

UNIVERSIDAD NACIONAL AUTONÓMA DE MÉXICO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

FACULTAD DE INGENIERÍA

"COEFICIENTE DE PÉRDIDAS DE ENERGÍA EN TUBOS CORTOS PARA NÚMEROS DE REYNOLDS PEQUEÑOS"

TESIS

QUE PARA OPTAR POR EL GRADO DE:

MAESTRO EN INGENIERÍA INGENIERÍA CIVIL-HIDRAULICA

PRESENTA:

JOSÉ GARCÍA NIETO

TUTOR: DR. GABRIEL ECHÁVEZ ALDAPE

MÉXICO, D.F.

2008

JURADO ASIGNADO:

Presidente:	DR. RAMÓN DOMÍNGUEZ MORA
Secretario:	DR. OSCAR FUENTES MARIILES
Vocal:	DR. GABRIEL ECHÁVEZ ALDAPE
1er. Suplente:	DR. PAULO SALLES DE ALMEIDA
2do. Suplente:	DR. CARLOS ESCALANTE SANDOVAL

Lugar o lugares donde se realizó la tesis:

México, D.F.

TUTOR DE TESIS: DR. GABRIEL ECHÁVEZ ALDAPE

Indice

Capítulo	Página
1 INTRODUCCIÓN	1
2 ANTECEDENTES	4
3 DESCRIPCIÓN Y COMPORTAMIENTO DEL FLUJO	6
4 ANÁLISIS	12
4.1 Pérdida de Carga	12
4.2 Coeficiente de pérdida de entrada	14
5 EQUIPO DE LABORATORIO Y PROCEDIMIENTO EXPERIMENTAL	16
5.1 Instalación experimental	16
5.2- Descripción de los elementos de la instalación experimental	17
5.3- Procedimiento experimental	25
6PRESENTACIÓN DE LOS RESULTADOS EXPERIMENTALES	28
7PROCESAMIENTO Y PRESENTACIÓN DE RESULTADOS	43
7.1 Obtención de los coeficientes de entrada	43
7.2 Obtención del coeficiente de pérdidas distribuidas	46
7.3 Coeficientes de fricción de los diferentes L/D	47
8 DISCUSIÓN DE RESULTADOS Y CONCLUSIONES	52
8.1 Coeficientes de entrada	52
8.2 Coeficientes de pérdidas distribuidas	52

BIBLIOGRAFIA

1.- INTRODUCTION

The increase of the population and the increase of the demand of water of good quality for the cities and industries, does imperative to look for procedures to obtain a saving in its consumption. As it is seen in Figure 1,1 of three economic sectors of the society, the one that consumes greater amount of water is the agricultural sector, reason why a saving of 10% in that sector would allow to double the domestic supplying, that is the high-priority one.

Figure 1.1. Water consumption by economic sector.

A technique to obtain considerable water savings, or substantial increases in the production, is the Drip Irrigation, that does possible to take advantage of the total of the water until a 95% with respect to other more usual systems of irrigation. This irrigation is characterized to use small expenses, of the order of 2 to 16 l/h, on the foot of each plant which implies that the flow, in certain cases, is to laminate that is with Reynolds numbers smaller to 2000.

A type of this class of irrigation consists of a network of tubes composed by a primary network to which the lateral pipes are connected and, them, the droppers that go to each plant. Although there are commercial droppers, generally of importation, are possible to be used simply tubes of small diameter with different length to assign an equal discharge for each plant; thus, the droppers near the primary network would be longer than those than are remoter. These tubes, that are of low discharge, would allow that this type of irrigation was accessible to people of low resources, like farmers and ejidatarios, what had one to three hectares, since thus they would water and even they would use new cultures of better price. A problem that appears for the calculation of the discharges in those tubes of small diameter, is that for being a flow in where the inertia forces take part, those of pressure and the viscoses simultaneously, their analysis is complicated; and, in addition, the being flow varied in the initial part of the tube the length of it also plays an important role.

In this work the results of an experimental study appear and process to determine the coefficients of losses by entrance and distributed in small tubes of small diameter with low expenses; since in specialized Literature sufficient information is not about these coefficients.

1.-INTRODUCCIÓN

El incremento de la población y el aumento de la demanda de agua de buena calidad para las ciudades e industrias, hace imperativo buscar procedimientos para obtener un ahorro en su consumo. Como se ve en la Figura 1.1 de tres sectores económicos de la sociedad, el que consume mayor cantidad de agua es el sector agrícola, por lo que un ahorro de 10% en ese sector permitiría doblar el abastecimiento doméstico, que es el prioritario.

Figura 1.1. Consumo de agua por sector económico.

Una técnica para lograr ahorros considerables de agua, o aumentos substanciales en la producción, es el Riego por Goteo, que hace posible aprovechar el total del agua de hasta un 95% con respecto a otros sistemas de riego más usuales. Este riego se caracteriza por utilizar pequeños gastos, del orden de 2 a 16 l/h, al píe de cada planta lo que implica que el flujo, en ciertos casos, es laminar o sea con números de Reynolds menores a 2000.

Un tipo de esta clase de riego consiste en una red de tubos compuesta por una red primaria a la que están conectadas las tuberías laterales y, a ellas, los goteros que van a cada planta. Aunque hay goteros generalmente importación, comerciales, de se pueden usar simplemente tubos de pequeño diámetro con distinta longitud para asignar un gasto igual para cada planta; así, los goteros cercanos a la red primaria serían más largos que los que están más alejados. Estos tubos, que son de bajo costo, permitirían que este tipo de riego fuera accesible a gente de bajos recursos, como campesinos y ejidatarios, que cuentan con una a tres hectáreas, ya que así regarían e incluso utilizarían nuevos cultivos de mejor precio.

Un problema que se presenta para el cálculo de los gastos en esos tubos de pequeño diámetro, es que por ser un flujo en donde intervienen las fuerzas de inercia, las de presión y las viscosas simultáneamente, su análisis es complicado; y, además, al ser flujo variado en la parte inicial del tubo la longitud de él también juega un papel importante.

En este trabajo se presentan y procesan los resultados de un estudio experimental para determinar los coeficientes de pérdidas por entrada y distribuidas en pequeños tubos de diámetro pequeño con gastos bajos; ya que en la literatura especializada no se encuentra suficiente información acerca de estos coeficientes.

2.- ANTECEDENTES

A pesar de que tanto el coeficiente de pérdidas por entrada como el de pérdidas distribuidas son valores esenciales en el cálculo del flujo en tuberías, en la literatura especializada no se encuentran estos valores para números de Reynolds pequeños, en los libros especializados como los de: Rouse (1961), Daily y Harleman (1966), Sotelo (1970), Streeter (1987), Naudascher (1991), etc.

El libro de Idelchik (1994, 3rd Ed.) Handbook of Hydraulic Resistance, que es tal vez el más completo relacionado con este tema, sólo están incluidas las pérdidas de entrada para números de Reynolds mayores a 10⁴ y los coeficientes de pérdidas distribuidas para números de Reynolds de hasta 1 800.

Otros autores, como Langhaar (1942), Sparrow, Hansen (1982), Schlichting (1987) y, más recientemente, Campbell y Kandlikar (2004), sí atacaron este problema pero sin considerar las pérdidas de entrada y sólo evaluaron los perfiles de velocidad y los cortantes en la zona de transición donde el flujo pasa de potencial a parabólico. Por lo que para fines prácticos el problema queda incompleto, pues, obviamente, no hay conducto sin inicio.

Además, como en estos flujos intervienen en forma significativa la inercia y las fuerzas de la presión y las viscosas no es valido hacer las simplificaciones usuales para resolver el problema. Así, las ecuaciones de cantidad de movimiento y de vorticidad en forma adimensional, utilizando una velocidad característica y una longitud característica, para flujos con números de Reynolds moderados, ver Panton (1995), son

$$\frac{D v}{Dt} = -\nabla p + \frac{1}{Re} \nabla^2 v$$

$$y$$

$$\frac{D \omega}{Dt} = \omega * \nabla v + \frac{1}{Re} \nabla^2 \omega$$

donde

- p presión
- v velocidad
- ω vorticidad

Donde los términos, $\nabla^2 v y \nabla^2 \omega$, definen a este sistema como de naturaleza elíptica; pero, es importante observar, que al aparecer el número de Reynolds como coeficiente en las ecuaciones, al cambiar este también cambia, en muchos casos, el patrón de flujo toma formas diferentes, poco usuales.

Por lo anterior, se puede concluir que la determinación de las pérdidas en tuberías cortas para números de Reynolds pequeños –entre 500 y 2 000- que son las que se usan en el riego localizado y en el estudio de flujos orgánicos, es un problema aun no resuelto, que está esperando una solución numérica con herramientas computacionales, y el uso de datos experimentales.

El objetivo de este trabajo experimental, es determinar estos coeficientes y presentarlo como gráficas o curvas de diseño para su uso y eventualmente, validar los modelos computacionales analítico-numéricos que hasta la fecha se han desarrollado para obtener los coeficientes descritos.

3.- DESCRIPCIÓN Y COMPORTAMIENTO DEL FLUJO

Considere un fluido que entra en una tubería circular a una velocidad uniforme. Debido a la condición de no-deslizamiento, las partículas del fluido en contacto con la superficie de la tubería se detienen por completo y se forma una delgada capa donde la velocidad del flujo varía rápidamente desde cero hasta el valor que tendría en un flujo potencial. Para configurarse esta reducción de velocidad, la velocidad del fluido en la sección media de la tubería tiene que aumentar para cumplir con la condición de continuidad. Como resultado, en el centro de la tubería y a lo largo de ella se crea un gradiente de velocidad Figura 3.1.

La región del flujo en la que se manifiestan los efectos de los esfuerzos cortantes provocados por la viscosidad del fluido se llama capa límite. La capa limite divide el flujo en una tubería en dos regiones: la región de la capa limite, en la que los efectos viscosos y los cambios de velocidad son considerables; y la región del flujo (central) irrotacional, en la que los efectos de fricción son despreciables y la velocidad varía poco en la dirección radial.

El grosor de esta capa limite aumenta en la dirección del flujo hasta que alcanza el centro de la tubería y por lo tanto llena toda la tubería, como se muestra en la figura 3.1.

Figura 3.1.- Desarrollo de la capa limite en una tubería, parabólico para flujo laminar.

La región desde la entrada de la tubería hasta el punto en que la capa limite llega hasta la mitad del tubo se llama longitud de entrada y depende del número de Reynolds y del diámetro del tubo. El flujo en esta región es un flujo en desarrollo donde el cortante en la pared varía de un máximo al inicio hasta un valor constante cuando el flujo ya está desarrollado y el perfil de la velocidad ya no varía. El perfil de velocidad en la región totalmente desarrollada es parabólico en el flujo laminar y más plano en el flujo turbulento debido a una mezcla más vigorosa en la cantidad de movimiento en la dirección radial.

El esfuerzo de corte de pared es máximo a la entrada de la tubería, donde el grosor de la capa limite es más pequeño, y disminuye gradualmente hasta el valor correspondiente al flujo totalmente desarrollado, como se muestra en la figura 3.2. Por lo tanto, la caída de presión es más alta en las regiones de entrada de una tubería, y el efecto de la región de entrada siempre es aumentar el factor de fricción promedio para toda la tubería. Este argumento puede ser importante para tuberías cortas, pero es despreciable para las largas.

Figura 3.2.- Variación del esfuerzo de corte de pared en la dirección del flujo para un flujo en una tubería.

Longitud de transición

La longitud de transición L_t usualmente se toma como la distancia desde el inicio de la tubería hasta donde el esfuerzo de corte de pared (y por tanto el factor de fricción) alcanza, dentro aproximadamente dos por ciento, el valor correspondiente al flujo totalmente desarrollado. En flujo laminar esta longitud de entrada está dada aproximadamente por Shah y Batí (1987) y Kays y Crawford (1993):

$$Lt \cong 0.065 \operatorname{Re} D$$

Donde Re es el número de Reynolds dado por

$$\operatorname{Re} = \frac{VD}{V}$$

con

- D diámetro
- V velocidad media
- v viscosidad cinemática

Para Re = 20, la longitud de entrada hidrodinámica es casi del tamaño del diámetro pero aumenta linealmente con la velocidad. En el caso del limite laminar Re=2300, la longitud de entrada hidrodinámica es 115D.

Una vez que se excede la longitud de entrada el perfil de velocidades del flujo ya no cambia y se mantiene parabólico para flujo laminar, por lo que el cortante en la pared también es constante y esta dado por la ecuación de Darcy-Weisbach que se presentará a continuación.

Ecuación de Darcy-Weisbach (1857)

Esta ecuación, que permite calcular la pérdida de carga distribuida debida al cortante de la pared actuando en contra del movimiento, fue deducida experimentalmente por Henry Darcy, ingeniero francés del siglo XIX, y por Julius Weisbach, científico e ingeniero alemán de la misma época.

Weisbach propuso el uso del coeficiente adimensional *f* y Darcy llevó a cabo numerosos experimentos utilizando agua. Llegando a la fórmula

$$h_f = \frac{fL}{D} \frac{V^2}{2g}$$

donde

f coeficiente de fricción [adimensional]

- g aceleración de la gravedad [L / T^{-2}]
- h_f pérdida de carga [L]

- D diámetro del conducto [L]
- *V* velocidad media de flujo [L/T]

Para flujo laminar, el factor de fricción disminuye con números de Reynolds crecientes, es independiente de la rugosidad de la superficie y se evalúa con la ecuación de Hagen- Poiseuille que se verá en el próximo capítulo.

Pérdidas Locales

El fluido en un sistema de tubería típico pasa a través de varias uniones, válvulas, flexiones, codos, ramificaciones, entradas, salidas ensanchamientos y contracciones. Dichos componentes o accesorios interrumpen el flujo del fluido y provocan pérdidas adicionales debido al fenómeno de separación y mezcla del flujo que producen, esto es lo que comúnmente se conoce como perdidas locales.

Para el caso de interés, las únicas pérdidas locales que habría que considerar son las de entrada y la de salida.

• Pérdida por entrada

Tradicionalmente se dice que la pérdida se produce debido a la contracción que realiza la vena líquida al entrar a la tubería. La geometría de la entrada puede ser de diferentes formas:

- Entrada a ras
- Entrada de borda
- Entrada en ángulo
- Entrada redondeada

Como la pérdida de carga local, $h_{\rm e},~$ es directamente proporcional a la energía cinética del fluido para evaluarla se utiliza generalmente una expresión del tipo de

$$h_e = K_e \frac{V^2}{2g}$$

 $k_{\rm e}$ coeficiente adimensional que depende de las condiciones de entrada y del número de Reynolds.

V velocidad media de flujo en el conducto en la sección especificada

Sin embargo para números de Reynolds pequeños, como se dijo en los antecedentes, no se encuentra el valor del coeficiente K_e en la literatura especializada.

• Pérdida por salida

Es la pérdida que se produce al salir el fluido a la atmósfera libremente. Como esta energía ya no se usa se puede considerar como una pérdida total (K = 1).

Sin embargo lo anterior supone una distribución constante de la velocidad en cualquier sección del tubo, como en flujo laminar establecido el perfil de velocidad es parabólico es necesario utilizar un coeficiente, llamado coeficiente de Coriolis, igual a 2, que tome en cuenta que la velocidad no es constante en la sección.

Cuando la longitud del tubo es menor que la longitud de uniformización del flujo, la distribución de velocidad está entre uniforme y parabólica, se repartirá este coeficiente en forma lineal a lo largo del conducto, como se verá en el siguiente capítulo.

4.- ANÁLISIS

En este capítulo se presentan las fórmulas utilizadas durante el análisis y procesamiento de los datos

4.1.- Pérdida de Carga

La pérdida de carga, Δh , entre un punto separado del inicio del conducto, donde la carga de velocidad es despreciable, y la salida al final de este; se puede expresar con la ecuación de conservación de la energía, como la suma de la pérdida local por entrada, más la pérdida distribuida, más la carga de velocidad, dada por la expresión siguiente:

$$\Delta h = k_{e} \frac{V^{2}}{2g} + f \frac{L}{D} \frac{v^{2}}{2g} + \alpha \frac{V^{2}}{2g}$$
 [4.1]

donde

 k_e coeficiente de pérdida por entrada del emisor, es una función desconocida del número de Reynolds por lo que es necesario encontrarla experimentalmente.

f factor de fricción de Darcy que para flujo laminar ya establecido y número de Reynolds menor que 2000, es independiente de la rugosidad de la superficie de la tubería y esta dado por la ecuación de Hagen- Poiseuille, 1846

$$f = \frac{64}{R_e}$$
 [4.2]

 α Coeficiente de Coriolis igual a 2 para flujo laminar desarrollado en un tubo.

$$\alpha = \frac{1}{A} \int \frac{\mathbf{v}^3}{\mathbf{V}^3} dA$$
 [4.3]

Donde

v velocidad máxima para flujo laminar

V velocidad media para flujo laminar

En los casos en que L<L $_{t}$ como una corrección de Coriolis se propone usar

$$\alpha = 1 + (L/L_t)$$
 [4.4]

Lo que implica un distribución lineal del valor α de 1 a 2, y para L> L_t el α = 2. Donde L_t esta dada por la conocida fórmula de Boussinesq

$$\frac{L_{t}}{D} = 0.065 \,\text{Re}$$
 [4.5]

en la que

- L longitud del tubo
- L_t longitud de transición del tubo
- D diámetro del tubo

4.2.- Coeficiente de pérdida de entrada

El coeficiente de pérdida ke incluye la influencia de tres efectos que son: las pérdidas antes de la entrada, las pérdidas asociadas a las esquinas de la entrada y las diferencias entre la solución teórica y el flujo real.

Para encontrar el valor el valor del coeficiente ke se despeja de la ecuación de la conservación de la energía ecuación [4.1], desarrollando todos los términos que componen la ecuación anteriormente.

$$k_{\rm e} = \Delta h_i \ \frac{2g}{V^2} - f \frac{L}{D} - \alpha \qquad [4.6]$$

La velocidad fue despejada de la ecuación de continuidad. [4.7]

$$Q = VA$$
 [4.7]

donde:

- Q gasto
- V velocidad media
- A área de la tubería
- Y las demás variables ya fueron definidas

5.- EQUIPO DE LABORATORIO Y PROCEDIMIENTO EXPERIMENTAL

Los datos experimentales se obtuvieron en una instalación construida en el laboratorio del Departamento de Hidráulica de la División de Ingenierías Civil y Geomática de la Facultad de Ingeniería de la UNAM, Ortiz (2001) y siguiendo el procedimiento experimental que se describirán a continuación.

5.1.- Instalación experimental

En la Fotografía 1 se muestra la instalación experimental para estudiar las pérdidas de entrada y distribuidas en tubos de pequeño diámetro y no mucha longitud. Ahí mismo están numeradas las partes que la componen.

Fotografía 1.- Estación desarrollada en Laboratorio.

5.2- Descripción de los elementos de la instalación experimental

De acuerdo a los números de la fotografía 1 los elementos que componen la estación de trabajo son los siguientes:

1.-Vertedor Circular

Constituido por un tubo circular de PVC de 4" de diámetro, (Fotografía 2), adosado a un codo de igual diámetro, a través del cual se recibe la carga directa del gasto por una manguera conectada a una pequeña bomba eléctrica, para que pueda proporcionar una carga constante.

Fotografía 2.- Vertedor de cresta circular (borde del tubo azul oscuro).

2.- Recipiente Colector

Cubeta azul claro, como se muestra en la Fotografía 2, cuyo trabajo es el de captar el agua que vierta del vertedor circular, la cual regresa nuevamente al depósito de abastecimiento y de esta forma tener una recirculación del agua.

3.-Tubo Horizontal

Es un tramo de tubo de 4" de diámetro de 60 cm de longitud unido por un codo al Vertedor Circular (Fotografía 3). En su parte media tiene una T, de igual diámetro, conectada a un corto tubo vertical. Al final del tubo horizontal, y por medio de una reducción, hay una unión a una manguera de plástico flexible de ³/₄ de diámetro.

Fotografía 3.- Tubo Horizontal de Carga.

4.-Tubo vertical

Este tramo de tubo sirve como chimenea para purgar a las burbujas de aire que pudieran encontrarse (Fotografía 4).

Fotografía 4.- Tubo de Regulación o Dispositivo de Regulación.

5.-Manguera Flexible

Conectada al tubo horizontal por medio de una reducción en un extremo, y al otro extremo con la tubería lateral en la que se fijara los tubos cortos (o emisores en el caso de riego localizado) que se experimentan. Su flexibilidad permite variar la diferencia de altura entre el nivel del agua en el vertedor de carga constante y la salida de los tubos cortos (Fotografía 5).

Fotografía 5.- Manguera flexible conectada al tubo horizontal

6.-Tubería lateral

Tubería horizontal constituida de un tubo de PVC de $\frac{34}{7}$ como se ve en la Fotografía 6.

Fotografía 6.- Tubería Lateral de prueba

7.-Tubos empleados en la experimentación

Se usaron tubos de cuatro diferentes diámetros y diversas longitudes (Fotografía 7) descritos en el capitulo 5.3, que se conectaron a la unión del lateral para la obtención de los diferentes datos.

Fotografía 7.- Tubos de diferentes diámetros y longitudes

8.-Limnímetro Graduado y manguera de medición

El Limnímetro Graduado se aprecia en la Fotografía 8 junto con otra manguera de plástico flexible conectada al final del lateral, que muestra la altura de carga respecto del tubo y poder medir la altura de carga.

Fotografía 8.- Limnímetro graduado y Manguera de medición

Equipo empleado en la estación de laboratorio.

Bomba sumergible

Como se ve en la Fotografía 9 la bomba se encuentra en el depósito de abastecimiento de agua. Esta se conecta al vertedor circular por medio de una manguera de plástico de $\frac{1}{2}$ ".

Fotografía 9.- Bomba de abastecimiento de agua

Nivel

Nivel para garantizar la horizontalidad de la lateral, ver Fotografía 10, y evitar que ese conducto tenga pendiente.

Fotografía 10.- Nivel

Termómetro

Termómetro, ubicado dentro del Emisor Circular, para tomar la temperatura del agua (en ⁰C) en cada ensayo.

Cronómetro

Mostrado en la Fotografía 11, para medir el tiempo de captación del agua en la probeta con exactitud en cada prueba.

Fotografía 11.- Cronómetro

Probetas graduadas

Probetas de 1000 y 250 ml (Fotografía 12), que se utilizaron para medir con mayor exactitud los gastos captados.

Fotografía 12.- Probetas Graduadas de diferentes capacidades

5.3- Procedimiento experimental

Después de preparar y poner en operación a la instalación experimental, se procede a la obtención de datos.

Mediciones

Los emisores seleccionados de acuerdo a los resultados de pruebas preliminares, fueron mangueras de plástico de los siguientes diámetros: 1.59, 3.175, 2.38 y 4.76 mm, con longitudes del orden del diámetro del conducto y de 10, 20 y 35 cm. Insertadas a una unión del lateral a ras con la superficie interior de ella, para reducir lo más posible los cambios de dirección en el flujo de entrada.

Para medir los gastos se utilizaron probetas graduadas de 250 y 1000 ml, de capacidad, donde se captaba el agua durante intervalos de tres minutos de duración. Simultáneamente, se medía la temperatura del agua, para encontrar su viscosidad cinemática, así como la altura de la carga hidráulica total con el Limnímetro ya descrito. Los datos de cada ensayo se registraban en el formato mostrado en la Figura 5.1

Tiemp prueba	o de a:	<u>3 minutos</u>							
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (l/h)	V (m/s)	f	vx10 ⁻ 6 (m²/s)	Re	Ke

Diámetro del emisor:

Figura 5.1.- Ejemplo del formato utilizado para el manejo de los datos obtenidos de las mediciones.

Geometría de las conexiones de los tubos y la Lateral.

En la Figura 5.2. Se muestran las geometrías de la unión con la lateral al ras, para los cuatro diámetros ensayados.

Figura 5.2.- Unión de los emisores

Procedimiento de las pruebas efectuadas

Los ensayos se efectuaron según el siguiente procedimiento:

- a) Conectar el tubito, a ras con la cara interna de la lateral, con el diámetro y la longitud requerida para esa prueba.
- b) Llenar el depósito de abastecimiento y arrancar la bomba para llenar el vertedor.
- c) Colocar el termómetro dentro del vertedor para tener una lectura de la temperatura en ⁰C.
- d) Verificar la altura de la carga, Δh , en mm.
- e) Captar el gasto de prueba en la probeta graduada durante tres minutos.
- f) Se repiten los pasos c, d y e hasta tener cuatro muestras con esa misma altura de carga.
- g) Se repite un mínimo de 10 diferentes alturas de carga para cada diámetro y longitud.
- h) Los datos obtenidos se ordenaron y procesaron como se muestra en las tablas del Capítulo siguiente.

6.-PRESENTACIÓN DE LOS RESULTADOS EXPERIMENTALES

En la tabla 6.1 se presentan los resultados experimentales obtenidos en este trabajo para evaluar el coeficiente de pérdida por entrada ke, con longitudes del tubo muy pequeñas del orden del diámetro del conducto; así como los gastos, velocidades, relaciones Δ h/l y números de Reynolds respectivos.

Tabla 6.1 Datos para la obtención del Coeficiente ke

D=4.76 mm	Area=	1.77952E-05 m ²	l=	0.0073 m			
D=3.175 mm	Area=	7.9173E-06 m ²	I=	0.00635 m			
D=2.38 mm	Area=	4.44881E-06 m ²	l=	0.00635 m			
D=1.59 mm	Area=	1.98557E-06 m ²	l=	0.00635 m			
Tiempo de pru	ieba:	<u>3 minutos</u>			Fecha:		
Δh (mm)	Volumen (ml)	Temperatura (°C)	ϑx10 ⁻⁶ (m²/s)	Q (l/h)	V (m/s)	Δh/l	Re
14	550	22	9.62E-07	11	0.172	1.917808	850
14	550	22	9.62E-07	11	0.172	1.917808	850
14	525	22	9.62E-07	10.5	0.164	1.917808	811
12	470	22	9.62E-07	9.4	0.147	1.643836	726
12	455	22	9.62E-07	9.1	0.142	1.643836	703
12	460	22.5	9.51E-07	9.2	0.144	1.643836	719
37	410	24	9.17E-07	8.2	0.288	5.826772	996
37	405	24	9.17E-07	8.1	0.284	5.826772	984
37	405	24	9.17E-07	8.1	0.284	5.826772	984
30	350	24	9.17E-07	7	0.246	4.724409	850
30	350	24	9.17E-07	7	0.246	4.724409	850
30	350	24	9.17E-07	7	0.246	4.724409	850
65	524	24	9.17E-07	10.48	0.654	10.23622	1698
65	525	24	9.17E-07	10.5	0.656	10.23622	1702
65	525	24	9.17E-07	10.5	0.656	10.23622	1702
50	455	24	9.17E-07	9.1	0.568	7.874016	1475
50	455	24	9.17E-07	9.1	0.568	7.874016	1475
50	454	24	9.17E-07	9.08	0.567	7.874016	1471
60	320	25.0	8.94E-07	6.4	0.895	9.448819	1592
60	320	25.0	8.94E-07	6.4	0.895	9.448819	1592
60	320	25.0	8.94E-07	6.4	0.895	9.448819	1592
45	260	25.0	8.94E-07	5.2	0.727	7.086614	1294
45	258	25.0	8.94E-07	5.16	0.722	7.086614	1284
45	258	25.0	8.94E-07	5.16	0.722	7.086614	1284
37	222	20.0	1.01E-06	4.44	0.621	5.826772	978
37	216	20.0	1.01E-06	4.32	0.604	5.826772	951
37	220	20.0	1.01E-06	4.4	0.616	5.826772	969
37	218	20.0	1.01E-06	4.36	0.610	5.826772	960
37	218	20.0	1.01E-06	4.36	0.610	5.826772	960

En las tablas 6.2 a la 6.13 se presentan los datos experimentales obtenidos en este trabajo para los distintos diámetros y con longitudes de 10, 20 y 35 cm del conducto; así como los gastos, velocidades, números de Reynolds y coeficientes de Coriolis respectivos. En las dos últimas columnas se muestran los resultados calculados de los coeficientes k_e y f, que se comentarán en el siguiente capítulo.

Tiempo d	e prueba:	<u>3 minutos</u>			Fecha:					
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (I/h)	V (m/s)	vx10 ⁻⁶ (m²/s)	Re	α	ke	f
100	164	22.1	0.10	3.28	0.459	0.9597	760.2	2.000	0.86	0.10
100	164	22.0	0.10	3.28	0.459	0.962	758.4	2.000	0.86	0.10
100	164	22.2	0.10	3.28	0.459	0.9574	762.1	2.000	0.86	0.10
100	164	22.5	0.10	3.28	0.459	0.9505	767.6	2.000	0.85	0.10
105	172	22.0	0.10	3.44	0.481	0.962	795.4	2.000	0.83	0.10
105	170	22.1	0.10	3.4	0.476	0.9597	788.1	2.000	0.84	0.10
105	170	22.2	0.10	3.4	0.476	0.9574	789.9	2.000	0.84	0.10
105	170	22.3	0.10	3.4	0.476	0.9551	791.8	2.000	0.84	0.10
110	180	21.6	0.10	3.6	0.504	0.9716	824.2	2.000	0.81	0.09
110	180	21.9	0.10	3.6	0.504	0.9644	830.3	2.000	0.81	0.09
110	180	22.4	0.10	3.6	0.504	0.9528	840.4	2.000	0.80	0.09
110	180	22.3	0.10	3.6	0.504	0.9551	838.4	2.000	0.80	0.09
110	180	22.4	0.10	3.6	0.504	0.9528	840.4	2.000	0.80	0.09
115	187	21.5	0.10	3.74	0.523	0.974	854.1	2.000	0.79	0.09
115	187	21.6	0.10	3.74	0.523	0.9716	856.2	2.000	0.79	0.09
115	186	22.6	0.10	3.72	0.520	0.9482	872.7	2.000	0.78	0.09
115	186	23.0	0.10	3.72	0.520	0.939	881.2	2.000	0.77	0.09
120	200	23.0	0.10	4	0.560	0.939	947.6	2.000	0.73	0.08
120	200	23.0	0.10	4	0.560	0.939	947.6	2.000	0.73	0.08
120	200	22.7	0.10	4	0.560	0.9459	940.6	2.000	0.73	0.08
120	204	23.0	0.10	4.08	0.571	0.939	966.5	2.000	0.71	0.07
120	204	23.0	0.10	4.08	0.571	0.939	966.5	2.000	0.71	0.07
120	202	23.0	0.10	4.04	0.565	0.939	957.0	2.000	0.72	0.07
123	204	23.0	0.10	4.08	0.571	0.939	966.5	2.000	0.71	0.07
123	204	23.2	0.10	4.08	0.571	0.9346	971.1	1.996	0.71	0.07
123	205	23.3	0.10	4.1	0.574	0.9324	978.1	1.989	0.71	0.07
123	194	23.0	0.10	3.88	0.543	0.939	919.1	2.000	0.75	0.09
124	204	21.3	0.10	4.08	0.571	0.9788	927.2	2.000	0.74	0.08
124	204	21.5	0.10	4.08	0.571	0.974	931.8	2.000	0.74	0.08
124	204	21.5	0.10	4.08	0.571	0.974	931.8	2.000	0.74	0.08
124	200	22.8	0.10	4	0.560	0.9436	942.9	2.000	0.73	0.08
130	210	20.8	0.10	4.2	0.588	0.9908	942.9	2.000	0.73	0.07
130	210	21.0	0.10	4.2	0.588	0.986	947.5	2.000	0.73	0.07
130	210	21.0	0.10	4.2	0.588	0.986	947.5	2.000	0.73	0.07
130	212	21.0	0.10	4.24	0.593	0.986	956.5	2.000	0.72	0.07
148	224	20.6	0.10	4.48	0.627	0.9956	1000.9	1.967	0.69	0.08
148	224	20.7	0.10	4.48	0.627	0.9932	1003.3	1.964	0.69	0.08
148	222	20.7	0.10	4.44	0.621	0.9932	994.4	1.973	0.69	0.08
148	226	20.7	0.10	4.52	0.632	0.9932	1012.3	1.956	0.68	0.07
150	226	20.3	0.10	4.52	0.632	1.0028	1002.6	1.965	0.69	0.07
150	226	20.5	0.10	4.52	0.632	0.998	1007.4	1.960	0.69	0.07
150	226	20.5	0.10	4.52	0.632	0.998	1007.4	1.960	0.69	0.07
150	228	20.5	0.10	4.56	0.638	0.998	1016.4	1.952	0.68	0.07

Tabla 6.2 Diámetro 1.59 mm. Longitud 100 mm. L/D=62

Tiempo de	prueba:	<u>3 minutos</u>			Fecha:		/	<u> </u>		
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (l/h)	V (m/s)	vx10 ⁻⁶ (m²/s)	Re	α	ke	f
75	106	22	0.20	2.12	0.297	9.57E-07	493	2.00	1.74	0.10
75	105	23	0.20	2.1	0.294	9.55E-07	489	2.00	1.73	0.11
75	106	23	0.20	2.12	0.297	9.55E-07	494	2.00	1.74	0.10
75	106	23	0.20	2.12	0.297	9.55E-07	494	2.00	1.74	0.10
75	106	22	0.20	2.12	0.297	9.55E-07	494	2.00	1.74	0.10
77	106	22.0	0.20	2.12	0.297	9.55E-07	494	2.00	1.74	0.11
77	107	22	0.20	2.14	0.299	9.55E-07	498	2.00	1.74	0.10
77	106	23	0.20	2.12	0.297	9.55E-07	494	2.00	1.74	0.11
80	110	22	0.20	2.2	0.308	9.55E-07	512	2.00	1.75	0.10
80	110	22	0.20	2.2	0.308	9.55E-07	512	2.00	1.75	0.10
80	110	22	0.20	2.2	0.308	9.55E-07	512	2.00	1.75	0.10
80	111	23	0.20	2.22	0.311	9.55E-07	517	2.00	1.75	0.10
82	112	21	0.20	2.24	0.313	9.8E-07	508	2.00	1.75	0.10
82	112	21	0.20	2.24	0.313	9.8E-07	508	2.00	1.75	0.10
82	112	21	0.20	2.24	0.313	9.8E-07	508	2.00	1.75	0.10
82	112	23	0.20	2.24	0.313	9.55E-07	522	2.00	1.76	0.10
85	117	21	0.20	2.34	0.327	9.8E-07	531	2.00	1.76	0.09
85	116	21	0.20	2.32	0.325	9.8E-07	527	2.00	1.76	0.10
85	116	21	0.20	2.32	0.325	9.8E-07	527	2.00	1.76	0.10
85	116	23.0	0.20	2.32	0.325	9.55E-07	540	2.00	1.77	0.10
90	120	21	0.20	2.4	0.336	9.8E-07	545	2.00	1.77	0.09
90	120	21.0	0.20	2.4	0.336	9.8E-07	545	2.00	1.77	0.09
90	120	21	0.20	2.4	0.336	9.8E-07	545	2.00	1.77	0.09
90	120	23	0.20	2.4	0.336	9.55E-07	559	2.00	1.78	0.09
93	124	21	0.20	2.48	0.347	9.8E-07	563	2.00	1.78	0.09
93	124	21	0.20	2.48	0.347	9.8E-07	563	2.00	1.78	0.09
93	126	21	0.20	2.52	0.353	9.8E-07	572	2.00	1.79	0.09
93	128	23.0	0.20	2.56	0.358	9.55E-07	596	2.00	1.81	0.08
95	126	20	0.20	2.52	0.353	1E-06	560	2.00	1.78	0.09
95	127	21	0.20	2.54	0.355	9.8E-07	577	2.00	1.79	0.09
95	127	21	0.20	2.54	0.355	9.8E-07	577	2.00	1.79	0.09
95	130	23	0.20	2.6	0.364	9.35E-07	619	2.00	1.82	0.08
97	129	21	0.20	2.58	0.361	9.8E-07	586	2.00	1.80	0.09
97	130	21	0.20	2.6	0.364	9.8E-07	590	2.00	1.80	0.08
97	130	21	0.20	2.6	0.364	9.8E-07	590	2.00	1.80	0.08
97	132	23	0.20	2.64	0.369	9.55E-07	615	2.00	1.82	0.08
98	140	20.0	0.20	2.8	0.392	1.01E-06	617	2.00	1.82	0.07
98	138	20.0	0.20	2.76	0.386	1.01E-06	608	2.00	1.82	0.07
98	138	20	0.20	2.76	0.386	1.01E-06	609	2.00	1.82	0.07
98	142	24	0.20	2.84	0.397	9.28E-07	681	2.00	1.87	0.07

Tabla 6.3 Diámetro 1.59 mm. Longitud 200 mm. L/D = 126

Tiempo de	prueba:	<u>3 minutos</u>			Fecha:					
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (I/h)	V (m/s)	vx10 ⁻⁶ (m²/s)	Re	α	Ke	f
175	142	22.3	0.35	2.84	0.397	0.9551	661	2.000	0.93	0.0854
175	140	22.1	0.35	2.8	0.392	0.9597	649	2.000	0.94	0.0882
175	140	22.5	0.35	2.8	0.392	0.9505	655	2.000	0.93	0.0882
175	141	22.5	0.35	2.82	0.395	0.9505	660	2.000	0.93	0.0868
180	146	22.0	0.35	2.92	0.409	0.962	675	2.000	0.92	0.0828
180	146	22.0	0.35	2.92	0.409	0.962	675	2.000	0.92	0.0828
180	146	22.1	0.35	2.92	0.409	0.9597	677	2.000	0.92	0.0828
180	146	22.5	0.35	2.92	0.409	0.9505	683	2.000	0.91	0.0828
190	152	21.4	0.35	3.04	0.425	0.9764	693	2.000	0.91	0.0803
190	154	21.5	0.35	3.08	0.431	0.974	703	2.000	0.90	0.0780
190	152	21.7	0.35	3.04	0.425	0.9692	698	2.000	0.90	0.0803
190	154	22.5	0.35	3.08	0.431	0.9505	721	2.000	0.89	0.0780
195	153	21.2	0.35	3.06	0.428	0.9812	694	2.000	0.90	0.0815
195	154	21.2	0.35	3.08	0.431	0.9812	698	2.000	0.90	0.0803
195	154	21.2	0.35	3.08	0.431	0.9812	698	2.000	0.90	0.0803
195	158	22.5	0.35	3.16	0.442	0.9505	740	2.000	0.87	0.0758
205	158	20.9	0.35	3.16	0.442	0.9884	711	2.000	0.89	0.0803
205	160	21.0	0.35	3.2	0.448	0.986	722	2.000	0.89	0.0780
205	160	21.1	0.35	3.2	0.448	0.9836	724	2.000	0.88	0.0780
205	162	22.8	0.35	3.24	0.453	0.9436	764	2.000	0.86	0.0759
210	166	20.7	0.35	3.32	0.464	0.9932	744	2.000	0.87	0.0736
210	166	20.8	0.35	3.32	0.464	0.9908	745	2.000	0.87	0.0736
210	165	20.9	0.35	3.3	0.462	0.9884	743	2.000	0.87	0.0747
210	166	24.6	0.35	3.32	0.464	0.9032	818	2.000	0.82	0.0739
220	168	20.5	0.35	3.36	0.470	0.998	749	2.000	0.87	0.0756
220	168	20.6	0.35	3.36	0.470	0.9956	751	2.000	0.87	0.0756
220	168	20.6	0.35	3.36	0.470	0.9956	751	2.000	0.87	0.0756
220	172	24.5	0.35	3.44	0.481	0.9055	845	2.000	0.80	0.0719
223	172	20.4	0.35	3.44	0.481	1.0004	765	2.000	0.86	0.0728
223	174	20.5	0.35	3.48	0.487	0.998	776	2.000	0.85	0.0708
223	173	20.5	0.35	3.46	0.484	0.998	771	2.000	0.85	0.0718
223	174	24.5	0.35	3.48	0.487	0.9055	855	2.000	0.79	0.0711
225	175	20.2	0.35	3.5	0.490	1.0052	775	2.000	0.85	0.0706
225	176	20.2	0.35	3.52	0.492	1.0052	779	2.000	0.85	0.0697
225	175	20.3	0.35	3.5	0.490	1.0028	776	2.000	0.85	0.0706
225	175	20.4	0.35	3.5	0.490	1.0004	778	2.000	0.85	0.0706
230	178	20.1	0.35	3.56	0.498	1.0076	786	2.000	0.84	0.0697
230	177	20.2	0.35	3.54	0.495	1.0052	783	2.000	0.84	0.0706
230	176	20.2	0.35	3.52	0.492	1.0052	778.9	2.000	0.85	0.0715
230	177	24.5	0.35	3.54	0.495	0.9055	869.6	2.000	0.78	0.0709

Tabla 6.4 Diámetro 1.59 mm. Longitud 350 mm. L/D =220

Tiempo de j	prueba:	<u>3 minutos</u>			Fecha:					
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (l/h)	V (m/s)	vx10 ⁻⁶ (m²/s)	Re	α	ke	f
80	232	22.0	0.10	4.64	0.290	9.6E-07	717	1.902	2.12	0.09
80	234	22.1	0.10	4.68	0.292	9.6E-07	725	1.892	2.12	0.09
80	236	22.3	0.10	4.72	0.295	9.6E-07	734	1.880	2.12	0.09
80	234	22.6	0.10	4.68	0.292	9.5E-07	733	1.881	2.12	0.09
90	254	22.6	0.10	5.08	0.317	9.6E-07	783	1.826	2.10	0.08
90	256	22.6	0.10	5.12	0.320	9.6E-07	789	1.819	2.10	0.08
90	256	22.0	0.10	5.12	0.320	9.6E-07	791	1.817	2.10	0.08
90	256	23.0	0.10	5.12	0.320	9.4E-07	810	1.798	2.10	0.08
95	266	21.5	0.10	5.32	0.332	9.7E-07	812	1.796	2.10	0.08
95	268	21.6	0.10	5.36	0.335	9.7E-07	820	1.789	2.09	0.08
95	266	21.8	0.10	5.32	0.332	9.7E-07	818	1.791	2.09	0.08
95	268	23.2	0.10	5.36	0.335	9.3E-07	852	1.758	2.08	0.08
105	284	21.1	0.10	5.68	0.355	9.8E-07	858	1.753	2.08	0.07
105	285	21.3	0.10	5.7	0.356	9.8E-07	865	1.747	2.08	0.07
105	286	21.5	0.10	5.72	0.357	9.7E-07	873	1.741	2.08	0.07
105	284	23.2	0.10	5.68	0.355	9.3E-07	903	1.716	2.07	0.07
145	344	21.3	0.10	6.88	0.430	9.8E-07	1045	1.619	2.03	0.06
145	342	21.3	0.10	6.84	0.427	9.8E-07	1038	1.622	2.03	0.06
145	344	21.4	0.10	6.88	0.430	9.8E-07	1047	1.617	2.02	0.06
145	344	24.4	0.10	6.88	0.430	9.8E-07	1047	1.617	2.02	0.06
150	354	20.8	0.10	7.08	0.442	9.9E-07	1062	1.609	2.02	0.06
150	354	21.0	0.10	7.08	0.442	9.9E-07	1067	1.606	2.02	0.06
150	355	21.0	0.10	7.1	0.443	9.9E-07	1070	1.604	2.02	0.06
150	356	24.5	0.10	7.12	0.445	9.1E-07	1168	1.553	1.99	0.05
155	363	21.2	0.10	7.26	0.453	9.8E-07	1100	1.588	2.01	0.06
155	364	21.2	0.10	7.28	0.455	9.8E-07	1103	1.586	2.01	0.06
155	364	21.2	0.10	7.28	0.455	9.8E-07	1103	1.586	2.01	0.06
155	366	24.7	0.10	7.32	0.457	9E-07	1207	1.535	1.98	0.05
160	370	20.5	0.10	7.4	0.462	1E-06	1102	1.587	2.01	0.06
160	372	20.5	0.10	7.44	0.465	1E-06	1108	1.583	2.01	0.06
160	372	20.5	0.10	7.44	0.465	1E-06	1108	1.583	2.01	0.06
160	373	20.6	0.10	7.46	0.466	1E-06	1113	1.581	2.00	0.06
165	386	24.2	0.10	7.72	0.482	9.1E-07	1257	1.514	1.96	0.05
165	384	24.2	0.10	7.68	0.480	9.1E-07	1251	1.517	1.96	0.05
165	384	24.5	0.10	7.68	0.480	9.1E-07	1260	1.513	1.96	0.05
165	384	20.6	0.10	7.68	0.480	1E-06	1146	1.564	2.00	0.06
167	390	23.6	0.10	7.8	0.487	9.3E-07	1252	1.516	1.96	0.05
167	392	23.5	0.10	7.84	0.490	9.3E-07	1255	1.515	1.96	0.05
167	392	23.9	0.10	7.84	0.490	9.2E-07	1267	1.510	1.96	0.05
167	392	24.2	0.10	7.84	0.490	9.1E-07	1277	1.506	1.96	0.05

Tabla 6.5 Diámetro 2.38 mm. Longitud 100 mm. L/D =42

Tiempo de	prueba:	<u>3 minutos</u>			Fecha:		<u></u>			
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (l/h)	V (m/s)	vx10⁻⁵ (m²/s)	Re	α	Ke	f
45	126	21.0	0.20	2.52	0.157	9.86E-07	380	2.000	2.22	0.37
45	126	21.0	0.20	2.52	0.157	9.86E-07	380	2.000	2.22	0.37
45	124	21.0	0.20	2.48	0.155	9.86E-07	374	2.000	2.23	0.39
45	122	21.2	0.20	2.44	0.152	9.812E-07	370	2.000	2.23	0.40
60	162	20.8	0.20	3.24	0.202	9.908E-07	486	2.000	2.19	0.29
60	160	20.9	0.20	3.2	0.200	9.884E-07	481	2.000	2.19	0.30
60	156	21.0	0.20	3.12	0.195	9.86E-07	470	2.000	2.20	0.32
60	162	21.4	0.20	3.24	0.202	9.764E-07	493	2.000	2.19	0.29
75	183	21.2	0.20	3.66	0.229	9.932E-07	548	2.000	2.17	0.29
75	182	20.8	0.20	3.64	0.227	9.932E-07	545	2.000	2.18	0.29
75	182	20.9	0.20	3.64	0.227	9.908E-07	546	2.000	2.18	0.29
75	184	21.6	0.20	3.68	0.230	9.716E-07	563	2.000	2.17	0.28
85	198	20.4	0.20	3.96	0.247	1E-06	588	2.000	2.16	0.27
85	197	20.5	0.20	3.94	0.246	9.98E-07	587	2.000	2.16	0.28
85	198	20.6	0.20	3.96	0.247	9.956E-07	591	2.000	2.16	0.27
85	198	20.5	0.20	3.96	0.247	9.98E-07	590	2.000	2.16	0.27
100	225	20.5	0.20	4.5	0.281	9.98E-07	670	2.000	2.14	0.25
100	222	20.5	0.20	4.44	0.277	9.98E-07	661	2.000	2.14	0.25
100	224	20.4	0.20	4.48	0.280	1E-06	665	2.000	2.14	0.25
100	224	20.5	0.20	4.48	0.280	9.98E-07	667	2.000	2.14	0.25
115	248	20.2	0.20	4.96	0.310	1.005E-06	733	2.000	2.12	0.23
115	250	20.3	0.20	5	0.312	1.003E-06	741	2.000	2.12	0.23
115	250	20.4	0.20	5	0.312	1E-06	743	2.000	2.12	0.23
115	249	20.6	0.20	4.98	0.311	9.958E-07	743	2.000	2.12	0.23
125	266	20.1	0.20	5.32	0.332	1.008E-06	785	2.000	2.10	0.22
125	264	20.2	0.20	5.28	0.330	1.005E-06	781	2.000	2.10	0.22
125	268	20.2	0.20	5.36	0.335	1.005E-06	792	2.000	2.10	0.21
125	268	20.4	0.20	5.36	0.335	1E-06	796	2.000	2.10	0.21
127	278	23.4	0.20	5.56	0.347	9.302E-07	888	2.000	2.07	0.20
127	280	23.7	0.20	5.6	0.350	9.236E-07	901	2.000	2.07	0.19
127	281	23.6	0.20	5.62	0.351	9.258E-07	902	2.000	2.07	0.19
127	280	23.6	0.20	5.6	0.350	1E-06	832	2.000	2.09	0.19
140	300	23.0	0.20	6	0.375	9.39E-07	950	2.000	2.05	0.18
140	302	23.0	0.20	6.04	0.377	9.39E-07	956	2.000	2.05	0.18
140	302	23.0	0.20	6.04	0.377	9.39E-07	956	2.000	2.05	0.18
140	303	22.7	0.20	6.06	0.378	9.459E-07	952	2.000	2.05	0.18
160	328	20.1	0.20	6.56	0.410	9.528E-07	1023	2.000	2.03	0.17
160	330	20.2	0.20	6.6	0.412	9.436E-07	1039	2.000	2.03	0.17
160	328	20.2	0.20	6.56	0.410	9.39E-07	1038	2.000	2.03	0.17
160	329	20.4	0.20	6.58	0.411	9.28E-07	1054	2.000	2.02	0.17

Tabla 6.6 Diámetro 2.38 mm. Longitud 200 mm. L/D =84

Tiempo de	prueba:	<u>3 minutos</u>			Fecha:					
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (l/h)	V (m/s)	vx10 ⁻⁶ (m²/s)	Re	α	Ke	f con k
70	119	20.4	0.35	2.38	0.149	1E-06	354	2.000	2.23	0.18
70	119	20.4	0.35	2.38	0.149	1E-06	354	2.000	2.23	0.18
70	119	20.5	0.35	2.38	0.149	9.98E-07	354	2.000	2.23	0.18
70	119	20.5	0.35	2.38	0.149	9.98E-07	354	2.000	2.23	0.18
80	124	20.4	0.35	2.48	0.155	1E-06	368	2.000	2.23	0.17
80	127	20.2	0.35	2.54	0.159	1.01E-06	376	2.000	2.23	0.17
80	128	20.2	0.35	2.56	0.160	1.01E-06	378	2.000	2.23	0.17
80	129	20.7	0.35	2.58	0.161	9.93E-07	386	2.000	2.22	0.17
87	137	20.1	0.35	2.74	0.171	1.01E-06	404	2.000	2.22	0.16
87	138	20.1	0.35	2.76	0.172	1.01E-06	407	2.000	2.22	0.16
87	138	20.2	0.35	2.76	0.172	1.01E-06	408	2.000	2.22	0.16
87	140	21.3	0.35	2.8	0.175	9.79E-07	425	2.000	2.21	0.15
105	164	20.0	0.35	3.28	0.205	1.01E-06	483	2.000	2.19	0.13
105	164	20.0	0.35	3.28	0.205	1.01E-06	483	2.000	2.19	0.13
105	162	20.0	0.35	3.24	0.202	1.01E-06	477	2.000	2.20	0.13
105	164	22.0	0.35	3.28	0.205	9.62E-07	507	2.000	2.19	0.13
115	174	22.8	0.35	3.48	0.217	9.44E-07	548	2.000	2.17	0.12
115	180	23.0	0.35	3.6	0.225	9.39E-07	570	2.000	2.17	0.11
115	182	22.8	0.35	3.64	0.227	9.44E-07	573	2.000	2.17	0.11
115	188	22.4	0.35	3.76	0.235	9.53E-07	586	2.000	2.16	0.11
125	198	22.4	0.35	3.96	0.247	9.39E-07	627	2.000	2.15	0.10
125	197	23.0	0.35	3.94	0.246	9.39E-07	624	2.000	2.15	0.10
125	200	23.0	0.35	4	0.250	9.39E-07	633	2.000	2.15	0.10
125	198	22.8	0.35	3.96	0.247	9.48E-07	621	2.000	2.15	0.10
140	217	22.5	0.35	4.34	0.271	9.51E-07	679	2.000	2.14	0.09
140	220	22.5	0.35	4.4	0.275	9.51E-07	688	2.000	2.13	0.09
140	219	22.8	0.35	4.38	0.273	9.44E-07	690	2.000	2.13	0.09
140	218	22.8	0.35	4.36	0.272	9.44E-07	687	2.000	2.13	0.09
147	222	22.0	0.35	4.44	0.277	9.62E-07	686	2.000	2.13	0.09
147	226	22.2	0.35	4.52	0.282	9.57E-07	702	2.000	2.13	0.09
147	230	22.2	0.35	4.6	0.287	9.57E-07	714	2.000	2.12	0.09
147	235	22.3	0.35	4.7	0.293	9.55E-07	731	2.000	2.12	0.09
150	252	21.9	0.35	5.04	0.315	9.64E-07	777	2.000	2.11	0.08
150	248	22.0	0.35	4.96	0.310	9.62E-07	766	2.000	2.11	0.08
150	250	22.0	0.35	5	0.312	9.62E-07	772	2.000	2.11	0.08
150	249	22.0	0.35	4.98	0.311	9.96E-07	743	2.000	2.12	0.09
155	265	21.7	0.35	5.3	0.331	9.69E-07	813	2.000	2.10	0.08
155	270	21.7	0.35	5.4	0.337	9.69E-07	828	2.000	2.09	0.08
155	267	21.8	0.35	5.34	0.333	9.67E-07	821	2.000	2.09	0.08
155	271	22.5	0.35	5.42	0.338	9.51E-07	847	2.000	2.08	0.08

Tabla 6.7 Diámetro 2.38 mm. Longitud 350 mm. L/D =147

Tiempo de	prueba:	<u>3 minutos</u>			Fecha:					
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (l/h)	V (m/s)	vx10 ⁻⁶ (m²/s)	Re	α	k e	f
40	260	23.4	0.10	5.2	0.182	9E-07	623	1.778	10.76	0.35
40	265	23.5	0.10	5.3	0.186	9E-07	636	1.762	10.64	0.33
40	266	23.6	0.10	5.32	0.187	9E-07	640	1.757	10.61	0.32
40	266	25.6	0.10	5.32	0.187	9E-07	673	1.720	10.31	0.33
50	310	23	0.10	6.2	0.218	9E-07	736	1.659	9.76	0.30
50	308	23	0.10	6.16	0.216	9E-07	731	1.663	9.80	0.30
50	308	22.2	0.10	6.16	0.216	1E-06	717	1.676	9.93	0.30
50	320	25.5	0.10	6.4	0.225	9E-07	808	1.600	9.11	0.28
60	330	21	0.10	6.6	0.232	1E-06	746	1.650	9.67	0.34
60	350	21.4	0.10	7	0.246	1E-06	799	1.607	9.20	0.28
60	330	21.8	0.10	6.6	0.232	1E-06	760	1.637	9.54	0.34
60	340	25.6	0.10	6.8	0.239	9E-07	861	1.563	8.64	0.33
70	364	22.5	0.10	7.28	0.255	1E-06	853	1.568	8.71	0.34
70	364	22.7	0.10	7.28	0.255	9E-07	857	1.565	8.67	0.34
70	364	22.6	0.10	7.28	0.255	9E-07	855	1.567	8.69	0.34
70	364	25.4	0.10	7.28	0.255	9E-07	917	1.529	8.15	0.36
90	380	22	0.10	7.6	0.267	1E-06	880	1.551	8.47	0.47
90	382	22.4	0.10	7.64	0.268	1E-06	893	1.542	8.35	0.47
90	380	22.4	0.10	7.6	0.267	1E-06	889	1.545	8.40	0.47
90	380	25.5	0.10	7.6	0.267	9E-07	959	1.505	7.77	0.49
130	412	24	0.10	8.24	0.289	9E-07	1001	1.484	7.40	0.69
130	420	25	0.10	8.4	0.295	9E-07	1047	1.463	6.99	0.66
130	420	25	0.10	8.4	0.295	9E-07	1047	1.463	6.99	0.66
130	420	25	0.10	8.4	0.295	9E-07	1047	1.463	6.99	0.66
150	460	24	0.10	9.2	0.323	9E-07	1118	1.434	6.36	0.65
150	469	24.4	0.10	9.38	0.329	9E-07	1151	1.421	6.06	0.62
150	466	24.5	0.10	9.32	0.327	9E-07	1147	1.423	6.10	0.63
150	464	21	0.10	9.28	0.326	1E-06	1048	1.462	6.97	0.61
170	504	24.8	0.10	10.08	0.354	9E-07	1250	1.388	5.18	0.64
170	500	25	0.10	10	0.351	9E-07	1246	1.389	5.21	0.65
170	502	25	0.10	10.04	0.352	9E-07	1251	1.387	5.17	0.64
170	512	22.5	0.10	10.24	0.359	1E-06	1200	1.404	5.62	0.60
180	538	24.5	0.10	10.76	0.378	9E-07	1324	1.366	4.52	0.60
180	532	24.6	0.10	10.64	0.373	1E-06	1244	1.390	5.23	0.59
180	532	25	0.10	10.64	0.373	9E-07	1326	1.365	4.50	0.62
180	540	22.4	0.10	10.8	0.379	1E-06	1263	1.384	5.07	0.58
190	560	22.2	0.10	11.2	0.393	1E-06	1303	1.372	4.71	0.57
190	570	22.4	0.10	11.4	0.400	1E-06	1333	1.364	4.44	0.55
190	562	22.6	0.10	11.24	0.394	9E-07	1320	1.367	4.55	0.57
190	564	21.8	0.10	11.28	0.396	1E-06	1300	1.373	4.74	0.56

Tiempo d	e prueba:	3 minutos			Fecha:		//_			
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (l/h)	V (m/s)	vx10 ⁻⁶ (m²/s)	Re	α	ke	f
40	156	21.6	0.20	3.12	0.109	9.7E-07	358	2.000	13.12	0.80
40	154	21.5	0.20	3.08	0.108	9.7E-07	352	2.000	13.17	0.83
40	154	21.5	0.20	3.08	0.108	9.7E-07	352	2.000	13.17	0.83
40	154	24.4	0.20	3.08	0.108	9.1E-07	378	2.000	12.94	0.83
70	160	24.6	0.20	3.2	0.112	9.4E-07	380	2.000	12.93	1.49
70	164	24.6	0.20	3.28	0.115	9.4E-07	389	2.000	12.84	1.41
70	162	24.6	0.20	3.24	0.114	9.4E-07	384	2.000	12.88	1.45
70	164	24	0.20	3.28	0.115	9.2E-07	398	2.000	12.76	1.41
70	166	24	0.20	3.32	0.116	9.2E-07	403	2.000	12.71	1.37
70	164	24	0.20	3.28	0.115	9.2E-07	398	2.000	12.76	1.41
70	166	24.6	0.20	3.32	0.116	9.4E-07	394	2.000	12.80	1.37
70	170	24	0.20	3.4	0.119	9.2E-07	413	2.000	12.63	1.30
80	190	21.4	0.20	3.8	0.133	9.8E-07	434	2.000	12.45	1.17
80	192	21.4	0.20	3.84	0.135	9.8E-07	438	2.000	12.40	1.14
80	190	21.5	0.20	3.8	0.133	9.7E-07	435	2.000	12.44	1.17
80	190	24	0.20	3.8	0.133	9.2E-07	462	2.000	12.20	1.18
90	206	23.4	0.20	4.12	0.145	9.3E-07	493	2.000	11.91	1.12
90	208	23.8	0.20	4.16	0.146	9.2E-07	503	2.000	11.83	1.10
90	206	23.7	0.20	4.12	0.145	9.2E-07	497	2.000	11.88	1.12
90	208	24	0.20	4.16	0.146	9.2E-07	505	2.000	11.81	1.10
100	238	24.8	0.20	4.76	0.167	9E-07	590	2.000	11.05	0.91
100	240	25	0.20	4.8	0.168	8.9E-07	598	2.000	10.98	0.89
100	238	24.8	0.20	4.76	0.167	9E-07	590	2.000	11.05	0.91
100	240	23.8	0.20	4.8	0.168	9.2E-07	580	2.000	11.14	0.89
110	252	22.6	0.20	5.04	0.177	9.5E-07	592	2.000	11.03	0.89
110	254	22.6	0.20	5.08	0.178	9.5E-07	597	2.000	10.99	0.87
110	252	22.8	0.20	5.04	0.177	9.4E-07	595	2.000	11.01	0.89
110	250	23.5	0.20	5	0.175	9.3E-07	600	2.000	10.96	0.91
150	312	22.1	0.20	6.24	0.219	9.6E-07	724	2.000	9.86	0.79
150	314	22.4	0.20	6.28	0.220	9.5E-07	734	2.000	9.77	0.77
150	318	22.6	0.20	6.36	0.223	9.5E-07	747	2.000	9.65	0.75
150	320	23.3	0.20	6.4	0.225	9.3E-07	765	2.000	9.50	0.74
230	425	21.9	0.20	8.5	0.298	9.6E-07	982	1.836	7.57	0.66
230	432	22	0.20	8.64	0.303	9.6E-07	1000	1.820	7.40	0.63
230	430	22.1	0.20	8.6	0.302	9.6E-07	998	1.822	7.42	0.64
230	430	23.2	0.20	8.6	0.302	9.3E-07	1025	1.800	7.18	0.64
330	560	26	0.20	11.2	0.393	8.7E-07	1427	1.575	3.60	0.58
330	564	26	0.20	11.28	0.396	8.7E-07	1438	1.571	3.51	0.57
330	566	26.1	0.20	11.32	0.397	8.7E-07	1448	1.567	3.42	0.57
330	560	23	0.20	11.2	0.393	9.4E-07	1329	1.618	4.48	0.57

Tabla 6.9 Diámetro 3.175 mm. Longitud 200 mm. L/D =63

Tiempo o	le prueba:	<u>3 minutos</u>			Fecha:			I		
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (l/h)	V (m/s)	vx10 ⁻⁶ (m²/s)	Re	α	Ke	f
15	134	23.2	0.35	2.68	0.094	9.35E-07	319	2.000	13.46	0.16
15	132	23.6	0.35	2.64	0.093	9.26E-07	318	2.000	13.48	0.17
15	129	23.9	0.35	2.58	0.091	9.19E-07	313	2.000	13.52	0.18
15	130	23.9	0.35	2.6	0.091	9.19E-07	315	2.000	13.50	0.18
27	232	24.9	0.35	4.64	0.163	8.96E-07	577	2.000	11.17	0.06
27	224	25	0.35	4.48	0.157	8.94E-07	558	2.000	11.34	0.07
27	226	25	0.35	4.52	0.159	8.94E-07	563	2.000	11.29	0.07
27	230	25	0.35	4.6	0.161	8.94E-07	573	2.000	11.20	0.06
30	240	23	0.35	4.8	0.168	9.39E-07	569	2.000	11.24	0.07
30	242	23.1	0.35	4.84	0.170	9.37E-07	576	2.000	11.18	0.07
30	236	23.2	0.35	4.72	0.166	9.35E-07	563	2.000	11.30	0.07
30	250	23.2	0.35	5	0.175	9.35E-07	596	2.000	11.00	0.06
35	310	25.5	0.35	6.2	0.218	8.83E-07	783	2.000	9.34	0.03
35	308	25.8	0.35	6.16	0.216	8.76E-07	784	2.000	9.33	0.03
35	320	25.8	0.35	6.4	0.225	8.76E-07	814	2.000	9.06	0.02
35	312	25.8	0.35	6.24	0.219	8.76E-07	794	2.000	9.24	0.03
43	356	22.5	0.35	7.12	0.250	9.51E-07	834	2.000	8.88	0.02
43	340	22	0.35	6.8	0.239	9.62E-07	787	2.000	9.30	0.03
43	390	22.5	0.35	7.8	0.274	9.51E-07	914	2.000	8.17	0.01
43	360	22.5	0.35	7.2	0.253	9.51E-07	844	2.000	8.79	0.02
80	522	25.5	0.35	10.44	0.366	8.83E-07	1318	2.000	4.58	0.05
80	532	25.5	0.35	10.64	0.373	8.83E-07	1343	2.000	4.35	0.04
80	536	25.9	0.35	10.72	0.376	8.73E-07	1367	2.000	4.13	0.04
80	540	26	0.35	10.8	0.379	8.74E-07	1376	2.000	4.05	0.04
85	540	25.4	0.35	10.8	0.379	8.85E-07	1360	2.000	4.20	0.05
85	550	25.4	0.35	11	0.386	8.85E-07	1385	2.000	3.98	0.05
85	546	25.5	0.35	10.92	0.383	8.83E-07	1378	2.000	4.04	0.05
85	528	25.5	0.35	10.56	0.370	8.83E-07	1333	2.000	4.44	0.05
89	560	21.6	0.35	11.2	0.393	9.72E-07	1284	2.000	4.88	0.04
89	548	21.7	0.35	10.96	0.385	9.69E-07	1260	2.000	5.09	0.04
89	550	22.2	0.35	11	0.386	9.57E-07	1280	2.000	4.91	0.04
89	550	22.2	0.35	11	0.386	9.57E-07	1280	2.000	4.91	0.04
113	586	24.6	0.35	11.72	0.411	9.03E-07	1445	2.000	3.44	0.07
113	598	24.8	0.35	11.96	0.420	8.99E-07	1483	2.000	3.11	0.07
113	576	25	0.35	11.52	0.404	8.94E-07	1435	2.000	3.53	0.07
113	576	25	0.35	11.52	0.404	8.94E-07	1435	2.000	3.53	0.07
130	650	23.9	0.35	13	0.456	9.19E-07	1575	2.000	2.28	0.07
130	654	24	0.35	13.08	0.459	9.17E-07	1589	2.000	2.16	0.07
130	622	24.5	0.35	12.44	0.436	9.06E-07	1530	2.000	2.68	0.08
130	622	24.5	0.35	12.44	0.436	9.06E-07	1530	2.000	2.68	0.08

Tabla 6.10 Diámetro 3.175 mm. Longitud 350 mm. L/D = 110

Tabla 6.11	Diámetro 4.76	mm. Longitud	100 mm.	L/D =21
------------	---------------	--------------	---------	---------

Tiempo o	le prueba:	<u>3 minutos</u>			Fecha:					
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (l/h)	V (m/s)	vx10 ⁻⁶ (m²/s)	Re	α	Ke	f
2	134	20.0	0.10	2.68	0.042	1E-06	197	2.000	14.55	0.28
2	132	20.3	0.10	2.64	0.041	1E-06	196	2.000	14.56	0.31
2	130	20.4	0.10	2.6	0.041	1E-06	192	2.000	14.59	0.34
2	130	20	0.10	2.6	0.041	1E-06	191	2.000	14.60	0.34
3	170	20	0.10	3.4	0.053	1E-06	250	2.000	14.08	0.23
3	172	20	0.10	3.44	0.054	1E-06	253	2.000	14.05	0.21
3	170	20	0.10	3.4	0.053	1E-06	250	2.000	14.08	0.23
3	170	20	0.10	3.4	0.053	1E-06	250	2.000	14.08	0.23
4	206	20	0.10	4.12	0.064	1E-06	303	2.000	13.61	0.16
4	208	20	0.10	4.16	0.065	1E-06	306	2.000	13.58	0.14
4	208	20	0.10	4.16	0.065	1E-06	306	2.000	13.58	0.14
4	206	20	0.10	4.12	0.064	1E-06	303	2.000	13.61	0.16
5	250	22.1	0.10	5	0.078	9.6E-07	387	1.837	12.86	0.07
5	254	22.1	0.10	5.08	0.079	9.6E-07	393	1.824	12.80	0.05
5	252	22	0.10	5.04	0.079	9.6E-07	389	1.832	12.84	0.06
5	254	22.3	0.10	5.08	0.079	9.6E-07	395	1.820	12.79	0.05
6	286	22	0.10	5.72	0.089	9.6E-07	442	1.733	12.37	0.03
6	288	22	0.10	5.76	0.090	9.6E-07	445	1.728	12.34	0.02
6	286	22	0.10	5.72	0.089	9.6E-07	442	1.733	12.37	0.03
6	288	22.2	0.10	5.76	0.090	9.6E-07	447	1.725	12.33	0.02
7	304	21.9	0.10	6.08	0.095	9.6E-07	468	1.691	12.13	0.07
7	301	22.0	0.10	6.02	0.094	9.6E-07	465	1.697	12.17	0.08
7	306	22.2	0.10	6.12	0.096	9.6E-07	475	1.682	12.08	0.06
7	306	19.8	0.10	6.12	0.096	1E-06	448	1.723	12.32	0.05
8	318	21.5	0.10	6.36	0.099	9.7E-07	485	1.668	11.99	0.11
8	314	21.6	0.10	6.28	0.098	9.7E-07	480	1.674	12.03	0.12
8	316	21.7	0.10	6.32	0.099	9.7E-07	485	1.668	11.99	0.12
8	318	21.7	0.10	6.36	0.099	9.7E-07	488	1.664	11.96	0.11
9	324	21.5	0.10	6.48	0.101	9.7E-07	494	1.655	11.90	0.18
9	330	21.5	0.10	6.6	0.103	9.7E-07	503	1.643	11.82	0.15
9	328	21.6	0.10	6.56	0.102	9.7E-07	502	1.646	11.84	0.16
9	326	21.5	0.10	6.52	0.102	9.7E-07	497	1.651	11.88	0.17
10	348	21.1	0.10	6.96	0.109	9.8E-07	526	1.616	11.62	0.16
10	344	21.1	0.10	6.88	0.107	9.8E-07	520	1.623	11.68	0.18
10	344	21.2	0.10	6.88	0.107	9.8E-07	521	1.622	11.67	0.18
10	346	21.6	0.10	6.92	0.108	9.7E-07	529	1.612	11.59	0.17
11	363	20.6	0.10	7.26	0.113	1E-06	542	1.598	11.48	0.18
11	362	20.8	0.10	7.24	0.113	9.9E-07	543	1.597	11.47	0.18
11	360	20.9	0.10	7.2	0.112	9.9E-07	541	1.598	11.49	0.19
11	360	21	0.10	7.2	0.112	9.9E-07	543	1.597	11.48	0.19

Tiempo d	de prueba:	<u>3 minutos</u>			Fecha:					
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (l/h)	V (m/s)	vx10 ⁻⁶ (m²/s)	Re	α	Ke	f
2	120	21.0	0.20	2.4	0.037	9.86E-07	181	2.000	14.69	0.27
2	120	21.0	0.20	2.4	0.037	9.86E-07	181	2.000	14.69	0.27
2	122	21.0	0.20	2.44	0.038	9.86E-07	184	2.000	14.67	0.25
2	122	21.2	0.20	2.44	0.038	9.81E-07	185	2.000	14.66	0.25
3	162	22.8	0.20	3.24	0.051	9.44E-07	255	2.000	14.03	0.17
3	160	22.7	0.20	3.2	0.050	9.46E-07	251	2.000	14.07	0.18
3	160	22.7	0.20	3.2	0.050	9.41E-07	253	2.000	14.06	0.18
3	162	23	0.20	3.24	0.051	9.39E-07	256	2.000	14.02	0.17
3	164	22.4	0.20	3.28	0.051	9.53E-07	256	2.000	14.03	0.15
5	202	22.5	0.20	4.04	0.063	9.51E-07	316	2.000	13.49	0.22
5	244	22.5	0.20	4.88	0.076	9.51E-07	381	2.000	12.91	0.05
5	243	22.6	0.20	4.86	0.076	9.48E-07	381	2.000	12.91	0.05
6	288	20.4	0.20	5.76	0.090	1E-06	426	2.000	12.51	0.00
6	286	22.8	0.20	5.72	0.089	9.44E-07	450	2.000	12.30	0.01
6	285	22.8	0.20	5.7	0.089	9.44E-07	449	2.000	12.31	0.01
6	286	22.8	0.20	5.72	0.089	9.44E-07	450	2.000	12.30	0.01
6	284	19.8	0.20	5.68	0.089	1.02E-06	416	2.000	12.60	0.01
7	302	21.9	0.20	6.04	0.094	9.64E-07	465	2.000	12.16	0.03
7	302	22	0.20	6.04	0.094	9.62E-07	467	2.000	12.15	0.03
7	304	22.1	0.20	6.08	0.095	9.6E-07	471	2.000	12.11	0.03
7	304	22.3	0.20	6.08	0.095	9.55E-07	473	2.000	12.09	0.03
8	308	21.8	0.20	6.16	0.096	9.67E-07	473	2.000	12.09	0.07
8	306	21.9	0.20	6.12	0.096	9.64E-07	472	2.000	12.11	0.07
8	308	22	0.20	6.16	0.096	9.62E-07	476	2.000	12.07	0.07
8	305	22.1	0.20	6.1	0.095	9.6E-07	472	2.000	12.10	0.08
9	310	21.5	0.20	6.2	0.097	9.74E-07	473	2.000	12.09	0.11
9	310	21.6	0.20	6.2	0.097	9.72E-07	474	2.000	12.08	0.11
9	312	21.7	0.20	6.24	0.097	9.69E-07	478	2.000	12.05	0.11
9	314	21.8	0.20	6.28	0.098	9.67E-07	483	2.000	12.01	0.10
10	320	21.4	0.20	6.4	0.100	9.76E-07	487	2.000	11.97	0.13
10	322	21.5	0.20	6.44	0.101	9.74E-07	491	2.000	11.93	0.13
10	324	21.6	0.20	6.48	0.101	9.72E-07	496	2.000	11.89	0.13
10	322	21.8	0.20	6.44	0.101	9.67E-07	495	2.000	11.90	0.13
12	324	21.0	0.20	6.48	0.101	9.86E-07	488	2.000	11.96	0.21
12	324	21.0	0.20	6.48	0.101	9.86E-07	488	2.000	11.96	0.21
12	324	21.3	0.20	6.48	0.101	9.79E-07	492	2.000	11.93	0.22
12	328	21.4	0.20	6.56	0.102	9.76E-07	499	2.000	11.86	0.20
13	335	22.8	0.20	6.7	0.105	9.44E-07	528	2.000	11.61	0.23
13	334	23.0	0.20	6.68	0.104	9.39E-07	529	2.000	11.60	0.23
13	334	23.5	0.20	6.68	0.104	9.28E-07	535	2.000	11.54	0.24

Tabla 6.12 Diámetro 4.76 mm. Longitud 200 mm. L/D =42

Tiempo d	de prueba:	<u>3 minutos</u>			Fecha:					
Δh (mm)	Volumen (ml)	Temperatura (°C)	Longitud del emisor (m)	Q (l/h)	V (m/s)	vx10 ⁻⁶ (m²/s)	Re	α	Ke	f
4	116	21.7	0.35	2.32	0.036	9.692E-07	178	2.000	14.72	0.59
4	118	21.7	0.35	2.36	0.037	9.692E-07	181	2.000	14.69	0.56
4	118	21.7	0.35	2.36	0.037	9.692E-07	181	2.000	14.69	0.56
4	117	21.9	0.35	2.34	0.037	9.644E-07	180	2.000	14.70	0.57
6	160	21.5	0.35	3.2	0.050	9.74E-07	244	2.000	14.13	0.42
6	160	21.5	0.35	3.2	0.050	9.74E-07	244	2.000	14.13	0.42
6	160	21.7	0.35	3.2	0.050	9.692E-07	245	2.000	14.12	0.42
6	160	21.7	0.35	3.2	0.050	9.692E-07	245	2.000	14.12	0.42
7	178	22	0.35	3.56	0.056	9.62E-07	275	2.000	13.86	0.39
7	178	22	0.35	3.56	0.056	9.62E-07	275	2.000	13.86	0.39
7	177	22.1	0.35	3.54	0.055	9.597E-07	274	2.000	13.86	0.40
7	179	22.1	0.35	3.58	0.056	9.597E-07	277	2.000	13.84	0.38
8	196	22.0	0.35	3.92	0.061	9.62E-07	303	2.000	13.61	0.36
8	198	21.8	0.35	3.96	0.062	9.668E-07	304	2.000	13.60	0.35
8	196	21.8	0.35	3.92	0.061	9.668E-07	301	2.000	13.62	0.36
8	196	21.9	0.35	3.92	0.061	9.644E-07	302	2.000	13.62	0.36
9	212	21.4	0.35	4.24	0.066	9.674E-07	326	2.000	13.41	0.34
9	214	21.4	0.35	4.28	0.067	9.674E-07	329	2.000	13.38	0.33
9	214	21.5	0.35	4.28	0.067	9.74E-07	327	2.000	13.40	0.33
9	215	21.4	0.35	4.3	0.067	9.674E-07	330	2.000	13.36	0.32
10	232	21.3	0.35	4.64	0.072	9.788E-07	352	2.000	13.17	0.30
10	234	21.3	0.35	4.68	0.073	9.788E-07	355	2.000	13.14	0.29
10	234	21.4	0.35	4.68	0.073	9.674E-07	359	2.000	13.10	0.29
10	234	21.5	0.35	4.68	0.073	9.74E-07	357	2.000	13.13	0.29
12	266	20.8	0.35	5.32	0.083	9.908E-07	399	2.000	12.75	0.26
12	266	20.8	0.35	5.32	0.083	9.908E-07	399	2.000	12.75	0.26
12	268	20.9	0.35	5.36	0.084	9.884E-07	403	2.000	12.72	0.26
12	268	21	0.35	5.36	0.084	9.86E-07	404	2.000	12.71	0.26
14	294	20.5	0.35	5.88	0.092	9.98E-07	438	2.000	12.41	0.25
14	294	20.5	0.35	5.88	0.092	9.98E-07	438	2.000	12.41	0.25
14	295	20.5	0.35	5.9	0.092	9.98E-07	439	2.000	12.39	0.24
14	295	20.8	0.35	5.9	0.092	9.908E-07	442	2.000	12.37	0.24
15	310	20	0.35	6.2	0.097	1.01E-06	456	2.000	12.24	0.23
15	311	20.0	0.35	6.22	0.097	1.01E-06	458	2.000	12.23	0.23
15	311	20.0	0.35	6.22	0.097	1.01E-06	458	2.000	12.23	0.23
15	312	20.2	0.35	6.24	0.097	1.005E-06	461	2.000	12.20	0.23
16	338	20	0.35	6.76	0.106	1.01E-06	497	2.000	11.88	0.19
16	336	21.4	0.35	6.72	0.105	1.01E-06	494	2.000	11.90	0.20
16	336	20.8	0.35	6.72	0.105	1.01E-06	494	2.000	11.90	0.20

Tabla 6.13 Diámetro 4.76 mm. Longitud 350 mm. L/D =73

7.-PROCESAMIENTO Y PRESENTACIÓN DE RESULTADOS

7.1 Obtención de los coeficientes de entrada

Con las fórmulas del capítulo 4 y los datos experimentales y las variables mostrados en la Tabla 6.1, obtenidos con tubos muy cortos -con una longitud del orden del diámetro del tubito- se hizo lo siguiente:

Se aplicó la ecuación 4.1, donde la f(L/D) se estimó con el método propuesto por Langhaar y graficado en Hansen (1971) Fig. 11.9 (a), página 473, que se muestra en la Figura 7.1.

Figura 7.1 f(L/D) versus (L/D)Re⁻¹, para un flujo laminar en la región de entrada en una tubería circular.

Y el coeficiente α con la ecuación 4.5, el cual varió muy poco, entre 1.01 y 1.02, en todo el rango de números de Reynolds ensayado, operaciones que se muestran en la tabla 6.1.

En las Figuras 7.2 a 7.4 se muestran los resultados obtenidos de esta manera, graficados contra el número de Reynolds respectivo, así como la ecuación lineal que los representa.

Figura 7.2.- Coeficiente de entrada Ke versus número de Reynolds D=4.76 y 3.175 mm.

Figura 7.3.- Coeficiente de entrada Ke versus número de Reynolds D= 2.38 mm.

Figura 7.4.- Coeficiente de entrada Ke versus número de Reynolds D= 1.59 mm.

7.2 Obtención del coeficiente de pérdidas distribuidas

Una vez conocido el coeficiente de pérdidas por entrada o más bien por <u>borde</u> del conducto, se aplicó la ecuación 4.1 a ocho de los doce tubos ensayados y se encontraron los resultados mostrados en la Figura 7.5, donde la recta se encontró usando el valor de la f dado por la ecuación de Hagen-Poiseuille, ecuación 4.2.

Figura 7.5.- f(L/D) versus (L/D)Re⁻¹ para diferentes diámetros y longitudes de ocho ensayos.

En cambio, para cuatro de los doce ensayos el coeficiente de pérdidas no siguió la tendencia de Hagen-Poiseuille, lo que posiblemente se debe al efecto mencionado por Panton (1997) pags. 359 y 360, de que para números de Reynolds moderados al cambiar este número puede cambiar radicalmente el patrón de escurrimiento.

Como este comportamiento también es de importancia, en la Figura 7.6 se muestran los puntos experimentales obtenidos en estos ensayos, graficados con las mismas variables adimensionales utilizadas en la Figura 7.5.

Figura 7.6.- f(L/D) versus (L/D)Re⁻¹ para diferentes diámetros y longitudes de cuatro ensayos.

7.3.- Coeficientes de fricción de los diferentes L/D

Finalmente, y para efectos prácticos, en las Figuras 7.7 a la 7.18 se muestran los coeficientes de fricción totales para las diferentes tuberías ensayadas versus el número de Reynolds.

Figura 7.7.- Coeficiente de fricción f versus número de Reynolds (D=1.59 mm, L=100 mm).

Figura 7.8.- Coeficiente de fricción f versus número de Reynolds. (D=1.59 mm, L=200 mm)

Figura 7.9.- Coeficiente de fricción f versus número de Reynolds. (D=1.59 mm, L=350 mm)

Figura 7.10.- Coeficiente de fricción f versus número de Reynolds. (D=2.38 mm, L=100 mm)

Figura 7.11.- Coeficiente de fricción f versus número de Reynolds. (D=2.38 mm, L=200 mm)

Figura 7.12.- Coeficiente de fricción f versus número de Reynolds. (D=2.38 mm, L=350 mm)

Figura 7.13.- Coeficiente de fricción f versus número de Reynolds. (D=3.175 mm, L=100 mm)

Figura 7.14.- Coeficiente de fricción f versus número de Reynolds. (D=3.175 mm, L=200 mm)

Figura 7.15.- Coeficiente de fricción f versus número de Reynolds. (D=3.175 mm, L=350 mm)

Figura 7.16.- Coeficiente de fricción f versus número de Reynolds. (D=4.76 mm, L=100 mm)

Figura 7.17.- Coeficiente de fricción f versus número de Reynolds. (D= 4.76 mm, L=200 mm)

Figura 7.18.- Coeficiente de fricción f versus número de Reynolds. (D=4.76 mm, L=350 mm)

8.- DISCUSIÓN DE RESULTADOS Y CONCLUSIONES

8.1.- Coeficientes de entrada

Con el procedimiento descrito en la Sección 7.1 se encontró que los coeficientes de entrada son diferentes para los diámetros grandes, figura 7.2, que para los otros dos diámetros más pequeños, figs, 7.3 y 7.4. Lo anterior confirma la advertencia de Panton de que para números de Reynolds moderados el patrón de flujo puede ser muy diferente al cambiar este número, como se comentó en el Capítulo 2.

Con esas tres gráficas y la recta de tendencia lineal se pueden encontrar los coeficientes de pérdidas para tubos de dimensiones similares.

Conviene señalar que más que pérdidas de entrada son pérdidas de borde del tubo, pues como se encontró en Echávez y Ortiz (2001) se tienen las mismas pérdidas de carga para tubos conectados al ras con la superficie interior de la lateral que con tubos entrantes hasta la mitad de ella. Resultado que coincide con el reportado por Campbell (2004).

8.2.- Coeficientes de pérdidas distribuidas

Los coeficientes de pérdidas distribuidas, una vez que se tomó en cuenta el coeficiente de entrada, dio un valor que sigue la tendencia de 64/R, o ligeramente mayor, que concuerda con el trabajo de Langhaar (1942) y que confirma que el procedimiento utilizado en este trabajo es correcto.

Lo anterior se cumplió en ocho de los grupos de mediciones hechas, como se ve en la figura 7.5, no así en cuatro de los diámetros más grandes, mostrados en la figura 7.6, lo cual parece confirmar nuevamente lo mencionado por Panton (1984), como se dijo en el Capítulo 2, pero que es

una región de tamaños y números de Reynolds moderados que requiere estudiarse con más detalle.

Finalmente, los coeficientes de pérdidas, y su comportamiento con el número de Reynolds, para varios diámetros y longitudes de tubos, mostrados en las Figuras 7.7 a 7.18, pueden utilizarse en el diseño de sistemas de riego por goteo y muestran un comportamiento, en su mayor parte, sin ninguna anomalía.

Bibliografía

Addison-Wiley. (1966). Fluid Mechanics. Series in Mechanics and Termodynamics. Consulting Editors, New York, USA.

Arthur G. Hansen. (1982). Mecánica de Fluidos, Editorial Limusa, México.

Daily & Harleman (1996). Fluid Mechanics. Consulting Editors, New Cork, USA.

Echávez, A.G., y Ortiz, N.L.A. (2001). Pérdidas distribuidas y de entrada en tubos para números de Reynolds moderados, Ingeniería Hidráulica en México, Vol. XVI num. 1, II Época, enero-marzo. pp. 27-33.

Echávez, A.G., y Ruiz S.G. (2003). Pérdidas de carga en conductos circulares de diámetro pequeño para números de Reynolds entre 33 y 900, Ingeniería Hidráulica en México, Vol. XVIII num. 1, II Época, enero-marzo. pp. 119-125.

Gerardo Ruiz Solorio Echávez, A.G. (2006). Comportamiento Hidráulico de un Sistema de Riego por Goteo, Tesis, México, D.F.

Guillermo Castañon (2000). Ingeniería de Riego Utilización Racional del Agua, Ed. Paraninfo, Madrid, España.

Henry L. Langhaar. (1942). Steady Flow in the Transition Length of a Straight Tube. Journal Applied Mechanics, ASME. Vol. 9, June, pp A55-A58. Idelchik, I.E. (1994). Handbook of hydraulic resistance", 3rd edición, CRC Press, New York, USA.

Levi A. Campbell and Satish Kandlikar. (2004). Effect of Entrance Condition on Frictional Lossess and Trnsition to Turbulence in Minichannel Flows. Microchannels and Minichannels – 2004, June 17-19, 2004, Rochester, New York, USA

Naudascher Eduard (1991). Hydrodinamics Forces, , A.A. Bakema, Roterdam.

Panton, R.L. (1997). Incompressible Flow, John Wiley & Sons, New York, USA.

Ranald V. Giles, Jack B. Evett, Cheng Liu (1994). Mecánica de los Fluidos e Hidráulica, McGraw-Hill, Aravaca, Madrid.

Rouse, H. (1962). Elementary Mechanics of Fluids, John Wiley & Sons, New York, USA.

Shames y Irving Norman. (1962). La Mecánica de Fluidos, McGraw-Hill, España.

Schlichting, H.(1979). Boundary Layer Theory, 7th edition McGraw Hill, New York, USA.

Sotelo Avila Gilberto (1970). Hidráulica General, Editorial Limusa, México

Sparrow. Efraim M. (1996). Radiation Heat Transfer, Ed. Brooks, Belmont.

Victor L. Streeter y E. Benjamin Wylie, (1987). Mecánica de los Fluidos. Octava edición (3ª en español), McGraw-Hill, México.

Yunu A. Cengel, John M. Cimbala, (2007). Mecánica de Fluidos Fundamentos y Aplicaciones, Mc Graw-Hill, México, D.F.