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RESUMEN

El Cálculo fraccional ha ganado una atención signi�cativa en la ciencia y la ingeniería

y es un campo emergente en la ingeniería de control. Esta rama de las matemáticas estudia

las derivadas e integrales de orden arbitrario y se ha demostrado que el uso de operadores

de orden fraccional en sistemas dinámicos y diseño de controladores podría mejorar el mod-

elado y la �exibilidad y robustez de los controladores. El diseño de controladores basados

en modelos de orden fraccional han ganado un rápido desarrollo impulsado por el creciente

número de investigaciones sobre la estabilidad de los sistemas de orden fraccional. Entre esto,

la investigación de controladores adaptables ha sido un tema activo de investigación.

Este trabajo está dedicado al diseño de controladores adaptables, especí�camente, el

enfoque de control adaptable con modelo referencia. En primer lugar, mejoramos resultados

previos sobre el esquema de control adaptatable con modelo de referencia de orden fraccional al

proponer una extensión del Lema de Barbalat. Esta extensión nos permite realizar un análisis

de estabilidad completo del esquema adaptable basado en el método directo de Lyapunov y

concluir la convergencia del error a cero. Además, aplicamos este análisis para diseñar un

esquema de control adaptable con modelo de referencia en lazo cerrado de orden fraccional y,

como resultado complementario, extendimos dos esquemas de identi�cación para sistemas de

orden fraccional basados en el análisis de Lyapunov.

Como caso de estudio, abordamos el problema de control de anestesia. Propusimos un

modelo simple de orden fraccional para representar la respuesta entrada-salida del modelo

PK/PD de un paciente. Este modelo propuesto supera muchas di�cultades, por ejemplo,

parámetros desconocidos, falta de medición de estado, variabilidad inter e intrapaciente y

retardo variable, que se encuentra al diseñar controladores basados en el modelo PK/PD.

En base a este modelo simple aplicamos los esquemas adaptables diseñados. Los resultados

se ilustran a través de simulaciones usando 30 pacientes virtuales, que muestran que los

esquemas de adaptables de orden fraccional diseñados son robustos contra la variabilidad

inter e intrapaciente, el retraso de tiempo variable, las perturbaciones y el ruido. Por lo

tanto, proponemos una solución novedosa y simple para el control de la anestesia utilizando

un enfoque adaptable de orden fraccional.



ABSTRACT

Fractional Calculus has gained signi�cant attention in science and engineering and is an

emergent �eld in control engineering. This branch of mathematics studies the derivatives and

integrals of arbitrary order and has been shown that the use of fractional-order operators

in dynamical systems and control design could improve the modeling and the �exibility and

robustness of the controllers. The controller designs based on fractional-order models have

gained a rapid development impulsed by the growing number of research on the stability of

fractional-order systems. Among this, the research of fractional-order adaptive controllers has

been an active topic of research.

This work is devoted to the design of adaptive controllers, speci�cally, the model reference

adaptive control approach. First, we improve previous results on the fractional-order model

reference adaptive control scheme by proposing an extension of the Barbalat's Lemma. This

extension allows us to realize a full stability analysis of the adaptive scheme based on the

Lyapunov's direct method and concluding the convergence of the error to zero. Moreover, we

apply this analysis to design a fractional-order closed-loop model reference adaptive control

scheme, and as a complementary result, we extend two identi�cation schemes for fractional-

order systems based on Lyapunov's analysis.

As a study case, we deal with the problem of control of anesthesia. We proposed a

simple fractional-order model to represent the input-output behaviour of the PK/PD model

of a patient. This proposed model gets around many di�culties, for example, unknown

parameters, lack of state measurement, inter and intra-patient variability, and variable time-

delay, encountered in controller designs based on the PK/PD model. Based on this simple

model we apply the adaptive schemes designed. The results are illustrated via simulations

using 30 virtual patients, showing that the fractional-order adaptive schemes designed are

robust against inter and intra-patient variability, variable time-delay, perturbations, and noise.

Therefore, proposing a novel and straightforward solution for the control of anesthesia using

a fractional-order adaptive approach.

.
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Chapter 1

Introduction

The introduction of fractional-order operators (integrals and derivatives of non-integer-

order) in the identi�cation and control �elds has gained considerable attention during the last

years. The nature of many complex systems can be more accurately modeled using fractional

di�erential equations (Freed and Diethelm 2007, Tejado et al. 2014). In that sense, the systems

to be controlled can now be described not only using integer-order di�erential equations but

using fractional di�erential equations as well.

In recent years fractional calculus has been a growing �eld of research in science and

engineering (Oldham and Spanier 2002, Podlubny 1999a, Ortigueira 2011). In fact, in many

scienti�c areas are currently paying attention to fractional calculus concepts and we can see its

application in viscoelasticity and damping, di�usion and wave propagation, electromagnetism,

chaos and fractals, heat transfer, biology, electronics, signal processing, robotics, system iden-

ti�cation, tra�c systems, genetic algorithms, modelling and identi�cation, telecommunica-

tions, chemistry, physics, control systems, economy and �nance (Machado et al. 2010, Bar-

bosa and Machado 2011, Bassingthwaighte et al. 1994, Magin 2006, West et al. 2003, Ionescu

et al. 2013, Mainardi 2010, Hartley et al. 1995, Vinagre et al. 2003, Lo 1991).

Fractional calculus is the �eld of mathematical analysis which deals with the study and

application of integrals and derivatives of arbitrary order. Since the second half of the

twentieth century, many scienti�c studies have shown the importance of fractional deriva-

tives and fractional di�erential equations as well as its applications in science and engi-

neering (see e.g., (Podlubny 1999a, Kilbas et al. 2006) and the references therein). And

the related mathematical theory is relatively well established (Kilbas et al. 2006, Miller and
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Ross 1993, Ortigueira 2011, Petrá² 2011, Podlubny 1999a, Padula and Visioli 2015).

Taking fractional operators dynamics into account may be useful in modeling any sys-

tem that possesses memory and/or hereditary properties (Podlubny 1999a). Given rise to

fractional-order models (FOMs) that are a mathematical representation of physical systems

using fractional di�erential equations. Moreover, since fractional calculus is a generalization

of conventional calculus, it is expected that fractional models will provide a more accurate

description of the dynamics of physical systems than those based on classical di�erential

equations (Monje et al. 2010).

Control is an interdisciplinary branch of engineering and mathematics dealing with the

design, identi�cation, and analysis that deals with the modi�cation of dynamic systems to

obtain the desired behavior given in terms of a set of speci�cations or a reference model. To

achieve the desired behavior, a designed controller measure the system variables and response,

compares it to the desired behavior, computes corrective actions based on the speci�cations

or the reference model, and produce the control action to obtain the desired changes.

To modify the dynamics of a system or a process, we need a model of the system, a tool

for its analysis, ways to specify the required behavior, methods to design the controller, and

techniques to implement them. The standard tools to model, and analyze dynamic systems

and control algorithms are mainly based on integrals and derivatives. Therefore, one could

think that extending the de�nition of integrals and derivatives to a non-integer order could

lead to a more robust and �exibles controllers.

Fractional calculus has been found especially useful in system theory and automatic

control, where fractional di�erential equations are used to obtain more accurate models of

dynamic systems, develop new control strategies and enhance the characteristics of control

loops.

The controller designs based on FOMs have gained rapid development impulsed by

the growing number of research on the stability of fractional-order systems (Li et al. 2010,

Diethelm 2010, Li and Zhang 2011, Aguila-Camacho et al. 2014, Padula and Visioli 2015).

The integer-order control schemes can be extended to their non-integer counterparts.

For example, fractional sliding mode control with fractional-order sliding surface dynamics,

model reference adaptive control using fractional-order adaptive laws. The opportunities for

extensions of existing integer-order controls are almost endless.

2
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Lyapunov's theory has been a cornerstone in the study of the stability of nonlinear systems

and especially for adaptive systems. Since the publication of an extension of the Lyapunov�s

method for fractional-order systems (Li et al. 2010), the study and design of fractional adaptive

controllers has been grown (Duarte-Mermoud and Aguila-Camacho 2011, Aguila-Camacho

and Duarte-Mermoud 2013, Duarte-Mermoud et al. 2015, Chen et al. 2016, Navarro-Guerrero

and Tang 2017a).

Besides the Lyapunov's method, there is another approach used to analyze the stability of

fractional-order adaptive systems. This approach uses a transformation of the error model of

the adaptive system to a continuous frequency distributed model. With this transformation,

the system becomes an integer-order model, and they use the well-known tools for analyzing

the stability (Shi et al. 2014, Wei et al. 2014, Chen et al. 2016).

In the results presented in (Duarte-Mermoud et al. 2015, Aguila-Camacho and Duarte-

Mermoud 2017, Fernandez-Anaya et al. 2017) the analysis presented proves stability in the

Lyapunov sense for FOMRAC schemes. However, no conclusion about the convergence of the

error has made from this analysis for the lack of a tool to prove the converse in the fractional

order case. In the integer-order case, it is used the Barbalat's Lemma and his corollaries to

conclude the convergence to zero. This Lemma is not applicable (or is very di�cult like it is

shown in (?)) in the fractional-order case because it required the knowledge that the integer-

order integral of the quadratic error is bounded, which is unknown in the fractional-order

case.

Recently it has been proposed a class of adaptive controller with a closed-loop model

reference for integer-order systems (Gibson et al. 2015). The main characteristic of this class

of adaptive controllers is the inclusion of a feedback gain in the reference model. Besides no

state measurement is needed, this scheme also gives an improved transient response. Moreover,

an extension of this particular adaptive scheme is presented in this work.

In medical practice, the application of general anesthesia plays a signi�cant role in the

patient's well-being, through the administration of a combination of drugs that act to pro-

vide adequate hypnosis (unconsciousness and amnesia to avoid traumatic recalls), paralysis

or muscle relaxation (to attain immobility, an absence of re�exes, and proper operating con-

ditions), and analgesia (pain relief). This process is accomplished by an anesthesiologist who

must continuously observe and adjust the rates and overall amounts of anesthetic agents de-

3
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livered to the patient, preserving the stability of the autonomic, cardiovascular, respiratory,

and thermoregulatory systems (Brown et al. 2010).

Even though it has been a subject of intense research in the last decades, the process of

anesthesia is a complicated process and still is not well understood, resulting in a challenging

control problem (Dumont et al. 2009, Ionescu et al. 2013, Nascu et al. 2015).

Moreover, in drug delivery systems, the controller has to tackle issues such as inter- and

intra-patient variability, multivariable characteristics, variable time delays, dynamics depen-

dent on the hypnotic agent, model variability, and stability issues (Absalom et al. 2011, Bailey

and Haddad 2005, Silva et al. 2015). The current state of the art in the understanding of

consciousness and the mechanisms of anesthetic-induced loss of consciousness is limited. Con-

sciousness is very subjective and ethereal that it is di�cult to model. At present, the models

available, are such as the mean �eld models of drug action (Absalom et al. 2011), which de-

scribe the phenomena presented in the electroencephalogram (EEG) associated with di�erent

brain states (Silva et al. 2015).

There have been many attempts to automatize this process, and the expectations of

the application of closed-loop control to drug delivery is that will assist anesthesiologists to

improve the safety of the patient by avoiding excessive over-dosages and under-dosages in their

patients (Lemos et al. 2014), minimizing side e�ects and the risk of awareness and overdosing

during anesthesia. Optimizing the delivery of anesthetics could lead the way for personalized

health care, where the individual patient characteristics are taken into account for optimal

and �exible drug administration. The �rst step towards an automated anesthesia process is

to derive a mathematical model that adequately describes the system (or the experimental

data), avoiding the very complex models that may contain too many parameters that cannot

be determined or estimated independently, mainly due to the lack of measurements and

adequate sensors.

Commonly, the mathematical model used to study the depth of anesthesia is a PK/PD

(pharmacokinetic/pharmacodynamic) model, with a third-order linear PK model, and a PD

model consisting of a �rst-order linear transfer function (which represents the time-lag be-

tween the drug infusion and the observed response) and a static nonlinearity (Wiener struc-

ture) (Bailey and Haddad 2005). Despite its plausibility accepted by biomedical and control

community, being a physiologically based empirical model it presents many di�culties for con-

4
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troller designs, namely, a large number of uncertain parameters due to signi�cant variability

among di�erent individuals, time delay, lack of state measurements and nonlinearity. The lim-

ited amount of real-time data and the poor excitation properties of the input signals constitute

further challenges making the identi�cation of an individualized model on-line very di�cult.

Many attempts to simplify this model have been made: PK/PD model structures with some

�xed parameters (Coppens et al. 2011, Bibian et al. 2006), �rst-order plus time-delay models

with an output nonlinearity (Hahn et al. 2012, Wang et al. 2003), piece-wise linear models

(Lin et al. 2004). A simpli�ed model for the e�ect of both propofol and remifentanil includ-

ing an output nonlinearity (Silva et al. 2010), and low-complexity control-oriented models

have been proposed in the literature (Hahn et al. 2012). One notable di�erent approach was

the recent introduction of fractional PK models (Dokoumetzidis and Macheras 2009, Copot

et al. 2013).

The control of anesthesia has been an active subject of research for the past decades

and many control schemes have been developed, such as PID (Heusden et al. 2013), robust

control (Dumont et al. 2009), predictive control (Ionescu et al. 2008), adaptive (Haddad

et al. 2003a, Nino et al. 2009) and intelligent (Haddad et al. 2011) among others.

The implementation of such controllers is based on the assumption that the state values

are available from the system measurements and that we have a clear and measurable output

with not much noise in�uence. However, in reality, the measured output may be noisy, and the

system measurements do not produce this information directly. Instead, the state information

needs to be inferred from the available output measurements. All of these challenges bring us

the need of using estimation techniques that can estimate the state of each patient and adjust

them based on the dynamics of each patient and deal with the system constraints (Chang

et al. 2015).

This work is devoted to the design of adaptive controllers, speci�cally, the model reference

adaptive control approach. First, we improve previous results on the fractional-order model

reference adaptive control scheme by proposing an extension of the Barbalat's Lemma. This

extension allows us to realize a full stability analysis of the adaptive scheme based on the

Lyapunov's direct method and concluding the convergence of the error to zero. Moreover, we

apply this analysis to design a fractional-order closed-loop model reference adaptive control

scheme, and as a complementary result, we extend two identi�cation schemes for fractional-
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order systems based on Lyapunov's analysis.

As a study case, we deal with the problem of control of anesthesia. Based on the recent

paradigm of modeling in physiology and biology using fractional calculus and knowing that

the response of the PK/PD model of anesthesia has an S-shape response, we proposed three

simple fractional-order models to represent the input-output behavior of the PK/PD model.

These proposed models gets around many di�culties, for example, unknown parameters, lack

of state measurement, inter and intra-patient variability, and variable time-delay, encountered

in controller designs based on the PK/PD model. Based on these simple models we apply

the adaptive schemes designed. The results are illustrated via simulations using 30 virtual

patients, showing that the fractional-order adaptive schemes designed are robust against inter

and intra-patient variability, variable time-delay, perturbations, and noise. Therefore, propos-

ing a novel and straightforward solution for the control of anesthesia using a fractional-order

adaptive approach.

1.1 State of the art

In (Sokolov et al. 2002) is stated that fractional-order calculus was restricted to the �eld

of mathematics until the last decade of the twentieth century when it became popular among

physicists and engineers as a powerful way to describe the dynamics of a variety of complex

physical phenomena.

Fractional calculus has attracted many interests in recent years, and numerous physical

real-world phenomena and process have been modeled e�ectively with fractional-order dy-

namics. And there are a growing number of fractional calculus applications in di�erent areas

(Hilfer 2000, Kilbas et al. 2006, Koeller 1984, Magin 2010, Podlubny 1999a).

Fractional calculus is considered as an emergent branch of applied mathematics with

many applications in the �elds of physics and engineering using fractional di�erential equations

to model the dynamics of di�erent processes, but also introduce more e�cient modeling in

�elds as signal processing or control theory (see, (Tenreiro Machado et al. 2011, Caponetto

et al. 2010, Klafter et al. 2011, Monje et al. 2009, Chen et al. 2013, Ortigueira 2011, Sabatier

et al. 2007, Machado 2002)).

The fractional di�erential equations capture nonlocal relations in space and time with

power-law memory kernels, due to this fact, fractional di�erentials and integrals provide

6
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more accurate models of systems with memory or anomalous behavior that are di�cult to

grasp with integer-order operators. Few examples of how many authors have demonstrated

the application of fractional calculus can be seen in: electrochemistry (Ichise et al. 1971),

thermal systems and heat conduction (Battaglia et al. 2001), viscoelastic materials (Adolfsson

et al. 2005), fractal electrical networks (Petrá² 2002), neural dynamics (Lundstrom et al. 2008,

Kaslik and Sivasundaram 2012) and many others areas.

Many researchers have extensively studied the problem of fractional-order dynamical

systems, some relevant and interesting results were proposed in the existing literature (see

(Hadi et al. 2012, Sabatier et al. 2015, Zhang et al. 2015) and references therein).

The main reason for using the integer-order models was the absence of analytical meth-

ods to solve fractional di�erential equations. At present, there are many methods for ap-

proximation of fractional derivatives and integrals (Vinagre et al. 2000, Machado 2001, Chen

et al. 2009).

Stability theory plays a crucial role in the study of dynamical systems and is essential

for both scientists and engineers. The stability theory of fractional-order systems has been

investigated extensively in recent years, and numerous papers have been published for the case

of fractional-order linear system (Matignon 1996, Tavazoei and Haeri 2009, Li and Zhang

2011). However, the stability of fractional-order nonlinear systems has not been studied

intensively as the case of the linear systems.

The Lyapunov's method for stability analysis for integer-order nonlinear systems has been

extended to fractional-order systems (Li et al. 2010). Also, a quadratic Lyapunov function for

the Caputo fractional derivative has been constructed and applied in many stability analysis

of fractional-order systems (Aguila-Camacho et al. 2014, Duarte-Mermoud et al. 2015). In (Li

et al. 2009, Li et al. 2010), Li and coworkers proposed the de�nition of Mittag-Le�er stability,

the generalized Mittag-Le�er stability theory and analyzed the stability of fractional nonau-

tonomous systems. By using a Lyapunov-like function, the fractional di�erential inequalities

and comparison method, (Zhang et al. 2011) obtained some su�cient conditions on asymp-

totical stability for the nonlinear fractional di�erential system with Caputo derivative. Other

studies on the stability of nonlinear systems can be seen in (Wen et al. 2008, Hadi et al. 2012).

Barbalat's lemma has been a well-known and useful tool to deduce asymptotic stability of

nonlinear uncertain and time-varying systems with integer-order (like adaptive systems). Due

7
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to some di�erent properties between fractional-order derivatives and integer-order derivatives,

it is not easy (but is possible) to use Barbalat's lemma in fractional-order systems. There has

been some extension of this lemma proposed in the literature, including the one proposed in

this thesis (Gallegos et al. 2015, Navarro-Guerrero and Tang 2017b, Zhang and Liu 2017).

However, the majority of this results just considered the fractional-order α lying in α ∈

(0, 1), with only a few results on the stability problem of fractional-order nonlinear systems

when α ∈ (1, 2), some results can be found in (Zhang et al. 2015, Guo and Ma 2016)

An increasing interest in issues related to fractional dynamical systems oriented towards

the area of control theory can be observed in the literature.

Existing studies have shown that the best fractional-order controller can outperform the

best integer-order controller. It has also been put into consideration why to consider fractional-

order control even when integer-order control works comparatively well (Monje et al. 2008).

One of the early attempts to apply fractional-order derivative to systems control can be

found in (Manabe 1961, Axtell and Bise 1990).

The fractional-order PID (FOPID) controller was introduced by Podlubny in (Podlubny

et al. 1997, Podlubny 1999b) and some results suggest that FOPID controllers o�er superior

performance compared to conventional PID controllers (�ech and Schlegel 2006, Monje et al.

2008, Xue et al. 2006).

Many di�erent control schemes has been designed using fractional-order operators, for

instance, CRONE control (Oustaloup et al. 1993), fractional lead-lag compensator (Raynaud

2000), sliding mode control (Zhang and Yang 2012), and fractional optimal control (Djennoune

and Bettayeb 2013). In these applications, fractional di�erentiation is used to model phenom-

ena that exhibit nonstandard dynamical behavior, with a long memory or hereditary e�ects

(Herrmann 2011, Sun et al. 2011).

Fractional adaptive control combines fractional-order operators and systems with various

adaptive control laws resulting in a variety of fractional-order adaptive control techniques.

Numerous adaptive control strategies have been generalized using fractional operators.

The paper (Vinagre et al. 2002) was the �rst proposing the inclusion of fractional operators in

Model Reference Adaptive Control (MRAC) schemes but without analytical support. Many

works have been published regarding the fractional-order MRAC schemes (see for exam-

ple (Ladaci et al. 2006, Suarez et al. 2008, Ma et al. 2009, YaLi and RuiKun 2010, Sawai

8
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et al. 2012, Aguila-Camacho and Duarte-Mermoud 2013)) but also in some other adap-

tive schemes (Ladaci et al. 2008, Charef et al. 2013). Some researchers have reported ad-

vantages of using fractional operators in MRAC schemes such as better management of

noise (Ladaci et al. 2008), better behavior under disturbances (Ladaci et al. 2006, Suarez

et al. 2008, Aguila-Camacho and Duarte-Mermoud 2013) and improvements in transient re-

sponses (Vinagre et al. 2002, Aguila-Camacho and Duarte-Mermoud 2013), among others.

Indirect fractional-order direct model reference adaptive control has been reported in (Chen

et al. 2016), and combined fractional-order direct model reference adaptive control has also

been reported (Aguila-Camacho and Duarte-Mermoud 2017).

In (Hemmerling et al. 2010, Neckebroek et al. 2013) throughout clinical experiments

the authors shown that the administration of anesthesia via a PID control has signi�cant

improvements in comparison with the standard manual administration.

Many control schemes have been designed for anesthesia control like PID control (Kenny

and Mantzaridis 1999, Morley et al. 2000, Sakai et al. 2000, Absalom et al. 2002, Liu et al.

2006, Puri et al. 2007), adaptive controllers (Mortier et al. 1998, Haddad et al. 2003b, Haddad

et al. 2006), predictive controllers (Ionescu et al. 2008, Nino et al. 2009, Furutani et al. 2010),

sliding mode control (Castro et al. 2008), and neural networks (Haddad et al. 2007, Haddad

et al. 2011).

1.2 Motivation

The motivations for this work arise from the pending work left in the master thesis of

the author. In this previous work, it was proposed a simple integer-order non-linear model for

the representation of the input-output response of the PK/PD model of anesthesia. It was

designed as an adaptive MRAC scheme based on the proposed model to control the PK/PD

model. We obtain a good performance result taking into account that this proposed scheme

does not need a priori knowledge of the parameters nor state measurement. However, this

model does not take into account the time-lag between the drug infusion and the response of

the patient, and when we add this time-lag to the proposed adaptive scheme, we obtain and

oscillatory response, which is not recommended for the process.

So we look for alternatives to compensate this time-lag in the adaptive scheme. Moreover,

after reviewing di�erent methods and technics, we pursued the use of fractional calculus,
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because we obtain promising results in the previous test and it represents a novel approach to

attack this problem. In the development of this work, we identify the niches or missing parts

in the theory, like the lack of an extension of Barbalat's lemma to conclude the convergence

of the tracking error in adaptive schemes. From there we developed our contributions in

fractional-order adaptive control and applied those results to the control of anesthesia, thus

presenting a simple, robust and novel approach to attack this problem.

1.3 Contributions

We can categorize the contributions of this thesis in general and speci�c contributions.

• The general contributions are in the area of fractional-order adaptive control.

The �rst contribution is an extension of the Barbalat lemma for fractional-order systems.

With this proposed lemma we conclude the convergence of the tracking error to zero in

a fractional MRAC scheme with state feedback (which was a missing part of the results

previously published).

Furthermore, we extend the closed-loop model reference adaptive control scheme for

fractional-order systems.

• The speci�c contribution is the application of the general contributions to the problem

control of anesthesia.

In control of anesthesia, there is a great variety of controller designed for this problem,

and we o�er a simple and novel solution using a fractional adaptive approach.

First, we propose a fractional-order model to represent the input-output behavior of

the PK/PD model of anesthesia. Then based on this model a fractional-order MRAC

scheme is designed.

Parts of this thesis are published in (Navarro-Guerrero and Tang 2015, Navarro-Guerrero

and Tang 2017a, Navarro-Guerrero and Tang 2017b, Navarro-Guerrero and Tang 2018a,

Navarro-Guerrero and Tang 2018b).

10
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1.4 Outline

This thesis is organized as follows:

In Chapter 2 the reader is introduced to the basic concepts of fractional calculus used in

fractional-order systems and control.

Chapter 3 is devoted to fractional-order Lyapunov theory, introducing the basic concepts

and theorem for the application of the fractional-order Lyapunov direct method. An extension

of the Barbalat�s Lemma for fractional-order systems also is introduced.

The topic of Chapter 4 is the fractional-order model reference adaptive control scheme.

Here we use the extension of the Barbalat's Lemma proposed to complement the previous

results reported in the literature in FOMRAC with state feedback. Moreover, we extend the

closed-loop model reference adaptive control scheme for fractional-order systems. Also, we

extend identi�cation schemes with and without state measurement for the fractional-order

system.

In Chapter 5, we present our case of study, control of anesthesia. It is present the

concepts of general anesthesia, and the modeling and control challenges. Moreover, is proposed

simple fractional-order models to represent the input-output behavior of the PK/PD model

of anesthesia.

Chapter 6 presents the simulation results of applying the result of Chapter 4 and the

models proposed in Chapter 5 to the case of study, the control of anesthesia using 30 virtual

patients models.

In Chapter 7 we draw some conclusions on the results of this work, discussing the ad-

vantages and disadvantages of the use of fractional calculus concepts to modeling and control

physical phenomena and process. Also, we propose some lines of investigation for future work.
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Chapter 2

Fractional-Order Systems

Fractional-order systems are mathematical representations of physical systems repre-

sented by integro-di�erential equations involving fractional-order operators. Fractional calcu-

lus is the generalization of the classical operations of derivation and integration to non-integer

order.

In this chapter are presented the basic de�nitions of fractional calculus, fractional-order

dynamic systems, and control.

2.1 Fractional calculus

One of the very powerful mathematical modeling and analysis techniques at our dispo-

sition is calculus and di�erential equations. The underlying mathematical basis of almost all

science and engineering disciplines has essentially been integer-order calculus.

Fractional calculus is a mathematical branch that studies the derivatives and integrals of

non-integer order (also called di�erintegrals or integro-di�erential operators). The history of

fractional calculus started almost at the same time when classical calculus was established. It

was �rst mentioned in Leibniz's letter to l'Hôpital in 1695, where the idea of semi-derivatives

was suggested. With the passing of time, fractional calculus was built on formal foundations

by many renowned mathematicians, like Abel, Euler, Fourier, Grünwald, Heaviside, Liouville,

Riemann, among others. A detailed history of the development of fractional calculus and his

contributors can be found in (Oldham and Spanier 2002, Machado and Kiryakova 2017).

Nowadays, fractional calculus has a wide area of applications, for instance bioengineering
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(Magin 2006), physics (Hilfer 2000), chaos theory (Petrá² 2011), viscoelasticity (Mainardi

2010), and many others (see e.g. (Sabatier et al. 2007)).

In the next Section, the de�nitions and properties of the fractional-order operators are

brie�y summarized.

2.1.1 De�nitions

The integro-di�erential operator is de�ne as

t0D
α
t =



dα

dtα
, α > 0,

1 α = 0,∫ t

t0

(dτ)α α < 0.

(2.1)

where t0 and t are the bounds of the operation and α ∈ R

There are various de�nitions of the fractional derivatives. This problem arises from the

lack of a unique concept explaining the geometrical and physical sense of the fractional oper-

ations. So the physical or other model considered in various scienti�c �elds leads to di�erent

types of fractional order derivatives. For example, the more abstract mathematical studies

usually use the Riemann-Liouville de�nition, and the applied studies concerned with physics

or control theory mostly use the de�nition of Caputo or that of Grünwald-Letnikov which

is more adequate in the numerical calculations (Butkovskii et al. 2013). Other de�nitions

like Oldham and Spanier, Miller and Ross, Weyl, Fourier, Cauchy, Abel, Nishimoto among

others exist. A review of the existing de�nitions of the fractional operator can be consulted

in (Capelas and Machado 2014).

The notion of fractional-order integral of order α > 0 ∈ R is a natural consequence

of Cauchy's formula for repeated integrals, which reduces the computation of the primitive

corresponding to the n-fold integral of a function f(t) to a simple convolution (Podlubny

1999a).

Next, we present the most common de�nitions of the fractional integral and fractional

derivative (Kilbas et al. 2006).

De�nition 2.1. The Riemann-Liouville integral (or, fractional integral) with fractional-order

13
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α ∈ R+ of a function f(t) is de�ned by

t0D
−α
t f(t) =t0 I

α
t f(t) =

1

Γ(α)

∫ t

t0

f(τ)

(t− τ)1−α
dτ, (2.2)

where t = t0 is the initial time and

Γ(α) =

∫ ∞
0

tα−1e−tdt, (2.3)

is the Euler's gamma function.

In integer-order calculus, the factorial plays an essential role, and the Gamma function

has the same importance in the fractional-order calculus.

De�nition 2.2. The Riemann-Liouville derivative with fractional-order α ∈ R+ of a function

f(t) is de�ned by

t0D
α
t f(t) =

dm

dtm
t0I

m−α
t =

1

Γ(m− α)

dm

dtm

∫ t

t0

(t− τ)m−α−1f(τ)dτ, (2.4)

where m− 1 < α < m ∈ Z+.

De�nition 2.3. The Caputo derivative with fractional-order α ∈ R+ of a function f(t) is

de�ned by

t0D
α
t f(t) =t0 I

n−α
t

dn

dtn
=

1

Γ(n− α)

∫ t

t0

f (n)(τ)

(t− τ)α−n+1
dτ, (2.5)

where n− 1 < α < n ∈ Z+.

One of the advantages of Caputo derivative, which is a modi�cation of the Riemann�Liouville

de�nition, is that the initial conditions for fractional di�erential equations take the same form

as those for integer-order di�erentiation, which has a well-understood physical meaning.

It is important noticed that, unlike the integer-order di�erentiation, fractional-order dif-

ferentiation is a nonlocal operation (the past values of the function are needed) that is de�ned

over an interval [t0, t].

As we can observe from the previous de�nitions, in the time domain, the fractional-order

derivative and integral are de�ned by a convolution operation. From (2.2) we have

t0I
α
t = Φα(t) ∗ f(t) =

∫ t

t0

Φα(t)f(t− τ)dτ, α ∈ R+, (2.6)

with

14
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Φα(t) =
tα−1

Γ(α)
, α ∈ R+. (2.7)

Therefore, we can view the fractional-order operators as a convolution between two func-

tions.

The memory e�ect of these operators, shown by the convolution integral, reveal the

unlimited memory of these operators, ideal for modeling hereditary and memory properties

in physical systems and materials.

The exponential function is another essential tool in the theory of integer-order di�erential

equations, and the generalization of this function, so-called Mittag-Le�er function, plays an

essential role in the theory of fractional di�erential equations.

The Mittag-Le�er of one and two-parameters are given by

Eα =
∞∑
k=0

zk

Γ(kα+ 1)
, (2.8)

Eα,β =

∞∑
k=0

zk

Γ(kα+ β)
, (2.9)

where α > 0, β > 0 and z ∈ C. For β = 1 in (2.9), we have Eα(z) = Eα,1(z). Also E1,1 = ex.

The main properties of fractional derivatives and integrals can be summarized as follows

(Petrá² 2011):

Property 2.1. If f(t) is an analytical function of t, then its fractional derivative 0D
α
t is an

analytical function of t, α.

Property 2.2. For α = n, where n is integer, the operation 0D
α
t gives the same result as

classical di�erentiation of integer-order n

Property 2.3. For α = 0 the operation 0D
α
t is the identity operator:

0D
α
t = f(t).

Property 2.4. Fractional di�erentiation and fractional integration are linear operations:

t0D
α
t (λf(t) + µg(t)) = λt0D

α
t f(t) + µt0D

α
t g(t).
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Property 2.5. The additive index law (semigroup property)

0D
α
t 0D

β
t f(t) =0 D

β
t 0D

α
t f(t) =0 D

α+β
t f(t),

holds under some reasonable constraints on the function f(t). The fractional-order derivative

commutes with integer-order derivative

dn

dtn
(t0D

α
t f(t)) =t0 D

α
t

(
dnf(t)

dtn

)
=t0 D

α+n
t f(t),

under the condition t = t0 we have f (k)(t0) = 0, with k = 0, 1, 2, ..., n − 1). The relationship

above says the operators dn

dtn and t0D
α
t commute.

Property 2.6. The Leibniz's rule for fractional di�erentiation is given as

t0D
α
t (φ(t)f(t)) =

∞∑
k=0

 α

k

φ(k)(t)t0D
α−k
t f(t),

if φ(t) and f(t) and all their derivatives are continuous in the interval [a, t].

Property 2.7. (Tarasov 2008) Newton-Leibniz formula generalization

t0I
α
t t0D

α
t f(x) = f(t)− f(t0). (2.10)

where t0D
α
t is represented for the Caputo derivative and t0I

α
t for the Riemann-Liouville inte-

gral.

Some other important properties of the fractional derivatives and integrals can be found

in several works such as (Magin 2006, Monje et al. 2010, Oldham and Spanier 2002, Podlubny

1999a, Kilbas et al. 2006, Padula and Visioli 2015).

2.1.2 Laplace transform

The Laplace transform is a practical and useful technique to solve di�erential equations

which frequently arise in applied science and engineering problems. This technique converts

linear di�erential equations to linear algebraic equations which can be solved easily.

The Laplace transform of a function of time f(t) is de�ned by

L{f(t)} = F (s) =

∫ ∞
0

e−stf(t)dt, (2.11)

with f(t) = 0 for t < 0.

In the following, some important transformations for fractional-order operators are pre-

sented:
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• Laplace transform of the Riemann-Liouville integral

L{0Iαt } = s−αF (s), α ≥ 0 (2.12)

• Laplace transform of the Riemann-Liouville derivative

L{0Dα
t } = sαF (s)−

m−1∑
k=0

sk[0D
α−k−1
t f(t)]|t=0, (2.13)

where m − 1 < α ≤ m, m ∈ N, α > 0 and 0D
α−k−1
t f(0) is the initial value of order

α− k − 1 of the function f(t) for k = 0, 1, 2, ...m− 1.

• Laplace transform of the Caputo derivative

L{0Dα
t } = sαF (s)−

m−1∑
k=0

sα−k−1[0D
α−k−1
t f(t)]|t=0, (2.14)

where m− 1 < α ≤ m, m ∈ N, α > 0 and 0D
k
t f(0) is the initial value of order k of the

function f(t) for k = 0, 1, 2, ...m− 1.

It can be noticed that for null initial conditions the Laplace transform of the Riemann-

Liouville derivative and the Caputo derivative give the same result.

Despite the complexity of fractional operators in the time domain, in the frequency

domain, they have a straightforward form. Under null initial conditions, the Laplace transform

becomes,

L{0Dα
t } = sαF (s), (2.15)

and it can be seen that this is a natural generalization for a non-integer order operators.

In the literature (Goren�o and Minardi 1997, Herrmann 2011, Kilbas et al. 2006, Petrá²

2011) it can be found in more detail the facts and properties of this transformation applied

to the fractional operators.

2.1.3 Numerical evaluation

Due to the complexity of analytic solutions, or even numerical solutions to fractional dif-

ferential equations (which are a recursive process that, in theory, requires an in�nite amount

of memory), approximations based on the so-called short memory principle (Podlubny 1999a)
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are often used. A review of existing continuous and discrete time approximations of fractional

operators are given in (Vinagre et al. 2000). More recently, methods for analog implementa-

tion of fractional-order systems and controllers were proposed in (Dor£ák et al. 2012). Digital

approximations of fractional operators usually rely on power series expansion or continued

fraction expansion of corresponding generating functions (Chen et al. 2009), and other meth-

ods based on discretization have been proposed (Machado 2001).

For example, one common approach to implement the fractional operators in simulations

and practical applications is through the use of an integer-order transfer function whose

behavior approximates the fractional operator C(s) = sα.

The Oustaloup's method (Oustaloup 1991) is one of the available methods to implement

this approximation, which use a distribution of N poles y N zeros of the form

C(s) = C0

N∏
n=1

1 + s/ωzn
1 + s/ωpn

where r ∈ R, ωzn = ωb

(
ωh
ωb

) r+N+0.5(1−α)
2N+1

, ωpn = ωh

(
ωh
ωb

) r+N+0.5(1−α)
2N+1

and

C0 =

(
ωh
ωb

)−α
2

N∏
k=−N

ωpn
ωzp

, the poles and zeros are distributed inside a frequency interval

[ωb, ωh].

In (Petrá² (2011) and there references therein) we can �nd an explanation of the di�erent

methods to approximate the fractional operator, in the time domain and frequency domain.

To perform the simulations, we will use the Matlab toolbox for fractional control NIN-

TEGER v.2.3 developed by D. Valério[]. In this toolbox are implemented various numerical

approximations for the fractional-order operators that are explained in detail in (Valério and

Sá da Costa 2005).

The available approximations in this toolbox for the operator in continuous-time are

brie�y summarized next:

• Crone (First generation Crone with n zeros and n poles)

• Carlson (Approximation with n zeros and n poles)

• Matsuda (Approximation with n zeros and n poles)

• Cfehigh (Approximation based on the expansion of continuous fractions of (1+s)α, with

n zeros and n poles)
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• Cfelow (Approximation based on the expansion of continuous fractions of (1 + 1/s)α,

with n zeros and n poles)

To implement these approximations, we need to choose four options, the approximation,

the associated expansion (MacLaurin, continuous fraction expansion), the order n of the

approximation and the bandwidth [ωb, ωh].

The quality of the simulations is related to the approximation used and his associated

parameters. In this work, we will use the Crone approximation with the MacLaurin series

expansion, n=10 and a bandwidth [0.001 1000]. This approximation was chosen to make a

trade-o� between the quality of the simulation and the computing time.

2.2 Fractional-order systems

The Caputo derivative provides an alternative to the Riemann-Liouville derivative. This

derivative, thanks to its properties, is a useful tool to describe physical phenomena (Ortigueira

2011). One of the main drawbacks of the Riemann-Liouville derivative is that they lead to

di�erential equations whose initial conditions are expressed in terms of fractional derivatives,

as seen in (2.13). Fractional initial conditions have no clear physical interpretation. Unlike

the Riemann-Liouville derivative, the Caputo derivative leads to di�erential equations whose

initial conditions are expressed as integer-order derivatives (thus having a clear physical mean-

ing) as seen in (2.14). In general, when we work with dynamic systems, it is usual that we

deal with causal functions of t. Therefore through this work the initial time of the fractional

operators t0D
α
t and t0I

α
t it is supposed t0 = 0. In this section, all the fractional di�erential

equations are represented by the Caputo derivative.

2.2.1 Fractional-order LTI systems: transfer function representation

The conventional input-output transfer function approach for integer-order systems can

be extended to the fractional-order case. For LTI systems de�ned by a fractional-order or-

dinary di�erential equation, the Laplace transform can be used to obtain a fractional-order

transfer function representation of the system.

Consider the following SISO fractional system described by the fractional-order di�eren-

tial equation:
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n∑
k=0

ak0D
αk
t y(t) =

n∑
k=0

bk0D
βk
t u(t), (2.16)

where u(t) is the input, y(t) is the output, αk, βk ∈ R+, ak, bk ∈ R.

Applying the Laplace transform and under null initial conditions, independently from

the adopted de�nition of the fractional operator, the transfer function of the fractional-order

di�erential equation (2.16) is

G(s) =
Y (s)

U(s)
=

∑n
k=0 bks

βk∑n
k=0 aks

αk
=
bms

βm + bm−1s
βm−1 + · · ·+ bms

β0

ansαn + an−1sαn−1 + · · ·+ asα0
(2.17)

In general, a fractional transfer function is the ratio of two fractional polynomials.

The characteristic polynomial of the fractional system (2.17) has the form

P (s) = ans
αn + an−1s

αn−1 + · · ·+ a0s
α0 . (2.18)

The polynomial (2.18) is a multivalued function whose domain is a Riemann surface. In

the general case, this surface has an in�nite number of sheets, and the fractional polynomial

(2.18) has an in�nite number of roots. Only a �nite number of these roots will be on the main

sheet of the Riemann surface and which determine the dynamic behavior (Monje et al. 2010).

The LTI systems can be classi�ed as follows

LTI Systems


Non-integer


Commensurate


Rational

Irrational

Non-commensurate

Integer

taking this into account the fractional transfer function (2.17) is de�ned as (Monje et al. 2010):

• Commensurate order if

αi =iα, i = 0, 1, ..., n,

βk =kα, k = 0, 1, 2, ...,m,
(2.19)

where α, β > 0 are real numbers.

• Rational order if it is a commensurate order and α = 1
q , where q is a positive integer.
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• Non-commensurate order if (2.19) does not hold.

As we can see later, the systems of commensurate-order enable a straightforward gener-

alization of the well-known results for integer-order LTI systems.

The transfer function of a fractional-order system of commensurate order can be written

in the form

G(s) =
bms

mα + bm−1s
(m−1)α + · · ·+ b0

ansnα + an−1s(n−1)α + · · ·+ a0
. (2.20)

Substituting λ = sα in (2.20), we obtain the associated natural order transfer function

G(λ) =
bmλ

m + bm−1λ
m−1 + · · ·+ b0

anλn + an−1λn−1 + · · ·+ a0
(2.21)

The poles of the commensurate transfer function (2.21) are located on the �rst sheet of

the Riemann surface.

2.2.2 Fractional-order LTI systems: state space representation

A useful representation for systems of fractional-order di�erential equations is the state

space representation. This representation is a generalization of the state space equations of

the integer-order system theory.

Consider the state-space representation of a fractional-order LTI system given by

0D
α
t x(t) =Ax+Bu

y =Cx,
(2.22)

where α = [α1, α2, · · ·, αn], u ∈ Rm is the input vector, x ∈ Rn is the state vector, y ∈ Rp is

the output vector, A ∈ Rn×n is the state matrix, B ∈ Rn×m is the input matrix, C ∈ Rp×n is

the output matrix.

Given the nonlocality and in�nite order of the fractional operations, the description of

the state of such systems must take into consideration not only the values of the, generally

speaking, in�nite set of the system variables at a particular time instant, but also the system

history. The initial condition of a fractional-order system is a time-varying function called

initialization term (Hartley and Lorenzo 2002), for the time being, these questions remain
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open, and the states and dynamics of the fractional systems are analyzed mostly by their

approximation with the use of the dynamic systems of a �nite integer-order (?). Therefore,

the state of such systems is called "pseudo-state" (Trigeassou et al. 2012). For simplicity in

this work, we call this vector a state throughout the remainder work only for simpli�cation

purposes, and we will suppose null initial conditions.

The above fractional-order state space representation can be simpli�ed in the particular

case when α = [α, α, · · ·, α], a commensurate order system.

Next, we will show the solution of a commensurate LTI fractional-order system with

constant coe�cients.

Consider the system

0D
α
t x(t) =Ax+Bu,

y =Cx,
(2.23)

where α = [α, α, · · ·, α], u ∈ Rm is the input vector, x ∈ Rn is the state vector, y ∈ Rp is the

output vector, A ∈ Rn×n is the state matrix, B ∈ Rn×m is the input matrix, C ∈ Rp×n is the

output matrix, and initial condition x(0) = x0.

Lets introduce the two parameter Mittag-Le�er function for a matrix, de�ned by

Eα,β(Az) =
∞∑
k=0

(Az)k

Γ(αk + β)
, α > 0, β > 0, z ∈ C. (2.24)

This system, in general, can be solved using the inverse Laplace transform, just as in the

integer-order case. From system (2.23) we have

x(t) = L−1{X(s)} = L−1{(sαI −A)−1BU(s) + (sαI −A)−1sα−1x(0)}. (2.25)

De�ning

Φ̂ = L−1{(sαI −A)−1}, t ≥ 0. (2.26)

Φ = L−1{(sαI −A)−1sα−1}, t ≥ 0 (2.27)

Then
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x(t) = Φx(0) + Φ̂ ∗ [Bu(t)] = Φx(0) +

∫ t

0
Φ̂(t− τ)Bu(τ)dτ. (2.28)

As can be seen in (2.28), Φ(t) is the matrix usually known as the state transition matrix.

Following a procedure similar to that used for linear systems of integer-order, the form of the

state transition matrix can be determined. For that purpose the following expression will be

used: 0D
α
t x(t) = Ax with x(0) = 0. Taking into account the use of the Caputo derivative,

the solution can be expressed as

x(t) =

( ∞∑
k=0

Aktαk

Γ(1 + αk)

)
x0 = Eα,β(Atα)x0 = Φx0. (2.29)

Is clear that the Mittag�Le�er function here performs the same role as that performed by

the exponential function for the integer-order systems. The well known exponential matrix,

eAt is just a particular case of the generalized exponential matrix, Eα,1(Atα), which can be

called Mittag�Le�er matrix function.

As in the case of the state-space representation of integer-order, three canonical represen-

tations can be proposed, which are similar to the classical ones (controllable canonical form,

observable canonical form and modal canonical form) (Caponetto et al. 2010).

2.3 Stability

In this section, we brie�y explain the fundamentals and previous considerations to un-

derstand the stability of fractional-order systems.

The known stability methods for integer-order systems di�er from those that have been

proposed for fractional-order systems. The conditions under which linear time-invariant

fractional-order systems are stable were studied in (Matignon 1996).

To understand the dynamic behavior and stability properties of the system (2.22) is

necessary to analyze the eigenvalues of the system matrix A. For integer-order linear system

theory (α = 1), the eigenvalues of the matrix A are studied in the complex Laplace s−plane.

The stability boundary in the s − plane is the imaginary axis, any poles lying to the left of

the imaginary axis represent a stable time response, while the poles lying to the right of the

imaginary axis represent an unstable time response.
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For commensurate fractional-order systems, the eigenvalues of the matrix A must now be

evaluated in what would appear to be the sα−plane. Rather than dealing with the fractional

power of s, the analysis is simpli�ed if a change of variables is used. It is de�ned ω = sα,

and then the eigenvalue analysis will be performed in the new complex ω − plane, which is a

mapping of the s− plane (Podlubny 1999a, Li and Zhang 2011).

It is necessary to map the s − plane, along with the time-domain function properties

associated with each point, into the complex ω − plane. To simplify the discussion, we will

limit the order of the fractional operator to α ∈ (0, 1).

This section is based on Chapter 2 of (Monje et al. 2010) and the example to illustrate

the concepts is taken from there.

In general, the study of the stability of fractional-order systems can be carried out by

studying the solutions of the integrodi�erential equations that characterize them. An alter-

native way is the study of the transfer function of the system (2.16).

The characteristic polynomial (also called pseudo-characteristic polynomial) of the trans-

fer function (2.17)

P (s) = ans
αn + an−1s

αn−1 + · · ·+ a0s
α0 , (2.30)

with αi, is a multi-valued function of complex variable s, whose domain is a Riemann surface

(Podlubny 1999a) of a number of sheets which is �nite only in the case of ∀i, αi ∈ Q+, being

the principal sheet de�ned by −π < arg(s) < π. This equation has an in�nite number of

roots, among which only a �nite number of roots will be on the main sheet of the Riemann

surface. In the case of αi ∈ Q+, that is, α = 1
q . where q is a positive integer, the q sheets of

the Riemann surface are determined by

s = |s|ejφ, (2k + 1)π < φ < (2k + 3)π, k = −1, 0, · · ·q − 2. (2.31)

Where the case k = −1 corresponds to the main sheet. For the mapping ω = sα, these

sheets become the region of the plane ω de�ned by

ω = |s|ejθ, α(2k + 1)π < θ < α(2k + 3)π. (2.32)

All of the well-known control techniques concerning eigenvalues, or poles, can be used in

the ω − plane (Hartley and Lorenzo 2002).
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To illustrate the previous concepts is presented an example for the case of ω = s1/3. The

Riemann surface that represents the transformation ω = s1/3 is shown in Figure 2.1 and the

regions of stability on the complex plane ω are presented in Figure 4.3.

These three sheets correspond to:

k =


−1, −π < arg(s) < π, (the principal sheet)

0, π < arg(s) < 3π, (sheet 2)

1, 3π < arg(s) < 5π, (sheet 3)

Figure 2.1: Riemann surface for s1/3.

The roots laying in the secondary sheets of the Riemann surface are related to solutions

that are always monotonically decreasing functions (they go to zero without oscillations when

t → ∞). Only the roots that are on the main sheet of the Riemann surface are responsible

for a di�erent dynamics, for example, damped oscillations, oscillations of constant amplitude,

oscillations of increasing amplitude with monotonic growth. The roots which are in the

principal sheet are called structural roots or relevant roots (Matignon 1996, Podlubny 1999a).

A more elaborate description of this topic can be seen in (Podlubny 1999a, Kilbas et al. 2006,

Petrá² 2011, Sabatier et al. 2015).
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Figure 2.2: Stability regions of the ω − plain.

2.3.1 Stability of fractional-order LTI systems

It is known from the stability theory that an LTI system is stable if the roots of the char-

acteristic polynomial are negative or have negative real parts if they are complex conjugate.

It means that they are located on the left half of the complex plane. In the fractional-order

LTI case, the stability is di�erent from the integer one. An interesting notion is that a stable

fractional system may have roots in the right half of complex plane (see Fig. 4.3). It has been

shown that system (2.17) is stable if the following condition is satis�ed.

Theorem 2.1. (Matignon 1996) A commensurate-order system described by a rational trans-

fer function

G(λ) =
Q(λ)

P (λ)
, (2.33)

where λ = sα, α ∈ R+, 0 < α < 2, is stable if and only if

|arg(λi)| > α
π

2
, (2.34)

with ∀λi ∈ C being the i− th root of P (λ) = 0.

For α = 1 this is the classical theorem of pole location in the complex plane, that is, P

has no pole in the closed half plane of the �rst Riemann sheet.

Theorem 2.2. (Matignon 1998) The commensurate system (2.23) is stable if the following

condition is satis�ed (also if the triplet A, B, C is minimal)

|arg(eig(A))| > α
π

2
, (2.35)
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where 0 < α < 2 and eig(A) represent the eigenvalues of the matrix A.

The frequency response approach applies directly to fractional-order systems as long as

the primary roots are used in evaluating the individual fractional elements. Likewise, the root

locus approach, Nyquist and Bode plots can be applied directly to fractional-order systems

as long as they are performed in the ω − plane.

2.3.2 Stability of fractional-order nonlinear systems

Stability of the fractional-order nonlinear system is very complex and is di�erent from

the fractional-order linear systems. The main di�erence is that for a nonlinear system it is

necessary to investigate steady states having two types: equilibrium point and limit cycle.

Nonlinear systems may have several equilibrium points, and there are many de�nitions of

stability (asymptotic, global, orbital).

Based on Caputo derivative, a fractional-order system can be described as

t0D
α
t x(t) = f(x, t), (2.36)

with initial conditions x(t0), where α ∈ (0, 1), f : Ω× R+ → Rn is piecewise continuous in t

and locally Lipschitz in x on Ω×R+, and Ω ∈ Rn is a domain that contains the origin x = 0.

As mentioned in (Matignon 1996), exponential stability cannot be used to characterize

the asymptotic stability of fractional-order systems. A new de�nition was introduced

De�nition 2.4. (Oustaloup et al. 2008) The trajectory x(t) = 0 of the system (2.36) is t−α

asymptotically stable if there is a possible real α so that: ∀ ‖ x(t) ‖ with t ≤ t0, ∃N(x(t)),

such that ∀t ≥ t0, ‖ x(t) ‖≤ Nt−α.

The fact that the components of x(t) slowly decay towards zero following t−α leads

to fractional systems sometimes called long memory systems. Power law stability t−α in a

particular case of the Mittag-Le�er stability (Li et al. 2008) which will be de�ned in the next

chapter.

The next Theorem presented in (Tavazoei and Haeri 2008) can be seen as an extension

of the Lyapunov's indirect method.

Theorem 2.3. The equilibrium points xei of the fractional-order commensurate system (2.36)

are asymptotically stable if all eigenvalues λi with i = 1, 2, .., n, of the Jacobian matrix J = ∂f
∂x ,
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where f = [f1, f2, ..., fn]T , evaluated at the equilibrium xei , satisfy the condition

|arg(eig(J))| = |arg(λi)| > α
π

2
, i = 1, 2, ..., n. (2.37)

One of the most used tools to study the stability of nonlinear systems is the Lyapunov's

direct method, whose extension for fractional-order systems will be treated in the next chapter.

2.3.3 Controllability and observability

The study of the observability and controllability of the fractional dynamical systems

are two important issues for many applied problems. It is well known that the problem

of controllability of dynamical systems is widely used in analysis and the design of control

system. Any system is said to be controllable if every state corresponding to this process can

be a�ected or controlled in �nite time by some controller. Observability is a measure of how

well internal states of a system can be inferred by knowledge of is external outputs.

There are few works reporting the study of observability and controllability of fractional

linear systems (see, for example, (Bettayeb and Djennoune 2008, Chen et al. 2006, Sabatier

et al. 2012)).

De�nition 2.5. The system (2.23) is observable on an interval [t0, t1] if

y(t) = Cx(t) = 0 t ∈ [t0, t1],

implies

x(t) = 0 t ∈ [t0, t1].

Theorem 2.4. (Observability criterion)(Monje et al. 2010) The system given by (2.23) is

observable if and only if the matrix O de�ned by

O =



C

CA

CA2

...

CAn−1


, (2.38)

called the observability matrix, is full-rank.
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The observability condition for commensurate-order LTI systems coincides with the well-

known one for integer-order LTI systems.

The observability property can also be studied through the observability Grammian ma-

trix.

Theorem 2.5. (Balachandran et al. 2013) The observed linear system (2.23) is observable

on [t0, t1] if and only if the observability Grammian matrix

W =

∫ t1

t0

Eα(AT (t− t0)α)CTCEα(AT (t− t0)α)dt, (2.39)

is positive de�nite.

De�nition 2.6. The system (2.23) is controllable on [t0, t1] if for every pair of vectors x0,

x1 ∈ Rn, there is a control u(t) ∈ L2([t0, t1],Rm) such that the solution x(t) of (2.22) which

satis�es

x(t0) = x0,

x(t1) = x1.

We say that u steers the system form x0 to x1 during the interval [t0, t1].

Lemma 2.1. The system (2.23) is controllable on [t0, t1] if and only if for each vector x1 ∈ Rn

there is a control u(t) ∈ L2([t0, t1],Rm) which steers x0 to x1 during [t0, t1].

Theorem 2.6. (Controllability criterion)(Monje et al. 2010) The system given by (2.23) is

controllable if and only if the matrix C de�ned by

C = [B,AB,A2B, · · · , An−1B], (2.40)

denoted as controllability matrix, is full-rank.

This controllability condition (2.40) for a commensurate order system is the same as the

well known for integer-order systems.

The controllability property also can be studied through the controllability Grammian

matrix.

Theorem 2.7. (Balachandran et al. 2013) The linear control system (2.23) is controllable on

[t0, t1] if and only if the controllability Grammian matrix

M =

∫ t1

t0

(t1 − τ)(α−1)Eα,α(A(t1 − τ)α)BBT × Eα,α(AT (t1 − τ)α) (2.41)

is positive de�nite, for some t1 > t0.
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2.4 Fractional-order control

The fractional controllers are de�ned by irrational continuous transfer functions, in the

Laplace domain. Therefore, when analyzing fractional systems, we usually adopt continuous

or discrete integer-order approximations of fractional-order operators.

The fact that the integer-order dynamic models are more used is probably due to the

absence of analytical solution methods for fractional di�erential equations. For example, PID

controllers, which have been dominating industrial controllers, have been modi�ed using the

notion of a fractional-order integrator and di�erentiator. It has been shown that two extra

degrees of freedom from the use of a fractional-order integrator and di�erentiator make it

possible to improve the performance of traditional PID controllers (Podlubny et al. 1997)

further. Also, the plant to be controlled can also be modeled as a dynamic system described

by a fractional di�erential equation.

In theory, control systems can include both the fractional-order dynamic system or plant

to be controlled and the fractional-order controller. However, in control engineering, it is a

common practice to consider only the fractional-order controller, because the plant model

may have already been obtained as an integer-order model. In most cases, the objective is to

apply fractional-order control to improve system control performance.

In the last decades, fractional systems start to get signi�cant attention in engineering,

physics, biology, economics, control among others �elds, due to the new possibilities which

fractional calculus brings into the modeling of complex phenomena and their richer dynamics

and �exibility (Bassingthwaighte et al. 1994, Herrmann 2011, Ortigueira 2011).

In control engineering, this tool has been employed for a great variety of controller designs.

For example, the fractional-order PIλDδ controller was proposed in (Podlubny 1999b) as

a generalization of the PID controller with integrator of real order λ and di�erentiator of

real order δ. There are many other modi�cation of the fractional PIλDδ controller, like

CRONE control (Oustaloup et al. 1993), fractional lead-lag compensator (Raynaud 2000).

Also we can see applied to advance control schemes like sliding mode control (Zhang and

Yang 2012), fractional adaptive control (Vinagre et al. 2002, Duarte-Mermoud and Aguila-

Camacho 2011, Shi et al. 2014, Wei et al. 2014, Chen et al. 2016, Wei et al. 2015, Wei et al.

2016, Wei et al. 2015, Aguila-Camacho and Duarte-Mermoud 2016) and fractional optimal

control (Djennoune and Bettayeb 2013). In these applications, fractional di�erentiation is used
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to model phenomena that exhibit non-standard dynamical behavior, with a long memory or

hereditary e�ects (Herrmann 2011, Sun et al. 2011).

Another important research topic that has helped to the development of fractional control

is the stability of fractional systems (Li et al. 2010, Diethelm 2010, Li and Zhang 2011, Aguila-

Camacho et al. 2014, Padula and Visioli 2015) that has been growing over the past decades.
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Chapter 3

Lyapunov Theory for Fractional-order

Systems

For nonlinear systems, Lyapunov's direct method provides a way to analyze the stability

of a system without explicitly solving the di�erential equations. The method generalizes the

idea which shows that the system is stable if there is a Lyapunov function for the system.

This method is one of the most useful tools to analyze the stability of adaptive systems, make

him essential in the study of these systems.

In this Chapter the basic concepts of the Lyapunov direct method for fractional-order

systems are presented.

3.1 Preliminaries

One of the classical analysis techniques, which is still widely used in the analysis of

stability and stabilization problems is the Lyapunov method. Many problems have been

approached by restricting the search of a candidate functions to quadratic polynomials of

the state variables, this makes the problem tractable and can often result in linear matrix

inequalities that can be solved easily. However, if the quadratic Lyapunov candidate cannot be

found, it is not possible to say that the system is unstable as there might be other nonlinear

function that proves the stability of the system. The choice of the Lyapunov candidate

function for such cases is very elusive and in general, depends on the intuition of the designer.

The Lyapunov candidate function in a sense gives the energy of a system qualitatively.
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If the �rst derivative of a Lyapunov function is less than zero, then it implies that the system

is a dissipative one and would lose energy in a �nite time, hence proving that it is stable.

However, we can consider the fractional-order derivative of the Lyapunov function, and this

would indicate the rate at which the dissipation of energy is occurring in the system. Then

the dissipation is not constrained to only an exponential decay and can follow a generalized

power law curve. This type of slow dissipation may be desirable in many applications, adding

an extra degree of �exibility.

The Lyapunov direct method is a su�cient condition to show the stability of nonlinear

systems, which means the system may still be stable, even if one cannot �nd a Lyapunov

function candidate to conclude the system stability.

In this section, we give the basics de�nitions needed for the Lyapunov direct method

(also called Lyapunov�s �rst method).

De�nition 3.1. A continuos function ϕ : [0, r] 7→ R+ (or a continuous funtion ϕ : [0,∞] 7→

B+) is said to belong to class K if

1. ϕ(0) = 0

2. ϕ is strictly increasing on [0, r] (or on [0,∞]).

De�nition 3.2. A continuos function ϕ : [0,∞] 7→ R+ is said to belong to class KR if

1. ϕ(0) = 0

2. ϕ is strictly increasing on [0,∞]

3. limr→∞ϕ(r) =∞

De�nition 3.3. A function V (t, x) : R+ × B(r) 7→ R with V (t, 0) = 0 ∀t ∈ R+ is positive

de�nite if there exist a continuous function ϕ ∈ K such that V (t, x) ≥ ϕ(|x|) ∀t ∈ R+,

x ∈ B(r) and some r > 0. V (t, x) is called negative de�nite if −V (t, x) is positive de�nite.

De�nition 3.4. A function V (t, x) : R+ × B(r) 7→ R with V (t, 0) = 0 ∀t ∈ R+ is said to be

positive (negative) semide�nite if V (t, x) ≥ 0 (V (t, x) ≤ 0) for all r ∈ R+ and x ∈ B(r)

for some r > 0.

De�nition 3.5. A function V (t, x) : R+ × B(r) 7→ R with V (t, 0) = 0 ∀t ∈ R+ is said to be

decrescent if there exist ϕ ∈ K such that |V (t, x)| ≤ ϕ(|x|) ∀t ≥ 0 and ∀x ∈ B(r) for some

r > 0.
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De�nition 3.6. A function V (t, x) : R+ × Rn 7→ R with V (t, 0) = 0 ∀t ∈ R+ is said to be

radially unbounded if there exist ϕ ∈ KR such that V (t, x) ≥ ϕ(|x|) for all x ∈ Rn and

t ∈ R+

Other important concepts are the positive realness (PR) and strictly positive realness

(SPR). According to (Ladaci et al. 2007, Ladaci et al. 2009) this concepts for integer-order

systems are valid for fractional-order commensurate systems with α ∈ (0, 1).

De�nition 3.7. The m×m transfer function matrix G(s) is called strictly positive real (SPR)

if

1. All elements of G(s) are analytic in R ≥ 0.

2. G(s) is real for real s.

3. G(s) +GT∗(s) for R ≥ 0 and �nite s.

A nonlinear fractional-order system can be described as (Podlubny 1999b)

t0D
α
t x(t) = f(x, t), (3.1)

with initial conditions x(t0), where D denotes the Caputo fractional operator, α ∈ (0, 1),

f : Ω × R+ → Rn is piecewise continuous in t and locally Lipschitz in x on Ω × R+, and

Ω ∈ Rn is a domain that contains the origin x = 0.

When α ∈ (0, 1), the fractional-order system (3.1) has the same equilibrium points as the

integer-order system ẋ = f(t, x) (Li et al. 2010).

De�nition 3.8. (Li et al. 2009) The constant x0 is an equilibrium point of Caputo fractional

dynamical system (3.1), if and only if f(t, x0) = 0.

Theorem 3.1. (Existence and uniqueness Theorem (Podlubny 1999b)) Let f(t, x) be a real-

valued continuous function, de�ned in the domain G, satisfying the Lipschitz condition with

respect to x, i.e.

|f(t, x1)| − f(t, x2)| ≤ l|x1 − x2|,

where l is a positive constant, such that

|f(t, x) ≤M ≤ ∞ ∀(t, x) ∈ G.
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Let also

K ≥ Mhσn−σ1+1

Γ(1 + σn

Then there exists in a region R(h,K) a unique and continuous solution y(t) of the following

initial-value problem,

t0D
σk
t x(t) = f(t, x) (3.2)

[t0D
σk
t x(t)]t=0 = bk, k = 1, 2, ..., n, (3.3)

where

t0D
σk
t ≡t0 D

αk
t t0D

αk−1

t ...t0D
α1
t ;

t0D
σk−1

t ≡t0 D
αk−1

t t0D
αk−2

t ...t0D
α1
t ;

σk =

k∑
j=1

αj (k = 1, 2, ...n);

0 < α < 1, (j = 1, 2, ...n);

Then if f(t, x) is locally bounded and is locally Lipschitz in x implies the existence and

uniqueness of the solution to the Caputo fractional-order system (3.1).

Lemma 3.1. (Li et al. 2009) For the real-valued continuous f(t, x) in (3.1), we have ‖t0
Dα
t f(x, t) ‖≤t0 D−αt ‖ f(x, t) ‖, where α ≥ 0 and ‖ · ‖ denotes and arbitrary norm.

Theorem 3.2. (Li et al. 2010) If x = 0 is an equilibrium point of the system (3.1), f is

Lipschitz on x with Lipschitz constant l and is piecewise continuous with respect to t, then the

solution of (3.1) satis�es

‖ x(t) ‖≤‖ x(t0) ‖ Eα(l(t− t0)α), (3.4)

where α ∈ (0, 1).

Lemma 3.2. (Fractional comparison principle (Li et al. 2010)) Let t0D
α
t x(t) ≥t0 Dα

t y(t),

α ∈ (0, 1), and x(t0) = y(t0). Then x(t) ≥ y(t).

3.2 Mittag-Le�er stability

Mittag-Le�er stability is a more general type of stability, whose decay is represented by

a Mittag-Le�er function, which has as special cases the tα stability and exponential stability

(Li et al. 2009, Yua et al. 2013).
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De�nition 3.9. (Mittag-Le�er stability (Li et al. 2009)) The solution of (3.1) is said to be

Mittag-Le�er stable if

‖ x ‖≤ m[x(t0)]Eα(−λ(t− t0)α)b, (3.5)

where t0 is the initial time, α ∈ (0, 1), λ > 0, b > 0, m(0) = 0, m(x) ≥ 0, and m(x) is locally

lipschitz on x ∈ B ∈ Rn with Lipschitz constant m0

It is worth noticing that Mittag-Le�er stability implies asymptotic stability.

3.3 Extension of the Lyapunov direct method

The idea behind the Lyapunov direct method is to search for a Lyapunov candidate

function for a given nonlinear system, and if such function exists, the system is stable.

The Lyapunov direct method is a su�cient condition, so if we cannot �nd a Lyapunov

candidate function to conclude the system stability, the system may still be stable, and it

cannot conclude that the system is unstable.

Next, an extension of the Lyapunov direct method for fractional-order systems is pre-

sented.

Theorem 3.3. (Fractional-order extension of Lyapunov direct method (Li et al. 2010)) Let

x = 0 be an equilibrium point for the fractional-order system (3.1) and D ⊂ Rn be a domain

containing the origin. Let V (t, x(t)) : [0,∞)×D→ R be a continuously di�erentiable function

and locally Lipschitz with respect to x such that

γ1 ‖ x ‖≤ V (t, x(t)) ≤ γ2‖ x ‖ab (3.6)

t0D
α
t V (t, x(t)) ≤ −γ3‖ x ‖ab (3.7)

where t ≥ 0, x ∈ D, α ∈ (0, 1), γ1, γ2, γ3, a and b are arbitrary positive constants. Then

x = 0 is Mittag-Le�er stable. If the assumptions hold globally on Rn, then x = 0 is globally

Mittag-Le�er stable.

The idea of this fractional-order extension Lyapunov theorem is that the stability con-

dition is derived by constructing a positive de�nite function V and calculating the fractional

derivative of the function V .
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Next is present a version of Theorem 3.3, that is useful for the analysis of adaptive

systems, especially when t0D
α
t V (x, t) is negative semide�nite.

Theorem 3.4. (Duarte-Mermoud et al. 2015) Let x = 0 be an equilibrium point for the

non autonomous fractional-order system (3.1). Let us assume that there exists a continuous

function V (x, t) such that

• V (x, t) is positive de�nite.

• t0D
α
t (x, t), with α ∈ (0, 1], is negative semide�nite.

Then the origin of system (3.1) is Lyapunov stable. Furthermore, if V (x(t), t) is decrescent,

then the origin of system (3.1) is Lyapunov uniformly stable.

One of the most used Lyapunov candidate functions to analyze the stability of integer-

order system are the quadratic functions. However, in the fractional case, the use of these

functions are not immediate, since evaluating the fractional derivative of the Lyapunov candi-

date function, in general, involves the evaluation of in�nite sums, which include higher order

integrals and derivatives of the states of the fractional system, which is not an easy task

(Aguila-Camacho et al. 2014).

Next, we present some inequalities that facilitate the use of quadratic Lyapunov candi-

date functions in the analysis of stability of fractional-order system using Lyapunov's direct

method.

Lemma 3.3. (Duarte-Mermoud et al. 2015) Let x(t) ∈ Rn be a vector of di�erentiable func-

tions. Then, for any time instant t ≥ t0, the following relationship holds

1

2
t0D

α
t (xT (t)Px(t)) ≤ xT (t)Pt0D

α
t x(t) (3.8)

where P ∈ Rnxn is a constant, square, symmetric and positive de�nite matrix.

Lemma 3.4. (Duarte-Mermoud et al. 2015) Let A(t) ∈ Rn be a time varying di�erentiable

matrix. Then, for any time instant t ≥ t0, the following relationship holds

t0D
α
t [tr(AT (t)PA(t))] 6 2tr(AT (t)t0PD

α
t A(t)), ∀α ∈ (0, 1] (3.9)

A more extense review on fractional-order Lyapunov theory can be consulted in (Gallegos

and Duarte-Mermoud 2016b, Gallegos and Duarte-Mermoud 2016a).
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3.4 Extension of the Barbalat Lemma

The stability of fractional nonlinear systems and time-varying can be studied using the

extension of the Lyapunov direct method for fractional systems. Using this technique is

usually a di�cult task, since �nding a Lyapunov function for the fractional case is more

complicated than in the integer-order case. Also, when a candidate function of Lyapunov

is found, in most cases (especially in adaptive control), the derivative is only semi-de�nite

negative, which assures the stability of the system but not the convergence of the states of

the system (or the error of the system).

For the integer-order systems, the Barbalat lemma and some of its corollaries are used to

conclude the convergence of a function to zero based on some conditions of the integer-order

integral of the function. However, in fractional systems, it is usually more complicated to

establish conditions on the integer integral of the function, and it can be challenging to use

these tools.

In the literature has been proposed some extensions of the Barbalat lemma, a preliminary

version of the extension proposed in this work was published in (Navarro-Guerrero and Tang

2015), and a version with an improve proof was published in (Navarro-Guerrero and Tang

2017b). This extension of the Barbalat lemma is very useful to conclude the convergence of

the error in fractional-order adaptive systems.

Next, this extension is presented.

Lemma 3.5. Let f : R → R+ be a function uniformly continuous, and t0I
α
t given by the

Riemann-Liouville integral with α ∈ (0, 1).

If lim
t→∞ t0I

α
t f(t) exists and is �nite, then f(t)→ 0, as t→∞.

Proof. By contradiction, assume that f(t) does not go to zero as t → ∞. Then exist ε > 0,

an increasing time sequence {ti}i∈N+ , with t1 > 0, ti+1 = ti +Ti for some Ti > 0 and a T > 0

such that ∀ti > T , f(ti) ≥ ε. As f(t) is uniformly continuous there exists δ > 0 such that
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f(t) > ε/2, ∀ t ∈ [ti, ti + δ]. Now consider the Riemann-Liouville fractional integral

Γ(α)t0I
α
t f(t) =

∫ t

t0

f(τ)

(t− τ)1−α
dτ

=

∫ t−1

t0

f(τ)

(t− τ)1−α
dτ +

∫ t

t−1

f(τ)

(t− τ)1−α
dτ

≥
∫ t−1

t0

f(τ)

(t− τ)1−α
dτ

≥
∫ t−1

t0

f(τ)

t1−αi

dτ

≥ εδ

2

N∑
i=1

1

t1−αi

, (3.10)

where N = max{i|ti ≤ t− 1}. De�ne SN =
∑N

i=1
1

t1−αi

then

SN =
N∑
i=1

1

t1−αi

=
1

t1−α1

1 +
1

(1 + T1
t1

)1−α
+

1

(1 + T1+T2
t1

)1−α
+ ...+

1

(1 +
∑N
j=1 Tj
t1

)1−α

 .

(3.11)

Let's consider �rst the case Ti <∞, ∀i ∈ N+. In this case, let Tmax = maxi∈N+{Ti} and

t1 > max{Tmax, T}. Then

1 +

∑n
j=1 Tj

t1
≤ 1 + n

Tmax
t1

< 1 + n, ∀n ∈ N+. (3.12)

Therefore

(1 +

∑n
j=1 Tj

t1
)1−α ≤ (1 +

∑n
j=1 Tj

t1
) < 1 + n, ∀n ∈ N+. (3.13)

This implies that

SN >
1

t1−α1

{
1 +

1

1 + 1
+ ...+

1

1 +N

}
→∞, N →∞. (3.14)

This together with (3.10) implies that lim
t→∞ t0I

α
t f(t) is unbounded, which is a contradiction.

For the case Ti → ∞ as i → ∞, it implies that f(ti) → 0 as i → ∞, which is again a

contradiction.
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Chapter 4

Fractional-order Model Reference

Adaptive Control

Adaptive control consists in adapting in real time the controller's parameters in response

to the plant variations to ensure stability and constant performance. Since its apparition half

a century ago, adaptive control maintains interest in the automatic control community with

a signi�cant number of papers and many publications of specialized books every year.

In model reference adaptive control the desired performance of the closed-loop system is

expressed in terms of a reference model, that describe the desired input-output properties,

and the parameters of the controller are adjusted based on the error between the reference

model output and the output of the system.

In this chapter, is presented the methodology based on the Lyapunov direct method for

the design of fractional-order model reference adaptive control (FOMRAC) schemes.

4.1 Model reference adaptive control

The adaptive control techniques were developed during the 1960s (Whitaker 1959, Osborn

et al. 1961). These developments did not catch the attention because at the time there was

not very much knowledge on stability analysis of controllers with nonstationary parameters,

and modern methods of stability analysis that had been developed by Lyapunov at the start

of the 19th century were not broadly known. After the initial problems with adaptive control

techniques of the 1960s, stability analysis has become a center point in new developments
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related to adaptive control.

Figure 4.1: Direct MRAC scheme

New tools and techniques have been used or developed explicitly for rigorous stability

analysis and the �nally led to successful proofs of stability, mainly based on the Lyapunov

approach.

The standard adaptive control methodology is the MRAC (Fig. 4.1) approach that, as its

name states, the plant follows the behavior of a reference model which represent the desired

performance.

Consider the LTI system

ẋ(t) = Ax(t) +Bu(t), (4.1)

y(t) = Cx(t). (4.2)

and the reference model

ẋm(t) = Amxm(t) +Bmr(t), (4.3)

ym(t) = Cmxm(t). (4.4)

The control signals that feed the plant is a linear combination of the state variables

u(t) =
∑

kxixi(t) +
∑

kuiri(t) = Kxx(t) +Kur(t). (4.5)
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If the plant parameters were fully known, one could compute the corresponding controller

gains that would force the plant to asymptotically behave exactly as the reference model, or

x(t)→ xm(t), (4.6)

and

y(t)→ ym(t). (4.7)

When the plant parameters are not known, one could think of the use of adaptive gains.

The idea is that the plant is fed a control signal that is a linear combination of the model

states through some gains. If all gains are correct, the entire plant state vector will follow

the model reference exactly. However, if not all gains are correct, the plant does not exactly

behave such as the model reference, and its measured output di�ers from the output of the

model reference. The resulting tracking error is given by

e(t) = xm(t)− x(t), (4.8)

and can be monitored and used to generate the adaptive gains. Then the basic idea of

adaptation is the following: assume that one component of the control signal (4.5) that is fed

to the plant is coming from the variable xi through the gain kxi. If the gain is not perfectly

correct, this component contributes to the tracking error, and therefore, the tracking error

and the component xi are correlated. This correlation is used to generate the adaptive gain

k̇xi(t) = γxie(t)xi (4.9)

k̇ui(t) = γuie(t)ri (4.10)

where γ∗i is the adaptation gain, a parameter that a�ects the rate of adaptation. The adapta-

tion continues until, under appropriate conditions, the correlation diminishes and ultimately

vanishes, and therefore, the gain derivative tends to zero, and the gain itself is supposed to

go to a constant value. In vectorial form,

K̇x(t) =
∑

γxie(t)xi = e(t)xT (t)Γx, (4.11)

K̇u(t) =
∑

γuie(t)ri = e(t)rT (t)Γu, (4.12)
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u(t) = Kx(t)x(t) +Kur(t) (4.13)

This basic approach was able to generate the �rst rigorous proof of stability that showed

that not only the tracking error but even the entire state error asymptotically vanishes.

This result implied that the plant behavior would asymptotically reproduce the stable model

behavior and would ultimately achieve the desired performance represented by the ideal model

reference. In particular, the Lyapunov stability technique revealed the prior conditions that

had to be satis�ed to guarantee stability and allowed getting rigorous proofs of stability of

the adaptive control system.

In practice only a nominal model of the real-world plant is usually available for the

control design and, furthermore, plant parameters may vary under various operational and

environmental conditions. Therefore, adaptive control methodologies seemed to be the natural

solution for these problems.

4.2 Fractional-order model reference adaptive control

Here we present the extension of the state-feedback MRAC for fractional-order systems

previously reported in (Duarte-Mermoud et al. 2015). This result only concludes the bounded-

ness of the closed-loop signals and the tracking error, but not the convergence of the tracking

error.

In the following Theorem, we complement those results by applying the extension of the

Barbalat's Lemma proposed (Lemma 3.5) and conclude the convergence of the tracking error

to zero.

Theorem 4.1. Consider the fractional-order system given by

0D
α
t x(t) = Ax+Bu, x ∈ Rn, 0 < α < 1, (4.14)

where A ∈ Rnxn, B ∈ Rnxq are unknown constant matrices, and the reference model

0D
α
t xm(t) = Amxm +Bmr, (4.15)

where Am ∈ Rnxn is Hurwitz, Bm ∈ Rnxq are design matrices, and r ∈ Rq is a bounded

reference input vector, and the adaptive control law
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u = −K(t)x+ L(t)r, (4.16)

where K(t) and L(t) are the estimates of the true parameters K∗ ∈ Rqxn, L∗Rqxq such that

A−BK∗ = Am and BL∗ = Bm. And the adaptive laws

0D
α
t Φ(t) = −γΨTPe, (4.17)

where P = P T > 0, and γ > 0 is the adaptation gain. Then all signals in the closed-loop

system given by (4.14), (4.15), (4.16) and (4.17) are bounded ∀t ≤ 0. Furthermore, the

tracking error e→ 0 when t→∞.

Proof. Consider the tracking error e = x− xm, and the error dynamics given by

0D
α
t e = Ame+ ΨTΦ (4.18)

where ΨT = [x r], Φ = [Θ−Θm] = Θ̃, ΘT = [A−BK(t) BL(t)], ΘT
m = [Am Bm].

Consider the following Lyapunov candidate function

V (e,Φ) =
1

2
γeTPe+

1

2
ΦTΦ. (4.19)

Applying the Caputo derivative and Lemma 3.3 and substituting the error dynamics we

have

0D
α
t V (e,Φ) ≤ γeT [ATmP + PAm]e+ γeTPΨTΦ + ΦT

0D
α
t Φ,

since Am is Hurwitz, there exists a matrix Q = QT > 0 such that ATmP + PAm = −Q, then

0D
α
t V (e,Φ) ≤ −γeTQe+ γeTPΨTΦ + ΦT

0D
α
t Φ, (4.20)

we choose the update laws such that

γeTPΨTΦ + ΦT
0D

α
t Φ = 0, (4.21)

then we have

0D
α
t Φ = −γΨTPe. (4.22)
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Using the adaptive laws given by (4.22), then

0D
α
t V (e,Φ) ≤ −γeTQe (4.23)

where γ > 0 is the adaptation gain. Since 0D
α
t V is negative semide�nite, from Theorem 3.4

the stability of the closed-loop can be concluded. So all the signals in the closed-loop are

bounded.

Applying the fractional integral and Property 2.7

0I
α
t e

TQe ≤ V (0)

γ
(4.24)

Then the integral (4.24) exist, and by Lemma 3.5 it concludes that the tracking error converge

to zero when t→∞.

4.2.1 Ilustrative example

In order to show the control scheme designed in Theorem 4.1 we carried out one simulation

with following model reference

D0.5xm(t) =

 0 1

−10 −5

xm +

0

2

 r,
ym(t) =[1 0]xm(t),

(4.25)

and the plant

D0.5x(t) =

 0 1

−6 −7

x+

0

8

u,
y(t) =[1 0]x(t),

(4.26)

with the update laws given by (4.17) with, γ = 10.

Fig. 4.2 shown the output of the reference model, the output of the adaptive system, the

tracking error, and the controller parameters.

It can be observed that the scheme met the control objective and the tracking error e→ 0

when t→∞.
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Figure 4.2: Simulations results of the FOMRAC scheme
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4.3 Fractional-order closed-loop model reference adaptive con-

trol

One recent approach in adaptive control that improve transient behavior by using a

closed-loop architecture for reference models is presented in (Gibson et al. 2013, Gibson et al.

2015). In this approach, the focus is adaptive systems with output-feedback where it is shown

that such closed-loop reference models can lead to a separation principle based adaptive

controller which is simpler to implement compared to the classical ones based on observers

or �ltered signals. The simpli�cation comes with the use of the reference model states in the

construction of the regressor and not the classic approach where the regressor is constructed

from �ltered plant inputs and outputs.

Figure 4.3: FOCMRAC scheme.

Next, the generalization of this scheme, denoted, fractional-order closed-loop model ref-

erence adaptive control (FOCMRAC) is presented. As far as the author's knowledge, this

extension was not reported in literature until (Navarro-Guerrero and Tang 2017a).

Consider the fractional-order system given by

0D
α
t x(t) =Ax(t)−BΛu(t)

z(t) =CTx(t)
(4.27)

where x ∈ Rn, n ≤ 2, u ∈ R, and z ∈ R. A and Λ are unknown, B y C are known and only

z is available for measurement.
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The control objective is to design a control signal u such that x follow the state xm of

the reference model given by

0D
α
t xm(t) =Amxm(t)−Br(t)− L(z − zm)

zm(t) =CTxm(t)
(4.28)

where r ∈ R is the reference signal and L is a feedback gain to be design.

The following assumptions are made:

• 1) The product CTB is full rank.

• 2) The pair Am, CT is observable.

• 3) The system in (4.27) is minimum phase.

• 4) There exist Θ∗ ∈ Rnx1 such that A+BΛΘ∗T = Am and K∗ ∈ R such that ΛK∗T = I

(matching conditions).

• 5) Λ is diagonal with positive elements.

• 6) The uncertain matching parameter Θ∗, and the input uncertainty matrix Λ have a

priori a upper bounds.

θ̄∗ , sup‖Θ∗‖ y λ̄ , sup‖Λ‖ (4.29)

Next, some results needed for the design and analysis of the control scheme are presented.

The proofs can be found in (Gibson et al. 2015).

Lemma 4.1. For the SISO case the system (4.27) satisfying the suppositions 1-3, there exist

a Ls such that

CT (sI −Am − LsCT )−1B =
a

s+ ρ
(4.30)

where ρ > 0 is an arbitrary parameter and a = CTB.

Lemma 4.2. If Ls is chosen as (4.30) andM , CTB, the SISO transfer functionMTCT (sI−

Am − LsCT )−1B is SPR. Therefore, there exists P = P T > 0 and Qs = QTs > 0 such that

(Am + LsC
T )TP + P (Am + LsC

T ) =−Qs

PB =CM
(4.31)
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Lemma 4.3. Choosing L = Ls−ρBMT where Ls is de�ned by (4.30) and is arbitrary, ρ > 0,

the transfer function MTCT (sI −Am − LCT )−1B is SPR and satis�es

(Am + LCT )TP + P (Am + LCT ) =−Q

Q ,Qs + 2ρCMMTCT
(4.32)

where P y Qs are de�ned in (4.31) and M = CTB.

Assuming that L is choose using the above lemmas, in the following theorem the adaptive

scheme is formulated.

Theorem 4.2. Consider the fractional-order system given by (4.27) satisfying assumptions

1-6 and the closed-loop model reference given by (4.28) and the control law

u(t) = ΘT (t)xm +KT (t)r(t) (4.33)

with adaptive laws

0D
α
t Θ =− Γxme

T
y

0D
α
t K =− Γr(t)eTy

(4.34)

where ey = CT e, Γ > 0. Then all the signals in the closed-loop system given by (4.27), (4.28),

(4.33) and (4.34) are bounded ∀t ≥ 0. Futhermore, the tracking error e→ 0 when t→∞.

Proof. From (4.27) , (4.28) and (4.33) the dynamic of the error e = x− xm is given by

0D
α
t e =(Am + LCT )e+BΛ(Θ̃Txm + K̃T r)

ey =CT e
(4.35)

Consider the Lyapunov candidate function

V =
1

2
eTPe+

1

2
tr

(
Θ̃TP Θ̃

Γ

)
+

1

2
tr

(
K̃TPK̃

Γ

)
(4.36)

taking the Caputo derivative and applying lemma 3.3 and 3.4

0D
α
t V ≤ eTP 0D

α
t e+ tr

(
Θ̃TP 0D

α
t Θ̃

Γ

)
+ tr

(
K̃TP 0D

α
t K̃

Γ

)
(4.37)
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substitute (4.35), (4.31) and (4.32) we have

0D
α
t V ≤− eTQe+ eTPBΘ̃Txm + eTPBK̃T r+

+ tr

(
Θ̃TP 0D

α
t Θ̃

Γ

)
+ tr

(
K̃TP 0D

α
t K̃

Γ

)
(4.38)

using the properties of the operator tr(∗) and the fact that ey = CTx and taking the adap-

tation laws as (4.34) we have

0D
α
t V ≤ −eTQe (4.39)

Given that γ > 0 and 0D
α
t V is negative semide�nite, From Theorem 3.4 It can be con-

cluded the stability of the closed-loop system. Applying the fractional integral and property

2.7 to (4.39), we have

0I
α
t e

TQe ≤ V (0) (4.40)

Then the fractional integral (4.40) exits, and by lemma 3.5 it concludes that the tracking

error e→ 0 where t→∞.

4.3.1 Ilustrative example

We carried out one simulation to illustrate the scheme design in Theorem 4.1, with

following model reference

D0.5xm(t) =

 0 1

−10 −5

xm(t) +

0

2

 r(r) +

−10

−2

 (y − ym),

ym(t) =[1 0]xm(t),

(4.41)

and the plant

D0.5x(t) =

 0 1

−6 −7

x(t) +

0

8

u(t),

y(t) =[1 0]x(t),

(4.42)

50



CHAPTER 4. FRACTIONAL-ORDER MODEL REFERENCE ADAPTIVE CONTROL

with the update laws given by (4.34) with, γ = 10.

Fig. 4.4 shown the output of the reference model, the output of the adaptive system, the

tracking error, and the controller parameters.

It can be observed that the scheme met the control objective and the tracking error e→ 0

when t→∞.

4.4 Fractional-order parameter identi�er with state feedback

Another important technique in adaptive systems is parameters estimation. In this sec-

tion, we extend a parameter estimator with state measurement for fractional-order systems

using the Lyapunov direct method.

Consider the plant given by

0D
α
t x = Apx+Bpu, (4.43)

where x ∈ Rn and u ∈ Rr are available for measurement, Ap ∈ Rn×n, Bp ∈ Rn×r are unknown,

Ap is stable, and u is bounded.

Consider the model

0D
α
t x̂ = Âpx̂+ B̂pu, (4.44)

where Âp(t), B̂p(t) are the estimates of Ap, Bp, and x̂(t) is the estimate of the vextor x(t).

Theorem 4.3. Consider the system (4.43), the model (4.44) and the adaptive laws

0D
α
t Âp =γ1εx̂

T ,

0D
α
t B̂p =γ2εu

T ,
(4.45)

where γ1, γ2 > 0 are the adaptive gains, Âp(t), B̂p(t) are the estimates of the parameters of

(4.43) and the identi�cation error is given by ε = x− x̂. Then the identi�cation error ε→ 0

as t → ∞. Futhermore if the vector [xT , uT ] is of persistent exitation, then Âp → Ap and

B̂p → Bp.

Proof. From (4.43) and (4.44) the identi�cation error is given by
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Figure 4.4: Simulations results of the FOCMRAC scheme
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0D
α
t ε = Apε− Ãpx̂− B̃pu, (4.46)

where Ãp −Ap and B̃p −Bp.

Consider the Lyapunov candidate function

V (ε, Ãp, B̃p) =
1

2
εTPε+

1

2
tr

(
ÃTp PÃp

γ1

)
+

1

2
tr

(
B̃T
p PB̃p

γ2

)
, (4.47)

where tr(∗) denotes the trace operator, γ1, γ2 > 0 are constants and P = P T > 0 is chosen

as the solution of the Lyapunov equation

PAp +ATp = −Q. (4.48)

Taking the Caputo derivative (4.47) and applying the Lemmas 3.3 and 3.4 we have

0D
α
t V ≤ εTP 0D

α
t ε+ tr

(
ÃTp P 0D

α
t Ãp

γ1

)
+

1

2
tr

(
B̃T
p P 0D

α
t B̃p

γ2

)
, (4.49)

substituting (4.46) we have

0D
α
t V ≤ −εT [PAp+ATp P ]ε− εTPÂpx̂− εTPB̂pu+ tr

(
ÃTp P 0D

α
t Ãp

γ1

)
+

1

2
tr

(
B̃T
p P 0D

α
t B̃p

γ2

)
,

(4.50)

using the tr(∗) operator properties we known that

εTPÂpx̂ =tr(ÂTp Pεx̂
T )

εTPB̂pu =tr(B̂T
p Pεu

T )
(4.51)

substituting (4.51) in (4.50) we have

0D
α
t V ≤ −εQε+ tr

(
−ÂTp Pεx̂T +

ÃTp P 0D
α
t Ãp

γ1

)
+ tr

(
−B̂T

p Pεu
T +

B̃T
p P 0D

α
t B̃p

γ2

)
, (4.52)

from (4.52) we need that the last two right-hand terms equal to zero, then choosing

0D
α
t Ãp =0D

α
t Âp = γ1εx̂

T ,

0D
α
t Ãp =0D

α
t B̂p = γ2εu

T ,
(4.53)
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we have

0D
α
t V ≤ −εQε (4.54)

Since (4.54) is negative semide�nite from Theorem 3.4 the stability of the closed-loop

system can be concluded.

Applying the Riemann-Liouville integral on both sides of the inequality (4.54) and Prop-

erty 2.7 we have

IαeTQe ≤ V (0). (4.55)

Then the integral (4.55) exist and by Lemma 3.5 it concludes that the identi�cation error

e→ 0 when t→∞.

4.4.1 Ilustrative example

To illustrate the identi�cation scheme of Theorem 4.3 we carried out one simulation.

Consider the plant given by

0D
0.8
t x(t) =

−4 1

−6 0

x+

1

3

u,
y(t) =[1 0]x(t),

(4.56)

and the update laws given by (4.45) with, γ1 = 50, γ2 = 1, and u = 5sin(2.5t) + 6sin(5t).

Figure 4.5 shown the states of the plant, the states estimated and the errors. Figure 4.6

shown the parameters estimated, we can observe that the estimated parameters converge to

the parameters of the plant.

4.5 Fractional-order parameter identi�er without state feed-

back

The next identi�cation scheme is an extension for fractional-order systems of the scheme

presented in (Ioannou and Sun 1996). This identi�cation scheme does not need state mea-

surement and only used information of the input and output to construct the identi�er. This
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Figure 4.5: Identi�cation scheme with state measurement, states and states error, where p

and e indicates plant and estimate, respectively.

55



CHAPTER 4. FRACTIONAL-ORDER MODEL REFERENCE ADAPTIVE CONTROL

Figure 4.6: Identi�cation scheme with state measurement, parameters estimates, where p and

e indicates plant and estimate, respectively.
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scheme will be used in our case of study, to shown that the fractional model proposed in the

next section capture the behavior of the PK/PD model.

Consider the fractional-order commensurate SISO system

0D
α
t x =Ax+Bu,

z =CTx,
(4.57)

where x ∈ Rn, n ≤ 2 and only y, u are available for measurement. The system (4.57) can be

written as

z =
B(λ)

A(λ)
u = CT (λI −A)−1Bu, (4.58)

where λ = sα and α is the commensurate order with 0 < α < 1, and A(λ), B(λ) are in the

form

A(λ) =λn + an−1λ
n−1 + · · ·+ a1λ+ a0,

B(λ) =bmλ
m + bm−1λ

m−1 + . . . b1λb0,
(4.59)

where the constants ai, bi for i = 0, 1, 2, . . . , n − 1 are the system parameters, n ≤ 2 and

m ≤ 1. Now consider the linear parameterization of (4.58)

z = W (λ)θ∗Tψ (4.60)

where θ∗T is the parameter vector, ψ is the regressor that contains the �ltered measurable

signals u, y, W (λ) is a proper stable transfer function.

θ∗ = [bm, bm−1, . . . , b0, an−1, an−2, . . . , a0]
T , (4.61)

z =
1

Λ(λ)
y =

λn

Λ(λ)
y, (4.62)

φ =

[
βTn−1(λ)

Λ(λ)
u,−

βTn−1(λ)

Λ(λ)
y

]
, (4.63)

Λ(λ) = λn + ηn−1λ
n−1 + ηn−2λ

n−2 + · · ·+ η0 (4.64)

= λn + ηTβn−1(λ). (4.65)

57



CHAPTER 4. FRACTIONAL-ORDER MODEL REFERENCE ADAPTIVE CONTROL

With the parameterization (4.60) the signals z and ψ can be generated only with the

information of u and y.

Because θ∗ is a constant vector, we can write (4.60) in the form z = W (λ)L(λ)θ∗Tφ,

where φ = L−1(λ)ψ.

And L(s) is chosen so that L−1(λ) is a proper stable transfer function and W (λ)L(λ) is

a proper SPR transfer function.

A state-space representation of the parameterization (4.60) is given by

0D
α
t φ1 = Λcφ1 + lu,

0D
α
t φ2 = Λcφ2 + ly,

z = y + βTn−1φ2 = θ∗Tφ

(4.66)

where

Λc =


−ηn−1 −ηn−2 . . . −η0

1 0 . . . 0
...

. . .
...

0 . . . 1 0

 , l =


1

0
...

0

 , (4.67)

because Λ(λ) = det(λI − Λc) and Λ(λ) is stable, it follows that Λc is a stable matrix.

The state-space model (4.66) has the same input-output response as (4.57) and (4.58),

provided that all state initial condition are x0 = 0, φ1 = φ2 = 0.

Now the identi�cation scheme is formulated by the following theorem.

Theorem 4.4. Consider the system (4.57), the linear parameterization (4.60) and the the

matrices Ac, Bc and Cc associate with the state-space system W (λ)L(λ) = CTc (λI−Ac)−1Bc,

and the adaptive law

0D
α
t θ̂ = Γεφ (4.68)

where Γ > 0 is the adaptation gain and θ̂ are the estimates θ∗ in (4.60) and the identi�cation

error is given by e = z − ẑ and ε = Cce. Then the identi�cation error ε→ 0 as t→ 0.

Proof. The dynamics of the identi�cation error is given by
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0D
α
t e = Ace−Bcθ̃φ, (4.69)

where the parameter error is de�ned as θ̃ = θ̂ − θ∗.

Consider the following Lyapunov candidate function

V (θ̃, e) =
1

2
eTPce+

1

2
θ̃TΓ−1θ̃. (4.70)

where Γ = ΓT > 0 is a constant matrix and Pc = P Tc > 0 satis�es the algebraic equation

PcAc +ATc Pc = −Q,

PcBc = Cc.
(4.71)

and applying the Caputo derivative to (4.70)

0D
α
t V ≤eTPc0Dα

t e+ θ̃TΓ−10D
α
t θ̃

≤eT [PcAc +ATc Pc]e− eTPcBcθ̃φ+ θ̃TΓ−10D
α
t θ̃

≤− eTQe− eTPcBcθ̃φ+ θ̃TΓ−10D
α
t θ̃

(4.72)

From (4.72) we need that

− eTPcBcθ̃φ+ θ̃TΓ−10D
α
t θ̃ = 0, (4.73)

from (4.71) we have PcBc = Cc which implies that eTPcBc = ε, then (4.73) can be written as

− θ̃Tφε+ θ̃TΓ−10D
α
t θ̃ = 0. (4.74)

which leads to (4.68).

Let the adaptation law be given in (4.68), then

0D
α
t V ≤ −eTQe. (4.75)

Since (4.75) is negative semide�nite from Theorem 3.4 the stability of the closed-loop

system can be concluded.

Applying the Riemann-Liouville integral on both sides of the inequality (4.75) and Prop-

erty 2.7 we have
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IαeTQe ≤ V (0). (4.76)

Then the integral (4.76) exist and by Lemma 3.5 it concludes that the identi�cation error

e→ 0 when t→∞.

4.5.1 Ilustrative example

To illustrate the identi�cation scheme of Theorem 4.4 we carried out one simulation.

D0.8x(t) =

−4 1

−6 0

x+

1

3

u,
y(t) =[1 0]x(t),

(4.77)

with Λc =

−5 −6

1 0

 and the update laws given by (4.68) with, Γ = 10 and u = 5sin(2.5t)+

6sin(5t).

Figure 4.7 shown the output of the plant, the output estimated and the error. Figure 4.8

shown the parameters estimated, we can observe that the estimated parameters converge to

the parameters of the plant with small oscillations around the real values, which is translated

in a small identi�cation error.

This is an example of the how the numerical approximation used a�ects the results of

the simulations. This particular identi�cation scheme is more demanding, computational-wise

because it uses the �ltered input and output signals to construct the regressor. The simulation

uses 10 fractional integrators, using the crone approximation, with n = 10 and a bandwidth

[0.01 100].

In the Figures 4.9-4.10 is shown the same simulation using the Matsuda approximation

with n = 50 and a bandwidth [0.0001 10000]. We can observe that the overall performance

improves, we obtain signals with fewer oscillations.

So we need to choose the numerical approximation that gives us the best result in the

particular case studied.
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Figure 4.7: Identi�cation scheme without state measurement, output and output error using

the Crone approximation
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Figure 4.8: Identi�cation scheme without state measurement, parameters estimates using the

Crone approximation
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Figure 4.9: Identi�cation scheme without state measurement, parameters estimates using the

Matsuda approximation
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Figure 4.10: Identi�cation scheme without state measurement, parameters estimates using

the Matsuda approximation
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4.6 Observer for fractional-order systems

The reconstruction of system states from its inputs and outputs has received a great deal

of attention recently. In (Hartley and Lorenzo 2002, Doye et al. 2009) studied the fractional-

order Luenberger observer and observer-based controller design, and in (Wei et al. 2015)

present the design for a fractional-order adaptive observer.

Just as it is in integer-order system theory, it is important to create observers, or vector

estimators, for fractional-order systems. This result has been previously reported in the

literature (Hartley and Lorenzo 2002), but for completeness, we present this results because

this observer can be used in conjunction with the FOMRAC with state feedback when the

states are not available for measurement.

The fractional-order state estimator (Luenberger type observer) has the form

0D
α
t x̂(t) =Ax̂+Bu(t)− L(y(t)− ŷ(t)),

ŷ(t) =Cx̂(t).
(4.78)

The error e(t) is de�ned as the di�erence between the real system output x(t), and the

estimated observer output x̂(t).

e(t) = x(t)− x̂(t). (4.79)

The observer error gain L is determined to force the error between the two plant vectors

to go to zero. The dynamics of the error is obtained applying the fractional derivative to

(4.79),

0D
α
t e(t) =0 D

α
t x(t)−0 D

α
t x̂(t). (4.80)

Substituting the system equations from Equations (4.14) and (4.78) yields

0D
α
t e(t) = [Ax+Bu(t)]− [Ax̂+Bu(t)− L(y(t)− ŷ(t))]. (4.81)

Now replacing the measured system outputs, y(t) and ŷ(t) with the vector variables using

(4.14) and (4.78), yields

0D
α
t e(t) = [Ax+Bu(t)]− [Ax̂+Bu(t)− L(Cx(t)− Cx̂(t))]. (4.82)
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Replacing e(t) = x(t)− x̂(t), and combing terms, gives

0D
α
t e(t) = (A− LC)e(t). (4.83)

The matrix L is determined to force the observer error to zero by placing the eigenvalues

of A− LC in a stable region of the w − plane using standard methods.

4.6.1 Ilustrative example

We carried out one simulation to illustrate the fractional-order observer.

Consider the plant

D0.5x(t) =

 0 1

−10 −5

x+

0

2

u,
y(t) =[1 0]x(t),

(4.84)

with the matrix (A− LC) =

 5 1

−15 −5

 and u = 5sin(2t).

Fig. 4.11 shown states of the plant, the states estimates and the evolution of the states

error. We can observe that x̂→ x and e→ 0.

4.7 Fractional-Order Adaptive Observer

An adaptive observer can be built using the fractional-order Luenberger observer and

a parameters identi�er. In this case, the objective is to estimate both, the states and the

parameters of the system.

Using the fractional-order Luenberger observer (4.78) and the parameter identi�er given

by Theorem 4.4 we construct an adaptive observer. To illustrate this observer we carrie a

simulation with the plant given by

D0.7x(t) =

a1 1

a2 0

x+

b1
b2

u,
y(t) =[1 0]x(t),

(4.85)
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Figure 4.11: States estimates and identi�cation error.
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where a1, a2, b1, b2 are the unknown parameters and u, y are the only signals available for

measurement.

From Section 4.6 the observer is given by

D0.7x̂(t) =

â1 1

â2 0

 x̂+

b̂1
b̂2

u,+
l1
l2

 (y − ŷ),

y(t) =[1 0]x̂,

(4.86)

where â1, â2, b̂1, b̂2 are the parameters estimates, and x̂, ŷ are the states and output estimates

of (4.85).

The parameter identi�er can be built using the results of Theorem 4.4 and is given by

Λ(λ) = (s+ 5)(s+ 6) = s2 + 11s+ 30, (4.87)

and the vector φ = [φT1 , φ
T
2 ] is generating by

D0.7φ1 =

−11 −30

1 0

φ11
φ12

+

1

0

u, (4.88)

D0.7φ2 =

−11 −30

1 0

φ21
φ22

+

−1

0

 y, (4.89)

and the signals

z = y + 11φ21 + 30φ22, (4.90)

ẑ = b̂1φ12 + b̂2φ12 + â1φ21 + â2φ22, (4.91)

e = z − ẑ (4.92)

and the adaptive laws are given by

D0.7b̂1 =γ1eφ11,

D0.7b̂2 =γ1eφ12,
(4.93)
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D0.7â1 =γ1eφ21,

D0.7â2 =γ1eφ22,
(4.94)

The real values of the plant parameters are a∗1 = −4, a∗2 = −6, b∗1 = 2, b∗2 = 3. The

simulation is carried out with 1 = 2, l2 = 11, γ1 = 1, γ2 = 0.5.

In Fig. 4.12 shown the estimates of the states and in Fig. 4.13 is shown the parameters

estimates. We can observe that e→ 0 as t→∞ and â→ a∗, b̂→ b∗.

Figure 4.12: States estimates and identi�cation error.
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Figure 4.13: Parameters estimates.
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Chapter 5

Anesthesia Control

In medical practice, the application of general anesthesia plays a signi�cant role in the

patient's well-being, this is achieved through the administration of a combination of drugs

that act to provide adequate hypnosis (unconsciousness and amnesia to avoid traumatic re-

calls), paralysis or muscle relaxation (to attain immobility, an absence of re�exes, and proper

operating conditions), and analgesia (pain relief). This process is accomplished by an anesthe-

siologist who must continuously observe and adjust the rates and overall amounts of anesthetic

agents delivered to the patient, preserving the stability of the autonomic, cardiovascular, res-

piratory, and thermoregulatory systems.

The concepts of the general anesthesia, the modeling, and the control challenges are

presented in this Chapter. Moreover, is proposed simple fractional-order models to represent

the input-output behavior of the PK/PD model of anesthesia.

5.1 General anesthesia

The e�ects of drugs on patients in the operating room vary with drug dosage, from pa-

tient to patient, and with time. Di�erent doses of drugs result in di�erent concentrations

in various tissues, producing a range of therapeutic and sometimes undesirable responses.

Responses depend on drug pharmacokinetics (time curse of drug concentration in the body)

and drug pharmacodynamics (the relationship between drug concentration and drug e�ect).

These processes may be in�uenced by factors including pre-existing disease, age, and genetic

variability. Patient responses to drugs may also dynamically altered by factors such as temper-
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ature, pH, circulating ion and protein concentration, levels of endogenous signaling molecules,

and coadministration of the drug in the operating room environment (Brown et al. 2010).

General anesthesia consists of providing the patient with a reversible state of loss of

consciousness (hypnosis), analgesia and muscle relaxation.

Figure 5.1: General anesthesia components

The purpose of general anesthesia is to allow the patient to be operated without pain, by

administering anesthetic drugs intravenously or inhaled, providing maximum safety, comfort

and vigilance during the surgical act. The description of the general process with its variables

is shown in Figure 5.2. As can be seen, the variables that can be manipulated are the

anesthetics, relaxants, and serums, the disturbances in the system are signals that can occur

at any time, such as surgical stimulation, and blood loss. The output variables are divided

into measurable and non-measurable, and the main interest in the control of anesthesia is

focused on the non-measurable variables: hypnosis, analgesia, and muscle relaxation.

In practice, an anesthesiologist has to observe and control a large number of hemodynamic
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Figure 5.2: Input-Output variables in anesthesia

and respiratory variables as well as clinical signs that indicate the state of hypnosis and

analgesia.

Most of the drugs used do not only operate on the desired e�ect but alter other aspects,

for example, the e�ects of the anesthetic drug propofol not only a�ect the level of hypnosis

but also increase the level of analgesia. The same behavior has the drug remifentanil whose

main objective is to increase the level of analgesia but as a side e�ect also increases the level

of hypnosis. Due to this cross e�ect between these drugs the anesthesiologist must adjust

the desired level of hypnosis and analgesia with di�erent amounts of both drugs. From the

point of view of control engineering, this problem is a problem of multiple inputs and multiple

outputs.

In the daily work routine, the anesthesiologist calculates the amount of the necessary

drug with the help of dose regimes given by the supplier of the drug, which in most cases are

based on the patient's body weight.

General anesthesia produces reversible behavioral and physiological phenomena (uncon-

sciousness, amnesia, analgesia) with the stability of the cardiovascular, respiratory and ther-
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moregulatory systems. Also generates distinct patterns in the electroencephalogram (EEG),

the most frequent being the progressive increase in the activity of low frequency and high

amplitude as the level of anesthesia deepens (Brown et al. 2010).

Recovery from general anesthesia is a passive process that depends on the number of drugs

administered, its places of action, potency, pharmacokinetics, the physiological characteristics

of the patient and the type and duration of the surgery (Brown et al. 2010).

General anesthesia is divided into three phases (Kellicker 2010):

• Induction phase: consists of administering drugs that cause the loss of consciousness.

Anesthetics are administered through an intravenous or gas within the lungs.

• Maintenance phase: drugs are administered continuously to maintain a stable thera-

peutic status.

• Emerging or recovery phase: this is the last phase. The drugs are stopped being ad-

ministered to slowly reverse the e�ects of the anesthesia and allow the patient to wake

up.

For a more detail description of the process of general anesthesia, the reader is referred

to (Bailey and Haddad 2005, Brown et al. 2010, V.V. 2011).

5.2 Pharmacokinetic/Pharmacodynamic model

The PK/PD models most frequently used for Propofol (hypnotic drug) are the fourth-

order compartmental model (Fig. 5.3) (Schnider et al. 1998, Marsh et al. 1991). These models,

developed, tested, and validated on a wide range of real patient data are often used in the

literature for control of anesthesia (Beck 2015).

In this paper we use the model presented in (Schnider et al. 1998) given by

ẋ(t) =


−(a11 + a21 + a31) a12 a13

a21 −a12 0

a31 0 −a13

x(t) +


1

0

0

u(t), (5.1)

where x1 represents the concentration of the drug in the central compartment (intravascular

blood), x2 y x3 represent the concentration of the drug in the peripheral compartments, a12,
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Figure 5.3: PK/PD model.

a13, a21, a31 are positive constants representing the �ow between compartments, a11 is the

elimination rate of the drug through metabolism and u(t)[mg/min] is the rate of infusion of

anesthetic (propofol) in the central compartment, and aij are in [min−1] and xi are in [mg].

An additional compartment, namely, the e�ect compartment, is introduced to represent

the time-delay between the observed e�ect and the plasma concentration. The e�ect com-

partment model links the plasma concentration (concentration in the central compartment)

to the e�ect concentration with a �rst order di�erential equation

ẏ(t) = aeff (x1(t)− y(t)), y(0) = x1(0), t ≥ 0, (5.2)

where aeff is the time constant, x1(t) is the concentration in the central compartment de�ned

in (5.1) and y(t) is the concentration of the e�ect compartment.

The pharmacokinetic parameters can be obtained through the following equations (Schnider

et al. 1998):
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V1 = 4.27[l]

V2 = 18.9− 0.391(age− 53)[l]

V3 = 2.38[l]

C11 = 1.89 + 0− 0456(weight− 77)− 0.06681(ibm− 59)

+0.0264(height− 177)[l/min]

C12 = 1.29− 0.024(age− 53)[l/min]

C13 = 0.836[l/min]

a11 =
C11

V1
[min−1]; a12 =

C12

V1
[min−1]; a13 =

C13

V1
[min−1]

a21 =
C21

V2
[min−1]; a31 =

C13

V3
[min−1]

aeff = 0.456[min−1]

lbmm = 1.1 · weight− 128 · weight
2

height2

lbmf = 1.07 · weight− 148 · weight
2

height2

As we can observe in the previous equations, the PK parameters depend on the biomet-

rical characteristic of the patient.

The bispectral index (BIS) is a signal derived from the electroencephalogram (EEG) used

to assess the level of consciousness in anesthesia. A BIS value of 0 equals a �at line in the EEG

while a BIS value of 100 is the expected value of a fully conscious adult patient, 60− 70 and

40− 60 range represent light and moderate hypnotic conditions (Fig. 5.4), respectively. The

target value during surgery is 50, giving us a gap between 40 and 60 to guarantee adequate

sedation (Fig. 5.5).

The BIS can be related to the concentration of the e�ect compartment by the nonlinear

static function, termed Hill equation (Bailey and Haddad 2005):

z = BIS(y) = E0 − Emax
yγ(t)

yγ(t) + ECγ50
, (5.3)

where E0 denotes the base value (awaken state) and by convention typically is given the value

of 100, Emax is the maximum e�ect achieved by drug infusion, EC50 is the drug concentration
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to half maximal e�ect and represents the patient's sensibility to the drug, and γ determines

the degree of nonlinearity of the function.

Figure 5.4: The BIS Index is scaled to correlate with important clinical end points during

administration of anesthetic agent (Kelley 2010).

The model of anesthesia, from physical considerations, describes a non-negative system,

that is, the state trajectories remain non-negative for non-negative initial conditions and a

non-negative control input, which must be taken into account for controller designs.

One of the signi�cant challenges in the control of anesthesia is the variability among

patients. This variability can occur as a result of patient physiology (age, gender, disease),

variations in PK processes (rate of absorption, distribution, metabolism, and elimination), and

di�erences in PD (sensitivity of receptor) (Shafer et al. 2010). Also, in the medical practice,

no state of this model is available for measurement, only the output (BIS) is measurable for

feedback.
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Figure 5.5: BIS Index Range (Kelley 2010).
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5.3 Anesthesia control

The problem of control of drug administration in anesthesia has been studied since the

1950s (Bickford 1950). Since then it has been clear that the control of anesthesia has many

challenges, such as multivariate features (Petersen-Felix et al. 1995), di�erent dynamics depen-

dent on the drug and place of administration (Curatolo et al. 1996, Struys et al. 2003), stability

problems (Asbury 1997) and performance of the control algorithm (Mainland et al. 2000, Ting

et al. 2004).

Given the complex nature and uncertainty of the process, it is not surprising that reliable

models for control of drug administration are not available.

Because the level of system uncertainty, �xed and robust gain controllers can unneces-

sarily sacri�ce system performance, while adaptive controls can tolerate much higher levels of

uncertainty and improve performance (Ioannou and Sun 1996).

The interaction between a drug and the body is divided into two phases: pharmacokinetics

(PK) and pharmacodynamics (PD). Pharmacokinetics described what the body does the drug

while the pharmacodynamics described what drug does to the body (Schnider et al. 1998).

Regarding the level of anesthesia or hypnosis (loss of consciousness), the body's response to

the administration of a hypnotic or anesthetic drug is commonly modeled as a Wiener model

of higher order, that is, a linear part corresponding to the pharmacokinetics, and a static

non-linearity corresponding to the pharmacodynamics (Bailey and Haddad 2005).

The concentration of the drug in the human body is not measurable online and also the

level of hypnosis is not measurable, so it is necessary to have a surrogate measurement as

variable to be controlled.

The bispectral index (BIS) has been tested and validated as a measurement of the hyp-

notic component of anesthesia and has been used in multiple studies as a variable to be

controlled.

In surgery, the level of hypnosis should be brought to a therapeutic value between 40

- 60 in a few minutes and kept there. High values of the bispectral index correspond to a

low level of hypnosis, and the possibility of being aware during the surgical procedure (Myles

et al. 2004). Values below 40 are undesirable because they are correlated with postoperative

complications and with an increase in the mortality rate after one year (Monk et al. 2005).

The application of a closed-loop system of drug administration is complex and require a
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Figure 5.6: Control of anesthesia implementation.

balance between all his basic components (O'Hara et al. 1992):

• A variable to be controlled representative of the desired therapeutic e�ect

• A clinically relevant reference value for this variable

• An actuator (in this case, an infusion pump)

• One system (the patient)

• An accurate, stable and robust control algorithm

In (Huang et al. 1999) and (Kenny and Mantzaridis 1999) it was proved that the anes-

thetic propofol has properties that make it appropriate for anesthesia control. Many research

studies have been carried out using the anesthetic propofol as input to the system and the bis-

pectral index as a substitute measure of the level of hypnosis. In (Kenny and Mantzaridis 1999,

Morley et al. 2000, Sakai et al. 2000, Absalom et al. 2002, Liu et al. 2006, Puri et al. 2007)

were considered �xed-gain controllers, mostly PID. Adaptive controllers were developed in

(Mortier et al. 1998, Haddad et al. 2003b, Haddad et al. 2006). To deal with delays in the

system, predictive controllers were used in (Ionescu et al. 2008, Nino et al. 2009, Furutani

et al. 2010). Also has been used sliding mode control in (Castro et al. 2008) and control based

on neural networks in (Haddad et al. 2007, Haddad et al. 2011). As the best of the knowledge

of the author, there has not been published any previous studies using a fractional control to

the problem of control of anesthesia.
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5.4 Challenges

Achieving the appropriate drug e�ect at any time during surgery, and after surgery is

an essential objective in anesthesia. The main drugs used to induce general anesthesia are

the hypnotics, analgesics and muscle relaxants, which are given to ensure unconsciousness, to

provide analgesia and suppress the hemodynamic response, and to suppress re�ex movements,

respectively. The dose of each drug is titrated against the individual patient's response to

achieve the intraoperative therapeutic goals. The patient should lose consciousness rapidly

after induction, the level of analgesia should follow the level of surgical stimulation closely,

and at the end of the operation, the drug e�ect should dissipate so that the patient wakes up,

has no residual muscle relaxation, and is pain-free. Unfortunately, at the end of a surgical

procedure, the desired intraoperative drug e�ects are viewed as side e�ects, for example,

excessive sedation and respiratory depression.

From a pharmacology perspective, anesthesia is concerned with controlling the time

course of drug e�ect. The drug e�ect is dependent on the site and rate of input of the

drug, the distribution of the drug within the body, the elimination of the drug from the body,

and the sensitivity of the patient to the drug. Innumerable anatomic, physiologic, and chem-

ical factors in�uence these processes. If we knew quantitatively all of the factors a�ecting the

distribution, elimination, and sensitivity to a drug in an individual patient, we could predict

the time course of the drug e�ect exactly. However, we only know a few of all the aspects of

the dose-response relationship.

Drug responses in humans are the results of integrated e�ects, including signal ampli�-

cation and dampening mechanisms at a cellular, tissue, and physiological systems level, and

the pharmacodynamic responses can be therapeutic, toxic, or lethal.

In anesthesiology, it is easy to observe that response to the same drug dose vary widely

among patients. Part of the process of delivering anesthesia is titrating drug dose to provide

optimal therapy for a speci�c patient, mainly when the drug has signi�cant toxicities. At

the same time, the anesthesiologist must know dosing ranges that are appropriate for large

populations of patients, to provide dosing guidelines.

The classical PK/PD models are coarse abstractions of a real distribution and elimina-

tion process. Still, these models describe the measured and observed concentrations. They

exist another more complex type of models called physiologically based models (Upton and
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Ludbrook 2005), with these models it is possible to have more information available, for exam-

ple, the in�uence of changes in cardiac output and organ blood �ow on the time course of the

concentration in the blood and various organs and tissues. Unfortunately, the development of

such accurate models is expensive and can only be performed in animals. Furthermore, this

accurate models, are complex that have too many variables and parameters to be useful in

the development of controllers.

All these di�culties make the process of control of anesthesia a very challenging problem.

The potential bene�ts of a closed-loop anesthesia delivery are: more consistent drug admin-

istration, less inter and intra-patient variability, less over and under-dosage, faster control

action to unexpected arousal (perturbation rejection), smaller quantities of drug usage, faster

recovery of the patient, better hemodynamic control and less hypotension during induction

of anesthesia, is what keeps the interest in the control community to design reliable control

schemes. Moreover, this problem is still considered an open problem.

5.5 Models for control of anesthesia

Even though it has been a subject of intense research in the last decades, anesthesia is

a complicated and not well-understood process, resulting in a challenging control problem.

The current state of the art understanding the unconsciousness and the mechanisms of drug-

induced unconsciousness is limited, therefore is very challenging translated these little-known

mechanisms to an accurate mathematical model. At present, the models available and most

used are the mean �eld models of drug action(Absalom et al. 2011) such as the PK/PD model,

which describe the di�erent brain states associated with the electroencephalogram (EEG).

The crucial step towards the control of anesthesia is to derive an adequate mathematical

model that describes the process. Is essential to �nd a good balance between the complex

models that may contain too many parameters that cannot be identi�ed to the lack of ap-

propriate measurements and sensors, and the over-simpli�ed model that might not capture

the system dynamics. Overall we should identify the objective of the model, be prediction or

control, or both, and choose the right model structure for that objective.

Another challenge is the identi�cation of a model from clinical data, is has been shown

(Silva et al. 2014) that the information available in the operating room (infusion rate of

the drug and BIS index usually) is insu�cient to identify a full-order PK/PD model. The
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excitation in the input signal is not su�ciently frequency rich and is not able to excite all the

modes in the model because this input cannot be selected freely, additionally, this model has

a Wiener structure. Therefore the task of identifying an individualized model online is very

challenging.

Linear and nonlinear reduced-order models structures have been proposed to improve the

identi�ability and the control synthesis of the anesthesia process.

One of the main characteristics of the models used for identi�cation and control of anes-

thesia are in some level simpli�ed models, for example, models with �xed parameters in the

PK or PD parts (linear or nonlinear), linearizations or order reduction.

In (Lin et al. 2004) the authors present a piece-wise linear model, with which they use

di�erent LTI models to represent di�erent phases of the process, for example, one model for

the induction phase and other for the maintenance phase. Then they synthesized a controller

for each phase, similar to gain scheduling schemes.

In (Sartori et al. 2005) is proposed a standard PK/PD model where the authors assume

that only the PD parameters are responsible for the inter-patient variability, and use an

extended PK model and linearized the model and identify the PD parameters and via a

Kalman �lter.

A �rst-order plus time-delay is proposed in (Bibian et al. 2006), here the PK parameters

are �xed, the Hill curve is linearized around an operating point, and the PD parameters are

calculated using a standard least square estimation.

In (Alonso et al. 2009) is presented a reduced-order model obtained using model reduction

technics. This model is an a�ne model with only four parameters and takes advantage of the

redundancy shown in the PK model, that is, the adjacent poles and zeros.

In (Silva et al. 2010) is proposed a MISO Wiener model for the pharmacokinetics and

pharmacodynamics of propofol and remifentanil. This model uses a PK part with a reduced

number of parameters (with a combination of three �xed parameters and one unknown), for

the hypnotic drug and other for the analgesic. Also, a combine Hill equation (with a reduced

number of parameters) that combine the e�ect of both drug in the level of unconsciousness.

In (Navarro-Guerrero 2013) based on the cancellation of adjacent poles and zeros pre-

sented in the PK part of the PK/PD model, we propose a nonlinear �rst-order model with a

linear parameterization of two parameters. This model has the advantage that represents the
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input-output behavior of the PK/PD model, and do not rely on linearization by the inversion

of the nonlinearity and state measurement, but do not take into account the time-delay in

the PD part.

Every proposed model has his particulars advantages and disadvantage (which can be seen

in detail in his respective reference), but all these papers show us the necessity to develop

a simple model for identi�cation and control synthesis to circumvent the di�culties of using

the PK/PD model with a Wiener structure.

Moreover, the majority of the control schemes based on the proposed models relied on

the inversion of the non-linearity and supposed that the states are available for measurement,

However, in practice the parameters of the non-linearity are unknown, and the states are not

measurable online, thus adding more uncertainty in the control schemes presented.

5.6 New modeling paradigm: Fractional calculus

Some researchers had proposed the necessity for a fractal view of physiology that explicitly

takes into account the complexity of the living matter and its dynamics. Complexity in this

context incorporates the recent advances in physiology concerned with the applications of the

concepts from fractal geometry, fractal statistics, and nonlinear dynamics, to the formation

of a new kind of understanding within the life sciences.

The complexity of the human body and the characterization of that complexity through

fractal measures and their dynamics involve the use of fractional calculus. Not only anatomical

structures are fractal (Grizzi and Chiriva-Internati 2005), such as the convoluted surface of

the brain, the lining of the bowel, neural networks, and placenta, but the output of dynamical

physiologic networks are fractal as well (Bassingthwaighte et al. 1994).

The time series for the inter-beat intervals of the heart, inter-breath intervals, and inter-

stride intervals have all been shown to be fractal or multifractal statistical phenomena. Con-

sequently, the fractal dimension turns out to be a signi�cantly better indicator of organismic

functions in health and disease than the traditional average measures, such as heart rate,

breathing rate, and stride rate. The observation that human physiology is primarily fractal

was �rst made in the 1980s (Bassingthwaighte et al. 1994).

Control of physiologic variables is one of the goals of medicine, in particular, understand-

ing and controlling physiological networks to ensure their proper operation.
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Therefore it seems reasonable that one novel strategy for modeling the dynamics and

control of complex physiologic phenomena is through the application of the fractional calculus

(West 2009).

The fractional calculus has been used to model the interdependence, organization, and

concinnity of complex phenomena ranging from the vestibule-oculomotor system, to the elec-

trical impedance of biological tissue to the biomechanical behavior of physiologic organs (see,

for example, Magin (2006) for a review of these applications).

In (Podlubny 1999a) the author's comment that if reality has the dynamics of a fractional-

di�erential equation, then attempting to control it with integer-order feedback leads to ex-

tremely slow convergence, if not divergence, of the network output. On the other hand,

fractional-order feedback, with the indices appropriately chosen, leads to rapid convergence

of output to the desired signal.

In (West 2009) is suggested that from the point of view of fractal physiology the blood

�ow and ventilation are delivered in a fractal manner in both space and time in a healthy

body.

A fundamental mechanism in the absorption of a drug in the human body is the process

of di�usion. In (Copot et al. 2014) the authors present the relation between the di�usion

process and fractional-order models. Also, the introduction of fractional-order pharmacoki-

netic models (Dokoumetzidis and Macheras 2009, Verotta 2010, Popovi¢ et al. 2011, Copot

et al. 2013) that represent the experimental data more precise way, thanks to the t−α decay

of the fractional operators, and with this open a new line of investigation on the area of drug

delivery systems.

In (Magin 2006, Dokoumetzidis and Macheras 2009, Copot et al. 2014) it is suggested

that biological systems (like in pharmacology and bioengineering) could be represented with

a fractional-order model with a more simple structure compared with his integer-order coun-

terpart, simplifying the control design by using a less complex model.

So we can see that fractional calculus can o�er us a new point of view to understand

certain physical phenomena, especially those who from the point of view of integer-order

systems seems too complex.
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5.7 Proposed model

Under a process where exists a great uncertainty between individuals (inter-patient vari-

ability) and in the same individual (intra-patient variability), to have a deterministic model

valid is challenging (in practice almost impossible or too complex to be useful). So if we could

have a model for a single patient, this model is only valid for a period because of the changes

in the physiological variables during surgery, which imply a change in the parameters of the

model, hence the need for update the model online. Therefore, it would be convenient to have

a generic model that has the ability of capture a wide range of dynamics (in this case the

range characterized for the inter-patient variability) and adapted online to individualize the

model for each patient.

Based on these facts a simple FOMs are considered. Three fractional commensurate order

models to represent the input-output behavior of the Wiener system (5.1-5.3) are proposed:

G1(λ) =
b0

λ+ a0
, (5.4)

G2(λ) =
b1λ+ b0

λ2 + a1λ+ a0
, (5.5)

G3(λ) =
b2λ

2 + b1λ+ b0
λ3 + a2λ2 + a1λ+ a0

, (5.6)

where λ = sα, s is the complex variable and α the commensurate order, with 0 < α < 1. a1,

a0 and b0 are the model parameters.

These models structures we can see them as phenomenological models (or some kind

black-box model), namely, models that can capture the input-output dynamics of the patient's

models, but with the disadvantage of the loss of physical meaning of the model parameters.

It has been shown in (Gonzalez-Olvera et al. 2015) that there exist a set of parameters

(depending on the respective structure) with which the fractional-order model can capture

the response of a particular patient's model. However, with the use of adaptive control we

aim to control a large set of patients with one controller, so we do not need to identify a

speci�c set of parameters for the FOM for a given patient, we only need a model structure

capable of capture the overall response.
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It is known that the particular response of a PK/PD model has an S-shape response, and

in (Isaksson and Graebe 1999, Tavakoli-Kakhki et al. 2010) have shown that simple structures

like those proposed can capture this type of response.
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Chapter 6

Simulations

In this Chapter, the numerical simulations are presented, the FOMRAC and FOCM-

RAC schemes designed in the previous Chapter are implemented in 30 virtual patients. The

simulations test the robustness of the control schemes against the intra-patient variability,

inter-patient variability, disturbance, noise, and time-delay.

6.1 Identi�cation

To assess the variability among patients, 30 patient models (taken from di�erent studies,

patients 1-10 (Mendonça et al. 2012), patients 11-20 (Ionescu et al. 2008), patients 21-30

(Heusden et al. 2013)) are used to emphasize the variability among the population. Fig. 6.1

shows the response of these models to a step input. Table 6.1 shows the pharmacodynamic

and the biometric characteristics of the 30 patients.

As can be observed in Table 6.1 the parameters of the PK/PD models have signi�cant

variations, depending on age, weight, height, and gender, making a considerable variation in

the step response.

To verify the ability of the proposed FOMs to capture the dynamics of the PK/PD model,

a simulation is carried out with the three structures proposed.

We use a nominal patient to carry out this simulation, in Figure 6.2 is shown the identi-

�cation scheme, and in Figure 6.3 the simulation results, output, and the identi�cation error.

We can observe that the three fractional-order structures proposed can capture the step re-

sponse of the PK/PD model. In Fig. 6.4 is shown the identi�cation error and the evolution
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Tabla 6.1: Patient's pharmacodynamic parameters and biometric features

Patient Age Height Weight Gender EC50 γ

1 56 160 88 F 13.94 2.0321
2 48 158 52 F 13.88 1.0133
3 51 165 55 F 20 2.0196
4 56 160 65 F 20 1.8930
5 64 146 60 F 14.85 1.0702
6 59 159 110 F 20 2.6169
7 45 155 58 F 3.35 0.9172
8 51 163 55 F 12.17 1.8645
9 32 172 56 F 16.91 1.4517
10 68 160 64 F 15.52 0.9334
11 40 163 54 F 6.33 2.24
12 36 163 50 F 6.76 4.29
13 28 164 60 M 4.93 2.46
14 43 163 59 F 12.10 2.42
15 37 187 75 M 8.02 2.10
16 38 174 80 F 6.56 4.12
17 41 170 70 F 6.15 6.89
18 37 167 58 F 13.70 1.65
19 42 179 78 M 4.82 1.85
20 34 172 58 F 4.95 1.84
21 15 180.5 71 M 3.95 1.74
22 7 132 25.1 M 4.24 1.90
23 10 139 41.1 F 3.83 2.17
24 8 128 22 F 5.77 1.56
25 10 138 33.6 M 3.88 1.89
26 16 154.9 52.5 F 8.80 1.49
27 8 130 25.3 M 5.44 1.52
28 15 169 48 M 3.85 1.88
29 13 151 65 M 3.45 1.58
30 7 121 24 M 3.64 1.59
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Figure 6.1: Patient's response to a step input.

of the model's parameters.

It can be seen that the input-output behavior of the PK/PD model is well captured by

the model structures proposed.

It is worth noting that the objective of this study is the design of an adaptive control

scheme, not to modeling a particular system, and for adaptive control, in general, only is

needed a model structure. So with the identi�cation scheme and the simulation presented

is shown that the proposed models can capture the input-output behavior of the presented

example.

6.2 Control

In this section, it is illustrated via simulations the e�ectiveness of the adaptive schemes

designed in the previous Chapters (Figure 6.5). It is worth noticing that in the simulations the

plants (patients) are represented by the Wiener system (PK/PD model), the fractional-order

models proposed only are used to design and analyze the control schemes.

Table 6.2 shows the values of the design parameters of the control schemes implemented.

90



CHAPTER 6. SIMULATIONS

Figure 6.2: Identi�cation scheme

Figure 6.3: Identi�cation, BIS output of the PK/PD model and the proposed FOMs.

91



CHAPTER 6. SIMULATIONS

Figure 6.4: Identi�cation, model parameters.

92



CHAPTER 6. SIMULATIONS

Figure 6.5: FOMRAC and FOCMRAC schemes implemented.
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Tabla 6.2: Tuning parameters

Control with 30 patients
1st order FOMRAC 1st order FOCMRAC 2nd order FOCMRAC 3rd order FOCMRAC
α = 0.005 α = 0.05 α = 0.005 α = 0.1
γ = 0.0008 γ = 0.005 γ = 0.05 γ = 0.05

L = −30 L1 = −10 L1 = −10
L2 = −2 L2 = −0.5

L3 = −1

Control with perturbations
1st order FOMRAC 1st order FOCMRAC 2nd order FOCMRAC 3rd order FOCMRAC
α = 0.005 α = 0.05 α = 0.005 α = 0.005
γ = 0.0008 γ = 0.0008 γ = 0.001 γ = 0.0008

L = −0.1 L1 = −0.5 L1 = 0.5
L2 = −0.1 L2 = −0.5

L3 = −0.05

Time-delay robustness
1st order FOMRAC 1st order FOCMRAC 2nd order FOCMRAC 3rd order FOCMRAC
α = 0.005 α = 0.05 α = 0.005 α = 0.1
γ = 0.0008 γ = 0.005 γ = 0.01 γ = 0.01

L = −25 L1 = −10 L1 = −10
L2 = −2 L2 = −0.5

L3 = −1

These values were chosen to make a trade-o� between speed of convergence and transient

performance.

The simulations are done with the PK/PD model of anesthesia given by (5.1-5.3), the

objective is to take the patient to the level of BIS = 50.

6.2.1 Inter-patient robustness

The inter-patient variability denotes the variation of the mathematical models among the

individuals. Every patient has his speci�c model.

The simulations were done using the 30 virtual patients applied to four di�erent control

schemes. In the case of the FOMRAC scheme we only use a controller based on the model

(5.4), because the states are not measurable, and for the other two models are needed for

feedback, it could be implemented using an observer, but also the parameters are unknown.

So to use this scheme with the models (5.5 - 5.6) we would need to implement a parameter

identi�er and a state observer, this con�guration is too complex and computational-wise very
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demanding, thus defeating the premise of using a simple control scheme.

For the case of the FOCMRAC scheme is implemented with the three models proposed

applied to the 30 virtual patients.

Figure 6.6: BIS output of the 30 virtual patients with the FOMRAC and FOCMRAC schemes

Figure 6.6 shows the response of the 30 virtual patients with the four control schemes.

We can observe that all scheme meet the control objective, take all the patients to BIS = 50.

It can be seen that the controllers based on the second and third-order structure have better

performance in comparison with the controllers based on the �rst-order structure.

Figure 6.7 show the control input of the four controllers implemented and it can be seen
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a similar behavior between the controllers.

Figure 6.7: Control-input of the FOMRAC and FOCMRAC schemes with the 30 virtual

patients

In Figure 6.8 is shown the tracking errors, the error of the FOMRAC scheme have more

oscillations in the induction phase and higher convergence time.

In Figures 6.9-6.12 are shown the evolution of the controller parameters.
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Figure 6.8: Tracking error of the FOMRAC and FOCMRAC schemes with the 30 virtual

patients
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Figure 6.9: Controller parameters of the FOMRAC scheme using the 1st order structure
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Figure 6.10: Controller parameters of the FCOMRAC scheme using the 1st order structure
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Figure 6.11: Controller parameters of the FOCMRAC scheme using the 2nd order structure
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Figure 6.12: Controller parameters of the FOCMRAC scheme using the 3rd order structure
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6.2.2 Perturbations and noise robustness

During the maintenance phase is essential that the controller be capable of rejecting

disturbances occurred during surgery.

The second simulation illustrates the robustness of the control scheme to perturbations

and noisy measurements, speci�cally, to those perturbations that a�ect the value of the BIS

index in the patients. These perturbations occur because of, for example, intubation of the

patient, painful stimuli or blood loss. In Fig. 6.13 shows the arti�cial disturbance signal.

Fig. 6.14 shows the BIS response of the patient 1 with the four control schemes. Notice

that the controllers are capable of compensating these perturbations and noise, although the

undershoots in the responses are accentuated for the value of the adaptive gain and the lack

of negative control. In Fig. 6.15 it is shown the tracking error.

Figure 6.13: Arti�cial disturbance signal

6.2.3 Time-delay robustness

The simulation illustrates the robustness of the control scheme to the time-delay, repre-

sented by the parameter aeff in the e�ect compartment (5.2) of the PD part of the PK/PD

model. In Fig. 6.16 it is shown the step response of patient 1 for di�erent values of aeff .

Figures (6.17-6.20) shows the BIS output, control input and tracking error of patient 1

with di�erent time-delays, from 0 - 8 minutes, approximately. It can be observed that despite

the change of the time-delay, the four adaptive controllers are capable of compensating the

delay variation, thanks to the memory e�ect of the fractional operators.
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Figure 6.14: BIS response under disturbances and noisy measuremens

Figure 6.15: Tracking error of the adaptive schemes under disturbances and noisy measure-

mens
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Figure 6.16: Patient response under di�erent values of eeff in the PK/PD model

6.2.4 Comparison between fractional-order and integer-order MRAC schemes

In the last simulation, we make a comparison between the fractional-order MRAC schemes

and his counterpart of integer-order applied to patient 1.

In Figure (6.21) and Figure (6.22) shown the adaptive schemes based on the �rst order

model, we can see that the controller of integer-order have an oscillatory response and in

particular the MRAC scheme become unstable.

Figure (6.23) show the schemes CMRAC schemes based on the second order model, we

can observe that the integer-order controller have a constant oscillatory response around the

reference level.

In Figure (6.24) is illustrated the response of the CMRAC schemes based in the third order

model, we can observe that the integer-order controller have a damped oscillatory response

around the reference level but with a much larger control input.

These simulations show that a complex process like control of anesthesia can be controlled

and met the control objective using simple fractional-order models, which is not possible with

the same simple models and controllers of integer-order.
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Figure 6.17: BIS response of patient 1 with di�erent time-delays using the 1st order FOMRAC

scheme.
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Figure 6.18: BIS response of patient 1 with di�erent time-delays using the 1st order FOCM-

RAC scheme.
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Figure 6.19: BIS response of patient 1 with di�erent time-delays using the 2nd order FOCM-

RAC scheme.
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Figure 6.20: BIS response of patient 1 with di�erent time-delays using the 3rd order FOCM-

RAC scheme.
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Figure 6.21: Comparison between 1st order FOMRAC and MRAC, BIS output, control signal

and tracking error.
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Figure 6.22: Comparison between 1st order FOCMRAC and CMRAC, BIS output, control

signal and tracking error.
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Figure 6.23: Comparison between 2nd order FOCMRAC and CMRAC, BIS output, control

signal and tracking error.
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Figure 6.24: Comparison between 3rd order FOCMRAC and CMRAC, BIS output, control

signal and tracking error.
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Chapter 7

Conclusions

he application of fractional calculus can have a considerable impact on everyday life,

namely, in technology, social and health issues. Therefore, signi�cant challenges are still posed

to the scienti�c community that motivates researchers to explore new features of fractional

systems.

In the current state of the art of fractional-order modeling, there is a signi�cant gap

and disadvantages with respect to the integer-order modeling that prevents to become widely

used. Mainly is the lack of a clear physical interpretation, there exist a geometrical (Podlubny

2002, Tarasov 2016), and probabilistic (Machado 2009) interpretation. However, these inter-

pretation are not intuitive and are di�cult to grasp which make more controversial the use of

fractional calculus to model physical phenomena. Furthermore, these interpretations are not

widely accepted, therefore there is no consensus in the community on this essential topic.

For example, suppose that we have an integer-order di�erential equation that describes

the velocity of some object Z, this equation is well understood, and we know the physical

interpretations of integral and derivative of that expression, namely, position and acceleration,

respectively. Now assume that we �nd (empirically for example) a fractional-order model that

describe more accurate and precise the velocity of the object Z. Then, will arise some question,

for example: a variable of a fractional-order equation could represent the velocity of that

object?, Which integral or derivative (integer or fractional-order) we need to apply to obtain

the position and acceleration of the object?, This mathematical representation is equivalent

to his integer-order counterpart?, and ultimately, Are mathematical models with fractional

di�erential equations consistent with the laws of physics?. This fundamental questions and
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the lack of clear answers is what prevents the widespread use of fractional calculus in the

modeling of physical phenomena. However, this controversial concepts could lead to new

directions of research.

On the other hand, view this approach as a mathematical tool has shown in the literature

in diverse areas and �elds an excellent improvement over his integer-order counterpart. In

modeling (view as an empirical or black-box model) showing the better �t of experimental

data with a more simple structure. Also, in control theory, showing more �exibility in the

controller's design and improve performance, opening a vast opportunity for research in this

areas.

he utility of the Lyapunov theory to study the stability in many areas of mathematics

and engineering is manifest. However, many issues remain controversial in fractional-order

systems, for example, What is the state of a fractional-order system? Can a Lyapunov function

be de�ned for variables which are not the state of the system? Are fractional-order systems

dynamic ones?, Do Lyapunov stability concepts apply?.

Which is an indicator that the state of development of the Lyapunov theory for fractional-

order systems is not fully developed and there is much more work to be done.

In the case of control of anesthesia, we deal with a process that is not fully understand,

and with the current integer-order model paradigm, dominated for the PK/PD approach,

despite his plausibility and the acceptance of the biomedical and control community, present

a signi�cant challenge not only by the nature of the processes (unknown parameters, unknown

time delay, states not available for measurement, positivity and poor excitation in the control

input) but also by the model structure (Wiener structure). The recent developments in

biology and physiology with a focus on fractal dynamics (Bassingthwaighte et al. 1994, Magin

2010, West 2010), pharmacology (Dokoumetzidis and Macheras 2009, Verotta 2010, Popovi¢

et al. 2011, Copot et al. 2014) and anesthesia (Chevalier et al. 2013, Copot et al. 2013),

using fractional calculus shown a new paradigm in the understanding and modeling of the

physical phenomena in this areas. This new paradigm suggests that the complex phenomena

(including anesthesia) can be modeled more precise, accurate and with a simple structure

with fractional-order tools.

In this thesis, we present some general and speci�c contributions. The general contri-

bution is regarded to fractional-order adaptive control, here we proposed an extension of the

114



CHAPTER 7. CONCLUSIONS

Barbalat's lemma which allows us to conclude the convergence of the error to zero in the adap-

tive schemes designed. We complete the stability proof of the FOMRAC with state feedback

applying the extension of the Barbalat's lemma. Moreover, we extended the fractional-order

closed-loop MRAC and an identi�cation scheme with output-feedback for fractional-order

systems.

Concerning speci�c results, it was proposed fractional-order models to represent the

input-output behavior of the PK/PD model of anesthesia, showing his e�ectiveness through

the identi�cation scheme designed. Moreover, it can be seen that a simple fractional-order

structure can capture the response of the patient, which is represented by a nonlinear model

(Wiener model) by his integer-order counterpart. The disadvantage is that the proposed

fractional models have no physical interpretation and only can be seen as an empirical (phe-

nomenological) model.

Based on this fractional models proposed it was designed a fractional-order MRAC to

control the PK/PD model of anesthesia, showing through simulations that these controllers

meet the control objectives. Moreover, these schemes are robust again inter and intra-patient

variability, time delay, parameter uncertainty, perturbation, and noise.

These results represent a di�erent and novel approach to attack the problem of control

of anesthesia, which still is an open problem and an active topic of research.

Future Work

For the short term, we can gather in one place all the results regarding the fractional-

order model reference adaptive control. Namely, direct FOMRAC with and without state

measurement, indirect FOMRAC, adaptive observers and adaptive identi�ers, to locate the

missing theory in this area and make contributions.

For the long-term, there are many opportunities of research in a wide range of areas

involving the application of fractional calculus, for example, a personal area of interest is the

modeling and understanding of the physiology using concepts of fractional calculus and the

control of biomedical systems in general.

In control of anesthesia, it is also an active area of research because the challenges involved

and the possible bene�ts of the automatization of this process, and we could deepen the

research on this topic using fractional-order control.
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