

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

DIVISIÓN DE ESTUDIOS DE POSGRADO

DESARROLLO DE LA INSTRUMENTACIÓN PARA EL EQUIPO EXPERIMENTAL DE FLUJOS MULTI FÁSICOS Y DE TRANSPORTE DE RECORTES DEL INSTITUTO MEXICANO DEL PETRÓLEO

TESIS

Que para obtener el grado de:

MAESTRO EN INGENIERÍA (ELÉCTRICA)

PRESENTA:

Ing. Alejandro Flores Ordeñana

Director: MenI. Luis Arturo Haro Ruiz.

Co-Director: Ing. German J. Carmona Paredes.

Agosto 2005

ÍNDICE

Página.

	INTRODUCCIÓN	I
	CAPITULO 1 DESCRIPCIÓN DEL EQUIPO EXPERIMENTAL DE FLUJO MULTIFÁSICO Y DE TRANSPORTE DE RECORTES	1
1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 1.7.	SECCIÓN DE FASE LÍQUIDA SECCIÓN DE FASE GASEOSA SECCIÓN DE FASE SÓLIDA SECCIÓN DE MEZCLADO SECCIÓN EXPERIMENTAL SECCIÓN DE SEPERACIÓN DE FASES SECCIÓN DE POSICIONAMIENTO DE LA TUBERÍA EXPERIMENTAL	3 4 4 5 5 5 6 7
1.8.	SECCION DE CONTROL, MEDICION DE VARIABLES Y DAQ	1
	CAPÍTULO 2 INSTRUMENTACIÓN DEL EQUIPO EXPERIMENTAL PARA EL ESTUDIO DE FLUJO MULTIFÁSICO	9
2.1. 2.2. 2.3. 2.4. 2.5.	INSTRUMENTACIÓN DE LA SECCIÓN DE FASE LÍQUIDA INSTRUMENTACIÓN DE LA SECCIÓN DE FASE GASEOSA INSTRUMENTACIÓN DE LA SECCIÓN DE FASE SÓLIDA INSTRUMENTACIÓN DE LA SECCIÓN EXPERIMENTAL INSTRUMENTACIÓN DE LA SECCIÓN DE POSICIONAMIENTO	9 9 9 10 10
2.6. 2.6.1. 2.6.1.1.	VARIABLES A MEDIR PRESIÓN COLOCACIÓN DEL SENSOR DE PRESIÓN EN LA DESCARGA	10 10 13
2.6.1.2.	DE LA BOMBA COLOCACIÓN DEL SENSOR DE PRESIÓN PARA MEDIR LA	13
2.6.1.3.	PERDIDA DE CARGA COLOCACIÓN DEL SENSOR DE PRESIÓN EN LA INYECCIÓN	14
2.6.1.4.	COLOCACIÓN DEL SENSOR DE PRESIÓN PARA LA	15
2.6.1.5.	COLOCACIÓN DE LOS SENSORES DE PRESIÓN EN LA	15
2.6.2. 2.6.2.1 2.6.3. 2.6.3.1.	PRESION DIFERENCIAL COLOCACIÓN DEL SENSOR DE PRESIÓN DIFERENCIAL. GASTO GASTO DE LÍQUIDO	17 18 18 24

2.6.3.1.1.	COLOCACIÓN DEL SENSOR DE GASTO DE LÍQUIDO	28
2.6.3.2.	GASTO DE GAS	29
2.6.3.2.1.		32
2.0.4.	COLOCACIÓN DEL SENSOR DE TEMPERATURA DEL GAS	33 34
2.0.4.1.	DOSIFICADOR DE SÓLIDOS	35
2.6.5.1.	COLOCACIÓN DEL DOSIFICADOR	35
2.6.6.	PESO	36
2.6.6.1.	COLOCACIÓN DEL SENSOR DE PESO	36
2.6.7.	POSICIÓN DE LA TUBERÍA EXPERIMENTAL	36
2.6.7.1.	COLOCACIÓN DEL SENSOR DE POSICIÓN	38
2.6.8.	VELOCIDAD	39
2.6.8.1.	COLOCACION DEL SENSOR DE VELOCIDAD DE GIRODE LA BOMBA	40
2.6.8.2.	COLOCACIÓN DEL SENSOR DE VELOCIDAD DE GIRO DEL	40
2.6.8.3.	COLOCACIÓN DEL SENSOR DE VELOCIDAD DE GIRO DEL	41
	MALACATE PRINCIPAL	
2.6.8.4.	COLOCACION DEL SENSOR DE VELOCIDAD DE GIRO PARA FL MALACATE SECUNDARIO	41
	ACONDICIONAMIENTO DE SEÑALES Y ADQUISICIÓN DE DATOS	43
3.1.	ACONDICIONAMIENTO DE LAS SEÑALES DE PRESIÓN	43
3.2.	ACONDICIONAMIENTO DE SEÑALES DE PRESIÓN	45
	DIFERENCIAL	
3.3.	ACONDICIONAMIENTO PARA LAS SEÑALES DE TEMPERATURA	46
3.4.	ACONDICIONAMIENTO PARA LA SEÑAL DE PESO	46
3.5.	ACONDICIONAMIENTO PARA LA SEÑAL DE POSICIÓN	46
0.0		47
3.6.	ACONDICIONAMIENTO DE LAS SENALES DE VELOCIDAD	47
3.7. 3.7.1		47 78
5.7.1.	Y 1143	40
3.7.2.	ACONDICIONADOR NATIONAL INSTRUMENT SCXI 1121	48
3.7.3.	CHASIS NATIONAL INSTRUMENTS	49
3.7.4.	CAJA RECEPTORA "SCB 100 PIN CONNECTOR BLOCK"	50
3.8.	TARJETA DE ADQUISICIÓN DE DATOS NATIONAL INSTRUMENTS	51
3.9.	MULTIPLEXEO	53
391	CONEXIÓN DEL INVERSOR DE LA BOMBA	55

3.9.2. CONEXIÓN DEL INVERSOR DEL DOSIFICADOR DE SÓLIDOS 55

56

65

- 3.9.3. CONEXIÓN DEL INVERSOR DEL MALACATE PRINCIPAL
- 3.9.4. CONEXIÓN DEL INVERSOR DEL MALACATE SECUNDARIO 57
- 3.10. DISEÑO DEL SOFTWARE PARA EL REGISTRO Y LA 58 VISUALIZACIÓN DE LAS VARIABLES A MEDIR EN EL LABORATORIO DEL EEFMTR Y CONTROL DE OPERACIÓN DE LOS EQUIPOS

CAPÍTULO 4 PUESTA EN OPERACIÓN DEL SISTEMA DE MEDICIÓN DEL EQUIPO EXPERIMENTAL DE FLUJO MULTIFÁSICO Y TRANSPORTE DE RECORTES

4.1.	NOMENCLATURA	65						
4.2.	CALIBRACIÓN DE SENSORES							
4.2.1.	CALIBRACION DE LOS SENSORES DE PRESIÓN	70						
4.2.2.	CALIBRACION DE LOS SENSORES DE PRESIÓN	78						
	DIFERENCIAL							
4.2.3.	CALIBRACION DEL SENSOR DE TEMPERATURA	80						
4.2.4.	CALIBRACION DEL SENSOR DE PESO	80						
4.2.5.	CALIBRACION DEL SENSOR DE POSICIÓN	80						
4.2.6.	CALIBRACION DE LOS SENSORES DE VELOCIDAD	81						

CAPÍTULO 5 PRUEBAS EN EL EQUIPO EXPERIMENTAL DE FLUJOS 83 MULTIFÁSICOS Y DE TRANSPORTE DE RECORTES

5.1.	CARACTERIZACIÓN DEL SISTEMA HIDRÁULICO	83
5.1.1.	OBTENCIÓN DE LAS CURVAS DEL SISTEMA CON DISTINTAS	83
	CONDICIONES DE APERTURA DE LA VÁLVULA DE	
	ESTRANGULAMIENTO	
5.1.2.	OBTENCIÓN DE LAS CURVAS DEL SISTEMA PARA	90
	DISTINTAS INCLINACIONES DE LA TUBERÍA EXPERIMENTAL	
5.2.	TRANSITORIO HIDRÁULICO	92
5.3.	COEFICIENTE DE FRICCIÓN	93
5.4.	PATRONES DE FLUJO	94
5.5.	VELOCIDAD DE ARRASTRE DE SÓLIDOS	96
	CAPÍTULO 6	
	CONCLUSIONES	99

CONCLUSIONES	55
BIBLIOGRAFÍA	101

ÍNDICE DE FIGURAS	i
ÍNDICE DE TABLAS	v
ÍNDICE DE GRÁFICAS	vii

INTRODUCCIÓN

Los Yacimientos Naturalmente Fracturados de la Región Marina de Pemex Exploración Producción, son de suma importancia para la industria nacional productora de crudo. Uno de estos yacimientos es Cantarell, en el que la presión del yacimiento se ha abatido hasta alcanzar valores muy bajos, lo que limita su explotación con la tecnología de perforación convencional. Yacimientos como éste presentan áreas de oportunidad para la tecnología de Perforación Bajo Balance (PBB), la cual busca inducir presión en el pozo mediante la inyección de algún fluido de perforación, lo que generalmente lleva a tener flujo multifásico concurrente de dos o más fases (sólidos-líquidos-gases).

Además, con el fluido de perforación se controla la presión del yacimiento al mantener la presión de fondo dentro de un cierto intervalo, lo que se logra con relativa facilidad cuando se perfora convencionalmente, pero no así con la PBB debido a la presencia de flujo multifásico. Esto dificulta predecir el punto de operación del sistema bajo condiciones dinámicas.

El proyecto denominado Modelo Numérico de la Hidráulica de la Perforación, incluye el desarrollo de modelos que deben ser validados con información experimental y de campo. En particular se requiere formular y validar modelos apropiados de flujo multifásico aplicables en tubos de sección simple y de sección anular. Para ello, la Coordinación de Yacimientos Naturalmente Fracturados del Instituto Mexicano del Petróleo (IMP), construyó un equipo experimental para el estudio de flujo multifásico sólido-líquido-gas y solicitó apoyo al grupo de hidromecánica del Instituto de Ingeniería de la UNAM para proveer la ingeniería de instrumentación y de control necesaria para el óptimo funcionamiento de esta instalación, y para coadyuvar a la realización del proyecto a través de su caracterización hidráulica, proyecto del cual se deriva el presente trabajo.

En el capítulo 1 se presenta una descripción general del equipo experimental de flujo multifásico y de transporte de recortes. En el capítulo 2 se explica la instrumentación del equipo experimental. En el capítulo 3 se detallan los sistemas de adquisición de datos y acondicionadores de señal. El capítulo 4 trata lo relacionado con la puesta en marcha del equipo experimental. En el capítulo 5 se mencionan cada una de las pruebas realizadas. Finalmente en el capitulo 6 se dan las conclusiones de este trabajo.

CAPÍTULO 1

DESCRIPCIÓN DEL EQUIPO EXPERIMENTAL DE FLUJO MULTIFÁSICO Y DE TRANSPORTE DE RECORTES

El "Equipo Experimental de Flujo Multifásico y de Transporte de Recortes", "EEFMTR" como se le denominará en adelante, es una instalación construida en el Instituto Mexicano del Petróleo (IMP) con el objetivo de formular y validar con información experimental modelos apropiados de flujo multifásico aplicables en tubos de sección simple y de sección anular.

El equipo está formado por las siguientes secciones, que se presentan en el diagrama de la figura 1.1.

- 1) Sección de fase líquida (agua).
- 2) Sección de fase gaseosa (aire).
- 3) Sección de fase sólida (recortes).
- 4) Sección de mezclado.
- 5) Sección experimental (flujo multifásico).
- 6) Sección de separación de fases.
- 7) Sección de posicionamiento de la tubería experimental.
- 8) Sección de control, medición y adquisición de datos.

Fig. 1.1. Diagrama de bloques del EEFMTR del IMP.

En la figura 1.2. se muestra un esquema general en elevación y planta del equipo experimental de flujo multifásico y en la figura 1.3. una fotografía de la instalación en el Instituto Mexicano del Petróleo.

Fig. 1.2. Esquema general (elevación y planta) del EEFMTR del IMP.

Fig. 1.3. Laboratorio de EEFMTR del IMP.

1.1. SECCIÓN DE FASE LÍQUIDA

La sección de fase líquida está compuesta por un tanque de agua (presa) con divisiones internas, un equipo de bombeo con variador de velocidad (Inversor Siemens Micromaster 440^[1.1]) para control del gasto de agua, una válvula de control de tipo mariposa y sensores de presión y gasto; éste último formado por una placa orificio y un transductor de presión diferencial (figura 1.4).

Fig. 1.4. Fotografía de la sección de fase líquida (agua) y gas (aire).

^{1.1} Para más detalles del inversor ver "Manual del Inversor Micro Master 440".

1.2. SECCIÓN DE FASE GASEOSA

La sección de fase gaseosa (aire) está compuesta por un compresor de aire^{1.2}, un tanque a la salida del compresor (figura 1.4.), una válvula de aguja para control del gasto de aire y sensores de presión y gasto, éste último formado por una placa orificio, un transductor de presión diferencial y uno de presión absoluta.

1.3. SECCIÓN DE FASE SÓLIDA

Esta sección está formada por un tanque de almacenamiento de recortes (figura 1.4.), desde el cual se transportan a través de una manguera flexible de 3", empujándolos con aire a presión, hasta el tanque dosificador que se encuentra sobre la unidad móvil comúnmente denominada "el carrito" (figura 1.5.). De este último tanque se inyectan los recortes al cabezal de mezclado con el dosificador de recortes construido con un tornillo sinfín, cuya velocidad de giro se establece con un variador de velocidad (inversor) para controlar la dosificación. En el tanque dosificador de recortes está instalada una celda de carga para medir la variación del peso en el tanque debida a la salida de los recortes.

Fig. 1.5. Fotografía de la unidad móvil, "el carrito".

^{1.2} Para más detalles del compresor ver el "User Manual".

1.4. SECCIÓN DE MEZCLADO

La sección de mezclado está sobre la unidad móvil (figura 1.5.) y está formada por un conjunto de válvulas que permiten hacer la mezcla de las tres fases. En una primera etapa, el flujo de aire, que es controlado con una válvula de aguja, se incorpora al agua, que a su vez está controlada al establecer la velocidad de giro de la bomba centrífuga. Posteriormente, se le adicionan los recortes que se dosifican controlando la velocidad de giro del tornillo sinfín que los empuja al flujo bifásico agua-aire, para formar el flujo trifásico, sólido, líquido, gas.

1.5. SECCIÓN EXPERIMENTAL

En esta sección está instalada una tubería de PVC transparente de 4" de diámetro y 15 metros de longitud en la etapa de "ida" (figuras 1.5. y 1.6.) y otro tanto en la de "retorno", formadas por cinco tramos de 3 metros cada uno. En la parte central de la tubería de "ida" se encuentra la zona de observación de experimentos o zona de muestreo y en ella están instaladas seis preparaciones para transductores de presión absoluta y dos para un transductor de presión diferencial, así como una cámara de alta velocidad. En la tubería de "retorno" también hay preparaciones para transductores de presión absoluta y diferencial.

Fig. 1.6. Sección experimental.

1.6. SECCIÓN DE SEPERACIÓN DE FASES

Esta sección está formada por un separador de gases y una criba (figura 1.7.). El separador de gases es un pequeño tanque, a la salida de la tubería que conduce el flujo multifásico, que permite separar el aire mezclado. La criba o zaranda separa los sólidos

del agua; los primeros se van al tanque de almacenamiento de recortes y el agua cae al tanque de agua (presa).

Fig. 1.7. Separador de fases.

1.7. SECCIÓN DE POSICIONAMIENTO DE LA TUBERÍA EXPERIMENTAL

Está formada por una torre, una estructura sobre la que se encuentra la tubería experimental y por un par de malacates, controlados con dos variadores de velocidad, que permiten izar la estructura para posicionarla a la inclinación a la que se desea realizar el experimento.

Fig. 1.8. Inclinación de la estructura.

1.8. SECCIÓN DE CONTROL, MEDICIÓN DE VARIABLES Y ADQUISICIÓN DE DATOS

El control de la operación de la bomba, del dosificador de sólidos y de la posición de la estructura, así como la medición de las más de 40 variables, se hace desde una computadora personal equipada con una tarjeta de adquisición de datos, que registra las señales provenientes de los acondicionadores de señal para los sensores ubicados a lo largo de la instalación, además establece los parámetros de control de los variadores de velocidad. Tanto el sistema de control, de medición de variables y de adquisición de datos están ubicadas dentro de la caseta de control (figuras. 1.9. y 1.10.)

Fig. 1.9. Ubicación de la Caseta.

Fig. 1.10. Interior de la Caseta.

CAPÍTULO 2

INSTRUMENTACIÓN DEL EQUIPO EXPERIMENTAL PARA EL ESTUDIO DE FLUJO MULTIFÁSICO

Como se ha comentado el equipo experimental consta de varias secciones, con requerimientos de medición particulares. En este capítulo se explicará como se llevó a cabo la instrumentación en cada una de ellas.

2.1. INSTRUMENTACIÓN DE LA SECCIÓN DE FASE LÍQUIDA

Para conocer el punto de operación del sistema hidráulico es necesario conocer ciertas variables. Para caracterizar esta etapa, a la salida de la bomba interesa medir la presión de descarga y el gasto que esta entrega. Al motor de la bomba se le colocó un inversor para poder variar su velocidad y así controlar la cantidad de líquido que se esta introduciendo a la mezcla multifásica. En la instalación se colocó una válvula tipo mariposa para provocar una pérdida de carga, adicional, en la tubería. Después de dicha válvula se colocó un sensor de presión para conocer la pérdida de carga.

Fig. 2.1. Sección de fase líquida.

2.2. INSTRUMENTACIÓN DE LA SECCIÓN DE FASE GASEOSA

En la sección de gas se colocaron medidores de gasto tanto para medir la cantidad de gas inyectado en la zona experimental como al tanque de almacenamiento de sólidos, esta para tener cuantificado la cantidad de gas inyectada al sistema.

El tanque de sólidos se debe presurizar al mismo nivel de la presión de inyección, esto con el fin de poder inyectar los sólidos a la tubería experimental. Por lo que se instalaron sensores de presión en el tanque de almacenamiento de sólidos y en la tubería de inyección de gas, además se montó un sensor de temperatura para conocer la temperatura del gas.

Fig. 2.2. Sección de fase gaseosa.

2.3. INSTRUMENTACIÓN DE LA SECCIÓN DE FASE SÓLIDA

En el tanque de almacenamiento de sólidos se tiene colocada una celda de carga, este tanque está sujetado por tres postes, en uno de los cuales se colocó el sensor, éste medirá solo un tercio del peso total. El objetivo es que se varié el peso del tanque dependiendo si se añaden o extraen sólidos y así conocer el gasto de sólidos.

Para controlar la dosificación de los sólidos se tiene un tornillo sin fin con un motor acoplado al cual se le puede variar la velocidad mediante un inversor. Para llenar con sólidos el tanque se hace empujándolos con aire por medio de una manguera.

Fig. 2.3. Sección de fase sólida.

2.4. INSTRUMENTACIÓN DE LA SECCIÓN EXPERIMENTAL

Con el objetivo de conocer el comportamiento de la presión en el interior del tubo, en la sección experimental, se colocaron sensores de presión apareados, uno en el lomo superior de la tubería y otro en el inferior.

En la etapa de "ida" de la tubería experimental se colocó una pareja a la entrada y otra a la salida, una más en la zona de observación, parte central de la tubería, otras dos separadas 2 metros aguas arriba y aguas abajo de la zona de observación. Además se colocó un sensor de presión diferencial para conocer la pérdida de carga debido a la fricción de la tubería.

En la etapa de "retorno" de la tubería se colocó una pareja de sensores en la zona de observación, parte central de la tubería, otras dos separadas 2 metros aguas arriba y aguas abajo de la citada tubería.

Fig. 2.4. Sección experimental.

2.5. INSTRUMENTACIÓN DE LA SECCIÓN DE POSICIONAMIENTO DE LA TUBERÍA EXPERIMENTAL

Una de las cualidades que posee la instalación es la de poder hacer experimentos a diferentes inclinaciones de la tubería experimental. Este dato de inclinación debe ser una señal que alimente a la computadora. Para lograr esto es necesario que se coloque un sensor. Dicho sensor se colocó en el eje de giro de la estructura. Para mover la estructura de la tubería experimental se utilizan dos malacates.

Fig. 2.5. Sección de posicionamiento.

2.6. VARIABLES A MEDIR

Como se puede observar, en cada una de las secciones se requieren medir diferentes variables. Algunas de ellas son del mismo tipo en diferentes secciones, por ello las podemos agrupar en variables de:

Presión, presión diferencial, gasto del líquido y del gas, temperatura del gas, dosificador de sólidos, peso de sólidos, posición de la tubería experimental y velocidad de giro de los matores.

A continuación se explica cada una de ellas.

2.6.1. PRESIÓN

La presión es la fuerza ejercida por unidad de superficie y puede expresarse en Kg/cm², PSI (libras por pulgada cuadrada), bar, atmósfera, pascal, etc.

La presión puede medirse en valores absolutos o diferenciales, la figura 2.9 ilustra las clases de presión que los instrumentos miden comúnmente en la industria.

Fig. 2.6. Formas de ver la medida de presión.

La presión absoluta se mide con relación al cero absoluto de presión, puntos A y A´ de la figura.

La presión atmosférica es la presión ejercida por la atmósfera terrestre medida con un barómetro. A nivel del mar, esta presión es aproximadamente igual a 760mmHg, este valor define la presión ejercida por la atmósfera.

La presión manométrica es la determinada por un elemento que mide la diferencia entre la presión absoluta y la atmosférica del lugar donde se efectúan la medición, punto B de la figura. Hay que señalar que al aumentar o disminuir la presión atmosférica, disminuye o aumenta respectivamente la presión leída, puntos B y B', que bien es despreciable al medir presiones elevadas.

La presión diferencial es la diferencia de presión entre dos puntos, puntos C y C'.

La presión vacuométrica es la diferencia de presiones entre la presión atmosférica existente y la presión absoluta, es decir, la presión medida por debajo de la atmosférica, puntos D, D', y D''. Las variaciones de la presión atmosférica influyen considerablemente en estas lecturas.

Para medir la presión a lo largo de la instalación se utilizaron transductores de presión de membrana rasante.

La membrana consiste en una o varias cápsulas circulares conectadas rígidamente entre si por soldadura, de tal forma que al aplicar presión cada cápsula se deforma. El material de la membrana es comúnmente aleación de níquel. Estas deformaciones son detectadas por strain gage que conectados a una fuente de voltaje traducen el valor de presión en un voltaje.

Este tipo de sensores llevan colocado un strain gage en la membrana. Los strain gages basan su funcionamiento en la variación de resistencia que tiene lugar cuando un hilo se encuentra sometido a una tensión mecánica por la acción de una fuerza (figura 2.7.).

Fig. 2.7. Construcción de un strain gages.

Los strain gages están formados por varios bucles de hilo muy fino que están pegados a una hoja a base de cerámica, papel o plástico.

La aplicación de la fuerza estira o comprime los hilos, según sea el tipo de esfuerzo, modificando la resistencia del strain gage.

El strain gage forma parte de un puente de Wheatstone (figura 2.8.), cuando está sin tensión tiene una cierta resistencia eléctrica y con cualquier variación de la fuerza aplicada que mueva la membrana del transductor cambia la resistencia del strain gage y desequilibra el puente.

Fig. 2.8. Conexión de un strain gages.

Una innovación del strain gage la constituyen los transductores de presión de silicio difundido. Consisten en un elemento de silicio situado dentro de una cámara que contiene silicón que a su vez está en contacto con el proceso a través de un diafragma flexible. El sensor esta fabricado a partir de un sensor monocristalino de silicio en cuyo seno se difunde boro para formar varios puentes de Wheatstone constituyendo así un strain gage autocontenido (Figura 2.9.). El espesor de la membrana del sensor determina el intervalo de medición del instrumento.

Fig. 2.9. Strain gages autocontenido.

Cuando no existe presión, los valores de E1 y E2 son iguales, al aplicar la presión del proceso Ra y Rd varían al igual que Rb y Rc lo que da lugar a una diferencia de valores en E1 y E2. Esta diferencia se aplica a un amplificador diferencial de alta ganancia para obtener una señal de salida de 4 a 20 mA.

Los strain gages de este tipo pueden alimentarse con C.C. o C.A. Tienen una respuesta en frecuencia excelente y pueden utilizarse en medidas estáticas y dinámicas, generalmente no son influidas por campos magnéticos, poseen una señal de alta sensibilidad a vibraciones. además poseen una gran ventaja que es la de estar en contacto directo con el proceso sin mecanismos intermedios

2.6.1.1. COLOCACIÓN DEL SENSOR DE PRESIÓN EN LA DESCARGA DE LA BOMBA

Para medir la presión en la descarga de la bomba se colocó un arreglo manómetro sensor, justo en la descarga de la bomba. El arreglo quedó instalado de la siguiente forma (figura 2.10.).

Fig. 2.10. Presión en la descarga de la bomba.

2.6.1.2. COLOCACIÓN DEL SENSOR DE PRESIÓN PARA MEDIR LA PÉRDIDA DE CARGA

Para medir la pérdida de carga debida a la estrangulación de la válvula se colocó un sensor aguas abajo de ella. Para considerar también las pérdidas por los codos y la misma tubería, se colocó un sensor en el carrito, antes de la mezcla. La siguiente figura muestra la colocación de los sensores (Fig. 2.11).

Fig. 2.11. Sensores para medir la pérdida de carga.

Para fijar los sensores a la tubería es necesario utilizar acopladores para conectarlos a conexiones hidráulicas estándar NPT de 1/8" de diámetro. Como se muestra a continuación (Fig. 2.12.).

Fig. 2.12. Colocación de los sensores en la tubería.

2.6.1.3. COLOCACIÓN DEL SENSOR DE PRESIÓN EN LA INYECCIÓN DE GAS

Para conocer la presión del gas, en la instalación experimental, se colocaron sensores de presión tanto en la tubería de 2" de diámetro como en la de 1" de diámetro. Estos sensores se colocaron aguas abajo de la placa de orificio, instalada para la medición del gasto (Fig. 2.13.).

Fig. 2.13. Presión en la inyeción de gas.

El acoplamiento de los sensores con la tubería se puede ver en la figura 2.12.

2.6.1.4. COLOCACIÓN DEL SENSOR DE PRESIÓN PARA LA PRESURIZACIÓN DEL TANQUE DE SÓLIDOS

El tanque de almacenamiento de sólidos es necesario que esté presurizado, a la misma presión del flujo inyección, esto para que cuando se quiera inyectar sólidos a la zona de mezclado no se tenga una diferencia de presión entre el tanque y el flujo la inyección, que ocasione que los sólidos no fluyan con facilidad

El arreglo manómetro-sensor está colocado en la parte superior del tanque de almacenamiento de sólidos, como se muestra en la siguiente figura (Fig. 2.14.).

Fig. 2.14. Tanque de almacenamiento de los sólidos.

2.6.1.5. COLOCACIÓN DE LOS SENSORES DE PRESIÓN EN LA TUBERIA EXPERIMENTAL

Debido a que en la sección experimental transita un flujo multifásico. Por la parte superior, del interior de la tubería, fluirá el gas y para evitar que se queden burbujas atrapadas en las cavidades de los sensores de presión, se utilizaron sensores de membrana rasante y para garantizar su colocación al ras del interior de la tubería se diseñaron y construyeron piezas especiales figura 2.15.

Fig. 2.15. Piezas diseñadas y herramienta.

Para hacer las preparaciones de los sensores de presión, primero se colocaron las bridas en el lugar donde se montará el sensor. Se pone la guía junto con la broca y se realiza un agujero pasado. Figura 2.16.

Fig. 2.16. Perforación del tubo de acrílico.

La siguiente perforación se realiza con una broca diseñada para realizar la cavidad en donde se aloja el sensor. Primeramente se calibra la profundidad de la perforación. Figura 2.17.

Fig. 2.17. Realización de la ceja para montar el sensor.

Finalmente se monta el sensor de presión. Figura 2.18.

Fig. 2.18. Colocación del sensor de presión en la tubería experimental.

A continuación se muestra un corte y el conjunto de las piezas necesarias de cómo queda la conexión del sensor en la tubería de acrílico (Fig. 2.19.).

Fig. 2.19. Piezas y corte de la colocación del sensor de presión en la tubería experimental.

2.6.2. PRESION DIFERENCIAL

La presión diferencial es la que existe entre dos puntos. Para medir este tipo de presión, como la generada por la placa de orificio se utilizó un transductor de presión diferencial cuyo funcionamiento esta basado en la variación de la

inductancia de una bobina, similar al de un LVDT (Linear Variable Differential Transformer).

Cuando una corriente alterna excita al devanado primario un voltaje es inducido al devanado secundario. Cuando el núcleo está puesto a la mitad de los dos devanados del secundario, el voltaje inducido es el mismo pero opuesto en fase 180°. El voltaje en los dos devanados se cancela y por lo tanto el voltaje de salida es cero. Cuando el núcleo es movido de su posición central hay un desvalance mutuo entre el devanado primario y secundario y por lo tanto un cambio en el nivel de voltaje a la salida ya sea positivo o negativo dependiendo del movimiento del núcleo. El voltaje de salida es lineal en función a la posición del núcleo. La dirección del movimiento puede ser determinada por la fase del voltaje de salida.

La frecuencia del voltaje aplicado al devanado primario puede ser de 50 a 25000 Hz. Si el transductor de presión diferencial es usado para medir desplazamientos dinámicos, la frecuencia usada deberá ser diez veces mayor que la mayor frecuencia de la señal dinámica. Comúnmente la entrada de voltaje oscila entre 5 a 15 V y requiere una potencia menor a 1w.

2.6.2.1. COLOCACIÓN DEL SENSOR DE PRESIÓN DIFERENCIAL

El sensor de presión diferencial se colocó en la parte superior de la tubería experimental. Las tomas se colocaron a 2 metros tanto aguas arriba como aguas abajo del sensor que está en la zona de observación.

Cada una de las tomas se colocó con una inclinación de 60°, ver figura 2.20, con objeto de que la toma siempre tenga agua no importando a que inclinación se encuentre la estructura y así no introducir errores en la medición debido a alguna burbuja de aire dentro de la misma.

Fig. 2.20. Tomas de presión diferencial.

2.6.3. GASTO

En la mayor parte de las operaciones realizadas en procesos industriales, laboratorio y plantas piloto es muy importante la medición de gastos ya sea de líquidos o de gases.

La medición de gasto en la industria se efectúa principalmente con elementos que dan lugar a una presión diferencial al paso del fluido. Entre estos elementos se encuentran: la placa de orificio o diafragma, la tobera y el tubo Venturi.

La placa de orificio usada como medidor de gasto aprovecha la pérdida de carga que genera, midiendo la diferencia de presión entre el lado de alta presión y el lado de baja presión, que depende de la velocidad del fluido. Se estima que más del 60% de los medidores de gasto en la industria son de este tipo.

Las principales ventajas de este tipo de medidores de gasto son:

-Su fácil construcción y que no contienen partes móviles.

-Su funcionamiento está muy bien entendido.

-Son baratos en comparación a otro tipo de medidores.

-Se pueden usar en cualquier orientación.

-Se pueden usar en la mayoría de los gases y líquidos.

Las principales desventajas son:

-Debe ocurrir una caída de presión significativa.

- -La señal de salida es no lineal.
- -Puede sufrir incrustaciones de partículas y erosión, lo que provoca errores.

Debido a las ventajas con que cuentan las placas de orificio, se optó por ocuparlas para la medición de gasto tanto en la sección de líquido como en la de gas

La placa de orificio o diafragma consiste en una placa perforada instalada en la tubería, con dos tomas conectadas una aguas arriba y otra aguas abajo de la placa, en las que se mide la presión diferencial proporcional al cuadro del gasto. La disposición de las tomas pueden ser de diversas formas como se muestra en la figura 2.21.

Fig. 2.21. Tipo de tomas para una placa de orificios.

Tomas en la brida: Es bastante utilizada porque su instalación es cómoda ya que las tomas están taladradas en las bridas que soportan la placa y situadas a 1 pulgada de distancia de la misma.

Tomas en la vena contraída. La toma aguas abajo esta situada a una distancia de la placa de orificio de 0.5 diámetros de la tubería y la toma aguas arriba se sitúa a 1 diámetro de la tubería.

Tomas en la cámara anular: Las tomas están situadas inmediatamente antes y después del diafragma y requieren el empleo de una cámara anular especial. Este tipo de tomas son de gran uso en Europa.

Tomas en la tubería. Las tomas aguas arriba y aguas abajo están situadas a 2.5 y 8 diámetros, respectivamente de la placa de orificio. Este tipo de tomas se emplean cuando se desea aumentar el intervalo de medida de un medidor de gasto dado, ya que están en un lugar menos sensible a la medida.

El orificio de la placa puede ser concéntrico, excéntrico o segmental, con un pequeño orificio de purga para los pequeños arrastres sólidos o gaseosos que pueda llevar el fluido (figura 2.22).

Fig. 2.22. Tipo de perforaciones para una placa de orificio.

Para el diseño de placas de orificio se utilizan normas variadas, entre las cuales se destacan las siguientes:

-ISO Organización Internacional de Estandarización.
-Norma Francesa Anfor.
-Norma ASME Asociación Americana de Ingenieros Mecánicos.
-Norma AGA Asociación de Medición de Gases.
-Norma DIN.
-Norma Inglesa BS.
-Norma Italiana UNI.
-Norma ISA Sociedad de Instrumentistas de América.

Los medidores de gasto, tanto de líquido como de gas, que se optaron por ocupar en la instalación fueron del tipo placa de orificio con tomas a 1D y 0.5D (fig. 2.21. b),

con un orificio concéntrico. Dicha placa se construyó de acuerdo con la norma ISO/DIS 5167^{2.1}

En la figura 2.23. puede verse el comportamiento de la presión a lo largo de la tubería antes y después de una placa de orificio. Gráficamente se observa porqué las tomas son a 1D aguas arriba de la placa de orificio y 0.5D aguas abajo de la placa de orificio.

Fig. 2.23. Comportamiento de la presión aguas arriba y aguas abajo de la placa de orificios.

La fórmula del gasto, para fluidos no compresibles, obtenida con los elementos de presión diferencial se basa en la aplicación del teorema de Bernoulli (altura cinética + altura de presión + altura potencial =cte.) (Figura 2.24).

Fig. 2.24. Teorema de Bernoulli.

Se tiene:

$$\frac{P_1}{\rho} + \frac{1}{2}v_1^2 + gZ_1 = \frac{P_2}{\rho} + \frac{1}{2}v_2^2 + gZ_2$$
 Ec. 2.1.

^{2.1} Para mas detalle de esta norma, consultar Norma ISO/DIS 5167.

donde:

 P_1 y P_2 son las presiones ejercidas por el fluido. v_1 y v_2 son las velocidades del fluido. Z_1 y Z_2 son las alturas.

 ρ es la densidad del fluido.

g es la aceleración de la gravedad (9.8m/s²).

Considerando una tubería horizontal, es decir que: $Z_1 = Z_2$ entonces.

$$(P_1 - P_2) = \frac{\rho}{2} (v_2^2 - v_1^2)$$
 Ec. 2.2.

Sabiendo que:

$$Q = A_1 v_1 = A_2 v_2$$
. Ec. 2.3.

-

Donde:

Q es el gasto.

 A_1 es el área del tubo antes de la obstrucción.

 A_2 es el área del tubo después de la obstrucción.

Entonces:

$$v_1 = \frac{A_2}{A_1} v_2$$
 Ec. 2.4.

$$\frac{A_2}{A_1} = \beta^2$$
 Ec. 2.5.

$$\beta = \frac{d}{D}$$
 Ec. 2.6.

Sustituyendo 2.5 en 2.4.

$$v_1 = \beta^2 v_2$$
 Ec. 2.7.

Sustituyendo 2.7 en 2.2 y reacomodando.

$$\left(v_{2}^{2}-\left(\beta^{2}v_{2}\right)^{2}\right)=\frac{2}{\rho}\left(P_{1}-P_{2}\right)$$
 Ec. 2.8.

$$(v_2^2 - \beta^4 v_2^2) = \frac{2}{\rho} (P_1 - P_2)$$
 Ec. 2.9.

$$v_2 = \sqrt{\frac{2(P_1 - P_2)}{\rho(1 - \beta^4)}}$$
 Ec. 2.10.

Sustituyendo 2.10 en 2.3.

$$Q = A_2 \sqrt{\frac{2}{\rho(1-\beta^4)}} \sqrt{(P_1 - P_2)}$$
 Ec. 2.11.

Haciendo *K* igual a:

$$A_2 \sqrt{\frac{2}{\rho(1-\beta^4)}} = K$$
 Ec. 2.12.

Y

$$(P_1 - P_2) = \Delta P$$
 EC. 2.13.

Sustituyendo 2.13 y 2.12 en 2.11

$$Q_{v} = K \sqrt{\Delta P}$$
 Ec. 2.14.

En la Ec. 2.14 no se están considerando elementos que podrían generar errores, tal como las perdidas por fricción en la tubería. Para ajustar estos posibles errores, se añade un término a la ecuación que es conocido como coeficiente de descarga (C_d). Este coeficiente proviene de datos experimentales avalados por gran cantidad de datos de muchos países y laboratorios que se han acumulado durante años (Fig. 2.25.), para el caso particular de las tomas del tipo antes mencionado (Fig. 2.21b.).

Fig. 2.25. Datos experimentales para la obtención del C_d.

A partir de estas curvas se ha establecido una ecuación para el cálculo del C_d que es la siguiente:

$$C_d = 0.5959 + 0.0312\beta^{2.1} - 0.1840\beta^8 + 0.0029\beta^{2.5} \left(\frac{10^6}{\text{Re}}\right)^{0.75} + 0.090L_1 \left(\beta^4 \left(1 - \beta^4\right)^{-1}\right) - 0.0337L_2\beta^3 \quad \text{Ec. 2.15.}$$

Re, número de Reynolds, es un coeficiente adimensional el cual sirve para identificar que tan turbulento es el flujo y se calcula de la siguiente forma.

$$\operatorname{Re} = \frac{VD\rho}{\mu}$$
 Ec. 2.16.

$$v = \frac{\mu}{\rho}$$
 Ec. 2.17.

$$\therefore \operatorname{Re} = \frac{VD}{V}$$
 Ec. 2.18.

Por lo tanto la ecuación para el cálculo del gasto es la siguiente:

$$Q_v = C_d K \sqrt{\Delta P}$$
 Ec. 2.19.

En el caso de fluidos compresibles, su densidad varía en toda la sección ya que cambia la presión, la temperatura y el peso específico. No obstante la expresión final para fluidos compresibles es muy similar a la de los fluidos incompresibles introduciendo un coeficiente experimental de expansión, para considerar la expansión ocurrida durante la aceleración del flujo.

$$Q_m = N_1 E_v Y d^2 C_d \sqrt{\rho_{t,p} \Delta P}$$
 Ec. 2.20.

Donde:

 $C_d^{2.2}$ coeficiente de descarga de la placa de orificio.

d diámetro interior de la placa de orificios tomado a la temperatura de las condiciones de flujo.

 ΔP diferencial de presión generada en la placa de orificio.

 E_{v} aproximación del factor de velocidad.

 N_l factor de conversión de unidades.

Y factor de expansión.

Q gasto.

 ρ_{t_n} densidad del fluido a las condiciones de flujo (P_f, T_f).

2.6.3.1. GASTO DE LÍQUIDO

Como ya se mencionó anteriormente, se tiene una bomba centrifuga marca Farbanks Morse modelo FM 5223A-4^{2.3}, para inyectar el líquido al sistema cuya curva de comportamiento carga.gasto es la siguiente.

Graf. 2.1. Curvas de la bombaFM 5223A-4.

^{2.2} El coeficiente de descarga y el factor de expansión son datos empíricos provenientes de experimentos

^{2.3} Para mas detalles de la bomba FM 5223A-4 ver el manual de la bomba. Propiedad del IMP.

Como se mencionó anteriormente, las placas de orificio utilizadas para la medición de gasto, tanto de líquido como de gas, se diseñaron bajo las normas ISO (ref. 2.1), donde se deben tener las siguientes consideraciones para su construcción.

0.0005D § e § 0.02D e § E § 0.05D30° § F § 60° 0.2 § β § 0.75 d ¥ 12.5mm 0.9D § l_1 § 1.1D0.48D § l_2 § 0.52D si β § 0.6 0.49D § l_2 § 0.51D si β > 0.6

El borde G no debe contener ninguna imperfección, como rebabas y debe tener un ángulo de 90°, permitiendo hasta un borde de 0.0004D de radio.

Para los bordes H e I, no importan tanto los defectos.

Para la tubería de 4"de diámetro, se propone dos placas con las siguientes características:

$$d_1 = 63$$
mm.
 $d_2 = 54$ mm.
 $E = 0.03D$
 $E = 0.03*101.6$
 $E = 3.048$ mm

Se propone un valor de e y F:

$$e = 1.524$$
mm.
 $F = 60^{\circ}$.

Usando la Ec. 2.6, las relaciones de diámetros.

$$\beta_1 = 0.62.$$

 $\beta_2 = 0.53.$

El área en el tubo es:

$$A_1 = 0.0081 \text{m}^2$$
.

El área en la placa es:

$$A_{2-\beta l} = 0.0031 \text{m}^2.$$

 $A_{2-\beta 2} = 0.0022 \text{m}^2.$

Calculando L_1 y L'_2 se tiene:

$$L_{1} = D = 101.6$$
$$L'_{2} = \frac{l_{2} - E}{D}$$
$$l_{2} = 0.5D = 50.8mm$$
$$L'_{2} = \frac{50.8 - 3.048}{101.6}$$
$$L'_{2} = 0.47$$

De la Ec. 2.19 se tiene.

$$\Delta P = \left(\frac{Q}{C_d K}\right)^2$$
 Ec. 2.22.

Teniendo en cuenta que para el agua:

$$v = 1.02 \times 10^{-6} \text{ m}^2/\text{s.}$$

 $g = 9.810 \text{ m/s}^2.$
 $\gamma = 9790 \text{ N/m}^3.$
 $\rho = \frac{\gamma}{g} = 9790 \text{ N/m}^3.$

Utilizando las ecuaciones 2.15, 2.16, 2.17, 2.18 y 2.22 y considerando que el gasto máximo de la bomba, según su curva de operación ver grafica 2.1, es 40 l/s a su

velocidad nominal. Se generó la tabla 2.1, en donde se calcularon las diferentes velocidades de flujo, números de Reynolds, valores de C_d y las ΔP , para diferentes gastos.

Tabla para una β=0.53

Tabla para una β=0.62

Q	v	NE	С	Δh	Δh	Δh	Q	v	NE	С	Δh	Δh	Δh
(Ls)	(m/s)			(mca)	(mcHg)	(psi)	(Å)	(m/s)			(mca)	(mcHg)	(psi)
0.00	0.0000.0			0.0000	0.00000	0	0.00	0.0000			0.0000	0.00000	0
0.10	0.0118	1,200	0.6909	0.0002	0.00001	0.0002683	0.10	0.0118	1,200	0.7342	0.0001	0.00001	0.0001197
0.15	0.0177	1,800	0.6680	0.0005	0.00004	0.0006458	0.15	0.0177	1,800	0.7005	0.0002	0.00002	0.0002957
0.20	0.0235	2,401	0.6555	8000.0	0.00007	0.0011923	0.20	0.0235	2,401	0.6821	0.0004	0.00003	0.0005545
0.30	0.0353	3¢01	0.6418	0.0020	0.00016	0.0027977	0.30	0.0353	3,601	0.6621	0.0009	0.00007	0.0013242
0.40	0.0471	4 <i>8</i> 01	0.6344	0.0036	0.00028	0.005091	0.40	0.0471	4,801	0.6512	0.0017	0.00014	0.0024338
0.50	0.0589	6.001	0.6296	0.0057	0.00045	0.0080755	0.50	0.0589	6,001	0.6442	0.0027	0.00022	0.0038859
0.70	0.0824	8,402	0.6238	0.0113	0.00090	0.0161251	0.70	0.0824	8,402	0.6356	0.0055	0.00044	0.007823
1.00	0.1177	12,003	0.6190	0.0235	0.00187	0.0334168	1.00	0.1177	12,003	0.6286	0.0115	0.00091	0.0163232
1.50	0.1766	18,004	0.6150	0.0536	0.00426	0.0761873	1.50	0.1766	18,004	0.6226	0.0263	0.00209	0.0374371
2.00	0.2354	24,005	0.6127	0.0960	0.00762	0.1364294	2.00	0.2354	24,005	0.6194	0.0473	0.00376	0.0672596
2.50	0.2943	30,007	0.6113	0.1507	0.01196	0.2141649	2.50	0.2943	30,007	0.6173	0.0745	0.00591	0.1058069
3.00	03532	36,008	0.6103	0.2177	0.01728	0.3094075	3.00	03532	36,008	0.6158	0.1077	0.00855	0.1530894
3.50	0.4120	42,009	0.6096	0.2971	0.02358	0.4221668	3.50	0.4120	42,009	0.6147	0.1472	0.01168	0.209114
4.00	0.4709	48,011	0.6090	0.3888	0.03085	0.5524498	4.00	0.4709	48,011	0.6139	0.1927	0.01530	0.273886
4.50	0.5297	54,012	0.6085	0.4928	0.03911	0.7002619	4.50	0.5297	54,012	0.6132	0.2445	0.01940	0 3474093
200	03880	60,013	0.6082	0.0091	0.04834	0.8606074	5.00	0.5886	60,013	0.6126	0.3024	0.02400	0.4296872
5.00	0.20474	00,014 70,016	0.6078	0.7378	0.05850	1.0484899	5.50	0.6474	66,014	0.6121	0.3664	0.02908	0.5207224
6.50	0.7005	72,010	0.0070	10200	0.00975	1.2409124	0.00	0.7063	72,016	0.6117	0.4367	0,03400	0.6205169
200	0.7032	/0,01/	0.0075	1 10922	0.00192	1.4008775	020	0.7652	78,017	0.0114	0.5130	0.04072	0.7290728
7.50	0.8240	84,018	0.6060	1.1980	0.09508	1.7023872	7.00	0.8240	84,018	0.6111	0.5956	0.04727	0.8463915
000	0.00417	90,020	0.0009	15665	0.10921	1.9334430	7.50	0.8829	90,020	0.6108	0.0843	0.05431	0.9724746
8.50	1 0006	102.022	0.6066	1 7692	0.14042	2.5142028	8.00	1 0006	90,021	0.0100	0.7792	0.06006	1.1073233
0.00	10505	108.024	0.6065	1 0944	0.15740	2.9192020	000	1.0505	102,022	0.0104	0.8803	0.00980	1.4022016
9.50	1 1 1 8 3	114 025	0.6064	2 21 18	0 17554	3 1431665	9.00	1 1 1 1 9 2	100,024	0.0102	1 1000	0.00727	1 564472
10.00	1.1772	120 026	0.6063	24517	0.19458	3,4839779	10.00	1.1105	120,025	0.6009	1.1009	0.00696	1 7242029
10.50	1,2360	126.028	0.6062	2 7039	0.21459	3 8423438	10.00	1.1774	126,020	0.6007	1.2460	0.10604	1.0120947
11.00	1 2949	132.029	0.6061	2,9684	0.23559	4.2182651	11.00	1 2040	130,020	0.0097	1 4792	0.10004	2 100 54 64
11.50	13538	138 030	0.6060	3 24 53	0.25756	4.6117426	11.50	13539	138 030	0.6004	1.6162	0.12827	2.1005704
12.00	1.4126	144 032	0.6059	3.5345	0.28052	5.022777	12.00	14126	144 032	0.6003	1 7605	0.12027	2 5017844
12.50	1.4715	150 Ø33	0.6058	3.8361	0.30445	5.4513692	12.50	14715	150.033	0.6092	1.9109	0.15166	2,7155619
13.00	1.5303	156 p34	0.6058	4.1501	0.32937	5.8975197	13.00	1.5303	156.034	0.6091	2.0675	0.16409	2,9381123
13.50	1.5892	162 ₀ 36	0.6057	4.4764	0.35527	6.3612293	13.50	1.5892	162,036	0.6090	2.2303	0.17701	3.1694361
14.00	1.6481	168.037	0.6057	4.8151	0.38215	6.8424984	14.00	1.6481	168,037	0.6089	2.3993	0.19042	3.4095338
14.50	1.7069	174 Ø38	0.6056	5.1661	0.41001	7.3413276	14.50	1.7069	174,038	0.6088	2.5744	0.20432	3.6584057
15.00	1.7658	180 Ø40	0.6055	5.5295	0.43885	7.8577174	15.00	1.7658	180,040	0.6088	2.7557	0.21871	39160523
15.50	1.8246	186 Ø 4 1	0.6055	59052	0.46867	8.3916684	15 <i>5</i> 0	1.8246	186,041	0.6087	2.9432	0.23359	4.1824738
16.00	1.8835	192. 0 42	0.6054	6 2933	0.49947	8.9431809	16.00	1,8835	192,042	0.6086	3.1369	0.24896	4.4576706
16.50	19423	198 p 43	0.6054	6.6938	0.53125	9.5122554	16 <i>5</i> 0	19423	198,043	0.6086	3.3367	0.26482	4.7416431
17.00	2,0012	204 D45	0.6054	7.1066	0.56402	10.098892	17.00	2.0012	204,045	0.6085	3.5427	0.28117	5.0343915
17.50	2,0601	210,040	0.6053	7 5 3 18	0.59776	10.703092	17.50	2,0601	210,046	0.6084	3.7549	0.29801	53359161
10.00	2.1109	210,040	0.0033	9095	0.05240	11.524033	18.00	2.1189	216,047	0.6084	3.9732	031534	5.6462172
10.00	2.1770	222.049	0.6052	0.9192	0.00019	12.601072	18.50	2.1778	222,049	0.6083	4.1978	033316	59652951
19.00	2 2 2 2 5 0 0	220 0 51	0.6052	0.2561	0.70400	12.021072	19.00	2 2 3 6 6	228,050	0.6083	4.4285	035147	6 2931499
20.00	23544	240.053	0.6051	9,9501	0.74204	13 087545	19.50	2 2 9 5 5	234,051	0.6082	4.0034	0.37027	6.6297819
20.50	24132	246.054	0.6051	10 3424	0.82082	14 697128	20.00	2.3044	240,053	0.6082	4.9084	0.40024	09/01914
21.00	2,4721	252055	0.6051	10.8541	0.86143	15.424277	20.30	2.9152	240,034	0.0081	5.1577	0.40954	7.6002425
21.50	2.5309	258057	0.6051	113781	0.90303	16.168991	21.00	2.97.21	252,055	0.0001	5.6747	0.42901	0.0640065
22.00	2.5898	264 058	0.6050	119145	0.94560	16,93127	2100	2 2009	200,007	0.0001	5.0435	0.45057	9 4446077
22.50	2.6487	270 p 59	0.6050	12.4633	0.98915	17.711115	22.50	2 6487	270,050	0.6080	6 2164	0.49337	8 8339073
23.00	2.7075	276 p61	0.6050	13.0245	1.03369	18.508527	23.00	2,7075	276.061	0.6080	6.4965	0.51560	9,2319856
23.50	2.7664	282 p62	0.6050	13.5979	1.07920	19.323504	23.50	2,7664	282,062	0.6079	6,7829	0.53832	9.6388425
24.00	2.8252	288 £63	0.6049	14.1838	1.12570	20.156048	24.00	2.8252	288,063	0.6079	7.0753	0.56153	10.054478
24.50	2,8841	294.£65	0.6049	14.7820	1.17318	21.006158	24.50	2,8841	294,065	0.6079	7.3740	0.58524	10,478893
25.00	29430	300 £66	0.6049	153926	1.22164	21.873836	25.00	29430	300,066	0.6078	7.6788	0.60943	10912087
25.50	3.0018	306 Ø67	0.6049	16.0156	1.27108	22.75908	25 <i>5</i> 0	3.0018	306,067	0.6078	7.9899	0.63412	11354061
26.00	3.0607	312.p69	0.6049	16.6509	1.32150	23.661892	26.00	3.0607	312,069	0.6078	8.3070	0.65929	11.804814
26.50	3.1195	318£70	0.6048	17 2985	1.37290	24.582271	26.50	3.1195	318,070	0.6077	8.6304	0.68495	12.264347
27.00	3.1784	324 Ø71	0.6048	17 9586	1.42528	25.520218	27.00	3.1784	324,071	0.6077	8.9600	0.71111	12.732659
27.50	5 2 5 7 2	330 µ72	0.6048	18 63 10	1.47803	20.475752	27.50	3 2372	330,072	0.6077	9.2957	0.73775	13/209751
28.00	32901	330 JJ / 4 240 076	0.0048	193137	1.55299	27.448813	28.00	3 2961	336,074	0.6077	9.6376	0.76489	13.695623
20.00	2 4 1 2 0	240.076	0.6047	20.0129	1.50052	20.439400	28.50	3 3 5 5 0	342,075	0.6076	9.9857	0.79252	14.190276
29.00	2 4 7 3 7	240 J/U 264 070	0.0047	20.7225	1.04405	29.447004	29.00	3.4138	348,076	0.6076	10.3400	0.82063	14.693708
29.00	2 5215	360.070	0.6047	21.4442	1.760192	30.475472	29.50	3,4727	354,078	0.6076	10.7004	0.84924	15 205921
30.50	3 5004	366 080	0.6047	22.9250	1 81044	30 577752	30,00	3 3 3 1 3	300,079	0.0076	11.0670	0.87834	15./20914
31.00	3.6493	372.082	0.6047	23.6839	1.87967	33.656245	30.30	3 3 9 0 4	300,080	0.6075	11.4398	0.02000	16 206088
31.50	3,7081	378 083	0.6047	24,4552	1.94089	34.752307	21.50	2 7001	270.002	0.0075	12 2040	0.95000	17.743670
32.00	3,7670	384 084	0.6047	25 2389	2.00308	35.865939	3100	2 7670	204 004	0.6075	10 5052	0.00062	17 000604
32.50	3.8258	390,086	0.6046	26.0349	2.06626	36.997139	32.00	20360	200.096	0.0075	12.0009	1 02110	19 462 501
33.00	3,8847	396 087	0.6046	26.8433	2.13042	38.145909	33.00	3 9947	396 087	0.6074	13 3065	1.06322	10/705551
33.50	3 9 4 3 6	402 p88	0.6046	27.6640	2.19556	39.312248	33.50	3.9436	402.088	0.6074	13.8064	109575	19,619728
34.00	4.0024	408 <u>0</u> 90	0.6046	28,4971	2.26168	40.496157	34,00	4,0024	408,090	0,6074	14.2225	1,12877	20,210969
34.50	4.0613	414 <u>0</u> 91	0.6046	29 3426	2.32878	41.697636	34.50	4,0613	414 091	0.6074	14 6447	1,16228	20,81099
35.00	4.1201	420 p92	0.6046	30 2005	2.39686	42.916684	35.00	4.1201	420,092	0.6074	15.0731	1.19628	21,419793
35.50	4.1790	426 <u>0</u> 94	0.6046	31.0707	2.46593	44.153302	35.50	4.1790	426,094	0.6073	15.5077	1 23077	22,037377
36.00	4 2379	432.p95	0.6046	31,9533	2.53597	45.407491	36.00	4 2379	432,095	0.6073	15.9485	1.26575	22.663743
36.50	4 2967	438 £96	0.6046	32,8482	2.60700	46.679249	36.50	4 2967	438,096	0.6073	16.3954	130122	23 298891
37.00	43556	444 <u>p</u> 98	0.6045	33,7555	2.67901	47.968578	37.00	43556	444,098	0.6073	16.8486	133719	23 94282
37.50	4.4144	450 <u>0</u> 99	0.6045	34.6752	2.75200	49.275476	37.50	4.4144	450,099	0.6073	17.3079	137364	24.595531
38.00	4.4733	456,100	0.6045	35,6072	2.82597	50.599946	38.00	4.4733	456,100	0.6073	17.7734	1.41058	25 257023
38.50	4.5521	402,101	0.6045	30,2310	2.90092	51.941985 52.201606	38.50	4.5321	462,101	0.6073	18.2450	1.44802	25927298
39.00	4.0910 4.6400	408,103 474,104	0.6045	57 DU83 20 A 226	2.97085 2.05222	35.301396 54.679777	39.00	4.5910	468,103	0.6072	18.7229	1.48594	26.606354
40.00	4 7097	420 105	0.0045	20 4 590	3 12166	56 072510	39.50	4.0499	474,104	0.6072	19.2069	1.52436	27 294 193
40.00	4.7007	400,400	0.0040	22,4203	2.12100	00.070000	40.00	4./087	480.105	0.0072	17,602.61	1.00520	21 990813

Tab. 2.1. Datos para la obtención de la diferencial de presión.

Con esta tabla se generó la gráfica 2.2. Donde e puede ver que la diferencial de presión generada por la placa de orificio es diferente para cada una. Además se presenta un comportamiento no lineal como se esperaba.

Graf. 2.2. Curva de comportamiento de la placa de orificio.para esta tubería.

2.6.3.1.1. COLOCACIÓN DEL SENSOR DE GASTO DE LÍQUIDO

La placa de orificio se colocó entre dos bridas, teniendo en cuenta el sentido del flujo (Fig. 2.22). Como la variable que se requiere medir es la caida de presión en la placa de orificio se colocó un sensor de presión diferencial (Fig. 2.23).

Fig. 2.27. Colación de la placa de orificio.

Fig. 2.28. Placa de orificio y sensor de presión diferencial.
2.6.3.2. GASTO DE GAS

El calculo para el gasto de gas se basó en las normas del Instituto del Petróleo de América (American Petroleum Institute^{2.4}), específicamente en el Manual de Mediciones Estándar para el Petróleo (Manual of Petroleum Measurement Standards) Capítulo 14, Medición del Flujo de Gas Natural (Natural Gas Fluids Measurement).

Según estas normas, se tiene que el gasto puede calcularse con la Ec.2.20.

$$Q_m = N_1 E_v Y d^2 C_d \sqrt{\rho_{t,p}} \Delta P \qquad \qquad \text{Ec. 2.20.}$$

Siguiendo las normas se tiene que:

$$E_v = \frac{1}{\sqrt{1 - \beta^4}}$$
 Ec. 2.21.
 $\beta = \frac{d}{D}$ Ec. 2.22.

Donde:

d diámetro interior de la placa de orificio calculada a la temperatura del flujo. *D* diámetro interno del tubo de medición calculado a la temperatura del flujo. β razón de diámetros calculados a condiciones de flujo.

Para calcular el diámetro interno del orificio de la placa se tiene que:

$$d = d_r (1 + \alpha_1 (T_f - T_r))$$
 Ec. 2.23.

$$d_r = d_m (1 + \alpha_1 (T_r - T_m))$$
 Ec. 2.24.

Donde:

 d_r referencia del diámetro interno del orificio de la placa a T_r.

 d_m diámetro interno de la placa de orificio medido a T_m.

 T_f temperatura del fluido en las condiciones de flujo.

 T_r temperatura de referencia del diámetro interno del orificio de la placa.

 T_m temperatura de la placa de orificio o del tubo en el tiempo en que se realizó la medición.

 $\alpha_l^{2.5}$ coeficiente lineal de expansión térmica para el material de la placa de orificio.

Para calcular el diámetro interno del tubo:

$$D = D_r (1 + \alpha_2 (T_f - T_r))$$
 Ec. 2.25.

^{2.4} Para mas detalles del diseño de la placa de orificio para aire consultar las normas del American Petroleum Institute, propiedad del IMP.

^{2.5} El coefficiente de expansión térmica para acero al carbón es α =0.0000112 y para latón es α =0.0000143.

$$D_r = D_m (1 + \alpha_2 (T_r - T_m))$$
 Ec. 2.26.

Donde:

 α_2 coeficiente lineal de expansión térmica para el material del tubo (ver referencia 2.5).

 D_r referencia del diámetro interno del tubo a T_r.

 D_m diámetro interno del tubo medido a T_m.

Calculando el coeficiente de descarga de la placa de orificios.

$$C_{d}(FT) = C_{i}(FT) + 0.000511 \left(\frac{10^{6} \beta}{\text{Re}_{D}}\right)^{0.7} + (0.0210 + 0.0049A)\beta^{4}C \quad \text{Ec. 2.27.}$$

$$C_i(FT) = C_i(CT) + TapTerm$$
 EC. 2.28.

$$C_i(CT) = 0.5961 + 0.0291\beta^2 - 0.2290\beta^8 + 0.003(1-\beta)M_1$$
 Ec. 2.29.

$$TapTerm = Upstrm + Dnstrm$$
 Ec. 2.30.

$$Upstrm = (0.0433 + 0.0712e^{-8.5L_1} - 0.1145e^{-6.0L_1})(1 - 0.23A)B$$
 Ec. 2.31.

$$Dnstrm = -0.0116 (M_2 - 0.52M_2^{1.3}) \beta^{1.1} (1 - 0.14A)$$
 Ec. 2.32.

$$B = \frac{\beta^4}{1 - \beta^4}$$
 Ec. 2.33.

$$M_1 = 2.8 - \frac{D}{N_4}$$
 Ec. 2.34.

$$M_2 = \frac{2L_2}{1-\beta}$$
 Ec. 2.35.

$$A = \left(\frac{19000\beta}{\text{Re}_D}\right)^{0.8}$$
 Ec. 2.36.

$$C = \left(\frac{10^6}{\text{Re}_D}\right)^{0.35}$$
 Ec. 2.37.

$$L_1 = L_2 = \frac{N_4}{D}$$
 Ec. 2.38.

 $N_4^{2.6}$., es el factor de conversión de unidades para el coeficiente de descarga.

 $^{^{2.6}\,\}mathrm{N_4}$ es 1 cuando D está dado en pulgadas y 25.4 cuando D está dado en milimetros

Donde:

 $C_d(FT)$ coeficiente de descarga a un número de Reynolds específico para un costado del orificio de medición.

 $C_i(FT)$ coeficiente de descarga a un número de Reynolds infinito para un costado del orificio de medición.

 $C_i(CT)$ coeficiente de descarga a un número de Reynolds infinito para una esquina del orificio de medición.

e constante neperiana 2.71828.

Para calcular el número de Raynolds se tiene:

$$\operatorname{Re}_{D} = \frac{N_{2}q_{m}}{\mu D}$$
 Ec. 2.39.

 Re_d número de Reynolds. μ viscosidad absoluta del fluido. $N_2^{2.7}$ factor de conversión.

Calculando el factor de expansión aguas abajo de la placa de orificios, se tiene:

$$Y_{1} = 1 - (0.41 + 0.35\beta^{4})\frac{x_{1}}{k}$$
 Ec. 2.40.
$$x_{1} = \frac{\Delta P}{N_{3}P_{f_{2}} + \Delta P}$$
 Ec. 2.41.

Donde:

 Y_I factor de expansión basado en la presión estática medida aguas abajo de la placa de orificio.

 $\frac{x_1}{L}$ relación acústica aguas abajo de la placa de orificio.

 x_l relación entre la presión diferencial y la presión absoluta aguas abajo.

N₃ factor de conversión de unidades.

 P_{f2} presión aguas abajo de la placa de orificio.

En la tubería se colocó una bifurcación, con una tubería de 1"de diámetro y otra de 2" de diámetro, para poder medir gastos pequeños y gastos grandes, por lo que fue necesario colocar dos placas de orificio diferentes.

Sustituyendo datos en la ec 2.20 ésta se puede expresar de la siguiente manera.

 $^{^{2.7}}$ N₁= 1.11072 para el Sistema Internacional y 6.30025 para el Sistema Ingles. Ver punto 1.11 de las normas. N₂= 1.27324 para el Sistema Internacional y 1.27324 para el Sistema Ingles. Ver punto 1.11 de las normas. N₃= 1 para el Sistema Internacional y 1 para el Sistema Ingles. Ver punto 1.11 de las normas.

$$Q_{v} = \frac{N_{1}E_{v}Yd^{2}C_{d}\sqrt{\rho_{t,p}\Delta P}}{\rho_{b}}$$
 Ec. 2.42.

si
$$N_1 E_v Y d^2 C_d = W$$
 Ec. 2.43.

$$Q_{v} = \frac{W_{\sqrt{\rho_{t,p}}\Delta P}}{\rho_{b}}$$
 Ec. 2.44.

Donde

 $\rho_{p,t}$ es la densidad del gas en donde se encuentra la placa de orificio.

 ρ_b es la densidad del gas en donde se requiere conocer el gasto volumétrico.

Sustituyendo datos en la ecuación 2.44 se obtienen las siguientes graficas a diferentes presiones de inyección (Graf. 2.3).

Graf. 2.3. comportamiento de la placa de orificio.

2.6.3.2.1. COLOCACIÓN DEL SENSOR DE GASTO DE GAS

Los medidores de gasto para gas fueron colocados en la unidad móvil denominada "el carrito" como se muestra en la figura 2.29.

Fig. 2.29. Medidores de gasto en la sección de gas.

Para medir la caída de presión en las placas de orificio, se colocó un sensor de presión diferencial (Fig. 2.30), que se conecta a las toma de la placa que está en operación.

Fig. 2.30. Colocación del sensor de presión diferencial en la sección de gas.

2.6.4. TEMPERATURA DEL GAS

Para calcular el gasto de gas que se inyecta a la mezcla multifásica, es necesario conocer la temperatura del flujo, para lo que se colocó un sensor de temperatura aguas arriba de la placa de orificio de gas.

Se utilizó un sensor tipo electrónico de la empresa National Semiconductors^{2.8} el LM35CZ, cuyas características para el encapsulado TO92 (Figura 2.31.), son:

-Alimentación de 0-35 volts.
-Voltaje de salida de 0-6 volts.
-Corriente de salida 10mA.
-Rango de temperatura -60 a 150°C.

El circuito utilizado es el siguiente (figura 2.26).

LM35

Precision Centigrade Temperature Sensors

Fig. 2.31. Diagrama y conexión del LM35.

La entrada Vs es la alimentación que es excitada con una fuente regulada de 5v. Esta fuente se construyó con un regulador de voltaje de la misma empresa que el sensor de temperatura. El LM7805 es un regulador de voltaje (Fig. 2.32.), en un

^{2.8} National Semiconductor es una marca registrada.

encapsulado T=220, el cual es capaz de regular a 5 volts los voltajes entre 7.5 a 30 volts.

Fig. 2.32. Diagrama de conexión del LM7805.

La interconexión de los dos circuitos para formar el sensor final quedó de la siguiente forma (Fig. 2.33.).

Fig. 2.33. Conexión del sensor de temperatura.

Este circuito se armó en una placa perforada y se montó en un gabinete de plástico. El circuito LM35 se colocó dentro de un tubo de latón de 3/16" de diámetro. El tubo se selló con resina epóxica.

2.6.4.1. COLOCACIÓN DEL SENSOR DE TEMPERATURA DEL GAS

Ya el circuito montado en la instalación se presenta en la figura 2.34.

Fig. 2.34. Sensor de temperatura.

2.6.5. DOSIFICADOR DE SÓLIDOS

La parte inferior del tanque de almacenamiento de sólidos tiene forma de embudo y está acoplada al dosificador que es un tornillo sin fin movido por un motor eléctrico, cuya velocidad es controlada por un inversor. Por gravedad los sólidos caen a las cavidades del tornillo que los empuja hacia la tubería que contiene la mezcla del gas y el líquido.

El tornillo sin fin se maquinó en acero al cromo-niquel-molibdeno con dureza controlada para construcción de maquinaria, código 4340. Debido a que estará en constante contacto con agua se sometió a un proceso de galvanizado para protegerlo de la corrosión. Figuras 2.35. y 2.36.

Fig. 2.35. Tornillo sin fin y carcaza.

Fig. 2.36. Colocación del tornillo sin fin dentro de la carcaza.

2.6.5.1. COLOCACIÓN DEL DOSIFICADOR

El dosificador se encuentra en la unidad móvil ("el carrito"), justo debajo del tanque de almacenamiento de sólidos, como se muestra en la figura 2.37.

Fig. 2.37. Colocación del dosificador.

2.6.6. PESO

La cantidad de sólidos que se inyectan a la mezcla multifásica se puede estimar conociendo la variación del peso en el tanque de almacenamiento de sólidos. Para ello se utiliza una celda de carga, figura 2.38, de la marca Interface con capacidad de 2KLbs-fza, la cual entrega una salida de 4mV/kg. Tiene una compensación por temperatura dentro del intervalo de -10°C a 45°C, y la alimentación máxima es de 20 VDC.

Fig. 2.38. Celda de carga.

2.6.6.1. COLOCACIÓN DEL SENSOR DE PESO

El sensor fue colocado en una de las tres patas del tanque de almacenamiento de sólidos, tal como se ilustra en la figura 2.39, por lo que solamente se mide la tercera parte del peso total.

Fig. 2.39. Colocación del sensor de peso.

2.6.7. POSICIÓN DE LA TUBERÍA EXPERIMENTAL

Para establecer la posición angular (inclinación) de la sección experimental se colocó un sensor de tipo resistivo en el eje de giro de la estructura que sujeta a la sección experimental, figura 2.40. Donde Rs es un potenciómetro de alambre de una sola vuelta.

Fig. 2.40. Circuito para el sensor de posición.

La posición angular de la estructura se puede medir a través de los diferentes valores que toma Vs que se tienen dada la variación de Rs como se puede ver a continuación

Suponiendo que se tiene R1 y Rs= 0Ω .

$$Vcc = V1 + Vs$$

$$Vcc = I1 R1 + Is Rs$$

$$I1 = Is$$

$$Como Rs = 0 \qquad \therefore Vcc = V1$$

$$Vcc = I1 R1$$

$$\therefore I1 = \frac{Vcc}{R1}$$

$$Vs = Is Rs$$

$$\therefore Vs = 0$$

$$Vcc = Vcc + 0$$

$$\therefore Vcc = Vcc$$

Ec. 2.45.

Ahora suponemos que: R1=Rs

$$Vcc = V1 + Vs$$

$$Vcc = I1 R1 + Is Rs$$

$$I1 = Is$$

$$Como R1 = Rs$$

$$Vcc = I1 (2R1)$$

$$\therefore I1 = \frac{Vcc}{2R1}$$

$$V1 = I1 R1$$

$$V1 = \frac{Vcc}{2R1} R1$$

$$\therefore V1 = \frac{Vcc}{2}$$

$$Vs = Is Rs$$

$$Vs = \frac{Vcc}{2R1} Rs$$

$$\therefore Vs = \frac{Vcc}{2}$$

$$Vcc = V1 + Vs$$

$$Vcc = \frac{Vcc}{2} + \frac{Vcc}{2}$$

$$Vcc = Vcc$$

Ec. 2.46.

- 38 -

Ahora tomando la siguiente consideración: Rs = $\frac{1}{2}R1$

$$Vcc = V1 + Vs$$

$$Vcc = I1 R1 + Is Rs$$

$$I1 = Is$$

$$Como Rs = \frac{1}{2}R1$$

$$Vcc = I1 R1 + Is \frac{1}{2}R1$$

$$Vcc = I1 \left(R1 + \frac{1}{2}R1\right)$$

$$Vcc = I1 \left(\frac{3}{2}R1\right)$$

$$I1 = \frac{Vcc}{\left(\frac{3}{2}R1\right)}$$

$$\therefore I1 = \frac{2Vcc}{3R1}$$

$$V1 = I1 R1$$

$$V1 = \frac{2Vcc}{3R1} R1$$

$$\therefore V1 = \frac{2}{3}Vcc$$

$$Vs = Is Rs$$

$$Vs = \frac{2Vcc}{3R1} \frac{1}{2}R1$$

$$\therefore Vs = \frac{1}{3}Vcc$$

$$Vcc = V1 + Vs$$

$$Vcc = Vcc$$

Ec. 2.47.

Se puede observar como a los diferentes valores de Rs se tienen diferentes valores de Vs (Ec. 2.45, 2.46 y 2.47). Esta variación en Vs es la señal con la que se mide la variación de la posición angular de la estructura.

2.6.7.1. COLOCACIÓN DEL SENSOR DE POSICIÓN

Como ya se mencionó el sensor se colocó en el eje de giro de la estructura que sujeta a la sección experimental, figura 2.41. Así cuando la estructura empiece a moverse, el sensor gira y por lo tanto varía su resistencia. El sensor de posición es conectado a una fuente de alimentación de corriente directa, regulada, con esto el cambio de resistencia se traduce en un cambio de voltaje. El intervalo de variación del ángulo de inclinación será de 0° a 90°.

Fig. 2.41. Colocación del sensor de posición.

2.6.8. VELOCIDAD

Para controlar la velocidad de giro de los motores de la bomba, del dosificador de sólidos y de los malacates para el posicionamiento de la tubería experimental, se utilizan inversores, de los cuales se pueden obtener señales eléctricas proporcionales a las velocidades de giro de los motores.

De los inversores usados se puede obtener una señal eléctrica proporcional a la velocidad del motor. Esta señal analógica se puede controlar desde el panel del control del inversor o desde otro medio fuera del instrumento.

Los inversores usados se muestran a continuación (Fig. 2.42).

Fig. 2.42. Panel de potencia.

2.6.8.1. COLOCACIÓN DEL SENSOR DE VELOCIDAD DE GIRODE LA BOMBA

El inversor que controla la velocidad de giro del motor de la bomba es de la marca Siemens modelo MicroMaster 440^{2.9} (Fig. 2.43), se encuentra localizado en frente del panel principal, "panel de potencia".

Las características de este inversor son:

Voltaje: 200-240 VCA, trifásico. Potencia de 0.12 a 45 kW (0.16 a 60 HP).

Fig. 2.43. Motor e inversor de la bomba.

2.6.8.2. COLOCACIÓN DEL SENSOR DE VELOCIDAD DE GIRO DEL DOSIFICADOR DE SÓLIDOS

Para controlar la velocidad de giro del motor del dosificador, se utilizó un inversor de la marca TBWood's modelo SM1C2S02-0B^{2.10} (Fig. 2.39) y se encuentra colocado en el "panel de potencia". Poseé las siguientes características:

Voltaje: 200-240 VCA, bifásico. Potencia de 0.12 a 5.5 kW (0.16 a 7.5 HP).

Fig. 2.44. Motor e Inversor del dosificador de sólidos

^{2.9} Para mas detalles del inversor Micromaster 440 consultar el "Manual del usuario Micromaster 440 de Siemens".

^{2.10} Para mas detalles del inversor SM1C2S02 consultar el "User's Manual for the SM1 AC Inverter of TBWood's Incorporated".

2.6.8.3. COLOCACIÓN DEL SENSOR DE VELOCIDAD DE GIRO DEL MALACATE PRINCIPAL

El inversor que controla la velocidad de giro del motor del malacate principal es de la marca Siemens modelo MicroMaster 420^{2.11} (Fig. 2.40), se encuentra localizado en el "panel de potencia".

Las características de este inversor son:

Voltaje: 200-240 VCA, trifásico. Potencia de 0.12 a 5.5 kW (0.16 a 7.5 HP).

Fig. 2.45. Inversor del motor del malacate principal.

2.6.8.4. COLOCACIÓN DEL SENSOR DE VELOCIDAD DE GIRO PARA EL MALACATE SECUNDARIO

Para controlar la velocidad de giro del motor del malacate secundario se utilizó un inversor de la marca Siemens modelo MicroMaster 420^{2.11}. Este inversor se encuentra localizado en el "panel de potencia".

Las características de este inversor son:

Voltaje: 200-240 VCA, trifásico. Potencia de 0.12 a 3 kW (0.16 a 4 HP).

A continuación se muestra el inversor (Fig. 2.41).

Fig. 2.46. Inversor del motor del malacate secundario.

^{2.11} Para mas detalles del inversor Micromaster 420 consultar el "Manual del usuario Micromaster 420 de Siemens".

CAPÍTULO 3

ACONDICIONAMIENTO DE SEÑALES Y ADQUISICIÓN DE DATOS

En el capítulo anterior se describieron los diversos sensores utilizados para medir las variables que se requiere conocer en la instalación experimental de flujos multifásicos. Cada uno de ellos entrega señales eléctricas diferentes, algunos entregan señales en corriente y otros en voltaje. Así mismo. Muchos de ellos requieren de voltajes de polarización con características distintas.

Por ello fue necesario seleccionar y en algunos casos diseñar y construir acondicionadores de señal que garanticen la correcta operación de los sensores y permitan adecuar las señales de salida a un intervalo de medición característico de una tarjeta de adquisición de datos.

3.1. ACONDICIONAMIENTO DE LAS SEÑALES DE PRESIÓN

Los sensores utilizados para medir esta variable, son de la marca Omega modelo PX-440^{3.1}. Los cuales entregan una señal en corriente de 4-20 mA. La forma física del sensor se presenta en la figura 3.1.

Fig. 3.1. Sensor de presión Omega modelo PX-440.

Los sensores usados para medir la presión en los distintos puntos de interés de la instalación, entregan una señal en corriente. Para convertirla en una señal en voltaje es necesario colocar una resistencia, para provocar en ella una caída de voltaje proporcional a la corriente.

Además requieren de un voltaje de polarización de entre 12 a 36 Volts (Fig. 3.3.) que puede ser no regulado. En el diagrama de la figura 3.2. se presenta el circuito eléctrico del acondicionador de señal para este tipo de sensor. La resistencia que se escogió fue de un valor de 220 Ω ya que con una señal de 20mA se tendrá un voltaje de 4.4 Volts que quedan dentro del intervalo de operación de la tarjeta de adquisición de datos.

Fig. 3.2. Circuito eléctrico para la conversión I-V.

^{3.1} Para mas detalles de este sensor revisar la hoja especificaciones. Propiedad del IMP.

Si I = 20mA	Ec. 3.1.
$V = IR = (20x10^{-3})(220)$	Ec. 3.2.
V = 4.4V	Ec. 3.3.
Si I = 4mA	Ec. 3.4.
$V = IR = (4x10^{-3})(220)$	Ec. 3.5.
V = 0.88V	Ec. 3.6.

De las ecuaciones 3.1, 3.3, 3.4 y 3.6, se observa que el intervalo de medición es de $0.88 \mbox{ a } 4.4 \mbox{V}$

Fig. 3.3. Diagrama esquemático de las fuentes de voltaje.

Es importante destacar que para que el sensor opere correctamente bajo cualquier condición, la diferencia de voltaje en las terminales del sensor debe ser mayor o igual a 10 Volts.

También se realizó el diseño del circuito impreso (Fig. 3.4.), con la característica que debería contener 8 fuentes totalmente independientes y que debían poderse instalar en el gabinete del resto de los acondicionadores de señal usados, los cuales son equipos comerciales de la marca National Instruments.

Fig. 3.4. Circuito impreso para las fuentes de voltaje.

3.2. ACONDICIONAMIENTO DE SEÑALES DE PRESIÓN DIFERENCIAL

Los sensores de presión diferencial utilizados son de la marca Validyne^{3.2}, modelo DP15-TL. Este tipo de sensores pueden usarse para diferentes intervalos de medición, instalando la membrana adecuada al intervalo requerido.

En la figura 3.5. se muestran el sensor y las membranas existentes para este tipo de sensor, las marcadas con (*) son con las que se cuenta.

Fig. 3.5. Sensor de presión diferencial.

El acondicionador utilizado para adecuar la señal proveniente de las celdas diferenciales, es un ATA 2001 LVDT Signal Conditioner Schevitz[®] (Fig. 3.6.), que provee una señal de excitación de 3.5 VCA a una frecuencia de 2.5, 5 y 10 KHz. a una corriente de 45mA máximo. La señal analógica de salida es de ±10 VCD/ 10mA en modo bipolar o 0 a 10 VCD/10 mA en modo unipolar. Este equipo se conecta a un voltaje de 127VCA/50 a 400Hz o 220VCA/50 a 400Hz.

Contiene un panel frontal desde donde se pueden ajustar ciertos parámetros como son: el zero, el span y la fase, en el panel trasero se seleccionan otros valores como son: la

^{3.2} Para más detalle de este sensor consultar las hojas de especificaciones.

ganancia, la frecuencia de oscilación, el voltaje de alimentación del sensor y la propia señal de entrada proveniente del sensor.^{3.3}

Controlando los parámetros del span y el zero se logra ajustar la señal de salida a un valor dentro del intervalo de medición que se requiere.

Fig. 3.6. Acondicionadores de señal ATA 2001 LVDT de SCHEVITZ.

3.3. ACONDICIONAMIENTO PARA LAS SEÑALES DE TEMPERATURA

En el capitulo anterior se describió el procedimiento para medir la temperatura. De la figura 2.33 se observa que la señal de salida es en voltaje por lo que está lista para conectarla en con la tarjeta de adquisición de datos. Este sensor también fue alimentado con las fuentes anteriormente diseñadas.

3.4. ACONDICIONAMIENTO PARA LA SEÑAL DE PESO

Como se mencionó anteriormente este sensor entrega una señal en voltaje de 4mv/Kg. Se alimenta con las fuentes diseñadas, pero en este caso se le agregó un regulador de voltaje de 5 Volts. Con esto la señal esta lista para ser conectada en la tarjeta de adquisición de datos.

3.5. ACONDICIONAMIENTO PARA LA SEÑAL DE POSICIÓN ANGULAR

El sensor de posición angular de la estructura en la que está instalada la tubería experimental también se alimenta con las fuentes diseñadas, solo que al igual que el sensor de temperatura y peso se le coloca un regulador de voltaje pero a 8Volts. R₁ es una resistencia de $2k\Omega$ y R_s es un potenciometro de alambre de una sola vuelta de $2k\Omega$, Fig. 2.40, para tener un intervalo de salida de 0 a 4v. Se debe considerar también que el intervalo de medición será solo de 90°.

^{3.3} Para mas detalles consultar el manual "ATA 2001 LVDT Signal Conditioner" de Schaevitz.

De la ecuación 2.45 se tiene que Vs =0volts y de la ecuación 2.46 Vs=4volts.

La señal proveniente del sensor de posición ya está en condiciones de conectarse a la tarjeta de adquisición de datos.

3.6. ACONDICIONAMIENTO DE LAS SEÑALES DE VELOCIDAD

Los inversores utilizados y descritos anteriormente poseen muchas bondades, una de ellas es que se pueden programar para controlarlos con señales digitales o a través del panel de control; desde este panel se pueden ajustar sus rampas de aceleración y desaceleración y varios parámetros que se deben revisar antes de su puesta en servicio, como son: las unidades en las que se van a manejar la potencia y la potencia nominal del motor, la tensión nominal, la corriente nominal, la frecuencia nominal y la velocidad nominal. Parámetros que se obtienen de la placa de datos del motor.

Todos estos datos se meterán en la etapa de programación de los inversores. En el parámetro P0700 de programación, para los inversores Siemens, se seleccionará la opción 2 que permite controlar el inversor con señales digitales, en el parámetro P1000 se deberá seleccionar la opción 2 que activa la entrada analógica para poder controlar la velocidad.^{3.4}

Como ya se mencionó en el capítulo anterior, el inversor utilizado para el dosificador, es de la marca TB Wood's Incorporated. En este inversor también es necesario programar ciertos parámetros como son: potencia nominal del motor, la tensión nominal, la corriente nominal, la frecuencia nominal y la velocidad. Con el jumper J1 se debe activar la señal analógica de entrada para control de la velocidad.^{3.5}

Cada uno de los inversores internamente mide la velocidad del motor y tiene una señal analógica (en voltaje) de salida proporcional a ella que puede conectarse a la tarjeta de adquisición de datos.

3.7. ACONDICIONADORES DE SEÑAL NATIONAL INSTRUMENTS

En algunos casos es necesario mejorar la calidad de las señales provenientes de los sensores, ya sea filtrándolas o simplemente amplificándolas. Para ello se seleccionaron acondicionadores National Instruments[®] : SCXI 1121, SCXI 1141, 1142 y 1143, y para montar estos acondicionadores se seleccionó un chasis SCXI.

^{3.4} Para mas detalles de cómo programar el inversor , consultar el manual "Micromaster 420 y 440 Instrucciones de uso 6SE6400-5AA00-0EP0" de Siemens.

^{3.5} Para mas detalles de cómo programar el inversor, consultar el manual "User's Manual for the SM1 AC Inverter" de TB Wood's Incorporated.

[®] National Instruments y todos los accesorios National Instruments son una marca registrada.

3.7.1. ACONDICIONADOR NATIONAL INSTRUMENTS SCXI 1141, 1142 Y 1143

Este tipo de acondicionador contiene 8 canales de filtros pasobajas, con intervalos de entrada y salida de \pm 5V. Las ganancias se pueden ajustar entre 1, 2, 5, 10, 20, 50 y 100. El tipo de filtro depende del tipo de módulo que se tenga, por ejemplo para el modelo 1141 el filtro es de octavo orden elíptico, para el modelo 1142 el filtro es de octavo orden Bessel y para el modelo 1143 el filtro es de octavo orden Butterworth^{3.6}.

El diagrama de bloque se muestra en la figura 3.7.

Fig. 3.7. Diagrama de bloques para el SCXI 1141,1142 y 1143 de National Instruments.

La asignación de pines del panel frontal y posterior para el SCXI 1141,1142, 1143 de National Instruments es el siguiente (Fig. 3.8.):

Fig. 3.8. Panel frontal y posterior del SCXI 1141,1142 y 1143 de National Instruments .

3.7.2. ACONDICIONADOR NATIONAL INSTRUMENTS SCXI 1121

Este módulo consta de cuatro canales aislados para acondicionamiento de señales, cuyas ganancias pueden ser seleccionadas de entre 1, 2, 5, 10, 20, 50, 100, 200, 500,

^{3.6} Para más información del SCXI 1141,1142, 1143 de National Instruments consultar el manual "User Manual SCXI 1141,1142, 1143".

1000 y 2000, rango de la señal de salida ±5V. Compensación por temperatura, posibilidad para conectar RTD y Strain Gauges^{3.7}.

El diagrama de bloques es el siguiente (Fig. 3.9.):

Fig. 3.9. Diagrama de bloques para el SCXI 1121 de National Instruments.

La asignación de pines del panel frontal y posterior para el SCXI 1121 de National Instruments es la siguiente (Fig. 3.10.):

Fig. 3.10. Panel frontal y posterior del SCXI 1121 de National Instruments.

3.7.3. CHASIS NATIONAL INSTRUMENTS

Los módulos antes descritos se insertan en el chasis de National Instruments y en el además se colocaron las fuentes diseñadas. Figura 3.11.

^{3.7} Para más información del SCXI 1121 de National Instruments consultar el manual "User Manual SCXI 1121".

Fig. 3.11. Chasis SCXI de National Instruments.

Este tipo de de módulos, SCXI, se comunican por medio de un protocolo de comunicación y mediante un cable que se conecta en la parte posterior de cada uno de los módulos se comunican a la tarjeta de adquisición de datos. Debido al tipo de tarjeta de adquisición de datos que se utilizó, ATMIO64, no cuenta con entrada SCXI, solo se ocupan las señales de salida que se toman del panel posterior de los módulos pero no se comunican por medio del protocolo. Las señales entran a una caja receptora y de ahí por medio de un cable a la tarjeta de adquisición de datos "DAQ".

3.7.4. CAJA RECEPTORA "SCB 100 PIN CONNECTOR BLOCK"

Para interconectar todos los cables de señales con la tarjeta de adquisición es necesario utilizar una caja de conexiones. La SCB 100 PIN CONNECTOR BLOCK de National Instruments (Fig. 3.12.).

Fig. 3.12. Caja de interconexión SCB 100 PIN CONNECTOR BLOCK de National Instruments.

Esta caja receptora por un lado tiene la entrada de todos los cables y que se conectan a terminales de tornillo que tienen asignados los canales de la DAQ; en el circuito impreso están debidamente marcados los nombres asignados a cada terminal^{3.8}.

La comunicación entre la caja de conexiones y la DAQ es por medio de un cable de comunicación modelo SH100-100F de National Instruments (figura 3.13)^{3.9}.

Fig. 3.13. Cable de interconexión SH100-100-F de National Instruments.

3.8. TARJETA DE ADQUISICIÓN DE DATOS NATIONAL INSTRUMENTS

La tarjeta de adquisición de datos utilizada es una AT-MIO 64 E Series, que contiene 64 canales de entrada y 2 de salida, analógicos y 8 canales de entrada/salida digitales. Esta tarjeta esta diseñada para instalarse en un slot PCI.

Por medio de software se selecciona la dirección que ocupa dicha tarjeta y el intervalo de medición de los canales analógicos, que pueden ser configurados como singleended o diferenciales. Poseé un intervalo de muestreo de 500 kilomuestras por segundo con una resolución de 12 bits. Su estabilización llega después de un calentamiento de 15 minutos.

Los canales analógicos de salida también tienen una resolución de 12 bits, el voltaje de salida es de corriente directa en un rango de $\pm 10V$ o 10V, seleccionado por software. Los canales digitales son compatibles con la tecnología TTL/CMOS, en donde el nivel bajo es por debajo de 0.8V y el nivel alto es por arriba de 2V.

En la figura 3.14. se muestra el diagrama a bloques del la tarjeta de adquisición de datos DAQ.

^{3.8} Para mas detalles de la SCB 100 PIN CONNECTOR BLOCK referirse al "Istallation Guide SCB 100 PIN CONNECTOR BLOCK".

^{3.9} Para mas detalles del SH100-100F referirse al "Istallation Guide for Digital I/O Accesories and Cables".

Fig. 3.14. Diagrama de bloques de la tarjeta AT-MIO-64-E de National Instruments.

En la figura 3.15. se presentan la asignación de pines y una fotografía de la tarjeta de adquisición de datos AT-MIO-64-E de National Instruments.

Fig. 3.15. Tarjeta AT-MIO-64-E de National Instruments.

Para controlar los cuatro inversores, desde la computadora personal, se requieren cuatro señales analógicas. Como se explicó anteriormente la DAQ solo cuenta con dos señales analógicas de salida y 64 de entrada, además de 8 señales digitales de entrada/salida, por lo que es necesario multiplexar las señales analógicas de salida.

3.9. MULTIPLEXEO

Como únicamente se cuenta con dos señales analógicas de salida en la DAQ, los cuatro inversores se dividieron en dos grupos, el primero consta del inversor de la bomba y del dosificador de sólidos y el segundo consta de los dos inversores de los malacates.

Para multiplexar las señales analógicas de salida de la DAQ se diseño y construyó una tarjeta electrónica basada en el circuito CD4053, que es un multiplexor/demultiplexor, figura 3.16, el cual funciona con un voltaje de alimentación de 5 a 15Vcd. Las señales analógicas se pueden manejar en un intervalo de 3 hasta 15 Vpp, mientras que las digitales van de 3 a 15 V.

Fig. 3.16. Patigrama y diagrama a bloques del CD4053BC.

Las terminales 9, 10 y 11 realizan la activación del multiplexor/demultiplexor utilizando uno de los canales digitales de entrada/salida de la DAQ. En este caso las terminales 4, 14 y 15 son entradas analógicas, mientras que las terminales 1, 2, 3, 5, 12 y 13 son las salidas analógicas.

La tabla de verdad del circuito es la siguiente, tabla 3.1:

Estado de la Entrada		Canales Activados				
Inhibit	С	В	Α	Callales Activados		
0	0	0	0	СХ	bх	ах
0	0	0	1	СХ	bх	ау
0	0	1	0	СХ	by	ах
0	0	1	1	СХ	by	ау
0	1	0	0	су	bх	ах
0	1	0	1	су	bх	ay
0	1	1	0	су	by	ах
0	1	1	1	су	by	ау
1	*	*	*	nada	nada	nada

* Condición "no importa"

Tab. 3.1. Tabla de verdad del CD4053BC.

Se requiere que para cierto momento estén activadas bx y ax y para otro instante se activen by y ay. Revisando la tabla de verdad se puede observar que esto se logra haciendo las entradas A y B cero en un instante y 1 en otro. Por lo que el circuito quedó como se muestra en la figura 3.17. El optoacoplador solo sirve para proteger la tarjeta de adquisición de datos.

Fig. 3.17. Circuito para seleccionar entre la bomba, el sin fin y los malacates.

La selección del canal del multiplexor se realiza con una de las señales digitales de la DAQ, DIO 0. El resto de las señales digitales se utilizan para controlar el encendido apagado de los inversores y para seleccionar el sentido de giro de los motores de los malacates según se muestra en la siguiente tabla (Tab. 3.2).

Señal Digital	Acción que realiza
DIO 0	Activa y desactiva el CD4053
DIO 1	Enciende y apaga el inversor de la bomba
DIO 2	Enciende y apaga el inversor del malacate principal
DIO 3	Selección del sentido de giro del malacate principal
DIO 4	Enciende y apaga el inversor del malacate secundario
DIO 5	Selección del sentido de giro del malacate secundario
DIO 6	Enciende y apaga el inversor del doscificador de sólidos
DIO 7	N/C

Tab. 3.2. Asignación de las señales digitales.

La tabla de verdad para la interconexión de los inversores queda de la siguiente manera (Tab. 3.3).

Señal analogica	Estado de la señal digital	Instrumento que se activa
DACBOUT	DIOO (0) DIO1 (1/0)	Control de velocidad de la Bomba Encendido/Apagado de la Bomba
DAC10UT	DIOO (0) DIO6 (1/0)	Control de velocidad del Doscificador Encendido/Apagado del motor del Doscificador
DACDOUT	DIOD (1) DIO2 (1/0) DIO3 (1/0)	Control de velocidad del Malacate Principal Encendido/Apagado del Malacate Secundario Sentido de giro horario/Sentido de giro antihorario
DAC10UT	DIO 0 (1) DIO 4 (1/0) DIO 5 (1/0)	Control de velocidad del Malacate Secundario Encendido/Apagado del Malacate Secundario Sentido de giro horario/Sentido de giro antihorario

Tab. 3.3. Tabla de verdad para las señales analógicas y digitales.

3.9.1. CONEXIÓN DEL INVERSOR DE LA BOMBA

Cuando la señal DIO 0 está en un nivel lógico 0, la señal analógica DAC0OUT se localiza en la terminal 12, del CD4053, es decir en la terminal asociada a Ax. Esta terminal está conectada con el pin 3 del inversor de la bomba para poder controlar la velocidad de la bomba. La señal que proviene de DIO 1 tiene la función de apagar y encender el inversor, el nivel lógico de 1 enciende el inversor y el nivel 0 lo apaga. Esta señal activa un relevador que cierra el circuito y se interconectan los pines 9 y 5 del inversor. Con ello, el pin 5 se activa a un nivel lógico 1 con un valor de 24V y se enciende el inversor.

Para visualizar y registrar la velocidad de giro de la bomba, la señal "AO" que proviene del inversor y que es proporcional a dicha velocidad se conectó a la DAQ.

El circuito de interconexión se muestra en la siguiente figura (Fig. 3.18.).

Fig. 3.18. Circuito para la interconexión del inversor de la bomba con la computadora.

3.9.2. CONEXIÓN DEL INVERSOR DEL DOSIFICADOR DE SÓLIDOS

Si la señal DIO 0 está en un nivel lógico 0, la señal analógica DAC1OUT se localiza en la terminal 2, del CD4053, es decir en la terminal asociada a Bx. Esta terminal está conectada al pin correspondiente a "Al" del inversor del dosificador de sólodos para poder controlar su velocidad de giro. La señal que proviene de DIO 6 tiene la función de apagar y encender el inversor, el nivel lógico 1 enciende el inversor y el nivel de 0 lo apaga. Esta señal activa un relevador que cierra el circuito entre los pines M0 y GND del inversor y así se enciende.

Para visualizar y registrar la velocidad de giro del dosificador de sólidos, la señal "AO" que proviene del inversor y que es proporcional a la velocidad de giro se conectó a la DAQ.

La señal que proviene de AO del inversor es una señal analógica proporcional a la velocidad. Esta señal entra a la tarjeta de adquisición y se monitorea la velocidad del motor del dosificador.

El circuito de interconexión se muestra en la siguiente figura (Fig. 3.19.).

Fig. 3.19. Circuito para la interconexión del inversor del dosificador con la computadora.

3.9.3. CONEXIÓN DEL INVERSOR DEL MALACATE PRINCIPAL

Cuando la señal DIO 0 está en un nivel lógico 1, la señal analógica DAC0OUT se localiza en la terminal 13, del CD4053, es decir en la terminal asociada a Ay. Esta terminal se conecta al pin 3 del inversor del malacate principal, para controlar su velocidad de giro. La señal que proviene de DIO 2 tiene la función de apagar y encender el inversor, el nivel lógico 1 enciende el inversor y el nivel 0 lo apaga. La señal que proviene de DIO 3 tiene la finalidad de cambiar el sentido de giro, el nivel lógico 1 hace girar al motor en sentido horario, el nivel lógico 0 lo hace girar en sentido antihorario. Cada una de las señales DIO 2 y DIO 3 activan un relevador, que cierran los circuitos entre los pines 5 y GND y 6 y GND del inversor,. con esto el inversor se enciende y cambia el sentido de giro del motor respectivamente.

Para visualizar y registrar la velocidad de giro del malacate principal, la señal "AO" que proviene del inversor y que es proporcional a la velocidad de giro se conectó a la DAQ.

El circuito de interconexión se muestra en la siguiente figura (Fig. 3.20.).

Fig. 3.20. Circuito para la interconexión del inversor del malacate principal con la computadora.

3.9.4. CONEXIÓN DEL INVERSOR DEL MALACATE SECUNDARIO

Si la señal DIO 0 está en un nivel lógico 1, la señal analógica DAC1OUT se localiza en la terminal 1 del CD4053, es decir en la terminal asociada a By. Esta terminal está conectada con el pin 3 del inversor del malacate secundario para controlar la velocidad de giro. La señal que proviene de DIO 4 tiene la función de apagar y encender el inversor, el nivel lógico 1 enciende el inversor y el nivel 0 lo apaga. La señal que proviene de DIO 5 tiene la finalidad de cambiar el sentido de giro, el nivel lógico 1 hace girar al motor en sentido horario y el nivel 0 lo hace girar en sentido antihorario. Cada una de las señales DIO 4 y DIO 5 activan un relevador, que cierra el circuito entre los pines 5 y GND y 6 y GND del inversor, respectivamente. Con esto el inversor se enciende y cambia el sentido de giro del motor.

Para visualizar y registrar la velocidad de giro del malacate secundario, la señal "AO" que proviene del inversor y que es proporcional a la velocidad de giro se conectó a la DAQ.

El circuito de interconexión se muestra en la figura 3.21.

Fig. 3.21. Circuito para la interconexión del inversor del malacate secundario con la computadora.

3.10. DISEÑO DEL SOFTWARE PARA EL REGISTRO Y LA VISUALIZACIÓN DE LAS VARIABLES A MEDIR EN EL EEFMTR Y PARA CONTROL DE LA OPERACIÓN DE LOS EQUIPOS

Para visualizar, procesar y registrar la información proveniente de todos los sensores colocados en la instalación, así como para controlar la operación de los inversores utilizados, se desarrolló un programa en LabView[®].

Labview es la plataforma de programación en la se programa en "Lenguaje G", que es un lenguaje gráfico. LabView tiene dos pantallas principales: el "front panel", figura 3.22, que es donde se colocan los iconos de visualización y el "back panel", figura 3.23, que es propiamente donde se hace la programación.

Fig. 3.22. Front Panel en Lab View.

Fig. 3.23. Back Panel en Lab View.

Tanto el "front panel" como en el "back panel" tienen paletas con diferentes herramientas como son: "Tools palette", "Functions palette" y "Controls pallete".

La paleta de herramientas "Tools palette" la podemos ocupar tanto en el "front panel" como en el "back panel", debido a que encontramos herramientas para poner títulos, seleccionar y mover íconos, para alambrar y mucho más.

La paleta de funciones "Functions palette" la podemos utilizar solamente en el "back panel", ya que en esta paleta encontramos funciones como son: condicionales, arreglos, operadores matemáticos, booleanos y muchos más.

La paleta de controles "Controls palette" se utiliza en el "front panel", ya que contiene los íconos de visualización como: termómetros, manómetros, tanques, botones, switches y muchos más.

El "front panel" es la parte en donde se colocan todos los objetos de visualización, instrumentos virtuales, como son botones, gráficas, manómetros, etc. (Fig. 3.24). Aquí es donde se diseña la presentación del tablero virtual.

Fig. 3.24. Ayudas en el Front Panel.

En el "back panel" se realiza la configuración de los canales de entrada, procesamiento de la señal, almacenamiento, colocación de condicionales y mucho más (Fig. 3.25). Es decir, es donde se desarrolla el programa.

Fig. 3.25. Ayudas en el Back Panel.

A continuación se desglosará el programa desarrollado para las mediciones y control en el EEFMTR.

El programa cuenta con siete cuadros referentes a: parámetros para la adquisición de datos, selección de la acción que se va a realizar (experimento o colocación de la estructura), visualización de la etapa de sólidos, líquidos, gases, mezclado y colocación de la estructura. Figura 3.26.

Fig. 3.26. Tablero virtual del EEFMTR.

Antes de empezar cada una de las pruebas es necesario fijar las condiciones para la adquisición de datos, que se realiza en el cuadro referente a "Control Encendido/Apagado". Aquí se ajustan parámetros como la frecuencia de muestreo, el intervalo a muestrear, el número de procesos, el número de reporte, las características del fluido, además se pueden colocar comentarios para identificar la prueba. Con el switch de almacenamiento de información se selecciona si los datos se guardan en disco o no. Estos datos se guardan en formato tabular por columnas y cada una de ellas lleva un título correspondiente a la variable que se está registrando en ese canal. Con el switch de titulador se selecciona entre quitar o dejar los títulos.

En la figura 3.27 se presenta el cuadro tal como aparece en el programa.

Fig. 3.27. Tablero virtual para ajustar los parámetros de la adquisición de datos.

Habiendo ajustado los parámetros de la adquisición de datos se debe ejecutar y entonces es necesario seleccionar con el botón del cuadro "Elige la acción que deseas hacer" entre "Realizar experimento" o "Colocación de la estructura".

Suponiendo que se seleccionó "Colocación de la estructura", se activan los botones para controlar los malacates, tanto el malacate principal y el malacate secundario. El usuario puede ajustar las velocidades de ellos variando la aguja del indicador circular o escribiendo un valor en el recuadro dentro del indicador.

En este mismo recuadro se tienen botones para el encendido de los motores de los malacates y para el cambio de giro de los mismos. Además se cuenta con un cuadro de visualización de la inclinación de la estructura.

El malacate principal es el que tiene mayor uso. Con el botón se puede seleccionar entre subir o bajar la estructura. El malacate secundario se utiliza a partir de los 75°de inclinación de la estructura para llevarla hasta los 90° y cuando se requiere bajar llevarla de lo 90° a los 75°. Por ello el botón, para el control de este malacate, tiene la posibilidad de elegir entre adelante y atrás, entendiéndose por "adelante" la parte en donde la estructura queda en la posición vertical y "atrás" donde queda en posición horizontal.

En la figura 3.28 se presenta la imagen de los cuadros "Acción que deseas realizar" y "Control de la inclinación de la estructura".

Fig. 3.28. Tablero virtual para ajustar los parámetros para la colocación de la estructura.

Suponiendo ahora que la acción que se quiere es "realizar experimento", se activarán los recuadros restantes como son: control de sólidos, control de la bomba, aire y tubería experimental. A continuación se explicará cada uno por separado.

Dependiendo del experimento se activarán todos los recuadros o solo algunos, por ejemplo: si el experimento es una sola fase (líquido), solo se utilizarán los recuadros de "control de la bomba" y el de "tubo experimental". Si el experimento es en dos fases (líquido/sólido, líquido/gas) se utilizarán los recuadros de "control de la bomba", "control de sólidos" y el de "tubo experimental" para la primera y "control de la bomba", "aire" y el de "tubo experimental" para la primera y "control de la bomba", "aire" y el de "tubo experimental" para la segunda. Si el experimento es en tres fases (líquido/sólido/gas) se utilizarán todos los recuadros.

El recuadro "control de sólidos" tiene un botón con el cual se enciende o apaga el motor que hace que el dosificador de sólidos gire. En este mismo cuadro se visualizan el peso en el tanque y la velocidad de giro del dosificador de sólidos.

El recuadro de "control de la bomba" cuenta con un botón para encender o apagar la bomba y en el se visualiza la presión de descarga, la velocidad de giro de la bomba y el gasto (Fig. 3.29.).

Fig. 3.29. Tablero virtual para ajustar los parámetros para el control de sólidos y líquidos.

En el recuadro "tubo experimental" se visualizan todas las presiones a lo largo de la tubería así como el de la presión diferencial colocado en la sección experimental (Fig. 3.30.).

El recuadro de "aire" presenta íconos en los cuales se observan: la presión absoluta y temperatura del gas, además de la presión diferencial en la placa de orificios y el gasto de gas (Fig. 3.30.).

Fig. 3.30. Tablero virtual para ajustar los parámetros para el control de gases y de la tubería experimental.

Por último, se pueden seleccionar varias señales para visualizar en forma gráfica su comportamiento durante la prueba (Fig. 3.31.).

Fig. 3.31. Tablero virtual para graficar.

CAPÍTULO 4

PUESTA EN OPERACIÓN DEL SISTEMA DE MEDICIÓN DEL EQUIPO EXPERIMENTAL DE FLUJO MULTIFÁSICO Y TRANSPORTE DE RECORTES

Una vez definidos los puntos de medición en el equipo experimental, fue necesario seleccionar nombres para cada uno de ellos, lo cual se realizó con base en la nomenclatura establecida en las normas de la Sociedad de Instrumentistas de América (ISA), que garantizan que cada nombre tenga un código único e intransferible, con lo que será muy fácil recordar su ubicación y evitar posibles confusiones.

4.1. NOMENCLATURA

En las normas ISA se explica como se debe nombrar a cada uno de los puntos de medición y a sus periféricos.

Según la norma, cada instrumento debe de contener un nombre, el cual servirá para su rápida ubicación en el sistema. Por ejemplo: si se tiene un medidor de presión que se conecta a un registrador y a un indicador en pantalla, el lazo de control quedaría de la siguiente manera (Fig. 4.1.):

Fig. 4.1. Uso de la nomenclatura según la ISA.

Cada círculo tiene una forma determinada que indica si el instrumento se encuentra en campo, en un tablero principal o en algún otro lugar, además de identificar el lazo al cual pertenece (Fig. 4.2.):

Fig. 4.2. Identificación de los instrumentos según la ISA.

La norma ISA también distingue los distintos tipos de alimentación a los instrumentos, los cuales se representan en forma simbólica en la siguiente figura (Fig. 4.3.).

	Señal elèctrica
	Señal de software
- <i> - - </i>	Señal neumàtica
	Conexiòn fìsica

Fig. 4.3. Identificación de los tipos de señal según la ISA.

En la siguiente tabla (Tab. 4.1.), se presenta la simbología que la ISA propone para identificar los instrumentos de medición.

CÓD	IGO DE LE	FRAS
LETRA	VARIABLE	FUNCIÓN
Α	ANALISIS	ALARMA
В	FLAMA	
С	CONDUCTIVIDAD	CONTROL
D	DENSIDAD	
E	VOLTAJE	ELEMENTO
F	FLUJO	
G	ESPESOR	MIRILLA
Н	MANUAL	ALTO
I	CORRIENTE	INDICADOR
J	POTENCIA	
ĸ	TIEMPO	
L	NIVEL	LUZ/BAJO
M	HUMEDAD	MEDIO
N		
0	OXIGENO	ORIFICIO
Р	PRESIÓN	PUNTO
Q	TOTALIZAR	
R	RADIACIÓN	REGISTRO
S	VELOCIDAD	SWITCH
Т	TEMPERATURA	TRANSMISOR
U	MULTIVARIABLE	MULTIFUNCIÓN
v	VISCOSIDAD	VALV LA
w	PESO	POZO
X		
Y		RELEVADOR
Z	POSICIÓN	POSICIONADOR

Tab. 4.1. Identificación de las letras según la ISA.

Para este caso en particular se decidió numerar los lazos de control de la siguiente manera (Fig. 4.2.).

LAZO DE CONTROL	IDENTIFICADOR
Líquido	1XX
Gas	2XX
Sólido	3XX
Mezcla	4XX
Posicionador	5XX

Tab. 4.2. Identificación de los lazos de control.

Así con base en estas normas se generó el Diagrama de Tubería e Instrumentación (DTI) del EEFMTR, que se muestra en la figura 4.4.

Fig. 4.4. Diagrama de Tubería e Instrumentación.

En las tablas siguientes se describen todos los elementos usados en cada sección de la instalación experimental a través de:: el número de sensor, el nombre asignado según la norma de la ISA, el instrumento que se usa, su función y por último el canal que corresponde a la tarjeta de adquisición de datos (Tabs. 4.3, 4.4, 4.5, 4.6, 4.7).

No.	VARIABLE	PUNTO DE MEDICION	INSTRUMENTO	DESCRIPCION	DAQ Ch
1	FCV	151A	VALVULA DE MARIPOSA	VALVULA EN LA SUCCION DE LA BOMBA	
2	FCV	151B	VALVULA DE MARIPOSA	VALVULA EN LA SUCCION DE LA BOMBA	
3	SE	101	BOMBA	BOMBA PRINCIPAL	
	ST	101	INVERSOR - BOMBA	VELOCIDAD DE GIRO DE LA BOMBA (0-10 V)	CANAL 35
4	TE	102	TERMOPAR	TEMPERATURA DEL AGUA EN LA PRESA	
	Π	102	TERMOPAR	TEMPERATURA DEL AGUA EN LA PRESA	CANAL 20
5	PI	103	MANOMETRO	PRESIÓN A LA SALIDA DE LA BOMBA	
	PE	103	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION A LA SALIDA DE LA BOMBA	
	PT	103	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION A LA SALIDA DE LA BOMBA (4-20 mA)	CANAL
6	FCV	152	VALVULA DE MARIPOSA	VALVULA PARA RETORNO A LA PRESA	
7	FCV	153	VALVULA DE MARIPOSA	VALVULA PARA CONTROL DE FLUJO	
8	PI	104	MANOMETRO	PRESION ANTES DE LA PLACA DE ORIFICIO	
	PE	104	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION ANTES DE LA PLACA DE ORIFICIO	
	PT	104	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION ANTES DE LA PLACA DE ORIFICIO (4-20 mA)	CANAL
9	FE	105	PLACA DE ORIFICIO	GASTO DE AGUA	
	FT	105	TRANSDUCTOR DE PRESION DIFERENCIAL	GASTO DE AGUA (PLACA DE ORIFICIO) 0-5 V	CANAL 32
10	FCV	154	VALVULA DE MARIPOSA	VALVULA PARA DESFOGUE	
11	FCV	155	VALVULA CHECK	VALVULA PARA NO RETORNO DE FLUJO	
12	FT	106	TRANSDUCTOR DE ULTRASONIDO	GASTO DE AGUA (MEDIDOR DE ULTRASONIDO)	CANAL
13	PI	107	MANOMETRO	PRESION ANTES DE LA MEZCLA CON AIRE	
	PE	107	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION ANTES DE LA MEZCLA CON AIRE	
	PT	107	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION ANTES DE LA MEZCLA CON AIRE (4-20 mA)	CANAL

Tab. 4.3. Sección de líquido.

No.	VARIABLE	PUNTO DE MEDICION	INSTRUMENTO	DESCRIPCION	DAQ Ch
14	FCV	251	VALVULA DE BOLA	VALVULA DE DESCARGA DEL COMPRESOR	
15	PI	201	MANOMETRO	PRESION EN EL TANQUE DE AIRE	
16	FCV	252	VALVULA DE BOLA	VALVULA DE PURGA DEL TANQUE DE AIRE	
17	FCV	253	VALVULA DE SEGURIDAD	VALVULA DE SEGURIDAD DEL TANQUE DE AIRE	
18	FCV	254	VALVULA DE BOLA	VALVULA PARA ALIMENTAR AIRE	
19	FCV	255	VALVULA DE BOLA	VALVULA PARA EL TRANSPORTE DE SOLIDOS	
20	TE	202	TERMOPAR	TEMPERATURA DEL AIRE	
	Π	202	TERMOPAR	TEMPERATURA DEL AIRE (0-5 V)	CANAL
21	FCV	256	VALVULA DE AHUJA	VALVULA PARA CONTROLAR AIRE	
22	FCV	257	VALVULA DE AHUJA	VALVULA PARA CONTROLAR SUMINISTRO DE AIRE	
23	FE	204	PLACA DE ORIFICIO	GASTO DE AGUA	
	FT	204	TRANSDUCTOR DE PRESION DIFERENCIAL	GASTO DE AGUA (PLACA DE ORIFICIO) 0-5 V	CANAL 34
24	PE	203	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION ANTES DE LA PLACA DE ORIFICIO	
	PT	203	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION ANTES DE LA PLACA DE ORIFICIO (4-20 mA)	CANAL 17
25	FCV	258	VALVULA CHECK	VALVULA PARA NO RETORNO DE FLUJO	
26	FCV	259	VALVULA CHECK	VALVULA PARA NO RETORNO DE FLUJO	
27	FE	205	PLACA DE ORIFICIO	GASTO DE AGUA	
	FT	205	TRANSDUCTOR DE PRESIÓN DIFERENCIAL	GASTO DE AGUA (PLACA DE ORIFICIO) 0-5 V	CANAL
28	PE	206	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION ANTES DE LA PLACA DE ORIFICIO	
	PT	206	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION ANTES DE LA PLACA DE ORIFICIO (4-20 mA)	CANAL

Tab. 4.4. Sección de gas.

No.	VARIABLE	PUNTO DE MEDICION	INSTRUMENTO	DESCRIPCION	DAQ Ch
29	PI	301	MANOMETRO	PRESION EN EL TANQUE DE SOLIDOS	
	PE	301	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TANQUE DE SOLIDOS	
	PT	301	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TANQUE DE SOLIDOS	CANAL 18
30	WE	302	CELDA DE CARGA	PESO DE SOLIDOS EN EL TANQUE	
	WT	302	CELDA DE CARGA	PESO DE SOLIDOS EN EL TANQUE	CANAL 19
31	FCV	351	VALVULA DE BOLA	VALVULA PARA LLENADO DEL TANQUE DE SOLIDOS	
32	FCV	352	VALVULA DE BOLA	VALVULA PARA PURGA DEL TANQUE DE SOLIDOS	
33	FCV	353	VALVULA DE MARIPOSA	VALVULA PARA DOSIFICAR SOLIDOS	
34	SE	303	SIN FIN	DOSIFICAR SOLIDOS	
	ST	303	INVERSOR - SIN FIN	VELOCIDAD DE GIRO DEL SIN FIN	CANAL 36
35	PI	304	MANOMETRO	PRESION EN EL TANQUE DE RECUPERACION DE SOLIDOS	
36	FCV	354	VALVULA DE MARIPOSA	VALVULA PARA DESFOGUE DE SOLIDOS	

Tab. 4.5. Sección de sólidos.

No.	VARIABLE	PUNTO DE MEDICION	INSTRUMENTO	DESCRIPCION	DAQ Ch
37	PI	401	MANOMETRO	PRESION AL INICIO DEL TUBO EXPERIMENTAL	
	PE	401	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION AL INICIO DEL TUBO EXPERIMENTAL	
	PT	401	TRANSDUCTOR DE PRESIÓN ABSOLUTA	PRESION AL INICIO DEL TUBO EXPERIMENTAL (4-20 mA)	CANAL
38	FCV	451	VALVULA DE MARIPOSA	VALVULA PARA DESFOGUE	
39	XE	412	POTENCIOMETRO	POSICION DEL TUBO EXPERIMENTAL	
	ХT	412	POTENCIOMETRO	POSICION DEL TUBO EXPERIMENTAL	CANAL 22
40	PE	402A	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 1)	
	PT	402A	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 1)	CANAL 0
41	PE	402B	TRANSDUCTOR DE PRESIÓN ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 1)	
	PT	402B	TRANSDUCTOR DE PRESIÓN ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 1)	CANAL 1
42	PE	413	TRANSDUCTOR DE PRESION DIFERENCIAL	DIFERENCIAL DE PRESION	
	PT	413	TRANSDUCTOR DE PRESION DIFERENCIAL	DIFERENCIAL DE PRESION (0-5 V)	CANAL
43	PE	403A	TRANSDUCTOR DE PRESIÓN ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 2)	
	PT	403A	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 2)	CANAL 2
44	PE	403B	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 2)	
	PT	403B	TRANSDUCTOR DE PRESIÓN ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 2)	CANAL 3
45	PE	404A	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 3)	
	PT	404A	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 3)	CANAL 4
46	PE	404B	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 3)	
	PT	404B	TRANSDUCTOR DE PRESIÓN ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 3)	CANAL 5
47	PE	405A	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 4)	
	PT	405A	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 4)	CANAL 6
48	PE	405B	TRANSDUCTOR DE PRESIÓN ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 4)	
	PT	405B	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 4)	CANAL 7
49	PE	406A	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 5)	
	PT	406A	TRANSDUCTOR DE PRESIÓN ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 5)	CANAL 8
50	PE	406B	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 5)	
	PT	406B	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 5)	CANAL 9
51	PI	407	MANOMETRO	PRESION EN EL RETORNO DEL TUBO EXPERIMENTAL	
	PE	407	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL RETORNO DEL TUBO EXPERIMENTAL	
	PT	407	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL RETORNO (4-20 mA)	CANAL
52	FCV	452	VALVULA DE ADMISION EXPULSION	VALVULA PARA ADMITIR Y EXPULSAR AIRE	
53	PE	408A	TRANSDUCTOR DE PRESIÓN ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 6)	
	PT	408A	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 6)	CANAL 10
54	PE	408B	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 6)	
	PT	408B	TRANSDUCTOR DE PRESIÓN ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 6)	CANAL 11
55	PE	414	TRANSDUCTOR DE PRESION DIFERENCIAL	DIFERENCIAL DE PRESION	
	PT	414	TRANSDUCTOR DE PRESION DIFERENCIAL	DIFERENCIAL DE PRESION (0-5 V)	CANAL
56	PE	409A	TRANSDUCTOR DE PRESIÓN ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 7)	
-	PT	409A	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 7)	CANAL 12
57	PE	409B	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 7)	
-	PT	409B	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 7)	CANAL 13
58	PE	410A	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 8)	
-	PI	410A	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ARRIBA (PUNTO 8)	CANAL 14
59	PE	410B	TRANSDUCTOR DE PRESIÓN ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 8)	
		410B	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION EN EL TUBO EXPERIMENTAL ABAJO (PUNTO 8)	CANAL 15
100	PI DE	411	MANUMETRU	PRESION A LA SALIDA DEL TUDO EXPERIMENTAL	
\vdash	PL	411	TRANSDUCTOR DE PRESION ABSOLUTA	PRESIDIN A LA SALIDA DEL TUBO EXPERIMENTAL	CANIAL
01	PI FOV	411	TRANSDUCTOR DE PRESION ABSOLUTA	PRESION A LA SALIDA (4-20 MA)	
101	FCV FCV	403		VALVULA A LA SALIDA DEL TUBU EXPERIMENTAL	
02	FGV	404		VALVULA PARA DESCARGA AL SERARADORES	
63	FCV FCV	400		VALVULA MAKA DESCARGA AL SEMAKADOK	
65	FCV FCV	400		VALVULA EN LA DESCARGA DE SULIDUS DE LA CRIBA	
60	FOV	407		VALVULA EN LA DESCARGA A LA PRESA A	
100	1.64	400	TATA AT NE WARTEANA	IVALVULA EN LA DESUARGA A LA PRESA B	

Tab. 4.6. Sección experimental.

No.	VARIABLE	PUNTO DE MEDICION	INSTRUMENTO	DESCRIPCION	DAQ Ch
67	SE	502	MALACATE PRINCIPAL	LEVANTAMIENTO DEL TUBO EXPERIMENTAL	
	ST	502	INVERSOR - MALACATE PRINCIPAL	VELOCIDAD DE GIRO DEL MALACANTE PRINCIPAL	CANAL 28
68	SE	503	MALACATE SECUNDARIO	DESPLAZAMIENTO DEL TUBO EXPERIMENTAL	
	ST	503	INVERSOR – MALACATE SECUNDARIO	VELOCIDAD DE GIRO DEL MALACANTE SECUNDARIO	CANAL 29

Tab. 4.7. Sección de los malacates.

Para seleccionar adecuadamente el intervalo de medición de cada sensor se debe hacer una estimación de los valores esperados para cada variable a medir, que depende en gran medida de las condiciones bajo las que se realizará el experimento.

Antes de hacer alguna prueba es necesario realizar el proceso de calibración de cada sensor para obtener sus curvas de comportamiento.

4.2. CALIBRACIÓN DE SENSORES

El proceso de calibración de un sensor permite establecer una constante de correlación entre la variable física medida y la señal eléctrica que se registra en la tarjeta de adquisición de datos, lo cual incluye el proceso de acondicionamiento de señales

Esta constante de correlación es considerada en el programa de adquisición de datos, para visualizar que en la pantalla de la computadora el valor de la variable física se presente en las unidades que corresponde.

En la siguiente figura (Fig. 4.5.) se presenta una curva típica obtenida en el proceso de calibración de un sensor o transductor d presión y un ejemplo de cómo reconsidera en el programa la ecuación de calibración obtenida.

Fig. 4.5. Obtención de la curva de calibración y programación en LabView.

Este proceso se realizó para cada sensor usado en la instalación; a continuación se presentarán las curvas de cada uno de ellos.

4.2.1. CALIBRACION DE LOS SENSORES DE PRESIÓN

Para realizar la calibración de los sensores de presión se utilizó una balanza de pesos muertos (Fig. 4.6), que permite establecer una presión conocida que depende del peso que se coloque sobre el plato del pistón hidráulico central y que a su vez se equilibra con la presión ejercida por otro pistón con manivela, así la presión establecida se transmite, por el principio hidráulico de vasos comunicantes, a la conexión hidráulica donde se coloca el sensor. El sensor convierte entonces la amplitud de la variable física establecida a una señal eléctrica proporcional a ella. Siendo este procedimiento para

varios valores de la variable física. Se genera un registro de presiones y voltajes que permiten la elaboración de la curva de calibración.

Fig. 4.6. Balanza de pesos muertos.

Haciendo una revisión analítica de las características del sistema hidráulico; bomba, tubería, accesorios, con base en los modelos matemáticos de la hidráulica se establecieron las presiones máximas esperadas a lo largo de la instalación para la condición de gasto máximo y poder entonces seleccionar el intervalo de los sensores a utilizar.

En la descarga de la bomba, punto de medición 103, tal como se señala en el DTI, se colocó un sensor de presión de 200PSI cuya curva de calibración es la siguiente.

Graf. 4.1. Curva de calibración para el transductor 0202-004 de 200PSI.

Antes de la placa de orificio, punto 104, se colocó un sensor de presión de 200PSI.

Graf. 4.2. Curva de calibración para el transductor 1701-002 de 200PSI.

En el punto 107 que se encuentra en "el carrito" se colocó un sensor de 50PSI.

Graf. 4.3. Curva de calibración para el transductor 2395-012 de 50PSI.

El tanque de sólidos debe tener la misma presión que en la línea de inyección de la mezcla. Para esto se colocó un sensor de presión de 50PSI en el punto 301, cuya curva de calibración es la siguiente.

Para conocer el gasto másico de gas es necesario determinar la presión en la línea de aire, para ello se colocó un sensor de 50PSI en el punto 203.

Graf. 4.5. Curva de calibración para el transductor 2395-024 de 50 PSI.

En la tubería experimental se tienen colocados 10 sensores en la parte superior, "de ida", de 50PSI distribuidos en 5 puntos y 6 en la parte inferior, "de regreso", de 15PSI distribuidos en 3 puntos. Las curvas de calibración son las siguientes.

Para el punto 402A.

Graf. 4.6. Curva de calibración para el transductor 0202-001 de 50 PSI.

Para el punto 402B.

Graf. 4.7. Curva de calibración para el transductor 0203-001 de 50 PSI.

Para el punto 403A.

Graf. 4.8. Curva de calibración para el transductor 0202-003 de 50 PSI.

Para el punto 403B.

Graf. 4.9. Curva de calibración para el transductor 0203-003 de 50 PSI.

Para el punto 404A.

Para el punto 404B.

Graf. 4.11. Curva de calibración para el transductor 0203-004 de 50 PSI.

Para el punto 405A.

Graf. 4.12. Curva de calibración para el transductor 0202-008 de 50 PSI.

Para el punto 405B.

Para el punto 406A.

Graf. 4.14. Curva de calibración para el transductor 0202-009 de 50 PSI.

Para el punto 406B.

Para el punto 408A.

Graf. 4.16. Curva de calibración para el transductor 75192 de 15 PSI.

Para el punto 408B.

Graf. 4.17. Curva de calibración para el transductor 75197 de 15 PSI.

Para el punto 409A.

Graf. 4.18. Curva de calibración para el transductor 75385 de 15 PSI.

Para el punto 409B.

Graf. 4.19. Curva de calibración para el transductor 75389 de 15 PSI.

Para el punto 410A.

Graf. 4.20. Curva de calibración para el transductor 75390 de 15 PSI.

Para el punto 410B.

Graf. 4.21. Curva de calibración para el transductor 75396 de 15 PSI.

4.2.2. CALIBRACION DE LOS SENSORES DE PRESIÓN DIFERENCIAL

La forma de calibrar los sensores de presión diferencial es muy similar a la calibración de los sensores de presión, con la diferencia de que a este tipo de sensores se les debe aplicar presión en dos puntos, por el lado de baja presión y por el lado de alta presión. Cuando se excita por el lado de alta presión se obtienen valores positivos y cuando se excita por el lado de baja presión se obtienen valores negativos.

El gasto de agua se calcula a partir de la medición de la caída de presión en una placa de una placa de orificio, punto 105, para ello se utilizó un sensor de presión diferencial de 20PSI (Graf. 4.22).

Graf. 4.22. Curva de calibración para el transductor 115588.

Para la medición de la caída de presión en la placa de orificio instalada en la tubería de gas, punto 204, se utilizó un sensor de presión diferencial de 5PSI (Graf. 4.23).

Graf. 4.23. Curva de calibración para el transductor 115589.

Para medir la pérdida de carga en la tubería experimental y poder calcular el coeficiente de fricción para este tipo de tubería, punto 413, se utilizó el siguiente sensor de presión diferencial de 1.25PSI (Graf. 4.24).

Graf. 4.24. Curva de calibración para el transductor 123456.

4.2.3. CALIBRACION DEL SENSOR DE TEMPERATURA

La calibración del sensor utilizado en la tubería de gas, punto 202, se realizó de manera directa utilizando un termómetro de mercurio como elemento de medición, de referencia. Con este proceso se generó la siguiente curva de calibración (Graf. 4.25).

Graf. 4.25. Curva de calibración para el sensor de temperatura.

4.2.4. CALIBRACION DEL SENSOR DE PESO

En el tanque de sólidos se colocó un sensor de peso, también conocido como celda de carga, punto 302, y para obtener su curva de calibración se le fue agregando peso al tanque. Con la tabla generada se obtuvo la siguiente curva de calibración (Graf. 4.26).

Graf. 4.26. Curva de calibración para el sensor de peso.

4.2.5. CALIBRACION DEL SENSOR DE POSICIÓN

Para determinar la inclinación de la tubería experimental se colocó un sensor en la misma, punto 412. La calibración de este sensor se realizó moviendo la estructura, a la

cual se le coloco un medidor de inclinación, cada 10° se tomo la lectura del sensor y se genero la siguiente tabla y apartir de esta la curva de calibración del sensor (Graf. 4.27).

Graf. 4.27. Curva de calibración para el sensor de posición.

4.2.6. CALIBRACION DE LOS SENSORES DE VELOCIDAD

Para controlar la velocidad de giro de los motores eléctricos de inducción, los inversores modifican la frecuencia del voltaje de alimentación al motor, en este caso desde 0Hz hasta 60Hz. Estos equipos además entregan una señal analógica entre 0 y 10 Volts, proporcional a la frecuencia y por lo tanto proporcional a la velocidad de giro del motor

Para el inversor de la bomba, la curva del sensor de velocidad de giro es la siguiente (Graf. 4.28), que está colocado en el punto 101.

Graf. 4.28. Curva de calibración para la salida analógica del inversor de la bomba.

En la gráfica 4.29 se presenta la curva de calibración para el sensor de velocidad de giro del inversor del dosificador de sólidos, que se encuentra en el punto 303.

Graf. 4.29. Curva de calibración para la salida analógica del inversor del dosificador de sólidos.

La curva que rige el comportamiento del sensor de la velocidad de giro del malacate principal es la siguiente (Graf. 4.30), que está colocado en el punto 502.

Graf. 4.30. Curva de calibración para la salida analógica del inversor del malacate principal.

La curva de calibración para el sensor de la velocidad de giro del malacate secundario es la siguiente (Gaf. 4.31), que está colocado en el punto 503.

Graf. 4.31. Curva de calibración para la salida analógica del inversor del malacate secundario.

CAPÍTULO 5

PRUEBAS EN EL EQUIPO EXPERIMENTAL DE FLUJOS MULTIFÁSICOS Y DE TRANSPORTE DE RECORTES

Una vez terminada la instalación de todos los sensores y hechas sus respectivas calibraciones, se realizaron una serie de pruebas en el equipo experimental de flujos multifásicos. Las primeras pruebas que se hicieron fueron preliminares, en las que no se usó el sistema de adquisición de datos, y se utilizaron únicamente medidores convencionales (manómetros de carátula, manómetros diferenciales en "U", tacómetro digital, etc.), para empezar con la caracterización del sistema hidráulico.

Posteriormente se realizaron pruebas, utilizando el equipo de adquisición de datos, en las que se continuó con la caracterización del sistema hidráulico. Otras más para obtener el coeficiente de fricción de la tubería experimental, ambas trabajando únicamente con agua.

Se hicieron pruebas con flujo bifásico (líquido-gas) para comprobar diferentes patrones de este tipo de flujo y también se realizaron otras pruebas en flujo trifásico (sólidos-líquido-gas) para medir velocidad de arrastre de sólidos.

5.1. CARACTERIZACIÓN DEL SISTEMA HIDRÁULICO

Para tener una visión más amplia del comportamiento del sistema hidráulico, se realizaron una serie de pruebas con las que se obtuvieron las curvas del sistema bajo distintas condiciones de operación.

5.1.1. OBTENCIÓN DE LAS CURVAS DEL SISTEMA CON DISTINTAS CONDICIONES DE APERTURA DE LA VÁLVULA DE ESTRANGULAMIENTO

La primera prueba consistió en obtener la curva de comportamiento del sistema con la tubería en posición horizontal (inclinación de 0°) y con distintas condiciones de apertura de la válvula de estrangulamiento, FVC-153.

En esta prueba no se utilizó el sistema de adquisición de datos y se colocaron únicamente instrumentos de medición convencionales como manómetros de carátula para medir la presión en distintos puntos a lo largo de la tubería experimental (Fig. 5.1.), manómetros diferenciales en "U" para conocer la caída de presión en la placa orificio, un tacómetro para medir la velocidad de giro del motor de la bomba; también se utilizó un medidor de gasto por ultrasonido para conocer el gasto suministrado por al bomba.

Fig. 5.1. Mediciones directamente en manómetros.

La instalación experimental cuenta con un medidor de gasto por ultrasonido, marca Panametrics, modelo DF868^{5.1}, con transductores portátiles con sujeción por cadenas. Este modelo soporta dos canales de medición simultánea, cada uno con dos modos de detección, denominados: "Transit-time" y "Trans-Flection" y su intervalo de medición es de -12.2 a 12.2 m/s (-40 a 40 ft/s), que para la tubería de 4" de diámetro representa un gasto máximo de 100 l/s.

MEDIDOR DE GASTO	
PANAMETRICS	
ULTRASONIC LIQUID FLOWINGTER DF868	

Fig. 5.2. Medidor de gasto Panametrics.

^{5.1} Para más detalle del medidor de gasto por ultrasonido consultar el "User Manual of Panametrics DF868".

El modo "Transit-time", mide el tiempo de tránsito de una señal ultrasónica emitida y recibida entre dos transductores a favor y a contra flujo, en este modo los transductores son instalados uno después del otro de forma tal que la trayectoria de emisión coincida con la ubicación del transductor opuesto, a través de una línea cercana a 45° respecto al eje del tubo. De esta forma, cuando la emisión ultrasónica viaja en el sentido del flujo el tiempo de tránsito es menor que cuando viaja en sentido opuesto, a contra flujo. La diferencia entre los tiempos de arribo en un sentido y el otro, es proporcional a la velocidad del fluido, además, este equipo tiene la capacidad de medir la velocidad de propagación de la onda ultrasónica y mediante un análisis estadístico, validar la estimación del gasto medido. Una característica importante de este modo de operación (transit-time) es que la medición del gasto se puede hacer en flujo limpio y no requiere de partículas en suspensión que reflejen la señal ultrasónica emitida por los transductores.

El modo "Trans-flection", mide la señal ultrasónica reflejada en partículas en suspensión y fue desarrollado para realizar mediciones de flujo en aquellas situaciones en que el modo "Transit-time" no pueda emplearse por problemas de dispersión de la señal utrasónica. Dado que esta técnica permite una medición indirecta del flujo, a través de la medición de velocidad de las partículas arrastradas, debe calibrarse para garantizar la medición del gasto. Teóricamente, con esta técnica es posible medir el gasto del fluido aún con arrastre de burbujas de aire en poca proporción; por esta razón se adquirió este equipo para realizar la medición de flujo bifásico agua-aire, pero desgraciadamente no se han podido efectuar este tipo de mediciones con el equipo.

El correcto funcionamiento del medidor por ultrasonido depende de una buena ubicación y colocación de los transductores, lo que requiere ubicarlos lejos de cualquier fuente de turbulencia ya que esto tiende a dispersar la lectura al alterar el perfil del flujo en la zona de medición. La recomendación general para establecer el sitio de colocación de los transductores es que deben instalarse al menos 10 diámetros de tubería recta aguas abajo y 5 diámetros aguas arriba de cualquier perturbación (codos, válvulas, etc.) para garantizar un perfil del flujo uniforme.

En la instalación pudimos observar que debe dejarse mayor distancia a cualquier perturbación, al menos el doble de lo recomendado por el fabricante, y aún así se tuvieron problemas para tener una medición confiable. Para la realización de esta prueba, los transductores se colocaron en el punto de medición 106.

Como se muestra en la tabla 5.1, se registraron, en forma manual, los valores de frecuencia del voltaje de alimentación a los motores, velocidad de giro de la bomba, gasto, presión en la descarga de la bomba PI-101, presión antes de la mezcla PI-107, presión a la entrada de la tubería experimental PI- 401, presión en el retorno de la tubería experimental PI-407y la presión a la salida de dicha tubería PI-411. Se hicieron pruebas para distintos grados de apertura de la válvula de estrangulamiento FCV-153.

PRUEBAS EN EL MODELO EXPERIMENTAL DE FLUJO MULTIFÁSICO DEL "IMP" Inclinación de la tubería = 0°

Apertura Válvula 90°

Aperta																	
f	N	Qultra	Pdesc				Ptanq			Pin			Pinter			Pout	
			Le	ectura	Ajuste	Lectura		Ajuste									
[Hz]	[rpm]	[l/s]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]
25	1490	18.3	24		14.47	10		7.48	7.5		5.27	5.75		4.45	5		4.60
30	1784	20.9	32		20.04	13		9.64	10		7.06	8		6.03	6.75		5.82
35	2077	24.2	42		27.01	16.5		12.17	13		9.20	10.75		7.96	8.75		7.21
40	2370	28	53		34.67	21		15.41	16.5		11.69	13.5		9.90	11		8.78
45	2660	31.8	66		43.72	26		19.02	20		14.19	16.75		12.19	13.25		10.35
50	2942	37	80		53.48	31		22.63	24		17.04	20.5		14.83	16		12.26
- 55	3189	40	93		62.53	36		26.23	28		19.90	23.5		16.94	18.5		14.01
		200.2															

Apertura Válvula 60°

f	N	Qultra		Pdesc			Ptanq		Pin				Pinter		Pout		
			Lectura		Ajuste	e Lectura		Ajuste									
[Hz]	[rpm]	[l/s]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]
25	1485	16.6	24.5		14.81	9.5	0.67	7.13	7.5	0.5	5.13	6.25	0.44	4.80	5.25	0.38	4.83
30	1780	20.8	32.5		20.39	12	0.85	8.95	9.5	0.65	6.61	8	0.56	6.01	6.25	0.44	5.47
35	2072	24.7	42.5		27.35	15.5	1.1	11.49	12	0.85	8.51	10.25	0.72	7.61	8	0.56	6.68
40	2363	28.2	54		35.37	19.5	1.4	14.47	15	1.1	10.85	13	0.92	9.57	10.25	0.72	8.25
45	2651	31.6	68.5		45.47	24	1.7	17.64	19	1.3	13.29	16	1.12	11.63	12.5	0.88	9.83
50	2934	35.5	81		54.17	29	2	20.98	22.5	1.6	16.06	19	1.34	13.79	15	1.05	11.54

Apertura Válvula 50°

f	N	Qultra		Pdesc			Ptanq			Pin		Pinter			Pout		
			Lectura Ajuste		Lectura Ajus		Ajuste	Lectura		Ajuste	Lectura		Ajuste	Lectura		Ajuste	
[Hz]	[rpm]	[l/s]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]
25	1486	15.8	24.5		14.81	6.7	0.6	5.76	6.7	0.47	4.69	5.5	0.4	4.34	4.25	0.32	4.18
30	1781	20.1	33		20.74	8.5	0.8	7.43	8.5	0.6	6.00	7.25	0.51	5.50	5.75	0.41	5.15
35	2072	23.5	43		27.70	11	1	9.36	11	0.78	7.80	9.25	0.65	6.90	7.25	0.51	6.17
40	2364	26.1	55		36.06	13.5	1.22	11.39	13.5	0.95	9.55	11.5	0.8	8.45	9	0.63	7.37
45	2653	29.4	68		45.12	16.5	1.5	13.91	16.5	1.17	11.74	14	0.98	10.23	11	0.77	8.76
50	2937	33.1	83		55.57	20	1.8	16.71	20	1.4	14.15	16.75	1.18	12.19	13	0.92	10.20
55	3198	36	97		65.32	23	2.1	19.32	23	1.6	16.24	19.5	1.36	14.06	15	1.06	11.59

Apertura Válvula 40°

ſ	f	N	Qultra		Pdesc		Ptanq			Pin				Pinter				
				Le	ectura	Ajuste	Le	ectura	Ajuste	L	ectura	Ajuste	L	ectura	Ajuste	Le	ectura	Ajuste
ſ	[Hz]	[rpm]	[l/s]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]
ſ	25	1489	11.9	26		15.86	6.5	0.45	4.92	5	0.35	3.48	4.25	0.3	3.40	3.25	0.26	3.54
	30	1784	14.3	35		22.13	8	0.55	5.97	6.2	0.45	4.42	5.25	0.37	4.10	4.5	0.31	4.22
	35	2078	16.8	45		29.10	9.5	0.68	7.18	7.5	0.5	5.13	6.25	0.44	4.80	5.25	0.38	4.83
	40	2371	19.3	58.5	4	37.92	11	0.75	8.08	8.5	0.6	6.00	7	0.5	5.36	5.75	0.4	5.10
	45	2663	21.4	72	5	47.58	12.8	0.9	9.50	10	0.7	7.04	8.25	0.58	6.20	6.5	0.46	5.66
	50	2951	23.6	86	6	57.40	15	1.05	11.06	11.5	0.8	8.08	9.5	0.68	7.14	7.75	0.54	6.49
	55	3227	25.3	103		69.50	16.5	1.15	12.11	13	0.9	9.12	11	0.77	8.12	8.75	0.6	7.14

Apertura Válvula 30°

f	N	Qultra		Pdesc			Ptanq			Pin			Pinter		Pout		
			Le	ectura	Ajuste	te Lectura		Ajuste									
[Hz]	[rpm]	[l/s]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]	[lb/in ²]	[kg/cm ²]	[mca]
25	1493	2.9	25		15.16	3.5	0.25	2.81	2.5	0.17	1.68	2	0.14	1.80	2	0.14	2.51
30	1789	3.3	34		21.43	4	0.27	3.09	2.5	0.18	1.73	2	0.17	1.95	2	0.16	2.61
35	2085	3.7	44		28.40	4	0.27	3.09	3	0.2	2.01	2	0.17	1.95	2.25	0.18	2.79
45	2676	4.3	72		47.90	4	0.28	3.14	3	0.2	2.01	2.2	0.18	2.07	2.25	0.18	2.79
55	3260	4.8	100		67.41	4	0.3	3.25	3	0.2	2.01	2	0.17	1.95	2.25	0.18	2.79

Tab. 5.1. Variables hidráulicas para la primera prueba.

Así mismo, se tomaron datos de variables eléctricas para ver conocer el funcionamiento del inversor. En la siguiente tabla se muestran los datos de las variables eléctricas registradas: voltajes entre fases, corrientes por fase, potencias, tanto del lado de la línea y como del lado del inversor.

VARAIBLES ELÉCTRICAS

Apertu	ra Válvul	a 90°				1.15.177.0											MOTOR						
6	1			:		LINEA		n			ED				:	:	MUTUR	n		0	0	ED	
[Hz]	V12 [∀]	V23 [√]	V31	11 [A]	[A]	6 [A]	P12 [kW]	P ₂₃ [k₩]	[kW]	STOTAL [kVA]	F.P.	V [∀]		₩vu [V]	10 [A]	[A]	W [A]	Puv [kW]	Pwv [kW]	PTOTAL [kW]	STOTAL [kVA]	F.P.	7?IN∨
25	216.9	217.3	216.9	20.8	21.7	15.7	2.7	1.6	4.3	10.89	0.590	160.6	160.4	160.1	41.5	42.7	42	0.4	3.3 E	3.7	11.68	0.317	0.537
35	216	215.7	214.7	51.2	49.8	27.7	7.9	3.2	11.1	16.01	0.693	185.8	186.2	186.2	59.4	59.2	40.0 59.4	2.9	7.5	10.4	19.12	0.433	0.784
40	215.1	214.4	213.4	75.1	71.6	36.1	12.5	4	16.5	22.62	0.730	197.3	197.3	197.4	74	74.3	73.3	4.9	10.7	15.6	25.25	0.618	0.847
45	215.5	214	212.6	105.9	102.3	43.4	18.4	5	23.4	31.09	0.753	208.8	208.5	208.9	88.9	88.3	88.5	7.4	14.9	22.3	32.02	0.696	0.925
50	213.5	210	207	150.5	14U.4 205.9	54.2 76	26.3	5.3	32.6	41.87	0.779	217	217.5	217.6	109.9	109.1	109.6	10.5	20.7	31.2	41.24	0.757	0.972
00	211.2	200.0	210	210.2	200.0	70	50	7.0	40.0	05.44	0.770	213.0	213.0	214	105	101.5	101.5	14.7	30.2	44.3	00.01	0.740	0.571
Apertu	ra Válvul	a 60°															MOTOR						
f	Vt2	Voo	Vor	j,	İa	ia ia	P12	P22	PTOTAL	STOTAL	FP	Vinz	Wilar	Wazu	iu	İv.	iw	Pinz	Puez	PTOTAL	STOTAL	ΕP	200.7
[Hz]		[V]	[Y]	[A]	[Å]	[Ă]	[kW]	[kW]	[kW]	[kVA]		M	[V]	[V]	[A]	[A]	[A]	[kW]	[kW]	[kW]	[kVA]		Anaa
25	218.4	219.3	218.4	18.1	18.4	13.7	2.4	1.4	3.8	6.34	0.600	161	161	160.8	38.5	40	41.5	0.5	3.4	3.9	11.15	0.350	0.583
30	219	219	218.2	29.3	28.4	19.4	4.2	2.2	6.4	9.74	0.657	174	174.3	174.7	46.4	46.9	48.1	1.3	5	6.3	14.23	0.443	0.673
40	218 2	218.0	217.6	40 69.1	44.3 66.7	25.7 33.1	11.8	3.1 4	15.8	21.25	0.725	198.8	198.8	198.7	70.1	56.7 70.1	50.4 70.9	4.6	10.5	15.1	24.23	0.539	0.744
45	217.4	215.4	214.6	99.3	97.3	42.5	17.7	2.1	19.8	29.79	0.665	209.5	209.5	209.5	85.9	86	86.7	7.2	14.7	21.9	31.28	0.700	1.053
50	217.2	214.5	212.2	139.3	132.6	52.7	25.1	6.3	31.4	40.22	0.781	219.7	219.6	219.1	106.3	106.2	107.1	10.2	20.3	30.5	40.50	0.753	0.965
Apertu	ra Válvul	a 50°																					
						LINEA											MOTOR						
f	V12	¥23	V31	i _i	i2	is (A)	P ₁₂	P ₂₃	PTOTAL	STOTAL	F.P.	YUV	¥var ⊳.a	Ywu .	iu	iv w	ĥø	Puv	Pwv	PTOTAL	STOTAL	F.P.	??in∨
25	219.5	220.5	220	17	17.4	14.4	2.6	1.7	4.3	6.20	0.694	161.2	161.2	161.2	39.2	40.6	41.6	0.3	3	3.3	11.30	0.292	0.421
30	218.5	218.5	218.2	29.6	28	19.6	4.6	2.4	7	9.73	0.719	174.5	174.5	176.6	45.7	46.7	47.4	1.2	4.7	5.9	14.14	0.417	0.580
35	219.3	219	219.1	44.9	42.7	26.1	7.4	3.1	10.5	14.38	0.730	187.2	187.2	187.2	56.1	56.2	57.8	2.6	7	9.6	18.38	0.522	0.715
40	218.7	217	217	67.2	63.8	32.8	11.6	3.8	15.4	20.58	0.748	199	199.2	199.1	68.4	68.3	69.4	4.5	10.1	14.6	23.69	0.616	0.823
50	210.5	217.2	215.2	130.8	125.6	40.5 52.1	24.3	64	30.7	38.44	0.709	219.8	219.8	210.1	103.8	103.3	103.5	9.9	19.4	29.3	39.43	0.003	0.073
55	216	212	208.4	181.9	179.8	68.2	34.5	7.7	42.2	52.65	0.801	222.3	222.5	222.1	138	138.3	137.2	13.8	27.2	41	53.07	0.773	0.964
Apertu	ra Válvul	a 40°																					
						LINEA											MOTOR						
f (Hz)	V12	¥23 I√1	¥31 I√1	іі ГАТ	i ₂ [Δ]	ί3 ΓΔ1	P ₁₂	P ₂₃	PTOTAL IVW1	STOTAL IVVA1	F.P.	¥u∨ r∨i	₩ww 1√1	₩vu IV/I	iu rai	i∨ r∆1	ĥø/ ΓΔ1	Puv	Pwv II/WI	PTOTAL (LVV)	STOTAL IVVA1	F.P.	??in∨
25	217.2	218.2	217.5	15.4	16.3	13.1	2.1	1.5	3.6	5.63	0.640	160.1	160.8	160.8	37.4	38.8	39.8	0.1	2.9	3	10.75	0.279	0.436
30	218.2	218.6	218	24.9	24.6	18.8	3.8	2.2	6	8.61	0.697	174.9	174.6	171.9	43.1	43.5	44.5	0.9	4.4	5.3	13.16	0.403	0.578
35	217.5	218.5	217.7	38.9	37.3	23.6	6.3	2.8	9.1	12.56	0.725	187.5	187.4	187.5	50.5	51	51.9	2.2	6.5	8.7	16.60	0.524	0.723
40	217	216.7 215.4	216.1	58.9 84	56.0 80.4	-30 96.9	9.9	3.5 4 3	13.4	25.00	0.735	210.2	210.1	198.9 209.9	73.4	61.3 73.6	62.2 74 3	5.0	9.1	12.9	21.19	0.609	0.828
50	215.8	214.2	212	113.4	108.9	46.2	20.3	5.5	25.8	33.17	0.778	219.7	219.6	219.7	88.5	88.7	89.2	8.5	16.9	25.4	33.79	0.752	0.967
55	215.2	212.8	208.5	153.8	148.7	59.1	28	6.5	34.5	44.29	0.779	223.8	224.5	224.7	113.2	112.8	113.4	11.8	22.6	34.4	43.96	0.783	1.005
Apertu	ra Válvul	a 30°																					
						LINEA											MOTOR						
f f	V12	¥23	V31		i2	is La t	P ₁₂	P ₂₃	PTOTAL	STOTAL UN (01	F.P.	VUV D.A	Vviir D. d	WWU D. d		iv m	har ran	Puv	Pwv	PTOTAL	STOTAL	F.P.	??in∨
25	216	216.5	216	13.3	14 4	13.8	1.5	[KVV] 1	25	5 18	0.483	161.8	161.8	162	36.3	38.4	[A] 37.5		2.9	2.9	10.49	N 277	0.573
30	21.9	217.9	217.4	19.6	20.2	16.5	2.6	1.6	4.2	4.95	0.848	175.4	175.2	175.4	38.2	39.2	39.6	0.1	3.6	3.7	11.84	0.312	0.368
35	217.6	218	217.1	28.1	27.7	19.1	4.1	2.4	6.5	9.41	0.691	188.3	188.8	188.5	40.9	41.8	42.4	0.8	4.7	5.5	13.62	0.404	0.585
45	216.9	216.9	217.9	56.8	54.2	29.3	9.3	3.7	13	17.60	0.739	211.3	211.2	211.4	54.2	54.3	54.8	3.1	8.8	11.9	19.92	0.597	0.809
55	j 216.1	214.3	213	101.8	97.5	42.9	17.9	5	22.9	29.99	U./64	228.6	228.1	227.3	/4.3	/4./	/4.8	1.3	15.1	22.4	29.46	U.76U	0.996

Tab. 5.2. Variables eléctricas para la primera prueba.

Con los datos obtenidos se construyó la siguiente gráfica en la que se presentan las curvas del sistema para distintas aperturas de la válvula, gráfica 5.1.

Graf. 5.1. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 1.

Como se puede observar en la gráfica anterior, el sistema responde diferente al modificar el grado de apertura de la válvula; un dato importante es, que conforme más se abre la válvula, el sistema varía menos. Se puede notar que entre la apertura a 90° (válvula totalmente abierta) y 50° las curvas están muy cerca, pero al cerrar más la válvula el cambio es muy abrupto, que corresponde con el comportamiento clásico del tipo de válvula usada.

Graf. 5.2. Curva de comportamiento para una válvula de mariposa.

Cabe mencionar que en todas las curvas, para gasto nulo ya existe presión, esto se debe a la carga estática establecida por el nivel del agua en el tanque (presa), que está por encima de la bomba.

Debido a que no se encontraron variaciones notables en las curvas del sistema con la apertura de la válvula de 90° y 50°, y sí entre las aperturas de 30° y 40°, se realizó una incisión en la placa guía de la válvula de mariposa, para poder colocarla a una apertura de 35°.

En la segunda prueba se hicieron mediciones a 90°, 40°, 35° y 30° de apertura de la válvula, cuyos resultados se presentan en la siguiente tabla (Tab. 5.3). Las variables hidráulicas medidas fueron en los mismos puntos que en los de la primera prueba.

				PRUEB/ Inclinac	AS EN EL sión de l	. MODEL a tuberi	.0 EXPE a = 0°	RIMENT	AL DE FI	LUJO MI	ILTIFÁSI	CO DEL	"IMP"								
Apertur	a Válvul	a 90°																			
f	N	Δh	Qultra		Pdesc			Pplaca			Ptang			Pin			Pinter			Pout	
				Le	ectura	Ajuste	Le	ctura	Ajuste	Le	ctura	Ajuste	Le	ctura	Ajuste	Le	ectura	Ajuste	Le	ctura	Ajuste
[Hz]	[rpm]	[cm _{Hg}]	[l/s]	[lb/in*]	[kg/cm*]	[mca]	[lb/in*]	[kg/cm*]	[mca]	[lb/in*]	[kg/cm*]	[mca]	[lb/in*]	[kg/cm*]	[mca]	[lb/in*]	[kg/cm*]	[mca]	[lb/in*]	[kg/cm*]	[mca]
10	598.1	3.5	5.6	8	0.5	3.01	5	0.3	3.65	4	0.3	3.25	3	0.2	2.01	2.25	0.16	1.99	2.25	0.16	2.69
20	1191	22	16.0	16	1.15	9.01	12	0.6	9.00	0.0	0.4	4.40 C 41	66	0.35	3.40	5.75	0.27	4.16	3.20	0.25	4.09
25	1487	38	19.9	23	1.15	1.01	1.5	13	13.58	11.5	0.0	8.51	9	0.40	6.68	7.5	0.50	5.64	4.20	0.3	5.29
30	1779	55	24	30	2.1	18.59	26	1.8	18.54	15.5	1.1	11.49	12	0.85	8.51	10.5	0.72	7.69	8	0.58	6.78
35	2070	75	27.9	40	2.8	25.64	34	2.4	24.35	20	1.4	14.66	16	1.15	11.46	13.5	0.94	9.85	11	0.75	8.66
40		99	32.4	50	3.5	32.49	44	3	30.87	25.5	1.8	18.69	20	1.4	14.15	17	1.2	12.38	13	0.92	10.20
45	2652	127	36.7	63	4.8	43.45	55	3.8	38.74	32	2.25	23.34	25	1.75	17.71	21	1.48	15.19	16.25	1.18	12.62
50						-2.25			0.39			0.27			-0.08			0.40			1.12
66						-2.26			0.39			0.27			-0.08			0.40			1.12
Apertur	a Válvul	a 40°																			
f	N	∆h	Qultra		Pdesc			Pplaca			Ptang			Pin			Pinter			Pout	
111-1	f	1	112-1	Le Ub/in ² 1	rctura [[ka/om ²]	Ajuste	Le Ub (in ² 1	ctura (ka/om²)	Ajuste	Le Ub/in ² 1	ctura (ka/om²)	Ajuste	Le Ub/in ² 1	ectura	Ajuste	Le Lib/in ² 1	rctura [[ka/om²]	Ajuste	Le (lb/in ² 1	ctura (ka/om²)	Ajuste
[Hz]	[rpm]	[cm _{Hg}]	[1/s]	[ib/in]	[kg/cm]	[mca]	[ib/in-]	[kg/cm]	[mca]	[ib/in]	[kg/cm]	[mca]	[ib/in]	[ку/ст	[mca]	(ib/in-j	[kg/cm]	[mca]	[ib/in]	[kg/cm]	[mca]
10	599.2 995.0	2.2	4.6	12	0.45	2.76	7.6	0.3	2.95	4 5 1	0.275	3.12	3	0.2	2.01	2.1	0.16	1.94	2.1	0.16	2.64
20	1192	17	13.5	17	1.4	10.60	10	0.5	7 41	7	0.4	5 35	6	0.5	4.09	4 75	0.23	3.72	4	0.2	3.90
25	1489	27	17.4	24	1.7	14.52	15	1	10.67	10	0.7	7.46	ă I	0.55	5.56	6.25	0.45	4.85	5	0.35	4.59
30	1783	41	21.6	32	2.5	21.27	20	1.4	14.43	12	0.85	8.95	9	0.6	6.17	8	0.56	6.01	6.1	0.44	5.42
35	2075	66	25.1	43	3	27.57	26	1.6	17.54	15.1	1.1	11.35	12	0.85	8.51	10	0.7	7.42	8	0.66	6.68
40	2385	72	28.4	54	3.8	35.37	32	2.4	23.65	20	1.4	14.66	15	1.05	10.60	12.75	0.9	9.39	10	0.7	8.07
45	2657	90	31.8	67	4.7	44.35	40	2.6	27.46	23	1.6	16.76	18	1.25	12.68	15.25	1.04	10.97	12	0.84	9.46
50			35.2	80	5.6	53.33	47	3.6	34.93	27	1.9	19.74	21	1.5	15.02	18	1.23	12.88	14	0.98	10.85
Anortur	s Vábail	a 25°				-2.20			0.35			0.27			-0.00			0.40			1.12
f	N	Δh	Qultra		Pdesc			Pplaca			Ptang			Pitts			Pinter			Pout	
				Le	ectura	Ajuste	Le	ctura	Ajuste	Le	ctura	Ajuste	Le	ctura	Ajuste	Le	ectura	Ajuste	Le	ctura	Ajuste
[Hz]	[rpm]	[cm _{Hg}]	[l/s]	[lb/in*]	[kg/cm*]	[mca]	[lb/in*]	[kg/cm*]	[mca]	[lb/in*]	[kg/cm*]	[mca]	[lb/in*]	[kg/cm*]	[mca]	[lb/in*]	[kg/cm*]	[mca]	[lb/in*]	[kg/cm*]	[mca]
10	598.4	1.8	3.9	7.5	0.5	2.83	3	0.3	2.95	3.5	0.25	2.81	2.5	0.2	1.83	2	0.15	1.85	2	0.15	2.56
15	896.3	10	8.3	11	0.8	5.54	10	0.5	4.65	2	0.35	3.86	4	0.3	2.87	3	0.22	2.66	2.5	0.19	2.93
20	1499	21	16.1	26	1.20	16.20	11	0.7	9.76	9.5	0.45	6.41	66	0.35	3.40	66	0.20	4.24	3.5	0.24	4.27
30	1782	31	18.3	32	24	20.77	16	12	12.02	10	0.0	7.46	8	0.45	5.56	6.75	0.30	5.17	5.75	Π.4	5.10
35	2086	42	21.8	44	3.2	28.91	20	1.4	14.43	12.5	0.85	9.13	10	0.7	7.04	8	0.56	6.01	6.25	0.44	5.47
40	2369	53.5	24.6	56	3.9	36.56	25	1.75	17.94	15	1.05	11.06	12	0.8	8.26	9.75	0.68	7.23	6.75	0.5	5.94
45	2658	65	27.1	70	4.9	46.38	30	21	115.95	17.5	1.25	12.98	14	1	9.99	11.5	0.8	8.45	9	0.62	7.32
50	2950	77.5	29.4	82	5.8	55.02	35	2.4	24.70	20	1.4	14.66	16	1.1	11.21	13.5	0.94	9.85	10.5	0.74	8.44
55	3243	87	31.2	100		67.23	36	2.5	25.56	23	1.6	16.76	17.5	1.25	12.50	15	1.03	10.83	11.5	0.8	9.08
Apertur	a Válvul	a 30°																			
f	N	Δh	Qultra		Pdesc			Pplaca			Ptang			Pin			Pinter			Pout	
				Le Ub Go21	ectura	Ajuste	Le Ub Go21	ctura	Ajuste	Le Ub Go21	ctura	Ajuste	Le Ub Go21	ectura	Ajuste	Le Ub Go21	ectura	Ajuste	Le Ub Ge21	ctura Uca (am ² 1	Ajuste
[HZ]	[rpm]	[mHg]	[I/S]	7.6	0.6	[mca]	finni 1	(kg/cm)	(mca)	26	0.05	[mca]	2.5	(kg/cm)	(mcaj	100101	0.15	(mca)	100111	0.14	[mca]
15	899.3	4	5.4	12	0.5	6.13	5	0.4	4.15	4.5	0.25	3.43	2.5	0.2	2.11	2 75	0.15	2.37	25	0.14	2.51
20	1194	8	9.4	18	1.5	11 44	7.5	0.5	5.53	5.5	0.5	4.30	4	0.22	2.87	3.5	0.24	2.83	3	0.10	3.15
25	1569	13	12	26	1.8	15.71	10	0.7	7.41	6.5	0.45	4.92	5	0.35	3.48	4.25	0.3	3.40	3.5	0.24	3.52
30	1784	18.5	14.3	35	2.5	22.31	12	0.85	8.86	8	0.55	5.97	6	0.42	4.19	5	0.35	3.91	4.1	0.3	4.03
35	2078	24	16.4	45	3.2	29.26	14	1	10.32	9	0.62	6.69	7	0.5	4.95	6	0.42	4.61	5	0.35	4.59
40	2371	30.5	18.2	57	4	37.40	15	1.1	11.17	10	0.7	7.46	8	0.58	5.72	6.75	0.48	5.17	5.75	0.4	5.10
45	2663	36	20.1	71	5	47.23	18	1.25	12.97	11	0.8	8.33	8.5	0.6	6.00	7	0.5	5.36	5.76	0.4	5.10
50	2966	41	21.7	102	5	57.40	20	1.4	14.43	12	8.5	48.16	9.75	0.68	6.85	8	0.66	6.01	6.25	0.44	5.4/
33	3241	45	22.0	103	1 7.5	1 70.75	6	1.5	15.20	1.3	0.9	9.97	1 10	0.7	7.04	0.5	1 0.6	0.39	0.75	4.0	21.23

Tab. 5.3. Variables hidráulicas para la segunda prueba.

Las mediciones de las variables eléctricas se realizaron de la misma forma que en la primera prueba.

VARAIE	LES ELI	ÉCTRICA	s																				
Apertu	a Válvu	a 90°										_											
		14			i.	LINEA	D	D	0	0	50				. i.,	1.	MOTOR	P	8	0	0	50	
[Hz]		*23 [\]	[¥]		[Å]	[A]	[kW]	[kW]	[kW]	[kVA]	1.15.	11/1	IV1	•wu [⊻]	[A]	[A]	[A]	[kW]	[kW]	[kVV]	[kVA]	1.15.	ØIN⊽
10	220.1	221.5	219.9	5.8	6.6	13.9	0.4	0.4	0.8	3.35	0.239	106.7	106.7	106.5	37.8	44.6	45.4	0.5	0.4	0.9	7.87	0.114	0.479
16	219.7	221	220.2	8.4	8.3	14.8	0.7	0.7	2.5	4.01	0.349	127.8	127.8	127.8	38.6	43.5	42.2	0.5	1.1	1.6	9.16	0.175	0.600
25	219.1	219.9	219.9	22.3	20	20.4	3.1	1.9	5	7.95	0.629	161.4	161.4	161.4	46.2	51.2	51.3	0.9	3.1	4	13.86	0.289	0.459
30	219.6	219.7	219.2	34.1	31.1	24.7	5.1	2.6	7.7	11.39	0.676	174.4	174.4	174.4	63.6	56.3	56.6	1.3	5.1	6.4	16.76	0.382	0.665
35	218.5	218.7	218.7	76.3	49.9	29.1	12.9	2.6	10.1	16.71	0.604	187.1	187	186.9	62.6	63.8	64.2 77.8	3.9	9.1	16.4	20.58	0.632	1.045
45	217.6	215.9	214.2	106.8	102.2	45.3	19	5.3	24.3	31.70	0.767	208.7	208.5	208.7	93.4	93.3	93.2	7.9	15.8	23.7	33.72	0.703	0.917
50									0	r										0		r	r
Apertu	a Válvu	a 40°				LINEA											MOTOR						1
f	V12	¥23	V31	iı –	i2	i3	P12	P ₂₃	PTOTAL	STOTAL	F.P.	¥u∨	Vvar	Vw/⊔	iu	iv	her.	Puv	Pwv	PTOTAL	STOTAL	F.P.	7?IN∨
[Hz]	[1]	221.7			[A]	[A]	[kW]	[kW]	[kW]	[kVA]	0.272	106.4	106	106.4	[A] 37.5	[A]	[A]	[kW]	[kW]	[kVV]	[kVA]	0.124	0.490
15	219.7	220.8	219.9	8.2	8	14.1	0.6	0.5	1.1	3.85	0.286	127.7	127.8	127.8	40	43.4	44.1	0.3	1.3	1.6	9.41	0.170	0.596
20	220.8	221.9	220.8	12.4	12.3	14.4	1.3	1	2.3	4.99	0.461	145.9	145.7	145.6	39.2	43.3	44.2	0.1	2	2.1	10.66	0.197	0.428
25	219.3	220.3	219.3	32.9	18.8	18.2	2.7	1.6	4.3	11.09	0.598	160.8	160.9	161	43.3	46.4	44.9	0.2	3.1	6.3	12.50	0.264	0.441
35	219	218.4	217.5	49.5	46.2	27.4	7.9	3.1	2 11	15.51	0.709	187	187	186.9	59.9	60.9	63.1	2.6	7.2	9.8	19.85	0.494	0.696
40	219.6	218.8	217.4	73.3	69.1	34.7	12.2	4	16.2	22.35	0.725	198.7	198.9	199.1	72.7	72.9	73.9	4.6	10.4	15	25.21	0.595	0.821
45 50	217.9	217.4	215.5	138.5	90.2 131.6	42.6	24.8	6.2	31	40.19	0.745	210.1	218.8	218.8	106.8	106.6	106.8	10.1	19.9	30	40.47	0.665	0.920
55									0	F										0	r	F	r
Apertu	a Válvu	a 35°															MOTOR						1
Apertur	a Válvu	a 35°	¥31	i i	ia.	LINEA	P12	P23	PTOTAL	STOTAL	F.P.	Yuw	Vicer	Varu	iu.	İv	MOTOR	Puv	Pasz	PTOTAL	STOTAL	F.P.	201NV
Apertur f [Hz]	a Válvu ^{V12} [∀]	¥23 [∀]	^V 31 [∀]	iı [A]	i ₂ [A]	LINEA i3 [A]	P ₁₂ [kW]	P ₂₃ [kW]	PTOTAL [kW]	Stotal [kVA]	F.P.	¥u∨ [⊻]	Vow [M]	₩wu [M]	iu [A]	i∨ [A]	MOTOR İw [A]	Puv [kW]	Pwv [kW]	PTOTAL [kW]	Stotal [kVA]	F.P.	%in∨
Apertur f [Hz] 10	a Válvul [√] 220.5 221.3	¥23 [V] 222 222 5	^{V31} [⊻] 221 220.1	i ₁ [A] 4.7	i2 [A] 4.5 7.7	LINEA is [A] 7.9 12.1	P ₁₂ [kW] 0.5	P ₂₃ [kW] 0.5	PTOTAL [kW]	STOTAL [kVA] 2.18 3.50	F.P. 0.458 0.457	Vu∨ [V] 106.7	vvw [⊻] 106.7 128.4	₩u [V] 106.7 128.5	iu [A] 33.6 37.8	iv [A] 36.5	MOTOR iw [A] 39.2 42.1	Puv [kW] 0.7	Pwv [kW] 0.4	Ртотац [kW] 1.1	STOTAL [kVA] 6.73	F.P. 0.163 0.199	7/IN∨ 0.357 0.435
Apertur f [Hz] 10 15 20	vii2 [√] 220.5 221.3 221.1	×23 [V] 222 222.5 222.1	V31 [⊻] 221 220.1 221.4	i ₁ [A] 4.7 7.6 11.4	i2 [A] 4.6 7.7 11.6	LINEA [A] 7.9 12.1 11.3	P ₁₂ [kW] 0.5 0.9 1.3	P ₂₃ [kVV] 0.5 0.7 1	PTOTAL [kW] 1 1.6 2.3	STOTAL [kVA] 2.18 3.50 4.39	F.P. 0.458 0.457 0.524	Vuv [∀] 106.7 128.2 146.3	Vvw [⊻] 106.7 128.4 146.3	₩wu [V] 106.7 128.5 146.1	iu [A] 33.6 37.8 36	i∨ [A] 36.5 41.9 38.2	MOTOR iw [A] 39.2 42.1 38.3	Puv [kW] 0.7 0.7 0.2	Pwv [kW] 0.4 1.1 2.2	PTOTAL [kW] 1.1 1.8 2.4	S _{TOTAL} [kVA] 6.73 9.03 9.50	F.P. 0.163 0.199 0.253	7/INV 0.357 0.436 0.482
Apertur f [Hz] 10 15 20 25	v12 [√] 220.5 221.3 221.1 220.8	V23 [V] 222 222.5 222.1 221.5 221.5	V31 [√] 221 220.1 221.4 220.8	iı [A] 4.7 7.6 11.4 18.5	i2 [A] 4.5 7.7 11.6 18.2	LINEA i ₃ [A] 7.9 12.1 11.3 14.4 01.0	P ₁₂ [kWV] 0.5 0.9 1.3 2.4	P ₂₃ [kW] 0.5 0.7 1 1.5	Ртотац [kW] 1 1.6 2.3 3.9	STOTAL [kVA] 2.18 3.50 4.39 6.52	F.P. 0.458 0.457 0.524 0.598	Vu∨ [V] 106.7 128.2 146.3 161.7	Vvw [⊻] 106.7 128.4 146.3 161.7	₩wu [V] 106.7 128.5 146.1 146.1	iu [A] 33.6 37.8 36 39.7	i∨ [A] 36.5 41.9 38.2 42 42	MOTOR iw [A] 39.2 42.1 38.3 42 54	Puv [kW] 0.7 0.7 0.2 0.3	Pwv [kW] 0.4 1.1 2.2 3.4	Ртотац [kW] 1.1 1.8 2.4 3.7	STOTAL [kVA] 6.73 9.03 9.50 11.55	F.P. 0.163 0.199 0.263 0.320	7/INV 0.357 0.436 0.482 0.536
Apertur f [Hz] 10 15 20 25 30 35	v12 [√] 220.5 221.3 221.1 220.8 220.4 220.4 221	¥23 [V] 222 222.5 222.5 222.1 221.5 221.3 221.3 220.8	V31 [V] 221 220.1 221.4 220.8 220.8 220.1	it [A] 4.7 7.6 11.4 18.5 29.9 46.2	i2 [A] 4.5 7.7 11.6 18.2 27.7 43.3	LINEA is [A] 7.9 12.1 11.3 14.4 21.8 27.8	P ₁₂ [kW] 0.5 0.9 1.3 2.4 4.3 7.2	P ₂₃ [kW] 0.5 0.7 1.5 2.3 2.9	PTOTAL [kW] 1 1.6 2.3 3.9 6.6 10.1	STOTAL [kVA] 2.18 3.50 4.39 6.52 10.12 14.94	F.P. 0.458 0.457 0.524 0.598 0.652 0.676	Yuv [V] 106.7 128.2 146.3 161.7 175.4 188.1	Vvw [V] 106.7 128.4 146.3 161.7 175.5 187.9	Ywu [∀] 106.7 128.5 146.1 161.7 175.3 188.1	iu [A] 33.6 37.8 36 39.7 49.1 57.2	iv [A] 36.5 41.9 38.2 42 52 61.2	MOTOR iw [A] 39.2 42.1 38.3 42 51.5 60.3	Puv [kW] 0.7 0.2 0.3 1.2 2.5	Pwv [kW] 0.4 1.1 2.2 3.4 4.9 6.8	PTOTAL [kW] 1.1 1.8 2.4 3.7 6.1 9.3	STOTAL [kVA] 6.73 9.03 9.60 11.55 15.45 19.40	F.P. 0.163 0.199 0.263 0.320 0.395 0.479	7/IN∨ 0.357 0.436 0.482 0.536 0.605 0.709
Aperto f [Hz] 10 15 20 25 30 35 40	vi2 [√] 220.5 221.3 221.1 220.8 220.4 221 220.4 221 220.4	y ₂₃ [√] 222 222.5 222.1 221.5 221.3 220.8 220.1	V31 [V] 221 220.1 221.4 220.8 220.8 220.1 218.9	it [A] 4.7 7.6 11.4 18.5 29.9 46.2 66.4	i2 [A] 4.5 7.7 11.6 18.2 27.7 43.3 62.1	LINEA [A] 7.9 12.1 11.3 14.4 21.8 27.8 34.5	P ₁₂ [kW] 0.5 0.9 1.3 2.4 4.3 7.2 11.2	P ₂₃ [kW] 0.5 0.7 1 1.5 2.3 2.9 3.8	PTOTAL [kW] 1 1.6 2.3 3.9 6.6 10.1 15	STOTAL [kVA] 2.18 3.50 4.39 6.52 10.12 14.94 20.68	F.P. 0.458 0.457 0.524 0.598 0.652 0.676 0.725	Vuv [∨] 106.7 128.2 146.3 161.7 175.4 188.1 199.7	Vww [∨] 106.7 128.4 146.3 161.7 175.5 187.9 199.6	₩wu [M] 106.7 128.5 146.1 161.7 175.3 188.1 199.6	iu [A] 33.6 37.8 36 39.7 49.1 67.2 69.1	i√ [A] 36.5 41.9 38.2 42 52 61.2 70.3	MOTOR iw [A] 39.2 42.1 38.3 42 51.5 60.3 70.1	Puv [kW] 0.7 0.2 0.3 1.2 2.5 4.2	Pwv [kW] 0.4 1.1 2.2 3.4 4.9 6.8 10.2	PTOTAL [kW] 1.1 1.8 2.4 3.7 6.1 9.3 14.4	STOTAL [kVA] 6.73 9.03 9.50 11.55 15.45 19.40 24.15	F.P. 0.163 0.199 0.253 0.320 0.395 0.479 0.596	7/IN√ 0.357 0.436 0.482 0.536 0.605 0.709 0.822
Aperto f [Hz] 10 15 20 25 30 35 40 45 60	vi2 [√] 220.5 221.3 221.1 220.8 220.4 221 220.4 220.4 220.4 220.6	¥23 [⊻] 2222 222.5 222.1 221.5 221.3 220.8 220.1 219.2 217.6	V31 [V] 220.1 220.4 220.8 220.8 220.8 220.1 218.9 217.2 216.6	i ₁ [A] 4.7 7.6 11.4 18.5 29.9 46.2 66.4 95.2 125.2	i2 [A] 4.5 7.7 11.6 18.2 27.7 43.3 62.1 89.4 119.1	LINEA i3 [A] 7.9 12.1 11.3 14.4 21.8 27.8 34.5 40.4 51.2	P ₁₂ [kW] 0.5 0.9 1.3 2.4 4.3 7.2 11.2 16.6 22.9	P ₂₃ [kW] 0.5 0.7 1 1.6 2.3 2.9 3.8 4.7 5.9	PTOTAL [kW] 1 1.6 2.3 6.6 10.1 15 21.3 29.7	STOTAL [kVA] 2.18 3.50 4.39 6.52 10.12 14.94 20.68 28.45 27.06	F.P. 0.458 0.457 0.524 0.652 0.652 0.676 0.725 0.749 0.724	Vuv [∨] 106.7 128.2 146.3 161.7 175.4 188.1 199.7 210.7 200.6	Vow [∨] 106.7 128.4 146.3 161.7 175.5 187.9 199.6 210.6 210.6	Vwu [⊻] 106.7 128.5 146.1 161.7 175.3 188.1 199.6 210.8 231	iu [A] 33.6 37.8 36 39.7 49.1 57.2 69.1 82.8 99.5	i∨ [A] 36.5 41.9 38.2 42 52 61.2 70.3 83.1 89.5	MOTOR iw [A] 39.2 42.1 38.3 42 51.5 60.3 70.1 83.5 100	Puv [kW] 0.7 0.7 0.2 0.3 1.2 2.5 4.2 6.4	Pwv [kW] 0.4 1.1 2.2 3.4 4.9 6.8 10.2 13.7 19.6	PTOTAL [kW] 1.1 1.8 2.4 6.1 9.3 14.4 20.1	STOTAL [kVA] 6.73 9.03 9.60 11.55 15.45 19.40 24.15 30.34 29.10	F.P. 0.163 0.199 0.253 0.320 0.395 0.479 0.596 0.663 0.736	?IN∨ 0.357 0.436 0.482 0.636 0.605 0.709 0.822 0.885 0.849
Aperton f [Hz] 10 15 20 25 30 35 40 45 55	vi2 [√] 220.5 221.3 221.1 220.8 220.4 220.4 220.4 220.4 220.6 220.5 217.2	¥23 [V] 222 222.5 222.5 222.1 221.5 221.3 220.8 220.1 219.2 217.6 214.3	V31 [⊻] 220.1 220.2 220.8 220.8 220.8 220.8 220.1 218.9 217.2 215.5 210.9	i, [A] 4.7 7.6 11.4 18.5 29.9 46.2 66.4 95.2 125.3 168.6	i2 [A] 4.5 7.7 11.6 18.2 27.7 43.3 62.1 89.4 118.1 158.1	LINEA i3 [A] 7.9 12.1 11.3 14.4 21.8 27.8 34.5 40.4 51.2 64.3	P12 [kW] 0.5 0.9 1.3 2.4 4.3 7.2 11.2 16.6 22.8 31.4	P ₂₃ [KW] 0.5 0.7 1.5 2.3 2.9 3.8 4.7 5.9 7.3	PTOTAL [kW] 1 1.6 2.3 3.9 6.6 10.1 15 21.3 21.3 28.7 38.7	STOTAL [kVA] 2.18 3.50 4.39 6.52 10.12 14.94 20.68 28.45 37.06 48.34	F.P. 0.458 0.457 0.524 0.652 0.652 0.676 0.725 0.749 0.774 0.801	Vuv [∨] 106.7 128.2 146.3 161.7 175.4 188.1 199.7 210.7 220.6 225.5	Vow [∨] 106.7 128.4 146.3 161.7 175.5 187.9 199.6 210.6 220.6 220.6	Ywu [⊻] 106.7 128.5 146.1 161.7 175.3 188.1 199.6 210.8 221 226	iu [A] 33.6 37.8 39.7 49.1 57.2 69.1 82.8 99.5 124.4	i∨ [A] 36.5 41.9 38.2 42 52 61.2 70.3 83.1 99.5 124.1	MOTOR iw [A] 39.2 42.1 38.3 42 51.5 60.3 70.1 83.5 100 124.4	Puv [kW/] 0.7 0.7 0.3 1.2 2.5 4.2 6.4 9.4 12.8	Pwv [kW] 0.4 1.1 2.2 3.4 4.9 6.8 10.2 13.7 18.6 25	PTOTAL [kW] 1.1 1.8 2.4 3.7 6.1 9.3 14.4 20.1 20.1 20.1 37.8	STOTAL [kVA] 6.73 9.03 9.50 11.55 15.45 19.40 24.15 30.34 38.10 48.62	F.P. 0.163 0.199 0.263 0.320 0.395 0.479 0.596 0.663 0.735 0.777	7/IN∨ 0.357 0.436 0.605 0.605 0.709 0.822 0.885 0.949 0.971
Aperton f [Hz] 10 15 20 25 30 35 40 45 50 55 Aperton	a Válvul Vi2 220.5 221.3 221.1 220.4 220.4 220.4 220.6 220.5 221.2 a Válvul	×23 √22 222 222.5 222.1 221.3 220.8 220.1 219.2 217.6 214.3 a 30°	V31 221 220.1 220.4 220.8 220.8 220.8 220.1 218.9 217.2 215.5 210.9	it [A] 4.7 7.6 11.4 18.5 29.9 46.2 29.9 46.2 125.3 168.6	i2 [A] 4.5 7.7 11.6 18.2 27.7 43.3 62.1 89.4 118.1 158.1	LINEA is [A] 7.9 12.1 11.3 14.4 27.8 34.5 40.4 51.2 64.3	P12 [kW] 0.5 0.9 1.3 2.4 4.3 7.2 11.2 16.6 22.8 31.4	P ₂₃ [kW] 0.5 0.7 1 1.5 2.3 2.9 3.8 4.7 5.9 7.3	PtotAL [kW] 1.6 2.3 3.9 6.6 10.1 15 21.3 28.7 38.7	STOTAL [kVA] 2.18 3.50 4.39 6.52 10.12 14.94 20.68 28.45 37.06 48.34	F.P. 0.468 0.457 0.524 0.658 0.652 0.676 0.725 0.749 0.774 0.801	Vuv [V] 106.7 128.2 146.3 161.7 175.4 188.1 199.7 210.7 220.6 225.5	Vww [V] 106.7 128.4 146.3 161.7 175.5 187.9 199.6 210.6 220.6 220. 220.6	Vwu [⊻] 106.7 128.5 146.1 161.7 175.3 188.1 199.6 210.8 221 226	iu [A] 33.6 37.8 36 39.7 49.1 57.2 69.1 82.8 99.6 124.4	iv [A] 36.5 41.9 38.2 42 52 61.2 70.3 83.1 99.5 124.1	MOTOR iw [A] 39.2 42.1 38.3 42 51.5 60.3 70.1 83.5 100 124.4	Puv [kW] 0.7 0.2 0.3 1.2 2.5 4.2 6.4 9.4 12.8	Pwv/ [kW] 0.4 1.1 2.2 3.4 4.9 6.8 10.2 13.7 18.6 25	ProtAL [kW] 1.1 1.8 2.4 5.7 6.1 9.3 14.4 20.1 28 37.8	STOTAL [kVA] 6.73 9.03 9.50 11.55 15.45 19.40 24.15 30.34 38.10 48.62	F.P. 0.163 0.199 0.263 0.396 0.396 0.479 0.596 0.663 0.735 0.777	₹7INV 0.357 0.436 0.482 0.636 0.605 0.709 0.822 0.885 0.949 0.971
Apertur f [Hz] 10 15 20 25 30 25 30 35 40 45 50 55 Apertur	a Válvul Vi2 220.5 221.3 221.1 220.4 220.4 220.4 220.6 220.5 217.2 a Válvul	№23 ½22 2222 222.5 222.1 221.5 221.5 221.3 220.8 220.1 210.5 221.5 221.5 221.5 221.3 220.8 200.8 201.9 217.6 214.3 a 30°	V31 [V] 221 220.1 220.8 220.8 220.8 220.1 218.9 217.2 215.5 210.9	i ₁ [A] 4.7 7.6 11.4 18.5 29.9 46.2 66.4 95.2 125.3 168.6	i2 [A] 4.5 7.7 11.6 18.2 27.7 43.3 62.1 89.4 118.1 158.1	LINEA is [A] 7.9 12.1 11.3 14.4 21.8 27.8 34.5 40.4 51.2 64.3 LINEA	P12 [kW] 0.5 0.9 1.3 2.4 4.3 7.2 11.6 22.8 31.4	P ₂₃ [kW] 0.5 0.7 1.5 2.3 2.9 3.8 4.7 5.9 7.3	Protal [kW] 1.6 2.3 6.6 10.1 15 21.3 28.7 38.7	StortaL [kVA] 2.18 3.50 4.39 6.52 10.12 14.94 20.68 28.45 37.06 48.34	F.P. 0.468 0.457 0.524 0.652 0.676 0.765 0.749 0.774 0.801	Vuv [V] 106.7 128.2 146.3 161.7 175.4 188.1 199.7 210.7 220.6 225.5	Vww [∨] 106.7 128.4 146.3 161.7 175.5 187.9 199.6 210.6 220.6 226	\wu [⊻] 106.7 128.5 146.1 161.7 175.3 188.1 199.6 210.8 221 226	iu [A] 33.6 37.8 39.7 49.1 57.2 69.1 82.8 99.5 124.4	i∨ [A] 36.5 41.9 38.2 42 52 61.2 70.3 83.1 99.5 124.1	MOTOR iw [A] 39.2 42.1 38.3 42 51.5 60.3 70.1 83.5 100 124.4 MOTOR	Puv [kW] 0.7 0.7 0.3 1.2 2.5 4.2 6.4 9.4 12.8	Pwv/ [kW] 0.4 1.1 2.2 3.4 4.9 6.8 10.2 13.7 18.6 25	Protal [kW] 1.1 2.4 9.3 14.4 20.1 28 37.8	STOTAL [kVA] 6.73 9.03 9.50 11.55 15.45 19.40 24.15 30.34 38.10 48.62	F.P. 0.163 0.199 0.263 0.320 0.395 0.479 0.663 0.663 0.735 0.777	7/IN∨ 0.357 0.436 0.436 0.436 0.505 0.709 0.885 0.949 0.971
Apertur f [Hz] 10 15 20 30 35 40 45 55 Apertur f 10 15 26 30 35 55 Apertur	vi2 [V] 220.5 221.3 221.1 220.8 220.4 220.4 220.6 220.6 220.5 217.2 a Válvul	¥23 ¥22 222 222 222.5 222.1.5 221.1 220.8 220.1 217.6 214.3 217.6 214.3 a 30°	V31 [V] 221 220.1 220.8 220.8 220.8 220.1 221.4 220.8 220.1 221.4 221.4 221.4 221.5 210.9 217.2 216.5 210.9 217.2 210.9	it [A] 4.7 7.6 11.4 18.5 29.9 46.4 95.2 125.3 168.6	i2 [A] 4.5 7.7 11.6 18.2 27.7 43.3 62.1 89.4 118.1 158.1	LINEA is [A] 7.9 12.1 11.3 14.4 21.8 27.8 34.5 40.4 51.2 64.3 LINEA is is is is is is is is is is	P12 [kW] 0.5 0.9 1.3 2.4 4.3 7.2 11.2 16.6 22.8 31.4	P ₂₃ [kW] 0.5 0.7 1 1.5 2.3 2.9 3.8 4.7 5.9 7.3	Protal [kW] 1 1.6 2.3 3.9 6.6 10.1 15 21.3 28.7 38.7	STOTAL [KVA] 2.18 3.50 4.39 6.52 10.12 14.94 20.68 28.45 37.06 48.34	F.P. 0.458 0.457 0.524 0.698 0.676 0.725 0.7749 0.7749 0.801 F.P.	vuv [√] 106.7 128.2 146.3 161.7 175.4 188.1 199.7 210.7 220.6 225.5	Vww [M] 106.7 128.4 146.3 161.7 175.5 187.9 199.6 210.6 220.6 220.6 220.6 220.6 220.6 220.6 220.6 220.6 200.6	Nwu [V] 106.7 128.6 146.1 161.7 175.3 188.1 199.6 210.8 221 226 Nwu Nwu	iu [A] 33.6 37.8 36 39.7 49.1 57.2 69.1 82.8 99.5 124.4	iv [A] 36.5 41.9 38.2 42 52 61.2 70.3 83.1 99.5 124.1	MOTOR iw [A] 39.2 42.1 38.3 42 51.5 60.3 70.1 83.5 100 124.4 MOTOR iw	Puv [kW] 0.7 0.2 2.5 4.2 2.5 4.2 6.4 9.4 12.8	Pwv [kW] 0.4 1.1 2.2 3.4 4.9 6.8 10.2 13.7 13.6 25	Protect [kW] 1.1 1.8 2.4 3.7 6.1 9.3 14.4 20.1 28 37.8	STOTAL [kVA] 6.73 9.50 11.55 15.45 19.40 24.15 30.34 38.10 48.62	F.P. 0.163 0.199 0.263 0.320 0.395 0.479 0.696 0.663 0.735 0.777 7.777	7IN∨ 0.357 0.436 0.636 0.636 0.605 0.709 0.822 0.885 0.949 0.971
Apertain f [Hz] 10 15 20 25 30 35 45 50 45 55 55 67 f [Hz] 10 15 70 16 16 16 16 16 16 16 16 16 16	a Válvul Vi2 [V] 220.5 221.3 221.1 220.4 220.4 220.6 220.6 220.5 217.2 a Válvul Vi2 [V] 220.7 220.4 220.4 220.6 20.7 220.5 21.1 220.5 221.3 221.1 220.5 221.3 221.1 220.5 221.3 221.1 220.5 221.1 220.5 221.3 221.1 220.5 221.1 220.5 221.1 220.5 221.1 220.5 221.1 220.5 221.1 220.6 220.4 220.6 220.5 221.2 220.5 221.1 220.6 220.4 220.6 220.5 21.7 220.6 220.5 221.5 220.4 220.6 220.5 21.7 220.6 220.5 227.5 220.6 220.5 227.5 227.5 220.4 220.5 227.5 2	¥23 ¥22 222 222 222.5 222.1 222.1 220.8 220.1 217.6 217.6 217.6 214.3 214.3 214.3 224.7	V31 [V] 221 220.1 220.8 220.8 220.8 220.1 218.9 217.2 215.5 210.9 217.2 216.5 210.9 217.2 217.2 219.5 210.9 219.2 219.5 210.9 210.5 210.9 220.1 200.0	it [A] 4.7 7.6 11.4 18.6 29.9 46.2 125.3 168.6 it [A] 5.9	i2 [A] 4.5 7.7 11.6 18.2 27.7 43.3 62.1 89.4 118.1 158.1 158.1	LINEA i _b [A] 7.9 12.1 11.3 14.4 21.8 27.8 34.5 40.4 51.2 64.3 LINEA i _b [A] [A] 12.7 12.1 11.2 14.4 21.8 24.5 40.4 51.2 64.3 12.7 12.7 12.1 11.3 14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.5 14.4 14.4 14.4 14.5 14.4 14.4 14.4 14.5 14.4 14.5 14.4 15.7 14.4 15.7 14.4 15.7 14.4 15.7 14.4 15.7 16.7 16.7 16.7 17	P12 [kW] 0.5 0.9 1.3 2.4 4.3 7.2 11.2 16.6 22.8 31.4 P12 [kW]	P ₂₃ [kW] 0.5 0.7 1 1.5 2.3 2.9 3.8 4.7 5.9 7.3 7.3 P ₂₃ [kW] 0.6	PTOTAL [kW] 1 1.6 2.3 3.9 6.6 10.1 15 21.3 28.7 38.7 38.7 PTOTAL [kW] 1.1	STOTAL [KVA] 2.18 3.50 4.39 6.52 10.12 14.94 20.68 28.45 37.06 48.34 STOTAL [KVA] 3.24	F.P. 0.458 0.457 0.524 0.698 0.652 0.725 0.749 0.774 0.801 F.P.	vuv [V] 106.7 128.2 146.3 161.7 175.4 189.7 210.7 220.6 226.5 vuv [V] vuv [V]	Vww [M] 106.7 128.4 146.3 161.7 175.5 187.9 199.6 210.6 220.6 220.6 220.6 20	™wu [V] 106.7 128.5 146.1 161.7 175.3 188.1 199.6 211 226 ™wu [M]	iu [A] 33.6 37.8 36 39.7 49.1 67.2 69.1 82.8 99.5 124.4 iu [A]	iv [A] 36.5 41.9 38.2 61.2 70.3 83.1 99.5 124.1 iv [A] 45.3	MOTOR iw [A] 39.2 42.1 38.3 42 51.5 60.3 70.1 83.5 100 124.4 MOTOR iw [A] 45.4 45.4 MOTOR	Puv [kW] 0.7 0.2 0.3 1.2 2.5 4.2 6.4 9.4 12.8 Puv [kW]	Purv [kW] 0.4 1.1 2.2 3.4 4.9 6.8 10.2 13.7 18.6 25 Purv [kW]	Protal [kW] 1.1 1.8 2.4 3.7 6.1 9.1 9 14.4 20.1 28 37.8 Protal [kW]	STOTAL [kVA] 6.73 9.50 11.55 15.45 19.40 24.15 30.34 38.10 48.62 Stotal [kVA] 8.15	F.P. 0.163 0.199 0.253 0.320 0.395 0.696 0.663 0.735 0.777 F.P.	7INV 0.357 0.436 0.636 0.636 0.709 0.822 0.885 0.949 0.971
Apertain f [Hz] 10 15 20 25 30 35 40 45 50 50 50 f [Hz] 10 15	a Válvul ^{V12} [M] 220.5 221.3 220.4 220.4 220.6 220.4 220.5 217.2 a Válvul ^{V12} [M] 222.7 222.7 222.6	¥23 [M] 2222 222.1 222.5 222.1.5 220.8 220.1 219.2 217.6 214.3 a 30° ^V 23 [M] 224.7 224.8	Vs1 [M] 220.1 220.1 220.8 220.8 220.8 220.1 218.9 217.2 215.5 210.9 V31 [M] [V] 223.3 223.3	it [A] 4.7 7.6 11.4 18.5 29.9 46.2 66.4 95.2 125.3 168.6 it [A] 5.9 7.1	i2 [A] 4.5 7.7 11.6 18.2 27.7 43.3 62.1 89.4 118.1 158.1 158.1 i2 [A] 6.5 7.2	LINEA is [A] 7.9 12.1 11.3 14.4 21.8 27.8 34.5 40.4 51.2 64.3 LINEA is [A] 12.7 12.1 11.3 14.4 21.8 34.5 40.4 51.2 64.3 14.4 14.2 14.4 14.2 14.4	P12 [kW] 0.5 0.9 1.3 2.4 4.3 7.2 115.6 22.8 31.4 P12 [kW] 0.5	P ₂₃ [kW] 0.5 0.7 1 1.5 2.3 2.9 3.8 4.7 5.9 7.3 7.3 P ₂₃ [kW] 0.6 0.7	PTOTAL [KW] 1 1 2.3 3.9 10.1 15 21.3 28.7 38.7 PTOTAL [KW] 1.1 1.2	STOTAL [KVA] 2.18 3.50 4.39 6.52 14.94 20.68 28.45 37.06 48.34 STOTAL [KVA] 3.51	F.P. 0.458 0.457 0.524 0.652 0.656 0.725 0.749 0.774 0.801 F.P. 0.340 0.342	Vuv [V] 106.7 128.2 146.3 161.7 175.4 188.1 199.7 210.7 210.7 210.7 210.7 210.7 210.5 210.	\vww M 106.7 128.4 146.3 161.7 175.5 187.9 199.6 210.6 220.6 226 \vww M 102.1 129.1	\vwu [V] 106.7 128.5 146.1 161.7 175.3 188.1 199.6 210.8 221 226 \vvu [V] 106.9 128.9	iu [A] 33.6 37.8 36 39.7 49.1 57.2 69.1 82.8 99.5 124.4 iu [A] 41.4 39.9	iv [A] 36.5 41.9 38.2 42 51.2 70.3 83.1 99.5 124.1 iv [A] iv [A] 45.3 44	MOTOR iw [A] 39.2 42.1 51.5 60.3 70.1 83.5 100 124.4 MOTOR iw [A] 45.4 43.3	Puv [kW] 0.7 0.2 0.3 1.2 2.5 4.2 6.4 9.4 12.8 Puv [kW] 0.6 0.5	Pwv [kW] 0.4 1.1 2.2 3.4 4.9 6.8 10.2 13.7 18.6 25 25 Pwv [kW] 0.4 1.3	PTOTAL [kW] 1.1 2.4 3.7 9.3 14.4 20.1 28 37.8 9.7.8 9.7.8	STOTAL [KVA] 9.03 9.50 11.55 19.40 24.15 30.34 38.10 48.62 STOTAL [kVA] 8.15 9.48	F.P. 0.163 0.253 0.320 0.395 0.663 0.735 0.777 F.P. 0.123 0.190	₹INV 0.357 0.436 0.536 0.605 0.709 0.822 0.949 0.971 ₹INV
Apertain f [Hz] 10 15 20 25 30 35 40 45 55 40 45 55 40 45 55 7 15 15 20 25 26 25 20 25 25 25 25 25 25 25 25 25 25	vi2 [V] 220.5 221.3 220.4 220.4 220.4 220.6 220.4 220.6 220.5 217.2 a Válvul ^{Vi2} [V] 222.7 222.7 222.7 222.6 223.1 222.7	№23 V23 [M] 2222 222.1 221.3 220.8 220.1 219.2 214.3 219.2 214.3 200.8 214.3 214.3 201.4 201.7.6 214.3 201.1 214.3 202.4.7 224.8 224.4 224.4 224.4	V31 [V] 220.1 220.2 220.8 220.8 220.8 220.8 220.1 218.9 217.2 215.5 210.9 V31 [V] 223 223 223 223.2 223.2	it [A] 4.7 7.6 11.4 18.5 29.9 46.2 66.4 95.2 125.3 168.6 125.3 168.6	i2 [A] 4.5 7.7 11.6 18.2 27.7 43.3 62.1 89.4 118.1 158.1 i2 [A] 6.5 7.2 9.9 9.4 9.5 16.2	LINEA is [A] 7.9 12.1 11.3 14.4 27.8 34.5 40.4 51.2 64.3 LINEA is [A] 12.7 12.9 13.8 14.9 12.9 13.8 16.9 17.9 13.9 14.4 11.3 14.4	P12 [kW] 0.5 0.9 1.3 2.4 4.3 7.2 16.6 22.8 31.4 P12 [kW] 0.5 0.5 1.3 2.4	P23 [kW] 0.5 0.7 1 1.5 2.9 3.8 4.7 5.9 7.3 7.3 [kW] 0.6 0.7 1.1	Protal [KW] 1 2.3 3.9 6.6 10.1 15 21.3 28.7 38.7 38.7	STOTAL [KVA] 2.18 3.50 4.39 6.52 14.94 20.68 28.45 37.06 48.34 STOTAL [KVA] 3.24 3.51 4.40 6.52	F.P. 0.458 0.457 0.524 0.652 0.658 0.725 0.749 0.774 0.801 F.P. 0.340 0.342 0.545 0.675	Vuv [M] 106.7 128.2 146.3 161.7 175.4 188.1 199.7 210.7 220.6 225.5 Vuv [V] 106.9 129.3 146.4 152.9 145.9 129.3 146.4	V/w [M] 106.7 128.4 146.3 161.7 175.5 187.9 199.6 220.6 226 226 V/w [V] 106.9 129.1 146.5 162	\vwu [V] 106.7 128.5 146.1 161.7 175.3 188.1 199.6 210.8 210.8 221 226	iu [A] 33.6 37.8 36 39.7 49.1 57.2 69.1 82.8 99.5 124.4 iu [A] 41.4 39.9 40.2 43.4	iv [A] 38.5 41.9 38.2 42 52 61.2 70.3 83.1 99.5 124.1 iv [A] 45.3 44 43.2 46.9	MOTOR iw [A] 39.2 42.1 38.3 42 51.5 50.3 70.1 83.5 100 124.4 MOTOR iw [A] 45.4 43.3 46.1	Puv [kW] 0.7 0.2 0.3 1.2 2.5 4.2 2.5 4.2 9.4 12.8 Puv [kW] 0.6 0.5 0.5 0.4	Pmv/ [kW] 0.4 1.1 2.2 3.4 4.9 6.8 10.2 13.7 18.6 25 Pmv/ [kW] 0.4 1.3 1.9 2.2	PTOTAL [KW] 1.1 2.4 3.7 9.3 14.4 2.8 37.8 7.8 7.8 7.8 7.8	STOTAL [KVA] 9.03 9.50 11.55 15.45 19.40 24.15 30.34 38.10 48.62 STOTAL [KVA] 8.15 9.48 8.15 9.48 10.96 13.96	F.P. 0.163 0.253 0.320 0.395 0.479 0.663 0.735 0.775 0.777 F.P. 0.123 0.190 0.210 0.210	∛INV 0.357 0.482 0.536 0.605 0.822 0.885 0.949 0.971 %INV 0.361 0.555 0.3651 0.361
Apertain f [Hz] 10 15 20 25 30 35 40 45 55 Apertain f [Hz] 10 15 20 25 30 35 40 45 55 Apertain 10 15 20 25 30 35 40 45 55 Approximantain 10 15 20 25 30 30 35 30 30 30 30 30 30 30 30 30 30	vi₂ [V] 220.5 221.3 220.4 220.6 220.6 200.7 200.6 200.7 220.8 220.4 220.6 220.7 222.7 222.7 222.7 223.1 223.1 223.1	v23 [V] 2222 222.6 222.1 221.5 220.1 221.5 220.1 221.5 220.1 217.6 214.3 214.3 214.3 224.7 224.7 224.7 224.4 224.2 224.2	Va1 [V] 220.1 220.2 220.8 220.8 220.8 220.8 220.9 217.2 215.5 210.9 210.9 210.9 210.9 210.9 210.9 210.2 223.3 223.2 222.7 222.7 222.7	is [A] 4.7 7.6 11.4 18.5 29.9 46.2 95.2 125.3 168.6 is [A] 5.9 7.1 10.4 16.5 25.4	iz [A] 4.5 7.7 11.6 18.2 27.7 43.3 62.1 89.4 118.1 158.1 158.1 158.1 158.1	LINEA b [A] 7.9 12.1 11.3 14.4 21.8 27.8 34.5 40.4 51.2 64.3 64.3 LINEA b [A] 12.7 12.9 12.7 13.8 14.1 14.2 12.7 12.9 13.8 15.9 12.1 11.3 14.4 15.9 12.1 11.3 14.4 15.9 12.1 11.3 14.4 15.9 12.1 11.3 14.4 15.9 12.1 11.3 14.4 15.9 12.1 11.3 14.4 15.9 12.1 11.3 14.4 15.9 12.1 15.9 12.1 15.9 12.1 15.9 12.1 15.9 12.1 15.9 12.1 15.9 12.1 15.9 12.1 15.9 12.1 15.9 1	Pt2 [kW] 0.5 0.9 1.3 2.4 4.3 7.2 16.6 22.8 31.4 (kW] 0.5 0.5 0.5 1.3 2.4 4	P23 [kW] 0.5 0.7 1 1.5 2.9 3.8 4.7 5.9 7.3 P23 [kW] 0.6 0.7 1.1 1.8 2.4	PTOTAL [kW] 1.6 2.3 3.6 10.1 15 21.3 28.7 38.7 PTOTAL [kW] 1.1 1.2 2.4 4.2 2.4 4.2 2.4	STOTAL [kVA] 3.50 4.39 6.52 10.12 14.94 20.68 28.45 37.06 48.34 STOTAL [kVA] 3.24 3.24 3.24 3.24 3.51 4.40 6.26 9.13	F.P. 0.468 0.457 0.524 0.652 0.749 0.774 0.801 F.P. 0.340 0.340 0.342 0.545 0.670 0.342	Vuv [V] 106.7 128.2 146.3 161.7 210.7 210.7 220.6 225.5 Vuv [V] 106.9 129.3 146.4 162.8 146.4 162.8 176.4	V/w/ [V] 106.7 128.4 146.3 161.7 175.5 187.9 199.6 210.6 2206 226 V/w/ [V] 106.9 129.1 146.5 163 176.6 163 176.6	\wu [V] 106.7 128.5 146.1 175.3 188.1 199.6 210.8 221 226 \vu [V] [0.9 106.9 128.9 146.6 163.1 176.5	iu [A] 37.8 36 39.7 49.1 57.2 69.1 82.8 99.5 124.4 124.4 124.4 39.9 40.2 43.8 40.2 43.8 47.1	i∨ [A] 36.5 41.9 38.2 42 52 61.2 70.3 83.1 99.5 124.1 124.1 i∨ [A] 45.3 44.3 43.2 46.8	MOTOR iw [A] 39.2 42.1 38.3 42 51.5 60.3 70.1 83.5 100 124.4 MOTOR iw [A] 46.4 43.3 46.2 46.1 50.8	Puv [kW] 0.7 0.2 2.6 4.2 6.4 9.4 9.4 12.8 12.8 [kW] 0.6 0.5 0.4 0.7	Pwv/ [kW] 0.4 1.1 2.2 3.4 4.9 6.8 10.2 13.7 18.6 25	PTOTAL [kW] 1.1 2.4 9.3 14.4 20.1 20.1 20.1 20.1 37.8 37.8 37.8 7 7 1.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1	STOTAL [kVA] 9.03 9.50 11.55 15.45 19.40 24.15 30.34 38.10 48.62 STOTAL [kVA] 8.15 9.48 10.96 2.86 14.89	F.P. 0.163 0.199 0.263 0.320 0.395 0.663 0.795 0.777 F.P. 0.123 0.190 0.210 0.210	7/INV 0.357 0.436 0.482 0.605 0.709 0.822 0.885 0.971 70NV 0.361 0.385 0.385 0.385 0.371 0.470
Apertain f [Hz] 10 20 20 20 20 20 30 30 30 30 30 30 30 30 30 3	A Válvul V12 [V] 220.6 221.3 221.1 220.4 220.4 220.6 220.6 220.6 217.2 27.7 222.6 222.7 222.6 223.1 223.1 223.4 222.5	¥23 [M] 2222 222.6 222.1 221.3 220.1 220.1 221.3 220.1 220.2 1219.2 217.6 214.3 20.1 224.7 224.8 224.4 224.2 224.3 223.3	Va1 [V] 220.1 220.2 220.8 220.8 220.1 218.9 217.2 215.5 210.9 Va1 [V] 223.3 223.3 223.2 222.7 222.4 222.4	is [A] 4.7 7.6 11.4 18.6 29.9 46.2 95.2 125.3 168.6 is [A] 5.9 7.1 5.9 7.1 0.4 16.5 25.4 39.2	i2 [A] 4.6 7.7 11.6 227.7 43.3 62.1 89.4 118.1 158.1 158.1 158.1 i2 [A] 6.5 7.2 9.9 9.5 15.2 24.2 24.2 24.2 236.1	LINEA is [A] 7.9 12.1 11.3 14.4 27.8 34.5 40.4 51.2 64.3 64.3 12.7 12.7 12.9 13.8 16.9 21.3 16.9 27.2	P12 [kW] 0.5 0.9 1.3 2.4 4.3 7.2 11.2 16.6 22.8 31.4 P12 [kW] 0.5 0.5 0.5 1.3 2.4 4 6.3	P23 [kW] 0.5 0.7 1 1.5 2.3 2.9 3.8 4.7 5.9 7.3 [kW] 0.6 0.7 1.1 1.8 2.9	Prota. [kW] 1.6 2.3 3.9 6.6 10.1 15.3 28.7 38.7 Prota. [kW] 1.1 1.2 24.2 6.4 9.2	STOTAL [kVA] 2.18 3.50 4.39 6.52 10.12 14.94 20.68 28.45 37.06 48.34 STOTAL [kVA] 3.24 4.351 4.40 6.26 9.13 13.17	F.P. 0.457 0.524 0.652 0.676 0.749 0.749 0.774 0.801 F.P. 0.340 0.342 0.545 0.670 0.545	Vuv [V] 106.7 128.2 146.3 161.7 175.4 189.7 210.7 220.6 225.5 Vuv [V] 106.9 129.3 146.4 162.8 176.7 129.3 146.4 162.8 176.7 189.2	Vvw 106.7 128.4 146.3 161.7 175.5 187.9 199.6 210.6 220.6 226 Vvw [M] 106.9 129.1 146.5 1663 176.6	\vwu V 106.7 128.5 146.1 128.5 146.7 175.3 188.1 199.6 210.8 221 226 \vvu [V] 106.9 128.9 146.6 163.1 176.5 189.1	iu [A] 33.6 36.7 39.7 49.1 57.2 69.1 82.8 99.5 124.4 iu [A] 41.4 39.9 40.2 43.8 47.1 54.1	iv [A] 38.5 41.9 38.2 42 52 61.2 70.3 83.1 99.5 124.1 iv [A] 45.3 44.4 43.2 46.8 48.4 48.1 55.3	MOTOR iw [A] 39.2 42.1 38.3 42 51.5 60.1 83.5 100 124.4 MOTOR iw [A] 45.4 43.3 46.1 50.8 55.8	Puv [kW] 0.7 0.2 0.3 1.2 2.5 4.2 6.4 9.4 12.8 12.8 Puv [kW] 0.6 0.6 0.6 0.4 0 0.7 2	Pwv/ [kW] 0.4 1.1 2.2 3.4 4.9 6.8 10.2 13.7 18.6 25 25 [kW] 0.4 1.3 1.9 0.4 1.3 1.9 3.2 4.2 6.6	Protat. [kW] 1.1 2.4 3.7 6.1 2.3 14.4 20 37.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	STOTAL [kVA] 6.73 9.03 9.50 11.55 15.45 19.40 24.15 30.34 38.10 48.62 STOTAL [kVA] 8.15 9.48 10.96 12.86 12.86 12.86 14.89 18.04	F.P. 0.163 0.199 0.320 0.395 0.479 0.596 0.663 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.727	7/INV 0.357 0.436 0.436 0.536 0.605 0.709 0.822 0.849 0.971 7/INV 0.361 0.3261 0.3261 0.3261 0.371 0.470
Apertain f [Hz] 10 15 20 35 40 45 55 55 55 55 55 55 55 55 55	a Válvul Vi2 [V] 220.3 221.3 221.3 221.4 220.4 220.4 220.6 220.5 217.2 a Válvul Vi2 [V] 222.7 222.6 223.1 223.4 223.4 222.5 223.4 223.4 222.5 223.2 223.4 222.2 223.4 222.2 223.4 222.2 223.4 222.2 223.4 222.5 222.3 223.4 222.5 222.3 223.4 224.5 224.5 224.5 225.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5 25.5	a 35° ^{V23} [V] 222.5 222.5 222.6 222.6 221.6 221.3 220.8 220.8 220.1 219.2 217.6 214.3 a 30° ^{V23} [V] 224.7 224.8 224.4 224.4 224.4 224.4 224.4 224.5 224.4 224.5 224.4 224.5 224.5 224.5 224.5 224.5 224.5 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 21.5 22.5 2.5	Va1 [V] 220.1 220.2 220.8 220.8 220.1 217.2 217.5 210.9 Va1 [V] 223.3 223.2 222.4 222.5 222.4 223.2 222.4 222.4 223.2 222.4 223.2 222.4 222.4 223.2 222.4 222.4 222.4 223.2 222.4 223.4 223.4 224	iı [A] 4.7 7.6 11.4 18.5 29.9 46.2 125.3 168.6 iı [A] 5.9 7.1 10.4 16.5 25.4 39.2 25.7 37.0	i2 [A] 4.6 7.7 11.6.2 27.7 43.3 62.1 89.4 118.1 158.1 i2 [A] 6.5 7.2 9.9 9.15.2 24.2 9.5,2 24.2 24.2 24.5 7.5 24.5 2 7.5 24.5	LINEA is [A] 7.9 12.1 11.3 14.4 21.8 27.8 34.5 40.4 51.2 64.3 LINEA is [A] 12.7 12.9 13.8 16.9 12.9 13.8 16.9 12.9 13.8 16.9 12.1 14.4 10.2	P12 [kW] 0.6 0.9 1.3 2.4 4.3 7.2 11.2 16.6 22.8 31.4 P12 [kW] 0.5 1.3 2.4 4.6.3 9.9 12.9	P23 [kW] 0.5 0.7 1 1.5 2.3 2.9 3.8 4.7 5.9 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	Protal. [kW] 1.6 2.3 6.6 6.6 10.1 15 21.3 28.7 38.7 Protal. [kW] 1.2 2.4 4.2 6.4 9.2 2.3 38.7	STOTAL [kVA] 2.18 3.50 4.39 6.52 10.12 14.94 20.68 28.46 37.06 48.34 37.06 48.34 STOTAL [kVA] 3.51 4.40 6.26 9.13 13.17 18.27 24.64	F.P. 0.458 0.457 0.598 0.652 0.749 0.774 0.801 F.P. 0.340 0.342 0.545 0.676 0.340 0.342 0.545 0.670 0.701 0.6899 0.755 0.755	vuv [∨] 106.2 128.2 146.3 161.7 175.4 189.7 210.7 220.6 225.5 vuv [∨] 106.9 129.3 146.4 162.8 176.7 189.2 200.9 211.6 200.9 211.6 200.9 211.6 211.6 200.9 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 211.6 225.5 25	Vvw [M] 106.7 128.4 146.3 161.7 175.5 187.9 199.6 220.6 222.6 Vvw [M] 106.9 129.1 146.5 163 176.6 189.2 200.9 2011.7	\vwu V 106.7 128.5 146.1 161.7 175.3 188.1 199.6 210.8 221 226 \vwu V 106.9 128.9 146.6 163.1 176.5 189.1 176.5 189.1 120.9 212	iu [A] 33.6 37.8 36.7 49.1 67.2 69.1 82.8 99.5 124.4 iu [A] 40.2 43.8 39.9 40.2 43.8 47.1 54.1 54.1 54.1 54.1	iv [A] 36.5 41.9 38.2 42 52 61.2 70.3 83.1 99.5 124.1 iv [A] 44.4 43.2 46.8 44.4 45.3 65.3 63.5 74.9	MOTOR iw [A] 39.2.1 38.3 42.1 38.3 42.5 51.5 60.3 70.1 83.5 100 124.4 MOTOR iw [A] 46.1 43.3 46.2 46.1 50.8 57.8 67.7 76.6	Puv [kW] 0.7 0.3 1.2 2.5 4.2 6.4 9.4 9.4 12.8 Puv [kW] 0.6 0.5 0.4 0.5 0.4 0 0.5 0.4 0 5.5 4 2 3.3 5.5 2 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	Pww/ [kW/] 0.4 1.1 2.2 3.4 4.9 6.8 10.2 13.7 13.6 25 Pww/ [kW/] 0.4 1.3 1.9 3.2 4.2 6.6 9.2 2.5 2.5	Protat. [kW] 1.1 2.4 3.7 6.1 2.8 3.7 14.4 20.1 28 37.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	STOTAL [kVA] 6.73 9.03 9.50 11.55 15.45 19.40 24.15 30.34 38.10 48.62 STOTAL [kVA] 8.15 9.48 10.96 12.86 14.89 12.86 14.89 12.26 27.46	F.P. 0.163 0.199 0.263 0.320 0.395 0.696 0.663 0.735 0.777 F.P. 0.123 0.190 0.249 0.329 0.249 0.329 0.329	7/IN∨ 0.357 0.436 0.482 0.536 0.605 0.709 0.822 0.885 0.949 0.971 70N∨ 0.361 0.555 0.371 0.470 0.665 0.771
Apertal f [Hz] 10 15 20 35 40 45 50 50 50 10 11 10 15 20 25 30 35 40 45 30 35 40 45 50 50 50 40 45 20 35 40 45 50 50 40 45 50 50 40 45 50 50 40 45 50 50 40 45 50 40 45 50 40 45 50 40 45 50 45 40 45 50 40 45 50 45 40 45 50 45 40 45 50 45 45 45 45 45 45 45 45 45 45	vi2 [V] 220.5 221.3 220.4 220.4 220.4 220.4 220.4 220.5 217.2 217.2 220.5 217.2 220.5 217.2 221.3 220.4 220.4 220.4 221.3 220.4 221.5 222.5 222.5 222.1 223.4 222.5 223.5 222.5 223.5 222.5 223.5 222.5	a 35° ¹ √23 222 222.5 222.15 222.15 222.15 220.8 220.8 220.1 219.2 217.6 214.3 a 30° ¹ √23 ¹ √23 ² √24.7 224.7 224.8 224.4 223.3 223.1 222.4 223.1 222.5 224.1 222.5 224.7 245.7 245.7 245.7 2	Va1 [M] 221 220.1 220.8 220.1 220.8 220.1 217.2 215.5 210.9 Va1 223.3 223.2 223.3 223.2 222.7 222.2 222.1.4 219 219	it [A] 4.7 7.6 11.4 18.6 29.9 46.2 125.3 168.6 96.2 125.3 168.6 11.4 15.9 7.1 10.4 165.4 339.2 57.3 79.9 7107.4	i2 [A] 4.5 18.2 27.7 11.6 8.2 27.7 43.3 62.1 89.4 118.1 158.1 i2 [A] 6.5 7.2 9.9 15.2 24.2 24.2 24.2 24.2 24.5 53.5 57.5 74.5	LINEA i ₃ [A] 7.9 12.1 11.3 14.4 21.8 27.8 34.6 40.4 51.2 64.3 LINEA i ₃ [A] 12.7 12.9 12.9 12.9 12.9 12.9 12.9 12.1 14.4 21.8 34.6 54.3 27.2 54.3 21.2 54.3 21.2 54.3 21.2 54.3 21.2 54.3 21.2 54.3 21.2 54.5 54.3 21.2 54.5 54.3 21.5 21.3 21.5 21.3 21.5 21.3 21.5 21.3 21.5 21.3 21.5 21.3 21.5 2	P12 [kW] 0.5 1.3 2.4 4.3 7.2 11.2 2.8 31.4 P12 [kW] 0.5 0.5 0.5 1.3 2.4 4 6.5 9.9 13.8 9.9 13.8	P23 [kW] 0.5 0.7 1.5 2.3 2.9 3.8 4.7 7.3 7.3 P23 [kW] 0.6 0.7 1.1 8 2.4 2.4 2.9 3.9 4.3 5.1	Prota. [kW] 1 1.6 2.3.9 8.6 10.1 15 21.3 28.7 38.7 Prota. [kW] 1.1 1.1 2.4 4.4 9.2 4.4 9.2 13.8 18.1 12.4 12.4 13.2 13.8 13.2 13.2 13.2 13.2 13.2 14.1 15 15 15 15 15 15 15 15 15 15 15 15 15	Storal [kVA] 3:50 4:39 6:52 10.12 14.94 20.68 28.45 37.06 48.34 Storal [kVA] 3:24 3:51 3:24 3:24 3:24 3:24 3:24 3:24 3:24 3:24	F.P. 0.458 0.457 0.524 0.698 0.676 0.725 0.774 0.774 0.801 F.P. 0.340 0.545 0.670 0.342 0.545 0.670 0.545 0.670 0.738 0.778	vuv [V] 106.7 128.2 146.3 161.7 175.4 188.1 199.7 220.6 225.5 vuv [V] 106.9 129.3 146.4 162.7 129.3 146.4 162.7 129.2 200.9 211.6 220.9 211.6 220.9 211.6 220.9 212.5 200.9 211.6 200.9 211.6 200.9 211.6 200.9 211.6 200.9 211.6 200.9 211.6 200.9 211.7 200.9 212.7 200.6 225.5 25	Vvw [M] 106.7 128.4 146.3 161.7 175.5 220.6 220.6 220.6 220.6 220.6 220.6 220.6 187.9 106.9 129.1 146.5 163 176.5 163.1 176.5 163.1 176.5 163.2 176.5 129.2 200.9 211.7 220.8 220.6 200.9 201.7 220.8 200.9 2	Vwu [V] 106.7 128.5 146.1 161.7 175.3 188.1 199.6 221 226 Vwu [V] 106.9 146.6 163.1 178.5 128.9 210.8	iu [A] 33.6 37.8 36 37.4 93.7 49.1 57.2 69.1 82.8 99.5 124.4 iu [A] 41.4 39.9 40.2 43.8 47.1 53.1 53.1 53.1 74.1 86.2	iv [A] 36.5 41.9 38.2 42 52 61.2 70.3 83.1 99.5 124.1 iv [A] 45.3 44 43.2 46.8 48.1 55.3 63.5 74.8 88.5	MOTOR iw [A] 38.3 42.1 38.3 42.5 50.3 70.1 83.5 100 124.4 MOTOR iw [A] 45.4 45.4 45.4 45.3 46.2 46.2 46.2 46.2 46.2 46.3 55.8 67 75.6 87 75.6 87 75.6 87 75.6 87 75 87 75 87 87 87 87 87 87 87 87 87 87	Puv [kW] 0.7 0.2 2.5 4.2 6.4 9.4 12.8 Puv [kW] 0.6 0.5 0.4 0.6 0.7 2 3.3 6.7 2 3.3 6.7	Pwv [kW] 0.4 1.1 2.2 3.4 4.9 6.8 10.2 13.7 18.6 25 Pwv [kW] 0.4 1.3 1.9 3.2 4.2 6.6 9.2 12.6 5 16.6	Prorat [kW] 1.8 2.7 6.1 9.3 14.4 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1	STOTAL [kVA] 9.03 9.50 11.55 15.45 19.40 24.15 30.34 38.10 48.62 STOTAL [kVA] 8.15 9.48 10.96 12.86 14.89 18.04 22.46 33.42	F.P. 0.163 0.199 0.320 0.320 0.395 0.663 0.735 0.735 0.735 0.190 0.210 0.220 0.329 0.329 0.329 0.329 0.329 0.329 0.329	7IN∨ 0.357 0.436 0.436 0.536 0.605 0.709 0.822 0.885 0.949 0.971 0.351 0.355 0.385 0.385 0.371 0.457 0.385 0.371 0.457 0.471 0.471 0.777 0.899 1.005
Apertm f [Hz] 10 10 25 25 30 35 40 45 50 55 40 45 50 55 40 45 50 55 40 45 50 55 40 45 50 55 40 45 50 55 55 40 45 55 55 55 55 55 55 55 55 55	a Válvul Vi2 [V] 220.5 221.3 221.1 220.4 220.4 220.4 220.4 220.4 220.5 217.2 a Válvul Vi2 222.7 222.6 223.1 223.1 223.1 223.1 223.1 223.2 221.5 223.3	a 35° ^{V23} <u>V22</u> 222.5 222.15 221.5 221.2 220.8 220.8 220.1 217.6 217.6 214.3 a 30° ^{V23} 224.7 224.7 224.4 224.4 224.4 224.4 224.4 224.4 224.2 220.1 222.5 220.8 220.1 220.8 220.1 220.2 220.1 222.5 220.1 222.5 220.1 222.5 220.1 222.5 220.1 222.5 220.1 222.5 220.1 221.5 2	Va1 [M] 220,1 220,1 220,8 220,8 220,1 218,9 217,2 215,5 210,9 Va1 223,3 223,2 222,7 222,7 222,7 222,2 222,7 222,2 222,2 222,2 222,2 222,4 229 221,4 229 221,4 229 221,4 229 221,4 229 221,4 229 221,4 229 221,4 229 221,4 229 221,4 229 221,4 229,2 229,4 229,2 219,2 216,1	iı [A] 4.7 7.6 11.4.6 29.9 46.2 125.3 168.6 95.2 125.3 168.6 iı [A] 5.9 7.1 10.4 16.5 25.4 39.2 57.3 79.9 107.4 144	i2 [A] 7.7.6 18.2 27.7 43.3 62.1 188.1 168	LINEA i _b [A] 12.1 11.3 14.4 27.8 34.5 40.4 51.2 64.3 i _b 12.7 12.9 12.1 14.4 27.8 34.5 40.4 12.7 12.9 13.8 16.9 27.2 31.8 27.2 31.8 38.6 44.8 36.5 12.1 14.4 15.2 12.1 14.4 14.2 14.4 14.2 14.4 14.5 14.4 14.5 14.4 14.5 14.5 14.5 14.4 14.5 1	P12 [kw] 0.5 0.9 1.3 2.4 4.3 7.2 11.2 11.6 228 31.4 P12 [kw] 0.5 0.5 0.5 0.5 1.3 2.4 4 6.3 9.9 13.8 9.9 13.8 19 225.8	P ₂₃ [kW] 0.7 1.5 2.9 3.8 7.5 9 7.3 P ₂₃ [kW] 0.6 0.7 1.1 1.8 2.9 7.3 P ₂₃ (kW) 0.6 0.7 1.1 1.8 4.3 5.5 1.5 5.5	Protal [KW] 1.6 2.3 3.9 5.6 10.1 15 21.3 28.7 38.7 38.7 38.7 38.7 38.7 21.3 28.7 38.7 28.7 38.7 28.8 4.4 4.2 4.2 4.2 4.2 4.2 4.2 4.2 5.2 8 5.5 10.1 1.2 1.3 21.3 21.3 21.3 21.3 21.3 21.3	Storal [kVA] 2.18 3.50 4.39 6.52 10.12 14.94 20.68 28.45 37.06 48.34 Storal [kVA] 3.51 4.40 6.26 9.13 13.17 18.27 24.54 32.64 42.24	F.P. 0.458 0.457 0.598 0.652 0.676 0.725 0.774 0.801 F.P. 0.340 0.342 0.545 0.670 0.342 0.545 0.670 0.342 0.545 0.670	vuv [V] 1067 128.2 146.3 161.7 175.4 188.1 199.7 220.6 220.6 226.5 vuv [V] 106.9 129.3 146.4 162.8 146.4 162.8 146.4 162.8 146.3 146.4 162.8 146.4 162.8 146.3 146.4 162.8 146.3 146.4 162.8 146.3 146	vvw I06.7 128.4 146.3 161.7 175.6 187.9 199.6 220.6 226 vvw I06.9 129.6 129.6 226 vvw I01.6 220.9 226	Vwu [V] 106.7 128.5 146.1 161.7 175.3 188.1 199.6 221 226 Vwu [V] 106.9 128.9 146.6 163.1 176.5 189.1 200.9 212 220.8 230.8	iu [A] 37.8 36 37.8 39.7 49.1 57.2 69.1 82.8 99.5 124.4 41.4 39.9 40.2 43.6 47.1 54.1 63.1 74.1 86.2 103.4	iv [A] 38.5 41.9 38.2 52 61.2 70.3 83.1 99.5 124.1 iv [A] 45.3 44.8 45.3 4	MOTOR iw [A] 39.2 42.1 38.3 42 51.5 50.3 70.1 83.5 100 124.4 MOTOR iw [46.4 43.3 46.2 46.1 50.8 67 75.6 67 76.6 87 103.6	Puv [kW/] 0.7 0.2 0.3 1.2 2.5 4.2 6.4 9.4 12.8 Puv [kW/] 0.6 0.4 0.7 2 3.3 5.7 8.2 11.2	Pwwv [kWV] 0.4 1.1 2.2 3.4 4.9 6.8 10.7 18.6 25 Pwwv [kWV] 0.4 1.3 7 18.6 25 Pwwv [kW, 12 1.6 5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12	Protal [kW] 1.18 2.4 3.7 9.3 9.3 9.3 9.3 37.8 7 7 8.1 8 37.8 7 7 8 1 1.4 4 201 37.8 7 7 8 1 1.4 1 2 8 37.8 7 8 1 1 4 4 2 2 1 9.3 7 8 7 1 9.3 8 7 1 9 9 8 7 1 9 9 8 7 8 7 8 7 8 7 8 9 7 8 7 8 7 8 7 8	STOTAL [kVA] 9.03 9.03 9.03 11.55 15.45 19.40 24.15 30.34 38.10 48.52 STOTAL [kVA] 8.15 9.48 10.96 24.86 12.86 12.86 12.86 12.86 12.86 12.86 27.45 33.42 23.42 241.30	F.P. 0.163 0.199 0.320 0.320 0.395 0.663 0.735 0.775 0.123 0.120 0.210 0.210 0.210 0.249 0.329 0.477 0.663 0.742 0.663 0.742 0.663	?IIN∨ 0.357 0.436 0.605 0.709 0.825 0.941 0.357 0.321 ?IIN∨ 0.361 0.365 0.361 0.365 0.371 0.482 0.470 0.682 0.737 1.032

Tab. 5.4. Variables eléctricas para la segunda prueba.

A continuación se presenta la curva del sistema obtenida a partir de los datos de la prueba número dos.

Graf. 5.3. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2.

Con esta prueba se pudo hacer un barrido más amplio por todo el espectro de comportamiento del sistema.

5.1.2. OBTENCIÓN DE LAS CURVAS DEL SISTEMA PARA DISTINTAS INCLINACIONES DE LA TUBERÍA EXPERIMENTAL

El objetivo de esta prueba fue obtener las curvas del sistema a diferentes inclinaciones de la estructura experimental manteniendo fija la posición de la válvula FCV153. Al igual que en la prueba anterior, las condiciones del flujo, se establecieron variando la velocidad de giro de la bomba para un intervalo de la frecuencia del voltaje de alimentación al motor de 10 a 55 Hz.

En esta prueba se utilizó por primera vez el sistema de adquisición de datos, por lo que fue necesario instalar los sensores en los puntos de medición, previo proceso de calibración de cada uno de ellos.

Fig. 5.3. Inclinación de la estructura experimental.

Datos d	le las Prueba	\$									Sensor
Frecuencia Bomba [Hz] 15	ST-101 [Hz] 15.053	ST-101 [RPM] 921.002	Δh (FT-105) [mca] 1.131	Gasto (FT-105) [lps] 9.626	P desc (PT-101) [mca] 5.482	P placa (PT-104) [mca] 6.007	P tanque (PT-301) [mca] 3.534	P entrada (PT-402A) [mca] 3.125	P retorno (PT-406A) [mcə] 2.9	P salida (PT-4028) [mca] 3.223	(XT-412) [⁰] 0
20 25 30 35 40 45 50 45 50 45 40 35	20.035 25.038 29.977 34.93 39.981 44.956 49.952 49.959 44.932 39.955	1208.87 1497.904 1783.231 2069.414 2361.234 2648.62 2997.307 2937.684 2647.246 2359.766 2059.766	2.639 4.65 6.934 9.338 12.399 16.796 19.557 19.171 15.361 12 8.991	14.846 19.466 23.759 27.562 31.749 35.828 39.859 39.464 35.332 31.235 27.045	8 903 13 392 18.738 24.95 32.334 40.52 49.492 49.337 40.271 32.09 24.734	9.206 13.36 18.311 24.097 30.87 38.333 46.605 46.421 38.107 30.634 23.928	5 021 6 941 9.234 11.889 14.962 18.301 21.967 21.759 18.081 14.759 11.747	4 509 6 209 8 419 10.893 13.778 16.903 20.341 20.196 16.721 13.614 10.796	4 038 5 543 7 337 9 424 11.877 14.529 17.473 17.304 14.343 11.7 9 317	4.082 5.197 6.553 8.144 10.015 12.047 14.308 14.159 11.891 1.891 8.058	000000000000000000000000000000000000000
30 25 20 15 12 10	30.016 25.06 20.046 15.095 12.078 10.062	1785.512 1499.181 1209.505 923.478 749.16 632.651	6.374 4.172 2.343 0.956 0.335 -0.04	22.782 18.442 13.833 8.853 5.23 0.76	18.431 13.061 8.584 5.156 3.485 2.657	18.096 13.189 9.064 5.877 4.384 3.507	9.102 6.841 4.946 3.477 2.791 2.382	8.338 6.253 4.492 3.115 2.474 2.085	7 244 5.496 4 2.862 2.335 2.015	6.495 5.171 4.069 3.235 2.854 2.62	0 0 0 0
15 20 25 30 36 40 45 55 45 40 35 30 25 20 15 20 12 10	15.087 20.054 24.995 29.99 34.941 39.958 44.958 44.958 45.017 44.99 39.958 30.031 25.034 20.038 15.088 12.087 10.046	923.01 1209.955 1495.431 1783.971 2070.048 2369.915 2648.767 2939.972 2941.022 2650.604 2650.604 2650.604 2650.604 1208.039 923.043 749.679 631.731	1.246 2.705 4.484 6.71 9.247 15.706 19.530 19.199 15.416 12.026 4.277 2.447 1.048 0.398 0.043	10.096 14.861 19.118 23.373 27.427 31.5526 39.84 39.84 39.493 35.396 31.27 27.106 22.909 18.673 14.136 9.266 5.722 1.769	5.19 8.62 13.163 18.455 24.863 32.119 40.29 49.301 49.303 40.165 32.054 24.728 18.419 13.147 8.658 5.173 3.629 2.662	5.896 9.08 13.23 18.181 24.013 36.218 46.516 46.516 23.967 30.666 18.15 13.232 9.104 5.924 4.429 3.655	3.537 5.014 6.918 9.21 11.86 14.925 21.957 21.764 18.270 4.959 9.134 6.888 4.969 3.493 2.801 2.309	3.118 4.5 6.281 8.403 10.865 13.656 16.827 20.304 20.174 16.726 13.62 10.812 8.369 6.274 4.512 3.145 2.501 2.111	0.652 1.796 3.304 6.088 7.193 9.57 12.244 15.200 15.202 7.309 5.252 3.494 2.016 0.877 0.352 0.033	3.053 3.898 5.018 6.353 7.936 9.736 9.736 11.77 14.036 13.921 11.653 9.625 7.827 6.225 4.939 3.835 2.999 2.624 2.391	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
20 25 30 35 40 45 50 45 40 36 30 25 20 20 15 13	20.037 25.019 29.983 34.942 39.99 44.943 49.943 49.943 40.015 35.001 30.02 25.016 20.047 15.015 13.064	1208.952 1496.802 1783.6 2070.094 2361.733 2647.905 2936.773 2942.001 2650.298 2650.298 2653.209 2073.513 1785.756 1496.613 1209.536 918.855 806.106	2 549 4,42 6,701 9,346 12,457 15,816 19,574 19,004 15,269 11,923 8,938 6,372 4,125 2,297 0,478 -0,392	14.425 18.981 23.367 27.573 31.824 35.851 39.876 39.292 35.226 31.136 26.966 22.779 18.339 13.699 6.267 0	8 69 13.064 18.334 24.601 31.89 40.028 48.879 49.123 40.109 32.015 24.764 18.402 13.208 8.733 5.354 4.485	9 064 13,204 18,078 23,869 30,556 37,961 46,142 46,328 30,617 23,943 18,156 13,287 9,151 6,317 5,412	4 96 6.898 9.152 11.79 14.814 18.132 21.765 21.765 18.091 14.774 11.769 9.131 6.867 4.958 4.119 4.288	4 452 6.258 8.328 10.776 13.575 16.674 20.066 20.162 16.713 13.626 10.825 8.385 6.309 4.573 4.14 -2.192	-0.376 1.101 2.832 4.885 7.264 9.91 12.8 9.866 7.236 4.882 2.837 1.086 -0.393 -0.536 0.005	3.57 4.708 6.01 1.358 13.653 13.639 11.333 9.381 7.592 6.045 4.729 3.625 2.892 1.984	15 15 15 15 15 15 15 15 15 15 15 15 15 1
28 30 35 40 45 50 45 45 36 35 30 25 20 15 12 10	28.024 29.972 34.93 39.952 44.954 49.919 49.995 44.974 39.932 34.913 30.007 24.941 19.957 15.075 12.059 10.006	1670.443 1782.953 2069.424 2359.523 2648.547 2935.365 2649.661 2358.378 2068.439 1784.965 1492.298 1204.334 922.298 748.031 629.425	5.656 6.591 9.206 12.315 15.641 19.43 19.368 15.491 12.167 9.096 6.511 4.304 1.913 0.109 0.148 0.159	21.463 23.165 27.366 31.643 35.652 39.73 39.666 35.481 31.452 27.201 23.025 18.73 12.506 2.748 3.434 3.449	16.047 18.303 24.574 31.826 39.925 48.827 49.543 40.369 32.196 24.913 18.533 13.349 9.161 5.718 3.777 2.789	15.991 18.042 23.837 30.504 37.875 46.762 38.323 30.858 24.136 18.298 13.445 9.792 6.702 4.782 3.718	8.174 9.115 11.76 14.772 18.072 21.699 21.974 18.235 14.9 11.871 9.216 7.091 6.079 5.72 5.712 5.703	7.469 8.332 10.78 13.572 16.661 20.039 37.227 37.121 36.804 36.215 27.853 36.451 36.451 36.185 30.326 4.028 4.034	0.507 1.195 3.213 5.583 8.208 11.123 8.346 5.699 3.317 1.233 -0.306 -0.366 0.118 0.107 0.091	5.343 5.864 7.378 9.165 13.356 13.356 13.051 10.948 9.129 7.7 6.085 4.731 3.28 1.454 1.574	22 22 22 22 22 22 22 22 22 22 22 22 22
34 400 500 500 363 300 252 200 19 39 39 42 455	33,917 39,966 44,932 49,951 49,937 44,975 39,963 34,927 32,966 29,977 25,051 20 19 38,988 41,938 44,956	2010.86 2360.375 2647.239 2937.219 2936.399 2649.733 2361.352 2069.244 1955.933 1783.236 1498.633 1206.821 1149.09 2303.873 2474.281 248.621	8,493 12,092 15,449 19,234 19,22 15,436 12,114 9,094 8,057 6,159 3,362 0,813 0,07 11,394 13,18 15,186 15,186	26.288 31.354 35.433 39.529 39.514 36.418 31.384 27.2 25.606 16.562 8.164 2.2396 16.562 8.164 2.226 30.438 32.733 35.131	23.254 31.818 39.857 48.789 49.257 40.254 32.119 24.827 22.189 18.693 13.746 9.504 8.761 29.679 34.203 39.266	22,556 30,451 37,826 45,986 46,511 38,201 38,201 30,753 24,025 21,596 18,516 14,146 10,392 9,828 29,243 33,492 37,988 37,989	11.157 14.752 18.066 21.674 21.948 18.261 14.921 11.861 10.785 9.708 8.483 7.463 7.817 14.193 16.11 18.123	10.261 13.61 16.691 20.08 37.738 38.112 38.117 38.267 37.957 38.142 37.807 -2.362 39.648 13.085 14.087 16.74	0.602 3.436 6.053 8.951 9.214 6.264 3.609 1.201 0.371 0.092 -0.202 -0.183 0.663 1.139 2.667 4.266	6.845 8.953 10.942 13.146 10.191 8.33 6.656 5.007 4.497 3.642 2.072 1.166 0.179 8.447 9.563 10.63 10.63	30 30 30 30 30 30 30 30 30 30 30 30 30 3
40 50 45 36 35 30 25 22	40,302 49,973 44,966 40,003 36,006 34,921 29,954 24,979 21,971	2996,799 2938,519 2649,231 2362,485 2131,575 2068,888 1781,909 1494,466 1320,721	19.538 19.064 15.194 11.833 9.226 8.404 4.964 1.974 0.284	39,354 39,354 35,14 31,018 27,396 26,15 20,113 12,7 4,81	49.884 49.15 40.067 31.971 26.25 24.932 19.103 14.199 11.373	47.782 46.396 38.101 30.674 25.478 24.294 19.165 14.816 12.355	22.455 21.905 18.219 14.884 12.723 12.388 10.943 9.73 9.096	20.782 38.753 38.633 -2.432 39.293 39.293 -2.4 -2.241 39.44	7.745 7.257 4.327 1.692 0.207 0.163 0.001 -0.071 -0.008	13,485 10,057 8,053 6,256 5,242 4,842 3,236 1,915 1,424	39 39 39 39 39 39 39 39 39 39
44 47 50 50 45 41 40 35 30 25 23	43.984 46.977 49.983 49.928 45.006 40.973 39.954 34.958 29.974 24.987 22.945	2592.503 2765.388 2939.094 2935.881 2651.555 2418.548 2359.656 2071.019 1783.079 1494.979 1376.966	14.692 16.771 19.038 19.101 15.373 12.677 11.825 7.96 4.46 1.449 0.071	34.555 36.915 39.327 35.346 32.103 31.008 25.452 19.067 10.89 2.089	38.275 43.342 48.667 49.027 40.045 33.684 33.254 25.363 19.535 14.542 12.634	36.363 40.999 45.922 46.354 38.07 30.871 24.933 19.837 15.404 13.664	17.313 19.375 21.546 21.883 18.212 15.625 15.275 13.566 12.168 11.009 10.789	16.11 18.033 20.072 38.531 39.045 39.041 39.041 39.041 39.042 39.442 39.443 39.444	1.7 3.352 5.1 5.398 2.468 0.507 0.455 0.141 0.06 0.104 0.104	10.185 11.422 12.754 12.577 10.395 8.869 8.869 7.453 5.082 3.254 1.112	i 49 49 49 49 49 49 49 49 49 49 49 49 49 4
48 51 45 30 30 25	48 51.01 44.971 34.961 30.034 24.985	2824.537 2998.426 2649.511 2362.339 2071.213 1786.516 1494.854	17.506 19.752 15.117 10.803 6.913 3.448 -0.121	37.714 40.057 35.05 29.64 23.722 16.772 0	45.049 50.436 39.863 32.373 25.659 19.99 14.733	42.627 47.533 37.856 31.386 25.514 20.467 15.87	20.173 22.323 18.183 16.327 14.645 13.279 12.431	8 18.83 8 20.826 8 17.106 7 16.146 5 15.305 9 14.726 1 14.864	2.156 3.891 0.744 0.365 0.069 -0.002 0.722	6 11.74 1 13.066 1 10.56 5 9.32 9 6.99 2 4.468 2 2.03	7 61 6 61 1 61 2 61 9 61 8 61 1 61
49 50 45 40 35 30 25	49.03 49.945 45.018 40.001 34.987 30.011 25.054	2884.028 2936.88 2652.238 2362.403 2072.687 1785.208 1498.815	18.223 18.893 14.412 10.286 6.632 3.185 -0.077	38.478 39.176 34.225 28.923 23.236 16.123 0.082	46.915 48.641 40.367 32.811 25.967 20.252 14.922	44.305 45.824 38.523 31.885 25.797 20.741 16.05	20.977 21.647 19.277 17.152 15.114 13.722 13.875	20.151 20.772 19.192 2 17.815 1 16.415 2 15.784 3 17.035	1.488 2.017 1.019 0.18 -0.715 -0.862 0.945	12.412 12.829 11.43 9 9.669 5 7.394 2 5.669 5 -0.009	2 90 9 90 9 90 9 90 4 90 8 90 8 90

Tab. 5.5. Prueba a diferentes inclinaciones.

De los datos de la tabla anterior se obtuvieron las curvas del sistema para distintas inclinaciones de la estructura experimental.

Graf. 5.4. Curva del sistema a diferentes inclinaciones.

Como se puede observar en la gráfica, a diferencia de la curva de la prueba anterior (Graf. 5.3), a gasto nulo, Q=0 la presión (Hb) es distinta en cada curva, esto se debe a que conforme aumenta la inclinación de la estructura experimental, aumenta la carga estática debida a que el punto más alto de la instalación está cada vez más arriba y por lo tanto la diferencia con el nivel del agua en el tanque (presa) es cada vez mayor.

5.2. TRANSITORIO HIDRÁULICO

Si el sistema dejara de bombear abruptamente, como en el caso de una interrupción en el suministro de la energía eléctrica, se puede presentar un transitorio hidráulico que podría ocasionar el colapso de la tubería. Para evitar este problema se colocó una válvula de admisión de aire en el extremo del retorno de la tubería, que es el punto que queda más alto cuando se trabaja con la tubería inclinada. Además, para que este fenómeno no se presente durante la operación normal de la instalación, en el inversor se programaron los parámetros de la rampa de aceleración y desaceleración para que las magnitudes máximas y mínimas de las variables hidráulicas, durante un cambio de régimen de operación, queden dentro de los intervalos de operación confiable del sistema.

Para comprobar que la tubería estaba fuera de riesgo para situaciones como la antes mencionada, se realizaron pruebas de transitorios, en la cual el se iba a iniciar el funcionamiento del sistema a una velocidad del inversor de 50Hz y en cierto momento se bajaría a 15Hz abruptamente. El resultado es el siguiente.

Graf. 5.5. Curva de un transitorio.

Se puede observar que la curva "Frec. Bomba", que es la señal analógica que manda la computadora para controlar el comando de velocidad en el inversor, cambia abruptamente, mientras que el gasto y la presión siguen la tendencia de la velocidad de giro del motor ST-101, que corresponde a la pendiente de desaceleración programada en el inversor. Con esto se comprueba que no se presentaran los problemas hidráulicos característicos en un transitorio.

5.3. COEFICIENTE DE FRICCIÓN

Un parámetro muy importante del sistema hidráulico es el coeficiente de fricción de la tubería experimental, que en este caso es una tubería de acrílico de 4" de diámetro. Para conocerlo se colocó un sensor de presión diferencial en la parte inferior del tubo, con una separación de 4m entre la toma de baja presion y la de alta. Con el sistema de medición se hicieron registros para diferentes gastos. Los datos obtenidos se presentan en la siguiente tabla.

Q Agua (lps)	Longitud (m)	Diámetro (m)	Área (m2)	Velocidad (m/s)	Viscosidad (m2/s)	Reynolds (Re)	DPT (mca)	f
15.90	4	0.1007	0.00797	1.995	0.000001005	2.00E+05	0.30128	0.03739
19.61	4	0.1007	0.00797	2.460	0.000001005	2.47E+05	0.49599	0.04048
23.62	4	0.1007	0.00797	2.965	0.000001005	2.97E+05	0.65756	0.03697
27.72	4	0.1007	0.00797	3.478	0.000001005	3.49E+05	0.86956	0.03551

Tab. 5.6. Datos obtenidos para conocer el coeficiente de fricción (f).

En la tabla anterior los datos de gasto y diferencial de presión provienen del sistema de adquisición; la longitud, el diámetro y viscosidad son datos conocidos, mientras que el área, velocidad y número de Reynols se calculan. Con todos estos datos se puede calcular el coeficiente de fricción.

El coeficiente de fricción obtenido en la tabla 5.6 se presenta en la siguiente gráfica.

Graf. 5.6. Coeficiente de fricción.

Como se puede ver, el coeficiente de fricción permanece constante aunque la diferencial de presión varíe, es decir aunque el gasto varíe, lo cual es correcto ya que el coeficiente de fricción es una característica que depende de las características físicas de la tubería, principalmente del material del que está hecho y de su proceso de construcción

5.4. PATRONES DE FLUJO

Para comprobar los patrones de flujo para flujos bifásicos agua-aire, encontrados en la literatura, que dependen de la velocidad del flujo de cada fase, se hicieron varios experimentos a diferentes inclinaciones de la tubería experimental para distintas proporciones de líquido-gas. Las comparaciones se hicieron con los datos reportados por Bornea de la Universidad de Houston, y los resultados son los siguientes.

Graf. 5.7. Patrones de flujo a 0° de inclinación.

Graf. 5.9. Patrones de flujo a 45° de inclinación.

Graf. 5.10. Patrones de flujo a 50° de inclinación.

Graf. 5.11. Patrones de flujo a 90° de inclinación.

Como se puede ver en las diferentes gráficas, los resultados obtenidos a partir de los datos experimentales coinciden con los reportados, lo cual indica que la metodología de medición ha sido adecuada.

5.5. VELOCIDAD DE ARRASTRE DE SÓLIDOS

Por último se realizó una prueba para obtener la velocidad de arrastre de sólidos en la tubería. Para esto se fijaron diferentes velocidades de flujo del líquido a 1, 1.5, 2 y 2.5 m/s y se fue variando la velocidad del gas; para cada condición se obtuvieron las velocidades de arrastre de las partículas sólidas (canicas).

Para obtener las velocidades de arrastre de las partículas sólidas, se usó una cámara de alta velocidad que se montó sobre la estructura que soporta la tubería experimental en la sección de observación: En la tubería de acrílico se colocaron dos marcas con una distancia de 10cm entre sí que sirvieron como puntos de referencia. Con el video obtenido se determinó el tiempo en que la partícula sólida tardó en recorre la distancia de 10cm y así se pudo calcular su velocidad.

Fig. 5.4. Cámara de alta velocidad e Imagen de la cámara.

Graf. 5.12. Curvas de velocidades para una velocidad de líquido de 1m/s.

Graf. 5.13. Curvas de velocidades para una velocidad de líquido de 1.5m/s.

Graf. 5.14. Curvas de velocidades para una velocidad de líquido de 2m/s.

Graf. 5.15. Curvas de velocidades para una velocidad de líquido de 2.5m/s.

Observando las gráficas se puede notar que mientras mayor sea el ángulo de inclinación se necesita mayor cantidad de gas para mover las partículas de los sólidos; al inyectar más gas, la densidad del flujo trifásico disminuye, se dice entonces que la mezcla se aligera, lo que a su vez hace que sea más fácil mover las partículas de los sólidos, lo que se refleja en la velocidad del sólido dentro de la tubería.

CAPÍTULO 6

CONCLUSIONES.

El uso de inversores para controlar la velocidad de giro de los motores de la bomba, malacates y dosificador de sólidos, permitieron dar gran flexibilidad de operación a los sistemas y poder con ello realizar experimentos bajo condiciones de operación que difícilmente se lograrían sin ellos, utilizando técnicas de control de flujo más rudimentarias como el estrangulamiento con válvulas.

Con las pruebas realizadas en la instalación experimenta y de transporte de recortes del IMP, descritas, se puede concluir que los trabajos hechos para la instrumentación de esta instalación fueron adecuados y han cubierto satisfactoriamente las necesidades de medición en ella.

Sin embargo, también se pudo observar la necesidad de mejorar algunas de las metodologías de medición de algunas de las variables. Tal es el caso de la medición de la variación del peso del tanque de almacenamiento de sólidos, con el que se quiere calcular la cantidad de sólidos inyectados a la mezcla con el dosificador. Como se describió, se utiliza una celda de carga de 2000 lbs, que se seleccionó para soportar el peso total del tanque más los sólidos en su interior, pero con ella no es posible medir variaciones de decenas de kilogramos, ya que no es lo suficientemente sensible a cambios del peso tan pequeños.

Durante la operación de la instalación, se notó que el flujo del gas es sumamente sensible a cualquier cambio en las condiciones de operación de la instalación e inclusive de las condiciones climáticas, por lo que se tiene la necesidad de usar técnicas de control en lazo cerrado para automatizar la sección de gas. Para ello es necesario buscar otras técnicas de medición del gasto de gas que sean menos sensibles a las variaciones mencionadas.

BIBLIOGRAFÍA

- Measurement and instrumentation for control.
 M. G. Mylroi and G. Calvert.
 Ed. IEE. 1986.
- Instrumentación Industrial. Antonio Creus Sole. Ed. Publicaciones Marcombo. 1980.
- Mecánica de Fluidos.
 Víctor L. Streeter y E. Benjamín Wylie.
 Ed. Mc. Graw Hill. 1988.
- Mechanical Variables Measurement. John G. Webster. CRC Press. 2000.
- Instrumentación Industrial Harold E. Soisson. Ed. Limusa. 1988.
- Analysis instrumentation. Fowler L, Harmon R, Roe D. Instrument Society of America ISA. Plenum Press New York. 1966.
- Instrumentation for Engineering Measurements Dally J, Riley W, McConnel K. John Wiley and Sons Inc. 1984.
- Instrumentation Fundamentals and Aplication. Ralph Morrison John Wiley and Sons Inc. 1986.
- Instrumentation for Engineers. Turner J.D. Macmillan Education.
- Instrumentation Reference Book. Nolting K. B. Butterworth Heinemann. 2000.
- Sensors and Signal Conditioning. Pallas R, Webster J. John Wiley and Sons Inc. 2000.
- Sensors, Transducers and LabView. Paton Barry. Prentice Hall. 2000.
- Termodinámica Kenneth Wark, Jr. McGraw Hill.

ÍNDICE DE FIGURAS

Figura.

Página

Fig. 1.1	Diagrama de bloques del equipo experimental de flujo multifásico y de transporte de recortes del Instituto Mexicano del Petróleo	1
Fig. 1.2	Esquema general (elevación y planta) del equipo experimental de flujo multifásico y de transporte de recortes del Instituto Mexicano del Petróleo.	2
Fig. 1.3	Equipo experimental de flujo multifásico y de transporte de recortes del Instituto Mexicano del Petróleo.	3
Fig. 1.4	Fotografía de la sección de fase líquida (agua) y gas (aire).	3
Fig. 1.5	Fotografía de la unidad móvil.	4
Fig. 1.6	Sección experimental.	5
Fig. 1.7	Separador de fases.	6
Fig. 1.8	Inclinación de la estructura.	6
Fig. 1.9	Ubicación de la Caseta.	7
Fig. 1.10	Interior de la Caseta.	7
Fig. 2.1	Formas de ver la medida de presión.	11
Fig. 2.2	Construcción de un strain gages.	11
Fig. 2.3	Conexión de un strain gages.	12
Fig. 2.4	Strain gages autocontenido.	12
Fig. 2.5	Arreglo manómetro-sensor para medir la presión de descarga de la bomba.	13
Fig. 2.6	Sensores para medir la pérdida de carga.	13
Fig. 2.7	Colocación de los sensores en la tubería.	14
Fig. 2.8	Sección de gas.	14
Fig. 2.9	Tanque de almacenamiento de los sólidos.	15
Fig. 2.10	Piezas diseñadas y herramienta para la colocación de los sensores en la tubería experimental.	15
Fig. 2.11	Perforación del tubo de acrílico.	16
Fig. 2.12	Realización de la ceja para montar el sensor.	16
Fig. 2.13	Colocación del sensor de presión en la tubería experimental.	17
Fig. 2.14	Piezas y corte de la colocación del sensor de presión en la tubería experimental.	17
Fig. 2.15	Tomas para el sensor de presión diferencial.	18
Fig. 2.16	Tipo de tomas para una placa de orificios.	19
Fig. 2.17	Tipo de perforaciones para una placa de orificios.	20

Fig. 2.18	Comportamiento de la presión aguas arriba y aguas abaio de la placa de orificios	21
Fig. 2.19	Teorema de Bernoulli.	21
Fig. 2.20	Datos experimentales para la obtención del Ca	23
Fig. 2.20	Condiciones de construcción para una placa de orificio	25
Fig. 2.21	Colación de la placa de orificio	28
Fig. 2.22	Placa de orificio y sensor de presión diferencial	20
Fig. 2.23	Colocación do los modidoros do gasto on la socción do	20
1 ly. 2.24	gas.	52
Fig. 2.25	Colocación del sensor de presión diferencial en la	33
	sección de gas.	
Fig. 2.26	Patigrama del LM35 y conexión del LM35.	33
Fig. 2.27	Patigrama del LM7805.	34
Fig. 2.28	Conexión del sensor de temperatura.	34
Fig. 2.29	Colocación del sensor de temperatura.	34
Fig. 2.30	Tornillo sin fin y carcaza.	35
Fig. 2.31	Colocación del tornillo sin fin dentro de la carcaza.	35
Fig. 2.32	Colocación del dosificador.	35
Fig. 2.33	Celda de carga.	36
Fig. 2.34	Colocación del sensor de peso.	36
Fig. 2.35	Circuito para el sensor de posición.	37
Fig. 2.36	Colocación del sensor de posición.	39
Fig. 2.37	Panel de potencia.	39
Fig. 2.38	Motor e inversor de la bomba.	40
Fig. 2.39	Motor e Inversor del dosificador de sólidos	40
Fig. 2.40	Inversor del motor del malacate principal.	41
Fig. 2.41	Inversor del motor del malacate secundario.	41
C		
Fig. 3.1	Sensor de presión Omega modelo PX-440.	43
Fig. 3.2	Circuito eléctrico para la conversión I-V.	43
Fig. 3.3	Diagrama esquemático de las fuentes de voltaje.	44
Fig. 3.4	Circuito impreso para las fuentes de voltaje.	44
Fig. 3.5	Sensor de presión diferencial.	45
Fig. 3.6	Acondicionadores de señal ATA 2001 LVDT de	46
Fig 37	Diagrama de bloques para el SCXI 1141 1142 y 1143	48
1 19:017	de National Instrument .	10
Fig. 3.8	Panel frontal v posterior del SCXI 1141.1142 v 1143 de	48
	National Instrument	
Fig. 3.9	Diagrama de blogues para el SCXI 1121 de National	49
	Instrument .	.5
Fia. 3.10	Panel frontal y posterior del SCXI 1121de National	49
9. 00	Instrument .	.0

Fig. 3.11	Chasis SCXI de National Instrument .	50
Fig. 3.12	Caja de interconexión SCB 100 PIN CONNECTOR	50
	BLOCK de National Instrument	
Fig. 3.13	Cable de interconexión SH100-100-F de National	51
	Instrument	
Fig. 3.14.	Diagrama de bloques de la tarjeta AT-MIO-64-E de	52
	National Instrument.	
Fig. 3.15.	Tarjeta AT-MIO-64-E de National Instrument.	52
Fig. 3.16	Patigrama y diagrama a bloques del CD4053BC.	53
Fig. 3.17	Circuito para seleccionar entre la bomba, el sin fin y los	54
	malacates.	
Fig. 3.18	Circuito para la interconexión del inversor de la bomba	55
	con la computadora.	
Fig. 3.19	Circuito para la interconexión del inversor del	56
	dosificador con la computadora.	
Fig. 3.20	Circuito para la interconexión del inversor del malacate	57
F : 0.04	principal con la computadora.	
Fig. 3.21	Circuito para la interconexion del inversor del malacate	58
F : 0.00	secundario con la computadora.	
Fig. 3.22	Front Panel en Lab View.	58
Fig. 3.23	Back Panel en Lab View.	59
Fig. 3.24	Ayudas en el Front Panel.	59
Fig. 3.25	Ayudas en el Back Panel.	60
Fig. 3.26	l'ablero virtual del Laboratorio para la Medición de	60
E : 0.07	Flujos Multifasicos y de transporte de recortes.	0.4
Fig. 3.27	l'ablero virtual para ajustar los parametros de la	61
	adquisición de datos.	00
FIG. 3.28	l'abiero virtual para ajustar los parametros para la	62
	colocación de la estructura.	60
FIG. 3.29	l'abiero virtual para ajustar los parametros para el	63
	Control de Solidos y líquidos.	64
FIG. 3.30	rabiero virtual para ajustar los parametros para el	64
Eig 2 21	Tablero virtual para graficor	64
riy. 3.31.	rabiero virtual para grancar.	04
Fig. 4.1	Uso de la nomenclatura según la ISA.	65
Fig. 4.2	Identificación de los instrumentos según la ISA.	66
Fig. 4.3	Identificación de los tipos de señal según la norma de	66
J	la ISA.	-
Fig. 4.4	Diagrama de Tubería e Instrumentación.	67
Fig. 4.5	Obtención de la curva de calibración y programación	70
-	en LabView.	
Fig. 4.6	Balanza de pesos muertos.	71

Fig. 5.1	Mediciones directamente en manómetros.	84
Fig. 5.2	Medidor de gasto Panametrics.	84
Fig. 5.3	Inclinación de la estructura experimental.	90
Fig. 5.4	Cámara de alta velocidad e imagen de la cámara.	96

ÍNDICE DE TABLAS.

Tabla.		Página
Tab. 2.1	Datos para la obtención de la diferencial de presión.	27
Tab. 3.1 Tab. 3.2 Tab. 3.3	Tabla de verdad del CD4053BC. Asignación de las señales digitales. Tabla de verdad para las señales analógicas y digitales.	53 54 54
Tab. 4.1 Tab. 4.2 Tab. 4.3 Tab. 4.4 Tab. 4.5 Tab. 4.6 Tab. 4.7	Identificación de las letras según la ISA. Identificación de los lazos de control. Sección de líquido. Sección de gas. Sección de sólidos. Sección experimental. Sección de los malacates.	66 67 68 68 68 69 69
Tab. 5.1 Tab. 5.2 Tab. 5.3 Tab. 5.4 Tab. 5.5 Tab. 5.6	Variables hidráulicas para la primer prueba. Variables eléctricas para la primer prueba. Variables hidráulicas para la segunda prueba. Variables eléctricas para la segunda prueba. Prueba a diferentes inclinaciones. Datos obtenidos para conocer el coeficiente de fricción (f).	86 87 88 89 91 93

ÍNDICE DE GRÁFICAS.

Gráfica.		Página
Graf. 2.1 Graf. 2.2	Curvas de la bomba Curva de comportamiento de la placa de orificio.para esta tubería.	24 28
Graf. 2.3	Comportamiento de la placa de orificio.	32
Graf. 4.1	Curva de calibración para el transductor 0202-004 de 200PSI.	71
Graf. 4.2	Curva de calibración para el transductor 1701-002 de 200PSI.	72
Graf. 4.3	Curva de calibración para el transductor 2395-012 de 50PSI.	72
Graf. 4.4	Curva de calibración para el transductor 2395-013 de 50 PSI.	72
Graf. 4.5	Curva de calibración para el transductor 2395-024 de 50 PSI.	73
Graf. 4.6	Curva de calibración para el transductor 0202-001 de 50 PSI.	73
Graf. 4.7	Curva de calibración para el transductor 0203-001 de 50 PSI.	73
Graf. 4.8	Curva de calibración para el transductor 0202-003 de 50 PSI.	74
Graf. 4.9	Curva de calibración para el transductor 0203-003 de 50 PSI.	74
Graf. 4.10	Curva de calibración para el transductor 0202-004 de 50 PSI.	74
Graf. 4.11	Curva de calibración para el transductor 0203-004 de 50 PSI.	75
Graf. 4.12	Curva de calibración para el transductor 0202-008 de 50 PSI.	75
Graf. 4.13	Curva de calibración para el transductor 0203-008 de 50 PSI.	75
Graf. 4.14	Curva de calibración para el transductor 0202-009 de 50 PSI.	76
Graf. 4.15	Curva de calibración para el transductor 0203-009 de 50 PSI.	76
Graf. 4.16	Curva de calibración para el transductor 75192 de 15 PSI.	76
Graf. 4.17	Curva de calibración para el transductor 75197 de 15 PSI.	77

Graf. 4.18	Curva de calibración para el transductor 75385 de 15 PSL	77
Graf. 4.19	Curva de calibración para el transductor 75389 de 15 PSI.	77
Graf. 4.20	Curva de calibración para el transductor 75390 de 15 PSI.	78
Graf. 4.21	Curva de calibración para el transductor 75396 de 15 PSI.	78
Graf. 4.22	Curva de calibración para el transductor 115588.	79
Graf. 4.23	Curva de calibración para el transductor 115589.	79
Graf. 4.24	Curva de calibración para el transductor 123456.	79
Graf. 4.25	Curva de calibración para el sensor de temperatura.	80
Graf 4 26	Curva de calibración para el sensor de peso	80
Graf / 27	Curva de calibración para la salida analógica del	81
	inversor de la homba	01
Graf 128	Curva de calibración para el sensor de posición	Q1
Graf 4.20	Curva de calibración para la selida analágica del	01
Graf. 4.29		02
0		~~
Graf. 4.30	Curva de calibración para la salida analogica del	82
	inversor del malacate principal.	
Graf. 4.31	Curva de calibración para la salida analógica del	82
	inversor del malacate secundario.	
Graf. 5.1	Curva del sistema para diferentes grados de estrangulación de la válvula FC-153 prueba 1	87
Graf 5.2	Curva de comportamiento para una válvula de	88
Graf. 5.2	Curva de comportamiento para una válvula de mariposa	88
Graf. 5.2	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de	88 89
Graf. 5.2 Graf. 5.3	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula EC-153 prueba 2	88 89
Graf. 5.2 Graf. 5.3	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2.	88 89
Graf. 5.2 Graf. 5.3 Graf. 5.4	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones.	88 89 92
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio.	88 89 92 93
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.6	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción.	88 89 92 93 94
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.6 Graf. 5.7	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción. Patrones de flujo a 0° de inclinación.	88 89 92 93 94 94
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.6 Graf. 5.7 Graf. 5.8	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción. Patrones de flujo a 0° de inclinación. Patrones de flujo a 5° de inclinación.	88 89 92 93 94 94 95
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.6 Graf. 5.7 Graf. 5.8 Graf. 5.9	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción. Patrones de flujo a 0° de inclinación. Patrones de flujo a 5° de inclinación. Patrones de flujo a 45° de inclinación.	88 89 92 93 94 94 95 95
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.6 Graf. 5.7 Graf. 5.8 Graf. 5.9 Graf. 5.10	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción. Patrones de flujo a 0° de inclinación. Patrones de flujo a 5° de inclinación. Patrones de flujo a 45° de inclinación. Patrones de flujo a 50° de inclinación.	88 89 92 93 94 94 95 95 95
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.6 Graf. 5.7 Graf. 5.8 Graf. 5.9 Graf. 5.10 Graf. 5.11	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción. Patrones de flujo a 0° de inclinación. Patrones de flujo a 5° de inclinación. Patrones de flujo a 45° de inclinación. Patrones de flujo a 50° de inclinación. Patrones de flujo a 50° de inclinación. Patrones de flujo a 90° de inclinación.	88 89 92 93 94 94 95 95 95 96
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.6 Graf. 5.7 Graf. 5.8 Graf. 5.9 Graf. 5.10 Graf. 5.11 Graf. 5.12	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción. Patrones de flujo a 0° de inclinación. Patrones de flujo a 5° de inclinación. Patrones de flujo a 45° de inclinación. Patrones de flujo a 50° de inclinación. Patrones de flujo a 90° de inclinación.	 88 89 92 93 94 94 95 95 96 97
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.6 Graf. 5.7 Graf. 5.8 Graf. 5.9 Graf. 5.10 Graf. 5.11 Graf. 5.12	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción. Patrones de flujo a 0° de inclinación. Patrones de flujo a 5° de inclinación. Patrones de flujo a 45° de inclinación. Patrones de flujo a 50° de inclinación. Patrones de flujo a 90° de inclinación. Curvas de velocidades para una velocidad de líquido de 1m/s.	 88 89 92 93 94 94 95 95 96 97
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.6 Graf. 5.7 Graf. 5.8 Graf. 5.9 Graf. 5.10 Graf. 5.11 Graf. 5.12	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción. Patrones de flujo a 0° de inclinación. Patrones de flujo a 5° de inclinación. Patrones de flujo a 45° de inclinación. Patrones de flujo a 50° de inclinación. Patrones de flujo a 90° de inclinación. Curvas de velocidades para una velocidad de líquido de 1m/s.	 88 89 92 93 94 95 95 96 97 97
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.6 Graf. 5.7 Graf. 5.8 Graf. 5.9 Graf. 5.10 Graf. 5.11 Graf. 5.12 Graf. 5.13	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción. Patrones de flujo a 0° de inclinación. Patrones de flujo a 5° de inclinación. Patrones de flujo a 45° de inclinación. Patrones de flujo a 50° de inclinación. Patrones de flujo a 90° de inclinación. Curvas de velocidades para una velocidad de líquido de 1m/s. Curvas de velocidades para una velocidad de líquido de 1 5m/s	 88 89 92 93 94 95 95 96 97 97
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.6 Graf. 5.7 Graf. 5.8 Graf. 5.9 Graf. 5.10 Graf. 5.11 Graf. 5.12 Graf. 5.13 Graf. 5.14	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción. Patrones de flujo a 0° de inclinación. Patrones de flujo a 5° de inclinación. Patrones de flujo a 45° de inclinación. Patrones de flujo a 50° de inclinación. Patrones de flujo a 90° de inclinación. Curvas de velocidades para una velocidad de líquido de 1m/s. Curvas de velocidades para una velocidad de líquido de 1.5m/s.	 88 89 92 93 94 94 95 95 96 97 97 97
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.5 Graf. 5.7 Graf. 5.7 Graf. 5.8 Graf. 5.9 Graf. 5.10 Graf. 5.11 Graf. 5.12 Graf. 5.13 Graf. 5.14	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción. Patrones de flujo a 0° de inclinación. Patrones de flujo a 5° de inclinación. Patrones de flujo a 45° de inclinación. Patrones de flujo a 50° de inclinación. Patrones de flujo a 90° de inclinación. Curvas de velocidades para una velocidad de líquido de 1m/s. Curvas de velocidades para una velocidad de líquido de 1.5m/s.	 88 89 92 93 94 95 95 96 97 97 97
Graf. 5.2 Graf. 5.3 Graf. 5.4 Graf. 5.5 Graf. 5.6 Graf. 5.7 Graf. 5.8 Graf. 5.9 Graf. 5.10 Graf. 5.11 Graf. 5.12 Graf. 5.13 Graf. 5.14	Curva de comportamiento para una válvula de mariposa. Curva del sistema para diferentes grados de estrangulación de la válvula FC-153, prueba 2. Curva del sistema a diferentes inclinaciones. Curva de un transitorio. Coeficiente de fricción. Patrones de flujo a 0° de inclinación. Patrones de flujo a 5° de inclinación. Patrones de flujo a 45° de inclinación. Patrones de flujo a 50° de inclinación. Patrones de flujo a 90° de inclinación. Curvas de velocidades para una velocidad de líquido de 1m/s. Curvas de velocidades para una velocidad de líquido de 1.5m/s. Curvas de velocidades para una velocidad de líquido de 2m/s.	 88 89 92 93 94 95 95 96 97 97 97 97