# CAPÍTULO IV

EVALUACIÓN DE LA CALIDAD DEL AGUA DEL VASO DE LA PRESA VALLE DE BRAVO A PARTIR DE LAS CAMPAÑAS DE MUESTREO (PROYECTO PAPIIT 2010-2011)



### 4.1 El Proyecto PAPIIT y los Sitios de Muestreo

El Proyecto de investigación PAPIIT IN107710 "Monitoreo de la Calidad del Agua mediante el uso de la Percepción Remota", es un proyecto que contribuirá a generar una metodología para el monitoreo de la calidad del agua, a través de la obtención de modelos matemáticos que correlacionan mediciones de radiancia y datos de campo, dicha metodología será probada a través de un caso estudio, la presa Valle de Bravo.

Como parte del proyecto de investigación, se llevó a cabo un análisis digital de imágenes para establecer los sitios de muestreo. Se ubicaron 50 sitios de muestreo considerando que para la correlación había que resolver las siguientes problemáticas:

- ♣ Las imágenes Landsat 7 presentan un bandeado a partir del 31 de mayo de 2003, debido a que se desactivó un dispositivo llamado SLC (Scan Line Corrector) del sensor ETM+. Este dispositivo tenía la función de compensar el escaneado durante el movimiento orbital de la plataforma Landsat. Al resultar una falla mecánica irreversible, las imágenes a partir de esa fecha presentan zonas sin información, por lo que se pierde aproximadamente el 23% de los datos. Para este estudio esta situación no afecta de forma importante, ya que se seleccionarán sitios de muestreo en áreas en donde no se encuentre el bandeado, por lo que el 100% de los datos se procesarán.
- ♣ Estadísticamente, es más fácil correlacionar datos, además de tener un margen de error relativamente bajo, si se comparan una mayor cantidad de puntos.

Así mismo, estos puntos de muestreo se distribuyen a través de toda la cuenca, ya que el embalse al ser un cuerpo de agua de tamaño considerable, tiene una distribución heterogénea de calidades del agua. Dependiendo de la localización del sitio de muestreo, se esperan obtener diferentes valores para los parámetros en estudio, ya que el proceso de dilución no puede llegar a generar una mezcla homogénea con respecto a la calidad del agua. Existen factores como la cercanía al embarcadero, la desembocadura de ríos y arroyos, la cercanía a las zonas urbanas que modificarán los valores de los parámetros.

#### LOS SITIOS DE MUESTREO. LAS COORDENADAS GEOGRÁFICAS

Con base en el análisis digital de las imágenes, se obtuvieron las coordenadas de los sitios de muestreo del embalse, las cuales se presentan en la tabla 4.1. Se muestran a continuación las coordenadas en las cuales se realizó el muestreo dentro del embalse:

| Estación | Coordenadas                        |
|----------|------------------------------------|
| 1        | 19° 11 ′13 ′′N - 100° 08 ′07 ′′ W  |
| 2        | 19° 11 ′01 ′′N - 100° 08 ′11′′ W   |
| 3        | 19° 10 ′41 ′′N - 100° 07 ′58 ′′ W  |
| 4        | 19° 10 ′45 ′′N - 100° 08 ′13 ′′ W  |
| 5        | 19° 10 '51 ''N - 100° 08 '49 '' W  |
| 6        | 19° 10 ′30 ″N - 100° 09 ′37 ″ W    |
| 7        | 19° 10 ′35 ′′N - 100° 09 ′45 ′′ W  |
| 8        | 19° 10 ′47 ′′N - 100° 09 ′29 ′′ W  |
| 9        | 19° 10 ′58 ″N - 100° 09 ′02 ″ W    |
| 10       | 19° 11 ′03 ′′N - 100° 09 ′23 ′′ W  |
| 11       | 19° 11 ′11 ′′N  - 100° 09 ′41 ′′ W |
| 12       | 19° 11 ′33 ′′N - 100° 10 ′03 ′′ W  |
| 13       | 19° 11 ′50 ′′N - 100° 10 ′01 ′′ W  |
| 14       | 19° 11 ′42 ′′N - 100° 09 ′44 ′′ W  |
| 15       | 19° 11 ′27 ′′N - 100° 09 ′37 ′′ W  |
| 16       | 19° 11 ′35 ′′N - 100° 09 ′23 ′′ W  |
| 17       | 19° 11 ′40 ′′N - 100° 09 ′04 ′′ W  |
| 18       | 19° 11 ′22 ′′N - 100° 08 ′56 ′′ W  |
| 19       | 19° 11 ′33 ′′N - 100° 08 ′47 ′′ W  |
| 20       | 19° 11 ′34 ′′N - 100° 08 ′23 ′′ W  |
| 21       | 19° 11 ′49 ′′N - 100° 08 ′43 ′′ W  |
| 22       | 19° 11 ′53 ′′N - 100° 09 ′07 ′′ W  |
| 23       | 19° 11 ′53 ′′N - 100° 09 ′11 ′′ W  |
| 24       | 19° 12 ′13 ′′N - 100° 09 ′05 ′′ W  |
| 25       | 19° 12 ′03 ′′N - 100° 09 ′27 ′′ W  |

| Coordenadas                       |
|-----------------------------------|
| 19° 11 ′57 ′′N - 100° 09 ′35 ′′ W |
| 19° 12 ′14 ′′N - 100° 09 ′45 ′′ W |
| 19° 12 ′08 ′′N - 100° 09 ′53 ′′ W |
| 19° 12 ′06 ′′N - 100° 10 ′13 ′′ W |
| 19° 12 ′20 ′′N - 100° 10 ′08 ′′ W |
| 19° 12 ′18 ′′N - 100° 10 ′27 ′′ W |
| 19° 12 ′36 ′′N - 100° 10 ′27 ′′ W |
| 19° 12 ′35 ′′N - 100° 10 ′07′′ W  |
| 19° 12 ′44 ′′N - 100° 10′ 02 ′′ W |
| 19° 12 ′35 ′′N - 100° 09 ′46 ′′ W |
| 19° 12 ′29 ′′N - 100° 09 ′34 ′′ W |
| 19° 12 ′43 ″N - 100° 09 ′26 ″ W   |
| 19° 12 ′45 ′′N - 100° 09 ′08 ′′ W |
| 19° 13 ′11 ′′N - 100° 09 ′04 ′′ W |
| 19° 13 ′02 ′′N - 100° 08 ′45 ′′ W |
| 19° 13 ′13 ′′N - 100° 08 ′31 ′′ W |
| 19° 13 ′06 ′′N - 100° 08 ′26 ′′ W |
| 19° 12 ′55 ′′N - 100° 08 ′39 ′′ W |
| 19° 12 ′39 ′′N - 100° 08 ′32 ′′ W |
| 19° 12 ′42 ′′N - 100° 08 ′50 ′′ W |
| 19° 12 ′25 ′′N - 100° 08 ′33 ′′ W |
| 19° 12 ′30 ′′N - 100° 09 ′04 ′′ W |
| 19° 11 ′19 ′′N - 100° 08 ′28 ′′ W |
| 19° 11 ′04 ′′N - 100° 08 ′37 ′′ W |
| 19° 11 ′13 ′′N - 100° 08 ′07 ′′ W |
|                                   |

Tabla 4.1: Coordenadas y ubicación en sitio de los puntos de muestreo

#### UBICACIÓN EN MAPA DE LOS SITIOS DE MUESTREO

Se muestra en la figura 4.1 los puntos seleccionados en el mapa de la región del embalse de la Cuenca de Valle de Bravo.

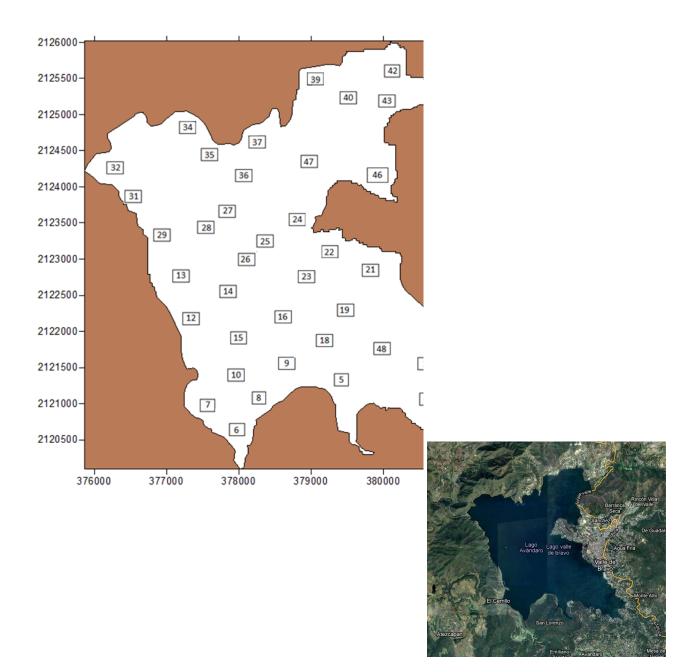



Figura 4.1: Ubicación en sitio de los puntos de muestreo con el mapa de imagen satelital obtenida a través de Google

Maps, con fines comparativos)

# 4.2 Trabajos de Campo y Laboratorio

#### LA REALIZACIÓN DEL MUESTREO

Se llevaron a cabo tres campañas de muestreo en el embalse de la Presa de Valle de Bravo, dos durante el 2010 (24 y 25 de abril, y 2 y 3 de octubre de 2010) y una durante 2011 (26 y 27 de marzo). Para ello, se verificaron las fechas en las cuáles el Satélite LANDSAT cubriera la escena del área del embalse, con el fin de obtener las imágenes correspondientes al momento del muestreo realizado por el equipo del proyecto PAPIIT.

Algunos aspectos que se consideraron en la planeación de los trabajos de campo se presentan a continuación:

- ♣ Verificación de las condiciones meteorológicas, especialmente en cuanto a nubosidad. La nubosidad podría presentar problemas al realizar los análisis, ya que generaría que la imagen no fuera clara, se podrían crear problemas con los resultados obtenidos por los sensores de la plataforma, o bien podría haberse ocultado tras la nubosidad completamente el embalse, todo ello haciendo inservible el muestreo en dicha fecha.
- ♣ Selección de la época para el muestreo, considerando la variabilidad de la calidad del agua del vaso de la presa. Es por ello que se decidió por parte del equipo de trabajo que la toma de muestras se realizara antes de comenzar la época de lluvias, es decir en la época de estiaje, así como inmediatamente después del periodo de lluvias.

El trabajo de la toma de las muestras implicó acudir al sitio para realizar la toma física de las muestras, para su posterior análisis físico – químico, como se describirá en las siguientes secciones.

#### FL PROCEDIMIENTO DE TOMA DE MUESTRAS Y SU CONSERVACIÓN

Dentro del embalse, y con la ayuda de una pequeña lancha, se acudió a los sitios de muestreo localizados en las coordenadas geográficas anteriormente mencionadas. Para localizar los puntos geográficos o las coordenadas al estar en el embalse, se utilizó GPS y una brújula como medio de referencia, indicándose en cada momento la ubicación exacta del equipo de trabajo.

El equipo de trabajo indicaba a la persona encargada del manejo del vehículo acuático la dirección a seguir, y así mismo al llegar al sitio, indicando a la lancha detenerse, se realizaba la toma de las muestras.

Usando botellas de PET previamente lavadas y esterilizadas, con capacidades entre 500 mililitros y litro y medio, se recolectaban las muestras del agua en el sitio o punto previamente especificado. Así mismo, con ayuda del medidor Multiparamétrico HANNA, medían algunos parámetros que se detallarán en el siguiente apartado.

Finalmente, las muestras eran guardadas y conservadas en un contenedor aislante con suficiente hielo, con el fin de preservar las muestras.



Figura 4.2 La conservación de las muestras a baja temperatura y en botellas estériles evite en parte la proliferación de organismos y la contaminación o alteración de las muestras.

#### PARÁMETROS DETERMINADOS EN SITIO

### El Medidor Multiparamétrico Hanna

El medidor Multiparamétrico HANNA es un dispositivo o sonda de medición capaz de determinar en sitio parámetros diversos relativos a la calidad del agua. El dispositivo tiene la posibilidad de realizar la lectura de los diferentes parámetros en un solo muestreo o en una sola prueba.

El dispositivo está compuesto por una parte que es la computadora de medición y una sonda, la cual cuenta a su vez con tres sensores. dispositivo es fácil de usar, ya que se conecta la sonda a la computadora, se sumerge en el agua, y la computadora los datos. los registra cuáles posteriormente son exportados cualquier computadora. Es de vital importancia que al terminar cualquier muestreo la sonda se limpie con agua limpia, de preferencia agua destilada.



Figura 4.3 El medidor Multiparamétrico HANNA es un útil dispositivo muy útil al evaluar la calidad del agua, ya que determina diferentes parámetros en un solo muestreo. Fuente: Testmark, Instrumentación para Medición y Control

El dispositivo tiene la capacidad de determinar en sitio parámetros que se utilizan en la evaluación de la calidad del agua para el proyecto y en el modelo a desarrollar, como son:

- ♣ Temperatura (° C)
- **₽** ₩
- % de saturación de Oxígeno y su concentración (% y ppm o mg/l)
- $\clubsuit$  Conductividad eléctrica y Resistencia  $\mu$ S , mS o sus equivalentes, y en  $\mu\Omega$   $\circ$  cm o m $\Omega$   $\circ$  cm)
- ♣ Sólidos Disueltos Totales (TDS) (ppm)
- Salinidad (ppm)

#### El Disco de Secchi

Al propagarse la luz en un medio acuoso se extingue por fenómenos de absorción y dispersión. Si se considera además que las sustancias disueltas y las partículas en suspensión magnifican dicho fenómeno, se tiene que al aumentar la profundidad del agua, la región se convierte en una zona más oscura.

El disco de Secchi es un círculo de 20 cm de diámetro, dividido en cuadrantes pintados alternadamente de negro y blanco, atado a una cuerda o cadena graduada. Para la determinación y evaluación de este parámetro se sumergió el disco del lado sombreado, estando la lancha o embarcación en el punto de la coordenada geográfica determinada, registrando la profundidad hasta la cual el disco dejó de ser visible. Ello representa una medida de la claridad o transparencia del agua.

El problema que presenta el disco de Secchi es que puede existir una diferencia pequeña en las lecturas tomadas dependiendo de la persona que determine el punto hasta el cual es visible el disco.



Figura 4.4 El Disco de Secchi. Fuente: Equipo de trabajo PAPIIT

## PARÁMETROS DETERMINADOS POSTERIORES AL MUESTREO Y EN LABORATORIO

Los análisis que se realizaron inmediatamente después del muestreo en las instalaciones del hotel durante la noche, involucran la utilización del espectrofotómetro y de material diverso en laboratorio. Para las pruebas del laboratorio, las muestras se conservaron al añadir más hielo sobre los PET´s conteniendo las muestras.

Cabe aclarar que los parámetros DBO, coliformes fecales y totales, nitrógeno amoniacal, nitratos y fosfatos medidos después del muestreo, solo se determinaron para seis sitios de muestreo, ya que tanto el tiempo que tarda la determinación de algunos de ellos, como el costo de los reactivos, hacen inviable para el proyecto realizar dichas pruebas para cada uno de los cincuenta puntos del muestreo.

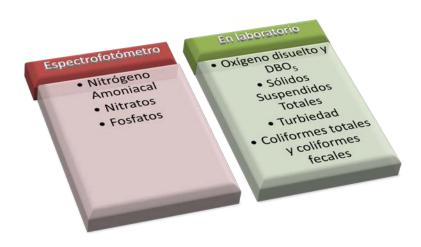



Figura 4.5 Diferentes parámetros determinados a través del espectrofotómetro y con las pruebas de laboratorio.

### El Espectrofotómetro

Un espectrofotómetro es un instrumento que tiene la capacidad de manejar un haz de Radiación Electromagnética, separándolo con el fin de facilitar la identificación, calificación y cuantificación de su energía.

El espectrofotómetro tiene la capacidad de proyectar un haz de luz monocromática (de una longitud de onda particular) a través de una muestra y medir la cantidad de luz que es absorbida por dicha muestra.



Figura 4.6 El Espectrofotómetro HACH DR 2800. Fuente: Manual del producto HACH LANGE

El espectrofotómetro utilizado para la realización de las pruebas es el modelo HACH DR 2800. Dicho dispositivo utiliza reactivos, los cuales se encuentran exactamente predosificados, y gracias a que su manejo resulta muy sencillo, facilita que los resultados sean altamente fiables.

Para la medición de los parámetros, se utilizan para cada prueba dos cubetas, que son dos contenedores pequeños o frascos, en donde uno cuenta con agua completamente purificada y desionizada, y la otra con agua de la muestra a analizar. El recipiente que se encuentra con el agua limpia, usualmente denominado "blanco", servirá para el espectrofotómetro como referencia para la calibración del haz de luz monocromático.

El espectrofotómetro, al estar previamente programado para llevar a cabo todo el procedimiento, llama a la curva de calibrado automáticamente y muestra el resultado de medición en mg/l.

A través del espectrofotómetro se logró, tras solo unas horas de haber realizado el muestreo en el embalse de la presa, determinar los parámetros como el nitrógeno amoniacal, los nitratos y los fosfatos, a través de la mezcla con los diferentes reactivos incluidos en el mismo dispositivo HACH DR 2800.

#### El Laboratorio

La Determinación de Sólidos Suspendidos Totales

Los Sólidos Suspendidos Totales involucran la concentración de partículas que son retenidas en un medio filtrante, con un diámetro de poro de 1.5 micrómetros.

Para la determinación de los Sólidos Suspendidos Totales, se empleó el siguiente instrumental:

- Crisoles Gooch
- Balanza analítica
- Un desecador
- Filtros (filtros de micro fibra de vidrio)
- Bomba de vacío
- Matraz para filtrado al vacío
- Estufa

El procedimiento se describe a continuación:



Figura 4.7 Procedimiento a grandes rasgos para la determinación de los Sólidos Suspendidos Totales.

Así mismo, se muestran algunos de los instrumentos y procedimientos utilizados en el laboratorio para la determinación de dichos parámetros:



Figura 4.8 Crisoles Gooch. Fuente: Laboratorio de Tratamiento de Aguas Residuales, FI UNAM.



Figura 4.9 El desecador con los crisoles. Fuente: Laboratorio de Tratamiento de Aguas Residuales, FI UNAM.



Figura 4.10 La Báscula analítica. Fuente: Laboratorio de Tratamiento de Aguas Residuales, FI UNAM.



Figura 4.11 El secado de los crisoles Gooch para mantener a peso constante y para determinación de SST. Fuente: Laboratorio de Tratamiento de Aguas Residuales, FI UNAM.

Finalmente, se realiza el cálculo de este parámetro mediante la fórmula siguiente:

$$S.S.T. \Big(\frac{mg}{l}\Big) = \frac{Peso\ del\ crisol\ despu\'es\ del\ filtrado - Peso\ del\ crisol\ a\ peso\ constante}{Vol\'umen\ de\ la\ muestra}$$

#### La Determinación de la Turbiedad

La turbiedad o turbidez es la reducción de la transparencia de un líquido causada por la presencia de materia sin disolver. La técnica diseñada para determinar la turbiedad es una técnica analítica basada en la dispersión de la

luz por partículas en suspensión en el seno de una disolución, la cual mide la disminución de la transmitancia del haz de luz al atravesar la muestra. En el laboratorio, la turbiedad se mide mediante las Unidades de Turbidez Nefelométricas (UTN).

El instrumento utilizado es un turbidímetro HACH 2100 A, el cual a través de varios rangos de turbidez en las unidades Nefelométricas, compara la muestra con cuatro patrones previamente



Figura 4.12 Turbidímetro nefelométrico HACH 2100 A utilizado en el laboratorio de TAR, FI UNAM.

seleccionados por la persona que analiza dicha muestra, con el fin de que se realice una calibración adecuada del instrumental.

En la figura 4.13 se muestra el principio del funcionamiento del Turbidímetro:

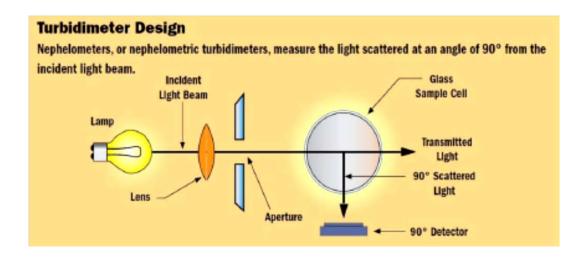



Figura 4.13 Principio del funcionamiento del Turbidímetro nefelométrico utilizado en el laboratorio de Ingeniería Ambiental, FI UNAM. Fuente: Metas & Metrólogos Asociados, Medición de la Turbidez en la Calidad del Agua.



Figura 4.14 Patrones con los que se compara la turbidez del agua de muestra, para realizar la calibración del turbidímetro nefelométrico en el laboratorio de TAR, FI UNAM. Fuente: Metas & Metrólogos Asociados, Medición de la Turbidez en la Calidad del Agua.

En la determinación de este parámetro se procede a realizar la comparación de los patrones con el agua de las diferentes muestras, para determinar el ámbito en el cual los valores UTN se encontrarán posiblemente.

Se calibra hasta el cero mecánico el dispositivo y una vez calibrado se procede a introducir el tubo o contenedor con el agua de la muestra a analizar, se tapa cuidadosamente y se lee los valores en la pantalla de las UTN´s.

Para la determinación de este parámetro se debe de cuidar la limpieza de los tubos utilizando una tela especial. Se debe tener en cuenta que la limpieza del aparato en su interior y el cuidado para evitar la caída de objetos o líquidos a la zona oscura o zona de medición es de extrema importancia.

#### La Determinación del Oxígeno Disuelto y la Dbo<sub>5</sub>

La  $DBO_5$  se determina a través de la determinación del oxígeno disuelto el primer día en que se toman las muestras, y el oxígeno disponible después de 5 días de incubación de las muestras, a  $20^{\circ}$  C.

Para la realización de esta prueba, se realizan diluciones del agua de muestra al 5% y al 10%, para lo cual se agregan los reactivos con el procedimiento que se ilustra en la figura 4.15:

Elaboración de la mezcla al 2.5% y al 5%:

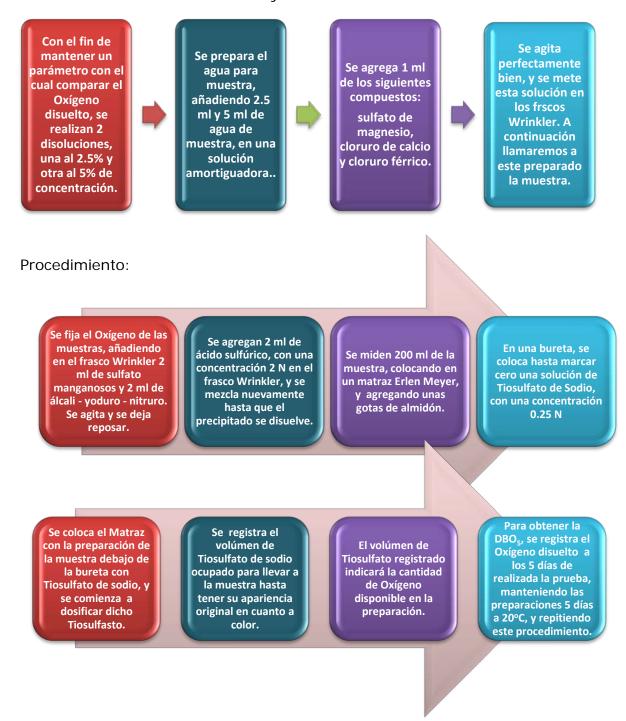



Figura 4.15 Procedimiento para determinar la DBO $_5$  de una muestra. Fuente: Manual de Prácticas de Laboratorio FI, Vázquez, UNAM.

La Determinación de los Coliformes Totales y los Coliformes Fecales

La determinación de coliformes totales y fecales se realizó empleando el método de filtros de membrana.

El método debe de seguirse con gran cuidado, ya que la contaminación del agua a través de diferentes patógenos y microorganismos presentes en el momento de realizar los análisis, pudieran alterar el resultado de las muestras.

Cabe mencionar que el material de laboratorio debe estar previamente esterilizado, y en todo momento se utilizan en la zona de trabajo donde se realizan las preparaciones dos mecheros bunsen, con el fin de disminuir los riesgos de contaminación y evitar la contaminación de las muestras con algún agente presente en el medio ambiente.

El procedimiento para realizar el conteo de los coliformes es el siguiente:

- Se coloca un soporte universal, y con mucho cuidado se coloca con las pinzas un filtro.
- ♣ Se pasan 100 ml de la muestra a través del filtro, con ayuda de una bomba de vacío conectada a un matraz en la parte inferior, y un matraz invertido en la parte superior.





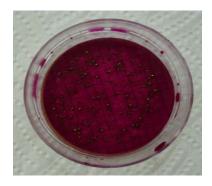

Figura 4.16 (arriba) Zona de trabajo, con los dos mecheros bunsen y el matraz de vacío para ayudar al filtrado de las muestras. Fuente: Laboratorio de Ingeniería Ambiental, FI UNAM.

Figura 4.17 (izquierda) Proceso de filtrado de 100 ,I de agua de muestra con el fin de adaptar el filtro al medio de cultivo. Fuente: Laboratorio de Ingeniería Ambiental, FI UNAM.



Figura 4.18 La determinación de coliformes totales o coliformes fecales dependerá del medio de cultivo utilizado en el desarrollo de la prueba, ya sea el medio ENDO o el MFC. Los coliformes son una señal del nivel de contaminación por microorganismos presentes en el cuerpo de agua, en este caso el vaso de la Presa de Valle de Bravo. Fuente: Laboratorio de Ingeniería Ambiental, FI UNAM.

- ♣ En una caja de Petri se prepara, sobre un cojín absorbente, el medio de cultivo; se utiliza el medio de cultivo ENDO para coliformes totales, y el medio de cultivo MFC para coliformes fecales. Los medios de cultivo, en realidad son una mezcla previa de compuestos diversos, como azul de anilina, lactosa, algunas proteínas y sales.
- ♣ El filtro se retira y se coloca sobre un papel cuadriculado previamente colocado en el medio de cultivo de la caja de Petri. Se cierran las cajas de Petri.
- ♣ Se colocan las cajas de Petri en una incubadora a 35°C, durante un periodo de 24 horas.
- Finalmente, se retiran de la incubación las cajas de Petri, y se procede a realizar el conteo de los coliformes, ya sea totales o fecales, indicado ello por el medio de cultivo.



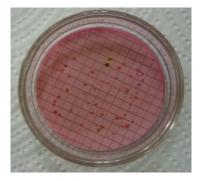



Figura 4.19 El medio de cultivo MFC para coliformes fecales, se muestra en la fotografía izquierda, mientras que el ENDO se ilustra en la fotografía derecha. Fuente: Laboratorio de Ingeniería Ambiental, FI UNAM.

# 4.3 Procesamiento y Análisis de la Información

#### LAS CAMPAÑAS DE MUESTREO

Las campañas de muestreo llevadas a cabo se realizaron con el poder conocer la variabilidad en la calidad del agua en el Vaso de la Presa de Valle de Bravo durante la época de estiaje, la finalización de la temporada de lluvias y nuevamente la época de estiaje.

| Época del año de realización del muestreo | Fecha              |  |  |  |  |  |
|-------------------------------------------|--------------------|--|--|--|--|--|
| Estiaje                                   | 24 / abril / 2010  |  |  |  |  |  |
| Fin de época de Iluvias                   | 02 / octubre /2010 |  |  |  |  |  |
| Estiaje                                   | 26 / marzo /2011   |  |  |  |  |  |

Tabla 4.2 Temporadas de realización de los muestreos en el vaso de la presa de Valle de Bravo. Fuente: Equipo de Evaluación del Proyecto PAPIIT.

La calidad del agua se determinó a través de los diferentes parámetros mencionados en los apartados anteriores, cada uno de ellos importantes para evaluar el grado trófico del embalse, la evolución de la calidad del agua con respecto al tiempo, las zonas donde se presenta un mayor riesgo debido a la contaminación del agua, que tan aceptable resulta el agua para los diversos usos, que riesgos involucra el uso del agua a la salud, e incluso determinar algunas soluciones sencillas para mitigar los riesgos debidos a la contaminación del embalse.

Finalmente, la evaluación de la calidad del agua se integra a través de lo que se conoce como el Índice de Calidad del Agua, la cual comprende a todos los parámetros determinados en el muestreo.

#### EL CONCEPTO DEL ICA

El Índice de Calidad del Agua (ICA por sus siglas) indica el grado de contaminación del agua determinada en la fecha de realización del muestreo.

El ICA está expresado como porcentaje del agua pura, es decir el agua altamente contaminada tendrá un ICA cercano o igual a cero por ciento, en tanto que en el agua en excelentes condiciones el valor del índice será cercano a 100%.

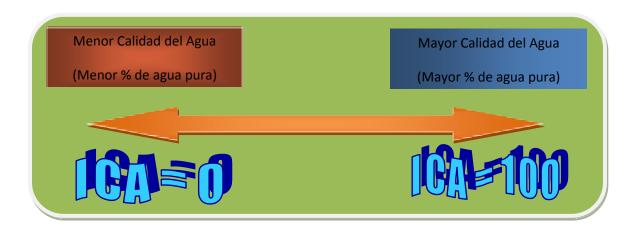



Figura 4.20 Representación gráfica de las escalas de la calidad del agua en el ICA.

El ICA fue desarrollado de acuerdo con los siguientes rubros:

- Crear una escala sencilla, con el fin de entender fácilmente a través de una escala numérica, en un rango del cero al cien, la calidad del agua.
- ♣ Se crea una calificación de acuerdo con los diferentes usos del agua, en rangos de no contaminado hasta altamente contaminado.

En la tabla 4.3 se muestran las recomendaciones para los usos del agua, con respecto a la escala numérica del ICA.

|              | ICA                      |                                      |                                        |                                              |                                   |             |                                    |
|--------------|--------------------------|--------------------------------------|----------------------------------------|----------------------------------------------|-----------------------------------|-------------|------------------------------------|
| Valor<br>(%) | Criterio<br>General      | Abastecimiento<br>Público            | Recreacion<br>General                  | Pesca y<br>Vida<br>Acuatica                  | Industrial y<br>Agricola          | Navegacion  | Transporte<br>Desechos<br>Trataods |
| 100          | No<br>contaminado        | No requiere<br>purificación          |                                        |                                              | No requiere purificacion          |             | Aceptable                          |
| 90           |                          | Ligera<br>purificación               | Aceptable<br>para cualquier<br>deporte | Aceptable<br>para todos<br>los<br>organismos | Ligera<br>purificacion            |             |                                    |
| 80           | Aceptable                |                                      | acuatico                               |                                              |                                   |             |                                    |
| 70           | Poco                     | Mayor<br>necesidad de<br>tratamiento | Aceptable<br>pero no                   | Excepto<br>especies<br>muy<br>sensibles      | Sin<br>tratamiento                | Aceptable   |                                    |
| 60           | contaminado              |                                      | recomendable                           | Dudoso<br>para<br>especies<br>sensibles      | para la<br>industria              |             |                                    |
| 50           | Contaminado              | Dudoso                               | Dudoso para<br>el contacto<br>directo  | Solo<br>Organismos                           | Con<br>tratamiento<br>en la mayor |             |                                    |
| 40           | Containing               |                                      | Sin contacto<br>con el agua            | muy<br>resistentes                           | parte de la<br>industria          |             |                                    |
| 30           |                          | Inaceptable                          | Uso muy<br>restringido                 |                                              | Uso muy<br>restringido            | Restringido |                                    |
| 20           | Altamente<br>Contaminado | ltamente                             |                                        | Inaceptable                                  |                                   |             |                                    |
| 10           |                          |                                      | Inaceptable                            |                                              | Inaceptable                       | Inaceptable | Inaceptable                        |

Tabla 4.3 Calificación del ICA y usos del agua. Fuente: Centro de Investigaciones en Geografía e Informática, CONACYT:

- ♣ Se involucró en la escala de calificación, para cada uno de los parámetros indicadores de la calidad del agua, una correlación con su respectiva influencia en el grado de contaminación.
- ♣ Se formuló el modelo matemático, para lo cual se convierten los datos físicos en correspondientes índices de calidad por parámetro (I<sub>i</sub>). Debido a que ciertos parámetros son más significativos que otros en su influencia en la calidad del agua, este hecho se modeló introduciendo pesos o factores de ponderación (W<sub>i</sub>) según su orden de importancia respectivo.
- ♣ Finalmente, los índices por parámetro son promediados a fin de obtener el ICA de la muestra de agua.

| Parámetro                                                  | Peso (Wi) | Parámetro                                     | Peso (Wi) |
|------------------------------------------------------------|-----------|-----------------------------------------------|-----------|
| Demanda Bioquímica<br>de Oxígeno (DBO)                     | 5.0       | Nitrógeno en nitratos<br>(NO <sub>3</sub> -1) | 2.0       |
| Oxígeno disuelto                                           | 5.0       | Alcalinidad                                   | 1.0       |
| Coliformes fecales                                         | 4.0       | Color                                         | 1.0       |
| Coliformes totales                                         | 3.0       | Dureza total                                  | 1.0       |
| Sustancias activas al<br>azul de metileno<br>(Detergentes) | 3.0       | Potencial de Hidrógeno<br>(pH)                | 1.0       |
| Conductividad<br>eléctrica                                 | 2.0       | Sólidos suspendidos                           | 1.0       |
| Fosfatos totales (PO <sub>4</sub> -3)                      | 2.0       | Cloruros (Cl-1)                               | 0.5       |
| Grasas y aceites                                           | 2.0       | Sólidos disueltos                             | 0.5       |
| Nitrógeno amoniacal<br>(NH <sub>3</sub> )                  | 2.0       | Turbiedad                                     | 0.5       |

Tabla 4.4 Ponderación de los parámetros del ICA para su promedio en el modelo matemático.

Fuente: SEMARNAT.

La fórmula matemática o el modelo matemático para determinar numéricamente la Calidad del Agua a través de su índice, puede determinarse con la siguiente fórmula:

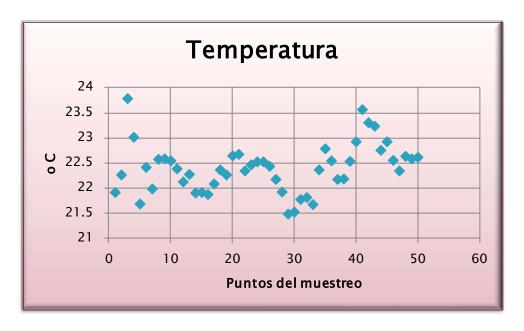
$$ICA = \frac{\sum_{i=1}^{n} I_i W_i}{\sum_{i=1}^{n} W_i}$$

El subíndice "i" identifica a cada uno de los 18 parámetros antes presentados, por lo que i = 1, 2, ..., 18, por lo que si se evalúa la calidad del agua con todos los parámetros mencionados, se tendría que n = 18.

De no existir la información de todos y cada uno de los parámetros mencionados para la determinación de la calidad del agua en el ICA, se procede a modificar los valores de n en la fórmula, como se realiza en esta evaluación, con el fin de ajustar los parámetros determinados y sus respectivos resultados a nuestro estudio.

# PRESENTACIÓN DE LOS RESULTADOS OBTENIDOS DURANTE LAS CAMPAÑAS DE MUESTREO

Para realizar el procesamiento y el análisis de la información, se registraron los valores de los parámetros que se han mencionado con anterioridad, se concentraron los valores en tablas, y se grafican a través de isolíneas o curvas de isovalores, con el fin de mostrar visualmente los diferentes valores para los diferentes sitios de muestreo del vaso de la Presa de Valle de Bravo.


Así mismo, para los parámetros obtenidos, se procedió a realizar el cálculo del ICA, e igualmente se grafican los resultados obtenidos en las tres campañas de muestreo.

En los siguientes apartados se realiza la comparativa para las tres campañas de muestreo.



Figura 4.21 Realización de las campañas de muestreo en el vaso de la Presa de Valle de Bravo por parte del equipo de estudio del Proyecto PAPIIT. Fuente: Equipo PAPIIT.

# 1º Campaña de Muestreo



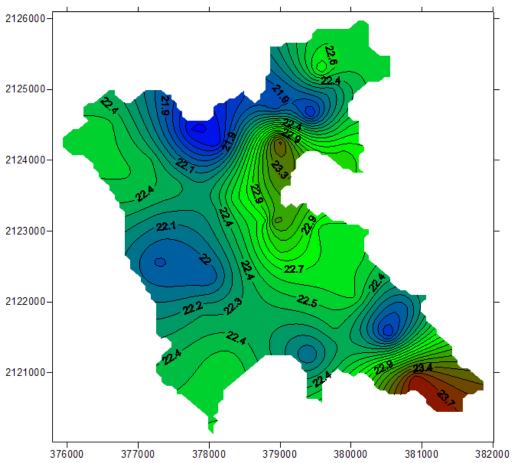
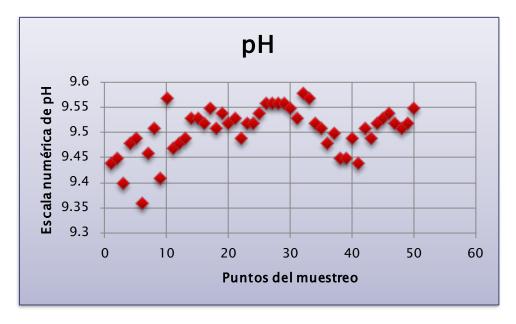




Figura 4.22 Primera Campaña de Muestreo. Temperatura



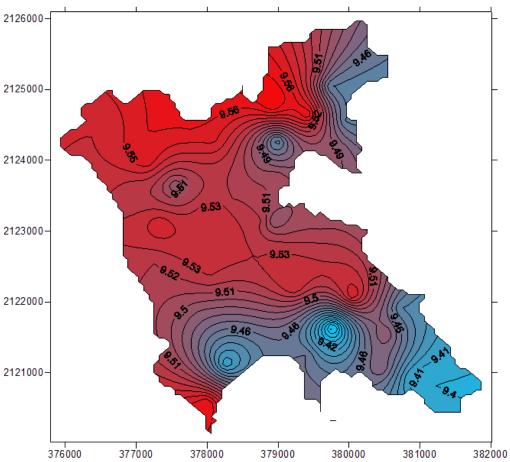
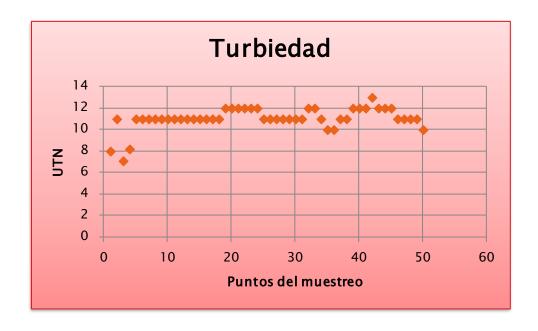




Figura 4.23 Primera Campaña de Muestreo. pH



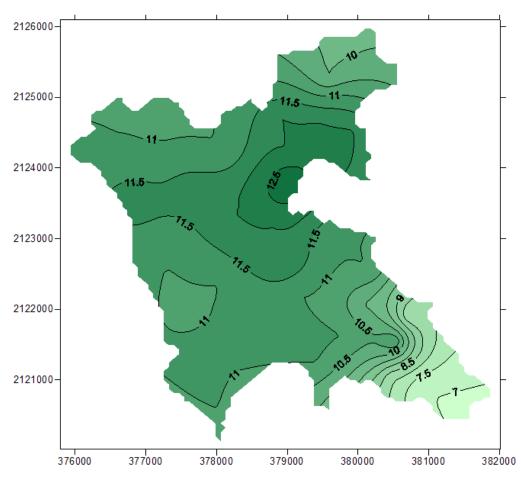



Figura 4.24 Primera Campaña de Muestreo. Turbiedad



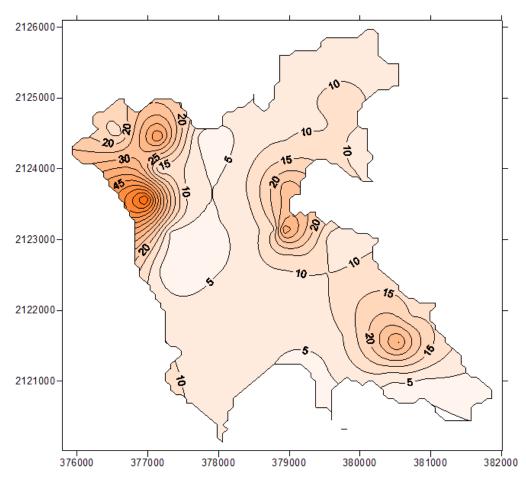
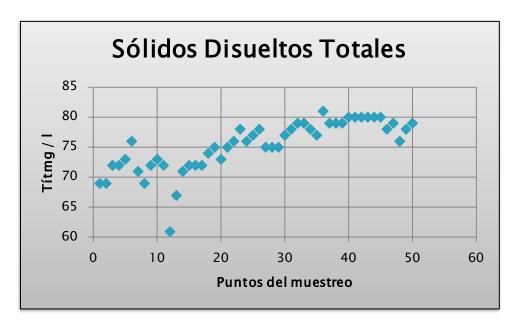




Figura 4.25 Primera Campaña de Muestreo. SST



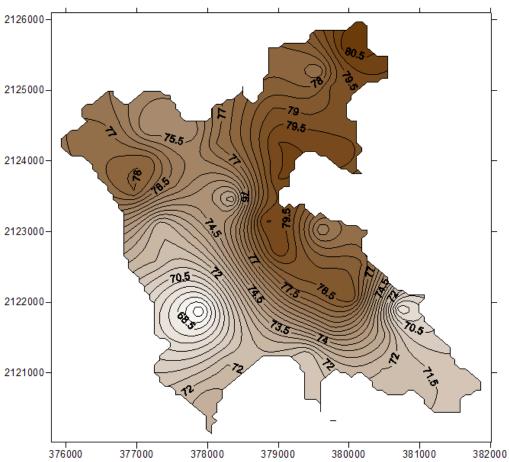
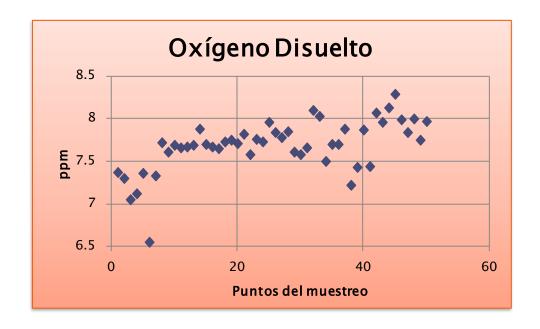




Figura 4.26 Primera Campaña de Muestreo. SDT



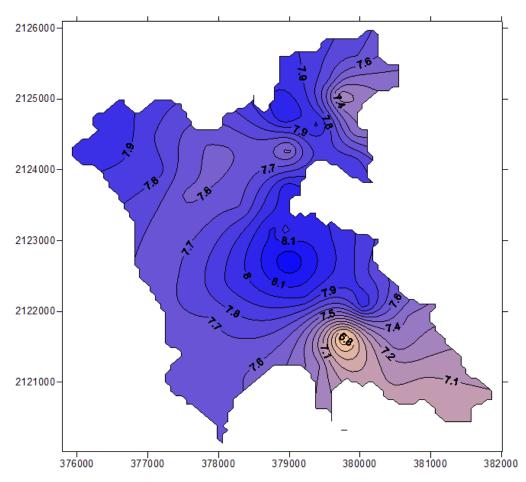
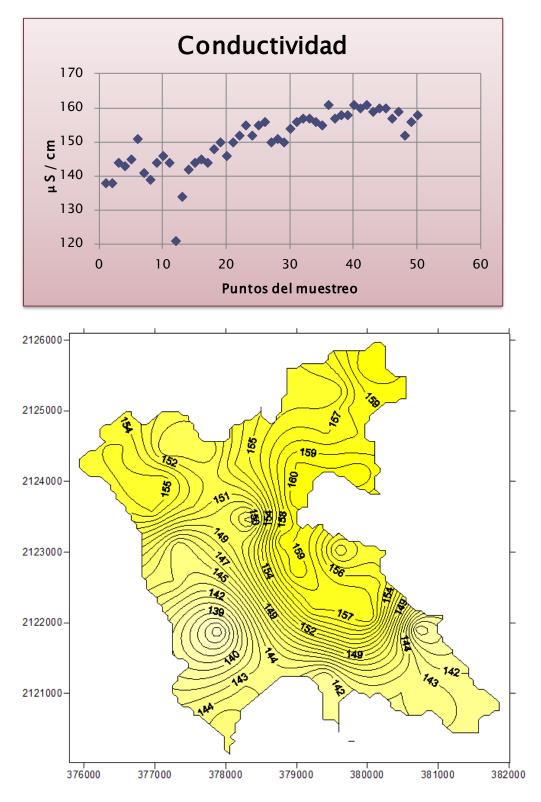
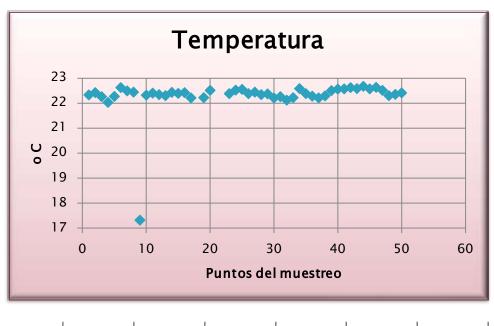



Figura 4.27 Primera Campaña de Muestreo. O2 disuelto





Figura 4.28 Primera Campaña de Muestreo. Conductividad

# CAPÍTULO IV: EVALUACIÓN DE LA CALIDAD DEL AGUA DEL VASO DE LA PRESA DE VALLE DE BRAVO A PARTIR DE LAS CAMPAÑAS DE MUESTREO (PROYECTO PAPIIT 2010 - 2011)

|          | Temp  |              |                  |       |              |       |         |             |               |           |            | Disco         |               |               |
|----------|-------|--------------|------------------|-------|--------------|-------|---------|-------------|---------------|-----------|------------|---------------|---------------|---------------|
| Estación | (ºC)  | рН           | ORP              | OD %  | OD ppm       | μS/cm | μS/cm A | MOhm·c<br>m | TDS<br>(mg/l) | Salinidad | P mbar     | secchi<br>(m) | Turb<br>(NTU) | SST<br>(mg/l) |
| 1        | 21.92 | 9.44         | -564.3           | 103.7 | 7.37         | 138   | 130     | 0.0073      | 69            | 0.06      | 827.1      | 1             | 8             | 14.9          |
| 2        | 22.27 | 9.45         | -580.6           | 103.4 | 7.3          | 138   | 131     | 0.0073      | 69            | 0.06      | 827.9      | 1             | 11            | 9.2           |
| 3        | 23.79 | 9.4          | -572.9           | 102.8 | 7.05         | 144   | 141     | 0.0069      | 72            | 0.07      | 828.1      | 1             | 7.1           | 1.5           |
| 4        | 23.02 | 9.48         | -569.1           | 102.3 | 7.12         | 143   | 138     | 0.007       | 72            | 0.07      | 827.9      | 1.1           | 8.2           | 6.3           |
| 5        | 21.69 | 9.49         | -560.1           | 103.1 | 7.36         | 145   | 136     | 0.0069      | 73            | 0.07      | 827.8      | 1.08          | 11            | 36.5          |
| 6        | 22.42 | 9.36         | -564             | 93.1  | 6.55         | 151   | 144     | 0.0066      | 76            | 0.07      | 827.6      | 1.07          | 11            | 10.08         |
| 7        | 21.99 | 9.46         | -543.1           | 103.4 | 7.33         | 141   | 133     | 0.0071      | 71            | 0.07      | 827.4      | 1.09          | 11            | 4.1           |
| 8        | 22.58 | 9.51         | -542.8           | 110   | 7.72         | 139   | 132     | 0.0072      | 69            | 0.06      | 827.2      | 1.21          | 11            | 0.9           |
| 9        | 22.59 | 9.41         | -530.2           | 108.7 | 7.61         | 144   | 138     | 0.0069      | 72            | 0.07      | 826.9      | 1.23          | 11            | 6.4           |
| 10       | 22.55 | 9.57         | -525.9           | 109.7 | 7.69         | 146   | 139     | 0.0069      | 73            | 0.07      | 826.8      | 1.14          | 11            | 8.9           |
| 11       | 22.39 | 9.47         | -522.7           | 108.8 | 7.66         | 144   | 137     | 0.0069      | 72            | 0.07      | 826.8      | 1.17          | 11            | 7.5           |
| 12       | 22.13 | 9.48         | -527             | 108.9 | 7.67         | 121   | 115     | 0.0082      | 61            | 0.06      | 823.4      | 1.1           | 11            | 5.5           |
| 13       | 22.28 | 9.49         | -524.4           | 110.2 | 7.69         | 134   | 127     | 0.0075      | 67            | 0.06      | 818.2      | 1.28          | 11            | 8.9           |
| 14       | 21.91 | 9.53         | -504.2           | 112.3 | 7.88         | 142   | 134     | 0.007       | 71            | 0.07      | 817.2      | 1.05          | 11            | 6.7           |
| 15       | 21.92 | 9.53         | -502.8           | 109.9 | 7.7          | 144   | 136     | 0.0069      | 72            | 0.07      | 816.5      | 1.1           | 11            | 4.4           |
| 16       | 21.88 | 9.52         | -495.2           | 109.5 | 7.67         | 145   | 136     | 0.0069      | 72            | 0.07      | 815.5      | 1.11          | 11            | 1.5           |
| 17       | 22.09 | 9.55         | -509.6           | 109.7 | 7.65         | 144   | 136     | 0.007       | 72            | 0.07      | 815.1      | 1.06          | 11            | 3.5           |
| 18       | 22.37 | 9.51         | -495.5           | 111.6 | 7.73         | 148   | 141     | 0.0068      | 74            | 0.07      | 814.7      | 1.03          | 11            | 4.6           |
| 19       | 22.27 | 9.54         | -493.1           | 111.7 | 7.75         | 150   | 142     | 0.0067      | 75            | 0.07      | 814.2      | 1.14          | 12            | 5.6           |
| 20       | 22.65 | 9.52         | -490.9           | 112   | 7.71         | 146   | 139     | 0.0069      | 73            | 0.07      | 814.2      | 1.09          | 12            | 7.5           |
| 21       | 22.68 | 9.53         | -483.8           | 113.5 | 7.82         | 150   | 144     | 0.0067      | 75            | 0.07      | 814.3      | 1.09          | 12            | 10.5          |
| 22       | 22.35 | 9.49         | -479.1           | 109.4 | 7.58         | 152   | 145     | 0.0066      | 76            | 0.07      | 814        | 1.06          | 12            | 9.2           |
| 23       | 22.47 | 9.52         | -467.9           | 112.3 | 7.76         | 155   | 148     | 0.0065      | 78            | 0.07      | 813.9      | 1             | 12            | 791.3         |
| 24       | 22.53 | 9.52         | -469.7           | 112   | 7.73         | 152   | 145     | 0.0066      | 76            | 0.07      | 813.8      | 0.83          | 12            | 3.8           |
| 25       | 22.53 | 9.54         | -467.3           | 115.4 | 7.96         | 155   | 148     | 0.0065      | 77            | 0.07      | 813.5      | 0.91          | 11            | 12.5          |
| 26       | 22.44 | 9.56         | -460.6           | 113.4 | 7.84         | 156   | 148     | 0.0064      | 78            | 0.07      | 813.3      | 1.07          | 11            | 11.4          |
| 27       | 22.18 | 9.56         | -466.9           | 112.1 | 7.78         | 150   | 142     | 0.0067      | 75<br>75      | 0.07      | 813.1      | 0.72          | 11            | 45.6<br>6.2   |
| 29       | 21.93 | 9.56         | -465.2<br>-473.5 | 112.5 | 7.85<br>7.61 | 151   | 140     | 0.0066      | 75            | 0.07      | 813.1      | 1.1           | 11            | 1.9           |
| 30       | 21.53 | 9.56<br>9.55 | -473.3           | 108.1 | 7.58         | 154   | 144     | 0.0067      | 77            | 0.07      | 813<br>813 | 1.15          | 11            | 4.3           |
| 31       | 21.78 | 9.53         | -464.2           | 109.5 | 7.66         | 156   | 146     | 0.0064      | 78            | 0.07      | 813        | 0.95          | 11            | 6             |
| 32       | 21.82 | 9.58         | -453.4           | 115.8 | 8.1          | 157   | 148     | 0.0064      | 79            | 0.07      | 813.1      | 1             | 12            | 9.3           |
| 33       | 21.68 | 9.57         | -458.8           | 114.5 | 8.03         | 157   | 148     | 0.0064      | 79            | 0.07      | 813.4      | 0.92          | 12            | 9.3           |
| 34       | 22.37 | 9.52         | -466.3           | 108.5 | 7.5          | 156   | 148     | 0.0064      | 78            | 0.07      | 813.3      | 1             | 11            | 7.9           |
| 35       | 22.79 | 9.51         | -459.9           | 112.3 | 7.7          | 155   | 149     | 0.0065      | 77            | 0.07      | 813.3      | 1             | 10            | 8.4           |
| 36       | 22.55 | 9.48         | -446.1           | 111.6 | 7.7          | 161   | 154     | 0.0062      | 81            | 0.08      | 813.4      | 1.03          | 10            | 5.4           |
| 37       | 22.18 | 9.5          | -452.1           | 113.4 | 7.88         | 157   | 149     | 0.0064      | 79            | 0.07      | 813.5      | 1             | 11            | 16.5          |
| 38       | 22.19 | 9.45         | -455.7           | 104   | 7.22         | 158   | 150     | 0.0063      | 79            | 0.07      | 813.4      | 0.96          | 11            | 13.4          |
| 39       | 22.54 | 9.45         | -448.9           | 107.6 | 7.43         | 158   | 151     | 0.0063      | 79            | 0.07      | 813.8      | 1.05          | 12            | 9.9           |
| 40       | 22.93 | 9.49         | -442.4           | 114.9 | 7.87         | 161   | 155     | 0.0062      | 80            | 0.08      | 813.9      | 0.86          | 12            | 9.1           |
| 41       | 23.57 | 9.44         | -445.7           | 109.9 | 7.44         | 160   | 156     | 0.0062      | 80            | 0.07      | 813.9      | 1             | 12            | 10.9          |
| 42       | 23.31 | 9.51         | -437.4           | 118.8 | 8.07         | 161   | 156     | 0.0062      | 80            | 0.08      | 813.7      | 0.89          | 13            | 27.8          |
| 43       | 23.24 | 9.49         | -445.4           | 117   | 7.96         | 159   | 154     | 0.0063      | 80            | 0.07      | 813.6      | 0.88          | 12            | 109.6         |
| 44       | 22.76 | 9.52         | -437.8           | 118.4 | 8.13         | 160   | 153     | 0.0063      | 80            | 0.07      | 813.3      | 0.97          | 12            | 13.4          |
| 45       | 22.93 | 9.53         | -432.4           | 121.2 | 8.29         | 160   | 154     | 0.0062      | 80            | 0.07      | 813.1      | 0.89          | 12            | 12.3          |
| 46       | 22.56 | 9.54         | -440.2           | 116.1 | 7.99         | 157   | 149     | 0.0064      | 78            | 0.07      | 812.9      | 0.8           | 11            | 7.9           |
| 47       | 22.35 | 9.52         | -431.5           | 113.3 | 7.84         | 159   | 151     | 0.0063      | 79            | 0.07      | 812.9      | 1             | 11            | 8.3           |
| 48       | 22.64 | 9.51         | -448.1           | 116   | 8            | 152   | 145     | 0.0066      | 76            | 0.07      | 815.1      | 1             | 11            | 7.3           |
| 49       | 22.59 | 9.52         | -437.7           | 112.2 | 7.75         | 156   | 149     | 0.0064      | 78            | 0.07      | 814.8      | 1             | 11            | 12.1          |
| 50       | 22.62 | 9.55         | -430.3           | 115.6 | 7.97         | 158   | 151     | 0.0063      | 79            | 0.07      | 814.5      | 0.86          | 10            | 16.3          |

Tabla 4.5 Parámetros obtenidos en la Primera Campaña de Muestreo.

# 2ª Campaña de Muestreo



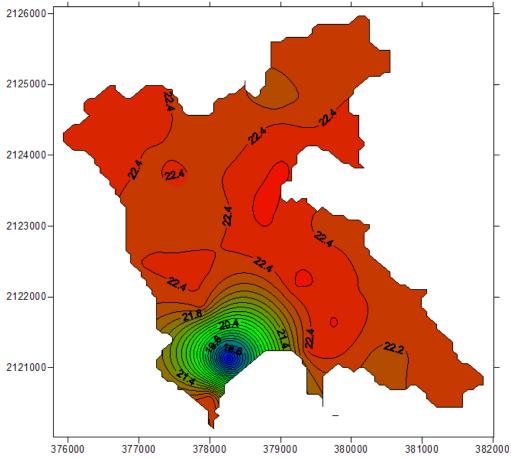



Figura 4.29 Segunda Campaña de Muestreo. Temperatura

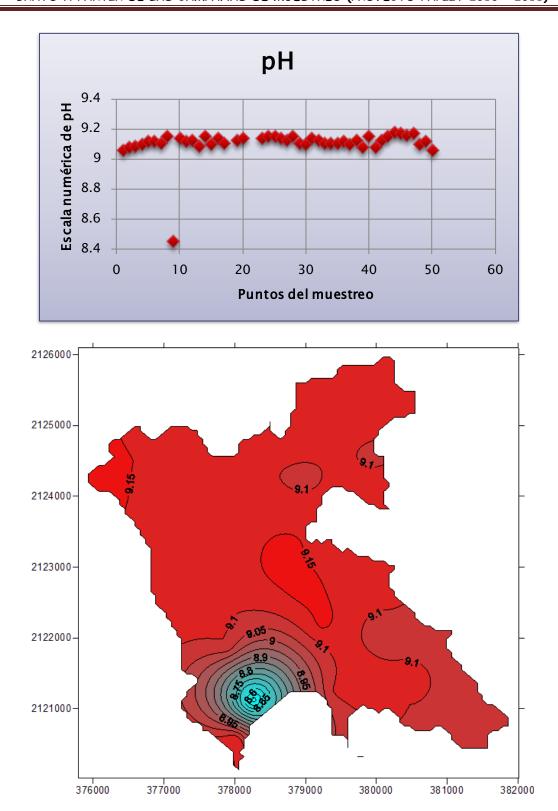
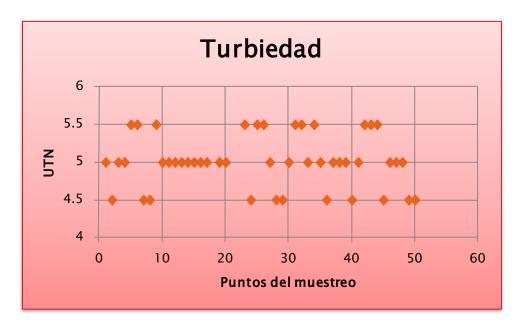




Figura 4.30 Segunda Campaña de Muestreo. pH



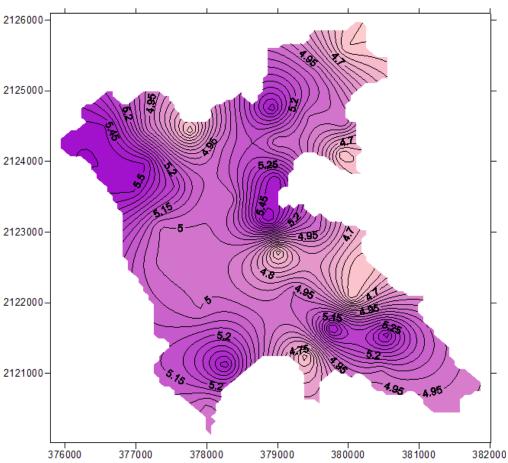
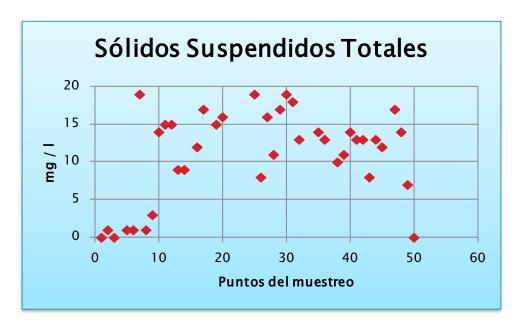




Figura 4.31 Segunda Campaña de Muestreo. Turbiedad



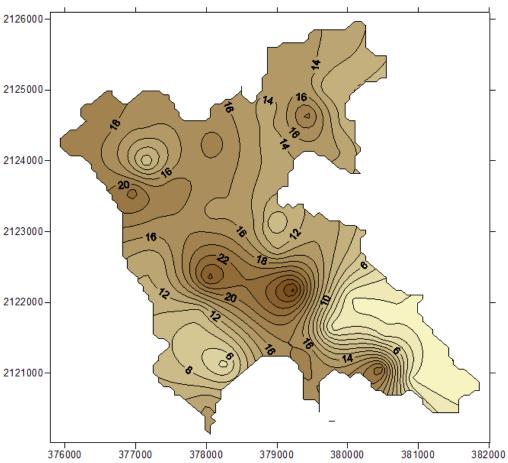
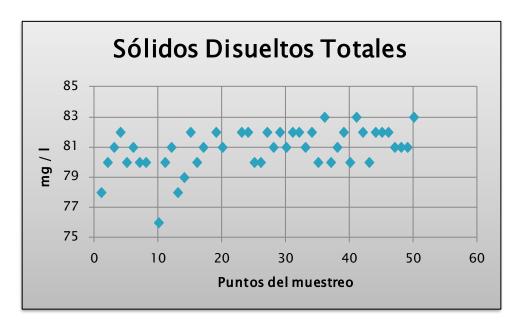




Figura 4.32 Segunda Campaña de Muestreo. SST



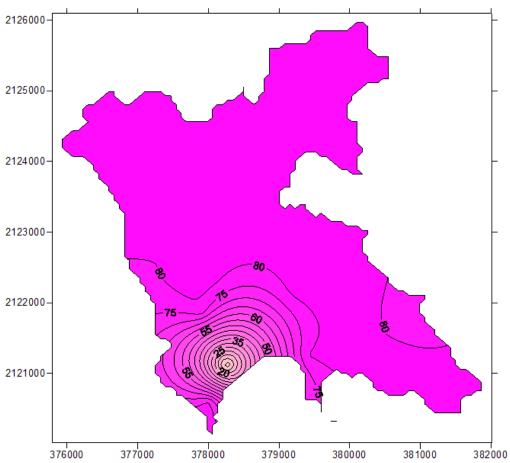
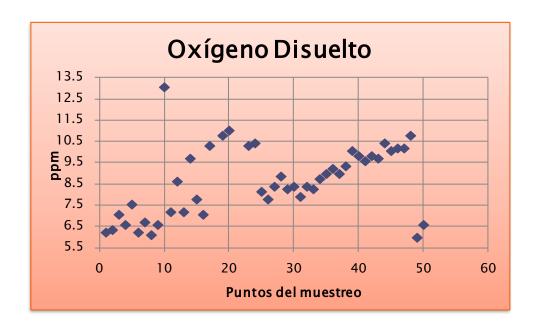




Figura 4.33 Segunda Campaña de Muestreo. SDT



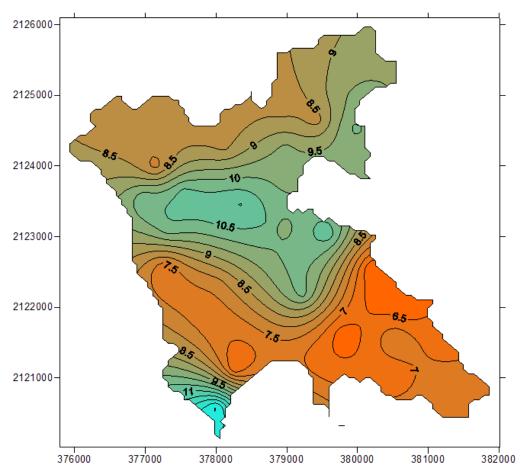
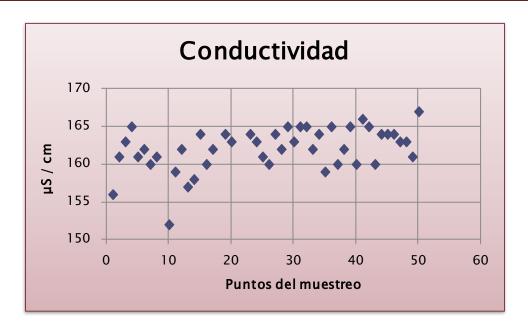
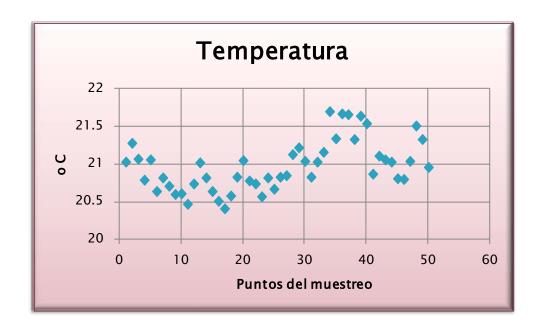



Figura 4.34 Segunda Campaña de Muestreo. O2 disuelto







Figura 4.35 Segunda Campaña de Muestreo. Conductividad

#### CAPÍTULO IV: EVALUACIÓN DE LA CALIDAD DEL AGUA DEL VASO DE LA PRESA DE VALLE DE BRAVO A PARTIR DE LAS CAMPAÑAS DE MUESTREO (PROYECTO PAPIIT 2010 - 2011)

|          | Temp  |      |        |        |        |       |         |             |               |           |        |                 |               |               |
|----------|-------|------|--------|--------|--------|-------|---------|-------------|---------------|-----------|--------|-----------------|---------------|---------------|
| Estación | (ºC)  | рН   | ORP    | OD %   | OD ppm | μS/cm | μS/cm A | MOhm·c<br>m | TDS<br>(mg/l) | Salinidad | P mbar | Disco<br>secchi | Turb<br>(NTU) | SST<br>(mg/l) |
|          | (-0)  |      |        |        |        |       |         | ""          | (1116/11      |           |        | (m)             | (110)         | (1116/11      |
| 1        | 22.33 | 9.06 | -507   | 89.68  | 6.24   | 156   | 148     | 0.0064      | 78            | 0.07      | 828.3  | 1.69            | 5             | 0             |
| 2        | 22.42 | 9.08 | -436.4 | 91.41  | 6.36   | 161   | 153     | 0.0062      | 80            | 0.08      | 828.8  | 1.97            | 4.5           | 1             |
| 3        | 22.26 | 9.09 | -445.1 | 101.75 | 7.08   | 163   | 154     | 0.0061      | 81            | 0.08      | 828.6  | 2.03            | 5             | 0             |
| 4        | 22.03 | 9.1  | -438   | 94.85  | 6.6    | 165   | 155     | 0.0061      | 82            | 0.08      | 828.8  | 1.57            | 5             | 24            |
| 5        | 22.27 | 9.12 | -421.7 | 108.65 | 7.56   | 161   | 153     | 0.0062      | 80            | 0.08      | 827.7  | 1.86            | 5.5           | 1             |
| 6        | 22.62 | 9.12 | -414   | 89.68  | 6.24   | 162   | 155     | 0.0062      | 81            | 0.08      | 827.1  | 1.69            | 5.5           | 1             |
| 7        | 22.49 | 9.11 | -422   | 96.58  | 6.72   | 160   | 152     | 0.0063      | 80            | 0.07      | 826.6  | 1.77            | 4.5           | 19            |
| 8        | 22.44 | 9.15 | -424.1 | 87.96  | 6.12   | 161   | 153     | 0.0062      | 80            | 0.08      | 827.3  | 1.88            | 4.5           | 1             |
| 9        | 17.34 | 8.46 | -21.6  | 94.85  | 6.6    | 1     | 1       | 1           | 0             | 0         | 827.4  | 1.72            | 5.5           | 3             |
| 10       | 22.32 | 9.14 | -441.1 | 187.99 | 13.08  | 152   | 145     | 0.0066      | 76            | 0.07      | 826.1  | 1.69            | 5             | 14            |
| 11       | 22.4  | 9.12 | -427.9 | 103.48 | 7.2    | 159   | 151     | 0.0063      | 80            | 0.07      | 825.3  | 1.74            | 5             | 15            |
| 12       | 22.34 | 9.13 | -413.1 | 124.17 | 8.64   | 162   | 154     | 0.0062      | 81            | 0.08      | 815.2  | 1.96            | 5             | 15            |
| 13       | 22.3  | 9.09 | -415.8 | 103.48 | 7.2    | 157   | 149     | 0.0064      | 78            | 0.07      | 814.4  | 1.82            | 5             | 9             |
| 14       | 22.43 | 9.15 | -425.4 | 139.7  | 9.72   | 158   | 150     | 0.0063      | 79            | 0.07      | 813.7  | 1.83            | 5             | 9             |
| 15       | 22.39 | 9.1  | -408.5 | 112.1  | 7.8    | 164   | 156     | 0.0061      | 82            | 0.08      | 816.6  | 1.71            | 5             | 27            |
| 16       | 22.42 | 9.14 | -423.6 | 101.75 | 7.08   | 160   | 152     | 0.0062      | 80            | 0.07      | 824.2  | 1.78            | 5             | 12            |
| 17       | 22.21 | 9.11 | -389.9 | 148.32 | 10.32  | 162   | 153     | 0.0062      | 81            | 0.08      | 813    | 1.65            | 5             | 17            |
| 19       | 22.22 | 9.13 | -382.9 | 155.22 | 10.8   | 164   | 155     | 0.0061      | 82            | 0.08      | 813    | 1.43            | 5             | 15            |
| 20       | 22.51 | 9.14 | -386.6 | 158.67 | 11.04  | 163   | 155     | 0.0061      | 81            | 0.08      | 812.7  | 1.49            | 5             | 16            |
| 23       | 22.38 | 9.14 | -394.1 | 148.32 | 10.32  | 164   | 156     | 0.0061      | 82            | 0.08      | 813.1  | 1.61            | 5.5           | 23            |
| 24       | 22.52 | 9.15 | -388.4 | 150.04 | 10.44  | 163   | 156     | 0.0061      | 82            | 0.08      | 812.5  | 1.49            | 4.5           | 24            |
| 25       | 22.55 | 9.15 | -406.2 | 117.28 | 8.16   | 161   | 153     | 0.0062      | 80            | 0.08      | 812.5  | 1.69            | 5.5           | 19            |
| 26       | 22.38 | 9.14 | -419.4 | 112.1  | 7.8    | 160   | 152     | 0.0063      | 80            | 0.07      | 812.8  | 1.8             | 5.5           | 8             |
| 27       | 22.44 | 9.13 | -404.4 | 120.72 | 8.4    | 164   | 156     | 0.0061      | 82            | 0.08      | 811.9  | 1.83            | 5             | 16            |
| 28       | 22.34 | 9.15 | -407.6 | 127.62 | 8.88   | 162   | 154     | 0.0062      | 81            | 0.08      | 811.4  | 1.91            | 4.5           | 11            |
| 29       | 22.37 | 9.11 | -398.9 | 119    | 8.28   | 165   | 157     | 0.0061      | 82            | 0.08      | 811.1  | 1.79            | 4.5           | 17            |
| 30       | 22.21 | 9.1  | -404.6 | 120.72 | 8.4    | 163   | 154     | 0.0061      | 81            | 0.08      | 810.8  | 1.88            | 5             | 19            |
| 31       | 22.26 | 9.14 | -404.5 | 113.83 | 7.92   | 165   | 156     | 0.0061      | 82            | 0.08      | 810.8  | 1.58            | 5.5           | 18            |
| 32       | 22.12 | 9.13 | -398.6 | 120.72 | 8.4    | 165   | 156     | 0.0061      | 82            | 0.08      | 811    | 1.7             | 5.5           | 13            |
| 33       | 22.22 | 9.11 | -393.9 | 119    | 8.28   | 162   | 154     | 0.0062      | 81            | 0.08      | 810.8  | 1.81            | 5             | 21            |
| 34       | 22.58 | 9.11 | -386.3 | 125.9  | 8.76   | 164   | 157     | 0.0061      | 82            | 0.08      | 810.8  | 1.88            | 5.5           | 21            |
| 35       | 22.38 | 9.11 | -403.5 | 129.35 | 9      | 159   | 151     | 0.0063      | 80            | 0.07      | 810.9  | 1.48            | 5             | 14            |
| 36       | 22.28 | 9.12 | -391.4 | 132.8  | 9.24   | 165   | 157     | 0.0061      | 83            | 0.08      | 811    | 1.73            | 4.5           | 13            |
| 37       | 22.21 | 9.1  | -410.6 | 129.35 | 9      | 160   | 151     | 0.0063      | 80            | 0.07      | 811.2  | 1.96            | 5             | 38            |
| 38       | 22.29 | 9.13 | -396.7 | 134.52 | 9.36   | 162   | 154     | 0.0062      | 81            | 0.08      | 811.2  | 1.8             | 5             | 10            |
| 39       | 22.5  | 9.08 | -403.8 | 144.87 | 10.08  | 165   | 157     | 0.0061      | 82            | 0.08      | 811.4  | 1.83            | 5             | 11            |
| 40       | 22.56 | 9.15 | -402.7 | 141.42 | 9.84   | 160   | 153     | 0.0062      | 80            | 0.07      | 811.5  | 1.59            | 4.5           | 14            |
| 41       | 22.57 | 9.08 | -393.3 | 137.97 | 9.6    | 166   | 158     | 0.006       | 83            | 0.08      | 812.1  | 1.67            | 5             | 13            |
| 42       | 22.62 | 9.13 | -397.4 | 141.42 | 9.84   | 165   | 157     | 0.0061      | 82            | 0.08      | 812.2  | 1.61            | 5.5           | 13            |
| 43       | 22.58 | 9.15 | -415.8 | 139.7  | 9.72   | 160   | 153     | 0.0062      | 80            | 0.08      | 812.5  | 1.58            | 5.5           | 8             |
| 44       | 22.67 | 9.18 | -398.3 | 150.04 | 10.44  | 164   | 157     | 0.0061      | 82            | 0.08      | 812.7  | 1.38            | 5.5           | 13            |
| 45       | 22.57 | 9.17 | -387.5 | 144.87 | 10.08  | 164   | 157     | 0.0061      | 82            | 0.08      | 811.2  | 1.56            | 4.5           | 12            |
| 46       | 22.63 | 9.16 | -385.4 | 146.59 | 10.2   | 164   | 157     | 0.0061      | 82            | 0.08      | 813.2  | 1.38            | 5             | 31            |
| 47       | 22.51 | 9.17 | -394.8 | 146.59 | 10.2   | 163   | 155     | 0.0061      | 81            | 0.08      | 812.4  | 1.43            | 5             | 17            |
| 48       | 22.3  | 9.1  | -387.2 | 155.22 | 10.8   | 163   | 154     | 0.0061      | 81            | 0.08      | 812.7  | 1.6             | 5             | 14            |
| 49       | 22.35 | 9.12 | -424.7 | 86.23  | 6      | 161   | 153     | 0.0062      | 81            | 0.08      | 828.1  | 1.94            | 4.5           | 7             |
| 50       | 22.41 | 9.06 | -442.1 | 94.85  | 6.6    | 167   | 158     | 0.006       | 83            | 0.08      | 828.6  | 1.94            | 4.5           | 0             |

Tabla 4.6 Parámetros obtenidos en la Segunda Campaña de Muestreo.

### 3<sup>era</sup> Campaña de Muestreo



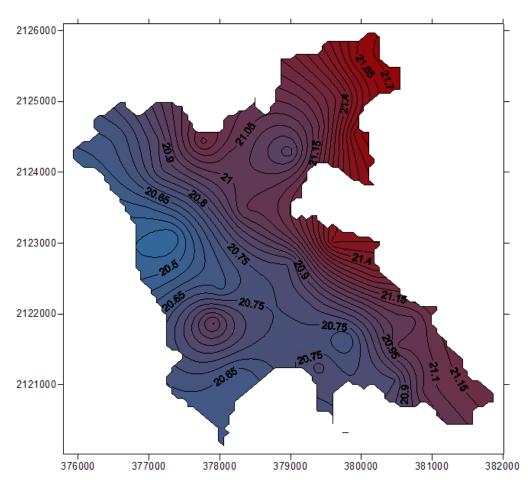



Figura 4.36 Tercera Campaña de Muestreo. Temperatura

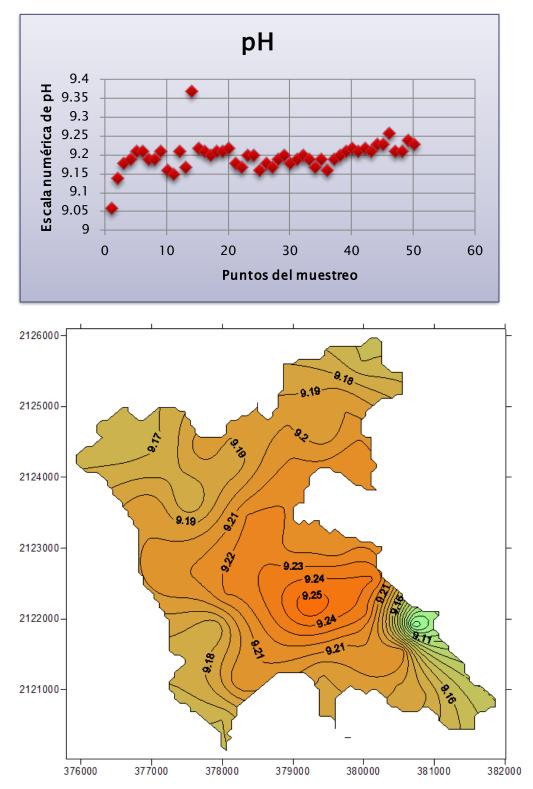
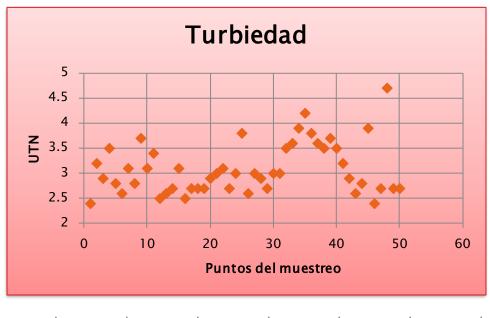




Figura 4.37 Tercera Campaña de Muestreo. pH



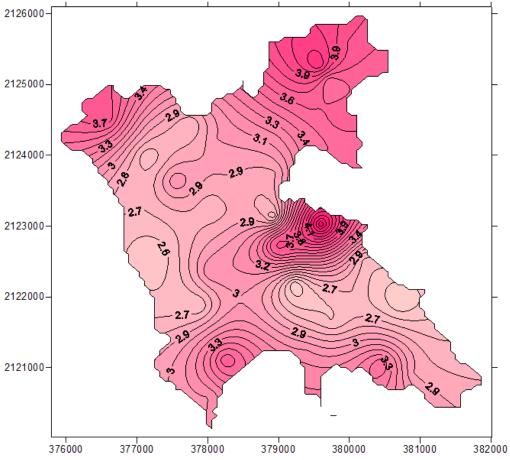
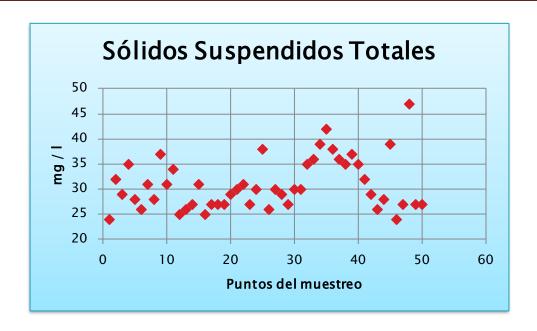




Figura 4.38 Tercera Campaña de Muestreo. Turbiedad



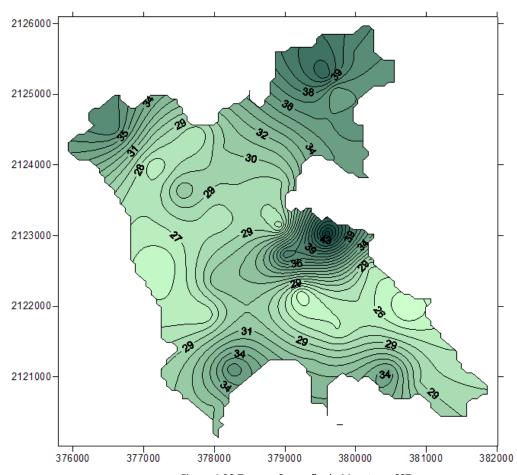



Figura 4.39 Tercera Campaña de Muestreo. SST

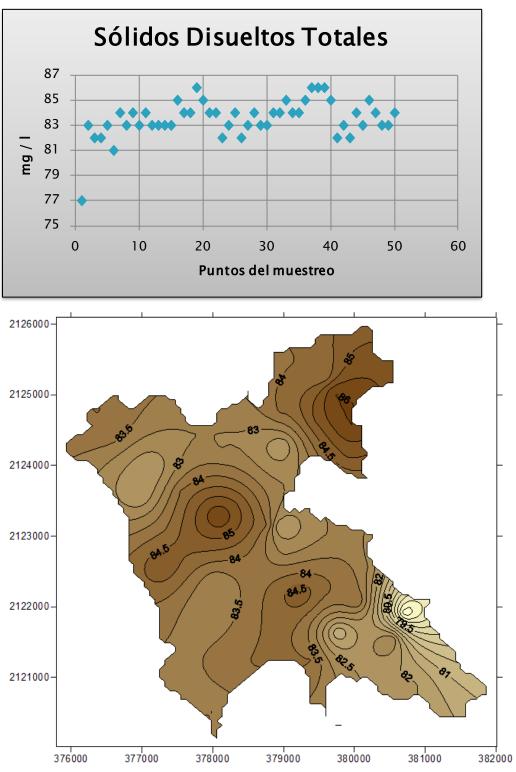
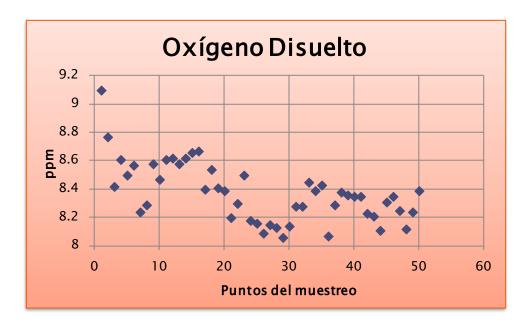




Figura 4.40 Tercera Campaña de Muestreo. SDT



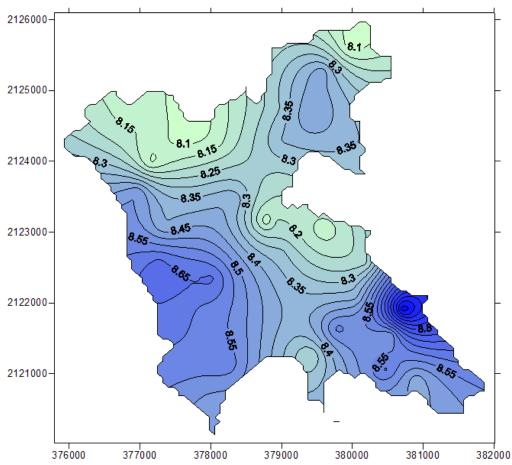



Figura 4.41 Tercera Campaña de Muestreo. O2 disuelto

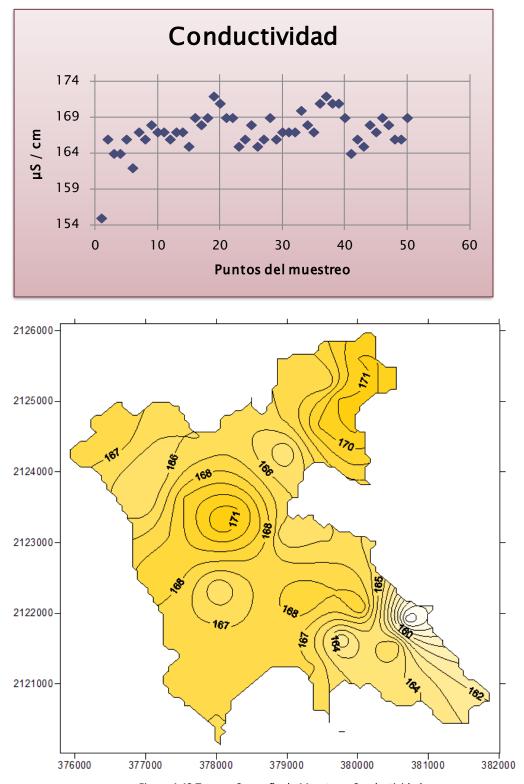



Figura 4.42 Tercera Campaña de Muestreo. Conductividad

#### CAPÍTULO IV: EVALUACIÓN DE LA CALIDAD DEL AGUA DEL VASO DE LA PRESA DE VALLE DE BRAVO A PARTIR DE LAS CAMPAÑAS DE MUESTREO (PROYECTO PAPIIT 2010 - 2011)

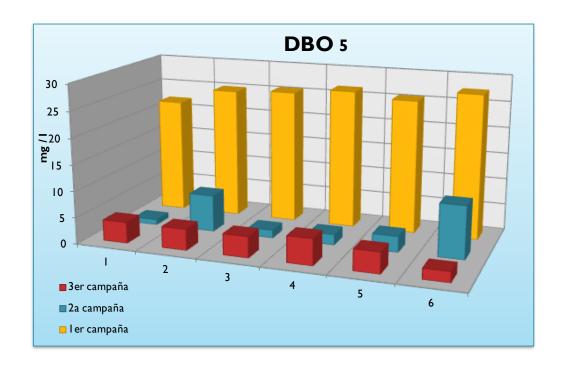
| Estación         (gc)         pH         ORP         OD %         OD ppm         μS/cm         μS/cm A         MOhm-c m         TDS (mg/l)         Salinidad         P mbar           1         21.03         9.06         -499         125.9         9.1         155         143         0.0065         77         0.07         827.1           2         21.28         9.14         -420.2         122.1         8.77         166         154         0.006         83         0.08         826           3         21.07         9.18         -405.1         116.8         8.42         164         152         0.0061         82         0.08         825.7           4         20.79         9.19         -400.8         118.9         8.61         164         151         0.0061         82         0.08         824.8           5         21.06         9.21         -394.7         118         8.5         166         154         0.006         83         0.08         824.8           6         20.64         9.21         -400         118.1         8.57         162         149         0.0062         81         0.08         823.9           7         20.82 | Bisco<br>secchi<br>(m)<br>827.1<br>826<br>825.7<br>824.8<br>824.5<br>823.9<br>823.7<br>823.5 | Turb (NTU)  2.4  3.2  2.9  3.5  2.8  2.6  3.1 | 24<br>32<br>29<br>35<br>28 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------|
| 2         21.28         9.14         -420.2         122.1         8.77         166         154         0.006         83         0.08         826           3         21.07         9.18         -405.1         116.8         8.42         164         152         0.0061         82         0.08         825.7           4         20.79         9.19         -400.8         118.9         8.61         164         151         0.0061         82         0.08         824.8           5         21.06         9.21         -394.7         118         8.5         166         154         0.006         83         0.08         824.5           6         20.64         9.21         -400         118.1         8.57         162         149         0.0062         81         0.08         823.9           7         20.82         9.19         -392.8         114         8.24         167         154         0.006         84         0.08         823.7           8         20.71         9.19         -395         114.5         8.29         166         153         0.006         84         0.08         823.2           9         20.6         9.21                | 826<br>825.7<br>824.8<br>824.5<br>823.9<br>823.7                                             | 3.2<br>2.9<br>3.5<br>2.8<br>2.6               | 32<br>29<br>35             |
| 3         21.07         9.18         -405.1         116.8         8.42         164         152         0.0061         82         0.08         825.7           4         20.79         9.19         -400.8         118.9         8.61         164         151         0.0061         82         0.08         824.8           5         21.06         9.21         -394.7         118         8.5         166         154         0.006         83         0.08         824.5           6         20.64         9.21         -400         118.1         8.57         162         149         0.0062         81         0.08         823.9           7         20.82         9.19         -392.8         114         8.24         167         154         0.006         84         0.08         823.7           8         20.71         9.19         -395         114.5         8.29         166         153         0.006         84         0.08         823.5           9         20.6         9.21         -393.1         118.3         8.58         168         154         0.006         84         0.08         823.1           10         20.61         9.16             | 825.7<br>824.8<br>824.5<br>823.9<br>823.7                                                    | 2.9<br>3.5<br>2.8<br>2.6                      | 29<br>35                   |
| 4         20.79         9.19         -400.8         118.9         8.61         164         151         0.0061         82         0.08         824.8           5         21.06         9.21         -394.7         118         8.5         166         154         0.006         83         0.08         824.5           6         20.64         9.21         -400         118.1         8.57         162         149         0.0062         81         0.08         823.9           7         20.82         9.19         -392.8         114         8.24         167         154         0.006         84         0.08         823.7           8         20.71         9.19         -395         114.5         8.29         166         153         0.006         83         0.08         823.5           9         20.6         9.21         -393.1         118.3         8.58         168         154         0.006         84         0.08         823.1           10         20.61         9.16         -393.1         116.8         8.47         167         153         0.006         84         0.08         823.1           11         20.47         9.15             | 824.8<br>824.5<br>823.9<br>823.7                                                             | 3.5<br>2.8<br>2.6                             | 35                         |
| 5         21.06         9.21         -394.7         118         8.5         166         154         0.006         83         0.08         824.5           6         20.64         9.21         -400         118.1         8.57         162         149         0.0062         81         0.08         823.9           7         20.82         9.19         -392.8         114         8.24         167         154         0.006         84         0.08         823.7           8         20.71         9.19         -395         114.5         8.29         166         153         0.006         83         0.08         823.5           9         20.6         9.21         -393.1         118.3         8.58         168         154         0.006         84         0.08         823.2           10         20.61         9.16         -393.1         116.8         8.47         167         153         0.006         83         0.08         823.1           11         20.47         9.15         -399.3         118.5         8.61         167         153         0.006         84         0.08         822.8                                                     | 824.5<br>823.9<br>823.7                                                                      | 2.8                                           |                            |
| 6         20.64         9.21         -400         118.1         8.57         162         149         0.0062         81         0.08         823.9           7         20.82         9.19         -392.8         114         8.24         167         154         0.006         84         0.08         823.7           8         20.71         9.19         -395         114.5         8.29         166         153         0.006         83         0.08         823.5           9         20.6         9.21         -393.1         118.3         8.58         168         154         0.006         84         0.08         823.2           10         20.61         9.16         -393.1         116.8         8.47         167         153         0.006         83         0.08         823.1           11         20.47         9.15         -399.3         118.5         8.61         167         153         0.006         84         0.08         822.8                                                                                                                                                                                                               | 823.9<br>823.7                                                                               | 2.6                                           | 28                         |
| 7         20.82         9.19         -392.8         114         8.24         167         154         0.006         84         0.08         823.7           8         20.71         9.19         -395         114.5         8.29         166         153         0.006         83         0.08         823.5           9         20.6         9.21         -393.1         118.3         8.58         168         154         0.006         84         0.08         823.2           10         20.61         9.16         -393.1         116.8         8.47         167         153         0.006         83         0.08         823.1           11         20.47         9.15         -399.3         118.5         8.61         167         153         0.006         84         0.08         822.8                                                                                                                                                                                                                                                                                                                                                                           | 823.7                                                                                        |                                               |                            |
| 8     20.71     9.19     -395     114.5     8.29     166     153     0.006     83     0.08     823.5       9     20.6     9.21     -393.1     118.3     8.58     168     154     0.006     84     0.08     823.2       10     20.61     9.16     -393.1     116.8     8.47     167     153     0.006     83     0.08     823.1       11     20.47     9.15     -399.3     118.5     8.61     167     153     0.006     84     0.08     822.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              | 3.1                                           | 26                         |
| 9     20.6     9.21     -393.1     118.3     8.58     168     154     0.006     84     0.08     823.2       10     20.61     9.16     -393.1     116.8     8.47     167     153     0.006     83     0.08     823.1       11     20.47     9.15     -399.3     118.5     8.61     167     153     0.006     84     0.08     822.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 823.5                                                                                        |                                               | 31                         |
| 10     20.61     9.16     -393.1     116.8     8.47     167     153     0.006     83     0.08     823.1       11     20.47     9.15     -399.3     118.5     8.61     167     153     0.006     84     0.08     822.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                              | 2.8                                           | 28                         |
| <b>11</b> 20.47 9.15 -399.3 118.5 8.61 167 153 0.006 84 0.08 822.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 823.2                                                                                        | 3.7                                           | 37                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 823.1                                                                                        | 3.1                                           | 31                         |
| <b>12</b>   20.74   9.21   -412.1   119.3   8.62   166   152   0.006   83   0.08   822.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 822.8                                                                                        | 3.4                                           | 34                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 822.5                                                                                        | 2.5                                           | 25                         |
| <b>13</b> 21.02 9.17 -397.8 119.4 8.58 167 154 0.006 83 0.08 822.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 822.3                                                                                        | 2.6                                           | 26                         |
| <b>14</b> 20.82 9.37 -397 119.5 8.62 167 153 0.006 83 0.08 822.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 822.4                                                                                        | 2.7                                           | 27                         |
| <b>15</b> 20.64 9.22 -403 119.7 8.66 165 152 0.006 83 0.08 822.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 822.2                                                                                        | 3.1                                           | 31                         |
| 16         20.51         9.21         -402.6         119.4         8.67         169         155         0.0059         85         0.08         822.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 822.1                                                                                        | 2.5                                           | 25                         |
| <b>17</b> 20.41 9.2 -395.1 115.5 8.4 168 154 0.0059 84 0.08 822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 822                                                                                          | 2.7                                           | 27                         |
| 18         20.58         9.21         -395.6         117.9         8.54         169         155         0.0059         84         0.08         821.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 821.8                                                                                        | 2.7                                           | 27                         |
| <b>19</b> 20.83 9.21 -384.8 116.7 8.41 172 159 0.0058 86 0.08 821.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 821.9                                                                                        | 2.7                                           | 27                         |
| <b>20</b> 21.05 9.22 -390.1 116.8 8.39 171 158 0.0059 85 0.08 821.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 821.9                                                                                        | 2.9                                           | 29                         |
| <b>21</b> 20.78 9.18 -398 113.6 8.2 169 155 0.0059 84 0.08 821.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 821.9                                                                                        | 3                                             | 30                         |
| <b>22</b> 20.74 9.17 -395 114.9 8.3 169 155 0.0059 84 0.08 821.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 821.8                                                                                        | 3.1                                           | 31                         |
| <b>23</b> 20.57 9.2 -420.4 117.3 8.5 165 151 0.0061 82 0.08 821.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 821.7                                                                                        | 2.7                                           | 27                         |
| <b>24</b> 20.82 9.2 -409.2 113.4 8.18 166 153 0.006 83 0.08 821.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 821.8                                                                                        | 3                                             | 30                         |
| <b>25</b> 20.67 9.16 -402.8 112.9 8.16 168 154 0.006 84 0.08 821.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 821.8                                                                                        | 3.8                                           | 38                         |
| <b>26</b> 20.83 9.18 -414.7 112.2 8.09 165 152 0.0061 82 0.08 822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 822                                                                                          | 2.6                                           | 26                         |
| <b>27</b> 20.85 9.17 -408.3 113.1 8.15 166 153 0.006 83 0.08 822.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 822.1                                                                                        | 3                                             | 30                         |
| 28         21.13         9.19         -403.3         113.3         8.13         169         156         0.0059         84         0.08         822.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 822.4                                                                                        | 2.9                                           | 29                         |
| 29         21.22         9.2         -406.2         112.5         8.06         166         154         0.006         83         0.08         822.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 822.5                                                                                        | 2.7                                           | 27                         |
| <b>30</b> 21.04 9.18 -407 113.4 8.14 167 154 0.006 83 0.08 822.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 822.3                                                                                        | 3                                             | 30                         |
| <b>31</b> 20.83 9.19 -401.1 114.8 8.28 167 154 0.006 84 0.08 822.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 822.2                                                                                        | 3                                             | 30                         |
| <b>32</b> 21.03 9.2 -404.4 115.2 8.28 167 154 0.006 84 0.08 822.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 822.4                                                                                        | 3.5                                           | 35                         |
| <b>33</b> 21.16 9.19 -411 117.8 8.45 170 157 0.0059 85 0.08 823.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 823.1                                                                                        | 3.6                                           | 36                         |
| <b>34</b> 21.7 9.17 -403.7 118.2 8.39 168 157 0.006 84 0.08 823.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 823.3                                                                                        | 3.9                                           | 39                         |
| <b>35</b> 21.34 9.19 -405 117.9 8.43 167 156 0.006 84 0.08 823.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 823.4                                                                                        | 4.2                                           | 42                         |
| <b>36</b> 21.67 9.16 -400.7 113.7 8.07 171 160 0.0059 85 0.08 823.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 823.4                                                                                        | 3.8                                           | 38                         |
| <b>37</b> 21.66 9.19 -396.4 116.6 8.29 172 161 0.0058 86 0.08 823.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 823.2                                                                                        | 3.6                                           | 36                         |
| <b>38</b> 21.33 9.2 -398.1 117.3 8.38 171 159 0.0058 86 0.08 822.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 822.5                                                                                        | 3.5                                           | 35                         |
| <b>39</b> 21.64 9.21 -398.4 118.8 8.36 171 160 0.0058 86 0.08 815.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 815.5                                                                                        | 3.7                                           | 37                         |
| <b>40</b> 21.54 9.22 -395.9 118.6 8.35 169 158 0.0059 85 0.08 814.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 814.5                                                                                        | 3.5                                           | 35                         |
| <b>41</b> 20.87 9.21 -412.8 117.2 8.35 164 151 0.0061 82 0.08 813.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 813.4                                                                                        | 3.2                                           | 32                         |
| <b>42</b> 21.11 9.22 -407.9 116.1 8.23 166 154 0.006 83 0.08 813.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 813.2                                                                                        | 2.9                                           | 29                         |
| 43         21.06         9.21         -409.2         115.7         8.21         165         152         0.0061         82         0.08         812.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 812.7                                                                                        | 2.6                                           | 26                         |
| 44         21.03         9.23         -394.9         114.4         8.11         168         155         0.006         84         0.08         812.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 812.4                                                                                        | 2.8                                           | 28                         |
| 45         20.81         9.23         -390.5         116.6         8.31         167         154         0.006         83         0.08         812.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 812.1                                                                                        | 3.9                                           | 39                         |
| 46         20.8         9.26         -389.3         117.3         8.35         169         156         0.0059         85         0.08         811.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 811.8                                                                                        | 2.4                                           | 24                         |
| 47         21.04         9.21         -392.7         116.4         8.25         168         156         0.0059         84         0.08         811.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 811.5                                                                                        | 2.7                                           | 27                         |
| 48         21.51         9.21         -397.3         115.6         8.12         166         155         0.006         83         0.08         811.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 811.9                                                                                        | 4.7                                           | 47                         |
| 49         21.33         9.24         -398.8         116.9         8.24         166         154         0.006         83         0.08         811.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 811.7                                                                                        | 2.7                                           | 27                         |
| 50         20.96         9.23         -389.4         118.2         8.39         169         156         0.0059         84         0.08         811.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 811.4                                                                                        | 2.7                                           | 27                         |

Tabla 4.7 Parámetros obtenidos en la Tercera Campaña de Muestreo.

### Comparativa de los seis Parámetros Evaluados Parcialmente en las Campañas de Muestreo

#### Primera Campaña

| Estación | DBO<br>(mg/l) | N NH3<br>(mg/l) | Nitratos<br>(mg/l) | Fosfatos<br>(mg/l) | CT (UFC)<br>NMP | CF (UFC)<br>NMP |
|----------|---------------|-----------------|--------------------|--------------------|-----------------|-----------------|
| 3        | 22            | 0.06            | 0.4                | 0.18               | Inc             | Inc             |
| 10       | 25            | 0.01            | 0.7                | 0.11               | Inc             | Inc             |
| 25       | 25.5          | 0.01            | 0.4                | 0.09               | Inc             | Inc             |
| 37       | 26.5          | 0.06            | 0.5                | 0.1                | Inc             | Inc             |
| 40       | 25.5          | 0               | 0.6                | 0.09               | Inc             | Inc             |
| 44       | 27.5          | 0.01            | 0.6                | 0.11               | Inc             | Inc             |


#### Segunda Campaña

| Estación | DBO<br>(mg/l) | N NH3<br>(mg/l) | Nitratos<br>(mg/l) | Fosfatos<br>(mg/l) | CT(UFC)<br>NMP | CF (UFC)<br>NMP |
|----------|---------------|-----------------|--------------------|--------------------|----------------|-----------------|
| 3        | 1             | 0.05            | 2.2                | 0.18               | Inc            | Inc             |
| 10       | 7             | 0.01            | 3                  | 0.12               | Inc            | Inc             |
| 25       | 1.5           | 0               | 3.1                | 0.79               | Inc            | Inc             |
| 37       | 2             | 0               | 3                  | 0.14               | Inc            | Inc             |
| 40       | 3             | 0.02            | 2.8                | 0.11               | Inc            | Inc             |
| 44       | 10            | 0.02            | 3.2                | 0.14               | Inc            | Inc             |

#### Tercera Campaña

| 13133131331313 |               |                 |                    |                    |                 |                 |
|----------------|---------------|-----------------|--------------------|--------------------|-----------------|-----------------|
| Estación       | DBO<br>(mg/l) | N NH3<br>(mg/l) | Nitratos<br>(mg/l) | Fosfatos<br>(mg/l) | CT (UFC)<br>NMP | CF (UFC)<br>NMP |
| 3              | 4             | 0.1             | 2.7                | 0.17               | Inc             | Inc             |
| 10             | 4             | 0.05            | 2.4                | 0.14               | Inc             | Inc             |
| 25             | 4             | 0.09            | 2                  | 0.18               | Inc             | Inc             |
| 37             | 5             | 0.06            | 2                  | 0.16               | Inc             | Inc             |
| 40             | 4             | 0.01            | 2.4                | 0.16               | Inc             | Inc             |
| 44             | 2             | 0.08            | 2.5                | 0.15               | Inc             | Inc             |

Tabla 4.8 Comparativa de parámetros evaluados en los diferentes puntos de cada campaña de muestreo.



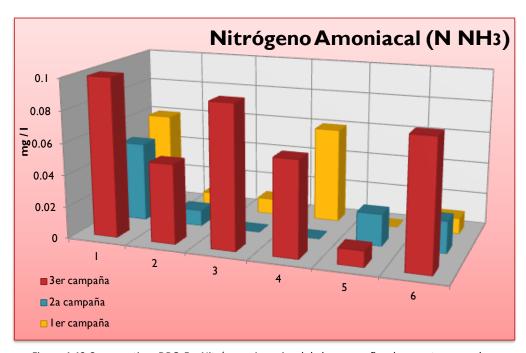
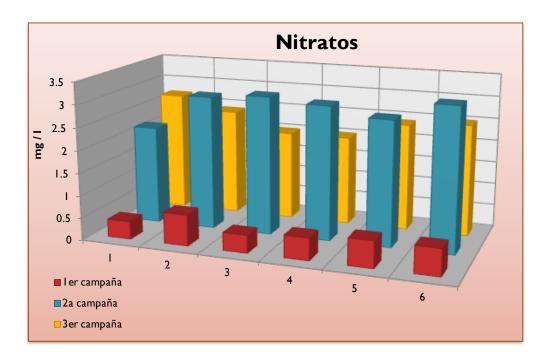




Figura 4.43 Comparativas DBO-5 y Nitrógeno Amoniacal de las campañas de muestreo para las estaciones 3, 10, 25, 37,40 y 44



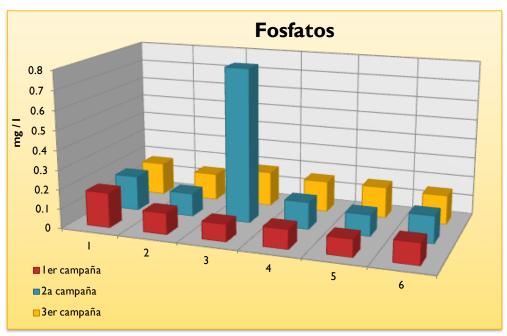



Figura 4.44 Comparativas Nitratos y Fosfatos de las campañas de muestreo para las estaciones 3, 10, 25, 37,40 y 44

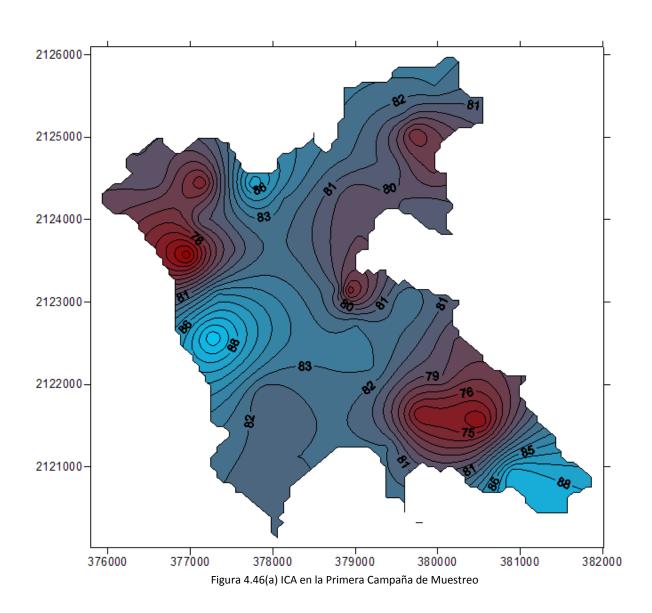
### Coliformes

Para fines de
evaluación de calidad,
durante los tres
muestreos se
mantienen los valores
de coliformes, tanto
fecales como totales,
incontables.



Figura 4.45 Comparativas Coliformes de las campañas de muestreo para las estaciones 3, 10, 25, 37,40 y 44

### El ICA para los diferentes puntos del muestreo y su Evaluación


## PRIMER CAMPAÑA DE MUESTREO

| Estación | ICA   | EVALUACIÓN DEL<br>PARÁMETRO SEGÚN EL<br>CRITERIO GENERAL |
|----------|-------|----------------------------------------------------------|
| 1        | 76.82 | ACEPTABLE                                                |
| 2        | 78.59 | ACEPTABLE                                                |
| 3        | 89.38 | ACEPTABLE                                                |
| 4        | 79.63 | ACEPTABLE                                                |
| 5        | 73.40 | ACEPTABLE                                                |
| 6        | 73.61 | ACEPTABLE                                                |
| 7        | 82.47 | ACEPTABLE                                                |
| 8        | 97.10 | NO CONTAMINADO                                           |
| 9        | 82.14 | ACEPTABLE                                                |
| 10       | 80.64 | ACEPTABLE                                                |
| 11       | 81.38 | ACEPTABLE                                                |
| 12       | 83.86 | ACEPTABLE                                                |
| 13       | 81.10 | ACEPTABLE                                                |
| 14       | 82.75 | ACEPTABLE                                                |
| 15       | 83.86 | ACEPTABLE                                                |
| 16       | 91.16 | NO CONTAMINADO                                           |
| 17       | 85.04 | ACEPTABLE                                                |
| 18       | 84.03 | ACEPTABLE                                                |
| 19       | 82.85 | ACEPTABLE                                                |
| 20       | 81.71 | ACEPTABLE                                                |
| 21       | 80.70 | ACEPTABLE                                                |
| 22       | 79.59 | ACEPTABLE                                                |
| 23       | 71.08 | ACEPTABLE                                                |
| 24       | 85.09 | ACEPTABLE                                                |
| 25       | 80.47 | ACEPTABLE                                                |
| 26       | 79.98 | ACEPTABLE                                                |

|          |       | i                                                        |
|----------|-------|----------------------------------------------------------|
| Estación | ICA   | EVALUACIÓN DEL<br>PARÁMETRO SEGÚN EL<br>CRITERIO GENERAL |
| 25       | 80.47 | ACEPTABLE                                                |
| 26       | 79.98 | ACEPTABLE                                                |
| 27       | 75.31 | ACEPTABLE                                                |
| 28       | 82.54 | ACEPTABLE                                                |
| 29       | 88.29 | ACEPTABLE                                                |
| 30       | 82.53 | ACEPTABLE                                                |
| 31       | 81.35 | ACEPTABLE                                                |
| 32       | 81.70 | ACEPTABLE                                                |
| 33       | 81.20 | ACEPTABLE                                                |
| 34       | 79.61 | ACEPTABLE                                                |
| 35       | 80.90 | ACEPTABLE                                                |
| 36       | 82.67 | ACEPTABLE                                                |
| 37       | 78.67 | ACEPTABLE                                                |
| 38       | 75.71 | ACEPTABLE                                                |
| 39       | 78.41 | ACEPTABLE                                                |
| 40       | 81.46 | ACEPTABLE                                                |
| 41       | 78.85 | ACEPTABLE                                                |
| 42       | 78.94 | ACEPTABLE                                                |
| 43       | 75.25 | ACEPTABLE                                                |
| 44       | 81.23 | ACEPTABLE                                                |
| 45       | 82.63 | ACEPTABLE                                                |
| 46       | 82.53 | ACEPTABLE                                                |
| 47       | 81.21 | ACEPTABLE                                                |
| 48       | 83.27 | ACEPTABLE                                                |
| 49       | 79.43 | ACEPTABLE                                                |
| 50       | 79.49 | ACEPTABLE                                                |

Tabla 4.9 Índice de calidad del Agua y su Evaluación en la Primera Campaña de Muestreo

# PRIMER CAMPAÑA DE MUESTREO



## PRIMER CAMPAÑA DE MUESTREO

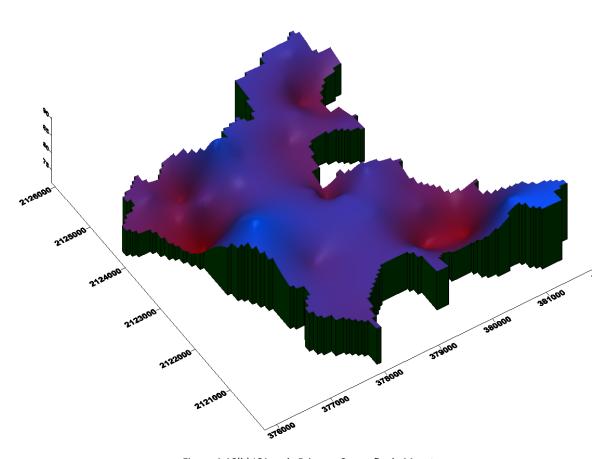



Figura 4.46(b) ICA en la Primera Campaña de Muestreo

### SEGUNDA CAMPAÑA DE MUESTREO

|          |       | EVALUACIÓN DEL                       |
|----------|-------|--------------------------------------|
| Estación | ICA   | EVALUACIÓN DEL<br>PARÁMETRO SEGÚN EL |
| Estacion | ICA   | CRITERIO GENERAL                     |
| 1        | 87.55 | ACEPTABLE                            |
|          |       |                                      |
| 2        | 88.07 | ACEPTABLE                            |
| 3        | 91.99 | NO CONTAMINADO                       |
| 4        | 70.54 | ACEPTABLE                            |
| 5        | 94.76 | NO CONTAMINADO                       |
| 6        | 87.38 | ACEPTABLE                            |
| 7        | 72.47 | ACEPTABLE                            |
| 8        | 86.53 | ACEPTABLE                            |
| 9        | 84.3  | ACEPTABLE                            |
| 10       | 82.4  | ACEPTABLE                            |
| 11       | 76.01 | ACEPTABLE                            |
| 12       | 84.11 | ACEPTABLE                            |
| 13       | 78.11 | ACEPTABLE                            |
| 14       | 92.56 | NO CONTAMINADO                       |
| 15       | 77.40 | ACEPTABLE                            |
| 16       | 76.09 | ACEPTABLE                            |
| 17       | 93.24 | NO CONTAMINADO                       |
| 18       | 94.77 | NO CONTAMINADO                       |
| 19       | 96.33 | NO CONTAMINADO                       |
| 20       | 97.84 | NO CONTAMINADO                       |
| 21       | 97.84 | NO CONTAMINADO                       |
| 22       | 92.30 | NO CONTAMINADO                       |
| 23       | 92.30 | NO CONTAMINADO                       |
| 24       | 93.03 | NO CONTAMINADO                       |
| 25       | 80.71 | ACEPTABLE                            |
| 26       | 81.92 | ACEPTABLE                            |

| F-414    | 100   | EVALUACIÓN DEL                         |
|----------|-------|----------------------------------------|
| Estación | ICA   | PARÁMETRO SEGÚN EL<br>CRITERIO GENERAL |
| 25       | 00.74 |                                        |
| 25       | 80.71 | ACEPTABLE                              |
| 26       | 81.92 | ACEPTABLE                              |
| 27       | 82.52 | ACEPTABLE                              |
| 28       | 86.63 | ACEPTABLE                              |
| 29       | 81.56 | ACEPTABLE                              |
| 30       | 81.82 | ACEPTABLE                              |
| 31       | 79.12 | ACEPTABLE                              |
| 32       | 82.95 | ACEPTABLE                              |
| 33       | 80.83 | ACEPTABLE                              |
| 34       | 83.86 | ACEPTABLE                              |
| 35       | 86.64 | ACEPTABLE                              |
| 36       | 87.95 | ACEPTABLE                              |
| 37       | 83.35 | ACEPTABLE                              |
| 38       | 89.79 | ACEPTABLE                              |
| 39       | 93.78 | NO CONTAMINADO                         |
| 40       | 91.54 | NO CONTAMINADO                         |
| 41       | 90.39 | NO CONTAMINADO                         |
| 42       | 91.74 | NO CONTAMINADO                         |
| 43       | 93.17 | NO CONTAMINADO                         |
| 44       | 95.19 | NO CONTAMINADO                         |
| 45       | 93.33 | NO CONTAMINADO                         |
| 46       | 90.97 | NO CONTAMINADO                         |
| 47       | 92.71 | NO CONTAMINADO                         |
| 48       | 96.78 | NO CONTAMINADO                         |
| 49       | 72.17 | ACEPTABLE                              |
| 50       | 89.27 | ACEPTABLE                              |

Tabla 4.10 Índice de calidad del Agua y su Evaluación en la Segunda Campaña de Muestreo

### SEGUNDA CAMPAÑA DE MUESTREO

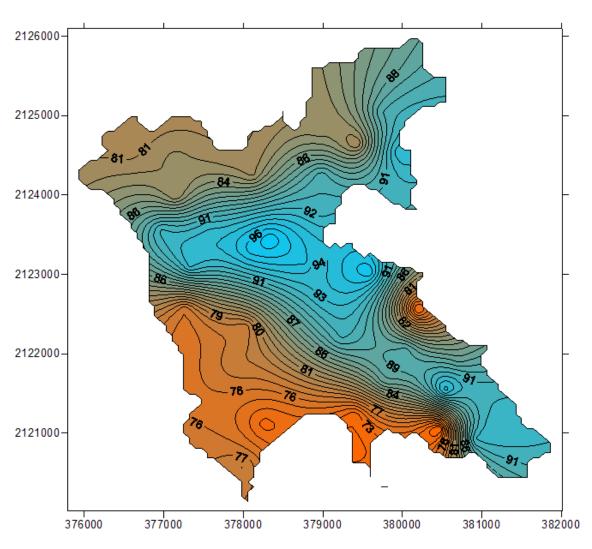



Figura 4.47(a) ICA en la Segunda Campaña de Muestreo

### SEGUNDA CAMPAÑA DE MUESTREO

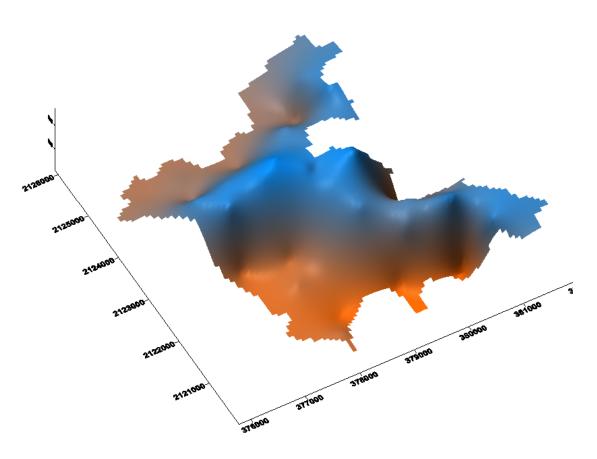
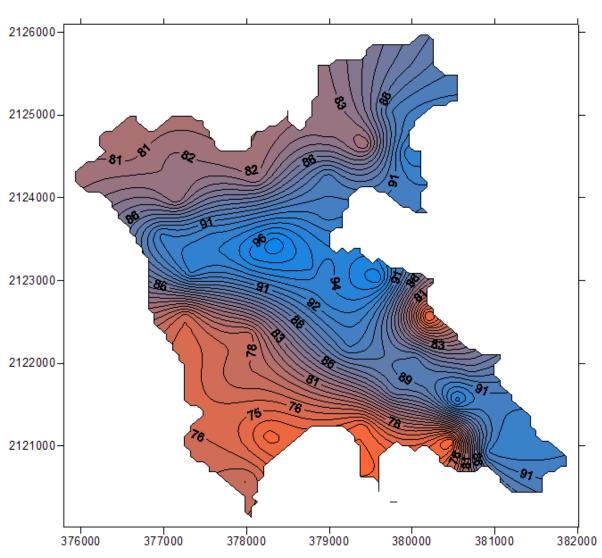



Figura 4.47(b) ICA en la Segunda Campaña de Muestreo


## TERCER CAMPAÑA DE MUESTREO

| Estación | ICA   | EVALUACIÓN DEL<br>PARÁMETRO SEGÚN EL<br>CRITERIO GENERAL |
|----------|-------|----------------------------------------------------------|
| 1        | 84.32 | ACEPTABLE                                                |
| 2        | 81.27 | ACEPTABLE                                                |
| 3        | 79.36 | ACEPTABLE                                                |
| 4        | 79.62 | ACEPTABLE                                                |
| 5        | 79.76 | ACEPTABLE                                                |
| 6        | 80.12 | ACEPTABLE                                                |
| 7        | 77.81 | ACEPTABLE                                                |
| 8        | 78.31 | ACEPTABLE                                                |
| 9        | 78.94 | ACEPTABLE                                                |
| 10       | 78.97 | ACEPTABLE                                                |
| 11       | 79.38 | ACEPTABLE                                                |
| 12       | 80.46 | ACEPTABLE                                                |
| 13       | 80.44 | ACEPTABLE                                                |
| 14       | 79.94 | ACEPTABLE                                                |
| 15       | 79.99 | ACEPTABLE                                                |
| 16       | 80.42 | ACEPTABLE                                                |
| 17       | 78.66 | ACEPTABLE                                                |
| 18       | 79.53 | ACEPTABLE                                                |
| 19       | 78.94 | ACEPTABLE                                                |
| 20       | 78.83 | ACEPTABLE                                                |
| 21       | 77.59 | ACEPTABLE                                                |
| 22       | 78.04 | ACEPTABLE                                                |
| 23       | 79.47 | ACEPTABLE                                                |
| 24       | 77.57 | ACEPTABLE                                                |
| 25       | 76.71 | ACEPTABLE                                                |
| 26       | 77.57 | ACEPTABLE                                                |

|          | <b>.</b> |                    |
|----------|----------|--------------------|
| ,        |          | EVALUACIÓN DEL     |
| Estación | ICA      | PARÁMETRO SEGÚN EL |
|          |          | CRITERIO GENERAL   |
| 25       | 76.71    | ACEPTABLE          |
| 26       | 77.57    | ACEPTABLE          |
| 27       | 77.50    | ACEPTABLE          |
| 28       | 77.58    | ACEPTABLE          |
| 29       | 77.56    | ACEPTABLE          |
| 30       | 77.56    | ACEPTABLE          |
| 31       | 78.13    | ACEPTABLE          |
| 32       | 77.87    | ACEPTABLE          |
| 33       | 78.79    | ACEPTABLE          |
| 34       | 78.86    | ACEPTABLE          |
| 35       | 78.55    | ACEPTABLE          |
| 36       | 76.99    | ACEPTABLE          |
| 37       | 78.27    | ACEPTABLE          |
| 38       | 78.56    | ACEPTABLE          |
| 39       | 78.57    | ACEPTABLE          |
| 40       | 78.61    | ACEPTABLE          |
| 41       | 78.44    | ACEPTABLE          |
| 42       | 78.17    | ACEPTABLE          |
| 43       | 78.38    | ACEPTABLE          |
| 44       | 77.43    | ACEPTABLE          |
| 45       | 77.49    | ACEPTABLE          |
| 46       | 78.92    | ACEPTABLE          |
| 47       | 78.37    | ACEPTABLE          |
| 48       | 76.67    | ACEPTABLE          |
| 49       | 78.58    | ACEPTABLE          |
| 50       | 79.00    | ACEPTABLE          |
|          |          |                    |

Tabla 4.11 Índice de calidad del Agua y su Evaluación en la Tercera Campaña de Muestreo

## TERCER CAMPAÑA DE MUESTREO



## TERCER CAMPAÑA DE MUESTREO

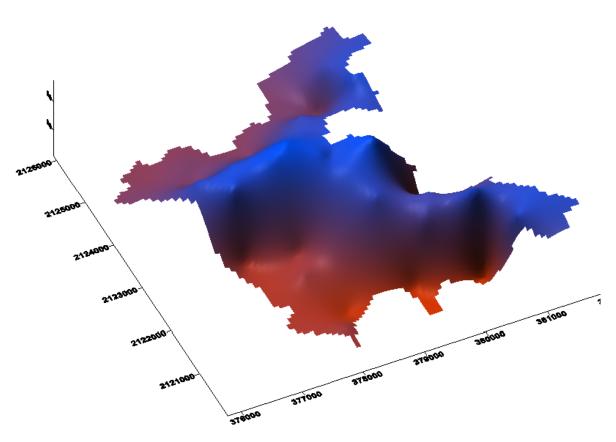



Figura 4.48(b) ICA en la Tercera Campaña de Muestreo

#### 4.4 Discusión de Resultados

Respecto a los parámetros y la calidad del agua observados en los tres diferentes muestreos, se tiene que durante la época de lluvias las concentraciones de contaminantes resultan menores, por lo cual se deduce que existe una dilución del agua de lluvias con el agua del embalse, lo que es positivo en el sentido que cada ciclo de lluvias y estiajes existe en cierta medida un nivel de purificación del agua.

Así mismo, a través de los datos de lluvias de la CONAGUA, se tiene que el 2010 fue un muy buen año en cuanto a recuperación de niveles en la presa, por haberse presentado lluvias, y corroborando dicha información, se tiene que incluso las precipitaciones durante el año 2010 en la zona sobrepasaron el promedio existente en los últimos años. Ello coadyuvó a que la calidad del agua correspondiente a la época de estiaje del 2011 estuviera con una mejor calidad que la reportada durante el mismo periodo del año 2010, y una calificación del ICA en donde todos los puntos de muestreo aparecen como aceptables.

Así mismo, se observa que la calidad del agua en el embalse resulta menos favorable cerca de la zona donde se encuentra el embarcadero o muelle en la población de Valle de Bravo, y cerca de la desembocadura de los ríos Amanalco y Tizates. Ello corrobora que existen todavía descargas de aguas residuales crudas, lo cual es motivo de alerta.