

### UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

### **FACULTAD DE INGENIERÍA**

# Análisis regional de precipitaciones para la obtención de lluvias de diseño en el estado de Oaxaca

### **TESIS**

Que para obtener el título de **Ingeniero Civil** 

### PRESENTA

Roberto Abraham Vázquez Martínez

### **DIRECTOR DE TESIS**

M.I. Eliseo Carrizosa Elizondo



Ciudad Universitaria, Cd. Mx. 2017

### Agradecimientos

A mi mamá Rosa María, por sus regaños, por sus palabras de aliento en momentos difíciles, y por todo su apoyo incondicional que me ha brindado a lo largo de mi vida estudiantil.

A mi papá Roberto, por todos los sacrificios, los valores transmitidos y sus sabios consejos que han permitido mi formación como persona de bien.

Al M.I. Eliseo Carrizosa por permitirme formar parte del Instituto de Ingeniería, y por su apoyo y asesoría durante la elaboración de esta tesis.

A mis compañeros; los ingenieros, Mario Ponce, Adam Hernández y Juan Eduardo, por sus recomendaciones bibliográficas, orientación, y apoyo en el uso de software utilizado en la presente tesis.

Por último, a la máxima casa de estudios, la Universidad Nacional Autónoma de México por brindarme educación gratuita y de calidad para mi formación como profesionista en beneficio de nuestra sociedad.

| 1                    |
|----------------------|
| 3                    |
| 3                    |
| <br>3                |
| 3                    |
| 4                    |
| 5                    |
| 6                    |
| 7                    |
| 8                    |
| 9                    |
| 9                    |
| 9                    |
| 11                   |
| 11                   |
| 11                   |
| 13                   |
|                      |
| _14                  |
| _ 14                 |
| _<br>14              |
| 1 <del>4</del><br>16 |
| 17                   |
| 20                   |
| 20                   |
| _ 23                 |
| _<br>_ 23            |
| <b></b><br>23        |
| <b>_</b> 23          |
| 25                   |
|                      |
| <b>25</b><br>25      |
| 23<br>26             |
| 26<br>26             |
| 28                   |
| -<br>28              |
|                      |
| 28<br>29             |
| 23<br>30             |
| <br>31               |
|                      |

| 4.2.1 Estaciones climatológicas disponibles en Oaxaca                                              | 32        |
|----------------------------------------------------------------------------------------------------|-----------|
| 4.2.2. Selección y localización de las estaciones empleadas                                        | 33        |
| Capítulo 5: Metodología aplicada                                                                   | <i>39</i> |
| 5.1 Obtención de datos de registro de precipitaciones                                              | 39        |
| 5.2. Conformación de regiones homogéneas                                                           | 43        |
| 5.3. Regiones definidas                                                                            | 47        |
| 5.4 Depuración de estaciones climatológicas con CLICOM                                             | 48        |
| 5.5. Valores estandarizados con CLICOM                                                             | 53        |
| 5.5. Obtención de las funciones de distribución para cada región con Ax 5.6.1 Resultados obtenidos |           |
| 5.7 Análisis de resultados                                                                         | 69        |
| Conclusiones                                                                                       | 78        |
| Bibliografía                                                                                       | 79        |

### Introducción

La hidrología es la ciencia natural que estudia al agua, su ocurrencia, circulación y distribución en la superficie terrestre; ocupa un papel fundamental en el control de los recursos hidráulicos; proporcionando una guía útil para la planeación, diseño y operación de cualquier proyecto que aborde tal temática. Los estudios realizados por esta ciencia tienen sustento en un compilado amplio y detallado de datos históricos, que permiten realizar un estudio hidrológico, real y factible.

Los datos históricos se obtienen principalmente a través de registros de escurrimiento y precipitación: los primeros toman en cuenta el agua proveniente de la precipitación, la cual circula sobre la superficie terrestre de la cuenca; mientras que, los segundos se encargan de medir la altura de precipitación que se presenta dentro de una cuenca a través de estaciones climatológicas. En México, la disponibilidad de registros de precipitación es mayor que la de escurrimiento; esta información se encuentra a cargo de agencias gubernamentales como la Comisión Federal de Electricidad (CFE) o la Comisión Nacional del Agua (CONAGUA), organismos que se encargan de recolectar, difundir y depurar datos hidrológicos.

Por otro lado, a pesar de que los registros de precipitación son más abundantes que los de escurrimiento, la red de estaciones climatológicas existente en el territorio nacional, sigue siendo muy limitada y no satisface la demanda de información que se requiere para la ejecución de diversos proyectos de aprovechamientos de recursos hídricos.

En la República Mexicana existe información de lluvias diarias medidas en más de 5000 estaciones; el análisis de estos registros muestra que en muchas estaciones los datos disponibles son escasos o erróneos, lo que implica que los análisis estadísticos que se realicen individualmente no resulten del todo confiables (CONAGUA, 2015). Esto se debe en gran medida a la falta de personal capacitado para tomar lecturas y a que la ubicación de las estaciones climatológicas es en zonas de difícil acceso.

La falta de registros hidrológicos dentro la superficie mexicana conduce a una fuerte distorsión e incertidumbre en los estudios de disponibilidad hídrica, afectando el dimensionamiento de las obras, y ocasionando pérdidas económicas por daños en infraestructura lo que inclusive, podría traducirse a pérdidas humanas.

Debido a lo anterior y a la creciente necesidad de estimar eventos de diseño para la creación de obras hidráulicas, se proponen técnicas de análisis probabilístico que permiten atender la falta de información, mediante la utilización de datos disponibles. Una de estas técnicas es la de regionalización; una herramienta que atiende tal

problemática, a través, de la transferencia de información hidrológica a sitios sin registros o con escasa información.

En esta tesis, se aborda el estado de Oaxaca, ya que, debido a su ubicación geográfica, año con año se encuentra vulnerable a ser atacado por fenómenos hidrometeorológicos, por ello, es necesario la construcción de obras que permitan mitigar los efectos adversos causados por éstos.

El presente trabajo, pretende realizar un análisis probabilístico utilizando los registros de precipitación disponibles dentro del estado de Oaxaca, con la finalidad de dimensionar obras hidráulicas seguras y confiables en cualquier parte del Estado.

En Oaxaca existen 352 estaciones climatológicas; no obstante, muchas se encuentran fuera de servicio o simplemente no cuentan con un historial lo suficientemente amplio para ser tomadas en cuenta en el análisis probabilístico. Una vez realizada la selección, se tuvo un total de 190 estaciones climatológicas para la elaboración del análisis de regionalización, el cual agrupa las estaciones climatológicas de acuerdo a sus características estadísticas y fisiográficas, permitiendo estimar la cantidad de lluvia que cae en lugares donde las estaciones no operen correctamente, tengan pocos años de registro, o la información sea inexistente.

El presente trabajo consta de cinco capítulos: en el capítulo 1 y 2, se presentan algunos conceptos generales utilizados en el análisis de regionalización de lluvias de precipitación para el estado de Oaxaca, estos conceptos conciernen a las áreas de estadística, probabilidad, e hidrología, y son de suma importancia en la comprensión de las medidas de tendencia usadas para el análisis de una muestra de datos.

En el capítulo 3, *Metodología*, se muestran algunas técnicas de agrupamiento, resaltando el método de Avenida Índice, el método de correlación y regresión múltiple, y el método de Estaciones- Año, siendo este último el que se utilizó para el análisis de regionalización de lluvias de precipitación.

En el capítulo 4, *Ejemplo de aplicación*, se realiza una breve descripción del estado de Oaxaca, así como información hidrológica disponible para el análisis de regionalización, además se detalla el procedimiento utilizado para obtención de lluvias de diseño para distintos periodos de retorno del estado de Oaxaca, a través de las funciones de probabilidad comentadas en el capítulo 3.

Por último, en el capítulo 5, se presentan las conclusiones y resultados obtenidos del estudio de regionalización en el estado de Oaxaca.

### Capítulo 1: Conceptos Básicos

### 1.1 Conceptos básicos de estadística

La estadística es una ciencia que ofrece técnicas precisas para la recolección, descripción e interpretación de datos; además tiene el cometido de proporcionar métodos útiles para el análisis de masas de información numérica.

La meta de la estadística es hacer una inferencia acerca de una población de estudio, con base en la información contenida en la muestra de esa población; para ello, se debe contar con una distribución de frecuencia relativa asociada con un conjunto de datos, y un histograma. Aunado a esto, es necesario el uso de medidas descriptivas numéricas para resumir la información contenida en una muestra, estas reciben el nombre de *medidas de tendencia central* y *medidas de dispersión o variación*, las cuales se explicarán más adelante.

### 1.1.1 Medidas de tendencia central

Son medidas descriptivas que sintetizan en un valor único, un conjunto de valores, representando un centro en torno al cual se encuentra ubicado el conjunto de los datos. Las medidas de tendencia central más utilizadas son: media, mediana y moda.

### 1.1.1.1 Media

La media aritmética o promedio, es la tendencia central más empleada en la estadística. Es la suma de los valores de todas las observaciones, dividida entre el número de observaciones realizadas.

Sea n el tamaño de la muestra que contiene a las observaciones  $x_1, x_2, x_3, \dots, x_n$ , entonces la media aritmética,  $\bar{x}$  es:

$$\bar{\mathbf{x}} = \frac{\sum_{i=1}^{n} \mathbf{x}_i}{\mathbf{n}}$$

ecu.1.1

Donde el subíndice i, indica el número de conteo para identificar cada observación, y  $\overline{x}$ , se lee como " $\overline{x}$  barra", referida a la media muestral. Por otro lado, la media poblacional se denota con la letra  $\mu$ , y puede estimarse usando información muestral.

Si los datos se encuentran agrupados en una tabla de frecuencias, la expresión utilizada es:

$$\overline{x} = \frac{\sum_{i=1}^{n} \widetilde{x}_{i} f_{i}}{n}$$

ecu.1.2

Donde  $\tilde{x}_i$  es la marca de clase y  $f_i$  el número de datos analizados en cada intervalo, es decir, la frecuencia.

No obstante, es importante recalcar que el valor de la media puede ser severamente afectado por datos extremos, por lo que si la distribución es muy sesgada no es conveniente utilizar esta medida de tendencia central.

### 1.1.1.2 **Mediana**

Es un valor tal que la mitad de las observaciones son menores que ese valor y la otra mitad mayores que el mismo, en otras palabras, la mediana es el valor central que se localiza en una serie ordenada de datos, convirtiéndose así en el centro geométrico de la distribución de los datos.

Caso 1: Sean  $x_1, x_2, x_3, x_4, x_5$  las observaciones analizadas ordenadas de menor a mayor, entonces:

$$Mediana = x_3$$

Caso 2: Sean  $x_1$ ,  $x_2$ ,  $x_3$ ,  $x_4$  las observaciones analizadas ordenadas de menor a mayor, entonces:

$$Mediana = \frac{x_2 + x_3}{2}$$

La expresión utilizada para obtener la mediana a partir de datos agrupados en una tabla de frecuencias es:

$$Mediana = a + \Delta x \left[ \frac{\frac{n}{2} - (\sum f)_a}{f_m} \right]$$

ecu.1.3

Donde:

 $\Delta x$ , Es el tamaño del intervalo.

a, Es el extremo izquierdo del intervalo.

n, Es el número de valores observados en el experimento.

 $f_{m}$ , Es la frecuencia absoluta correspondiente al intervalo en cuestión.

 $(\sum f)_{a}$ . Es la suma de las frecuencias correspondientes a los intervalos anteriores.

A diferencia de la media, la mediana no se ve afectada por valores extremos y por lo tanto, si la distribución es asimétrica o sesgada es una medida que representa mejor a los datos. Sin embargo, su desventaja radica en que su valor se determina con un único dato, el dato central de la serie ordenada.

### 1.1.1.3 Moda

La moda es el valor con mayor frecuencia en una serie de datos, sin embargo, se puede presentar el caso en el que exista más de una moda, es decir, que haya dos o más valores con la misma frecuencia máxima que den origen a una distribución multimodal. Otro caso es la ausencia de la moda, y ocurre cuando no existe un valor que se repita más veces que los otros.

Caso 1: Sean  $x_1, x_2, x_3, x_4$  las observaciones analizadas, entonces:

$$Moda = x_3$$

Caso 1: Sean  $x_1, x_2, x_2, x_3$  las observaciones analizadas, entonces:

$$Moda = x_1 y x_2$$

Caso 3: Sean  $x_1, x_2, x_3, x_4, x_5$  las observaciones analizadas, entonces:

$$Moda = \emptyset$$

En el caso de una tabla de frecuencias, la moda siempre se encontrará en el intervalo que tenga la mayor magnitud de frecuencia, por lo tanto, si esto se extiende a una gráfica, la moda estará ubicada en el valor más alto o el pico de la distribución como se muestra en la *Figura 1.1.* 

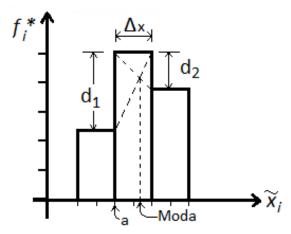



Figura 1.1. Distribución de frecuencias

Entonces la expresión utilizada para obtener la moda a partir de datos agrupados en una tabla de frecuencias la siguiente:

$$Moda = a + \Delta x \left[ \frac{d_1}{d_2 + d_1} \right]$$

ecu.1.4

Donde:

a, Es el extremo izquierdo del intervalo.

 $\Delta x$ , Es el tamaño del intervalo.

 $d_1$ , Corresponde a la diferencia entre la frecuencia del intervalo y la frecuencia inmediatamente inferior del intervalo.

 $d_2$ , Corresponde a la diferencia entre la frecuencia del intervalo y la frecuencia inmediatamente posterior del intervalo.

Consideraciones: La moda por lo general no se usa debido a que no tiene un valor único o puede ser que no exista. Para datos agrupados en tabla de frecuencia, la moda tiene importancia porque en éste caso si hay un valor único.

### 1.1.2 Medidas de dispersión

Las medias expuestas anteriormente únicamente localizan el centro de la distribución de datos, y por sí mismas no proporcionan una descripción adecuada de un conjunto de mediciones, ya que se puede presentar el caso en el que se tengan distribuciones de frecuencia diferente, pero con equivalentes medias de tendencia central, como se muestra en *la Figura 2.2.* 

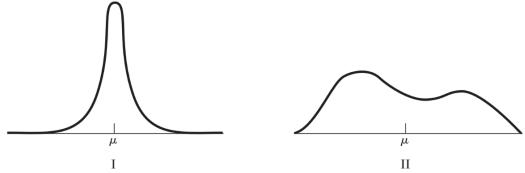



Figura 1.2. Distribución de frecuencias con medias poblacionales iguales, pero con diferentes distribuciones de frecuencia

Por lo tanto, si se desea describir en forma adecuada los datos, también es indispensable definir medidas de dispersión de datos, los cuales se explicarán a continuación.

### 1.1.2.1 Varianza

La medida de variabilidad más común empleada en estadística es la varianza, y está en función de las desviaciones (o distancias) de las mediciones muestrales desde la media. En otros términos, la *varianza muestral* es el promedio aritmético de los cuadrados de las desviaciones de los valores observados con respecto a su media, y se calcula con la siguiente expresión.

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

ecu.1.5

Si los datos se encuentran agrupados en una tabla de frecuencias, la expresión utilizada es:

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (\widetilde{x}_i - \overline{x})^2 f_i$$

ecu.1.7

Donde:

 $\widetilde{x}_i$ , Es la marca de clase

 $\overline{x}$ , Es la media

 $f_i$ , Es la frecuencia

### n, Número de observaciones

La correspondiente *varianza poblacional* está denotada por el símbolo  $\sigma^2$  y contempla todos los valores del universo.

$$\sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 dF(x) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$

Es importante señalar que la *varianza*, al igual que la media, es un índice muy sensible a las puntuaciones extremas.

### 1.1.2.2 Desviación estándar

La desviación estándar es fácil de calcular, toma en cuenta todos los datos y es una medida importante en el estudio de la inferencia estadística.

Para el cálculo de la *desviación estándar* de una muestra de mediciones basta con obtener la raíz cuadrada de la varianza como se muestra a continuación:

$$S = \sqrt{S^2}$$

ecu.1.8

De igual manera para calcular la desviación estándar poblacional únicamente se obtiene la raíz cuadrada de la varianza poblacional.

$$\sigma = \sqrt{\sigma^2}$$

ecu.1.9

La expresión para la desviación estándar a partir de datos agrupados en tablas se calcula con la siguiente expresión:

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\widetilde{x}_i - \overline{x})^2 f_i}$$

ecu.1.10

Donde:

 $\widetilde{\boldsymbol{x}}_{\boldsymbol{i}}$ , Es la marca de clase

 $\overline{x}$ . Es la media

### $f_i$ , Es la frecuencia

### n, Número de observaciones

Aun cuando la varianza y la desviación estándar se encuentran relacionadas, la varianza se expresa en las unidades de los datos, elevadas al cuadrado. Por otro lado, la desviación estándar tiene las mismas unidades que los datos y proporciona la variabilidad promedio de los datos respecto a su media.

### 1.1.2.3 Coeficiente de variación

Debido a que la desviación estándar y la media tienen las mismas unidades, el coeficiente de variación es una relación de ambos, y se expresa en proporción o en porcentaje a través de la siguiente expresión:

$$CV = \frac{S}{\overline{x}}$$

ecu.1.11

El coeficiente de variación es una medida de variabilidad relativa de una serie de datos que se utiliza cuando se quiere comparar la variabilidad de dos o más muestras o poblaciones, debido a que su valor es independiente de las unidades de medición.

### 1.2 Conceptos básicos de hidrología

La ingeniería hidrológica o hidrología aplicada, es la ciencia cuyo cometido es el diseño y operación de proyectos de ingeniería civil para el control y aprovechamiento del agua. Es una herramienta que sirve para planear, construir y supervisar el funcionamiento de obras civiles, tales como: presas, vertedores, sistemas de drenaje, puentes, carreteras, aeropistas, sistemas de abastecimiento de agua, entre otros.

El objetivo de la hidrología es fijar la capacidad y seguridad de estructuras hidráulicas. Además, busca proveer una guía para el planeamiento y el manejo de los recursos hidráulicos.

### 1.2.1 Tiempo de concentración

El tiempo de concentración se define como la diferencia temporal entre el inicio de la lluvia hasta el momento en que se establece el equilibrio, es decir, el momento en el cual el gasto de escurrimiento es constante.

El tiempo de concentración  $t_c$  equivale al tiempo que tarda el agua en pasar del punto más alejado hasta la salida de la cuenca. Es función de la pendiente y rugosidad del

terreno, ya que estas características determinarán la velocidad que el agua puede adquirir dentro de la cuenca.

Es importante conocer el *tiempo de concentración*, ya que en modelos Iluviaescurrimiento, la duración de la Iluvia se considera igual al tiempo de concentración de la cuenca, puesto que es cuando se presenta el escurrimiento directo, es decir, la precipitación no es retenida en la superficie terrestre y tampoco infiltra en el suelo, por lo cual se espera que se presenten los caudales máximos.

La expresión para calcular el tiempo de concentración es:

$$t_c = \frac{L}{3600 v}$$

ecu.1.12

Donde:

 $t_c$ , Es el tiempo de concentración en *horas*.

 $\boldsymbol{L}$ , Es la longitud del cauce principal de la cuenca en m.

v, Es la velocidad media del agua en el cauce principal en m/s.

Otra manera de estimar el tiempo de concentración es con la fórmula de Kirpich:

$$t_c = 0.000325 \frac{L^{0.77}}{S^{0.385}}$$

ecu.1.13

Donde:

 $oldsymbol{t_c}$ , Es el tiempo de concentración en horas.

 $\emph{S}$ , Es la pendiente del cauce principal.

 ${\it L}$ , La longitud del cauce principal en m

### 1.2.2 Precipitación media

La precipitación varía en el espacio y tiempo de acuerdo con el patrón general de circulación atmosférica y con factores locales. Normalmente la precipitación que cae en un lugar específico es diferente a la que cae a sus alrededores aledaños. Por otro lado, debido a que la única información disponible es a través de registros históricos puntuales de lluvia, mediante pluviómetros o pluviógrafos, surge la necesidad de conocer la lluvia promedio que cae sobre un área determinada, por ejemplo, en una cuenca, y para ello existen tres métodos de uso generalizado, las cuales se explican más adelante.

### 1.2.2.1 Método aritmético

El método de la media aritmética es el más simple para determinar la lluvia promedio sobre un área. Consiste en obtener el promedio aritmético de las alturas de precipitación registradas en cada estación usada en el análisis.

$$\overline{h_p} = \frac{1}{n} \sum_{i=1}^n h_{pi}$$

ecu.1.14

Donde en donde  $h_{pi}$  es la precipitación puntual de cada estación, y n es el número de estaciones dentro de los límites de la cuenca de estudio.

Por otro lado, este método es satisfactorio sólo si las estaciones pluviométricas se distribuyen uniformemente sobre el área y sus mediciones individuales no varían de manera considerable de la media.

### 1.2.2.2 Método de polígonos de Thiessen

Considerando que algunos pluviómetros son más representativos que otros, el método de *Polígonos de Thiessen* asigna pesos relativos a cada pluviómetro de acuerdo a su área de influencia, cuyas fronteras están formadas por los bisectores perpendiculares a las líneas que unen pluviómetros adyacentes, como se muestra en la *Figura 3.3.* 

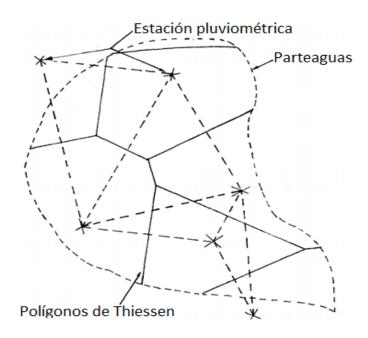



Figura 1.3. Cuenca con Polígonos de Thiessen

Para este método el tamaño y la configuración de los polígonos depende de la distribución de los puntos originales.

La expresión que determina la precipitación media dentro de una cuenca a través del método de *Polígonos de Thiessen,* es un promedio pesado de las precipitaciones registradas en cada estación, usando como peso el área de influencia correspondiente.

$$\overline{h_p} = \frac{1}{A} \sum_{i=1}^n A_i h_{pi}$$

ecu.1.15

Donde:

 $A_i$ , Es el área de influencia de cada estación i, en  $km^2$ .

A, Es el área total de la cuenca en  $km^2$ .

 $\boldsymbol{h_{pi}}$ , Es la precipitación registrada de cada estación, en mm.

Por lo general, este método es más exacto que el de la media aritmética, sin embargo, no toma en cuenta los factores topográficos que afectan a la distribución de la lluvia.

### 1.2.2.3 Método de las Isoyetas

Es el único método que toma en cuenta los factores topográficos de la cuenca. Además es el método más laborioso y preciso.

Para elaborar un mapa de isoyetas se utilizan las alturas de precipitación que se tengan registradas en los pluviómetros, posteriormente se interpola entre pluviómetros adyacentes, dando origen a isolineas con contorno de lluvia constante.

La expresión utilizada para el cálculo de la precipitación media a través del método de isoyetas es la siguiente:

$$\overline{h_p} = \frac{1}{A} \sum_{i=1}^n A_i h_{pi}$$

ecu.1.16

Donde:

 $A_i$ , Es el área entre dos isoyetas consecutivas y el parteaguas de la cuenca en  $km^2$ .

A, Es el área total de la cuenca en  $km^2$ .

 $h_{pi}$ , Precipitación media entre dos isoyetas en mm.

## Capítulo 2: Funciones de Distribución de probabilidad empleadas en hidrología.

### 2.1 Variable aleatoria discreta y variable aleatoria continua

Una variable aleatoria (v.a.) es una función que asocia a cada resultado del espacio muestral un número real. La *variable aleatoria discreta* es aquella que toma valores de un conjunto contable y finito, mientras que la *variable aleatoria continua t*oma valores de un conjunto infinito no numerable. Un ejemplo de esta última podría ser el volumen de escurrimiento mensual de un río.

### 2.2 Función de distribución de probabilidad y densidad de probabilidad

Una distribución de probabilidad es un modelo teórico que describe la variación de los resultados de un experimento aleatorio, en otras palabras determina el comportamiento de la variable aleatoria  $\boldsymbol{X}$  y proporciona las probabilidades de todos los posibles resultados que puede tomar la variable aleatoria, dichos valores se representan con la letra  $\boldsymbol{x}$ .

Una función de densidad de probabilidad f(x), se aplica únicamente para variables continuas, y describe la probabilidad de que la variable aleatoria esté comprendida dentro de un intervalo definido como se muestra en la figura 2.1:

$$P[a \le X \le b] = \int_{a}^{b} f(x) dx \qquad a, b \in \mathbb{R}$$
ecu.2.1

Figura 2.1. Intervalo de una función de densidad de probabilidad

De tal manera que las probabilidades son las áreas bajo la función de densidad. El área bajo la función de densidad entre dos puntos a y b se interpreta como la probabilidad de que la variable aleatoria tome valores comprendidos entre a y b.

La función de densidad de probabilidad siempre es positiva para cualquier valor que pueda adquirir la variable aleatoria  $f(x) \ge 0$ . Y además cumple con la propiedad de normalización que se define con la siguiente expresión:

$$\int_{-\infty}^{+\infty} f(x) \ dx = 1$$

ecu.2.2

La función de distribución de probabilidad F(x), es una función matemática que determina la probabilidad de que la variable aleatoria X tenga un valor menor o igual que x. En otros términos: para un valor dado de x, F(x) es la probabilidad acumulada  $P(X \le x)$ , y puede expresarse como la integral de la función de densidad de probabilidad sobre el rango  $X \le x$ :

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(u) \ du$$

ecu.2.3

Donde u es una variable de integración auxiliar.

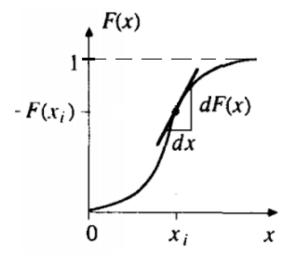



Figura 2.2. Función de distribución de probabilidad para una variable aleatoria continua

Tanto la función de densidad como la función de distribución están estrechamente relacionadas, mediante las siguientes expresiones:

$$F(x) = \int_{-\infty}^{x} f(x) dx \text{ \'o } f(x) = F'(x)$$
 ecu.2.4

### 2.1.1 Periodo de retorno

Debido a que los procesos hidrológicos evolucionan en el espacio y tiempo en forma parcialmente predecible y parcialmente aleatoria, la probabilidad y estadística toman un papel de suma importancia en el análisis hidrológico.

El diseño y planeación de obras hidráulicas siempre está relacionado con eventos hidrológicos que toman en cuenta eventos que quizá no se hayan presentado anteriormente, o al menos no en un periodo de registros disponibles, pero que son necesarios conocer para determinar las dimensiones de una obra. Uno de los parámetros más representativos es el *periodo de retorno* T(x), el cual se define como el tiempo promedio en años que se requiere para la ocurrencia de un evento x de igual o mayor magnitud y está dado por la siguiente expresión:

$$T(x) = \frac{1}{1 - F(x)}$$

ecu.2.5

Donde:

T(x), Es el periodo de retorno, en años, asociado a un valor.

F(x), Función de distribución de probabilidad ajustada para los valores máximos anuales.

El valor del periodo de retorno se determina en función de la posición de la variable aleatoria. Entonces, sean  $x_1, x_2, x_3, ... x_n$  las precipitaciones ordenadas de mayor a menor, y m el número de orden que se asigna a cada número, siendo m=1 para el valor máximo como se muestra en el ejemplo de la tabla 2.1.

| Fecha | Precipitación<br><i>mm</i> | Precipitación<br>ordenada<br><i>mm</i> | Numero de<br>orden <b>m</b> |
|-------|----------------------------|----------------------------------------|-----------------------------|
| 1992  | <b>X</b> 6                 | <b>X</b> 9                             | 1                           |
| 1993  | <b>X</b> 3                 | <b>X</b> 8                             | 2                           |
| 1994  | X1                         | <b>X</b> 7                             | 3                           |
| 1995  | <b>X</b> 9                 | <b>X</b> 6                             | 4                           |
| 1996  | <b>X</b> 7                 | <b>X</b> 5                             | 5                           |
| 1997  | <b>X</b> 6                 | <b>X</b> 4                             | 6                           |
| 1998  | X2                         | <b>X</b> 3                             | 7                           |
| 1999  | <b>X</b> 5                 | X2                                     | 8                           |
| 2000  | <b>X</b> 8                 | X1                                     | 9                           |
|       |                            |                                        |                             |

Tabla 2.1. Para la obtención de periodo de retorno

Entonces si se desea obtener el *periodo de retorno* estimado para un valor  $x_i$  se aplica la expresión 2.6.

$$T_r = \frac{n+1}{m}$$

ecu.2.6

Donde:

n, Es número de precipitaciones tomadas en cuenta.

 $T_r$ , Es el periodo de retorno estimado para cierta precipitación que ocupa el lugar m en la secuencia ordenada de mayor a menor.

Por ejemplo, si se desea obtener el valor de la lluvia de precipitación  $x_6$ , sustituyendo la ecuación 2.6. quedaría lo siguiente:

$$T_r = \frac{8+1}{4} = 2.25 \ a\tilde{n}os$$

Es decir, que el lapso que tiene que pasar para que una lluvia de magnitud  $x_6$  ocurra es de  $2.25~a\~nos$ , por otro lado, si obtiene el recíproco de este valor se llegará a la probabilidad de que ocurra un evento igual o mayor magnitud en el a $\~nos$ 0, arrojando un valor de 44.44%.

Debido a que *un periodo de retorno* de retorno se obtiene a través de los registros máximos, es importante contar con por lo menos 20 registros, sin embargo, por lo general, la cantidad de registros no es suficiente para determinar grandes periodos de retorno, es por eso que se deben emplear *funciones de probabilidad* que se ajusten al conjunto de datos que permitan extrapolar estos valores hasta llegar al periodo de retorno deseado. Aunado a esto, no todas las variables hidrológicas siguen la misma distribución, por ello, a continuación, se presentarán algunas distribuciones de probabilidad más utilizadas en la hidrología aplicada, así como los casos en los cuales se han aplicado dichas distribuciones.

### 2.1.2 Distribución Normal

La importancia de esta distribución radica en que permite modelar numerosos fenómenos naturales, tal es el caso de las variables hidrológicas, como la precipitación anual, que calculadas como la suma de los efectos de muchos eventos independientes tienden a seguir una distribución normal (Chow, 1994). La función de densidad de probabilidad normal tiene una forma acampanada y es simétrica respecto a la media de los valores analizados, además su campo de existencia contempla

valores reales desde  $-\infty$  hasta  $\infty$ , esta función está dada por la expresión 2.7, mientras que la función de distribución de probabilidad está dada por la expresión 2.8

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

ecu.2.7

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$$

ecu.2.8

Donde  $\mu$  es la media poblacional y  $\sigma$  es la desviación estándar de la población. Estos dos parámetros de distribución definen la forma de la función de densidad f(x) como se muestra en la *Figura 4.1* y *Figura 5.2*.

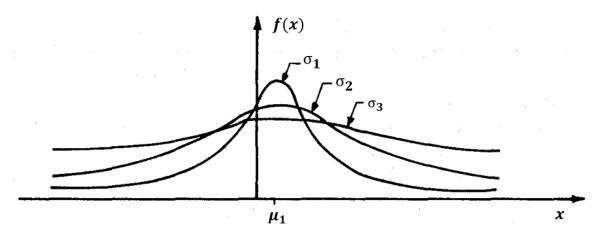



Figura 2.1 Función de densidad de probabilidad normal con mismo valor de  $\mu$  pero con diferente valor de  $\sigma$ 

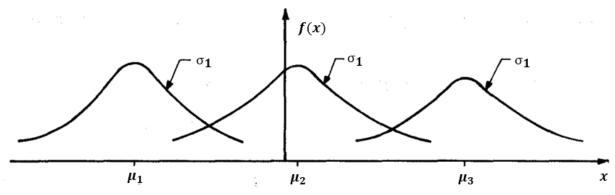



Figura 2.2. Función de densidad de probabilidad normal con mismos valores de  $\sigma$  pero con diferentes valores de  $\mu$ 

Sin embargo, para valuar una variable en una distribución normal, se utilizan métodos numéricos en los que participan los valores de  $\mu$  y  $\sigma$ , de tal manera que la función F(x) puede simplificarse definiendo la *variable normal estándar* z mediante la siguiente expresión.

$$z=\frac{x-\mu}{\sigma}$$

ecu.2.9

De tal manera que ahora la expresión de la función de densidad de probabilidad está dada por la ecuación 2.6, mientras que la función de distribución de probabilidad normal estándar es la ecuación 2.7.

$$f(\mathbf{z}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\mathbf{z}^2}{2}}; \quad -\infty \le \mathbf{z} \le \infty$$
 ecu.2.10

$$F(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$
 ecu.2.11

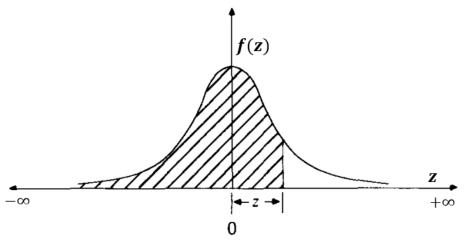



Figura 2.3. Función de densidad de probabilidad para la distribución normal estándar.

Es posible calcular F(z) para cualquier valor de z ya que la función se encuentra calculada numéricamente y sus valores se encuentra en tablas.

No obstante, la aplicación de la distribución normal para la descripción de variables hidrológicas tiene dos principales limitantes. Por un lado, que la distribución normal varía a lo largo de un rango continuo  $[-\infty, +\infty]$ , y las variables hidrológicas no pueden ser negativas, y por otro lado, difícilmente se tendrá información hidrológica que sea simétrica alrededor de la media.

### 2.1.3 Distribución Gumbel

La distribución Gumbel se emplea para analizar valores extremos, ya sean máximos o mínimos. En el caso de la hidrología aplicada se utiliza para el análisis de gastos o precipitaciones máximas anuales. Su función de densidad de probabilidad está dada por la expresión 2.12, y su función de distribución de probabilidad está dada por la expresión 2.13:

$$f(x)=lpha e^{\left[-lpha(x-eta)-e^{-lpha(x-eta)}
ight]}$$
 ecu.2.12  $F(x)=e^{-e^{-lpha(x-eta)}}$ 

ecu.2.13

Donde  $\alpha$  y  $\beta$  son parámetros de la función que se calculan con las expresiones 2.14 y 2.15 para muestras muy grandes.

$$lpha=rac{1.2825}{S}$$
 ecu.2.14  $eta=\overline{x}-0.45~S$ 

Para muestras relativamente pequeñas se emplea:

$$lpha=rac{\sigma_y}{S}$$
 ecu.2.16  $eta=\overline{x}-rac{\mu_y}{lpha}$  ecu.2.17

Donde:

S, es la desviación estándar de la muestra.

 $\overline{x}$ , Es la media muestral.

 $\mu_y$  y  $\sigma_y$  están determinados en la tabla 2.2

| n   | $\mu_y$ | $\sigma_y$ |
|-----|---------|------------|
| 10  | 0.4952  | 0.9496     |
| 15  | 0.5128  | 1.0206     |
| 20  | 0.5236  | 1.0628     |
| 25  | 0.5309  | 1.0914     |
| 30  | 0.5362  | 1.1124     |
| 35  | 0.5403  | 1.1285     |
| 40  | 0.5436  | 1.1413     |
| 45  | 0.5463  | 1.1518     |
| 50  | 0.5485  | 1.1607     |
| 55  | 0.5504  | 1.1682     |
| 60  | 0.5521  | 1.1747     |
| 65  | 0.5535  | 1.1803     |
| 70  | 0.5548  | 1.1854     |
| 75  | 0.5559  | 1.1898     |
| 80  | 0.5569  | 1.1938     |
| 85  | 0.5578  | 1.1974     |
| 90  | 0.5586  | 1.2007     |
| 95  | 0.5593  | 1.2037     |
| 100 | 0.5600  | 1.2065     |

Tabla 1.2.

### 2.1.4 Distribución Doble Gumbel

Por lo general esta distribución se utiliza para realizar análisis hidrológicos en zonas donde se presentan dos poblaciones diferentes para una misma zona de estudio. Por ejemplo, en zonas costeras de México la primera población estaría referida a eventos meteorológicos habituales, mientras que la segunda población comprendería a los gastos producidos por las precipitaciones ciclónicas. La función de distribución de probabilidad está dada por la siguiente expresión:

$$F(x) = e^{-e^{-\alpha_1(x-\beta_1)}} \left[ p + (1-p)e^{-e^{-\alpha_2(x-\beta_2)}} \right]$$

ecu.2.18

Donde:

 $lpha_1$  y  $oldsymbol{eta}_1$  son parámetros de forma de la primera población (no ciclónica)

 $\alpha_2$  y  $\beta_2$  son parámetros de forma de la segunda población (ciclónica)

 ${\it p}$  Es la probabilidad de tener eventos no ciclónicos

$$p = \frac{n\'{u}mero\ de\ eventos\ no\ cicl\'{o}nicos}{n\'{u}mero\ total\ de\ eventos} = \frac{N_n}{N_t}$$

ecu.2.19

Entendiéndose por población ciclónica a datos asociados a gastos mayores producidas por precipitaciones extraordinarias, y por población no ciclónica a datos asociados a precipitaciones producidas por eventos meteorológicos dominantes de la zona.

Los parámetros  $\alpha_1$  y  $\alpha_2$  definen una cierta inclinación de las curvas, entre más pequeñas más fuerte es la inclinación, y los parámetros  $\beta_1$  y  $\beta_2$ , definen la escala, donde el mayor valor que pueden tomar es el máximo valor de la muestra obtenido para las poblaciones 1 y la 2. Estos parámetros se calculan con las expresiones 2.14 y 2.15, las mismas que para la distribución Gumbel.

### Capítulo 3: Metodología

### 3.1 Métodos de Regionalización (Técnicas de agrupamiento)

El análisis hidrológico suministra la forma de inferir eventos para ciertos periodos de retorno en sitios con escasa o nula información, a través del empleo de las características fisiográficas y climatológicas de la cuenca en el sitio de estudio y/o de sus cuencas vecinas. La mayoría de las técnicas regionales se basan en series de máximos anuales. (Escalante y Reyes, 2008).

El análisis regional de precipitaciones es una técnica que se apoya en la homogeneidad hidrológica de una región; es decir, en zonas de estudio cuyas características sean parecidas (homogeneidad estadística) que permitan generar grupos de estaciones climatológicas con registros históricos similares ajustados a una determinada función de probabilidad que presente un comportamiento muy similar de la muestra. La regionalización tiene la particularidad de tomar en cuenta varias estaciones en lugar de sólo hacer un análisis individual. Hoy en día existen diferentes métodos de regionalización, encaminadas a regionalizar parámetros que permiten evaluar eventos máximos para diferentes periodos de retorno en lugares donde no es posible acceder a información de este tipo, ya sea porque su información es poco confiable, tenga series de máximos anuales muy cortas, o de plano no exista información.

Por otro lado, debido que gran parte del territorio nacional no cuenta con suficientes estaciones climatológicas, es necesario aplicar una metodología de regionalización que tome en cuenta registros hidrológicos existentes, que permitan transferir dicha información de un punto a otro con información insuficiente o nula, dentro de un área con comportamiento hidrológico semejante.

Por lo general, la delimitación regional toma en cuenta límites políticos y áreas geográficas continuas, sin embargo, no se garantiza la homogeneidad debido a la gran variabilidad espacial de las características fisiográficas o hidrológicas, aunado a esto, actividades humanas como la apertura de áreas de cultivo o la construcción de embalses contribuyen al déficit de homogeneidad de los datos.

A continuación, se presentan algunos métodos para la identificación de regiones homogéneas.

### 3.1.1 Método de los Trazos Multidimensionales (Curva de Andrews)

El método emplea la técnica de regresión lineal múltiple para seleccionar las características fisiográficas y climatológicas adecuadas. La heterogeneidad de los

grupos que se forman de manera preliminar se evalúa mediante una técnica de posicionamiento, en la cual un punto en el espacio multidimensional se representa por una curva en dos dimensiones vía la función (Escalante y Reyes, 2008).

$$f(t) = \frac{X_1}{\sqrt{2}} + X_2 \sin(t) + X_3 \cos(t) + X_4 \sin(2t) + X_5 \cos(2t) + \dots$$

ecu.3.1

Donde  $X_1$  y  $X_2$ ,... son características fisiográficas y/o meteorológicas obtenidas del análisis de regresión y la función se evalúa en el rango  $-\pi \le t \le \pi$ . Debido a que la función conserva las distancias, es una técnica ideal de comparación visual para la formación de grupos homogéneos.

Los resultados obtenidos dependen del tipo y del ordenamiento de las variables seleccionadas, donde las primeras variables son asociadas con componentes cíclicas de baja frecuencia y las últimas de alta frecuencia, siendo las de baja frecuencia las más fáciles de observar, por lo tanto,  $X_1$  es la variable más significativa en el análisis de regresión,  $X_2$  la segunda, y así sucesivamente.

Una vez desarrolladas las funciones f(t), se generan envolventes que formen conjuntos de curvas de comportamiento similar y se deriva una curva media  $\bar{f}(t)$ , que represente los atributos físicos de cada grupo formado.

Para las curvas donde se tenga duda sobre si pertenece o no a un grupo particular se hará la siguiente prueba:

$$SS = \sum_{t=-\pi}^{\pi} \left\{ [f^{j}(t)] - \left[ \overline{f}(t) \right]_{k} \right\}^{2}$$

ecu.3.2

Donde:

SS, es la suma de las diferencias al cuadrado entre los puntos que forman la curva en el sitio j.

 $ar{f}(t)$ , es la curva característica de cada uno de los k grupos ya formados.

La cuenca se localizará en la región k donde se haya obtenido el menor valor de SS.

### 3.1.2 Método geográfico

Se basa en suponer que una región es homogénea, dada la proximidad de sus cuencas donde la delimitación se puede realizar trazando un radio de 80 km a partir

del centro de gravedad del sitio del proyecto y tomando toda la información proveniente de los sitios que quedan dentro de este radio (Escalante y Reyes, 2008).

### 3.1.4 Método del Coeficiente de Variación

Este método es ideal, ya que hace uso de una comparación gráfica entre atributos estadísticos de los registros analizados.

Para los datos de registro disponibles se obtiene el parámetro estadístico de centralización  $\overline{x}_i$ , y el parámetro estadístico de dispersión  $CV_i$  con los cuales se construye una gráfica, colocando en el eje de las ordenas los coeficientes  $CV_i$  y en el eje de las abscisas la relación  $(\overline{x}_i/A_i)$ , donde  $A_i$  son las áreas drenadas de cada uno de los sitios. Por último, los grupos se forman por la concentración de puntos alrededor de determinado valor del coeficiente de variación.

### 3.2 Técnicas Regionales

La regionalización hidrológica se utiliza para obtener diferentes periodos de retorno en sitios con escasa o nula información, a través del empleo de las características fisiográficas y climatológicas de la cuenca en el sitio de estudio y/o de sus cuencas vecinas, de tal manera que las cuencas involucradas tengan un comportamiento hidrológico similar para garantizar resultados confiables.

La mayoría de las técnicas regionales se basan en series de máximos anuales y unos pocos en series de excedentes anuales. Por otro lado, hay diversas técnicas de transferencia de información que se basan en métodos parcialmente o totalmente estadísticos y con diferentes niveles de complejidad. A continuación, se describen algunos tipos de análisis hidrológicos más utilizados.

#### 3.2.1 Método de avenida índice

Es una técnica sencilla de regionalización ampliamente usada en la hidrología. Este método presenta diversas ventajas, entre las que se pueden mencionar las siguientes: la metodología es de aplicación y sistematización sencilla, el método requiere de la calibración de una sola ecuación índice, los estimadores regionales aseguran la consistencia en los resultados y los errores de estos estimadores son pequeños (Maidment, 1993).

Un método del tipo de avenida índice es el de Darlymple, el cual considera que las muestras se ajustan a la distribución de valores extremos tipo I (Gumbel), y se requiere que las muestras tengan igual longitud de registro.

### 3.2.2 Método de correlación y regresión múltiple

La dependencia o independencia de las variables se estima para cada sitio aforado mediante un proceso de correlación y regresión discriminante, donde la aportación de cada variable independiente es aprobada hasta lograr un modelo de regresión, en el que intervengan todas las variables que sean estadísticamente significativas para la estimación de la variable dependiente analizada. (Escalante y Reyes, 2008).

### 3.2.3 Estaciones – Año

Este método es utilizado para estimar largos periodos de retorno. Parte de la suposición de que los registros en los sitios son independientes entre sí, y consiste en el tratamiento de una sola muestra de datos conformada por un registro estandarizado de eventos, el cual una vez que se construye se ajusta a un conjunto de distribuciones de probabilidad. Esta técnica regional a diferencia de otras no requiere que las muestras tengan una longitud de registro común.

Para la aplicación de éste método se recomienda contar con una muestra de por lo menos 10 años de registro por estación, aunque si se tuviera una estación con menos años, pero con registros de eventos extremos que puedan afectar el comportamiento del fenómeno de la región, entonces debe ser tomada en cuenta en el estudio.

La secuencia de la aplicación de este método es la siguiente:

- Se prueba dentro de la región analizada la homogeneidad de las series de datos.
- 2. De las series de los eventos analizados para cada estación  $Q_i^j$ , se obtienen los siguientes parámetros estadísticos muestrales:  $\bar{x}_j, S_j^2, S_j, g_j, k_j, g_j, CV_j$  para i = 1, ..., n Años y j = 1, ..., ms sitios.
- 3. Para cada serie *j* verificar mediante la prueba de Anderson la independencia de eventos.
- 4. Para cada serie *i* generar una muestra modulada de la forma

$$q_i^j = rac{Q_i^J}{\overline{Q}^j}$$

ecu.3.6

- 5. Formar el registro llamado estación año, de tamaño  $n_T = \sum_{j=1}^{ms} n_j$  con todos los eventos modulados  $q_i^j$ .
- 6. Ordenar el registro de mayor a menor y asignar un periodo de retorno y una probabilidad de no excedencia.

$$T = \frac{n_T + 1}{m}$$
 ecu.3.7

$$P(X \le x) = P = 1 - \frac{1}{T}$$

ecu.3.8

Donde:

T, es el periodo de retorno en años.

 $n_T$ , es el tamaño de muestra del registro estaciones – año.

m, es el número de orden del registro, desde  $m=1,...,n_T$ .

P, es la probabilidad de no excedencia.

- 7. Ajustar diferentes funciones de probabilidad al registro formado en el paso 5, para el análisis de máximos (Normal, Log normal con 2 y 3 parámetros, Gamma con 2 y 3 parámetros, Log Pearson tipo III, Gumbel, General de Valores Extremos, Weibull-2, Valores Extremos de dos Componentes, Gumbel Mixta, GVE Mixta, Weibull-2 y mezcla Gumbel-GVE), y se seleccionar el que proporcione el mínimo error estándar de ajuste probabilidad de no excedencia.
- 8. Una vez obtenida la distribución de mejor ajuste, estimar los eventos regionales para diferentes periodos de retorno, los cuales serán válidos para cualquier punto dentro de la zona analizada.

$$(q)_T^R = \left(\frac{Q}{\overline{Q}}\right)_T^R$$
,  $T = 2, 5, 10, 20, 50, 100, 500, 1000, 5000 y 10 000 años.$ 

ecu.3.9

**9.** Para obtener un evento  $\widehat{Q}_T^j$  en un sitio j con escasa información, basta multiplicar la relación regional obtenida en el paso anterior por el correspondiente valor de  $\overline{Q}^j$ . Pero, si se desea un evento  $\widehat{Q}_T^e$  en un sitio no aforado (e) que este dentro de la región, se construye la relación  $\overline{Q}^j - A_j$ , donde  $A_j, j = 1, ..., ms$  son las áreas drenadas, para que a partir de ella se pueda inferir el valor correspondiente de  $\overline{Q}^e$  para el área  $A_e$  del sitio (e). Esta última relación ser del tipo lineal, potencial o polinomial.

### Capítulo 4: Ejemplo de aplicación

### 4.1 Zona de estudio (Descripción del estado de Oaxaca)



Figura 4.1. Zona de estudio

El estado de Oaxaca tiene una extensión de  $93\,758\,km^2$ , lo que representa el 4.8% del territorio nacional. En 2015, su población fue de 3 967 889 habitantes, lo que representó el 3.3% del total del país, dicha población está distribuida en 77% urbana y 23% rural.

### 4.1.1 Ubicación

El estado de Oaxaca se encuentra en las regiones Suroeste e Istmo de Tehuantepec. Limita al norte con Puebla y Veracruz, al este con Chiapas, al sur con el océano Pacífico y al oeste con Guerrero.

Sus coordenadas geográficas extremas son: Al norte 18°39', al sur 15°39' de latitud norte; al este 93°52', al oeste 98°32' de longitud oeste.

La superficie estatal forma parte de las provincias: Eje Neovolcánico, Sierra Madre del Sur, Sierras de Chiapas y Guatemala, Llanura Costera del Golfo Sur y Cordillera Centroamericana.

### 4.1.2 Clima

Debido a la accidentada geografía, el clima de estado de Oaxaca puede variar de manera drástica en sus regiones, por ejemplo, las costas se caracterizan por sus bajas temperaturas, mientras que en las regiones altas de las montañas impera el clima frío.

El 47% de la superficie del estado presenta clima cálido subhúmedo que se localiza en toda la zona costera y hacia el este, el 22% presenta clima cálido húmedo localizado principalmente en la región norte, el 16% presenta clima templado húmedo en las partes altas orientales de los cerros Volcán Prieto y Humo Grande, el 11% presenta clima seco y semiseco en la región centro sur y noroeste, el restante 4% presenta clima templado subhúmedo hacia el sur y noroeste del estado en zonas con altitudes entre 2 000 y 3 000 metros.



Figura 4.2. Climas del Estado

| Cálido subhúmedo                                                  | 47% |  |  |
|-------------------------------------------------------------------|-----|--|--|
| Seco y semiseco                                                   | 11% |  |  |
| Cálido húmedo                                                     | 22% |  |  |
| Templado subhúmedo                                                | 4%  |  |  |
| Templado húmedo                                                   | 16% |  |  |
| ·                                                                 |     |  |  |
|                                                                   |     |  |  |
| *Referido al total de la superficie estatal.                      |     |  |  |
| FUENTE: Elaborado con base en INEGI. Carta de Climas 1:1 000 000. |     |  |  |

Tabla 4.1. Climas del Estado

### 4.1.3 Hidrografía

Cuerpos de agua dentro del estado de Oaxaca:

### Ríos

| Atoyac-Verde                                  | Tequisistlán                    | <ul><li>Espíritu</li><li>Santo</li></ul> |
|-----------------------------------------------|---------------------------------|------------------------------------------|
| Grande-Salado                                 | <ul> <li>San Antonio</li> </ul> | <ul> <li>Petapa</li> </ul>               |
| <ul> <li>Puxmetacán-Trinidad</li> </ul>       | <ul><li>Tonto</li></ul>         | <ul> <li>Ostuta</li> </ul>               |
| <ul> <li>Cajonos</li> </ul>                   | <ul> <li>Colotepec</li> </ul>   | <ul> <li>Copalita</li> </ul>             |
| <ul> <li>Santo Domingo</li> </ul>             | <ul><li>Amapa</li></ul>         | <ul> <li>Calapa</li> </ul>               |
| • El Corte                                    | <ul> <li>Xiquila</li> </ul>     | <ul> <li>Petlapa</li> </ul>              |
| <ul> <li>Tehuantepec</li> </ul>               | <ul> <li>Los Perros</li> </ul>  | <ul><li>Minas</li></ul>                  |
| <ul> <li>Mixteco</li> </ul>                   | <ul> <li>La Arena</li> </ul>    | <ul> <li>Tenango</li> </ul>              |
| <ul> <li>Valle Nacional-Papaloapan</li> </ul> | <ul> <li>Putla</li> </ul>       | <ul> <li>Huamelula</li> </ul>            |
| <ul> <li>Aguacatenango-Jaltepec</li> </ul>    | <ul> <li>Sarabia</li> </ul>     | <ul><li>Ayutla</li></ul>                 |
| <ul> <li>Grande</li> </ul>                    | <ul> <li>Joquila</li> </ul>     | <ul> <li>Lalana</li> </ul>               |

### Presas

- Miguel Alemán (Temascal)
- Miguel de la Madrid Hurtado (Cerro de Oro)
- Presa Benito Juárez
- Presa Yosocuta

### Lagunas

Superior (Mar Santa Teresa)
Inferior (Mar Tileme)
Oriental
Pastoría
Chacahua
Corralero
Miniyua
Mar Muerto

| AÑO  | OCEANO                                    | NOMBRE   | CATEGORÍA<br>EN IMPACTO | LUGAR DE ENTRADA A TIERRA O COSTA<br>MÁS CERCANA | PERIODO<br>(inicio - fin) |
|------|-------------------------------------------|----------|-------------------------|--------------------------------------------------|---------------------------|
| 1971 | PACÍFICO                                  | BRIDGET  | TT                      | CACBAN, MICHOACÁN                                | 14 - 20 JUN               |
| 1973 | PACÍFICO                                  | HEATHER  | DT                      | SALINA CRUZ, OAXACA                              | 31 AGO - 1 SEP            |
| 1974 | ATLÁNTICO                                 | FIFI     | TT                      | EL CEDRO, CHIAPAS                                | 14 - 22 SEP               |
| 1374 | PACÍFICO ORLENE DT LAG. MONROY, OAXACA    |          | LAG. MONROY, OAXACA     | 21 - 24 SEP                                      |                           |
| 1980 | ATLÁNTICO                                 | HERMINE  | TT                      | SACXAN, Q. ROO                                   | 20 - 26 SEP               |
| 1991 | PACÍFICO                                  | DT 5E    | DT                      | PINOTEPA NAL., OAXACA                            | 29 JUN                    |
| 1993 | PACÍFICO                                  | BEATRIZ  | TT                      | PINOTEPA NAL., OAXACA                            | 18 - 20 JUN               |
| 1996 | PACÍFICO                                  | CRISTINA | TT                      | HUATILCO, OAXACA                                 | 1 - 4 JUL                 |
|      | PACÍFICO                                  | OLAF     | ТТ                      | BOCABARRA, OAXACA                                | 26 SEP - 12 OCT           |
| 1997 | PACÍFICO PAULINE H3 PUERTO ANGEL, OAXACA  |          | 6 - 10 OCT              |                                                  |                           |
|      | PACÍFICO RICK H1 PUERTO ESCONDIDO, OAXACA |          | 7 - 10 OCT              |                                                  |                           |
| 2000 | PACÍFICO                                  | ROSA     | TT                      | PUERTO ANGEL, OAXACA                             | 3- 8 NOV                  |
| 2003 | PACÍFICO                                  | CARLOS   | TT                      | 15 NE PINOTEPA NACIONAL, OAXACA                  | 25 - 27 JUN               |
| 2005 | ATLÁNTICO                                 | STAN     | TT                      | FELIPE C. QROO                                   | 1 - 5 OCT                 |
| 2010 | PACÍFICO                                  | DT 11E   | DT                      | 35 KM AL NW DE SALINA CRUZ, OAXACA               | 3 - 4 SEP                 |
| 2011 | ATLÁNTICO                                 | HARVEY   | DT                      | 42 KM AL E-SE DE VILLAHERMOSA                    | 18 - 22 AGO               |
| 2011 | PACÍFICO                                  | DT 12E   | DT                      | 10 KM AL OESTE DE CHAHUITES, OAXACA              | 12 - OCT                  |

Tabla 4.2. Ciclones tropicales que impactaron el estado de Oaxaca (CONAGUA, 2011)

### 4.2 Información Disponible

Una estación climatológica es una instalación destinada a realizar mediciones y registros puntuales de parámetros como: precipitación, temperatura, evaporación, viento, entre otros; en México, hay existen diferentes bases de datos climatológicas encargadas de monitorear y recolectar toda esta información, algunas de ellas son:

- Banco Nacional de Datos de Aguas Superficiales (BANDAS) de la Comisión Nacional del Agua (CONAGUA).
- Mapa de Estaciones Meteorológicas Automáticas (EMAS) del Sistema Meteorológico Nacional (SMN)
- CLICOM de la Comisión Nacional del Agua (CONAGUA).

Las estaciones climatológicas utilizadas para el presente trabajo pertenecen a la base de datos CLICOM, la cual es la base de datos del clima con carácter oficial en México, siendo el Servicio Meteorológico Nacional (SMN) el encargado de mantener y actualizar dicha base. Cuenta en promedio con alrededor de 5000 estaciones de observación (CFE, 2014). Dichas observaciones se realizan diario a las 08:00 AM.

### 4.2.1 Estaciones climatológicas disponibles en Oaxaca

Para cada estación se conoce su información climatológica de precipitación y sus respectivas coordenadas geográficas de longitud, latitud y elevación. En total se tienen 352 estaciones climatológicas dentro del estado de Oaxaca, aunque no todas se encuentren operando actualmente.

La nomenclatura utilizada para las estaciones climatológicas es la siguiente: La clave de las estaciones consta de cinco números, de los cuales, los dos primeros representan la entidad federativa en el que se encuentran las estaciones, en este caso es el número 20 para el estado de Oaxaca, mientras que los últimos tres se refieren al número de estación. (Ver ejemplo de la figura 4.4.)



Figura 4.4. Ejemplo de clave para la estación "20117"

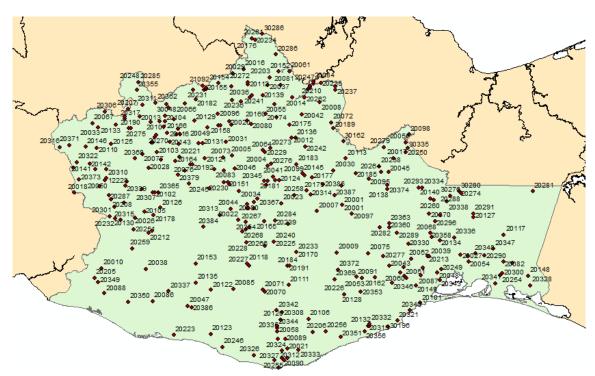



Figura 4.5. Estaciones climatológicas dentro del estado de Oaxaca

### 4.2.2. Selección y localización de las estaciones empleadas

Para poder tener un análisis más confiable la muestra de datos extraída debe ser lo más grande posible, no obstante, no todas las estaciones climatológicas pueden ser integradas en el análisis de regionalización, ya que deben cumplir dos principales condiciones: La primera, que la estación cuente con un registro histórico de por lo menos 20 años. La segunda, que sus precipitaciones máximas no se presenten entre los meses de octubre a diciembre, ya que es cuando ocurre la época de estiaje en el estado. Finamente se obtuvieron un total de 190 estaciones participantes en el análisis de regionalización, las cuales se muestran la tabla 4.3.

| ESTACIÓN | MUNICIPIO                         | LOND    | LATD   | ALTURA [m |
|----------|-----------------------------------|---------|--------|-----------|
| 20001    | SANTA MARIA ALOTEPEC              | -95.867 | 17.067 | 2444      |
| 20002    | SANTIAGO APOALA                   | -97.150 | 17.650 | 2269      |
| 20003    | CONCEPCION BUENAVISTA             | -97.417 | 17.967 | 2121      |
| 20004    | SAN JUAN ATEPEC                   | -96.550 | 17.433 | 1975      |
| 20005    | SAN JUAN BAUTISTA ATATLAHUCA      | -96.838 | 17.533 | 983       |
| 20006    | SAN BARTOLOME AYAUTLA             | -96.667 | 18.033 | 702       |
| 20007    | SAN PEDRO Y SAN PABLO AYUTLA      | -96.100 | 17.017 | 2056      |
| 20008    | SAN JUAN BAUTISTA TUXTEPEC        | -96.006 | 17.918 | 70        |
| 20009    | NEJAPA DE MADERO                  | -95.960 | 16.637 | 638       |
| 20010    | SAN JUAN CACAHUATEPEC             | -98.149 | 16.612 | 413       |
| 20012    | SAN JUAN COMALTEPEC               | -95.950 | 17.307 | 1395      |
| 20014    | SAN LUCAS OJITLAN                 | -96.283 | 18.017 | 51        |
| 20015    | LOMA BONITA                       | -95.958 | 18.063 | 15        |
| 20016    | SANTA MARIA CHILCHOTLA            | -96.717 | 18.283 | 255       |
| 20017    | SAN JUAN COTZOCON                 | -95.383 | 17.450 | 82        |
| 20018    | COICOYAN DE LAS FLORES            | -98.300 | 17.250 | 2003      |
| 20019    | SAN JUAN BAUTISTA COIXTLAHUACA    | -97.317 | 17.733 | 2181      |
| 20020    | CONCEPCION PAPALO                 | -96.867 | 17.833 | 2131      |
| 20022    | SAN BARTOLO COYOTEPEC             | -96.701 | 16.957 | 1533      |
| 20023    | SAN MIGUEL AMATLAN                | -96.417 | 17.125 | 2853      |
| 20024    | SAN JUAN BAUTISTA CUICATLAN       | -96.967 | 17.800 | 620       |
| 20025    | SAN JUAN BAUTISTA CUICATLAN       | -96.950 | 17.800 | 624       |
| 20026    | CHALCATONGO DE HIDALGO            | -97.529 | 16.950 | 2865      |
| 20027    | HEROICA CIUDAD DE JUCHITAN DE Z.  | -94.804 | 16.575 | 32        |
| 20028    | VILLA DE CHILAPA DE DIAZ          | -97.617 | 17.570 | 1881      |
| 20029    | SANTA MARIA CHILCHOTLA            | -96.817 | 18.250 | 1358      |
| 20030    | SANTIAGO CHOAPAM                  | -95.933 | 17.367 | 900       |
| 20031    | SAN JUAN BAUTISTA CUICATLAN       | -96.900 | 17.650 | 720       |
| 20032    | SANTA MARIA ECATEPEC              | -95.883 | 16.283 | 1869      |
| 20034    | VILLA DE ETLA                     | -96.800 | 17.207 | 1671      |
| 20035    | EROICA CIUDAD DE HUAJUAPAN DE LEO | -97.783 | 17.800 | 1600      |
| 20036    | HUAUTLA DE JIMENEZ                | -96.833 | 18.133 | 1678      |
| 20037    | SAN FELIPE JALAPA DE DIAZ         | -96.521 | 18.101 | 118       |
| 20038    | SANTIAGO IXTAYUTLA                | -97.667 | 16.572 | 610       |
| 20039    | CIUDAD IXTEPEC                    | -95.084 | 16.552 | 69        |
| 20040    | SANTA CATARINA IXTEPEJI           | -96.550 | 17.267 | 1926      |
| 20041    | IXTLAN DE JUAREZ                  | -96.483 | 17.333 | 2312      |
| 20042    | SANTA MARIA JACATEPEC             | -96.200 | 17.867 | 47        |
| 20043    | SANTA MARIA JALAPA DEL MARQUES    | -95.447 | 16.442 | 160       |
| 20044    | SAN FELIPE TEJALAPAM              | -96.878 | 17.066 | 1742      |
| 20045    | SAN JUAN COTZOCON                 | -95.433 | 17.333 | 70        |
| 20046    | SAN JUAN BAUTISTA JAYACATLAN      | -96.833 | 17.417 | 1629      |
| 20047    | SANTA CATARINA JUQUILA            | -97.300 | 16.233 | 1690      |
| 20048    | HEROICA CIUDAD DE JUCHITAN DE Z.  | -95.024 | 16.449 | 30        |

| ESTACIÓN | MUNICIPIO                        | LOND    | LATD   | ALTURA [m] |
|----------|----------------------------------|---------|--------|------------|
| 20049    | SAN PEDRO JOCOTIPAC              | -97.083 | 17.710 | 2565       |
| 20050    | SANTIAGO JUXTLAHUACA             | -98.017 | 17.350 | 1680       |
| 20060    | SANTA MARIA MIXTEQUILLA          | -95.327 | 16.450 | 152        |
| 20061    | SAN MIGUEL SOYALTEPEC            | -96.300 | 18.250 | 27         |
| 20064    | SAN PABLO MACUILTIANGUIS         | -96.567 | 17.547 | 2139       |
| 20065    | SANTA MAGDALENA JICOTLAN         | -97.467 | 17.800 | 2248       |
| 20066    | TEPELMEME VILLA DE MORELOS       | -97.267 | 18.000 | 2086       |
| 20067    | MARISCALA DE JUAREZ              | -98.141 | 17.858 | 1072       |
| 20068    | MATIAS ROMERO AVENDAÑO           | -95.033 | 16.883 | 211        |
| 20070    | MIAHUATLAN DE PORFIRIO DIAZ      | -96.594 | 16.329 | 1559       |
| 20071    | MIAHUATLAN DE PORFIRIO DIAZ      | -96.617 | 16.350 | 1537       |
| 20072    | LOMA BONITA                      | -95.903 | 17.783 | 73         |
| 20073    | SANTIAGO NACALTEPEC              | -96.933 | 17.517 | 2101       |
| 20076    | ASUNCION NOCHIXTLAN              | -97.217 | 17.467 | 2080       |
| 20077    | SANTIAGO IXTAYUTLA               | -97.668 | 16.601 | 399        |
| 20079    | OAXACA DE JUAREZ                 | -96.710 | 17.083 | 1594       |
| 20080    | OCOTLAN DE MORELOS               | -96.667 | 16.800 | 1522       |
| 20081    | SAN LUCAS OJITLAN                | -96.396 | 18.059 | 139        |
| 20082    | SANTO DOMINGO ZANATEPEC          | -94.438 | 16.497 | 37         |
| 20083    | SAN JERONIMO SOSOLA              | -97.017 | 17.417 | 1551       |
| 20084    | SAN JUAN BAUTISTA TUXTEPEC       | -96.083 | 18.150 | 2744       |
| 20085    | SAN VICENTE COATLAN              | -96.883 | 16.367 | 1361       |
| 20086    | SANTIAGO JAMILTEPEC              | -97.617 | 16.260 | 438        |
| 20088    | SANTIAGO PINOTEPA NACIONAL       | -98.050 | 16.367 | 350        |
| 20089    | PLUMA HIDALGO                    | -96.433 | 15.917 | 1338       |
| 20090    | SAN PEDRO POCHUTLA               | -96.467 | 15.750 | 165        |
| 20094    | PUTLA VILLA DE GUERRERO          | -97.873 | 17.117 | 1316       |
| 20095    | SAN JUAN COTZOCON                | -95.617 | 17.283 | 342        |
| 20096    | SAN JUAN BAUTISTA CUICATLAN      | -96.991 | 17.890 | 543        |
| 20097    | SAN MIGUEL QUETZALTEPEC          | -95.783 | 16.983 | 1211       |
| 20098    | VILLA DE TUTUTEPEC DE MELCHOR O. | -97.433 | 16.011 | 27         |
| 20099    | VILLA SOLA DE VEGA               | -96.978 | 16.514 | 1409       |
| 20102    | SAN AGUSTIN TLACOTEPEC           | -97.518 | 17.200 | 2018       |
| 20103    | SAN ANDRES LAGUNAS               | -97.523 | 17.573 | 2310       |
| 20105    | SAN ESTEBAN ATATLAHUCA           | -97.679 | 17.065 | 2455       |
| 20106    | SAN FRANCISCO OZOLOTEPEC         | -96.217 | 16.083 | 1431       |
| 20108    | SAN MARCOS ARTEAGA               | -97.783 | 17.717 | 1544       |
| 20109    | SAN JERONIMO TAVICHE             | -96.575 | 16.733 | 1718       |
| 20110    | SAN JORGE NUCHITA                | -98.083 | 17.673 | 1409       |
| 20111    | SAN JOSE LACHIGUIRI              | -96.333 | 16.383 | 1679       |
| 20113    | SANTIAGO CHOAPAM                 | -95.830 | 17.432 | 557        |
| 20114    | SAN JUAN BAUTISTA VALLE NACIONAL | -96.368 | 17.839 | 346        |
| 20115    | SAN SEBASTIAN TECOMAXTLAHUACA    | -98.067 | 17.300 | 2352       |
| 20117    | SAN MIGUEL CHIMALAPA             | -94.748 | 16.712 | 120        |

| ESTACIÓN | MUNICIPIO                         | LOND    | LATD   | ALTURA [m |
|----------|-----------------------------------|---------|--------|-----------|
| 20118    | SAN MIGUEL EJUTLA                 | -96.737 | 16.579 | 1446      |
| 20120    | SAN MIGUEL SUCHIXTEPEC            | -96.465 | 16.091 | 2453      |
| 20121    | SAN PEDRO COXCALTEPEC CANTAROS    | -97.142 | 17.496 | 2201      |
| 20122    | SAN PEDRO JUCHATENGO              | -97.089 | 16.343 | 879       |
| 20124    | SANTIAGO XIACUI                   | -96.433 | 17.290 | 2173      |
| 20125    | SANTO DOMINGO TONALA              | -97.950 | 17.667 | 1349      |
| 20126    | SANTA CRUZ ZENZONTEPEC            | -97.495 | 16.537 | 960       |
| 20127    | SANTA MARIA CHIMALAPA             | -94.683 | 16.900 | 308       |
| 20129    | SANTA MARIA IXCATLAN              | -97.183 | 17.850 | 1896      |
| 20130    | SANTA MARIA YUCUHITI              | -97.800 | 17.017 | 1876      |
| 20133    | HEROICA CIUDAD DE HUAJUAPAN DE L. | -97.900 | 17.853 | 2099      |
| 20134    | ASUNCION IXTALTEPEC               | -95.000 | 16.717 | 217       |
| 20135    | SANTIAGO MINAS                    | -97.217 | 16.433 | 956       |
| 20136    | SAN JUAN BAUTISTA VALLE NACIONAL  | -96.266 | 17.707 | 134       |
| 20137    | TEOTONGO                          | -97.550 | 17.717 | 2076      |
| 20138    | SAN JUAN MAZATLAN                 | -95.373 | 17.192 | 133       |
| 20139    | SAN FELIPE JALAPA DE DIAZ         | -96.550 | 18.050 | 137       |
| 20141    | SILACAYOAPAM                      | -98.150 | 17.500 | 1675      |
| 20143    | SAN CRISTOBAL SUCHIXTLAHUACA      | -97.392 | 17.687 | 2348      |
| 20144    | SAN CRISTOBAL SUCHIXTLAHUACA      | -97.350 | 17.723 | 2084      |
| 20145    | VILLA TALEA DE CASTRO             | -96.250 | 17.350 | 1607      |
| 20146    | SANTIAGO TAMAZOLA                 | -98.221 | 17.670 | 1782      |
| 20147    | VILLA DE TAMAZULAPAM DEL P.       | -97.567 | 17.667 | 2125      |
| 20148    | SAN PEDRO TAPANATEPEC             | -94.216 | 16.402 | 72        |
| 20149    | SANTO DOMINGO TEHUANTEPEC         | -95.234 | 16.317 | 41        |
| 20150    | SANTIAGO TENANGO                  | -97.002 | 17.232 | 2287      |
| 20151    | SAN FRANCISCO TELIXTLAHUACA       | -96.900 | 17.300 | 2260      |
| 20152    | SAN MIGUEL SOYALTEPEC             | -96.400 | 18.250 | 35        |
| 20153    | SANTO DOMINGO TEOJOMULCO          | -97.200 | 16.600 | 1255      |
| 20154    | SANTA MARIA TEOPOXCO              | -96.950 | 18.167 | 1974      |
| 20155    | TEOTITLAN DE FLORES MAGON         | -97.067 | 18.133 | 2002      |
| 20156    | TEOTITLAN DE FLORES MAGON         | -97.083 | 18.117 | 918       |
| 20157    | TEPELMEME VILLA DE MORELOS        | -97.367 | 17.867 | 2060      |
| 20158    | SAN JUAN TEPEUXILA                | -96.850 | 17.733 | 2115      |
| 20159    | AN PEDRO Y SAN PABLO TEPOSCOLULA  | -97.500 | 17.517 | 2312      |
| 20160    | SAN JUAN TEPEUXILA                | -96.700 | 17.773 | 2373      |
| 20161    | SAN PEDRO TEUTILA                 | -96.710 | 18.000 | 452       |
| 20162    | MAGDALENA TEQUISISTLAN            | -95.599 | 16.418 | 182       |
| 20163    | TEZOATLAN DE SEGURA Y LUNA        | -97.811 | 17.652 | 1527      |
| 20164    | SAN PEDRO TOPILTEPEC              | -97.367 | 17.480 | 2330      |
| 20165    | TLACOLULA DE MATAMOROS            | -96.483 | 16.950 | 1618      |
| 20167    | HEROICA CIUDAD DE TLAXIACO        | -97.683 | 17.267 | 2078      |
| 20168    | HEROICA CIUDAD DE TLAXIACO        | -97.683 | 17.267 | 2095      |
|          | SAN PEDRO TOTOLAPA                | -96.307 | 16.670 | 944       |

| ESTACIÓN | MUNICIPIO                         | LOND    | LATD   | ALTURA [m |
|----------|-----------------------------------|---------|--------|-----------|
| 20172    | SAN JUAN BAUTISTA TUXTEPEC        | -96.117 | 18.100 | 26        |
| 20173    | UNION HIDALGO                     | -94.833 | 16.465 | 11        |
| 20174    | SAN FELIPE USILA                  | -96.533 | 17.883 | 127       |
| 20175    | SAN JUAN BAUTISTA VALLE NACIONAL  | -96.317 | 17.783 | 82        |
| 20176    | ACATLAN DE PEREZ FIGUEROA         | -96.525 | 18.514 | 121       |
| 20177    | SAN ILDEFONSO VILLA ALTA          | -96.150 | 17.350 | 1268      |
| 20178    | CHALCATONGO DE HIDALGO            | -97.583 | 17.033 | 2428      |
| 20179    | VILLA HIDALGO                     | -96.183 | 17.200 | 1251      |
| 20181    | IXTLAN DE JUAREZ                  | -96.467 | 17.300 | 2618      |
| 20182    | SANTA MARIA IXCATLAN              | -97.198 | 17.858 | 1915      |
| 20183    | SAN JUAN YAEE                     | -96.283 | 17.433 | 1440      |
| 20184    | SAN CARLOS YAUTEPEC               | -96.108 | 16.503 | 846       |
| 20185    | SANTIAGO YAVEO                    | -95.733 | 17.333 | 335       |
| 20186    | SANTIAGO YOSONDUA                 | -97.600 | 16.900 | 2222      |
| 20187    | SANTIAGO IXTAYUTLA                | -97.625 | 16.604 | 437       |
| 20188    | SANTA MARIA ZACATEPEC             | -97.988 | 16.764 | 354       |
| 20189    | SAN JUAN LALANA                   | -95.891 | 17.683 | 86        |
| 20190    | ZAPOTITLAN PALMAS                 | -97.818 | 17.888 | 1913      |
| 20191    | SANTA MARIA ZOQUITLAN             | -96.367 | 16.550 | 1037      |
| 20200    | SANTIAGO TETEPEC                  | -97.752 | 16.258 | 260       |
| 20202    | SANTA ANA TLAPACOYAN              | -96.817 | 16.740 | 1525      |
| 20203    | SAN MIGUEL SOYALTEPEC             | -96.483 | 18.200 | 68        |
| 20207    | HEROICA CIUDAD DE HUAJUAPAN DE L. | -97.854 | 17.759 | 1851      |
| 20209    | ZIMATLAN DE ALVAREZ               | -96.784 | 16.865 | 2879      |
| 20233    | SAN PEDRO TOTOLAPA                | -96.307 | 16.670 | 944       |
| 20256    | SAN MIGUEL DEL PUERTO             | -96.067 | 15.967 | 361       |
| 20265    | SAN MATEO ETLATONGO               | -97.267 | 17.417 | 2033      |
| 20266    | SAN PABLO HUIXTEPEC               | -96.781 | 16.827 | 1499      |
| 20271    | SAN FRANCISCO TELIXTLAHUACA       | -96.933 | 17.400 | 2233      |
| 20272    | SAN JOSE TENANGO                  | -96.670 | 18.160 | 1208      |
| 20275    | HEROICA CIUDAD DE HUAJUAPAN DE L. | -97.767 | 17.800 | 1584      |
| 20277    | SANTA MARIA MIXTEQUILLA           | -95.281 | 16.475 | 477       |
| 20279    | SANTIAGO COMALTEPEC               | -96.561 | 17.597 | 2193      |
| 20280    | SAN MIGUEL DEL RIO                | -96.564 | 17.330 | 1496      |
| 20289    | GUEVEA DE HUMBOLDT                | -95.372 | 16.789 | 655       |
| 20290    | SANTIAGO NILTEPEC                 | -94.608 | 16.558 | 60        |
| 20292    | SANTO DOMINGO ZANATEPEC           | -94.368 | 16.483 | 54        |
| 20303    | SANTA MARIA TONAMECA              | -96.544 | 15.739 | 48        |
| 20308    | INGENIO CENTRAL PROGRESO          | -96.683 | 18.900 | 2226      |
| 20313    | SANTIAGO TLAZOYALTEPEC            | -96.998 | 17.032 | 2500      |
| 20314    | VILLA HIDALGO                     | -96.169 | 17.191 | 1191      |
| 20319    | SANTIAGO ASTATA                   | -95.689 | 15.979 | 307       |
| 20326    | SANTA MARIA TONAMECA              | -96.723 | 15.789 | 145       |
| 20328    | SAN PEDRO TAPANATEPEC             | -94.233 | 16.250 | 23        |

| ESTACIÓN | MUNICIPIO                      | LOND    | LATD   | ALTURA [m] |
|----------|--------------------------------|---------|--------|------------|
| 20329    | OAXACA DE JUAREZ               | -96.717 | 17.067 | 2301       |
| 20334    | MATIAS ROMERO AVENDAÑO         | -95.133 | 17.183 | 1641       |
| 20342    | SAN MATEO RIO HONDO            | -96.500 | 16.167 | 2485       |
| 20350    | SANTIAGO JAMILTEPEC            | -97.833 | 16.283 | 462        |
| 20353    | ASUNCION TLACOLULITA           | -95.727 | 16.301 | 353        |
| 20354    | VILLA DE ZAACHILA              | -96.782 | 16.948 | 1550       |
| 20355    | COSOLTEPEC                     | -97.800 | 18.133 | 1825       |
| 20356    | SANTIAGO ASTATA                | -95.703 | 15.963 | 82         |
| 20364    | SAN PABLO HUITZO               | -96.883 | 17.283 | 1694       |
| 20367    | TLALIXTAC DE CABRERA           | -96.628 | 17.136 | 3034       |
| 20374    | SAN JUAN MAZATLAN              | -95.450 | 17.217 | 274        |
| 20379    | MAGDALENA YODOCONO DE P.D.     | -97.358 | 17.381 | 2310       |
| 20382    | SANTA MARIA JALAPA DEL MARQUES | -95.374 | 16.434 | 82         |
| 20385    | TOTONTEPEC VILLA DE MORELOS    | -96.107 | 17.250 | 1645       |
| 20385    | TOTONTEPEC VILLA DE MORELOS    | -96.107 | 17.250 | 164        |

Tabla 4.3. Ubicación de las 190 estaciones climatológicas tomadas en cuenta para el análisis de regionalización

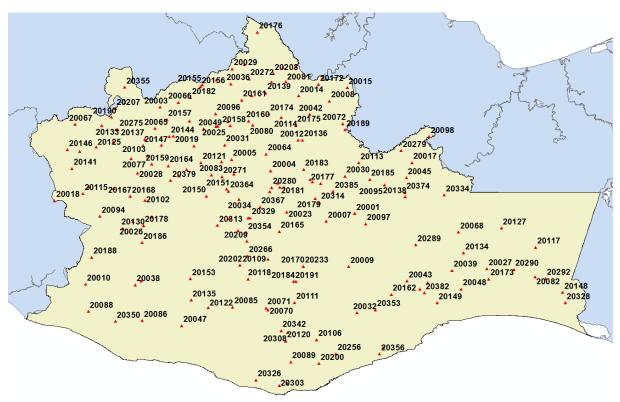



Figura 4.6. Mapa de las estaciones climatológicas tomadas en cuenta para el análisis de regionalización

## Capítulo 5: Metodología aplicada

### 5.1 Obtención de datos de registro de precipitaciones

De la base de datos climatológica CLICOM, se obtiene un archivo llamado "OAX\_DLY" el cual contiene toda la información de cada una de las estaciones climatológicas que operan dentro del estado de Oaxaca; cada estación tiene registros diarios de elementos que determinan el clima, como: temperatura, precipitación, evaporación, entre otros. Adicionalmente, cada uno de estos elementos tiene asignado una clave (Ver tabla 5.1.).

| CLAVE | ELEMENTO                                                   |
|-------|------------------------------------------------------------|
| 001   | Temperatura ambiente 08 hs. °C                             |
| 002   | Temperatura máxima °C                                      |
| 003   | Temperatura mínima °C                                      |
| 005   | Precipitación 24 hs. mm                                    |
| 018   | Evaporación 24 hs. mm                                      |
| 030   | Días con tormenta (0 no hay, 1 sí hay)                     |
| 031   | Días con granizo (0 no hay, 1 sí hay)                      |
| 032   | Días con niebla (0 no hay, 1 sí hay)                       |
| 043   | Cobertura nubosa (0 despejado, 1 medio nublado, 2 nublado) |
| 091   | Días con helada (0 no hay, sí hay)                         |
|       |                                                            |

Tabla 5.1. Claves de los elementos de CLICOM

Para el análisis regional de precipitaciones, únicamente se utiliza el elemento con la clave 005 que corresponde a la precipitación generada en 24 horas.

Por lo antes mencionado, del archivo "OAX\_DLY" se aplica un filtro para que únicamente aparezca el elemento con clave 005, una vez realizado esto se pueden apreciar los valores de precipitación relacionada con el año y mes en que se presentó dicho evento, como se muestra en la figura 5.1.

| SET-ID Sta | ation-ID | ELEMENT TYEAR-MONT | VALUE-1 FLAG1-1 | VALUE-2 FLAG1-2 | 2 VALUE-3 FLAG1- | 3 VALUE-4 FLAG1-4 | VALUE-5 FLAG1-5 | VALUE-6 FLAG1- | -6 VALUE-7 FLAG1-7 | VALUE-8 FLAG1-8 | VALUE-9 FLAG1-9 | VALUE-10 FLAG1-10 | VALUE-11 FLAG1-11 | VALUE-12 FLAG1-1 | 2 VALUE-13 FLA | AG1-13 VALUE-14 FLAG1-14 | VALUE-15 FLAG1-15 | VALUE-1 د |
|------------|----------|--------------------|-----------------|-----------------|------------------|-------------------|-----------------|----------------|--------------------|-----------------|-----------------|-------------------|-------------------|------------------|----------------|--------------------------|-------------------|-----------|
| 20         | 20001    | 5 1950-04          | 0               | 0               | 0                | 11                | 17.1            | 6.1            | 0                  | 0               | 0               | 0                 | 0                 | 0                | 0              | 27                       | 10                |           |
| 20         | 20001    | 5 1950-06          | 0               | 0               | 0                | 12                | 0               | 0              | 0                  | 25.9            | 3.6             | 1.7               | 169               | 13.1             | 4.1            | 1.8                      | 23.5 B            |           |
| 20         | 20001    | 5 1950-07          | 67 B            | 22              | 69 B             | 0                 | 3               | 0              | 10.5               | 1.7             | 1               | 11.3              | 0                 | 2.7              | 125.9          | 13.9                     | 14.6              |           |
| 20         | 20001    | 5 1950-08          | 10.8            | 29.3 B          | 60.1 B           | 30 B              | 15.5            | 38.8 B         | 2.6                | 1.5             | 0               | 0                 | 0                 | 0                | 18.5           | 2.3                      | 7.6               | 13        |
| 20         | 20001    | 5 1950-09          | 68.3 A          | 13.4            | 5.3              | 18.4              | 19.6            | 1.8            | 5.5                | 7.4             | 15.5            | 0                 | 59 A              | 18.1             | 3              | 47.5 A                   | 0                 | 1         |
| 20         | 20001    | 5 1950-10          | 42.2 A          | 7.7             | 18               | 2.1               | 21.5 A          | 25.7 A         | 2.8                | 90.8 A          | 0.7             | 24.6 A            | 156.5 A           | 5.7              | 8.9            | 0                        | 0                 |           |
| 20         | 20001    | 5 1950-11          | 0               | 0               | 3.3              | 0.5               | 0               | 0              | 0                  | 0               | 0               | 0                 | 4.5               | 0.1              | 0.1            | 6.7                      | 0                 |           |
| 20         | 20001    | 5 1950-12          | 0               | 0               | 0                | 0                 | 2               | 5              | 0                  | 0               | 0               | 0                 | 0                 | 0                | 0              | 0                        | 0                 | (         |
| 20         | 20001    | 5 1951-02          | 7               | 0               | 0                | 0                 | 0               | 0              | 0                  | 0               | 0               | 0                 | 0                 | 0                | 0              | 0                        | 0                 |           |
| 20         | 20001    | 5 1951-03          | 0               | 0               | 0                | 0                 | 0               | 0              | 0                  | 0               | 0               | 0                 | 0                 | 11               | 0              | 0.3                      | 0                 |           |
| 20         | 20001    | 5 1951-04          | 0               | 0               | 0                | 0                 | 0               | 0              | 0                  | 3               | 0               | 0                 | 17                | 1                | 0.1            | 0                        | 0                 |           |
| 20         | 20001    | 5 1951-05          | 0               | 0               | 0                | 0                 | 0               | 0              | 14                 | 0               | 0               | 10.6              | 0 T               | 42.7             | 26.9           | 8.2                      | 0                 |           |
| 20         | 20001    | 5 1951-06          | 0               | 116             | 0                | 43                | 109.3           | 5.2            | 9.5                | 4               | 0               | 0 T               | 0                 | 0                | 5.8            | 0                        | 0                 |           |
| 20         | 20001    | 5 1951-08          | 0 T             | 31              | 21               | 7.6               | 7.6             | 5.8            | 4                  | 16              | 60              | 6.8               | 0                 | 20               | 15             | 19                       | 13                |           |
| 20         | 20001    | 5 1952-01          | 0               | 0               | 0                | 0                 | 0               | 0              | 0                  | 0               | 0               | 10                | 0                 | 0                | 0              | 0                        | 0                 |           |
| 20         | 20001    | 5 1952-02          | 0               | 0               | 0                | 9                 | 0               | 14             | 0.1                | 0               | 0               | 0                 | 0                 | 0                | 0              | 0                        | 0                 |           |
| 20         | 20001    | 5 1952-03          | 0               | 0               | 0                | 0                 | 0               | 0              | 0                  | 0               | 0               | 0                 | 0                 | 0                | 0              | 0                        | 0                 |           |
| 20         | 20001    | 5 1952-04          | 0               | 0               | 0                | 9                 | 0               | 0              | 1.8                | 0               | 0               | 15                | 0                 | 0                | 6.2            | 4.5                      | 3.5               |           |
| 20         | 20001    | 5 1952-05          | 6.5             | 4.4             | 0                | 0                 | 4               | 0              | 0                  | 0               | 5               | 7.8               | 0                 | 0                | 0              | 0                        | 0                 |           |
| 20         | 20001    | 5 1952-06          | 17.2            | 30.8 A          | 3.2              | 28 A              | 79              | 0              | 44 A               | 21 A            | 6               | 0                 | 53 A              | 76 A             | 20.3 A         | 38.2 A                   | 0                 | 15        |
| 20         | 20001    | 5 1952-07          | 15.5            | 0               | 0                | 77 A              | 29.8 A          | 27 A           | 27 A               | 7.8             | 0               | 0                 | 15                | 30.4 A           | 0              | 34 A                     | 0                 | 84        |
| 20         | 20001    | 5 1952-08          | 72 A            | 12              | 4                | 0                 | 22 A            | 11             | 2.2                | 0               | 24 A            | 17                | 4.2               | 0                | 12.3           | 20.5 A                   | 40.1 A            | 31        |
| 20         | 20001    | 5 1952-09          | 6.3             | 17.2            | 28               | 6.4               | 1               | 4              | 2                  | 0               | 0               | 0                 | 58                | 34.5             | 43.6           | 29.2                     | 4.2               | 4         |
| 20         | 20001    | 5 1952-10          | 34 B            | 39 B            | 15               | 4                 | 3.2             | 37 B           | 4                  | 5.8             | 2               | 0                 | 0                 | 0                | 0              | 0                        | 48.5 B            |           |
| 20         | 20001    | 5 1952-11          | 0               | 0               | 0                | 3                 | 21.4            | 2.3            | 2.7                | 0               | 0               | 32.1              | 2.3               | 0.6              | 0              | 0                        | 0                 |           |
| 20         | 20001    | 5 1952-12          | 0               | 1.2             | 0                | 6                 | 0               | 0              | 0                  | 0               | 0               | 9                 | 0                 | 0                | 0              | 0                        | 0                 |           |
| 20         | 20001    | 5 1953-01          | 0               | 16              | 4                | 1.4               | 0               | 0              | 0                  | 0               | 0               | 0                 | 0                 | 0                | 0              | 0                        | 0                 | 7         |
| 20         | 20001    | 5 1953-02          | 3.2             | 0               | 0                | 0                 | 0               | 0              | 0                  | 0               | 0               | 0                 | 0                 | 0                | 1.3            | 1.5                      | 0                 |           |
| 20         | 20001    | 5 1953-03          | 0               | 0               | 0                | 1.5               | 0               | 0              | 0.5                | 3.5             | 0.2             | 0                 | 0                 | 0                | 0              | 0                        | 0                 |           |
| 20         | 20001    | 5 1953-04          | 0               | 0.1             | 28.5             | 0                 | 0               | 0              | 0                  | 0               | 0               | 0                 | 0                 | 0                | 0              | 0                        | 0                 |           |
| 20         | 20001    | 5 1953-05          | 0               | 0               | 0                | 14.5              | 0.5             | 0              | 0                  | 0               | 23.3            | 0                 | 0                 | 0                | 0              | 0                        | 0                 |           |
| 20         | 20001    | 5 1953-06          | 21.8            | 7.8             | 17.8             | 17.5              | 32              | 42             | 2.5                | 4               | 3.2             | 19.8              | 12.5              | 25.4             | 2.2            | 0                        | 5.2               | 3         |
| 20         | 20001    | 5 1953-07          | 12.6            | 25              | 11               | 0                 | 2.5             | 24             | 8.4                | 3.9             | 0.5             | 18.4              | 42                | 1.9              | 0              | 0                        | 6.9               | 38        |
| 20         | 20001    | 5 1953-08          | 17.3            | 23.1 A          | 13.3             | 3                 | 1.7             | 0              | 2.1                | 3               | 0               | 8                 | 36.8 A            | 2                | 13.5           | 3.3                      | 4.5               |           |
| 20         | 20001    | 5 1953-09          | 1.3             | 22.7            | 0                | 2                 | 5               | 9.2            | 1.3                | 6.5             | 17.3            | 14                | 6.5               | 79.5             | 25.5           | 0                        | 13.3              | -         |
| 20         | 20001    | 5 1953-10          | 22.5 B          | 22.5 B          | 4                | 25.5 B            | 24.5 B          | 27.5 B         | 0.2                | 0               | 0               | 0                 | 0                 | 0                | 0              | 16                       | 0                 |           |
| 20         | 20001    | 5 1953-11          | 6.1             | 2.3             | 0.4              | 0.1               | 6               | 0              | 0                  | 40              | 0               | 0                 | 0                 | 0                | 0              | 0                        | 0.1               |           |
| 20         | 20001    | 5 1953-12          | 0               | 0               | 0                | 0                 | 0               | 2.8            | 0                  | 0               | 0               | 0.6               | 0                 | 14.5             | 9              | 0                        | 0                 |           |
| 20         | 20001    | 5 1954-01          | 0               | 0               | 0                | 0                 | 1.5             | 0              | 7                  | 0               | 0               | 2.8               | 4                 | 0                | 0              | 0                        | 0                 | 2         |
| 20         | 20001    | 5 1954-02          | 0               | 9.4             | 0                | 0                 | 0               | 0              | 0.9                | 0               | 0               | 0                 | 0                 | 0                | 0              | 0                        | 0                 |           |
| 20         | 20001    | 5 1954-03          | 0               | 0               | 1.4              | 0                 | 0               | 3              | 0.5                | 3               | 0               | 0                 | 0                 | 0                | 0              | 3.5                      | 3                 |           |
| 20         | 20001    | 5 1954-04          | 0               | 0               | 0                | 0                 | 0               | 0              | 0                  | 72              | 3               | 0                 | 1.8               | 3                | 0              | 0.5                      | 0                 |           |
| 20         | 20001    | 5 1954-05          | 0               | 0               | 25               | 0                 | 0.9             | 3.3            | 0                  | 0               | 0               | 0                 | 3.9               | 0                | 21             | 28                       | 0                 |           |
| 20         | 20001    | 5 1954-06          | 0               | 0               | 3.2              | 0.1               | 10.8            | 1.6            | 85.6 B             | 18.3            | 6.5             | 20.5 B            | 10.3              | 4.7              | 0              | 39 B                     | 61 B              | 14        |
| 20         | 20001    | 5 1954-07          | 7.3             | 19              | 25.2 B           | 14.8              | 16.2            | 8.2            | 17                 | 16.4            | 14              | 25.8 B            | 48 B              | 1.4              | 1.7            | 1.5                      | 01 0              | 1         |
| 20         | 20001    | 5 1954-08          | 0               | 0.1             | 1.9              | 3.1               | 14.7            | 17.3           | 43.5               | 0.6             | 8.8             | 46.6              | 9.2               | 4.1              | 61.7           | 28.2                     | 25.8              | 33        |
| 20         | 20001    | 5 1954-09          | 4.2             | 0.1             | 3.7              | 1                 | 0.2             | 6              | 0.6                | 12.2            | 30.7            | 35.4              | 5.5               | 19.1             | 94             | 21.5                     | 0.2               | 33        |
| 20         | 20001    | 5 1954-10          | 24.8 B          | 18.8            | 7.3              | 3.5               | 5.4             | 4.1            | 28.6 B             | 99.4 B          | 29.7 B          | 0                 | 0                 | 15.1             | 14.7           | 1.5                      | 26.5 B            |           |
| 20         | 20001    | 5 1954-11          | 0               | 1.4             | 0                | 4.6               | 2.8             | 1.1            | 1.5                | 1.7             | 5               | 0                 | 3                 | 0                | 0              | 6                        | 0                 |           |
| 20         | 20001    | 5 1954-12          | 13.3            | 1.1             | 0.1              | 4.6               | 0               | 0              | 0                  | 0               | 0               | 0                 | 0                 | 1.1              | 0              | 0                        | 4.4               |           |
| 20         | 20001    | 5 1955-01          | 0               | 0               | 0.1              | 0                 | 0               | 0              | 0                  | 0               | 0               | 5.8               | 0                 | 0                | 14.5           | 0                        | 0                 |           |
| 20         | 20001    | 5 1955-02          | 0               | 0               | 0                | 0                 | 0               | 0              | 12.8               | 0.1             | 0               | 10.9              | 1.8               | 0                | 0              | 0                        | 0.5               |           |
| 20         | 20001    | 2 1222-07          | U               | U               | U                | U                 | U               | U              | 14.8               | 0.1             | U               | 10.5              | 1.6               | U                | U              | U                        | 0.3               |           |

Figura 5.1. Registros de precipitaciones en archivo OAX\_DLY.

Posteriormente, se extraen los registros de precipitaciones máximas de cada estación para cada año, como se muestra en las figuras 5.2. y 5.3, luego se ordenan los datos en un nuevo archivo de Excel, de tal manera que se muestre la precipitación máxima anual de cada estación, una vez recopilada toda la información se clasifica de acuerdo a la región hidrológica a la que pertenece y se guarda en un archivo con terminación RDM. La delimitación de las regiones hidrológicas se realiza considerando la topografía del estado y la similitud entre registros históricos, este procedimiento se describe de manera detallada en el capítulo 5.2 "Conformación de regiones homogéneas"

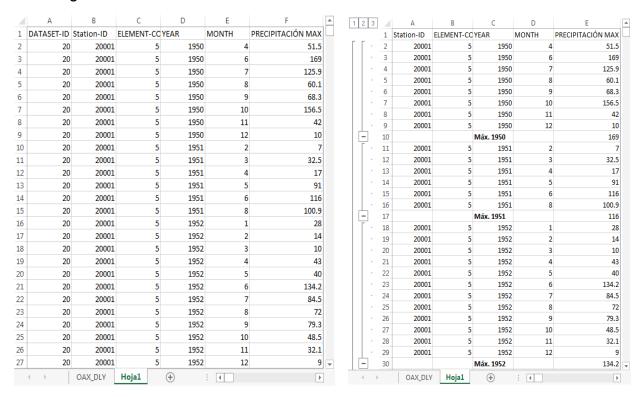



Figura 5.2. Figura 5.3

| + | Α        | В     | С     | D     | Е     | F     | G     | Н     | I     | J     | K     | L     | М     | N     | 0     | Р     | Q     | R     | S     | Т     |
|---|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|   | Año/Est. | 20001 | 20006 | 20008 | 20012 | 20014 | 20017 | 20029 | 20030 | 20036 | 20037 | 20042 | 20072 | 20081 | 20084 | 20095 | 20113 | 20114 | 20136 | 20139 |
|   | 1949     |       |       |       |       | 120   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|   | 1950     |       |       |       |       | 264.7 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|   | 1951     |       |       |       |       | 160   |       |       |       |       |       |       |       |       |       |       | 100   |       |       |       |
|   | 1952     | 134.2 |       |       |       | 147.4 |       |       |       | 258.5 |       |       |       | 162.5 | 123.7 |       | 87    |       |       |       |
|   | 1953     | 79.5  |       |       |       | 151.4 |       |       | 139   | 96.4  |       | 172   |       | 134   |       |       | 46    |       |       |       |
|   | 1954     | 99.4  |       |       |       | 153.2 |       |       | 126   |       | 150.5 | 228   |       | 167   | 101.6 |       |       | 142.3 |       |       |
|   | 1955     | 120.8 |       |       |       | 187   |       | 242.9 | 120   | 172.9 |       | 193.5 |       | 188   | 138.2 |       | 147   | 156.5 |       |       |
| ) | 1956     | 127.2 | 110.4 |       |       | 429   |       |       | 117   | 128.4 | 160.4 | 161   |       | 282.5 | 130   |       |       | 135   |       |       |
|   | 1957     | 82.5  | 131.2 | 136   |       | 110.2 |       |       | 96.5  | 102.4 | 111   | 127   | 91.5  | 140   |       |       | 151   | 120   |       |       |
| 2 | 1958     |       | 217.5 | 124   |       | 157.6 |       | 240   | 87    | 165.9 | 174   | 282   | 160.3 | 214   | 141.6 |       | 170   | 320   |       |       |
| 3 | 1959     |       | 238.2 | 172.4 | 330   | 192.3 | 148.5 | 175.8 | 101   | 143.2 | 120.4 | 233   | 137.2 | 114   | 170.6 |       | 105   | 332   |       |       |
| 1 | 1960     | 84.4  | 185   | 100   | 230   | 180   |       | 254.4 | 80    | 255.4 | 112   | 150.3 | 152   |       | 139.9 | 193.3 | 180   | 156   |       |       |
| 5 | 1961     | 164.9 | 112   | 120   | 180   | 182.7 | 84.5  | 211   | 95    | 169.9 | 185.7 | 166.7 | 134   |       | 109   |       |       | 164   | 185   |       |
| 6 | 1962     | 297   | 128   | 120   | 160.4 | 163   | 129.5 | 119   | 88.5  | 188.4 | 197.5 | 235.7 | 100   |       | 137.3 | 94.5  | 100.5 | 155   | 133   | 143.2 |
| 7 | 1963     | 334.7 | 98.3  | 95.3  | 163   | 196.7 | 193.5 | 157.9 | 98    | 167.3 | 144.5 | 150.2 | 110.4 | 136.5 | 102.7 | 85.3  | 160   | 126.5 | 142.5 | 143.1 |
| 8 | 1964     | 95.8  | 110   | 92    | 225.6 | 314.7 | 80.1  | 160.7 | 84    | 167.3 | 198.8 | 198.2 | 96.3  | 163.5 | 118.1 | 169.3 | 119.5 | 200   | 253.5 | 135   |
| 9 | 1965     | 129   | 193   |       | 166.5 | 148.4 |       | 97.1  | 97    | 204.2 |       | 189.5 | 156.5 | 121   | 106.9 | 114.5 | 120   | 183.7 | 216.5 | 166.4 |
| 0 | 1966     | 155.9 |       | 87.4  | 183.8 | 200.4 | 80.5  | 142   |       | 143.3 |       | 136.2 |       | 213   | 136.3 | 220   | 236.5 | 130.5 | 121   | 234.1 |
| 1 | 1967     |       | 216.8 | 131.5 | 287.4 | 192.3 | 94    | 120   | 83    | 141.5 | 195.2 | 251.4 | 133.1 | 208.5 | 89    | 115.4 | 120.2 | 138.3 | 224.5 |       |
| 2 | 1968     | 160   | 110   | 84.2  | 184.2 | 159   | 131   | 165   | 105   | 130.2 | 240.8 | 197.5 | 229   | 150.5 | 129.2 | 178   | 114.3 | 181.2 | 132   | 156.8 |
| 3 | 1969     |       | 100   | 200   | 380.6 | 196.1 | 200   | 220.5 | 100.8 | 197.5 | 122.8 | 250   | 150.9 | 226.5 | 178.6 | 170.6 | 113.5 | 212.3 | 350   | 175   |
| 4 | 1970     |       | 102   | 135.5 | 158.5 | 129   | 148.5 | 160   | 63.5  | 162.5 | 146   |       | 110.3 | 194.6 | 172   | 100   | 69.5  | 197.5 | 299   | 130   |
| 5 | 1971     | 128.9 | 120   | 129.3 | 156   | 195.8 | 197.5 | 208.5 |       | 117.8 | 150   | 163.3 |       | 161.2 | 127.2 | 122.7 | 60    | 141   | 182   | 180   |
| 5 | 1972     |       | 220   | 115.5 | 134   | 146.8 | 80    | 180.5 | 41.5  | 124.3 | 148   | 96.7  | 112.5 | 193.3 | 103.6 | 351   | 90    | 141.2 | 85.4  | 256.4 |
| 7 | 1973     |       | 235   | 180.3 | 200.3 | 294   | 102   | 157   | 200   | 265.9 | 310   | 324.5 | 150.7 | 327.3 | 191.2 | 130.4 | 129.3 | 325.8 | 317.5 | 267.5 |
| 8 | 1974     | 191   | 121   | 137.8 | 347.8 | 333   | 113.5 | 254.1 | 240   | 271.3 | 109   | 206.2 | 174   | 211.3 |       | 173   | 158   |       | 227.5 | 157.7 |
| 9 | 1975     |       | 180   | 131.9 | 305.6 | 160.5 | 116.5 | 246   | 144   | 165.6 | 124   | 148   | 112.6 | 151   | 156.4 | 163.5 | 133   | 180   | 269   | 182   |
| 0 | 1976     | 123   | 169   | 109.9 | 232.7 | 160   | 157.2 | 149.5 | 129   | 107.4 | 123   | 227.5 | 156.6 | 177.1 | 147.3 | 140.4 | 240   | 124   | 188.5 | 100.5 |
| 1 | 1977     |       | 90    | 105.7 | 190.6 | 236.5 | 100.9 | 180   | 109   | 126.6 | 137   | 138.9 | 104.4 | 130   | 126.6 | 218   | 120   | 131.5 | 131   | 99    |
| 2 | 1978     | 123   | 140   | 160.9 | 164.3 | 132   | 90    | 173.2 | 157   | 93.9  | 210   | 174.8 | 170.5 | 148   | 139.4 |       | 100   | 146   | 225   | 100.5 |
| 3 | 1979     | 180   |       | 88.5  | 150   | 233.4 | 102   | 125.1 | 130   | 260.9 | 270   | 176.6 | 109   | 150   | 94.3  | 119   | 110.3 | 353.5 | 148.5 | 280   |
| 4 | 1980     | 103   | 131   | 221.9 | 174   | 205.6 | 160   | 182.1 | 90    | 165.9 |       | 194.1 | 227   | 185   |       | 93.5  | 60    | 140   | 123.5 | 164   |
| 5 | 1981     |       |       | 178.8 | 332.7 | 164.6 | 132.9 | 515.3 |       | 136.2 |       | 216.2 | 160   | 171.6 |       | 120.9 | 107.1 | 155   | 328.3 | 148.4 |
| 5 | 1982     |       | 105   | 112.5 | 227   | 137.5 | 200   |       | 108   | 77.5  |       | 213.1 | 99.2  | 127.3 |       | 94.8  | 88.5  | 111   | 130   | 138.5 |
| 7 | 1983     |       | 126   | 136.6 | 260   | 207.3 | 121.4 | 270.4 | 163   | 137.3 |       | 221.8 | 140.3 | 104   |       | 128.2 | 140.1 | 360.5 |       | 181.3 |
| 8 | 1984     |       |       | 147.5 |       | 241.3 | 183.2 |       |       |       |       |       | 102.5 | 234.3 |       |       |       |       |       | 163.5 |
| 9 | 1985     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

Figura 5.4. Archivo RDM de la región 1

### 5.2. Conformación de regiones homogéneas

La regionalización agrupa las estaciones climatológicas que tengan características similares con la finalidad de generar regiones homogéneas. Para la delimitación de las regiones se tomaron en cuenta tanto las características topográficas del estado, como la cercanía entre las estaciones climatológicas (Ver figura 5.5 y 5.6.).

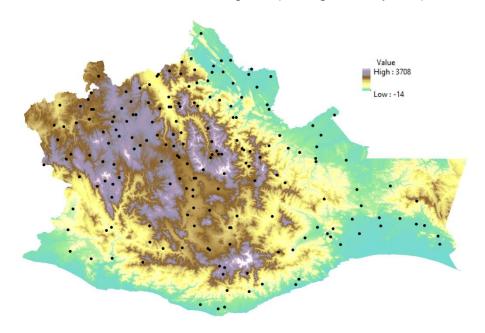



Figura 5.5. Topografía del estado de Oaxaca y ubicación de estaciones

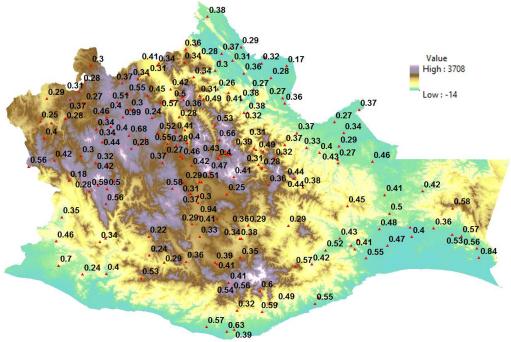



Figura 5.6 Coeficientes de variación y topografía del estado de Oaxaca

Además, se analizaron los coeficientes de variación (CV) de los valores máximos anuales de casa estación. De esta manera se crearon cuatro regiones hidrológicas dentro del estado (Ver tablas 5.2, 5.3, 5.4, 5.5 y figuras 5.7, 5.8, 5.9 y 5.10)

|                    |                   |                      |                    |                    |                    |                    | REGIÓ                | N 1                |                    |                      |                      |                    |                    |                   |                    |
|--------------------|-------------------|----------------------|--------------------|--------------------|--------------------|--------------------|----------------------|--------------------|--------------------|----------------------|----------------------|--------------------|--------------------|-------------------|--------------------|
| ESTACIÓN           | 20001             | 20002                | 20003              | 20004              | 20005              | 20007              | 20009                | 20018              | 20019              | 20020                | 20022                | 20023              | 20024              | 20025             | 20026              |
| Máximo             | 334.7             | 60.0                 | 120.0              | 285.0              | 95.0               | 158.2              | 81.4                 | 325.0              | 100.0              | 216.7                | 110.0                | 152.8              | 91.5               | 114.8             | 146.5              |
| Media              | 149.2             | 41.9                 | 50.5               | 65.4               | 47.0               | 73.7               | 50.8                 | 108.9              | 49.2               | 68.4                 | 51.5                 | 54.5               | 50.4               | 48.7              | 54.5               |
| Desv.Est           | 66.3              | 10.1                 | 18.6               | 43.2               | 17.3               | 26.5               | 14.7                 | 60.6               | 17.2               | 33.9                 | 18.9                 | 22.4               | 17.1               | 24.3              | 27.3               |
| Coef.Var.          | 0.44              | 0.24                 | 0.37               | 0.66               | 0.37               | 0.36               | 0.29                 | 0.56               | 0.35               | 0.50                 | 0.37                 | 0.41               | 0.34               | 0.50              | 0.50               |
| ESTACIÓN           | 20028             | 20031                | 20032              | 20034              | 20035              | 20038              | 20040                | 20041              | 20044              | 20046                | 20047                | 20049              | 20050              | 20064             | 20065              |
| Máximo             | 125.0             | 74.7                 | 237.0              | 130.0              | 120.0              | 193.0              | 127.0                | 213.0              | 108.0              | 103.0                | 223.5                | 213.1              | 125.0              | 208.4             | 163.2              |
| Media              | 48.16             | 44.80                | 91.18              | 56.94              | 51.69              | 86.23              | 51.62                | 65.23              | 54.31              | 55.77                | 76.48                | 71.41              | 52.38              | 83.11             | 53.70              |
| Desv.Est           | 21.0              | 12.4                 | 51.6               | 23.8               | 20.2               | 29.5               | 20.6                 | 34.9               | 18.9               | 22.3                 | 40.7                 | 41.0               | 22.0               | 44.3              | 27.4               |
| Coef.Var.          | 0.44              | 0.28                 | 0.57               | 0.42               | 0.39               | 0.34               | 0.40                 | 0.54               | 0.35               | 0.40                 | 0.53                 | 0.57               | 0.42               | 0.53              | 0.51               |
| ESTACIÓN           | 20066             | 20067                | 20070              | 20071              | 20073              | 20076              | 20077                | 20079              | 20080              | 20083                | 20085                | 20094              | 20096              | 20097             | 20099              |
| Máximo             | 101.0             | 84.0                 | 149.0              | 103.0              | 125.6              | 105.0              | 195.0                | 117.0              | 196.0              | 60.5                 | 121.0                | 145.2              | 120.6              | 200.0             | 266.0              |
| Media              | 52.4              | 55.7                 | 54.5               | 55.5               | 55.7               | 47.0               | 84.6                 | 60.4               | 64.9               | 26.6                 | 61.6                 | 107.0              | 54.9               | 109.7             | 59.2               |
| Desv.Est           | 17.8              | 16.1                 | 22.1               | 21.4               | 22.9               | 19.6               | 28.8                 | 17.7               | 31.8               | 14.8                 | 22.3                 | 18.7               | 23.3               | 41.8              | 39.2               |
| Coef.Var.          | 0.34              | 0.29                 | 0.41               | 0.39               | 0.41               | 0.42               | 0.34                 | 0.29               | 0.49               | 0.55                 | 0.36                 | 0.18               | 0.42               | 0.38              | 0.66               |
| ESTACIÓN           | 20102             | 20103                | 20105              | 20106              | 20108              | 20109              | 20110                | 20111              | 20115              | 20118                | 20120                | 20121              | 20122              | 20124             | 20125              |
| Máximo             | 120.0             | 112.7                | 153.0              | 267.0              | 80.7               | 116.0              | 91.0                 | 73.0               | 140.0              | 128.0                | 222.5                | 126.2              | 106.0              | 153.0             | 80.7               |
| Media              | 50.9              | 52.0                 | 57.7               | 97.1               | 55.5               | 52.3               | 54.2                 | 43.3               | 67.3               | 55.9                 | 79.5                 | 41.8               | 48.3               | 63.7              | 51.6               |
| Desv.Est           | 25.1              | 17.8                 | 29.6               | 58.1               | 14.3               | 21.4               | 19.1                 | 15.2               | 28.1               | 18.4                 | 44.9                 | 21.9               | 13.9               | 28.2              | 14.4               |
| Coef.Var.          | 0.49              | 0.34                 | 0.51               | 0.60               | 0.26               | 0.41               | 0.35                 | 0.35               | 0.42               | 0.33                 | 0.56                 | 0.52               | 0.29               | 0.44              | 0.28               |
| ESTACIÓN           | 20126             | 20129                | 20130              | 20133              | 20135              | 20137              | 20141                | 20143              | 20144              | 20145                | 20146                | 20147              | 20150              | 20151             | 20153              |
| Máximo             | 300.0             | 150.5                | 180.0              | 126.0              | 100.0              | 90.0               | 124.0                | 400.0              | 82.0               | 196.2                | 86.0                 | 140.0              | 96.0               | 97.0              | 161.0              |
| Media              | 80.5              | 51.0                 | 99.4               | 55.7               | 68.0               | 40.9               | 55.3                 | 131.9              | 44.7               | 88.2                 | 57.8                 | 52.9               | 47.6               | 57.3              | 98.7               |
| Desv.Est           | 42.3              | 23.1                 | 28.1               | 20.5               | 16.1               | 16.4               | 22.3                 | 130.7              | 13.6               | 34.1                 | 14.5                 | 24.2               | 17.5               | 15.4              | 21.3               |
| Coef.Var.          | 0.53              | 0.45                 | 0.28               | 0.37               | 0.24               | 0.40               | 0.40                 | 0.99               | 0.30               | 0.39                 | 0.25                 | 0.46               | 0.37               | 0.27              | 0.22               |
| ESTACIÓN           | 20154             | 20155                | 20156              | 20157              | 20158              | 20159              | 20160                | 20163              | 20164              | 20165                | 20167                | 20168              | 20170              | 20177             | 20178              |
| Máximo             | 162.0             | 103.0                | 90.6               | 173.0              | 142.0              | 85.0               | 143.0                | 77.5               | 200.0              | 81.0                 | 109.0                | 100.0              | 100.0              | 250.0             | 220.0              |
| Media              | 80.4              | 52.4                 | 53.3               | 50.3               | 67.9               | 45.9               | 81.9                 | 43.0               | 54.8               | 46.9                 | 51.3                 | 51.9               | 44.9               | 94.5              | 54.8               |
| Desv.Est           | 38.3              | 21.3                 | 18.1               | 27.7               | 24.2               | 18.4               | 25.6                 | 12.8               | 37.3               | 11.7                 | 21.3                 | 16.7               | 16.3               | 46.1              | 32.2               |
| Coef.Var.          | 0.48              | 0.41                 | 0.34               | 0.55               | 0.36               | 0.40               | 0.31                 | 0.30               | 0.68               | 0.25                 | 0.42                 | 0.32               | 0.36               | 0.49              | 0.59               |
| ESTACIÓN           | 20179             | <b>20181</b> 135.5   | 20182              | 20184              | <b>20186</b> 199.2 | <b>20187</b> 145.5 | 20188                | 20190              | 20191              | <b>20202</b><br>97.7 | 20207                | 20209              | 20233              | 20265             | <b>20266</b> 320.0 |
| Máximo             | 102.2             |                      | 66.4               | 111.0              |                    |                    | 139.8                | 94.8               | 91.0               |                      | 110.2                | 102.3              | 80.0               | 110.0             |                    |
| Media              | 59.6              | 66.6                 | 37.5               | 60.1               | 71.7               | 86.9               | 82.4                 | 53.9               | 50.7               | 53.0<br>15.3         | 58.9                 | 51.8               | 45.4               | 60.9              | 67.9               |
| Desv.Est           | 18.4              | 25.4                 | 11.8               | 20.5               | 39.9               | 23.8               | 28.7                 | 16.5               | 19.4               |                      | 16.6                 | 15.5               | 13.3               | 19.9              | 63.5               |
| Coef.Var.          | 0.31              | 0.38                 | 0.31               | 0.34               | 0.56               | 0.27               | 0.35                 | 0.31               | 0.38               | 0.29                 | 0.28                 | 0.30               | 0.29               | 0.33              | 0.94               |
| ESTACIÓN<br>Máximo | <b>20271</b> 87.0 | <b>20275</b><br>83.8 | <b>20277</b> 165.0 | <b>20280</b> 118.0 | <b>20308</b> 209.5 | <b>20313</b> 162.0 | <b>20314</b><br>88.3 | <b>20329</b> 140.0 | <b>20342</b> 188.0 | <b>20354</b> 97.0    | <b>20355</b><br>84.0 | <b>20364</b> 115.0 | <b>20367</b> 152.0 | <b>20379</b> 72.0 | <b>20385</b> 170.5 |
|                    | 55.6              | 54.0                 | 90.2               | 48.5               | 77.2               | 62.8               | 54.8                 | 59.9               | 110.7              | 53.8                 | 49.3                 | 54.0               | 59.0               | 49.4              | 101.4              |
| Media<br>Desv.Est  | 15.3              | 14.6                 | 32.1               | 20.9               | 41.5               | 36.7               | 15.3                 | 30.3               | 45.7               | 16.4                 | 14.6                 | 24.7               | 27.9               | 13.6              | 32.8               |
|                    | 0.28              | 0.27                 | 0.36               | 0.43               | 0.54               | 0.58               | 0.28                 | 0.51               | 0.41               | 0.31                 | 0.30                 | 0.46               | 0.47               | 0.28              | 0.32               |
| Coef.Var.          | 0.28              | 0.27                 | 0.30               | 0.43               | 0.54               | 0.58               | 0.28                 | 0.51               | 0.41               | 0.31                 | 0.30                 | 0.46               | 0.47               | 0.28              | 0.32               |

Tabla 5.2 Parámetros estadísticos para las estaciones de la región 1

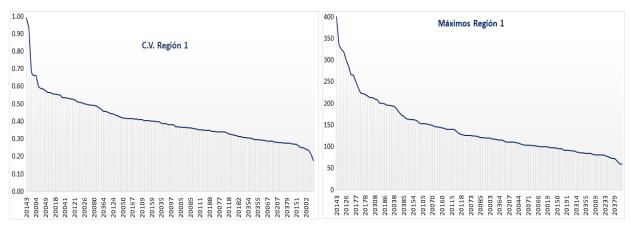



Figura 5.7. Variación de máximos y coeficiente de variación para la región 1

|           | REGIÓN 2 |       |       |       |       |       |       |       |       |       |       |       |       |  |  |
|-----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| ESTACIÓN  | 20006    | 20008 | 20012 | 20014 | 20015 | 20016 | 20017 | 20029 | 20030 | 20036 | 20037 | 20042 | 20045 |  |  |
| Máximo    | 238.2    | 227.1 | 380.6 | 442   | 136.4 | 307   | 268.5 | 515.3 | 240   | 271.3 | 310   | 324.5 | 185.3 |  |  |
| Media     | 147.6    | 133.6 | 221   | 201.1 | 92.43 | 190.9 | 130.8 | 202.1 | 124   | 161.2 | 167   | 197.8 | 119.2 |  |  |
| Desv.Est  | 48.32    | 36.89 | 71.07 | 72.11 | 16.17 | 59.8  | 44.51 | 73.21 | 46.22 | 54.22 | 52.97 | 52.81 | 34.37 |  |  |
| Coef.Var. | 0.327    | 0.276 | 0.322 | 0.359 | 0.175 | 0.313 | 0.34  | 0.362 | 0.373 | 0.336 | 0.317 | 0.267 | 0.288 |  |  |
| ESTACIÓN  | 20061    | 20072 | 20081 | 20084 | 20095 | 20098 | 20113 | 20114 | 20136 | 20138 | 20139 | 20152 | 20161 |  |  |
| Máximo    | 218      | 229   | 340   | 334.5 | 351   | 263   | 240   | 360.5 | 350   | 286   | 280   | 330.5 | 201   |  |  |
| Media     | 118      | 137.7 | 181.6 | 135.1 | 149.8 | 132.2 | 114.5 | 188.3 | 200.6 | 153.6 | 168.3 | 151.1 | 114.8 |  |  |
| Desv.Est  | 33.85    | 36.71 | 55.84 | 49.03 | 60.18 | 48.89 | 42.73 | 76.33 | 76.56 | 65.55 | 50.88 | 47.88 | 38.91 |  |  |
| Coef.Var. | 0.287    | 0.267 | 0.308 | 0.363 | 0.402 | 0.37  | 0.373 | 0.405 | 0.382 | 0.427 | 0.302 | 0.317 | 0.339 |  |  |
| ESTACIÓN  | 20172    | 20174 | 20175 | 20176 | 20183 | 20185 | 20189 | 20203 | 20272 | 20279 | 20289 | 20334 | 20374 |  |  |
| Máximo    | 342      | 360   | 368   | 240   | 240   | 290.5 | 306.2 | 324.4 | 352   | 260   | 269.5 | 382.2 | 265   |  |  |
| Media     | 137.1    | 218.7 | 204.7 | 132.8 | 145.7 | 147.4 | 157.1 | 153   | 208.1 | 166.4 | 135.3 | 203.5 | 168.5 |  |  |
| Desv.Est  | 43.29    | 57.43 | 76.9  | 50.26 | 45.56 | 48.3  | 56.38 | 56.48 | 58.97 | 45.34 | 60.66 | 94.39 | 45.51 |  |  |
| Coef.Var. | 0.316    | 0.263 | 0.376 | 0.378 | 0.313 | 0.328 | 0.359 | 0.369 | 0.283 | 0.272 | 0.448 | 0.464 | 0.27  |  |  |
|           |          |       |       |       |       |       |       |       |       |       |       |       |       |  |  |

Tabla 5.3 Parámetros estadísticos para las estaciones de la región 2

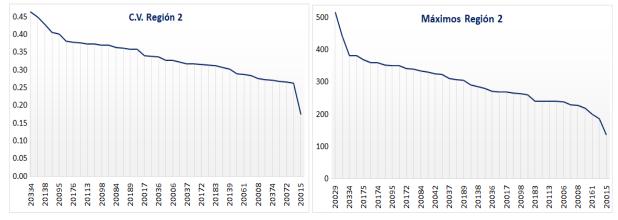



Figura 5.8. Variación de máximos y coeficiente de variación para la región 2.

|           | REGIÓN 3 |       |       |       |       |       |       |       |       |       |  |  |  |  |  |
|-----------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|
| ESTACIÓN  | 20027    | 20039 | 20043 | 20048 | 20060 | 20068 | 20082 | 20117 | 20127 | 20134 |  |  |  |  |  |
| Máximo    | 217      | 282   | 206   | 315   | 320.5 | 240   | 381   | 300   | 296   | 304.0 |  |  |  |  |  |
| Media     | 111.5    | 112.4 | 98.05 | 123.5 | 119.5 | 108.3 | 144.2 | 96.35 | 151.4 | 136.2 |  |  |  |  |  |
| Desv.Est  | 41.33    | 53.49 | 42.43 | 57.75 | 63.25 | 44.26 | 75.72 | 56.07 | 63.61 | 67.83 |  |  |  |  |  |
| Coef.Var. | 0.371    | 0.476 | 0.433 | 0.468 | 0.529 | 0.409 | 0.525 | 0.582 | 0.42  | 0.498 |  |  |  |  |  |
| ESTACIÓN  | 20148    | 20149 | 20162 | 20173 | 20290 | 20292 | 20328 | 20353 | 20382 |       |  |  |  |  |  |
| Máximo    | 435      | 379   | 239.5 | 216.5 | 201.2 | 420   | 310   | 189.4 | 248   |       |  |  |  |  |  |
| Media     | 146.5    | 142.9 | 82.15 | 120.3 | 108.6 | 149.4 | 91.29 | 99.31 | 117   |       |  |  |  |  |  |
| Desv.Est  | 81.36    | 78.48 | 42.34 | 48.12 | 39.17 | 85.49 | 76.53 | 41.31 | 47.7  |       |  |  |  |  |  |
| Coef.Var. | 0.555    | 0.549 | 0.515 | 0.4   | 0.361 | 0.572 | 0.838 | 0.416 | 0.408 |       |  |  |  |  |  |
|           |          |       |       |       |       |       |       |       |       |       |  |  |  |  |  |

Tabla 5.4 Parámetros estadísticos para las estaciones de la región 3

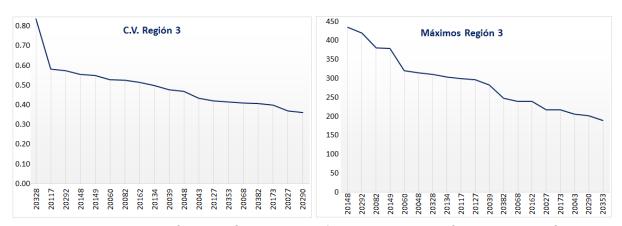



Figura 5.9. Variación de máximos y coeficiente de variación para la región 3.

|           | ).                                                                               |       |       |       | REG   | IÓN 4 |       |       |       |       |       |       |  |
|-----------|----------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| ESTACIÓN  | ESTACIÓN 20010 20086 20088 20089 20090 20200 20256 20303 20319 20326 20350 20356 |       |       |       |       |       |       |       |       |       |       |       |  |
| Máximo    | 340.5                                                                            | 182   | 450   | 205   | 211   | 293.7 | 317.2 | 330   | 332.8 | 300   | 167   | 234   |  |
| Media     | 141.5                                                                            | 91.16 | 149.7 | 112.8 | 113   | 87.73 | 132.2 | 111.6 | 137.2 | 108.2 | 118.6 | 97.27 |  |
| Desv.Est  | 64.51                                                                            | 36.5  | 104.7 | 36.48 | 44.19 | 52.09 | 64.29 | 70.12 | 64.48 | 61.52 | 27.94 | 53.3  |  |
| Coef.Var. | 0.456                                                                            | 0.4   | 0.699 | 0.323 | 0.391 | 0.594 | 0.486 | 0.628 | 0.47  | 0.568 | 0.236 | 0.548 |  |

Tabla 5.5 Parámetros estadísticos para las estaciones de la región 4

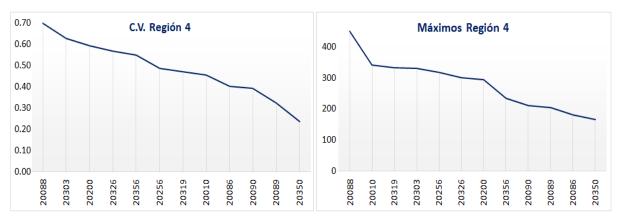



Figura 5.10. Variación de máximos y coeficiente de variación para la región 4

### 5.3. Regiones definidas

Una vez realizado el análisis a través de la variación de los C.V., los valores máximos, y la topografía del estado; se definieron cuatro regiones hidrológicas como se muestra en la figura 5.11 y 5.12.

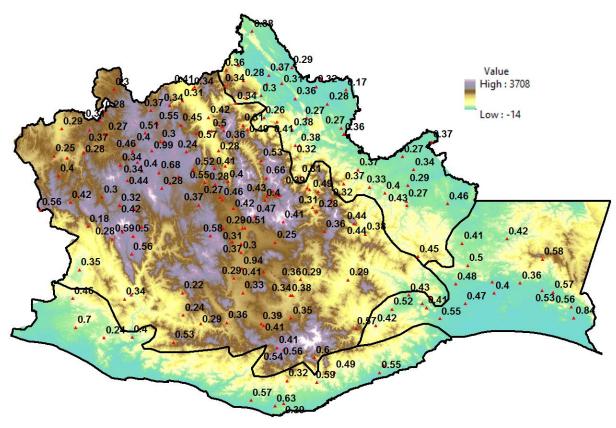



Figura 5.11. Delimitación de las regiones hidrológicas de Oaxaca



Figura 5.12. Regiones hidrológicas de Oaxaca

### 5.4 Depuración de estaciones climatológicas con CLICOM

El CLImate COMputing project (CLICOM) es un sistema de software de manejo de datos climatológicos desarrollado por las Naciones Unidas, dicha base de datos contiene los registros de una extensa red de estaciones climatológicas de gran cobertura geográfica, la cual es actualizada diariamente por el Servicio Meteorológico Nacional (SMN).

La interfaz gráfica de CLICOM se alimenta de la base de datos antes mencionada, cada estación climatológica reporta diferentes índices climatológicos, entre ellos los de precipitación.

Para el análisis regional de precipitaciones el sistema de software CLICOM resulta una excelente herramienta tanto para la depuración de estaciones climatológicas como para la obtención de valores estandarizados, en los siguientes párrafos se explica detalladamente cómo obtenerlos.

Depuración de estaciones climatológicas

#### 1. Cargar el archivo OAX\_DLY

Para cargar el archivo OAX\_DLY se selecciona la opción "elegir archivo", se busca la ubicación del archivo dentro de la computadora, una vez realizado esto se selecciona la opción "subir" y por último la opción "siguiente" como se muestra en la figura 5.13, 5.14. y 5.15





Figura 5.13. Pantalla de inicio de CLICOM

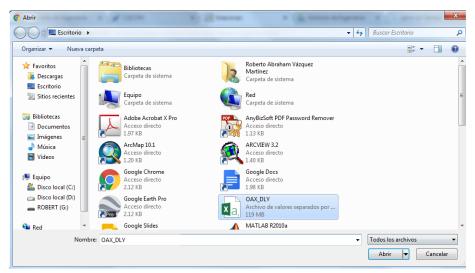



Figura 5.14. Ubicación del archivo OAX\_DLY



Figura 5.15. Archivo OAX\_DLY cargando

#### 2. Selección de estación climatológica a depurar

Una vez cargado el archivo OAX\_DLY, se procede a escoger la estación climatológica a depurar, posteriormente se selecciona el código "005" que es el correspondiente a valores de precipitación, como se muestra en la figura 5.16

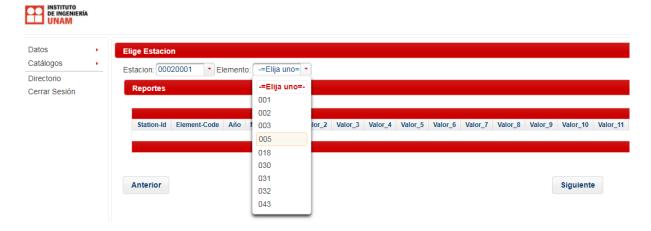



Figura 5.16 Selección de estación climatológica a depurar

#### 3. Depuración de la estación climatológica

Inmediatamente se abre una ventana que muestra los años de registro para la estación seleccionada como muestra la figura 5.17, estos años deben ser comparados

con los del archivo RDM, para así conocer los años que se deben eliminar, por último, seleccionamos la opción "siguiente"

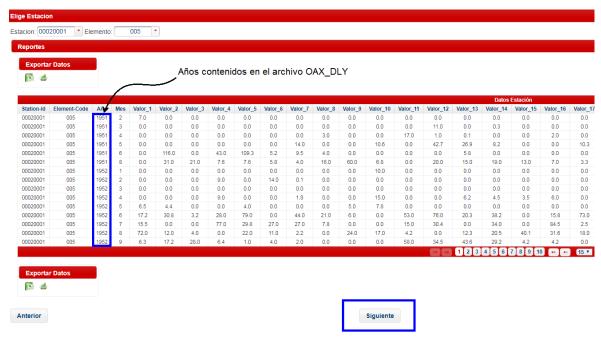



Figura 5.17. Depuración de la estación seleccionada

Una vez realizados los pasos anteriores, se abre una ventana como la que se muestra en la figura 5.18. Del lado inferior izquierdo se pregunta si se desea eliminar algún año, se selecciona la opción "sí".

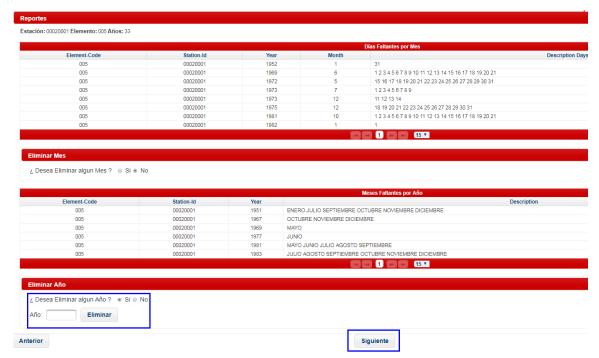



Figura 5.18.

En el espacio se escriben todos los años que se desean eliminar para esa estación, lo cuales son todos aquellos que no estén contenidos dentro del archivo RDM.



Figura 5.19. Años a eliminar

Una vez terminado este paso se selecciona la opción "siguiente", inmediatamente se abre una ventana en la cual se escribe "0.0001" y posteriormente se selecciona "limpiar". ver figura 5.20.



Figura 5.20.

#### 4. Descarga de archivo depurado

Por último, aparecerá una ventana, donde se confirma que la estación ha sido depurada. Posteriormente se exportan los datos como se muestra en el cuadro azul de la figura 5.21., el archivo descargado tendrá por nombre la clave de la estación seguido de la palabra "depurada", ejemplo "00020001 depurada"



Figura 5.21. Descarga de la estación depurada

#### 5. Depuración del resto de las estaciones

Para realizar la depuración del resto de las estaciones se selecciona la opción de Datos> Procesar> Estación, como se muestra en la figura 5.22. y se vuelve a repetir del paso uno al cinco hasta depurar todas las estaciones que se deseen.



Figura 5.22. Descarga de la estación depurada

#### 5.5. Valores estandarizados con CLICOM

Los valores estandarizados son el resultado de dividir cada valor máximo, entre la media de la estación correspondiente, a continuación, se describe el procedimiento para obtener estos valores con el uso del software CLICOM.

#### 1. Selección de las estaciones

De la pantalla de inicio seleccionar DATOS> PROCESAR> MÁXIMO como se muestra en la figura 5.23. Luego se elige la estación de la cual se desea obtener los valores estandarizados y por último se selecciona la opción "generar" como se muestra en la figura 5.24. Una vez concluido este paso, se vuelve a repetir el mismo procedimiento para todas las estaciones de las cuales se deseen obtener los valores estandarizados.





Figura 5.23.



Figura 5.24

#### 2. Obtención de los valores estandarizados

De la pantalla de inicio seleccionar DATOS> PROCESADOS> MÁXIMOS como se muestra en la figura 5.25. Inmediatamente se abre una ventana preguntando si se desean elegir varias estaciones, se indica que "sí", luego se escoge el elemento "0.005" que es el correspondiente a lluvia, después se seleccionan todas las estaciones climatológicas de las cuales deseamos obtener los valores estandarizados y finalmente seleccionamos las opciones de "consultar" y "máximos" y descargamos el archivo que contiene los valores estandarizados (Ver figura 5.26. y 5.27.).





Figura 5.25





Figura 5.26

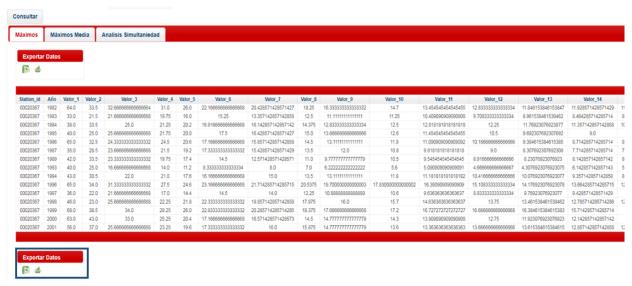



Figura 5.27.

# 5.5. Obtención de las funciones de distribución para cada región con Ax.

Ax es un software de modelación matemática de eventos extremos de precipitación, tiene el cometido de ajustar distintas funciones de probabilidad a una serie de datos de lluvia, además calcula el error estándar de cada una de las funciones respecto de la muestra. Las funciones de probabilidad que contempla Ax son: Normal, Log-normal, Gumbel, Exponencial, Gamma y doble Gumbel.

Para obtener las funciones de distribución con Ax, se utilizan los valores estandarizados proporcionados con CLICOM, estos son procesados en el software, donde se determina la función de probabilidad que mejor se ajuste a estos valores, y por último se hace una extrapolación que permita estimar los valores para distintos periodos de retorno. A continuación, se describe todo el procedimiento.

Los valores estandarizados se agrupan de acuerdo con la región que pertenecen, posteriormente cada grupo de valores estandarizados se guarda en un archivo de block de notas con terminación ".AJU" y se guardan en una carpeta dentro del Disco local (C:) como se muestra en la figura 5.28. y 5.29.

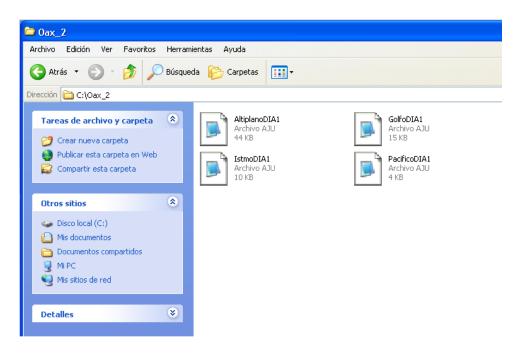



Figura 5.28. Valores estandarizados agrupados por región en

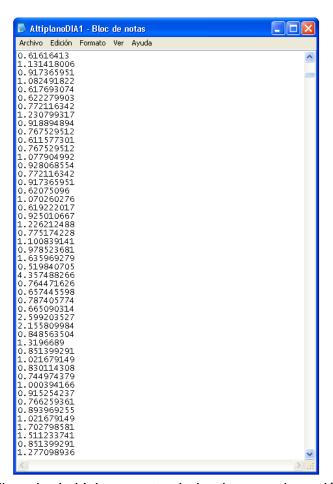



Figura 5.29. Ejemplo de Valores estandarizados para la región de Altiplano

Para poder cargar los valores estandarizados dentro de Ax, se selecciona la opción Archivos y Abrir, como se muestra en la figura 5.30.

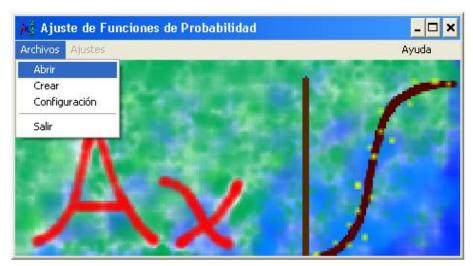
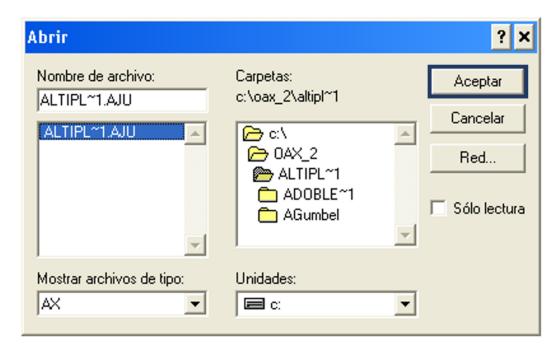
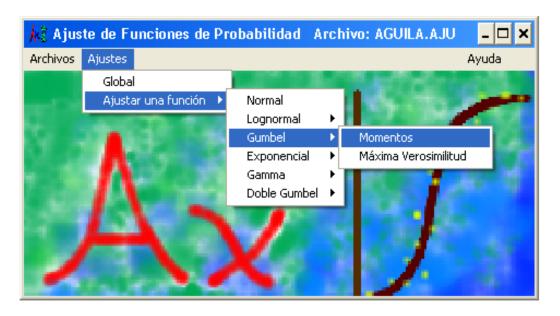
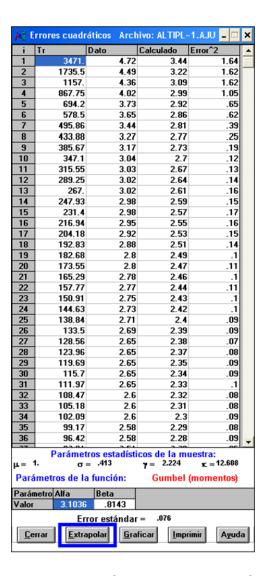
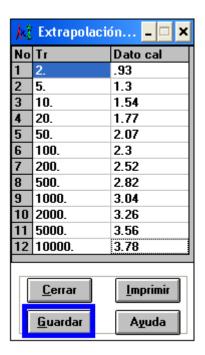



Figura 5.30. Pantalla de inicio de Ax

Posteriormente se busca el archivo con el que se desee trabajar, se selecciona y por último se elige la opción Aceptar, como se muestra en la figura 5.31.

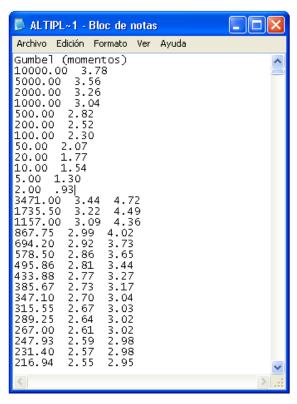


Figura 5.31.


A partir de aquí se realizan los ajustes para las funciones de probabilidad Gumbel y Doble Gumbel:

- Para la realizar el ajuste de probabilidad para la función Gumbel se utilizó el método de los momentos, el cual plantea un sistema de ecuaciones, cuyo tamaño depende del número de parámetros a estimar, en el caso de la distribución Gumbel, se tiene un parámetro de ubicación β y un parámetro de escala α (expresiones 2.14 y 2.15). Para ello se selecciona la opción de Ajustes >> Ajustar una función >> Gumbel >> Momentos (Figura 5.32.). Inmediatamente se abre una ventana que muestra los errores cuadráticos, (Ver figura 5.33.), luego entonces se selecciona la opción de "Extrapolar" que abre una ventana que muestra los coeficientes de diseño para diferentes periodos de retorno, finalmente se elige la opción de "Guardar". Una vez concluidos estos pasos, se habrá creado un archivo en block de notas con terminación "MAX", el cual contiene los valores calculados para la función de probabilidad Gumbel (Ver figura 5.34. y 5.35).
- La estimación de los parámetros e




5.32. Ajuste de función de probabilidad Gumbel

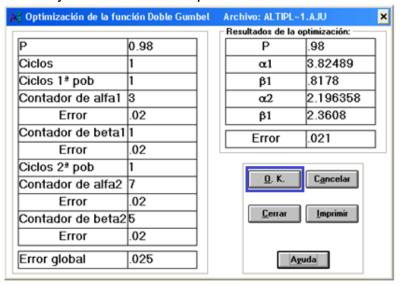




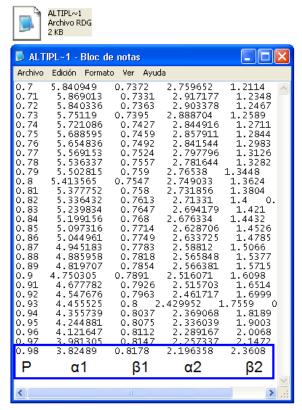

5.33. Errores cuadráticos y extrapolación para diferentes periodos de retorno



5.34. Archivo con terminación "MAX" creado por Ax




5.35. Coeficiente de diseño para distintos periodos de retorno


• Ajuste de probabilidad para Doble Gumbel: Se selecciona la opción de Ajustes >> Ajustar una función >> Doble Gumbel >> Automática (Ver figura 5.36), Inmediatamente se abre una ventana que muestra los parámetros estadísticos  $\alpha_1$ ,  $\alpha_2$ ,  $\beta_1$ ,  $\beta_2$  para un valor determinado de P (Ver figura 5.37), posteriormente se selecciona O. K. e inmediatamente se crea un documento en block de notas con terminación RDG, el cual muestra los diferentes valores de  $\alpha_1$ ,  $\alpha_2$ ,  $\beta_1$ ,  $\beta_2$  de acuerdo al valor de P (Ver figura 5.38.).



5.36. Ajuste de función de probabilidad Doble Gumbel



5.37. Parámetros estadísticos propuestos para la función Doble Gumbel



5.38. Parámetros estadísticos para diferentes valores de P

De esta manera se proponen distintos valores de  $\alpha_1$ ,  $\alpha_2$ ,  $\beta_1$ ,  $\beta_2$  y P con la finalidad de tener un mejor ajuste de probabilidad.

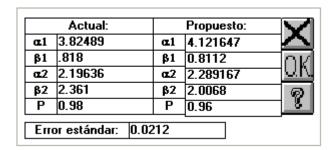
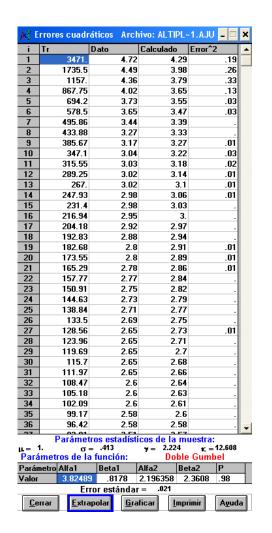
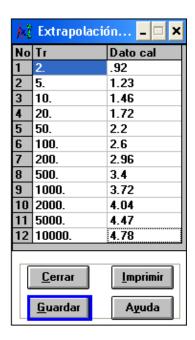





Figura 5.45. Ingreso de valores α1, β1, α2, β2 y P

Por último se selecciona la opción O.K. se extrapolan los datos y se guardan (Ver figura 5.55), una vez concluido este paso se habrá creado un archivo en block de notas con terminación "MAX", que contiene los coeficientes de diseño calculados para diferentes periodos de retorno, de acuerdo a la función Doble Gumbel (Ver figura 5.56).





5.56. Errores cuadráticos y extrapolación para diferentes periodos de retorno

#### 5.6.1 Resultados obtenidos

A continuación se presentan las gráficas que permiten comparar los valores medidos con los calculados para las funciones Gumbel y Doble Gumbel en cada región.

### Región Altiplano

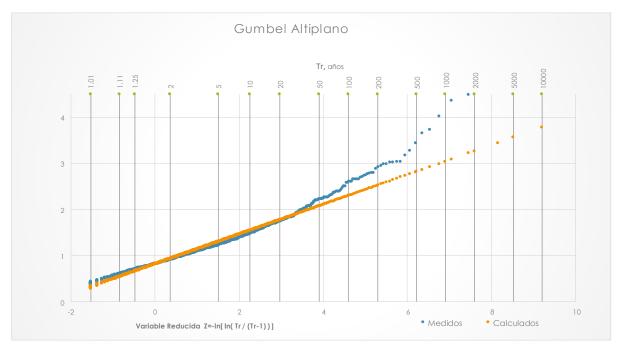



Figura 5.57 Función de probabilidad Gumbel, para la región Altiplano

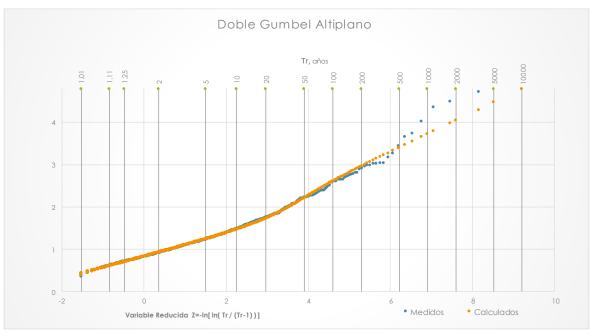



Figura 5.58. Función de probabilidad Doble Gumbel con parámetro P=0.98, para la región Altiplano

### Región Golfo




Figura 5.59 Función de probabilidad Gumbel, para la región Golfo

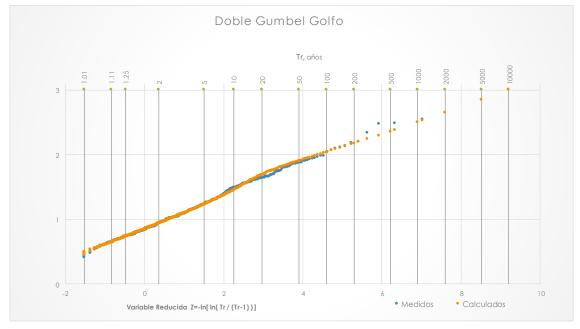



Figura 5.60 Función de probabilidad Doble Gumbel, para la región Golfo

### Región Istmo



Figura 5.61 Función de probabilidad Gumbel, para la región Istmo

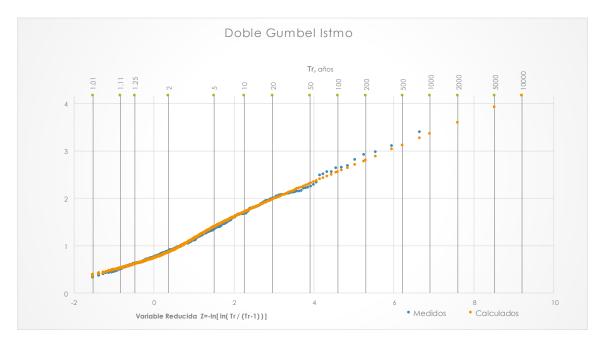



Figura 5.62 Función de probabilidad Doble Gumbel, para la región Istmo

### Región Pacífico

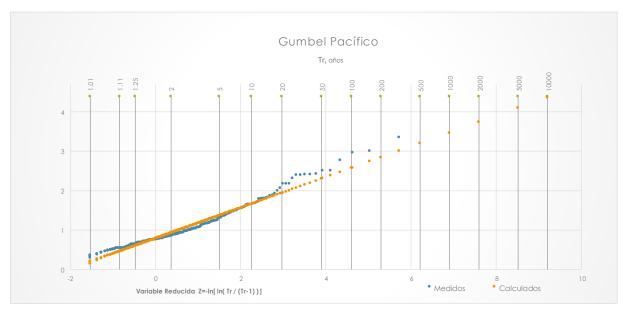



Figura 5.63 Función de probabilidad Gumbel, para la región Pacífico




Figura 5.64 Función de probabilidad Doble Gumbel con P=0.88, para Pacífico

Con base en las gráficas mostradas anteriormente, se determina la función de probabilidad que mejor se ajustó a los valores medidos de cada región. En la tabla 5.3. se presentan las funciones que mejor se ajustaron para cada región.

| Región    | Función de distribución de<br>probabilidad |
|-----------|--------------------------------------------|
| Altiplano | Doble Gumbel                               |
| Golfo     | Gumbel                                     |
| Istmo     | Gumbel                                     |
| Pacífico  | Doble Gumbel                               |

Tabla 5.3. Resumen de funciones correspondientes para cada región

Por último, utilizando las funciones de probabilidad correspondientes se infieren eventos para ciertos periodos de retorno, a continuación se muestran los resultados de los diferentes factores regionales obtenidos para periodos de retorno de 10 000, 5 000, 2 000, 1 000, 500, 200, 100, 50, 20, 10, 5, y 2 años.

| Tr (años) | Altiplano | Golfo | Istmo | Pacífico |
|-----------|-----------|-------|-------|----------|
| 2         | 0.92      | 0.95  | 0.92  | 0.87     |
| 5         | 1.23      | 1.24  | 1.35  | 1.27     |
| 10        | 1.46      | 1.43  | 1.63  | 1.72     |
| 20        | 1.72      | 1.62  | 1.9   | 2.1      |
| 50        | 2.2       | 1.86  | 2.26  | 2.51     |
| 100       | 2.6       | 2.04  | 2.52  | 2.8      |
| 200       | 2.96      | 2.22  | 2.78  | 3.08     |
| 500       | 3.4       | 2.46  | 3.13  | 3.45     |
| 1000      | 3.72      | 2.64  | 3.39  | 3.72     |
| 2000      | 4.04      | 2.82  | 3.65  | 4        |
| 5000      | 4.47      | 3.06  | 4     | 4.36     |
| 10000     | 4.78      | 3.23  | 4.26  | 4.63     |

Tabla 5.4. Factores de diseño asociados a diferentes periodos de retorno

#### 5.7 Análisis de resultados

Para determinar la tormenta de diseño de cada estación analizada asociada a un cierto periodo de retorno simplemente se debe obtener el producto entre la precipitación media de la estación y su factor regional correspondiente, por ejemplo, si se desea obtener la lluvia de diseño de la estación 20290, para un periodo de retorno de  $100~a\tilde{n}os$ , primero se debe conocer la precipitación media de la estación 20290, de la tabla 5.4., se obtiene el valor de 108.6~mm, posteriormente se debe conocer el factor regional para un periodo de retorno de  $100~a\tilde{n}os$ , por ser la región de Istmo, se tiene un factor de 2.52 (Ver tabla 5.4), una vez conocidos estos dos términos la lluvia de diseño quedaría de la siguiente manera: (108.6~mm)(2.52) = 273.672~mm. En la tabla 5.6., 5.7., 5,8. Y 5.9 se muestran los valores de las lluvias de diseño para diferentes periodos de retorno de todas las estaciones.

|            |             |                  |                  |                  |                  | Regió            | n Altipl         | ano co | n funci          | ón de p          | robabi           | ilidad D         | oble G           | umbel            |                  |                  |                  |                  |                  |                  |                  |
|------------|-------------|------------------|------------------|------------------|------------------|------------------|------------------|--------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Tr (Años)  | Fac. Reg.   | 20001            | 20002            | 20003            | 20004            | 20005            | 20007            | 20009  | 20018            | 20019            | 20020            | 20022            | 20023            | 20024            | 20025            | 20026            | 20028            | 20031            | 20032            | 20034            | 20035            |
| 2          | 0.92        | 137.26           | 38.53            | 46.45            | 60.17            | 43.22            | 67.80            | 46.70  | 100.18           | 45.23            | 62.93            | 47.41            | 50.14            | 46.36            | 44.84            | 50.11            | 44.30            | 41.21            | 83.89            | 52.39            | 47.56            |
| 5          | 1.23        | 183.51           | 51.51            | 62.11            | 80.45            | 57.79            | 90.64            | 62.43  | 133.93           | 60.47            | 84.13            | 63.39            | 67.03            | 61.99            | 59.95            | 67.00            | 59.23            | 55.10            | 112.15           | 70.04            | 63.58            |
| 10         | 1.46        | 217.82           | 61.14            | 73.72            | 95.49            | 68.59            | 107.59           | 74.11  | 158.98           | 71.78            | 99.86            | 75.24            | 79.57            | 73.58            | 71.16            | 79.53            | 70.31            | 65.40            | 133.12           | 83.14            | 75.47            |
| 20         | 1.72        | 256.61           | 72.03            | 86.85            | 112.50           | 80.81            | 126.75           | 87.30  | 187.29           | 84.56            | 117.64           | 88.64            | 93.74            | 86.68            | 83.83            | 93.69            | 82.83            | 77.05            | 156.83           | 97.94            | 88.91            |
| 50         | 2.2         | 328.23           | 92.13            | 111.08           | 143.89           | 103.36           | 162.12           | 111.67 | 239.56           | 108.16           | 150.47           | 113.37           | 119.89           | 110.87           | 107.23           | 119.84           | 105.94           | 98.55            | 200.60           | 125.27           | 113.73           |
| 100        | 2.6         | 387.91           | 108.88           | 131.28           | 170.05           | 122.15           | 191.60           | 131.97 | 283.11           | 127.82           | 177.83           | 133.99           | 141.69           | 131.03           | 126.72           | 141.63           | 125.21           | 116.47           | 237.07           | 148.05           | 134.40           |
| 200        | 2.96        | 441.62           | 123.95           | 149.46           | 193.60           | 139.07           | 218.13           | 150.25 | 322.31           | 145.52           | 202.46           | 152.54           | 161.31           | 149.17           | 144.27           | 161.24           | 142.54           | 132.60           | 269.90           | 168.55           | 153.01           |
| 500        | 3.4         | 507.26           | 142.38           | 171.67           | 222.38           | 159.74           | 250.55           | 172.58 | 370.22           | 167.16           | 232.55           | 175.21           | 185.29           | 171.35           | 165.71           | 185.20           | 163.73           | 152.31           | 310.02           | 193.60           | 175.76           |
| 1000       | 3.72        | 555.00           | 155.78           | 187.83           | 243.31           | 174.77           | 274.13           | 188.82 | 405.07           | 182.89           | 254.44           | 191.70           | 202.73           | 187.47           | 181.31           | 202.63           | 179.14           | 166.64           | 339.19           | 211.82           | 192.30           |
| 2000       | 4.04        | 602.75           | 169.18           | 203.99           | 264.23           | 189.81           | 297.71           | 205.06 | 439.91           | 198.62           | 276.32           | 208.19           | 220.17           | 203.60           | 196.91           | 220.06           | 194.55           | 180.98           | 368.37           | 230.05           | 208.84           |
| 5000       | 4.47        | 666.90           | 187.19           | 225.70           | 292.36           | 210.01           | 329.40           | 226.89 | 486.74           | 219.76           | 305.74           | 230.35           | 243.60           | 225.27           | 217.86           | 243.49           | 215.26           | 200.24           | 407.58           | 254.53           | 231.07           |
| 10000      | 4.78        | 713.15           | 200.17           | 241.35           | 312.63           | 224.57           | 352.25           | 242.63 | 520.49           | 235.00           | 326.94           | 246.33           | 260.50           | 240.89           | 232.97           | 260.37           | 230.19           | 214.13           | 435.85           | 272.18           | 247.10           |
| Tr (Años)  | Fac. Reg.   | 20038            | 20040            | 20041            | 20044            | 20046            | 20047            | 20049  | 20050            | 20064            | 20065            | 20066            | 20067            | 20070            | 20071            | 20073            | 20076            | 20077            | 20079            | 20080            | 20083            |
| 2          | 0.92        | 79.33            | 47.49            | 60.01            | 49.97            | 51.31            | 70.37            | 65.70  | 48.19            | 76.46            | 49.40            | 48.19            | 51.25            | 50.18            | 51.03            | 51.22            | 43.28            | 77.87            | 55.55            | 59.67            | 24.50            |
| 5          | 1.23        | 106.07           | 63.49            | 80.23            | 66.80            | 68.60            | 94.08            | 87.83  | 64.43            | 102.22           | 66.05            | 64.43            | 68.52            | 67.09            | 68.23            | 68.48            | 57.87            | 104.11           | 74.27            | 79.77            | 32.75            |
| 10         | 1.46        | 125.90           | 75.37            | 95.23            | 79.29            | 81.42            | 111.67           | 104.26 | 76.47            | 121.33           | 78.40            | 76.48            | 81.33            | 79.63            | 80.98            | 81.29            | 68.69            | 123.58           | 88.16            | 94.69            | 38.87            |
| 20         | 1.72        | 148.32           | 88.79            | 112.19           | 93.41            | 95.92            | 131.55           | 122.82 | 90.09            | 142.94           | 92.36            | 90.10            | 95.81            | 93.81            | 95.40            | 95.76            | 80.92            | 145.58           | 103.86           | 111.55           | 45.80            |
| 50         | 2.2         | 189.71           | 113.57           | 143.50           | 119.48           | 122.69           | 168.26           | 157.10 |                  | 182.83           | 118.13           | 115.24           | 122.55           | 119.99           | 122.03           | 122.49           | 103.51           | 186.21           | 132.84           | 142.68           | 58.58            |
| 100        | 2.6         | 224.21           | 134.22           | 169.59           | 141.21           | 145.00           | 198.86           | 185.66 |                  | 216.07           | 139.61           | 136.19           | 144.83           | 141.81           | 144.22           | 144.76           |                  | 220.07           | 156.99           | 168.62           | 69.23            |
| 200        | 2.96        | 255.25           | 152.80           | 193.07           | 160.76           |                  | 226.39           | 211.37 | 155.04           | 245.99           | 158.94           | 155.05           | 164.89           | 161.45           | 164.18           | 164.80           |                  | 250.54           | 178.73           | 191.97           | 78.81            |
| 500        | 3.4         | 293.19           | 175.51           | 221.77           | 184.66           |                  | 260.05           | 242.79 |                  | 282.56           | 182.57           | 178.10           | 189.40           | 185.44           | 188.59           | 189.30           |                  | 287.78           | 205.30           | 220.51           | 90.53            |
| 1000       | 3.72        | 320.79           | 192.03           | 242.65           | 202.04           | 207.46           | 284.52           | 265.64 | 194.85           | 309.15           | 199.75           | 194.86           | 207.22           | 202.90           | 206.34           | 207.11           | 175.02           | 314.87           | 224.62           | 241.26           | 99.05            |
| 2000       | 4.04        | 348.38           | 208.55           | 263.52           | 219.42           | 225.31           | 308.99           | 288.49 | 211.62           | 335.74           | 216.93           | 211.62           | 225.05           | 220.35           | 224.09           | 224.93           |                  | 341.95           | 243.94           | 262.02           | 107.57           |
| 5000       | 4.47        | 385.46           | 230.75           | 291.57           | 242.77           | 249.29           | 341.88           |        | 234.14           | 371.48           | 240.02           | 234.15           | 249.00           |                  | 247.94           | 248.87           | 210.31           | 378.35           |                  | 289.90           | 1                |
| 10000      | 4.78        | 412.20           | 246.75           | 311.79           | 259.61           | 266.58           | 365.59           |        |                  | 397.24           | 256.67           | 250.39           | 266.27           | 260.71           | 265.14           | 266.13           | 224.89           | 404.59           | 288.62           | 310.01           | 127.27           |
| <u> </u>   | Fac. Reg.   | 20085            | 20094            | 20096            | 20097            | 20099            | 20102            | 20103  | 20105            | 20106            | 20108            | 20109            | 20110            | 20111            | 20115            | 20118            | 20120            | 20121            | 20122            | 20124            | 20125            |
| 2          | 0.92        | 56.71            | 98.43            | 50.52            | 100.92           | 54.46            | 46.87            | 47.82  | 53.05            | 89.37            | 51.07            | 48.15            | 49.91            | 39.87            | 61.95            | 51.47            | 73.10            | 38.42            | 44.41            | 58.61            | 47.49            |
| 5          | 1.23        | 75.82            | 131.60           | 67.55            | 134.93           | 72.82            | 62.66            | 63.93  | 70.93            | 119.48           | 68.28            | 64.37            | 66.72            | 53.31            | 82.83            | 68.81            | 97.74            | 51.37            | 59.37            | 78.36            | 63.49            |
| 10         | 1.46        | 90.00            | 156.21           | 80.18            | 160.16           |                  | 74.37            | 75.88  | 84.20            | 141.82           | 81.05            | 76.40            | 79.20            | 63.28            | 98.32            | 81.68            | 116.01           | 60.98            | 70.47            | 93.01            | 75.36            |
| 20         | 1.72        | 106.03           | 184.03           | 94.46            | 188.68           |                  | 87.62            | 89.39  | 99.19            | 167.08           | 95.48            | 90.01            | 93.31            | 74.54            | 115.83           | 96.23            | 136.67           | 71.84            | 83.02            | 109.57           | 88.78            |
| 50         | 2.2         | 135.62           | 235.39           | 120.82           | 241.33           |                  | 112.07           | 114.34 | 126.87           | 213.71           | 122.13           | 115.13           | 119.34           | 95.35            | 148.15           | 123.08           |                  | 91.88            | 106.19           | 140.15           |                  |
| 100<br>200 | 2.6<br>2.96 | 160.28<br>182.47 | 278.18<br>316.70 | 142.79<br>162.56 | 285.21<br>324.70 | 153.92<br>175.23 | 132.45<br>150.79 | 153.84 | 149.94<br>170.70 | 252.56<br>287.53 | 144.34<br>164.32 | 136.06<br>154.90 | 141.04<br>160.57 | 112.68<br>128.29 | 175.09<br>199.33 | 145.46<br>165.60 | 206.60<br>235.20 | 108.59<br>123.63 | 125.49<br>142.87 | 165.63<br>188.57 | 134.20<br>152.78 |
| 500        | 3.4         | 209.60           | 363.78           | 186.72           | 372.96           |                  |                  | 176.71 | 196.07           | 330.28           | 188.75           | 177.93           | 184.44           | 147.36           | 228.96           | 190.22           | 270.17           | 142.00           | 164.11           | 216.60           |                  |
| 1000       | 3.72        | 229.32           | 398.02           | 204.30           | 408.07           | 220.22           | 189.50           |        | 214.53           | 361.36           |                  | 194.68           | 201.80           |                  | 250.51           | 208.12           | 295.59           | 155.37           | _                | 236.98           |                  |
| 2000       | 4.04        | 249.05           | 432.26           | 221.87           | 443.17           | 239.17           | 205.80           | 209.97 | 232.98           | 392.45           | 224.28           |                  | 219.16           |                  |                  |                  | 321.02           | 168.73           | 195.00           | 257.37           | 208.53           |
| 5000       | 4.47        | 275.56           | 478.26           | 245.48           | 490.34           |                  | 227.71           | 232.32 | 257.78           | 434.22           | 248.15           | 233.92           | 242.49           | 193.73           | 301.01           | 250.02           |                  | 186.69           |                  | 284.76           |                  |
| 10000      | 4.47        | 294.67           | 511.43           | 262.51           | 524.34           |                  |                  |        | 275.65           |                  | 265.36           |                  | 259.30           |                  |                  | 267.42           |                  | 199.64           |                  | 304.51           | 246.72           |
| 10000      | 7.70        | 254.07           | J11.43           | 202.31           | J24.J4           | 202.30           | 243.30           | 240.43 | 273.03           | -04.33           | 200.00           | 230.13           | 233.30           | 207.17           | 321.03           | 207.42           | 373.02           | 133.04           | 230.71           | 504.51           | 240.72           |

Tabla 5.6 Lluvias de diseño para diferentes periodos de retorno en la región Altiplano

|           |           |        |        |        |        | Regiói | n Altipl | ano co | n funci | ón de r | robabi | lidad D | oble G | umbel  |        |        |        |        |        |        |        |
|-----------|-----------|--------|--------|--------|--------|--------|----------|--------|---------|---------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Tr (Años) | Fac. Reg. | 20126  | 20129  | 20130  | 20133  | 20135  | 20137    | 20141  | 20143   | 20144   | 20145  | 20146   | 20147  | 20150  | 20151  | 20153  | 20154  | 20155  | 20156  | 20157  | 20158  |
| 2         | 0.92      | 74.01  | 46.92  | 91.46  | 51.29  | 62.52  | 37.60    | 50.85  | 121.33  | 41.11   | 81.10  | 53.17   | 48.65  | 43.84  | 52.69  | 90.77  | 74.00  | 48.22  | 49.04  | 46.26  | 62.47  |
| 5         | 1.23      | 98.95  | 62.73  | 122.28 | 68.57  | 83.58  | 50.26    | 67.99  | 162.21  | 54.97   | 108.43 | 71.08   | 65.05  | 58.61  | 70.45  | 121.36 | 98.94  | 64.47  | 65.56  | 61.85  | 83.52  |
| 10        | 1.46      | 117.46 | 74.46  | 145.15 | 81.39  | 99.21  | 59.66    | 80.70  | 192.54  | 65.25   | 128.70 | 84.37   | 77.21  | 69.57  | 83.62  | 144.05 | 117.44 | 76.52  | 77.82  | 73.42  | 99.14  |
| 20        | 1.72      | 138.37 | 87.72  | 170.99 | 95.89  | 116.88 | 70.29    | 95.07  | 226.83  | 76.86   | 151.62 | 99.40   | 90.96  | 81.96  | 98.51  | 169.70 | 138.35 | 90.15  | 91.68  | 86.49  | 116.80 |
| 50        | 2.2       | 176.99 | 112.20 | 218.71 | 122.65 | 149.50 | 89.90    | 121.61 | 290.13  | 98.31   | 193.94 | 127.13  | 116.35 | 104.83 | 126.00 | 217.06 | 176.96 | 115.31 | 117.26 | 110.63 | 149.39 |
| 100       | 2.6       | 209.17 | 132.60 | 258.48 | 144.95 | 176.68 | 106.25   | 143.72 | 342.88  | 116.19  | 229.20 | 150.25  | 137.50 | 123.89 | 148.91 | 256.53 | 209.13 | 136.28 | 138.58 | 130.74 | 176.55 |
| 200       | 2.96      | 238.13 | 150.96 | 294.27 | 165.01 | 201.14 | 120.96   | 163.61 | 390.35  | 132.28  | 260.93 | 171.05  | 156.54 | 141.04 | 169.53 | 292.05 | 238.09 | 155.15 | 157.77 | 148.84 | 201.00 |
| 500       | 3.4       | 273.53 | 173.40 | 338.01 | 189.54 | 231.04 | 138.94   | 187.94 | 448.38  | 151.94  | 299.72 | 196.48  | 179.81 | 162.00 | 194.73 | 335.46 | 273.48 | 178.21 | 181.22 | 170.97 | 230.88 |
| 1000      | 3.72      | 299.27 | 189.72 | 369.82 | 207.38 | 252.79 | 152.02   | 205.62 | 490.58  | 166.24  | 327.93 | 214.97  | 196.73 | 177.25 | 213.06 | 367.03 | 299.22 | 194.98 | 198.28 | 187.06 | 252.61 |
| 2000      | 4.04      | 325.02 | 206.04 | 401.64 | 225.22 | 274.53 | 165.09   | 223.31 | 532.78  | 180.54  | 356.14 | 233.47  | 213.66 | 192.50 | 231.39 | 398.60 | 324.96 | 211.75 | 215.33 | 203.15 | 274.34 |
| 5000      | 4.47      | 359.61 | 227.97 | 444.39 | 249.19 | 303.75 | 182.66   | 247.08 | 589.48  | 199.76  | 394.05 | 258.31  | 236.40 | 212.99 | 256.01 | 441.03 | 359.54 | 234.29 | 238.25 | 224.77 | 303.54 |
| 10000     | 4.78      | 384.55 | 243.78 | 475.20 | 266.48 | 324.82 | 195.33   | 264.21 | 630.36  | 213.61  | 421.37 | 276.23  | 252.79 | 227.76 | 273.77 | 471.61 | 384.48 | 250.54 | 254.77 | 240.36 | 324.59 |
| Tr (Años) | Fac. Reg. | 20159  | 20160  | 20163  | 20164  | 20165  | 20167    | 20168  | 20170   | 20177   | 20178  | 20179   | 20181  | 20182  | 20184  | 20186  | 20187  | 20188  | 20190  | 20191  | 20202  |
| 2         | 0.92      | 42.18  | 75.34  | 39.59  | 50.44  | 43.13  | 47.16    | 47.79  | 41.29   | 86.91   | 50.39  | 54.85   | 61.30  | 34.50  | 55.26  | 65.92  | 79.94  | 75.79  | 49.57  | 46.62  | 48.75  |
| 5         | 1.23      | 56.40  | 100.72 | 52.93  | 67.43  | 57.67  | 63.05    | 63.89  | 55.20   | 116.19  | 67.36  | 73.33   | 81.95  | 46.12  | 73.88  | 88.13  | 106.87 | 101.33 | 66.27  | 62.33  | 65.18  |
| 10        | 1.46      | 66.94  | 119.56 | 62.82  | 80.04  | 68.45  | 74.84    | 75.84  | 65.52   | 137.92  | 79.96  | 87.04   | 97.28  | 54.74  | 87.70  | 104.61 | 126.86 | 120.28 | 78.66  | 73.99  | 77.37  |
| 20        | 1.72      | 78.87  | 140.85 | 74.01  | 94.30  | 80.64  | 88.17    | 89.34  | 77.19   | 162.48  | 94.20  | 102.54  | 114.60 | 64.49  | 103.31 | 123.24 | 149.45 | 141.70 | 92.67  | 87.16  | 91.15  |
| 50        | 2.2       | 100.87 | 180.16 | 94.67  | 120.62 | 103.14 | 112.77   | 114.28 | 98.73   | 207.83  | 120.49 | 131.16  | 146.58 | 82.49  | 132.14 | 157.63 | 191.16 | 181.24 | 118.53 | 111.49 | 116.58 |
| 100       | 2.6       | 119.22 | 212.91 | 111.88 | 142.55 | 121.89 | 133.28   | 135.06 | 116.68  | 245.62  | 142.40 | 155.01  | 173.23 | 97.49  | 156.17 | 186.29 | 225.91 | 214.19 | 140.08 | 131.76 | 137.78 |
| 200       | 2.96      | 135.72 | 242.39 | 127.37 | 162.28 | 138.77 | 151.73   | 153.76 | 132.83  | 279.62  | 162.11 | 176.47  | 197.22 | 110.99 | 177.79 | 212.08 | 257.19 | 243.85 | 159.47 | 150.00 | 156.86 |
| 500       | 3.4       | 155.90 | 278.43 | 146.30 | 186.41 | 159.40 | 174.29   | 176.61 | 152.58  | 321.19  | 186.21 | 202.70  | 226.54 | 127.48 | 204.22 | 243.61 | 295.43 | 280.10 | 183.18 | 172.30 | 180.17 |
| 1000      | 3.72      | 170.57 | 304.63 | 160.07 | 203.95 | 174.40 | 190.69   | 193.23 | 166.94  | 351.42  | 203.74 | 221.78  | 247.86 | 139.48 | 223.44 | 266.54 | 323.23 | 306.46 | 200.42 | 188.52 | 197.13 |
| 2000      | 4.04      | 185.24 | 330.84 | 173.84 | 221.49 | 189.40 | 207.09   | 209.86 | 181.30  | 381.65  | 221.26 | 240.85  | 269.18 | 151.48 | 242.67 | 289.47 | 351.04 | 332.82 | 217.66 | 204.73 | 214.09 |
| 5000      | 4.47      | 204.96 | 366.05 | 192.34 | 245.07 | 209.56 | 229.14   | 232.19 | 200.59  | 422.27  | 244.81 | 266.49  | 297.83 | 167.60 | 268.49 | 320.28 | 388.40 | 368.25 | 240.83 | 226.52 | 236.88 |
| 10000     | 4.78      | 219.17 | 391.43 | 205.68 | 262.06 | 224.10 | 245.03   | 248.30 | 214.50  | 451.55  | 261.79 | 284.97  | 318.48 | 179.23 | 287.11 | 342.49 | 415.33 | 393.79 | 257.53 | 242.23 | 253.30 |
| Tr (Años) | Fac. Reg. | 20207  | 20209  | 20233  | 20265  | 20266  | 20271    | 20275  | 20277   | 20280   | 20308  | 20313   | 20314  | 20329  | 20342  | 20354  | 20355  | 20364  | 20367  | 20379  | 20385  |
| 2         | 0.92      | 54.14  | 47.70  | 41.80  | 55.99  | 62.43  | 51.14    | 49.65  | 82.99   | 44.63   | 71.01  | 57.74   | 50.45  | 55.09  | 101.80 | 49.45  | 45.37  | 49.64  | 54.28  | 45.46  | 93.24  |
| 5         | 1.23      | 72.39  | 63.77  | 55.88  | 74.86  | 83.47  | 68.37    | 66.38  | 110.95  | 59.67   | 94.94  | 77.20   | 67.45  | 73.65  | 136.10 | 66.11  | 60.65  | 66.37  | 72.57  | 60.78  | 124.66 |
| 10        | 1.46      | 85.92  | 75.69  | 66.33  | 88.86  | 99.07  | 81.15    | 78.79  | 131.70  | 70.82   | 112.69 | 91.63   | 80.07  | 87.42  | 161.55 | 78.48  | 71.99  | 78.78  | 86.15  | 72.14  | 147.97 |
| 20        | 1.72      | 101.22 | 89.17  | 78.15  | 104.69 | 116.72 | 95.60    | 92.82  | 155.15  | 83.44   | 132.76 | 107.95  | 94.33  | 102.99 | 190.32 | 92.45  | 84.82  | 92.81  | 101.49 | 84.99  | 174.32 |
| 50        | 2.2       | 129.47 | 114.06 | 99.95  | 133.90 | 149.29 | 122.28   | 118.73 | 198.45  | 106.72  | 169.80 | 138.08  |        | 131.73 | 243.43 | 118.25 | 108.48 | 118.71 | 129.81 | 108.71 |        |
| 100       | 2.6       | 153.01 | 134.79 | 118.13 | 158.25 | 176.43 | 144.51   | 140.31 | 234.54  | 126.13  | 200.68 | 163.18  | 142.59 | 155.68 | 287.69 | 139.75 | 128.21 | 140.30 | 153.41 | 128.47 | 263.51 |
| 200       | 2.96      | 174.20 | 153.46 | 134.48 |        |        |          | 159.74 | 267.01  |         | 228.46 | 185.78  |        | 177.23 | 327.52 |        |        |        | 174.65 | 146.26 |        |
| 500       | 3.4       | 200.09 | 176.27 | 154.47 | 206.94 | 230.72 | 188.98   | 183.49 | 306.70  | 164.93  | 262.43 | 213.39  |        | 203.58 | 376.21 | 182.75 | 167.66 | 183.46 | 200.61 | 168.00 |        |
| 1000      | 3.72      | 218.92 | 192.86 | 169.01 | 226.41 | 252.43 | 206.76   | 200.76 | 335.57  | 180.46  | 287.12 | 233.48  | 204.01 | 222.74 | 411.62 | 199.95 | 183.44 | 200.73 | 219.49 | 183.81 |        |
| 2000      | 4.04      | 237.75 | 209.45 | 183.55 | 245.89 |        | 224.55   | 218.03 | 364.43  |         | 311.82 | 253.56  |        |        |        | 217.15 | 199.22 | 218.00 |        | 199.63 |        |
| 5000      | 4.47      | 263.06 | 231.74 | 203.09 | 272.06 |        | 248.45   | 241.23 | 403.22  | 216.84  | 345.01 | 280.55  |        | 267.64 | 494.61 | 240.26 |        | 241.20 | 263.75 | 220.87 | 453.03 |
| 10000     | 4.78      | 281.30 | 247.81 | 217.17 | 290.93 | 324.36 | 265.68   | 257.96 | 431.19  | 231.88  | 368.94 | 300.01  | 262.14 | 286.20 | 528.91 | 256.93 | 235.71 | 257.93 | 282.04 | 236.19 | 484.45 |

Continuación de la tabla 5.6.

|           |           |        |        |        | Región | Golfo con fu | ınción de pr | obabilidad | Gumbel |        |        |        |        |        |
|-----------|-----------|--------|--------|--------|--------|--------------|--------------|------------|--------|--------|--------|--------|--------|--------|
| Tr (Años) | Fac. Reg. | 20006  | 20008  | 20012  | 20014  | 20015        | 20016        | 20017      | 20029  | 20030  | 20036  | 20037  | 20042  | 20045  |
| 2         | 0.95      | 140.20 | 126.94 | 209.95 | 191.07 | 87.81        | 181.39       | 124.29     | 192.01 | 117.77 | 153.16 | 158.63 | 187.91 | 113.21 |
| 5         | 1.24      | 182.99 | 165.69 | 274.04 | 249.40 | 114.62       | 236.76       | 162.23     | 250.62 | 153.72 | 199.91 | 207.06 | 245.27 | 147.77 |
| 10        | 1.43      | 211.03 | 191.08 | 316.03 | 287.61 | 132.18       | 273.04       | 187.09     | 289.02 | 177.27 | 230.55 | 238.79 | 282.85 | 170.41 |
| 20        | 1.62      | 239.07 | 216.46 | 358.02 | 325.82 | 149.74       | 309.32       | 211.95     | 327.42 | 200.82 | 261.18 | 270.51 | 320.43 | 193.05 |
| 50        | 1.86      | 274.49 | 248.53 | 411.06 | 374.10 | 171.93       | 355.15       | 243.35     | 375.93 | 230.57 | 299.87 | 310.59 | 367.90 | 221.65 |
| 100       | 2.04      | 301.06 | 272.58 | 450.84 | 410.30 | 188.56       | 389.52       | 266.89     | 412.31 | 252.89 | 328.89 | 340.64 | 403.50 | 243.10 |
| 200       | 2.22      | 327.62 | 296.64 | 490.62 | 446.50 | 205.20       | 423.89       | 290.44     | 448.69 | 275.20 | 357.91 | 370.70 | 439.11 | 264.55 |
| 500       | 2.46      | 363.04 | 328.71 | 543.66 | 494.77 | 227.39       | 469.71       | 321.84     | 497.19 | 304.95 | 396.60 | 410.78 | 486.58 | 293.15 |
| 1000      | 2.64      | 389.60 | 352.76 | 583.44 | 530.97 | 244.02       | 504.08       | 345.39     | 533.57 | 327.27 | 425.62 | 440.83 | 522.18 | 314.60 |
| 2000      | 2.82      | 416.16 | 376.81 | 623.22 | 567.18 | 260.66       | 538.45       | 368.94     | 569.95 | 349.58 | 454.64 | 470.89 | 557.78 | 336.05 |
| 5000      | 3.06      | 451.58 | 408.88 | 676.26 | 615.45 | 282.85       | 584.27       | 400.34     | 618.46 | 379.33 | 493.34 | 510.97 | 605.25 | 364.66 |
| 10000     | 3.23      | 476.67 | 431.59 | 713.83 | 649.64 | 298.56       | 616.73       | 422.58     | 652.82 | 400.41 | 520.74 | 539.35 | 638.88 | 384.91 |
| Tr (Años) | Fac. Reg. | 20061  | 20072  | 20081  | 20084  | 20095        | 20098        | 20113      | 20114  | 20136  | 20138  | 20139  | 20152  | 20161  |
| 2         | 0.95      | 112.14 | 130.84 | 172.50 | 128.36 | 142.34       | 125.60       | 108.77     | 178.90 | 190.57 | 145.90 | 159.90 | 143.56 | 109.10 |
| 5         | 1.24      | 146.37 | 170.78 | 225.16 | 167.55 | 185.79       | 163.93       | 141.97     | 233.51 | 248.74 | 190.44 | 208.71 | 187.39 | 142.40 |
| 10        | 1.43      | 168.80 | 196.94 | 259.66 | 193.22 | 214.26       | 189.05       | 163.72     | 269.29 | 286.86 | 219.62 | 240.69 | 216.10 | 164.22 |
| 20        | 1.62      | 191.23 | 223.11 | 294.16 | 218.89 | 242.73       | 214.17       | 185.48     | 305.07 | 324.97 | 248.80 | 272.67 | 244.81 | 186.04 |
| 50        | 1.86      | 219.56 | 256.16 | 337.74 | 251.32 | 278.69       | 245.90       | 212.96     | 350.26 | 373.12 | 285.66 | 313.06 | 281.08 | 213.61 |
| 100       | 2.04      | 240.81 | 280.96 | 370.42 | 275.64 | 305.66       | 269.70       | 233.56     | 384.16 | 409.22 | 313.31 | 343.36 | 308.28 | 234.28 |
| 200       | 2.22      | 262.05 | 305.75 | 403.10 | 299.97 | 332.63       | 293.50       | 254.17     | 418.05 | 445.33 | 340.95 | 373.66 | 335.48 | 254.95 |
| 500       | 2.46      | 290.38 | 338.80 | 446.68 | 332.39 | 368.59       | 325.22       | 281.65     | 463.25 | 493.48 | 377.81 | 414.05 | 371.75 | 282.51 |
| 1000      | 2.64      | 311.63 | 363.59 | 479.37 | 356.72 | 395.56       | 349.02       | 302.26     | 497.14 | 529.58 | 405.46 | 444.35 | 398.95 | 303.18 |
| 2000      | 2.82      | 332.88 | 388.38 | 512.05 | 381.04 | 422.53       | 372.82       | 322.87     | 531.04 | 565.69 | 433.10 | 474.64 | 426.15 | 323.85 |
| 5000      | 3.06      | 361.21 | 421.43 | 555.63 | 413.47 | 458.49       | 404.55       | 350.35     | 576.24 | 613.84 | 469.96 | 515.04 | 462.42 | 351.42 |
| 10000     | 3.23      | 381.28 | 444.85 | 586.50 | 436.44 | 483.96       | 427.02       | 369.81     | 608.25 | 647.94 | 496.07 | 543.65 | 488.11 | 370.94 |
| Tr (Años) | Fac. Reg. | 20172  | 20174  | 20175  | 20176  | 20183        | 20185        | 20189      | 20203  | 20272  | 20279  | 20289  | 20334  | 20374  |
| 2         | 0.95      | 130.25 | 207.76 | 194.42 | 126.17 | 138.41       | 140.03       | 149.23     | 145.38 | 197.67 | 158.09 | 128.55 | 193.31 | 160.04 |
| 5         | 1.24      | 170.02 | 271.18 | 253.77 | 164.69 | 180.66       | 182.78       | 194.78     | 189.75 | 258.01 | 206.35 | 167.80 | 252.32 | 208.89 |
| 10        | 1.43      | 196.07 | 312.73 | 292.66 | 189.92 | 208.34       | 210.79       | 224.62     | 218.83 | 297.55 | 237.97 | 193.51 | 290.98 | 240.90 |
| 20        | 1.62      | 222.12 | 354.28 | 331.54 | 215.16 | 236.02       | 238.79       | 254.47     | 247.90 | 337.08 | 269.59 | 219.22 | 329.64 | 272.91 |
| 50        | 1.86      | 255.02 | 406.77 | 380.66 | 247.03 | 270.99       | 274.17       | 292.17     | 284.63 | 387.02 | 309.53 | 251.69 | 378.48 | 313.34 |
| 100       | 2.04      | 279.70 | 446.13 | 417.50 | 270.94 | 297.21       | 300.70       | 320.44     | 312.18 | 424.47 | 339.48 | 276.05 | 415.11 | 343.66 |
| 200       | 2.22      | 304.38 | 485.50 | 454.33 | 294.85 | 323.44       | 327.24       | 348.72     | 339.72 | 461.92 | 369.44 | 300.41 | 451.73 | 373.98 |
| 500       | 2.46      | 337.29 | 537.98 | 503.45 | 326.72 | 358.40       | 362.61       | 386.41     | 376.45 | 511.86 | 409.38 | 332.88 | 500.57 | 414.41 |
| 1000      | 2.64      | 361.97 | 577.35 | 540.29 | 350.63 | 384.63       | 389.15       | 414.69     | 403.99 | 549.32 | 439.33 | 357.24 | 537.20 | 444.73 |
| 2000      | 2.82      | 386.65 | 616.71 | 577.13 | 374.54 | 410.85       | 415.68       | 442.96     | 431.54 | 586.77 | 469.28 | 381.60 | 573.83 | 475.06 |
| 5000      | 3.06      | 419.55 | 669.20 | 626.24 | 406.41 | 445.82       | 451.06       | 480.66     | 468.26 | 636.71 | 509.22 | 414.08 | 622.66 | 515.49 |
| 10000     | 3.23      | 442.86 | 706.38 | 661.04 | 428.99 | 470.58       | 476.12       | 507.37     | 494.28 | 672.08 | 537.51 | 437.08 | 657.25 | 544.13 |

Tabla 5.7 Lluvias de diseño para diferentes periodos de retorno en la región Golfo

|           |           |        |        |        |        |        | Región I | stmo co | n funció | n de pr | obabilid | ad Gum | bel    |        |        |        |        |        |        |        |
|-----------|-----------|--------|--------|--------|--------|--------|----------|---------|----------|---------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Tr (Años) | Fac. Reg. | 20027  | 20039  | 20043  | 20048  | 20060  | 20068    | 20082   | 20117    | 20127   | 20134    | 20148  | 20149  | 20162  | 20173  | 20290  | 20292  | 20328  | 20353  | 20382  |
| 2         | 0.92      | 102.61 | 103.39 | 90.20  | 113.58 | 109.98 | 99.59    | 132.63  | 88.64    | 139.26  | 125.27   | 134.76 | 131.49 | 75.58  | 110.68 | 99.90  | 137.45 | 83.99  | 91.37  | 107.68 |
| 5         | 1.35      | 150.56 | 151.71 | 132.36 | 166.67 | 161.38 | 146.14   | 194.62  | 130.07   | 204.35  | 183.83   | 197.74 | 192.95 | 110.90 | 162.41 | 146.59 | 201.69 | 123.25 | 134.07 | 158.00 |
| 10        | 1.63      | 181.79 | 183.18 | 159.82 | 201.24 | 194.85 | 176.45   | 234.99  | 157.05   | 246.73  | 221.95   | 238.75 | 232.97 | 133.90 | 196.09 | 176.99 | 243.52 | 148.81 | 161.88 | 190.78 |
| 20        | 1.9       | 211.90 | 213.52 | 186.29 | 234.57 | 227.13 | 205.68   | 273.91  | 183.07   | 287.60  | 258.72   | 278.30 | 271.56 | 156.08 | 228.57 | 206.31 | 283.85 | 173.46 | 188.69 | 222.38 |
| 50        | 2.26      | 252.05 | 253.97 | 221.59 | 279.01 | 270.17 | 244.65   | 325.81  | 217.75   | 342.09  | 307.74   | 331.03 | 323.01 | 185.65 | 271.88 | 245.40 | 337.64 | 206.33 | 224.44 | 264.51 |
| 100       | 2.52      | 281.05 | 283.19 | 247.08 | 311.11 | 301.25 | 272.80   | 363.29  | 242.81   | 381.44  | 343.14   | 369.12 | 360.17 | 207.01 | 303.16 | 273.63 | 376.48 | 230.06 | 250.26 | 294.94 |
| 200       | 2.78      | 310.05 | 312.41 | 272.57 | 343.21 | 332.33 | 300.95   | 400.78  | 267.86   | 420.80  | 378.55   | 407.20 | 397.34 | 228.37 | 334.43 | 301.86 | 415.32 | 253.80 | 276.08 | 325.37 |
| 500       | 3.13      | 349.08 | 351.74 | 306.89 | 386.42 | 374.17 | 338.84   | 451.23  | 301.58   | 473.78  | 426.20   | 458.47 | 447.36 | 257.12 | 376.54 | 339.87 | 467.61 | 285.75 | 310.84 | 366.34 |
| 1000      | 3.39      | 378.08 | 380.96 | 332.38 | 418.52 | 405.25 | 366.98   | 488.72  | 326.63   | 513.13  | 461.61   | 496.55 | 484.52 | 278.48 | 407.82 | 368.10 | 506.46 | 309.49 | 336.66 | 396.77 |
| 2000      | 3.65      | 407.08 | 410.18 | 357.87 | 450.62 | 436.33 | 395.13   | 526.20  | 351.68   | 552.49  | 497.01   | 534.63 | 521.68 | 299.84 | 439.10 | 396.33 | 545.30 | 333.22 | 362.48 | 427.20 |
| 5000      | 4         | 446.11 | 449.51 | 392.19 | 493.83 | 478.17 | 433.02   | 576.66  | 385.40   | 605.47  | 544.67   | 585.90 | 571.71 | 328.59 | 481.20 | 434.33 | 597.59 | 365.18 | 397.24 | 468.16 |
| 10000     | 4.26      | 475.11 | 478.73 | 417.68 | 525.93 | 509.25 | 461.16   | 614.14  | 410.46   | 644.82  | 580.07   | 623.98 | 608.87 | 349.95 | 512.48 | 462.57 | 636.43 | 388.91 | 423.06 | 498.59 |

Tabla 5.8 Lluvias de diseño para diferentes periodos de retorno en la región Istmo

|           |           | F      | Región F | acífico | con fund | ión de p | robabil | idad Do | ble Gum | bel    |        |        |        |
|-----------|-----------|--------|----------|---------|----------|----------|---------|---------|---------|--------|--------|--------|--------|
| Tr (Años) | Fac. Reg. | 20010  | 20086    | 20088   | 20089    | 20090    | 20200   | 20256   | 20303   | 20319  | 20326  | 20350  | 20356  |
| 2         | 0.87      | 123.11 | 79.313   | 130.24  | 98.158   | 98.322   | 76.322  | 115.01  | 97.12   | 119.4  | 94.165 | 103.14 | 84.628 |
| 5         | 1.27      | 179.72 | 115.78   | 190.12  | 143.29   | 143.53   | 111.41  | 167.89  | 141.77  | 174.29 | 137.46 | 150.57 | 123.54 |
| 10        | 1.72      | 243.4  | 156.8    | 257.48  | 194.06   | 194.38   | 150.89  | 227.38  | 192.01  | 236.05 | 186.17 | 203.92 | 167.31 |
| 20        | 2.1       | 297.17 | 191.44   | 314.36  | 236.93   | 237.33   | 184.22  | 277.61  | 234.43  | 288.2  | 227.3  | 248.97 | 204.28 |
| 50        | 2.51      | 355.19 | 228.82   | 375.74  | 283.19   | 283.67   | 220.19  | 331.81  | 280.2   | 344.47 | 271.67 | 297.58 | 244.16 |
| 100       | 2.8       | 396.23 | 255.26   | 419.15  | 315.91   | 316.44   | 245.63  | 370.15  | 312.57  | 384.27 | 303.06 | 331.96 | 272.37 |
| 200       | 3.08      | 435.85 | 280.79   | 461.07  | 347.5    | 348.08   | 270.2   | 407.16  | 343.83  | 422.69 | 333.37 | 365.15 | 299.6  |
| 500       | 3.45      | 488.21 | 314.52   | 516.45  | 389.25   | 389.9    | 302.66  | 456.07  | 385.13  | 473.47 | 373.41 | 409.02 | 335.6  |
| 1000      | 3.72      | 526.42 | 339.13   | 556.87  | 419.71   | 420.41   | 326.34  | 491.77  | 415.27  | 510.53 | 402.64 | 441.03 | 361.86 |
| 2000      | 4         | 566.04 | 364.66   | 598.79  | 451.3    | 452.06   | 350.9   | 528.78  | 446.53  | 548.95 | 432.94 | 474.23 | 389.1  |
| 5000      | 4.36      | 616.98 | 397.48   | 652.68  | 491.92   | 492.74   | 382.49  | 576.37  | 486.72  | 598.36 | 471.91 | 516.91 | 424.11 |
| 10000     | 4.63      | 655.19 | 422.09   | 693.1   | 522.38   | 523.26   | 406.17  | 612.06  | 516.86  | 635.41 | 501.13 | 548.92 | 450.38 |

Tabla 5.9 Lluvias de diseño para diferentes periodos de retorno en la región Pacífico

Una vez conocidos los valores de las tormentas de diseño es posible estimar dichos datos en sitios donde no se tenga información hidrométrica, para ello se hace uso de uno o varios mapas de isoyetas del estado de Oaxaca, estos mapas pueden estar asociados a la precipitación media de cada estación, sin embargo se tiene el inconveniente que estos valores no están afectados por un factor regional, por otro lado, los mapas también pueden estar referidos a un periodo de retorno específico, es decir, que sus valores ya están afectados por su factor regional correspondiente. A continuación, se muestran tres mapas de isoyetas; el de la figura 5.65 está referido la precipitación media, mientras que los de las figuras 5.66. y 5.67. muestran las lluvias de diseño para un periodo de retorno de 10 y 100 años respectivamente.

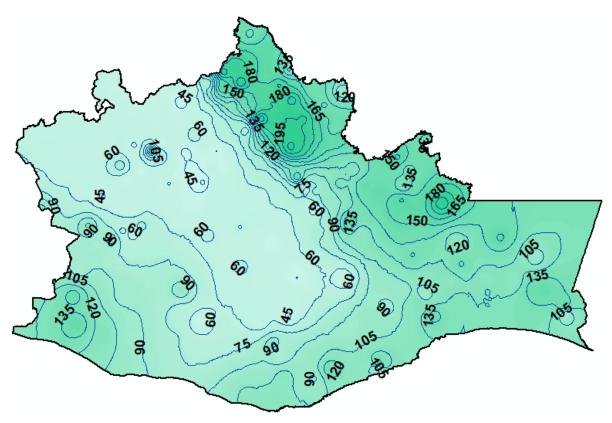



Figura 5.65 Mapa de isoyetas de precipitación media

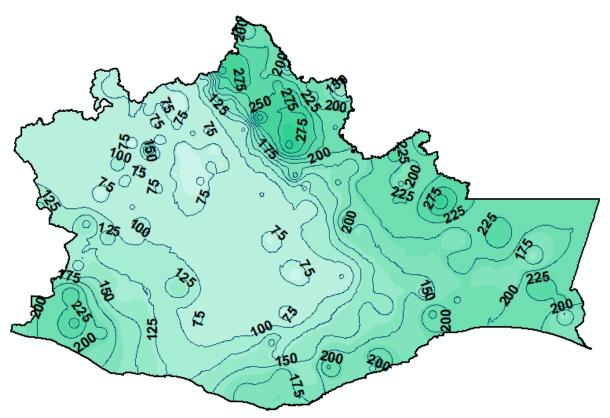



Figura 5.66 Mapa de isoyetas para un periodo de retorno de 10 años

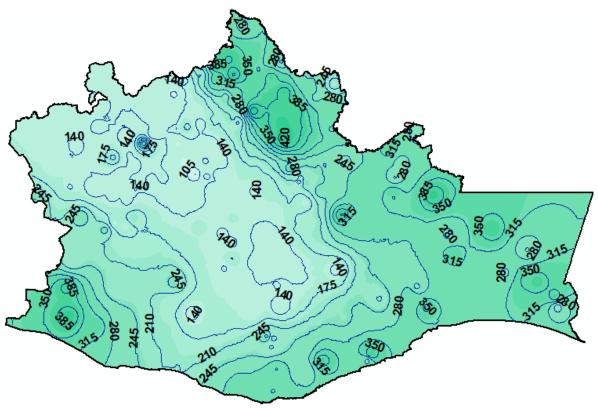



Figura 5.66 Mapa de isoyetas para un periodo de retorno de 100 años

Para facilitar la interpretación de los resultados obtenidos, se plantea el siguiente ejemplo:

Supóngase que dentro del estado de Oaxaca se desea conocer la tormenta de diseño para la construcción de una obra hidráulica cuya importancia asocia un periodo de retorno de 10 años. Dicha obra se encuentra dentro de la región del Golfo, y sus coordenadas geográficas son: 16.97° latitud norte y -95.54° longitud oeste, como se muestra en la figura 5.67.

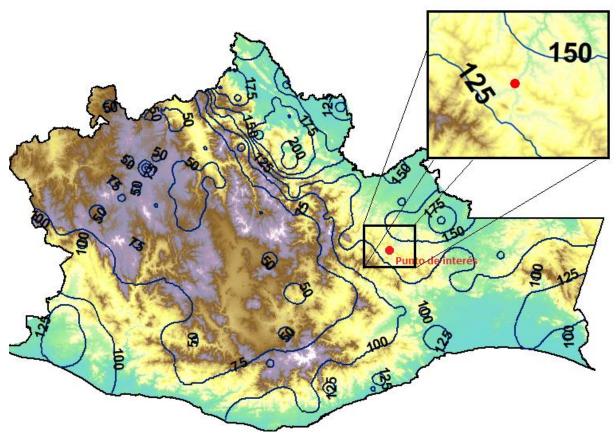



Figura 5.67 Ubicación de la obra hidráulica sobre un mapa de isoyetas de precipitación media

Para conocer la tormenta de diseño, primero se debe ubicar el puto de interés en un mapa de isoyetas de precipitación media, posteriormente se identifican las isolineas entre las que se desea construir la obra, y a partir de estos dos valores se realiza una interpolación, con la finalidad de obtener una estimación de la precipitación media del punto de interés. Para el ejemplo propuesto, la obra a construir se encuentra entre las isoyetas  $125 \ mm \ y \ 150 \ mm$  por lo que la interpolación seria de  $137.5 \ mm$ . Por último, sólo se debe multiplicar el valor interpolado con el factor de diseño calculado para la región del Golfo, es decir 1.43 (ver tabla 5.4), dicha expresión quedará de la siguiente manera:

Tormenta de diseño =  $137.5 \text{ mm} * 1.43 \approx 197 \text{ mm}$ 

Para verificar el valor obtenido anteriormente, se utiliza el mapa de isoyetas para un periodo de retorno de 10 años, donde de acuerdo con la figura 5.68., la ubicación de la obra está dentro de la isoyeta con valor de 200 mm, muy cercano al valor antes calculado con el mapa de isoyetas de precipitación media.

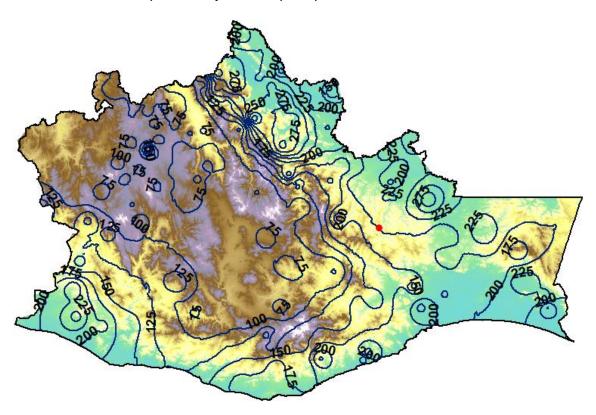



Figura 5.68 Ubicación de la obra hidráulica sobre un mapa de isoyetas para un periodo de retorno de 10 años

### **Conclusiones**

El estado de Oaxaca no cuenta con suficientes estaciones climatológicas que permitan conocer la cantidad de lluvia que cae sobre sus cuencas; para atender esta problemática se elaboró un análisis regional de precipitaciones que permite conocer de manera aproximada las tormentas de diseño en cualquier parte del estado, proporcionado una guía útil para el diseño y dimensionamiento de cualquier obra hidráulica asociada a un cierto periodo de retorno, con la finalidad de tener el mayor aprovechamiento hídrico posible, ya que el recurso agua se destaca como un factor crítico en el desarrollo económico de cualquier población.

Para la regionalización de precipitaciones se utilizó la mayor cantidad de datos, lo que genera una mayor confianza en los resultados obtenidos, permitiendo una eficaz estimación de eventos extraordinarios dentro del estado, y reduciendo la incertidumbre de su probabilidad de ocurrencia.

Por otro lado, los mapas de isoyetas permiten conocer las zonas con precipitaciones más altas, a partir de esto es posible observar que las precipitaciones extraordinarias no se presentan de manera uniforme dentro de estado, sino que la mayoría de estas se encuentran en las regiones del Golfo e Istmo, por lo tanto, estas zonas son las que presentan mayor vulnerabilidad, y por ello tienen la necesidad de construir obras hidráulicas que permitan mitigar los daños que se pudieran generar sobre la población.

Como ya se ha aclarado, los mapas de isoyetas asociados a un cierto periodo de retorno permiten conocer de manera rápida la tormenta de diseño presentada en cualquier lugar dentro del estado de Oaxaca, sin embargo, debido a que el periodo de retorno al que se está asociado una obra hidráulica depende de su importancia, difícilmente se tendrán todos los mapa de isoyetas para diferentes periodos de retorno, por ello, también es válido utilizar el mapa de isoyetas de precipitación media tomando en cuenta su factor regional correspondiente para conocer la tormenta de diseño en un punto conocido dentro del estado.

Finalmente, sólo queda mencionar que, aunque el análisis regional de precipitaciones ayuda a estimar la cantidad de lluvia que cae en lugares donde no se tengan estaciones climatológicas, es indispensable que las estaciones que actualmente se encuentran fuera de servicio, retomen actividades, o incluso pensar en la posibilidad de incorporar nuevas estaciones a la red climatológica, y por ningún motivo dejar de actualizar las que actualmente se encuentran operando, ya que de ellas depende que se tenga un estudio hidrológico confiable. Además, contar con más estaciones climatológicas servirá para conocer las variaciones de algunos índices climatológico, sino ambiental.

# Bibliografía

- Aparicio, M. F., (2012),"Fundamentos de Hidrología de Superficie". Editorial LIMUSA. México.
- Escalante Sandoval, C. A., & Reyes Chávez, L. (2008). Técnicas estadísticas en hidrología. México.
- Chow, Ven Te, R. Maidment, David, W. Mays, Larry. (1994). Hidrología aplicada.
- WACKERLY, Dennis D., et al. Estadística Matemática con Aplicaciones México 7a Edición Thomson, 2008.
- Banco Nacional de Aguas Superficiales (BANDAS), CONAGUA, México.
- Ibáñez Rosales Alejandro. (2011). Análisis estadístico de valores extremos y aplicaciones. 4 abril de 2017, de Universidad de Granada Sitio web: http://masteres.ugr.es/moea/pages/tfm1011/analisisestadisticodevaloresextremos yaplicaciones/!
- SciELO México. (2009). Identificación de regiones hidrológicas homogéneas mediante análisis multivariado. 20 de junio de 2017, de SciELO Sitio web: http://www.scielo.org.mx/scielo.php?script=sci\_arttext&pid=S1405-77432011000300004
- Instituto Nacional de Estadística y Geografía (INEGI). Continuo de Elevaciones, Consultado 20 de agosto de 2017, en http://www.inegi.org.mx/geo/contenidos/datosrelieve/continental/descarga.aspx
- Ponce, S. M. (2017). Regionalización de precipitaciones para obtener lluvias de diseño en el estado de Veracruz (Tesis de licenciatura). UNAM, CDMX.
- Santana, S. O. (2016). Regionalización para la obtención de lluvias de diseño en el estado de Nuevo León (Tesis de licenciatura). UNAM, CDMX.