ANEXO 1.

Fundamentos teóricos de la técnica de Nakamura.

La técnica HVSR (Horizontal to Vertical Spectral Ratio o cociente espectral de la componente horizontal a la componente vertical), también conocida como la técnica de Nakamura o técnica QTS (Quasi Transfer Spectrum) es una técnica experimental que permite conocer algunas propiedades de los depósitos sedimentarios o suelos. La principal característica que distingue a ésta técnica es sin duda su economía, ya que para su aplicación solamente necesita del ruido sísmico ambiental o microtremor como fuente; además de que para realizar las mediciones basta con disponer de una sola estación (acelerómetro) sin tener la necesidad de disponer de una estación de referencia (Lermo y Chávez-García, 1993).

El ruido sísmico es generado por fenómenos atmosféricos, siendo éstos ondas oceánicas, efecto del viento, y por la actividad antropogénica, estando presente en cualquier parte sobre la superficie terrestre. Para el caso del ruido natural se relaciona con periodos largos (frecuencias cortas), y para el ruido antropogénico se tienen periodos cortos (frecuencias altas). El límite de frecuencia de estos dos tipos de ruido se encuentra en 1 Hz, donde éste límite ha sido comprobado por diferentes investigadores tal como lo reportan Bennefoy *et. al.* En este trabajo se define a los microtremores como las oscilaciones superficiales de baja amplitud. Estos presentan oscilaciones muy pequeñas similares a las que inducen los terremotos en las zonas próximas al epicentro. En la zonas en las cuales no hay una fuente presente de ruido local y en ausencia de viento, el espectro de frecuencia de ruido de fondo, en un terreno rocoso y plano, tiene la forma que se presenta en la figura 1, donde la curva azul representa el ruido de fondo "mínimo", mientras la curva en verde representa el "máximo" de dicho ruido, en donde los picos entre 0.14 y 0.07 Hz son producto de las ondas oceánicas sobre las costas. Tales componentes espectrales han sido atenuadas relativamente poco incluso después de trayectos de millones de kilómetros por efecto del medio.

Figura 1. Modelos estándar del ruido sísmico máximo (en verde) y mínimo (en azul) para la Tierra (según USGS). Los espectros de potencia están expresados en términos de aceleración y son relativos a la componente vertical del movimiento.

A este ruido de fondo, que está siempre presente, se sobreponen las fuentes locales, antropogénicas (tráfico, industria, etc.) y naturales. Los microtremores están constituidos tan solo en parte por ondas de cuerpo, P o S, y principalmente por ondas de superficie. Woods (1968) menciona que cuando se golpea en superficie un depósito de suelo, se generan ondas elásticas, donde el 67% de la energía aplicada se propaga como ondas Rayleigh, 27% como ondas de corte y 6% como ondas de compresión.

A partir de las primeras mediciones de microtremores en diferentes suelos (Kanai, 1954), se han propuesto diferentes métodos para obtener información relativa al subsuelo por medio del ruido sísmico registrado en un sitio. Entre estos, la técnica que se ha consolidado mayormente ha sido el del cociente espectral de la componente horizontal a la componente vertical HVSR. La técnica es universalmente reconocida por ser eficaz en proporcionar estimaciones confiables del periodo fundamental de resonancia del suelo (Field y Jacob, 1993; Lachet y Bard, 1994; Lermo y Chávez-García, 1993, 1994; Bard, 1998; Ibs-von Seht y Wohlenberg, 1999; Fah *et al.*, 2001; solo por citar algunos).

El método ha demostrado que es idóneo para evaluar el periodo fundamental de resonancia del subsuelo, de manera particular cuando la impedancia de estos presenta un gran contraste con la impedancia de la roca más dura. Por lo tanto la técnica HVSR evalúa el periodo fundamental a partir de registros de ruido en superficie permitiendo estimar de una manera rápida la estratigrafía del suelo. Si se considera la forma de la estructura geológica típica de un depósito sedimentario (Figura 2), se ve como el tremor registrado en superficie se puede considerar que está compuesto por varios tipos de ondas, como las ondas superficiales y ondas de cuerpo. Tales ondas serán modificadas por la acción filtrante del estrato blando.

Nakamura asume que los microtremores consisten principalmente de ondas Rayleigh que se propagan en un estrato blando sobre un semiespacio y que la presencia de este estrato es la causa de la amplificación del sitio. Tal técnica permite separar los términos de fuente, trayectoria y de sitio a través de las relaciones entre las componentes del movimiento, sin utilizar algún sitio de referencia. En el dominio de la frecuencia, se tienen 4 espectros implicados, siendo estas las componentes horizontales y verticales del movimiento en superficie (HS y VS) y en la base del estrato (HB y VB) (Figura 4.3).

Figura 4.3. Modelo estratigráfico de la técnica de Nakamura.

El método pretende eliminar principalmente el efecto de las ondas Rayleigh. Se considera que los microtremores en la base rocosa son similares horizontal y verticalmente. Dichos microtremores son amplificados por las capas de suelo blando que yacen sobre el estrato rocoso. Se considera además que los microtremores horizontales se amplifican debido a multirreflexiones de la onda S, en tanto que los microtremores verticales lo hacen por multirreflexiones de la onda P.

Por otra parte, el efecto de la onda Rayleigh aparece resaltado en el movimiento vertical. De esta forma, la magnitud de su efecto puede ser conocida a partir de la relación entre el movimiento vertical en superficie y el movimiento vertical en el afloramiento rocoso. Normalmente, el efecto de la onda Rayleigh es cercano a cero cuando la relación es aproximadamente la unidad. En la

medida en que la relación aumenta, el efecto de las ondas Rayleigh puede volverse crítico. La propuesta de Nakamura pretende eliminar este efecto.

Las hipótesis sobre las cuales se basa la técnica de Nakamura son las siguientes:

- 1. Los microtremores son generados por fuentes locales, sin tomar en cuenta cualquier contribución debida a fuentes profundas;
- 2. Las fuentes de los microtremores en superficie no influyen a los microtremores en la base;
- 3. La componente vertical del movimiento no se ve afectada por los efectos de amplificación local.

Sobre estas hipótesis, la relación entre las componentes verticales en superficie y en la base del movimiento contiene solo términos de las fuentes locales A_s y de las fuentes en la base A_B , y es igual a

$$R_{V} = \frac{V_{S}}{V_{B}} = \frac{A_{S}}{A_{B}}$$

mientras la relación entre la amplitud del espectro de la componente horizontal de movimiento en superficie HS y en la base del estrato HB, contiene el efecto de fuente incluso la amplificación de sitio en superficie S_s y puede ser expresado de la siguiente manera

$$R_h = \frac{H_s}{H_B} = \frac{A_s S_s}{A_B}$$

Para remover el efecto de fuente, Nakamura divide las dos relaciones R entre ellos, obteniendo así la siguiente expresión para la función de transferencia

$$\frac{R_h}{R_V} = S_S = \frac{H_S}{H_B} \cdot \frac{V_B}{V_S}$$

Haciendo la hipótesis de que en la base de los sedimentos la amplitud espectral de la componente vertical y de la horizontal sean iguales

$$\frac{V_B}{H_B} = 1$$

el factor de amplificación del movimiento horizontal en superficie podrá ser evaluado directamente de la siguiente manera

$$S_s = \frac{H_s}{V_s}$$
5

De la fórmula anterior, se tiene entonces una aproximación de la Función de Transferencia Empírica (FTE) para registro de microtremores.

Las diferentes hipótesis han sido verificadas experimentalmente por el mismo Nakamura con mediciones de microtremores en superficie y en pozo. Estas mismas han sido verificadas también numéricamente por otros autores, confrontando los resultados obtenidos con modelos de propagación de ondas Rayleigh, modelos de propagación 1D de ondas S y con modelos generados mediante rumor sintético. Las conclusiones a las cuales llegaron dichos estudios son que el pico que se aprecia en las relaciones H/V obtenidas con el rumor simulado es independiente de las características de la fuente de ruido y es en cambio totalmente dependiente de la estratigrafía del terreno. Dicho pico está además bien correlacionado con el periodo fundamental de resonancia del terreno sujeto a las propagaciones de ondas S verticales y con el pico fundamental de la curva de dispersión de las ondas Rayleigh.

Funciones de Transferencia Empíricas de las componentes N-S, E-W y promedios de la zona de estudio colonia Del Mar en la delegación Tláhuac.

Punto	Longitud	Latitud	То
11	-99.063	19.28367	1.7
12	-99.0629	19.28374	1.7
13	-99.063	19.2838	2
14	-99.0626	19.28398	1.7
15	-99.0622	19.28406	1.2
16	-99.0633	19.28368	1.7
17	-99.0634	19.28348	2
18	-99.0638	19.28312	1.7
19	-99.0629	19.28628	1.1
110	-99.0637	19.28628	1.3
111	-99.0631	19.28584	1.8
112	-99.0624	19.28539	1.7
I13	-99.0641	19.28661	1.3
114	-99.0644	19.28589	1.7
115	-99.0648	19.28545	1.7
116	-99.0653	19.28476	2
117	-99.0657	19.28429	1.7
118	-99.0663	19.28361	2
119	-99.0655	19.28297	1.9
120	-99.0645	19.28424	2.5
121	-99.0649	19.28379	1.7
122	-99.0631	19.28833	1.3
123	-99.0635	19.28766	1.7
124	-99.063	19.28768	1.3
125	-99.0622	19.2893	1.7
126	-99.0611	19.29064	1.3
127	-99.06	19.29203	0.6
128	-99.0576	19.29491	0.8
129	-99.0544	19.29608	1.1
130	-99.0528	19.29803	1.3

Punto	Longitud	Latitud	То
131	-99.0509	19.30027	2.2
132	-99.0496	19.30195	1.3
133	-99.0472	19.30478	1
134	-99.064	19.29217	1.7
135	-99.0578	19.28478	1.7
136	-99.0569	19.28427	2
137	-99.0574	19.28363	2

10⁰ Frecuencia [Hz]

10

10

Amplitud 10

10⁰ Frecuencia [Hz]

Punto I11 N-S

10⁰ Frecuencia [Hz]

Amplitud 10 10 Frecuencia [Hz] Punto I17 N-S Amplitud 0 10⁰ Frecuencia [Hz] 10 10 Punto I18 N-S 102 -----10¹ Amplitud 10 10 10⁰ Frecuencia [Hz] 10 10 Punto I19 N-S

Punto I16 N-S

10²

10¹

10⁰ Frecuencia [Hz]

10⁰ Frecuencia [Hz]

Funciones de Transferencia Empíricas obtenidas con datos de aceleración (primera parte) y microtremores (segunda parte) en las estaciones del CIRES y Idel.

Evento	Fecha	Lat. N	Long. W	Profundidad (km)	Magnitud
1	08102001	17	-100.19	4	5.1
2	01012004	17.31	-101.42	10	5
3	14062004	16.31	-98.06	10	5.8
4	13042007	17.21	-101.37	24	5.2
5	28042008	18.05	-100.01	52	5.6
6	27042009	16.9	-99.58	7	5.7
7	22052009	18.13	-98.44	45	5.7
8	15082009	18.06	-100.67	55	5.4
9	09022010	15.9	-96.86	37	5.8
10	20042010	16.07	-98.34	5	5
11	30092010	16.22	-98.03	8	6

Tabla de eventos sísmicos registrados.

Estación			Eventos		
AE02	20100630	20090427	20090522		
AL01	20100630	20100209			
AO24	20100630				
AP68	20100630	20080428	20070413		
AR14	20040614	20100209			
AU11	20100630	20090427	20090522	20090815	20100209
BA49	20100630	20090815	20100209		
BL45	20100630				
BO39	20100630	20090815	20100209		
CA59	20100630	20090815	20100209		
CE18	20100630				
CE23	20100630	20090427	20090522	20100209	
CE32	20100630	20090427	20090522		
CH84	20100630	20090427	20090522		
CI05	20100630				
CJ03	20100630	20090522	20100209		
CJ04	20100630	20090427	20090522		
CO47	20100630				
CO56	20100630				
CP28	20100630				
CS78	20100630				
CT64	20070413				
CU80	20100630	20090427	20090522		
DM12	20100630	20090427	20090522		
DR16	20100630				
DX37	20090427				
EO30	20100630				
ES57	20100630				
FJ74	20100209				
GA62	20100630				
GC38	20100630				
GR27	20100630				
HJ72	20100630	20090427	20090522		
IB22	20100630	20090427	20090522		
IM40	20090522				
JA43	20100630	20100630	20090427	20090522	
JC54	20100630	20090427	20090522		
LI58	20100630	20090427	20090522		
LV17	20100630				
ME52	20100630				

M115	20100620	20000427	20000522		
	20100030	20090427	20090322		
IVI SU	20100050				
MY19	20100630	20090522	20100209		
NZ20	20100630	20080428			
NZ31	20100630	20080428	20090427	20090815	20100209
PD42	20100630	20090427	20090522		
PE10	20100630	20090427	20090522		
RI76	20100630	20090427	20090522		
RM48	20100630	20090427	20090522		
SI53	20100209				
SP51	20090815	20100209			
TE07	20100209				
TH35	20090427	20100209	20080428		
TL08	20100630	20090427	20090522		
TL55	20100630				
TP13	20100630				
UC44	20100630	20090427	20090522		
UI21	20100630				
VG09	20100630	20090815	20100209		
VM29	20100630	20100420	20090815	20100209	
XO36	20100630	20090427	20090522	20100209	20100630

Ubicación de los sitios con los que se comparó el efecto del hundimiento regional en la Ciudad de México.

Datos P Domin	eriodo iante	Coordenadas	
1992	2010	Long Lat	
0.4	0.4	-99.2217	19.4269
0.4	0.4	-99.21	19.299
0.5	0.5	-99.2642	19.37
0.5	0.5	-99.1703	19.3714
0.5	0.5	-99.1137	19.4876
0.6	0.6	-99.1708	19.2922
0.6	0.6	-99.1829	19.5005
0.6	0.6	-99.0847	19.3398
0.6	0.6	-99.1772	19.3885
0.6	0.6	-99.2032	19.3428
0.6	0.6	-99.19	19.4253
0.6	0.6	-99.1772	19.3885
0.7	0.6	-99.0839	19.4385
0.7	0.7	-99.19	19.4253
0.8	0.8	-99.146	19.344
0.8	0.8	-99.1797	19.4747
0.9	0.9	-99.133	19.31
0.9	0.9	-99.1681	19.3832
0.9	0.9	-99.182	19.4383
0.9	0.8	-99.1775	19.4017
1	1	-99.135	19.33
1	1	-99.111	19.339
1	0.9	-99.1539	19.358
1	1	-99.1439	19.3322
1.1	1.1	-99.131	19.329
1.1	1.1	-99.1116	19.335
1.1	1.1	-99.1272	19.313
1.2	1	-99.118	19.31
1.2	1.1	-99.1272	19.313
1.3	0.9	-99.113	19.32
1.3	1.1	-99.126	19.329
1.3	1.3	-99.1275	19.4931
1.4	1.2	-99.1483	19.3753
1.4	1.1	-99.1253	19.2834
1.4	1.3	-99.1297	19.345
1.5	1.3	-99.1253	19.2834
1.5	1.5	-99.1297	19.345
1.5	1.4	-99.1654	19.4337
1.5	1.3	-99.1254	19.33

Datos F Domi	Periodo nante	Coordenadas	
1992	2010	Long	Lat
2.2	1.7	-99.1566	19.4098
2.2	1.6	-99.1336	19.45
2.3	2	-99.1189	19.3656
2.3	2.1	-99.159	19.4215
2.3	1.9	-99.1401	19.4385
2.4	1.7	-99.064	19.283
2.4	2.1	-99.1569	19.4263
2.6	1.7	-99.068	19.3
2.6	2.2	-99.1011	19.3091
2.6	2.2	-99.1481	19.4253
2.7	2	-99.122	19.381
2.7	2.6	-99.119	19.425
2.7	2.2	-99.1318	19.3899
2.8	2.5	-99.1225	19.4539
2.8	2.6	-99.145	19.4097
2.8	2.5	-99.0433	19.3461
2.8	2	-99.1253	19.3811
2.9	2.4	-99.144	19.411
2.9	2.6	-99.1047	19.4653
2.9	2.8	-99.1301	19.4251
2.9	2.9	-99.1037	19.2938
2.9	2.7	-99.1047	19.3967
3	2.3	-99.103	19.383
3	2.7	-99.0433	19.3461
3.1	2.5	-99.1253	19.3811
3.2	2.9	-99.125	19.4053
3.2	3	-99.128	19.4359
3.2	3.1	-99.1183	19.4258
3.2	2.5	-99.096	19.372
3.3	2.9	-99.1353	19.4198
3.4	2.9	-99.1024	19.2711
3.6	3.3	-99.095	19.382
3.6	3.2	-99.1068	19.3809
3.6	2.9	-99.096	19.372
3.7	3.3	-99.0697	19.3927
3.7	2.6	-99.1111	19.4186
3.8	3.7	-99.1024	19.2711
4	3.4	-99.0963	19.4312
4	3.7	-99.076	19.4808

Anexo 4

4.1	3.7	-99.069	19.38
4.1	3.6	-99.0876	19.4192
4.2	3.3	-99.0537	19.3858
4.5	4	-99.0869	19.3919
4.5	4.1	-99.0537	19.3858
4.5	4	-99.0997	19.4055
4.8	4.3	-99.0642	19.4619
5	4.6	-99	19.4027
5	3.9	-99	19.2786
5.3	4.8	-99.0584	19.429
5.5	4.1	-99.0247	19.4167

1.5	1.1	-99.1654	19.4337
1.8	1.4	-99.005	19.3611
1.9	1.3	-99.063	19.288
1.9	1.7	-99.119	19.363
1.9	1.6	-99.1059	19.3161
2	1.9	-99.1653	19.4186
2	1.9	-99.1254	19.33
2	1.6	-99.147	19.393
2.1	1.8	-99.1453	19.4356
2.1	2	-99.1567	19.4097
2.1	2	-99.1566	19.4098
2.1	1.7	-99.1425	19.4356
2.2	1.6	-99.1336	19.45

```
Código MATLAB para graficar las Funciones de Transferencia
```

```
clc;clear all;
ysumn=0; ysume=0; ptos dat=[];
carpeta='images';
mkdir(carpeta); ruta=[pwd, '\', carpeta, '\'];
ii=0; q=1;
for i=2:21
    ysumn=0;ysume=0;
    for j=1:4
        archn=['p',num2str(i),'n',num2str(j),'.txt'];
        arche=['p',num2str(i),'e',num2str(j),'.txt'];
        eval(['load ',archn]);
        eval(['load ',arche])
        if i<10
            archn=archn(1,1:4);%nombre archivo excepto extension
            arche=arche(1,1:4);
        else
            archn=archn(1,1:5);%nombre archivo excepto extension
            arche=arche(1,1:5);
        end
        archn=eval(archn);
        arche=eval(arche);
        x=archn(1:2047,1); x=x';
        yn=archn(1:2047,2); yn=yn';
        ye=arche(1:2047,2); ye=ye';
        un=[zeros(1,3) yn];
        ue=[zeros(1,3) ye];
        N=3;
        %filtrado --inicia--
        for k=1:2047;
            wn=un(k: k+N);
            zn(k)=runsum(wn);
        end
        for k=1:2047;
            we=ue(k:k+N);
            ze(k)=runsum(we);
        end
        %-- finaliza--
        ysumn=zn+ysumn;
        ysume=ze+ysume;
            figure(1)
            title(['Punto I', num2str(q), ' N-S'])
            loglog(x,yn),grid on
            hold on
            if j==4
                 ypromn=ysumn/4;
                 loglog(x,ypromn,'-r','LineWidth',2)
            end
            xlabel('Frecuencia [Hz]'); ylabel('Amplitud'); xlim([.1 10]);
```

```
legend('v1','v2','v3','v4','Promedio',1)
        figure(2)
        title(['Punto I',num2str(q),' E-W'])
        loglog(x,ye),grid on
        hold on
        if j==4
            yprome=ysume/4;
            loglog(x,yprome,'-r','LineWidth',2)
        end
        xlabel('Frecuencia [Hz]'); ylabel('Amplitud'); xlim([.1 10]);
        legend('v1','v2','v3','v4','Promedio',1)
end
figure(3)
loglog(x,ypromn,'-r',x,yprome,'-b','LineWidth',2)
title(['Punto I', num2str(q), ' Promedios']); grid on
xlabel('Frecuencia [Hz]'); ylabel('Amplitud'); xlim([.1 10]);
legend('N-S','E-W',1)
x0=x(20:123);
ymn0=ypromn(20:123);
[amplitud, im] = max(ymn0);
amplitud;
frecuencia n=x0(im);
yme0=yprome(20:123);
[amplitud,im]=max(yme0);
amplitud;
frecuencia e=x0(im);
namens=['I',num2str(q),' ns.bmp'];
figura=figure(1);
saveas(figura,[ruta namens]);
nameew=['I',num2str(q),' ew.bmp'];
figura=figure(2);
saveas(figura,[ruta nameew]);
nameprom=['I',num2str(q),' pr.bmp'];
figura=figure(3);
saveas(figura,[ruta nameprom]);
q=q+1;
pause
close all
ii=ii+1;
ptos dat(ii,1)=frecuencia e;
ptos dat(ii,2)=frecuencia n;
```

end