

FACULTAD DE INGENIERÍA DIVISIÓN DE INGENIERÍA CIVIL Y GEOMÁTICA

EFECTOS DE UNA POLÍTICA DE OPERACIÓN DE UNA HIDROELÉCTRICA EN EL LARGO PLAZO USANDO REGISTROS SINTÉTICOS PARA SU SIMULACIÓN

TESIS

QUE PARA OBTENER EL TÍTULO DE:

INGENIERO CIVIL

PRESENTA:

ANAYELLY MIRELES GONZÁLEZ

DIRECTOR DE TESIS:

DRA. MARITZA LILIANA ARGANIS JUÁREZ

MÉXICO, D. F.

2013

DIVISIÓN DE INGENIERÍAS CIVIL Y GEOMÁTICA COMITÉ DE TITULACIÓN FING/DICyG/SEAC/UTIT/117/13

Señorita ANAYELLY MIRELES GONZÁLEZ Presente

En atención a su solicitud me es grato hacer de su conocimiento el tema que propuso la profesora DRA. MARITZA LILIANA ARGANIS JUÁREZ, que aprobó este Comité, para que lo desarrolle usted como tesis de su examen profesional de INGENIERO CIVIL.

"EFECTOS DE UNA POLÍTICA DE OPERACIÓN DE UNA HIDROELÉCTRICA EN EL LARGO PLAZO USANDO REGISTROS SINTÉTICOS PARA SU SIMULACIÓN"

INTRODUCCIÓN ANTECEDENTES 1.

11.

III.

METODOLOGÍA APLICACIÓN Y RESULTADOS CONCLUSIONES Y RECOMENDACIONES IV. REFERENCIAS ANEXOS

Ruego a usted cumplir con la disposición de la Dirección General de la Administración Escolar en el sentido de que se imprima en lugar visible de cada ejemplar de la tesis el Título de ésta.

Asimismo le recuerdo que la Ley de Profesiones estipula que deberá prestar servicio social durante un tiempo mínimo de seis meses como requisito para sustentar Examen Profesional.

A tentamente "POR MI RAZA HABLARÁ EL ESPÍRITU" Cd. Universitaria a 24 de septiembre del 2013.

EL PRESIDENTE

M.I. JOSÉ LUIS TRIGOS SUÁREZ

JLTS/MTH*gar.

"Lo que sabemos es una gota de agua; lo que ignoramos es el océano". Isaac Newton Para mis padres y hermano, los quiero mucho.

AGRADECIMIENTOS

A mis padres por su amor, tolerancia y el estar conmigo en cada paso que doy. Los amo, siempre son un ejemplo para mí.

A mi hermano por acompañarme y apoyarme siempre. Te quiero Juancho. Me alegro de tener un hermano como tú.

A mis tíos, primos y abuelos por estar conmigo en las buenas y en las malas. Son insustituibles. Los quiero.

A mis amigos por estar a mi lado y compartir un logro más. Los valoro, respeto y quiero mucho.

A mis profesores por el conocimiento obsequiado, la ayuda y la motivación.

A la Dra. Maritza Liliana Arganis Juárez y al Dr. Ramón Domínguez Mora por la asesoría, el tiempo y atención para la realización de este trabajo de tesis.

A mis compañeros y a todas aquellas personas que formaron parte de este camino para alcanzar un logro más.

Gracias a todos ustedes.

ÍNDICE

ln [·]	troduc	cción	1
1.	Ante	recedentes	4
	1.1.	Introducción	4
	1.2.	Casos similares estudiados en México	5
	1.3.	Casos similares estudiados en otros países	7
	1.4.	Planteamiento del problema	8
	1.5.	Hipótesis	8
	1.6.	Objetivos	8
	1.7.	Conceptos básicos de Hidrología	9
	1.8.	Componentes de un aprovechamiento hidroeléctrico	10
2.	Met	todología	14
	2.1.	Introducción	14
	2.2.	Descripción del sitio de estudio	14
	2.3.	Conceptos básicos de probabilidad y estadística	16
	2.4.	Funciones de distribución de probabilidad usadas en hidrología	20
	2.5.	Política de operación	23
	2.6.	Generación de datos sintéticos	24
	2.6.	.1. Modelos ARMA (Autoregressive-Moving Average)	25
	2.6.	.2. Modelos ARIMA (Autoregressive Integrated Moving Average)	26
	2.6.	.3. Método fragmentos de Svanidze	26
	2.6.	.4. Método de Svanidze	27
	2.	1.6.5.1. Modificación en la selección de los años aleatorios	28
	2.	6.5.2. Programa para generar las series	28
		2.6.5.3. Programa para generar los años aleatorios y las fra	
	2.7.	Programación lineal	32
	2.8.	Programación dinámica	33
	2.9.	Programación dinámica estocástica o probabilística	35
	2.9.	.1. Programa de optimización	40
	2.9.	.2. Programa para la obtención de políticas de operación óptimas	41
	2.10.	Simulación del funcionamiento de vaso	43
	2.10	0.1. Procedimiento de cálculo	46
	2.10	0.2. Programa para simular el funcionamiento quincenal de una presa	48

3.	Apl	icació	on y Resultados	52
;	3.1.	Intro	oducción	52
,	3.2.	Apli	cación	52
	3.2	.1.	Registro	52
	3.2	.2.	Función de distribución de probabilidad	52
	3.2	.3.	Series sintéticas	57
	3.2	.4.	Selección de años aleatorios y obtención de fracciones aleatorias	59
,	3.3.	Res	ultados	77
	3.3	.1.	Simulación de la política de operación con los registros sintéticos	77
4.	Cor	nclusi	ones y Recomendaciones	90
	4.1.	Con	clusiones	90
	4.2.	Rec	omendaciones	96
Re	feren	cias		97
An	exos			100
,	Anexo	o 1. D	esarrollo de la serie 03	100
,	Anexo	2. D	esarrollo de la serie 07	110
	Anexo	3. D	Desarrollo de la serie 09	119

ÍNDICE DE FIGURAS

Figura 2.1 Localización de la presa La Angostura dentro de la Cuenca del Río
Yaqui, Son
Figura 2.2 Cambio en el algoritmo para la selección aleatoria de años
Figura 2.3 Información que se obtiene del programa AX
Figura 2.4 Archivo de datosA.txt con el registro hidrológico con los años
acomodados en orden cronológico
Figura 2.5 Archivo de resultados ARCH.RES con la selección aleatoria de años
para la serie 0130
Figura 2.6 Archivo de resultados DATOSANG.RES con las fracciones
aleatorias para la serie 01
Figura 2.7 Archivo de datosAN.txt, después de considerar la influencia del
invierno31
Figura 2.8 Archivo de resultados ARCH.RES, en este caso la selección
aleatoria de años considerando la influencia del invierno en la serie 01 32
Figura 2.9 Estructura básica de la programación dinámica
Figura 2.10 Modelos determinístico y estocástico
Figura 2.11 Diagrama de flujo para el modelo de programación dinámica
estocástica
Figura 2.12 Diagrama de ejecución del programa40
Figura 2.13 Archivo FITE01 obtenido al correr el programa CAFIT1P.FOT con
los datos de la presa La Angostura, Son41
Figura 2.14 Archivo RETAP01 obtenido al correr el programa OPDIN1VS.FOT
con los datos del programa CAFIT1P.FOR41
Figura 2.15 Archivo ARPOLVS, contiene las políticas de operación óptimas 42
Figura 2.16 Archivo MEEVS, muestra la matriz estados- extracciones 42
Figura 2.17 Archivo DIFANVS43
Figura 2.18 Formato del archivo DATOSGE48
Figura 2.19 Formato del archivo VOLPRE48
Figura 2.20 Formato del archivo SIQPRE49
Figura 2.21 Formato del archivo SUPGUIAP49
Figura 3.1 Función Doble Gumbel, datos medidos y calculados 57
Figura 3.2 Función Doble Gumbel, datos medidos, calculados y los resultados
de la serie 0159
Figura 3.3 Comparación entre la media del registro histórico y el registro
sintético obtenido a partir de la serie 0163
Figura 3.4 Comparación entre la desviación estándar del registro histórico y el
registro sintético obtenido a partir de la serie 0164
Figura 3.5 Comparación entre el coeficiente de asimetría del registro histórico y
el registro sintético obtenido a partir de la serie 01
Figura 3.6 Comparación entre el coeficiente de correlación del registro histórico
v el registro sintético obtenido a partir de la serie 01

Figura 3.7 Comparación entre la media del registro histórico y el registro sintético de cada una de las 10 series
influencia del invierno73
Figura 3.13 Comparación entre el coeficiente de asimetría del registro histórico y la del registro sintético hecho a partir de la serie 01. Después de considerar la influencia del invierno
Figura 3.16 Comparación entre la desviación estándar del registro histórico y la del registro sintético de cada una de las 10 series. Después de considerar la influencia del invierno
considerar la influencia del invierno
Figura 3.21 Comparación entre el coeficiente de asimetría del registro histórico y la del promedio de las 10 series. Después de considerar la influencia del invierno
Figura 3.22 Comparación entre el coeficiente de correlación del registro histórico y la del promedio de las 10 series. Después de considerar la influencia del invierno

Figura 3.23 Archivo de la política de operación para la presa La Angostura, Son
Figura 3.24 Archivo de la política de operación en forma matricial para la presa La Angostura, Son
Figura 3.25 Archivo SUPGUIAP de la simulación del registro histórico
Figura 4.2 Función Doble Gumbel de los datos medidos y los calculados después de la variación de $\alpha 2 \ y \ \beta 2$
obtenida a partir de la serie 10. Después del primer ensayo
la obtenida a partir de la serie 10. Después del primer ensayo
históricos y el obtenido a partir de la serie 10. Después del primer ensayo 94 Figura 4.8 Comparación entre el coeficiente de correlación de los datos históricos y el obtenido a partir de la serie 10. Después del segundo ensayo . 94
Figura A1. 1 Función Doble Gumbel para la serie 03 comparada con los datos calculados y medidos
Figura A2. 1 Función Doble Gumbel, la gráfica compara los datos medidos y calculados con los obtenidos de la serie 07
Figura A2. 3 Comparación entre la media de los datos del registro sintético 07 y los del registro histórico. Después del segundo ensayo. Considera un año hidrológico de julio a junio
Figura A3. 1 Función Doble Gumbel para la serie 09 comparada con los datos calculados y medidos

Figura A3. 2 Comparación entre la media de los datos del registro sintético 09) y
los del registro histórico. Después del primer ensayo. Considera un ai	ño
hidrológico de julio a junio12	23
Figura A3. 3 Comparación entre la media de los datos del registro sintético 09) y
los del registro histórico. Después del segundo ensayo. Considera un aí	ño
hidrológico de julio a junio12	24

ÍNDICE DE TABLAS

Tabla 2.1 Características generales de la presa La Angostura, Son	
Tabla 2.2 Funciones de distribución de probabilidad	
Tabla 3.1 Serie mensual (ingresos en hm³). Estadísticos: media, desviac	ión
estándar, coeficiente de asimetría, coeficiente de variación y coeficiente	de
correlación	53
Tabla 3.2 Año hidrológico (ingresos en hm³). Estadísticos: media, desviac	ión
estándar, coeficiente de asimetría, coeficiente de variación y coeficiente	de
correlación	54
Tabla 3.3 Volumen total anual (hm³)	55
Tabla 3.4 Datos medidos y calculados obtenidos del AX (hm³)	56
Tabla 3.5 Serie 01 de 101 datos generados	
Tabla 3.6 Numeración de años. Tabla 3.7 Serie 01. Tabla 3.8 Años aleator	
de la serie 01	
Tabla 3.9 Fracción aleatoria correspondiente para la serie 01	61
Tabla 3.10 Registro sintético de 101 años (hm³)	
Tabla 3.11 Diferencia entre los estadísticos del registro histórico y el regis	
sintético obtenido a partir de la serie 01	
Tabla 3.12 Año hidrológico (ingresos en hm³). Estadísticos: media, desviac	
estándar, coeficiente de asimetría, coeficiente de variación y coeficiente	
correlación. Los valores marcados son mayores a la media	
Tabla 3.13 Año hidrológico (ingresos en hm³). Los años de la población 1 es	
marcados al igual que los valores mayores a la media	
Tabla 3.14 Numeración de años. Tabla 3.15 Serie 01. Tabla 3.16 Ar	
aleatorios de la serie 01. Están marcados los años que pertenecen a	
población 1	
Tabla 3.17 Fracción aleatoria correspondiente a la serie 01, considerando	
nueva selección aleatoria de años	
Tabla 3.18 Nuevo registro sintético a partir de la serie 01 (hm³)	
Tabla 3.19 Comparación entre los estadísticos históricos y del registro sintét	
a partir de la serie 01, después de considerar la influencia del invierno	
Tabla 3.20 Estadísticos promedio considerando las 10 series sintéticas	
estadísticos históricos. Considerando la influencia del invierno	
Tabla 3.21 Registro quincenal obtenido a partir de la serie 01	
Tabla 3.22 Resultados para el registro sintético de la serie 01, archivo SIQPI	
Tabla 3.23 Resultados para el registro sintético de la serie 01, arch	
SUPGUIAP	
Tabla 3.24 Resultados para el registro histórico, archivo SIQPRE	
Tabla 3.25 Resultados de la simulación con el registro sintético de la serie	
donde se observan los años con presencia de derrame y déficit	
Tabla 3.26 Resumen de la simulación del funcionamiento de vaso usando	
política de operación y 10 registros sintéticos de 100 años cada uno	
pointed as operation y to registros sinteness de 100 anos cada uno	\mathcal{I}

Tabla 3.27 Frecuencia de las quincenas en las que se rebasó la curva guía 87
Tabla 3.28 Resumen de las frecuencias de los meses en los que se rebasa la
curva guía88
Tabla 3.29 Resumen de las frecuencias de los años en los que se rebasa la
curva guía88
Tabla 3.30 Frecuencia de las quincenas en las que se rebasó la curva guía,
años y meses en los que se rebasó la curva guía 89
Tabla A1. 1 Resumen del funcionamiento de vaso
Tabla A1. 2 Serie 03 con 101 datos generados
Tabla A1. 3 Selección aleatoria sin considerar la influencia del invierno 102
Tabla A1. 4 Selección aleatoria considerando la influencia del invierno 103
Tabla A1. 5 Fracciones aleatorias de la serie 03 antes de considerar la
influencia del invierno
Tabla A1. 6 Fracciones aleatorias de la serie 03 después de considerar la
influencia el invierno
Tabla A1. 7 Registro a partir de la serie 03 antes de considerar la influencia del
invierno (hm³)
Tabla A1. 8 Registro sintético a partir de la serie 03 después de considerar la
influencia del invierno (hm³)
Tabla A1. 9 Resultados para el registro sintético de la serie 03, archivo SIQPRE
Tabla A1. 10 Resultados para el registro sintético de la serie 03, archivo
SUPGUIAP
Tabla A2. 1 Serie 07 con 101 datos generados
Tabla A2. 2 Selección aleatoria de años antes de considerar la influencia del
invierno
Tabla A2. 3 Selección aleatoria de años después de considerar la influencia del
invierno
Tabla A2. 4 Fracciones aleatorias antes de considerar la influencia del invierno
113
Tabla A2. 5 Fracciones aleatorias después de considerar la influencia del
invierno
Tabla A2. 6 Registro sintético a partir de la serie 07 antes de considerar la
influencia del invierno (hm³)
Tabla A2. 7 Registro sintético a partir de la serie 07 después de considerar la
influencia del invierno (hm³)
Tabla A2. 8 Resultados para el registro sintético de la serie 07, archivo SIQPRE
Table AC C Baselta des mars el mariatre sintética de la caria 67 ambies
Tabla A2. 9 Resultados para el registro sintético de la serie 07, archivo
SUPGUIAP118

Tabla A3. 1 Serie 09 con 101 datos generados	
Tabla A3. 2 Selección de años aleatorios antes de considerar la influencia del	
invierno120	
Tabla A3. 3 Selección de años aleatorios después de considerar la influencia	
del invierno121	
Tabla A3. 4 Fracciones aleatorias antes de considerar la influencia del invierno	
Tabla A3. 5 Fracciones aleatorias después de considerar la influencia del invierno	
Tabla A3. 6 Registro sintético a partir de la serie 09 antes de considerar la	
influencia del invierno (hm³) 123	
Tabla A3. 7 Registro sintético a partir de la serie 09 después de considerar la influencia del invierno (hm³)	
Tabla A3. 8 Resultados para el registro sintético de la serie 09, archivo SIQPRE	
Tabla A3. 9 Resultados para el registro sintético de la serie 09, archivo SUPGUIAP	
Tabla A3. 10 Resumen de los estadísticos de todos los registros sintéticos 128	

Introducción

Introducción

El papel que juega el agua a nivel mundial es primordial. Su estudio ha ido evolucionando desde la época de Leonardo Da Vinci en 1500 cuando se habló por primera vez del ciclo hidrológico. Posteriormente, en 1930 empezó el desarrollo cuantitativo de la Hidrología (Linsley, 1970).

En el caso de México, el agua es un factor limitante en cuanto a desarrollo, debido a que es un recurso mal distribuido tanto en espacio como en tiempo, y al aumento constante en la demanda.

Una de las medidas tomadas para prever la escasez de este líquido tan preciado ha sido la construcción de presas de almacenamiento, las cuales tienen como objetivo básico modificar el régimen de los escurrimientos para adecuarlo al de las demandas. Por lo tanto, parte de los escurrimientos excesivos de la época de avenidas se almacenan temporalmente para disponer de ellos en la época seca, complementando los escurrimientos naturales. Al conjunto de reglas que establecen la forma de operar de un almacenamiento se le denominan políticas de operación (Domínguez, 1989).

Entre los usos que se les da a las presas de almacenamiento se mencionan algunos a continuación. La lista muestra la importancia del agua como líquido vital y en ella también se incluyen algunos estudios básicos en su diseño y operación (Aparicio, 2011).

- Fuentes de abastecimiento de agua para uso doméstico o industrial.
- Estudio y construcción de obras hidráulicas (fijación de dimensiones en obras hidráulicas de ingeniería, establecimiento de métodos de construcción).
- Drenaje (estudio del nivel freático, examen de las condiciones de alimentación y escurrimiento natural del nivel freático).
- Irrigación (estudio de evaporación e infiltración).
- Regulación de los cursos del agua y control de inundaciones (estudio de variaciones del caudal y prevención de crecientes máximas, examen de las oscilaciones del nivel de agua y de las áreas de inundación).

Introducción

- Control de contaminación (análisis de la capacidad de recepción de los cuerpos receptores de efluentes del sistema de aguas de desecho).
- Control de erosión.
- Navegación.
- Aprovechamiento hidroeléctrico (caudales máximos, mínimos y promedio de los cursos de agua para el estudio económico y dimensionamiento de las instalaciones del aprovechamiento, estudio de sedimentos, estudio de evaporación e infiltración).
- Operación de sistemas hidráulicos complejos.
- Recreación y preservación del medio ambiente.
- Preservación y desenvolvimiento de la vida acuática.

En este trabajo de tesis se plantea la revisión de una política de operación obtenida para la presa La Angostura, Son. A partir de la simulación de registros sintéticos se observará el comportamiento del sistema a largo plazo. Este trabajo consta de cuatro capítulos descritos brevemente a continuación.

El capítulo 1 está dedicado a establecer los antecedentes a esta tesis, algunos conceptos básicos de hidrología utilizados. Se mencionan también trabajos anteriores que marcaron un preámbulo para el presente trabajo, estudios nacionales e internacionales.

Dentro del capítulo 2 se encuentra la metodología, incluye conceptos de probabilidad y estadística, además de algunos datos de la presa estudiada, y algunos de los métodos que se emplean en este tipo de estudios.

En el capítulo 3, están plasmados la aplicación y los resultados obtenidos al realizar el proceso de simulación con la política de operación de la presa La Angostura, Son.

Por último en el capítulo 4 se mencionan algunas conclusiones y recomendaciones que surgieron de este trabajo.

Introducción

Referencias

- Aparicio Mijares, Francisco Javier. Fundamentos de Hidrología de Superficie. México: Limusa. 2011.
- Domínguez Mora, Ramón. Metodología de selección de una política de operación conjunta de una presa y su vertedor. Tesis Doctoral. UNAM.1989.
- Linsley, R.K. Hidrología para Ingenieros. México: Mc Graw-Hill.1970.

Capítulo 1. Antecedentes

1. Antecedentes

1.1. Introducción

Una presa tiene varios fines, entre los más claros y relevantes están el de generación de energía eléctrica, riego y el de almacenamiento y control de avenidas. Pero para su funcionamiento requiere de un recurso natural valioso, el agua. En cantidades muy grandes este recurso es peligroso por los daños que puede causar. De tal manera que la presa juega un papel muy importante en este punto al regular los escurrimientos naturales del río para adecuarlos al de las demandas (Domínguez, 1989).

La presa se alimenta de los escurrimientos naturales y de ella se extraen los volúmenes para el abastecimiento. Asimismo, se controlan los gastos extraordinarios vertiéndolos aguas abajo de la presa. Debido a que la presa tiene ingresos aleatorios, es necesario conocer a cada momento la cantidad de agua que debe extraerse por la obra de toma para surtir la demanda y la que debe extraerse por el vertedor para manejar los gastos extraordinarios.

A fin de establecer reglas para tomar decisiones en el caso de una presa, se establecen las políticas de operación y de ellas depende la funcionalidad de la presa. Determinar políticas de operación adecuadas es relativamente sencillo si se cuenta con las demandas y los volúmenes de ingreso. En el caso de México, comúnmente se cuenta con registros históricos de pocos años. Por ello, para ampliar la visión a largo plazo es importante tener registros más largos que los históricos y obtener políticas de operación óptimas (Peña, 2010).

La simulación a partir de la generación de registros sintéticos de los volúmenes de ingreso con mayor número de años que los registros históricos aumenta la información sobre el funcionamiento del sistema (generación, déficit y derrames a largo plazo), en comparación a la obtenida de los registros históricos que suelen ser menores a 50 años (Peña, 2010).

Capítulo 1. Antecedentes

1.2. Casos similares estudiados en México

En el Estado de México durante los años 70´s se realizó un estudio para la determinación de las políticas de operación de las presas La Juliana y Los Arcos por Correa A. Raúl en 1977 (Peña, 2010).

El Instituto de Ingeniería de la Universidad Nacional Autónoma de México ha realizado estudios para la determinación de políticas de operación de distintos sistemas de presas dentro de la República Mexicana. Uno de estos estudios es el realizado en el Río Grijalva, Estudio integral de la cuenca alta del Río Grijalva, en donde se analizó un sistema de presas en cascada, que incluye a las siguientes plantas hidroeléctricas: La Angostura, Chicoasén, Malpaso y Peñitas. Trabajo en el cual se toma en cuenta el concepto de curva guía y en el análisis se monitoreaba la energía generada, el almacenamiento mínimo y si presentaba algún derrame o déficit (Domínguez et al., 2009).

Otro ejemplo es el trabajo desarrollado en la tesis doctoral que lleva por título *Metodología de selección de una política de operación conjunta de una presa y su vertedor* (Domínguez, 1989). En ella se estableció una metodología que permitió estimar la función de distribución de probabilidades asociada a las consecuencias de tránsito de las avenidas por el vaso, la cual toma en cuenta la información histórica de las avenidas máximas anuales, considerando su valor máximo y su forma, además de estimar la influencia de la política de operación a largo plazo en el valor esperado de los daños causados por las avenidas. Para los ejemplos planteados en la tesis del Dr. Domínguez se utilizan datos de la presa El Infiernillo ubicada en el Río Balsas.

Hay sistemas que están en continuo estudio en el Instituto de Ingeniería con el fin de ir actualizando información de los eventos hidrológicos y tomando en cuenta los avances en las técnicas de análisis. Un ejemplo es el caso del Río Grijalva que también ha sido estudiado durante los 90´s en el trabajo *Operación integral del sistema Hidroeléctrico del Río Grijalva* (Domínguez et al., 1993), donde se definieron políticas de operación que evitaran inundaciones en

Capítulo 1. Antecedentes

poblados aguas abajo del sistema y maximizaran la generación eléctrica de todo el sistema.

A partir del año 2000, se han ido realizando aun más investigaciones al respecto como la revisión de las presas La Angostura y Malpaso en el Río Grijalva (Domínguez et al., 2001), donde se hicieron modificaciones al modelo anterior a partir de las restricciones de energía mínima planteadas por la Comisión Federal de Electricidad.

En el artículo *Importancia de la generación de muestras sintéticas en el análisis del comportamiento de políticas de operación de presas* (Domínguez et al., 2005), basado en el análisis hecho del sistema hidroeléctrico del Río Grijalva, los resultados permitieron observar diferencias significativas en comparación al simular solamente el registro histórico.

La generación de muestras sintéticas ha sido aplicada en muchos estudios como el planteado en el informe *Determinación de políticas de operación del Río Santiago* (Domínguez et al., 2009), sistema formado por las presas Santa Rosa, La Yesca, El Cajón y Aguamilpa. Otros trabajos que destacan sobre el Río Santiago son los hechos por Domínguez y Arganis en el 2009, solamente considerando El Cajón y Aguamilpa.

Sobre el Río Fuerte se tiene el trabajo *Determinación de políticas de operación del Río Fuerte, Sinaloa* (Domínguez et al., 2007). En donde se analizó el sistema compuesto por las presas Luis Donaldo Colosio (Huites), Miguel Hidalgo (El Mahone) y Josefa Ortiz de Domínguez (El Sabino).

Otro artículo en el que se habla sobre registros sintéticos es el de Cálculo de registros sintéticos de ingresos por cuenca propia de un sistema de presas de la región Noroeste de México, caracterizada por eventos invernales (Domínguez et al., 2009). Este estudio se realizó en la región del estado de Sonora, en donde las presas son afectadas por eventos de invierno provocando que algunos escurrimientos mensuales sean mucho mayores a la media en esos meses. Convirtiéndose en una de las bases para este trabajo de tesis.

Capítulo 1. Antecedentes

1.3. Casos similares estudiados en otros países

Varios casos en los que se han obtenido políticas de operación en el extranjero han sido con el fin de una optimización de la generación eléctrica de las presas maximizando la producción anual al aplicar varios modelos para la determinación de óptimas políticas de operación, algunos de los cuales se explican en el segundo capítulo de esta tesis.

Por ejemplo, la revisión en diez presas de Vietnam sobre sus adecuadas políticas en un estudio realizado por la Universidad del sur de Australia, donde se revisó la seguridad de las presas y se evaluó la adecuación de las políticas. En este estudio se relaciona el correcto funcionamiento de una presa con el desarrollo de un país, lo cual se da debido a la implicación de términos económicos en las presas hidroeléctricas (Dam et al., 2012).

Otro de los ejemplos sobre determinación de políticas de operación es el caso de cuatro presas construidas en Turquía. Donde se tomaron como base para la modelación los datos históricos de cinco años, describiendo el método como una planificación adaptativa basado en modelos estocásticos (Dagli et al., 1980).

La maximización de la energía hidroeléctrica se ha logrado muchas veces gracias a la aplicación de un modelo de programación lineal. Ejemplo de esto es el estudio realizado en la presa Yongdam situada en el Río Geum en Corea del Sur, se examinó la función objetivo como una alternativa a una forma no lineal además del efecto en el almacenamiento de los embalses considerando la maximización de generación de energía hidroeléctrica (Yoo et al., 2009).

En el caso del lago Kariba, que utiliza el agua del Río Zambeze para producir energía hidroeléctrica que se suministra a Zambia y Zimbabue, se empleó la programación dinámica incremental y la programación dinámica estocástica con el objetivo de maximizar el potencial de la energía hidroeléctrica del sistema (Stam et al., 1998).

Capítulo 1. Antecedentes

En el artículo The optimization of single-purpose reservoir design with the application of dynamic programming to synthetic hydrology samples se realizó un análisis que arrojaba una política de operación óptima para una presa usando programación dinámica (Hall et al., 1963). El procedimiento de programación dinámica ha sido un método eficiente para resolver una variedad de problemas de decisión.

1.4. Planteamiento del problema

En este trabajo se hace una revisión del comportamiento de la política de operación obtenida para la presa La Angostura, Son., que originalmente había operado para riego y otros usos, pero que pronto tendrá el propósito de generación de electricidad. La revisión se realizó con ayuda de la simulación de registros sintéticos generados con el método de Svanidze, para observar el comportamiento del sistema en el largo plazo de utilizarse dicha política de operación.

1.5. Hipótesis

La generación de registros sintéticos más largos que los registros históricos de los volúmenes de ingreso a una presa permite describir el comportamiento estadístico de la operación de un embalse bajo cierta política de operación. Además, favorece estimar la probabilidad de que ocurran casos poco frecuentes como los que causan derrames y déficit, por ello el registro histórico es insuficiente.

1.6. Objetivos

Aplicar el método de Svanidze para generar 10 series sintéticas de 101 años cada una, de volúmenes de ingreso por cuenca propia a la presa la Angostura, Son. Simular la política de operación que fue obtenida en un estudio reciente para la presa La Angostura, Sonora, para identificar los posibles escenarios de generación de electricidad, déficit y derrames en el largo plazo.

En este capítulo se plantean algunos conceptos que serán utilizados a lo largo del desarrollo de esta tesis. Con el fin de plantear un marco general para

Capítulo 1. Antecedentes

mejorar la comprensión de los efectos de una política de operación de una hidroeléctrica en el largo plazo a partir de registros sintéticos.

1.7. Conceptos básicos de Hidrología

En este punto se mencionan conceptos básicos de la Hidrología empleados en el desarrollo de este trabajo (Aparicio, 2011; Linsley, 1970).

Hidrología

Es la ciencia natural que estudia al agua, su ocurrencia, circulación y distribución en la superficie terrestre, sus propiedades físicas y su relación con el medio ambiente, incluyendo a los seres vivos. De acuerdo con el Federal Council for sciencie and technology la hidrología versa acerca del agua sobre la tierra, su existencia y distribución, sus propiedades físicas y químicas, y su influencia sobre el medio ambiente, incluyendo su relación con los seres vivos.

Ciclo Hidrológico

Es considerado como el concepto fundamental de la hidrología. Define la trayectoria del agua, alrededor del planeta Tierra, en sus diferentes estados cambiando de líquido a hielo y vapor. Su descripción puede comenzar en cualquier punto y no tiene principio ni fin.

Evaporación

Es el proceso por el cual el agua pasa del estado líquido en el que se encuentra en los almacenamientos, conducciones y en el suelo, en las capas cercanas a su superficie, a un estado gaseoso y se transfiere a la atmósfera.

Precipitación

Agregado de partículas acuosas, líquidas o sólidas, cristalizadas o amorfas, que caen de una nube o grupo de nubes y alcanzan el suelo. Es el término que se refiere a todas las formas húmedas emanadas de la atmósfera y depositadas en la superficie terrestre, tales como la lluvia, granizo, rocío, neblina, nieve o helada. Los elementos necesarios para que se forme la

Capítulo 1. Antecedentes

precipitación son los siguientes: humedad atmosférica, radiación solar, mecanismo de enfriamiento del aire.

Escurrimiento

Se define como el agua proveniente de la precipitación que circula sobre o bajo la superficie terrestre y que llega a una corriente para finalmente ser drenada hasta la salida de la cuenca.

Infiltración

Formación de un paso de agua en forma de conducto a través de materiales naturales o artificiales.

Evapotranspiración

Es la combinación de la evaporación y la transpiración. Por lo tanto, es la cantidad de agua transferida del suelo a la atmósfera por evaporación y por la transpiración de las plantas.

Cuenca

Es la zona de la superficie terrestre en donde las gotas de lluvia que caen sobre ella tienden a ser drenadas por el sistema de corrientes hacia un mismo punto de salida.

1.8. Componentes de un aprovechamiento hidroeléctrico

Presa

Es una barrera que se construye al paso de una corriente de agua. El propósito con el que se construye una presa es de dos tipos, el de aprovechamiento y el de defensa. En cuanto al primero, para dar abastecimiento de agua a poblaciones para el consumo humano, suministro a las áreas de riego y a las industrias. También se usa el cuerpo de agua con fines de navegación, deportivos y de pesca. Además de emplear el agua para generación de energía eléctrica. En cuanto al propósito de defensa, sirve para evitar inundaciones o contra seguías (Peña, 2010).

Capítulo 1. Antecedentes

Embalse o vaso de almacenamiento

Lago artificial formado por la presa.

Cortina

Se encarga de obstaculizar el paso del agua, asegurando su almacenamiento y poder aprovecharla.

Obra de toma

Conjunto de estructuras que se construyen con el objeto de extraer el agua de forma controlada y poder utilizarla con el fin para el que fue diseñado su aprovechamiento.

Obra de excedencias

Es construida para dar salida al agua que excede la capacidad útil del vaso sin que provoque daños a la propia presa ni a sus obras e instalaciones auxiliares.

Obra de desvío

Son obras construidas para desviar temporalmente el cauce del río mientras se construye la presa.

Casa de máquinas

Es el lugar donde se encuentra el equipo para la generación de electricidad por medio de turbinas, esto en el caso de las presas hidroeléctricas.

Conclusión

En este capítulo se destacó la importancia del estudio de este tema tanto en México como en otros países. Además se establecen algunos conceptos que serán muy utilizados durante el desarrollo del siguiente capítulo de metodología.

Referencias

 Aparicio Mijares, Francisco Javier. Fundamentos de Hidrología de Superficie. México: Limusa. 2011.

Capítulo 1. Antecedentes

- Dagli, C. H., Miles, J. F. Determining operating policies for a water resource system. Journal of Hidrology. 47 (1980). 297-306. Holanda.
- Dam T. T., Burritt R. L., Pisaniello J. D. Adecuacy of policy and practices for small agricultural dam safety accountability and assurance in Vietnam. Agricultural Water management. 112 (2012). 63-74. Australia.
- Domínguez, M. R., Arganis, J. M. L., González, V. F. Estudio integral de la cuenca alta del río Grijalva. 3. Manejo óptimo de las presas. Elaborado para la CFE por el Instituto de Ingeniería de la UNAM. Informe final. Noviembre 2009.
- Domínguez M.R., Cruickshank V.C., Arganis J.M.L. Importancia de la generación de muestras sintéticas en el análisis del comportamiento de políticas de operación de presas. Ingeniería del agua. 12. Marzo 2005.
- Domínguez M.R. Arganis J.L.M. Cálculo de registros sintéticos de ingresos por cuenca propia de un sistema de presas de la región Noroeste de México, caracterizada por eventos invernales. 10. 2009. 353-361.
- Domínguez, M. R., Arganis, J. M. L. Determinación de políticas de operación del rio Fuerte, Sin. Elaborado para la CFE por el Instituto de Ingeniería de la UNAM. Informe Final. Diciembre 2007.
- Domínguez, M. R., Arganis, J. M. L. Determinación de políticas de operación del rio Santiago. Elaborado para la CFE por el Instituto de Ingeniería de la UNAM. Informe Final. Diciembre 2009.
- Domínguez Mora, Ramón. Metodología de selección de una política de operación conjunta de una presa y su vertedor. Tesis Doctoral. UNAM.1989.
- Domínguez, M. R., Mendoza R. R. Operación integral del sistema hidroeléctrico del rio Grijalva. Elaborado para la CFE por el Instituto de Ingeniería de la UNAM. Julio 1993.
- Domínguez, M. R. Revisión de las políticas de operación quincenal de las presas Angostura y Malpaso, en el rio Grijalva. Elaborado para la CFE por el Instituto de Ingeniería de la UNAM. Informe Final. Noviembre 2001.

Capítulo 1. Antecedentes

- Hall W. A., Howell D. T. The optimization of single-purpose reservoir design with the application of dinamic programming to synthetic hydrology samples. Journal Hidrology. 1 (1963). 355-363. Holanda.
- Linsley, R.K. Hidrología para Ingenieros. México: Mc Graw-Hill.1970.
- Peña Delgado, Francisco. Simulación histórica y sintética de políticas de operación óptima de un sistema de tres presas en cascada en el Río Santiago, Nayarit México. Tesis Profesional. UNAM. 2010.
- Stam A., Salewicz K. A., Aronson J. E. An interactive reservoir management system for Lake Kariba. European Journal of Operational Research. 107(1998). 119-136. Austria.
- Yoo, Ju-Hwan. *Maximitation of hidropower generation througth the application of a linear programming model*. Journal of Hidrology. 376 (2009). 182-187. Corea.

Capítulo 2. Metodología

2. Metodología

2.1. Introducción

En este capítulo se hace una descripción del sitio de estudio, se mencionan conceptos de probabilidad y estadística básicos empleados en la metodología, se presenta la definición de política de operación y se describen los métodos relacionados con el estudio.

2.2. Descripción del sitio de estudio

La presa La Angostura se encuentra ubicada dentro del distrito de riego del Río Yaqui, Sonora (figura 2.1). Fue construida con los propósitos de riego y generación de energía entre los años de 1936 y 1942. Tiene abastecimiento de agua por parte del afluente de los ríos Bavispe y Yaqui (CONAGUA).

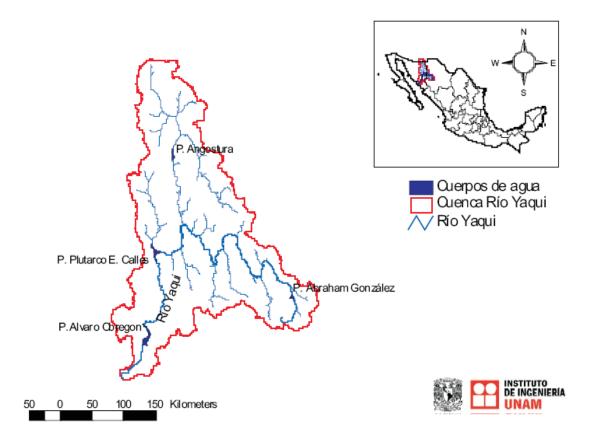


Figura 2.1 Localización de la presa La Angostura dentro de la Cuenca del Río Yaqui, Son.

Capítulo 2. Metodología

En cuanto a la geología del lugar, está formada por rocas riolíticas presentadas en dos corrientes separadas por una toba riolítica. Existe riolita traquítica en la corriente inferior con 100m de espesor y en el lecho del río había una capa de acarreo de 15m de espesor. En la tabla 2.1 se muestran datos de la presa La Angostura, Sonora.

Tabla 2.1 Características generales de la presa La Angostura, Son.

Área de la cuenca	18100 km²
Avenida máxima registrada (1932)	2080 m³/s
VASO	
Capacidad total	840 hm³
Área del embalse	4 800 ha
CORTINA	
Tipo	Arco-gravedad
Altura total	91.75 m
Longitud por la corona	178 m
Radio del arco	60 m
Espesor en la corona	3.5 m
Espesor en el fondo del cauce	31 m
Elevación del desplante de la cimentación	752 m
Elevación del fondo del cauce	767 m
Elevación de la corona de la cortina	843.75 m
VERTEDOR	
	Cresta libre con canal de
Tipo	descarga en curva y
1160	terminado en un umbral
	deflector
Vertedor de cresta libre a la elevación	830.70 m
Longitud de cresta	30.48 m
Elevación de la cresta	830.70 m
Elevación del nivel de aguas máximas	840.15 m
Carga máxima	9.45 m

Capítulo 2. Metodología

Bordo libre	3.60 m
Avenida de diseño	3 000 m³/s

Gasto máximo derramado (19 de febrero de

115 m³/s

1 900 m³/s

1949)

Capacidad

OBRA	DE	<i>TOMA</i>
------	----	-------------

4	lu	ber	าลร

Eje a la elevación en el paramento de aguas

arriba

777.60 m

Eje a la elevación en el paramento de aguas

abajo

770.65 m

Las dos centrales con un diámetro interior

1.78 m

Las dos de los extremos con un diámetro

2.03 m

interior

2 Rejillas a la elevación

777.60 m

CASA DE MÁQUINAS

Capacidad normal 120 m³/s

2.3. Conceptos básicos de probabilidad y estadística

Debido a que el diseño y la planeación de obras hidráulicas se encuentran siempre relacionados con eventos hidrológicos aleatorios futuros, el modelo estadístico es el camino obligado en la solución de los problemas. En particular, la probabilidad y estadística juegan un papel importante en el análisis hidrológico. A continuación, se hará un recordatorio de los conceptos fundamentales de la probabilidad y estadística (Devore, 2008).

Probabilidad

En un proceso aleatorio, se define como la razón entre el número de casos favorables y el número de casos posibles. Al suponer que existe un número finito de eventos simples N que compone el espacio de eventos asociado a un experimento aleatorio, igualmente posibles, si un evento A del espacio de

Capítulo 2. Metodología

eventos se compone por eventos simples N(A), entonces la probabilidad del evento a se define como:

$$P(A) = \frac{N(A)}{N} \tag{2.1}$$

Estadística

Se encarga de los métodos científicos para recolectar, organizar, resumir, presentar y analizar datos, de la misma manera se ocupa de sacar conclusiones válidas y tomar decisiones en este análisis. Existe la estadística descriptiva que busca describir y analizar un grupo determinado, sin obtener conclusiones acerca de un grupo más grande; mientras la estadística inductiva o inferencial se ocupa de las condiciones bajo las cuales las conclusiones son válidas.

Variable aleatoria

Es un símbolo que puede tomar cualquiera de los valores de un conjunto predeterminado, a cada uno de los cuales se asocia una probabilidad.

Espacio muestral

Es el conjunto de todos los resultados posibles de un experimento estadístico.

Población

Consiste en la totalidad de las observaciones en las que se está interesado.

Muestra

Es el subconjunto o pequeña parte de una población.

Rango

Diferencia entre los valores mayor y menor de la serie, es una medida simple de dispersión de los datos.

Frecuencia

La frecuencia de cualquier valor determinado, es el número de veces que se presenta dicho valor en el conjunto de datos.

Capítulo 2. Metodología

Media

La media aritmética de un conjunto de números está dada por:

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$$
 (2.2)

Mediana

Se define como el valor que divide las frecuencias de una distribución de probabilidades en dos partes iguales o, en otras palabras, es el valor que ocurre con una probabilidad del 50%.

Moda

Es el valor que ocurre con mayor frecuencia en una distribución de probabilidades, o en una tabla de frecuencias de una serie de datos agrupados en clases o categorías.

Desviación estándar

Es la raíz cuadrada positiva de la variancia. Está definida de la siguiente manera:

$$S = \sqrt{\left(\frac{\sum_{i=1}^{n} x_i - \bar{x}}{n-1}\right)} \tag{2.3}$$

Varianza

Está definida a partir de la desviación estándar.

$$Var=S^2 \tag{2.4}$$

Coeficiente de asimetría

Tiene la finalidad de medir si la muestra se distribuye de igual manera a ambos lados de la media.

$$g = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3}{\left(\frac{n-1}{n}\right)^{3/2} S_x^3} = \frac{\frac{1}{n} \left(\sum_{i=1}^{n} x_i^3 - 3 \bar{x} \sum_{i=1}^{n} x_i^2 + 2 n \bar{x}^3\right)}{\left(\frac{n-1}{n}\right)^{3/2} S_x^3}$$
(2.5)

Capítulo 2. Metodología

Donde:

g es el coeficiente de asimetría.

Si g < 0, la simetría es negativa por lo cual la dispersión es mayor a la izquierda de la media.

Si g > 0, la simetría es positiva, la dispersión es mayor hacia la derecha de la media.

Si g = 0, la muestra es simétrica alrededor de la media.

Coeficiente de variación

Es el cociente de la desviación estándar entre la media.

$$C_{v} = S/\bar{x} \tag{2.6}$$

Coeficiente de autocorrelación

La autocorrelación se expresa a partir de las covarianzas simétricas en el retardo s e independientes al tiempo, a partir de las cuales se define el coeficiente de autocorrelación de la siguiente manera:

$$\rho_{s} = \frac{Cov(u_{t}, u_{t+s})}{\sqrt{Var(u_{t})Var(u_{t+s})}}$$
(2.7)

Donde:

ut variable.

u_{t+S} la misma variable un periodo después.

Coeficiente de correlación

Número a partir del cual se intenta medir la fuerza de relación entre dos variables. Está definido por:

$$\rho_{x,y} = \frac{Cov(x,y)}{\sigma_x * \sigma_y} \tag{2.8}$$

Periodo de retorno

Suponiendo que un evento extremo ocurre si una variable aleatoria X es mayor o igual que un cierto nivel x_{τ} , el periodo de retorno es el valor esperado del

Capítulo 2. Metodología

intervalo de recurrencia τ , $E(\tau)$, su valor promedio medido sobre un número de ocurrencias suficientemente grande (Chow, 1975).

2.4. Funciones de distribución de probabilidad usadas en hidrología

Si se dibujan los gastos máximos registrados contra sus respectivos periodos de retorno se observa una tendencia más o menos definida. Para extender la tendencia hasta el periodo de retorno deseado se debe buscar entre las distintas funciones de distribución de probabilidad la que mejor se ajuste a los datos medidos (Aparicio, 2011). Entre las funciones de distribución que se emplean en hidrología se encuentran las presentadas en la tabla 2.2.

Función de distribución Gumbel o de valores extremos

Es una función de probabilidades usualmente utilizada para valores máximos aleatorios sacados de poblaciones sumamente grandes.

En el caso de que se tengan N muestras que contienen cada una n eventos y se selecciona el máximo x de los n eventos de cada muestra, se tiene que conforme aumenta n, la función de distribución de probabilidad de x tiende a:

$$F(x) = e^{-e^{-\alpha(x-\beta)}} \tag{2.9}$$

Quedando la función de densidad de probabilidad como sigue:

$$f(x) = \alpha e^{\left[-\alpha(x-\beta) - e^{-\alpha(x-\beta)}\right]}$$
 (2.10)

Donde los parámetros α y β para muestras muy grandes se estiman como se observa en las ecuaciones 2.11 y 2.12:

$$\alpha = \frac{1.2825}{S} \tag{2.11}$$

$$\beta = \bar{x} - 0.45 \, S \tag{2.12}$$

Y en el caso de muestras pequeñas se emplean las siguientes estimaciones:

$$\alpha = \frac{\sigma_y}{S} \tag{2.13}$$

$$\beta = \bar{x} - \mu_{\nu}/\alpha \tag{2.14}$$

Capítulo 2. Metodología

Tabla 2.2 Funciones de distribución de probabilidad

Funciones de distribución de probabilidad	Aplicación	Función densidad de probabilidad	Parámetros	Función de distribución de probabilidad	Variable estandarizada
Función de distribución normal o Gauss	Son generalmente apropiadas para	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2(\frac{x-\mu}{\sigma})^2}}$	μ y σ son los parámetros de la distribución	$F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma}} e^{-1/2(\frac{x-\mu}{\sigma})^2} dx$	$z = \frac{x - \mu}{\sigma}$ $F(x) = F(z)$ $= \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$
Función de distribución lognormal	cubren todo el rango de valores de los resultados posibles del experimento bajo análisis	$f(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{x\beta} e^{-1/2\left(\frac{\ln -\alpha}{\beta}\right)^2}$	α y β parámetros de la función $\alpha = \sum_{i=1}^{n} \frac{\ln x_i}{n}$ $\beta = \left[\sum_{i=1}^{n} \frac{(\ln x_i - \alpha)^2}{n}\right]^{1/2}$	$F(x) = \int_0^x \frac{1}{\sqrt{2\pi}} \frac{1}{x\beta} e^{-1/2(\frac{\ln -\alpha}{\beta})^2} dx$	$z = \frac{\ln x - \mu}{\beta}$
Función de distribución Pearson III	Ocupa un lugar intermedio	$f(x) = \frac{1}{\alpha_1 \Gamma(\beta_1)} \left\{ \frac{x - \delta_1}{\alpha_1} \right\}^{\beta_1 - 1} e^{\frac{x - \delta_1}{\alpha_1}}$	\propto_1 , β_1 y δ_1 parámetros de la función $\Gamma(\beta_1)$ función gamma	$=\frac{1}{\alpha_1 \Gamma(\beta_1)} \int_0^x e^{-\left(\frac{x-\beta_1}{\delta_1}\right) \left(\frac{x-\delta_1}{\delta_1}\right) \beta^{-1} dx}$	
Función de distribución Gumbel	Se desarrollan para valores extremos	$f(x) = \alpha e^{[-\alpha(x-\beta)-e^{-\alpha(x-\beta)}]}$	α y β parámetros de la función	$F(x) = e^{-e^{-a(x-\beta)}}$	
Función de distribución para dos poblaciones			α_1 y β_1 corresponden a la población uno y α_2 y β_2 corresponden a la segunda población	$F(x) = p \left[e^{-e^{-\alpha_1(x-\beta_1)}} \right] + (1 - p) \left[e^{-e^{-\alpha_2(x-\beta_2)}} \right]$	

Capítulo 2. Metodología

En donde los valores de μ_{ν} y σ_{ν} se obtienen de una tabla (Aparicio, 2011).

Funciones de distribución para dos poblaciones

Esto pasa cuando los gastos máximos anuales provienen de dos poblaciones diferentes, sucede en el caso de que haya gastos debidos a precipitaciones producidas por fenómenos meteorológicos y gastos procedentes de precipitaciones ciclónicas, estos últimos son mayores a los primeros gastos; esto sucede en el caso de las zonas costeras de México. También puede darse el caso de que una población se componga por gastos que se producen directamente por precipitaciones y otra población por deshielos. Esto último pasa en zonas del noroeste de México.

Cuando llega a presentarse alguno de los casos anteriores la función de distribución se expresa de la siguiente manera (Aparicio, 2011):

$$F(x) = F_1(x)[p + (1+p)F_2(x)]$$
 (2.15)

Donde:

 $F_1(x)$ y $F_2(x)$ funciones de distribución de probabilidad.

p probabilidad de que en un año cualquiera el gasto máximo no sea producido por una tormenta ciclónica.

En este caso el número de parámetros puede expresarse como:

$$n = n_1 + n_2 + 1 (2.16)$$

Donde:

 n_1 número de parámetros de $F_1(x)$.

 n_2 número de parámetros de $F_2(x)$.

La *p* queda expresada como:

$$p = \frac{N_n}{N_T} \tag{2.17}$$

Capítulo 2. Metodología

Donde:

 ${\it N}_n$ número de años en los que el gasto máximo se da por una tormenta ciclónica.

 N_T número de años de registro.

Debido a que comúnmente se acepta que $F_1(x)$ y $F_2(x)$ son de tipo Gumbel, se tiene la siguiente expresión:

$$F(x) = p \left[e^{-e^{-\alpha_1(x-\beta_1)}} \right] + (1-p) \left[e^{-e^{-\alpha_2(x-\beta_2)}} \right]$$
 (2.18)

Donde:

 α_1 y β_1 corresponden a la población uno y α_2 y β_2 corresponden a la segunda población.

2.5. Política de operación

Una política de operación es un conjunto de reglas que determinan las decisiones en función del estado del sistema, de ellas depende que se logren en mayor o menor medida los objetivos planteados.

Para lograr objetivos definidos se necesita establecer criterios y reglas que determinen la cantidad de agua que puede ofrecerse al inicio de cada etapa, lo cual depende de la cantidad de agua al inicio de la etapa y de lo que se espera que ingrese durante la misma. Una política de operación determina la oferta de agua en cada etapa.

Al conjunto de reglas que definen cuánta agua debe extraerse, en cada época del año, en función del almacenamiento disponible, con objeto de obtener el máximo beneficio posible a largo plazo, se le denominan políticas de operación a largo plazo. Condicionan los niveles del agua en la presa al inicio de las avenidas y condicionan también los daños causados por estas. En el caso de este tipo de política se emplean intervalos de tiempo relativamente largos, impidiendo conocer la relación entre el volumen derramado y el valor de los daños correspondientes, ya que éstos dependen de la forma de la avenida de

Capítulo 2. Metodología

descarga que ocurre en intervalos de tiempo cortos. La política a largo plazo condiciona los niveles a los que operará la presa (Domínguez, 1989).

2.6. Generación de datos sintéticos

Uno de los continuos problemas de la hidrología son los datos insuficientes en cuestión de precipitación o escurrimientos. Si se desea predecir el flujo de inundación de una magnitud relativamente grande o de periodos de retorno largos, se puede encontrar que se tienen tal vez una década o dos de observaciones diarias que representan descargas. Utilizando una serie anual, tal registro podría producir veinte o treinta puntos donde está claramente dudosa la predicción de eventos raros del orden de 100 años de inundación. Mediante el uso de solamente una o dos de estas mediciones de cada registro del año, una enorme cantidad de información sobre las características de descarga de captación se está dejando intacta. Gracias a las potentes computadoras ha sido posible analizar y reproducir series de datos en grandes cantidades que exhiban las variaciones que los datos naturales muestran.

El método hace uso de toda la información disponible. Los datos generados sintéticamente dependen principalmente de los datos históricos originales. Este método emplea los registros históricos como un ejemplo de la población total mientras que los métodos convencionales consideran a los registros históricos como la población total. Los resultados están basados en estimaciones de lo que pudo haber pasado en lugar de lo que ha pasado.

Cualquier serie de tiempo de valores observados puede contener un componente de tendencia, un componente periódico o un componente estocástico. En el primer componente hay dependencia del tiempo y de la extensión de las series. Mientras el componente estocástico es estacionario, lo que significa que los estadísticos de la muestra no difieren de los estadísticos de la población, excepto como resultado de la variabilidad de muestreo, y son independientes del tiempo.

Si los componentes de tendencia y periódico son removidos de las series, se deja un componente estocástico estacionario. Ese componente contendría un

Capítulo 2. Metodología

elemento aleatorio y podría o no contener un elemento de correlación. La correlación en una serie describe como cada término en una serie es afectado por lo que ha ido antes (Wilson, 1990).

2.6.1. Modelos ARMA (Autoregressive-Moving Average)

Este modelo tiene el inconveniente de que se aplica a series de datos que tienen distribución normal y al aplicar a los datos una transformación inversa los resultados finales sufren una deformación.

El modelo ARMA para una serie de tiempo queda expresado como:

$$x_{t} = \sum_{i=1}^{p} \phi_{i} x_{t-i} - \sum_{j=1}^{q} \theta_{j} e_{t-j} + e_{t}$$
(2.19)

Un modelo general lineal estocástico puede ser descrito como uno que produce entradas a_t , o una suma ponderada del histórico a_t s. Matemáticamente, puede ser expresado como:

$$z_{t} = \mu + a_{t} + \varphi_{1}a_{t-1} + \varphi_{2}a_{t-2} + \cdots, \tag{2.20}$$

Donde:

 μ media del proceso estacionario.

 $\varphi_t, t=1,2,...$ coeficientes que satisfacen $\sum_{j=0}^{\infty} \varphi_j^2 < \infty, a_t$ que es una correlación de la variable aleatoria con media cero y varianza constante σ_a^2 .

Es más conveniente expresar la ecuación (2.20) en términos de un número finito autorregresivo (AR) y un movimiento de componentes promedio (MA). Desde que el proceso es estacionario con una media constante μ , si se deja $\tilde{z}_t = z_t - \mu$, un proceso AR (p) puede ser generalmente expresado como sigue:

$$\tilde{z}_t = \phi_1 \tilde{z}_{t-1} + \phi_2 \tilde{z}_{t-2} + \dots + \phi_p \tilde{z}_{t-p} + a_t \tag{2.21}$$

Un proceso MA (p) puede ser expresado como:

$$\tilde{z}_t = a_t - \theta_1 a_{t-1} - \dots - \theta_a a_{t-a} \tag{2.22}$$

Por lo tanto un proceso mixto de ARMA (p,q) puede ser definido como:

Capítulo 2. Metodología

$$\tilde{z}_t = \phi_1 \tilde{z}_{t-1} + \phi_2 \tilde{z}_{t-2} + \dots + \phi_p \tilde{z}_{t-p} + a_t - \theta_1 a_{t-1} - \dots - \theta_q a_{t-q}$$
 (2.23)

Las ecuaciones (2.21), (2.22) y (2.23) forman el bloque de construcción básico del enfoque Box-Jenkins para modelar series de tiempo (Hwarng, 2001).

2.6.2. Modelos ARIMA (Autoregressive Integrated Moving Average)

Box y Jenkins introdujeron una clase especial de modelos llamados modelos *Autoregressive Integrated Moving Average* (ARIMA). Estos modelos fueron diseñados para series de tiempo lineales. Son aplicables al analizar series temporales de datos mensuales máximos (Yurekli, 2004).

2.6.3. Método fragmentos de Svanidze

Uno de los métodos que se emplea en la simulación de series hidrológicas es el método de fragmentos propuesto por Svanidze en 1961. La esencia de este método está contenida en un doble muestreo. La descarga anual promedio Q_i (primer muestreo) y los fragmentos $q_i(t)$ (el segundo muestreo).

En este método los flujos mensuales están estandarizados año tras año, por lo que la suma de los flujos mensuales en un año es igual a la unidad. Esto se hace dividiendo los flujos mensuales en un año por el correspondiente flujo anual. De esta manera, a partir de un registro de n años, se tendrá n fragmentos de doce flujos mensuales. Los flujos anuales obtenidos a partir de un modelo anual pueden ser desagregados al seleccionar los fragmentos de forma aleatoria. Este método tiene la desventaja de que la correlación entre el primer mes de un año y el último mes de un año previo no será preservada.

Como los parámetros mensuales no se conservan bien, se realiza un intento para mejorarlos seleccionando el fragmento apropiado para cada flujo en la serie de flujo anual. Esto se hace de la siguiente manera, los flujos anuales del registro histórico (de n años largos) se clasifican de acuerdo con el aumento en la magnitud y se formaron n clases. La clase 1 tiene el límite inferior cero mientras que la clase n no tiene ningún límite superior. Se obtienen los límites de las clases intermedias haciendo el promedio de dos flujos sucesivos de las

Capítulo 2. Metodología

series clasificadas. El correspondiente fragmento se asigna a cada serie. Es decir, el fragmento obtenido de los flujos mensuales correspondiente al flujo anual más pequeño se asigna a la clase 1, el fragmento obtenido de los flujos mensuales correspondientes al segundo flujo anual se asigna a la clase 2 y así sucesivamente. Los flujos anuales se revisan uno por uno para la clase a la que pertenecen y se desglosan utilizando el fragmento correspondiente (Svanidze, 1980).

2.6.4. Método de Svanidze

Este es un método que permite la generación de registros sintéticos con una longitud mayor o igual que la del registro histórico considerado. Al calcular la fracción de cada etapa del año respecto al total anual se vuelve relativamente un método sencillo.

Contempla la función de distribución de la serie anual de valores totales, en la cual se realiza una doble selección aleatoria en la que se determina un volumen total anual sintético y la forma aleatoria de las fracciones que corresponden al año sintéticamente generado.

A continuación, se obtienen los valores de cada etapa del año sintético al multiplicar el volumen total anual sintético por la fracción aleatoria seleccionada. Este proceso se repite n veces para obtener un registro sintético de n años.

Este método tiene como ventaja que sólo se necesita un algoritmo de selección del tipo ruleta Montecarlo para la realización del doble procedimiento aleatorio. Mientras que su principal desventaja radica en que no siempre se logran reproducir las correlaciones entre la última etapa del año aleatorio i con la primera etapa del año aleatorio i+1, por la forma en que el método selecciona a las fracciones. Este es el método que fue aplicado en la presente tesis, debido a su sencillez por reproducir adecuadamente los estadísticos (Domínguez et al., 2009).

Capítulo 2. Metodología

2.6.5.1. Modificación en la selección de los años aleatorios

En este trabajo se encontró la existencia ocasional de valores registrados en los meses de invierno de magnitud considerablemente superior a la media anual. Por lo que se reconocieron dos poblaciones, una en la que sus valores eran afectados por el invierno (población 1) y una que no se veía afectada por dicha temporada (población 2). Se estableció un valor (umbral) que separa a ambas poblaciones; de manera que, en la figura 2.2 se observa la modificación en el algoritmo para la selección de años.

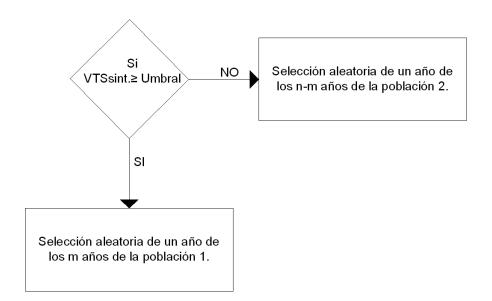


Figura 2.2 Cambio en el algoritmo para la selección aleatoria de años 2.6.5.2. Programa para generar las series

El software que se empleó inicialmente en el desarrollo de este trabajo fue el AX (figura 2.3). Los datos que se introdujeron a este programa fueron los valores del volumen total suma para ver la función de distribución que más se ajustaba a los datos, ese archivo con los datos es un archivo .aju. El programa genera los archivos .etp que contiene los valores extrapolados con la Doble Gumbel para distintos periodos de retorno, el .max que tiene los datos medidos, calculados y el tiempo de retorno; y el archivo .rdg que contiene los parámetros de la función de ajuste.

Capítulo 2. Metodología

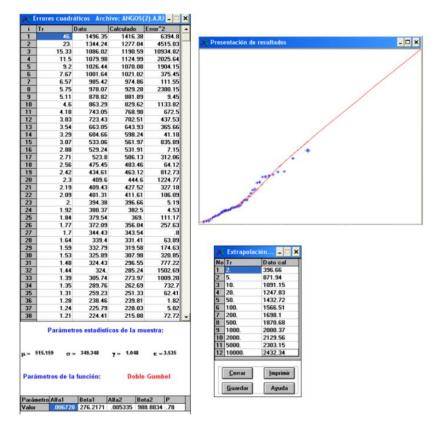


Figura 2.3 Información que se obtiene del programa AX

El AX genera los parámetros de la función de distribución de probabilidad doble Gumbel $\alpha_1,\beta_1,\alpha_2$ y β_2 , además del valor de p. Posteriormente se empleó el programa DGUQ2SD.BAS, escrito en lenguaje Basic. Este programa necesita los parámetros mencionados para calcular las series. Genera dos archivos de resultados el XI.RES y el VS.txt. En el primero vienen los volúmenes totales anuales sintéticos y otros parámetros. Mientras que en el segundo solo vienen los volúmenes totales anuales sintéticos.

2.6.5.3. Programa para generar los años aleatorios y las fracciones aleatorias

En esta parte se hicieron dos ensayos por eso hay dos programas en esta parte. El utilizado en el primer ensayo fue el AÑHIANG.BAS, escrito en lenguaje Basic, el cual no tiene la modificación en cuanto a la selección de años aleatorios. El archivo de entrada al programa es el de datosA.txt que contiene el registro en año hidrológico con los años acomodados en orden cronológico (figura 2.4).

Capítulo 2. Metodología

Figura 2.4 Archivo de datosA.txt con el registro hidrológico con los años acomodados en orden cronológico

Los archivos de resultados que se obtienen de este programa son el ARCH.RES y el DATOSANG.RES (figuras 2.5 y 2.6). El primero contiene la selección aleatoria de años y el segundo las fracciones aleatorias.

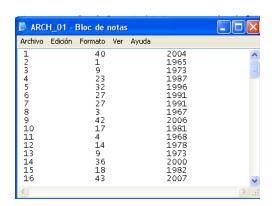


Figura 2.5 Archivo de resultados ARCH.RES con la selección aleatoria de años para la serie 01

Capítulo 2. Metodología

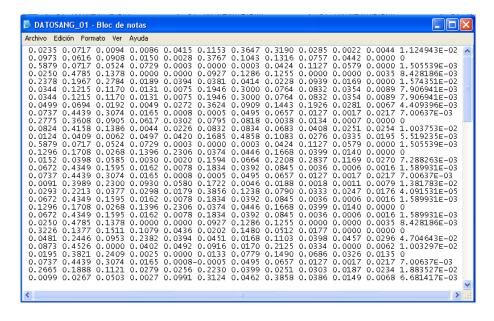


Figura 2.6 Archivo de resultados DATOSANG.RES con las fracciones aleatorias para la serie 01

El segundo ensayo se hizo con el programa AÑHIAN.BAS, también escrito en lenguaje Basic, este programa lee el archivo VS.txt con los volúmenes totales anuales sintéticos y el registro en año hidrológico pero con los volúmenes acomodados de acuerdo con la influencia del invierno como se ve en la tabla 3.13, a este archivo se le nombró datosAN.txt (figura 2.7).

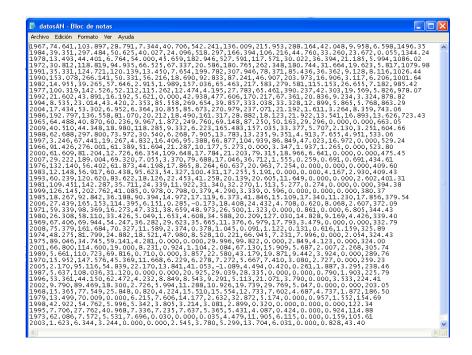


Figura 2.7 Archivo de datosAN.txt, después de considerar la influencia del invierno

Capítulo 2. Metodología

Este programa proporciona los archivos de resultados ARCH.RES y el DATOSANG.RES, los cuales tienen los mismos datos que arrojaba el programa del primer ensayo que no considera la modificación en el algoritmo, después de hacer una modificación en el archivo ARCH.RES se tiene una selección de años diferente por considerar el umbral entre las dos poblaciones de los datos (figura 2.8).

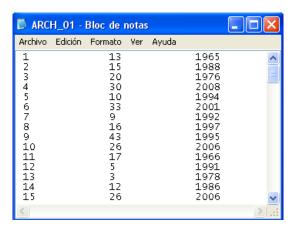


Figura 2.8 Archivo de resultados ARCH.RES, en este caso la selección aleatoria de años considerando la influencia del invierno en la serie 01

2.7. Programación lineal

Actualmente se realizan estudios para aplicar técnicas de programación lineal con probabilidades restringidas en la determinación de políticas de operación a largo plazo en presas de almacenamiento, con el propósito de establecer restricciones que eviten situaciones no deseables (Domínguez, 1989).

En los problemas de programación lineal se desean seleccionar valores no negativos de las variables que en su caso maximicen o minimicen una función lineal, de acuerdo a una o más restricciones, ya sean de desigualdad, igualdad o ambas. Al conjunto de valores que satisface todas las restricciones se le llama vector factible, de entre todos esos vectores se busca a quel que como se dijo minimice (o maximice) la función objetivo.

Supóngase que se establece una política de operación que especifica la extracción VS(j), para cada mes j del año, como una función lineal del almacenamiento S(j-1) al final de la etapa previa, mediante la ecuación:

Capítulo 2. Metodología

$$VS(j) = S(j-1) - b(j)$$
 (2.24)

Sustituyendo en la ecuación de continuidad, que se muestra a continuación:

$$S_j = S(j-1) + VI(j) - VS(j)$$
 (2.25)

Donde:

VI(j) volumen de ingreso en el mes i.

Se obtiene lo siguiente:

$$S_i = VI(j) + b(j) \tag{2.26}$$

Υ

$$VS(j) = VI(j-1) + b(j-1) - b(j)$$
(2.27)

Si se imponen restricciones a las probabilidades de situaciones indeseables se crea un problema de programación lineal. Al convertir una restricción, establecida originalmente en términos probabilísticos, en una equivalente, establecida en forma deterministica, que puede incorporarse a un problema estándar de programación lineal y de forma análoga se establecen otras restricciones que procuren evitar situaciones no deseables (Nandalal, 2007).

2.8. Programación dinámica

La determinación de políticas de operación óptima en presas de almacenamiento es un caso al que se adapta el método de la programación dinámica. La programación dinámica reduce drásticamente los requerimientos de cálculo respecto a la evaluación directa. Es un gran auxiliar en problemas complejos debido a que implica simplificaciones, por ello los resultados deben analizarse y complementarse con estudios adicionales. Sin embargo, por la dimensión del problema y su obligada simplificación, se corre el riesgo de que el modelo simplificado ya no corresponda con la realidad.

La programación dinámica es una técnica usada para optimizar un proceso de varias etapas. Es un concepto de búsqueda de solución, el cual remplaza un problema de n variables de decisión por n subproblemas al tener preferiblemente una decisión para cada variable. Este enfoque permite a los

Capítulo 2. Metodología

analistas tomar decisiones etapa por etapa hasta que es obtenido el resultado final. Por lo tanto el problema original debe ser descompuesto en subproblemas y cada subproblema es expresado como una etapa. Esta descomposición podría ser definida en espacio o tiempo. Cada etapa es caracterizada por diferentes estados del sistema reflejados por el valor numérico de la variable del estado seleccionado. La transición de un estado a otro es expresada por un curso de acción particular el cual es representado por una decisión variable. Los cambios en el estado del sistema influenciado por la decisión tomada en la etapa previa son descritos por la ecuación de transformación de la etapa.

La rutina computacional para obtener la política óptima sigue la recursiva ecuación de Bellman. Lo cual se muestra en la figura 2.9.

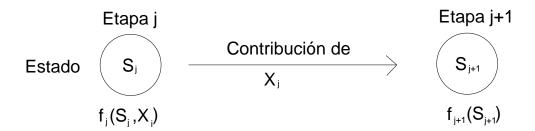


Figura 2.9 Estructura básica de la programación dinámica

Para cada etapa s a etapa j la política óptima es dada por:

$$f_{j}^{*}(S_{j}) = \max_{X_{j}} \left\{ C_{S_{j}X_{j}} + f_{j+1}^{*}(S_{j+1}) \right\}$$
(2.28)

Donde:

 $C_{S_jX_j}$ contribución de la decisión X_j da la etapa S_j a la etapa actual.

 f_{j+1}^* contribución subóptima acumulada para las siguientes etapas j+1, j+2,...,N.

N número total de etapas.

 S_i estado del sistema en la etapa j.

 S_{i+1} ecuación de transformación del estado.

Capítulo 2. Metodología

j etapa.

 x_i decisión tomada en la etapa j.

La ecuación 2.28, refleja el principio de Bellman de optimización. La política óptima puede ser derivada de un conjunto de decisiones, cada una de las cuales es tomada en una etapa subsecuente correspondiente a la decisión subóptima derivada de la etapa anterior. Las funciones objetivo pueden tener diferentes formas y la ecuación de transformación del estado no es la misma en todos los casos.

La programación dinámica puede ser clasificada por la forma que tiene la función objetivo. También puede clasificarse de acuerdo con los términos de la naturaleza del conjunto de estados en las respectivas etapas, debido a que los estados pueden estar representados por una variable discreta o continua (Nandalal, 2007).

2.9. Programación dinámica estocástica o probabilística

La programación dinámica estocástica basa su algoritmo en el principio de optimización de Bellman, el cual establece que no importa cuál sea el estado final de la primera decisión tomada debido a que las decisiones restantes deben resultar en un valor óptimo independientemente del valor de dicho estado final (Peña, 2010).

Existen dos tipos de algoritmos con el fin de generar políticas óptimas de operación, el determinístico que implica que cada vez que se corre el modelo se obtiene un valor único de salida para un valor de entrada dado. Y el estocástico consiste en que para un valor de entrada dado se obtiene una respuesta diferente para cada vez que se corre el modelo. De manera esquemática se explica en la figura 2.10.

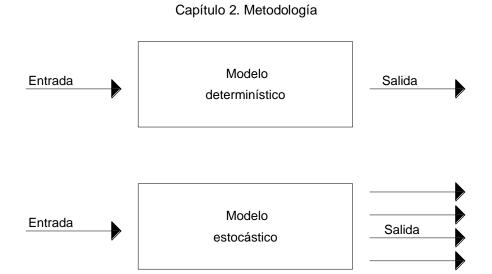


Figura 2.10 Modelos determinístico y estocástico

Entre los Modelos determinístico y el estocástico la principal diferencia radica en que al resolver la N-ésima ecuación recursiva no se puede trazar la política óptima en los siguientes periodos, porque la variable aleatoria (escurrimientos) es desconocida. Pero como la distribución de probabilidad de la variable aleatoria es periódica, lo que indica que existe la misma probabilidad de escurrimiento mensual cada año, se puede obtener una política de operación estacionaria para aplicarse cada año o sobre un horizonte de planeación completo.

La programación dinámica estocástica toma en cuenta el carácter aleatorio de los volúmenes de ingreso al embalse. Para maximizar el beneficio esperado se requiere la definición de una función objetivo que logre obtener, por una parte los máximos beneficios por generación y, por otra la disminución de los eventos no deseados como derrames y déficit, que ocurren como consecuencia de los escurrimientos aleatorios que entran a la presa. Este método se aplica en la determinación de políticas de operación en presas de almacenamiento debido a que las decisiones, los estados del sistema y los beneficios, se presentan secuencialmente en el tiempo.

El funcionamiento de una presa está regido por la ecuación de continuidad, la cual se expresa a continuación aplicada a un intervalo de tiempo Δt (etapa).

$$S_j = S_i + VI_j - VS_j (2.29)$$

Capítulo 2. Metodología

Donde:

- S_i almacenamiento al inicio del intervalo Δt .
- S_i almacenamiento al final del intervalo Δt .
- VI_i volumen de ingreso durante el intervalo Δt .
- VS_i volumen extraído durante el intervalo Δt .

En la ecuación 2.29, los ingresos VI_j son generalmente aleatorios, constituyen la componente estocástica y no controlable del sistema y cuya función de distribución de probabilidades depende principalmente de la época del año a la que pertenece el intervalo de tiempo. S_i define la condición inicial y determina el estado del sistema. VS_j es la variable de decisión y sobre la que se puede actuar. El sistema está restringido en términos de almacenamientos y extracciones, es decir:

$$S_{min} \leq S_j \leq S_{máx}$$

$$VS_{min} \leq VS_j \leq VS_{max}$$

En caso de considerar etapas en el método, el beneficio de cada etapa estará dado en función del volumen proporcionado para satisfacer la demanda k y del volumen almacenado S en la presa, expresándolo como G (k,S) cuya forma depende de la finalidad específica de la presa.

En el caso de una hidroeléctrica, la energía generada es directamente proporcional al producto del volumen de agua turbinado, por la carga media en el intervalo, es decir:

$$E_n = \lambda * K_n * 1/2[H(S_i) + H(S_j)]$$
 (2.30)

Donde:

- E_n energía generada en la etapa n.
- λ constante de proporcionalidad.

Capítulo 2. Metodología

- S_i almacenamiento al inicio de la etapa.
- S_i almacenamiento al final de la etapa.
- K_n volumen de agua turbinado en la etapa n.

Los volúmenes X_n que ingresan a la presa tienen características estocásticas y condicionan el funcionamiento de la misma. Establecen para cada etapa el almacenamiento final, el déficit y los derrames. La operación adecuada de la presa persigue hacer máximos los beneficios acumulados en un horizonte de planeación. El beneficio obtenido en cada etapa n cualquiera, puede expresarse de forma resumida como sigue:

$$b_n(K,\bar{S}) = G_n(K,\bar{S}) - CDEF(TDEF_n) - CDERR(TDERR_n)$$
 (2.31)

Donde:

 $CDEF(TDEF_n)$ y $CDERR(TDERR_n)$ penalizaciones (déficit y derrames).

 $TDEF_n$ tamaño del déficit .

 $TDERR_n$ tamaño del derrame.

Una manera de explicar el método de programación dinámica estocástica es por medio del diagrama de flujo de la figura 2.11, que muestra de una manera general el procedimiento a seguir.

Otro método en el que se requiere establecer varias etapas es el denominado proceso iterativo. En el caso del método Algoritmo de Howard, sus ventajas se manifiestan cuando el problema puede tratarse con pocas etapas por año. Este algoritmo se ha utilizado en México para el análisis de una presa para riego, con etapas anuales, y para estudiar la operación conjunta de una presa y un acuífero, considerando dos temporadas en el año (Nandalal, 2007).

Capítulo 2. Metodología

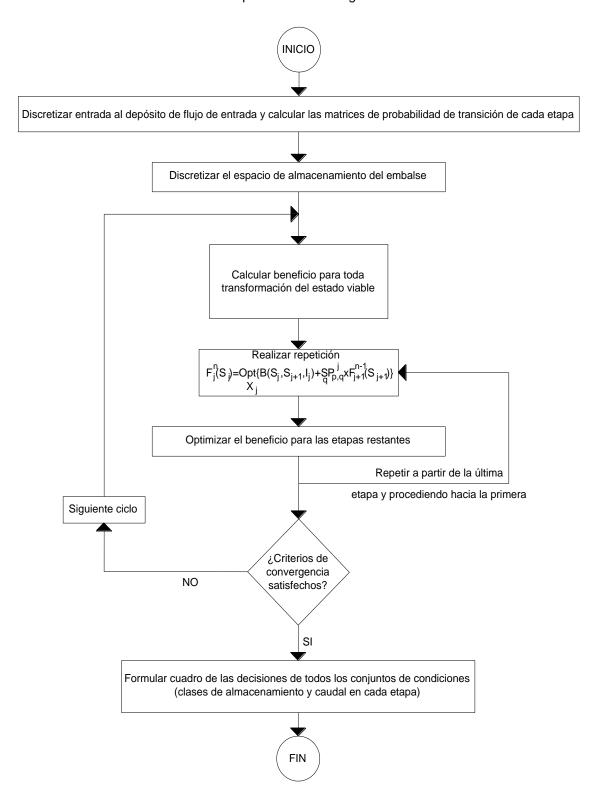


Figura 2.11 Diagrama de flujo para el modelo de programación dinámica estocástica

Capítulo 2. Metodología

2.9.1. Programa de optimización

La técnica numérica de la programación dinámica estocástica se usó en el programa CAFIT1P.FOR, escrito en lenguaje Fortran. Este programa tiene por objetivo obtener los beneficios máximos esperados en un horizonte de planeación de N etapas, este programa es aplicable al caso de una solo presa (Mendoza, 2010). Los pasos principales que realiza el programa aparecen en la figura 2.12.

r							
		ıtina de lectura		erales		LEE_DATOS	
2 Calcula fa	ctores	y ajusta coefic	ientes				
3 Llama a la	a subru	ıtina para leer c	latos de las cu	urvas guía		LEE_CGUIA	
4 Inicializa a	a cero	los beneficios r	náximos espe	erados			
5 Inicia el pi	roceso	en el tiempo					
	5.1 ca	alcula factores i	necesarios pa	ra evaluar la fu	ınción objetivo	(FO)	
	5.2 Le	ee el archivo qu	e contiene la i	información pr	obabilistica	LEE_PROB	
	y los '	valores de extra	acción mínima	y máxima			
	5.3 Al	ore un archivo p	ara guardar Ic	s beneficios e	esperados máx	cimos calculad	dos
	5.4 Aı	naliza:					
		5.4.1 Si hay de	errame lo calc	ula		DERRAME	
		5.4.2 Si hay de	éficit lo calcula	a		DEFICIT	
		5.4.3 Evalua re	estricciones y	FO		RESTRIX_Y_	EFO
	5.5 Ca	alcula el benefi	cio esperado				
6. Termina la		ción para todas	•	iones de esta	dos - extraccio	ones	
		tados obtenidos					
8. Verifica si	va tern	ninó el ciclo ter	mporal:				
	1	ya se cumplió		9			
		aún no termina	•				
9. Termina la		ción en el tiemp		,			
10. Cierra arc	-		-				
		ıción del progra	ma				
i iiiaiiza ia	ا مارد	ioion doi piogra					

Figura 2.12 Diagrama de ejecución del programa

Los archivos de resultados que genera este programa son los FITEXX donde XX es el número de etapa expresada con dos dígitos (figura 2.13). El archivo contiene la información del valor del beneficio parcial esperado máximo para las combinaciones de estados y las extracciones mínimas y máximas en la presa.

Capítulo 2. Metodología

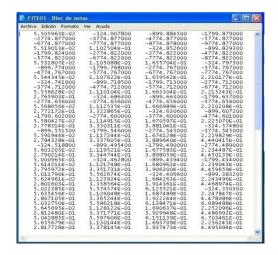


Figura 2.13 Archivo FITE01 obtenido al correr el programa CAFIT1P.FOT con los datos de la presa La Angostura, Son.

2.9.2. Programa para la obtención de políticas de operación óptimas

El programa OPDIN1VS.FOR, escrito en lenguaje Fortran, emplea la programación dinámica estocástica para la obtención de políticas de operación óptimas. Trabaja a partir de los datos obtenidos del programa CAFIT1P.FOR. Uno de los archivos de resultados es el RETAP que contiene los beneficios conjuntos esperados máximos para cada etapa (figura 2.14) (Mendoza, 2010).

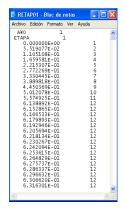


Figura 2.14 Archivo RETAP01 obtenido al correr el programa OPDIN1VS.FOT con los datos del programa CAFIT1P.FOR

Otro de los archivos de resultados proporcionados por este programa es el archivo ARPOLVS que contiene las políticas de operación óptimas (figura 2.15). Indica la respectiva extracción que se debe hacer en unidades de volumen.

Capítulo 2. Metodología

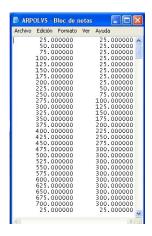


Figura 2.15 Archivo ARPOLVS, contiene las políticas de operación óptimas

El tercer archivo de resultados que genera este programa es el MEEVS que contiene la matriz de estados- extracciones para todas las etapas (figura 2.16). La primera línea del archivo muestra un título, que identifica la etapa de que se trata, después escribe todos los estados de la presa. En la tercera línea se escribe el estado en la presa y la extracción correspondiente. Esto se repite tantas veces como etapas se tengan.

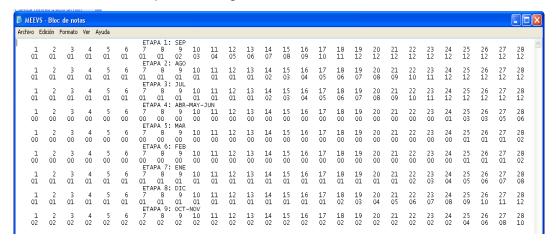


Figura 2.16 Archivo MEEVS, muestra la matriz estados- extracciones

El último archivo que se genera de resultados es el DIFANVS, contiene las diferencias anuales obtenidas para cada ciclo del proceso iterativo que se realice (figura 2.17).

Capítulo 2. Metodología

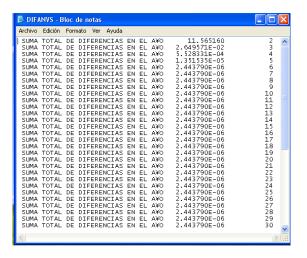


Figura 2.17 Archivo DIFANVS

2.10. Simulación del funcionamiento de vaso

A partir de la obtención del conjunto de políticas óptimas es necesario realizar una simulación del funcionamiento de vaso para elegir la mejor. Los estudios de simulación ayudan a ver la sensibilidad del sistema frente a la política de operación, ya que es una forma de ver las consecuencias de éstas.

La simulación del funcionamiento de vaso se realiza a partir de la ecuación de continuidad, expresada de la siguiente manera:

$$V_{i+1} = V_i + X_i - S_I - P_i (2.32)$$

Sujeta a

$$VM^{(k)} \le V_{i+1} \le VU^{(k)} \tag{2.33}$$

Donde:

 V_{i+1} , V_i volúmenes almacenados al final y al principio del mes i respectivamente, en hm³.

 $VM^{(k)}$ volumen correspondiente al NAMINO en el mes k del año, en hm³.

 $VU^{(k)}$ volumen correspondiente al NAMO en el mes k del año, en hm³.

Considerando:

$$X_i = ICP_i + IT_i (2.34)$$

Capítulo 2. Metodología

$$S_I = VDEM_i \tag{2.35}$$

$$P_i = 1000(EVAP_i - hp_i)\bar{A}_i \tag{2.36}$$

Para:

 ICP_i volumen de escurrimiento generado por cuenca propia que entra al vaso en el mes i, en hm³.

 IT_i volumen de entrada por transferencias desde otras cuencas en el mes i, en hm^3 .

 $VDEM_i$ volumen extraido para satisfacer la demanda en el mes i, en hm³.

 hp_i lámina de precipitación sobre el vaso en el mes i, en mm.

 $EVAP_i$ lámina de evaporación en el vaso en el mes i, en mm.

 \bar{A}_i promedio de las áreas de superficie libre del vaso, en km².

El área promedio se calcula como $\frac{A_{i+1}+A_i}{2}$ siendo A_{i+1} y A_i el área de la superficie libre al final y al inicio del mes i, respectivamente.

Además de considerar que el volumen de demanda puede modificarse en los siguientes casos:

- 1.- Para evitar que el volumen almacenado en la presa sea inferior a $VM^{(k)}$, se reduce la extracción de agua del vaso disminuyendo $VDEM_i$.
- 2.- Cuando haya derrame se aumenta $VDEM_i$ al máximo posible con el objeto de turbinar un mayor volumen de agua.
- 3.- Cuando $VDEM_i$ excede al volumen turbinable máximo en el mes en estudio, se hace que $VDEM_i$ sea igual a dicho volumen.

Se considera lo siguiente para calcular el volumen máximo de agua que puede ser usado en la generación hidroeléctrica en cada mes:

$$P = K_1 Q H \tag{2.37}$$

Capítulo 2. Metodología

Donde:

P potencia producida, en MW.

Q gasto que pasa por las turbinas, en m³/s.

H carga bruta, en m.

 K_1 coeficiente que contiene a la eficiencia de la máquina, al peso específico del agua y un coeficiente de conversión de unidades. Su valor se considera constante (0.00981).

Debido a que el gasto es directamente proporcional a la raíz cuadrada de la carga bruta:

$$Q = K_2(H)^{1/2} (2.38)$$

Sustituyendo en la ecuación 2.37, se tiene:

$$P = K_1 K_2 H^{3/2} = K_3 H^{3/2} (2.39)$$

$$K_1 = \frac{P_{INS}}{Q_{DIS}H_{BDIS}} \tag{2.40}$$

$$K_3 = \frac{P_{INS}}{H_{BDIS}^{3/2}} \tag{2.41}$$

Donde:

 P_{INS} potencia instalada en el sistema.

 Q_{DIS} gasto de diseño.

 H_{RDIS} carga bruta de diseño.

La carga hidráulica bruta se calcula como:

$$H = \frac{h_i + h_{i+1}}{2} - DESF^{(k)} \tag{2.42}$$

Donde:

 h_i , h_{i+1} elevación del espejo del agua al inicio y al final del mes i.

 $DESF^{(k)}$ elevación media del desfogue en el mes k del año.

Capítulo 2. Metodología

Por lo tanto el volumen de agua máximo que pasa por las turbinas es igual a:

$$V_{m\acute{a}x} = Q_{DIS}\Delta t \qquad \qquad si \quad H \ge H_{BDIS} \tag{2.43}$$

$$V_{m\acute{a}x} = \frac{POTMAX}{K_1 H} \Delta t \quad si \quad H < H_{BDIS}$$
 (2.44)

Siendo:

$$POTMAX = P_{INS}$$
 $si H \ge H_{BDIS}$ (2.45)

$$POTMAX = K_3 H^{3/2}$$
 si $H < H_{RDIS}$ (2.46)

De tal manera se necesita que para cada mes se calcule el $V_{m\acute{a}x}$, y en los casos en los que el $VDEM_i$ sea mayor al $V_{m\acute{a}x}$, es necesario disminuirlo para que sean iguales (CFE, 1982).

2.10.1. Procedimiento de cálculo

- 1.- Se obtienen, de la topografía del vaso, las curvas que relacionan la elevación del nivel de agua con el volumen y la elevación del nivel con el área de la superficie libre.
- 2.- Se fija un nivel inicial en el vaso. Generalmente el análisis empieza en el NAMO.
- 3.- A partir del nivel inicial E_i y las curvas de E-V y E-A se obtiene V_i y A_i .
- 4.- Se calcula el volumen final en una primera aproximación como:

$$V_{i+1}^k = V_i + I_i - O_i (2.47)$$

Donde:

- I_i volumen de entradas al vaso que no depende del nivel en el mismo durante el intervalo considerado.
- \mathcal{O}_i volumen de salidas del vaso que no depende del nivel en el mismo durante el intervalo considerado.
- 5.- Con la curva E-V se obtiene E_{i+1}
- 6.- Con E_{i+1} y la curva E-A se obtiene A_{i+1}

Capítulo 2. Metodología

7.- Se determina el área media (\bar{A}).

8.- Se calcula E_{II_i} , S_{e_i} , S_{i_i}

$$E_{II} = hp\bar{A} \tag{2.48}$$

$$S_e = h_{ev}\bar{A} \tag{2.49}$$

Donde:

 E_{II_i} entradas por lluvia directa sobre el vaso.

altura de precipitación. hp

Sp volumen evaporado.

 h_{ev} lámina de evaporación.

 S_i volumen infiltrado en el vaso.

Si

9.- Se calcula

$$P_i = E_{II_i} - S_{e_i} - S_{i_i} (2.50)$$

10.- Se calcula el volumen final en la siguiente aproximación

$$V_{i+1}^{k+1} = V_i + I_i - O_i + P_i$$
 (2.51)
no se cumple que

11.- $\left|V_{i+1}^{k+1}-V_{i+1}^{k}\right| \leq \frac{v_m}{100}$, entonces k=k+1 y se vuelve al paso 5. En el caso de que se cumpla la condición anterior, se debe revisar que se cumpla que $V_{i+1}^{k+1} < V_m$. Si esto no se cumple:

$$S_{de} = V_{i+1}^{k+1} - V_m (2.52)$$

Entonces $V_{i+1}^{k+1} > V_m$ y $t = t + \Delta t$, volver all paso 4. En el caso de que se cumpla, se revisa otra condición en la que $V_{i+1}^{k+1} = V_{min}$. Si lo anterior se cumple $t = t + \Delta t$, volver al paso 4. Y si no se cumple $Déficit = V_{min} - V_{i+1}^{k+1}$, entonces $V_{i+1} = V_{min}$ y $t = t + \Delta t$, volver al paso 4 (Aparicio, 2011).

Capítulo 2. Metodología

2.10.2. Programa para simular el funcionamiento quincenal de una presa

El programa SIMQ1.FOR, escrito en lenguaje Fortran, sirve para la simulación quincenal de una presa a partir de los datos del registro sintético generado a partir de cada una de las series. Tal como se muestra en la tabla 3.21 del tercer capítulo. En este estudio se considera que el año empieza en el mes de octubre del año i y termina en el mes de septiembre del año i+1, considerando un año hidrológico (Mendoza, 2010).

El programa necesita de algunos archivos base, uno de ellos es el llamado DATOSGE que contiene la información general de la presa que se analiza (figura 2.18), el archivo VOLPRE que contiene la información de los registros de los volúmenes de ingreso (expresados en hm³) (figura 2.19). Y por último, necesita del archivo ARPOLVS que contiene las políticas de operación óptimas.

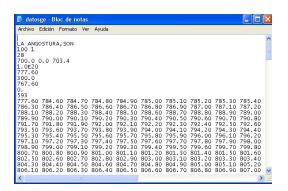


Figura 2.18 Formato del archivo DATOSGE

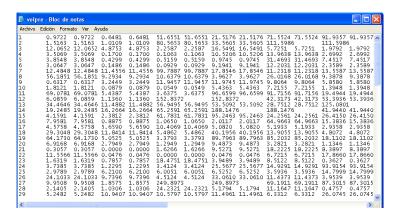


Figura 2.19 Formato del archivo VOLPRE

Capítulo 2. Metodología

El archivo de resultados que genera es el SIQPRE, en el que se muestra la información detallada de la simulación (figura 2.20). A parte de mostrar los resultados para cada quincena, también viene un resumen de los resultados promedio anuales y otro resumen que contiene el promedio quincenal.

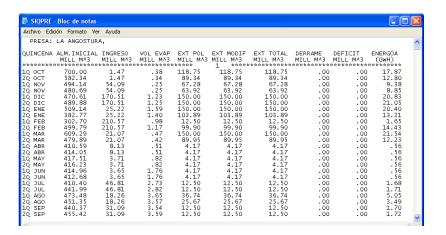


Figura 2.20 Formato del archivo SIQPRE

Otro archivo de resultados es el de SUPGUIAP en el que se observa en que quincenas y de que años se superó la curva guía de la presa (figura 2.21).

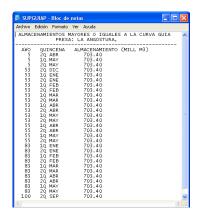


Figura 2.21 Formato del archivo SUPGUIAP

Conclusión

Dentro de este capítulo se expuso la metodología aplicada en este tipo de estudios, además de otros métodos que también pueden ser utilizados. También se muestran los programas empleados en este estudio. Lo anterior lleva al siguiente capítulo de aplicación de la metodología y los resultados obtenidos.

Capítulo 2. Metodología

Referencias

- Aparicio Mijares, Francisco Javier. Fundamentos de Hidrología de Superficie. México: Limusa. 2011.
- Comisión Federal de Electricidad. Manual de diseño de obras civiles.
 Hidrotecnia. Hidrología. México.1982.
- Devore J. L. Probabilidad y Estadística para Ingeniería y ciencias. San Luis Obispo, USA: California Polytechnic State University. 2008.
- Domínguez M.R. Arganis J.L.M. Cálculo de registros sintéticos de ingresos por cuenca propia de un sistema de presas de la región Noroeste de México, caracterizada por eventos invernales.10. 2009. 353-361.
- Domínguez Mora, Ramón. Metodología de selección de una política de operación conjunta de una presa y su vertedor. Tesis Doctoral. UNAM.1989.
- Hwarng, H. Brian. A simple neutral network for ARMA (p,q) time series.
 Omega 29, 319-333. The International Journal of Management Science,
 2001.
- Mendoza R.R. Manual del programa de optimización vía programación dinámica estocástica. Primera parte CAFIT1P.FOR. Instituto de Ingeniería UNAM.2010.
- Mendoza R.R. Manual del programa de optimización vía programación dinámica estocástica. Programa OPDIN1VS.FOR. Instituto de Ingeniería UNAM.2010.
- Mendoza R.R. Manual del programa SIMULQ1P.FOR. Instituto de Ingeniería UNAM.2010.
- Nandalal K. D. W. Dynamic programming based operation of reservoirs,
 Aplicability and limits. Reino Unido: Cambridge University Press. 2007.
- Peña Delgado, Francisco. Simulación histórica y sintética de políticas de operación óptima de un sistema de tres presas en cascada en el Río Santiago, Nayarit México. Tesis Profesional. UNAM. 2010.
- Presas de México. Vol. 1. CONAGUA.

Capítulo 2. Metodología

- Svanidze, G.G. Mathematical Modeling of Hydrologic Series. USA: Water Resources Publications. 1980.
- Ven Te Chow. Hidrología aplicada. USA: Mc Graw Hill. 1975.
- Wilson, E. M. Engineering Hydrology. 4° Edición. Hong Kong: Macmillan.
 1990.
- Yurekli, Kadri. Prediction of daily maximum streamflow based on stochastic approaches. Journal of Spatial Hydrology. Vol. 4, No. 2. 2004.

Capítulo 3. Aplicación y Resultados

3. Aplicación y Resultados

3.1. Introducción

En este capítulo se exponen tanto la aplicación del método de Svanidze para generar 10 series sintéticas de volúmenes de ingreso a la presa La Angostura, Son., así como los resultados de la simulación del funcionamiento de vaso de la política de operación que se determinó a partir del estudio de los registros sintéticos, de los cuales se realizó un análisis de la frecuencia en los derrames y déficit que podrían presentarse en el sistema en el largo plazo.

3.2. Aplicación

3.2.1. Registro

Se aplicó el método Svanidze a los datos históricos de los volúmenes de ingreso mensuales por cuenca propia de la presa La Angostura, Son. Los datos mensuales que se emplearon como base para este trabajo se muestran en la tabla 3.1, conforman un registro de 46 años continuos (1964-2009). Además, se obtuvieron los estadísticos con los cuales se identificaron los meses con el valor más bajo del coeficiente de correlación para decidir si se trabajaría con un año cronológico o con un año hidrológico.

En la tabla 3.1 se observa el menor valor de correlación entre los meses junio y julio, por lo tanto se decidió trabajar con un año hidrológico (tabla 3.2) que inicia en el mes de julio y termina en el mes de junio. El registro considerado finalmente quedó con un total de 45 años (1965-2009).

3.2.2. Función de distribución de probabilidad

Al volumen total suma (tabla 3.3) se le realizó un análisis estadístico empleando el software AX, se obtuvo la función de distribución de probabilidad a la que mejor se ajustaban los datos y se determinó que era una función Doble Gumbel (Aparicio, 2011). Los parámetros que arrojó el programa son: $\alpha_1 = 0.006728$, $\beta_1 = 276.2171$, $\alpha_2 = 0.003$ y $\beta_2 = 918.5$ con p=0.78. La tabla 3.4 muestra los datos medidos y calculados que se obtuvieron del AX. Así mismo, en la figura 3.1 se muestra la gráfica de la función de distribución ajustada y los valores medidos.

Capítulo 3. Aplicación y Resultados

Tabla 3.1 Serie mensual (ingresos en hm³). Estadísticos: media, desviación estándar, coeficiente de asimetría, coeficiente de variación y coeficiente de correlación

Año	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Jul.	Ago.	Sep.	Anual
1964	46.25	7.97	7.33	13.78	52.43	21.55	13.10	7.60	9.98	64.49	40.87	60.24	345.57
1965	9.97	1.87	249.76	69.15	87.25	50.16	29.30	0.00	0.00	91.43	276.00	61.39	926.27
1966	51.69	21.29	10.18	5.27	0.00	3.35	1.94	1.27	0.00	74.64	103.90	28.79	302.31
1967	7.34	40.71	542.24	136.01	215.95	288.16	42.05	9.96	6.60	15.37	77.55	25.85	1407.78
1968	0.82	4.22	15.51	15.55	12.73	7.60	4.69	4.74	1.87	67.41	69.94	54.25	259.34
1969	36.28	29.62	35.67	11.38	6.98	17.79	3.48	0.00	0.00	15.95	147.58	45.37	350.09
1970	11.67	6.23	6.28	7.27	5.67	7.41	3.08	2.73	0.00	59.34	98.37	16.27	224.31
1971	47.33	38.66	48.97	26.50	1.32	0.00	0.86	0.00	6.81	30.81	118.82	94.94	415.02
1972	66.53	67.34	20.59	180.77	262.35	180.74	31.66	19.62	5.82	62.09	7.57	5.53	910.60
1973	7.70	0.03	0.00	0.04	4.48	11.91	6.12	0.00	0.16	48.28	81.80	24.88	185.38
1974	18.52	47.98	8.53	10.22	66.95	7.23	8.00	0.00	2.05	89.05	34.75	59.14	352.41
1975	4.28	0.00	0.00	30.00	99.82	0.00	2.85	4.12	0.00	132.14	56.40	61.87	391.49
1976	44.20	17.87	8.26	60.64	20.96	7.25	0.00	0.00	0.00	100.32	142.53	52.11	454.14
1977	115.26	12.47	4.20	27.78	65.46	390.24	42.30	19.57	5.83	13.49	44.40	6.76	747.77
1978	54.00	45.66	182.95	527.59	117.57	30.02	36.39	21.19	5.99	13.50	70.01	0.00	1104.87
1979	6.22	7.61	14.18	2.63	32.87	5.17	0.00	0.96	1.55	26.31	58.11	33.43	189.03
1980	5.05	1.65	4.61	34.59	20.21	127.03	14.83	9.17	4.43	109.45	142.29	35.71	509.01
1981	24.34	11.92	31.34	32.27	1.51	5.28	0.27	0.00	0.00	14.96	39.27	57.65	218.80
1982	2.92	1.99	157.04	65.46	217.58	279.58	115.15	26.66	7.18	12.15	56.92	60.44	1003.06
1983	95.62	54.33	100.43	17.26	5.19	0.00	0.00	4.17	2.93	39.35	297.48	50.63	667.38
1984	40.03	24.10	518.30	166.39	106.22	44.76	33.26	23.67	0.06	18.27	92.84	36.19	1104.07
1985	90.39	14.97	17.12	6.37	41.85	15.11	17.34	11.23	17.86	192.80	136.56	81.07	642.66
1986	20.21	18.49	161.32	28.88	18.12	21.92	13.54	16.89	13.63	5.64	108.04	31.12	457.80
1987	0.00	0.00	20.93	29.04	28.34	0.00	0.00	0.79	1.90	62.69	297.80	73.97	515.45
1988	30.54	6.27	7.91	13.78	13.24	9.35	4.91	7.66	4.95	5.66	110.72	69.82	284.80
1989	0.71	0.00	3.86	22.58	43.18	19.87	9.44	3.92	0.00	153.08	266.14	50.33	573.11
1990	56.22	18.69	92.83	87.24	46.91	203.97	16.91	3.12	6.21	35.33	124.72	120.14	812.28
1991	13.45	7.65	199.78	307.95	78.37	85.44	36.36	9.13	8.12	21.60	43.89	16.19	827.93
1992	5.62	0.00	42.94	477.61	170.22	67.36	20.84	9.23	3.32	60.24	120.62	83.62	1061.62
1993	18.13	22.45	41.26	20.14	20.61	11.65	0.00	0.00	2.60	8.54	23.01	43.42	211.80
1994	2.35	85.56	269.65	39.86	333.04	33.33	12.90	5.87	5.77	7.71	27.76	40.97	864.76
1995	7.34	7.24	7.64	5.37	5.43	4.09	0.42	0.00	0.92	53.36	44.15	62.47	198.42
1996	4.23	8.85	8.54	9.29	5.11	21.07	3.79	0.00	3.53	3.25	67.44	19.27	154.38
1997	4.83	16.41	95.39	66.88	104.94	86.85	47.02	16.97	0.00	42.92	54.76	6.00	542.97
1998	5.34	3.81	3.21	3.08	2.90	0.32	0.00	0.00	0.00	126.14	202.76	41.09	388.65
1999	0.98	0.80	0.38	4.29	3.34	0.60	0.00	0.00	0.00	61.61	81.20	12.73	165.92
2000	66.35	109.65	17.78	21.20	79.32	18.97	6.64	0.00	0.00	66.80	114.60	19.00	520.31
2001	8.23	0.92	1.10	2.08	67.13	15.91	5.69	2.01	2.27	9.79	89.47	18.30	222.90
2002	2.73	5.99	11.29	10.93	19.74	29.77	5.05	0.00	0.00	1.62	6.34	3.24	96.70
2003	0.00	0.00	2.55	3.78	5.30	13.70	6.03	0.00	0.83	17.43	53.30	6.95	109.88
2004	6.36	30.85	85.67	270.98	237.07	21.19	1.61	3.26	8.36	2.17	95.12	54.84	817.49
2005	22.17	13.84	41.05	-1.09	4.49	0.42	0.26	1.89	3.29	27.44	165.15	114.40	393.32
2006	6.15	0.29	-0.17	18.41	24.43	4.71	0.62	8.07	2.61	29.22	189.00	69.32	352.65
2007	7.05	3.37	79.69	17.05	36.71	1.56	0.26	0.69	0.69	75.38	161.68	70.33	454.46
2008	11.59	2.37	0.38	1.05	0.09	1.12	0.13	0.62	1.16	40.51	44.35	18.98	122.34
2009	118.28	9.33	6.22	165.48	157.04	33.38	5.71	2.13	3.25	94.56	122.91	44.57	762.86
Media	26.20	18.07	69.23	66.80	64.14	47.98	13.15	5.63	3.32	50.09	104.54	44.42	513.57
Desv.	31.29	23.70	120.68	116.62	80.10	85.66	20.50	7.32	3.90	43.80	72.75	28.73	321.90
C.A.	1.56	2.14	2.76	2.76	1.71	2.63	3.11	1.44	1.69	1.23	1.24	0.57	0.80
C.V.	1.19	1.31	1.74	1.75	1.25	1.79	1.56	1.30	1.18	0.87	0.70	0.65	0.63
C. ji+1,ji	0.37	0.27	0.35	0.51	0.44	0.73	0.79	0.46	-0.01	0.39	0.41	0.04	

Capítulo 3. Aplicación y Resultados

Tabla 3.2 Año hidrológico (ingresos en hm³). Estadísticos: media, desviación estándar, coeficiente de asimetría, coeficiente de variación y coeficiente de correlación

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
1965	64.49	40.87	60.24	9.97	1.87	249.76	69.15	87.25	50.16	29.30	0.00	0.00	663.05
1966	91.43	276.00	61.39	51.69	21.29	10.18	5.27	0.00	3.35	1.94	1.27	0.00	523.80
1967	74.64	103.90	28.79	7.34	40.71	542.24	136.01	215.95	288.16	42.05	9.96	6.60	1496.35
1968	15.37	77.55	25.85	0.82	4.22	15.51	15.55	12.73	7.60	4.69	4.74	1.87	186.50
1969	67.41	69.94	54.25	36.28	29.62	35.67	11.38	6.98	17.79	3.48	0.00	0.00	332.79
1970	15.95	147.58	45.37	11.67	6.23	6.28	7.27	5.67	7.41	3.08	2.73	0.00	259.23
1971	59.34	98.37	16.27	47.33	38.66	48.97	26.50	1.32	0.00	0.86	0.00	6.81	344.43
1972	30.81	118.82	94.94	66.53	67.34	20.59	180.77	262.35	180.74	31.66	19.62	5.82	1079.98
1973	62.09	7.57	5.53	7.70	0.03	0.00	0.04	4.48	11.91	6.12	0.00	0.16	105.61
1974	48.28	81.80	24.88	18.52	47.98	8.53	10.22	66.95	7.23	8.00	0.00	2.05	324.43
1975	89.05	34.75	59.14	4.28	0.00	0.00	30.00	99.82	0.00	2.85	4.12	0.00	324.00
1976	132.14	56.40	61.87	44.20	17.87	8.26	60.64	20.96	7.25	0.00	0.00	0.00	409.60
1977	100.32	142.53	52.11	115.26	12.47	4.20	27.78	65.46	390.24	42.30	19.57	5.83	978.07
1978	13.49	44.40	6.76	54.00	45.66	182.95	527.59	117.57	30.02	36.39	21.19	5.99	1086.02
1979	13.50	70.01	0.00	6.22	7.61	14.18	2.63	32.87	5.17	0.00	0.96	1.55	154.69
1980	26.31	58.11	33.43	5.05	1.65	4.61	34.59	20.21	127.03	14.83	9.17	4.43	339.40
1981	109.45	142.29	35.71	24.34	11.92	31.34	32.27	1.51	5.28	0.27	0.00	0.00	394.38
1982	14.96	39.27	57.65	2.92	1.99	157.04	65.46	217.58	279.58	115.15	26.66	7.18	985.42
1983	12.15	56.92	60.44	95.62	54.33	100.43	17.26	5.19	0.00	0.00	4.17	2.93	409.43
1984	39.35	297.48	50.63	40.03	24.10	518.30	166.39	106.22	44.76	33.26	23.67	0.06	1344.24
1985	18.27	92.84	36.19	90.39	14.97	17.12	6.37	41.85	15.11	17.34	11.23	17.86	379.54
1986	192.80	136.56	81.07	20.21	18.49	161.32	28.88	18.12	21.92	13.54	16.89	13.63	723.43
1987	5.64	108.04	31.12	0.00	0.00	20.93	29.04	28.34	0.00	0.00	0.79	1.90	225.79
1988	62.69	297.80	73.97	30.54	6.27	7.91	13.78	13.24	9.35	4.91	7.66	4.95	533.06
1989	5.66	110.72	69.82	0.71	0.00	3.86	22.58	43.18	19.87	9.44	3.92	0.00	289.76
1990	153.08	266.14	50.33	56.22	18.69	92.83	87.24	46.91	203.97	16.91	3.12	6.21	1001.64
1991	35.33	124.72	120.14	13.45	7.65	199.78	307.95	78.37	85.44	36.36	9.13	8.12	1026.44
1992	21.60	43.89	16.19	5.62	0.00	42.94	477.61	170.22	67.36	20.84	9.23	3.32	878.82
1993	60.24	120.62	83.62	18.13	22.45	41.26	20.14	20.61	11.65	0.00	0.00	2.60	401.31
1994	8.54	23.01	43.42	2.35	85.56	269.65	39.86	333.04	33.33	12.90	5.87	5.77	863.29
1995	7.71	27.76	40.97	7.34	7.24	7.64	5.37	5.43	4.09	0.42	0.00	0.92	114.88
1996	53.36	44.15	62.47	4.23	8.85	8.54	9.29	5.11	21.07	3.79	0.00	3.53	224.41
1997	3.25	67.44	19.27	4.83	16.41	95.39	66.88	104.94	86.85	47.02	16.97	0.00	529.24
1998	42.92	54.76	6.00	5.34	3.81	3.21	3.08	2.90	0.32	0.00	0.00	0.00	122.34
1999	126.14	202.76	41.09	0.98	0.80	0.38	4.29	3.34	0.60	0.00	0.00	0.00	380.37
2000	61.61	81.20	12.73	66.35	109.65	17.78	21.20	79.32	18.97	6.64	0.00	0.00	475.45
2001	66.80	114.60	19.00	8.23	0.92	1.10	2.08	67.13	15.91	5.69	2.01	2.27	305.74
2002	9.79	89.47	18.30	2.73	5.99	11.29	10.93	19.74	29.77	5.05	0.00	0.00	203.05
2003	1.62	6.34	3.24	0.00	0.00	2.55	3.78	5.30	13.70	6.03	0.00	0.83	43.40
2004	17.43	53.30	6.95	6.36	30.85	85.67	270.98	237.07	21.19	1.61	3.26	8.36	743.06
2005	2.17	95.12	54.84	22.17	13.84	41.05	-1.09	4.49	0.42	0.26	1.89	3.29	238.46
2006	27.44	165.15	114.40	6.15	0.29	-0.17	18.41	24.43	4.71	0.62	8.07	2.61	372.09
2007	29.22	189.00	69.32	7.05	3.37	79.69	17.05	36.71	1.56	0.26	0.69	0.69	434.61
2008	75.38	161.68	70.33	11.59	2.37	0.38	1.05	0.09	1.12	0.13	0.62	1.16	325.89
2009	40.51	44.35	18.98	118.28	9.33	6.22	165.48	157.04	33.38	5.71	2.13	3.25	604.66
Media	49.10	104.13	44.42	25.76	18.30	70.61	67.98	64.40	48.56	13.15	5.58	3.17	515.16
Desv.	43.77	73.52	29.05	31.50	23.92	121.68	117.66	80.98	86.54	20.73	7.40	3.81	349.35
C.A	1.31	1.24	0.56	1.60	2.10	2.73	2.72	1.69	2.59	3.08	1.44	1.85	1.05
C.V	0.89	0.71	0.65	1.22	1.31	1.72	1.73	1.26	1.78	1.58	1.33	1.20	0.68
C. ji+1,ji	0.39	0.41	0.04	0.38	0.27	0.35	0.51	0.44	0.74	0.79	0.46	-0.03	

Capítulo 3. Aplicación y Resultados

Tabla 3.3 Volumen total anual (hm³)

Año	Anual
1965	663.05
1966	523.80
1967	1496.35
1968	186.50
	332.79
1969	259.23
1970	344.43
1971	
1972	1079.98
1973	105.61
1974	324.43
1975	324.00
1976	409.60
1977	978.07
1978	1086.02
1979	154.69
1980	339.40
1981	394.38
1982	985.42
1983	409.43
1984	1344.24
1985	379.54
1986	723.43
1987	225.79
1988	533.06
1989	289.76
1990	1001.64
1991	1026.44
1992	878.82
1993	401.31
1994	863.29
1995	114.88
1996	224.41
1997	529.24
1998	122.34
1999	380.37
2000	475.45
2001	305.74
2002	203.05
2002	43.40
2003	743.06
2004	238.46
	372.09
2006	
2007	434.61
2008	325.89
2009	604.66
Media	515.159
Desv.	349.348
C.A.	1.048
C.V.	0.678

Capítulo 3. Aplicación y Resultados

Tabla 3.4 Datos medidos y calculados obtenidos del AX (hm³)

Doble Gumbel						
Tr	Dato cal.	Dato med.	Z			
10000.00	3474.75		9.2102904			
5000.00	3254.2		8.5170932			
2000.00	2947.87		7.6006524			
1000.00	2715.06		6.9072551			
500.00	2484.3		6.2136073			
200.00	2176.44		5.2958121			
100.00	1941.59		4.6001492			
50.00	1703.04		3.9019387			
20.00	1374.12		2.9701952			
10.00	1099.83		2.2503673			
5.00	774.61		1.4999400			
	395.95		0.3665129			
2.00		1406.25				
46.00	1673.94	1496.35	3.8176721			
23.00	1425.94	1344.24	3.1133507			
15.33	1272.97	1086.02	2.6962731			
11.50	1158.19	1079.98	2.3972060			
9.20	1064	1026.44	2.1622205			
7.67	982.58	1001.64	1.9682812			
6.57	910.13	985.42	1.8010902			
5.75	844.77	978.07	1.6551927			
5.11	785.7	878.82	1.5242865			
4.60	732.73	863.29	1.4059974			
4.18	685.72	743.05	1.2967094			
3.83	644.37	723.43	1.1953828			
3.54	608.1	663.05	1.1027328			
3.29	576.19	604.66	1.0151840			
3.07	547.93	533.06	0.9310771			
2.88	522.69	529.24	0.8520995			
2.71	499.93	523.8	0.7755396			
2.56	479.21	475.45	0.7025484			
2.42	460.17	434.61	0.6290262			
2.30	442.54	409.6	0.5611635			
2.19	426.07	409.43	0.4943812			
2.09	410.59	401.31	0.4292666			
2.00	395.95	394.38	0.3665129			
1.92	382	380.37	0.3069236			
1.84	368.65	379.54	0.2431945			
1.77	355.8	372.09	0.1835091			
1.70	343.36	344.43	0.1195685			
1.64	331.27	339.4	0.0608298			
1.59	319.47	332.79	0.0086707			
1.53	307.88	325.89	-0.0584066			
1.48	296.45	324.43	-0.0384000			
			-0.1702689			
1.44	285.12	324				
1.39	273.84	305.74	-0.2397350			
1.35	262.54	289.76	-0.3000503			
1.31	251.15	259.23	-0.3654831			
1.28	239.59	238.46	-0.4185957			
1.24	227.78	225.79	-0.4960537			
1.21	215.59	224.41	-0.5603402			
1.18	202.87	203.05	-0.6314382			
1.15	189.43	186.5	-0.7114202			
1.12	174.94	154.69	-0.8036112			
1.10	158.94	122.34	-0.8745914			
1.07	140.55	114.88	-1.0031723			
1.05	117.96	105.61	-1.1133441			
1.02	85.85	43.4	-1.3691039			
Media	512.921	515.159				
Desv.	364.490	349.348				
C.A.	1.438	1.048				
C.V.	0.711	0.678				

Capítulo 3. Aplicación y Resultados

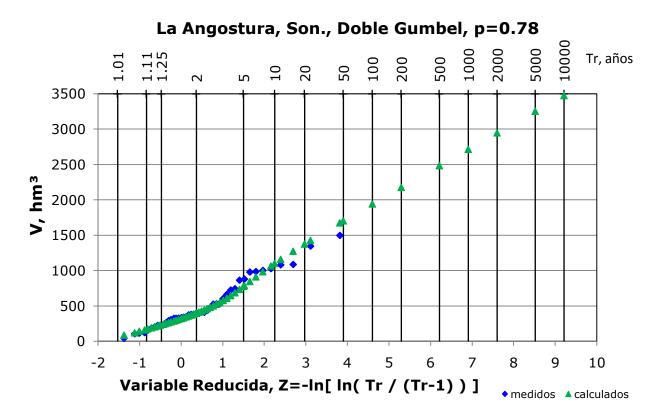


Figura 3.1 Función Doble Gumbel, datos medidos y calculados

3.2.3. Series sintéticas

Posteriormente, con los parámetros obtenidos se generaron 10 series de 101 años cada una en el programa DGUQ2SD.BAS, escrito en lenguaje Basic, que calcula números aleatorios con distribución Doble Gumbel. La serie 01 se puede ver a continuación en la tabla 3.5; en la que xP son los volúmenes totales sintéticos generados, F (xP) es la función de distribución de probabilidad, ALE es el aleatorio y ffin es el aleatorio final. En la figura 3.2 se muestra la función de distribución Doble Gumbel, existe una comparación entre los datos medidos, los calculados y los datos de la serie 01.

Capítulo 3. Aplicación y Resultados

Tabla 3.5 Serie 01 de 101 datos generados

1	xP (hm³)	F(XP)	ALE	ffin
1	1338.158	0.0000010	0.94500370	0.94500380
2	266.3958	-0.00000047	0.26818050	0.26818000
3	74.19586	-0.00000002	0.01587421	0.01587419
4	134.9091	0.00000041	0.05862069	0.05862110
5	683.6033	-0.00000061	0.76039830	0.76039770
6	171.0498	-0.00000043	0.10251410	0.10251370
7	1198.616	-0.00000080	0.92132050	0.92131970
8	317.8787	0.00000007	0.36694000	0.36694010
9	62.27493	-0.0000010	0.01146573	0.01146563
10	146.5404	-0.00000005	0.07123578	0.07123573
11	168.798	0.00000076	0.09938413	0.09938489
12	855.4507	-0.00000050	0.83006360	0.83006310
13	1020.489	-0.00000075	0.88015170	0.88015090
14	1311.464	0.00000034	0.94100800	0.94100830
15	289.3519	0.00000019	0.31257730	0.31257750
86	127.9712	-0.00000002	0.05179870	0.05179868
87	273.2718	-0.00000067	0.28147460	0.28147400
88	533.2614	0.00000034	0.66245410	0.66245450
89	2347.26	-0.00000007	0.99699370	0.99699370
90	394.4099	0.00000034	0.49844090	0.49844120
91	537.8604	0.00000095	0.66640170	0.66640260
92	456.1925	0.00000066	0.58311250	0.58311310
93	261.479	-0.0000014	0.25870030	0.25870020
94	1067.524	0.0000018	0.89227620	0.89227630
95	229.3009	-0.00000002	0.19803050	0.19803050
96	168.3891	0.00000043	0.09882164	0.09882206
97	498.364	-0.00000082	0.62978570	0.62978490
98	269.6049	-0.00000062	0.27438130	0.27438070
99	814.6953	-0.00000025	0.81563120	0.81563100
100	232.6989	-0.00000095	0.20427160	0.20427060
101	565.6528	-0.0000013	0.68868010	0.68868000
Media	465.639			
Desv.	378.172			
C.A.	2.190			
C.V.	0.812			

Capítulo 3. Aplicación y Resultados

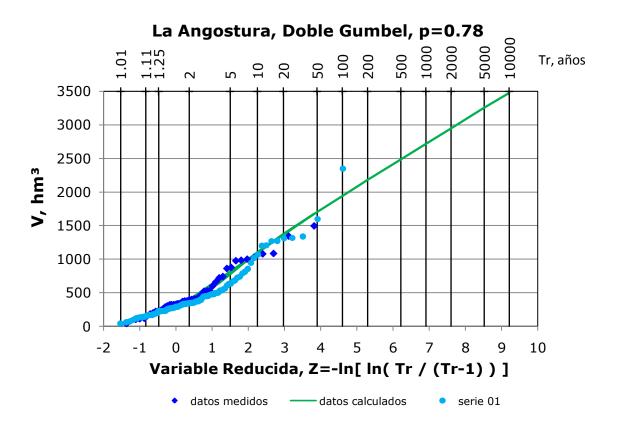


Figura 3.2 Función Doble Gumbel, datos medidos, calculados y los resultados de la serie 01

3.2.4. Selección de años aleatorios y obtención de fracciones aleatorias

Después de obtener las series se emplearon dos programas para la selección de años aleatorios y las fracciones aleatorias, debido a que se hicieron dos ensayos, el primero sin considerar la influencia del invierno en los volúmenes mensuales y en el segundo si se hizo esta consideración. Para el primer ensayo se usó el programa AÑHIANG.BAS y en el segundo ensayo el AÑHIAN.BAS.

En el primer ensayo se consideró el registro de la tabla 3.2, con un orden de años cronológico a partir del cual el programa hacía una selección aleatoria de años, por lo tanto cuando el programa elegía el número uno correspondía al año 1965 y así sucesivamente hasta el número 45 que correspondía al año 2009. A continuación se muestra la selección aleatoria de años para la serie 01 (tabla 3.8).

Capítulo 3. Aplicación y Resultados

Tabla 3.6 Numeración de años. Tabla 3.7 Serie 01. Tabla 3.8 Años aleatorios de la serie 01

1	Año	ı	xP (hm³)
1	1965	1	1338.158
2	1966	2	266.3958
3	1967	3	74.19586
4	1968	4	134.9091
5	1969	5	683.6033
6	1970	6	171.0498
7	1971	7	1198.616
8	1972	8	317.8787
9	1973	9	62.27493
10	1974	10	146.5404
11	1975	11	168.798
12	1976	12	855.4507
13	1977	13	1020.489
14	1978	14	1311.464
15	1979	15	289.3519
16	1980		
17	1981		
18	1982		
19	1983	86	127.9712
20	1984	87	273.2718
21	1985	88	533.2614
22	1986	89	2347.26
23	1987	90	394.4099
24	1988	91	537.8604
25	1989	92	456.1925
26	1990	93	261.479
27	1991	94	1067.524
28	1992	95	229.3009
29	1993	96	168.3891
30	1994	97	498.364
31	1995	98	269.6049
32	1996	99	814.6953
33	1997	100	232.6989
34	1998	101	565.6528
35	1999	Media	166.506
36	2000	Desv.	503.756
37	2001	C.A.	1.862
38	2002	C.V.	3.025
39	2003		
40	2004		
41	2005		
42	2006		
43	2007		

Orden	Año aleatorio	Año
1	40	2004
2	1	1965
3	9	1973
4	23	1987
5	32	1996
6	27	1991
7	27	1991
8	3	1967
9	42	2006
10	17	1981
11	4	1968
12	14	1978
13	9	1973
14	36	2000
15	18	1982
	•	
•	•	
86	11	1975
87	39	2003
88	28	1992
89	8	1972
90	2	1966
91	42	2006
92	11	1975
93	3	1967
94	13	1977
95	30	1994
96	42	2006
97	31	1995
98	32	1996
99	41	2005
100	38	2002
101	1	1965

Capítulo 3. Aplicación y Resultados

Con el mismo programa, se generaron las fracciones aleatorias (tabla 3.9), con las cuales se generó el nuevo registro de 101 años al multiplicar el valor calculado xP de cada una de las series por sus correspondientes fracciones aleatorias (tabla 3.10). A los nuevos datos de registro se les obtuvieron sus estadísticos básicos.

Tabla 3.9 Fracción aleatoria correspondiente para la serie 01

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Suma
1	0.02	0.07	0.01	0.01	0.04	0.12	0.36	0.32	0.03	0.00	0.00	0.01	1.0
2	0.10	0.06	0.09	0.02	0.00	0.38	0.10	0.13	0.08	0.04	0.00	0.00	1.0
3	0.59	0.07	0.05	0.07	0.00	0.00	0.00	0.04	0.11	0.06	0.00	0.00	1.0
4	0.03	0.48	0.14	0.00	0.00	0.09	0.13	0.13	0.00	0.00	0.00	0.01	1.0
5	0.24	0.20	0.28	0.02	0.04	0.04	0.04	0.02	0.09	0.02	0.00	0.02	1.0
6	0.03	0.12	0.12	0.01	0.01	0.19	0.30	0.08	0.08	0.04	0.01	0.01	1.0
7	0.03	0.12	0.12	0.01	0.01	0.19	0.30	0.08	0.08	0.04	0.01	0.01	1.0
8	0.05	0.07	0.02	0.00	0.03	0.36	0.09	0.14	0.19	0.03	0.01	0.00	1.0
9	0.07	0.44	0.31	0.02	0.00	0.00	0.05	0.07	0.01	0.00	0.02	0.01	1.0
10	0.28	0.36	0.09	0.06	0.03	0.08	0.08	0.00	0.01	0.00	0.00	0.00	1.0
11	0.08	0.42	0.14	0.00	0.02	0.08	0.08	0.07	0.04	0.03	0.03	0.01	1.0
12	0.01	0.04	0.01	0.05	0.04	0.17	0.49	0.11	0.03	0.03	0.02	0.01	1.0
13	0.59	0.07	0.05	0.07	0.00	0.00	0.00	0.04	0.11	0.06	0.00	0.00	1.0
14	0.13	0.17	0.03	0.14	0.23	0.04	0.04	0.17	0.04	0.01	0.00	0.00	1.0
15	0.02	0.04	0.06	0.00	0.00	0.16	0.07	0.22	0.28	0.12	0.03	0.01	1.0
	•			•		•		•					
	•	•		•		•		•	•			•	
•	٠	•	•	٠	•	٠	•	•	•	•	•	•	•
86	0.27	0.11	0.18	0.01	0.00	0.00	0.09	0.31	0.00	0.01	0.01	0.00	1.0
87	0.04	0.15	0.07	0.00	0.00	0.06	0.09	0.12	0.32	0.14	0.00	0.02	1.0
88	0.02	0.05	0.02	0.01	0.00	0.05	0.54	0.19	0.08	0.02	0.01	0.00	1.0
89	0.03	0.11	0.09	0.06	0.06	0.02	0.17	0.24	0.17	0.03	0.02	0.01	1.0
90	0.17	0.53	0.12	0.10	0.04	0.02	0.01	0.00	0.01	0.00	0.00	0.00	1.0
91	0.07	0.44	0.31	0.02	0.00	0.00	0.05	0.07	0.01	0.00	0.02	0.01	1.0
92	0.27	0.11	0.18	0.01	0.00	0.00	0.09	0.31	0.00	0.01	0.01	0.00	1.0
93	0.05	0.07	0.02	0.00	0.03	0.36	0.09	0.14	0.19	0.03	0.01	0.00	1.0
94	0.10	0.15	0.05	0.12	0.01	0.00	0.03	0.07	0.40	0.04	0.02	0.01	1.0
95	0.01	0.03	0.05	0.00	0.10	0.31	0.05	0.39	0.04	0.01	0.01	0.01	1.0
96	0.07	0.44	0.31	0.02	0.00	0.00	0.05	0.07	0.01	0.00	0.02	0.01	1.0
97	0.07	0.24	0.36	0.06	0.06	0.07	0.05	0.05	0.04	0.00	0.00	0.01	1.0
98	0.24	0.20	0.28	0.02	0.04	0.04	0.04	0.02	0.09	0.02	0.00	0.02	1.0
99	0.01	0.40	0.23	0.09	0.06	0.17	0.00	0.02	0.00	0.00	0.01	0.01	1.0
100	0.05	0.44	0.09	0.01	0.03	0.06	0.05	0.10	0.15	0.02	0.00	0.00	1.0
101	0.10	0.06	0.09	0.02	0.00	0.38	0.10	0.13	0.08	0.04	0.00	0.00	1.0

Capítulo 3. Aplicación y Resultados

Tabla 3.10 Registro sintético de 101 años (hm³)

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
1	31.45	95.95	12.58	11.51	55.53	154.29	488.03	426.87	38.14	2.94	5.89	15.05	1338.22
2	25.92	16.41	24.19	4.00	0.75	100.35	27.79	35.06	20.17	11.77	0.00	0.00	266.40
3	43.62	5.32	3.89	5.41	0.02	0.00	0.02	3.15	8.36	4.30	0.00	0.11	74.20
4	3.37	64.55	18.59	0.00	0.00	12.51	17.35	16.93	0.00	0.00	0.47	1.14	134.91
5	162.56	134.46	190.32	12.92	26.93	26.05	28.30	15.59	64.19	11.55	0.00	10.76	683.63
6	5.88	20.78	20.01	2.24	1.28	33.29	51.31	13.07	14.23	6.06	1.52	1.35	171.03
7	41.23	145.63	140.24	15.70	8.99	233.25	359.58	91.57	99.72	42.43	10.67	9.48	1198.50
8	15.86	22.06	6.10	1.56	8.65	115.20	28.90	45.87	61.22	8.93	2.13	1.40	317.88
9	4.59	27.64	19.14	1.03	0.05	0.03	3.08	4.09	0.79	0.11	1.35	0.44	62.34
10	40.66	52.87	13.26	9.04	4.43	11.65	11.99	0.56	1.96	0.10	0.00	0.00	146.53
11	13.91	70.19	23.40	0.74	3.81	14.04	14.08	11.53	6.89	4.24	4.29	1.69	168.80
12	10.61	34.99	5.30	42.52	35.93	144.14	415.58	92.65	23.61	28.66	16.68	4.72	855.38
13	599.95	73.17	53.47	74.39	0.31	0.00	0.31	43.27	115.01	59.09	0.00	1.54	1020.49
14	169.97	224.00	35.15	183.08	302.42	49.05	58.49	218.75	52.33	18.36	0.00	0.00	1311.60
15	4.40	11.52	16.93	0.87	0.58	46.12	19.21	63.89	82.09	33.83	7.81	2.11	289.35
									•		•		
									•		•		
86	35.17	13.72	23.35	1.69	0.00	0.00	11.85	39.43	0.00	1.13	1.63	0.00	127.96
87	10.22	39.95	20.41	0.00	0.00	16.01	23.80	33.37	86.30	37.98	0.00	5.21	273.27
88	13.12	26.61	9.81	3.41	0.00	26.08	289.83	103.29	40.85	12.64	5.60	2.02	533.25
89	66.90	258.20	206.32	144.59	146.47	44.83	392.93	570.15	392.93	68.77	42.72	12.64	2347.46
90	68.82	207.81	46.22	38.93	16.01	7.65	3.98	0.00	2.52	1.46	0.95	0.00	394.37
91	39.64	238.76	165.34	8.87	0.43	0.27	26.62	35.34	6.83	0.91	11.67	3.77	538.46
92	125.36	48.90	83.26	6.02	0.00	0.00	42.24	140.55	0.00	4.01	5.79	0.00	456.15
93	13.05	18.15	5.02	1.28	7.11	94.76	23.77	37.73	50.36	7.35	1.75	1.15	261.48
94	109.53	155.54	56.90	125.75	13.66	4.59	30.32	71.42	425.94	46.22	21.35	6.36	1067.58
95	2.27	6.12	11.53	0.62	22.72	71.63	10.59	88.46	8.85	3.42	1.56	1.53	229.32
96	12.41	74.75	51.76	2.78	0.13	0.08	8.34	11.06	2.14	0.29	3.65	1.18	168.58
97	33.44	120.45	177.72	31.85	31.40	33.14	23.27	23.57	17.74	1.84	0.00	4.01	498.44
98	64.11	53.03	75.06	5.10	10.62	10.27	11.16	6.15	25.32	4.56	0.00	4.24	269.62
99	7.41	324.98	187.38	75.77	47.25	140.29	3.75	15.32	1.47	0.90	6.44	11.26	822.21
100	11.22	102.53	20.97	3.12	6.86	12.94	12.52	22.62	34.11	5.79	0.00	0.00	232.68
101	55.04	34.84	51.36	8.48	1.58	213.08	59.00	74.44	42.82	25.00	0.00	0.00	565.65
Media	51.59	119.85	54.38	24.05	17.79	45.84	46.54	52.77	35.37	10.07	4.09	3.45	465.78
Desv.	78.87	133.82	62.93	42.70	36.53	60.46	89.30	78.40	64.24	13.71	6.73	7.15	378.24
C.A.	4.16	2.26	2.32	4.02	5.56	1.89	3.46	4.22	4.29	2.21	3.55	5.70	2.19
C.V.	1.53	1.12	1.16	1.78	2.05	1.32	1.92	1.49	1.82	1.36	1.65	2.07	0.81
C. ji+1,ji	0.26	0.69	0.24	0.58	0.12	0.39	0.63	0.44	0.72	0.62	0.64	0.03	

Posteriormente, con los estadísticos del nuevo registro se hicieron gráficas para comparar su variación con los estadísticos históricos, considerando el año hidrológico que inicia en el mes de julio que corresponde al mes número 1 en las gráficas y termina en junio que es el correspondiente mes número 12 (figuras 3.3 a 3.6). Y se obtuvo la diferencia entre los estadísticos históricos y los sintéticos (tabla 3.11).

Capítulo 3. Aplicación y Resultados

Tabla 3.11 Diferencia entre los estadísticos del registro histórico y el registro sintético obtenido a partir de la serie 01

		Esta	adísticos	del reg	istro sir	ntético o	btenido	a parti	r de la s	serie 0:	l		
Media	51.59	119.85	54.38	24.05	17.79	45.84	46.54	52.77	35.37	10.07	4.09	3.45	465.78
Desv.	78.87	133.82	62.93	42.70	36.53	60.46	89.30	78.40	64.24	13.71	6.73	7.15	378.24
C.A.	4.16	2.26	2.32	4.02	5.56	1.89	3.46	4.22	4.29	2.21	3.55	5.70	2.19
C.V.	1.53	1.12	1.16	1.78	2.05	1.32	1.92	1.49	1.82	1.36	1.65	2.07	0.81
Cji+1,ji	0.26	0.69	0.24	0.58	0.12	0.39	0.63	0.44	0.72	0.62	0.64	0.03	
				Esta	adístico	s del reg	istro his	tórico					
Media	49.10	104.13	44.42	25.76	18.30	70.61	67.98	64.40	48.56	13.15	5.58	3.17	515.16
Desv.	43.77	73.52	29.05	31.50	23.92	121.68	117.66	80.98	86.54	20.73	7.40	3.81	349.35
C.A.	1.31	1.24	0.56	1.60	2.10	2.73	2.72	1.69	2.59	3.08	1.44	1.85	1.05
C.V.	0.89	0.71	0.65	1.22	1.31	1.72	1.73	1.26	1.78	1.58	1.33	1.20	0.68
Cji+1,ji	0.39	0.41	0.04	0.38	0.27	0.35	0.51	0.44	0.74	0.79	0.46	-0.03	
Diferen	icia ent	re los es	stadístic	os del i	registro	históric	oyelre	egistro	sintéti	co obt	enido	a part	ir de la
serie 0	1												
Media	-2.48	-15.71	-9.96	1.71	0.50	24.77	21.44	11.63	13.20	3.07	1.49	-0.28	49.38
Desv.	-35.10	-60.30	-33.87	-11.21	-12.62	61.23	28.35	2.58	22.30	7.02	0.67	-3.34	-28.89
C.A.	-2.85	-1.01	-1.76	-2.42	-3.46	0.83	-0.74	-2.53	-1.71	0.86	-2.11	-3.84	-1.14
C.V.	-0.64	-0.41	-0.50	-0.55	-0.75	0.40	-0.19	-0.23	-0.03	0.22	-0.32	-0.87	-0.13
Cji+1,ji	0.13	-0.28	-0.20	-0.20	0.15	-0.05	-0.12	0.00	0.01	0.18	-0.18	-0.05	

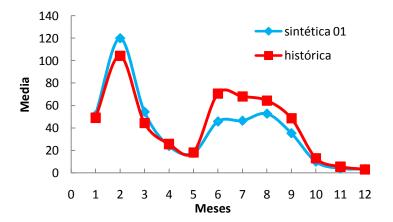


Figura 3.3 Comparación entre la media del registro histórico y el registro sintético obtenido a partir de la serie 01

Capítulo 3. Aplicación y Resultados

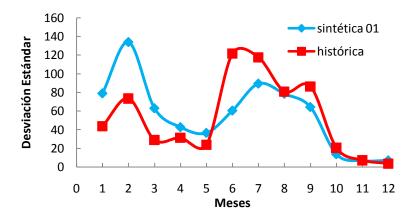


Figura 3.4 Comparación entre la desviación estándar del registro histórico y el registro sintético obtenido a partir de la serie 01

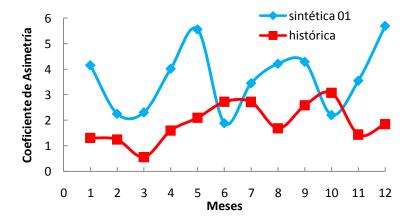


Figura 3.5 Comparación entre el coeficiente de asimetría del registro histórico y el registro sintético obtenido a partir de la serie 01

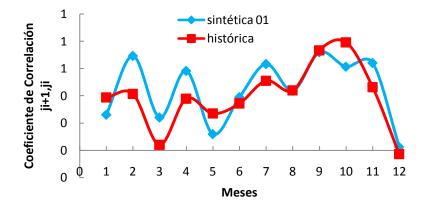


Figura 3.6 Comparación entre el coeficiente de correlación del registro histórico y el registro sintético obtenido a partir de la serie 01

Capítulo 3. Aplicación y Resultados

Después de observar las comparaciones entre los estadísticos, es claro que éstos no se reproducen de la mejor manera, lo anterior también pasó al hacer lo mismo para los estadísticos de cada serie y compararlos con los del registro histórico (figuras 3.7 a 3.10). Y considerando el mismo año hidrológico de juliojunio.

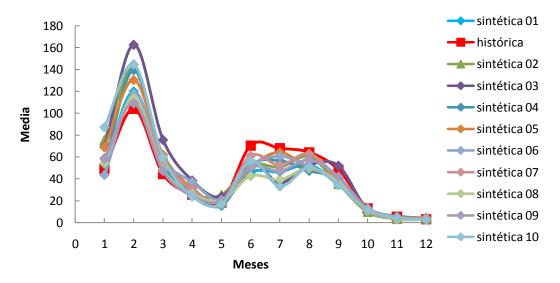


Figura 3.7 Comparación entre la media del registro histórico y el registro sintético de cada una de las 10 series

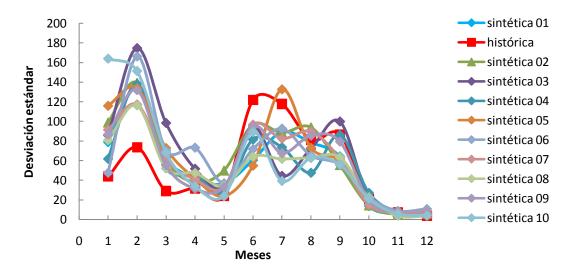
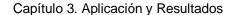



Figura 3.8 Comparación entre la desviación estándar del registro histórico y el registro sintético de cada una de las 10 series

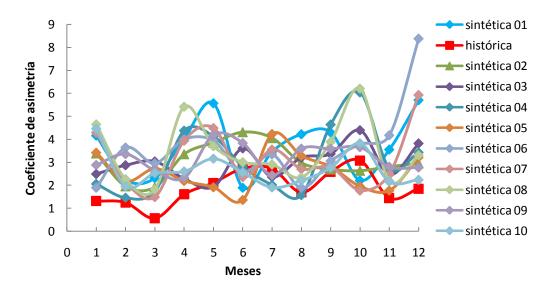


Figura 3.9 Comparación entre el coeficiente de asimetría del registro histórico y el registro sintético de cada una de las 10 series

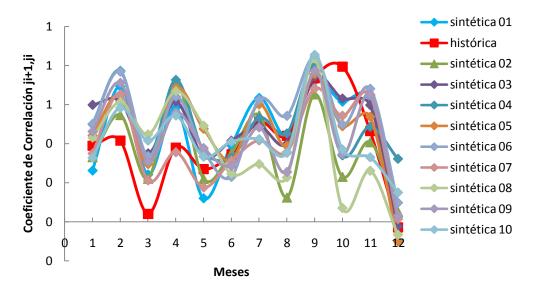


Figura 3.10 Comparación entre el coeficiente de correlación del registro histórico y el registro sintético de cada una de las 10 series

Se revisó nuevamente el registro histórico, la nueva revisión resaltó el hecho de que había meses en los que el volumen de escurrimiento por cuenca propia era mayor que el valor de la media de ese mes, lo cual ocurría en los meses de diciembre a marzo (tabla 3.12).

Al observar la influencia de la temporada de invierno en varios años del registro histórico, se decidió hacer un segundo ensayo tomando en cuenta esta consideración. Se reacomodó el registro en dos poblaciones, la población

Capítulo 3. Aplicación y Resultados

número uno se conformó con los años que presentan influencia del invierno y la población número dos se formó por los años que no se ven afectados por la época invernal, posteriormente se ordenaron de mayor a menor de acuerdo con el volumen total anual (tabla 3.13).

Con el nuevo registro se hizo la nueva selección aleatoria de años entre dos poblaciones, la población 1 ubicada en la parte superior y la población 2 ubicada en la parte inferior de la tabla 3.13. Se estableció un umbral que dividió a las dos poblaciones, fue de 604.66.

Tabla 3.12 Año hidrológico (ingresos en hm³). Estadísticos: media, desviación estándar, coeficiente de asimetría, coeficiente de variación y coeficiente de correlación. Los valores marcados son mayores a la media

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
1965	64.49	40.87	60.24	9.97	1.87	249.76	69.15	87.25	50.16	29.30	0.00	0.00	663.05
1966	91.43	276.00	61.39	51.69	21.29	10.18	5.27	0.00	3.35	1.94	1.27	0.00	523.80
1967	74.64	103.90	28.79	7.34	40.71	542.24	136.01	215.95	288.16	42.05	9.96	6.60	1496.35
1968	15.37	77.55	25.85	0.82	4.22	15.51	15.55	12.73	7.60	4.69	4.74	1.87	186.50
1969	67.41	69.94	54.25	36.28	29.62	35.67	11.38	6.98	17.79	3.48	0.00	0.00	332.79
1970	15.95	147.58	45.37	11.67	6.23	6.28	7.27	5.67	7.41	3.08	2.73	0.00	259.23
1971	59.34	98.37	16.27	47.33	38.66	48.97	26.50	1.32	0.00	0.86	0.00	6.81	344.43
1972	30.81	118.82	94.94	66.53	67.34	20.59	180.77	262.35	180.74	31.66	19.62	5.82	1079.98
1973	62.09	7.57	5.53	7.70	0.03	0.00	0.04	4.48	11.91	6.12	0.00	0.16	105.61
1974	48.28	81.80	24.88	18.52	47.98	8.53	10.22	66.95	7.23	8.00	0.00	2.05	324.43
1975	89.05	34.75	59.14	4.28	0.00	0.00	30.00	99.82	0.00	2.85	4.12	0.00	324.00
1976	132.14	56.40	61.87	44.20	17.87	8.26	60.64	20.96	7.25	0.00	0.00	0.00	409.60
1977	100.32	142.53	52.11	115.26	12.47	4.20	27.78	65.46	390.24	42.30	19.57	5.83	978.07
1978	13.49	44.40	6.76	54.00	45.66	182.95	527.59	117.57	30.02	36.39	21.19	5.99	1086.02
1979	13.50	70.01	0.00	6.22	7.61	14.18	2.63	32.87	5.17	0.00	0.96	1.55	154.69
1980	26.31	58.11	33.43	5.05	1.65	4.61	34.59	20.21	127.03	14.83	9.17	4.43	339.40
1981	109.45	142.29	35.71	24.34	11.92	31.34	32.27	1.51	5.28	0.27	0.00	0.00	394.38
1982	14.96	39.27	57.65	2.92	1.99	157.04	65.46	217.58	279.58	115.15	26.66	7.18	985.42
1983	12.15	56.92	60.44	95.62	54.33	100.43	17.26	5.19	0.00	0.00	4.17	2.93	409.43
1984	39.35	297.48	50.63	40.03	24.10	518.30	166.39	106.22	44.76	33.26	23.67	0.06	1344.24
1985	18.27	92.84	36.19	90.39	14.97	17.12	6.37	41.85	15.11	17.34	11.23	17.86	379.54
1986	192.80	136.56	81.07	20.21	18.49	161.32	28.88	18.12	21.92	13.54	16.89	13.63	723.43
1987	5.64	108.04	31.12	0.00	0.00	20.93	29.04	28.34	0.00	0.00	0.79	1.90	225.79
1988	62.69	297.80	73.97	30.54	6.27	7.91	13.78	13.24	9.35	4.91	7.66	4.95	533.06
1989	5.66	110.72	69.82	0.71	0.00	3.86	22.58	43.18	19.87	9.44	3.92	0.00	289.76
1990	153.08	266.14	50.33	56.22	18.69	92.83	87.24	46.91	203.97	16.91	3.12	6.21	1001.64
1991	35.33	124.72	120.14	13.45	7.65	199.78	307.95	78.37	85.44	36.36	9.13	8.12	1026.44
1992	21.60	43.89	16.19	5.62	0.00	42.94	477.61	170.22	67.36	20.84	9.23	3.32	878.82
1993	60.24	120.62	83.62	18.13	22.45	41.26	20.14	20.61	11.65	0.00	0.00	2.60	401.31
1994	8.54	23.01	43.42	2.35	85.56	269.65	39.86	333.04	33.33	12.90	5.87	5.77	863.29
1995	7.71	27.76	40.97	7.34	7.24	7.64	5.37	5.43	4.09	0.42	0.00	0.92	114.88
1996	53.36	44.15	62.47	4.23	8.85	8.54	9.29	5.11	21.07	3.79	0.00	3.53	224.41
1997	3.25	67.44	19.27	4.83	16.41	95.39	66.88	104.94	86.85	47.02	16.97	0.00	529.24
1998	42.92	54.76	6.00	5.34	3.81	3.21	3.08	2.90	0.32	0.00	0.00	0.00	122.34
1999	126.14	202.76	41.09	0.98	0.80	0.38	4.29	3.34	0.60	0.00	0.00	0.00	380.37
2000	61.61	81.20	12.73	66.35	109.65	17.78	21.20	79.32	18.97	6.64	0.00	0.00	475.45
2001	66.80	114.60	19.00	8.23	0.92	1.10	2.08	67.13	15.91	5.69	2.01	2.27	305.74
2002	9.79	89.47	18.30	2.73	5.99	11.29	10.93	19.74	29.77	5.05	0.00	0.00	203.05
2003	1.62	6.34	3.24	0.00	0.00	2.55	3.78	5.30	13.70	6.03	0.00	0.83	43.40
2004	17.43	53.30	6.95	6.36	30.85	85.67	270.98	237.07	21.19	1.61	3.26	8.36	743.06

Capítulo 3. Aplicación y Resultados

Tabla 3.12 Continuación

2005	2.17	95.12	54.84	22.17	13.84	41.05	-1.09	4.49	0.42	0.26	1.89	3.29	238.46
2006	27.44	165.15	114.40	6.15	0.29	-0.17	18.41	24.43	4.71	0.62	8.07	2.61	372.09
2007	29.22	189.00	69.32	7.05	3.37	79.69	17.05	36.71	1.56	0.26	0.69	0.69	434.61
2008	75.38	161.68	70.33	11.59	2.37	0.38	1.05	0.09	1.12	0.13	0.62	1.16	325.89
2009	40.51	44.35	18.98	118.28	9.33	6.22	165.48	157.04	33.38	5.71	2.13	3.25	604.66
Media	49.10	104.13	44.42	25.76	18.30	<mark>70.61</mark>	<mark>67.98</mark>	<mark>64.40</mark>	<mark>48.56</mark>	13.15	5.58	3.17	515.16
Desv.	43.77	73.52	29.05	31.50	23.92	121.68	117.66	80.98	86.54	20.73	7.40	3.81	349.35
C.A.	1.31	1.24	0.56	1.60	2.10	2.73	2.72	1.69	2.59	3.08	1.44	1.85	1.05
C.V.	0.89	0.71	0.65	1.22	1.31	1.72	1.73	1.26	1.78	1.58	1.33	1.20	0.68
C. ji+1,ji	0.39	0.41	0.04	0.38	0.27	0.35	0.51	0.44	0.74	0.79	0.46	-0.03	

Tabla 3.13 Año hidrológico (ingresos en hm³). Los años de la población 1 están marcados al igual que los valores mayores a la media

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
1967	74.64	103.90	28.79	7.34	40.71	542.24	136.01	215.95	288.16	42.05	9.96	6.60	1496.35
1984	39.35	297.48	50.63	40.03	24.10	518.30	166.39	106.22	44.76	33.26	23.67	0.06	1344.24
1978	13.49	44.40	6.76	54.00	45.66	182.95	527.59	117.57	30.02	36.39	21.19	5.99	1086.02
1972	30.81	118.82	94.94	66.53	67.34	20.59	180.77	262.35	180.74	31.66	19.62	5.82	1079.98
1991	35.33	124.72	120.14	13.45	7.65	199.78	307.95	78.37	85.44	36.36	9.13	8.12	1026.44
1990	153.08	266.14	50.33	56.22	18.69	92.83	87.24	46.91	203.97	16.91	3.12	6.21	1001.64
1982	14.96	39.27	57.65	2.92	1.99	157.04	65.46	217.58	279.58	115.15	26.66	7.18	985.42
1977	100.32	142.53	52.11	115.26	12.47	4.20	27.78	65.46	390.24	42.30	19.57	5.83	978.07
1992	21.60	43.89	16.19	5.62	0.00	42.94	477.61	170.22	67.36	20.84	9.23	3.32	878.82
1994	8.54	23.01	43.42	2.35	85.56	269.65	39.86	333.04	33.33	12.90	5.87	5.77	863.29
2004	17.43	53.30	6.95	6.36	30.85	85.67	270.98	237.07	21.19	1.61	3.26	8.36	743.06
1986	192.80	136.56	81.07	20.21	18.49	161.32	28.88	18.12	21.92	13.54	16.89	13.63	723.43
1965	64.49	40.87	60.24	9.97	1.87	249.76	69.15	87.25	50.16	29.30	0.00	0.00	663.05
2009	40.51	44.35	18.98	118.28	9.33	6.22	165.48	157.04	33.38	5.71	2.13	3.25	604.66
1988	62.69	297.80	73.97	30.54	6.27	7.91	13.78	13.24	9.35	4.91	7.66	4.95	533.06
1997	3.25	67.44	19.27	4.83	16.41	95.39	66.88	104.94	86.85	47.02	16.97	0.00	529.24
1966	91.43	276.00	61.39	51.69	21.29	10.18	5.27	0.00	3.35	1.94	1.27	0.00	523.80
2000	61.61	81.20	12.73	66.35	109.65	17.78	21.20	79.32	18.97	6.64	0.00	0.00	475.45
2007	29.22	189.00	69.32	7.05	3.37	79.69	17.05	36.71	1.56	0.26	0.69	0.69	434.61
1976	132.14	56.40	61.87	44.20	17.87	8.26	60.64	20.96	7.25	0.00	0.00	0.00	409.60
1983	12.15	56.92	60.44	95.62	54.33	100.43	17.26	5.19	0.00	0.00	4.17	2.93	409.43
1993	60.24	120.62	83.62	18.13	22.45	41.26	20.14	20.61	11.65	0.00	0.00	2.60	401.31
1981	109.45	142.29	35.71	24.34	11.92	31.34	32.27	1.51	5.28	0.27	0.00	0.00	394.38
1999	126.14	202.76	41.09	0.98	0.80	0.38	4.29	3.34	0.60	0.00	0.00	0.00	380.37
1985	18.27	92.84	36.19	90.39	14.97	17.12	6.37	41.85	15.11	17.34	11.23	17.86	379.54
2006	27.44	165.15	114.40	6.15	0.29	-0.17	18.41	24.43	4.71	0.62	8.07	2.61	372.09
1971	59.34	98.37	16.27	47.33	38.66	48.97	26.50	1.32	0.00	0.86	0.00	6.81	344.43
1980	26.31	58.11	33.43	5.05	1.65	4.61	34.59	20.21	127.03	14.83	9.17	4.43	339.40
1969	67.41	69.94	54.25	36.28	29.62	35.67	11.38	6.98	17.79	3.48	0.00	0.00	332.79
2008	75.38	161.68	70.33	11.59	2.37	0.38	1.05	0.09	1.12	0.13	0.62	1.16	325.89
1974	48.28	81.80	24.88	18.52	47.98	8.53	10.22	66.95	7.23	8.00	0.00	2.05	324.43
1975	89.05	34.75	59.14	4.28	0.00	0.00	30.00	99.82	0.00	2.85	4.12	0.00	324.00
2001	66.80	114.60	19.00	8.23	0.92	1.10	2.08	67.13	15.91	5.69	2.01	2.27	305.74
1989	5.66	110.72	69.82	0.71	0.00	3.86	22.58	43.18	19.87	9.44	3.92	0.00	289.76
1970	15.95	147.58	45.37	11.67	6.23	6.28	7.27	5.67	7.41	3.08	2.73	0.00	259.23
2005	2.17 5.64	95.12	54.84	22.17	13.84	41.05	-1.09	4.49	0.42	0.26	1.89	3.29 1.90	238.46
1987		108.04	31.12	0.00	0.00	20.93	29.04	28.34	0.00	0.00	0.79		225.79
1996 2002	53.36 9.79	44.15 89.47	62.47 18.30	4.23 2.73	8.85 5.99	8.54 11.29	9.29 10.93	5.11 19.74	21.07 29.77	3.79 5.05	0.00	3.53 0.00	224.41 203.05
1968	9.79 15.37	89.47 77.55	25.85	0.82	5.99 4.22	15.51	15.55	19.74	7.60	5.05 4.69	4.74	1.87	186.50
1968	13.50	77.55 70.01	0.00	6.22	4.22 7.61	14.18	2.63	32.87	7.60 5.17	0.00	4.74 0.96	1.55	154.69
1979	42.92	54.76	6.00	5.34	3.81	3.21	3.08	2.90	0.32	0.00	0.90	0.00	122.34
1998	42.92 7.71	27.76	40.97	5.34 7.34	7.24	7.64	5.37	5.43	4.09	0.00	0.00	0.00	114.88
1993	62.09	7.57	5.53	7.34 7.70	0.03	0.00	0.04	5.45 4.48	4.09 11.91	6.12	0.00	0.92	105.61
13/3	02.03	1.51	٥.၁٥	7.70	0.03	0.00	0.04	4.40	11.91	0.12	0.00	0.10	103.01

Capítulo 3. Aplicación y Resultados

Tabla 3.13 Continuación

2003	1.62	6.34	3.24	0.00	0.00	2.55	3.78	5.30	13.70	6.03	0.00	0.83	43.40
Media	49.10	104.13	44.42	25.76	18.30	70.61	67.98	64.40	48.56	13.15	5.58	3.17	515.16
Desv.	43.77	73.52	29.05	31.50	23.92	121.68	117.66	80.98	86.54	20.73	7.40	3.81	349.35
C.A.	1.31	1.24	0.56	1.60	2.10	2.73	2.72	1.69	2.59	3.08	1.44	1.85	1.05
C.V.	0.89	0.71	0.65	1.22	1.31	1.72	1.73	1.26	1.78	1.58	1.33	1.20	0.68
C. ji+1,ji	0.39	0.41	0.04	0.38	0.27	0.35	0.51	0.44	0.74	0.79	0.46	0.14	

Se hizo un cambio en el algoritmo de selección aleatoria de años para que seleccionara el año dependiendo el valor del volumen aleatorio; si el valor era mayor o igual al umbral establecido seleccionaba un año de entre los de la población 1, formado por: 1967, 1984, 1978, 1972, 1991, 1990, 1982, 1977, 1992, 1994, 2004, 1986, 1965 y 2009. Mientras que cuando el valor era menor al del umbral seleccionaba años del resto de los que componen el registro, lo anterior se observa en las tablas 3.14 a 3.16.

De la misma manera que para el primer ensayo, se obtuvieron las fracciones aleatorias, pero ahora considerando la nueva selección aleatoria de años (tabla 3.17). Luego se calculó el nuevo registro sintético de 101 años y se calcularon sus correspondientes estadísticos básicos (tabla 3.18).

Una vez que se tuvieron los estadísticos del nuevo registro, se prosiguió a compararlos con los del registro histórico y se obtuvo nuevamente la diferencia entre ellos (tabla 3.19). La comparación de estadísticos considerando el año hidrológico de julio-junio se presenta en las figuras 3.11 a 3.14, en las cuales se observa el cambio en los estadísticos, ya que se reproducen mejor. Así como se hizo este procedimiento para la serie 01, se realizó repetidamente para las otras 9 series. En cada una de las cuales se vio el cambio al considerar la influencia del invierno en algunos de los años del registro. En las figuras 3.15 a 3.18 se observan los cambios, también considerando un año hidrológico de julio-junio, donde julio es el mes uno y el mes doce es junio.

Con la mejoría en la reproducción de los estadísticos, también se hizo un promedio en los mismos considerando las 10 series (tabla 3.20). Con estos datos se volvieron a hacer gráficas en las cuales se compara el promedio contra los estadísticos históricos (figuras 3.19 a 3.22).

Capítulo 3. Aplicación y Resultados

Tabla 3.14 Numeración de años. Tabla 3.15 Serie 01. Tabla 3.16 Años aleatorios de la serie 01. Están marcados los años que pertenecen a la población 1

I	Año
1	1967
2	1984
3	1978
4	1972
5	1991
6	1990
7	1982
8 9	1977 1992
10	1992
11	2004
12	1986
13	1965
14	2009
15	1988
16	1997
17	1966
18	2000
19	2007
20	1976
21	1983
22	1993
23	1981
24	1999
25	1985
26	2006
27	1971
28	1980
29	1969
30	2008
31	1974
32	1975
33	2001
34	1989
35	1970
36	2005
37	1987
38	1996
39	2002
40	1968
41	1979
42	1998
43	1995
44	1973

ı	xP (hm³)
1	1338.158
2	266.3958
3	74.19586
4	134.9091
5	683.6033
6	171.0498
7	1198.616
8	317.8787
9	62.27493
10	146.5404
11	168.798
12	855.4507
13	1020.489
14	1311.464
15	289.3519
86	127.9712
87	273.2718
88	533.2614
89	2347.26
90	394.4099
91	537.8604
92	456.1925
93	261.479
94	1067.524
95	229.3009
96	168.3891
97	498.364
98	269.6049
99	814.6953
100	232.6989
101	565.6528
Media	542.487
Desv.	503.756
C.A.	1.862
C.V.	0.929

Orden	Año aleatorio	Año
1	13	1965
2	15	1988
3	20	1976
4	30	2008
5	10	1994
6	33	2001
7	9	1992
8	16	1997
9	43	1995
10	26	2006
11	17	1966
12	5	1991
13	3	1978
14	12	1986
15	26	2006
	•	
•		•
86	22	1993
87	41	1979
88	33	2001
89	3	1978
90	15	1988
91	43	1995
92	22	1993
93	16	1997
94	4	1972
95	35	1970
96	43	1995
97	35	1970
98	36	2005
99	13	1965
100	41	1979
101	15	1988

45

2003

Capítulo 3. Aplicación y Resultados

Tabla 3.17 Fracción aleatoria correspondiente a la serie 01, considerando la nueva selección aleatoria de años

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Suma
1	0.10	0.06	0.09	0.02	0.00	0.38	0.10	0.13	0.08	0.04	0.00	0.00	1.00
2	0.12	0.56	0.14	0.06	0.01	0.01	0.03	0.02	0.02	0.01	0.01	0.01	1.00
3	0.32	0.14	0.15	0.11	0.04	0.02	0.15	0.05	0.02	0.00	0.00	0.00	1.00
4	0.23	0.50	0.22	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
5	0.01	0.03	0.05	0.00	0.10	0.31	0.05	0.39	0.04	0.01	0.01	0.01	1.00
6	0.22	0.37	0.06	0.03	0.00	0.00	0.01	0.22	0.05	0.02	0.01	0.01	1.00
7	0.02	0.05	0.02	0.01	0.00	0.05	0.54	0.19	0.08	0.02	0.01	0.00	1.00
8	0.01	0.13	0.04	0.01	0.03	0.18	0.13	0.20	0.16	0.09	0.03	0.00	1.00
9	0.07	0.24	0.36	0.06	0.06	0.07	0.05	0.05	0.04	0.00	0.00	0.01	1.00
10	0.07	0.44	0.31	0.02	0.00	0.00	0.05	0.07	0.01	0.00	0.02	0.01	1.00
11	0.17	0.53	0.12	0.10	0.04	0.02	0.01	0.00	0.01	0.00	0.00	0.00	1.00
12	0.03	0.12	0.12	0.01	0.01	0.19	0.30	0.08	0.08	0.04	0.01	0.01	1.00
13	0.01	0.04	0.01	0.05	0.04	0.17	0.49	0.11	0.03	0.03	0.02	0.01	1.00
14	0.27	0.19	0.11	0.03	0.03	0.22	0.04	0.03	0.03	0.02	0.02	0.02	1.00
15	0.07	0.44	0.31	0.02	0.00	0.00	0.05	0.07	0.01	0.00	0.02	0.01	1.00
	•		•									•	
•	•		٠									•	
86	0.15	0.30	0.21	0.05	0.06	0.10	0.05	0.05	0.03	0.00	0.00	0.01	1.00
87	0.09	0.45	0.00	0.04	0.05	0.09	0.02	0.21	0.03	0.00	0.01	0.01	1.00
88	0.22	0.37	0.06	0.03	0.00	0.00	0.01	0.22	0.05	0.02	0.01	0.01	1.00
89	0.01	0.04	0.01	0.05	0.04	0.17	0.49	0.11	0.03	0.03	0.02	0.01	1.00
90	0.12	0.56	0.14	0.06	0.01	0.01	0.03	0.02	0.02	0.01	0.01	0.01	1.00
91	0.07	0.24	0.36	0.06	0.06	0.07	0.05	0.05	0.04	0.00	0.00	0.01	1.00
92	0.15	0.30	0.21	0.05	0.06	0.10	0.05	0.05	0.03	0.00	0.00	0.01	1.00
93	0.01	0.13	0.04	0.01	0.03	0.18	0.13	0.20	0.16	0.09	0.03	0.00	1.00
94	0.03	0.11	0.09	0.06	0.06	0.02	0.17	0.24	0.17	0.03	0.02	0.01	1.00
95	0.06	0.57	0.18	0.05	0.02	0.02	0.03	0.02	0.03	0.01	0.01	0.00	1.00
96	0.07	0.24	0.36	0.06	0.06	0.07	0.05	0.05	0.04	0.00	0.00	0.01	1.00
97	0.06	0.57	0.18	0.05	0.02	0.02	0.03	0.02	0.03	0.01	0.01	0.00	1.00
98	0.01	0.40	0.23	0.09	0.06	0.17	0.00	0.02	0.00	0.00	0.01	0.01	1.01
99	0.10	0.06	0.09	0.02	0.00	0.38	0.10	0.13	0.08	0.04	0.00	0.00	1.00
100	0.09	0.45	0.00	0.04	0.05	0.09	0.02	0.21	0.03	0.00	0.01	0.01	1.00
101	0.12	0.56	0.14	0.06	0.01	0.01	0.03	0.02	0.02	0.01	0.01	0.01	1.00

Capítulo 3. Aplicación y Resultados

Tabla 3.18 Nuevo registro sintético a partir de la serie 01 (hm³)

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
1	130.20	82.43	121.50	20.07	3.75	504.08	139.57	176.10	101.30	59.15	0.00	0.00	1338.16
2	31.33	148.84	36.98	15.26	3.14	3.94	6.90	6.61	4.66	2.45	3.84	2.47	266.42
3	23.94	10.22	11.21	8.01	3.23	1.50	10.98	3.80	1.31	0.00	0.00	0.00	74.20
4	31.20	66.93	29.11	4.80	0.98	0.16	0.43	0.04	0.46	0.05	0.26	0.48	134.92
5	6.77	18.25	34.39	1.85	67.75	213.56	31.58	263.73	26.39	10.19	4.65	4.57	683.66
6	37.37	64.11	10.62	4.60	0.51	0.62	1.16	37.56	8.89	3.18	1.13	1.27	171.04
7	29.49	59.81	22.05	7.67	0.00	58.61	651.45	232.17	91.81	28.41	12.59	4.53	1198.59
8	1.94	40.50	11.57	2.89	9.85	57.28	40.18	63.04	52.16	28.26	10.20	0.00	317.88
9	4.18	15.05	22.21	3.98	3.92	4.14	2.91	2.95	2.22	0.23	0.00	0.50	62.28
10	10.80	65.05	45.05	2.42	0.12	0.07	7.25	9.63	1.86	0.25	3.18	1.03	146.70
11	29.46	88.94	19.78	16.66	6.85	3.27	1.70	0.00	1.08	0.62	0.41	0.00	168.78
12	29.43	103.94	100.09	11.21	6.42	166.47	256.64	65.36	71.17	30.28	7.61	6.76	855.37
13	12.65	41.74	6.33	50.72	42.86	171.95	495.75	110.52	28.17	34.19	19.90	5.63	1020.41
14	349.51	247.60	147.02	36.59	33.57	292.46	52.33	32.92	39.74	24.52	30.69	24.70	1311.64
15	21.33	128.44	88.95	4.77	0.23	0.14	14.32	19.01	3.67	0.49	6.28	2.03	289.67
		•	•	•									
		•	•	•									
86	19.21	38.47	26.67	5.78	7.15	13.16	6.42	6.56	3.71	0.00	0.00	0.83	127.97
87	23.86	123.68	0.00	10.99	13.44	25.03	4.65	58.07	9.13	0.00	1.69	2.74	273.28
88	116.52	199.87	33.12	14.34	1.60	1.92	3.63	117.10	27.73	9.92	3.52	3.96	533.22
89	29.11	96.00	14.55	116.66	98.58	395.51	1140.30	254.21	64.78	78.63	45.77	12.96	2347.07
90	46.38	220.36	54.74	22.60	4.65	5.84	10.22	9.78	6.90	3.63	5.68	3.66	394.44
91	36.09	130.00	191.80	34.37	33.89	35.77	25.12	25.44	19.15	1.99	0.00	4.33	537.94
92	68.47	137.13	95.07	20.62	25.50	46.90	22.90	23.40	13.23	0.00	0.00	2.96	456.19
93	1.60	33.31	9.52	2.38	8.11	47.12	33.05	51.85	42.91	23.25	8.39	0.00	261.48
94	30.42	117.43	93.84	65.76	66.61	20.39	178.70	259.30	178.70	31.28	19.43	5.75	1067.62
95	14.10	130.54	40.13	10.32	5.50	5.55	6.44	5.02	6.56	2.73	2.41	0.00	229.30
96	11.30	40.70	60.05	10.76	10.61	11.20	7.86	7.96	5.99	0.62	0.00	1.35	168.41
97	30.65	283.72	87.21	22.43	11.96	12.06	14.00	10.91	14.25	5.93	5.23	0.00	498.36
98	2.45	107.55	62.01	25.07	15.64	46.43	1.24	5.07	0.49	0.30	2.13	3.73	272.09
99	79.27	50.19	73.97	12.22	2.28	306.90	84.97	107.21	61.67	36.01	0.00	0.00	814.70
100	20.31	105.32	0.00	9.35	11.45	21.32	3.96	49.45	7.77	0.00	1.44	2.33	232.71
101	66.52	316.03	78.51	32.41	6.67	8.37	14.65	14.03	9.90	5.20	8.15	5.25	565.70
Media	49.85	98.82	44.79	25.60	16.30	51.52	66.50	59.97	32.33	12.03	4.92	3.07	465.69
Desv.	54.77	69.47	35.11	43.92	21.63	99.79	154.52	91.45	55.28	20.45	7.78	4.50	378.13
C.A.	2.89	1.14	1.31	4.50	2.70	3.00	4.53	2.64	3.42	3.86	2.73	2.74	2.19
C.V.	1.10	0.70	0.78	1.72	1.33	1.94	2.32	1.52	1.71	1.70	1.58	1.47	0.81
C. ji+1,ji	0.25	0.40	0.04	0.23	0.41	0.42	0.56	0.45	0.81	0.70	0.64	0.04	

Tabla 3.19 Comparación entre los estadísticos históricos y del registro sintético a partir de la serie 01, después de considerar la influencia del invierno

Estadísticos del registro sintético a partir de la serie 01. Considerando la influencia del invierno

Media	49.85	98.82	44.79	25.60	16.30	51.52	66.50	59.97	32.33	12.03	4.92	3.07	465.69	
Desv.	54.77	69.47	35.11	43.92	21.63	99.79	154.52	91.45	55.28	20.45	7.78	4.50	378.13	
C.A.	2.89	1.14	1.31	4.50	2.70	3.00	4.53	2.64	3.42	3.86	2.73	2.74	2.19	
C.V.	1.10	0.70	0.78	1.72	1.33	1.94	2.32	1.52	1.71	1.70	1.58	1.47	0.81	
Cji+1,ji	0.25	0.40	0.04	0.23	0.41	0.42	0.56	0.45	0.81	0.70	0.64	0.04		
	Estadísticos del registro histórico. Considerando la influencia del invierno													
Media	49.10	104.13	44.42	25.76	18.30	70.61	67.98	64.40	48.56	13.15	5.58	3.17	515.16	
Desv.	43.77	73.52	29.05	31.50	23.92	121.68	117.66	80.98	86.54	20.73	7.40	3.81	349.35	
C.A.	1.31	1.24	0.56	1.60	2.10	2.73	2.72	1.69	2.59	3.08	1.44	1.85	1.05	
C.V.	0.89	0.71	0.65	1.22	1.31	1.72	1.73	1.26	1.78	1.58	1.33	1.20	0.68	
Cji+1,ji	0.39	0.41	0.04	0.38	0.27	0.35	0.51	0.44	0.74	0.79	0.46	0.14		

Capítulo 3. Aplicación y Resultados

Tabla 3.19 Continuación

Diferencia entre los estadísticos del registro histórico y el registro sintético a partir de la serie 01. Considerando la influencia del invierno

Media	-0.74	5.31	-0.37	0.16	2.00	19.09	1.48	4.43	16.23	1.12	0.67	0.10	49.47
Desv.	-11.00	4.04	-6.05	-12.43	2.29	21.89	-36.86	-10.46	31.25	0.29	-0.38	-0.69	-28.78
C.A.	-1.58	0.10	-0.75	-2.89	-0.59	-0.27	-1.82	-0.95	-0.83	-0.78	-1.29	-0.89	-1.14
C.V.	-0.21	0.00	-0.13	-0.49	-0.02	-0.21	-0.59	-0.27	0.07	-0.12	-0.26	-0.26	-0.13
Cji+1,ji	0.14	0.01	0.00	0.15	-0.14	-0.08	-0.05	-0.01	-0.08	0.10	-0.17	0.10	

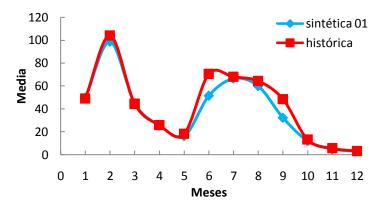


Figura 3.11 Comparación entre la media del registro histórico y la del registro sintético hecho a partir de la serie 01. Después de considerar la influencia del invierno

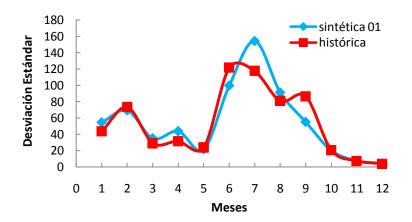


Figura 3.12 Comparación entre la desviación estándar del registro histórico y la del registro sintético hecho a partir de la serie 01. Después de considerar la influencia del invierno

Capítulo 3. Aplicación y Resultados

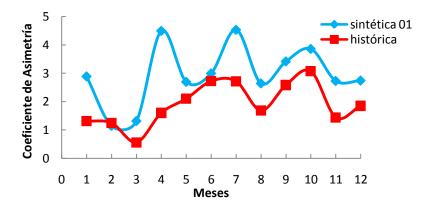


Figura 3.13 Comparación entre el coeficiente de asimetría del registro histórico y la del registro sintético hecho a partir de la serie 01. Después de considerar la influencia del invierno

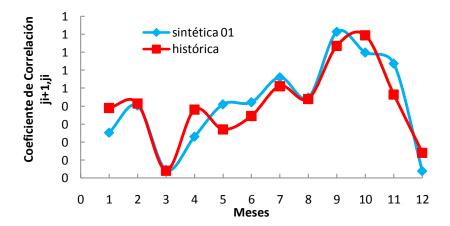


Figura 3.14 Comparación entre el coeficiente de correlación del registro histórico y la del registro sintético hecho a partir de la serie 01. Después de considerar la influencia del invierno

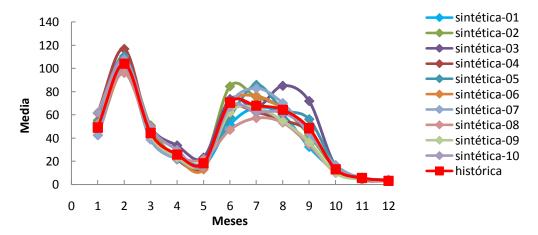


Figura 3.15 Comparación entre la media del registro histórico y la del registro sintético de cada una de las 10 series. Después de considerar la influencia del invierno

Capítulo 3. Aplicación y Resultados

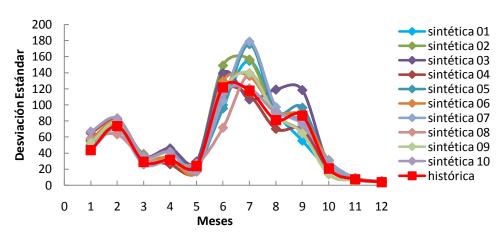


Figura 3.16 Comparación entre la desviación estándar del registro histórico y la del registro sintético de cada una de las 10 series. Después de considerar la influencia del invierno

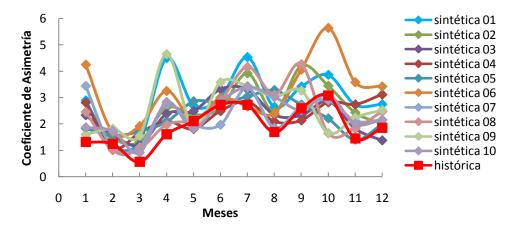


Figura 3.17 Comparación entre el coeficiente de asimetría del registro histórico y la del registro sintético de cada una de las 10 series. Después de considerar la influencia del invierno

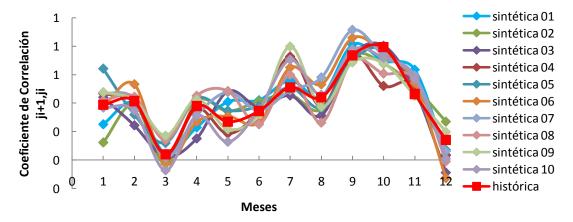


Figura 3.18 Comparación entre el coeficiente de correlación del registro histórico y la del registro sintético de cada una de las 10 series. Después de considerar la influencia del invierno

Capítulo 3. Aplicación y Resultados

Tabla 3.20 Estadísticos promedio considerando las 10 series sintéticas y estadísticos históricos. Considerando la influencia del invierno

Sintéticos	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
Media	52.22	105.18	44.90	25.10	17.54	64.82	70.04	63.69	45.55	13.76	4.96	3.27	511.05
Desv.	55.88	75.40	34.66	35.10	22.84	113.64	141.67	91.73	79.61	22.56	7.60	4.34	386.96
C.A.	2.58	1.41	1.38	2.91	2.21	2.84	3.47	2.62	3.16	3.01	2.29	2.40	1.68
C.V.	1.08	0.72	0.77	1.40	1.30	1.75	2.02	1.45	1.76	1.62	1.54	1.33	0.76
Cji+1,ji	0.40	0.39	0.04	0.34	0.34	0.35	0.60	0.41	0.77	0.70	0.54	0.05	

Históricos	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
Media	49.10	104.13	44.42	25.76	18.30	70.61	67.98	64.40	48.56	13.15	5.58	3.17	515.16
Desv.	43.77	73.52	29.05	31.50	23.92	121.68	117.66	80.98	86.54	20.73	7.40	3.81	349.35
C.A.	1.31	1.24	0.56	1.60	2.10	2.73	2.72	1.69	2.59	3.08	1.44	1.85	1.05
C.V.	0.89	0.71	0.65	1.22	1.31	1.72	1.73	1.26	1.78	1.58	1.33	1.20	0.68
Cji+1,ji	0.39	0.41	0.04	0.38	0.27	0.35	0.51	0.44	0.74	0.79	0.46	0.14	

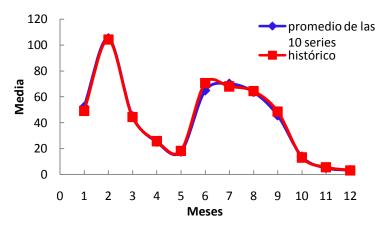


Figura 3.19 Comparación entre la media del registro histórico y la del promedio de las 10 series. Después de considerar la influencia del invierno

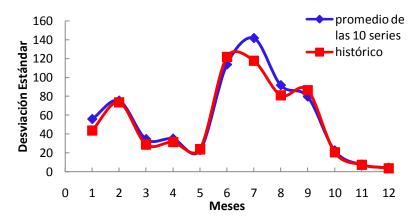


Figura 3.20 Comparación entre la desviación estándar del registro histórico y la del promedio de las 10 series. Después de considerar la influencia del invierno

Capítulo 3. Aplicación y Resultados

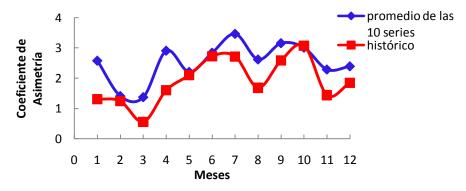


Figura 3.21 Comparación entre el coeficiente de asimetría del registro histórico y la del promedio de las 10 series. Después de considerar la influencia del invierno

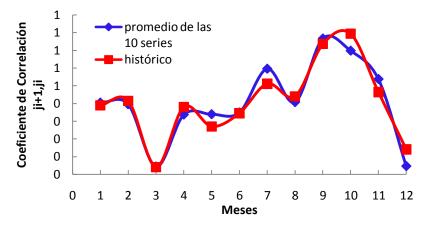


Figura 3.22 Comparación entre el coeficiente de correlación del registro histórico y la del promedio de las 10 series. Después de considerar la influencia del invierno

3.3. Resultados

3.3.1. Simulación de la política de operación con los registros sintéticos

Con los datos de la presa se obtuvo una política de operación óptima (figura 3.23). En la figura 3.24 se observa el archivo de la política en forma matricial. Lo anterior a partir de dos programas CAFIT1P.FOR y OPDIN1VS.FOR, los cuales ya fueron descritos dentro del capítulo 2.

Capítulo 3. Aplicación y Resultados

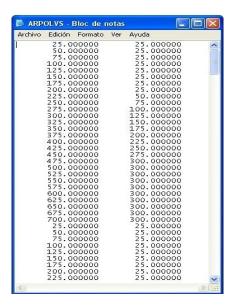


Figura 3.23 Archivo de la política de operación para la presa La Angostura, Son.

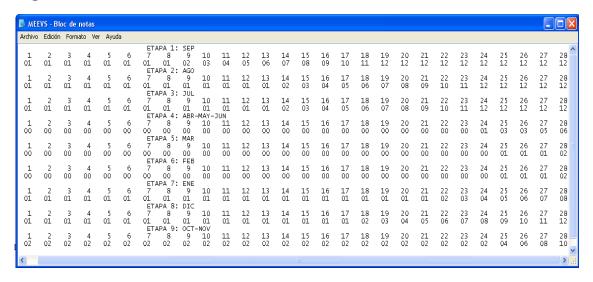


Figura 3.24 Archivo de la política de operación en forma matricial para la presa La Angostura, Son.

A partir de la obtención de la política de operación se empleó el programa SIMULQ1P.FOR para simular el funcionamiento quincenal de la presa en estudio. Para ello, los registros obtenidos se dividieron en quincenas y se acomodaron de acuerdo con un año hidrológico que inicia en el mes de octubre y termina en el mes de septiembre (tabla 3.21).

Capítulo 3. Aplicación y Resultados

Tabla 3.21 Registro quincenal obtenido a partir de la serie 01

AÑO	00	CT	N	OV	D	IC	Ef	NE	FE	В	М	AR	A	BR	М	AY	JL	IN	JL	JL	A	30	SI	EP	SUMA
ANO	Q1	Q2	Q1	Q2	Q1	Q2	Q1	Q2	Q1	Q2	Q1	Q2	Q1	Q2	Q1	Q2	SUIVIA								
1	10.0	10.0	1.9	1.9	252.0	252.0	69.8	69.8	88.1	88.1	50.6	50.6	29.6	29.6	0.0	0.0	0.0	0.0	15.7	15.7	74.4	74.4	18.5	18.5	1221.2
2	7.6	7.6	1.6	1.6	2.0	2.0	3.4	3.4	3.3	3.3	2.3	2.3	1.2	1.2	1.9	1.9	1.2	1.2	12.0	12.0	5.1	5.1	5.6	5.6	94.6
3	4.0	4.0	1.6	1.6	0.7	0.7	5.5	5.5	1.9	1.9	0.7	0.7	0.0	0.0	0.0	0.0	0.0	0.0	15.6	15.6	33.5	33.5	14.6	14.6	156.1
4	2.4	2.4	0.5	0.5	0.1	0.1	0.2	0.2	0.0	0.0	0.2	0.2	0.0	0.0	0.1	0.1	0.2	0.2	3.4	3.4	9.1	9.1	17.2	17.2	67.1
5	0.9	0.9	33.9	33.9	106.8	106.8	15.8	15.8	131.9	131.9	13.2	13.2	5.1	5.1	2.3	2.3	2.3	2.3	18.7	18.7	32.1	32.1	5.3	5.3	736.4
6	2.3	2.3	0.3	0.3	0.3	0.3	0.6	0.6	18.8	18.8	4.4	4.4	1.6	1.6	0.6	0.6	0.6	0.6	14.7	14.7	29.9	29.9	11.0	11.0	170.3
7	3.8	3.8	0.0	0.0	29.3	29.3	325.7	325.7	116.1	116.1	45.9	45.9	14.2	14.2	6.3	6.3	2.3	2.3	1.0	1.0	20.2	20.2	5.8	5.8	1141.3
8	1.4	1.4	4.9	4.9	28.6	28.6	20.1	20.1	31.5	31.5	26.1	26.1	14.1	14.1	5.1	5.1	0.0	0.0	2.1	2.1	7.5	7.5	11.1	11.1	305.3
9 10	2.0 1.2	2.0 1.2	2.0 0.1	2.0 0.1	2.1 0.0	2.1 0.0	1.5 3.6	1.5 3.6	1.5 4.8	1.5 4.8	1.1 0.9	1.1	0.1	0.1	0.0 1.6	0.0 1.6	0.3	0.3	5.4 14.7	5.4 14.7	32.5 44.5	32.5 44.5	22.5 9.9	22.5 9.9	141.7 164.0
11	8.3	8.3	3.4	3.4	1.6	1.6	0.9	0.9	0.0	0.0	0.5	0.5	0.1	0.1	0.2	0.2	0.0	0.0	14.7	14.7	52.0	52.0	50.0	50.0	264.1
12	5.6	5.6	3.2	3.2	83.2	83.2	128.3	128.3	32.7	32.7	35.6	35.6	15.1	15.1	3.8	3.8	3.4	3.4	6.3	6.3	20.9	20.9	3.2	3.2	682.6
13	25.4	25.4	21.4	21.4	86.0	86.0	247.9	247.9	55.3	55.3	14.1	14.1	17.1	17.1	9.9	9.9	2.8	2.8	174.8	174.8	123.8	123.8	73.5	73.5	1703.8
14	18.3	18.3	16.8	16.8	146.2	146.2	26.2	26.2	16.5	16.5	19.9	19.9	12.3	12.3	15.3	15.3	12.4	12.4	10.7	10.7	64.2	64.2	44.5	44.5	806.2
15	2.4	2.4	0.1	0.1	0.1	0.1	7.2	7.2	9.5	9.5	1.8	1.8	0.2	0.2	3.1	3.1	1.0	1.0	53.5	53.5	58.5	58.5	25.1	25.1	325.2
86	2.9	2.9	3.6	3.6	6.6	6.6	3.2	3.2	3.3	3.3	1.9	1.9	0.0	0.0	0.0	0.0	0.4	0.4	11.9	11.9	61.8	61.8	0.0	0.0	191.2
87	5.5	5.5	6.7	6.7	12.5	12.5	2.3	2.3	29.0	29.0	4.6	4.6	0.0	0.0	0.0	0.8	1.4	1.4	58.3	58.3	99.9	99.9	16.6	16.6	475.2
88	7.2	7.2	0.8	0.8	1.0	1.0	1.8	1.8	58.6	58.6	13.9	13.9	5.0	5.0	1.8	1.8	2.0	2.0	14.6	14.6	48.0	48.0	7.3	7.3	323.4
89	58.3	58.3	49.3	49.3	197.8	197.8	570.1	570.1	127.1	127.1	32.4	32.4	39.3	39.3	22.9	22.9	6.5	6.5	23.2	23.2	110.2	110.2	27.4	27.4	2528.9
90	11.3	11.3	2.3	2.3	2.9	2.9	5.1	5.1	4.9	4.9	3.5	3.5	1.8	1.8	2.8	2.8	1.8	1.8	18.0	18.0	65.0	65.0	95.9	95.9	430.9
91	17.2	17.2	16.9	16.9	17.9	17.9	12.6	12.6	12.7	12.7	9.6	9.6	1.0	1.0	0.0	0.0	2.2	2.2	34.2	34.2	68.6	68.6	47.5	47.5	480.7
92	10.3	10.3	12.8	12.8	23.4	23.4	11.5	11.5	11.7	11.7	6.6	6.6	0.0	0.0	0.0	0.0	1.5	1.5	0.8	0.8	16.7	16.7	4.8	4.8	199.9
93	1.2	1.2	4.1	4.1	23.6	23.6	16.5	16.5	25.9	25.9	21.5	21.5	11.6	11.6	4.2	4.2	0.0	0.0	15.2	15.2	58.7	58.7	46.9	46.9	458.7
94	32.9	32.9	33.3	33.3	10.2	10.2	89.4	89.4	129.7	129.7	89.4	89.4	15.6	15.6	9.7	9.7	2.9	2.9	7.1	7.1	65.3	65.3	20.1	20.1	1010.7
95	5.2	5.2	2.8	2.8	2.8	2.8	3.2	3.2	2.5	2.5	3.3	3.3	1.4	1.4	1.2	1.2	0.0	0.0	5.6	5.6	20.3	20.3	30.0	30.0	156.6
96	5.4	5.4	5.3	5.3	5.6	5.6	3.9	3.9	4.0	4.0	3.0	3.0	0.3	0.3	0.0	0.0	0.7	0.7	15.3	15.3	141.9	141.9	43.6	43.6	457.9
97	11.2	11.2	6.0	6.0	6.0	6.0	7.0	7.0	5.5	5.5	7.1	7.1	3.0	3.0	2.6	2.6	0.0	0.0	1.2	1.2	53.8	53.8	31.0	31.0	268.8
98	12.5	12.5	7.8	7.8	23.2	23.2	0.6	0.6	2.5	2.5	0.2	0.2	0.1	0.1	1.1	1.1	1.9	1.9	39.6	39.6	25.1	25.1	37.0	37.0	303.5
99	6.1	6.1	1.1	1.1	153.4	153.4	42.5	42.5	53.6	53.6	30.8	30.8	18.0	18.0	0.0	0.0	0.0	0.0	10.2	10.2	52.7	52.7	0.0	0.0	736.9
100	4.7	4.7	5.7	5.7	10.7	10.7	2.0	2.0	24.7	24.7	3.9	3.9	0.0	0.0	0.7	0.7	1.2	1.2	33.3	33.3	158.0	158.0	39.3	39.3	568.1

En el caso de este programa se obtuvieron resultados diferentes para cada uno de los registros sintéticos formados a partir de las 10 series. En las tablas 3.22 y 3.23 se muestran los archivos con los resultados para el caso del registro sintético hecho a partir de la serie 01. También se simularon los datos del registro histórico (tabla 3.24, figura 3.25).

Tabla 3.22 Resultados para el registro sintético de la serie 01, archivo **SIQPRE**

	PRESA:	LA	ANGOSTUR	A, SON.						
QUINCENA	ALM.	NICIAL	INGRESO	VOL. EVAP	EXT. POL	EXT. MODIF	EXT. TOTAL	DERRAME	DÉFICIT	ENERGÍA
QUINCENA	h	m³	hm³	hm³	hm³	hm³	hm³	hm³	hm³	(GWh)
*******	******	******	*******	******	1	******	********	*******	******	*****
1Q	OCT.	700	10.04	0.38	118.75	118.75	118.75	0	0	17.91
2Q	OCT.	590.91	10.04	0.35	91.48	91.48	91.48	0	0	13.18
1Q	NOV.	509.12	1.87	0.25	71.03	71.03	71.03	0	0	9.83
2Q	NOV.	439.71	1.87	0.23	53.68	53.68	53.68	0	0	7.16
1Q	DIC.	387.67	252.04	1.19	150	150	150	0	0	20.31
2Q	DIC.	488.53	252.04	1.29	150	150	150	0	0	21.49
1Q	ENE.	589.28	69.78	1.73	150	150	150	0	0	21.6
2Q	ENE.	507.33	69.78	1.61	150	150	150	0	0	20.66
1Q	FEB.	425.5	88.05	1.04	62.75	62.75	62.75	0	0	8.5
2Q	FEB.	449.76	88.05	1.07	74.88	74.88	74.88	0	0	10.25
1Q	MAR.	461.86	50.65	0.42	80.93	80.93	80.93	0	0	11.02
2Q	MAR.	431.16	50.65	0.41	65.58	65.58	65.58	0	0	8.81
1Q	ABR.	415.82	29.57	0.52	4.17	4.17	4.17	0	0	0.56
2Q	ABR.	440.71	29.57	0.53	4.17	4.17	4.17	0	0	0.57
1Q	MAY.	465.59	0	0.86	4.17	4.17	4.17	0	0	0.57
2Q	MAY.	460.56	0	0.86	4.17	4.17	4.17	0	0	0.57
1Q	JUN.	455.54	0	1.84	4.17	4.17	4.17	0	0	0.57
2Q	JUN.	449.54	0	1.82	4.17	4.17	4.17	0	0	0.57
1Q	JUL.	443.55	15.66	2.78	12.5	12.5	12.5	0	0	1.7
2Q	JUL.	443.93	15.66	2.78	12.5	12.5	12.5	0	0	1.7
1Q	AGO.	444.31	74.42	3.65	22.16	22.16	22.16	0	0	3.06
2Q	AGO.	492.93	74.42	3.81	46.46	46.46	46.46	0	0	6.54
1Q	SEP.	517.07	18.49	3.78	12.5	12.5	12.5	0	0	1.77
2Q	SEP.	519.28	18.49	3.79	12.5	12.5	12.5	0	0	1.77

Capítulo 3. Aplicación y Resultados

Tabla 3.22 Continuación

QUINCENA		NICIAL m³	INGRESO hm³	VOL. EVAP	EXT. POL	EXT. MODIF	EXT TOTAL	DERRAME hm³	DÉFICIT hm³	ENERGÍA (GWh)
******	******	******	******	******	2	*****	******	******	******	*****
1Q	OCT.	521.48	7.63	0.33	74.12	74.12	74.12	0	0	10.33
2Q	OCT.	454.66	7.63	0.31	57.42	57.42	57.42	0	0	7.74
1Q	NOV.	404.57	1.57	0.23	39.79	39.79	39.79	0	0	5.21
2Q	NOV.	366.13	1.57	0.22	29.03	29.03	29.03	0	0	3.72
1Q	DIC.	338.46	1.97	0.98	150	150	150	0	0	17.89
2Q	DIC.	189.45	1.97	0.75	94.72	94.72	94.72	0	0	9.92
1Q	ENE.	95.94	3.45	0.6	12.5	12.5	12.5	0	0	1.21
2Q	ENE.	86.29	3.45	0.56	12.5	12.5	12.5	0	0	1.18
1Q	FEB.	76.68	3.3	0.36	12.5	12.5	12.5	0	0	1.15
2Q	FEB.	67.12	3.3	0.33	12.5	12.5	12.5	0	0	1.12
1Q	MAR.	57.6	2.33	0.12	12.5	12.5	12.5	0	0	1.09
2Q	MAR.	47.31	2.33	0.11	12.5	12.5	12.5	0	0	1.05
1Q	ABR.	37.03	1.23	0.11	4.17	6.25	6.25	0	0	0.51
2Q	ABR.	31.9	1.23	0.1	4.17	6.25	6.25	0	0	0.49
1Q	MAY.	26.77	1.92	0.15	4.17	6.25	6.25	0	0	0.48
2Q	MAY.	22.28	1.92	0.14	4.17	6.25	6.25	0	0	0.47
1Q	JUN.	17.81	1.24	0.28	4.17	12.5	12.5	0	0	0.87
2Q	JUN.	6.26	1.24	0.19	4.17	12.5	7.31	0	5.19	0.33
2Q 1Q	JUL.	0.20	11.97	0.13	12.5	12.5	11.7	0	0.8	0.33
2Q	JUL.	0	11.97	0.27	12.5	12.5	11.7	0	0.8	0.29
1Q	AGO. AGO.	0	5.11	0.23	22.16	22.16	4.88	0	17.28	0.12
2Q		0	5.11	0.23	46.46	46.46	4.88	0	41.58	0.12
1Q	SEP.	0	5.61	0.24	12.5	12.5	5.37	0	7.13	0.13
2Q	SEP.	0	5.61	0.24	12.5	12.5	5.37	0	7.13	0.13
QUINCENA		NICIAL		VOL. EVAP		EXT. MODIF			DÉFICIT	ENERGÍA
	ıd *******	m³	hm³	hm³ *****	hm³	hm³	hm³	hm³ ******	hm³	(GWh)
****	*****	****	****	****	3	****	****	* * * * * * * * * * *	*****	****
•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•		•	•	•	•
*******	******	******	*******	*****	DECI		•	*******	*****	*****
		DEDD				JMEN ANUAL	IAC DDO			CÍA TOTAL
	AÑO					T. TOTAL ALM		ELEV PRO		SÍA TOTAL
			m³		hm³		hm³	(msnm)		GWh)
	1		0				72.96	823.99		90.67
	2						6.93	807.5		55.84
	3						1.55	792.48		8.33
	4						0.53	791.46		2.47
	5						60.89	811.65		33.99
	6						55.95	803.57		33.37
	7						27.51	818.92		6.48
	8)				90.98	813.21		9.83
	9						8.13	799.56		7.05
	10	() 1	.61.46 1	63.99	156.9	14.1	796.71	1	.0.53
						•				
	•			•		•	•	•		
	•							•		
	93	()	51.52 4			45.8	802.33	1	8.12
						CEO O	~~ ~~	020.02		31.96
	94)		010.7		82.23	820.93		
	94 95						82.23 97.75	807.56		6.06
		(0	55.03 1 69.05 4	56.58 57.95	628.1 9 179.6 4		807.56 801.71	ϵ	
	95	(0 0 3	55.03 1 669.05 4 21.42 2	56.58 57.95 68.79	628.1 9 179.6 4	7.75	807.56 801.71 806.93	6 1	66.06 12.17 45.2
	95 96	((0 0 3 0	55.03 1 669.05 4 21.42 2	56.58 57.95 68.79	628.1 9 179.6 4 460 9	7.75 1.33	807.56 801.71	6 1	66.06 12.17 45.2 13.31
	95 96 97	(((0 0 3 0	55.03 1.669.05 4.21.42 2.56.64 3.65	56.58 57.95 68.79 03.51	628.1 9 179.6 4 460 9 272.6 4	97.75 11.33 90.03	807.56 801.71 806.93	6 1	66.06 12.17 45.2
	95 96 97 98	(((0 0 3 0 0	55.03 1 669.05 4 21.42 2 56.64 3 0 7	56.58 57.95 68.79 03.51	628.1 9 179.6 4 460 9 272.6 4 460.4 2	07.75 11.33 00.03 14.27	807.56 801.71 806.93 802.13	6 1 2	66.06 12.17 45.2 13.31
TOTAL	95 96 97 98 99 100 1114.44	((((677-	0 0 3 0 0 0 0 0 4.62	55.03 1. 669.05 4. 21.42 2. 56.64 3. 0 7 0 5.	56.58 57.95 68.79 03.51	628.1 9 179.6 4 460 9 272.6 4 460.4 2	97.75 11.33 90.03 14.27 92.84	807.56 801.71 806.93 802.13 817.57	6 1 2	66.06 12.17 45.2 23.31 64.46
TOTAL ALMACENA ENERGÍA PF	95 96 97 98 99 100 1114.44 MIENTO IN	(((((677 IICIAL MÍN	0 0 3 0 0 0 0 0 4.62 IIMO REGIS	55.03 1. 669.05 4. 21.42 2. 56.64 3. 0 7 0 5.	56.58 57.95 68.79 03.51	628.1 9 179.6 4 460 9 272.6 4 460.4 2	97.75 11.33 90.03 14.27 92.84	807.56 801.71 806.93 802.13 817.57	6 1 2	66.06 12.17 45.2 23.31 64.46

1.97

GWh

AÑOS:

Capítulo 3. Aplicación y Resultados

Tabla 3.22 Continuación

	xxxxxxxxxxxxxxx	xxxxxxxx	RESUM	IEN QUINCENAL	xxxxxxxx	«xxxxxxxxxxx	XXX	
Р	R	0	M	E	D	1	0	S
				ELEVACIÓN	ALMACE- NAMIENTO	ENERGÍA		
				(msnm)	(hm³)	(GWh)		
		1Q	ENE.	800.85	93.86	1.82		
		2Q	ENE.	801.68	102.45	2.03		
		1Q	FEB.	802.05	115.41	1.68		
		2Q	FEB.	802.66	125.78	2.09		
		1Q	MAR.	802.62	120.77	2.44		
		2Q	MAR.	801.79	118.21	2.08		
		1Q	ABR.	800.79	118.69	0.48		
		2Q	ABR.	799.95	119.12	0.48		
		1Q	MAY.	799.33	116.47	0.44		
		2Q	MAY.	798.48	113.96	0.42		
		1Q	JUN.	796.84	107.08	0.76		
		2Q	JUN.	795.11	100.8	0.73		
		1Q	JUL.	796.89	110.89	1.12		
		2Q	JUL.	799.94	122.03	1.08		
		1Q	AGO.	803.59	152.55	1.66		
		2Q	AGO.	807.74	182.08	1.89		
		1Q	SEP.	809.46	189.28	1.35		
		2Q	SEP.	810.19	196.33	1.39		
		1Q	OCT.	809.66	188.96	2.82		
		2Q	OCT.	808.6	181.64	2.38		
		1Q	NOV.	807.77	171.05	2.14		
		2Q	NOV.	807.08	163.18	1.78		
		1Q	DIC.	804.92	109.07	8.68		
		2Q	DIC.	801.52	79.67	5.59		

Tabla 3.23 Resultados para el registro sintético de la serie 01, archivo SUPGUIAP

ALMACE	NAMIENTOS I	MAYORES O IGUALES A	LA CURVA GUÍA
PRESA:	LA	ANGOSTURA, SON.	
AÑO	QUINCENA	ALMACENAMIENTO	hm³
77	2Q	ABR.	703.4
77	1Q	MAY.	703.4
77	2Q	MAY.	703.4
89	1Q	ENE.	703.4
89	2Q	ENE.	703.4
89	1Q	FEB.	703.4
89	2Q	FEB.	703.4
89	1Q	MAR.	703.4
89	2Q	MAR.	703.4
89	1Q	ABR.	703.4
89	2Q	ABR.	703.4
89	1Q	MAY.	703.4
89	2Q	MAY.	703.4

Capítulo 3. Aplicación y Resultados

Tabla 3.24 Resultados para el registro histórico, archivo SIQPRE

LA ANGOSTURA, PRESA: SON. ALM. INICIAL **INGRESO** VOL. EVAP EXT. POL EXT. MODIF EXT. TOTAL DERRAME DÉFICIT **ENERGÍA** QUINCENA hm³ hm³ hm³ hm³ hm³ hm³ hm³ hm³ (GWh) 1 1Q OCT. 700 3.67 0.38 118.75 118.75 118.75 0 0 17.88 2Q OCT. 584.54 3.67 0.34 89.89 89.89 89.89 0 0 12.89 1Q NOV. 497.98 20.35 0.25 68.25 68.25 68.25 0 0 9.44 2Q NOV. 449.84 20.35 0.24 56.21 56.21 56.21 0 0 7.59 1Q DIC. 413.74 271.12 1.22 150 150 150 0 0 20.73 2Q DIC. 533.64 271.12 1.35 150 150 150 0 0 22.08 1Q ENE. 653.4 68 1.82 150 150 150 0 0 22.28 2Q ENE. 569.58 68 1.7 150 150 150 0 0 21.37 1Q FEB. 485.88 107.98 1.11 92.94 92.94 92.94 0 0 13 2Q 499.81 107.98 99.9 99.9 99.9 0 0 14.05 FEB. 1.12 103.38 103.38 0 0 1Q MAR. 506.76 144.08 0.45 103.38 14.72 547.01 144.08 0.47 123.5 O n 17.87 20 MAR. 123.5 123.5 0.59 0 0 10 ABR. 567.11 21.02 4.17 4.17 4.17 0 20 21.02 0.6 0 ABR. 583.38 5.56 5.56 5.56 0.82 1Q MAY. 598.23 4.98 0.97 8.04 8.04 8.04 0 0 1.19 4.98 0.96 7.37 7.37 1.08 20 MAY. 594.21 7.37 0 0 1Q JUN. 590.86 3.3 2.07 6.81 6.81 6.81 0 0 1 2Q JUN. 585.27 3.3 2.06 5.88 5.88 5.88 0 0 0.86 1Q JUL. 580.63 19.68 3.15 40.32 40.32 40.32 0 0 5.87 20 JUL. 556.85 19.68 3.08 28.43 28.43 28.43 0 0 4.1 1Q AGO. 545.02 148.74 4.11 72.51 72.51 72.51 O 0 10.61 0 0 20 AGO. 617.14 148.74 4.37 108.57 108.57 108.57 16.31 10 SEP. 652.95 25.31 4.26 38.97 38.97 38.97 0 n 5.88 20 SEP. 635.03 25.31 4.2 30.01 30.01 30.01 0 0 4.5 ALM. INICIAL **INGRESO** VOL. EVAP EXT. POL EXT. MODIF EXT. TOTAL DERRAME DÉFICIT **ENERGÍA OUINCENA** hm³ hm³ hm³ hm³ hm³ hm³ hm³ hm³ (GWh) 2 1Q OCT. 626.13 20.01 0.36 100.28 100.28 100.28 0 0 14.71 20.01 0 2Q OCT. 545.5 0.33 80.12 80.12 80.12 n 11.34 1Q NOV. 485.05 12.05 0.25 65.01 65.01 65.01 0 0 8.91 2Q NOV. 431.84 12.05 0.23 51.71 51.71 51.71 0 0 6.89 1Q DIC. 391.95 259.15 1.2 150 150 150 0 0 20.4 20 DIC. 499.9 259.15 1.31 150 150 150 0 0 21.65 0 1Q ENE. 607.74 83.2 1.77 150 150 150 0 21.88 2Q ENE. 539.17 83.2 1.66 150 150 150 0 0 21.11 470.71 1Q FEB. 53.11 1.07 85.35 85.35 85.35 0 0 11.67 2Q 1.04 0 0 9.26 FEB. 437.39 53.11 68.7 68.7 68.7 1Q MAR. 420.77 22.38 0.4 60.38 60.38 60.38 0 0 20 MAR. 382.37 22.38 0.38 41.18 41.18 0 0 5.35 41.18 ABR. 363.18 16.63 0.48 6.25 6.25 0 0 1Q 4.17 20 373.08 0 0 0.82 ABR. 16.63 0.49 4.17 6.25 6.25 1Q MAY. 382.97 11.84 0.8 6.25 6.25 0 0 0.82 4.17 20 MAY. 387.76 11.84 0.8 4.17 6.25 6.25 0 0 0.82 1Q JUN. 392.55 0.03 1.72 4.17 12.5 12.5 0 0 1.64 2Q JUN. 378.36 0.03 1.69 4.17 12.5 12.5 0 0 1.62 1Q JUL. 364.2 6.75 2.52 12.5 12.5 12.5 0 0 1.61 12.5 20 JUL. 355.93 6.75 2.49 12.5 12.5 0 0 1.6 1Q AGO. 347.69 22.2 3.16 12.5 12.5 12.5 0 0 1.6 2Q 354.23 22.2 3.2 12.5 12.5 12.5 0 0 1.61 AGO. 10 SEP. 360.73 3.38 3.17 12.5 12.5 12.5 0 n 1.6 SEP. 348.44 3.38 3.12 12.5 12.5 12.5 0 O 1.59 20 ALM. INICIAL **INGRESO** VOL. EVAP EXT. POL EXT. MODIF EXT. TOTAL DERRAME DÉFICIT **ENERGÍA** QUINCENA hm³ hm³ hm³ hm³ hm³ hm³ hm³ hm³ (GWh) 3 .

Capítulo 3. Aplicación y Resultados

Tabla 3.24 Continuación

***	*******	**********	****		RESUMEN AN		**********	********
	AÑO	DERRAME	DÉFICIT	ING HIST		ALMAC PRO	ELEV PRO	ENERGÍA TOTAL
	AIIO	hm³	hm³	hm³	hm³	hm³	(msnm)	(GWh)
	1	0	0	1676.46	1709.5	561.46	826.72	246.72
	2	0	0	1021.46	1277.7	414.9	822.07	177.32
	3	0	0	1265.96	1048.7	397.86	821.48	138.85
	4	0	0	1115.58	1002.1	442.66	823	132.63
	5	0	0	1215.82	1157.8	433.97	822.71	154.75
	6	0	0	643.96	814.7	373.08	820.6	106.28
	7	0	0	1168.52	975.6	464.43	823.71	130.75
	8	0	0	764.8	859.1	410.72	821.92	112.57
	9	0	0	872.12	927.9	363.25	820.25	118.93
	10	0	0	866.02	856.2	352.68	819.86	110.07
	11	0	0	1075.84	807.3	372.36	820.57	102.75
	12	0	0	478.62	756.4	248.99	815.8	94.38
	13	0	0	601.3	520	290.69	817.49	62.09
	14	0	0	935.28	598	345.57	819.59	73.2
	15	0	0	188.56	743.3	136.73	810.25	87.88
	16	0	146.65	868.08	365.7	181.13	812.72	30.52
	17	0	0.44	250.5	690.2	124.63	809.49	78.54
	18	0	0.44	607.44	404.1	115	808.86	40.52
	19	0	0	397.5	434.3	133.24	810.05	45.65
	20	0	0	288.68	413.6	83.86	806.38	39.74
	21	0	0	544.42	401.4	95.13	807.35	39.6
	22	0	0	424.28	401.4	99.49	807.71	39.27
	23	0	17.92	476.94	382.7	106.52	808.25	37.58
	24	0	67.53	157.68	357.4	64.67	804.52	33.67
	25	0	0	539.26	351.3	75.21	805.58	31.98
	26	0	18.06	239.06	385.3	71.69	805.24	35.93
	27	0	23.82	288.3	334.1	44.09	802.11	28.56
	28	0	107.47	413.1	250.5	72.06	805.28	21.29
	29	0	11.68	448.58	398.5	90.77	807	38.55
	30	0	75.86	173.48	313.3	55.08	803.47	28.93
	31	0	4.26	352.4	315.7	47.04	802.49	26.44
	32	0	0	341.46	291.4	65.95	804.66	25.78
	33	0	26.83	291.52	296.3	47.47	802.55	24.66
	34	0	16.19	312.48	291.4	48.2	802.64	23.59
	35	0	92.45	202.44	237.1	36.34	800.96	19.67
	36	0	86.02	231.14	234.9	34.69	800.68	19.6
	37	0	42.24	241	238.6	27.7	799.48	18.7
	38	0	81.67	182.02	202.5	20.05	798.02	13.88
	39	0	80.88	204.2	203.3	12.24	796.27	11.78
	40	0	104.46	151.26	179.7	8.18	795.18	9.65
	41	0	121.48	174.9	162.7	7.56	795.01	9.4
	42	0	183.7	95.08	100.5	2.06	792.83	5.54
	43	0	157.4	113.64	126.8	4.72	794.05	7
	44	0	243.37	41.64	40.8	0	777.6	1
TOTAL	0	1710.36		-				
		NICIAL MÍNIMO R	EGISTRADO	0	hm³			

2.5

GWh

ENERGÍA PROMEDIO GENERADA EN LOS 100 AÑOS:

83

Capítulo 3. Aplicación y Resultados

Tabla 3.24 Continuación

	xxxxxxxxxxxxxxxxxxxxxx			RESUMEN QUIN	ICENAL	xxxxxxxxxxxxxxxxxxxxxxx		
Р	R	0	M	E	D	1	0	S
				ELEVACIÓN	ALMACE- NAMIENTO	ENERGÍA		
				(msnm)	(hm³)	(GWh)		
		1Q	ENE.	802.91	123.16	2.37		
		2Q	ENE.	803.54	130.56	3.17		
		1Q	FEB.	803.88	141.83	2.44		
		2Q	FEB.	804.07	152.23	2.58		
		1Q	MAR.	803.66	151.52	3.02		
		2Q	MAR.	803.11	153.33	2.72		
		1Q	ABR.	802.58	154.79	0.5		
		2Q	ABR.	802.07	156.4	0.49		
		1Q	MAY.	801.66	153.99	0.52		
		2Q	MAY.	801.16	151.73	0.5		
		1Q	JUN.	800.04	143.93	0.88		
		2Q	JUN.	798.04	137.17	0.78		
		1Q	JUL.	799.37	147.9	1.18		
		2Q	JUL.	802.44	158.97	1.21		
		1Q	AGO.	806.2	190.29	2.13		
		2Q	AGO.	810.48	219.62	2.53		
		1Q	SEP.	811.71	226.73	1.47		
		2Q	SEP.	811.85	234.09	1.44		
		1Q	OCT.	812.66	231.96	4.06		
		2Q	OCT.	811.58	218.29	3.34		
		1Q	NOV.	810.35	204.44	2.83		
		2Q	NOV.	809.35	194.1	2.32		
		1Q	DIC.	806.78	140.89	10.14		
		2Q	DIC.	803.48	109.77	7.31		

Figura 3.25 Archivo SUPGUIAP de la simulación del registro histórico

Después de realizar la simulación del funcionamiento de vaso se obtuvieron diferentes resultados para cada registro sintético, los cuales están resumidos en las tablas 3.26 a 3.30. Estas tablas fueron obtenidas a partir de los archivos de resultados del programa SIMULQ1P.FOR, el archivo SIQPRE y el SUPGUIAP.

Capítulo 3. Aplicación y Resultados

En la tabla 3.25 se muestran en amarillo los años en los que hay influencia del invierno y donde hay derrame. Mientras que en azul se observan los que tienen déficit. A partir de estos resultados de cada simulación de los registros sintéticos se contabilizó la frecuencia con la que ocurren derrames y déficit.

Tabla 3.25 Resultados de la simulación con el registro sintético de la serie 02, donde se observan los años con presencia de derrame y déficit

RESUMEN ANUAL								
	DERRAME	DÉFICIT	• 5.0					
I	hm³	hm³	- AÑO					
1	0	0	1994					
2	0	0	1975					
3	0	37.18	2008					
4	0	67.32	1975					
5	18.33	0	1977					
6	0	0	2007					
7	0	0	1965					
8	0	0	1984					
9	0	0	1996					
10	0	0	1995					
11	0	55.08	1971					
12	0	0	2006					
13	0	8.5	1988					
13 14	0	8.5 0	1988					
		0						
15 16	0		2005					
16	0	0	1967					
17	0	0	1987					
18	0	75.09	1969					
19	0	114.6	1987					
20	0	0	1967					
21	0	0	1992					
22	0	64.18	2008					
23	0	560.27	1968					
24	0	0	1991					
25	0	0	1981					
26	0	98.91	1998					
27	0	49.72	1979					
28	0	140.75	2003					
29	0	67.89	1981					
30	0	42.37	1983					
31	0	70.52	1988					
32	0	42.48	1993					
33	0	0	1985					
34	0	0	1996					
35	0	230.84	1975					
36	0	0	1993					
37	0	96.1	1970					
38	0	0	2000					
39	0	75.54	1998					
40	0	0	1989					
41	0	0	2004					
42	0	0	1973					
43	0	0	2004					
44	0	0	1987					
45	0	41.62	1969					
46	0	182.98	1971					
47	0	0	1976					
48	0	7.8	2001					
49	0	109.62	1998					
7.7	<u> </u>	103.02	1330					

Capítulo 3. Aplicación y Resultados

Tabla 3.25 Continuación

50	0	0	1978
51	0	0	1968
52	0	10.2	1996
53	515.26	0	1984
54	0	0	1980
55	105.06	0	1982
56	0	0	1965
57	0	15.39	1968
58	0	0	1977
59	0	0	2007
60	0	40.59	1987
61	0	120.28	1976
62	0	0	2000
63	0	0	1994
64	0	18.71	2008
65	0	0	2000
66	0	0	1987
67	0	116.58	1992
68	0	0	1991
69	0	0	2002
70	0	30.03	1985
71	0	0	1981
72	0	0	2000
73	0	0	1978
74	0	0	1984
75	0	0	2007
76	0	20.9	2006
77	0	2.35	1981
78	0	8.19	1994
79	0	7.96	1993
80	0	0	1989
81	0	152.23	1995
82	0	0	2001
83	954.43	0	1978
84	0	0	2003
85	0	0	2001
86	0	0	2002
87	0	114.21	1976
88	0	93.9	1970
89	0	56.06	2003
90	0	43.38	2001
91	0	0	1972
92	0	0	1981
93	0	0	1965
94	0	0	1986
95	0	0	1973
96	0	335.96	2003
97	0	48.38	2008
98	0	51.33	1981
99	0	15.21	1983
100	26.36	14.45	1995
1619.44	3555.66		

En la tabla 3.26 se observa el resumen de los datos que arroja el programa para cada una de las 10 series. En la tabla 3.27 se especifica el número de años en los que se presentaron derrame y déficit en cada serie, además del número de años y quincenas en los que se rebasó la curva guía. En la tabla 3.28 se ve la frecuencia con la que se rebasó la curva guía en cuanto a meses

TOTAL

Capítulo 3. Aplicación y Resultados

y en la tabla 3.29 es un resumen de los años en los que se rebasó la curva guía. En la tabla 3.30 se observa un resumen más completo sobre los años y los meses en los que se rebasó la curva guía por serie.

Tabla 3.26 Resumen de la simulación del funcionamiento de vaso usando la política de operación y 10 registros sintéticos de 100 años cada uno

SERIE	DERRAME (hm³)	DÉFICIT (hm³)	INGRESO HIST.	EXT. TOTAL	ALMAC. PRO.	ELEV. PRO.	ENERGÍA TOTAL
			(hm³)	(hm³)	(hm³)	(msnm)	(GWh)
SERIE 1	1114.44	6774.62	46595.68	45332.4	13330.4	80752.32	4733.3
SERIE 2	1619.44	3555.65	54785.54	52953.4	16768.95	80985.28	5847.39
SERIE 3	1806.71	4375	59084.24	57449.1	19936.82	81166.08	6457.81
SERIE 4	265.37	4477.97	50985.38	49655.7	16899.6	81012.41	5558.54
SERIE 5	1564.86	7007.62	53725.23	52559.3	17532.3	81013.85	5695.19
SERIE 6	1525.48	6054.32	49523.83	47883.4	15666.59	80832.73	5202.97
SERIE 7	1712.52	7862.87	51462.8	50388.5	16533.84	80944.15	5349.47
SERIE 8	862.73	5208.05	44967.68	43999.3	13384.5	80800.33	4552.04
SERIE 9	1182.71	8174.1	47947.64	46981.3	14986.14	80803.27	5031.16
SERIE 10	955.63	5241.53	52884.21	51797.7	16323.36	80951.95	5647.11
SUMA	12609.89	58731.73	511962.23	499000.10	161362.50	809262.37	54074.98
PROMEDIO	1260.99	5873.17	51196.22	49900.01	16136.25	80926.24	5407.50
PROM./100AÑOS	12.61	58.73	511.96	499.00	161.36	809.26	54.07
HISTÓRICO	0.00	1710.38	22942.78	22858.90	7384.12	35572.45	2636.19
HISTÓRICO/44AÑOS	0.00	38.87	521.43	519.52	167.82	808.46	59.91

Tabla 3.27 Frecuencia de las quincenas en las que se rebasó la curva guía

SERIE	Derrame	Déficit	Años con	Años con	Años en donde se	Quincenas en las que se rebasó la curva guía	
	(hm³)	(hm³)	derrame	déficit	superó curva guía		
SERIE 1	1114.44	6774.62	2	61	2	13	
SERIE 2	1619.44	3555.65	5	43	5	29	
SERIE 3	1806.71	4375	6	38	6	34	
SERIE 4	265.37	4477.97	2	48	2	12	
SERIE 5	1564.86	7007.62	6	51	6	41	
SERIE 6	1525.48	6054.32	5	54	5	32	
SERIE 7	1712.52	7862.87	5	59	5	33	
SERIE 8	862.73	5208.05	2	57	3	30	
SERIE 9	1182.71	8174.12	3	54	3	23	
SERIE 10	955.63	5241.53	3	54	3	12	

Capítulo 3. Aplicación y Resultados

Tabla 3.28 Resumen de las frecuencias de los meses en los que se rebasa la curva guía

	SERIE 1	SERIE 2	SERIE 3	SERIE 4	SERIE 5	SERIE 6	SERIE 7	SERIE 8	SERIE 9	SERIE 10	TOTAL POR MES
ENE.	2	4	3	2	3	4	3	3	3	1	28
FEB.	2	4	6	2	7	2	6	4	5	2	40
MAR.	2	4	6	1	8	4	6	4	6	2	43
ABR.	3	7	7	0	8	4	8	4	4	1	46
MAY.	4	8	6	0	8	4	10	4	4	2	50
JUN.	0	0	0	0	0	2	0	2	0	0	4
JUL.	0	0	2	0	0	0	0	2	0	0	4
AGO.	0	0	2	0	1	1	0	0	0	2	6
SEP.	0	1	1	1	2	4	0	1	0	2	12
OCT.	0	0	0	2	2	2	0	2	0	0	8
NOV.	0	0	0	2	2	2	0	2	0	0	8
DIC.	0	1	1	2	0	3	0	2	1	0	10

Tabla 3.29 Resumen de las frecuencias de los años en los que se rebasa la curva guía

AÑO	TOTAL DE QUINCENAS
1982	30
1978	51
1977	7
1984	25
1995	1
1994	14
1967	15
1988	1
1986	49
1992	45
2003	3
1990	5
1989	2
2004	11

Capítulo 3. Aplicación y Resultados

Tabla 3.30 Frecuencia de las quincenas en las que se rebasó la curva guía, años y meses en los que se rebasó la curva guía

SERIE	Quincenas en las que se rebasó la curva guía	Años en los que se rebasó la curva guía	Meses en los que se rebasó la curva guía
SERIE 1	13	1982, 1978	abril, mayo, enero, febrero, marzo
		1977,1984,1982,1978,19	abril, mayo, diciembre, enero, febrero, marzo
SERIE 2	29	95	septiembre
		1994,1977,1978,1967,19	febrero, marzo, abril, enero, febrero
SERIE 3	34	82,1994	diciembre, mayo, julio, agosto, septiembre
SERIE 4	12	1988,1986	septiembre, octubre, noviembre, diciembre enero, febrero, marzo
SERIE 5	41	1978,1992,2003,1990,19 94,2003,1990,1994	enero, febrero, marzo, abril, mayo, agosto septiembre, octubre, noviembre
SERIE 6	32	1989,1986,2004,1984,19 82	septiembre, octubre, noviembre, diciembre enero, febrero, marzo, abril, mayo, junio agosto, septiembre, diciembre
		1978,1982,1992,1978,19	enero, febrero, marzo, abril, mayo
SERIE 7	33	82	chero, restero, marzo, astri, mayo
SERIE 8	30	1990,1986,1992	septiembre, octubre, noviembre, diciembre,
SERIE 9	23	1984,2004,1992	diciembre, enero, febrero, marzo, abril, mayo
SERIE 10	12	2004,1982,1967	enero, febrero, marzo, abril, mayo, agosto septiembre
PROMEDIO	26		

Conclusión

En este capítulo se abordó la aplicación de la metodología descrita en el capítulo anterior. Además de exhibir en tablas el resumen de los resultados obtenidos. Lo anterior conlleva al siguiente capítulo de recomendaciones y conclusiones.

Referencias

- Aparicio Mijares, Francisco Javier. Fundamentos de Hidrología de Superficie.
 México: Limusa. 2011.
- Mendoza R.R. Manual del programa de optimización vía programación dinámica estocástica. Primera parte CAFIT1P.FOR. Instituto de Ingeniería UNAM.2010.
- Mendoza R.R. Manual del programa de optimización vía programación dinámica estocástica. Programa OPDIN1VS.FOR. Instituto de Ingeniería UNAM.2010.
- Mendoza R.R. Manual del programa SIMULQ1P.FOR. Instituto de Ingeniería UNAM.2010.

Capítulo 4. Conclusiones y Recomendaciones

4. Conclusiones y Recomendaciones

En este capítulo se plantean algunas observaciones, conclusiones y las recomendaciones a partir de los resultados obtenidos de este trabajo.

4.1. Conclusiones

Las conclusiones más relevantes de este estudio se mencionan a continuación.

La primera es referente a la función de probabilidad que mejor se ajustó a los datos del registro histórico, ya que al hacer el ajuste con ayuda del software AX los datos calculados no se representan de la mejor manera (figura 4.1). Por eso al variar los valores de α_2 y β_2 se observa el cambio en el comportamiento de los datos calculados con respecto a los datos medidos (figura 4.2).

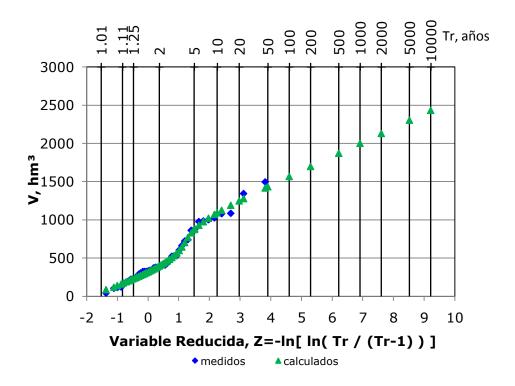


Figura 4.1 Función Doble Gumbel de los datos medidos y los calculados con el programa AX al hacer el ajuste automático

Capítulo 4. Conclusiones y Recomendaciones

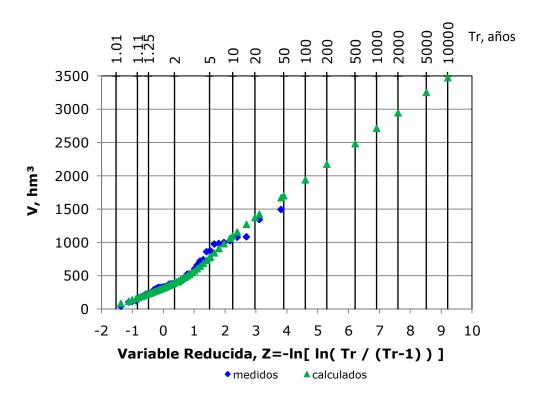


Figura 4.2 Función Doble Gumbel de los datos medidos y los calculados después de la variación de α_2 y β_2

Esta variación hecha manualmente pudo haber llegado a influir de manera considerable en la obtención de las series, ya que para ello se necesitaron los parámetros α_1 , α_2 y β_1 , β_2 .

Otra de las conclusiones es referente a la selección aleatoria de años, pues se vio conveniente dividir los registros en periodos estacionales, debido a la influencia de la época de invierno en la zona noroeste de la República Mexicana en donde se encuentra el sitio de estudio.

La modificación hecha al algoritmo del programa para la selección aleatoria de años permitió que los estadísticos obtenidos de los registros sintéticos preservaran adecuadamente los del registro histórico. Lo anterior se puede confirmar con las siguientes figuras que se refieren a la media del registro sintético hecho a partir de la serie 10, la figura 4.3 se obtuvo antes de considerar la influencia del invierno y la figura 4.4 se hizo después de tomar en cuenta esa consideración. En estas gráficas el mes uno corresponde a julio y

Capítulo 4. Conclusiones y Recomendaciones

así sucesivamente hasta el mes 12 que corresponde a junio, debido a que fueron hechas a partir de un año hidrológico.

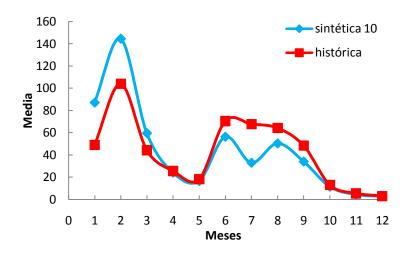


Figura 4.3 Comparación entre la media de los datos históricos y la media obtenida a partir de la serie 10. Después del primer ensayo

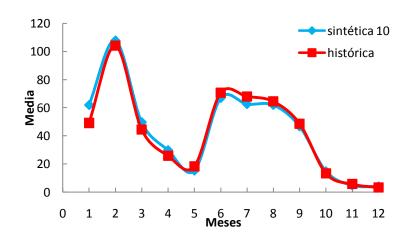


Figura 4.4 Comparación entre la media de los datos históricos y la media obtenida a partir de la serie 10. Después del segundo ensayo

También es evidente la mejora en el ajuste cuando se observan las gráficas obtenidas a partir de la desviación estándar. A continuación se observa ese detalle con los datos de la serie 10. La figura 4.5 se hizo a partir del primer ensayo y la figura 4.6 después del segundo. También con la correlación pasa lo

Capítulo 4. Conclusiones y Recomendaciones

mismo (figuras 4.7 y 4.8). Estas gráficas fueron hechas a partir de un año hidrológico al igual que las anteriores.

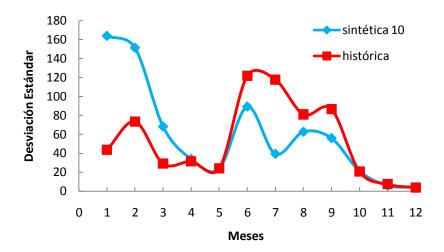


Figura 4.5 Comparación entre la desviación estándar de los datos históricos y la obtenida a partir de la serie 10. Después del primer ensayo

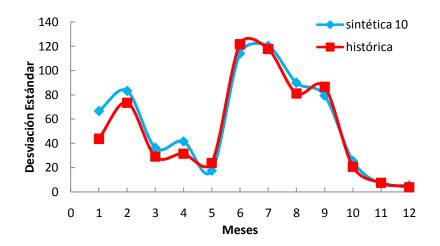


Figura 4.6 Comparación entre la desviación estándar de los datos históricos y la obtenida a partir de la serie 10. Después del segundo ensayo

Capítulo 4. Conclusiones y Recomendaciones

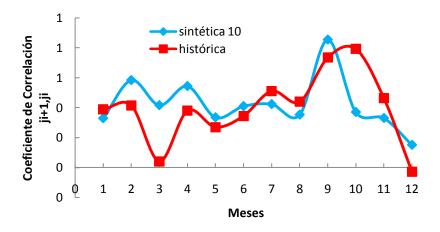


Figura 4.7 Comparación entre el coeficiente de correlación de los datos históricos y el obtenido a partir de la serie 10. Después del primer ensayo

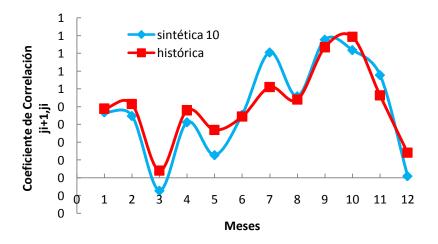


Figura 4.8 Comparación entre el coeficiente de correlación de los datos históricos y el obtenido a partir de la serie 10. Después del segundo ensayo

En cuanto a los resultados después de la simulación, lo que se muestra en el archivo de resultados SIQPRE en la parte donde exhibe los años con déficit y derrames, se observa que los años en los que se presentan derrames corresponden a los años de la población uno que son los años con influencia del invierno, mientras que los años en los que se presentan déficit son los años correspondientes a la población dos en los que no se presenta la influencia del invierno. Esto se presenta en la tabla 3.25.

De acuerdo con la tabla 3.26, al comparar los resultados de la simulación hecha a partir del registro histórico y la hecha con los registros sintéticos, existe una variación entre ellos. Esto puede deberse a que para el programa de

Capítulo 4. Conclusiones y Recomendaciones

simulación se empleó un año hidrológico que iniciaba en octubre y terminaba en septiembre, lo que provocó que se perdieran datos.

También, de acuerdo con la tabla 3.27 en donde se vieron más derrames fue con los resultados de los registros generados a partir de la serie 3 y 7, mientras que el déficit más alto salió a partir de los registros de las series 9 y 7. Esto puede deberse al número de años con derrames y déficit que generaron los registros de las series marcadas. Eso se nota más con las series 5 y 7.

En la tabla 3.28 se tiene la frecuencia con la que se rebasa en cada mes la curva guía. Los meses en los que más se rebasa la curva guía son febrero, marzo, abril y mayo. Dos de esos meses en los que existe influencia de la época de invierno son febrero y marzo.

Los años en los que se presenta el mayor número de quincenas que rebasan la curva guía están entre los años de la población uno en los que influye la presencia del invierno (tabla 3.29). Y los años en los que hay mayor número de quincenas que rebasan la curva guía son 1978, 1986 y 1992.

En los resultados de la simulación del registro histórico se observa que no hay presencia de derrames ni de quincenas en las que se rebasó la curva guía. Y que los años en los que se observa presencia de déficit se suscitan en los años de la población dos que no tienen influencia del invierno (tabla 3.24 en la parte del resumen anual).

Después de emplear el método Svanidze para el desarrollo de este trabajo se concluye que es una herramienta útil en la obtención de muestras sintéticas de los ingresos por cuenca propia de una presa.

La simulación a partir de registros sintéticos es conveniente, pues permite tener una mayor noción de cómo influye la variación de los registros en los resultados de la operación.

Finalmente, se debe continuar con los esfuerzos por desarrollar métodos de optimización más eficientes en la determinación de políticas de operación

Capítulo 4. Conclusiones y Recomendaciones

óptimas, debido a que el agua es un factor importante en el desarrollo de todo país.

4.2. Recomendaciones

Variar la política de operación de dos maneras. La primera al modificar la curva guía, elevando los niveles en algunos meses para tener menos derrames y así aumentar el aprovechamiento y la generación. La segunda, modificar los coeficientes de penalización por derrames y déficit, para lograr un mayor aprovechamiento y mayor generación.

Referencias

Referencias

- **1.** Aparicio Mijares, Francisco Javier. *Fundamentos de Hidrología de Superficie*. México: Limusa. 2011.
- Comisión Federal de Electricidad. Manual de diseño de obras civiles. Hidrotecnia. Hidrología. México.1982.
- **3.** Dagli, C. H., Miles, J. F. *Determining operating policies for a water resource system*. Journal of Hidrology. 47 (1980). 297-306. Holanda.
- **4.** Dam T. T., Burritt R. L., Pisaniello J. D. Adecuacy of policy and practices for small agricultural dam safety accountability and assurance in Vietnam. Agricultural Water management. 112 (2012). 63-74. Australia.
- **5.** Devore J. L. *Probabilidad y Estadística para Ingeniería y ciencias*. San Luis Obispo, USA: California Polytechnic State University. 2008.
- 6. Domínguez M.R. Arganis J.L.M. Cálculo de registros sintéticos de ingresos por cuenca propia de un sistema de presas de la región Noroeste de México, caracterizada por eventos invernales. 10. 2009. 353-361.
- 7. Domínguez, M. R., Arganis, J. M. L. Determinación de políticas de operación del río Fuerte. Elaborado para la CFE por el Instituto de Ingeniería de la UNAM. Informe Final. Diciembre 2007.
- 8. Domínguez, M. R., Arganis, J. M. L. Determinación de políticas de operación del rio Santiago. Elaborado para la CFE por el Instituto de Ingeniería de la UNAM. Informe Final. Diciembre 2009.
- 9. Domínguez, M. R., Arganis, J. M. L., González, V. F. Estudio integral de la cuenca alta del río Grijalva. 3. Manejo óptimo de las presas. Elaborado para la CFE por el Instituto de Ingeniería de la UNAM. Informe final. Noviembre 2009.
- 10. Domínguez M.R., Cruickshank V.C., Arganis J.M.L. Importancia de la generación de muestras sintéticas en el análisis del comportamiento de políticas de operación de presas. Ingeniería del agua. 12. Marzo 2005.

Referencias

- 11. Domínguez Mora, Ramón. Metodología de selección de una política de operación conjunta de una presa y su vertedor. Tesis Doctoral. UNAM.1989.
- 12. Domínguez, M. R., Mendoza R. R Operación integral del sistema hidroeléctrico del rio Grijalva. Elaborado para la CFE por el Instituto de Ingeniería de la UNAM. Julio 1993.
- 13. Domínguez, M. R. Revisión de las políticas de operación quincenal de las presas Angostura y Malpaso, en el rio Grijalva. Elaborado para la CFE por el Instituto de Ingeniería de la UNAM. Informe Final. Noviembre 2001.
- **14.**Hall W. A., Howell D. T. The optimization of single-purpose reservoir design with the application of dinamic programming to synthetic hydrology samples. Journal Hidrology. 1 (1963). 355-363. Holanda.
- **15.** Hwarng, H. Brian. *A simple neutral network for ARMA (p,q) time series*. Omega 29, 319-333. The International Journal of Management Science, 2001.
- **16.** Linsley, R.K. *Hidrología para Ingenieros*. México: Mc Graw-Hill.1970.
- 17. Mendoza R.R. Manual del programa de optimización vía programación dinámica estocástica. Primera parte CAFIT1P.FOR. Instituto de Ingeniería UNAM.2010.
- 18. Mendoza R.R. Manual del programa de optimización vía programación dinámica estocástica. Programa OPDIN1VS.FOR. Instituto de Ingeniería UNAM.2010.
- **19.**Mendoza R.R. *Manual del programa SIMULQ1P.FOR*. Instituto de Ingeniería UNAM.2010.
- **20.** Nandalal K. D. W. *Dynamic programming based operation of reservoirs, Aplicability and limits*. Reino Unido: Cambridge University Press. 2007.
- **21.**Peña Delgado, Francisco. Simulación histórica y sintética de políticas de operación óptima de un sistema de tres presas en cascada en el Río Santiago, Nayarit México. Tesis Profesional. UNAM. 2010.
- 22. Presas de México. Vol. 1. CONAGUA.

Referencias

- **23.**Stam A., Salewicz K. A., Aronson J. E. *An interactive reservoir management system for Lake Kariba*. European Journal of Operational Research. 107(1998). 119-136. Austria.
- **24.** Svanidze, G.G. *Mathematical Modeling of Hydrologic Series*. USA: Water Resources Publications. 1980.
- 25. Ven Te Chow. Hidrología aplicada. USA: Mc Graw Hill. 1975.
- **26.** Wilson, E. M. *Engineering Hydrology*. 4° Edición. Hong Kong: Macmillan. 1990.
- **27.**Yoo, Ju-Hwan. *Maximitation of hidropower generation througth the application of a linear programming model.* Journal of Hidrology. 376 (2009). 182-187. Corea.
- **28.** Yurekli, Kadri. *Prediction of daily maximum streamflow based on stochastic approaches*. Journal of Spatial Hydrology. Vol. 4, No. 2. 2004.

Anexos

Anexo 1. Desarrollo de la serie 03

En la tabla A1.1, se encuentran marcadas las series con mayor derrame y déficit. Por lo que en este anexo se encuentra el desarrollo de las series 3,7 y 9.

Tabla A1. 1 Resumen del funcionamiento de vaso

SERIE	Derrame	Déficit
	(hm³)	(hm³)
SERIE 1	1114.44	6774.62
SERIE 2	1619.44	3555.65
SERIE 3	1806.71	4375
SERIE 4	265.37	4477.97
SERIE 5	1564.86	7007.62
SERIE 6	1525.48	6054.32
SERIE 7	1712.52	7862.87
SERIE 8	862.73	5208.05
SERIE 9	1182.71	8174.11
SERIE 10	955.63	5241.53

Tabla A1. 2 Serie 03 con 101 datos generados

ı	xP (hm³)	F(XP)	ALE	ffin
1	920.4292	0.00000089	0.85125370	0.85125460
2	429.8138	0.00000024	0.54943050	0.54943070
3	214.8438	-0.0000001	0.17212420	0.17212420
4	461.8478	-0.00000072	0.58987070	0.58987000
5	211.7002	-0.00000009	0.16664830	0.16664820
6	1034.136	-0.0000073	0.88376410	0.88376340
7	451.6506	-0.00000070	0.57757050	0.57756980
8	334.816	0.00000063	0.39819000	0.39819060
9	1180.515	0.00000088	0.91771570	0.91771660
10	310.2029	0.0000013	0.35248580	0.35248590
•	•		•	
	•			
90	724.9689	-0.00000039	0.77969090	0.77969050
91	834.179	0.00000007	0.82265170	0.82265170
92	179.28	0.00000003	0.11436250	0.11436250
93	536.1581	0.00000003	0.66495030	0.66495030
94	546.3958	0.00000010	0.67352620	0.67352630

Tabla A1. 2 Continuación

95	930.2426	0.00000072	0.85428050	0.85428120
96	189.5869	-0.00000067	0.13007160	0.13007100
97	420.0494	0.0000017	0.53603570	0.53603590
98	434.463	-0.00000053	0.55563130	0.55563070
99	1583.195	-0.00000042	0.97188120	0.97188080
100	636.8303	0.00000004	0.73552160	0.73552160
101	165.528	0.00000045	0.09493011	0.09493056
Media	588.228			
Desv.	447.734			
C.A.	1.465			
C.V.	0.761			
	•			

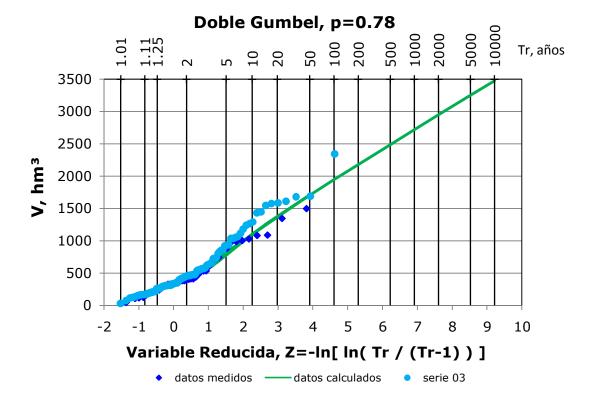


Figura A1. 1 Función Doble Gumbel para la serie 03 comparada con los datos calculados y medidos

Anexos

Tabla A1. 3 Selección aleatoria sin considerar la influencia del invierno

I	Año
1	1965
2	1966
3	1967
4	1968
5	1969
6	1970
7	1971
8	1972
9	1973
10	1974
11	1975
12	1976
13	1977
14	1978
15	1979
16	1980
17	1981
18	1982
19	1983
20	1984
21	1985
22	1986
23	1987
24	1988
25	1989
26	1990
27	1991
28	1992
29	1993
30	1994
31	1995
32	1996
33	1997
34	1998
35	1999
36	2000
37	2001
38	2001
39	2002
40	2003
41	2005
41	2005
42	2007
43 44	2007
44	2008

		Año	
<u> </u>	xP (hm³)	aleatorio	Año
1	920.4292	13	1977
2	429.8138	2	1966
3	214.8438	22	1986
4	461.8478	20	1984
5	211.7002	18	1982
6	1034.136	43	2007
7	451.6506	8	1972
8	334.816	19	1983
9	1180.515	30	1994
10	310.2029	42	2006
-			
90	724.9689	21	1985
91	834.179	25	1989
92	179.28	33	1997
93	536.1581	29	1993
94	546.3958	25	1989
95	930.2426	44	2008
96	189.5869	24	1988
97	420.0494	6	1970
98	434.463	26	1990
99	1583.195	31	1995
100	636.8303	17	1981
101	165.528	45	2009

45

2009

Anexos

Tabla A1. 4 Selección aleatoria considerando la influencia del invierno

	Año
1	1967
2	1984
3	1978
4	1972
5	1991
6	1990
7	1982
8	1977
9	1992
10	1994
11	2004
12	1986
13	1965
14 15	2009
15 16	1988
16	1997
17 10	1966 2000
18	
19 20	2007
20 21	1976
22	1983 1993
23	1995
23 24	1999
25	1985
26	2006
27	1971
28	1980
29	1969
30	2008
31	1974
32	1975
33	2001
34	1989
35	1970
36	2005
37	1987
38	1996
39	2002
40	1968
41	1979
42	1998
43	1995
44	1973
•	13,3

ı	xP (hm³)	Año aleatorio	Año
1	920.4292	4	1972
2	429.8138	15	1988
3	214.8438	29	1969
4	461.8478	28	1980
5	211.7002	27	1971
6	1034.136	14	2009
7	451.6506	19	2007
8	334.816	27	1971
9	1180.515	10	1994
10	310.2029	43	1995
•	•	•	•
	•	•	•
			•
90	724.9689	7	1982
91	834.179	8	1977
92	179.28	37	1987
93	536.1581	34	1989
94	546.3958	32	1975
95	930.2426	14	2009
96	189.5869	31	1974
97	420.0494	18	2000
98	434.463	32	1975
99	1583.195	10	1994
100	636.8303	5	1991
101	165.528	45	2003

45

2003

Tabla A1. 5 Fracciones aleatorias de la serie 03 antes de considerar la influencia del invierno

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Suma
1	0.10	0.15	0.05	0.12	0.01	0.00	0.03	0.07	0.40	0.04	0.02	0.01	1.00
2	0.17	0.53	0.12	0.10	0.04	0.02	0.01	0.00	0.01	0.00	0.00	0.00	1.00
3	0.27	0.19	0.11	0.03	0.03	0.22	0.04	0.03	0.03	0.02	0.02	0.02	1.00
4	0.03	0.22	0.04	0.03	0.02	0.39	0.12	0.08	0.03	0.02	0.02	0.00	1.00
5	0.02	0.04	0.06	0.00	0.00	0.16	0.07	0.22	0.28	0.12	0.03	0.01	1.00
6	0.07	0.43	0.16	0.02	0.01	0.18	0.04	0.08	0.00	0.00	0.00	0.00	1.00
7	0.03	0.11	0.09	0.06	0.06	0.02	0.17	0.24	0.17	0.03	0.02	0.01	1.00
8	0.03	0.14	0.15	0.23	0.13	0.25	0.04	0.01	0.00	0.00	0.01	0.01	1.00
9	0.01	0.03	0.05	0.00	0.10	0.31	0.05	0.39	0.04	0.01	0.01	0.01	1.00
10	0.07	0.44	0.31	0.02	0.00	0.00	0.05	0.07	0.01	0.00	0.02	0.01	1.00
				•									
90	0.05	0.24	0.10	0.24	0.04	0.05	0.02	0.11	0.04	0.05	0.03	0.05	1.00
91	0.02	0.38	0.24	0.00	0.00	0.01	0.08	0.15	0.07	0.03	0.01	0.00	1.00
92	0.01	0.13	0.04	0.01	0.03	0.18	0.13	0.20	0.16	0.09	0.03	0.00	1.00
93	0.15	0.30	0.21	0.05	0.06	0.10	0.05	0.05	0.03	0.00	0.00	0.01	1.00
94	0.02	0.38	0.24	0.00	0.00	0.01	0.08	0.15	0.07	0.03	0.01	0.00	1.00
95	0.23	0.50	0.22	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
96	0.12	0.56	0.14	0.06	0.01	0.01	0.03	0.02	0.02	0.01	0.01	0.01	1.00
97	0.06	0.57	0.18	0.05	0.02	0.02	0.03	0.02	0.03	0.01	0.01	0.00	1.00
98	0.15	0.27	0.05	0.06	0.02	0.09	0.09	0.05	0.20	0.02	0.00	0.01	1.00
99	0.07	0.24	0.36	0.06	0.06	0.07	0.05	0.05	0.04	0.00	0.00	0.01	1.00
100	0.28	0.36	0.09	0.06	0.03	0.08	0.08	0.00	0.01	0.00	0.00	0.00	1.00
101	0.07	0.07	0.03	0.20	0.02	0.01	0.27	0.26	0.06	0.01	0.00	0.01	1.00

Tabla A1. 6 Fracciones aleatorias de la serie 03 después de considerar la influencia el invierno

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Suma
1	0.03	0.11	0.09	0.06	0.06	0.02	0.17	0.24	0.17	0.03	0.02	0.01	1.00
2	0.12	0.56	0.14	0.06	0.01	0.01	0.03	0.02	0.02	0.01	0.01	0.01	1.00
3	0.20	0.21	0.16	0.11	0.09	0.11	0.03	0.02	0.05	0.01	0.00	0.00	1.00
4	0.08	0.17	0.10	0.01	0.00	0.01	0.10	0.06	0.37	0.04	0.03	0.01	1.00
5	0.17	0.29	0.05	0.14	0.11	0.14	0.08	0.00	0.00	0.00	0.00	0.02	1.00
6	0.07	0.07	0.03	0.20	0.02	0.01	0.27	0.26	0.06	0.01	0.00	0.01	1.00
7	0.07	0.43	0.16	0.02	0.01	0.18	0.04	0.08	0.00	0.00	0.00	0.00	1.00
8	0.17	0.29	0.05	0.14	0.11	0.14	0.08	0.00	0.00	0.00	0.00	0.02	1.00
9	0.01	0.03	0.05	0.00	0.10	0.31	0.05	0.39	0.04	0.01	0.01	0.01	1.00
10	0.07	0.24	0.36	0.06	0.06	0.07	0.05	0.05	0.04	0.00	0.00	0.01	1.00
90	0.02	0.04	0.06	0.00	0.00	0.16	0.07	0.22	0.28	0.12	0.03	0.01	1.00
91	0.10	0.15	0.05	0.12	0.01	0.00	0.03	0.07	0.40	0.04	0.02	0.01	1.00
92	0.03	0.48	0.14	0.00	0.00	0.09	0.13	0.13	0.00	0.00	0.00	0.01	1.00
93	0.02	0.38	0.24	0.00	0.00	0.01	0.08	0.15	0.07	0.03	0.01	0.00	1.00
94	0.27	0.11	0.18	0.01	0.00	0.00	0.09	0.31	0.00	0.01	0.01	0.00	1.00
95	0.07	0.07	0.03	0.20	0.02	0.01	0.27	0.26	0.06	0.01	0.00	0.01	1.00
96	0.15	0.25	0.08	0.06	0.15	0.03	0.03	0.21	0.02	0.02	0.00	0.01	1.00
97	0.13	0.17	0.03	0.14	0.23	0.04	0.04	0.17	0.04	0.01	0.00	0.00	1.00
98	0.27	0.11	0.18	0.01	0.00	0.00	0.09	0.31	0.00	0.01	0.01	0.00	1.00
99	0.01	0.03	0.05	0.00	0.10	0.31	0.05	0.39	0.04	0.01	0.01	0.01	1.00
100	0.03	0.12	0.12	0.01	0.01	0.19	0.30	0.08	0.08	0.04	0.01	0.01	1.00
101	0.04	0.15	0.07	0.00	0.00	0.06	0.09	0.12	0.32	0.14	0.00	0.02	1.00

Tabla A1. 7 Registro a partir de la serie 03 antes de considerar la influencia del invierno (hm³)

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
1	94.44	134.11	49.06	108.43	11.78	3.96	26.14	61.58	367.25	39.85	18.41	5.48	920.48
2	75.00	226.47	50.37	42.42	17.45	8.34	4.34	0.00	2.75	1.59	1.03	0.00	429.77
3	57.26	40.56	24.08	5.99	5.50	47.91	8.57	5.39	6.51	4.02	5.03	4.05	214.87
4	13.53	102.21	17.41	13.76	8.27	178.09	57.18	36.49	15.38	11.41	8.13	0.02	461.87
5	3.22	8.43	12.38	0.64	0.42	33.75	14.06	46.74	60.06	24.75	5.72	1.54	211.70
6	69.49	449.75	164.94	16.75	8.07	189.66	40.54	87.38	3.72	0.62	1.65	1.64	1034.23
7	12.87	49.68	39.70	27.82	28.18	8.63	75.61	109.71	75.61	13.23	8.22	2.43	451.69
8	9.94	46.54	49.42	78.21	44.43	82.13	14.10	4.25	0.00	0.00	3.42	2.40	334.83
9	11.69	31.52	59.38	3.19	116.99	368.79	54.54	455.44	45.57	17.59	8.03	7.89	1180.61
10	22.86	137.70	95.36	5.12	0.25	0.16	15.36	20.38	3.94	0.53	6.73	2.17	310.55
					•				•				•
90	34.87	177.33	69.09	172.69	28.56	32.70	12.18	79.96	28.85	33.13	21.46	34.11	724.93
91	16.27	318.74	200.95	2.09	0.00	11.09	64.98	124.29	57.22	27.19	11.26	0.00	834.10
92	1.09	22.84	6.53	1.63	5.56	32.31	22.66	35.55	29.42	15.94	5.75	0.00	179.28
93	80.48	161.17	111.74	24.23	29.97	55.12	26.92	27.50	15.55	0.00	0.00	3.48	536.15
94	10.65	208.78	131.63	1.37	0.00	7.27	42.56	81.41	37.48	17.81	7.38	0.00	546.34
95	215.17	461.49	200.75	33.12	6.79	1.12	2.98	0.28	3.16	0.37	1.77	3.31	930.30
96	22.30	105.92	26.31	10.86	2.24	2.81	4.91	4.70	3.32	1.74	2.73	1.76	189.60
97	25.83	239.13	73.51	18.90	10.08	10.17	11.80	9.20	12.01	5.00	4.41	0.00	420.05
98	66.39	115.44	21.81	24.37	8.12	40.27	37.84	20.33	88.46	7.34	1.35	2.69	434.42
99	106.23	382.66	564.57	101.17	99.74	105.28	73.94	74.89	56.36	5.86	0.00	12.73	1583.42
100	176.72	229.77	57.63	39.29	19.23	50.63	52.09	2.42	8.53	0.45	0.00	0.00	636.77
101	11.09	12.13	5.20	32.38	2.55	1.70	45.31	42.99	9.14	1.56	0.58	0.89	165.51
Media	69.61	162.55	75.68	38.54	23.71	54.82	36.53	52.61	52.07	12.17	5.99	4.13	588.41
Desv.	85.87	174.68	98.39	51.78	32.98	95.25	44.57	72.09	99.88	22.05	8.36	7.09	447.84
C.A.	2.49	2.87	3.04	2.28	1.93	3.61	2.36	3.21	3.37	4.40	2.47	3.82	1.46
C.V.	1.23	1.07	1.30	1.34	1.39	1.74	1.22	1.37	1.92	1.81	1.40	1.72	0.76
C.ji+1,ji	0.60	0.62	0.35	0.62	0.33	0.41	0.49	0.40	0.74	0.63	0.60	-0.02	

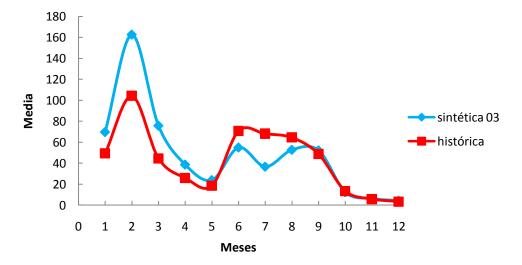


Figura A1. 2 Comparación entre la media de los datos del registro sintético 03 y los del registro histórico. Después del primer ensayo. Considera un año hidrológico de julio a junio

Tabla A1. 8 Registro sintético a partir de la serie 03 después de considerar la influencia del invierno (hm³)

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
1	26.23	101.25	80.91	56.70	57.43	17.58	154.08	223.57	154.08	26.97	16.75	4.96	920.51
2	50.55	240.14	59.66	24.63	5.07	6.36	11.13	10.66	7.52	3.95	6.19	3.99	429.85
3	43.51	45.16	35.02	23.42	19.12	23.03	7.35	4.51	11.49	2.26	0.00	0.00	214.87
4	35.79	79.07	45.49	6.88	2.26	6.28	47.06	27.48	172.87	20.18	12.47	6.02	461.87
5	36.48	60.46	9.99	29.09	23.75	30.10	16.28	0.80	0.00	0.53	0.00	4.18	211.67
6	69.29	75.80	32.47	202.28	15.93	10.65	283.04	268.57	57.08	9.72	3.62	5.56	1034.01
7	30.35	196.42	72.04	7.32	3.52	82.83	17.70	38.16	1.63	0.27	0.72	0.72	451.69
8	57.69	95.62	15.80	46.00	37.57	47.61	25.75	1.27	0.00	0.84	0.00	6.62	334.77
9	11.69	31.52	59.38	3.19	116.99	368.79	54.54	455.44	45.57	17.59	8.03	7.89	1180.61
10	20.81	74.98	110.62	19.82	19.54	20.63	14.49	14.67	11.04	1.15	0.00	2.50	310.25
									•				•
90	11.02	28.85	42.41	2.17	1.45	115.56	48.14	160.07	205.67	84.75	19.57	5.28	724.96
91	85.59	121.54	44.46	98.27	10.68	3.59	23.69	55.81	332.84	36.12	16.68	4.97	834.23
92	4.48	85.79	24.70	0.00	0.00	16.62	23.06	22.50	0.00	0.00	0.63	1.51	179.29
93	10.46	204.87	129.16	1.34	0.00	7.13	41.77	79.89	36.78	17.48	7.24	0.00	536.10
94	150.15	58.57	99.72	7.21	0.00	0.00	50.60	168.34	0.00	4.81	6.94	0.00	546.34
95	62.33	68.19	29.21	181.96	14.33	9.58	254.61	241.58	51.35	8.74	3.26	5.00	930.13
96	28.21	47.79	14.54	10.83	28.04	4.99	5.97	39.11	4.23	4.66	0.00	1.20	189.57
97	54.44	71.74	11.26	58.64	96.86	15.71	18.73	70.06	16.76	5.88	0.00	0.00	420.09
98	119.39	46.57	79.29	5.73	0.00	0.00	40.23	133.86	0.00	3.82	5.52	0.00	434.42
99	15.67	42.27	79.63	4.27	156.89	494.59	73.14	610.80	61.11	23.59	10.77	10.58	1583.32
100	21.91	77.37	74.51	8.34	4.78	123.93	191.05	48.65	52.98	22.54	5.67	5.04	636.77
101	6.19	24.20	12.36	0.00	0.00	9.70	14.42	20.21	52.27	23.01	0.00	3.16	165.52
Media	53.53	106.71	49.67	33.58	23.11	73.63	65.84	85.11	71.95	15.91	5.41	3.83	588.27
Desv.	54.87	77.24	36.19	45.73	29.49	139.06	106.56	118.89	118.24	24.91	7.69	3.85	447.70
C.A.	2.32	1.60	1.20	2.38	2.48	3.31	3.31	2.34	2.33	2.86	1.82	1.37	1.47
C.V.	1.02	0.72	0.73	1.36	1.28	1.89	1.62	1.40	1.64	1.57	1.42	1.01	0.76
C.ji+1,ji	0.44	0.24	0.02	0.15	0.48	0.37	0.45	0.31	0.74	0.80	0.49	-0.09	

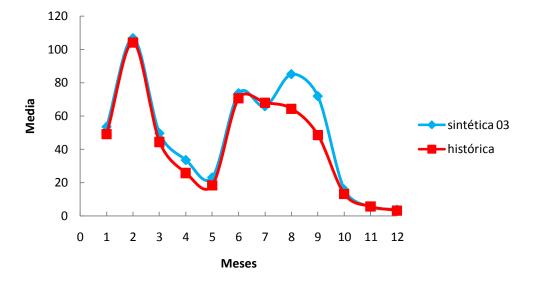


Figura A1. 3 Comparación entre la media de los datos del registro sintético 03 y los del registro histórico. Después del segundo ensayo. Considera un año hidrológico de julio a junio

Tabla A1. 9 Resultados para el registro sintético de la serie 03, archivo SIQPRE

	PRESA:		1 4	ANGOSTURA,	SON					
		. INICIAL	INGRESO			EXT. MODIF	EXT. TOTAL	DERRAME	DÉFICIT	ENERGÍA
QUINCENA		hm³	hm³	hm³	hm³	hm³	hm³	hm³	hm³	(GWh)
******	*****	*******	*******	******	1	*****	******	******	******	*****
1Q	OCT.	700	28.35	0.38	118.75	118.75	118.75	0	0	17.99
2Q	OCT.	609.22	28.35	0.36	96.05	96.05	96.05	0	0	14.02
1Q	NOV.	541.16	28.72	0.26	79.04	79.04	79.04	0	0	11.19
2Q	NOV.	490.57	28.72	0.25	66.39	66.39	66.39	0	0	9.17
1Q	DIC.	452.65	8.79	1.12	150	150	150	0	0	19.57
2Q	DIC.	310.31	8.79	0.95	150	150 13.5	150	0	0	17.49
1Q 2Q	ENE. ENE.	168.15 231.63	77.04 77.04	1.06 1.21	12.5 28.32	12.5 28.32	12.5 28.32	0 0	0 0	1.41 3.36
2Q 1Q	FEB.	279.15	77.0 4 111.79	0.89	12.5	12.5	12.5	0	0	1.57
2Q	FEB.	377.54	111.79	1	38.77	38.77	38.77	0	0	5.17
1Q	MAR.	449.55	77.04	0.42	74.78	74.78	74.78	0	0	10.21
2Q	MAR.	451.4	77.04	0.42	75.7	75.7	74.76 75.7	0	0	10.21
1Q	ABR.	452.32	13.48	0.53	4.17	4.17	4.17	0	0	0.57
2Q	ABR.	461.1	13.48	0.54	4.17	4.17	4.17	0	0	0.57
1Q	MAY.	469.88	8.38	0.87	4.17	4.17	4.17	0	0	0.58
2Q	MAY.	473.22	8.38	0.87	4.17	4.17	4.17	0	0	0.58
1Q	JUN.	476.56	2.48	1.88	4.17	4.17	4.17	0	0	0.58
2Q	JUN.	473	2.48	1.87	4.17	4.17	4.17	0	0	0.58
1Q	JUL.	469.44	25.27	2.87	12.5	12.5	12.5	0	0	1.73
2Q	JUL.	479.34	25.27	2.9	12.5	12.5	12.5	0	0	1.74
1Q	AGO.	489.22	120.07	3.87	44.61	44.61	44.61	0	0	6.35
2Q	AGO.	560.81	120.07	4.11	80.4	80.4	80.4	0	0	11.76
1Q	SEP.	596.36	29.83	4.06	12.5	12.5	12.5	0	0	1.85
2Q	SEP.	609.63	29.83	4.11	17.32	17.32	17.32	0	0	2.58
QUINCENA		. INICIAL	INGRESO	VOL. EVAP		EXT. MODIF				ENERGÍA
•		hm³	hm³	hm³	hm³	hm³	hm³	hm³	hm³	(GWh)
			42.24		2		********			
1Q 2Q	OCT. OCT.	618.04 531.74	12.31 12.31	0.36 0.33	98.26 76.68	98.26 76.68	98.26 76.68	0 0	0 0	14.34 10.76
2Q 1Q	NOV.	467.04	2.54	0.33		60.51		0	0	8.2
2Q	NOV.	408.82	2.54	0.24	60.51 41.91	41.91	60.51 41.91	0	0	5.51
1Q	DIC.	369.22	3.18	1.02	150	150	150	0	0	18.37
2Q	DIC.	221.38	3.18	0.84	110.69	110.69	110.69	0	0	11.96
1Q	ENE.	113.04	5.57	0.71	12.5	12.5	12.5	0	0	1.25
2Q	ENE.	105.39	5.57	0.66	12.5	12.5	12.5	0	0	1.23
1Q	FEB.	97.79	5.33	0.43	12.5	12.5	12.5	0	0	1.22
2Q	FEB.	90.2	5.33	0.4	12.5	12.5	12.5	0	0	1.2
1Q	MAR.	82.62	3.76	0.15	12.5	12.5	12.5	0	0	1.17
2Q	MAR.	73.74	3.76	0.14	12.5	12.5	12.5	0	0	1.15
1Q	ABR.	64.86	1.98	0.17	4.17	6.25	6.25	0	0	0.56
2Q	ABR.	60.42	1.98	0.16	4.17	6.25	6.25	0	0	0.56
1Q	MAY.	55.98	3.09	0.25	4.17	6.25	6.25	0	0	0.55
2Q	MAY.	52.58	3.09	0.24	4.17	6.25	6.25	0	0	0.54
1Q	JUN.	49.18	2	0.5	4.17	12.5	12.5	0	0	1.05
2Q	JUN.	38.18	2	0.39	4.17	12.5	12.5	0	0	1
1Q	JUL.	27.29	21.75	0.59	12.5	12.5	12.5	0	0	1
2Q	JUL.	35.95	21.75	0.7	12.5	12.5	12.5	0	0	1.04
1Q	AGO.	44.5	22.58	1.02	12.5	12.5	12.5	0	0	1.08
2Q	AGO.	53.56	22.58	1.11	12.5	12.5	12.5	0	0	1.11
1Q	SEP.	62.53	17.51	1.16	12.5	12.5	12.5	0	0	1.13
2Q	SEP.	66.38	17.51	1.2	12.5	12.5	12.5	0	0 DÉFICIT	1.14
QUINCENA		. INICIAL hm³	INGRESO hm³	VOL. EVAP	EXT. POL hm³	EXT. MODIF hm³	EXT. TOTAL hm³	DERRAME hm³	DEFICII hm³	ENERGÍA (GWh)
******			nm- ******		nm ²		nm- ******			
					J					
•	•	•	•	•	•	•	•	•	•	•

Anexos

Tabla A1. 9 Continuación

						**	******	*******
**	******	******	****		RESUMEN AN			*
	~		,	ING	EXT.	ALMAC		ENERGÍA
	AÑO	DERRAME	DÉFICIT	HIST	TOTAL	PRO	ELEV PRO	TOTAL
		hm³	hm³	hm³	hm³	hm³	(msnm)	(GWh)
	1	0	0	1062.46		457.93	823.5	150.95
	2	0	0	203.2	738.1	135.11	810.16	87.12
	3	0	67.87	251.53	234.5	26.98	799.35	18.08
	4	0	0	408.44	290.8	115.03	808.86	27.43
	5	0	38.12	282.3	354.8	64.07	804.46	33.14
	6	0	0	1155.26	664.8	355.65	819.97	82.91
	7	0	0	321.99	687.2	185.34	812.94	82.26
	8	0	22.26	268.24	389.8	62.62	804.31	35.67
	9	0	0	1284.43	789	342.44	819.48	100.84
	10	0	0	356.63	644.6	151.31	811.11	74.15
	90	0	0	894.27	695.1	403.89	821.68	88.88
	91	0	0	697.61	743.2	370.72	820.52	94.81
	92	0	3.7	408.79	576	130.97	809.9	62.55
	93	0	0	500.06	420.7	173.92	812.35	45.04
	94	0	0	397.62	468.2	201.68	813.72	52
	95	0	0	860.95	723.2	343.67	819.52	90.37
	96	0	0	236.47	502.4	101.36	807.86	51.83
	97	0	0	527.91	381.4	95.32	807.37	37.01
	98	0	0	326.74	362.8	113.3	808.74	35.87
	99	92.17	0	1619.54		509.73	825.15	151.47
	100	0	0	505.74	730.5	324.99	818.82	91.64
TOTAL	1806.72	4374.97	O	303.74	750.5	324.33	010.02	31.04
REGISTR	NAMIENTO INIC ADO	CIAL MÍNIMO		0	hm³			
	A PROMEDIO GE	ENERADA EN LO	S 100	2.69				
AÑOS:				2.69 RESUMEN	GWh	xxxxxxx	·xxxxxxxxxxxx	xxxx
AÑOS:	xxxxxxxxxxx			RESUMEN	GWh QUINCENAL	xxxxxxxx D	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	
AÑOS:		xxxxxxxxxx		RESUMEN	GWh	D ALMACE-		
AÑOS:	xxxxxxxxxxx	xxxxxxxxxx		RESUMEN	GWh QUINCENAL E ELEVACIÓN	D ALMACE- NAMIENTO	I ENERGÍA	
AÑOS:	xxxxxxxxxxx	xxxxxxxxxx O	Ν	RESUMEN 1	GWh QUINCENAL E ELEVACIÓN (msnm)	D ALMACE- NAMIENTO (hm³)	I ENERGÍA (GWh)	
AÑOS:	xxxxxxxxxxx	xxxxxxxxxx O	N EN	RESUMEN /I IE.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52	D ALMACE- NAMIENTO (hm³) 129.57	I ENERGÍA (GWh) 2.25	
AÑOS:	xxxxxxxxxxx	2Q 2Q	N EN EN	RESUMEN 1 IE. IE.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1	D ALMACE- NAMIENTO (hm³) 129.57 137.6	l ENERGÍA (GWh) 2.25 2.59	
AÑOS:	xxxxxxxxxxx	2Q 1Q 1Q	N EN EN FE	RESUMEN 1 IE. IE. B.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63	I ENERGÍA (GWh) 2.25 2.59 1.51	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q 2Q	N EN EN FE FE	RESUMEN 1 IE. IE. B. B.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q 2Q 1Q 2Q	EN EN FE FE	RESUMEN 1 IE. IE. B. B. AR.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q	EN EN FE FE MA	RESUMEN I IE. IE. B. B. AR.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q	EN EN FE FE MA MA AB	RESUMEN I IE. IE. B. B. AR. AR.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q	EN EN FE FE MA AB AB	RESUMEN I IE. B. B. AR. AR. iR.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q	EN EN FE FE MA AB AB	RESUMEN IE. B. B. AR. AR. IR. IR. IR. IR.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q	EN EN FE FE MA AB AB MA	RESUMEN IE. B. B. AR. AR. AR. AY. AY.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q	EN EN FE MA MA AB MA MA JU	RESUMEN IE. B. B. AR. AR. AR. AY. AY. N.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69 804.44	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 0.62 1.1	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q	EN EN FE MA MA AB MA MA JU JU	RESUMEN IE. B. B. AR. AR. AR. AY. AY. N.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69 804.44 802.62	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13 175.83	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 0.62 1.1 1.04	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q	EN EN FE MA AB AB MA JU JU JU	RESUMEN IE. B. B. AR. AR. AY. AY. N. N.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69 804.44 802.62 804	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13 175.83 183.8	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 0.62 1.1 1.04 1.8	
AÑOS:	xxxxxxxxxxx	1Q 2Q 2Q 1Q 2Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q	EN EN FE FE MA AB AB AB JU JU JU	RESUMEN I E. B. B. AR. AR. IR. IR. IR. IR. IR. IR. IR. IR. IR. I	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69 804.44 802.62 804 806.65	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13 175.83 183.8 193.26	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 0.62 1.1 1.04 1.8 1.53	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q	EN EN FE FE MA AB AB JU JU JU JU JU AG	RESUMEN IE. B. B. AR. AR. AR. AY. AY. N. N. IL. ICO.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 805.69 804.44 802.62 804 806.65 809.31	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13 175.83 183.8 193.26 221.33	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 0.62 1.1 1.04 1.8 1.53 2.64	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q 1Q 2Q	EN EN FE FE MA AB AB JU JU JU JU AG AG	RESUMEN IE. B. B. AR. AR. AR. II. II. III. III. III. III. III. III. III. III.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69 804.44 802.62 804 806.65 809.31 812.39	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13 175.83 183.8 193.26 221.33 250.49	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 0.62 1.1 1.04 1.8 1.53 2.64 2.61	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q	EN EN FE FE MA AB AB JU JU JU JU AG AG	RESUMEN IE. B. B. AR. AR. AR. II. II. III. I	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69 804.44 802.62 804 806.65 809.31 812.39 813.56	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13 175.83 183.8 193.26 221.33 250.49 260.14	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 0.62 1.1 1.04 1.8 1.53 2.64 2.61 1.44	
AÑOS:	xxxxxxxxxxx	1Q 2Q	EN EN FE FE MA AB AB JU JU JU AG SE SE	RESUMEN I E. IE. B. B. AR. AR. AR. AR. II. II. III. II	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69 804.44 802.62 804 806.65 809.31 812.39 813.56 813.95	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13 175.83 183.8 193.26 221.33 250.49 260.14 269.62	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 0.62 1.1 1.04 1.8 1.53 2.64 2.61 1.44 1.47	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q	EN EN FE MA AB AB MA JU JU JU AG SE SE	RESUMEN IE. B. B. AR. AR. AR. AY. N. N. IL. GO. P. P. CT.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69 804.44 802.62 804 806.65 809.31 812.39 813.56 813.95 813.87	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13 175.83 183.8 193.26 221.33 250.49 260.14 269.62 259.38	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 0.62 1.1 1.04 1.8 1.53 2.64 2.61 1.44 1.47 4.07	
AÑOS:	xxxxxxxxxxx	1Q 2Q	EN EN FE MA AB AB MA JU JU JU AG AG SE SE OC	RESUMEN IE. IE. B. B. AR. AR. AR. AY. N. N. IL. IO. OO. P. P. CT.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69 804.44 802.62 804 806.65 809.31 812.39 813.56 813.95 813.87 813.16	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13 175.83 183.8 193.26 221.33 250.49 260.14 269.62 259.38 249.73	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 0.62 1.1 1.04 1.8 1.53 2.64 2.61 1.44 1.47 4.07 3.35	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q	EN EN FE FE MA AB AB AB JU JU JU AG AG SE SE OC OC	RESUMEN IE. IE. B. B. B. AR. AR. AR. AY. N. N. III. IO. O. P. P. CT. CT.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69 804.44 802.62 804 806.65 809.31 812.39 813.56 813.95 813.87 813.16 812.55	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13 175.83 183.8 193.26 221.33 250.49 260.14 269.62 259.38 249.73 237.56	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 1.1 1.04 1.8 1.53 2.64 2.61 1.44 1.47 4.07 3.35 2.92	
AÑOS:	xxxxxxxxxxx	1Q 2Q	EN EN FE FE MA AB AB AB JU JU JU AG AG SE SE OC OC NC	RESUMEN IE. IE. B. B. AR. AR. AR. AY. N. N. IL. IO. OO. P. P. CT. CT. DV.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69 804.44 802.62 804 806.65 809.31 812.39 813.56 813.95 813.87 813.16 812.55 811.97	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13 175.83 183.8 193.26 221.33 250.49 260.14 269.62 259.38 249.73 237.56 229.23	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 0.62 1.1 1.04 1.8 1.53 2.64 2.61 1.44 1.47 4.07 3.35 2.92 2.4	
AÑOS:	xxxxxxxxxxx	1Q 2Q 1Q	EN EN FE FE MA AB AB AB JU JU JU AG AG SE SE OC OC	RESUMEN IE. IE. B. B. AR. AR. AY. AY. N. N. IL. IO. OO. P. P. CT. CT. DV. CC.	GWh QUINCENAL E ELEVACIÓN (msnm) 805.52 806.1 806.83 807.61 807.91 808.04 807.46 806.81 806.28 805.69 804.44 802.62 804 806.65 809.31 812.39 813.56 813.95 813.87 813.16 812.55	D ALMACE- NAMIENTO (hm³) 129.57 137.6 163.63 181.42 191.24 198.27 199.38 200.32 196.67 193.29 184.13 175.83 183.8 193.26 221.33 250.49 260.14 269.62 259.38 249.73 237.56	I ENERGÍA (GWh) 2.25 2.59 1.51 2.56 2.87 3.3 0.63 0.64 0.64 1.1 1.04 1.8 1.53 2.64 2.61 1.44 1.47 4.07 3.35 2.92	

Anexos

Tabla A1. 10 Resultados para el registro sintético de la serie 03, archivo SUPGUIAP

		DRES O GUALES A LA CUR	/A GUÍA
PRESA:	LA	ANGOSTURA, SON.	
AÑO	QUINCENA	ALMACENAMIENTO	hm³
15	2Q	FEB.	703.4
25	2Q	MAR.	703.4
25	1Q	ABR.	703.4
25	2Q	ABR.	703.4
25	1Q	MAY.	700.53
44	2Q	ENE.	703.4
44	1Q	FEB.	703.4
44	2Q	FEB.	703.4
44	1Q	MAR.	703.4
68	2Q	DIC.	703.4
68	1Q	ENE.	703.4
68	2Q	ENE.	703.4
68	1Q	FEB.	703.4
68	2Q	FEB.	703.4
68	1Q	MAR.	703.4
68	2Q	MAR.	703.4
68	1Q	ABR.	703.4
68	2Q	ABR.	703.4
68	1Q	MAY.	703.4
68	2Q	MAY.	703.4
87	2Q	ABR.	703.4
87	1Q	MAY.	703.4
87	2Q	MAY.	703.4
87	1Q	JUL.	703.4
87	2Q	JUL.	703.4
87	1Q	AGO.	703.4
87	2Q	AGO.	703.4
87	1Q	SEP.	701.48
99	2Q	FEB.	703.4
99	1Q	MAR.	703.4
99	2Q	MAR.	703.4
99	1Q	ABR.	703.4
99	2Q	ABR.	703.4
99	1Q	MAY.	701.47

Anexo 2. Desarrollo de la serie 07

Tabla A2. 1 Serie 07 con 101 datos generados

1	xP (hm³)	F(XP)	ALE	ffin
1	485.9161	-0.00000071	0.61687870	0.61687800
2	258.2824	-0.00000087	0.25255550	0.25255460
3	138.8669	-0.00000088	0.06274921	0.06274833
4	1181.898	0.00000067	0.91799570	0.91799630
5	220.5825	-0.00000032	0.18227330	0.18227300
6	875.6924	-0.00000073	0.83688910	0.83688840
7	608.1844	-0.00000019	0.71819550	0.71819530
8	1643.791	-0.00000039	0.97631500	0.97631470
9	221.1797	-0.00000084	0.18334070	0.18333990
10	434.4475	-0.00000048	0.55561080	0.55561030
90	1755.676	0.0000054	0.98281590	0.98281640
91	237.5567	-0.00000094	0.21327670	0.21327570
92	1321.163	0.00000036	0.94248750	0.94248780
93	219.63	0.00000024	0.18057530	0.18057550
94	187.3934	-0.00000061	0.12665120	0.12665060
95	392.1151	0.00000052	0.49490550	0.49490610
96	234.8232	0.00000024	0.20819660	0.20819690
97	283.7014	-0.00000083	0.30166070	0.30165990
98	261.5082	0.0000011	0.25875630	0.25875640
99	957.6464	0.00000038	0.86250620	0.86250660
100	139.7073	0.0000017	0.06364655	0.06364673
101	176.6837	0.00000062	0.11055510	0.11055570
Media	513.991			
Desv.	383.019			
C.A.	1.463			
c.v.	0.745			

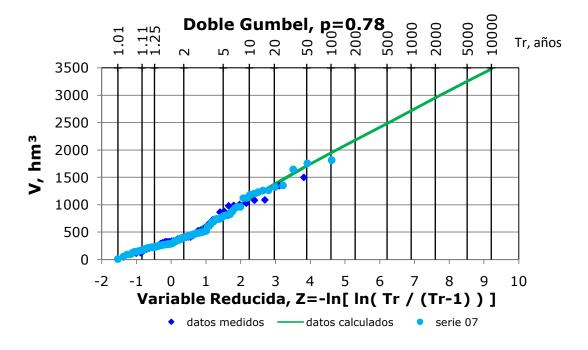


Figura A2. 1 Función Doble Gumbel, la gráfica compara los datos medidos y calculados con los obtenidos de la serie 07

Anexos

Tabla A2. 2 Selección aleatoria de años antes de considerar la influencia del invierno

-	
	Año
1	1965
2	1966
3	1967
4	1968
5	1969
6	1970
7	1971
8	1972
9	1973
10	1974
11	1975
12	1976
13	1977
14	1978
15	1979
16	1980
17	1981
18	1982
19	1983
20	1984
21	1985
22	1986
23	1987
24	1988
25	1989
26	1990
27	1991
28	1992
29	1993
30	1994
31	1995
32	1996
33	1997
34	1998
35	1999
36	2000
37	2001
38	2002
39	2003
40	2004
41	2005
42	2006
43	2007
44	2008

1	xP (hm³)	Año aleatorio	Año
<u> </u> 1	485.9161	2	1966
		-	
2	258.2824	36	2000
3	138.8669	11	1975
4	1181.898	9	1973
5	220.5825	7	1971
6	875.6924	32	1996
7	608.1844	41	2005
8	1643.791	8	1972
9	221.1797	18	1982
10	434.4475	31	1995
11	515.2988	3	1967
12	224.5736	33	1997
13	778.7704	43	2007
•	•		
•	•		
90	1755.676	10	1974
91	237.5567	14	1978
92	1321.163	21	1985
93	219.63	17	1981
94	187.3934	14	1978
95	392.1151	33	1997
96	234.8232	13	1977
97	283.7014	39	2003
98	261.5082	15	1979
99	957.6464	20	1984
100	139.7073	5	1969
101	176.6837	33	1997

45

2009

Anexos

Tabla A2. 3 Selección aleatoria de años después de considerar la influencia del invierno

I	Año
1	1967
2	1984
3	1978
4	1972
5	1991
6	1990
7	1982
8	1977
9	1992
10	1994
11	2004
12	1986
13	1965
14	2009
15	1988
16	1997
17	1966
18	2000
19	2007
20	1976
21	1983
22	1993
23	1981
24	1999
25	1985
26	2006
27	1971
28	1980
29	1969
30	2008
31	1974
32	1975
33	2001
34	1989
35	1970
36	2005
37	1987
38	1996
39	2002
40	1968
41	1979
42	1998
43	1995
43	1973
44	19/3

I	xP (hm³)	Año aleatorio	Año
1	485.9161	15	1988
2	258.2824	39	2002
3	138.8669	21	1983
4	1181.898	3	1978
5	220.5825	19	2007
6	875.6924	10	1994
7	608.1844	13	1965
8	1643.791	3	1978
9	221.1797	27	1971
10	434.4475	35	1970
90	1755.676	3	1978
91	237.5567	23	1981
92	1321.163	7	1982
93	219.63	26	2006
94	187.3934	24	1999
95	392.1151	37	1987
96	234.8232	23	1981
97	283.7014	41	1979
98	261.5082	24	1999
99	957.6464	7	1982
100	139.7073	18	2000
101	176.6837	37	1987

45

2003

Tabla A2. 4 Fracciones aleatorias antes de considerar la influencia del invierno

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Suma
1	0.17	0.53	0.12	0.10	0.04	0.02	0.01	0.00	0.01	0.00	0.00	0.00	1.00
2	0.13	0.17	0.03	0.14	0.23	0.04	0.04	0.17	0.04	0.01	0.00	0.00	1.00
3	0.27	0.11	0.18	0.01	0.00	0.00	0.09	0.31	0.00	0.01	0.01	0.00	1.00
4	0.59	0.07	0.05	0.07	0.00	0.00	0.00	0.04	0.11	0.06	0.00	0.00	1.00
5	0.17	0.29	0.05	0.14	0.11	0.14	0.08	0.00	0.00	0.00	0.00	0.02	1.00
6	0.24	0.20	0.28	0.02	0.04	0.04	0.04	0.02	0.09	0.02	0.00	0.02	1.00
7	0.01	0.40	0.23	0.09	0.06	0.17	0.00	0.02	0.00	0.00	0.01	0.01	1.01
8	0.03	0.11	0.09	0.06	0.06	0.02	0.17	0.24	0.17	0.03	0.02	0.01	1.00
9	0.02	0.04	0.06	0.00	0.00	0.16	0.07	0.22	0.28	0.12	0.03	0.01	1.00
10	0.07	0.24	0.36	0.06	0.06	0.07	0.05	0.05	0.04	0.00	0.00	0.01	1.00
	•												•
	•												•
90	0.15	0.25	0.08	0.06	0.15	0.03	0.03	0.21	0.02	0.02	0.00	0.01	1.00
91	0.01	0.04	0.01	0.05	0.04	0.17	0.49	0.11	0.03	0.03	0.02	0.01	1.00
92	0.05	0.24	0.10	0.24	0.04	0.05	0.02	0.11	0.04	0.05	0.03	0.05	1.00
93	0.28	0.36	0.09	0.06	0.03	0.08	0.08	0.00	0.01	0.00	0.00	0.00	1.00
94	0.01	0.04	0.01	0.05	0.04	0.17	0.49	0.11	0.03	0.03	0.02	0.01	1.00
95	0.01	0.13	0.04	0.01	0.03	0.18	0.13	0.20	0.16	0.09	0.03	0.00	1.00
96	0.10	0.15	0.05	0.12	0.01	0.00	0.03	0.07	0.40	0.04	0.02	0.01	1.00
97	0.04	0.15	0.07	0.00	0.00	0.06	0.09	0.12	0.32	0.14	0.00	0.02	1.00
98	0.09	0.45	0.00	0.04	0.05	0.09	0.02	0.21	0.03	0.00	0.01	0.01	1.00
99	0.03	0.22	0.04	0.03	0.02	0.39	0.12	0.08	0.03	0.02	0.02	0.00	1.00
100	0.20	0.21	0.16	0.11	0.09	0.11	0.03	0.02	0.05	0.01	0.00	0.00	1.00
101	0.01	0.13	0.04	0.01	0.03	0.18	0.13	0.20	0.16	0.09	0.03	0.00	1.00

Tabla A2. 5 Fracciones aleatorias después de considerar la influencia del invierno

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Suma
1	0.12	0.56	0.14	0.06	0.01	0.01	0.03	0.02	0.02	0.01	0.01	0.01	1.00
2	0.05	0.44	0.09	0.01	0.03	0.06	0.05	0.10	0.15	0.02	0.00	0.00	1.00
3	0.03	0.14	0.15	0.23	0.13	0.25	0.04	0.01	0.00	0.00	0.01	0.01	1.00
4	0.01	0.04	0.01	0.05	0.04	0.17	0.49	0.11	0.03	0.03	0.02	0.01	1.00
5	0.07	0.43	0.16	0.02	0.01	0.18	0.04	0.08	0.00	0.00	0.00	0.00	1.00
6	0.01	0.03	0.05	0.00	0.10	0.31	0.05	0.39	0.04	0.01	0.01	0.01	1.00
7	0.10	0.06	0.09	0.02	0.00	0.38	0.10	0.13	0.08	0.04	0.00	0.00	1.00
8	0.01	0.04	0.01	0.05	0.04	0.17	0.49	0.11	0.03	0.03	0.02	0.01	1.00
9	0.17	0.29	0.05	0.14	0.11	0.14	0.08	0.00	0.00	0.00	0.00	0.02	1.00
10	0.06	0.57	0.18	0.05	0.02	0.02	0.03	0.02	0.03	0.01	0.01	0.00	1.00
		•	•	•	•								
•		•	•	•	•	•	•	•	•	•		•	•
90	0.01	0.04	0.01	0.05	0.04	0.17	0.49	0.11	0.03	0.03	0.02	0.01	1.00
91	0.28	0.36	0.09	0.06	0.03	0.08	0.08	0.00	0.01	0.00	0.00	0.00	1.00
92	0.02	0.04	0.06	0.00	0.00	0.16	0.07	0.22	0.28	0.12	0.03	0.01	1.00
93	0.07	0.44	0.31	0.02	0.00	0.00	0.05	0.07	0.01	0.00	0.02	0.01	1.00
94	0.33	0.53	0.11	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	1.00
95	0.03	0.48	0.14	0.00	0.00	0.09	0.13	0.13	0.00	0.00	0.00	0.01	1.00
96	0.28	0.36	0.09	0.06	0.03	0.08	0.08	0.00	0.01	0.00	0.00	0.00	1.00
97	0.09	0.45	0.00	0.04	0.05	0.09	0.02	0.21	0.03	0.00	0.01	0.01	1.00
98	0.33	0.53	0.11	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	1.00
99	0.02	0.04	0.06	0.00	0.00	0.16	0.07	0.22	0.28	0.12	0.03	0.01	1.00
100	0.13	0.17	0.03	0.14	0.23	0.04	0.04	0.17	0.04	0.01	0.00	0.00	1.00
101	0.03	0.48	0.14	0.00	0.00	0.09	0.13	0.13	0.00	0.00	0.00	0.01	1.00

Tabla A2. 6 Registro sintético a partir de la serie 07 antes de considerar la influencia del invierno (hm³)

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
1	84.79	256.03	56.95	47.96	19.73	9.43	4.91	0.00	3.11	1.80	1.17	0.00	485.87
2	33.47	44.11	6.92	36.06	59.56	9.66	11.52	43.08	10.31	3.62	0.00	0.00	258.31
3	38.16	14.89	25.34	1.83	0.00	0.00	12.86	42.78	0.00	1.22	1.76	0.00	138.85
4	694.84	84.74	61.93	86.16	0.35	0.00	0.35	50.11	133.20	68.43	0.00	1.78	1181.90
5	38.01	63.00	10.41	30.31	24.75	31.37	16.96	0.84	0.00	0.55	0.00	4.36	220.55
6	208.24	172.25	243.79	16.55	34.50	33.36	36.25	19.97	82.23	14.80	0.00	13.79	875.73
7	5.53	242.60	139.88	56.56	35.27	104.73	2.80	11.43	1.09	0.67	4.80	8.40	613.79
8	46.85	180.82	144.49	101.26	102.57	31.40	275.17	399.28	275.17	48.16	29.92	8.85	1643.93
9	3.36	8.80	12.94	0.66	0.44	35.26	14.69	48.84	62.75	25.86	5.97	1.61	221.18
10	29.15	105.01	154.92	27.76	27.37	28.89	20.29	20.55	15.47	1.61	0.00	3.49	434.51
						•							
		•		•		•		•					•
•													
90	261.24	442.61	134.66	100.25	259.66	46.17	55.30	362.20	39.15	43.19	0.00	11.12	1755.56
91	2.95	9.72	1.47	11.81	9.98	40.03	115.41	25.73	6.56	7.96	4.63	1.31	237.54
92	63.55	323.16	125.91	314.70	52.05	59.58	22.20	145.72	52.58	60.38	39.11	62.16	1321.09
93	60.95	79.24	19.88	13.55	6.63	17.46	17.97	0.83	2.94	0.15	0.00	0.00	219.61
94	2.32	7.66	1.16	9.31	7.87	31.58	91.04	20.29	5.17	6.28	3.65	1.03	187.38
95	2.39	49.96	14.27	3.57	12.16	70.66	49.56	77.76	64.35	34.86	12.59	0.00	392.12
96	24.09	34.21	12.52	27.66	3.01	1.01	6.67	15.71	93.69	10.17	4.70	1.40	234.84
97	10.61	41.48	21.19	0.00	0.00	16.62	24.71	34.64	89.59	39.43	0.00	5.41	283.70
98	22.83	118.36	0.00	10.51	12.87	23.95	4.45	55.57	8.73	0.00	1.62	2.62	261.52
99	28.06	211.93	36.10	28.54	17.14	369.27	118.56	75.65	31.89	23.65	16.85	0.04	957.69
100	28.29	29.37	22.77	15.23	12.43	14.98	4.78	2.93	7.47	1.47	0.00	0.00	139.72
101	1.08	22.51	6.43	1.61	5.48	31.84	22.33	35.04	28.99	15.71	5.67	0.00	176.68
Media	58.92	111.37	56.88	29.92	20.05	61.10	52.48	62.92	39.57	12.23	4.92	3.74	514.10
Desv.	91.50	117.36	60.88	40.98	33.19	96.74	82.58	89.79	61.90	15.18	7.20	7.16	383.03
C.A.	4.29	2.15	1.49	3.94	4.49	2.36	3.56	2.71	2.78	1.77	2.49	5.93	1.46
C.V.	1.55	1.05	1.07	1.37	1.66	1.58	1.57	1.43	1.56	1.24	1.46	1.92	0.75
C.ji+1,ji	0.35	0.65	0.21	0.36	0.18	0.31	0.42	0.36	0.68	0.54	0.65	0.01	

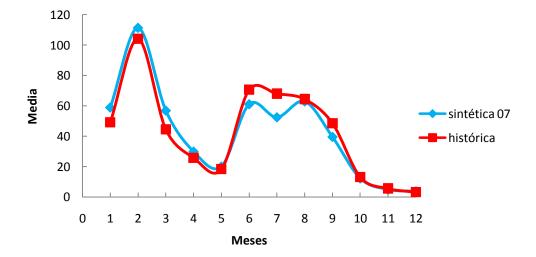


Figura A2. 2 Comparación entre la media de los datos del registro sintético 07 y los del registro histórico. Después del primer ensayo. Considera un año hidrológico de julio a junio

Tabla A2. 7 Registro sintético a partir de la serie 07 después de considerar la influencia del invierno (hm³)

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
1	57.14	271.48	67.45	27.84	5.73	7.19	12.59	12.05	8.50	4.47	7.00	4.51	485.96
2	12.45	113.80	23.27	3.46	7.62	14.36	13.90	25.11	37.86	6.43	0.00	0.00	258.26
3	4.12	19.30	20.50	32.44	18.43	34.06	5.85	1.76	0.00	0.00	1.42	0.99	138.87
4	14.66	48.34	7.33	58.74	49.64	199.15	574.17	128.00	32.62	39.59	23.05	6.52	1181.80
5	14.82	95.93	35.18	3.57	1.72	40.45	8.65	18.64	0.79	0.13	0.35	0.35	220.60
6	8.67	23.38	44.05	2.36	86.78	273.57	40.46	337.84	33.80	13.05	5.95	5.85	875.76
7	59.18	37.46	55.22	9.12	1.70	229.10	63.43	80.04	46.04	26.88	0.00	0.00	608.18
8	20.38	67.23	10.19	81.70	69.04	276.98	798.55	178.02	45.37	55.07	32.05	9.07	1643.66
9	38.11	63.17	10.44	30.39	24.82	31.45	17.01	0.84	0.00	0.55	0.00	4.37	221.15
10	26.72	247.33	76.03	19.55	10.43	10.51	12.21	9.51	12.43	5.17	4.56	0.00	434.45
												•	
90	21.77	71.81	10.89	87.26	73.74	295.83	852.91	190.14	48.46	58.82	34.24	9.69	1755.53
91	65.92	85.71	21.50	14.66	7.17	18.89	19.43	0.90	3.18	0.17	0.00	0.00	237.53
92	20.08	52.58	77.29	3.96	2.64	210.59	87.73	291.71	374.81	154.44	35.67	9.63	1321.15
93	16.19	97.49	67.51	3.62	0.18	0.11	10.87	14.43	2.79	0.37	4.77	1.54	219.87
94	62.14	99.90	20.24	0.49	0.39	0.19	2.12	1.65	0.30	0.00	0.00	0.00	187.41
95	9.80	187.63	54.03	0.00	0.00	36.35	50.43	49.21	0.00	0.00	1.37	3.30	392.13
96	65.16	84.72	21.25	14.49	7.09	18.67	19.21	0.89	3.15	0.16	0.00	0.00	234.80
97	24.77	128.40	0.00	11.40	13.96	25.99	4.82	60.29	9.48	0.00	1.76	2.85	283.71
98	86.72	139.41	28.24	0.68	0.55	0.26	2.96	2.30	0.42	0.00	0.00	0.00	261.53
99	14.56	38.11	56.02	2.87	1.92	152.65	63.59	211.45	271.68	111.95	25.86	6.98	957.64
100	18.11	23.86	3.74	19.50	32.22	5.23	6.23	23.30	5.57	1.96	0.00	0.00	139.72
101	4.42	84.54	24.35	0.00	0.00	16.38	22.72	22.17	0.00	0.00	0.62	1.49	176.69
Media	42.42	101.56	38.62	21.87	17.81	69.68	82.86	70.09	43.97	16.73	5.31	3.15	514.08
Desv.	43.62	69.86	25.60	30.80	23.72	104.93	178.55	97.14	75.66	30.02	8.91	3.67	382.97
C.A.	3.44	1.05	1.12	2.75	1.98	1.97	3.38	1.85	2.66	2.89	2.12	2.15	1.46
c.v.	1.03	0.69	0.66	1.41	1.33	1.51	2.15	1.39	1.72	1.79	1.68	1.16	0.74
C.ji+1,ji	0.47	0.43	0.02	0.31	0.48	0.35	0.49	0.58	0.91	0.73	0.59	0.06	

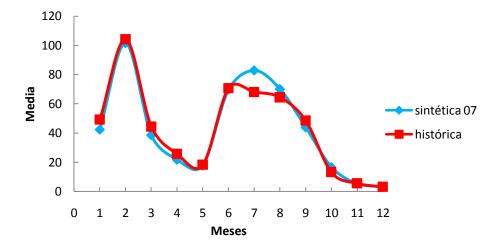


Figura A2. 3 Comparación entre la media de los datos del registro sintético 07 y los del registro histórico. Después del segundo ensayo. Considera un año hidrológico de julio a junio

Tabla A2. 8 Resultados para el registro sintético de la serie 07, archivo SIQPRE

	PRESA:	LA A	ANGOSTURA	, SON.						
QUINCENA	ALM.	. INICIAL	INGRESO	VOL. EVAP	EXT. POL	EXT. MODIF	EXT TOTAL	DERRAME	DEFICIT	ENERGÍA
		hm³	hm³	hm³	hm³	hm³	hm³	hm³	hm³	(GWh)
		*******			1		********		*******	******
1Q	OCT.	700	13.92	0.38	118.75	118.75	118.75	0	0	17.93
2Q	OCT.	594.79	13.92	0.35	92.45	92.45	92.45	0	0	13.36
1Q 2Q	NOV. NOV.	515.92 445.8	2.87 2.87	0.25 0.24	72.73 55.2	72.73 55.2	72.73 55.2	0 0	0 0	10.1 7.39
2Q 1Q	DIC.	393.23	3.6	1.05	55.2 150	55.2 150	55.2 150	0	0	7.39 18.72
2Q	DIC.	245.77	3.6	0.88	122.89	122.89	122.89	0	0	13.57
2Q 1Q	ENE.	125.6	6.29	0.88	12.5	122.89	12.5	0	0	1.28
2Q	ENE.	118.62	6.29	0.74	12.5	12.5	12.5	0	0	1.26
1Q	FEB.	111.67	6.03	0.49	12.5	12.5	12.5	0	0	1.25
2Q	FEB.	104.71	6.03	0.46	12.5	12.5	12.5	0	0	1.23
1Q	MAR.	97.78	4.25	0.17	12.5	12.5	12.5	0	0	1.21
2Q	MAR.	89.36	4.25	0.16	12.5	12.5	12.5	0	0	1.19
1Q	ABR.	80.96	2.24	0.19	4.17	4.17	4.17	0	0	0.39
2Q	ABR.	78.83	2.24	0.19	4.17	4.17	4.17	0	0	0.39
1Q	MAY.	76.72	3.5	0.3	4.17	4.17	4.17	0	0	0.39
2Q	MAY.	75.75	3.5	0.3	4.17	4.17	4.17	0	0	0.39
1Q	JUN.	74.78	2.26	0.63	4.17	4.17	4.17	0	0	0.39
2Q	JUN.	72.25	2.26	0.62	4.17	4.17	4.17	0	0	0.38
1Q	JUL.	69.72	6.22	0.93	12.5	12.5	12.5	0	0	1.14
2Q	JUL.	62.51	6.22	0.88	12.5	12.5	12.5	0	0	1.11
1Q	AGO.	55.36	56.9	1.3	12.5	12.5	12.5	0	0	1.16
2Q	AGO.	98.47	56.9	1.83	12.5	12.5	12.5	0	0	1.27
1Q	SEP.	141.04	11.64	1.99	12.5	12.5	12.5	0	0	1.31
2Q	SEP.	138.18	11.64	1.97	12.5	12.5	12.5	0	0	1.31
QUINCENA		. INICIAL	INGRESO	VOL. EVAP	EXT. POL					ENERGÍA
		hm³	hm³	hm³	hm³	hm³	hm³	hm³	hm³	(GWh) *****
		********			2 6.25	*******				
1Q 2Q	OCT. OCT.	135.34 124.41	1.73 1.73	0.17 0.16	6.25	12.5 12.5	12.5 12.5	0 0	0 0	1.29 1.27
2Q 1Q	NOV.	113.48	3.81	0.10	6.25	12.5	12.5	0	0	1.25
2Q	NOV.	104.68	3.81	0.11	6.25	12.5	12.5	0	0	1.23
1Q	DIC.	95.89	7.18	0.46	47.94	47.94	47.94	0	0	4.45
2Q	DIC.	54.66	7.18	0.40	27.33	27.33	27.33	0	0	2.31
1Q	ENE.	34.18	6.95	0.31	12.5	12.5	12.5	0	0	1
2Q	ENE.	28.32	6.95	0.29	12.5	12.5	12.5	0	0	0.96
1Q	FEB.	22.48	12.55	0.19	12.5	12.5	12.5	0	0	0.95
2Q	FEB.	22.34	12.55	0.19	12.5	12.5	12.5	0	0	0.95
1Q	MAR.	22.2	18.93	0.08	12.5	12.5	12.5	0	0	0.96
2Q	MAR.	28.56	18.93	0.09	12.5	12.5	12.5	0	0	1
1Q	ABR.	34.9	3.22	0.11	4.17	6.25	6.25	0	0	0.5
2Q	ABR.	31.76	3.22	0.1	4.17	6.25	6.25	0	0	0.5
1Q	MAY.	28.62	0	0.16	4.17	6.25	6.25	0	0	0.48
2Q	MAY.	22.22	0	0.14	4.17	6.25	6.25	0	0	0.46
1Q	JUN.	15.82	0	0.27	4.17	12.5	12.5	0	0	0.85
2Q	JUN.	3.05	0	0.13	4.17	12.5	2.93	0	9.57	0.13
1Q	JUL.	0	2.06	0.1	12.5	12.5	1.97	0	10.53	0.05
2Q	JUL.	0	2.06	0.1	12.5	12.5	1.97	0	10.53	0.05
1Q	AGO.	0	9.65	0.32	12.5	12.5	9.33	0	3.17	0.23
2Q	AGO.	0	9.65	0.32	12.5	12.5	9.33	0	3.17	0.23
1Q	SEP.	0	10.25	0.32	12.5	12.5	9.93	0	2.57	0.24
2Q	SEP.	0	10.25	0.32	12.5	12.5	9.93	0	2.57	0.24
QUINCENA		.INICIAL	INGRESO			EXT. MODIF				
******		hm³ ********	hm³ *******	hm³ ******	hm³ 3	hm³ ******	hm³ *******	hm³ ******	hm³ ******	(GWh) *****
	_					_		_		_
	:				· ·					

Anexos

Tabla A2. 8 Continuación

**	******	*******	***		RESUMEN ANUA	.L **	********			
	. ~ -	DERRAME	DÉFICIT		EXT. TOTAL A		ELEV PRO	ENERGÍA T	OTAL	
	AÑO	hm³	hm³	hm³	hm³	hm³	(msnm)	(GWh		
	1	0	0	239.41	787	166.8	811.98	98.14		
	2	0	42.12	152.66	283.2	32.82	800.37	21.58		
	3	0	166.71	165.27	158.6	2.73	793.19	7.96		
	4	0	0	1257.42	797.6	332.73	819.11	103.7		
	5	0	11.22	150.76	555	98.38	807.62	57.2		
	6	0	63.86	951.53	536	291.52	817.52	63.1		
	7	0	0	554.13	637.2	296.21	817.7	77.79		
	8	425.61	0	1657.57	1446.3	562.71	826.76	143.1		
	9	0	95.69	459.51	710.6	132.4	810	73.31		
	10	0	216.41	171.92	349.2	45.46	802.29	28.99		
									_	
	90	460.74	0	1824.2	1320.1	518.87	825.43	118.7		
	91	0	244.11	214.35	648.5	104.68	808.11	66.3		
	92	35.45	52.12	1352.39	829.7	383.55	820.98	86.62		
	93	0	124.96	220.96	752.1	98.52	807.63	70.1		
	94	0	702.44	256.6	174.6	8.72	795.33	11.09		
	95	0	124.64	311.8	382.5	33.93	800.56	21.68		
	96	0	293.02	216.83	214.1	0.15	790.46	6.49		
	97	0	138.08	384.91	369	6.24	794.56	14.62		
	98	0	412.5	115.86	94.6	1.87	792.7	3.51		
	99	0	15.48	894.65	474.8	351.08	819.8	60.21		
TOTAL	100	0	85.47	207.32	612.5	97.45	807.54	60.22	2	
TOTAL	1712.52	7862.87	CICTRADO	0	L 3					
_		CIAL MÍNIMO RE		0	hm³					
ENERGIA		ENERADA EN LOS	100 ANOS:	2.23	GWh	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
n		XXXXXXXXXXX			IEN QUINCENAL		xxxxxxxxxxxx	ххх О	S	
Р	R	0		М	E	D ALMACE-	I	U	5	
					ELEVACIÓN	NAMIENTO				
					(msnm)	(hm³)	(GWh)			
		10		ENE.	803.57	120.87	1.96			
		20		ENE.	804.52	131.74	2.77			
		10		FEB.	804.84	147.6	1.74			
		20		FEB.	805.22	161.44	2.02			
		10		MAR.	804.89	160.4	2.65			
		20		MAR.	803.92	160.09	2.57			
		10 20		ABR.	802.95 802.45	162.79 164.76	0.52 0.54			
		10		ABR. MAY.	802.45 801.65	164.76 162.01	0.54			
		20		MAY.	800.73	159.5	0.49			
					799.9		0.47			
		10 20		JUN. JUN.	798.21	152.12 144.46	0.87			
		10		JUL.	799.06	147.96	1.61			
		20		JUL.	801.39		1.33			
		10		AGO.	801.39 804.29	154.01 180.36	2.02			
		20		AGO.	808.03	208.36	2.02			
		10		SEP.	809.59	213.27	1.28			
		20		SEP.	809.59 810	213.27	1.28			
		10		OCT.	810.07	210.95	3.12			
				OCT.	810.07	201.23	2.49			
		20				ZU1.Z3	2.43			
		20								
		10		NOV.	808.55	192.19	2.09			
		10 20		NOV. NOV.	808.55 807.96	192.19 185.36	2.09 1.8			
		10		NOV.	808.55	192.19	2.09			

Anexos

Tabla A2. 9 Resultados para el registro sintético de la serie 07, archivo SUPGUIAP

ALMACEN	AMIENTOS MA	AYORES O GUALES A LA C	URVA GUÍA
PRESA:	LA	ANGOSTURA, SON.	
AÑO	QUINCENA	ALMACENAMIENTO	hm³
8	2Q	ENE.	703.4
8	1Q	FEB.	703.4
8	2Q	FEB.	703.4
8	1Q	MAR.	703.4
8	2Q	MAR.	703.4
8	1Q	ABR.	703.4
8	2Q	ABR.	703.4
8	1Q	MAY.	703.4
8	2Q	MAY.	703.4
26	2Q	ABR.	703.4
26	1Q	MAY.	703.4
26	2Q	MAY.	703.4
59	2Q	ENE.	703.4
59	1Q	FEB.	703.4
59	2Q	FEB.	703.4
59	1Q	MAR.	703.4
59	2Q	MAR.	703.4
59	1Q	ABR.	703.4
59	2Q	ABR.	703.4
59	1Q	MAY.	703.4
59	2Q	MAY.	703.4
90	2Q	ENE.	703.4
90	1Q	FEB.	703.4
90	2Q	FEB.	703.4
90	1Q	MAR.	703.4
90	2Q	MAR.	703.4
90	1Q	ABR.	703.4
90	2Q	ABR.	703.4
90	1Q	MAY.	703.4
90	2Q	MAY.	703.4
92	2Q	ABR.	703.4
92	1Q	MAY.	703.4
92	2Q	MAY.	703.4

Anexo 3. Desarrollo de la serie 09

Tabla A3. 1 Serie 09 con 101 datos generados

Į.	xP (hm³)	F(XP)	ALE	ffin
1	89.29729	0.00000008	0.02312869	0.02312877
2	106.2584	-0.0000004	0.03380549	0.03380545
3	609.4479	-0.0000030	0.71899920	0.71899890
4	1368.389	-0.0000100	0.94924570	0.94924470
5	160.6798	0.0000081	0.08852333	0.08852413
6	181.8156	0.0000064	0.11813910	0.11813980
7	999.5079	0.0000009	0.87444550	0.87444560
8	400.4181	0.0000012	0.50756500	0.50756510
9	461.6118	0.0000043	0.58959070	0.58959110
10	301.9905	0.0000098	0.33686080	0.33686180
•		•		•
•		•		•
•				•
90	691.1135	0.0000025	0.76406590	0.76406610
91	981.9412	-0.0000035	0.86952670	0.86952630
92	1607.399	0.0000046	0.97373750	0.97373800
93	159.3625	-0.0000031	0.08682531	0.08682500
94	340.1959	-0.0000018	0.40790120	0.40790100
95	520.5845	0.0000074	0.65115550	0.65115620
96	643.7493	0.0000034	0.73944660	0.73944700
97	592.5321	-0.0000088	0.70791070	0.70790980
98	114.4528	0.0000018	0.04000628	0.04000646
99	407.9664	-0.0000034	0.51875620	0.51875590
100	165.503	0.00000033	0.09489655	0.09489689
101	76.38454	-0.00000068	0.01680511	0.01680443
Media	475.555	<u> </u>		
Desv.	388.516			
C.A.	1.832			
C.V.	0.817			

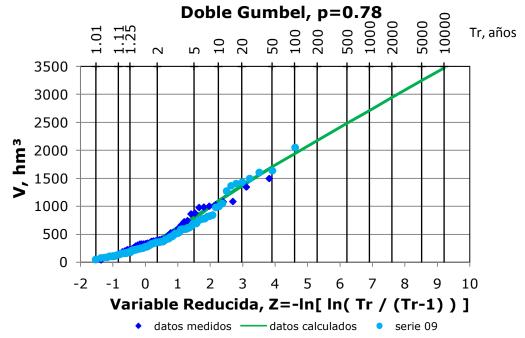


Figura A3. 1 Función Doble Gumbel para la serie 09 comparada con los datos calculados y medidos

Anexos

Tabla A3. 2 Selección de años aleatorios antes de considerar la influencia del invierno

<u> </u>	AÑO
1	1965
2	1966
3	1967
4	1968
5	1969
6	1970
7	1971
8	1972
9	1973
10	1974
11	1975
12	1976
13	1977
14	1978
15	1979
16	1980
17	1981
18	1982
19	1983
20	1984
21	1985
22	1986
23	1987
24	1988
25	1989
26	1990
27	1991
28	1992
29	1993
30	1994
31	1995
32	1996
33	1997
34	1998
35	1999
36	2000
37	2001
38	2002
39	2003
40	2004
41	2005
42	2006
43	2007
44	2008

	- / °		- ~
ı	xP (hm³)	Año aleatorio	Año
1	89.29729	21	1985
2	106.2584	22	1986
3	609.4479	8	1972
4	1368.389	17	1981
5	160.6798	27	1991
6	181.8156	17	1981
7	999.5079	39	2003
8	400.4181	16	1980
9	461.6118	38	2002
10	301.9905	17	1981
11	284.1401	45	2009
12	241.5192	42	2006
13	593.0734	18	1982
		•	
		•	
90	691.1135	41	2005
91	981.9412	11	1975
92	1607.399	30	1994
93	159.3625	37	2001
94	340.1959	45	2009
95	520.5845	30	1994
96	643.7493	21	1985
97	592.5321	14	1978
98	114.4528	1	1965
99	407.9664	17	1981
100	165.503	14	1978
101	76.38454	8	1972

45

2009

Tabla A3. 3 Selección de años aleatorios después de considerar la influencia del invierno

I	AÑO
1	1967
2	1984
3	1978
4	1972
5	1991
6	1990
7	1982
8	1977
9	1992
10	1994
11	2004
12	1986
13	1965
14	2009
15	1988
16	1997
17	1966
18	2000
19	2007
20	1976
21	1983
22	1993
23	1981
24	1999
25	1985
26	2006
27	1971
28	1980
29	1969
30	2008
31	1974
32	1975
33	2001
34	1989
35	1970
36	2005
37	1987
38	1996
39	2002
40	1968
41	1979
42	1998
43	1995
44	1973
45	2003
	2003

ı	xP (hm³)	ALEATORIO	AÑO
1	89.29729	35	1970
2	106.2584	43	1995
3	609.4479	12	1986
4	1368.389	5	1991
5	160.6798	38	1996
6	181.8156	40	1968
7	999.5079	8	1977
8	400.4181	23	1981
9	461.6118	15	1988
10	301.9905	39	2002
•			
90	691.1135	5	1991
91	981.9412	13	1965
92	1607.399	9	1992
93	159.3625	45	2003
94	340.1959	28	1980
95	520.5845	25	1985
96	643.7493	6	1990
97	592.5321	30	2008
98	114.4528	28	1980
99	407.9664	16	1997
100	165.503	22	1993
101	76.38454	26	2006

Tabla A3. 4 Fracciones aleatorias antes de considerar la influencia del invierno

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Suma
1	0.05	0.24	0.10	0.24	0.04	0.05	0.02	0.11	0.04	0.05	0.03	0.05	1.00
2	0.27	0.19	0.11	0.03	0.03	0.22	0.04	0.03	0.03	0.02	0.02	0.02	1.00
3	0.03	0.11	0.09	0.06	0.06	0.02	0.17	0.24	0.17	0.03	0.02	0.01	1.00
4	0.28	0.36	0.09	0.06	0.03	0.08	0.08	0.00	0.01	0.00	0.00	0.00	1.00
5	0.03	0.12	0.12	0.01	0.01	0.19	0.30	0.08	0.08	0.04	0.01	0.01	1.00
6	0.28	0.36	0.09	0.06	0.03	0.08	0.08	0.00	0.01	0.00	0.00	0.00	1.00
7	0.04	0.15	0.07	0.00	0.00	0.06	0.09	0.12	0.32	0.14	0.00	0.02	1.00
8	0.08	0.17	0.10	0.01	0.00	0.01	0.10	0.06	0.37	0.04	0.03	0.01	1.00
9	0.05	0.44	0.09	0.01	0.03	0.06	0.05	0.10	0.15	0.02	0.00	0.00	1.00
10	0.28	0.36	0.09	0.06	0.03	0.08	0.08	0.00	0.01	0.00	0.00	0.00	1.00
											•		
•			•								•		•
90	0.01	0.40	0.23	0.09	0.06	0.17	0.00	0.02	0.00	0.00	0.01	0.01	1.01
91	0.27	0.11	0.18	0.01	0.00	0.00	0.09	0.31	0.00	0.01	0.01	0.00	1.00
92	0.01	0.03	0.05	0.00	0.10	0.31	0.05	0.39	0.04	0.01	0.01	0.01	1.00
93	0.22	0.37	0.06	0.03	0.00	0.00	0.01	0.22	0.05	0.02	0.01	0.01	1.00
94	0.07	0.07	0.03	0.20	0.02	0.01	0.27	0.26	0.06	0.01	0.00	0.01	1.00
95	0.01	0.03	0.05	0.00	0.10	0.31	0.05	0.39	0.04	0.01	0.01	0.01	1.00
96	0.05	0.24	0.10	0.24	0.04	0.05	0.02	0.11	0.04	0.05	0.03	0.05	1.00
97	0.01	0.04	0.01	0.05	0.04	0.17	0.49	0.11	0.03	0.03	0.02	0.01	1.00
98	0.10	0.06	0.09	0.02	0.00	0.38	0.10	0.13	0.08	0.04	0.00	0.00	1.00
99	0.28	0.36	0.09	0.06	0.03	0.08	0.08	0.00	0.01	0.00	0.00	0.00	1.00
100	0.01	0.04	0.01	0.05	0.04	0.17	0.49	0.11	0.03	0.03	0.02	0.01	1.00
101	0.03	0.11	0.09	0.06	0.06	0.02	0.17	0.24	0.17	0.03	0.02	0.01	1.00

Tabla A3. 5 Fracciones aleatorias después de considerar la influencia del invierno

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Suma
1	0.06	0.57	0.18	0.05	0.02	0.02	0.03	0.02	0.03	0.01	0.01	0.00	1.00
2	0.07	0.24	0.36	0.06	0.06	0.07	0.05	0.05	0.04	0.00	0.00	0.01	1.00
3	0.27	0.19	0.11	0.03	0.03	0.22	0.04	0.03	0.03	0.02	0.02	0.02	1.00
4	0.03	0.12	0.12	0.01	0.01	0.19	0.30	0.08	0.08	0.04	0.01	0.01	1.00
5	0.24	0.20	0.28	0.02	0.04	0.04	0.04	0.02	0.09	0.02	0.00	0.02	1.00
6	0.08	0.42	0.14	0.00	0.02	0.08	0.08	0.07	0.04	0.03	0.03	0.01	1.00
7	0.10	0.15	0.05	0.12	0.01	0.00	0.03	0.07	0.40	0.04	0.02	0.01	1.00
8	0.28	0.36	0.09	0.06	0.03	0.08	0.08	0.00	0.01	0.00	0.00	0.00	1.00
9	0.12	0.56	0.14	0.06	0.01	0.01	0.03	0.02	0.02	0.01	0.01	0.01	1.00
10	0.05	0.44	0.09	0.01	0.03	0.06	0.05	0.10	0.15	0.02	0.00	0.00	1.00
	•						•	•					•
	•				٠		•	•					•
90	0.03	0.12	0.12	0.01	0.01	0.19	0.30	0.08	0.08	0.04	0.01	0.01	1.00
91	0.10	0.06	0.09	0.02	0.00	0.38	0.10	0.13	0.08	0.04	0.00	0.00	1.00
92	0.02	0.05	0.02	0.01	0.00	0.05	0.54	0.19	0.08	0.02	0.01	0.00	1.00
93	0.04	0.15	0.07	0.00	0.00	0.06	0.09	0.12	0.32	0.14	0.00	0.02	1.00
94	0.08	0.17	0.10	0.01	0.00	0.01	0.10	0.06	0.37	0.04	0.03	0.01	1.00
95	0.05	0.24	0.10	0.24	0.04	0.05	0.02	0.11	0.04	0.05	0.03	0.05	1.00
96	0.15	0.27	0.05	0.06	0.02	0.09	0.09	0.05	0.20	0.02	0.00	0.01	1.00
97	0.23	0.50	0.22	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
98	0.08	0.17	0.10	0.01	0.00	0.01	0.10	0.06	0.37	0.04	0.03	0.01	1.00
99	0.01	0.13	0.04	0.01	0.03	0.18	0.13	0.20	0.16	0.09	0.03	0.00	1.00
100	0.15	0.30	0.21	0.05	0.06	0.10	0.05	0.05	0.03	0.00	0.00	0.01	1.00
101	0.07	0.44	0.31	0.02	0.00	0.00	0.05	0.07	0.01	0.00	0.02	0.01	1.00

Tabla A3. 6 Registro sintético a partir de la serie 09 antes de considerar la influencia del invierno (hm³)

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
1	4.30	21.84	8.51	21.27	3.52	4.03	1.50	9.85	3.55	4.08	2.64	4.20	89.29
2	28.32	20.06	11.91	2.96	2.72	23.70	4.24	2.67	3.22	1.99	2.49	2.00	106.27
3	17.37	67.04	53.57	37.54	38.03	11.64	102.02	148.03	102.02	17.86	11.09	3.28	609.50
4	379.73	493.71	123.84	84.43	41.33	108.79	111.93	5.20	18.34	0.96	0.00	0.00	1368.25
5	5.53	19.52	18.80	2.10	1.21	31.27	48.20	12.28	13.37	5.69	1.43	1.27	160.66
6	50.45	65.60	16.45	11.22	5.49	14.45	14.87	0.69	2.44	0.13	0.00	0.00	181.80
7	37.38	146.13	74.66	0.00	0.00	58.57	87.06	122.04	315.64	138.93	0.00	19.07	999.49
8	31.03	68.55	39.44	5.97	1.96	5.45	40.80	23.82	149.88	17.50	10.81	5.22	400.43
9	22.25	203.39	41.59	6.19	13.62	25.67	24.83	44.87	67.67	11.49	0.00	0.00	461.57
10	83.80	108.96	27.33	18.63	9.12	24.01	24.70	1.15	4.05	0.21	0.00	0.00	301.96
•													
•													
90	6.29	275.69	158.96	64.27	40.08	119.01	3.18	12.99	1.24	0.76	5.46	9.55	697.48
91	269.84	105.26	179.20	12.96	0.00	0.00	90.93	302.54	0.00	8.64	12.47	0.00	981.84
92	15.91	42.92	80.85	4.34	159.29	502.15	74.26	620.13	62.05	23.95	10.93	10.74	1607.53
93	34.82	59.73	9.90	4.29	0.48	0.57	1.08	35.00	8.29	2.96	1.05	1.18	159.35
94	22.79	24.94	10.68	66.54	5.24	3.50	93.11	88.35	18.78	3.20	1.19	1.83	340.15
95	5.15	13.90	26.19	1.41	51.59	162.63	24.05	200.84	20.09	7.76	3.54	3.48	520.63
96	30.96	157.46	61.35	153.34	25.36	29.03	10.81	71.01	25.62	29.42	19.05	30.29	643.71
97	7.35	24.23	3.67	29.45	24.89	99.84	287.85	64.17	16.35	19.85	11.55	3.27	592.48
98	11.14	7.05	10.39	1.72	0.32	43.11	11.94	15.06	8.66	5.06	0.00	0.00	114.45
99	113.21	147.19	36.92	25.17	12.32	32.43	33.37	1.55	5.47	0.29	0.00	0.00	407.93
100	2.05	6.77	1.03	8.23	6.95	27.89	80.40	17.92	4.57	5.54	3.23	0.91	165.49
101	2.18	8.40	6.71	4.71	4.77	1.46	12.79	18.55	12.79	2.24	1.39	0.41	76.39
Media	58.39	109.12	47.21	24.31	19.86	50.48	47.16	57.37	42.14	11.76	4.30	3.59	475.69
Desv.	86.65	132.00	55.48	31.48	33.08	94.84	67.79	85.48	79.47	20.00	6.42	5.50	388.54
C.A.	2.88	3.35	2.64	2.32	4.19	3.83	2.43	3.59	3.58	3.65	2.80	2.77	1.83
c.v.	1.48	1.21	1.18	1.29	1.67	1.88	1.44	1.49	1.89	1.70	1.49	1.53	0.82
C.ji+1,ji	0.46	0.71	0.31	0.56	0.38	0.29	0.48	0.26	0.77	0.35	0.65	0.03	

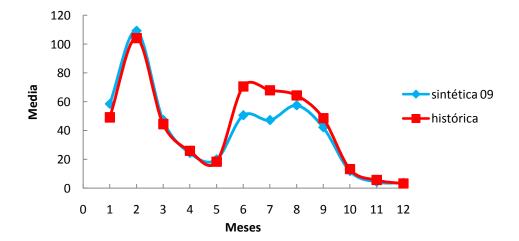


Figura A3. 2 Comparación entre la media de los datos del registro sintético 09 y los del registro histórico. Después del primer ensayo. Considera un año hidrológico de julio a junio

Tabla A3. 7 Registro sintético a partir de la serie 09 después de considerar la influencia del invierno (hm³)

Año	Jul.	Ago.	Sep.	Oct.	Nov.	Dic.	Ene.	Feb.	Mar.	Abr.	May.	Jun.	Anual
1	5.49	50.84	15.63	4.02	2.14	2.16	2.51	1.96	2.55	1.06	0.94	0.00	89.30
2	7.13	25.68	37.89	6.79	6.69	7.07	4.96	5.03	3.78	0.39	0.00	0.85	106.27
3	162.42	115.06	68.32	17.00	15.60	135.91	24.32	15.30	18.47	11.40	14.26	11.48	609.53
4	47.07	166.26	160.10	17.93	10.26	266.29	410.52	104.54	113.85	48.44	12.18	10.82	1368.26
5	38.21	31.61	44.73	3.04	6.33	6.12	6.65	3.66	15.09	2.72	0.00	2.53	160.69
6	14.98	75.60	25.20	0.80	4.11	15.13	15.16	12.42	7.42	4.56	4.62	1.82	181.82
7	102.55	145.63	53.27	117.74	12.79	4.30	28.39	66.87	398.80	43.28	19.99	5.95	999.56
8	111.12	144.47	36.24	24.71	12.09	31.83	32.75	1.52	5.37	0.28	0.00	0.00	400.38
9	54.29	257.90	64.07	26.45	5.45	6.83	11.96	11.45	8.08	4.25	6.65	4.29	461.65
10	14.56	133.06	27.21	4.05	8.91	16.79	16.25	29.35	44.27	7.52	0.00	0.00	301.96
		•				•	•	•					
		•				•	•	•					
90	23.77	83.97	80.86	9.05	5.18	134.49	207.33	52.80	57.50	24.47	6.15	5.46	691.05
91	95.54	60.49	89.16	14.73	2.75	369.90	102.42	129.22	74.33	43.40	0.00	0.00	981.94
92	39.54	80.21	29.58	10.29	0.00	78.60	873.62	311.35	123.13	38.10	16.88	6.08	1607.37
93	5.96	23.30	11.90	0.00	0.00	9.34	13.88	19.46	50.33	22.15	0.00	3.04	159.36
94	26.37	58.24	33.51	5.07	1.67	4.63	34.67	20.24	127.34	14.87	9.19	4.44	340.21
95	25.04	127.33	49.61	124.00	20.51	23.48	8.75	57.42	20.72	23.79	15.41	24.49	520.56
96	98.36	171.04	32.32	36.11	12.04	59.68	56.07	30.13	131.07	10.88	2.00	3.99	643.68
97	137.05	293.96	127.87	21.09	4.33	0.71	1.90	0.18	2.01	0.24	1.13	2.11	592.57
98	8.87	19.59	11.27	1.71	0.56	1.56	11.66	6.81	42.84	5.00	3.09	1.49	114.46
99	2.49	51.97	14.85	3.71	12.65	73.52	51.57	80.90	66.95	36.27	13.10	0.00	407.97
100	24.84	49.75	34.49	7.48	9.25	17.01	8.31	8.49	4.80	0.00	0.00	1.07	165.50
101	5.63	33.91	23.48	1.26	0.06	0.04	3.78	5.02	0.97	0.13	1.66	0.54	76.47
Media	49.88	107.65	42.41	23.57	15.90	62.06	65.98	54.75	36.39	9.78	4.31	2.89	475.57
Desv.	52.52	78.40	35.08	40.69	20.08	117.12	139.57	87.44	64.28	13.26	6.21	4.38	388.50
C.A.	1.60	1.81	1.54	4.65	1.83	3.58	3.44	3.04	3.27	1.65	2.24	2.53	1.83
C.V.	1.05	0.73	0.83	1.73	1.26	1.89	2.12	1.60	1.77	1.36	1.44	1.51	0.82
C.ji+1,ji	0.48	0.42	0.17	0.43	0.22	0.32	0.80	0.37	0.69	0.68	0.45	0.20	

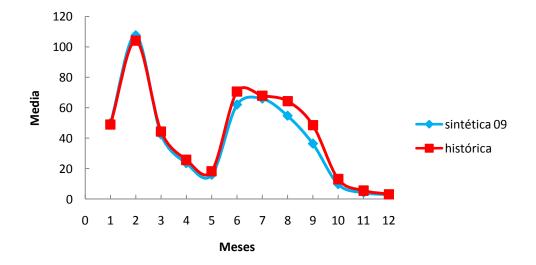


Figura A3. 3 Comparación entre la media de los datos del registro sintético 09 y los del registro histórico. Después del segundo ensayo. Considera un año hidrológico de julio a junio

Tabla A3. 8 Resultados para el registro sintético de la serie 09, archivo SIQPRE

	PRESA:	IΔ	ANGOSTURA	A SON						
		INICIAL	INGRESO	VOL. EVAP	EXT. POL	EXT. MODIF	EXT. TOTAL	DERRAME	DÉFICIT	ENERGÍA
QUINCENA		nm³	hm³	hm³	hm³	hm³	hm³	hm³	hm³	(GWh)
********	*****			*****	1		*********			*****
1Q	OCT.	700	2.01	0.38	118.75	118.75	118.75	0	0	17.88
2Q	OCT.	582.88	2.01	0.34	89.47	89.47	89.47	0	0	12.82
1Q	NOV.	495.08	1.07	0.25	67.52	67.52	67.52	0	0	9.27
2Q 1Q	NOV. DIC.	428.38 378.38	1.07 1.08	0.23 1.03	50.85 150	50.85 150	50.85 150	0 0	0 0	6.74 18.49
2Q	DIC.	228.42	1.08	0.85	114.21	114.21	114.21	0	0	12.4
2Q 1Q	ENE.	114.44	1.25	0.83	12.5	12.5	12.5	0	0	1.25
2Q	ENE.	102.49	1.25	0.63	12.5	12.5	12.5	0	0	1.22
1Q	FEB.	90.61	0.98	0.4	12.5	12.5	12.5	0	0	1.19
2Q	FEB.	78.7	0.98	0.36	12.5	12.5	12.5	0	0	1.16
1Q	MAR.	66.81	1.28	0.13	12.5	12.5	12.5	0	0	1.12
2Q	MAR.	55.46	1.28	0.12	12.5	12.5	12.5	0	0	1.08
1Q	ABR.	44.12	0.53	0.13	4.17	4.17	4.17	0	0	0.35
2Q	ABR.	40.36	0.53	0.12	4.17	4.17	4.17	0	0	0.34
1Q	MAY.	36.61	0.47	0.18	4.17	4.17	4.17	0	0	0.34
2Q	MAY.	32.73	0.47	0.17	4.17	4.17	4.17	0	0	0.33
1Q	JUN.	28.87	0	0.34	4.17	4.17	4.17	0	0	0.32
2Q	JUN.	24.36	0	0.31	0	0	0	0	0	0
1Q	JUL.	24.05	3.57	0.49	0	0	0	0	0	0
2Q	JUL.	27.12	3.57	0.52	12.5	12.5	12.5	0	0	0.95
1Q	AGO. AGO.	17.67	12.84	0.61	0 12 F	0 12 F	0 12.5	0 0	0 0	0 0.99
2Q 1Q	SEP.	29.91 29.52	12.84 18.95	0.73 0.76	12.5 12.5	12.5 12.5	12.5	0	0	0.99
2Q	SEP.	35.21	18.95	0.76	12.5	12.5	12.5	0	0	1.03
20		INICIAL	INGRESO	VOL. EVAP		EXT. MODIF			DÉFICIT	ENERGÍA
QUINCENA		nm³	hm³	hm³	hm³	hm³	hm³	hm³	hm³	(GWh)
*******				******	2		*******			. ,
1Q	OCT.	40.82	3.39	0.07	6.25	12.5	12.5	0	0	1.02
2Q	OCT.	31.64	3.39	0.06	6.25	12.5	12.5	0	0	0.97
1Q	NOV.	22.48	3.35	0.04	67.52	67.52	25.78	0	41.74	1.29
2Q	NOV.	0	3.35	0.01	50.85	50.85	3.34	0	47.51	0.08
1Q	DIC.	0	3.53	0.06	150	150	3.48	0	146.52	0.09
2Q 1Q	DIC. ENE.	0 0	3.53 2.48	0.06 0.06	114.21 12.5	114.21 12.5	3.48 2.42	0 0	110.73 10.08	0.09 0.06
2Q	ENE.	0	2.48	0.06	12.5	12.5	2.42	0	10.08	0.06
2Q 1Q	FEB.	0	2.46	0.04	12.5	12.5	2.42	0	10.08	0.06
2Q	FEB.	0	2.51	0.04	12.5	12.5	2.47	0	10.03	0.06
1Q	MAR.	0	1.89	0.01	12.5	12.5	1.88	0	10.62	0.05
2Q	MAR.	0	1.89	0.01	12.5	12.5	1.88	0	10.62	0.05
1Q	ABR.	0	0.2	0	4.17	6.25	0.19	0	6.06	0
2Q	ABR.	0	0.2	0	4.17	6.25	0.19	0	6.06	0
1Q	MAY.	0	0	0	4.17	6.25	0	0	6.25	0
2Q	MAY.	0	0	0	4.17	6.25	0	0	6.25	0
1Q	JUN.	0	0.43	0.01	4.17	12.5	0.41	0	12.09	0.01
2Q	JUN.	0	0.43	0.01	0	12.5	0.41	0	12.09	0.01
1Q	JUL.	0	81.21	0.61	0	12.5	12.5	0	0	0.72
2Q	JUL.	68.09	81.21	1.25	12.5	12.5	12.5	0	0	1.22
1Q	AGO.	135.55	57.53	2.13	12.5	12.5	12.5	0	0	1.34
2Q	AGO.	178.46	57.53	2.53	12.5	12.5	12.5	0	0	1.41
1Q	SEP.	220.96	34.16	2.73	12.5	12.5	12.5	0	0	1.45
2Q	SEP.	239.89 INICIAL	34.16	2.83 VOL. EVAP	12.5	12.5 EXT. MODIF	12.5	0 DEDDAME	0 DÉFICIT	1.48 ENERGÍA
QUINCENA		INICIAL nm³	INGRESO hm³	hm³	hm³	hm³	hm³	hm ³	hm³	(GWh)
*******	ı :****			******	3	*****	*******	******	*****	*****

Anexos

Tabla A3, 8 Continuación

			Tak	ola A3.	8 Con	tinuació	n			
	******	******	****	R	ESUMEN AN	IUAI	*******	******	***	
				ING	EXT.	ALMAC		ENERGÍA		
	AÑO	DERRAME	DÉFICIT	HIST	TOTAL	PRO	ELEV PRO	TOTAL		
		hm³	hm³	hm³	hm³	hm³	(msnm)	(GWh)		
	1	0	0	88.05	736.6	126.37	809.61	90.27		
	2	0	456.75	381.37	150.8	48.16	802.64	11.53		
	3	0	0	637.16	463.9	190.48	813.19	51.8		
	4	0	0	1109.38	1041.2	411.97	821.97	136.73		
	5	0	21.92	161.92	557.4	90.33	806.96	57.35		
	6	0	349.8	367.49	177.1	37	801.06	11.04		
	7	0	0	989.94	622.7	373.95	820.63	77.93		
	8	0	0	484.81	689.6	177.02	812.51	81.62		
	9	0	15.32	260.21	468.7	92.49	807.14	46.46		
	10	0	8.86	356.1	295.8	50.19	802.9	23.74		
			•	•				-		
	90	0	0	747.63	349.2	290.77	817.49	40.31		
	91	0	0	886.08	909.9	380.25	820.86	118.08		
	92	470.28	0	1499.21	1454.1	535.71	825.95	134.93		
	93	0	0	236.31	551.7	125.49	809.55	59.88		
	94	0	0	424.08	291.3	94.14	807.27	27.01		
	95	0	0	620.29	486.2	176.46	812.48	53.48		
	96	0	0	900.83	537.1	290.51	817.48	63.89		
	97	0	71.89	73.43	722.8	112.14	808.65	84.72		
	98	0	653.69	144.03	141.1	3.42	793.5	7.74		
	99	0	478.67	447.74	289.5	83.39	806.34	21.32		
	100	0	83.72	119.43	251.6	28.32	799.59	20.32		
TOTA		8174,12								
	CENAMIENTO IN	ICIAL MINIMO								
	TRADO			0	hm³					
	GÍA PROMEDIO O	SENERADA EN L	.OS 100							
AÑOS				2.1	GWh					
_	XXXXXXXXXXXXXXX				UMEN QUIN			xxxxxxxxxxx	_	
Р	R	0	M		E	D ALMACE	 -	0	S	
				ELEVACIÓN (msnm)		NAMIEN1	O ENERGIA			
						(hm³)	(GWh)			
		1Q	ENE.	. 8	301.53	108.38	1.56			
		2Q	ENE.	. 8	302.07	118.4	2.25			
	1Q			8	302.38	127.58	1.73			

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXX		RESUMEN QUIN	CENAL	XXXXXXXXXXXXXXXXXXXXXXXXXXXX				
R	0	M	E	D	1	0	S		
			ELEVACIÓN (msnm)	ALMACE- NAMIENTO (hm³)	ENERGÍA (GWh)				
10		ENE.	801.53	108.38	1.56				
2Q		ENE.	802.07	118.4	2.25				
1Q		FEB.	802.38	127.58	1.73				
2Q		FEB.	802.54	134.45	2.02				
1Q		MAR.	802.16	135	1.95				
2Q		MAR.	801.5	135.33	1.98				
1Q		ABR.	800.9	134.97	0.47				
2Q		ABR.	800.45	134.51	0.49				
1Q		MAY.	799.87	131.61	0.47				
2Q		MAY.	799.29	128.8	0.46				
1Q		JUN.	798.3	121.41	0.83				
2Q		JUN.	796.5	114.84	0.77				
1Q		JUL.	797.39	126.16	1.16				
2Q		JUL.	799.64	138.04	1.13				
1Q		AGO.	803.61	171.7	1.83				
2Q		AGO.	808.44	205.17	2.03				
1Q		SEP.	809.67	212.24	1.32				
2Q		SEP.	809.68	219.27	1.33				
1Q		OCT.	809.73	210.8	3.42				
2Q		OCT.	808.87	200.15	2.7				
1Q		NOV.	808.06	189.12	2.23				
2Q		NOV.	807.62	180.9	1.86				
1Q		DIC.	805.6	125.71	9.71				
2Q		DIC.	802.42	92.13	6.63				
	R 10, 20, 20, 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	R O	R O M 1Q ENE. 2Q ENE. 1Q FEB. 1Q MAR. 2Q MAR. 1Q ABR. 2Q ABR. 1Q MAY. 2Q MAY. 1Q JUN. 1Q JUN. 1Q JUL. 2Q JUL. 1Q AGO. 2Q AGO. 2Q AGO. 1Q SEP. 2Q SEP. 1Q OCT. 1Q NOV. 1Q DIC.	R O M E ELEVACIÓN (msnm) 1Q ENE. 801.53 2Q ENE. 802.07 1Q FEB. 802.38 2Q FEB. 802.54 1Q MAR. 802.16 2Q MAR. 801.5 1Q ABR. 800.9 2Q ABR. 800.9 2Q ABR. 800.45 1Q MAY. 799.87 2Q MAY. 799.29 1Q JUN. 796.5 1Q JUN. 796.5 1Q JUL. 797.39 2Q JUL. 797.39 2Q JUL. 799.64 1Q AGO. 803.61 2Q AGO. 808.44 1Q SEP. 809.67 2Q SEP. 809.67 2Q SEP. 809.68 1Q OCT. 809.73 2Q OCT. 808.87 1Q NOV. 808.06 2Q NOV. 807.62 1Q DIC. 805.6	R O M E D ALMACE-NAMIENTO (msnm) (msnm) (msnm) (hm³) 1Q ENE. 801.53 108.38 2Q ENE. 802.07 118.4 1Q FEB. 802.38 127.58 2Q FEB. 802.54 134.45 1Q MAR. 802.16 135 2Q MAR. 801.5 135.33 1Q ABR. 800.9 134.97 2Q ABR. 800.45 134.51 1Q MAY. 799.87 131.61 2Q MAY. 799.87 131.61 2Q MAY. 799.29 128.8 1Q JUN. 796.5 114.84 1Q JUL. 797.39 126.16 2Q JUL. 797.39 126.16 2Q JUL. 799.64 138.04 1Q AGO. 803.61 171.7 2Q AGO. 808.44 205.17 1Q SEP. 809.67 212.24 2Q SEP. 809.67 212.24 2Q SEP. 809.68 219.27 1Q OCT. 808.87 200.15 1Q NOV. 808.06 189.12 2Q NOV. 807.62 180.9 1Q DIC. 805.6 125.71	R O M E DELEVACIÓN (msnm) ALMACE-NAMIENTO (msnm) (nm³) (GWh) 1Q ENE. 801.53 108.38 1.56 2Q ENE. 802.07 118.4 2.25 1Q FEB. 802.38 127.58 1.73 2Q FEB. 802.54 134.45 2.02 1Q MAR. 802.16 135 1.95 2Q MAR. 801.5 135.33 1.98 1Q ABR. 800.9 134.97 0.47 2Q ABR. 800.9 134.97 0.47 2Q ABR. 800.45 134.51 0.49 1Q MAY. 799.87 131.61 0.47 2Q MAY. 799.87 131.61 0.47 2Q MAY. 799.29 128.8 0.46 1Q JUN. 796.5 114.84 0.77 1Q JUN. 796.5 114.84 0.77 1Q JUL. 797.39 126.16 1.16 2Q JUL. 797.39 126.16 1.16 2Q JUL. 799.64 138.04 1.13 1Q AGO. 803.61 171.7 1.83 2Q AGO. 808.44 205.17 2.03 1Q SEP. 809.67 212.24 1.32 2Q SEP. 809.68 219.27 1.33 1Q OCT. 809.73 210.8 3.42 2Q OCT. 809.73 210.8 3.42 2Q NOV. 807.62 180.9 1.86 1Q NOV. 808.66 189.12 2.23 2Q NOV. 807.62 180.9 1.86	R O M E D I O ELEVACIÓN (msnm) ALMACE- NAMIENTO (hm³) 1Q ENE. 801.53 108.38 1.56 2Q ENE. 802.07 118.4 2.25 1Q FEB. 802.38 127.58 1.73 2Q FEB. 802.54 134.45 2.02 1Q MAR. 802.16 135 1.95 2Q MAR. 801.5 135.33 1.98 1Q ABR. 800.9 134.97 0.47 2Q ABR. 800.45 134.51 0.49 1Q MAY. 799.87 131.61 0.47 2Q MAY. 799.29 128.8 0.46 1Q JUN. 798.3 121.41 0.83 2Q JUN. 798.3 121.41 0.83 2Q JUN. 796.5 114.84 0.77 1Q JUL. 797.39 126.16 1.16 2Q JUL. 797.39 126.16 1.16 2Q AGO. 803.61 171.7 1.83 2Q AGO. 808.44 205.17 2.03 1Q SEP. 809.68 219.27 1.33 1Q OCT. 808.73 210.8 3.42 2Q OCT. 808.73 210.8 3.42 2Q OCT. 808.73 200.15 2.7 1Q NOV. 808.06 189.12 2.23 2Q NOV. 807.62 180.9 1.86 1Q DIC. 805.6 125.71 9.71		

Anexos

Tabla A3. 9 Resultados para el registro sintético de la serie 09, archivo SUPGUIAP

ALMACENAMIENTOS MAYORES O GUALES A LA CURVA GUÍA									
PRESA:	LA	ANGOSTURA, SON.							
AÑO	QUINCENA	ALMACENAMIENTO	hm³						
41	2Q	DIC.	703.4						
41	1Q	ENE.	703.4						
41	2Q	ENE.	703.4						
41	1Q	FEB.	703.4						
41	2Q	FEB.	703.4						
41	1Q	MAR.	703.4						
41	2Q	MAR.	703.4						
41	1Q	ABR.	703.4						
41	2Q	ABR.	703.4						
41	1Q	MAY.	703.4						
41	2Q	MAY.	703.4						
76	2Q	FEB.	703.4						
76	1Q	MAR.	703.4						
76	2Q	MAR.	703.4						
92	2Q	ENE.	703.4						
92	1Q	FEB.	703.4						
92	2Q	FEB.	703.4						
92	1Q	MAR.	703.4						
92	2Q	MAR.	703.4						
92	1Q	ABR.	703.4						
92	2Q	ABR.	703.4						
92	1Q	MAY.	703.4						
92	2Q	MAY.	703.4						

Tabla A3. 10 Resumen de los estadísticos de todos los registros sintéticos

	JUL.	AGO.	SEP.	ост.	NOV.	DIC.	ENE.	FEB.	MAR.	ABR.	MAY.	JUN.	TOTAL
							MEDIA						
HISTÓRICA	49.10	104.13	44.42	25.76	18.30	70.61	67.98	64.40	48.56	13.15	5.58	3.17	515.16
SINTÉTICA 01	49.85	98.82	44.79	25.60	16.30	51.52	66.50	59.97	32.33	12.03	4.92	3.07	465.69
SINTÉTICA 02	55.22	107.55	50.75	22.22	19.01	84.42	75.21	65.76	42.55	13.87	5.17	3.28	545.02
SINTÉTICA 03	53.53	106.71	49.67	33.58	23.11	73.63	65.84	85.11	71.95	15.91	5.41	3.83	588.27
SINTÉTICA 04	61.56	116.85	45.03	21.54	14.94	64.61	62.21	55.52	45.63	13.49	3.94	3.08	508.39
SINTÉTICA 05	53.25	110.74	40.81	24.97	18.47	58.04	85.87	65.15	56.24	16.28	5.96	3.18	538.94
SINTÉTICA 06	42.45	98.23	42.78	22.93	12.91	70.37	76.24	65.32	45.57	14.55	5.31	3.03	499.68
SINTÉTICA 07	42.42	101.56	38.62	21.87	17.81	69.68	82.86	70.09	43.97	16.73	5.31	3.15	514.08
SINTÉTICA 08	52.20	96.03	44.54	25.05	21.71	47.00	57.20	53.34	34.22	10.31	4.61	3.32	449.53
SINTÉTICA 09	49.88	107.65	42.41	23.57	15.90	62.06	65.98	54.75	36.39	9.78	4.31	2.89	475.57
SINTÉTICA 10	61.85	107.71	49.62	29.71	15.22	66.86	62.51	61.90	46.62	14.67	4.70	3.92	525.29
DESVIACIÓN ESTÁNDAR													
HISTÓRICA	43.77	73.52	29.05	31.50	23.92	121.68	117.66	80.98	86.54	20.73	7.40	3.81	349.35
SINTÉTICA 01	54.77	69.47	35.11	43.92	21.63	99.79	154.52	91.45	55.28	20.45	7.78	4.50	378.13
SINTÉTICA 02	56.03	70.79	38.68	27.90	28.30	148.88	156.24	91.93	85.92	23.07	8.66	4.14	420.24
SINTÉTICA 03	54.87	77.24	36.19	45.73	29.49	139.06	106.56	118.89	118.24	24.91	7.69	3.85	447.70
SINTÉTICA 04	64.92	81.90	35.85	26.03	17.70	116.26	111.73	70.05	69.49	20.71	6.72	4.62	342.34
SINTÉTICA 05	50.28	80.39	35.04	30.06	26.77	95.64	175.46	91.51	96.47	23.10	7.87	3.85	401.91
SINTÉTICA 06	57.07	79.75	35.45	34.10	16.52	129.53	135.91	92.04	86.00	30.99	8.90	4.67	418.22
SINTÉTICA 07	43.62	69.86	25.60	30.80	23.72	104.93	178.55	97.14	75.66	30.02	8.91	3.67	382.97
SINTÉTICA 08	58.11	63.00	33.27	30.23	26.73	71.29	137.84	86.94	65.50	13.62	6.50	4.29	304.46
SINTÉTICA 09	52.52	78.40	35.08	40.69	20.08	117.12	139.57	87.44	64.28	13.26	6.21	4.38	388.50
SINTÉTICA 10	66.63	83.19	36.33	41.55	17.47	113.93	120.32	89.92	79.28	25.51	6.79	5.41	385.16
						COEFICIE	NTE DE A	SIMETRÍ <i>l</i>	4				
HISTÓRICA	1.31	1.24	0.56	1.60	2.10	2.73	2.72	1.69	2.59	3.08	1.44	1.85	1.05
SINTÉTICA 01	2.89	1.14	1.31	4.50	2.70	3.00	4.53	2.64	3.42	3.86	2.73	2.74	2.19
SINTÉTICA 02	2.34	1.45	1.31	2.62	2.34	2.59	3.92	2.45	4.21	3.45	2.43	2.01	1.83
SINTÉTICA 03	2.32	1.60	1.20	2.38	2.48	3.31	3.31	2.34	2.33	2.86	1.82	1.37	1.47
SINTÉTICA 04	2.81	1.09	1.66	2.10	1.81	2.49	2.84	2.10	2.14	2.82	2.74	3.12	1.42
SINTÉTICA 05	1.83	1.56	1.71	2.08	2.85	2.81	3.04	3.28	2.73	2.21	1.40	1.99	1.43
SINTÉTICA 06	4.25	1.70	1.92	3.25	2.14	2.98	2.66	2.40	4.07	5.64	3.58	3.42	1.76
SINTÉTICA 07	3.44	1.05	1.12	2.75	1.98	1.97	3.38	1.85	2.66	2.89	2.12	2.15	1.46
SINTÉTICA 08	2.46	1.00	1.06	1.97	2.15	2.87	4.16	3.10	4.27	1.64	1.83	2.47	1.79
SINTÉTICA 09	1.60	1.81	1.54	4.65	1.83	3.58	3.44	3.04	3.27	1.65	2.24	2.53	1.83
SINTÉTICA 10	1.87	1.73	0.91	2.83	1.83	2.84	3.40	3.02	2.52	3.10	2.01	2.16	1.62
							C. ji+1,ji						_
HISTÓRICA	0.39	0.41	0.04	0.38	0.27	0.35	0.51	0.44	0.74	0.79	0.46	0.14	
SINTÉTICA 01	0.25	0.40	0.04	0.23	0.41	0.42	0.56	0.45	0.81	0.70	0.64	0.04	
SINTÉTICA 02	0.12	0.39	-0.03	0.41	0.34	0.41	0.46	0.35	0.73	0.68	0.51	0.27	
SINTÉTICA 03	0.44	0.24	0.02	0.15	0.48	0.37	0.45	0.31	0.74	0.80	0.49	-0.09	
SINTÉTICA 04	0.47	0.41	0.03	0.36	0.19	0.35	0.73	0.38	0.74	0.52	0.53	0.03	
SINTÉTICA 05	0.64	0.32	0.12	0.43	0.35	0.38	0.51	0.37	0.70	0.78	0.47	0.07	
SINTÉTICA 06	0.38	0.53	-0.02	0.27	0.31	0.26	0.65	0.53	0.86	0.76	0.54	-0.13	
SINTÉTICA 07	0.47	0.43	0.02	0.31	0.48	0.35	0.49	0.58	0.91	0.73	0.59	0.06	
SINTÉTICA 08	0.42	0.45	0.14	0.45	0.49	0.25	0.60	0.26	0.70	0.61	0.57	-0.01	
SINTÉTICA 09	0.48	0.42	0.17	0.43	0.22	0.32	0.80	0.37	0.69	0.68	0.45	0.20	
SINTÉTICA 10	0.37	0.35	-0.07	0.31	0.13	0.36	0.71	0.46	0.78	0.72	0.58	0.01	

