{ F_{a} \right\} + \left\{ F_{r} \right\} = \left\{ P(t) \right\}$$

Ya tenemos:«

$$\left\{ F_{I} \right\} = \left[M \right] \left\{ \ddot{x} \right\}$$
$$\left\{ F_{I} \right\} = \left[K \right] \left\{ x \right\}$$

y ahora hacemos

 $\left\{ F_{a} \right\} = \left[c \right] \left\{ \dot{x} \right\}$

donde

 $[c] = [c_{ij}]$

y c_{ij} = fuerza de amortiguamiento en la coordenada i debido a una velocidad unitaria en la coordenada j.

La ecuación de movimiento es

$$[M] {\ddot{x}} + [c] {\dot{x}} + [K] {x} = {P(t)}$$

Hagamos:
$${X} = [R] {y}$$
 premultiplicando por ${r}'_{j}$
 ${r}'_{j}[M][R] {y} + {r}'_{j}[C][R] {y} + {r}'_{j}[K][R] {y} = {r}'_{j} {P(t)}$

Para desacoplar estas ecuaciones debemos tener

$$\left\{ r \right\}_{j}^{i} \begin{bmatrix} M \end{bmatrix} \left\{ r \right\}_{i}^{i} = 0 \quad i \neq j \\ \left\{ r \right\}_{j}^{i} \begin{bmatrix} K \end{bmatrix} \left\{ r \right\}_{i}^{i} = 0 \quad i \neq j \\ i \neq j \end{bmatrix}$$
 ortogonalidad

$$\left\{ r \right\}_{j}^{i} \begin{bmatrix} C \end{bmatrix} \left\{ r \right\}_{i}^{i} = 0 \quad i \neq j \\ i \neq j \end{bmatrix}$$
 ipero ésta? (a)

1° admitamos que se cumple:

Ya definimos

$$\left\{ r \right\}_{j} \left[M \right] \left\{ r \right\}_{j} = M_{j}^{*}$$

$$\left\{ r \right\}_{j}^{*} \left[K \right] \left\{ r \right\}_{j} = K_{j}^{*}$$

$$\left\{ r \right\}_{j}^{*} \left[K \right] \left\{ r \right\}_{j} = K_{j}^{*}$$

$$\left\{ r \right\}_{j}^{*} \left[C \right] \left\{ r \right\}_{j} = C_{j}^{*} = 28.4 \text{ M}^{*}$$

y ahora

$${r}_{j} [C] {r}_{j} ==C_{j} = 2\beta_{j} p_{M_{j}}$$

y nuestra ecuación para el modo j queda:

$${}^{M*}{}_{j}{}^{y}{}_{j}{}^{+2\beta}{}_{j}{}^{p}{}_{j}{}^{M}{}^{*}_{j}{}^{y}{}_{j}{}^{+}{p}^{2}{}_{j}{}^{M}{}^{*}_{j}{}^{y}{}_{j} = P_{j}^{*}$$

o bien:

$$\dot{y}_{j}^{+2\beta}_{j}\dot{p}_{j}\dot{y}_{j}^{+}\dot{p}_{j}^{2}y_{j} = \frac{P_{j}^{*}}{M_{j}^{*}}$$

Como las soluciones para un sistema de AGL (cuya ec. es $\ddot{x}+2\beta p\dot{x}+p^2x = \frac{P(t)}{m}$) ya las conocemos, solo nos falta saber cómo debe ser [C] para que se cumpla

$${r}_{i}^{\prime} \begin{bmatrix} c \end{bmatrix} {r}_{j}^{\prime} = 0 \quad i \neq j$$
 (a)

además, claro, de

y
$$\begin{cases} \mathbf{r} \mathbf{j}_{i} \left[\mathbf{M} \right] \left\{ \mathbf{r} \mathbf{j}_{j} = 0 \\ \mathbf{j}_{i} \left[\mathbf{K} \right] \left\{ \mathbf{r} \mathbf{j}_{j} = 0 \end{cases} \right\} i \neq j$$

La ec. (a) se satisface si

i) [C] es proporcionala [M] o a [K]

ii) [C] es una combinacion lineal de [M] y [K], o
sea:

$$\begin{bmatrix} C \end{bmatrix} = a_0 \begin{bmatrix} M \end{bmatrix} + a_1 \begin{bmatrix} K \end{bmatrix}$$

esto es muy restringido.

iii) En forma más general:

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} \Sigma a_1 \\ \mathcal{A} \end{bmatrix} \begin{bmatrix} M^{-1} K \end{bmatrix}^{-1} = \begin{bmatrix} C_1 \\ \mathcal{A} \end{bmatrix}$$
(38.1)

pues ya sabemos que todas las posibles formas

 $[M] [M^{-1}K]^1$ son satisfactorias y (38.1) es una C. L de matrices de este tipo.

La selección adecuada de a_1 dará ϵ [C] las propiedades deseadas, o sea, podremos dar valores ϵ specíficos a los elementos de [C] . ¿Cuáles le damos?

Asignamos un cierto valor de
$$\beta$$
 a cada modo.

$$C_{j}^{*} = \left\{ r \right\}_{j}^{*} \begin{bmatrix} C \\ r \end{bmatrix}_{j}^{*} = 2\beta_{j} \left[r \right]_{j}^{*} = \sum_{l} \left\{ r \right\}_{j}^{*} \begin{bmatrix} C \\ l \end{bmatrix}_{l}^{*} \left[r \right]_{j}^{*} = \sum_{l} \left\{ r \right\}_{j}^{*} = \sum_{l} \left\{ r \right\}_{l}^{*} = \sum_{l} \left\{ r \right\}_{l}^$$

$$C_{j1} = \{r\}_{j} [M] [M^{-1}K]^{1} \{r\}_{ja_{1}}$$
 (38.3)

Por otra parte, para vibración libre:

$$(K - p_j^2 M)r_j = 0$$

$$Kr_{j} = \oint_{j}^{2} Mr_{j} \leftrightarrow \oint_{j}^{\frac{1}{2}} r_{j} = FMr_{j}$$

premultiplicando por r!M:

$$\frac{1}{p_j^2}r_j^{Mr_j} = r_j^{MFMr_j}$$

es decir

$$(r_{j}^{2})^{-1}M_{j}^{2} = r_{j}^{M}(M^{-1}K)^{-1}r_{j}$$

y así podríamos llegar a que, para cualquier 1:

30.

39.1

$$(f_{j}^{z})^{1}M_{j}^{*} = r_{j}^{'}M(M^{-1}K)^{1}r_{j} = \frac{C_{j1}^{*}}{a_{1}}$$

De 39.1:

$$C_{j1}^{*} = (p_{j}^{2})^{1} M_{ja_{1}}^{*}$$
$$C_{j1}^{*} = (p_{j}^{2})^{1} M_{ja_{1}}^{*}$$

y sumando sobre l:

$$\sum_{j=1}^{\infty} = \sum_{j=1}^{\infty} (\phi_{j}^{2})^{1} M_{j}^{*} a_{1}$$

pero ya teníamos que

$$\Sigma C_{j1}^{*} = 2\beta_{j} P_{j} M_{j}^{*}$$

$$2\beta_{j} P_{j} M_{j}^{*} = \Sigma (P_{j}^{2})^{1} M_{j}^{*} a_{1}$$

de donde:

$$\beta_{j} = \frac{1}{2p_{j}} \sum_{l} (p_{j}^{2})^{l} a_{l}$$

Con lòs n valores de β_j para los n modos podemos resolver para los n valores de a₁ y formar nuestra [C] con la ecuación

$$\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} \Sigma a \\ 1 \end{bmatrix} \begin{bmatrix} M^{-1} \\ 1 \end{bmatrix}^{\frac{1}{2}}$$

Por ejemplo para nuestra estructura de 3GL asignemos:

$$\beta_{1} = 0.10, \qquad \beta_{2} = 0.05, \qquad \beta_{3} = 0.02$$

$$\beta_{1} = 0.10 = \frac{1}{2p_{1}} \left[a_{1}(p_{1}^{2})^{-1} + a_{0}(p_{1}^{2})^{0} + a_{1}(p_{1}^{2})^{1} \right]$$

$$\beta_{2} = 0.05 = \frac{1}{2p_{2}} \left[a_{-1}(p_{2}^{2})^{-1} + a_{0}(p_{2}^{2})^{0} + a_{1}(p_{2}^{2})^{1} \right]$$

$$\beta_{3} = 0.02 = \frac{1}{2p_{3}} \left[a_{-1}(p_{3}^{2})^{-1} + a_{0}(p_{3}^{2})^{0} + a_{1}(p_{3}^{2})^{1} \right]$$

o, en forma matricial:

$$\begin{cases} 0.10\\ 0.05\\ 0.02 \end{cases} = \frac{1}{2} \begin{bmatrix} 1/\dot{p}_1^3 & 1/\dot{p}_1 & \dot{p}_1 \\ 1/\dot{p}_2^3 & 1/\dot{p}_2 & \dot{p}_2 \\ 1/\dot{p}_3^3 & 1/\dot{p}_3 & \dot{p}_3 \end{bmatrix} \begin{cases} a_{-1}\\ a_0\\ a_1 \end{cases}$$

al resolver para a, resulta

0

•
$$\begin{bmatrix} C \end{bmatrix} = a_{-1} \begin{bmatrix} MFM \end{bmatrix} + a_0 \begin{bmatrix} M \end{bmatrix} + a_1 \begin{bmatrix} K \end{bmatrix}$$

En p. tenemos que para CI = 0 y β = 0, para excitación sísmica

$$y_j(t) = -\frac{m_j^m}{P_jM_j^m} t_0^u (\Im \text{ sen } P_j(t-m)dz)$$

coeficiente de participación

$$C_{j} = \frac{m_{j}^{*}}{M_{j}^{*}} = \frac{\left\{r\right\}_{j}^{*}\left\{m\right\}_{j}^{*}\left\{m\right\}_{j}^{*}}{\left\{r\right\}_{j}^{*}\left[M\right]_{j}^{*}\left\{r\right\}_{j}^{*}} = \frac{\frac{\sum_{i=1}^{m} i^{r}i^{j}}{\sum_{i=1}^{m} i^{r}i^{j}}}{\sum_{i=1}^{m} i^{r}i^{j}i^{j}}$$

y .: podemos poner:

$$y_j(t) = C_j z_j(t)$$

en la que C_j está definida arriba y

$$z_{j}(t) = -\frac{1}{P_{j}} \int_{0}^{t} \ddot{u}(z) \operatorname{sen}_{j}^{p}(t-z) dz$$

(y semejante si $\beta \neq 0$)

$$y_{j}(t) = C_{j}z_{j}(t)$$

Además, tenemos

$${x} = [R] {y}$$

o sea

$$\begin{cases} X_{1} \\ X_{2} \\ \vdots \\ X_{i} \\ \vdots \\ X_{n} \end{pmatrix} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1j} & \cdots & r_{1n} \\ r_{21} & r_{22} & \cdots & r_{2j} & \cdots & r_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ r_{n1} & r_{n2} & \cdots & r_{nj} & \cdots & r_{nn} \end{bmatrix} \begin{pmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ \vdots \\ Y_{n} \end{pmatrix}$$

$$x_{i} = \frac{n}{2}r_{ij}y_{j} = \frac{n}{2}r_{ij}C_{j}z_{j}(t)$$

De aquí (sin sumar para todos los modos)

$$\begin{vmatrix} x_{ij} \\ max = r_{ij}C_{j} \\ z_{j}(t) \\ max = r_{ij}C_{j}S_{d} \\ = r_{ij}C_{j}\frac{S_{a}}{p_{j}^{2}} \\ \begin{vmatrix} S_{a} \\ = pS_{v} \\ = p^{2}S_{d} \end{vmatrix}$$

De esta ec. pasamos a:

++

$$\begin{vmatrix} X_{i} \\ max = \sum_{j=1}^{n} r_{ij} c_{j} S_{d} = \sum_{j=1}^{n} r_{ij} c_{j} \frac{S_{a}}{p_{j}^{2}}$$

$$\cdot$$

$$\begin{vmatrix} X_{i} \\ max \\ PROB \end{vmatrix} = \sqrt{\Sigma(|X_{ij}|_{max})^{2}}$$

1 • --. ` .

VIBRACION DE VIGAS EN FLEXION

$$V + pdz - (V + \frac{\partial V}{\partial z} dz) - f_I dz = 0$$
(1)

EN DONDE
$$f_I dz = m dx \frac{\partial^2 x}{\partial t^2}$$
 (2)

SUSTITUYENDO (2) EN (1) Y SIMPLIFICANDO:

$$\frac{\partial V}{\partial z} = p - m \frac{\partial^2 x}{\partial t^2}$$
(3)

$$M + Vdz - (M + \frac{\partial M}{\partial z} dz) = 0 \qquad \frac{\partial M}{\partial z} = V \qquad (4)$$

(DESPRECIANDO LOS TERMINOS DE SEGUNDO ORDEN DE LOS MOMENTOS DE p Y f_I)

SUSTITUYENDO (4) EN (3) SE OBTIENE

$$\frac{\partial^2 M}{\partial z^2} + m \frac{\partial^2 x}{\partial t^2} = p \qquad (4')$$

TOMANDO EN CUENTA QUE M = $\frac{\partial^2 x}{\partial z^2}$ SE OBTIENE FINALMENTE

$$\frac{\partial^2}{\partial z^2} (EI \frac{\partial^2 x}{\partial z^2}) + m \frac{\partial^2 x}{\partial t^2} = p$$
 (5)

a.

, ,

AMORTIGUAMIENTO VISCOSO

÷.

- FUERZA DE AMORTIGUAMIENTO POR

VELOCIDAD TRANSVERSAL = $c(z) \frac{\partial x}{\partial t}$

$$\frac{\partial V}{\partial z} = p - m \frac{\partial^2 x}{\partial t^2} - c \frac{\partial x}{\partial t}$$
(6)

- FUERZA DE AMORTIGUAMIENTO POR DEFORMACION DE LA VIGA. ACEPTANDO LA HIPOTESIS DE NAVIER DE DEFORMACION PLANA

$$\sigma = c_d \frac{\partial \mathcal{E}}{\partial t}$$

$$M_{\text{amort}} = \int \sigma y da = c_d I(z) \frac{\partial^3 x}{\partial z^2 \partial t}$$

$$c_d = \text{AMORTIGUAMIENTO}$$
POR DEFORMACION
$$dz = dz$$

INCORPORANDO EL MOMENTO DEBIDO AL AMORTIGUAMIENTO EN LA EC. (5)

$$\frac{\partial^2}{\partial z^2} (EI \frac{\partial^2 x}{\partial z^2} + C_d I \frac{\partial^3 x}{\partial z^2 \partial t}) + m \frac{\partial^2 x}{\partial t^2} + C_d I \frac{\partial^3 x}{\partial t} = p$$
(6)

SI LA EXCITACION ES POR MOVIMIENTO DE LOS APOYOS, SE PUEDE DEMOSTRAR (CLOUGH Y PENZIEN, PAG 303) QUE:

$$\frac{\partial^2}{\partial z^2} (EI \frac{\partial^2 x}{\partial z^2} + C_d I \frac{\partial^3 x}{\partial z^2 \partial t}) + m \frac{\partial^2 x}{\partial t^2} + C_d I \frac{\partial^3 x}{\partial t} = p_{efect}.$$

EN DONDE

$$p_{efect} = \frac{-\partial^2}{\partial z^2} (EI \frac{\partial^2 x_s}{\partial z^2} + C_d I \frac{\partial^3 x_s}{\partial z^2 \partial t}) - m \frac{\partial^2 x_s}{\partial t^2} - C \frac{\partial x_s}{\partial t}$$
(7)

 $x(z,t) = x_{est}(z,t) + x(z,t)$ tot $x_t(z,t) = x_s(z,t)$ **`** • ---. ı t .

x = DESPLAZAMIENTO PSEUDOESTATICO OCASIONADO POR EL MOV. DE LÔS APOYOS DE MANERA ESTATICA

x = DESPLAZAMIENTO DINAMICO

INCORPORANDO (8) EN (7):

$$p_{efect} = -\sum_{i=1}^{4} \{m \emptyset_i \delta_i(t) + c \ \emptyset_i \delta_i(t) + \frac{\partial^2}{\partial z^2} [c_d I(z) \frac{\partial^2 \emptyset_i(z)}{\partial z^2} \delta_i(t)]\}$$
(9)

EN LA MAYORIA DE LOS CASOS EL AMORTIGUAMIENTO INFLUYE POCO EN LA FUERZA EFECTIVA Y LA EC.(9) SE SIMPLIFICA A

$$p_{efect} = -\sum_{i=1}^{4} m \emptyset_i(z) \delta_i(t)$$

 $\emptyset_1(z) = 1$

EN EL CASO DE UN VOLADIZO

Y

ა.

 $p_{efect} = -m(z) \delta_1(t)$

х .

, ,

-

ANALISIS DE VIBRACIONES LIBRES

CONSIDEREMOS UNA VIGA DE SECCION CONSTANTE (EI= CONSTANTE ; \overline{m} =MASA POR UNIDAD DE LONGITUD).

DE LA EC. (5): EI
$$\frac{\partial^4 x}{\partial z^4} + \bar{m} \frac{\partial^2 x}{\partial t^2} = 0$$

$$\frac{\partial^4 x}{\partial z^4} = \frac{\bar{m}}{EI} \frac{\partial^2 x}{\partial t^2} = 0$$
(10)

RESOLVIENDO LA EC. (10) POR SEPARACION DE VARIABLES:

$$\begin{aligned} \mathbf{x}(z,t) &= \theta(z) \ \mathbf{Y}(t) \\ \theta^{\mathrm{IV}}(z) \ \mathbf{Y}(t) &+ \frac{\bar{\mathbf{m}}}{\mathrm{EI}} \ \theta(z) \ \mathbf{\ddot{Y}}(t) &= 0 \ ; \ \frac{\theta^{\mathrm{IV}}(z)}{\theta(z)} &+ \frac{\bar{\mathbf{m}}}{\mathrm{EI}} \ \frac{\mathbf{\ddot{Y}}(t)}{\mathbf{\dot{Y}}(t)} &= 0 \end{aligned}$$

POR LO QUE

.

$$\frac{\theta^{IV}(z)}{\theta(z)} = -\frac{m}{EI} \frac{\dot{Y}(t)}{\dot{Y}(t)} = C = a^4 (C = CONSTANTE)$$

POR LO TANTO OBTENEMOS DOS ECUACIONES DIFERENCIALES ORDINARIAS:

$$\theta^{IV}(z) - a^{4} \theta(z) = 0$$

$$\dot{Y}(t) + \omega^{2}Y(t) = 0 \quad \text{DONDE} \quad \omega^{2} = \frac{a^{4}EI}{\overline{m}}$$

$$0 \qquad a^{4} = \frac{\omega^{2}\overline{m}}{EI}$$

LA SOLUCION DE LA SEGUNDA DE ESTAS ES:

$$Y(t) = \frac{Y(o)}{\omega} \operatorname{sen} \omega t + Y(o) \cos \omega t$$
(11)

 \subset

-

LA SOLUCION DE LA PRIMERA ES:

 $\theta(z) = A_1 \text{ sen az} + A_2 \cos az + A_3 \text{ senhaz} + A_4 \cosh az$ (12) EN DONDE LAS A_i SE CALCULAN EN FUNCION DE LAS CONDICIONES DE FRON-TÉRA DE LA VIGA EN AMBOS EXTREMOS.

EJEMPLO

VIGA SIMPLEMENTE APOYADA

LAS CUATRO CONDICIONES DE FRONTERA SON:

en z=0: $\theta(o)=0$, $M(o)= EI \ddot{\theta}(o)=0$

en $z=L: \theta(L)=0, M(L)=EI\theta''(L)=0$

SUSTITUYENDO $\theta(o)=0$ Y $\theta''(o)=0$ EN LA EC.(12) Y SU SEGUNDA DERIVADA:

$$\theta(o) = A_2 + A_4 \cosh 0 = 0 \theta'(o) = a^2(-A_2 + A_4 \cosh 0) = 0$$

 $A_2 = A_4 = 0$

HACIENDO LO MISMO CON $\theta(L) = 0$ y $\theta''(L) = 0$:

 $\begin{array}{l} \theta(L) &= A_1 \, \operatorname{sen} \, \operatorname{aL} \, + \, A_3 \, \operatorname{senh} \, \operatorname{aL} \, = \, 0, \\ \theta'(L) &= \, \operatorname{a}^2 \left(-A_1 \, \operatorname{sen} \, \operatorname{aL} \, + \, A_3 \, \operatorname{senh} \, \operatorname{aL} \right) \, = \, 0 \end{array} \right\} \longrightarrow A_3 \, = \, 0 \\ \begin{array}{l} \text{POR LO TANTO,} \, \theta(L) \, = \, A_1 \, \operatorname{sen} \, \operatorname{aL} \, = \, 0 \end{array}$

PUESTO QUE $A_1=0$ ES LA SOLUCION TRIVIAL, SE DEBE TENER QUE A_1 SEA ARBITRARIA Y QUE

sen aL = 0 \rightarrow aL = n π ; n = 0, 1, 2,..., ∞ POR LO TANTO, a = n π /L. RECORDANDO QUE $a^4 = \omega^2 \bar{m}$ /EI, SE TIENE QUE

$$\omega_{n}^{2} = (n\pi/L)^{4} EI/\bar{m}$$
 0 $\omega_{n} = \frac{n^{2}\pi^{2}}{L^{2}} \sqrt{EI/\bar{m}}$

SON LAS FRECUENCIAS CIRCULARES NATURALES DE VIBRACION DE LA VIGA.

6.

LAS CONFIGURACIONES MODALES SON

$$\theta_n(z) = A_1 \operatorname{sen} \frac{n\pi}{L} z$$

·

o

4. Elementos de dinámica estructural

4.0. Definiciones

4.01. Grados de libertad. Considérese una estructura constituida por masas concentradas ligadas entre sí por elementos elásticos (fig 4.1).

Se entiende por número de grados de libertad del sistema el número de datos que es necesario

fijar para definir una configuración cualquiera del mismo.

Cuando sólo se permiten desplazamientos en una dirección, el número de grados de libertad es igual al número de masas de la estructura.

4.02. Matriz de rigideces. Se entiende por matriz de rigideces el conjunto ordenado de los valores de las fuerzas que se ejercen estáticamente sobre cada masa, en la dirección del grado de libertad correspondiente. cuando se producen sucesivamente desplazamientos unitarios según cada grado de libertad, impidiendo el desplazamiento según los demás. Las rigideces se designarán con el símbolo K_{ij} , que representa la fuerza exterior que actúa sobre la masa *i* cuando se produce un desplazamiento unitario de la masa *j*.

4.03. Matriz de flexibilidades. Se entiende por matriz de flexibilidades el conjunto ordenado de los valores de los desplazamientos de todas las masas debidos a la acción de una fuerza unitaria aplicada sucesivamente a cada una de ellas. Las flexibilidades se designarán con el símbolo $\delta_{i,j}$, siendo $\delta_{i,j}$ el desplazamiento de la masa *i* debido a una fuerza unitaria aplicada en *j*.

4.04. Vibraciones libres. Se llaman vibraciones ibres de una estructura las que ésta experimenta in que actúe sobre ella ninguna fuerza exterior.

Tomado de: "Folleto Com lementario. Dereno Sismie de Edificios", por E. Po-rendemeth y L. Enterne (1962) Educiones INGENIERIA, Fac de Ingenería, UNAM.

4.05. Períodos y modos naturales. Toda estructura elástica no amortiguada con varios grados de libertad puede vibrar libremente en tal forma que el desplazamiento de cada una de sus masas con respecto a su posición de equilibrio estático es igual al producto de una función de la masa considerada por una función del tiempo. Interesa el caso en que esta función es la misma para todas las masas, es decir ^{16,17,18},

 $\mathbf{x}_{\tilde{a}}(t) = X_{s}\theta(t),$

donde

 $x_i = desplazamiento de la masa i con respecto$

(4.1)

a su posición de equilibrio, en el instante t, X_i = función que depende únicamente del pun-

to considerado, $\theta = función del tiempo, independiente de$ *i*.

A estas maneras de vibrar se les llama modos naturales. Al conjunto ordenado de valores X_i se llama forma del modo, y el período de θ , en caso de que exista, se llama período natural.

Por el teorema de d'Alembert, designando con Q, a la fuerza que la estructura ejerce sobre la masa *i*, puede escribirse

$$M_i \ddot{x}_i = Q_i \,, \qquad (4.2)$$

Por la definición de matriz de rigideces,

$$\mathbf{Q}_{i} = \sum_{j=1}^{n} K_{ij} x_{j}$$
 (4.3)

Sustituyendo las ecs. 4.1 y 4.3 en la 4.2,

$$M_{i}X_{i}\ddot{\theta} = \theta \sum_{j=1}^{n} K_{ij}X_{j}, \qquad (4.4)$$

separando,

$$\frac{\ddot{\theta}}{\theta} = \frac{\Sigma K_{ij} X_j}{M_i X_i} \,. \tag{4.5}$$

El primer miembro de (4.5) es independiente de *i* y el segundo de *t*; por tanto ambos deben ser constantes para que la igualdad subsista. Si este valor constante se llama — p^2 , se obtiene

$$\theta + p^2 \theta \equiv 0,$$

cuya solución es

$$\theta \equiv a \operatorname{sen} p(t - \tau). \tag{4.6}$$

De acuerdo con lo anterior existen modos de vibración que satisfacen las condiciones de la ec.

the second second second

Contraction of the contractio

2 671

in the second second ,- · -, <u>`</u>, k a 1e 5 , 1 د ر . ъ

٣

1.1.1 ÷.

.

× ,* • 5 * • • • , ÷.,

° , ۹⁺۴ 1. 54 : 1 .

. . 5 - . ,

- ,

4.1. Estos son tales que el movimiento de cada masa es armónico simple de período $T = 2\pi/p$; p se llamará frecuencia natural circular.

) 4.06. Cálculo de los modos naturales de vibración. Sustituyendo las ecs. 4.1 y 4.6 en la 4.4. y simplificando se llega a la siguiente expresión.

$$M_{i}p^{2}X_{i} = \sum_{j=1}^{n} K_{ij}X_{j} . \qquad (4.7)$$

Si se plantea una ecuación semejante a la 4.7 para cada una de las n masas, se establece un sistema de n ecuaciones homogéneas con n incógnitas. (Las incógnitas son X_i , siempre que se conozca p^2 .) Para que existan soluciones de X_i diferentes de cero, p^2 tiene que ser tal que se anule el determinante de los coeficientes de las X_i . Esto da lugar a una ecuación de grado n en p^2 , con nraíces reales, que corresponden a otros tantos periodos naturales de vibración. Por otra parte, el sistema no tiene solución única para los valores absolutos de las X_i , sino únicamente para sus valores relativos; es decir, en un modo de vibración no están definidas las amplitudes de los desplazamientos de las masas, sino la relación entre todas ellas.

Otra alternativa para obtener los períodos y formas de los modos naturales es establecer las ecuaciones de desplazamiento de cada masa en términos de los elementos de la matriz de flexibilidad, lo que da lugar a lo siguiente,

$$\frac{1}{p^2} X_i = \sum_{j=1}^n M_j \delta_{ij} X_j .$$
 (4.8)

4.07. Principales propiedades de los modos naturales

1. Ortogonalidad de los modos con respecto a las masas. Se demuestra fácilmente que

$$\sum_{i=1}^{n} M_{i} X_{ir} X_{is} = 0 \text{ si } r \neq s$$

donde X_{ir} , X_{is} representan las amplitudes de la masa *i* correspondientes a los modos naturales *r* y *s*.

2. $\sum_{i=1}^{n} M_i X^2_{ir}$ es igual a una constante arbitra-

ria, cuyo valor depende de la escala a la que se tome cada modo. Si dicha constante es obligada a tomar el valor cle la unidad modificando la escala del modo, se dice que éste se ha normalizado con respecto a las masas.

En todo lo que antecede se han supuesto para la estructura condiciones de frontera que implican que el terreno sobre el que se apoya es fijo e indeformable. Tratándose de estructuras reales los modos naturales se ven afectados por la deformabilidad del terreno y por la masa de éste que está sujeta a aceleraciones. En tales casos el problema se complica por la existencia de amortiguamiento de cierta importancia. El tomar en cuenta la contribución del terreno en los modos de vibración puede ser fundamental en algunas estructuras.¹⁹

4.1. Métodos iterativos para el cálculo de los períodos naturales

Los métodos directos que se han descrito en el Art. 4.06 son en general laboriosos e imprácticos. Por ello se han desarrollado métodos de aproximaciones sucesivas que se presentan a continuación.

4.11. Método de Stodola-Vianello²⁰

Considérese el sistema de ecuaciones (4.7) del cual se tratan de determinar:

- a) Los valores característicos de p^2 que hacen que exista solución no trivial para las X_j ,
- b) Los valores de las X, correspondientes a cada p^2 .

Pueden obtenerse ambos resultados simultáneamente por aproximaciones sucesivas si se procede en la forma siguiente:

- 1. Supóngase arbitrariamente un conjunto de valores para las X_j , sustitúyanse los valores en el sistema descrito y calcúlese en cada ecuación el valor de p^2 . Si la forma supuesta es correcta, los valores de p^2 así calculados serán iguales entre sí.
- 2. Si lo anterior no sucede es necesario mejorar la hipótesis inicial mediante ciclos sucesivos de iteración. Para ello obténgase una nueva aproximación a la forma de los modos. Esto se logra calculando los valores de los segundos miembros de las ecs. 4.7 o 4.8 y dividiendo entre un mismo valor arbitrario de ϕ^2 en todas las ecuaciones.
- 3. Con la nueva aproximación a la forma del modo obténgase el valor de p^2 en cada ecuación. El proceso se repite hasta lograr la igualdad con el grado de aproximación que se desee, entre los valores de p^2 determinados en cada una de las ecuaciones.

El mismo método puede aplicarse partiendo del sistema 4.8, en función de la matriz de flexibilidades. En el primer caso el método converge al modo de vibración de máxima frecuencia, mientras que en este último la «convergencia es hacia el modo de mínima frecuencia, es decir el modo fundamental. Dados los períodos dominantes de los temblores y los valores usuales de períodos naturales de estructuras, generalmente son de interés los modos inferiores, o de frecuencias menores.

El procedimiento puede continuarse para el cálculo de otros modos diferentes del primero o el último reduciendo el número de ecuaciones original. El número de incógnitas puede reducirse si se ap modo ca expresar guiente mismo. En el iterativo ciendo su ta llegar que todos Como o dos de v fig. 4.2.

La matr a continua

0

0

Supónga sus modos del modo y masas 1, 2 miento de l $(pt + \alpha)$, como — p^2x cia como p^2

tivamente. námico son

 $\frac{1}{p^2} x_1 = \frac{1}{p^2} x_2 = \frac{1}{p^2} x_3 = \frac{1}{p^2} x_$

Sustitúyas

$$\frac{g}{p^2}x_1 = 80 \times$$

0 1.1 --, * ,

31

• • ۶, . " .

3

17

í.t

••=

11 C (1 T) 1.1.1 97.28 1.37 , - \mathcal{C}^{*}

પણ કોટ · . - . ur de C

به ۱

}

ן. א x r 5

problema juamiento a la convibración ruct/ 7,19 lo de los

crito en el nprácticos aproxima. ntinuación.

; **(**4.7) del

que hacen a las X_{j} . ondientes a

simultáneai se procede

conjunto de e los valores ese en cada ma supuesta ulados sí (sario mejorat los sucesivos se una nueva modos. Esto s de los se

o 4.8 y diviarbitrario de la forma de en cada ecua

sta lograr la ximación que aciones.

partiendo de z de flexibili o converge a ncia, mientra a es hacia el modo fun nantes de lo períodos nate son de intere cias menores iarse para del primero

si se aplica la condición de ortogonalidad entre el modo calculado y otro cualquiera. Esto permite expresar una cualquiera de las amplitudes del siquiente modo en función de todas las demás del mismo. Queda por tanto, un sistema de n-1cuaciones homogéneas con n - 1 incógnitas.

En el nuevo sistema se repite el procedimiento iterativo descrito. El proceso se continúa, reduciendo sucesivamente el número de ecuaciones hasta llegar al cálculo del último modo, en caso de que todos sean de interés.

Como ejemplo de aplicación obténganse los modos de vibración de la estructura descrita en la fig. 4.2.

EDIFICIO CON TRES GRADOS DE LIBERTAD FIG.4.2

La matriz de flexibilidades es la que se indica a continuación.

0.01	0.01	0.01
0.01	0.03	0.03
0.01	0.03	0.08

Supóngase la estructura vibrando en uno de sus modos naturales. Sean p la frecuencia circular del modo y x_1 , x_2 , x_3 los desplazamientos de las masas 1, 2 y 3 respectivamente. Siendo el movimiento de las partículas de la forma $x_i = a_i \cos x_i$ $(pt + \alpha)$, las aceleraciones pueden expresarse como $-p^2 x_1, -p^2 x_2, -p^2 x_3$ y las fuerzas de mercia como $p^2 W_1 x_1/g$, $p^2 W_2 x_2/g$, $p^2 W_3 x_1/g$ respec-2 p² determit ivamente. Las ecuaciones de desplazamiento dinámico son entonces:

$$\frac{1}{p^2} x_1 = \frac{W_1}{g} \delta_{11} x_1 + \frac{W_2}{g} \delta_{12} x_2 + \frac{W_3}{g} \delta_{13} x_3 ,$$

$$\frac{1}{p^2} x_2 = \frac{W_1}{g} \delta_{21} x_1 + \frac{W_2}{g} \delta_{22} x_2 + \frac{W_3}{g} \delta_{23} x_3 ,$$

$$\frac{1}{p^2} x_3 = \frac{W_1}{g} \delta_{31} x_1 + \frac{W_2}{g} \delta_{32} x_2 + \frac{W_3}{g} \delta_{33} x_3 .$$

Sustitúyase y multiplíquese por g. Resulta:

nones or u^{-1} reductring $x_1 = 80 \times 0.01 x_1 + 80 \times 0.01 x_2 + 50 \times 0.01 x_3$, cuaciones orig

 $\frac{g}{n^2}x_2 = 80 \times 0.01 x_1 + 80 \times 0.03 x_2 + 50 \times 0.03 x_3.$

$$\frac{g}{p^2}x_3 = 80 \times 0.01 x_1 + 80 \times 0.03 x_2 + 50 \times 0.08 \dot{x}_3.$$

Efectuando operaciones.

$$\frac{g}{p^2} x_1 = 0.8 x_1 + 0.8 x_2 + 0.5 x_3,$$

$$\frac{g}{p^2} x_2 = 0.8 x_1 + 2.4 x_2 + 1.5 x_3,$$

$$\frac{g}{p^2} x_3 = 0.8 x_1 + 2.4 x_2 + 4.0 x_3.$$

En forma matricial

0.8 0.8 0.8	0.8 2.4 2.4	$ \begin{bmatrix} 0.5\\ 1.5\\ 4.0 \end{bmatrix} \left\{ \begin{array}{c} x_1\\ x_2\\ x_3 \end{array} \right\} = \frac{g}{p^2} \left\{ \begin{array}{c} \end{array} \right\} $	$\left. egin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right $
	2.1	1.0 (~3) (~ 3)

El procedimiento iterativo para determinar la forma y el período del modo fundamental se presenta en las colummas (1) a (11) de la siguiente tabla de operaciones.

(1)	(2)	(3)	(4)	(5)	(6)
1	3.9	0.2216	1.1364	0 2046	1.1036
2 3	10.1	1.0000	3.0546 5.5546	1.0000	2.9834 5.4834
			a		
	$\frac{g}{p^2}$	= 5.55%	$5, \frac{y}{p^2}$	= 5.483	4,
(7)	(8)	· (9)	(10)	(11)
0.2	2013	1.0963	0.2005	1.0946	0.2404
0.5	5441	2.9669	0 5427	2.9627	2 9629
1.0	0000	5.4669	1.0000	5.4629	1.0000
	<u>g</u>	$= 5.466^{\circ}$	9. <u>9</u>	- = 5.462	9.
	p^2		' p²		-

La columna (1) es una primera hipótesis sobre la forma del modo. La columna (2) es el cálculo de los primeros miembros a partir de esta primera estimación. La columna (3) es igual a la (2) dividida entre 17.6. La (4) es una nueva aprovimación a los primeros miembros. Dividiendo cada término de la columna (4) entre el correspondiente de la (3) se obtiene el valor g/p^2 .

En este caso se consigna el valor de g/p^2 obtenido a partir de los valores del tercer renglón. El procedimiento termina cuándo los valores de g/p^2 en dos ciclos consecutivos son iguales, y cuándo la forma del modo obtenida en dos ciclos consecutivos es la misma.

De la columna (11) se obtiene la forma del modo fundamental y el parámetro g/p^2 .

Aprovechando la ortogonalidad entre el primer modo y otro cualquiera,

· · · · · · · · ·

́у, ́, ́,

. * .

• · · · · · · .

• 1

· · ·

· · ·

- (. \$

$$0.2004 \times 8 x_1 + 0.5424 \times 8x_2 + 1.000 \times 5x_3 = 0,$$

de donde, $-x_1 = 2.7066 x_2 + 3.1188 x_3,$
 $y_{p^2}^2 x_1 = 0.8 (-2.7066 x_2 - 3.1188 x_3) + 0.8 x_2 + 0.5 x_3,$
 $\frac{g}{p^2} x_2 = 0.8 (-2.7066 x_2 - 3.1188 x_3) + 0.8 x_2 + 0.5 x_3,$

$$\frac{g}{p^2} x_3 = 0.8 (-2.7066 x_2 - 3.1188 x_3) + 2.4 x_2 + 4.0 x_3;$$

de la segunda y tercera ecuaciones,

$$\frac{g}{p^2} x_2 = 0.2347 x_2 - 0.9950 x_3 ,$$
$$\frac{g}{p^2} x_3 = 0.2347 x_2 + 1.5050 x_3 .$$

Repitiendo el proceso de iteración,

$$(4) (5) (6) (7) -1.2223 -0.9566 -1.2195 -0.9524 1.2778 1.0000 1.2805 1.0000 1.2778 1.2805 1.2805 (7) 1.2805 (7) -0.9524 1.2805 (7) -0.9524 1.2805 (7) -0.9524 1.2805 (7) -0.9524 1.2805 (7) -0.9524 1.2805 (7) -0.9524 1.2805 (7) -0.9524 -0.9524 -0.9524 -0.9524 -0.9524 -0.9524 -0.9524 -0.9524 -0.9524 -0.9524 -0.9524 -0.9524 -0.9524 -0.9525 (7) -0.9524 -0.9524 -0.9524 -0.9525 (7) -0.9524 -0.9525 (7) -0.9524 -0.9525 (7) -0.9524 -0.9525 (7) -0.9526 (7) -0.9524 -0.9525 (7) -0.9524 -0.9525 (7) -0.9524 -0.9525 (7) -0.9524 -0.9525 (7) -0.9524 -0.9525 (7) -0.9524 -0.9525 (7) -0.9525 (7) -0.9525 (7) -0.9524 -0.9525 (7) -0.9524 -0.9525 (7) -0.9524 -0.9525 (7) -0.9524 -0.9525 (7) -0.9524 -0.9525 (7) -0.9525 (7) -0.9524 -0.9525 (7) -$$

$$1.2805 x_1 = 0.8 (2.5778 - 3.118) - 0.7619 + 0.5$$

 $x_1 = -0.5425$;

por la primera condición de ortogonalidad,

$$-x_1 = 2.7066 x_2 + 3.1188 x_2, \qquad (1)$$

la segunda condición de ortogonalidad será

$$-0.5425 \times 8 x_{1} - 0.9524 \times 8 x_{2} + 5 x_{3} = 0$$

-4.34 x₁ - 7.6192 x₂ + 5 x₃ = 0
- x₁ = 1.7556 x₂ - 1.1521 x₃; (2)
de (1) y (2)

$$2.7066 x_2 + 3.1188 x_3 = 1.7556 x_2 - 1.1521 x_3,$$

$$0.9510 x_2 = -4.2709 x_3;$$

si $x_3 \equiv 1$

$$x_{2} = -4.491,$$

$$x_{1} = 12.1553 - 3.1188 = 9.0365,$$

$$y_{54}$$

$$-0.2347 \times 4.491 - 0.995 = -4.491 \frac{g}{p^2}.$$

4.12. Método de Newmark.²¹ Tanto este método como el de Holzer se aplican en los ejemplos que siguen a casos en que puede expresarse la rigidez de un piso como independiente de la forma del modo. Sin embargo, en su forma más general, el método de Newmark puede aplicarse a cualquier estructura lineal con acoplamiento entre las diferentes masas. Al primer caso corresponde la estructura que se usó para el ejemplo anterior, la cual se puede idealizar como se indica en la fig. 4.3.

FIG.4.3

El método propuesto por N. M. Newmark para obtener el modo fundamental se ilustra en la tabla 4.1 y es el que se describe a continuación.

 Supóngase una forma para el modo. Esta forma es la que aparece en el renglón y, de la tabla.

2. Ot W noc fue 3. Cor din: SOL 4. A_p los de 1 a la 5. Obt (y_o/ ment el m caso ciclos lada **6**. 67 ciclos sufic $p^2 \equiv 1$ 5.584 4.13. M tener vario car el sigu 1. Supór mayo nido 2. Supór movir del ar 3. Calcú la fue (amba puesta 4. Satisf en el 5. Obtén y la ar calcúle 6. Satisfa za en 7. Contin tima m la fuer inercia gida y un mod se obte una gr de las cuyos natural Los cálculo 42. La repre se hace en la

La utilidad mente increm

· _ _ _ _ _ _ _ _

- $\frac{191}{p^2} \frac{g}{p^2}$.
- n lo este mi. n lo ejem sarra liente de la forma mat de aplicarsa amiento en. caso corres. el ejemplo no se indica

wmark para en la tabla ción.

modo. Esta renglón y,

- 2. Obténgase la fuerza de inercia, $F = p^2 y_o$ W/g, para cada masa. Como p^2 se desconoce, se tabula $y_o W/g$, que es igual a la fuerza de inercia dividida entre p^2 .
- 3. Con estas fuerzas de inercia, por equilibrio dinámico, calcúlense las fuerzas en los resortes divididas entre p^2 : Q/p^2 .
- 4. A partir de las rigideces y de las fuerzas en los resortes obténganse las deformaciones de los mismos y una primera aproximación a la forma del modo y_1p^2 .
- 5. Obténgase p^2 para cada masa, dividiendo $(y_o/y_1)/p^2$. Si la configuración arbitrariamente supuesta es la correcta, se obtendrá el mismo valor para todas las masas. En caso contrario es necesario efectuar nuevos ciclos partiendo de la configuración calculada en primera aproximación. Los renglones 6, 6', 6" muestran el cálculo de p^2 en varios ciclos sucesivos. Se consideró el último suficientemente aproximado, adoptándose $p^2 = 180$, y la forma del modo (2.078, 5.584, 10.149) o (0.201, 0.541, 1.000).

4.13. Método de Holzer. Cuando interesa obtener varios modos superiores es conveniente aplicar el siguiente procedimiento debido a Holzer.²⁰

- Supóngase arbitrariamente un valor de p², mayor que el del modo fundamental obtenido por cualquier método.
- 2. Supóngase arbitrariamente la amplitud del movimiento de la primera masa a partir del apoyo.
- Calcúlese la fuerza en el primer resorte y la fuerza de inercia de la primera masa (ambas son función de la amplitud supuesta).
- 4. Satisfaciendo el equilibrio calcúlese la fuerza en el siguiente resorte.
- 5. Obténganse la deformación de este último y la amplitud de la siguiente masa. Con ésta calcúlese su fuerza de inercia.
- 6. Satisfaciendo el equilibrio obténgase la fuerza en el siguiente resorte.
- 7. Continúese el proceso hasta llegar a la última masa. Si se satisface el equilibrio entre la fuerza del último resorte y la fuerza de inercia de la última masa, la frecuencia elegida y la forma calculada corresponden a un modo natural de vibración. Por lo general se obtendrá un residuo. Represéntense en una gráfica estos residuos contra el valor de las p^2 supuestas Se obtendrá una curva cuyos ceros corresponden a las frecuencias naturales.

Los cálculos descritos se presentan en la tabla 4.2. La representación gráfica de los resultados se hace en la fig. 4.4.

La utilidad del método de Holzer se ve grandemente incrementada si se le combina con un mé-

	the second s				
		METODO DE H	IÓLZER	TAE	LA Nº 4.2
p ^x supliesta		60T	. 1 08	50	T
	100 T/cm	-0	$-\phi$	20 T/cm	Residuo
400 ∆		8	2,35	1,6	7
	1	+1.35		0.48	+477
F	100 -	674	-7 -	9.5	
₣∙₩₽₽		\$2.6	76.9	38,2	2
		81	+ 2,02	- a.:	37
		+ 1.02		2 39	+16 C
600		5! D		17.9	
5 S		19 <u>0</u>	98.9	<u> 1</u> 12	5
		£1	1,69	- 2.1	0
	1	0 69		-379	
800	100 -	347		758	-98
		62 3	110 5	85.	5
		k;	1 37	-32	29
	1	1 0 37		4.66	-74.8
1000		18 3		93.2	
[.		847	1115	161	
		<u></u>	0 55 .	-1	93
	1	-0.45		4.48	-2113
1500	100	- 22 5		897	
	1	2.5	67 2	30	
		£3	+0.22	- 3.	75
	1	- 0.78		-347	.
1700		-1 39		59.5	-211.5
1		13.9	305	28	L
		ų	- 0. 26	-1	29
1		-1 26		-103	-111 4
2000		630		206	
1		163	42.4	13	2
2100		ų.	- 0 42	-0	48
	1	-1 42		-0.06	
	100	-) 71.0		l.I 🖛	- 32.
1	<u> </u>	71.0	721	51	3
		×.	- 0,'60	0	60
2200	1	- 160		+ 1.40	
		80		28 🛶	+ 50 3
		10'0	1018	86	9
					-

todo de aproximaciones sucesivas, como el consistente en igualar las energías máximas cinética y potencial del sistema.²⁰ Sea p una frecuencia circular natural supuesta para llevar a cabo un ciclo del método de Holzer. Se encuentra que, si p se halla suficientemente cerca de una de las frecuencias circulares naturales, p_1 constituye una

55

1 ે કે જેર"

r 1

×

-

ų `

•

. د

•

• ;• $\mathcal{O} = \mathcal{O}$

-

۰ ۲ ; ÷

<u>\$</u>____ .

aproximación más precisa a dicha frecuencia si se toma

$$p_1^2 = p^2 \frac{\Sigma Q \, \lambda \, q}{\Sigma F \, g} \tag{4.9}$$

donde F son las fuerzas de inercia y Q las fuerzas en los resortes, ambas calculadas en el ciclo de que se trata.

En el ejemplo de la tabla 4 2 se consignan los valores empleados para calcular las sumas que intervienen en la ec. 4.9. La tabla 4 3 presenta el proceso de aproximaciones sucesivas para refinar el valor de la segunda frecuencia circular natural a partir del valor aproximado $p^2 = 800$. Se han aumentado dos renglones en cada ciclo para

efectuar las sumas. En el extremo derecho se anota el valor mejorado, p_1^2 .

La convergencia del proceso requiere que el valor de que se parta no difiera en exceso de la frecuencia natural a la que se desea aproximarse.

4.2. Amortiguamiento

4.20. Generalidades. Los conceptos que se han presentado se basan en la hipótesis de que la energía mecánica de un sistema vibratorio no se altera mientras no actúen en él fuerzas exteriores o sufra desplazamiento de sus apoyos. En la realidad, fricciones interiores, fricciones en los apoyos, comportamiento inelástico y otros fenómenos dan lugar a pérdidas de energía. Su efecto es oponer resistencia al movimiento y reducir la amplitud de las oscilaciones.

Varios de los fenómenos enumerados no pueden incluirse dentro del concepto usual de amortiguamiento. No obstante, todos ellos tienen efectos semejantes en cuanto a la limitación a la respuesta máxima de una estructura.

4.21. Tipos de amortiguamiento. Para fines de análisis, el efecto del amortiguamiento puede representarse por medio de una fuerza que se opone al movimiento. Si dicha fuerza varía proporcionalmente a la velocidad de la masa en movimiento se tiene amortiguamiento lineal o viscoso. Si es independiente de la velocidad, como es el caso de una masa vibratoria sujeta a una fuerza de fricción paralela al movimiento se tiene amortiguamiento constante, también llamado del tipo de fricción seca o de Coulomb. Y han recibido atención otros varios tipos de amortiguamiento.

Matemáticamente es más fácil de analizar el efecto de amortiguamiento lineal. Cuando el amortiguamiento de una estructura sigue otra ley pueden estudiarse sus efectos mediante la introducción de uno viscoso equivalente, tal que la pérdida de energía por ciclo sea igual a la producida por el amortiguamiento real.¹⁸

4.22. Vibración libre de estructuras de un grado de libertad amortiguadas linealmente. Considérese una estructura de un grado de libertad como la descrita en la fig. 4.5. Sea k la constante del resorte y — $c\dot{x}$ la fuerza proveniente del amortiguamiento Si no actúan fuerzas exteriores y la base permanece fija, la ecuación de movimiento tiene la forma

$$M\ddot{x} + c\dot{x} + kx = 0. \qquad (4.1)$$

Si se hace

$$p^2 = k/M$$
 y $2n = c/M$,

SISTEMA SIMPLE CON AMORTIGUAMIENTO

FIG. 4.5

es decir, i n² - : i tiendo V en la forma

se llega a

ecuación qu

r satisface 1

y la expresio

$$x = A_1 e^{-nt} ($$

+ $A_2 e^{-nt} ($
= $e^{-nt} (A)$

haciendo A. obtiene

o bien

0)

La ec. 4.12 es periódico. tud decrecien:

4.23. Amu $n^{1} - p^{2} = 0$ tonces de la t

La cual no con En este case con de equal àl valor deire condiciones Para estrufor marcos ca di valor del *Proximadas 1 ۰., ۲,

:-_Cr :-___ * 2 *1 1.12 14 , , k . / .

Xご・ シ

ł 121

ł 12.

and is up diet 13.8 A NO CLA . 1.15 - e estimat

ŝ,

, to get a

١. 1.19

Q.

. . : ...

151 16.51 5 e . 01 ئى يەرە رىلار 6. 1 4 135 -s t... 14 2 - t+j 30.46 1. 1 1 1 1 1 1 1 70 N 117 . . , Cr C v. 17 Str. 1 EMPLY × • e

۲. but is a bi . ~11 1112 1 £., 1 ,"×"

1-1-1-2

En and a second a sec which is the other

the test of the second se n si mara i sa Na mara isan mara Na mara isan mara ,

 A constraint of the constraint of t ц. 46 T (35 M)

icanage di

, estimate

in geore

1 18

2

Ł

: 124

.<u>.</u> 1

197.1º • , ,1

2.2 4.6

n REAL

- Q -

1. 1.

.

9 F. T.

erse p.

143

os. En la real_{se} lleg**a a** en los apoyos enómenos da cto es opone

dos no puede

a ar

$$\ddot{x} + 2n\dot{x} + p^2x =$$

0,

(.11)

(4.12)

litud decuación que tiene soluciones de la forma

 $x = Ae^{rt}$;

 $r^2 + 2nr + p^2 = 0$

 $r_1 = -n + p_1 i,$

 $r_2 \equiv - n - p_1 i$

 $x = A_1 e^{(-n+p_1i)t} + A_2 e^{(-n-p_1i)t}$

 $r=-n\pm\sqrt{n^2-p^2}.$

de amortigua tienen efecto satisface la ecuación característica a la respuest

Para fines d's decir, ento puede re a que se opor a proporcional Si $n^2 - p^2 < 0$, $r = -n \pm i \sqrt{p^2 - n^2}$, movimiento i oso. Si es indiaciendo $\sqrt{p^2 - n^2} = p_1$, las raíces de r quedan el caso de un rza de fricción la forma mortiguamien ipo de fricci

de analizar Cuando el amo la expresión para x será ue otra ley pu e la introducci ue la pérdida producida por decir,

o atención otr

$$= A_1 e^{-nt} (\cos p_1 t + i \operatorname{sen} p_1 t) +$$

$$= A_1 e^{-nt} (\cos p_1 t + i \operatorname{sen} p_1 t) +$$

$$= hterefore Considéred + A_2 e^{-nt} (\cos p_1 t - i \operatorname{sen} p_1 t) =$$

$$= hterefore como = e^{-nt} (A_1 + A_2) \cos p_1 t + (A_1 - A_2) i \operatorname{sen} p_1 t ;$$

istante del reso amortiguamieniciendo $A_1 + A_2 = A$ y $(A_1 - A_2)i = B$, se a base permanstiene

iene la forma

nte'

0.

$$x = e^{-nt} (A \cos p_1 t + B \sin p_1 t)$$

 $x = e^{-nt} C \cos p_1(t - \tau)$

(4.1 bien

c/M ,

La ec. 4.12 implica que el movimiento de la masa periódico, de frecuencia circular
$$p_1$$
 y de ampli-
d decreciente, según el factor e^{-nt} .

4.23. Amortiguamiento crítico. Si en la ec. 4.11, $p^2 = 0$ resulta r = -n. La solución es enices de la forma

 $x = Ae^{-nt}$

cual no corresponde a un movimiento periódico. este caso la masa vuelve sin oscilar a su posin de equilibrio después de un tiempo infinito. valor del amortiguamiento que da lugar a estas diciones se denomina amortiguamiento critico. Para estructuras usuales de edificios formados

MORTIGUAMIENT marcos con muros estructurales y de relleno. valor del amortiguamiento puede suponerse de

toximadamente 10 por ciento del crítico

(n/p = 0.10). Los espectros de diseño propuestos para el reglamento incluyen de por si el efecto de este valor del amortiguamiento. Por este motivo no debe considerarse explicitamente el amortiguamiento al efectuar el análisis dinámico de un edificio.

5. Análisis sísmico dinámico

5.0. Características de los temblores

5.00. Generalidades. Siendo los fenómenos sísmicos complicados e irregulares, para el ingeniero resulta de interés la presentación de sus características en forma de permitir la aplicación inmediata al análisis.

Durante un temblor el movimiento del terreno tiene componentes de rotación y traslación en tres dirección perpendiculares, y la trayectoria de un punto es una curva en el espacio. Conviniendo en que se puede idealizar un sismo como un movimiento horizontal del terreno en una sola dirección, y que este movimiento está descrito por el acelerograma registrado para la dirección en estudio, es posible, si se conocen las características de una estructura, calcular la respuesta de la misma al movimiento de la base.22,23 Es decir, es posible tener la historia de cualquier elemento mecánico desde la iniciación del movimiento.

Este cálculo es laborioso e impráctico: Al diseñar una estructura interesa conocer la forma en que se comportara ante temblores futuros, cuyos acelerogramas indudablemente diferirán de los registrados. Debido a ello los métodos que usan el concepto de espectro han tenido aceptación universal. Poseen ese enfoque los métodos que trata el presente caritulo.

5.01. Espectros de un temblor. Considérese una estructura elástica con amortiguamiento lineal, de un grado de libertad, cuya base describe el movimiento definido por el acelerograma de un temblor en una dirección dada. Sea $a(\tau)$ la aceleración de la base en función del tiempo τ ; la ecuación diferencial del movimiento es

$$\ddot{u} + 2n\dot{u} + p^2 u = -a(\tau)$$
 (5.1)

en la cual

- u = desplazamiento de la masa relativa a labase:
- p = frecuencia nacural circular de la estructura no amortiquada;
- n = fracción del amortiguamiento crítico.

La solución de la cc. 5.1 está dada por la siguiente expresión, que proporciona el valor de uen el instante t.24

$$u = \frac{1}{\sqrt{p^2 - n^2}} \int_0^t a(\tau) e^{-n(t-\tau)} \times \\ \times \operatorname{sen} \sqrt{p^2 - n^2} (t-\tau) d\tau. \quad (5.2)$$

57

1. . ⁵1, r none-5. - · · · · · · 10

1. 1. 1. 3. 1. 3 ĸ A stay t a streg

. ۶ د ^۲ . . ² ھ , <u>1</u>1, 1. A.M. ~, ^ ж.

34 ، ، رابه الم

• • . 1 11 Second .

. , 1 A. . . 111 . ł

The second second می و در بال می می و در بال می در مر ÷ 1, 5, 5, -3, ~ f tax براجر جريب د الد , , K. ۱ e · *、*、 . 311 ۰, . 1 . * f , saor 6.0 ; t. -N. O. . . 1

CARCARE OFFICE 171 الم السر بي ال andola seg 1.1 1 2 3 1 - 40 B 122 - 342 . 577<u>7</u>7 3 1.57 · · · · 12 C 5 5. 07.015 · 1

و م العاف

лц^і

.

-- ,

.

· A

the to a stand

12403-121-2

we that have have

· . ·

550 f -

+ <u>+</u>

 z^{-1}

0+ 1 3b ***

And a second of a

the contraction of the

we wash as a sust . ". ". G." CLATURES IN THE ENTRIPY million transplanming 1 - State - Barris BREET STOLE AND STOLENS Series & . . 1,9 - , 1 -. 1 - 2 - 1 - 1 ¢.

5 1 4 4 c } , **,** ... 5 lotic march n n n n

۰. ⁻ . ۲ · · · î. . 2 45 1,1 · · · · · · .01 -1

,=

1.3 . 2 ~ ~ , , **~** • • • • • 1.50 1 nin mining States in the second States in the second 40. 1 234 . 50 a de tra -1 - 1

() · · ·

: ,

sta at a COLAN

1.1

a a readerb 21 ·. · · ` 1 ٠, - 14 1 1 25 3 ÷ s.

÷., ι, -11.0 1 .
Llamado S_{ν} al máximo valor absoluto que adquiere la integral del segundo miembro de la 5.2 durante el temblor, pueden escribirse las dientes expresiones

$$u_{\rm máx} = \frac{1}{\sqrt{p^2 - n^2}} S_{\rm v} \,, \tag{5.3}$$

$$\dot{u}_{max} = S_{\nu} , \qquad (5.4)$$

$$\ddot{u}_{\max} = \sqrt{p^2 - n^2} S_{\nu} \, .$$

 u_{max} , $\dot{u}_{\text{máx}}$, $\ddot{x}_{\text{máx}}$, son, respectivamente, los máximos valores absolutos del desplazamiento relativo, de la velocidad relativa y de la aceleración absoluta de la masa.

El valor S_v es función de las características del temblor, y de la frecuencia natural y amortiguamiento de la estructura. Si para un valor constante del amortiguamiento se trazan gráficas que tengan como abscisas el período natural de la estructura y como ordenadas $u_{máx}$, $\dot{u}_{máx}$, \ddot{x}_{max} , se obtienen los llamados espectros de desplazamientos, de velocidades y de aceleraciones, respectivamente, para el temblor considerado.

Para un temblor registrado (el de Helena, Oct. 31, 1935), en estructuras sin amortiguamiento, estos espectros tienen la forma indicada en la $\overline{}_{7}$. 5.1.²⁵

De acuerdo con las ecs. 5.3-5.5 es posible trazar los tres espectros en una gráfica única con rayado logarítmico en cuatro direcciones, según se hace en la fig. 5.2. Este tipo de gráfica se debe a F. Neumann ²⁶ y ha sido usada en varias publicaciones recientes.^{27,31}

Cualquiera de los espectros de un temblor proporciona los datos necesarios para el diseño de estructuras con un grado de libertad, con sólo conocer el período natural y el amortiguamiento de la misma.

5.02. Espectros de diseño. Dada la irregularidad en la forma de los espectros, que presenta variaciones bruscas en la magnitud de la respuesta máxima en función del período natural, es posible que dos estructuras que tengan prácticamente las mismas características respondan de manera totalmente distinta a un sismo.

En el aspecto práctico este hecho tiene menor importancia de la que se le podría dar a primera vista, gracias a la influencia del amortiguamiento y a fenómenos tales como la variación del período natural por trabajo en el intervalo inelástico.

Para fines de diseño, por tanto, no se emplean espectros de forma tan irregular como los de las figs. 5.1 y 5.2. Si se desea proyectar una estructura para un temblor particular, puede adoptarse un espectro obtenido como la curva media o envolvente del teórico. Si en una región son frecuenes temblores cuyas curvas medias tienen diferentes características, es razonable trazar la curva media

58

de cada uno de ellos, reducir todas a una intensidad común (por ejemplo haciendo que el área bajo la curva del espectro medio de velocidades sea la misma) y adoptar para diseño la envolvente de todos los espectros medios reducidos, multiplicada por un factor que tome en cuenta la intensidad esperada, las consecuencias de la falla de la estructura, su importancia, etc.

El criterio anterior es el que se siguió en la adopción del espectro de diseño propuesto para estructuras sobre terreno firme en el capítulo sobre análisis dinámico del reglamento. Dicho espectro se modificó con base en observaciones de campo para establecer el correspondiente a terreno blando.

5.1. Análisis sísmico de estructuras con varios grados de libertad

5.11. Estructuras no amortiguadas de varios grados de libertad, sin torsión. Si una estructura de varios grados de libertad como la que se muestra en las figs. 4.1 y 4.2 está sujeta al movimiento de su base, Estos serán de la base. En un ins cualquiera di suma de los a la participa rales en el n

En esta ex

 $u_{i}(t) = dei$

res

del

par

esp

ord

tura

peri

dad

la

en

 $c_j = coet$

.

5.

5

· · · · ·

En un instante dado el desplazamiento de una cualquiera de las masas puede expresarse como la suma de los desplazamientos de la misma debidos a la participación de cada uno de los modos naturales en el movimiento:

$$u_{i}(t) = \sum_{j=1}^{n} \phi_{j}(t) c_{j} x_{ij} . \qquad (5.6)$$

En esta expresión,

2.0 22

b

20 22

С

20 22 24

,en segundos ESTE-OESTE

31 DE 1935

una inten-

que el área velocidades

envolvente s. multipli-

a la inten-

la falla de

guió en la uesto para apítulo so-

icho espec-

iciones de

e a terreno

con varios

de varios

estructura

: se mues-

ovimient^o

あるの日本にあるのかでにおた

T, en segundos

24

T, en segundos

 $u_i(t) = desplazamiento relativo a la base de la masa i en el instante t:$

 $x_{ij} =$ amplitud del desplazamiento de la masa *i* en el modo *j*.

Para determinar el valor del coeficiente de participación de un modo cualquiera, m, considérese que la base sufre una variación en su velocidad igual a x_b . Todas las masas tendrán entonces una velocidad relativa a la base

$$\dot{u}_i = -\dot{x}_b$$

que puede expresarse como

$$\sum_{j=1}^n \dot{\phi}_j(0) c_j x_{ij} = -\dot{x}_b .$$

FIG. 5.2. ESPECTROS PARA SISTEMAS ELASTICOS. EL CENTRO, CALIFORNIA 1940

- $\phi_{j}(t) =$ función que expresa la variación con respecto al tiempo de la participación del modo j. El valor máximo de $\phi_{j}(t)$ para cada modo puede obtenerse del espectro de desplazamientos como la ordenada que corresponde a una estructura de un grado de libertad y de igual período que el modo j: $\phi_{j}(t)$ tiene unidades de longitud;
 - c_j = coeficiente de participación que define la escala a la que interviene el modo j en el movimiento;

Teniendo en cuenta que $\dot{\phi}_{,}(0) = -\dot{x}_{b}$,

$$\sum_{i=1}^{n} c_{i} x_{i} = 1;$$

multiplicando por M_1x_{1m} resulta

$$\sum_{j=1}^{n} c_j M_i x_{ij} x_{im} = M_i x_{im} .$$

Formando términos análogos al anterior para los diversos valotes de *i* y sumando, se obtiene

state and a state of the state

۰ ، ۰ ، ۰ ۲ ، ۰ ، ۲۳۶ ، ۲۳۶ ، ۰ ۲ ۲

.

۰,

, .**1** , .

~ [°]*

, . , .

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{j} M_{i} x_{ij} x_{im} = \sum_{i=1}^{n} M_{i} x_{im} .$$

Invirtiendo el orden de las sumas y aprovechan-~{o la propiedad de ortogonalidad

$$\sum_{i=1}^{n} M_{i} x_{ij} x_{im} = 0 \text{ para } j \neq m,$$

queda finalmente

$$c_m \sum_{i=1}^n M_i x_{im^2} = \sum_{i=1}^n \mathcal{N}_i x_{im}$$

de donde,

$$c_{m} = \frac{\sum_{i=1}^{n} M_{i} x_{im}}{\sum_{i=1}^{n} M_{i} x_{im}^{2}}.$$
 (5.7)

Sustituyendo en la ec. 5.6 y escribiendo j en vez de m:

$$u_{i}(t) = \sum_{j=1}^{n} \phi_{j}(t) \frac{\sum_{i=1}^{n} M_{i} x_{ij}}{\sum_{i=1}^{n} M_{i} x_{ij}^{2}} x_{ij} .$$
 (5.8)

La ec. 5.8 indica que el desplazamiento relativo n un instante t de la masa i debido a la contribución del modo j se obtiene como el producto de la amplitud de dicha masa en el modo j, a una escala arbitraria, por un coeficiente de participación, c, y por una función del tiempo, $\phi_i(t)$ que es la misma que proporciona el desplazamiento relativo de la masa de una estructura de un grado de libertad y de igual período que el modo en cuestión.

5.12. Estructuras no amortiguadas de varios grados de libertad, sujetas a torsión dinámica. En ciertas estructuras no es admisible la hipótesis de que el movimiento de todas las masas está contenido en un plano vertical. En tales casos se tienen tres grados de libertad por planta (dos de traslación y uno de rotación) y 3n modos de vibración acoplados.

Los modos están definidos por los valores x_{ij} , y_{ij} , θ_{ij} que son respectivamente los desplazamientos del centro de gravedad paralelos a las disposiciones x, y, y la rotación horizontal de cada nivel. El coeficiente de participación del modo mdebido a la acción de un movimiento paralelo a la dirección x es entonces:

$$c_{m} = \frac{\sum_{i=1}^{n} M_{i} x_{im}}{\sum_{i=1}^{n} (M_{i} x_{im}^{2} + M_{i} y_{im}^{2} + I_{i} \theta_{im}^{2})}.$$
 (5.9)

En esta ecuación I_i es el momento polar de inercia de la masa total del nivel i con respecto al centro de masa. donde

1.

2.

3. L

4. L

 A_{1} :

5.13. Estructuras amortiguadas. Tratándose de estructuras con un grado de libertad el concepto de espectro es aplicable según expresa la ec. 5.2 y los párrafos subsecuentes. De acuerdo con ello están trazados los espectros amortiguados de la fig. 5.2.

En general, en estructuras amortiguadas con varios grados de libertad no existen modos naturales Por tanto no pueden utilizarse con rigor los conceptos expresados en los párrafos 5.11 y 5.12.

En algunos casos, y para ciertas relaciones entre los valores del amortiguamiento en los diferentes niveles es posible encontrar modos de vibración en que las masas se inuevan satisfaciendo la ec. 4.1. Estos movimientos constituyen modos naturales y puede aplicarse lo hasta aquí dicho. Como ejemplo de estructuras que tienen estas caracteristicas están aquellas en que el coeficiente de amortiguamiento en función de la velocidad relativa entre dos niveles consecutivos es proporcional a la rigidez del entrepiso correspondiente.²² En el caso más general las relaciones planteadas son suficientemente aproximadas siempre que se trate de amortiguamientos pequeños.

5.14. Consideraciones para el diseño. Teóricamente las ecs. 5.8 y 5.9 resuelven el problema del análisis sísmico dinámico de estructuras con varios grados de libertad. Ellas permiten obtener su configuración deformada en cualquier instante y por lo tanto los máximos elementos mecánicos en las secciones críticas Por razones semejantes a las expresadas en el Art. 502, el valor máximo de $\phi_1(t)$ se obtendrá a partir de un espectro de desplazamientos adoptado para el diseño. Esto permite conocer la respuesta máxima de la estructura por efecto del modo j.

Una cota superior a la respuesta de la estructura por la participación de todos los modos puede obtenerse como la suma de las respuestas máximas de todos los modos:

$$R = \sum_{i=1}^{n} R_i \; .$$

Este valor es siempre conservador, ya que las respuestas máximas de todos los modos no son simultáneas. Con base en estudios probabilísticos se demuestra que en estructuras elásticas de varios grados de libertad es más realista estimar la respuesta total de acuerdo con la siguiente expresión.

$$R=\sqrt{\sum_{i=1}^{n}R_{i}^{2}}.$$

En la práctica se parte en general de espectros de aceleraciones, por lo que, utilizando la ec. 5.8,

$$u_{ij_{máx}} = A_{j} \frac{c_{j}}{p_{j}^{2}} x_{ij}$$
 (5.10)

4, 5

ł

, I

, .1 £ - ಕ್ರ ಇ*`ವಿ - ಎಂಗ 5 5 ч<u>і</u>, 81 2 , , · , . à . -,' έ, 131 î, . . . 11 . 7 ¹ r. 1 ۲, . : .,03 4 C / . . 14 , ***** 11 ۰,

the starting of

х. т^а м.

.

•

.

aciendo modos í dicho.

diseño.

mar la

la ec.

ł

 $= \frac{1}{2} \left\{ \frac{1}{2}$ ، ب^ور · · · · · ·

> 1747-1 .

PERENT STREPS STREPS

: 1 . 1 -

> .1 ŗ

1.1

χ. × .

• • •

١.,

e,

ر آ

ž

4

15

1

, x 4 1 , 12 1

> 1. 1. 1.11 . . 2

1 - 1. Je 20

ŧ \mathbb{C}^{1} ۰, , 5 8 ¹ , , , ÷,•, .'

< - ∓

зĿ

' ansi'

114

+ 1

5. Las fuerzas cortantes essuicas en cada entrepiso pueden obtenerse como el producto de su rigidez por el desplazmiento relativo de los dos niveles que lo limitan:

Modo	Entrepiso	Cortante
	3	(0.3422 - 0.1862)20 = 3.14
1 -	2	(0.1862 - 0.0688)50 = 5.87
	1	$0.0688 \times 100 = 6.88$
	3	(0.0225 + 0.0214)20 = 0.87
2	2	$(0\ 0214 - 0.0122)50 = 0.46$
	1	$0.0122 \times 100 = 1.22$
	3	$(0\ 00078 + 0.0035)\ 20 = 0.086$
3	2	(0.0035 + 0.0071)50 = 0.53
	1	$0.0071 \times 100 = 0.71$

6. Las fuerzas cortantes de diseño debidas a la superposición de los modos se obtienen en la tabla siguiente de acuerdo con el criterio de la suma de los máximos absolutos y con el de la raíz cuadrada de la suma de los cuadrados de los máximos.

Enti zpiso	$R = \Sigma R$
3	3.14 + 0.87 + 0.086 = 4.10
2	5.87 + 0.46 + 0.53 = 6.86
1	6.88 + 1.22 + 0.71 = 8.81
	$R=\sqrt{\Sigma R^{2}}$
3	$\sqrt{3.14^2 + 0.87^2 + 0.086^2} = 3.26$
2	$\sqrt{5.87^2 + 0.46^2 + 0.53^2} = 5.91$
1	$\sqrt{6.88^2 + 1.22^2 + 0.71^2} = 7.07$

7. En la tabla que sigue se calculan las cortantes estáticas y el 60 por ciento de las mismas.

Nivel	W,	h,	W_ih_i	Fi	V,	0.6V;
3	50	10	500	4.57	4.57	2.74
2	80	7	560	5.12	9.69	5.81
1	80	4	320	2.92	12.61	7.57
0						

Sumas 210 1380

$$F_{i} = \frac{W_{i}h_{i}}{\Sigma W_{i}h_{i}} c\Sigma W_{i}$$
$$F_{i} = 0.00913 W_{i}h_{i}$$

8. Las fuerzas cortantes de diseño serán, por tanto,

Entrepiso	Cortante
32	3.26 5.91
1	7.57

Parte C

1. T. T. T.

, , , <

1¹ - 2 61 T. _ ' -

<u>ار ا</u> , 1

4 .

•

. ;

~

CENTRO DE EDUCACION CONTINUA DIVISION DE ESTUDIOS SUPERIORES FACULTAD DE INGENIERIA

III CURSO INTERNACIONAL DE INGENIERIA SISMICA

DINAMICA ESTRUCTURAL

METODO β DE NEWMARK PARA SISTEMAS DE VARIOS GRADOS DE LIBERTAD ELASTICOS E INESLASTICOS

Dr. Octavio A. Rascón Ch.

Julio 1977

· .

METODO β DE NEWMARK PARA SISTEMAS LINEALES DE VARIOS GRADOS DE LIBERTAD

EJEMPLO

$$\underline{K} = \begin{bmatrix} 10 & 1 \\ 1 & 5 \end{bmatrix} \qquad \underline{M} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} ; \quad C_{i} = 0 \text{ para todo i}$$

$$\vdots \quad \dot{X}_{i+1} = \dot{X}_{i} + (\ddot{X}_{i} + \ddot{X}_{i+1}) \frac{\Delta t}{2}$$

$$X_{i+1} = X_{i} + \dot{X}_{i}\Delta t + (\frac{1}{2} - \beta)\ddot{X}_{i}(\Delta t)^{2} + \beta \ddot{X}_{i+1}(\Delta t)^{2} \end{bmatrix} \text{ PARA CADA}$$
MASA O GRADO
$$DE \text{ LIBERTAD}$$

$$\Delta t = 0.2 ; \beta = 1/6$$

 $\begin{array}{rcl} \underline{\text{MOVIMIENTO DEL SUELO}:} & x_{o} = 1.2t & (x_{o} \text{ EN CM Y t EN SEGUNDOS}) \\ & \text{SI} & 0 \leq t \leq 2 \text{ SEG}, & \text{Y} & x_{o} = 4.8 - 1.2 \text{ t SI} & 0 \leq 2 \leq 4 \text{ SEG} \\ & \text{Y} & x_{o} = \hat{\upsilon} & \text{SI} & t < 0 & 0 & t > 4 \text{ SEG} \\ & \text{SI} & \text{Y}_{1} = x_{1} - x_{o} & \text{Y} & \text{Y}_{2} = x_{2} - x_{o} \\ & \underline{\textbf{M}} & \underline{\textbf{Y}} + \underline{\textbf{K}} & \underline{\textbf{Y}} = \underline{0} & \Rightarrow & \underline{\textbf{M}} & \underline{\textbf{Y}} + \underline{\textbf{Q}} = \underline{0} ; & \underline{\textbf{Q}} = \begin{bmatrix} \textbf{Q}_{1} \\ \textbf{Q}_{2} \end{bmatrix} \\ & (\text{PUESTO QUE} & \underline{\textbf{X}}_{o} = 0) \\ & m_{1} & \textbf{Y}_{1} + \textbf{Q}_{1} = 0 & \Rightarrow & \underline{\textbf{Y}}_{1} = -\textbf{Q}_{1}/m_{1} \\ & m_{2} & \underline{\textbf{Y}}_{2} + \textbf{Q}_{2} = 0 & \Rightarrow & \underline{\textbf{Y}}_{2} = -\textbf{Q}_{2}/m_{2} \\ & \text{EN t=0, Y}_{1} = 0, & \underline{\textbf{Y}}_{1} = 0, & \underline{\textbf{Y}}_{1} = 0 \\ & \text{EN t=0.2, SUPONGAMOS} & \underline{\textbf{X}}_{1} = 1.35 & \text{Y} & \underline{\textbf{X}}_{2} = 1.50 & \frac{\text{CM}}{\text{SEG}^{2}} \\ & x_{o} = 1.2 \text{ x} & 0.2 = 0.24 \end{array}$

PARA LA MASA 1: $\dot{X}_1 = 0 + (1.35 + 0) \frac{0.2}{2} = 0.135$ $X_1 = 0 + 0 + (\frac{1}{2} - \frac{1}{6})(0.2)^2 \times 0 + \frac{1}{6} \times 1.35 (0.2)^2 = 0.009 \text{ CM}$ $Y_1 = 0.009 - 0.24 = -0.231$ 0 PARA LA MASA 2: r٦ C $\dot{X}_2 = 0 + (1.5 + 0) \frac{0.2}{2} = 0.15$ е Ч $X_2 = 0 + 0 + 0 + \frac{1}{6} \times 1.5(0.2)^2 = 0.01$ $Y_2 = 0.01 - 0.24 = -0.23$ $\begin{bmatrix} Q_1 \\ Q_2 \end{bmatrix} = Q = \begin{bmatrix} 10 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} -0.231 \\ -0.23 \end{bmatrix} = \begin{bmatrix} -2.54 \\ -1.381 \end{bmatrix} + \begin{array}{c} X_1 = -2.54/2 = 1.27 \ Y_1 \\ X_2 = -1.381/1 = 1.381 = Y_2 \end{bmatrix}$.-+ETC.

2.

			ΤΑΒ	LA 2	.1, E	XEMP	LO E				
1 304	Q 101	X1 cm/sec2	X, rin/sec/	X I C IN	X1 * X⊖ em	Q p ton	X2 (m/srcf	×2 cm/snc	Χ.2 (π)	×2-×0	X
0	0	()	0/	n	0	Ċ	0	0	o	ο	C
0.2	2.540	1350	0 / 35	0.06-00	+1,2310	1.380	1.500	0.150	0.0100	- 0.2300	0
0.2	2,546	1.270	0127	10085	0.2315	1.386	1,380	0138	20000	- 0,2308)
ϕ_{i} e	2.546	1.273	1510	0.0085	-0.2315	1,386	1,386	0,138	0.0092	- 0.230R	0
6,4	4 5 4 8	+2 300	0 484	+0 0662	-0.4138	2.468	2.100	0.486	+0.0693	-0.4107	0.
0.4	4.548	2.2/14	0481	0.0660	-0.4140	2,455	2.468	0,523	0 0718	-0.4082	0.
04	4.548	2.274	0.481	0.0650	-0 4140	2.455	2.455	0.522	0 0717	- 0.4083	<i>•</i>).
0,4	4 5 4 8	1.274	0.481	0.0660	-0,414()	2.455	2.455	0.522	0.0717	-0.4083	0
G	5 5 8 5	2.700	0.978	0.2105	-0 5095	2.960	3 200	1.088	0.2301	-0.4890	О.
0.6	5 5 8 1	2.793	0.987	0.2111	-0 50 8 9	2.967	2.960	1.064	0.2285	-0.4915	0.
05	5 5 8 0	2.790	0.987	0.2111	-0.5089	2.966	2.967	1.065	0.2286	-0.4914	0
0,6	5,580	2.790	0.987	0.2111	0.5089	2,966	5.966	1.065	0.2286	-0.4314	0
0.8	5 4 0 9	2.900	1.556	0.4650	-0 4950	2,790	5.9 80	1.660	0.5010	-0.4530	0
8.0	5.423	2.704	•1.536	0.4637	-0.4963	2.798	2.790	1.641	0.4997	-04603	0
0.8	5.422	2.711	1.537	0.4638	-0.4962	2.797	2.798	1.642	0,4998	-0 4602	c
0.8	5.422	2.711	1,537	0 4638	-0,4962	2 .797	2.797	1.642	0.4398	-0 4602	0
1.0	4.104	2.150	2.023	0.8216	-0.3784	1.977	2.200	2.142	0.8802	-0.3198	1
10	4,111	2.052	2.013	0.8210	- 0.3790	1.985	1.977	2.120	0.8787	-0.3213	1
10	4.111	2.055	2.014	0.8210	-0.3790	1985	1.985	2.121	0.8787	-0 3213	1
1.0	4.111	2.055	2.014	0.8210	-0.3790	1.985	1,985	2.12.1	0.8787	-0 3213	
1.2	1.931	0.950	2.315	1.2575	-0.1825	0.712	0.700	. 2.390	1.3341	-0.1059	1.
12	1.930	0.965	2.316	1.2576	-0.1824	0.712	0.712	2.391	1.3341	-0.1059	۱,
1.2	1 930	0.965	2.316	12576	-0.1824	0.712	0.712	2.391	1.3341	-0.1059	1.
1.4	- 0.653	-0.320	2.381	1.7316	00516	-0.735	- 0.800	2.382	1.8165	0 1365	1.
1.4	- 0.652	-0.326	2:380	1.73,15	0.0515	- 0.735	-0.735	2.388	1.8169	0 1369	1.
1,4	- 0.652	-0.326	2.380	1.7315	0.0515	- 0.735	-0.735	2,388	1,8169	0.1369	1.
1.6	- 3.083	-1.500	2.197	2.1932	0 2732	- 2.026	- 2.100	2.104	2.2707	0.3507	1.
1.4	- 3.080	-1.541	2:193	2.1929	0.2729	- 2.029	- 2.026	2.111	2.2712	0 3512	1.
16	- 3.080	-1.540	2,193	2.1929	0.2729	- 2.029	-2.029	ș'III	2.2712	0.3512	1
1.8	- 4 830	-2 500	1.789	2.5943	0 4343	- 2.869	-2.900	1.618	2.6471	0.4871	2
1.8	- 4 836	-2.415	1.797	2.5949	0 4349	- 2.871	-2.869	1.621	2.6473	0 4873	2
1.9	- 4 836	-2.418	1.797	2.5949	0.4349	- 2.871	-2.871	1.621	2 6 4 7 3	0,4873	2
2.0	- 5.547	- 2.800	1.275	2.9034	0.5034	- 3.069	-3.000	1.034	2.9132	0.5132	6
2.0	- 5 5 4 9	-2773	1.278	2 9036	0 50 36	- 3.068	- 3.069	1.027	2.9127	0.5127	.
2.0	- 5.549	-2 774	1.278	2.9036	0.5036	<u>.</u> 3.068	- 3.068	1,027	2.912	05127	
Kennenga '	A control de la control de la	den andre service	<u></u>	<u></u>		L-//3		<u></u>			+

 \bigcirc

۰,

Ż

an an anna ann an ann an ann

ν.

,

-

	_	,	TAB	LE 2	.1, 8	EXAME	LE 2	3.70		Paulinus	1401
500	Q1 10-1	× rm/sec2	X cm/sec	X} ∖ cm	x x0 cm	Q 2 Lon	X cm/sec?	X cm/sec	Х ? сл:	X2"X0 cm	X (
2.2	-10 150	-5200	0.481	3.08 *5	6756.0	- 5.332	- 5 460	0, 174	3:0408	0,6508	2.1
1:.2	-10,165	-5 07B	0,493	3.0883	0.9283	- 5.337	- 5.332	0.187	3.0417	0 3817	2.1
	-10.165	- 5.08 3	0.493	3.0883	0,9283	- 5.337	- 5.337	0.186	3 0417	0.8817	2.1
2.4	- 12 578	- 6.900	-0.705	3.0731	1.1531	· 6.386	- 6,200	-0 968	2.9065	1.0465	1,9
2.0	-12 6 17	- 6.289	-0.644	3,0772	J.1572	- 6.383	- 6.386	-0,987	2,9652	1.0452	1.9
2.4	+12.615	- 6.309	-0.646	3.0770	1.1570	- 6.383	- 6.383	-0.986	2.9652	1.0452	í.9
24	-12.615	-6.308	-0.646	3.0770	1.1570	- 6.383	- 6.383	-0.986	2.9652	1.0452	1.9
5.6	-12.388	- 6.200	-1.897	2.8225	1.1425	- 5.958	- 6.000	-2.224	2.6429	0.9629	١. 6
26	-12 388	-6.194	- I.896	2.8225	1.1425	- 5.959	-5.958	-2.220	2.6432	0.9632	1.6
2.6	-12 388	-6.194	-1.896.	2.8225	1.1425	- 5.959	- 5,959	-2.220	2.6432	0,9632	١. 6
28	- 9.573	-4.300	-2.945	2.3320	0.8920	- 4,155	- 4.100	•3.206	+2.0925	0.6525	1.4
2.8	- 9 5 4 0	- 4 787	- 2.994	2.3288	0.8888	- 4.150	- 4.155	-3.212	2.0921	0.6521	1.4
2.8	- 9 541	- 4.770	-2.992	2,3289	0,888.9	- 4.150	- 4.150	-3.211	2.0921	0.6521	1.4
2.8	- 9.541	- 4.770	·∠.992	2.3289	0.8889	- 4.15.0	- 4. 150	-3.211	2:0921	0.6521	14
30	- 4.687	- 2.500	-3.719	1.6502	0.4502	- 1.376	- 1.400	-3.766	1,3853	0.1853	. 1.2
30	- 4.69R	-2343	- 3. 703	1.6513	0.4513	- 1.378	- 1.376	-3:764	1.3854	0.1854	E 1.2
30	- 4698	-2.349	-3.704	1.6513	0.4513	- 1.378	- 1.378	-3.764	1,3854	0.1854	1.2
32	.1.090	0 800	- 3.859	0.8845	-0.0755	1.748	1.700	-3.732	0.6255	-0.3345	0.9
32	1.106	0.545	-3.884	0.8828	-0.0772	1,748	1.748-	-3.727	0.6259	-0.3341	0.9
3.2	i.†05	0.553	-3. 883	0.8820	-0.0771	1.748	1.748	-3.727	0.6259	- 0.334 I)	0.9
32	1:05	0.553	-3 883	0.8829	-0.0771	1.748	1.748	-3.727	0.6259	-0.3341	0.9
3.4	6.608	3.600	-3.468	0.1377	-0.5823	4.506	4.700	-3.082	-0.0649	-0.7849	0.
34	6.629	3.304	- 3. 438	0.1357	-0.5843	4.5 15	4.506	-3.101	- 0.0662	-0.7862	o. ⁻
14	6,628	3.314	-3.439	0.1358	-0.5842	4.5 15	4.515	-3,100	-0.0661	-0.7861	0
34	6.628	3.314	-3, 439	0.1358	-0.5842	逾4.5 +5	4.515	-3.100	- 0.0661	-0.7851	о.
36	10 5 78	5.400	-2.568	- 0.4718	-0.9518	· 2.5 I	6.900	-1.958	-0.5799	- 1.0599	0.4
3.6	10.589	5.289,	-2.579	-0.4725	-0.9525	6.277	6.251	-2.023	-0.5842	- 1.0642	0.
4.5	+0.589	5.299	-2.577	-0.4725	-0.9525	6.277	6.277	-2.020	-0,5841	-1.0641	0.
36	10 5 39	5.299	-2.577	- 0,4725	-0.9525	6.277	6,277	-2.020	-0.5841	-1.0641	0.
3,8	12 2 5 7	6 200	-1.427	-0.8760	-1.1160	6.612	6.800	-0.712	-0.859+	-1.0991	0.1
38	12.264	6.1,30	- 1, 434	-0.8764	-1.1164	6.618	6.612	-0,731	-0'8603	- 1.1003	0.1
3,8	12.2.64	6 132	-1,434	-0.8764	-1.1164	6,618	6.618	-0.730	-0.86.03	-1.1003	0.:
4.0	11 323	5.600	-0.260	-1.0441	-1.0441	5.454	5.400	0.472	-0.8421	-0.882	(
40	11.3.3	5.66	-0.255	-1 0437	-1.0477	5,453	5.454	0.477	- 0.85 / 7	-08517	
40	11.319	5.660	0.255	-1.0437	-10437	5 4 5 3	5.453	0.477	-0.8817	-0.88 -7	(
4,2	10.705	5350	0.846	-0.9836	-0.9836	5.330	5,300	1.549	-0.8691	-0.8611	
4.2	10.705	5.352	0.846	-0.9836	-0.98 36	6,329	5.330	1.552	-0.8610	-0.8683	

an me internet

معمد جد الاستعلاد به تؤسط مدد الدر هدي بال مبلغ دور المعالي من من من المالي الم

and a second of the second

न २

•

-

·

. .

`

Método B de Newmark Comportamiento inelastico <u>Ejemplo</u> Cada masa rígida del sistema de la fig.(a.i)

pesa 9.81 Ton (métricas). Ambos resortes son clasto plásticos con rigideces iniciales de 30 y 25 Ton /em. para el primero y segundo entrepiso respectivamente Calcúlese numéricamente el des plaza miento mázimo absoluto, en valor numérico, del primer piso como tes puesta a un desplazamiento brusco de 2cm. del apoyo (Zo=0 para 260, Zo=2cm para 200).

fiq (a.3)

-> F.

Ecuaciones del movimiento $M_1 \overset{\circ}{X}_1 \neq G_1 - G_2 \equiv 0$ (Q.1) $M_2 \overset{\circ}{X}_3 \neq G_2 \equiv 0$ (Q.2)

como se puede concluir de la figura a. 4. MZ+G=0

.

Procedimiento iterativo :

- 1. Supendremes los valores de 9, 4 98
- 2. Calculamos Z, y Zz de (a.1) \$ (2.2).
- 3. Obtenemos ž, g Z, ; žz g Zz con las expr<u>e</u> siones del B-newmark.

Z.

4. Obtenemos $Q_1 \neq Q_2$ en función de $(Z_1 - Z_0) \neq (Z_2 - Z_1)$ respectivamente.

Si las 6 calculadas difieren de las supuestas se repite el ciclo.

 $E \times presiones del \beta \cdot Newmerk pare \beta = \frac{1}{6} + 0.15eg.$ $Z_{i+1} = Z_{i} + \frac{0.1}{2} (Z_{i} + Z_{i+1})$ $= Z_{i} + 0.05 (Z_{i} + Z_{i+1}) \dots (a.3)$ $Z_{i+1} = Z_{i} + 0.1 Z_{i} + (\frac{1}{2} - \frac{1}{6}) (0.1)^{2} Z_{i} + (0.1)^{2} (\frac{1}{6}) Z_{i+1}$ $= Z_{i} + 0.1 Z_{i} + \frac{10^{2}}{3} Z_{i} + \frac{10^{2}}{6} Z_{i+1} \dots (a.4)$

J Para t= 0°, 20 = 2:0, 9, 2 = 50, 92 = 0.0 aplicando las ce air y ais obtememos $\mathcal{X}_{i} = \frac{\mathcal{G}_{8} - \mathcal{G}_{1}}{M} = 50 \quad ; \quad \mathcal{Z}_{8} = - \frac{\mathcal{G}_{8}}{M} = 0.0$ Z, = 0 ; Z, = 0 ; A Z, - Zo = -2 Leo; Leo; ALO; ALOZIEO como se muestra en la sigeiente figura -> Z2 = 0 Para 2 = 0.1 seg. 15C. 9, 2. 50, 92 = 0.0 2, 0 30 , 2, 0 0.0 > 2,50 Ž, = 0 + 0.05(50 + 50) = 5 2, = 0 + 0.1(0) + = (50) + = (50) e m teot = 0.25 Žg = 0 + 0.05 (0 + 0) = 0.0 Z2 = 0 + 0.1 (0) + 10 (0) + 10 (0) = 0.0

G, = -50 + 50 %, = - 37.50

Az = 25 (Zg-ZI) = 25 (0-0.25) = -6.25

en esta forma se contruye la siguiente tabla

-* -

-

.

1	\mathcal{Q}	G,	- Qa	ä,	20 X-3	÷.	X,	Ž2	Ze	
2.0	2.0	-50.00	0.000	50.000	0.000	0.000	0.000	Ø. 630	0.000	
9./	2.0	-60.00	0.000	50.000	0.000	5.000	6.250	D.000	0.000	
		-37.500	- 6.25	B7.500	0.313	4.375	0.239	0.815	0.010	
		-31542	- 5.465	92.898	0.273	4.115	0.820	0.239	0.009	
	1	-92976	-6.272	89.511	0.264	4.136	0.803	0.264	0.009	
5		-38.894	-6.855	33.602	0.268	4.180	0.223	0.269	0.009	
		-38.967	- 5.352	35.512	0.268	0.136	0.229	0.268	0.007	}
2	2.0	-20.00	- 10.000	10,000	1.036	A. 352	0.369	1.035	0.030]
		1.552	- 13.463	1.558	1.409	5.929	0.355	1.409	0.083	
-		- 19.256	- 16 806	-5.211	1.376	5.591	0.944	1.376	0.082	
`		-12,820	- 16 550	- 3. 986	1.364	5.652	0.346	1.364	0.081	
, i		- 10 - 5/3	-16 610	- 8 8412	1.863	6.660	0.246	1.367	0.081	
		- 19. 805	- 16 616	- 3. 9/4	1.366	5 656	0. 806	1.366	0.081	
	8.0	-13.000	-95.000	- 36 000	8.447	8 310	1.2.40	3.44 P	0.315	1
2		10.000	- 09 134	- 99.000 33 Ala	8. 3.64	3. 1.10	1238	B 354	0.318	
-		12.010	- 63.184	- 37.010	9.36H	2 311	1.940	3.354	A. 312	
		11.573	- 20.100	DE MAG	2 362	9 202	1.340	9 A.C.Z	0 3/2	
		12.012	- 23.211	-32 193	2.207	ور ۲۵ مرد	1940	2.383	0.319	1
~		11.993	- 25.208	- 30. 80Y	J. 999	9.900	1.4690	5-5-54 67 31 53	0.9/4	1
¥	2.0	25.000	- 25.000	-50.000	5.764	- 0.30	10509	3•708 E 200	0.707	{
-		21.993	-16.057	-35.993	9. 300	0.090	1.931	3. 960 P 811	0.732	l
4		21.649	-16.980	- 37.606	5.956	0.054	1.930	5.50	0.900	l
- 1	: 1	21.498	- 16.916	- 38.478	S. 269	0.016	1.929	5.359	0.759	
-		21.425	- 16.894	- 39. 34/	5.368	0.028	1.939	5.362	0.359	
		Q.I. 437	- 16.895	- 99. 331	5.368	0.023	(1.489)	5.062	0.753	
	<u></u>	s. 10	ielocida.	7 30 h	20 0251	nules				
			la cual	al desp	la zamie	170				
	, - [.]		zinas se	ro de:			н к Ц			
			(24,	Dais = 1	43 cm.					
			* /	maa	•					
g	<u> </u>	× 4)		3	' . QI			71-	v
		· · · ·	ι,	D	esplazami	ento Kelai	110=x, - ×0	e: - (/. j	11 cm	
	• •			- 1 29	!					
	~ '	,, · · · ·				$\left(\begin{array}{c} \\ \end{array} \right)$				
	فسمع	~				in the second				

١.,

1

ł

٩,

i = -i

1

.

-, ,

3

•

centro de educación continua división estudios superiores d e facultad d e ingeniería, unam

111 CURSO INTERNACIONAL DE INGENIERIA SISMICA

DINAMICA ESTRUCTURAL

PROF. DR. PORFIRIO BALLESTEROS

JULIO,1977.

Palacio de Minería Calle de Tacuba 5, primer piso. México 1, D. F. Tel: 521-40-20

Timop noibeques et onne divición do notudios à parerec.

NUMBER AND LARGER OF WAR STORE DEDUCT THE

CREW DATE AL ALL STRUCT

NODE LEADY LARGE RELATIVELENT SANCE

, ¢

SOLATELY PRICE . and other

primer photo Marriel a. S. Tour 191-40 St.

P HILSHE S LAND

Marzo 15 de 1976

P. Ballesteros

METODO DE ANALISIS POR ELEMENTOS FINITOS.

INTRODUCCION.

El ingeniero en la busca de los valores numéricos adecuados para describir su proceso de diseño, se encontraba generalmente con formulaciones mate_ máticas difíciles. Por ejemplo, considerando el simple caso de teoría de ---flexión de placas, bajo las hipótesis de pequeñas deformaciones y que las secciones planas permanecen planas después de la deformación, la ecuación di ferencial que gobierna el análisis para un material elástico lineal homogéneo e isotrópico es

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{q}{D}$$
(1)

donde w es la deflexión en el punto (x, y), q es la intensidad de la carga en el punto (x, y), y $D = \frac{E h^3}{12 (1 - \nu^2)}$ es la rigidez flexionante de la placa la cual depende del modulo de elasticidad E, el espesor de la placa h y la relación de Poisson ν . En la Fig. 1 se presenta un elemento diferencial de la placa y las acciones y reacciones sobre él. Combinando la flexión simple - en dos direcciones se obtiene para los momentos y cortantes por unidad de lon-gitud de placa lo siguiente:

AND AND AND

METCODEALS BURGE CAREADS ENCOS.

MULTIONOGO?

Changenie o cu la 'nume do los valores manafros adecuados pura describir un precore de discño, se subort aba concretaña rescan formul viones mare objetes diferiles. For ejemplo, combine ande el situple como da reorfa do ere taxa de planas, baje les hiper o la le require referenciente que la concreta de recenter de la superior de la superior de la concreta de recenter de la concreta de recencientes de la concreta de la concreta de la concreta de recencientes de la concreta de recencientes de la concreta de la concreta

e la s

conclus work in the theorem of the term of the product of the second decomposition of the term of term of the term of term of term of term of the term of terms of term of terms of

r,

Fig 1 Placa rectangular a.b. Fuerzas y momentos unitarios sobre elemento $d_{\rm X}$ $d_{\rm y}$

OTHER AND COLOR OF THE AND AND AND

the states and the states of t

13176-

DESFI- UNAM

Marzo 15 de 1976

3

 $M_{X} = -D\left(\frac{\partial^{2}w}{\partial x^{2}} + \nu - \frac{\partial^{2}w}{\partial y^{2}}\right)$ $M_{y} = -D\left(\frac{\partial^{2}w}{\partial y^{2}} - \nu - \frac{\partial^{2}w}{\partial x^{2}}\right)$ $M_{xy} = -D\left(1 - \nu\right) - \frac{\partial^{2}w}{\partial x \partial y}$ $Q_{x} = -D - \frac{\partial}{\partial x}\left(\frac{\partial^{2}w}{\partial x^{2}} + \frac{\partial^{2}w}{\partial y^{2}}\right)$ $Q_{y} = -D - \frac{\partial}{\partial y}\left(\frac{\partial^{2}w}{\partial x^{2}} + \frac{\partial^{2}w}{\partial y^{2}}\right)$ $Q_{y} = -D - \frac{\partial}{\partial y}\left(\frac{\partial^{2}w}{\partial x^{2}} + \frac{\partial^{2}w}{\partial y^{2}}\right)$

Para el caso particular de la placa libremente apoyada, y rectangular, cuyas condiciones en la frontera (Fig. 2) son:

 $\left(\begin{array}{c}w\end{array}\right)_{X=0} = \left(\begin{array}{c}\frac{\partial^{2}w}{\partial x^{2}} + \nu \frac{\partial^{2}w}{\partial y^{2}}\right)_{X=0} = 0 \tag{3}$

Fig 2 Condiciones en la frontera x = a de una placa libremente apoyada ¢.

.

1_ ¥

$\langle S \rangle$

20 2¹ × 30 7

· `, `, ` • =
DESFI-UNAM

1

Marzo 15 de 1976.

P. Ballesteros

4

Navier en 1820 presentó a la Academia Francesa de Ciencias, la solución representando la carga q (x, y), por medio de una serie trigonométrica doble

$$q = (x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{mn} \operatorname{Sen} \frac{m\pi}{a} \times \operatorname{Sen} \frac{n\pi}{b} y$$
(4)

substitutye (4) en (1) y considerando las propiedades de ortogonalidad de las
series trigonométricas obtiene la solución de la ecuación diferencial bi-armónica
(1) como

$$w(x,y) = \frac{1}{\pi^4 D} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{amn}{(\frac{m^2}{a^2} + \frac{D^2}{b^2})^2} \operatorname{Sen} \frac{m \pi}{a} x \operatorname{Sen} \frac{n \pi}{b} y$$
(5)

en donde el coeficiente mn viene expresado por

$$a_{mn} = \frac{4}{ab} \int_{0}^{a} \int_{0}^{b} q(x,y) \operatorname{Sen} \frac{m\pi}{a} \times \operatorname{Sen} \frac{n\pi}{b} y d_{x} d_{y}$$
(6)

El procedimiento de Navier consiste en lo siguiente: Conocida la función de carga q(x,y), se substituye en (6) y se obtiene el coeficiente amn el cual - nuevamente se substituye en (5) y se obtiene la deflexión w(x,y), y por medio las ecuaciones (2) se obtienen los momentos y cortantes .

Es importante observar que las limitaciones de Navier se refieren a una placa rectangular libremente apoyada y con una función de carga q(x, y) impar con respecto a x, y con respecto a y, es decir, q(x, y) = -q(-x, y) y q(x, y) = -q(x, -y), Si la función fuese par, la representación de q(x, y) sería mediante una serie de cosenos, y si q(x, y) fuese una función cual

en ander C. Alterster of a 6_ d $x^{1/2}$ and $z^{1/2}$ is the effective set of $x^{1/2}$ and $z^{1/2}$

ç ,

added and the second of the second

15

e 21 (

. ,

e . \bigcirc ,

j,

5

÷

quiera, se representaría mediante una serie trigonométrica doble completa de senos y cosenos, y se tendrían problemas en satisfacer las condiciones en la frontera. Generalmente la convergencia de la serie (5) es lenta, y en algu nos casos es necesario considerar más de 500 términos para asegurar la solu ción correcta.

Posteriormente en 1900 M. Levy cambia de posición los ejes coordenados (Fig. 3) y utiliza una serie trigonométrica simple de la forma

$$w(x,y) = \sum_{m=1}^{\infty} f_m(y) \text{ Sen } \frac{m\pi}{a} x$$
 (7)

El procedimiento de Levy consiste en substituir (7) en (1) obteniendo una ecuación diferencial lineal de cuarto orden en fm(y) con coeficientes constantes no homogenea con la cual ya es posible satisfacer diferentes condiciones en la frontera $y = \pm \frac{b}{2}$, pero continua limitado a una placa rectangular libremente apoyada en las fronteras x = o y x = a.

Fig 3. Posición de ejes en la solucion de M.Levy (1900)

quiches, restrict the first series three three defines only lote de sense y arrest the state of the manual states in the routivious en arrest de series the state franchise place for (o) a ferra, y er algu use cases de incorpation of the max de 500 vienties para asegurar la solucier corrects.

Respondences (1997) - Device and Dude Trade of a loge coordenades (1994) - March 1997 - Device and Dude Terrer (1998) - March 1998 (1994) - March 1997 - March 1997 - March 1997 - March 1997 (1997) - March 1997 - March 1997 - March 1997 (1997) - March 1997 - March 1997 (1997) - March 1997 - March 1997 (1997) - March 1997 (199

$$(x_{1},y_{2}) = \sum_{m=1}^{20} (y_{2}) Se^{n} - \frac{m\pi}{2} x$$
 (7)

The obtaining one of the state of the state

1

we all a stand and the stand of the stand of

DESFI-UNAM

Marzo 15 de 1976.

P. Ballesteros

Las limitaciones de análisis tan restringidas, como los ejemplos anteriores, aparecían en innumerables problemas de ingeniería, lo cual originó el principio de los métodos numéricos, el cual presenta dos etapas de desarrollo. Antes de la época de las computadoras, donde representa un importante papel el Prof. Southwell del Colegio Imperial de Inglaterra, desarrollando y aplicando los métodos numéricos de relajación y diferencias finitas, superando las limitaciones restringidas de los métodos analíticos de solución.

Durante la era de las computadoras digitales, el método de análisis por ele_ mentos finitos ha obtenido gran popularidad, puesto que en este procedimiento como resultado de la discretización del medio por analizar, se obtienen sistemas grandes de ecuaciones algebraicas lineales simultáneas, lo cual actualmente su solución no representa ningún problema. Por ejemplo, en el caso de análisis elástico lineal de placas, podemos tener cualquier condición de apovo, de geome tría y de cargas, prácticamente se eliminan la mayoría de las restricciones de las soluciones analíticas mencionadas, el problema más importante es verifiar adecuadamente su convergencia.

El primer trabajo referente al método se debe a Hrenikoff Ref. 1 publicado en 1941, y el segundo a McHenry publicado en 1943 en ambos trabajos (Fig. 4) se verifican soluciones de problemas de elasticidad bidemensional en estado plano de esfuerzos, discretizando el medio y buscando la analogía con la solución estructural.

Posteriormente en 1949 Newmark, en su libro de Métodos Numéricos - -Ref. 3, presenta los métodos de Hrenikoff y McHenry. Sin embargo, el

Fig. 4 Primera solución presentada por Hrenikoff en 1941.

crédito de aplicarlo a medios continuos es de Turner, Clough, Martin y Topp Ref. 5 , y no es, sino hasta 1960 con Clough, Ref. 6 nace por primera vez el nombre mágico de "Elemento Finito", derivando más correctamente las propiedades básicas del elemento triangular y el rectangular, y el hecho de que en el mismo tiempo la computadora comienza a ser una herramienta muy efecti va, conduce rápidamente a la solución numérica de problemas elástico lineales complejos, en los cuales una solución analítica no era posible.

Se inician la derivación de las propiedades de rigidez de los elementos finitos, el campo de desplazamientos en el medio se expresa en función de los desplaza mientos nodales del elemento, satisfaciendo continuidad, las fuerzas internas se definen aplicando el principio del traba jo virtual, la identidad de este proceso con el de minimizar la energía potencial total, o sea, el proceso de Rayleigh-Ritz Ref. 7 es obvia. El desarrollo anterior se acentúa en el campo de la Mecánica de Sólidos y posteriormente Zienkiewicz Ref. 13 y Wilson Ref. 14 lo

aplican en Mecánica de fluídos y en problemas de análisis de conducción de calor.

Piers "Presente solution processed parameters of cm 1921.

(a) a formers with a set of the set

8. B. C. LIGARDON M. L. C. L. C. C. P. M. S. Comp. do. do. 2010. A start strain of compared do. do. 2010. A start strain of explore a start strain of compared do. 2010. A start of compared, the start metal strain of compared do. 2010. A start of compared, the start of explore a start strain of compared, the start of explore a start strain of the start of the st

Se presenta al final una lista de referencias de importancia del método del elemento finito.

Al iniciar la determinación de esfuerzos y desplazamientos en cierto problema de diseño, las ecuaciones que gobiernan el problema en cualquier forma deben satisfacer equilibrio y continuidad.

El Método del Elemento Finito es un procedimiento analítico, y cuando se aplica a un medio continuo, éste se modela analíticamente subdividiéndolo en sub-regiones (los elementos finitos) en los que el comportamiento de cada uno es definido por grupos separados de funciones que supuestamente definen esfuerzos y desplazamientos en esa región, las funciones se seleccionan en forma tal que se satisfaga la condición de continuidad a través de todo el medio, por lo tanto, el método del elemento finito en común con las soluciones por series y diferencias finitas representa una aproximación a la solución del problema

a) Elemento estructural

b) Esfuerzos planos

Brisseller (* 1975) 1977 - Standard (* 1975) N

Alight states is a substate of the substate of th

٠. .

. .

3

•~ ...

-**i** (• •

~ ^ `

.

۰,

TIPOS DE ELEMENTOS.

Elementos que son usados comunmente en la práctica son ilustrados en la Fig. 5.

El elemento estructural simple, Fig. 5 (a), es un miembro de la familia total de elementos finitos. Cuando se usa con elementos del mismo tipo describe armaduras y estructuras espaciales. Cuando se combina con elementos de tipo diferente, especialmente con elementos de placa generalmente se describen miembros de rigidez.

Los elementos básicos en análisis por elementos finitos son placas delgadas con cargas contenidas en su plano (condición de esfuerzos planos), triangulares y cuadriláteros se ilustran en la Fib 5b. Se denominan básicos porque,los primeros desarrollos concernientes con el método se refieren a ellos.

Los elementos sólidos, Fig. 5 (c), son la generalización tridimensional de los elementos de esfuerzos planos. El tetrahedro y el hexaedro son las formas más comunes y son esenciales para modelar analíticamente problemas de mec<u>á</u> nica de suelos, rocas y estructuras nucleares. Es conveniente mencionar que la única forma práctica de resolver problemas tridimensionales prácticos, es el método de elementos finitos.

Uno de los campos más importantes de aplicación del método de elementos finitos es en el análisis de "sólidos axisimétricos", Fig. 5 (d). Una gran varie dad de problemas de ingeniería caen en esta categoría, incluyendo concreto, tan ques, recipientes nucleares, rotores, pistones, flechas de motores, y la cabeza de los roquets. Generalmente son medios de carga y geometría axisimétrica. - Dissel-UNAM

ΤŬ

En la Fig. 5 (d) se muestra el elemento triangular, también se usan secciones cuadriláteras.

Elemento de placa plana en flexión es empleado no solo en conección con el comportamiento de placas planas, sino también en cascarones y miembros de - pared delgada. Fig. 5 (e).

Estructuras de cascarón delgado axisimétricas, Fig. 5 (f), tienen el mismo rango de significado en la aplicación práctica que los sólidos axisimétricos. Sinembargo, las relaciones gobernantes se derivan de la teoría de cascarones delga dos.

Cuando una estructura de cascarón delgado que de hecho es curva, es preferible emplear elementos de cascarón curvos delgados para el modelo analítico, tienen la ventaja de describir más aproximadamente la superficie curva del casca rón, y la apropiada representación del acoplamiento de deformación y equilibrio entre cada elemento. Elementos típicos de cascarones de doble curvatura se mues tran en Fig. 5 (g). Gran número de formulaciones para este elemento existen.

ALGUNAS APLICACIONES DE ELEMENTOS FINITOS.

Examinaremos algunas aplicaciones delmétodo de elementos finitos en diseño estructural con el objeto de ilustrar la forma en la cual se usan los elementos de la Fig. 5, y la escala y complejidad de los problemas.

El desarrollo del método del elemento finito se debe a los investigadores relacionados con la industria aeronáutica. La Figura 6 muestra la forma en que - m

Production of the second of a mathematical second s

and a second of the second of

 A second sec second sec Marzo 15 de 1976.

11

se aplicó el análisis por elementos finitos de una porción del avión Boeing 747. La estructura del fuselaje de un avión consiste de laminas de aluminio ligadas a una estructura interna formada por armaduras y atiezadores. La experiencia ha mostrado que los efectos locales de flexión en el cascarón son desprecia bles, por lo tanto, se supone que consiste de elementos en condición plana de esfuerzos Fig. 5(b). El análisis de elementos finitos del Boeing 747, de la parte achurada, región que conecta el cuerpo o Cascarón Monocoque con las alas, área achurada en Fig. 6, consiste de 7000 incógnitas. Por lo tanto, es común en la práctica dividi r la estructura en regiones, o subestructuras, y analizar cada una por elementos finitos con el objeto de producir un superelemento. Los superelementos se ligan entre sí por medio de un procedimiento convencional que determina la fase final del análisis.

El esquema de subestructuración del Boeing 747 es mostrado en la Fig. 6 y los detalles son listados en la Tabla 1.

ŀ,	Sub- Estructura	Descripción	Nodos	Condición Carga	Elemento Viga	Elemento Placa	Grados liber tad interac- ción elemen- tos.	Grado de libertad total.
Γ	1	Ala	262	14	355	363	104	796
	2	Centro ala	267	8	414	295	198	880
	3	Cascarón						
l		Monocoque	291	7	502	223	91	1,026
	4	Cascarón M	213	5	377	185	145	-820
	5	Cascarón M	292	7.	415	241	200	936
	6	Caja Tren						
ł		Aterrizaje	170	10	221	103	126	686
	7	Cascarón M	285	6	392	249	233	909
	8	Caja Tren						
		Aterrizaje	129	10	201	93	148	503
	9	Cascarón M	286		497	227	92	1,038
Ŀ	TOTAL	2	,195	63	3,374	1,979	555	7,594

Tabla 1

Esquema de subestructuración del Boeing

eing 747

DEPEND DE

ANT SO 12 CO 12:00

y a construction of the

e j

÷.... a de la constante de Short Show and the second states of the second stat 1,77 1.10 1.5 . , 22 - Carrier Construction March 1990 TTAR PART DO DESTURY FROM THE SHOP AND · · · · 1117 C 1 the second state of the second second The state of the the second states and the second states and

-``

Fig 6 Boeing 747

,

,

DESFI-UNAM

Marzo 15 de 1976.

P. Ballesteros

13

Como es usual en el diseño de aviones, se hicieron pruebas en el prototipo y los resultados se compararon con la solución por elementos finitos, coinci diendo como se muestra en la Fig. 7

Fig. 7 Comparación entre análisis y experimentación del Boing 747

Es importante agregar que la respuesta dinámica de un avión es muy impor tante, así como su inestabilidad elástica es una forma importante de falla. Nin guno de estos fenómenos puede tratarse por los métodos simplificados, pero su análisis usando el método de elementos finitos ha probado ser muy aceptable.

Problemas similares se encuentran en Arquitectura Naval. Figura 8 una porción de una estructura de un transbordador. La parte plana es representada por elementos en estado plano de esfuerzos, Fig. 5 (b). Elementos estructu rales, Fig. 5 (a), son empleados en la representación de la estructura interna.

. 547 NO 12 46 10 T

1 4. Jaeren

DESFI-UNAM

Marzo 15 de 1976.

.4

El número total de incógnitas para definir las partes importantes de un barco es del orden de 50,000, y de nuevo se subdivide el problema en subestructuras obteniendo menos incógnitas.

Fig. 8 Análisis por elemento finito de Estructura de un transbordador

•

7 • • • • •

· .

-

-

.

-.

Υ. .

, ** `\

 \langle

Fig 9 Analisis por elementos finitos de un recipiente reactor de concreto presforzado

Requerimientos de seguridad en el diseño estructural de los reactores nucleares han causado que la industria use ampliamente el análisis por elementos finitos. Figura 9 (a) un recipiente reactor de concreto presforzado. Debido a la simetría es posible analizar solamente un doceavo de la estructura tot al, - -Fig. 9 (b). Su volumen se modela analíticamente en un ensamble de elementos tetaedrales y hexaedrales, Fig. 5 (c). En problemas de este tipo, el número de incógnitas es del orden de 20,000, y muy común hacer el análisis en condiciones no lineales en material y geometría.

•

H.

مر ۲۰ مر ۲۰

· · · · ·

DESFI-UNAM

Marzo 15 de 1976.

P. Ballesteros

No todos los problemas de aplicación del método de elementos finitos son de proporciones monumentales. Las figuras 10 y 11 muestran aplicaciones - básicas a ciertos problemas de ingeniería civil. Una forma de incrementar la eficiencia de diseño en secciones roladas de acero estructural es cortando el alma en la forma dentada mostrada en la Fig. 10 (a), colocando una sección sobre la otra y soldándolas, Fig. 10 (b). Y se obtiene una viga más aperalta-da reduciendo el acero en el alma, y por supuesto que en este problema rutina_rio de diseño, no es necesario el uso del método de elementos finitos.

Fig. 10 Análisis de elementos finitos de una viga aperaltada en celosía.

Un problema todavía más común es el de una viga de concreto reforzado, Fig. 11, para el cual se conoce muy poco respecto a la adherencia entre el acero de refuerzo y el concreto, y la formación y crecimiento de las grietas al aumentar la carga. La Figura 11 (a) muestra el modelo analítico de ele-

and in the set of the set

₩, ~

A CARLES AND A CAR ; i î

r , * ,

• • . . .

· · · · .

、 、

• - .

____X⁺

, ∧ √

,

. -

Y

Marzo 15 de 1976.

mentos finitos y la descripción de las trayectorias de grietas y las gráficas de esfuerzos se muestran en la Fig. 11 (b).

Los pocos ejemplos mostrados muestran que el método de elementos finitos puede ser usado ventajosamente en cualquier situación que se requiera la pre-dicción de esfuerzos y deformaciones internas, desplazamientos, vibraciones, inestabilidad elástica, mecánica de fluídos, transferencia de calor. Situaciones que se levantan de diversos campos que tradicionalmente han sido considerados como disciplinas ingenieriles separadas. Ejem., Ingeniería Civil, Mecánica, -Aeroespacial, Arquitectura Naval. El método del elemento finito proporciona una tecnología unificada de análisis en casi todos los campos.

Es nuestro intento en este curso desarrollar los conceptos teóricos básicos y estudiar problemas específicos de carácter práctico. Un compendio de tales problemas llenaría muchos volumenes, por lo tanto es recomendable consultar las memorias de congresos y publicaciones periódicas correspondientes.

PROGRAMAS DE PROPOSITOS GENERALES.

Se ha indicado que las ecuaciones del método de elementos finitos son de una forma tal que su carácter general permite teóricamente escribir un solo progra_ ma de computadora que resuelva la mayoría de los problemas que se presentan en la Mecánica de Medio Continuos. Programas de computadora con este objetivo, aún en escala restringida, son llamados programas "de propósitos generales". La ventaja de programas de propósitos generales no es sólo su capacidad,

•

DESFI-UNAM

ESFUERZOS PLANOS

Fig. 11 Análisis por elementos finitos de una viga de concreto reforzado.

i i i i i · ·

.

्र , , , >

-

-· · · ·

· · · · · ·

. . С

Marzo 15 de 1976.

sino también en la instrucción de los probables usuarios respecto a la interpretación de la documentación, los datos y procedimientos de entrada y salida de resultados.

El costo de desarrollo de un 'programa de propósitos generales es usualmente muy alto por lo que la amortización de la inversión es esencial. Ciertos programas de propósitos generales son codificados en un lenguaje computacional que permite operar el programa a muchas organizaciones diferentes localizadas en grandes separaciones geográficas. Otros programas de propó sitos especiales de limitada capacidad se usan en organizaciones industriales y gubernamentales con un costo menor en su desarrollo y operación.

Las cuatro componentes mostradas en el diagrama de flujo de la Fig. 12, son comunes en el desarrollo de programas de propósitos generales, <u>fase de</u> <u>datos de entrada</u>, requiere del usuario información del medio o materal, descripción geométrica de la representación por elementos finitos y las condiciones de carga y de frontera. Los programas de propósitos generales más sofisticados facilitan el proceso de entrada como propiedades constitutivas del material, almacenados previamente, esquemas de modelar analíticamente el medio, trazar esterográficamente la idealización por elementos finitos en forma tal que los errores pueden detectarse antes de efectuar los cálculos.

La fase de biblioteca de elementos finitos es de interés primordial en el curso. En ella se tienen los procesos de codificación formulativos para los elementos individualmente. La mayoría de los programas de propósitos generales contienen todos los elementos de la Fig. 5, así como ciertas otras alternativas de formulación para un tipo dado de elemento, por ejemplo el trián-

.

A.C. A. S. j j

.

ł

.

, -

•

12 .

· · · ·

,

,

T.

Fig. 12 Diagrama de flujo computacional en Análisis Estructural.

. .

-. .

•
gulo en flexión. Teóricamente el elemento biblioteca es de extremos abiertos y capaz de acomodar cualquier nuevo elemento de cualquier grado de complejidad.

La fase elemento de blibioteca recibe los datos almacenados y establece las relaciones algebráicas del elemento por medio de la aplicación de los procesos formulativos relevantes de codificación. Esta fase del programa de propósitos generales también incluye todas las relaciones algebráicas para interconectar los elementos vecinos y la conección del proceso en sí. Las operaciones posteriores producen un conjunto de ecuaciones algebráicas lineales simultáneas para representar la estructura completa por elementos finitos.

La fase so lución del programa de propósitos generales opera sobre las ecua ciones del problema formadas en la fase anterior. En el caso de un problema de análisis estructural solo significa la solución de un conjunto de ecuaciones lineales algebráicas. Soluciones para respuesta dinámica requerirán computaciones más extensas sobre la historia-tiempo de las cargas aplicadas. En algunos casos hay que operar en regiones subdivididas como en el caso del análisis del Boeing 747, o efectuar operaciones especiales en las ecuaciones construídas originalmente. Incluídas en esta fase están las operaciones necesarias de substitución para obtener todos los aspectos deseados de la solución.

La fase salida de resultados presenta el análisis con un registro de la solución sobre la cual se pueden tomar decisiones respecto al dimensionamiento estructural o diseño. El registro comunmente es presentado mediante una lista impresa de esfuerzos y desplazamientos de los respectivos elementos. Así como en la fase de entrada existe una fuerte tendencia a la representación gráfica de datos, -

. .

.

tales como gráficas de trayectorias principales de esfuerzos o modos de pandeo y vibración.

ALGUNOS PROGRAMAS DE PROPOSITOS GENERALES.

ICES-STRUDL II, Integrated Civil Engineering System, (ICES), MIT, Maneja problemas de deformación y esfuerzos planos, cascarones rebajados, sólidos tr<u>i</u> dimensionales, flexión de placas con y sin deformación axial. Su uso en problemas muy especializados resulta caro. ASKA, Automatic System for Kinematic Analysis. Desarrollado por J. H. Argyris, H. A. Kamel y otros en la Universidad de Stuttgar. Sistema general muy potente el cual incluye una biblioteca de 42 elementos diferentes. Puede ser costoso para un usuario especializado. SAP, A General Structural Analysis Program, elaborado por E. L. Wilson de Ja Universidad de California. Incluye análisis lineal estático y dinámico de estructuras elá<u>s</u> ticas, estructuras tridimensionales, sólidos axisimétricos, sólidos tridimensionales, esfuerzos y deformación plana, placas y cascarones.

Zienkiewcz, O.C., programa desarrollando en la Universidad de Wales, -Swansea. Incluye lo de los programas anteriores y problemas de Mecánica de Fluídos y transferencia de calor.

NASTRAN, NAsa STRuctural ANalysis. Desarrollado por U. S. National -Aeronautical and Space Administration para análisis elástico de varias estructuras incluye, análisis de expansión térmica, respuesta dinámica a cargas transitorias y exitaciones random, cálculo de valores característicos reales y complejos, esta bilidad dinámica. Ofrece capacidad limitad*e* para análisis no lineal.

х. Х 9 9 19

.

- ,

,

SAMIS, Structural Analysis and Matrix Interpretarive System. Desarrollado por jet Propulsion Laboratory, y Manned Spacecraft Center. Contiene un ele mento unidimensional general y elementos triangulares para deformaciones por flexión y membrana.

ELAS y ELAS 8, Equilibrium Problems of Linear Structures. Desarrollado por el Jet Propulsion Laboratory. Incluye una biblioteca de elementos unidamen sionales, triangulares, cuadriláteros, tetaedros, hexaedros, cónicos, sólidos axisimétricos de secciones cuadriláteros y triangulares.

MARC, elaborado por P. V. Marcal, incluye análisis lineal y no lineal de problemas de Mecánica de Medios Continuos.

Star Star 1985

- ı the second s

ς.

.

.

,

2

.

r

> 这个"好事"。 The second se

,

P. BALLESTEROS

LISTA DE REFERENCIAS EN ORDEN CRONOLOGICO DEL METODO DE ELEMENIOS FINITOS

(1) Hrenikoff, A., "Solution of problems in elasticity by the framework method," J. Appl. Mech. 8, A 169-175, 1941.

(2) McHenry, D., "A lattice analogy for the solution of plane stress problems,"J. Inst. Civ. Eng 21, 59-82, 1943.

(3) Newmark, N. M., "Numerical methods of analysis in bars plates and elastic bodies," "Numerical Methods of Analysis in Engineering," edited by L. E. Grinter, MacMillan (1949).

(4) Turner, M. J., Clough, R. W., Martin, H. C.., and Topp, L. J. ., Stiffness and deflection analysis of complex structures, "J. Aero Sci. 23, 805-823, 1956; AMR 10 (1957), Rev. 1776.

(5) Clough, R. W., "The finite element in plane stress analysis," Proc. 2nd. ASCE Conf. on Electronic Computation, Pittsburgh, Pa., Sept. 1960.

(6) Argyris, J. H., "Energy Theorems and structural analysis," Butterworth, London (1960). (Reprinted from Aircraft Eng. 1954-55); AMR 15 (1962), Rev. 2705.

(7) Clough, R. W., "The finite element method in structural mechanics," (Ch. 7 "Stress Analysis", O. C. Zienkiewicz and G. S. Holister, edited by, J. Wiley & Son (1965); chapter in AMR 2O (1967), Rev. 3942.

(8) Courant, R., "Variational methods for the solution of problems of equilibrium and vibration," Bull. Am. Math. Soc. 49, 1-23, 1943.

(9) Prager, W., and Synge, J. L., "Approximation in elasticity based on the concept of function space," Quart. Appl. Math. 5, 241-69, 1947.

(10) Synge, J. L., "The hypercircle in mathematical physics, Cambridge Univ. Press (1957); AMR 11 (1958), Rev. 733.

(11) Schmelter, J., "The energy method of networks of arbitrary shape in problems of theory of elasticity," Proc. IUTAM Symp. on Non-homogeneity in Elasticity and Plasticity, W. Olszak, edited by, Pergamon Press (1959).

(12) Zienkiewicz, O. C., and Cheung, Y. K., "Finite elements in the solution of field problems," Engineer, 200, 507-510, Sept. 1965.

>

(13) Wilson, E. L., and Nickell, R. E., "Application of finite element method to heat conduction analysis," Nuclear Eng. and Design 3, 1-11, 1966.

and a second s

Q

r

. ۰ ک

,

· , -

/

• •

. 25 ι. \$

٠. •

. . .

-

,

- 2 -

(14) Herrman, L., "Elastic and torsional analysis of irregular shapes," J. of Engnr. Mech. Div., Proc. ASCE 91, EM6, 11-19, 1965; AMR 19 (1966), Rev. 3444.

(15) Zienkiewicz, O. C., Arlett, P. L., and Bahram, A. K., "Solution of threedimensional field problems by the finite element method," Engineer, 224,547-550, Oct. 1967; AMR 21 (1968), Rev. 7898.

(16) Winslow, A. M., "Numerical solution of the quasi-linear Poisson equation in a non-uniform triangle mesh," J. Comp. Physics 1, 149-172, 1967.

(17) Pian, T. H. H., "Derivation of element stiffness matrices," J. AIAA 2, 576-577, 1964; AMR 17 (1964), Rev. 5128.

(18) Fraeijs de Veubeke, B., "Displacement and equilibrium models in the finite element method, " (Ch. 9 "Stress analysis"), O. C. Zienkiewicz and G. Holister, edited by, J. Wiley & Son (1965); Chapter in AMR 20 (1967), Rev. 3942.

(19) Fraeijs de Veubeke, B., "Bending and stretching of plates," Proc. Conf. Matrix Meth. in Struct. Mech. Wright-Patterson AFB, Olivio, 1965.

(20) Fraeijs de Veubeke, B., and Zienkiewicz, O. C., "Strain energy bounds in finite element analysis by slab analogy," J. Strain Analysis 2,265-271, 1967.

(21) Herrmann, L. R., "A bending analysis of plates," Proc. Conf. Matrix Methods in Struct. Mech. Wright-Patterson AFB, Ohio, 1965.

(22) Pian, T.H. H. and Tong, P., 'Basis of finite element methods for solid continua," Int. J. Num. Meth. in Eng. 1,3-28, 1969.

(23) Pian, T. H. H., "Derivation of element stiffness matrices by assumed stress distribution," J. AIAA 2, 1232-1336, 1964.

(24) Severn, R. T., and Taylor, D. R., "The finite element method for flexure of slabs when stress distributions are assumed," Proc. Inst. Civ. Eng. 34, 153, 170, 1966; AMR 20 (1967), Rev. 3213.

(25) Zienkiewicz, O. C., "The finite element method," McGraw-Hill (1967).

(26) Bazeley, G. P., Cheung, Y. K., Irons, B. M., and Zienkiewicz, O. C., "Triangular elements in bending-conforming and non-comforming solutions," Proc. Conf. Matrix Meth. Struct. Mech. Wright-Patterson AFB, Ohio, 1965.

(27) Mikhlin, S. G., "The problem of the minimum of a quadratic functional," Holden Day, San Francisco (1966).

· · ·

...

(a) A statistical description of the statistical description of the statistical description of the statistic description of the statistical description

x and the second sec

P. BALLESTEROS

....È.

- 3 -

(28) Pian, T. H. H., and Tong, Ping. "The convergence of finite element method in solving linear elastic problems," Int. J. Solids Struct. 3,865-880, 1967.

(29) Key, S. W., "A convergence investigation of the direct stiffness method," Ph. D. thesis, Univ. of Washington, Seattle, 1966.

(30) de Arrantes e Oliveira, E. R., "Theoretical foundation of the finite element method," Int. J. Solids Struct. 4,929-952, 1968; AMR 22 (1969), Rev. 7609.

(31) Adini, A., and Clough, R. W., "Analysis of plate bending by the finite element method," Nat. Sci, Found Rep. G. 7337, Univ. of Calif., Berkeley, 1961.

(32) Zienkiewicz, O. C., and Cheung, Y. K., "The finite element method for analysis of elastic isotropic and orthotropic slabs," Proc. Inst. Civ. Eng. 28, 471-488, 1964.

(33) Walz, J. E., Fulton, R. E., and Cyrus, N. J., Accuracy and convergence of finite element approximation, "Proc. 2nd Conf. Matrix Meth. in Struct. Mech., Wright-Patterson AFB, Ohio, 1968.

(34) Melosh, R. J., "Astiffness matrix for the analysis of thin plates in bending," J. Aero Sci. 28, 34-42, 1961; AMR 14 (1961), Rev. 3489.

(35) Crandall, S. H., "Engineering analysis," McGraw-H51, NY (1956); AMR 12 (1959), Rev. 1122.

(36) Szabo, B. A., and Lee, G. C., "Derivation of stiffness matrices for problems on plane elasticity by Galerkin method," Int. J. Num. Meth. Eng. 1,301-310, 1969.

(37) Zienkiewicz, O. C., and Parekh C. J., "Transient field problems--twoand three-dimensional analysis by iso-parametric finite elements," Int. J. Num. Meth. in Engr. 2-61-71, 1970.

(38) Oden, J. T., "A general theory of finite elements: I-Sopological considerations II-Application," Int. J. Num. Meth. Eng. 1,205-221; 247-260, 1969.

(39) Gallagher, R. H., "A correlation study of methods of matrix structural analysis," AGARDograph 69, pergamon Press (1962).

(40) Argyris, J. H., "Matrix methods of structural analysis," Proc. 14th meeting of AGARD, AGARDograph 72, 1962.

(41) Martin, H. C., "Introduction to matrix methods of subscrural analysis," McGraw-Hill, NY (1966).

.

· . .

.

- 4 -

(42) Southwell, R. V., "Relaxation methods in theoretical physics," Clarendon Press, Oxford (1946).

(43) Varga, R. S., "Matrix iterative analysis" Prentice-Hall, (1962).

(44) Griffin, D. S., and Kellog, R. B., "A numerical solution of axially symmetrical and plane elasticity problems," In. J. Solids and structures 3, 781-794, 1967; AMR 21, (1968), Rev. 3185.

(45) Gallagher, R. H., Padlog, J., and Bijlard, P. P., "Stress analysis in heated, complex shapes." J. Aero-Space Science 29, 700-707, 1962.

(46) Argyris, J. H., "Matrix analysis of three-dimensional elastic media. Small and large displacements, " J. AIAA 3, 45-51, 1965; AMR 18 (1965), Rev. 3951.

(47) Zienkiewicz, O. C., Irons, B. M., Ergatoudis, J., Ahmad, S. and Scott, F. C., "Iso-parametric and associated element families for two- and threedimensional analysis," (Ch. 13 of "Finite element method in stress analysis"), I. Holand and K. Bell, edited by, Tapir, Trondheim, Norway (1969).

(48) Irons, B. M., "Engineering application of numerical integration in stiffness method," J. AIAA 4, 2035-2037, 1966.

(49) Ergatoudis, J., Irons, B. M., and Zienkiewicz, O. C., "Curved, isoparametric quadrilateral elements in finite element analysis," Int. J. Solids & Struct. 4, 31-42, 1968; AMR 21 (1968), Rev. 6347.

(50) Ergatoudis, J., Irons, B. M., and Zienkiewicz, O. C., "Three-dimensional analysis of arch dams and their foundations, "Proc. Sym. on Arch Dams, Inst. Civ. Eng. London, 1968.

(51) Atkinson, B., Brocklebank, M. P., Card, C. C. M., and Smith, J. M., "Low Reynolds number developing flows," A. I. Chem. Fag. Journ. 15-548-553, 1969.

(52) Clough, R. W., and Tocher, J. L., "Finite element stiffness matrices for analysis of plates in bending, "Proc. Conf. Matrix Meth. in Struct. Mech., Wright-Patterson AFB, Ohio, 1965.

(53) Clough R. W., and Fellipa, C. A., "A refined quadrilateral element for analysis of plate bending," Proc. 2nd Conf. Matrix Meth. in Struct. Mech., Wright-Patterson AFB, Ohio, 1968.

(54) Bogner, F. K., Fox, R. L., and Schmit, A. L., "The generation of interelement compatible stiffness and mass matrices by use of interpolation formulas," Proc. Conf. Matrix Meth. in Struct. Mech., Wi ght-Patterson AFB, Ohio, 1965.

×

、

· :

. 5 -

(55) Bell, K., "A refined triangular plate bending element," Int. J. Num. Method. in Eng. 1, 101-122, 1969.

(56) Irons, B. M., "A conforming quartic triangular element for plate bending," Int. J. Num. Meth. in Eng. 1, 29-46, 1969.

(57) Argyris, J. H., Fried, I., and Schapf, D. W., "The TUBA family of plate elements for matrix displacement method," Aeronautical Journal R. Ae. Soc. 72,701-709, 1968; AMR 22 (1969), Rev. 5921.

(58) Bosshard, W., "Ein neues volltraglicher endliches Element for Plattenbiegung," Int. Ass. Bridge Struct. Eng. Bull, 28, 27-40, II 68.

(59) Cowper, G. R., Kosko, E., Lindberg, C. M., and Olson, M. D., "Formulation of a new triangular place bending element," Trans. Canadian Acro Space Inst. 1,86-90, 1968; AMR 22 (1969) Rev. 4068.

(69) Grafton, P. E., and Strome, D. R., "Analysis of axisymmetric shells by the direct stiffness method," J. AIAA 1, 2342-2347, 1963.

(61) Zienkiewicz, O. C., and Cheung, Y. K., "Finite element method of analysis for arch dam shells and comparison with finite difference procedures," Proc. Symp. on Theory of Arch Dams Pergamon Press (1965).

(62) Connor, J. I., and Brebbia, C., "Stiffness matrix for shallow rectangular shell element," J. of Engnr. Mech. Div. Proc. ASCE 93, 13-63, 1967; AMR 21 (1968), Rev. 7391.

(63) Stricklin, J. A., Navaratna, D. R., and Pian, T. H. H., "Improvements in the analysis of shells of revolution by matrix displacement method (curved elements)." J. AIAA 4, 2069-2072, 1965; AMR 20 (1967), Rev. 9219.

(64) Ahmad, S., Irons, B. M., and Zienkiewicz, O. C., "Curved thick shell and membrane elements with particular reference to axisymmetric problems," Proc. 2nd Conf. on Matrix Meth. In Struct. Mech., Wright -Patterson AFB, Ohio, 1968.

(65) Ahmad, S., Irons, B. M., and Zienkiewicz, O. C., "Analysis of thick and thin shell structures by general curved elements," to be published in Int. J. Num. Meth. in Engr.

(66) Argyris, J. H., "Elasto-plastic matrix displacement analysis of threedimensional continua," J. Roy Aero Soc. 69, 633-635, 1965; AMR 19 (1966), Rev. 3470.

(67) Marcal, P. V., and King, I. P., "Elastic-plastic analysis of two-dimensional stress systems by the finite element method," Int. J. Mech. Sci. 9,143-155, 1967; AMR 20 (1967), Rev. 7686.

.

.

، بر ، من من المحمد ا من من من محمد المحمد

~ . - 6 -

(68) Popov, E. P., Khojastch-Bakht, M., and Yaghmai, S., "Bending of circular plates of hardening material," Int. J. Solids and Struct. 3,975-988, 1967; AMR 21 (1968), Rev. 3240.

(69) Zienkiewicz, O. C., Valliappan, S., and King, I. P., "Elasto-plastic solutions of engineering problems, Initial stress, finite element approach," Int. J. Num. Meth. in Eng. 1,75-100, 1969.

(70) Zienkiewicz, O. C., Valliappan, S., and King, I. P., "Stress analysis of rock as a no-tension material," Geotechnique 18, 56-66, 1968; AMR 22 (1969), Rev. 3296.

(71) Yamada, Y., Yashimura, N., and Sakurai, T., "Stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method," In. J. Mech. Sci, 10, 343,354, 1968; AMR 22 (1969), Rev. 2330.

(72) Reyes, S. F., and Deere, D. U., "Elasto-plastic analysis of underground openings by the finite element method," Proc. 1st Int. Congr. Rock Mech II, 477-486, 1966.

(73) Zienkiewicz O. C., Watson, M., and King. I. P., "A numerical method of visco-elastic stress analysis," Int. Journ. Mech. Sci. 30,807-827, 1968; AMR 22 (1969), Rev. 8419.

(74) Creenbaum, G. A., and Rubinstein, M. F., "Creep analysis of axisymmetric bodies using finite elements," Nucl. Eng. and Design 7,379-397, 1968,

(75) Goodman, R. E., Taylor, R. L., and Brekke, T., "A model for the mechanics of jointed rock," J. of Soil Mech. and Found. Div., Proc. ASCE 94, 637-659, 1968; AMR 21 (1968), Rev. 8177.

(76) Zienkiewicz, O. C., and Valliappan, S., "Analysis of yeal structures for creep, plasticity and other complex constitutive laws," Couf. on Materials in Civ. Eng. Univ. of Southampton, 1969, J. Wiley (1970).

(77) Martin, H. C., "On the derivation of stiffness matrices for the analysis of large deflection and stability problems," Proc. Conf. Matrix Meth. in Struct. Mech., Wright-Patterson AFB, Ohio, 1965.

(78) Gallagher, R. H., and Padlog, J., "Discrete element opproach to structural instability analysis" J. AIAA 1,1437 1439, 1963.

(79) Kapur, K. K., and Hartz, B. J., "Stability of thin plates using the finite element method," J. of Engnr. Mech. Div., Proc. ASCE 90, 177-195, 1966; AMR 20 (1967), Rev. 4676.

(80) Anderson, R. G., Irons, B. M., and Zienkiewicz, O. C., "Vibration and stability of plates using finite elements," Int. J. Solids and Struct. 4, 1031-1055, 1968; AMR 22 (1969), Rev. 6815.

eografica a

•

5

• • .

> . .

P. BALLESTEROS

- 7 -

(81) Gallagher, R. H., and Yang, H. T. Y., "Elastic instability predictions for doubly curved shells," Proc. 2nd Conf. Matrix Meth. in Struc. Mech., Wright-Patterson AFB, Ohio, 1968.

(82) Carson, W. G., and Newton, R. E., "Plate bucking analysis using a fully compatible finite element," J. AIAA 8, 527-529k 1969.

(83) Turner, M. J., Dill, E. H., Martin, H. C., and Melosh, R. J., "Large deflection of structures subject to heating and external loads, "]. Aero. Sci. 27,97-106, 1960.

(84) Marcal, P. V., "Finite element analysis of combined problems of material and geometric behavior," Techn. Rep. 1 ONY, Brown University, March 1969.

(85) Brebbia, C., and Connor, J., "Geometrically non-linear finite element analysis," J. of Engnr. Mech. Div., Proc. ASCE 95, 463-483, 1969.

(86) Marcal, P. V., "Effect of initial displacement on problem of large deflection and stability," Techn. Report ARPA E54, Brown University, Nov. 1967.

(87) Oden, J. T., "Finite element large deflection analysis of plates," J. Engr. Mech. Div., Proc. ASCE 95, 143, 1969.

(88) Murray, D. W., and Wilson, E. L., "Finite element postbuckling analysis of thin elastic plates," J. AIAA 7, 1915, 1969.

(89) Schmit, L. A., Boyner, F. K., and Fox, R. L., "Finite deflection structural analysis, using place and cylindrical shell discrete elements," J. AIAA 5, 1525-7, 1968.

(90) Oden, J. T., and Sato, T., "Finite strains and deformations of elastic membranes by the finite element method," Int. J. Solids and Struct. 3, 471-478, 1967; AMR 22 (1969), Rev. 7672.

(91) Oden, J. T., "Finite plane strain of incompressible elastic solids by the finite element method," The Aeronautical Quarterly, 18, 254-264, 1967.

(92) Zienkiewicz, O. C., Mayer, P., and Cheung, Y. K., 'Solution of anisotropic seepage problems by finite elements," J. of Engr. Mech. Div., Proc. ASCE 92, 111-120, 1966.

(93) Taylor, R. L, and Brown, C. B., "Darcy flow solution with a free surface," J. of the Hydr. Div., Proc. ASCE 92,25-33, 1967; AMR 32 (1969), Rev. 702.

(94) Martin, H. g., "Finite element analysis of fluid flows," Proc. 2nd Conf. Matrix Meth. in Struct. Mech., Wright-Patterson AFB, Orico, 1968.

*

. '

1 . * ...

(95) Ariett, P. L., Bahrani, A. K., and Zienkiewicz, O. C., "Application of finite elements to the solution of Helmholtz's equation (wave guides)," Proc. Inst. El. Eng. 115, 1762-1964, 1968.

(96) Zienkiewicz, O. C., and Newton, R. E., "Coupled vibrations of a structure submerged in a compressible fluid," Int. Symp. on finite element techniques in shipbuilding, Stuttgart, 1969.

(97) Taylor, C., Patil, B. S., and Zienkiewicz, O. C., "Harbour oscillation in a numerical treatment for undampted modes," Proc. Inst. Giv. Eng. 43, 1941-155, 1969.

(98) Archer, J. S., and Rubin, C. P., "Improved linear axisymmetric-shell fluid model for launch vehicle longitudinal response analysis," Proc. Conf. Mat. Meth. in Struct. Mech., Wright-Patterson AFB, Ohio, 1965.

(99) Zienkiewicz, O. C., Irons, B., and Nath P., "Natural frequencies of complex free or submerged structures by the finite element method," Symp. on Vibration in Civ. Eng., Inst. Civ. Eng., (Butterworth), London, 1965.

(100) Sandhu, R. S., and Wilson, E. L., "Finite element analysis of seepage in elastic media," J. of Engnr. Mech. Div., Proc. ASCE 95, 641-651, 1969.

(IOI) Rashid, Y. R., "Three-dimensional analysis of elastic solids," Int. J. Solids Struct., "Part I: Analysis procedure," 5, 1311-33, 1969; Part II: "The computational problem, "6, 195-207, 1970.

(102) Irons, B. M., "A frontal solution program for finite element analysis," Int. J. Num. Meth. in Eng. 2, 5-32, 1970.

(103) johnson, W. M., and Mclay, R. W., "Convergence of the finite element method in the theory of elasticity," J. Appl. Mech. Trans. ASME, 274-278, June 1968.

(104) Przemieniecki, J. S., "Theory of matrix structural analysis," McCraw-Hill, 1968.

(105) Jenkins, W. M., "Matrix and digital computer methods in structural analysis," McGraw-Hill, 1969.

(106) Pope, G. G., "The application of the matrix displacement method in plane clastoplastic stress problems," Proc. Conf. Matrix Meth. in Struct. Mech., Wright-Patterson AFB, Ohio, 1965.

(107) Miller, R. E. and S. D. Hansen, "Large Scale Analysis of Current Aircraft," On General Purpose Finite Element Computer Programs, P. V. Marcal (ed), ASME Special Publication, New York, N. Y., 1970.

· · · ••

2**-**1 - - 3 ²²

· · · · · ·

- 1 .

L , ;

. .

- 9 -

(1Q8) Smith, C. S. and G. Mitchell, "Practical Considerations in the Application of Finite Element Techniques to Ship Structures," Proc. of Symposium on Finite Element Techniques, U. of Stuttgart, Stuttgart, Germany₂ june, 1969.

(109) Corum, J. M. and J. E. Smith, "Use of Small Models in Design and Analysis of Prestressed-Concrete Reactor Vessels," Report ORNL-4346, Oak Ridge Nat. Lab., Oak Ridge, Tenn., May, 1970.

(110) Cheng, W. K., M. U. Hosain, and V. V. Neis, "Analysis of Castellated Beams by the Finite Element Method," Proc. of Conf. on Finite Element Method in Civil Eng., McGill U., Montreal, Canada, 1972, pp. 1105-1140.

(111) Gallagher, R. H., "Large -Scale Computer Programs for Structural Analysis" in On General Purpose Finite Element Computer Programs, P. V. Marcal (ed.), ASME Special Publication, 1970, pp. 3-34.

(112) Marcal, P. V., "Survey of General Purpose Programs for Finite Element Analysis," in Advances in Computational Methods in Structural Mechanics and Design, J. T. Oden, et al. (ed.), U. of Alabama Press, University, Ala., 1972.

(113) Gallagher, R. H. and O. C. Zienkiewicz, Optimum Structural Design, John Wiley & Sons, Inc., New York, N. Y., 1973.

A Product of the

, 1 °; (• • ,

L

. .

. .

.

·

Ĩ

-L

-

; ,

FINITE ELEMENT METHOD THEORY AND APPLICATION

1. INTRODUCTION

1.1 HISTORICAL BACKGROUND

The finite element method (FEM) has become a powerful numerical technique for solving complex problems in science and engineering, mainly due to the advances made earlier in the numerical methods particularly in matrix methods as well as due to the rapid introduction of high speed computers in the market. However, the introduction of concepts and applications of FEM dates back to the era of mathematicians who tried to calculate the perimeter and area of a circle by idealizing it as a regular polygon. Ιt is also interesting to note that the bound solutions which are often discussed in FEM can be traced back to the solution of the area of a circle. If the circle is modelled with an inscribed polygon, a lower bound solution is obtained whereas an upper bound solution is obtained by replacing the circle by a circums cribed polygon. Even though the basic concepts of FEM existed for over two thousand years, for all practical purposes, one can only say that these concepts were actually used for solving physical problems in 1950s by the aeronautical engineers.

In 1956, Turner et al (Ref 1) presented the stiffness analysis for the complex structures, which is the starting point in the rediscovery of FEM. Nevertheless, Clough (Ref 2) was the one who actually used the term FEM in 1960. Since then, a tremendous amount of research has been done in this field ano-

•

-. **. .**

-

.

(

quite a large number of papers have been published in almost all the journals related to all fields of engineering as well as some in the fields of mathematics and science. In addition, several conferences have been held all over the world and hundreds of papers have been presented in each. The theory and application of FEM have also been presented in numerous text books (Ref 3-22). In order to help the research workers in tracing the references required for their particular work several bibliographics have either been published or under preparation, among them notably Ref (23) is a good source of information.

1.2 APPLICATIONS OF FEM

The FEM is applicable to a variety of boundary value and initial value problems in engineering as well as applied science. Some of these applications are:

- Stress Analysis of Structures, Stability of Structures, Dynamic response of structures, Thermal Stress Analysis, Torsion of prismatic members
- Stress Analysis of Geomechanics problems, Soil-Structure Interaction, Slope Stability problems, Soil Dynamics and Earthquake Engineering, Seepage in soils and rocks, Consolidation settlement
- 3. Solutions in Fluid Mechanics, Harbour Oscillations, Pollution Studies, Sedimentation
- 4. Analysis of Nuclear Reactor Structures
- 5. Stress Analysis and Flow Problems in Biomechanics
- 6. Characteristic Study of Composites in Fibre Technology
- 7. Wave Propagation in Geophysics
- 8. Field Problems in Electrical Engineering

.

······

Apart from the above mentioned areas, the FEM is also applicable to any other problem as long as the analyst makes certain that the problem is amenable to solution based on the assumptions introduced in the formulation of FEM and appropriate material properties can be provided in a realistic manner.

1.3 METHODS OF ANALYSIS

In general, there are four basic methods of analysis in FEMdisplacement method, equilibrium method, mixed method and hybrid method. The field variables or unknown quantities in each of these methods are as follows.

Displacement method - displacements and their derivatives Equilibrium method - stress components Mixed method - some displacements and some stress components Hybrid method - displacements or boundary forces

In the displacement method, smooth displacement distribution is assumed within an element, interelement compatibility of displacement is generally assured and minimum potential energy criterion is used in the formulation.

In the equilibrium method, the interior stress distribution is assumed to be smooth, the equilibrium of boundary tractions is maintained and the minimum complimentary energy is the basis for the formulation.

In the mixed method which is generally used for plate and shell problems, both displacements and stresses are assumed smooth

*

. (* . . . ार्ग्स इतेः

r -50,63.

, , · . .

.

.

. ٢

`

, **1**, 1

ŕ

in the interior, the displacement components and the equivalent stress components are considered to be continuous at the interelement boundaries and the formulation is based on Reissner's principle.

In the hybrid method, depending on whether the model is displacement type or equilibrium type, the distribution of displacements or stresses within the element is considered to be smooth and along the interelement boundary either assumed compatible displacements or assumed equilibrating boundary tractions are ensured and either modified complementary energy or modified potential energy principle is adopted for the formulation.

Among these four methods, the displacement method is the most widely used approach. However, for plate bending problems either the equilibrium or mixed method is preferred and for some field problems hybrid method is more suitable.

1.4 DESCRIPTION OF FEM

A structure, continuum or a domain is divided into a number of arbitrary shaped parts or regions known as <u>elements</u>. These elements are interconnected at joints known as <u>nodes</u>. The principal unknown is termed as the <u>field vaniable</u>. This field variable can be displacement, temperature, pore-pressure or stress. The distribution of the field variable within an element is approximated by the use of certain polynomial functions. Variational methods or residual methods are employed

(m) and cause of the dimplecement of provident end who end on the complete complete end of the construction of the construc

e caracteristic caracteristic

· -

to develop the finite element equations which relate the field variables at the nodes to the corresponding action vector at the nodes of the element. This relationship is provided by the so called property matrix which is based on the material and the geometric properties of the element. Finally these finite element equations are assembled to form a system of algebraic equations for the entire domain. The unknown field variable is obtained by solving this system of algebraic equations.

1.5 BASIC STEPS IN FE ANALYSIS

The basic steps in the finite element analysis of general problems are as follows.

- 1. The continuum is divided into finite elements of any arbitrary shape.
- 2. A suitable polynomial is chosen to represent the distribution of the field variable within an element in terms of its nodal values. Thus, the field variables at the nodes become the primary unknowns.
- 3. Using variational methods or residual methods, the finite element equations are formulated.
- The individual finite element equations obtained in step 3 are assembled to form a set of algebraic equations for the overall continuum.
- 5. The solution of the algebraic equations obtained in step 4 yields the values of the field variables at the nodes.
- From the field variables at the nodes, the secondary variables such as stress, strain for an element can be obtained.

A second the contract of the second se

.

REFERENCES

1

1. TURNER, M. J., CLOUGH, R. W., MARTIN, H. C., and TOPP, L. J., "Stiffness and deflection analysis of complex structures", J. Aero, Sci., Vol. 23, No. 9, 1956, pp 805-823

•

- CLOUGH, R. W., "The finite element method in plane stress analysis", Proc. 2nd ASCE Conf. on Electronic Computation, Pittsburgh, 1960, pp 345-378
- ZIENKIEWICZ, O. C. and CHEUNG, Y. K., The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, London, 1967
- 4. ZIENKIEWICZ, O. C., The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971
- 5. SMITH, G. N., An Introduction to Matrix and Finite Element Methods in Civil Engineering, Applied Science, London, 1971
- 6. DESAI, C. S. and ABEL, J. F., Introduction to the Finite • Element Method, Van Nostrand and Reinhold, New York, 1972
- 7. ODEN, J. T., Finite Elements of Nonlinear Continua, McGraw-Hill, New York, 1972
- 8. URAL OKTAY, Finite Element Method, Intext Educational Publishers, New York, 1973
- 9. MARTIN, H. C. and CAREY, G. F., Introduction to Finite Element Analysis, McGraw-Hill, New York, 1973
- 10. STRANG, G. and FIX, G. J., An Analysis of the Finite Element Method, Prentice Hall, N. J., 1973
- 11. BREBBIA, C. A. and CONNOR, J. J., Fundamentals of Finite Element Technique, Butterworths, London, 1973
- 12. NORRIS, D. H. and de VRIES, G., The Finite Element Method-Fundamentals and Applications, Academic Press, New York, 1973
- 13. COOK, R. D., Concepts and Applications of Finite Element Analysis, John Wiley, New York, 1974
- 14. WACHPRESS, E. L., A Rational Finite Element Basis, Academic Press, New York, 1975
- 15. FENNER, R. T., Finite Element Method for Engineers, MacMillan Press, London, 1975
- 16. GALLAGHER, R. H., Finite Element Analysis-Fundamentals, Prentice-Hall, N. J., 1975

-

1

.
- 17. HUEBNER, K. H., The Finite Element Method For Engineers, John Wiley, New York, 1975
- 18. ROCKEY, K. C., et al, The Finite Element Method, Crosby, Lockwood, Staples, London, 1975
- 19. CONNOR, J. J. and BREBBIA, C. A., Finite Element Techniques for Fluid Flow, Butterworths, London, 1976
- 20. ODEN, J. J. and REDDY, J. N., An Introduction to Mathematical Theory of Finite Elements, John Wiley, New York, 1976
- 21. SEGERLIND, L. J., Applied Finite Element Analysis, John Wiley, New York, 1976
- 22. BATHE, K. J. and WILSON, E. L., Numerical Methods in Finite Element Analysis, Prentice-Hall, N. J., 1976
- 23. NORRIE, D. H. and de VRIES, G., "A Finite Element Bibliography (3 Parts), Report No. 57, Mechanical Engineering Department, The University of Calgary, Canada, 1974

e e este

· i ·

, .

κ. -

.

x · •

.

.

DESFI-UNAM Margo-1976 P. Ballesteros o
De la Fig. II ace plando el principio de superposision
se tiene:

$$m_{p}^{i} = k_{pp}^{i} \vartheta_{p} + k_{pp}^{i} \vartheta_{p} + k_{pr}^{i} S_{r} + k_{ps}^{i} S_{s} + \mu_{p}^{i}$$

 $m_{q}^{i} = k_{pp}^{i} \vartheta_{p} + k_{pq}^{i} \vartheta_{q} + k_{pr}^{i} S_{r} + k_{ps}^{i} S_{s} + \mu_{p}^{i}$
 $m_{q}^{i} = k_{pp}^{i} \vartheta_{p} + k_{pq}^{i} \vartheta_{q} + k_{pr}^{i} S_{r} + k_{ps}^{i} S_{s} + \mu_{q}^{i}$
 $p_{r}^{i} = k_{pp}^{i} \vartheta_{p} + k_{pq}^{i} \vartheta_{q} + k_{pr}^{i} S_{r} + k_{ps}^{i} S_{s} + V_{s}^{i}$
 $p_{r}^{i} = k_{pp}^{i} \vartheta_{p} + k_{pq}^{i} \vartheta_{q} + k_{pr}^{i} S_{r} + k_{ps}^{i} S_{s} + V_{s}^{i}$
 $p_{r}^{i} = k_{pp}^{i} \vartheta_{p} + k_{pq}^{i} \vartheta_{q} + k_{pr}^{i} S_{r} + k_{ps}^{i} S_{s} + V_{s}^{i}$
 $p_{r}^{i} = k_{pp}^{i} \vartheta_{p} + k_{pq}^{i} \vartheta_{q} + k_{pr}^{i} S_{r} + k_{ps}^{i} S_{s} + V_{s}^{i}$
 $p_{r}^{i} = k_{pp}^{i} \vartheta_{p} + k_{pq}^{i} \vartheta_{q} + k_{pr}^{i} S_{r} + k_{ps}^{i} S_{s} + V_{s}^{i}$
 $en (11) Se desplecia el efecto de la carga normal exple-
saubo(11) matricialmente se thene
 $\{m_{1}^{i} = [k_{p}]_{i}^{i} \{S_{1}^{i} = {\theta_{p} \atop S_{s}}}, \{\mu_{1}^{i} = {\mu_{p} \atop V_{s}} \\ \{m_{1}^{i} = {m_{p}} \atop \{m_{1}^{i} \{S_{1}^{i} = {\theta_{p} \atop S_{s}}}, \{\mu_{1}^{i} = {\mu_{p} \atop V_{s}} \\ \{m_{1}^{i} \} \\ (node: {\mu_{p} \atop K_{s}})_{i}^{i} \\ \{m_{1}^{i} = {m_{p}} \atop \{p_{s} \}_{i}^{i} \{S_{1}^{i} = {\theta_{p} \atop S_{s}} \\ \{m_{1}^{i} \} \\ \{m_{1}^{i} \} \\ (m_{1}^{i}] \\ (m_{1}^{i}] \\ (m_{2}^{i}] \\ (m_{2}^{i}] \\ (m_{2}^{i}]] \\ (m_{2}^{i}] \\ (m_{2}^{i}]] \\ (m_{1}^{i}]]] \\ (m_{2}^{i}]]] \\ ($$

.

DESFI-UNAM Margo-1976 P. Ballesteros

La fibrofia bóssica del método de las rigidores ha sido presentada, antes de aplicarlo a diversos sistemas estructurales su procedimiento conviene organizarlo en un programa eistemático y las ecuaciones básicas del analisis presentarlas en términos generales. Como ejemplo consideraremos el imarco riguente.

(1.4)

S

r . .

/ - - - -

> , ,

DESFI-UNAM Margo-1976 P. Ballesteros El pórtico de la Fig. 1.2 es indeterminado de tercer grado con Di, Oz y Sz, por que las condiciones de. aboyo anulan a Si, SE, BE, ST, BE, Sq. Como primera etapa considera mos la estrutura con los nudos fijos determinando la suma de momentos y cortantes correspondientes 5mo. Aplicando las ecuaciones (1.1) al marco de la Fig.1.2 $[m] = k_{11}B_1 + k_{16}(0) + k_{13}B_3 + k_{17}(0) + \mu_1'$ $\begin{array}{c} \Pi_{6}^{1} = k_{61} \Theta_{1} + k_{66}(0) + k_{63} S_{3} + k_{67}(0) + \mu_{6} \\ \Psi_{3}^{1} = k_{31} \Theta_{1} + k_{36}(0) + k_{33} S_{3} + k_{37}(0) + V_{3} \\ \Psi_{3}^{1} = k_{71} \Theta_{1} + k_{76}(0) + k_{73} S_{3} + k_{77}(0) + V_{7} \\ \end{array}$ (1.5) $\begin{bmatrix} M_{1}^{2} = k_{11}^{2} \Theta_{1} + k_{12}^{2} \Theta_{2} + k_{14}^{2}(0) + k_{15}^{2}(0) + \mu_{1}^{2} \\ M_{2}^{2} = k_{21}^{2} \Theta_{1} + k_{12}^{2} \Theta_{2} + k_{24}^{2}(0) + k_{25}^{2}(0) + \mu_{2}^{2} \end{bmatrix}$ 3 JR mbro (1.6) $= \frac{1}{p_4^2} = \frac{1}{k_{51}} \frac{1}{\theta_1} + \frac{1}{k_{52}} \frac{1}{\theta_2} + \frac{1}{k_{54}} \frac{1}{\theta_2} + \frac{1}{\theta_2} \frac{1}{\theta_1} + \frac{1}{\theta_{55}} \frac{1}{\theta_2} + \frac{1}{\theta_{55}} \frac{1}{\theta_2} + \frac{1}{\theta_{55}} \frac{1}{\theta_2} + \frac{1}{\theta_{55}} \frac{1}{\theta_{55}} \frac{1}{\theta_{55}} + \frac{1}{\theta_{55}} \frac{1}{\theta_{55}} \frac{1}{\theta_{55}} + \frac{1}{\theta_{55}} \frac{1}{$ $\begin{pmatrix} m_2^3 = k_{22} \theta_2 + k_{28}^3(0) + k_{23}^3 S_3 + k_{29}^3(0) + \mu_2^3 \\ m_8^3 = k_{82} \theta_2 + k_{88}^3(0) + k_{83}^3 S_3 + k_8^3(0) + \mu_8^3 \\ \end{pmatrix}$ ю Membro (1-7) $-\left(R_{3}^{3}=R_{32}^{3}\Theta_{2}+R_{38}^{3}(0)+R_{33}^{3}S_{3}+R_{39}^{3}(0)+\sqrt{7}_{3}^{3}\right)$ $\hat{P}_{q} = \hat{R}_{q2} \hat{\Theta}_{2} + \hat{R}_{q8}(0) + \hat{R}_{q3} \hat{S}_{3} + \hat{R}_{qq}(0) + V_{q}^{3}$

•

DESFI-UNAM Margo-1976 P. Ballesteros 5
Como se de mostro plevia mente el analitais
Ne la estructua indeterminada de la Fig. 1.2
puede ser evaluado de

$$[5ij]{Si} = {9i}$$
 (.8)
en el aoso de la Fig 1.2, (1.9) es igual a
 $[Sin Siz Siz]{9} = {9i}$ (.8)
en el aoso de la Fig 1.2, (1.9) es igual a
 $[Sin Siz Siz]{9} = {4i}$ (1.9) (1.9) es igual a
 $[Sin Siz Siz]{9} = {4i}$ (1.9)
 $Sin Siz Siz Siz Siz]{9} = {4i}$ (1.9)
 $Sin O = {1}$ (1.9)
 $Sin O = {1}$ (1.9)
 $Siz = {1}$ (1.9)
 Si

۰

.

Ţ

, ...'

)

17

(

. .

Margo-1976 P. Ballesteros DESFI-UNAM 8 Ð, H21+H23 SII_SIZ SI3 SIA SI5 SI6 SI7 SI8 SIA U32+U34 Θz S21 S22 S23 S24 S25 S26 S27 S28 S29 \circ $J_{21}^{1} + V_{21}^{3}$ S31 S32 S33 S34 S25 S36 S37 S38 S39 53 SAI SAZ SA3 SA4 SA5 SA6 SA7 SA8 SA9 84 R (111)S51 502 S53 S54 S35 S56 S57 S58 S59 85 R5 S61 S62 S63 S64 S65 S66 S67 S68 S69 66 R6 SII SI2 SI3 SI4 SI5 SI6 SI7 SI8 SIA 87 R S&1 SB2 S&3 S&4 S&5 S&6 S&7 S&8 S&9 Ðs R8 Sal Saz Saz Saz Saz Saz Saz Saz Saz Saz 89 Rq ∇^{3}_{43} {S} {M} {R} Ski Expresando (1.11) matricialmente con la motación indicada (1.12) $[G_{Re}]\{S_{i}\} + \{\mu\}_{e} = \{R\}$ El analisis por el métado de las rigideoss se reduce a evaluar, de (1.8) (Sit o sea {Si} = [Si] - {Qi} (1.13)y substituyendo (1.13) en (1.2) se obtienre para cada barra $\{m_i\} = [k]_i [S_{ij}]' \{Q_i\} + \{\mu\}_i$ (1.14) y las reacciones se obtienen substituyendo (1.13) en (1.12)

{R}=[Spe][Sij] Pit + White

(1.15)

C

)

· · · ·

DESFI-UNAM Marzo de 1976 P. Ballesteros 9 METODO DE LAS RIGIDECES DE ANALISIS 2 ESTRUCTURAS TRIDIMENCIONALES DE 2.1 ELEMENTO sistema de referencia global $\overline{\mathsf{X}}$ YYX, M12 Į M5 y ma >3 sistema de referencia local Fig. 2.1 <u>Elemento viga</u>; ejes 4,3 son centroidales y principales ($Q_{Y} = Q_{3} = I_{YZ} = 0$) El elemento estructual j. R, se supone una bana capaz de resistir fuerzas axiales, momentos flectores respecto a dos ejes principales en él plano de la sección transversal, y momentos de torsion respecto a su eje centroidal. Las siguientes fuerzas actuan en la viga jk: Fuergas axiales (P. y fr. ; Fuergas cortantes Pz, P3, Pay Pq; Momentos flectores ms, mo, ming miz; y Momentos de torsion mi mo. la localización y dirección positiva se muesta en tig. 2.1

ı.

۵ ۲ ~ ,

. .

as all i

. .

· DESFI-UNAM Margo de 1976 P. Ballesteros Los desplazamientos correspondientes seran 12, 12, 12, 13, ..., 112 seran posifivos en la dirección positiva de las fuergas. La posisión del elemento viga je sera especificado por las coordenadas del extremo j y los cosenos directores del eje x (dirección j k) y del eje y con respecto al sistema global (Z, J, 3) La matriz de rigidez del elemento viga será de 12×12, pero siempre es posible integrarla con serbina linces de 2x2 y dx4. De la teoría de flexion y torsion de vigas las fuerzos pig Ri dependen solo de sus desplazamientos correspondientes; lo mismo es cierto para los momentos torsionantes Ma y Mio. Sinembargo, para una selección arbitraria de los planos de flexión, los nomentos flectores, y fuerzaz de corte en él plano xy dependerian no solo de sus desplazamiento correspondientes pers también en los despagamientos correspondientes a las fuerzo en los planos Xy. Solamente si los xy y xz coinciden con los ejes principales de la sección transversal puede considerarses la flexión y corte sobre dichos planos independiente una de la otra.

, ,

R19 R10 R1,11 R1,12 R17 \$18 R13 R14 R15 R16 k. Riz 8, P, Ø, P. Ballesteros R25 R26 R27 R28 R29 - R310 R211 R22 P_2 R23 R24 82 Rz,12 R21 P2 R31 R3,12 P_3 R33 83 B R4,12 RA1 μa Ð₄ R44 M4 R5,12 REI Ц5 Ô5 M5 RGI R6,12 R61 96 Щь Ms + R7,12 R-1 Si P Þ٦ Marzo-1976 Rai k33 Ra,12 Po 88 1/8 Simetrica Rai Pa Ra, 12 Sq pa Rag R10,12 R10,1 Rigio 010 Дю MID R 11, 12 Riji RIJI Ðıı μ_{u} MII Riz,1 Riz, 12 ·Oiz Miz Miz DESTI-UNAM {8}; $\{\mathcal{H}\}_{r}$ 1 Rij I iP بز ا

3340095 6 STARS 17 600 (*) 7 400 (*)

Ø

• .

5

(2.1)

.

•

,

, .>

P. Ballesteros . DESFI- UNAM Margo-1976 12 Ponde: {p}; vector de cargas actuando sobre j k [kij]; matriz de rigidez de la barra je {S}; vector de desplazamientos nodales 122; vector de reacciones de empotramiento perfecto 2.2 Elementos de la matriz de rigidez [kij]. En el calculo de las rigideces Rej se utilizan los principios energencos expuestos considerandose la energia elastica de deformación por flexion corte y carga normal. 2.2.1 Fuergias axiales & y &. Fig. 2.2.1.1 De la ler de Hooke y la Fig. 2.2.1.2 se obtiene $k_{11} = \frac{P_1}{S_1} = \frac{EH}{l} ; \quad k_{71} = -\frac{EH}{l}$ (a) \bigcirc $R_{11} = \frac{E_1}{2} = \frac{E_1}{R}$; $R_{11} = -\frac{E_1}{R}$ (6)

۰

.

DESFI-UNAM Margo-1976 P. Ballesteros 13 2.2.2 Momentos de torsión may mio. m10 0470 $\theta_{10}=0$ (a) Dio≠0 D4=0% (6) Fig. 2.2.2.1 De la teoría de torsión de barras y la fig. 2.2.2.1 se obtiene $k_{44} = \frac{m_4}{\Phi_4} = \frac{GU}{P}$; $k_{194} = -\frac{GU}{P}$ (a) (6) $k_{10,10} = \frac{m_{10}}{\Theta_{10}} = \frac{GJ}{\rho} ; k_{4,10} = -\frac{GJ}{\ell}$ 2.2.3 Fuergas de corte R2 4 P3. ms Ab €<u></u>=0 (a) þa \rightarrow × 15 MIZ P2 MG ((b) E12=0 $\beta_6 = 0$ Fig. 2.2.3.1 De la Fig. 2.2.3.1 y los principios energeticos previamente expuestos, coniderando la energía de deformación por flexion y cortante se obtiene

.

$$DESFIJUNAM Ma(go-1976 P. Ballesteros 14$$

$$k_{22} = \frac{k_2}{S_2} = \frac{12EI_3}{(1+\Phi_7)f^2} \qquad a$$

$$k_{62} = \frac{m_6}{S_2} = \frac{GEI_3}{(1+\Phi_7)f^2} \qquad ; \qquad k_{26} = \frac{k_2}{\Phi_6} = \frac{GEI_3}{(1+\Phi_7)f^2} \qquad b$$

$$k_{62} = \frac{m_6}{S_2} = \frac{-12EI_3}{(1+\Phi_7)f^2} \qquad ; \qquad k_{28} = \frac{k_2}{S_6} = \frac{-12EI_3}{(1+\Phi_7)f^3} \qquad c$$

$$k_{132} = \frac{m_{12}}{S_2} = \frac{GEI_3}{(1+\Phi_7)f^2} \qquad ; \qquad k_{212} = \frac{\Phi_2}{\Theta_12} = \frac{GEI_3}{(1+\Phi_7)f^3} \qquad d$$

$$k_{68} = \frac{\mu_6}{S_8} = \frac{\mu_2}{S_2} = \frac{12EI_4}{(1+\Phi_7)f^2} \qquad (si EI es constante) e$$

$$k_{13,2} = \frac{m_{12}}{S_8} = \frac{-GEI_8}{(1+\Phi_7)f^2} = -\frac{\mu_6}{\Theta_6} = -\frac{\mu_6}{(1+\Phi_7)f^2} \qquad (f)$$

$$k_{14,9} = \frac{m_{12}}{S_8} = \frac{-GEI_8}{(1+\Phi_7)f^2} = -\frac{\mu_6}{\Theta_6} = -\frac{\mu_6}{S_8} = \frac{(f)}{(1+\Phi_7)f^2} \qquad (f)$$

$$k_{12,9} = \frac{m_1}{\Theta_{12}} = \frac{-GEI_8}{(1+\Phi_7)f^2} = -\frac{\mu_6}{\Theta_6} = 0$$

$$k_{14,9} = \frac{\mu_6}{\Theta_{12}} = \frac{-GEI}{(1+\Phi_7)f^2} \qquad (f)$$

$$k_{12,9} = \frac{\mu_6}{\Theta_{12}} = \frac{-GEI}{(1+\Phi_7)f^2} \qquad (g)$$

$$k_{14,9} = \frac{\mu_6}{\Theta_{12}} = \frac{-GEI}{(1+\Phi_7)f^2} \qquad (g)$$

.

ê jû.

. .

_ * · ·

, ,

~

ŧ

. VESTI-UNAM Margo-1976 P. Ballesteros 15 De la Fig. 2.2. dil y los principios energéticos previamente expuestos, considerando la energía de deformación por flexión y corte se obtiene $R_{66} = \frac{M_6}{\Theta_6} = \frac{(4+\Phi_Y)EI_3}{(1+\Phi_Y)l}$ $k_{86} = \frac{p_8}{\theta_6} = -\frac{6EI_8}{(1+\Phi_r)l^2}; \quad k_{68} = \frac{M_6}{\delta_8} = -\frac{6EI_8}{(1+\Phi_r)l^2}$ $\hat{R}_{12,6} = \frac{M_{12}}{\Theta_6} = \frac{(2 - \Phi_r) EI_8}{(1 + \Phi_r)l}; \quad \hat{R}_{6,12} = \frac{M_6}{\Theta_{12}} = \frac{(2 - \Phi_r) EI_8}{(1 + \Phi_r)l} = \frac{M_6}{(1 + \Phi_r)l}$ $R_{12,12} = \frac{M_{12}}{\Theta_{12}} = \frac{(4 + \Phi_r) E I_3}{(1 + \Phi_r) l}$ $k_{8,12} = \frac{k_8}{\Theta_{12}} = -\frac{6EI_8}{(1+\Phi_r)l^2}; \quad k_{12,8} = \frac{M_{12}}{\delta_8} = \frac{R_{8,12}}{\delta_8}.$ $k_{6,12} = \frac{M_6}{\Theta_{12}} = \frac{(2 - \Phi_Y) E I_2}{(1 + \Phi_Y) l}; \quad k_{12,6} = \frac{M_{12}}{\Theta_6} = k_{6,12}$ 2.2.5 Fuergas de corte P3 y B. Los coeficientes de rigidez relacionados con los desplagamientos 33 % Sa se obtienen de los resultados previos. Debe observarse, que con la convención de signos adoptada en la Fig 2.1 las direcciones de los momentos flectores positivos en el plano Xy son diferentes al plano X3: MAX , là convención

 $\hat{\Box}$

DESFI-UNAM Margo-1976 P. Ballesteros 16

$$M_{e} = M_{e} = M_{e}$$

 $M_{e} = M_{e} = M_{e} = M_{e} = M_{e}$
 $M_{e} = M_{e} = -M_{e} = -M_{e}$
 $M_{e} = M_{e} = -M_{e} = -M_{e} = -M_{e}$
 $M_{e} = M_{e} = -M_{e} = -M_{e}$

· · ·

. DESFI-UNAM Margo-1976 P. Ballesteros 1-1 2.2.6 Momentos Flectores M5 mm 17 Aplicando las mismas observaciones de la $\hat{\bigcirc}$ sección anterior, se obtiene $R_{55} = \frac{M_5}{\Theta_5} = R_{66} = \frac{M_c}{\Theta_6} = \frac{(4+\varphi_3)}{1+\varphi_3} = \frac{I_7}{1+\varphi_3}$ $k_{q_5} = \frac{p_a}{p_5} = -k_{86} = -\frac{p_a}{p_6} = +\frac{6EI_Y}{(1+q_3)l} = k_{5q}$ $k_{11,5} = \frac{M_{11}}{\Theta_5} = k_{12,6} = \frac{M_{12}}{\Theta_6} = \frac{(2-\Phi_3)EI_r}{(1+\Phi_3)l} = k_{5,11}$ °R T substituyendo los valores kij obtenidos en las subsecciones anteriores se obtiene la mating de rigidez de la barra je de la Fiz. 2.1 ecuacion 2.5. en donde $\phi_{r} = \frac{12 E I_{3}}{G A_{sr} l^{2}} = 24 (1+\gamma) \frac{A}{A_{sr}} \left(\frac{\Gamma_{3}}{l}\right)^{2} = \frac{12 \Gamma_{r} E I_{3}}{G R l^{2}}$ (2, 3) $\Phi_z = \frac{12EI_Y}{GA_{sz}l^2} = 24(1+y)\frac{A}{A_{sz}}\left(\frac{V_Y}{l}\right)^2 = \frac{12f_sEI_Y}{GAl^2}$ ->= relación de Bisson, A=avea total de la sección, Asy Masz= areas efectivas en cortante en direcciones y y g resp. ry y rs = radios de giro respectoa y y resp. a x. dy m de = Parametros de déformación de corte. Sí Fall y Foll son pequeños comparados con la unidad, como son en élémentos flexibles, ambos dy 1 dés \bigcirc se jueden considerar cero. Los factores de forma son $f_{Y} = \frac{A}{I_{3}^{2}} \int_{A} \left(\frac{Q_{3}}{D_{3}}\right)^{2} dA , f_{3} = \frac{A}{I_{7}^{2}} \int_{A} \left(\frac{Q_{7}}{D_{7}}\right)^{2} dA$ (2.4)

• ,

•

······, - . .

• • • ۵ * i ,

,

A

, , ,

,

. G

.

. -

נ ג ג

1 • •

DESTI-UNAM Margo-1976 P. Balbsteros 19 Para problemas Bi-dimensionales, el elemento (viga je se reduce a seis fuereas y momentos nodales y seis desplazamientos y totaciones nodales. Ulilizando Sisteme <u></u> 06 62 Ss 12 (1)3 Me St Ramphe sistema Local P. D. SIN MARA Ð Fig. 2.2 Elemento viga para estructuras bidimensionales la nomenclatura de la Fig.2.2 (2.1) queda en R₁₁ R₁₂ R₁₃ R₁₄ R₁₅ R₁₆ (S1 R₂₁ · · · R₂₆ (S1 S2 O3 $\binom{M_3}{1} = 1$ JI3 (2,6) -84 P_5 ę a , R.66 o sea: $\{p\}_{i} = [k_{ij}]_{i} \{s\}_{i} + \{\mu\}_{i}$ (2.7) \bigcirc De los resultados discutidos previamente la. matiz de rigidez de la barrai figura 2.2 greda

.

, , , ,

, ,

P. Ballesteros .DESFI-UNAM Margo - 1976 20 S4 85 Sz! Đ3 Ð6 ĘA 8, $\frac{12E1_{z}}{l^{3}(1+\Phi_{y})}$ 52 0 $\frac{GEI_{3}}{I''(1+\Phi_{3})} \frac{(4+\Phi_{3})EI_{3}}{I(1+\Phi_{3})}$ 0 Θ_3 (2.8)上一里 EA Sa $\circ \frac{-12EJ_3}{l^3(1+\Phi_r)} \frac{-6EJ_3}{l^4(1+\Phi_r)} \circ \frac{12EJ_3}{l^3(1+\Phi_r)}$ 85 $\circ \quad \underbrace{\operatorname{GEI}_{2}}_{l^{2}(1+\varphi_{Y})} \underbrace{(2-\varphi_{Y})\operatorname{EI}_{3}}_{l(1+\varphi_{Y})} \circ \quad \underbrace{-\operatorname{GEI}_{3}}_{l^{2}(1+\varphi_{Y})} \underbrace{(4+\varphi_{Y})\operatorname{EI}_{3}}_{l(1+\varphi_{Y})} \circ \\ \underbrace{-\operatorname{GEI}_{3}}_{l^{2}(1+\varphi_{Y})} \underbrace{(4+\varphi_{Y})\operatorname{EI}_{3}}_{l(1+\varphi_{Y})} \circ \\ \underbrace{-\operatorname{GEI}_{3}}_{l^{2}(1+\varphi_{Y})} \underbrace{(4+\varphi_{Y})\operatorname{EI}_{3}}_{l(1+\varphi_{Y})} \circ \\ \underbrace{-\operatorname{GEI}_{3}}_{l^{2}(1+\varphi_{Y})} \underbrace{(4+\varphi_{Y})\operatorname{EI}_{3}}_{l^{2}(1+\varphi_{Y})} \circ \\ \underbrace{-\operatorname{GEI}_{3}}_{l^{2}(1+\varphi_{Y})} \circ \underbrace{-\operatorname{GEI}_{3}}_{l^{2}(1+\varphi_{Y})} \circ \underbrace{-\operatorname{GEI}_{3}}_{l^{2}(1+\varphi_{Y})} \circ \\ \underbrace{-\operatorname{GEI}_{3}}_{l^{2}(1+\varphi_{Y})} \circ \underbrace{-\operatorname{GEI}_{3}}_{l^{2}(1+\varphi_{Y})} \circ \\ \underbrace{-\operatorname{GEI}_{3}}_{l^{2}(1+\varphi_{Y})} \circ \underbrace{-\operatorname{GEI}_{3}}_{l^{2}(1+\varphi_{Y})$ Sé las deformaciones por cortante son despecialits esto es, q.=0, la matriz de ingidez (2.8) se simplifica a <u>A /</u> Iz 12 0 61 $4l^2$ (2.9)Ö Al² Iz $O \quad \frac{Al^2}{T_2}$ 0 -61 -12 12 0 $61 2l^2 0 -61 4l^2$ 0

 •

.

. .

--

DESFI-UNAM Margo-1976 P. Ballesteros 21 La ecuación matricial relacionando los desplazamientos entre el sistema coordenado local y el global. Poede facilmente demostrarse para el elemonto viga mostrado en Fig. 2.1 es de la forma λox S, λoy 0 0 S2 82 \bigcirc Sz 53 $\overline{\lambda}_{03}$ \overline{O}_4 Da $\overline{\mathcal{Q}}_{5}$ 05 1 Xoy1 0 D 0 (2.10) D6 S 96 λoz λοx Si 101 w 100 0 0 X04 0 88 89 lloz Dio λox $\tilde{\Phi}_{\mathfrak{n}}$ 0 0 λογ θ_{11} 0 . D12 λoz 131 151 $[\lambda]$ (2.11)0 sea {5} = [] {5} donde $\overline{\lambda}_{ox} = [lox Mox Nox]$ (2.12)Joy = [loy Moy Noy] Xoz = [loz moz noz] representa las matrices de los cose nos directores

P. Ballesteros DESFI-UNAM Margo-1976 22 para las direcciones ox, oy, y oz, respectivamente, referidas al sistema global x, y y 3, y {3}, y {3} represente los desplaza mientos de la barra [] respecto al sistema global. Para proble mas bidimensionales la matriz de trans for macion []] se reduce a lox Mox 0 0 0 loy Moy 0000 $[\lambda] = 0 0 1 0 0 0$ 0 0 0 lox Mox 0(2.13)000 loy Moy 0 000001

El analisis de marcos tridimensionales se puede describir por las mismas ecuaciones básicas usadas en la descripción del analisis de estructuras planas. Considerando el sistema total, el equilibrio estático nodal es definido por la ecuación matricial $[S_{-}]{S_{-}} + {\mathcal{H}_{-}} = {R_{-}}$ (E.14) donde: $[S_{-}] = Matriz de rigidez completa de la estructura.$ $<math>[S_{-}] = Natriz de rigidez completa de la estructura.$ $<math>[S_{-}] = Natriz de rigidez completa de la estructura.$ $<math>[S_{-}] = Natriz de argas nodales completo.$ $<math>{\mathcal{H}_{-}} = {\mathsf{Vector}} de argas nodales completo.$

 \bigcirc

DESFI-UNAM Marzo-1976 P. Ballesteros 23 {R} vector de reacciones de la estrutura y de (2.14) se obtiene la ecuación $\left[\sum_{u,u} \left| \left\{ S_{u}^{2} + \{ \mu_{u}^{2} = 0 \right\} \right] = 0$ (2.15)de donde se obtiene {Sir y {Sc}, el que substituyéndolo en (2.14) y (2.1) se obtiene {Rir y {p}; como (2.16) $\{R_{c}\} = -[S_{c}][S_{\mu\mu}]^{-1}\{\mu_{\mu}\}$ $\{ P \} = [R_{ij}] [S_{ij}] \{ \mathcal{H}_{\mu} \} + \{ \mathcal{H} \}_{i} (i = 1, 3..., n) (2.17)$ Esemplo: En el sistema estructual de la Fig. 2.3, determine las reacciones nodales {P}: en los extremos de cada miembro y las reacciones orginadas por las cargas indicadas. La estructura tiene miembros prismaticos con las siguientes propiedades .. $EI_{r} = EI_{s} = EI$ (2.18) $GI_x = \frac{tI}{A}$ $EA_{\times} = \frac{E_{\perp}}{4}$ \mathcal{O} la estructura es flexible, rse puede considerar $la(\phi_{y} = \phi_{z})$ deformación por contante despreciable

-

-,

/ ↓ ↓ 1.

. , ľ , ,

5. 5. 6. ,

¢ 1

N

.

DESFI-UNAM

Cosenos directores Nodo Angulo U Longitud TIPO DE Barra (m)TRANSFORMEDION k · Lop Mog Nok 1 10.0 4-3-X I. 1 2 +1 0 0 0 10.0 2 3 2 0 0 4-3-X -- [${\mathcal O}$ 4 0 +1 3-4-X 90° 3 10.0 3 0 Tabla 2.2 longitudes, cosenos directores Y Typos de Transfor mación. 3 4 X1 b a) Ejes locales X 12 3 \square **E** 3 VY 2³ Đ₁₇ Б_{іь} J 4 M3 514 Ð₩ $\overline{\Theta}_{12}$ Sis \bigcirc Ī ≥ ! 515 3 Ðs Ī. Đið 囗 Đio 52 2 <u>S</u>, 3 53 Ð₄ т Ðь $\Theta_{2^{4}}$ 5z1 b) Componentes de desplazamientos (d) 522 nodales <u>.</u> Dzz Fig. 2.4 Desplazamientos y ejes. \$. 1 . 1 .

Margo-1976

P. Ballesteros

. ń

·

.

• ,

P. Ballesteps DESFI- UNAM Margo-1976 26 vector columna de des plaza mientos nodales {5_} 10011 {S_1} (2.19)= {52} .Srj

• • · · ·

بر مرکز می مرکز می

. . . .

¥

· ,

÷ t

• • • •

.

,

P. Ballesteros DESFI-UNAM Margo-1976 27 Matiz de rigidiz de cada miembro · Para cada elemento vija la matriz de rigidez se establece por medio de (2.1) con respecto à los ejes locales; la matriz de transformación se puede establecer por medio de la exfresión (2.10); y la matriz de rigidez de miembro transformada, [k; j]; respecto a l'sistema global se obtiere de *0 SHFETS (2.20) $[k_{ij}] = [\lambda]_{i}^{T} [k_{ij}] [\lambda]_{i}$ Miembro II 10000000000 10000000000 00 1000000000 000010000000 000101010000000 $= [I] ; [k_{ij}] = [I]^T [k_{ij}] [I]$ $\lceil \lambda \rceil = \rceil$ 000000001010000 (2.21) =[kij] 0000000000000 13 14 2 15 5 6 16 17 18 O -.025 O ~025 O 0 0 0 13 0 0 0.012 0 .060 0 -.012 0 0 0 0 0 .060 14 0 -.012 0 -.060 0.012 0 -.060 0 15 0 0 0 0 .025 0 -.025 0 Ο 0 0 0 0 0 16 0 -.06 0 .06 O 0.4 0 0 0 0.20 0 17 (2.22) 0.4 0 0 .06 0 0 0 -.06 18 0.2 0 0 \bigcirc EIL ..025 0,025 0 0 0 0 0 0 \mathcal{C} 1 0 0 -.012 υ -.06 0 .012 2 0 0 0 0 -.06 Ô M 4. -.012 0 .06 0 0 0 0 .012 0.06 0 0.025 0 0 0 Ô .025 0 0 -.06 0 0.2 0 0 0 106 0 . 4 5 .06 0 0 0 0.2 0 -.06 0 \mathcal{O} .4 0

•

1

•

and Balling and And

P. Ballesteros Marzo-1976 DESFI- UNA M 28 Miembro 2 De (2.5) se obtiene: .025 0 -.025 0 0 0 \mathcal{O} 0 .012 0 0 .06 0 0 -.012 0 \boldsymbol{o} 0 .06 .012 0 -.06 0 0 0 -.012 -.06 0 0 0 .025 0 0 0 0 0 .025 0 0 0.4 0 0 0 -.06 0.4 0.2 0 0 .06 0 0 (2.23).06 0 0 0 -.06 0 0 0.2 0 .025 0 $[k_i] = EI$ 0 0 .02 0 -.06 0 0 .025 0 0 0 0 0 0 0 544 F15 5 564 141 544 E S 5 554 14E 544 E S 5 554 14E 0 .012 0 0 0 .06 0 .06 0 0 0 -.012 0 0 .012 0 .06 0 -.025 0 Ο 0 0 0 .025 0 0 0 0 -.06 0 0,2 0 .06 0 0 0 0 ,4 0 .06: 0 . 0 0 0.2 0 -.06 0 .4 0 0 De(2.12); $\overline{\lambda}_{\text{ox}} = \begin{bmatrix} 0 & 0 & -1 \end{bmatrix}_{2}, \quad \overline{\lambda}_{\text{oY}_{2}} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}_{2}, \quad \overline{\lambda}_{\text{oz}_{2}} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}_{2} \quad (2.12)_{a}.$ Subst. (0,12) en (2.10) se obtiene 00-1 010 100 00-1 010 (2.24)100 $\left[\lambda\right]_z =$ 00 -11 010 100 0 100-1 010 100 Subst (2.24) m(2.23) en (3.20) 22 Obt 1940 4 8 9.10 11 5 6 7 012 0 -.012 0 0 -.06 ١ O 0 0 ' 0 -.06 0 .012 0 .06 0 -.012 0 0 ω 2 .06 0 0 .025 0 0 0 0 0 0 0 -.025 0 0 0 3 0 .06 .4 0 4 0 0 0 -.06 0.2 0 Õ 0 0 0.4 0 .06 0 0 025 0 0 0 .06 0 .012 0 -.06 0 0 .2 5 0 0 0 (2.25) 0 0 0 -.012 0 0 0 -.012 0 0 -.02 [Rij]=EI 6 0 - .025 0 O 0 0 0 7 .06 0 0 -.06 0 0 0.012 0 -.06 0 0 8 0 -.025 Ô O σ .025 9 0 0 0 0 .06 -.06 0 10 0 0 0.2 0 0 ٥ .4 0 ٣ .06 .4 0 ٥ 0.2 ٥ .06 ð 0 0 11 0 C 0 12 0 0 Ċ 0 -.025 0 0 Õ 0 ,025 \circ

: ^N

i -

•

. . .

· .

P. Ballesteros DESFI-UNAM Margo-1976 29 Miembro 131, De (2.5) se obtiene la matriz de raidez. la cual resulta igual a la de los membro. 田生国 $[\mathbf{k}_{ii}]_{=} = [\mathbf{k}_{ii}]_{=} = [\mathbf{k}_{ii}]_{i}$ (2.26)De (2.12) se ob Fiene $\overline{\lambda}_{0X_{3}} = [010]_{3}, \overline{\lambda}_{0Y_{2}} = [001]_{3}, \overline{\lambda}_{0Z_{3}} = [100]_{3}$ (2.27) De (2.27) y (2.10) se obtiene 010 100 100 100 100 100 100 100 (2.28) [入]3= 010 001 De (2,20) (2,26) y (2,28) se obtienre 19:20 21:22:23:24 7 8 9 10 11 12 -:06 -.012 0 Ø 0 0 0 .012 0 O 0 - .06 19 .025 0 0 0 -.025 0 Ø 0 0 \odot 0 20 .06 \mathcal{O} Ø 21 .2 \odot О 22 (2.29) - 1025 0 Ο 23 0 $\langle \rangle$.2 24 Rij=EI 0 \bigcirc .06 7 0 0 8 .012, -.06 0 9 .4 д \mathfrak{O} 10 0 1025 0 11 0 .4 $\langle \zeta \rangle$ 12

• • ••

4

.

- .

. . . .

. ų

. *

· . .

.DESFI-UNAM Margo-1976

Matriz de rigidez de la estructura. · La matriz completa de la estructura [5] se obtiene sumando los coeficientes de rigides de miembro dados en las expresiones (2.22), (2.25) y (2.29) con respecto a la identificación de subindices de los elementos se obtiene

P. Ballesteros

(2.30)

÷ · . . .

•

·

.

0	3						(18)								
Marzo-1976 P. Ballesteros		· · · · ·	2	3	4	5	6	7	8	9	10	11	12 -	7	
		38.396	1.266	-6.236	0.001	1.750	0.085	11.279	-0.403	-5.023	-0.503	3.005	-1.578		
		1.266	210.745	-43.160	-21.908	5.487	30.182	-39.151	11.279	-50.707	-13.286	3.124	7.303		
		-6.236	-43.160	102.028	2.421	-11.235	-6.537	50,707	5.028	84.038	9.312	-2.752	-7,543		
		0.001	-21.908	2.421	5.546	-0.346	-3.130	3.124	3.005	2.752	0.688	-0.278	-0.625	<	
		1.750	5.487	-11.235	-0.346	3.048	0.888	-13.286 :	-0.503	-9.312	-1.061	0.688	1.928	6	
		0.035	30.182	-6.537	-3.130	0.888	6.698	-7.303	1.587	-7.543	-1.928	0.625	1,425	6	
		11.279	-39.15	50.707	3.124	-13.286	-7.303	210.745	1.266	43.160	5.487	-21.908	-30.182	7	
		-0.403	11.279	5.028	3.005	-0.503	1.587	1.266	38.396	6,236	דזרו	0.00	-0.085	8	
		-5.028	-50,707	84,038	2.752	-9.312	-7.543	43.160	6.236	102.028	11.235	-2.421	-6.537	9	
		-0,503	-13.286	9.312	0.688	-1.061	-1,928	5,487	1.750	11.235	3.048	-0.346	-0,888	1	
SFI- UNAN	-	3.005	3.124	-2.752	-0.278	0,683	0.625	-21.908	0.001	-2.421	-0.346	5.546	3.130		
		-1.587	7.303	-7.543	-0.625	1,928	1.425	-30.182	-0.085	-6,537	-0.988	3.130	6.618	ĺ/:	
			- - -	1								-		-	
							1					t t			
ЩД.		Ø.							•						

MAUU? 2 2144H2 02 105 15 MAUU? 2 2144H2 001 14L (A. 19AUG2 2 2144H2 001 14L (A. 19AUG2 2 2144H2 001 14L (A. 19AUG2 2 2144H2 012 14L (A. 19AUG2 2 2144H2 (A. 19AUG2 2 2144H2 (A. 19AUG2 2 2144H2 (A. 19

• 1

()

 $\langle \rangle$

.

1

a Maria and Angelanda and A Angelanda an

<u>14</u>1

• •

DESFI-UNAM Margo-1976 P. Ballesteros 32
Vector le momentos y reacciores fijas milembro II

$$\begin{pmatrix}
P_{13} \\
R_{14} \\
P_{15} \\
M_{16} \\
M_{17} \\
M_{17} \\
M_{18} \\
M_{17} \\
M_{18} \\
P_{2} \\
P_{2$$

•

 \sim

.

,

,

P. Ballesteros DESFI-UNAM Marzo-1976 l -24 40.0 2.2.4. 1 42 381 ... 541 ... 5 500.84 2.2.4.7 1 42 382 100 541 615 5 500 486 42 382 400 541 615 5 500 486 42 382 400 541 615 5 500 486 O Ø Ц {M.y (2.34) -24 -40.0 Ø Ø Etiqueta de grados de libertad Î

, , ,

.

ي چ

- x

.

• • • • • •

•

, , , ,

.

)

DESFI-UNAM Margo-1976 P. Ballesteros 34 Substituyendo (2.21) y (2.34) en (2.15) se obtiene (2,35) {Su} = [Sun] '{llu } 5152 -26.984 -3850,6 Īs3 774.36 Đ4 400.592 $\bar{\theta}_{5}$ -96,163 (2,36)-456.448 50 57 Sul 647.504 50 -207.216 -Sq 915.248 Ð10 241.744 - 49.976 Ð، -118.272 $\overline{\Theta}_{17}$ Los valores de los desplazamientos dados por (2:36) con respecto al sistema global son valores relativos, para obtener los valores se substituye E en ton/mª e Jen mª en (2:36) y se obtiene Si en metros y & en radianes. Acciones Finales en los extremos. Habiendo evaluado las componentes de los desplagamiento nodales con respecto al sistema global de referencia por medio de (2.10) se evaluar con respecto a las coordenadas locales de cada hana y las acciones

، بر ا

, , , ,

· •

.

.

DESFI-UNAM P. Ballesteros Marzo-1976 35 finales para cada miembro de la estructura se cal culan de (2.1) (2.37) $\{b\}_{i} = [k_{ij}][\lambda]_{i}\{\bar{S}\}_{i} + \{\mu\}_{i}$ De la Fig. 2.4 se tiene para el membro III <u>S</u>13 Ī14 0 S15 and a second 10 0 0 0 0 0 0 0 0 0 0 0 0 0 (2,38) -26.984 -3850.6 774.36 A00. 592 -96.168 -456.448/1 De (2.21), (2.38), (2.1) 4(5.5) se obtiene

-65

,

1
DESFI-UNAM P. Ballesteros Margo-1976 36 0.7 Ton £, 42.8 Ton \$2 (Indices segur -3.5 Ton ₽B convención Fig. 2.4) -10.0 Ton-m MA 27.2 Ton-m M 5 {P} 179.7 Ton-m (2.39)Mь **E**-1 -0.7 Ton 5.2 Ton P8 (a 3.5 Ton 10.0 Ton-m M 10 8.0 Ton-m 8.5 Ton-M M''M12 Miembro 121. (5)= (Su) = [X] 2 (Su) y (11)= 10) , (2.24) (2.25), (2.1) y (2.5) se obtiene Ton ₽₂ -5.2 (indices sequin P 0.7 11 convención Frg. 2.4) Ton-m m4 8.5 (240)**M**5 11 -8.0 M6 -10.0 11 P Ton -3.5 11 5.2 ١١ -0.7 Pa -8.5 ton-m Mo 1.2 41.8 mi ۰ ۱ M12!

. . .

, , , .

. t

ST THE SL

I

ſ

ATOL CRIEN

، بېتارىي بور ئوللى ئېرىيى ئېرىيى • •

P. Ballesteros DESFI-UNAM Marzo-1976 32 Reacciones. · Substituyendo las matrices apropiadas en {R}=[Sru]{Su}-{Ur} se obtiene Ris 0.7 Ton SOUARE 42.8 RIA X1-42-4 42 341 50 5HEL X1-42-4 12 342 766 5HEL 12 369 206 5HEE -3.5 R 15 -10.0 Ton-m RIG Rin 27:2 Ton-m 2.43 Ris 179.7 $\{1$ Ria -0.7 Ton E R20 Б.2 11 Rzi 3.5 11 R_{22} -6.6 Ton-m Rz3 1.2 15.2 11 Rza

, , ,

)* , 2, ,

11

5.,

- -

, - ``i Ċ

en S

· · '

.

×

 \bigcirc

(

.

,

- 5

i. . . . -

٠.

 \bigcirc

Margo-1976 P. Ballesteros DESFI-UNAM -Introducción - La naturalega de llas tuergas que actuan dentro de un cuerpo para equiliber el efecto de las fuergas de cuerpo y externas o de su perficie, es una de los partes principales del estudio de la mecanica de solidos. Se aplicará el método de secciones para aislar un elemento diferencial y definir el concepto de estuergo. X3 × 8 J23/ ×z / 1/3 Ati $\Delta R_z = \Delta \chi, \Delta \chi_z$ 1.1 Fig.1 Guerpo seccionado paralelo al plano X, Xs 2-Definición de esfuerzo. En general, las fuerzas internas actuando sobre las areas infinitesimales AKiAXi del corte, son de

> - -- ----

r

(·

• r -

.

P. Ballesteros Marzo-1976 IDESFI-UNAM Q magnitudes y direcciones variables. Fuergas de naturaleza vectorial y mantienen el equilibrio. En mecanica de solidos es particularmente significante determinar la intensidad y dirección en distintos puntos a traveg del corte. Engeneral varian de ponto a punto en intensidad y dirección. Es usual resolver sus intensidades perpendicular y paralelas a la sección en consideración. En farticular el corte de la Fig.1 es perpendicular al eje X,, AP es la fuerga resultante que actua sobre $\Delta A_2 = \Delta X, \Delta X_2, cuyas componentes son:$ [AP21 AP22 AP23], el primer subindice significa que el plano en que actuan es perpedicular al eje X2 y el segundo respecto al eje que son paralelos, Puesto que las componentes de fuerza por unidad de area, son correctas solo en el punto, la definición matématica de esfuergo es* similarmente los esfuergos actuando en un plano perpendicularaxi son $\begin{aligned}
 & T_{II} = \lim_{AA, \to o} \frac{\Delta R_{I}}{\Delta A}, \quad , \quad \\
 & T_{I2} = \lim_{AA, \to o} \frac{\Delta R_{2}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{3}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{1}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{1}}{\Delta A}, \quad , \quad \\
 & T_{I3} = \lim_{AA, \to o} \frac{\Delta R_{1}}{\Delta A}, \quad , \quad \\ \\
 & T_{I3} = \lim_$ y los esfuerzos actuarido sobre un plano perpendiculara & son $\sqrt{3} = \lim_{\Delta F_3 \to 0} \frac{\Delta F_3}{\Delta A_3}, \quad \sqrt{3} = \lim_{\Delta A_3 \to 0} \frac{\Delta F_{32}}{\Delta A_3}, \quad \sqrt{3} = \lim_{\Delta A_3 \to 0} \frac{\Delta F_{33}}{\Delta A_3}$ * Cuando AA: >0, existen preguntas desde el punto de vista atómico en definir esfuerzo en esta forma. Sin embargo, un modelo homogeneo para materia molecular no homogenea toboja bien en problemas de Ingeniera

and constant in and the second state of the second state of the second states of the en se en service en la service de la serv in the property of the second and the

<u>k</u>

· . · · ·

· · · · ·

| Margo-1976 DESFI-UNAM P. Ballesteros 3 Se observa que las definiciones de esfuerzo normal y cortante representan la intensidad de una fuerza sobre una area, y sus unidades son de [F]; en el sistema métrico la/cm² o ton/cm² y en el Ingles 1105/pul2 o KIPS/pul? Debe notarse que los esfuerzos multiplicados multiplicado por las areas sobre las cuales actuan nos dan fuerzas, y es la suma de estas fuerzas, y es la suma de estas fuerzas sobre cualquier corte imaginario lo que conserva el equilibrio de un cuerpo 3. Tensor de esfuergos. Sé, además del diagrama de cuerto libre de la Fig. 1.1 se hacen pasar tres pares de planos paralelos y separados por distancias infinitesimales, un cubo de dimensiones infinitesimales sera aislado del cuerpo con el origen del sistema local coordenado en el pronto de coordenados Ki (Xi, Ka, Xz). Tal cubo se nuesta en la Fig. 3.1 Tz3 Las coordenadas del **T**32 (131 piunto O son (X1, X2, X3) AT23 J22 -- J22 A Jzl T12 (E3-032 th Estato de esfuergos actuando en el elemento dxi. El sentido indicado es convencional mente el positivo. Fig. 3.1

entry elisabel a star L - -Y status and a second second ¢ * ;

~ Ň

~ ت ر · ·

P. Balliesteros Margo-1976 DESFI-UNAM 4 Examinando la Fig. B.1, se observa que hay tres es fuerzos normales Til, J22, J33, y seis estuerzos cortantes Jiz, Jzi, Jzi, Jiz, Jiz, Jiz, Jiz, El arreglo matricial $\underline{T} = [T_{ij}] = [T] = \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \end{bmatrix}$ (3.1)es la representación del tensor de esfuergos. Es un tensor de segundo orden referido al esfacio Euclidiano tridimensional. Un vector es un tensor de primer orden y un escalar es un tensor de cero orden 4. Fuergas de cuerpo, y fuergas de superficie En el mismo elemento diferencial consideremos el Ð(vector de fuergas de cuerpo por unidad de volumen {Xi} = L Xi X2 X3], i en consideraciones no polares el vector de momentos de cuerpo por unidad de volumen {mi}=1m, me maj actuando en el centroide del elemento diferencial como se indice en la Fig. 4.1 123 $4M_3$ -X2 Fig. A.1 Fuerzas y momentos de cuerpo por unidad de volumen {X; } y {m; } actuando en et centro de gravedad de diz.

COSREE IST AT ALCONY AND A

·

Marzo-1976 P. Ballesteros 5 VLJFI- UNAM en donde $X_i = P(f_i - a_i)$ (4.1)donde q es la densidad o masa especifica, fi es la fuerza! For unidad de masa en la dirección Xi y a: es la aceleración del elemento dx: en la dirección de Xi - Las fuergas de superficie actuan en la frontera del cuerpo y las tres componentes de Pi Fig 1.1 las designaremos por {Xi}=1Xi X2 X2]; sus unidades son fuerza por unidad de area [#], Kg/nur en el sistema métrico ; lbs/pulsen el ingles, y en el internacional Newtons/cm². Las unidades de las fuergas de cuerpo secón [F]. Las tuergas de superficie deben satisfacer las condiciones en la frontera [Fig. 5.1] que para el puntoi [Fig. 1.1] son ふんろ n.J., n.J.2, n.J.3 \overline{X}_1 $\Lambda_3 \overline{V}_{35}$, $\Lambda_3 \overline{V}_{31}$, $\Lambda_3 \overline{V}_{32}$ N2 J22 N2 J21 N2 J23 Fig. 5.1 <u>Equilibrio del punto i [Fig.1.1] en la superficie</u>. Si ABC = unidad, OBC = Codd = N, OAC = CodB = N2, y OAB = CO18 = N3, donde {ni} = L n, n2 n2 1 son los cosenos directores de la normalial plano ABC, y del equilibric de OABC se obtiene $\begin{bmatrix} \overline{U}_{11} & \overline{U}_{21} & \overline{U}_{81} \\ \overline{U}_{12} & \overline{U}_{22} & \overline{U}_{32} \\ \overline{U}_{13} & \overline{U}_{23} & \overline{U}_{63} \end{bmatrix} \begin{pmatrix} \overline{\Omega}_1 \\ \overline{\Omega}_2 \\ \overline{\Omega}_3 \end{pmatrix} = \begin{cases} \overline{X}_1 \\ \overline{X}_2 \\ \overline{X}_3 \end{cases} \quad o' \begin{bmatrix} \overline{U}_{13} \end{bmatrix}^T \{ \underline{N}_1 \} = [\overline{X}_1 \} \} \quad (4.1)$

Marzo-1916 P. Ballesleros ULOFI-UNAM 6 χ_3 H G (133 f 20 2 dx 3 U32+ 01-32 d/3 Ti J31 + 2 d23 J12 dz3 100 SHELTS M3 J25+ 0123 dx2 J21 -JI3 1 J22 + JI22 dx2 J22 Jiz + OLiz dX1 X_2 M_2 Eg $E_1 + \frac{2E_1}{2}d\chi_2$ Y В J23 1 χz JIZ + STZ dXI 1 T31 dx, Jut alind V32 V33 dy, Fig. 5.1. Equilibrio de esfuergos ITT, fuerzas de cuerpo {X} y momentos de cuerto {m}, en el elemento dx; (4.1) es la representación matricial de las condiciones de equilibrio del punto i en la frontera X:... 5. Equilibrio del elemento dX: Las seis ecuaciones de equilibrio del elemento de la Fig. 5.1 son $\Sigma F_{x_1} = \overline{\Sigma} F_{x_2} = \overline{\Sigma} F_{x_3} = \overline{\Sigma} M_{x_1} = \overline{\Sigma} M_{x_2} = \overline{\Sigma} M_{x_3} = 0$ (5.1)

. .

•

÷

UESTI-UNAM Margo-1976 P. Ballesteros 7
de ZFX=0, en el límite cuando
$$dX_i \rightarrow 0$$
 se obtiene
($ST_{11} + ST_{11} dX_i$) $dX_2 dX_3 - T_{11} dX_2 dX_3 + (T_{11} + ST_{11} dX_2) dX_1 dX_3 + (T_{11} + ST_{11} dX_2) dX_1 dX_3 - (T_{11} dX_1) dX_2 dX_3 - (T_{11} dX_1) dX_2 dX_3 - (T_{11} dX_1) dX_2 dX_3 + (T_{11} + ST_{11} + ST_{11} + ST_{12} + ST_{12} + ST_{13} + X_1 = 0$
Similar mente
 $ST_{11} + ST_{12} + ST_{12} + ST_{12} = 0$ (52)
 $de ZF_{12}=0, en el límite avando $dX_i \rightarrow 0, y$ considentedo
el eje de momentos paralelo a $0X_i$ y a traves del cen-
troide del elemento dX_i , y despreciando los diferenciata
 de segundo orden dX_i^2 , se obtiene bajo ta convención
 de signos de la Fig. 5-1 lo siquiente
 $(T_{22} + ST_{23} dX_2) dX_i dX_2 dX_3 + (T_{23} dX_3) dX_2 dX_3 = 0$
 $(T_{22} + ST_{23} dX_2) dX_i dX_3 dX_3 + (T_{23} dX_1) dX_3 dX_2 dX_3 = 0$
 $(T_{22} + ST_{23} dX_2) dX_i dX_3 dX_3 + (T_{23} dX_1) dX_3 dX_2 dX_3 + (T_{23} dX_1) dX_2 dX_3 = 0$
 $(T_{22} + ST_{23} dX_2) dX_i dX_3 dX_3 - (T_{23} dX_1) dX_3 dX_2 dX_3 + (T_{23} dX_1) dX_3 dX_3 dX_3 - (T_{23} dX_1) dX_3 dX_3 dX_3 dX_3 - (T_{23} dX_1) dX_3 dX_3 - (T_{23} dX_1) dX_3 dX_3 - (T_{23} dX_1) dX_3 dX_3 dX_3 - (T_{23} dX_1) dX_3 dX_3 - (T_{23}$$

,

· · · · (

DESFI-UNAM Margo-1976 P. Ballesteros 8
Expresendo (52) matricial mente se tiene

$$\begin{bmatrix} 2 & 2 & 2 \\ 1 & 2x & 2x \end{bmatrix} \begin{bmatrix} 3n & 7a & 7a \\ 2z & 7az \end{bmatrix} + \begin{bmatrix} 3n & 7a & 7a$$

torn feelbarg and and and a strange

.

 C_{1}

1

VESFI-UNAM Margo-1976 P. Ballesteros 6.2 Cauchy posteriormente, Saint-Venant & Maxwel, introducen por primera vez la notación cartesiana, y 3,23 Pxx Pxy Pxz Paxie Pyz Pry Prx Pry Prz Pzx Pzy Pzz $(m_{k}\neq 0)$ Pxz condiciones polares. Fig. 6.1.3 3,25 6.3 Newman, Kirchhof y Love. Ζv $X_{x} X_{y} X_{z}$ Хz $(M_{k}\neq 0)$ 101110 Yx Yy Yz $Z_{x} Z_{y} Z_{z}$ Fig. 6.1.4 3,23' 6.4 K. Pearson. 58 मुमु T3 $(m_k \neq s)$ 页 F1g.6.1.5 6.5 S. Timoshento y T. Von Karmán introducen la notación de Ingeniería, simplificando la notación cartesiana utilizando solo un subindice en los estuergos normales denominandolos por T, y los tangenciales por T. Jx Ixy Ixz $(M_{k}\neq 0)$ Irx Jr Irz Txz Izx Izy Jz Fig. 6.1.6

· · · · · · . 1

· · · ·

, ·

 \bigcirc

•

Ø

DESFI-UNAM Margo-1976 P. Ballesteros 11 Por ejemplo, si una muestra es sujeta a una fuerga P como se muestra en la Fig.7.1. Un combio de longitud ocurre entre los dos puntos de calibración Ay B. Si lo es la longitud inicial y l la longitud observad bajo la carga P, y el alargamiento Al=l-lo. El Fig. 7.1 Muestra a tensión. alargamiento por unidad de longitud E (Epsilon) es $\mathcal{E} = \int_{0}^{\infty} \frac{\mathrm{d}l}{\lambda_{0}} = \frac{l-l_{0}}{l_{0}} = \frac{\Delta l}{l_{0}}$ (7.1) el cual es llamado deformación lineal. Es una contidad adimensional, pero general mente se midie ose refiere en <u>em</u> o pula. Algunas vaces se expresa en porciento. La cantidad e es generalmente muy pequeño. En la mayorá de las aplicaciones de ingeniena tiene un orden máximo de magnitud de 0.001. Cuando las deformaciones son grandes, por elemplo, en formado de metales, se introduce el la deformación natural que implica una lo variable, dada $\overline{E} = \int_0^{\infty} \frac{dl}{l} = \ln \frac{1}{l_0} = \ln \frac{1}{l_0} = \ln \frac{1}{l_0} (1+\epsilon)$ (7,2) por

2.5 .

P. Ballesteros DESFI-UNAM Marzo-1976 12 $\mathcal{U}_{i} + \Delta \mathcal{U}_{i}, \mathcal{U}, \mathcal{U},$ l, O + OHI diz (a) La Lla ۵X, Ĺ OL 012. 1/2 + 3/2 d/2 B di Hz 0 UI diz dx. A, 1/2 1/2 $u_1 + \frac{\partial u_1}{\partial \chi} d\chi_1$ (c) 0 dr. χ, (b) Fig. 7.2 Elementos deformados en posisiones inicial y final Sea: el vector de desplaga mientos [11] = [11, 112 113] en las direcciones X, X2 y X3 respectivamente, en basea los des plagamientos mostrados en la Fig. 7.2a, la definición de deformación lineal es $\mathcal{E}_{\parallel} = \lim_{\Delta \chi_{1} \to 0} \frac{\mathcal{U}_{1} + \Delta \mathcal{U}_{1} - \mathcal{U}_{1}}{\Delta \chi_{1}} = \frac{\partial \mathcal{U}_{1}}{\partial \chi_{1}} = \mathcal{U}_{1}$ (7.2) Similar mente $\mathcal{E}_{22} = \frac{\partial \mathcal{U}_2}{\partial \mathcal{I}_2} = \mathcal{U}_{2,2}, \quad \mathcal{E}_{33} = \frac{\partial \mathcal{U}_3}{\partial \mathcal{I}_3} = \mathcal{U}_{3,3}$ (7.3) el signo positivo significa alargamientos. El elemento también experimenta de formacions: de cortante como

3 • • • • •

-

ς.
DESFI-UNAM Maigo-1976 F. Ballesteros 13
se muestra en la Fig. 7.20 el ángulo racto AOB es
reducido por la cantidad
$$\frac{211}{82} + \frac{212}{921}$$
. Por lo tanto,
para pequeños cambios del ángulo, la definición de
defor mación de cortante asociada con el plano X, X2 es
 $y_{12} = y_{21} = \frac{211}{921} + \frac{212}{921} = 11_{22} + 11_{21}$, analogamentecon
los otos plus, $y_{22} = y_{22} = \frac{311}{921} + \frac{212}{921} = 11_{22} + 11_{21}$, analogamentecon
los otos plus, $y_{22} = y_{22} = \frac{311}{921} + \frac{211}{9212} = 11_{22} + 11_{23}$ (7.4)
 $y_{12} = y_{23} = \frac{311}{921} + \frac{211}{9212} = 11_{22} + 11_{23}$ (7.4)
 $y_{12} = y_{12} = \frac{311}{921} + \frac{211}{9212} = 11_{23} + 11_{23}$ (7.4)
 $y_{13} = y_{12} = \frac{311}{921} + \frac{211}{9212} = 11_{23} + 11_{23}$ (7.4)
 $y_{12} = y_{12} = \frac{311}{921} + \frac{211}{9212} = 11_{23} + 11_{23}$ (7.4)
 $y_{12} = \frac{311}{921} + \frac{1}{921} \left[\frac{(211)}{9212} + \frac{(211)}{9212} + \frac{(211)}{922} + \frac{(211)}{922} \right]$
 $en el caso que las defor maciones no sean pequeñas, se
de muestra facilmente que
 $E_{11} = \frac{311}{921} + \frac{1}{2} \left[\frac{(211)}{9212} + \frac{(211)}{9212} + \frac{(211)}{922} + \frac{(211)}{922} \right]$
 $for $y_{23} = \frac{311}{922} + \frac{1}{921} \left[\frac{(211)}{922} + \frac{(211)}$$$

(40 - 1 - - --

, , ,

1.2 22

• \ , **`**, 475 2

•

VESTI-UNAM Marzo-1976 P. Ballesteros 121 notación compacta queda $\mathcal{E}_{11} = \mathcal{U}_{11} + \frac{1}{2} \left(\mathcal{U}_{11}^{2} + \mathcal{U}_{21}^{2} + \mathcal{U}_{21}^{2} \right)$ $\mathcal{E}_{22} = \mathcal{U}_{2,2} + \frac{1}{2} \left(\mathcal{U}_{1,2}^{2} + \mathcal{U}_{2,2}^{2} + \mathcal{U}_{3,2}^{2} \right)$ (7.6) $\mathcal{E}_{33} = \mathcal{U}_{2,3} + \frac{1}{2} \left(\mathcal{U}_{1,3}^2 + \mathcal{U}_{2,3}^2 + \mathcal{U}_{3,5}^2 \right)$ $\mathcal{Y}_{12} = \mathcal{Y}_{21} = \mathcal{U}_{12} + \mathcal{U}_{21} + \mathcal{U}_{11} \mathcal{U}_{12} + \mathcal{U}_{21} \mathcal{U}_{3,2} + \mathcal{U}_{31} \mathcal{U}_{3,2}$ 823=832=112,3+118,2+11,211,3+112,2 112,3+113,2 113,2 $\mathcal{Y}_{31} = \mathcal{Y}_{13} = \mathcal{U}_{31} + \mathcal{U}_{13} + \mathcal{U}_{11} \mathcal{U}_{15} + \mathcal{U}_{21} \mathcal{U}_{23} + \mathcal{U}_{31} \mathcal{U}_{33}$ Exáminando las ecuaciones deformacion-desplazamiento para pequeñas deformaciones (7.2),(7.3) y(7.4), se observa que son seis ecuaciones que de penden solamente de tres desplagamientos IL, 12 y 113. Por lo tonto las ecuaciones no pueden ser indépendientes. Por lo tanto seis ecuaciones indépendientes pueden desarrollarse relacionando a EII, Ezz, E33, X12, X23 y l'31, ecuaciones conocidas como ecuaciones de compatibilidad. $\frac{\partial \mathcal{E}_{11}}{\partial \chi_2^2} + \frac{\partial \mathcal{E}_{22}}{\partial \chi_1^2} = \frac{\partial \mathcal{V}_{12}}{\partial \mathcal{I}(\partial \chi_2)}; 2\frac{\partial \mathcal{E}_{11}}{\partial \mathcal{I}_2 \partial \chi_3} = \frac{\partial}{\partial \mathcal{I}_1} \left(\frac{\partial \mathcal{V}_{23}}{\partial \chi_1} + \frac{\partial \mathcal{V}_{12}}{\partial \chi_2} + \frac{\partial \mathcal{V}_{12}}{\partial \chi_3} \right)$ $\frac{\partial \mathcal{E}_{11}}{\partial \mathcal{I}_{3}^{*}} + \frac{\partial \mathcal{E}_{23}}{\partial \mathcal{X}_{1}^{*}} = \frac{\partial^{2} \mathcal{V}_{12}}{\partial \mathcal{I}_{3}^{*}}; \\ \frac{\partial^{2} \mathcal{E}_{52}}{\partial \mathcal{X}_{1}^{*}} = \frac{\partial}{\partial \mathcal{X}_{1}^{*}} \frac{\partial^{2} \mathcal{E}_{52}}{\partial \mathcal{X}_{1}^{*}} = \frac{\partial}{\partial \mathcal{X}_{2}} \left(\frac{\partial \mathcal{V}_{23}}{\partial \mathcal{X}_{1}} - \frac{\partial \mathcal{V}_{12}}{\partial \mathcal{X}_{2}} + \frac{\partial \mathcal{V}_{12}}{\partial \mathcal{X}_{3}} \right)$ (7.7) $\frac{\partial \mathcal{E}_{22}}{\partial \chi_3^2} + \frac{\partial \mathcal{E}_{33}}{\partial \chi_2^2} = \frac{\partial \mathcal{V}_{23}}{\partial \chi_2 \partial \chi_3}; 2 \frac{\partial \mathcal{E}_{33}}{\partial \chi_1 \partial \chi_2} = \frac{\partial}{\partial \chi_3} \left(\frac{\partial \mathcal{V}_{23}}{\partial \chi_1} + \frac{\partial \mathcal{V}_{13}}{\partial \chi_2} - \frac{\partial \mathcal{V}_{13}}{\partial \chi_3} \right)$ substituyendo (7.2), (17.3) y (1.4) en (1.7) se verifican las ecuaciones de compatibilidad de pequeñas deformaciones. Similarmente a las componentes del Tensor de esfuergos en las notaciones indice, cartesiana y de ingeniería, se re presentan las componentes del tensor de deformaciones como

DESFI-UNAM P. Ballesteros Margo-1976 15 $\begin{bmatrix} e_{11} \end{bmatrix} = e_{12} \begin{bmatrix} e_{12} \\ e_{13} \end{bmatrix} = \begin{bmatrix} e_{xx} \\ e_{xy} \end{bmatrix} = \begin{bmatrix} e_{xx} \\ e_{xy} \\ e_{xy} \\ e_{xy} \end{bmatrix} = \begin{bmatrix} e_{xx} \\ e_{xy} \\ e_{xy} \\ e_{xy} \\ e_{xy} \end{bmatrix} = \begin{bmatrix} e_{xy} \\ e_{xy} \\ e_{xy} \\ e_{xy} \\ e_{xy} \\ e_{xy} \end{bmatrix} = \begin{bmatrix} e_{xy} \\ e_{xy} \\$ (7.8) [831 832 833] [EZX EZY EZZ] VIX VIY EZ (indice) (cartesiana) (ingeniería) en (7,8) fué necesario fué necesario modificar las relaciones de deformación por cortante con el objeto de someter al tensor & enteramente obedecer ciertas leyes de transformación por lo que Eij= = bij para toda i ≠j. Analogamente al tensor de esfuerzos [eij] puede diagonalizarse quedando $e_1 \circ o$ $o e_2 \circ$ $o \circ e_3$ (7.9)8. Ley de Hoofe en un estado uniaxial de esfuergos, * Limite de elasticidad J. E=modulo de elasticidad $T_{n} = EE_{n}$ \mathcal{E}_{μ} Ezz K $\mathcal{V} = -\frac{\mathcal{E}_{22}}{\mathcal{E}_{11}} = \text{Relacion de Poisson} = -\frac{\text{deformación lateral}}{\text{deformación axial}}$ JU12=GX12) Ti2 imite de elosticidod G=modulo de rigidez of de cortante. ł Fig. 8.1 Ley de Hoofe en tension uniaxial Ju y corte fx ro Jiz.

sti chi mata in thi - 9 1

. - ' ; ;

P. Ballesteros DESFI-UNAM Margo-1976 16 puesto que el sistema es-elástico lineal rige el principio de su perposision de causas y efectos, por lo tanto en la Fig. 8.2 se considera un estado triaxial llegando a él en tres etapas de carga, etapa 1: actuando (Ti, etapa 2: actuando Jiny Jzz y etapa 3: actuando Jin, Jzz & Js3. Se llega a las siguientes ecuaciones constitutivas <u>ک</u> 1 J33 × Pasision inicial sincarga - Etapa 3: JII, J22 H J33 ε_{II} Posision final: [Til, JZZ, JISS] Etopa 2: Ju y Jz √<u>U33</u> JII 1 122 J 155 KEtapa1: JII J. X2 VII Fig. 8.2 Ley de Hooke en condiciones traxiales en===」「「二」」「「」」」 $\mathcal{E}_{22} = -\frac{1}{F}\mathcal{T}_{11} + \frac{1}{F}\mathcal{T}_{22} - \frac{1}{F}\mathcal{T}_{23}$ (8.1) $\mathcal{E}_{33} = -\frac{2}{2} \prod_{n} -\frac{2}{2} \prod_{22} + \frac{1}{2} \prod_{33}$ - Jiz X12 = $\frac{1}{\overline{G}} \overline{U_{25}}$ 823 = I Jai × 15) =

-, -

۲ ۲ ۲

i stand i stand

- Martin and Martin (P

DESFI-UNAM Margo-1976 P. Ballesteros 17
(8.1) representa la ley de Hoofe en condiciones travales
6 más correctamente las ecuaciones constitutivas para
un solido elástico homogeneo e isotrópico. Las constantos
E, G y D son experimentales y estan relacionadas por

$$G = \frac{E}{Z(1+D)}$$
(8.2)
Substituiendo (8.2) en (8.1) y expresando el resultado
matriculmente sa obtiene (considerando $E_{i,j} = \frac{K_{i,j}}{2}$ para $i \neq j$)
 $\left(\begin{array}{c} C_n \\ E_{as} \\$

DESFI-UNAM Marzo-1976 P. Ballesteros 18 En un medio elastico lineal anisotropico en las ecuaciones (8.3), aceptando el principio de super-. posisión se expresan G11 G12 C13 G14 C15 G16 **T**in € II) C121 G22 G23 G24 G25 C26 E22 1 T-22 E33 >= C31 C32 C33 C34 C35 C36 (8.7)**T**33 Gai Gaz Gaz Gaa Gas Ga6 G51 G52 G53 G54 G55 G56 G61 G62 G63 G64 G65 G66 812 J12 (Tz3 (J31 Las ecuaciones constitutivas (87) tienen 36 constantes. Sin embargo a travez de consideraciones energéticas se de muestra que el número de constantes es 21 y que Cij=Cji para i≠j, son simetricas respecto a la diagonal principal de (8.17). Todas las constantes Cij deben déterminance experimental mente. Se sépone el material homogéneo, Ejemplos de estas materiales son: concreto, concreto reforzado, madera, plástico reforzado con filamentos, fierro fundido, etc. . Cuando se tienen tres direcciones ortogonales anisotropicas el material se dice que es ortotropico, y para estos materiales el número de constantes se reduce solo a nueve constantes independientes. Haciendo $\lambda = \frac{\overline{\partial E}}{(1+\overline{\partial})(1-2\overline{\partial})}$ y considerando (8.2) las * Solidnikoff, I.S., "Mathematical Theory of Elasticity", McGrow-Hill, 1956, p.Gl.

ecytration of the state of the

· · · · · ·

۰,

-

->1 I- UNAM Margo-1976 F. Da lles eros ecuaciones constitutivas (8.3) con notación indice se escriben* $T_{ij} = \lambda \delta_{ij} \varepsilon_{kk} + 2 G \varepsilon_{ij} \quad (i, j, k = 1, 2, 3)$ (8.8) donde, Sij=1 para i=8, y Sij=0 para i≠1, y $\mathcal{E}_{kk} = \mathcal{E}_{11} + \mathcal{E}_{22} + \mathcal{E}_{33} = \mathcal{C}$. Desarrollando (8.8) se tiene para $i=1, j=1, \quad \forall n=\lambda e+2G \in \mathbb{N} = \lambda e+2G \in \mathbb{X} = \forall x$ $i=2, j=2, \quad \nabla_{22} = \lambda e + 2G \epsilon_{22} = \lambda e + 2G \epsilon_{\gamma} = \nabla_{\gamma}$ (8.9) $i=3, j=3, \quad \nabla_{33} = \lambda e + 2G \epsilon_{33} = \lambda e + 2G \epsilon_{33} = \nabla z$ $2GE_{1z} = 2GE_{xy} = GV_{xy} = T_{xy}$ i=1, j=2, Ji2 = $2GE_{23} = 2GE_{TZ} = GV_{TZ} = T_{TZ}$ V23= i=2, j=3, $2GE_{s_1} = 2GE_{z_X} = GV_{z_X} = T_{z_X}$ i=3, j=1,Si en el sólido existe un incremento de temperatór? AT, siendo d'el coeficiente de expansion térmica las ecuaciones (8.3) guedan 1-2-20 $\mathcal{C}_{\mathbb{N}}$ 6 0 -2 1 -20 0 0 J22 622 -2-2100 T33 0 8331 TIZ 0 0 0 2(172) 0 Ο 0 000002(1+2) 0 2(1+) 0 0 0 0 0 Green, A.E., and W.Zerna: "Theoretical Elasticity", Oxford University Press, Fair Lawn, N.J. . 1970.

·

 \bigcirc

۰ • • •

9. Elasticidad bidimensional.
Otiligando la notación de Timoshenko y Von Karman
o la notación de ingeniería las ecuaciones de
equilibrio en un elemento dx dy se reducen a

$$\frac{\nabla I_x}{\partial x} + \frac{\nabla I_x}{\partial y} + X = 0$$
 (9.1)
 $\frac{\nabla I_x}{\partial x} + \frac{\nabla I_x}{\partial y} + Y = 0$
(9.1) $\frac{\nabla I_x}{\partial x} + \frac{\nabla I_x}{\partial y} + Y = 0$
(9.1) $\frac{\nabla I_x}{\partial x} + \frac{\nabla I_x}{\partial y} + Y = 0$
(9.1) $\frac{\nabla I_x}{\partial x} + \frac{\nabla I_x}{\partial y} + \frac{\nabla I_x}{\partial y} = 0$ (9.2)
Y las ecuaciones de compatibilidad (9.8) se reducen a
 $\frac{\nabla e_x}{\partial y^2} + \frac{\partial e_x}{\partial x^2} = \frac{\partial V x_y}{\partial x \partial y}$ (9.3)
En la Fig. 6.1 se muestan los dos estados o condicione
de esfuergos que en este caso se tienen, esfuergos bace;
 $\frac{\nabla I_x}{\partial y} + \frac{\nabla I_x}{\partial x} = \frac{\partial V x_y}{\partial x \partial y}$
 $\frac{\nabla I_x}{\partial y} + \frac{\nabla I_x}{\partial x} = \frac{\partial V x_y}{\partial x \partial y}$
 $\frac{\nabla I_x}{\partial y} + \frac{\nabla I_x}{\partial x} = \frac{\partial V x_y}{\partial x \partial y}$
 $\frac{\nabla I_x}{\partial y} + \frac{\nabla I_x}{\partial x} = \frac{\partial V x_y}{\partial x \partial y}$
 $\frac{\nabla I_x}{\partial y} + \frac{\nabla I_x}{\partial x} = \frac{\partial V x_y}{\partial x \partial y}$
 $\frac{\nabla I_x}{\partial y} + \frac{\partial V x}{\partial x} = \frac{\partial V x_y}{\partial x \partial y}$
 $\frac{\nabla I_x}{\partial y} + \frac{\partial V x}{\partial x} = \frac{\partial V x_y}{\partial x \partial y}$
 $\frac{\nabla I_x}{\partial y} + \frac{\partial V x}{\partial x} = \frac{\partial V x_y}{\partial x \partial y}$
 $\frac{\nabla I_x}{\partial y} + \frac{\partial V x}{\partial x} = \frac{\partial V x_y}{\partial x \partial y}$
 $\frac{\nabla I_x}{\partial y} + \frac{\partial V x}{\partial x} = \frac{\partial V x_y}{\partial x} = \frac{\partial V x_y}{\partial x}$
 $\frac{\nabla I_x}{\partial y} + \frac{\partial V x}{\partial x} = \frac{\partial V x_y}{\partial x} = \frac{\partial V x_y}{\partial x}$
 $\frac{\nabla I_x}{\partial y} + \frac{\partial V x}{\partial x} = \frac{\partial V x_y}{\partial x} = \frac{\partial V x_y}{\partial x}$
 $\frac{\nabla I_x}{\partial y} + \frac{\partial V x}{\partial x} = \frac{\partial V x_y}{\partial x} = \frac{\partial V x_y}{\partial x} = \frac{\partial V x_y}{\partial x}$
 $\frac{\nabla I_x}{\partial y} + \frac{\partial V x}{\partial x} = \frac{\partial V x_y}{\partial x} = \frac{\partial V x$

1 · · ·

- 1 ، برمین در می در می در می در می در می در می

.

 \bigcirc

9. Elasticidad bidimensional.
Otiligando la notación de Timoshenko y Von Karman.
d la notación de ingeniería las ecuaciones de
equilibrio en un elemento dx dy se reducen a

$$\frac{\nabla I_x}{\nabla x} + \frac{\nabla I_x}{\nabla y} + X = 0$$
(9.1)

$$\frac{\nabla I_x}{\nabla x} + \frac{\nabla I_x}{2\pi} + X = 0$$
(9.1)

$$\frac{\nabla I_x}{\nabla x} + \frac{\nabla I_x}{2\pi} + X = 0$$
(9.1)

$$\frac{\nabla I_x}{\nabla x} + \frac{\nabla I_x}{2\pi} + X = 0$$
(9.1)

$$\frac{\nabla I_x}{\nabla x} + \frac{\nabla I_x}{2\pi} + X = 0$$
(9.1)
(9.1)

$$\frac{\nabla I_x}{\nabla x} + \frac{\nabla I_x}{2\pi} + X = 0$$
(9.1)
(9.1)

$$\frac{\nabla I_x}{\nabla x} + \frac{\nabla I_x}{2\pi} + \frac{\nabla I_x}{2\pi} = 0$$
(9.2)

$$\frac{\nabla I_x}{2\pi} + \frac{\nabla I_x}{2\pi} - \frac{\nabla I_x}{2\pi}$$
(9.3)
En la Fig. 6.1 se muestan los dos estados o condicionol
de espersos que en este caso se tienen, esfuersos plane;

$$\frac{\nabla I_x}{2\pi} + \frac{\nabla I_x}{2\pi} - \frac{\nabla I_x}{2\pi}$$
(9.3)
En la Fig. 6.1 se muestan los dos estados o condicionol

$$\frac{\nabla I_x}{2\pi} + \frac{\nabla I_x}{2\pi} - \frac{\nabla I_x}{2\pi}$$
(9.3)
En la Fig. 6.1 se muestan los dos estados o condicionol

$$\frac{\nabla I_x}{2\pi} + \frac{\nabla I_x}{2\pi} - \frac{\nabla I_x}{2\pi}$$
(9.3)

$$\frac{\nabla I_x}{2\pi} + \frac{\nabla I_x}{2\pi} - \frac{\nabla I_x}{2\pi}$$
(9.3)
En la Fig. 6.1 se muestan los dos estados o condicionol

$$\frac{\nabla I_x}{2\pi} + \frac{\nabla I_x}{2\pi} - \frac{\nabla I_x}{2\pi}$$
(9.3)
En la Fig. 6.1 se muestan los dos estados o condicionol

$$\frac{\nabla I_x}{2\pi} + \frac{\nabla I_x}{2\pi} + \frac{\nabla I_x}{2\pi} - \frac{\nabla I_x}{2\pi}$$
(9.3)

$$\frac{\nabla I_x}{2\pi} + \frac{\nabla I_x}{2\pi} + \frac$$

.

 $\overline{}$

. . È,

, .

. --

 \bigcirc

· · · · · · - 2, *: (· · · ·

.

• • •

. س تر مر

Marzo-1976 UESTI-UNAM P. Ballesteros 21 caso de una placa de espesor finito t, sin problemas de pandes que se de forma bajo la acción de {x} y {?} según la linea punteada indicada en la Fig. G.I b, las ecuaciones (8.3), bajo la condición de $T_{39} = T_3 = 0$ se reducen a $\begin{aligned} \left| \begin{array}{c} \left| \begin{array}{c} T_{x} \\ T_{y} \\ \end{array} \right| = \frac{E}{1 - \nu^{2}} \begin{vmatrix} \nu & \nu & 0 \\ \nu & i & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{vmatrix} \begin{vmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{x} \end{vmatrix} \\ \end{aligned}$ (9.4) Tx, Tr y Txr son el promedio sobre el espesor pequeño t y son independientes de g. Las componentes Xrz y Xzx se anulan en las superficies, mientas que la componente ez es dada. por $\mathcal{E}_{3} = -\frac{\gamma}{F} \left(\mathcal{T}_{x} + \mathcal{T}_{y} \right) = -\frac{\gamma}{1-\gamma} \left(\mathcal{E}_{x} + \mathcal{E}_{y} \right)$ (9.5) Proble mas de cuerpos largos en la dirección lorgitudinal 2 cuya geometría y cargas no varian en 2 se consideran problemas de <u>deformación plana</u> en la Fig. 6.2 se muestran como ejemplos un muro de presa, y una gapata corrida laga, nivel freatic 123.40.404 a) Semi-infinito espacio de suelo Fig. 6.2. Ejemplos de problemas de deformación plana.

 $\frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}} = \left(\frac{1}{2} \right)^{\frac{1}{2}} \left(\frac{1}{2} \right)^{\frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}} \left(\frac{1}{2} \right)$ -2 Stadie Contract

· · ·

,

. -

DESFI-UNAM Margo-1976 P. Ballesteros 22 en estos casos el desplagamiento U3=W=O por lo tonto E23 = E3 = 0, dr3 = 2E23 = 0, y dzx = 2E31 = 0, Las ecuaciones (8.3) se reducen a $\begin{pmatrix} \overline{J}_{x} \\ \overline{J}_{y} \\ \overline{T}_{xy} \end{pmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{vmatrix} 1-\nu & \nu & 0 \\ \nu & 1-\nu & 0 \\ 0 & 0 & \frac{1-2\nu}{2} \end{vmatrix} \begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{y} \\ \varepsilon_{xy} \end{pmatrix}$ 1-2 (9.6)y el esfuergo Tz se expresa entérminos de Txytr como (9.7) $\mathcal{T}_3 = - \mathcal{V} \left(\mathcal{T}_X + \mathcal{T}_Y \right)$ Muchos problemas de ingeniería involucran solidos de revolución (solidos axisimétricos) sujetos a carga de revolución ó axialmente simétrica, por ejemplo un cilindro circular bajo piesion externa uniforme, gapata circularen una masa de suelo semi. in finita como se muestran en la FG.6.3 3,7 3 1 eje de revolución - Carga circular masa de suelo semi-infinita たれ θ T,U a) Cilindro con carga axisimétrica b) Zapata circular Fig. 6.3 Problemas axisimétricos.

· · ;;

-· · · · ·

.

· DESFI-UNAM Margo-1976 P. Ballesteiros 23 Debido al eje axisimétrico respecto a geometría y cargas, las componentes del estuergo son independiente del anguío 0; por lo tanto todas las derivadas respecto a O se anular y las componentes 2, Vro, Yoz, Iro, y Toz son cero. Las componentes de esfuergo diferente de cero son Jr, Jo, J3 y Irz. Las relaciones deformación desplagamiento son, para las deformaciones diferente de cero $\mathcal{E}_{r} = \frac{\partial \mathcal{U}}{\partial r}$, $\mathcal{E}_{\theta} = \frac{\mathcal{U}}{r}$, $\mathcal{E}_{\delta} = \frac{\partial \mathcal{W}}{\partial 3}$, $\mathcal{V}_{r\delta} = \frac{\partial \mathcal{U}}{\partial 3} + \frac{\partial \mathcal{W}}{\partial r}$ (9,8)1) la relàción constitutiva es $\begin{pmatrix} \overline{Ur} \\ \overline{Ug} \\ \overline{Ug} \\ \overline{Ue} \\ \overline$ (q, q)despejando de (9.4) {et, substituyéndolo en la ecuación de compatibilidad (9.3), y eliminando por medio de (9.1) a OTAX se obtiene $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \left(\sqrt{1} + \sqrt{1} \right) = -(1+\sqrt{3}) \left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y^2} \right)$ (9.10)La ecuación (9.10) junto con las de equilibrio (9.1) son suficientes para la solución del problema de estuergos planos Jz=0, de ellas se obtiene (J)= IJx Jr Ixr1. Similarmente des pejondo (Et de (9.6) y substituyendolo en la ecuación de compatibilidad (9.3), y eliminando por medio de las ecuaciones de equilibrio (9.1) a Z'LXI se

A statistical de la solar de la s

· · ·

P. Ballesteros Marzo-1976 DESTI-UNAM 24 obtiene $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\left(\sqrt{x} + \sqrt{y}\right) = -\frac{1}{1-y}\left(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y}\right)$ (9.11) La ecuación (9.11) junto con las de equilibrio (9.1) son suficientes para la solución del problema de deformación plana (e=o), con fuergas de cuer po diferente de cero, de ellas se obtiene {] = L Jx Jr Txr1. Cuando las fuerzas de cuerpo X es solo funcion de y, constante o cero, y cuando la fuerza de cuerpo Y es solo funcion de «, constante o cero, las ecuaciones S. (9.10) y (9.11) para estuerzos y deformación plana respetivamente, se reducen a una sola que es (9.12) $\left(\frac{\partial^2}{\partial \chi^2} + \frac{\partial^2}{\partial \mu^2}\right)(\nabla_X + \nabla_Y) = 0$ Es importante observar que en este caso, en las ecuaciones de equilibrio (9.1), y la de compatibilidad (9.12), mo-dificada for las ecuaciones constitutivas, no intervieren las constantes elásticas del sólido E.y.V. Conclusión de fundamental importancia para el uso de modelos transparentes en Fotoelasticidad. También se concluije len este caso que en ambos estados; de efuersos y deformación plano los esfuerzos (TY son iguales, solamente las de formaciones {e} y los desplazamientos {u} son diférentes. E Para la solución del problema anterior cuando (X)=0 Airy, G.B. (Brit. Assoc. Advan. Sci. Rept., 1862) introduce

12. につけていたのにも • • л ж The second s C Draws and the second sec

 \bigcirc

, à..., . . N5 1

č.,

,

· DESFI-UNAM Margo-1976 P. Ballesteros 25 una función $\phi(x,y)$, llamada función de esfuerzos, en forma tal que $T_{x} = \frac{\partial^{2} \varphi}{\partial y^{2}}, \quad T_{y} = \frac{\partial^{2} \varphi}{\partial x^{2}}, \quad T_{xy} = -\frac{\partial^{2} \varphi}{\partial x \partial y}$ (7.13) (9.13) satisface las ecuaciones de equilibrio (9.1) cuando las fuergas de cuerpo {X} son cero, y substituyéndolas en (9.12) se obtiene $\nabla^2 \nabla^2 \varphi = \left(\frac{\partial^2}{\partial \chi^2} + \frac{\partial^2}{\partial H^2} \right) \left(\frac{\partial^2 \varphi}{\partial \chi^2} + \frac{\partial^2 \varphi}{\partial H^2} \right) = 0$ (9.14) desarrollando el operador bi-laplaciano se obtiene $\nabla^{4}\phi = \frac{\partial^{4}\phi}{\partial\chi^{4}} + 2\frac{\partial^{4}\phi}{\partial\chi^{2}\partial\mu^{2}} + \frac{\partial^{4}\phi}{\partial\mu^{4}} = 0$ (9.15) La ecuación (9.14) se llama bi-armónica o bi-laplaciana y la forma (9.15) gradiente cuarto de de. Por lo demostado anteriormente el problema de solución de esfuerzos en medios elásticos lineales homogeneos e isotrópicos bidimensionales se reduce a una solución de (9.15) que satisfagas las condiciones en la frontera bidimensionales que para el puntoi son $X_i = T_X T_X + T_{XY} T_Y$ DESCEXA X J× .ny=Cosp $Y_{i} = \mathcal{T}_{xY} \mathcal{D}_{x} + \mathcal{D}_{Y} \mathcal{D}_{Y}$ matricial mente: $\begin{bmatrix} \sigma_{x} & \tau_{xy} \\ \tau_{x} & \sigma_{y} \end{bmatrix} \begin{cases} n_{x} \\ n_{y} \end{cases} = \begin{cases} \overline{X} \\ \overline{Y} \end{cases}$ (9.10) Del Teorema de la unicidad la solución mencionado es única. * Timoshento, S. and J.N. Goodier, "Theory of Elasticity", M=Gon Hill, 1966.

espectade en anna anna

~1

х , ,

· · ·

.

· ·

.

~ ·	Marzo-1976 P. Ballesteros	26
•.	: Si las fuergas de cuerpo existen, general mente	
	es posible relacionarlas mediante una función potencia	l
	V(X,y) en forma tal que	
	$X = \frac{\partial X}{\partial X}$, $Y = \frac{\partial Y}{\partial Y}$	1
j'i a l' c	serbstituyendo (9.11) en las ecuaciones de equilibrio (9.1)	
19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	se obtiene $\partial_{\overline{x}}(\overline{x}-\overline{v}) + \frac{\partial T}{\partial y} = 0$ (9.12))
141 dr 14	$\frac{\partial}{\partial Y}(\overline{V}_{r}-V)+\frac{\partial \overline{V}_{xy}}{\partial X}=0$	
	en este caso la función de esfuergos es	
	por supuesto (9.13) satisface las ecuaciones de equilibric)
	(9.1), y substituituyendola en la ecuación (9.10) la reduc	2
	$\nabla^{4}\phi = -(1+\nu)\left(\frac{\partial^{2}V}{\partial\chi^{2}} + \frac{\partial^{2}V}{\partial\chi^{2}}\right) = -(1+\nu)\nabla^{2}V (9.14)$	1
	(9.12) nos resudve el problema de esfuergos planos con	
	fuerzas de cuerpo relacionadas por (9.11).	
	Substituyendo (9.13) en (9.11) se obtiene	
	$\nabla^4 \phi = -\frac{1}{1+\nu} \left(\frac{3}{3\sqrt{2}} + \frac{3}{3\sqrt{2}} \right) = -\frac{1}{1+\nu} \sqrt{1} (9.15)$	
	10. Ecuaciones de equilibrio en términos de los	
\bigcirc	des pla ga mien los julg = Lui uz ui j = La o mi.	
	de elasticidad lineal, homogenea e isotropica consiste)

the second · · · · ·

r* . · · ·

,

> . , .

χ.

HLOFI-UNAM Marzo-1976 P. Ballesteros 2 en eliminar las componentes de esfuergos {J} de las \bigcirc equaciones de equilibrio (5.2) expresando las ecuaciones constitutivas (8.5) en términos de los desplagamientos (17.2), (7.3) y (17.4). Por lo tanto substituyendo (7.2), (7.3) y (7.4) en (8.9) se obtiene 111 15 5 500 4 $\nabla_{Y} \equiv \nabla_{zz} = \lambda e + 2 G_{2u}^{2v}$ (10.1) $\mathcal{T}_{XY} = \mathcal{T}_{12} = \mathcal{G}\left(\frac{\partial \mathcal{U}}{\partial \mathcal{U}} + \frac{\partial \mathcal{V}}{\partial \mathcal{X}}\right)$ $\mathcal{T}_{YZ} = \mathcal{T}_{25} = G\left(\frac{\partial \mathcal{T}}{\partial \mathcal{Z}} + \frac{\partial W}{\partial \mathcal{Y}}\right)$ $T_{IX} = T_{3} = G\left(\frac{\partial W}{\partial \chi} + \frac{\partial L}{\partial g}\right)$ donde $e = e_{11} + e_{22} + e_{23} = e_x + e_y + e_g = \frac{\partial \mu}{\partial x} + \frac{\partial \nu}{\partial y} + \frac{\partial w}{\partial g}$ (10.2) Ċ Substituyendo (10.1) en las ecuaciones de equilibrio (5.2) se obtiene $(\lambda + G) \begin{cases} \frac{\partial e}{\partial X} \\ \frac{\partial$ (10.3) donde en este caso el operador diferencial $\nabla = \frac{3}{3\chi^2} + \frac{3}{3\chi^$ En: (10.3) cuando las fuergas de cuer po {X} son cero (10.3) queda (10,4)C

r

* **,**

. 、

,

× .

-- -

2

. .

`

د. دورید

,

· DESFI-UNAM Margo-1976 P. Ballesteros 28 En las ecuaciones (10.4), diferenciando la primera respecto a X, la segunda respecto a X, y la tercera respecto a Z, y después sumándolas se obtiene $(\lambda + 2G) \nabla^2 e = 0$ (10.5) (10.5) significa que la expansión volumétrica unitaria e=ex+ex+ez satisface la ecuación diferencial $\nabla^2 e = \frac{\partial^2 e}{\partial \chi^2} + \frac{\partial^2 e}{\partial H^2} + \frac{\partial^2 e}{\partial g^2} = 0$ (10.6)En la ecuación (10.3) las fuergas de cuerpo son $X = P(f_{x} - \alpha_{x})$ $Y = \gamma(f_r - a_r)$ (10.7) $\Xi = P(f_z - Q_z)$ donde fx, fry fz son las fuergas por unidad de masa, ax, ar y as las componentes de la aceleración, y pers la densidad ó masa especifica. Si en las ecuaciones (110,3) la primera la multiplicamos por el vector unitario I, la segunda por el vector unitario J, y la tercera por el vector unitario R, y las sumamos entre si se obtiene la expresión vectorial de las ecuaciones (10.3) como $(\lambda + G)$ grad div $\overline{S} + G \nabla^2 \overline{S} + p(\overline{f} - \overline{a}) = 0$ (10.8)en donde $\bar{a} = \bar{i}a_x + \bar{j}a_y + \bar{k}a_3$ F= Ifx+ 3fy+ kfz (10.9) ミ=エル+JU+RW $divs = e = \frac{\partial k}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial y}$ grad div 5 = I = + FEG + FEG

.

 ,
 , , .

. , ı

TRABAJO VIRTUAL

Principio del trabajo virtual: Sí una particula se en cuentra en equilibrio, el trabajo total efectuado por todas las fuergas actuando sobre la particula, bajo cual quier des pla gamiento virtual es cero. Sean SIL, SJ, SW: Componentes del desplazamiento virtual en las direcciones X, y, 3. ZFx, ZFy, ZFg: Sumas de fuergas en las direcciones 2, 4, 3 que actuan sobre la particula o cuerpo rigido. SM = SM + SV + SWFn Fi 7 SW с.9 Su , Sy Fig

P. Ballestero O El principio del des plazamiento virtual esta blace que Sul Fri = 0 (1) Sv Z Fri = 0 SWZ Fzi=0 O. Si el sisteme esta en equilibrio y permanece en equilibrés des pues des des plagamiento virtual se satisface (). Un cuerpo elástico en réposo constituye un conjunto de particulas sobre las que en cada elemento actua un subconjunto de tuergas en equilibrio. En cualquier desplagamiento virtual, el trabajo virtual sobre cada particula es cero, por lo tanto el Trabajo virtual total Jambién debe ser cero. Es conveniente que Elli sean reinsistentes con las condiciones de apoyo.

.

• × • . . -

-

~

· · ·

· · · · ·

, -کا نی › . , - ۲ ۲

P. Ballestern 3 : Sean: Jurwy componentes de los desplagamientos debido a las cargas en Zi. LSUSTSWJ Componentes del des plazamiento virtual en Xi. (funciones arbitrarios de Li). Para deformaciones lineales pequeñas, los desplazamientos virtuales correspondientes O a las seis componentes de deformación son $\delta e_{x} = \widehat{\partial}_{x} (Su)$, $\delta \delta_{xy} = \widehat{\partial}_{x} (Sv) + \widehat{\partial}_{y} (Su)$ $Se_{\gamma} = \frac{2}{3} (Sr), Sinz = \frac{2}{3} (Sw) + \frac{2}{3} (Sr)$ (2) $SE_{g} = \frac{2}{3g}(SW), SV_{ZX} = \frac{2}{3g}(SW) + \frac{2}{3\chi}(SW)$ y el trabajo virtual en un elemento dxdydg (3) es $SU_{0}dV = [T_{x}(SE_{x}) + T_{y}(SE_{y}) + T_{3}(SE_{z}) +$ + [xy (SUXY) + [yz (SUZ) + [zx (SUZX)] dV

Sean:

1 1 2

,

.

P. Ballestern @

O ZdA, JdA, IdA, Fuergas de superficie en el elemento dV=dxdydg. XAV, Ydv, Idv, Fuergas de cuerpo en el elemento dv=dxdydz. La afirmación de que el Trabajo virtual es cero es (x Su + y Sv + ZSw)dA → f(x Su + YS: + f(x Su + YS: + $\int (X S u + Y S v + I S w) dV$ V = $\int S U_0 dV = 0$ Puesto que las fuerzas de superficie IXI, las de cuerpo LXI y los esfuerzo {J, no varian durante un des plazamiento virtual pequeño, el simbolo variacional s , se puede sacar fuera del signo integral queda ndo

 \bigcirc

 \bigcirc

۰. ۲

P. Ballesteros D

(a) Establece que los des plaga mientos Le VWJ bajo ciertas fuerzas de $\left(\begin{array}{c} \cdot \\ \cdot \end{array} \right)$ su perficie y de cuerpo dadas, son tal que la variación de primer orden de la energia potencial total ES CERO para cualquier des plagamiento virtual, à brevemente La energia potencial total es esta cionaria. El termino desplazamiento o trabejo virtual implican multiplicadores arbitrarios LSU SUSWI con las ecuaciones de equilibrio, es conveniente reterirse a ellos como variaciones de 11. V.W.

· · · ·

. .

9 1)

6/3/5	DE UNA ESTRUCTO	JEA THO MAEC	0 1	
• •	on the period	στος		
	690 1.0. DE ECUAC	ICHES		
	TIPOS	S OF LA ESTRUCTURA	n yan sala an fala waan ahaa ahaa ahaa ahaa ahaa ahaa aha	
$\left\{ \right\}$	165 1°C. DE CHAGR	LATEPOS		
		LE PUETE FRONTERA		
			· · · · · · · · · · · · · · · · · · ·	
÷				
CONST/	NITES CLASTICAS DE L	LUS HATCHIALES		
	(TE#/#**2)		CTUN/H**3)	
·	150000.00	(.15	2.400	
<u>u 4 4</u>		UT CETTU	FILLAS STOC	T C P E
~ ~ ^	· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	-
.;,(] <i>+</i>	*\$50010**	*PAR*TETRES**		
1 1 1	ESPECIAL	$(I \neq I Z \neq F Y)$		
* * *		- (
3	<u>1</u>	(L's Ho V + T)		
4	ANGLO	([] • [• [• [•] • [• [•] \bullet]		
у. С	CIPCULAR	(2)		
}				
· · · · ·	CRUZ	- (カーキの) (つもてもVeHもの)		
-+)	<u> </u>	······································	(4)	
11	К	(L & Y e H e (L & K)		
	LATHER + (VER FI	SUPAS DEL CATALOGO	DE SECCIOSES)	
- d -	ABCHE-GE-LA-SEC ABCHE INFERIOR	64000-T-IP-0-19-20-3940 LE LA SECCION TIPO	יייר פר פר ק 5 איין 1 - Y - 1 1 - 1 (1 נו	an a
	LIAPETRU DE LAS	SECCIENES TIME 6	Yð	
- .			-> ++ +	
тс У -	- ANCHO BEL ALIA	E LAS SECCIOLES T	IPO 2+3+4+7+9+10 Y 11	~ ~ ~ ~ ~ ~
	ESPESCH-UEL PAT	HI-DE-EAS-SECCTONE	5-7 JPA-2+3+ 1-5+7-2- Y-1-1-	
TI	ESPESON PLUENT FORESOR PEL PAT	IN INTEPICE DE LA	SECCION TIPO 10	
	AHCHU_SUP-C+,-10 ²⁻	-C LA-SECGIAL TIPA	-1-3	
c	PISTAPCIA ENTES	LAS FIRPAS SUPERI	URES DEL ALMA Y PATIN RE	SPECTIVAMES
·	- RESPECTIVAME	ATO DE LAS SECCID	Nes 9 y 100 -	
(ch)	CENTIMETPOS		, ,	
(11*+5) METILOS A LA SLO	TA PETENCIA		
	AFEA			······································
)A	•	ITA LESELCTO AL	Г р	
A A 17 -	- MONENTO DE INEP	FILL IN HEFE	t. Z	~ -
)A)I7 - FY	- MORENTO OE INC ⁰ 	LARA LA MIRECCION	t. /	· · · ·

Υ

. . .

· ·

					2
Colles and a	TIP(·• D=BI=D=A =- (C!')	404 CL 104 CD 80 CD 80 CD 80 40 40 40	H-12-70	(CH)
	1 1	70.600 100.000	15 20	•000 •000	0.000
C101: 10-	- TIPO	······································	12		···· · · ·
	(1)	, (**.5.)	(***4)	۰	
? · ·		15000000000000000000000000000000000000	• COUL 46875 • COUL 468687	1.20000000)
1) [ARS: 0. (DISAORDENAD	Λ			
1	000	······			
3	000				
5 (• *	acc 3.467		, 		
7 0. E0.	0005:200 0006:067				
9	63933 630 7. 880				
1 0.	009 8+667 K 00 9+53 3				
	000 10+400 000 11+267		1		
5	eeo			•	
7 (. 8	500 C.000 50 6				
9(°	5001:733 500	;	J	· · ·	
2 0.	500 4.333 500 5.00		······································		
······································	500 5+200 500		,		
	500 7 800 500 7 800 500 - 8.667				
<u>^</u> .	500 9+533 500 10-400				
(* •	500			· · · · · · · · · · · · · · · · · · ·	
	500 - 13.000 000	• • • • • • • • • • • • • • • • • • •		, 	
1 •	000 C+867 C00 1-733				
~	(1)0		· · · · · · · · · · · · · · · · · · ·		
}	د د ب د ب د ب د ب د ب د ب د ب د ب د ب د	SIGUC i	gual		
1.	000 6.933	Ý			
			· · · · · · · · · · · · · · · · · · ·		

. $\Big]$ • 2 r (· , ,

.

۰. ۳

9+600 9+600	0.067			З	
0.600	7.80J		·		
9.600	9+53J				
0.00.0	-11.207	an and an an anna a san a cana agus agus an a			
9+600 9+600	12.133 13.000			• •	~
		I		`	
	Innahlugu Jan	HAT, HO3	SEC. NO-WWWAPNY	Ι	Jamaal ANGTTIIA
52 -	-71	· · · · · · · · · · · · · · · · · · ·	1 0		
5.8		1	0	0	2.000
Ĵ1.	. 77	1	1 0	0	2.000
64	0.3	1	1 0	· · · · · · · · · · · · · · · · · · ·	2.000
	······································	1	1	n	
135	- 117		1 1 0	0	1.000
138	- 148	1	1 0	0	1.060
	149	1	1 0	0	1.000
144	150	1	1 C	U	1.GCD
146	154	1	1 0	0	1.000
		1	(0	1.000
148	160	1 1 1 1	1 (0	1.000
- <u>199</u> 150	103 ~~ ~) (i	0	3.000
	100	<u>1</u>	1 ()	0	1.0000
145	140	1	2 (0	2:6(0
+ 140	2 4 1	1	2 0	0	2.666
	140			()	2.300
	142	ـــــــــــــــــــــــــــــــــــــ			
× 11 2			~ (,	0	ו (11)()
70.00 GPA	LCS, MIGULO C	NTRE GRAVESA	N Y FUE X GLOS	AL.	
	しつた だたりごさいら	-DOM-IHAH7-FE-H-	- <u>E-</u>		a and a second
- n ,23461	1.03	. D	•	,	
-0.20461 110: TI	PO DE ELEMENT				
-0.20461 10: TJ	PO DE ELEMENT	······	****		
-0.20461 10. TJ	PO DE ELEMENT	L			
-0,20461 10: TJ	PO DE ELEMENT 2 2 2	·····			
-A,20461 110: TJ	PO DE ELEMENT 2 2 2 2 2 2	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		- -
-0.20461 100: TJ	PO DE ELEMENT 2 2 2 2 2 2 2	L			-
-n.20451 110: TJ	PO DE ELEMENT 2 2 2 2 2 2 2 2 2 2 2 2 2	· · · · · · · · · · · · · · · · · · ·			-
-0.20471 110: TJ	PO DE ELEMENT 2 2 2 2 2 2 2 2 2 2 2 2 2				- -
-^,20461	PO DE ELEMENT 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				-
-0,20461 400 TJ	POSPELSPESOR POSPELSPESOR 2 2 2 2 2 2 2 2 2 2 2 2 2	L		-	
-0.20471 40. TJ	PO DE ELEMENT 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
-0.20451 110: TJ	PO DE ELEMENT 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
-0,20471 110: TJ	PO DE ELEMENT 2 2 2 2 2 2 2 2 2 2 2 2 2				
-0,20461 110: TJ	PO DE ELEMENT 2 2 2 2 2 2 2 2 2 2 2 2 2				
-0.20461	POSPELSPESOR POSPELSPESOR 2 2 2 2 2 2 2 2 2 2 2 2 2				
-^,204471	PO DE ELEMENT 2 2 2 2 2 2 2 2 2 2 2 2 2				
-0,20471 110; TJ	PO DE ELEMENT 2 2 2 2 2 2 2 2 2 2 2 2 2	L			
-^,20461	$F_{0} PF ELEMENT$ $\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$				
- 0 . 20 4F1 10 . TJ	$F_{0} = F_{0} = F_{0$	i jul ijual			

-

 \bigcirc

. .

. . , , ,

·

-

,

						4	
. 142			1			•	
143			1		•		
			1 -1.		·····		
146			1		* .		
147		1	i	x	•		
() 140			1			n an	· · · ·
149			1				···· · ·· · · · · · · · · · · · · · ·
			1 				
101			1 -1		د		
153		,	1			`	
154			1				· · · ·
151		·····	1	~ ~ ~			· · · · ·
156		/	, 1				
157		1	1	-			
1 J () 1 4 ()		1	1			-	
			1				
101	,		1				
- 102	-	·····		~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		_	
103		/	1			•	
165			1 1				
					``````````````````````````````````````	-	
				-			
ELER NOM	1000	I-0600-0-	11000 K	чийрй г∟≖і	VAT.NO. HES	SPESUR(M) IN	10 E 7
					*******	~	
1	2	1	17	18	1	0.20	0
			1-9			- ().20	1
\ \- <u>3</u>	5	5	21 -	-22 -	1	0.20	Î
4	8	- 7		24	1	0.20	1
5				54	<u>1</u>	- 0.20	1
6 7	12	13	21	20	1	0.20	1
• ••••••••••••••••••••••••••••••••••••				3:5		······································	1
	19	18	34	35	1 .	0.20	0
- 10	- 21	20	36	37	1	0.20	1
		2:2	38				-1
12	25	24	40 40	41 55	7	0.20	1
<u>المعامم المعامة المعامة</u>	∕نے … Ω (		47 44		J 	● • č tů 	L
15	31	30	46		1	0.20	1
- 16 -	34	33	49	50	1	- 0.20 -	0
1-7	3-5 -			5-2	1		· · · · · · · · · · · · · · · · · · ·
13	38	37	53	54	1	0.20	1
19	40	39	55	56	1	0.20	1
21	44	- 43		6(l	- 1 -	- 0.20	· · · · · · · · · · · · · · · · · · ·
- 22	46	45	- 61-	- 62	; ]	0.29	1
		47	ú 3				. ]
24	67	66	32	83	1	0.20	ŋ
25	69	6.8	84	85	1	0.20	1
~ 26			ئى ئى م رو		······		1
$\rangle_{20}$	75	74	90	- 07	1	0.20	
) 24	77	76			• ••••••••		1 Sigue und
30	70	78	24	95	1	0.20	1 ( ( (
31	63	81	97	<b>ပ်</b> ၆	1	0.20	o V
						dans contas a anti-ta as so to ta	

-----,

Ţ

.

*  $\bigcirc$ 

۰. ۲.

 $\bigcirc$ 

. 

X

Υ.

'n

		- ,							
							5		
150	115	: 65	201	202	1	0.20	1		
102	188	1:7	203	204	1	0.20	1		
154	190	129	205	206	ī	0.20	1		
	-192	191		20#		0.20			
50 50	<b>~</b> \$94	193	209	210	1	0.20	1		-
157	196	195	211	212	1	0.20	3		I
150	128	197		211	1	6.50	1		
159	201	200	216	217	1	. 9.20	0		<b>6</b> .
160	203	202 -	218	219		0.20	1		
-161	205	-204	220	221	1	0.20	1.		
102	207	200	222	223	1	0.20	1 1		
160-		- 713							
125	- 213	212	- 228 -		· • •	1 0.20	۲. ۲	-	*
					•	0.00	•	-	
•	54 	Ансно 	DE SENI	BANDA DE	LA MATE	PI7 OF RIGIE	)FCES		· · · · · ·
kuco stiti	nts cint- 0~	NUT TO IACICA TPICCI Y -D-Y	CONDIC COR DE COR DE CONTIPO	DUES DE BIGIDEC C=LIBRE	COMPEN CES DE EN En 1=FIJp	TREPISO -			
		1 /	1 1 			• •••••			
49 65		- 1	1 - 1	••••••••••••••••••••••••••••••••••••••					
23 07		1	11						
۷۱ ۲۰۱۰ - ۲۰۱			۱ ۱ ۱۱	L L		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			بالمحافظة والمحافظة والمحافظة والمحافظة والم
		1.	· · · · · · · · · · · · · · · · · · ·						
145	-	1 -	-1 1		,				
		1							
167	· .	1	1 1	1	-				
183		1	1 1	L					
			11						
215		-1	1 1				-		
. • . ,		-				··· · · · · -			
	+16, 11 +1			- C D C I /					
0. RC	STPICCIC	NE 318	set enest	TRINGIDO		JRP 45			
	; ;	-		1	· · ·		-	, 	
	n			49		· · · · · · · · · · · · · · · · · · ·			
$\overline{}$	*`			50					
<u>}</u>		a additional second and and		-51					
$\mathcal{I}$	7		-	97 -					
	Į1			93					
	· · · - 43			-99					
	<b>;</b> C		1	145					
	11			146					

( . -۰,  $\left\{ \right.$ į

{

											•			
	17				147									
	13		1		193									
۲	14				194									
	15				195									
	16				241			ς						-
	17		、 、		242									
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-17				273	<u> </u>								
)	5.5				2,0		<b>.</b>				**			
<b>)</b>	Jen .				207						•			
	2.0				290									
	21				291									
	22				337									
-	23				338						\$			
	·				-385 -					·			~	
	20		، با با بحد مشتد		356-							~ -	• ~ ~~	-
	<u> </u>		·			۲ 								
	27				307								~	
	3.6		i		433									
	20				434									
		y			-435	*******								
	31 -	• • • • •			-451-							· .		~ •
	30													
	ン/ 								-					
	25				433 772									
	34				499			ι.						
	35				500									
	3 (				-501-				•					
	37				547			•						
	<u> </u>				-546-		,							-
	30 -				-540-				-					
	55 10 0				505						`			
	44 × J J. 4		ι		لر لا تر او مراو									
	41	,	,		590	-								
	-													
								- <del></del>	-	*				
~~~~~~ 	-43 -	• • • • •			<del>597</del> 643	م <del>ىمىدەر</del> مەر. 	·····							
<u>}</u>	-13 - 44		. مربقه با مر المساهمة ۱۹۰۰ - مسالما ما م ۱۹۰۰ - مار مار مار		<del>597</del> 643 644					, -				
}	- 13 - 44 15	· · · · · ·	، مربعة بالتي تعقيماً معرفة 10 - مربعة معرفة مربعة 10 - مربعة مربعة 10 - مربعة مربعة		<del>597</del> 643 644 645		· · · · · · · · · · · · · · · · · · ·			, -				
}	- 1 3 - 4 4 1 5		· · · · · · · · · · · · · · · · · · ·		<u>597</u> 643 644 645	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			, -				
}	- 1 3 - 4 4 15		· · · · · · · · · · · · · · · · · · ·		<del>597</del> - 643 644 645	· · · · · · · · · · · · · · · · · · ·	· · · ·			, -				
}	- 1 3 - 4 4 15		· · · · · · · · · · · · · · · · · · ·		<del>5</del> 97 - 643 644 645	· · · · · ·				, -		-		
}	- 1 3 - 4 4 		<del>C-A</del> L-(			 4 S	-#-I C-I N	E.C.F-S-		<del>FIJT<u>R</u></del>	-p-I S Ռ-	-		
}	- 1 3 - 4 4 1 5		- C + L - (			4 S	-#-I C-I N	EcF-5-		<del>₹</del> ₩Ŧ <u>₽</u> ₹	-ም-I S ቡ-			
} -	- 1 3 - 4 4 	· · · · · · · · · · · · · · · · · · ·	C-AF-(			-4 S	-#-I G-I N	E _C F-S-		Ŧ <del>ŀŀŦŖ</del> Ŧ	-ዮ-፤ ና ቡ-			
}	- 1 3 - 4 4 1 5		<del>C + L - (</del>	CUL-0		S	-#-I C-I N	E _C F-S-		<del>₹</del> ₩ <del>Ⴈ</del> ₽ᠮ	-ም-I S ቡ-			
} -	- 1 3 - 4 4 1 5			C++L-10		A S	-#-I C-I N	ECF-S-		<del>- [+] <u>२</u> [</del>	-ም-I S በ			
}	- 1 3 - 4 4 1 5			C++L-+Ŭ		4 <u>S</u>	-#-1 C-1 0	ECF-S-		<del>- [+] <u>२</u> [</del>	-ም-I S በ			
}	- 1 3 - 4 4 1 5		CAL(	S E 11	597	-4 s	-#-1 C-1 U-	E.C. <del>E</del> .S		<del></del>	-₽-I S Ռ-			
√ E-E	- / 3 - - / 3 - - / 4 - / 5 	25 NQ	CALC DALE: CS	S E 11	597	-4 s	-#-1C-10-	E.C. E.S		<del></del>	-p-I S Ռ-			
)	- / 3 - - / 3 - - / 5 - / 5 - / 5 - / 5	DS NO L 4-40 15 -	CAL( DALE: CS	S E 11	597	-4 s	-#-1 C-1 U	E.C. E.S		<del></del>	-p-I S ∩-			
) /E-L 1	- / 3 - - / 3 - - / 5 - / 5 - / 5 - / 5 - / 5 - / 5 - / 5	25 NO 		S E 11	597		-#-1 C-1 U	E c F-S-		<del></del>	-p-I S Ռ-			
)	- / 3 - - / 3 - - / 4 - / 5 P [1]. T 	DS NÖ 		S E 11	597- 643 -644- -645- -0E1 CADA		-#-1 C-1 U	E.C. E.S		<del>{</del> -   † <u></u> ;;	-p-I S Ռ-		· · · · · · · · · · · · · · · · · · ·	
√E-L 1	- / 3 - - / 3 - - / 4 - / 5	DS NÖ -1.(12) 15 15 15		S E 11	597- 643 -644- -645- -0Е СЛРА		-#-1 C-1 U	E c F-S-		<del></del>	-p-I S ∩-			
√E-L 1	- / 3 - - / 3 - - / 4 - / 5	25 NO -1-(12) 15 15 15 15		S E 11	597- 643 -644- -645- -0Е СЛРА		-#-1 C-1 U	E.C. E.S.		<del>{</del> - + <b>†?</b> {	-p-I S ∩-			
/E-L 1	- / 3 - - / 3 - - / 4 - / 5	25 ND 		S E 11	597- 643 -644- -645- -0Е СЛРА		-#-1 C-1 ()	E c F-S-		<del>₹</del> -₩ <b>†</b> ₽₹	-P-I S Ռ-			
/E-L 1	- / 3 - - / 3 - - / 4 - / 5 P [1]. T 	25 NÖ -1-(12) 15 -15 -15 15 15		S E 11	597- 643 -644- -645- -0-E		-#-1 C-1 ()	E.C. E.S.		<del>₹</del> -₩ <b>†</b> ₽₹	-P-I S Ռ-	-		
/E-L 1	- / 3 - - / 3 - - / 4 - / 5 	25 NO -1-(12) 15 -15 -15 15 15 15		S E 11	597- 643 -644- 645- 0-Е СЛРА 		-#-1 C-1 ()	E c F-S-		<del>₹</del> -₩ <b>†</b> ₽₹	-P-I S Ռ-	-		
) /E-L 	- / 3 - - / 3 - - / 4 - / 5 P [1]. T 	25 NÖ -4-42 15 -15 -15 15 15		S E 11	597- 643 -644- -645- 0-E- CADA CADA		-R-IG-IO	E c F-S-		<del></del>	-P-I S Ռ-			
/E-L 1	-/ 3 - -/ 3 - -/ 4 -/ 5 P[1]. T 	25 NO -1-(19) 15 -15 -15 15 15 15	CALC: DALE: CS 		597- 643 -644- -645- 0-E- CADA CADA NUDUS		-R-IG-IN 	EcF-S-		<del>V</del> FL N	-P-I S ∩-	1		
/E-L 1	- 1 3 - 4 4 - 1 5 - 1 5 - 1 5 - 2 0	25 NÖ -1-(19) 15 -15 -15 15 15 15 15 15 15	-CAL( DALE: CS	EUL-U	597- 643 -644- -645- 0-E- 	1C0	-R-IG-IM - - - - - - - - - - 116 -	EcF-5-		₩ <del>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</del>	-P-ISA	1 1 1 A A ···	202-	
/E-L 1	- 1 3 - 4 4 - 1 5 P [1]. T 	25 NO -4-(19) 15 -15 -15 -15 15 15 15 15 25 15	-CAL( DALE: CS	CUL-U	597- 643 -644- -645- 0-E- 	1C0	-R-IG-IN 	EcF-5-		₩ <del>₩</del> ₩	-P-ISA	1 1 1 A A ···	202-	
/E-L 1	- 1 3 - 4 4 - 1 5 - 1 5 - 1 5 - 2 0	25 NO -4-(19) 15 -15 -15 -15 15 15 15 36 	-CAL( DALE: CS	S E 11	597- 643 -644- -645- 0-E- 	1C0	-R-IGIN - - - - - - - - - - - 1 - - 1 1 6 -	EcF-5-		₩ <del>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</del>	-P-ISA	1 1 1 A A ···	- 202 -	
/ E-L	- 1 3 - 4 4 - 1 5 P [1]. T  P [1]. T        -	25 NÖ -4-(49) 15 15 15 15 15 2.4.C IO 3.6	-CAL( DALE: CS	S E 11 1 C S -1 -0 5	597- 643 -644- -645- -0-E- 		-R-IG-IM - - - - - - - - - - - 1 - - - 1 - - - - - - - - - - - - - - - - - - - -	ECF-5- SFII -132 S- FII		₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	-P-ISA	1 1 1 A 6	202-	
/ E-L	- 1 3 - 4 4 - 1 5 - 1 5 - 1 5 - 1 5 - 1 1 1 1 1 1 - - 2 0 - 1 1 1 1 1 1 - - 2 0	25 NO -4-449 15 - 15 - 15 15 15 15 2.4 C 10 36		t CS -1-05-71	597- 643 -644- -645- 0-E- 		-R-IGIO 	ECF-5- SFII -132 S- (-1+ 135	EL HI 	₩ <b>₩</b> ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	-P-ISA	1 1 1 A 6	202	517
/ E-L / E-L 1 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 _ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- 1 3 - 4 4 - 1 5 - 2 0 - 1 5 - 2 0 - 1 5 - 2 0  - 1 5 - 2 0  - 1 5 - 2 0  - 1 5 - 2 0       -	25 NÖ -4-(19) 15 15 15 15 15 15 2.4.C IO 36 39	-CAL( DALE: CS	t CS -1-05-71	597- 643 -644- -645- 0-E- 		-R-IGIO - - - - - - - - 1 1 6 - - 1 19	E C F-S- S F II ~132 S- (-1+ 135	EL HI -EL HI -EL HI -EL HI -EL -H- 146- -	₩ <del>₩ ₩</del> ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	-P-ISA	1 1 A A ···· 1 A A	202-	517
VE-L 1	- 1 3 - 4 4 - 1 5 - 2 0 - 1 5 - 2 0  - 1 5 - 2 0  - 1 5 - 2 0  - 1 5 - 2 0       -	25 NO -4-449 15 15 15 15 15 15 15 2.4 C I O 36 A C I O 36 A C I O 39	CALC DALE: CS CS CS CS CS CS CS CS CS CS CS CS CS	t CS -1-05-71	597- 643 -644- -645- 0-E- -0-E- 		-R-IGIO - - - - - - - - - - - 1 - - - - - - -	E c F-S- S F II -132 S- (-1+ 135	EL HI 	₩ <b>₩</b> ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	-P-ISA	1 1 1 A 6 1 2  1 A 0	202-	51 A 521
/E-L /E-L /E-L	- 1 3 - 4 4 - 1 5 - 2 0 - 1 5 - 2 0 - 1 5 - 2 0  - 1 5 - 2 0  - 1 5 - 2 0  - 1 5   - 1 5       -	25 NÖ -4-(19) 15 15 15 15 15 36	-CAL( DALE: CS	t CS 7 1	597- 643 -644- -645- 0-E- 		-R-IG-IM 	E c F-S- S F II ~132 S- (-1+ 135	EL HI -EL HI 146-	₩ <b>₩</b> ₩ ₩₽ ₩₽ ₩₽ ₩₽ ₩₽ ₩₽ ₩₽	-p-I Sn- 	1 1 1 8 6 1 9 0	202-	517
VE-L 1	- 1 3 - 4 4 - 1 5 - 2 0 - 2 0 - 1 5 - 2 0 - 2 0 - 1 5 - 2 0 - 1 5 - 2 0  - 1 5 - 2 0  - 1 5 - 2 0       -	25 NÖ -4-449 15 - 15 - 15 15 15 15 2 A C I O 3 6 	-CAL( DALE: CS	t CS -1-05 7 1 1 0 5	597- 643 -644- -645- 0-E- 		-R-IG-IN 	ECF-5- SFII -132 S- (-1+ 135 SFII	EL HI -EL HI -EL HI -EL -H- 146- -EL -H- 147 -EL -H- 147	₩ <b>₩</b> ₩ ₩₽ ₩₽ ₩₽ ₩₽ ₩₽ ₩₽ ₩₽ ₩₽ ₩₽ ₩₽ ₩₽ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	-P-ISA	1 1 1 8 6 	202-	517
<pre>/E-L</pre>	- 1 3 - 4 4 - 1 5 - 2 0 - 1 5 - 2 0  - 1 5 - 2 0  - 1 5 - 2 0  - 1 5 - 2 0  - 1 5       -	25 NO -4-449 15 15 15 15 15 15 2 A C I O 3 6 		L CS 7 1 1 0 5 7 4	597-643 -644 -645- -0-E 		-R-IG-IM 	ECF-5- SFII -132 S- (++ 135 SFII 135	EL HI -EL HI -EL HI -EL -H- 146- FL HI 147	<del> </del>	-P-ISA- 	1 1 1 8 6 	202- 205 	517

A generative and the an analysis of a support

**...** /

3

 $\bigcirc$ 

×4. )

 $\mathbb{S}$ 

1 A A

۰ ۰ <

> . -

> > •••••

· · ·					· ·									
									-	7				
3-3	1:11 ¹	ERACI 	I (1 N ) 6 1	E LOS	11000S 93	CONT -109	TENIDO 125	S F11 -141-	EL N1	VEL 163	110.	4-195-	-211-	
-10		CRAC) 48	IUt-04	105 80	-t:upos 96	-COT/1 112	TENICO 128	5- FT; 144	CL-11 150	VEI 166	NC. 182	5 198	214	230
ITRUPI	ALT SC N	UTAS	DE L ALTUR	CS EN	TREPIS	DS		•			•			
	-1 2 3 -	· · ·		• 60								······		
	4 5		2	• 60 ,		· · ·			· · · · · · · · · · · · · · · · · · ·					
	PES				1. E S									-
2 3		33.	0 (1) 230											
	*	334	230		······									
}	CDE	FICI	ENTE	SISHI	C 0 =	0.03	0			,				
-NIVL	·L */L	TURA	(11)*F	ZAPI	G1GEZ(	-TOH)-	· · · · · · · · · · · · · · · · · · ·	1 20						
2 2 1	· · · · · ·	5.20 7.20 0.40		1	-1-7-7-2- 2+650 3-545					:				
· · · · · · · · · · · · · · · · · · ·		-3-, 40- 			4 • 4 3 1	~				· · · · ·	** *****		*****	
	121G 2•9	- <del>336-</del> 	E-S-DE +041	22000	:+048.2	1321E	01 <del>1/1</del> +035•8	534E	+033.3	15498	+('3			
-										<u> </u>				-
							-						-	-
	-						•	, -		-				
								and an exception of	-					
<u>}</u>	<b></b>	<b>.</b>					-							
				- 	-									

•

· · · · · · · ·

•

· ,

, , , ,

and the second sec

· · ·

		1
	1 NO DE CONDICION DE CANGA CO NO DE BARNAS-CARGADAS	1
		-
<u></u>	TOS PARA EL CASE DE BARRAS CON CAPGAS THTERMEDIAS DISTINTAS A PESO PO	n I
RA 10 = 11 - 1		.
د ب ب ب		
6		
8		
10		
12		
40 		
16		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1	
PARRA	1 CARCA DIST UNIFOR CONTINCTUN/")= =0.5000	
BARRA	2 CAPCA DIST UNIFOR CONTINCTON//)=A LA BARRA ANTERIOR	
	- 3- CARUA-CIST-UHIFOR-CONTINCTON/N-) = A-1-A BARNA-ANTERIOR-	
EARRA	4 CARGA DIST UNIFOR CONTINCTON/H)=A LA BARRA ANTERIOR	
BARRA -	5 CAPGA DIST-UNIFOR CONTINCTON/P)=A LA BARPA ANTERIOR -	
-84644		
EARRA	7 CARGA DIST UNIFOR CONTIN(TON/M)=A LA BARRA ANTERIOR	
BARRA	3 CARGA DIST UNIFOR CONTINCTON/P)=A LA BARRA MPTERIOR	
P-A R-A		-
BARRA	10 CAPEA DIST UNIFOR CONTINCTON/P)#A LA BAPRA ANTERIOR	
JARRA	11 CARGA LIST UNIFOR CONTINCTON/W)=A LA BAFRA ANTERIOR	
		~
THEA	13 CARCA, EIST UNIFUR CONTINCTORZH)=A LA BARRA MMTERTOR	

 $\Big]$ 

 $\bigcirc$ 

ن ب ب ب

۰. ۲

.

•		9	ı.
BARRA	14 CARGA DIST UNIFO	R CONTINCTON/M)=A (A BARRA ANTERIOR	
- PACITA-		- 	
$\langle \rangle$			•
<u>e</u> RA	16 CARGA DIST UNIFO	$\frac{R \text{ CONTIN(TON/M)}}{0.0000}$	
- UARRA	17 CARGA DIST-UNIFO	R CONTINCTON/1) = A LA BARRA ANTERIAR	
BARRA		R-CONTINCIONTA)=A-LA BARRA ANTERINR	
BARRA	19 CARGA DIST UNIFO	R CONTINCTON/H)=A LA BARRA ANTERIOR	
" PARRA"	20 CARGA DIST UNIFO	R CONTINCTONVH) = A EA BARRA ANTERIAR	
10485 C	ONCENTRANAS'EN LOS NU ZA-HORIZONTAL FZA, VE	IDOS (EN TON Y TUN"H) RTICAL, MOMENTO	مىرى يىلىرى بىرى بىرى بىرى بىرى بىرى بىرى بىرى
i			
-17			
49	0.000	*2.982 0.0000	
65	0.000	*2•982 0•0000 j	
	0.000	0.0000	
1.45	0.000	-2.982 0.00000	
$\int 1$	0 • 0 0 0	-2+982 0.00000	
			National prov.
-199 -	······································	····**?*982····································	
-215			***
4	0.056	38#1•491 0•00000 S	
20	0.056 Nor		
	0.05 ś.m. am m. *	#2.602 ····································	angada daga sang sang dag
- 68		· ····································	
		<u></u>	
100	0.056	<b>*2.</b> 982 0.00000	
116	0.056	*2·982 · ' ' 0·00000	
1 // /			
			-
	G. G. 5 6	<u></u>	
186	0.056	*2•982 0•0000	
202	0.056	-2.982 0.00000	_
-210		<b>#1</b> (0) 0.0000	
23-			
55	- 0.112	*2•982 0•0000	
71	0.112		
117-	A.112		and a second
1-1-9	0.112	<b>*2•982</b> ~ ~ ~ 0•0000	
(2)			
147	0.112		

*

· · · · ·

· ·

•

, ,

. ,

.

, , , , , ,

. .

173	,			
	• 0.112	*2·982	0.00000	
182 *	G.112 /	-2.982	0.00000	
	C.112 /	-2.982	0.00000	1
21	9.112/		<u> </u>	
10	0.168	~1.(9)	0.00000	
	6.168	#2.082	0.00000	
y c		2 + 7 U Z	0.0000	· 
Ye S	G • 100	2 + 902		
-50	0.100			
74	0.100	2.902	0.0000.000	
-93	0.168	-2.982	0.00000	
00	6.168	*2+982	0.00000	
22	0.158	-2.982	0.00000	•
-30	C • 1 G !	2.932	0.00000	)
48	0.168		- 0.0000	)
00	C:168		0.00000	
.76	G-r 1-6 8			)
92	0.168	<b>#</b> 2•982	0.0000	)
203	0.168	<b>*2</b> •982 ·	0.0000	)
24	······································		0.0000	
13	0.220		- 0.00000	, · · · ·
29	C.220		0.00000	
45				)
63	0.220		0.00000	) .
77	C.220	#0.1000 	0.0000	•
······································		te ♥ / 12 ti mariantestationen († 13-13-14)	0000000 000000000000000000000000000000	,
100	J+CCV	L+702		
		EF7U2	00000 00000	י ר
127 -				<i>)</i>
1-4-1				) -
49	5+220	*2+932	0.0000	~
163	0.220	≈2•982°	0.00000	)
\·7·J	0,220			)
(45	0.220	*2:982	0.00000	) .
21 <b>1</b>	0.220		0.00000	)
227	<u>9-22</u> -)			) .
16	0.280	-1.491	0.00000	)
32	0.280	*2+982	0.0000	)
	·	* 2 <del>. 9</del> 6-?	<b>() - AU</b> () () (	)
64		*2.982	0.00000	Э
	0.280	*2.982	0.00000	
	0.21.0	<u></u>		 ]
110 .	0.280	#37083	0.0000	
4 4 4 1 0 2	0.280	4770Z	n AAAA	
4 E C 4 J. D		21702 mm.000	0.00000	
1-44 44		-0.00	······································	()
106			0.00000	J
100			0.00000	)
1-d 2			0-06000	)
198	0.280	<b>"2</b> •982	0.0000	0
	0.280	<b>~2.</b> 982	0.00000	C .
214	5.00			

•

* *

$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 16 \\ 16 \\ 16 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	1 17 18 34 33 49 50 62 61	*0 • 71632 *0 • 71632 *0 • 20195 2 • 78918 *2 • 02773 *4 • 46482	A • 28767 	0.00000 0.00000 0.00000	
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 6 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \\ -2 \\ 1 \\ -2 \\ 1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$	17 18 34 33 49 50 62 61	"0 • 7 1 6 32 "0 • 201 95 2 • 7 8 • 1 8 2 • 0 2 7 7 3 "4 • 4 6 4 8 2	& • 28767 **8 • 65228 **9 • 61457	0.00000 0.00000	
$ \begin{array}{c} 1 \\ 1 \\ 16 \\ -10 \\ 16 \\ 16 \\ 16 \\ -31 \\ 31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -31 \\ -$	17 18 34 33 49 50 62 61	*0 • 7 16 32 *0 • 201 95 2 • 7 8 • 18 2 • 0 2 7 7 3 * 4 • 46482	\$ • 28767 ~8 • 65228 ~9 • 61457	0.00000	
$ \begin{array}{c} 1 \\ 1 \\ 16 \\ 16 \\ 16 \\ 16 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \end{array} $	17 18 34 33 49 50 62 61	"0 • 71632 "0 • 20195 2 • 78918 	A . 28767 	0.00000	
$ \begin{array}{r} 1 \\ 16 \\ 10 \\ 16 \\ 16 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \end{array} $	18 34 33 49 50 62 61	-0.20195 2.78918 	-8.65228 -9.61457	0.0000	
$     \begin{array}{r}       16 \\       16 \\       16 \\       16 \\       31 \\       31 \\       -31 \\       31 \\       -31 \\       46 \\       1 \\       -46 \\       -1     \end{array} $	34 33 49 50 62 61	2 • 7 8 • 18 			
$ \begin{array}{c} 10 \\ 16 \\ 16 \\ 31 \\ 31 \\ 31 \\ 31 \\ 31 \\ 46 \\ 1 \\ 46 \\ 1 \\ 46 \\ 1 \end{array} $	33 49 50 62 61	-4.46482		e.ucooc	
$ \begin{array}{c} 16 \\ 16 \\ 31 \\ 31 \\ -31 \\ -31 \\ -36 \\ 46 \\ 1 \\ -46 \\ -1 \end{array} $	69 50 62 61 (	-4.46482	10.02470		
$ \begin{array}{c} 10 \\ -31 \\ 31 \\ -31 \\ -31 \\ -36 \\ 16 \\ 16 \\ -46 \\ -46 \\ -1 \end{array} $	61 ⁽	mA 35360	10.93294	0,0000.0	
$ \begin{array}{c} 31 \\ 31 \\21 \\$	61		ー」ソックロングパ ーー・シャクロングパーー・		
$ \begin{array}{c} 31 \\ -31 \\ -36 \\ 16 \\ -46 \\ -46 \\ -46 \\ -1 \end{array} $		0.96367	8 • 96433	1.00000	
21	97	2.70536	6 . 30227	0,000,0	
46 1 -46 1 				1,00000	
	14	3.98698	-11.91785	0,00000	
	13 20	2.21670	20.62108	2.00000	
n F. 1	10	- #P. 28003	434(0)333	2 66000	
01 1	68 -	1.92696	* *5 • 42451	0.0000	
ó i1	¢7				
61 1	83	*2+95614	6.82760	<b>c</b> .nunec	
61 1	24	0 • 12503	-10.52102	1,00000	
76	0.0 -	1.38672	13-14723	0,000	
76 -0	15	2+24300 	14.02006	1.00000	
7-0	1 ć		*23.88797	3.0000	-
91	1 ខ	0.93066	-12.98592	+1,00000	
91	17	2.83964	5.00690	0.0000	
······	33		14.11524	<b>*1.</b> 60060	
91 - 	34		<pre> #7 +03622</pre>	0.0000	
	45	-0432043	1 4084E	C. CROCO	
102	81	₩0.63325	5.15606	0.0000	
106	82	-0.67772	-2.59401	0.00000	
-17-1	D-{}		*46.60583	-2,00000	
-121		2147282	6.44247	<b>n, nana</b> n	
	13		17.43689	-1, 6/ 000	
136 1	1 <i>41</i> につ	0.3/20	■/•2/354 #3,76078	0,00000	
136 1	51	0.77520	1 • 1 2 4 8 0	0.00000	
-1-36	67	*#6177-2			
136 1	68	<b>*0.50624</b>	-2.43869	0,04000	
	104	2.14604	<b>*18.1558</b> 2	-2.00000	
עניייי ייייאיפ'ע∽יי זי 151	03 00		······································		
151 2	00	2010000 #1.96850	→Ź,Z3811	0.0000	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0A2     = 10.006185     1.0006185     1.000606       170     20.00006     2.000006       170     2.00000     2.00000       170     9.00000     2.00000       180     9.00000     2.00000       180     0.00000     2.00000       180     0.00000     2.00000       180     0.00000     2.00000       180     0.00000     2.00000       180     0.00000     2.00000       180     0.00000     2.00000       190     0.00000     2.00000       10.0000     0.00000     0.00000       10.0000000     0.00000     0.00000       10.000000     0.00000     0.00000       10.000000     0.00000     0.00000       10.000000     0.00000     0.000000       10.000000     0.00000     0.000000       10.000000     0.00000     0.000000       10.000000     0.000000     0.000000       10.00000     0.000000     0.000000       10.00000     0.000000     0.000000       10.00000     0.000000     0.000000       10.000000     0.000000     0.000000       10.000000     0.000000     0.000000       10.000000     0.000000     0.0000000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2012     2010,006185     1,000600       200     20,6210,00     2,000000       200     20,6210,00     2,00000       200     20,6210,00     2,00000       200     20,6201     0,00000       200     20,6201     0,00000       200     20,6201     0,00000       201     20,6201     0,00000       201     20,6201     0,00000       201     20,700     1,0000       201     20,700     1,0000       201     20,700     1,0000       202     20,0000     1,0000       203     20,0000     1,00000       204     20,0000     1,00000       205     5,000     1,00000       202     20,0000     1,00000       203     20,0000     1,00000       204     20,0000     1,00000       205     5,000     1,00000       202     5,000     1,00000       203     20,0000     1,00000       204     1,0000     1,00000       205     5,000     1,00000       200     5,000     1,00000       200     5,000     1,00000       200     5,000     1,00000       200     1,00000 <td< td=""></td<>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	242     210.046485     1.060666       200     20.62164     2.06666       276     20.62164     2.06666       276     2.06666     2.06666       276     2.06666     2.06666       276     2.06666     2.06666       276     2.06666     2.06666       276     2.06666     2.06666       276     2.06666     2.06666       276     2.06666     2.06666       276     2.06666     2.06666       276     2.06666     2.06666       276     2.06666     2.06666       273     2.06666     2.06666       273     2.06666     2.06666       273     2.06666     2.06666       273     2.06666     2.06666       273     2.06666     2.06666       273     2.06666     2.06666       273     2.06666     2.06666       273     2.06666     2.06666       274     2.06667     2.06666       274     2.06667     2.06667       274     2.06667     2.06667       274     2.06667     2.06667       274     2.06667     2.06667       274     2.06667     2.06667       274     2.06667<
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	202     20.00000     10.00000     0.00000       203     20.00000     20.00000     20.00000       203     20.00000     20.00000     20.00000       203     20.00000     20.00000     20.00000       203     20.00000     20.00000     20.00000       203     20.00000     20.00000     20.00000       203     20.00000     20.00000     20.00000       203     20.00000     20.000000     20.000000       203     20.0000000     20.000000     20.0000000       204     20.0000000     20.0000000     20.00000000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0A2     0A2     0A10,0A6185     1,0A006185     1,0A006185       0A0     011,041765     0.00600       0A0     010,04165     0.00600       0A1     010,04165     0.00600       0A1     010,04165     0.00600       0A1     010,0416     0.00600       0A1     010,0416     0.00600       0A1     010,0416     0.00600       0A1     010,0426     0.00600       0A1     010,040     0.00600       0A1     010,040     0.00600       0A1     010,040     0.00600       0A1     010,040     0.00600
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.42     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41     0.41
1         5         6         6         7         3         6         6         7         3         7         7         3         7         7         3         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7 <th7< th=""> <th7< th=""> <th7< th=""> <th7< th=""></th7<></th7<></th7<></th7<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0A2     0A2     0A10,0A6185     1,0A76185     0.00000       0A10,04765     0.00000     0.00000     0.00000       0A2     0A10,04     0.00000       0A2     0A10,04     0.00000       0A2     0A10,04     0.00000       0A3     0A10,07
1         5.050026         7.30013         C.00060           1         1         5.05006         7.30013         C.00060           1         17         9.071632         9.078767         0.00060           1         12         9.071632         9.078767         0.00060           1         12         9.071632         9.078767         0.00060           1         12         9.071632         9.078767         0.00060           1         12         9.071632         9.078767         0.00060           1         12         9.071632         9.078767         0.00060           1         12         9.071632         9.078767         0.000670           1         12         9.071632         9.07677         0.000670           1         12         9.0773         10.07677         0.07677           1         12         9.07636         9.07373         0.07677           1         12         0.076477         0.07677         0.07677           1         12         0.07636         0.07637         0.07677           17         12         0.076467         0.07677         0.07677           18         0.07636<	10     33     36     37     37       10     36     37     37     37       11     12     12     37     37       12     12     12     12     37       13     12     12     12     12       14     12     12     12     12       15     12     12     12     12       15     12     12     12     12       15     12     12     12     12       10     12     12     12     12       10     12     12     12       10     12     12     12       10     12     12     12       10     12     12     12       10     12     12     12       10     12     12     12       10     12     12     12       10     12     12     12       10     12     12     12       10     12     12     12       10     12     12     12       10     12     12     12       10     12     12     12       10     12     12     12 </td <td>0.42     0.42     0.610.06185     1.000.060       0.63     0.600.0     0.600.0     0.600.0       0.70     0.600.0     0.600.0     0.600.0       0.70     0.600.0     0.600.0     0.600.0       0.70     0.600.0     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.700.0     0.700.0       0.70     0.700.7     0.700.0     0.700.0       0.70     0.700.7     0.700.0     0.700.0       0.70     0.700.7     0.700.0     0.700.0       0.70     0.700.7     0.700.0     0.700.0       0.70     0.700.7     0.700.0     0.700.00       0.70     0.700.7     0.700.0     0.700.00</td>	0.42     0.42     0.610.06185     1.000.060       0.63     0.600.0     0.600.0     0.600.0       0.70     0.600.0     0.600.0     0.600.0       0.70     0.600.0     0.600.0     0.600.0       0.70     0.600.0     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.600.0     0.600.0       0.70     0.700.7     0.700.0     0.700.0       0.70     0.700.7     0.700.0     0.700.0       0.70     0.700.7     0.700.0     0.700.0       0.70     0.700.7     0.700.0     0.700.0       0.70     0.700.7     0.700.0     0.700.0       0.70     0.700.7     0.700.0     0.700.00       0.70     0.700.7     0.700.0     0.700.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0A2     0A2     0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.42     0.42     0.676185     1.67676       0.42     0.67616     0.67666       0.42     0.67676     0.66666       0.42     0.67676     0.66666       0.42     0.67676     0.66666       0.42     0.67676     0.66666       0.43     0.767676     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.43     0.76767     0.66666       0.44     0.76767     0.66666       0.45     0.76767     0.767666       0.45     0.76767     0.767666       0.46     0.76767     0.767666       0.46     0.767677     0.767666
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10     33     33     34     36     36       11     11     11     11     11       12     12     12     12     12       13     12     12     12     12       14     13     12     12     12       15     13     12     12     12       14     13     12     12     12       15     13     12     12     12       15     13     12     12     12       15     13     12     12     12       15     13     12     12     12       15     13     13     12     12       15     13     13     12     13       15     13     13     14     14       15     13     14     15     14       15     13     14     15     14       15     14     15     14     15       15     14     15     14     15       14     15     14     15     15       15     14     15     15     15       15     14     15     15       15     14     15	0.42     0.10.016185     1.00000       0.11.01765     0.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.00000       0.70     20.000000       0.70     2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16     39     -33     2,0,00       16     39     -3,0,00     -0,00       15     76     -0,000       16     11,0     -0,000       17     12,0     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       193     -0,000     -0,000       <	0A2     0A2     0A10,0A185     1,0A0A165       0A0     011,04765     0.00000       0A0     20.6210A     2.00000       0A0     20.6210A     2.00000       0A0     01,07075     0.00000       0A0     051,07075     0.00000       0A0     051,0707     0.00000       0A0     051,0707     0.00000       0A0     0.00000     0.00000
1     1     0.050026     7.30013     C.00000       1     1     0.050026     7.30013     C.00000       1     1     0.05002     30.0200     0.00000       1     1     0.05002     30.0200     0.00000       1     1     0.05002     30.0200     0.00000       1     1     0.05002     30.0200     0.00000       1     1     0.05002     0.00030     0.00000       1     1     0.02002     0.00030     0.00000       1     1     0.02002     0.00030     0.00000       1     1     0.02002     0.00030     0.000000       1     1     0.02002     0.00030     0.000000       1     1     0.02002     0.00030     0.000000       1     1     0.02002     0.00030     0.000000       1     1     0.000000     0.000000     0.000000       1     1     0.000000     0.000000     0.000000       1     1     0.000000     0.000000     0.000000       1     1     0.000000     0.000000     0.000000       1     1     0.000000     0.000000     0.000000       1     1     0.0000000     0.0000000 </td <td>10     33    </td> <td>0.42     0.42     0.610.06185     1.600.060       0.42     0.610.0610     0.600.06       0.42     0.600.06     0.600.06       0.42     0.600.06     0.600.06       0.42     0.600.06     0.600.06       0.42     0.600.06     0.600.06       0.42     0.600.06     0.600.06       0.42     0.600.06     0.600.06       0.42     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06</td>	10     33	0.42     0.42     0.610.06185     1.600.060       0.42     0.610.0610     0.600.06       0.42     0.600.06     0.600.06       0.42     0.600.06     0.600.06       0.42     0.600.06     0.600.06       0.42     0.600.06     0.600.06       0.42     0.600.06     0.600.06       0.42     0.600.06     0.600.06       0.42     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06       0.43     0.600.06     0.600.06
1     5     6.055756     7.336313     6.00667       1     17     96.71632     96.67523     6.06676       1     17     96.71632     96.65223     6.06676       1     17     96.71632     96.65223     6.06676       1     17     96.71632     96.65223     6.06676       1     17     96.71632     96.65223     6.06676       1     10     96.20175     96.65223     0.06676       1     11     7.716016     96.65223     0.06676       16     13     7.71601     96.7672     0.06676       16     16     16.6252     0.06326     0.06376       16     17     17.7116     97.6767     0.06676       17     17     17.7116     97.737     0.06677       17     17     17.7116     97.7676     0.06677       17     17     17.7116     97.7676     0.06677       17     17     17.7116     97.6767     0.06677       17     17     17.7116     97.6767     0.07677       17     17     17.7116     97.773     17.66677       17     17     17.7116     97.773     17.66676       17     17.7116     97.774	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.42     0.10.016185     1.00000       0.11.01765     0.00000       0.70     20.65100       0.70     2.00000       0.70     0.10000       0.70     0.10000
1         1         5.085426         7.334011         6.00607           1         1         2         0.055426         7.334011         6.00607           1         17         20.071632         20.0777         0.00607           1         17         20.071632         20.0777         0.00607           1         17         20.07162         20.0777         0.00607           1         17         20.07162         20.0777         0.00607           1         10         20.07162         20.0777         0.00607           1         10         20.0725         20.0777         0.00607           10         20.0725         20.0777         0.00607           10         20.0725         10.0227         0.00607           10         20.0727         10.0767         0.00607           11         21         20.0728         10.0767         0.00607           11         21         20.0728         0.06031         1.00667           11         21         20.0728         0.06031         1.00667           11         21         20.0728         0.06031         1.00667           120         21.0727         0.0072<	10     33     7.0,070       10     9.0,070     9.0,070       11     9.0,070     9.0,070       12     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070       13     9.0,070     9.0,070 <tr< td=""><td>042     10.006185     1.000616       646     0.00060     0.00060       770     20.62104     2.00060       770     20.62104     2.00060       770     2.00070     2.00070</td></tr<>	042     10.006185     1.000616       646     0.00060     0.00060       770     20.62104     2.00060       770     20.62104     2.00060       770     2.00070     2.00070
1     1     0.050426     7.3A013     C.00000       1     1     0.05042     7.3A013     C.00000       1     1     0.071032     30.0710     0.00000       1     1     0.071032     30.0710     0.00000       1     1     0.071032     30.0710     0.00000       1     1     0.071032     30.0710     0.00000       1     1     0.07020     0.07070     0.00000       1     1     0.07020     0.07070     0.00000       1     1     0.07020     0.07070     0.00000       1     1     0.07020     0.07070     0.00000       1     1     0.07020     0.07070     0.00000       1     1     0.07020     0.07070     0.00000       1     1     0.07020     0.07070     0.00000       1     1     0.07020     0.07070     0.00000       1     1     0.07020     0.07070     0.00000       1     1     0.07020     0.07070     0.00000       1     1     0.07070     0.07070     0.07070       1     1     0.07070     0.07070     0.07070       1     1     0.07070     0.07070     0.07070<	150	242     20.0000     1.00000     1.00000       570     20.65100     2.00000       376     2.00000     1.00000
1         1         0.085424         7.33011         C.0060           1         1         0.085424         7.33011         C.0060           1         17         0.071632         M.078767         C.0060           1         17         0.077632         M.078767         C.0060           1         17         0.07676         D.0060         C.0060           1         10         0.07627         M.07877         C.00676           16         19         0.07031         1.00667         O.00667           16         19         0.07031         1.00667         O.00667           17         1.07716         0.00672         O.00631         1.00767           11         1.07716         0.00670         O.00777         O.00777           11         1.07716         0.00722         0.00731         1.00767           11         1.07716         0.00722         0.000777         0.00767	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	242
1     8     0.855826     7.38013     C.00000       1     17     90.875632     90.077632     90.07667     0.00000       1     17     90.675632     90.07677     0.00000       1     17     90.675632     90.07677     0.00000       1     17     90.675632     90.07677     0.00000       1     17     90.675632     90.05773     0.00000       10     90.67602     90.03271     0.00000       10     90.67773     10.03271     0.00000       10     90.67773     10.03271     0.00000       10     90.62773     10.03271     0.00000       10     91.03273     10.00000     0.00000       11     17     0.00000     0.00000       11     11     0.00000     0.00000       11     11     0.00000     0.00000	10     -33	242 →=10.061851.00000 942=11.917650.0000
1     1     0.085026     7.30013     0.00000       1     1     0.085026     7.30013     0.00000       1     17     -0.071632     -0.07076     0.00000       1     17     -0.071632     -0.07076     0.00000       1     17     -0.071632     -0.07076     0.00000       1     17     -0.07162     -0.07076     0.00000       1     17     -0.07162     -0.07076     0.00000       1     17     -0.07162     -0.07076     0.00000       1     17     -0.07162     -0.07076     0.00000       10     -0.07162     -0.07076     0.00000       10     -0.07162     -0.07076     0.00000       11     17     -0.07077     0.00000       10     -0.07077     0.00000     0.00000       11     10     -0.07077     0.00000       11     0.07077     0.07077     0.00000       11     0.07077     0.07077     0.00000       11     0.07077     0.07077     0.07077       12     0.07077     0.07077     0.07077       13     0.07077     0.07077     0.07077       14     0.07077     0.070777     0.07077 <td< td=""><td>30     -33     -3.4.4683       16     39     -9.4.4683       15     7.6     -9.2.713       16     39     -7.2       17     42     -7.2       16     39     -7.2       17     47.2     -7.2       16     39     -7.2       17     47.2     -7.2       18     -7.2     -7.2       19     -7.2     -7.2       10     -7.2     -7.2       11     47.2     -7.2       12     -7.2     -7.2       13     47.2     -7.2       14     -7.2     -7.2       15     -7.2     -7.2       16     -7.2     -7.2       17     -7.2     -7.2       18     -7.2     -7.2       19     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       11     -</td><td>0/1/2 1/2 m1/////////////////////////////</td></td<>	30     -33     -3.4.4683       16     39     -9.4.4683       15     7.6     -9.2.713       16     39     -7.2       17     42     -7.2       16     39     -7.2       17     47.2     -7.2       16     39     -7.2       17     47.2     -7.2       18     -7.2     -7.2       19     -7.2     -7.2       10     -7.2     -7.2       11     47.2     -7.2       12     -7.2     -7.2       13     47.2     -7.2       14     -7.2     -7.2       15     -7.2     -7.2       16     -7.2     -7.2       17     -7.2     -7.2       18     -7.2     -7.2       19     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       10     -7.2     -7.2       11     -	0/1/2 1/2 m1/////////////////////////////
1     1     0.8558     7.38013     C.00000       1     17     90.8758     0.00000     0.00000       1     17     90.8758     0.00000     0.00000       1     17     90.87632     90.00000     0.00000       1     17     90.87632     90.00000     0.00000       1     10     90.87632     0.00000     0.00000       10     90.87632     90.0277     0.00000       10     90.87632     10.00000     0.00000       10     90.87632     10.00000     0.00000       10     90.8773     10.00000     0.00000       10     90.8773     10.00000     0.00000       10     90.8773     10.00000     0.00000       10     90.8773     10.00000     0.00000       11     12     90.8773     0.00000       12     90.9773     10.00000     0.00000       13     12     10.00000     0.00000       14     12     10.00000     0.00000       15     10.00000     10.00000     0.00000       14     12     10.00000     0.00000       15     10.00000     10.00000     0.00000	10     -33     -36     96       15     76     96     9713       15     76     9713       16     17     1713	TOO DEPOSIS DEPOSIS
1         8         0.085026         7.30013         C.0060           1         17         0.071632         0.071632         0.0060           1         17         0.071632         0.07607         0.0060           1         17         0.071632         0.07607         0.0060           1         17         0.071632         0.07607         0.00606           1         17         0.076016         0.07607         0.00606           10         0.076016         0.076707         0.00606           10         0.076016         0.076707         0.00666           10         0.07873         10.07676         0.066707           10         0.07873         0.066707         0.06670           10         0.07873         0.076670         0.06670           11         12         0.07707         0.06670           11         0.07773         0.07670         0.076670           11         0.07707         0.06670         0.06670	30     -33     -34.068       16     39     -9.027       15     70     -9.027       15     70     -9.027       15     9.027     -9.027       15     9.027     -9.027       15     9.027     -9.027       15     9.027     -9.027       15     9.027     -9.027       16     9.027     -9.027       17     9.027     -9.027	
1         8         0.85426         7.3A013         C.0060           1         17         90.87425         7.3A013         0.0060           1         17         90.874632         7.0060         0.0000           1         17         90.671632         7.00707         0.00000           1         17         90.671632         7.00707         0.00000           1         17         90.671632         7.00707         0.000000           1         17         90.671632         7.00707         0.000000           1         17         90.67773         7.00707         0.000000           10         7.000000         90.67773         10.00320         0.000000           10         7.000000         90.7733         10.00320         0.000000           10         7.000000         91.0.343000         2.000000         2.0000000	10 - 33	110
1         1         0.005026         7.30013         C.00600           1         1         1         0.0050         0.00600         0.00600           1         17         0.01162         0.00600         0.00600         0.00600           1         13         0.0071632         0.00600         0.00600         0.00600           1         13         0.0071632         0.00600         0.00600         0.00600           1         13         0.0071632         0.006000         0.006000         0.006000           10         0.007010         0.006000         0.006000         0.006000         0.006000           10         0.007070         0.006000         0.006000         0.006000         0.006000           10         0.007070         0.006000         0.006000         0.006000         0.006000	10 JO	010 -10° 34304 5° 60640
1         8         0.005000         7.3A013         C.00600           1         1         0.0071632         0.00707         0.00000           1         17         0.071632         0.00707         0.000000           1         17         0.0071632         0.000000         0.000000           1         13         0.0071632         0.000000         0.000000           1         13         0.0071632         0.000000         0.000000           10         0.000000         0.000000         0.000000         0.000000           10         0.000000         0.000000         0.000000         0.000000           10         0.000000         0.000000         0.000000         0.000000           10         0.000000         0.000000         0.000000         0.000000           10         0.000000         0.000000         0.000000         0.000000           10         0.000000         0.000000         0.000000         0.000000	10 - 33 5°(1;5)	145 80°0356 0°00446
1         1         0.005026         7.3A013         C.00607           1         17         0.01762         0.00607           1         17         0.01762         0.00607           10         0.020195         0.00607         0.00607           10         2.020195         0.006070         0.006070		533
1 8 0.85426 7.84013 C.00600 1 17 90.71632 N.028767 1 17 90.71632 N.028767 1 17 90.20105 90.65222	10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
1 8 C.85426 P.84013 C.0060C		105 00,45000 0.06000 105 00,45000
1 8 C.B.S.R.S.A 7.8.8.013 C.O.O.A.C.	· · · · · · · · · · · · · · · · · · ·	
1 1 8 Cobraza Postal Conner 2011		
1 1 Cobraza Posta Concar		
	1 8 0.08.02	126 7.37313 0.00000

- ;
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                           | ······································ | <u>[</u> ];     | T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K/-         | $\langle \cdot \rangle$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                           | 13                                     |                 | NATION AND AND A TONEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ <u>и</u>                  |                                        | 1               | **** , FXTRFMD FINAR CHIN T THREAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| . UATRR     | A 洗 X T R E H ① *** EYTREPD INTCIAL CTON Y TOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (e))                        |                                        | A .             | ANTE NORMAL CORTANTE FEXTIMANIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NO          | INICIAL FINALIZED NORHAL CORTANTE FLEXT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>NAUT</b>                 | rF                                     | n               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 • '};<br>• • ";;          |                                        | +               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ti ku                       | `                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (). 19<br>A T               | · , ~,                                 |                 | FSFUERZOS PRINCIPALIS REEXY (TOUV **?) +++*DID PPAL *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1171-       | FEETER CUADAS CITY FFFFFESEDCZCSTREFERTURS A SY RECTORZUS #23#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ALAF S                      | <u>ΓΓΓ57Π (ŤΡ</u>                      | ié – i          | TIN T22 TANNAX (GRADAS) T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 110.        | X Y TXXUTSS TYYN TTT TXY P TSY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9459 <b>-</b><br>223        | Τιι                                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                        |                 | 1-1-2-6178F+00 -1-1642E+02 5.6900F+91 -16-578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1           | 0.050 0.033 0.07 130 +00 +1 -1 632 +02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (1/22<br>(A ¹¹ ) | -><br>•つ□[] (1   7   月                 |                 | * =1.4660F+00 =1.2982E+02 6.4179F+01 23.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2           | 0.250 $2.167$ $1.0729E+00$ $1.0262E+02$ $5.1504E+0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <br>```\````` =             | 210170F70                              |                 | 1.77205=01 =1.1670E+02 5.8440F+01 13.307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3           | $C_{*}250$ $3_{*}200$ $1_{*}1331E^{+}01$ $*1_{*}1664E+02$ $2_{*}7319E+0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                         | 1.77205-0                              |                 | -1-1-1650F+00 -1.0007E+02 5.072KF+01 10.548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( )                         |                                        | i c             | -1.73V0F+001.0681E+02 5.2538F+01 18.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | $C_{12} = C_{12} = C$ | 10 19 1<br>10 19 1          | 1 · 3830897                            |                 | 0.6067F=02 = =7.8670E+01 3.9383E+01 2.746                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | = 0.050 = 9.100 = -0.0050 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.0000 = 7.00000 = 7.00000 = 7.00000 = 7.00000 = 7.00000 = 7.00000 = 7.00000 = 7.0000000 = 7.0000000 = 7.00000000 = 7.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. C. g. 1                  | 0 4 4 7                                |                 | -1-25075+00-4-54765+01-2-33635+01-220087-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | 「「「「」」」」」」)<br>「「」」)」)<br>「」」)」)<br>「」」)」)<br>「」」)」)<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」」))<br>「」))<br>「」))<br>「」))<br>「」))<br>「」))<br>「」))<br>「」))<br>「」))<br>「」))<br>「」))<br>「」))<br>「」)」)<br>「」)」)<br>「」)」)<br>「」)」<br>「」)」)<br>「」)」<br>「」)」)<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)」<br>「」)<br>「」)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                                        | T. F            | =2 21505+00 =3.1161E+01 1.3022E+01 44.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                        |                 | D FOAFF +00 = 2.0322F+02 1.0287F+02 18.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ບ<br>ດ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | المفرد ()                   | •3*3159576                             |                 | 2-40315+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Y           | U+170 1+300 2+2300LT00 =2+0299E+02 6+8115E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                    | 2.52456+1                              | ſ T             | T. TRANEROL - H1.5635F+02 7.7868F+01 22.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Alt                       | ר+ זיד זיד אר                          | if i            | = 0.1744F = 01 + 1.1893F + 02 = 5.9608F + 01 = 20.919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 11          | U. 156 - 4. 167 - 78. 6121E - 01 - 1. 5010E+02 . K. 2326E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 🐪 🖷                       | 6.17005-0                              |                 | 3 δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12          | 0.750 0.500 2.2065E 01 - 01.1867E+02 A.3487E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>n</b> – e                | 3.85195-0                              | 征制              | $y_{4}y_{7}y_{7}y_{7}y_{7}y_{7}y_{7}y_{7}y_{7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 0:750-0:233-9:9559[*01-8:10425+01 -5:80/3[-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                           | 9.44705-0                              | 相之下             | 1 0762590FF01 F740050EF01 14700FT72 24721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 a         | 0.750 9.967 -5.45200-01 -7.5190+01 1.20300+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .n 🖌 🗝                      | •5%2590F+0                             |                 | 5.5535F*() *3.89787+01 (19785) 101 (19785) 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15          | C.75C 11.700 4.9256L 01 =3.8914E+01 =1.57h2E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 1 7                       | 5.55355-0                              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| · 16.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                           | •3•1255E+0                             |                 | =1.8972F+00 =2.6039E+02 113225F102 0.613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 17          | 1:2502:167 "1:9015E+00 "2:(637F+021.9460F+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n -                         | •1 • P 9777F+/                         | 语 计推            | ·     ≈3.2617F=01 =2.0101E+02 1.0014F+02 . 4.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.8         | -1.250 - 3.900 3.7152E*012.0097F+02 3.0142E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 1 **                      | 3.2617E=P                              |                 | $  = a_{h} n n a_{3}F + 0 n - 2 - n 2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 19          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŋ . •                       | • 1 • 1 • 4 • 4 • 5 + 6                |                 | 1,9A23F+00 =1.2746E+02 8.4722F+01 11.896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 20        | 1+250 7+367 1+9265E+00 =1+2741E+02 2+6868E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C.                          | 1.9823540                              | · [n' · ][      | 3.0311F=01 =7.7599F+01 3.8951F+01 1.651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21          | 1.250 9.100 3.0246E*01 *7.7599E+01 2.2454E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 10                        | 3.03415-0                              | 4.              | - A. 6800F+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ?           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>^</u>                    | • 0 - 6 8 6 0 F + C                    |                 | 1.8151F+004.2658E+01 - 2.2241F+01 -27.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15          | 1.250 12.567 - 1.7134E+00 4.2566E+01 =2.1240E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u>                    | 1,81515+0                              |                 | 2.9004F+00 -8.0869E+01 - 0.3885F+01 - 51.035 Slowe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 24          | -3.750 - 1.300 - 2.20031+008.4175E+01 - 7.7766E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ń .                         | 2 20065+0                              |                 | 1.1321F+01 7-A7-33F+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 -                         | 1.1221-6+0                             |                 | =1.6787F+01 =1.1769E+02 5.0050E+01 70.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26          | 3.750 $4.767$ $1.82987+01$ $1.16187+02$ $1.22537+0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                           | •1 6707 m 47                           |                 | 1.3201F+00 =9.2346E+01 4.6833F+01 27.917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 27          | 3.750 $6.500$ $1.0979E+00$ $-9.9197E+01$ Å SSKSE+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                           | 1 30015+0                              |                 | 1-1-1-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                           |                                        |                 | -1.9502F+01 -9.2989F+01 3.7243F+01 -: 77.308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ່ງເ         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>^</b>                    |                                        |                 | 5. 3094F+00 =4.8322F+01 2.6861F+01 14.859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 + 7 = 3 +    | 0.                          | -],45(,20.+)<br>E                      |                 | a1 E0005+01-53-36F+026+8684F+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| , c,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·1· ,                       |                                        |                 | #4 2005F+00 =1.6010F+02 7.9891F+01 56.516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 27          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | {} <b>*</b>                 | *1 <del></del>                         |                 | $P$ = 0.005 = 1.28 $\frac{178}{7}$ = 0.28 $\frac{178}{7}$ = 0.08 $\frac{1178}{7}$ = 0.08 $\frac{1178}$                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ן <u>זר</u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ן<br>התיין                  | -4. 3205E+0                            |                 | 3.7977FTUU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33          | $4 \cdot 250$ $3 \cdot 200$ $4 \cdot 075E = 01$ $1 \cdot 3557E + 02$ $1 \cdot 9736E + 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 > 🧃                       | 3.2025540                              | 11-1            | $\frac{1}{1} = \frac{1}{1} + \frac{1}$ |
| 134         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                           | -6-91-075+0                            | ۱. I            | $\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i$                                                                                                        |
| 35          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   =                       | -5.197/5+(                             | `Ç'';           | 3'673/2F+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 30          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                           | 3:22725+0                              | `^' - <u>"</u>  | $\frac{1}{2} + \frac{1}{2} + \frac{1}$ |
| 3/          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                           | 6.31505+0                              | `?`             | -8.6505F+00 -3.4250E+01 1.2800F TO1 04.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 38          | 4.250 12.567 *8.9754E+00 *3.3925E+01 2.8655E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5 {=                      | ****                                   | `ı́j ⊨          | 1.6114F+00 =2.3869E+02 1.2015F+02 45.242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 39          | 4.750 1.300 1.1622E*01 *2.3719E+02 1.8896E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 2                         | 1.61145+0                              | \{ ¹ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A ()-       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                           | • A . 1 - 005 = 1                      | \$ { \$         | 5.5193F+00 •1.6809E+02 8.6803F+01 33.573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| . 41        | -4.750 4.7674.9239E+00 =1.6749E+02 - 1.0149E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                           | 5.51935+0                              | ۰ d             | 3.2327F+00 =1.2675E+02 6.4993E+01 80.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 42          | 4.750 C.5CO 4.3703E"01 -1.2396E+02 1.0857E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/ }                        | 3.23975+1                              | 4.5             | -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4 3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n                           | -3. 8983E+C                            | \d`;.           | 7.4033F+00 •7.2222E+01 3.0813F+01 20.670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <u>a</u> 4  | 4.750 9.967 7:1900E+00 +7.2009F+01 4.1159F+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                           | 7.40335+0                              | 2               | 1.7208F+00 =4.2457F+01 2.3589F+01 185.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 45          | 4.750 11.700 "6.0367E"02 "3.766NE+01, 1.4208E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 : {                       | 4.72085+0                              | vd'             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 46          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-2                         | ·4.0433E+1                             | 1.42.3          | 5.9353F+00 =2.871PE+02 1.4656F+02 18,008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 47          | 5.250 2.167 5.6458E+00 -2.8689E+02 0.20K6E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1                         | 5.03535+6                              |                 | -1:4891F=01 -2.1486F+02 1.0736F+02 14.678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| i AL        | 5.250 3.90C -2.8978E-01 -2.1472E+02 5.4979E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                           | 1. 4AG10-0                             | s ∎∦E I         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - 45        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                           | 2.2A27.F+C                             | 1               | 1.717AF+01 =112567E+02 7.1023E+01 62.287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50          | 5.250 7.367 1.5496[+01 +1.2399F+02 1.5A07F+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (C2-1)                      | 1.7:7/PF+5                             | 1 1             | 1. ROBERTON 7.5706E+01 3.8544E+01 10.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 51          | 5.250 9.100 1.2946E+00 =7.5618E+01 2.59/3F+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ∩ 额                         | 1. 9235+0                              | $r   \cdot  $   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                        | [',             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ì           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ş.                          |                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| l           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ្តែ                         |                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Li.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



						V	м	
5	,	•		` 				, i
		V	• ~	<b>14</b> -	+	2.74F=01	= 3 . KOF=01	1
		- V		~ -	+	2,74F=01 		
······		v			+	-9.74F-01	=3.17F=01	-
• •	1 21 1 1	V V			¶. ∔	2.74F=01	=3.03F=01	
								'
		- V	• • • •		+	2.74F "01	-7.74F-01	
		۷			4	2.74F=01	=2.60F=01-	
<u></u>		V			-	-7-745-01		
-	s s r	V			+	2.74F=01	-2.185-01	
	، ا	·····			- <u>+</u>		2 + 03F = 01	-
		v	-		Ŧ	2,74F=01	=1 . ROF = 01	
	•	ý			ŧ	2.74F "01	-1.75F-01	
···· ····		V				~?; <u>7</u> 4F ~01	1	_
	· · ·	V			+		= =1 +40F=01	
		V. 			+ :_:			-
	1	- v				2.715-0	1 -1 . 04F - 01	
		v		-	4	2.74F=0	1 -8.93F=0 <u>2</u>	
	<u> </u>	V					1	
		۷	١		·8-	2.74F=0	1 ™6+0°F™02	
	· ·	۷			÷	2.74F=0	1 #4 • 6 6 5 8 0 2	
	••••••••••••••••••••••••••••••••••••••	y			÷	~~?;745 *?	1	
	}	· · · V	-		4	94 <u>7</u> 45=0	1 = 3 = 8 3 5 = 0 3	
	1	V			<u>45</u>		1	
	.	V -			4	2.745-0	1 2 . 475=02	
	4 4 5	v			÷ŧ	9174F=0	1 3.8°F=02	
							1	4
	۲ ۱	V			- 🚯	- 2.74F 0	1 6.745 02	)
		V	~		- <del>- (</del> -	9 · 74+ "()	1 9.595=02	: 
	·····	V				0,745 =0	1 1.105-01	
		V				2.74F 0	1 1.245-01	- 1
		· · ·					1	
	~~ ~~ ~	μ v			4	2.74F "0	1 1.535=01	
1		<u>y</u> .		· · · · · ·	+	2.74F=0	1 1.675=01	
M		V					11 +-81F=01	,
11		V.			+	2.74F*(		l E
	м	V			÷	0,74F=(	1 2 • 24F =01	≰
	M	V-			 &	2.74F "{	11 2.38F=0	- F
		M V			4	2.74F=(	1 2.53F=0	1
					+		1 - 2 • 47 5 = 61	•
		V	н		+	2.745 *(	1 2 · 81 F = 0;	1
		۷	, H		ŧ	2.74F *(	11 24455560	1
		V	14		•+		11 3604580	<u>'</u> 1
		- Y		<u>امب</u>	+ 4 4	2.74F=(	11 3+78F-7	•
					H		n13-52F=0	٩ -
		· · · · · · · · · · · · · · · · · · ·		`				
		1						



۲		,	4	٨	7	
	43					

· · · ·

	_	ζ. 43 - 5 	v	,
- +	V	· · · · · · · · · · · · · · · · · · ·	0,74F+02	2.52F=01
•	- V	··· · · · · · · · · · · · · · · · · ·	7.74F=02	2.55F=01
*	V		5,74F=02	2.58F=01
*	V	, <b>1</b> ,	3.74F=02	2 • 60F "01
*	V		1,74F=02	2+61F=01
*⊺V ≁ vr-			• • · • · · · · · · · · · · · · · · · ·	1 2 KTE401
V *		· · · · · · · · · · · · · · · · · · ·	5 TO10/55 TO	2 2 4 6 1 5 4 0 1
		۹ ۲	······································	/ / I J Y F T [] 1
*		P		2 2 • 5 / F = 0 1
*		int a INLa	L =1.403F=01	2.516*01
		17.1		
•*	••••••••••••••••••••••••••••••••••••••		= 1.43F=01	2.415=01
~ <b>*</b>		M .		2.355=01
*			-1 A3F-01	2.28F=01
. 4		М	-?.03F=0'	1 2.20F-01
. <del>,</del>	,	Мн		1 2.12F ≈n1
*				2.025-01
+ •		М	-7, K3F=01	1.025-01
······································	-	тт М ттт н		1 1 81 5 - 01
<del>بر</del> . ر				11-670F = 0 <u>1</u>
*		м ч 1.	- 3.23F 01	1 3 • 5 / F = 0 1
×		M +		1 1 4 4 F = 0 1
		[ ¹	E = 3 # 6 3 E = 0 1 E = 5 4 6 7 E = 0 1	
*	· • • • • • • • • • • • • • • • • • • •	ه:": ۱۱ م م م م م م م م م	- <u>1</u> +71+ ()) 	
	*  	•		A-10 KC PAA
*	11	۳۰ نف	- <u> </u>	6.535 PAD
*	. м	ਾਹ -ਦੁ		4.725 02
	·			
` H	, î			A . 58F - 03
11*	<u>.</u>	· ··· · · · · ·	-5+23F -01	1 "1 • 1 9 F " 0 2
4*				
*	,	•	5, K3F -01	1 =5 + 53F = N2
*	, _	÷	- "5, R3F"0	1 =7 · 82F=02
*			⊨= K-j=∩ 3 F-= ∩-1	
*				-1 +26F=01
- +		4		1 =1 52F = 01
				1
*	•	+		1 72+05F701
<b>۴</b> اد		+	( • 0 3F = 0 1	1 92432F901 .
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, _,			
<b>-</b>				1 -/+V()F-() <u>1</u>
₹ •		+	► ~/ •/ ·/ ·/ · 	1
		<b>•</b> • • • • • • • • • • • • • • • • • •		
*	,	+	/	1 #4 + 1 5 F # 0 1
		T		1 -4.40F=01
4		-	- #8.K3F=0'	-4.835-01
4	r	4		1 =5+18F=01
		·····		
			2 299204220	ማግለካብ⊦ማበት
			› ∾v(1 {) = () '	

· • . 1



12 P.1			Ę	Ŧ								<b>`</b>	•								
	$\supset$			$\bigcirc$	U. N. A	. M.							$\bigcirc$		۰.						
			,	INSTITU	TO DE I	INGEN	IERIA						$\bigcirc$								
			FORM	A PA	RA	C 0 [	DIFI	CAC	:10 N	< 1	4				۰.				_		
PROGRAMA MU	IRO - MARCO	CODIFICA	IDO POR	alleste	115		REV	ISADO	POR	<u>Y (</u>	ina	5				FEC	1A	لتبلغ	EP		16
· · · · · · · · · · · · · · · · · · ·										7-1-1						PAGI	INA_	$\underline{}$	D	Ξ	<u>`_</u> _
		20 25	30	35	40	┉┼╼┼━┤	45	5	0	55		60		65		7(	0 7	2	175		8
	0.220	-2.982						┞╌┼╌┼╴		┽╍╎											_⊥
/63	0.220	-2.982															++				
179	0.220	-2.982											_								
195	0.220	-2.932											_				-+				
211	0.220	-2.982																	-		
227	0.220	-1.491																			
16	0.280	-1.491																			
32	0.280	-2.982																			
48	0.280	-2.982																			
64	0.280	-2.982														-					
80	0.280	-2.982														-++			++		
91	0.280	-2.982				-+-+-				╶┼╾╶┾╾╍┼							+				$\left  \right $
112	1.220	-2.982							++++	┥							+++		+-+-	+-+-+	
128	0.220	- 2.982						╞╌┼╌┾╴		╉╍╋╍╟							++			+-+-+	
1 21:11	2.700	2.02							+++	╋╋							+-+-				
I SAL	A 200	2.02	╾┼╾┼╾╎╾╏╶┼╌╎														+		++++-		$\vdash$
	0.200	2 6 0 0			╾┼╍┟╍┠╍┼						_			$\left  - \right $			+++			$\left  \left  \right  \right $	$\vdash$
166	0.280	-2.782							+	┝┼╌╽							++		++-+-	+	┝┼╴
182	0.280	-2.982								+ $+$ $+$					_		++	++			┟
198	0.280	-2.982														_	++-				<u>    -</u>
214	0.280	-2.982							_												<b> </b>
230	0.280	-1.491															$\downarrow$			<u>     </u>	$\square$
? END JO	) B																				
	7																				
																	TT			$\Box \Box \Box$	
the second se		and a second	and of second on Anna state and a state	أرجب والمتعرب أربع تستاد بشمر فاسترج			and the second	Concerned to a second diversion of the	THE OWNER WAS ADDRESS OF THE OWNER OF			Concerning of the local division of the loca	and the second design of the second se	and the second se		the second se	And in case of the local division of the loc			and the second se	



- ~ 5 1

, ł ,

1 - -

`_`_ _

1

~

-~; -;

.

-,

المحمد مراجعة الم الا

i I '

÷ ł

4

£ 1

~ ~ ~

• • •

-, 1

ţ , . ~ 1~*

N.

		Na were P	ι,
. O	U. N. A. M. INSTITUTO DE INGENIERIA		· .
	TORMA PARA CODIFIC.	ACTON	
PROGRAMA MURO-MARCO	_ CODIFICADO POR CALLESTENTS REVIS	ADO POR CITINA	PECHA MILLOS (170
		$\left[ \begin{array}{c} \\ \end{array} \right]$	
		┝╶┧╴┫╶┥╍┥╌┥╴┥╴┥╴┥╴┥╴┥╴┥╴┥	
26 0.168	$-2 \cdot \overline{782}$		
42 0.168	-2.982		
58 0.168	-2.982		
74 0.168	-2.982		
90 0.168	-2.982		
106 0.168	-2.982		
122 0.168	-2.982		
138 0.168	-2.982		
148 0.168	-2.982		
140 0.168	-2.982		
176 0.168	-2.982		
192 0.168	-2-982		
208 0-148	-2.982		
224 0.168	-1.491		
13 0.220	-1.491		
29 0.220	-2.982		
45 0.220	-2.982		
41 0.220	-2.982		
77 0-220	-2.982		
93 0.220	-2.982		
109 0-220	-2.932		
125 0.220	-2.982		
141 0.220	$-2 \cdot 982$		



-- , . :. . . ۰, **د** 

, Å

.

* . د ــــــ · _ · · · · 

4 14 1967 - 1844 - 194

٤

4 140

	(c)set()		the second se
· ()	🔿 U. N. A	. M.	$\bigcirc$ · ·
<u> </u>	INSTITUTO DE	INGENIERIA	
	FORMA PARA	CODIFICACION	
PROGRAMA MURO-MARCO	_ CODIFICADO POR TIMES CIDS	REVISADO POR Sallings	FECHA MARCO 1976
<u>, , , , , , , , , , , , , , , , , , , </u>			PAGINA DE
		┝╼╅┊┥┥╸┫╌╡╸┨╴┥╴┥╴	┼╌┨┽╎┼┟┟╎╎╎╎
84 0.056	$-2\cdot 982$		
100 0.056	-2.982		
116 0.056			
132 0.056	-2.982		
146 0.056	-2.982		┼╼╂┼┝┼┼╋┽┽┽┿┾╋┽╸┦╺┝╵┥╴┥╴┥╸┫
154 0.054	-2.982		
170 0.056	-2.982		
186 0.056	-2.982		
202 0.056	-2.982		
218 0.054	-1.491		
7 0.112	-1.491		
23 0.112	$-2 \cdot 9 B 2$		
39 0.112	-2.982		
55 0.112	-2.982		
71 0.112	-2.982		
87 0.112	-2.982		
103 0.112	-2.982		
119 0.112	-2.982		
135 0.112	-2.982		
147 0.112	-2.982		
157 0.112	-2.982		
173 0.112	-2.982		
189 0.112	-2.982		
205 0.112	-2.982		



••

· · · · ·

~

	ŭ i	
	U.N.A.M. INSTITUTO DE INGENIERIA	· · ·
	FORMA PARA CODIFICACIO	) N
PROGRAMA MURO-MARCO	CODIFICADO POR DI 10 10 10 10 10 10 REVISADO P	POR STILLES FECHAMINE 7 1976
ALALA CARGAS EN LOS		┟╾╪╌┊╌╎╴╶┟╌┊╌╎╌┝╶┝╶╎╴╎╴┝╶┝╶┝╴┥╌┝╶┝╸┥╸┥
		$\left  \begin{array}{c} \\ \\ \\ \\ \end{array} \right  \left  \begin{array}{c} \\ \\ \end{array} \right  \left  \begin{array}{c} \\ \\ \\ \end{array} \right  \left  \begin{array}{c} \\ \\ \end{array} \right  \left  \left  \left  \begin{array}{c} \\ \\ \end{array} \right  \left  \left  \left  \begin{array}{c} \\ \\ \end{array} \right  \left  \left  \left  \left  \left  \begin{array}{c} \\ \\ \end{array} \right  \left  \left $
		╆╌┾╌┼╴╄╶┼╴┼╴╊╸╏╌╎╌╋╌╋╌╋╌╋╌╋╌╋╌╋╌╋╌╋╴╋╴╋╴╋╴╋╴╋
		┟╌┼╌┼╌┼╌┼╌┼╴┨╶╎╌╎╴╎╴╎╴╎╴╎╴╴╎
		╬╍┶┽╍┾╸╄╶┼╸┿╌┼╸┾╸┾╸┾╸┾╸┾╸┾╸┾╸┾╸┾╸┾╸┾╸┾╸┾╸┾╸┾╸┾╸┾
		┼╌┝╌┟╌┝╌┝╶┝╶┝╶┝╶┝╶┝╴┥╴┝╶┝╴┥
		<u>┽╌┼╌┝╌┠╌┾╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼</u> ╴╢
		<u>┤┤┤╎╴╊╶┤┥┥┥┥┥┥┥┥┥┥┥</u>
1 2 0 056 2	782	

FORMA 0-01-71

÷

انه المراسمية المراسم مراسم ĩ ت بد المعنية ال المعنية r í 1 . . -, · · · · i î , -

ì

. •

	(L.)	\	- set
	🔿 U. N. A	. M.	$\bigcirc$ $\cdot \cdot$
	INSTITUTO DE	INGENIERIA	
	FORMA PARA	CODIFICACION	••
PROGRAMA MURO-MARCO	CODIFICADO POR Palles Pros	REVISADO POR Salinas	FECHA MARZO 1976
CALCULO DE LAS PIGIDEC	ES DE ENTREPISO		
-ALAIA3 CANTIDAD DE N	UDOS EN CADA NIVEL	╺╄╾╄╾╉╌┠╴┾╌┼╌┽╶╄╌┾╌┾╌┼╌┼╌┼╌┼╌┼	
15 15 15 15	15	┉┿╍╄╍╊╼╊╶╄╍╊╍╄╍╄╍╄╍╄╍╄╍╄╍╄╍╄╍╄╍	╺╊╴╞╴╞╶┾╌┾╌╞╶╞╍┾╍┾╍┾╸┾╺┾╞╶┾╍╞╶┾╍┝╶┾╍┝╶┾╍┝
ALALAA NUMERACION DE	105 NUDOS POR NIVE		
4 20 36 52	68 84 100 116	132 146 154 170	186 202 218
7 23 39 55	71 82 103 119	135 147 157 173	3 189 205 221
10 26 42 58	74 90 106 122	138 148 160 176	192 208 224
13 29 45 61	77 93 109 125	141 149 163 179	195 211 241
16 32 48 64	80 94 112 128	144 150 166 182	2 198 214 230
A14145 ALTURAS DE EN	TREPISO		
2.60 2.60	2.60 2.60	2.60	3F10.0
AIAIAG PESOS POR NIN	EL		
33.23 33.23	33.23 33.23	33.23	8F10.0
A14147 COEFICIENTES	15M1C0		
0.08			$     F  p \cdot q                                 $
AIAIS INDICACION DE	L TIPO DE CONDICION	DECARGA	
ANALISIS DEL MURO MARC	O A CONSIDERANDO CA	2GA ESTATICA Y EFEC	TO SISMICO
AIAIC CANTIDAO DE B	ARRAS Y NUDOS CARGA	Pos	<u>↓</u> <u></u>
20 90			<u>↓                                    </u>
AIAI7I NUMERO DE BAR	RAS CON INDICE DE G	RAFICACION	┶┶┶┶┶┶┶┶┶┶┶┶┶┶
	3 1 4 1	5 1 6 1	
		1 1 3 1 1 1 1 4 1	
		╶┼╌┨╍┽┟╎╴┥╌┥╴┥╴┥╴┥	<del>┨╞┥┥┥┥┥┥┥┥┥┥┥╹</del>
ALALIZE CARGAS EN LAS	BARRAS		
	<u>requiring pression 14 parts</u>	to reastance I don not ransmar to	



•

				See at
	,	U. N. A	N. M. INGENIERIA	$\bigcirc$ $\cdot$ .
		FORMA PARA	CODIFICACION	
		Prolo-lette		FECHA MAN 120 1976
PROGRAMA NOW - WAILCO	CODIFIC	ADO POR $\underline{1-C(1)}$ $\underline{1-C(1)}$	REVISADO POR	PAGINA 5 DE 10
1 5 7 10 15	20 25	30 35 40	45 50 55	60 65 70 72 75 80
105 47 46	62 68			
106 66 65	81 82			
113 80 79	95 96			
114 83 82	93 99			
120 95 94	110 111			
121 98 97	113 114		1	
128 112 111	127 128			
129 115 114	130 131			
135 127 126	142 143			
136 152 151	147 148			
143 166 165	181 182			
144 169 168	184 185			┫╸╪╍╄╌╄╌╄╌╄╌╄╌╄╍╄╍┨╼┤╸┝╶┼╌┝╌┾╍┾╌┾╾┼╍
150 181 180	196 197			
151 184 183	199 200			<u>┽╶┤╾╊╶╄╍╄╌╄╌╄╌╄╌╄╌╄╌╄╌╄╌╄╌╄╌╄╌╄╌</u> ╄╌┾╌╋╼╄╌
158 198 197	213 214	┼╌┟╶┟╌┟╌┟╌┝╶┝╶┟╴┟╴┨		<u>┟╶┧╌┠╌┞╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼╌┼</u> ╌┼
159 201 200	216 217			<u>┤╴</u> <del>┥╶┨╶╎╸┫╸┥╼┥╸┥┥┥</del> ┙┥╌┥╌┥╌┥╌┥╌┥╌┥╌┥╴┼╴╎╴
165 213 212	228 229	┿┾┾┿╋┿		┝┼┼╌╂╌╊╼┠╌┠╌╄╼╊╼╊╌╋╼╋╼╊╼╋╼╋
	J VE NOVOS	ACESTICIAGI VOS, CO	AVICIONES VE CINICO	P / KIGIVEC EERDERIUM
	14511410010			
				<u>┤</u> <del>┤</del> <u>┤</u>
	J DE MINEUE	25 7 NUDOS POR N		┟┼┟╎╎╎╴┥╌╎╴╎╴╎╴╎╴╎╴╎╴╎╴╎
3 / 5				┟╍╆╴╊╴╊╴╂╸╋╴┫╴╋╴┥╴┫╴┥╴┫╴┥╴
AIHIAK INDIGAC	IDN DELU CAL	CULO DE RIGIDEZ	PELENTREPISO	

f i i



	t 3	Sec. 1	
$\bigcirc$	U. N. A	INGENIERIA	
	FORMA PARA	CODIFICACION	· .
LAURO LADOCO	Pulledance	The second states	FECHA MIN 720 1976
PROGRAMA NOICO-NIACCO	CODIFICADO POR <u>ALANGE A SECO</u>	REVISADO POR	PAGINA DE
1 5 7 10 15 20	25 30 35 40	45 50 55 60	65 70 72 75 80
9 19 18 34	35		
15 31 30 46	47		
16 34 33 49	50		
23 48 47 63	64		
24 67 66 82	83		
30 79 78 94	95		
31 82 81 97	98		
38 96 95 111	112	<i>J</i>	
3999998114	115		
45 111 110 126	127		
46 114 113 129	130		
53 128 127 143	144		
54 153 152 168	149		
40 165 164 180	181		
61 168 167 183	184		
68 182 181 197	198		
69 185 184 200	201		
75 197 196 212	213		
76 200 199 215	214		
83 214 213 229	230		
84 3 2 18	19		
90 15 14 30	31		
91 18 17 33	34		
98 32 31 47	48		
99 35 34 50	<u></u>		

-- , ' -

, j ( 

i ha i de la composición de la

.

..

	$N_{\rm s}/2$	λ
$\bigcirc$	U. N. A. M.	$\bigcirc$ · ·
	FORMA PARA CODIFICACION	· .
	Rall	FECHA MARZO 1976
PROGRAMA MOILO - WIRILCO	CODIFICADO POR <u>CONTECTE</u> REVISADO POR <u>CONTE</u>	PAGINA 3 DE 10
1 5 7 10 15	20 25 30 35 40 45 50 55	60 65 70 72 75 80
230 9.600	13.0 11 (1 monda dentit de 215 a 2	
- A147 LOCALIZACION	I DE BARRAS Y CARACTERISTICAS	
1 52 68	I BARRA, NOPOLI, MA	oi M2 di sección
5 64 80		1 1 1 1 1 7 21 2 77 1 2 77
6 132 146		
7 135 147		
8 138 148		
9 141 149		
10 144 150		
11 146 154		
12 147 157		
13 148 160		
14 149 168		
15 150 166		
11 145 146	2	
20 149 150	2 1	Jan techo Ille Ameri
- A149 ANGULO FUERZ	A DE GRAVEDAD Y ESPESOR DEL MURO	
270.0 0.2		
- AI410 TIPO DE LOS	CUADRADOS 1- 83 UNDS ELEVINIOS TIRE 2 SUMMER	3 24 Count 10 10 1 2 1 - 11. 7
111000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
00000 9 45-52 - 52	2016×165	
-ALALL LOCALIZACION	DE CURPRADOS ELEMENTE INTEL	
	7 / 8 / / / / / / / / / / / / / / / / /	of de Mersap en la climenta part
8 16 15 3	1 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ansist fell of BP

, 1

•

5 <b>.</b>			h. af						
$\bigcirc$		U. N. A INSTITUTO DE I	. M. O ···						
	•	FORMA PARA	CODIFICACION .						
PROGRAMA NUL	RO-MARCO	CODIFICADO POR SUL 210.05	REVISADO POR CUMAS	FECHA MARZO 1976					
				PAGINA DE					
1 5 7	10 15	20 25 30 35 40	45 50 55 60 65	70 72 75 80					
33	1.0	0.0							
48	1.0	13.0 1							
49	1.5	0.0							
64	1.5	13-0 /							
65	3.5	0.0							
80	3.5	/3.0 /							
81	4.0	0.0							
96	4.0	13.01							
97	4.5	0.0							
112	4.5	13.0 1							
1/3	5.0	0.0							
128	5.0	13.0 1							
129	5.6	0.0							
144	5.5	13.0 /							
145	6.5	0.0							
150	6.5	13.0 1							
151	7.5	0.0							
166	7.5	/3.0 /							
167	8.025	0.0							
182	8.025	/3.0 /							
183	8.550								
198	8.550	/3.0 /							
199	9.075	0.0							
214	9.075	13.0 1							
215	9.600								



ma was have a product of the second s

																	1								
	. ()	. U. N. A. M.								$\bigcirc$	··														
		FOF	AMS	PΑ	RA		00		CAC	:10	N						۰.								
		Ballas la re						••••							F-CD: 4:5.220 197						371				
	FROGRAMA MURD-MARCO CODIFICA	DIFICADO POR <u>EXTRESTORES</u> REVISA						ISADO	P0	R(	.11	MQ										0			
				75				45			TT	EE	Т	Tlee			55		r†-	701	1701			<del></del>	
50					4		╧	40			┽╾┼╾	55	┼╍┼╾		<b>4-</b>	╺┼╍┾	185	┝╼┾╼┙	┝╌┿╼			-+-+	러누		
ر م	JOB MURP/MARCO JUSER X	12/	AB		455	SE	2 3	-BE	GIN	4 3								- -			+-+				
424	LEXECUTE (VP80) DESFI/SMTA/	P740	5 j							_				┼╌┼╌			-	-   -		$\vdash$	+-+		$\rightarrow$		
L H	PRØCESS 180 ; IØ 180 ;																_								
20	BCLTQUE																								,
ΨJ																									
	- A11 TITULO PROBLEMA GE	NERA	L																					( P	17
	ANALISIS DE UNA ESTRUCTURA	TIP	O MI	URO	MA	zco																			
	- A12 ARCHIVOS																-								
	10 15 20 25	Ur: 2	1°	J. Co	¥	1.1.1.1		·		(1)	(14	. N	IC C				·	10	· \		TT				
	- A13 ESTRUCTURAS POR ANAL	IZAR													17				T						
																								-	
·	- ALAL TITULO PROBLEMA PA	RTIC	ULA	2																					
	ANALISIS DEL MURO MARCO A			1011	11-17	1117	prule.		11		C		$\mathbb{D}^{+}$												
<u></u>	- A142 CANTIDAD DE BARRAS.C	UADR	2004	S.MA	TET	214		NUI	oos	V	SE	cć	1b	NE	s							-			
	20 165 1 230 2																				11	11		++	
	- A143 CARACTERISTICAS DEL	MA	TERI	IAU	(10:	2411	w:ad	ond	110	·in		Ξ.	-, .	X	Y						+-+-				
	1150000000000015		2	. 4									T		11										
	- A144 CARACTERISTICAS DE L	ASS	ECC	IONE	S		(7,)	0 4		(de	ia i	11/0	rd	Ľ			$\mathbf{n}$								
		15.													1										
	2 2 100.	20.												+-+-							+-+	++	++		
	- ALAS COORDENADAS DUNTOS N	ODAL	FC				-  -							++					H		11				
														+		+		┟╌┠╍┥	┝╍┾╍	$\vdash$	++	++	++	+	-+
		· · · /						7.1.1-									5 1					++-	+-+	++	
								1												Ħ	$\mathbb{H}^{\mathcal{V}}$	+	+++	++	
	32 0.5 13.0				[ ]	Ind	1.2	121		13r	Tica	1.0	172					17 C	r.	010		121		++	+
	- IDEMTIFICACION DE LA TARJE	TA P	OR.	FERF	07.	318	100	<u> </u>	52. 4	PE.	R Fc		2					نيو داون و ا		FO	RAN	<del>منرحد</del> - م	-01-	71	
						4	S. 1			,	1 .		Ĵ,					1	,					1	



APLICACION

..

Ķ-	-4	2	50		MARC	0 4	•	P. B	nller	10006		.'. ר	'/ ^{''}			~	L :	15
-			19	64	ET	•••••	96	112	128	144	10	150	[15]	166	122	 19	3 214	21,0
		B	98	23		00	113	38	12.8	55			-		145	68	158	83
	15 •	3) 90	19	105			30	120	45	135		120			60	150	175	165
3	4	10	46	62	•	7B	94	آ (اه	126	142		0		164	181	196	, 2123	78
4		े7 29	97 45	22 61	বা	ויח	112 93	37 _109	127 125	52 141	ß	189	[14]	163	142 179	67 195	157 - <u>21</u>	82 <u>22</u> ?
•	2	89 28	14 41	104 60		, 76	29 92	119	44 124	134 14	,			162	59 173	149	74	164
260		6	96	21	·	. ๆธ	111	36 151	126	51 139		Ð		141	141	66 82	156	81
-		88	13	103	T	1	28	118	43	123	181	148	[3]		58	148	73	163
		- <u>26</u> 5	42 95	<u>5</u> 2 20			90 11D	™ 35	125	50				104	140	45	155	-80
с , ,	1	25 87	41	57	7	73	89 27	<u>105</u>  П	42	132		1 <u>B</u> 1		[51	175 59	191	207	162.
250	8	24	40	56	-	72	68	104	120	136		-		58	174	190	246	772
44		+ 23	94 39	19 55	2	-11	109 87	34 103	124 119	49 135	0	147	121	157	139 173	64 107	154 2.5	79
260	5	86 2	11 38	101 54		70	26 86	16 102	41 118	[3] 194			2	156	БЬ 172	146 183	רן ז∝	161
	5	3- 2	93 97	<u>।</u> ठ द्र	- -	69	10B 65	33 101	123 117	48 133				155	138	63 19]	153	78
	4	85	1D 24	100	I	68	25 84	115	40	130 132	ធ	146		154	<b>5</b> 5	145	η0 -02	160
-+	*	2	92	17	,		107	32	122	47		•			137	62	152	77
ľ	<b>-</b>  -	14	35	51		67	- 83	99	115	151			_		169	185	201	217
000	2	84	9 34	99	· ·	હ્ય	24 82	114 98	39 114	129 13r	- Are	2		152	54 168	144	69 22	157 216
× - ×		$\supset_{a}$	91 <u>53</u>	16	Š. S	65	106 81	31 97	121 113	26 129	Ì.	145		151	136 (67	61	151 191	76 215
··· .					• • •	ר	. 1		4		- 40-							