2. TIPOS Y CARACTERÍSTICAS DE REACTORES NUCLEARES A IMPLEMENTAR

2.1 Reactores nucleares

n reactor nuclear es una instalación en la cual se puede iniciar y controlar una serie de fisiones nucleares auto-sostenidas. En un reactor nuclear la reacción en cadena se mantiene a un nivel casi constante, y que por su diseño y calidad de su combustible no pueden explotar como bomba atómica. Aunque existen varios criterios, la principal clasificación de los reactores nucleares se da de acuerdo con su finalidad, dividiéndolos en reactores de potencia y reactores de investigación. Los reactores de potencia producen energía en forma útil, convirtiendo el calor generado en el núcleo en alguna forma de trabajo mecánico. A esta categoría pertenecen la mayoría de los reactores que existen en la actualidad y que se utilizan en la generación comercial de electricidad. En los reactores de investigación se aprovechan las radiaciones producidas como una herramienta para investigar. Adicionalmente, en muchos países se utilizan los reactores para impulsar submarinos y naves de superficie.

A continuación se mencionan brevemente algunas características de los tipos de reactores nucleares de potencia más utilizados en el mundo. Posteriormente describiremos las principales características de los reactores AP1000, ABWR y EPR los cuales son comparados en este estudio. Existen varios tipos de reactores de potencia, siendo los más utilizados los llamados reactores de agua ligera, nombre que reciben por ser enfriados y moderados con este fluido. Estos reactores se clasifican, a su vez, en dos tipos: a) reactores de agua presurizada (PWR, por sus siglas en inglés) y b) reactores de agua en ebullición (BWR).

2.1.1 Reactor de Agua Presurizada (PWR)

En el reactor de agua presurizada, el agua a alta temperatura y alta presión recibe y remueve el calor del núcleo; luego se pasa a través de un generador de vapor donde el calor se transfiere a un circuito de refrigeración secundario en el que el agua se sobrecalienta y hierve. El vapor generado sirve como fluido de trabajo en una turbina de vapor.

2.1.2 Reactor de Agua en Ebullición (BWR)

En el reactor de agua en ebullición, al agua que pasa a través del núcleo se le permite hervir a una presión intermedia de tal manera que el vapor proveniente del reactor se usa directamente en el ciclo de potencia. Los dos reactores de la Central Nucleoeléctrica Laguna Verde (CNLV) son de tipo BWR. Nuevos reactores avanzados han sido diseñados a partir de estos dos conceptos y son los que comparamos en este estudio y se describen brevemente a continuación.

2.2 Reactor AP-1000

El reactor AP-1000 de Westinghouse se deriva directamente del reactor AP600¹. El AP1000 es un reactor de agua ligera a presión (Pressurized Water Reactor - PWR) avanzado de 1117 MWe de potencia, con características de seguridad pasiva y diseño simplificado por lo que se reducen los costos de construcción y se mejora la seguridad operacional. Además, sus costos del kWh son menores que los costos del AP600 y está certificado por la NRC (Nuclear Regulatory Commission). En la Tabla 2.1 se muestran los datos técnicos de la tecnología del reactor AP-1000.

Tabla 2.1 Datos técnicos del generador AP-1000

Parámetro	Valor
Tiempo de vida de la planta	60 años
Energía del reactor	3,400 MWt
Energía Eléctrica (bruto / neto, con torres de refrigeración)	1100 MWe
Eficiencia (bruto / neto, con torres de refrigeración)	35.1% / 32.7%
Tipo de reactor	Reactor de agua ligera
Núcleo	
Tipo de combustible	UO2
Enriquecimiento del combustible	<4.95%
Refrigerante	De agua ligera
Numero de bucles RCS y generadores de vapor	2
Numero de tubos por generador de vapor	10000
Moderador	De agua ligera
Duración del ciclo de funcionamiento ¹	18 meses
Duración de corte de energía ²	17 días
Porcentaje de combustible reemplazado en la recarga	43%
Parámetros de contención	
Temperatura de diseño	300 °F
Presión de diseño	59 psig
Parámetros del sistema primario	
Temperatura de diseño	650 °F
RCS de temperatura (Tave)	573,5 °F
Pierna de temperatura fría	537 °F
Pierna de temperatura caliente	610 °F

_

¹ El reactor AP600 (Westinghouse) se basó en el diseño de un reactor PWR (con experiencia de operación de más de 30 años) de 600 MW, con características pasivas de seguridad que permiten simplificar su operación y mantenimiento y reducir sus costos de construcción; el AP600 jamás fue construido.

Presión de diseño	2500 psig
Presión nominal	2250 psig
Flujo/Bucle	157,500 gpm
Parámetros del sistema secundario	
Temperatura de diseño	600 °F
Temperatura final de alimentación	440 °F
Diseño de sistemas principales de presión	1200 psia
Bomba de alimentación de presión	900 psig
Flujo de alimentación (agua)	14.97x106 lbs/hr
Flujo de vapor	14.97x106 lbs/hr a 836 psia
Residuos generados por año	
Residuos de alto nivel (combustible gastado)	24.4 toneladas métricas
Residuos de nivel intermedio (resinas gastadas, filtro, etc.) y bajo nivel (compactables/no compactables)	34 toneladas métricas

¹Tiempo de operación entre recargas de combustible.

2.3 Reactor ABWR

El reactor ABWR (Reactor Avanzado de Agua en Ebullición) es la base de los diseños de GE (General Electric). El diseño de tercera generación (Gen III) está disponible hoy en día para satisfacer necesidades de energía de 1350 a 1460 MW netos. Este reactor ofrece tecnología avanzada y es económicamente competitivo. El ABWR tiene un historial impresionante. El primer ABWR de GE comenzó la operación comercial en Kashiwasaki-Kariwa en Japón, en 1996. Desde entonces, tres plantas adicionales están operando en Japón con otra en construcción, y dos en Taiwán. El ABWR es un reactor con ciclo directo de agua ligera que refleja 50 años de una continua evolución desde el concepto inicial BWR de GE, combinando las mejores características de los reactores BWR de GE. En la Tabla 2.2 se muestran los datos técnicos de la tecnología del reactor ABWR.

²Solo durante recarga de combustible

Tabla 2.2 Datos técnicos del generador ABWR

Parámetro	Valor
Tiempo de vida de la planta	60 años
Energía del reactor	4,500 MWt
Energía Eléctrica	1,350 MW
Eficiencia de la planta	34.70%
Tipo de reactor	Reactor de agua en ebullición
Núcleo	
Tipo de combustible	UO2 enriquecido
Enriquecimiento del combustible	4.2 % ¹
Numero de barras de combustible	1,132
Refrigerante	agua ligera
Moderador	agua ligera
Duración del ciclo de funcionamiento ²	12 – 24 meses
Duración fuera de servicio ³	~14 días
Porcentaje de combustible reemplazado en la recarga	Ver nota de pie ⁴
Número de líneas de vapor	4
Número de trenes con agua de alimentación	2
Parámetros de contención	
Temperatura de diseño	340 °F
Presión de diseño	45 psig
Parámetros del reactor	
Temperatura de diseño	575 °F
Temperatura de operación	550 °F
Presión de diseño	1,250 psig
Presión de operación nominal	1,040 psia
Parámetros de la alimentación de agua y turbina	
Temperatura entrada/salida de la turbina	543/93 °F
Presión entrada/salida de la turbina	985/0.8 psia
Temperatura del agua de alimentación	420 °F
Presión del agua de alimentación	1,050 psia
Flujo del agua de alimentación	4.55x104 gpm
Caudal másico de vapor	19.31x106 lbs/hr
Residuos generados por año	
Residuos de alto nivel (combustible gastado)	50 toneladas métricas
Residuos de nivel intermedio (resinas gastadas, filtro, etc.) y bajo nivel (compactables/no compactables)	1,765 pies cúbicos
¹ Para un ciclo de 24 meses	

¹Para un ciclo de 24 meses ²Tiempo de operación entre recargas de combustible.

³Solo durante recarga de combustible

 $^{^4}$ 20% para un ciclo de 12 meses. 42% para un ciclo de 24 meses

2.4 Reactor EPR

El Reactor de Presurizado Europeo (EPR) es un diseño de reactor dirigido por la compañía francesa AREVA en cooperación con la compañía alemana SIEMENS. Este reactor tiene una capacidad de generación de 1600MW. En la Tabla 2.3 se muestran los datos técnicos de la tecnología del reactor EPR.

Tabla 2.3 Datos técnicos del generador EPR

Tiempo de vida de la planta Energía del reactor Energía Eléctrica (Neta) Eficiencia de la planta	60 años 4,590 MWt 1,600 MW 35% UO2 enriquecido
Energía Eléctrica (Neta)	1,600 MW 35% UO2 enriquecido
	35% UO2 enriquecido
Eficiencia de la planta	UO2 enriquecido
	•
Núcleo	•
Tipo de combustible	
Enriquecimiento del combustible	<5 % ¹
Duración fuera de servicio por recarga de combustible	11 días
Duración fura de servicio por recarga de combustible y mantenimiento	15 días
Temperatura de la pierna caliente	624 °F
Temperatura de la pierna fría	564 °F
Flujo por bucle de refrigerante del reactor	125,000 gpm
Presión de operación del sistema primario	2,250 psia
Presión del vapor	1,109 psia
Flujo de vapor por bucle	5.1 Mlb/hr
Volumen toral de RCS	16,245 cu.ft.
Volumen de presurización	2,649 cu.ft.
Presión de diseño	59 psig
Parámetros del sistema primario	
Temperatura de diseño	650 °F
RCS de temperatura (Tave)	573,5 °F
Pierna de temperatura fría	537 °F
Pierna de temperatura caliente	610 °F
Presión de diseño	2500 psig
Presión nominal	2250 psig
Flujo/Bucle	157,500 gpm
Parámetros del sistema secundario	
Temperatura de diseño	600 °F
Temperatura final de alimentación	440 °F
Diseño de sistemas principales de presión	1200 psia
Bomba de alimentación de presión	900 psig
Flujo de alimentación (agua)	14.97x106 lbs/hr
Flujo de vapor	14.97x106 lbs/hr a 836 psia
Residuos generados por año	

Residuos de alto nivel (combustible gastado)	24.4 toneladas métricas
Residuos de nivel intermedio (resinas gastadas, filtro, etc.) y bajo nivel (compactables/no compactables)	34 toneladas métricas

¹Para un ciclo de 12 a 24 meses