ÍNDICE GENERAL

Agradecimientos	I
Índice de figuras	
Índice de tablas	IX
Resumen	XI
Introducción	1
Objetivo	1
1. Fundamentos	2
1.1. Agua residual	2
1.1.1. Historia breve de las aguas residuales	2
1.1.2. El agua alrededor del mundo	3
1.1.3. Contaminación de agua a nivel mundial	4
1.1.4. Contaminación del agua en México	4
1.1.5. Tratamiento de aguas residuales en México y en el mundo	6
1.2. Clasificación de las aguas residuales	8
1.3. Caracterización de las aguas residuales	8
1.3.1. Características físicas	9
1.3.1.1. Sólidos totales	9
1.3.1.2. Olor	9
1.3.1.3. Color	10
1.3.1.4. Temperatura	10
1.3.2. Características químicas orgánicas	10
1.3.2.1. Demanda bioquímica de oxígeno (DBO)	11
1.3.2.2. Demanda química de oxígeno (DQO)	12
1.3.3. Características químicas inorgánicas	13
1.3.4. Características biológicas	13
1.4. Tratamiento	13
1.4.1. Niveles de tratamiento	15
1.4.2. Pre-tratamiento y tratamiento primario	15
1.4.2.1. Desbaste	15
1.4.2.2. Dilaceración	16
1.4.2.3. Remoción de arena	16
1.4.2.4. Tanques de homogeneización de caudales	17
1.4.2.5. Mezclado	18

1.4.2.6. Floculación	18
1.4.2.7. Sedimentación	18
1.4.2.8. Flotación	19
1.4.2.9. Filtración	20
1.4.3. Tratamiento secundario	20
1.4.3.1. Procesos de tratamiento aerobio	22
1.4.3.1.1. Procesos aerobios de cultivo en suspensión	23
1.4.3.1.1.1. Proceso de lodos activados	23
1.4.3.1.1.2. Reactor secuencial Batch (RSB)	25
1.4.3.1.1.3. Estanques y lagunas	27
1.4.3.1.2. Procesos de tratamiento aerobio de cultivos fijos	28
1.4.3.1.2.1. Filtros percoladores	28
1.4.3.1.2.2. Reactor de discos biológicos (RDB)	29
1.4.3.1.2.3. Reactor biológico de membrana (RBM)	30
1.4.3.1.2.4. Reactor biológico de lecho móvil (RBLM)	31
1.4.3.2. Procesos de tratamiento anaerobio	34
1.4.3.2.1. Procesos de tratamiento anaerobio de cultivos en suspensión	36
1.4.3.2.1.1. Proceso de contacto anaerobio	36
1.4.3.2.1.2. Reactor secuencial Batch anaerobio	36
1.4.3.2.2. Proceso anaerobio de lecho de lodos	37
1.4.3.2.2.1. Reactor de lecho de lodos y flujo ascendente (RALLFA)	37
1.4.4. Tratamiento avanzado	38
1.4.4.1. Procesos avanzados de filtración	39
1.4.4.1.1. Filtración por membrana	39
1.4.5. Desinfección	40
1.4.5.1.1. Cloro	40
1.4.5.1.2. Luz ultravioleta (UV)	41
1.4.5.1.3. Ozono	42
1.4.5.1.4. Dióxido de cloro	42
1.5. Sostenibilidad en el tratamiento de aguas residuales	43
2. Metodología	46
2.1. Caso de estudio	46
2.1.1. Diseño original	47
2.1.1.1. Pre-tratamiento y tratamiento primario	48
2.1.1.1.1. Colectores	48
2.1.1.1.2. Rejillas	48

2.1.1.1.3. Cárcamo de bombeo	_ 48
2.1.1.1.4. Desarenador	_ 48
2.1.1.2. Tratamiento secundario	_ 48
2.1.1.2.1. Reactores biológicos	_ 48
2.1.1.2.2. Sedimentación secundaria	_ 49
2.1.1.3. Tratamiento avanzado	_ 49
2.1.1.3.1. Filtración	_ 49
2.1.1.4. Desinfección	_ 49
2.1.2. Situación actual	_ 49
2.2. Justificación de la propuesta para aumentar la capacidad de la PTARCU	_ 51
2.3. Ingeniería básica de la propuesta para aumentar la capacidad de la PTARCU	_ 51
2.3.1. Primera comparación de sistemas de tratamiento biológico	_ 52
2.3.2. Área disponible para la propuesta	_ 54
2.3.3. Población de diseño	_ 55
2.3.3.1. Población de Ciudad Universitaria	_ 55
2.3.3.2. Población Copilco el Alto	_ 57
2.3.3.3. Cálculo de la población de diseño	_ 57
2.3.4. Gasto de diseño	_ 57
2.3.5. Caracterización del agua residual	_ 58
2.3.5.1. Aforo	_ 59
2.3.5.1.1. Calibración del medidor de flujo	_ 60
2.3.5.1.2. Procedimiento de aforo	_ 61
2.3.5.2. Muestreo	_ 64
2.3.6. Tanque de igualación	_ 66
2.3.7. Pre-tratamiento y tratamiento primario	_ 69
2.3.7.1. Rejillas	69
2.3.7.2. Desarenador	_ 69
2.3.7.3. Sedimentación primaria	
2.3.8. Tratamiento secundario	_ 71
2.3.8.1. RBLM con lodos activados de mezcla completa	_ 71
2.3.8.1.1. Procedimiento de diseño del reactor RBLM	_ 73
2.3.8.1.2. Procedimiento de diseño del reactor de lodos activados mezcla completa	_ 78
2.3.8.1.3. Procedimiento de diseño del sedimentador secundario	_ 84
2.3.8.1.4. Resumen del reactor RBLM con lodos activados de mezcla completa y	
sedimentación secundaria.	
2.3.8.2 Reactor sequencial Batch (RSB)	86

2.3.8.2.1. Procedimiento de diseño del reactor RSB	_ 87
2.3.8.2.2. Resumen de diseño del RSB	_ 96
2.3.9. Tratamiento avanzado	_ 97
2.3.10. Desinfección	_ 99
3. Resultados	102
3.1. Comparación final y selección de la propuesta	102
3.2. Análisis de resultados	104
3.3. Factibilidad Ambiental	105
3.4. Factibilidad técnica	106
3.4.1. Dimensionamiento	106
3.4.1.1. Dimensionamiento del tanque de igualación	106
3.4.1.2. Dimensionamiento del reactor RBLM	108
3.4.1.3. Dimensionamiento del reactor de lodos activados de mezcla completa	109
3.4.1.4. Dimensionamiento del sedimentador secundario	110
3.4.1.5. Resumen del dimensionamiento	112
3.4.1.6. Ubicación del sistema de tratamiento en el espacio disponible de la PTARCU _	112
3.4.2. Balance de masa del tren de tratamiento	112
3.4.3. Perfil hidráulico de la propuesta	113
3.4.3.1. Análisis por bombeo tramo 1-2	115
3.4.3.2. Análisis por bombeo tramo 2-3	118
3.5. Factibilidad económica	119
3.5.1. Costos de inversión	120
3.5.2. Costos de operación anual por consumo energético	122
3.5.3. Valor presente neto de la propuesta	122
4. Conclusiones e investigaciones futuras	124
4.1. Conclusiones	124
4.2. Investigaciones futuras	125
Referencias	_126
Glosario	_132

ÍNDICE DE FIGURAS

Fig. 1.1	Porcentajes de agua mundial	4
Fig. 1.2	Calidad Superficial del agua, conforme a la DBO ₅ en mg/l	5
Fig. 1.3	Calidad Superficial del agua, conforme a la DQO en mg/l	5
Fig. 1.4	Calidad Superficial del agua, conforme a los SST en mg/l	5
Fig. 1.5	Registro anual de la generación de aguas residuales en México	6
Fig. 1.6	Porcentaje medio de aguas tratadas efectivamente	7
Fig. 1.7	Generación, colección y tratamiento de las aguas residuales en México en el año 2007	7
Fig. 1.8	Meta de cobertura de tratamiento para el año 2012	7
Fig. 1.9	Comportamiento de la DBO con respecto al tiempo	_ 11
Fig. 1.10	Crecimiento de biomasa y consumo de sustrato	_ 21
Fig. 1.11	Lodos activados completamente mezclado	_ 24
Fig. 1.12	Lodos activados en flujo pistón	_ 24
Fig. 1.13	Etapas del reactor RSB	_ 27
Fig. 1.14	Ejemplo de distintos tipos de soporte de película biológica en el RBLM	_ 33
Fig. 1.15	Proceso de tratamiento con RBLM	_ 33
Fig. 1.16	Proceso de contacto anaerobio	_ 36
Fig. 1.17	Rector secuencial Batch anaerobio	_ 37
Fig. 2.1	Localización de la PTARCU en Ciudad Universitaria	
Fig. 2.2	Acercamiento de la PTARCU	
Fig. 2.4	Diagrama de flujo original	
Fig. 2.4	Diagrama de flujo después de la primera remodelación de la PTARCU	
Fig. 2.5	Diagrama con la propuesta para aumentar la capacidad de la PTARCU Comparación unitaria de tratamientos secundarios	
Fig. 2.6		
Fig. 2.7	Área disponible para la propuesta de ampliación de la PTARCU	
Fig. 2.9	Equipo medidor de velocidad de flujo a superficie libre	
Fig. 2.10		
Fig. 2.11		
Fig. 2.12		_ 03
0	ARCU	67
	Hidrograma representativo del influente de la PTARCU en porcentajes de entrada para diseño o	
0	que de igualación	
	Hidrograma de diseño para el tanque de igualación	
_	Curva masa de los gastos de entrada y gasto de salida constante	
\sim		

Fig. 2.16	Desarenador tipo vortex de Huber, COANDA Complete Plant R0 5C	70
Fig. 2.17	Diagrama de flujo de la propuesta con RBLM+LA de tratamiento secundario.	73
Fig. 2.18	Diagrama de flujo de la propuesta con RSB de tratamiento secundario	87
Fig. 2.19	Comparación de consumo energético unitario entre la ultrafiltración y la microfiltración	97
Fig. 2.20	Sistema de microfiltración SIEMENS EFC-10800	98
Fig. 3.1	Comparación unitaria entre RBLM con Lodos Activados y RSB	103
Fig. 3.2	Diagrama de flujo de la propuesta final para aumentar la capacidad de la PTARCU	103
Fig. 3.3	Desarrollo de la DBO, SST y del consumo energético a través del proceso de tratamiento	104
Fig. 3.4	Consumo energético de la Línea 1 y de la Línea 2	105
Fig. 3.5	Tanque de igualación-Planta	106
Fig. 3.6	Tanque de igualación-Corte A-A	107
Fig. 3.7	Tanque de igualación-Corte B-B	107
Fig. 3.8	Tanque de aireación de RBLM-Planta	108
Fig. 3.9	Tanque de aireación de RBLM-Corte A-A	108
Fig. 3.10	Tanque de aireación de RBLM -Corte B-B	109
Fig. 3.11	Tanque de aireación de lodos activados -Planta	109
Fig. 3.12	Tanque de aireación de lodos activados -Corte A-A	110
Fig. 3.13	Tanque de aireación de lodos activados-Corte B-B	110
Fig. 3.14	Sedimentador secundario. Planta	111
Fig. 3.15	Sedimentador secundario-Corte A-A	111
Fig. 3.16	Sedimentador secundario. Corte B-B	111
Fig. 3.17	Distribución de los procesos y operaciones unitarios de la propuesta.	112
Fig. 3.18	Balance de masas de la propuesta	113
Fig. 3.19	Elevación de las operaciones y procesos unitarias, sin excavación	113
Fig. 3.20	Perfil Hidráulico de la propuesta.	114

ÍNDICE DE TABLAS

Tabla 1.1	Clasificación de las aguas residuales por su procedencia	_ 8
Tabla 1.2	Clasificación del drenaje	_ 8
Tabla 1.3	Resumen de la clasificación de los sólidos totales	_ 9
Tabla 1.4	Clasificación de los sólidos volátiles y fijos	_ 9
	Parámetros para la determinación de materia inorgánica	
Tabla 1.6	Características biológicas de las aguas residuales	14
Tabla 1.7	Limites máximos permisibles de contaminantes	15
Tabla 1.8	Niveles de tratamiento	16
Tabla 1.9	Sistemas de remoción de arenas	17
Tabla 1.10	Tipos de sedimentación que se presentan en el tratamiento de aguas residuales	19
Tabla 1.11	Ventajas y desventajas del proceso de tratamiento aerobio	22
Tabla 1.12	2 Variaciones del sistema de lodos activados	25
Tabla 1.13	8 Ventajas y desventajas del sistema RSB	26
Tabla 1.14	Clasificación de estanques y lagunas	27
Tabla 1.15	Ventajas y desventajas del tratamiento por medio de filtros percoladores	29
Tabla 1.16	Ventajas y desventajas de los discos biológicos	30
Tabla 1.17	Ventajas y desventajas los reactores biológico de membrana (RBM)	32
Tabla 1.18	3 Ventajas y desventajas los RBLM	34
Tabla 1.19	Ventajas y desventajas del proceso de tratamiento anaerobio	35
Tabla 1.20	Ventajas y desventajas de un sistema RALLFA	38
Tabla 1.21	Aplicación de las tecnologías de filtración por membrana	39
Tabla 1.22	2 Ventajas y desventajas de la cloración	41
Tabla 1.23	8 Ventajas y desventajas de la UV	41
Tabla 1.24	Ventajas y desventajas de la ozono	42
Tabla 1.25	Ventajas y desventajas del dióxido de cloro	43
Tabla 1.26	Criterios para el diseño de un tratamiento sostenible de aguas residuales	44
Tabla 2.1	Resumen poblaciones por facultad para licenciatura	55
	Resumen poblaciones por facultad para maestría y doctorado	56
	Resumen poblaciones por facultad para especializaciones	
	Población de Ciudad Universitaria que aporta a la PTARCU y la tasa de crecimiento	
	Proyección de la población de diseño	
	Aportación de agua residual por habitante al día dependiendo la actividad económico realizada_	
	Gastos de diseño por población y gasto de diseño final	
	Resumen de Calibración del equipo de medición de velocidad de flujo	
	Relación de volúmenes para muestra compuesta, día 1	
	Relación de volúmenes para muestra compuesta, día 2	

Tabla 2.11 Resultados de las muestras compuestas	65
Tabla 2.12 Promedio ponderado de parámetros en función del gasto en cada colector, día 1	66
Tabla 2.13 Promedio ponderado de parámetros en función del gasto en cada colector, día 2	66
Tabla 2.14 Comparación de los parámetros en el influente de la PTARCU con la composición típica de	
contaminantes en aguas residuales no tratadas	66
Tabla 2.15 Características después del tanque de igualación (influente al reactor RBLM)	72
Tabla 2.16 Criterio de carga de diseño de DBO típico	73
Tabla 2.17 Resumen de las concentraciones a la entrada y a la salida del reactor RBLM	78
Tabla 2.18 Características del influente al reactor de lodos activados	78
Tabla 2.19 Condiciones y parámetros propuestos para el diseño de un reactor de lodos activados	79
Tabla 2.20 Parámetros definidos para la determinación de TRS	80
Tabla 2.21 Parámetros de comparación del reactor RBLM con lodos activados de mezcla completa y	
sedimentación secundaria convencional.	86
Tabla 2.22 Características después del tanque de igualación (influente al reactor RSB)	87
Tabla 2.23 Condiciones y parámetros propuestos para el diseño de un reactor RSB.	88
Tabla 2.24 Tiempos de ciclo para el diseño del RSB	89
Tabla 2.25 Parámetros definidos para la determinación de TRS	92
Tabla 2.26 Parámetros de comparación del reactor RBLM con lodos activados y sedimentación secundaria	
convencional.	96
Tabla 2.27 Parámetros para la determinación de la dosis de cloro requerida	99
Tabla 3.1 Comparación final entre RBLM con lodos activados y RSB1	02
Tabla 3.2 Efluente de la Línea 1, Línea 2 y efluente final	
Tabla 3.3 Resumen del dimensionamiento del tren de tratamiento 1	
Tabla 3.4 Consumo energético por hora, del tramo 1-2	
Tabla 3.5 Resumen del volumen de excavación en roca, demolición y construcción de elementos de concret	
armado 12	
Tabla 3.6 Costos de inversión en pesos1	
Tabla 3.7 Costos de operación anual por consumo energético más representativos de la propuesta, en pesos	
Tabla 3.8 Valor presente neto de la propuesta, en pesos	22