

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

Magnitud local y parámetros de atenuación para el estado de Hidalgo

TESIS Que para obtener el título de Ingeniera Geofísica

PRESENTA

María Jimena Vega Baez

DIRECTORA DE TESIS

Dra. Xyoli Pérez Campos

Ciudad Universitaria, CD. MX., 2020

Índice

Agradecimientos 4			
Resumen7			
Abstract ٤			
1 Introducción			
2 Antecedentes			
2.1 Escala de magnitud11			
2.2 Magnitud local			
2.2.1 Curva de corrección/atenuación $-log A_0$ 16			
2.2.2 Sismómetro Wood Anderson18			
2.2.3 Aproximaciones de la función de atenuación19			
2.3 Variaciones y diversos estudios de magnitud local M_L 19			
2.3.1 Magnitud local en México21			
2.4 Características geológicas y estructurales del estado de Hidalgo24			
3 Metodología			
3.1 Base de datos27			
3.2 Procesamiento de los datos			
3.3 Análisis del modelo de velocidades37			
3.3.1 Modelo utilizado por el Servicio Sismológico Nacional			
3.3.2 Modelo Espíndola Castro (2009)			
3.3.3 Modelo Soto Peredo (2012)			
3.4 Función de atenuación y magnitud local			
4 Resultados			
4.1 Relocalización de los sismos45			
4.1.1 Modelo SSN			
4.1.2 Modelo Espíndola Castro (2009)45			
4.1.3 Modelo Soto Peredo (2012)			
4.2 Función de atenuación $-\log A_0$			
4.3 Magnitud de coda y magnitud local			
4.4 Corrección de estaciones54			

4.5 Relación Gutenberg-Richter	56
5 Discusión y conclusiones	60
5.1 Discusión	60
5.1.1 Modelo de velocidades de la corteza	60
5.1.2 Magnitud local	62
5.1.3 Función de atenuación	63
5.2 Conclusiones	66
Bibliografía	68
Anexo A	73
Anexo B	87
Anexo C	89
Anexo D	

Agradecimientos

A mi madre Margarita, por haber forjado en mi la responsabilidad y capacidad de todo lo que he logrado hasta ahora, por haber confiado en mí y en mis capacidades. Muchas gracias por tener la paciencia, por acompañarme en mis desvelos y porque eres una inspiración enorme para mí.

A mi padre Mario, porque ha inculcado en mi perseverancia, constancia y responsabilidad y por apoyar mis decisiones. Por enseñarme que todo problema siempre tiene una solución. Gracias por creer en mí.

A ustedes dos, mamá y papá, gracias por toda la educación que pudieron forjar en mí, por los valores y las actitudes que han logrado guiar mi vida. Muchas gracias a los dos, los quiero mucho.

A mi hermano Mario, espero que esto sea para ti un ejemplo, lograr nuestro sueño de ser profesionales, gracias por confiar en mí y por apoyarme siempre.

A ustedes tres les dedico todo esto, son mi más grande inspiración, los que siempre han estado ahí, los que han visto todo y que con un simple "echale ganas" me han animado bastante y me han devuelto la confianza. Los quiero mucho.

A mis abuelitos, Nacho, Mari y Lolo, esto es para ustedes, con todo mi cariño.

A mis primos, Monse, Varo, Lupe, Viry, Lalo, Diego, Alo y Ale, espero que para los más chicos sea una inspiración y para los no tan chicos, esto sea una forma de agradecimiento por todo lo que me han enseñado.

A Saori y Sergio, mis bebés, esto es para ustedes. Porque a pesar de que son muy pequeños aún, son una parte fundamental en mi vida, han sido una de mis inspiraciones, espero que se sientan orgullosos. Los quiero.

A mis tíos, por todos los valores que me han enseñado y por la confianza que me han dado. Muchas gracias.

A mis amigos, Oli, Kelly, Marco, Carmen, Heber, Ana, Ricardo, Gabo, Adri, Tania, muchas gracias por tantas historias juntos, por hacer más llevadero nuestro estrés, por nuestras pláticas escolares y no escolares y por las prácticas de campo más asombrosas. También agradezco a todos y cada uno de los compañeros geofísicos y geólogos que conocí, se que en alguna plática que pudimos haber tenido, he aprendido algo nuevo.

Agradezco a la Dra. Xyoli Pérez Campos por haberme dirigido en el desarrollo de este trabajo, por todas las enseñanzas tanto académicas como personales, por el tiempo y la paciencia para atender cada una de mis dudas. Agradezco que comparta su pasión por enseñar y afrontar nuevos retos a cada uno de sus estudiantes.

Agradezco a mis demás sinodales, el Dr. Luis Quintar Robles, el Dr. Victor Hugo Espíndola Castro, el Dr. Martin Cárdenas Soto y el Dr. Allen Leroy Husker, por las observaciones y aportaciones a este trabajo.

A mis profesores de la Facultad de Ingeniería, porque han desarrollado en mí, muchas más capacidades, porque han entregado en cada una de sus clases lo mejor de si, para que tengamos una mejor formación académica.

A la Facultad de Ingeniería, por ser tan maravillosa escuela.

A la Universidad Nacional Autónoma de México, por ser mi alma mater. Gracias por ser la máxima casa de estudios de este país. Gracias Ciudad Universitaria por haberme brindado los mejores años de mi formación académica.

Agradezco al Servicio Sismológico Nacional y a todo su personal. Agradezco especialmente a Adriana y Delia por haberme brindarme su apoyo con la adquisición de los datos de la Red de Banda Ancha del Servicio Sismológico Nacional y la Red Sísmica del Valle de México.

Agradezco a la dirección General de Asuntos del Personal Académico (DGAPA) por los apoyos económicos brindados, con el Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT), proyecto IN106119; y el Programa de Apoyo a Proyectos para Innovar y Mejorar la Educación (PAPIME), proyecto PE107317 del Diplomado en sismología para profesores del bachillerato. De la misma manera agradezco a la Dirección General de Orientación y Atención Educativa (DGOAE) por el apoyo económico del Programa de Becas de Titulación-Alto Rendimiento.

Resumen

El estado de Hidalgo presenta una sismicidad importante y recurrente. Esta sismicidad se debe a que el estado se encuentra en los límites de la Sierra Madre Oriental y la Faja Volcánica Trans Mexicana, que presentan sistemas de fallas. Las magnitudes de los sismos son pequeñas, las profundidades son someras. Se suelen presentar enjambres sísmicos y también presenta una sismicidad histórica, tal es el caso de los sismos de Ixmiquilapan (1950, M 4.9), Cardonal (1976, M 5.3) y Actopan (1987, M 4.1), entre otros.

A partir de la selección de sismos registrados entre 2003 y 2019, se obtuvo una función de atenuación derivada de una inversión en la que se contempla la medición de distancias epicentrales, donde fue necesario realizar una relocalización de los eventos, y un análisis de la amplitud de las señales simuladas con un sismómetro Wood Anderson. De esta función se derivaron las magnitudes locales para los sismos sucedidos en el estado de Hidalgo, así como los parámetros de atenuación de la zona. La expresión queda definida de la siguiente manera:

$$-\log A_0 = 1.1178 \log\left(\frac{r}{17}\right) + 0.00364(r - 17) + 2,$$

donde A_0 es la máxima amplitud de los registros y r es la distancia epicentral. Esta función fue definida a partir de la modificación sugerida por Hutton y Boore (1987).

Como resultado se obtienen los parámetros de dispersión geométrica y atenuación anelástica, así como la magnitud local. Adicionalmente se realizaron análisis de los residuales, así como la comparación de la curva obtenida en este trabajo con algunas otras tanto de México como de otros países.

Abstract

The state of Hidalgo presents an important and recurrent seismicity. This seismicity is due to the fact that the state is located on the limits of the Sierra Madre Oriental and the Trans Mexican Volcanic Belt, which have systems of faults. The magnitudes of the earthquakes are small and the depths are shallow. Seismic swarms are usually presented and historical seismicity is also presented, such is the case of earthquakes of Ixmiquilpan (1950, M 4.9), Cardonal (1976, M 5.3) y Actopan (1987, M 4.1), among others.

From the selection of earthquakes registered between 2003 and 2019, an attenuation function was obtained derived from an inversion where the measurement of epicentral distances is contemplated, where it was necessary to carry out a relocation of the events and measurement of the amplitude of signals simulated with a Wood Anderson seismometer. From this function, the local magnitudes for the earthquakes that occurred in the state of Hidalgo were derived, as well as the attenuation parameters of the area. The expression is defined as follows:

$$-\log A_0 = 1.1178 \log\left(\frac{r}{17}\right) + 0.00364(r - 17) + 2,$$

where A_0 is the maximum amplitude of the records and r, the epicentral distance. This function was defined from the modification suggested by Hutton and Boore (1987).

As a result, the geometric dispersion and anelastic attenuation parameters are obtained, as well as the local magnitude. In addition, the analysis of the residuals was carried out, as well as the comparison of the curve obtained in this work with some others from Mexico and other countries.

1 Introducción

La magnitud es una cantidad arbitraria proporcional al tamaño del evento o a la energía liberada de un sismo (Havskov y Ottemöller, 2010). Richter en 1935 propuso un concepto para la medición de esa energía liberada que se basaba en la medición de los registros. Esto proponía que a partir de las mediciones de las amplitudes máximas se medía la amplitud de la onda sísmica y que por lo tanto se estaba midiendo la energía del sismo, a este tipo de escala se le nombró magnitud local o de Richter. Con el paso del tiempo fueron propuestas diferentes escalas de magnitud de acuerdo con las características que fueran medidas al ocurrir un sismo.

Esencialmente la magnitud local está determinada por una función de atenuación, donde influyen los factores de atenuación anelástica y dispersión geométrica; dicha función muestra el comportamiento de la amplitud máxima medida en los registros de un sismómetro Wood Anderson y la distancia hipocentral o epicentral. En diferentes regiones se han realizado estudios donde se han propuesto funciones de atenuación, permitiendo realizar comparaciones entre estas y realizar descripciones sísmicas de las zonas de estudio. Las primeras magnitudes locales surgieron en California con los trabajos de Richter (1935), Richter (1955) y Hutton y Boore (1987) y se han extendido en diferentes países, como Italia, Grecia, Australia, México, etc.

El objetivo principal de este trabajo es obtener una función de atenuación que permita describir las características sísmicas de la región: el comportamiento de la amplitud de las ondas símicas; tal como lo han realizado en los diferentes estudios mencionados anteriormente y que se encuentran mejor descritos en el Capítulo 2.

En el Capítulo 3 de este trabajo, se describe la selección de la base de datos de 343 sismos ocurridos en el estado de Hidalgo y zonas cercanas. Se describe la selección de los registros de diferentes estaciones, tanto de la red de banda ancha del SSN, como de la Red Sísmica del Valle de México. De la misma manera, se describe en este capítulo el procesamiento que se realizó: reorientación (rotación) hacia el norte geográfico, relocalización con el modelo de velocidades cortical seleccionado, deconvolución de los registros digitales por su respuesta instrumental; para finalmente obtener distancias epicentrales y amplitudes los parámetros iniciales. En la parte final de este capítulo se menciona la metodología utilizada para obtener a partir de los parámetros mencionados los valores de atenuación anelástica y dispersión geométrica que definen a la función de atenuación.

En el Capítulo 4 se muestran los resultados obtenidos, se presentan los modelos de velocidad, los valores de magnitud local obtenidos a partir de la función de atenuación y el análisis de sus errores. De la misma manera, se presentan las correcciones de estación y la relación magnitud de coda y magnitud local.

A partir de la función de atenuación es posible determinar las características sísmicas de la región, el comportamiento de las ondas al viajar y por lo tanto en el Capítulo 5 se realiza una comparación con otras regiones tanto de México como de otros países.

2 Antecedentes

2.1 Escala de magnitud

A partir de las ondas sísmicas emitidas por los sismos, se han generado modelos de geometría de falla y modelos de fuente simples que han permitido estimar parámetros de la fuente. Cuando sucede un sismo se necesitan determinar diferentes aspectos, como su localización, el tamaño del sismo o la energía irradiada, ya que son parámetros útiles para fines científicos y para visualizar los posibles daños a la sociedad. La magnitud es un número arbitrario proporcional al tamaño del evento o a la energía liberada (Havskov y Ottemöller, 2010). El primer concepto para emitir la magnitud se basaba en la medición de la amplitud de los registros sísmicos, esto se debe a que la amplitud de la onda refleja el tamaño del sismo, una vez que las amplitudes son corregidas por el decremento con la distancia debido a la dispersión geométrica y a la atenuación (Stein y Wysession, 2003).

Este primer concepto fue introducido por Charles Richter en 1935 y se empleó principalmente para calcular magnitudes de sismos en California con un tipo de sismómetro llamado Wood Anderson, y se le nombró escala Richter o escala de magnitud local. El término de "magnitud" mencionado por Richter (1935) para nombrar a tal escala fue sugerido por H. O. Wood para diferenciar el nombre de escala de "intensidad". Esta nueva escala propuesta fue desarrollada debido a que en la región de California, en donde tiene lugar una gran cantidad de sismos, no se tenía una gran cantidad de población; por lo tanto, escalas como la de Mercalli, basadas en la percepción de la población, no funcionaban para caracterizar esos sismos. Así surgió la idea de poder caracterizar un sismo, específicamente obtener su magnitud, con registros instrumentales (Boore, 1989).

Con el tiempo fueron desarrolladas varias escalas de magnitud local y global, debido a que los sismos no se concentraban en un solo lugar y por la diversidad de sismómetros (redes) utilizados para generar los registros sísmicos (Boore, 1989). Las escalas desarrolladas posteriormente no solo se basan en la amplitud de los registros de ciertas ondas, sino también en el desplazamiento del terreno causado por el movimiento. Estas también tratan los registros en el dominio del tiempo pero el análisis espectral también está siendo considerado (Boorman, 2012).

La determinación de las magnitudes se realiza por estación debido a la variación local en atenuación, a la amplificación del movimiento del suelo, la posición de la estación con respecto al patrón de radiación y las variaciones de la medición de las amplitudes en cada registro. Por lo tanto, el cálculo de la magnitud no es exacta y al ocurrir un sismo, la determinación de esta es revisada varias veces hasta que se tenga certeza de esta cantidad (Havskov y Ottemöller, 2010).

Cada una de las escalas es adecuada para diferentes distancias y el tamaño del evento. Por ejemplo, para distancias grandes (> 20°), las escalas de magnitud tienen parámetros fijos acordados internacionalmente, mientras que para eventos a distancias locales y regionales se toman en cuenta variaciones regionales debido a diferencias en atenuación local y dispersión geométrica.

La definición más general de magnitud *M* es

$$M = \log\left(\frac{A}{r}\right) + Q(\Delta, h), \tag{2.1}$$

donde *A* es la amplitud del desplazamiento del suelo que se produce con su periodo relacionado *T*, *Q* es la función de corrección de distancia para distancia epicentral Δ y la profundidad hipocentral *h* (Havskov y Ottemöller, 2010).

....

Algunas de las escalas más conocidas son magnitud de onda de cuerpo $m_{\rm b}$, magnitud de onda de superficial $M_{\rm S}$, magnitud local $M_{\rm L}$, magnitud de coda $M_{\rm c}$, y magnitud

de momento sísmico M_w , cada una de estas escalas es obtenida con base en diferentes características, como la distancia o la banda de frecuencias de interés.

2.2 Magnitud local

Uno de los conceptos que empleó Richter (1958) para determinar la escala de magnitud fue la analogía al término de magnitud estelar utilizado en la astronomía, ya que este se refiere a la medida del brillo aparente de las estrellas o de cualquier cuerpo celeste. Se tomó este concepto como punto de partida, debido a que los sismos necesitaban ser localizados y clasificados de acuerdo con su energía, de manera similar a como la magnitud estelar tomaba en cuenta una corrección de distancia para poder comparar el tamaño de las estrellas, ya que se presentaban casos en los que estrellas lejanas grandes tenían la misma luminiscencia que una estrella pequeña y cercana.

El primer procedimiento que realizó Richter (1935) le fue sugerido por Wadati, este se basaba en graficar las amplitudes medidas en micras de los registros contra las distancias epicentrales. Esta técnica fue utilizada por Wadati con sismos en Japón, distinguiendo así sismos someros y profundos y calculando el coeficiente de absorción de las ondas superficiales para comparar las magnitudes de varios terremotos.

La Figura 2.1 muestra ciertas nubes de puntos, que encierran las amplitudes de un sismo específicamente, cada una de estas nubes es más grande que la otra. En promedio la atenuación de la máxima amplitud con la distancia es la misma para cada evento; por lo tanto, la distancia vertical por la cual cada nube de puntos debe ser removida para volver, con el mínimo cuadrado residual, a una curva de referencia que tiene la forma de la atenuación promedio (Figura 2.2), es una medida cuantitativa del tamaño del sismo (Boore, 1989).

Por lo tanto, las curvas obtenidas permiten derivar la escala de magnitud. La idea que se toma es suponer dos sismos de diferente magnitud que sucedieron en el mismo foco y fueron producidos por el mismo mecanismo, por lo tanto se podría decir que estos son idénticos. Cualquier sismógrafo en cualquier estación particular debería escribir dos registros, uno de estos registros debería ser una copia alargada del otro. La relación de alargamiento debería ser la misma para todos los sismógrafos, siempre que las constantes permanezcan inalteradas entre los dos eventos. Esta relación podría ser utilizada para medir las magnitudes relativas de esos dos eventos (Richter, 1935).

Figura 2.1. Procedimiento para la estimación de magnitudes. Las áreas sombreadas indican nubes de las amplitudes de los registros de un instrumento particular (en este caso, un instrumento de torsión Wood-Anderson, marcado como "WA" en el eje y) para sismos individuales. La línea punteada es la curva de referencia definida por el promedio de las curvas de atenuación. M_i son los factores que se necesitan para traer a cada nube de datos a la curva de referencia (Figura modificada de Boore, 1989). Richter graficó el logaritmo de las amplitudes contra las distancias epicentrales (en kilómetros). Posteriormente para cada sismo trazó curvas donde se observó que estas eran casi paralelas, confirmando la hipótesis de la proporción de las amplitudes en los diferentes registros. Todas las curvas fueron combinadas en una curva de referencia que fuera paralela a las individuales, los valores tanto de distancia como de amplitud que formaban esta fueron tomados para formar una tabla (distancia epicentral y logaritmo de amplitud) que es utilizada para el cálculo de la magnitud. El procedimiento que se realiza es obtener la distancia epicentral, medir en el registro la amplitud máxima, de cero a pico, medido en milímetros y obtener el logaritmo de este número. Posteriormente, con el valor de la distancia se sustrae de la tabla el logaritmo de la amplitud que dio la curva de referencia. Al valor del logaritmo de la amplitud medida se le sustraía el valor obtenido de la tabla para llegar a obtener un valor numérico de magnitud.

Figura 2.2. Curvas de atenuación. Los puntos indican los datos utilizados por Ricther (1935) para estimar la atenuación en la región del sur de California. La línea discontinua es la curva de atenuación promedio (Figura tomada de Boore, 1989).

De acuerdo a Richter (1935), "La magnitud local de una sacudida se toma como el logaritmo de la amplitud de la traza máxima, expresada en micras, con la cual el sismómetro de distorsión estándar de periodo corto (con un periodo T = 0.8 s, una ganancia o amplificación V= 2800 y un factor de amortiguamiento h = 0.8) registraría esa

sacudida a una distancia epicentral de 100 kilómetros". La escala se expresa de la siguiente forma:

$$M_{\rm L} = \log A(\Delta) - \log A_0(\Delta) + S, \qquad (2.2)$$

donde A es la máxima amplitud (medida de cero a pico), Δ distancia epicentral, S es un factor de corrección de la estación y $-\log A_0$ es la llamada función de calibración o corrección de distancia. En esta primera definición se tiene la restricción de que cuando se observe una máxima amplitud de 1 mm a una distancia de 100 km, se obtendrá M_L 3.0. No se menciona en qué tipo de onda o periodo se mide la amplitud, simplemente se toma la amplitud máxima de todo el registro. Richter (1935) hace hincapié en que una escala en la cual se puedan medir con cantidades físicas la energía del movimiento y la intensidad es preferible.

En este primer trabajo se establecieron correcciones de atenuación para distancias epicentrales entre 30 y 600 km, también se logró determinar que más allá de los 200 kilómetros la amplitud máxima registrada parece variar como el cubo inverso de la distancia epicentral (Richter, 1935).

2.2.1 Curva de corrección/atenuación -log Ao

La función de atenuación tiene un uso mayor que el de ser utilizada para la obtención de la magnitud local, ya que esta refleja las características de propagación de 1 a 10 Hz del movimiento horizontal del suelo, el cual es que el genera el mayor efecto en la mayoría de las estructuras civiles. Esta función, es de interés en la ingeniería sismológica por el conocimiento que brinda sobre la dependencia de los parámetros de movimientos fuertes para los cuales hay menos datos disponibles (por ejemplo, Trifunac, 1976; Kanamori, 1978; Hanks, 1982).

Havskov y Ottemöller (2010) mencionan que para un sismo local, la amplitud A de una onda S como función de la distancia hipocentral r se puede expresar como

$$A(r) = A_0 r^{-\beta} e^{\frac{-\pi f r}{\nu Q}},$$
(2.3)

donde A_0 es la amplitud inicial, β es la dispersión geométrica, f es la frecuencia, v es la velocidad de las ondas S y Q es el factor de calidad, inversamente proporcional a la atenuación anelástica. Aplicando el logaritmo a la ecuación se obtiene lo siguiente

$$\log (A(r)) = -\beta \log (r) - 0.43 \frac{\pi f r}{\nu Q} + \log (A_0).$$
(2.4)

De esta expresión, el término de la función de variación de atenuación respecto a la distancia, recordando la Ecuación (2.1), es

$$Q_d(\Delta) = -\beta \log(r) - 0.43 \frac{\pi f r}{\nu Q}.$$
 (2.5)

En la definición original se propone tomar distancias epicentrales para sismos someros, pero debido a que la máxima amplitud del movimiento en general sucede en las ondas S y no en las ondas superficiales, no se limita la escala de magnitud a sismos someros sino que también puede utilizarse para sismos profundos sustituyendo distancia epicentral por la hipocentral (r), como lo recomienda la Asociación Internacional de Sismología y Física del Interior de la Tierra (IASPEI, por sus siglas en inglés).

Ahora, si f es constante, la expresión de $M_{\rm L}$ se puede escribir de la siguiente manera,

$$M_{\rm L} = \log(A) + a\log(r) + br + c, \tag{2.6}$$

donde a, b y c son constantes y representan la dispersión geométrica, la atenuación y el nivel de base, respectivamente. Se espera que a sea cercano a 1, asumiendo la dispersión de ondas de cuerpo y que b sea pequeño debido a la atenuación anelástica. c puede ajustarse para fijar la escala con la definición original. Estos tres parámetros representan variaciones regionales y deben ser ajustados a condiciones locales.

En la Tabla 2.1 se muestran los factores encontrados en diversos estudios para distintas regiones, estos ya se encuentran expresados en la función atenuación expresada

en la tabla. En la Figura 2.3 se muestran algunas curvas de atenuación donde se observa que, dentro de los primeros kilómetros, algunas de estas se comportan casi igual.

2.2.2 Sismómetro Wood Anderson

A lo largo de los años, la definición de la magnitud local se ha basado en la medición de registros obtenidos de sismómetros Wood Anderson, como la definición original de magnitud local fue obtenida a partir de datos ocurridos en California y de registros de este tipo de sismómetro. Con los años se ha dado la necesidad de poder simular eventos en cierto tipo de sismómetros, esto quiere decir que se pueden obtener los registros como si hubieran sido tomados por ciertos sismómetros aunque estos no estén en el lugar. Esto se debe a que cada aparato mantiene características de análisis y digitalización.

El sismómetro Wood Anderson es un sismómetro de distorsión estándar de periodo corto, T = 0.8 s (1.25 Hz), ganancia o amplificación V = 2800 (amplifican el movimiento del suelo 2800 veces) y un factor de amortiguación h = 0.8. Estos instrumentos proporcionan registros en escala por encima del ruido para una amplia gama de terremotos (Boore, 1989). Actualmente, la IASPEI recomienda un valor de ganancia $V = 2080 \pm 60$ determinados por Uhrhammer y Collins (1990). La discrepancia en los valores se debe a una suposición errónea de que la suspensión del resorte del sismógrafo WA, el cual no se distorsiona significativamente, lo que lleva a una estimación incorrecta. Esta diferencia de ganancia produce una diferencia de amplitud de una factor de 2800/2080 = 1.35 lo que se traduce en una diferencia de M_L de 0.13.

Debido a que la banda de frecuencias de este sismómetro WA (0.8 - 10 Hz) se encuentra entre el rango de las obras ingenieriles más importantes, los estudios que se realizan de magnitud local a nivel mundial son importantes en la ingeniería y en el análisis de riesgo sísmico (Ortega y Quintanar, 2005).

2.2.3 Aproximaciones de la función de atenuación

Para determinar la curva de atenuación se tienen dos aproximaciones: inversión paramétrica (por ejemplo, Hutton y Boore, 1987; Alsaker et al., 1991; Anderson, 1991; Langston et al., 1998; Spallarossa et al., 2002; Miao y Langston, 2007) y no paramétrica (por ejemplo, Richter, 1935; Savage y Anderson, 1995).

La inversión paramétrica considera expresiones simples de dispersión geométrica y atenuación. Las ventajas de su uso son que solo se expresa con unos cuantos coeficientes, asume una dependencia de la función $-\log A_0$ de la distancia y trata de acomodar la función a los datos. Esto facilita una estimación directa de la magnitud local usando una sola ecuación para todas las distancias epicentrales. El problema que existe es que la misma expresión no representa la complejidad de la propagación de las ondas sísmicas en la región (Spallarosa et al, 2002).

La inversión no paramétrica no asume ninguna forma específica de $-\log A_0$ sobre la distancia, y se determina la forma de la curva de atenuación por los datos. Este enfoque implica la solución de la ecuación que utiliza la forma paramétrica en puntos fijos. Los valores de amplitud registrados a distancias arbitrarias se interpolan linealmente para producir valores para la curva de atenuación a distancias fijas (Rezapour y Rezaei, 2011). Este método es más apropiado cuando el mecanismo físico de pérdida de señal no se comprende completamente (Savage y Anderson, 1995).

Algunos trabajos han desarrollado estas dos aproximaciones y las han comparado (por ejemplo, Spallarosa et al, 2002; Rezapour y Rezaei, 2011).

2.3 Variaciones y diversos estudios de magnitud local $M_{\rm L}$

Gutenberg y Richter en 1936 extendieron la escala para aplicarla a sismos que ocurrían en otros lugares y eran registrados con otro tipo de instrumentos (Gutenberg y Richter, 1942). Gutenberg y Richter (1942) estudiaron datos en instrumentos de ganancia baja y publicaron correcciones de atenuación para el rango de 0 a 25 km. Gutenberg (1944) realizó un estudio con amplitudes de ondas superficiales que tienen un periodo de aproximadamente 20 s, esto con la finalidad de mejorar las estimaciones de magnitud local para sismos superficiales distantes.

Gutenberg y Richter (1956), en otro estudio, realizaron una revisión de la magnitud de los eventos de trabajos anteriores mejorando las tablas y gráficos, utilizando A/T en lugar de solo amplitud A, en este trabajo se introduce por primera vez el término $M_{\rm L}$.

Kanamori y Jennings (1978) presentan una metodología para determinar la magnitud local a partir de registros de acelerogramas en California, estos registros fueron utilizados para generar sismogramas sintéticos, para ser presentados como si fueran leídos por sismómetros de torsión, como el sismómetro Wood Anderson. De este trabajo se logró determinar que es posible determinar valores de magnitud local a partir de acelerogramas, permitiendo ampliar los catálogos de sismos ya que un gran número de acelerogramas se encontraban disponibles.

En el libro de texto de Richter de 1958, se muestran gráficas mejoradas de sus trabajos realizados, como la gráfica para obtener la curva de referencia a partir de los eventos de 1932 (Figura 2.2). También los valores de corrección tabulados se volvieron a imprimir sin cambios esenciales en el libro, en el cual denomina " $-\log A_0$ " al factor de corrección. Este término terminaría siendo una medición empírica del cambio de la amplitud *A* respecto a la distancia para California (Bakun, 1984).

En 1984, Bakun y Joyner midieron de cero a pico las amplitudes "Wood Anderson" de registros de sismos sucedidos en el centro de California, con la escala obtenida se determinó que los valores de Richter eran menores que los obtenidos en su trabajo.

La curva de atenuación $-\log A_0$ obtenida en el trabajo realizado por Hutton y Boore (1987), toma las amplitudes como la mitad medida de pico a pico de la oscilación más grande de la onda S. Además, esta curva indica una atenuación menos rápida que la reportada por Richter (1958). La diferencia se observa en que la curva estándar está subestimando sismos registrados a distancias menores de 50 kilómetros y sobreestimando

20

a distancias mayores de 200 kilómetros. Con estos resultados se sugirió redefinir la escala para California, donde un sismo de $M_{\rm L}$ 3.0 corresponde a 10 mm de movimiento en un registro de un Wood Anderson a una distancia hipocentral de 17 kilómetros.

Con los años fueron obtenidas diversas funciones de atenuación para $M_{\rm L}$ en diferentes regiones; Chávez y Priestley (1985) para la Gran cuenca al oeste de Estados Unidos, Greenhalgh y Singh (1986) para el sur de Australia, Ortega y Quintanar (2005) para el Valle de México, Spallarosa (2002) para el noroeste de Italia, entre muchos otros como se presenta en le Tabla 2.1 y en la Figura 2.3.

Actualmente, el Grupo de Trabajo en Mediciones de Magnitud del IASPEI/CoSOI recomienda lo siguiente para $M_{\rm L}$ estándar IASPEI.

"Para sismos corticales en regiones con propiedades de atenuación similares a las del sureste de California, la ecuación estándar propuesta es

$$M_{\rm L} = \log(A) + 1.11 + \log(R) + 0.00189R - 2.09,$$

donde A es la máxima amplitud de la traza en nm que es medida en la componente horizontal de la salida de un instrumento que se filtra de modo que la respuesta del sismógrafo/sistema de filtro replica la de un sismógrafo estándar Wood-Anderson pero con la magnificación estática de 1; y R es distancia hipocentral en km, típicamente menos de 1000 km" (Boorman, 2012).

2.3.1 Magnitud local en México

En 1999, Vidal y Munguía presentaron dos funciones de atenuación para el norte de Baja California debido a que los datos utilizados se agruparon en dos grupos para que los patrones de energía estuvieran contenidos dentro de la región granítica de las Sierras Peninsulares de Baja California (SPBC) o dentro del ambiente sedimentario del Valle de Mexicali-Imperial (VMI). Como resultado se pudieron observar consistencias entre la función de Richter y SPBC entre 40 y 450 kilómetros y la función de Hutton y Boore y VMI para distancias entre 10 y 450 kilómetros. Dentro de este trabajo también se ve reflejada la subestimación de la magnitud local a distancias cercanas a la fuente por parte de la función de Richter.

En 2005, Ortega y Quintanar presentan una función de atenuación para el Valle de México formulada por aproximación paramétrica y no paramétrica, este estudio dio como resultado la determinación de que la magnitud de coda estaba subestimando los eventos locales ocurridos en la cuenca de México.

Paz Martínez en 2017 presenta una función de atenuación para el noreste de México, los valores de magnitud local presentados son menores que los valores de magnitud de coda que reporta el SSN. La relación Gutenberg-Richter obtenida muestra una concentración de esfuerzos de cizalla bajo y fallamiento normal en la región.

Figura 2.3. Funciones de atenuación $-\log A_0$ para diferentes regiones. Se muestran algunas funciones de la Tabla 2.1.

Función		Autor	Región
$-\log A_0 = 1.110\log(R/100) + 0.00189(R-100) + 3$	$10 \le R \le 700$	Boore y Hutton (1987)	Sur de California, Estados Unidos
$-\log A_0 = 1.000\log(\Delta / 100) + 0.00301(\Delta - 100) + 3$	$0 \le R \le 400$	Bakun y Joyner (1984)	Centro de California, Estados Unidos
$-\log A_0 = 1.000\log(\Delta / 100) + 0.0069(\Delta - 100) + 3$	$0 \le \Delta \le 90 \text{ km}$	Chávez y Priestley	Gran cuenca, oeste de
$-\log A_0 = 0.83\log(\Delta/100) + 0.0026(\Delta-100) + 3$	$90 \le \Delta \le 600 \text{ km}$	(1985)	Estados Unidos
$-\log A_0 = 0.93\log(R/100) + 0.000276(R-100) + 3.0$	$0 \le R \le 1400$	Mio y Langstone (2007)	Centro de Estados Unidos
$-\log A_0 = 1.11\log(R) + 0.00189(R) + 0.591$	$8 \le R \le 500$	Uhrhammer (2011)	California, Estados Unidos
$-\log A_0$ (Richter, 1958)+S	$\Delta \le 600$	Pechmann et al. (2007)	Utah, Estados Unidos
$-\log A_0 = 1.55\log(\Delta) - 0.22$	$100 \le \Delta \le 800$ com. Ver.	Kim (1998)	Este de Estados Unidos
$-\log A_0 = 1.45\log(\Delta) - 0.11$	$100 \le \Delta \le 800$ com. Hor.		
$-\log A_0 = 1.0134 \log(R/100) + 0.0025(R-100) + 3.0$	$0 \le R \le 400$	Vidal y Munguía	Baja California Norte,
para Valle Mexicali-Imperial		(1999)	Mexico
$-\log A_0 = 1.1319\log(R/100) + 0.0017(R-100) + 3.0$			
para Rangos Peninsulares de Baja California			
$-\log A_0 = 0.4136\log(\Delta/100) + 0.001(\Delta-100) + 3.0$	$0 \le R \le 600$	Paz-Martínez (2017)	Noreste de México
$-\log A_0 = 0.48\log(R/100) + 0.00189(R-100) + 3.0$	$0 \le R \le 200$	Ortega y Quintanar (2005)	Valle de México
$-\log A_0 = 1.5855\log(R/100) + 0.0008(R-100) + 3.0$	$0 \le R \le 600$	Cadordi et al. (2017)	Peru
$-\log A_0 = 1.144\log(R/100) + 0.001736(R-100) + 3.0$	$0 \le R \le 300$	Spallarosa (2002)	Noroeste de Italia
$-\log A_0 = 1.167\log(R/100) + 0.00476(R-100) + 3.0$	$0 \le R \le 600$	Bona (2016)	Italia
$-\log A_0 = 1.58\log(R/100) + 3$ para $M_L \le 3.7$	$100 \le \Delta \le 800$	Kiratzi y Papazerchos	Grecia
$-\log A_0 = 2.00\log(R/100) + 3$ para $M_L > 3.7$		(1984)	
$-\log A_0 = 1.6627 \log \Delta + 0.0008 \Delta - 0.433$	$10 \le \Delta \le 600$	Muco y Minga (1991)	Albania
$-\log A_0 = 1.11 \lg R + 0.95 (R/1000) + 0.69$	10< <i>R</i> < 1000	Stange (2006)	Suroeste de Alemania
$-\log A_0 = 0.83 \log R + (0.0017/7) (R - 100) + 1.41$	$100 \le \Delta \le 650$	Wahlström&Strauch (1984)	Europa Central
$-\log A_0 = 0.91 \log R + 0.00087 R + 1.010 0.776$	$0 < R \le 1500$	Alsaker et al. (1991)	Noruega/Feonoscadia
$-\log A_0 = 1.274336\log 10(R/17) + 0.000273(R-17) + 2.0$	$0 \le R \le 500$	Illsley-Kemp <i>et al.</i> (2017)	Danakil, norte de Afar
$-\log A_0 = 0.776\log_{10}(R/17) + 0.000902^*(R-17) + 2.0$	$0 < R \le 1000$	Langstone (1998)	Tanzania, este de África
$-\log A_0 = 1.74\log(R) + 0.00048(R) - 0.522$	$0 \le R \le 500$	Nguyen <i>et al.</i> (2011)	Norte de Vietman
$-\log A_0 = 1.196997\log(R/17) + 0.001066(R-17) + 2.0$	$5 \le R \le 800$	Keir <i>et al</i> . (2006)	Etiopía
$-\log A_0 = 1.075 \log R + 0.00061R - 1.89 + S$	0 < R < 1000	Sauder et al. (2011)	Sudáfrica
$-\log A_0 = \log(R/17) + 0.00960(R-17) + 2 - S$	$5 \le R \le 62$	Baumbach et	Noroeste de Turquía
$-\log A_0 = \log(R/62) + 0.00960(R-62) + 2.95 - S$	$62 \le R \le 110$	al.(2003)	
$-\log A_0 = 1.137 \log(R/17) + 0.000657(R-17) + 0.66$	1< <i>R</i> < 2000	Gaull y Gregson (1990)	Oeste de Australia
$-\log A_0 = 1.34\log 10(R/100) + 0.0005(R-100) + 3.0$	$0 \le R \le 600$	Michael-Leiba y Malafant (1992)	Sureste de Australia
$-\log A_0 = 1.10\log 10 \ (\Delta \ /100) + 0.0013(\Delta \ -100) + 3.03$	$40 < \Delta < 700$	Greenhalgh y Singh(1986)	Sur de Australia
$-\log A_0 = 1.098\log 10(R/100) + 0.0003(R-100) + 3.0$		Y. Fujino y R. Inoue (1985)	Japón

 Δ es la distancia epicentral en km, R es la distancia hipocentral en km, T es el periodo en s y S es la corrección de estación. (Modificada de Bormann, 2012)

2.4 Características geológicas y estructurales del estado de Hidalgo

En la parte centro-suroeste de la entidad se encuentra el Valle del Mezquital, en esta región se tiene un gran espesor de rocas volcánicas terciarias y algunas capas delgadas de caliza lacustre; se presentan algunos conos volcánicos, así como los flujos contemporáneos relacionados con la zona de fallas. En el valle existen dos sistemas de fallas principales, su orientación sigue a las de la Faja Volcánica Trans Mexicana (FVTM). El primero tiene una dirección NW-SE y afecta a las calizas cretáceas (Ajacuba Tezontepec). El segundo sistema con una dirección SW-NE está relacionado con los efectos tensionales que afectaron a las rocas volcánicas terciarias (San Marcos-Huitel y El Llano Tepatepec). Cercano a las localidades mencionadas se encuentra cerro Xicuco que es una estructura volcánica terciaria ubicada sobre una falla normal (Cervantes-Medel y Armienta, 2004).

Al suroriente de Ixmiquilpan existen manifestaciones hidrotermales posiblemente relacionadas a las fallas con rumbo E-W que limitan hacia el sur al Graben Mezquital (Suter, et al., 1995). En la zona de Pathé existen manifestaciones de aguas termales asociadas a la alteración hidrotermal, a lo largo de zonas permeables originadas por la intersección de fallas con rumbos E-W y N-S de gran penetratividad, estas últimas pueden estar aún activas (Hernández et al., 1996).

De las principales estructuras evidentes son el semigraben de Aljibes, el graben Mezquital y las fallas normales del campo volcánico de Apan (García-Palomo et al., 2002). El semigraben de Aljibes está conformado por cuatro fallas normales de dirección E-W ubicadas en el límite norte de la FVTM (Suter et al., 1995a). El graben del Mezquital es una estructura de dirección E-W y está limitado al norte por la falla Cardonal (Suter et al., 2001). La ocurrencia de dos eventos sísmicos de magnitud (M_w) ~5 indican que esta estructura es potencialmente activa (Suter et al., 1996; Quintanar et al., 2004).

Al sureste de Ixmiquilpan se propone una estructura circular denominada Caldera Mezquital con una diámetro aproximado de 20 km (Ortíz-Hernández y Hernández-Avelino, 2006), en el interior de esta estructura se encuentran afloramientos de caliza de la

24

formación El Doctor y depósitos de la formación Soyatal. En el margen occidental de la caldera existen fracturas radiales con dirección NW-SE y hacia el occidente se presentan manifestaciones hidrotermales; así como la presencia de actividad sísmica moderada (Hernández Avelino, 2008).

Hacia el norte del estado afloran las calizas de la formación El Doctor presentando numerosas fracturas con una amplia extensión, fallas, pliegues y cabalgaduras.

Las estructuras mencionadas se incluyeron en un mapa (Figura 2.4) para visualizar mejor en la región donde se encuentran. Si se comparan algunas de estas estructuras junto con la localización de los sismos obtenidas de los tres modelos, al norte de la Caldera Mezquital propuesta entre la zona de Ixmiquilpan y Actopan se propone una falla de cizalla debido al límite entre la FVTM y la Sierra madre Oriental, por esta razón se observa gran cantidad de sismos justo en se límite (línea punteada).

Entre las zonas de Tezontepec y Ajacuba los sismos se alinean NW-SE, que coincide con uno de los sistemas de falla debidos a la interacción de la FVTM. De la misma manera en la parte de Apan, en el límite con el estado de Tlaxcala, se tienen sismos localizados que coinciden con el sistema de fallas de esa zona. Sucede lo mismo para la Caldera Mezquital, donde los sismos localizados coinciden con la delimitación de esa estructura y probablemente la aglomeración de sismos cercanos a la estación de DHIG, como se ha mencionado para los modelos de Soto Peredo (2012) y SSN, se deba a esta estructura cercana a la estación.

25

Figura 2.4. Mapa con estructuras geológicas principales del estado de Hidalgo. Modificada de Hernández-Avelino (2008).

3 Metodología

3.1 Base de datos

El Servicio Sismológico Nacional reporta 496 sismos ocurridos en el estado de Hidalgo desde marzo de 1976 hasta junio del 2019 (SSN, 2019), estos se encuentran en un rango de magnitud de $1.1 \le M_c \le 5.1$, la mayoría de los sismos se concentran cerca de la estación de Demacú, Hidalgo dentro de un radio de 25 kilómetros.

Los registros de velocidad fueron descargados en formato SAC (Seismic Analysis Code) de dos redes sismológicas y bases diferentes: la base de datos en línea del Servicio Sismológico Nacional (SSN, 2019) y la base de datos de la Red Sísmica del Valle de México (RSVM) (Quintanar et al., 2018) proporcionada por el Grupo de Instrumentación del SSN, descargando desde el año 2003 hasta el 2019, quedando 352 sismos para analizar (Figuras 3.1 y 3.2). En total se utilizaron los registros de 25 estaciones pertenecientes a la red de banda ancha del SSN y 11 estaciones de la RSVM.

Figura 3.1. Distribución del número de sismos por año.

Una vez descargados todos los registros se realizó la visualización de cada una de las trazas con el apoyo del software Seismic Analsis Code (SAC) y fue posible descartar 9 eventos debido a que no se observaban bien las trazas y era difícil de visualizar las fases de las ondas P y S. Por lo tanto la base de datos se conformó de 343 sismos registrados en las dos redes mencionadas anteriormente. La Tabla 3.1 y Figura 3.2 muestra el número de sismos registrados por cada estación sismológica, donde se observa que la estación Demacú Hidalgo es la que ha registrado mayor número de sismos. La instalación de la estación, desde 2003, ha ayudado en complementar el catálogo de sismos para esta región permitiendo mejorar y generar estudios como este.

Los 343 sismos que conforman la base de datos tienen un rango de magnitud de 1.6 $\leq M_c \leq 4$, la lista reportada por el SSN con localización, profundidad, magnitud, horario local y horario UTC se encuentra en el anexo A.

La Figura 3.3 muestra los sismos reportados por el SSN que conforman la base de datos utilizada en este trabajo.

Figura 3.2. Distribución del número de sismos registrados en las estaciones sismológicas.

Estación	Eventos	Estación	Eventos
ACIG	22	RPIG	10
ARIG	11	TLIG	4
CAIG	4	TOIG	3
CUIG	8	TPIG	3
CRIG	1	YAIG	43
DAIG	1	YOIG	1
DHIG	340	ZAIG	6
FTIG	5	ORVM	22
GTIG	6	ΡΤνΜ	45
HLIG	6	SZVM	7
IGIG	13	MZVM	19
LNIG	4	PBVM	27
LVIG	10	ZUVM	47
MEIG	9	MAVM	14
MOIG	7	VTVM	56
OXIG	1	AMVM	12
PLIG	19	ATVM	11
PNIG	2	TOVM	8
PPIG	41		

 Tabla 3.1
 Distribución de eventos por estación sismológica.

Figura 3.3. Mapa de localización de los 343 sismos que conforman la base de datos. Se muestran las 36 estaciones utilizadas para la etapa de relocalización.

3.2 Procesamiento de los datos

Para el procesamiento de los registros se tomaron dos caminos: relocalización y medición de amplitud. En cada uno de ellos se tomaron en cuenta un número distinto de estaciones. Para la relocalización de los sismos se utilizaron las estaciones descritas en la Tabla 3.1, debido que el contar con un mayor número de estaciones y con una buena distribución azimutal, es posible obtener localizaciones con menor incertidumbre. En una

primera etapa del procesamiento de los registros se utilizó SAC (Seismic Analysis Code). Este es un programa interactivo que permite manejar señales o series de tiempo, pudiendo realizar operaciones aritméticas y en general es una herramienta orientada para estudios donde se analizan señales sísmicas. Con la ayuda de comandos se corrigió la media y la tendencia. Posteriormente se rotaron las componentes horizontales, esta rotación hace referencia a reorientar las componentes horizontales al norte-sur y esteoeste. De acuerdo con Pérez Velázquez (2018), para distintas épocas desde el año 2000, la orientación de los sismómetros en cada una de las estaciones de la red de banda ancha del SSN no se encontraba exactamente hacia el norte. A partir de varios métodos, Pérez Velázquez (2018) calculó los ángulos con respecto al norte en los que se encontraban orientados en cada época esos sismómetros. Esos resultados se tomaron en este trabajo para reorientar las señales de los eventos, dependiendo de las épocas reportadas. La rotación principalmente se realiza para observar la verdadera amplitud del registro y corregir la localización de los eventos por un sesgo producido por esa mala orientación de los sismómetros.

Para los registros de las estaciones de la Red Sísmica del Valle de México, los datos de los ángulos fueron proporcionados por el Grupo de Instrumentación del SSN. Los valores de los ángulos y las épocas para las dos redes utilizadas se encuentran en el Anexo B. Con los datos ya rotados es posible relocalizar los eventos en SEISAN (Earthquake Analysis Software), este programa es una herramienta para el análisis de señales sísmicas, con el fin de obtener parámetros como la magnitud, localización, parámetros de fuente y mecanismos focales. La localización se realiza identificando la llegada de la onda P en la componente vertical y de la onda S en cualquiera de las dos componentes horizontales. Para la localización de los sismos es necesario tener mínimo tres estaciones y que de preferencia tengan una buena distribución azimutal para obtener con más precisión las distancias de la estación al epicentro.

31

En caso de contar con los registros de una sola estación se realiza una localización con el método azimutal. Por medio de distintos comandos en SEISAN es posible realizar estos dos tipos de localizaciones.

Como se mencionó al inicio de este apartado, el segundo camino que contempla la medición de amplitud solo se realiza para los registros de un número más reducido de estaciones. Esto se debe principalmente al objetivo del estudio. Por lo tanto se procede a elegir la cobertura que tendrá el resultado. La Figura 3.4 presenta un mapa para visualizar circunferencias concéntricas con distintos radios: 50, 100, 150, 200, 300 y 500 kilómetros, el centro es la estación sismológica DHIG, ya que se observa que la mayoría de los sismos se encuentran mapeados cerca a esta estación y del mismo modo las circunferencias tratan de encerrar al estado de Hidalgo.

El estado de Hidalgo se encuentra entre los límites de la Sierra Madre Oriental y la Faja Volcánica Trans Mexicana. En este trabajo se analizará la región que se encuentra dentro de la FVTM y cercana ella, por lo tanto hacia el sur, tomando como centro el estado de Hidalgo, se toman seis estaciones: CUIG, YAIG, PPIG, AMVM,ORVM, ZUVM y VTVM; hacia el noroeste se decide tomar RPIG e IGIG para tener buena distribución de estaciones, hacia el suroeste se eligen MOIG, ACIG, ATVM que se encuentran en la FVTM y por último DHIG que pertenece al estado de Hidalgo. Las 13 estaciones se encuentran dentro de un radio de 300 kilómetros y pretenden tener una cobertura de la FVTM en la zona centro del país.

No todos los registros de las estaciones de la Red Sísmica del Valle de México que se encuentran instaladas dentro de la Ciudad de México, para esta etapa del procesamiento, se tomaron en cuenta, debido a los efectos de sitio y de amplificación que sufren las ondas sísmicas a su paso por esta región. Por lo tanto solamente se decidió utilizar cinco estaciones de esta red que se encuentran instaladas en el Estado de México y cercanas al estado de Hidalgo. De este modo se decidió tomar los registros de 13 estaciones sismológicas para medir las amplitudes máximas de las componentes Norte-Sur y Este-Oeste. Las estaciones se muestran con triángulos rojos invertidos en la Figura 3.4.

Figura 3.4. Distancias a partir del centro de la sismicidad en el estado de Hidalgo. Las estaciones señaladas con un triángulo inverso rojo son las estaciones elegidas para el análisis de atenuación de este trabajo.

A los registros rotados elegidos de acuerdo con lo antes mencionado se les retiró la respuesta instrumental. Esto se debe a que los sismogramas son una convolución de varios factores: la fuente sísmica, la estructura de la Tierra y el sistema que está registrando el movimiento. El proceso se realiza por medio de una deconvolución en SAC. Para esto es necesario contar con los archivos de polos y ceros (PZ) de la respuesta de los sismómetros. Los datos de polos y ceros de las 13 estaciones utilizadas fueron

proporcionadas por el SSN. En esta deconvolución se aplicó un filtro con frecuencias de esquina de 0.005, 0.0125, 20 y 30 Hz para no tomar en cuenta las frecuencias donde el instrumento no tenga una frecuencia plana. El proceso para obtener los registros en desplazamiento del suelo es realizar una integración ya que los registros deconvolucionados son de velocidad, una integración de esta lleva al desplazamiento. Posteriormente se convolucionan con la respuesta instrumental de un sismómetro Wood Anderson, obteniendo finalmente registros de desplazamiento del suelo por un sismómetro Wood Anderson.

En el 2013, la IASPEI recomendó nuevos valores de polos y ceros para la respuesta de un instrumento Wood-Anderson. Estos fueron determinados en el trabajo de Uhrhammer y Collins (1990), ya que los resultados mostraron que el valor de magnificación de 2080 se acerca más a la respuesta de un sismómetro Wood Anderson que el valor de 2800. La diferencia de ganancia produce una diferencia de amplitud de un factor de 1.35 y por lo tanto una diferencia en la $M_{\rm L}$ de 0.13. En este trabajo, por lo tanto, se utiliza el nuevo archivo de polos y ceros propuesto, con el valor de la constante igual a 2080 y que se muestra en el Anexo C.

Posteriormente se miden las amplitudes máximas (pico máximo: positivo/negativo a valle/cresta: negativo/positivo) de los registros simulados (WA) con la ayuda de un código programado en Matlab. La Figura 3.5 muestra el procesamiento aplicado a los registros digitales; esta figura muestra las modificaciones y manipulaciones que sufren los registros digitales con la finalidad de obtener los parámetros requeridos para cumplir con el objetivo de este trabajo, la determinación de una función de atenuación de la región y por lo tanto la escala de magnitud local.

Como resultado de esta primera etapa se tienen los datos de localización de los sismos, 343 datos de latitud y longitud. Se realizaron las mediciones de amplitudes de las dos componentes horizontales, con un total de 1254 datos, 627 de la componente N-S y 627 de la componente E-W. La Tabla 3.2 muestra el número de componentes por cada estación.

34

Estación	Registros en	Registros en
	componente E-O	componente N-S
ACIG	22	22
CUIG	8	8
DHIG	338	338
IGIG	13	13
MOIG	7	7
PPIG	41	41
RPIG	9	9
YAIG	43	43
ATVM	11	11
ZUVM	47	47
VTVM	56	56
AMVM	12	12
ORVM	20	20
Total	627	627

 Tabla 3.2. Distribución de registros y componentes por estación.

Figura3.5.Registrodelacomponenteeste-oestedelaestaciónDHIGdel sismodel17de septiembrede2013(HorarioUTC),magnituddecodareportada por elSSN: 3.7.

a) Registro original de la base de datos sin respuesta instrumental.

b) Registro corregido por media, tendencia y rotado, sin respuesta instrumental.

c) Registro en desplazamiento sin respuesta instrumental.

 d) Registro simulado con respuesta de un sismómetro Wood Anderson.
3.3 Análisis del modelo de velocidades

La relocalización de los sismos implicó utilizar un modelo de velocidades sísmicas para la corteza adecuado. De acuerdo con la zona de estudio y principalmente a la geología, es fundamental elegir un modelo de velocidades. Para un modelo con velocidades símicas bajas implica que las ondas viajen lento, para el caso de un modelo de velocidades sísmicas muy altas, las ondas viajarán más rápido.

Al momento de realizar una localización en el programa SEISAN se requiere de un modelo de velocidades, dicho archivo es llamado STATIONO.HYP y contiene cada una de las localizaciones de las estaciones utilizadas, así como un modelo de velocidades. Para elegir el mejor modelo para este trabajo se realizaron pruebas con tres modelos de velocidades, utilizando el mismo picado de las fases P y S para cada sismo, con la finalidad de elegir el que tuviera un mejor comportamiento en los valores de error o rms. Estos valores de error se pueden deber a la mala elección de las fases, determinando mal los tiempos de llegada de las ondas P y S a la estación; o al modelo de velocidades, pues las velocidades de viaje de las ondas tratan de ajustarse a la estructura.

Los valores de rms que se obtienen de cada localización son un grado de incertidumbre que permiten generar la decisión de ajustar algunos parámetros como la elección de las fases, la modificación de la profundidad, el número de estaciones utilizadas y el grado de confianza que se tenga en la visualización de las fases, así como suceda el caso de que alguna estación esté mal en tiempo.

Generalmente cuando se realiza la localización con una estación no se generan valores de rms, pero cuando se utilizan más estaciones, sí se tiene un valor de rms que puede aumentar o disminuir dependiendo de los parámetros mencionados anteriormente. Por lo tanto, para este trabajo se tomaron únicamente los valores de rms de las 70 localizaciones realizadas con más de una estación.

37

3.3.1 Modelo utilizado por el Servicio Sismológico Nacional

El SSN emplea un modelo de velocidades basado en la modificación del modelo propuesto por Campillo et al. (1996), el cual es utilizado para la localización de los sismos ocurridos en todo el país, con algunas excepciones. Este modelo presenta valores de velocidad de onda P hasta los 413 kilómetros, mostrados en la Figura 3.6 y la Tabla 3.3.

3.3.2 Modelo Espíndola Castro (2009)

A partir de funciones de receptor es posible determinar modelos corticales de velocidades. En 2009, Espíndola Castro, obtuvo para cada estación de la red de banda ancha del SSN un modelo de velocidades corticales, por lo que se empleó en este trabajo el correspondiente a la estación de Demacú (DHIG). Este modelo comprende hasta los 22 kilómetros de profundidad, por lo que fue complementado con los valores de SSN. Como se sabe, los sismos en esta región son someros, así que el modelo hasta los 22 kilómetros funciona sin algún problema. La Tabla 3.3 y Figura 3.6 muestran los valores de velocidad.

3.3.3 Modelo Soto Peredo (2012)

Dentro del trabajo realizado por Soto Peredo en 2012, se realiza un análisis de la sismicidad en el estado de Hidalgo, a partir de la relocalización de sismos sucedidos entre 1997 y 2010 en el estado se obtuvo como resultado un modelo de velocidades de corteza (Tabla 3.3 y Figura 3.6).

Al comparar los tres modelos (Tabla 3.3) se observa que cada uno de ellos presenta diferencias en los espesores y el número de las capas.

Tabla 3.3 Modelo de velocidades de la corteza

Figura 3.6. Modelos de velocidades de la corteza. Velocidad contra profundidad.

3.4 Función de atenuación y magnitud local

Con los datos de relocalización de cada sismo y con el conocimiento de las coordenadas de cada estación utilizada en esta etapa es posible obtener los parámetros de distancias (*r*) entre los sismos y cada estación en la que se haya medido en el registro digital simulado la máxima amplitud. La Tabla 3.5 muestra las coordenadas de las estaciones utilizadas. Para este caso las distancias son obtenidas en kilómetros, en la Figura 3.7 se

muestran algunos ejemplos de rayos que ejemplifican las distancias desde el epicentro del sismo a cada una de las estaciones en las que fueron registrados. Como ya se mencionó al inicio de este capítulo, la estación de Demacú, Hidalgo, es la que ha registrado el mayor número de sismos que conforman la base de datos de este trabajo.

Estación	Longitud	Latitud	
ACIG	-99.88239	19.984542	
CUIG	-99.178 19.329		
DHIG	-99.035468	20.3003	
IGIG	-101.327803	20.753042	
MOIG	-101.227135	19.646812	
PPIG	-98.628148	19.06705	
RPIG	-99.982753	21.88492	
YAIG	-99.066987	18.862517	
ATVM	-99.841048	19.761847	
ZUVM	-99.077543	19.826459	
VTVM	-98.774508	19.770101	
AMVM	-98.785873	19.131894	
ORVM	-98.7232	19.5925	

 Tabla 3.5. Localización de estaciones utilizadas en la simulación de registros digitales y medición de máxima amplitud.

Figura 3.7. Trazos de los epicentros a las estaciones. Un extremo de la línea azul es el epicentro del sismo y el otro está dirigido hacia la estación.

En total se obtuvieron 627 distancias, como se tienen dos componentes (norte y este) se tendrán 1254 distancias r expresadas en kilómetros. Con esta etapa del procesamiento se tienen las distancias epicentrales y la máxima amplitud medida en milímetros.

Siguiendo al trabajo de Hutton y Boore (1987), que anteriormente lo había seguido Joyner y Boore (1981) y Bakun y Joyner (1984), donde se plantea la expresión para obtener la función de atenuación mencionada en el Capítulo 2,

$$\log A = M_L + \log A_0 \left(\Delta \right) - S, \tag{3.1}$$

dando lugar a la siguiente expresión:

$$-\log A_{ij} = n \log \left(\frac{r_{ij}}{100}\right) + K \left(r_{ij} - 100\right) + 3.0 - M_{L_i} + S_j,$$
(3.2)

donde n y K son parámetros relacionados con la dispersión geométrica y atenuación anelástica, respectivamente, A_{ij} es la máxima amplitud horizontal del *i*-ésimo evento observada en la *j*-ésima componente de la estación, r_{ij} es la distancia epicentral del *i*ésimo evento a la *j*-ésima componente de la estación, M_{L_i} es la magnitud local del *i*-ésimo evento, y S_i es el factor de corrección de la *j*-ésima componente de la estación.

En este trabajo se ha decidido retomar la modificación que sugieren Hutton y Boore (1987), donde se sugiere que la magnitud local sea definida de manera que un sismo de magnitud 3 corresponda a 10 mm de movimiento en un instrumento Wood-Anderson a una distancia hipocentral de 17 kilómetros. Esta definición es consistente con la definición original planteada por Richter de que un sismo de magnitud 3 produciría 10 mm de movimiento a 100 kilómetros. Esto permitiría una comparación más significativa de los sismos en situaciones donde la atenuación de los movimientos Wood-Anderson dependen en gran medida de la región geográfica. Por lo tanto, si se ajusta la ecuación a lo planteado por Hutton y Boore (1987) y si se reordena la Ecuación (3.2), se obtiene la siguiente expresión:

$$-n\log\left(\frac{r_{ij}}{17}\right) - K\left(r_{ij} - 17\right) - M_{L_i} - S_j = \log A_{ij} + 2.0.$$
(3.3)

De esta forma, la Ecuación (3.3) puede representarse de la forma matricial

$$\mathbf{Gm} = \mathbf{d},\tag{3.4}$$

representando así un problema de inversión lineal. Para resolverlo existen diferentes métodos como los de mínimos cuadrados, máxima verosimilitud o los métodos de inversión generalizados (por ejemplo, Aki y Richards, 1980; Aster et al., 2005).

Si suponemos que **G** es una matriz de $m \times n$ y que los elementos de **G** son números reales; cuando $m \neq n$ existe una única matriz inversa generalizada **G**^g que se puede usar para resolver la Ecuación (3.4):

$$\mathbf{m} = \mathbf{G}^{-g}\mathbf{G}\mathbf{m} = \mathbf{G}^{-g}\mathbf{d}.$$
 (3.5)

42

La matriz inversa generalizada se determina por medio de una descomposición en valores singulares propuesta por Aster et al. (2005). Este tipo de descomposición permite obtener n, K, M_L y los valores de correcciones de estación de manera simultánea.

A partir de la Ecuación (3.3) se asume que p es el número de sismos y q es el número de componentes de las estaciones quedando las siguientes expresiones:

$$\mathbf{m} = \begin{bmatrix} n \\ K \\ M_{L_1} \\ \vdots \\ M_{L_p} \\ S_1 \\ S_2 \\ \vdots \\ S_{q-1} \\ S_q \end{bmatrix}_{(p+q+2)\times 1} \mathbf{d} = \begin{bmatrix} \log A_{11} + 2.0 \\ \log A_{12} + 2.0 \\ \vdots \\ \log A_{p(q-1)} + 2.0 \\ \log A_{pq} + 2.0 \end{bmatrix}_{pq\times 1} .$$
(3.6)

Si se utiliza la restricción adicional de que la suma de todas las correcciones de estación es igual a cero se obtiene la siguiente expresión:

$$\mathbf{m} = \begin{bmatrix} n \\ K \\ M_{L_1} \\ \vdots \\ M_{L_p} \\ S_1 \\ S_2 \\ \vdots \\ S_{q-1} \\ S_q \end{bmatrix}_{(p+q+2)\times 1}} \mathbf{d} = \begin{bmatrix} \log A_{11} + 2.0 \\ \log A_{12} + 2.0 \\ \vdots \\ \log A_{p(q-1)} + 2.0 \\ \log A_{pq} + 2.0 \\ 0 \end{bmatrix}_{(pq+1)\times 1}$$
(3.7)

Con los datos obtenidos del procesamiento, 1254 mediciones amplitudes (A) y 627 distancias epicentrales (r); se tienen 343 sismos (p), 13 estaciones lo que lleva a resolver 26 componentes por el hecho de que cada estación tiene dos componentes horizontales N-S y E-O (q). Con estos datos se construyen las matrices de la expresión 3.7, la matriz **G** tiene dimensiones de 1255 x 371, m tiene dimensiones 371 x 1 y d de 1255 x 1.

A partir de la descomposición en valores singulares (Aster et al., 2005) como lo hace Paz Martínez (2017) en la determinación de una escala de magnitud local para el noreste de México, se lograron determinar los 343 valores de magnitud $M_{\rm L}$, n, K, y los valores de correcciones de estación de manera simultánea. Con estos valores es posible calcular los residuales para cada estación.

Observando que los residuales mantienen una distribución Gaussiana se obtienen los valores de desviación estándar $\sigma 1$ y varianza $\sigma 1^2$. Este último valor, en conjunto con la matriz generalizada inversa, se utilizó para obtener la matriz de covarianzas. Esta permite obtener los errores de todos los valores estimados en la inversión; los elementos de su diagonal principal contienen las varianzas σ^2 , de cada una de las variables. De las expresiones 3.8 y 3.9, los valores obtenidos nos dicen que para cualquier modelo se tienen una 95% de probabilidad de caer dentro de $\pm 2\sigma$ del valor verdadero. Así se obtienen 371 valores de error,

$$cov \mathbf{m}_{est} = \mathbf{\sigma} \mathbf{1}^2 \mathbf{G}^{-g} (\mathbf{G}^{-g})^T$$
(3.8)

$$\boldsymbol{\sigma} = diag((cov \mathbf{m}_{est})^{\frac{1}{2}}), \qquad (3.9)$$

44

4 Resultados

4.1 Relocalización de los sismos

273 de los 343 sismos fueron relocalizados con el método azimutal utilizando los tres registros de una sola estación. Los 70 sismos restantes fueron localizados con más de una estación, por lo tanto tendrán algún valor de error o rms, de acuerdo con las incertidumbres que se tengan en la selección de fases y en el modelo de velocidades, que se mencionaron en el Capítulo 3.

4.1.1 Modelo SSN

Utilizando el modelo del SSN para la relocalización, se analizaron 70 valores de rms de eventos cuya localización ocupó más de una estación. Estos se mantuvieron con un valor menor de 0.6, mostrados en el histograma a) de la Figura 4.1. Esta distribución del valor de rms tiene como media 0.35.

El rango de distancias epicentrales es de $4 \le \Delta \le 276.60$. Estas localizaciones se muestran en la Figura 4.4, donde se observa una tendencia cercana a la estación de Demacú, Hidalgo (DHIG). Este modelo de velocidades de corteza ajusta la mayoría de los sismos relocalizados a una profundidad de 5 km, teniendo una media de 5.2 km; la distribución de estos valores se presentan en el histograma b) de la Figura 4.1, de donde se puede caracterizar a toda la sismicidad como somera.

4.1.2 Modelo Espíndola Castro (2009)

Utilizando el modelo propuesto por Espíndola Castro (2009) para la relocalización, los 70 valores de rms de los eventos cuya localización ocupó más de una estación, se mantuvieron con un valor menor de 0.8 mostrados en el histograma a) de la Figura 4.2. Estos valores tienen como media 0.4. El rango de distancias epicentrales es de $1.7 \le \Delta \le$ 330.62 km, estas localizaciones se muestran en la Figura 4.4. De esta figura se observa una tendencia cercana a la estación de Demacú, Hidalgo (DHIG) pero diferente a las

localizaciones obtenidas con el modelo del SSN, ya que se aprecia un poco más dispersas de la estación DHIG.

El modelo de velocidades de corteza propuesto por Espíndola Castro (2009) ajusta la mayoría de los sismos relocalizados a una profundidad de 3 km, teniendo una media de 3.8 km, la distribución de estos valores se presentan en el histograma b) de la Figura 4.2 de donde se puede caracterizar a toda la sismicidad como somera.

4.1.3 Modelo Soto Peredo (2012)

Con el modelo de Soto Peredo (2012) la distribución de los 70 valores de rms tiene como media un valor de 0.33 y la media de las 343 profundidades es de 6.3 km. Estas distribuciones se presentan en la Figura 4.3; así como las localizaciones en el mapa mostrado en la Figura 4.4.

Este modelo ajusta las localizaciones con un rango de distancias epicentrales de $1.5 \le \Delta \le 282.36$ km. Los epicentros de estos sismos ajustados con este modelo presentan un comportamiento similar al del modelo utilizado por el SSN, ya que la mayoría se encuentran agrupados cercanos a la estación de DHIG.

Figura 4.1. Histogramas del modelo utilizado por el SSN. a) Histograma de los valores de rms de las 70 localizaciones utilizando más de una estación. b) Histograma de los valores de profundidad de los 343 sismos relocalizados.

Figura 4.2. Histogramas del modelo de Espíndola Castro (2009). a) Histograma de los valores de rms de las 70 localizaciones utilizando más de una estación. b) Histograma de los valores de profundidad de los 343 sismos relocalizados.

Figura 4.3. Histogramas del modelo de Soto Peredo (2012). a) Histograma de los valores de rms de las 70 localizaciones utilizando más de una estación. b) Histograma de los valores de profundidad de los 343 sismos relocalizados.

Figura 4.4. Localización de los sismos con los diferentes modelos de velocidad analizados. Los puntos rojos muestran los epicentros de los 343 sismos, los triángulos azules invertidos señalan las estaciones.

 a) Relocalización con modelo utilizado por el SSN.
 b) Relocalización con modelo propuesto por Espíndola Castro (2019).
 c) Relocalización con el modelo de Soto Peredo (2012).

De acuerdo con lo observado, las localizaciones se encuentran menos dispersas utilizando el modelo de velocidades de la corteza usado por el SSN y el propuesto por Soto Peredo (2012). Utilizando la misma elección de fases para los tres modelos se observa que la mayoría de los residuales son menores de 0.5, y que la media de rms más baja es obtenida con el modelo de Soto Peredo (2012) con una valor de 0.33.

En algunos casos las pruebas con los tres modelos permitían que el modelo del SSN y el de Soto ajustaran mejor la localización y el valor del rms con un mayor número de

estaciones, lo cual permite tener mayor confianza al tener una mejor cobertura en distancia y distribución azimutal con las estaciones.

Para elegir el modelo de velocidades, se revisaron las características geológicas del lugar. Como parte de la caracterización sísmica de un lugar se pretende tener modelos de velocidad de la corteza que se ajusten o se asemejen a las características del subsuelo; en muchos casos se pretende mejorar la parte más somera de la corteza que es con la que se tienen mayor interacción. De estos tres modelos, el de Soto Peredo (2012) y el de Espíndola Castro (2009) tienen una mayor cantidad de capas en los primeros 15 km de profundidad aunque con diferencias en los valores de velocidad asignados a cada capa.

Como parte del análisis de la geología del estado, se observaron los efectos de la interacción entre la FVTM y la Sierra Madre Oriental, dando como resultado la variabilidad del tipo del material en la superficie y de estructuras. Este análisis se presenta mejor detallado en el Capítulo 5.

Debido a las diferentes estructuras: fallas, fracturas, pliegues y calderas que se encuentran en la zona; a los posibles valores de velocidad y las capas que conforman la corteza, se asumió el modelo de Soto Peredo (2012) como el adecuado para tomar los valores de localización (datos en Anexo D) como los más certeros y por lo tanto se tomaron para realizar la inversión. Por otro lado, el ajuste de error tiene una media de 0.33 que se presenta como la menor de los tres modelos contemplados.

4.2 Función de atenuación $-\log A_0$

Del resultado de la inversión de la expresión 3.7 se obtuvo el valor de dispersión geométrica y atenuación anelástica, n = 1.1178 y k = 0.00364, respectivamente. Con estos valores, la expresión de la función de atenuación queda de la siguiente forma

$$-\log A_0 = 1.1178 \log\left(\frac{r}{17}\right) + 0.00364(r - 17) + 2, \tag{4.1}$$

por lo tanto, la expresión para la magnitud local queda como

$$M_{\rm L} = \log A + 1.1178 \log\left(\frac{r}{17}\right) + 0.00364(r - 17) + 2 + S. \tag{4.2}$$

De la inversión también se obtuvieron los 343 valores de la magnitud local y 26 valores de corrección de estación, mostrados en la Tabla 4.1. El rango de valores de magnitud local obtenidos se encuentran entre $1 \le M_L \le 4.1$.

La Figura 4.5 muestra las gráficas de la distribución de los valores de magnitud local obtenidos de la solución de la expresión 3.7 y de las distancias epicentrales obtenidas utilizando el modelo de velocidades cortical de Soto Peredo (2012).

Figura 4.5. Distribución de los valores de magnitud local obtenidos de la expresión 3.7 y de las distancias epicentrales obtenidas utilizando el modelo de velocidades de Soto Peredo (2012).

Se obtuvieron los residuales entre la magnitud local calculada y la magnitud local observada. La Figura 4.6 muestra la distribución de los residuales en función de la distancia. Se observa que la mayoría de los residuales son muy bajos, y en general la distribución se encuentra entre -0.5 y 0.5.

Figura 4.6. Izquierda: Comportamiento de los residuales con la distancia. Derecha: Distribución de los residuales.

Como se presenta una distribución normal de los residuales (Figura 4.6) se obtienen la desviación estándar y la varianza, $\sigma = 0.1830$ y $\sigma^2 = 0.0335$, respectivamente. Con el valor de la covarianza y la matriz generalizada inversa fue posible obtener la matriz de covarianzas, esta matriz es cuadrada, en la diagonal contiene las varianzas de las variables y los elementos fuera de la diagonal son las covarianzas asociadas a las diferentes variables. Las dimensiones de la matriz obtenida son 371x371, por lo tanto se toman los 371 valores de la diagonal, 2 valores son las varianzas de n y k, 343 de la magnitud local de los eventos y 26 de las correcciones de las estaciones.

Los valores 2σ para n y k son 0.1148 y 0.0008638, respectivamente, estos se muestran en la Figura 4.7 junto con la función de atenuación (expresión 4.1).

Figura 4.7. Función de atenuación obtenida en este trabajo (curva azul) $\pm 2\sigma$ (curvas discontinuas negras).

La Figura 4.8 muestra la distribución de los valores de magnitud local obtenidos contra los valores de 2σ de cada uno, obtenidos de la matriz de covarianzas. En general todos los valores se encuentran muy dispersos entre 0.09 y 0.28.

Figura 4.8. Distribución de los valores $\pm 2\sigma$ contra el valor de magnitud local obtenido.

4.3 Magnitud de coda y magnitud local

El Servicio Sismológico Nacional emite valores de magnitud de coda para sismos con magnitud baja o pequeños. Por lo tanto se presenta una relación entre ambas escalas para visualizar las diferencias. A partir de los valores de magnitud de coda emitidos por el SSN y los valores obtenidos de magnitud local, se obtuvo una relación entre estos valores, la expresión de la regresión se obtuvo a partir de mínimos cuadrados y queda de la siguiente forma:

$$M_L = 1.0669M_c - 0.9739. \tag{4.3}$$

En la Figura 4.8 se presenta la relación entre ambas magnitudes y los valores de magnitud para cada evento. Las magnitudes reportadas por el SSN se encuentran entre 1.6 y 4, y las obtenidas en este trabajo entre 1 y 4.1, estas diferencias se pueden observar en la Figura 4.9. El coeficiente de determinación, $r^2 = 0.4$, nos dice que la asociación lineal presenta una correlación moderada y el intervalo de incertidumbre se encuentra en ±1.2, por lo tanto no se sugiere que a partir de la magnitud de coda se obtenga un valor de magnitud local.

Se observa una gran parte de las magnitudes locales obtenidas son menores que las magnitudes de coda estimadas por el SSN.

A partir de esta relación es posible presentar los residuales entre la magnitud calculada a partir de esta expresión de relación lineal y la magnitud obtenida de la inversión. La Figura 4.10 presenta los residuales, $M_{\rm L}$ - $M_{\rm Lcal}$, observándose una distribución normal.

Figura 4.9. Magnitud de coda contra magnitud local. La línea negra muestra la expresión 4.3 obtenida del ajuste por mínimos cuadrados

Figura 4.10. Distribución de los residuales $M_{\rm L}$ - $M_{\rm Lcal}$. $M_{\rm Lcal}$ obtenida de la expresión 4.3.

4.4 Corrección de estaciones

Los 26 valores de corrección de estación y su respectivo error se muestran en la Tabla 4.1. Para garantizar una uniformidad, las condiciones de sitio locales, que llevan a la amplificación o deamplificación de los movimientos del suelo medidos, son comúnmente tomadas en términos de estas correcciones de estación. Las correcciones de estación varían y se correlacionan ampliamente con la geología regional (Paz Martínez, 2017). Del mismo modo se considera que el efecto del suelo y el del instrumento se combinan en cada caso en una desviación bastante uniforme de las amplitudes medias registradas para todas las estaciones e instrumentos (Richter, 1935). Si se presentan valores negativos se estarán amplificando las ondas símicas y para el caso en que el valor sea positivo presentará valores de movimiento del suelo menor que los verdaderos.

En este caso las estaciones pertenecientes a la RSVM presentan valores negativos y se encuentran hacia el sureste del área de estudio, sucede lo mismo con la estación CUIG. Para la obtención de estos valores se utilizaron el 25% de los registros digitales, por lo que podríamos asegurar que estos valores tienen una baja incertidumbre y los podemos tomar como verdaderos. Para las estaciones que se encuentran al noroeste, RPIG e IGIG, se tienen valores negativos aunque para su estimación se tomaron registros que representan tan solo el 3% de todos los registros digitales utilizados.

Estación	F. Corrección	±2σ	Estación	F. Corrección	±2σ
ACIG HHE	0.5220	0.0872	ACIG HHN	0.4245	0.0872
CUIG HHE	-0.0543	0.1357	CUIG HHN	-0.0372	0.1357
DHIG HHE	0.4637	0.0575	DHIG HHN	0.4581	0.0575
IGIG HHE	-0.4486	0.1179	IGIG HHN	-0.2223	0.1179
MOIG HHE	0.0924	0.1595	MOIG HHN	0.1322	0.1595
PPIG HHE	0.0617	0.0634	PPIG HHN	0.0986	0.0634
RPIG HHE	-0.3902	0.1311	RPIG HHN	-0.4660	0.1311
YAIG HHE	0.2935	0.0646	YAIG HHN	0.2720	0.0646
ATVM HHE	0.0499	0.1131	ATVM HHN	-0.1019	0.1131
ZUVM HHE	0.1392	0.0684	ZUVM HHN	0.0808	0.0684
VTVM HHE	-0.1362	0.0642	VTVM HHN	-0.1749	0.0642
AMVM HHE	-0.2169	0.1085	AMVM HHN	-0.1512	0.1085
ORVM HHE	-0.3129	0.0891	ORVM HHN	-0.3758	0.0891

Tabla 4.1. Correcciones de estación y su error asociado.

4.5 Relación Gutenberg-Richter

La relación Gutenber-Richter es una relación o expresión que surge entre la frecuencia de los sismos y su magnitud, esto proporciona información sobre la actividad sísmica de una región. En muchos casos se utiliza específicamente para una región delimitada y de la cual se desea realizar una descripción sísmica. Esta relación también brinda información sobre el comportamiento que existe entre los sismos pequeños y sismos grandes. Se grafica el número de sismos (N) que tienen una magnitud (M) mayor o igual a esta, por lo tanto es acumulativa, esta distribución es descrita por una relación lineal con constantes a y b, donde a depende del número de sismos del catálogo y b es generalmente cercana a uno.

Para el catálogo de sismos obtenido en este trabajo se realizó la visualización de la relación de la magnitud local obtenida con el número de sismos acumulados (Figura 4.11), en este caso es posible observar que dentro del rango de magnitud 1 y 2 se presenta ligeramente una variación de la curva, lo cual nos remarca que catálogo no está completo. Como se mencionó anteriormente el valor de *b* generalmente se encuentra cercano a uno, pero para catálogos donde se analizan magnitudes pequeñas, esos datos se desvían de la línea b = 1, ya que el catálogo se encuentra incompleto con muchos sismos pequeños que no son detectados (Stein y Wysession, 2003).

De la representación gráfica y de muchos otros métodos es posible obtener los valores de a, b y la magnitud de completitud, esta última se define como el límite inferior de magnitud en el cual la red ya no detecta sismos. En la gráfica se aprecia cuando el número de eventos acumulados deja de aumentar linealmente y se ha alcanzado un umbral de detección.

En este caso la Figura 4.11, muestra una posible falta de detección de sismos pequeños mostrando una ligera variabilidad en la curva en las magnitudes más pequeñas. La falta de detección de la red muy probablemente da como resultado un catálogo incompleto, lo que impide la determinación de las constantes y la mencionada magnitud de completitud de la relación de Gutenberg-Richter por métodos sencillos.

56

Figura 4.11. Distribución de la magnitud local contra el número acumulativo de eventos. Representa la relación que hay entre sismo de magnitud menor y magnitud mayor.

Uno de los problemas en la detección de los sismos es la variabilidad en los niveles de ruido durante un tiempo determinado, donde llegan a existir variabilidad en los niveles en un día por la actividad antropogénica y por los tiempos de inactividad en la red. De manera general, la sismicidad en una región suele ser constante, esto es, que suele respetar el comportamiento logarítmico de la relación Gutenberg- Richter (por cada sismo grande existirán más pequeños).

La distribución de los sismos utilizados en este trabajo se encuentran concentrados cercanos a la estación DHIG, presentándose pocos al noroeste y cercanos a Querétaro de una magnitud local mayor que 3, si se habla de que la sismicidad por lo general es constante, se tendrían que presentar sismos de algún modo pequeños y que la misma red no los pueda detectar. Para poder realizar una descripción muy general de este comportamiento se decidió realizar mediciones de la amplitud del ruido para poder observar las posibles magnitudes teóricas mínimas detectables por las estaciones con la ecuación de magnitud local obtenida en este trabajo (expresión 4.2). Se tomaron como ejemplo las estaciones DHIG y ZUVM. Se eligió un día y a una cierta hora donde se

observara el ruido, esta señal fue procesada siguiendo la metodología del apartado 3.2 para finalmente medir la amplitud de la señal simulada en sismómetro WA.

La Figura 4.12 muestra un ejemplo de las posibles magnitudes teóricas que pueden ser detectadas a cierta distancia, esto es, que a esa distancia la magnitud del sismo debe ser mayor o igual que la magnitud teórica para poder ser diferenciado del ruido que se lee en esa estación.

Figura 4.12. Curva de distancia contra magnitud local obtenida de la medición de ruido de dos estaciones sismológica. Muestran el comportamiento de la magnitud en función de la distancia. Línea continua: componente vertical, línea discontinua: componente norte-sur y línea punteada: componente este-oeste.
 Líneas color marrón corresponden a la medición de la amplitud de ruido en la estación ZUVM y líneas color verde corresponde a las mediciones en la estación DHIG.

La Figura 4.13 muestra circunferencias concéntricas con centro en las estaciones DHIG y ZUVM, los colores representan a las diferentes magnitudes teóricas de los sismos que llegan a ser detectados y pueden ser diferenciados del ruido cuando surgen a esa distancia. Se observa que tanto en la Figura 4.12, como en la 4.13, la estación ZUVM es más ruidosa y por lo tanto, en zonas donde surgen sismos pequeños más lejanos a la estación no son detectados. La estación DHIG presenta valores de amplitud de ruido menor, lo que permite distinguir al norte del estado, sismos de magnitud local mayor o igual que 1.8 lo que no sucede con la estación de ZUVM. Se decidió hacer este análisis muy general con dos estaciones para poder entender mejor la variabilidad de detección de las estaciones.

Figura 4.13. Mapa donde se observan los radios de magnitud. Los círculos representan la magnitud local mínima del sismo originado en esa circunferencia para que pueda ser diferenciado del ruido en cada estación.

5 Discusión y conclusiones

5.1 Discusión

5.1.1 Modelo de velocidades de la corteza

De acuerdo con lo analizado en el apartado 3.3, los diferentes modelos que se utilicen para realizar la localización de un sismo son indispensables para obtener coordenadas e hipocentros más certeros. Cuando se eligen los modelos de velocidades se está ajustando el viaje de la onda a una estructura, esencialmente cuando se realiza la selección de las fases P y S, la diferencia de tiempo obtenida se ajusta a la estructura propuesta por el modelo de velocidades y por lo tanto surgen las diferencias en las coordenadas obtenidas de acuerdo con el modelo que se desee utilizar.

En este caso, al analizar tres modelos de velocidad se han obtenido tres coordenadas, los mapas mostrados en las Figura 4.4 muestran la distribución de los sismos en la región estudiada y permite visualizar el ajuste de las coordenadas de acuerdo con el modelo de velocidades. Utilizando el modelo utilizado por el SSN los sismos se acumulan cercanos a la estación DHIG, esto se debe esencialmente a que este modelo empieza a buscar las coordenadas a los cinco kilómetros de profundidad y ajusta muchos sismos a esa profundidad, por lo tanto, el tiempo de viaje de las ondas lo compensa ajustando con un acercamiento del epicentro a la estación DHIG. De manera similar, utilizando el modelo de Soto Peredo (2012), la profundidad de los sismos tienen una media de 6.3 km y por lo tanto las coordenadas se ajustan cercanas a la estación DHIG. El modelo propuesto por Espíndola Castro (2009) ajusta la profundidad de la mayoría de los sismos a 3 km lo que lleva a que las coordenadas se encuentren un poco más lejanas de la estación.

El modelo utilizado por el SSN y el obtenido por Soto Peredo (2012) permiten que al incluir más estaciones (más picados de las fases P y S) se tengan valores más bajos de rms; con una media de rms de 0.35 y 0.33, respectivamente.

Para poder darle más validez a uno de los tres modelos de velocidad de la corteza, se plantea que satisfagan varios aspectos; el primero de ellos es que los modelos de velocidad permiten describir tanto la parte profunda como la parte somera de la corteza, al implementar más capas someras se puede decir que se está teniendo mayor resolución que se verá reflejado en las localizaciones y conjuntamente deben de responder a las características del lugar, la geología y la estructura.

Si se analiza con mayor detalle las características mencionadas; los principales rasgos estructurales corresponden a numerosas fallas normales y fracturas que cortan a las rocas sedimentarias y volcánicas, que se encuentran descritas en el apartado 2.4.

Relacionando con las características de las rocas, en la parte más somera, con un máximo de espesor de hasta 1000 m, se encuentran aflorando una gran variedad de rocas: tobas, dioritas, basaltos, y las mismas rocas que son el basamento de todo el lugar, las calizas de la formación el Doctor y Soyatal, las lutitas y areniscas de la formación Mezcala, hasta aluviones y conglomerados de la formación el Moro.

Es conveniente un modelo que tenga capas someras, porque permitiría una mejor descripción de la zona, como lo es el modelo de Soto Peredo (2012) y Espíndola Castro (2009), teniendo el límite de la primera capa a 2.4 y 2 km, respectivamente. Cada modelo le da diferente valor de velocidad de onda P a esa primer capa, para el de Soto Peredo (2012) a 0 km un valor de 3.5 [km/s] y a 2.4 [km], 5.9 [km/s], el modelo de Espíndola Castro (2009) a 0 [km] un valor de velocidad de 5.10 [km/s] y a 2 [km] de profundidad un valor de 6.32 [km/s].

Posiblemente el modelo de Soto Peredo (2012) contemple mejor los valores de velocidad con la geología contemplada, dado que se tienen desde aluviones hasta rocas volcánicas. Además, las localizaciones de los sismos coinciden con aquellas estructuras que se encuentran sísmicamente activas (Figura 5.1).

Figura 5.1.*Mapa con estructuras y sismos localizados (puntos rojos) con el modelo Soto Peredo (2012) en el estado de Hidalgo.*

5.1.2 Magnitud local

De acuerdo con los valores obtenidos de magnitud local se determinó que los sismos que sucedan a distancias menores de 8 kilómetros de estación DHIG, el valor de magnitud local será subestimada. También se observó la sobreestimación de magnitudes locales para magnitudes menores de 3.0 comparando con el catálogo del SSN.

En general, la Figura 4.9 muestra como la escala de magnitud coda sobreestima los valores de magnitud, ya que los valores de magnitud local son menores.

La determinación de la magnitud en cada escala toma parámetros distintos, para la escala de magnitud coda se analiza la posible duración del sismo y esta está sujeta al criterio de cada analista. Por otra parte, la magnitud local es una magnitud de amplitud en la cual influyen procesos como amplificación de las ondas, los posibles efectos de sitio

(geología), las correcciones de estación, la interacción suelo-sismómetro, la misma atenuación, etc.

Otro factor importante implementado en este trabajo fue la rotación de las componentes horizontales para reorientar al norte geográfico todos los registros utilizados, influyendo considerablemente en la localización de los epicentros y modificando las distancias epicentro-estación.

Por último, la variabilidad de $M_{\rm L}$ es de 0.13 al implementar o no los nuevos valores de polos y ceros, para la respuesta instrumental de un sismómetro Wood Anderson, propuestos por Uhrhammer y Collins (1990). Todos estos factores mencionados, posiblemente marcan la diferencia entre las dos escalas de magnitud.

5.1.3 Función de atenuación

Para poder dar más características de la región de estudio es indispensable comparar los resultados con una variedad de estudios. En este caso es posible comparar comportamiento de la atenuación en función de la distancia (Figura 5.3), con los estudios que se han realizado en México y en otros lugares, como California.

Comparando la curva obtenida en este trabajo con aquéllas para el centro de California (Boore y Hutton, 1987) y sur de California (Bajun y Joyner, 1984), dentro de los primeros 20 kilómetros, las tres curvas mantienen un comportamiento similar. Después de los 100 y hasta los 300 kilómetros, las tres curvas tienen comportamientos similares, ya que mantienen la misma pendiente indicando que disminuyen la misma amplitud a una misma distancia. Este mismo comportamiento lo mantienen las curvas propuestas para Baja California Norte (Munguía, 1999), ya que estas se comportan de manera similar a los resultados del sur de California (Boore y Hutton, 1987).

Figura 5.3. Curvas de atenuación. Comparación de $-\log A_0$ obtenida en este trabajo con diferentes regiones.

Se observa en general, la curva obtenida en este trabajo muestra que existe una mayor atenuación comparando con las regiones analizadas y además es rápida dentro de los primeros 80 kilómetros, ya que el logaritmo de la amplitud decae casi tres veces al haber recorrido esa distancia.

Comparando con la región del noreste de México (Paz Martínez, 2017), la atenuación sigue siendo mayor y dentro de los primeros 50 kilómetros decae más rápidamente la amplitud. Sucede lo mismo al comparar con el comportamiento de la atenuación en el Valle de México (Ortega y Quintanar, 2005), la atenuación para la región de Hidalgo sigue siendo mayor. Si se hace una comparación de los sismos someros que suceden en estas tres regiones, noreste de México, Valle de México e Hidalgo, podemos ver que en la región donde menos se percibe el movimiento del suelo causado por las ondas es Hidalgo. Probablemente si sucede un sismo a una misma profundidad en estas tres regiones y con la misma cantidad de energía, como la atenuación es mayor en la región de Hidalgo, dejará de ser percibido a menores distancias del epicentro.

La curva obtenida en este trabajo mantiene un comportamiento un poco similar a los resultados del noroeste de Italia (Spallarosa, 2002) en los primeros 40 kilómetros, aunque la primera sigue teniendo mayor atenuación. En contraste, después de los 200 kilómetros la atenuación es mayor en el noroeste de Italia.

Comparando ambas regiones, la gran cantidad de sismos que suceden al noroeste de Italia se deben a la interacción entre las placas Africana y Euroasiática, provocando así la misma interacción entre dos cadenas de montañas: los Alpes y los Apeninos. El límite entre estas dos superficies es llamado zona de Voltaggio Sestri, que incluye diferentes unidades metamórficas y no metamórficas en contacto. Entrando en contacto las unidades tectonometamórficas pertenecientes a Los Alpes de Liguria con rocas ofiolitas metamórifcas, metagabros, metabasaltos, metasedimentos y por otro lado las unidades Ligurias de los Apeninos del norte con rocas ofiolitas, secuencias sedimentarias y conglomerados. La interacción entre los dos cinturones orogénicos ha desarrollado una gran cantidad de fallas que rompen las rocas descritas donde algunas de estas se han mantenido activas (Molli et al., 2010).

En la región estudiada en este trabajo afloran diferentes tipos de formaciones, de las más importantes son la formación del Doctor y Soyatal conformadas por rocas calcáreas (Wilson et al., 1955) y la formación Mezcala con lutitas, limolitas, margas y areniscas. Principalmente estas tres formaciones son el basamento y gran parte se encuentran plegadas, fracturadas y con un gran número de fallas. También se tienen el grupo el Morro, el cual contiene conglomerados formados por lutitas, arenas y rocas calcáreas (Simons y Mapes, 1957); así como el grupo Pachuca, que está conformado por una gran cantidad de rocas volcánicas variando en composición de basaltos a riolitas.

Haciendo una comparación de ambas zonas, Hidalgo e Italia, podemos observar la gran variabilidad de litología, ambas presentan bastante estructuras y con rocas con velocidades de viaje de las ondas sísmicas variadas. Para el caso de Italia se tiene una presencia de bastantes rocas metamórficas y para Hidalgo, una variedad de material desde rocas ígneas y calizas hasta aluviones. La presencia de rocas con una velocidad alta lleva a suponer el rápido decaimiento de energía y, por lo tanto, de la amplitud de las ondas.

65

5.2 Conclusiones

El modelo de Soto Peredo (2012) fue elegido para tomar los valores de las coordenadas para la inversión, ya que presentaba mejores ajustes de los valores de rms así como por la posibilidad de agregar más estaciones (elección de fases de onda P y S) para tener una mejor cobertura azimutal al realizar la localización. Por otro lado, el modelo de la estructura: número de capas y su respectiva velocidad, comprenden mejor las características geológicas tanto del tipo de rocas como de las estructuras presentes. Los valores de profundidad obtenidos se encuentran mayoritariamente entre 0.5 y 7 km con una media de 6.3 km, varias fallas se encuentran cartografiadas y coincide la localización de los sismos, pero pudiesen existir muchas donde los sedimentos recientes las estén ocultando.

A partir de 343 sismos registrados en el estado de Hidalgo y en las zonas cercanas, se obtuvo una función de atenuación que permite relacionar las mediciones de amplitud de las trazas símicas simuladas en un sismómetro Wood Anderson y las distancias de los epicentros a las estaciones. De acuerdo con la curva o función de atenuación obtenida en este trabajo es posible concluir que en la zona cercana a Demacú, Hidalgo, la amplitud de las ondas símicas se atenúa rápidamente en los primeros 80 kilómetros de viaje. El decaimiento de amplitud en esos primeros kilómetros es muy rápido, y por lo tanto, en la zona no son tan perceptibles los sismos como en otras regiones del país y no han causado daños importantes en la región. Recordando que el estado de Hidalgo se encuentra en los límites de la Faja Volcánica Trans Mexicana y la Sierra Madre Oriental, la mayor cantidad de sismos registrados se encuentran en la FVTM. Sin embargo, esto no limita que solo se puedan presentar ahí.

Las pruebas para determinar los valores teóricos de magnitud local, en donde los sismos puedan llegar a ser diferenciados del ruido sísmico, mostraron que para la región del norte del estado sería muy difícil que se detectaran con estaciones del centro del país como las de la RSVM. Una zona de monitoreo muy importante es la región de Zimapán por el impacto que pueda tener algún incidente de carácter geológico. De acuerdo con las

66

localizaciones, aparentemente no se presentan sismos, pero por la prueba realizada de los valores teóricos de magnitud local, se puede tener omisiones en las detecciones de sismos pequeños que pudieran ocurrir en esa región.

Se espera que este trabajo forme parte de catálogos que permitan una nueva forma de caracterizar regiones específicas del país. Los problemas presentados en este trabajo, como un posible catálogo incompleto por la falta de detección de las estaciones son un claro ejemplo de la necesidad de la ampliación de estaciones sismológicas a lo largo de la República Mexicana, permitiendo generar más estudios completos y mantener zonas de monitoreo para la evaluación de peligro sísmico.

Bibliografía

Alsaker, A., Kvamme, L., Hansen, R., Dahle, A. y Bungum, H. (1991). The M_L scale in Norway. Bulletin of the Seismological Society of America 81(2), 379–398.

Aster, R., Borchers, B. y Thurber, C. (2005). Parameter estimation and inverse problems, Elsevier Academic Press.

Bakun, W. H. y Joyner, W. B. (1984). The M_L scale in central California. Bulletin of the Seismological Society of America 74(5), 1827–1843.

Baumbach, M., Bindi, D., Grosser, H., Milkereit, C., Parolai, S, Wang, R., Karkisa, S., Zünbul, S. and Zschau, J. (2003). Calibration of an M_L scale in northwestern Turkey from 1999 Izmit aftershocks. *Bull. Seism. Soc. Am.*, **93**(5), 2289-2295.

Boore, D. M. (1989). The Richter scale: its development and use for determining earthquake source parameters. Tectonophysics 166(1), 1–14. Bulletin of the Seismological Society of America 89(3), 750–763.

Bormann, P. (2012). New Manual of Seismological Observatory Practice (NMSOP-2), IASPEI,GFZ German Research Centre for Geosciences, Potsdam; http://nmsop.gfzpotsdam.de; DOI:10.2312/GFZ.NMSOP-2 urn:nbn:de:kobv:b103-NMSOP-2.

Campillo, M., Singh, S. K., Shapiro, N., Pacheco, J., Hermann, R. B. (1996). Crustal structure of south of the Mexican volcanic belt, based on group velocity dispersion. Geof. Int., 35 No. 4 p.p. 361-370.

Cervantes-Mede, A. Armienta, M. (2004). Influence of faulting on groundwater quality in Valle del Mezquital, Mexico. Geofísica Internacional. 43.

Chavez, D. E. and K. F. Priestley (1985). $M_{\rm L}$ observations in the Great Basin and M_0 versus $M_{\rm L}$ relationships for the 1980 Mammoth Lakes, California, earthquake sequence. Bull. Seism. Soc. Am. 75, 1583–1598.

Condori, C., Tavera, H., Marotta, G. S., Rocha, M. P., & França, G. S. (2017). Calibration of the local magnitude scale (M_L) for Peru. *Journal of Seismology*, **21**(4), 987–999.

Di Bona, M. (2016). A local magnitude scale for crustal earthquakes in Italy, Bull. Seismol. Soc. Am. 106, 242–258, doi: 10.1785/0120150155.

Espíndola Castro, Víctor Hugo (2009). Modelos de velocidad cortical en México, utilizando funciones de receptor en las estaciones de la red nacional de banda ancha. Tesis de doctorado. Universidad Nacional Autónoma de México.

García-Palomo, A., Macías, J., Tolson, G., Valdez, R., Mora-Chaparro, J. (2002). Volcanic stratigraphy and geological evolution of the Apan region, east-central sector of the Transmexican Volcanic Belt: Geofísica Internacional, 41, 133-150.

Gutenberg, B. (1945). Amplitudes of surface waves and magnitudes of shallow earthquakes. Bulletin of the Seismological Society of America, 35 (1). pp. 3-12. ISSN 0037-1106.

Gutenberg, B. y Richter, C. (1942). Earthquake magnitude, intensity, energy, and acceleration. Bulletin of the Seismological Society of America 32(3), 163–191.

Gutenberg, B. y Richter, C. F. (1956). Earthquake magnitude, intensity, energy, and acceleration. Bulletin of the seismological society of America 46(2), 105–145.

Greenhalgh, S. A. and R. Singh (1986). A revised magnitude scale for South Australian earthquakes. Bull. Seism. Soc. Am. 76, 757–769.

Havskov, J. y Ottemöller, L. (2010). Routine data processing in earthquake seismology: with sample data, exercises and software. Springer.

Hernández Avelino, I. (2008). Caracterización geológica y petrológica de la estructura circular Mezquital (estado de Hidalgo) y su posible riesgo geológico. Tesis de maestría. Instituto Politécnico Nacional.

Hernández Pérez, I., Vélez López, J., Mérida Montiel, R. (1996) Texto guía de la carta magnética "Hoja Pachuca "F14-11. Estados de Hidalgo, Querétaro, Veracruz, Puebla y México. Escala 1 : 250 000. Secretaría de comercio y fomento industrial. Coordinación general de minería. Consejo de Recursos Minerales.

Hutton, L. y Boore, D. M. (1987). The M_L scale in southern California. Bulletin of the Seismological Society of America 77(6), 2074–2094.

Illsley-Kemp, F., Keir, D., Bull, J. M., Ayele, A., Hammond, J. O. S., Kendall, J.-M., et al. (2017). Local earthquake magnitude scale and b-value for the Danakil Region of Northern Afar. *Bulletin of the Seismological Society of America*, **107**, 521–531.

Kanamori, H. y Jennings, P.C., (1978). Determination of local magnitude, M_L , from strong motion accelerograms. Bull. Seismol. *Soc*. Am., 68: 471-485.

Keir, D., G. W. Stuart, A. Jackson and A. Ayele (2006). Local earthquake magnitude scale and seismicity rate for the Ethiopian Rift. Bull. Seism. Soc. Am. 96, 2221–2230.

Kim, W. Y. (1998). The $M_{\rm L}$ scale in Eastern North America, Bulletin of the Seismological Society of America, 88, 935–951.

Kiratzi, A. A., and Papazachos, B. C. (1984). Magnitude scales for earthquakes in Greece. *Bull. Seism. Soc. Am.*, 74, 3, 969-985.

Langston, C. A., Brazier, R., Nyblade, A. A. y Owens, T. J. (1998). Local magnitude scale and seismicity rate for Tanzania, East Africa. Bulletin of the Seismological Society of America 88(3), 712–721.

Miao, Q. y Langston, C. A. (2007). Empirical distance attenuation and the localmagnitude scale for the central United States. Bulletin of the Seismological Society of America 97(6), 2137–2151.

Molli, G., Crispini, L., Malusà, M., Mosca, P., Piana, F., Federico, L. (2010). Geology of the Northern Apennine-Western Alps junction area: a regional review. Journal of the Virtual Explorer. 36. 1-49. 10.3809/jvirtex.2010.00215.

Muco, B., and Minga, P. (1991). Magnitude determination of near earthquakes for the Albanian network. *Bolletino di Geofisica Teorica ed Applicata.*, **XXXIII**, 129, 17-24.

Ortega, R. y Quintanar, L. (2005). A study of the local magnitude scale in the basin of Mexico: mutually consistent estimates of logA0 and ground-motion scaling. Bulletin of the Seismological Society of America 95(2), 605–613.

Ortíz-Hernández, L. E., Hernández-Avelino, I. (2006). Caracterización de la caldera Mezquital, estado de Hidalgo, V Reunión Nacional de las Ciencias de la Tierra.

Paz Martínez, Edgar Gilberto (2017). Determinación de una escala de magnitud local para el noreste de México. Tesis de maestría. Universidad Autónoma de Nuevo León.

Pechmann, J.C., Nava, S.J., Terra, F.M., and Bernier, J.C. (2007). Local magnitude determinations for Intermountain Seismic Belt earthquakes from broadband digital data, Bull. Seism. Soc. Am., 97, 557-574.

Pérez Velázquez, Miguel Ángel (2018). Orientación real de sismómetros de la red de banda ancha del Servicio Sismológico Nacional por medio del análisis de componentes principales y polarización de ondas Rayleigh. Tesis de licenciatura. Universidad Nacional Autónoma de México.

Quintanar, L., Rodríguez-González, M.a., Campos-Enríquez, J. (2004). A Shallow Crustal Earthquake Doublet from the Trans- Mexican Volcanic Belt (Central Mexico): Bulletin of the Seismological Society of America, 94, 845-855.

Quintanar L., A. Cárdenas-Ramírez, D. I. Bello-Segura, V. H. Espíndola, J. A. Pérez-Santana, C. Cárdenas-Monroy, A. L. Carmona-Gallegos, and I. Rodríguez-Rasilla (2018). A Seismic Network for the Valley of Mexico: Present Status and Perspectives; Seismological Research Letters, Volume 89, Number 2A, pp. 356-362, March/April 2018.

Rezapour, M. y Rezaei, R. (2011). Empirical distance attenuation and the local magnitude scale for northwest Iran. Bulletin of the Seismological Society of America 101(6), 3020–3031.

Richter, C. F. (1935). An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America 25(1), 1–32.

Richter, C. F. (1958). Elementary seismology. W. H. Freeman.

Saunders, I., Ottemöller, L., Brandt, M. B. C., y Fourie, C. J. S. (2011). Calibration of an ML scale for Sourt Africa using tectonic earthquake data recorded by the South African National Seismograph Network: 2006 to 2009.

Savage, M. K. y Anderson, J. G. (1995). A local-magnitude scale for the western Great Basin-eastern Sierra Nevada from synthetic Wood-Anderson seismograms. Bulletin of the Seismological Society of America 85(4), 1236–1243.

Simons, F., y Mapes V., E. (1956). Geology and ore deposits of the Zimapan mining district, Hidalgo, Mexico: U.S. Geol. Survey Prof.

SSN (2019): Servicio Sismológico Nacional, Instituto de Geofísica, Universidad Nacional Autónoma de México, México.

URL:http://www.ssn.unam.mx

DOI: http//doi.org/10.21766/SSNMX/SN/MX

Soto Peredo, Jorge (2012). Sismicidad en el estado de Hidalgo durante 1997-2010. Tesis de licenciatura. Universidad Nacional Autónoma de México. Spallarossa, D., Bindi, D., Augliera, P. y Cattaneo, M. (2002). An M_L scale in northwestern Italy. Bulletin of the Seismological Society of America 92(6), 2205–2216.

Stange, St. (2006). $M_{\rm L}$ determination for local and regional events using a sparse network in Southwestern Germany. *J. Seismol.*, 10, 247-257.

Stein, S. y Wysession, M. (2009). An introduction to Seismology, earthquakes, and Earth structure. John Wiley & Sons.

Suter, M., Carrillo, M.M., López, M.M., Farrar, E. (1995). The Aljibes half-graben Active extension at the boundary between the trans-Mexican volcanic belt and the Basin and Range Province, Mexico. Geol. Soc. of America Bull. V. 107. Núm. 6. p. 627-641.

Suter, M., Carrillo-Martínez, M., Quintero-Legorreta, O. (1996). Macroseismic study of shallow earthquakes in the central and eastern parts of the trans-Mexican volcanic belt, Mexico: Seismological Society of America Bulletin, 86, 1952-1963.

Suter, M., López-Martínez, M., Quintero-Legorreta, O., Carrillo-Martínez, M. (2001) Quaternary intra-arc extension in the central Trans-Mexican volcanic belt: Geological Society of America Bulletin, 113(6), 693-703.

Uhrhammer, R., Hellweg, M., Hutton, K., Lombard, P., Walters, A., Hauksson, E. y Oppenheimer, D. (2011). California Integrated Seismic Network (CISN) local magnitude determination in California and vicinity. Bulletin of the Seismological Society of America 101(6), 2685–2693.

Uhrhammer, R. A., and E. R. Collins (1990). Synthesis of Wood–Anderson seismograms from broadband digital records, Bull. Seismol. Soc. Am. 80, 702–716.

Vidal, A. y Munguía, L. (1999). The M_L scale in northern Baja California, México. . Bulletin of the Seismological Society of America 89(3), 750–763.

Wahlström, R., and Strauch, W. (1984). A regional magnitude scale for Central Europe based on crustal wave attenuation. *Seismological Dep. Univ. of Uppsala, Report* No. 3-84, 16 pp.

Wilson, B. W., Hernández, P., y Meave T., E, (1955). Un arrecife cretácico en la parte oriental del Estado de Querétaro: Soc. Geol. Mexicana Bol., v. 18, p. 1-10.
Anexo A

Evento	Fecha	Hora	Magnitud	Latitud	Longitud	Profundidad	Referencia de localización	Fecha UTC
1	15/12/2003	04:39:38	4	20.35	-99.07	4	16 km al NOROESTE de ACTOPAN, HGO	15/12/2003
2	01/07/2004	05:02:56	2.8	20.27	-99	16	6 km al OESTE de ACTOPAN, HGO	01/07/2004
3	06/02/2005	02:27:09	3.7	20.25	-99.18	4	1 km al NORESTE de PROGRESO, HGO	06/02/2005
4	10/02/2005	04:14:22	3.4	20.28	-99.18	5	4 km al NORTE de PROGRESO, HGO	10/02/2005
5	09/06/2005	17:42:06	3.9	21.16	-99.53	3	49 km al NOROESTE de ZIMAPAN, HGO	09/06/2005
6	06/08/2005	22:25:09	4	19.74	-98.61	7	5 km al SUROESTE de CD SAHAGUN, HGO	07/08/2005
7	24/01/2006	06:59:38	3.7	20.34	-99.22	5	11 km al NOROESTE de PROGRESO, HGO	24/01/2006
8	14/07/2006	00:15:28	3.7	20.19	-98.87	72	11 km al SURESTE de ACTOPAN, HGO	14/07/2006
9	10/01/2007	23:00:50	3.1	20.43	-99	5	19 km al NOROESTE de ACTOPAN, HGO	11/01/2007
10	05/02/2007	12:28:57	3	20.21	-99.22	8	2 km al SUROESTE de MIXQUIAHUALA, HGO	05/02/2007
11	23/11/2008	06:15:57	3.4	20.04	-98.79	2	10 km al SUROESTE de PACHUCA, HGO	23/11/2008
12	31/12/2008	16:27:45	3.5	20.23	-99.12	5	7 km al ESTE de PROGRESO, HGO	31/12/2008
13	17/01/2009	07:36:07	3.5	20.38	-99.04	12	16 km al NOROESTE de ACTOPAN, HGO	17/01/2009
14	14/07/2009	04:18:18	3.5	19.87	-99.06	5	9 km al NOROESTE de TIZAYUCA, HGO	14/07/2009
15	03/08/2009	07:50:36	3.3	20.06	-99.19	2	5 km al SURESTE de TLAXCOAPAN, HGO	03/08/2009
16	20/08/2009	00:41:11	3.3	20.08	-99.25	4	3 km al SUROESTE de TLAXCOAPAN, HGO	20/08/2009
17	18/10/2009	13:27:17	3.4	20.17	-99.23	11	5 km al SURESTE de TEZONTEPEC, HGO	18/10/2009
18	09/02/2010	23:07:40	2.9	19.7	-98.62	4	9 km al SUROESTE de CD SAHAGUN, HGO	10/02/2010
19	21/03/2010	04:14:50	3.7	20.46	-99.03	5	20 km al ESTE de IXMIQUILPAN, HGO	21/03/2010
20	23/03/2010	11:19:40	3.1	20.48	-99.06	5	17 km al ESTE de IXMIQUILPAN, HGO	23/03/2010
21	25/03/2010	19:23:06	3.4	20.48	-99.06	5	17 km al ESTE de IXMIQUILPAN, HGO	26/03/2010

Tabla A.1 Sismos repostados por el SSN y que forman parte de la base de datos.

22	07/04/2010	14:01:29	3.6	20.55	-99.11	5	14 km al NORESTE de IXMIQUILPAN, HGO	07/04/2010
23	17/04/2010	02:03:29	4	20.45	-99.04	2	19 km al ESTE de IXMIQUILPAN, HGO	17/04/2010
24	17/04/2010	23:27:14	3.2	20.47	-99.09	5	14 km al ESTE de IXMIQUILPAN, HGO	18/04/2010
25	27/04/2010	22:35:25	3.5	20.48	-99	5	23 km al ESTE de IXMIQUILPAN, HGO	28/04/2010
26	18/05/2010	00:12:06	2.8	20.38	-98.96	9	13 km al NORTE de ACTOPAN, HGO	18/05/2010
27	18/05/2010	00:12:27	3.1	20.45	-99.06	13	17 km al ESTE de IXMIQUILPAN, HGO	18/05/2010
28	18/05/2010	00:29:09	4	20.35	-98.92	5	9 km al NORTE de ACTOPAN, HGO	18/05/2010
29	18/05/2010	00:32:37	3.4	20.37	-98.96	10	11 km al NORTE de ACTOPAN, HGO	18/05/2010
30	18/05/2010	00:36:22	3.3	20.39	-98.9	3	14 km al NORESTE de ACTOPAN, HGO	18/05/2010
31	18/05/2010	02:37:14	3.2	20.34	-98.88	5	10 km al NORESTE de ACTOPAN, HGO	18/05/2010
32	18/05/2010	23:34:40	3.2	20.35	-98.89	5	11 km al NORESTE de ACTOPAN, HGO	19/05/2010
33	20/05/2010	03:23:52	3.1	20.47	-99.01	5	22 km al ESTE de IXMIQUILPAN, HGO	20/05/2010
34	20/05/2010	16:11:03	3.9	20.35	-98.9	5	10 km al NORESTE de ACTOPAN, HGO	20/05/2010
35	21/05/2010	00:29:33	3.3	20.35	-98.91	2	10 km al NORESTE de ACTOPAN, HGO	21/05/2010
36	21/05/2010	00:30:45	3.2	20.44	-98.94	2	19 km al NORTE de ACTOPAN, HGO	21/05/2010
37	21/05/2010	08:56:35	3.1	20.41	-98.9	2	16 km al NORESTE de ACTOPAN, HGO	21/05/2010
38	23/05/2010	07:48:15	3.7	20.37	-98.92	3	12 km al NORTE de ACTOPAN, HGO	23/05/2010
39	04/06/2010	18:29:38	3.3	20.39	-98.88	2	15 km al NORESTE de ACTOPAN, HGO	04/06/2010
40	13/06/2010	18:34:26	2.9	20.41	-98.92	15	16 km al NORTE de ACTOPAN, HGO	13/06/2010
41	11/07/2010	03:03:35	3.4	20.37	-98.89	2	13 km al NORESTE de ACTOPAN, HGO	11/07/2010
42	14/12/2010	00:13:36	3.8	19.73	-98.58	1	5 km al SUR de CD SAHAGUN, HGO	14/12/2010
43	08/02/2011	06:37:07	3.4	20.82	-99.18	10	23 km al NORESTE de ZIMAPAN, HGO	08/02/2011
44	08/02/2011	13:53:56	3.5	20.91	-99.4	5	19 km al NORTE de ZIMAPAN, HGO	08/02/2011
45	29/06/2011	07:46:30	3.8	21.23	-99.47	31	55 km al NORTE de ZIMAPAN, HGO	29/06/2011
46	05/10/2011	03:39:56	3.6	21.32	-99.6	16	68 km al NOROESTE de ZIMAPAN, HGO	05/10/2011
47	23/03/2012	07:25:14	2.4	20.2737	-98.9467	1.2	1 km al NOROESTE de ACTOPAN, HGO	23/03/2012

48	09/11/2012	12:24:31	3.3	19.9022	-99.0037	20	7 km al NOROESTE de TIZAYUCA, HGO	09/11/2012
49	02/08/2013	03:29:16	2.7	20.4478	-98.967	1	20 km al NORTE de ACTOPAN, HGO	02/08/2013
50	07/08/2013	16:38:17	3.3	20.2472	-99.2082	1	2 km al NORESTE de MIXQUIAHUALA, HGO	07/08/2013
51	17/09/2013	05:31:05	3.5	20.3515	-99.2165	2	12 km al NORTE de PROGRESO, HGO	17/09/2013
52	17/09/2013	07:35:09	3.7	20.2208	-99.2515	6.4	4 km al NORESTE de TEZONTEPEC, HGO	17/09/2013
53	17/09/2013	08:54:33	3.5	20.2825	-99.2212	1.3	6 km al NOROESTE de PROGRESO, HGO	17/09/2013
54	17/09/2013	10:09:46	3.6	20.3377	-99.2227	1	11 km al NOROESTE de PROGRESO, HGO	17/09/2013
55	17/09/2013	14:43:54	3.1	20.407	-99.1975	6.5	9 km al SURESTE de IXMIQUILPAN, HGO	17/09/2013
56	17/09/2013	15:37:47	3.7	20.2158	-99.179	5	3 km al SURESTE de PROGRESO, HGO	17/09/2013
57	17/09/2013	16:24:43	3.4	20.3228	-99.2048	5	9 km al NORTE de PROGRESO, HGO	17/09/2013
58	17/09/2013	16:41:36	3.7	20.2173	-99.1808	3	3 km al SURESTE de PROGRESO, HGO	17/09/2013
59	17/09/2013	19:37:15	3.4	20.303	-99.2013	3	7 km al NORTE de PROGRESO, HGO	18/09/2013
60	18/09/2013	00:34:46	3.4	20.3083	-99.2133	3.1	8 km al NOROESTE de PROGRESO, HGO	18/09/2013
61	18/09/2013	08:48:19	3.3	20.412	-99.1927	7.7	8 km al SURESTE de IXMIQUILPAN, HGO	18/09/2013
62	23/09/2013	01:45:54	4	20.3405	-99.2132	3.1	11 km al NORTE de PROGRESO, HGO	23/09/2013
63	08/10/2013	18:17:39	2.5	20.293	-99.088	7	12 km al NORESTE de PROGRESO, HGO	08/10/2013
64	06/11/2013	10:07:55	2.5	20.38	-98.9592	5	13 km al NORTE de ACTOPAN, HGO	06/11/2013
65	12/11/2013	12:03:19	3.2	20.3998	-98.9552	2.3	15 km al NORTE de ACTOPAN, HGO	12/11/2013
66	15/11/2013	10:07:26	2.1	20.3802	-98.9592	10	13 km al NORTE de ACTOPAN, HGO	15/11/2013
67	15/11/2013	20:36:07	2.2	20.376	-98.955	20	12 km al NORTE de ACTOPAN, HGO	16/11/2013
68	19/11/2013	14:20:41	3	20.3803	-98.9593	20	13 km al NORTE de ACTOPAN, HGO	19/11/2013
69	26/11/2013	02:48:03	2.9	20.1892	-99.1025	6.8	11 km al SURESTE de PROGRESO, HGO	26/11/2013
70	05/12/2013	13:01:50	2.7	20.3758	-98.955	1	12 km al NORTE de ACTOPAN, HGO	05/12/2013
71	05/12/2013	23:12:17	2.6	20.3158	-98.8937	20	7 km al NORESTE de ACTOPAN, HGO	06/12/2013
72	10/12/2013	02:42:28	3.6	20.4098	-99.0492	1	19 km al NOROESTE de ACTOPAN, HGO	10/12/2013
73	10/12/2013	03:01:42	2.5	20.4548	-99.1368	1	9 km al SURESTE de IXMIQUILPAN, HGO	10/12/2013

74	10/12/2013	03:02:02	3	20.463	-99.1247	1	10 km al ESTE de IXMIQUILPAN, HGO	10/12/2013
75	10/12/2013	03:24:47	3.2	20.4405	-99.1603	1	8 km al SURESTE de IXMIQUILPAN, HGO	10/12/2013
76	07/05/2014	02:29:32	3	20.4585	-99.0068	3	22 km al NOROESTE de ACTOPAN, HGO	07/05/2014
77	24/06/2014	21:58:35	3.6	19.9208	-98.9053	5	12 km al NORESTE de TIZAYUCA, HGO	25/06/2014
78	20/08/2014	08:50:37	2.3	20.206	-99.0823	6	12 km al SURESTE de PROGRESO, HGO	20/08/2014
79	02/09/2014	10:23:05	3.1	20.3718	-98.9508	20	12 km al NORTE de ACTOPAN, HGO	02/09/2014
80	02/09/2014	10:38:34	2.7	20.3695	-98.9482	20	11 km al NORTE de ACTOPAN, HGO	02/09/2014
81	07/09/2014	14:04:08	2.8	20.2992	-99.23	5	8 km al NOROESTE de PROGRESO, HGO	07/09/2014
82	28/09/2014	06:42:28	2.9	20.1178	-99.0703	3	16 km al ESTE de TLAXCOAPAN, HGO	28/09/2014
83	24/10/2014	01:07:01	3	20.3737	-98.9528	18	12 km al NORTE de ACTOPAN, HGO	24/10/2014
84	31/10/2014	20:25:52	3.1	20.2388	-98.8953	5	6 km al SURESTE de ACTOPAN, HGO	01/11/2014
85	01/11/2014	08:33:33	3.7	20.2622	-99.1357	20	6 km al NORESTE de PROGRESO, HGO	01/11/2014
86	07/11/2014	18:28:34	3.2	20.219	-99.2623	6.5	3 km al NORESTE de TEZONTEPEC, HGO	08/11/2014
87	12/11/2014	01:11:58	3	20.1328	-99.1348	5	10 km al NORESTE de TLAXCOAPAN, HGO	12/11/2014
						2		
88	18/11/2014	18:37:13	2.9	20.0165	-98.875	3	19 km al SUROESTE de PACHUCA DE SOTO, HGO	19/11/2014
88 89	18/11/2014 20/11/2014	18:37:13 17:02:14	2.9	20.0165 20.279	-98.875 -99.059	3 20	19 km al SUROESTE de PACHUCA DE SOTO, HGO 12 km al OESTE de ACTOPAN, HGO	19/11/2014 20/11/2014
88 89 90	18/11/2014 20/11/2014 31/12/2014	18:37:13 17:02:14 06:15:03	2.9 2.7 2.6	20.0165 20.279 20.1497	-98.875 -99.059 -99.093	3 20 5	19 km al SUROESTE de PACHUCA DE SOTO, HGO 12 km al OESTE de ACTOPAN, HGO 14 km al SURESTE de PROGRESO, HGO	19/11/201420/11/201431/12/2014
88 89 90 91	18/11/2014 20/11/2014 31/12/2014 20/01/2015	18:37:13 17:02:14 06:15:03 15:17:19	2.9 2.7 2.6 2.9	20.0165 20.279 20.1497 20.3802	-98.875 -99.059 -99.093 -98.9593	3 20 5 3	19 km al SUROESTE de PACHUCA DE SOTO, HGO 12 km al OESTE de ACTOPAN, HGO 14 km al SURESTE de PROGRESO, HGO 13 km al NORTE de ACTOPAN, HGO	19/11/2014 20/11/2014 31/12/2014 20/01/2015
88 89 90 91 92	18/11/2014 20/11/2014 31/12/2014 20/01/2015 27/03/2015	18:37:13 17:02:14 06:15:03 15:17:19 14:54:52	2.9 2.7 2.6 2.9 3.8	20.0165 20.279 20.1497 20.3802 20.3512	-98.875 -99.059 -99.093 -98.9593 -99.0208	3 20 5 3 5	19 km al SUROESTE de PACHUCA DE SOTO, HGO 12 km al OESTE de ACTOPAN, HGO 14 km al SURESTE de PROGRESO, HGO 13 km al NORTE de ACTOPAN, HGO 12 km al NOROESTE de ACTOPAN, HGO	19/11/2014 20/11/2014 31/12/2014 20/01/2015 27/03/2015
88 89 90 91 92 93	18/11/2014 20/11/2014 31/12/2014 20/01/2015 27/03/2015 14/04/2015	18:37:13 17:02:14 06:15:03 15:17:19 14:54:52 02:55:18	2.9 2.7 2.6 2.9 3.8 3.5	20.0165 20.279 20.1497 20.3802 20.3512 20.4327	-98.875 -99.059 -99.093 -98.9593 -99.0208 -99.0978	3 20 5 3 5 5 5	19 km al SUROESTE de PACHUCA DE SOTO, HGO 12 km al OESTE de ACTOPAN, HGO 14 km al SURESTE de PROGRESO, HGO 13 km al NORTE de ACTOPAN, HGO 12 km al NOROESTE de ACTOPAN, HGO 14 km al SURESTE de IXMIQUILPAN, HGO	19/11/2014 20/11/2014 31/12/2014 20/01/2015 27/03/2015 14/04/2015
88 89 90 91 92 93 94	18/11/2014 20/11/2014 31/12/2014 20/01/2015 27/03/2015 14/04/2015 17/05/2015	18:37:13 17:02:14 06:15:03 15:17:19 14:54:52 02:55:18 17:51:28	2.9 2.7 2.6 2.9 3.8 3.5 2.6	20.0165 20.279 20.1497 20.3802 20.3512 20.4327 20.335	-98.875 -99.059 -99.093 -98.9593 -99.0208 -99.0978 -98.9382	3 20 5 3 5 5 5 3	19 km al SUROESTE de PACHUCA DE SOTO, HGO 12 km al OESTE de ACTOPAN, HGO 14 km al SURESTE de PROGRESO, HGO 13 km al NORTE de ACTOPAN, HGO 12 km al NOROESTE de ACTOPAN, HGO 14 km al SURESTE de IXMIQUILPAN, HGO 7 km al NORTE de ACTOPAN, HGO	19/11/201420/11/201431/12/201420/01/201527/03/201514/04/201517/05/2015
88 89 90 91 92 93 93 94 95	18/11/2014 20/11/2014 31/12/2014 20/01/2015 27/03/2015 14/04/2015 17/05/2015 18/05/2015	18:37:1317:02:1406:15:0315:17:1914:54:5202:55:1817:51:2811:21:57	2.9 2.7 2.6 2.9 3.8 3.5 2.6 3	20.0165 20.279 20.1497 20.3802 20.3512 20.4327 20.335 20.3795	-98.875 -99.059 -99.093 -98.9593 -99.0208 -99.0978 -98.9382 -98.9593	3 20 5 3 5 5 5 3 3 3	19 km al SUROESTE de PACHUCA DE SOTO, HGO 12 km al OESTE de ACTOPAN, HGO 14 km al SURESTE de PROGRESO, HGO 13 km al NORTE de ACTOPAN, HGO 12 km al NOROESTE de ACTOPAN, HGO 14 km al SURESTE de IXMIQUILPAN, HGO 7 km al NORTE de ACTOPAN, HGO 12 km al NORTE de ACTOPAN, HGO	19/11/2014 20/11/2014 31/12/2014 20/01/2015 27/03/2015 14/04/2015 17/05/2015 18/05/2015
88 89 90 91 92 93 94 95 96	18/11/2014 20/11/2014 31/12/2014 20/01/2015 27/03/2015 14/04/2015 17/05/2015 18/05/2015 18/05/2015	18:37:1317:02:1406:15:0315:17:1914:54:5202:55:1817:51:2811:21:5718:39:00	2.9 2.7 2.6 2.9 3.8 3.5 2.6 3 2.3	20.0165 20.279 20.1497 20.3802 20.3512 20.4327 20.335 20.3795 20.2673	-98.875 -99.059 -99.093 -98.9593 -99.0208 -99.0978 -98.9382 -98.9593 -98.9593	3 20 5 3 5 5 3 3 3 3 3	19 km al SUROESTE de PACHUCA DE SOTO, HGO 12 km al OESTE de ACTOPAN, HGO 14 km al SURESTE de PROGRESO, HGO 13 km al NORTE de ACTOPAN, HGO 12 km al NOROESTE de ACTOPAN, HGO 14 km al SURESTE de IXMIQUILPAN, HGO 7 km al NORTE de ACTOPAN, HGO 2 km al OESTE de ACTOPAN, HGO	19/11/2014 20/11/2014 31/12/2014 20/01/2015 27/03/2015 14/04/2015 17/05/2015 18/05/2015 18/05/2015
88 89 90 91 92 93 94 95 96 97	18/11/2014 20/11/2014 20/01/2015 27/03/2015 14/04/2015 17/05/2015 18/05/2015 18/05/2015 19/05/2015	18:37:1317:02:1406:15:0315:17:1914:54:5202:55:1817:51:2811:21:5718:39:0012:08:10	2.9 2.7 2.6 2.9 3.8 3.5 2.6 3 2.3 2.3 2.6	20.0165 20.279 20.1497 20.3802 20.3512 20.4327 20.335 20.3795 20.2673 20.3518	-98.875 -99.059 -99.093 -98.9593 -99.0208 -99.0978 -98.9382 -98.9593 -98.9638 -99.093	3 20 5 3 5 5 3 3 3 3 3 3 3 3	19 km al SUROESTE de PACHUCA DE SOTO, HGO 12 km al OESTE de ACTOPAN, HGO 14 km al SURESTE de PROGRESO, HGO 13 km al NORTE de ACTOPAN, HGO 12 km al NOROESTE de ACTOPAN, HGO 14 km al SURESTE de IXMIQUILPAN, HGO 7 km al NORTE de ACTOPAN, HGO 12 km al NORTE de ACTOPAN, HGO 2 km al OESTE de ACTOPAN, HGO	19/11/2014 20/11/2014 31/12/2014 20/01/2015 27/03/2015 14/04/2015 17/05/2015 18/05/2015 18/05/2015
88 89 90 91 92 93 94 95 96 97 98	18/11/2014 20/11/2014 31/12/2014 20/01/2015 27/03/2015 14/04/2015 14/04/2015 18/05/2015 18/05/2015 19/05/2015 21/05/2015	18:37:1317:02:1406:15:0315:17:1914:54:5202:55:1817:51:2811:21:5718:39:0012:08:1007:44:19	2.9 2.7 2.6 2.9 3.8 3.5 2.6 3 2.3 2.3 2.6 3	20.0165 20.279 20.1497 20.3802 20.3512 20.4327 20.335 20.3795 20.2673 20.3518 20.425	-98.875 -99.059 -99.093 -98.9593 -99.0208 -99.0978 -98.9382 -98.9382 -98.9593 -98.9638 -99.093 -99.0047	3 20 5 3 5 5 3 3 3 3 3 3 2	19 km al SUROESTE de PACHUCA DE SOTO, HGO 12 km al OESTE de ACTOPAN, HGO 14 km al SURESTE de PROGRESO, HGO 13 km al NORTE de ACTOPAN, HGO 12 km al NOROESTE de ACTOPAN, HGO 14 km al SURESTE de IXMIQUILPAN, HGO 7 km al NORTE de ACTOPAN, HGO 12 km al NORTE de ACTOPAN, HGO 2 km al OESTE de ACTOPAN, HGO 16 km al NORESTE de PROGRESO, HGO 19 km al NOROESTE de ACTOPAN, HGO	19/11/2014 20/11/2014 31/12/2014 20/01/2015 27/03/2015 14/04/2015 17/05/2015 18/05/2015 18/05/2015 21/05/2015

100	25/05/2015	15:56:21	3	20.4037	-98.981	3	16 km al NORTE de ACTOPAN, HGO	25/05/2015
101	27/05/2015	16:58:01	3	20.1838	-99.1838	3	6 km al SURESTE de MIXQUIAHUALA, HGO	27/05/2015
102	29/05/2015	19:39:29	3.2	20.3342	-99.1977	3	10 km al NORTE de PROGRESO, HGO	30/05/2015
103	01/06/2015	05:59:16	3.2	20.0697	-99.1753	8	5 km al SURESTE de TLAXCOAPAN, HGO	01/06/2015
104	02/06/2015	10:00:53	2.9	20.4235	-99.0032	3	18 km al NOROESTE de ACTOPAN, HGO	02/06/2015
105	17/06/2015	05:00:01	3.1	20.0907	-99.145	32.8	8 km al ESTE de TLAXCOAPAN, HGO	17/06/2015
106	21/06/2015	17:56:51	3.2	20.4268	-99.1048	3	13 km al SURESTE de IXMIQUILPAN, HGO	21/06/2015
107	25/06/2015	16:55:45	3	20.2137	-99.2	3	2 km al SURESTE de MIXQUIAHUALA, HGO	25/06/2015
108	25/06/2015	16:56:22	3	20.2117	-99.1997	3	2 km al SURESTE de MIXQUIAHUALA, HGO	25/06/2015
109	29/06/2015	17:25:25	3	20.135	-99.0092	3	16 km al SUROESTE de ACTOPAN, HGO	29/06/2015
110	02/07/2015	10:07:04	2.9	20.3725	-98.9523	3	12 km al NORTE de ACTOPAN, HGO	02/07/2015
111	07/07/2015	19:32:45	1.9	20.4063	-98.9832	13	16 km al NOROESTE de ACTOPAN, HGO	08/07/2015
112	10/07/2015	23:58:31	3.3	20.2037	-98.9022	5.5	8 km al SURESTE de ACTOPAN, HGO	11/07/2015
113	11/07/2015	13:28:16	3.2	20.3718	-98.9515	20	12 km al NORTE de ACTOPAN, HGO	11/07/2015
114	01/08/2015	20:44:39	3.1	20.18	-98.9168	3	10 km al SURESTE de ACTOPAN, HGO	02/08/2015
115	02/08/2015	22:01:52	3.1	20.1705	-99.0052	3	13 km al SUROESTE de ACTOPAN, HGO	03/08/2015
116	03/08/2015	05:28:58	3.1	20.168	-98.9833	3	12 km al SUROESTE de ACTOPAN, HGO	03/08/2015
117	03/08/2015	08:25:32	2.7	20.4858	-99.046	3	18 km al ESTE de IXMIQUILPAN, HGO	03/08/2015
118	03/08/2015	12:19:35	2.8	20.1428	-98.954	3	14 km al SUR de ACTOPAN, HGO	03/08/2015
119	03/08/2015	12:29:34	2.6	20.4415	-99.0592	3	17 km al SURESTE de IXMIQUILPAN, HGO	03/08/2015
120	06/08/2015	21:49:40	2.4	20.3693	-98.9343	20	11 km al NORTE de ACTOPAN, HGO	07/08/2015
121	11/08/2015	20:31:12	2.8	20.4158	-99.1063	5	14 km al SURESTE de IXMIQUILPAN, HGO	12/08/2015
122	13/08/2015	16:22:03	2.9	20.447	-99.0155	3	21 km al NOROESTE de ACTOPAN, HGO	13/08/2015
123	13/08/2015	18:56:57	3.3	20.4307	-99.0923	3	14 km al SURESTE de IXMIQUILPAN, HGO	13/08/2015
124	17/08/2015	06:46:07	3	20.224	-98.9517	10	5 km al SUR de ACTOPAN, HGO	17/08/2015
125	22/08/2015	09:38:08	3.3	20.3685	-99.195	4	13 km al SUR de IXMIQUILPAN, HGO	22/08/2015

126	25/08/2015	13:52:47	3.1	20.2	-98.931	1	8 km al SUR de ACTOPAN, HGO	25/08/2015
127	28/08/2015	10:45:09	3	20.3532	-98.9295	3	10 km al NORTE de ACTOPAN, HGO	28/08/2015
128	29/08/2015	08:27:04	2.9	20.3865	-98.9663	3	13 km al NORTE de ACTOPAN, HGO	29/08/2015
129	01/09/2015	10:00:42	1.8	20.38	-98.9592	7	13 km al NORTE de ACTOPAN, HGO	01/09/2015
130	02/09/2015	08:03:17	3.1	20.4073	-98.9823	3	16 km al NORTE de ACTOPAN, HGO	02/09/2015
131	03/09/2015	10:22:38	2.7	20.4118	-98.9442	3	16 km al NORTE de ACTOPAN, HGO	03/09/2015
132	03/09/2015	11:57:56	2.4	20.371	-98.9507	3	11 km al NORTE de ACTOPAN, HGO	03/09/2015
133	10/09/2015	12:43:42	2.7	20.3793	-98.9592	3	12 km al NORTE de ACTOPAN, HGO	10/09/2015
134	13/09/2015	21:00:18	2.4	20.372	-98.951	7	12 km al NORTE de ACTOPAN, HGO	14/09/2015
135	18/09/2015	21:37:59	3.2	20.3998	-98.9778	8	15 km al NORTE de ACTOPAN, HGO	19/09/2015
136	01/10/2015	11:10:22	3.9	21.3532	-99.4722	5	69 km al NORTE de ZIMAPAN, HGO	01/10/2015
137	02/10/2015	08:35:31	3.3	20.3392	-98.9053	5	9 km al NORESTE de ACTOPAN, HGO	02/10/2015
138	13/10/2015	05:57:24	2.9	20.2767	-99.0617	10	12 km al OESTE de ACTOPAN, HGO	13/10/2015
139	13/10/2015	06:38:50	2.7	20.2715	-99.0578	10	12 km al OESTE de ACTOPAN, HGO	13/10/2015
140	13/10/2015	09:10:45	2.6	20.2943	-99.0423	20	11 km al NOROESTE de ACTOPAN, HGO	13/10/2015
141	13/10/2015	10:44:11	2.9	20.2687	-99.0547	10	12 km al OESTE de ACTOPAN, HGO	13/10/2015
142	13/10/2015	15:48:40	2.9	20.2998	-99.0413	10	11 km al NOROESTE de ACTOPAN, HGO	13/10/2015
143	13/10/2015	16:39:31	2.9	20.2775	-99.0555	10	12 km al OESTE de ACTOPAN, HGO	13/10/2015
144	13/10/2015	20:23:07	2.6	20.2783	-99.0633	10	13 km al OESTE de ACTOPAN, HGO	14/10/2015
145	15/10/2015	07:46:45	3	20.3792	-98.9592	10	12 km al NORTE de ACTOPAN, HGO	15/10/2015
146	17/10/2015	19:56:05	2.8	20.351	-98.9267	15	9 km al NORTE de ACTOPAN, HGO	18/10/2015
147	17/10/2015	21:43:42	2.9	20.3157	-99.0027	10	8 km al NOROESTE de ACTOPAN, HGO	18/10/2015
148	27/10/2015	07:00:24	2.9	20.3797	-98.9595	5	12 km al NORTE de ACTOPAN, HGO	27/10/2015
149	28/10/2015	09:33:52	3	20.3792	-98.9592	5	12 km al NORTE de ACTOPAN, HGO	28/10/2015
150	28/10/2015	09:49:42	2.9	20.3497	-98.9502	5	9 km al NORTE de ACTOPAN, HGO	28/10/2015
151	29/10/2015	11:11:04	3	20.3932	-98.9732	5	14 km al NORTE de ACTOPAN, HGO	29/10/2015

152	06/11/2015	19:39:53	3.5	20.357	-99.0203	19	13 km al NOROESTE de ACTOPAN, HGO	07/11/2015
153	17/11/2015	08:13:49	2.9	20.3712	-98.9508	10	11 km al NORTE de ACTOPAN, HGO	17/11/2015
154	01/12/2015	12:25:38	2.7	20.3792	-98.9592	10	12 km al NORTE de ACTOPAN, HGO	01/12/2015
155	11/01/2016	03:52:45	3.9	20.914	-99.2992	10	21 km al NORESTE de ZIMAPAN, HGO	11/01/2016
156	19/01/2016	19:53:28	2.5	20.2265	-99.0197	5	9 km al SUROESTE de ACTOPAN, HGO	20/01/2016
157	19/01/2016	23:53:51	2.7	20.1248	-98.9852	5	16 km al SUROESTE de ACTOPAN, HGO	20/01/2016
158	21/01/2016	15:33:40	2.8	20.2695	-99.049	10	11 km al OESTE de ACTOPAN, HGO	21/01/2016
159	23/01/2016	17:58:14	3	20.4253	-98.9938	5	18 km al NOROESTE de ACTOPAN, HGO	23/01/2016
160	25/01/2016	08:51:17	2.7	20.3795	-98.9593	10	12 km al NORTE de ACTOPAN, HGO	25/01/2016
161	31/01/2016	16:06:02	3.3	20.3745	-98.9757	11	12 km al NOROESTE de ACTOPAN, HGO	31/01/2016
162	13/02/2016	07:25:18	2.8	20.3808	-98.9608	10	13 km al NORTE de ACTOPAN, HGO	13/02/2016
163	25/02/2016	23:35:28	2.5	20.2035	-98.9998	5	9 km al SUROESTE de ACTOPAN, HGO	26/02/2016
164	25/02/2016	23:37:34	2	20.2152	-98.9698	5	6 km al SUROESTE de ACTOPAN, HGO	26/02/2016
165	29/02/2016	10:24:47	2.8	20.3793	-98.9592	10	12 km al NORTE de ACTOPAN, HGO	29/02/2016
166	01/03/2016	07:23:08	2.9	20.4538	-99.0267	10	20 km al ESTE de IXMIQUILPAN, HGO	01/03/2016
167	04/03/2016	10:07:53	3.3	20.3793	-98.9593	20	12 km al NORTE de ACTOPAN, HGO	04/03/2016
168	05/03/2016	15:21:47	3	20.3737	-98.9537	5	12 km al NORTE de ACTOPAN, HGO	05/03/2016
169	07/03/2016	23:14:16	3.3	20.4218	-99.173	5	8 km al SURESTE de IXMIQUILPAN, HGO	08/03/2016
170	14/03/2016	09:54:43	3	20.2975	-98.8597	10	9 km al NORESTE de ACTOPAN, HGO	14/03/2016
171	31/03/2016	14:20:19	3.2	21.2967	-99.4317	10	62 km al NORTE de ZIMAPAN, HGO	31/03/2016
172	28/04/2016	13:15:38	2.5	20.3097	-99.0823	20	13 km al NORESTE de PROGRESO, HGO	28/04/2016
173	01/05/2016	19:41:42	3.5	20.2085	-99.1202	4.9	8 km al SURESTE de PROGRESO, HGO	02/05/2016
174	10/05/2016	09:58:30	2.8	20.1737	-99.1762	5	7 km al SURESTE de MIXQUIAHUALA, HGO	10/05/2016
175	10/05/2016	10:59:39	3	20.1438	-99.1442	5	10 km al NORESTE de TLAXCOAPAN, HGO	10/05/2016
176	10/05/2016	12:55:10	2.5	20.3727	-98.9525	5	12 km al NORTE de ACTOPAN, HGO	10/05/2016
177	26/05/2016	02:29:48	3	20.2903	-99.2492	10	8 km al NOROESTE de MIXQUIAHUALA, HGO	26/05/2016

178	27/05/2016	01:55:24	2.8	20.3725	-98.9522	10	12 km al NORTE de ACTOPAN, HGO	27/05/2016
179	27/05/2016	04:35:42	1.8	20.36	-99.0098	10	12 km al NOROESTE de ACTOPAN, HGO	27/05/2016
180	27/05/2016	07:51:30	3.1	20.328	-99.0277	20	11 km al NOROESTE de ACTOPAN, HGO	27/05/2016
181	01/06/2016	10:07:59	2.8	20.3792	-98.959	20	12 km al NORTE de ACTOPAN, HGO	01/06/2016
182	02/06/2016	19:15:15	3.1	20.3642	-98.9183	10	11 km al NORTE de ACTOPAN, HGO	03/06/2016
183	02/06/2016	20:13:38	3.1	20.186	-98.9168	10	9 km al SURESTE de ACTOPAN, HGO	03/06/2016
184	02/06/2016	20:51:49	2.9	20.3485	-98.921	10	9 km al NORTE de ACTOPAN, HGO	03/06/2016
185	02/06/2016	22:10:20	3.2	20.2615	-98.8967	2.8	5 km al ESTE de ACTOPAN, HGO	03/06/2016
186	05/06/2016	00:50:53	2.3	20.338	-99.0273	20	12 km al NOROESTE de ACTOPAN, HGO	05/06/2016
187	06/07/2016	09:29:09	3.8	20.297	-99.229	22	7 km al NOROESTE de PROGRESO, HGO	06/07/2016
188	11/07/2016	08:45:25	2.4	20.3367	-99.1352	5	12 km al NORESTE de PROGRESO, HGO	11/07/2016
189	11/07/2016	10:36:53	2.6	20.2408	-99.1328	5	6 km al ESTE de PROGRESO, HGO	11/07/2016
190	16/08/2016	08:37:52	2.2	20.3728	-98.9525	5	12 km al NORTE de ACTOPAN, HGO	16/08/2016
191	17/08/2016	09:12:43	1.7	20.2855	-99.0265	5	9 km al OESTE de ACTOPAN, HGO	17/08/2016
192	28/08/2016	05:25:24	2.5	20.3073	-99.0763	13.8	14 km al NORESTE de PROGRESO, HGO	28/08/2016
193	30/08/2016	09:50:10	3.2	20.362	-98.9408	5	10 km al NORTE de ACTOPAN, HGO	30/08/2016
194	07/09/2016	13:15:36	2.6	20.2948	-99.1507	3	7 km al NORESTE de PROGRESO, HGO	07/09/2016
195	01/11/2016	05:12:35	3.8	21.2563	-99.474	74.8	58 km al NORTE de ZIMAPAN, HGO	01/11/2016
196	06/11/2016	20:19:18	3	20.4437	-99.0848	5	15 km al SURESTE de IXMIQUILPAN, HGO	07/11/2016
197	08/11/2016	03:15:32	3	20.3378	-99.0832	5	15 km al NORESTE de PROGRESO, HGO	08/11/2016
198	20/12/2016	16:25:46	3	20.4057	-99.09	10	16 km al SURESTE de IXMIQUILPAN, HGO	20/12/2016
199	22/12/2016	08:00:35	3.5	20.3585	-99.0453	3	15 km al NOROESTE de ACTOPAN, HGO	22/12/2016
200	27/12/2016	06:34:00	2.3	20.3397	-99.0488	7	14 km al NOROESTE de ACTOPAN, HGO	27/12/2016
201	29/12/2016	07:00:08	3.5	20.2077	-99.11	5.5	9 km al SURESTE de PROGRESO, HGO	29/12/2016
202	22/01/2017	19:10:13	2.9	20.3892	-99.1448	5	13 km al SURESTE de IXMIQUILPAN, HGO	23/01/2017
203	07/02/2017	14:20:06	3	20.3942	-99.0357	5	17 km al NOROESTE de ACTOPAN, HGO	07/02/2017

204	09/02/2017	16:01:00	2.8	20.4095	-99.182	5	9 km al SURESTE de IXMIQUILPAN, HGO	09/02/2017
205	19/02/2017	02:41:53	3.3	20.2582	-98.8885	3	6 km al ESTE de ACTOPAN, HGO	19/02/2017
206	02/03/2017	05:52:42	3.6	19.9192	-98.7338	7.2	20 km al SUR de PACHUCA, HGO	02/03/2017
207	23/03/2017	09:44:35	2.6	20.3233	-99.1403	5	10 km al NORESTE de PROGRESO, HGO	23/03/2017
208	26/03/2017	12:49:40	2.6	20.3217	-99.2178	5	9 km al NOROESTE de PROGRESO, HGO	26/03/2017
209	30/03/2017	17:12:43	3.1	20.2238	-99.1078	5	9 km al ESTE de PROGRESO, HGO	30/03/2017
210	30/03/2017	20:02:53	3	20.3987	-99.0175	5	16 km al NOROESTE de ACTOPAN, HGO	31/03/2017
211	03/04/2017	16:18:06	3	20.2372	-99.1853	5	1 km al SURESTE de PROGRESO, HGO	03/04/2017
212	21/04/2017	21:20:46	3.2	19.966	-98.8447	5	20 km al NORESTE de TIZAYUCA, HGO	22/04/2017
213	08/05/2017	19:26:38	2.6	20.1982	-99.1578	5	6 km al SURESTE de PROGRESO, HGO	09/05/2017
214	11/05/2017	11:22:10	2.2	20.29	-99.0645	7	13 km al OESTE de ACTOPAN, HGO	11/05/2017
215	13/05/2017	04:12:11	2.3	20.3108	-99.038	5	11 km al NOROESTE de ACTOPAN, HGO	13/05/2017
216	14/05/2017	15:17:41	3	20.4073	-99.0337	5	18 km al NOROESTE de ACTOPAN, HGO	14/05/2017
217	17/05/2017	12:16:33	2.8	20.2975	-99.0467	20	11 km al NOROESTE de ACTOPAN, HGO	17/05/2017
218	19/05/2017	12:42:16	3.4	20.3445	-99.0847	5	16 km al NORESTE de PROGRESO, HGO	19/05/2017
219	19/05/2017	18:31:27	3.2	20.3442	-99.0302	20	12 km al NOROESTE de ACTOPAN, HGO	19/05/2017
220	21/06/2017	10:00:09	2.7	20.3778	-99.0787	5	19 km al SURESTE de IXMIQUILPAN, HGO	21/06/2017
221	28/06/2017	03:58:48	2.8	20.1753	-99.1513	5	8 km al SURESTE de PROGRESO, HGO	28/06/2017
222	06/07/2017	02:03:09	3.3	20.2895	-99.2013	10	5 km al NORTE de PROGRESO, HGO	06/07/2017
223	06/07/2017	12:46:18	1.6	20.3023	-99.0483	7	12 km al NOROESTE de ACTOPAN, HGO	06/07/2017
224	10/07/2017	11:43:11	2.5	20.3855	-98.9817	5	14 km al NOROESTE de ACTOPAN, HGO	10/07/2017
225	13/07/2017	22:43:12	2.3	20.249	-99.1563	5	3 km al ESTE de PROGRESO, HGO	14/07/2017
226	24/07/2017	08:23:49	3.1	20.2813	-99.134	5	7 km al NORESTE de PROGRESO, HGO	24/07/2017
227	25/07/2017	11:54:38	2.3	20.2937	-99.0353	7	10 km al NOROESTE de ACTOPAN, HGO	25/07/2017
228	31/07/2017	06:12:13	3.1	20.2085	-99.2078	5	2 km al SURESTE de MIXQUIAHUALA, HGO	31/07/2017
229	05/09/2017	04:30:23	2.8	20.2373	-99.1492	5	4 km al ESTE de PROGRESO, HGO	05/09/2017

230	05/09/2017	09:01:59	1.8	20.2997	-99.0395	7	11 km al NOROESTE de ACTOPAN, HGO	05/09/2017
231	08/09/2017	22:48:54	2.3	20.2975	-99.0472	7	11 km al NOROESTE de ACTOPAN, HGO	09/09/2017
232	09/09/2017	02:59:22	2.8	20.3322	-99.066	20	15 km al NOROESTE de ACTOPAN, HGO	09/09/2017
233	09/09/2017	04:27:36	2.4	20.2548	-99.0837	5	11 km al ESTE de PROGRESO, HGO	09/09/2017
234	09/09/2017	21:03:55	4	20.5482	-98.8987	5	28 km al SUROESTE de ZACUALTIPAN, HGO	10/09/2017
235	11/09/2017	04:44:15	3	20.347	-99.1715	10	12 km al NORTE de PROGRESO, HGO	11/09/2017
236	11/09/2017	04:56:48	2.4	20.2395	-99.1222	10	7 km al ESTE de PROGRESO, HGO	11/09/2017
237	13/09/2017	22:52:46	3.2	20.3328	-99.0525	15	13 km al NOROESTE de ACTOPAN, HGO	14/09/2017
238	14/09/2017	07:57:48	2.3	20.3217	-99.1242	5	11 km al NORESTE de PROGRESO, HGO	14/09/2017
239	15/09/2017	13:40:39	2.8	20.3373	-99.0107	5	10 km al NOROESTE de ACTOPAN, HGO	15/09/2017
240	16/09/2017	18:44:33	3.4	19.7298	-98.4695	5	3 km al NOROESTE de APAN, HGO	16/09/2017
241	16/09/2017	18:45:37	3.6	19.8195	-98.4868	5	8 km al NORESTE de TEPEAPULCO, HGO	16/09/2017
242	16/09/2017	18:48:42	3.5	19.7923	-98.4713	5	8 km al ESTE de TEPEAPULCO, HGO	16/09/2017
243	16/09/2017	18:51:38	3.1	19.7162	-98.4655	4.6	2 km al NOROESTE de APAN, HGO	16/09/2017
244	16/09/2017	18:58:05	2.7	19.7283	-98.5487	5.5	6 km al SURESTE de CD SAHAGUN, HGO	16/09/2017
245	16/09/2017	19:16:38	3.1	19.7312	-98.4552	5.6	2 km al NORTE de APAN, HGO	17/09/2017
246	16/09/2017	19:17:13	3	19.7037	-98.4088	3.9	4 km al ESTE de APAN, HGO	17/09/2017
247	16/09/2017	19:29:06	3.1	19.7097	-98.4673	4	2 km al OESTE de APAN, HGO	17/09/2017
248	16/09/2017	21:58:33	3.4	19.6368	-98.495	11.2	9 km al SUROESTE de APAN, HGO	17/09/2017
249	17/09/2017	07:57:26	3.6	19.7828	-98.5278	9.6	3 km al ESTE de TEPEAPULCO, HGO	17/09/2017
250	18/09/2017	13:38:08	2.4	20.2967	-99.0212	20	9 km al NOROESTE de ACTOPAN, HGO	18/09/2017
251	20/09/2017	03:17:59	2.3	20.3008	-99.0397	20	11 km al NOROESTE de ACTOPAN, HGO	20/09/2017
252	22/09/2017	07:01:30	3.1	20.2737	-98.9485	10	1 km al NOROESTE de ACTOPAN, HGO	22/09/2017
253	23/09/2017	20:46:54	3.4	20.3468	-99.5083	5	30 km al NOROESTE de TEZONTEPEC, HGO	24/09/2017
254	23/09/2017	21:43:50	3.2	20.2952	-99.0127	20	8 km al NOROESTE de ACTOPAN, HGO	24/09/2017
255	25/09/2017	12:59:45	2.8	20.2995	-99.044	20	11 km al NOROESTE de ACTOPAN, HGO	25/09/2017

256	25/09/2017	14:22:29	2.6	20.3198	-99.0603	20	14 km al NOROESTE de ACTOPAN, HGO	25/09/2017
257	25/09/2017	22:00:13	2.5	20.3273	-98.9953	5	9 km al NOROESTE de ACTOPAN, HGO	26/09/2017
258	25/09/2017	22:49:03	2.9	20.2283	-99.5583	20	30 km al NOROESTE de TULA DE ALLENDE, HGO	26/09/2017
259	26/09/2017	05:56:52	3	20.191	-99.0982	5	11 km al SURESTE de PROGRESO, HGO	26/09/2017
260	27/09/2017	22:04:05	2.6	20.1737	-99.0435	5	15 km al SUROESTE de ACTOPAN, HGO	28/09/2017
261	29/09/2017	22:22:03	2.4	19.8608	-98.8363	6.4	15 km al ESTE de TIZAYUCA, HGO	30/09/2017
262	30/09/2017	11:46:31	3	20.2407	-99.2098	20	1 km al NORESTE de MIXQUIAHUALA, HGO	30/09/2017
263	02/10/2017	11:30:55	2.5	20.2237	-99.1447	5	5 km al SURESTE de PROGRESO, HGO	02/10/2017
264	02/10/2017	18:43:07	2.7	20.2828	-99.06	20	12 km al OESTE de ACTOPAN, HGO	02/10/2017
265	03/10/2017	22:22:03	2.2	20.2323	-99.1242	10	7 km al ESTE de PROGRESO, HGO	04/10/2017
266	10/10/2017	20:38:53	3	20.3277	-99.0392	20	12 km al NOROESTE de ACTOPAN, HGO	11/10/2017
267	11/10/2017	04:36:05	2.8	20.2518	-99.0087	20	7 km al OESTE de ACTOPAN, HGO	11/10/2017
268	15/10/2017	20:50:07	3	20.1585	-98.9403	5	12 km al SUR de ACTOPAN, HGO	16/10/2017
269	15/10/2017	22:19:17	2.5	20.1808	-98.9612	5	10 km al SUR de ACTOPAN, HGO	16/10/2017
270	15/10/2017	22:19:35	2.4	20.163	-98.998	5	13 km al SUROESTE de ACTOPAN, HGO	16/10/2017
271	15/10/2017	22:19:58	2.3	20.1608	-98.9973	5	13 km al SUROESTE de ACTOPAN, HGO	16/10/2017
272	17/10/2017	23:24:11	3.1	20.2655	-98.9853	20	4 km al OESTE de ACTOPAN, HGO	18/10/2017
273	18/10/2017	20:08:42	2.8	20.254	-99.2117	5	3 km al NOROESTE de PROGRESO, HGO	19/10/2017
274	19/10/2017	08:15:09	3.3	20.2925	-99.1608	5	6 km al NORESTE de PROGRESO, HGO	19/10/2017
275	28/10/2017	08:41:24	2.8	19.8273	-99.0387	3	6 km al OESTE de TIZAYUCA, HGO	28/10/2017
276	04/11/2017	07:23:33	3	20.2905	-99.147	5	7 km al NORESTE de PROGRESO, HGO	04/11/2017
277	10/11/2017	08:26:46	3.6	20.182	-99.1365	10.5	9 km al SURESTE de PROGRESO, HGO	10/11/2017
278	13/11/2017	01:16:11	3.5	20.1817	-99.0903	7.6	12 km al SURESTE de PROGRESO, HGO	13/11/2017
279	14/11/2017	18:40:57	3.1	20.1997	-99.0892	20	11 km al SURESTE de PROGRESO, HGO	15/11/2017
280	14/11/2017	22:03:30	2.6	20.1678	-99.1475	5	9 km al SURESTE de PROGRESO, HGO	15/11/2017
281	17/11/2017	15:08:46	3	20.2535	-99.251	5	5 km al NOROESTE de MIXQUIAHUALA, HGO	17/11/2017

282	17/11/2017	17:53:23	2.7	20.261	-99.072	5	12 km al ESTE de PROGRESO, HGO	17/11/2017
283	18/11/2017	05:53:23	3.4	19.735	-98.5598	5	5 km al SURESTE de CD SAHAGUN, HGO	18/11/2017
284	20/11/2017	02:52:05	3.6	19.7455	-98.5772	5	3 km al SUR de CD SAHAGUN, HGO	20/11/2017
285	23/11/2017	03:33:35	3	20.4347	-99.0045	5	20 km al NOROESTE de ACTOPAN, HGO	23/11/2017
286	25/11/2017	14:38:36	3	20.387	-99.0963	5	17 km al SURESTE de IXMIQUILPAN, HGO	25/11/2017
287	28/11/2017	07:39:12	3.1	20.2735	-98.9338	5	1 km al NORESTE de ACTOPAN, HGO	28/11/2017
288	01/12/2017	21:50:10	3.1	20.4242	-99.0938	5	15 km al SURESTE de IXMIQUILPAN, HGO	02/12/2017
289	02/12/2017	00:26:50	3.1	20.1472	-99.0125	5	15 km al SUROESTE de ACTOPAN, HGO	02/12/2017
290	03/12/2017	01:53:48	2.7	20.4352	-99.0195	5	20 km al NOROESTE de ACTOPAN, HGO	03/12/2017
291	03/12/2017	22:54:48	3.5	20.4148	-99.07	5	17 km al SURESTE de IXMIQUILPAN, HGO	04/12/2017
292	04/12/2017	18:16:35	3.2	20.8042	-98.9935	5	40 km al NOROESTE de ZACUALTIPAN, HGO	05/12/2017
293	04/12/2017	23:05:43	3	20.426	-99.0858	5	15 km al SURESTE de IXMIQUILPAN, HGO	05/12/2017
294	05/12/2017	05:29:00	4	20.7395	-99.2833	5	10 km al ESTE de ZIMAPAN, HGO	05/12/2017
295	23/02/2018	08:03:33	2.5	20.4592	-99.1432	5	8 km al SURESTE de IXMIQUILPAN, HGO	23/02/2018
296	28/02/2018	22:57:55	2.6	20.3913	-99.0987	5	16 km al SURESTE de IXMIQUILPAN, HGO	01/03/2018
297	03/03/2018	00:23:41	3.5	20.3072	-99.0353	15.6	11 km al NOROESTE de ACTOPAN, HGO	03/03/2018
298	18/03/2018	23:33:35	3.4	20.1577	-99.0708	5	16 km al SURESTE de PROGRESO, HGO	19/03/2018
299	20/03/2018	04:12:28	3.3	20.4545	-99.0708	2	16 km al ESTE de IXMIQUILPAN, HGO	20/03/2018
300	20/03/2018	04:14:21	2.8	20.4422	-99.0875	5	14 km al SURESTE de IXMIQUILPAN, HGO	20/03/2018
301	20/03/2018	04:15:57	2.9	20.4262	-99.1097	5	13 km al SURESTE de IXMIQUILPAN, HGO	20/03/2018
302	20/03/2018	04:16:19	3.1	20.436	-99.081	5	15 km al SURESTE de IXMIQUILPAN, HGO	20/03/2018
303	20/03/2018	04:59:25	3.1	20.4355	-99.0837	5	15 km al SURESTE de IXMIQUILPAN, HGO	20/03/2018
304	20/03/2018	05:06:56	3	20.4222	-99.1078	5	13 km al SURESTE de IXMIQUILPAN, HGO	20/03/2018
305	20/03/2018	05:11:59	3	20.4312	-99.1242	5	11 km al SURESTE de IXMIQUILPAN, HGO	20/03/2018
306	20/03/2018	06:37:00	3	20.4367	-99.0995	5	13 km al SURESTE de IXMIQUILPAN, HGO	20/03/2018
307	20/03/2018	16:06:11	3.9	20.39	-99.0637	3.5	18 km al NOROESTE de ACTOPAN, HGO	20/03/2018

308	22/03/2018	10:54:35	1.6	20.3605	-99.072	7	17 km al NOROESTE de ACTOPAN, HGO	22/03/2018
309	10/04/2018	19:17:18	2.6	19.7662	-98.6272	11.2	5 km al OESTE de CD SAHAGUN, HGO	11/04/2018
310	12/04/2018	00:01:06	2.9	20.1185	-98.9905	5	17 km al SUROESTE de ACTOPAN, HGO	12/04/2018
311	27/04/2018	08:18:55	3	20.4263	-99.1077	5	13 km al SURESTE de IXMIQUILPAN, HGO	27/04/2018
312	01/05/2018	01:18:07	3.1	20.4827	-98.9805	5	24 km al NORTE de ACTOPAN, HGO	01/05/2018
313	03/05/2018	09:36:34	2	20.298	-99.1457	5	8 km al NORESTE de PROGRESO, HGO	03/05/2018
314	22/05/2018	02:39:10	3.5	19.9883	-98.5275	5	19 km al SUROESTE de SGO TULANTEPEC, HGO	22/05/2018
315	17/06/2018	10:24:13	2.5	19.8888	-99.0132	5.1	6 km al NOROESTE de TIZAYUCA, HGO	17/06/2018
316	17/06/2018	12:01:19	2.7	19.8833	-98.998	5	5 km al NOROESTE de TIZAYUCA, HGO	17/06/2018
317	06/07/2018	01:39:01	2.9	20.4375	-99.0075	5	20 km al NOROESTE de ACTOPAN, HGO	06/07/2018
318	17/08/2018	22:12:40	2.6	19.9457	-98.8958	5	15 km al NORESTE de TIZAYUCA, HGO	18/08/2018
319	20/08/2018	12:10:15	2.7	20.247	-99.1933	5	1 km al NOROESTE de PROGRESO, HGO	20/08/2018
320	01/09/2018	22:35:46	3.2	20.1963	-99.2028	5	4 km al SURESTE de MIXQUIAHUALA, HGO	02/09/2018
321	26/09/2018	01:13:44	2.1	20.328	-99.197	1	9 km al NORTE de PROGRESO, HGO	26/09/2018
322	09/10/2018	09:02:23	2.7	20.2987	-99.1502	5	7 km al NORESTE de PROGRESO, HGO	09/10/2018
323	16/10/2018	21:46:01	3.6	19.7927	-98.514	5	4 km al ESTE de TEPEAPULCO, HGO	17/10/2018
324	25/10/2018	23:23:35	3.8	20.8273	-98.2133	5	41 km al SURESTE de HUEJUTLA DE REYES, HGO	26/10/2018
325	05/11/2018	04:09:19	2.8	20.31	-98.98	5	6 km al NOROESTE de ACTOPAN, HGO	05/11/2018
326	09/11/2018	01:54:21	3.7	20.41	-99.02	5	17 km al NOROESTE de ACTOPAN, HGO	09/11/2018
327	11/11/2018	13:02:53	3.8	20.42	-99.03	4	19 km al NOROESTE de ACTOPAN, HGO	11/11/2018
328	05/12/2018	02:55:20	3.5	19.7	-98.58	13	8 km al SURESTE de CD SAHAGUN, HGO	05/12/2018
329	15/12/2018	00:46:47	3.7	21.05	-99.37	5	35 km al NORTE de ZIMAPAN, HGO	15/12/2018
330	21/12/2018	21:51:32	3.1	20.31	-98.9	5	7 km al NORESTE de ACTOPAN, HGO	22/12/2018
331	07/03/2019	12:36:01	3	20.2	-99.16	5	6 km al SURESTE de PROGRESO, HGO	07/03/2019
332	09/03/2019	04:07:59	3.8	21.07	-99.31	5	37 km al NORTE de ZIMAPAN, HGO	09/03/2019
333	03/04/2019	02:05:46	2.5	20.32	-99.07	5	15 km al NOROESTE de ACTOPAN, HGO	03/04/2019

334	04/04/2019	13:09:04	3.2	20.24	-99.01	5	8 km al SUROESTE de ACTOPAN, HGO	04/04/2019
335	04/04/2019	20:51:35	3	20.24	-99	5	6 km al SUROESTE de ACTOPAN, HGO	05/04/2019
336	05/04/2019	01:25:23	3	20.35	-99.09	10	16 km al NORESTE de PROGRESO, HGO	05/04/2019
337	06/04/2019	10:12:36	2.6	20.37	-99.09	5	18 km al NORESTE de PROGRESO, HGO	06/04/2019
338	18/04/2019	13:01:21	3.1	20.21	-99.04	5	12 km al SUROESTE de ACTOPAN, HGO	18/04/2019
339	22/04/2019	04:44:13	3.1	20.09	-98.76	6	5 km al SUROESTE de PACHUCA DE SOTO, HGO	22/04/2019
340	23/05/2019	12:24:14	3.7	20.98	-99.21	5	32 km al NORESTE de ZIMAPAN, HGO	23/05/2019
341	10/06/2019	11:13:31	3.1	20.32	-99.16	5	9 km al NORESTE de PROGRESO, HGO	10/06/2019
342	20/06/2019	09:57:42	3.1	20.29	-99.04	5	11 km al NOROESTE de ACTOPAN, HGO	20/06/2019
343	24/06/2019	10:01:38	2.9	20.3	-99.12	10	9 km al NORESTE de PROGRESO, HGO	24/06/2019

Anexo B

		Gr	ados				Fecha					
Estación	I	П	Ш	IV	v		I	П	=	IV	V	
		-	-		-	-	RED DEL BAND	A ANCHA DEL S	ERVICIO SISMO	ÓGICO NACION	IAL	
ACIG	10.7						13/09/2016					Acambay, Edo. Mex.
ARIG	20.1	6					08/03/2009 - 01/12/2015	01 /12/2015 - 13107/2016				Arcelia, Guerrero
CAIG	14.9	17.9					19/10/2001- 12/05/2007	12/05/2007- 06/10/2015				Cayaco, Guerrero
CUIG	17.6	1.8					17/12/2002- 14/02/2013	14/02/2013- 14/02/2016				Ciudad Universitaria
DAIG	8.2	9.6					20/04/2015 - 04/10/2015	04/10/2015 - 13107/2016				Dos Arroyos, Oaxaca
DHIG	14.3	14.1					16/10/2003- 14/05/2015	14/05/2015- 13/07/2016				Demacu, Hidalgo
FTIG	16.7	8.2					31/08/2012 - 04/08/2015	04/08/2015 - 13/07/2016				Fresnillo de Trujano Oaxaca
GTIG	4.4	1.7					19/05/2014 - 09/03/2016	09103/2016 - 13107/2016				Gomez Farias Tamaulipas
HLIG	21.5	11.6					08/12/2009 - 04/08/2015	10/06/2015 - 13/07/2016				Huajuapan de Leon, Oaxaca
IGIG	8	2.6					27/03/2009 - 16/06/2015	16/06/2015 - 13/07/2016				Irapuato, Guanajuato
LNIG	4.7	1.1					30/10/2010 - 11/11/2015	11/11/2015 - 13/0712016				Linares, Nuevo Leon
LVIG	8.9	7.8					06/05/2005 - 30/09/2013	06/05/2005 - 30/09/2013				Laguna Verde, Veracruz
MEIG	20.3	21	24.8				01/04/2005- 26/04/2014	26/04/2014- 20/02/2016	20/02/2016- 13/07/2016			Mezcala, Guerrero
MOIG	23.5	19.6					01/06/2000- 12/08/2013	12/08/2013- 27/09/2015				Morelia, Michoacan
OXIG	3	17.3					01/03/2001- 22/01/2007	22/01/2007- 30/03/2016				Oaxaca, Oaxaca
PLIG	20.3	5.6					16/01/2009- 30/11/2015	30/11/2015- 13/07/2016				Platanillo Guerrero

Tabla B.1. Grados (con respecto del norte) para la orientación real de los sismómetros al norte geográfico. Los números romanos indican las épocas (periodos en los que tuvieron esa orientación con respecto del norte geográfico).

PNIG	18	19.5	20.1	20	5.2	11/01/2002 - 11/07/2007	11/07/2007 - 29/10/2013	29/10/2013 - 26/06/2014	26/06/2014 - 08/08/2015	08/08/2015 - 13/07/2016	Pinotepa Nacional, Oaxaca
PPIG	25.2	24				13/07/2004- 01/05/2014	01/05/2014- 13/07/2016				Popocatepetl, Edo. De Mexico
RPIG	10.5	2.4				14/05/2014 - 09/06/2015	09/06/2015 - 13/07/2016				Rio Verde, San Luis Potosi
TLIG	16.3					13/10/2009 - 13/07/2016					Tlapa, Guerrero
TOIG	16.7	10.2				12/09/2012 - 28/03/2016	28/03/2016 - 13/07/2016				San Martin Toxpalan, Oaxaca
TPIG	19.6	2.2				30/10/2010 - 09/10/2014	05/02/2016 - 13/07/2016				Tehuacan, Puebla
YAIG	15.3	18.6	16.3	17.4	12	18/10/2001 - 09/01/2009	09/01/2009 - 12/05/2012	12105/201 2 -1 6/09/2012	16/09/201 2 - 10/08/2015	10/08/2015 - 13/07/2016	Yautepec, Morelos
YOIG	24	25	6.4			06/09/2012 - 20/06/2014	3/09/2014 - 06/08/2015	06/08/2015 - 13/07/2016			Santiago Yosondua, Oaxaca
ZAIG	15.2	16.7				03/06/2000 - 03/10/2014	09/10/2014 - 15/06/2015				Zacatecas, Zacatecas
			-	-		RED SÍS	MICA DEL VALL	E DE MÉXICO		-	
ORVM	0										Organos, Edo. de México
PTVM	0										Pico Tres Padres. CDMX
SZVM	0										Salazar, Edo. de México
MZVM	0	0				04/09/2018	actual				Mezcala, Guerrero
PBVM	33.6	0				19/10/2017	actual				Peñon de los Baños, DF.
ZUVM	351.3	0				03/10/2017	actual				Zumpango, Edo. de México
MAVM	353.2	0.2				29/03/2017	actual				Malinalco
VTVM	3.4	0.1				02/10/2017	actual				Valle de Teotihuacan, Edo. de México
AMVM	6.9	0.5				10/10/2017	actual				Amecameca
ATVM	1.6	0.1				06/06/2018	actual				Atlacomulco
TOVM	9.3	0.1				25/05/2017	actual				Tolica, Edo. de México

Anexo C

Archivo de polos y ceros para sismómetro Wood Anderson, propuesto por Uhrhammer y Collins (1990).

Sismometro WA

POLOS 2 -5.49779 5.60886 -5.49779 -5.60886 CEROS 2 CONSTANTE 2080

Anexo D

Evento	Fecha	Hora	Magnitud	Latitud	Longitud	Profundidad	Hora UTC	Fecha UTC
1	15/12/2003	04:39:36	4.2	20.411	-99.119	4	10:39:36	15/12/2003
2	01/07/2004	05:02:57	2.1	20.157	-99.123	7	10:02:57	01/07/2004
3	06/02/2005	02:27:10	3.7	20.247	-99.156	5	08:27:10	06/02/2005
4	10/02/2005	04:14:22	3.6	20.248	-99.189	5	04:14:22	10/02/2005
5	09/06/2005	17:42:07	3.6	21.288	-99.351	6	22:42:07	09/06/2005
6	06/08/2005	22:25:09	3.6	19.793	-98.971	88	03:25:09	07/08/2005
7	24/01/2006	06:59:38	3.8	20.232	-99.157	1.3	12:59:38	24/01/2006
8	14/07/2006	00:15:32	2.7	19.994	-99.008	5	05:15:32	14/07/2006
9	10/01/2007	23:00:49	2.6	20.284	-99.2	5	05:00:49	11/01/2007
10	05/02/2007	12:28:58	2.8	20.21	-99.205	5	18:28:58	05/02/2007
11	23/11/2008	06:15:58	3.3	20.045	-98.709	8.5	12:15:58	23/11/2008
12	31/12/2008	16:27:45	3.7	20.325	-99.21	16.6	22:27:45	31/12/2008
13	17/01/2009	07:36:07	3.5	20.233	-99.124	1.4	13:36:07	17/01/2009
14	14/07/2009	04:18:18	2.9	19.901	-99.045	12.4	09:18:18	14/07/2009
15	03/08/2009	07:50:36	3.4	20.051	-99.211	0	12:50:36	03/08/2009
16	20/08/2009	00:41:10	2.9	20.13	-99.25	4.3	05:41:10	20/08/2009
17	18/10/2009	13:27:18	3.2	20.129	-99.185	0.9	18:27:18	18/10/2009
18	09/02/2010	23:07:40	2.6	19.738	-98.62	7	05:07:40	10/02/2010
19	21/03/2010	04:14:52	3.4	20.481	-98.988	4	10:14:52	21/03/2010
20	23/03/2010	11:19:39	3.4	20.497	-99.006	5.3	17:19:39	23/03/2010
21	25/03/2010	19:23:05	3.7	20.5	-99.163	7	01:23:05	26/03/2010
22	07/04/2010	14:01:31	3.8	20.48	-99.058	6	19:01:31	07/04/2010
23	17/04/2010	02:03:28	4.2	20.484	-99.036	1.1	07:03:28	17/04/2010
24	17/04/2010	23:27:12	3.3	20.505	-99.176	7	04:27:12	18/04/2010

Tabla D.1. Coordenadas de 343 sismos relocalizados y valores de magnitud local.

25	27/04/2010	22:35:23	3.8	20.474	-99.189	10.4	03:35:23	28/04/2010
26	18/05/2010	00:12:03	2.1	20.501	-99.14	7	05:12:03	18/05/2010
27	18/05/2010	00:12:27	2.5	20.471	-98.979	7	05:12:27	18/05/2010
28	18/05/2010	00:29:08	4.3	20.305	-99.033	9.6	05:29:08	18/05/2010
29	18/05/2010	00:32:37	4.2	20.415	-98.912	10.6	05:32:37	18/05/2010
30	18/05/2010	00:36:22	3.6	20.445	-98.99	14	05:36:22	18/05/2010
31	18/05/2010	02:37:14	2.6	20.416	-98.938	13	07:37:14	18/05/2010
32	18/05/2010	23:34:40	3.3	20.442	-98.931	7	04:34:40	19/05/2010
33	20/05/2010	03:23:53	2.4	20.373	-98.9	14	08:23:53	20/05/2010
34	20/05/2010	16:11:02	4.2	20.468	-98.989	2	21:11:02	20/05/2010
35	21/05/2010	00:29:32	3.5	20.443	-98.927	7	05:29:32	21/05/2010
36	21/05/2010	00:30:46	3.5	20.367	-98.874	2.8	05:30:46	21/05/2010
37	21/05/2010	08:56:35	3.1	20.472	-98.976	3	13:56:35	21/05/2010
38	23/05/2010	07:48:15	3.6	20.361	-98.872	4.5	12:48:15	23/05/2010
39	04/06/2010	18:29:38	3.6	20.473	-98.975	7	23:29:38	04/06/2010
40	13/06/2010	18:34:26	3.2	20.455	-98.941	7	23:34:26	13/06/2010
41	11/07/2010	03:03:36	3.0	20.423	-98.934	11.5	08:03:36	11/07/2010
42	14/12/2010	00:13:36	3.3	19.784	-98.519	6.5	06:13:36	14/12/2010
43	08/02/2011	06:37:06	2.8	20.751	-99.005	1.2	12:37:06	08/02/2011
44	08/02/2011	13:53:52	3.2	20.889	-99.758	7	19:53:52	08/02/2011
45	29/06/2011	07:46:25	3.6	21.396	-99.56	9	12:46:25	29/06/2011
46	05/10/2011	03:39:56	3.9	21.464	-99.522	23	08:39:56	05/10/2011
47	23/03/2012	07:25:15	2.6	20.269	-99.04	8.4	13:25:15	23/03/2012
48	09/11/2012	12:24:33	2.4	20.018	-99.134	4.7	18:24:33	09/11/2012
49	02/08/2013	03:29:16	2.2	20.136	-99.051	7	08:29:16	02/08/2013
50	07/08/2013	16:38:17	1.9	20.448	-99.137	7	21:38:17	07/08/2013
51	17/09/2013	05:31:05	3.2	20.365	-99.229	2	10:31:05	17/09/2013
52	17/09/2013	07:35:07	3.2	20.375	-99.196	17.4	12:35:07	17/09/2013
53	17/09/2013	08:54:32	2.9	20.366	-99.267	10.6	13:54:32	17/09/2013

54	17/09/2013	10:09:45	3.2	20.402	-99.243	5	15:09:45	17/09/2013
55	17/09/2013	14:43:53	2.5	20.336	-99.264	9.4	19:43:53	17/09/2013
56	17/09/2013	15:37:45	3.2	20.183	-99.059	0.9	20:37:45	17/09/2013
57	17/09/2013	16:24:42	2.9	20.425	-99.21	10.4	21:24:42	17/09/2013
58	17/09/2013	16:41:36	3.2	20.32	-99.16	18.1	21:41:36	17/09/2013
59	17/09/2013	19:37:13	3.1	20.342	-99.277	4	00:37:13	18/09/2013
60	18/09/2013	00:34:46	2.7	20.303	-99.213	0.8	05:34:46	18/09/2013
61	18/09/2013	08:48:18	2.6	20.353	-99.264	4	13:48:18	18/09/2013
62	23/09/2013	01:45:54	3.8	20.36	-99.2	7.5	06:45:54	23/09/2013
63	08/10/2013	18:17:39	2.6	20.27	-99.126	3	23:17:39	08/10/2013
64	06/11/2013	10:07:55	1.8	20.289	-99.135	3	16:07:55	06/11/2013
65	12/11/2013	12:03:19	2.8	20.447	-99.105	7	18:03:19	12/11/2013
66	15/11/2013	10:07:27	1.7	20.326	-99.118	7	16:07:27	15/11/2013
67	15/11/2013	20:36:09	2.4	20.232	-98.962	6	02:36:09	16/11/2013
68	19/11/2013	14:20:41	2.4	20.28	-99.238	3	20:20:41	19/11/2013
69	26/11/2013	02:48:05	3.2	20.206	-99.17	1.4	08:48:05	26/11/2013
70	05/12/2013	13:01:50	1.5	20.3	-99.148	3	19:01:50	05/12/2013
71	05/12/2013	23:12:18	2.5	20.118	-99.237	4	05:12:18	06/12/2013
72	10/12/2013	02:42:26	3.5	20.478	-99.107	4.5	08:42:26	10/12/2013
73	10/12/2013	03:01:42	1.4	20.465	-99.137	3.5	09:01:42	10/12/2013
74	10/12/2013	03:02:02	2.0	20.482	-99.09	4.5	09:02:02	10/12/2013
75	10/12/2013	03:24:47	2.0	20.469	-99.128	5	09:24:47	10/12/2013
76	07/05/2014	02:29:32	1.8	20.453	-99.093	4.6	07:29:32	07/05/2014
77	24/06/2014	21:58:35	3.2	19.909	-98.873	7	02:58:35	25/06/2014
78	20/08/2014	08:50:37	1.9	20.233	-99.135	7	13:50:37	20/08/2014
79	02/09/2014	10:23:06	2.4	20.222	-99.121	7	15:23:06	02/09/2014
80	02/09/2014	10:38:35	2.0	20.188	-99.1	7	15:38:35	02/09/2014
81	07/09/2014	14:04:08	2.7	20.2	-99.208	4	19:04:08	07/09/2014
82	28/09/2014	06:42:28	2.8	20.159	-99.171	6.5	11:42:28	28/09/2014

83	24/10/2014	01:07:01	2.3	20.161	-99.13	8.6	06:07:01	24/10/2014
84	31/10/2014	20:25:51	2.5	20.126	-99.063	4	02:25:51	01/11/2014
85	01/11/2014	08:33:33	2.8	20.142	-99.028	7	14:33:33	01/11/2014
86	07/11/2014	18:28:34	2.9	20.162	-99.25	3	00:28:34	08/11/2014
87	12/11/2014	01:11:58	2.3	20.497	-99.004	4.7	07:11:58	12/11/2014
88	18/11/2014	18:37:22	1.5	20.247	-99.03	4.5	00:37:22	19/11/2014
89	20/11/2014	17:02:16	1.8	20.279	-99.135	7	23:02:16	20/11/2014
90	31/12/2014	06:15:03	1.7	20.19	-99.151	9.6	12:15:03	31/12/2014
91	20/01/2015	15:17:19	2.0	20.267	-99.14	7	21:17:19	20/01/2015
92	27/03/2015	14:54:51	3.2	20.392	-99.078	0.2	20:54:51	27/03/2015
93	14/04/2015	02:55:18	1.9	20.447	-99.06	5	07:55:18	14/04/2015
94	17/05/2015	17:51:28	2.8	20.36	-99.068	7	22:51:28	17/05/2015
95	18/05/2015	11:21:57	1.4	20.253	-99.134	7	16:21:57	18/05/2015
96	18/05/2015	18:39:00	1.0	20.345	-98.982	7	23:38:00	18/05/2015
97	19/05/2015	12:08:10	3.4	20.352	-99.083	7	17:08:10	19/05/2015
98	21/05/2015	07:44:19	1.6	20.196	-99.012	7	12:44:19	21/05/2015
99	21/05/2015	13:51:09	1.7	20.237	-99.124	7	18:51:09	21/05/2015
100	25/05/2015	15:56:21	1.5	20.271	-99.15	7	20:56:21	25/05/2015
101	27/05/2015	16:58:01	2.8	20.178	-99.182	7	21:58:01	27/05/2015
102	29/05/2015	19:39:30	2.1	20.372	-99.181	7	00:39:30	30/05/2015
103	01/06/2015	05:59:16	1.8	20.143	-99.271	6	10:59:16	01/06/2015
104	02/06/2015	10:00:53	1.3	20.252	-99.162	5	15:00:53	02/06/2015
105	17/06/2015	05:00:01	2.5	20.13	-99.342	7	10:00:01	17/06/2015
106	21/06/2015	17:56:51	1.5	20.445	-99.084	3	22:56:51	21/06/2015
107	25/06/2015	16:55:45	2.8	20.208	-99.196	3	21:55:45	25/06/2015
108	25/06/2015	16:56:22	2.7	20.194	-99.196	7	21:56:22	25/06/2015
109	29/06/2015	17:25:25	1.9	20.145	-99.056	6	22:25:25	29/06/2015
110	02/07/2015	10:07:04	1.3	20.288	-99.145	7.5	15:07:04	02/07/2015
111	07/07/2015	19:32:45	2.0	20.196	-99.229	5	00:32:45	08/07/2015

112	10/07/2015	23:58:31	2.9	20.161	-99.138	7	04:58:31	11/07/2015
113	11/07/2015	13:28:16	1.7	20.189	-99.161	9.5	18:28:16	11/07/2015
114	01/08/2015	20:44:39	1.6	20.131	-99.009	3	01:44:39	02/08/2015
115	02/08/2015	22:01:52	1.7	20.157	-98.987	5	03:01:52	03/08/2015
116	03/08/2015	05:28:58	1.5	20.157	-99.016	7	10:28:58	03/08/2015
117	03/08/2015	08:25:32	2.0	20.233	-99.208	1	15:25:32	03/08/2015
118	03/08/2015	12:19:35	2.2	20.148	-99.146	5	17:19:35	03/08/2015
119	03/08/2015	12:29:35	1.5	20.162	-99.004	7	17:29:35	03/08/2015
120	06/08/2015	21:49:40	2.1	20.149	-99.168	3	02:49:40	07/08/2015
121	11/08/2015	20:31:12	2.0	20.434	-99.079	7	01:31:12	12/08/2015
122	13/08/2015	16:22:03	2.0	20.22	-99.168	7	21:22:03	13/08/2015
123	13/08/2015	18:56:57	2.6	20.483	-99.123	6	23:56:57	13/08/2015
124	17/08/2015	06:46:06	1.6	20.166	-99	7	11:46:06	17/08/2015
125	22/08/2015	09:38:08	2.7	20.201	-99.176	3	14:38:08	22/08/2015
126	25/08/2015	13:52:47	1.4	20.17	-98.971	5	18:52:47	25/08/2015
127	28/08/2015	10:45:08	2.1	20.228	-99.135	5	15:45:08	28/08/2015
128	29/08/2015	08:27:04	1.5	20.261	-99.14	5	14:27:04	29/08/2015
129	01/09/2015	10:00:44	1.7	20.328	-99.138	7	15:00:44	01/09/2015
130	02/09/2015	08:03:17	1.3	20.275	-99.15	5	13:03:17	02/09/2015
131	03/09/2015	10:22:38	1.7	20.4118	-98.9442	5	15:22:38	03/09/2015
132	03/09/2015	11:57:56	1.2	20.317	-99.147	4	16:57:56	03/09/2015
133	10/09/2015	12:43:42	2.0	20.278	-99.149	4.8	17:43:42	10/09/2015
134	13/09/2015	21:00:19	2.2	20.212	-99.184	4	02:00:19	14/09/2015
135	18/09/2015	21:37:59	1.9	20.426	-99.04	7	02:37:59	19/09/2015
136	01/10/2015	11:10:22	3.3	21.287	-99.579	8.9	16:10:22	01/10/2015
137	02/10/2015	08:35:32	1.3	20.18	-99.019	7	15:35:32	02/10/2015
138	13/10/2015	05:57:24	1.4	20.269	-99.084	7	10:57:24	13/10/2015
139	13/10/2015	06:38:50	1.5	20.275	-99.089	6.5	11:38:50	13/10/2015
140	13/10/2015	15:48:40	2.0	20.278	-99.085	7	20:48:40	13/10/2015

141	13/10/2015	16:39:31	1.5	20.28	-99.09	6.5	21:39:31	13/10/2015
142	13/10/2015	20:23:07	1.1	20.275	-99.094	5.5	01:22:00	14/10/2015
143	15/10/2015	07:46:46	1.6	20.304	-99.133	6.5	12:46:46	15/10/2015
144	17/10/2015	19:56:05	1.8	20.197	-99.177	6	00:56:05	18/10/2015
145	17/10/2015	21:43:42	1.6	20.316	-98.965	5	02:43:42	18/10/2015
146	27/10/2015	07:00:24	1.4	20.266	-99.122	7	15:00:24	27/10/2015
147	28/10/2015	09:33:52	1.1	20.307	-99.135	6.3	15:33:52	28/10/2015
148	28/10/2015	09:49:41	1.8	20.294	-99.139	7	15:49:41	28/10/2015
149	29/10/2015	11:11:04	1.5	20.315	-99.155	3	17:11:04	29/10/2015
150	06/11/2015	19:39:53	2.5	20.11	-99.046	7	01:39:53	07/11/2015
151	17/11/2015	08:13:50	1.4	20.266	-99.123	7	14:13:50	17/11/2015
152	01/12/2015	12:25:39	1.6	20.308	-99.153	5.8	18:25:39	01/12/2015
153	11/01/2016	03:52:44	4.2	20.902	-99.343	3.5	09:52:44	11/01/2016
154	19/01/2016	19:53:28	1.8	20.237	-99.075	5	01:53:28	20/01/2016
155	19/01/2016	23:53:51	2.9	20.139	-99.137	7	05:53:51	20/01/2016
156	21/01/2016	15:33:40	1.3	20.244	-99.069	7	21:33:40	21/01/2016
157	23/01/2016	17:58:14	1.5	20.285	-99.172	5	23:58:14	23/01/2016
158	25/01/2016	08:51:18	1.5	20.222	-99.103	7	14:51:18	25/01/2016
159	31/01/2016	16:05:56	2.4	20.426	-99.069	7	22:05:56	31/01/2016
160	13/02/2016	07:25:19	1.3	20.278	-99.14	7	13:25:19	13/02/2016
161	25/02/2016	23:35:28	1.6	20.188	-99.017	6	05:35:28	26/02/2016
162	25/02/2016	23:37:34	1.0	20.186	-99.023	5.5	05:36:00	26/02/2016
163	29/02/2016	10:24:47	1.8	20.316	-99.148	6	16:24:47	29/02/2016
164	01/03/2016	07:23:08	1.8	20.287	-99.215	7	13:23:08	01/03/2016
165	04/03/2016	10:07:55	1.4	20.363	-99.118	8	16:07:55	04/03/2016
166	05/03/2016	15:21:47	1.5	20.197	-99.058	7.3	21:21:47	05/03/2016
167	07/03/2016	23:14:17	2.5	20.422	-99.165	6.8	05:14:17	08/03/2016
168	14/03/2016	09:54:43	2.2	20.191	-99.189	7	15:54:43	14/03/2016
169	31/03/2016	14:20:19	2.7	21.125	-99.671	9	20:20:19	31/03/2016

170	28/04/2016	13:15:39	1.6	20.284	-99.136	8	13:18:39	28/04/2016
171	01/05/2016	19:41:43	3.6	20.168	-99.177	7	12:41:43	02/05/2016
172	10/05/2016	09:58:30	1.9	20.149	-99.16	7	14:58:30	10/05/2016
173	10/05/2016	10:59:39	2.3	20.161	-99.178	6	15:59:39	10/05/2016
174	10/05/2016	12:55:11	1.3	20.288	-98.945	5.5	17:55:11	10/05/2016
175	26/05/2016	02:29:48	2.1	20.34	-99.265	6.1	07:29:48	26/05/2016
176	27/05/2016	01:55:24	1.1	20.269	-99.164	6	06:55:24	27/05/2016
177	27/05/2016	10:08:01	1.2	20.384	-99.056	8	15:08:01	27/05/2016
178	27/05/2016	07:51:30	1.2	20.255	-99.129	5	12:50:00	27/05/2016
179	01/06/2016	10:07:59	1.5	20.269	-99.138	6.5	15:06:00	01/06/2016
180	02/06/2016	19:15:14	1.9	20.156	-98.984	5.6	00:15:14	03/06/2016
181	02/06/2016	20:13:28	2.5	20.209	-99.168	8.5	01:13:28	03/06/2016
182	02/06/2016	20:51:49	1.9	20.171	-99.006	7.5	01:51:49	03/06/2016
183	02/06/2016	22:10:20	2.7	20.166	-99.01	7.5	03:10:20	03/06/2016
184	06/07/2016	09:29:08	3.2	20.38	-99.278	9.1	14:29:08	06/07/2016
185	11/07/2016	08:45:25	1.5	20.323	-99.129	8	15:36:25	11/07/2016
186	11/07/2016	10:36:53	1.2	20.264	-99.137	8.5	15:36:53	11/07/2016
187	16/08/2016	08:37:53	1.5	20.224	-98.99	7	13:37:53	16/08/2016
188	17/08/2016	09:12:44	2.1	20.229	-98.996	8.1	14:12:44	17/08/2016
189	28/08/2016	05:25:24	2.1	20.172	-99.19	7	10:25:24	28/08/2016
190	30/08/2016	09:50:10	2.3	20.213	-98.957	7.5	14:50:10	30/08/2016
191	07/09/2016	13:15:36	2.2	20.282	-99.154	4	18:15:36	07/09/2016
192	01/11/2016	05:12:36	3.1	21.18	-99.536	4.6	11:12:36	01/11/2016
193	06/11/2016	20:19:18	1.1	20.44	-99.115	7	02:19:18	07/11/2016
194	08/11/2016	03:15:29	2.1	20.451	-99.176	4	09:15:29	08/11/2016
195	20/12/2016	16:25:46	2.1	20.389	-99.146	7	22:25:46	20/12/2016
196	22/12/2016	08:00:33	2.8	20.436	-99.075	8	14:00:33	22/12/2016
197	27/12/2016	06:33:59	2.0	20.403	-99.15	6	12:33:59	27/12/2016
198	29/12/2016	07:00:07	2.8	20.198	-99.172	8	13:00:07	29/12/2016

199	22/01/2017	19:10:13	2.5	20.394	-99.141	7	01:10:13	23/01/2017
200	07/02/2017	14:20:06	1.5	20.406	-99.033	8	20:20:06	07/02/2017
201	09/02/2017	16:01:00	1.5	20.416	-99.181	7	22:01:00	09/02/2017
202	19/02/2017	02:41:54	2.6	20.253	-99.155	8.3	08:41:54	19/02/2017
203	02/03/2017	05:52:40	2.8	19.782	-98.82	7	11:52:40	02/03/2017
204	23/03/2017	09:44:35	1.8	20.255	-99.137	3	15:44:35	23/03/2017
205	26/03/2017	12:49:40	1.7	20.29	-99.223	7	18:49:40	26/03/2017
206	30/03/2017	17:12:43	1.8	20.244	-99.11	5	23:12:43	30/03/2017
207	30/03/2017	20:02:53	1.2	20.187	-99.146	5.5	02:02:53	31/03/2017
208	03/04/2017	16:18:06	2.3	20.283	-99.119	6.1	21:18:06	03/04/2017
209	21/04/2017	21:20:46	2.2	19.867	-99.021	7	02:20:46	22/04/2017
210	08/05/2017	19:26:37	1.9	20.176	-99.141	8.5	00:26:37	09/05/2017
211	11/05/2017	11:22:11	1.8	20.303	-99.142	7	16:22:11	11/05/2017
212	13/05/2017	04:12:11	1.0	20.4	-99.046	6	09:11:00	13/05/2017
213	14/05/2017	15:17:41	1.4	20.407	-99.047	7	20:17:41	14/05/2017
214	17/05/2017	12:16:34	1.8	20.287	-99.122	7	17:16:34	17/05/2017
215	19/05/2017	12:42:14	3.0	20.408	-99.148	7	17:42:14	19/05/2017
216	19/05/2017	18:31:27	1.8	20.452	-99.073	7	23:31:27	19/05/2017
217	21/06/2017	10:00:09	1.2	20.384	-99.051	7	15:00:09	21/06/2017
218	28/06/2017	03:58:47	2.1	20.159	-99.151	6	08:58:47	28/06/2017
219	06/07/2017	02:03:09	1.7	20.301	-99.221	7	07:03:09	06/07/2017
220	06/07/2017	12:46:19	2.0	20.296	-99.141	7	17:46:19	06/07/2017
221	10/07/2017	11:43:11	1.7	20.28	-99.145	5	16:43:11	10/07/2017
222	13/07/2017	22:43:12	2.5	20.219	-99.125	7	03:43:12	14/07/2017
223	25/07/2017	11:54:39	2.6	20.198	-99.058	7	16:54:39	25/07/2017
224	31/07/2017	06:12:13	1.4	20.241	-99.227	5	11:12:13	31/07/2017
225	05/09/2017	04:30:23	1.2	20.21	-99.134	5	09:30:23	05/09/2017
226	09/09/2017	02:59:22	1.7	20.369	-99.139	7	07:59:22	09/09/2017
227	09/09/2017	21:03:52	4.3	20.634	-99.209	7	02:03:52	10/09/2017

228	11/09/2017	04:56:48	1.2	20.226	-99.13	8	09:56:48	11/09/2017
229	13/09/2017	22:52:46	1.5	20.386	-99.116	5	03:52:46	14/09/2017
230	14/09/2017	07:57:48	2.1	20.255	-99.129	7	12:57:48	14/09/2017
231	15/09/2017	13:40:39	1.5	20.338	-99.022	7	18:40:39	15/09/2017
232	16/09/2017	18:44:37	2.9	19.82	-98.529	6.7	23:44:37	16/09/2017
233	16/09/2017	18:45:38	4.0	19.766	-98.515	4	23:45:38	16/09/2017
234	16/09/2017	18:48:43	3.4	19.794	-98.495	3.1	23:48:43	16/09/2017
235	16/09/2017	18:51:39	2.1	19.842	-98.519	8.1	23:51:39	16/09/2017
236	16/09/2017	18:58:06	2.4	19.823	-98.462	1.2	23:58:06	16/09/2017
237	16/09/2017	19:16:39	2.2	19.716	-98.498	7	00:16:39	17/09/2017
238	16/09/2017	19:17:14	1.9	19.927	-98.47	3	00:17:14	17/09/2017
239	16/09/2017	19:29:06	2.2	19.711	-98.454	2.5	00:29:06	17/09/2017
240	16/09/2017	21:58:32	2.4	19.585	-98.531	12.5	02:58:32	17/09/2017
241	17/09/2017	07:57:24	2.3	19.692	-98.487	7	12:57:24	17/09/2017
242	18/09/2017	13:38:09	1.7	20.293	-99.149	7	18:38:09	18/09/2017
243	20/09/2017	03:18:00	1.1	20.283	-99.163	7	08:18:00	20/09/2017
244	22/09/2017	07:01:30	2.0	20.259	-98.929	7	12:01:30	22/09/2017
245	23/09/2017	20:46:53	3.1	20.301	-99.563	7	01:46:53	24/09/2017
246	23/09/2017	21:43:51	1.6	20.264	-98.922	7	02:43:51	24/09/2017
247	25/09/2017	12:59:46	1.8	20.283	-99.147	7	17:59:46	25/09/2017
248	25/09/2017	14:22:30	1.8	20.33	-99.154	7	19:22:30	25/09/2017
249	25/09/2017	22:49:03	1.8	20.238	-99.544	7	03:49:03	26/09/2017
250	26/09/2017	05:56:52	1.1	20.177	-99.01	7	10:56:52	26/09/2017
251	27/09/2017	22:04:05	1.3	20.209	-99.126	7	03:04:05	28/09/2017
252	29/09/2017	22:22:05	2.6	19.879	-98.819	10.1	03:22:05	30/09/2017
253	30/09/2017	11:46:30	2.4	20.23	-99.27	5	16:46:30	30/09/2017
254	02/10/2017	11:30:55	1.3	20.206	-99.127	7	16:30:55	02/10/2017
255	02/10/2017	18:43:08	1.8	20.207	-99.118	7	23:43:08	02/10/2017
256	03/10/2017	22:22:03	1.6	20.214	-99.129	7	03:22:03	04/10/2017

257	10/10/2017	20:38:53	1.2	20.164	-98.986	8	01:38:53	11/10/2017
258	11/10/2017	04:36:05	1.3	20.156	-99.003	6	09:36:05	11/10/2017
259	15/10/2017	20:50:07	1.4	20.165	-98.984	7	01:50:07	16/10/2017
260	15/10/2017	22:19:17	1.5	20.169	-98.975	7	03:19:17	16/10/2017
261	15/10/2017	22:19:35	1.5	20.164	-98.984	6	03:19:35	16/10/2017
262	15/10/2017	22:19:58	1.5	20.163	-98.972	4	03:19:58	16/10/2017
263	17/10/2017	23:24:12	1.3	20.173	-98.96	5	04:24:12	18/10/2017
264	18/10/2017	20:08:42	1.8	20.243	-99.215	7	01:08:42	19/10/2017
265	19/10/2017	08:15:08	2.7	20.247	-99.209	5	13:15:08	19/10/2017
266	28/10/2017	08:41:26	3.1	19.857	-99.056	1	13:41:26	28/10/2017
267	04/11/2017	07:23:33	1.3	20.286	-99.147	7	13:23:33	04/11/2017
268	10/11/2017	08:26:45	3.2	20.193	-99.209	5	14:26:45	10/11/2017
269	13/11/2017	01:16:10	2.6	20.195	-99.208	5	07:16:10	13/11/2017
270	14/11/2017	18:40:57	1.8	20.202	-99.21	6	00:40:57	15/11/2017
271	14/11/2017	22:03:30	1.9	20.197	-99.186	7	04:03:30	15/11/2017
272	17/11/2017	15:08:46	2.1	20.247	-99.263	5	21:08:46	17/11/2017
273	17/11/2017	17:53:23	1.4	20.255	-99.048	7	23:53:23	17/11/2017
274	18/11/2017	05:53:24	2.5	19.779	-98.474	12.1	11:53:24	18/11/2017
275	20/11/2017	02:52:04	2.5	19.755	-98.505	3.8	08:52:04	20/11/2017
276	23/11/2017	03:33:35	2.2	20.44	-99.063	7	09:33:35	23/11/2017
277	25/11/2017	14:38:36	1.7	20.39	-99.072	7	20:38:36	25/11/2017
278	28/11/2017	07:39:12	2.1	20.264	-98.943	7	13:39:12	28/11/2017
279	01/12/2017	21:50:10	1.5	20.399	-99.134	7	03:50:10	02/12/2017
280	02/12/2017	00:26:50	2.2	20.118	-99.056	5	06:26:50	02/12/2017
281	03/12/2017	01:53:48	1.5	20.434	-98.98	7	07:53:48	03/12/2017
282	03/12/2017	22:54:47	2.9	20.385	-99.148	8	04:54:47	04/12/2017
283	04/12/2017	18:16:36	2.4	20.442	-99.658	5.1	00:16:36	05/12/2017
284	04/12/2017	23:05:43	1.8	20.403	-99.13	7	05:05:43	05/12/2017
285	05/12/2017	05:28:57	3.7	20.784	-99.275	0.1	11:28:57	05/12/2017

286	23/02/2018	08:03:33	1.9	20.4592	-99.1432	6	14:03:33	23/02/2018
287	28/02/2018	22:57:55	1.5	20.408	-99.058	7	04:57:55	01/03/2018
288	03/03/2018	00:23:41	2.4	20.411	-99.058	7	06:23:41	03/03/2018
289	18/03/2018	23:33:34	2.2	20.122	-99.079	7	05:33:34	19/03/2018
290	20/03/2018	04:12:28	2.5	20.446	-99.094	7	10:12:28	20/03/2018
291	20/03/2018	04:14:21	1.3	20.446	-99.083	7	10:14:21	20/03/2018
292	20/03/2018	04:15:57	2.2	20.441	-99.091	7	10:15:57	20/03/2018
293	20/03/2018	04:16:19	2.5	20.442	-99.075	7	10:16:19	20/03/2018
294	20/03/2018	04:59:25	2.3	20.443	-99.087	7	10:59:25	20/03/2018
295	20/03/2018	05:06:56	2.0	20.433	-99.096	7	11:06:56	20/03/2018
296	20/03/2018	05:11:59	1.5	20.438	-99.116	7	11:11:59	20/03/2018
297	20/03/2018	06:36:20	2.0	20.4367	-99.0995	6	12:36:20	20/03/2018
298	20/03/2018	16:06:09	3.4	20.444	-99.086	7	22:06:09	20/03/2018
299	22/03/2018	10:54:35	1.9	20.451	-99.078	7	16:54:35	22/03/2018
300	10/04/2018	19:17:20	2.5	19.751	-99.561	5	00:17:20	11/04/2018
301	12/04/2018	00:01:06	2.1	20.167	-99.181	7	05:01:06	12/04/2018
302	27/04/2018	08:18:56	1.6	20.407	-99	5	13:18:56	27/04/2018
303	01/05/2018	01:18:07	1.3	20.496	-99.066	7	06:18:07	01/05/2018
304	03/05/2018	09:36:33	1.5	20.292	-99.148	7	14:36:33	03/05/2018
305	22/05/2018	02:39:09	2.3	19.976	-98.447	2.7	07:39:09	22/05/2018
306	17/06/2018	10:24:14	2.4	20.037	-98.645	0.9	15:24:14	17/06/2018
307	17/06/2018	12:01:20	2.7	20.042	-98.6	3	17:01:20	17/06/2018
308	06/07/2018	01:39:01	1.4	20.443	-99.069	5	06:39:01	06/07/2018
309	17/08/2018	22:12:41	2.7	20.017	-98.73	3	03:12:41	18/08/2018
310	20/08/2018	12:10:15	2.3	20.224	-99.189	7	17:10:15	20/08/2018
311	01/09/2018	22:35:46	2.8	20.167	-99.184	7	03:35:46	02/09/2018
312	26/09/2018	01:13:44	2.0	20.188	-99.147	7	06:13:44	26/09/2018
313	09/10/2018	09:02:23	1.4	20.294	-99.153	4	14:02:23	09/10/2018
314	16/10/2018	21:46:00	2.0	19.565	-98.583	4	02:46:00	17/10/2018

315	25/10/2018	23:23:40	3.1	20.775	-98.43	7	04:23:40	26/10/2018
316	05/11/2018	04:09:19	1.5	20.264	-98.99	7	10:09:19	05/11/2018
317	09/11/2018	01:54:19	3.0	20.511	-99.043	7	07:54:19	09/11/2018
318	11/11/2018	13:02:51	2.9	20.507	-99.067	7	19:02:51	11/11/2018
319	05/12/2018	02:55:20	1.9	19.816	-98.587	7	08:55:20	05/12/2018
320	15/12/2018	00:46:48	3.0	20.982	-99.535	3	06:46:48	15/12/2018
321	21/12/2018	21:51:32	2.3	20.436	-99.061	7	03:51:32	22/12/2018
322	07/03/2019	12:36:01	1.7	20.187	-99.156	5	18:36:01	07/03/2019
323	09/03/2019	04:07:57	3.3	21.121	-99.502	7	10:07:57	09/03/2019
324	03/04/2019	02:05:46	1.7	20.289	-99.063	7	08:05:46	03/04/2019
325	04/04/2019	13:09:04	1.6	20.235	-99.039	7	19:09:04	04/04/2019
326	04/04/2019	20:51:35	1.1	20.229	-99.036	5	02:51:00	05/04/2019
327	05/04/2019	01:25:23	1.1	20.388	-99.063	7	07:25:23	05/04/2019
328	06/04/2019	10:12:36	3.4	20.396	-99.071	5	16:12:36	06/04/2019
329	18/04/2019	13:01:21	1.8	20.261	-99.152	7	18:01:21	18/04/2019
330	22/04/2019	04:44:11	2.2	19.909	-98.901	6	09:44:11	22/04/2019
331	23/05/2019	12:24:16	2.7	20.64	-99.385	7	17:24:16	23/05/2019
332	10/06/2019	11:13:31	1.9	20.259	-99.14	7	16:13:31	10/06/2019
333	20/06/2019	09:57:40	1.7	20.264	-99.146	6	14:57:40	20/06/2019
334	24/06/2019	10:01:38	1.9	20.286	-99.143	7	15:01:38	24/06/2019