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RESUMEN 

Se presenta un criterio para la evaluación probabilística de riesgo sísmico 

cuando se cuenta con información geotectónica y siSmol6gica. Los procedi-

mientas sugeridos se basan en el empleo de la evidencia geol6gica para la 
' . 

formulación de un conjunto de hip6tesis alternativas sobre los modelos analí-
~ 

ticos de sismicidad. Se asigna una distribuci6n de probabilidades a dicho 

conjunto y se introduce la evidencia estádística para juzgar la validez de 

cada hip6tesis y modificar la probabilidad asignada inicialmente a ella. 

ABSTRACT 

A criterion is presented for the probabilistic evaluatiqn of seismic risk 

When geotectonic and s~ismological inforrnation is available. The procedures 

suggestedrely on use of geological evidence for the formuiation of a set 

of alternate hypotheses coficerning analytical models of seismicity. A 

ability distribution is assigned to that set and statistical evidence 

s introduced in arder to assess the probable validity of each hypothesis 

to modify the initial probability ·initially assigned to it. 
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l. INTRODUCTION 

Rational fo~ulation of engilleering decisions in seisrnic areas requires 

probabilistic assessrnent of the rn~imuffi intensities that rnay occur at a site 

in given time illtervals. Unlike variables that are relevant in rnany other 

decision proble~where probabilities are estirnated alrnost exclusively on 

the basis of relative frequencies of the outcornes of repetitions of a given 

éxperiment, seismic risk estimates should make use of information stemming 

frorn sources of different nature, sorne of which, while being the object of 

probabilistic evaluations, can not be interpreted in terrns of relative 

frequencies. Thus, geologists talk of the rnaxirnurn rnagnitude that rnay be 

generated in a given area, by looking at the dirnensions of the gological 

accidents and by extrapolating the observations of other regions which 

available evidence allows .to brand as siffiilar to the one of interest. 

Following nearly parallel lines, sorne geophysicists estirnate the energy 

that can be liberated by a single shock in a given area by rnaking quantitative 

' 
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assurnptions about source · dimensions, dislocation ampli tude and stress drop,. 

consistent with tectonic models of the region and, again, with comparisons 

wi th are as of similar tectonic character,istics. Statisticians, on the 

other hand, are prone to base their predictions of the future exclusively 

on the basis of observations on a sample; however scanty that sample may be. 

None of these approaches, by itself, suffices to provide a satisfactory 

answer to the requirements of decision makers: purely statistical analysis 

is un~cceptable because it neglects a wealth of relevant information, and 

it is not clear that bounds can always be assigned to magnitudes in given 

areas, or that, when this ·is feasible, those bounds are sufficiently 1ow 

that designing for them is economically sound, ev~n if they are not very 

-likely to occur in the near future. In fact, sorne studies relating source 

dimensions, stress drop and.magnitude show that, considering not unusually 

high stress drops, it does not take very large source dimensions to get mag-

nitudes 8.0 and greater. 

A criterion for combining the above approaches in the probabilistic assess­

ment of seismic risk is presented in this paper. · Its philosophy consists 

in using the geological, geophysical or any other non~statistical evidence 

for producing a set of alternate assumptions concerning a mathematical 
.. . ', 

(stochastic process) model of seismicity in a given source area·. An initial, 
. . . - \ 

or prior, probability is assigned to each hypothesis, and the statisticar 

infonnation is then used for improving that probability assignment. The 

criterion is based on application of Bayes the~rem, also called the_ theorem 

of the probabilities of the hypotheses. A previous formulation (1) has 
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' 
evolved through- the inte'raction of. IJlúltidisciplinary· groups in the develop-,. 

ment of seismic risk studies per':Éormed in- the last few yeats in Mexico (Z-4). 
, .. 

s±nce estimates of risk depend on conceptual·models of the geophysical 

process inv.olved, and these are little·known at presén~, more questions are 

raised heré than solutions given. -

2. MEASURES OF SEISMIC RISK 

'\ 

Let y .be a measure of earthquake intensity. According to the p:r:oblem at 

hand, y'may be peák ground acceleration, velocity, spectral ordinate fÓr q. 

given·natural period, or, shortly, any variable that determines the responsé. 

of the system under study. This means that a relation can be established 
,) 

between the intensity of a given earthquake and the corresponding loss D(y).-

- -
A commontly applied/ criterion assumes that seismic risk should be measured 

by the highest intensity that can be caused at the site by the largest­

magnitude earthquake that can be generated at any of the potential seismic 

sources in the vicinity. _However, engineering systems cannot always be 

designed for the worst possible condition tolbe expected. Instead, decisions 

have to be based on cost-benefit studies.: When designing for earthquakes, 

a signÜ:lc~t cost term is made of the'value of th~ expected áctualized 

cost of damage or failure, as given.by the following equation: 

. ·00 

. E [ F] -= _f· 
' . ' o . ' 

..:..,.t o e dt · 
t 

. J 

' (1) 
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· He re, e ,--yt is a compmmd interest actuáliza tion ftmct~on, y the interest 

rateando the expected cost of damage or/failure per unit time at instant 
t . 

t. Its value can be obtained from Eq 2, where \)t (y) (in general a fllllction 

of t) is the mean number of ,·earthquakes per unit time whose intensity is 

greater than y aild D(y) i$ definedabove~ 

00 

ot f 
o 

'd\)t (y) 

ay 
D(y) dy ·(2) 

r. 

From Eqs 1 and 2 and the corresponding cost-benefit-studies, it is conclud­

ed that evaluation of seismic risk for engineering purposes implies the 

definition of function \) (y) (henceforth called regional seismicity). This -
t 

can be done as shown in the sequel. 

3. MAGNITUDES, INTENSITIES ANO FREQUENCY FUNCTIONS 

With the possible ex~eption of the rare cases where the reco~d of intensí­

ties ata site suffices for producing reliable estimates of \)t (y), evaluat- · 

ion of seismic risk should ·include the following steps: 

al Identifying the potential sources of activity 
bl Formulating mathematical models of local seismicity for each soutce 

el Obtaining the contribution of each source to \) (y) and adding up 
t ; 

contributions of the various sources. 

* Eqso 1 and 2 imply that every time that sorne damage or failure occurs the 
system is repaired or rebu-ilt in such a manner that the function D(y) ·re.,.. 
mains unchangedo Corresponding expressions can be obtained for more general 
conditions ( 19). )n general they require no more information about the 
mathematical mo'del of seismicity. 

/ 
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This section deals with step el. The test of .the paper is devoted to the 

more difficult problems relevant to steps al and bl. 

Let At QM) (also a func~ion of time, as is regional seismicity) be the mean 

number of earthquakes with magnitude greater than M generated per unit 

volume and per linit time iri a given seismic source. If a deterministic 

relationship M(y, X) holds between magnitude M, l.ntensity y at a site, and 

focal coordina tes X of an earthquake, \)t (y) and \ (M) can be related as 

follows: 

\)t (y) = f \ QM(y ,X)) dV 
vol 

. (3a) 

Unless sorne information is available concerning systematic effects related 

to a given origin and a given site (attributable either to local soil or 

to propagation path properties), the influence of X is a fllllction only of 

distance R, either to the instrumental focus or to the causative fault. 

Eq 3 then becomes: 

\) (y} = f A QM(y,R)) dV 
t t 

vol , 
(3b) 

A number of empirical or semi-empirical expressions relating M, R and y 
1 . 

have been proposed. A summary of them is given in Ref S. The author has 

made use.of information in Refs 6-8 in arder to derive expressions relating 

magnitude, hypocentral distance and various measures of intensity on firm 

ground, such as peak ground acceleration and of.velocity (respectively a, 

v, A and V) (9)., These expressions are of the form 

" 

!·· 

' i 
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b2 M b3 
y ~ b e R'- · 

1 
(4) 

where R1 ~ R + R
0

; R must be given.in kilometers and b
1

, b
2

, b
3 

and R0 are 

given in Table 1, which also shows the mean m.and the standard deviation 

0 of the natural logarithm of the ratio of observed to computeq·intensities. . . . . r· . . . 

TABLE 1. EXPRESSIONS RELATING_MAGNITUDE, INTENSITY ANO HYPOCENTRAL DISTANCE 

Express·¡ on for: b . 
- b2 'b R ·m 0 

1 3 o r 

v (cm/sec) 32 1'o O L7 25 Oo124 0.74 

a (cm/sec 2
) ' 5 600 0.8 2.0 40 0.04 Oo64 

V (cm/sec) 250- 1.0 1.7 60 0.058 0.64 

A (cm/sec 2
) 69 600 0.8 2.0 70 o 0.75 

The significant dispersion·of these expressions, implied by the high values 

of 0 , is due mainly to their having been obtained from data of earthquakes 

originatirig in different sources and having different mechanisms and pr?pa-

gation paths. The form of Eq 4 gives place, moreover, to a faster variation 

of intensities with respect to magnitudes in the near field than what occurs 

in natur~ because the,liberation of energy is distributed throughout volumes 

whose dimensions can be sigriifi~ant with respect to the site-to~source dis-. 

tance. This relatively low sensitivity of ·y with respect to M in the near 

field ha~ been verified in practice at least for earthquakes produced by a 
. '. . ;·: . ' . . . ' . . . . 

/ 

strike.,-slip mechanism (10, 11). This effect can be represented by expressiqns 

as simple as Eq 4, if b
2 

~s,t-aken, for_ instance, ~f. the form b~=A + BR/(C_:+- R). 

For wide zones in the earth 1 s crust, A (M) , the average value of \ (M) over 

'loll:g time intervals, can be approximated as follows, 

A (M) ~.a. e ..Pi,M 
. . . 1 

· A(M). ·- ..P2M . . - a. e . . 2 . 

for M_~~­

, for M>~ 

-- ·, 
(5)~-"-

where B2 ~ 
1

B1 , ~ is a magnitude- beyónd which there is a higher rate of 

decreasé of A(M) with magnitude; continuity at ~ requires that a.
2 

equal 

a
1 

exp ( (B
2 

- B
1 

} ~ J. . 

As a result of the statistical dispersion in the. expressions relating M, 

X anq y, _ Eq. 3 has to be changed to the following: . 

. v (y),~· 1j . A (M(y ,X)) .'P (y, X) dV 
vol 

(6) 

·( 

where .p'(y, X) is a corrective ftmction that can be computed as described 

in Ref 21. 

4. ANALYTICAL MODELS OF SEISMICITY 

7 

"---· 

As has been pointed out, when engineering decisions · concerning construction 

in seismic ?-Teas have to be· made,· it does not suffice to e)cpress ··1ocá1 

seismicit)' in ·terins of a.n· upper bm.md for magnitudes, the probability o.f 

whose excedahce is ·arbitrarily assumed 'to be neg~igibly.small. Tnstead, it 
.·-. •, . 

should be expressed in ter.ms of the probability distribution of the maximum 

magnitude that éah be ~enerated at given sources during given time petiods. 

These probabilities depend on the following ftmctions: 

'al 
b) 

1 

Frequency-magnitude relations for sma_ll volumes of the earth 1 s 

Statistical correlati~n functions of the process of earthquake 
in time and space. 

crust 

generatiori 
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·The analytical models of local s~ismicity postulated in this paper-are 
1". • 

stochastic processes·of the·renewal type: the time interval between occur-

rence of successive earthquakes having magnitudes greater than a given 

value are mutually independent random variables. Let T be any such time 

interval. Its probability density ftmction will be asstimed- of the gamma 

type: ( 

\) 
(vtl-1 e -vt (7) 

fT (t) = -(k - 1)! 

~ . 

Here, v and k are two positive m.nnbers and a! is the factorial ftmction of 
(. 

a. This distribution was adopted because a wide number of distributions can 

be approximated by it, if parameters \) and k are properly chosen (17). \) 

and k are related with the first two moments of the probability density 

ftmction of T:· 

E(T) = k/v, V(T) = 1//ÍZ (8) 

where E means expectation and V coefficient of variation~ 

The·probability density ftmction of the wairiting time T
1

, from the .origin 

to· the occurrence of the first event, differs from Eq 7,-since the. time 

elapsed between the last prior event is usually tmknown. The distribution 

· of T
1
_ coincides with that of the excess life in a renewal process_at an 

. 1 . 

arbitrary 'value of t that tends to infinity. The corresponding probability 

density ftmction has been shown to be .. 08) 

f . ( t) = 1 '( 1 - F ( t) ] 
T T 

1 E'(T) .· 
e9) 

\. 

9 

where FTet) is the probability distribution function of the time between suc 

cessive e'-':ents·. 
' 

An iffiPortant ftmction in decisions under seismic hazard conditions is the 

condi~ional distribution of the additional time to next event, when it is 

'known that there have been no events for a time t
0

• 

' 
If t

0 
is measured 

from the instant just following t~e occurrence of an event and-if 
\ 

T ; (T - t
0 

) /E (T) and u
0 

= t
0 

/E (T) , then 

f (u 1 T ~ t ) = 
T O 

. fT /ECO (u +uo). 

1 - F ( T /E(T) UO) 

(1 O) · 

The Poisson process is the particular case of the gamma process for which 

k= 1. In that instance, Eqs 7, 9 and 10 lead to 

· · · -vt f e t) = f e t) = f ( t 1 T ~ t ) =f ( t 1 T ~ t '1 = ve · T T T -t · O T -t l. (f 1 . o 1 o 
(11) 

which reflect the non-info~tive property of Poisson process: at any given 

instant the conditional-probability density function of the time to next 

event does not depend oh the time elapsed since the last one. 

Explicit expressions for evaluation of the conditional and the tmconditional 

probability·density ftmctions of T and T
1 

for the general gamma process_ are 

given in the appendix. '. 

The Poisson proce~s assumption is ordinarily adopted in probabilistic seis­

míe risk studies. · It is difficult either to substantiate it or to.reject 

it in general on the basis of statistical data ·alone, since these are scanty, 
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particula~ly in small ateas or for iarge'magriitud~s. After consideration 

of the geophysical processes'in play it is reasonablé to conclhde, howevér, 

that if strain energy stored in a region grows in a more or less systemat,ic 

manner, the risk.function should grow with the time ·elapsed since the last 

evént ~ ·Préliminary statistii:al analysis of the wai t1ng · times between 
1 

earthquakes with magnitudes 6. S or 7 .·o and greater in sorne seismit provinces 

in the southern coast of Mexico shows ·that if shock~ occurrel· in the· same 

seismic province wi thin a few mouths of each other are h.II)lped together as ·. 

single events, th.e resul ting distribution of wai ting times can be ap- -
j 

.lj . 

proximated by a g&mna function with k = 2. However, results have not been . . . 

uniform. Reliable evaluations of alternate assumptions concerning k will 

have :to rest partially on simulation of the process of storage and liberation 

of strain energy. ·. 

According to Eqs 1 and 2, the actualized value of.the expected cost of 

damage or failure is a function of vt (y), which is a~function not only of 

A (M) in the neighbouring seismic sourcés, but al so, of. the probabili ty · 

distribution of T /E (T) • The possible sigilifiCance of :the value of k in the. 

variables that affect seismic design decisions can be inferred from·Table' ?, 

which compares the initial and the conditional expected values of the time 

to next event, as well as the actualized values of the eXpected cost of 

fa'ilure for the ·Poisson and the·garnm.a processes. These quantities were 
1 

computed by means of the expressions developed in the appendiX. 1he actualized 

value ·of the expected cost of failure was obtained from the expression that 
. . 

foilows. 

1 

·: 

-. , .. 

· _) E [ F] 

D 

00 

= J ~(t+t0 (T;;;;ot0 )e-ytdt 
o 

11 

. (12) 

This expréssion is consistent.with the assumptions that a stru~ture·fails 

when a given intens~ty with retum period E(T) is exceeded, that the cost 
. . 

of that failure is D, and that the system is not rebuilt after failure~ k 

was taken·as 2, and two values of yE(T) were considered: 10 and 100. 

TABLE. 2. COMPARISON OF POISSON ANO GAMMA PROCESSES 
GAMMA PROCESS, k = 2 POISSON PROCESS 

E{F)/D E (TI T;;;;. t 0 ) E(F)/D u E(TI~t ) E ( T 
1 

1 P.t 
0 

) . yE(T)=lO yE{T)=lOO =E (T 1 T;;;;.to o o 1 . yE(!)=lO yE{T)=lOO. 

O. 1.0 . 0.75 0.0278 0.0004 

0.1 0.92 0.73 0.0~11 0.0036 

0.2 0.86 
- 0.71 0.0675 . 0.0059 

/ 

o.5 0.75 0.67 0.0973 0.0100 

1 ,0.67 0.63 0.120 0.0132 1.0 0.0909 -2 0.60 0.58 0.139 0.0158 
-5 0.54 0.54 0.154 0.0179 

-
10 0.52 0.52 0.160 0.0187 

' 
00 0.50 0.50 0.167 0.0196 
00 -

This table shows very significant differences between the expected cost of 

failure for both processes. At small values of t
0
,E(F)/D for the Poisson 

process .. is greater than that for the gamma process, but as time goes on 

0.0099 

and no earthquakes occur, E(F)/D grows gradually for the gamma process, until 
:-..\ \ ' ~ 

th~actualized risk for the latter becomes nearly twice that for the Poisson 

process •. Clearly, the problem is signif~cant when making engineering 

decisions. . . 

..--..._ 
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Improved 'analytical.rno~els of se~srnicity should also cover those observed 

cases where 'the sources of large shocks rnove systernatically ·along faul ts., 

This can be done by rneans of Markov proces.s rnodels, but éxtensive seisrnolo­

gical and ge~physical studies are required befare the rangé of applicability, 

of those rnodels ~an be established and.their pararneters estirnated. 

· 5. ELEMENTS .IN THE. ESTIMATI.ON OF LOCAL SEISMICITY 

Only exceptionally can frequency~rnagnitude relations for srnall valurnes of the 

earth's.crust and- statistical correlation fúnctions of the process of earth­

quake géneration be derived exclusively frarn statistical analysis of recorded . . 
shocks. In rnost ca·ses this inforrnation is too limited for that purpose and it 

often seerns to contradict geological evidence. Since the latter, as well as its 

connection with seisrnicity; is beset with wide rnargins of uncertainty, info~ 

· w~tion of a different nature has to be evaluated~ its uncertainty analysed, 

and ·conclusions reached that are consistent with all pieces of inforrnation. 

A probabilistic criterion that accomplishes this is presented here: on the 

basis of geotectonic inforrnation and of conceptual rnodels of the physical 

processes involved, a set of alternate assumptions can be rnade concerning 

the functions in question (frequency-rnagnitude, time and space correJation) 

and an initial probability distribution assigned to it; statistical informa-. 
tion is-used to judge about the likelihood of· each assumption, anda posterior 

probability distribution is obtained. How statistiéal inforrnation contributes 

to the posterior probabilities of the alternate assumptions depends on the 

extent of that inforrnation and on .the degree of uncertain~y implied by the 

13 /' 

initial probabilities. Thusf if the geological evidence supports confidence . . . 

in a-particular assumption or range of assumptions, statistical inforrnation 

should not greatly rnodify the initial·probabilities. If, on the other hand, 

a long and reliable ptatistical record is available, it rnay practically 

determine the forrn and pararneters of the rnathernatical model selected to re-

present local seisrnicity. 

Analysis of geological inforrnation must consider local details as well as 

·general structure and evolution. In sorne areas_it is clear that all poten­

tia! earthquake sources can'be identified by surface faults, and their dis-

placements in recent geological times measured. When mean displacements per 

unit time can be estirnated,. the arder of magnitude of creep arid of energy 

liberated by shocks and_hence of the frequency-magnitude law can be establish 

ed (12, 13), the corresponding uncertainty evaluated, and the initial proba­

bility distribution assigned. The fact that frequency-magnitude·relations 

are only weakly correlated with the size of recent displacements is reflect­

ed in large uncertainties (14). 

Application of the criterion described in the foregoing paragraph may be 

unfeasible or inadequate in many practical problerns, as in areas where the 

_abundance of faults of differ~nt sizes, ages and activity, and the insuf­

ficient accuracy with which focal coordinates are deterrnined precludea dif­

ferentiation o~ all ·sources. RegioJ1al seismicity may then be evaluated 

under the assumption that at least part of the seismic activity is distri­

buted in a given volurne rather than concentrated in faults of different 

importance. The sarne situation would be faced when dealing with active 
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zones .where surface evidence of mot:i,ons.does notexist •. Hence,·consider­

ation of the overal1 behaviour of-cornplex geologic~.l structures is ·in 

general more~ significant than the study oí._ local details. 

To the _au~hors's knowledge, not JIRlch work has been done in-the analysis of 

the overall behaviour of large geological structures with respect to the 

energy that can be expected to be liberated per unit volume and per unit 

time_in given portions of those structures. IrnportaT).t research and'applic­

ations should be expectéd; however, since, as a result of the contribution 

of modern plate tectonics theory to the understanding o_f lar~e scale tecto-

- nic processes, the numerical values. of sorne of the variables correlated 

with energy l~beration. are being determined,. and can be used at least to­

obtain orders of magnitude ofexpected activity along plate·boundaries. 

Par less understood are the occurrence of shocks in apparently inactive 

regions of continental shields ·and the behaviour of cornplex continéntal 

blocks or regions of intense folding, but even there.some progress is con­

templated in the study of accurnulation of stresses in the crust (15). 

Knowledge of the geological structure can serve to formulate initial proba­

bility distributions of seismicity·even when quantitative use óf geophysical 

information seems beyond reach. Initial probability distribution of·Iocal 

seismicity parameters a, S, M
1 

(Eq S) of the relatively small volumes of the 

earth' s c,rust that con tribute significantly to the seismic risk at a si te can 

be assigned by coroParison with the average seismicity observed in wider areas 

of similar tectonic characteristics 6r where the extent and cornpleteness of / 

.. 15 

statistical· information warrant reliable -estimates of frequency-~gnitude 

durves (1) •. Jn-this manne~we can~ for instante, use the :i?fo~tion 
about theaverage distributionof the ~epths of earthquákes·o:( different 

magnitudes th~<?~ghout a seismic province in. brder t~ estimate the correspon­

ding distributim~_-~in an area. ~f. thaf prmrince ~here activity has. been low 
··'e:, '· ' 

during the .observation intervál ~ven though there might be no apparent 
1 . '· . . .• 

geophysicaL !1eas6n for the _ differente. Likewise, the expected value and the 

_ coefficient· óf variation of A. (M) in a given area of modera te or low seis­

~icity'· ciike á continental shield) can be obtained from the statistics of 

thé motions· óriginated·'at ·an the· ·stipposedly' stable or aseismic regions in 

the world (16). 

Fig. 1' 'illustrates ,the .kind ~f Cohcept~ that one hásto cons-:lder wheri try-

-ing t~ 1 ti~-é-all a-Jaüdble'' iilfórwition 'for 'the quáiltiú.tive -probábilis"tic 

arialysi~ 6f seisrÚc 'risk. Tfie southern coast of ~1ex'ico 'is one' of'the 

region!;) of highest activity in the world. Large :shallbw shoé:ks ·aré produced 

by the interaction of the continental mass and the ocean bottom's plate 

_(Cocos plate) that underthrusts it. Seismological data shows significant 
·.":' ,·· 

gaps of activity along the coast during the present century and not IIR1Ch is 

known about .previous htstory. At; points along those gaps seismic risk 

estiinates based on observed, iJltensitie,s_ ,wpuld_ be quite low. )'Jo significant 

difference is evident in the geological structure of these regions with 
' . . ' . . . . 

respect to_ the rest,_ of. the. c9ast., with. the exception of sorne faults trans-
. ' . . . . . :. . ~ •. . . ~ . . . . . . 

vt;r:se to the.<;:oast,. -that--divi,de. _the, contin,ental formation into several 
• •. •..• ' ' . • • l . ' .• : • • ..• ••• " • ~ ~ .. ' ' • .' • 

block?.- An-analy~is of the, lqcations- ef_preyiou~, large earthquakes along 
. . . - . . . . ' ' . . ' -~ ~ ; ... . . . . . . . ' ·,· 

-.,..: 
.~ : .. ~ . ~~: . . ·-, •¡'.' 

. ... - '. '. ' ~· 
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the coast has led Kelleher et al. (20) to conclude that those gaps are with 

high prpbabi~ity the locations.of la~ge magnitude shocks in the·near fu~ure. 

The probabilistic evaluation of all these pices of information can be done 

as d~scribed in the next section. 

6. SIGNIFICANCt OF STATISTICAL INFORMATION 

In the proposed formulation, statistica:i)data serve to ascertain th~ pro­

bable validity of each of the altemative models of local seismié:ity that ·· 

can be postulated on the grourtds of geologiCal evidence. Any, criterion 
. . 1 

that intends to weight information of differént natureahd differeht. de':"· 

gre~s of uncertainty should permit obtaining probabilistic conclusions con• 

sistent with the degree 'of confidence attached to' each source ·of· inforin- : 

ation. This is accomplished through use of the concepts of bayesian statis­

tical analysis, as described in the sequel. 

' ', 
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Let Hi, i = 1; ••• , n, be a.comprehensive set of mutually exclusive .as-
'- ' sumptions concerning a given, imperfec:tly known phenomenon and let A'be . . . 

/ 

the observed outcome of such a phenomenon. Suppose also that befare ob-

serving outcome A we assign an initial probability P(H.) to each hypothesis. 
. . . . . . 1 

If P(A 1 H.) is the probability of A in case hypothesis H. is true, then 
'·. 1 - 1 . 

Bayes' theorem states the following (17): 

P(A 1 Hi) 

P(Hil A)=:· _P(Hi) ~ P(Hj) P(AI Hj) 

J 

(13) 

The :first ine~ber in.· this équation is the (ppsterior) probability. that as­

sumption H. is true, given the observed outcome A. 
1 

In the evaluation of seismic risk problems Bayes' theorem can be used to 

improve the initial estimates of A (M), S, M
1 

, and variation of A (M) with 

_depth in a given area. 

Consider A (M). If a model as given by Eq 7 j.s adopted, we start by as­

suming for each M and initial probability function for the actual, but 

unknown, value of A (M). If the possible a_ssumptions conceming the values 

of A(M) for a given M·cons.titute a continuous inte:rval, the initial 

probabilities of the altemative hypotheses can be expressed. in terms 

sumption is made concer~ing the form of this probabilit~ density functión, 

only the initial values of E(A.(M)) and V(A.(M)) have to be assumed. It is 

advantageous to assign to v = k/E(T) a gamma distribution. Then,, if p and ~ 
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are the parameters of this initial distribution of v,' if k is assumed to be 

known, and if the observed ou~come is expressed as the time tn elapsed be- _ 

tweerí n + 1 ~6nsecutive events (earthquakes with magnitude ~M)~ applicatio~ 
of Eq-13 leads to the conclusion that the posterior probability function of 

v is also gamma, now with parameters p.+ nk' and ~ + t • The initial and 
n 

the posterior expected values of v are respectively equal t~ p/~, and to 
) 

(p.+ nk)/(~ + t ) ~ 
n 

When initial -uncertainty about v is small p and ~ will 

be relatively large and the initial and the posterior expected values of v 

will not differ greatly. On the other hand, if only statistical inform­

ation were deemed ~ignificant, p and ~ should be given very small values in 

the' initial distribution, and E(v), and hence >..(M), would be practica11y 

defined by n, k and t • This means that the initial estimates of geologists 
. . . n. 

should not only include expected or most probable values of the different 

parameters, but also statements about ranges of possible values and degrees · 

of confidence attached to·eaéh. 

.- -'" 

In the case studied above only a portian of the statistical information was .. • 

· used. In most cases, especially if seismic activity has been low. during 

the observation interval, significant information is provided by the dur-- . . 

.ations of -the intervals elapsed from the initiation of observations to the 

first of the n ~ 1 events considered and from the last of those events until 

the end-of the observation period. Here, application of Eq 13 leads to ex-
. ' . / 

pressions slightly more complicated than those obtained when only inform-

ation about t is used. . n 

The partic;ular case when the statistical record reports no events during time 

t 0 comes up frequently in practica! problems. Expressions applicable to · 

/ 
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that situation are pres_ented _in the apvendix.: Hete, consider their ap­

plication 'to one of the seismic gaps in Fig . 1 •. An initial set of assliDlp­

_tions and .corresponding probabilities was adopted as described in the fol-

' lowing. Froin previous studies referring to a11 the southern coast of Mexicp, 

local seismicity in the gap area (measured in terms-·-of A for M~ 6 •. 5) was 

represented by a garrnna. process with k= 2 •. An initial probability density 

,function for v was adopted in·súch a manner that the expected vaiueof 

>..(6.5) for the region coincided with its average throughout the_complete 

s_eismic province. Two values of p were considered: 2 and 1 O, which corres-

pond to coefficients .. of'variation of 0.71 and 0.32, respectively. The 

values in.Table 3.were ·abtained for the ratio of the final to the initial 

expected values of v, in terms of U
0

,, the ratio of the length of the observa­

tion interval to the initial expected value of the return perior, E(T). 

TABLE 3. BAYESIAN ESTIMATES OF SEISMICITY IN ONE SEISMIC GAP 

E11 (v)/E 1 (v) E11 (T 1 T ~ t ) 
1 1 o 

u = t /E(T) 
o o . ' ' 

p·= 2 p = 10 p = 2 p = .1 o 

o 1.0 '1.0 0.75 0.75 

0.1 0.95 0.99 0.76 0.74 

0.5 0.75 0.94 ·' 0.91 o. 71 
-
1 ' o. 58 . 0.87· 1.14 .. o. 73 

5 0.20 0.54 3 .1.1 .' LOS 

10 0.11 0.36 5.47 1.55 

20 0.06 o ~22 ' 10.50 2~48 

. The last · two cohnnns of the table contain the ratios of the <;omputed va~ues 

of E(T
1

) and E(T) wheilv istaken equal respectively to its initial orto its 
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1 
/ 

posterior expected value. This table shows, thát, for p = 10, that is, when 

uncertainty attached to the geologically based assumptions is lów, the, 

expected value of the time to next event keeps decreasing, in accordance 

with the conclusions of Ref 20. However, as time goes on and no events 

occur the statistical evidence leads to a reduction in the estimated risk, 

whích shows in the increased conditional expected values of T1 • Por p = 2 

the geo~ogical evidence is less significant and risk estimates decrease at 

a faster rate. 

Bayesian estimation of other parameters would run along the same lines. ·~. 

The most important problems emerging in practical applications·are related 

to the bayesian analysis of jointly distributed variables (21). 

7. CONCLUDING REMARKS · 

A common difficulty encountered in the solution of problems by interdisci­

plinary groups is the need to establish a clear formulation of the objec­

tives and_a framework that permits unified analysis of all viewpoints. In 

seismic risk evaluation different especialists have in their minds differ-

ent models of seismicity. However, the objetive must be the same: estimation 

of probabilities that given intensities are exceeded at a site in given time . 

intervals. AS suggested in this paper, those probabilities are estimated from 

stochastic process models of the generation of earthquakes in different seis­

mic sources. · Since neither present geophysical knowledge nor statistical data 

warrant adoption of a specific analytical modél, decisions are based on the 

. ~} 

J-
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consideration of a set of alternate hypotheses concerning that modél, and . 

·a probability distribution attached to that set. Establishment of 'this 

distribution can be done by application of bayesian statistical 'theory to 

thé prncessing of all relevant pieces of information. 

' 
The analytical models presented here serve 'only.to illustrate the possibi­

lities. More general_models should be st~died as they are suggested by 

_considerations about the physical processes involved (21). 
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APPENDIX ·1. PARTICULAR GAMMA PROB_ABILITY FUNCTIONS 

Explicit expressions for evaluation of sorne of the functions introduced in 

the text can be obtained in closed form when k is an integer. Sorne of 

these cases are studied here. The expressions obtained are used in the 

examples contained in the body of the paper. 

Pll.obabi,U,ty den6..Uy óunc..tion oó .T 1 • Substitution of Eq 7 into Eq 9 and in­

tegration by parts lead to-

. f (t) = 
T 

1 

whose expected value is 

1 
k 

k 
¿ 

m=1 
(vt)m-1 \) 

(m - 1)! 

E (T ) = k + 1 . E (T) 
1 2k 

- vt e (A1) 

(A2) 

Con~onal)mobabi,U,ty den6ily 6unc..tion6 oó T and T
1

• The denominator of 

the second member of Eq 10 can be obtained in closed form when k is an integer. 

In that case, 

k . (k :-n ! (k (u + u ) ) k -1 
. o 

k 1 
m~1 . (m - 1) ! (k u o )m-1 

f (uiT ~ t )" = 
T' o 

-k u 
e (A3) . 
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The corresponding conditional probability density function for T is 
' 1 . . . ' . - 1" 

where T
1 

. • 1 

-f . (ul T ~ t ) = 
.,.1 1 o 

(T 
1 

- t 
0 

) /E (T) • 

k-- k m~l (m ~· 1)! [ k(u+uo )]m-l 

k l: E 1 ( n=l llF'l n.al -(n _ 1)! k_u0 ). · 

-k u 
e (A4) 

1b~ conditional expectations of T and T
1 

can be obtained from weighting of 
' 

T and T
1 

with respect to the probability density functions of Eqs A3 and A4: 

E ( T 1 T ~ t } = (A - Bu ) /B 
o . o 

(AS) 

E(T
1
1T

1 
~ tó) = (A

1 
,- B

1 
u

0
)/B (A6) 

where 
r 

A= 
k + 1 1 . m -1 -k u 

mfl· (m"' 1)! (kuo) e 
0 (A7) · 

B - ~ 1 (k m-1 -ku 
- m=1 (m - 1)! uo) e o 

(AS)' 

/ 

1 k m+1 A = - ¿ ¿ m n -1 -k u 
·1 k m=1 neol k(n _ 1)! (kuJ e 

0 (A9) 

1 .k m 1' B = - ¿ ¿ . . n -1 · -k u 
1 k 'm=1 na1 (n- 1)! (kuo) e o (A 1 O) · -

_., 
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APPENDIX 2. BAY'ESIAN. ESTIMATION.O(v .WHEN. T1 ~-t0 

S4ppose thát. the: ;inÜial probability dehsity function·of v :m· a ·given areá 

is gannna with parameters p and lJ, and · thát no events have occurred· in the · 
\ . 

area _for t
0 

years. ~The probability of this·outcome given vis equal to the 

probability that T1 ~ t
0

• From integration of Eq A1 qne obtains, 

· P(T
1 
~ t 1 v, k) 

1 
=k 

k m ¿ ¿ 
mro1 n-1 

_1_' (vto )n -1 e -vto . 

·~ Application of Eq 13_in this case can be expressed as 

f"(vl T > t) = 
1 o 

f' (v) P(T1 ~ t 0 1 v, k) 

Jff'(v) P(T1 ~ t
0

l v, k) dv 

(A11) 

(A12) 

Here, f' and f" stand f?r the i?it1al and posterior probability density 

functions of v and f'(v) adopts the form of a gamma function with parameters 

p and lJ. After performing all·substitutions and integrations, the following 

is obtained: 

f" (v 1 T ~ t ) = K-
1 k m 

m~1 nfl Bn gn (v) (A13) 
l. o 

Here, 

k m 
K= l: E B (A14) m-1. n•l n 


































































































































































































































































































































































































































































































































































































































