FACULTAD DE INGENIERÍA

PROTOPIPO DE TRIBÓMETRO ANILLO SOBRE BLOQUE PARA OBTENCIÓN DE CURVAS DE FRICCIÓN

TESIS

QUE PARA OBTENER EL TÍTULO DE:

INGENIERO MECÁNICO

PRESENTAN

RENÉ SANTIAGO BARRAL BECERRA
PEDRO CRUZ LÓPEZ

DIRECTOR DE TESIS:
DR. RAFAEL SCHOUWENAARS

MÉXICO DF 2014
ÍNDICE
Índice ... 1
Objetivos ... 4
Prólogo .. 5
1. Introducción ... 7
 1.1. Tribología .. 7
 1.1.1. Fricción ... 9
 1.1.2. Desgaste .. 11
 1.1.3 Lubricación .. 12
 1.2. Normas para medir fricción y desgaste ... 14
1.3 Cojinetes de deslizamiento ... 17
2. Antecedentes ... 20
 2.1. Viscosidad .. 20
 2.2. Curvas de Stribeck ... 22
 2.3. Tribómetros ... 25
 2.3.1. Importancia de los tribómetros ... 25
 2.3.2 Definición ... 26
 2.3.3. Tipos de tribómetros ... 27
 2.4. Ensayos tribológicos ... 31
 2.5. Experimentos previos sobre desgaste y muestras tribológicas 33
3. Diseño y Manufactura ... 35
 3.1 Definición del Proceso de Diseño ... 35
 3.2. Proceso de Diseño .. 36
 3.2.1. Reconocimiento de la necesidad .. 36
 3.2.2 Investigación previa .. 36
 3.2.3 Planteamiento de los objetivos .. 37
 3.2.4 Especificaciones de desempeño .. 37
 3.2.5 Generación de ideas e invención .. 38
3.2.6 Análisis ... 43
3.2.7 Selección .. 46
4. Diseño de detalle .. 48
 4.1. Cálculo de la potencia del motor .. 48
 4.2 Diseño del Sistema de Carga .. 56
 4.2.1. Cálculo de pernos para el sistema de carga ... 56
 4.2.2. Análisis del sistema de palancas ... 58
5. Resultados .. 72
 5.1 Factor de multiplicación de carga ... 72
 5.1.1 Determinación teórica del factor de multiplicación de carga ... 72
 5.1.2 Cálculo del factor con métodos experimentales ... 77
 5.2 Ensayos de desgaste ... 79
 5.2.1. Los ensayos realizados ... 81
 5.2.2. Protocolo de pruebas ... 81
 5.2.3. Resultados de las pruebas ... 82
 5.2.4. Conclusiones de los ensayos (Análisis de las gráficas) .. 90
6. Discusiones y Conclusiones ... 93
Bibliografía ... 96
OBJETIVOS

Diseñar el prototipo de un tribómetro que permita realizar pruebas de desgaste entre componentes mecánicos con movimiento relativo entre sí, mediante un contacto del tipo anillo sobre bloque.

Construir el prototipo que será implementado sobre un tribómetro coaxial, tal que, a partir de las muestras obtenidas por dichos sistemas sea posible medir los coeficientes de fricción y el desgaste en pares tribológicos.
PRÓLOGO

Los trabajos realizados en el Holon Institute of Technology de Holon en Israel bajo la dirección de Rapoport, en donde someten muestras de cobre a pruebas de desgaste y se observan los efectos de la transición de un régimen de lubricación elastohidrodinámico a uno de lubricación límite, inspiraron la realización del presente trabajo, el cual servirá de base para comprobar que los resultados obtenidos por el equipo de trabajo de Rapoport son útiles para poder caracterizar algunas propiedades de los pares tribológicos.

Este y algunos otros trabajos realizados por el grupo de investigación al que pertenecen los autores, pretende emular los resultados obtenidos en otras publicaciones en donde hacen uso de las curvas de Stribeck para analizar los resultados obtenidos en pruebas de desgaste bajo diferentes regímenes de lubricación. Por tal motivo surge la necesidad de diseñar y construir un equipo que permita realizar dichas pruebas.

Este documento incluye el proceso de diseño que se debe seguir para llevar a cabo la construcción de un tribómetro que permita realizar pruebas de desgaste mediante una configuración de contacto mecánico del tipo anillo sobre bloque, buscando obtener los mejores resultados haciendo uso de todos los recursos disponibles.

El primer capítulo contiene una introducción a los temas que fundamentan el estudio de las propiedades en los tribopares, tales como la tribología y sus objetos de estudio.

En el segundo capítulo se muestra la forma en que se relacionan los elementos de la tribología para estudiar pares tribológicos. Se mencionan también los principales motivos que inspiraron llevar a cabo este trabajo y, las aplicaciones cotidianas de los pares tribológicos y algunos de los tribómetros existentes.

El proceso de diseño y la selección de los componentes utilizados en nuestro
sistema tribológico vienen incluidos en los capítulos tres y cuatro. Se da detalle de la selección de cada componente (material, dimensiones, tipo y diseño), de los cálculos que permitieron llevar a cabo esta selección y, de las consideraciones necesarias de cada etapa.

La presentación del prototipo como resultado del proceso de diseño y los resultados obtenidos de haber realizado una serie de pruebas sobre nuestro prototipo y, que permitieron obtener curvas de Strubeck están incluidos en el capítulo 5.

En el último capítulo se discuten los resultados obtenidos con los esperados, tanto de las pruebas de desgaste como de las pruebas obtenidas del dispositivo mismo. También se discuten las posibles mejoras que sobre el dispositivo se puedan realizar.
1. **INTRODUCCIÓN**

1.1. **TRIBOLOGÍA**

Tribología es la ciencia que estudia la interacción entre dos superficies en contacto. Se estudian los fenómenos de fricción, lubricación y desgaste, donde se involucran muchas disciplinas que abarcan desde la Física y Química, hasta la Ingeniería Mecánica y la Ciencia de los Materiales. Así, podemos decir que la tribología es de suma importancia tecnológica.

La tribología ha estado presente a lo largo de la historia, desde la creación del fuego y la invención de la rueda, hasta hoy en día. Pero fue el 9 de Marzo de 1966 en Gran Bretaña que la “Organización para la Cooperación y el Desarrollo Económico” considera como ciencia a la tribología. La tribología proviene etimológicamente de dos raíces griegas, *tribos* (frotamiento) y *logos* (estudio), es decir, se define la tribología como el estudio del frotamiento. Formalmente se define a la tribología como la ciencia que se encarga del estudio de la interacción entre dos superficies que interactúan en un movimiento relativo [1].

Con el fin de sistematizar su estudio, la tribología reúne varias disciplinas de la ingeniería en un solo campo. Vista desde los Procesos de Manufactura, el análisis de contacto entre los materiales incluye un análisis estadístico de las superficies ingenieriles, las cuales pueden presentar distintos grados de rugosidad dependiendo el tipo de proceso al que sea sometido. Dentro de la Mecánica de los Materiales, se estudia la alteración del relieve producido por dos piezas en contacto mutuo y que se debe a las deformaciones plásticas y elásticas de los materiales. El estudio de las interacciones presente entre la deformación plástica, fractura y estructura cristalina se ubican dentro de la Metalurgia Física y Metalurgia Mecánica, en un área difusa entre ellas. En cuanto a la parte de oxidación (corrosión) presente en los materiales, está se considera un estudio de la Metalurgia Química. Finalmente la lubricación es un estudio perteneciente a la Mecánica de Fluidos y, que de igual manera forma parte de la Ingeniería Mecánica y es de extrema importancia para el estudio de la
La gran importancia de la tribología se puede apreciar observando el hecho de que comisiones técnicas establecidas en países industrializados han estimado los efectos económicos que generan los problemas de fricción y desgaste. Se calcula que hasta un tercio de toda la energía generada en los procesos termodinámicos se pierde en forma de fricción, de ahí la gran importancia económica que tiene a nivel mundial la tribología [2].

La tribología es crucial para la maquinaria moderna que utiliza superficies rodantes y/o deslizantes, y aunque es un hecho obvio pero fundamental que el objetivo último de la tribología radique en el diseño exitoso de máquinas y/o mecanismos, una forma apropiada de referirse a esta área es el diseño-tribológico en donde la fricción, lubricación y desgaste juegan un papel importante.

Los diseños actuales de máquinas incluyen un análisis cinemático y de resistencia de los materiales, teniendo presente los análisis tribológicos que involucran los defectos de fricción, desgaste y lubricación, así como otras consideraciones del diseño tradicional [3].

Una de las aplicaciones más comunes que presenta esta disciplina es el diseño de cojinetes, pero generalmente se encarga de estudiar cualquier caso en el que se presente deslizamiento o frotamiento de un material respecto a otro, ya que esto propicia que se presente un contacto complejo en la superficie. [4]

Los avances que se generen en el estudio de la tribología están sujetos al diseño de nuevos equipos e instrumentos de medición que ayuden en la innovación de futuras investigaciones, que complementen en gran medida el uso eficiente de máquinas, alarguen la vida útil de las herramientas y elementos que conforman la maquinaria aumentando así la eficiencia de los equipos y ayudando a resolver problemas ambientales, económicos y tecnológicos en beneficio del hombre.
Una observación derivada de innumerables experimentos y teorías es que la tribología comprende el estudio de: 1) Las características presentes en las películas de material intermedio entre cuerpos en contacto y 2) Las consecuencias de falla, ya sea de película o ausencia de una película que generalmente son manifestados por la fricción y el desgaste severo [5].

1.1.1. Fricción

La fricción siempre ha estado presente en nuestra vida diaria, en acciones tan comunes que van desde caminar al trabajo hasta incluso pintar una casa, y en la mayoría de los procesos industriales. Actualmente desde un punto de vista pragmático, la fricción es el tema central de muchos problemas industriales, como los frenos del auto, la reducción de vibración y ruido que traen consigo severos problemas económicos, el gasto energético y el calentamiento en maquinaria por mencionar algunos.

Es a lo largo de la historia que el hombre siempre ha sentido curiosidad por este fenómeno y, fue el hombre primitivo el primero en utilizar los efectos de la fricción al crear el fuego para calentar su comida; también se dio cuenta que era más fácil mover objetos pesados que se encuentran cargados por rodillos que deslizarlos a lo largo, lo que finalmente daría paso a la invención de la rueda [1].

Durante el renacimiento se realizan las primeras investigaciones sobre fricción. Estas están atribuidas a Leonardo Da Vinci (1453-1519), quien fue el primero en introducir el concepto de coeficiente de fricción como la relación entre la fuerza de fricción y la carga normal \(F_f=\mu_s N \). Posteriormente se desarrollan varias teorías sobre fricción, pero no es sino hasta 1699 que el científico francés Guillaume Amontons (1663-1705) estableció las primeras leyes sobre fricción conocidas como las Leyes de Amontons. Cabe destacar que actualmente estas leyes no son del todo exactas e incluso en algunos de los casos estas no se cumplen. En 1881 Hertz propone el primer modelo de contacto, mientras que las primeras leyes de desgaste fueron propuestas por Archard, quien en el año de 1953 desarrollo lo que serían los
primeros experimentos sobre discos. Todos estos modelos se basan en la idea de que mientras más parámetros se conozcan, más fácil será hacer que coincidan los resultados experimentales [6].

El término fricción proviene del verbo en latín *fricare* que significa frotar. De manera formal se define a la fricción como la resistencia al movimiento que presenta un cuerpo sobre otro. Los cuerpos en cuestión pueden ser un gas con un sólido (fricción aerodinámica) o un líquido y un sólido (fricción del líquido). La fricción puede deberse también a los procesos internos de disipación de energía dentro de un solo cuerpo (fricción interna) [1].

Existen dos tipos distintos de fuerza que actúan sobre la fricción:

- **Fuerza de fricción estática**: si dos cuerpos se encuentran en contacto se producirá una fuerza tangencial requerida para iniciar el movimiento, esta fuerza se le conoce como fuerza de fricción estática, y esta siempre es mayor o igual que la fricción cinemática.
- **Fuerza de fricción cinemática**: es la fuerza tangencial requerida para mantener el movimiento relativo de un cuerpo en contacto con otro.

Se ha demostrado a lo largo de los años que la fricción afecta de manera considerable el rendimiento de las máquinas, es por esta razón que las actuales investigaciones están orientadas al estudio de materiales que puedan emplearse como componentes de máquinas y lubricantes, y así reducir los efectos de fricción.

Tres de los efectos que más perjudican de la fricción son: la pérdida de potencia, el desgaste y el sobrecalentamiento de piezas. Y es que en los motores de combustión interna entre el 15 y 20% de la potencia se utiliza para compensar las pérdidas por fricción, ya que el continuo rozamiento genera altas temperaturas en la superficie acelerando el desgaste. Aunque no todo son perdidas, pues se atribuye a la fricción la transmisión de potencia y la disipación de energía.
1.1.2. Desgaste

El desgaste es una consecuencia de la fricción, se define como el fenómeno de remoción de material en una superficie debido a la interacción que existe con otra superficie en contacto. Normalmente las maquinas van perdiendo su durabilidad y confiabilidad debido a este fenómeno y, las posibilidades de crear maquinas más avanzadas se reducen debido a los problemas generados por desgaste. Es así que, tener un amplio control de este fenómeno se ha convertido en una necesidad de las nuevas tecnologías [8].

Se debe tener presente que el desgaste no es una propiedad del material, sino una respuesta al sistema en contacto que involucra procesos como adhesión, abrasión, fatiga superficial y deformación plástica acumulada [2]. Aún si no existe fricción, el desgaste también se puede dar por la presencia de corrosión y la degradación en los materiales.

El desgaste puede ser deseable o no. Ejemplos de aplicaciones donde el desgaste puede ser deseable son el escribir con un lápiz o el pulido de piezas con abrasivos. En cambio, el desgaste es indeseable en aplicaciones de maquinaria donde por lo general es importante mantener indefinidamente la forma de las piezas y su integridad superficial, tal es el caso de los cojinetes, chumaceras, engranes, etc.

El desgaste puede deberse a fenómenos mecánicos y fenómenos químicos, pero en todos los casos a excepción de la fatiga mecánica, el desgaste ocurre mediante remoción gradual de material en numerosas porciones diminutas que pueden variar su tamaño e ir desde un nivel atómico hasta llegar a las micras [9].

Quizás el reto más grande en la solución a problemas de desgaste es anticipar el tipo de desgaste a que estarán sometidos los componentes. El material puede ser removido de una superficie sólida de tres maneras: por fusión, por dislocación química o por la separación física de los átomos. Este último método puede ser
llevado a cabo por la sola aplicación de un alto esfuerzo o por el esfuerzo cíclico a bajas magnitudes [1].

Actualmente se requiere llevar a cabo un constante monitoreo del desgaste, con el fin de evitar y/o prevenir que se presente este fenómeno en la maquinaria, teniendo en cuenta que el mantenimiento preventivo solo alargará la vida útil de la maquinaria para que su rendimiento sea mayor y así se eviten los paros repentinos en la producción debido al desgaste. En general el desgaste no tiene lugar a través de un solo mecanismo, por lo que comprender y analizar cada uno de los mecanismos de desgaste es de vital importancia.

1.1.3 Lubricación

El objetivo principal de la lubricación es la separación de dos superficies con deslizamiento relativo entre sí evitando que se presente desgaste alguno entre ellas e intentando que el proceso de deslizamiento se efectué con el mínimo de roce, lo cual se logra a través de una película lubricante que sirve para evitar que se presente desgaste entre ambas superficies [7].

Históricamente y gracias a evidencias que han perdurado a lo largo del tiempo, se sabe que grandes civilizaciones como la egipcia, romana y griega ya empleaban la lubricación en sus máquinas, un ejemplo muy claro es el empleo de aceite de oliva para deslizar pesadas cargas. Sin embargo es importante señalar que es a través de la mejora en la fabricación de elementos metálicos con el inicio de la revolución industrial y el aumento en las velocidades de giro en ejes que la lubricación comienza a ser estudiada con mayor detalle.

De esta forma se puede definir a la lubricación como la aplicación de un medio sólido, líquido o gaseoso donde se espera que se presenten fricción y desgaste. El objetivo del lubricante es el de disminuir la severidad de estos fenómenos mediante la separación de las superficies que se encuentran en deslizamiento relativo para así evitar el contacto entre ambas y disminuir el esfuerzo cortante. Desde un punto de
vista tecnológico, la lubricación no solo involucra los fenómenos que ocurren en la zona de contacto, también analiza los sistemas de alimentación, presurización y recirculación de los lubricantes, así como las características, mecánicas, térmicas y químicas de los mismos [2]. Su estudio tiene su base en la mecánica de fluidos, la termodinámica, la mecánica de sólidos, la ciencia de materiales y la transferencia de calor.

Se tienen cuatro diferentes tipos de lubricación que minimizan la fricción y el desgaste en superficies con deslizamiento relativo entre sí:

- **Lubricación hidrodinámica:** Es el análisis detallado de películas lubricantes gaseosas y/o líquidas. En este tipo de lubricación las películas lubricantes buscan mantener que las superficies sólidas opuestas entren en contacto, en algunos casos suele llamarse a este tipo de lubricación *forma ideal de lubricación*.

- **Lubricación Elastohidrodinámica:** Se presenta en mecanismos donde las rugosidades de las superficies de fricción trabajan siempre entrelazadas, esto implica la interacción física entre los cuerpos en contacto y el lubricante líquido. Durante dicha interacción las crestas permanentemente se están deformando elásticamente. El control del desgaste y consumo de energía dependerán de la película adherida a las rugosidades. Es caso especial de la lubricación hidrodinámica.

- **Lubricación sólida:** Se llama así cuando el lubricante que se utiliza es un sólido, y se recurre a este tipo de lubricación cuando se producen temperaturas elevadas, acceso difícil de recirculación del lubricante líquido, cargas extremas con vibraciones, presencia de gases, disolventes y ácidos. Los lubricantes más utilizados en este caso son el bisulfuro de molibdeno y el grafito.

- **Lubricación límite y mixta:** Esta forma de lubricación implica las interacciones químicas entre los cuerpos en contacto y el lubricante líquido como ausencia de cualquier película lubricante, el único medio fiable de asegurar el movimiento
relativo es a través de campos de fuerza magnéticos que permitan la separación de las superficies opuestas [5].

Aunque el objetivo principal de los lubricantes sea evitar la fricción y el desgaste, esto no siempre se logra por completo. Es importante recalcar que los lubricantes cumplen algunas otras funciones ya que también actúan como un medio de transferencia de calor generado por el continuo contacto de piezas, sirven para eliminar impurezas generadas por el desgaste en los equipos, protegen de fenómenos como la corrosión y contribuyen en la refrigeración de los componentes.

Por esta razón la selección de lubricantes debe realizarse dependiendo la geometría de los cuerpos en contacto, tomando en cuenta parámetros como la rugosidad y la textura de las superficies de deslizamiento, las condiciones ambientales de trabajo, temperatura y fricción, la composición de los materiales en contacto y las propiedades químicas y mecánicas de los lubricantes a emplear [1].

1.2. Normas para medir fricción y desgaste

Norma ASTM G115 – 10

Guía estándar para medir y reportar el Coeficiente de Fricción: está norma cubre los parámetros que deben ser considerados para llevar a cabo una prueba válida de los coeficientes de fricción dentro de un sistema tribológico, así como el uso de un formato estándar para recabar los datos obtenidos a partir de las pruebas de fricción realizadas. Está norma está orientada hacia materiales sólidos y con un mayor coeficiente de fricción. El objetivo es proporcionar un formato generado a partir de una base de datos que permita de manera simple establecer los tipos de materiales y tribosistemas de interés, ya que en él se incluye la información necesaria para seleccionar un método que permita obtener las propiedades de fricción de los materiales. Este formato debe facilitar el intercambio de resultados obtenidos entre laboratorios y debe servir de base en la elaboración de manuales y bases de datos electrónicos [10].
Norma ASTM D2266-91

Esta norma está aplicada a lubricantes grasos, y se utiliza para determinar las características preventivas del desgaste presente en el deslizamiento de dos superficies metálicas (acero sobre acero). En la prueba para esta norma, tres esferas de acero se encuentran colocadas en una taza de bolas, que está montada en sobre una superficie de muestras dentro de una cámara a elevada temperatura. La taza de bolas se llena con la muestra de lubricante, mientras una cuarta esfera se mantiene estacionaria en un soporte de bolas superior, el cual está montado en un sensor que mide el par y la carga, y que se encuentra conectado a un motor que lo impulsa hacia abajo llevando el soporte al centro de las otras tres esferas localizadas en la copa de bolas [11].

![Configuración de tribómetro de cuatro bolas](image)

Figura 1.1. Configuración de tribómetro de cuatro bolas

Norma ASTM G181-04

La norma ASTM G181-04 (2009) establece un procedimiento estándar para realizar ensayos de fricción en un banco de pruebas sobre materiales, recubrimientos y tratamientos superficiales destinados a ser utilizados en anillos de pistón y camisas de cilindros implementados en motores diésel o encendidos por chispa bajo ciertas condiciones de lubricación.
El objetivo de esta norma es proporcionar una idea preliminar sobre los materiales y tipos de recubrimientos que pueden ser empleados en la evaluación de un anillo. Se reproduce un deslizamiento alternativo para simular el contacto que se produce entre el anillo de un pistón y el recubrimiento de su acoplamiento ubicado en un punto superior al centro del cilindro, donde la lubricación del líquido es menos eficaz provocando un mayor desgaste. Por esta razón esta norma presta especial atención en la alineación de la muestra y el deslizamiento y estado del lubricante [10].

Norma ASTM D5707

Esta norma se utiliza para determinar las propiedades de desgaste y el coeficiente de fricción utilizando grasas lubricantes a temperaturas y cargas especificas donde las aplicaciones suelen presentar vibraciones al arranque, freno o durante largos periodos de tiempo bajo un contacto Hertziano a altas presiones. Los usos van desde la aplicación de grasas lubricantes en juntas isocinéticas ubicadas en la rueda delantera de algunos automóviles hasta la aplicación de grasas lubricantes a rodamientos de bolas [10].

Norma ASTM G77

La norma ASTM G77 es un método de prueba estándar que se utiliza para clasificar las resistencia de los materiales ocasionado por el desgaste presente en superficies en deslizamiento bajo diversas condiciones utilizando un tribosistema que sigue la configuración block-on-ring (anillo sobre bloque), donde una muestra estacionaria es presionada contra un anillo giratorio que aplica una fuerza constante. La fricción entre las superficies de deslizamiento de los bloques y el anillo resulta en la pérdida de material de ambas piezas. Este tipo de pruebas puede llevarse a cabo utilizando diversos tipos de lubricantes según las cargas, velocidades y temperaturas que simulan las condiciones de servicio [12].

Norma ASTM G99
La norma ASTM G99 es un tipo de prueba estándar realizada en un banco de pruebas. Es utilizada para determinar el desgaste de los materiales durante deslizamiento utilizando un tribómetro que sigue la configuración “pin-on-disk”. Las pruebas se realizan bajo condiciones nada abrasivas, permitiendo también poder determinar el coeficiente de fricción [10].

1.3 COJINETES DE DESLIZAMIENTO

La gran mayoría de los diseños industriales de cojinetes deslizantes se desarrolló inicialmente con la idea de crear un soporte que tenga una mayor y mejor resistencia a la carga y una reducción considerable en la fricción y desgaste. Es por eso que se hace especial énfasis en la eficacia de la geometría del rodamiento para generar presión y aumentar así la capacidad de carga [13].

Se entiende por cojinete al elemento que se encuentran entre dos piezas con movimiento relativo entre sí, teniendo como principal objetivo el de minimizar el desgaste, conceder la transmisión de carga y par, así como disminuir en lo posible los efectos de la fricción [14]. El cojinete es un cilindro que en su interior cuenta con un eje de diámetro levemente menor que da como resultado un deslizamiento entre ambos componentes.

El cojinete de deslizamiento es uno de los más antiguos pero al mismo tiempo es uno de los más modernos elementos de máquinas, las formas más simples de cojinetes de deslizamiento se utilizan sin lubricación y es por esta razón que llegan a presentar un desgaste severo. Los cojinetes representan solo una parte de un sistema tribológico, por esto, es necesario que componentes como el eje y el lubricante cumplan con los requisitos que exigen para lograr un buen desempeño [15].

Cuando se tiene un cojinete como componente separado, estos pueden ser: medio cojinete, una arandela de empuje, un cojinete de arrastre, una placa de desgaste o incluso adoptar la forma de un casquillo redondo.
Dichos elementos se clasifican como: de pared delgada si el espesor es hasta de 5mm o de pared gruesa si alcanzan espesores mayores a 5mm [1].

Para aplicaciones de propósito general, la superficie del cojinete puede ser dividida en una serie de elementos o almohadillas de inclinación que permitan capturar el lubricante, ya sea para cojinetes relativamente cargados de empuje a alta velocidad, o para cojinetes deslizantes con carga ligera donde se requiera el aumento de resistencia. El objetivo del lubricante en cojinetes de deslizamiento consiste en mantener una película de lubricante entre el eje y el cojinete de manera que se impida el contacto entre los metales limitando la fricción, esta película también sirve como refrigerante al contribuir en la transferencia de calor y como amortiguador al absorber los impactos causados por vibraciones y cargas variables [16].

Propiedades de los cojinetes de deslizamiento

Cuando un cojinete opera en un régimen hidrodinámico de lubricación, una película delgada de aceite separa al cojinete del eje. Bajo estas condiciones, las superficies que conforman el sistema están completamente separadas ya que se dispone de un flujo abundante de lubricación que evita el sobrecalentamiento, propicia una mayor eficiencia y asegura una larga vida útil. En estas condiciones de separación el desgaste mecánico no tiene lugar, sin embargo es una situación que no siempre se logra [3].

Es por esta razón que la selección de materiales con la que se fabrican los cojinetes de deslizamiento debe llevarse a cabo teniendo en cuenta que se deben cumplir con las siguientes propiedades térmicas y mecánicas.

- **Conformabilidad**: es un material capaz de adaptarse a las circunstancias geométricas. Esta propiedad se puede apreciar en la compensación para alinear el eje y el cojinete.
- **Compatibilidad**: es la propiedad que presentan los materiales para no unirse unos con otros cuando se encuentran en condiciones de contacto mutuo.
o **Incrustabilidad:** el material del cojinete debe ser lo suficientemente blando para permitir que partículas extrañas penetren en la superficie de la delgada película de lubricante y posteriormente sean eliminadas por esa misma película de lubricante evitando ralladuras o desgaste. Esta propiedad se asocia a la ductilidad y tenacidad.

o **Resistencia a la fatiga:** capacidad que presenta el material para resistir los cambios cíclicos de carga y soportar la máxima presión hidrodinámica, sin importar cuál sea la temperatura de funcionamiento.

o **Resistencia a la corrosión:** este fenómeno se debe a la degradación que sufren los aceites, generalmente cuando estos se vuelven muy ácidos. Los productos o aditivos que contienen los lubricantes al oxidarse pueden atacar y corroer elementos como el cadmio, plomo, zinc y aleaciones de cobre.

o **Alta conductividad térmica:** favorece la transferencia de calor debido a la fricción evitando así un posible sobrecalentamiento en el cojinete.

o **Bajo coeficiente de expansión térmica:** Es indispensable tener presente que la temperatura de fusión del material del cojinete debe ser mayor a la temperatura de operación del motor y a la de la película lubricante, ya que de no ser así el material del cojinete comenzara a fundirse provocando una falla en el sistema [17].

o **Factores económicos:** no por ultimo menos importante, pues estos son fundamentales en la selección de los materiales, ya que lo que se busca obtener es un material de bajo costo pero que cumpla con todas las necesidades de diseño.
2. **ANTECEDENTES**

Cuando una superficie sólida se desliza sobre otra se producen los fenómenos de fricción y desgaste, por lo tanto para reducir estos efectos se habla de un problema de lubricación. La lubricación entre dos cuerpos en contacto tiene como finalidad soportar la presión entre las superficies ayudándolas a separarse y, al mismo tiempo a reducir la resistencia al deslizamiento. Los regímenes de lubricación determinan la efectividad de la formación de la película y por consiguiente la separación de las superficies.

El desarrollo histórico en los descubrimientos de los regímenes de lubricación presente en superficies lubricadas de contacto deslizante ha sido objeto de estudio desde hace ya mucho tiempo. A lo largo del tiempo se encontró que la relación funcional entre el coeficiente de fricción, el producto de la velocidad de deslizamiento y la viscosidad de los lubricantes divididos entre la carga normal se conoce como el número de Stribeck.

2.1. Viscosidad

Uno de los parámetros que juega un papel fundamental en la lubricación, es la viscosidad del fluido que se encuentra en operación. Para aplicaciones en ingeniería, la viscosidad del aceite se elige principalmente para dar un rendimiento óptimo en la temperatura requerida. La viscosidad también puede verse afectada por las velocidades de operación. Por lo tanto el conocimiento de la viscosidad como una de las principales características en los lubricantes, se vuelve importante en el diseño y comportamiento de un sistema lubricado.

La viscosidad de un fluido es una propiedad importante en el estudio del flujo de fluidos, es así que se define a la viscosidad como la propiedad de un fluido mediante el cual este ofrece resistencia al esfuerzo cortante. La resistencia de un fluido al corte, depende de su cohesión y de la tasa de transferencia de momento angular; por consiguiente, la cohesión parece ser la causa predominante de la viscosidad en
un líquido, mientras que en un gas las fuerzas de cohesión son muy pequeñas [18XXX]. La viscosidad se puede clasificar como dinámica o cinemática

Viscosidad dinámica.

Considere la posibilidad de tener dos superficies planas separadas por una capa de lubricante con un espesor ‘h’. La fuerza requerida para mover la superficie superior es proporcional al área lubricada 'A' y la velocidad de 'u', es decir:

$$F \propto A \times u$$

Ec. 2.1

Supongamos que la película de fluido que separa a las superficies se compone de un número de capas infinitamente delgadas. Al comparar dos películas de diferente espesor formadas por capas equidistantes. Si la velocidad superficial se mantiene sin cambios en estos dos casos, una sola capa en la película más gruesa se someterá a menos deslizamiento relativo que en la película más delgada, por lo tanto los gradientes de velocidad para estas dos capas serán diferentes.

Dado que la película más gruesa contiene más capas individuales, se requiere de una menor fuerza para separar una sola capa, por lo cual la resistencia viscosa variará como el recíproco del espesor de la película (1/h). La fuerza necesaria para mover la superficie superior es por lo tanto proporcional a:

$$F \propto A \times u/h$$

Ec. 2.2

Esta relación es válida para la mayoría de los fluidos. Diferentes fluidos exhibirán una proporcionalidad constante diferente llamada “μ” llamada viscosidad dinámica, y viene expresada como:
\[F = \mu \times A \times \frac{u}{h} \quad \text{Ec. 2.3} \]

Reacomodando la ecuación:

\[\mu = \frac{(F/A)}{(u/h)} \quad \text{Ec. 2.4} \]

\[\mu = \frac{\tau}{(u/h)} \quad \text{Ec. 2.5} \]

Dónde: \(\mu \): es la viscosidad dinámica Pa, \(\tau \): esfuerzo cortante en un fluido Pa, \(u/h \): es la razón de corte, es el gradiente de velocidad normal al esfuerzo cortante s\(^{-1}\).

Viscosidad cinemática

Se define como la relación existente entre la viscosidad con la densidad de masa.

\[\nu = \frac{\mu}{\rho} \quad \text{Ec. 2.6} \]

Dónde: \(\nu \): es la viscosidad cinemática m\(^2\)/s, \(\mu \): es la viscosidad dinámica Pa, \(\rho \): es la densidad del fluido kg/m\(^3\).

2.2. CURVAS DE STRIBECK

La curva de Stibeck se utiliza para clasificar las propiedades de fricción entre dos superficies, para el diseño de cojinetes y para observar los efectos producidos en los diferentes regímenes de lubricación. A través de la curva de Stibeck se pueden observar las características generales de superficies lubricadas con movimiento.
relativo entre ellas.

Fue entre 1900 y 1902 que Stribeck realiza los experimentos sistemáticos para medir la fuerza normal \(f \) en cojinetes en función de la velocidad de giro \(N \), de la carga por unidad de área proyectada \(P \) y de la viscosidad.

La curva de Stribeck representa las características generales de superficies lubricadas en movimiento relativo entre sí.

La expresión:

\[
\left(\frac{r}{c} \right)^2 \frac{\mu N}{P}
\]

Ec. 2.7

Es conocida como el número de Sommerfeld, en donde \(N \) y \(P \) se mantienen constantes para representar la relación que existe entre la viscosidad del fluido \(\mu \) y el coeficiente de rozamiento \(f \).

Figura 2.1 Curva de Striebeck
La curva caracteriza un punto de fricción determinado donde se pueden modificar los siguientes parámetros y ver su incidencia en el coeficiente de fricción. Partiendo de un punto ubicado sobre la curva entre los puntos C y D, correspondiente al punto de diseño de cualquier mecanismo. Al situar nuestro punto real entre C y D estamos evitando acercarnos a la zona EP (*extrema presión*) situada a la izquierda de C, el C_f (coeficiente de fricción) crece de forma incontrolada llegando a dañar los elementos o a forzar el desprendimiento de virutas metálicas que van al flujo del aceite y que sirven como abrasivo en otros puntos de fricción [18].

En la curva se pueden presentar tres variaciones:

- Que aumentando la presión nos desplazamos hacia la izquierda y es entonces que podemos caer en la zona EP y presentar las consecuencias ya comentadas.
- Al reducir la velocidad (arranque, parada e inversión del movimiento) nos desplazamos también a la izquierda.
- Reduciendo la viscosidad, el efecto es el mismo.

Cuando se logra tener una mejora en la capacidad de lubricación, estamos desplazando la curva de Stribeck de forma paralela hacia la izquierda, reduciendo la zona EP (izquierda de C) consiguiendo así reducir la criticidad de las tres variaciones antes mencionadas.

Si bien la expresión de la curva de Stribeck es un indicador del comportamiento de la lubricación para diversos elementos mecánicos, no representa en su totalidad el ciclo completo ocurrido en un motor de combustión interna debido a que la velocidad del pistón y la presión de contacto entre éste y el cilindro varían. Por esta razón Ting L.L. (1993), introdujo el diagrama de Stribeck de tipo bucle (the looping-type Stribeck diagram) (ver figura 2.2.1.2), en el cual remplaza en el número de Sommerfeld la velocidad de rotación del cojinete por la velocidad instantánea del pistón, e introduce una longitud de referencia como es el ancho o espesor del segmento. Dicho diagrama
permite medir la variación de la lubricación entre el pistón y el cilindro durante cada ciclo [19].

Figura 2.2. Curva de Stibbeck tipo bucle

2.3. TRIBÓMETROS
2.3.1. IMPORTANCIA DE LOS TRIBÓMETROS

La tribología es el nombre dado a la ciencia y tecnología que se encarga del estudio e interacción de superficies en movimiento relativo. El término tribología, además de su carácter colectivo que describe al campo de la fricción, lubricación y desgaste, también podría ser utilizado para introducir un nuevo término, el *tribodesign* (tribodiseño) [3].

Se considera al *tribodesign* como una rama del diseño de nuevos materiales de máquinas que se encargara del análisis y diseño, sobre todo de aquellos elementos de maquina donde la fricción, lubricación y desgaste juegan un papel importante. Y es que
el *tribodesing* debe conducir a nuevos y más eficientes diseños para los diversos tipos de maquinaria.

Los tribómetros son instrumentos únicos diseñados para llevar a cabo y con muy alta precisión la medición de una fuerza. Industrias como la aeroespacial, la automotriz, el diseño de herramientas, donde las fallas pueden llegar a ser catastróficas se han beneficiado de la capacidad de medición y precisión de los tribómetros durante años. Versiones más especializadas de tribómetros se han diseñado para operaciones de altas y bajas temperaturas, y pruebas de alto vacío.

El tribómetro como la curva de Stribeck, argumentan que la fricción es dependiente de la viscosidad, la velocidad y la carga, es por eso que el propósito del diseño de tribómetros y el estudio de la tribología es en primera instancia minimizar y eliminar las pérdidas, resultado de la fricción y el desgaste, logrando un importante ahorro en costos dando paso a un crecimiento industrial mayor [20].

Una de las principales causas que limitan el uso de estos equipos, es el elevado costo, así como una restricción de pruebas que se puedan realizar con él y al tipo de muestras para las que fue diseñado. Por esta razón se vuelve bastante complicado conseguir un equipo que se ajuste a las necesidades del investigador, y que en la mayoría de los casos al contar con un equipo extranjero, no se garantiza que en caso de que se presenten fallas, se cuenten con refacciones disponibles o personal capacitado capaz de solucionar el problema en un corto tiempo.

2.3.2 **DEFINICIÓN**

Se entiende por tribómetro al equipo mediante el cual es posible determinar la resistencia al desgaste de un material cuando se encuentra en contacto con otro y entre ellos existe movimiento relativo, en un determinado tiempo. Mediante un tribómetro es posible llevar a cabo pruebas y, simulaciones de fricción, desgaste y lubricación, que son objeto de estudio de la tribología [21].
Las investigaciones tribológicas y los avances tecnológicos de sistemas que permiten simular los distintos tipos de mecanismos de fricción y desgaste, han hecho posible la construcción de tribómetros.

Un tribómetro puede medir la fricción sobre una superficie utilizando diferentes métodos, tal el caso de una esfera deslizante sobre una superficie de referencia (bola sobre disco) que permite obtener un valor relativo de fricción.

2.3.3. Tipos de tribómetros

El conocimiento de las características mecánicas de los materiales que se utilizan en la construcción de máquinas y que suplan los requerimientos tanto de las personas como de la industria es un factor importante en el diseño y mejoramiento de las mismas. El desgaste de los materiales ha sido un fenómeno que siempre se ha evidenciado, buscando combatirlo y prevenirlo [22]. Actualmente existen diferentes tipos de tribómetros mediante los cuales es posible estudiar los diferentes tipos de contactos sobre una gran cantidad de materiales. También es posible medir los efectos producidos por la transición de un régimen de lubricación a otro. La selección del tribómetro dependerá en gran medida del tipo de contacto que se esté estudiando.

Máquina de Cilindros Cruzados ASTM- G83

El objetivo principal de las pruebas de desgaste realizadas con la máquina de cilindros cruzados es la determinación del coeficiente de desgaste de un par tribológico, así como la obtención de curvas de desgaste y coeficiente de fricción en el tiempo, estas curvas dan una indicación del comportamiento del par. Por medio de la norma ASTM G83-96 bajo la cual está diseñado el equipo. Se determina la validez de los resultados teniendo en cuenta un análisis estadístico en el que la variación de estos no debe ser menor al 15% (exactitud), ni mayor al 30%.

La norma técnica ASTM G83–96 estandariza el ensayo de desgaste con un equipo de cilindros cruzados. Este método de ensayo consiste en una prueba de laboratorio para
determinar el desgaste por fricción entre dos materiales. Durante la prueba la fricción ocurre entre un cilindro rotativo y otro estático cuyos ejes están dispuestos perpendicularmente. El ensayo puede realizarse a diferentes materiales, siempre y cuando las dimensiones específicas puedan lograrse y que soporten los esfuerzos producidos durante la prueba sin fallar y sin mostrar flexión excesiva, además debe conocerse su composición, tratamientos térmicos a que se haya sometido y su dureza [23].

El equipo consta de una transmisión por correa, una porta-probeta (para sostener la probeta rotatoria), un brazo (para sostener la probeta estática) y un sistema que permita a la probeta estática estar siempre en contacto con la probeta rotatoria con la aplicación de una carga controlada, como se ilustra en la figura

Figura 2.3. Máquina de cilindros cruzados

Máquina de Perno contra Disco ASTM G-99

Esta máquina es usada para pruebas de desgaste, en ella el perno se coloca perpendicularmente a un disco giratorio. Las variables que rigen las pruebas son la carga normal, la velocidad de deslizamiento, la atmósfera y la temperatura ambiente. La cantidad de desgaste puede establecerse pesando el perno en una balanza analítica [24].
Para ensayos de desgaste hechos en máquinas del tipo perno sobre disco, se requieren dos variables. Se posiciona un perno con una punta hemisférica perpendicular al disco. La trayectoria del deslizamiento es un círculo a través de la superficie del disco. El plano del disco puede orientarse horizontal o verticalmente. El perno normalmente se coloca contra el disco a una carga dada por medio de un brazo o palanca, al que se le agrega una determinada carga.

Este sencillo método facilita la obtención y el estudio de la fricción y el comportamiento de desgaste en casi todas las combinaciones de material en estado sólido, con variables en el tiempo, la presión de contacto, la velocidad, la temperatura, la humedad, la lubricación, entre otras.

Los resultados de las pruebas se reportan individualmente, como la pérdida de volumen en milímetros cúbicos para el perno y el disco. Se recomienda que cada material se ensaye en ambos roles, como perno y como disco. La cantidad de desgaste se determina, midiendo dimensiones lineales apropiadas de ambas variables antes y después de la prueba, o pesando ambos especímenes. Si se usan medidas lineales de desgaste, el cambio de longitud o cambio de la forma del perno y, la profundidad o cambio de la forma de la huella de desgaste del disco (en milímetros) se determina por
cualquier técnica de metrología utilizando un perfilómetro; las medidas lineales de desgaste se convierten a volumen (mm3) usando relaciones geométricas. Con frecuencia se usan las medidas lineales de desgaste puesto que la pérdida de masa es a menudo demasiado pequeña para medirse con precisión [25].

Máquina de Disco sobre bloque ASTM G-77

Este método de ensayo cubre el procedimiento necesario para determinar la resistencia al desgaste ocurrido por el deslizamiento en diversos materiales. Esta prueba utiliza un equipo de ensayo del tipo bloque sobre anillo para clasificar los pares de materiales de acuerdo con sus características de desgaste por deslizamiento. Una muestra colocada sobre un bloque estacionario es presionada con una fuerza constante contra un anillo giratorio a 90° del eje del anillo de giro. La fricción presente entre las superficies de deslizamiento bloque y anillo, resulta en la pérdida de material (volumen en milímetros cúbicos), tanto para el anillo y el bloque. Los materiales con mayor resistencia al desgaste tendrán menor pérdida de material.

El principio de funcionamiento para un sistema de bloque sobre anillo se compone de un anillo con velocidad angular controlada que aplica una carga sobre un bloque fijo. El coeficiente de fricción se calcula mediante la obtención de la fuerza de corte sobre la base de la palanca que impulsa el par. Las propiedades de los materiales, tales como dureza, tamaño de grano y tratamiento térmico, deben ser variables conocidas. Este tribómetro se utiliza para pruebas en revestimientos, grasas y aditivos, ya sea bajo condiciones secas o lubricadas, donde se obtiene una relación del desgaste utilizando los siguientes parámetros.

- La carga nominal aplicada.
- El área de contacto real
- La velocidad angular del anillo.
- Las propiedades mecánicas del disco y el bloque.
- Las condiciones de lubricación.
2.4. ENSAYOS TRIBOLÓGICOS

El objetivo de los ensayos tribológicos es llevar a cabo una investigación fundamental en los mecanismos básicos de fricción y desgaste. Dicha investigación debe permitir ampliar el conocimiento general sobre el comportamiento que presentan los materiales utilizados en aplicaciones tribológicas específicas como la industria, entre otros.

Los ensayos tribológicos pueden realizarse en una gran variedad de formas las cuales no solo depende del par de materiales que se someten a estudio, sino que también dependen en gran medida del sistema mecánico en las que serán utilizados. Es conveniente clasificar el comportamiento tribológico de los materiales dependiendo el grado de realismo, las propiedades del material, las condiciones reales de operación, tiempo y costo ya que para algunas pruebas o en algunos ensayos tribológicos la simulación no es una prioridad [26].

Por ejemplo, si se requiere llevar a cabo pruebas para evaluar el comportamiento tribológico de un sistema cilindro-pistón en un motor de combustión interna de un automóvil y al mismo tiempo obtener un mayor grado de realismo, se podrían realizar
pruebas de campo donde se ponga en funcionamiento el automóvil completo. Sin embargo resulta muy costoso realizar una serie de pruebas así. Se pueden llevar a cabo la los ensayos haciendo uso del automóvil completo mediante un banco de pruebas donde puede ser evaluado con un mejor control. Una forma de reducir los costos, es evaluando un subsistema haciendo uso únicamente del motor del automóvil logrando con ello un mejor control de pruebas en un laboratorio. Simplificando aún más las pruebas se pueden evaluar únicamente las partes del motor que están sujetas a estudio, sin tener presentes aspectos claves del funcionamiento del sistema los cuales sí es posible tener presentes en una prueba de campo o en una prueba de banco con el auto completo. Debe tomarse en cuenta que aunque la prueba de banco tenga gran similitud con una de campo siempre habrá algunas modificaciones que alteran al sistema o bien que pueden afectar las condiciones de ensayo de manera significativa, por tal razón con un modelo de prueba simplificado es posible evaluar el comportamiento de una gran cantidad de materiales de una manera fácil, rápida, no muy costosa y bajo condiciones muy bien controladas [26].

Otra clasificación más que se le puede dar a los ensayos tribológicos es con respecto al tipo de contacto que presentan, estas pueden ser cerradas: si la superficie tiene una trayectoria cíclica y abiertas: si la trayectoria de deslizamiento se renueva constantemente.

Debido a tiempo y costos, esta clasificación de ensayos tribológicos se origina por el deseo de evaluar nuevos materiales y nuevos diseños de uno o dos componentes ya existentes en máquinas.

Es importante hacer hincapié en que las pruebas base en laboratorios están diseñadas con el objetivo de obtener rápidas tasas de desgaste mediante pruebas a condiciones extremas como velocidad, presión, temperatura o una combinaciones de estas.
2.5. EXPERIMENTOS PREVIOS SOBRE DESGASTE Y MUESTRAS TRIBOLÓGICAS

La tribología es una rama relativamente nueva de la ingeniería y la parte correspondiente a la ciencia de materiales, se ha tratado sobre todo de una forma muy empírica, hasta hace pocos años.

El presente trabajo se desarrolló con el objetivo de obtener las curvas de Striebeck para compararlas con trabajos previamente realizados por el grupo de trabajo de, en los que se estudian los efectos en el tamaño de grano y las condiciones de lubricación producidas sobre nuevas aleaciones de materiales utilizados en pares tribológicos.

En los experimentos realizados por Rapoport en el Holon Institute of Technology en Holon, Israel se estudia la evolución del desgaste y la fricción sobre superficies de Cu con diferentes tamaños de grano y bajo diferentes condiciones de lubricación. Se analiza también el cambio en la estructura de las subcapas del Cu durante la fricción a diferentes condiciones de contacto demostrando que la estructura de grano ultra fino mejora las propiedades tribológicas de las superficies de Cu mediante fricción seca.

Una propiedad importante obtenida a partir de un tribomaterial es la compatibilidad, que corresponde a la resistencia que presenta el material al desgaste producido por procesos de difusión o adhesión.

En estos trabajos se concluye que los efectos en el tamaño de grano en el Cu a partir de la aplicación de diferentes cargas a diferentes velocidades de deslizamiento provocan una transición en el régimen de lubricación al pasar de una de una zona de lubricación elasto-hidrodinámica (LEH) a una de lubricación de frontera (LB) bajo valores definidos de lubricación y, que esta transición depende de la microestructura del Cu. Se demuestra que el estado de fricción constante en la zona LEH se caracteriza por los bajos valores del coeficiente de fricción ($\mu = 0.01-0.04$) para las muestras de Cu con diferentes tamaños de grano y que la zona de LF está asociada con la deformación...
severa ocurrida alrededor de las grietas y donde se producen altos valores de coeficiente de fricción y desgaste [27].
3. DISEÑO Y MANUFACTURA

3.1 DEFINICIÓN DEL PROCESO DE DISEÑO

Diseñar es pensar antes de hacer, analizar, planificar y ejecutar para responder a las necesidades de los usuarios. Herramienta estratégica para la mejora de la competitividad en las empresas. Visto desde el ámbito ingenieril, el diseño de ingeniería se vincula con la concepción de sistemas, equipos, componentes o procesos con el objetivo de satisfacer una necesidad y concluye con la documentación que define la forma de dar solución a dicha necesidad [28].

Fases del Diseño Mecánico

Existen en la actualidad una diversidad de fases o procesos de diseño, algunos que en un solo paso conjuntan diversas actividades y otros que desarrollan paso a paso cada uno de estas. Según Robert Norton el proceso de diseño involucra diez etapas [29].

1. Reconocimiento de la necesidad
2. Investigación previa
3. Planteamiento del objetivo
4. Especificaciones de desempeño
5. Generación de ideas e invención
6. Análisis
7. Selección
8. Diseño de detalle
9. Creación de prototipos y pruebas
10. Producción

Se debe tener presente que el proceso de diseño no es meramente lineal y una de sus características fundamentales es su obligada iteratividad. Por ello el proceso de diseño tiene que estar orientado a la realización de cambios, de manera que éstos impliquen el menor tiempo y costo posible.
Para poder llegar a la etapa de producción es muy importante contar con un prototipo analizado y probado, mismo que deberá cumplir con todas las especificaciones requeridas para llevar a cabo su fabricación. Una vez que se tenga dicho prototipo, deberán analizarse los procesos de manufactura necesarios para determinar cuál de ellos es conveniente utilizar en la fabricación del producto.

El presente capítulo tiene el enfoque de desarrollar únicamente las primeras siete etapas del proceso de diseño de Norton [29], dejando para capítulos posteriores las etapas 8 y 9. El objetivo de este trabajo es meramente académico y no implica llevar la producción a gran, mediana o pequeña escala del tribómetro. Por lo anterior, la décima etapa de Norton no se incluirá aquí. Solo es necesario contar con un prototipo para realizar pruebas y hacerle modificaciones que mejoren su desempeño.

3.2. PROCESO DE DISEÑO

3.2.1. RECONOCIMIENTO DE LA NECESIDAD

El desgaste ocasionado por la fricción entre dos superficies en contacto es uno de los principales problemas que se enfrenta en la industria, por lo que surge la necesidad de utilizar y, en su caso, crear materiales con mejores propiedades tribológicas y sistemas lubricantes que permitan reducir en tiempo y costo los daños ocasionados por el desgaste.

Esto deriva en la necesidad de diseñar un equipo que permita recrear las condiciones de operación de un sistema o par tribológico de tal forma que pueda ajustarse a las necesidades y especificaciones del investigador.

3.2.2 INVESTIGACIÓN PREVIA

Esta etapa tiene como fin llevar a cabo una búsqueda exhaustiva de la información relacionada con el tema. La información obtenida de dicha investigación está incluida en los primeros dos capítulos.
3.2.3 PLANTEAMIENTO DE LOS OBJETIVOS

Con un conocimiento más amplio sobre el tema es posible ahora definir el problema que se enfrenta. Se sabe que es posible construir un tribómetro para un caso de estudio específico, pero para hacerlo primero es necesario definir cuáles serán las condiciones de operación a las que estará sujeto.

El objetivo del presente trabajo es realizar el diseño y manufactura de un prototipo de tribómetro del tipo disco sobre bloque que permita simular pruebas de desgaste sobre un par tribológico, y que mediante este sistema, sea posible observar la variación del coeficiente de fricción en con variaciones controladas de la velocidad del contacto, viscosidad del lubricante o carga aplicada.

3.2.4 ESPECIFICACIONES DE DESEMPEÑO

Aquí se definen los parámetros a los que se debe ajustar el diseño del mecanismo sin tener presente la forma final del mismo, es decir, solo es necesario definir que se espera obtener del mecanismo.

La configuración que sigue el equipo es básicamente del tipo de contacto mecánico
disco sobre bloque como se muestra en la figura (3.1). Donde un disco de radio R es puesto a girar mediante un par que deberá permitir que al disco comprimir y desgatar una probeta, mientras que se aplica una carga una carga P probeta.

![Figura 3.1. Configuración del mecanismo](image_url)
• El mecanismo debe contar con un sistema que permita aplicar una carga controlada, precisa y variable en un rango de 0 a 1100 Newtons.
• El mecanismo debe permitir implementar un sistema de lubricación que permita aplicar un flujo constante de lubricante.
• El mecanismo debe contar con un sistema que permita hacer girar el disco bajo una velocidad controlada.
• El mecanismo será una adaptación para convertir un tribómetro coaxial en uno disco sobre bloque. Por esta razón es importante que el mecanismo sea compacto y de bajo peso.
• Debe ser un mecanismo de fácil operación, montaje y que pueda ser operado preferentemente por una sola persona.

3.2.5 Generación de ideas e invención

Esta es la fase de conceptualización que abarca aspectos como la exploración de las diferentes posibilidades existentes para llegar a un resultado es quizás la parte más importante y complicada del diseño, donde la creatividad es la característica fundamental para lograr cada una de las especificaciones requeridas.

En esta etapa se desarrollará un análisis crítico del total de las ideas generadas, y de los productos similares y sustitutivos ya existentes, debiendo responder cada idea a una necesidad, manifiesta o latente del sistema tribológico.

Configuración del sistema de carga

Esta sección abarca las ideas generadas, las propuestas analizadas y las diferentes formas en que es posible llevar a cabo el contacto entre muestra y disco de desgaste.

Es necesario contar con un sistema que permita aplicar una carga P (Figura 3.1) sobre la muestra en un rango de 0 a 1100 N. En la actualidad existen diversas formas de poder aplicar una determinada fuerza.
Debido a la configuración que seguirá el equipo y a la simplicidad de las pruebas, el mecanismo debe permitir aplicar una carga de forma manual. Aún no se especifica si la carga debe ser aplicada de manera vertical u horizontal. Algunas otras características que debe seguir el diseño son:

a) Deberá ser preciso pues cualquier alteración dañaría el ensayo.

b) Deberá poder trabajar bajo una carga controlada y de fácil aplicación.

c) Deberá evitar en todo momento que se generen vibraciones extremas.

d) Debe ser de dimensiones mínimas.

Una de las formas más comunes que existen para aplicar cargas es mediante el uso de tornillos de potencia, mediante los cuales es posible transformar un movimiento de rotación en un movimiento rectilíneo con el objeto de trasmitir fuerza o potencia. Para poder hacer uso de este equipo, es necesario contar con un sistema de retroalimentación que permita al equipo aplicar una carga constante en todo momento.

Debido a las limitaciones de espacio y la importancia de contar con un sistema de retroalimentación para el uso de este esté mecanismo, esta posibilidad se descarta. Por lo tanto, disponer de un equipo que permita aplicar cargas variables de manera controlada y de forma manual, se convierte en una prioridad importante para el diseño y construcción del prototipo.

Otra forma que existe para aplicar cargas es a través de un mecanismo de palancas que multiplica la carga dependiendo de la relación que se tenga en el brazo de palanca. Por ejemplo, se puede lograr que con una masa total de 10 Kg. se pueda aplicar una carga de 1000 Newtons. En la figura 3.2 se muestra un sistema de carga en el cual se aplica una fuerza F a través del mecanismo de palanca. La ventaja de utilizar este mecanismo es que es posible aplicar elevadas cargas con un esfuerzo relativamente pequeño.
Figura 3.2. Sistema de palancas

En la figura 3.3 se tiene una variante del esquema anterior, en donde se observa un sistema doble de palancas. Se propone el uso de este sistema, ya que permite un mayor control y un mejor desplazamiento del portamuestras, haciendo que la carga siempre se mantenga vertical y uniforme. La cantidad de pesas estará definida por la relación que se tenga en el brazo de palanca, y ya que se trata de un sistema doble de palancas el número de pesas a utilizar se reduciría al doble. La fuerza deberá ser transmitida a través de las palancas permitiendo así presionar a la muestra contra el disco. Este sistema es práctico y es muy común encontrarlo en algunas básculas comerciales que para elevadas cargas hacen uso de pesas muy pequeñas.

Figura 3.3. Sistema compuesto de palancas.
Configuración del porta muestras y perno de desgaste

El equipo deberá ser capaz de recopilar una serie de datos a partir de diferentes muestras bajo diferentes condiciones para obtener resultados confiables y así poder caracterizar de mejor manera las propiedades de los materiales. Es importante que en el equipo, los componentes del par tribológico (muestra y disco de desgaste) puedan ser sustituidos con facilidad, haciendo posible el estudio de diferentes materiales.

Estos componentes del tribómetro deberán permitir en todo momento un buen control sobre la muestra, permitiendo así un fácil intercambio de muestras, ya que los ensayos requieren de un gran número de muestras y tomando en cuenta que el actual diseño deberá ser montado y ajustado a un tribómetro coaxial. Es importante considerar también el hecho de que los componentes que conforman al tribómetro cuenten con las dimensiones necesarias para poder montar y desmontar el equipo con facilidad del tribómetro coaxial.

Portamuestras: para un sistema de elevación y transformación de carga, constituido por un mecanismo de doble palanca, será necesario que el portamuestras cuente con un par de ranuras que permitan articularlo a los brazos de palanca. Además se requiere restringir su movimiento para que sea únicamente en dirección vertical. Una forma de lograrlo es con el uso de barras guía que pasan a través del portamuestras. El espacio para alojar las muestras debe ser de fácil acceso, siguiendo la geometría de las probetas y que las pueda mantener sujetas. La siguiente figura muestra una posible propuesta de portamuestras, ya que durante el proceso de diseño podemos estar sujetos posibles cambios en su geometría.

![Figura 3.4. Portamuestras](image-url)
Disco de desgaste: Otra pieza clave en el desarrollo de las pruebas de desgaste sobre las probetas es el perno encargado de realizar este desgaste. Como el tribómetro coaxial sobre el que irá montado el mecanismo ya cuenta con un sistema de sujeción para pernos de desgaste, será necesario contar con un disco que se adapte a la forma actual del portapernos que se encuentra en el tribómetro coaxial. En la imagen se puede apreciar una posible propuesta de disco de desgaste.

Figura 3.5. Configuración del perno de desgaste

Sistema de adquisición de datos

Para obtener y visualizar los datos producidos durante el ensayo será necesario contar con un sistema de adquisición de datos. Por lo general, cuando se habla de un sistema de adquisición de datos, se pueden identificar elementos principales como: hardware, software, PC y sensores.

Este sistema consiste en tomar lectura de una variable física, convertirla en una diferencia de potencial para digitalizarla de forma que pueda ser procesada por una computadora. Esto se logra mediante una etapa de acondicionamiento que adecua la señal a niveles compatibles con la tarjeta de adquisición de datos que convierte la diferencia de potencial en una señal digital. Una vez que las señales eléctricas se transforman en señales digitales dentro de la memoria de la computadora y son procesadas mediante un programa adecuado, estas pueden ser graficadas en pantalla, archivadas e impresas.
Existen equipos comerciales que permiten llevar a cabo la recopilación de la información requerida adaptándose a las necesidades de cada usuario; aunque también es posible diseñar cada uno de los elementos que componen al sistema de adquisición de datos.

En el presente trabajo haremos uso del sistema de Lab View™. Este software no solo controla la adquisición de datos, sino que además permite analizarlos con la finalidad de poder ser presentados posteriormente en un reporte. La misma compañía que desarrolló Lab View™, cuenta también con tarjetas de adquisición de datos, relativamente simples, y módulos que llevan a cabo mediciones de temperatura, deformación, etc.

Sistema de lubricación

Uno de los objetivos planteados al inicio del presente trabajo consiste en llevar a cabo un análisis sobre las curvas de Stribek obtenidas a través de la transición de un régimen de lubricación elastohidrodinámica a un régimen de lubricación de frontera, por lo tanto es necesario que el equipo cuente con un sistema de lubricación.

Actualmente existe en el mercado una gran variedad de sistemas de lubricación, los cuales pueden ser ajustados en base a la necesidad requerida; sin embargo, debido a las restricciones de espacio y demás necesidades del diseño, se ha optado por implementar el equipo un sistema de lubricación simple que consiste de una bureta montada sobre un soporte universal, la cual deberá aplicar un flujo constante de lubricante sobre la zona de contacto entre disco y muestra.

3.2.6 Análisis

En esta parte del diseño se analizan cada una de las propuestas mencionadas anteriormente, sus ventajas y desventajas, analizando detenidamente el desempeño de cada propuesta. Este análisis debe proporcionar la información suficiente, para que en
la etapa siguiente se cuente con los criterios necesarios para seleccionar las ideas que permitan desarrollar a detalle la construcción del tribómetro.

Hasta ahora sólo se han presentado bocetos de las diferentes propuestas sin tener presente los esfuerzos que a los que serán sometidos cada componente, por lo tanto para poder realizar un análisis más detallado de cada propuesta es importante tomar en cuenta las siguientes consideraciones:

- El tribómetro coaxial donde estará montado el sistema cuenta con un espacio disponible de: 50 mm a lo ancho por 200 mm o más a lo largo, expandiéndose libremente sobre el eje vertical.
- La carga máxima que se aplicara sobre la muestra debe estar en un rango cercano a los 1000 N (±10%).

Figura 3.6. Configuración del tribómetro coaxial

Análisis sobre la configuración del equipo

Esta especificación muestra cual es el principio básico de funcionamiento todo el sistema. No fue necesario analizar algunas otras propuestas, ya que en un inicio se planteó que el equipo debía cumplir con estas características.
Análisis sobre el sistema de carga

Para aplicar la carga sobre la muestra se optó por utilizar un sistema de palancas. En la tabla siguiente se hace una comparación entre las ventajas y desventajas que ofrece el uso de este sistema.

<table>
<thead>
<tr>
<th>Propuesta</th>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mecanismo de Palancas</td>
<td>• Se puede conocer la magnitud de la carga aplicada</td>
<td>• Se requiere manipular pesados bloques</td>
</tr>
<tr>
<td></td>
<td>• Mantiene una carga casi constante</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3.1. Cuadro comparativo

Análisis sobre la configuración del porta-muestras

El diseño del porta-muestras quedó definido en función del mecanismo seleccionado para transmitir la carga, aquí un cuadro comparativo las ventajas y desventajas de utilizar este diseño.

<table>
<thead>
<tr>
<th>Propuestas</th>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
<tbody>
<tr>
<td>c)</td>
<td>• Desplazamiento en una sola dirección</td>
<td>• Manufactura compleja</td>
</tr>
<tr>
<td></td>
<td>• Fácil de articular</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3.2. Cuadro comparativo
Análisis para las especificaciones restantes

Para las especificaciones restantes no se requiere de un análisis detallado, pues ya se especificaron cuáles serán los componentes necesarios que se implementaran en el sistema. No habrá ninguna limitante que obligue a considerar la construcción de otro sistema.

3.2.7 Selección

En esta etapa se seleccionan las propuestas bajo las cuales será posible la construcción del prototipo. Se resalta la importancia de haber llevado a cabo correctamente todas las etapas anteriores, siempre considerando y analizando las mejores propuestas. Es necesario que todas las decisiones tomadas estén plenamente fundamentadas en las etapas anteriores, ya que éstas afectarán directamente el desempeño y construcción del prototipo.

Es muy importante tomar cuenta que aunque se tomen las decisiones correctas, esto no implica un óptimo desempeño del sistema, ya que como se mencionó anteriormente, el proceso de diseño no es meramente lineal y una de sus características más fundamentales es la iteratividad, por lo tanto es posible que una vez construido el prototipo sea necesario modificar alguna de sus partes e incluso volver a diseñar el prototipo por completo.

Selección del sistema de carga

La primera consideración, fue utilizar un sistema de carga por palancas, pues este sistema permite aplicar y variar una carga utilizando un esfuerzo mínimo.

Selección del portamuestras

El portamuestras seleccionado está diseñado con base en el uso del sistema de aplicación de carga.
Este modelo será capaz de soportar la carga aplicada por el disco las palancas.
4. DISEÑO DE DETALLE

El diseño de detalle como penúltima etapa del proceso de diseño involucra una serie de cálculos con la finalidad de dimensionar correctamente cada pieza y así poder definir su geometría, y con base en esto decidir si el proceso de manufactura puede llevarse o no a cabo con los recursos disponibles.

Es muy importante que dentro de las especificaciones realizadas se considere no sólo la geometría de la pieza, sino también el tipo de material, el acabado superficial y las tolerancias, pues mientras más detallada sea está etapa, mejores resultados se obtendrán de la construcción del dispositivo.

El primer paso que se sigue para conocer las dimensiones del dispositivo es conocer las fuerzas a las que estará sujeto. Uno de los parámetros que caracteriza este sistema es la potencia del motor.

La potencia entregada por el motor es disipada por la fricción generada entre el perno y la probeta y las pérdidas por fricción en la transmisión de potencia. Es importante tomar en cuenta que lo que se espera obtener de cualquier máquina, es minimizar las pérdidas por fricción.

4.1. CÁLCULO DE LA POTENCIA DEL MOTOR

Los siguientes cálculos sirven para determinar cuál es la potencia requerida debido a la fricción generada en los pernos.

La potencia mecánica viene dada por la siguiente expresión:

\[\dot{W} = T \cdot \omega \]

Ec. 4.1

Dónde: \(\dot{W}\) = Potencia Mecánica, \(T\) = Par Nm y \(\omega\) = velocidad angular rad/s.
En la figura 4.1 se observa que una fuerza N aplicada sobre el perno genera un esfuerzo de contacto sobre la probeta. En 1881 este tipo de contactos fueron calculados por H. Hertz.

\[\text{Figura 4.1 variables} \]

En la figura 4.2 se muestra el contacto generado por una esfera de radio R y una superficie plana, donde el área de contacto \(b \) está definida de la siguiente manera:

\[b = \left(\frac{4RF}{\pi E^*} \right)^{\frac{1}{2}} \]

Ec. 4.2

\[\text{Figura 4.2. Contacto Cilindro-Plano} \]
Dónde: b Es el del área de contacto [mm], F Es la carga aplicada [N] y E^* Es una constante en función de las propiedades de los materiales [m²/N], la cual se expresa:

$$\frac{1}{E^*} = \left[\left(\frac{1-v_1^2}{E_1}\right) + \left(\frac{1-v_2^2}{E_2}\right)\right]$$

Ec. 4.3

Dónde: ν_1: es la relación de Poisson de la esfera, E_1: es el Módulo elástico para la esfera, ν_2: es la relación de Poisson para la superficie plana y E_2: es el Módulo elástico para la superficie plana.

El radio efectivo se define:

$$\frac{1}{R} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

Ec. 4.4

El contacto generado se da entre un cilíndro y una placa plana, se tiene la siguiente relación:

$$R = R_1 \quad R_2 = \infty$$

Ec. 4.5

El esfuerzo de contacto generado entre ambos cuerpos:

$$\sigma(r) = \sigma_0 \left(1 - \frac{r^2}{b^2}\right)^{\frac{1}{2}}$$

Ec. 4.6
Dónde: $\sigma(r)$: es la distribución de esfuerzos en función de la distancia r, σ_0: es el esfuerzo máximo Pa.

$$\sigma_0 = \left(\frac{FE^*}{\pi R}\right)^{\frac{1}{2}}$$

Ec. 4.7

Esta ecuación es válida no solo para el contacto entre una esfera y una placa plana, sino también para el contacto entre dos esferas y una esfera sobre una ranura esférica.

Rescribiendo la ecuación 4.7:

$$\sigma(r) = \left(\frac{FE^*}{\pi R}\right)^{\frac{1}{2}} \left(1 - \frac{r^2}{b^2}\right)^{\frac{1}{2}}$$

Ec. 4.8

Con base en la figura 4.3 se calcula el par siguiendo la siguiente ecuación:

$$T = \int df \cdot r$$

Ec. 4.9

Con df igual a:

$$df = \mu dF$$

Ec. 4.10

Dónde: μ: Es el coeficiente de fricción de fricción.
Figura 4.3 Análisis de fuerzas

El esfuerzo en un punto cualquiera es:

\[\sigma(r) = \frac{dF}{dA} \]

Ec. 4.11

Por lo tanto así se tiene:

\[dF = \sigma(r)dA \]

Ec. 4.12

Dónde:

\[dA = rd\theta dr \]

Ec. 4.13
Sustituyendo la ecuación 4.13 en la 4.12

\[dF = \sigma(r)rd\theta dr \]

Ec. 4.14

Y sustituyendo la ecuación 4.14 en la 4.10 tenemos:

\[df = \mu \sigma(r)rd\theta dr \]

Ec. 4.15

Replanteando la ecuación 4.9 a partir de la ecuación 4.15:

\[T = \int_0^b \int_0^{2\pi} \mu \sigma(r)r^2 d\theta dr \]

Ec. 4.16

No se tienen variables dependientes de \(\theta \), podemos reescribir la ecuación anterior como sigue:

\[T = \int_0^b 2\pi \mu \sigma(r)r^2 dr \]

Ec. 4.17

Sustituyendo la ecuación 4.8 en la ecuación 4.17 tenemos:

\[T = 2\pi \mu \left(\frac{FE^*}{\pi R} \right) \frac{1}{2} r^2 \int_0^b \left(1 - \frac{r^2}{b^2} \right)^{\frac{1}{2}} \left(\frac{r^2}{b^2} \right) dr \]

Ec. 4.18

Aplicando un cambio de variable, se define:
\[
\frac{r}{b} = \rho \quad y \quad dr = b\,d\rho
\]

Si \(r \to 0 \) y \(\rho \to 0 \); y si \(r \to b \) y \(\rho \to 1 \) se tiene lo siguiente:

\[
T = 2\pi\mu \left(\frac{FE^*}{\pi R}\right)^\frac{1}{2} b^3 \int_0^1 \rho^2 (1 - \rho^2)^\frac{1}{2} d\rho =
\]

\[
T = 2\pi\mu \left(\frac{FE^*}{\pi R}\right)^\frac{1}{2} b^3 \left[\frac{\rho}{8} (2\rho^2 - 1^2)(1^2 - \rho^2)^\frac{1}{2} + \frac{14}{8} \sin^{-1}\left(\frac{\rho}{1}\right) \right]_0^1 =
\]

\[
= 2\pi\mu \left(\frac{FE^*}{\pi R}\right)^\frac{1}{2} b^3 \left(\frac{\pi}{16}\right) =
\]

\[
= 2\pi\mu \left(\frac{FE^*}{\pi R}\right)^\frac{1}{2} \left[\left(\frac{4RF}{\pi E^*}\right)^\frac{1}{2} \right]^3 \left(\frac{\pi}{16}\right) =
\]

\[
T = \frac{\mu F^2 R}{E^*}
\]

Ec. 4.19

Sustituyendo ecuación 4.3 en la ecuación anterior:

\[
T = \mu F^2 R \left[\left(\frac{1-v_1^2}{E_1}\right) + \left(\frac{1-v_2^2}{E_2}\right) \right]
\]

Ec. 4.20
Esta ecuación se encuentra en función de la carga F, las propiedades de los materiales a ensayar, el radio del perno y el coeficiente de fricción.

Para realizar los cálculos se consideró que las muestras fueran de aluminio y hierro puro, y así poder calcular el par necesario.

Propiedades del aluminio puro: $\nu_1 = 0.33$, $E_1 = 68$ GPa

Propiedades del hierro puro: $\nu_2 = 0.291$, $E_1 = 200$ GPa

Con: $F = 4000$ N, $R_1 = 25$ mm y $\mu = 0.47$

De la ecuación (4.3):

$$\frac{1}{E^*} = \left(\frac{1 - 0.33^2}{680000000000}\right)_{Al} + \left(\frac{1 - 0.291^2}{200000000000}\right)_{Fe}$$

$$\frac{1}{E^*} = 1.7681 \times 10^{-11}$$

$$E^* = 5.656 \times 10^{-10} \frac{m^2}{N}$$

De la ecuación 4.20:

$$T = (0.47)(4000)^2(0.025)(5.656 \times 10^{-10})$$

$$T = 1.063328 \times 10^{-4} Nm$$

Para poder calcular la potencia del motor su máximo régimen de giro será 100 (RPM), por lo que la velocidad angular para este caso será:
\[\omega = \frac{2\pi \cdot 100}{60} = 10.472 \frac{rad}{s} \]

Finalmente la potencia del motor requerida se calcula de la siguiente forma

\[\dot{W} = T \cdot \omega \]

\[\dot{W} = 1.063328 \times 10^{-4} Nm \cdot 10.472 \frac{rad}{s} \]

\[\dot{W} = 1.113517 \times 10^{-3} \dot{W} = 1.52 \times 10^{-6} \text{ HP} \]

4.2 Diseño del Sistema de Carga

El mecanismo seleccionado se basa en un sistema de palancas como el que se muestra en la figura 4.4. Mediante la aplicación de una carga en el portapesas este es desplazado de manera vertical haciendo que las barras transmitan esa carga hacia el portamuestras pero en sentido opuesto.

![Figura 4.4. Sistema de carga](image)

4.2.1. Cálculo de Pernos para el Sistema de Carga

Los pernos en el sistema estarán sometidos a solicitudes que permitirán transmitir la carga dentro del sistema. Es importante tomar en cuenta las consideraciones necesarias sobre estos para poder asegurar un buen funcionamiento del sistema.
En cada perno actúa una carga P como la mostrada en la figura 4.5, donde se observa el diagrama de cuerpo libre del perno sometido a cortante doble.

![Diagrama de cuerpo libre del perno](image)

Figura 4.5. Diagrama de cuerpo libre del perno

\[\tau = \frac{F_1}{A} \]

Ec. 4.21

Dónde: τ: Es el esfuerzo cortante en MPa y P: la carga aplicada tangencialmente sobre el área A en N.

El área donde sobre la que actúa el cortante es la sección transversal del perno, entonces, si se considera al perno con área transversal circular, se pude expresar el área como:

\[A = \frac{1}{4} \pi d^2 \]

Ec. 4. 22

Dónde: d: es del diámetro del perno

Para el cálculo del área, se considera la carga mayor soportada por el perno, esto es en el punto C. (*Ver la figura 4.2*).
Sustituyendo la ecuación 4.22 en la ecuación 4.21 se obtiene:

\[T = \frac{F_1}{\frac{1}{4} \pi d^2} \]

Ec. 4.23

Despejando \(d \) de la ecuación 4.23, se llega a la siguiente expresión:

\[D = \sqrt{\frac{F_1}{\frac{1}{4} \pi T}} \]

Ec. 4.24

Resolviendo para una carga máxima de 1557 N y un cortante permisible de 205 MPa, tenemos:

\[D = \sqrt{\frac{1557}{\frac{2}{\frac{1}{4} \pi \times 205}}} = 0.002199 \]

\[D = 0.002199 m = 2.199 mm \]

Se decide utilizar la siguiente medida comercial (1/8 de pulgada o 3.175 mm) para que, desde esta etapa del diseño se facilite la manufactura del dispositivo.

4.2.2. ANÁLISIS DEL SISTEMA DE PALANCAS

Detalle de las reacciones en pernos

La figura 4.6 muestra los puntos donde se aplica o distribuye una fuerza. Debido a que el sistema de carga es un sistema simétrico de doble palanca, solo es necesario llevar a
cabo el análisis de una sola parte del mecanismo, ya al final basta multiplicar por dos el resultado de los cálculos para saber cuál es la magnitud total de la fuerza.

Figura 4.6. Análisis de cargas en el Sistema de carga

En el punto F se tiene una carga de magnitud conocida y que actúa sobre el eje vertical, esta carga debe permitir saber que peso será necesario aplicar sobre el portamuestras para que el sistema actúe.

Para llevar a cabo el análisis de fuerzas es necesario utilizar como referencia la carga máxima que se desea alcanzar, en este caso 1000 [N].

Las siguientes ecuaciones definen las reacciones presentes.

$$E = \frac{1}{2} Pg$$

Ec. 4.25

$$D = F_2 \cdot E$$

Ec. 4.26
\[A = F_1 \cdot E \cdot (1 + F_2) \]

Ec. 4.27

\[C = A + B \]

Ec. 4.28

Dónde: \(P \): es la masa de las pesas, \(G \): es la aceleración gravitacional, \(F_2 \): factor de multiplicación de carga de la Barra 2.

\(F_1 \): factor de multiplicación de carga para la Barra 1

La reacción presente en el punto E viene dada como el medio producto de la masa total aplicada al portapesas por la aceleración gravitacional.

\[E = \frac{1}{2} \cdot (9.37 \cdot 9.78) = 45.8 \text{ Kg} \cdot \frac{m}{s^2} \]

Los factores de multiplicación \(F_1 \) y \(F_2 \) quedan definidos como sigue:

\[F_1 = \frac{0.105}{0.015} = 7 \text{ m} \]

\[F_2 = \frac{0.065}{0.020} = 3 \text{ m} \]

De esta manera la reacción en D viene dada como el producto del factor de multiplicación \(F_2 \) por el producto de la reacción en el puno E.

\[D = 7 \cdot 45.8 = 320.7 \text{ Kg} \cdot \frac{m}{s^2} \]

Y la reacción en el punto A viene dada por el producto de \(E, F_1 \) y \(F_2 \).
La reacción en el punto B queda definida por la suma de las reacciones presentes en los puntos D y E.

\[B = 320.7 + 45.8 = 366.5 \, Kg \times \frac{m}{s^2} \]

Para la reacción presente en el punto C, está viene dada por la suma de la reacción presente en el punto A más la reacción presente en el punto B.

\[C = 1099.5 + 366.5 = 1466 \, Kg \times \frac{m}{s^2} \]

Finalmente la carga teórica viene definida como el producto del factor de multiplicación total F por la masa total de las pesas y la constante de aceleración gravitacional:

\[Carga \, Teórica = \frac{1}{2} \times (22.75 \times 9.37 \times 9.78) = 1042.4 \, Kg \times \frac{m}{s^2} \]

Detalle de espesor mínimo en las barras

El grosor de las barras es calculado de acuerdo a los esfuerzos flexionantes a que está sujeto. Se conocen los valores de las reacciones en cada perno. Por consiguiente, se conocen las cargas a que están sujetas las barras.

Se procede a calcular los cortantes y los momentos flectores en las zonas de interés de las barras.

Para la Barra 1:

Tenemos las cargas \(RA = 1190.92 \, N \), \(RB = 1557.35 \, N \) y \(RC = 366.43 \, N \)

\[A = 3 \times 45.8 \times (1 + 7) = 1099.5 \, Kg \times \frac{m}{s^2} \]
La distancia entre los puntos AB y AC es de 85 mm y 20 mm respectivamente.

Suponemos un punto justo al lado del perno A y realizamos un análisis de cuerpo libre. Suponemos que tanto el cortante V como el momento flector M son positivos (de acuerdo a la convención estándar).

\[\Sigma F_y = 0 \]

Ec. 4.29

\[-1190.92 \, N - V_1 = 0 \]

\[V_1 = -1190.92 \, N \]

\[\Sigma M_1 = 0 \]

Ec. 4.30

\[1190.92 \, N \, (0 \, m) + M_1 = 0 \]

\[M_1 = 0 \, Nm \]

Se realiza de nuevo el análisis para un punto justo antes de tocar el punto C.

\[\Sigma F_y = 0 \]

Ec. 4.31

\[-1190.92 \, N - V_2 = 0 \]

\[\Sigma M_2 = 0 \]
Se realiza de nuevo el análisis para un punto justo después de tocar el punto C.

$$\Sigma F_y = 0$$

Ec. 4.33

$$-1190.92 \text{ N} + 1557.35 \text{ N} - V_3 = 0$$

$$V_3 = 366.43 \text{ N}$$

$$\Sigma M_3 = 0$$

Ec. 4.34

$$1190.92 \text{ N} (0.02 \text{ m}) - 1557.35 \text{ N} (0 \text{ m}) + M_3 = 0$$

$$M_3 = -23.8184 \text{ Nm}$$

Se analiza por último el punto justo antes de tocar el punto B.

$$\Sigma F_y = 0$$

Ec. 4.35

$$-1190.92 \text{ N} + 1557.35 \text{ N} - V_4 = 0$$

\[V_4 = 366.43 \text{ N} \]
\[\Sigma M_4 = 0 \]

\[1190.92 \text{ N (0.085 m)} - 1557.35 \text{ N (0.065 m)} + M_4 = 0 \]
\[M_4 = 0 \text{ Nm} \]

Con base en el análisis anterior podemos decir que

\[|M_{\text{máx}}| = 23.8184 \text{ Nm} \]

Para calcular el espesor mínimo utilizamos la siguiente fórmula:

\[S_{\text{min}} = \frac{|M_{\text{máx}}|}{\sigma_{\text{perm}}} \]

Donde \(S_{\text{min}} \) es el módulo de sección mínima; \(|M_{\text{máx}}|\) el momento flector máximo y \(\sigma_{\text{perm}} \) el esfuerzo permisible.

Para el latón utilizamos

\[\sigma_{\text{perm}} = 205 \text{ MPa} \]
\[S_{\text{min}} = 1.687 \times 10^{-7} \text{ m}^3 \]

Para la barra con \(b = 0.009525 \text{ mm} \), la sección transversal rectangular se calcula
Se considera \(b = 9.525 \text{ mm} \) y al despejar \(h \) se obtiene:

\[
h^2 = 6 S_{\text{mín}} / b
\]

\[
h = 0.01009779 \text{ m} = 10.09779 \text{ mm}
\]

Truncamos el valor de \(h \) en 10 mm.

Ahora procedemos a realizar la comprobación de este espesor mínimo para las barras si se someten a cargas tensionales.

Barra-1

El cálculo de la sección transversal se hace mediante la ecuación que relaciona las propiedades del material con la carga a la que están sujetas las barras, y el área transversal de dichas barras, la cual se expresa como:

\[
\sigma = \frac{P}{A}
\]

\[
\text{Ec. 4.41}
\]
Dónde: σ: es el esfuerzo de cedencia del material en MPa, P: es la carga máxima a la que están sujetas las barras en N, A: es el área transversal de las barras en mm.

El área de las barras se expresa como:

$$A = th$$

Ec. 4.42

Dónde: t: es el espesor en mm, h: es el ancho de la sección transversal en mm,

![Figura 4.7. Barra 1](attachment:figura47.png)

Es necesario definir un parámetro para hacer el cálculo de la sección transversal. Se define a h para poder encontrar t.

Sustituyendo la ecuación 4.42 en la ecuación 4.41:

$$\sigma = \frac{P}{th}$$

Ec. 4.43

Despejando t de la ecuación 4.43.
Para poder calcular el ancho x de las paredes por donde atraviesa el perno así como el diámetro del barreno, se analiza el caso para cuando se tiene un cortante doble.

1. **Para cuando se tiene una sola sección en la barra, con $t = 5 \text{ mm}$.**
Recordando la ecuación 4.41.

\[A = tx \]

Ec.4.45

Dónde: \(t \): es el espesor de la barra en mm, \(x \): es una de las porciones de extremo de las barras en mm

Sustituyendo la ecuación (4.45) en la ecuación (4.41)

\[\sigma = \frac{1}{t} \frac{P}{x} \]

Ec.4.46

Despejando \(x \) de la ecuación 4.46 se tiene lo siguiente.

\[x = \frac{\frac{1}{2}P}{t\sigma} \]

Ec. 4.47

\[x = \frac{\frac{1}{2} \times (1557)}{0.005 \times 125000000} = 0.001245 \]

\[x = 0.001245 \text{ [m]} = 1.245 \text{ mm} \]

Para poder calcular la dimensión \(b \) de la barra, se utiliza la expresión:

\[b = 2x + d \]

Ec. 4.48
Dónde: \(b \): es la dimensión en esa sección de la barra en \(mm \), \(d \): es el diámetro del perno en \(mm \).

\[
b = 2(1.245) + (3.175) = 5.665
\]

\[
b = 5.665 \text{ mm}
\]

2. \textit{Para cuando se tiene una oreja en la barra, con } \(t = 2 \text{ mm} \).

De la ecuación 4.47.

\[
x = \frac{\frac{1}{2} \times (1557)}{0.002 \times 125000000} = 0.003114
\]

\[
x = 0.003114[m] = 3.114 \text{ mm}
\]

Y de la ecuación 4.48.

\[
b = 2(3.114) + (3.175) = 9.404
\]

\[
b = 9.404 \text{ mm}
\]

\textit{Barra-2}

Para conocer el espesor mínimo en la barra-2 definimos la misma \(h \) que se definió para el cálculo en la barra-1, por lo tanto el espesor en la barra dos es:

\[
t_1 = t_2 = 1.308 \text{ mm}
\]

Dónde: \(t_1 \): es el espesor en la barra-1, \(t_2 \): es el espesor en la barra-2
Por la geometría de la barra-2, como se observa en la figura 4.9, es necesario calcular el espesor mínimo que debe haber en la sección donde la barra presenta una ranura.

![Figura 4.9 Barra 2](image)

De la ecuación 4.48:

\[h = 2y + d \]

Despejando \(y \) de la ecuación anterior.

\[y = \frac{h - d}{2} \]

Ec. 4.49

\[y = \frac{9.525 - 3.175}{2} = 3.175 \]

\[y = 3.175 \text{ mm} \]

Para definir el espesor mínimo que requerimos en \(z \), utilizamos la ecuación 4.47.
\[z = \frac{1}{2} \frac{P}{y \sigma} \]

\[z = \frac{\frac{1}{4} \times (1557)}{3.175 \times 125000000} = 0.981 \]

\[z = 0.981 \text{ mm} \]
5. Resultados

En este capítulo se presentarán datos para la determinación del factor de multiplicación de la carga del dispositivo y muestras representativas del tipo de datos que se pueden obtener utilizando el prototipo de tribómetro.

5.1 Factor de multiplicación de carga

En los ensayos que se realizarán es importante conocer este factor para controlar la carga aplicada sobre la muestra, obteniendo así resultados más confiables. La determinación de este factor requirió tomar en cuenta varios parámetros, geométricos y experimentales.

5.1.1 Determinación teórica del factor de multiplicación de carga

Desde el punto de vista geométrico.

En la posición de trabajo del mecanismo se calcularon las relaciones de palanca para cada barra del mecanismo. Al tomar en cuenta esta relación de palancas se obtuvo un factor de multiplicación de la carga entre el Portapesas y el Portamuestras del orden de 22.75.

A continuación se muestra el método utilizado para obtener el factor desde un punto de vista geométrico siguiendo el esquema de la figura 4.6:

i. Se considera primero la barra DBE. El punto B es móvil cuando el mecanismo se encuentra en la posición de descanso, pero en la posición de trabajo está fijo a una distancia de 15 mm del punto D y a una distancia de 105 mm del punto E, lo cual nos da una relación de palanca de 7.
Ec. 5.1

\[R_{DBE} = \frac{105}{15} \]

\[R_{DBE} = 7 \]

ii. Para la palanca BCA se aplica el mismo concepto. La distancia del segmento BC es de 65 mm y en CA es de 20 mm.

\[R_{BCA} = \frac{20}{65} \]

\[R_{BCA} = 3.25 \]

Ya que la transmisión de la carga es desde el punto E al punto A y pasa por ambas palancas, se toma en cuenta que la transmisión de la carga del punto E al B se realiza con una multiplicación de carga (relación de palanca) de 7; asimismo la transmisión entre el punto B y el A se realiza con una relación de 3.25. Ambos valores se multiplican para obtener el factor de multiplicación de carga por el sistema de palancas entre el punto E y el punto A. Con esto obtenemos un factor de 22.75.

Obtención del factor partiendo de las reacciones en los pernos.

En este enfoque se desprecian las pérdidas por fricción y las pérdidas por deformación elástica del material. Se toman en cuenta únicamente las componentes verticales de las cargas soportadas por los pernos. Por último se hace la suposición de que la carga soportada por el perno que se encuentra en el punto A es igual a la mitad de la carga transmitida por el sistema de palancas entre el Portapesas y el Portamuestras.

Los cálculos realizados se presentan a continuación:

La carga aplicada al mecanismo es igual al peso de la pesa utilizada más el peso del Portapesas.
Donde C es la carga aplicada; g la constante de gravedad local (9.78 m/s2); m_{pesa} es la masa de la pesa utilizada y $m_{portapesas}$ es la masa del portapesas.

Se toma primero la reacción en el perno del punto E. En adelante las reacciones se calcularán del perno en E hacia abajo (según la figura 5.1), ya que este es el orden en que se transmite la carga.

\[P_E = C \]

Ec. 5.3

P_E es la reacción en el perno ubicado en el punto E.

Las siguientes reacciones calculadas fueron en los puntos B y D. Se toma en cuenta que la viga tiene reacciones en los puntos D, B y E y que la sumatoria de las reacciones en la barra DBE es igual a cero.

\[\sum P_{EBD} = 0 \]

Ec. 5.4

La suma de momentos desde el punto B debe ser igual a cero.

\[\sum M_B = 0 \]

Ec. 5.5
M_B son los momentos calculados sobre el punto B. recordemos que el momento se define:

$$M = r \times F$$

Ec. 5.6

M es el momento, F es la fuerza aplicada en sentido horario (signo negativo) o antihorario (signo positivo) y r la distancia entre los puntos donde se aplica la fuerza y el punto de referencia.

Utilizando la sumatoria de momentos en la barra, las reacciones en los pernos D y B quedan:

$$P_BD_{BD} - P_ED_{DE} = 0$$

Ec. 5.7

Donde P_B es la reacción en el punto B; D_{BD} es la distancia entre el punto D y el punto B; D_{DE} es la distancia entre el punto D y el E.

$$P_BD_{BD} = P_ED_{DE}$$

Ec. 5.8

Despejando P_B:

$$P_B = \frac{(P_ED_{DE})}{D_{BD}}$$

Ec. 5.9

Para la reacción en D usamos la sumatoria de reacciones en la barra.

$$P_B - P_D - P_E = 0$$
Despejando P_D:

$$P_D = P_B - P_E$$

Se realiza un procedimiento similar para calcular las reacciones en C y A.

$$P_B D_{BC} - P_A D_{AC} = 0$$

$$P_A = \frac{(P_B D_{BC})}{D_{AC}}$$

$$P_A - P_C + P_B = 0$$

$$P_C = P_A + P_B$$

$$P_A = \frac{D_{BC} D_{DE}}{D_{AC} D_{BD}}$$

Con la serie de formulaciones anterior y utilizando las medidas de nuestro mecanismo obtenemos que:
Considerando las cargas soportadas por los pernos, la reacción en el perno A es 26 veces mayor que la del perno E, donde la reacción se considera igual a la carga aplicada. Esto quiere decir que la magnitud de la carga se ha multiplicado con un orden de 26 desde que se aplica en el portapesas hasta que se transmite al portamuestras.

El hecho de que exista una diferencia entre ambos resultados teóricos se debe a las consideraciones hechas en cada caso. En el caso del primer cálculo se toma en cuenta únicamente la relación de palancas, despreciando cualquier otra consideración. En el segundo caso, se toman en cuenta las reacciones generadas por momento angular en las barras para la reacción en los pernos.

5.1.2 CÁLCULO DEL FACTOR CON MÉTODOS EXPERIMENTALES.

Los cálculos teóricos indican una multiplicación de la carga aplicada entre el portamuestras y el portapesas del mecanismo superior a 20. Sin embargo, dichos cálculos no son concluyentes, dado que no se llega a un valor unificado. Tomando en cuenta que los posibles errores durante la manufactura y el ensamblado, así como los efectos mecánicos que no se tomaron en cuenta durante el proceso de diseño, se decidió a realizar el cálculo experimental del factor de multiplicación de carga.

Aunque se realizaron varias pruebas, éstas no arrojaron resultados confiables, incluyendo aquellas en que se usó una galga extensométrica. Se determinaron diferentes valores de carga distantes de los esperados y que no han sido corroborados posteriormente. A continuación se presenta un experimento que se utilizó con mayor éxito. En este procedimiento se busca llegar a un valor más preciso a partir de aplicar diferentes masas en el portamuestras para determinar la masa total que vence el efecto

\[P_A = \frac{C(120\text{mm})(65\text{mm})}{(15\text{mm})(20\text{mm})} \]

\[P_A = 26C \]

Ec. 5.17
de la masa que haya sido colocada en el portapesas del mecanismo. El equipo utilizado para realizar el experimento consistió de un mecanismo de aplicación de carga, balanza digital, led, pila cuadrada, alambre conductor, múltiples objetos de diferentes masas, alambre de carga, cubeta, vaso de precipitados de un litro, cinta adhesiva, 2 mesas.

Para llevar a cabo el experimento se colocaron los extremos del mecanismo en los extremos de las mesas como se ejemplifica en el boceto siguiente:

![Figura 5.2. Esquema de la configuración de los componentes para el experimento.](image)

A continuación se construyó un circuito abierto conectando el led, la batería y el alambre conductor como lo indica el siguiente diagrama.

![Figura 5.3. Diagrama de circuito abierto para el experimento.](image)

Se pegó con cinta adhesiva un extremo de un fragmento del alambre conductor al portapesas y otro fragmento al portamuestras del mecanismo. Los alambres deben estar próximos a tocarese, por lo que se colocaron con una separación menor a un milímetro. Se apoya el centro del alambre de carga en el centro del portamuestras y amarrar los extremos al asa de la cubeta. Se colocó el mecanismo en posición de aplicación de carga. Dentro de la cubeta se colocaron los diferentes objetos.
comenzando con aquellos de mayor masa y hasta el final los de menor masa hasta que el led se encienda. Para obtener mayor precisión se retiró el último objeto colocado y se vertió agua hasta encender nuevamente el led. A continuación, se midió la masa del conjunto de objetos que estaban siendo levantados con el portamuestras.

Una vez calibrado el sistema para el experimento, se colocó un objeto con masa pequeña conocida en el portapesas y se agregó nuevamente agua a la cubeta hasta que se encendió el led. Al final se midió la masa en la cubeta.

La iteración es clave para obtener resultados estadísticos confiables, por lo que se repite el experimento 10 veces.

Lo que se obtuvo de este experimento fueron valores del factor de multiplicación del orden de 32.

Debido a las discrepancias entre los factores de multiplicación de la carga obtenidos analíticamente y experimentalmente se opta por utilizar estos últimos, ya que son obtenidos a través de una medición directa.

5.2 ENSAYOS DE DESGASTE.

El objetivo principal de la construcción del dispositivo es ofrecer la posibilidad de realizar pruebas de desgaste para obtener curvas de fricción. Para obtener dichas curvas se presenta a continuación un breve resumen de los parámetros interesantes para este trabajo.

Como se ha mencionado a lo largo del presente documento, este tribómetro presenta un contacto del tipo anillo sobre bloque. Para conocer el coeficiente de fricción entre los materiales se miden las fuerzas tangencial y normal; las cuales se relacionan de la siguiente manera.
Figura 5.4. Esquema del contacto y las fuerzas relacionadas.

\[F_T = \mu F_N \]

Ec. 5.18

Donde \(F_T \) es la fuerza tangencial, \(\mu \) es el coeficiente de fricción dinámico y \(F_N \) es la fuerza normal del contacto.

En los ensayos se pretende encontrar el coeficiente de fricción al controlar o conocer las fuerzas implicadas.

Otro dato que buscamos en el ensayo es el número de Sommerfeld. Este número adimensional relaciona la velocidad del contacto relativo, la viscosidad del lubricante y la carga del contacto. Para tener un número de Sommerfeld válido se utiliza un factor geométrico como el área de contacto y se define de la siguiente manera.

\[S = \frac{\omega v}{P} \]

Ec. 5.19
Donde S es el número de Sommerfeld, ω la velocidad angular del contacto, ν la viscosidad del lubricante y P la carga aplicada por unidad de área.

Las gráficas obtenidas en los ensayos, muestran las mediciones realizadas de velocidad angular y torque del motor. Estas mediciones se relacionan para obtener el coeficiente de fricción y número de Sommerfeld que permitan obtener curvas de fricción.

5.2.1. LOS ENSAYOS REALIZADOS.

Durante las pruebas se busca generar un contacto controlado entre el anillo o disco y la muestra para observar la evolución del coeficiente de fricción entre ambos, bajo un régimen de lubricación constante.

La hipótesis de estas pruebas es que variando la velocidad del contacto, la viscosidad del lubricante y la carga es posible observar las transiciones entre distintos regímenes de lubricación.

5.2.2. PROTOCOLO DE PRUEBAS.

Para las pruebas se requieren los siguientes materiales: Disco de acero 9840, muestras de aluminio puro de 1.8 x 1.8 cm del material a ensayar con este tipo de acero, la instrumentación y control del tribómetro coaxial, pesas, agua y aceite mineral SAE-15W50 para las pruebas lubricadas, el dispositivo de carga y una bureta.

Para la realización de las pruebas en primer lugar se preparó la muestra y el disco, luego se calibraron los instrumentos de medición y se colocaron la muestra, el disco y demás componentes en posición de trabajo.

Para las pruebas lubricadas se pone una gota de lubricante antes de iniciar el contacto, una vez iniciada la prueba se mantiene un flujo constante de lubricante de 6 gotas por minuto.
Para correr las pruebas se encendió el motor e instrumentos de medición y se ajustó a la velocidad de rodaje. A continuación se aplicó la carga y se inició el conteo del tiempo de rodaje (ya que el programa utilizado realiza un offset, se optó por omitir un período de tiempo para control al inicio). Al terminar el tiempo de rodaje se redujo la velocidad angular del contacto a cierto paso por periodo de medición hasta llegar a una velocidad angular de cero.

Al finalizar la prueba se apagaron los motores y controladores y se retiró la muestra para su análisis.

5.2.3. Resultados de las pruebas.

En el ensayo se manejan distintos parámetros para poder relacionar estos con los datos que se pretenden obtener. El flujo de lubricante y la carga aplicada son parámetros controlados y pueden ser modificados durante la prueba. La velocidad angular, el torque y el tiempo son parámetros que simplemente son medidos. Los datos que se buscan conocer con estos ensayos son el coeficiente de fricción y el número de Sommerfeld que se relacionan para obtener curvas de fricción que describen el comportamiento del coeficiente de fricción durante el contacto. Para el coeficiente de fricción se relaciona la carga aplicada y el torque medidos en el tiempo. Para conocer el número de Sommerfeld se relaciona el resto de los parámetros del ensayo en el tiempo. A continuación se presentan las gráficas obtenidos en ensayos representativos.

![Fig. 5.5. Gráfica de voltaje contra tiempo con agua como lubricante.](image-url)
En las Figuras 5.5 y 5.6 se presentan las gráficas del voltaje medido por el torquímetro contra el tiempo medido durante las pruebas lubricadas de agua y aceite 15W50 respectivamente. La tremenda variación que se observa se explica por el ruido generado por los propios instrumentos de medición que fueron adquiridos para los propósitos del tribómetro coaxial, no uno del tipo disco sobre bloque. Otro factor que añade ruido a la medición es la vibración del tribómetro en funcionamiento.

Fig. 5.6 Gráfica de voltaje contra tiempo con aceite 15W50 como lubricante.

Fig. 5.7. Gráfica de velocidad angular contra tiempo con agua como lubricante.
Fig. 5.8. Gráfica de velocidad angular contra tiempo con aceite 15W50 como lubricante.

En las gráficas de las figuras 5.7 y 5.8 se observa la magnitud de los cambios de la velocidad angular en el tiempo durante las pruebas lubricadas de agua y aceite 15W50 respectivamente. Esta variación de la velocidad se hace con el objetivo de poder comparar uno de los parámetros del número adimensional de Sommerfeld contra el coeficiente de fricción.

Fig. 5.9. Gráfica de voltaje promedio contra periodo después del tiempo de rodaje, con agua como lubricante.

Fig. 5.10. Gráfica de voltaje promedio por periodo después del tiempo de rodaje, con aceite 15W50 como lubricante.

Para obtener las gráficas de las figuras 5.9 y 5.10 se aplicó un filtro a los datos obtenidos en las gráficas 5.5 y 5.6 respectivamente. El filtro consiste en aplicar un promedio del valor del voltaje en un periodo de 300 segundos para el agua y de 60 segundos para el aceite 15W50. Al final el gráfico obtenido es del voltaje promedio.
contra periodo de tiempo. Este filtro es suficiente para apreciar curvas claras y con variaciones congruentes en ambos casos.

Figura 5.11. Gráfica de la velocidad angular promedio después del tiempo de rodaje con agua como lubricante.

Fig. 5.12. Gráfica de la velocidad angular promedio por periodo después del tiempo de rodaje con aceite 15W50 como lubricante.

En las gráficas de las figuras 5.11 y 5.12 también se aplicó el mismo filtro que en las gráficas 5.9 y 5.10 respectivamente. Los datos obtenidos de las gráficas que son interesantes son los que están después del tiempo de rodaje.
Fig. 5.13. Gráfica de la fuerza tangencial por periodo de tiempo después del tiempo de rodaje con agua como lubricante.

Fig. 5.14. Gráfica de la fuerza tangencial por periodo de tiempo después del tiempo de rodaje con aceite 15W50 como lubricante.

En las figuras 5.14 y 5.15 se aprecia la variación de la fuerza tangencial, que es igual al voltaje medido por el torquímetro multiplicado por un factor de voltaje propio del torquímetro.

\[F_T = V(f_v) \]

Ec. 5.20

Donde la fuerza tangencial es \(F_T \), \(V \) es el voltaje medido y \(f_v \) es el factor de voltaje del torquímetro.
Como se puede ver en la figura 5.4, la fuerza tangencial F_T se puede relacionar con la fuerza normal F_N, es decir, con la carga aplicada sobre la muestra, con la Ec. 5.18.

Si se despeja el coeficiente de fricción de la ecuación 5.18 obtenemos la siguiente expresión:

$$\mu = \frac{F_T}{F_N}$$

Ec. 5.21

Si en la ecuación 5.21 se sustituye F_T por la ecuación 5.20 y el valor de la carga aplicada C por F_N, se obtiene una expresión para el coeficiente de fricción dependiente de la variación del voltaje medido por el torquímetro (fuerza tangencial).

$$\mu = \frac{V(f_V)}{C}$$

Ec. 5.22

Fig. 5.15. Gráfica del coeficiente de fricción por periodo después del tiempo de rodaje con agua como lubricante.
Fig. 5.16. Gráfica del coeficiente de fricción por periodo después del tiempo de rodaje con aceite 15W50 como lubricante.

Las figuras 5.15 y 5.16 utilizan V de la ecuación 5.22 para relacionar las fuerzas normal y tangencial. Esto permite observar la variación del coeficiente de fricción conforme avanza el ensayo.

Fig. 5.17. Gráfica del número de Sommerfeld por periodo después del tiempo de rodaje con agua como lubricante.
En las figuras 5.17 y 5.18 se muestra cómo cambia el número de Sommerfeld conforme avanza el tiempo en el ensayo. Dicho número de Sommerfeld se calcula de la siguiente forma:

\[S = \frac{\omega v}{P} \]

Ec. 5.23

Donde \(S \) es el número adimensional de Sommerfeld, \(\omega \) la velocidad angular del disco, \(v \) la viscosidad del lubricante y \(P \) es la carga normal aplicada por unidad de área.

La velocidad angular se mide con el tacómetro, la viscosidad del lubricante se considera constante porque no existe instrumentación para una variación controlada de esta. \(P \) se calcula con la carga normal aplicada \(C \).

\[P = \frac{C}{A} \]

Ec. 5.24
El área A en que se aplica esta carga se midió al finalizar el ensayo. Para obtener dicho valor de A, se hizo una aproximación de acuerdo a la geometría de la huella obtenida al finalizar el ensayo, circular o cuadrada.

Figura 5.19. Curva de Stribeck con agua como lubricante.

Fig. 5.20. Curva de Stribeck con aceite 15W50 como lubricante.

Las figuras 5.19 y 5.20 muestran las curvas de Stribeck obtenidas al relacionar las variaciones en el tiempo del coeficiente de fricción y el número de Sommerfeld.

Para leer estas últimas gráficas se hace de derecha a izquierda que es como fue cambiando el número de Sommerfeld en el tiempo.

5.2.4. CONCLUSIONES DE LOS ENSAYOS (ANÁLISIS DE LAS GRÁFICAS)
Para estudiar el comportamiento del número de Sommerfeld y el coeficiente de fricción es necesario que exista una variación de los parámetros con que se obtienen, por esta razón solamente se analizan los datos obtenidos después del tiempo de rodaje. Existen tres de estos parámetros que se pueden modificar para que exista una variación en el número de Sommerfeld y el coeficiente de fricción; estos son la velocidad angular, la viscosidad del lubricante y la carga aplicada.

En estos ensayos lo más simple fue variar la velocidad angular ya que no existe un control de la temperatura para controlar la viscosidad del lubricante y lo complicado de agregar pesas con intervalos de tiempo precisos. La velocidad angular se controla a través de la potencia del motor y gracias a la instrumentación del tribómetro coaxial fue posible conocerla en todo momento.

Por otra parte para definir el parámetro de la carga aplicada por unidad de área, necesario para definir el número de Sommerfeld, se realizó la medición del área de contacto después del ensayo. Se realizaron aproximaciones de las geometrías del área desgastada para poder conocer este parámetro. La geometría del área desgastada por el disco en cada muestra tuvo variaciones en cada prueba. Esto debido a las imprecisiones del prototipo. Por lo anterior, se optó por realizar una aproximación geométrica de la huella ocasionada por el desgaste, es decir, que cuando la geometría de la huella se asemejó a una circunferencia, se utilizó la fórmula geométrica de la superficie de una circunferencia para obtener un valor para el área desgastada; análogamente, si se asemejó a un rectángulo, se realizó la aproximación geométrica pertinente.

Tomando en cuenta las consideraciones anteriores se puede concluir lo siguiente:

- Fue posible observar el cambio en la medición de torque al existir una variación de la velocidad angular. La variación de la velocidad angular tiene efecto en la variación del torque.
• Se observa de las gráficas de la fuerza normal, que la variación de la velocidad angular y la carga aplicada no tienen efectos notables entre sí, aunque sí afectan directamente el coeficiente de fricción.

• El hecho de que el tipo de lubricante afecte el comportamiento de la fuerza tangencial y por lo tanto el del coeficiente de fricción, indica que el funcionamiento, aún sin ser óptimo es adecuado para el tipo de pruebas que se están ensayando.

• Las curvas de fricción obtenidas se consideran válidas pero incompletas. Son curvas que sí describen el comportamiento del coeficiente de fricción, pero que no arroja la información completa del par tribológico que se estudia; para esto es necesario modificar los parámetros controlados del ensayo de manera que se pueda conocer la información completa del cambio del coeficiente en los distintos regímenes de lubricación a los que está sujeto.
6. DISCUSIONES Y CONCLUSIONES

Se construyó un prototipo de tribómetro de tipo disco sobre bloque con las características necesarias para llevar a cabo pruebas de desgaste que permitieran obtener curvas de fricción de un par tribológico. El prototipo en general cumple con su objetivo en cada etapa del diseño y los resultados que arrojan los ensayos demuestran que se pueden obtener resultados relativamente confiables, aunque después de revisar su funcionamiento es evidente que se pueden realizar mejoras.

Para la realización de las pruebas se tomaron en cuenta distintos parámetros como la velocidad angular, la carga y el régimen de lubricación. La variación de estos parámetros en conjunto con los números adimensionales de Stribeck, o algún otro, permiten obtener curvas de fricción para el tribopar a estudiar. Esta variación debe ser controlada en todo momento y con elevada precisión, por lo que se optó por variar un solo parámetro. En nuestro caso resultó más sencillo de controlar y manipular la velocidad angular. La variación de la carga también era una opción viable pero tenía ciertas complicaciones; añadir pesas significaba manipular directamente el dispositivo de carga, lo cual se traduce en perturbaciones directas a la medición del torque y velocidad angular. Además, la flecha del motor ya se encuentra sujeta a flexión por el tipo de contacto que se estudia; al ir aumentando el peso aumenta el par flexionante ocasionando fallos en el correcto funcionamiento del prototipo.

Al dispositivo se le podría implementar cierta instrumentación para obtener resultados más precisos y confiables, porque la instrumentación disponible está diseñada para pruebas en el tribómetro coaxial y no para el tribómetro disco sobre bloque. Esta instrumentación debe estar orientada al control de la carga real aplicada, la velocidad angular de la flecha del motor y al sistema de lubricación.

Aun así es posible obtener resultados confiables de las pruebas realizadas con este tribómetro tal y como está, ya que parámetros como la carga normal y el flujo de lubricante se mantienen constantes durante los ensayos, por lo que los resultados
obtenidos solamente varían escalarmente con la corrección de los parámetros constantes y se puede estudiar sin mayor problema el comportamiento de los materiales.

Durante los ensayos fue notoria la falta de precisión en el control del motor. Esto generó dificultades para conocer adecuadamente la velocidad angular evitando obtener mediciones más confiables. Para corregir este inconveniente se considera adecuado utilizar un motor de menor potencia, que permita realizar los ensayos a bajas velocidades y una caja de velocidades para el motor, de manera que la variación de la velocidad angular sea más precisa y con mejor control durante las pruebas.

El eje del tribómetro coaxial existente cuenta con un solo rodamiento para evitar el par flexionante. Este rodamiento resulta ser insuficiente para contrarrestar los efectos de flexión provocados por la carga cuando se utiliza el dispositivo de carga para un tribómetro anillo sobre bloque. Al no contrarrestar estos efectos durante el ensayo, el resultado es un desbalance del eje que genera cierta vibración y una curvatura sobre el mismo, esto evita el contacto constante entre las superficies, restando así confiabilidad a la prueba; aunque no por eso deja de arrojar resultados útiles. Se recomienda agregar al menos un rodamiento más; esto con la finalidad de minimizar el desbalanceo y mejorar las condiciones del contacto.

Para obtener curvas de Strubeck completas se requiere implementar un sistema de lubricación que permita controlar la lubricación en el contacto estudiado. La lubricación para las pruebas reportadas en el presente documento fue manual, lo que sugiere que una mejora importante para este tribómetro es la añadidura de un sistema de lubricación con la instrumentación adecuada para llevar a cabo la transición entre distintos regímenes de lubricación.

Las mejoras mencionadas anteriormente, al requerir que se añadan nuevos componentes, tienen el inconveniente de requerir mayor espacio en el sistema existente o de modificar de manera importante el tribómetro coaxial. Por lo anterior se
recomienda la construcción de un tribómetro de tipo anillo sobre bloque que sea independiente al tribómetro coaxial. Esto permitiría tener un equipo con mayor libertad y prestaciones para el estudio de tribopares, esto es, la posibilidad de agregar la instrumentación adecuada para obtener la mayor cantidad de información posible del tribopar; además de una estación más para el estudio de tribopares, ya que en el grupo de trabajo existe gran demanda de estos sistemas para el estudio de tribopares.
BIBLIOGRAFÍA

