Universidad Nacional Autónoma de México Facultad de Ingeniería

Análisis de Sequías

Volumen I

Carlos A. Escalante Sandoval Lilia Reyes Chávez universidad Nacional Authroma de México Faculud de Ingenieria

APUNTE

11-BB V.1 FACULTAD DE INGENIERIA UNAM.

613237

G.- 613237

Análisis de Seguias

THE STATE

Course — Earmanh-Sandoval

Portada: Hombre caminando campo a través durante una sequía. Fuente: Programa de las Naciones Unidas para el Medio Ambiente (PNUMA).

PRESENTACIÓN

La Facultad de Ingeniería ha decidido realizar una serie de ediciones provisionales de obras recientemente elaboradas por académicos de la institución, como material de apoyo para sus clases, de manera que puedan ser aprovechadas de inmediato por alumnos y profesores. Tal es el caso de la obra *Análisis de sequías* de los profesores Carlos Agustín Escalante Sandoval y Lilia Reyes Chávez.

Se invita a los estudiantes y profesores a que comuniquen a los autores las observaciones y sugerencias que mejoren el contenido de la obra, con el fin de que se incorporen en una futura edición definitiva.

G. 613237

Cuando una gran sequía afecto Tula...

"Habiendo ganado un partido de juego de pelota contra Tláloc, el rey tolteca rehusó el maíz que le ofrecía el dios vencido en premio a su victoria y pidió el yacimiento de jade y las plumas de quetzal. Tláloc aceptó furioso diciéndole que el jade y las plumas no valían lo que las hojas y los granos de maíz, verdadera riqueza de un pueblo. De esta forma Huemac vio llenar su cofre de cosas preciosas, pero la tierra ya no recibía el agua benefactora."

Leyenda indígena. Año: 1158

sand INDICE IN THE STREET OF THE STREET

PROLOGO		ix
TENÓMENOS MATURALES		
1. FENÓMENOS NATURALES		1
		1
1.1. Desarrollo sustentable y desastres naturales		
1.2. El efecto invernadero		6
1.3. Deforestación		8
1.3.1. El valor de bosques y selvas1.4. Incendios forestales		10
1.5. Desertificación		14
1.6. Fenómenos atmosféricos		27
1.6.1. El Niño		29
1.6.2. La Niña		34
1.6.3. La Oscilación Decadal del Pacífico (PDO)		35
La condition boadan del 7 dell'ice (1 bo)		00
2. CARACTERÍSTICAS DE LAS SEQUÍAS		39
		Ī
2.1. Definición de Sequía		39
2.2. Definición de Aridez		40
2.3. Clasificación de las sequías		42
2.4. Impactos de las sequías		43
2.4. Impactos de las sequías2.5. Índices propuestos para caracterizar una sequía		44
2.5.1. Porcentaje de la Normal		44
2.5.2. Variabilidad de la precipitación anual		45
2.5.3. Deciles de la precipitación		45
2.5.4. Índice de sequía de Palmer		46
2.5.5. Illuice Faillel de Segula Illuidiogica (FIDI)		47
2.5.6. Índice de humedad en los cultivos (<i>CMI</i>)		48
z.5.7. Indice de precipitación estandarizada (5PI)		49
2.6. Análisis de series anuales		53
2.0.1. Secuencias de una sene de hempo		53
2.6.2. Teoria de los promedios moviles		55
2.7. Análisis de series mensuales		56
2 CONCEPTOS PÁSICAS DE PROPARII IDAD V	ESTADÍSTICA	72
3. CONCEPTOS BÁSICOS DE PROBABILIDAD Y	ESTADISTICA	73
3.1. Conjuntos		73
3.1.1. Operaciones entre conjuntos		73
2.1.2 Tearemac relatives a conjuntos		74
3.1.3. Eventos condicionales		75
		75
3.3. Probabilidad		76

	Axiomas y teoremas de la teoría de probab Probabilidad condicional	ilidades	76 77
	Teorema de Bayes		78
	eglas de conteo		78
	ariables aleatorias		79
	stribuciones conjuntas		
	Independencia entre variables aleatorias		82
			83
	Distribuciones condicionales		84
	speranza matemática		84
	Momentos		85
	ecnicas de estimación de parámetros		87
	Método de los momentos		88
3.8.2.	Método de máxima verosimilitud		91
3.9. Pe	eriodo de retorno		93
3.10.	Pruebas de homogeneidad		93
3.10.1	Prueba estadística de Helmert		94
3.10.2	Prueba estadística t de Student		94 95
3.10.3	Prueba estadística de Cramer		
3.11.	Prueba de independencia de eventos		96
	Prueba de bondad de ajuste		97
3.13.	Proceso de normalización de Box-Cox de d	oble potencia	98
		10 L 0 F.L. N	
4. A	NÁLISIS PUNTUAL DE GASTOS MÍNIMOS	ANUALES	101
			100
	álisis de frecuencias		10
	stribución Log Normal con tres parámetros		103
		I) nore mínimae	108
	stribución de valores extremos tipo I (Gumbe	l) para mínimos	117
	stribución Weibull		124
	stribución general de valores extremos (GVE) para milinos	130
4.7. DI	stribuciones mezcladas Distribución Gumbel mixta o de dos poblaci		
4.7.1.	Distribución de valores extremos de dos co	monontos (TCEV)	130
172	Confiabilidad de los eventos estimados con	distribuciones mazcladas	133
	asto Ecológico	distribuciones mezciadas	1/13
4.0. 0	asto Ecologico		170
5 ΔΙ	NÁLISIS REGIONAL DE GASTOS MÍNIMOS	SANIALES	149
J. AI	WEIGHT WE GOT TO WITH MICK	//IIIV/lbbV	
5 1 Te	ecnicas regionales		149
	Técnica de las estaciones-año		150
	Técnica de correlación y regresión múltiple		
	Técnica de Dalrymple		160
5.1.4	Método de estimación multivariada de valor		162
	rálisis en confluencias de ríos	= [4	169

6. ANÁLISIS DE SEQUÍAS METEOROLÓGICAS	179
6.1. Secuencia de una serie de tiempo 6.2. Modelación de una serie de tiempo 6.2.1. Modelo autorregresivo anual AR(p) 6.2.1.1. Modelo autorregresivo anual AR(1) 6.2.1.2. Modelo autorregresivo periódico PAR(p) 6.2.2. Modelo autorregresivo periódico PAR(1) 6.2.2.1. Modelo autorregresivo periódico PAR(1) 6.2.2.2. Modelo autorregresivo periódico PAR(2) 6.2.3. Modelo autorregresivo anual de promedios móviles ARMA(1,1) 6.3. Análisis puntual de series anuales 6.4. Análisis regional de series anuales	180 184 186 187 197 198 199 206 208 215
7. ANÁLISIS DE SEQUÍAS HIDROLÓGICAS	221
7.4. Análisis conjunto déficit máximo – duración	225241248
8. ASPECTOS ECONÓMICOS Y SOCIALES DE LAS SEQUÍAS	
 8.1. Introducción 8.2. Disponibilidad del agua 8.2.1. Disponibilidad per cápita del agua en México 8.3. Agricultura 8.3.1. Relación económica agua-producción agrícola 8.4. Ganadería 8.4.1. Relación económica agua-producción ganadera 8.5. Salud 8.5.1. Enfermedades transmitidas por el agua 8.5.2. Enfermedades con base en el agua 8.5.3. Enfermedades de origen vectorial relacionadas con el agua 	253 255 258 260 262 267 269 274 274 282 286
 8.5.4. Enfermedades vinculadas a la escasez de agua y los malos hábitos higiénicos 8.5.5. Relación económica agua-salud 8.6. Producción y servicios forestales 8.7. Medio Ambiente 8.8. Industria, comercio y aspectos financieros 8.9. Hambruna y seguridad alimentaria 	290 292 303 303 304 306

9. MITIGACIÓN DE LOS IMPACTOS DE LAS SEQUÍ	AS TUDE STEW PATO 15 AND	307
9.1. Agua y pobreza9.2. Planeación básica para la sequía9.3. Vulnerabilidad y Riesgo9.3.1. Información básica para la estimación del riesgo		312 320 333
10. LA SEQUÍA EN MÉXICO		000
 10.1 Introducción 10.2 La historia de la sequía en México 10.3. La situación actual de los recursos hidráulicos de los 10.4. Caracterización de las sequías meteorológicas 10.5. Efectos de los fenómenos atmosféricos en las se 	e nuestro País	335 337
		381
ANEXO B Clasificación de la sequía meteorológica de acuerdo con Municipio de la República Mexicana	su intensidad y duración para cac	431

blaceusper options the company of PRÓLOGO betweening the middle between the Medical Re-

El agua es elemento esencial para el consumo humano, los procesos de manufactura de artículos industriales, la transformación de energía, la producción de alimentos y el adecuado estándar de salud. En muchas partes del mundo, el agua es un importante medio de transporte y un factor significativo en las actividades recreativas.

La irregular distribución espacial y temporal de la lluvia y escurrimiento de ríos ha propiciado que el hombre enfrente dos extremos: las inundaciones y las sequías.

A lo largo de la historia se pueden encontrar en cualquier lugar del planeta períodos con un régimen de precipitaciones inferior al normal. Hay acuerdo en la afirmación anterior, pero la discrepancia surge al definir el umbral para establecer la escasez de precipitaciones como sequía meteorológica. Las opiniones se dispersan aún más cuando se trata de predecir la tendencia climática del futuro y su relación a nivel local o regional.

La civilización ha intentado superar las limitaciones que impone la variabilidad meteorológica, con un especial énfasis a la escasez de lluvia. La construcción de embalses y el incremento en la extracción del agua subterránea persigue el disminuir las irregularidades en la distribución temporal de las lluvias, mientras que los grandes canales y conducciones, transportando el agua desde las zonas donde es posible su regulación hasta las que presentan una demanda de recurso superior a la que les correspondería de forma natural en la zona pretenden resolver las irregulares distribuciones espaciales. Sin embargo, la planeación no adecuada en la extracción de las fuentes, tanto superficiales como subterráneas, ha propiciado la sobreexplotación, con sus inadecuados efectos secundarios.

En este orden de ideas, la identificación de períodos de escasez en la cuantía que deba ser denominada sequía es directamente dependiente de la relación recurso disponible-demanda. En las zonas donde no se han realizado obras de regulación o conducción, las sequías lo serán cuando las lluvias y caudales naturales circulantes no satisfagan las demandas, y su frecuencia dependerá del régimen meteorológico y sin duda del crecimiento de la demanda. En las zonas con infraestructura de regulación y/o transporte los escenarios de sequía surgirán igualmente siempre que no se puedan satisfacer las demandas con las reservas utilizables con dicha infraestructura. En este último caso las razones pueden deberse a la aparición de periodos más severos que los previstos, pero también pueden ser causa la existencia de demandas superiores a las que permiten los recursos disponibles o un error en el diseño de las obras que pretenden ajustar los recursos a las demandas. A la postre, ambos casos tienen en común la necesidad de afrontar situaciones de insuficiencia de recursos.

Las situaciones de sequías son sin lugar a duda contingencias, por cuanto desencadenan escenarios en los que no se pueden atender las demandas de un bien imprescindible para la vida y para el desarrollo social y económico de las zonas y actividades que de él dependen. Las repercusiones económicas y sociales alcanzan, en la mayoría de los casos, grandes dimensiones. Según el reporte de la Cruz Roja Internacional, el fenómeno de la sequía afectó en 1996 a 60 millones de personas en el mundo, con cerca de 74,000 muertos.

Los desastres naturales son, en gran medida, problemas no resueltos del desarrollo. Los desastres en mediana o larga escala afectan las vidas, la seguridad social, los intereses económicos y los bienes y pertenencias de enormes poblaciones, sobre todo de los más pobres, por la destrucción de infraestructura y el sufrimiento personal que se experimenta. Los desastres pueden tener un impacto de larga duración en la estabilidad de la economía y liderazgo de un país. La falta de preparación para afrontar los desastres puede llevar a una respuesta caótica, recesión económica y un desasosiego civil. Los costos por recuperación de desastres se estiman en 200 – 1000 veces mayores que los costos de prevención.

En el caso de los desastres causados por el agua, los patrones del desarrollo que ignoran el manejo sustentable del recurso exponen a las comunidades a riesgos de inundaciones y sequías. Es dificil determinar cómo los humanos están alterando el ciclo hidrológico. No obstante, algunas relaciones entre el ambiente, el desarrollo y los desastres son claras.

En áreas urbanas, por ejemplo, el uso del concreto ha variado la capacidad de la tierra de absorber agua, facilitando inundaciones relámpago. La población se vuelve más vulnerable a las inundaciones debido a los inadecuados sistemas de drenaje, la disminución de áreas verdes, la pavimentación excesiva y a los deficientes planes de desarrollo municipal.

De igual modo, el mal manejo de la tierra hace que las sequías y la desertificación vayan en aumento. La causa principal de la desertificación es el exceso de terrenos dedicados al pastoreo, junto con la deforestación, el sobrecultivo y el pobre drenaje en los sistema de riego; todo lo cual degrada también la calidad del agua, ya que estos procesos aceleran la erosión y reducen la reserva de agua. Bajo este contexto, dado que la demanda se incrementa rápidamente las fuentes de agua deben manejarse de manera más eficiente. En el caso de las sequías, las enormes pérdidas en la condición física del ganado resultan en una disminución significativa en la cantidad de alimento disponible para la gente; de igual forma los cultivos agrícolas se ven afectados en la disminución de la producción, lo cual genera serios problemas, no sólo económicos, sino también sociales.

Un aspecto importante de las sequías es su impacto en la salud, esto debido al efecto directo en la oferta alimentaria. En poblaciones que no se dispone de una adecuada de infraestructura de agua potable, alcantarillado y saneamiento, las enfermedades relacionadas con el agua representan un serio problema a la estabilidad social.

Todo lo anterior sugiere la necesidad de una cuidadosa atención a la generación de conciencia de la población en general y de las autoridades; a la creación de sistemas de monitoreo y alerta temprana, y a la implantación de medidas de mitigación sustentables ante la escasez de agua.

En cada zona se puede establecer la probabilidad de ocurrencia de la sequía de diferentes intensidades asociada al escenario de demanda. A su vez para cada caso, si se han establecido reglas claras de gestión del agua, se pueden evaluar los costos derivados de cada aparición de un fenómeno de escasez. Con ambos factores, probabilidad de ocurrencia y costo asociado, se puede valor el riesgo asociado a cada fenómeno de sequía en un ámbito determinado, y su tratamiento y gestión deben ser los de un riesgo más.

La sequía debe reconocerse como un fenómeno probable y hay que incluirlo en el diseño y operación de los aprovechamientos hidráulicos. Se debe afrontar como contingencia cuando surja, pero sobre todo desde la normalidad o abundancia, para resolver en mejores condiciones sus consecuencias cuando se manifieste.

En este libro, formado por dos volúmenes, se presentan los conceptos básicos relacionados con el desarrollo sustentable y los fenómenos naturales como son la deforestación, los incendios forestales, la desertificación y los fenómenos atmosféricos globales. Se dan las diferentes formas de definir, clasificar y evaluar a las seguías.

Dada la naturaleza aleatoria del fenómeno que genera las sequías, se presentan algunos conceptos básicos de probabilidad y estadística.

También se presenta el análisis de la sequía bajo diferentes enfoques: series de gastos mínimos anuales, series de lluvia acumulada anual (sequía meteorológica) y series de gastos medios diarios (sequía hidrológica), todos ellos en forma puntual y regional.

Un aspecto relevante en el análisis de las sequías es la evaluación de los impactos económicos y sociales de las sequías y las estrategias que permiten mitigarlos. Estos tópicos son abordados en los capítulos ocho y nuevo.

Finalmente, el último capítulo de libro muestra la caracterización meteorológica de la sequía puntual, municipal y estatal de la República Mexicana.

El enfoque de las técnicas propuestas está orientado hacia las aplicaciones, sin descuidar los principios teóricos y restricciones que dan sustento a los procedimientos.

Se espera que esta publicación brinde al lector una herramienta suficiente de planeación, que le permita la adecuada toma de decisiones en situaciones de escasez de agua.

FENÓMENOS NATURALES

1.1. Desarrollo sustentable y desastres naturales

El crecimiento poblacional y las actividades económicas e industriales que se desarrollan en el planeta generan costos ambientales (contaminación del suelo, agua y atmósfera) que han sobrepasado por mucho los beneficios materiales.

El desarrollo sustentable es un concepto propuesto por la Comisión Bruntland de las Naciones Unidas, el cual supone dirigir los esfuerzos de crecimiento económico y social hacia un proceso que permita legar a las generaciones venideras, de manera equitativa y con pleno respeto al medio ambiente, el mismo acceso a los recursos naturales y la misma oportunidad de mejor calidad de vida que ha disfrutado hasta ahora una porción apenas pequeña de la humanidad (Urquidi, 2002).

El desarrollo sustentable y los instrumentos orientados a la reducción de la pobreza y la protección ambiental no se pueden concebir aislados de las políticas de prevención y mitigación de los efectos que provocan los fenómenos naturales en la sociedad.

Dentro de la naturaleza nada es constante y predecible. Cuando un evento natural llega a sus condiciones extremas puede ser un riesgo para los habitantes de cierto ambiente. Estos fenómenos incluyen avalanchas de nieve, ciclones, deslizamientos de tierras, erosiones costeras, erupciones volcánicas, inundaciones, sequías, terremotos, tormentas eléctricas y tropicales, tornados y vientos. Además, algunas formas de degradación ambiental pueden contribuir a la creación de peligros o ser una extensión de ellos, tales como la deforestación, los incendios forestales y la desertificación.

En el análisis del impacto de los fenómenos naturales se tienen los siguientes conceptos:

Peligro.- Se define así a cierta actividad humana y/o evento físico que representa una amenaza futura, el cual puede causar pérdidas de vidas, daños materiales, desequilibrios económicos y sociales y degradación ambiental. Cada peligro se caracteriza por su ubicación, intensidad, frecuencia y probabilidad.

Peligros Naturales.- Son procesos o fenómenos que ocurren en la biosfera que pueden constituir un evento dañino. Se pueden clasificar por su origen en geológicos, hidrometeorológicos o biológicos.

Peligro Geológico.- Fenómeno natural de la Tierra que incluye procesos de origen tectónico, geofísico, geomorfológico, geotécnico o hidrogeológico. Ejemplos de este tipo de peligro son los terremotos, tsunamis, emisiones y actividad volcánica y los movimientos de masas (deslizamientos de tierra y rocas).

Peligro Hidrometeorológico.- Fenómeno natural de la Tierra que incluye procesos de origen atmosférico, hidrológico u oceanográfico. Ejemplos de este tipo de peligros son las inundaciones, ciclones tropicales, tormentas de lluvia, viento, arena, polvo y eléctricas, sequías, deforestación, incendios forestales, desertificación, ondas de calor y avalanchas.

Peligro Biológico.- Proceso de origen orgánico o aquellos asociados a vectores biológicos, incluyendo la exposición de microorganismos patógenos, toxinas y sustancias bio-activas. Ejemplos de este tipo de peligro son las enfermedades epidémicas, las plagas, la infestación intensiva y el contagio de plantas y/o animales.

Peligro Inducido.- Son fenómenos generados por las actividades humanas. Se pueden clasificar en degradación ambiental y peligro tecnológico.

Degradación Ambiental.- Es un proceso inducido por el comportamiento de las actividades humanas (algunas veces combinado con algún peligro natural), que daña o altera los recursos naturales y los ecosistemas. Los efectos potenciales son variables y pueden contribuir a incrementar la vulnerabilidad, frecuencia e intensidad de los peligros naturales. La degradación de los suelos, la deforestación, los incendios forestales, la desertificación, la pérdida de la biodiversidad, la contaminación del suelo, aire y agua, el cambio climático, el incremento en el nivel del mar y la reducción de la capa de ozono, son ejemplos de la degradación ambiental.

Peligro Tecnológico.- Son aquellos que se originan de accidentes industriales o de fallas en la infraestructura. Como ejemplos se tiene la generación de desechos tóxicos, las actividades nucleares, la falla de presas, los accidentes en el transporte y las explosiones o incendios en la industria.

Desastre.- Es un serio disturbio del funcionamiento normal de una comunidad o sociedad que causa perdidas humanas, económicas y sociales, las cuales exceden significativamente la capacidad de respuesta debido a lo limitado de los recursos propios. Un desastre resulta de la combinación del tipo de peligro, de las condiciones de vulnerabilidad y de las medidas tomadas para reducir el potencial negativo del riesgo. Un desastre deberá definirse con base en sus consecuencias humanas y no sobre el fenómeno que lo causa. Por ejemplo, si un terremoto de gran intensidad ocurre en una zona no habitada sus efectos no se consideran como un desastre, sino solo como un fenómeno de interés científico.

Vulnerabilidad.- Es el conjunto de condiciones y procesos que resultan de factores físicos (ubicación), sociales (ligado al nivel de bienestar y marginación de la población), económicos (reservas monetarias, deuda pública, acceso al crédito y a los seguros), y ecológicos (degradación de los recursos naturales, pérdida de la biodiversidad), los cuales incrementan la susceptibilidad de una comunidad al impacto de un peligro. El grado de vulnerabilidad se mide (0% a 100%) por la capacidad para anticiparse, hacer frente, resistir y recuperarse de la ocurrencia de un peligro.

Capacidad.- Es la forma en la cual la gente y las organizaciones utilizan los recursos existentes para alcanzar ciertos beneficios durante las condiciones adversas de un desastre.

Riesgo.- Es la probabilidad de tener una consecuencia dañina o pérdida esperada (vidas, propiedades, actividad económica o daño ambiental), la cual resulta de las interacciones entre los peligros naturales o los inducidos por las actividades humanas y de las condiciones de vulnerabilidad y capacidad de respuesta. Convencionalmente, el riesgo se expresa por la ecuación Riesgo = Peligro x Vulnerabilidad/Capacidad.

Valoración del Impacto.- Proceso de observación de la magnitud y distribución de los efectos causados por la ocurrencia de un peligro.

Valoración de la vulnerabilidad.- Proporciona un marco para identificar o predecir las causas fundamentales de los impactos relacionados con la ocurrencia de un peligro. El peligro puede ser sólo un factor que, unido a otras condiciones adversas de carácter social, económico o ambiental, genera vulnerabilidad.

Riesgo Aceptable.- Es un nivel de vulnerabilidad que se considera ser un factor de equilibrio "aceptable", como es el costo, la equidad, la aportación pública, y la probabilidad del peligro.

Análisis de Riesgo.- Es el proceso que determina la naturaleza y extensión del riesgo a través del análisis y evaluación técnica de los peligros (ubicación, intensidad y probabilidad) y de las condiciones existentes de vulnerabilidad/capacidad que poseería una amenaza potencial para dañar a la gente, sus propledades y al ambiente.

Manejo del Riesgo.- Es el manejo sistemático de decisiones administrativas, de organización, de herramientas operacionales y de responsabilidades para aplicar políticas, estrategias y prácticas para reducir los riesgos de un desastre.

Reducción de desastres.- Es la aplicación de políticas, estrategias y prácticas para evitar (prevención) o limitar (mitigación) los impactos adversos de los peligros dentro del contexto del desarrollo sustentable.

Prevención de desastres.- Son estrategias que dependen de la factibilidad técnica y social y de consideraciones costo/beneficio. Se justifica la inversión en medidas permanentes de prevención en sitios que se ven afectados frecuentemente por los desastres.

Mitigación de desastres.- Son medidas estructurales y no estructurales que se toman para limitar los impactos adversos de los peligros naturales y los inducidos por el hombre.

Preparación.- Es el conjunto de acciones previas a la catástrofe, diseñadas para incrementar al nivel de alerta o mejorar las capacidades operativas para responder a una emergencia. La preparación es una acción de mitigación.

Respuesta.- Acciones emprendidas inmediatamente antes, durante o justamente después de la ocurrencia del peligro para reducir los impactos y mejorar la recuperación. Las medidas de respuesta son una parte importante de la preparación para enfrentar los peligros, pero sólo deben ser una parte de la estrategia general de mitigación.

Alerta temprana. Es la adquisición de información que permite tomar decisiones para evitar o reducir el riesgo de un desastre. Los sistemas de alerta temprana consisten de tres elementos: 1) pronóstico y predicción de eventos extremos con base en el conocimiento científico, 2) procesamiento y diseminación de la información a las autoridades y la población sobre los posibles impactos del fenómeno, y 3) reacción apropiada a las advertencias sobre los riesgos del evento.

Los peligros y los desastres que ellos causan se clasifican como de inicio rápido y de largo plazo o continuo. En un desastre del primer tipo, un evento de gran escala causa la mayoría de los daños y seguido a esto existe un tremendo sufrimiento y caos dado que la pérdida de vidas es súbita y por lo tanto dramática, pero conforme avanza el tiempo la situación tiende a mejorar. En uno de largo plazo la situación permanece constante o se deteriora con el tiempo. Los desastres de inicio rápido incluyen los ciclones, erupciones volcánicas, inundaciones y terremotos, en tanto que los desastres de largo plazo incluyen las sequías y la degradación ambiental tal como la deforestación y la desertificación.

Los peligros naturales como terremotos, sequías, inundaciones, tormentas y ciclones tropicales, incendios forestales, erupciones volcánicas y los desastres tecnológicos conexos han provocado en el periodo 1960-2000 grandes pérdidas humanas, la destrucción del sustento de muchos y de la infraestructura económica y social, así como daños ambientales. Las pérdidas económicas han crecido casi 10 veces durante este periodo, lo que representa una amenaza sustancial a las iniciativas tanto del desarrollo sustentable como de reducción de la pobreza.

De manera comparativa, en la tabla 1.1 se muestran el número de personas promedio anual que murió o que fueron afectadas en el mundo por desastres naturales en la década de los años 60 y 70. En esta se observa que los terremotos cobraron más vidas, sin embargo, las sequías encabezan la lista en cuanto el número global de personas afectadas. De seguir las tendencias actuales, se proyecta para el año 2050 una pérdida de 100,000 vidas por año con un costo de 300,000 millones de dólares.

	Pob	lación muerta	Població	n afectada (m) meyenc
Evento	1960-1969	1970-1979	1960-1969	1970-1979
Sequia	1,010	23,110	18,500,000	24,400,000
Inundaciones	2,370	4,680	5,200,000	15,400,000
Ciclones	10,750	34,360	2,500,000	2,800,000
Terremotos	5,250	38,970	200,000	1,200,000
Otros Desastres	2,890	12,960	200,000	500,000

Tabla 1.1. Población promedio anual muerta o afectada por desastres naturales en los años 60 y 70.

La exposición a los riesgos asociados a las amenazas naturales se magnifica por los elevados niveles de vulnerabilidad social y humana en el planeta. Los países menos desarrollados son objeto de las mayores tasas de crecimiento poblacional, con una proyección del doble en menos de treinta años. Además, en el periodo 1970-2000, sin las adecuadas condiciones de planificación, la población urbana en los países en desarrollo llegó a los 1,300 millones, provocando un retroceso desproporcionado de las economías y las formas de sustento de las comunidades, haciéndolas más vulnerables a los desastres naturales.

La pobreza y las presiones económicas y sociales, tales como la migración de la población de las áreas rurales a las urbanas, el desempleo, el Sida y las prácticas ilegales de manejo territorial hacen más vulnerable a la gente al obligarla a vivir en localidades peligrosas, en viviendas de mala calidad, ubicadas a menudo sobre terrenos inestables. Aunado a esto, el uso de materiales deficientes en la construcción de instalaciones clave, la debilidad de los organismos locales, la falta de medidas de protección social, el acceso inadecuado a los servicios de educación y salud contribuyen al incremento de la probabilidad de

ocurrencia de los desastres naturales, ambientales y tecnológicos. Se calcula que el 97% de las muertes anuales relacionadas con los desastres naturales ocurren en países en desarrollo.

La pobreza y la vulnerabilidad a los peligros están íntegramente vinculadas y se refuerzan mutuamente. Los pobres se ven obligados a explotar los recursos naturales para sobrevivir, aumentando así tanto el riesgo como la exposición a los desastres, sobre todo aquellos provocados por inundaciones, sequías y deslizamientos. La exposición repetida a los desastres puede hacer que la gente caiga en la espiral descendente de la pobreza crónica.

Las tendencias actuales a una sociedad globalizada han vuelto a las sociedades mucho más dependientes de servicios e infraestructuras vitales tanto en zonas urbanas como rurales, incluyendo el transporte, agua, alcantarillado, electricidad, gas y redes de comunicación. La falla de estos servicios debido a desastres naturales o inducidos puede tener graves consecuencias aún en zonas no directamente afectadas. La concentración de recursos económicos y políticos en un área urbana puede tener repercusiones regionales o nacionales en caso de la ocurrencia de un desastre.

Aunque el planeta ha experimentado un alza exponencial en las pérdidas humanas y naturales debido a los desastres naturales, persisten los debates sobre el aumento en la frecuencia e intensidad de los eventos hidrometeorológicos extremos, en particular aquellos debidos al cambio climático. Las razones de las mayores pérdidas se deben a las actuales prácticas de desarrollo, las cuales han provocado un incremento en el deterioro del medio ambiente con los procesos de deforestación, desertificación, pérdida de la biodiversidad y la reducción en la cantidad y calidad del agua.

El deterioro del medio ambiente incrementa la intensidad de los desastres naturales, y es a menudo el factor que transforma un peligro natural, o un evento climático extremo tal como un fuerte aguacero, en un desastre. Por ejemplo, las inundaciones se ven agravadas o incluso causadas por la deforestación, la cual provoca erosión y obstrucción de ríos, tal como ocurrió en 1998 en la Costa de Chiapas (Escalante y Palacio, 2000). Según el Banco Mundial, México sufrió en el periodo 1980-2000 más de 80 desastres naturales, provocando la muerte de 10,000 personas y cerca de \$11,800 millones de dólares en daños.

La reducción del riesgo de desastres involucra medidas legales y reglamentarias, reformas institucionales, educación, planificación financiera y compromiso político de los diferentes sectores, las cuales tomen en cuenta los aspectos prioritarios de salud, agricultura y medio ambiente.

En un mundo globalizado, la reducción del riesgo de desastres es un elemento esencial para promover la competitividad y fomentar el desarrollo sustentable. Entre las medidas específicas para la reducción del riesgo están la creación de estrategias de desarrollo urbano y de regulación del ordenamiento territorial (creación de mapas de riesgo), el desarrollo de programas y campañas de adquisición de conciencia pública sobre los efectos nocivos de los peligros naturales y el desarrollo de mejores sistemas de alerta temprana y planes de contingencia en el ámbito local, regional y nacional.

El objetivo de la alerta temprana es que los individuos y las comunidades expuestas al riesgo de un desastre cuenten con información confiable sobre un peligro próximo lo más pronto posible, de modo que puedan actuar en forma expedita para reducir las probabilidades de que sufran daños personales o a

sus propiedades. El sistema de alerta, también debe incorporar la evaluación de riesgos y combinar los esfuerzos de todos los sectores por planificar anticipadamente y capacitar a la gente para mitigar rápidamente los efectos nocivos del fenómeno una vez que este ha ocurrido.

1.2. El efecto invernadero

El clima es un sistema complejo y cambiante de circulación de aire de la atmósfera en permanente intercambio de energía con el mar y la superficie terrestre.

El clima ejerce una enorme influencia en la naturaleza incluyendo al hombre, ya que determina en gran medida la fauna y la flora de cada lugar, la cantidad de agua disponible y las formas de vida de cada región del mundo.

Desde hace más de 20 años los científicos han advertido que la temperatura del planeta se ha incrementado debido a la actividad industrial, y que esto está causando cambios en el clima de la tierra.

La temperatura media global de la superf cie terrestre en los últimos 100 años se ha incrementado en promedio 0.5° C, mientras que el nivel del mar ha aumentado de 10 a 25 cm y los glaciares de las montañas se han reducido en todo el planeta. Además, la última década del siglo XX fue la más calurosa de que se tenga registro.

El efecto invernadero es un proceso en que parte de los rayos del sol que llegan a la superficie, y que luego son remitidos hacia el espacio en forma de radiación infrarroja, quedan atrapados en la capa más baja de la atmósfera por la acción de ciertos gases como el vapor de agua, el bióxido de carbono (CO_2) , el metano (CH_4) , el óxido nitroso (N_2O) , y los clorofluorocarbonos (CFC), de manera que se retiene calor del sol manteniendo la superficie de la tierra a una temperatura adecuada para generar las condiciones aptas para la vida. En ausencia de estos gases, la temperatura promedio del planeta sería de -18° C en lugar de 15° C como ocurre en situación normal.

A excepción de los CFC, todos los gases referidos existen en forma natural y representan menos del 1% de la atmósfera.

La concentración de CO₂ ha aumentado en un 32% desde la revolución industrial y más de las tres cuartas partes de este aumento se deben a las emisiones producidas por la quema de combustibles fósiles y los incendios forestales, que no se equilibran con el proceso natural de fotosíntesis en la vegetación. Es decir, se emiten del orden de 6,000 millones de toneladas de carbono por año (una tonelada de carbono equivale a 3,666 toneladas de CO₂), de las cuales alrededor de 3,000 millones permanecen y se acumulan en la atmósfera.

La concentración de CH₄ se ha duplicado debido al incremento de los hatos ganaderos, a la fermentación entérica de materia orgánica y a la explotación del gas natural.

Los CFC no existían en la atmósfera y son producidos por el hombre y utilizados en la fabricación de refrigerantes, solventes y aerosoles.

Si el aumento de emisiones sigue como hasta ahora, la temperatura media global de la superficie terrestre será de 1.2 a 3.5° C mayor que la actual hacia el año 2080. Los continentes se calentarán el doble de rápido que los océanos, y también se notará más el aumento de temperatura en los inviernos en latitudes altas. Lloverá más en algunas regiones pero menos en otras, y los trópicos sufrirán notables alteraciones en el patrón de lluvias (EAR, 2001).

Otro efecto negativo será el incremento en el nivel del mar, ya que se espera que para el año 2080 aumente unos 40 cm en promedio global, afectando a cerca de 80 millones de personas por causa de las inundaciones. La gran mayoría de países del sudeste asiático, África Oriental y del Mediterráneo, así como las islas del Caribe, del océano Índico y del Pacífico corren el riesgo de desaparecer (EAR, 2001).

El aumento de temperatura junto con la alteración del régimen de lluvias y la salinización por intrusión de los acuíferos costeros, harán que en muchas zonas se tengan serios problemas de abastecimiento de agua. Se estima que en el año 2080 unos 3000 millones de personas sufrirán escasez de agua, especialmente en zonas que presentan graves problemas de abastecimiento, como el norte de África, Oriente Medio y la India. También se prevé una disminución del caudal de los ríos en Australia, la India, el sur de África, la mayor parte de Europa, Sudamérica y Oriente Medio (EAR, 2001).

Las cosechas se verán alteradas por dos factores: el calor, que induce mayor evapotranspiración de las plantas, requiriendo por ello más agua, y la abundancia de CO₂, que tiene un efecto fertilizante. Las previsiones son de aumento de rendimiento en latitudes medias y altas, y menor producción en zonas subtropicales, como en la India, y especialmente en África, que se enfrentará a nuevas hambrunas (EAR, 2001).

El aumento global de temperatura dará lugar a una extensión del campo de acción de insectos portadores de enfermedades, como la malaria que se estima afectará en el año 2080 a 290 millones de personas más que hoy, la mayoría en China y Asia central (EAR, 2001).

La gente que más va a sufrir las consecuencias de la alteración del clima es la que menos ha contribuido a provocarla. Las diferencia en emisiones de CO₂ per-cápita entre los países desarrollados y el resto del mundo es apabullante. La única vía para mitigar los impactos del cambio climático es disminuir las emisiones de CO₂ hasta niveles que retrasen estos impactos de modo que las poblaciones y los ecosistemas tengan tiempo suficiente para adaptarse. Este nivel se sitúa en 1.8 toneladas por habitante y año para el año 2030. Actualmente la media mundial es de 4.6 toneladas por habitante y año (EAR, 2001).

En México (INE, 1999), del total de las emisiones de gases de efecto invernadero, el ${\rm CO_2}$ contribuye con el 96.42%, el ${\rm CH_4}$ con el 0.79%, y otros gases con el 2.79%. Las emisiones provienen principalmente del uso de combustibles para la generación de energía, el cambio de uso de suelo, la agricultura y las emisiones debidas a fugas asociadas a la producción de petróleo o gas.

1.3. Deforestación de la large a serior angle son de la landa a la la pro-

Se entiende por deforestación a la destrucción a gran escala de áreas arboladas y su reemplazo por usos no forestales. La deforestación es la principal causa de la crisis ambiental en el mundo, ya que se pierden cerca de 17 millones de hectáreas de selvas y bosques al año. Entre 1980 y 1990, las tasas anuales de deforestación fueron de un 1.2% en Asia y el Pacífico, un 0.8% en Latinoamérica y un 0.7% en África.

La deforestación es un proceso que afecta de manera negativa la estructura y el funcionamiento de los ecosistemas, produciendo modificaciones en el ciclo hidrológico (variaciones en la temperatura y precipitación), las cuales favorecen el calentamiento global.

La deforestación no es lo mismo que la degradación forestal, la cual consiste en una reducción gradual de la biodiversidad (ecosistemas, especies y tipos genéticos). Ambos procesos están vinculados y producen problemas de erosión del suelo y desestabilización de las capas freáticas, lo que a su vez favorecen las inundaciones y sequías.

La deforestación y la degradación forestal pueden generar la extinción local o regional de las especies, la pérdida de recursos genéticos, el aumento en la ocurrencia de plagas, la disminución en la polinización de cultivos comerciales, la alteración de los procesos de formación y mantenimiento de los suelos (erosión), la reducción de la recarga de acuíferos y el incremento en la vulnerabilidad ante un desastre natural.

Los procesos de deforestación son más destructivos en los trópicos, ya que la mayor parte de los suelos forestales tropicales son menos fértiles que los de las regiones templadas y resultan fácilmente erosionables al proceso de lixiviación, causado por el elevado nivel de lluvia, el cual impide la acumulación de nutrientes en el suelo.

El disturbio forestal es una alteración a la vegetación, la cual puede producirse directa o indirectamente por el hombre o por la ocurrencia de plagas e incendios forestales.

Se define como perturbación forestal al cambio en la constitución de la vegetación natural producido por agentes destructores y engloba deforestación, degradación y disturbio forestal.

Los bosques desempeñan un papel clave en el almacenamiento del carbono; si se eliminan, el exceso de bióxido de carbono en la atmósfera puede llevar a un calentamiento global y el efecto invernadero en el planeta.

México posee unos 56 millones de hectáreas arboladas de bosques y selvas, una cuarta parte del territorio nacional. De este, la mitad es una mezcla de selvas tropicales de diferentes características y la mitad es bosque templado. Sólo 20 millones de hectáreas corresponden a bosques y selvas densas y compactas.

En México, la tasa de deforestación varía de entre 370,000 y 746,000 ha/año, según las diferentes definiciones, enfoques, metodologías y escalas geográficas empleadas para su estimación (SEMARNAT, 2002a).

En las tablas 1.2 y 1.3 se presentan las tendencias de la deforestación en la República Mexicana y las causas directas estimadas que la provocan.

Periodo	bsbizisvib	Superficie Arbolada (Millones ha)	Deforestación Total (Millones ha)	Deforestación Anual (Millones ha)
Original a 1950		98.0-77.8	20.2	de la constitución de la constit
1950-1970		77.8-67.8	10.0	0.5
1970-1980		67.8-60.8	7.0	0.7
1980-1990		60.8-56.8	4.0	0.4
1990-1995		56.8-55.3	1.5	0.3
h at of u a william		Total	42.7	

Tabla 1.2. Tendencias de la deforestación en México (SEMARNAT, 2002b).

Causa	%
Desmonte para uso agropecuario	82
Cambio de uso del suelo autorizado	2
ncendios forestales	4
Tala ilegal	8
Plagas y enfermedades	
Otros factores	renseving and smooth at a fielder of the

Tabla 1.3. Causas directas estimadas de la deforestación en México (SEMARNAT, 2002b).

De acuerdo con el análisis de Aguilar et al (2002) para el periodo de 1973 a 1993, los estados de Veracruz, Tabasco y Distrito Federal habían perdido entre 1 y 2% anual de la vegetación natural remanente que tenían en 1973 en el periodo de análisis. Le siguen con tasas entre 0.6% y 0.9% los estados de Tamaulipas, Chiapas y Aguascalientes; los que presentan una tasa entre 0.2 y 0.5% son Oaxaca, Guerrero, Campeche, Zacatecas, Estado de México, Nuevo León, Sinaloa e Hidalgo. El resto de los estados de la República presentaron una tasa menor a 0.1%.

En la tabla 1.4 se presenta la superficie afectada en el periodo 1990-1998 por plagas y enfermedades forestales (detección y tratamiento de barrenadores, desfoliadores, descortezadores, muérdago y enfermedades de menor impacto como la roya), para cada entidad federativa de la República Mexicana.

En la Tabla 1.5 se muestra la superficie reforestada en cada entidad federativa de la República Mexicana para el periodo 1993-2000.

De las tablas 1.2 y 1.5 se observa que prácticamente las hectáreas deforestadas triplican anualmente las hectáreas reforestadas, provocando serios problemas a los ecosistemas del país.

1.3.1. El valor de bosques y selvas

A pesar de limitaciones y problemas teóricos y metodológicos, la valuación de los ecosistemas aporta elementos de juicio cuantitativo que contribuyen a una percepción más racional de los problemas, introduciendo un vector de información que enfatiza el significado de la biodiversidad y de los servicios ambientales (CESPEDES, 2002).

Costanza et al, (1997) le han atribuido un valor unitario anual de 2,007 dólares por hectárea al bosque tropical y de 302 dólares al templado. Incluyen los siguientes servicios ambientales: regulación del clima (gases invernadero), regulación de perturbaciones naturales (protección contra inundaciones, sequías y otros aspectos de control natural de impactos ambientales), regulación hidrológica y oferta de agua, control de la erosión y sedimentación, formación de suelos, reciclamiento de nutrientes, remoción y degradación de materia orgánica, control biológico, producción de alimentos y materias primas, potencial genético y aspectos de recreación y existencia o intrínsecos.

El desglose del valor unitario asignado tanto para los bosques tropicales como los templados se muestran en la tabla 1.6.

A partir de los valores de la tabla 1.6, CESPEDES (2002) realizó un ejercicio cuantitativo para valuar los ecosistemas de bosques y selvas de la República Mexicana (Tabla 1.7). De este ejercicio resultó que los bosques mexicanos y los servicios ambientales que proveen, generan un valor económico de 64,600 millones de dólares, con un valor promedio por hectárea de 1,143 dólares.

	Año									
Estado	1990	1991	1992	1993	1994	1995	1996	1997	1998	
Aguascalientes	8,305	7,850	2,545	5,665	4,734	304	7,341	8,995	1,348	
Baja California	127	120	163	0	300	55	79	2	10	
Baja California Sur	81 *	* 344	\$322 *	0	*	*	0	*	0	
Campeche	69	0	0	0	¥	*	170	760	0	
Coahuila	356	683	375	261	124	24	609	97	21	
Colima	*	181	364	0	136	19	13	28	14	
Chiapas	827	1,128	0	29	249	1,336	184	14	221	
Chihuahua	1,614	746	1,266	2,372	11	615	272	308	124	
Distrito Federal	6,752	30	1,495	1,925	1,727	567	678	2,901	1,71	
Durango	2,200	7,080	2,624	1,261	1,421	873	1,576	713	526	
Guariajuato	2,000	2,040	171	0	0	30	20	8	. 0	
Guerrero	1,109	1,945	1,088	983	888	756	760	546	21	
-lidalgo	2,798	387	29	92	140	41	133	101	-3-	
Jalisco	2,243	1,887	1,575	2,289	1,698	308	248	2,643	510	
México	426	1,235	158	187	2,870	855	47	212	442	
Michoacán	*	747	1,376	145	146	316	113	157	360	
Viorelos	*	22	356	50	0	28	15	19	7	
Vayarit	0	516	890	0	334	448	0	41	56	
Nuevo León	2,836	742	1,621	1,846	860	0	1,395	124	65	
Oaxaca	5,760	6,543	7,852	1,386	670	1,326	1,043	305	1,30	
Puebla	*	87	590	996	775	43	22	2	5	
Querétaro	*	18	82	37	39	101	369	110	27	
Quintana Roo	0	0	*	0	0	nte	*	*	*	
San Luis Potosí	*	*	116	8	3	0	1,505	0	0	
Sinaloa	1,100	1,225	179	242	1,388	982	1,417	530	221	
Sonora	1,912	914	1,126	374	250	900	2,544	0	0	
Tabasco	7	293	10	0	*	*	80	0	1	
Tamaulipas	136	127	35	89	54	120	67	30	154	
Tlaxcala	825	600	*	5	23	87	0	36	11	
Veracruz	268	318	231	157	124	665	1,003	2,030	689	
Yucatán	8	30	0	0	5	6	0	20	0	
Zacatecas	*	*	640	2,350	0	*	5,000	0	- 7	
-31										
Total	41,678	37,494	26,957	22,749	18,969	10,805	26,703	20,732	7,85	

Tabla 1.4. Superficie afectada (hectáreas) por plagas y enfermedades forestales en cada entidad federativa de la República Mexicana en el periodo 1990-1998 (SEMARNAP, 1999).

^{*} Información no disponible

Been Tools	3631	1003	1000	5001	and the property of the party o	lño	cedi i	Africa - A	
Estado	5/6 7	1993	1994	1995	1996	1997	1998	1999	2000
Aguascalientes		123	345	523	709	695	4,154	3,892	3,057
Baja California		14	176	195	322	344	187	543	646
Baja California Sur		4	48	72	50	75	272	214	256
Campeche		980	2,281	2,084	2,089	2,757	11,625	14,240	13,682
Coahuila		132	237	325	1,115	1,902	4,471	5,000	nt:
Colima		21	240	1,109	1,886	2,118	1,512	2,042	784
Chiapas		254	1,191	3,061	5,490	7,424	7,398	17,118	3,594
Chihuahua		74	482	2,520	2,312	1,426	3,442	4,525	3,416
Distrito Federal		0	437	337	3,988	1,565	6,179	14,093	11,366
Durango		648	1,183	941	1,863	2,588	2,650	5,930	5,506
Guanajuato		43	2,062	1,768	2,458	5,284	6,850	8,710	4,034
Guerrero		737	2,474	2,877	6,383	12,165	12,096	9,248	6,598
Hidalgo		285	1,592	2,034	2,297	5,736	2,159	3,561	2,426
Jalisco		316	5,032	4,942	7,886	11,091	12,824	8,578	10,503
México		734	4,243	6,350	12,376	14,555	21,943	17,545	3,973
Michoacárı		802	887	10,689	13,029	14,629	14,174	17,453	15,996
Morelos		982	1,563	2,034	1,909	5,116	4,294	4,870	5,438
Nayarit		199	478	1,100	1,815	2,231	3,120	903	3,504
Nuevo León		258	1,057	1,280	1,732	1,464	836	412	372
Oaxaca		604	1,489	1,188	5,175	4,407	8913	7,974	4,205
Puebla		575	1,049	1,289	3,420	4,169	10,767	11,413	7,529
Querétaro		65	638	1,123	1,920	1,495	2,127	2,792	2,129
Quintana Roo		728	1,881	1,964	2,597	2,547	11,135	16,826	21,699
San Luis Potosí		112	784	396	514	1,390	1,957	3,622	6,098
Sinaloa		1,063	1,240	1,003	1,363	1,425	2,321	2,785	2,330
Sonora		107	464	447	729	892	2,918	1,753	616
Tabasco		1,572	784	1,252	3,075	2,560	1,538	2,393	819
Tamaulipas		32	731	695	1,177	1,535	5,893	7,080	*
Tlaxcala		203	235	871	1,306	2,047	3,546	3,591	1,793
Veracruz		2,442	4,164	6,135	10,827	14,164	20,600	17,914	16,81
Yucatán		107	2,153	2,723	4,269	6,656	6,190	6,483	3,473
Zacatecas		296	682	722	3,801	3,376	2,531	1,651	3,909
Total		14,513	42,303	64,048	109,880	139,829	200,621	225,154	166,56

Tabla 1.5. Superficie reforestada (Hectáreas) en cada entidad federativa de la República Mexicana én el periodo 1993-2000 (SEMARNAP, 1999; SEMARNAT, 2000, 2001).

^{*} Información no disponible

Concepto general	Concepto específico	Bosques Tropicales	Bosques Templados
Valor de uso directo:			
	Maderables No maderables	347	75
	Ecoturismo/paisaje	112	36
Valor de uso indirecto:			
	Regulación del clima (gas invernadero) Control de perturbaciones naturales	223	88
	(inundaciones, sequías)	5	
	Regulación hidrológica	14	0
	Control de erosión Formación de suelos	245	10
	Reciclamiento de nutrientes		10
	Remoción de exceso de materia orgánica	87	87
	Control biológico		4
alor de opción:			
	Potencial de fármacos	41	
'alor intrínseco:	Científico, cultural, moral y de conservación	Some Zantalan garan	2
	ordinado, dataras, moras y de donociración	2	2
/alor unitario total		2,007	302

Tabla 1.6. Valor (dólares/ha)/año de los servicios ambientales de los bosques (Costanza et al, 1997).

	Superficie analizada	Bosques Tropicales	Bosques Templados	Valor
Concepto	(Millones hectáreas)	28	28	total
/alor de uso directo:	ele i jeggi telli i i je ji i i i git		ا ـ ـ ا خان	N-31
valor de uso difecto;	Maderables	9.7	2.1	11.8
	No maderables			
	Ecoturismo/paisaje	3.1	1.0	4.1
/alor de uso indirecto:				
	Regulación del clima			
	(gas invernadero)	6.2	2.5	8.7
	Control de perturbaciones			
	naturales			
	(inundaciones, sequías)	0.1		0.1
	Regulación hidro ógica	0.4		0.4
	Control de erosión	6.9		6.9
	Formación de suelos	0.3	0.3	0.6
	Reciclamiento de nutrientes	25.8		25.8
	Remoción de exceso			
	de materia orgánica	2.4	2.4	4.8
	Control biológico		0.1	0.1
	Sould Floregies			
Valor de opción:	D 1: 111 // 3	4.4		4 4
	Potencial de fármacos	1.1		1.1
Valor intrinseco:				
Valor intribeco.	Científico, cultural, moral y de conservación			
	Clorishoo, Canada, Moral y do Contol (1900)	0.06	0.06	0.12
Valor total		56.1	8,5	64.6

Tabla 1.7. Estimación del valor (dólares x 109/ha/año) de los servicios ambientales de los bosques de la República Mexicana (CESPEDES, 2002).

1.4. Incendios Forestales

Los incendios arrasan con la madera, el hábitat de mucha fauna silvestre, contaminan el aire, contribuyen al cambio climático global, propician la erosión del suelo, afectan la belleza escénica, y alteran el régimen hidrológico. Cada año se afectan alrededor de 13 millones de hectáreas en los ecosistemas forestales del planeta.

A pesar de sus efectos adversos, los incendios contribuyen a la mineralización de la materia orgánica, participan en diversos ciclos de nutrimentos, y cuando es de baja intensidad el fuego, puede promover el crecimiento de los árboles, gracias a la poda natural que propician, y a la fertilización mediante cenizas

Especialmente en los países en desarrollo, la pobreza obliga al hombre a destruir al bosque para prácticas agrícolas o ganaderas, mermando la vegetación terrestre, esto es, la base de la pirámide alimenticia en los ecosistemas terrestres, con el mal uso del fuego.

Se considera como incendio forestal (SEMARNAT, 2002c), el fuego que afecta a selvas, bosques y vegetación de zonas áridas o semiáridas, por causas naturales o inducidas, con una ocurrencia o propagación no controladas o programadas. Para que se produzca un incendio se requiere de tres elementos: oxigeno, calor y combustible. El primero se encuentra presente en la atmósfera; el calor lo genera la radiación de los rayos solares que desecan la vegetación, así como la flama que inicia el fuego, y el último esta representado por la vegetación forestal disponible para quemarse.

Los incendios forestales pueden originarse de forma natural (rayos, volcanes), accidental (accidentes automovilísticos, ferroviarios, ruptura de líneas eléctricas), intencional (conflictos entre personas o comunidades, tala ilegal, litigios), por negligencia (quemas agropecuarias, fogatas, fumadores, quema de basura), o debido a la época del año (factores meteorológicos).

Los incendios forestales son parte de la dinámica de los bosques, siempre y cuando tengan un origen y causa natural. En México, según las autoridades ambientales, 97% de los incendios no tienen esa causa, por lo que no sólo hay que combatirlos, sino que también es necesario restaurar ecológicamente las áreas afectadas.

Los factores que influyen en la propagación de los incendios forestales son los combustibles (hojas, ramas, pasto, hierbas, etc.), el tiempo atmosférico (temperatura, humedad relativa, dirección y velocidad del viento y la precipitación pluvial), y la topografía (altitud sobre el nivel del mar, orientación en relación con los puntos cardinales y la pendiente del terreno).

Existen tres tipos de incendios (SEMARNAT, 2002c): superficiales o rastreros, de copa o aéreo y subterráneos.

Los incendios superficiales son los que se presentan en el nivel de la superficie del terreno y hasta 1.5 m de altura. El fuego se propaga en forma horizontal sobre la superficie y daña principalmente pastizales y vegetación herbácea, causando daños severos a la regeneración natural o reforestación

inducida. Son los de mayor presencia en México, estimándose su ocurrencia en 93% de los incendios reportados en el ámbito nacional.

Los incendios de copa o aéreo dañan severamente al ecosistema donde se presentan, causando normalmente la muerte de toda la vegetación y daños en diversos grados a los organismos del reino animal; son altamente destructivos, peligrosos y difíciles de controlar. Se inician en forma superficial, transformándose a aéreo debido a la continuidad vertical de los combustibles del suelo hacia las copas de los árboles, se presentan con vientos fuertes y en lugares de pendientes muy pronunciadas. Su ocurrencia en México representa un 5% de los incendios reportados.

En los incendios subterráneos el fuego se inicia en forma superficial, propagándose bajo el suelo mineral debido a la acumulación y compactación de los combustibles, así como por su aglomerado en los afloramientos rocosos en donde se encuentran mantillo, raíces, hojas y otros materiales vegetales. En México su incidencia es sumamente baja, inferior al 2% en todo el territorio nacional y causan alta mortalidad de la vegetación afectada.

En México se tienen dos temporadas de incendios forestales, la primera corresponde a la zona centro, norte, noreste, sur y sureste del país, la cual inicia en enero finalizando en junio y la segunda en el noroeste del país, que se inicia en mayo y termina en septiembre, ambas coinciden con la época de mayor estiaje en la República Mexicana.

En México, durante el periodo de 1970 a 2000 se generaron en promedio 6,616 incendios forestales, con una superficie afectada promedio de 222,481 hectáreas, lo cual genera un promedio de 34 hectáreas por incendio y un 0.17% de la superficie forestal afectada anualmente (Tabla 1.8).

En contraste, la relación superficie afectada por cada evento (ha/incendio) y el porcentaje de superficie forestal afectada anual en otros países son (SEMARNAT, 2002c): 13.7-0.51% (Estados Unidos), 375.3-0.80% (Canadá), 22.3-0.47% (España), 2.2-0.73% (Francia), 10.9-1.66% (Grecia), 13.8-1.74% (Italia), 3.2-3.68% (Portugal) y 11.8-0.42 (Chile).

De la tabla 1.8 se puede establecer que la ocurrencia de los incendios tiende a aumentar anualmente, lo cual se explica en gran medida por el incremento de la población, principalmente en las zonas rurales en donde habitan más de 10 millones de personas, quienes demandan bienes y servicios de las áreas forestales y emplean el fuego como herramienta de trabajo en sus actividades agropecuarias.

Según la SEMARNAP (1999), las actividades agropecuarias son las responsables del 52% de los incendios forestales en el país.

En las tablas 1.9 y 1.10 se presentan el desglose del número de incendios y la superficie afectada para cada una de las entidades federativas del país en el periodo 1991-1998.

1	auso namadelique	Número de incendios	Superficie	Relación (ha/incendia)
	1970	A 75A	afectada (ha) 8 800 94	(ha/incendio)
				20
	1971 1972	4,889	188,862	39
	1973	3,361	139,746	28
	1973	4,601	127,216	31
		5,114	156,799	
	1975	6,757	249,662	37
	1976	6,448	126,660	20
	1977	4,767	74,585	16 080 8101878
	1978	5,387	191,456	36
	1979	5,217	143,847	28
	1980	4,242	110,709	26
	1981	2,740	67,228	- 1 - 25 by 1947 cm
	1982	5,599	137,669	25
	1983	6,087	272,000	45
	1984	6,120	236,032	39
	1985	4,386	152,224	35
	1986	8,482	290,815	34
	1987	9,263	287,347	
	1988	10,942	518,265	47
	1989	9,946	507,471	51
	1990	3,443	80,400	23
	1991	8,621	269,266	31
	1992	2,829	44,401	16 4 8 18 18 18
	1993	10,251	235,020	23
	1994	7,830	141,502	18
	1995	7,860	309,087	39
	1996	9,256	248,765	27
	1997	5,163	107,845	21
	1998	14,445	849,632	59
	1999	7,979	231,061	29
	2000	8,333	218,120	26
	Promedio	6,616	222,481	34

Tabla 1.8. Estadística de los incendios forestales en la República Mexicana en el periodo 1970-2000 (SEMARNAT, 2002c).

					- Allen Assemption			ño		Andrew Control		
	Estado	Market delicement to the Contract Contr	1991		1992		1993	1994	1995	1996	1997	1998
Aguascaliente	es		13		2		6	23	12	22	5	5
Baja Californi	ia		35		75		69	59	63	54	60	233
Baja Californi	a Sur		4		7		5	3	2	4	2	12
Campeche			97		65		57	45	77	3	7	76
Coahuila			37		31		83	56	61	64	6	41
Colirna			19		6		75	93	66	95	59	64
Chiapas			234		121		105	121	150	197	181	405
Chihuahua			320	1.0	222		684	626	692	899	263	921
Distrito Feder	ral		1,397		576		1.617	1,069	1,406	1,484	1,115	1,932
Durango			558		75		510	318	368	319	23	436
Guanajuato			49		6		55	38	35	15	2	61
Guerrero			414		193		390	241	214	254	241	496
Hidaigo			106		5		122	89	136	154	51	420
Jalisco			235		75		473	531	437	354	115	428
México			1,942		450		2,532	2,061	1,875	2,771	1,496	3,649
Michoacán			1,381		353		1,631	944	755	774	611	1,793
Morelos			403		117		511	396	228	145	103	330
Nayarit			124		29		137	91	45	43	56	71
Nuevo León			24		14		38	22	48	67	11	96
Oaxaca			114		71		176	126	147	137	237	419
Puebla			241		106		331	244	204	336	176	544
Querétaro			32		5		68	32	61	97	13	96
Quintana Roo			177		97		63	105	137	111	58	234
San Luis Pote	osí		86		2		43	9	109	181	4	249
Sinaloa			78		62		110	82	76	141	54	129
Sonora			23		14		21	19	29	48	26	26
Tabasco			11		0		0	11	15	0	0	67
Tamaulipas			30		1		11	11	27	70	3	91
Tlaxcala			99		6		108	161	146	209	103	439
Veracruz			212		28		148	135	148	157	53	539
Yucatán			69		5		17	7	16	6	14	41
Zacalecas			57		10		55	62	75	45	15	102
			2.6									
Total			8,621		2.829		10,251	7.830	7,860	9,256	5,163	14,44

Tabla 1.9. Número de incendios forestales en cada entidad federativa de la República Mexicana en el periodo 1991-1998 (SEMARNAP, 1999).

1987 (1987		1001	201 1 1	1001	1992 A	lño	(Falado			
Estado	00	1991	1992	1993	1994	1995	1996	1997	1998	
Aguascalientes		483	19	23	702	213	914	31	167	
Baja California		335	1,113	3,919	3,040	12,846	16,104	9,213	5,494	
Baja California Sur		511	100	19	11	2	93	23	29	
Campeche		2,326	75	517	605	1,713	22	155	5,253	
Coahuila		2,460	1,867	31,508	4,878	14,000	22,822	177	14,60	
Colima		1,942	226	3,232	1,896	4,473	5,554	2,254	1191	
Chiapas		25,413	17,570	14,336	16,673	24,193	18,574	48,114	198;80	
Chihuahua		8,607	3,473	18,498		14,475	44,909	2,930	27,50	
Distrito Federal		4,320	833	3,323	2,556	2,565	3,166	1,530	5,735	
Durango		41,626	3,791	32,907	14,619	31,905	28,346	435	68,96	
Guanajuato		3,534	21	3,781	1,646	1,056	428	62	2,811	
Guerrero		16,621	3,250	15,976	,	5,236	8,268	5,636	19,20	
Hidalgo		1,804	8	994	1,335	2,376	2,175	497	14,55	
Jalisco		12,926	666	21,524	,	17,005	14,583	2,031	18,19	
México		13,814	1,143	16,399		13,811	15,008	4,517	25,84	
Michoacán		13,500	1,675	12,225		6,186	6,188	5,604	25,79	
Morelos		1,485	195	1,169	669	528	452	232	2,360	
Vayarit		12,680	2,656	5,794	7,647	4,683	1,769	2,420	2,284	
Nuevo León		1,057	36	1,639	233	4,815	4,974	459	28,15	
Oaxaca		15,344	1,601	11,552		8,464	8,027	10,629	241,70	
Puebla		4,045	181	4,418	4,138	4,251	3,648	1,213	19;83	
Querétaro		3,758	32	3,186	993	1,924	5,729	66	17,52	
Quintana Roo		24,330	1,199	921	2,368	59,986	2,206	629	6,209	
San Luis Potosí		15,706	19	1,213	206	9,645	8,800	12	27,18	
Sinaloa		2,825	2,003	3,325	1,955	1,574	4,238	916	8,21	
Sonora		9,860	205	6,141	609	5,009	8,017	5,058	1,667	
Tabasco		586	0	0	974	4,431	0	0	13,93	
Tamaulipas		4,624	12	1,268	328	4,639	5,471	51	17,82	
Tlaveala		496	16	443	882	514	756	388	8,83	
Veracruz		4,025	37	857	470	1,841	1,500	129	9,69	
Yucatán		7,226	46	120	102	1,087	76	1,676	5,39	
Zacatecas		10,997	333	13,793		43,641	5,948	758	4,67	
la,				N. C.	1,301	1,021				
Total		269,266	44,401	235,02	0 141,502	2 309,087	248,765	107,845	849,6	

Tabla 1.10. Superficie afectada por los incendios forestales en cada entidad federativa de la República Mexicana en el periodo 1991-1998 (SEMARNAP, 1999).

1.5. Desertificación

La desertificación es un término que se aplica a la degradación de la tierra en zonas áridas, semiáridas y subhúmedas, debida a variaciones climáticas y a las actividades humanas. El término fue acuñado en 1949 por un silvicultor francés que trabajaba en África occidental y lo utilizaba para describir la destrucción gradual de los bosques de las zonas húmedas adyacentes al desierto del Sahara, hasta que éstos desaparecían y el área se hacía más desértica.

El concepto de degradación de la tierra contempla, además de la degradación del suelo (erosión hídrica, erosión eólica, salinización, etc.), los procesos de degradación física (compactación, cementación y encostramiento), degradación biológica (disminución de la materia orgánica del suelo) y degradación química (acidez del suelo). Estos procesos en conjunto, afectan prácticamente a todo el país (Tabla 1.11).

En la tabla 1.12 se presentan los diferentes usos que se le dan a los suelos en cada una de las entidades federativas de la República Mexicana (INEGI, 1992, SARH, 1992,1994). Las cantidades presentadas en esta tabla se han modificado en los últimos años, sobretodo con el incremento de las tierras dedicadas a la agricultura y pastizales, y la disminución de los bosques debido a la tala inmoderada.

La vulnerabilidad de un suelo a la desertificación depende de factores como el clima, la topografía, condiciones de los suelos (textura, estructura e índice de fertilidad) y de la cobertura vegetal, ya sea natural o inducida. Entre los factores antropogénicos se incluyen entre otros, el cultivo en suelos frágiles, la reducción del tiempo de descanso de la tierra, el sobre pastoreo, y el mal manejo del agua de riego y de la maquinaria agrícola.

Los factores que han favorecido el proceso de desertificación en México son debido a la tala de selva y bosque, la degradación de la tierra debido a la erosión y la presión social que demanda cada vez más mayores tierras de cultivo.

El llamado sobrepastoreo es el resultado de mantener demasiado ganado en una superficie dedicada a pastos, y tiene como resultado la pérdida de especies comestibles y el consiguiente crecimiento de especies no comestibles. Si la excesiva presión de pastoreo continúa, la pérdida de la cubierta vegetal puede llevar a la erosión del suelo.

Respecto a la degradación física por compactación y encostramiento, el 30% de los suelos del país presentan problemas de este tipo debido a la excesiva utilización de maquinaria agrícola y pisoteo del ganado. De acuerdo con la Comisión Nacional de Zonas Áridas, en 1985 en el 85% de las zonas áridas de 10 estados del país había sobre pastoreo y, derivado de esta actividad, en casi la mitad de la superficie total se presentaba invasión de plantas arbustivas indeseables, en donde sólo el 27% de las comunidades vegetales dedicadas a la ganadería se encontraba en buenas condiciones.

En 1999, la SEMARNAP estimó en 1.8% la superficie del país afectada por degradación física, cantidad que se debe a inundaciones (0.6%), acidificación (0.6%) y otras (0.6%).

Por otra parte, se estima que el 15% de los suelos del país está afectado por procesos de acidificación, por lo que éstos se vuelven más ácidos y en ocasiones presentan problemas de toxicidad

(principalmente por la presencia de aluminio). Entre los factores que determinan este proceso de degradación están el clima y la pérdida de cubierta vegetal.

Existen también problemas de contaminación de los suelos aún no cuantificados con precisión, entre ellos se incluyen a los derivados por el uso de agroquímicos (fertilizantes y pesticidas), así como a los provocados por derrames y fugas de combustibles, lo mismo que los ligados a las actividades mineras.

Otros mecanismos, frecuentemente aludidos, por los que la mala gestión del hombre produce desertificación incluyen: la sobreexplotación, en la que el suelo se agota por la pérdida de nutrientes y la erosión; la tala excesiva de vegetación, a menudo para leña; el uso de técnicas agrícolas rudimentarias y prácticas de cultivo poco apropiadas, y la mala gestión de los programas de irrigación, que conduce a la salinización del suelo.

La salinización es uno de los ejemplos más claros de desertificación inducida por el hombre, y afecta a casi una quinta parte de todas las tierras de riego de Australia y Estados Unidos y a un tercio de las de países como Egipto, Pakistán y Siria. En Irak, la proporción es de un 50%. La excesiva concentración de sales en los suelos irrigados afecta diversamente el rendimiento de las cosechas y puede llegar a matar las plantas.

En México no existe una evaluación precisa de las superficies de los suelos con problemas de salinidad, sobre todo en áreas no agrícolas, sin embargo, SEMARNAP (1999) reporta que el 3.2% de los suelos del país se encuentran bajo este problema (Tabla 1.13), lo cual equivale a 6.2 millones de hectáreas, distribuidas en 3.5 millones en zonas áridas y semiáridas, 1 millón en otras zonas no agrícolas, 200,000 en áreas costeras, 1 millón en áreas agrícolas de temporal y 500,000 en zonas agrícolas de riego.

La sobreexplotación de los suelos se produce por el acortamiento de los periodos que las tierras quedan en barbecho, es decir, libres de todo cultivo o por el uso de técnicas mecánicas que producen una pérdida generalizada de suelo. Un caso clásico de sobreexplotación, que condujo a una erosión eólica a gran escala, tuvo lugar en las grandes llanuras de Estados Unidos, en la década de 1930. Allí se araron praderas semiáridas para el cultivo de cereales por medio de técnicas de roturación profunda, desarrolladas en las latitudes más templadas de Europa occidental. Cuando las grandes llanuras se vieron afectadas por la sequía en 1931, la erosión eólica produjo tormentas de polvo a una escala sin precedentes. Por los mismos mecanismos se produjo una catástrofe ecológica similar tras la aplicación del Programa de Tierras Vírgenes, en la década de 1950 en la antigua Unión Soviética.

Se estima que el 37% de los suelos en la República Mexicana están afectados por la erosión hídrica, porcentaje que se descompone en 25% que impacta sólo a la capa superficial del suelo y 12% que produce deformación del terreno (Tablas 1.13 y 1.14). Con respecto a la erosión eólica, se estima que el 15% de los suelos del país se ven afectados por este mecanismo, porcentaje que corresponde casi en su totalidad a la pérdida de capa superficial (Tablas 1.13 y 1.15).

Una de las principales manifestaciones de la degradación de la tierra es la baja fertilidad de la misma, lo que trae como consecuencia el empobrecimiento de la tierra, debido a que se presentan condiciones de un suelo compacto y duro con poco desarrollo de las raíces y disminución de la materia.

orgánica. Se estima que el inadecuado uso de la tierra ha ocasionado una disminución de la fertilidad de los suelos en el 80% del territorio nacional. En la tabla 1.16 se presentan los índices de fertilidad para cada una de las entidades federativas de la República Mexicana.

	607	29,395	Nivel de desertificación							
Estad	lo	8,0,0	Ligero	Moderado	Severo	Muy severo	Total			
Aguascalientes			0 10 20	264	2,109	2,900	5,272			
Baja California			8,581	50,054	7,151	5,720	71,505			
Baja California Sur			0	62,856	7,395	3,697	73,948			
Campeche			0	11,407	5,703	39,923	57,033			
Coahuila			3,012	57,234	75,308	15,062	150,615			
Colima			0	0	1,367	4,100	5,466			
Chiapas			3,681	0	36,814	33,133	73,628			
Chihuahua			24,596	98,385	61,491	61,491	245,962			
Distrito Federal			0	217	758	108	1,083			
Durango			0	36,838	49,117	36,838	122,792			
Guanajuato			0	7,758	9,310	13,964	31,032			
Guerrero			0	40,170	19,437	5,183	64,791			
Hidalgo			0	7,232	8,266	5,166	20,664			
Jalisco			0	3,954	15,817	59,314	79,085			
México			0	6,854	7,068	7,497	21,419			
Michoacán			0	5,859	11,717	41,010	58,585			
More os			0	0	4,713	248	4,961			
Vayarit			0	2,710	12,196	12,196	27,103			
Nuevo León			1,942	12,948	45,319	4,532	64,742			
Oaxaca			4,657	23,287	27,944	37,259	93,147			
Puebla			0	8,539	20,493	5,123	34,155			
Querétaro	9.31		1,211	6,057	4,846	0	12,114			
Quintana Roo			5,880	1,960	7,840	23,521	39,201			
San Luis Potosí			0	25,511	28,700	9,567	63,778			
Sinaloa			0	5,836	35,015	17,508	58,359			
Sonora			12,642	23,479	54,182	90,303	180,605			
Tabasco			0	0	3,692	20,920	24,612			
Tamaulipas			797	7,969	62,952	7,969	79,686			
Tlaxcala			0	1,216	2,715	122	4,052			
Veracruz			0	2,160	30,242	39,603	72,005			
Yucatán			0 181 5 6	6,537	23,967	13,073	43,577			
Zacatecas			0	24,610	24,610	24,610	73,829			
.787.54										
Total nacional			67,001	541,897	708,252	641,656	1,958,806			

Tabla 1.11. Superficie afectada por desertificación (km²) en cada entidad federativa de la República Mexicana estimada en 1987 (Ortiz, et al, 1994; Estrada, 1987; INEGI, 1999).

Estado	Plantaciones forestales	Agricultura y	Desiertos y áreas sin vegetación	Áreas perturbadas	Embalses de	Zonas	ine es su so
Aguascalientes	O	Pastizales 341,455	aparente 0	43,190	agua 782	urbanas 7,820	Total 539,619
Baja California	0	973,410				,	
	0	,		828,992	29,305	14,000	7,364,847
Baja California Sur Campeche	0	586,262 266,409	366,300	795,663		3,737	7,063,930
Campeche Coahuila	0	1,695,274	23,708	1,196,728	107,413	1,616	5,060,929
	- 0		104,050	745,794	47,654	11,125	15,326,357
Colima		170,873	0	66,048	9,674	4,546	500,752
Chiapas	0	1,873,500	0	1,801,522	120,214	5,931	7,147,749
Chihuahua	8,759	7,135,278	461,300	768,527	114,672	12,432	25,251,513
Distrito Federal	3,201	22,869	0	12,779	245	68,530	157,460
Durango	0	3,263,068	0	872,094	23,237	9,325	12,424,531
Guanajuato	1,638	2,090,638	0	127,579	29,115	32,465	3,191,672
Guerrero	0	936,284	0	1,719,541	76,211	8,627	6,302,238
Hidalgo	0	1,024,913	0	291,890	6,935	5,728	2,110,573
Jalisco	1,633	2,964,813	684	1,285,093	128,845	36,521	7,969,483
México	9,911	1,252,545	8,607	225,974	10,659	29,926	2,196,350
Michoacán	11,655	1,419,138	2,582	1,355,878	114,705	23,245	5,766,121
Morelos	0	300,072	0	109,317	515	8,099	506,491
Nayarit	10,293	672,584	1,881	678,385	22,425	8,626	2,699,462
Nuevo León	0	1,336,289	0	128,820	5,978	13,465	6,552,078
Oaxaca	5,626	1,582,569	0	1,924,442	276,124	12,607	8,930,953
Puebla	96	1,760,862	0	627,722	9,455	22,420	3,491,459
Querétaro	0	434,623	0	111,550	1,780	4,100	1,178,324
Quintana Roo	0	186,040	0.450.63	888,219	32,639	570	4,951,574
San Luis Potosi	0	1,713,471	0 Ec.	342,470	14,322	8,674	6,438,964
Sinaloa	0	1,482,333	13,822	654,987	268,601	16,741	5,503,534
Sonora	10,439	2,444,599	1,078,820	924,946	57,399	10,235	18, 172, 999
Tabasco	0	1,206,097	0	410,001	126,718	9,304	2,551,565
Tamaulipas	0	2,401,309	0	398,239	323,213	18,825	7,964,572
Tlaxcala	0	326,719	0	28,578	2,047	5,932	420,074
Veracruz	0	4,321,670	1.077	975,752	248,623	31,519	7,556,019
Yucatán	0	868,100	16,875	1,567,075	37,544	9,167	3,912,487
Zacatecas	0	3,039,284	0	327,679	9,102	7,621	7,513,614
200000	9	0,000,201	9	02.,010	0,.02	., 5= 1	5461063
Total	63,251	50,093,350	2,151,106	22,235,474	2,265,189	463,479	196,718,293

Tabla 1.12. Principales usos del suelo (hectáreas) por entidad federativa de la República Mexicana (INEGI, 1992, SARH, 1992, 1994).

		nòisons ab fevilh		Superficie afectada	% a la supe	erficie
Origen	ang kera	Concepto	Moderado	(km2)	total del	oaís
Por Desplazamiento:		50 × Pe* < 260	08 × 184 × 61	The state of the s		
Erosión Hidrica					bested	
		Pérdida de la capa superficial		495,668.9	25.3	
		Deformación del terreno		227,760.4	11.6	
		Sedimentaciones		1,222.2	0.1	
			Subtotal	724,651.4	37.0	
Erosión eólica						
Elosion eolica		Dárdida da la cons superficial		205 056 2	11.0	
		Pérdida de la capa superficial Deformación del terreno		285,856.3	14.6 0.3	
		Deformación del ferreno	Cubtatai	5,855.2		
			Subtotal	291,711.4	14.9	
Delerioro interno:						
Degradación química		Pérdida de nutrimentos		31,171.9	1.6	
		Gleyzación		12,989.3	0.7	
		Salinidad		62,421.2	3.2	
		Contaminación		25,967.2	1.3	
144		Contaminación	Subtotal	132,549.5	6.8	
Degradación física			Suplulai	102,043.0	0.0	
Degradación nsica		Urbanización		7,469.2	0.4	
LA I		Acidificación		10,789.7	0.4	
94	10.00	Compactación		5,473.2	0.0	
		Inundaciones		11,145.6	0.6	
		Indiadololio3	Subtotal	34,877.6	1.9	
			Odbiotal	54,077.0	1.0	
Degradación biológica			130 C			
Degradación biológica		Actividades microbiológicas		70,817.5	3.6	
		Monthadaes initionologicas	Subtotal	70,817.5	3.6	
14.1			Oublotal	70,017.0	3.0	
			Total	1,254,607.5	64.0	
1000			7 0 101	1,001,00110	3110	NOW

Tabla 1.13. Superficie del suelo degradado por tipo hasta el año 1999 en la República Mexicana (INE, 2000).

atoftisaaaa w m af	nest tedar o Process	Nive	el de erosión			
Estado	Ligero Ps* < 10 (ton/ha/año)	Moderado 10 < Ps* < 50 (ton/ha/año)	Severo 50 < Ps* < 200 (ton/ha/año)	Muy severo Ps* > 200 (ton/ha/año)	Erosión Total (ton/ha/año	
Aguascalientes	0	1,044	2,952	1,276	5,272	
Baja California	13,157	51,984	6,221	143	71,505	
Baja California Sur	2,440	60,120	9,761	1,627	73,948	
Campeche	57,033	0	0	0	57,033	
Coahuila	12,802	38,859	88,411	10,543	150,615	
Colima	2,897	727	1,842	0	5,466	
Chiapas	42,851	22,015	6,185	2.577	73,628	
Chihuahua	63,212	130,606	39,108	13,036	245,962	
Distrito Federal	325	54	379	11	769	
Durango	29,716	51,573	25,786	15,717	122,792	
Guanajuato	2,389	7,261	8,006	13,375	31,032	
Guerrero	34,598	23,714	3,693	2,786	64,791	
Hidalgo	6,117	7,625	4,670	2,232	20,643	
Jalisco	21,669	20,799	15,738	19,771	77,978	
México	4,241	9,039	2,720	5,419	21,419	
Michoacán	16,990	11,248	9,432	20,856	58,526	
Morelos	2,813	571	1,578	0	4,961	
Nayarit	15,720	8,944	1,626	813	27,103	
Nuevo León	11,848	22,012	27,839	3,043	64,742	
Oaxaca	50,113	25,895	3,912	12,482	92,402	
Puebla	14,004	10,247	6,489	3,416	34,155	
Querétaro	5,694	2,786	3,513	121	12,114	
Quintana Roo	39,201	0	0	0	39,201	
San Luis Potosi	11,480	22,960	21,047	8,291	63,778	
Sinaloa	31,514	9,921	14,590	2,334	58,359	
Sonora	43,345	72,242	48,763	16,254	180,605	
Tabasco	21,659	984	1,969	0	24,612	
Tamaulipas	52,593	14,343	8,765	3,984	79,686	
Tlaxcala	1,297	446	2,310	0	4,052	
Veracruz	43,203	21,602	6,480	720	72,005	
Yucatán	43,577	0		ene i o battea		
Zacatecas	12,551	25,840	26,578	8,859	73,829	
Total Nacional	711,048	675,460	400,365	169,687	1,956,560	

Tabla 1.14. Superficie afectada por erosión hídrica (km²) en cada entidad federativa de la República Mexicana estimada para 1987 (Estrada, 1987; INEGI, 1999).

^{*} representa la velocidad de pérdida de suelo

	her 11		The state of the s	e erosión		
Estado	(p)(0)(p)	Ligero Ps* < 10 (ton/ha/año)	Moderado 10 < Ps* < 50 (ton/ha/año)	Severo 50 < Ps* < 200 (ton/ha/año)	Muy severo Ps* > 200 (ton/ha/año)	Erosión Total (ton/ha/año
Aguascalientes		0	1,640	3,105	527	5,272
Baja California		3,289	4,362	57,061	5,792	70,504
Baja California Sur		0	29,062	40,819	1,035	70,916
Campeche		8,042	13,460	9,182	23,326	54,010
Coahuila		0,042	30,725	107,388	12,501	150,615
Colima		0	4,296	1,170	0	5,466
Chiapas		24,076	45,134	810	884	70,904
Chihuahua						1
		2,706	75,510 457	78,708	89,038	245,962
Distrito Federal		0 491		513	113	1,083
Durango			53,292	46,538	22,471	122,792
Guanajuato		3,010	15,516	11,854	652	31,032
Guerrero		15,809	32,007	15,291	1,685	64,791
Hidalgo		579	1,632	16,469	1,984	20,664
Jalisco		791	31,555	36,300	10,439	79,085
México		0	8,610	10,945	1,863	21,419
Michoacán		1,230	24,489	29,058	3,808	58,585
Morelos		0	491	3,463	1,007	4,961
Nayarit		1,626	14,066	5,150	. 4,282	25,124
Nuevo León		0	7,186	52,894	4,661	64,742
Oaxaca		9,128	41,171	19,933	22,914	93,147
Puebla		10,417	7,856	9,119	6,763	34,155
Querétaro		727	1,175	7,717	2,495	12,114
Quintana Roc		2,666	17,915	9,526	9,095	39,201
San Luis Potosi		0	4,337	52,107	7,334	63,778
Sinaloa		1,226	37,233	14,823	4,143	57,425
Sonora		1,264	54,723	60,503	63,031	179,521
Tabasco		9,943	12,478	1,477	0	23,898
Tamaulipas		877	21,356	52,672	1,912	76,817
Tlaxcala		0	709	2,695	648	4,052
Veracruz		4,104	34,130	22,538	10,657	71,429
Yucatán		1,612	10,153	20,743	10,284	42,793
Zacatecas		0	11,813	43,559	18,457	73,829
Total Nacional		103,613	648,540	844,130	343,804	1,940,087

Tabla 1.15. Superficie afectada por erosión eólica (km²) en cada entidad federativa de la República Mexicana estimada en 1993 (Ortiz y Estrada, 1993; INEGI, 1999).

^{*} representa la velocidad de pérdida de suelo

Estado	Muy savero Par > 200	Materia orgánica (%)	Conductividad eléctrica (Homs/cm)	Potencial Hidrógeno pH	Índice de fertilidad (meq/100g)	Clase de fertilidad
Aguascalientes		1.3	0.34	7.3	9.37	Baja
Baja California		1.6	2.08	7.2	13.70	Media
Baja California Sur		0.5	0.85	7.5	11.30	Media
Campeche		4.0	0.71	7.3	15.97	Alta
Coahuila		1.4	1.20	8.1	13.15	Media
Colima		1.7	0.35	6.8	13.09	Media
Chiapas		2.8	0.58	6.6	11.58	Media
Chihuahua		1.6	0.41	7.3	8.35	Baja
Distrito Federal		3.3	1.37	7.3	11.74	Media
Durango		1.3	0.51	7.3	10.90	Media
Guanajuato		1.5	0.97	7.4	17.35	Alta
Guerrero		1.6	0.47	6.9	13.34	Media
Hidalgo		3.6	0.53	7.2	15.13	Alta
Jalisco		1.8	0.40	6.7	12.73	Media
México		2.4	1.44	7.0	11.69	Media
Michoacán		2.7	0.39	6.9	17.95	Alta
Morelos		2.6	0.45	7.0	16.75	Alta
Nayarit		2.2	0.74	8.2	10.28	Media
Nuevo León		2.3	0.90	7.9	15.08	Alta
Oaxaca		2.0	0.36	7.0	11.27	Media
Puebla		2.6	0.39	6.9	9.68	Baja
Querétaro		1.6	0.25	7.2	17.60	Alta
Quintana Roo		5.2	1.84	7.1	12.96	Media
San Luis Potosí		2.7	0.83	7.3	17.92	Alta
Sinaloa		1.0	1.00	7.9	25.39	Muy alta
Sonora		0.8	1.20	8.0	19.04	Alta
Tabasco		3.1	0.29	6.4	8.73	Baja
Tamaulipas		2.0	0.74	7.0	13.90	Media
Tlaxcala		1.0	0.23	6.6	3.62	Muy baja
Veracruz		3.7	0.33	6.3	12.68	Media
Yucatán		9.4	1.50	7.7	16.31	Alta
Zacatecas		1.5	0.47	7.3	12.00	Media
Promedio Nacional		2.4	0.75	7.1	13.47	Media

Tabla 1.16. Fertilidad de los suelos agrícolas en cada entidad federativa de la República Mexicana para el año de 1996 (INEGI, 1998).

Las cifras del Programa de las Naciones Unidas para el Medio Ambiente precisan que los costos de la desertificación en América Latina ascienden a mil millones de dólares anuales, a lo cual se suman otros 4,800 millones de dólares anuales por los efectos de las sequías.

1.6. Fenómenos atmosféricos

A finales del siglo 19 Hildebrandsson (1897) notó que las fluctuaciones en la presión atmosférica en Sydney, Australia estaban fuera de fase con las de Buenos Aires, Argentina. Pocos años después Lockyer y Lockyer (1902a) confirmaron esto, y estimaron que esta oscilación tenía un periodo de aproximadamente 3.8 años. Sus análisis con datos adicionales de 95 estaciones alrededor del mundo revelaron que la oscilación fue casi global en extensión (Lockyer y Lockyer, 1902b, 1904). El mapa de las fluctuaciones de presión que aparece en su artículo de 1904 es, en general, muy similar a aquel de la figura 1.1, el cual muestra que la oscilación tiene dos centros de acción, sobre el oeste del Pacífico tropical y el este Indico y el otro sobre el sureste del Pacífico tropical. Esto es evidente en la figura 1.2, la cual también muestra que las fluctuaciones interanuales son muy irregulares en el tiempo.

Sir Gilbert Walker en 1923 nombró a estas fluctuaciones como la Oscilación del Sur (ENSO). En colaboración con Bliss y otros expertos estableció que la Oscilación del Sur involucra algo más que un balance en la diferencia de presiones en la superficie a través del océano Pacífico. Esto es, que el feriómeno se asocia con cambios en los patrones de lluvia y viento del trópico indio y el océano Pacífico, correlacionándose con fluctuaciones meteorológicas en otras partes del globo terráqueo. La importante relación entre el ENSO y las variaciones de temperatura en el Pacífico Tropical no fue descubierta hasta los años sesenta en estudios de Ichiye y Petersen (1963), Berlage (1966) y Doberitz (1968). La correlación entre los diferentes parámetros establece que las altas presiones superficiales sobre el oeste y la baja presión sobre el sureste del Pacífico tropical coinciden con fuertes lluvias, inusual calentamiento de la superficie del agua y el movimiento relajado de los vientos en el centro y este del Pacífico tropical. Esta fase del ENSO es conocida como El Niño. Aunque algunas descripciones dan la impresión de que El Niño es una clase especial de alguna condición "normal" del Pacífico Tropical, lo cual es inexacto.

Las condiciones de normalidad se pueden definir estadísticamente, pero es claro de la tigura 1.2 que el océano Pacífico no se encuentra con frecuencia en este estado, por el contrario, está en una fase del ENSO, conocida como El Niño, o en su fase complementaria llamada La Niña.

Durante La Niña, la presión superficial es alta sobre el este pero baja sobre el oeste de Pacífico tropical, mientras que los movimientos son intensos y la temperatura en la superficie del mar y la lluvia son bajas en el centro y este del Pacífico tropical.

El término El Niño y La Niña cubren un amplio rango de condiciones. Por ejemplo, en la figura 1.2, la amplitud de los diferentes episodios de El Niño varía enormemente. Esto provocó que Quinn *et al.* (1978) introdujeran cuatro categorías de El Niño (fuerte, moderado, débil y muy débil), sin embargo, aún existen importantes diferencias dentro de cada una de estas regiones.

También existen periodos relativamente breves donde no se pueden describir adecuadamente con estos términos las condiciones del Pacífico tropical. Por ejemplo, las fluctuaciones de presión en la isla de Darwin y Tahití en algunas ocasiones no se correlacionan, ya que el incremento en la presión superficial en Darwin y el decremento simultáneo en Tahití no coinciden con el calentamiento de la superficie del mar en Perú, y las altas precipitaciones en el centro de Pacífico ecuatorial no tienen nada que ver con la ocurrencia de El Niño. Este problema es una consecuencia de la imperfecta correlación entre los diferentes parámetros del Pacífico tropical. Lo anterior produce que la definición del ENSO en términos de

diferencia de presiones entre Darwin y Tahití, por ejemplo, pueda ser diferente de las definiciones en términos de la temperatura de la superficie del mar o la lluvia. Por esto, es mejor evitar conceptos estrictos y aceptar que los términos ENSO, El Niño y La Niña son generales y cualitativos.

El ENSO es un término complejo debido al número tan grande de correlaciones entre sus parámetros, en las diferentes regiones del globo terráqueo. El principal resultado de estas correlaciones es el movimiento atmosférico a gran escala en los trópicos, si la escala de tiempo es de semanas corresponde directamente a la circulación térmica. En esta circulación la humedad del aire converge sobre las regiones calientes de la superficie terrestre donde el aire asciende y se condensa, causando la extensión de nubes e importantes precipitaciones. Por otro lado, el hundimiento del aire seco en la parte superior de la troposfera forma una tapa sobre la capa límite, formando pequeños cúmulos de nubes que crecen de tamaño hasta que producen una lluvia importante. Los monzones traen lluvias intensas hasta el subcontinente Indio durante el verano cuando esta región es más caliente que en los alrededores del océano, siendo un ejemplo de la circulación termal directa. Otro ejemplo incluye la Circulación Meridional de Hadley, en la cual el aire crece cerca del ecuador y se hunde en altas latitudes. O la circulación zonal Walker, en la cual el aire sube sobre el oeste, caliente del Pacífico tropical y se hunde sobre el frío del este del Pacífico tropical. La Oscilación del Sur es una perturbación de estas circulaciones termales directas, y es asociada con fluctuaciones en la intensidad y posición de las regiones de aumento de humedad de aire

La escala de tiempo de la Oscilación del Sur es del orden de tres años pero la oscilación es irregular dependiendo las variables meteorológicas en los trópicos, así, se tiene un amplio pico con un rango que varía de entre dos a diez años.

Los movimientos interanuales de las zonas convectivas atmosféricas en los trópicos son influenciados por las variaciones de temperatura de la superficie del mar. Las zonas convectivas en los océanos, ocurren sobre la superficie del agua con temperaturas de hasta 27.5° C. El Niño se contrae regresando hacia el oeste durante La Niña.

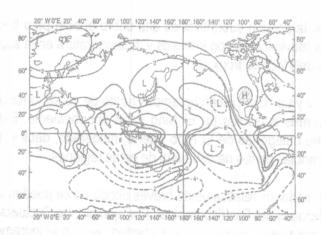


Figura 1.1. Correlaciones (X10) del valor medio anual de la presión del nivel del mar con la presión en Darwin. (Tomada de Philander, 1990)

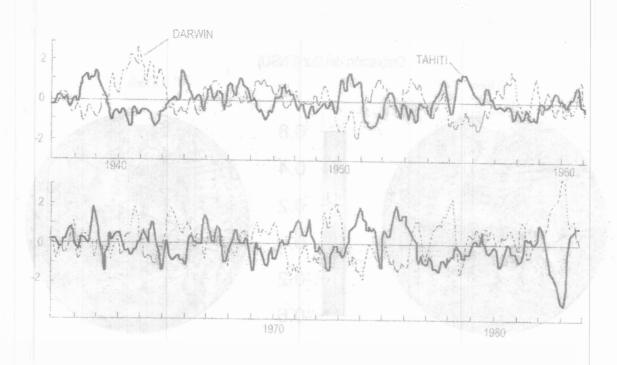


Figura 1.2. Fluctuaciones de la presión del nivel de mar entre 1937 y 1984 en Tahití (línea sólida) y Darwin (línea punteada) en unidades de desviación estándar para las respectivas estaciones. (Tomada de Philander, 1990)

1.6.1. El Niño

El Niño es el fenómeno más fuerte de variabilidad natural en sistema climático de la tierra. Aunque el fenómeno ENSO se origina en las latitudes del océano Pacífico, sus impactos climáticos se sienten globalmente. Las variaciones en los sistemas lluviosos varían de las sequías en Indonesia y Australia a tormentas e inundaciones en Ecuador y en América del Norte.

El término "El Niño" fue utilizado originalmente por los pescadores peruanos para describir el calentamiento anómalo del agua oceánica de las costas occidentales sudamericanas, que es acompañado de fuertes lluvias en las regiones costeras de Perú y Chile, particularmente en la temporada de Navidad. El término es ahora empleado para referirse al calentamiento de gran escala del Pacífico tropical que toma lugar cada cuatro años en promedio y alterna con una fase fría llamada "La Niña" (Figura 1.3).

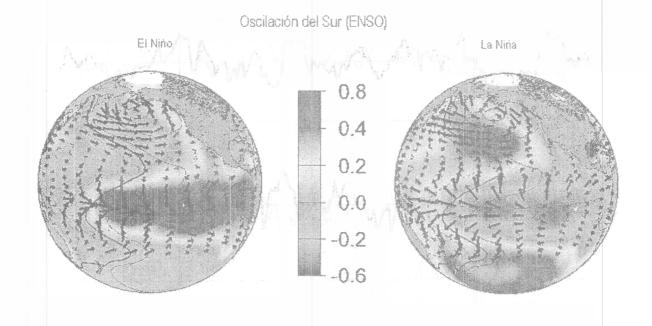
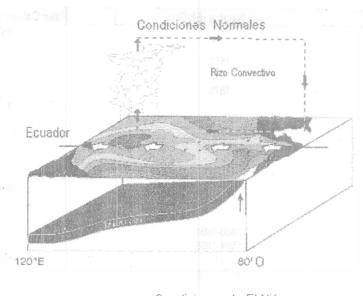


Figura 1.3. Anomalías de la variación del patrón de temperatura de la superficie del mar (SST) y los vientos durante las fases caliente y fría del ENSO.


Los años en que se han presentado las fases fría (La Niña), neutra y caliente (El Niño) del fenómeno ENSO se muestran en la tabla 1.17.

En la figura 1.4 se presentan las características que imperan en el océano Pacífico en condiciones normales y ante la presencia de El Niño. En condiciones normales los vientos soplan hacia el oeste cruzando el Pacífico tropical. Estos vientos incrementan el nivel de la superficie del mar, tal que la superficie es 0.50 m más alta en Indonesia que en el Ecuador. La temperatura de la superficie del mar es casi 8° C más alta en el oeste, con temperaturas frías en Sudamérica. Esta agua fría es rica en nutrientes, apoyando altos niveles de productividad primana, diversos ecosistemas marinos y a los grupos de pescadores

Durante el fenómeno de El Niño los vientos se relajan en las zonas central y oeste del Pacífico, deprimiendo la línea térmica en el Pacífico este y una elevación de la línea térmica en el oeste. Esto trae como consecuencia un incremento en la temperatura de la superficie del mar y una drástica disminución en la productividad primaria y en la cadena alimenticia, provocando serios problemas a los grupos regionales de pescadores.

Fase Fría (La Niña)	Fase Neutra (ENSO)	Fase Caliente (El Niño)
1226	300	1868
1869	1070	
4074 4075	1870	
1871-1875	1076	
	1876	1877
	1878-1879	1077
	1010 1010	1880
	1881-1885	1000
1886		
	1887	
		1888
1889	4000 4004	
1892-1893	1890-1891	
1692-1693	1894-1895	1896
	1897-1898	1090
1899	1407-1600	
	a language	1900-1901
	1901	
		1902-1903
1903-1904		4005 4000
4000 4007	4000 4040	1905-1906
1906-1907 1908-1909	1908-1910	1911-1912 1914-1915
1916-1917	·	1918-1919
1920-1921		1923-1924
1924-1925		1925-1926
1928-1929		1930-1931
1931-1932		1932-1933
1938-1939		1939-1940
1942-1943		1940-1941
1949-1950		1941-1942 1946-1947
1954-1955		1946-1947
1964-1965 1970-1971		1953-1954
1973-1974		1957-1958
1975-1976		1963-1964
1988-1989		1965-1966
1995-1996		1969-1970
1998-1999		1972-1973
1999-2000		1976-1977
		1977-1978
		4000 4007
	= town therefore	
		1992-1993
		1002 1000
		1007 1000
		2002-2003
lucations du bailblud pe		

Tabla 17. Años con fenómeno El Niño, ENSO y La Niña.

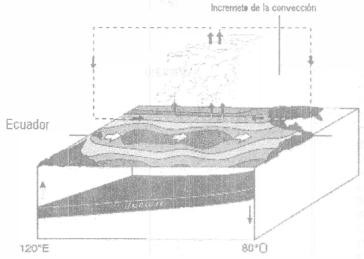


Figura 1.4. Características en el Océano Pacífico en condiciones normales y en El Niño.

El Niño trae un aumento de precipitación hacia el este del África ecuatorial pero disminución de la precipitación hacia el sureste de África. Esta tendencia, durante el verano del hemisferio sur sugiere que la zona convectiva sobre el suroeste del Océano Indico y tierras adyacentes es desplazada hacia el ecuador durante El Niño. En la India se pueden tener sequias en ausencia de El Niño y pueden existir estaciones húmedas aún cuando ocurre El niño. La variación de la temperatura de la superficie del mar en el Océano Indico esta poco correlacionada con la precipitación sobre la India. Durante los monzones excepcionalmente húmedos, la superficie del agua es ligeramente más caliente de lo normal en el mar de Arabia. Estos resultados sugieren que durante el verano del hemisferio, norte, la variación de la temperatura de la superficie del mar en el Océano Indico puede ser consecuencia de la variación en la intensidad de los monzones.

Para el estudio de El Niño se han establecido cuatro áreas básicas en el Pacífico oriental, las cuales se pueden apreciar en la figura 1.5, siendo la región del niño-3 (5° N-5° S 90° W-150° W) la de mayor extensión.

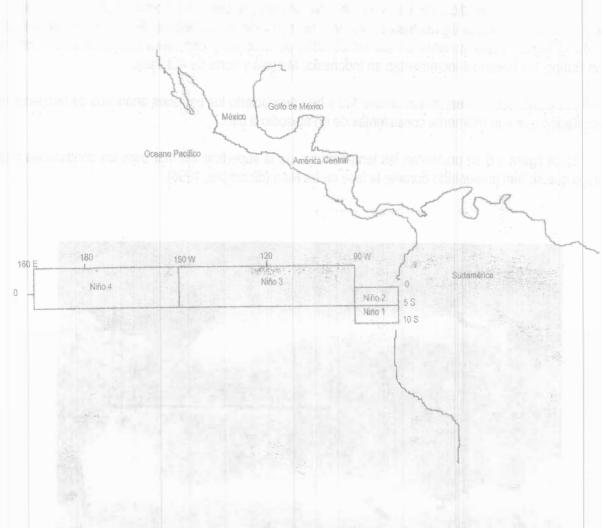


Figura 1.5. Regionalización del fenómeno El Niño

1.6.2. La Niña

En ocasiones las temperaturas de la superficie del mar en el Pacífico ecuatorial son más frías que lo normal. Estos episodios fríos son referidos como La Niña, y son caracterizados por presiones más bajas que la normal en Indonesia y norte de Australia y más altas que la normal en el Pacífico tropical.

Durante los episodios de La Niña se interrumpen los patrones normales de precipitación y circulación atmosférica. Las aguas frias provocan una reducción en la creación de nubes productoras de lluvia en la región, especialmente en las temporadas de invierno y primavera del hemisferio norte. Al mismo tiempo, las lluvias se incrementan en Indonesia, Malasia y norte de Australia.

Los científicos han estudiado la fase fría y han descubierto los patrones anómalos de temperatura y precipitación que son altamente consistentes de un episodio a otro.

En la figura 1.6 se presentan las temperaturas de la superficie del mar para las condiciones más adversas que se han presentado durante la fase de La Niña (diciembre, 1998).

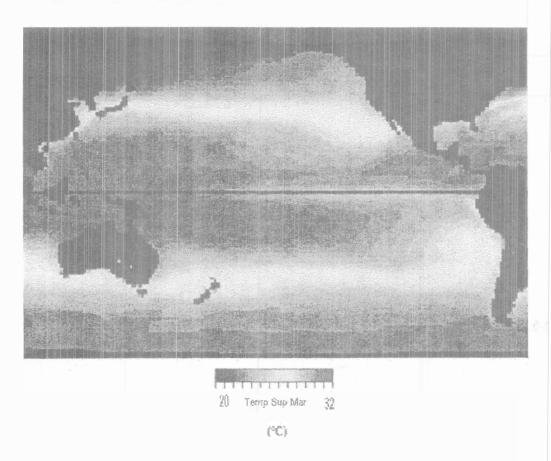


Figura 1.6. Condiciones de La Niña en diciembre de 1998.

1.6.3. La Oscilación Decadal del Pacífico (PDO).

La Oscilación Decadal del Pacífico es un patrón de variabilidad climática del Pacífico similar a El Niño. Mientras que los dos fenómenos tienen características similares en cuanto a las condiciones espaciales del clima, ellos tienen diferente comportamiento en el tiempo.

El científico Steven Hare estableció en 1996 el nombre de Oscilación Decadal del Pacífico (PDO) mientras investigaba la relación entre los ciclos de producción del salmón en Alaska y las condiciones del clima en el Pacífico

Dos características distinguen al fenómeno PDO del ENSO/El Niño, primero, los eventos del PDO persistieron de 20 a 30 años durante el siglo XX, mientras que los típicos eventos ENSO lo hicieron de 6 a 18 meses; segundo, las huellas climáticas del fenómeno PDO son más visibles en los sectores de Pacífico Norte y Norte América y existen secuelas en los trópicos. Lo opuesto es verdad para el fenómeno ENSO.

En la figura 1.7 se muestran las condiciones del PDO y ENSO, en tanto en la figura 1.8 se presentan las variaciones de índice mensual del periodo 1900-2000.

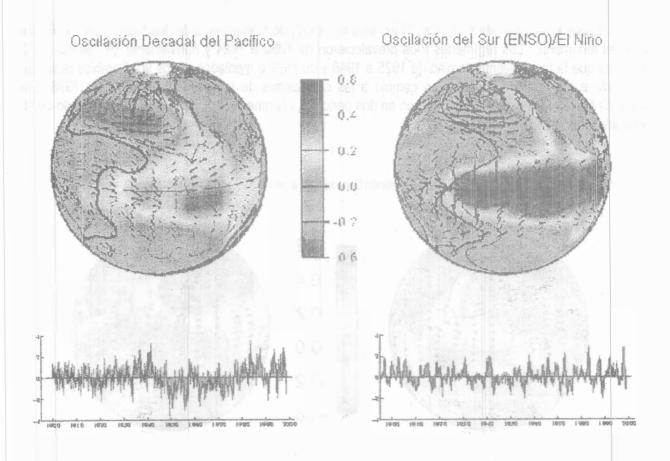


Figura 1.7. Comparación entre la fase PDO y ENSO.

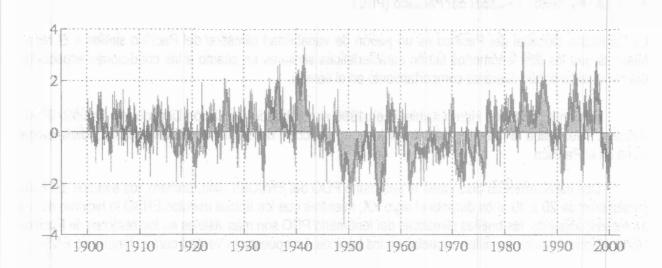
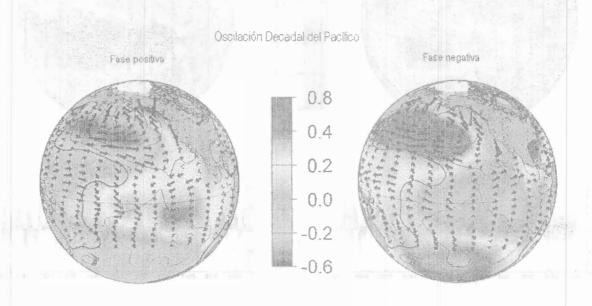



Figura 1.8 Valores mensuales del índice PDO en el periodo 1900-2000

Existe evidencia (Mantua et al, 1997, Minobe, 1997) de la existencia de dos fases o ciclos (Figura 1.9) del fenómeno. Los regímenes fríos prevalecieron de 1890 a 1924 y nuevamente de 1947 a 1976, mientras que la fase caliente dominó de 1925 a 1946 y de 1977 a mediados de los 90. Cambios recientes en el clima del Pacífico sugieren un cambio a las condiciones de la fase fría del PDO en 1998. Las mayores fluctuaciones del PDO ocurrieron en dos periodos, el primero de 15 a 25 años y el segundo de 50 a 70 años.

Las características de presión, viento, temperatura y precipitación se han asociado con el fenómeno PDO (Mantua et al, 1997). Las variaciones en el patrón de la temperatura de la superficie del mar (SST) se muestran en la figura 1.10. En esta figura la línea continua describe el comportamiento de las temperaturas más frías que el promedio, mientras que las discontinuas marcan temperaturas más calientes que el promedio, además, cada línea tiene un intervalo de 0.1 grados centigrados. En la figura 1.11 se presenta el patrón de la presión al nivel del mar (SLP). Como en la figura anterior, las líneas continua o discontinua indican presiones más bajas o más altas que el promedio. El intervalo del contorno es de 0.2 milibares.

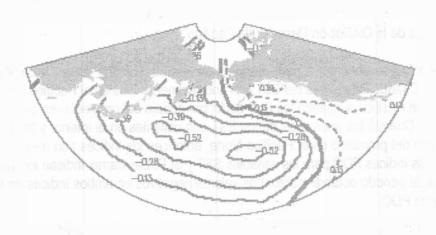


Figura 1.10. Patrón de las anomalías de temperatura (SST) de la superficie del mar en el PDO

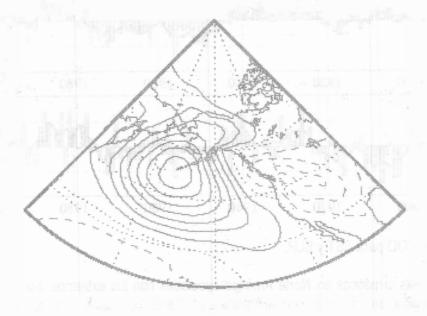


Figura 1.11. Patrón de las anomalías de la presión al nivel del mar (SLP) en el PDO

La distribución de los vientos durante el fenómeno PDO se presenta en la figura 1.12.

Figura 1.12. Anomalías de la Oscilación Decadal del Pacífico

Los índices PDO se obtienen a partir de los patrones observados de las anomalías SST y SLP (Mantua et al, 1997). Cuando los valores del SST son anormalmente fríos en el Pacífico Norte y calientes a lo largo de la Costa del Pacífico, y cuando los SLP están por debajo del promedio en el Pacífico Norte, los índices son positivos. Cuando las anomalías de los SST son calientes en el interior y frías a lo largo de la costa y las SLP arriba del promedio en el Pacífico Norte, entonces los índices son negativos. En la figura 1.13 se encuentran los índices PDO para las variables SST y SLP. Las barras indican los valores promedio obtenidos al analizar el periodo octubre-marzo. Los valores negativos en ambos índices corresponden a la fase fría del fenómeno PDO.

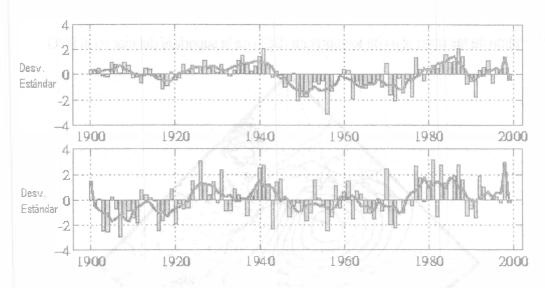


Figura 1.13. Índices PDO para SST y SLP.

Las anomalías climáticas en Norte América asociadas con los extremos frío y caliente del PDO son similares a aquellas relacionadas con el Niño y La Niña. En particular, este fenómeno propicia que durante el periodo de octubre a marzo se tengan durante la fase caliente del PDO lluvias arriba del promedio en los estados del norte de la República Mexicana, por el contrario, durante la fase fría, y en este mismo periodo, las precipitaciones disminuyen por debajo de la media.

CAPITULO 2 CARACTERÍSTICAS DE LAS SEQUÍAS

2.1. Definición de Sequía

Las sequias son manifestaciones de las fluctuaciones climáticas asociadas con las anomalías de gran escala de los patrones de circulación atmosférica, la deforestación, el cambio de uso de suelo, la desertificación y de las actividades humanas. Esencialmente, las sequías provocan la disminución o ausencia de precipitación sobre una región por largos periodos de tiempo.

La vulnerabilidad a la sequía está en relación inversa al grado de desarrollo económico y social de las regiones afectadas. En países desarrollados raramente representan una amenaza real, ya que disponen de los medios económicos suficientes para afrontar sus efectos, en tanto que en un país en desarrollo, la sequía es generadora de conflictos entre grupos sociales y es sinónimo de hambruna, enfermedad y migración o muerte de personas y animales. La escasez de agua también reduce la generación de energía y la recarga de los mantos acuíferos.

Se tienen serias dificultades para encontrar una definición única para el término sequía (Yevjevich, 1983). Las definiciones dependen del enfoque con que se traten, ya sea desde el punto de vista profesional (meteorología, hidrología, geografía, desarrollo de los aprovechamientos hidráulicos, etc.) o de la actividad económica que afectan (agricultura, industria, producción de energía eléctrica, suministro de agua para consumo doméstico, la navegación y la recreación).

Se considera que una sequía meteorológica se presenta cuando la precipitación durante un cierto período de tiempo es significativamente más pequeña que el promedio a largo plazo o que un valor crítico. Se caracterizan por la presencia de altas temperaturas, baja humedad en el ambiente y vientos fuertes.

Una sequía hidrológica ocurre cuando existe un déficit de agua, tanto de precipitación como de escurrimiento superficial y subterráneo. Esta sequía puede causar severos daños a la población, ya que sus efectos y su recuperación son a largo plazo.

Una sequía agrícola ocurre cuando no existe en cierto tiempo la suficiente humedad en el suelo que satisfaga las necesidades para el desarrollo óptimo de un cultivo. Las sequías agrícolas suceden después que las meteorológicas pero antes de las hidrológicas. Las áreas de temporal son las que resienten más este tipo de eventos, aún en los casos en que las sequías sean relativamente moderadas, ya que si ocurre en periodos tempranos afecta el periodo de siembra, en tanto que si ocurre en etapas avanzadas puede disminuir drásticamente la calidad y volumen de la producción. Este fenómeno generalmente afecta a la población más marginada, lo que provoca serios problemas de índole económico y social.

Desde el punto de vista económico y social, la definición de sequía considera no solo el suministro de agua, sino también la demanda. Esto significa que la sequía depende del tipo de uso del agua y de la densidad y distribución de los usuarios. La consideración de déficit de agua afecta la definición de sequía para períodos durante el cual la demanda exceda el suministro.

Se puede establecer que una sequía ocurre cuando se presenta un déficit significativo de agua (valor crítico) tanto en el tiempo como en el espacio. El término significativo, quiere decir que los impactos ambientales, económicos y sociales son muy importantes para el ser humano. En este punto es conveniente mencionar que si no hay actividad humana no hay afectación a la misma, y por lo tanto existe un déficit de agua con respecto a su valor medio pero no una sequía. Un ejemplo de esto se ve representado por el estado de Baja California Sur, donde se tienen la lámina de precipitación acumulada anual más baja dentro del territorio nacional, sin embargo, debido a la baja densidad poblacional sus efectos en algunas zonas no son importantes.

El criterio para establecer el valor crítico de la sequía depende generalmente de factores económicos y de los estándares de vida en la región en consideración. Por ejemplo, para uso agrícola se relacionan con los efectos de la reducción de agua en los cultivos, en tanto que para los usos doméstico e industrial dependen de los requerimientos de agua para la supervivencia, hábitos higiénicos o la producción industrial.

Debido a que los mayores impactos son del tipo económico, se deberán usar sus principios generales para definir a las sequías. Estos principios ayudan a encontrar una única definición de sequía al aplicar los conceptos de suministro y demanda de agua, ya sea para un usuario individual o conjunto de usuarios. En este contexto una sequía se definirá por el déficit en el suministro de agua y se obtendrá mediante las diferencias entre las series de tiempo (diaria, semanal, mensual, estacional o anual) de suministro de agua y las de demanda. Esto es válido para cualquier usuario, sitio o periodo de tiempo

2.2. Definición de Aridez

La definición de aridez, en términos de planeación y manejo de recursos hídricos según Wiener (1972), está relacionada con las condiciones y el acceso del recurso agua que limitan seriamente la supervivencia o el crecimiento de una economía. En términos operativos, una región se considera árida o semiárida cuando la cantidad y/o calidad del agua representan una variable crítica que controla su planeación y desarrollo.

Para definir el término de aridez se debe partir de las características de la superficie terrestre, tales como geomorfología y vegetación, las cuales afectan el clima hasta presentar las condiciones comunes de desertización. Sin embargo, la definición más formal está en función de las causas que la originan y a menudo se basan en comparaciones entre la precipitación y algunas medidas de potencial de evaporación, un buen ejemplo de lo anterior es la publicación de la UNESCO (1979). Esta definición se fundamenta en el valor del cociente de la altura de precipitación media anual con respecto a la evapotranspiración potencial media anual *Hp / ETP*. Los valores de esta relación definen tres grados de aridez: < 0.03 para la zona hiper-árida, 0.03 - 0.20 para la zona árida y 0.20 - 0.50 para la zona semiárida.

Además, se pueden definir algunas subclasificaciones basadas en temperatura, longitud del periodo anual seco y régimen estacional de precipitación.

De acuerdo con el valor de la precipitación media anual se pueden considerar las regiones áridas, semi-húmedas y húmedas (Tabla 2.1).

	Región	Precipitación media anual	67	40.6
Árida		<i>Hp</i> ≤ 400 mm		
Semiárida		400 mm < Hp ≤ 600 mm		31
Semi-húmeda		$600 \text{mm} < Hp \le 1500 \text{mm}$		
Húmeda	Special total store erri	Hp > 1500 mm		

Tabla 2.1. Definición de regiones de acuerdo con el valor de la precipitación media anual.

La sequía y la aridez se asocian frecuentemente, debido a que las regiones más secas son usualmente aquellas donde la variabilidad de la precipitación es más alta.

La terminología y definiciones asociadas con la aridez y la sequia generan confusión semántica, toda vez que ambas condiciones se caracterizan por la ausencia de agua, sin embargo, se pueden establecer algunas condiciones que las hacen diferentes (Vlachos, 1983).

La sequía es un proceso extremo que se presenta tanto en tiempo como espacio. Cuando la sequía se debe solo a condiciones naturales se caracteriza por persistencia en precipitaciones menores a la media, variabilidad en frecuencia, duración y severidad, ocurrencia impredecible, reducción en la disponibilidad de agua en cierta zona y disminución en la capacidad de conducción de la red hidrográfica.

En tanto, cuando la sequía o déficit es inducido por el hombre se caracteriza por que los sistemas hidrológicos se afectan localmente, además de que se produce un deterioro de la calidad del agua por intrusión salina y se generan conflictos entre los usuarios del agua.

La aridez es un estado climático permanente. La mayor parte de las características hidrológicas para las zonas definidas como áridas y semiáridas son similares ya que todas ellas presentan bajo nivel de humedad en la región, valores altos de insolación, variación extrema de temperatura, alta variabilidad en la precipitación en tiempo y espacio. Por otro lado, un escenario común en las zonas clasificadas como semiáridas es que el 90% de la precipitación total anual ocurre tan sólo en el 10% del periodo de lluvias de la región.

2.3. Clasificación de las seguías de pero en la maior de pero en la companya de l

De acuerdo con la Secretaría de Gobernación (SEGOB, 2000), las sequías pueden clasificarse por el clima o por su magnitud.

Por Clima

- a) Permanentes: se producen en zonas de climas áridos.
- b) Estacionales: se observan en sitios con temporadas lluviosas y secas bien definidas.
- c) Contingentes: se presentan en cualquier época del año debido a períodos prolongados de calor, a falta de lluvias o a la coincidencia de ambos.
- d) Invisibles: ocurren cuando las lluvias del verano no cubren las pérdidas de humedad por evaporación.

Por Magnitud

- a) Leves: son aquellas que tienen como causa la escasez parcial de lluvias y no repercuten de manera importante en la producción ni en la economía.
- b) Moderadas: son las originadas por una disminución significativa en la precipitación pluvial que afecta a la producción agrícola.
- c) Severas: son las que se producen por la disminución general o total de lluvias, con daños cuantiosos a la producción.
- d) Extremadamente severas: son producto del proceso permanente de escasez de agua que provoca crisis en la agricultura y en la ganadería, con los consiguientes efectos al conjunto de la economía y la sociedad.

Adicionalmente, se pueden clasificar de acuerdo con el área que afectan como se muestra en la tabla 2.2.

Área (%)	Categoría	6
Menor al 10	Local	
De 11 a 20	Vasta	
De 21 a 30	Muy vasta	
De 31 a 50	Extraordinaria	
Mayor de 50	Catastrófica	

Tabla 2.2. Clasificación de las sequías de acuerdo con la superficie afectada (Medina y Espinosa, 1998).

2.4. Impactos de la sequía

Comparado con otros fenómenos naturales los impactos que provocan las sequías son generalmente no estructurales, y están en función de la afectación a los diversos sectores económicos y productivos asociados con la oferta y demanda de bienes y servicios que aquellos que ofrecen, y el desequilibrio debido a las condiciones naturales y de baja humedad que se produce cuando la demanda supera a la oferta.

Cuando se ha declarado una sequía, los daños que causa dependen de su duración e intensidad y de la necesidad de agua que tengan en ese lapso de tiempo los seres vivos y de las actividades económicas en desarrollo. Al presentarse una sequía, sus efectos se manifiestan en:

Impactos ambientales

- degradación y pérdida de nutrientes de los suelos debido a la erosión eólica e hídrica
- desertización de los suelos
- degradación y/o destrucción de los bosques (incendios forestales)
- deshidratación y muerte de la flora
- migración y/o muerte de la fauna
- disminución en la recarga de acuíferos
- sobreexplotación de acuíferos
- nivel de agua en embalses menor a la prevista
- afectación en la calidad del agua, por la alta concentración de sales y contaminantes
- afectación en la calidad del aire (polvo y concentración de contaminantes)
- alteración del paisaje

Impactos económicos

- disminución o pérdida total del hato ganadero debido al alto costo y baja disponibilidad de agua y alimentos
- daño perenne a los cultivos y reducción de la producción agrícola, lo que genera el fenómeno de escasez, especulación y encarecimiento de alimentos
- pérdidas económicas de la industria que es directamente dependiente de la producción agrícola (empresas de fertilizantes, maquinaria agrícola y procesadores de alimentos)
- reducción en la producción de madera debido a los incendios forestales y a la infestación de insectos
 - reducción en la producción pesquera debido a la insuficiencia de agua para el desarrollo de la vida de las especies
 - reducción en la generación de energía hidroeléctrica
 - reducción de la actividad industrial generada por cortes en la producción y descenso en la calidad de los productos, lo cual repercute en la economía y en la generación de empleos
 - distracción de fondos públicos para mitigar los efectos de las sequías

Impactos sociales

- conflictos entre los diferentes usuarios del agua
- deterioro en la salud pública debido a epidemias, hambruna y mortandad
- migración campesina del área rural hacia condiciones negativas de subsistencia con el consecuente empobrecimiento de los campesinos
- reducción significativa de la demanda de empleos debido a la reducción de los procesos productivos
- decremento de la calidad de vida de los sectores más desprotegidos

2.5. Indices propuestos para caracterizar una sequía

Con el fin de definir y comparar las características de las sequías se han propuesto un conjunto de índices, los cuales son descritos por un simple número. Los más simples hacen uso únicamente de la precipitación media anual. Otros, en adición a la precipitación media anual o mensual utilizan algunas características como temperatura, evaporación, evapotranspiración, pérdida de humedad del suelo y humedad antecedente del suelo.

2.5.1. Porcentaje de la Normal

El porcentaje de la precipitación Normal es una de las más simples medidas de lluvia para un sitio en estudio.

Este índice se obtiene al dividir primero la precipitación de diferentes tiempos de escala entre la precipitación Normal, la cual se establece como la precipitación media obtenida para un registro de al menos 30 años, y posteriormente multiplicarse por 100%. Usualmente los tiempos de escala que se utilizan son anual, estacional (formada por un grupo de meses) o para un mes en particular.

Una desventaja de este índice es que la precipitación media es frecuentemente diferente a la mediana de la precipitación, la cual es el valor excedido por el 50% de las precipitaciones en el registro climático de largo plazo. La razón para esto es que las series de precipitación mensual o estacional no tienen una distribución Normal, por lo que su uso en este tipo de series puede generar serias confusiones.

2.5.2. Variabilidad de la precipitación anual

El coeficiente de variación de la precipitación anual, definido como la relación de la desviación estándar a la media se utiliza frecuentemente como un índice de sequía (Chow, 1974). Donde las sequías son más frecuentes el coeficiente es mayor de 0.35; para el caso contrario el coeficiente varía entre 0.15 y 0.25.

En algunos países como México, se ha encontrado cierta relación entre un valor alto del coeficiente de variación y las regiones áridas y semiáridas (Sancho, 1983), que son las más afectadas por la frecuencia y crudeza de las sequías, ya que su vegetación es ecológicamente frágil y la desertización constituye un peligro permanente. Sin embargo, esto no es una generalidad.

2.5.3. Deciles de la precipitación

Otro índice que permite encontrar las características de una sequía lo constituye el k-ésimo decil de la precipitación anual o mensual. Gibss y Maher (1967) emplearon esta técnica para obtener la distribución espacial de las sequías en Australia, estableciendo áreas donde la lluvia esta comprendida dentro del rango del primer decil, el cual es la cantidad de lluvia que no es excedida por el 10% más bajo de la precipitación que ocurre en un sitio particular. El segundo decil es la cantidad de precipitación que no es excedida por el 20% más bajo de las ocurrencias. Estos deciles continúan hasta que la cantidad de lluvia identificada por el décimo decil es la precipitación más grande registrada. Por definición, el quinto decil es la mediana, y es la cantidad de precipitación que no es excedida por el 50% de las ocurrencias en el periodo de registro. Los límites de cada decil se calculan ordenando la muestra de tamaño n de menor a mayor magnitud, así el valor más grande registrado se le asigna la variable Hp(n) y al más pequeño Hp(1). Posteriormente, el valor de cada decil se obtiene de la forma:

$$decil(1) = Hp(1) + constante$$

$$decil(i) = decil(i-1) + constante para i = 2 hasta 10$$

constante =
$$\frac{Hp(n) - Hp(1)}{10}$$

(2.1)

De acuerdo con este criterio, la precipitación anual puede clasificarse como se muestra en la tabla

2.3

Clasificación	Límites de Frecuencia (%)	Decil	
Mucho muy arriba del promedio	90 - 100	10	
Muy arriba del promedio	80 - 90	9	
Arrida del promedio	/() - 8()	8	
Ligeramente arriba del promedio	60 - 70	7	
Normal	50 - 60	6	
Normal III	40 - 50	5	
Ligeramente abajo del promedio		4	
Ahair del promedio	20 30	3	
Muy abajo del promedio	10 - 20	2	
Mucho muy abajo del promedio	use conserve nic 0210 rulini se eque es	Telleng.	

Tabla 2,3. Clasificación de la variabilidad de la precipitación mediante la técnica de los deciles.

Una desventaja de este índice radica en que se requiere de una cantidad importante de información para establecer adecuadamente los deciles.

2.5.4. Índice de sequía de Palmer

El índice Palmer, *PDSI*, (Palmer Drought Severity Index), se utiliza en el campo de la meteorología como un indicador que señala el déficit de humedad.

El *PDSI* mensual es un índice meteorológico que refleja la estimación de la humedad normal, cuyas condiciones se derivan a partir de periodos conocidos que incluyen promedios mensuales de evapotranspiración, recarga subterránea, escurrimiento y pérdidas de agua en el suelo. El índice es estandarizado así que se tiene un significado consistente en diferentes áreas climáticas. Un sistema de clasificación traslada el valor numérico del índice a una medida descriptiva de la seguía.

De la condición de humedad normal, la diferencia d entre la precipitación real P para un mes y la precipitación calculada a partir de un balance de agua de un elemento de suelo P es (Palmer, 1965; Alley, 1984):

$$d = P - \hat{P}$$

$$\hat{P} = ET + RO + (\hat{R} - \hat{L})$$
Donde
$$\hat{P} \qquad \text{precipitación climatológicamente normal para el mes,}$$

$$ET \qquad \text{evapotranspiración}$$

$$RO \qquad \text{escurrimiento}$$

$$\hat{R} \qquad \text{recarga de agua en el suelo}$$

$$\hat{L} \qquad \text{pérdida de agua en el suelo}$$

Py L forman el suministro de humedad, en tanto que ET, RO y R representan la demanda.

El parámetro (R-L) representa el cambio de la humedad almacenada en el suelo. Cada parámetro se calcula con datos del clima en el área y con promedios mensuales del periodo de registro.

Las diferencias de humedad mensual con respecto a la normal se ponderan para crear un índice estandarizado que se puede aplicar a diferentes áreas climáticas. Las diferencias d para cada mes se ponderan por un parámetro K, generando el índice de humedad anormal Z.

$$Z = d K \tag{2.4}$$

El factor de peso K se deriva empíricamente de los registros mensuales de clima para el área en estudio, utilizando la relación de demanda a suministro de humedad y la media mensual de los valores absolutos de d para todos los años de registro. El factor K ajusta las diferencias de humedad para crear una medida estandarizada mensual para diferentes climas.

El PDSI para cierto mes i se calcula utilizando el índice de humedad anormal de ese mes Z_i y el valor previo mensual del índice PDSI.

$$PDSI_{i} = 0.897 PDSI_{i-1} + \frac{Z_{i}}{3}$$
(2.5)

Durante el mes inicial, el primer término es cero y el índice es igual a $\mathbb{Z}/3$. Cuando \mathbb{Z} es cero (condición de humedad normal, d=0) el PDSI es 0.897 veces del mes previo.

Palmer (1965) utilizó información de sequías del centro de lowa y el este de Kansas para graficar el índice de humedad anormal Z contra la longitud del periodo seco. Los periodos secos se definieron como: sequía extrema (PDSI = -4.0), sequía severa (PDSI = -3.0), sequía moderada (PDSI = -2.0), y sequía suave o ligera (PDSI = -1.0).

2.5.5. Índice Palmer de sequía hidrológica (PHDI)

El *PHDI* (Palmer Hydrological Drought Index) describe la deficiencia anormal de humedad en el suelo, utilizando el mismo principio, ecuaciones de suministro de humedad, demanda y la consideración de la máxima severidad en la sequía como el *PDSI* (Johnson, 1993). La principal diferencia es que en el inicio y término de los periodos secos y húmedos, el *PHDI* responde más lentamente a los cambios en el clima (Karl y Knight, 1985). Esto ocurre a través del uso de una relación en el *PHDI* que expresa la humedad recibida como un porcentaje de aquella requerida para que termine la sequía. La ventaja de ese retraso en la respuesta es que mientras el clima puede retornar a la normalidad puede existir aún un déficit en la humedad del suelo, escurrimiento y nivel de los lagos. Una respuesta de tiempo más lenta permite la recuperación de esas características hidrológicas y así el índice describe mejor a la sequía hidrológica.

De acuerdo con Johnson (1993), al comparar el *PHDI* y el *PDSI* en varias regiones el *PHDI* fue uno o dos meses más largo.

Karl y Knight (1985) proponen tres categorías para *PHDI*: suave hasta moderada (*PHDI* = -1.5 hasta -3.9), severa (*PHDI* = -3.0 hasta -4.9) y extrema (*PHDI* < -4.0). La categoría severa y extrema (*PHDI* < -3.0) se caracteriza por un decremento en los escurrimientos y un bajo nivel de almacenamiento, lo que genera un gran de impacto sobre las políticas de operación de los aprovechamientos hidráulicos.

Es importante señalar que el valor PHDI no es lineal y no debe promediarse, esto es, un mes con PHDI = -4.0, no es el doble de deficiente que un mes con un PHDI = -2.0. Similarmente, tres meses consecutivos con valores PHDI de -2.0, -3.0 y -4.0 no se debe entender que tienen un promedio de PHDI = -3.0. Además, dos PHDI del mismo valor pero en diferentes regiones de un país no representan la misma escasez de humedad. En la tabla 2.4 se presenta la clasificación más completa.

PHDI	central desirence of total Clase in described and a construction
4.00 o may	r Extremadamente húmedo
3.00 a 3.99	the transfer of the second of the second of the Muy húmedo
2.00 a 2.99	Moderadamente húmedo
1.00 a 1.99	Ligeramente húmedo
0.50 a 0.99	Humedad incipiente
0.40 a - 0.49	Humedad cercana a la normal
- 0.50 a 0.9	Sequía incipiente
- 1.00 a - 1.9	Sequía suave o ligera
- 2.00 a - 2.9	Sequía moderada
- 3.00 a - 3.9	Sequía severa
- 4.00 o mer	or liquel as scioni le y ordo as commercia Seguía extrema la com la eligidad.

Tabla 2.4. Clasificación del *PHDI* en periodos húmedos y secos (Karl y Knight, 1985).

2.5.6. Índice de humedad en los cultivos (CMI)

El *CMI* (Crop Moisture Index) fue desarrollado por Palmer (1968) dentro del contexto del *PDSI*. Este índice emplea una aproximación meteorológica para monitorear semana a semana las condiciones de los cultivos. Así como el *PDSI* se desarrolló para monitorear las condiciones de humedad o sequía de largo plazo, el *CMI* fue diseñado para evaluar las condiciones de humedad de corto plazo a lo largo de grandes extensiones agrícolas.

El índice se basa en la precipitación total y temperatura media de cada semana dentro de una división climática, así como del valor del *CMI* de la semana previa. El *CMI* responde rápidamente a las concliciones climatológicas de corto plazo y se puede construir planos que reflejen las variaciones de humedad en diferentes sitios de una región, sin embargo, una fuerte lluvia durante una sequía puede dar como resultado un valor del *CMI* que indique condiciones adecuadas de humedad, aún y cuando persista la sequía de largo plazo.

2.5.7. Índice de precipitación estandarizada (SPI)

El *SPI* (Standardized Precipitation Index) fue diseñado para cuantificar el déficit de precipitación para múltiples escalas de tiempo. Estas escalas reflejan el impacto de la sequía sobre la disponibilidad de los diferentes aprovechamientos hidráulicos. Las condiciones de humedad del suelo responden a las anomalías de la lluvia a corto plazo. El agua subterránea, el escurrimiento y el almacenamiento en presas reflejan las anomalías de la precipitación a largo plazo. Por estas razones, McKee *et al.* (1993) calcularon originalmente el *SPI* para periodos de 3, 6, 12, 24 y 48 meses.

El cálculo del *SPI* se basa en el registro a largo plazo de la precipitación para un periodo de tiempo específico. Este registro de largo plazo se ajusta a una distribución de probabilidad, la cual es inmediatamente transformada a una distribución Normal, tal que el valor medio del *SPI* para un sitio y periodo deseado es cero. Los valores positivos del *SPI* indican precipitaciones más grandes que la mediana. Debido a que el *SPI* esta normalizado, los climas más secos y más húmedos se pueden representar de la misma forma, y los periodos húmedos se pueden monitorear a través del *SPI*.

McKee *et al.* (1993) utilizaron el sistema de clasificación que se muestra en la tabla 2.5 para definir la intensidad de la sequía. También definieron el criterio para la ocurrencia de una sequía para cualquier escala de tiempo. Así, una sequía tiene lugar si en cualquier tiempo el *SPI* tiene un valor igual o menor a -1.0. El evento concluye cuando el valor de *SPI* es positivo. Por lo tanto, cada periodo de sequía se puede caracterizar mediante su inicio, término y la intensidad para cada mes que el evento continúa. La suma de los valores negativos del *SPI* para todos los meses se considera como la magnitud de la sequía.

	SPI	Clase	
Larry and the condense of the	2.00 o más	Extremadamente húmedo	
	1.50 a 1.99	Muy húmedo	
	1.00 a 1.49	Moderadamente húmedo	
	- 0.99 a 0.99	Humedad cercana a la normal	
	-1.00 a -1.49	Moderadamente seco	
	-1.50 a -1.99	Severamente seco	
1.14	- 2.00 o menos	Extremadamente seco	

Tabla 2.5. Clasificación del SPI en periodos húmedos y secos (McKee et al. 1993).

De entre las funciones de densidad de probabilidad, la Gamma de dos parámetros es la que representa un buen ajuste a las series mensuales de precipitación.

La función de densidad Gamma esta definida por

$$f(x) = \frac{x^{\beta - 1} e^{-x/\alpha}}{\alpha^{\beta} \Gamma(\beta)} \qquad 0 \le x < \infty$$

si $\alpha > 0 \to \gamma > 0$
 $\gamma > 0$

(2.6)

Donde

lpha parámetro de escala

β parámetro de forma

$$\Gamma(\beta) = \int_{0}^{\infty} y^{\beta-1} e^{-y} dy$$
 función Gamma completa

Los parámetros de la distribución se estiman con los datos de cada estación, para cada escala temporal de interés (2, 3, 12, 24, 48 meses).

Estimación de parámetros por momentos

$$\alpha = \frac{S^2}{X} \tag{2.7}$$

$$\hat{\beta} = \left(\frac{x}{S}\right) \tag{2.8}$$

Donde

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \tag{2.9}$$

$$S = \left[\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2\right]^{1/2}$$
(2.10)

Estimación de parámetros por máxima verosimilitud

$$\alpha = \frac{x}{\beta} \tag{2.11}$$

El estimador $\hat{\beta}$ se obtiene al resolver

$$F(\hat{\beta}) = \ln(\hat{\beta}) - \psi(\hat{\beta}) - C = 0 \tag{2.12}$$

Empleando como valor inicial del parámetro $\hat{\beta}$

$$\hat{\beta} = \frac{1 + \sqrt{1 + \frac{4}{3}C}}{4C} \tag{2.13}$$

$$C = \ln(\bar{x}) - \bar{y} \tag{2.14}$$

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} ln(x_i)$$
 (2.15)

La aproximación de la función digamma de β es

$$\psi(\hat{\beta}) = \ln(\hat{\beta} + 2) - \frac{1}{2(\hat{\beta} + 2)} - \frac{1}{12(\hat{\beta} + 2)^2} + \frac{1}{120(\hat{\beta} + 2)^4} - \frac{1}{252(\hat{\beta} + 2)^6} - \frac{1}{(\hat{\beta} + 1)} - \frac{1}{\hat{\beta}}$$
(2.16)

Estimación de parámetros por momentos-L

$$\tau_2 = \frac{\lambda_2}{\lambda_1} \tag{2.17}$$

$$\lambda_1 = \beta_0 \tag{2.18}$$

$$\lambda_2 = 2\beta_1 - \beta_0 \tag{2.19}$$

$$\beta_0 = \frac{1}{n} \sum_{i=1}^n x_i \tag{2.20}$$

$$\beta_1 = \frac{1}{n(n-1)} \sum_{i=1}^{n-1} x_i (n-i)$$
(2.21)

Para $0 \le \tau_2 < 0.5$

$$Z = \pi \tau_2^2 = 3.1416 \tau_2^2 \tag{2.22}$$

$$\beta = (1 - 0.308 z) / (z - 0.05812 z^2 + 0.01765 z^3)$$
(2.23)

Para $0.5 \le \tau_2 < 1$

$$z = 1 - \tau_2 \tag{2.24}$$

$$\hat{\beta} = (0.7213 z - 0.5947 z^2) / (1 - 2.1817 z + 1.2113 z^2)$$
(2.25)

En ambos casos

$$\alpha = \frac{\overline{x}}{\beta} \tag{2.26}$$

Con los parámetros estimados por cualquiera de los métodos propuestos, se procede a obtener la distribución acumulada de un evento observado de precipitación para un mes dado y para una escala de tiempo en determinada estación climatológica. La distribución de probabilidad acumulada es

$$F(x) = \int_{0}^{x} \frac{x^{\beta-1} e^{-x/\alpha}}{\alpha^{\beta} \Gamma(\beta)} dx$$
(2.27)

Con el cambio de variable $t=x/\alpha$ la expresión (2.27) se transforma en la función Gamma incompleta

$$G(x) = \frac{1}{\Gamma(\beta)} \int_0^x t^{\beta - 1} e^{-t} dt$$
(2.28)

La función (2.28) no esta definida para x = 0, pero debido a que un registro real de precipitación si cuenta con ceros, entonces se debe determinar la probabilidad acumulada de la forma

$$H(x) = q + (1-q)G(x)$$
 (2.29)

Donde q es la probabilidad de ceros, q = m/n, si m es el número de ceros en la serie y n es el total de valores del registro. La expresión (2.29) se puede resolver mediante el uso de tablas de la función Gamma incompleta o bien, mediante el empleo de un esquema numérico.

Una vez que se obtienen las probabilidades acumuladas de la expresión (2.29), se deberán transformar mediante la aproximación (2.30) a variables normales estandarizadas, las cuales son de hecho los indicadores *SPI*.

Para una probabilidad acumulada $0 < H(x) \le 0.5$

$$SPI \approx v - \frac{b_0 + b_1 v + b_2 v^2}{1 + b_3 v + b_4 v^2 + b_5 v^3}$$

(2.30)

Donde

$$b_0 = 2.515517$$
 $b_3 = 1.432788$
 $b_1 = 0.802853$ $b_4 = 0.189269$
 $b_2 = 0.010328$ $b_5 = 0.001308$

$$V = \sqrt{\ln\left\{\frac{1}{[H(x)]^2}\right\}}$$

(2.31)

Para una probabilidad acumulada $0.5 < H(x) \le 1$ se cambia H(x) por [1-H(x)] en la expresión (2.31) y se le cambia el signo al valor SPI calculado con la ecuación (2.30).

2.6. Análisis de series anuales

Una vez que se presupone o se sabe que existe una sequía, es importante cuantificarla para tomar un curso de acción. Los primeros pasos en esa incierta catalogación es la determinación de las características intrínsecas de la sequía. Éstas son la duración, la magnitud o intensidad (valor promedio del déficit) y la severidad (valor acumulado del déficit). Existen técnicas que permiten caracterizar a una sequía a través del análisis de las series de tiempo.

2.6.1. Secuencias de una serie de tiempo.

Una componente necesaria para una completa definición de sequía es la especificación del llamado nivel de truncamiento o umbral, el cual permite distinguir las sequías de otros eventos en los datos históricos.

Los estadísticos como la media y la mediana de las series de tiempo registradas se utilizan generalmente para definir el nivel de truncamiento. Puede decirse que el uso de la mediana es útil para el análisis de las duraciones, mientras que la media lo es para las severidades. Sin embargo, un análisis completo de sequías relaciona simultáneamente la duración y la severidad. Lo anterior no resulta práctico ya que involucra el uso de dos niveles diferentes de umbral. Un procedimiento sugerido para evitar la

controversia en la selección de este nivel es el de la Normalización de la muestra analizada (apartado 3.13), que remueve el sesgo y se espera con esto que la media y la mediana de la muestra coincidan, sin embargo, las dos medidas de tendencia central usualmente no son idénticas, aún después de la transformación normal, por lo tanto es recomendable utilizar la media como umbral ya que es más sensitiva al considerar los valores extremos de la serie de datos.

El concepto y efecto del nivel de truncamiento es más claro cuando la teoría estadística de las secuencias se adopta para el análisis de una serie de tiempo, formada por eventos hidrológicos o meteorológicos. Los parámetros fundamentales de las secuencias de una serie meteorológica anual se presentan en la figura 2.1 (Salas et al, 1988).

El valor de truncamiento X_0 puede establecerse arbitrariamente para cortar la serie en diferentes sitios y su relación con los otros valores X de la serie definen los parámetros de las secuencias. Estos parámetros son la suma total de la secuencia (desviación acumulada desde X_0), la Intensidad de la secuencia (desviación promedio desde X_0), y la longitud de la secuencia (distancia o tiempo entre cruces sucesivos de X_0). En la terminología de las sequías estos tres términos son conocidos como Severidad (S), Intensidad (I) y Duración (D).

En la práctica la selección de X_0 no es tan arbitraria, sino que es función del déficit de agua estudiado. Para el análisis de las sequías hidrológicas o meteorológicas multianuales, X_0 puede seleccionarse como el escurrimiento o la lluvia media anual; para el estudio de una sequía agrícola, X_0 puede elegirse como la humedad media del suelo presente durante la primera etapa del crecimiento del cultivo. Teóricamente, X_0 puede ser una constante, una variable estocástica, una función determinística, o cualquier combinación de estas.

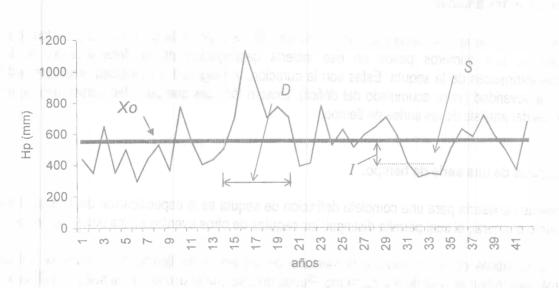


Figura 2.1. Parámetros fundamentales de las secuencias de una serie

2.6.2. Teoría de los promedios móviles

Esta técnica permite suavizar algunas de las variaciones aleatorias de una serie de tiempo. Si la secuencia de valores de la serie es $X_1, X_2, X_3, X_4, ..., X_n$ el promedio móvil será (Schulz, 1976):

$$\frac{X_1 + X_2 + \dots + X_N}{N}, \frac{X_2 + X_3 + \dots + X_{N+1}}{N}, \frac{X_3 + X_4 + \dots + X_{N+2}}{N}, \dots$$
(2.32)

Las sumas de los numeradores se llaman Sumas Móviles de orden N y el resultado de cada cociente es el promedio móvil de orden N. El orden N, puede ser cualquier valor, pero si es muy pequeño puede volver poco efectiva la técnica para reducir la variabilidad aleatoria, en contraste, si es muy grande se puede ocultar la componente cíclica de la serie.

Los registros de precipitación anual son analizados con promedios móviles de orden 5, ya que permite suavizar la componente irregular de las series, prevaleciendo en el registro los efectos de los ciclos húmedos y secos (Figura 2.2). Los períodos húmedos o lluviosos son detectados comparando la línea de promedios móviles con la línea recta que representa la lluvia media anual de todo el registro; durante los periodos de sequías, la línea de promedios móviles esta por debajo del valor medio. Una vez determinado los periodos húmedos y secos es posible obtener las características de severidad, intensidad y duración de cada secuencia.

Figura 2.2 Promedio móvil de orden N de una serie de datos

2.7. Análisis de series mensuales

La técnica de identificación de las características de una sequía desarrollada por Herbst et al (1966) se puede aplicar para analizar series de tiempo periódicas, ya sea de escurrimientos o precipitaciones mensuales.

Esta técnica fue desarrollada con el propósito de identificar con fines agrícolas las características de inicio, terminación y severidad de una sequía.

El análisis considera que los cultivos en cualquier región se adaptan al patrón climático del sitio, tal que se toma cierta ventaja en los meses con un alto promedio de lluvia, pero debido a las variaciones de la lluvia media mensual se puede tener como un hecho normal una sequía estacional de cierta duración e intensidad, por lo que no se debería incluir dentro de la evaluación de daños. Por esta razón, los autores consideran que solo se deben tener en cuenta los efectos que provocan el déficit mensual que exceden al valor promedio de éstos.

Se considera que el beneficio que recibe la vegetación, con las lluvias que caen por arriba del promedio, persiste por algún tiempo debido al almacenamiento del agua en el suelo. Por el contrario, después de un periodo con lluvias por debajo del promedio, la recuperación del cultivo no es inmedia ta y los efectos nocivos persisten aún y cuando mejore el patrón de lluvias.

La secuencia de análisis es la siguiente.

Paso 1. Para la serie periódica de lluvia $Q_{\upsilon,\tau}$, para $\upsilon=1,2,...,n$ años y $\tau=1,2,...,12$ meses, se calcula mes a mes sus características estadísticas (media, varianza, desviación estándar, coeficiente de asimetría, coeficiente de curtosis y coeficiente de variación).

Paso 2. Con la lluvia media mensual se establece el umbral $T(\tau)$ que separa los eventos potenciales de sequía y excedencias.

Paso 3. Para cada mes se obtiene un factor de peso $W(\tau)$, el cual varía entre 0.1 y 0.4, de la forma

$$W(\tau) = 0.1 \left\{ 1 + T(\tau) / \left[\sum_{t=1}^{12} T(\tau) / 12 \right] \right\}$$

(2.33)

Paso 4. Se obtiene una nueva serie periódica, llamada efectiva, la cual considera el efecto del transporte del déficit o superávit de lluvia en el mes precedente.

$$E_{v,\tau} = Q_{v,\tau} + S_{v,\tau-1} \cdot W(\tau)$$
(2.34)

Donde

$$S_{\nu,\tau-1} = E_{\nu,\tau} - T(\tau)$$
 (2.35)

Para el primer año analizado, por ejemplo 1950, y considerando el mes de Enero $(\tau = 1)$, el valor de la lluvia efectiva es $E_{1950,1} = Q_{1950,1}$.

Para ese año y los siguientes meses $(\tau = 2, 3, ..., 12)$ la lluvia efectiva se obtendrá como

$$E_{1950,2} = Q_{1950,2} + [E_{1950,1} - T(1)] \cdot W(2)$$

$$E_{1950,3} = Q_{1950,3} + [E_{1950,2} - T(2)] \cdot W(3)$$

$$E_{1950,4} = Q_{1950,4} + [E_{1950,3} - T(3)] \cdot W(4)$$

$$E_{1950,12} = Q_{1950,12} + [E_{1950,11} - T(11)] \cdot W(12)$$

Similarmente

$$E_{1951,1} = Q_{1951,1} + [E_{1950,12} - T(12)] \cdot W(1)$$

Paso 5. Se obtiene la serie periódica de diferencias negativas (déficit) o positivas (superávit)

$$D_{\nu,\tau} = E_{\nu,\tau} - T(\tau) \tag{2.36}$$

Paso 6. Se calcula el déficit medio mensual $DM(\tau)$, considerando solo para este propósito que las diferencias positivas son cero. Para obtener el valor medio se considera el tamaño total de muestra. El valor del déficit medio anual se obtiene como

$$DMA = \sum_{\tau=1}^{12} DM(\tau) \tag{2.37}$$

Paso 7. Con el propósito de determinar el inicio de un periodo de sequía se obtendrá una escala de doce valores de la forma

$$X = \frac{DMA - PMMM}{11} \tag{2.38}$$

Donde *PMMM* es el valor máximo de las lluvias medias anuales $T(\tau)$

El primer valor de la escala es *PMMM*, el cual se considera como el máximo déficit que puede ocurrir en un mes, cuando no llueve en el mes donde normalmente se recibe la mayor precipitación. Los siguientes valores se obtienen como a *PMMM* + 1X, *PMMM* + 2X,..., *PMMM* + 11X.

Para iniciar la prueba se compara el valor absoluto de la primera diferencia negativa $D_{v,r}$, obtenida del paso 5, con el primer valor de la escala. Si este último valor es igualado o excedido (situación muy rara), se dice que la sequía inicia en ese mes. Si la diferencia del mes siguiente también es negativa, se debe comparar la suma de los valores absolutos de las dos diferencias, con el segundo valor de la escala, si este valor es igualado o excedido se dice que la sequía comienza desde el primer mes de prueba. Si no se cumple con esta condición y si la tercera diferencia también es negativa, entonces, se debe comparar la suma de los valores absolutos de las tres diferencias con el tercer valor de la escala, si este valor es igualado o excedido se dice que la sequía comienza desde el primer mes de prueba. Este procedimiento se realiza hasta comparar los doce valores de la escala. Si después de que se compararon los doce valores no se satisface la prueba, entonces no se trata de un periodo de déficit significativo y se deberá reiniciar el procedimiento para el siguiente mes con una diferencia negativa.

Paso 8. Con el objetivo de determinar el final del periodo de sequía se obtendrá una segunda escala de doce valores, la cual se forma al ordenar de mayor a menor los valores $T(\tau)$. El primer elemento es el máximo valor de $T(\tau)$, el segundo es la suma de los dos valores más grandes de $T(\tau)$, el tercero lo conforman la suma de los tres valores más grandes, y así sucesivamente.

La prueba considera como condiciones del término potencial de una sequía si se cumple:

- 1) Al menos uno de los dos meses siguientes al mes inicial con una diferencia positiva debe tener también una diferencia positiva.
- 2) Se compara la suma de los valores registrados de los tres primeros meses $Q_{\nu,\tau}$ a partir del primer mes de prueba, con el tercer valor de la segunda escala. Si este valor es igualado o excedido, se dice que la sequía ha concluido desde el primer mes de prueba. Si esto no es así, se compara la suma de los cuatro valores registrados $Q_{\nu,\tau}$ con el cuarto valor de la escala, y así sucesivamente.

Si estas condiciones no se satisfacen, entonces solo se trata de una interrupción temporal de la sequía y se deberá proceder al análisis de la siguiente diferencia positiva.

Una vez que la sequía ha terminado, la prueba para el comienzo de la siguiente será cuando se presente una nueva diferencia negativa.

Paso 9. Una vez concluido el procedimiento de identificación se puede determinar las siguientes características:

- 1) El número total de sequías en el periodo analizado Ns
- 2) El mes en que inicia cada seguía Mi
- 3) El mes en que finaliza cada seguía Mf
- 4) La duración en meses de cada sequía Ds
- 5) La suma de todas las diferencias negativas que ocurren durante cada sequía
- 6) La suma de los déficit medios mensuales en un periodo idéntico al de la sequía considerada
- 7) La suma de los déficit que exceden a los medios mensuales para la duración de cada sequía
- 8) El número total de meses en que ocurre un déficit en exceso de cada sequía
- 9) La intensidad de la sequía, medida a través del índice

$$Y = \frac{\sum_{Mi}^{Mf} Deficit \text{ en exceso}}{\sum_{Mi}^{Mf} DM(\tau)}$$

(2.39)

10) La severidad de la sequía medida con el índice

$$YD = \frac{\sum_{Mi}^{Mf} Deficit \text{ en exceso}}{\sum_{Mi}^{Mf} DM(\tau)} Ds$$

(2.40)

- 11) La lluvia que cae durante el periodo de cada seguía expresada como un porcentaje de la suma de la lluvia media anual sobre el mismo periodo
- 12) El porcentaje del déficit mensual para cada periodo de seguía, estimado a partir del punto anterior
- 13) La lluvia que cae durante el periodo húmedo previo a cada seguía expresada como un porcentaje de la suma de la lluvia media anual sobre el mismo periodo.
- 14) El porcentaje del superávit mensual para cada periodo de húmedo, estimado a partir del punto anterior.

Mohan y Rangacharya (1991) propusieron modificar el valor del umbral $T(\tau)$ cuando las series de analizadas presentan gran variabilidad, esto es, cuando el coeficiente de variación es mayor a 0.25. La expresión tomada en valor absoluto es: $T(au) = \overline{\mathbb{Q}}(au) - \sigma^{\frac{2}{ au}}/\overline{\mathbb{Q}}(au)$

$$T(\tau) = \overline{Q}(\tau) - \sigma_{\tau}^{2} / \overline{Q}(\tau)$$

Donde

 $\mathbb{Q}(\tau)$ Iluvia media mensual para el mes τ

varianza de la lluvia mensual para el mes τ

Ejemplo 2.1. Se requiere determinar las características de las seguías a través del análisis de las series mensuales de precipitación de la estación Presa Jocoqui (01019) ubicada en el estado de Aguascalientes.

De acuerdo con la secuencia propuesta se tiene:

Paso 1. Para la serie periódica de lluvia $Q_{0,\tau}$, para $\upsilon=1,2,...,56$ años y $\tau=1,2,...,12$ meses (Tabla 2.6) se calcular con las expresiones 3.58 a 3.66 del capítulo siguiente sus características estadísticas: media, varianza, desviación estándar, coeficiente de asimetría, coeficiente de curtosis y coeficiente de variación (Tabla 2.7).

Paso 2. Con la lluvia media mensual \overline{Q} se establece el umbral $T(\tau)$ que separa los eventos potenciales de seguía y excedencias (Tabla 2.8).

Paso 3. Para cada mes se obtiene un factor de peso $W(\tau)$, (Tabla 2.8). Por ejemplo, para el mes de Enero se tendría:

$$\sum_{t=1}^{12} T(\tau)/12 = \frac{17.32 + 4.96 + 4.66 + \dots + 34.7 + 11.0 + 15.8}{12} = 145.38$$

$$W(1) = 0.1 \left\{ 1 + T(1) / \left[\sum_{t=1}^{12} T(\tau) / 12 \right] \right\} = 0.1 \left(1 + \frac{17.3}{145.38} \right) = 0.143$$

Paso 4. Se obtiene la serie de lluvia efectiva con la expresión 2.34 (Tabla 2.9).

Para el primer año analizado el valor de la lluvia efectiva es $E_{1942,1} = Q_{1942,1} = 0.0$. Para ese año y los siguientes meses $(\tau = 2, 3, ..., 12)$ la lluvia efectiva se obtendrá como

$$E_{1942,2} = Q_{1942,2} + [E_{1942,1} - T(1)] \cdot W(2) = 0 + (0 - 17.3)(0.112) = -1.95$$

$$E_{1942,3} = Q_{1942,3} + [E_{1942,2} - T(2)] \cdot W(3) = 0 + (-1.95 - 4.96)(0.112) = -0.77$$

$$E_{1942,4} = Q_{1942,4} + [E_{1942,3} - T(3)] \cdot W(4) = 0 + (-0.77 - 4.66)(0.120) = -0.65$$

$$E_{1942,12} = Q_{1942,12} + [E_{1942,11} - T(11)] \cdot W(12) = 4.3 + (20.98 - 11.01)(0.140) = 5.69$$

Similarmente,

$$E_{1943,1} = Q_{1943,1} + [E_{1942,12} - T(12)] \cdot W(1) = 8.5 + (5.69 - 15.8)(0.143) = 7.05$$

Paso 5. Se obtiene la serie periódica de diferencias negativas o positivas (Tabla 2.10).

$$D_{1942,1} = E_{1942,1} - T(1) = 0.0 - 17.32 = -17.32$$

$$D_{1942,2} = E_{1942,2} - T(2) = -1.95 - 4.96 = -6.90$$

$$D_{1997,12} = E_{1997,12} - T(12) = 0.32 - 15.80 = -15.48$$

Paso 6. Se calcula el déficit medio mensual $DM(\tau)$, considerando solo para este propósito que las diferencias positivas son cero (Tabla 2.10). Para obtener el valor medio se considera el tamaño total de muestra. El valor del déficit medio anual se obtiene como

$$DMA = \sum_{\tau=1}^{12} DM(\tau) = -10.5 - 3.4 - 3.5 - ... - 9.8 = -145.38$$

Cuyo valor final en déficit es de 145.38 mm.

Paso 7. Para determinar el inicio de cada sequía se obtiene la primera escala de doce valores considerando que el valor máximo de las lluvias medias anuales $T(\tau)$ es $PMMM = 106.9 \, \text{mm}$. Así con la expresión 2.38 se tiene

$$X = \frac{DMA - PMMM}{11} = \frac{(145.38 - 106.9) \text{mm}}{11} = 3.5 \text{ mm}$$

Por lo que la escala a utilizar, llamada de inicio, es de la forma

m	1	2	3	4	5	6	7	8	9	10	11	12
Valor	106.9	110.4	113.9	117.4	120.9	124.4	127.9	131.4	134.9	138.4	141.9	145.3

Paso 8. Para definir el final del periodo de sequía se requiere una segunda escala de doce elementos, llamada de terminación, la cual se forma al ordenar de mayor a menor los valores de $T(\tau)$. El primer elemento es el valor más grande de $T(\tau)$, el segundo es la suma de los dos valores más grandes de $T(\tau)$, el tercero lo conforman la suma de los tres valores más grandes, y así sucesivamente, por lo que

m	1	2	3	4	5	6	7	8	9	10	11	12
Valor	106.9	211.0	292.9	362.7	397.4	416.1	433.4	449.2	460.2	468.2	473.2	477.9

Para iniciar la prueba se compara el valor absoluto de la primera diferencia negativa $D_{\nu,\tau}$, en este caso corresponde a $|D_{1942,1}|=17.32\,\mathrm{mm}$, con el primer valor de la escala de inicio que es igual a 106.9 mm.

Como el valor de la escala no es igualado ni excedido, se procede a considerar la siguiente diferencia, la cual también es negativa por lo que $\left|D_{1942,1}+D_{1942,2}\right|=24.22\,\mathrm{mm}$ y se compara con el segundo valor de la escala de inicio, que es igual a 110.4 mm. La prueba de inicio continúa de la forma

$$\begin{aligned} |D_{1942,1} + D_{1942,2} + D_{1942,3}| &= 29.65 \,\mathrm{mm} \quad \neq 113.9 \,\mathrm{mm} \\ |D_{1942,1} + D_{1942,2} + D_{1942,3} + D_{1942,4}| &= 38.33 \,\mathrm{mm} \quad \neq 117.4 \,\mathrm{mm} \\ |D_{1942,1} + D_{1942,2} + D_{1942,3} + D_{1942,4} + D_{1942,5}|^{2} &= 58.32 \,\mathrm{mm} \quad \neq 120.9 \,\mathrm{mm} \\ |D_{1942,1} + D_{1942,2} + D_{1942,3} + D_{1942,4} + D_{1942,5}|^{2} &= 58.32 \,\mathrm{mm} \quad \neq 120.9 \,\mathrm{mm} \end{aligned}$$

Como el valor absoluto de las diferencias excede el sexto valor de la escala de inicio, entonces se considera que la sequía inicia desde el primer mes de prueba, esto es, el mes de enero de 1942.

La prueba considera como condiciones del término potencial de una sequía si se cumple:

Al menos uno de los dos meses siguientes al mes inicial con una diferencia positiva debe tener también una diferencia positiva, lo cual se cumple en los meses de octubre y noviembre de 1942.

Se compara la suma de los valores registrados de los tres primeros meses $Q_{\nu,r}$ a partir del primer mes de prueba, esto es octubre, noviembre y diciembre del año 1942 con el tercer valor de la escala de terminación.

$$(57 + 18.7 + 4.3) = 80.0 \,\mathrm{mm} \neq 292.9 \,\mathrm{mm}$$

Como este último valor no es igualado ni excedido se procede a realizar las siguientes comparaciones con la escala de terminación:

$$(57+18.7+4.3+8.5) = 88.5 \,\text{mm} \neq 362.7 \,\text{mm}$$

 $(57+18.7+4.3+8.5+0) = 88.5 \,\text{mm} \neq 397.4 \,\text{mm}$
 $(57+18.7+4.3+8.5+0+10) = 98.5 \,\text{mm} \neq 416.1 \,\text{mm}$
 $(57+18.7+4.3+8.5+0+10+0) = 98.5 \,\text{mm} \neq 433.4 \,\text{mm}$
 $(57+18.7+4.3+8.5+0+10+0+3) = 101.5 \,\text{mm} \neq 449.2 \,\text{mm}$
 $(57+18.7+4.3+8.5+0+10+0+3+58.1) = 159.6 \,\text{mm} \neq 460.2 \,\text{mm}$
 $(57+18.7+4.3+8.5+0+10+0+3+58.1+114) = 273.6 \,\text{mm} \neq 468.2 \,\text{mm}$
 $(57+18.7+4.3+8.5+0+10+0+3+58.1+114+74.4) = 348 \,\text{mm} \neq 473.2 \,\text{mm}$
 $(57+18.7+4.3+8.5+0+10+0+3+58.1+114+74.4) = 348 \,\text{mm} \neq 473.2 \,\text{mm}$

Como las condiciones no se satisfacen, entonces solo se trata de una interrupción temporal de la sequía y se procede al análisis de la siguiente diferencia positiva, la cual debe cumplir con la primera condición, lo cual se logra en los meses de julio y septiembre de 1943. Realizando la prueba para la segunda condición se tiene:

$$(114 + 74.4 + 126.7) = 315.1 \text{mm} > 292.9 \text{mm}$$

Como se satisface la segunda condición, entonces la seguía termina en junio de 1943.

Una vez que la sequía ha terminado, la prueba para el comienzo de la siguiente será cuando se presente una nueva diferencia negativa.

Paso 9. Una vez concluido el procedimiento de identificación se determina las siguientes características

El número total de sequías en el periodo analizado Ns = 14

Para la primera seguía identificada se tiene:

El mes en que inicia la sequía *Mi* = Enero de 1942

El mes en que finaliza la sequía Mf = Junio de 1943

La duración de la sequía Ds = 18 meses

La suma de todas las diferencias negativas que ocurren durante cada sequía

$$SDN = \sum_{Mi}^{Mf} Diferencias negativas = 353.0 \text{ mm}$$

La suma del déficit medio mensual en un periodo idéntico al de la sequía considerada

$$SDMM = \sum_{Mi}^{Mf} DM(\tau) = 192.8 \,\mathrm{mm}$$

La suma del déficit que exceden a los medios mensuales para la duración de cada sequía

$$SDE = \sum_{Mi}^{Mf} Déficit$$
 en exceso = 178.6 mm

El Déficit en exceso se obtiene por ejemplo para el primer mes de la forma

$$|D_{1942,1}| = 17.3 \,\mathrm{mm}$$
 y $|DM(1)| = 10.5 \,\mathrm{mm}$

Como

$$|D_{1942,1}| > |DM(1)|$$

Entonces

Déficit en exceso = 17.3 mm - 10.5 mm = 6.8 mm

Si se hubiese tenido el caso en que $\left|D_{\nu,\tau}\right| \leq \left|DM(\tau)\right|$ entonces el déficit en exceso sería cero.

El número total de meses en que ocurre un déficit en exceso de cada sequía NME = 15

La intensidad de la sequía, medida a través del índice

$$Y = \frac{\sum_{Mi}^{Mf} Deficit \text{ en exceso}}{\sum_{Mi}^{Mf} DM(\tau)} = \frac{178.6 \text{ mm}}{192.8 \text{ mm}} = 0.927$$

La severidad de la sequía medida con el índice

$$YD = \frac{\sum_{Mi}^{Mf} \text{Deficit en exceso}}{\sum_{Mi}^{Mf} DM(\tau)} Ds = 0.927(18) = 16.7$$

La lluvia real que cae durante el periodo de sequía (PRAS) expresada como un porcentaje de la suma de la lluvia media anual (SPMA) sobre el mismo periodo

$$PRAS = \sum_{Mi}^{Mf} Q_{\nu,\tau} = 394.9 \,\text{mm}$$

$$SPMA = \sum_{Mi}^{Mf} T(\tau) = 601.4 \,\mathrm{mm}$$

$$PPR = \left(\frac{PRAS}{SPMA}\right)100 = \left(\frac{394.9 \text{ mm}}{601.4 \text{ mm}}\right)100 = 65.7 \%$$

El porcentaje del déficit mensual de la sequía, estimado a partir del punto anterior

Después de este periodo de sequía se presentó uno húmedo con las siguientes características

Periodo:

Mi = Julio de 1943 a Mf = Marzo de 1945

Duración:

21 meses

La lluvia que cae durante el periodo húmedo previo a la siguiente sequía (PRAH) expresado como un porcentaje de la suma de la lluvia media anual sobre el mismo periodo (SPMA).

$$PRAH = \sum_{Mi}^{Mf} Q_{\nu,\tau} = 974.7 \,\text{mm}$$

$$SPMA = \sum_{Mi}^{Mf} T(\tau) = 859.1 \text{mm}$$

$$PPS = \left(\frac{PRAH}{SPMA}\right)100 = \left(\frac{974.7 \text{ mm}}{859.1 \text{mm}}\right)100 = 113.5 \%$$

El porcentaje del superávit mensual para el periodo húmedo, estimado a partir del punto anterior

En las tablas 2.12 y 2.13 se presentan las características obtenidas para los periodos de sequía y superávit de la estación analizada. De estas tablas se concluye

- 1) La duración promedio de las sequías es de 22.6 meses (1.9 años)
- 2) La periodicidad promedio es de cada 50.7 meses (4.2 años)
- 3) Se presenta una sequía severa cada 138 meses (11.5 años)
- 4) El déficit máximo puede alcanzar el 50% con respecto a los valores medios esperados
- 5) El déficit promedio con respecto a la media en un periodo de sequía es del 34.6%
- 6) La duración promedio del superávit es de 27 meses (2.2 años)
- 7) El superávit promedio con respecto a la media en un periodo húmedo es del 24.8%

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1942	0.0	0.0	0.0	0.0	0.0	0.0	42.8	132.1	60.4	57.0	18.7	4.3
1943	8.5	0.0	10.0	0.0	3.0	58.1	114.0	74.4	126.7	50.4	0.0	109.5
1944	4.7	24.5	4.7	0.0	14.2	49.6	90.0	141.9	123.8	2.3	21.7	1.0
1945	10.8	3.1	7.4	2.2		29.4	107.0	96.9	21.2	4.3	3.0	0.0
1946	6.0	6.5	6.0	17.4	17.0	61.0	295.4	292.7	129.0	43.0	55.0	151.6
1947	64.0	0.0	0.0	30.0	44.0	84.7	0.6	153.0	85.0	26.0	0.0	10.0
1948	83.0	0.0	0.6	1.0	18.5	123	70.4	87.6	90.5	68.4	2.6	0.0
1949	0.0	0.0	0.0	0.0	21.5	73.4	107.6	43.9	111.4	13.1	0.0	0.0
1950	0.0	0.0	0.0	2.5	27.4	72.2	116.7	76.0	97.5	0.0	0.0	0.0
1951	0.0	0.0	8.9	0.0	24.3	150.5	99.0	70.9	100.1	113.3	0.0	0.0
1952	0.0	0.0	0.0	7.4	15.0	147.7	30.0	86.8	103.7	0.0	13.8	2.3
	0.0	5.7		0.0		52.2	93.0		38.3	51.6		
1953			0.0		0.0			162.7			17.3	70.5
1954	0.0	0.0	0.0	1.1	7.6	87.5	125.0	58.3	42.5	38.9	0.0	0.0
1955	0.0	0.0	0.0	0.0	1.1	79.6	115.4	115.1	109.9	56.3	0.0	0.0
1956	0.0	10.4	0.0	2.0	47.5	102.2	112.6	131.6	6.2	8.0	1.8	8.5
1957	4.5	0.0	0.0	0.0	6.8	32.0	26.0	17.1	139.0	6.0	0	0.0
1958	66.5	3.7	21.1	0.0	15.0	83.0	154.6	130.4	163.1	81.9	63.1	20.5
1959	4.2	1.2	0.0	89.0	6.5	66.5	133.7	123.9	68.0	48.1	0.0	1.0
1960	0.0	0.0	0.0	1.0	0.0	30.0	62.0	150.0	48.5	21.0	0.0	10.0
1961	17.5	0.0	1.8	2.0	26.0		56.4	67.4	85.0		5.0	0.0
1962	22.8	9.8	0.0	35.2	0.0	59.5	39.8	30.8	107.2	42.1	0.0	18.0
1963	0.0	3.7	8.6	0.0	16.9	73.6	127.6	94.9	134.3	44.5	1.0	67.8
1964	31.5	0.0	0.0	0.0	21.4	67.4	78.7	85.9	88.7	24.6	15.4	41.5
1965	12.6	17.7	0.0	33.4	21.4	15.1	77.1	208.8	149.5	37.8	40.2	43.9
1966	27.5	8.4	10.5	54.6	8.9	128.3	159.1	255.7	33.0	43.1	13.5	1.5
1967	47.7	7.2	34.4	5.5	28.7	26.3	61.0	211.6	133.2	40.0	6.4	0.9
1968	0.4	16.9	105.6	11.8	9.6	52.3	95.4	145.7	160.1	16.9	2.0	18.5
1969	13.9	7.1	0.0	0.0	1.4	16.7	55.9	51.4	52.7	19.5	7.0	7.3
1970	1.2	12.5	0.0	0.0	0.0	143.1	69.7	27.6	93.1	21.6	27.3	0.0
1971	3.0	0.0	0.0	0.0	67.7	151.2	80.9	223.3	157.0	6.9	0.0	0.0
1972	5.4	0.0	17.0	7.0	107.7	87.1	75.1	92.1	83.4	10.8	17.7	1.5
1973	30.0	10.7	0.0	0.0	37.8	85.1	122.2	166.9	55.1	42.9	0.0	0.0
1974	0.0	1.8	0.5	0.0	11.8	9.1	99.3	117.5	139.6	19.2	0.0	13.2
1975	12.2	0.0	0.0	0.0	29.4	58.4	142.3	176.6	8.0	0.0	0.0	23.0
1976	3.7	0.0	1.0	9.0	2.7	6.5	288.8	68.6	126.1	37.5	85.8	9.2
1977	3.2	0.0	0.0	6.3	19.8	93.7	40.5	99.7	44.1	39.3	2.7	4.3
1978	0.0	1.5	1.5	0.0	2.2	77.2	92.8	126.6	122.9	57.1	6.5	1.3
1979	0.0	13.5	0.0	1.5	3.0	16.5	88.1	130.2	52.1	0.0	7.4	70.3
1980	47.5	17.0	0.0	5.4	0.3	20.0	78.0	39.8	21.8	64.2	40.7	25.4
1981	51.9	5.8	0.0	19.3	18.7	55.9	51.2	87.7	42.0	7.5	0.0	5.5
1982	0.0	0.0	0.0	12.6	14.4	10.6	89.6	50.4	14.5	54.6	39.1	
	25.8	0.0	0.0	0.0	59.6	31.5	204.7	81.2	137.8	35.2	15.5	0.0
1983	29.3	0.0	0.0	0.0	42.0	114.5	162.8	77.7	49.2	10.4	0.0	3.4
1984			0.0	6.7	10.6	143.2	86.1	82.8	8.2	66.2	0.0	47.2
1985	1.0	0.0				213.6	52.1	40.5	64.7	49.4	11.2	6.5
1986	0.0	8.6	0.0	0.0	2.7			39.8	59.6	0.0	0.0	0.1
1987	35.4	31.2	0.0	12.4	23.6	61.9	216.5		50.9	0.0	0.0	2.2
1988	0.5	0.0	5.1	21.6	0.0	52.8	83.6	78.8				
1989	0.0	0.0	0.0	1.5	48.5	27.5	46.5	167.9	71.3	2.4 70.2	27.0 0.0	36.5 0.0
1990	10.3	19.3	0.0	2.2	36.1	45.6	127.4	133.0	66.0			
1991	0.0	3.8	0.0	0.0	9.0	90.8	478.6	47.1	101.8	17.5	1.7	23.5
1992	224.4	7.7	2.4	5.7	11.0	30.9	76.9	57.1	18.6	121.6	27.7	4.4
1993	16.1	0.0	0.8	0.0	21.3	107.1	91.3	80.0	40.2	33.0	0.0	2.4
1994	5.6	0.0	0.0	15.2	9.5	120.9	46.9	49.0	77.9	49.4	0.0	0.0
1995	2.2	1.5	0.0	0.0	29.0	93.5	82.0	196.5	102.4	0.0	3.0	4.4
1996	0.0	4.1	0.0	11.5	14.3	33.6	72.4	101.3	146.6	101.1	2.2	0.0
1997	34.9	12.6	13.3	15.4	5.9	40.2	37.0	50.8	18.3	50.1	13.5	0.0

Tabla 2.6. Lluvia acumulada mensual $Q_{\nu,\tau}$ de la estación 01019 del estado de Aguascalientes.

	Ene	Feb	Mar	Abr	May	Junes	Jul	Ago	Sep	Oct	Nov	Dic
Q	17.3	4.9	4.6	8.0	18.7	69.8	104.1	106.9	81.8	34.7	11.0	15.8
Med*	4.3	1.3	0.0	1.5	14.3	64.2	88.9	89.9	84.2	36.4	2.4	3.8
SQ	34.3	7.1	15.1	15.5	19.9	44.8	75.9	59.7	44.9	29.0	17.8	29.0
S_q^2	1180.3	50.3	228.1	238.9	396.3	2004.9	5752.8	3568.4	2014.4	843.8	317.7	844.3
KQ	27.1	5.9	40.7	17.3	9.6	3.7	13.8	3.8	1.9	3.9	8.9	12.5
g_{Q}	4.3	1.7	5.8	3.4	2.1	0.8	2.8	1.0	0.0	0.9	2.3	2.9
CVQ	1.9	1.4	3.2	1.9	1.1	0.6	0.7	0.6	0.6	0.8	1.6	1.8
Máx.**	224.4	31.2	105.6	89.0	107.7	213.6	478.6	292.7	163.1	121.6	85.8	151.6

Tabla 2.7. Estadísticos de la serie $Q_{\nu,\tau}$ de la estación 01019 del estado de Aguascalientes.

2.6	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
$T(\tau)$		4.9				69.8	104.1				11.0	15.8
$W(\tau)$	0.143	0.112	0.112	0.120	0.147	0.275	0.361	0.369	0.305	0.187	0.128	0.140

Tabla 2.8. Parámetros $T(\tau)$ y $W(\tau)$ de la estación 01019 del estado de Aguascalientes.

^{*}Mediana de la serie

^{**}Valor máximo registrado

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1942	0.0	-1.9	-0.7	-0.7	-1.3	-5.5	15.6	99.5	58.1	52.6	20.9	5.7
1943	7.0	-1.1	9.3	0.6	1.9	53.5	108.0	75.9	117.2	57.0	2.9	108.4
1944	17.9	24.5	6.9	0.3	13.0	48.0	82.1	133.8	132.0	11.7	18.8	2.1
1945	8.8	2.1	7.1	2.5	4.7	25.5	90.9	92.0	16.7	-7.9	-2.4	-1.9
1946	3.4	4.9	6.0	17.6	18.4	60.9	292.2	362.0	206.9	66.4	59.0	158.3
1947	84.4	7.5	0.3	29.5	47.1	92.5	8.8	117.9	88.3	27.2	-0.9	8.3
1948	81.9	7.2	0.9	0.5	17.4	122.6	89.5	82.2	82.9	68.6	6.9	-0.6
1949	-2.3	-2.2	-0.8	-0.7	20.2	73,8	109.0	45.7	92.7	15.1	-2.5	-1.9
	-2.5	-2.2	-0.8	1.8	26.5	74.3	118.3	81.2	89.7	1.5	-4.2	-2.1
1950		-2.2	8.1	0.4	23.2	151.7	128.6	79.9	91.9	115.2	10.3	-0.1
1951	-2.5			6.7	14.8	146.6	57.8	69.7	92.3	1.9	9.6	2.1
1952	-2.2	-2.2	-0.8				84.6	155.5	53.1	46.2	18.8	71.6
1953	-1.9	3.5	-0.2	-0.6	-1.3	46.7						
1954	8.0	-1.0	-0.7	0.5	6.5	84.1	130.2	67.9	30.6	29.3	-0.7	-1.6
1955	-2.5	-2.2	-0.8	-0.7	-0.2	74.4	117.0	119.9	113.8	62.3	3.5	-1.0
1956	-2.4	8.1	0.4	1.5	46.5	109.9	127.0	140.0	16.3	-4.3	-3.2	6.5
1957	3.1	-1.5	-0.7	-0.7	5.5	28.4	11.0	-17.2	101.0	9.6	-3.2	-1.9
1958	63.9	8.9	21.5	2.0	14.1	81.7	158.9	150.6	176.4	99.6	71.4	28.9
1959	6.0	-0.0	-0.6	88.4	18.3	66.4	132.4	134.3	76.3	47.0	1.6	-0.3
1960	-2.3	-2.2	-0.8	0.3	-1.1	24.5	45.6	128.5	55.0	16.0	-2.4	8.1
1961	16.4	-0.1	1.2	1.6	25.0	69.3	56.2	49.7	67.5	13.3	2.3	-1.2
1962	20.3	10.1	0.6	34.7	3.9	55.4	34.6	5.2	76.1	41.0	0.8	16.6
1963	0.1	1.7	8.2	0.4	15.8	72.8	128.7	103.9	133.4	54.1	3.5	66.8
1964	38.8	2.4	-0.3	-0.6	20.1	67.8	77.9	76.3	79.3	24.1	14.0	41.9
1965	16.3	17.6	1.4	33.0	25.0	16.9	57.9	191.8	175.4	55.3	42.8	48.3
1966	32.1	10.0	11.0	55.4	15.9	127.5	179.9	283.7	86.9	44.0	14.7	2.0
1967	45.7	10.4	35.0	9.1	28.9	29.1	46.3	190.3	158.7	54.3	8.9	0.6
	-1.7	14.7	106.7	24.0	11.9	50.4	88.4	139.9	170.2	33.4	1.8	17.2
1968		6.7	0.2	-0.5	0.1	11.6	34.8	25.9	27.9	9.4	3.8	6.3
1969	14.1			-0.5	-1.3	137.6	94.2	23.9	67.8	18.9	25.3	2.0
1970	-0.1	10.5	0.6		66.4	164.3	115.0	227.3	193.8	27.8	-0.9	-1.7
1971	1.0	-1.8	-0.8	-0.7			90.2	86.9	77.3	9.9	14.5	1.9
1972	2.8	-1.6	16.3	8.4	107.8	111.6			76.3	41.9	0.9	-1.4
1973	28.0	11.9	0.8	-0.5	36.6	90.0	129.5	176.3			-0.6	11.6
1974	-2.4	-0.4	-0.1	-0.6	10.5	6.9	76.5	107.3	139.7	30.0		
1975	11.5	-0.6	-0.6	-0.6	28.1	60.9	139.1	189.5	33.2	-9.0	-5.6	20.7
1976	4.4	-1.4	0.3	8.5	2.8	2.1	264.3	127.6	132.4	46.9	87.4	19.9
1977	3.7	-1.5	-0.7	5.7	19.5	93.9	49.2	79.5	35.7	30.7	2.2	3.0
1978	-1.8	-0.6	0.9	-0.5	0.9	72.3	93.7	122.8	127.7	65.7	10.5	1.2
1979	-2.0	11.3	0.7	1.0	1.9	11.9	67.1	116.6	55.0	-5.0	2.3	69.0
1980	55.1	21.2	1.8	5.0	-0.1	14.8	58.1	22.9	-3.9	48.1	42.4	29.8
1981	53.9	9.9	0.6	18.8	20.3	56.3	46.3	66.4	29.6	-2.3	-4.7	3.3
1982	-1.7	-2.1	-0.8	11.9	14.9	9.6	67.8	37.0	-6.9	38.0	39.5	15.9
1983	25.8	0.9	-0.5	-0.6	58.3	42.4	194.8	114.6	140.2	46.1	16.9	0.8
1984	27.1	1.1	-0.4	-0.6	40.7	120.6	181.1	106.0	48.9	4.3	-3.9	1.3
1985	-1.0	-2.0	-0.8	6.0	10.3	140.9	111.8	85.6	1.7	51.2	= 2.1	45.9
1986	4.3	7.1	0.2	-0.5	1.4	208.8	102.3	39.9	44.2	42.4	12.2	6.7
	34.0	33.0	3.1	12.2	24.2	63.4	214.2	80.4	51.5	-5.7	-5.2	-2.2
1987		-2.1	4.3	21.6	1.9	48.2	75.8	68.4	39.1	-7.9	-5.5	-0.1
1988	-2.0		-0.8	0.8	47.4	35.4	34.0	142.0	82.0	2.4	22.9	38.2
1989	-2.2	-2.2		1.8	35.1	50.1	120.3	138.9	75.8	69.0	4.4	-0.9
1990	13.5	18.8	1.6			87.8	485.1	187.5	126.4	25.8	0.6	22.0
1991	-2.4	1.6	-0.4	-0.6	7.7	28.7	62.0	41.6	-1.4	106.0	36.8	8.0
1992	225.3	31.0	5.3	5.8	10.7					23.7	-1.4	0.7
1993	14.9	-0.2	0.2	-0.5	20.0	107.5	104.9	80.3	32.0			-1.4
1994	3.4	-1.6	-0.7	14.5	10.5	118.6	64.5	34.4	55.8	44.5	1.3	
1995	-0.2	-0.5	-0.6	-0.6	27.7	95.9	91.5	191.8	128.3	8.7	-0.3	2.8
1996	-1.8	1.9	-0.3	10.9	14.7	32.5	58.9	84.6	139.8	111.9	12.0	0.2
1997	32.6	14.3	14.3	16.6	7.2	37.0	25.1	21.7	-7.7	33.4	13.3	0.3

Tabla 2.9. Lluvia efectiva mensual $E_{v,\tau}$ de la estación 01019 del estado de Aguascalientes.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1942	-17.3	-6.9	-5.4	-8.7	-19.9	-75.3	-88.5	-7.5	-23.7	17.9	9.9	-10.1
1943	-10.3	-6.1	4.7	-7.5	-16.8	-16.4	3.9	-31.1	35.4	22.3	-8.2	92.6
1944	0.7	19.6	2.2	-7.8	-5.7	-21.8	-21.9	26.9	50.2	-22.9	7.7	-13.7
1945	-8.5	-2.8	2.4	-5.5	-14.0	-44.3	-13.1	-14.9	-65.2	-42.6	-13.4	-17.7
1946	-13.9	-0.0	1.3	9.5	-0.3	-8.9	188.0	255.1	125.1	31.7	48.0	142.5
1947	67.1	2.6	-4.4	21.5	28.4	22.7	-95.3	10.9	6.5	-7.5	-11.9	-7.5
1948	64.6	2.3	-3.8	-7.5	-1.3	52.8	-14.6	-24.7	1.1	33.9	-4.0	-16.4
1949	-19.7	-7.2	-5.5	-8.7	1.5	3.9	4.9	-61.2	10.9	-19.6	-13.5	-17.7
1950	-19.9	-7.2	-5.5	-6.2	7.8	4.5	14.2	-25.7	7.8			
1951	-19.9	-7.2	3.4	-7.6	4.5	81.9	24.5			-33.2	-15.3	-17.9
	-19.9	-7.2 -7.1						-27.0	10.0	80.5	-0.7	-15.9
1952			-5.5	-1.3	-3.9	76.8	-46.4	-37.2	10.5	-32.7	-1.4	-13.7
1953	-19.3	-1.4	-4.8	-8.6	-19.9	-23.2	-19.5	48.6	-28.7	11.6	7.8	55.8
1954	-9.3	-6.0	-5.3	-7.6	-12.2	14.3	26.0	-39.0	-51.2	-5.4	-11.9	-17.4
1955	-19.8	-7.2	-5.5	-8.7	-18.9	4.6	12.9	12.9	32.0	27.6	-7.5	-16.9
1956	-19.7	3.2	-4.3	-6.5	27.8	40.0	22.9	33.1	65.5	-38.9	-14.2	-9.3
1957	-14.2	-6.6	-5.4	-8.7	-13.2	-41.5	-93.1	-124.1	19.3	-25.0	-14.2	-17.8
1958	46.6	3.9	16.9	-6.0	-4.6	11.9	54.8	43.7	94.6	64.9	60.4	13.1
1959	-11.2	-5.0	-5.2	80.4	-0.4	-3.5	28.3	27.4	-5.4	12.4	-9.4	-16.1
1960	-19.6	-7.2	-5.5	-7.7	-19.8	-45.3	-58.5	21.5	-26.7	-18.7	-13.4	-7.7
1961	-0.9	~5.0	-3.4	-6.4	6.3	-0.6	-47.9	-57.2	-14.3	-21.4	-8.7	-17.0
1962	3.0	5.2	-4.1	26.7	-14.8	-14.4	-69.5	-101.8	-5.7	6.4	-10.2	0.8
1963	-17.2	-3.2	3.6	-7.6	-2.9	2.9	24.6	-2.9	51.6	19.5	-7.5	50.9
1964	21.5	-2.5	-4.9	-8.6	1.4	-2.0	-26.2	-30.7	-2.5	-10.6	3.0	26.1
1965	-0.9	12.6	-3.3	24.9	6.4	-52.9	-46.2	84.9	93.6	20.6	31.8	32.5
1966	14.9	5.1	6.4	47.3	-2.9	57.7	75.8	176.7	5.2	9.4	3.7	-13.8
1967	28.4	5.4	30.3	1.1	10.2	-40.8	-57.8	83.4	76.9	19.7	-2.0	-15.2
1968	-19.1	9.8	102.3	16.0	-6.8	-19.4	-15.7	32.9	88.4	-1.3	-9.2	1.42
1969	-3.2	1.8	-4.5	-8.6	-18.6	-58.3	-69.3	-81.0	-53.9	-25.3	-7.2	-9.5
1970	-17.5	5.6	-4.0	-8.5	-19.9	67.8	-9.9	-82.9	-14.0	-15.7	14.3	-13.8
1971	-16.3	-6.8	-5.4	-8.7	47.7	94.5	10.9	120.4	111.9	-6.8	-11.9	-17.5
	-14.4	-6.6	11.6	0.4	89.0	41.8	-13.9	-19.9	-4.5	-24.7	3.5	-13.8
1972						20.2	25.4			7.2	-10.1	-17.2
1973	10.7	6.9	-3.9	-8.5	17.8			69.3	-5.5	-4.7	-10.1	
1974	-19.8	-5.4	-4.8	-8.6	-8.2	-63.0	-27.6	0.4	57.9			-4.2
1975	-5.7	-5.6	-5.3	-8.7	9.4	-8.9	34.9	82.6	-48.6	-43.8	-16.6	4.9
1976	-12.9	-6.4	4.4	0.5	-15.9	-67.7	160.2	20.7	50.6	12.3	76.4	4.0
1977	-13.5	-6.5	-5.4	-2.4	0.7	24.0	-54.9	-27.5	-46.1	-4.0	-8.8	-12.7
1978	-19.1	-5.6	-3.8	-8.5	-17.8	2.5	-10.4	15.8	45.9	31.0	-0.6	-14.6
1979	-19.4	6.4	-3.9	-7.0	-16.7	-57.9	-36.9	9.7	-26.8	-39.7	-8.7	53.3
1980	37.8	16.3	-2.8	-2.9	-18.9	-55.0	-46.0	-84.1	-85.7	13.5	31.4	13.9
1981	36.6	4.9	-4.1	10.8	1.6	-13.5	-57.8	-40.5	-52.2	-36.9	-15.7	-12.5
1982	-19.1	-7.1	-5.5	3.9	-3.7	-60.3	-36.3	-69.9	-88.7	3.3	28.5	0.2
1983	8.5	-4.0	-5.1	-8.6	39.6	-27.4	90.7	7.7	58.3	11.4	5.9	-14.9
1984	9.8	-3.9	-5.1	-8.6	22.0	50.7	77.0	-0.8	-32.9	-30.4	-14.9	-14.5
1985	-18.4	-7.0	-5.5	-1.9	-8.4	71.0	7.7	-21.3	-80.1	16.5	-8.9	30.2
1986	-12.9	2.2	-4.4	-8.6	-17.3	139.0	-1.8	-67.1	-37.6	7.7	1.2	-9.1
1987	16.8	28.1	-1.5	4.2	5.5	-6.4	110.0	-26.6	-30.3	-40.4	-16.2	-17.9
1988	-19.4	-7.1	-0.4	13.5	-16.7	-21.7	-28.3	-38.6	-42.7	-42.7	-16.5	15.9
1989	-19.6	-7.2	-5.5	-7.2	28.7	-34.4	-70.0	35.2	0.2	-32.2	11.9	22.4
1990	-3.8	13.9	-3.1	-6.2	16.5	-19.7	16.2	32.0	-6.0	34.4	-6.6	-16.7
1991	-19.8	-3.4	-5.0	-8.6	-10.9	17.9	380.9	80.6	44.6	-8.8	-10.4	6.2
		26.1	0.7	-2.3	-8.0	-41.1	-42.1	-65.3	-83.2	71.4	25.8	-7.8
1992	207.9					37.6	0.8	-26.6	-49.8	-10.9	-12.4	-15.1
1993	-2.3	-5.2	-4.5	-8.6	1.3							
1994	-13.9	-6.5	-5.4	6.5	-8.3	48.8	-39.6	-72.5	-26.0	9.8	-9.8	-17.2
1995	-17.6	-5.4	-5.3	-8.7	9.0	26.1	-12.7	84.9	46.5	-25.9	-11.3	-12.9
1996	-19.2	-3.0	-5.0	2.9	-3.9	-37.3	-45.2	-22.3	57.9	77.3	1.0	-15.7
1997	15.3	9.4	9.7	8.5	-11.6	-32.8	-78.9	-85.2	-89.6	-1.3	2.3	-15.5

Tabla 2.10. Serie de diferencias mensuales $D_{\nu,\tau}$ de la estación 01019 del estado de Aguascalientes.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1942	-17.3	-6.9	-5.4	-8.7	-19.9	-75.3	-88.5	-7.5	-23.7	11.7	Ear of	-10
1943	-10.3	-6.1		-7.5	-16.8	-16.4		-31.1			-8.2	
1944				-7.8	-5.7	-21.8	-21.9	11 11 11		-22.9	0.2	-13
945	-8.5	-2.8		-5.5	-14.0	-44.3	-13.1	-14.9	-65.2		12.4	
946								-14.9		-42.6	-13.4	-17
	-13.9		4.4		-0.3	-8.9						
947			-4.4				-95.3			-7.5	-11.9	-7
948			-3.8	-7.5	-1.3		-14.6	-24.7			-4.0	-16
949	-197	-7.2	-5.5	-8.7				-61.2		-19.6	-13.5	-17
950	-199	-7.2	-5.5	-6.2				-25.7		-33.2	-15.3	-17
951	-199	-7.2		-7.6				-27.0		00.2	-0.7	-13
952	-19.6	-7.1	-5.5	-1.3	-3.9		-46.4	-37.2		-32.7		
953		-1.4								-32.7	-1.4	-13
	-19.3		-4.8	-8.6	-19.9	-23.2	-19.5		-28.7			
954	-9.3	-6.0	-5.3	-7.6	-12.2			-39.0	-51.2	-5.4	-11.9	j-17
955	-19.8	-7.2	-5.5	-8.7	-18.9						-7.5	-16
956	-19.7		-4.3	-6.5						-38.9	-14.2	-(
957	-14.2	-6.6	-5.4	-8.7	-13.2	-41.5	-93.1	-124.1		-25.0	-14.2	-17
958			59	-6.0	-4.6		0011			2010		
959	-11.2	-5.0	-5.2	-0.0	-0.4	-3.5			-5.4		-9.4	-16
			-5.5				E0 E			40.7		
960	-19.6	-7.2		-7.7	-19.8	-45.3	-58.5	F7.0	-26.7	-18.7	-13.4	-1
961	-0.9	-5.0	-3.4	-6.4	4.4.0	-0.6	-47.9	-57.2	-14.3	-21.4	-8.7	-17
962			-4.1		-14.8	-14.4	-69.5	-101.8	-5.7		-10.2	
963	-17.2	-3.2		-7.6	-2.9			-2.9			-7.5	
964		-2.5	-4.9	-8.6		-2.0	-26.2	-30.7	-2.5	-10.6		
965	-0.9		-3.3			-52.9	-46.2					
966	FE		LUI		-2.9	111						-13
967					fin o U	-40.8	-57.8				-2.0	
	40.4				0.0					4.0		-15
968	-19.1		1.0	0.0	-6.8	-19.4	-15.7			-1.3	-9.2	100
969	-3.2		-4.5	-8.6	-18.6	-58.3	-69.3	-81.0	-53.9	-25.3	-7.2	-6
970	-17.5		-4.0	-8.5	-19.9		-9.9	-82.9	-14.0	-15.7		-13
971	-16.3	-6.8	-5.4	-8.7						-6.8	-11.9	-17
972	-14.4	-6.6					-13.9	-19.9	-4.5	-24.7		-13
973		010	-3.9	-8.5			10.0	10.0	-5.5	Samuel .	-10.1	
974	10.9	-5.4	-4.8	-8.6	-8.2	-63.0	27.6		-0.0			
	-19.8				-0.2		-27.6		40.0	-4.7	-11.6	-6
975	-5.7	-5.6	-5.3	-8.7		-8.9			-48.6	-43.8	-16.6	1.0
976	-12.9	-6.4	-4.4		-15.9	-67.7						
977	-13.5	-6.5	-5.4	-2.4			-54.9	-27.5	-46.1	-4.0	-8.8	-12
978	-19.1	-5.6	-3.8	-8.5	-17.8		-10.4				-0.6	-14
979	-19.4		-3.9	-7.0	-16.7	-57.9	-36.9		-26.8	-39.7	-8.7	
980	1011		-2.8	-2.9	-18.9	-55.0	-46.0	-84.1	-85.7	00.7	0.7	
981			-2.0 -4.1	-2.0	10.0	-13.5	-57.8	-40.5	-52.2	-36.9	-15.7	-12
	40.4	-7.4			0.7					-30.9	-10.7	-12
982	-19.1	-7.1	-5.5		-3.7	-60.3	-36.3	-69.9	-88.7			
983		-4.0	-5.1	-8.6		-27.4						-14
984		-3.9	-5.1	-8.6				-0.8	-32.9	-30.4	-14.9	-14
985	-18.4	-7.0	-5.5	-1.9	-8.4			-21.3	-80.1		-8.9	
986	-12.9		-4.4	-8.6	-17.3		-1.8	-67.1	-37.6			-(
987	. 2.0		-1.5	3.0		-6.4	1.0	-26.6	-30.3	-40.4	-16.2	nde-1
	10.4	7.4			16.7		20.2	-38.6				
988	-19.4	-7.1	-0.4	20	-16.7	-21.7	-28.3		-42.7	-42.7	-16.5	
989	-19.6	-7.2	-5.5	-7.2		-34.4	-70.0	35.2		-32.2		U.
990	-3.8		-3.1	-6.2		-19.7			-6.0		-6.6	-16
991	-19.8	-3.4	-5.0	-8.6	-10.9					-8.8	-10.4	
992				-2.3	-8.0	-41.1	-42.1	-65.3	-83.2			-
993	-2.3	-5.2	-4.5	-8.6		15/1		-26.6	-49.8	-10.9	-12.4	-1:
	-13.9	-6.5	-5.4	0.0	-8.3		-39.6	-72.5	-26.0	10.0	-9.8	-17
994				0.7	-0.0			-12.0	-20.0	25.0		
995	-17.6	-5.4	-5.3	-8.7	0.0	07.0	-12.7	00.0		-25.9	-11.3	-12
996	-19.2	3.0	-5.0		-3.9	-37.3	-45.2	-22.3				-15
997					-11.6	-32.8	-78.9	-85.2	-89.6	-1.3		-15
	-10.5	-3.4	-3.5	-4.9	-6.9	-18.1	-24.3	-23.8	-21.3	-12.0	-6.7	-6

Tabla 2.11. Déficit medio mensual $DM(\tau)$ en la estación 01019 del estado de Aguascalientes.

Mi	Mf	Ds	SDN	SDMIN	SDE	NME	У	YD	PRAS	SPMA	PPR	PDM
Ene42	Jun43	18	353.0	192.8	178.6	15	0.927	16.7	394.9	601.4	65.7	34.3
Abr45	Jun46	11-	244.6	141.9	126.2	8	0.890	9.8	282.0	473.2	59.6	40.4
Ago49	Feb51	19	315.0	233.0	129.6	16	0.556	10.6	560.7	750.4	74.7	25.3
Oct52	May55	32	558.5	348.6	236.3	26	0.678	21.7	869.4	1070.9	81.2	18.8
Sep56	May58	21	588.9	224.5	369.4	18	1.645	34.5	362.2	674.8	53.7	46.3
Nov59	May63	43	755.9	481.9	362.7	30	0.753	32.4	1062.5	1514.0	70.2	29.8
Mar69	Abr71	26	647.3	299.2	370.0	23	1.237	32.2	611.0	968.4	63.1	36.9
Nov73	Abr75	18	268.6	184.3	125.6	14	0.681	12.3	424.2	539.6	78.6	21.4
Jul77	May78	11	208.8	127.2	89.6	10	0.704	7.7	235.8	408.0	57.8	42.2
Mar79	Abri33	50	1309.1	590.()	770.4	40	1.306	65.3	1398.3	1924.1	72.7	27.3
Ago87	Abr:90	33	696.3	386.9	340.7	29	0.881	29.0	855.9	1240.9	69.0	31.0
Abr92	Sep92	6	242.0	99.4	145.4	5	1.462	8.8	200.2	289.4	51.4	48.6
Ago93	Abr95	21	416.1	241.5	177.9	19	0.737	15.5	533.7	763.0	69.9	30.1
May97	Dic97	8	317.3	123.0	209.4	6	1.702	13.6	215.8	442.9	48.7	51.3

Tabla 2.12. Características de las sequías en la estación 01019 del estado de Aguascalientes.

8.8.1	Mi	45 M247	Dh	PRAH	SPMA	PPS	PSM
	Jul43	Mar45	21	974.7	859.1	113.5	13.5
	Jul46	Jul49	37	2212.1	1537.7	143.9	43.9
	Mar51	Sep52	19	957.6	871.9	109.8	9.8
	Jun55	Ago56	15	882.6	758.7	116.3	16.3
	Jun58	Oct59	17	1237.7	875.2	141.4	41 4
	Jun63	Feb69	69	3659.5	2835.8	129.0	29.0
	May71	Oct73	30	1742.5	1371.8	127.0	27.0
	May75	Jun77	26	1199.6	1044.3	114.9	14.9
	Jun78	Feb79	9	497.9	446.5	111.5	11.5
	May83	Jul87	51	2337.1	2104.1	111.0	11.0
	May90	Mar92	23	1486.6	947.7	156.9	56.9
	Oct92	Jul93	10	390.3	289.1	135.0	35.0
	May95	Abr97	24	1074.1	955.7	112.4	12.4

Tabla 2.13. Características de los periodos húmedos en la estación 01019 del estado de Aguascalientes.

CAPITULO 3 CONCEPTOS BÁSICOS DE PROBABILIDAD Y ESTADÍSTICA

3.1. Conjuntos

Un conjunto es cualquier colección de objetos o elementos bien definidos. Los conjuntos se representan con letras mayúsculas y sus elementos por minúsculas. Por ejemplo, si un conjunto A se compone de los elementos $x_1, x_2, x_3, ..., x_n$, entonces su representación es $A = \{x_1, x_2, x_3, ..., x_n\}$.

Para que se defina un conjunto se debe determinar si un objeto específico pertenece $(x \in A)$ o no $(x \notin A)$ a él. Para lograr esto se debe hacer una lista de sus elementos o describir alguna propiedad conservada por todos ellos.

El conjunto que contiene todos los conjuntos bajo consideración se llama universal Ω y al que no contiene elementos se le llama nulo o vacío ϕ .

Un conjunto A es un subconjunto de otro conjunto B, expresado como $\{A \subset B\}$, si todo elemento de A es un elemento de B.

Si $A \subset B$ y $B \subset A$ entonces A y B son conjuntos equivalentes y si $A \subset B$ pero $A \neq B$ entonces A es un subconjunto propio de B.

3.1.1. Operaciones entre conjuntos

Hay dos operaciones básicas entre conjuntos que son la unión y la intersección.

El conjunto de todos los elementos que pertenecen al conjunto A o B se llama unión de A y B y se escribe como $A \cup B = \{x | x \in A \text{ o } x \in B\}$. La definición puede extenderse a más de dos conjuntos. Por ejemplo, si se tiene un número n de conjuntos $A_1, A_2, ..., A_n$, entonces su unión, expresada como $\bigcup_{i=1}^n A_i$, es un conjunto tal que x es un elemento de él, si y solo si x pertenece al menos a uno de los $A_i (i = 1, 2, ..., n)$.

El conjunto de todos los elementos que pertenecen simultáneamente a A y B se llama intersección $A \cap B = \{x | x \in A \text{ y } x \in B\}$. Si se tiene un número n de conjuntos $A_1, A_2, ..., A_n$, entonces su intersección, expresada como $\bigcap_{i=1}^n A_i$, es el conjunto formado por los elementos que pertenecen a todos los A_i (i = 1, 2, ..., n).

Dos conjuntos A y B son llamados disjuntos si su intersección es el conjunto vacío, esto es $A \cap B = \phi$.

Dos conjuntos A y B son llamados mutuamente excluyentes si no tienen elementos comunes.

El conjunto que consiste en todos los elementos de A que no pertenecen a B se llama la diferencia de A y B y se expresa como $A-B=A-A\cap B$.

El complemento de un conjunto A, expresado como \overline{A} o A', es el conjunto formado por todos los elementos del conjunto universal que no pertenecen al conjunto A, esto es, $x \in \overline{A}$ si y solo si $x \notin A$.

3.1.2. Teoremas relativos a conjuntos

Teorema 3.1. Ley conmutativa de las uniones

$$A \cup B = B \cup A$$

Teorema 3.2. Ley conmutativa de las intersecciones

$$A \cap B = B \cap A$$

Teorema 3.3. Ley asociativa de las uniones

$$A \cup (B \cup C) = (A \cup B) \cup C$$

Teorema 3.4. Ley asociativa de las intersecciones

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Teorema 3.5. Primera ley distributiva

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Teorema 3.6. Segunda ley distributiva

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Teorema 3.7. Primera ley de Morgan

$$(A \cup B)' = A' \cap B'$$
 o en forma general $\left(\bigcup_{i=1}^n A_i\right) = \bigcap_{i=1}^n A_i$

Teorema 3.8. Segunda ley de Morgan

$$(A \cap B)' = A' \cup B'$$
 o en forma general $(\bigcap_{i=1}^{n} A_i)' = \bigcup_{i=1}^{n} A_i'$

Teorema 3.9.

$$AU\phi = A$$
; $A\cap\phi = \phi$ there is the second and the second are second as some second as

Teorema 3,10.

$$A \cup \Omega = \Omega$$
; $A \cap \Omega = A$

3.1.3. Eventos condicionales

Sean los eventos A = Iluvia y B = viento, entonces se pueden expresar las combinaciones "A dado B", "B dado A" y "A dado B" como

A|B = Lluvia si hay viento

B|A = Viento si hay Iluvia

AB = Lluvia sin viento

3.2. Experimentos aleatorios

Se llama así al experimento que a pesar de repetirlo en condiciones aproximadamente idénticas sus resultados no son esencialmente los mismos. Por ejemplo, si se lanzan dos dados el resultado para la suma de los valores obtenidos estará en el conjunto $A = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$.

Al conjunto que consiste de todos los posibles resultados de un experimento aleatorio se le llama espacio muestral $\mathcal G$ y a cada uno de los resultados punto muestral. Con frecuencia habrá más de un espacio muestral que describe los resultados de un experimento pero solo hay uno que suministra la mayoría de la información.

Un suceso es un subconjunto A de $\mathcal G$, es decir, es un conjunto de resultados posibles. Si el suceso consiste de un solo punto de $\mathcal G$ se le llama elemental o simple.

Como sucesos particulares se tiene el suceso seguro o el suceso imposible (elemento ϕ) y también $A \cup B$ es el suceso A o B o ambos; $A \cap B$ es el suceso tanto A como B y A - B es el suceso A pero no B.

Eventos independientes son aquellos donde la ocurrencia del suceso A no implica la de suceso B.

3.3. Probabilidad

Probabilidad es la manera con la cual se mide la ocurrencia de un suceso. Existen dos procedimientos importantes por medio de los cuales se pueden estimar las probabilidades de ocurrencia de un suceso.

Enfoque a priori.- Si un suceso puede ocurrir en h maneras diferentes de un número total de n maneras posibles, todas igualmente factibles, entonces la probabilidad del suceso es h / n.

Enfoque como frecuencia relativa o a posteriori.- Si después de n repeticiones de un experimento, donde n es muy grande, un suceso ocurre h veces, entonces la probabilidad del suceso es h/n.

Arnbos criterios presentan dificultades por la vaguedad de los conceptos "igualmente factibles" y "número muy grande", por lo que la asignación de probabilidades se sustenta en un enfoque axiomático utilizando conjuntos.

3.3.1. Axiomas y teoremas de la teoría de probabilidades

Las probabilidades que se asignan a los diferentes eventos relacionados con los fenómenos aleatorios deben cumplir los siguientes axiomas:

- 1. La probabilidad de ocurrencia de un evento A es un número P(A) que se asigna a dicho evento, cuyo valor queda en el intervalo $0 \le P(A) \le 1$.
- 2. Si \mathcal{G} es un espacio de eventos, entonces $P(\mathcal{G}) = 1$.
- 3. Para cualquier número de sucesos mutuamente excluyentes

$$P(A_1 \cup A_2 \cup ...) = P(A_1) + P(A_2) + ...$$

De estos axiomas se desprenden algunos teoremas adicionales.

Teorema 3.11

Si A es un evento del espacio $\mathcal G$ entonces

$$P(\overline{A}) = 1 - P(A)$$

Teorema 3.12

La probabilidad del suceso nulo o imposible es cero

$$P(\phi) = 0$$

Teorema 3.13

Si A y B son dos sucesos cualesquiera, entonces

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Teorema 3.14

Para dos sucesos A y B

$$P(A) = P(A \cap B) + P(A \cap B)$$

3.3.2. Probabilidad condicional

La probabilidad condicional P(A|B) de evento A dado que el B ha ocurrido se calcula como

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 para $P(B) > 0$

De aquí

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

(3.2)

Esta ecuación se puede generalizar a más de dos eventos como

$$P(E_1 \cap E_2 \cap ... \cap E_k) = P(E_1)P(E_2|E_1)P(E_3|E_1, E_2)P(E_k|E_1, E_2, ..., E_{k-1})$$
(3.3)

Si dos eventos A y B son independientes la probabilidad de A no se altera si ocurre el evento B, es decir, dos eventos son independientes si

$$P(A|B) = P(A) \tag{3.4}$$

En general, los eventos $A_1, A_2, ..., A_n$ son independientes si y solo si

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2)...P(A_n)$$
 (3.5)

3.3.3. Teorema de Bayes

Si $B_1, B_2, ..., B_n$ son sucesos mutuamente excluyentes cuya unión es \mathcal{G} , con $B_i \cap B_j = \phi$ para $i \neq j$. Entonces, si A es cualquier subconjunto de \mathcal{G} se tiene que

$$P(B_j|A) = \frac{P(A \cap B_j)}{P(A)} = \frac{P(B_j)P(A|B_j)}{\sum_{j=1}^{n} P(B_j)P(A|B_j)}$$
(3.6)

La expresión anterior permite obtener las probabilidades de los diferentes sucesos $B_1, B_2, ..., B_n$ que pueden causar la ocurrencia de A.

3.4. Reglas de conteo

En muchos casos el número de puntos en \mathcal{G} no es muy grande y la cuenta directa de los puntos del muestreo empleado para obtener las probabilidades no representa mayor dificultad. Sin embargo, en otros casos el problema no es tan trivial. En tales situaciones se emplea el llamado análisis combinatorio, que hace uso de los conceptos de permutación y combinación.

El arreglo de n objetos en cierto orden se denomina permutación, y puede obtenerse con la expresión

$$_{n}P_{n} = n(n-1)(n-2)(n-3)...1 = n!$$
 (3.7)

Por ejemplo, todas las permutaciones que pueden hacerse con las letras A, B, C son ABC, BAC, BCA, CAB, CBA, esto es, para n=3, n!=3*2*1=6.

También se pueden ordenar n objetos tomados de r en r con la expresión

$${}_{n}P_{r} = \frac{n!}{(n-r)!} \tag{3.8}$$

Si se tienen las letras A, B, C, D, el número de maneras en que se pueden ordenar tomadas de 2 en 2 es $\mathcal{G} = \{AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC\}$, para n = 3 y r = 2 el resultado es

$$_{4}P_{2} = \frac{4!}{(4-2)!} = \frac{4*3*2*1}{2!} = 12$$

En una permutación es importante la distribución de los objetos, es decir, no es lo mismo la agrupación ABC que la BAC o la CBA.

Cuando el orden no es importante a los agrupamientos se les denomina combinaciones. El número de combinaciones posibles de formar de n objetos tomados de r en r es:

$${}_{n}C_{r} = {n \choose r} = \frac{n!}{(n-r)! \, r!} \tag{3.9}$$

Esto es equivalente a decir que ${}_{n}C_{r}$ es el número de maneras distintas en que r objetos pueden seleccionarse de $n(r \le n)$ sin reemplazo y sin importar el orden en que aparezcan.

El número de combinaciones que se pueden hacer con las letras A, B, C, D si se toman de 2 en 2 sin importar el orden es igual a ${}_4C_2 = {4 \choose 2} = \frac{4!}{(4-2)!2!} = 6$.

G. -

3.5. Variables aleatorias

Una variable aleatoria es aquella que no se puede predecir con certeza al realizar un experimento y es una función de valores reales definida en \mathfrak{G} . Las variables aleatorias pueden ser discretas o continuas.

Una variable aleatoria X se dice discreta si solamente puede asumir un número contable de valores.

Una variable aleatoria continua X es aquella que puede formar un número infinito no conta ble de valores.

Con referencia a la notación, se considerará a una variable aleatoria con letras mayúsculas "X", y con minúsculas "x" para los valores particulares que puede tomar.

El comportamiento de una variable aleatoria X se describe por su ley de probabilidades, la cual se especifica mediante la función de densidad o de distribución de probabilidad acumulada.

Si la variable aleatoria X es discreta y puede tomar los valores x_i su densidad de probabilidades será el conjunto de probabilidades

$$P(X = x_i) = f(x_i)$$
 $i = 1, 2, ..., n$ (3.10)

En general f(x) es una función de densidad de probabilidad si se cumple

$$f(x) \ge 0 \tag{3.11}$$

$$\sum_{i=1}^{n} f(x_i) = 1$$

(3.12)

Otra forma de especificar la ley de probabilidades es mediante la distribución de probabilidad acumulada

$$P(X \le X) = F(X) = \sum_{i=1}^{n} f(X_i)$$
(3.13)

Si X es una variable aleatoria continua, la probabilidad de que X tome un valor específico, por ejemplo, P(X=3) es cero. En este caso, se deberá establecer el intervalo $x_1 \le x \le x_2$ para el cual se requiere definir cierta probabilidad

$$P(x_1 \le x \le x_2) = \int_{x_1}^{x_2} f(x) dx$$
(3.14)

En general f(x) es una función de densidad de probabilidad si se cumple

$$f(x) \ge 0 \tag{3.15}$$

$$F(x) = \int_{-\infty}^{\infty} f(x) dx = 1 \tag{3.16}$$

3.6. Distribuciones conjuntas

Los conceptos anteriores pueden generalizarse fácilmente para el caso de dos o más variables aleatorias, dando paso a la construcción de las llamadas distribuciones conjuntas.

Si X,Y son dos variables aleatorias discretas, se define la función de probabilidad conjunta como

$$P(X = x, Y = y) = f(x, y)$$
(3.17)

Donde

$$f(x,y) \ge 0 \tag{3.18}$$

$$\sum_{x}\sum_{y}f(x,y)=1$$

(3.19)

Si X puede tomar cualquiera de los m valores $x_1, x_2, ..., x_m$ e Y puede tomar cualquiera de los n valores $y_1, y_2, ..., y_n$, entonces la probabilidad del suceso $X = x_i, Y = y_k$ es

$$P(X = x_j, Y = y_k) = f(x_j, y_k)$$
(3.20)

La función de distribución acumulada conjunta de X,Y se define por

$$F(x,y) = P(X \le x, Y \le y) = \sum_{u \le x} \sum_{v \le y} f(u,v)$$
(3.21)

Para el caso de variables continuas, la función de densidad de probabilidad de X,Y se define por

$$f(x,y) \ge 0 \tag{3.22}$$

$$\int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$$
(3.23)

La probabilidad de que x esté entre a y b en tanto y esté entre c y d se obtiene como

$$P(a < x < b, c < y < d) = \int_{x=a}^{b} \int_{y=c}^{d} f(x,y) dx dy$$
(3.24)

La función de distribución acumulada conjunta de X,Y se define por

$$F(x,y) = P(X \le x, Y \le y) = \int_{v=\infty}^{y} \int_{u=-\infty}^{x} f(u,v) du dv$$
(3.25)

Conocida la función F(x,y) es posible obtener f(x,y) a través de

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$
(3.26)

A partir de la expresión (3.25) es posible obtener las funciones de distribución acumulada marginal para las variables aleatorias *X*,*Y* como

$$F(x) = P(X \le x) = \int_{v=-\infty}^{\infty} \int_{u=-\infty}^{x} f(u,v) du dv$$
(3.27)

$$F(y) = P(Y \le y) = \int_{v=-\infty}^{y} \int_{u=-\infty}^{\infty} f(u,v) du dv$$
(3.28)

Las funciones de densidad marginal se obtienen al derivar (3.27) y (3.28) con respecto a $x \in y$, respectivamente.

$$f(x) = \int_{v=-\infty}^{\infty} f(x, v) dv$$

(3.29)

$$f(y) = \int_{u=-\infty}^{\infty} f(u,y) du$$

(3.30)

3.6.1. Independencia entre variables aleatorias

Dos variables aleatorias discretas conjuntamente distribuídas son independientes sí y solo sí el valor asumido por x no provee información acerca de y, y viceversa, lo cual puede expresarse como

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$
(3.31)

Que es lo mismo que

$$f(x,y) = f(x)f(y)$$
(3.32)

Lo que implica que si una función de densidad conjunta puede expresarse como el producto de sus funciones de densidad marginal, entonces las variables aleatorias X, Y son independientes. Si f(x, y) no puede representarse así, entonces las variables aleatorias son dependientes.

Estos conceptos pueden extenderse para el caso continuo como

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$$
(3.33)

Que es lo mismo que

$$F(x,y) = F(x)F(y)$$
= asterozib at horse, paids not (3.34)

Donde F(x) y F(y) son las funciones de probabilidad marginal (3.27) y (3.28). La expresión (3.32) también es valida para el caso de variables continuas.

3.6.2. Operaciones entre variables aleatorias

La suma de dos variables aleatorias continuas X,Y, U=X+Y, que tienen densidad conjunta f(x,y) se determina por

$$g(u) = \int_{-\infty}^{\infty} f(x, u - x) dx$$
(3.35)

Para el caso en que las variables aleatorias X,Y sean independientes la convolución se expresa como

$$g(u) = \int_{-\infty}^{\infty} f(x)f(y)dx = \int_{-\infty}^{\infty} f(x)f(u-x)dx$$
(3.36)

También es posible determinar las operaciones para la resta (U = X - Y), multiplicación (U = XY) y división (U = X/Y) entre variables aleatorias como

$$g(u) = \int_{0}^{\infty} f(x, x - u) dx$$

$$\lim_{x \to 0} \int_{0}^{\infty} f(x, x - u) dx$$

$$\lim_{x \to 0} \int_{0}^{\infty} f(x, x - u) dx$$

$$\lim_{x \to 0} \int_{0}^{\infty} f(x, x - u) dx$$
(3.37)

$$g(u) = \int_{-\infty}^{\infty} x \ f(x, ux^{-1}) dx \tag{3.38}$$

(3.38)

$$g(u) = \int_{-\infty}^{\infty} x \ f(x, xu^{-1}) dx$$

(3.39)

3.6.3. Distribuciones condicionales

Si X,Y son variables aleatorias discretas

$$P(Y = y | X = x) = \frac{f(x, y)}{f(x)}$$

(3.40)

Donde f(x,y) = P(X = x, Y = y) y f(x) es la distribución marginal de x. De aquí es fácil determinar las funciones de distribución condicional de x dado y y de y dado x.

$$f(x|y) = \frac{f(x,y)}{f(y)}$$

(3.41)

$$f(y|x) = \frac{f(x,y)}{f(x)}$$

(3.42)

Que son similares para el caso continuo.

3.7. Esperanza matemática

Para una variable aleatoria continua X con función de densidad f(x) la esperanza de X se define como

$$\mu = E[X] = \int_{-\infty}^{\infty} x \ f(x) \ dx$$

(3.43)

Similarmente, la esperanza de la variable aleatoria $y = (x - \mu)^2$ es conocida como la varianza σ^2 de X y se expresa por

$$\sigma^2 = E[X - \mu]^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx$$

Para vari bies discretas

(3.44)

A la raíz cuadrada positiva de la varianza se le conoce como desviación estándar.

$$\sigma = \sqrt{\sigma^2} \tag{3.45}$$

Otras características que pueden obtenerse a través de la esperanza matemática son el sesgo y la curtosis.

Con frecuencia una función no es simétrica con respecto a su máximo, sino que tiende a concentrarse o sesgarse a la izquierda o a la derecha. El coeficiente que mide esta dispersión es el sesgo y puede obtenerse como

$$\gamma = \frac{E(X - \mu)^3}{\sigma^3} = \frac{\int_{-\infty}^{\infty} (X - \mu)^3 f(x) dx}{\sigma^3}$$
(3.46)

En algunos casos la distribución tiene sus valores concentrados cerca de la media. El coeficiente que mide el grado de apuntamiento es conocido como curtosis y se obtiene como

$$\kappa = \frac{E(X - \mu)^4}{\sigma^4} = \frac{\int_0^\infty (X - \mu)^4 f(X) dX}{\sigma^4}$$
and the distance of the property of the propert

Otras medidas de tendencia central son la mediana y la moda. El primero es aquel valor para el cual F(X) = 0.5. La moda es el valor que se presenta con mayor frecuencia en una distribución.

3.7.1. Momentos

El momento r de una variable aleatoria X alrededor de la media μ , también conocido como el momento central r, se define como

The second set
$$M_r^\mu = E[(x-\mu)^r]$$
 we para $r=1,2,...$ Threshold that some normal times were the

(3.48)

Para variables discretas

$$M_r^\mu = \sum (x - \mu)^r f(x)$$

(3.49)

Para variables continuas

$$M_r^{\mu} = \int_{-\infty}^{\infty} (x - \mu)^r f(x) dx$$

(3.50)

El momento r de X alrededor del origen se define como

$$M_r = E[X^r] = \int_{-\infty}^{\infty} x^r f(x) dx$$

(3.51)

La relación entre los momentos con respecto a la media y aquellos al origen se obtiene por

$$M_r^{\mu} = \sum_{j=0}^r (-1)^j \binom{r}{j} \mu^j M_{r-j}$$
(3.52)

Así, la Varianza σ^2 de la expresión (3.44) puede obtenerse fácilmente con

$$M_2^{\mu} = M_2 - \mu^2 = \int_{-\infty}^{\infty} x^2 f(x) dx - \left(\int_{-\infty}^{\infty} x f(x) dx \right)^2$$
(3.53)

Similarmente, los coeficientes de sesgo y curtosis de las expresiones (3.46) y (3.47) se obtendrían

como

$$\gamma = \frac{E(X - \mu)^3}{\sigma^3} = \frac{M_3 - 3M_2\mu + 2\mu^3}{\sigma^3}$$
(3.54)

$$\kappa = \frac{E(X - \mu)^4}{\sigma^4} = \frac{M_4 - 4M_3\mu + 6M_2\mu^2 - 3\mu^4}{\sigma^4}$$

(3.55)

La relación entre los momentos con respecto al origen y aquellos con respecto a la media se obtiene por

$$M_r = \sum_{j=0}^r \binom{r}{j} (\mu)^j M_{r-j}^{\mu}$$

Así,

$$M_{0} = 1$$

$$M_{1} = \mu$$

$$M_{2} = M_{2}^{\mu} + \mu^{2}$$

$$M_{3} = M_{3}^{\mu} + 3\mu M_{2}^{\mu} + \mu^{3}$$

$$M_{4} = M_{4}^{\mu} + 4\mu M_{3}^{\mu} + 6\mu^{2} M_{2}^{\mu} + \mu^{4}$$

$$M_{5} = M_{4}^{\mu} + 4\mu M_{3}^{\mu} + 6\mu^{2} M_{2}^{\mu} + \mu^{4}$$

(3.57)

3.8. Técnicas de estimación de parámetros

Los problemas hidrológicos se analizan a través del uso de un modelo matemático. Los modelos pueden ser del tipo determinístico, paramétrico o estocástico.

Un modelo completamente determinístico sería aquel que se obtiene a través de relaciones físicas y no requiere de datos experimentales para su aplicación.

Un modelo paramétrico puede ser considerado como un determinístico en el sentido de que una vez que se estiman los parámetros del modelo, éste siempre genera la misma salida a partir de la información de entrada. Por otro lado, un modelo paramétrico es estocástico en el sentido de que los parámetros estimados dependen de los datos observados y aquellos cambiarán cuando los datos observados también lo hagan.

Un modelo estocástico es aquel en el cual las salidas son predecibles solo en un sentido estadístico. En un modelo estocástico, el empleo repetido de un grupo dado de entradas del modelo genera salidas que no son las mismas pero siguen cierto modelo estadístico.

Antes de hacer inferencias de cualquier modelo es importante la estimación de sus parámet os. Cada estimador de un parámetro es una función de los valores de la muestra, los cuales son observaciones de una variable aleatoria. Así, el propio parámetro estimado es una variable aleatoria que tiene su propia distribución muestral. Un estimador que se obtiene a partir de un grupo de valores puede considerarse como un valor observado de una variable aleatoria. Por lo cual, la bondad de un estimador puede ser juzgado a partir de su distribución.

Independientemente de la técnica que se use para la estimación de los parámetros se deben cumplir las siguientes propiedades:

Sesgo nulo

Un estimador $\hat{\theta}$ de un parámetro poblacional θ se dice que tiene sesgo nulo cuando $E(\hat{\theta}) = \theta$. De lo contrario es segado. El sesgo se obtiene como $B = E(\hat{\theta}) - \theta$

Consistencia

Un estimador $\hat{\theta}$ de un parámetro θ se dice consistente sí para cualquier número positivo ε $\lim_{n\to\infty} P\left(\left|\hat{\theta}-\theta\right|>\varepsilon\right)=0$. Donde n es el tamaño de muestra.

Eficiencia .

Un estimador $\hat{\theta}$ se dice el más eficiente para θ sí tiene sesgo nulo y su varianza es al menos tan pequeña como cualquier otro estimador no sesgado para θ .

Generalmente es posible obtener más de un estimador insesgado para el mismo parámetro θ . Si $\hat{\theta}_1$ y $\hat{\theta}_2$ son dos estimadores insesgados de θ , con varianzas $V(\hat{\theta}_1)$ y $V(\hat{\theta}_2)$, respectivamente, entonces la eficiencia relativa de $\hat{\theta}_1$ con respecto $\hat{\theta}_2$ se define a través de la relación $V(\hat{\theta}_1)$ $V(\hat{\theta}_2)$.

Suficiencia superioria de la participación de la contrata del contrata de la contrata de la contrata del contrata de la contrata del contrata de la contrata de la contrata del contrata de la contrata del contrata del contrata del contrata del contrata de la contrata del con

 $\hat{\theta}$ es un estimador suficiente para θ , si $\hat{\theta}$ emplea toda la información relevante contenida en la muestra.

A continuación se presentan algunas de las técnicas de estimación de parámetros más comunes en Hidrología.

3.8.1. Método de los momentos

El método de los momentos es un procedimiento muy sencillo para encontrar un estimador de uno o más parametros poblaciones. Consiste básicamente en plantear un sistema de ecuaciones, cuyo tamaño depende del número de parámetros a estimar. Esto se hace al igualar los momentos poblacionales con los muestrales.

Los momentos poblacionales pueden obtenerse con respecto a la media (expresiones 3.49 o 3.50) o con respecto al origen (expresión 3.51). Ya sea que se utilice una u otra se podrá hacer las transformaciones necesarias al emplear las expresiones (3.52) o (3.56).

Los momentos muestrales, también conocidos como estadísticos muestrales, se obtienen con las siguientes expresiones.

Media

$$X = \frac{1}{n} \sum_{i=1}^{n} X_i$$

(3.58)

Varianza sesgada

$$S_{\text{sesg}}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

(3.59)

Varianza insesgada

$$S_{insesg}^2 = \frac{n}{n-1} S_{sesg}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - x_i)^2$$

(3.60)

Coeficiente de asimetría sesgado

$$g_{sesg} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - x)^3}{(S_{sesg}^2)^{(3/2)}}$$

(3.61)

Coeficiente de asimetría insesgado

$$g_{insesg} = \frac{n^2}{(n-1)(n-2)}g_{sesg}$$

(3.62)

Coeficiente de curtosis sesgado

$$k_{\text{sesg}} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4}{(S_{\text{sesg}}^2)^2}$$

(3.63)

Coeficiente de curtosis insesgado

$$k_{insesg} = \frac{n^3}{(n-1)(n-2)(n-3)} k_{sesg}$$

Desviación estándar

$$S = \sqrt{S^2} \tag{3.65}$$

(3.64)

Coeficiente de variación

$$Cv = \frac{S}{\chi} \tag{3.66}$$

En el análisis hidrológico se recomienda el uso de los estadísticos insesgados, ya que generalmente se trabaja con muestras relativamente pequeñas.

Ejemplo 3.1. Se requiere obtener el estimador por momentos $\hat{\beta}$ del parámetro β si la función es $f(x) = \beta \exp^{-\beta x}$, x > 0.

Con la expresión (3.51) se tiene $M_r = \beta \int_0^\infty x^r \exp^{-\beta x} dx$, por lo que

$$\hat{M}_0 = -\exp^{-\beta x}\Big|_0^{\infty} = 1$$

$$\hat{M}_1 = \beta \left[-\frac{x}{\beta} \exp^{-\beta x} - \frac{1}{\beta^2} \exp^{-\beta x} \right]_0^{\infty} = \frac{1}{\beta}$$

Y así sucesivamente.

Dado que solo se requiere la estimación de un parámetro, se igualará el primer momento poblacional \hat{M}_1 con el primer momento muestral (expresión 3.58)

$$\frac{1}{\beta} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

$$\vdots$$

$$\beta = \frac{1}{\overline{x}} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

$$\vdots$$

$$\beta = \frac{1}{\overline{x}} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

$$\vdots$$

$$\beta = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

$$\vdots$$

$$\beta = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$$

3.8.2. Método de máxima verosimilitud

Sea $f(x; a_1, a_2, ..., a_m)$ una función de densidad de probabilidad de x con parámetros a_i , i = 1, ..., m. Si existe una muestra aleatoria $x_1, x_2, ..., x_n$ de esta función de densidad. Entonces, su función de densidad conjunta es $f(x_1, x_2, x_3, ..., x_n; a_1, a_2, ..., a_m)$. Debido a que la muestra es aleatoria, la función de densidad conjunta se puede escribir como

$$f(x_1, x_2, x_3, ..., x_n; a_1, a_2, ..., a_m) = \prod_{i=1}^n f(x_i; a_1, a_2, ..., a_m)$$
(3.67)

Interpretado en forma conceptual, la probabilidad de obtener un valor dado de x, digamos x_1 , es proporcional a $f(x;a_1,a_2,...,a_m)$. Por otro lado, la probabilidad de obtener la muestra aleatoria $x_1,x_2,...,x_n$ a partir de la población de x es proporcional al producto de sus densidades de probabilidad individual. Esta función conjunta es llamada la función de verosimilitud L

$$L = \prod_{i=1}^{n} f(x_i; a_1, a_2, ..., a_m)$$
(3.68)

Los parámetros a_i , i = 1,2,...,m son desconocidos.

El método de máxima verosimilitud estima los parámetros desconocidos al maximizar L, esto es, maximizando la verosimilitud de que la muestra bajo consideración es la única que puede obtenerse al seleccionar n observaciones aleatorias a partir de $f(x;a_1,a_2,...,a_m)$. Los valores de los parámetros obtenidos se conocen como los estimadores por máxima verosimilitud. Debido a que con ln L se alcanza también su máximo para valores específicos de a_i , i=1,2,...,m, como lo hace L, entonces, la función de verosimilitud se puede expresar como

$$lnL = ln \prod_{i=1}^{n} f(x_i; a_1, a_2, ..., a_m)$$
(3.69)

El procedimiento para estimar los parámetros o la determinación del punto donde la función alcanza su máximo, implica la diferenciación de L o de ln L parcialmente con respecto a cada parámetro e igualando a cero. Por lo que se generan m ecuaciones

$$\frac{\partial \ln L(a_1, a_2, ..., a_m)}{\partial a_1} = 0$$

$$\frac{\partial \ln L(a_1, a_2, ..., a_m)}{\partial a_2} = 0$$

$$\frac{\partial \ln L(a_1, a_2, ..., a_m)}{\partial a_m} = 0$$

(3.70)

Estas *m* ecuaciones con *m* incógnitas pueden resolverse para los *m* parámetros desconocidos.

Ejemplo 3.2. Se requiere obtener el estimador por máxima verosimilitud $\hat{\beta}$ del parámetro β si la función es $f(x) = \beta \exp^{-\beta x}$, x > 0.

Empleando las expresiones (3.68) y (3.69) se tiene

$$L = \prod_{i=1}^{n} f(x_i; \beta) = \beta^{-n} \exp^{-\beta \sum_{i=1}^{n} x_i}$$

$$\ln L = n \ln \beta - \beta \sum_{i=1}^{n} x_i$$

Diferenciando In L con respecto a β e igualando a cero, se tiene

$$\frac{\partial \ln L}{\partial \beta} = \frac{n}{\beta} - \sum_{i=1}^{n} x_i = 0$$

Resolviendo

$$\frac{n}{\beta} = \sum_{i=1}^{n} x_i; \quad \frac{1}{\beta} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\frac{1}{\beta} = X \qquad \therefore \quad \hat{\beta} = \frac{1}{X}$$

3.9. Periodo de retorno

Las fases de planeación, diseño, construcción y operación de los aprovechamientos hidráulicos están siempre relacionadas con eventos hidrológicos futuros. La complejidad de los procesos físicos de estos o la física, ya sea porque estos métodos son insuficientes o porque el modelo matemático resultante es probabilidad y estadística.

En el análisis de frecuencias de una serie Q_i^j de la estación j, para un conjunto de datos $i=1,2,...,n_j$, el primer objetivo es determinar el intervalo de recurrencia o período de retorno T en años, de un evento hidrológico dada una magnitud x.

El período de retorno se define como el número de años que transcurren en promedio para que un evento de magnitud dada x sea igualado o excedido por lo menos una vez en ese periodo de tiempo.

$$T = \frac{1}{P(X > x)} = \frac{1}{[1 - P(X \le x)]}$$
(3.71)

3.10. Pruebas de homogeneidad

Las características estadísticas de las series hidrológicas, como la media, desviación estándar y los coeficientes de correlación serial, se afectan cuando la serie presenta tendencia en la media o en la varianza, o cuando ocurren saltos negativos o positivos; tales anomalías son producidas por la pérdida de homogeneidad y la inconsistencia.

En general, la falta de homogeneidad de los datos es inducida por las actividades humanas como la deforestación, apertura de nuevas áreas al cultivo, rectificación de cauces, construcción de embalses y terremotos, deslizamiento de laderas y erupciones volcánicas.

Las pruebas estadísticas que miden la homogeneidad de una serie de datos presentan una hipótesis nula y una regla para aceptarla o rechazarla.

3.10.1. Prueba estadística de Helmert

Esta prueba es sencilla y consiste en analizar el signo de las desviaciones de cada evento Q_i^J de la serie j para $i=1,2,...,n_j$, con respecto a su valor medio \overline{Q}^J . Si una desviación de un cierto signo es seguida de otra del mismo signo, entonces se dice que se forma una secuencia S, de lo contrario se considera como un cambio C.

La serie se considera homogénea si se cumple

$$-\sqrt{n_j-1} \le (S-C) \le \sqrt{n_j-1} \tag{3.72}$$

3.10.2. Prueba estadística t de Student

Cuando la causa probable de la pérdida de homogeneidad de la serie sea un cambio abrupto en la media, la prueba del estadístico t es muy útil.

Si se considera una serie Q_i^j para $i=1,2,...,n_j$, del sitio j, la cual se divide en dos conjuntos de tamaño $n_1=n_2=\frac{n_j}{2}$, entonces, el estadístico de prueba se define con la expresión

$$t_d = \frac{\overline{x}_1 - \overline{x}_2}{\left[\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)\right]^{1/2}}$$
(3.73)

Donde

 \bar{x}_1, S_1^2 son la media y varianza de la primera parte del registro de tamaño n_1 . \bar{x}_2, S_2^2 son la media y varianza de la segunda parte del registro de tamaño n_2 .

El valor absoluto de t_d se compara con el valor de la distribución t de Student de dos colas, y con $\psi = n_1 + n_2 - 2$ grados de libertad y para un nivel $\alpha = 0.05$.

Sí y solo si el valor absoluto de t_a es mayor que el de la distribución t de Student, se concluye que la diferencia entre las medias es evidencia de inconsistencia y por lo tanto la serie Q_i^j se considera no homogénea.

3.10.3. Prueba estadística de Cramer

Esta prueba se utiliza con el propósito de verificar homogeneidad en el registro Q_i^j de la serie j para $i=1,2,...,n_j$, y también para determinar si el valor medio no varía significativamente de un período de tiempo a otro. Con este propósito se consideran tres bloques, el primero, del tamaño total de la muestra n_{i} , el segundo de tamaño n_{60} (60% de los últimos valores de la muestra n_{i}); y el tercero de tamaño n_{30} (30% de los últimos valores de la muestra n_{i}).

La prueba compara el valor de \overline{Q}^j del registro total con cada una de las medias de los bloques elegidos \overline{Q}_{60}^{j} y \overline{Q}_{30}^{j} . Para que se considere la serie analizada como estacionaria en la media, se deberá cumplir que no existe una diferencia significativa entre las medias de los bloques.

$$\overline{Q}^j = \sum_{i=1}^{n_j} \frac{Q_i^j}{n_j}$$
, para una sola muestra analizada $j=1$

$$S_{Q}^{j} = \left[\frac{1}{(n_{j} - 1)} \sum_{i=1}^{n_{j}} (Q_{i}^{j} - \overline{Q}^{j})^{2}\right]^{1/2}$$
(3.74)

$$\overline{Q}_{60}^{j} = \sum_{k=1}^{n_{60}} \frac{Q_{k}^{j}}{n_{60}}$$
(3.75)

$$\overline{Q}_{30}^{j} = \sum_{k=1}^{n_{30}} \frac{Q_k^{j}}{n_{30}} \tag{3.76}$$

$$\tau_{60}^{j} = \frac{\overline{Q}_{60}^{j} - \overline{Q}^{j}}{S_{Q}^{j}}$$
 (3.77)

$$\tau_{30}^{j} = \frac{\overline{Q}_{30}^{j} - \overline{Q}^{j}}{S_{Q}^{j}} \tag{3.78}$$

-(3.79)

$$t_{w} = \left\{ \frac{n_{w} (n_{j} - 2)}{n_{j} - n_{w} \left[1 + (\tau_{w}^{j})^{2} \right]} \right\}^{1/2} |\tau_{w}^{j}| \quad \text{para } w = 60 \text{ y } w = 30$$
(3.80)

El estadístico $t_{\rm w}$ tiene distribución t de Student de dos colas con $v = n_1 + n_2 - 2$ grados de libertad y para un nivel $\alpha = 0.05$.

Sí y solo si el valor absoluto de t_w , para w=60 y w=30, es mayor que el de la distribución t de Student, se concluye que la diferencia entre las medias es evidencia de inconsistencia y por lo tanto la serie Q_t^T se considera no homogénea.

3.11. Prueba de independencia de eventos

Para que se pueda llevar a cabo el análisis de frecuencias se requiere que la muestra Q_i^j de la serie j para $i=1,2,...,n_j$, este compuesta por variables aleatorias. Para probarlo se aplica la prueba de independencia de Anderson (Salas et al, 1988), la cual hace uso del coeficiente de autocorrelación serial r_k^j para diferentes tiempos de retraso k. Si se analiza un solo registro, entonces j=1.

La expresión para obtener el coeficiente de autocorrelación serial de retraso k es:

$$r_{k}^{j} = \frac{\sum_{i=1}^{n_{j}-k} \left(Q_{i}^{j} - \overline{Q}^{j} \right) \left(Q_{i+k}^{j} - \overline{Q}^{j} \right)}{\sum_{i=1}^{n_{j}} \left(Q_{i}^{j} - \overline{Q}^{j} \right)^{2}}; \quad \text{para } r_{0}^{j} = 1 \text{ y } k = 1,2,..., \frac{n_{j}}{3}$$

$$(3.81)$$

Donde

$$\overline{Q}^{j} = \sum_{i=1}^{n_{l}} \frac{Q_{i}^{j}}{n_{j}} \tag{3.82}$$

Además, los límites al 95% de confianza para r_k^I se pueden obtener como

$$r_k^{j}(95\%) = \frac{-1 \pm 1.96\sqrt{(n_j - k - 1)}}{n_j - k}$$
(3.83)

La gráfica de los valores estimados para r_k^j (ordenadas) contra los tiempos de retraso k (abscisas), junto con sus correspondientes límites de confianza, se llama correlograma de la muestra.

Si solo el 10% de los valores r_k^j sobrepasan los límites de confianza se dice que la serie Q_i^j es independiente y por lo tanto es una variable que sigue las leyes de la probabilidad.

3.12. Prueba de bondad de ajuste

first ufficeso de normalización de Box-Cox de dobie pouspure. Kite (1988) propuso un estadístico que permite seleccionar la mejor opción, entre diferentes modelos en competencia, para el ajuste de una muestra de datos Q_i^j para $i=1,2,...,n_j$, de un sitio j.

Este estadístico es conocido como el error estándar de ajuste, y se expresa como

$$EE = \begin{bmatrix} \sum_{j=1}^{n_j} (Q_T^j - Q_T^j) \\ n_j - mp \end{bmatrix}^{1/2}$$

(3.84)

Donde

- son los eventos mínimos Q_i^j ordenados de menor a mayor con un periodo de retorno asignado $T = \frac{m}{n_i + 1}$ y una probabilidad $P = \frac{1}{T}$.
- longitud en años del registro analizado.

número de orden del registro.

para el evento más grande.

 $m = n_i$ para el evento más chico.

and Qj eventos estimados por cierta distribución de probabilidad para cada periodo de retorno T asignado a la muestra ordenada Q_i^j .

número de parámetros de la distribución ajustada. Por ejemplo, para las distribuciones de probabilidad ajustadas a eventos extremos mínimos, se tiene

mp = 2 para la Gumbel

mp = 3 para la Log Normal-3, Gamma-3, Weibull y GVE

mp = 4 para la de Valores extremos de dos componentes TCEV

mp = 5 para la Gumbel de dos poblaciones.

La distribución de mejor ajuste será aquella que proporcione el mínimo valor del estadístico EE . Si una o más distribuciones tienen valores similares del EE, entonces, se deberá optar por aquella distribución que tenga el menor número de parámetros.

3.13. Proceso de normalización de Box-Cox de doble potencia

La mayor parte de la teoría de probabilidades y de las técnicas estadísticas se ha desarrollado tomando en cuenta que las variables que se modelan se distribuyen en forma Normal ($\gamma = 0, \kappa = 3$).

En Hidrología es bastante difícil encontrar muestras normales ya que a menudo presentan valores del coeficiente de asimetría g > 0.

El proceso de normalización de una serie de datos puede llevarse a cabo aplicando las expresiones (3.85) y (3.86), que son parte del proceso de transformación conocido como de Box-Cox (Chander et al, 1978).

$$W_i = \frac{\left(x_i\right)^2 - 1}{\lambda} \qquad \lambda \neq 0, \quad x_i > 0$$
(3.85)

$$w_i = \ln x_i \qquad \lambda = 0, \quad x_i > 0 \tag{3.86}$$

Donde

$$x_i$$
, $i = 1,2,...,n$ serie a normalizar w_i , $i = 1,2,...,n$ serie transformada de primer paso parámetro de transformación de potencia.

Cabe mencionar que esta técnica solo normaliza el coeficiente de asimetría $(g \approx 0)$ pero no el de curtosis $(k \neq 3)$.

La corrección para la curtosis se puede lograr con una segunda transformación de la forma.

$$t_i = (\mathbf{w}_i - \mathbf{w})^3 \tag{3.87}$$

Donde

 $t_i, i = 1, 2, ..., n$ serie transformada de segundo paso, el signo de t_i es igual al de $(w_i - \overline{w})$. \overline{w} media de los valores de la serie w_i . \overline{s} parámetro de transformación de potencia $(\overline{s} > 0)$. $0 < \overline{s} < 1$ si la curtosis de la serie w_i , $k_w > 3$. $\overline{s} > 1$ si la curtosis de la serie w_i , $k_w < 3$.

Además de transformar cualquier serie de datos, este procedimiento puede emplearse en estudios hidrológicos para obtener el gasto anual de cierto periodo de retorno \hat{Q}_{τ} .

Si en la expresión (3.85) la serie x_i representa a los gastos anuales Q_i , i=1,2,...,n, de una estación cualquiera, entonces el evento \hat{Q}_T se puede obtener como

$$\hat{Q}_T = (\lambda W_T + 1)^{1/\lambda} \qquad \lambda \neq 0$$

$$\hat{Q}_{T} = \exp(\hat{w}_{T}) \qquad \qquad \lambda = 0 \tag{3.88}$$

Donde (3.89)

$$W_{T} = W_{T}' + W \tag{3.90}$$

 $\hat{W}_{\tau}' = (f_{\tau}|)^{1/3}, \hat{W}_{\tau}'$ tiene el mismo signo que f_{τ} (3.90)

$$W = \frac{1}{n} \sum_{i=1}^{n} W_i$$

$$W = \frac{1}{n} \sum_{i=1}^{n} W_i$$

$$\hat{t}_{\mathsf{T}} = \hat{t} + \mathcal{S}_{t} \ \mathsf{U}_{\mathsf{T}} \tag{3.92}$$

$$(3.93)$$

$$\bar{t} = \frac{1}{n} \sum_{i=1}^{n} t_i \tag{3.93}$$

$$(3.94)$$

$$S_{t} = \left[\frac{1}{(n-1)} \sum_{i=1}^{n} (t_{i} - \bar{t})^{2}\right]^{1/2}$$
(3.95)

 $U_{\scriptscriptstyle T} \approx N(0,1)$ variable con distribución Normal estándar que se obtiene como:

Para una probabilidad acumulada $0 < F(x) \le 0.5$

$$U_{T} \approx v - \frac{b_{0} + b_{1}v + b_{2}v^{2}}{1 + b_{3}v + b_{4}v^{2} + b_{5}v^{3}}$$
(3.96)

Donde

$$b_0 = 2.515517$$
 $b_3 = 1.432788$ $b_1 = 0.802853$ $b_4 = 0.189269$ $b_2 = 0.010328$ $b_5 = 0.001308$

$$V = \sqrt{\ln\left\{\frac{1}{\left[F(x)\right]^2}\right\}}$$

(3.97)

Para una probabilidad acumulada $0.5 < F(x) \le 1$ se cambia F(x) por [1-F(x)] en la expresión (3.97) y se le cambia el signo al valor U_T calculado con la ecuación (3.96).

ANÁLISIS PUNTUAL DE GASTOS MÍNIMOS ANUALES

4.1. Análisis de frecuencias

A través de la historia las sociedades han aceptado la presencia de las sequías como inevitables e invariantes en la naturaleza o como un acto divino. Si bien el hombre puede hacer poco para evitar las sequías, puede tener la capacidad de reducir al mínimo los daños que estas provocan.

El estudio de los gastos mínimos anuales se clasifica en puntuales y regionales. Los primeros se refieren a un sitio en particular como por ejemplo la sección transversal de un río, un proyecto de pequeña extensión, un pequeño esquema de irrigación o cierta superficie que puede caracterizarse por su centro o por una estación de observación. Cuando los parámetros que caracterizan a las sequías cambian significativamente sobre cierta área, se debe considerar la componente regional del fenómeno de manera similar a las características de las sequías puntuales.

Dentro del análisis puntual esta el enfoque de probabilidad, el cual evalúa la ocurrencia de los eventos extremos analizados mediante la técnica estadística del análisis de frecuencias.

El análisis de frecuencias se propuso aproximadamente en 1914, aunque avocado a reducir la incertidumbre en su estimación, se ha desarrollado a lo largo de líneas divergentes, con resultados no uniformes en los métodos de análisis.

El presente estado del arte es tal que no se ha alcanzado un acuerdo general en las técnicas de análisis y no se han establecido estándares de diseño como en otras ramas de la ingeniería.

Hay una extensa literatura sobre la aplicación de distribuciones de probabilidad para la predicción de avenidas. Por el contrario, el número de estudios reportados para el estudio de los flujos mínimos es limitado. El modesto interés en encontrar la distribución más apropiada para los eventos mínimos se debe al periodo de retorno relativamente corto empleado en el análisis para mínimos (menos de 50 años). Los eventos estimados para periodos de retorno más alto siempre dependerán del comportamiento de la cola de la distribución ajustada, la cual para muchas distribuciones tiende a ser rápidamente cero.

El análisis de frecuencias de gastos mínimos anuales es de gran importancia, entre otros, para el diseño de plantas de tratamiento, de plantas hidroeléctricas, para proyectos de irrigación y la construcción de embalses.

En el análisis de frecuencias de sequías interesa conocer la probabilidad de ocurrencia F(x) de que una sequía anual X sea menor o igual que un determinado valor fijo x, llamado la sequía de diseño, en un número determinado de años en promedio T, llamado periodo de retorno.

La probabilidad de ocurrencia F(x) se determina con base en los registros de gastos mínimos anuales obtenidos de n años de observación. Se supone que estos n valores son una muestra de una

población infinita de gastos mínimos, que pueden tener duraciones de 1, 3, 7, 14, 30, 60, 90 o 180 días consecutivos.

El escurrimiento mínimo anual, o la descarga mínima diaria en el año, el cual es un indicador de la severidad de la sequía experimentada en el año, se obtiene como

$$Q_{\nu} = \min[Q_{\nu,i}]$$
 para $i = 1, 2, ..., 365 \text{ días}$ y $\nu = 1, 2, ..., n$ años (4.1)

Aunque no se representa la duración de la mayor intensidad de la sequía, el escurrimiento mínimo anual ofrece una medida significativa de la dependencia del río al suministro de agua. El conocimiento de la distribución de la probabilidad del escurrimiento mínimo anual contribuye a la valoración de los riesgos de la sequía teniendo aplicaciones en las esferas económica, ecológica y social.

Una aproximación empírica para determinar la forma de la distribución de probabilidad teórica de los gastos mínimos anuales, es el de ajustar las principales funciones de distribución de probabilidad a los registros observados, y decidir, por algún criterio adecuado, la función que se ajusta mejor a dichos registros.

La secuencia de análisis es la siguiente:

Paso 1. Recabar la información de los eventos Q_{ν} , $\nu=1,2,...,n$, para cada una de las duraciones de interés (de 1 a 180 días consecutivos). En este punto se debe verificar la calidad y cantidad de la información.

Paso 2. Verificar la homogeneidad de la serie mediante las pruebas de Helmert, t de Student y Cramer (expresiones 3.72 a 3.80).

Paso 3. Con las expresiones (3.58) a (3.66) se obtienen los estadísticos muestrales de la serie Q_{ν} : x, S^2 , S, g, k y Cv.

Paso 4. Verificar con las expresiones (3.81) a (3.83) la independencia de eventos de la serie Q_{ν} (prueba de Anderson).

Paso 5. La serie Q_{ν} se ordena de menor a mayor, se le asigna un periodo de retorno T y una probabilidad de no excedencia.

$$T = \frac{n+1}{m}$$
 (Ley empírica de Weibull) (4.2)

$$P(X \le X) = \frac{1}{T} \tag{4.3}$$

Donde

n tamaño de la muestra analizada en años.

m número de orden del registro.

 $P(X \le x)$ probabilidad de no excedencia.

Paso 6. A la serie Q_{ν} se le ajustan las diferentes distribuciones de probabilidad para el análisis de mínimos (Log Normal con 3 parámetros, Gamma con 3 parámetros, Gumbel, Weibull, General de Valores Extremos, Gumbel Mixta o de dos poblaciones y la de Valores Extremos de dos Componentes), y se selecciona aquel que proporcione el mínimo error estándar de ajuste EE (expresión 3.84).

Paso 7. Una vez que se obtiene la distribución de mejor ajuste del registro Q_{ν} , es posible calcular los eventos \hat{Q}_{T} y sus límites de confianza para los diferentes periodos de retorno T = 2, 5, 10, 20, 50 y 100 años.

4.2. Distribución Log Normal con tres parámetros

Chow (Kite, 1988) suministró una justificación teórica para el uso de la distribución Log Normal para el análisis de eventos hidrológicos extremos, ya que los factores que los causan actúan en forma multiplicativa en lugar de aditiva.

Por el teorema del límite central se puede demostrar que sujeto a condiciones generales, la distribución logarítmica del producto de r variables independientes se aproxima a la distribución Normal conforme r se incrementa. Entonces, se puede considerar que la ocurrencia de las sequías anuales de cierta magnitud x es el resultado de la acción conjunta de muchos factores causales independientes, ya sean hidrometeorológicos o geográficos.

La función de densidad de probabilidad tiene la forma

$$f(x) = \frac{1}{(x - x_0)\sigma_y \sqrt{2\pi}} e^{-\frac{1}{2} \left[\frac{\ln(x - x_0) - \mu_y}{\sigma_y} \right]^2} \qquad x > x_o$$
(4.4)

Donde

 x_0 parámetro de ubicación

 $\mu_{
m v}$ parámetro de forma

 $\sigma_{_{y}}$ parámetro de escala

Estimadores por momentos

$$\hat{X}_0 = \bar{X} \left(1 - \frac{\hat{\eta}_X}{\hat{\eta}_Z} \right)$$

(4.5)Donde

$$\eta_x = \frac{S}{\bar{\chi}}$$

$$\eta_z = \frac{1 - w^{2/3}}{w^{1/3}} \tag{4.6}$$

$$W = \frac{(g^2 + 4)^{1/2} - g}{2} \tag{4.7}$$

(4.8)

$$\mu_y = \ln\left(\frac{S}{\eta_z}\right) - \frac{1}{2}\ln(\eta_z^2 + 1)$$

$$\hat{\sigma}_{y} = \left[\ln \left(\hat{\eta}_{z}^{2} + 1 \right) \right]^{(1/2)} \tag{4.9}$$

(4.10)

Estimadores por máxima verosimilitud

$$\mu_{y} = \sum_{i=1}^{n} \frac{\ln(x_{i} - \hat{x}_{0})}{n}$$

(4.11)

$$\sigma_y^2 = \sum_{i=1}^n \left[\ln(x_i - x_o) - \mu_y \right]^2 / n$$

Y el estimador \hat{x}_0 se obtiene al resolver

(4:12)

$$F(\hat{x}_0) = \sum_{i=1}^n \frac{1}{(x_i - \hat{x}_0)} (\hat{\mu}_y - \hat{\sigma}_y^2) - \sum_{i=1}^n \left\{ \left[\frac{1}{(x_i - \hat{x}_0)} \right] \ln(x_i - \hat{x}_0) \right\} = 0$$
(4.13)

Puesto que una distribución de frecuencias es únicamente un estimado de la muestra de cierta población, es probable que otra muestra de igual longitud de esa misma población, pero tomada en diferente tiempo produzca otra curva de frecuencias. Los límites o intervalos de confianza definen el rango dentro del cual se espera que se ubiquen estas curvas con cierto nivel de confianza.

$$\hat{X}_{I} = \hat{X}_{T} \pm \mathbf{u}_{\alpha} S_{T} \tag{4.14}$$

Donde

 \hat{X}_i Límites de confianza superior e inferior

 \hat{X}_{T} Evento obtenido a partir de la función de distribución para cierto periodo de retorno T

 ${
m u}_{_{lpha}}$ Desviación Normal estándar para un nivel de confianza lpha

Con límites al 90 % $\alpha = 0.10$ $u_{\alpha} = 1.645212$

Con limites al 95 %

 $\alpha = 0.05$ $u_{\alpha} = 1.960395$

Con límites al 99 % $\alpha = 0.01$ $u_{\alpha} = 2.576236$

 S_{T} Desviación estándar de los eventos estimados para un periodo de retorno T

Estimación de eventos para la distribución Log Normal con tres parámetros

$$\hat{X}_{T} = \hat{X}_{0} + \exp\{\hat{\alpha}_{y} + \mathbf{U}_{T}\hat{\sigma}_{y}\}$$

$$(4.15)$$

Para una probabilidad acumulada $0 < F(x) \le 0.5$ se tiene que

$$U_{T} \approx V - \frac{b_{0} + b_{1}V + b_{2}V^{2}}{1 + b_{3}V + b_{4}V^{2} + b_{5}V^{3}}$$
(4.16)

Donde

$$b_0 = 2.515517$$
 $b_3 = 1.432788$ $b_1 = 0.802853$ $b_4 = 0.189269$ $b_2 = 0.010328$ $b_5 = 0.001308$

Además,

$$V = \sqrt{\ln\left\{\frac{1}{[F(x)]^2}\right\}}$$

(4.17)

Para una probabilidad acumulada $0.5 < F(x) \le 1$ se cambia F(x) por [1 - F(x)] en la expresión (4.17) y se le cambia el signo al valor U_T calculado con la ecuación (4.16).

Desviación estándar de los eventos $\hat{X}_{\scriptscriptstyle T}$ por momentos

$$S_{T} = \frac{\sigma_{y}}{\sqrt{n}} \left(1 + \frac{U_{T}^{2}}{2} \right)^{1/2} \tag{4.18}$$

Desviación estándar de los eventos $\hat{\mathcal{X}}_{\scriptscriptstyle T}$ por máxima verosimilitud

$$S_{T} = \begin{bmatrix} \operatorname{Var}(\hat{x}_{0}) + Z_{T}^{2} \operatorname{Var}(\alpha_{y}) + \left(\frac{U_{T}Z_{T}}{2\sigma_{y}}\right)^{2} \operatorname{Var}(\sigma_{y}^{2}) + \frac{U_{T}Z_{T}}{\sigma_{y}} \operatorname{Cov}(\hat{x}_{0}, \sigma_{y}^{2}) \end{bmatrix}^{1/2} + 2Z_{T}\operatorname{Cov}(\hat{x}_{0}, \alpha_{y}) + \frac{U_{T}Z_{T}^{2}}{\sigma_{y}} \operatorname{Cov}(\sigma_{y}^{2}, \alpha_{y})$$

$$(4.19)$$

Donde

$$Z_{T} = \exp\{\alpha_{y} + U_{T}\sigma_{y}\}$$

$$Var(x_{0}) = \frac{1}{2nc}$$
(4.20)

$$Var(\hat{x}_0) = \frac{1}{2nc} \tag{4.21}$$

$$Var(\alpha_y) = \frac{\sigma_y^2 \left[0.5 \left(1 + \frac{1}{\sigma_y^2} \right) \left(\frac{a}{b} \right)^2 - \frac{a}{b^2} \right]}{nc}$$

(4.22)

$$\operatorname{Var}(\sigma_{y}^{2}) = \frac{\sigma_{y}^{2} \left[\left(1 + \sigma_{y}^{2} \left(\frac{a}{b} \right)^{2} - \frac{a}{b^{2}} \right] \right]}{nc}$$

(4.23)

$$\operatorname{Cov}(\hat{x}_0, \sigma_y^2) = \frac{\sigma_y^2 \sqrt{a}}{nbc}$$

(4.24)

$$Cov(\hat{x}_0, \mu_y) = -\frac{\sqrt{a}}{2nbc}$$

(4.25)

$$Cov(\sigma_y^2, \mu_y) = -\frac{\sigma_y^2 a}{nb^2 c}$$

(4.26)

$$a = \exp\{\sigma_y^2\}$$

(4.27)

$$b = \exp\{a_y\}$$

(4.28)

$$c = 0.5 \left(1 + \frac{1}{\sigma_y^2} \right) \left(\frac{a}{b} \right)^2 - \left(1 + \frac{1}{2\sigma_y^2} \right) \left(\frac{a}{b^2} \right)$$

(4.29)

ulita softween

4.3. Distribución Gamma con tres parámetros

$$f(x) = \frac{1}{\alpha \Gamma(\beta)} \left(\frac{x - x_0}{\alpha}\right)^{\beta - 1} \exp^{-\left(\frac{x - x_0}{\alpha}\right)} \qquad \alpha > 0$$

$$x_0 \le x < \infty$$

$$\gamma > 0$$

(4.30)

Donde

x₀ parámetro de ubicación

lpha parámetro de escala

eta parámetro de forma

 $\Gamma(eta)$ función Gamma completa

Además,

$$\mu = X_0 + \alpha \beta$$

(4.31)

$$\sigma^2 = \alpha^2 \beta$$

(4.32)

$$\gamma = \frac{2}{\sqrt{\beta}}$$

(4.33)

$$\kappa = 3\left(1 + \frac{\gamma^2}{2}\right)$$

(4.34)

Para valores enteros de $\,eta\,$

$$\Gamma(\beta) = (\beta - 1)!$$

(4.35)

$$\Gamma(1)=1$$

(4.36)

Para valores no enteros de β y $\beta > 1$

$$\Gamma(\beta) = (\beta - 1)\Gamma(\beta - 1)$$

(4.37)

Para valores de $0 < \lambda < 1$

$$\Gamma(\lambda) = \exp\left\{ \left(\lambda - \frac{1}{2}\right) \ln(\lambda) - \lambda + \frac{1}{2} \ln(2\pi) + \frac{1}{12\lambda} - \frac{1}{360\lambda^3} + \frac{1}{1260\lambda^5} - \frac{1}{1680\lambda^7} \right\}$$
(4.38)

$$\Gamma(0.5) = \sqrt{\pi} = 1.77245$$

(4.39)

Por ejemplo, si β = 2.3, entonces utilizando en forma recursiva la expresión (4.37) se tiene

$$\Gamma(2.3) = (2.3 - 1)\Gamma(2.3 - 1) = 1.3\Gamma(1.3) = 1.3[(1.3 - 1)\Gamma(1.3 - 1)] = 1.3(0.3)\Gamma(0.3)$$

y $\Gamma(0.3)$ se obtiene con la aproximación (4.38)

Estimadores por momentos

$$\beta = \frac{4}{g^2}$$
 The Lie and the second seco

(4.40)

$$\hat{\alpha} = \frac{S}{\sqrt{\hat{\beta}}}$$

(4.41)

$$\hat{X}_0 = \bar{X} - S_{\gamma} \bar{\beta}$$

(4.42)

Estimadores por máxima verosimilitud

$$\beta = \frac{1}{1 - \frac{n^2}{\sum_{i=1}^{n} (x_i - \hat{x}_0) \sum_{i=1}^{n} \left[\frac{1}{(x_i - \hat{x}_0)} \right]}$$

(4.43)

$$\alpha = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{x}_0) - \frac{n}{\sum_{i=1}^{n} \left[\frac{1}{(x_i - \hat{x}_0)} \right]}$$
(4.44)

El estimador \mathcal{X}_0 se obtiene al resolver

$$F(x_0) = \sum_{i=1}^n \ln(x_i - \hat{x}_0) - n\ln(\alpha) - n\psi(\beta) = 0$$

$$(4.45)$$

La aproximación de la función digamma de \hat{eta} es \hat

$$\psi(\hat{\beta}) = \ln(\hat{\beta} + 2) - \frac{1}{2(\hat{\beta} + 2)} - \frac{1}{12(\hat{\beta} + 2)^2} + \frac{1}{120(\hat{\beta} + 2)^4} - \frac{1}{252(\hat{\beta} + 2)^6} - \frac{1}{(\hat{\beta} + 1)} - \frac{1}{\hat{\beta}}$$
(4.46)

Estimación de eventos

$$\hat{X}_{T} \approx \hat{X}_{0} + \alpha \hat{\beta} \left\{ 1 - \frac{1}{9\hat{\beta}} + U_{T} \sqrt{\frac{1}{9\hat{\beta}}} \right\}^{3}$$

$$(4.47)$$

Desviación estándar de los eventos $\ddot{X}_{\rm T}$ por momentos

$$S_{T} = \left\{ \frac{\mu_{2}}{n} \left[1 + k_{T} p + \frac{k_{T}^{2}}{2} \left(\frac{3p^{2}}{4} + 1 \right) + 3k_{T} \frac{\partial k_{T}}{\partial p} \left(p + \frac{p^{3}}{4} \right) + 3 \left(\frac{\partial k_{T}}{\partial p} \right)^{2} \left(2 + 3p^{2} + \frac{5p^{4}}{8} \right) \right] \right\}^{1/2}$$

$$(4.48)$$

$$k_{T} = U_{T} + \left(U_{T}^{2} - 1\right)\left(\frac{p}{6}\right) + \frac{1}{3}\left(U_{T}^{3} - 6U_{T}\left(\frac{p}{6}\right)^{2} - \left(U_{T}^{2} - 1\right)\left(\frac{p}{6}\right)^{3} + U_{T}\left(\frac{p}{6}\right)^{4} + \left(\frac{1}{3}\right)\left(\frac{p}{6}\right)^{5}$$

$$(4.49)$$

$$\frac{\partial k_{\mathrm{T}}}{\partial p} = \left(\frac{1}{6}\right) \left\{ \left(U_{\mathrm{T}}^2 - 1\right) \left[1 - 3\left(\frac{p}{6}\right)^2\right] + 4U_{\mathrm{T}}\left(\frac{p}{6}\right)^3 \right\} + \left(\frac{p}{6}\right) \left(\frac{1}{6}\right)^2 \left\{4\left(U_{\mathrm{T}}^3 - 6U_{\mathrm{T}}\right) - 10\left(\frac{p}{6}\right)^3\right\}$$

(4.50)

Donde

 μ^2 y γ Son la varianza y coeficiente de asimetría estimados de la muestra analizada.

Desviación estándar de los eventos \hat{X}_{T} por máxima verosimilitud

$$S_{T} = \left\{ \frac{\left(\frac{\partial x}{\partial \alpha}\right)^{2} \operatorname{Var} \alpha + \left(\frac{\partial x}{\partial \beta}\right)^{2} \operatorname{Var} \beta + \left(\frac{\partial x}{\partial \lambda_{0}}\right)^{2} \operatorname{Var} \lambda_{0} + 2 \frac{\partial x}{\partial \alpha} \frac{\partial x}{\partial \beta} \operatorname{Cov}(\alpha, \beta) \right\}^{1/2} \\ + 2 \frac{\partial x}{\partial \alpha} \frac{\partial x}{\partial \lambda_{0}} \operatorname{Cov}(\alpha, \lambda_{0}) + 2 \frac{\partial x}{\partial \beta} \frac{\partial x}{\partial \lambda_{0}} \operatorname{Cov}(\beta, \lambda_{0})$$

Donde

$$\frac{\partial x}{\partial \alpha} = \left[\beta^{1/3} - \frac{1}{9\beta^{2/3}} + \frac{U_T}{3\beta^{1/6}} \right]^3$$

(4.52)

(4.51)

$$\frac{\partial x}{\partial \beta} = 3\alpha \left[\beta^{1/3} - \frac{1}{9\beta^{2/3}} + \frac{U_T}{3\beta^{1/6}} \right]^2 \cdot \left[\frac{1}{3\beta^{2/3}} + \frac{2}{27\beta^{5/3}} - \frac{U_T}{18\beta^{7/6}} \right]$$

 $\partial x = 1$ (4.53)

(4.54)

$$\operatorname{Var} \alpha = \frac{1}{n\alpha^2 D} \left[\frac{\psi'(\beta)}{(\beta - 2)} - \frac{1}{(\beta - 1)^2} \right]$$

(4.55)

$$\operatorname{Var} \hat{\beta} = \frac{2}{nD\alpha^4(\hat{\beta} - 2)}$$

(4.56)

$$\operatorname{Var} \hat{x}_0 = \frac{\hat{\beta} \, \psi(\hat{\beta}) - 1}{n\alpha^2 D}$$

(4.57)

$$Cov(\alpha, \hat{\beta}) = -\frac{1}{n\alpha^3 D} \left[\frac{1}{(\hat{\beta} - 2)} - \frac{1}{(\hat{\beta} - 1)} \right]$$

(4.58)

$$Cov(\alpha, \aleph_0) = -\frac{1}{n\alpha^2 D} \left[\frac{1}{(\beta - 1)} - \psi'(\beta) \right]$$

(4.59)

$$Cov(\beta, x_0) = -\frac{1}{n\alpha^3 D} \left\{ \frac{\beta}{(\beta - 1)} - 1 \right\}$$

(4.60)

$$D = \frac{1}{(\hat{\beta} - 2)\alpha^4} \left[2\psi'(\hat{\beta}) - \frac{2\hat{\beta} - 3}{(\hat{\beta} - 1)^2} \right]$$

(4.61)

La aproximación de la función trigamma de \hat{eta} es

$$\psi'(\hat{\beta}) = \frac{1}{(\hat{\beta}+2)} + \frac{1}{2(\hat{\beta}+2)^2} + \frac{1}{6(\hat{\beta}+2)^3} - \frac{1}{30(\hat{\beta}+2)^5} + \frac{1}{42(\hat{\beta}+2)^7} - \frac{1}{30(\hat{\beta}+2)^9} + \frac{1}{(\hat{\beta}+1)^2} + \frac{1}{\hat{\beta}^2}$$
(4.62)

4.4. Distribución de valores extremos tipo I (Gumbel) para mínimos

La distribución de valores extremos tipo I (Gumbel o VEI) también se emplea en el análisis de frecuencias para mínimos.

Para obtener la función de distribución Gumbel para mínimos se utiliza el principio de simetría

$$F(x)_{\min} = 1 - F(-x)_{\max} \tag{4.63}$$

Es decir,

$$F(x)_{\min} = 1 - \exp^{-\exp^{-\left(\frac{-x-\nu}{\alpha}\right)}} = 1 - \exp^{-\exp^{-\left(\frac{\omega-x}{\alpha}\right)}}$$
 para $-\infty < x < \infty, \ \alpha > 0$ (4.64)

La función de densidad se define por

$$f(x)_{\min} = \frac{1}{\alpha} \exp^{-\exp^{-\left(\frac{\omega-x}{\alpha}\right)}} \exp^{-\left(\frac{\omega-x}{\alpha}\right)}$$
(4.65)

Donde

φ parámetro de ubicación

lpha parámetro de escala

$$E(x) = \omega + 0.5772\alpha \tag{4.66}$$

$$\sigma^2 = \frac{\pi^2 \alpha^2}{6}$$

$$\gamma = 1.1396$$
 (4.67)

$$\kappa = 5.4002$$
 (4.69)

La variable reducida Gumbel para mínimos es
$$y_i = \frac{\omega - x_i}{\alpha} \tag{4.70}$$

Esta distribución no esta limitada en los extremos. Los valores más pequeños de la distribución VEI tienen una alta probabilidad de ser negativos. Además, la distribución VEI para mínimos es asimétrica a la izquierda con coeficiente constante de sesgo. Sin embargo, los eventos mínimos siempre tienen un limite inferior más grande o igual a cero y con diferentes coeficiente de sesgo.

Estimadores por momentos

$$\omega = \bar{x} - 0.577\alpha = \bar{x} - 0.45S \tag{4.71}$$

$$\alpha = \frac{\sqrt{6}}{\pi}S = 0.78S$$

(4.72)

Estimadores por máxima verosimilitud

La función de máxima verosimilitud queda definida por

$$L(x_i, \omega, \alpha) = L(x_i, \theta) = \prod_{i=1}^{n} f(x_i, \theta)$$
(4.73)

$$L(x_i, \omega, \alpha) = \frac{1}{\alpha^n} \exp \left[-\sum_{i=1}^n \left(\frac{\omega - x_i}{\alpha} \right) - \sum_{i=1}^n \exp^{-\left(\frac{\omega - x_i}{\alpha} \right)} \right]$$

(4.74)

$$\ln L(x_i, \underline{\theta}) = \ln \prod_{i=1}^{n} f(x_i, \underline{\theta}) = -n \ln \alpha - \sum_{i=1}^{n} \left(\frac{\omega - x_i}{\alpha} \right) - \sum_{i=1}^{n} \exp^{-\left(\frac{\omega - x_i}{\alpha} \right)}$$

Si se usa la variable reducida se tiene

$$\ln L(x_i, Q) = -n \ln \alpha - \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} \exp^{-y_i}$$
(4.76)

$$-\frac{\partial nL}{\partial \omega} = \frac{-n + \sum_{i=1}^{n} \exp^{-y_i}}{\alpha} = -\frac{P}{\alpha}$$

(4.77)

$$-\frac{\partial nL}{\partial \alpha} = \frac{n - \sum_{i=1}^{n} y_i + \sum_{i=1}^{n} y_i \exp^{-y_i}}{\alpha} = \frac{R}{\alpha}$$

(4.78)

$$\frac{\partial nL}{\partial \omega} = 0$$
; $\frac{\partial nL}{\partial \alpha} = 0$

(4.79)

Estas ecuaciones no tienen solución explícita por lo que requieren resolverse en forma iterativa

$$\omega_{j+1} = \omega_j + \delta \omega_j$$

(4.80)

$$\alpha_{j+1} = \alpha_j + \delta \alpha_j$$

(4.81)

Incrementos

(4.82)

$$\delta_{\omega_j} = \left(1.11P_j - 0.26R_j\right) \frac{\alpha_i}{n}$$

$$\delta_{\alpha_i} = \left(0.26P_j - 0.61R_j\right) \frac{\alpha_i}{n}$$

(4.83)

$$P = n - \sum_{i=1}^{n} \exp^{-y_i}$$

(4.84)

$$R = n - \sum_{i=1}^{n} y_i + \sum_{i=1}^{n} y_i \exp^{-y_i}$$

(4.85)

El criterio de convergencia es

$$\left(\frac{\partial nL}{\partial \omega}\right)_{i} = \frac{P}{\alpha} \approx 0 \tag{4.86}$$

$$\left(\frac{\partial nL}{\partial \alpha}\right)_{j} = -\frac{R}{\alpha} \approx 0 \tag{4.87}$$

Estimación de eventos

$$\hat{X}_{T} = \omega + \alpha \ln[-\ln(1-1/T)]$$
(4.88)

Desviación estándar de los eventos \hat{X}_{T} por momentos

$$S_{T} = \left[\frac{\dot{\sigma}^{2}}{n} \left(1 + 1.1396k_{T} + 1.10k_{T}^{2}\right)\right]^{1/2}$$
(4.89)

Donde

$$k_{\mathrm{T}} = \frac{Z_m - \mu_z}{\sigma_z} \tag{4.90}$$

$$z_{m} = -\ln\left[-\ln\left(1 - \frac{1}{T}\right)\right] \quad \text{donde } T = \frac{n+1}{m}$$
(4.91)

$$\mu_{z} = \frac{1}{n} \sum_{i=1}^{n} z_{m} \tag{4.92}$$

$$\sigma_{z} = \left[\frac{1}{n} \sum_{j=1}^{n} (z_{m} - \mu_{z})^{2}\right]^{1/2}$$
(4.93)

Donde σ^2 se estima con la expresión (4.67)

Desviación estándar de los eventos $\hat{X}_{\scriptscriptstyle T}$ por máxima verosimilitud (30.3) aportar anti no utino estándar de los eventos $\hat{X}_{\scriptscriptstyle T}$

$$S_{T} = \left[\frac{\alpha^{2}}{n} \left(1.1086 + 0.514y_{T} + 0.6079y_{T}^{2}\right)\right]^{1/2}$$

$$y_{T} = -\ln\left[-\ln\left(\frac{T-1}{T}\right)\right] \tag{4.94}$$

4.5, Distribución Weibull Gumbel (1958) discutió el uso de la distribución de Valores Extremos Tipo III (Weibull) para ajustar flujos mínimos. La justificación teórica para la distribución Weibull esta basada en la ley de valores extremos.

La función de probabilidad se expresa como (Kite, 1988)

$$F(x) = \exp\left\{-\left((x - \gamma)/(\beta - \gamma)\right)^{\alpha}\right\} \qquad 0 \le x < \infty$$

$$(4.96)$$

La función de densidad de probabilidad es

$$f(x) = \frac{\alpha}{\beta - \gamma} \left(\frac{x - \gamma}{\beta - \gamma}\right)^{\alpha - 1} e^{-\left(\frac{x - \gamma}{\beta - \gamma}\right)^{\alpha}}$$
(4.97)

Donde lpha es el parámetro de escala igual al orden de la menor derivada de la función de probabilidad sin ser igual a cero con $x=\gamma$, β es la sequía característica (parámetro de ubicación o valor central del parámetro) y γ es límite inferior para x.

Al emplear la transformación

$$y = \left(\frac{x - \gamma}{\beta - \gamma}\right)^{\alpha} \tag{4.98}$$

Y sustituyendo en las expresiones (4.96) y (4.97) se tiene

$$F(x) = \exp^{-y} \tag{4.99}$$

$$f(x) = \frac{\alpha}{\beta - \gamma} y^{(\alpha - 1)/\alpha} \exp^{-y}$$
(4.100)

Estimadores por momentos

La expresión general para el r - ésimo momento, μ_r^γ con el límite superior, γ , de la distribución extrema tipo III se obtiene como

$$\mu_{r}^{\gamma} = \int_{0}^{\infty} (x - \gamma)^{\gamma} \frac{\alpha}{(\beta - \gamma)} \left\{ \frac{x - \gamma}{\beta - \gamma} \right\}^{\alpha - 1} \exp\left\{ \frac{x - \gamma}{\beta - \gamma} \right\}^{\alpha} dx$$
(4.101)

Sustituyendo $\{(x-\gamma)/(\beta-\gamma)\}^{\alpha}$ por la variable reducida (4.98) y simplificando se obtiene:

$$\mu_r^{\gamma} = (\beta - \gamma) \int_0^\infty y^{r/\alpha} \exp^{-y} dy$$

$$= 28 \cdot 100 \cdot 1$$

$$\mu_r^{\gamma} = (\beta - \gamma)^r \Gamma(1 + r/\alpha) \tag{4.103}$$

Donde $\Gamma(\phi)$ es la función Gamma, la cual se obtiene con las expresiones (4.35) o (4.37).

El momento con respecto a γ se puede estimar de los momentos con respecto al origen o de los momentos centrales. Por ejemplo, para r=1

$$\mu_1^{\gamma} = (\beta - \gamma)\Gamma(1 + 1/\alpha) \tag{4.104}$$

y para el primer momento con respecto al origen (la media):

$$\mu_1 = \gamma + (\beta - \gamma)\Gamma(1 + 1/\alpha)$$
(4.105)

Para r=2

$$\mu_2 = (\beta - \gamma)^2 \Gamma(1 + 2/\alpha)$$

(4.106)

Además,

$$\mu_2 = \mu_2^{\gamma} - (\mu_1^{\gamma})^2$$

(4.107)

$$\mu_2 = \sigma^2 = (\beta - \gamma)^2 \left\{ \Gamma(1 + 2/\alpha) - \Gamma^2(1 + 1/\alpha) \right\}$$
(4.108)

$$\mu_{3} = (\beta - \gamma)^{3} \left\{ \Gamma(1 + 3/\alpha) - 3\Gamma(1 + 2/\alpha)\Gamma(1 + 1/\alpha) + 2\Gamma^{3}(1 + 1/\alpha) \right\}$$
(4.109)

$$\mu_{4} = (\beta - \gamma)^{4} \begin{cases} \Gamma(1 + 4/\alpha) - 4\Gamma(1 + 3/\alpha)\Gamma(1 + 1/\alpha) \\ + 6\Gamma(1 + 2/\alpha)\Gamma^{2}(1 + 1/\alpha) + 3\Gamma^{4}(1 + 1/\alpha) \end{cases}$$
(4.110)

$$\mu_{5} = (\beta - \gamma)^{5} \left\{ \Gamma(1 + 5/\alpha) - 5\Gamma(1 + 4/\alpha)\Gamma(1 + 1/\alpha) + 10\Gamma(1 + 3/\alpha)\Gamma^{2}(1 + 1/\alpha) - \frac{1}{10\Gamma(1 + 2/\alpha)\Gamma^{3}(1 + 1/\alpha) + 4\Gamma^{5}(1 + 1/\alpha)} \right\}$$
(4.111)

$$\mu_{6} = (\beta - \gamma)^{6} \begin{cases} \Gamma(1 + 6/\alpha) - 6\Gamma(1 + 5/\alpha)\Gamma(1 + 1/\alpha) + 15\Gamma(1 + 4/\alpha)\Gamma^{2}(1 + 1/\alpha) - \\ 20\Gamma(1 + 3/\alpha)\Gamma^{3}(1 + 1/\alpha) + 15\Gamma(1 + 2/\alpha)\Gamma^{4}(1 + 1/\alpha) - 5\Gamma^{6}(1 + 1/\alpha) \end{cases}$$
(4.112)

Si se definen las variables A_{α} y B_{α} , tal que A_{α} es la diferencia estandarizada entre el valor característico y la media y B_{α} es la diferencia estandarizada entre el valor inferior y el valor característico tal que

$$A_{\alpha} = \frac{\beta - \mu}{\sigma}$$

$$B_{\alpha} = \frac{\beta - \gamma}{\sigma}$$
(4.113)

Sustituyendo μ y σ de las expresiones (4.105) y (4.108)

$$B_{\alpha} = \left\{ \Gamma(1+2/\alpha) - \Gamma^{2}(1+1/\alpha) \right\}^{-1/2}$$
(4.115)

$$A_{\alpha} = \{1 - \Gamma(1 + 1/\alpha)\}B_{\alpha} \tag{4.116}$$

Si se define el coeficiente de asimetría como

$$\gamma_1 = \frac{\mu_3}{\mu_2^{3/2}} \tag{4.117}$$

Y de las expresiones (4.108), (4.109) y (4.115)

$$\gamma_{1} = \{ \Gamma(1+3/\alpha) - 3\Gamma(1+2/\alpha)\Gamma(1+1/\alpha) + 2\Gamma^{3}(1+1/\alpha) \} B_{\alpha}^{3}$$
(4.118)

Si el estimador del coeficiente de asimetría γ_1 se obtiene con la expresión (3.62), entonces, el parámetro α se calcula con la expresión (4.118).

Si el coeficiente de asimetría está en el rango $-1.02 < p_1 < 2.00$ el parámetro α se puede estimar con

$$\alpha = 1/[a_1 + a_2\gamma_1 + a_3\gamma_1^2 + a_4\gamma_1^3 + a_5\gamma_1^4]$$

$$a_1 = 0.2777757913 \qquad a_4 = -0.0013038566$$

$$a_2 = 0.3132617714 \qquad a_5 = -0.0081523408$$

$$a_3 = 0.0575670910$$
(4.119)

Conocido lpha los parámetros eta y γ se estiman por

$$\beta = \mu_1' + A_{\alpha} \sqrt{\mu_2}$$

$$\gamma = \beta - B_{\alpha} \sqrt{\mu_2}$$
(4.120)

(4.121)

(4.121)

Estimadores por máxima verosimilitud

La función logarítmica de máxima verosimilitud se define como

$$\ln L = n \ln \alpha - n \ln (\beta - \gamma) + (\alpha - 1) \sum_{i=1}^{n} \ln (x_i - \gamma) - n(\alpha - 1) \ln (\beta - \gamma) - (\beta - \gamma)^{-\alpha} \sum_{i=1}^{n} (x_i - \gamma)^{\alpha}$$
(4.122)

Tomando la derivada parcial con respecto a lpha , eta y γ se tiene

$$\frac{\partial nL}{\partial \alpha} = \frac{n}{\alpha} + \sum_{i=1}^{n} \ln(x_i - \gamma) - n\ln(\beta - \gamma) - (\beta - \gamma)^{-\alpha} \left\{ \sum_{i=1}^{n} (x_i - \gamma)^{\alpha} \left[\ln(x_i - \gamma) + \ln(\beta - \gamma) \right] \right\}$$

(4.123)

$$\frac{\partial nL}{\partial \beta} = -\frac{n}{\beta - \gamma} - \frac{n(\alpha - 1)}{\beta - \gamma} + \alpha(\beta - \gamma)^{-(\alpha + 1)} \sum_{i=1}^{n} (x_i - \gamma)^{\alpha}$$
(4.124)

$$\frac{\partial nL}{\partial \gamma} = -\frac{n}{\beta - \gamma} - (\alpha - 1) \sum_{i=1}^{n} (x_i - \gamma)^{-1} + \frac{n(\alpha - 1)}{\beta - \gamma}$$

$$\alpha(\beta-\gamma)^{-(\alpha+1)}\sum_{i=1}^{n}(x_{i}-\gamma)^{\alpha}+\alpha(\beta-\gamma)^{-\alpha}\sum_{i=1}^{n}(x_{i}-\gamma)^{\alpha-1}$$

(4.125)

De la expresión (4.124) se tiene

$$n(\beta - \gamma)^{\alpha} - \sum_{i=1}^{n} (x_i - \gamma)^{\alpha} = 0$$

$$(4.126)$$

Empleando (4.126) para eliminar β , y con las expresiones (4.123) y (4.125) se tiene

$$(\alpha - 1) \sum_{i=1}^{n} (x_i - \gamma)^{-1} - \frac{n\alpha \sum_{i=1}^{n} (x_i - \gamma)^{\alpha - 1}}{\sum_{i=1}^{n} (x_i - \gamma)^{\alpha}} = 0$$
(4.127)

$$n + \alpha \sum_{i=1}^{n} \ln(x_i - \gamma) - \frac{n\alpha \sum_{i=1}^{n} (x_i - \gamma)^{\alpha} \ln(x_i - \gamma)}{\sum_{i=1}^{n} (x_i - \gamma)^{\alpha}} = 0$$
(4.128)

Las expresiones (4.127) y (4.128) se deben resolver en forma simultánea para el cálculo de los parámetros α y γ . Finalmente, el parámetro β se obtiene como

$$\beta = \gamma + \left[\frac{\sum_{i=1}^{n} (x_i - \gamma)^{\alpha}}{n} \right]^{\frac{1}{\alpha}}$$
(4.129)

Estimación de eventos

$$\hat{X}_{T} = \gamma + (\beta - \gamma) \left[-\ln(1 - 1/T) \right]^{1/\alpha}$$
(4.130)

El error estándar de los eventos $\hat{X}_{\scriptscriptstyle T}$ por momentos

$$S_{T}^{2} = \frac{M_{2}^{\mu}}{n} \begin{cases} 1 + K_{T}\gamma_{1} + \frac{K_{T}^{2}}{4}(\gamma_{2} - 1) + \frac{\partial K_{T}}{\partial \gamma_{1}} \left[2\gamma_{2} - 3\gamma_{1}^{2} - 6 + K_{T}\left(\gamma_{3} - \frac{6}{4}\gamma_{1}\gamma_{2} - \frac{10}{4}\gamma_{1}\right) \right] + \\ \left(\frac{\partial K_{T}}{\partial \gamma_{1}} \right)^{2} \left[\gamma_{4} - 3\gamma_{3}\gamma_{1} - 6\gamma_{2} + \frac{9}{4}\gamma_{1}^{2}\gamma_{2} + \frac{35}{4}\gamma_{1}^{2} + 9 \right] \end{cases}$$

 γ_1 y γ_2 son los coeficientes de asimetría y curtosis estimados con las expresiones (3.54) y (3.55).

$$\gamma_{3} = \frac{\hat{M}_{5}^{\mu}}{(\hat{M}_{2}^{\mu})^{5/2}} \tag{4.132}$$

$$\gamma_{4} = \frac{\hat{M}_{6}^{\mu}}{(\hat{M}_{2}^{\mu})^{3}}$$

$$\gamma_4 = \frac{\hat{M}_6^{\mu}}{\left(\hat{M}_2^{\mu}\right)^3}$$

(4.133)

Los momentos con respecto a la media \hat{M}_{r}^{μ} , para $r=1,2,3,4,5\,\mathrm{y}$ 6 se obtienen con la expresión (3.50).

El factor de frecuencia se obtiene con la expresión

$$K_{\mathsf{T}} = A_{\alpha} + B_{\alpha} \left[(Y_{\mathsf{T}})^{1/\alpha} - 1 \right] \tag{4.134}$$

Donde A_{α} y B_{α} se estiman con las expresiones (4.115) y (4.116), y

$$Y_{T} = -\ln\left(1 - \frac{1}{T}\right) \tag{4.135}$$

$$\frac{\partial K_{T}}{\partial \gamma} = \frac{\left\{ (Y_{T}^{1/\alpha} \ln Y_{T} - G_{1}P_{1}) - (Y_{T}^{1/\alpha} - G_{1})(G_{2} - G_{1}^{2})^{-1}(G_{2}P_{2} - G_{1}^{2}P_{1}) \right\} (G_{2} - G_{1}^{2})^{2}}{\left\{ 3(G_{2} - G_{1}^{2})[G_{3}P_{3} - G_{1}G_{2}(P_{1} + 2P_{2}) + 2G_{1}^{3}P_{1}] - (G_{3} - 3G_{2}G_{1} + 2G_{1}^{3})(G_{2}P_{2} - G_{1}^{2}P_{1}) \right\}}$$

$$(4.136)$$

$$G_r = \Gamma(1 + r/\alpha), \quad r = 1, 2, 3$$
 (4.137)

$$P_r = \psi(1 + r/\alpha), \quad r = 1, 2, 3$$
 (4.138)

4.6. Distribución general de valores extremos (GVE) para mínimos

Jenkinson (1955) obtuvo la distribución general de valores extremos para máximos, la cual representa directamente a las distribuciones extremas tipo II (Fréchet) y III (Weibull). La distribución tipo I (Gumbel) resulta como una condición límite cuando el parámetro de forma $\beta \to 0$.

Las funciones de distribución y densidad GVE para mínimos son (Raynal, 1995)

$$F(x)_{\min} = \exp\left\{-\left[1 - \frac{\beta(\omega - x)}{\alpha}\right]^{\frac{1}{\beta}}\right\}; \quad \text{Si } \beta < 0; \quad -\infty < x < \omega - \alpha / \beta \\ \text{Si } \beta > 0; \quad \omega - \alpha / \beta < x < \infty$$

$$(4.139)$$

$$f(x)_{\min} = \frac{1}{\alpha} \exp\left\{-\left[1 - \frac{\beta(\omega - x)}{\alpha}\right]^{\frac{1}{\beta}}\right\} \left[1 - \frac{\beta(\omega - x)}{\alpha}\right]^{\frac{1}{\beta} - 1}$$
(4.140)

Donde α, β y ω son los parámetros de escala, forma y ubicación.

Estimadores por máxima verosimilitud

La función logarítmica de verosimilitud de la distribución GVE para mínimos es (Raynal,1995)

$$\ln L(x, \omega, \alpha, \beta) = -n\ln(\alpha) - \sum_{i=1}^{n} \left[1 - \frac{\beta(\omega - x)}{\alpha} \right]^{\frac{1}{\beta}} + \left(\frac{1}{\beta} - 1 \right) \sum_{i=1}^{n} \ln\left[1 - \frac{\beta(\omega - x)}{\alpha} \right]$$

$$(4.141)$$

Las derivadas parciales de primer orden de (4.141) con respecto a cada uno de los parámetros son (Raynal, 1995)

$$\frac{\partial nL}{\partial \omega} = \frac{1}{\alpha} \left\{ \sum_{i=1}^{n} \left[1 - \frac{\beta(\omega - x)}{\alpha} \right]^{\frac{1}{\beta} - 1} + (\beta - 1) \sum_{i=1}^{n} \left[1 - \frac{\beta(\omega - x)}{\alpha} \right]^{-1} \right\} \tag{4.142}$$

$$\frac{\partial nL}{\partial \alpha} = \frac{1}{\alpha} \left\{ -n - \sum_{i=1}^{n} \left[1 - \frac{\beta(\omega - x)}{\alpha} \right]^{\frac{1}{\beta} - 1} \frac{(\omega - x)}{\alpha} + (1 - \beta) \sum_{i=1}^{n} \left[1 - \frac{\beta(\omega - x)}{\alpha} \right]^{-1} \frac{(\omega - x)}{\alpha} \right\}$$

$$\frac{\partial nL}{\partial \beta} = \frac{1}{\beta} \left\{ \sum_{i=1}^{n} \left[1 - \frac{\beta(\omega - x)}{\alpha} \right]^{\frac{1}{\beta}} \left[\frac{1}{\beta} \ln \left(1 - \frac{\beta(\omega - x)}{\alpha} + \frac{(\omega - x)}{\alpha} \right) \left[1 - \frac{\beta(\omega - x)}{\alpha} \right]^{-1} \right] \right\}$$

$$- (1 - \beta) \sum_{i=1}^{n} \frac{(\omega - x)}{\alpha} \left[1 - \frac{\beta(\omega - x)}{\alpha} \right]^{-1} - \frac{1}{\beta} \sum_{i=1}^{n} \ln \left[1 - \frac{\beta(\omega - x)}{\alpha} \right]$$

$$(4.144)$$

La solución exacta del sistema de ecuaciones formado por las expresiones (4.142), (4.143) y (4.144) no es conocida para el caso de mínimos. Por lo tanto, se requiere de un proceso iterativo (Raynal y Escalante, 1996) similar al propuesto por Jenkinson (1969) para el caso de máximos. así

$$\begin{bmatrix} -\delta_{\omega} \\ -\delta_{\omega} \end{bmatrix} = \begin{bmatrix} E\left(-\frac{\partial^{2}\ln L}{\partial\omega^{2}}\right) & E\left(-\frac{\partial^{2}\ln L}{\partial\omega\partial\alpha}\right) & E\left(-\frac{\partial^{2}\ln L}{\partial\omega\partial\beta}\right) \end{bmatrix} \begin{bmatrix} -\frac{\partial\ln L}{\partial\omega} \\ -\delta_{\alpha} \\ -\delta_{\beta} \end{bmatrix} = \begin{bmatrix} E\left(-\frac{\partial^{2}\ln L}{\partial\alpha\partial\omega}\right) & E\left(-\frac{\partial^{2}\ln L}{\partial\alpha^{2}}\right) & E\left(-\frac{\partial^{2}\ln L}{\partial\alpha\partial\beta}\right) \end{bmatrix} \begin{bmatrix} -\frac{\partial\ln L}{\partial\omega} \\ -\frac{\partial\ln L}{\partial\omega} \end{bmatrix}$$

$$E\left(-\frac{\partial^{2}\ln L}{\partial\beta\partial\omega}\right) & E\left(-\frac{\partial^{2}\ln L}{\partial\beta\partial\alpha}\right) & E\left(-\frac{\partial^{2}\ln L}{\partial\beta^{2}}\right) \end{bmatrix} \begin{bmatrix} -\frac{\partial\ln L}{\partial\omega} \\ -\frac{\partial\ln L}{\partial\beta} \end{bmatrix}$$

$$(4.145)$$

La primera parte del lado derecho de (4.145) es la matriz de varianza-covarianza de los parámetros de la distribución GVE, entonces

$$\begin{bmatrix} -\delta_{w} \\ -\delta_{\alpha} \\ -\delta_{\beta} \end{bmatrix}_{i} = \begin{bmatrix} Var(\omega) & Cov(\omega, \alpha) & Cov(\omega, \beta) \\ Cov(\alpha, \omega) & Var(\alpha) & Cov(\alpha, \beta) \\ Cov(\beta, \omega) & Cov(\beta, \alpha) & Var(\beta) \end{bmatrix} - \frac{\partial nL}{\partial \alpha} - \frac{\partial nL}{\partial \beta}$$

(4.146)

Que para el caso de la distribución GVE para mínimos se reduce a (Raynal, 1995)

$$\begin{bmatrix} -\delta_{\omega} \\ -\delta_{\alpha} \\ -\delta_{\beta} \end{bmatrix}_{i} = \begin{bmatrix} \alpha^{2}b & \alpha^{2}h & \alpha f \\ \alpha^{2}h & \alpha^{2}a & \alpha g \\ \alpha f & \alpha g & c \end{bmatrix} \begin{bmatrix} -\frac{\partial nL}{\partial \omega} \\ -\frac{\partial nL}{\partial \alpha} \\ -\frac{\partial nL}{\partial \beta} \end{bmatrix}$$

(4.147)

Donde δ_{ω} , δ_{α} y δ_{β} , son las desviaciones entre los valores verdaderos de máxima verosimilitud y los correspondientes en la iteración i; α , b, c, f, g y h son los coeficientes de los elementos de la matriz varianza - covarianza de los parámetros de la distribución GVE para mínimos, los cuales se obtienen por integración numérica y se presentan en la tabla 4.1 (Raynal, 1995)

β	a	b	С	f	g	h
0.0	0.7723	1.0790	0.5463	-0.2077	0.2849	-0.3300
0.1	0.6367	1.2407	0.4913	-0.2763	0.2169	-0.2224
0.2	0.6133	1.2243	0.4493	-0.2693	0.2529	-0.1004
3.3	0.6018	1.2025	0.4035	-0.2517	0.2695	0.0314
0.4	0.6075	1.1844	0.3938	-0.2558	0.2885	0.1411
0.5	0.6696	1.1112	0.3935	-0.2248	0.3234	0.2575
0.6	0.9933	1.1101	0.8163	-0.4028	0.6766	0.1829

Tabla 4.1. Coeficientes de la matriz varianza - covarianza de los parámetros de la distribución GVE para mínimos obtenidos por integración numérica (Raynal, 1995).

La evaluación exacta de los coeficientes de los elementos de la matriz de varianza - covarianza de los parámetros de la distribución GVE para mínimos, es como sigue (Raynal y Escalante, 1996)

$$E\left(\frac{\partial^2 \ln L}{\partial \omega^2}\right) = \frac{n}{\alpha^2} \left[(1 - \beta)^2 \Gamma (1 - 2\beta) \right]$$

(4.148)

$$E\left(\frac{\partial^2 \ln L}{\partial \alpha^2}\right) = \frac{n}{\alpha^2 \beta^2} \left[1 - 2(1 - \beta)\Gamma(1 - \beta) + (1 - \beta)^2 \Gamma(1 - 2\beta)\right]$$

(4.149)

$$E\left(\frac{\partial^{2}\ln L}{\partial \beta^{2}}\right) = \frac{n}{\beta^{2}} \left\{ \frac{\pi^{2}}{6} + \left(1 - \ell - \frac{1}{\beta}\right)^{2} + \frac{2(1 - \beta)\Gamma(1 - \beta)\left[\psi(1 - \beta) - \frac{(1 - \beta)}{\beta}\right]}{\beta} + \frac{(1 - \beta)^{2}\Gamma(1 - 2\beta)}{\beta^{2}} \right\}$$

$$(4.149)$$

$$E\left(-\frac{\partial^{2}\ln L}{\partial\omega\partial\alpha}\right) = \frac{n}{\alpha^{2}\beta}\left[(1-\beta)\Gamma(1-\beta) - (1-\beta)^{2}\Gamma(1-2\beta)\right]$$

(4.151)

$$E\left(-\frac{\partial^{2}\ln L}{\partial\omega\partial\beta}\right) = \frac{n}{\alpha\beta}\left\{\frac{(1-\beta)^{2}\Gamma(1-2\beta)}{\beta} + (1-\beta)\Gamma(1-\beta)\left[\psi(1-\beta)\right] - \frac{(1-\beta)}{\beta}\right\}$$

(4.152)

$$E\left(-\frac{\partial^{2}\ln L}{\partial\alpha\partial\beta}\right) = \frac{n}{\alpha\beta^{2}}\begin{bmatrix}1-\ell-\frac{[1-(1-\beta)\Gamma(1-\beta)]}{\beta} & \frac{(1-\beta)^{2}\Gamma(1-2\beta)}{\beta}\\-(1-\beta)\Gamma(1-\beta)\left[\psi(1-\beta)-\frac{(1-\beta)}{\beta}\right]\end{bmatrix}$$

(4.153)

Donde

función Gamma completa

función Digamma (expresión 4.46)

constante de Euler (0.5772157).

Los coeficientes exactos de los elementos de la matriz varianza - covarianza para los parámetros de la distribución GVE para mínimos se muestran en la tabla 4.2. Los valores obtenidos con las expresiones (4.148) a (4.153) están restringidos al intervalo $|\beta| < 0.5$, para cumplir con las condiciones de regularidad. Esta restricción es equivalente a fijar el conjunto de valores teóricos del coeficiente de asimetría al intervalo de $|\gamma| < 0.74498$.

β	a	b	C	f	g	h
0.0	0.7723	1.0790	0.5463	-0.2077	0.2849	-0.3300
0.1	0.6082	1.2271	0.4004	-0.2419	0.1848	-0.2155
0.2	0.5839	1.2017	0.3303	-0.2201	0.2139	-0.0919
0.3	0.5795	1.1727	0.2653	-0.1933	0.2333	0.0347
0.4	0.5945	1.1413	0.2058	-0.1623	0.2422	0.1644
0.45	0.6091	1.1250	0.1781	-0.1456	0.2424	0.2305

Tabla 4.2. Coeficientes exactos de los elementos de la matriz de varianza-covarianza de los parámetros de la distribución GVE para mínimos (Raynal y Escalante, 1996).

El esquema iterativo se completa usando las siguientes ecuaciones

$$\frac{\partial nL}{\partial \omega} = \frac{Q}{\alpha} \tag{4.154}$$

$$\frac{\partial nL}{\partial \beta} = \frac{1}{\beta} \left[R + \frac{(P+Q)}{\beta} \right] \tag{4.155}$$

$$\frac{\partial nL}{\partial \alpha} = -\frac{(P+Q)}{\alpha \beta} \tag{4.156}$$

Donde

$$P = n - \sum_{i=1}^{n} \exp^{y_i}$$
 (4.157)

$$Q = (\beta - 1) \sum_{i=1}^{n} \exp^{\beta y_i} + \sum_{i=1}^{n} \exp^{y_i(1-\beta)}$$
(4.158)

$$R = -n + \sum_{i=1}^{n} y_i \exp^{y_i} - \sum_{i=1}^{n} y_i$$
$$y_i = \frac{1}{\beta} \ln \left[1 - \frac{(\omega - x_i)\beta}{\alpha} \right]$$

(4.159)

$$y_i = \frac{1}{\beta} \ln \left[1 - \frac{(\omega - x_i)\beta}{\alpha} \right]$$

(4.160)

El proceso iterativo alcanza la convergencia cuando:

$$\frac{\partial nL}{\partial \omega} = 0 \; ; \; \frac{\partial nL}{\partial \alpha} = 0 \; ; \; \frac{\partial nL}{\partial \beta} = 0$$

(4.161)

Estimación de eventos

$$\hat{X}_{T} = \omega - \frac{\alpha}{\beta} \left\{ 1 - \left[-\ln \left(F(x)_{\min} \right) \right]^{\beta} \right\}$$

 $\hat{X}_{T} = \omega - \frac{\alpha}{\beta} \left\{ 1 - \left[-\ln \left(F(x)_{\min} \right) \right]^{\beta} \right\}$ O también

(4.162)

$$\hat{X}_T = \omega + \alpha W$$

Donde (4.163)

$$w = \frac{\exp^{-\beta y_{\top}} - 1}{\beta}$$

(4.164)

$$y_{T} = -\ln\left[-\ln\left(1 - \frac{1}{T}\right)\right]$$

(4.165)

Desviación estándar de los eventos $\hat{X}_{\scriptscriptstyle T}$ por máxima verosimilitud

$$S_{T} = \frac{\alpha^{2}w^{2}}{n} \left\{ a + \frac{b}{w^{2}} + \frac{c}{w^{2}} + \left(\frac{dw}{d\beta}\right)^{2} + 2\frac{h}{w} + 2\left(\frac{g}{w} + \frac{f}{w^{2}}\right)\frac{dw}{d\beta} \right\}^{1/2}$$

Donde (4.166)

$$\frac{dw}{d\beta} = -\left(\frac{y_{\mathsf{T}} \exp^{-\beta y_{\mathsf{T}}} + w}{\beta}\right)$$

(4.167)

a,b,c,f,g y h son los elementos de la matriz de varianza - covarianza de la tabla 4.2.

4.7. Distribuciones mezcladas

Cuando se modelan series de avenidas anuales se pueden considerar dos secuencias de variables generadas por dos diferentes tormentas. Se concibe que cierta proporción, p, de la población tenga valores que vienen de la primera distribución $F_1(x)$, mientras los restantes valores vienen de una diferente distribución $F_2(x)$. Si las unidades se consideran apropiadamente mezcladas, entonces la probabilidad de que una simple unidad provenga de manera aleatoria de la primera distribución es p, y que sea de la segunda (1-p). La probabilidad no condicional de que la variable aleatoria sea menor que x es

$$P(X \le x) = F(x) = pF_1(x) + (1-p)F_2(x) \qquad x \ge 0$$
(4.168)

Donde p es la proporción de x en la mezcla y F(x) es una mezcla de distribuciones.

4.7.1. Distribución Gumbel mixta o de dos poblaciones para mínimos (Gumixmin)

Si las distribuciones marginales $F_1(x)$ y $F_2(x)$ son del tipo de valores extremos tipo I (Gumbel)

$$F_1(x) = \exp(-\exp^{-(x-\nu_1)/\alpha_1})$$
 $x \ge 0$ (4.169)

$$F_2(x) = \exp(-\exp^{-(x-\nu_2)/\alpha_2})$$
 $x \ge 0$ (4.170)

Entonces la expresión (4.168) conduce al modelo mezclado para máximos (Gumbel mixta)

$$F(x) = p \exp(-\exp^{-(x-\nu_1)/\alpha_1}) + (1-p) \exp(-\exp^{-(x-\nu_2)/\alpha_2}), \quad x \ge 0$$

Donde

 v_i y α_i parámetros ubicación y escala para la primera y segunda población p parámetro de asociación (0 .

Los flujos mínimos anuales se atribuyen a un continúo abatimiento del almacenamiento de agua de una cuenca hasta que se alcanza el mínimo nivel en la descarga. Los flujos mínimos anuales de algunos ríos son relacionados a un proceso que conduce al abatimiento de agua, por ejemplo debido a la evaporación. En otras cuencas este abatimiento puede ser causado por evaporación combinado sin reemplazo de flujo debido a la lluvia. Los eventos de cada uno de los procesos de dos sub-poblaciones separadas pueden combinarse para seguir una distribución que refleje ambas sub-muestras.

Empleando (4.64) se tienen las siguientes distribuciones para mínimos de construcción de la construcción de

$$F_1(x)_{\min} = 1 - \exp\left[-\exp^{-(\omega_1 - x)/\alpha_1}\right] \qquad x \ge 0$$

$$(4.172)$$

$$F_2(x)_{\min} = 1 - \exp\left[-\exp^{-(\omega_2 - x)/\alpha_2}\right]$$
 $x \ge 0$ (4.173)

La distribución mezclada para mínimos se puede expresar como (Reyes y Escalante, 1998)

$$F(x)_{min} = p \left[1 - \exp^{-\exp^{-(\omega_1 - x)/\alpha_1}} \right] + (1 - p) \left[1 - \exp^{-\exp^{-(\omega_2 - x)/\alpha_2}} \right] \qquad x \ge 0; \quad 0
(4.174)$$

Con función de densidad

$$f(x) = \frac{\rho}{\alpha_1} \exp^{-\exp^{-(\omega_1 - x)/\alpha_1}} \exp^{-(\omega_1 - x)/\alpha_1} + \frac{(1 - \rho)}{\alpha_2} \exp^{-(\omega_2 - x)/\alpha_2} \exp^{-(\omega_2 - x)/\alpha_2}$$

$$(4.175)$$

Estimadores por máxima verosimilitud

Los parámetros se calculan maximizando (4.176)

$$\ln L = \ln \prod_{i=1}^{n} f(x_i; \omega_1, \alpha_1, \omega_2, \alpha_2, p), \quad \alpha_i > 0$$
(4.176)

Dada la complejidad de la expresión (4.176) y de las derivadas parciales con respecto a los parámetros, se emplea el método de optimación multivariable restringido de Rosenbrock (Kuester y Mize, 1973) para su directa maximización.

4.7.2. Distribución de valores extremos de dos componentes (TCEV)

La distribución de valores extremos de dos componentes, conocida como TCEV se origina de un modelo que considera que las avenidas son las máximas variables de un número K de variables Z's, independientes e idénticamente distribuidas de un proceso de Poisson e independientes de K. La distribución de la variable Z se consideró como una mezcla de dos distribuciones exponenciales. Su función de distribución es (Rossi *et al.*, 1984)

$$F(x) = \exp\left(-\lambda_1 \exp^{-x/\alpha_1} - \lambda_2 \exp^{-x/\alpha_2}\right)$$
(4.177)

Los parámetros λ_1 y λ_2 son, respectivamente, el número medio anual de avenidas independientes que vienen de la primera y segunda componentes.

Las funciones de distribución y densidad TCEV para mínimos se obtienen empleando el principio de simetría (Gumbel, 1958) como (Reyes y Escalante, 1998):

$$F(x)_{min} = \exp(-\lambda_1 \exp^{x/\alpha_1} - \lambda_2 \exp^{x/\alpha_2}), \qquad x \ge 0$$
(4.178)

$$f(x) = \exp\left(-\lambda_1 \exp^{x/\alpha_1} - \lambda_2 \exp^{x/\alpha_2} \left(\frac{\lambda_1}{\alpha_1} \exp^{x/\alpha_1} + \frac{\lambda_2}{\alpha_2} \exp^{x/\alpha_2}\right), \quad x \ge 0$$
(4.179)

Los cuatro parámetros de la distribución TCEV para mínimos pueden estimarse del conjunto de datos del sitio analizado, por la directa maximización de (4.180) empleando nuevamente el algoritmo de optimación de Rosenbrock (Kuester and Mize, 1973).

$$\ln L = \ln \prod_{i=1}^{n} f(x_i; \lambda_1, \alpha_1, \lambda_2, \alpha_2,)$$
(4.180)

4.7.3. Confiabilidad de los eventos estimados con distribuciones mezcladas

Cualquier nueva aproximación para el análisis de eventos extremos mínimos debe mostrar que los eventos estimados con estas distribuciones son más confiables estadísticamente que aquellos obtenidos con aproximaciones ya existentes.

Esta confiabilidad se puede cuantificar por muchas medidas tales como el sesgo, varianza y la raíz del error medio cuadrático (*RMSE*) y las eficiencias de los *RMSE*'s.

El procedimiento consiste en generar 99,000 números con diferentes distribuciones poblacionales (Weibull, Gumbel mixta, TCEV, GVE y VEI). Posteriormente se agrupan en forma aleatoria en conjuntos de tamaño 9, 19, 49 y 99. Por lo tanto, el número de muestras, para cada tamaño es igual a 11,000, 5210, 2020 y 1000. Tal número de muestras asegura una desviación máxima absoluta entre la distribución empírica y la verdadera distribución de menos de 0.016 para el mayor número de muestras y 0.051 para el más pequeño, con una probabilidad del 99%.

Para cada muestra se calculan los eventos estimados por máxima verosimilitud de las distribuciones Weibull, Gumbel mixta, TCEV, GVE y VEI. La comparación se lleva a cabo con los eventos estimados para probabilidades de 0.25, 0.50, 0.75, 0.90, 0.95 y 0.99.

Si θ es el evento a estimarse y $\hat{\theta}_i$, i = 1, . . . n los estimadores obtenidos de cada muestra para un número n de muestras, las cuales varían de 11,000 a 1000. Entonces, el sesgo y la raíz del error medio cuadrático (RMSE) del estimador se obtienen como

$$sesgo = m(\theta) - \theta \tag{4.181}$$

$$RMSE = \sqrt{S^2(\theta) + [m(\theta) - \theta]^2}$$
(4.182)

Donde $m(\theta)$ y $S^2(\theta)$ son la media y varianza de la muestra generada

$$m(\theta) = (1/n) \sum_{i=1}^{n} \theta_{i}$$
 (4.183)

$$S^{2}(\theta) = (1/n) \sum_{i=1}^{n} [m(\theta) - \theta_{i}]^{2}$$
(4.184)

Cuando se estiman los parámetros y eventos de una función de distribución, es conveniente tener estimadores no sesgados y con un mínimo valor del *RMSE*. Comparando entre estimadores, aquel con varianza más pequeña es mejor.

Si se lleva a cabo una comparación relativa de los *RMSE*'s, considerando la relación de eficiencia = *RMSE*(s) / *RMSE*(f), en la cual *RMSE*(s) = raíz del error medio cuadrático para la misma distribución de la muestra simulada y *RMSE*(f) = otro estimador de *RMSE*. Por ejemplo, si la muestra generada tiene una distribución Weibull, la eficiencia es igual a uno cuando la distribución Weibull sirve como valor comparativo, es decir, en este caso se considera que la distribución Weibull es la más eficiente. Una relación más grande que uno indica que el estimador alternativo (Gumbel Mixta, VEI, GVE o TCEV), es más eficiente en términos del *RMSE*, que el de la Weibull. Por el contrario, una relación más pequeña indica lo opuesto.

En las tablas 4.3 a 4.7 se dan los sesgos obtenidos de las muestras generadas y los correspondientes valores poblacionales para las diferentes probabilidades analizadas. Debido al comportamiento no lineal del sesgo con respecto a la probabilidad, los sesgos de los procedimientos son comparados con el promedio absoluto. Se puede observar que cuando la población es VEI, el sesgo promedio de la Gumbel mixta es más pequeño que aquellos obtenidos por el resto de las distribuciones y decrece conforme el tamaño de la muestra se incrementa.

Los sesgos promedio de la distribución Gumbel mixta para mínimos son cercanos o mejores que los de las distribuciones Weibull y GVE cuando las poblaciones son Weibull y Gumbel Mixta. La distribución VEI produce los más altos valores de los sesgos promedio para todos los casos simulados.

Los sesgos TCEV son buenos únicamente en el caso cuando las muestras generadas son TCEV. Las distribuciones Weibull y GVE son la mejor alternativa en términos del sesgo cuando las muestras generadas provienen de las distribuciones Weibull, GVE y TCEV.

En las Tablas 4.8 a 4.17 se presentan los valores de los *RMSE*'s y las correspondientes eficiencias. Cuando las muestras son generadas por la distribución Weibull, la Gumbel mixta y la GVE producen eficiencias más grandes que uno. Para los casos de la distribución VEI, las mejores eficiencias son obtenidas por la Gumbel mixta, sin embargo, dependiendo del tamaño de muestra y el valor de la probabilidad *F*, las otras distribuciones también producen eficiencias mayores a uno. Para las muestras que siguen una distribución Gumbel mixta, las mejores eficiencias se obtiene por la distribución GVE con el tamaño de muestra igual o más grande que 49. Para los casos cuando las muestras son TCEV y GVE, las distribuciones Weibull y GVE dan las mejores eficiencias.

Tamaño muestra	Distribución generada	39 0.25	00.50	Probabilidad 0.75	0.90	0.95	0.99	Sesgo
9	Weibull	0.56	0.43	0.28	0.15	0.09	0.04	0.25
	Gumix ;	-0.16	-0.60	0.05	0.18	0.32	0.99	0.38
	TCEV	-4.58	-1.42	0.40	1.30	1.66	2.20	1.92
	GVE	0.12	0.01	-0.12	-0.25	-0.32	-0.40	0.20
	VEI	1.63	1.32	1.24	1.51	1.88	3.11	1.78
19	Weibull	0.52	0.41	0.29	0.19	0.14	0.11	0.27
	Gumlx	-0.31	-0.75	-0.07	0.09	0.23	0.86	0.38
	TCEV	-5.09	-1.75	0.25	1.12	1.41	1.82	1.90
	GVE	0.05	0.01	-0.04	-0.09	-0.10	-0.10	0.06
	VEI	1.63	1.32	1.26	1.55	1.93	3.19	1.81
49	Weibull	0.50	0.40	0.29	0.19	0.14	0.06	0.26
	Gumix :	-0.30	-0.71	0.00	0.13	0.26	0.86	0.38
	TCEV	-5.28	-1.78	0.26	0.98	1.14	1.32	1.79
	GVE	0.01	0.00	-0.03	-0.05	-0.05	-0.04	0.03
	VEI	1.63	1.34	1.29	1.58	1.97	3.26	1.85
99	Weibull	0.49	0.40	0.30	0.21	0.15	0.07	0.26
	Gumlx	-0.30	-0.68	0.05	0.17	0.30	0.09	0.26
	TCEV	-5.03	-1.57	0.41	0.98	1.04	1.02	1.67
	GVE	0.02	0.01	0.00	-0.02	-0.03	-0.06	0.02
	VEI	1.64	1.36	1.32	1.63	2.03	3.34	1.89
	Real	5.64	4.35	3.05	1.92	1.28	0.25	

Tabla 4.3. Sesgo de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución Weibull con parámetros γ = -1.5, α = 5 y β = 3.5.

Tamaño muestra	Distribución generada	0.25	0,50	Probabilidad 0.75	0.90	0,95	0.99	Sesgo
9	Weibull	0.68	0.70	0.54	0.14	-0.24	-1.35	1.82
	Gumix	-0.01	-0.45	0.29	0.34	0.19	-0.26	0.25
	TCEV ROM	-6.90	-2.62	0.05	1.32	1.58	1.28	2.29
	GVE 34	0.51	0.28	-0.18	-0.90	-1.52	-3.18	1.09
	VEI 883	1.69	1.62	1.54	1,44	1.38	1,23	1.48
19	Weibull	0.78	0.78	0.66	0.35	0.04	-0.88	0.58
	Gumix	-0.17	-0.67	0.05	0.22	0.10	0.29	0.25
	TCEV	-8.22	-3.45	-0.37	1.06	1.31	0.83	2.54
	GVE	0.67	0.28	-0.32	-1.17	-1.86	-3.64	1.32
	VEI	1.71	1.66	1.61	1.55	1.51	1.41	1.57
49	Weibull	0.81	0.79	0.68	0.46	0.22	-0.46	0.57
	Gumix Turn	-0.20	-0.67	0.15	0.32	0.22	-0.15	0.28
	TCEV	-8.51	-3.80	-Q.80	0.62	0.95	0.70	2.56
	GVE	0.55	0.19	-0.32	-1.02	-1.58	-3.00	1.11
197	VE!	1.71	1.68	1.65	1.61	1.58	1.51	1.62
99	VVeibull	0.84	0.81	0.71	0.51	0.33	-0.23	0.57
	Gumix	-0.20	-0.66	0.24	0.42	0.32	-0.01	0.29
	TCEV	-8.80	-4.14	-1.14	0.35	0.78	0.74	2.65
	GVE	0.47	0.15	-0.30	-0.89	-1.36	-2.55	0.95
	VEI	1.72	1.69	1.65	1.62	1.59	1.53	1.63
	Real	7.99	6.95	5.63	4.12	3.04	0.59	

Tabla 4.4. Sesgo de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución VEI con parámetros ω = 7.5 y α = 1.5.

Tamaño muestra	Distribución generada	0.25	0.50	Probabilidad 0.75	0.90	0.95	0.99	Sesgo promedio
9	Weibull	1.34	1.14	0.09	0.38	0.48	0.08	0.58
4.	Gumix	-0.03	-1.04	-0.40	0.41	0.84	1.48	0.70
	TCEV	-10.53	-4.22	-1.43	0.93	1.55	1.19	3.30
	GVE	0.64	0.42	-0.66	-0.42	-0.37	-0.88	0.57
	VEI	3.00	2.58	1.66	2.50	3.21	4.64	2.93
19	Weibull	1.33	1.15	0.17	0.56	0.75	0.51	0.74
	Gumíx	-0.27	-1.41	-0.76	0.23	0.70	1.38	0.79
	TCEV	-12.80	-5.89	-2.16	0.60	1.32	0.93	3.95
	GVE	0.44	0.29	-0.64	-0.21	-0.01	-0.20	0.30
1	VEI	3.02	2.61	1.71	2.55	3.27	4.72	2.98
49	Weibull	1.29	1.11	0.15	0.58	0.78	0.58	0.75
	Gumix	-0.30	-1.42	-0.52	0.44	0.90	1.59	0.86
	TCEV	-11.70	-5.16	-1.76	0.82	1.53	1.34	3.72
	GVE	0.34	0.27	-0.54	0.01	0.30	0.27	0.29
	VEI	3.02	2.62	1.73	2.61	3,34	4.84	3.02
99	Weibull	1.29	1.11	0.15	0.58	0.78	0.64	0.76
1.7	Gumlx	-0.29	-1.38	-0.42	0.49	0.94	1.60	0.85
	TCEV	-8.63	-3.39	-0.97	1.13	1.54	0.45	2.68
	GVE	0.32	0.27	-0.53	0.04	0.34	0.33	1.83
	VEI	3.02	2.64	1.75	2.64	3.38	4.88	3.05
	Real	10.19	8.19	5.27	3.83	2.89	0.62	

Tabla 4.5. Sesgo de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución Gumbel mixta con parámetros ω_1 = 10, ω_2 = 5, ω_2 = 1 y p = 0.75.

Tamaño muestra	Distribución generada	0.25	0.50	Probabilidad 0.75	0.90	0.95	0.99	Sesgo
g	Weibull	0.39	-0.22	-0.35	1.01	1,79	2.87	1.10
	Gumix	-1.52	-2.07	-0.46	1.77	3.85	8.59	3.04
	TCEV	2.10	1.18	-0.74	-0.66	-0.06	-0.45	0.86
	GVE	-0.22	-0.72	-0.73	0.73	1.58	2.76	1.12
	VEI	4.02	2.55	3.16	6.81	9.81	16.78	7.18
19	Weibull	0.34	-0.07	-0.32	0.73	1.30	1.95	0.78
	Gumíx	-1.80	-2.05	-0.51	1.65	3.66	8.38	3.00
	TCEV	3.16	0.86	-0.97	-0.82	-0.56	-0.09	1.07
	GVE	-0.15	-0.43	-0.54	0.62	1.23	1.93	0.81
	VEI	4.01	2.63	3.36	7.15	10.23	17.43	7.46
49	Weibull	0.29	-0.01	-0.37	0.48	0.90	1.29	0.56
	Gumix	-1.56	-1.34	-0.21	1.56	3.35	8.35	2.72
	TCEV	3.32	0.78	-1.11	-0.94	-0.66	-0.13	1.15
	GVE	-0.01	-0.25	-0.49	0.46	0.93	1.40	0.59
	VEI	4.16	2.82	3.59	7.43	10.55	17.83	7.73
99	Weibull	0.45	0.12	-0.35	0.35	0.69	0.96	0.49
	Gumíx	-1.46	-1.00	-0.10	1.54	3.21	8.11	2.57
C I	TCEV	3.48	0.84	-1:09	-0.95	-0.67	-0.15	1.19
	GVE	0.11	-0.09	-0.43	0.38	0.77	1.10	0.48
	VEI	4.17	2.86	3.67	7.56	10.72	18.09	7.84
	Real	9.28	4.73	1.43	0.62	0.41	0.16	

Tabla 4.6. Sesgo de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución TCEV con parámetros λ_1 = 1.73, α_1 = 5.18, λ_2 = 4.60 y α_2 = 0.35.

Tamaño muestra	Distribución generada	0.25	0.50 ⁽⁾	Probabilidad 0.75	0.90	0.95	0.99	Sesgo promedio
9	Weibull	0.29	0.02	0.04	0.27	0.47	0.87	0.36
	Gumix	-0.46	-0.81	0.00	0.61	1.33	3.53	1.12
	TCEV	-4.49	-1.38	0.04	1.04	1.64	2.79	1.89
	GVE	-0.11	-0.27	-0.15	0.16	0.39	0.86	0.32
	VEI	1.94	1.29	1.63	2.86	4.04	7.09	3.14
19	Weibull	0.24	0.06	0.05	0.17	0.27	0.48	0.21
	Gumíx	-0.72	-0.91	-0.06	0.49	1.17	3.30	1.10
	TCEV	-5.76	-1.92	-0.02	1.17	1.84	3.11	2.30
	GVE	-0.09	-0.17	-0.08	0.12	0.26	0.53	0.20
	VEI	1.98	1.37	1.75	3.04	4.25	7.38	3.29
49	Weibull	0.21	0.09	0.04	0.07	0.11	0.19	0.12
	Gumix	-0.68	-0.68	0.04	0.48	1.07	3.03	0.99
	TCEV	-6.82	-1.91	-0.01	1.28	2.01	3.37	2.56
	GVE	-0.06	-0.09	-0.05	0.05	0.12	0.26	0.10
	VEI	1.95	1.38	1.81	3.14	4.38	7.59	3.37
99	Weibull	0.20	0.10	0.03	0.02	0.02	0.04	0.06
	Gumíx	-0.64	-0.53	0.11	0.49	1.04	2.89	0.95
	TCEV	-9.23	-2.75	-0.43	1.07	1.90	3.38	3.12
	GVE	-0.02	-0.04	-0.01	0.03	0.07	0.13	0.05
	VEI	1.97	1.41	1.84	3.19	4.44	7.68	3.42
	Real	6.11	4.04	2.57	1.74	1.43	1.13	

Tabla 4.7. Sesgo de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución GVE con parámetros ω = 5, α = 3 y β = 0.75.

Tamaño	Distribución	0.25	0.50	Probabilidad 0.75	0.90	0.95	0.99
muestra	generada	Name and Address of the Owner o	AND RESIDENCE OF THE PROPERTY	- VIII WAR IN COMMITTEE OF THE COMMITTEE	And the second s	***	Of the term is provided propagated the contract
9	Weibull	0.87	0.77	0.76	0.90	1.05	1.47
	Gumix	0.78	1.11	0.72	0.90	1.11	1.81
	TCEV	5.65	2.40	1.24	1.64	1.36	2.89
0.81	GVE	0.79	0.66	0.82	1.17	1.45	2.11
	VEI	1.75	1.49	1.52	1.89	2.30	1.76
19	Weibull	0.68	0.59	0.55	0.62	0.72	1.03
	Gumix	0.60	0.98	0.52	0.59	0.72	1.30
	TCEV	4.76	2.39	1.08	1.40	1.73	2.42
	GVE	0.58	0.47	0.53	0.67	0.81	1.18
	VEI	1.68	1.40	1.39	1.72	2.12	3.42
49	Weibull	0.57	0.48	0.43	0.42	0.45	0.63
	Gumix	0.45	0.83	0.31	0.38	0.50	1.05
1	TCEV	5.58	2.12	0.91	1.13	1.30	1.72
	GVE	0.31	0.32	0.33	0.36	0.42	0.62
	VEI	1.65	1.37	1.34	1.66	2.06	3.36
99	Weibull	0.53	0.44	0.37	0.33	0.34	0.45
	Gumix	0.38	0.75	0.24	0.30	0.42	0.30
	TCEV	5.21	1.79	0.83	1.07	1.10	1.27
	GVE	0.22	0.22	0.24	0.24	0.28	0.42
	VEI	1.65	1.38	1.36	1.67	2.08	3.40

Tabla 4.8. RMSE de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución Weibull con parámetros γ = -1.5, α = 5 y β = 3.5.

Tamaño	Distribuc	1	4.05		Probabilidad		neidudhteil)	William I	
muestra	generad	a agr	0.25	0.50	0.75	0.90	0.95	0.99	
9	Weibull		0.88	1.01	1.17	1.46	1.77	2.82	
	Gumix		0.57	0.85	0.95	1.48	1.81	2.61	
	TCEV		8.10	3.86	1.86	1.81	1.85	1.57	
	GVE		1.20	0.70	1.12	2.26	3.20	5.49	
	VEI		1.83	1.87	1.99	2.20	2.39	2.91	
19	Weibull		0.87	0.93	1.03	1.22	1.47	2.35	
	Gumix		0.41	0.81	0.54	0.90	1.11	1.66	
	TCEV		8.86	4.18	1.73	1.58	1.51	1.07	
1	GVE		1.32	0.55	1.11	2.52	3.61	6.19	
	VEI		1.77	1.77	1.81	1.90	1,99	3.96	
49	Weibull		0.86	0.87	0.96	1.17	1.41	2.16	
	Gumix		0.32	0.74	0.41	0.68	0.78	1.11	
	TCEV		8.97	4.30	1.61	1.07	1.08	0.83	
	GVE		1.17	0.37	0.97	2.29	3.27	5.59	
	VEI		1.74	1.73	1.73	1.76	1.79	1.89	
99	Weibull		0.87	0.85	0.95	1.21	1.45	2.17	
	Gumix		0.26	0.70	0.36	0.58	0.60	0.72	
	TCEV		9.19	4.54	1.67	0.75	0.86	0.84	
	GVE		1.06	0.28	0.91	2.14	3.05	5.15	
	VEI		1.72	1.71	1.70	1.69	1.70	1.73	

Tabla 4.9. RMSE de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución VEI con parámetros ω = 7.5 y α = 1.5.

Tamaño muestra	Distribución generada	0.25	0.50	Probabilidad 0.75	0.90	0.95	0.99
9	Weibull	1.60	1.54	1.36	1.81	2.15	2.91
	Gumix	1.06	1.74	1.31	1.47	1.87	2.79
2.2	TCEV	12.23	5.51	2.46	1.67	2.07	2.25
	GVE	1.35	1.20	1.64	2.20	2.72	4.07
	VEI	3.16	2.84	2.21	3.10	3.85	5.43
19	Weibull	1.45	1.34	0.86	1.18	1.43	1.82
	Gumix	0.74	1.68	1.14	0.98	1.33	2.13
	TCEV	13.69	6.56	2.81	1.56	1.84	1.75
	GVE	0.95	0.87	1.24	1.49	1.83	2.74
	VEI	3.11	2.74	1.98	2.84	3.57	5.09
49	Weibull	1.33	1.18	0.55	0.88	1.12	1.31
	Gumix	0.51	1.52	0.76	0.74	1.14	1.85
	TCEV	12.81	5.82	2.09	1.16	1.88	2.42
	GVE	0.53	0.55	0.76	0.57	0.70	0.98
	VEI	3.05	2.67	1.83	2.71	3.45	4.96
99	Weibull	1.31	1.14	0.37	0.73	0.95	0.93
	Gumix	0.40	1.42	0.55	0.64	1.05	1.74
	TCEV	9.46	3.88	1.23	1.31	1.73	0.96
	GVE	0.42	0.41	0.64	0.38	0.54	0.71
	VEI	3.04	2.66	1.81	2.70	3.44	4.96

Tabla 4.10. *RMSE* de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución Gumbel mixta con parámetros ω_1 = 10, α_1 = 2. ω_2 = 5, α_2 = 1 y p = 0.75.

Tamaño	Distribución			behilldade	m9	Pr	obabilidad			haqudidai0 I	6/15/05
muestra	generada	09.0	0.25	0.75	0.50	06.0	0.75	0.35	0.90	0.95	0.99
9	Welbull	Set 5	2.93	80.1	1.80	(10)	1.27	00.1	1.54	2.23	3.42
	Gumix	50 h	3.82		3.99		1.48		2.52	4.81	10.41
3.4	TCEV		3.55		1.70		1.09		0.91	0.75	0.67
	GVE		3.10		2.16		1.60		1.41	2.02	3.25
53.7	VEI		4.37		2.91		3.84		7.73	10.91	18.37
19	Weibull		1.99		1.24		0.91		1.08	1.60	2.36
	Gumix		3.03		3.31		1.26		2.21	4.39	9.83
	TCEV		3.55		1.35		1.18		0.95	0.70	0.44
	GVE		2.04		1.44		1.08		1.00	1.51	2.28
	VEI		4.19		2.81		3.66		7.55	10.72	18.13
49	Welbull		1.23		0.76		0.62		0.71	1.12	1.61
	Gumix		2.17		2.26		0.77		1.85	3.78	9.30
	TCEV		3.47		1.03		1.19		0.99	0.71	0.30
	GVE		1.24		0.94	1.50	0.76		0.69	1.14 3 7 0	1.69
	VEL		4.23		2.89		3.73		7.60	10.75	18.12
99	Weibull		0.93		0.51		0.47		0.55	0.90	1.25
	Gumix		1.85		1.72		0.54		1.69	3.42	8.65
	TCEV		3.54		0.93		1.12		0.97	0.69	0.22
	GVE		0.94		0.68		0.60		0.58	0.95	1.35
	VEI		4.21		2.91		3.75		7.65	10.83	18.23

Tabla 4.11. *RMSE* de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución TCEV con parámetros λ_1 = 1.73, α_1 = 5.18, λ_2 = 4.60 y α_2 = 0.35.

Tamaño muestra	Distribución generada	0.25	ili jan	0.50	Pro	obabilidad 0.75	Le h	0.90	0.95	0.99
9	Welbull	1.28	- Andrewson of the Control of the Co	0.84	Control of the contro	0.67		0.71	0.86	1.31
	Gumix	1.62		1.79		0.78		1.19	2.02	4.56
	TCEV	5.48		2.17		1.00		1.28	1.86	3.09
	GVE	1.36		0.99		0.76		0.70	0.81	1.25
	VEC - ST.O	2.11		1.48		1.91		3.26	4.51	7.74
19	Weibull	0.88		0.59		0.45		0.48	0.58	0.87
188	Gumix	1.31		1.52		0.60		0.84	1.55	3.89
	TCEV	6.22		2.29		0.80		1.44	2.16	3.56
	GVE	0.91		0.70		0.52		0.45	0.55	0.87
	VEI -38 0	2.06		1.46		1.89		3.23	4.48	7.69
49	Weibull	0.59		0.41		0.30		0.33	0.40	0.57
	Gumix	0.99		1.06		0.40		0.64	1.24	3.33
	TCEV	7.22		2.11		0.56		1.47	2.24	3.69
	GVE	0.61		0.48		0.34		0.31	0.38	0.57
	VE	1.99		1.42		1.87		3.23	4.49	7.73
99	Weibull	0.45		0.32		0.22		0.26	0.32	0.43
	Gumix	0.83		0.80		0.28		0.56	1.10	3.01
	TCEV	9.44		2.90		0.55		1.27	2.15	3.75
1	GVE	0.44		0.34		0.24		0.24	0.30	0.42
	VEI -388.0	1.99		1.43		1.88		3.24	4.50	7.75

Tabla 4.12. RMSE de los eventos de diseño obtenidos para diferentes distribuciones considerando a la distribución GVE con parámetros ω = 5, α = 3 y β = 0.75.

Tamaño	Distribución		1	This CEG	(N) (I)	Pr	obabilidad				ii bellin
muestra	generada	Chi.	0.25		0.50	08:0	0.75	8.8	0.90	0.95	0.99
9	Weibull		1.00	15.1	1.00		1.00		1.00	1.00	1.00
	Gumix		1.11		0.69		1.05		1.00	0.94	0.81
	TCEV		0.15		0.32		0.61		0.54	0.77	0.51
	GVE		1.10		1.16		0.92		0.77	0.72	0.69
	VEI		0.49		0.51		0.50		0.47	0.45	0.83
19	Weibull		1.00		1.00		1.00		1.00	1.00	1.00
	Gumix		1.13		0.60		1.05		1.05	1.00	0.79
	TCEV		0.14		0.24		0.51		0.44	0.41	0.42
	GVE		1.17		1.25		1.03		0.92	0.88	0.87
	VE!		0.40		0.42		0.39		0.36	0.33	0.30
49	Weibull		1.00		1.00		1.00		1.00	1.00	1.00
	Gumix		1.26		0.57		1.38		1.10	0.90	0.60
	TCEV		0.10		0.22		0.47		0.37	0.34	0.36
	GVE		1.83		1.50		1.30		1.16	1.07	1.02
	VEI		0.34		0.35		0.32		0.25	0.21	0.19
99	Weibull		1.00		1.00		1.00		1.00	1.00	1.00
	Gumix		1.39		0.58		1.54		1.10	0.81	1.50
	TCEV		0.10		0.24		0.44		0.30	0.31	0.35
	GVE		2.40		2.00		1.54		1.37	1.21	1.07
	VEI		0.32		0.31		0.27		0.19	0.16	0.13

Tabla 4.13. Eficiencias de los *RMSE*'s de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución Weibull con parámetros γ = -1.5, α = 5 y β = 3.5.

Tamaño muestral	Distribución generada	0.25	0.50	Probabilidad 0.75	0.90	0.95	0.99
9	Weibull	2.07	1.85	1.70	0.66	1.35	1.03
	Gumix	3.21	2.20	2.09	1.48	1.32	1.11
	TCEV	0.22	0.48	1.07	1.21	1.29	1.85
	GVE	1.52	2.67	1.77	0.97	0.75	0.53
	VEI	1.00	1.00	1.00	1.00	1.00	1.00
19	Weibull	2.03	1.90	1.75	1.55	1.35	1.68
	Gumix	4.31	2.18	3.35	2.11	1.79	2.38
	TCEV	0.20	0.42	1.04	1.20	1.32	3.70
	GVE	1.34	3.21	1.63	0.87	0.55	0.63
	VEI	1.00	1.00	1.00	1.00	1.00	1.00
49	Weibull	2.02	1.99	1.80	1.50	1.26	0.87
	Gumix	5.43	2.34	4.21	2.58	2.29	1.70
	TCEV	0.19	0.40	1.07	1.64	1.65	2.27
	GVE	1.48	4.67	1.78	0.76	0.55	0.33
	VEI	1.00	1.00	1.00	1.00	1.00	1.00
99	Weibull	1.97	2.01	1.78	1.39	1.17	0.79
50	Gumix	6.61	2.44	4.72	2.91	2.83	2.40
	TCEV	0.19	0.37	1.02	2.25	1.97	2.06
	GVE	1.62	6.10	1.86	0.79	0.55	0.34
	VEI	1.00	1.00	1.00	1.00	1.00	1.00

Tabla 4.14. Eficiencias de los *RMSE*'s de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución VEI con parámetros ω = 7.5 y α = 1.5.

Tamaño muestra	Distribución generada	18.6	0.25	- Alekseda V. C.	0.50	08.0	robabilidad 0.75	45.0	0.90	h-100.95	0.99
9	Weibull		0.66	-	1.13	1111	0.96		0.81	0.87	0.95
	Gumix		1.00		1.00		1.00		1.00	1.00	1.00
	TCEV		0.08		0.32		0.53		0.88	0.90	1.24
	GVE		0.78		1.45		0.79		0.67	0.68	0.68
	VEI		0.33		0.61		0.59		0.47	0.48	0.51
19	Weibull		0.51		1.25		1.32		0.83	0.93	1.17
	Gumix		1.00		1.00		1.00		1.00	1.00	1.00
	TCEV		0.05		0.26		0.41		0.63	0.72	1.21
	GVE		0.78		1.93		0.92		0.65	0.73	0.77
	VEI		0.24		0.61		0.57		0.34	0.37	0.42
49	Weibull		0.38		1.29		1.38		0.84	1.01	1.41
	Gumix		1.00		1.00		1.00		1.00	1.00	1.00
	TCEV		0.04		0.26		0.36		0.64	0.60	0.76
	GVE		0.96		2.76		1.00		1.29	1.62	1.88
	VEI		0.17		0.57		0.42		0.27	0.33	0.37
99	Weibull		0.30		1.24		1.48		0.87	1.10	1.87
	Gumix		1.00		1.00		1.00		1.00	1.00	1.00
	TCEV		0.04		0.37		0.44		0.48	0.61	1.81
	GVE		0.95		3.46		0.86		1.68	1.94	2.45
	VEI		0.13		0.53		0.30		0.23	0.30	0.35

Tabla 4.15. Eficiencias de los *RMSE*'s de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución Gumbel mixta con parámetros ω_1 = 10, ω_1 = 2, ω_2 = 5, ω_2 = 1 y p = 0.75.

Tamaño muestra	Distribución generada	0.25	0.50	Probabilidad 0.75	0.90	0.95	0.99
9	Weibull	1.21	0.94	0.85	0.59	0.33	0.19
	Gumix	0.92	0.42	0.73	0.36	0.16	0.06
	TCEV	1.00	1.00	1.00	1.00	1.00	1.00
	GVE	1.14	0.78	0.68	0.64	0.37	0.21
	VEI	0.81	0.58	0.28	0.12	0.06	0.04
19	Weibull	1.78	1.08	1.29	0.87	0.43	0.18
	Gumix	1.17	0.40	0.94	0.43	0.16	0.04
	TCEV	1.00	1.00	1.00	1.00	1.00	1.00
	GVE	1.74	0.94	1.08	0.95	0.46	0.19
	VEI	0.85	0.48	0.32	0.13	0.06	0.02
49	Weibull	2.82	1.35	1.92	1.39	0.63	0.18
	Gumix	1.59	0.45	1.54	0.53	0.19	0.03
	TCEV	1.00	1.00	1.00	1.00	1.00	1.00
	GVE	2.79	1.09	1.56	1.43	0.63	0.17
	VE	0.82	0.35	0.32	0.13	0.06	0.02
99	Weibull	3.80	1.82	2.38	1.76	0.76	0.18
	Gumix	1.91	0.54	2.07	0.57	0.20	0.02
	TCEV	1.00	1.00	1.00	1.00	1.00	1.00
	GVE	3.76	1.36	1.86	1.67	0.72	0.16
	VE1	0.84	0.32	0.29	0.13	0.06	0.01

Tabla 4.16. Eficiencias de los *RMSE* s de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución TCEV con parámetros λ_1 = 1.73, α_1 = 5.18, λ_2 = 4.60 y α_2 = 0.35.

Tamaño	Distribución	and the same of th		hatalded	979	Pr	obabilidad			relauditsed	s hows
muestral	generada	46.0	0.25	9.75	0.50	H	0.75	8.4	0.90	0.95	0.99
9	Weibull	214.1	1.06	100	1.17		1.13		0.98	0.94	0.95
	Gumix		0.84		0.55		0.97		0.59	0.40	0.27
i.	TCEV		0.25		0.46		0.76		0.55	0.43	0.40
	GVE		1.00		1.00		1.00		1.00	1.00	1.00
	VEI		0.64		0.67		0.39		0.21	0.18	0.16
19	Weibull		1.03		1.18		1.15		0.94	0.95	1.00
	Gumix		().69		0.46		0.87		0.54	0.35	0.22
	TCEV		0.14		0.30		0.65		0.31	0.25	0.24
	GVE		1.00		1.00		1.00		1.00	1.00	1.00
	VEI		0.44		0.48		0.28		0.14	0.12	0.11
49	Weibull		1.03		1.17		1.13		0.94	0.95	1.00
1	Gumix		0.61		0.45		0.85		0.48	0.30	0.17
	TCEV		().08		0.22		0.61		0.21	0.17	0.15
	GVE		1.00		1.00		1.00		1.00	1.00	1.00
-	VEI		0.30		0.34		0.19		0.09	0.08	0.07
99	Weibull		().97		1.06		1.09		0.92	0.93	0.97
å.	Gumix		0.53		0.42		0.85		0.43	0.27	0.14
11	TCEV		0.04		0.12		0.44		0.18	0.14	0.11
	GVE		1.00		1.00		1.00		1.00	1.00	1.00
88.0	VEL 08	\$8.0	0.22		0.24		0.12		0.07	0.06	0.05

Tabla 4.17. Eficiencias de los *RMSE*'s de los eventos de diseño obtenidos para diferentes distribuciones considerando la distribución GVE con parámetros ω = 5, α = 3 y β = 0.75.

4.8. Gasto Ecológico

El manejo adecuado de los recursos hidráulicos requiere de una serie de acciones que aseguren un balance razonable entre el suministro y la demanda del agua.

La estrategia que se adopte para el manejo adecuado del agua en una situación particular depende de la cantidad y calidad de la información hidrológica disponible.

Una de las características básicas del agua superficial es su naturaleza variable. El proceso de precipitación que renueva el agua superficial varía sustancialmente en un año y entre años, proveyendo dos extremos: inundaciones y sequías. Debido a esta variabilidad, la evaluación del agua superficial tradicionalmente involucra el análisis de las características estadísticas de las series de largo plazo obtenidas en una estación de aforos. Estas series pueden contener eventos máximos o mínimos anuales.

Como ya se ha mencionado, el análisis de los eventos hidrológicos mínimos son la base para el diseño de estructuras como las plantas de tratamiento de aguas residuales o para describir la capacidad de una corriente para suministrar los requerimientos para la navegación fluvial, el suministro de agua urbana o agrícola, la generación de energía hidroeléctrica, la dispersión de contaminantes y el mantenimiento de las condiciones óptimas de la vida acuática.

Las ciencias hidrológicas han desarrollado procedimientos para transformar los datos de una estación hidrométrica en una variedad de parámetros que definen el potencial hidráulico de un río. El flujo medio anual es una medida básica que caracteriza a una corriente superficial, sin embargo, este índice no es suficiente para describir su comportamiento. Adicionalmente, se pueden obtener un conjunto de parámetros como son: 1) Aquellos flujos que son igualados o excedidos en un porcentaje dado de tiempo, y 2) Flujos de duración específica que ocurren una vez en promedio en un número de años, esto último es conocido como periodo de retorno.

Flujos igualados o excedidos para porcentajes específicos de tiempo

Para relacionar los gastos a su probabilidad de ocurrencia se requiere construir la curva de gastos-duración. El primer paso consiste en ordenar los gastos medios diarios en orden descendente y determinar el número total de datos disponibles. Los datos son agrupados en intervalos de clase que incluyan el mínimo y máximo de los valores registrados. El valor elegido de intervalos de clase le dará precisión a la curva gastos-duración. Para determinar el porcentaje de datos de cada clase se divide cada conjunto entre el número total de datos. Con cada porcentaje es posible construir la curva gastos-duración.

El United States Geological Survey (USGS, 2000) define el gasto Q₁₀ como la descarga que ha sido igualada o excedida el 10% de las veces para el periodo de tiempo analizado. El Q₁₀ con frecuencia se asocia a los eventos de inundación. Similarmente, el gasto Q₅₀ representa la mediana del escurrimiento, y puede emplearse junto el gasto medio para describir las condiciones más probables que pueden persistir en la corriente analizada. El parámetro Q₉₀ describe las condiciones límite del escurrimiento en el río y se usa como un indicador del flujo medio base. Finalmente, el parámetro Q₉₅ se puede considerar como el flujo mínimo extremo de la corriente.

Flujos basados en duraciones esperadas y periodos de retorno

Una segunda aproximación para especificar la dependencia del flujo al potencial del recurso es el análisis de los gastos mínimos. Tales flujos se consideran como los gastos más pequeños que pueden ocurrir en promedio en un específico número de años, y se obtienen a partir de un análisis de frecuencias de eventos extremos mínimos. Debido a que el análisis de frecuencias emplea series de mínimos anuales, los parámetros de escurrimiento resultantes no se emplean para describir su ocurrencia en términos semanales o mensuales. Es común que el análisis de mínimos no solo considere el valor registrado más pequeño para cada año, sino también para el promedio de un número determinado de días. La nomenclatura para este tipo de eventos es dQ_T, donde d representa el número de días consecutivos empleado para obtener el promedio del gasto mínimo, y T representa el periodo de retorno.

El gasto promedio mínimo en siete días consecutivos a ocurrir una vez cada diez años $7Q_{10}$ es una condición de sequía y es considerada poco frecuente. La Agencia de Protección Ambiental de los Estados Unidos (EPA, 2003) emplea este índice como el valor del gasto mínimo que debe tener una corriente para mantener la calidad del agua en condiciones aceptables. Para este propósito se compara el valor del gasto $7Q_{10}$, con el 10% del gasto medio anual registrado, adoptando como condición necesaria el valor más grande de los dos. Para la estimación del $7Q_{10}$ se emplean las distribuciones de probabilidad para mínimos.

Ejemplo 4.1. Con la información de los gastos medios diarios del periodo 1963-1999 en la estación hidrométrica La Parota, se desea obtener el gasto ecológico desde el punto de vista hidrológico.

En la tabla 4.18 se presentan las características estadísticas de la serie de gastos medios diarios del periodo 1963-1999 en la estación hidrométrica La Parota.

Mes		Q(m³/s)	Volumen (Mm³)
Enero	на жинимецина под филособи соно фоссов (положеру разгули и это и постои диниципацибали и долж и и во от от отво С	43.1	isingulae med zeel 3.724 o solverede and
Febrero		31.7	2.743
Marzo		24.7	2.131
Abril		20.5	1.775
Mayo		22.7	1.958
Junio		83.8	7.239
Julio		177.4	15.330
Agosto		257.6	22.260
Septiembre		453.8	39 210
Octubre		284.1	24.540
Noviembre		105.1	9.082
Diciembre		60.2	5.203
Anual		130.8	11.300

Tabla 4.18. Gasto medio diario promedio mensual y anual y su equivalente en volumen para el periodo 1963-1999 en la estación La Parota

En la tabla 4.19 se presentan los flujos igualados o excedidos para porcentajes específicos de tiempo del sitlo analizado.

	Gasto	232	Q(m³/s)	
	Q ₁₀	.1745	308.0	particularity effects developing
	Q ₅₀		59.0	
	Q90		19.0	
Annual Control of the	Q ₉₅	443	16.0	

Tabla 4.19. Flujos igualados o excedidos para porcentajes específicos de tiempo para el periodo 1963-1999 en la estación La Parota

De acuerdo con el análisis realizado a la información, se obtiene que el 69.9% de los gastos medios diarios están por debajo del medio promedio anual, esto es, Q medio = 130.8 m³/s. Para determinar cual es el gasto medio más probable de ocurrir se obtendrán los siguientes percentiles:

Percentil	Rango Q(m3/s)	Número de veces	% del periodo (1963-1999)
1	0 - 10	192	1.4
2	10.1 - 20.0	1440	10.7
3	20.1 - 30.0	2309	17.1
mm E4 com 1	30.1 - 40.0	1341	9.9
5	40.1 - 50.0	864	6.4
6	50.1 - 60.0	659	4.9
7	60.1 - 70.0	523	3.9
8	70.1 - 80.0	466	3.5
9	80.1 - 90.0	418	3.1
10	90.1 - 100.0	literate exi351	2.6
11	100.1 - 110.0	332	2.5
12	110.1 - 120.0	292	2.2
13	120.1 - 130.8	258	

Tabla 4.20a. Probabilidad de ocurrencia (%) del gasto medio diario por debajo del promedio anual y con referencia al periodo 1963-1999 en la estación La Parota.

De acuerdo con la tabla anterior se observa que el gasto medio diario más probable se sitúa entre 20.0 y 30.0 m³/s, por lo que si se discretiza en este intervalo se obtiene finalmente el gasto de 21 m³/s como el de mayor ocurrencia en el año, lo que equivale a un volumen promedio diario de 1,814,400 m³.

ie.	Percentil	Rango Q(m³/s)	Número de veces	% del periodo (1963-1999)
errysejestrologi, ir seferminis	1	0.0-20.0	1632	12.1
	2	20.1-21.0	298	2.2
	3	21.1-22.0	243	1.8
	4	22.1-23.0	232	1.7
	5	23.1-24.0	251	1.9
	6	24.1-25.0	275	2.0
	7	25.1-26.0	229	4 ***
	8	26.1-27.0	234	4 ==
	9	27.1-28.0	176	1.3
	10	28.1-29.0	189	1.4
	11	29.1-30.0	182	1.3

Tabla 4.20b. Probabilidad de ocurrencia (%) del gasto medio diario en el intervalo de 20 y 30.0 m³/s y con referencia al periodo 1963-1999 en la estación La Parota.

Para la estimación del $7Q_{10}$ se procesa la información de los gastos medios diarios del periodo disponible (1963-1999), quedando finalmente la muestra de la tabla 4.21. En la Tabla 4.22 se presentan los estadísticos muestras de las serie de eventos $7Q_{10}$.

Al realizar el análisis de frecuencias, ajustando las distribuciones propuestas en este capítulo, se obtienen los gastos mínimos para los diferentes periodos de retorno (Tabla 4.23).

De acuerdo con el criterio del error estándar de ajuste, la mejor distribución es la Gumbel Mixta, por lo que de acuerdo con la recomendación de la Agencia de Protección Ambiental de los Estados Unidos, el $7Q_{10} = 10.4 \text{ m}^3/\text{s}$. Si se considera que el 10% del gasto medio promedio anual es de 13.1 m³/s (0.1*130.8 m³/s), entonces el gasto mínimo aceptable para mantener las condiciones de calidad del agua sería finalmente la mayor de las dos, en este caso de 13.1 m³/s. Ahora bien, como ya se indico, el parámetro $Q_{90} = 19 \text{ m}^3/\text{s}$ describe las condiciones límite del escurrimiento en el río y se usa como un indicador del flujo medio base.

Finalmente, de acuerdo con el comportamiento histórico del periodo analizado (1963-1999) se obtuvo un gasto de 21 m³/s como el de mayor ocurrencia en el año, por lo que para mantener el patrón esperado de escurrimiento se recomienda este último valor como el gasto ecológico del río. Cabe mencionar que este gasto no consideraría futuras extracciones para el suministro de agua potable a las comunidades o para riego.

Ahora bien, desde el punto de vista biológico, las mayores riquezas específicas de plancton y bentos que se encontraron en el campo durante el periodo de febrero-mayo (época de estiaje en el sitio), estaban relacionadas con flujos promedio que variaban entre los 22 y 30 m³/s. Esto plantea la disyuntiva de considerar sólo los aspectos hidrológicos en la propuesta del gasto ecológico, o tomar en cuenta la componente biológica del sistema (flujo ambiental). Para cumplir con el criterio anterior, se pueden emplear las aproximaciones propuestas por Richter et al. (1999) o la del -Environmental Flow Assessment-(King et al. 1999).

Año	7Q(m³/s)	Número de orden	7Q(m³/s) ordenado		Probabilidad 1/T	Probabilidad 1-(1/T)
1963	19.8	1	0.3	38.00	0.026	0.974
1964	15.1	2	3.2	19.00	0.053	0,947
1965	0.3	3	9.8	12.67	0.079	0.921
1966	19.1	4	9.8	9.50	0.105	0.895
1967	19.0	5	11.9	7.60	0.132	0.868
1968	14.4	6	13.0	6.33	0.158	0.842
1969	17.5	7	13.1	5.43	0.184	0.816
1970	15.4	8	13.4	4.75	0.211	0.789
1971	18.9	9	14.2	4.22	0.237	0.763
1972	16.5	10	14.4	3.80	0.263	0.737
1973	15.3	11	15.0	3.45	0.289	0.711
1974	19.3	12	_15.1	3.17	0.316	0.684
1975	19.1	13	15.2	2.92	0.342	0.658
1976	13.0	14	15.3	2.71	0.368	0.632
1977	16.4	15	15.3	2.53	0.395	0.605
1978	15.3	16	15.4	2.38	0.421	0.579
1979	22.3	17	15.7	2.24	0.447	0.553
1980	17.4	18	15.8	2.11	0.474	0.526
1981	16.9	19	16.4	2.00	0.500	0.500
1982	23.2	20	16.5	1.90	0.526	0.474
1983	13.1	21	16.9	1.81	0.553	0.447
1984	14.2	22	17.1	1.73	0.579	0.421
1985	17.1	23	17.4	1.65	0.605	0.395
1986	15.8	24	17.5	1.58	0.632	0.368
1987	3.2	25	17.7	1.52	0.658	0.342
1988	13.4	26	18.7	1.46	0.684	0.316
1989	17.7	27	18.9	1.41	0.711	0.289
1990	21.5	28	19.0	1.36	0.737	0.263
1991	9.8	2:9	19.1	1.31	0.763	0.237
1992	21.1	30	19.1	1.27	0.789	0.211
1993	18.7	31	19.3	1.23	0.816	0.184
1994	15.0	32	19.8	1.19	0.842	0.158
1995	15.2	33	21.1	1.15	0.868	0.132
1996	9.8	34	21.1	1.12	0.895	0.105
1997	21.1	35	21.5	1.09	0.921	0.079
1998	15.7	36	22.3	1.06	0.947	0.053
1999	11.9	37	23.2	1.03	0.974	0.026

Tabla 4.21. Gastos mínimos anuales (m³/s) promedio de 7 días consecutivos para el periodo 1963-1999 de la estación La Parota.

Estad	ístico	and the state of t	Valo	or
Media			 15.	9
Varianza			21.9	9
Desviación estándar			4.7	7
Coeficiente de asimetria			-1.4	4
Coeficiente de curtosis			6.7	7
Coeficiente de variación			0.2	9

Tabla 4.22. Características de los gastos mínimos anuales para duraciones de 7 días consecutivos (7Q en m³/s) de la estación La Parota.

				140		
Periodo	0.342	Di	stribución de	Probabilidad	19.1	Estimación
T(años)	Gumbel	GVE	Weibull	Gumbel Mixta	TCEV	Promedio
2	16.6	15.0	14.9	16.5	15.5	15.7
5	12.7	12.1	11.0	12.8	10.4	11.8
10	10.0	10.9	9.1	10.4	8.3	9.7
20	7.6	10.0	7.6	8.1	6.7	8.0
50	4.3	9.2	6.0	5.1	5.0	5.9
100	1.9	8.7	5.1	2.9	4.0	4.5
						mínimo
Error Estándar	1.5	2.4	2.0	1.4	3.8	Gumbel Mixta

Tabla 4.23. Gastos mínimos anuales para duraciones de 7 días consecutivos (7Q en m³/s) y diferentes periodos de retorno en la estación La Parota.

CAPITULO 5 ANÁLISIS REGIONAL DE GASTOS MÍNIMOS ANUALES

5.1. Técnicas regionales

El análisis de frecuencias se emplea para estimar eventos con cierto periodo de retorno $Q_{\rm T}$, en un sitio de proyecto. Si el periodo de retorno T es grande, comparado con la longitud n de la serie analizada, entonces el error del estimador $\hat{Q}_{\rm T}$ puede ser muy alto e ineficiente para propósitos de diseño. Más aún, en algunos sitios de interés se carece de información hidrométrica, lo que dificulta la obtención de $\hat{Q}_{\rm T}$. Estos inconvenientes han propiciado la generación de modelos de estimación regional, los cuales hacen uso de la información proveniente de cuencas vecinas.

La mayor parte de los modelos regionales propuestos en la literatura requieren que la región considerada en el estudio sea homogénea de alguna manera cuantificable.

A continuación se presenta la notación y definiciones que serán comunes para las técnicas regionales.

 Q_i^j son los eventos analizados para cada estación j, para j=1 hasta el número total de sitios ms, y desde i=1 hasta el tamaño de muestra n_j , con un registro total de $n_T=\sum_{j=1}^{ms}n_j$ estaciones-año, y es una muestra aleatoria que pertenece a una población común de la región.

Generalmente, las técnicas regionales requieren de procesos de estandarización de las muestras del tipo

$$\left(\frac{Q_i^j - \varphi_i}{\varpi_j}\right) \tag{5.1}$$

0

$$\frac{Q_i^j}{Q_i^j} \tag{5.2}$$

Donde φ_j , ϖ_j , y Q_i^j son algunos estadísticos de ubicación y escala de la muestra.

La estandarización del tipo de la expresión (5.2) se asocia directamente con la técnica de la avenida índice. Generalmente, Q_i^j se toma como el valor medio \overline{Q}^j de la serie Q_i^j y la variable analizada es $X = Q / \mu_Q$ con las propiedades E[X] = 1, $S_x = C_V(Q)$, $g_x = g_Q$.

5.1.1. Técnica de las estaciones-año

Este método considera el tratamiento de una sola muestra de datos conformada por un registro estandarizado de eventos, el cual una vez que se construye se ajusta a un conjunto de distribuciones de probabilidad. Esta técnica regional a diferencia de otras no requiere que las muestras tengan una longitud de registro común (Cunnane, 1988).

La secuencia puede resumirse como

Paso 1. Probar dentro de región analizada la homogeneidad de las series de datos. Para este propósito se emplean las expresiones (3.72) a (3.80).

Paso 2. Con las expresiones (3.58) a (3.66) se obtienen los estadísticos muestrales de las series Q_i^j : $X_j, S_j^2, S_j, g_j, k_j, Cv_j$ para j = 1,..., ms.

Paso 3. Para cada serie i se verifica mediante la prueba de Anderson la independencia de eventos (expresiones 3.81 a 3.83).

Paso 4. Para cada serie j se genera una muestra modulada de la forma

ada serie
$$j$$
 se genera una muestra modulada de la forma
$$q_i^j = \frac{Q_i^j}{X_j} \tag{5.3}$$

Paso 5. Se forma el registro llamado estaciones-año, de tamaño $n_T = \sum_{i=1}^{ms} n_i$ con todos los eventos modulados q!.

Paso 6. El registro se ordena de menor a mayor y se le asigna un periodo de retorno y una probabilidad de no excedencia.

$$T = \frac{n_T + 1}{m} \tag{5.4}$$

$$P(X \le x) = P = \frac{1}{T} \tag{5.5}$$

Donde

T periodo de retorno en años

 $n_{\rm r}$ tamaño de muestra del registro estaciones-año

m número de orden del registro, desde $m = 1,...,n_T$

P probabilidad de no excedencia.

Paso 7. Al registro formado en el paso 5 se le ajustan las diferentes distribuciones de probabilidad para el análisis de mínimos vistas en el capítulo 4 (Log Normal con 3 parámetros, Gamma con 3 parámetros, Gumbel, General de Valores Extremos, Gumbel Mixta y Valores Extremos de dos Componentes), y se selecciona aquel que proporcione el mínimo error estándar de ajuste (expresión 3.84).

Paso 8. Una vez obtenida la distribución de mejor ajuste, es posible estimar los eventos regionales (R) para diferentes periodos de retorno, los cuales serán válidos para cualquier punto dentro de la zona analizada.

$$(q)_{T}^{R} = \left(\frac{Q}{X}\right)_{T}^{R}$$
, T = 2, 5, 10, 20, 50 y 100 años (5.6)

Paso 9. Si se quiere obtener un evento $Q_{\rm T}^j$ en un sitio j que tiene escasa información, basta multiplicar la relación regional obtenida en el paso anterior por el correspondiente valor de \bar{x}_j . Por el contrario, si se desea un evento $Q_{\rm T}^e$ en un sitio no aforado (e) que esté dentro de la región, se debe construir la relación $\bar{x}_j - A_j$, donde A_j , j = 1,...,ms son las áreas drenadas, para que a partir de ella se pueda inferir el valor correspondiente de \bar{x}_e para el área A_e del sitio (e). Esta última relación puede ser del tipo lineal, potencial o polinomial.

Ejemplo 5.1. Se desea obtener una estimación regional por la técnica estaciones-año de Q_T^R , T=2,5,10,20,50 y 100 años, para la cuenca definida por la estación hidrométrica Piaxtla.

Para definir el conjunto estaciones-año se toman en cuenta las hidrométricas vecinas Acatitan, Ixpalino y Santa Cruz, y no se considera el registro de gastos mínimos anuales de Piaxtla, por lo que para propósitos del ejemplo se toma como no aforada $\left(\hat{Q}_{T}^{e}=\hat{Q}_{T}^{R}\right)$.

En la tabla 5.1 se presentan las características estadísticas de las estaciones involucradas en el ejemplo.

		Estación			
Estadístico	Acatitan	lxpalino	Santa Cruz	Piaxtla	
X	0.143	1.105	1.807	1.200	
S	0.082	0.708	1.029	0.878	
g	1.119	1.609	1.542	0.866	
k	5.232	5.435	7.726	4.809	
C_{v}	0.575	0.641	0.569	0.731	
N (años)	31	31	43	16	

Tabla 5.1. Características estadísticas de las series de gastos mínimos anuales para las estaciones vecinas al sitio Piaxtla.

En este ejemplo el número de estaciones es ms=3. De acuerdo con la expresión (5.3), se debe modular cada una de las muestras.

Si j = 1, los gastos modulados de la estación Acatitan son

$$q_i^1 = \frac{Q_i^1}{0.143}$$
: $q_{1955}^1 = \frac{0.080}{0.143} = 0.559$, $q_{1956}^1 = \frac{0.120}{0.143} = 0.839$,..., $q_{1985}^1 = \frac{0.030}{0.143} = 0.209$

Este proceso se realiza para las estaciones Ixpalino y Santa Cruz

$$q_i^2 = \frac{Q_i^2}{1.105}$$
: $q_{1953}^2 = \frac{0.500}{1.105} = 0.452$, $q_{1954}^2 = \frac{0.380}{1.105} = 0.343$, ..., $q_{1983}^2 = \frac{2.580}{1.105} = 2.334$

$$q_i^3 = \frac{Q_i^3}{1.087}$$
: $q_{1943}^3 = \frac{1.340}{1.807} = 0.741$, $q_{1944}^3 = \frac{2.800}{1.807} = 1.549$,..., $q_{1985}^3 = \frac{5.360}{1.807} = 2.966$

Se forma el registro llamado estaciones-año, de tamaño $n_T = \sum_{j=1}^{ms} n_j = 31 + 31 + 43 = 105$ con todos los eventos modulados q_i^T .

$$q' = \{0.559, 0.839, ..., 0.209, 0.452, 0.343, ..., 2.334, 0.741, 1.549, ..., 2.966\}$$

A esta serie modulada de 105 elementos se le aplica el análisis de frecuencias de gastos mínimos anuales y se selecciona la mejor distribución de ajuste.

nim sin Es	stadist	ico	Hackey	4.6230		Valor	116080011	
	X S	0.059			188.0	0.999 0.587		
	g					1.416		
	K					5.555		
	C_{v}					0.587		
	N (años	s)				105		

Tabla 5.2. Características estadísticas de la serie modulada de estaciones año asociada al sitio Piaxtla.

En la Tabla 5.3 se presentan los estimadores regionales Q_T^R para los periodos de retorno solicitados, así como los errores estándar de ajuste para las diferentes distribuciones de probabilidad ajustadas al registro. Si se considera que el estimador regional del gasto mínimo medio anual de la estación Piaxtla es $\bar{x}_{Piaxtla} = 1.2 \, \text{m}^3/\text{s}$, entonces los estimadores finales se obtendrán con la expresión $\hat{Q}_T^R = \hat{q}_T^R (\bar{x}_{Piaxtla})$. En la Tabla 5.4 se muestran tales estimadores.

	7			Distrib	al eb noisenne	ini al eini	
T(años)	Probabilidad	Lognormal	Gumbel	Weibull	G.V.E.	Gumix min	TCEV
2	0.500	0.825	1.052	0.874	0.856	0.937	0.893
5	0.800	0.453	0.202	0.394	0.506	0.573	0.538
10	0.900	0.331	0.000	0.151	0.398	0.338	0.390
20	0.950	0.255	0.000	0.000	0.340	0.114	0.282
50	0.980	0.191	0.000	0.000	0.301	0.000	0.174
100	0.990	0.157	0.000	0.000	0.285	0.000	0.109
E.E.		0.224	0.515	0.254	0.122	0.079	0.111

Tabla 5.3. Estimadores q_T^R para la región asociada al sitio Piaxtla

25-3-1-		P65.0		Distrib	ución		
T(años)	Probabilidad	Log normal	Gumbel	Weibull	G.V.E.	Gumix min	TCEV
2	0.500	0.990	1.262	1.045	1.027	1.124	1.072
5	0.800	0.543	0.242	0.473	0.607	0.687	0.645
10	0.900	0.397	0.000	0.181	0.478	0.406	0.468
20	0.950	0.306	0.000	0.000	0.408	0.137	0.338
50	0.980	0.229	0.000	0.000	0.361	0.000	0.208
100	0.990	0.188	0.000	0.000	0.342	0.000	0.131

Tabla 5.4. Estimadores finales $Q_T^R(m^3/s)$ para la región asociada al sitio Piaxtla

Con fines comparativos, al registro de gastos mínimos anuales de la estación Piaxtla se le realiza también un análisis de frecuencias, cuyos resultados se presentan en la tabla 5.5.

	The state of the s			Distrib	ución		
T(años)	Probabilidad	Log normal	Gumbel	Weibull	G.V.E.	Gumix min	TCEV
2	0.500	0.651	1.303	1.013	1.059	0.986	1.011
5	0.800	0.161	0.216	0.295	0.424	0.560	0.353
10	0.900	0.077	0.000	0.000	0.185	0.287	0.075
20	0.950	0.042	0.000	0.000	0.036	0.002	0.016
50	0.980	0.021	0.000	0.000	0.000	0.000	0.003
100	0.990	0.013	0.000	0.000	0.000	0.000	0.002
E.E.		1.683	1.200	0.356	0.197	0.209	0.174

Tabla 5.5. Estimadores \hat{Q}_T (m³/s) para la estación hidrométrica Piaxtla

Ejemplo 5.2. Se desea obtener una estimación regional por la técnica estaciones-año de $\hat{\mathbb{Q}}^{\mathbb{R}}$, T=2,5,10,20,50,100, con la información del ejemplo 5.1. Pero ahora se considera que existe escasa información en la estación hidrométrica Piaxtla.

El procedimiento es similar al ejemplo anterior, solo que el registro de estaciones año tomará en cuenta la información de la estación Piaxtla, así $n_{\tau} = \sum_{j=1}^{ms} n_j = 31 + 31 + 43 + 16 = 121$

En la Tabla 5.6 se presentan los estimadores regionales q_T^R para los periodos de retorno solicitados, así como los errores estándar de ajuste para las diferentes distribuciones de probabilidad ajustadas al registro de 121 datos.

		Distribución					
T(años)	Probabilidad	Log normal	Gumbel	Weibull	G.V.E.	Gumix min	TCEV
2	0.500	0.780	1.056	0.871	0.862	0.928	0.900
5	0.800	0.363	0.199	0.376	0.484	0.552	0.518
10	0.900	0.243	0.000	0.125	0.362	0.310	0.357
20	0.950	0.175	0.000	0.000	0.294	0.078	0.239
50	0.980	0.121	0.000	0.000	0.247	0.000	0.119
100	0.990	0.094	0.000	0.000	0.228	0.000	0.047
E.E.		0.577	0.506	0.248	0.116	0.085	0.114

Tabla 5.6. Estimadores $\hat{q}_{\mathrm{T}}^{\mathrm{R}}$ para la región asociada al sitio Piaxtla

Como el gasto mínimo medio anual de la estación Piaxtla es $\bar{x}_{\text{Piaxtla}} = 1.2 \, \text{m}^3/\text{s}$, entonces los estimadores finales se obtienen con la expresión $\hat{Q}_{\text{T}}^{\text{R}} = \hat{q}_{\text{T}}^{\text{R}} \left(\bar{x}_{\text{Piaxtla}} \right)$. En la Tabla 5.7 se muestran tales estimadores.

		kan dan dan puli, badiya pingapa dan adi mara mis menda silikat menyang sarah pungang peneng peneng peneng A din malaja ada		Dis	tribución		
T(años)	Probabilidad	Log normal	Gumbel	Weibull	ad an G.V.E.	Gumixmin	TCEV
2	0.500	0.936	1.267	1.045	1.034	1.114	1.080
5	0.800	0.436	0.239	0.451	0.581	0.662	0.622
10	0.900	0.292	0.000	0.150	0.434	0.372	0.428
20	0.950	0.210	0.000	0.000	0.353	0.094	0.287
50	0.980	0.145	0.000	0.000	0.296	0.000	0.143
100	0.990	0.113	0.000	0.000	0.274	0.000	0.056

Tabla 5.7. Estimadores finales $\hat{Q}_{T}^{R}(m^{3}/s)$ para la región asociada al sitio Piaxtla

5.1.2. Técnica de correlación y regresión múltiple

Las características en la frecuencia de los gastos mínimos anuales pueden expresarse en términos de algunos índices geomorfológicos y/o factores climatológicos de la cuenca. La dependencia o independencia de las variables se estima para cada sitio aforado mediante un proceso de correlación y regresión discriminante, donde la aportación de cada variable independiente es probada hasta lograr un modelo de regresión, en el cual todas las variables que en él intervengan sean estadísticamente significativas para la estimación de la variable dependiente analizada. En la práctica, el número de variables independientes no debe exceder aproximadamente un tercio del número de observaciones. Por lo tanto se debe tener cuidado de no arriesgar la confiabilidad de la estimación de los coeficientes por incluir variables de más.

El modelo de regresión puede ser del tipo

$$Y = a + b_1 X_1 + \dots + b_s X_s \tag{5.7}$$

O también

$$Y = aX_1^{b_1}, X_2^{b_2}, ..., X_s^{b_s}$$

(5.8)

Donde

Y variable dependiente

 X_k características fisiográficas y/o climatológicas (k = 1,...,s)

 a, b_k conjunto de parámetros a estimarse de los datos

La secuencia de cálculo es la siguiente:

Paso 1. Recabar la información sobre los eventos por ser analizados en cada una de las estaciones de la región, así como la determinación de sus características fisiográficas y climatológicas.

Paso 2. Probar dentro de región analizada la homogeneidad de las series de datos. Para este propósito se emplean las expresiones (3.72) a (3.80).

Paso 3. Con las expresiones (3.58) a (3.66) se obtienen los estadísticos muestrales de las series Q_i^j : $x_j, S_j^2, S_j, g_j, k_j, Cv_j$ para j = 1,..., ms.

Paso 4. Para cada serie j se verifica mediante la prueba de Anderson la independencia de eventos (expresiones 3.81 a 3.83).

Paso 5. Para cada una de las series Q_i^j se le ajustan las diferentes distribuciones de probabilidad para el análisis de mínimos (Log Normal con 3 parámetros, Gamma con 3 parámetros, Gumbel, General de Valores Extremos, Gumbel Mixta y Valores Extremos de dos Componentes), y se selecciona aquel que proporcione el mínimo error estándar de ajuste (expresión 3.84).

Paso 6. Una vez que se obtiene la distribución de mejor ajuste para cada uno de los sitios j = 1,...,ms, es posible calcular los eventos \hat{Q}_{T}^{j} para los periodos de retorno T = 2, 5, 10, 20, 50 y 100 años.

Paso 7. Para cada periodo de retorno analizado se plantea un sistema de ecuaciones del tipo

$$\hat{Q}_{T} = a + b_{1}X_{1} + b_{2}X_{1} + b_{3}X_{1} + b_{4}X_{4}...$$
(5.9)

Por ejemplo, si se tienen seis sitios aforados y cuatro características fisiográficas (área, elevación media de la cuenca, longitud del cauce principal y la densidad de drenaje) el sistema es para un T = 50 años es

$$\hat{Q}_{50}^{1} = a + b_{1}A^{1} + b_{2}E_{c}^{1} + b_{3}L_{cp}^{1} + b_{4}D_{d}^{1}$$

$$\hat{Q}_{50}^{2} = a + b_{1}A^{2} + b_{2}E_{c}^{2} + b_{3}L_{cp}^{2} + b_{4}D_{d}^{2}$$

$$\hat{Q}_{50}^{3} = a + b_{1}A^{3} + b_{2}E_{c}^{3} + b_{3}L_{cp}^{3} + b_{4}D_{d}^{3}$$

$$\hat{Q}_{50}^{4} = a + b_{1}A^{4} + b_{2}E_{c}^{4} + b_{3}L_{cp}^{4} + b_{4}D_{d}^{4}$$

$$\hat{Q}_{50}^{5} = a + b_{1}A^{5} + b_{2}E_{c}^{5} + b_{3}L_{cp}^{5} + b_{4}D_{d}^{5}$$

$$\hat{Q}_{50}^{6} = a + b_{1}A^{6} + b_{2}E_{c}^{6} + b_{3}L_{cp}^{6} + b_{4}D_{d}^{6}$$

$$(5.10)$$

Paso 8. Para resolver el sistema de ecuaciones se debe recordar que las series involucradas deben tener una distribución Normal. Para probar esto se deberán obtener los estadísticos muestrales para cada una de las series del sistema. Si esto no se cumple se debe proceder a transformarlas, por ejemplo por Box-Cox (apartado 3.13).

Paso 9. Una vez que se plantea el sistema de ecuaciones normales, se debe realizar un análisis de varianza, el cual determina el número de variables independientes que deben incluirse finalmente en el modelo de regresión. Así, se podría tener una ecuación regional donde una de las cuatro variables iniciales no fue significativa para la estimación del evento de T = 50 años

$$\hat{Q}_{50}^{R} = \hat{a} + \hat{b}_{1}A + \hat{b}_{2}E_{c} + \hat{b}_{3}D_{d}$$
(5.11)

Paso 10. Si se quiere obtener un evento \hat{Q}_{50}^j en un sitio j que tiene escasa información, basta sustituir las características fisiográficas A^j , E_c^j y D_d^j en la ecuación regional obtenida en el paso anterior. Por el contrario, si se desea calcular el evento \hat{Q}_{50}^e en un sitio no aforado (e) que esté dentro de la región, se deben obtener las características A^e , E_c^e y D_d^e y sustituirla en la misma ecuación.

Este procedimiento se deberá realizar tantas veces como periodos de retorno se analicen.

Una forma de simplificar el método es el considerar como variables dependientes los parámetros de la distribución característica de la región. Por ejemplo, si se tienen los mismos seis sitios y la distribución característica es del tipo Gumbel, con parámetro de ubicación ω y escala α , entonces se tendrían que resolver los siguientes dos sistemas de ecuaciones normales.

Al resolver el sistema y verificando que las cuatro características son significativas para la estimación de la variable dependiente, en este caso los parámetros ω y α , se tendrían las ecuaciones regionales:

$$\alpha_{R} = \hat{a} + \hat{b}_{1}A + \hat{b}_{2}E_{c} + \hat{b}_{3}L_{cp} + \hat{b}_{4}D_{d}$$

$$\alpha_{R} = \hat{a} + \hat{b}_{1}A + \hat{b}_{2}E_{c} + \hat{b}_{3}L_{cp} + \hat{b}_{4}D_{d}$$
(5.14)

Así, ya sea que se requiera estimar un evento de diseño en una cuenca con escasa o nula información, solo será necesario sustituir las características fisiográficas y/o climatológicas en las ecuaciones regionales para obtener los parámetros de ubicación y escala de la distribución Gumbel.

Finalmente, basta sustituir estos valores en la expresión (4.88) para obtener un evento de cierto periodo de retorno.

Ejemplo 5.3. Se desea obtener una estimación regional por la técnica de correlación y regresión lineal de $\hat{\mathbb{Q}}_{T}^{R}$, T=2,5,10,20,50 y 100 años para la cuenca de la estación hidrométrica Piaxtla.

Para definir el sistema de ecuaciones normales se tomarán en cuenta las estaciones Acatitan, Ixpalino y Santa Cruz, y no se considera el registro de gastos mínimos anuales de la estación Piaxtla, por lo que para propósitos del ejemplo se toma como no aforada.

Si se considera que la región se puede caracterizar por la distribución de valores extremos tipo I por la técnica de momentos, entonces, los sistemas de ecuaciones a resolver son del tipo de las expresiones (5.12) y (5.13).

En la tabla 5.8 se presentan algunas características de las estaciones involucradas.

Estación	\overline{Q} (m3/s)	$S_{Q}(m3/s)$	(A)	â	$A(km^2)$	P.M.A.(mm)
Acatitan	0.143	0.082	0.188	0.098	1884	1047
Ixpalino	1.105	0.708	1.497	0.873	6166	1007
Santa Cruz	1.807	1.029	2.381	1.369	8919	1069
Piaxtla	1.200	0.878	1.654	0.958	5307	1045

Tabla 5.8. Parámetros estimados de la distribución Gumbel por momentos, área (A) y precipitación media anual (P.M.A.) de cada una de las estaciones analizadas.

Para aplicar las técnicas de regresión se requiere que las series tengan una distribución Normal, con este propósito se obtienen los logaritmos naturales de cada una de ellas (Tabla 5.9).

Estación	0	Q	$A(km^2)$	P.M.A.(mm)
Acatitan	-1.671	-2.322	7.541	6.953
Ixpalino	0.403	-0.136	8.726	6.914
Santa Cruz	0.867	0.314	9.095	6.974
Piaxtla		**	8.576	6.951

Tabla 5.9. Series normalizadas de parámetros, características fisiográficas y climatológicas de la región en estudio.

El sistema de ecuaciones para el parámetro de ubicación ω es

$$-1.671 = a + 7.5411b_1 + 6.9536b_2$$

$$0.403 = a + 8.7268b_1 + 6.9147b_2$$

$$0.867 = a + 9.0959b_1 + 6.9744b_2$$

Y para el de escala α

$$-2.322 = a + 7.5411b_1 + 6.9536b_2$$

-0.136 = $a + 8.7268b_1 + 6.9147b_2$
0.314 = $a + 9.0959b_1 + 6.9744b_2$

Que al resolver se obtiene solo el área como variable significativa, así

Al sustituir el área de Piaxtla en las expresiones anteriores se tienen los parámetros regionales que se emplearán en la expresión (4.88) para obtener los estimadores $\hat{Q}_{\text{T}}^{\text{R}}$.

$$\phi_R = 1.072$$

$$\hat{\alpha}_{R} = 0.605$$

En la tabla 5.10 se comparan los eventos \hat{Q}_T calculados con los parámetros de la distribución Gumbel de la muestra registrada en la estación Piaxtla, con aquellos obtenidos mediante la técnica regional \hat{Q}_T^R .

T(años)	Probabilidad	$\hat{Q}_{T}(m^{3}/s)$	$Q_T^R(m^3/s)$
2	0.5	1.303	0.850
5	0.8	0.216	0.165
10	0.9	0.000	0.000
20	0.95	0.000	0.000
50	0.98	0.000	0.000
100	0.99	0.000	0.000

Tabla 5.10. Gastos mínimos anuales para diferentes periodos de retorno estimados en forma puntual y regional para la estación Piaxtla.

5.1.3. Método de Dalrymple

Este método (Dalrymple, 1960) es del tipo de la avenida índice y considera que las muestras se ajustan a la distribución de valores extremos tipo I (Gumbel). Un requisito para esta técnica es que las muestras tengan igual longitud de registro $n_1 = n_2 = ... = n_{ms} = n_{común}$.

La secuencia de cálculo es la siguiente:

Paso 1. Recabar la información sobre los eventos por ser analizados en cada una de las estaciones de la región y proponer una longitud de registro $n_{común}$.

Paso 2. Probar dentro de región analizada la homogeneidad de las series de datos. Para este propósito se emplean las técnicas del apartado 3.10.

Paso 3. Con las expresiones (3.58) a (3.66) se obtienen los estadísticos muestrales de las series Q_i^j : \bar{X}_j , S_j^2 , S_j , g_j , k_j , Cv_j para j = 1,...,ms.

Paso 4. Para cada serie j se verifica mediante la prueba de Anderson la independencia de eventos (apartado 3.11).

Paso 5. Para cada una de las series Q_i^j , el registro se ordena de menor a mayor y se le asigna un periodo de retorno y una probabilidad de no excedencia.

$$T^{i} = \frac{n_{común} + 1}{m}$$

$$P' = \frac{1}{T'}$$

Donde

T' periodo de retorno en años para cada evento i . notas ante en la logar de l

m número de orden del registro, desde $m = 1,...,n_{común}$.

 P^i probabilidad de no excedencia para cada evento i.

Paso 6. Para cada una de las series Q_i^j se le ajusta la distribución Gumbel y se estiman los eventos para T = 2.33 años y para los periodos de retorno asignados a la muestra T^i , $i = 1,...,n_{comin}$

Paso 7. Cada una de las series j se estandariza de la forma

$$X_{\rm T}^{\rm j} = Q_{\rm T}^{\rm j} / Q_{2.33}^{\rm j}$$

Paso 8. Para cada periodo de retorno T se obtiene el valor de la mediana X_T del conjunto $SX = \{X_T^1, X_T^2, ..., X_T^{ms}\}$. Para obtener la mediana de cada periodo T, el conjunto SX se debe ordenar de mayor a menor. Si ms es par, entonces la mediana será el promedio de los dos valores que dividen a la muestra ordenada. Si ms es impar la mediana es el valor que queda exactamente dividiendo a la muestra.

Paso 9. Los valores X_T se ubican con sus correspondientes periodos de retorno T en papel de probabilidad Gumbel.

Paso 10. Los puntos ubicados en el paso 9, son ajustados mediante una curva suavizada para generar la curva regional $X_T^r - T$.

Paso 11. Una vez obtenida la curva regional es posible estimar los eventos X_T^r para los periodos de retorno T = 2, 5, 10, 20, 50, 100 años.

Paso 12. Si se requiere un evento $Q_{\rm T}^j$ en un sitio j que tiene escasa información, basta multiplicar la relación regional $X_{\rm T}^r$ obtenida en el paso anterior por el correspondiente valor de $\hat{Q}_{2.33}^j$. Por el contrario, si se desea el evento $\hat{Q}_{\rm T}^e$ en un sitio no aforado (e) que esté dentro de la región, se debe construir la relación $\hat{Q}_{2.33}^j - A_j$, donde A_j , j=1,...,ms son las áreas drenadas, para que a partir de ella se pueda inferir el valor correspondiente de $\hat{Q}_{2.33}^e$ para el área A_e del sitio (e). Esta última relación puede ser del tipo lineal, potencial o polinomial.

5.1.4. Método de estimación multivariada de valores extremos

Esta técnica busca mejorar los estimadores de los gastos mínimos anuales en un sitio de proyecto transfiriendo información de un sitio vecino. El modelo utiliza una distribución bivariada de valores extremos.

Los artículos pioneros de Finkelstein (1953), Gumbel (1958) y Tiago de Olivera (1958) dieron los fundamentos teóricos para el análisis de las distribuciones bivariadas de valores extremos.

Una distribución asintótica bivariada se caracteriza por las siguientes propiedades

- a) Las distribuciones marginales son asintóticas extremas
- b) Es estable (cumple el postulado de estabilidad)
- c) Posee una función de densidad
- a) Se elimina el caso trivial donde la distribución multivariada es el producto de las distribuciones marginales extremas.

Sean (x_i, y_i) pares de variables aleatorias independientes, cada uno con la misma distribución conjunta F(x, y). Puesto que $x_1, ..., x_n$ son variables aleatorias continuas, independientes e idénticamente distribuidas, es posible encontrar transformaciones lineales

$$X_n = a_n X_{max} + b_n \tag{5.16}$$

tal que x_n tenga una distribución límite para $n \to \infty$ que sea uno de los tres tipos de distribuciones de valores extremos.

Habrá también una transformación del tipo

$$y_n = c_n y_{max} + d_n \tag{5.17}$$

La función de distribución conjunta de $[máx(x_i), máx(y_i)]$ es

$$P[m\acute{a}x(x_i) \le x, max(y_i) \le y] = F^n(x, y)$$
(5.18)

Expresando la función de distribución acumulada bivariada por F(x, y), se tiene

$$F(x,y) = \lim_{n \to \infty} \left[a_n x + b_n , c_n y + d_n \right]$$
(5.19)

La distribución conjunta límite de x_n y y_n para $n \to \infty$ es una distribución bivariada de valores extremos.

Entre las distribuciones bivariadas se encuentran los llamados modelos diferenciales (aquellos que cuentan con una función de densidad) y los no diferenciables. Entre los de la última clase se encuentran (Tiago de Oliveira, 1982): el modelo biextremo, el modelo Gumbel y el modelo Natural. Estos modelos no cuentan con una función de densidad de probabilidad explícita, lo cual hace que la estimación de parámetros sea muy complicada.

Entre los modelos diferenciables se tienen el logístico y el mezclado. Tales nombres les fueron asignados debido a que en el primer caso, la diferencia de las variables reducidas, cuando ambas marginales son distribuciones Gumbel, tiene una distribución logística estándar. En el segundo caso, el modelo tiene una función de dependencia que parte de una mezcla de las funciones marginales para los casos de independencia y dependencia, cuando éstas son distribuciones Gumbel.

El modelo mezclado es de la forma

$$F(x,y,m) = F(x) F(y) \exp \left\{ m \left[\frac{1}{-Ln F(x)} + \frac{1}{-Ln F(y)} \right]^{-1} \right\}$$
 (5.20)

Donde

m, $(0 \le m \le 1)$ es el parámetro de asociación

Para m = 0 se tiene el caso de independencia

$$F(x,y,m) = F(x) F(y)$$
(5.21)

Dado que el modelo logístico bivariado tiene mayor versatilidad que el modelo mezclado (amplios rangos del coeficiente de correlación y del índice de dependencia, los cuales permiten alternativas más allá del caso de independencia), es aconsejable (Raynal, 1985) su aplicación a la solución de problemas de análisis de frecuencia en Hidrología.

El modelo tiene la forma

$$F(x,y,m) = \exp\left\{-\left[\left(-\ln F(x) \right)^m + \left(-\ln F(y) \right)^m \right]^{1/m} \right\}$$
(5.22)

Para

$$F(x)F(y) < F(x,y) < min[F(x)F(y)]$$
(5.23)

Donde

F(x)yF(y) son las funciones de distribución marginal

 $m, (m \ge 1)$ es el parámetro de asociación bivariada

Para m = 1, la función de distribución bivariada se reduce al caso de independencia.

Gumbel (1962) mostró seis posibles funciones de distribución bivariada, mediante el empleo de las tres asíntotas Gumbel, Weibull y Fréchet como funciones marginales dentro del modelo logístico. Raynal (1985) redujo las posibles combinaciones a tres, al utilizar como marginales a las distribuciones Gumbel y GVE. Escalante (1998) propone el empleo de la distribución de valores extremos tipo I de dos poblaciones (Gumix) como marginales del modelo logístico.

Si se utiliza el número 1 para identificar a la distribución Gumbel, el 2 para la GVE y finalmente el tres para la Gumix, entonces las posibles combinaciones de las distribuciones de valores extremos bivariadas para mínimos (VEB) son VEB11, VEB12 o VEB21, VEB22 y VEB33.

Por ejemplo, si F(x) y F(y) son del tipo Gumbel, entonces las funciones de distribución acumulada y densidad bivariada (VEB11) para mínimos tendrán la forma

$$F(x_{i}, y_{i}; \omega_{1}, \alpha_{2}, \alpha_{2}, m) = \exp \left\{ -\left[\exp^{-m\left(\frac{\omega_{1} - x}{\alpha_{1}}\right)} + \exp^{-m\left(\frac{\omega_{2} - y}{\alpha_{2}}\right)} \right]^{1/m} \right\}$$
(5.24)

$$f(x_{i},y_{i};\omega_{1},\alpha_{1},\alpha_{2},\alpha_{2},m) = \frac{\exp^{-m\left(\frac{\omega_{1}-x}{\alpha_{1}}\right)}\exp^{-m\left(\frac{\omega_{2}-y}{\alpha_{2}}\right)}}{\alpha_{1}\alpha_{2}} \exp\left\{-\left[\exp^{-m\left(\frac{\omega_{1}-x}{\alpha_{1}}\right)} + \exp^{-m\left(\frac{\omega_{2}-y}{\alpha_{2}}\right)}\right]^{1/m}\right\}$$

$$\left[\exp^{-m\left(\frac{\omega_{1}-x}{\alpha_{1}}\right)} + \exp^{-m\left(\frac{\omega_{2}-y}{\alpha_{2}}\right)}\right]^{1/m-2} \left\{ (m-1) + \left[\exp^{-m\left(\frac{\omega_{1}-x}{\alpha_{1}}\right)} + \exp^{-m\left(\frac{\omega_{2}-y}{\alpha_{2}}\right)}\right]^{1/m} \right\}$$
(5.25)

Estimadores por máxima verosimilitud

La función de verosimilitud de n variables aleatorias está definida como la densidad conjunta de esas n variables, y es una función de los parámetros.

Si (x_1, y_1) es una muestra aleatoria de una densidad bivariada, la correspondiente función de verosimilitud es

$$L(x, y, \theta_i) = \prod_{i=1}^n f(x_i, y_i, \theta_i)$$
(5.26)

Dado que las muestras que se analizan no tienen igual longitud de registro (Figuras 5.1 y 5.2), es necesario tener una formulación suficientemente flexible para cubrir todos los posibles arreglos de los datos. Tal formulación esta basada en la generalización hecha por Anderson (1957).

Sitio A
$$X_1,...,X_{n_1}$$

Sitio B $Y_1,...,Y_{n_2}$

Figura 5.1. Mínimo arreglo muestral bivariado

Sitio A
$$X_1,...,X_{n_1},X_{n_1+1},...,X_{n_1+n_2}$$

Sitio B $Y_{n_1+1},...,Y_{n_1+n_2},Y_{n_1+n_2+1},...,Y_{n_1+n_2+n_3}$

Figura 5.2. Máximo arreglo muestral bivariado

La correspondiente función de verosimilitud para el máximo arreglo muestral es

$$L(x,y,\theta_i) = \left[\prod_{i=1}^{n_1} f(p_i, \theta_i^{(1)})\right]^{i_1} \left[\prod_{i=1}^{n_2} f(x_i, y_i, \theta_i^{(2)})\right]^{i_2} \left[\prod_{i=1}^{n_1} f(q_i, \theta_i^{(3)})\right]^{i_3}$$

(5.27)

Donde

- n_1 es la longitud del registro univariado antes del registro común n_2
- n_3 es la longitud del registro univariado después del registro común n_2
- p es la variable que representa a los eventos del registro n_1 antes de n_2
- q es la variable que representa a los eventos del registro n_3 después de n_2
- x, y son las variables relacionadas en forma bivariada durante el periodo n_2

$$l_i = 1$$
 si $n_i > 0$
 $l_i = 0$ si $n_i = 0$

 θ_i vector de parámetros

Dada la propiedad de que el máximo de una función y de su logaritmo ocurre en el mismo punto y debido al hecho que las expresiones que se obtienen al sacar el logaritmo de la expresión (5.27) son más fáciles de manipular, entonces, se empleará la función de verosimilitud logarítmica

$$\ln L(x, y, \theta_i) = I_1 \left[\sum_{i=1}^n \ln f(p_i, \theta_i^{(1)}) \right] + I_2 \left[\sum_{i=1}^n \ln f(x_i, y_i, \theta_i^{(2)}) \right] + I_3 \left[\sum_{i=1}^n \ln f(q_i, \theta_i^{(3)}) \right]$$
(5.28)

Los estimadores de máxima verosimilitud de los parámetros de las distribuciones bivariadas de valores extremos son aquellos para los cuales la expresión (5.28) se maximiza. Para obtener dichos estimadores se requiere de un procedimiento de optimación del tipo de búsqueda directa, ya que el método indirecto proporcionado por el cálculo diferencial no puede llegar a soluciones analíticas, debido a la complejidad de las funciones asociadas a las densidades de probabilidad bivariadas.

Dadas las características de la función a optimizar, el procedimiento recomendado (Raynal, 1985) es el algoritmo de optimización no lineal multivariado restringido de Rosenbrock (Rosenbrock 1960; Kuester y Mize, 1973).

Para el caso de la distribución VEB11 para mínimos, la función de verosimilitud logarítmica a optimizar es

$$lnL(x,y,\theta_{i}) = I_{1} \left\{ -n_{1}ln\alpha_{p} + \sum_{i=1}^{n_{1}} (A_{1} - A_{2}) \right\} + I_{3} \left\{ -n_{3}ln\alpha_{q} + \sum_{i=1}^{n_{3}} (B_{1} - B_{2}) \right\} +$$

$$I_{2}\left\{-n_{2}\left(\ln \alpha_{1}+\ln \alpha_{2}\right)+\sum_{i=1}^{n_{2}}\left[C_{2}+D_{2}+\ln (E_{3})+\ln (m-1+E_{2})+E_{2}\right]\right\}$$

Sujeta a

(5.29)

$$\alpha_i > 0$$
, $i = 1,2$
 $m > 1$
 $n_2 > 10$

(5.30)

Donde

$$A_1 = -\left(\frac{\omega_p - p_1}{\alpha_p}\right), A_2 = \exp(A_1)$$

$$B_1 = -\left(\frac{\omega_q - q_i}{\alpha_q}\right), B_2 = \exp(B_1)$$

$$C_1 = -\left(\frac{\omega_1 - X_i}{\alpha_1}\right), C_2 = mC_1, C_3 = \exp(C_2)$$

$$D_1 = -\left(\frac{\omega_2 - y_i}{\alpha_2}\right), D_2 = mD_1, D_3 = \exp(D_2)$$

$$E_1 = C_3 + D_3, E_2 = E_1^{(1/m)}, E_3 = E_1^{[(1/m)-2]}$$
(5.31)

Gumbel y Mustafi (1967) obtuvieron la relación numérica entre el coeficiente de correlación ρ y el parámetro de asociación m para la distribución bivariada Gumbel como

$$\rho = \left(1 - \frac{1}{m^2}\right) \tag{5.32}$$

De esta última expresión, un valor de m = 2 le corresponde un coeficiente de correlación lineal igual a 0.75. Tal cantidad puede considerarse como un valor inicial del parámetro de asociación m dentro del proceso bivariado.

Para mejorar la estimación de los eventos Q_T^b de una estación con escasa información se debe seguir el siguiente procedimiento:

- Paso 1. Identificar el conjunto de estaciones vecinas a relacionar con la estación base (b).
- Paso 2. Verificar la homogeneidad de las series de datos del paso 1. Para este propósito se emplean las técnicas del apartado 3.10.
- **Paso 3.** Con las expresiones (3.58) a (3.66) se obtienen los estadísticos muestrales de las series Q_i^f : $X_i, S_i^2, S_i, g_i, k_i, Cv_i$ para j = 1,..., ms 1, b.
- **Paso 4.** Para cada serie j se verifica mediante la prueba de Anderson la independencia de eventos (apartado 3.11).
- **Paso 5.** Con el objetivo de contar con un conjunto de parámetros iniciales para el proceso de optimación de las distribuciones multivariadas se deben ajustar las distribuciones Gumbel, General de Valores Extremos y Gumbel Mixta para mínimos a cada serie Q_i^j (j = 1,...,ms 1, b).
- **Paso 6.** Para cada modelo multivariado elegido se deberán explorar las diferentes combinaciones en parejas entre los datos. Por ejemplo, si el primer modelo a explorar es el VEB11 para la estación base (b) y cinco estaciones vecinas (j = 1, 2, 3, 4 y 5) se plantean para cada una de las cinco combinaciones las funciones

$$F\left(x_{i}^{b}, y_{i}^{j}; \omega_{1}^{b}, \alpha_{1}^{b}, \omega_{2}^{j}, \alpha_{2}^{j}, m\right) = \exp\left\{-\left[\exp^{-m\left(\frac{\omega_{1}^{b} - x}{\alpha_{1}^{b}}\right)} + \exp^{-m\left(\frac{\omega_{2}^{j} - y}{\alpha_{2}^{j}}\right)}\right]^{1/m}\right\}$$
(5.33)

Donde

 $\omega_1^b, \alpha_1^b, \omega_2^j, \alpha_2^j, m$ son los parámetros a estimar.

- Paso 7. Para todas las combinaciones exploradas de la estación base se deberá obtener el error estándar de ajuste (apartado 3.12), eligiéndose la mejor de ellas para el mínimo valor de éste.
- **Paso 8.** Para obtener los estimados \hat{Q}_T^b en la estación base, solo se deben sustituir los parámetros de la mejor combinación obtenida del paso anterior en la distribución marginal univariada. Por ejemplo, si la mejor combinación se obtuvo con el modelo VEB11, entonces

$$\hat{Q}_{T}^{b} = \omega_{1}^{b} + \alpha_{1}^{b} \ln \left[-\ln \left(1 - \frac{1}{T} \right) \right]$$

$$(5.34)$$

Donde α_1^b, α_1^b son los parámetros estimados en forma bivariada para la estación base.

5.2. Análisis en confluencias de ríos

Linsley y Franzini (1979) propusieron una técnica para modelar gastos máximos anuales aguas abajo de la confluencia de dos ríos, cuando hay información disponible aguas arriba de la confluencia para los casos de dependencia e independencia total, cuya secuencia se presenta a continuación.

- Paso 1. Se determina un tiempo base común en las dos estaciones de aforos aguas arriba de la confluencia.
- **Paso 2.** Los gastos máximos anuales de las dos estaciones se ordenan de mayor a menor, se les asigna un periodo de retorno de acuerdo con la ley de Weibull y una probabilidad de no excedencia.
- **Paso 3.** Se normalizan las series de probabilidad de no excedencia y de gastos máximos anuales a través de la aplicación de los logaritmos naturales.
- Paso 4. Utilizando un papel de probabilidad logarítmico se ubican en el eje de las ordenadas los valores normalizados de la probabilidad de no excedencia y en el de las abscisas los valores normalizados de los gastos de las dos estaciones hidrométricas.
- Paso 5. Se obtendrán líneas de tendencia para cada una de las estaciones.
- Paso 6. Para cada una de las probabilidades de no excedencia del periodo de registro, se procede a obtener el valor estimado por la línea de tendencia.
- **Paso 7.** Para el caso de dependencia total, si un evento estimado en cada estación tiene una probabilidad de no excedencia, por ejemplo P = 0.9375, entonces, el gasto máximo anual en la confluencia es la suma de los eventos estimados para esa probabilidad, la cual es considerada como la conjunta.
- Paso 8. Para el caso de independencia total, si un evento estimado en cada estación tiene una probabilidad de no excedencia, por ejemplo P = 0.9375, entonces, el gasto máximo anual en la confluencia es la suma de los eventos estimados para esa probabilidad, pero la probabilidad conjunta es igual al complemento del producto de las probabilidades marginales P = 1 (0.0625) (0.0625) = 0.9961. De acuerdo con esto, los gastos obtenidos en la confluencia siempre serán mayores en el caso de dependencia total que en el caso de independencia.
- **Paso 9.** Los valores estimados para los casos de dependencia e independencia total obtenidos en los pasos previos se ubican en la misma gráfica del paso 4 y es posible obtener estimadores Q_{τ} , T = 2,5,10,20,50,100,500,1000,5000 y 10000 años.

Ejemplo 5.4. Determinar para los casos de dependencia e independencia total los eventos Q_T , T=2, 10 y 20 años en el sitio de la estación Tuxtepec, si se dispone de información de gastos máximos anuales en las estaciones Canton y Jacatepec (Figura 5.3).

Figura 5.3. Ubicación de las estaciones en la confluencia de ríos.

-	-				0.1			0.6	
	m	T(años)	P(1-1/T)	P ₁ =P*100	Canton $Q_1(m^3/s)$	Jacatepec $Q_2(m^3/s)$	$ln(P_1)$	Canton $In(Q_1)$	$In(Q_2)$
	1	16	0.9375	93.75	3968	2800	4.5406	8.2860	7.9373
	2	8	0.8750	87.50	3960	2120	4.4716	8.2639	7.6591
	3	5.33	0.8125	81.25	3835	1995	4.3975	8.2519	7.5983
	4	4	0.7500	75.00	3596	1804	4.3174	8.1875	7.4977
	5	3.2	0.6875	68.75	2548	1785	4.2304	7.8430	7.4871
	6	2.66	0.6250	62.50	2505	1580	4.1351	7.8280	7.3651
	7	2.28	0.5625	56.25	2.470	1388	4.0298	7.8119	7.2356
	8	2	0.5000	50.00	2443	1252	3.9120	7.8009	7.1324
	9	1.77	0.4375	43.75	2355	1233	3.7784	7.7642	7.1172
	10	1.6	0.3750	37.50	2212	1220	3.6243	7.7016	7.1066
	11	1.45	0.3125	31.25	1845	1059	3.4420	7.5202	6.9650
	12	1.33	0.2500	25.00	1725	1033	3.2188	7.4529	6.9402
	13	1.23	0.1875	18.75	1685	988	2.9311	7.4295	6.8956
	14	1.14	0.1250	12.50	1609	943	2.5257	7.3833	6.8490
	15	1.06	0.0625	6.25	1440	920	1.8325	7.2723	6.8243

Tabla 5.11. Series de gastos máximos anuales registrados y normalizados de las estaciones aguas arriba de la confluencia cercana al sitio de la estación Jacatepec.

De acuerdo con la información normalizada de la tabla 5.11 se obtienen dos ecuaciones de regresión que permiten obtener los eventos estimados en cada sitio aguas arriba de la confluencia para cierta probabilidad de no excedencia.

$$\hat{Q}_1 = \exp[6.331277913 + 0.394433252 \ln(P_1)]$$

$$Q_2 = exp[5.862298648 + 0.37331078 ln(P_1)]$$

Con estas expresiones se obtienen los estimadores en cada estación aguas arriba de la confluencia, como aquellos para el caso de completa dependencia, considerando cada uno de los periodos asignados a la muestra ordenada de mayor a menor (Tabla 5.12).

En la tabla 5.12 se presentan los gastos máximos anuales registrados $Q_3(m^3/s)$ en la estación Tuxtepec, para el mismo periodo común.

m	T(años)	P(1-1/T)	Canton $\hat{Q}_1(m^3/s)$	Jacatepec $Q_2(m^3/s)$	Tuxtepec $\hat{Q}_1 + \hat{Q}_2$	Tuxtepec $Q_3 (m^3/s)$
1	16	0.9375	3367	1914	5281	5220
2	8	0.8750	3276	1866	5142	5120
3	5.33	0.8125	3182	1815	4997	4830
4	4	0.7500	3084	1761	4645	4669
5	3.2	0.6875	2980	1705	4685	4235
6	2.66	0.6250	2870	1646	4516	3340
7	2.28	0.5625	2753	1582	4335	3310
8	2	0.5000	2629	1514	4143	3263
9	1.77	0.4375	2494	1440	3934	3038
10	1.6	0.3750	2347	1360	3707	3015
11	1.45	0.3125	2185	1270	3455	3002
12	1.33	0.2500	2001	1169	3170	2780
13	1.23	0.1875	1787	1050	2837	2750
14	1.14	0.1250	1523	902	2426	2562
15	1.06	0.0625	1160	696	1856	2535

Tabla 5.12. Eventos estimados y registrados en la confluencia de dos ríos para el caso de completa dependencia.

En la tabla 5.13 se muestran los valores \hat{Q}_T , T=2, 10 y 20 años para el caso de completa dependencia.

Número	T(años)	P(1-1/T)	\hat{Q}_1 (m ³ /s)	Jacatepec Q ₂ (m ³ /s)	Tuxtepec $\hat{Q}_1 + \hat{Q}_2$
1	2	0.5000	2829	1514	 4143
2	10	0.9000	3313	1885	5198
3	20	0.9500	3384	1924	5308

Tabla 5.13. Eventos estimados \hat{Q}_{T} en la confluencia de dos ríos cercana a la estación Tuxtepec.

Al considerar el caso de completa independencia, los valores estimados en la confluencia son reasignados de acuerdo con la probabilidad P₃.(Tabla 5.14), es decir, el evento de 5281 m3/s en el caso de completa dependencia ocurrirá con un probabilidad de no excedencia de 93.75%, en tanto que para el caso de completa independencia lo hará para una probabilidad de 99.6%.

P(1-1/T)	Canton Q ₁ (m ³ /s)	Jacatepec $\mathbb{Q}_2(m^3/s)$	Tuxtepec $\hat{Q}_1 + \hat{Q}_2$	Canton P ₁ (1/T)	Jacatepec P ₂ (1/T)	Tuxtepec P ₁ P ₂	Tuxtepec P ₃ =1- P ₁ P ₂
0.9375	3367	1914	5281	0.0625	0.0625	0.0039	0.9960
0.8750	3276	1866	5142	0.1250	0.1250	0.0156	0.9843
0.8125	3182	1815	4997	0.1875	0.1875	0.0351	0.9648
0.7500	3084	1761	4645	0.2500	0.2500	0.0625	0.9375
0.6875	2980	1705	4685	0.3125	0.3125	0.0976	0.9023
0.6250	2870	1646	4516	0.3750	0.3750	0.1406	0.8593
0.5625	2753	1582	4335	0.4375	0.4375	0.1914	0.8085
0.5000	2629	1514	4143	0.5000	0.5000	0.2500	0.7500
0.4375	2494	1440	3934	0.5625	0.5625	0.3164	0.6835
0.3750	2347	1360	3707	0.6250	0.6250	0.3906	0.6093
0.3125	2185	1270	3455	0.6875	0.6875	0.4726	0.5273
0.2500	2001	1169	3170	0.7500	0.7500	0.5625	0.4375
0.1875	1787	1050	2837	0.8125	0.8125	0.6601	0.3398
0.1250	1523	902	2426	0.8750	0.8750	0.7656	0.2343
0.0625	1160	696	1856	0.9375	0.9375	0.8789	0.1210

Tabla 5.14. Reasignación de probabilidades para el caso de completa independencia

			Tuxtepec
Número	T(años)	P(1-1/T)	$\hat{Q}_1 + \hat{Q}_2$
1	2	0.5000	3751
2	10	0.9000	5022
3	20	0.9500	5158

Tabla 5.15. Eventos estimados \hat{Q}_T en la confluencia de dos ríos cercana a la estación Tuxtepec, para el caso de completa independencia.

El esquema anterior también puede emplearse en el caso de que la variable analizada sea el gasto mínimo anual.

La estimación de los eventos \hat{Q}_T en la confluencia de dos ríos para el caso de dependencia parcial es propuesta por Raynal y Salas (1987) y sus resultados extendidos para los sitios aguas arriba por Escalante y Domínguez (1998).

El modelo se construye mediante la convolución para la suma o resta de dos variables aleatorias, y constituye una aproximación de los procesos físicos actuales, los cuales pueden representarse a través de un modelo que produce la convolución de los gastos medios diarios.

Si se dispone de los gastos máximos o mínimos en dos estaciones de aforo localizadas aguas arriba de la confluencia de dos ríos, y su correspondiente distribución bivariada es conocida o puede ser ajustada con base en los datos empíricos. Se puede construir un modelo para la función de distribución de la suma de dos variables aleatorias en la confluencia, (Woodroofe, 1975):

$$F(t) = \int_{-\infty - \infty}^{t} f(t - s, s) ds dt$$
(5.35)

Donde

t Representa la suma de dos variables aleatorias.

Si se considera que los gastos máximos anuales pueden representarse a través de la distribución VEB11, entonces la expresión (5.35) se transforma.

$$F(t) = \frac{1}{\alpha_1 \alpha_2} \int_{-\infty - \infty}^{t} e^{-m\left(\frac{t-s-o_1}{\alpha_1}\right)} e^{-m\left(\frac{s-o_2}{\alpha_2}\right)} \left[e^{-m\left(\frac{t-s-o_1}{\alpha_1}\right)} + e^{-m\left(\frac{s-o_2}{\alpha_2}\right)} \right]^{\frac{1}{m}-2}$$

$$\exp\left\{-\left[e^{-m\left(\frac{t-s-o_1}{a_1}\right)}+e^{-m\left(\frac{s-o_2}{a_2}\right)}\right]^{\frac{1}{m}}\right\}\left\{(m-1)+\left[e^{-m\left(\frac{t-s-o_1}{a_1}\right)}+e^{-m\left(\frac{s-o_2}{a_2}\right)}\right]^{\frac{1}{m}}\right\}dsdt$$

(5.36)

Si se dispone información de gastos máximos anuales en dos estaciones de aforo localizadas, una aguas abajo de la confluencia de dos ríos, y la otra aguas arriba de la confluencia ya sea sobre la corriente principal o el tributario, y sus correspondiente distribución bivariada es conocida, o puede ser ajustada con base en los datos empíricos; entonces se puede construir un modelo para la función de distribución de la diferencia de dos variables aleatorias en el tributario.

$$F(t) = \int_{-\infty}^{t} \int_{-\infty}^{\infty} f(t+s,s) ds dt$$

(5.37)

Donde

t Representa la resta de dos variables aleatorias.

Si se considera que los gastos máximos anuales pueden representarse a través de la distribución VEB11, entonces la expresión (5.37) se transforma.

$$F(t) = \frac{1}{\alpha_1 \alpha_2} \int_{-\infty - \infty}^{t} e^{-m\left(\frac{t+s-o_1}{\alpha_1}\right)} e^{-m\left(\frac{s-o_2}{\alpha_2}\right)} \left[e^{-m\left(\frac{t+s-o_1}{\alpha_1}\right)} + e^{-m\left(\frac{s-o_2}{\alpha_2}\right)} \right]^{\frac{1}{m}-2}$$

$$\exp\left\{-\left[e^{-m\left(\frac{t+s-o_1}{\alpha_1}\right)}+e^{-m\left(\frac{s-o_2}{\alpha_2}\right)}\right]^{\frac{1}{m}}\right\}\left\{(m-1)+\left[e^{-m\left(\frac{t+s-o_1}{\alpha_1}\right)}+e^{-m\left(\frac{s-o_2}{\alpha_2}\right)}\right]^{\frac{1}{m}}\right\}dsdt$$

(5.38)

Las expresiones (5.36) y (5.38) se evalúan numéricamente utilizando cualquiera de los códigos existentes de integración numérica bidimensional.

Se pueden obtener expresiones similares para el caso de los gastos mínimos anuales y las distribuciones VEB12, VEB21, VEB22 y VEB33.

La secuencia de análisis es

- Paso 1. Se determina un tiempo base común en las dos estaciones de aforos analizadas, ya sea aguas arriba de la confluencia o aquellas para determinar los eventos en el tributario.
- Paso 2. Los gastos mínimos anuales de las dos estaciones se ordenan de mayor a menor, se les asigna un periodo de retorno de acuerdo con la ley de Weibull y una probabilidad de no excedencia.
- **Paso 3.** Se procede a obtener para cada serie de datos los estimadores univariados de los parámetros de las distribuciones Gumbel, GVE y Gumbel mixta.
- Paso 4. Se determinan los parámetros estimados conjuntamente para las funciones VEB11, VEB12, VEB21, VEB22 y VEB33.
- **Paso 5.** Para cada probabilidad seleccionada F(t) y con los parámetros del paso 4, se integra numéricamente las expresiones (5.36) y (5.38).

Ejemplo 5.5. Determinar para los casos de dependencia parcial los eventos \hat{Q}_{τ} , T=2, 5, 10, 20, 50, 100, 500 y 1000 años en los sitios Tuxtepec, Canton y Jacatepec (Figura 5.3).

En la tabla 5.16 se presentan los gastos mínimos anuales registrados en la estación Tuxtepec, ordenados de mayor a menor con un periodo de retorno y una probabilidad de no excedencia asignada. También se dan los valores estimados al aplicar la expresión (5.36) considerando que la función de distribución de probabilidad conjunta entre los gastos mínimos anuales de las estaciones Jacatepec y Canton es del tipo VEB11, VEB12, VEB21, VEB22 y VEB33. En la tabla 5.17 se muestra en primer término, los estimadores Q_T para los gastos ajustados con la mejor distribución univariada de la estación Tuxtepec, que para fines reales serían desconocidos, sin embargo, se obtienen para comparar la bondad del ajuste obtenido por la expresión (5.36) y los diferentes modelos bivariados. En las tablas 5.18 y 5.19 se dan los estimadores Q_T para la estación Jacatepec.

m	T (años)	Probabilidad (%)	Medido Q(m³/s)	VEB11 Q(m ³ /s)	VEB12 Q(m ³ /s)	VEB21	VEB22 Q(m ³ /s)	VEB33 Q(m ³ /s)
1	1.05	5.56	51.00	46.49	30.42	46.52	32.18	47.31
2	- 1.12	11.11	49.60	44.54	29.91	44.92	31.74	43.36
3	1.20	16.67	46.00	43.13	29.44	43.44	31.28	41.07
4	1.28	22.22	45.00	41.95	28.94	42.21	30.81	40.16
5	1.38	27.78	44.40	40.89	28.43	41.13	30.32	39.46
6	1.50	33.33	43.00	39.89	27.93	40.08	29.81	28.82
7	1.63	38.89	40.00	38.93	27.37	39.04	29.25	38.21
8	1.80	44.44	38.00	37.97	26.79	38.00	28.66	37.55
9	2.00	50.00	36.00	36.99	26.18	36.93	28.03	36.82
10	2.25	55.56	36.00	35.98	25.50	35.80	27.33	35.94
11	2.57	61.11	34.10	34.92	24.81	34.60	26.55	34.85
12	3.00	66.67	32.80	33.76	23.95	33.27	25.68	33.68
13	3.60	72.22	32.00	32.46	23.05	31.76	24.66	32.59
14	4.50	77.78	32.00	30.97	21.96	29.99	23.44	31.58
15	6.00	83.33	31.90	29.15	20.61	27.76	21.91	30.52
16	9.00	88.89	27.20	26.72	18.72	24.69	19.81	29.27
17	18.00	94.44	24.00	22.81	15.68	19.42	16.41	27.43

Tabla 5.16. Eventos estimados para la convolución de la suma $\hat{Q}_{Tuxtepec} = Q_{Jacatepec} + Q_{Centon}$.

No.	T (años)	P(1-1/T) (%)	ajuste a reales Q(m³/s)	VEB11 Q(m³/s)	VEB12 Q(m³/s)	VEB21 Q(m³/s)	VEB22 Q(m³/s)	VEB33 Q(m³/s)
1	2	50.00	39.01	36.99	26.19	36.93	28.03	36.82
2	5	80.00	31.01	30.29	21.45	29.17	22.87	31.17
3	10	90.00	25.72	26.11	18.24	23.89	19.28	28.97
4.	20	95.00	20.64	22.22	15.21	18.60	15.92	27.17
5	50	98.00	14.07	17.30	11.45	11.18	11.89	24.99
6	100	99.00	9.14	13.65	8.89	4.97	8.97	23.42
7	500	99.80	0.00	4.96	3.52	0.00	1.82	19.83
8	1000	99.90	0.00	0.86	1.28	0.00	0.00	18.28

Tabla 5.17. Eventos \hat{Q}_T para la convolución de la suma $\hat{Q}_{Tuxtepec} = Q_{Jacatepec} + Q_{Canton}$.

m	T (años)	Probabilidad (%)	Medido Q(m³/s)	VEB11 Q(m ³ /s)	VEB12 Q(m ³ /s)	VEB21 Q(m ³ /s)	VEB22 Q(m ³ /s)	VEB33 Q(m ³ /s)
1	1.05	5.56	22.90	25.75	24.88	25.52	24.28	28.72
2	1.12	11.11	22.80	23.98	23.26	23.55	23.50	25.19
3	1.20	16.67	19.50	22.78	22.19	22.13	22.78	23.46
4	1.28	22.22	15.80	21.75	21.31	21.05	22.08	22.12
5	1.38	27.78	14.50	20.82	20.50	20.01	21.39	20.88
6	1.50	33.33	14.30	19.92	19.73	19.09	20.72	19.68
7	1.63	38.89	13.50	19.02	18.95	18.96	20.05	18.49
8	1.80	44.44	13.20	18.11	18.16	17.33	19.38	17.32
9	2.00	50.00	13.10	17.16	17.33	16.73	18.66	16.20
10	2.25	55.56	12.80	16.15	16.45	15.43	17.94	15.13
11	2.57	61.11	12.70	15.05	15.48	14.62	17.31	14.12
12	3.00	66.67	12.00	13.83	14.41	13.86	16.31	13.15
13	3.60	72.22	12.00	12.43	13.18	12.97	15.55	12.20
14	4.50	77.78	11.50	10.77	11.71	11.32	14.35	11.25
15	6.00	83.33	11.00	8.68	9.85	10.68	13.21	10.23
16	9.00	88.89	10.10	5.80	7.28	8.05	10.11	9.08
17	18.00	94.44	10.10	0.96	2.94	5.34	8.47	7.58

Tabla 5.18. Eventos estimados para la convolución de la resta $\hat{Q}_{Jacatepec} = Q_{Tuxtepec} - Q_{Canton}$.

No.	T (años)	P(1-1/T) (%)	Gumbel ajuste a reales $\hat{\mathbb{Q}}(m^3/s)$	VEB11 Q(m³/s)	VEB12 Q(m³/s)	VEB 21 Q(m³/s)	VEB22 Q(m ³ /s)	VEB33 Q(m³/s)
1 000	2	50.00	14.68	17.16	17.33	16.73	18.66	15.97
2	5	80.00	9.55	10.00	11.02	10.78	13.88	10.64
3	10	90.00	6.16	5.06	6.62	7.98	10.23	8.53
4	20	95.00	2.91	0.23	2.27	4.96	8.62	6.99
5	50	98.00	0.00	0.00	0.00	2.07	5.23	5.56
6	100	99.00	0.00	0.00	0.00	0.00	2.45	4.89
7	500	99.80	0.00	0.00	0.00	0.00	0.00	4.20
8	1000	99.90	0.00	0.00	0.00	0.00	0.00	4.10

Tabla 5.19. Eventos \hat{Q}_T para la convolución de la resta $\hat{Q}_{Jacatepec} = Q_{Tuxtepec} - Q_{Canton}$.

De acuerdo con la figura 5.3, los eventos en el sitio Canton pueden estimarse al considerar la convolución para la suma de los eventos registrados en las estaciones Santo Domingo y La Estrella, o también mediante la convolución para la resta si se dispone de información en las estaciones Tuxtepec y Jacatepec. En las tablas 5.20 a 5.23 se presentan los estimadores \hat{Q}_T para los dos casos analizados.

m	T (años)	Probabilidad (%)	Medido Q(m³/s)	VEB11 Q(m ³ /s)	VEB12 Q(m ³ /s)	VEB21 Q(m ³ /s)	VEB22 Q(m ³ /s)	VEB33 Q(m ³ /s
1	1.05	5.56	27.20	37.10	27.58	33.95	26.74	36.24
2	1.12	11.11	27.00	33.81	26.84	31.72	26.06	34.14
3	1.20	16.67	26.50	31.75	26.08	30.06	25.38	32.37
4	1.28	22.22	26.30	30.20	25.29	28.66	24.69	30.58
5	1.38	27.78	25.00	28.91	24.47	27.41	23.99	28.72
6	1.50	33.33	25.00	27.75	23.61	26.25	23.27	26.89
7	1.63	38.89	24.70	26.66	22.70	25.14	22.53	25.31
8	1.80	44.44	24.50	25.57	21.73	24.05	21.78	24.01
9	2.00	50.00	23.00	24.48	20.68	22.96	20.97	22.92
10	2.25	55.56	22.90	23.33	19.52	21.86	20.12	21.93
11	2.57	61.11	20.70	22.11	18.24	20.68	19.21	20.97
12	3.00	66.67	20.00	20.78	16.79	19.43	18.21	19.99
13	3.60	72.22	18.80	19.28	15.11	18.06	17.09	18.94
14	4.50	77.78	18.00	17.53	13.09	16.50	15.77	17.72
15	6.00	83.33	16.50	15.36	10.53	14.60	14.12	16.22
16	9.00	88.89	16.40	12.42	6.97	12.00	11.81	14.27
17	18.00	94.44	16.00	7.57	1.01	6.95	8.27	11.49

Tabla 5.20. Eventos estimados para la convolución de la resta $\hat{Q}_{Canton} = Q_{Tuxtepec} - Q_{Jacatepec}$.

No.	T (años)	P(1-1/T) (%)	Gumbel ajuste a reales Q(m³/s)	VEB11 Q(m³/s)	VEB12 Q(m ³ /s)	VEB21 Q(m³/s)	VEB22 Q(m³/s)	VEB33 Q(m³/s)
1	2	50.00	23.00	24.48	20.68	22.95	20.87	22.92
2	5	80.00	19.50	16.73	12.14	15.79	15.16	17.16
3	10	90.00	17.19	11.67	6.06	11.32	11.20	13.80
4	20	95.00	14.96	6.84	0.11	5.97	7.88	11.11
5	50	98.00	12.09	0.56	0.00	2.07	6.01	8.22
6	100	99.00	9.94	0.00	0.00	0.00	5.48	6.34
7	500	99.80	4.96	0.00	0.00	0.00	5.09	3.05
8	1000	99.90	2.82	0.00	0.00	0.00	5.04	2.20

Tabla 5.21. Eventos \hat{Q}_T para la convolución de la resta $\hat{Q}_{\textit{Canton}} = Q_{\textit{Tuxtepec}} - Q_{\textit{Jacatepec}}$.

m	T (años)	Probabilidad (%)	Medido Q(m³/s)	VEB11 Q(m³/s)	VEB12 Q(m ³ /s)	VEB21 Q(m³/s)	VEB22 Q(m ³ /s)	VEB33 Q(m³/s)
1	1.05	5.56	27.20	25.86	16.86	15.75	12.57	25.91
2	1.12	11,11	27.00	24.70	16.61	15.42	12.35	23.87
3	1.20	16.67	26.50	23.86	16.33	15.06	12.13	23.16
4	1.28	22.22	26.30	23.14	16.05	14.75	11.92	21.89
5	1.38	27.78	25.00	22.48	15.87	14.39	11.69	21.58
6.	1.50	33.33	25.00	21.87	15.49	14.05	11.47	21.02
7	1.63	38.89	24.70	21.27	15.18	13.69	11.24	20.66
8	1.80	44.44	24.50	20.67	14.86	13.29	11.01	19.50
9	2.00	50.00	23.00	20.06	14.51	12.89	10.77	19.18
10	2.25	55.56	22.90	19.43	14.13	12.47	10.51	18.83
11	2.57	61.11	20.70	18.76	13.73	12.01	10.22	18.52
12	3.00	66.67	20.00	18.03	13.28	11.51	9.92	18.22
13	3.60	72.22	18.80	17.22	12.78	10.93	9.58	17.83
14	4.50	77.78	18.00	16.29	12.17	10.19	9.19	17.41
15	6.00	83.33	16.50	15.14	11.41	9.33	8.73	16.91
16	9.00	88.89	16.40	13.62	10.37	8.18	8.12	16.26
17	18.00	94.44	16.00	11.16	8.70	6.35	7.24	15.22

Tabla 5.22. Eventos estimados para la convolución de la suma $\hat{Q}_{Canton} = Q_{Santo\ Do\ min\ go} + Q_{La\ Estrella}$

No.	T (años)	P(1-1/T)	Gumbel ajuste a reales Q(m³/s)	VEB11 Q(m³/s)	VEB12 Q̂(m³/s)	VEB21 Q(m³/s)	VEB22 Q(m³/s)	VEB33 Q(m³/s)
1	2	50.00	22.97	20.06	14.51	12.89	10.77	19.18
2	5	80.00	19.45	15.86	11.89	9.86	9.01	17.22
3	10	90.00	17.12	13.23	10.11	7.91	7.98	16.10
4	20	95.00	14.89	10.79	8.45	6.09	7.11	15.06
5	50	98.00	12.00	7.72	6.36	3.99	6.23	13.55
6	100	99.00	9.84	5.44	4.84	2.65	5.75	12.25
7	500	99.80	4.83	0.12	1.59	0.14	5.18	8.58
8	1000	99.90	2.68	0.00	0.21	0.00	5.10	6.70

Tabla 5.23. Eventos \hat{Q}_{T} para la convolución de la suma $\hat{Q}_{\textit{Canton}} = Q_{\textit{Santo Do min go}} + Q_{\textit{La Estrella}}$.

CAPITULO 6 ANÁLISIS DE SEQUÍAS METEOROLÓGICAS

6.1. Secuencia de una serie de tiempo

Aunque la cantidad de agua que existe en el planeta es prácticamente constante, el ciclo hidrológico produce variaciones importantes en la disponibilidad del agua. Uno de esos efectos es la disminución temporal de la misma con respecto a las condiciones medias o normales, o bien, con respecto a los requerimientos humanos. Este déficit es considerado como un periodo de seguía.

La sequía es uno de los fenómenos naturales más devastadores ya que, en cualquier época, sus efectos se perciben en áreas que van desde unas cuantas hectáreas hasta regiones inmensas.

Generalmente se tiende a afrontar la sequía cuando está sobre nosotros. Si bien es cierto que las sequías son inevitables, también es posible mitigar sus efectos con un adecuado conocimiento de su distribución temporal y espacial.

Los planes hidráulicos regionales para asignar el agua en una cuenca a los distintos usuarios son generados tomando en cuenta la evolución en la disponibilidad y demanda del recurso a largo plazo. Esta asignación depende de promedios hidrológicos, pero no considera explícitamente la modificación en la tendencia de los patrones de lluvia, los procesos de deforestación o las sequías. En consecuencia, la asignación de agua prescrita por el plan hidráulico tiende a modificarse en respuesta a una escasez de agua no pronosticada durante la fase de planeación.

Debe enfatizarse que un plan que tome en cuenta la posibilidad de una escasez de agua permitirá conocer con anticipación los pasos a seguir ante la presencia de las sequías. El plan debe ser lo suficientemente flexible para adaptarse a la evolución de las condiciones hidrometeorológicas. En particular, debe prever la posibilidad de que la sequía dure más de dos años, ya que al agudizarse el problema se corre el riesgo de que se colapse el sistema socioeconómico.

Para determinar la lámina de lluvia anual disponible descontando el posible déficit se puede emplear la técnica de las secuencias de una serie de tiempo (Salas *et al.*, 1988).

Se considera que una sequía meteorológica se presenta cuando la lámina de lluvia en cualquier año es menor que el promedio a largo plazo (*Xo*) o un porcentaje de ésta (85%, 90% o 95%).

Bajo esta definición, es posible determinar las componentes que caracterizan a una sequía: duración (*D*), severidad o déficit (S) e intensidad o valor promedio del déficit (*I*) (Figura 6.1).

Con este procedimiento es posible determinar el comportamiento histórico del déficit de lluvia para cada sitio analizado. Sin embargo, debido a que generalmente los registros disponibles de precipitación tienen pocos años, se deben generar muestras sintéticas a través de la aplicación de modelos estocásticos (Salas *et al*, 1988).

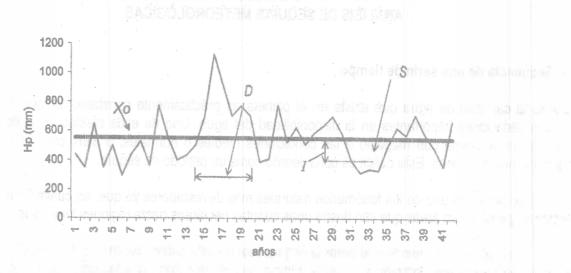


Figura 6.1. Características que definen una sequía meteorológica a través de una serie de tiempo.

6.2. Modelación de una serie de tiempo

Una serie de tiempo es un conjunto de observaciones $\{x_t\}$ realizadas de forma secuencial, normalmente a intervalos iguales.

Las series de tiempo pueden ser anuales o periódicas. Estas últimas pueden ser estacionales, mensuales, semanales, diarias u horarias.

Las series de tiempo pueden ser univariadas, como la precipitación o escurrimiento anual o mensual en una estación de aforos, o multivariadas como la precipitación o escurrimiento anual o mensual en varias estaciones de aforos.

Las series univariadas se describen generalmente a través de sus características estadísticas como la media, desviación estándar, coeficiente de asimetría, coeficiente de curtosis, distribución de probabilidad y de la estructura de dependencia en el tiempo (Salas et al, 1988.)

Las características estadísticas de las series anuales x_t , t=1,2,...,n años de registro, son:

Media

$$\bar{X} = \frac{1}{n} \sum_{t=1}^{n} X_t$$

(6.1)

Varianza sesgada

$$S_{\text{sesg}}^{2} = \frac{1}{n} \sum_{t=1}^{n} (x_{t} - x)^{2}$$

(6.2)

Varianza insesgada

$$S_{insesg}^2 = \frac{n}{n-1} S_{sesg}^2 = \frac{1}{n-1} \sum_{t=1}^{n} (x_t - x)^2$$

(6.3)

Coeficiente de asimetría sesgado

$$g_{\text{sesg}} = \frac{\frac{1}{n} \sum_{t=1}^{n} (x_t - x)^3}{(S_{\text{sesg}}^2)^{(3/2)}}$$

(6.4)

Coeficiente de asimetría insesgado

$$g_{insesg} = \frac{n^2}{(n-1)(n-2)} g_{sesg}$$

(6.5)

Coeficiente de curtosis sesgado

$$k_{\text{sesg}} = \frac{\frac{1}{n} \sum_{t=1}^{n} (x_t - \bar{x})^4}{(S_{\text{sesg}}^2)^2}$$

(6.6)

Coeficiente de curtosis insesgado

$$k_{insesg} = \frac{n^3}{(n-1)(n-2)(n-3)} k_{sesg}$$

(6.7)

Desviación estándar

$$S = \sqrt{S^2}$$

(6.8)

Función de autocovarianza lineal

$$c_k = \frac{1}{n-k} \sum_{t=1}^{n-k} (x_t - \bar{x})(x_{t+k} - \bar{x}), \quad 0 \le k \le n$$
(6.9)

Donde

k tiempo de retraso o distancia entre los pares (x_t, x_{t+k})

Coeficiente de autocorrelación serial

$$r_k = \frac{c_k}{c_0} = \frac{\sum_{t=1}^{n-k} (x_t - x)(x_{t+k} - x)}{\sum_{t=1}^{n} (x_t - x)^2}$$

Donde

 r_{k} estimador del coeficiente de autocorrelación serial poblacional ρ_{k}

Si $x_{\nu,\tau}$, para $\nu=1,2,...,n$ años, y $\tau=1,2,...,\omega$ periodos en el año representa una serie periódica, entonces, las características estadísticas de cada periodo τ se estiman como:

Media

$$X_{\tau} = \frac{1}{n} \sum_{\nu=1}^{n} X_{\nu,\tau}, \quad \tau = 1, 2, ..., \omega$$
(6.11)

(6.10)

Varianza insesgada

$$S_{\tau}^{2} = \frac{1}{n-1} \sum_{\nu=1}^{n} \left(X_{\nu,\tau} - X_{\tau} \right)^{2} \tag{6.12}$$

Coeficiente de asimetría insesgado

$$g_{\tau} = \frac{n^2}{(n-1)(n-2)} g_{\tau}^{\text{sesg}}$$
(6.13)

Coeficiente de curtosis insesgado

$$k_{\tau} = \frac{n^3}{(n-1)(n-2)(n-3)} k_{\tau}^{\text{sesg}}$$
(6.14)

Coeficiente de autocorrelación serial

$$r_{k,\tau} = \frac{\frac{1}{n} \sum_{\nu=1}^{n} (x_{\nu,\tau} - X_{\tau})(x_{\nu,\tau-k} - X_{\tau-k})}{S_{\tau} S_{\tau-k}}$$
(6.15)

Donde

 $r_{k,\tau}$ estimador del coeficiente de autocorrelación serial poblacional $\rho_{k,\tau}$

Cuando $\tau - k < 1$ los términos $\frac{1}{n}$, $\nu = 1$, $x_{\nu,\tau-k}$, $X_{\tau-k}$ y $S_{\tau-k}$ de la expresión (6.15) se reemplazan por $\frac{1}{n-1}$, $\nu = 2$, $x_{\nu-1,\omega+\tau-k}$, $X_{\omega+\tau-k}$ y $S_{\omega+\tau-k}$.

Gran parte de las técnicas disponibles para la modelación de las series de tiempo requieren que éstas tengan una distribución Normal, lo que muchas veces no se cumple. Para cubrir este requisito, es recomendable transformar la serie registrada x_t a otra y_t , mediante el procedimiento del apartado 3.13.

Una vez logrado esto, y de acuerdo con el tipo de serie de que se trate, ya sea anual o periódica, se debe estandarizar la serie como:

$$z_t = y_t - \overline{y}, \ t = 1, 2, ..., n$$
 (6.16)

$$z_t = \frac{y_t - \bar{y}}{S_y}, t = 1, 2, ..., n$$
 (6.17)

Donde

 $\overline{y} \;\; \mathbf{y} \;\; \mathbf{S}_{\mathbf{y}} \;\; \mathrm{son} \; \mathrm{la} \; \mathrm{media} \; \mathbf{y} \; \mathrm{desviación} \; \mathrm{est\'andar} \; \mathrm{de} \; \mathrm{la} \; \mathrm{serie} \; \mathrm{normalizada} \;\; \mathbf{y}_{t}.$

6.2.1. Modelo autorregresivo anual AR(p)

La forma general del modelo es (Box y Jenkins, 1970)

$$Z_{t} = \sum_{j=1}^{p} \phi_{j} Z_{t-j} + \varepsilon_{t} = \sum_{j=1}^{p} \phi_{j} Z_{t-j} + \sigma_{\varepsilon} \xi_{t}$$

$$(6.18)$$

Donde

p orden del modelo autorregresivo

 z_t variable estandarizada con la expresión (6.16), con $E[y_t] = \mu$ y $Var(y_t) = \sigma^2$

 ε_t serie de residuales que es independiente de y_t , con $E[\varepsilon_t] = 0$ y $Var(\varepsilon_t) = \sigma_\varepsilon^2$

 $\sigma_{arepsilon}$ desviación estándar de la serie de residuales $arepsilon_{t}$

 ξ_t serie con distribución Normal estándar $E[\xi_t] = 0$ y $Var(\xi_t) = 1$.

Las varianzas σ^2 y σ_{ε}^2 se relacionan como

$$\sigma_{\varepsilon}^{2} = \sigma^{2} \left(1 - \sum_{j=1}^{p} \phi_{j} \rho_{j} \right)$$

Donde

 ϕ_i coeficiente autorregresivo

 $\rho_i\,$ coeficiente de autocorrelación serial de la variable ${\it y}_t.$

$$\rho_{k} = \phi_{1} \rho_{k-1} + \phi_{2} \rho_{k-2} + \dots + \phi_{p} \rho_{k-p} = \sum_{j=1}^{p} \phi_{j} \rho_{|k-j|}, \ k > 0$$
(6.20)

Los parámetros $\phi_1, \phi_2, ..., \phi_p$ se estiman al resolver el sistema de p ecuaciones no lineales (6.20), donde los coeficientes ρ_j se sustituyen por los estimadores r_k de la expresión (6.10) y los parámetros ϕ_j se reemplazan por $\hat{\phi}_j$.

$$r_{k} = \hat{\phi}_{1} r_{k-1} + \hat{\phi}_{2} r_{k-2} + \dots + \hat{\phi}_{p} r_{k-p}, \ k > 0$$
(6.21)

Los parámetros $\phi_1, \phi_2, ..., \phi_p$ del modelo (6.18) deben cumplir las condiciones de estacionareidad, esto es, si las raíces de la ecuación característica (6.22) se ubican dentro del circulo unitario (Yevjevich, 1972)

$$u^{p} - \phi_{1}u^{p-1} - \phi_{2}u^{p-2} - \dots - \phi_{p} = 0$$
(6.22)

La serie ξ_t se obtiene a través del procedimiento propuesto por Box y Müller (1958), el cual consiste en proponer números u_1 y u_2 con distribución uniforme en el intervalo (0,1) y sustituirlos en las expresiones (6.23) y (6.24). Este procedimiento calcula números aleatorios con distribución Normal estándar por parejas y se deberá realizar tantas veces como el tamaño de muestra deseado para el objetivo de generar muestras sintéticas.

$$\xi_1 = \left[2\ln(1/u_1)\right]^{1/2}\cos(2\pi u_2) \tag{6.23}$$

$$\xi_2 = \left[2\ln(1/u_1)\right]^{1/2} \operatorname{sen}(2\pi u_2)$$
(6.24)

Una vez que se han obtenido los parámetros del modelo y se ha probado que cumplen las condiciones de (6.22) se debe verificar que la serie de residuales ε_t (expresión 6.25) tiene una distribución Normal y es independiente.

$$\varepsilon_t = z_t - \sum_{j=1}^{\rho} \phi_j z_{t-j}, \qquad t = 1, 2, ..., n$$
(6.25)

La normalidad se verifica considerando que el coeficiente de asimetría de los residuales $g_{\varepsilon} \approx 0$. La independencia se comprueba a través de la prueba de Anderson (apartado 3.11) o utilizando la Prueba de Porte Manteau (Salas *et al*, 1988), la cual utiliza el estadístico

$$Q = n \sum_{k=1}^{L} r_k^2(\varepsilon)$$
(6.26)

Donde

 $r_k^2(\varepsilon)$ correlograma obtenido al aplicar la expresión (6.10) a la serie de residuales ε_t máximo retraso considerado, $L\approx 0.30n$.

El estadístico Q esta distribuido en forma Chi-cuadrada con L-p grados de libertad. Si para cierto nivel de confianza $Q < \chi^2_{(L-p)}$, entonces ε_t es independiente y el modelo adecuado.

Para seleccionar el mejor modelo que describe el comportamiento de la serie de tiempo se utiliza el criterio de información de Akaike (Akaike, 1974)

$$CIA(p) = n \ln(\sigma_{\varepsilon}^{2}) + 2p \tag{6.27}$$

Dentro de las opciones que se manejen en el modelado, la mejor opción será aquel que proporcione el mínimo valor de CIA.

6.2.1.1. Modelo autorregresivo anual AR(1)

La forma del modelo es

$$Z_t = \phi_1 Z_{t-1} + \varepsilon_t \tag{6.28}$$

$$Z_{t} = \phi_{1} Z_{t-1} + \sigma_{\varepsilon} \xi_{t} \tag{6.29}$$

De la expresión (6.20), la función de autocorrelación es

$$\rho_k = \phi_1^k, \quad k \ge 0. \tag{6.30}$$

De acuerdo con la expresión (6.21) el parámetro autorregresivo se estima como

$$\phi_1 = r_1 \tag{6.31}$$

Para cubrir la condición de estacionareidad (6.22) se debe cumplir que

$$-1 < \hat{\phi}_1 < 1$$

$$-1 < \rho_1 < 1$$
 (6.32)

La serie de residuales se obtiene para t=2,3,...,n con la expresión (6.33) y se considera que $\varepsilon_1=0$.

$$\varepsilon_t = Z_t - \dot{\phi}_1 Z_{t-1} \tag{6.33}$$

La varianza de los residuales se obtiene a partir de la expresión (6.19) como

$$\sigma_{\varepsilon}^2 = \sigma^2 \left(1 - \hat{\phi}_1^2 \right)$$

Donde

(6.34)

 σ^2 es la varianza de la serie normalizada y_t .

La versión insesgada de la expresión (6.34) se obtiene por

$$\sigma_{\varepsilon}^{2} = \frac{n}{(n-1)}\sigma^{2}(1-\hat{\phi}_{1}^{2})$$

(6.35)

6.2.1.2. Modelo autorregresivo anual AR(2)

La forma del modelo es

$$Z_{t} = \phi_{1} Z_{t-1} + \phi_{2} Z_{t-2} + \varepsilon_{t}$$
(6.36)

$$Z_t = \phi_1 Z_{t-1} + \phi_2 Z_{t-2} + \sigma_{\varepsilon} \xi_t$$

(6.37)

De la expresión (6.20), la función de autocorrelación es

$$\rho_1 = \frac{\phi_1}{(1 - \phi_2)}, \quad k = 1 \tag{6.38}$$

$$\rho_k = \phi_1 \rho_{k-1} + \phi_2 \rho_{k-2}, \ k > 1 \tag{6.39}$$

La expresión debe resolverse recursivamente considerando los valores $\rho_0 = 1$ y ρ_1 de (6.38). De acuerdo con la expresión (6.21) los parámetros autorregresivos se estiman como

$$\hat{\phi}_1 = \frac{r_1(1 - r_2)}{1 - r_1^2} \tag{6.40}$$

$$\hat{\phi}_2 = \frac{r_2 - r_1^2}{1 - r_1^2} \tag{6.41}$$

Para cubrir la condición de estacionareidad (6.22) se debe cumplir que

$$\hat{\phi}_1 + \hat{\phi}_2 < 1$$

$$\hat{\phi}_2 - \hat{\phi}_1 < 1$$

$$-1 < \hat{\phi}_2 < 1$$

$$-1 < \rho_1 < 1$$

$$-1 < \rho_2 < 1$$

$$\rho_1^2 < (1 + \rho_2)/2$$

(6.42)

La serie de residuales se obtiene para t=3,4,...,n con la expresión (6.43) y se considera que $\varepsilon_1=0$ y $\varepsilon_2=0$.

$$\varepsilon_t = Z_t - \hat{\phi}_1 Z_{t-1} - \hat{\phi}_2 Z_{t-2} \tag{6.43}$$

La varianza de los residuales se obtiene a partir de la expresión (6.19) como

$$\sigma_{\varepsilon}^{2} = \sigma^{2} \frac{(1 + \hat{\phi}_{2})}{(1 - \hat{\phi}_{2})} [(1 - \hat{\phi}_{2})^{2} - \hat{\phi}_{1}^{2}]$$
(6.44)

Donde

 σ^2 es la varianza de la serie normalizada y_t .

La versión insesgada de la expresión (6.44) se obtiene por

$$\sigma_{\varepsilon}^{2} = \frac{n}{(n-2)} \sigma^{2} \frac{(1+\hat{\phi}_{2})}{(1-\hat{\phi}_{2})} \left[(1-\hat{\phi}_{2})^{2} - \hat{\phi}_{1}^{2} \right]$$
(6.45)

Ejemplo 6.1. Se desea obtener una muestra sintética a partir del registro de los volúmenes de escurrimiento anual de la estación Jacatepec.

Año	V anual (Mm³)	Año	V anual (Mm³)
1953	2304.3	1962	2454.4
1954	3388.5	1963	2536.1
1955	3244.0	1964	2698.1
1956	3291.4	1965	3348.6
1957	2385.4	1966	3070.1
1958	4415.9	1967	2875.8
1959	3234.8	1968	3623.6
1960	3748.6	1969	3909.1
1961	4027.1	1970	2768.5

Tabla 6.1. Serie de volúmenes de escurrimiento anual de la estación Jacatepec.

Con la información de la tabla 6.1 y las expresiones (6.1) a (6.8) se obtienen las características estadísticas insesgadas de la tabla 6.2. Con el fin de determinar si la serie es independiente se calcula el correlograma con las expresiones (6.9), (6.10) y (3.83) y los resultados se muestran en la tabla 6.3. De acuerdo con estos, la serie es independiente al 95% de confianza y por lo tanto se puede ajustar un modelo estocástico.

nnov n Estadístico	Serie : V anual (Mm³)
Media	3184.7
Desviación estándar	605.5
Coeficiente de asimetría	0.341
Coeficiente de curtosis	3.168
Coeficiente de variación	0.190

Tabla 6.2. Estadísticos insesgados de la serie de volúmenes de escurrimiento anual de la estación Jacatepec.

k	C _K	Lim. inf. r _k	r_k	Lim. sup. r _k
0	346290.6	annak arang mangatan manasan manasan mangkini manghini manghini manasan manasan manasan manasan manasan manasa Perindikan dari manasan manasan manasan mangkini manghini mangkini manasan manasan manasan manasan manasan man	1.0000	
1	-39623.7	-0.5200	-0.1144	0.4023
2	-25674.4	-0.5369	-0.0741	0.4119
.3	-12124.1	-0.5555	-0.0350	0.4222
4	-34759.3	-0.5762	-0.1003	0.4333
5	-128731.4	-0.5992	-0.3717	0.4453
6	-78526.4	-0.6250	-0.2267	0.4583

Tabla 6.3. Correlograma de la serie de volúmenes de escurrimiento anual de la estación Jacatepec.

La serie de volúmenes de escurrimiento anual de la estación Jacatepec se normaliza, vía la transformación de los logaritmos naturales (Tabla 6.4).

	Año	Y = In(V anual)	Año gala no de	Y = ln(V anual)
L	1953	7.7425	1962	7.8056
	1954	8.1281	1963	7.8384
	1955	8.0846	1964	7.9003
	1956	8.0991	1965	8.1163
	1957	7.7771	1966	8.0295
	1958	8.3930	1967	7.9641
	1959	8.0817	1968	8.1952
	1960	8.2291	1969	8.2711
	1961	8.3008	1970	7.9261

Tabla 6.4. Serie normalizada de los volúmenes de escurrimiento anual de la estación Jacatepec.

Con la información de la tabla 6.4 y las expresiones (6.1) a (6.8) se obtienen las características estadísticas insesgadas de la tabla 6.5. Con el fin de determinar si la serie es independiente se calcula el correlograma con las expresiones (6.9), (6.10) y (3.81) y los resultados se muestran en la tabla 6.6. De acuerdo con estos, la serie es independiente al 95% de confianza y por tanto se puede utilizar los coeficientes de autocorrelación serial para la estimación de parámetros por momentos de los modelos estocásticos.

Estadístico	Serie: $Y = ln(V \text{ anual})$
Media	8.0490
Desviación estándar	0.1900
Coeficiente de asimetría	-0.0090
Coeficiente de curtosis	2.8790
Coeficiente de variación	0.0240

Tabla 6.5. Estadísticos insesgados de la serie normalizada de los volúmenes de escurrimiento anual de la estación Jacatepec.

k	C _K	Lím. inf. r _k	r_k	Lím. sup. r_k
0	0.0342	entered to the second of the s	1	
1	-0.0035	-0.5200	-0.1028	0.4023
2	-0.0034	-0.5369	-0.1011	0.4119
3	-0.0034	-0.5555	-0.1019	0.4222
4	-0.0021	-0.5762	-0.0623	0.4333
5	-0.0107	-0.5992	-0.3124	0.4453
6	-0.0066	-0.6250	-0.1937	0.4583

Tabla 6.6. Correlograma de la serie normalizada de los volúmenes de escurrimiento anual de la estación Jacatepec.

Aplicando la expresión (6.16) se procede a estandarizar la serie normalizada de los volúmenes de escurrimiento anual de la estación Jacatepec (Tabla 6.7).

Año	11 00 0 10 0 - 0	$Z = Y - \overline{Y}$	Año	$Z = Y - \overline{Y}$
1953	and the state of t	-0.3065	1962	-0.2434
1954		0.0791	1963	-0.2106
1955		0.0355	1964	-0.1487
1956		0.0500	1965	0.0673
1957		-0.2719	1966	-0.0196
1958		0.3439	1967	-0.0849
1959		0.0327	1968	0.1462
1960		0.1801	1969	0.2220
1961		0.2518	1970	-0.1230

Tabla 6.7. Serie estandarizada de los volúmenes de escurrimiento anual de la estación Jacatepec.

Para el modelo AR(1):

$$Z_t = \phi_1 Z_{t-1} + \varepsilon_t$$

El parámetro ϕ_1 se estima por momentos como

$$\hat{\phi}_1 = r_1 = -0.1028$$

La condición de estacionareidad se cumple ya que

$$-1 < \hat{\phi}_1 = -0.1028 < 1$$

La serie de residuales de la tabla 6.8 se obtiene para t=2,3,...,n con los valores de la tabla 6.7 y la expresión (6.33).

Año	$\varepsilon_t = Z_t - \hat{\phi}_1 Z_{t-1}$	Año	$\varepsilon_t = Z_t - \hat{\phi}_1 Z_{t-1}$
 1953	0.0000	1962	10 m eb cm-0.2175
1954	0.0476	1963	-0.2357
1955	0.0437	1964	-0.1704
1956	0.0537	1965	0.0520
1957	-0.2668	1966	-0.0126
1958	0.3160	1967	-0.0870
1959	0.0681	1968	0.1375
1960	0.1835	1969	0.2371
1961	0.2703	1970	-0.1001
 1001			0.1001

Tabla 6.8. Serie de residuales del modelo AR(1) ajustado a la serie estandarizada de los volúmenes de escurrimiento anual de la estación Jacatepec.

Ahora se debe probar la normalidad e independencia de la serie de residuales, para lo cual se obtienen sus estadísticos y el correlograma (Tablas 6.9 y 6.10). De acuerdo con los resultados, la serie si cumple las dos condiciones.

Media0.0018Desviación estándar0.1730Coeficiente de asimetría-0.0290Coeficiente de curtosis3.0100	$\hat{\phi}_1 Z_{t-1}$
Coeficiente de asimetría -0.0290	
Conficiente de curtosis	
0.0100	
Coeficiente de variación 9.7800	

Tabla 6.9. Estadísticos insesgados de la serie de residuales del modelo AR(1) ajustado a la serie estandarizada de los volúmenes de escurrimiento anual de la estación Jacatepec.

	k	C_{κ}	Lím. inf. r _k	r _k	Lím. sup. r _k
haspige-many jobstron-	0	0.0342		1.0000	
	1	-0.0035	-0.5200	-0.1028	0.4023
	2	-0.0034	-0.5369	-0.1011	0.4119
	3	-0.0034	-0.5555	-0.1019	0.4222
	4	-0.0021	-0.5762	-0.0623	0.4333
	5	-0.0107	-0.5992	-0.3124	0.4453
	6	-0.0066	-0.6250	-0.1937	0.4583

Tabla 6.10. Correlograma de la serie de residuales del modelo AR(1) ajustado a la serie estandarizada de los volúmenes de escurrimiento anual de la estación Jacatepec.

El estimador para la varianza de los residuales se obtiene como

$$\sigma_{\varepsilon}^{2} = \frac{n}{(n-1)} \sigma^{2} (1 - \phi_{1}^{2}) = \frac{18}{(18-1)} (0.19)^{2} [1 - (-0.1028)^{2}] = 0.038$$

El criterio de información de Akaike para el modelo AR(1) es

$$CIA(1) = 18 ln(0.038) + 2 = -56.86$$

Para el modelo AR(2):

$$Z_t = \phi_1 Z_{t-1} + \phi_2 Z_{t-2} + \varepsilon_t$$

Los parámetros $\phi_{\rm 1}$ y $\phi_{\rm 2}$ se estiman por momentos con las expresiones

$$\hat{\phi}_1 = \frac{r_1(1 - r_2)}{1 - r_1^2} = \frac{-0.1028[1 - (-0.1011)]}{1 - (-0.1028)^2} = -0.1144$$

$$\hat{\phi}_2 = \frac{r_2 - r_1^2}{1 - r_1^2} = \frac{-0.1011 - (-0.1028)^2}{1 - (-0.1028)^2} = -0.1129$$

La condición de estacionareidad se cumple ya que $\phi_1 + \phi_2 < 1$, $\phi_2 - \phi_1 < 1$ y $-1 < \phi_2 < 1$

Los residuales del modelo se obtienen con la expresión (6.43). Al igual que con el modelo AR(1) se debe probar que esta serie se distribuye en forma Normal y es independiente.

and the country of the control of the country of th

La varianza de los residuales se obtiene a partir de la expresión (6.45) como

$$\sigma_{\varepsilon}^{2} = \frac{n}{(n-2)} \sigma^{2} \frac{(1+\hat{\phi}_{2})}{(1-\hat{\phi}_{2})} \left[(1-\hat{\phi}_{2})^{2} - \hat{\phi}_{1}^{2} \right] = 0.03986$$

El criterio de información de Akaike para el modelo AR(2) es

$$CIA(2) = 18 In(0.03986) + 4 = -53.99$$

La mejor opción para la serie analizada es el modelo AR(1) ya que CIA(1) < CIA(2)

El proceso de generación de la muestra sintética se lleva a cabo con la expresión

$$Z_t = \phi_1 Z_{t-1} + \sigma_s \xi_t$$

Los números aleatorios con distribución Normal estándar se obtienen con las expresiones (6.23) y (6.24)

Para dos números generados con distribución uniforme (0,1), $u_1 = 0.674\,$ y $u_2 = 0.565\,$

$$\xi_1 = \left[2\ln(1/0.674)\right]^{1/2} \cos[2\pi(0.565)] = -0.815$$

 $\xi_2 = \left[2\ln(1/0.674)\right]^{1/2} \sin[2\pi(0.565)] = -0.352$

Dado que se requiere generar una muestra de 18 años, el proceso anterior se debe repetir 8 veces más, así

$$\xi_{3} = \left[2\ln(1/0.371)\right]^{1/2}\cos[2\pi(0.009)] = 1.406$$

$$\xi_{4} = \left[2\ln(1/0.371)\right]^{1/2}\sin[2\pi(0.009)] = 0.075$$

$$\xi_{5} = \left[2\ln(1/0.581)\right]^{1/2}\cos[2\pi(0.376)] = -0.742$$

$$\xi_{6} = \left[2\ln(1/0.581)\right]^{1/2}\sin[2\pi(0.376)] = 0.733$$

$$\xi_{7} = \left[2\ln(1/0.670)\right]^{1/2}\cos[2\pi(0.464)] = -0.872$$

$$\xi_{8} = \left[2\ln(1/0.670)\right]^{1/2}\sin[2\pi(0.464)] = 0.200$$

$$\xi_{9} = \left[2\ln(1/0.538)\right]^{1/2}\cos[2\pi(0.882)] = 0.823$$

$$\xi_{10} = \left[2\ln(1/0.538)\right]^{1/2}\sin[2\pi(0.882)] = -0.750$$

$$\xi_{11} = \left[2\ln(1/0.286)\right]^{1/2}\cos[2\pi(0.021)] = 1.569$$

$$\xi_{12} = \left[2\ln(1/0.286)\right]^{1/2}\sin[2\pi(0.021)] = 0.210$$

$$\xi_{13} = \left[2\ln(1/0.546)\right]^{1/2}\cos[2\pi(0.084)] = 0.951$$

$$\xi_{14} = \left[2\ln(1/0.546)\right]^{1/2}\cos[2\pi(0.084)] = 0.553$$

$$\xi_{15} = \left[2\ln(1/0.218)\right]^{1/2}\cos[2\pi(0.680)] = -0.744$$

$$\xi_{16} = \left[2\ln(1/0.218)\right]^{1/2}\cos[2\pi(0.680)] = -1.580$$

$$\xi_{17} = \left[2\ln(1/0.136)\right]^{1/2}\cos[2\pi(0.793)] = 0.538$$

$$\xi_{18} = \left[2\ln(1/0.136)\right]^{1/2}\cos[2\pi(0.793)] = -1.923$$

Con los números aleatorios ξ_t y los valores de $\phi_1 = -0.1028$ y $\phi_{\varepsilon} = 0.1949$ se procede a estimar la serie sintética estandarizada con la expresión $z_t = -0.1028$ $z_{t-1} + 0.1949$ ξ_t , así,

$$z_{17} = -0.1028 (-0.292) + 0.1949 (0.538) = 0.135$$

 $z_{18} = -0.1028 (0.135) + 0.1949 (-1.923) = -0.389$

La serie sintética desestandarizada se obtiene aplicando $\hat{y}_t = \hat{z}_t + y$. Donde el valor medio de la serie normalizada es y = 8.0490.

$$\hat{y}_1 = -0.159 + 8.0490 = 7.890$$

$$\hat{y}_{18} = -0.389 + 8.0490 = 7.660$$

Finalmente, la serie sintética \hat{x}_t (Tabla 6.11) se obtiene al desnormalizar la serie generada \hat{y}_t , aplicando el antilogaritmo, $\hat{x}_t = \exp(\hat{y}_t)$. Así, $\hat{x}_1 = \exp(7.890) = 2670.74$

t	$x_t(Mm^3)$	t	$\chi_t(Mm^3)$
1	2670.74	10	2662.17
2	2971.35	11	4322.44
3	4140.23	12	3155.47
4	3087.09	13	3765.20
5	2713.11	14	3421.88
6	3664.99	15	2683.42
7	2598.88	16	2337.42
8	3318.32	17	3583.39
9	3653.60	18	2122.24

Tabla 6.11. Serie sintética generada de volúmenes de escurrimiento anual de la estación Jacateped.

Los estadísticos de la serie generada se presentan en las tablas 6.12 y 6.13.

	Estadístico	1028 2,	.0 -= 5 m	la expressi	Seri	e generada X	aurieme elik
Media	No. 1945			Annual section and the section of th		3159.55	
Desviación estándar				LABOR HOSE		617.07	
Coeficiente de asimetría						0.244	
Coeficiente de curtosis						3.055	
Coeficiente de variación	6					0.195	

Tabla 6.12. Estadísticos insesgados de la serie generada \hat{x}_t de los volúmenes de escurrimiento anual de la estación Jacatepec.

	Κ	C_{κ}	May 8.	Lim. inf. r_k	r_k	Lím. sup.	r_k
)	359630.58	and the same of th		1.000	00	
	1	-108525.24		-0.5200	-0.301	17 0.4023	
Acres 1	2	28822.06	O WANT	-0.5369	0:080	0.4119	
	3	93931.87		-0.5555	0.261	1 . 0.4222	
	4	-139989.23		-0.5762	-0.389	0.4333	
	5	-25613.81		-0.5992	-0.071	0.4453	
	3	51364.48		-0.6250	0.142	82 0.4583	

Tabla 6.13. Correlograma de la serie generada \mathcal{X}_t de los volúmenes de escurrimiento anual de la estación Jacatepec.

Este procedimiento se debe repetir tantas veces como muestras sintéticas se deseen. En la tabla 6.14 se comparan los estadísticos de la serie original de los volúmenes de escurrimiento anual de la estación Jacatepec, con aquellos valores esperados al generar 10,000 muestras sintéticas.

De acuerdo con los resultados se observa que el modelo AR(1) si preserva las características de la serie original, por lo que las muestras sintéticas son confiables y aplicables en el análisis de un aprovechamiento hidráulico.

Estadístico	É	Serie registrada	a X _t	Series generadas \hat{X}_{t}
Media		3184.68	333	3193.94
Desviación estándar		605.52		637.93
Coeficiente de asimetría		0.341		0.474
Coeficiente de curtosis		3.168		4.005
Coeficiente de variación		0.190		0.199
Coeficiente r ₁		-0.114		-0.294
Coeficiente r ₂		-0.074	LY as I	-0.027
Coeficiente r ₃		-0.035		0.196

Tabla 6.14. Estadísticos insesgados de la serie registrada x_t y los valores esperados de 10,000 series sintéticas x_t de los volúmenes de escurrimiento anual de la estación Jacatepec.

6.2.2. Modelo autorregresivo periódico PAR(p)

La forma general del modelo es (Salas et al, 1988)

all del modelo es (Salas et al, 1900)
$$Z_{\nu,\tau} = \phi_{1,\tau} Z_{\nu,\tau-1} + ... + \phi_{p,\tau} Z_{\nu,\tau-p} + \sigma_{s\tau} \xi_{\nu,\tau}$$
(6.46)

Donde

p orden del modelo autorregresivo periódico

 $\sigma_{arepsilon}$ desviación estándar de la serie de residuales $arepsilon_{arepsilon,arepsilon}$

 $\xi_{\nu,\tau}$ serie con distribución Normal estándar $E[\xi_{\nu,\tau}] = 0$ y $Var(\xi_{\nu,\tau}) = 1$

 $z_{\nu,r}$ serie estandarizada de acuerdo con (6.47) a (6.49) y $E[z_{\nu,r}] = 0$ y $Var(z_{\nu,r}) = 1$

$$Z_{\nu,\tau} = \frac{y_{\nu,\tau} - \mu_{\tau}}{\sigma_{\tau}} \tag{6.47}$$

$$\mu_{\tau} = \frac{1}{n} \sum_{\nu=1}^{n} y_{\nu,\tau}, \quad \tau = 1, 2, ..., \omega$$
(6.48)

$$\sigma_{\tau} = \left[\frac{1}{n-1} \sum_{\nu=1}^{n} \left(y_{\nu,\tau} - \mu_{\tau} \right)^{2} \right]^{1/2}$$
(6.49)

Donde

 $y_{\nu,\tau}$ registro normalizado de la serie $x_{\nu,\tau}$ para $\nu=1,2,...,n$ años y $\tau=1,2,...,\omega$ periodos, y $E[y_{\nu,\tau}]=\mu_{\tau}$ y $Var(y_{\nu,\tau})=\sigma_{\tau}^2$

La varianza de los residuales se puede obtener como (Salas et al, 1988)

$$\sigma_{\varepsilon\tau}^2 = 1 - \sum_{j=1}^p \phi_{j,\tau} \rho_{j,\tau} \tag{6.50}$$

Donde

 $\phi_{i, au}$ coeficiente autorregresivo periódico, al dos estados y appendix estados $\phi_{i, au}$

 $\rho_{i,\tau}$ coeficiente de autocorrelación serial de la variable $y_{\nu,\tau}$.

$$\rho_{k,\tau} = \sum_{j=1}^{\rho} \phi_{j,\tau} \rho_{|k-j|,\tau-\ell_j}, \ k > 0 \tag{6.51}$$

Donde

$$\ell_j = \min(k, j) \text{ y } \rho_{0,\tau} = 1$$

La expresión (6.51) se utiliza para determinar los parámetros de los modelos periódicos, al sustituir los coeficientes $\rho_{k,\tau}$ por los estimadores $r_{k,\tau}$ de la expresión (6.15).

En general, las condiciones que deben cumplir los parámetros periódicos $\phi_{j,\tau}$ no son fáciles de derivar, sin embargo, se pueden utilizar como una aproximación las condiciones derivadas de la expresión (6.21) para cada periodo τ .

Las series $\xi_{\nu,\tau}$ se generan para cada periodo τ con las expresiones (6.23) y (6.24).

Una vez que se han obtenido los parámetros del modelo y se ha probado que cumplen las condiciones aproximadas de (6.22), se debe verificar que las series de residuales ε_t tienen una distribución Normal y son independientes.

$$\varepsilon_{\nu,\tau} = Z_{\nu,\tau} - \sum_{j=1}^{\rho} \phi_{j,\tau} Z_{\nu,\tau-j}, \qquad \nu = 1, 2, ..., n; \ \tau = 1, 2, ..., \omega$$
 (6.52)

6.2.2.1. Modelo autorregresivo periódico PAR(1)

La forma del modelo es

$$Z_{\nu,\tau} = \phi_{1,\tau} Z_{\nu,\tau-1} + \varepsilon_{\nu,\tau} \tag{6.53}$$

$$Z_{\nu,\tau} = \phi_{1,\tau} Z_{\nu,\tau-1} + \sigma_{\varepsilon\tau} \xi_{\nu,\tau} \tag{6.54}$$

De acuerdo con la expresión (6.51) los parámetros autorregresivos periódicos se estiman como

$$\hat{\phi}_{1,\tau} = r_{1,\tau}$$
 para $\tau = 1, 2, ..., \omega$ (6.55)

Para cubrir la condición de estacionareidad (6.22) se debe cumplir que

$$-1 < \hat{\phi}_{1,\tau} < 1$$
 (6.56)

La serie de residuales se obtiene a partir de $\varepsilon_{\nu,2}$ con la expresión (6.57).

$$\varepsilon_{\nu,\tau} = Z_{\nu,\tau} - \phi_{1,\tau} Z_{\nu,\tau-1} \tag{6.57}$$

La varianza de los residuales se obtiene a partir de la expresión (6.50) como

$$\sigma_{\varepsilon\tau}^2 = 1 - \phi_{1,\tau}^2 \tag{6.58}$$

6.2.2.2. Modelo autorregresivo periódico PAR(2)

La forma del modelo es

$$Z_{\nu,\tau} = \phi_{1,\tau} Z_{\nu,\tau-1} + \phi_{2,\tau} Z_{\nu,\tau-2} + \varepsilon_{\nu,\tau}$$
(6.59)

$$Z_{\nu,\tau} = \phi_{1,\tau} Z_{\nu,\tau-1} + \phi_{2,\tau} Z_{\nu,\tau-2} + \sigma_{\varepsilon\tau} \xi_{\nu,\tau}$$
(6.69)

De acuerdo con la expresión (6.51) los parámetros autorregresivos periódicos se estiman como

$$\phi_{1,\tau} = \frac{r_{1,\tau} - r_{1,\tau-1} \ r_{2,\tau}}{1 - r_{1,\tau-1}^2}, \quad \tau = 1, 2, ..., \omega$$
(6.61)

$$\hat{\phi}_{2,\tau} = \frac{r_{2,\tau} - r_{1,\tau-1}}{1 - r_{1,\tau-1}^2}, \quad \tau = 1, 2, ..., \omega$$
(6.62)

Para cubrir la condición de estacionareidad (6.22) se debe cumplir que

$$\hat{\phi}_{1,r} + \hat{\phi}_{2,r} < 1$$

$$\hat{\phi}_{2,r} - \hat{\phi}_{1,r} < 1$$

$$-1 < \hat{\phi}_{2,r} < 1$$
(6.63)

La serie de residuales se obtiene a partir de $\,arepsilon_{\scriptscriptstyle{
u},3}\,$ con la expresión

$$\varepsilon_{\nu,\tau} = Z_{\nu,\tau} - \phi_{1,\tau} Z_{\nu,\tau-1} - \phi_{2,\tau} Z_{\nu,\tau-2}$$
(6.64)

La varianza de los residuales se obtiene a partir de la expresión (6.50) como

$$\sigma_{e\tau}^2 = 1 - \phi_{1,\tau} r_{1,\tau} - \phi_{2,\tau} r_{2,\tau} \tag{6.65}$$

Ejemplo 6.2. Se desea obtener una muestra sintética a partir del registro de los volúmenes de escurrimiento mensual de la estación Jacatepec.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1953	63.0	41.8	40.5	38.0	35.7	72.4	251.9	284.4	366.0	681.5	339.3	89.8
1954	69.0	63.4	77.8	62.3	79.6	610.8	876.3	220.5	554.0	513.0	179.3	82.7
1955	55.0	51.9	42.8	31.4	27.6	48.6	992.5	341.5	589.2	596.9	210.2	256.4
1956	132.9	62.8	58.3	55.5	224.0	424.4	553.1	326.8	661.3	337.3	263.7	191.3
1957	108.4	68.7	59.4	50.1	61.9	129.1	:444.9	356.8	557.9	284.7	164.2	99.3
1958	71.0	45.1	43.1	38.0	38.5	213.7	976.5	638.4	703.9	851.7	418.8	377.2
1959	129.9	106.6	124.2	137.6	102.0	476.7	468.2	430.0	316.8	405.0	410.7	127.1
1960	97.8	60.5	55.9	49.2	34.8	184.0	935.3	669.4	893.2	249.5	286.7	232.2
1961	143.1	91.5	92.8	52.7	39.8	201.3	956.5	704.0	590.7	396.3	607.0	151.4
1962	102.9	56.1	49.1	96.4	57.1	148.2	536.0	230.7	514.6	435.4	127.5	100.4
1963	84.0	52.0	52.3	43.4	45.4	98.9	713.9	388.4	599.4	239.8	106.7	111.9
1964	83.5	57.7	49.3	51.5	47.2	299.1	518.0	252.7	341.6	313.8	225.0	458.7
1965	245.8	93.8	81.9	68.5	0.88	275.7	575.5	517.1	440.8	576.8	259.6	125.1
1966	125.3	112.4	116.2	89.3	87.1	320.6	512.1	297.3	483.9	590.0	227.6	108.3
1967	82.1	62.7	61.7	52.6	67.4	373.2	538.5	313.8	441.1	484.6	206.8	191.3
1968	135.5	129.3	101.7	84.4	103.4	2,00.1	721.8	696.5	602.7	362.7	211.9	271.6
1969	185.3	81.6	82.5	89.7	100.6	230.6	917.4	136.9	1392.1	351.6	182.4	158.4
1970	86.8	94.4	82.3	45.7	38.9	147.0	415.7	490.3	625.7	378.9	277.9	84.9

Tabla 6.15. Series registradas mensuales $x_{\nu,\tau}$ de volúmenes de escurrimiento (Mm³) de la estación Jacatepec.

Con las expresiones (6.11) a (6.15) se procede a determinar las características estadísticas de las series $x_{v,r}$ (Tabla 6.16).

	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
X	111.18	74.01	70.76	63.12	71.05	247.46	661.33	405.30	593.05	447.19	261.40	178.77
S_{τ}	47.47	25.17	25.73	26.86	45.97	148.82	229.34	175.88	243.13	162.27	120.85	105.75
g_{τ}	1.61	0.84	0.81	1.52	2.50	1.03	0.16	0.60	2.41	1.03	1.65	1.63
k_{τ}	6.72	3.45	3.36	6.04	11.18	4.51	2.52	2.92	10.94	4.58	6.88	5.81
CV.	0.427	0.34	0.36	0.42	0.64	0.60	0.34	0.43	0.41	0.36	0.46	0.59
$r_{1,r}$	0.785	0.542	0.875	0.690	0.362	0.522	-0.015	0.310	-0.025	-0.208	0.276	0.121
f _{2,7}	0.037	0.440	0.480	0.584	0.292	0.416	-0.159	-0.204	0.542	0.017	-0.113	0.099
r _{3.τ}	-0.133	0.032	0.444	0.437	0.277	0.421	-0.182	-0.179	-0.150	0.061	0.554	0.022
$T_{4,\tau}$	-0.12:0	0.200	0.138	0.482	0.416	0.217	-0.073	-0.138	0.107	0.001	0.165	0.222
r _{5,7}	0.276	0.150	0.393	0.507	0.411	0.142	-0.099	0.186	-0.023	-0.190	0.052	0.319
r _{6.r}	0.087	0,159	0.118	0.474	-0.006	0.190	-0.001	0.313	-0 038	-0.148	-0.103	-0.040

Tabla 6.16. Estadísticos muestrales de las series mensuales $x_{\nu,r}$ de la estación Jacatepec.

Para cada periodo τ se procede a normalizar la muestra con la expresión $y_{\nu,\tau} = ln(x_{\nu,\tau})$. Adicionalmente, con las expresiones (6.11) a (6.15) se obtienen sus estadísticos insesgados.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1953	4.143	3.732	3.701	3.637	3.575	4.282	5.529	5.650	5.902	6.524	5.826	4.497
1954	4.234	4.149	4.354	4.132	4.377	6.414	6.775	5.395	6.317	6.240	5.189	4.415
1955	4.007	3.949	3.756	3.446	3.317	3.883	6.900	5.833	6.378	6.391	5.348	5.546
1956	4.889	4.140	4.065	4.016	5.411	6.050	6.315	5.789	6.494	5.821	5.574	5,253
1957	4.685	4.229	4.084	3.914	4.125	4.860	6.097	5.877	6.324	5.651	5.101	4.598
1958	4.262	3.808	3.763	3.637	3.650	5.364	6.884	6.459	6.556	6.747	6.037	5.932
1959	4.866	4.669	4.821	4.924	4.625	6,166	6.148	6.063	5.758	6.003	6.017	4.845
1960	4.582	4.102	4.023	3.895	3.549	5.214	6.840	6.506	6.794	5.519	5.658	5.447
1961	4.963	4.516	4.530	3.964	3.683	5.304	6.863	6.556	6.381	5.982	6.408	5.019
1962	4.633	4.027	3.893	4.568	4.044	4.998	6.284	5.441	6.243	6.076	4.848	4.609
1963	4.430	3.951	3.957	3.770	3.815	4.594	6.570	5.962	6.395	5.479	4.670	4.717
1964	4.424	4.055	3.897	3.941	3.854	5.700	6.250	5.532	5.833	-5.748	5.416	6.128
1965	5.504	4.541	4.405	4.226	4.477	5.619	6.355	6.248	6.088	6.357	5.559	4.829
1966	4.830	4.722	4.755	4.492	4.467	5.770	6.238	5.694	6.181	6.380	5.427	4.684
1967	4.407	4.138	4.122	3.962	4.210	5.922	6.288	5.748	6.089	6.183	5.331	5.253
1968	4.909	4.862	4.641	4.435	4.638	5.298	6.581	6.546	6.401	5.893	5.356	5.604
1969	5.222	4.401	4.412	4.496	4.611	5.440	6.821	4.919	7.238	5.862	5.206	5.065
1970	4.463	4.547	4.410	3.822	3.661	4.990	6.030	6.195	6.438	5,937	5.627	4.441

Tabla 6.17. Series normalizadas mensuales $y_{\nu,\tau}$ de volúmenes de escurrimiento (Mm³) de la estación Jacatepec.

	a leader to the physical											
ah ad	Ene	Feb	Mar	Abr	May	eldung	Jul	Ago	Sep	Oct	Nov	Dic
y,	4.637	4.253	4.200	4.071	4.116	5.327	6.432	5.912	6.323	6.044	5.478	5.049
S	0.387	0.328	0.352	0.384	0.532	0.058	0.375	0.452	0.347	0.349	0.425	0.517
g_{τ}	0.523	0.337	0.316	0.614	0.720	-0.524	-0.593	-0.274	0.847	0.245	0.290	0.723
K,	3.881	2.854	2.675	3.713	4.207	3.912	4.072	3.606	5.848	3.286	4.272	3.296
Cv.	0.083	0.077	0.084	0.094	0.129	0.124	0.058	0.076	0.055	0.058	0.078	0.102
$T_{1,\tau}$	0.772	0.652	0.894	0.689	0.612	0.646	0.067	0.181	-0.057	-0.242	0.338	0.209
r _{2,r}	0.175	0.510	0.601	0.632	0.487	0.543	-0.100	-0.098	0.588	-0.018	-0.138	0.002
r _{3,7}	-0.114	0.163	0.480	0.602	0.450	0.520	-0.086	-0.236	-0.112	-0.062	0.503	0.102
$r_{4,\tau}$	-0.074	0.164	0.247	0.510	0.582	0.383	0.027	-0.198	0.033	-0.019	0.016	0.239
r _{5,r}	0.348	0.117	0.302	0.499	0.501	0.374	0.003	0.141	-0.089	-0.129	0.158	0.418
r _{6,r}	0.187	0.125	0.080	0.360	0.135	0.257	0.049	0.236	-0.025	-0.118	-0.121	0.036

Tabla 6.18. Estadísticos muestrales de las series mensuales $y_{\nu,r}$ de la estación Jacatepec.

A partir de los valores de las tablas 6.17 y 6.18 se obtiene la serie $z_{\nu,r} = \frac{y_{\nu,r} - y_r}{S_r}$

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1953	-1.275	-1.585	-1.417	-1.128	-1.017	-1.586	-2,408	-0.579	-1.212	1.374	0.820	-1.066
1954	-1.040	-0.314	0.438	0.157	0.489	1.653	0.916	-1.142	-0.017	0.560	-0.679	-1.226
1955	-1.626	-0.925	-1.260	-1.625	-1.501	-2.191	1,248	-0.174	0.159	0.994	-0.305	0.961
1956	0.652	-0.343	-0.381	-0.143	2.434	1.100	-0.310	-0.271	0.492	-0.640	0.227	0.395
1957	0.126	-0.069	-0.328	-0.409	0.017	-0.707	-0.891	-0.077	0.002	-1.125	-0.886	-0.872
1958	-0.966	-1.353	-1.240	-1.128	-0.875	0.057	1.205	1.210	0.672	2.012	1.316	1.707
1959	0.593	1.270	1.768	2.219	0.955	1.276	-0.755	0.335	-1.628	-0.116	1.270	-0.395
1960	-0.139	-0.457	-0.501	-0.456	-1.065	-0.169	1.090	1.314	1.358	-1.503	0.424	0.769
1961	0.843	0.804	0.939	-0.277	-0.813	-0.033	1.150	1.426	0.167	-0.178	2.189	-0.057
1962	-0.008	-0.687	-0.870	1.293	-0:134	-0.498	-0.394	-1.042	-0.230	0.091	-1.482	-0.851
1963	-0 532	-0.919	-0.690	-0.783	-0.565	-1.112	0.370	0.110	0.209	-1.61.6	-1.901	-0.641
1964	-0 547	-0.601	-0.858	-0.337	-0.492	0.568	-0.485	-0.840	-1.411	-0.846	-0.145	2.085
1965	2.241	0.880	0.584	0.404	0.678	0.447	-0.204	0.743	-0.676	0.896	0.190	-0.428
1966	0.500	1.432	1.579	1.094	0.659	0.673	-0.516	-0.481	-0.407	0.961	-0.118	-0.704
1967	-0.591	-0.348	-0.220	-0.282	0.177	0.904	-0.382	-0:361	-0.674	0.397	-0.344	0.395
1968	0.703	1.859	1.255	0.947	0.981	-0.042	0.399	1.402	0.225	-0.432	-0.286	1.072
1969	1.511	0.455	0.605	1.106	0.929	0.173	1.039	-2.197	2.637	-0:521	-0.639	0.030
1970	-0.447	0.900	0.598	-0.648	-0.856	-0.510	-1.072	0.625	0.333	-0.307	0.351	-1.175
arte consist free distance compared into	125	13.13	Tub. o	0.440.30	160:0	295.9	000,0					

Tabla 6.19. Series estandarizadas mensuales $z_{\nu,r}$ de volúmenes de escurrimiento (Mm³) de la estación Jacatepec.

Con los valores de los coeficientes de autocorrelación $r_{1,\tau}$ de la tabla 6.18 y con las expresiones (6.55), (6.61) y (6.62) se obtienen los estimadores por momentos de los parámetros periódicos de los modelos PAR(1) y PAR(2). Con estos valores es posible obtener para cada modelo los estimadores de $\sigma_{e\tau}^2$ (expresiones 6.58 y 6.65) y del criterio de información de Akaike (expresión 6.27) para seleccionar la mejor opción de ajuste.

					10.00					10.0		
08.2.4	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
PAR(1)	1111	4	4.	810.0	N. Carlot	1037 0	621.3	F810 %	Tell and			
$\phi_{1,\tau}$	0.772	0.652	0.894	0.689	0.612	0.646	0.067	0.181	-0.057	-0.242	0.338	0.209
$\sigma^2_{\varepsilon \tau}$	0.063	0.065	0.026	0.082	0.187	0.267	0.148	0.209	0.127	0.121	0.169	0.271
CIA(1)	-47.50	-47.10	-63.50	-42.99	-28.15	-21.76	-32.37	-26.16	-35.13	-35.93	-29.96	-21.50
PAR(2)		-3 -1								313		
$\phi_{1, au}$	0.772	0.639	0.873	0.613	0.527	0.502	0.226	0.188	-0.169	-0.244.	0.342	0.236
$\phi_{2, au}$	0.175	0.016	0.031	0.084	0.124	0.235	-0.247	-0.110	0.619	-0.032	-0.059.	-0.077
$\sigma_{arepsilon au}^2$	0.019	0.069	0.025	0.090	0.199	0.261	0.143	0.220	0.066	0.129	0.183	0.284
CIA(2)	-66.61	-43.93	-61.76	-39.17	-24.97	-20.12	-30.93	-23.22	-44.67	-32.81	-26.51	-18.60

Tabla 6.20. Parámetros periódicos de los modelos PAR(1) y PAR(2) ajustados a los volúmenes de escurrimiento mensual de la estación Jacatepec.

De acuerdo con el criterio de selección, el mejor modelo de ajuste es el PAR(1). Ahora se obtienen los residuales del modelo empleando la expresión $\varepsilon_{v,r} = z_{v,r} - \phi_{1,r} z_{v,r-1}$ con los valores de la tabla 6.19.

Año	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1953	-1.275	-0.753	-0.001	-0.152	-0.325	-0.928	-2.302	-0.142	-1.245	1.079	0.355	-1.239
1954	-1.040	0.364	0.719	-0.144	0.393	1.336	0.806	-1.308	-0.083	0.556	-0.869	-1.083
1955	-1.626	0.135	-0.433	-0.756	-0.505	-1.221	1.395	-0.401	0.149	1.033	-0.642	1.025
1956	0.652	-0.769	-0.074	0.119	2.522	-0.473	-0.384	-0.215	0.476	-0.520	0.444	0.347
1957	0.126	-0.152	-0.266	-0.183	0.267	-0.718	-0.843	0.084	-0.001	-1.124	-0.505	-0.686
1958	-0.966	-0.723	-0.030	-0.274	-0.184	0.623	1.201	0.991	0.741	2.175	0.634	1.431
1959	0.593	0.883	0.632	1.000	-0.403	0.658	-0.840	0.472	-1.609	-0.511	1.309	-0.661
1960	-0.139	-0.366	-0.092	-0.111	-0.785	0.519	1.101	1.117	1.434	-1.173	0.933	0.680
1961	0.843	0.254	0.220	-0.925	-0.642	0.492	1.152	1.217	0.248	-0.137	2.249	-0.516
1962	-0.008	-0.682	-0.255	1.893	-0.927	-0.411	-0.361	-0.970	-0.290	0.035	-1.512	-0.540
1963	-0.532	-0.572	0.131	-0.307	-0.086	-0.746	0.444	0.043	0.215	-1.566	-1.353	-0.242
1964	-0.547	-0.244	-0.320	0.253	-0.285	0.887	-0.523	-0.752	-1.459	-1.189	0.141	2.116
1965	2.241	-0.581	-0.202	0.001	0.430	0.006	-0.234	0.780	-0.633	0.732	-0.112	-0.466
1966	0.500	1.105	0.298	0.006	-0.011	0.247	-0.561	-0.387	-0.435	0.862	-0.444	-0.679
1967	-0.591	0.037	0.090	-0.130	0.350	0.790	-0.442	-0.292	-0.695	0.233	-0.478	0.467
1968	0.703	1.401	-0.407	0.082	0.400	-0.676	0.402	1.330	0.305	-0.377	-0.140	1.132
1969	1.511	-0.530	0.198	0.689	0.252	-0.427	1.027	-2.385	2.511	0.119	-0.463	0.164
1970	-0.447	1.192	-0.206	-1.061	-0.458	0.042	-1.038	0.820	0.368	-0.226	0.455	-1.248
												5.1

Tabla 6.21. Series de residuales $\varepsilon_{\nu,r}$ del modelo PAR(1) ajustado a los volúmenes de escurrimiento mensual de la estación Jacatepec.

Con las expresiones (6.11) a (6.15) se procede a determinar las características estadísticas de los residuales $\varepsilon_{v,r}$ y se verifican las condiciones de normalidad e independencia de las series.

810.0	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
Υ _τ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
S	1.000	0.724	0.326	0.685	0.762	0.730	0.997	0.981	0.998	0.967	0.934	0.975
g_{τ}	0.523	0.831	0.907	1.266	2.351	0.075	-0.433	-0.737	0.690	0.397	0.676	0.695
K,	3.881	3.070	4.129	6.639	11.101	2.679	3.708	4.349	5.246	3.828	4.582	3.375
$r_{1,\tau}$	0.754	0.050	0.159	0.103	-0.020	-0.097	0.132	0.017	-0.114	-0.015	0.005	0.038
r _{2.7}	0.229	-0.004	0.056	-0.213	0.036	0.011	-0.089	0.043	0.609	-0.049	-0.029	-0.03
13.7	-0.137	-0.048	0.009	0.275	-0:138	0.518	-0.173	-0.142	-0.179	0.086	0.549	0.143
$r_{4,\tau}$	-0.054	0.399	0.161	0.164	0.280	0.176	0.038	-0.412	0.107	0.045	0.028	0.061
r _{5,7}	0.320	0.222	0.472	0.434	0.302	-0.003	-0.052	-0.230	-0.129	-0.048	0.316	0.426
$r_{6,\tau}$	0.186	-0.150	-0.058	0.178	-0.343	-0.124	0.024	0.263	-0.080	-0.102	-0.084	0.071

Tabla 6.22. Estadísticos de las series $\varepsilon_{\nu,r}$ del modelo PAR(1) ajustado a los volúmenes de escurrimiento mensual de la estación Jacatepec.

Una vez que se han cubierto las condiciones generales del modelo se generan números aleatorios con distribución Normal estándar de acuerdo con las expresiones (6.23) y (6.24).

t	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	0.868	-1.725	1.064	1.860	1.007	-1.111	-0.541	0.546	0.044	-0.507	0.982	0.599
2	-0.008	0.356	-1.279	-0.307	0.071	-0.628	-0.984	-0.481	0.175	0.074	0.486	-0.06
3	-1.295	-0.466	1.393	0.503	-0.926	0.851	0.227	0.452	-2.352	1.238	3.129	-0.68
4	0.492	-0.508	-0.466	1.249	-0.344	-1.207	-0.276	1.443	0.737	-1.833	-0.846	0.487
5	0.375	1.026	-1.187	-0.683	-0.380	1.063	-1.490	-1.762	0.477	-0.678	-1.025	-1.223
6	-0.952	-0.538	1.316	-0.135	-0.353	-1.817	1.407	-2.284	0.067	1.084	-0.559	-0.31
7	0.701	0.495	-0.301	0.257	0.577	0.531	-1.336	-0.225	-0.385	-1.481	-0.972	0.221
8	-0.524	0.584	-0.011	-0.844	-1.488	0.740	-1.255	-0.178	0.912	2.015	-0.093	0.013
9	-0.441	-2.018	-1.592	0.263	-0.588	-1.188	0.157	1.225	-0.566	-0.682	0.223	0.435
10	1.001	0.251	-0.729	-1.234	1.090	-0.803	-0.718	0.901	-0.103	0.044	-1.132	1.318
11	-1.495	-0.067	0.049	2.816	-1.025	-1.455	1.069	0.316	-0.270	1.464	0.501	-0.59
12	0.435	-2.803	-0.974	2.050	-0.476	-0.531	0.549	0.271	0.061	-0.388	0.967	1.432
13	-1.074	1.531	-0.115	-0.814	-0.220	0.872	-0.204	-1.861	-0.069	0.479	-2.124	-1.34
14	-0.119	1.828	0.647	-0.230	-2.111	0.284	0.783	0.751	-0.554	0.646	0.126	-0.46
15	1.297	1.391	-0.524	-0.939	0.608	1.521	-1.439	0.764	0.338	-0.071	-1.101	-0.07
16	1.124	0.446	-0.061	-0.029	0.095	0.625	-1.586	-0.499	0.330	0.939	-0.195	-0.34
17	0.280	-2.525	-0.521	-0.059	0.150	-1.261	0.086	1.910	-1.181	-0.834	0.607	0.903
18	1.935	0.111	-1.157	-0.001	2.351	-1.007	-0.064	1.346	0.470	-0.013	-0.469	0.050

Tabla 6.23. Números aleatorios $\xi_{\nu,\tau}$ generados mediante el procedimiento de Box-Müller.

Con los valores de la tabla 6.23 y los parámetros periódicos de la tabla 6.20 se procede a obtener la serie sintética estandarizada como $z_{\nu,\tau} = \phi_{1,\tau} z_{\nu,\tau-1} + \sigma_{\varepsilon\tau} \xi_{\nu,\tau}$.

t	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	0.220	-0.298	-0.094	0.468	0.723	-0.107	-0.215	0.211	0.003	-0.178	0.344	0.384
2	0.168	-0.103	-0.291	0.235	0.474	-0.394	-0.393	-0.182	0.062	0.069	0.317	0.048
3	-().328	-0.333	-0.072	0.095	-0.343	0.218	0.102	0.225	-0.851	0.638	1.504	-0.041
4	-().129	-0,347	-0.140	0.423	-0.359	-0.482	-0.099	0.701	0.312	-0.794	0.162	0.245
5	0.095	0.324	0.097	-0.129	-0.243	0.392	-0.547	-0.905	0.222	-0.290	-0.520	-0.746
6	-0.168	0.074	0.300	-0.127	-0.302	-0.685	0.505	-1.209	0.011	0.448	-0.406	-0.322
7	0.177	0.242	0.167	0.189	0.365	0.511	-0.480	-0.190	-0.126	-0.485	-0.565	-0.003
8	0.004	0.307	0.148	-0.112	-0.420	0.712	-0.515	-0.116	0.332	0.820	-0.229	0.006
9	-0.111	-0.589	-0.784	-0.465	-0.539	-0.963	-0.004	0.559	-0.234	-0.181	0.031	0.233
10	0.167	-0.320	-0.820	-0.6,74	0.141	-1.038	-0.277	0.514	-0.023	0.059	-0.455	0.735
11	-0.378	-0.264	-0.228	0.650	-0.045	-0.781	0.359	0.210	-0.108	0.537	0.388	-0.229
12	-0.182	-0.889	-0,362	1.035	-0.234	-0.779	0.236	0.162	0.028	-0.265	0.529	0.697
13	-0.272	0.214	0.173	-0.114	-0.165	0.344	-0.056	-0.861	0.025	0.161	-0.820	-0.871
14	-0.240	0.607	0.259	-0.145	-1.015	0.369	0.298	0.187	-0.199	0.186	-0.226	-0.426
15	0.328	0.570	0.424	0.023	0.277	0.965	-0.489	0.261	0.106	-0.050	-0.470	-0.135
16	0.538	0.485	0.369	0.008	0.211	0.947	-0.643	-0.181	0.112	0.339	-0.239	-0.206
17	0.071	-0.599	-0.620	-0.411	-0.187	-0.772	-0.018	0.870	-0.471	-0.176	0.190	0.511
18	0.544	-0.363	-0.742	-0.283	0.903	-1.020	-0.026	0.773	0.194	0.038	-0,129	0.133

Tabla 6.24. Serie sintética $\mathbf{2}_{\nu,\tau}$ generada con el modelo PAR(1) de volúmenes de escurrimiento mensual de la estación Jacatepec.

Finalmente, la serie sintética $\hat{x}_{\nu,\tau}$ se obtiene a partir de los valores de la tabla 6:24 como $\hat{x}_{\nu,\tau} = \exp(\hat{y}_{\nu,\tau})$ e $\hat{y}_{\nu,\tau} = y_{\tau} + S_{\tau}(\hat{z}_{\nu,\tau})$.

t	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
1	128.5	52.1	60.7	93.6	126.3	184.8	500.9	456.1	559.3	353.1	337.6	228.8
2	122.0	63.3	49.8	74.1	98.5	138.7	419.4	308.0	593.1	451.8	328.5	163.5
3	74.3	50.3	62.0	64.4	43.5	255.9	688.1	462.7	237.9	798.3	1076.9	149.6
.4	90.7	49.6	57.9	89.5	42.8	126.9	562.7	744.6	761.2	190.6	281.3	199.2
5	113.4	97.1	73.5	51.5	48.1	304.5	359.5	149.4	695.9	315.5	142.2	73.9
6	87.2	76.6	90.0	51.6	45.3	103.6	1029.7	110.3	563.7	660.3	159.4	112.9
7	123.2	89.5	78.8	70.8	88.3	342.7	384.5	305.5	491.2	259.5	136.1	155.4
8	103.6	95.5	77.3	52.4	40.3	419.4	371.2	329.0	77.1	957.8	190.2	156.9
9	92.3	39.0	30.4	36.8	35.7	78.5	618.9	646.5	441.2	351.9	246.8	196.8
10	121.9	51.0	29.3	29.8	70.6	72.8	471.2	617.5	544.5	447.5	151.7	325.1
11	70.7	53.9	53.0	112.3	58.6	94.2	889.9	455.7	500.2	721.3	352.8	124.0
12	86.0	28.9	46.4	165.1	48.5	94.3	786.4	434.5	573.2	323.4	406.4	313.2
13	78.6	87.0	79.2	52.3	52.0	290.2	587.7	156.1	571.3	495.4	105.4	65.2
14	81.1	128.9	86.4	50.7	22.2	297.6	836.9	445.6	456.8	508.1	191.0	101.8
15	143.2	124.2	101.9	60.0	80.9	540.2	381.0	479.6	619.4	401.0	149.5	136.1
16	176.7	114.1	96.4	59.0	75.7	530.4	326.6	308.4	623.2	592.2	188.4	126.9
17	110.7	38.6	35.8	38.9	50.9	95.0	610.0	882.0	348.0	353.5	289.5	259.8
18	177.8	48.9	31.7	44.1	151.3	74.1	605.5	800.5	677.0	438.2	210.4	178.1

Tabla 6.25. Serie sintética $\mathcal{X}_{\nu,\tau}$ generada con el modelo PAR(1) de volúmenes de escurrimiento mensual de la estación Jacatepec.

Con las expresiones (6.11) a (6.14) se procede a determinar las características estadísticas de las series $\Re_{\nu,\tau}$. Al comparar los estadísticos de la tabla 6.18 con los de la tabla 6.26 se observa el modelo PAR(1) si preserva las características de la serie original, por lo que las muestras sintéticas son confiables y aplicables en el análisis de un aprovechamiento hidráulico.

	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
X	110.1	71.5	63.4	66.5	65.5	224.7	579.4	449.6	557.5	478.9	274.7	170.4
S	32.0	30.9	23.2	32.4	33.3	155.8	202.9	221.2	135.1	199.4	218.3	73.4
g_{τ}	0.99	0.60	0.00	2.03	1.43	0.95	0.79	0.40	-0.61	1.04	3.48	0.86
k_	4.12	2.86	2.59	8.35	5.40	3.48	3.61	3.35	4.62	4.44	16.34	4.02
CV_{τ}	0.29	0.43	0.36	0.48	0.50	0.69	0.35	0.49	0.24	0.41	0.79	0.43

Tabla 6.26. Estadísticos insesgados de la serie generada $\hat{x}_{\nu,\tau}$ de los volúmenes de escurrimiento mensual de la estación Jacatepec.

6.2.3 Modelo autorregresivo anual de promedios móviles ARMA(1,1)

La forma general del modelo ARMA(p,q) es (Box y Jenkins, 1970)

$$Z_{t} = \sum_{j=1}^{p} \phi_{j} Z_{t-j} + \varepsilon_{t} - \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j}$$

(6.66)

Donde

- p orden del modelo autorregresivo
- q orden de promedios móviles
- z_t variable estandarizada con la expresión (6.16), con $\mathcal{E}[y_t] = \mu$ y $Var(y_t) = \sigma^2$
- ε_t serie de residuales que es independiente de y_t , con $E[\varepsilon_t] = 0$ y $Var(\varepsilon_t) = \sigma_\varepsilon^2$

Para el modelo ARMA(1,1) la expresión es (Salas et al, 1988)

$$Z_t = \phi_1 Z_{t-1} + \varepsilon_t - \theta_1 \varepsilon_{t-1}$$

(6.67)

La variable estandarizada esta dada por la expresión (6.17)

$$z_t = \frac{y_t - \bar{y}}{S_y}, t = 1, 2, ..., r$$

Donde

 $\overline{y} \; \mathrm{y} \; \mathrm{S}_{\mathrm{y}} \; \mathrm{son} \; \mathrm{la} \; \mathrm{media} \; \mathrm{y} \; \mathrm{desviación} \; \mathrm{est\'{a}ndar} \; \mathrm{de} \; \mathrm{la} \; \mathrm{serie} \; \mathrm{normalizada} \; \mathrm{y}_{t}.$

Estimadores de los parámetros

El estimador del parámetro autorregresivo ϕ_1 se da a través de la solución de las ecuaciones de Yule-Walker (Salas *et al*, 1988)

$$\hat{\phi}_1 = \frac{C_2}{C_1}$$

(6.68)

Donde las autocovarianzas C_1 y C_2 se obtienen a partir de la expresión (6.69)

$$c_k = \frac{1}{n-k} \sum_{t=1}^{n-k} (z_t - \bar{z})(z_{t+k} - \bar{z}), \quad 0 \le k \le n$$

Donde

k tiempo de retraso o distancia entre los pares (z_t, z_{t+k})

Los parámetros $\; heta_1\;$ y $\;\sigma_{arepsilon}^2\;$ se obtienen al resolver de manera iterada el conjunto de ecuaciones

$$\sigma_{\varepsilon}^{2} = \frac{C_{0}^{'}}{1 + \theta_{1}^{2}}$$

 $\sigma_{\varepsilon}^{2} = \frac{C_{0}^{'}}{1 + \theta_{1}^{2}}$ $\theta_{1} = \frac{-C_{1}^{'}}{\sigma_{\varepsilon}^{2}} \qquad \text{cumpliendo que } |\theta_{1}| < 1$

(6.71)

(6.70)

Donde

$$C_0' = C_0 + \phi_1^2 C_0 - 2\phi_1 C_1 \tag{6.72}$$

$$C_1' = C_1 + \phi_1^2 C_1 - \phi_1 (C_2 + C_0)$$
The production of the contraction of the cont

Los parámetros pueden mejorarse al estimarse por el método de máxima verosimilitud, el cual consiste en minimizar la suma de los cuadrados de los residuales del modelo

$$\min S = \min \sum_{t=1}^{n} \varepsilon_t^2$$
(6.74)

Los residuales se obtienen para el conjunto de parámetros iniciales, que en un primer paso pueden ser los valores finales obtenidos con las expresiones (6.70) y (6.71).

$$\begin{split} \varepsilon_1 &= 0 \\ \varepsilon_2 &= Z_2 - \phi_1 Z_1 \\ \varepsilon_3 &= Z_3 - \phi_1 Z_2 + \theta_1 \varepsilon_2 \end{split}$$

$$\varepsilon_t = \mathbf{z}_t - \hat{\phi}_1 \mathbf{z}_{t-1} + \theta_1 \varepsilon_{t-1} \tag{6.75}$$

6.3. Análisis puntual de series anuales

El procedimiento propuesto para el análisis de un sitio particular se ejemplificará con el registro de 56 años de lluvia acumulada anual de la estación climatológica número 01019, Presa Jocoqui, del estado de Aguascalientes (Tabla 6.27).

Año	Hp(mm)	Año	Hp(mm)	Año	Hp(mm)	Año	Hp(mm)
1942	315.3	1956	430.8	1970	396.1	1984	489.3
1943	554.6	1957	231.4	1971	690.0	1985	452.0
1944	478.4	1958	802.9	1972	504.8	1986	449.3
1945	290.8	1959	542.1	1973	550.7	1987	480.5
1446	1080.6	1960	322.5	1974	412.0	1988	295.5
1947	497.3	1961	344.6	1975	449.9	1989	429.1
1948	545.6	1962	365.2	1976	638.9	1990	510.1
1949	370.9	1963	572.9	1977	353.6	1991	773.8
1950	392.3	1964	455.1	1978	489.6	1992	588.4
1951	567.0	1965	657.5	1979	382.6	1993	392.2
1952	406.7	1966	744.1	1980	360.1	1994	374.4
1953	491.3	1967	602.9	1981	345.5	1995	514.5
1954	360.9	1968	635.2	1982	297.8	1996	487.1
1955	477.4	1969	232.9	1983	591.3	1997	292.0

Tabla 6.27. Lluvia acumulada anual Hp(mm) de la estación 01019 del estado de Aguascalientes

Las características estadísticas de la serie anual x_t , t=1,2,...,n años de registro, son:

Media

$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t = 477.8$$

Varianza insesgada

$$S_{insesg}^2 = \frac{n}{n-1} S_{sesg}^2 = \frac{1}{n-1} \sum_{t=1}^{n} (x_t - \overline{x})^2 = 23706.0$$

Coeficiente de asimetría insesgado

$$g_{insesg} = \frac{n^2}{(n-1)(n-2)}g_{sesg} = 1.28$$

Coeficiente de curtosis insesgado

$$k_{insesg} = \frac{n^3}{(n-1)(n-2)(n-3)} k_{sesg} = 6.47$$

Desviación estándar

$$S = \sqrt{S^2} = 153.9$$

Coeficiente de variación

$$Cv = \frac{S}{\overline{x}} = 0.32$$

Con los valores de la tabla 6.27 se procede a encontrar la serie de diferencias D_t (mm) considerando como umbral o nivel de truncamiento la lluvia media anual $X_0 = 477.8$ mm

Año	M ISI	D_t (mm)	Año	D_t (mm)	Año	D_t (mm)	Año	D_t (mm)
1942		-162.6	1956	-47.0	1970	-81.8	1984	11.4
1943	Fish	76.7	1957	-246.4	1971	212.1	1985	-25.8
1944	14	0.5	1958	325.0	1972	26.9	1986	-28.6
1945		-187.0	1959	64.2	1973	72.8	1987	2.6
1446		602.7	1960	-155.3	1974	-65.9	1988	-182.3
1947		19.4	1961	-133.2	1975	-27.9	1989	-48.8
1948		67.7	1962	-112.6	1976	161.0	1990	32.2
1949		-106.9	1963	95.0	1977	-124.2	1991	295.9
1950		-85.6	1964	-22.8	1978	11.7	1992	110.5
1951		89.1	1965	179.6	1979	-95.3	1993	-85.7
1952		-71.1	1966	266.2	1980	-117.8	1994	-103.5
1953		13.4	1967	125.0	1981	-132.4	1995	36.6
1954		-116.9	1968	157.3	1982	-180.0	1996	9.2
1955		-0.4	1969	-244.9	1983	113.4	1997	-185.9

Tabla 6 28. Serie de diferencias D_t (mm) de la estación 01019 del estado de Aguascalientes

Con los resultados de esta tabla se pueden definir los periodos de déficit y superávit, cuyas características generales se muestran en las tablas 6.29 y 6.30.

Número de Sequía	Duración (años)	Periodo	Periodicidad (años)	Déficit acumulado (mm)	Intensidad (mm/año)
1	1	1942-1942	1	162.5	162.5
2	1	1945-1945	3	187.0	187.0
3	2	1949-1950	4	192.5	96.3
4	1	1952-1952	4 3	71.1	71.2
5	4	1954-1957	2	410.9	102.7
6	3	1960-1962	6	401.3	133.8
7	1	1964-1964	4	22.8	22.8
8	2	1969-1970	5	326.7	16.4
9	2	1974-1975	5	93.8	46.9
10	1	1977-1977	3	124.2	124.3
11	4	1979-1982	2	525.4	131.4
12	2	1985-1986	6	54.4	24.2
13	2	1988-1989	3	231.1	115.6
14	2	1993-1994	5	189.1	94.6
15	1	1997-1997	4	185.9	185.9
Media	1.9		3.9	211.9	111.5
Desv. Std.	0.9		1.2	139.9	

Tabla 6.29. Características de los periodos en déficit identificados en la estación 01019 del estado de Aguascalientes

Número de Superávit	Duración (años)	Periodo	Periodicidad (años)	Supe	rávit acumulado (mm)	(mass) Å)	ntensida (mm/año	d) 24/A
1	2	1943-1944	Appeller and the later of the l	10.3%	77.3	3.19F-	38.6	AS
2	3	1946-1948	3		689.9	76.7	229.9	A.
3	1,1	1951-1951	5		89.1	8.0	89.1	
4	-4	1953-1953	2		13.4	YES	13.4	, hai
5	2	1958-1959	5		389.3		194.6	3441
6	1	1963-1963	15		95.0	4.4	95.0	
7	4	1965-1968	2		728.3		182.0	
8	3	1971-1973	6		311.9	90.0	103.9	
9	1	1976-1976	5		161.0		161.0	
10	1	1978-1978	1.11.12		11.7		11.7	
11	2	1983-1984	5		124.9		62.4	
12	_1	1987-1987	4		2.6		2.6	
13	3	1990-1992	3		438.7		146.2	
14	2	1995-1996	5		45.8		22.9	
Media	1.9		3.9		227.0		119.4	
Desv. Std.	0.9		6 91010 130 de tes		237.9			

Tabla 6.30. Características de los periodos en superávit identificados en la estación 01019 del estado de Aguascalientes

Del análisis de la serie registrada se tienen los siguientes resultados:

- 1) El coeficiente de variación de la lluvia acumulada anual es de 0.32, por lo que de acuerdo con el apartado 2.5.2, se esperaría la ocurrencia de un buen número de periodos en déficit, lo cual se confirmó a lo largo del proceso.
- 2) Un periodo con déficit de lluvia se presenta cada 3.9 años con una duración esperada de 1.9 años
 - 3) La probabilidad de que se presente un déficit con duración de 1 año es del 40% (6/15); para 2 años del 40% (6/15); para 3 años del 7% (1/15) y para 4 años de 13% (2/15).
 - 4) El déficit máximo registrado se tuvo en el periodo 1979-1982 con un valor acumulado de 525.4 mm y una intensidad de 131.3 mm/año, lo que representa anualmente una desviación con respecto a la lluvia media anual del 27%.
 - 5) Con la anterior intensidad se puede considerar como lámina disponible promedio anual en déficit del periodo 1979-1982 la siguiente: *Hp* = 477.8 mm 131.3 mm = 346.5 mm.
 - 6) La intensidad máxima registrada en déficit ocurrió en el periodo 1945-1945 (1 año) con un valor de 187.0 mm/año, lo que representó una desviación con respecto a la lluvia media anual del 39%, y una lámina disponible promedio anual de *Hp* = 477.8 mm 187.0 mm = 290.8 mm.
 - 7) El déficit acumulado promedio es de 211.9 mm, lo que para la duración promedio representa una intensidad de 111.5 mm/año y una lámina disponible promedio anual de *Hp* = 477.8 mm 111.5 mm = 366.3 mm (23% por debajo de la lluvia media anual).
 - 8) Un periodo con superávit de lluvia se presenta cada 3.9 años con una duración esperada de 1.9 años
 - 9) La probabilidad de que se presente un superávit con duración de 1 año es del 43% (6/14); para 2 años del 29% (4/14); para 3 años del 21% (3/14) y para 4 años de 7% (1/14).
 - 10) El superávit máximo registrado se tuvo en el periodo 1965-1968 con un valor acumulado de 728.2 mm y una intensidad de 182.0 mm/año, lo que representa anualmente una desviación con respecto a la iluvia media anual del 38%.
 - 11) Con la anterior intensidad se puede considerar como lámina disponible promedio anual en superávit del periodo 1965-1968 la siguiente: *Hp* = 477.8 mm + 182.0 mm = 659.8 mm.
 - 12) La intensidad máxima registrada en superávit ocurrió en el periodo 1946-1948 con un valor de 229.9 mm/año, lo que representó una desviación con respecto a la lluvia media anual del 48%, y una lámina disponible promedio anual de *Hp* = 477.8 mm + 229.9 mm = 707.7 mm.
- 13) El superávit acumulado promedio es de 227.0 mm, lo que para la duración promedio representa una intensidad de 119.4 mm/año y una lámina disponible promedio anual de *Hp* = 477.8 mm + 119.4 mm = 597.2 mm (24% por arriba de la lluvia media anual).
 - 14) Finalmente, la lámina disponible promedio de lluvia acumulada anual tiene los siguientes valores Hp(mínimo) = 366.3 mm, Hp(medio) = 477.8 mm y Hp(máximo) = 597.2 mm.
 - 15) En los análisis globales que se hacen para caracterizar el efecto de las sequías sobre las actividades productivas, se estima que un déficit superior al 15% con respecto al valor medio anual trae serias consecuencias económicas, tal es el caso del sitio analizado, ya que el valor promedio registrado es del 23% y ha alcanzado un máximo del 39%. Más aún, el déficit promedio que ocurrió durante el periodo 1979-1982 del 27% incrementó dramáticamente los efectos de la sequía. En estos términos, se puede considerar que es mejor tener un alto déficit en un solo año que uno menor en forma multianual.

Si se compara lo obtenido en el ejemplo 2.1 con éste, se observa que ambos esquemas reflejan prácticamente los mismos resultados. La sequía más adversa se presentó del mes de marzo de 1979 al mes de abril de 1983 (50 meses = 4.1 años) con déficit del 27.3%, según el ejemplo 2.1 o del 27% en el periodo 1979-1982 (4 años) de acuerdo con éste.

Una vez que se obtienen las características históricas de déficit y superávit, es importante determinar las condiciones que se esperan en el largo plazo, para esto se requiere generar muestras sintéticas a partir de la serie registrada. Para tal efecto se hará uso de los modelos estocásticos autorregresivos AR(p) y de la técnica de identificación ya aplicada a la serie original.

Para determinar la probabilidad de ocurrencia a largo plazo de una sequía de duración D (años) se generaron 10,000 muestras aleatorias (Salas et al, 1988), cada una del mismo tamaño de la serie original (54 años), empleando para ello los modelos estocásticos autorregresivos AR(1) o AR(2) y siguiendo la secuencia del ejemplo 6.1, se tienen los siguientes resultados:

Media de la serie normalizada mediante los logaritmos naturales $y_t = \ln(x_t)$; $\overline{y} = 6.12$

Modelo AR(1)

$$\hat{\phi}_1 = 0.85$$

 $\sigma_e^2 = 0.03$
CIA(1) = -201.6

Modelo AR(2)

$$\hat{\phi}_1 = 0.73$$

 $\hat{\phi}_2 = 0.14$
 $\hat{\sigma}_{\theta}^2 = 0.06$
CIA(2) = - 155.9

Como CIA(1) < CIA(2) se empleará el modelo AR(1) en el proceso de generación sintética.

En la tabla 6.31 se presentan las características que se esperan que ocurran en el largo plazo, bajo condiciones de déficit.

Sequia L)(años)	Probabilidad de ocurrencia (%)	Déficit acumulado (mm)	/(mm/año) esperada	% de / a	Lámina Disponible (mm)
1	50	116	116	24.2	361.8
2	30	210	105	21.9	372.8
3	2	294	98	20.5	379.8
4	13	448	112	23.4	365.8
5	2	460	92	19.2	385.8

Tabla 6.31. Características esperadas al largo plazo de las sequías para diferentes duraciones D (años) de los 10,000 registros sintéticos de la estación 01019.

Ahora se determinará el periodo de retorno de las diferentes láminas de lluvia que pueden ocurrir en el sitio de estudio. Para ello se obtendrá primero el conjunto de deciles mediante la expresión (2.1)

constante =
$$\frac{Hp(n) - Hp(1)}{10} = \frac{1080.6 \text{ mm} - 231.4 \text{ mm}}{10} = 84.9 \text{ mm}$$

$$decil(1) = Hp(1) + constante = 231.4 \text{ mm} + 84.9 \text{ mm} = 316.3 \text{ mm}$$

$$decil(2) = decil(1) + constante = 316.3 \text{ mm} + 84.9 \text{ mm} = 401.2 \text{ mm}$$

$$decil(10) = decil(9) + constante = 995.7 \text{ mm} + 84.9 \text{ mm} = 1080.6 \text{ mm}$$

De donde

Decil	Hp(minimo)	Hp(medio)	Hp(máximo)	Probabilidad	(%)
1	0	. 158.2	316.3.	12.5	and some
2	316.4	358.8	401.2	23.2	
3	401.3	443.8	486.2	19.6	
4	486.3	528.7	571.1	23.2	
5	571.2	613.6	656.0	10.7	
6	656.1	698.5	740.9	3.5	
7	741.0	783.4	825.8	5.3	
8	825.9	868.4	910.8	0	
9	910.9	953.3	995.7	0	
10	995.8	1038.2	1080.6	3 1.7	

Tabla 6.32. Deciles de la serie de lluvia acumulada anual de la estación 01019 del estado de Aguascalientes.

Para la distribución mezclada para mínimos se tiene de las expresiones (4.174) a (4.176)

$$F(x)_{min} = p \left[1 - \exp^{-\exp^{-(\omega_1 - x)/\alpha_1}} \right] + (1 - p) \left[1 - \exp^{-\exp^{-(\omega_2 - x)/\alpha_2}} \right] \qquad x \ge 0; \quad 0$$

$$f(x) = \frac{p}{\alpha_1} \exp^{-\exp^{-(\omega_1 - x)/\alpha_1}} \exp^{-(\omega_1 - x)/\alpha_1} + \frac{(1 - p)}{\alpha_2} \exp^{-(\omega_2 - x)/\alpha_2} \exp^{-(\omega_2 - x)/\alpha_2}$$

Los parámetros se calcular maximizando nos externaciones estados es abones e a animales es abones e a animales es abones e a comprese estados estados

$$\ln L = \ln \prod_{i=1}^{n} f(x_i; \omega_1, \alpha_1, \omega_2, \alpha_2, p), \quad \alpha_i > 0$$

Por lo que

$$\omega_1 = 482.4$$

$$\alpha_1 = 91.3$$
 The first and $\alpha_2 = 0.3$ The first state of the state o

$$\hat{\omega}_2 = 711.4$$

$$\alpha_2 = 190.0$$
 for the sense of the sense of

$$p = 0.785$$

Con este conjunto de parámetros y sustituyendo el valor del primer decil de la Iluvia Hp = 316.3 mm en la expresión (4.174) se obtiene un periodo de retorno T = 7 años. Si se considera que en promedio se presenta un déficit cada 3.9 años, entonces en cada dos ciclos se puede tener en promedio un año con lluvia por debajo del primer decil.

Con este mismo procedimiento se puede obtener el periodo de retorno de la lluvia más adversa que ha ocurrido en el sitio de estudio, esto es, Hp = 231.4 mm (T = 15.3 años)

En la tabla 6.25 se presenta la lámina de lluvia esperada para diferentes periodos de retorno, mediante el ajuste de la distribución Gumbel mixta para mínimos.

	T (años)	5.300	Probabilidad		Hp(mm)	
fewer untraphical debit treat in 14 history	2		0.50		467.0	
	5		0.80		353.0	
	10		0.90		278.0	
	20		0.95	the let serie de fluera	202.0	
	50		0.98		98.0	
	100		0.99		13.0	

Tabla 6.33. Las láminas de lluvia acumulada anual de la estación 01019 del estado de Aguascalientes, para diferentes periodos de retorno.

6.4. Análisis regional de series anuales

El procedimiento requiere obtener las características promedio de los periodos de déficit o superávit de una región, que puede ser una cuenca, municipio, estado o zona administrativa, se deberá tomar en cuenta a todas las estaciones climatológicas que se encuentren dentro o muy cerca del área analizada. La idea es formar un solo registro, donde la lámina esperada en cada año en la región se tomará al promediar las láminas de lluvia disponibles en cada estación climatológica. Esto quiere decir que no necesariamente se requiere que todas las estaciones tengan el mismo periodo de registro, y que para un año, por ejemplo 1970, puede ser que en cierta zona con 10 estaciones disponibles solo se haya registrado la lluvia en ese año en 8 sitios. Con un buen número de estaciones, el promedio de lluvia anual para cada año puede considerarse como representativo de la región. Una vez que se forma el registro regional se procede de la misma forma que en el apartado 6.3.

A continuación se presenta el proceso de análisis del municipio de Aguascalientes, Ags., para el cual se utilizaron los registros de lluvia acumulada anual de 13 estaciones climatológicas (01005, 01016, 01022, 01024, 01030, 01034, 01062, 01074, 01075, 01076, 01079, 01086 y 01091)

	taantung seperah mempelumikungangangkhala serjam penerasangga mbe mmaa		o din ni dalgio i rua velifonnomico mi toro va agravino atmensiajemo menglyomi mengapining melitarabini.	e grappement and excellent of the Marks owner by the control pulper properties and control to the control to th			
Año	Hp(mm)	Año	Hp(mm)	Año	Hp(mm)	Año	Hp(mm)
1945	367.5	1959	572.5	1973	645.9	1987	508.4
1446	432.8	1960	408.7	1974	398.2	1988	518.6
1947	507.1	1961	390.8	1975	431.6	1989	465.4
1948	528.3	1962	508.0	1976	533.7	1990	654.9
1949	381.4	1963	752.6	1977	492.7	1991	597.4
1950	404.6	1964	767.6	1978	522.2	1992	706.2
1951	472.8	1965	1069.4	1979	359.4	1993	483.6
1952	491.2	1966	1004.0	1980	314.1	1994	427.2
1953	704.9	1967	931.2	1981	323.3	1995	495.8
1954	456.9	1968	657.7	1982	386.7	1996	443,6
1955	492.4	1969	339.5	1983	496.4	1997	414.3
1956	483.7	1970	717.6	1984	468.5	1998	392.1
1957	313.6	1971	691.9	1985	545.6		
1958	794.2	1972	432.3	1986	552.3		

Tabla 6.34. Lluvia acumulada anual promedio Hp(mm) del municipio de Aguascalientes, Ags

Las características estadísticas de la serie anual x_t , t = 1, 2, ..., 54 años de registro, son:

Media Municipal

$$\bar{x} = \frac{1}{n} \sum_{t=1}^{n} x_t = 530.6$$

Varianza insesgada

$$S_{insesg}^2 = \frac{n}{n-1} S_{sesg}^2 = \frac{1}{n-1} \sum_{t=1}^{n} (x_t - \overline{x})^2 = 27801.1$$

holding within all the sent of the high

Coeficiente de asimetría insesgado

$$g_{insesg} = \frac{n^2}{(n-1)(n-2)}g_{sesg} = 1.4$$

Coeficiente de curtosis insesgado

$$k_{insesg} = \frac{n^3}{(n-1)(n-2)(n-3)} k_{sesg} = 5.2$$

Desviación estándar

$$S = \sqrt{S^2} = 166.7$$

Coeficiente de variación

$$Cv = \frac{S}{x} = 0.32$$

Con los valores de la tabla 6.34 se procede a encontrar la serie de diferencias D_t (mm) considerando como umbral o nivel de truncamiento la lluvia media anual $X_0 = 530.6$ mm

Con los resultados de la tabla 6.35 se pueden definir los periodos de déficit y superávit, cuyas características generales se muestran en las tablas 6.36 y 6.37.

Año	$D_{\rm f}$ (mm)	Año	D_t (mm)	Año	D_t (mm)	Año	D_t (mm)
1945	-163.1	1959	41.8	1973	115.2	. 1987	-22.2
1446	-97.8	1960	-122.0	1974	-132.4	1988	-12.0
1947	-23.5	1961	-139.8	1975	-99.0	1989	-65.2
1948	-2.3	1962	-22.6	1976	3.0	1990	124.2
1949	-149.2	1963	221.9	1977	-37.9	1991	66.75
1950	-124.2	1964	236.9	1978	-8.4	1992	175.5
1951	-57.8	1965	538.7	1979	-171.2	1993	-47.0
1952	-39.4	1966	473.3	1980	-216.5	1994	-103.4
1953	174.2	1967	400.5	1981	-207.3	1995	-34.8
1954	-73.7	1968	127.0	1982	-143.9	1996	-87.0
1955	-38.2	1969	-191.1	1983	-34.2	1997	-116.3
1956	-46.9	1970	186.9	1984	-62.1	1998	-138.5
1957	-217.0	1971	161.2	=1985	14.9		
1958	263.5	1972	-98.3	1986	21.6		

Tabla 6.35. Serie de diferencias D_t (mm) del municipio de Aguascalientes, Ags.

Número de Sequía	Duración (años)	Periodo 6	Periodicidad (años)	Déficit acumulado (mm)	Intensidad (mm/año)
TO OK THERE	8	1945-1952	in the same of the	657.6	
2	4	1954.1957	9	375.9	
3	3	1960-1962	6	284.5	
4	1	1969-1969	9	191.1	
5	1	1972-1972	3 -	98.3	
6	2	1974-1975	2	231.4	
7	8	1977-1984	3	881.8	
8	3 11 11	1987-1989	10	99.5	
9	6	1993-1998	6	527.2	
Media	4.0		6.0	374.9	92.9
Desv. Std.	2.5		2.9	252.7	SIN'SIN'S AIN

Tabla 6.36. Características de los periodos en déficit identificados en el municipio de Aguascalientes, Ags.

Número de Superávit	Duración (años)	Periodo	Periodicidad (años)	Superávit acumulado (mm)	Intensidad (mm/año)
1 2 3 4 5 6 7 8	1 2 6 2 1 1 2 3	1953-1953 1958-1959 1963-1968 1970-1971 1973-1973 1976-1976 1985-1986 1990-1992	5 5 7 3 3 3 9	174.2 305.4 1998.6 348.2 115.2 3.0 36.6 366.5	174.2 152.7 333.1 174.1 115.2 3.0 18.3 122.1
Media Desv. Std	2.2 1.5	14.5	5.2 1.9	418.4 611.0	190.1

Tabla 6.37. Características de los periodos en superávit identificados en el municipio de Aguascalientes, Ags.

Del análisis de la serie promedio anual municipal se tiene los siguientes resultados:

- 1) El coeficiente de variación de la lluvia acumulada anual es de 0.31, por lo que de acuerdo con el apartado 2.5.2, se esperaría la ocurrencia de un buen número de periodos en déficit, lo cual se confirmó a lo largo del proceso.
- 2) Un periodo con déficit de lluvia se presenta cada 6 años con una duración esperada de 4 años
- 3) La probabilidad de que se presente un déficit con duración de 1 año es del 22.2%; para 2 años del 11.1%; para 3 años del 22.2%; para 4 años de 11.1%; para 6 años del 11.1% y para 8 años de 22.2%.
- 4) El déficit máximo registrado se tuvo en el periodo 1977-1984 con un valor acumulado de 881.8 mm y una intensidad de 110.2 mm/año, lo que representa anualmente una desviación con respecto a la lluvia media anual del 20%.
- 5) Con la anterior intensidad se puede considerar como lámina disponible promedio anual en déficit del periodo 1977-1984 la siguiente: *Hp* = 530.6 mm 110.2 mm = 420.4 mm.
- 6) La intensidad máxima registrada en déficit ocurrió en el periodo 1969-1969 (1 año) con un valor de 191.1 mm/año, lo que representó una desviación con respecto a la lluvia media anual del 36%, y una lámina disponible promedio anual de *Hp* = 530.6 mm 191.1 mm = 339.5 mm.
- 7) El déficit acumulado promedio es de 374.9 mm, lo que para la duración promedio representa una intensidad de 92.9 mm/año y una lámina disponible promedio anual de Hp = 530.6 mm 92.9 mm = 437.7 mm (17% por debajo de la lluvia media anual).
- 8) Un periodo con superávit de lluvia se presenta cada 5.2 años con una duración esperada de 2.2 años
- 9) La probabilidad de que se presente un superávit con duración de 1 año es del 37.5%; para 2 años del 37.5%; para 3 años del 12.5% y para 6 años de 12.5%.
- 10) El superávit máximo registrado se tuvo en el periodo 1963-1968 con un valor acumulado de 1998.6 mm y una intensidad de 333.1 mm/año, lo que representa anualmente una desviación con respecto a la lluvia media anual del 62%.

- 11) Con la anterior intensidad se puede considerar como lámina disponible promedio anual en superávit del periodo 1963-1968 la siguiente: Hp = 530.6 mm + 333.1 mm = 863.7 mm.
- 12) La intensidad máxima registrada en superávit ocurrió en el mismo periodo 1963-1968 con un valor de 333.1 mm/año, lo que representó una desviación con respecto a la lluvia media anual del 62%, y una lámina disponible promedio anual de *Hp* = 530.6 mm + 333.1 mm = 863.7 mm.
- 13) El superávit acumulado promedio es de 418.4 mm, lo que para la duración promedio representa una intensidad de 190.1 mm/año y una lámina disponible promedio anual de *Hp* = 530.6 mm + 190.1 mm = 720.7 mm (35% por arriba de la lluvia media anual).
- 14) Finalmente, la lámina disponible promedio de lluvia acumulada anual tiene los siguientes valores Hp(mínimo) = 437.7 mm, Hp(medio) = 530.6 mm y Hp(máximo) = 720.7 mm.
- 15) En los análisis globales que se hacen para caracterizar el efecto de las sequías sobre las actividades productivas, se estima que un déficit superior al 15% con respecto al valor medio anual trae serias consecuencias económicas, tal es el caso del sitio analizado, ya que el valor promedio registrado es del 18% y ha alcanzado un máximo del 33%. Más aún, el déficit promedio que ocurrió durante el periodo 1977-1984 del 19% incrementó dramáticamente los efectos de la sequía.

Ahora se determinará el periodo de retorno de las diferentes láminas de lluvia que pueden ocurrir en el sitio de estudio. Para ello se obtendrá primero el conjunto de deciles mediante la expresión (2.1) y sus probabilidades de que una lluvia promedio en el municipio de Aguascalientes ocurra en determinado rango o decil, así:

9	b mô	Decil	Hp(minimo)	Hp(medio)	Hp(máximo)	Probabilidad (%)
(·	faire '	4.3170	st ains olgio0ium leb l	194.6	389.2	14.8
		2	389.3	427.0	464.8	22.2
		3	464.9	502.6	540.3	31.4
		4	540.4	578.2	615.9	7.4
		5	616.0	653.7	691.5	5.5
		6	691.6	729.3	767.1	9.2
		7	767.2	804.9	842.7	3.7
		8	842.8	880.5	918.2	0 by 1 a 18
		9	918.3	956.0	993.8	1.8
		10	993.9	1031.7	1069.4	3.7

Tabla 6.38. Deciles de la serie de lluvia acumulada promedio anual del municipio de Aguascalientes, Ags.

Del ajuste de la distribución Gumbel mezclada para mínimos al registro de lluvias anuales se tiene:

$$\omega_1 = 476.4$$

$$\hat{\alpha}_1 = 59.8$$

$$\omega_2 = 750.4$$

$$\hat{\alpha}_2 = 194.5$$

$$p = 0.612$$

Con este conjunto de parámetros y sustituyendo el valor del primer decil de la lluvia Hp = 389.2 mm en la expresión (4.174) se obtiene un periodo de retorno T = 6.3 años, por lo que considerando que en promedio se presenta una seguía cada 6 años entonces, esta se ubicará dentro del primer decil.

Con este mismo procedimiento se obtiene el periodo de retorno de la lluvia promedio más adversa que ha ocurrido en el municipio en estudio, esto es, *Hp* = 313.6 mm (T = 16.9 años)

En la tabla 6.39 se presenta la lámina de lluvia esperada para diferentes periodos de retorno, mediante el ajuste de la distribución Gumbel mixta para mínimos.

T (años)	Probabilidad in princes	es asvirbuboro as Hp(mm) -
2	0.50	soupeagen dense a 485.0
ed to pura 15 has been one	0.80 0.90	407.0
10.5	0.90	355.0
20		299.0
50	0.98	210.0
100	0.99	119.0 (ren 142-12-sperimers) (128-140) A

Tabla 6.39. Láminas de lluvia acumulada promedio anual en el municipio de Aguascalientes, para diferentes periodos de retorno.

Con las características obtenidas bajo este procedimiento es factible, mediante la asociación de variables económicas, la obtención de los niveles de vulnerabilidad del municipio ante la escasez de agua en los sectores económicos y sociales. Estos conceptos se abordarán en el capítulo 8.

Bajo el mismo esquema es posible obtener el estimador del Estado o región hidrológica, al considerar el total de estaciones climatológicas. Como se intuye, conforme la escala se hace más grande, los valores tienden a no describir de manera confiable el fenómeno, ya que la variación espacial y temporal de la lluvia tiende a suavizarse o atenuarse debido al tamaño de las superficies analizadas.

The content of the property of

Live professional and the first state of the state of the first state

CAPITULO 7 ANÁLISIS DE SEQUÍAS HIDROLÓGICAS

7.1. Características de la serie de tiempo hidrológica

Como ya se ha mencionado, una serie de tiempo es un conjunto de observaciones $\{x_t\}$ realizadas de forma secuencial, normalmente a intervalos iguales.

La serie de tiempo para el análisis de las sequías hidrológicas esta formada por los gastos medios diarios Q, obtenidos en cierta estación hidrométrica.

Para iniciar el estudio de las sequías se requiere un parámetro que pueda separar los flujos que pueden considerarse como mínimos. Este parámetro se conoce como nivel de truncamiento o gasto de referencia Q_r , así, para gastos menores a dicho nivel se puede considerar la presencia de un déficit.

Existen dos criterios para determinar el nivel de truncamiento (Zelenhasic y Salvai, 1987). Un primer criterio es el de considerar Q_r como el promedio a largo plazo de los gastos medios diarios, o bien, como un porcentaje de éste, por ejemplo el 70 o 75%. Sin embargo, debido a que generalmente la serie así caracterizada no representa los flujos mínimos, se emplea el criterio de seleccionar Q_r como aquel valor para el cual cierto porcentaje de los gastos lo exceden.

Por ejemplo, un nivel $Q_r(90\%)$ significa que el 90 por ciento de los gastos en el registro lo igualan o lo exceden (Figura 7.1).

Una vez que se selecciona el valor adecuado de Q_r , se pueden determinar las características que definen la escasez de agua en un cierto periodo de tiempo, el cual generalmente se toma como un año calendario.

Cada periodo de escasez se compone de seis parámetros (Figura 7.2):

1) Déficit D(v)

El déficit o severidad, expresado en volumen, es el área comprendida entre el hidrograma y el nivel de truncamiento Q_r .

$$D(\upsilon) = Q_{r} \left[\tau_{e}(\upsilon) - \tau_{b}(\upsilon) \right] - \int_{\tau_{b}(\upsilon)}^{\tau_{e}(\upsilon)} Q_{t} dt$$

para todo
$$Q_t < Q_r(p\%)$$

(7.1)

Donde

 $D(\upsilon)$ υ -ésimo déficit registrado en un año particular Q_t gastos medios diarios $Q_r(p\%)$ nivel de truncamiento para cierto porcentaje p $\tau_p(\upsilon)$ tiempo de inicio del υ -ésimo déficit tiempo de terminación del υ -ésimo déficit

2) Duración T(v)

La duración del déficit D(v) es el número de días consecutivos para los cuales el gasto Q_t es menor que el gasto de referencia $Q_t(p\%)$

$$T(\upsilon) = \tau_e(\upsilon) - \tau_b(\upsilon) \tag{7.2}$$

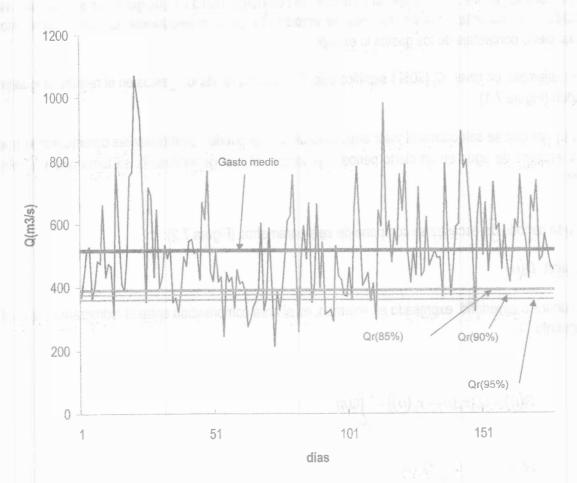


Figura 7.1. Criterios de selección del nivel de truncamiento para el análisis de una serie hidrológica.

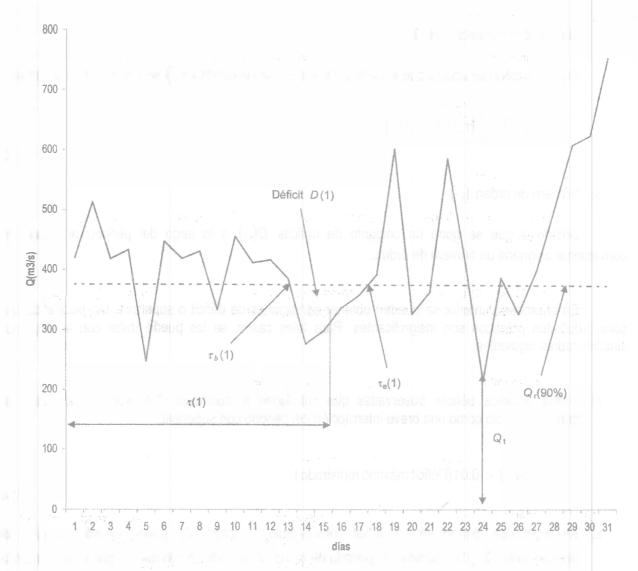


Figura 7.2. Características que definen un periodo de escasez en una serie hidrológica.

3) Tiempo de inicio del déficit $\tau_b(\upsilon)$

El inicio del déficit D(v) se determina por el momento en que el gasto Q_t cruza con el gasto de referencia y se tiene $Q_t < Q_r(p\%)$.

4) Tiempo de terminación del déficit $\tau_{\rm e}(\nu)$

La terminación del déficit D(v) se define por el momento en que el gasto Q_t cruza con el gasto de referencia y se tiene $Q_t > Q_r(p\%)$.

5) Tiempo de ocurrencia $\tau(v)$

Por simplicidad se acepta que el tiempo de ocurrencia del déficit D(v) se puede expresar como

$$\tau(\upsilon) = \frac{1}{2} \left[\tau_e(\upsilon) - \tau_b(\upsilon) \right] \tag{7.3}$$

6) Número de orden (v)

Debido a que se tiene un conjunto de déficits $D(\upsilon)$ a lo largo del periodo analizado, es conveniente asignarle un número de orden.

En el proceso anterior se pueden obtener condiciones de déficit o superávit tan pequeños, que para propósitos prácticos son insignificantes. Para tales casos, se les puede tratar con las hipótesis simplificadoras siguientes:

a) Todos aquellos déficits observados que satisfagan la condición (7.4) son rechazados y se consideran solo como una breve interrupción del periodo con superávit.

$$D(\upsilon) < 0.01$$
 (Déficit máximo registrado) (7.4)

b) En ocasiones, dentro de un déficit considerable, el gasto Q_t puede exceder el nivel de truncamiento $Q_r(p\%)$ durante un periodo de tiempo muy corto, por lo que se pudieran considerar dos periodos de déficit, sin embargo, si el periodo de tiempo en que ocurre esto, es relativamente pequeño, además, el volumen acumulado por encima del umbral también lo es, entonces, solo se trata de una breve interrupción del periodo con déficit y se pueden considerar las siguientes condiciones que definen un solo periodo seco.

$$D(\upsilon)' = D(\upsilon) + D(\upsilon + 1) \tag{7.5}$$

$$T(\upsilon) = T(\upsilon) + T(\upsilon + 1) \tag{7.6}$$

Una vez que se determinan estas características en todo el registro, es conveniente definir las condiciones de déficit más extremas para cada año.

7.2. Modelación puntual de las características que definen una sequía

Las componentes que se modelan son los déficits máximos, los cuales se encuentran asociados a cierta duración y tiempo de ocurrencia, además del número de sequías que pueden ocurrir en un año.

Las tres primeras componentes, de acuerdo a su naturaleza, se analizan mediante funciones de distribución de probabilidad para máximos, mientras que para el número de sequías k, se utiliza la función de distribución de Poisson:

$$f(x) = P(X = x) = \frac{\lambda^{-x} e^{-\lambda}}{x!}$$
(7.7)

Donde

 $\lambda = X$

Para el análisis de frecuencias de eventos extremos máximos se pueden utilizar, entre otras, las siguientes distribuciones:

Distribución exponencial con parámetros β y x_0

$$F(x) = 1 - e^{-\left(\frac{x - x_0}{\beta}\right)} \tag{7.8}$$

$$f(x) = \frac{1}{\beta} e^{-\left(\frac{x - x_0}{\beta}\right)} \tag{7.8}$$

Donde

x₀ parámetro de ubicación

β parámetro de escala

Estimadores por momentos

$$\hat{\beta} = S \tag{7.10}$$

$$\hat{x}_0 = x - S \tag{7.11}$$

Estimadores por máxima verosimilitud

(7.12)

$$\hat{X}_0 = X_{(1)} - \frac{\sum_{i=1}^{n} (x_i - X_{(1)})}{n-1}$$

(7.13)

Donde

 $x_{(1)}$ primer valor de la muestra ordenada de menor a mayor.

Distribución Normal

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} dx$$

(7.14)

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

(7.15)

Donde

u parámetro de ubicación

σ parámetro de escala

Estimadores por momentos y máxima verosimilitud

$$\mu = x$$

(7.16)

$$\sigma^{2} = \frac{\sum_{i=1}^{n} (x_{i} - x)^{2}}{n-1}$$

(7.17)

Estimación de eventos

$$\hat{X}_{T} = \mu + \sigma \ \mathsf{U}_{T}$$

(7.18)

Donde

 U_T es la variable definida de acuerdo con la expresión (4.16)

Distribución Log normal con dos parámetros

$$f(x) = \frac{1}{x\sigma_y \sqrt{2\pi}} e^{-1/2\left[\frac{\ln(x) - \mu_y}{\sigma_y}\right]^2}, \quad x > 0$$

(7.19)

Donde

 $\mu_{_{V}}$ parámetro de ubicación

 σ_v parámetro de escala

$$\gamma > 0$$

Estimadores por momentos y máxima verosimilitud

$$\hat{\mu}_{y} = \frac{1}{n} \sum_{i=1}^{n} \ln x_{i}$$

(7.20)

$$\sigma_y^2 = \frac{\sum_{i=1}^n (\ln x_i - \mu_y)^2}{n}$$

(7.21)

Estimación de eventos

$$\hat{X}_{\mathsf{T}} = \exp(\hat{\mu}_{\mathsf{y}} + \mathsf{U}_{\mathsf{T}} \hat{\sigma}_{\mathsf{y}})$$

(7.22)

Donde

 U_T es la variable definida de acuerdo con la expresión (4.16)

Distribución Gamma con dos parámetros

$$F(x) = \int_{0}^{x} \frac{x^{\beta-1} e^{-x/\alpha}}{\alpha^{\beta} \Gamma(\beta)} dx$$

(7.23)

$$f(x) = \frac{x^{\beta-1}e^{-x/\alpha}}{\alpha^{\beta}\Gamma(\beta)}$$

$$0 \le x < \infty$$

$$si \ \alpha > 0 \rightarrow \gamma > 0$$

$$\gamma > 0$$

(7.24)

Donde

parámetro de escala

 β parámetro de forma

 $\Gamma(eta)$ función Gamma completa

Estimadores por momentos

$$\hat{\alpha} = \frac{s^2}{X}$$

A 14 (7.25)

$$\hat{\beta} = \left(\frac{\bar{x}}{s}\right)^2$$

(7.26)

Estimadores por máxima verosimilitud

$$\hat{\alpha} = \frac{X}{\hat{\beta}}$$

(7.27)

El estimador $\hat{\beta}$ se obtiene al resolver

$$F(\hat{\beta}) = \hat{\mu}_y - \ln(\hat{\mu}_x) + \ln(\hat{\beta}) - \psi(\hat{\beta}) = 0$$

(7.28)

Empleando como valor inicial del parámetro \hat{eta}

$$\beta = \frac{1 + \sqrt{1 + \frac{4}{3}C}}{4C} \tag{7.29}$$

$$C = \ln(x) - y \tag{7.30}$$

La derivada de la ecuación (7.28) es

$$F'(\hat{\beta}) = \frac{1}{\beta} - \psi'(\hat{\beta}) \tag{7.31}$$

La aproximación de la función digamma de \hat{eta} es

$$\psi(\hat{\beta}) = \ln(\hat{\beta} + 2) - \frac{1}{2(\hat{\beta} + 2)} - \frac{1}{12(\hat{\beta} + 2)^2} + \frac{1}{120(\hat{\beta} + 2)^4} - \frac{1}{252(\hat{\beta} + 2)^6} - \frac{1}{(\hat{\beta} + 1)} - \frac{1}{\hat{\beta}}$$
(7.32)

La aproximación de la función trigamma de $\hat{\beta}$ es

$$\psi'(\hat{\beta}) = \frac{1}{(\hat{\beta}+2)} + \frac{1}{2(\hat{\beta}+2)^2} + \frac{1}{6(\hat{\beta}+2)^3} - \frac{1}{30(\hat{\beta}+2)^5} + \frac{1}{42(\hat{\beta}+2)^7} - \frac{1}{30(\hat{\beta}+2)^9} + \frac{1}{(\hat{\beta}+1)^2} + \frac{1}{\hat{\beta}^2}$$
(7.33)

Estimación de eventos

$$\hat{X}_{T} \approx \alpha \hat{\beta} \left\{ 1 - \frac{1}{9\hat{\beta}} + U_{T} \sqrt{\frac{1}{9\hat{\beta}}} \right\}^{3}$$
(7.34)

Donde

 $U_{\scriptscriptstyle T}$ es la variable definida de acuerdo con la expresión (4.16)

Distribución de valores extremos tipo i (Gumbel) para máximos

$$F(x) = e^{-e^{-\left[\frac{x-v}{a}\right]}} \tag{7.35}$$

$$f(x) = \frac{1}{\alpha} e^{-\left(\frac{x-\nu}{\alpha}\right)} e^{-e^{-\left(\frac{x-\nu}{\alpha}\right)}} - \infty < x < \infty, \quad \alpha > 0$$
(7.36)

Donde

- υ parámetro de ubicación
- α parámetro de escala

La variable reducida Gumbel es

$$y_i = \frac{x_i - \upsilon}{\alpha}$$

(7.37)

Estimadores por momentos

$$v = x - 0.45 \text{ S}$$
 (7.38)

$$\alpha = \frac{\sqrt{6}}{\pi} S = 0.78 S \tag{7.39}$$

Estimadores por máxima verosimilitud

Considerando la variable reducida (7.37) se tiene el siguiente proceso iterativo

$$P = n - \sum_{i=1}^{n} e^{-y_i} \tag{7.40}$$

$$R = n - \sum_{i=1}^{n} y_i + \sum_{i=1}^{n} y_i e^{-y_i}$$

(7.41)

El criterio de convergencia es

$$\frac{P}{\alpha} \approx 0$$
 y $\frac{-R}{\alpha} \approx 0$

(7.42)

Incrementos

$$\delta_{\nu_i} = (1.11P_j - 0.26R_j) \frac{\alpha_i}{n}$$

$$\delta_{\alpha_i} = (0.26P_j - 0.61R_j) \frac{\alpha_i}{n}$$

Nuevos valores

$$\mathcal{O}_{j+1} = \mathcal{O}_j + \delta_{\nu_j}$$

$$\alpha_{j+1} = \alpha_j + \delta_{\alpha_j}$$

Estimación de eventos

$$\hat{X}_{T} = \mathcal{O} - \alpha \ln[-\ln(1 - 1/T)]$$
(7.45)

Ejemplo 7.1. El esquema de análisis se aplicará al registro de 17 años (1929-1945) de gastos medios diarios de la estación hidrométrica El Palmito (Hernández, 1997).

El primer paso es establecer el gasto de referencia $Q_r(p\%)$, para lo cual se cuenta con un registro de 17 años por 365 días/año. Con este registro se determinan los gastos que cumplan con la condición del nivel de truncamiento elegido. El gasto medio a largo plazo $\overline{Q}=41.4\,\mathrm{m}^3/\mathrm{s}$.

De este cálculo se tiene:

$$Q_r(95\%) = 0.733 \,\mathrm{m}^3/\mathrm{s}$$

$$Q_r(90\%) = 1.051 \text{m}^3/\text{s}$$

$$Q_r(85\%) = 1.344 \text{m}^3/\text{s}$$

En la tabla 7.1 se muestran las características generales de déficit que se presentaron en el sitio analizado para el año 1934 considerando el nivel $Q_r(85\%)$. Se observan k=4 periodos en déficit, además, el déficit máximo $(Dm\acute{a}x=219.283\,\text{miles m3})$ de ese año duró $T(Dm\acute{a}x)=11$ días, iniciando el 15 de junio $(\tau_b(Dm\acute{a}x)=166)$ y terminando el 25 de junio $(\tau_e(Dm\acute{a}x)=176)$, por lo que el tiempo de ocurrencia del déficit máximo es el día $\tau(Dm\acute{a}x)=171$.

Evento	$\tau_b(\upsilon)$	$ au_{e}(\upsilon)$	$T(\upsilon)$	$\tau(\upsilon)$	$D(\upsilon)$
υ	Día en el año	Día en el año	Días	Día en el año	Miles m ³
1	98	104	7	101	12.268
2	107	118	12	113	96.163
3	121	123	3	122	53.740
4	166	176	11	171	219.283

Tabla 7.1. Características de los periodos en déficit para el año 1934 y un nivel Q_r (85%) de la serie de gastos medios diarios de la estación El Palmito.

Una vez que se definen los eventos máximos para cada año, se procede a establecer cuadros resumen para cada nivel de truncamiento (Tablas 7.2 a 7.4)

t sandy a	Eventos	Dmáx	T(Dmáx)	τ(Dmáx)	$\tau_b(Dm\acute{a}x)$	$\tau_e(Dmáx)$
año	k	Miles m ³	Días	Día en el año	Día en el año	Día en el año
1929	1	1414.540	59	154	125	183
1930	3	2243.721	40	127	107	146
1931	1	1616.198	32	127	111	142
1932	1	5710.953	80	143	103	182
1933	2	538.185	24	139	127	150
1934	4	219.283	11	171	166	176
1935	1	3253.737	63	129	98	1.60
1936	2	1106.08	47	163	140	186
1937	1	2370.988	75	149	112	186
1938	1	4503.254	88	129	85	172
1939	2	2153.692	59	144	115	173
1940	2	470.793	24	119	107	130
1941	2	2031.868	48	121	97	144
1942	4	353.376	18	143	134	151
1943	1	3190.060	65	127	95	159
1944	2	431.654	22	146	135	156
1945	1	4363.286	87	139	96	182

Tabla 7.2. Características de los déficits máximos para un nivel $Q_r(85\%)$ en la estación El Palmito.

	Eventos	Dmáx	T(Dmáx)	τ(Dmáx)	$\tau_b(Dm\acute{a}x)$	τ _e (Dmáx)
año	k	Miles m ³	Días	Día en el año	Día en el año	Día en el año
1929	3	161.740	14	153	146	159
1930	2	1328.918	38	128	109	146
1931	1 -	686.937	25	129	117	141
1932	1 _	3755.548	74	144	107	180
1933	3	64.368	5	148	146	150
1934	1	7.603	1	172	172	172
1935	1	1724.025	53	134	108	160
1936	2	250.378	17	167	159	175
1937	2	863.308	37	160	142	178
1938	1	2435.788	77	134	96	172
1939	1	870.566	50	147	122	171
1940	2	99.792	8	162	158	165
1941	2	993.600	43	123	102	144
1942	2	49.248	3	144	143	145
1943	1	1657.065	59	130	101	159
1944	3	71.712	10	152	147	156
1945	1	2316.556	87	139	96	182

Tabla 7 3. Características de los déficits máximos para un nivel $Q_r(90\%)$ en la estación El Palmito.

	Eventos	Dmáx	T(Dmáx)	τ(Dmáx)	$\tau_b(Dm\acute{a}x)$	$\tau_{\rm e}({\rm Dm\acute{a}x})$
año	(xink)	Miles m ³	Días	Día en el año	Día en el año	Día en el año
1929	0	0.000	0	0	0	0
1930	2	543.196	27	133	120	146
1931	1	231.984	22	131	120	141
1932	1	1866.412	67	147	114	180
1933	1	0.259	1.8	134	134	134
1934	0	0.000	0	0	0	0
1935	1	656.294	34	143	126	159
1936	0	0.000	0	0	0	0
1937	3	38.448	17	168	160	176
1938	1	754.531	50	148	123	172
1939	5	23.414	1	171	171	171
1940	0	0.000	0	0	0	0
1941	3	251.251	24	133	121	144
1942	0	0.000	0	0	0	0
1943	4	404.438	22	147	136	157
1944	0	0.000	0	0	0	0
1945	2	559.008	49	158	134	182

Tabla 7.4. Características de los déficits máximos para un nivel Q, (95%) en la estación El Palmito.

Una vez que se obtienen las características $Dm\acute{a}x$, $T(Dm\acute{a}x)$ y $\tau(Dm\acute{a}x)$, es posible realizar inferencias para diferentes periodos de retorno, al aplicar las diferentes distribuciones de probabilidad.

Modelación de los déficits máximos Dmáx

La serie de valores $Dm\acute{a}x$, para un nivel $Q_r(85\%)$, se ordena de mayor a menor y se establece para ellos la nomenclatura de déficits registrados $Dm\acute{a}x(R)$, se les asigna un periodo de retorno y una probabilidad de no excedencia (Tabla 7.5). Posteriormente, se obtienen sus principales características estadísticas (Tabla 7.6). A partir de estas, es posible determinar los estimadores por momentos de los parámetros de la distribución Gumbel (expresiones 7.38 y 7.39), de la forma

$$v = \bar{x} - 0.45 \text{ S} = 2115.964 - 0.45(1633.795) = 1380.756 \text{ miles m}^3$$

$$\alpha = \frac{\sqrt{6}}{\pi} S = 0.78 S = 0.78 (1633.795) = 1274.360 \text{ miles m}^3$$

Con estos parámetros se obtienen los valores estimados $Dm\acute{a}x(E)$ para los mismos periodos de retorno de la muestra original (Tabla 7.5) y para aquellos con propósitos de planeación T = 2, 5, 10, 20, 50 y 100 años (Tabla 7.7), todo esto, a partir de la expresión (7.45)

$$Dm\acute{a}x(E) = o - \alpha ln[-ln(1-1/T)] = 1380.756 - 1274.360 ln[-ln(1-1/T)]$$

	Orden	Dmáx(R)	se present I seels a c	(X 28 ; O levit nu stá	Dmáx(E)
	m	Miles m ³	(años)	Probabilidad	Miles m ³
301	10018 911	5710.9	18	0.94	5027.8
	2	4503.2	unsq A . Eg fichet) s	0.88	4106.4
	3	4363.2	a necoudada 6 el ab actu	0.83	3549.6
	4	3253.7	4.5	0.77	3140.7
	5	3190.0	3.6	0.72	2811.3
	6	2370.9	3	0.66	2531.1
	7	2243.7	2.5	0.61	2283.3
	8	2153.7	2.2	0.55	2057.9
	9	2031.9	2	0.50	1847.8
	10	1616.2	1.8	0.44	1647.8
	11	1414.5	1.6	0.38	1453.5
	12	1106.1	1.5	0.33	1260.8
	13	538.2	1.4	0.27	1065.2
	14	470.8	1.3	0.22	860.5
	15	431.7	1.2	0.16	637.5
	16	353.4	os estimetite y foursa	0.11	377.5
	17	219.3	acriston 1.0 a solicus	0.05	28.1

Tabla 7.5. Serie de déficits máximos registrados y estimados a través de la distribución Gumbel, para un nivel Q, (85%) en la estación El Palmito.

Estadístico	Valor	Estadístico	Valor
Media	2115.9	Coeficiente curtosis	2.84
Mediana	2031.9	Coeficiente asimetría	0.76
Varianza	2669286.4	Coeficiente variación	0.7
Desviación estándar	1633.7	Máximo	5710.9

Tabla 7.6. Estadísticos de la serie de déficits máximos para un nivel Q_r (85%) en la estación El Palmito.

	T		Dmáx(E)
Evento	(años)	Probabilidad	Miles m ³
1	2	0.50	1847.819
2	5	0.80	3292.213
3	10	0.90	4248.528
4	20	0.95	5165.848
5	50	0.98	6353.224
6	100	0.99	7242.996

Tabla 7.7. Déficits máximos de diferentes periodos de retorno estimados con la distribución Gumbel para un nivel Q, (85%) en la estación El Palmito.

Modelación de las duraciones máximas T(Dmáx)

La serie $T(Dm\acute{a}x)$ para un nivel $Q_r(85\%)$ se ordena de mayor a menor y se denota por $T(Dm\acute{a}x)^R$, se le asigna un periodo de retorno y una probabilidad de no excedencia (Tabla 7.8). Posteriormente, se obtienen sus principales características estadísticas (Tabla 7.9). A partir de estas, es posible determinar los estimadores por momentos de los parámetros de la distribución Gumbel (expresiones 7.38 y 7.39), de la forma

$$v = \bar{x} - 0.45 \text{ S} = 49.5 - 0.45(25.0) = 38.2 \text{ días}$$

$$\alpha = \frac{\sqrt{6}}{\pi}S = 0.78S = 0.78(25.0) = 19.5 \text{ días}$$

Con estos parámetros se obtienen los estimados $T(Dmáx)^E$ para los mismos periodos de retorno de la muestra registrada (Tabla 7.8) y para aquellos con propósitos de planeación T = 2, 5, 10, 20, 50 y 100 años (Tabla 7.10), todo esto, a partir de la expresión (7.45)

$$T(Dm\acute{a}x)^E = o - a ln[-ln(1-1/T)] = 38.2 - 19.5 ln[-ln(1-1/T)]$$

Orden	T(Dmáx) ^R	e-No!	T		T(Dmáx) ^E
m	días	Upstion in	(años)	Probabilidad	días
1		111901900	18	0.94	94 80
2	87		9	0.88	80
3	80		6	0.83	72
4	75		4.5	0.77	65
5	65		3.6	0.72	60
6	63		3	0.66	56
7	59		2.5	0.61	52
8	59		2.2	0.55	49
9 :	48		2	0.50	45
10	47		1.8	0.44	42
11	40		1.6	0.38	39
12	32		1.5	0.33	36
13	24		1.4	0.27	33
14	24		1.3	0.22	30 27
15	22	26.1	1.2	0.16	27
16	18		1.1	0.11	23
17 000 3450	11		1.0	0.05	18

Tabla 7.8. Serie de duraciones máximas registradas y estimadas a través de la distribución Gumbel, para un nivel Q_c (85%) en la estación El Palmito.

Estadístico	Valo	Estadístico	Valor
Media	49.5	Coeficiente curtosis	1.74
Mediana	48	Coeficiente asimetría	0.06
Varianza	625.	Coeficiente variación	0.50
Desviación estándar	25.0	Máximo ALT	88

Tabla 7.9. Estadísticos de la serie de duraciones máximas registradas para un nivel $Q_r(85\%)$ en la estación El Palmito.

Evento	T (años)	Probabilidad	T(Dmáx) ^E días
1	2	0.50	45
2	5	0.80	67
3	10	0.90	82
4	20	0.95	96
5	50	0.98	114
6	. 100	0.99	128

Tabla 7.10. Duraciones máximas de diferentes periodos de retorno estimadas con la distribución Gumbel para un nivel Q_r (85%) en la estación El Palmito.

Modelación del tiempo de ocurrencia de los déficits máximos $\tau(Dmáx)$

La serie $\tau(Dm\acute{a}x)$ para un nivel $Q_r(85\%)$ se ordena de mayor a menor y se nombran como $\tau(Dm\acute{a}x)^R$, se le asigna un periodo de retorno y una probabilidad de no excedencia (Tabla 7.11). Posteriormente, se obtienen sus principales características estadísticas (Tabla 7.12). A partir de estas, es posible determinar los estimadores por momentos de los parámetros de la distribución Gumbel (expresiones 7.38 y 7.39), de la forma

$$v = \bar{x} - 0.45 \ S = 139.4 - 0.45(14.5) = 132.9$$
 (en el día)

$$\alpha = \frac{\sqrt{6}}{\pi} S = 0.78 S = 0.78 (14.5) = 11.3$$
 (en el día)

Con estos parámetros se obtienen estimados $\tau(Dm\acute{a}x)^E$ para los mismos periodos de retorno de la muestra original (Tabla 7.11) y para aquellos con propósitos de planeación T = 2, 5, 10, 20, 50 y 100 años (Tabla 7.13), todo esto, a partir de la expresión (7.45)

$$\tau(Dm\acute{a}x)^{\epsilon} = o - \alpha \ln[-\ln(1-1/T)] = 132.9 - 11.3 \ln[-\ln(1-1/T)]$$

Orden	τ(Dmáx) ^R	The state of the s		$\tau(Dmáx)^E$
m	En el día	(años)	Probabilidad	En el día
1	171	18	0.94	165
2	163	9	0.88	157
3	154	6	0.83	152
4	149	4.5	0.77	148
5	146	3.6	0.72	146
6	144	3	0.66	143
7	143	2.5	0.61	141
8	143	2.2	0.55	139
9	139	2	0.50	137
10	139	1.8	0.44	135
11	129	1.6	0.38	133
12	129	1.5	0.33	132
13	127	1.4	0.27	130
14	127	1.3	0.22	128
15	127	1.2	0.16	126
16	121	1.1	0.11	124
17	119	1.0	0.05	121

Tabla 7.11. Serie para el tiempo de ocurrencia de los déficits máximos registrados y estimados con la distribución Gumbel, para un nivel $Q_r(85\%)$ en la estación El Palmito.

Estadístico	Valor	Estadístico	Valor
Media	139.4	Coeficiente curtosis	2.9
Mediana	139	Coeficiente asimetría	0.60
Varianza	211.5	Coeficiente variación	0.10
Desviación estándar	14.5	Máximo	171

Tabla 7.12. Estadísticos de la serie de tiempo de ocurrencia de los déficits máximos para un nivel $Q_r(85\%)$ en la estación El Palmito.

1917 10 (3.50	la distribución Gumbel (expre-sure			τ(Dmáx) ^E		
 Evento	(años)	Probabilidad		(en el día)		
 1	2	0.50	The second section of the second seco	137		
2	5	0.80		150		
3	10	0.90		158		
4	20	0.95		167		
5	50	0.98		177		
6	100	0.99		185		

Tabla 7.13. Tiempo de ocurrencia de los déficits máximos de diferentes periodos de retorno estimadas con la distribución Gumbel para un nivel $Q_r(85\%)$ en la estación El Palmito.

Este procedimiento se debe repetir para los diferentes niveles de truncamiento y utilizando el mayor número posible de distribuciones de probabilidad.

En la tabla 7.14 se muestra el valor del error estándar obtenido al ajustar las diferentes distribuciones de probabilidad a las series de déficit máximo, duración máxima y tiempos de ocurrencia.

		Dmáx	3 3 6		T(Dmáx)			τ(Dmáx)		
Distribución	Q _r (85%)	Q _r (90%)	Q, (95%)	Q _r (85%)	Q, (90%)	Q _r (95%)	Q, (85%)	Q _r (90%)	Q, (95%)	
Gumbel(M)	369.9	297.4	224.9	7.0	6.7	5.9	3.3	3.2	4.3	
Exponencial(M)	445.9	274.5	214.0	10.0	9.0	7.5	4.4	4.8	5.0	
Gamma-2(M)	376.8	290.6	220.6	6.6	7.6	6.2	3.4	2.6	4.4	
Normal	468.1	409.2	265.7	5.2	6.9	5.7	3.7	2.7	4.6	
Log-Nor2(M)	455.4	700.1	833.8	8.5	19.1	18.0	3.6	2.9	4.8	
Gumbel(MV)	424.7	384.5	276.2	16.5	6.8	5.4	3.1	2.7	4.8	
Exponencial(MV)	324.7	270.4	212.3	13.6	8.0	7.1	4.8	6.5	4.0	
Gamma-2(MV)	331.7	239.3	196.0	6.3	7.2	6.0	3.7	2.9	4.8	

Tabla 7.14. Error estándar de ajuste para las diferentes variables analizadas en la estación El Palmito.

Modelación del número de sequías en un año.

A diferencia de los demás eventos, el número de sequías que ocurren en un año es una variable discreta y sigue la ley de Poisson (expresión 7.7)

$$f(x) = P(X = x) = \frac{\lambda^{x} e^{-\lambda}}{x!}$$

El parámetro λ de esta distribución se obtiene como el número promedio de ocurrencias del evento por unidad de tiempo $\lambda = x$. Por lo que para el ejemplo en desarrollo se tiene:

$$\lambda_{95\%} = 1.411764706$$

$$\lambda_{90\%} = 1.705882353$$

$$\lambda_{85\%} = 1.823529412$$

Utilizando la función de distribución (7.7) se obtiene la probabilidad de ocurrencia para los diferentes valores de k (Tabla 7.15)

Eventos	Probabilidad Probabilidad								
K	Q _r (85%)	Q, (90%)	Q, (95%)						
1	0.29	0.31	0.34						
2	0.27	0.26	0.24						
3	0.16	0.15	0.11						
4	0.07	0.06	0.04						
5	0.02	0.02	0.01						
	11 27 02	2745 2340 200							

Tabla 7.15. Probabilidad de ocurrencia de un número determinado de episodios de sequía para los diferentes niveles de truncamiento en la estación El Palmito.

Una vez realizado el análisis global, se requiere definir la mejor distribución de ajuste para cada una de las características analizadas. El criterio de selección es el del mínimo error estándar de ajuste (expresión 3.84).

Ahora, es posible estimar las características esperadas de la sequía para diferentes periodos de retorno, lo cual permitirá contar con elementos para la planeación y operación de un aprovechamiento hidráulico.

En la Tabla 7.16 se presentan los estimados para periodos de retorno de 2 a 100 años.

		Q _r (85%)			Q _r (90%)			Q _r (95%)		
T Dmáx (años) (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)		
2	1497.5	50	137	600.3	31	145	254.6	25	141	
5	3344.1	71	150	1661.5	55	157	789.3	44	157	
10	4741.0	82	158	2530.6	72	164	1245.9	57	169	
20	6137.8	91	167	3442.5	88	170	1734.3	69	181	
50	7984.4	101	177	4704.3	108	176	2419.9	84	197	
100	9381.2	108	185	5696.8	123	181	2965.0	96	209	

Tabla 7.16. Características esperadas de las sequías de determinado periodo de retorno en la estación El Palmito.

Para determinar que tan bueno es el ajuste, se pueden realizar algunas comparaciones entre las características estimadas con las medidas. Así, se puede comparar la sequía esperada con periodo de retorno de 10 años, con la real cuyo periodo sea muy cercano. Por ejemplo, para el caso del nivel de truncamiento del 90%, la sequía generada tiene un déficit de 2530.6 miles de m³ y una duración de 72 días. Por otra parte, la histórica, que corresponde al año 1938, tiene un periodo de retorno de 9 años con respecto al déficit máximo, su déficit es de 2435.7 miles de m³ y su duración de 77 días.

7.3. Modelación regional de las sequías hidrológicas

Las técnicas vistas en el capítulo 5 se pueden aplicar para realizar inferencias regionales de las características $Dm\acute{a}x$, $T(Dm\acute{a}x)$ y $r(Dm\acute{a}x)$ en sitios con escasa o nula información.

El procedimiento se desarrollará mediante la regionalización de las cuencas vecinas a la estación hidrométrica El Palmito, perteneciente a la Región Hidrológica número 36. Las estaciones hidrométricas asociadas son: Salomé Acosta, Sardinas y Cañón de Fernández de la Región Hidrológica 36; Piaxtla, Acatitan, Santa Cruz y La Hue ta de la Región 10, y finalmente, San Antonio de la Región 24.

Con el procedimiento del apartado 7.2 se procede a determinar las características $Dm\acute{a}x$, $T(Dm\acute{a}x)$ y $\tau(Dm\acute{a}x)$ de diferentes periodos de retorno, en cada uno de los nueve sitios de la región propuesta (Tablas 7.16 a 7.24).

Para cada uno de los sitios se obtienen las principales características fisiográficas y climatológicas (Tabla 7.25): Área drenada (A, km2), Longitud del cauce principal (L_{cp} , Km.), Precipitación media anual (PMA, mm), Perímetro de la cuenca (P_c , Km.), Orden de la corriente principal (O_{cp} , número), Pendiente media de la cuenca (S_c , m/Km.), Pendiente del cauce principal (S_{cp} , m/Km.), Elevación media de la cuenca (E_{mc} , msnm), parámetro de forma (P_f , 1/Km.), densidad de drenaje (D_d , 1/Km.), Latitud y longitud del centro de gravedad de la cuenca (E_{mc} , E_{mc}) y Coeficiente de escurrimiento (E_{mc}), adimensional).

T (años)	Q, (85%)			Q _r (90%)			Q _r (95%)		
	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)
2	950.5	48	140	335.9	34	144	115.0	14	147
5	1702.4	57	151	910.4	53	155	347.7	32	160
10	2229.9	78	157	1377.1	63	162	523.6	47	169
20	2718.7	86	161	1865.1	41	167	699.6	61	178
50	3351.5	96	167	2538.5	81	173	932.3	80	189
100	3825.7	103	.170	3067.0	87	177	1108.2	94	197

Tabla 7.17. Características esperadas de las sequías de determinado periodo de retorno en la estación Salomé Acosta.

	Q _r (85%)			Q _r (90%)			Q, (95%)		
T Di	Dmáx (Miles m3)	T(Dmáx) (Días)	$\tau(Dmáx)$ (En el día)	Dmáx (Mìles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)
2	515.9	36	149	376.7	35	153	169.5	14	147
5	1152.9	67	16,2	625.0	56	167	301.3	32	160
10	1633.0	89	169	755.0	69	174	370.1	47	169
20	2117.4	111	175	862.3	82	180	427.0	61	178
50	2767.3	139	181	982.9	99	187	491.0	80	189
100	3267.0	159	185	1063.4	112	192	533.7	94	197

Tabla 7.18. Características esperadas de las sequías de determinado periodo de retorno en la estación Cañón de Fernández.

		$Q_r(85\%)$			Q _r (90%)		Q _r (95%)		
T (años)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Drnáx) (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	$\tau(Dm\acute{a}x)$ (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)
2	274.1	52	136	107.1	31	142	570.9	21	147
5	667.2	83	151	320.8	61	155	935.0	44	159
10	964.5	100	159	568.6	82	162	1176.1	60	165
20	1261.8	113	166	912.0	103	168	1407.3	77	170
50	1654.8	129	174	1552.0	129	174	1706.6	99	175
100	1952.1	139	179	2212.1	149	178	1930.9	116	179

Tabla 7.19. Características esperadas de las sequías de determinado periodo de retorno en la estación Sardinas.

		Q _r (85%)		T TOTAL TOTA	Q _r (90%)		Q _r (95%)			
T (años)	Dmáx (Miles m3)	T(Dmáx) (Días)	$\tau(Dmáx)$ (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	$\tau(Dmáx)$ (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)	
2	2166.7	45	124	866.8	25	139	351.2	21	135	
5	5087.6	82	167	2657.0	57	159	1273.8	43	153	
10	7297.3	107	200	4179.9	81	169	2499.7	59	161	
20	9506.9	132	233	5805.5	106	177	4361.1	75	168	
50	12427.9	163	277	8084.5	138	186	8157.7	96	176	
100	14637.5	187	310	9894.4	162	193	12383.5	112	181	

Tabla 7.20. Características esperadas de las sequías de determinado periodo de retorno en la estación La Huerta.

8,3		Q _r (85%)			Q, (90%)			Q _r (95%)		
(años)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	$\tau(Dmáx)$ (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)	
2	2987.9	48	139	1591.9	35	142	524.5	26	148	
5	5332.5	72	153	2932.2	57	155	1267.7	39	158	
10	6884.8	84	161	3819.7	71	163	1845.4	49	164	
20	8373.8	95	168	4670.9	85	172	2437.0	60	169	
50	10301.2	106	176	5772.8	103	182	3240.2	73	174	
100	11745.5	114	181	6598.4	117	190	3863.4	83	178	

Tabla 7.21. Características esperadas de las sequías de determinado periodo de retorno en la estación Santa Cruz.

		Q _r (85%)	Santa		Q _r (90%)	ib nonsu		Q, (95%)		
T (años)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)	
2	454.8	60	138	0 0178.4	43	9.8.148	84.4	36	151	
5	698.6	78	0.0151	337.8	63	160	152.4	50	157	
10	826.2	88	159	443.3	74	166	203.8	59	161	
20	931.5	96	167	544.5	82	889172	255.2	68	164	
50	1050.0	105	177	675.6	92	950 178	323.1	78	166	
100	1128.9	111	185	773.8	99	183	374.5	85	170	

Tabla 7.22. Características esperadas de las sequías de determinado periodo de retorno en la estación Acatitan.

	n hartan 153	Q _r (85%)			Q, (90%)		Q, (95%)		
Т	Dmáx	T(Dmáx)	τ(Dmáx)	Dmáx	T(Dmáx)	τ(Dmáx)	Dmáx	T(Dmáx)	τ(Dmáx)
(años)	(Miles m3)	(Días)	(En el día)	(Miles m3)	(Días)	(En el día)	(Miles m3)	(Días)	(En el día)
2	7470.1	68	125	4812.0	58	132	2656.5	47	133
5	12052.4	97	142	7926.4	87	152	4147.4	72	142
10	14449.9	112	152	9555.9	102	163	4927.5	88	148
20	16429.3	125	163	10901.2	114	172	5571.6	103	152
50	18656.4	139	176	12414.9	129	183	6296.2	122	157
100	20140.9	149	187	13423.8	138	191	6779.2	135	161

Tabla 7.23. Características esperadas de las sequías de determinado periodo de retorno en la estación Piaxtla.

nine	1000		Q _r (85%)			Q, (90%)			Q, (95%) n 29		
16 (a	T (años)	61	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)	Omáx (Miles m3)	T(Dmáx)	τ(Dmáx) (En el día)	Dmáx (Miles m3)	T(Dmáx) (Días)	τ(Dmáx) (En el día)
	2		142.4	41	139	55.3	25	149	23.7	16	159
	5		359.9	70	164	185.3	53	176	73.9	31	183
	10		531.9	90	178	348.7	78	190	133.9	41	195
	20		709.5	109	188	587.8	109	202	218.6	51	205
	50		952.3	133	201	1057.7	156	215	379.5	65	217
	100		1141.5	. = 151	209	1564.6	199	224	548.0	75	224

Tabla 7.24. Características esperadas de las sequías de determinado periodo de retorno en la estación San Antonio.

			trackforth the spatial plat has been a second	***************************************	Estación		CP - TO PARTY WHILE A PARTY AND		
Característica	Salomé Acosta	El Palmito	Cañón de Fernández	Sardinas	La Huerta	Santa Cruz	Acatitan	Piaxtla	San Antonio
Α .	6476	19270	34548	5522	6149	8919	1884	5307	2750
Lcp	170.0	444.3	630.5	102.5	117.0	180.0	115.0	142.0	94.5
PMA	479.5	399.4	258.2	414.5	1019.9	1068.9	1046.6	1044.8	300.0
P_c	612.5	962.0	1432.0	437.0	388.0	500.0	213.0	350.0	346.5
Ocp	4	4	4	4	4	4	3	4	4
S_c	0.0356	0.0299	0.0233	0.0313	0.0412	0.0532	0.0497	0.0496	0.0468
Scp	0.0041	0.0035	0.0026	0.0151	0.0157	0.0561	0.0113	0.0169	0.0050
Emc	2477.1	2218.0	2052.1	2491.5	2217.5	1689.6	726.9	1644.5	1893.6
P_f	0.0946	0.0499	0.0414	0.0791	0.0631	0.0561	0.1131	0.0660	0.1260
Dd	0.0263	0.0231	0.0182	0.0186	0.0171	0.0205	0.0515	0.0239	0.2419
Lat	24.9	25.4	25.3	26.0	25.5	247	24.3	24.1	26.4
Long	105.5	105.3	104.9	105.1	106.4	106.1	106.5	105.9	106.6
Ce	0.1589	0.1552	0.1290	0.2376	0.1820	0.1990	0.2000	0.2080	0.1937

Tabla 7.25. Características fisiográficas y climatológicas para cada sitio de la región en estudio.

Para inferir eventos dentro de una región es importante definir qué sitios conformarán dicha región, las cuales deben tener el mismo patrón meteorológico (Nathan y McMahon, 1990).

En general, la delimitación regional se ha sustentado en considerar áreas geográficamente continuas, limites políticos o administrativos. Sin embargo, si la variabilidad espacial de las características fisiográficas o hidrológicas es grande, la consideración de homogeneidad no se puede garantizar.

A las técnicas que ubican estaciones en forma iterativa, con base en un algoritmo puramente matemático se les denominan técnicas de racimo. Con esta metodología no es necesario que una cuenca se encuentre dentro de un grupo que sea geográficamente contiguo. Estas regiones podría decirse, serán comunes respecto a sus series de datos en un espacio variable multidimensional antes que en el espacio geográfico. Sin embargo, existen numerosos problemas asociados a la regionalización, y en particular al análisis de grupos. El primer problema común en las técnicas de regionalización, es el relacionado con la selección de las variables para evaluar el grado de similitud entre las diferentes cuencas.

Algunas cuencas son similares con respecto a cierta variable, como la cubierta forestal o la lluvia anual, pero no a otras, como las características fisiográficas. Además, con el análisis por racimos, literalmente cualquier conjunto de variables es capaz de generar grupos. Lo cual es muy útil ya que de esta manera se podrá seleccionar las variables de acuerdo con la importancia del problema.

Si dichas variables son medidas a partir de longitudes de registros grandes, esto contribuirá a obtener una mayor similitud de aquellas características que se obtienen a partir de registros cortos.

Otro problema en el análisis por racimos, es la variedad de los diferentes algoritmos que pueden emplearse para formar grupos. Desdichadamente, las diferentes técnicas de agrupación aplicadas a un mismo registro, a menudo producen estructuras que son sustancialmente diferentes.

Puede pensarse que la selección de la región es un problema trivial, sin embrago, la inclusión o exclusión de información dentro del modelo regional puede producir estimadores poco confiables.

Nathan y McMahon (1990) desarrollaron una técnica de regionalización que resuelve los problemas asociados con la selección de una adecuada técnica de racimos, la definición de la región homogénea y la predicción del grupo de membresía al cual pertenecería una nueva cuenca.

El rnétodo emplea la técnica de regresión lineal múltiple para seleccionar las características fisiográficas y/o meteorológicas más adecuadas.

La heterogeneidad de los grupos que se forman de manera preliminar se evalúa mediante una técnica de posicionamiento propuesta por Andrews (1972), en la cual un punto en el espacio multidimensional se representa por una curva en dos dimensiones vía la función

$$f(t) = \frac{X_1}{\sqrt{2}} + X_2 \sin(t) + X_3 \cos(t) + X_4 \sin(2t) + X_5 \cos(2t) + \dots$$
(7.46)

Donde X_1, X_2, \dots son las características fisiográficas y/o meteorológicas obtenidas del análisis de regresión y la función se evalúa en el rango $-\pi \le t \le \pi$.

El hecho de que esta función preserva las distancias la hace una técnica ideal de comparación visual para la formación de grupos homogéneos. Los racimos de cuencas con comportamientos similares aparecen como una banda de curvas muy próximas unas de otras.

Una característica del método, que no se identifica en forma inmediata, consiste en que los resultados que se obtienen dependen del tipo y del ordenamiento de las variables seleccionadas. Las primeras variables son asociadas con componentes cíclicas de baja frecuencia y las últimas de alta frecuencia. Las bajas frecuencias son más fáciles de observar, de esta manera, X_1 representará a aquella que en el análisis de regresión resultó más significativa desde el punto de vista estadístico, X_2 a la segunda, y así sucesivamente.

Una vez que se han desarrollado las funciones del tipo f(t) para cada uno de los sitios involucrados, se generarán envolventes que formen conjuntos de curvas de comportamiento similar y se derivará una curva media $\bar{f}(t)$ que represente los atributos físicos de cada grupo formado.

Para las curvas donde se tenga duda sobre si pertenece o no a un grupo particular se hará la siguiente prueba

$$SS = \sum_{t=-\pi}^{\pi} \{ [f^{j}(t)] - [f(t)]_{k} \}^{2}$$
(7.47)

Donde SS es la suma de las diferencias al cuadrado entre los puntos que forman la curva en el sitio j, y la curva característica $\bar{f}(t)$ de cada uno de los k grupos ya formados. La cuenca se localizará en la región k donde se haya obtenido el menor valor de SS.

De acuerdo con este procedimiento se definen dos regiones homogéneas, una que considera las 4 estaciones de la región hidrológica número 10, y la otra con las restantes cinco estaciones.

Si se supone que la estación El Palmito tiene escasa información y se desea una estimación regional de la sequía esperada para un periodo de retorno de 10 años y un nivel de truncamiento del 85%, el procedimiento sería:

1) Estimar las características fisiográficas y climatológicas que son significativas desde el punto de vista estadístico para la estimación de las variables $Dm\acute{a}x$, $T(Dm\acute{a}x)$ y $\tau(Dm\acute{a}x)$. Se debe tomar en cuenta que la región esta compuesta de cinco estaciones, incluyendo El Palmito, y que a lo más el modelo de regresión permitirá tres variables independientes, por lo que su selección debe estar sustentado en un adecuado análisis de varianza. Esto requerirá la exploración de las posibles combinaciones en grupos de tres a partir de las trece características de la tabla 7.25. En la tabla 7.26 y 7.27 se muestran las características reales y normalizadas mediante los logaritmos naturales de las variables más significativas para la estimación de $Dm\acute{a}x$.

	Dmáx	Lcp	PMA	Emc
El Palmito	4741	444.3	399.4	2218.0
Salomé Acosta	2229.9	170.0	479.5	2477.1
Cañón de Fernández	1633	630.5	258.2	2052.0
Sardinas	964.5	102.5	414.5	2491.5
San Antonio	531.9	94.5	300.0	1893.6

Tabla 7.26. $Dm\acute{a}x$ para T=10 años y $Q_r(85\%)$ y características asociadas para su estima regional.

9/ 5/ 1/2	dod si beizio	šieiv el	Dmáx	polincia Lope of Jan	PMA	a siland Emc .
El Palmito			8.464	6.096	5.989	7.704
Salomé Aco	sta		7.709	5.135	6.172	7.814
Cañón de F	ernández		7.398	6.446	5.553	7.626
Sardinas			6.871	4.629	6.027	7.820
San Antonio	0.=		6.276	4.548	5.703	7.546

Tabla 7.27. Variables normalizadas de la tabla 7.26.

2) Con las variables normalizadas de la tabla 7.26 se construye el modelo final de regresión:

$$Dm\acute{a}x^{R} = 0.975L_{cp} + 3.378PMA - 2.31E_{mc}$$
(7.48)

Donde el superíndice R indica estimador regional.

3) Este proceso se debe repetir para el resto de las variables dependientes, así,

$$T(Dm\acute{a}x)^{R} = -0.084L_{cp} - 0.668PMA + 1.15E_{mc}$$

$$\tau(Dm\acute{a}x)^{R} = 8.314 - 0.417E_{mc}$$
(7.49)

(7.50)

4) Para hacer uso de las expresiones (7.48 a 7.50) será necesario introducir los valores normalizados mediante logaritmos naturales de las variables independientes y al resultado aplicarle el antilogaritmo. Para el evento solicitado en la estación El Palmito con T = 10 años y Q, (85%) se

$$Dm\acute{a}x^{R} = exp[0.975(6.096) + 3.378(5.989) - 2.31(7.704)] = 4381.5 \text{ miles m}^{3}$$

$$T(Dm\acute{a}x)^R = exp[-0.084(6.096) - 0.668(5.989) + 1.15(7.704)] = 77 dias$$

$$\tau(Dm\acute{a}x)^R = exp[8.314 - 0.417(7.704)] = en el día 163$$

tendrían los siguientes estimados

Este procedimiento se puede repetir para los diferentes periodos de retorno y niveles de truncamiento.

7.4. Análisis conjunto déficit máximo - duración

Para el análisis conjunto de los déficits máximos anuales asociados con sus duraciones se utiliza la distribución logística bivariada para máximos, cuyas distribuciones marginales pueden ser del tipo Gumbel (VEI) o General de Valores Extremos (GVE). Para el caso cuando son GVE el modelo bivariado (VEB22) tiene la forma (Raynal, 1985)

$$F(x,y,m) = \exp\left\{-\left[\left(1 - \left(\frac{x - u_1}{\alpha_1}\right)\beta_1\right)^{m/\beta_1} + \left(1 - \left(\frac{y - u_2}{\alpha_2}\right)\beta_2\right)^{m/\beta_2}\right]^{1/m}\right\}$$
(7.51)

Donde

variable aleatoria que representa a las severidades máximas anuales

y variable aleatoria que representa a las duraciones de las severidades máximas

La función de densidad será:

$$f(x,y,m) = \frac{1}{\alpha_{1}\alpha_{2}} \left[1 - \left(\frac{x - u_{1}}{\alpha_{1}} \right) \beta_{1} \right]^{m/\beta_{1} - 1} \left[1 - \left(\frac{y - u_{2}}{\alpha_{2}} \right) \beta_{2} \right]^{m/\beta_{2} - 1}$$

$$exp \left\langle -\left\{ \left[1 - \left(\frac{x - u_{1}}{\alpha_{1}} \right) \beta_{1} \right]^{m/\beta_{1} - 1} + \left[1 - \left(\frac{y - u_{2}}{\alpha_{2}} \right) \beta_{2} \right]^{m/\beta_{2} - 1} \right\}^{1/m} \right\rangle$$

$$\left\{ \left[1 - \left(\frac{x - u_{1}}{\alpha_{1}} \right) \beta_{1} \right]^{m/\beta_{1} - 1} + \left[1 - \left(\frac{y - u_{2}}{\alpha_{2}} \right) \beta_{2} \right]^{m/\beta_{2} - 1} \right\}^{\frac{1}{m} - 2}$$

$$\left((m - 1) + \left\{ \left[1 - \left(\frac{x - u_{1}}{\alpha_{1}} \right) \beta_{1} \right]^{m/\beta_{1} - 1} + \left[1 - \left(\frac{y - u_{2}}{\alpha_{2}} \right) \beta_{2} \right]^{m/\beta_{2} - 1} \right\}^{1/m} \right\}$$

(7.52)

Los parámetros del modelo pueden estimarse por la técnica de máxima verosimilitud utilizando el esquema de optimación multivariado restringido de Rosenbrock (Kuester y Mize, 1973).

La función a maximizar será:

$$LL(x, y, z; \theta) = I_1 \left\{ \sum_{i=1}^{N_1} Lnf(s; \theta_1) \right\} + I_2 \left\{ \sum_{i=1}^{N_2} Lnf(x, y; \theta_2) \right\} + I_3 \left\{ \sum_{i=1}^{N_3} Lnf(t; \theta_3) \right\}$$

(7.53)

Donde

 l_1, l_2, l_3 indicadores con valor igual a uno si $N_1 > 0$ y cero en cualquier otro caso.

El esquema de análisis será el siguiente:

1) Dado el hidrograma de escurrimientos (Figura 7.2), los déficits se obtendrán como

$$D(\upsilon) = I(\upsilon) - O(\upsilon) \tag{7.54}$$

Donde $I(\upsilon)$ y $O(\upsilon)$ son considerados como el suministro y la demanda para un tiempo $T(\upsilon)$, además

$$I(\upsilon) = Q_t T(\upsilon)$$

$$O(\upsilon) = \int_{\tau_b(\upsilon)}^{\tau_o(\upsilon)} Q_t dt$$

$$(7.55)$$

- 2) Se obtiene un registro ordenado de mayor a menor de *Dmáx* asociado con su correspondiente T(Dmáx).
- 3) Debido a la naturaleza aleatoria de los llamados suministros y demandas, la distribución de los déficits (suministros-demandas) puede calcularse mediante la convolución para la resta de variables aleatorias:

$$F(t) = \int_{-\infty-\infty}^{t} \int_{-\infty}^{\infty} f(t+s,s) ds dt$$
 (7.57)

Donde

F(t) función de probabilidad de los déficits máximos t diferencia entre el suministro y la demanda (déficits) f(t+s,s) función de densidad conjunta entre los suministros y las demandas

- 4) Para definir f(t + s, s) se puede utilizar la expresión (7.52) para asociar las variables aleatorias de suministro y demanda
- 5) Para cada probabilidad buscada se obtendrá un déficit mediante la ecuación de convolución del paso 3.
- 6) Para obtener la duración que le corresponde a cada una de las severidades obtenidas en el paso 5, se requerirá
- a) Aplicar el modelo logístico bivariado a la combinación severidades-duraciones del registro histórico, con el fin de determinar sus parámetros.
- b) Con la función de distribución condicional se obtiene el valor de la duración de la sequía máxima dado que ha ocurrido la severidad para un periodo de retorno dado.

$$F(x|y) = \frac{F(x,y)}{F(y)} \tag{7.58}$$

Este esquema se aplica para el análisis de la relación déficit máximo – duración del registro de gastos medios diarios de la presa El Cuchillo, ubicada en el estado de Nuevo León. El registro esta disponible de los años 1933 al 1985.

El primer paso es definir los niveles de truncamiento

$$Q_r(95\%) = 1.38 \,\mathrm{m}^3/\mathrm{s}$$

$$Q_r(90\%) = 3.10 \,\mathrm{m}^3/\mathrm{s}$$

$$Q_r(85\%) = 5.15 \,\mathrm{m}^3/\mathrm{s}$$

Una vez definidos los niveles de truncamiento, las variables I(máx), O(máx), Dmáx y T(Dmáx) se ajustan a una distribución de Valores Extremos Tipo I (Gumbel) para obtener los valores iniciales (Tabla 6.28) del esquema bivariado (VEB11).

Con los parámetros iniciales se procederá a encontrar las relaciones bivariadas entre $I(m\acute{a}x)$ - $O(m\acute{a}x)$ y $Dm\acute{a}x$ - $T(Dm\acute{a}x)$, mediante la estimación de los parámetros del modelo logístico VEB11 (expresión 7.53). En las tablas 6.29 y 6.30 se presentan los valores de los parámetros bivariados para dichas relaciones.

Variable	Parámetro	a compara	Q, (85%	s consti	Q, (90%)ondat(Q, (95%)
I(máx)		ogag ni 'mi	23.569	asijeups	11.326	19 19 8	3.843
O(máx)	lpha		13.748 4.373		7.729 2.386		3.662 0.788
Dmáx	α		3.483 17.352		1.755 8.025		0.770 2.778
T(Dmáx)	α		12.914 51.248		7.669 42.155		3.370 32.237
	α		30.021	H=St	28.653		30.714

Tabla 7.28. Parámetros univariados de la distribución Gumbel estimados por máxima verosimilitud para cada una de las variables analizadas y niveles de truncamiento.

Variable	Parámetro	88	Q, (85%)	22.317	Q, (90%)	Q, (95%)
I(máx)	v_1		23.355	180.1	11.294	3.721
	α_1		13.632		7.723	3.043
O(máx)	υ_2		4.262		2.369	0.7904
	α_2		3.594		1.760	0.6366
	ola m		1,078		1.036	1.2664

Tabla 7 29. Parámetros bivariados de la distribución VEB11 estimados por máxima verosimilitud para cada nivel de truncamiento de la relación I(máx)- O(máx).

Variable	Parámetro	Q, (85%)	Q, (90%)	Q, (95%)
Dmáx	v_1	17.810	8.056	2.876
100000	α_1	13,371	7.375	2.905
T(Dmáx)	Li Danie	53.064	42.015	32.268
	α_2	29.855	27.378	26.579
	m	5.233	5.717	6.1112

Tabla 7.30. Parámetros bivariados de la distribución VEB11 estimados por máxima verosimilitud para cada nivel de truncamiento de la relación *Dmáx* - *T*(*Dmáx*).

Aplicando la ecuación de convolución para la resta de dos variables aleatorias es posible encontrar para una probabilidad deseada el déficit correspondiente $Dm\acute{a}x$ de una manera aleatoria, y después se puede obtener su duración $T(Dm\acute{a}x)$ correspondiente mediante la aplicación de la distribución condicional (7.58).

Para determinar la bondad del procedimiento, se procede a comparar las primeras 20 relaciones $Dm\acute{a}x - T(Dm\acute{a}x)$ registradas en el Cuchillo, con aquellas obtenidas por el procedimiento bivariado (Tabla 6.31).

Periodo de retorno	2,388	Real Dmáx	Real T(Dmáx)	Estimador Dmáx	Estimador T(Dmáx)
T(años)	Probabilidad	Millones m3	días	Millones m3	días
53	.9811	34.035	154	40.736	151
26.5	.9623	33.049	126	35.427	132
17.66	.9434	32.917	136	32.258	120
13.25	.9245	31.024	121	29.964	112
10.60	.9057	30.317	120	28.147	106
8.83	.8868	28.381	114	26.630	101
7.57	.8679	24.530	92	25.320	96
6.62	.8491	23.842	103	24.164	92
5.88	.8302	23.793	95	23.119	89
5.3	.8113	22.906	88	22.160	86
4.81	.7925	22.317	86	21.270	83
4.41	.7736	21.061	90	20.449	80
4.07	.7547	19.200	80	19.669	78
3.78	.7358	18.630	76	18.928	75
3.53	.7170	16.743	88	18.220	73
3.31	.6981	16.625	69	17.540	71
3.11	.6792	16.141	68	16.885	69
2.94	.6604	13.032	71	16.249	68
2.78	.6415	13.032	68	15.630	66
2.65	.6226	12.609	73	15.026	64

Tabla 7.31. Déficits máximos y duraciones correspondientes registrados y estimados para los primeros 20 valores más grandes y un nivel $Q_r(90\%)$ en la estación El Cuchillo.

Al comparar los resultados obtenidos por la metodología propuesta con los datos registrados se observa que existe una buena estimación de éstos últimos, por lo que es factible utilizarla en la estimación de eventos de diseño para diferentes períodos de retorno. Los valores así pronosticados se muestran en la tabla 7.32.

	Q, (8	35%)	Q, (9	0%)	Q _r (95%)		
spen at more	Dmáx	T(Dmáx)	Dmáx	T(Dmáx)	Dmáx	T(Dmáx)	
(años)	Millones m3	días	Millones m3	días	Millones m3	días	
2	23.35	73	11.29	57	3.94	30	
5	40.88	100	21.62	84	7.35	69	
10	51.13	122	27.66	104	9.60	88	
20	60.58	144	33.23	124	11.76	115	
50	72.56	172	40.29	149	14.56	124	
100	81.46	193	45.53	168	16.66	152	

Tabla 7.32. Déficits generados para diferentes niveles de truncamiento y periodos de retorno en la estación El Cuchillo.

CAPITULO 8 ASPECTOS ECONÓMICOS Y SOCIALES DE LAS SEQUÍAS

8.1. Introducción

El agua tiene un valor económico, social y ambiental en todos los usos a los que se destina. La administración del recurso debe contemplar las relaciones existentes entre economía, sociedad y medio ambiente.

La sequía produce una compleja red de impactos que abarca muchos sectores de la economía y a la sociedad. Esta complejidad existe porque el agua es integral a la habilidad de la sociedad para producir bienes y servicios.

Los impactos de la sequía pueden ser directos o indirectos. Los primeros se refieren a la reducción en la producción de cultivos, ranchos y bosques, incremento de peligro de incendios, reducidos niveles de agua, incremento en la mortalidad ganadera y vida silvestre. La consecuencia de estos impactos se transmite en una reducción de los ingresos económicos para campesinos y comerciantes, incremento en los precios de los insumos agrícolas y los alimentos, desempleo, migración y el desvío de recursos económicos para la mitigación de los efectos nocivos del fenómeno.

Muchos impactos económicos ocurren en la agricultura y sectores relacionados a causa de la confianza de estos sectores en los suministros de agua. Además de pérdidas en rendimientos en la producción de cultivos y ganadería, la sequía se asocia con infestación de insectos, enfermedad de plantas y erosión del viento. La incidencia de los incendios forestales se incrementa en los periodos de baja precipitación, lo que coloca a la población y al entorno ambiental en un alto nivel de riesgo.

La pérdida de ingresos es un de los índices para evaluar el impacto de las sequías. En sitios donde la economía regional se sustente en la producción agrícola de temporal, la presencia de una sequía puede colapsar al sistema de bienestar de la comunidad. Generalmente, estas situaciones conducen al desempleo, incremento en los niveles de pobreza de las comunidades ya marginadas y la reducción en la captación de impuestos a nivel municipal, estatal y federal.

La presencia de una sequía tiene efectos en el medio ambiente. Las pérdidas son el resultado de daños a las especies de plantas y animales, hábitat silvestre, y calidad del aire y agua, incendios a bosques y ranchos, degradación de calidad del paisaje, pérdida de biodiversidad y erosión del suelo. Algunos de estos efectos son de corto plazo y reversibles, sin embargo, otros como la erosión pueden provocar a largo plazo una baja sustancial en la productividad de los suelos agrícolas.

En el entorno social, la sequía, dependiendo de su severidad y duración, puede generar problemas de seguridad pública y reducir la calidad de vida de la población. La migración de la población es un problema significativo en muchos países, motivado este hecho por la apreciación de poder contar con mejores condiciones de vida, sin embargo, cuando la sequía se ha abatido, los emigrantes raras veces retornan a sus lugares de origen, privando a las áreas rurales de recursos humanos útiles y poniendo bajo una alta presión en la infraestructura social del área urbana donde se han establecido. Estas últimas condiciones generan los llamados cinturones de miseria de las grandes ciudades.

A continuación se presentan algunas definiciones útiles para este capitulo.

Acuífero.- capa o sección de tierra o roca que contiene agua dulce, denominada agua subterránea (toda agua que se almacena naturalmente bajo tierra o que circula a través de las rocas o el suelo, llenando fuentes y pozos).

Agua no renovable - agua de los acuíferos y otros depósitos naturales que no se vuelven a llenar a través del ciclo hidrológico o se llenan tan lentamente que se agotan si se extraen cantidades apreciables de agua para uso humano. Los acuíferos fósiles pertenecen a esta categoría: se llenan tan lentamente a lo largo de los siglos que son, en efecto, un recurso no renovable.

Agua renovable.- agua dulce que se repone continuamente por el ciclo hidrológico y puede extraerse dentro de límites razonables de tiempo, como el agua en los ríos, lagos o estanques que se llenan con las precipitaciones o el escurrimiento. La capacidad de renovación de una fuente de agua depende tanto del ritmo natural de reposición como del ritmo a que se extrae el agua para su uso humano.

Ciclo hidrológico.- ciclo natural por el cual el agua se evapora de los océanos y otras masas de agua, se acumula como vapor de agua en las nubes y vuelve a los océanos y otras masas de agua en forma de precipitación. En este ciclo de energía solar, el agua se evapora de la superficie de la tierra a la atmósfera, de donde cae en forma de lluvia o nieve. Parte de esa precipitación vuelve a evaporarse dentro de la atmósfera. Otra parte comienza el viaje de regreso al mar a través de arroyos, ríos y lagos mediante la componente llamada escurrimiento. Otra parte se filtra dentro del suelo y se convierte en humedad del suelo o en agua de superficie. Las plantas incorporan la humedad del suelo en sus tejidos y la liberan en la atmósfera en el proceso de evapotranspiración. Gran parte de agua subterránea finalmente vuelve a pasar al caudal de las aguas de superficie.

Escurrimiento.- agua que tiene su origen en la precipitación y que luego escurre por la tierra hasta llegar a los ríos y lagos, llegando finalmente a los océanos, mares interiores o acuíferos, a menos que primero se evapore. La porción de escurrimiento de la cual puede dependerse año tras año y fácilmente aprovechada por el hombre se denomina escurrimiento base.

8.2. Disponibilidad del agua

Debido a la importancia del agua como un recurso que puede ser limitante para el desarrollo económico y social de los países, en los últimos años se ha intensificado el estudio de la cuantificación disponibilidad del líquido.

Un 70% de la superficie de la tierra es agua, pero la mayor parte de esta pertenece a los océanos. Solo 2.5% del agua del mundo es dulce y tres cuartas partes están congeladas en los polos y las cumbres de las montañas altas. Solo el 1% del agua dulce en el mundo se considera inmediatamente disponible para los 6 mil 200 millones de habitantes del mundo, sin embargo, las condiciones geográficas y sociales afectan su distribución, ya que dos tercios de la población mundial vive en zonas que reciben solo una cuarta parte de las precipitaciones anuales del mundo. En total, un centésimo del uno por ciento del suministro total de agua del mundo se considera fácilmente accesible para uso humano.

Se considera que mundialmente se dispone de 12,500 a 14,000 millones de metros cúbicos de agua por año para uso humano. Esto representaba para el año de 1990 unos 9,000 metros cúbicos por persona al año, y se estima que para el 2025 descenderá a 5,100 metros cúbicos. Aún entonces esta cantidad sería suficiente para satisfacer las necesidades humanas si el agua estuviera distribuida por igual entre todos los habitantes del mundo.

En América Latina hay 48,000 metros cúbicos por persona, 21,300 en Norteamérica, en África 9,400, en Asia y el Cercano Oriente 4,700 y en Europa 4,400, pero en los hechos, 20% de la población mundial no tiene acceso al agua potable.

En México, dos tercios de su territorio son áridos o semiáridos. En estas zonas se concentra el 77% de la población, pero se genera el 28% del escurrimiento natural y se produce el 84% del producto interno bruto. Esta situación propicia la competencia por el agua, contaminación del recurso y sobreexplotación de los acuíferos. La disponibilidad per cápita es de 4,900 metros cúbicos al año, 40% menos que en Estados Unidos y 14% de la disponibilidad de Canadá.

Las cifras per cápita sobre disponibilidad de agua presentan un cuadro engañoso. El agua disponible no esta distribuida de manera equitativa en el mundo, ni se encuentra disponible durante todas las estaciones del año, ni de año a año. En algunas ocasiones el agua no se encuentra en calidad ni cantidad suficiente donde se requiere y en otras se tiene demasiada agua en sitios de poco desarrollo.

Es difícil estimar la cantidad de agua que se necesita para mantener estándares de vida aceptables o mínimos. Además, las diversas fuentes de información emplean diferentes cifras para el consumo total del agua y su uso por sector económico.

Falkenmark (1992, 1993) considera que la cifra de 100 litros de agua dulce per cápita por día para uso personal es una estimación aproximada de la cantidad necesaria para un estándar de vida mínimo aceptable en los países en desarrollo, sin incluir los usos para la agricultura e industria.

Las cantidades de agua que las personas realmente utilizan en un país dependen no sólo de las necesidades mínimas y de cuánta agua se dispone para el uso, sino también del nivel de desarrollo económico y del grado de urbanización. Mundialmente, de las tres categorías del uso del agua, agricultura, industria y doméstico, el primero es el que domina. Así, la agricultura representa un 69% de todas las extracciones anuales de agua; la industria, un 23% y el uso doméstico, un 8%.

Existen grandes diferencias por región. En África se estima que el 88% del agua dulce se utiliza para la agricultura, 7% para fines domésticos y 5% para la industria. En Asia la distribución para los mismos rubros representa el 86%, 8% y 6%, respectivamente. En contraste, en Europa los porcentajes son 33%, 13% y 54%, lo que marca para este último caso, una dependencia del desarrollo industrial.

A medida que el mundo se vuelve predominantemente urbano y la agricultura depende cada vez más del riego, será difícil para las ciudades satisfacer la demanda creciente de agua. En los países en desarrollo el rápido crecimiento urbano suele ejercer tremenda presión en los sistemas de abastecimiento, generalmente inadecuados.

Falkenmark (1993) propone que un país experimenta estrés hídrico cuando el suministro anual de agua desciende a menos de 1,700 metros cúbicos por persona. Cuando desciende a niveles de 1,700 a 1,000 metros cúbicos por persona, pueden preverse situaciones de escasez periódica o limitada de agua. Cuando los suministros anuales bajan a menos de 1,000 metros cúbicos por persona, el país enfrenta escasez de agua. Más aún, cuando el suministro cae por debajo de los 500 metros cúbicos por persona, los países experimentan escasez absoluta de agua.

Un vez que un país experimenta *escasez de agua*, puede esperar una escasez crónica que amenace la producción de alimentos, obstaculice el desarrollo económico y dañe los ecosistemas.

Los cálculos sobre estrés hídrico y escasez de agua se basan en estimaciones de los suministros renovables de agua dulce de un país y no incluyen el agua extraída de acuíferos subterráneos fósiles. Un país puede evitar por algún tiempo los efectos del estrés hídrico extrayendo agua no renovable, pero esta práctica no es sustentable, especialmente si la población continua creciendo rápidamente y aumenta la demanda per cápita.

Basado en los conceptos propuestos por Falkenmark (1993), se establece una clasificación para definir el volumen de agua per cápita disponible para los usos agrícola, industrial y doméstico de un país, la cual se presenta en la tabla 8.1.

Grado de Disponibilidad	Clave	Disponibilidad D (m³/hab)/año
Escasez Extrema	EE	D < 1,000
Escasez Crítica	EC	1,000 < D < 1,700
Disponibilidad Baja	DB	1,700 < D < 5,000
Disponibilidad Media	DM	5,000 < D < 10,000
Disponibilidad Alta	DA	D > 10,000

Tabla 8.1. Clasificación general de la disponibilidad de agua per cápita.

Si bien se ha mencionado la disponibilidad global de agua, también es importante conocer el consumo de agua en actividades específicas:

Industria

Para producir 1 litro de cerveza se requiere de 5 a 25 litros de agua
Para producir 1 kilogramo de cemento se requieren 35 litros de agua
Para producir 1 kilogramo de acero se requieren de 300 a 600 litros de agua
Para producir 1 litro de alcohol se requieren 2,700 litros de agua
Para producir 1 litro de leche se requiere de 2.5 a 5 litros de agua
Para producir 1 kilogramo de estreptomicina se requieren 4 millones de litros de agua
Para sacrificar 1 cabeza de ganado se requieren 500 litros de agua
Para fabricar un automóvil se requieren 35,000 litros de agua

Agricultura

Para producir 1 kilogramo de forraje se requieren 1,000 litros de agua
Para producir 1 kilogramo de trigo se requieren 1,500 litros de agua
Para ordeñar una vaca se requieren 80 litros de agua por día
Para producir 1 kilogramo de arroz se requieren 4,500 litros de agua
Para producir 1 kilogramo de algodón se requieren 10,000 litros de agua

Uso Urbano

Para lavar un metro de alcantarilla se requieren 25 litros de agua Para limpiar un metro cuadrado de un mercado se requieren 5 litros de agua Por cada escolar se requieren 100 litros de agua por día Por cada residente de una casa de reposo se requieren 250 litros de agua por día Por cada paciente en el hospital se requieren 450 litros por día

Uso doméstico

El lavado de manos requiere 5 litros; una ducha 20 a 50 litros y un baño alrededor de 80 litros Un lavado de platos manual requiere 20 litros de agua y el automático 20 a 40 litros El lavado de ropa con lavadora requiere 50 a 20 litros de agua Para regar 1 metro cuadrado de jardín se requieren 90 litros de agua Para cada descarga de inodoro se usa de 6 a 12 litros de agua Una llave con goteras desperdicia de 30 a 40 metros cúbicos por año.

8.2.1. Disponibilidad per cápita del agua en México de base de agua en Mexico de base de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya del companya de la companya della companya de la companya de la companya de la companya de

Existen diversas formas de estimar la disponibilidad de agua que tiene un país o región, pero la precisión y el realismo del valor calculado dependen mucho de la información con que se cuente. Una aproximación es la precipitación acumulada anual. En este sentido, los 770 mm de precipitación media anual que recibe el país, unos 1528 km³ de agua, lo clasificarían en la categoría de países con abundante disponibilidad de agua. Sin embargo, México tiene una evapotranspiración promedio anual de 1,106 km³ de agua, que equivale al 72.4% de la precipitación, valor que resulta menor que la de África (80%), pero mayor que las de Europa (64%), Asia (56%) o Australia (64%). De acuerdo con este balance, el volumen de agua disponible en México es de 472 km³ de agua (422 km³ de agua proveniente de la precipitación más 48 km³ de agua proveniente de Guatemala y 2.2 km³ de agua que recibe de Estados Unidos), que se distribuye en 397 km³ de agua superficial (84% del volumen disponible final) y 75 km³ para la recarga de los acuíferos (16% del volumen disponible final).

Este gran balance indica que sin considerar las aportaciones provenientes de Estados Unidos y Guatemala, el escurrimiento superficial y el aporte a los acuíferos representan el 22.7% (422 km³) y el 4.9% (75 km³) del volumen de precipitación total (1528 km³).

De acuerdo con el censo de población del año 2000 la disponibilidad en México era de cerca de los 4,900 m³ por habitante al año, lo que de acuerdo con la tabla 8.1, se encontraría en los niveles de disponibilidad baja, lo cual no indicaría un foco rojo, sin embargo, debido a la distribución temporal y espacial de la lluvia se tienen grandes contrastes entre los estados y municipios que forman la República Mexicana.

Para poner en contexto la cifra de 4,900 m³ por habitante al año, se debe mencionar que en el año de 1910 la disponibilidad promedio era de 31,000 m³ por habitante, para 1950 ya sólo era de poco más de 18,000 m³ por habitante y en 1970 había caído por debajo de los 10,000 m³ por habitante. Estas reducciones se explican por el acelerado crecimiento poblacional y no por la disminución de la cantidad de lluvia que recibió el país en esos años.

En la tabla 8.2 se muestra la disponibilidad per cápita esperada, de acuerdo con las proyecciones de población hechas por CONAPO hasta el año 2030, para cada uno de los estados que forman la República Mexicana. Así mismo, en la tabla 8.3 se presenta la disponibilidad esperada en cada uno de los municipios que forman el estado mexicano de Aguascalientes. En el anexo A se presenta esta disponibilidad para cada uno de los municipios del resto de las entidades federativas del país. Cabe mencionar que en estas tablas se ha considerado como la lámina de lluvia disponible el 27% de la lluvia media anual, es decir, sin la evapotranspiración.

En las tablas 8.2 y 8.3 se observa el efecto que tiene a nivel estatal y municipal la distribución espacial de la lluvia y la densidad poblacional.

ele ja vije	Población o	censada (INEG	OUTCOME SOURCE	da (CONAPO)	Lluvia menos evapotranspiración		Volumen		
Estado	2000	2010	2020	2030	Hp disponible (mm)	2000	2010	2020	2030
Aguascalientes	960,504	1,118,074	1,250,921	1,356,968	136	882	758	677	624
Baja California	2,540,519	3,346,657	4,138,565	4,864,276	57	1,603	1,217	984	837
Baja California Sur	437,351	566,904	692,379	805,327	55	9,324	7,193	5,890	5,064
Campeche	709,412	837,593	955,823	1,056,688	327	26,174	22,168	19,426	17,572
Coahuila	2,373,180	2,693,046	2,954,174	3,155,420	81	5,182	4,566	4,163	3,897
Colima	554,052	626,679	691,397	740,610	228	2,249	1,988	1,802	1,682
Chiapas	4,097,136	4,699,370	5,220,030	5,639,988	528	9,519	8,299	7,471	6,915
Chihuahua	3,125,292	3,716,854	4,244,089	4,685,156	127	10,073	8,470	7,418	6,720
Distrito Federal	8,813,141	8,814,867	8,766,429	8,595,188	196	33	33	34	34
Durango	1,518,633	1,576,441	1,601,038	1,599,076	150	11,970	11,531	11,354	11,368
Guanajuato	4,843,199	5,230,932	5,492,638	5,653,326	160	1,005	931	886	861
Guerrero	3,181,608	3,294,329	3,310,700	3,267,235	278	5,631	5,438	5,411	5,483
Hidalgo	2,285,148	2,477,219	2,620,833	2,711,191	202	1,832	1,690	1,597	1,544
Jalisco	6,504,688	7,067,743	7,479,485	7,733,119	218	2,686	2,472	2,336	2,259
Estado de México	13,504,347	15,744,553	17,601,504	18,939,803	216	344	295	264	245
Michoacán	4,139,084	4,276,644	4,327,113	4,300,893	231	3,265	3,160	3,123	3,142
Morelos	1,616,869	1,806,618	1,961,018	2,071,042	281	857	767	707	669
Nayarit	962,073	1,027,156	1,074,168	1,099,697	282	8,000	7,493	7,165	6,999
Nuevo Leán	3,908,238	4,552,404	5,119,183	5,594,023	146	2,403	2,063	1,834	,679
Oaxaca	3,582,180	3,816,870	3,962,397	4,022,105	379	10,084	9,464	9,117	8,981
Puebla	5,233,525	5,797,351	6,246,605	6,554,882	316	2,046	1,847	1,714	1,634
Querétaro	1,454,428	1,738,921	1,999,393	2,217,545	171	1,381	1,155	1,005	906
Quintana Roo	899,312	1,283,883	1,663,733	2,008,755	327	18,472	12,939	9,985	8,270
San Luis Potosi	2,338,436	2,452,198	2,522,680	2,555,979	177	4,578	4,366	4,244	4,189
Sinaloa	2,641,537	2,879,690	3,061,637	3,182,337	192	4,224	3,875	3,644	3,506
Sonora	2,287,867	2,670,917	3,012,160	3,301,830	121	9,958	8,530	7,563	6,900
Tabasco	1,944,503	2,184,350	2,389,020	2,538,074	561	7,446	6,628	6,061	5,705
Tamaulipas	2,869,400	3,441,570	3,953,549	4,382,058	202	5,648	4,709	4,099	3,698
Tlaxcala	986,932	1,153,609	1,305,709	1,431,234	184	757	648	572	522
Veracruz	7,164,716	7,378,261	7,467,895	7,427,933	408	4,155	4,034	3,986	4,007
Yucatán	1,689,180	1,923,530	2,148,744	2,342,080	267	6,861	6,025	5,394	4 949
Zacatecas	1,402,773	1,418,673	1,404,151	1,371,748	121 ON 161	6,465	6,393	6,459	6,612

Tabla 8.2. Volumen per cápita esperado para cada uno de los estados de la República Mexicana.

Municipio guascalientes	2000	0040			evapotranspiración	Ditte ii	(m3/habit	ante)/año	
guascalientes		2010	2020	2030	Hp disponible (mm)	2000	2010	2020	2030
	655,274	779,901	889,019	980,169	143	385	324	284	258
sientos	38,225	40,316	40,770	39,840	118	1,573	1,491	1,475	1,509
Calvilio	51,712	50,710	47,988	44,181	151	2,897	2,955	3,122	3,391
Cosíc	12,798	14,033	14,773	15,039	103	1,227	1,119	1,063	1,044
esús María	65,505	82,890	99,353	114,075	137	1,033	817	681	593
Pabellón de Arteaga	34,827	39,286	42,662	44,950	133	1,189	1,054	970	921
Rincón de Romos	42,255	46,640	49,603	51,195	129	1,218	1,104	1,038	1,006
San José de Gracia	7,326	7,646	7,692	7,512	140	14,477	13,871	13,788	14,118
epezala	16,644	16,283	15,366	14,099	111	1,394	1,425	1,510	1,646
El Llano	15,519	16,442	16,808	16,704	126	4,478	4,226	4,134	4,160
Sn Fco de los Romos	20,419	23,927	26,887	29,204	123	621	530	472	435
Estado Aguascalientes	960,504	1,118,074	1,250,921	1,356,968	136	882	758	677	624

Tabla 8.3. Volumen per cápita esperado para cada uno de los municipios que forman el estado mexicano de Aquascalientes.

8.3. Agricultura

Entre los impactos económicos más serios de una sequía se encuentran los daños causados sobre la agricultura. Esta rama de la economía es la primera y las más expuesta a este tipo de fenómenos y se requiere de un análisis retrospectivo suficiente para determinar la susceptibilidad de los cultivos ante la escasez de agua.

Los análisis comparativos de las cosechas, junto con las condiciones climáticas e hidrológicas pueden darnos las mejores respuestas sobre la intensidad de la sequía en el periodo examinado y sobre los daños y pérdidas económicas en la producción agrícola.

Este tipo de análisis ayuda a determinar la capacidad o tolerancia de los cultivos a la escasez de agua, de acuerdo con su ciclo vegetativo. Además, es necesario valorar el efecto que tiene la rotación de cultivos ante la presencia de la seguía.

Un aspecto importante en la evaluación de los daños económicos es el efecto de la llamada densidad de siembra o plantación, ya que si es demasiado alta, los efectos serán más importantes.

También se deben tomar aspectos muy relevantes como la política de conservación del suelo, el aporte de nutrientes, la defensa contra malas hierbas y el control de plagas.

En el aspecto agrícola se tienen tres tipos de cultivo: temporal, riego y perenne. Cada uno de ellos representa condiciones particulares ante la sequía. Para el primer caso se pueden tener dos condiciones, la primera es cuando el cultivo recibe las cantidades de agua requeridas por su ciclo vegetativo, lográndose cosechar todas las hectáreas sembradas con los rendimientos adecuados por hectárea sembrada. En la segunda condición el cultivo no recibe el agua suficiente cuando se requiere, provocando bajos rendimientos y en los casos extremos la pérdida total de la superficie sembrada.

Puesto que la agricultura utiliza casi el 70% del agua extraída en todo el mundo de ríos, lagos y acuíferos para uso humano, el incremento de la eficiencia de la agricultura de riego es lo que mayores posibilidades ofrecen para la conservación del agua.

Gran parte de los sistemas de riego del mundo desperdician agua. Por lo común, sólo entre 15% y 50% del agua extraída para la agricultura de riego llega a las zonas de cultivo. La mayor parte se pierde por los canales no revestidos o debido a la evaporación. Si bien parte del agua perdida en los sistemas de riego ineficientes retorna a los cauces o acuíferos, de donde se puede volver a extraer, su calidad se ha degradado por la incorporación de plaguicidas, fertilizantes y sales. La mala planeación de los sistemas de riego limita de manera sustancial el rendimiento de los cultivos.

Otro factor importante en la eficiencia de un sistema de riego es el drenado apropiado de las tierras, ya que la acumulación de sales puede ser tal que provoque la no productividad de los suelos. Además, el agua de riego deficientemente drenada puede elevar la capa freática hasta llegar a la altura de la raíz, anegando y ahogando los cultivos. A escala mundial, unos 80 millones de hectáreas de tierras agricolas se han degradado por una combinación de salinización y anegamiento.

En el mundo se han implantado técnicas para el uso eficiente del agua y del suelo. El riego por goteo es una de estas técnicas, y consiste de una red de tubos porosos instalados en la superficie o bajo tierra que llevan el agua directamente a las zonas de las raíces de los cultivos. Mediante esta técnica se mantienen bajas las pérdidas por evaporación con una tasa de eficiencia del 95%. Se estima que en los sistemas de riego por goteo el uso del agua se reduce de un 40% a 60%, en comparación con los sistemas de riego por gravedad.

Otro método de conservación de agua es el riego de baja carga, el cual ofrece mejoras considerables en relación con los sistemas de aspersión. Con esta técnica se lleva agua a los cultivos mediante tubos goteadores que se extienden del brazo del rociador. Como este método funciona con baja presión, los costos energéticos se reducen de un 20% a un 50%, en comparación con los sistemas de riego comunes.

En gran parte de los países en desarrollo no se dispone de los medios necesarios para aplicar las técnicas de goteo o de baja carga, pero las presiones para satisfacer las demandas de la población en cuanto alimentación, han propiciado la aplicación de técnicas emergentes de recolección de agua de lluvia en época húmeda, a través de estanques o pequeñas represas, para aplicarse en la estación seca. Varios países canalizan las aguas urbanas tratadas hacia el riego de hortalizas.

8.3.1. Relación económica agua-producción agrícola

A continuación se presenta un esquema para la evaluación de los efectos que tiene la ocurrencia de la lluvia anual en la producción agrícola. La aplicación se hará para las condiciones que prevalecen en el estado mexicano de Aguascalientes

En la tabla 8.4 se muestra el número de habitantes que han trabajado en actividades del sector agrícola en el estado de Aguascalientes durante el periodo 1960-2000. Se observa que en el año de 1960 el 49% de la población económicamente activa (número entre paréntesis) se dedicaba a la agricultura y se redujo su participación al 10% en el año 2000. También la aportación del sector al Producto Interno Bruto Estatal (PIB) disminuyó en ese mismo periodo del 16.1% al 4.7%. En el entorno municipal, se puede considerar que los habitantes del municipio de Aguascalientes no se verían directamente afectados por una reducción en la precipitación, ya que sólo el 3% de la población se dedica a las actividades agrícolas. Por el contrario, los habitantes de los municipios de Calvillo y Cosío serían los más vulnerables, ya que el 38% de su población desempeña actividades relacionadas con el sector. Sin embargo, una reducción importante en la precipitación puede generar impactos indirectos, como el desabasto y encarecimiento de los productos, lo cual afectaría a todos por igual.

Municipio	1960	1970	1980	1990	2000
Aguascalientes	13,436 (28%)	11,288 (20%)	9,315 (9%)	9,515 (6%)	6,927 (3%)
Asientos	4,217 (92%)	3,547 (75%)	3,687 (52%)	3,852 (50%)	2,951 (31%)
Calvillo	3,880 (82%)	3,772 (62%)	3,617 (33%)	6,690 (53%)	5,122 (38%)
Cosio	1,426 (91%)	1,457 (81%)	1,292 (57%)	1,553 (61%)	1,195 (38%)
El Llano	326 (30%)	274 (18%)	226 (10%)	218 (7%)	171 (5%)
Jesús Maria	3,738 (90%)	3,248 (73%)	2,601 (33%)	2,561 (22%)	1,976 (12%)
Pabellón Arteaga	2,749 (84%)	2,143 (62%)	2,088 (40%)	1,950 (28%)	1,488 (17%)
Rincón de Romos	3,878 (84%)	3,258 (71%)	3,092 (40%)	3,495 (40%)	2,708 (25%)
Sn Fco de los Romos	411 (32%)	345 (18%)	285 (9%)	276 (6%)	220 (4%)
San José de Gracia	1,144 (93%)	755 (64%)	556 (39%)	519 (36%)	390 (21%)
Tepezala	2,569 (96%)	2,008 (83%)	1,856 (54%)	1,631 (52%)	1,244 (29%)
Estatal	37,774 (49%)	32,095 (37%)	28,615 (18%)	31,776 (15%)	24,392 (10%)
% en el PIB.	16.1	14.7	9.4	6.3	4.7

Tabla 8.4. Trabajadores del sector agrícola y su aportación en el PIB del estado de Aguascalientes.

Para determinar la producción agrícola y sus beneficios económicos con referencia a la variación de la precipitación anual, se puede realizar el siguiente análisis. En la tabla 8.5 se presenta la lámina de lluvia acumulada durante un ciclo agrícola, el cual se considera a partir de octubre de un año a septiembre del siguiente.

Ciclo	wise plifon	Ciclo	Hugos de INES	Ciclo	जार हुए एक होगा	Ciclo	
agricola	Hp (mm)	agrícola	Hp (mm)	agricola	Hp (mm)	agrícola	Hp (mm)
1929-1930	441.0	1947-1948	520.3	1965-1966	754.8	1983-1984	503.8
1930-1931	721.9	1948-1949	392.1	1966-1967	739.5	1984-1985	466.0
1931-1932	370.5	1949-1950	393.7	1967-1968	597.1	1985-1986	534.6
1932-1933	608.1	1950-1951	436.0	1968-1969	332.2	1986-1987	586.9
1933-1934	636.3	1951-1952	455.0	1969-1970	560.6	1987-1988	499.9
1934-1935	1018.6	1952-1953	419.3	1970-1971	668.6	1988-1989	_351.8
1935-1936	443.1	1953-1954	483.0	1971-1972	487.2	1989-1990	645.8
1936-1937	536.5	1954-1955	481.5	1972-1973	618.9	1990-1991	646.2
1937-1938	464.0	1955-1956	475.7	1973-1974	440.5	1991-1992	560.2
1938-1939	500.5	1956-1957	300.5	1974-1975	462.0	1992-1993	588.2
1939-1940	467.1	1957-1958	666.5	1975-1976	538.6	1993-1994	425.4
1940-1941	640.3	1958-1959	636.5	1976-1977	544.0	1994-1995	542.0
1941-1942	455.9	1959-1960	334.2	1977-1978	513.0	1995-1996	380.1
1942-1943	573.6	1960-1961	425.6	1978-1979	355.5	1996-1997	426.7
1943-1944	517.8	1961-1962	444.3	1979-1980	319.8	1997-1998	488.0
1944-1945	352.8	1962-1963	509.7	1980-1981	408.8	1998-1999	473.1
1945-1946	408.1	1963-1964	620.4	1981-1982	270.8	1999-2000	509.1
1946-1947	554.3	1964-1965	690.2	1982-1983	585.0	et i (ear) an l	stortige and
10000	1621	1 1 20000000	120141 400	1			

Tabla 8.5. Lluvia acumulada para un ciclo agrícola (octubre-septiembre) en el estado de Aguascalientes.

Posteriormente, la serie es conjuntada en deciles (Tabla 8.6), empleando para ello la expresión 2.1. Además, se puede establecer la probabilidad de que en un año la lluvia forme parte de determinado decil. Para este caso en particular, las lluvias que se presentan con mayor frecuencia en un año agrícola en el estado de Aguascalientes pertenecen al tercer decil, es decir, entre los 420 mm y 495 mm.

Decil Iluvia anual	Hp minima (mm)	Hp promedio (mm)	Hp máxima (mm)	Probabilidad Ocurrencia (%)
1 2 3 4 5 6 7 8 9	0 345.7 420.5 495.2 570.0 644.8 719.6 794.3 869.1	172.8 383.0 457.8 532.5 607.3 682.1 756.9 831.6 906.4	345.6 420.4 495.1 569.9 644.7 719.5 794.2 869.0 943.8	7.1 14.3 28.6 21.4 15.7 7.1 4.3 0.0
10 Para todo el registro (1930-2000)		981.2 981.2 510.1	1,018.6	Sarles per

Tabla 8.6. Deciles de lluvia para un ciclo agrícola en el estado de Aguascalientes.

Con la información contenida en los anuarios estadísticos de INEGI (2000) es posible asociar la lámina de lluvia y su correspondiente decil, al número de hectáreas sembradas, cosechadas y siniestradas. También se puede establecer un índice de eficiencia que nos indique el porcentaje de hectáreas cosechadas con referencia a la superficie sembrada. Este índice tendrá tres valores, dependiendo del tipo de cultivo, el cual puede ser de temporal (*IECT*), de riego (*IECR*) y perenne (*IECP*).

En la tabla 8.7, se presenta la información analizada para el caso de los cultivos de temporal. Como se tienen diferentes valores del *IECT* para el mismo decil, se propone en primera instancia, la obtención de un valor medio del *IECT*, el cual se muestra en la tabla 8.8. Con estos valores se puede obtener una relación funcional entre los deciles y el *IECT* (Figura 8.1), lo que permitirá contar con un valor ajustado del *IECT* para los 10 deciles de la lluvia (Tabla 8.9).

Año agrícola	Hp (mm)	Decil	Superficie sembrada SS(ha)	Superficie cosechada SC(ha)	Superficie siniestrada SP(ha)	Indice IECT (SS/SC)	Valor de la Producción (\$)	Beneficio (\$/ha)
1979-1980	319.8	1	105,128	30,157	74,971	0.2869	Tri proji bishimi quanti attanini in majili proti tema pagipamenti mad	
1980-1981	408.8	2	125,988	30,783	95,205	0.2443		
1981-1982	270.8	1	125,999	2,694	123,305	0.0214		
1982-1983	585.0	5	119,611	105,043	14,568	0.8782		
1983-1984	503.8	4	110,822	51,241	59,581	0.4624		
1984-1985	466.0	3	109,300	62,963	46,337	0.5761		
1985-1986	534.6	4	109,374	15,275	94,459	0.1392		
1986-1987	586.9	5	110,693	38,396	72,297	0.3469		
1987-1988	499.9	4	111,701	110,795	906	0.9919		
1988-1989	351.8	2	81,162	13,747	67,415	0.1694		
1989-1990	645.8	6	112,069	94,160	17,909	0.8402		
1990-1991	646.2	6	65,381	41,382	23,999	0.6329		
1991-1992	560.2	4	73,014	45,510	27,504	0.6233		
1992-1993	588.2	5	94,350	48,884	45,466	0.5181		
1993-1994	425.4	3	101,661	37,028	64,633	0.3642		
1994-1995	542.0	4	106,908	102,974	3,934	0.9632	70,164,557	681.38
1995-1996	380.1	2	100,873	89,663	11,210	0.8889	65,722,211	732.99
1996-1997	426.7	3	95,823	23,694	72,129	0.2473	21,308,202	899.30
1997-1998	488.0	2	103,875	89,698	14,177	0.8635	103,254,405	1151.13
1998-1999	473.1	3	109,065	31,749	77,316	0.2911	28,227,096	889.07
1999-2000	509.1	4	109,746	18,617	91,129	0.1696	12,295,500	660.44
Promedio	510.1	4	104,000	=3				835.00

Tabla 8.7. Índice de eficiencia de los cultivos de temporal para un ciclo agrícola en el estado de Aguascalientes.

The course course of the control personal test than the course of the co						
	IECT 1er decil	IECT 2° decil	IECT 3er decil	IECT 4° decil	IECT 5° decil	IECT 6° decil
Arres	0.2869	0.2443	0.5761	0.4624	0.8782	0.8402
	0.0214	0.1694	0.3642	0.1392	0.3469	0.6329
		0.8889	0.2473	0.9919	0.5181	
		0.8635	0.2911	0.6233		
				0.9632		
				0.1696		
Promedio	0.1421	0.5436	0.3738	0.5538	0.5924	0.7638

Tabla 8.8. Índice de eficiencia promedio por decil, de los cultivos de temporal para un ciclo agrícola en el estado de Aguascalientes.

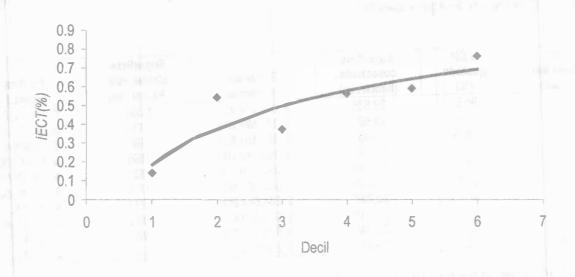


Figura 8.1. Relación funcional entre los deciles de la lluvia para un ciclo agrícola y el índice de eficiencia de los cultivos de temporal (*IECT*) en el estado de Aguascalientes.

Para determinar los beneficios económicos esperados que se pueden obtener para cada decil de Iluvia, se considera que el número potencial promedio de tierras de temporal (Tabla 8.7) es de 104,000 hectáreas (promedio del periodo 1980-2000), y que se obtienen \$ 835 por cada hectárea cosechada (promedio del periodo 1995-2000). Así, si se presenta en un año cualquiera una lluvia mínima extrema del primer decil, entonces, se esperaría cosechar en promedio 18.5% de las 104,000 hectáreas (Tabla 8.9), lo que representa una importante pérdida económica en el estado, cerca de 71 millones de pesos.

Con respecto a los cultivos de riego, el número potencial de tierras (Tabla 8.10) es de 31,000 hectáreas (promedio del periodo 1980-2000), y se obtienen \$ 12,700 por cada hectárea cosechada (promedio del periodo 1995-2000). En tanto que para los cultivos perennes (Tabla 8.11), los valores son de 22,200 hectáreas y \$29,500/hectárea cosechada, obtenidos para los mismos periodos. En la tabla 8.12 se presenta el concentrado para los tres tipos de cultivos, arrojando un valor de 157,200 hectáreas potenciales y un beneficio promedio de \$6,688 por hectárea cosechada.

Decil Iluvia del estado	/ECT ajustado (%)	Superficie cosechada (hectáreas)		Ganancia esperada	Superficie siniestrada (hectáreas)	Pérdida esperada
1	18.5	19,240		\$ 16,065,400	84,760	\$ 70,774,600
2	38.2	39,728		\$ 33,172,880	64,272	\$ 53,667,120
3	49.7	51,688	117.0	\$ 43,159,480	52,312	\$ 43,680,520
4	57.9	60,216		\$ 50,280,360	43,784	\$ 36,559,640
5	64.2	66,768		\$ 55,751,280	37,232	\$ 31,088,720
6	69.4	72,176		\$ 60,266,960	31,824	\$ 26,573,040
7	73.8	76,752		\$ 64,087,920	27,248	\$ 22,752,080
8	77.6	80,704		\$ 67,387,840	23,296	\$ 19,452,160
9	80.9	84,136		\$ 70,253,560	19,864	\$ 16,586,440
10	83.9	87,256		\$ 72,858,760	16,744	\$ 13,981,240

Tabla 8.9. Valor de producción de la superficie cosechada y siniestrada por ciclo agrícola de los cultivos de temporal en el estado de Aguascalientes.

Decil Iluvia del estado	IECR ajustado (%)	Superficie cosechada (hectáreas)	Ganancia esperada	Superficie siniestrada (hectáreas)	Pérdida esperada
1	95.6	29,636	\$ 376,377,200	1,364	\$ 17,322,800
2	96.4	29,884	\$ 379,526,800	1,116	\$ 14,173,200
3	96.8	30,008	\$ 381,101,600	992	\$ 12,598,400
4	97.1	30,101	\$ 382,282,700	899	\$ 11,417,300
5	97.3	30,163	\$ 383,070,100	837	\$ 10,629,900
6	97.5	30,225	\$ 383,857,500	775	\$ 9,842,500
7	97.7	30,287	\$ 384,644,900	713	\$ 9,055,100
8	97.8	30,318	\$ 385,038,600	682	\$ 8,661,400
9	97.9	30,349	\$ 385,432,300	651	\$ 8,267,700
10	98.1	30,411	\$ 386,219,700	589	\$ 7,480,300

Tabla 8.10. Valor de producción de la superficie cosechada y siniestrada por ciclo agrícola de los cultivos de riego en el estado de Aguascalientes.

Decil Iluvia del estado	IECP ajustado (%)	Superficie cosechada (hectáreas)	Ganancia esperada	Superficie siniestrada (hectáreas)	Pérdida esperada
1	79.8	17,716	\$ 522,610,200	4,484	\$ 132,289,800
2	85.4	18,959	\$ 559,284,600	3,241	\$ 95,615,400
3	88.7	19,691	\$ 580,896,300	2,509	\$ 74,003,700
4	91.0	20,202	\$ 595,959,000	1,998	\$ 58,941,000
5	92.9	20,624	\$ 608,402,100	1,576	\$ 46,497,900
6	94.3	20,935	\$ 617,570,700	1,265	\$ 37,329,300
7	95.6	21,223	\$ 626,084,400	977	\$ 28,815,600
8	96.7	21,467	\$ 633,288,300	733	\$ 21,611,700
9	97.6	21,667	\$ 639,182,400	533	\$ 15,717,600
10	98.5	21,867	\$ 645,076,500	333	\$ 9,823,500

Tabla 8.11. Valor de producción de la superficie cosechada y siniestrada por ciclo agrícola de los cultivos perennes en el estado de Aguascalientes.

Decil Iluvia del estado	Superficie cosechada (hectáreas)	Ganancia esperada	Superficie siniestrada (hectáreas)	Pérdida esperada
1	66,592	\$ 915,052,800	90,608	\$ 220,387,200
2	88,571	\$ 971,984,280	68,629	\$ 163,455,720
3	101,387	\$ 1,005,157,380	55,813	\$ 130,282,620
4	110,519	\$ 1,028,522,060	46,681	\$ 106,282,620
5	117,555	\$ 1,047,223,480	39,645	\$ 88,216,520
6	123,336	\$ 1,061,695,160	33,864	\$ 73,744,840
7	128,262	\$ 1,074,817,220	28,938	\$ 60,622,780
8	132,489	\$ 1,085,714,740	24,711	\$ 49,725,260
9	136,152	\$ 1,094,868,260	21,048	\$ 40,571,740
10	139,534	\$ 1,104,154,960	17,666	\$ 31,285,040

Tabla 8.12. Valor de producción de la superficie cosechada y siniestrada por ciclo agrícola de los cultivos totales (riego, temporal y perennes) en el estado de Aguascalientes.

De esta última tabla se puede observar, lo que de acuerdo con la historia, se puede esperar en cuanto a la relación entre la ocurrencia de la precipitación y los beneficios y pérdidas económicas en el sector agrícola del estado. Es importante ubicar las grandes diferencias que existen, desde el punto de vista económico, entre la ocurrencia de la lluvia más probable (tercer decil) y los dos extremos, es decir el primero y último decil. Mientras que para el primer decil se pueden esperar pérdidas económicas de más de 220 millones de pesos, estas se reducen a 130 millones de pesos para la lluvia más probable y a 31 millones de pesos para el caso más benéfico en cuanto a precipitación.

8.4. Ganadería

Los impactos de la sequía sobre la ganadería pueden ser directos o indirectos. Los animales sufren por las temperaturas altas continuas y por falta de agua, pero no será la misma respuesta de estos ante las seguías prolongadas que la de las plantas, en sus diversas especies y variedades.

La producción pecuaria representa actualmente del orden del 40% del valor bruto de la producción agropecuaria mundial y su producción va en aumento. Es el mayor usuario del mundo de la tierra agrícola, directamente como pastos e indirectamente a través de la producción de cultivos de forraje y otros alimentos para el ganado. En 1999, unas 3,460 millones de hectáreas se utilizaban en el mundo para pastoreo permanente, lo que representaba más del doble de la superficie de labranza y de cultivos permanentes.

La ganadería no sólo proporciona carne sino también productos lácteos, huevos, lana, pieles y otros bienes. Además, los animales de mayor tamaño también proporcionan energía para el arado y transporte.

El sector ganadero tiene un impacto muy importante sobre el medio ambiente, ya que su desarrollo esta intimamente ligado con el proceso de deforestación de algunos países, especialmente los de América Latina. La sobrepoblación de la tierra con animales de pastoreo provoca erosión de los

suelos, la desertificación y la pérdida de biodiversidad vegetal. También se ha incrementado los problemas de salud pública con la intensificación de la producción pecuaria en las ciudades y zonas conurbadas. Los residuos industriales de los productos pecuarios usualmente contaminan las fuentes de suministro de agua y el ganado es una de las principales fuentes de gases que provocan el efecto invernadero.

Un efecto observado a partir de los años setenta es el cambio en la dieta humana. A medida que aumentan los ingresos de la población, ésta tiende a consumir más productos proteicos de origen animal, por lo que el consumo de carne y productos lácteos tiende a crecer con mayor rapidez que el de los cereales y otros alimentos básicos.

El consumo anual de carne per cápita en los países en desarrollo se multiplico por más de dos entre 1964-66 y 1997-99, pasando de 10.2 Kg. anuales a 25.5 kg. El aumento fue especialmente rápido para los productores de aves de corral cuyo consumo per cápita se multiplicó por más de cinco. El consumo de carne de cerdo también considerablemente, aunque la mayor parte de este incremento se concentro en China.

El aumento del consumo de productos de aves de corral parece destinada a continuar, aunque a un ritmo menor, de una media global de 10.2 Kg. per cápita en 1997-99 a 17.2 Kg. en el año 2030.

En el mundo existen desigualdades en el consumo de carne debido a las diferencias en la disponibilidad o en los hábitos alimentarios. Por ejemplo, el consumo de carne en Estados Unidos y Japón, dos países con estándares de vida similar, es de 120 y 42 Kg. per cápita respectivamente, pero sus consumos respectivos de pescados y mariscos son de 20 Kg. y 66 Kg. al año.

De cara al año 2030, continuará la tendencia hacia un mayor consumo de productos pecuarios en los países en desarrollo. Sin embargo, el futuro crecimiento del consumo de carne y leche quizá no sea tan rápido como en los últimos veinte años del siglo veinte.

En los países desarrollados el margen para un aumento de la demanda es limitado. El crecimiento de la población es lento y el consumo ya es alto. Al mismo tiempo, la aparición de la Encefalopatía Espongiforme Bovina, la enfermedad de Creutzfeldt-Jacob y la Fiebre Avíar Asiática están provocando un retroceso en el consumo de carne.

Dado el crecimiento más lento de la demanda, la producción pecuaria también crecerá con mayor lentitud que en el pasado. Además, el aumento del rendimiento en el sector puede significar que la demanda adicional se puede satisfacer con un menor aumento del número de animales. En términos absolutos, sin embargo, el número de animales todavía tiene que aumentar. Las proyecciones indican 360 millones más de ganado vacuno y búfalos, 560 millones más de corderos y cabras y 190 millones de cerdos en el año 2030, lo que supone incrementos del 24%, 32% y 22%, respectivamente.

Como ya se mencionó, el incremento de la demanda se puede satisfacer con el aumento del rendimiento del ganado, empleando la zoogenética y mejorando los regímenes alimentarios. El peso medio en canal para el ganado vacuno, por ejemplo, ya ha aumentado de 174 Kg. en 1967-69 a 198 Kg. en el periodo 1997-99, y podría alcanzar los 211 Kg. para el año 2030.

La aplicación de la tecnología en la producción presenta grandes diferencias entre los países en desarrollo y los industrializados. Por ejemplo, los rendimientos medios de leche son de 1.1 y 5.9 toneladas anuales por vaca respectivamente.

En los últimos años, la producción pecuaria industrial ha crecido a una tasa dos veces superior a la de los sistemas más tradicionales de explotación agrícola mixta, y a una tasa seis veces superior a la de la producción basada en el pastoreo. A principios del siglo veinte, las empresas industriales representaban el 74% de la producción avícola mundial, el 68% de sus huevos y el 40% de la carne de cerdo.

La tendencia actual de la producción industrial y comercial puede plantear una seria amenaza a la población rural pobre, la cual se estima en unos 650 millones de personas, cuyos medios de vida dependen de la ganadería. Sin los medios adecuados como son la asistencia técnica o la provisión de créditos de bajo interés, los pobres se verán aún más marginados, lo que provoca condiciones de alta tensión social. Adicionalmente, los sistemas industriales y comerciales traen consigo impactos al medio ambiente. La concentración de animales, especialmente en zonas urbanas, provoca problemas de la eliminación de residuos y contaminación. La mayor densidad de animales y su transporte a mercados distantes provocan agotamiento y estrés en el ganado.

Un efecto negativo de la práctica industrial en el desarrollo pecuario es la aplicación de antibióticos a gran escala, lo que ha contribuido al desarrollo de la resistencia a ellos por parte de las bacterias, incluidas las que provocan enfermedades humanas.

8.4.1. Relación económica agua-producción ganadera

Para el análisis económico del sector ganadero se procederá de manera similar al sector agrícola. Los deciles de la precipitación (Tabla 8.13) se obtienen tomando en cuenta el promedio de la lluvia del año analizado con el del año inmediato anterior, esto es porque se considera que la calidad del ganado no sólo depende del año en curso; sino que es producto de los estragos o beneficios, de al menos, el año anterior.

Decil Iluvia anual	Hp minima (mm)	Hp promedio (mm)	Hp máxima (mm)	Probabilidad Ocurrencia (%)
1	0	199.4	398.8	13.0
2	398.9	422.1	445.4	14.5
3	445.5	468.7	491.9	17.4
4	492.0	515.2	538.5	23.2
5	538.6	561.8	585.1	11.6
6	585.2	608.4	631.7	7.2
7	631.8	655.0	678.3	5.8
8	678.4	701.6	724.9	2.9
9 1 10 10 10 10 10 10 10 10 10 10 10 10 1	725.0	748.2	771.5	2.9
10	771.6	794.8	818.1	1.4
Registro (1930-2000)	352.2	509.1	818.1	

Tabla 8.13. Deciles de la lluvia para ciclo ganadero (promedio bianual) en el estado de Aguascalientes.

Con la información contenida en los anuarios estadísticos de INEGI (2000), se obtienen los rendimientos en kilogramos por cada cabeza sacrificada para los diferentes tipos de ganado. En la tabla 8.14 se dan los rendimientos promedio, el beneficio económico recibido y el consumo medio por habitante al año, para los diferentes tipos de ganado.

Tipo De Ganado	Promedio Carne en canal Kg/cabeza	Precio Carne en canal \$/Kg	Consumo Per cápita (Kg/hab)/año
Bovino	164.1	18	15.8
Porcino	67.5	18	7.6
Ovino	18.2	30	0.4
Caprino	16.1	25	0.6
Aves	2.4	15	20.7

Tabla 8.14. Características promedio de rendimiento, precio de venta y consumo de la carne en canal del estado de Aguascalientes.

En la tabla 8.15 se presentan los valores ajustados para cada decil de los rendimientos en kilogramos por cada cabeza sacrificada. El valor considerado como deseable es aquel que se obtuvo al promediar los mejores rendimientos registrados.

Decil	Bovino	Porcino	Ovino	Caprino	Aves
1	166.8	60.5	16.8	14.0	1.600
2	162.8	75.5	20.3	16.2	1.500
3	161.2	78.0	20.8	17.1	1.400
4	162.0	72.2	19.4	17.1	1.350
5	165.3	62.2	17.0	16.5	1.300
6	170.9	52.3	14.9	15.7	1.250
7	179.0	46.5	14.0	15.1	1.200
8	189.4	49.1	15.6	15.0	1.170
9	202.3	64.3	20.7	15.8	1.160
10	217.6	96.2	30.4	17.9	1.570
Deseable	200.0	75.0	20.0	18.0	1.400

Tabla 8.15. Rendimiento esperado de carne en canal (Kg/cabeza) para el estado de Aguascalientes.

En la tabla 8.16 se da un escenario para el año 2003. Se considera una población de 992,209 habitantes, que generan una demanda de cerca de 15,700 toneladas de ganado bovino, lo cual implicaría, si se presentará la lluvia del decil más probable, el sacrificio de 96,771 cabezas con un beneficio de \$2,916 por cada una de ellas (Tabla 8.17). Si se tuvieran las condiciones deseables, solo se requeriría el sacrificio de 78,385 cabezas y un beneficio unitario de \$3,600.

Tipo Ganado Consumo Per cápita Consumo Total Decil	Bovino 15.8 Kg/hab 15,676,902 Kg.	Porcino 7.6 Kg/hab 7,540,788 Kg	Ovino 0.4 Kg/hab 396,884 Kg	Caprino 0.6 Kg/hab 595,325 Kg	Aves 20.7 Kg/hab 20,538,726 Kg
1	93,986	124,641	23,624	42,523	12,836,704
2	96,295	99,878	19,551	36,748	13,692,484
3	97,251	96,677	19,081	34,814	14,670,519
4	96,771	104,443	20,458	34,814	15,213,871
5	94,839	121,235	23,346	36,080	15,799,020
6	91,731	144,183	26,636	37,919	16,430,981
7	87,580	162,167	28,349	39,426	17,115,605
8	82,771	153,580	25,441	39,688	17,554,467
9	77,493	117,275	19,173	37,679	17,705,799
10	72,045	78,387	13,055	33,258	13,085,333
Deseable	78,385	100,544	19,844	33,074	14,670,519

Tabla 8.16. Peso total y cabezas requeridas para satisfacer la demanda para el año 2003 en el estado de Aguascalientes.

Tipo Gana Precio ven Total (\$)		\$1	ovino 18/Kg 2,184,240	\$ orcino 18/Kg 5,734,191	\$ \$3	vino 0/Kg 906,508	\$2	prino 5/Kg 883,135	\$1	/es 5Kg 080,895
	Decil									
	1-1	\$	3,002	\$ 1,089	\$	504	\$	350	\$	24
	2	\$	2,930	\$ 1,359	\$	609	\$	405	\$	23
	3	\$	2,902	\$ 1,404	\$	624	\$	428	\$	21
	4	\$	2,916	\$ 1,300	\$	582	\$	428	\$	20
	5	\$	2,975	\$ 1,120	\$	510	\$	413	\$	20
	6	\$	3,076	\$ 941	\$	447	\$	393	\$	19
	7	\$	3,222	\$ 837	\$	420	\$	378	\$	18
	8	\$	3,409	\$ 884	\$	468	\$	375	\$	18
	9	\$	3,641	\$ 1,157	\$	621	\$	395	\$	17
	10	\$	3,917	\$ 1,732	\$	912	\$	448	\$	24
De	eseable	\$	3,600	\$ 1,350	\$	600	\$	450	\$	21

Tabla 8.17. Precio de venta por cada cabeza requerida para satisfacer la demanda promedio del año 2003 en el estado de Aguascalientes.

En las tablas 8.18 a 8.22 se dan los escenarios para el año 2003 para los requerimientos de leche, huevo y piel, estimados bajo los mismos procedimientos.

Decil Iluvia anual	Rendimiento (Its/cabeza/año)	Beneficio (\$/cabeza/año)	Requerimiento (cabeza/hab/año)	Número total de cabezas
431	0,000	\$ 9,906	0.084	83,011
2	4,249	\$ 11,897	0.070	69,121
3 - 12	4,331	\$ 12,217	0.068	67,812
4	4,036	\$ 11,301	0.073	72,769
5	3,615	\$ 10,122	0.082	81,243
6	3,319	\$ 9,293	0.089	88,489
7	3,398	\$ 9,514	0.087	86,431
8	4,105	\$ 11,494	0.072	71,545
9	5,690	\$ 15,931	0.052	51,619
10	8,404	\$ 23,531	0.035	34,948
Deseable	4,000	\$ 11,200	0.074	73,423

Tabla 8.18. Cabezas requeridas para satisfacer la demanda promedio de leche y beneficio esperado para el año 2003 en el estado de Aguascalientes.

Decil Iluvia anual	Rendimiento (Kg/cabeza/año)	Beneficio (\$/cabeza/año)	Requerimiento (cabeza/hab/año)	Número total de cabezas	
1	18,56	\$ 134.0	0.431	427,676	
2	14.82	\$ 107.0	0.540	535,605	
3	12.63	\$ 91.0	0.633	628,478	
4	11.08	\$ 80.0	0.722	716,396	
5	9.88	000002 \$ 71.0 MALE	0.810	803,408	
6	8.89	\$ 64.0	0.900	892,876	
7	8.06	\$ 58.0	0.993	984,823	
8	7.34	\$ 53.0	1.090	1,081,427	
9	6.70	\$ 48.0	1.194	1,184,727	
10	6.14	\$ 44.0	1.303	1,292,780	
Deseable	13.00	\$ 94.0	0.615	610,590	

Tabla 8.19. Cabezas requeridas para satisfacer la demanda promedio de huevo y beneficio esperado para el año 2003 en el estado de Aguascalientes.

Decil Iluvia anual	Rendimiento (Kg/cabeza/año)	Beneficio (\$/cabeza/año)	Requerimiento (cabeza/hab/año)	Número tota de cabezas	
1	. 31.40	\$ 229.0	0.076	75,648	
2	26.80	\$ 196.0	0.089	88,632	
3	24.20	\$ 177.0	0.099	98,155	
4	22.30	\$ 163.0	0.107	106,518	
5	20.80	\$ 152.0	0.115	114,199	
6	19.60	\$ 143.0	0.122	121,191	
7	18.60	\$ 136.0	0.129	127,707	
8 .	17.70	\$ 129.0	0.135	134,200	
9	16.90	\$ 123.0	0.142	140,553	
10	16.20	\$ 118.0	0.148	146,626	
Deseable	24.50	\$ 179.0	0.098	96,953	

Tabla 8.20. Cabezas requeridas para satisfacer la demanda promedio de piel de bovino y beneficio esperado para el año 2003 en el estado de Aguascalientes.

Decil Rendimiento Iluvia anual (Kg/cabeza/año		Beneficio (\$/cabeza/año)	Requerimiento (cabeza/hab/año)	Número total de cabezas
1	2.2	\$ 20.0	0,111	110,496
2	6.1 19 :00:81	\$ 56.0	0.040	39,851
3	6.9 suilduce to	\$ 63.0	0.036	35,231
4	5.7	\$ 52.0	0.043	42,648
5	3.7	\$ 34.0	0.066	65,700
6	1.8	\$ 17.0	0.136	135,051
7	1.2	\$ 11.0	0.204	202,576
8	2.9	\$ 27.0	0.084	83,825
9	8.2	\$ 75.0	0.030	29,645
10	18.1	\$ 167.0	0.014	13,430
Deseable	6.0	\$ 55.0	mad es la 0.041 a deles de	40,515

Tabla 8.21. Cabezas requeridas para satisfacer la demanda promedio de piel de caprino y beneficio esperado para el año 2003 en el estado de Aguascalientes.

- Lapparett automore valida est epita automore de la Villa.

Decil Rendimiento Iluvia anual (Kg/cabeza/año)				Número total de cabezas
1	2.7	\$ 20.0	0.030	30,134
2	4.3	\$ 32.0	0.019	18,921
3	4.5	\$ 34.0	0.018	18,080
4	3.9	\$ 29.0	0.021	20,862
5	2.8	\$ 21.0	0.029	29,058
6	. 1.8	\$ 14.0	0.046	45,201
7	1.2	\$ 9.0	0.068	67,801
8	1.4	\$ 11.0	0.059	58,115
9	3.1	\$ 23.0	0.026	26,246
10	6.4	\$ 48.0	0.013	12,713
Deseable		msv su \$555.0	iopalar 0.021 vanifaliro as	20,340

Tabla 8.22. Cabezas requeridas para satisfacer la demanda promedio de piel de ovino y beneficio esperado para el año 2003 en el estado de Aguascalientes.

8.5. Salud

Durante mucho tiempo los impactos sociales de la sequía no han sido, en absoluto, tomados en cuenta, aún y cuando existen aspectos muy sensibles que atañen a la salud pública.

Con la ocurrencia de una sequía se puede observar entre otros efectos un incremento de las enfermedades cardiovasculares, alergias e infecciones gastrointestinales y respiratorias; estas últimas se deben al aumento de contaminación del aire por el material procedente de una mayor erosión eólica y la reducida disponibilidad de agua que permita mantener las condiciones mínimas de higiene de la población.

Con una población enferma, se tiene una disminución de la capacidad de soporte socioeconómico de una región, debido a la cual el nivel de vida de la población puede reducirse, lo que es especialmente peligroso para zonas ya marginadas. En estos casos, la sequía puede ser motivo de inestabilidad política en la región y, si tales zonas en situación de desventaja se encuentran en la frontera entre dos países, también puede crear problemas en el ámbito de las relaciones entre ambos estados.

En general, las enfermedades relacionadas con el agua son una tragedia humana que todos los años causan la muerte de millones de personas, impiden que otros más gocen de una vida saludable y reducen los esfuerzos del desarrollo económico y social de un país. La Organización de las Naciones Unidas estimó que para el año de 1997 (ONU, 1997) existieron cerca de 2,300 millones casos de personas con algún padecimiento relacionado con el agua.

Un 60% de la mortalidad de niños menores de un año se relacionan con enfermedades infecciosas y parasitarias, en su mayor parte vinculadas con el agua. En algunos países las enfermedades relacionadas con el agua constituyen una alta proporción de la totalidad de las enfermedades entre los adultos y los niños. El suministro de agua potable y el adecuado saneamiento salvaría millones de vidas al reducir la prevalencia de enfermedades hídricas.

Si bien las enfermedades relacionadas con el agua varían considerablemente en cuanto a su naturaleza, transmisión, efectos y tratamiento, los efectos adversos para la salud relacionados con el agua pueden organizarse en cuatro categorías: enfermedades transmitidas por el agua, incluidas las causadas por organismos fecales-orales y las causadas por sustancias tóxicas; las enfermedades con base en el agua; enfermedades de origen vectorial relacionadas con el agua y las enfermedades vinculadas a la escasez de agua y los malos hábitos higiénicos.

8.5.1. Enfermedades transmitidas por el agua

Las enfermedades transmitidas por el agua son producidas por la contaminación de ésta por desechos humanos, animales o químicos. Mundialmente, la falta de servicios de agua potable y la evacuación sanitaria de desechos es la causa de más de 12 millones de defunciones por año.

Son enfermedades transmitidas por el agua el Cólera, Fiebre Tifoidea y Paratifoidea, Disentería Amibiana y Bacilar, Leptospirosis, la Hepatitis A y E, el Absceso hepático amibiano y la intoxicación

alimentaria bacteriana. Los seres humanos y los animales pueden actuar de huéspedes de bacterias, virus o protozoos que causan estas enfermedades.

En sitios con bajas condiciones sanitarias, las enfermedades transmitidas por el agua pueden propagarse con rapidez. Esto sucede cuando los excrementos portadores de organismos infecciones son transportados por el agua o se lixivian en los manantiales de agua dulce contaminándola.

Cólera

El cólera es una infección aguda del intestino causada por la bacteria *Vibrio cholerae*. El periodo de incubación varía de algunas horas a cuatro o cinco días. Los síntomas comienzan repentinamente con intensos calambres en la espalda, piernas y brazos, diarrea, nausea y vómito. Poco después del ataque inicial, las defecaciones se vuelven liquidas y contienen pequeñas masas blancas. Se pierde tanto líquido en las defecaciones que el paciente se queja de mucha sed, disminuye la orina, la piel se seca y resulta fría al tacto. La cara parece estirada y los labios, la cara y las uñas se tornan de color azulado.

La población con problemas de desnutrición presenta síntomas más agudos de la enfermedad. Los casos severos provocan una rápida deshidratación y la muerte. Si el paciente no es tratado, tiene un 50% de probabilidad de fallecer, por el contrario, un expedito y adecuado tratamiento reduce las posibilidades de muerte a menos de 1% de los casos.

El cólera puede adquirirse al consumir agua o alimentos que han sido contaminados por las heces de personas infectadas. La contaminación proviene generalmente del empleo de los excrementos como abono agrícola, o por arrojarlos sin haberlos sometido primero a algún proceso de desinfección, de modo que infectan los pozos, estanques y corrientes de agua. Las moscas, cucarachas, hormigas y ratones son todos transmisores de la infección del cólera. Se alimentan con basuras y llevan en sus patas los gérmenes o en el contenido de sus intestinos. Así contaminan cualquier comestible que lleguen a tocar.

Los pescados y mariscos crudos o mal cocidos pueden ser fuente de infección en áreas donde el cólera tiene prevalencia y las condiciones sanitarias son pobres. Las frutas y verduras si son lavadas con agua donde se encuentra la bacteria pueden transmitir la infección.

El tratamiento del cólera consiste principalmente en el suministro adecuado al paciente de fluidos y sales, y generalmente no se prescriben antibióticos. La mayor parte de los enfermos se recuperan en 3 o 6 días.

Fiebre Tifoidea y Paratifoidea

En las regiones del mundo donde existen servicios sanitarios eficientes, la fiebre tifoidea es una enfermedad rara; pero esto no sucede en todas partes. Donde reinan las condiciones antihigiénicas puede iniciarse una epidemia de tifoidea, dondequiera que aparezca, la enfermedad sigue siendo una gran amenaza. No es necesaria tampoco que sea importada de lejanas regiones, pues se sabe que en todas partes existen portadores de gérmenes. Lo mismo se aplica hasta cierto punto a dos variedades de Fiebre

Paratifoidea, que tienen síntomas similares a los de la tifoidea, aunque de menos gravedad, y sueien tener un curso más corto. La incidencia de esta enfermedad se estima en 17 millones de casos en el mundo.

La fiebre tifoidea y la paratifoidea son causados por la bacteria Salmonella typhi y la Salmonella paratyphi. Los gérmenes se transmiten a través de las heces y la orina de la gente infectada. Las personas se contagian al consumir alimentos y bebidas que han sido manipuladas por algún enfermo o a través del consumo de agua contaminada por aguas residuales portadoras de la bacteria. Una vez que la bacteria se introduce en el cuerpo, se multiplica y se esparce desde el intestino al torrente sanguíneo. El ataque inicial aparece de una a cuatro semanas después de adquirir la infección y suele ser gradual. Al principio es posible que no haya más que debilidad general y sensación de cansancio, o puede haber dolor de cabeza y además hemorragias nasales. En la mayoría de los casos hay diarrea, aunque en ciertos casos hay estreñimiento, y las defecaciones son muy fétidas. El abdomen es sensible y se le nota distendido. La tos es un síntoma bastante común. Hay enrojecimiento de la cara y los ojos brillan. La fiebre sube de día a día, hasta alcanzar los 40° C por las noches. Pueden observarse en el cuerpo manchas rosadas sobre todo en el abdomen. La lengua esta muy cargada y se presenta la anorexia.

Los síntomas varían mucho en intensidad según el caso, sin embargo, en los casos graves la fiebre puede permanecer en niveles alto, se presenta delirio, extremada distensión abdominal y perforación intestinal la cual produce hemorragias peligrosas

Las medidas de control para combatir esta enfermedad incluyen la prevención (educación) y la aplicación de antibióticos. Es posible la aplicación de una vacuna, aunque no es una práctica común, excepto para quienes se encuentren a una exposición prolongada en sitios de alto riesgo que cuentan con agua y alimentos contaminados.

Aún después de que se presume que existe recuperación de la fiebre tifoidea o paratifoidea, un pequeño número de individuos, llamados portadores, continúan llevando en su cuerpo a la bacteria, siendo una fuente potencial de transmisión de la infección.

Disenteria Amibiana

Cualquier infección por los organismos que pueden causar disentería amibiana se llama amibiasis. Pero sólo se habla de disentería amibiana cuando se presentan los síntomas, particularmente la diarrea. Muchas personas están infectadas sin saberlo, por no haber síntomas en su caso. Cuando los organismos provocan una enfermedad intestinal grave, la víctima tiene diarrea, calambres y cólicos. Las defecaciones contienen pus, mucus y sangre. Su número puede elevarse a veinte o más por día, con la debilidad, pérdida de peso y anemia resultantes. Puede haber fiebre y pulso rápido. En la mayoría de los casos, la diarrea y los otros síntomas son comparativamente benignos, aunque persistentes y bastan ciertamente para minar la salud. Ocasionalmente, el único síntoma es la recurrencia de cólicos abdominales. La verdadera naturaleza de la afección se determina fácilmente con el análisis de las materias fecales al descubrir en ellas amibas activas o sus quistes. En cualquier país del mundo donde se sabe que hay amibiasis, conviene sospechar de esta enfermedad en cualquier caso de cólicos recurrentes o de diarrea crónica o recurrente.

La causa específica de la disentería amibiana es un microorganismo llamado *Endameba histolytica*. Dicho organismo es expelido del cuerpo con las defecaciones, y se transmite a otras personas cuando contamina sus alimentos o el agua que han de beber. Afecta la mucosa del intestino, especialmente el grueso. Causa ulceración, con mayor o menor deterioro de la membrana y exudación de sangre. La anemia y la debilidad no sólo se deben a la pérdida de sangre en las evacuaciones intestinales, sino también al hecho de que las amibas devoran muchos glóbulos rojos de la sangre. La complicación más común es sin duda el Absceso Hepático Amibiano.

La amibiasis puede durar muchos años. Los casos agudos pueden acarrear la muerte en cuestión de días o semanas. No es frecuente que los casos crónicos resulten fatales por sí mismos, pero debilitan de tal manera a las víctimas que las exponen a ser presa de alguna otra enfermedad.

Absceso Hepático Amibiano

Esta enfermedad es resultado directo de la disentería amibiana. Por lo general se produce un solo absceso muy grande, que destruye mucho tejido hepático, a veces tanto que el hígado no es más que una sola bolsa de pus. El paciente puede tener fiebre irregular, con sudores profusos y mucha postración. También suele haber ruptura del absceso en el pulmón, y la tos expele gran cantidad de pus más bien liquida y tono pardo. En estos casos se requiere de una intervención quirúrgica.

The state of the stage of adopting the first material advisors on the stage of the first stage of the

Disentería Bacilar

La disentería bacilar se inicia en forma abrupta, con frecuentes defecaciones, cólicos y repetido deseo de vaciar los intestinos. Las disposiciones no tardan en volverse acuosas, con mucus y rastros de sangre. Finalmente consiste casi por completo de pus, mucus y sangre. Es probable que el paciente se vea aquejado de mucha sed y rápida pérdida de peso.

La disentería bacilar es causada por una u otra de las diversas variedades de bacilos disentéricos, que casi siempre penetran en el cuerpo al ingerir alimentos contaminados por falta de higiene. Muchos pacientes sanan a los pocos días con la sola administración de tratamientos sencillos.

Leptospirosis

La leptospirosis es una enfermedad bacterial que afecta tanto a humanos como animales. En un caso típico, el ataque inicial se produce de seis a doce días después de haber sido expuesto el paciente al contagio, y se manifiesta por escalofríos, náuseas, vómitos y dolores de cabeza. A las pocas horas, hay fiebre, sed extrema e intensos dolores en los miembros; y los vasos sanguíneos de los globos oculares adquieren una dilatación pronunciada. La fiebre permanece irregularmente elevada durante algunos días, decae por un corto plazo, luego se eleva otra vez durante unos días. La ictericia se presenta en más o menos la mitad de los casos. En éstos, el hígado se dilata y se vuelve sensible, y disminuye la evacuación de orina. Resultan comunes el herpes febril y erupciones de diversos tipos. Una erupción hemorrágica es un signo de peligro de muerte.

El agente patógeno causante de la leptospirosis es la Leptospira ictero-haemorrhagie. La infección se adquiere a través del contacto con la orina de animales infectados o a través de ambientes contaminados. tales como las aguas superficiales, el suelo o las plantas. Estas bacterias se introducen en el cuerpo a través de cortadas, abrasiones de la piel, los ojos, nariz o boca. La transmisión de humano a humano no es muy frecuente.

La leptospirosis se desarrolla tanto en ambientes urbanos como rurales y en climas templados o tropicales. En áreas endémicas, los casos se incrementan en la época de lluvias y puede alcanzar niveles de epidemia ante la ocurrencia de inundaciones.

El número de casos en el mundo varía de 0,1 a 1 por cada 100,000 habitantes en climas templados a 10 o más por cada 100,000 habitantes en climas tropicales. Fallecen entre el 10% y el 20% de las víctimas, casi siempre durante el periodo agudo de la enfermedad.

La enfermedad es con frecuencia difícil de diagnosticar, por lo que las pruebas de laboratorio son indispensables. El tratamiento con antibióticos adecuados es prioritario, ya que sin él, generalmente los resultados son fatales.

Hepatitis

La hepatitis es un término genérico que describe la inflamación del hígado, y que puede tener o no su origen en procesos infecciosos.

El virus de la hepatitis tipo A y E se transmiten por la ruta heces-vía oral, la mayoría de las veces a través del agua contaminada y de persona a persona. La hepatitis A se puede transmitir también vía los alimentos mal cocidos o contaminados por la manipulación de personas enfermas, o por emplear jeringas para la inyección de drogas.

En general, la tasa de mortalidad es baja, sin embargo, en ciertos casos existe necrosis del hígado durante las primeras 6 a 8 semanas de la enfermedad provocando que el 70% al 90% de los pacientes mueran. En pacientes con hepatitis crónica B o C la ocurrencia de la hepatitis A o E incrementa considerablemente la tasa de mortalidad.

Aún y cuando existan las adecuadas medidas de higiene en un país, el virus de la hepatitis se puede transmitir por grupos específicos de riesgo tales como los turistas de países con alta incidencia de la enfermedad. Debido a que no existe un tratamiento específico antiviral en contra de la hepatitis A y E, la prevención es la mejor herramienta para su control.

Diarrea Las enfermedades diarreicas, las principales enfermedades transmitidas por el agua, prevalecen en numerosos países donde la distribución de agua potable es ineficiente y donde los desechos humanos se evacuan en letrinas abiertas, canales y corrientes de agua, o se esparcen en las tierras de cultivo. Se estima que las enfermedades diarreicas en el mundo causan alrededor de 2.2 millones de defunciones al año, sobre todo en la población infantil.

La diarrea es una pérdida de líquidos corporales y es un síntoma de infección gastrointestinal. Dependiendo del tipo de infección, la diarrea puede ser sólo acuosa, para el caso cuando se genera por el cólera, o acompañada de sangre para el caso de la disentería. La diarrea puede durar unos pocos días o ser persistente por semanas.

La diarrea es un síntoma de infección causada por un huésped bacterial, viral u organismo parasitario, la mayoría de los cuales se expanden por el agua contaminada. Es más común su presencia cuando existe una escasez de agua potable para beber, cocinar y satisfacer las necesidades básicas de higiene. El agua contaminada con heces humanas o animales provenientes de los drenajes municipales, tanques sépticos y letrinas son de especial preocupación como fuente de generación de los procesos infecciosos.

Las medidas para reducir el número de casos con diarrea incluyen el acceso al agua potable, el manejo adecuado de las aguas residuales y el mejoramiento de los hábitos higiénicos personales a través de campañas preventivas. El tratamiento se basa en la rehidratación a través de sueros orales, una adecuada alimentación y la erradicación del agente precursor de la enfermedad. Sustancias tóxicas

Las sustancias tóxicas que van a terminar al agua dulce son otra causa de enfermedades transmitidas por el agua. Actualmente el agua dulce presenta concentraciones de químicos, fertilizantes, plaguicidas y desechos industriales, que aún en bajas concentraciones, con el tiempo pueden acumularse sus efectos negativos y finalmente causar enfermedades crónicas como cánceres entre las personas que usan esas aguas.

Los problemas de salud derivados de los nitratos presentes en las fuentes del agua se están convirtiendo en una serie preocupación en todo el mundo. En más de 150 países, los nitratos procedentes de los fertilizantes se han filtrado en los pozos de agua, ensuciando el agua para beber.

Las altas concentraciones de nitratos causan trastornos sanguíneos. Además, los altos niveles de nitratos y fosfatos en el agua estimulan el crecimiento de algas verde-azules, que llevan a la desoxigenación (eutrofización).

Se requiere oxígeno para el metabolismo de los organismos que sirven de depuradores, descomponiendo la materia orgánica, como los desechos humanos, que contaminan el agua. De allí que la cantidad de oxígeno contenido en el agua sea un indicador clave de la calidad del agua.

Los plaguicidas como el DDT y el heptaclor, que se utilizan en la agricultura, tienen repercusiones en la salud humana, ya que son agentes causantes de cáncer y también pueden causar recuentos bajos de espermatozoides y enfermedades neurológicas.

Metaemoglobinemia - Company Co

La metaemoglobinemia es causada por la presencia de nitratos en el agua para beber. Los niveles altos de nitrato se presentan en el agua debido al uso excesivo de abono y fertilizantes en las tierras de cultivo.

La metaemoglobinemia se caracteriza por la disminución en la capacidad de la sangre para transportar oxígeno debido a la reducción del nivel normal de hemoglobina. Los niños pequeños son con frecuencia los más afectados, y a pesar de tener una presencia saludable, muestran tonos azulados alrededor de la boca, manos y pies, en lo que se conoce con el nombre del síndrome del niño azul. Estos niños suelen presentar deficiencias respiratorias, así como vómito y diarrea. En casos extremos presentan un marcado letargo, incremento en la salivación y pérdida de la conciencia. Algunos casos pueden desencadenar en la muerte.

En la población adulta la presencia de los nitratos también representa un riesgo para la salud ya que disminuye la secreción de los jugos gástricos. En general, la malnutrición y las infecciones incrementan el riesgo de la metahemoglobinemia. Otros factores de riesgo para el desarrollo de esta enfermedad incluyen; adultos con predisposición hereditaria, gente con úlcera péptica o gastritis crónica, como también pacientes sometidos a diálisis.

Fluorosis

La ingesta excesiva de fluor a través del agua para beber puede causar fluorosis, la cual afecta de manera importante a los dientes y huesos. Cantidades moderadas conducen a efectos dentales, pero la ingestión de largo plazo provoca serios problemas en el esqueleto humano, provocando atrofia muscular y dolor en las articulaciones. Además, la exposición aguda de altos nivel de fluor produce dolor abdominal, salivación excesiva, nausea, vómito y espasmos musculares.

Remover el fluor del agua es difícil y muy costoso, por lo que la opción viable es buscar una fuente alterna de suministro con niveles adecuados de esta sustancia, es decir, menos de 1.5 miligramos por litro.

Arsenicosis

El consumo a largo plazo (5 a 20 años) de agua con altos contenidos de arsénico provoca una enfermedad por envenenamiento llamado arsenicosis. Los síntomas se reflejan en un cambio de color en la piel, encostramiento en manos y pies, cáncer de la piel, riñón y pulmón, problemas arteriales, hipertensión, desordenes reproductivos y posiblemente también diabetes mellitus. Las concentraciones adecuadas de arsénico en el agua deben estar por debajo de 0.01 miligramos por litro.

La contaminación por altas concentraciones de arsénico es causa de preocupación en países como Argentina, Bangladesh, Chile, China, Estados Unidos, India, México y Tailandia.

Toxina cianobacterial

La cianobacteria o alga azul-verde se desarrolla especialmente en aguas tranquilas ricas en nutrientes. Algunas especies de cianobacterias producen toxinas que afectan tanto animales como a los seres humanos. La población puede estar expuesta a estas toxinas por consumir o por bañarse con agua contaminada.

Las toxinas se clasifican de acuerdo con su efecto en los seres humanos en Hepatotóxicas, las cuales afectan el hígado (*Microcystis*, *Anabaena*, *Oscillatoria*, *Ondularía*, *Nostoc*, *Cylindrospermosis* y *Umezakia*), y las Neurotóxicas, que afecta al sistema nervioso (*Cilindroapermosis raciborski*).

Los síntomas varían de acuerdo al tipo de toxina y nivel de exposición. Así, se puede presentar irritación de la piel, dolor estomacal, vomito, nausea, diarrea, fiebre, molestias en la garganta, dolor de cabeza, dolor en articulaciones y músculos y daño hepático y renal. La gente que utiliza el agua contaminada con fines recreativos presenta reacciones alérgicas, tal como el asma, irritación ocular y rash cutáneo.

Envenenamiento por Plomo

La exposición al plomo causa una variedad de efectos en la salud, en especial a la población infantil. El plomo puede dañar los sistemas nervioso y reproductivo, además de los riñones. También causa hipertensión arterial, anemia, daños en el cerebro de fetos y niños. Los altos niveles de plomo en la sangre de los niños pueden tener consecuencias irreversibles como deficiencias en el aprendizaje, problemas de comportamiento y retardo mental. En casos extremos el plomo causa convulsiones, coma y muerte.

Las concentraciones adecuadas de plomo en el agua deben estar por debajo de 0.1 miligramos por litro. Un reporte reciente sugiere que aún con concentraciones de plomo en la sangre de 10 microgramos por decilitro se pueden tener efectos dañinos en la salud, sobre todo de la población más vulnerable que son los niños.

Prevención y soluciones

El mejoramiento del saneamiento público y el abastecimiento de agua limpia son las dos condiciones necesarias para prevenir la mayoría de las enfermedades transmitidas por el agua y las muertes resultantes. En muchas ocasiones se considera que el suministrar adecuadamente de servicios de agua potable, alcantarillado y saneamiento a una comunidad representa un alto costo económico para un gobierno, sin embargo, si se valoran los costos directos e indirectos que se producen al tener de manera constante una población enferma, los beneficios a futuro justifican las inversiones en infraestructura. Por ejemplo, en Costa Rica los investigadores atribuyen que la tasa de mortalidad de niños menores de un año descendió de 68 defunciones por 1,000 nacidos vivos en los años setenta a sólo 20 por 1,000 en los ochenta debido a la implantación de proyectos de suministro de agua y saneamiento como parte de los programas rurales de salud comunitaria.

8.5.2. Enfermedades con base en el agua

En las enfermedades con base en el agua los causantes son organismos acuáticos que pasan parte de su ciclo vital en el agua y otra parte como parásitos de animales. Estos organismos pueden prosperar tanto en aguas contaminadas como no contaminadas. Como parásitos, generalmente toman forma de gusanos y se valen de vectores animales intermedios como los caracoles para prosperar, y luego infectan directamente al hombre, penetrando a través de la piel o al ser tragados por éste.

Son enfermedades con base en el agua la Ascariasis, Oxiuriasis, Teniasis, Dracunculosis, Paragonimiasis, Clonorquiasis y Esquistosomiasis. Aunque estas enfermedades generalmente no son mortales, pueden ser extremadamente dolorosas e impiden trabajar a quienes las padecen, e incluso a veces impiden el movimiento.

La prevalencia de enfermedades con base en el agua aumenta en lugares donde se estanca el agua, como por ejemplo en algunos sitios localizados aguas arriba de una presa.

Ascariasis

La ascariasis es una infección causada por un gusano redondo llamado *ascaris lumbricoides*, el cual puede tener una longitud de 12 a 40 cm. Viven en la parte superior del intestino delgado. Puede haber tan sólo uno o dos. Las hembras producen gran número de huevos. Estos salen del cuerpo a través de las heces fecales, y la mayoría de ellos nacen y constituyen embriones fuera del cuerpo de la víctima.

La población más vulnerable a esta enfermedad la constituyen los niños y se vuelve más seria si se presenta acompañada de desnutrición. Los niños se infectan al pasar sus manos por la boca después de haber estado jugado en suelos regados con aguas contaminadas o por acariciar a un perro o gato que este en contacto con el gusano.

En algunos casos la presencia de las ascárides, o lombrices comunes, en el intestino delgado no causa síntomas. En mayor número de casos, especialmente si las víctimas son niños, como sucede generalmente, puede haber dolor abdominal, fiebre, diarrea, agitación, crujir de dientes, o convulsiones, Ocasionalmente una lombriz entera es evacuada en las heces o arrojada en un vómito. Los exámenes de laboratorio permiten descubrir la presencia de los huevos en la materia fecal.

La ascariasis es una enfermedad que se puede encontrar en todo el mundo, sin embargo, su incidencia aumenta en las regiones subtropicales y tropicales, y en aquellas áreas con inadecuados sistemas de saneamiento de agua.

Oxiuriasis

Los oxiuros viven en el intestino grueso, especialmente en el recto. Existen generalmente en gran número y con frecuencia penetran en el ano y saliendo de él infestan la piel circundante. Ocasionan mucha picazón e irritación en esta zona, particularmente de noche.

Los oxiuros son gusanitos blancos. La hembra, que mide entre 8 y 13 mm, pone una gran cantidad de huevos, y siempre existe el peligro de que la infección se transmita a otras personas, o de que el niño se reinfecte a sí mismo, al rascarse la región anal y tocar luego los alimentos u objetos que él u otras personas comerán o tocarán, o poniendo los dedos en la boca. Se contaminan con facilidad las ropas interiores y de cama, y resulta siempre difícil de eliminar la infección de un miembro de la familia a menos que se trate al mismo tiempo a todos los miembros de ella.

Teniasis

Existen muchas variedades de tenias. Todas ellas son largas, aplanadas y delgadas. Su cuerpo se compone de segmentos y tiene la cabeza pequeña y provista de discos o ganchos chupadores para aferrarse a la pared intestinal. Se nutren del contenido del intestino, en el que sueltan sus huevos. Estos, y a veces los segmentos más viejos del cuerpo son evacuados con las heces fecales.

Por lo general, las tenias perjudican a los seres humanos porque substraen nutrición de su alimento mientras está en proceso de digestión. Existen otras que segregan substancias tóxicas que irritan o dañan al cuerpo, de tal forma que lo pueden llevar a la muerte.

La tenia bovina (*Taenia saginata*) puede alcanzar un longitud de 10 m. Su presencia causa diarrea, dolores de hambre y pérdida de peso.

La tenia de los peces (*Diphyllobothrium latum*) es la mayor de todas, ya que puede alcanzar los 12 m de largo. Es probable que cause dolores de hambre, diarrea, molestias abdominales, pérdida de peso y un tipo de anemia algo parecido a la anemia perniciosa.

La tenia del cerdo (*Taenia solium*) puede medir hasta 6 m de largo y suele presentar los mismos síntomas que la tenia bovina.

La tenia echinococcus granulosos se transmite al hombre a través del perro. Las larvas se desarrollan primero en el intestino, y luego penetran en los tejidos. La mayoría de las que sobreviven se alojan finalmente en el hígado, donde forman quistes llenos de líquido y forrados de una membrana capaz de producir muchas cabezas de parásitos, cada una de las cuales puede desarrollarse en una tenia adulta. Algunos de los quistes obran como tumores malignos, de modo que la Equinococosis puede ser una enfermedad muy grave.

La tenia enana (*Hymenolepis nana*) mide de 25 a 35 mm. Se halla con mayor frecuencia en los niños que en personas adultas. Los huevos, al ser ingeridos, nacen en el intestino y se desarrollan allí. Este parásito puede dar origen a síntomas nerviosos y pérdida de apetito, pero es frecuente que no haya otros síntomas que la presencia de muchos huevos en las heces fecales.

Dracunculosis

La dracunculosis es causada por el gusano de Medina o de Guinea, *Dracunculus medinensis*, cuya hembra adulta es un nematodo liso, blanco, muy delgado, de cerca de un metro de largo. Los síntomas

comienzan con la aparición de una ampolla en la pierna o el pie. Hay picazón y urticaria e la zona de la ampolla. La acompañan estos síntomas generales: vómitos, diarrea, asma, diseña y vahídos. La ampolla revienta finalmente y forma una úlcera con un hoyito en su centro. La infección secundaria es frecuente.

El gusano suelta del centro de la úlcera ya mencionada un gran número de embriones tan diminutos que ha simple vista son apenas perceptibles. Esto sucede con mayor frecuencia cuando las personas infectadas entran en el agua. Para desarrollarse, el embrión de lombriz necesita penetrar en el cuerpo de algún miembro de una especie de crustáceo diminuto que vive en el agua, del género ciclops. Cuando algún ser humano bebe agua que contiene ciclops infestados, introduce en su cuerpo los embriones parcialmente desarrollados.

Muchas comunidades afectadas por este gusano se incapacitan durante el tiempo de mayor actividad agrícola, lo cual afecta sustancialmente la disponibilidad alimenticia en sus hogares y por tanto el estatus nutricional de los miembros de sus familias, especialmente de los niños.

El abastecer de agua potable a las comunidades rurales es el pilar fundamental para eliminar esta enfermedad.

Paragonimiasis Paragonimiasis

La causa de esta dolencia es el parásito llamado *Paragonimus ringeri*, cuya forma madura mide cerca de 2 cm de largo. Estos gusanos, que viven enquistados en los pulmones, ponen huevos que luego son expectorados y tragados. Los huevos de los gusanos se expulsan por las heces y se rompen en el agua dulce. A fin de iniciar su desarrollo es necesario que los huevos del parásito lleguen al cuerpo de un caracol huésped donde se multiplicará. La segunda etapa del desarrollo, con la formación de un quiste, se produce cuando un cangrejo se come al caracol infectado. Si alguien se come ese cangrejo crudo o poco cocido, se traga el quiste con el parásito vivo. Este continúa entonces su desarrollo en el intestino, cruza a través de la pared intestinal y del diafragma, y finalmente se introduce en el pulmón.

El caso típico de paragonimiasis se presenta gradualmente y no da a la víctima la sensación de estar notablemente enfermo. Hay una tos crónica y un malestar vago en el pecho, con esputos abundantes, pegajosos, de un color marrón rojizo, y ocasionalmente el paciente escupe sangre. La afección no es a menudo fatal, aunque una infestación cuantiosa puede causar una anemia bastante severa para amenazar la vida.

Clonorquiasis

La enfermedad es causada por la presencia del gusano *Clonorchios sinensis* en los pequeños conductos biliares del hígado. Los parásitos adultos son oblongos y chatos de 15 mm de largo. Los huevos pasan con la bilis al intestino, y de allí al exterior con las defecaciones. No nacen antes de llegar al agua, y generalmente tan solo después que los tragó algún caracol de agua dulce, en cuyo cuerpo inician la primera etapa de su desarrollo. La etapa siguiente se produce en el cuerpo de algún pez que se comió al caracol. La carpa parece ser especialmente susceptible. Los seres humanos o animales inferiores se

infestan al ingerir pescado crudo o poco cocido. La infestación puede persistir durante varios años aun cuando no penetran nuevos parásitos en el cuerpo de las víctimas. En algunos países tropicales o subtropicales cerca de la mitad de la población alberga estos parásitos sin presentar síntoma alguno.

En las infestaciones benignas, una ligera indigestión puede ser el único síntoma. En los casos graves, el hígado se dilata, hay edema, diarrea y ataques recurrentes de ictericia. En presencia de trastornos hepáticos benignos, con diarrea, si los pacientes son oriundos de regiones infestadas por los parásitos específicos, se debe sospechar de un caso de clonorquiasis.

Esquistosomiasis

La esquistosomiasis es considerada la segunda más importante de las infecciones parasitarias después de la malaria o paludismo en términos de la salud pública e impacto económico. Hay tres importantes parásitos de la sangre que pueden ocasionar enfermedad en los seres humanos: *Schistosoma japonicum*, *Schistosoma mansoni y Schistosoma haematobium*. En las tres especies, los parásitos adultos presentan aspecto de gusanitos delgados. Si las evacuaciones corporales que contienen los huevos de estos parásitos penetran en el agua, estos huevos nacen y los pequeños parásitos nadan hasta que encuentran un caracol adecuado en que albergarse. En el cuerpo del caracol pasan por otra etapa del desarrollo y vuelven a escaparse al agua, donde aguardan la oportunidad de introducirse en la piel de un ser humano, o de algún otro animal de sangre caliente. Por supuesto, pueden penetrar en el cuerpo de su víctima si ésta bebe aguas que los contenga. Si penetran por la piel pueden crear una irritación que es llamada "sarna de los nadadores". El cultivo de arroz en terrenos anegados facilita la transmisión de los parásitos en muchas zonas del mundo.

Habiendo entrado en el cuerpo, los parásitos viajan por los canales sanguíneos o linfáticos, y se congregan en las venas pequeñas de la vejiga, el hígado o el mesenterio de los intestinos. En estas venas ponen huevos, y muchos de ellos atraviesan las paredes de estas venas para penetrar en la vejiga o el intestino, de donde son expelidos en la orina o las heces fecales.

La esquistosomiasis japonesa o hepática se destaca en su primera etapa por la irritación o ulceración de los intestinos, principalmente del delgado, acompañada de diarrea, fiebre, dolor abdominal, dilatación del hígado y del bazo. La etapa final, a la que se llega de tres a cinco años después de la infección original, queda marcada por la atrofia del hígado y acumulación de líquido en la cavidad abdominal. Si no se trata en sus etapas tempranas, esta enfermedad puede causar la muerte.

La esquistosomiasis intestinal o de Mansón es similar a la japonesa en sus manifestaciones generales como fiebre, diarrea, etc., pero las últimas pulgadas del intestino grueso son las que sufren mayor daño, al presentar fístulas, úlceras y tumores.

La esquistosomiasis urinaria se caracteriza por irritación e inflamación de la vejiga, con micción frecuente y finalmente la presencia de sangre en la orina. Este tipo de enfermedad es extremadamente crónica y debilitante. Los cálculos de la vejiga constituyen una complicación frecuente.

Prevención y soluciones

Las personas pueden evitar infectarse si lavan y cocinan correctamente los alimentos, se abstienen de nadar o cruzar por ríos contaminados, ya que muchos de los parásitos se introducen a través de la piel.

Como con las enfermedades vinculadas con la falta de higiene, la correcta disposición de las heces fecales permite el control de las enfermedades con base en el agua

Con respecto a los canales de riego y otras obras hidráulicas, se deben diseñar y construir de tal manera que la velocidad del flujo en ellas evite la supervivencia de los caracoles, eliminándose así el huésped intermediario.

Algunos países como Filipinas han adecuado sus planes de desarrollo hidrológico al control de enfermedades, logrando reducir la prevalencia de enfermedades con base en el agua de 24% en 1979 a 9% en 1985. Como hubo menos gente enferma, se estimó un aumento medio de la productividad de 19 días de trabajo por persona al año.

8.5.3. Enfermedades de origen vectorial relacionadas con el agua

Millones de personas sufren de infecciones transmitidas por vectores (insectos o animales) que se crían y viven cerca de aguas contaminadas. Estos vectores infectan al hombre con Paludismo, Fiebre amarilla, Dengue, Tripanosomiasis (Enfermedad del sueño) y Filiaríais.

La incidencia de enfermedades de origen vectorial relacionadas con el agua parece aumentar, ya que la gente esta desarrollando resistencia a los medicamentos antipalúdicos; los mosquitos están desarrollando resistencia al DDT; los cambios ambientales están creando nuevos lugares de cría; a raíz de la migración, los cambios climáticos y la creación de un nuevo hábitat, hay menos personas que desarrollan inmunidad a la enfermedad; y muchos de los programas contra el paludismo son inadecuados

Paludismo

Los ataques típicos de escalofrío y fiebre durante unas horas todos los días, seguidos por sudores agotadores, o con más frecuencia cada día y medio o cada tres días, sugiere la presencias del paludismo.

Las causas específicas del paludismo son tres parásitos de la sangre llamados *Plasmodium malariae*, *Plasmodium vivax* y *Plasmodium falciparum*. Según lo provoque una u otra especie, la enfermedad varía en carácter y severidad. La primera de las tres produce un tipo de paludismo comparativamente raro y benigno; la segunda, un tipo muy común, con pronunciada tendencia a las recaídas; y la tercera, un tipo muy grave que se localiza generalmente en las densas selvas tropicales.

Los parásitos del paludismo son transmitidos indirectamente de un ser humano a otro por alguna especie de mosquito *Anopheles*. Cuando el mosquito pica a una persona cuya sangre contiene parásitos de paludismo, éstos entran en el cuerpo del mosquito y allí pasan por una etapa de su desarrollo y se acumulan en las glándulas salivales del insecto. Cuando el mosquito pica a otra persona, los parásitos

parcialmente desarrollados penetran en la sangre de esa nueva víctima y allí pasan por la otra etapa del desarrollo.

Los parásitos penetran en los glóbulos rojos de la sangre, crecen en ellos y los destruyen finalmente. Cuando uno de sus microorganismos se ha desarrollado por completo dentro de un glóbulo rojo, suele dividirse en varias partes, cada una de las cuales puede penetrar en un glóbulo rojo y repetir el proceso. Esto requiere de dos a tres días y puede repetirse durante muchos ciclos, pero al fin tienen que producirse las formas especiales del parásito adaptadas para desarrollarse en el cuerpo del mosquito para que la reproducción continúe.

Si no se trata, el paludismo puede durar meses o años. El fallecimiento puede producirse por la enfermedad misma o por alguna otra infección que ataque a la víctima ya debilitada físicamente. La Fiebre hematúrica es una complicación peligrosa que puede presentarse en algunas partes del mundo, y se presenta generalmente en forma repentina, con escalofríos, postración, fiebre y dolor en las regiones de los riñones y de la vejiga. Las náuseas y los vómitos son con frecuencia muy molestos. La piel cobra un tinte amarillo, y la orina se vuelve progresivamente más obscura. También las micciones pueden ser muy escasas. Con este esquema fallece el 25% de los pacientes y un ataque predispone a otro más grave, y pocas personas sobreviven al tercero.

Fiebre amarilla

La causa específica de la fiebre amarilla es un virus transmitido por la picadura de un mosquito infectado del género Aedes aegypti, o de alguna de las especies estrechamente relacionadas con él. El virus es llevado generalmente por el mosquito de una persona a otra, pero se sabe que hay animales que lo albergan. Necesita multiplicarse durante un plazo de una a tres semanas en el cuerpo del insecto antes que éste pueda infectar a sus víctimas. El virus afecta más al hígado que a cualquier otra parte del cuerpo. Más o menos de tres a seis días después que una persona ha sido picada por un mosquito infectado, la fiebre amarilla se inicia abruptamente, con rápida elevación de la temperatura a 39.5 o 40° C. Una persona puede sentirse perfectamente sana y a las pocas horas estar críticamente enferma. La cara queda enrojecida e hinchada y los ojos inyectados de sangre. Hay intensos dolores de cabeza, tanto en la parte delantera como atrás, y se extiende a lo largo de la columna y hasta las piernas. El pulso es rápido ya en la primera parte de la enfermedad. También se presentan vómitos, primero de mucus y luego de bilis. Quedan afectados los riñones, y puede hallarse una gran cantidad de albúmina en la orina ya al tercer o cuarto día. La fiebre permanece alta durante algunos días, pero luego empieza a declinar en forma constante. El pulso empieza a reducir el número de sus latidos antes que baje la temperatura. Con la baja de ésta mejoran los síntomas agudos; pero el paciente se va intoxicando cada vez más y aparecen los rasgos más característicos de la fiebre amarilla: ictericia y hemorragias. El blanco de los ojos se vuelve primero amarillo y las encías se hinchan y sangran. Luego aparecen hemorragias del estómago y los intestinos, caracterizadas por defecaciones sanguinolentas y vómitos parecidos a heces de café. Pueden presentarse hemorragias debajo de la piel, que se revelan como manchas negras y azules. La enfermedad resulta a menudo fatal.

Dengue y Dengue hemorrágico

El dengue es una enfermedad ocasionada por un virus epidémico generalmente transmitido por el mosquito del género *Aedes aegypti*. Los síntomas se presentan de cuatro a diez días después de que el paciente fue picado. Al principio se notan náuseas, debilidad pérdida del apetito y estreñimiento. Luego la fiebre se eleva rápidamente y en los casos graves llega hasta los 41° C. La cara se congestiona, y hay marcada sensibilidad en los glóbulos oculares. Se experimentan intensos dolores en la cabeza, la parte inferior de la espalda y las articulaciones. El paciente se encuentra nervioso, deprimido y sufriendo de sueños desagradables. Hacia el tercer o cuarto día, la temperatura se normaliza y se logra un mejor estado de salud. Después de uno a tres días, en los casos típicos, la temperatura vuelve a elevarse, y reaparecen los dolores y la depresión mental. Esta etapa es más corta que la primera, pero se presenta una erupción semejante a la del sarampión en las manos y las piernas, y se extiende al cuerpo.

El dengue hemorrágico es una complicación del dengue clásico que se caracteriza por alta fiebre, hemorragia, frecuentemente dilatación del hígado y en la mayoría de los casos falla circulatoria, con la potencial muerte del paciente.

La prevalencia del dengue clásico y el hemorrágico ha crecido dramáticamente en las décadas recientes. Se estima una incidencia mundial de 50 a 100 millones de casos de dengue y 500,000 casos de dengue hemorrágico por año.

Tripanosomiasis (Enfermedad del sueño)

La causa específica de esta enfermedad es un miembro de cierto grupo de organismos diminutos de forma de huso y se agitan activamente. Aunque son de tamaño microscópico, son mucho mayores que un glóbulo rojo de la sangre. El miembro característico del grupo es llamado *Tripanosoma gambiense*. Es transmitido al ser humano por la picadura de la moscas tsetsé infectadas, que llegan a ser capaces de transmitir la infección de 18 a 34 días de haberla recibido al chupar la sangre de un ser humano o de algún animal infectado, pues son muchas las especies de animales domésticos o silvestres que pueden albergar tripanosomas, y algunas las albergan aparentemente sin daños para sí mismos.

El primer signo de contagio es una notable sensación de irritación en una región donde se ve un nódulo rojo en el centro de una zona blanca de la piel, sitio donde fue picado por la mosca tsetsé. Lo más común es la existencia de dolor de cabeza, insomnio, pérdida de la capacidad de concentración y latidos rápidos. De vez en cuando se presentan manchitas rosadas o rojizas en la piel del tronco y de los muslos, y perdurarán algunos días. Se dilatan los ganglios linfáticos de cualesquiera partes del cuerpo o de todas ellas. En los casos agudos pueden presentarse convulsiones y ataques epileptiformes. Indican grave peligro para la vida. Generalmente el paciente se vuelve cada vez más demacrado y se debilita física y mentalmente, presenta temblores en la lengua, los dedos y los antebrazos, y manifiesta el letargo peculiar que le ha valido el nombre peculiar del mal del sueño. Antes del periodo letárgico sucede a veces que la enfermedad termina por sí misma o por lo menos ofrece una posibilidad de tratamiento. Por el contrario, cuando se entra a la etapa de letargo, esto casi siempre significa la muerte del paciente.

Filiariasis

Cuatro especies de parásitos llamados *filarias* ocasionan enfermedades en los seres humanos. Las filarias se encuentran en la mayoría de los países tropicales o subtropicales y en algunos sitios los alberga la mitad de la población. Algunos de estos gusanos migran libremente por el cuerpo, pero otros prefieren permanecer en los vasos linfáticos Los gusanos maduros pueden vivir en el cuerpo durante muchos años, y durante su vida adulta las hembras descargan grandes números de embriones llamados microfilarias.

Las microfilarias pueden ser succionadas por mosquitos o moscas chupadoras de sangre y luego retransmitidas al ser humano mediante la picadura.

Existen tres manifestaciones de la filiariasis que han recibido nombres específicos: Elefantíasis, Loasis y la Oncocercosis.

La elefantíasis puede ser causada por dos especies de filarias la *Wuchereria bancrofti* y la *Wuchereria malayi*, que se transmiten al hombre por mosquitos. Esta enfermedad se caracteriza por una hinchazón firme que se desarrolla en varias partes del cuerpo, mayormente las piernas, pies, escroto, pechos y vulva. Una vez desarrollada, la afección perdura indefinidamente, aparentemente porque la obstrucción de los vasos linfáticos no se debe a los parásitos vivos, sino a sus cuerpos muertos y calcificados. Las partes del cuerpo ofrecen, con su hinchazón, un aspecto repelente, y por su tamaño estorban muchos los movimientos, sin poner en peligro la vida.

La loasis es causado por el filárido *Loa Loa* y es transmitido por las picaduras de tábanos. Los parásitos no viven en los vasos linfáticos, sino que viajan por los tejidos, principalmente los conjuntivos. La presencia de los parásitos en algunas partes del cuerpo causa dolor e hinchazón sobre todo en el globo ocular. La migración del parásito a través de los tejidos genera prurito, ardor e hinchazón pasajera. Si uno de los gusanos muere en los tejidos, puede producir un absceso.

La oncocercosis la causa el filárido llamado *Onchocerca volvulus*, cuyos embriones se transmite por la mosca negra o mosquito de los búfalos. Esta afección se caracteriza por pequeñas zonas de infección focal, con formación lenta de nódulos debajo de la piel. Estos nódulos son firmes bajo el tacto y rebosan de microfilarias. A veces ocasionan dolor, pero generalmente sólo prurito. En algunos casos, diversas estructuras del ojo son presa de las microfilarias y como resultado se produce la ceguera.

Prevención y soluciones

Las soluciones para las enfermedades de origen vectorial relacionadas con el agua parece clara: eliminar los insectos que las transmiten. Sin embargo, los pesticidas pueden ser dañinos para la salud si pasan al agua para beber o al riego de cultivos. Además, los insectos al desarrollar inmunidad al plaguicida pueden generar nuevas versiones de la enfermedad.

Una forma de controlar vectores consiste en el saneamiento de las especies mediante métodos biológicos y la ordenación del hábitat para reducir o eliminar los lugares naturales de cría de los vectores. Estos métodos pueden consistir en rellenar y desecar las masas de agua estancada; tapar los contenedores de agua; realizar el limpiado de maleza de los canales, embalses y viveros de peces e implantar los sistemas de riego por aspersión o goteo.

8.5.4. Enfermedades vinculadas a la escasez de agua y los malos hábitos higiénicos.

La reducida disponibilidad de agua que permita mantener las condiciones mínimas de higiene de la población, aunado con el estrés que esto produce en la población y el incremento de contaminación del aire por el material procedente de una mayor erosión eólica ha propiciado el aumento de algunas enfermedades cardiovasculares e infecciones leves o muy severas en ojos, la piel o el aparato respiratorio.

Entre los principales padecimientos se pueden mencionar la Hipertensión Arterial, Tracoma, Escabiasis, Tiña, Tuberculosis del aparato respiratorio, Neumonía y las llamadas Infecciones Respiratorias Agudas (Influenza, Faringitis, Laringitis, Rinitis, Bronquitis y Traqueitis).

Hipertensión arterial

La hipertensión tiene muchas posibles causas como el comer en exceso, el consumo de tabaco, la presencia de algún padecimiento cardiovascular o renal, y el estrés de la vida moderna. La escasez de agua ha propiciado el incremento notable de estrés en la población, ya que no cuenta con el recurso hídrico para satisfacer sus necesidades básicas de higiene y de producción de alimentos.

El aumento de la presión arterial puede producir vértigos, dolores de cabeza, tintineo en los oídos, palpitaciones del corazón y otras sensaciones desagradables. A menos que se corrijan las causas, la hipertensión no sólo tiende a perdurar sino a empeorar. Algunos de los fallecimientos se deben a la ruptura de los vasos sanguíneos que no pueden resistir la presión. Otros se deben a un infarto cardíaco que ocurre cuando el corazón se ve cargado de trabajo para bombear la sangre que ha de vencer la resistencia de la alta presión.

Tracoma

El tracoma es una infección de los ojos causado por un organismo, llamado *Chlamydia trachomatis*, que puede resultar en ceguera después de repetidas re-infecciones, y ocurre donde la gente vive en condiciones de hacinamiento con limitado acceso al agua y a los cuidados de la salud.

El tracoma es una enfermedad muy peligrosa ya que puede ocasionar úlceras en la córnea, que a su vez pueden producir ceguera. Con frecuencia quedan deformaciones y tejido cicatrizal en los párpados; el inferior se enrolla para afuera, exponiendo su membrana y ésta se infecta y adquiere espesor; o el párpado superior se enrolla para adentro de modo que las pestañas producen molestias, úlceras y opacidades en el globo ocular. Es posible que se destruyan las glándulas de la mucosa, y el ojo quedará seco.

El tracoma es muy contagioso, y a menudo que se ejerza mucho cuidado, puede contraerlo todos los miembros de la familia. La toalla es con frecuencia el vehículo de contagio. Se estima que cerca de seis millones de personas en el mundo se quedaron ciegas debido a este padecimiento y más de 150 millones están en la necesidad de un tratamiento.

Escabiasis Escabiasis

La causa de esta enfermedad es un ácaro llamado *Sarcoptes scabei*, que es de un color blanco amarillento y resulta apenas visible a simple vista. La hembra, que es mayor que el macho, se hunde en la piel, apenas bajo la superficie de ella, para poner sus huevos. La enfermedad puede alcanzar su pleno desarrollo a las dos semanas, y puede durar años si no se la trata en forma adecuada. Se contrae por estrecho contacto personal con una persona afectada, o por ocupar una cama infestada o llevar ropas contaminadas. Al rascarse, el paciente puede producirse una infección grave, acompañada de inflamación, pápulas, ampollas, pústulas y costras.

El principal síntoma de la enfermedad es un prurito intenso, generalmente peor en las partes más sensibles de la piel, como entre los dedos, la cara interior de la muñeca y de los antebrazos, las axilas, los pechos, el ombligo, las zonas genitales, las nalgas y la cara interior de los muslos y piernas. Se ven a veces en la superficie de la piel pequeñas rayas un tanto en relieve, rectas o tortuosas, cada una con una rayita de color gris a lo largo de su centro. Su presencia confirma la sospecha de que hay sarna, pues no se le encuentra en otras condiciones. Estas rayas señalan las galerías de los parásitos.

La escabiasis se ha asociado con factores de pobreza, hacinamiento, y el no suministro de los servicios de agua potable, alcantarillado y saneamiento. Se estima que anualmente se tienen cerca de 300 millones de casos nuevos en el mundo.

Tiña

La tiña es una enfermedad contagiosa de la piel causada por un hongo. Dependiendo de la zona que afecta tendrá un nombre particular: Tiña circinada o del cuerpo (Tinea corporis), Tiña crural o inguinal, Tiña Favosa, Tiña de la barba (Sicosis parasitaria), Tiña de las uñas (Onicomicosis o Tinea unguium), Tiña del cuero cabelludo (Tinea capitis), y el Píe de atleta (Tricofitosis o Tinea pedis)

En general los síntomas son benignos y se caracterizan por escozor y ardor en la zona afectada, y pueden presentarse por años si no son atendidos adecuadamente.

Tuberculosis del aparato respiratorio

La causa más importante de la tuberculosis es el germen de esa enfermedad, el cual puede penetrar mediante el aire, en las partículas de polvo o las gotas que son esparcidas cuando se tose o estornuda. Pueden llevarse a la boca por alimentos contaminados, la leche, los dedos, los vasos, cucharas, tenedores, etc. En ocasiones ciertas personas que padecen la enfermedad escupen en los pisos de los lugares públicos. Es muy probable que sus esputos contengan gérmenes, y mezclados con el aire pueden transportarse de un lugar a otro, incluso por el calzado, y ser respirados por los transeúntes. Sin embargo, el contagio más peligroso es el de persona a persona, por ejemplo, a través de un beso.

Cuando los pulmones son atacados, es común que haya una tos persistente, aunque no necesariamente grave, pero a menudo se tiende a arrojar esputos en cantidad cada vez mayor.

Ocasionalmente, lo primero que alarma es que el paciente escupe sangre, en cantidad que puede variar desde una hemorragia copiosa a simples estrías rojas en los esputos. Los dolores en el pecho se deben en ocasiones a una pleuresía tuberculosa, especialmente en los adultos. Hablando en general, el curso de esta enfermedad suele ser largo y durar incluso años, especialmente si se inicia en la edad adulta.

Neumonia

La neumonía lobular típica es causada por algún tipo de neumococo. Estos gérmenes se encuentran con frecuencia en la garganta y boca de una persona sana, y son comunes en casi cualquier ambiente.

El ataque es repentino, con escalofrío y dolor intenso en el pecho. La respiración es difícil, rápida y dolorosa. La fiebre sube rápidamente a los 40° C o más, y tiende a permanecer alta día y noche. Después de uno o dos días, la cara se enrojece, aparecen llaguitas en los labios, y una tos corta y dolorosa, seguida por la expectoración de esputos espesos y teñidos de sangre. Después de cinco o más días, puede producirse una crisis, con descenso de temperatura que puede llegar hasta más de 2° C en un día. Con la crisis es probable que haya transpiración, alivio del dolor y que el paciente duerma cómodamente.

Actualmente, a menos que se complique con algún otro padecimiento o circunstancia, el pronóstico de la enfermedad es favorable.

8.5.5. Relación económica agua-salud

En general, los programas de salud pública y de control de enfermedades no han sido algo que atañe a los programas hidráulicos municipales, estatales o nacionales, que habitualmente se enfocan en los potenciales beneficios económicos que proporcionarán el riego, la producción de energía, el control de inundaciones o el abastecimiento de agua.

Para superar la variedad de riesgos sanitarios relacionados con el agua se requiere una perspectiva que articule la ordenación de los recursos hídricos con la salud pública en los proyectos en desarrollo. En los proyectos de atención primaria de salud deberá tenerse en cuenta el papel clave que tiene el adecuado suministro de los servicios básicos de infraestructura hidráulica en la prevención de enfermedades.

Es importante determinar cual es el efecto de la ocurrencia de la precipitación en la incidencia de enfermedades y su impacto económico. En el cuadro 8.23 se presentan las enfermedades agrupadas de acuerdo con lo expresado en los párrafos anteriores.

Grupo	CONTRACTOR CONTRACTOR	Tipo/Enfermedad
10.1	Enfermedades Transmitidas por el Agua	
0.	Cólera	
	Fiebre Tifoidea	
	Fiebre Paratifoidea y otras Salmonelosis	
100	Disentería Amibiana (Amibiasis)	
137	Disentería Bacilar (Shigelosis)	
	Hepatitis tipo A	
1.1.1	Absceso Hepático Amibiano	
	·	(diagrap)
	Infecciones Intestinales y las mal definidas Intoxicación Alimentaria Bacteriana	s (diarrea)
2	Enfermedades con Base en el Agua	
	Ascariasis	
	Oxiuriasis	
	Teniasis	
	Giardiasis	Has the body tog extend by the first body
	Ollas Hellillillasis	
3	Enfermedades vectoriales Relacionadas con	n el Agua
	Paludismo	
	Dengue Clásico	
	Dengue Hemorrágico	
	Tripanosomiasis	
	Oncocercosis (Filiariasis)	
4	Enfermedades relacionadas con la Escasez	del Agua y los Malos Hábitos Higiénicos
	Hipertensión Arterial	
	Tracoma	
	Escabiasis	
1	Tiña	
	Tuberculosis Aparato Respiratorio	
	Neumonía y Bronconeumonía	
		William and worth the state of the
	Infecciones Respiratorias Agudas	

Tabla 8.23. Enfermedades relacionadas con el agua con incidencia en México.

Un segundo paso es el tomar en cuenta el costo que implica para el sector salud atender a un paciente que presente un cuadro clínico de cualquiera de los 4 grupos seleccionados. En la tabla 8.24 se presenta el desglose de costos para el caso de una enfermedad del grupo 1. Los costos fueron obtenidos a precios del año 2002 de un tabulador del ISSSTE. El tratamiento es indicativo, ya que cada médico puede proponer un esquema diferente. En la tabla 8.25 se dan los costos estimados de las enfermedades con incidencia en el estado de Aguascalientes.

Concepto	hrefourt		osto nitario	Unidades requeridas	T	otal
Consulta Médico General	SOCA GUDG S		105.00	Care control of		
viedico General	Cuhintal	\$	195.00	7		195.00
Estudios de laboratorio, radiodiagnóstico y otros.	Subtotal				\$ 1	195.00
Coprocultivo		· ·	215.00	4	0 0	215.00
Biometria Hemática		7	105.00			105.00
	Subtotal	Ψ	100.00	- 41	7 .	320.00
Hospitalización	Oublotter				Ψ	20.00
No requerida		\$	0.00	0	\$	0.00
	Subtotal				\$	0.00
Tratamiento					*	0.00
Ciprofloxacino tabs de 250 mg env con 8. (250 mg c/12h por 8 días)		\$	3.60	2	\$	7.20
Paracetamol (Acetaminofen) tabs. 500 mg envase 10 tabs. 1 c/8h		\$	1.50	1	\$	1.50
	Subtotal				\$	8.70
	TOTAL				¢ 5	:02 7/
	IOIAL				\$ 0	23.7

Tabla 8.24. Análisis de costos por paciente atendido por primera vez en el año y bajo condiciones no complicadas de Paratifoidea y otras Salmonelosis

Grupo	Tipo/Enfermedad application	Costo	al año 2002	-
1	Enfermedades Transmitidas por el Agua	imosonsan i	Provide the second seco	
	Fiebre Tifoidea	\$	444.90	
	Fiebre Paratifoidea y otras Salmonelosis	\$	523.70	
	Disentería Amibiana (Amibiasis)	\$	365.00	
	Disentería Bacilar (Shigelosis)	\$	523.70	
	Hepatitis tipo A	\$	1.489.90	
	Absceso Hepático Amibiano	\$	9,803.50	
	Infecciones Intestinales y las mal definidas (diarrea)	\$	691.50	
	Intoxicación Alimentaria Bacteriana	\$	691.50	
2	Enfermedades con Base en el Agua	*		
_	Ascariasis	\$	411.60	
	Oxiuriasis	\$	411.60	
	Teniasis	\$	411.60	
	Giardiasis	\$	411.60	
	Otras Helmintiasis	Ψ	111.00	
3	Enfermedades vectoriales Relacionadas con el Agua			
J	Paludismo	\$	550.00	
4	Enfermedades relacionadas con la Escasez del Agua y los Malos Hábitos Higiénicos	Ψ	000.00	
7	Hipertensión Arterial	\$	2.383.00	
	Escabiasis	\$	255.00	
	Tigo	\$	522,30	
	Tuberculosis	\$	1,636.50	
		\$	9.450.70	
	Weathorne y Bronooneathorna	Φ	435.20	
	Infecciones Respiratorias Agudas	Ψ	T00,20	

Tabla 8.25. Costos totales por diagnóstico y tratamiento de enfermedades con incidencia en el estado de Aguascalientes.

De la misma forma que se procedió en el caso de la agricultura, se propone obtener una relación funcional entre cada decil de la lluvia y la tasa por cada 100,000 habitantes de cada una de las enfermedades analizadas. En este caso, se determinaron los deciles de la lluvia acumulada para un año calendario (Tabla 8.26). Las tasas de morbilidad de cada enfermedad por cada 100,000 habitantes fueron

obtenidas de los anuarios estadísticos de la Secretaria de Salubridad y Asistencia (SSA, 2000; DGE, 2000), las cuales fueron asociadas a cada decil, promediadas y ajustadas. En la Tabla 8.27 se presentan las tasas promedio para el caso de las enfermedades respiratorias agudas para el estado de Aguascalientes, en tanto que en la figura 8.2 se muestra el ajuste gráfico y numérico correspondiente.

En las tablas 8.28 y 8.29 se muestran las tasas de incidencia ajustada, el número de casos y los costos generados por la ocurrencia de las enfermedades respiratorias agudas en el estado de Aguascalientes.

En la tabla 8.30 se dan las tasas de incidencia ajustadas de las enfermedades relacionadas con el agua para el estado de Aguascalientes. Así mismo, en las tablas 8.31 a 8.40 se presentan el número de casos y los costos generados para cada uno de los grupos y el total de enfermedades esperadas a ocurrir en cada decil de lluvia en el estado de Aguascalientes.

		Lluvia esperada		Probabilidad
Decil	Hp mínima (mm)	Hp promedio (mm)	Hp máxima (mm)	Ocurrencia (%)
1	0	157.1	314.2	4.3
2	314.3	353.0	391.7	15.9
3	391.8	430.5	469.1	23.1
4	469.2	507.9	546.5	26.0
5	546.6	585.3	624.0	10.1
6	624.1	662.8	701.4	14.4
7	701.5	740.2	778.8	4.3
8	778.9	817.6	856.2	0.0
9	856.3	895.0	933.7	0.0
10	933.8	972.5	1011.1	1.4

Tabla 8.26. Deciles de la lluvia para año calendario (enero-diciembre) en el estado de Aguascalientes.

OV1 200 100 100		Tasa de	e incidencia por o	ada 100,000 hab	itantes	
decil	2° decil	3er decil	4° decil	5° decil	6° decil	7° decil
1 - 1 - 1 - 1 - 1 - 1	36,146.90	24,085.35	25,357.49	24,299.41	20,860.02	23,746.80
		25,845.91	28,820.80		24,234.18	
		23,958.75	24,175.06			
		33,402.95	28,185.52			
		38,797.01	32,062.83			
		37,973.76	35,326.40			
Promedio	36,146.90	30,677.29	28,988.02	24,299.41	22,547.10	23,746.80

Tabla 8.27. Obtención de la tasa de incidencia promedio por decil de las enfermedades respiratorias agudas que ocurren en el estado de Aguascalientes.

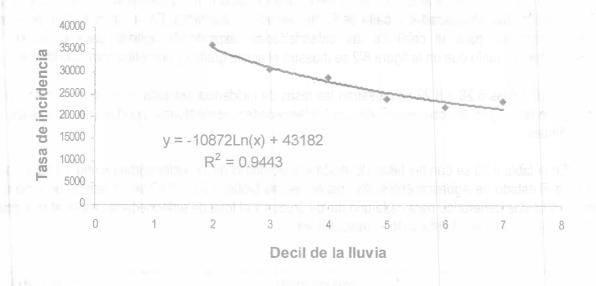


Figura 8.2. Relación funcional entre los deciles de la lluvia y la tasa de incidencia por cada 100,000 habitantes de las enfermedades respiratorias aguadas en el estado de Aguascalientes.

Decil de la	Tasa de		0.00	8		ar	Año		18.8			
Iluvia	incidencia	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	43182.0	407,425	414,435	421,445	428,456	435,466	442,476	449,486	456,497	463,507	470,517	477,527
2	35646.1	336,323	342,110	347,897	353,684	359,471	365,257	371,044	376,831	382,618	388,405	394,192
3	31237.9	294,731	299,803	304,874	309,945	315,016	320,087	325,159	330,230	335,301	340,372	345,444
4	28110.2	265,221	269,785	274,348	278,912	283,475	288,039	292,602	297,166	301,729	306,293	310,856
5	25684.2	242,332	246,502	250,671	254,841	259,010	263,180	267,350	271,519	275,689	279,858	284,028
6	23702.0	223,630	227,478	231,325	235,173	239,021	242,869	246,717	250,565	254,412	258,260	262,108
7	2.2026.1	207,817	211,393	214,969	218,545	222,120	225,696	229,272	232,848	236,423	239,999	243,575
8	20574.3	194,120	197,460	200,800	204,140	207,480	210,820	214,160	217,500	220,840	224,181	227,521
9	19293.8	182,038	185,170	188,302	191,434	194,567	197,699	200,831	203,963	207,095	210,228	213,360
10	18148.3	171,230	174,176	177,123	180,069	183,015	185,961	188,908	191,854	194,800	197,746	200,693

Tabla 8.28. Tasas de incidencia ajustadas por decil y número de casos esperados de enfermedades respiratorias agudas en el estado de Aguascalientes.

Decil de la								A	ño					
Iluvia		2000	 2001		2002	arr.enes	2003	2004	2005	2006	2007	2008	2009	2010
1	\$	160,826,536	\$ 171,773,445	\$	183,412,980	\$	195,787,033	\$208,939,960	\$222,918,712	\$237,772,989	\$253,555,397	\$270,321,614	\$288,130,563	\$307,044,60
2	\$	132,759,932	\$ 141,796,445	\$	151,404,708	\$	161,619,307	\$172,476,854	\$184,016,108	\$196,278,094	\$209,306,239	\$223,146,504	\$237,847,529	\$253,460,75
3	\$	116,342,022	\$ 124,261,023	\$	132,681,070	\$	141,632,469	\$151,147,305	\$161,259,543	\$172,005,137	\$183,422,141	\$195,550,833	\$208,433,839	\$222,116,2
4	S	104,693,329	\$ 111,819,444	\$	119,396,437	\$	127,451,581	\$136,013,748	\$145,113,503	\$154,783,199	\$165,057,081	\$175,971,393	\$187,564,494	\$199,876,9
5	\$	95,657,901	\$ 102,169,005	\$	109,092,075	\$	116,452,030	\$124,275,250	\$132,589,662	\$141,424,827	\$150,812,034	\$160,784,400	\$171,376,972	\$182,626,8
6	\$	88,275,418	\$ 94,284,023	S	100,672,799	\$	107,464,743	\$114,684,199	\$122,356,938	\$130,510,242	\$139,172,983	\$148,375,723	\$158,150,804	\$168,532,4
7	\$	82,033,618	\$ 87,617,365	\$	93,554,402	\$	99,866,099	\$106,575,080	\$113,705,294	\$121,282,092	\$129,332,306	\$137,884,336	\$146,968,238	\$156,615,8
8	\$	76,626,725	\$ 81,842,443	\$	87,388,166	\$	93,283,855	\$ 99,550,642	\$106,210,899	\$113,288,304	\$120,807,923	\$128,796,283	\$137,281,459	\$146,293,1
9	\$	71,857,508	\$ 76,748,601	\$	81,949,160	\$	87,477,904	\$ 93,354,649	\$ 99,600,374	\$106,237,284	\$113,288,885	\$120,780,053	\$128,737,115	\$137,187,9
10	\$	67,591,297	\$ 72,192,005	\$	77,083,804	\$	82,284,304	\$ 87,812,144	\$ 93,687,058	\$ 99,929,932	\$106,562,876	\$113.609,290	\$121,093,938	\$129,043,0
osto Unitario	\$	394.74	\$ 414.48	5	435,20	S	456.96	\$ 479.81	\$ 503.80	\$ 528.99	\$ 555.44	\$ 583.21	\$ 612.37	\$ 642.

Tabla 8.29. Costos generados por el sector salud para la atención de los casos esperados de enfermedades respiratorias agudas en el estado de Aguascalientes.

					Decil de	la Iluvia				
Enfermedad	1	2	3	4	5	6	7	8	9	10
Fiebre Tifoidea Fiebre Paratifoidea y otras	1.5	1.9	5.7	8.4	10.4	12.1	13.6	14.8	15.9	16.9
Salmonelosis	179.3	163.2	153.7	147.0	141.8	137.6	134.0	130.9	128.1	125.7
Disentería Amibiana (Amibiasis)	842.9	1261.0	1753.7	2174.1	2375.5	2210.9	1533.4	1330.0	1270.0	1113.
Disentería Bacilar (Shigelosis)	3.3	5.9	10.3	13.4	14.7	13.9	10.5	8.8	7.3	5.5
Hepatitis vírica tipo A	7.7	8.8	32.0	25.4	19.1	29.7	20.1	18.5	16.9	15.3
Absceso hepático amibiano	5.3	6.8	8.3	14.7	22.0	24.7	17.2	16.0	15.0	14.2
Enfermedades intestinales (diarreicas)	7800.0	7250.2	6702.0	7000.0	7211.5	5600.6	61737	5973.7	5773.7	5573.
ntoxicación alimentaria bacteriana	142.3	112.6	62.3	41.4	50.1	88.2	155.7	175.2	195.2	205.2
Ascariasis	45.7	80.1	111.4	140.6	168.6	195.4	221.5	246.8	271.6	295.8
Oxiurias s	41.7	70.4	95.7	119.0	140.8	161.7	181.6	200.9	219.7	237.9
Teniasis Teniasis	0.5	1.0	9.7	16.4	19.6	18.6	13.0	2.3	1.5	1.0
Giardiasis	16.6	47.9	76.4	95.6	98.7	79.1	56.0	38.0	23.3	15.3
Otras Helmintiasis	703.3	658.9	648.1	998.4	1053.4	811.7	927.6	1010.5	1050.1	1112.
Paludismo	0.0	0.0	0.4	0.6	0.6	0.3	0.0	0.0	0.0	0.0
Hipertensión Arterial	1270.9	838.9	538.6	345.0	232.8	177.0	152.4	133.8	96.3	14.5
Escabiasis	18.3	53.5	90.1	116.0	136.1	152.6	166.5	178.5	189.1	198.6
Tiña	134.9	190.8	233.7	269.9	301.8	330.6	357.1	381.8	405.0	426.9
Tuberculosis	23.1	12.7	8.3	8.0	10.0	12.4	13.3	11.0	5.7	3.5
Neumonía y Bronconeumonía	354.2	299.2	252.8	213.6	180.4	152.4	128.8	108.8	91.9	77.7
Infecciones Respiratorias Agudas	43182.0	35646.1	31237.9	28110.2	25684.2	23702.0	22026.1	20574.3	19293.8	18148

Tabla 8.30. Tasas de incidencia ajustadas por cada 100,000 habitantes, para cada una de las enfermedades relacionadas con el agua en el estado de Aguascalientes.

Decil de la	% Casos a la	5,387 3270	89 \$253,65	\$237,772,9	1772.9187.12	ces are sixt	Año	03.412,980 8	2 242.000	0 2 9,19	28.001	
Lluvia	población total	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	9.0%	84,748	86,206	87,665	89,123	90,581	92,039	93,497	94,956	96,414	97,872	99,330
2	8.8%	83,126	84,556	85,986	87,417	88,847	90,277	91,708	93,138	94,568	95,998	97,429
3	8.7%	82,348	83,765	85,182	86,599	88,016	89,433	90,850	92,267	93,684	95,100	96,517
4	9.4%	88,920	90,450	91,980	93,510	95,040	96,570	98,100	99,630	101,160	102,690	104,220
5	9.8%	92,890	94,488	96,087	97,685	99,283	100,882	102,480	104,078	105,677	107,275	108,873
6	8.1%	76,591	77,909	79,227	80,545	81,862	83,180	84,498	85,816	87,134	88,452	89,770
7	8.1%	76,030	77,338	78,646	79,954	81,262	82,571	83,879	85,187	86,495	87,803	89,111
8	7.7%	72,347	73,592	74,837	76,081	77,326	78,571	79,816	81,061	82,305	83,550	84,795
9	7.4%	70,028	71,233	72,438	73,643	74,848	76,053	77,258	78,463	79,668	80,873	82,078
10	7.1%	66,701	67,848	68,996	70,144	71,292	72,439	73,587	74,735	75,882	77,030	78,178

Población Total 943,506 959,740 975,974 992,209 1,008,443 1,024,677 1,040,911 1,057,145 1,073,380 1,089,614 1,105,848

Tabla 8.31. Casos esperados de todas las enfermedades transmitidas por el agua en el estado de Aguascalientes (Grupo 1).

1.00	122.1	130 9	6 134.0	41.8 137	147.0	Año	3 165.2	178			elegiano mis-
Decil	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	\$ 51,336,567	\$ 54,830,870	\$ 58,546,263	\$ 62,496,117	\$ 66,694,592	\$ 71,156,673	\$ 75,898,227	\$ 80,936,044	\$ 86,287,897	\$ 91,972,59	\$ 98,010,043
2	\$ 49,460,871	\$ 52,827,502	\$ 56,407,145	\$ 60,212,683	\$ 64,257,756	\$ 68,556,806	\$ 73,125,116	\$ 77,978,865	\$ 83,135,176	\$ 88,612,17	\$ 94,429,028
3	\$ 48,067,715	\$ 51,339,519	\$ 54,818,334	\$ 58,516,682	\$ 62,447,819	\$ 66 625,778	\$ 71,065,413	\$ 75,782,447	\$ 80,793,521	\$ 86,116,247	\$ 91,769,261
4	\$ 51,635,060	\$ 55,149,681	\$ 58,886,676	\$ 62,859,497	\$ 67,082,384	\$ 71,570,410	\$ 76,339,532	\$ 81,406,641	\$ 86,789,612	\$ 92,507,364	\$ 98,579,917
5	\$ 54,173,711	\$ 57,861,130	\$ 61,781,855	\$ 65,950,001	\$ 70,380,506	\$ 75,089,187	\$ 80,092,785	\$ 85,409,020	\$ 91,056,646	\$ 97,055,513	\$103,426,624
6	\$ 44,632,020	\$ 47,669,968	\$ 50,900,130	\$ 54,334,134	\$ 57,984,289	\$ 61,863,623	\$ 65,985,930	\$ 70,365,809	\$ 75,018,711	\$ 79,960,989	\$ 85,209,947
7	\$ 45,257,852	\$ 48,338,399	\$ 51,613,855	\$ 55,096,011	\$ 58,797,348	\$ 62,731,079	\$ 66,911,189	\$ 71,352,483	\$ 76,070,628	\$ 81,082,200	\$ 86,404,766
8	\$ 43,333,196	\$ 46,282,738	\$ 49,418,900	\$ 52,752,972	\$ 56,296,905	\$ 60,063,348	\$ 64,065,693	\$ 68,318,114	\$ 72,835,613	\$ 77,634,06	\$ 82,730,277
9	\$ 41,937,518	\$ 44,792,061	\$ 47,827,213	\$ 51,053,902	\$ 54,483,691	\$ 58,128,824	\$ 62,002,261	\$ 66,117,720	\$ 70,489,719	\$ 75,133,62	\$ 80,065,695
10	\$ 40,157,278	\$ 42,890,646	\$ 45,796,957	\$ 48,886,672	\$ 52,170,868	\$ 55,661,266	\$ 59,370,276	\$ 63,311,035	\$ 67,497,443	\$ 71,944,21	\$ 76,666,921

Tabla 8.32. Costos generados de atención para todas las enfermedades transmitidas por el agua en el estado de Aguascalientes (Grupo 1).

Decil de l	a % Casos a la					Automorphic in the Comment	Año)		(c) jeconomic par suprefer from a constraint	and the same of the same of	
Lluvia	población total	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	0.8%	7,621	7,752	7,883	8,014	8,145	8,277	8,408	8,539	8,670	8,801	8,932
2	0.9%	8,098	8,238	8,377	8,516	8,656	8,795	8,935	9,074	9,213	9,353	9,492
3	0.9%	8,881	9,034	9,187	9,339	9,492	9,645	9,798	9,951	10,103	10,256	10,409
4,	1.4%	12,926	13,149	13,371	13,594	13,816	14,038	14,261	14,483	14,706	14,928	15,150
5	1.5%	13,973	14,214	14,454	14,695	14,935	15,176	15,416	15,656	15,897	16,137	16,378
6	1.3%	11,950	12,155	12,361	12,566	12,772	12,978	13,183	13,389	13,595	13,800	14,006
7	1.4%	13,207	13,434	13,662	13,889	14,116	14,343	14,571	14,798	15,025	15,252	15,480
8	1.5%	14,139	14,382	14,625	14,869	15,112	15,355	15,599	15,842	16,085	16,328	16,572
9	1.6%	14,777	15,031	15,285	15,539	15,794	16,048	16,302	16,556	16,811	17,065	17,319
10	1.7%	15,681	15,951	16,221	16,491	16,760	17,030	17,300	17,570	17,840	18,109	18,379

Población Total 943,506 959,740 975,974 992,209 1,008,443 1,024,677 1,040,911 1,057,145 1,073,380 1,089,614 1,105,848

Tabla 8.33. Casos esperados de todas las enfermedades con base en el agua en el estado de Aguascalientes (Grupo 2).

				-		Taine		Año	10.		200	 	 	
Decil	2000	2001	2002		2003	-	2004	 2005	-	2006	 2007	2008	2009	2010
1	\$ 2,845,164	\$ 3,038,825	\$ 3,244,739	\$	3,463,647	\$	3,696,334	\$ 3,943,630	\$	4,206,416	\$ 4,485,621	\$ 4,782,230	\$ 5,097,286	\$ 5,431,89
2	\$ 3,023,419	\$ 3,229,213	\$ 3,448,028	\$	3,680,651	\$	3,927,916	\$ 4,190,706	\$	4,469,956	\$ 4,766,653	\$ 5,081,846	\$ 5,416,641	\$ 5,772,21
3	\$ 3,315,582	\$ 3,541,262	\$ 3,781,221	\$	4,036,323	\$	4,307,483	\$ 4,595,667	\$	4,901,901	\$ 5,227,269	\$ 5,572,920	\$ 5,940,067	\$ 6,329,99
4	\$ 4,825,828	\$ 5,154,305	\$ 5,503,566	\$	5,874,867	\$	6,269,539	\$ 6,688,991	\$	7,134,715	\$ 7,608,288	\$ 8,111,382	\$ 8,645,765	\$ 9,213,30
5	\$ 5,216,721	\$ 5,571,806	\$ 5,949,357	\$	6,350,733	\$	6,777,374	\$ 7,230,802	\$	7,712,629	\$ 8,224,562	\$ 8,768,407	\$ 9,346,075	\$ 9,959,58
6	\$ 4,461,198	\$ 4,764,856	\$ 5,087,727	\$	5,430,973	\$	5,795,825	\$ 6,183,584	\$	6,595,630	\$ 7,033,421	\$ 7,498,502	\$ 7,992,508	\$ 8,517,16
7	\$ 4,930,637	\$ 5,266,248	\$ 5,623,095	\$	6,002,460	\$	6,405,703	\$ 6,834,265	\$	7,289,669	\$ 7,773,528	\$ 8,287,549	\$ 8,833,537	\$ 9,413,40
8	\$ 5,278,538	\$ 5,637,830	\$ 6,019,854	\$	6,425,987	\$	6,857,683	\$ 7,316,484	\$	7,804,021	\$ 8,322,020	\$ 8,872,310	\$ 9,456,823	\$ 10,077,60
9	\$ 5,516,627	\$ 5,892,125	\$ 6,291,381	\$	6,715,832	\$	7,167,000	\$ 7,646,495	\$	8,156,023	\$ 8,697,386	\$ 9,272,496	\$ 9,883,374	\$ 10,532,15
10	\$ 5.854,282	\$ 6.252.763	\$ 6,676,456	\$	7,126,886	\$	7,605,669	\$ 8,114,513	\$	8,655,226	\$ 9,229,725	\$ 9,840,036	\$ 10,488,303	\$ 11,176,79

Tabla 8.34. Costos generados de atención para todas las enfermedades con base en el agua en el estado de Aguascalientes (Grupo 2).

Decil de l	a % Casos a la						Año	0				
Lluvia	población total	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
14	0.0%	0	0	0	0	0	0	0	0	0	0	0
2	0.0%	0	0	0	0	0	0	0	0	0	0	0
3	0.0%	4	4	4	4	4	4	4	4	4	4	4
4	0.0%	5	6	6	6	6	6	6	6	6	6	6
5	0.0%	5	5	5	6	6	6	6	6	6	6	6
6	0.0%	3	3	3	3	3	4	4	4	4	4	4
7	0.0%	0	0	0	0	0	0	0	0	0	0	0
8	0.0%	0	0	0	0	0	0	0	0	0	0	0
9	0.0%	0	0	0	0	0	0	0	0	0	0	0
10	0.0%	0	0	0	0	0	0	0	0	0	0	0

Población Total

943,506 959,740 975,974 992,209 1,008,443 1,024,677 1,040,911 1,057,145 1,073,380 1,089,614 1,105,848

Tabla 8.35. Casos esperados de todas las enfermedades vectoriales relacionadas con el agua en el estado de Aguascalientes (Grupo 3).

-				 	 	 	Año	 W-1974					
Decil	- 1	2000	2001	 2002	 2003	2004	2005	2006	 2007	 2008	2009	2	2010
1	S	ga.	\$ 801	\$ 7.00	\$ 300	\$ - 48	\$ 803	\$ EQ.	\$ 1	\$ ~	\$ 134	\$	1 10
2	\$	49	\$ 53	\$ 56	\$ 60	\$ 64	\$ 69	\$ 73	\$ 78	\$ 83	\$ 89	\$	94
3	\$	1,868	\$ 1,995	\$ 2,131	\$ 2,274	\$ 2,427	\$ 2,589	\$ 2,762	\$ 2,945	\$ 3,140	\$ 3,347	\$	3,567
4	\$	2,735	\$ 2,921	\$ 3,119	\$ 3,330	\$ 3,553	\$ 3,791	\$ 4,044	\$ 4,312	\$ 4,597	\$ 4,900	\$	5,22
5	\$	2,650	\$ 2,831	\$ 3,023	\$ 3,227	\$ 3,443	\$ 3,674	\$ 3,918	\$ 4,179	\$ 4,455	\$ 4,748	\$	5,060
6	\$	1,614	\$ 1,724	\$ 1,841	\$ 1,965	\$ 2,097	\$ 2,237	\$ 2,386	\$ 2,545	\$ 2,713	\$ 2,892	\$	3,08
7	\$		\$ -	\$ 	\$ -	\$	\$	\$ -	\$ -	\$ -	\$ -	\$	
8	\$	= 10	\$ 200	\$, i	\$ -	\$	\$ 1,54	\$	\$ 4	\$	\$	\$	
9	\$	- 2	\$ 1	\$ F 6	\$	\$ 	\$ 198	\$ 2	\$ - 1-4	\$	\$	\$	
10	\$	100	\$ 184	\$ pro dec	\$ 9 15t de	\$ 1 54	\$ A 187, 181	\$ 15,6 1	\$ 4 100 4	\$ -	\$	\$	

Tabla 8.36. Costos generados de atención para todas las enfermedades vectoriales relacionadas con el agua en el estado de Aguascalientes (Grupo 3).

1 45.0% 424,421 431,723 439,026 446,329 453,631 460,934 468,237 475,539 482,842 490,145 <td< th=""><th>al ala la</th><th>0/ 12000000000</th><th></th><th></th><th></th><th></th><th></th><th>A M</th><th></th><th></th><th>the state of the s</th><th></th><th>-</th></td<>	al ala la	0/ 12000000000						A M			the state of the s		-
1 45.0% 424,421 431,723 439,026 446,329 453,631 460,934 468,237 475,539 482,842 490,145 4490,145	recii de ia	1% Casos a la			****			An	0		MRmtst	ioinalrion	_ parti
2 37.0% 349,486 355,500 361,513 367,526 373,540 379,553 385,566 391,580 397,593 403,606 44 32,48 305,332 310,585 315,839 321,093 326,346 331,600 336,853 342,107 347,361 352,614 32 29.1% 274,208 278,926 283,644 288,362 293,081 297,799 302,517 307,236 311,953 316,671 32 26.5% 250,457 254,766 259,076 263,385 267,695 272,004 276,314 280,623 284,932 289,242 28 24.5% 231,414 235,396 239,377 243,359 247,341 251,323 255,304 259,286 263,268 267,250 22 28% 215,536 219,245 222,953 226,662 230,371 234,079 237,788 241,496 245,205 248,913 24 21,4% 201,800 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 23,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23 24,000 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 225,000 205,00	Lluvia	población total	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
3 32.4% 305,332 310,585 315,839 321,093 326,346 331,600 336,853 342,107 347,361 352,614 33 291,1% 274,208 278,926 283,644 288,362 293,081 297,799 302,517 307,235 311,953 316,671 33 26,5% 250,457 254,766 259,076 263,385 267,695 272,004 276,314 280,623 284,932 289,242 28 24.5% 231,414 235,396 239,377 243,359 247,341 251,323 255,304 259,286 263,268 267,250 27 22.8% 215,536 219,245 222,953 226,662 230,371 234,079 237,788 241,496 245,205 248,913 28 21.4% 201,800 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 25	1	45.0%	424,421	431,723	439,026	446,329	453,631	460,934	468,237	475,539	482,842	490,145	497,448
4 29.1% 274,208 278,926 283,644 288,362 293,081 297,799 302,517 307,235 311,953 316,671 33 26.5% 250,457 254,766 259,076 263,385 267,695 272,004 276,314 280,623 284,932 289,242 29 24.5% 231,414 235,396 239,377 243,359 247,341 251,323 255,304 259,286 263,268 267,250 27 22.8% 215,536 219,245 222,953 226,662 230,371 234,079 237,788 241,496 245,205 248,913 29 21,4% 201,800 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 22 230,370 243,050 245,050 246,050	2	37.0%	349,486	355,500	361,513	367,526	373,540	379,553	385,566	391,580	397,593	403,606	409,620
5 26.5% 250,457 254,766 259,076 263,385 267,695 272,004 276,314 280,623 284,932 289,242 28 24.5% 231,414 235,396 239,377 243,359 247,341 251,323 255,304 259,286 263,268 267,250 27 22.8% 215,536 219,245 222,953 226,662 230,371 234,079 237,788 241,496 245,205 248,913 28 21.4% 201,800 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 25 25 25 25 25 25 25 25 25 25 25 25 25	3	32.4%	305,332	310,585	315,839	321,093	326,346	331,600	336,853	342,107	347,361	352,614	357,868
6 24.5% 231,414 235,396 239,377 243,359 247,341 251,323 255,304 259,286 263,268 267,250 27 22.8% 215,536 219,245 222,953 226,662 230,371 234,079 237,788 241,496 245,205 248,913 251,466 21.4% 201,800 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 251	4	29.1%	274,208	278,926	283,644	288,362	293,081	297,799	302,517	307,235	311,953	316,671	321,389
7 22.8% 215,536 219,245 222,953 226,662 230,371 234,079 237,788 241,496 245,205 248,913 25 21.4% 201,800 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 25 25 25 25 25 25 25 25 25 25 25 25 25	5	26.5%	250,457	254,766	259,076	263,385	267,695	272,004	276,314	280,623	284,932	289,242	293,551
8 21.4% 201,800 205,272 208,744 212,216 215,689 219,161 222,633 226,105 229,577 233,050 23	6	24.5%	231,414	235,396	239,377	243,359	247,341	251,323	255,304	259,286	263,268	267,250	271,231
	7	22.8%	215,536	219,245	222,953	226,662	230,371	234,079	237,788	241,496	245,205	248,913	252,622
9 20.1% 189,473 192,733 195,993 199,253 202,513 205,773 209,034 212,294 215,554 218,814 2	8	21.4%	201,800	205,272	208,744	212,216	215,689	219,161	222,633	226,105	229,577	233,050	236,522
	9	20.1%	189,473	192,733	195,993	199,253	202,513	205,773	209,034	212,294	215,554	218,814	222,074
10 18.9% 178,035 181,098 184,162 187,225 190,288 193,352 196,415 199,478 202,541 205,605 2	10	18.9%	178,035	181,098	184,162	187,225	190,288	193,352	196,415	199,478	202,541	205,605	208,668
10 18.9% 178,035 181,098 184,162 187,225 190,288 193,352 196,415 199,478 202,541 205,60	11.7				,				,			,	

Tabla 8.37. Casos esperados de todas las enfermedades asociadas con la escasez del agua y los malos hábitos higiénicos en el estado de Aguascalientes (Grupo 4).

				0014 001010		Año	LACE THE BAS	acta atposa	edia ne me	1912 DEC 401	
Decil	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	\$216,355,058	\$231,081,603	\$246,739,915	\$263,386,354	\$281,080,587	\$299,885,778	\$319,868,786	\$341,100,380	\$363,655,463	\$387,613,302	\$413,057,787
2	\$175,215,257	\$187,141,557	\$199,822,449	\$213,303,577	\$227,633,261	\$242,862,654	\$259,045,904	\$276,240,322	\$294,506,567	\$313,908,836	\$334,515,065
3	\$149,129,079	\$159,279,783	\$170,072,734	\$181,546,782	\$193,743,052	\$206,705,082	\$220,478,957	\$235,113,457	\$250,660,210	\$267,173,855	\$284,712,213
4	\$130,573,452	\$139,461,138	\$148,911,159	\$158,957,529	\$169,636,259	\$180,985,467	\$193,045,506	\$205,859,085	\$219,471,408	\$233,930,315	\$249,286,435
5	\$116,784,780	\$124,733,918	\$133,186,009	\$142,171,473	\$151,722,519	\$161,873,241	\$172,659,729	\$184,120,183	\$196,295,032	\$209,227,067	\$222,961,566
6	\$106,198,026	\$113,426,560	\$121,112,453	\$129,283,369	\$137,968,595	\$147,199,136	\$157,007,809	\$167,429,351	\$178,500,528	\$190,260,250	\$202,749,692
7	\$ 97,703,619	\$104,353,969	\$111,425,094	\$118,942,447	\$126,932,973	\$135,425,195	\$144,449,307	\$154,037,267	\$164,222,900	\$175,042,002	\$186,532,458
8	\$ 90,406,332	\$ 96,559,980	\$103,102,977	\$110,058,374	\$117,452,603	\$125,310,558	\$133,660,677	\$142,532,532	\$151,957,420	\$161,968,466	\$172,600,723
9	\$ 83,557,989	\$ 89,245,494	\$ 95,292,855	\$101,721,838	\$108,555,487	\$115,818,196	\$123,535,788	\$131,735,593	\$140,446,540	\$149,699,242	\$159,526,098
10	\$ 76,558,910	\$ 81,770,012	\$ 87,310,826	\$ 93,201,298	\$ 99,462,539	\$106,116,901	\$113,188,043	\$120,701,007	\$128,682,297	\$137,159,964	\$146,163,691

Tabla 8.38. Costos generados de atención para todas las enfermedades asociadas con la escasez del agua y los malos hábitos higiénicos en el estado de Aguascalientes (Grupo 4).

Decil de la	% Casos a la						Año					
Lluvia	población total	2000	2001	2002	2003	2.004	2005	2006	2007	2008	2009	2010
1	54.8%	516,790	525,682	534,574	543,466	552,358	561,250	570,142	579,034	587,926	596,818	605,710
2	46.7%	440,711	448,294	455,877	463,460	471,043	478,626	486,209	493,792	501,375	508,958	516,541
3	42.0%	396,565	403,388	410,212	417,035	423,858	430,682	437,505	444,329	451,152	457,975	464,799
4	39.9%	376,060	382,530	389,001	395,472	401,942	408,413	414,883	421,354	427,825	434,295	440,766
5	37.9%	357,326	363,474	369,622	375,771	381,919	388,067	394,215	400,364	406,512	412,660	418,808
6	33.9%	319,958	325,463	330,968	336,474	341,979	347,484	352,989	358,495	364,000	369,505	375,010
7	32.3%	304,773	310,017	315,261	320,505	325,749	330,993	336,237	341,481	346,725	351,969	357,213
8	30.6%	288,286	293,246	298,206	303,167	308,127	313,087	318,047	323,008	327,968	332,928	337,889
9	29.1%	274,278	278,997	283,716	288,436	293,155	297,874	302,594	307,313	312,032	316,751	321,471
10	27.6%	260,417	264,898	269,379	273,859	278,340	282,821	287,302	291,782	296,263	300,744	305,225

Población Total 943,506 959,740 975,974 992,209 1,008,443 1,024,677 1,040,911 1,057,145 1,073,380 1,089,614 1,105,848

Tabla 8.39. Casos esperados de todas las enfermedades relacionadas con el agua en el estado de Aguascalientes (Todos los grupos).

						Año					
Decil	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	\$270,536,789	\$288,951,298	\$308,530,916	\$329,346,118	\$351,471,513	\$374,986,081	\$399,973,428	\$426,522,045	\$454,725,589	\$484,683,183	\$516,499,72
2	\$227,699,597	\$243,198,326	\$259,677,678	\$277,196,970	\$295,818,997	\$315,610,235	\$336,641,049	\$358,985,918	\$382,723,672	\$407,937,736	\$434,716,39
3	\$200,514,244	\$214,162,559	\$228,674,420	\$244,102,061	\$260,500,780	\$277,929,116	\$296,449,033	\$316,126,119	\$337,029,792	\$359,233,516	\$382,815,038
4	\$187,037,075	\$199,768,046	\$213,304,521	\$227,695,223	\$242,991,735	\$259,248,659	\$276,523,797	\$294,878,326	\$314,377,000	\$335,088,344	\$357,084,88
5	\$176,177,863	\$188,169,684	\$200,920,243	\$214,475,434	\$228,883,843	\$244,196,904	\$260,469,062	\$277,757,944	\$296,124,541	\$315,633,402	\$336,352,83
6	\$155,292,857	\$165,863,108	\$177,102,151	\$189,050,442	\$201,750,806	\$215,248,580	\$229,591,755	\$244,831,126	\$261,020,454	\$278,216,638	\$296,479,889
7	\$147,892,109	\$157,958,616	\$168,662,044	\$18(),040,918	\$192,136,024	\$204,990,539	\$218,650,165	\$233,163,278	\$248,581,076	\$264,957,746	\$282,350,630
8	\$139,018,065	\$148,480,547	\$158,541,732	\$169,237,834	\$180,607,191	\$192,690,390	\$205,530,391	\$219,172,666	\$233,665,343	\$249,059,355	\$265,408,60
9	\$131,012,134	\$139,929,680	\$149,411,449	\$159,491,571	\$170,206,178	\$181,593,516	\$193,694,072	\$206,550,700	\$220,208,756	\$234,716,240	\$250,123,95
10	\$122,570,469	\$130,913,420	\$139,784,239	\$149,214,856	\$159,239,075	\$169,892,679	\$181,213,545	\$193,241,767	\$206,019,776	\$219,592,482	\$234,007,409

Tabla 8.40. Costos generados de atención para todas las enfermedades relacionadas con el agua en el estado de Aguascalientes (Todos los grupos).

8.6. Producción y servicios forestales

La sequía es el factor abiótico más importante de los daños que sufren las especies en las plantaciones forestales, aun y cuando estos efectos no sean tan patentes para la población como el caso de la producción agrícola.

Los bosques juegan un papel muy importante en la ecología mundial y, por ello, el destino de los bosques y de las plantaciones de árboles es de vital importancia para la vida humana de una región. Por tal motivo, la evaluación de los impactos de la sequía sobre los bosques se debe realizar en un marco de estrategias en el ámbito regional y nacional.

Un estrés hídrico prolongado puede causar graves daños en el ecosistema forestal como, por ejemplo, su defoliación y el deterioro de las copas de los árboles y, como consecuencia, la reducción del espesor de los anillos corticales y de la producción de madera.

Los árboles que sufren los efectos de la sequía se ven afectados, con mayor frecuencia, por plagas y enfermedades secundarias de insectos y hongos. En caso de las sequías hay que prestar atención a la ocurrencia de los incendios forestales por la gran magnitud de pérdidas económicas y ecológicas que pueden acarrear.

Con los valores obtenidos en la tabla 1.6 se puede hacer una estimación aproximada sobre los daños y pérdidas económicas del proceso de deforestación en la zona en estudio, ya sea provocada por el hombre o debido a los incendios forestales.

8.7. Medio Ambiente

Uno de los efectos más perjudiciales y peligrosos de la sequía se refleja en el medio ambiente, en los recursos naturales, el hábitat y los ecosistemas.

La sociedad realmente no puede hacer nada por los ecosistemas que ya han sido dañados, sin embrago, tiene la capacidad de mantener con vida los recursos naturales todavía existentes.

En este aspecto se debe evaluar como afecta la sequía a la calidad y cantidad del agua, suelo, aire y los organismos vivos (flora y fauna). Además, se deben formular acciones para proteger las especies, el hábitat y ecosistemas maltratados para que sean capaces de soportar los efectos adversos de las sequías.

Se debe tener especial atención en los efectos medioambientales combinados, como son el incremento de la contaminación y el aumento del volumen de diversos tipos de residuos en el medio ambiente, y en particular, los residuos y materias tóxicas. Estos efectos pueden llegar a ser más acusados durante los periodos de sequía, especialmente debido a la menor dilución y capacidad de depuración de los receptores de tales residuos.

8.8. Industria, comercio y aspectos financieros

En la industria, los efectos de la sequía son generalmente indirectos. Sin embargo, la industria alimenticia se ve directamente afectada ya que una parte considerable de su materia prima proviene de la agricultura y se puede perder durante el periodo seco. Lo mismo es verdad para la producción pesquera.

Esta situación puede provocar una situación de inestabilidad del proceso alimentario en diferentes sectores y tener un impacto negativo en la amplia gama de servicios.

La reducción de la producción de las materias primas básicas causada por la sequía afecta, por lo general, al comercio, especialmente en las relaciones de exportación e importación.

Las pérdidas de almacenamiento de mercancías altera el intercambio de mercancías entre los países. Generalmente, ante la presencia de una sequía, un país debe modificar su esquema de intercambio ya que se aumentan las importaciones de alimentos, lo que supone un gasto extraordinario, tanto para las personas como para el gobierno.

Por lo general, el sector financiero responde con una subida de precios a las pérdidas de producción de los productos agrícolas, de los procesos alimentarios, del intercambio de mercancias y del consumo de energía, lo cual acelera la inflación y estimula procesos y tendencias poco convenientes en el mundo financiero: los agricultores y productores entran en bancarrota, se retiran las inversiones y se suspenden las mejoras en las condiciones de producción.

Además, la sequía que anteriormente sólo se había asociado a problemas en la agricultura y la ganadería, tiene efectos negativos en la industria turística de un país. El efectos escénico ambiental provocado por la vegetación seca, la ausencia de agua en los cauces de los ríos, las polvaredas, así como el impacto en las formas de vida silvestre, el riesgo de incendios forestales, la escasez de agua en loa parques nacionales o recreativos tienen incidencia en la afluencia de turistas, lo que tiende a agravar la situación del sector.

Dependiendo del grado de estos efectos en la industria en general y el comercio, la economía nacional puede verse afectada gravemente por sus impactos, cuya prevención es muy importante para mantener el desarrollo sustentable y armónico en un país.

Como ejemplo del impacto de la variación de la lluvia en la economía de un estado, a continuación se presentan un escenario para el año 2003 en el estado de Aguascalientes, considerando sólo los impactos en la agricultura, ganadería y salud.

Si se toma en cuenta que en el estado de Aguascalientes para el año 2003 tendría una población de alrededor de 1 millón de habitantes, y si se permitiera extrapolar los resultados al nivel de todo México, se tendría que para los más de 100 millones de habitantes con que cuenta, el sector salud tendría que devengar cerca de \$22,700 millones de pesos en atender sólo las enfermedades relacionadas con el agua. Esta situación marca la importancia de generar importantes campañas de prevención, que por supuesto tienen un costo, pero siempre será mejor prevenir que remediar.

Tipo Superficie Superficie de cosechada Ganancia siniestrada Pérdida cultivo (hectáreas) esperada (hectáreas) Esperada Riego 30,008 381,101,600 992 12.598.400 \$ Temporal 51,688 43,159,480 52,312 43.680.520 Perenne 19.691 580,896,300 2,509 74,003,700 Total 101,387 \$ 1,005,157,380 55,813 \$ 130,282,620

Tabla 8.41. Escenario agrícola del año 2003, considerando la ocurrencia de la Iluvia anual más probable en el estado de Aguascalientes.

Concepto	Grupo 1	Grupo 2	Grupo 3	Grupo 4	Todos los Grupos	% Población enferma
Casos	93,510	13,594	6	288,362	395,472	39.9
Costos	\$ 62,859,497	\$ 5,874,867	\$ 3,330	\$ 158,957,529	\$ 227,695,223	

Tabla 8.42. Escenario del sector salud del año 2003, considerando la ocurrencia de la lluvia anual más probable en el estado de Aguascalientes.

Producto de la Ganadería	Cabezas	Beneficios	Beneficios	Pérdidas
	requeridas	esperados	deseables	económicas
Carne en canal	15,470,357	\$ 749,044,504	\$ 836,806,041	\$ 87,761,537
Piel	170,028	\$ 20,185,128	\$ 22,038,222	\$ 1,853,094
Leche y huevo	789,165	\$ 879,674,149	\$ 882,354,024	\$ 2,679,875
Total	16,429,550	\$ 1,648,903,781	\$ 1,741,198,287	\$ 92,294,506

Tabla 8.43. Escenario del sector ganadero del año 2003, considerando la ocurrencia de la lluvia anual más probable en el estado de Aguascalientes.

Concepto	Beneficio	Costo o pérdida	Porcentaje de perdida a ganancia
Salud	non Social	\$ 227,695,223	100.0
Agricultura	\$ 1,005,157,380	\$ 130,282,620	12.9
Ganadería	\$ 1,648,903,781	\$ 92,294,506	5.6
Total	\$ 2,003,738,404	\$ 450,272,349	22.4

Tabla 8.44. Beneficios, costos o pérdidas de los diferentes sectores para el año 2003, considerando la ocurrencia de la lluvia anual más probable en el estado de Aguascalientes.

8.9 Harnbruna y seguridad alimentaria

Las emergencias de seguridad alimentaria son desastres de características complejas, con múltiples causas profundas. Una sequía grave o un conflicto puede producir una emergencia alimenticia aguda; en cambio su vertiente crónica es reflejo de la pobreza, el empeoramiento de una crisis de deuda, el impacto de la relación VIH/SIDA en los hogares y la gestión ineficiente de los recursos hidráulicos de un país.

Los alimentos pueden ser tanto escasos (producción insuficiente) como inaccesibles (problemas de distribución o encarecimiento de los precios).

La sequía que se genera a lo largo de varios años de precipitaciones insuficientes provoca una pérdida total de los cultivos. En ocasiones las comunidades rurales pueden sobrellevar uno o dos períodos sucesivos de escasez de lluvias y pérdidas de cosechas y ganado, sin embargo, cuando se agotan sus reservas alimenticias y sus recursos financieros se acaban, la situación se transforma en un estado crítico.

La nutrición deficiente, que es consecuencia de la escasez de alimentos, reduce la resistencia de las personas a las enfermedades y crea condiciones propicias para brotes de enfermedades prevenibles. La escasez de agua, que obliga a la población a utilizar aguas contaminadas, aumenta el riesgo de enfermedades transmitidas por el agua.

Los problemas de seguridad alimentaria pueden provocar migraciones, por ejemplo hacia las zonas suburbanas de las ciudades. Se pueden formar así grandes asentamientos de personas desplazadas; ello, a su vez, aumente el riesgo de brotes de enfermedades. Una preocupación clave es el adecuado suministro de servicios de agua potable, alcantarillado y saneamiento a este grupo de emigrantes, ya que el incremento de las enfermedades debilita la capacidad de la población para nutrirse con los pocos alimentos disponibles.

El problema de la sequía urbana se perfila como un problema de importante dimensión debido al agotamiento y contaminación de acuíferos y fuentes superficiales de agua que abastecen a las grandes concentraciones poblacionales.

En México el 27.7% de la población que había en el año 2000, unos 26.9 millones de habitantes, presentaba condiciones de riesgo nutricional alto, muy alto y extremo (Del Valle, 2004). De estos, 4 millones se encontraban en el nivel extremo, con verdaderas situaciones de hambre. Los estados de Chiapas, Oaxaca y Guerrero son los tres primeros lugares de riesgo nutricional. Cada uno de ellos cuentan respectivamente con 91, 430 y 50 municipios en situación nutricional extrema. En tanto que atendiendo a la población afectada en cada uno de estos estados, se tienen respectivamente el 36.4%, 31.9% y 20.4% del total. Además, el municipio de Metlatónoc en Guerrero, con una población de 30,039 habitantes, es quién ostenta el índice de riesgo nutricional más alto del país. El estado de Nuevo León y el Distrito Federal tienen los mejores índices de nutrición del país (riesgo nutricional bajo).

CAPITULO 9 MITIGACIÓN DE LOS IMPACTOS DE LAS SEQUÍAS

9.1. Agua y pobreza

El agua es el ingrediente más importante para el desarrollo y la estabilidad en los ámbitos local y regional. Sin acceso a un suministro de agua básico, la exposición de sufrir enfermedades, pobreza, degradación amblental y hasta conflictos es inminente.

La crisis del agua es un asunto crítico para los gobiernos y las sociedades en todas partes del mundo. Pero la gente pobre se enfrenta con esta crisis sobre una base cotidiana. El manejo sustentable de los recursos hídricos es crucial para la erradicación de la pobreza.

Las estrategias para la mitigación de los impactos de las sequías deben considerar el entorno de pobreza y marginación en que se ve envuelta la población. Con este propósito, a continuación se presentan algunas definiciones importantes.

Esperanza de vida al nacer

Número de años que un recién nacido viviría si el nivel de mortalidad de ese año permaneciera constante. También se utiliza como un indicador de la calidad de vida de la población, ya que refleja las mejoras en los servicios sanitarios de las viviendas, el acceso de los servicios de salud, la calidad de la alimentación, entre otros. Una esperanza de vida más elevada se asocia con mejores condiciones de vida y mayor desarrollo.

Desarrollo Humano

El Desarrollo humano es el proceso de ampliación de las opciones de la gente, aumentando las funciones y capacidades humanas.

En todos los níveles del desarrollo las tres capacidades esenciales consisten en que la gente viva una vida larga y saludable, nível educacional y acceso a recursos necesarios para un nível de vida decente.

Índice de Desarrollo Humano (IDH)

El IDH mide el logro medio de un país en cuanto a tres dimensiones básicas del desarrollo humano: la esperanza de vida al nacer, el logro educacional (alfabetización de adultos y la tasa bruta de matriculación primaria, secundaria y terciaria combinada) y el Producto Interno Bruto real per cápita en dólares. En la Tabla 9.1 se presenta la variación del IDH de algunos países de Latinoamérica.

	TOS DE LAS SEGUÍAS	dalaman cad when a An	0
F	País	1990	1997
Argentina		0.803	0.827
Bolivia		0.611	0.652
Brasil		0.708	0.739
Chile		0.816	0.844
Colombia		0.745	0.768
Costa Rica		0.783	0.801
Ecuador		0.726	0.747
Guatemala		0.588	0.624
Haití		0.432	0.430
Honduras		0.616	0.641
México		0.763	0.786
Paraguay Paraguay		0.706	0.730
P'erú		0.703	0.739
República Dominicana		0.693	0.726
Uruguay		0.803	0.826
Venezuela	mátro o la molita não e ás	0.780	0.792
América Latina y el Caribe			0.756
Promedio Mundial			0.706

Tabla 9.1. Índice de Desarrollo Humano (IDH) de algunos países de Latinoamérica y el Caribe, estimado por el Programa de las Naciones Unidas para el Desarrollo (PNUD).

Pobreza Humana

Se define la pobreza humana por el empobrecimiento en múltiples dimensiones: la privación en cuanto a una vida larga saludable, en cuanto conocimiento, en cuanto nivel decente de vida, en cuanto a participación. Por el contrario, se define la pobreza de ingreso por la privación en una sola dimensión, el ingreso, ya sea porque se considera que ese es el único empobrecimiento que interesa o que toda la privación puede deberse a un denominador común. El concepto de pobreza humana considera que la falta de ingreso suficiente es un factor importante de privación humana, pero no el único.

Existen dos métodos para medir y cuantificar la pobreza, así como identificar quién se puede considerar como pobre:

- 1) Método indirecto o del ingreso, también conocido como la Línea de la Pobreza. Mide a la pobreza a través de un enfoque cuantitativo, es decir a través de un nivel de ingreso se determina la línea de la pobreza. Consiste en calcular el ingreso mínimo requerido para satisfacer la canasta básica. Así, se identifica como pobres a todos aquellos hogares cuyo ingreso es inferior al valor de dos canastas alimentarias, en tanto que aquellos que cubren hasta una canasta se les considera como pobres extremos.
- 2) Método directo o de las necesidades básicas insatisfechas. Intenta acercarse a un enfoque de medición más cualitativo que cuantitativo, sin embargo no lo logra, ya que concibe a la pobreza como un conjunto de necesidades, en vez de concebirla como la carencia de capacidades. A partir de un conjunto de necesidades insatisfechas (educación, salud,

vivienda, nutrición) se fija la línea de la pobreza, un hogar que no satisface ciertas necesidades que se establecen como básicas, son considerados como pobres.

Índice de Pobreza Humana (IPH)

El IPH mide la privación en cuanto al desarrollo humano. De esta manera en tanto que el IDH mide el progreso general de un país en cuanto a lograr el desarrollo humano, el IPH refleja la distribución del progreso y mide el retraso de privación que sigue existiendo. El IPH se prepara respecto e los países en desarrollo (IPH-1) y los países industrializados (IPH-2). Se ha preparado un índice separado respecto de los países industrializados por cuanto la privación humana varía con las condiciones sociales y económicas de una comunidad y para aprovechar la mayor disponibilidad de datos respecto de esos países.

El IPH-1 mide la privación en cuanto a las mismas dimensiones del desarrollo humano básico que el IDH (Tabla 9.2). Las variables utilizadas son el porcentaje de personas que se estima que morirá antes de los 40 años de edad, el porcentaje de adultos analfabetos y la privación en cuanto al aprovisionamiento económico general – público y privado – reflejado por el porcentaje de la población sin acceso a servicios de salud y agua potable y el porcentaje de niños con malnutrición.

El IPH-2 se centra en la privación en las mismas tres dimensiones que el IPH-1 y en una adicional, la exclusión social. Las variables son el porcentaje de personas que se estima que morirá antes de los 60 años de edad, el porcentaje de personas cuya capacidad para leer y escribir no es suficiente para ser funcional, la proporción de la población que es pobre de ingreso (con un ingreso disponible inferior al 50% del promedio nacional) y la proporción de desempleados de argo plazo (12 meses o más).

10, 81 USO del Jellisto.	País País Para De	761, page 12 00000	IPH-1	
Argentina	oporocel senomichen sel y amp s		6.1	
Bolivia			21.1	
Brasil			15.8	
Chile			4.8	
Colombia			10.5	
Costa Rica			4.1	
Ecuador			16.8	
Guatemala			28.3	
Haití			46.1	
Honduras			24.8	
México			10.6	
Paraguay			16.4	
Perú			16.6	
República Dominicana			17.7	
Uruguay			4.0	
Venezuela			12.4	
América Latina y el Caribe				

Tabla 9.2. Índice de Pobreza Humana de algunos países de Latinoamérica y el Caribe (IPH-1), estimado para el año de 1997 por el Programa de las Naciones Unidas para el Desarrollo (PNUD).

Índice de Pobreza del Agua (IPA)

El IPA mide varios aspectos de la relación entre la cantidad disponible del agua y la sociedad. En efecto, a la disponibilidad de agua se suman cuatro indicadores más: posibilidades de acceso a la misma, capacidad para manejar aspectos sociales (cómo lograr y manejar recursos para agua, educación y salud), uso del recurso e impacto ambiental presente en el país.

En cada indicador se graduaron las características de cada país en una escala de uno a 20, y la suma de las mismas corresponde a un máximo posible de cien puntos, que indicaría el país que está en la mejor situación con respecto al agua. Las 10 naciones más ricas en agua del mundo, según este índice, son: Finlandia (78 puntos), Canadá, Islandia, Noruega, Guyana, Surinam, Austria, Irlanda, Suecia y Suiza. En tanto que las 10 más pobres en agua, partiendo desde el último lugar son: Haití (35 puntos), Níger, Etiopía, Eritrea, Malawi, Djibuti, Chad, Benín, Ruanda y Burundi.

Una ventaja del IPA es que se utilizaron datos de fuentes ya existentes, como el IDH. Según el PNUD hay una fuerte correlación entre la pobreza del agua la pobreza de ingresos, así como también sucede con las necesidades insatisfechas, la integridad ambiental y la salud.

El IPA intenta expresar el impacto de la relación entre el bienestar de los hogares y la escasez del agua (Da Cruz, 2003). Además de comparaciones entre países, el IPA puede utilizarse para contrastar regiones, tomando en cuenta factores sociales y económicos asociados a la escasez de agua. Por ejemplo, un país puede se considerado pobre en agua por no contar con el recurso, pero también porque su población no puede pagar las tarifas requeridas para acceder al servicio. La riqueza de agua no se trata solamente de tener agua pura para consumo directo, sino también para usos agrícolas y otros. En este sentido, lo importante no es la cantidad de agua que posea un país, sino el uso que hace de este recurso y la efectividad para manejarlo. Los conceptos que subyacen en la base de este índice deben por esa razón armonizar la disponibilidad, el acceso al agua, la capacidad para asegurar el acceso, el uso del recurso, los factores ambientales que afectan la calidad del agua y las condiciones ecológicas que dependen del agua. La medida de sustentabilidad ecológica se obtiene uniendo registros de calidad del agua, estrategias y regulaciones ambientales, y el número de especies amenazadas.

En el entorno de continente americano, aparte de Guyana y Surinam, el país de puntaje más alto es Chile, que ocupa el lugar 11 de la lista de 147 países. Enseguida se ubica Ecuador en el 13, Perú en el 19, a Costa Rica en el 23, a Uruguay en el 26, a Colombia en el 27 y a Panamá en el 28. Los países más grandes tienen puntajes menores: Argentina se sitúa en el lugar 44, México en el 64, Brasil en el 69 y Estados Unidos en el 71. La ubicación de los Estados Unidos se explica por el gran derroche del recurso.

Según la información recolectada para establecer el IPA, un 20% de la población de 30 países padecían estrés hídrico en el año 2000, pero podrían ser, de no tomarse medidas, del 30% en 50 países para el año 2025.

En la tabla 9.3 se muestra el IPA para algunos países de Latinoamérica y el Caribe.

País Dome	Recurso agua	Acceso al agua	Capacidad De manejo	Uso del agua	Indicadores ambientales	IPA
Argentina	12.4	9.7	15.3	12.8	12.6	62.8
Bolivia	13.6	8.3	11.6	15.4	10.5	59.4
Brasil	13.5	10.1	12.5	11.6	11.1	58.8
Chile Sandad and A	10/1 9 13.19 0 1	16.2	13.8	14.9	12.5	70.5
Colombia	12.6	12.9	12.9	15.8	202 11.0 m shad	65.3
Costa Rica	12.5	13.7	15.2	14.2	10.2	65.7
Ecuador	12.6	10.1	15.4	20.0	11.9	70.0
Guatemala	10.9	DOCEPPO CE	13.8	10007,1 26m	2019 10.4	53.3
-laití	6.1	4.8	10.5	4.3	ettine 7.0 toele no	32.7
Honduras	11.4	10.3	14.2	11.4	8.6	55.9
México	8.1	12.1	14.1	15.5	9.5	59.2
Paraguay	13.5	6.9	13.200 6	13.6	15 UP 9.1 () () IS (1)	56.3
Perú	15.0	12.1	13.9	16.1 0910	9.5	66.5
República Dominicana	7.3	10.7	15.4	18.0	11.3	62.7
Jruguay	12.8	13.4	15.6	13.7	9,9	65.5
Venezuela	8 0 14.0 5	9.5	14.9	13.2	10.9	62.5

Tabla 9.3. Componentes para el cálculo del Índice de Pobreza del Agua de algunos países Latinoamericanos, obtenido por el Departamento de Economía de la Universidad de Keele, en Gran Bretaña.

La vida de la gente pobre esta estrechamente vinculada con su acceso al agua, y a los múltiples usos que ésta provee. La pobreza esta íntimamente ligada al mayor riesgo de enfermedad y a las oportunidades reducidas de ganar el sustento a nivel local. En el balance agua disponible — demanda, siguen siendo los pobres quienes más pierden. Las consecuencias son enormes en términos del desarrollo humano. Pero la importancia del agua en la vida de la gente pobre va mucho más allá de las consecuencias relacionadas con la salud, a los asuntos más amplios de las posibilidades de sustento y bienestar. En particular, la mala administración de los recursos hídricos ha llevado a la degradación del medio ambiente y la pérdida de recursos naturales de los cuales depende el sustento de tantos habitantes pobres en las zonas rurales.

Las conexiones entre la mala salud medioambiental y otras dimensiones de la pobreza son complejas y múltiples, y se refuerzan una a otras en varias maneras. Típicamente, los pobres se enfrentan con mayores peligros medioambientales debido a que viven en lugares insalubres – tales como tierras bajas o marginales – y carecen de servicios de infraestructura básica de agua potable y saneamiento. Son más vulnerables debido a que – como resultado de educación e información deficiente, agotadoras tareas cotidianas y miseria – son menos capaces de adaptar su conducta para moderar su exposición, y son más susceptibles a la exposición de los patógenos transmitidos por el agua, a la desnutrición y a la inadecuada atención de la salud.

Tanto los índices presentados en este apartado, como las condiciones generales de la pobreza deben tomarse muy en cuenta cuando se realice un plan de mitigación contra la sequía, ya que dan un panorama real, tanto de disponibilidad del recurso hídrico, como de la situación económica y social en que se encuentra la población. Factores todos de vital importancia para la adecuada toma de decisiones.

9.2. Planeación básica para la sequía

La sequía es considerada por muchos el más complejo, pero el menos entendido, de todos los desastres naturales y que afectan a más personas.

Si bien es cierto que su ocurrencia es inevitable, también lo es que el hombre deberá tener la capacidad para mitigar sus efectos mediante una adecuada planeación.

Uno de los retos más importantes en el proceso de planeación ante una sequía es la comunicación efectiva entres los grupos involucrados:

Climatólogos, quienes estiman la cantidad de agua disponible en el momento y en el futuro predecible (Comité de Monitoreo).

Administradores de los recursos hidráulicos, quienes determinan cómo la carencia de agua afecta a la agricultura, ganadería, pesca, salud y el abastecimiento urbano e industrial (Comité de Evaluación de Riesgo).

Funcionarios de alto nivel que toman decisiones, los cuales tienen la autoridad para actuar sustentados en la información sobre disponibilidad de agua y los efectos de la sequía (Comisión para la Sequía).

La coordinación de estos tres grupos es parte de éxito del plan para enfrentar a la sequía. Este plan consiste en los siguientes diez pasos (NDMC, 2002):

Paso 1. Integrar una Comisión para la Sequía

El proceso de planeación se inicia con el nombramiento de una Comisión para la Sequía, que depende, por ejemplo, del Gobierno del Estado. Esta comisión tiene dos propósitos:

- 1) Coordinar el desarrollo del plan
- 2) En el periodo en que ocurre la sequía, la comisión debe coordinar las acciones del plan, implantando los programas de respuesta y mitigación. También realiza recomendaciones de tipo político al gobernador del estado.

Es recomendable que la comisión impulse la creación de una página WEB donde se plasme la información sobre el proceso de planeación ante la sequía y las condiciones climáticas y de disponibilidad de los recursos hidráulicos.

La comisión debe reflejar la naturaleza multidisciplinaria de la sequía y sus impactos, al incluir tanto a representantes de las dependencias gubernamentales locales y federales, como a miembros de la comunidad científica relacionados con el tema.

Paso 2. Definir el propósito y los objetivos del plan para la seguía

La comisión para la sequía debe presentar claramente el propósito del plan. Los funcionarios del gobierno deben considerar para la definición del plan preguntas como:

- 1) El propósito y el papel que juega el gobierno estatal en la mitigación de la sequía y en los esfuerzos de respuesta.
- 2) El alcance del plan.
- 3) Las áreas más vulnerables en el Estado a la ocurrencia de una sequía.
- 4) Los impactos históricos de la sequía.
- 5) Las respuestas que se han dado ante la ocurrencia de la sequía.
- 6) Los sectores económicos y sociales más vulnerables.
- 7) El papel del plan en la solución de conflictos entre los diferentes usuarios durante los periodos de escasez.
- 8) Tendencias actuales (por ejemplo, usos del agua y suelos, crecimiento poblacional), los cuales pueden aumentar o disminuir la vulnerabilidad y los conflictos en el futuro.
- 9) Los recursos humanos y materiales que el Estado está dispuesto a ofrecer al plan.
- 10) Los principales efectos ambientales causados por la seguía.

El propósito general del plan es la de reducir los impactos de la sequía al identificar las principales actividades, grupos o regiones en riesgo y desarrollar acciones de mitigación y programas para disminuir su vulnerabilidad. El plan está dirigido para proveer al gobierno de medios efectivos y sistemáticos de evaluación de la condiciones de la sequía, desarrollar acciones de mitigación y programas para reducir el riesgo antes de que ocurra la sequía, y desarrollar opciones de respuesta que minimicen el impacto en la economía, el medio ambiente y la sociedad durante el periodo de sequía.

La comisión para la sequía debe identificar los objetivos específicos que dan sustento al plan. Los objetivos del plan para la sequía serán diferentes en cada Estado, ya que deben reflejar las condiciones únicas físicas, ambientales, socioeconómicas y políticas de cada uno de ellos. Para la elaboración del plan los Estados deberían considerar los siguientes objetivos:

- 1) Reunir a tiempo y analizar en forma sistemática la información relacionada con la sequía.
- 2) Establecer el criterio para declarar emergencias de sequía e iniciar las actividades de mitigación y respuesta.
- 3) Proveer una estructura organizativa y sistema de entrega que garantice el flujo de información entre y dentro de los diferentes niveles de gobierno.
- 4) Definir las tareas y responsabilidades de cada dependencia con respecto a la sequía.
- 5) Identificar las áreas susceptibles a la sequía del Estado y los sectores económicas, poblaciones o ecosistemas vulnerables.

- 6) Identificar las acciones de mitigación que se pueden tomar para atender las vulnerabilidades y reducir los impactos de la seguía.
- 7) Mantener informado al público sobre las condiciones actuales y acciones de respuesta, brindando información en los medios (Radio, TV, Internet).
- 8) Establecer y consolidar una estrategia para eliminar los obstáculos para una asignación equitativa de agua durante períodos de escasez y establecer requerimientos o proveer incentivos para motivar la conservación del agua.
- 9) Establecer un conjunto de procedimientos para evaluar y ejecutar de manera continua el plan, y revisar periódicamente el plan para mantenerlo actualizado.

Punto 3. Buscar la participación de los usuarios y resolver los conflictos entre ellos

Conforme se intensifica la competencia por los escasos recursos hidráulicos, existe un enfrentamiento entre los diferentes intereses económicos, sociales y ambientales. Por lo tanto, es importante que los miembros que integran la comisión para la sequía, identifiquen a todos los grupos ciudadanos y sus intereses, que pueden ser afectados por el plan. Estos grupos deben involucrarse de manera temprana, para lograr una representatividad justa, además de lograr una planeación y administración efectiva de la sequía. El hecho de no tomar en cuenta a este grupo de personas puede impedir el progreso de los planes de desarrollo.

La participación del público puede ser de muchas formas, una de ellas es el establecimiento de un consejo asesor ciudadano, el cual puede mantener el flujo de información y resolver los posibles conflictos entre los usuarios del agua. Otra forma es el de invitar a los usuarios a participar en grupos de trabajo en el comité de evaluación de riesgos.

Los Estados también deberían considerar el establecimiento de consejos asesores municipales. Estos comités pudieran discutir sus problemas de escasez de agua y plantear soluciones conjuntas, las cuales pueden mejorar el plan a nivel estatal.

Punto 4. Identificar los recursos disponibles y los grupos en riesgo

La comisión para la sequía requiere de conocer los recursos naturales, biológicos y humanos disponibles, incluyendo la identificación de las restricciones que pueden impedir el proceso de planeación. Es importante determinar la vulnerabilidad de estos recursos a los periodos de escasez de agua a consecuencia de la sequía. El más obvio recurso natural es el agua, y es importante preguntarse: ¿Dónde se localiza?, ¿Qué tan accesible se encuentra?, o ¿De qué calidad es?. Los recursos biológicos se refieren a la cantidad y calidad de los pastizales, bosques, flora y fauna. Los recursos humanos incluyen la mano de obra requerida para el desarrollo de aprovechamientos hidráulicos, el tendido de tuberías, el transporte de agua y la alimentación de animales; procesar las quejas ciudadanas, proveer asistencia técnica y encauzar a los ciudadanos a los servicios disponibles.

También es imperativo identificar las restricciones al proceso de planeación y a la puesta en marcha del plan en respuesta a una sequía en proceso. Estas restricciones pueden ser físicas, financieras, legales o políticas. Los costos asociados con el desarrollo del plan deben evaluarse en función de las pérdidas que resultarían de no llevarse a cabo. El propósito del plan para la sequía es la de reducir el riesgo, y por lo tanto, los impactos económicos, sociales y ambientales.

En la planeación ante una sequía, la transición de crisis a administración de riesgos es difícil debido a que, históricamente, poco ha sido lo que se ha hecho para entender y evaluar los riesgos asociados con la sequía. Para resolver este problema, se deben identificar las áreas de alto riesgo, como también las acciones que se deben tomar antes de que ocurra la sequía para reducir estos riesgos. El riesgo se define tanto por la exposición de una localidad a los peligros de la sequía y la vulnerabilidad de esa localidad a periodos de escasez de agua inducidos por la sequía. La sequía es un fenómeno natural, y es importante definir como sus diferentes intensidades y duraciones afectan las diversas áreas del estado. Por otra parte, la vulnerabilidad está definida por factores sociales como los usos de suelo, políticas gubernamentales, comportamiento social, uso del agua, población, desarrollo económico, cultura, y otros. La comisión para la sequía debe atender estos aspectos en la etapa temprana del proceso de planeación de tal forma que pueda dar una orientación mayor a los otros comités y grupos de trabajo que serán definidos en el paso 5 del proceso de planeación.

Paso 5. Desarrollo de una estructura organizacional y preparación del plan para la sequía

Este paso describe el proceso el proceso para establecer comités para la elaboración y escritura del plan para la sequía y establecer la estructura organizacional necesaria para el desempeño de sus responsabilidades. El plan para la sequía debe contar con tres componentes primarios: monitoreo, evaluación de riesgos, y mitigación y respuesta. Se recomienda que se integren comités que se enfoquen en las dos primeras componentes; la función de mitigación y respuesta en la mayoría de los casos la puede desempeñar la comisión para la sequía.

Estos comités tendrán sus propias tareas y objetivos, pero se requiere de un buen flujo de comunicación e información entre estos comités y la comisión para la sequía, que asegure la planeación efectiva.

Comité de Monitoreo

La evaluación de la disponibilidad de agua y su estimación en el corto y largo plazo es de vital importancia tanto en el periodo húmedo como el seco. Durante la sequía, el valor de esta información se vuelve crítico. El comité de monitoreo debe incluir representantes de las dependencias cuya responsabilidad sea la de monitorear el clima y las reservas de agua. Es recomendable que los datos y la información de cada uno de los indicadores apropiados (por ejemplo, precipitación, temperatura, evapotranspiración, pronósticos de tiempo de largo alcance, humedad de suelo, flujo de ríos, niveles de presas) se consideren en la evaluación del comité sobre la situación del agua disponible y se haga el pronóstico estatal.

El comité de monitoreo debe reunirse periódicamente, especialmente antes de la época de demanda pico. Después de cada reunión, se deben preparar reportes y darlos a conocer a la comisión para la sequía, a las dependencias estatales y federales relevantes, y a los medios de comunicación. El presidente del comité de monitoreo debe ser miembro permanente de la comisión de la sequía. Si las condiciones se agravan, la comisión de la sequía debe informar al gobernador sobre el contenido del reporte, incluyendo cualquier recomendación para llevar a cabo acciones específicas. Es esencial que el público reciba una interpretación balanceada de las condiciones cambiantes. El comité de monitoreo trabajaría de manera cercana con los especialistas en información pública para mantener a la población bien informada. Los objetivos primarios del comité de monitoreo son:

- 1) Ayudar a los políticos a adoptar una adecuada definición de sequía que pueda utilizarse para activar o desactivar los niveles de acción tanto estatal como federal. Puede ser necesario adoptar más de una definición de sequía para identificar los impactos en los diversos sectores económicos, sociales y ambientales.
- 2) Ayudar a la comisión para la sequía a establecer áreas de administración de la sequía. Estas áreas pueden ser cuencas hidrológicas, municipios, etc.
- 3) Desarrollar un sistema de monitoreo de la sequía. Muchos estados ya cuentan con un buen sistema para monitorear el clima, sus reservas de agua e identificar situaciones potencialmente críticas. El reto del comité de monitoreo es el de coordinar e integrar el análisis de tal forma que la población implicada y los que toman las decisiones reciban la información de manera pronta y confiable.
- 4) Realizar inventarios de la calidad y cantidad de las redes de observación actual. Los datos meteorológicos son importantes, sin embargo, también los son la humedad del suelo, el flujo en ríos, los niveles en presas y mantos acuíferos.
- 5) Trabajar de cerca con las comisiones para la sequía y la de evaluación de riesgos para determinar las necesidades de información que requieren los usuarios primarios.

Comité de evaluación de riesgo

El riesgo resulta de la exposición a una sequía probable y la vulnerabilidad de la sociedad, representada por una combinación de factores económicos, sociales y ambientales. Por lo tanto, para reducir la vulnerabilidad ante una sequía, es esencial identificar los impactos más relevantes y atender sus causas.

Los miembros del comité de evaluación de riesgos deben representar a los sectores económicos, grupos sociales, y ecosistemas que corran más riesgo ante la sequía. El presidente del comité debe ser un miembro de la comisión para la sequía.

El método más efectivo para determinar la vulnerabilidad a los impactos de la sequía es la creación de grupos de trabajo bajo la coordinación del comité de evaluación de riesgos. El objetivo es la identificación de grupos de la población y ecosistemas en riesgo ante la escasez de agua, e identificar las

medidas de mitigación apropiada y factible para atender estos riesgos. Los grupos de trabajo deben constituirse por personal técnico y usuarios involucrados dentro de las zonas de estudio.

La metodología para evaluar y proponer acciones de mitigación se concentra en identificar y asignar prioridades a los impactos de la sequía, determinando sus causas, y escogiendo acciones para atender las causas. El proceso requiere de las siguientes seis tareas:

- 1) Integración del equipo. Seleccionar usuarios, planificadores del gobierno, y otras personas que tengan conocimientos sobre los efectos de la sequía en los diferentes sectores productivos y en la sociedad y ambiente.
- 2) Evaluar los efectos de sequías anteriores. Identificar como la sequía ha afectado la región, los grupos, los ecosistemas. Consultar los registros climatológicos para determinar la llamada "sequía más severa de la historia", y proyectar que pasaría si una sequía similar ocurriera este año o en el futuro cercano, tomando en cuenta los cambios en el uso del suelo, el crecimiento poblacional, y las capacidades de desarrollo que se han logrado desde la ocurrencia de esa sequía.
- 3) Evaluar los impactos. Determinar cuál de los efectos de la sequía es más urgente de atender. Los indicadores que se toman en cuenta para priorizar son los costos, extensión territorial, tendencias en el tiempo, opinión pública, igualdad social, y la capacidad de recuperación del área afectada.
- 4) Identificar las causas. Determinara aquellos factores que causan los niveles de riesgo más elevados para los varios sectores, regiones o poblaciones.
- 5) Identificar formas de reducir los riesgos. Identificar acciones que pueden tomarse con antelación a la sequía para reducir el riesgo.
 - 6) Escribir una lista de acciones pendientes. Trabajar con la comisión para la sequía para asignar prioridades a las opciones de acuerdo a lo más factible de ocurrir, de costo óptimo, y socialmente equitativo. Implantar pasos para realizar estas acciones a través de programas gubernamentales o el proceso legislativo.

Este proceso tiene el potencial para lograr la identificación de actividades apropiadas y efectivas de reducción de riesgo de sequía que reducirán los impactos de sequía a largo plazo, en lugar de respuestas ad hoc o acciones de mitigación no probadas que no reduzcan el impacto de futuras sequías.

Comité para la mitigación y respuesta ante una sequía

La comisión para la sequía, como se definió originalmente, se compone de expertos planificadores, por lo que debe estar en excelente posición para recomendar y/o implantar acciones de mitigación, solicitar asistencia a través de los programas federales, o recomendar planes de acción al gobernador. Las responsabilidades específicas de la comisión para la sequía son:

1) Determinar las acciones de mitigación y respuesta para cada uno de los principales sectores de impacto, en colaboración cercana del comité de evaluación de riesgos. De esta forma, la comisión debe plantear recomendaciones para enfrentar la sequía en dos escalas de tiempo:

Respuestas a corto plazo para implantarse durante la sequía, como guías de conservación de agua voluntaria, un teléfono de contacto público, procedimientos administrativos simplificados, producción de materiales de difusión sobre mejoras técnicas dirigidas a los productores agrícolas.

Proyectos de mitigación a largo plazo, como programas de educación que proporcionen al auditorio de manera fácil el conocimiento de la sequía y sus efectos, así como las estrategias a seguir para una adecuada conservación de los suelos, agua y ambiente en general.

- 2) Contar con un inventario de todos los programas y formas de asistencia del gobierno municipal, estatal y federal en el caso de una sequía severa. La comisión para la sequía debe evaluar estos programas y determinara su efectividad para atender las emergencias de corto plazo y la vulnerabilidad en el largo plazo.
- 3) Trabajar con los comités de monitoreo y evaluación de riesgos para establecer indicadores. Aquí, es importante establecer una sucesión de términos verdaderamente descriptivos para las alertas de niveles de disponibilidad de agua, tales como "advertencia", "alerta", "emergencia", y "racionamiento", en lugar de términos genéricos como "fase 1", "fase 2", o términos sensacionalistas como "desastre".
- 4) Establecer diversas áreas de administración de la sequía.
- 5) La comisión para la sequía debe desarrollar una página en Internet para difundir la información sobre el monitoreo y el plan adoptado ante la sequía.

Paso 6. Integrar la ciencia y la política, eliminando las brechas institucionales

Un aspecto esencial del proceso de planeación es el de integrar a la comunidad científica y a los planificadores políticos del gobierno. Los elaboradores de planes frecuentemente tienen poco o ningún conocimiento de los aspectos científicos y de las restricciones técnicas involucradas en la atención de los problemas asociados con las sequías. Así mismo, los científicos tienen una comprensión pobre de as restricciones políticas y sociales existentes para responder a los impactos de las sequías. Es por ello que para el buen desempeño del plan propuesto, se deberá lograr una excelente comunicación entre los actores involucrados en su diseño e implantación

Paso 7. Difundir el plan propuesto y solicitar su retroalimentación

Si existe una buena comunicación con el público durante el proceso de elaboración del plan de sequía, puede que exista ya una mejor noción del fenómeno, sus posibles consecuencias en la población, y las medidas propuestas de mitigación.

En años subsecuentes, es importante recordarle a la población la existencia del plan a través de los medios de comunicación. Indicando la existencia de presión sobre los recurso hídricos y la posibilidad de implantar medidas restrictivas en el corto plazo.

Paso 8. Implantar el plan

Una vez que el plan ha sido aceptado, la comisión para la sequía o los funcionarios designados, deben vigilar la implantación de los aspectos operativos tanto los de corto plazo como las medidas de mitigación de largo plazo.

Las nuevas tecnologías, investigaciones, legislaciones, o cambios en el rumbo político pueden modificar los riesgos y los aspectos operacionales del plan ante las sequías, por lo que se deberán realizar las adecuaciones correspondientes para mantener actualizado el plan.

Paso 9. Desarrollar programas de educación

Un programa educativo amplio que despierte la conciencia sobre aspectos de conservación del agua a largo plazo ayudará a que la gente sepa como responder ante la ocurrencia de una sequía. Estos programas permiten generar responsabilidad de la gente aún en periodos de superávit del recurso hídrico.

Paso 10. Evaluación posterior al periodo de sequía

Una evaluación posterior a la sequía documenta y analiza las acciones de evaluación y respuestas del gobierno, las organizaciones no gubernamentales, y otros, y provee de un mecanismo para impulsar recomendaciones para mejorar el sistema. Sin estas evaluaciones, es difícil aprender de las experiencias exitosas y de fracasos, pues la memoria institucional se desvanece.

Las evaluaciones post-sequía deben incluir un análisis de los aspectos del clima y del ambiente; su impacto social y económico; el alcance que tuvieron las acciones adoptadas previamente y durante la seguía.

Para asegurar una apreciación objetiva, el gobierno puede asignar la responsabilidad de evaluar el comportamiento del plan ante la sequía a organizaciones no gubernamentales, tales como universidades o institutos de investigación especializada.

9.3. Vulnerabilidad y Riesgo

Los desastres naturales ocurren cuando los peligros naturales o tecnológicos tienen un impacto en los seres humanos y su ambiente. Aquellos que cuentan con mayores recursos, tanto económicos como sociales, con frecuencia tienen una capacidad más grande para enfrentar los efectos del peligro que los miembros más pobres de la sociedad. El rápido crecimiento de la población, la migración a las grandes ciudades, los patrones de inequidad en la propiedad de la tierra, la escasez de educación y la agricultura de subsistencia conducen a condiciones de vulnerabilidad tales como establecimiento de casas e instalaciones inseguras, deforestación, malnutrición y desempleo.

Los individuos y organizaciones responsables en la planeación de las estrategias para la reducción del riesgo deberían por comenzar entendiendo la naturaleza y probabilidad de ocurrencia de los peligros que enfrenta la población. Ellos deben evaluar los elementos sociales en riesgo (población, estructuras, servicios, actividades) debido a la ocurrencia de los peligros. Los planificadores deben considerar las vulnerabilidades específicas de la población para ayudarlos en la construcción de medidas eficaces para reducir los riesgos ante los peligros. Ellos también deben entender como la sociedad o grupo específico concibe sus riesgos y la importancia que le dan a las tareas para reducirlos.

Los conceptos de vulnerabilidad, peligro y riesgo están dinámicamente relacionados. La relación de estos elementos se expresan a través de una simple fórmula la cual ilustra el concepto de que a mayor sea el potencial de ocurrencia de un peligro y la población sea más vulnerable, mayor será el riesgo. Es importante notar que la vulnerabilidad humana ante un desastre esta inversamente relacionado a la capacidad humana para encarar los efectos de los desastres.

La vulnerabilidad humana es la escasez relativa de capacidad de una persona o grupo social para anticipar, enfrentar, resistir y recuperarse del impacto de un peligro. La vulnerabilidad tiene dos componentes: exposición a los peligros, como la sequía, y la dificultad de enfrentarse y recuperarse de sus impactos debido a la escasez de recursos. Puesto que la vulnerabilidad humana esta relacionada inversamente al concepto de capacidad humana, se ofrecerá a continuación una definición.

Las capacidades humanas se refieren a las cualidades y recursos de un individuo o comunidad para anticipar, enfrentar, resistir y recuperarse del impacto de un peligro. Las capacidades pueden ser: recursos materiales (alimentos animales, herramientas); sociales y organizacionales (liderazgo, grupos comunitarios independientes, protección civil); y capacidad de actitud y motivación (ideas, eficacia).

Un peligro se define como la ocurrencia potencial, en cierta área y periodo de tiempo específico de un fenómeno natural que puede afectar la vida humana y sus propiedades.

Riesgo es la probabilidad de tener una consecuencia dañina o pérdida esperada (vidas, propiedades, actividad económica o daño ambiental), la cual resulta de las interacciones entre los peligros naturales o los inducidos por las actividades humanas y de las condiciones de vulnerabilidad y capacidad de respuesta. Convencionalmente, el riesgo se expresa por la ecuación Riesgo = Peligro x Vulnerabilidad/Capacidad.

Antes de que se desarrolle algún programa para la reducción del riesgo ante un peligro, es importante entender cuales son los factores que incrementan la vulnerabilidad de la población. Estos factores incluyen la pobreza, la sobrepoblación, la rápida urbanización, los cambios en los hábitos de vida, la degradación ambiental, la escasez de información, los problemas de tensión social y las guerras. Estos factores se encuentran intimamente relacionados, ya que por ejemplo, la pobreza genera la migración a las grandes ciudades en busca de trabajo. Los limitados recursos y oportunidades en los núcleos urbanos hacen que la gente se establezca en sitios inseguros, lo que puede generar tensiones sociales.

La mayoría de los estudios sobre desastres muestran que la gente con mayores recursos económicos generalmente sobrevive o se recupera rápidamente ante la ocurrencia de un fenómeno adverso. Por otro lado, existe una obvia conexión entre el número de afectados por un desastre y el tamaño de la población. El crecimiento de la población significa que más gente se verá forzada a vivir y trabajar en sitios no seguros y compitiendo por un limitado número de recursos, tales como suelo, agua, empleos, los cuales generan series conflictos sociales e incrementan su vulnerabilidad ante los peligros naturales.

Muchos de los desastres naturales son causados o magnificados por la degradación ambiental. La deforestación incrementa el escurrimiento en laderas, lo cual contribuye a la generación de inundaciones. Aunque las condiciones de intensidad y duración de una sequía son componentes naturales, las malas prácticas agrícolas y un inadecuado sistema de distribución de alimentos pueden contribuir significativamente a magnificar los impactos en la población.

El National Drought Mitigation Center (NDMC, 1998) propone una guía de seis paraos para identificar algunas acciones que se pueden realizar para reducir los impactos potenciales relacionados por las sequías antes de que éstas ocurran.

Paso 1. Comisión para la Seguía

Para este tipo de análisis es esencial reunir al grupo interdisciplinario propuesto por el Plan ante la Sequía, ya mencionado en el apartado 9.2.

Paso 2. Evaluación de los impactos de las sequías

La evaluación de los impactos examina las consecuencias de un determinado evento o cambio. Por ejemplo, las consecuencias directas de la sequía pueden ser una reducción en la producción agrícola o ganadera y el abatimiento de los almacenamientos. Estos impactos directos pueden dirigirse a consecuencias indirectas, con frecuencia de aspecto social, tales como la venta de propiedades, migración o problemas en la salud. Esta evaluación inicial identifica los impactos de la sequía pero no determina las causas que los originan.

Para propósitos prácticos, los impactos de la sequía se pueden clasificar en económicos, ambientales y sociales. A continuación se presenta una lista que sirve de base para evaluar los impactos que tendría un determinado episodio de sequía. Por ejemplo, si la sequía de planeación fuese la más adversa registrada, los impactos deben registrarse en la columna señalada como Histórica (H). Después,

con los conocimientos que se tienen sobre el área en estudio, se puede especular sobre los efectos que tendría la ocurrencia de este tipo de sequía el día de mañana. Estos impactos deben registrase en la columna Actual (A). Finalmente, se puede vislumbrar el impacto que tendría esa misma sequía en el área dentro de cinco o diez años, y sus consecuencias marcarlas en la columna Potencial (P).

Si existen suficientes recursos, tanto humano como económicos, puede ser benéfico realizar el estudio de los impactos basado en sequías comunes, sequías extremas y la más severa registrada en la región. Este tipo de análisis conduciría a un rango de impactos relacionados a la severidad de la sequía, lo cual pudiera ser útil para propósitos de planeación y es necesario para dirigirse al tercer paso de la guía.

H	A	Impactos Económicos
- 1		Pérdidas en la producción de los cultivos
	12808	Pérdidas en los cultivos perennes, de riego y temporal
	30 20 20	Daños en la calidad de los cultivos
No. 100 - No. 100 - Annual Const.		Reducción en la productividad de los suelos de cultivos (erosión eólica)
	3.5 47:10	Infestación por insectos
		Enfermedades de plantas
	The Bi	Daño de los animales a los cultivos
		Pérdidas en la producción ganadera
-		Reducción en la productividad de los pastizales
		Reducción forzada del hato ganadero
		Limitación de tierras públicas para el pastoreo
		Altos costos o no disponibilidad de agua de agua para el ganado
	st side	Altos costos o no disponibilidad de alimentos para el ganado
		Altas tasas de mortalidad del ganado
		Alteración del ciclo reproductivo del ganado
		Disminución de peso del ganado
A STATE OF THE STA		Incremento de la depredación
		Incendios en pastizales
		Pérdidas en la producción forestal
16 18		Incendios forestales
		Enfermedades de los árboles
		Infestación por insectos
	Beech by	Baja productividad de madera
transportation and	Transferência de la constitución	- the second control of the second se

Н	А	Р	Impactos Económicos
			Pérdidas en la producción pesquera Daños al hábitat de los peces
		Programme and	Pérdida de peces jóvenes debido a la disminución en los flujos de agua
			Pérdida en la producción pesquera (ríos, estuarios, acuacultura)
			Pérdida de ingreso a los agricultores y otros directamente relacionados
			Pérdida de los agricultores a través de la bancarrota
			Desempleo asociado a la sequía
			Pérdidas en la industria turística
			Pérdidas en la industria que genera equipo de recreación
			Incremento en la demanda de energía y suministro reducido debido a la sequía
			Incremento de costos de energía debido a la sustitución de la materia generadora
			Pérdidas en la industria agroalimentaria
			Acaparamiento e incremento en los precios de los alimentos
			Incremento en la importación de alimentos (a más altos costos)
			Desequilibrio en los sistemas de suministro de agua
			Pérdidas por la incapacidad de navegación en corrientes, ríos y canales
			Costos por el transporte de agua
			Costos por un nuevo o complementario sistema de suministro de agua
		8.57	Costos por el abatimiento del agua subterránea
			Reducción en el desarrollo económico
			Disminución en los precios de las tierras
	JEE 1		Reducción en la tasa de recaudación de impuestos estatales y federales
			Costos de parte del gobierno federal para los programas de mitigación
		the state of the s	

Н	Α	Р	Impactos Ambientales
			Daños a las especies animales Reducción y degradación de los peces y su hábitat
			Escasez de alimento y agua para beber
			Enfermedades
			Incremento de la vulnerabilidad a la depredación de especies que viven cerca del agua
			Migración y concentración de la fauna
			Incremento de estrés en especies en extinción
			Daños a la flora
			Incremento en el número y severidad de los incendios forestales
			Pérdida de bosques y selvas
			Impactos en los estuarios (cambio de salinidad)
			Incremento en el abatimiento del agua subterránea
			Pérdida de la biodiversidad
			Erosión eólica e hídrica de los suelos
			Reducción en los niveles de almacenamientos, lagos y lagunas
			Efectos en la calidad del agua (concentración de sales, temperatura, PH, turbidez, Oxigeno)
			Efectos en la calidad del aire (polvo, contaminantes)
		Constitution of the second second second second	Modificación del paisaje (polvo, cobertura vegetal, etc.)
Н	Α	Р	Impactos Sociales
			Estrés físico y mental (ansiedad, depresión, pérdida de seguridad, violencia doméstica)
			Enfermedades relacionadas con el agua
			Problemas de nutrición (limitaciones por altos costos, deficiencias en la dieta)
			Pérdidas de vidas humanas (estrés por el calor, suicidio, muertes por enfermedades)
			Seguridad pública ante incendios forestales
			Incremento de enfermedades por la concentración de animales
			Incremento de conflictos locales entre los usuarios del agua
			Conflictos políticos entre municipios, estados o países
			Reevaluación de los valores sociales (prioridades, necesidades, derechos)

HA	P	nig I demodely	Impactos Sociales
	Savialup		de las actividades recreativas
		Insatisfacción de la poblaci	ón en general ante la respuesta del gobierno por la sequía
		Inequidad en la distribución	del fondo de mitigación contra la sequía
		Inequidad en los impactos	de la sequía basado en grupos socioeconómicos
		Inequidad en los impactos	de la sequía basado en aspectos étnicos
		Inequidad en los impactos	de la sequía basado en la edad
	1	Inequidad en los impactos	de la sequía basado en el género
		Restricciones institucionale	s para el uso del agua
		Pérdida de sitios culturales	
	Server to the contract of the	Pérdida de valores estético	S The second state of the
	The state of	Cambio en el estilo de vida	en las áreas rurales
		Cambio en el estilo de vida	en las áreas urbanas
		Migración poblacional de la	s áreas rurales a las urbanas
		Migración poblacional a los	Estados Unidos

Paso 3. Jerarquización de los impactos de las seguías

Una vez que se han determinado los impactos de las sequías del paso anterior, se deberá generar una nueva lista ordenada de acuerdo a los efectos más importantes causados por la ocurrencia de la sequía analizada. Para ser efectivo y equitativo el ordenamiento, se deben considerar los siguientes aspectos: costos, extensión territorial, tendencias en el tiempo, opinión pública, justicia social, y la capacidad de la zona afectada para recuperarse.

Para elegir los impactos prioritarios más altos es útil responderse algunas preguntas como: ¿Cuáles impactos son tan importantes como para afectar la forma e vida individual y de grupo?; Si los impactos no se distribuyen de igual forma, ¿Deberían recibir más atención los grupos más golpeados?, ¿Existe tendencia de algún impacto en particular que llegue a ser más problemático que otros?

Para la toma de decisiones puede ser muy útil contar con una matriz (Tabla 9.4), la cual ayude a organizar la información. El resultado de este paso es el desarrollo de una lista de los impactos más prioritarios que son relevantes para la zona en estudio, y es apoyada por el comité de evaluación de riesgos.

Impacto	Costo		راد المعالى ا	¿Prioridad pública?	¿Recuperación equitativa?	Rango del impacto
		seyt	on de las actividades recrept	essilikos re-nolsu	ubosi - j	
		SBYL	on de igs actividades recreat	:353/HKO8 +0-(1010)	4D091	

Tabla 9.4. Matriz de decisiones sobre los impactos de la sequía

Paso 4. Evaluación de la vulnerabilidad

La evaluación de la vulnerabilidad provee de una herramienta para identificar las causas sociales, económicas y ambientales de las sequías. Por ejemplo, el impacto directo de la escasez de precipitación puede ser la reducción en la producción de los cultivos. La causa directa de esta vulnerabilidad, sin embargo, quizá sea que los agricultores no utilizaron semillas resistentes a la sequía, o porque ellos no creen en su utilidad, los costos son demasiado altos o por la existencia de creencias culturales.

Para cada uno de los impactos identificados en el paso 3 se deberá responder el porque han ocurrido. También es importante darse cuenta que una combinación de factores puede dar origen a un impacto. Es benéfico representar estas relaciones causales en un diagrama de árbol. En la Figura 9.1 se presenta un ejemplo para el caso de impactos en la agricultura.

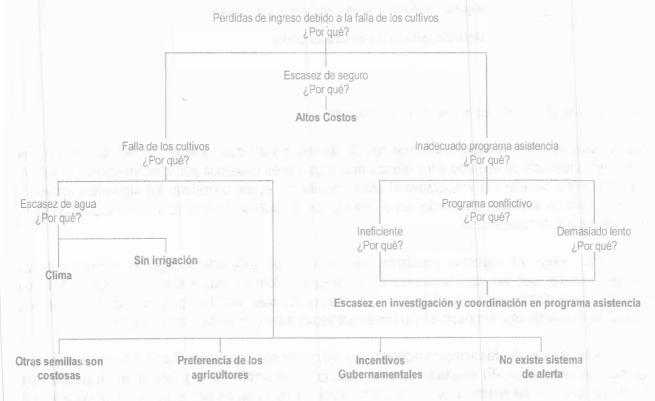


Figura 9.1. Ejemplo de un diagrama de árbol simplificado para evaluar la vulnerabilidad ante un impacto.

En la tabla 9.5 se presentan muchos de los factores que típicamente hacen a una zona vulnerable ante las sequías, y que deben considerarse en la formación de los diagramas de árbol.

	Condiciones de vulnerabilidad ante la es	casez de agua
Concepto	Vulnerabilidad Alta	Vulnerabilidad Baja
Sequía meteorológica	Alta variabilidad de la precipitación Escasez de datos/una sola fuente de información Aceptación pasiva de la sequía Más larga duración Más alta severidad de la sequía Cambios repentinos en el suministro	Patrón estable de precipitación Información suficiente de largo plazo/ Múltiple fuentes de información Sistema de alerta temprana Más corta duración Más baja severidad de la sequía Cambios graduales en el suministro
Sequía Institucional Balance suministro/demanda	Una sola fuente de suministro o baja confiabilidad en el suministro de agua Baja prioridad en la asignación de derechos de uso de agua Suministro de agua en riesgo de contaminación Importaciones de agua Sujeto a otros desastres naturales	confiabilidad en el suministros de agua
Patrones de uso del agua	Zonas de alto crecimiento poblacional/ incremento alto en la demanda Dependencia de la precipitación en las actividades agrícolas	Demanda estable o decreciente de agua Clima apropiado
Preparación	Esperar hasta que se declara la escasez Escasez de liderazgo político Ignorar la situación/ eludir responsabilidades Sistemas de suministro de agua no interconectados o la no colaboración de las regiones vecinas Poca advertencia pública	Respuesta anticipada a la escasez Liderazgo Preparación/acciones para proteger a la comunidad-economía-ambiente Coordinación con otros sistemas o grupos de respuesta. Participación de todos los sectores involucrados

Tabla 9.5. Consideraciones para el análisis de vulnerabilidad ante la escasez de agua.

Paso 5. Identificación de acciones

Una vez que se establecen los impactos prioritarios y se han expuesto sus correspondientes causas directas, es tiempo de identificar las acciones apropiadas para reducir el riesgo de las sequías. Con este propósito, es útil el desarrollo de una matriz para la toma de decisiones (Tabla 9.6). Esta matriz lista tanto el impacto de la sequía como sus causas fundamentales. En este sentido, se inicia la investigación de las acciones que se puede llevar a cabo para la reducción de los impactos. Las siguientes preguntas pueden ser útiles para identificar las acciones potenciales: Primero, ¿Se puede modificar la causa fundamental?, ¿Puede modificarse antes de que ocurra la sequía?, si es así, entonces, ¿Cómo?; Segundo, ¿Se puede dar respuesta a la causa fundamental?, ¿Puede modificarse durante o después de la sequía?, si es así, entonces, ¿Cómo?; Tercero, si hay una causa fundamental o un aspecto de ella que no se puede modificar, ¿Debe aceptarse como un riesgo relacionado con la sequía?

Impacto	Causas Fundamentales	Acciones Potenciales	Mitigación (M) Respuesta (R) Riesgo Aceptado (RA)	Factible	Efectivo para la reducción del impacto	Relación Beneficio/ Costo	Equitativo	Ejecutable
Pérdida	Clima	Modificación	M	militar	I I SELECTION	Name :	THE OWN	
de ingreso		Monitoreo	v					
debido a la	Sin irrigación	Asistencia gubernamental						
a ia falla		para proyectos	M					
de los								
cultivos	Semillas costosas	Subsidiar la venta de semillas	M					
	Preferencia de los agricultores	Incrementar la comunicación Realizar investigación	M					
	Incentivos gubernamentales	Nuevos incentivos	M					
	No existe sistema de alerta	Proveer sistema de monitoreo	M					
	Alto costo de los seguros	Subsidios gubernamentales	R					
	Escasez en investigación	Identificar programas conflictivos	М					
	Deficiencia en la coordinación de programas de asistencia	Mejorar los mecanismos de asistencia	M	1,=	subse	si, be		

Tabla 9.6. Matriz de identificación de acciones para reducir el riesgo de la ocurrencia de una sequía.

A continuación se listan algunas de las acciones relacionadas con un tema específico que pueden ser consideradas como potenciales para reducir el riesgo ante la presencia de las sequías. Conviene hacer notar que algunas de ellas pertenecen más al terreno de una respuesta de urgencia, a corto plazo, o de gestión de una crisis, que al de mitigación a largo plazo, o de gestión del riesgo, mientras que otras ayudan indirectamente a la prevención de la sequía. Las respuestas de emergencia son importantes dentro del proceso de planificación de la sequía, siempre que se complementen con las medidas paliativas adecuadas.

Evaluación

- 1) Desarrollar sistemas de alerta temprana
- 2) Evaluar calidad y cantidad de agua de nuevas fuentes
- 3) Evaluar el uso del agua subterránea
- 4) Establecer nuevas redes de monitoreo de la información
- 5) Estudiar la capacidad de pago de la sociedad por recibir un suministro de agua más seguro
- 6) Estudiar la efectividad de los programas de uso eficiente del agua
- 7) Hacer un seguimiento de las fuentes de suministro vulnerables a la sequía
- 8) Mejorar la medición del escurrimiento estacional y del pronóstico de agua para el suministro
- 9) Establecer procedimientos de alerta para los problemas de calidad de agua
- 10) Investigar estrategias de diversificación para las actividades mercantiles y las explotaciones agrícolas
- 11) Evaluar las capacidades para resistir las pérdidas ligadas a la sequía, tales como rentas, bienes, flexibilidad de los créditos y procesos de toma de decisiones, subsidios, prestamos, la posibilidad de aplicar programas de bienestar social y los efectos de los programas y normas gubernamentales
- 12) Realizar encuestas públicas de opinión sobre temas medioambientales , económicos y culturales para la correcta formulación de las correspondientes políticas
- 13) Investigar los efectos de la sequía en diferentes grupos sociales, según ocupación, nivel socioeconómico, etnia, edad, sexo, para seleccionar debidamente los grupos objetivo
- 14) Realizar el inventario y seguimiento de los recursos naturales, dentro de las zonas más importantes
- 15) Investigar a fondo la relación entre sequía e incendio forestal
- 16) Evaluar el uso de las tierras agrícolas y pastizales de productividad marginal

- Legislación y políticas públicas Whopen as it was not affect the control of the cont 1) Examinar los estatutos que rigen los derechos de agua, en cuanto su posible modificación en periodos de escasez de agua

 2) Aprobar una legislación para proteger los caudales de ingreso

 - 3) Aprobar una legislación para proteger y manejar el agua subterránea 4) Aprobar una legislación para proveer de prestamos garantizados de bajo interés a los agricultores
 - 6) Realizar un plan hidrológico municipal, estatal y nacional
 - 7) Promulgar leyes que permitan el reciclaje del agua
 - 8) Establecer normas para el uso doméstico de las aguas grises o depuradas The second second second to the second secon

Ahorro del agua y reducción de la demanda

- 1) Establecer mayores incentivos económicos para favorecer la inversión privada en el ahorro de agua
 2) Promover el ahorro voluntario de agua
 3) Pedir a los usuarios que reduzcan el uso del agua subterránea

- 4) Mejorar el uso del agua y la eficiencia de conducción en los sistemas de distribución
- 5) Poner en marcha programas intensivos de detección de fugas
- 6) Apoyar los programas locales de ahorro de agua His sail conversations to the analysis agreement of but so in but he

Medidas de ahorro de agua en zonas urbanas

- Modificar la estructura de tarifas para influir en el consumo
- 2) Modificar el sistema de plomería 3) Reducir las pérdidas de distribución de agua
- 4) Reducir el uso del agua para el riego de jardines

Medidas de ahorro de agua en el sector agrícola

- 1) Utilizar técnicas láser para la nivelación de precisión del terreno
- 2) Instalar sistemas de retorno de agua
- 3) Revestir los canales de distribución para reducir las filtraciones
- 4) Utilizar sistemas de riego por aspersión, goteo y baja carga
- 5) Programar el riego según la demanda de los cultivos
- 6) Hacer un seguimiento de la humedad contenida en los suelos
- 7) Aplicar riegos anticipados y profundos en las épocas en las que abunda el agua
- 8) Mejorar las prácticas de cultivo
- 9) Utilizar medios para reducir la evapotranspiración
- 10) Utilizar aguas residuales tratadas en el riego
- 11) Cultivar especies resistentes a la sequía

Incremento del agua para el abastecimiento y el aumento de los suministros

- 1) Conceder permisos para el uso del agua en situaciones emergentes
- 2) Proveer de equipos de bombeo y de tuberías para la distribución de agua
- 3) Proponer y ejecutar programas de rehabilitación de embalses, para su funcionamiento a la capacidad de diseño
- 4) Realizar estimaciones de la vulnerabilidad de los recursos hídricos
- 5) Llevar a cabo un censo de usuarios industriales que se autoabastecen, para un posible uso de sus aguas para el suministro de la población en caso de emergencia
- 6) Inventariar y revisar los planes de funcionamiento de los embalses
- 7) Proporcionar fondos para proyectos de reciclaje de agua
- 8) Realizar una adecuada gestión del agua y de reutilización de las aguas residuales
- 9) Poner en marcha medidas estructurales menores para obtener recursos de agua temporales

Desarrollo económico

- 1) Conceder incentivos para la diversificación industrial y de negocios
- 2) Mejorar el flujo de información entre las instituciones bancarias, los agricultores, los hombres de negocios y los organismos gubernamentales

Educación y participación pública

- 1) Establecer un comité asesor público
- 2) Fomentar la participación ciudadana en la planificación contra la sequía
- 3) Organizar reuniones informativas sobre la sequía
- 4) Implantar programas para el uso eficiente del agua
- 5) Establecer un centro de información sobre la sequía
- 6) Proporcionar formación sobre diferentes perspectivas culturales de los recursos hídricos
- 7) Contratar especialistas en participación e información pública

Salud y nutrición

- 1) Establecer centros de crisis, especialmente en zonas rurales
- 2) Establecer programas de subsidio de alimentos a los grupos afectados por la sequía
- 3) Establecer albergues para casos de violencia doméstica
- 4) Realizar cursos sobre el manejo del estrés y las estrategias de nutrición básica
- 5) Realizar campañas de información sobre los peligros para la salud, causados por la escasez de agua y los malos hábitos higiénicos.

Participación de los medios de comunicación

- 1) Elegir representantes oficiales para los contactos con los medios de comunicación
- 2) Confeccionar una lista de autoridades relacionados con la seguía
- 3) Redactar informes confiables sobre la situación que prevalece durante la ocurrencia de la seguía
- 4) Incluir personas de los medios de comunicación en la planificación de la seguía
- 5) Mantener actualizados a los medios de comunicación sobre las modificaciones realizados a los planes de contingencia contra la sequía

Solución de conflictos

- 1) Resolver los conflictos que surjan por el uso del agua
- 2) Investigar las reclamaciones sobre los pozos agrícolas que interfieren con los pozos para uso doméstico
- 3) Aclarar la legislación estatal o nacional en la relación con la venta de agua
- 4) Dejar en suspenso las concesiones de uso del agua en las cuencas con bajos niveles del recurso
- 5) Mantener la comunicación entre el público, los políticos, los científicos y los medios de comunicación

Planes de contingencia

- 1) Adoptar una estrategia de emergencia para el reparto de agua, para su aplicación en los periodos de seguía severa
- 2) Recomendar a los abastecedores de agua que elaboren planes para la seguía
- 3) Evaluar los escenarios de los peores casos de seguía, como base de posibles acciones futuras
- 4) Establecer el Consejo para la mitigación de desastres naturales
- 5) Establecer el Comité para la seguía

Asistencia Técnica

- 1) Asesorar al público sobre los recursos hídricos disponibles y potenciales
- 2) Recomendar medidas de uso eficiente del agua
- 3) Aconsejar a los Organismos Operadores de Agua Potable sobre la pertinencia de realizar un estudio de vulnerabilidad de los sistemas de abastecimiento existentes.

Respuesta de emergencia

- 1) Disponer de un almacén con bombas, tuberías, filtros de agua y otros equipos
- 2) Establecer programas de suministro emergente de agua para el ganado
 - 3) Hacer una lista de los sitios de abrevadero del ganado
 - 4) Establecer una línea telefónica de emergencia para el abastecimiento de forraje

- 5) Subvencionar programas de recuperación, posteriores a la seguía
- 6) Crear préstamos a bajo interés y programas de ayuda para la agricultura
- 7) Informar a los agricultores sobre las fuentes de ayuda locales, regionales y nacionales
- 8) Mantener un contacto estrecho con las autoridades de salud para evitar brotes epidémicos

Paso 6. Desarrollo de las actividades por realizar

Una vez que se han identificado los impactos, causas y acciones potenciales relevantes, el próximo paso es definir cual de ellas formaran parte del plan de reducción de riesgos. Esta elección se sustenta en las condiciones de factibilidad, efectividad, costo y equidad. Adicionalmente, es de igual importancia revisar el diagrama de árbol para determinar las acciones que se pueden desarrollar en forma conjunta. Para seleccionar las acciones adecuadas es conveniente dar respuesta a las siguientes preguntas: ¿Cuál es la relación beneficio/costo?, ¿Cuáles acciones son las más apropiadas y factibles para el público en general?, ¿Cuáles acciones permiten el desarrollo sustentable?, ¿Son las acciones propuestas adecuadas para dar soluciones en el corto y largo plazo?, y ¿Cuáles acciones representarían justamente las necesidades de los individuos o grupos afectados?.

De nueva cuenta, la matriz de la tabla 9.6 es útil para organizar los conceptos. Una vez que se han seleccionado las medidas de reducción de riesgo, estas deben redactarse de forma clara y explícita, indicando las acciones que se harán antes, durante y después del periodo de sequía. También es importante marcar las áreas de vulnerabilidad que se identifican en la categoría de riesgo aceptable

9.3.1. Información básica para la estimación del riesgo

Para realizar un adecuado plan de mitigación de los efectos de una sequía en una región, es importante tener información suficiente en calidad y cantidad sobre los diferentes factores que intervienen en el fenómeno.

Precipitación. Debido a que la precipitación es un factor importante en el suministro de los aprovechamientos hidráulicos, el análisis de las características de la precipitación es una componente vital del riesgo de la sequía. Primero, es importante identificar las características de precipitación local y regional. Para este propósito, la lluvia acumulada anual provee un punto de análisis, el cual puede extenderse al analizar distribución o estacionalidad a través del año. A través de esta caracterización, es posible determinar las condiciones de la sequía más adversa que ha experimentado el sitio en estudio, así como también, el comportamiento de los diferentes periodos de sequía.

Fuentes de suministro de agua. Para la adecuada planeación de la sequía es de vital importancia conocer la ubicación, capacidades y tendencias en el ingreso y extracción de las fuentes de suministro de agua, tanto superficial como subterránea. También se requiere relacionar la información de las sequías previas, en términos de su ocurrencia, ubicación, severidad y duración, con los impactos generados en el suministro de estas fuentes.

Suelos/erosión. Un efecto generado por la presencia de la sequía es el incremento en la tasa de sedimentos debido a la erosión eólica. El aumento en el sedimento depositado sobre los deltas y en los ríos incrementa la turbidez, la cual afecta a los peces. La pérdida de los suelos en las zonas de cultivo provoca pérdidas de largo plazo en la producción agrícola. Los incendios forestales generan suelos descubiertos, creando zonas susceptibles a la erosión y al incremento de otros fenómenos como las inundaciones y el flujo de escombros.

Niveles de agua superficial y subterránea. Los ríos y lagos descienden a niveles bajos durante el periodo de sequía, mientras que la turbidez y salinidad se incrementan, afectando el hábitat de los peces. Los animales que tienen menos agua para beber migran, cuando es posible, a zonas más húmedas. El nivel de agua subterránea decrece. La escasez de agua dificulta enormemente la extinción de los incendios forestales.

Aire. El aire puede llegar a ser seco, caliente y polvoroso. Las enfermedades respiratorias agudas se incrementan de manera significativa. Los vientos incrementan la producción de sedimentos. Las tormentas de polvo disminuyen la visibilidad. Los incendios forestales emplazan humo, cenizas y polvo en el aire. La escasez de precipitación y humedad incrementan la concentración de polvo y contaminantes en el aire.

Economía. Las sequías generan pérdidas o costos económicos en diferentes sectores de la sociedad de un país. Los más evidentes son en la agricultura, ganadería, pesca, industria y el turismo. También se generan serios problemas de migración del campo a las grandes ciudades.

Salud. Las sequías afectan la salud, tanto física y emocionalmente, en las zonas rurales y urbanas, por lo que es importante determinar las tasas de morbilidad de aquellos padecimientos relacionados con el aqua.

CAPITULO 10 LA SEQUÍA EN MÉXICO

10.1. Introducción

El territorio mexicano cuenta con una superficie cercana a los 2 millones de km² y con una población que ya sobrepasa los 100 millones de habitantes, de los cuales el 70% se ubica en poblaciones urbanas y el resto en comunidades rurales que cuentan con una concentración menor a los 2,500 habitantes.

En México se precipita anualmente un volumen de 1,528 km³ de agua, equivalente a una lámina de 772 mm, en todo el territorio. Del agua llovida, unos 394 km³ constituyen el escurrimiento medio superficial, 75 km³ corresponden a la recarga media en acuíferos y 1,109 km³ a la evapotranspiración media del país. Para suministrar las demandas en los diferentes sectores del país, se extraen en promedio al año 27.4 km³ de agua de subterránea y 45.1 km³ de agua superficial.

En la República Mexicana existe una gran variedad de climas y condiciones hidrometeorológicas que van desde las condiciones desérticas, como las existentes en el Norte y Noreste del País, hasta las del trópico húmedo prevalecientes en el Sureste del Territorio Nacional. Más del 65% de la superficie del país es considerado como árido (Hp media anual \leq 400 mm) o semiárido (401 mm \leq Hp media anual \leq 600 mm). En estas regiones apenas existe el 20% del escurrimiento en ríos. No obstante, en esta parte se desarrolla gran actividad productiva que conlleva una demanda importante de agua, al localizarse tres cuartas partes de la población, más del 70% de la industria manufacturera y el 90% de la superficie de agricultura de riego. En cambio en las zonas lluviosas litoral y sureste, de clima semihúmedo (601 mm \leq Hp media anual \leq 1500 mm) y húmedo (Hp media anual > 1500 mm), el escurrimiento aportado por los ríos es del 80% y en ella vive sólo el 25% de la población y la industria manufacturera es incipiente, por lo cual la demanda del líquido es mucho menor.

Más de la cuarta parte de la población se localiza arriba de los 2000 metros sobre el nivel del mar y, en esta área se dispone del 4% del escurrimiento medio anual de agua; por debajo de los 500 metros se asienta un número similar de habitantes y el escurrimiento es mayor al 50%. Así pues, se tienen regiones con precipitaciones medias anuales menores a los 250 mm, en el primer caso, y lluvias medias anuales superiores a los 4000 mm en el segundo caso. Por otra parte, hay una gran parte del Territorio Nacional que se ve afectado año tras año con la ocurrencia de tormentas tropicales, ciclones, huracanes y sequías de diversa intensidad, que producen daños de diferente magnitud en cuanto a pérdida de vidas humanas y daños económicos y sociales.

En conjunto, las zonas metropolitanas de las ciudades de México, Guadalajara y Monterrey utilizan más del 50% del agua disponible para uso urbano e industrial.

En las regiones del Valle de México, Lerma, cuencas cerradas del Norte y Baja California, se extrae actualmente más agua de la que su disponibilidad permite, destacándose la región del Valle de México, que extrae 71% más agua de la que dispone. En esas regiones se genera más del 65% del producto industrial nacional y se localiza aproximadamente el 50% de la población del país.

Para uso municipal se extraen 9.5 km³ de agua al año, pero existe una gran disparidad en la distribución de las obras y servicios en las poblaciones urbanas y en las comunidades rurales. En las ciudades de más de 50,000 habitantes, por lo general, las coberturas del servicio de agua potable son cercanas al 100% y las de alcantarillado de 94% en promedio; por el contrario, en comunidades rurales, sólo 60% y 25% de los habitantes tienen acceso a servicios de agua potable y alcantarillado.

Para uso industrial se extraen 6.6 km³ de agua al año. Del total del consumo industrial, el 50% se utiliza para enfriamiento, el 35% en procesos, el 5% en calderas y el resto en servicios. Casi el 80% del consumo lo realizan las ramas azucarera, química, petrolera, celulosa y papel, textil y bebidas.

En la agricultura se extraen de las fuentes 56.4 km³ de agua al año, y se pierde entre 30% y 50% del volumen por bajas eficiencias de conducción hacia las parcelas. Del total de la superficie cultivada en México, el 70% es de temporal y el 30% de riego; áreas que generan, respectivamente, el 45% y 55% de la producción agrícola nacional.

En México existe una superficie de cuerpos de agua de 3.8 millones de hectáreas, de las cuales, 2.9 millones corresponden a agua salada en litorales, y 0.9 millones de agua dulce. Actualmente se practican actividades de acuacultura en 754,000 hectáreas que generaron en 1994 cerca de 170 mil toneladas de especies que favorecieron a 200 mil familias.

La irregular distribución espacial y temporal de las aguas ha hecho necesaria la construcción de obras de aprovechamiento hidráulico. A la fecha, el país cuenta con 1270 presas de almacenamiento con una capacidad de 147 kilómetros cúbicos, cifra que corresponde al 37 % del volumen que escurre superficialmente, y se han construido más de 700 kilómetros de acueductos para entrega de agua en bloque a distintas ciudades, además de otras obras para regular y controlar el recurso.

El agua tiene un uso muy importante y tradicionalmente muy poco considerado que es el que se refiere a la demanda natural que requieren los ecosistemas para su sostén. El desarrollo sustentable debe comenzar por reconocer este uso natural y cuantificar las demandas de agua que requiere la preservación de los bienes inherentes al equilibrio ecológico, como el suelo, las áreas forestales, la selva y la biodiversidad. En México, es necesario trabajar más en este aspecto y establecer normas que aseguren los volúmenes mínimos para la conservación de los cuerpos de agua, sobre todo para evitar la degradación ambiental, ya que este es un factor importante en la generación de los desastres naturales como las inundaciones y sequías.

Los efectos de la sequía en México se han sentido intensamente durante los últimos años, sin embargo, a pesar de sus devastadoras consecuencias, el conocimiento científico acerca de ellas es relativamente limitado. De hecho es extremadamente pobre comparado con los niveles alcanzados en el estudio de otros fenómenos hidrometeorológicos.

10.2. La historia de la sequía en México

La historia de la sequía en México cubre los aspectos de recurrencia en el pasado, sus características hidrometeorológicas y sus impactos económicos y sociales. A continuación se presenta una breve descripción de los diferentes periodos históricos (Sancho, 1983).

La seguía en el México antiguo

Aunque la información de este periodo es imprecisa, los datos indican que las sequías fueron un fenómeno frecuente y sus impactos tuvieron devastadoras consecuencias en la actividad agrícola del México prehispánico.

Fuentes indígenas y crónicas antiguas establecen que en los años en que "llovía fuego" o que no había suficiente agua, los cultivos de maíz se perdían y disminuían los niveles de los lagos. Estos efectos y sus impactos se multiplicaban si la sequía duraba dos o más años.

En los años de la sequía, las autoridades establecidas en el Valle de México usaron medidas drásticas para combatir los impactos de éstas, tal como el de establecer la pena de muerte a quién extrajera el maíz del Valle durante este periodo. Esto también produjo un cambio alimenticio en la población, ya que tuvo que suministrarse de pez blanco, ranas y camarones extraídos de los lagos.

Cuando la sequía fue muy severa, por ejemplo en el periodo de 1450 a 1454, los efectos fueron tan desastrosos en la población, que se vieron obligados a venderse entre ellos mismos por el precio del maíz que consumían.

Ante los efectos de las sequías los pueblos prehispánicos tuvieron que desarrollar estrategias concretas para su mitigación, tales como la construcción de obras hidráulicas, un sistema de cultivo mediante jardines flotantes y terrazas irrigadas, el calendario agrícola, sistemas de almacenamiento de grano, etc.

La seguía en la época colonial (1521-1821)

Durante el periodo de 1521 a 1821 existen 50 casos documentados de sequías en el Valle de México y 26 en el Bajío. En el caso particular del Valle de México, se reportan cinco sequías con duración de dos años (1597-1598, 1641-1642, 1701-1702, 1720-1721 y 1808-1809), y dos con tres años de duración (1616-1617-1618 y 1778-1779-1780).

Una comparación de la cronología de las sequías en el Valle de México y el Bajío muestra que los efectos afectaban simultáneamente grandes extensiones del territorio virreinal.

El análisis de la producción agrícola de este periodo muestra un ciclo de 10 años en el incremento o decremento en el volumen disponible. Este hecho puede asociarse a los periodos de sequía, a las

heladas o una combinación de ambas. Los casos más críticos de estos fenómenos ocurrieron en los años 1695, 1785 y el periodo 1808-1809.

Las sequías de los años 1624, 1695, 1749, 1785 y 1808-1809 trajeron, además de la escasez, altos costos y especulación, los grandes movimientos migratorios, la propagación e intensificación de epidemias, la disminución de las actividades económicas, el desempleo en las ciudades, tensión social y el incremento en la tasa de mortandad en las comunidades indígenas. La intensidad y gravedad de estos casos se explica porque la economía de estas sociedades se basaba en la agricultura, y principalmente de la producción de maíz, como fuente principal de alimentación.

La parcial o total suspensión de las actividades como la minería o los textiles, junto con el desempleo y las sequías, incrementaron la criminalidad en el campo y las ciudades creando importantes tensiones sociales.

La sequía en el periodo (1821-1919)

Las sequías de este periodo afectaron completamente a la economía. Se tienen registradas 11 sequías en el periodo de 1821 a 1874 y 35 de 1875 a 1910. Las sequías más severas, en términos de su impacto económico y social fueron las de Yucatán (1822-1823 y 1834-1835), la de Querétaro (1854) y la que cubrió en 1868 una extensa zona del país (Chiapas, Veracruz, Oaxaca, Guerrero, Aguascalientes, Nuevo León, Coahuila, y el Valle de México).

Durante el periodo conocido como "El Porfiriato", las sequías más severas tuvieron lugar en los años 1872, 1875, 1884-1885, 1891-1892, 1896, 1901 y 1908.

Durante este periodo de 90 años, la información indica que se vieron afectados los cultivos de maíz, fríjol y algodón. El ganado disminuyó de peso o se murió y la industria se vio afectada por la escasez de agua. Las más severas sequías trajeron altos costos, escasez, desempleo, disminución de la actividad económica, epidemias, muerte de los sectores más pobres de la población rural y urbana. Como en la era colonial los impactos de la sequía incrementaron la violencia en el campo y las ciudades.

La sequía en el periodo (1910-1960)

En este lapso de tiempo se han presentado los siguientes periodos de sequías 1917-1928, 1932-1935, 1937-1939 y 1949-1951. Los eventos más adversos se reportan en los años 1935, 1953, 1957 y 1960. También se observa que a partir de 1930 las fluctuaciones climáticas han tendido a favorecer la ocurrencia de las sequías en México. En este periodo de tiempo los estados de la república más afectados por las sequías son Coahuila, Nuevo León, Chihuahua, Sonora y Tamaulipas.

En este periodo ya se reporta que el efecto de las sequías produce una disminución de la producción agrícola, el encarecimiento de los productos, el acaparamiento, un incremento en la importación de productos y una disminución en los recursos forestales causados por el incremento en el número de incendios en las áreas de bosques. La migración a las grandes ciudades en forma masiva trae

como consecuencia un incremento en la necesidad de dotar a esta nueva población con servicios básicos o la creación de cinturones de miseria alrededor de ellas.

La sequía en el periodo (1960-1990)

Los periodos más críticos de sequía se presentaron en los años 1962-1965, 1969-1972, 1974-1975, 1977-1980, 1982-1983 y 1985-1987. Los años más adversos de este periodo son 1977, 1979 y 1982, ya que la superficie del territorio nacional cubierta por la sequía en cada uno de ellos fue, respectivamente, del 59%, 60% y 65%. Los estados más afectados en 1982 fueron los de Aguascalientes y Guanajuato, ya que la sequía impactó en el 90% de la superficie estatal.

Los estados que experimentaron más años catastróficos (sequía en más del 50% de la superficie) en el periodo 1960-1990 son: Baja California (15), Distrito Federal (15), Colima (14), Guanajuato (12), Chiapas (11), Chihuahua (10) y Sinaloa (10).

El estado de Baja California ha experimentado, en el ámbito nacional, durante los años 1964, 1968-1975, 1977, 1981 y 1984-1988 las condiciones más adversas en cuanto a duración y extensión superficial, teniendo su máximo en el año de 1981 (88% de la superficie estatal).

Cada 3 años en promedio se puede presentar en el Distrito Federal un evento catastrófico, el cual puede durar uno o más años. Para el resto de los estados se tienen las siguientes periodicidades: Colima, Jalisco y Sinaloa (4 años), Baja California, Chiapas, Chihuahua, Coahuila, Durango y Guanajuato (5 años), Sonora y Tabasco (6 años), Baja California Sur, Hidalgo, Estado de México, Michoacán, Quintana Roo, Tlaxcala y Yucatán (8 años), Aguascalientes, Guerrero, Oaxaca, San Luis Potosí, Tamaulipas, Veracruz y Zacatecas (10 años), Campeche, Morelos, Puebla y Querétaro (15 años) y Nayarit (30años).

La probabilidad de que en un año en particular ocurra una sequía en un estado de la república y que esta sea del tipo Extraordinaria (cubriendo del 30% al 50% de la superficie estatal) o Catastrófica (> 50% de la superficie estatal) es obtenida con la información disponible del periodo 1961-1990, los resultados son del 77% para Campeche, 73% para Baja California, Baja California Sur y Quintana Roo, 70% para Colima, 67% para el Distrito Federal, Jalisco, Estado de México y Tamaulipas, 63% para Chiapas, Michoacán y Puebla, 60% para Aguascalientes, Nayarit, Oaxaca, Sinaloa, Veracruz y Yucatán, 57% para Chihuahua, Coahuila, Durango y Morelos, 53% para Guanajuato, Nuevo León y San Luis Potosí y Tlaxcala, 47% para Tabasco y Zacatecas, 43% para Guerrero y Sonora, 33% para Hidalgo y Querétaro.

Los impactos económicos debido a la presencia de las sequías severas y extremadamente severas se reflejaron en un incremento en la importación de granos y vegetales. Otros datos indican que hubo una reducción en el número de hectáreas cultivables y una caída en la producción. Los ganaderos se vieron afectados en forma importante en su actividad y cientos de hectáreas de bosque se perdieron por el incremento notable de los incendios forestales.

La seguía en el periodo (1988-1995)

En la tabla 10.1 se presentan los daños causados por las sequías en los sectores agrícola, ganadero y forestal de México durante el período 1988-1994 (Escalante y Reyes, 1998).

En 1995 las presas en Chihuahua, Coahuila, Durango, Nuevo León y Tamaulipas estaban prácticamente vacías y algunos de estos estados fueron declarados zonas de emergencia.

Como ejemplo de lo anterior, en la tabla 10.2 se listan las presas de la región noroeste de la República Mexicana con menos del 50% de llenado y por abajo de la normal histórica.

En 1995 la sequía se agudizó, además de la escasa precipitación, por el uso irracional del líquido en periodos previos y por la contaminación de los acuíferos.

Los daños económicos, según estimaciones de la Secretaría de Agricultura ascendieron hasta el mes de mayo de 1995 a 1,300 millones de pesos, mientras que 84 mil hectáreas de cultivos básicos (granos y oleaginosas) se perdieron por falta de agua, de estas, 300 mil eran de riego y el resto de temporal. La Confederación Nacional Ganadera (CNG) informó a su vez que hasta ese mes habían muerto 300 mil reses. La Confederación Nacional Campesina y la de Propietarios Rurales enfatizaron que 70 por ciento de los ejidos del país fueron afectados por la sequía.

Por ejemplo, en el distrito 05 de Delicias, Chihuahua, donde la situación adquirió proporciones extremas, los volúmenes de agua mexicana almacenados en las presas internacionales, sobre el río Bravo, fueron los más bajos en su historia, en tanto que la contraparte de agua estadounidense no presentó decremento de volúmenes considerables, es decir, reflejó mejor el uso del líquido. De ahí, se explica el porqué en las ciudades del vecino país no racionaron el agua mientras que en México se llevó a la práctica este proceso por lo menos en tres entidades: Nuevo León, Coahuila y San Luis Potosí.

El Programa Emergente de Sequías determinó que la precipitación acumulada en 1995 registró valores del 40 por ciento por debajo del normal histórico, situación que no se presentaba en la zona norte del país desde 1982, además de que durante 1994 las lluvias en las entidades ya mencionadas fueron menores a las normales. Con base en la información del Programa Emergente, el volumen de agua almacenado en las presas al 30 de abril de 1995 fue equivalente a la mitad del registrado en 1994, considerado ya como un año de escasa precipitación. Sin embargo, la Comisión Nacional del Agua (CNA), difiere y asevera que el agua, en promedio, se situó apenas entre el 6 y 10 por ciento de la capacidad instalada.

En el campo, la falta de lluvias ocasionó severos estragos. La Secretaría de Agricultura estimó que en el ciclo otoño-invierno (1994-95) se sembraron 180 mil hectáreas menos que el promedio de los cinco años anteriores en los distritos de riego. Por lo que toca a los cultivos de temporal en el citado ciclo, la superficie sembrada decreció de 824 mil hectáreas a 605 mil hectáreas, es decir, 219 mil hectáreas menos, que equivale a una reducción del 27%.

		nemiento	Agricultura		Ganadería	Forestal	
Número	Estado	1993 1993	Hectáreas Dañadas	nòlb	Gabezas Ganado	Hectáreas Dañadas	Número Incendios
1	Chihuahua		857,778	par entire consequence de la	100,070	59,561	780
2	México		556,059		12	51,363	4,845
3	Zacatecas		530,752		19,088	57,229	91
4	Oaxaca		522,496		0	69,455	232
5	Durango		482,581		2,200	125,998	1,370
6	Guanajuato		470,164		30	13,852	90
7	Jalisco		249,093		300	63,140	759
8	Puebla		207,740		60	12,124	395
9	Guerrero		204,427		654	82,620	1,258
10	Tamaulipas		141,322		1,775	59,370	50
11	Aguascalientes		134,538		0	4,287	33
12	Chiapas		133,820		387	117,237	615
13	San Luis Potosí		112,967		14,840	9,929	67
14	Veracruz		104,907		7,129	9,023	271
15	Yucatán		88,257		3,014	10,693	57
16	Nuevo León		82,276		8,560	30,621	45
17	Tlaxcala		67,318		0	4,881	332
18	Quintana Roo		60,734		0	153,411	251
19	Morelos		57,090		0	6,796	1,053
20	Nayarit		51,942		80	25,810	238
21	Campeche		48,103		0	310	0
22	Coahuila		32,928		28,796	171,681	182
23	Baja California		19,930		1,347	14,325	58
24	Michoacán		2,680		0	60,853	2,912
25	Querétaro		1,302		0	4,847	40
26	Hidalgo		1,021		10,431	3,039	220
27	Tabasco		861		0	284	0
28	Colima		765		0	2,812	18
29	Distrito Federal		669		0	11,099	1,279
30	Baja California S	ur	. 0		34,980	0	0
31	Sinaloa		0		35,559	1,494	0
32	Sonora		0		32,985	26,480	16
Total	Nacional		5,224,970		302,297	1,264,624	17,557

Tabla 10.1. Daños ocasionados por las sequías en el país para el periodo 1988-1994.

	Almacenamiento					
Presa Maria	de Conservación Mm³	eciároas Jansdas	a Junio 1995 Mm ³	-4-18	Normal Mm ³	
Ignacio R. Alátere, Son.	27.97	977 108	A/E		5.54	
Adolfo Ruiz Cortones, Son.	1014.50		224.39		339.06	
Eustaquio Vuelan, Sin.	150.00		29.60		52.11	
Adolfo L. Mateos, Sin.	3153.00		552.50		1245.18	
Zagalona, Sin.	842.00		127.70		231.87	
Gustavo Díaz Ordaz, Sin.	1920.00		566.00		936.95	
José L. Portillo, Sin.	2250.00		469.50		940.91	

Tabla 10.2. Almacenamiento en Junio de 1995 de las presas del Noroeste de México.

Para el año 1995 el sector ganadero de las cinco entidades más afectadas registró una disminución de 180 mil cabezas, pérdidas en peso de 4 millones de cabezas y daño en 35 millones de hectáreas de agostadero. Las pérdidas netas en el ingreso de los productores ascendieron ese año a 933 millones de nuevos pesos en lo que respecta a la agricultura y de 224 millones de nuevos pesos por el decremento de los hatos ganaderos. La CNG en el informe fechado el 23 de mayo de 1995, asegura que murieron 300 mil reses y que se recurrió a la venta masiva de ganado, abajo de 50 por ciento de su precio normal por la pérdida de peso en los animales.

La grave sequía también causó severas repercusiones en la ocupación de los campesinos y jornaleros, aproximadamente 20 millones de jornales directos dejaron de generarse. Se estima que un millón 200 mil campesinos abandonaron sus tierras. Por si fuera poco, existieron serios conflictos en el abasto de agua potable a las ciudades y a las comunidades rurales, con los consecuentes problemas de salud. El cólera repuntó en diversos estados, presentándose en promedio 600 casos por semana (Limón, 1995).

La escasez del líquido se tradujo en un enfrentamiento entre usuarios de agua para riego y los habitantes de las ciudades. Un ejemplo de esto fue la disputa por el suministro de agua de la presa El Cuchillo entre la zona metropolitana de Monterrey y las zonas de riego de Tamaulipas, lo cual redujo de 16 a 6 horas diarias el suministro de agua potable a la ciudad.

En la Tabla 10.3 se presentan los daños causados por las sequías en los estados más afectados en el año de 1995 (subsidio en pesos de 1995).

Estado	Hectáreas Dañadas	Ganado Perdidas	Temperatura máxima registrada (° C)	Subsidio otorgado (MN\$)
Baja California Sur	0	80,000	36	0
Chihuahua	524,500	160,000	46	221.1
Coahuila	200,000	40,000	47	132.6
Durango	5,500	6,000	42	86.6
Nuevo León	2,700	10,000	45	60.7
San Luis Potosí	3,500	6,000	46	0
Sinaloa	87.000	0	41	34.4
Tamaulipas	26,000	6,036	41	157.0
Yucatán	Ninguna	6,000	46	0
Zacatecas	40 % cultivos	25,000	37	0

Tabla 10.3. Daños en las entidades más afectadas por las seguías en 1995.

Comparando los efectos provocados por la sequía en el año de 1995 con aquellos del periodo 1988-1994 se observa un incremento importante de daños. Estas condiciones llevaron a declarar al titular de la Secretaría de Agricultura como la peor sequía de los últimos 40 años.

No obstante que todos los seres vivos tenemos derecho a usar el agua, se privilegia el consumo humano-doméstico de las ciudades, en tanto que más del 15 por ciento del total de nuestra población carece de agua potable. Los principales rezagos se dan en las poblaciones marginadas de las grandes urbes y del medio rural, fundamentalmente en las zonas indígenas.

Sin embargo, en la agricultura de riego se emplea 80 por ciento del consumo anual de agua de todo el país. La fundación siglo XXI, destaca al respecto que la magnitud del líquido utilizado en el campo, revela también nuestra ineficiencia en su uso. Este organismo de estudio y análisis hace ver las inoperancias existentes en la infraestructura hidráulica del país.

Un dato revelador de nuestra incapacidad para manejar el agua es que en el país son frecuentes las entradas de huracanes en los dos litorales, fenómeno de la naturaleza que trae consigo grandes cantidades de agua. Si bien algunos destruyen lo que encuentran a su paso, como en 1988 el Gilberto, la mayoría contribuye a llenar las presas y generar escurrimientos extraordinarios en nuestros ríos.

El hecho es que el país no cuenta con un programa de mantenimiento y construcción de la infraestructura necesaria para proteger vidas humanas y el trabajo de los campesinos, cuando se presentan estos fenómenos. El país está urgido de modernizar su red hidrométrica y los sistemas de detección y pronóstico de crecientes; de promover la participación de la iniciativa privada para el financiamiento, construcción y operación de los grandes proyectos hidráulicos para el uso óptimo del recurso y el consolidar el marco institucional sobre sus usos.

10.3. Situación actual de los recursos hidráulicos en nuestro País.

La Comisión Nacional del Agua en el estudio "El agua en México: retos y avances" dice que si siguen los actuales patrones de baja eficiencia en el riego, sobreexplotación de acuíferos, contaminación de cuerpos superficiales, en 25 años México padecerá la falta del recurso en varias ciudades; verá frenado su desarrollo, sufrirá el colapso de varios de sus ecosistemas y registrará problemas de salud pública.

La Comisión indica que las 13 zonas hidrológicas (Figura 10.1) en las que se divide el país tienen, en mayor o menor grado, problemas relacionados con la disponibilidad y uso del líquido. Para cada una de las regiones la Comisión propone soluciones concretas, que en conjunto implican una inversión de 735 mil millones de pesos.

Región I.	Península de Baja California.
Región II.	Noroeste.
Region III.	Pacífico Norte.
Región IV.	Balsas
Región V.	Pacífico Sur.
Región VI.	Rio Bravo.
Región VII.	Cuencas Centrales del Norte.
Región VIII.	Lerma-Santiago Pacífico.
Región IX.	Golfo Norte.
Región X.	Golfo Centro.
Región XI.	Frontera Sur.
Región XII.	Península de Yucatán.
Región XIII.	Valle de México.

Figura 10.1. Regiones administrativas de la República Mexicana, según Comisión Nacional del Agua.

A continuación se presenta la problemática y la estrategia de solución de cada una de las 13 regiones hidrológicas del país (Millán, 2001):

Región 1. Península de Baja California.

Abarca los Estados de Baja California y Baja California Sur, con una población de 2.5 millones de habitantes, una precipitación media anual de 181 mm, y disponibilidad de 1,445 (m³/habitante)/año.

Problemas:

Sobreexplotación de acuíferos, en particular de 13 de ellos.

Problemas en la calidad del agua debido a la alta salinidad del río Colorado.

Deficiente tratamiento de aguas residuales.

Baja eficiencia en los sistemas de agua potable.

Baja eficiencia del riego

Bajo nivel de lluvias

Se advierte que de mantener los patrones de consumo actual se prevé que se incremente la sobreexplotación y degradación de los principales acuíferos y una fuerte competencia entre los distintos usuarios.

Estrategias:

Restaurar y conservar la calidad del agua en el sistema hidráulico del río Colorado, y los acuíferos de Mexicali v Mesa Arenosa.

Reducir las fugas en los sistemas de agua de las ciudades en un 25%.

Elevar la eficiencia de riego hasta en un 55%.

Región 2. Noroeste.

Incluye 72 municipios de Sonora y 7 de Chihuahua, con cerca de 2.2 millones de habitantes. Tiene una precipitación media anual de 368 mm, y disponibilidad de 3,333 (m³/habitante)/año.

Problemas:

Deficiente suministro de agua potable y servicio del alcantarillado.

Ineficiente uso agrícola, el índice solo es del 41%.

Contaminación de cuerpos de agua.

Daños por inundación y sequía.

De acuerdo con estos factores, se tienen grandes deterioros en las fuentes de abastecimiento y esto pondrá en riesgo el ambiente y la actividad económica.

Estrategias:

Elevar la eficiencia de riego hasta en un 57%.

Ajuste de tarifas en Hermosillo, Nogales, Puerto Peñasco y Guaymas.

Restaurar y preservar la calidad del agua a través del principio de "el que contamina paga" y con estímulos fiscales.

Región 3. Pacífico Norte.

Incluye municipios de Sinaloa, Durango, Chihuahua, Nayarít y Zacatecas, con cerca de 3.7 millones de habitantes. Tiene una precipitación media anual de 731 mm, y disponibilidad de 6,298 (m³/habitante)/año.

Problemas:

Eficiencia agrícola del 38%.

Mala calidad del agua superficial y subterránea, particularmente por el contenido de arsénico, mayor a lo deseable, del agua suministrada a la ciudad de Durango.

Para el año 2025 y de acuerdo con las tendencias actuales se esperan condiciones críticas ambientales en todas las cuencas, principalmente la escasez del agua en temporadas de sequías en las regiones Norte y Centro Norte; mayor degradación de las aguas superficiales, en particular de los Ríos Culiacán, Fuerte y Sinaloa, así como mayores daños por inundaciones y sequías.

Estrategias

Tratamiento de aguas residuales en los Mochis y Guasave.

Rehabilitar la infraestructura del distrito 043 de riego y completar las obras de los proyectos Elota-Piaxtla y Baluarte-Presidio.

Elevar la eficiencia del uso agrícola al 56%.

Región 4. Balsas

Abarca municipios de Morelos, Tlaxcala, Estado de México, Puebla, Oaxaca, Guerrero, Michoacán y Jalisco, con una población de 9.3 millones de habitantes. Tiene una precipitación media anual de 929 mm, y disponibilidad de 2,818 (m³/habitante)/año.

Problemas:

Baja cobertura de agua en el medio rural

Baja eficiencia de riego, la cual solo llega al 36%.

Escaso saneamiento en el medio rural.

Alta contaminación de las aguas superficiales.

Sobreexplotación de acuíferos.

De acuerdo con las tendencias actuales, se tendrán fuertes rezagos en los servicios básicos en el medio rural, el incipiente saneamiento continuará impactando en la calidad de vida de la población y en la calidad de las aguas superficiales y subterráneas.

Estrategias:

Elevar los niveles del servicio de agua potable y alcantarillado al 97%.

Aumentar al 51% la eficiencia de riego.

Reducir la contaminación mediante la construcción de plantas de tratamiento.

Reducir la sobreexplotación de acuíferos con un uso más racional.

Región 5. Pacífico Sur.

Incluye municipios de Guerrero y Oaxaca, con una población de 4 millones de habitantes. Tiene una precipitación media anual de 1119 mm, y disponibilidad de 8,235 (m³/habitante)/año.

Problemas:

Baja Cobertura de agua potable y alcantarillado.

La eficiencia más baja en riego del país, que es del 25%.

Degradación de la calidad del agua.

Daños por fenómenos meteorológicos extremos.

De no implantarse acciones sustantivas en los próximos 25 años, se aumentarán los rezagos en los servicios básicos a la población, agudizando los problemas de calidad del agua. También de no llevarse a cabo medidas de mitigación contra los fenómenos extremos en la región, se seguirán teniendo afectaciones tanto a centros de población como a zonas productivas.

Estrategias:

Elevar niveles de suministro de agua.

Elevar la eficiencia de riego a 38%.

Construcción de obras de control y encauzamiento de ríos.

Región 6. Río Bravo.

Abarca municipios de Chihuahua, Coahuila, Nuevo León y Tamaulipas, con una población de 8.6 millones de habitantes. Tiene una precipitación media anual de 403 mm, y disponibilidad de 1,467 (m³/habitante)/año.

Problemas:

Escasez del recurso

Eficiencia de riego del 34%, que demanda el 84% del volumen total disponible en la región.

Alto índice de agua no contabilizada.

Contaminación en el río Bravo.

Sobreexplotación de siete acuíferos.

Debido a la escasez del agua se prevé una reducción en el desarrollo económico de la región, principalmente en Monterrey, Ciudad Juárez y Chihuahua.

Estrategias:

Elevar la eficiencia agrícola al 62%.

Reducir el porcentaje de agua no contabilizada en Monterrey y Saltillo a un nivel del 25%.

Restaurar la calidad del aqua.

Región 7. Cuencas Centrales del Norte.

Incluye municipios de Durango, Zacatecas, Coahuila, San Luis Potosí, Nuevo León y Tamaulipas, con una población de 3.7 millones de habitantes. Tiene una precipitación media anual de 370 mm, y disponibilidad de 1,783 (m³/habitante)/año.

Problemas:

Baja cobertura de los servicios básicos en las zonas rurales.

Sobreexplotación de acuíferos.

Degradación en la calidad del agua, sobre todo en la comarca lagunera.

Agua residual agrícola sin tratamiento.

Alta competencia con los usos del agua.

De no tomarse medidas correctivas se tendrá un deterioro económico-ambiental que se situará en un nivel insostenible.

Estrategias:

Modernizar los distritos de riego 17de la Laguna y 34 de Zacatecas.

Reducir en 87 millones de metros cúbicos el consumo anual de agua para riego.

Región 8. Lerma-Santiago Pacífico.

Incluye municipios de Colima, Aguascalientes, Nayarit, Querétaro, Estado de México, Jalisco, Guanajuato, Michoacán y Zacatecas, con una población de 17 millones de habitantes. Tiene una precipitación media anual de 981 mm, y disponibilidad de 1,895 (m³/habitante)/año.

Problemas:

Oferta insuficiente del recurso agua.

Sobreexplotación de acuíferos, en particular en Querétaro, Celaya, León y Pénjamo.

Baja eficiencia en riego, solo alcanza el 39%.

Degradación del agua.

Deficiencias en la red de medición y monitoreo.

De no implantarse acciones para su solución, se afectarán las actividades económicas que sustenta el recurso hidráulico, la superficie ociosa se incrementará, la degradación de la calidad del agua aumentará, derivando en problemas de salud pública.

Estrategias:

Legislación para ordenar el manejo y uso del agua.

Restaurar la calidad del agua mediante el principio "el que contamina paga".

Región 9. Golfo Norte.

Incluye municipios de Hidalgo, San Luis Potosí, Tamaulipas, Veracruz, con 4.5 millones de habitantes. Tiene una precipitación media anual de 766 mm, y disponibilidad de 4,935 (m³/habitante)/año.

Problemas:

Baja cobertura en los servicios de agua potable y alcantarillado.

Eficiencia del 31% en riego.

Degradación de la calidad del agua.

Sobreexplotación de acuíferos, en particular en Río Purificación, Tequisquiapan, San Juan del Río y Tulancingo. En conjunto, la extracción anual en estos acuíferos supera en 200 metros cúbicos la recarga.

Con las tendencias actuales aumentará el riesgo de problemas de salud y se limitará el desarrollo regional.

Estrategia:

Abatir los rezagos en las coberturas de los servicios básicos.

Elevar la eficiencia en el uso agrícola a 46%.

Restaurar la calidad del agua.

Restaurar el equilibrio en los acuíferos sobreexplotados.

Región 10. Golfo Centro.

Incluye municipios de Veracruz, Oaxaca, Puebla e Hidalgo, con 9 millones de habitantes. Tiene una precipitación media anual de 1788 mm, y disponibilidad de 11,025 (m³/habitante)/año.

Problemas:

Baja cobertura en los servicios de agua potable, alcantarillado y saneamiento.

Eficiencia del 32% en riego.

Contaminación de las corrientes superficiales. Los casos más críticos son los del Río Blanco y el Río Calzadas.

Si siguen estas tendencias se manifestarán en la región condiciones ambientales críticas, principalmente en la Cuenca del Papaloapan. Disminuirán las coberturas de agua potable en las

subregiones norte, medio Papaloapan y Coatzacoalcos, y seguirán los daños por inundaciones en las subregiones bajo Papaloapan y Coatzacoalcos.

Estrategias:

Restaurar la calidad del agua mediante el principio "el que contamina paga".

Abatir los rezagos en las coberturas de los servicios básicos.

Fomentar el desarrollo del temporal tecnificado y el uso eficiente del agua en distritos de riego. Elevar la eficiencia del uso agrícola al 51%.

Delimitar zonas inundables, reubicar a la población, mantener obras de protección, e impedir desarrollos en zonas susceptibles de anegarse.

Región 11. Frontera Sur.

Incluye municipios de Chiapas y Tabasco, con 5.5 millones de habitantes. Tiene una precipitación medial anual de 2320 mm, y disponibilidad de 25,843 (m³/habitante)/año.

Problemas:

Baja cobertura en los servicios de agua potable, alcantarillado y saneamiento.

Rezagos agudizados en el medio rural.

Bajo aprovechamiento y manejo deficiente del agua.

Vulnerabilidad frente inundaciones.

Contaminación de corrientes superficiales, principalmente del Río Grijalva.

Si siguen estas tendencias se manifestarán en la región condiciones ambientales críticas y se limitará el desarrollo regional.

Estrategias:

Elevar la cobertura de servicios e implantar programas de restauración y conservación.

Elevar al 49% la eficiencia de riego agrícola.

Restaurar cuencas hidrológicas.

Región 12. Península de Yucatán.

Incluye municipios de Quintana Roo, Yucatán, Campeche y parte de Tabasco, con 2.9 millones de habitantes. Tiene una precipitación media anual de 1138 mm, y disponibilidad de 7,900 (m³/habitante)/año

Problemas:

Contaminación de acuíferos. La falta de drenaje sanitario apropiado ha propiciado la filtración de descargas residuales.

Degradación de la calidad del agua por mal manejo en su extracción.

Deficiente servicio de agua potable en zonas urbanas y rurales.

Desarrollo agrícola incipiente.

De continuar las tendencias actuales se incrementará la contaminación de las aguas subterráneas, continuará la deficiente calidad de los servicios y avanzará en la degradación de los humedales en la franja que abarca los estados de Campeche, Yucatán y Quintana Roo.

Estrategias:

Proteger las fuentes de agua subterránea.

Elevar la cobertura de servicios.

Elevar la eficiencia en riego agrícola al 65%.

Región 13. Valle de México.

Incluye la Ciudad de México, y municipios del Estado de México y de Hidalgo, con una población de 18.6 millones de habitantes. Tiene una precipitación media anual de 767 mm, y disponibilidad de 190 (m³/habitante)/año.

Problemas:

Contaminación del agua superficial y subterránea.

Sobreexplotación de acuíferos. La extracción es 130% superior a la recarga.

Deficiente estructura para el riego.

Insuficiente suministro de agua potable y para fines agrícolas.

Daños por inundaciones.

El crecimiento acelerado de la población y la actividad económica seguirán generando cuantiosas demandas adicionales del agua en la región, por lo que se acrecentará la degradación del medio natural y las actuales fuentes de abastecimiento serán insuficientes.

Estrategias:

gias: Transferir 5 m³/s de agua del Temascaltepec. Incrementar la eficiencia del uso agrícola.

Restaurar el equilibrio en acuíferos sobreexplotados.

Como puede observarse de las estrategias de solución de la Comisión Nacional del Agua para asignar el agua de cada región a los distintos tipos de usos, toma en cuenta la evolución de la disponibilidad y la demanda a futuro del agua. Esta asignación depende de considerar los promedios hidrológicos y de tendencias productivas pero no consideran explícitamente las futuras condiciones extremas que originarán las sequías. En consecuencia, la asignación de agua tendrá que ser modificada en respuesta a una escasez de agua no pronosticada durante la fase de planeación.

A continuación se presentan las características de las sequías meteorológicas en el ámbito nacional, con el fin de contar con un instrumento eficaz de planeación para las futuras asignaciones del recurso.

10.4. Caracterización de las sequías meteorológicas

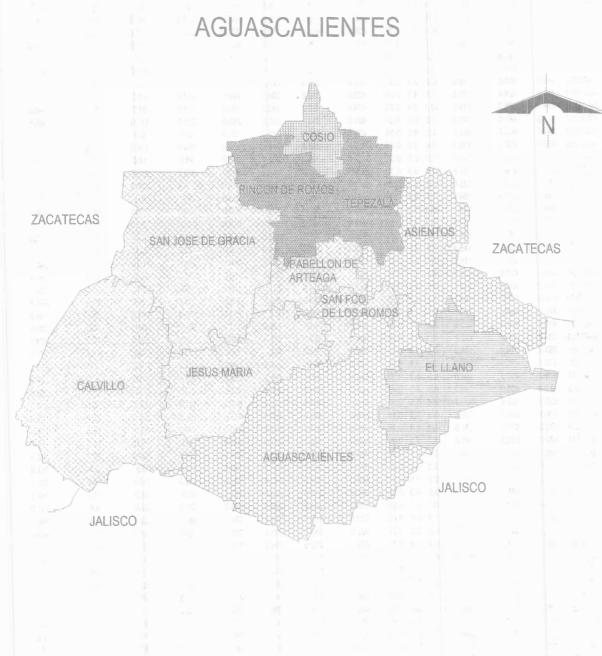
En este apartado se presenta el esquema general que se siguió para caracterizar el comportamiento de la sequía meteorológica para cada uno de las estaciones climatológicas, municipios y entidades federativas que conforman a la República Mexicana.

En primera instancia se propone una clasificación de sequía meteorológica que depende del porcentaje de la intensidad del déficit promedio respecto a la precipitación media anual, y la duración de la sequía promedio. Esta clasificación se presenta en la tabla 10.4.

	· Duracio	ón de la sequía promed	dio (años)
% intensidad /(mm/año) respecto a la lluvia media anual Hp(mm)	1≤ D<2	2 ≤ D < 3	3 ≤ D ≤ 2
0 < %/ ≤ 10	Normal	Moderada	Extraordinaria
10 < %/ ≤ 20	Severa	Muy Severa	Extremadamente Severa
20 < %/ ≤ 30	Vasta	Muy Vasta	Extremadamente Vasta
30 < %/ ≤ 40	Crítica	Muy Critica	Catastrófica

Tabla 10.4. Clasificación de las sequías meteorológicas dependiendo del porcentaje de su intensidad respecto a su media anual y duración promedio.

De acuerdo con las secuencias presentadas en los apartados 6.3 y 6.4 se pueden obtener las características para cada estación climatológica y municipio del estado de Aguascalientes (tablas 10.5 a 10.16). Los resultados para el resto de las 31 entidades federativas se presentan en los Anexos B y C.


Ya sea para el caso de las estaciones climatológicas o para los municipios, el primer grupo de tablas expresan las características estadísticas de las lluvias anuales; las alturas de lluvia estimadas para diferentes periodos de retorno; el periodo de retorno del primer decil de la lluvia; la lluvia mínima anual registrada con su correspondiente periodo de retorno.

En el segundo conjunto de tablas se muestran los deciles obtenidos a partir de la información registrada, así como la probabilidad de que cierta lluvia se encuentre en el intervalo de cierto decil. Esto último permite obtener la lluvia más probable en la estación o municipio, para un posterior análisis económico.

En el tercer grupo de tablas se presentan las características promedio de las sequías históricas, tales como periodicidad, duración, severidad e intensidad. Con estas características y con ayuda de la tabla 10.4 se clasifica a la sequía en el sitio o municipio. Para contar con una visión gráfica del comportamiento espacial de la sequía, es posible construir mapas de peligro, como los mostrados en la figura 10.2 y el Anexo B.

En el último conjunto de tablas se dan las características de las sequías máximas registradas, las cuales pueden servir de base para la generación de las estrategias de mitigación vistas en el capítulo 9.

Finalmente, en la tabla 10.17 se presenta el volumen per cápita estimado, sin tomar en cuenta la evapotranspiración, para cada municipio de Aguascalientes. En él se considera la lluvia media anual y la lluvia disponible en déficit. Estos valores deben contrastarse con aquellos del anexo A.

^{**} La simbología se indica en la Tabla Guía del Anexo B

Figura 10.2. Clasificación y distribución de la sequía meteorológica en el estado de Aguascalientes.

	Estadís	ticos de la	a Iluvia ani	ual re	egist	rada	Lámina	de III	uvia minin	na anual de	diferentes	periodos de r	etorno (Tr)	Tr(años)	1	luvia minima	Tr(años
	Media	Mediana	Desv Std	Co	eficie	ntes	2 años		5 años	10 años	20 años	50 años	100 años	primer	tero	registrada	para
Estación	X _o (mm)	(mm)	S(mm)	9	k	Cv	Hp(mm)	1	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	decil		Hp min(mm)	Hp mir
HA01003	510.8	504.3	136.4	-04	3.1	0.27	513.0		397.0	338.0	285.0	217.0	1.67.0	18.2		243.2	35.0
HA01004	493.9	460.5	120.6	0.6	3.6	0.24	455.0		386.0	348.0	308.0	246.0	189.0	7.9		310.3	19,3
HA01005	6.803	501.5	314.2	2.5	10.6	().52	498.0		383.0	277.0	60.0	0.0	0.0	2.6		316.7	8.0
HA01006	430.6	417.5	123.4	0.7	3.6	0.29	408.0		335.0	289.0	242.0	175.0	118.0	12.8		215.4	29.1
-IA01007	423.7	415.0	157.3	-0.1	3.8	0.37	419.0		327.0	226.0	107.0	0.0	0.0	16.9		60.0	26.2
HA01008	554.9	553.3	181.8	0.6	3.9	0.33	555.0		456.0	392.0	332.0	254,0	195.0	26.8		228.2	67.5
HA01009	567.8	532.3	163.0	0.8	3.9	0.29	528.0		432.0	369.0	304.0	202.0	110.0	8.9		306.9	19.3
HA01010	673.6	650.0	166.6	0.2	2.3	0.25	640.0		525.0	472.0	423.0	358.0	307.0	18.6		365.0	45.3
HA01011	569.2	557.6	156.6	1.0		0.28	580.0		440.0	340.0	235.0	77.0	0.0	8.8		272,9	15.7
HA01012	633.2	602.5	115.7		4.0	0.18	592.0		542.0	507.0	463.0	376.0	296.0	11.1		454.1	22.5
HA01013	381.0	350.0	139.8	0.2		0.37	352.0		275.0	227.0	171.0	78.0	0.0	24.3		94.6	43.1
1A01014	447.2	424.4	123.6	1.1		0.28	423.0		353.0	304.0	249.0	157.0	70.0	9.1		260.9	17.3
-IA01015	476.7	485.3	118.6		4.5	0.25	474.0		392.0	332.0	266.0	167.0	84.0	33.1		156.0	54.8
-IA01016	513.3	481.0	190.9	2.0		0.37	481.0		396.0	341.0	289.0	221.0	170.0	5.8		306.5	15.8
1A01017	506.6	505.0	182.7		6.0	0.36	495.0		363.0	273.0	181.0	47.0	0.0	9.0		193.5	18.3
1A01018	463.4	458.3	120.3	0.4		0.26	453.0		368.0	313.0	259.0	184.0	124.0				
1A01019	477.9	466.3	154.0		6.5	0.32	467.0		353.0	278.0	202.0			12.6		237.3	26.2
A01020	623.6	616.1	189.8		3.9	0.30	587.0					98.0	13.0	7.0		231.4	15.3
A01020	552.2	542.3	135.8		2.9	0.30	543.0		481.0	413.0	342.0	240.0	150.0	12.9		301.2	29.3
HA01021	548.4								425.0	386.0	329.0	223.0	137.0	22.3		256.0	38.1
		527.9	155.0		8.3	0.28	526.0		426.0	344.0	233.0	8.0	0.0	7.8		285.0	15.0
1A01023	595.7	579.7	134.1		3.3	0.23	597.0		487.0	423.0	363.0	284.0	225.0	35.0		256.0	69.7
1,401024	445.7	458.6	123.4		3.1	0.28	447.0		354.0	297.0	244.0	175.0	123.0	17.7		211.0	30.8
1A01025	447.8	442.0	136.7		4.0	0.31	422.0		327.0	253.0	164.0	18.0	0.0	7.5		225.0	12.6
1401026	452 9	425.5	148.9	0.3		0.33	432.0		325.0	264.0	204.0	125.0	63.0	9.1		213.0	18.1
A01027	561.3	523.5	149.1		3.5	0.27	519.0		444.0	395.0	340.0	248.0	160.0	15.8		295.5	32.3
IA01028	439.2	437.6	136.8	0.2		0.31	427.0		314.0	256.0	198.0	117.0	50.0	10.6		194.6	20.7
1A.01029	434.2	432.9	141.4		4.4	0.33	427.0		314.0	231.0	138.0	0.0	0.0	12.6		132.1	20.8
IA01030	514.0	473.2	157.7	1.1	4.2	0.31	464.0		389.0	335.0	266.0	135.0	19.0	12.5		246.7	23.5
1A01031	470.6	464.6	130.8	0.1	3.7	0.28	457.0		368.0	315.0	265.0	199.0	148.0	34.2		169.8	74.0
HA01032	431.1	420.3	155.9	0.4	3.1	0.36	406.0		294.0	230.0	167.0	80.0	9.0	6.9		205.5	13.1
HA01033	422.8	399.3	122.8	-0.1	3.0	0.29	404.0		323.0	280.0	240.0	190.0	152.0	18.2		204.5	38.1
HA01034	393.2	374.8	126.3	0.5	3.8	0.32	382.0		296.0	241.0	190.0	123.0	73.0	11.8		177.0	23.7
HA()1035	428.1	435.1	116.3	-0.3	3.1	0.27	427.0		323.0	262.0	204.0	131.0	76.0	8.8		238.6	13.1
HA()1041	475.8	451,5	169.8	1.3	5.7	0.36	442.0		350.0	288.0	224.0	125.0	33.0	7.5		236.8	17.4
HA01046	442.8	406.0	190.2	0.6	4.2	0.43	431.0		291.0	201.0	116.0	5.0	0.0	7.7		168.5	13.0
HA01047	533.3	558.4	153.7	-0.6	3.6	0.29	566.0		401.0	317.0	242.0	146.0	75.0	15.6		217.7	25.1
A01062	570.1	545.5	102.3	0.9	6.3	0.18	540.0		492.0	460.0	422.0	355.0	293.0	9.0		429.0	17.9
A01073	476.0	511.4	131.8	-0.8	4.4	0.28	495.0		384.0	312.0	243.0	153.0	86.0	16.3		216.2	26.2
A01074	489.0	510.3	145.6		3.1	0.30	496.0		359.0	277.0	201.0	103.0	30.0	14.0		188.6	22.4
A01075	489.7	482.2	126.7		5.2	0.26	483.0		405.0	353.0	301.0	227.0	164.0	25.4		225.9	50.4
IA01076	432.0	445.3	109.2			0.25	351.7		255.2	191.2	129.9	50.6	0.0	3.4		257.8	4.9
A01078	597.2	612.6	151.8			0.25	581.0		504.0	442.0	340.0	209.0	112.0	16.9		307.7	25.1
			125.3			0.35	360.0		256.0	203.0	152.0	85.0	32.0	11.7		147.3	21.4
IA01079	362.5	360.9 516.5								226.0	209.0	121.0	32.0				15.5
IA01080	484.4	516.5	158.3			0.33	515.0		246.0		131.0	96.0		4.6		217.0 140.4	
IA01081	248.9	220.5	100.4				212.0		176.0	154.0			63.0				15.0
IA01082	375.3	362.0	115.2			0.31	367.0		287.0	239.0	193.0	135.0	92.0	20.7		149.0	40.1
A01083	395.6	396.3	138.9			0.35	372.0		280.0	206.0	112.0	0.0	0.0	8.4		165.5	13.7
A01084	379.4	359.5	162.8			0.43	259.7		115.7	20.4	0.0	0.0	0.0	3.0		125,0	4.7
A01085	385.8	372.5	148.7			0.39	374.0		259.0	197.0	137.0	58.0	0.0	9.9		146.9	17.9
A01086	472.1	464.4	163.8			0.35	471.0		327.0	248.0	176.0	84.0	15.0	10.6		195.0	16.6
A01088	362.8	359.0	93.6			0.26	366.0		287.0	246.0	208.0	161.0	126.0	25.3		163.9	47.2
IA01089	480.2	471.4	145.3	-0.3	4.6	0.30	490.0		374.0	298.0	226.0	132.0	61.0	22.3		152.2	40.9
A01090	488.3	462.4	68.7	1.0	4.8	0.14	461.0		435.0	420.0	405.0	378.0	351.0	7.3		404.4	20.1
A01091	636.3	667.3	208.5	-0.3	4.6	0.33	629.0		476.0	379.0	286.0	168.0	79.0	17.8		228.0	31.3
IA01094	395.7	425.5	82.0	-0.3	3.6	0.21	422.0		303.0	299.0	295.0	291.0	287.0	2.6		293.6	28.8
IA01095	642.9	637.8	208.1	-0.1	4.2	0.32	643.0		537.0	401.0	249.0	54.0	0.0	15.8		222.8	22.6

Tabla 10.5. Características estadísticas de la lluvia anual de cada estación climatológica del estado de Aguascalientes.

	10 (24)		1883,077	Deciles	de la Illuvi	a anual r	egistrada	oslise d	opus el 8	b otherax	P	robah	ilidad	de on	urrenc	ia de	los de	ciles (de llin	ria :
-	12:110	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10
Estación	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	LACT been	gaer (öffs)	15(nm	ruge) i i	58(mm)	(800)	6)	marte		8.0		i (EP	12.00	195	DR. C.
HA01003	291.9	340.6	389.2	437.9	486.6	535.3	584.0	632.6	681.3	730.0	10.0	5.0	5.0	5.0	15.0	15.0	(%)	(%)	(%)	. (%)
HA01004	360.7	411.2	461.6	512.1	562.5	612.9	663.4	713.8	764.3	814.7	7.1	28.5		7.1	10.7	17.8	15.0	0.0	25.0	3.5
HA01005	460.0	603.3	746.6	889.9	1033.3	1176.6	1319.9	1463.2	1606.5	1749.8	29.2	34.1	14.6		4.8	0.0	0.0	0.0	0.0	4.8
HA01006	272.1	328.9	385.6	442.4	499.1	555.8	612.6	669.3	726.1	782.8	6.3	14.8	17.0	25.5	8.5	12.7	6.3	6.3	0.0	2.1
HA.01007	136.3	212.6	288.9	365.2	441.5	517.8	594,1	670.4	746.7	823.0	6.3	6.3	2,1	12.7		14.8	10.6	10.6	2.1	2.1
HA01008	306.5	384.7	463.0	541.3	619.6	697.8	776.1	854.4	932.6	1010.9	7.6	7.6	12.8		25.6		0.0	5.1	2.5	5.1
HA.01009	380.3	453.6	527.0	600.4	673.8	747.1	820.5	893.9	967.2	1040.6	11.1	15.5				6.6	8.8	2.2	2.2	2.2
HA01010	428.1	491.2	554.2	617.3	680.4	743.5	806.6	869.6	932.7	995.8	5.2	5.2	21.0	15.7	7.8	5.2	10.5	13.1	10.5	
HA01011	358.3	443.6	529.0	614.3	699.7	785.1	870.4	955.8	1041.1	1126.5	4.0	22.4				16.3	0.0	2.0	0.0	2.0
HA01012	501.5	548.8	596.2	643.6	691.0	738.3	785.7	833.1	880.4	927.8	6.8	17.2	24.1	10.3			3.4	3.4	3.4	3.4
HA01013	153.4	212.2	271.0	329.8	388.6	447.3	506.1	564.9	623.7	682.5	3.8	3.8			19.2		23.0	11.5	0.0	7.6
HA01014	310 5	360.1	409.7	459.3	508.9	558.5	608.1	657.7	707.3	756.9	8.9	10.7				7.1	5.3	1.7	0.0	8.9
HA01015	212.8	269.6	326.5	383.3	440.1	496.9	553.7	610.6	667.4	724.2	3.2	0.0	3.2	12.9	22.5	19.3	22.5	0.0	9.6	6.4
HA01016	383 8	461.1	538.3	615.6	692.9	770.2	847.5	924.7	1002.0	1079.3	25.0	18.7	25.0	18.7	0.0	0.0	6.2	0.0	0,0	6.2
HA01017	286 8	380.0	473.3	566.5	659.8	753.1	846.3	939.6	1032.8	1126.1	8.9	17.8		28.5		7.1	3.5	1.7	0.0	3.5
HA01018	294 9	352.5	410.2	467.8	525.4	583.0	640.6	698.3	755.9	813.5	5.3	12.5	16.0	19.6	21.4	5,3	12.5	3.5	1.7	1.7
HA01019	3163	401.2	486.2	571.1	656.0	740.9	825.8	910.8	995.7	1080.6	12.5	23.2	19.6	23.2	10.7	3.5	5.3	0.0	0.0	1.7
HA01020	387.0	472.9	558.7	644.6	730.4	816.2	902.1	987.9	1073.8	1159.6	5.7	14.2	22.8	22.8	8.5	5.7	11.4	5.7	0,0	2.8
HA01021	317.9	379.8	441.7	503.6	565.6	627.5	689.4	751.3	813.2	875.1	2.6	2.6	15.7	21.0	15.7	10.5	13.1	15.7	0.0	2.6
HA01022	374.7	464.3	554.0	643.6	733.3	823.0	912.6	1002.3	1091.9	1181.6	6.1	24.4	28.5	22.4	8.1	6.1	2.0	0.0	0.0	2.0
HA01023	314.8	373.5	432.3	491.0	549.3	608.5	667.3	726,0	784.8	843.5	2.5	2.5	7.6	5.1	20.5	12.8	15.3	17.9	5.1	10.2
HA01024	253.2	295.3	337.5	379.6	421.7	463.9	506.0	548.2	590.3	632.5	9.0	4.5	9.0	0.0	18.1	13.6	22.7	0.0	4.5	18.1
HA01025	284.4	343.7	403.1	462.4	521.8	581.1	640.5	699.8	759.2	818.5	6.9	16.2	13.9	30.2	11.6	4.6	4.6	2.3	4.6	4.6
HA01026	271,7	330.4	389.0	447.7	506.4	565.1	623.8	682.4	741.1	799.8	18.9	2.7	10.8	24,3	8.1	13.5	5.4	10.8	2.7	2.7
HA01027	360.2	424.9	489.6	554.3	619.0	683.7	748.4	813.1	877.8	942.5	6.3	8.5	23.4	21.2	6.3	14.8	6.3	8.5	0.0	4.2
HA01028	250.5	306.4	362.3	418.2	474.2	530.1	586.0	641.9	697.8	753.7	8.0	8.0	16.0	16.0	12.0	12.0	14.0	6.0	4.0	4.0
HA01029	200.7	269.4	338.0	406.7	475.3	543.9	612.6	681.2	749.9	818.5	5.2	5.2	10.5	23.6	23.6	15.7	5.2	5.2	0.0	5.2
HA01030	315.8	384.8	453.9	523.0	592.1	661.1	730.2	799.3	868.3	937.4	3.8	13.4	25.0	19.2	13.4	7.6	7.6	1.9	1.9	5.7
HA01031	226.2	282.5	338.9	395.3	451.7	508.0	564.4	620.8	677.1	733.5	3.8	0.0	7.6	23.0	7.6	26.9	7.6	7.6	7.6	7.6
HA01032	264.0	322.4	380.9	439.4	497.9	556.3	614.8	673.3	731.7	790.2	15.3	11.5	15.3	15.3	3.8	15.3	11.5	7.6	0.0	3.8
HA01033	245.6	286.7	327.8	368.9	410.1	451.2	492.3	533.4	574.5	615.6	10.5	0.0	5.2	21.0	15.7	5.2	10.5	0.0	21.0	10.5
HA01034	229.0	280.9	332.9	384.8	436.7	488.7	540.7	592.6	644.6	696.5	11.5	3.8	15.3	26.9	15.3	11.5	3.8	0.0	7.6	3.8
HA01035	272.2	305.8	339.5	373.1	406.7	440.3	473.9	507.6	541.2	574.8	16.6	0.0	16.6	0.0	8.3	16.6	8.3	0.0	8.3	25.0
HA01041	314.2	391.7	469.1	546.5	624.0	701.4	778.8	856.2	933.7	1011.1	16.1	16.1	25.8	19.3	6.4	9.6	0.0	3.2	0.0	3.2
HA01046	234.9	301.3	367.7	434.1	500.5	566,9	633.3	699.7	766.1	832.5	13.3	13.3	0.0	26.6	20.0	6.6	6.6	0.0	6.6	6.6
HA01047	268.6	319.5	370.3	421.2	472.1	523.0	573.9	624.7	675.6	726.5	6.6	6.6	0.0	6.6	20.0	0.0	13.3	20.0	6.6	20.0
HA01062	465.0	500.9	536.9	572.8	608.8	644.7	680.7	716.6	752.6	788.5	10.0	20.0		20.0	0.0	20.0	10.0	0.0	0.0	10.0
HA01073	262.5	308.8	355.2	401.5	447.8	494.1	540.4	586.8	633.1	679.4	14.2	0,0	0.0	7.1	7.1	14.2	14.2	21.4	14.2	
HA01074	239.6	290.6	341.6	392.6	443.6	494.5	545.5	596.5	647.5	698.5	5.5	5.5	5.5	5.5	16.6	5.5	16.6	11.1	11.1	16.6
HA01075	282.0	338.1	394.2	450.3	506.3	562.4	618.5	674.6	730.7	786.8	5.2	5.2	5.2	21.0	21.0	31.5	0.0	0.0	5.2	5.2
HA01076	294.3	330.7	367.2	403.7	440.2	476.6	513.1	549.6	586.0	622.5	16.6	0.0	8.3	8.3	8.3	25.0		16.6		8.3
HA01078	364.8	421.9	479.0	536.1	593.2	650.3	707.4	764.5	821.6	878.7	5.5	5.5	5.5	27.7	0.0	16.6	16.6	11.1	0.0	11.1
HA01079	191.1	235.0	278.8	322.6	366.4	410.3	454.1	497.9	541.8	585.6	8.3	8.3	8.3	16.6			16.6		0.0	8.3
HA01080	275.0	333.0	391.0	449.0	507.0	565.0	623.0	681.0	739.0	797.0	16.6	0.0	8.3		16.6			0.0	0.0	8.3
HA01081	174.2	207.9	241.7	275.4	309.2	343.0	376.7	410.5	444.2	478.0			25.0		8.3	8.3	8.3	0.0	0.0	8.3
HA01082	191.0	233.0	275.0	317.0	359.0	400.9	442.9	464.9	526.9	568.9					15.7					10.5
HA01083	226.1	286.6	347.2	407.7	468.3	528.8	589.4	649.9	710.4	771.0					20.0		0.0	5.0	0.0	5.0
HA01084	189.6-	254.2	318.8	383.4	448.0	512.6	577.2	641.8	706.4	771.0			5.2		15.7			0.0	5.2	5.2
HA01085	197.9	248.9	299.9	350.9	402.()	453.0	504.0	555.0	606.0	657.0	8.3				25.0				0.0	8.3
HA01086	242.7	290.4	338.1	385.8	433.5	481.2	528.9	576.6	624.3	672.0	8.3	8.3	8.3	8.3		16.6		8.3	8.3	
HA01088	196.1	228.3	260.5	292.7	324.9	357.0	389.2	421.4	453.6	485.8	7.6	0.0	7.6	0.0	23.0				15.3	
HA01089	214.3	276.4	338.5	400.6	462.7	524.7	586.8	648.9	711.0	773.1	5.5	5.5	0.0	5.5				11.1	5.5	5.5
HA01090	427.0	449.7	472.3	495.0	517.6	540.2	562.9	585.5	608.2	630.8			25.0		16.6		0.0	0.0	8.3	8.3
HA01091	301.4	374.8	448.2	521.6	595.()	668.4	741.8	815.2	888.6	962.0	8.3	0.0	16.6				33.3			16.6
HA01094	314.8	336.1	357.3	378.5	399.8	421.0	442.2	463.4	484.7	505.9	37.5	0.0	0.0	0.0	0.0	0.0			0.0	12.5
HA()1095	300.1	377.4	454.7	532.0	609.3	686.5	763.8	841.1	918.4	995.7	6.2	6.2	6.2	0.0	18.7	31.2	6.2	6.2	6.2	12.5

Tabla 10.6. Deciles y probabilidad de ocurrencia de la lluvia anual de cada estación climatológica del estado de Aguascalientes.

	These burnished the second		Caracte	rísticas pro	medio de	la sequia r	neteorológ	ica		Tr(años)	Tipo de
Heli	Periodicidad	DesvStd PerS	Duración	DesvStd DS	Severidad	DesvStd SS	Intensidad	% de /S	Iluvia disponible	para	sequia
tación	PerS(años)	(años)	DS(años)	(años)	SS(mm)	(mm)	/S(mm/año)	respecto a X _o	Hp disp \$(mm)	Hp disp S(mm)	Meteorológica
101003	4.0	0.7	2.2	1.1	221.7	135.5	100.7	19.0	410.0	4.3	MUY SEVERA
01004	3.6	1.3	2.2	0.8	202.6	110.8	92.0	18.0	401.9	3.8	MUY SEVERA
01005	4.3	2.8	2.6	2.1	426.6	326.0	164.0	26.0	443.9	3.0	MUY VASTA
101006	3.9	2.2	2.4	1.4	184.7	158.5	76.9	17.0	353.6	3.8	MUY SEVERA
01007	4.1	2.8	2.3	2.0	246.3	333.7	107.0	25.0	316.7	5.4	MUY VASTA
01007	5.0	2.1	2.6	1.2	321.8	339.8	123.7	22.0	431.1	6.5	MUY VASTA
				1.5	261.4	229.3	104.5	18.0	463.2	3.6	MUY SEVERA
01009	4.2	2.2	2.5								MUY SEVERA
01010	4.3	2.8	2.3	2.1	302.3	290.1	131.4	19.0	542.2	4.1	
01011	4.4	2.3	2.2	1.2	270.1	191.2	122.7	21.0	446.5	4.8	MUY VASTA
101012	4.2	2.0	2.8	2.0	221.5	149.8	79.1	12.0	554.0	3.8	MUY SEVERA
01013	3.3	1.6	2.1	1.6	213.9	275.5	101.8	26.0	279.1	4.7	MUY VASTA
01014	4.6	2.4	2.8	2.0	216.5	202.1	77.3	17.0	369.9	3.9	MUY SEVERA
01015	3.5	1.5	1.8	1.0	171.6	94.9	95.3	19.0	381.3	5.7	SEVERA
01016	3.5	1.1	1.7	0.4	201.1	77.5	118.2	23.0	395.0	5.1	VASTA
01017	3.7	2.0	1.8	1.4	245.1	178.8	136.1	26.0	370.4	4.7	VASTA
01018	4.6	1.9	2.4	1.3	219.1	160.4	91.2	19.0	372.1	4.8	MUY SEVERA
01019		1.2	1.9	0.9	211.9	139.9	111.5	23.0	366.3	4.5	VASTA
01020	3.7	1.9	2.1	1.4	279.5	184.8	133.0	21.0	490.5	4.6	MUY VASTA
01021	4.1	1.5	1.8	0.9	214.5	138.2	119.1	21.0	433.1	4.3	VASTA
01022		2.2	2.3	1.8	224.1	153.6	97.4	17.0	451.0	3.9	MUY SEVERA
	4.6	1.9	2.2	0.6	233.4	188.4	106.0	17.0	489.6	4.9	MUY SEVERA
01023					211.1	229.2		27.0	321.6	7.4	VASTA
01024	5.0	0.7	1.7	1.1			124.1			3.8	MUY SEVERA
01025		1.2	2.1	2.5	195.1	308.7	92.9	20.0	354.9		
01026		1.4	1.9	1.4	203.5	241.1	107.1	23.0	345.7	4.0	VASTA
01027	4.0	1.7	2.4	1.6	234.0	188.7	97.5	17.0	463.8	3.8	MUY SEVERA
01028	4.7	2.5	2.2	1.6	256.9	264.2	116.7	26.0	322.5	4.6	MUY VASTA
01029	3.4	1.1	1.7	0.6	179.8	85.8	105.7	24.0	328.4	4.4	VASTA
01030	4.4	2.0	2.5	1.2	263.0	147.6	105.1	20.0	408.9	3.8	MUY SEVERA
01031	3.1	0.9	1.7	1.0	164.3	183.0	96.6	20.0	374.0	4.6	SEVERA
(01032	3.6	1.5	2.0	0.9	234.3	191.7	117.1	27.0	314.0	4.1	MUY VASTA
01033		2.3	1.8	1.4	159.5	241.5	88.6	20.0	334.1	4.3	SEVERA
01034		2.1	2.1	1.1	178.4	226.2	84.9	21.0	308.3	4.3	MUY VASTA
01035		0.0	2.5	1.5	283.7	253.6	113.4	26.0	314.7	5.5	MUY VASTA
01033		0.7	2.7	1.3	272.6	105.7	100.9	21.0	374.8	3.8	MUY VASTA
			2.0	1.2	270.9	218.6	135.4	30.0	307.4	4.4	MUY VASTA
01046		3.0					158.3	29.0	374.9	6.1	MUY VASTA
01047		4.0	2.0	1.4	316.6	310.5				3.8	MUY SEVERA
101062		0.5	2.0	0.5	131.0	33.3	65.5	11.0	504.5		
101073		4.0	2.0	1.4	237.6	270.3	118.8	24.0	357.2	6,4	MUY VASTA
01074		0.0	4.0	1.0	543.2	248.0	135.8	27.0	353.2	5.2	MUY VASTA
01075	4.2	1.2	2.2	1.1	170.3	195.2	77.4	15.0	412.3	4.6	MUY SEVERA
01076	5.0	0.0	2.0	1.0	245.0	201.2	122.5	28.0	309.5	2.9	MUY VASTA
01078	3 5.6	2.3	2.0	1.0	271.3	208.9	135.6	22.0	461.5	8.8	MUY VASTA
01079		0.5	2.0	0.8	201.3	117.3	100.6	27.0	261.9	4.7	MUY VASTA
01080		0.0	2.5	1.5	350.4	343.0	140.1	28.0	344.2	3.8	MUY VASTA
101081		0.5	2.6	1.6	158.1	107.0	6.03	24.0	188.1	3.5	MUY VASTA
01082		1.6	1.9	1.0	172.2	219.7	90.6	24.0	284.6	5.1	VASTA
		2.8	2.5	1.1	252.6	201.5	101.0	25.0	294.6	4.3	MUY VASTA
101083					363.1	329.7	100.8	26.0	278.6	1.8	EXTREMADAMENTE VAS
401084		1.0	3.6	0.4				26.0	283.3	3.9	MUY VASTA
A01085		2.0	2.3	1.2	235.7	296.2	102.4			4.6	EXTREMADAMENTE VAS
401086	6 10.0	0.0	3.0	2.0	404.6	377.4	134.8	28.0	337.3		
401088	8.0	0.5	3.5	0.5	242.9	161.9	69.4	19.0	293.3	4.5	EXTREMADAMENTE SEV
40108	9 3.2	0.7	1.6	0.7	165.0	230.6	103.1	21.0	377.0	4.9	VASTA
A01090		2.0	2.3	1.2	109.6	57.5	47.6	9.0	440.7	4.0	MODERADA
A0109		0.0	2.5	1.5	475.6	416.5	190.2	29.0	446.0	6.2	MUY VASTA
A0109		0.5	1.5	0.5	141.3	49.0	94.1	23.0	301,6	6.2	VASTA
A0109		0.8	2.0	1.2	300.9	268.8	150.4	23.0	492.4	6.5	MUY VASTA

Tabla 10.7. Características de la sequía promedio de cada estación climatológica del estado de Aguascalientes.

-						1		-	Section of the second	1	Accessory of the Parket	-		La Ston P	THE OL WILLIAM	Direct Cit	iraciones
- aktion	Severidad	Duración	I*=Smáx/Dmáx	% de /*	Intensidad	Duración i máx	% de l máx	1 año	2 años	3 años	4 años	5 años	6 años	7 años	8 años	9 años	10 años
stación	S máx(mm)	D máx(años)	l'(mm/año)	respecto a X.	l máx(mm/año)	D I máx(años)	respecto a X.	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
A01003	454.1	4.0	113.5	22.0	267.5	1.0	52.0	40.0	20.0	20.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0
A01004	443.0	4.0	110.7	22.0	110.7	4.0	22.0	14.2	57.1	14.2	14.2	0.0	0.0	0.0	0.0	0.0	0.0
A01005	1183.9	8.0	4.4= 0	24.0	291.2	1.0 454	47.0	40.0		10.0	0.0	10.0	0.0	0.0	10.0	0.0	0.0
LA01006	547.3	4.0	136.8	31.0	146.0	1.0	33.0	33.3	33.3	8.3	8.3	16.6	0.0	0.0	0.0	0.0	0.0
A01007	1144.4	7.0	163.4	38.0	228.6	1.0	53.0	54.5	18.1	9.0	0.0	0.0	9.0	9.0	0.0	0.0	0.0
HA01008	1138.4	4.0	284.6	51.0	284.6	4.0	51.0	25.0	25.0	12.5	37.5	0.0	0.0	0.0	0.0	0.0	0.0
HA01009	712.4	6.0	118.7	20.0	153.7	3.0	27.0	36.3	18.1	18.1	18.1	0.0	9.0	0.0	0.0	0.0	0.0
HA01010	1044.9	8.0	130.6	19.0	308.6	1.0	45.0	44.4	33.3	11.1	0.0	0.0	0.0	0.0	11.1	0.0	0.0
HA01011	748.0	5.0	149.6	26.0	174.5	2.0	30.0	36.3	27.2	18.1	9.0	9.0	0,0	0.0	0.0	0.0	0.0
HA01012	501.9	6.0	83.6	13.0	157.6	1.0	24.0	50.0	0.0	16.6	0.0	16.6	16.6	0.0	0.0	0.0	0.0
HA01013	870.4	6.0	145.0	38.0	145.0	6.0	38.0	42.8	42.8	0.0	0.0	0.0	14.2	0.0	0.0	0.0	0.0
HA01014	614.4	7.0	87.7	19.0	119.7	5.0	26.0	41.6	8.3	25.0	0.0	8.3	8.3	8.3	0.0	0.0	0.0
HA.01015	320.6	1.0	320.6	67.0	320.6	1.0	67.0	50.0	25.0	12.5	12.5	0.0	0.0	0.0	0.0	0.0	0.0
HA.01016	306.6	2.0	153.3	29.0	153.3	2.0	29.0	20.0	80.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HA01017	692.5	4.0	173.1	34.0	313.0	1.0	61.0	60.0	20.0	6.6	6.6	0.0	6.6	0.0	0.0	0.0	0.0
1A01018	591.3	6.0	98.5	21.0	160.4	1.0	34.0	25.0	41.6	16.6	8.3	0.0	8.3	0.0	0.0	0.0	0.0
1A01019	525.4	4.0	131.3	27.0	187.0	1.0	39.0	40.0	40.0	6.6	13.3	0.0	0.0	0.0	0.0	0.0	0.0
HA01020	682.1	5.0	136.4	21.0	322.3	1.0	51.0	55.5	11.1	11.1	11.1	11.1	0.0	0.0	0.0	0.0	0.0
1A01021	451.9	2.0		40.0	225.9	2.0	40.0	40.0	40.0	10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0
A01022	600.7	7.0	85.8	15.0	263 4	1.0	48.0	50.0	16.6	16.6	0.0	8.3	0.0	8.3	0.0	0.0	0.0
HA01023	721.0	3.0	240.3	40.0	240.3	3.0	40.0	11.1	55.5	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HA01024	664.3	4.0	166.0	37.0	166.0	4.0	37.0	60.0	20.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0
1A01025	1119.1	10.0	111.9	24.0	222.8	1.0	49.0	54.5	36.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0
1A01026	900.0	6.0	150.0	33.0	203.4	1.0	44.0	54.5	27.2	9.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0
IA01027	774.5	7.0	110.6	19.0	223.3	1.0	39.0	33.3	33.3	16.6	8.3	0.0	0.0	8.3	0.0	0.0	0.0
1A01028	833.4	4.0	208.3	47.0	214.1	1.0	48.0	45.4	27.2	0.0	18.1	0.0	9.0	0.0	0.0	0.0	0.0
1A01029	389.4	3.0	129.8	29.0	256.8	1.0	59.0	36.3	54.5	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1A01030	572.0	3.0	190.6	37.0	214.4	1.0	41.0	25.0	25.0	25.0	16.6	8.3	0.0	0.0	0.0	0.0	0.0
1A01031	581.5	3.0	193.8	41.0	193.8	3.0	41.0	62.5	12.5	12.5	12.5	0.0	0.0	0.0	0.0	0.0	0.0
1A01032	641.6	4.0	160.4	37.0	224.9	1.0	52.0	28.5	57.1	0.0	14.2	0.0	0.0	0,0	0.0	0.0	0.0
1A01033	695.9	5.0	139.1	32.0	139.1	5.0	32.0	66.6	16.6	0.0	0.0	16.6	0.0	0.0	0.0	0.0	0.0
HA01034	718.4	4.0	179.6	45.0	179.6	4.0	45.0	42.8	14.2	28.5	14.2	0.0	0.0	0.0	0.0	0.0	0.0
1A01035	537.3	4.0	134.3	31.0	134.3	4.0	31.0	50.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0
1A01041	437.6	4.0	109.4	22.0	238.9	1.0	50.0	28.5	14.2	28.5	14.2	14.2	0.0	0.0	0.0	0.0	0.0
1A01046	636.4		159.1	35.0	166.8	1.0	37.0	50.0	25.0	0.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0
IA01047	755.8	4.0	000	35.0	188.9	4.0	35.0	66.6	0.0	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0
1A01062	173.6	4.0	86.8	15.0	86.8	2.0	15.0	0.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HA01073	618.7	4.0		32.0	154.6	4.0	32.0	66.6	0.0	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0
HA01074	791.3	5.0 4.0	158.2	32.0	158.2	5.0	32.0	0.0	0.0	50.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0
	553.7		138.4	28.0	138.4	4.0	28.0	40.0	20.0	20.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0
1A01076	446.2	3.0	148.7	34.0	148.7	3.0	34.0	50.0	0.0	50.0			0.0	0.0	0.0	0.0	0.0
A01078	592.0	3.0	197.3	33.0	197.3	3.0	33.0	50.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1A01079 1A01080	326.9	3.0	108.9 173.3	30.0	116.2	2.0	32.0	33.3	33.3	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1A01081	693.5 308.1	4.0 5.0	61.6	35.0	173.3 65.4	1.0	35.0 26.0	50.0	33.3	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0
A01082	609.1	4.0	152.2	24.0 40.0	152.2	4.0	40.0	40.0	40.0	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0
A01083	591.5	4.0	147.8	37.0	172.6	1.0	43.0	25.0	25.0	25.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0
A01084	827.4	4.0	206.8	54.0	206.8	4.0	54.0	0.0	0.0	33.3	66.6	0.0	0.0	0.0	0.0	0.0	0.0
A01085	653.8	4.0	163.4	42.0	163.4	4.0	42.0	33.3	33.3	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0
1A01086	78.2.1	5.0	156.4	33.0	156.4	5.0			0.0		0.0	50.0				0.0	0.0
1A01088	404.9	4.0	101.2	27.0	101.2	4.0	33.0 27.0	50.0	0.0	0.0 50.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0
A01089	679.9	3.0	226.6	47.0	226.6	3.0	47.0	50.0	33.3	16.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A01099	181.7	4.0	45.4	9.0	53.2	2.0	10.0	33.3	33.3	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0
1A01091	892.1	4.0	223.0	35.0	223.0	4.0	35.0	50.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0
A01091	190.3	2.0	95.1	24.0	95.1	2.0	24.0	50.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1401034	667.1	4.0	166.7	25.0	224.5	2.0	34.0	50.0		0.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0

Tabla 10.8. Características de la sequía máxima y probabilidad de ocurrencia para cada duración de cada estación climatológica del estado de Aguascalientes.

finit		1	10.844	100	smatronij bulih	Garagienstica	s promedio d	el superávit de	Huvia		14903-1106	
n. 50 (1830)	Periodicidad	De De	esvStd P	erH	Duración	DesvStd DH	Severidad	DesvStd SH	Intensidad	dula	% de IH	Huvia disponible
stación	PerH(años)	089	(años)	(35)	DH(años)	(años)	SH(mm)	(mm)	IH(mm/año)	res	specto a Xo	Hp disp H(mm)
A01003	3.2		1.2		1.8	0.09 0.0	221.7	107.6	123.1	85.1	24.0	633.8
A01004	4.1		1.3		1.7	Q.M. 1.1 0.5S	202.6	204.3	119.1		24.0	613.0
A01005	4.6		2.4		1.6	1.2	474.0	986.3	296.2		48.0	904.1
A01006	3.8		1.6		1.3	1.0	170.5	241.0	131.1		30.0	561.6
A01007	4.0		1.9		1.7	0.9	225.8	225.5	132.8		31.0	556.5
A01008	4.0		1.5		2.5	1.9	367.8	397.6	147.1		26.0	701.9
A01009	4.1		2.3		1.7	1.4	287.5	291.8	169.1			
A01010	4.5		2.1		2.1	1.2	340.1		161.9		29.0 24.0	736.8 835.5
					2.3			196.8			24.0	
A01011	4.3		1.4			1.6	297.1	416.2	129.1		22.0	698.3
A01012	3.9		2.7		2.0	1.1	221.5	159.5	110.7		17.0	743.8
A01013	3.5		1.9		1.3	0.9	187.1	165.0	143.9		37.0	524.8
A01014	4.7		2.0		1.8	1.1	216.5	208.0	120.2		26.0	567.4
A01015	3.4		1.2		2.0	1.1	171.6	145.6	85.8		18.0	562.4
A01016	3.6		0.4		1.7	0.8	251.4	256.2	147.8		28.0	661.0
A01017	3.9		1.9		1.9	1.6	262.6	451.0	138.2		27.0	644.7
A01018	4.8		1.5		2.2	1.0	219.1	210.0	99.5		21.0	562.8
A01019	3.9		1.3		1.9	0.9	227.0	237.9	119.4		24.0	597.2
A01020	4.0		1.5		2.0	1.2	314.4	337.8	157.1		25.0	780.6
A01021	4.0		1.4		2.1	1.0	238.3	216.5	113.4		20.0	665.6
A01022	3.3		1.4		1.9	1.4	244.4	326.6	128.6		23.0	677.0
A01023	4.7		1.6		2.3	1.4	262.6	169.4	114.1		19.0	709.7
A01024	4.7		1.7		2.6	1.3	211.1	104.6	81.1		18.0	526.8
A01025	3.2		1.5		1.8	1.3	214.6	259.0	119.2		26.0	567.0
	2.7				1.6	1.0					30.0	
401026			0.9				223.8	186.6	139.8			592.6
A01027	4.0		1.6		1.6		255.3	178.9	159.5		28.0	720.8
A01028	4.4		1.6		2.5	1.6	282.5	230.4	113.0		25.0	552.2
A01029	3.5		1.4		1.7	0.9	179.8	221.9	105.7		24.0	539.8
A01030	4.6		1.4		1.9	1.7	287.0	365.1	151.0		29.0	665.0
A01031	2.8		1.0		1.7	1.0	187.8	189.5	110.4		23.0	581.0
A01032	3.8		1.3		1.7	0.8	234.3	183.2	137.8		31.0	568.9
A01033	3.3		1.4		1.3	0.7	159.5	87.5	122.6		28.0	545.3
401034	4.5		1.8		1.8	1.2	208.2	259.9	115.6		29.0	508.8
401035	5.5		2.5		2.3	1.2	189.1	55.8	82.2		19.0	510.3
01041	4.6		1.5		1.7	0.8	272.6	276.8	160.3		33.0	636.0
401046	3.5		1.5		2.3	1.8	361.2	290.6	157.0		35.0	599.8
01047	4.6		2.0		2.2	2.1	237.4	206.8	107.9		20.0	641.1
101062	3.5		0.5		1.3	0.4	131.0	117.9	100.7		17.0	670.7
	6.0		1.0		2.6	2.3	237.6		91.3			567.3
401073								152.9			19.0	
401074	0.0		0.0		10.0	0.0	1086.5	0.5	108.6		22.0	597.6
A01075	3.5		1.5		1.5	- 0.8	170.3	200.1	113.5		23.0	603.2
AD1076	3.5		0.5		2.6	1.6	163.3	116.1	62.8		14.0	494.8
A01078	5.5		3.5		3.3	2.0	361.8	318.5	109.6		18.0	706.7
A()1079	2.5		0.5		2.0	1.4	201.3	155.4	100.6		27.0	463.1
1080	7.0		0.5		3.5	2.5	350.4 *	37.7	100.1		20.0	584.4
AC1081	4.5		2.5		1.3	0.4	158.0	83.4	121.5		48.0	370.3
A01082	3.9		0.8		2.2	0.8	215.3	130.9	97.8		26.0	473.0
01083	6.5		0.5		3.3	2.0	336.8	242.7	102.0		25.0	497.6
A01084	7.0		2.0		2.6	1.6	363.1	452.1	139.6		36.0	519.0
A01085	3.5		1.5		1.6	0.9	235.7	112.0	147.3		38.0	533.0
A01086	6.0		0.5		3.0	2.0	404.6	204.7	134.8		28.0	606.9
A01088	6.0		1.0		2.0	1.4	161.9	122.6	80.9		22.0	443.7
A01089	3.0		1.2		1.5	0.8	198.1	184.9	132.0		27.0	612.1
A01090	3.5		1.5		1.6	0.9	109.6	24.5	68.5		14.0	556.8
A01091	7.0		0.5		3.5	2.5	475.6	182.8	135.8		21.0	772.0
A01094	3.5		0.5		1.6	0.4	94.2	11.3	58.8		14.0	454.5

Tabla 10.9. Características del superávit de lluvia promedio de cada estación climatológica del estado de Aguascalientes.

		Caracter	ísticas máximas	registrad	as del super	ávit de Iluvia		Prob	abilidad	de ocur	rencia d	el supe	rávit de l	luvia par	a diferen	tes dur	aciones
CO. 410	Severidad	Duración	I**=SHmáx/DHmáx	% de /**	Intensidad	Duración IH má	% de IH máx	1 año	2 años	3 años	4 años	5 años	6 años	7 años	8 años	9 años	10 año
stación	SH máx(mm)	DH máx(años)	/**(mm/año)	especto a X	IH máx(mmiaño	D IH máx(años)	respecto a X _o	(%)	(%)-	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
A01003	358.3	3.0	119.4	23.0	143.5	1.0	28.0	60.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
401004	627.2	3.0	209.0	42.0	209.0	3.0	42.0	71.4	0.0	14.2	14.2	0.0	0.0	0.0	0.0	0.0	0.0
401005	3249.2	5.0	649.8	106.0	649.8	5.0	106.0	66.6	22.2	0.0	0.0	11.1	0.0	0.0	0.0	0.0	0.0
101006	966.1	5.0	193.2	44.0	236.9	1.0	55.0	84.6	7.6	0.0	0.0	7.6	0.0	0.0	0.0	0.0	0.0
401007	857.2	4.0	214.3	50.0	229.0	1.0	54.0	50.0	33.3	8.3	8.3	0.0	0.0	0.0	0.0	0.0	0.0
401008	1274.6	7.0	182.0	32.0	231.2	1.0	41.0	42.8	14.2	28.5	0.0	0.0	0.0	14.2	0.0	0.0	0.0
01009	1087.4	6.0	181.2	31.0	472.8	1.0	83.0	70.0	20.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	0.0
A01010	786.4	4.0	196.6	29.0	301.1	1.0	44.0	50.0	12.5	12.5	25.0	0.0	0.0	0.0	0.0	0.0	0.0
401011	1519.4	6.0	253.2	44.0	253.2	6.0	44.0	50.0	10.0	10.0	20.0	0.0	10.0	0.0	0.0	0.0	0.0
401012	457.7	3.0	152.5	24.0	247.2	1.0	39.0	50.0	16.6	16.6	16.6	0.0	0.0	0.0	0.0	0.0	0.0
101013	584.0	4.0	146.0	38.0	301.5	1.0	79.0	87.5	0.0	0.0	12.5	0.0	0.0	0.0	0.0	0.0	0.0
401014	603.7	4.0	150.9	33.0	293.0	1.0	65.0	58.3	16.6	8.3	16.6	0.0	0.0	0.0	0.0	0.0	0.0
101015	460.5	3.0	153.5	32.0	157.7	1.0	33.0	50.0	12,5	25.0	12.5	0.0	0.0	0.0	0.0	0.0	0.0
101016	659.2	3.0	219.7	42.0	280.8	1.0	54.0	50.0	25.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
01017	1745.3	7.0	249.3	49.0	249.3	7.0	49.0	57.1	21.4	7.1	7.1	0.0	0.0	7.1	0.0	0.0	0.0
01018	664.0	3.0	221.3	47.0	221.3	3.0	47.0	25.0	41.6	16.6	16.6	0.0	0.0	0.0	0.0	0.0	0.0
A01019	728.2	4.0	182.0	38.0	229.9	3.0	48.0	42.8	28.5	21.4	7.1	0.0	0.0	0.0	0.0	0.0	0.0
401020	1153.9	4.0	288.4	46.0	288.4	4.0	46.0	50.0	25.0	0.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0
401021	614.7	4.0	153.6	27.0	162.6	3.0	29.0	44.4	11.1	33.3	11.1	0.0	0.0	0.0	0.0	0.0	0.0
A01022	1220.8	6.0	203.4	37.0	219.3	1.0	39.0	54.5	27.2	9.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0
A01023	502.7	4.0	125.6	21.0	172.3	2.0	28.0	37.5	25.0	12.5	12.5	12.5	0.0	0,0	0.0	0.0	0.0
101024	369.2	4.0	92.3	20.0	186.7	1.0	41.0	40.0	0.0	20.0	40.0	0.0	0.0	0.0	0.0	0,0	0.0
A01025	809.2	5.0	161.8	36.0	2.20.1	2.0	49.0	60.0	10.0	20.0	0.0	10.0	0.0	0.0	0.0	0.0	0.0
401026	647.6	4.0	161.9	35.0	217.2	1.0	47.0	70.0	10.0	10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0
A01027	629.1	3.0	209.7	37.0	241.6	1.0	43.0	54.5	27.2	18.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
401028	811.0	5.0	162.2	36.0	174.9	1.0		30.0		10.0	0.0	10.0	10.0	0.0	0.0	0.0	0.0
A01029	759.1	4.0	189.7	43.0	212.9	2.0	49.0	54.5	27.2	9.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0
AC1030	1190.9	7.0	170.1	33.0	329.6	2.0	64.0	63.6	18.1	9.0	0.0	0.0	0.0	9.0	0.0	0.0	0.0
AC1031	641.5	4.0	160.3	34.0	179.0		38.0	57.1	28.5	0.0	14.2	0.0	0.0	0.0	0.0	0.0	0.0
A01032	596.4	3.0	198.8	46.0	359.0	1.0	83.0	57.1	14.2	28.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A01033	334.4	3.0	111.4	26.0	186.9	1.0	44.0	83.3	0.0	16.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A01034	734.2	3.0	244.7	62.0	244.7	3.0	62.0	66.6	0.0	16.6	16.6	0.0	0.0	0.0	0.0	0.0	0.0
A01035	258.0	4.0	64.5	15.0	121.1	1.0	28.0	33.3	33.3	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0
A01041	352.8	3.0	284.2 146.9	59.0 33.0	350.2 322.5	1.0	73.0	57.1	14.2	28.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A01046	734.9	5.0		18.0	173.8	1.0	72.0 32.0	66.6 75.0	0.0	0.0	0.0	33.3	25.0	0.0	0.0	0.0	0.0
A01062	580.3 297.8	6.0	96.7 148.9	26.0	148.9	2.0	26.0	66.6	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A01073	4.39.8	6.0	73.3	15.0	203.3	1.0	42.0	66.6	0.0	0.0	0.0	0.0	33.3	0.0	0.0	0.0	0.0
A01073	1086.5	10.0	108.6	22.0	108.6	10.0	22.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	100
A01074	567.4	3.0	189.1	38.0	189.1	3.0	38.0	60.0	20.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A01076	279.4	5.0	55.8	12.0	103.0	2.0	23.0	33.3	33.3	0.0	0.0	33.3	0.0	0.0	0.0	0.0	0.0
A01078	811.6	6.0	135.2	22.0	135.2	6.0	22.0	33.3	0.0	33.3	0.0	0.0	33.3	0.0	0.0	0.0	0.0
A01079	420.8	4.0	105.2	29.0	105.2	4.0	29.0	66.6	0.0	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.
A01:080	388.1	6.0	64.6	13.0	312.6	1.0	64.0	50.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.
A01081	2,19.0	1.0	229.1	92.0	229.1	1.0	92.0	66 6	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
A01082	4:37.6	3 0	145.8	38.0	145.8	3.0	38.0	25.0	25.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
A01083	610.2	30	203.4	51.0	203.4	3.0	51.0	33.3	0.0	33.3	0.0	0.0	33.3	0.0	0.0	0.0	0.
A01084	1001.0	5.0	200.2	52.0	200.2	5.0	52.0	33.3	33.3	0.0	0.0	33.3	0.0	0.0	0.0	0.0	0.
A01085	351.6	3.0	117.2	30.0	271.2	1.0	70.0	66.6	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.
A01086	609.4	5.0	121.8	25.0	199.8	1.0	42.0	50.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.0	0.
A01088	327.7	4.0	81.9	22.0	123.0	1.0	33.0	66.6	0.0	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.
A01089	521.1	3.0	173.7	36.0	173.7	3.0	36.0	60.0	20.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
A01090	142.4	1.0	142.4	29.0	142.4	1.0	29.0	66.6	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.
A01091	658.5	6.0	109.7	17.0	292.7	1.0	46.0	50.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0	0.0	0.
1A01094	110.1	1.0	110.1	27.0	110.1	1.0	27.0	33.3	66.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1A01095	599.9	4.0	149.9	23.0	175.3	2.0	27.0	0.0	66.6	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0

Tabla 10.10. Características del superávit máximo y probabilidad de ocurrencia para cada duración de cada estación climatológica del estado de Aguasçalientes.

and it sets there i ters	Estadisti	cos de la II	uvia prome	dio n	nunic	ipal	Lámina de	lluvia minir	na anual de	diferentes	periodos de	retorno (Tr)	Tr(años)	lluvia minima	Tr(años
	Media	Mediana	Desv Std	Co	eficies	ntes	2 años	5 años	10 años	20 años	50 años	100 años	primer	registrada	para
Municipio	X _o (mm)	(mm)	S(mm)	g	k	Cv	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	decil	Hp min(mm)	Hp min
Aguascalientes	530.6	492.5	166.7	1.4	5.2	0.31	485.0	407.0	355.0	299.0	210.0	119.0	6.3	313.6	16.9
Asientos	438.4	411.5	125.8	0.8	3.5	0.29	408.0	344.0	304.0	263.0	201.0	146.0	17.3	214.8	41.4
Calvillo	557.5	548.6	126.2	0.5	3.2	0.23	545.0	471.0	425.0	381.0	322.0	276.0	25.4	306,9	62.8
Cosio	381.0	350.0	139.8	0.2	3.3	0.37	352.0	275.0	227.0	171.0	78.0	0.0	24.3	94.6	43.1
El Llano	466.8	464.5	125.6	0.2	3.7	0.27	461.0	372.0	315.0	259.0	181.0	117.0	19.8	207.3	36.9
Jesús Maria	508.4	495.0	134.1	0.6	3.3	0.26	482.0	393.0	338.0	280.0	194.0	121.0	11.4	265.5	23.6
Pabellón de Arteaga	493.3	471.8	140.1	1.0	5.0	0.28	464.0	381.0	324.0	261.0	158.0	62.0	11.2	236.8	25.4
Rincón de Romos	477.9	466.3	154 0	1.3	6.5	0.32	467.0	353.0	278.0	202.0	98.0	13.0	7.0	231.4	15.3
San Francisco de los Romos	457.2	446.4	130.5	0.9	3.9	0.29	440.0	358.0	304.0	250.0	173.0	109.0	12.6	228.2	26.3
San José de Gracia	517.8	508.9	132.1	0.0	2.5	0.26	513.0	406.0	345.0	289.0	217.0	164.0	19.6	235.1	39.7
Tepezala	411.3	383.3	129.3	0.6	2.9	0.31	378.0	299.0	255.0	211.0	150.0	98.0	9.1	213.0	19.5
Estatal	502.6	493.4	132.2	0.9	5.2	0.26	480.0	392.0	330.0	262.0	152.0	53.0	11.8	236.8	25.1

Tabla 10.11. Características estadísticas de la lluvia anual de cada municipio del estado de Aguascalientes.

		001	Deci	es de la	a Iluvia	promed	lio mun	icipal	_	35	Probat	ilidad o	le ocun	rencia d	le los d	eciles d	e Iluvia	prome	dio mu	nicipa
	100	2	3	4	5	6	7	8	9	10	1	2	3	4	5	6	7	8	9	10.
Municipio	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	Hp(mm)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Aguascalientes	389.2	464.8	540.3	615.9	691.5	767.1	842.7	918.2	993.8	1069.4	14.8	22.2	31.4	7.4	5.5	9.2	3.7	0.0	1.8	3.7
Asientos	271.5	328.2	385.0	441.7	498.4	555.1	611.8	668.6	725.3	782.0	5.2	12.2	17.5	28.0	12.2	5.2	8.7	7.0	0.0	3.5
Calvillo	365.4	424.0	482.5	541.1	599.6	658.1	716.7	775.2	833,8	892.3	5.4	3.6	20.0	18.1	21.8	9.0	7.2	7.2	5.4	1.8
Cosiío	153.4	212.2	271.0	329.8	388.6	447.3	506.1	564.9	623.7	682.5	3.8	3.8	15.3	15.3	19.2	0.0	23.0	11.5	0.0	7.6
El Llano	259.9	312.5	365.2	417.8	470.4	523.0	575.6	628.3	680.9	733.5	3.8	3.8	11.5	23.0	11.5	15.3	11.5	11.5	0.0	7.6
Jesús Maria	326.8	388.1	449.4	510.7	572.1	633.4	694.7	756.0	817.3	878.6	3.5	17.8	16.0	19.6	12.5	14.2	5.3	5.3	1.7	3.5
Pabellón de Arteaga	314.2	391.7	469.1	546.5	624.0	701.4	778.8	856.2	933.7	1011.1	5.8	17.6	25.0	22.0	14.7	7.3	2.9	2.9	0.0	1.4
Rincon de Romos	316.3	401.2	486.2	571.1	656.0	740.9	825.8	910.8	995.7	1080.6	12.5	23.2	19.6	23.2	10.7	3.5	5.3	0.0	0.0	1.7
San Francisco de los Romos	286.5	344.7	403.0	461.2	519.5	577.7	636.0	694.2	752.5	810.7	5.1	15.5	13.7	24.1	18.9	5.1	8.6	3.4	0.0	5.1
San José de Gracia	290.8	346.5	402.2	457.9	513.6	569.2	624.9	680.6	736.3	792.0	5.2	3.5	15.7	8.7	19.2	12.2	10.5	14.0	5.2	5.2
Tepezala	261.0	309.0	357.0	405.0	453.0	50 .9	548.9	596.9	644.9	692.9	10.8	13.5	16.2	13.5	10.8	10.8	10.8	2.7	2.7	8.1
Estatal	314.2	391.7	469.1	546.5	624.0	701.4	778.8	856.2	933.7	1011.1	4.3	15.9	23.1	26.0	10.1	14.4	4.3	0.0	0.0	1.4

Tabla 10.12. Deciles y probabilidad de ocurrencia de la lluvia anual de cada municipio del estado de Aguascalientes.

		Caracte	rísticas p	romedio	de la ser	uía mete	orológica	municipa		Tr(años)	Tipo de
Michigan Company	Periodicidad	DesvStd PerS	Duración	DesvStd D	Severidad	DesvStd \$5	Intensidad	% de /S	Iluvia disponible	para	sequia
Municipio	PerS(años)	(años)	DS(años)	(años)	SS(mm)	(mm)	/S(mm/año)	respecto a X	Hp disp S(mm)	Hp disp \$(mm)	Meteorológica
Aguascalientes	6.0	2.9	4.0	2.5	371.9	252.7	92.9	17.0	437.7	3.4	MUY VASTA
Asientos	4.8	2.4	3.0	1.9	231.9	191.6	77.3	17.0	361.0	3.8	EXTREMADAMENTE SEVERA
Calvillo	4.7	2.4	2.5	1.4	227.0	125.7	90.8	16.0	466.7	5.3	MUY SEVERA
Cosio	3.3	1.6	2.1	1.6	213.9	275.5	101.8	26.0	279.1	4.7	MUY VASTA
E Llano	3.6	2.2	1.9	1.3	182.8	211.5	96.2	20.0	370.6	5.1	SEVERA
Jesús Maria	4.9	2.8	2.5	2.1	249.9	253.2	99.9	19.0	408.4	4.2	MUY SEVERA
Pabellón de Arteaga	5.0	3.0	2.7	2.5	256.4	261.2	94.9	19.0	398.3	4.1	MUY SEVERA
Rincón de Romos	3.9	1.2	1.9	0.9	211.9	139.9	111.5	23.0	366.3	4.5	VASTA
San Francisco de los Rornos	4.7	1.8	2.7	1.5	238.9	203.1	88.4	19.0	368.7	4.4	MUY SEVERA
San José de Gracia	4.9	2.6	2.5	2.2	257.5	270.7	103.0	19.0	414.7	4.6	MUY SEVERA
Tepezala	3.3	1.4	1.9	0.9	179.0	138.1	94.2	22.0	317.1	3.9	VASTA
Estatal	3.5	1.7	1.9	1.2	181.6	153,8	95.5	18.0	407.1	4.2	SEVERA

Tabla 10.13. Características de la sequía promedio de cada municipio del estado de Aguascalientes.

	Car	acteristic	as máximas	de la sequ	ia meteoro	lógica mun	icipal	Probal	oilidad d	е осигге	ncia de l	a sequi	meteor	ológica	oara dife	rentes di	iracione
Municipio	Severidad	Duración D máx(años)	P=Smáx/Dmáx P*(mm/año)	100	Intensidad	Duración I máx D I máx(años)		1 año (%)	2 años (%)	3 años	4 años (%)	5 años	6 años	7 años	8 años	9 años (%)	10 años
Aguascalientes	881.8	8.0	110.2	20,0	191.1	1.0	36.0	22.2	11.1	22.2	11.1	0.0	11.1	0.0	22.2	0.0	0.0
Asientos	633.1	8.0	79.1	18.0	178.4	1.0	40.0	25.0	25.0	16.6	16.6	8.3	0.0	0.0	8.3	0.0	0.0
Cavillo	514.6	6.0	85.7	15.0	128.4	1.0	23.0	16.6	50.0	16.6	0.0	8.3	8.3	0.0	0.0	0.0	0.0
Cosio	870.4	6.0	145.0	38.0	145.0	6.0	38.0	42.8	42.8	0.0	0.0	0.0	14.2	0.0	0.0	0.0	0.0
El Llano	650.3	4.0	162.5	34.0	162.5	4.0	34.0	57.1	14.2	0.0	28.5	0.0	0.0	0.0	0.0	0.0	0.0
Jesús María	899.6	7.0	128.5	25.0	151.8	1.0	29.0	41.6	33.3	0.0	8.3	0.0	0.0	16.6	0.0	0.0	0.0
P de Arteaga	993.6	10.0	99.3	20.0	256.4	1.0	51.0	50.0	14.2	14.2	0.0	7.1	7.1	0.0	0.0	0.0	7.1
Rincón Romos	525.4	4.0	131.3	27.0	187.0	1.0	39.0	40.0	40.0	6.6	13.3	0.0	0.0	0.0	0.0	0.0	0.0
Sn Fco Romos	786.5	6.0	131.0	28.0	140.7	2.0	30.0	16.6	41.6	25.0	0.0	0.0	16.6	0.0	0.0	0.0	0.0
Sn J. de Gracia	972.5	9.0	108.0	20.0	248.6	1.0	48.0	41.6	33.3	0.0	16.6	0.0	0.0	0.0	0.0	8.3	0.0
Tepezala	452.0	3.0	150.6	36.0	150.6	3.0	36.0	45.4	27.2	18.1	9.0	0.0	0.0	0.0	0.0	0.0	0.0
Estatal	597.7	4.0	149.4	29.0	265.8	1.0	52.0	52.6	21.0	10.5	10.5	5.2	0.0	0.0	0.0	0.0	0.0

Tabla 10.14. Características de la sequía máxima y probabilidad de ocurrencia para cada duración de cada municipio del estado de Aguascalientes.

	and and	1000-101	Caracte	rísticas pron	nedio del su	perávit de Ilu	via municipa		
	Periodicidad	DesvStd PerH	Duración	DesvStd DH	Severidad	DesvStd SH	Intensidad	% de IH	lluvia disponible
Municipio	PerH(años)	(años)	DH(años)	(años)	SH(mm)	(mm)	IH(mm/año)	respecto a X _o	Hp disp H(mm)
Aguascalientes	5.2	1.9	2.2	1.5	418.4	611.0	190.1	35.0	720.7
Asientos	4.8	1.9	1.7	1.3	231.9	267.1	136.4	31.0	574.7
Calvillo	4.8	2.1	2.1	1.5	247.7	261.5	117.9	21.0	675.4
Cosio	3.5	1.9	1.3	0.9	187.1	165.0	143.9	37.0	524.8
El Llano	3.3	1.3	2.0	1.4	213,3	218.4	106.6	22.0	573.4
Jesús María	5.1	2.0	2.2	1.5	272.7	227.8	123.9	24.0	632.2
Pabellón de Arteaga	5.0	2.5	2.1	1.2	256.4	234.1	122.0	24.0	615.2
Rincón de Romos	3.9	1.3	1.9	0.9	227.0	237.9	119.4	24.0	597.2
San Francisco de los Romos	4.7	1.7	2.2	1.4	260.6	250.9	118.4	25.0	575.5
San José de Gracia	4.9	2.2	2.2	1.8	257.5	276.6	117.0	22.0	634.7
Tepezala	3.3	1.2	1.6	1.0	196.9	197.1	123.0	29.0	534.3
Estatal	3.6	1.7	1.6	1.2	181.6	249.3	113.5	22.0	616.1

Tabla 10.15. Características del superávit de lluvia promedio de cada municipio del estado de Aguascalientes.

		Caracter	ísticas máxin	as del sup	erávit de Iluv	ia municipal		Proba	bilidad o	le ocurr	encia de	el super	ávit de l	luvia par	a difere	entes du	raciones
6 60	Severidad	Duración DH	I**=SHmáx/DHmáx	E (6)	(at) July 2000	Duración IH máx	1 103	1 año	2 años	2041				7 años		- Lade	1
Municipio	SH máx(mm)	máx(años)	/**(mm/año)	respecto a Xo	IH máx(mm/año)	D IH máx(años)	respecto a X ₀	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Aguascalientes	1998.6	6.0	333.1	62.0	333.1	6.0	62.0	37.5	37.5	12.5	0.0	0.0	12.5	0.0	0.0	0.0	0.0
Asientos	799.7	5.0	159.9	36.0	236.9	3.0	54.0	75.0	0.0	8.3	8.3	8.3	0.0	0.0	0.0	0.0	0.0
Calvillo	997.5	6.0	166.2	29.0	221.8	1.0	39.0	54.5	9.0	18.1	9.0	0.0	9.0	0.0	0.0	0.0	0.0
Cosio	584.0	4.0	146.0	38.0	301.5	1.0	79.0	87.5	0.0	0.0	12.5	0.0	0.0	0.0	0.0	0.0	0.0
El Llano	682.7	4.0	170.6	36.0	170.6	4.0	36.0	66.6	00	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0
Jesús María	883.9	4.0	220.9	43.0	220.9	4.0	43.0	45.4	27.2	0.0	9.0	18.1	0.0	0.0	0.0	0.0	0.0
P. de Arteaga	800.3	3.0	266.7	54.0	298.2	1.0	60.0	42.8	21.4	21.4	7.1	7.1	0.0	0.0	0.0	0.0	0.0
Rincón Romos	728.2	4.0	182.0	38 0	229.9	3.0	48.0	42.8	28.5	21.4	7.1	0.0	0.0	0.0	0.0	0.0	0.0
Sn Fco Romos	827.0	6.0	137.8	30.0	213.0	2.0	46.0	36.3	27.2	27.2	0.0	0.0	9.0	0.0	0.0	0.0	0.0
San J. Gracia	964.3	7.0	137.7	26.0	241.8	1.0	46.0	58.3	8.3	8.3	16.6	0.0	0.0	8.3	0.0	0.0	0.0
Tepezala	638.2	4.0	159.5	38.0	159.5	4.0	38.0	70.0	10.0	10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0
Estatal	839.0	6.0	139.8	27.()	257.4	3.0	51.0	63.1	21.0	10.5	0.0	0.0	5.2	0.0	0.0	0.0	0.0

Tabla 10.16. Características del superávit máximo y probabilidad de ocurrencia para cada duración de cada municipio del estado de Aguascalientes.

	Superficie		,	bitantes)	nada (CONAPO)	Lluvia n anu		- Columbia		oitante/año			léficit	Volumen per cápita para lluvia en déficit (m³/habitante/año)			
Municipio	(km²)	2000	2010	2020	2030	Hp media	a (mm)	2000	2010	2020	2030	Hp dis	o S(mm)	2000	2010	2020	2030
Aguascalientes	1,762.50	655,274	779,901	889,019	980,169	531		1,427	1,199	1,052	954	438	er employer in calculation	1,177	989	868	787
Asientos	508 00	38,225	40,316	40,770	39,840	438		5,826	5,524	5,463	5,590	361		4,798	4,549	4,498	4,603
Calvillo	995.40	51,712	50,710	47,988	44,181	558		10,731	10,943	11,564	12,561	467		8,983	9,161	9,681	10,515
Cosio	152.60	12,798	14,033	14,773	15,039	381		4,543	4,143	3,936	3,866	279		3,328	3,035	2,883	2,832
Jesús Maria	493.10	65,505	82,890	99,353	114,075	508		3,827	3,024	2,523	2,198	408		3,074	2,430	2,027	1,765
o. de Arteaga	310.80	34,827	39,286	42,662	44,950	493		4,402	3,903	3,594	3,411	398		3,554	3,151	2,902	2,754
Rincon Rornos	399.00	42,255	46,640	49,603	51,195	478		4,513	4,088	3,844	3,725	366		3,459	3,134	2,946	2,855
Sn J. de Gracia	758.60	7,326	7,646	7,692	7,512	518		53,618	51,374	51,066	52,290	415		42,942	41,145	40,899	41,879
Tepezala	209.00	16,644	16,283	15,366	14,099	411		5,165	5,279	5,594	6,097	317		3,982	4,070	4,313	4,701
El Llano	551.33	15,519	16,442	16,808	16,704	467		16,584	15,653	15,312	15,407	371		13,166	12,427	12,156	12,232
Sn Fco Romos	102.80	20,419	23,927	26,887	29,204	457		2,302	1,964	1,748	1,609	369		1,856	1,584	1,410	1,298
Estatal	6.243.13	960.504	1,118,074	1,250,921	1,356,968	503		3.267	2.806	2.508	2.312	407		2,646	2.273	2,032	1,873

Tabla 10.17. Volumen per cápita estimado sin considerar la evapotranspiración para cada municipio del estado de Aguascalientes.

10.5. Efectos de los fenómenos atmosféricos en las series de Iluvia del País

El niño impacta el clima en México provocando mayor precipitación en invierno y escasez de lluvia en verano. Así, la presencia de El Niño en el territorio mexicano esta ligada a la disponibilidad de agua. La escasez de lluvia en ciertos años es quizá la señal más evidente del llamado Niño Fuerte, y son los costos de la sequía los que más se resienten en México, afectando la producción ganadera y de granos básicos.

En términos generales se puede decir que las lluvias de invierno se intensifican durante años Niño en el noroeste y noreste de México, mientras que disminuyen hacia la parte sur. Los inviernos con Niño resultan más fríos en casi todo el país, mientras que los veranos con Niño son más secos y cálidos que en veranos de Niña.

El impacto de El Niño en las lluvias de invierno no es siempre el mismo, puesto que existen diferencias en las características regionales y temporales de las anomalías de lluvia y temperatura de un año Niño a otro.

El verano Niño en México provoca que las lluvias en la mayor parte del país disminuyan, llegando con frecuencia a producir severas sequías, como las ocurridas en el periodo 1995-1998.

En materia ambiental, la reducción de humedad provocada por el Niño genera la pérdida de bosques por incendios forestales, y estos a su vez incremento en la erosión de los suelos, cenizas y enfermedades.

Existen dos estudios que muestran los efectos que los fenómenos de El Niño y la Oscilación Decadal del Pacífico tendrán en el patrón de lluvias en nuestro país. El primero, propuesto por Sánchez (2000), concluye que los periodos más intensos de El Niño ocurrieron en los periodos 1982-1983 y 1997-1998, y que para el futuro el fenómeno ENSO continuará con gran intensidad y duración. Además, los huracanes del Atlántico continuarán decreciendo durante la próxima década, la precipitación pluvial de verano mostrará retrasos y disminuciones similares a los ocurridos en la década de los 1980 y 1990, y disminuirá hasta los niveles de 1950.

Por otra parte, Terán et al (2000) concluyen en su estudio que existe una oscilación decreciente a partir de 1994 en el patrón de lluvias de los estados del norte del país, como producto del fenómeno de la Oscilación Decadal del Pacífico.

Con la información de las estaciones climatológicas del país es posible la construcción de las figuras 10.3 a 10.10, donde se detecta el impacto que ha tenido el fenómeno de El Niño en la distribución superficial de la sequía en la República Mexicana. Estas figuras consideran el análisis de las series de lluvia acumulada anual y los criterios de la tabla 2.2.

Al analizar las figuras se observa que el fenómeno tiene una componente cíclica en cuanto a su efecto en el país, conforme a hecho su aparición parte de un mínimo en 1963 (Figura 10.3), se incrementa en su aparición de 1965 (Figura 10.4) y llega a un máximo en 1969 (Figura 10.5), disminuye en 1972 (Figura 10.6) y 1976 (Figura 10.7) y se incrementa a su máximo histórico en 1982 (Figura 10.8), lo que coincide con lo dicho por Sánchez (2000). En los años 1986 y 1987 (Figura 10.9 y 10.10) nuevamente se reducen sus efectos hasta incrementarse en 1995 y alcanzar otro máximo histórico en el periodo 1997-1998.

De las evidencias de la información procesada se puede decir que El Niño tiene una periodicidad de cada 4 años con intensidad creciente o decreciente y la ocurrencia de un evento de extensión superficial extraordinario, como lo marca la historia (1957, 1969, 1982 y 1997) de 14 años en promedio.

Ante este panorama es importante considerar su ocurrencia para tomar medidas que mitiguen sus efectos.

Figura 10.3. Estados con sequía de extensión superficial extraordinaria y catastrófica durante 1963.

Figura 10.4. Estados con sequía de extensión superficial extraordinaria y catastrófica durante 1965.

Figura 10.6. Estados con sequía de extensión superficial extraordinaria y catastrófica durante 1972.

Figura 10.7. Estados con sequía de extensión superficial extraordinaria y catastrófica durante 1976.

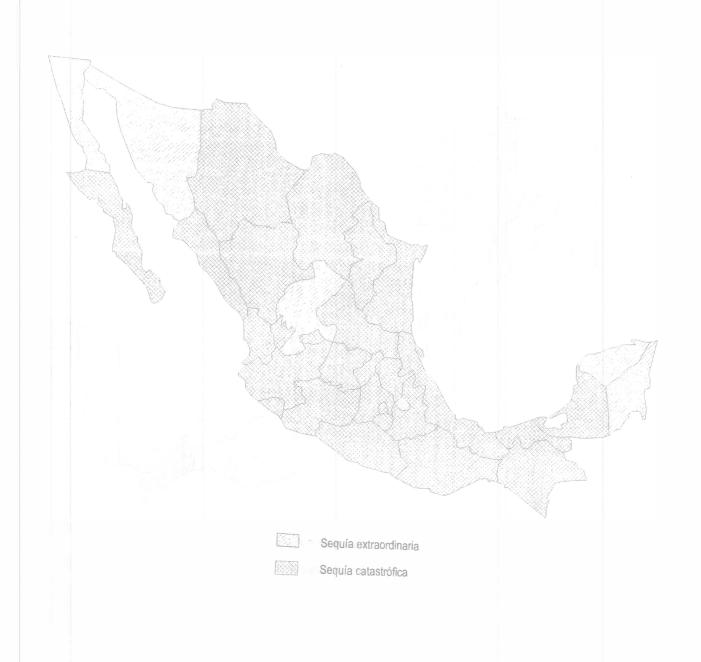


Figura 10.8. Estados con sequía de extensión superficial extraordinaria y catastrófica durante 1982.

Figura 10.9. Estados con sequía de extensión superficial extraordinaria y catastrófica durante 1986.

Figura 10.10. Estados con sequía de extensión superficial extraordinaria y catastrófica durante 1987.

REFERENCIAS

Aguilar C., E. Martínez y L. Arriaga, 2002. Deforestación y Fragmentación de Ecosistemas: ¿Qué tan grave es el problema en México? Comisión Nacional para el Conocimiento y uso de la Biodiversidad (CONABIO). México. http://www.conabio.gob.mx/institucion/conabio espanol/deforestacion.html

Alley, W. M., 1984. The Palmer Drought Severity Index: Limitations and Assumptions, *J. Climate Appl. Meteorology*, 27(7): 1100-1109.

Akaike, H., 1974. A new look at the statistical model identification. *IEEE transactions on automatic control*. AC-19(6): 716-723.

Anderson, T. W., 1957. Maximum likelihood estimates for a multivariate normal distribution when some observations are missing. *Journal of the American Statistical Association*. 52: 220-223.

Andrews, D. F., 1972. Plots of high dimensional data. *Biometrics*. 28: 125-136.

Berlage, H. P., 1966. The Southern Oscillation and World Weather. K. Ned. Meteorol. Inst., Mede. Verh. 88:1-152.

Box, G. E. P. y G. M. Jenkins, 1970. *Time series analysis forecasting and control*. Holden day series in time series analysis, San Francisco. USA.

Box, G. E. P. y M. E. Müller, 1958. A note on the generation of normal deviates. *Annals of Mathematics Statistics*. 28: 610-611.

CESPEDES, 2002. *Incendios Forestales y Deforestación en México: Una perspectiva analítica*. Centro de Estudios del Sector Privado para el Desarrollo Sustentable. Consejo Coordinador Empresarial. México. http://www.cce.org.mx/cespedes/publicaciones/otras/deforestacion

Chander, S., Spolia, S. K. y A. Kumar, 1978. Flood frequency analysis by power transformation. *Proc. A.S.C.E. J. Hydraul. Div.* 104(HY11): 1495-1504.

Chow, V. T. (ed.)., 1974, Handbook of Applied Hydrology, Mc Graw Hill, New York.

Costanza, R., R. d'Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. O'Neill, J. Paruelo, R. Raskin y P. Sutton, 1997. The Value of the World's Ecosystem Services and Natural Capital. *Nature*. 387:253-260.

Cunnane, C., 1988. Methods and merits of regional flood frequency analysis. *Journal of Hydrology* 100(1-4): 269-290.

Da Cruz, J., 2003. El Índice de Pobreza del Agua. Revista del Sur. www.revistadelsur.org.uy. Marzo-Abril 2003.

Dalrymple, T., 1960. Flood frequency methods. U. S. Geological Service. *Water Supply Paper*. 1543(A): 11-51.

Del Valle, S., 2004. Padecen 27% desnutrición. *Periódico Reforma*. Sección Nacional. Pagina 13 A. Domingo 14 de marzo 2004.

DGE, 2000. *Información epidemiológica de morbilidad*. Ediciones 1990 a 2000. Dirección General de Epidemiología, Secretaría de Salubridad y Asistencia, México, 1990 a 2000.

Doberitz, R. 1968. Cross-spectrum analyses of rainfall and sea temperature at the equatorial Pacific Ocean. *Bonn. Met. Abh.* 8:1-61.

EAR, 2001. El Cambio en el clima del planeta. Ecologistas en Acción de la Rioja. EcoPortal net. España. http://www.ecoportal.net

Escalante, C., 1998. Multivariate extreme value distribution with mixed gumbel marginals. *Journal of the American Water Resources Association*. USA. 34(2): 321-331.

Escalante, C. y J. Domínguez, 1998. *Análisis de gastos máximos anuales aguas arriba de la confluencia de dos ríos.* XVIII Congreso Latinoamericano de Hidráulica. Oaxaca, México. 3: 293-302.

Escalante, C. y J. Palacio, 2000. La Deforestación y sus efectos en la Hidrología de la Costa de Chiapas. 1er Congreso Nacional de Deforestación, México, D.F.

EPA, 2003. Environmental Protection Agency. www.epa.gov

Estrada, J., 1987. Velocidad de desertificación en México. Congreso Nacional de la Ciencia del Suelo. Zacatecas, México.

Falkenmark, M., 1993. Water Scarcity: Time for Realism. *Populi.* 20(6): 11-12.

Falkenmark, M., y C. Widstrand, 1992. Population and Water Resources: A delicate balance. *Population Bulletin*. 47(3):1-36.

Finkelstein, B. V., 1953. On the limiting distributions of the extreme terms of a variational series of a two-dimensional random quantity. *Doklad Akad*, S.S.S.R. 91(2): 209.

Gibbs, W. J. y J. V. Maher, 1967. Rainfall deciles as drought indicators, Bulletin48, *Commonwealth Bureau* of *Meteorology*, Melbourne.

Gumbel, E, J., 1958. Statistics of extremes. Columbia University Press. USA. 375 p.

Gumbel, E. J., 1962. Statistical theory of extreme values (Main results). Contribution to order statistics, Sarhan, A. S. and Greenberg, B. G., editors. John Wiley and Sons. Chapter 6: 59-93.

Gumbel, E. J. y C. K. Mustafi, 1967. Some analytical properties of bivariate extremal distributions. *Journal of the American Statistical Association*. 62: 569-589.

Herbst, P. H., D. Bredenkamp y H. Barker, 1966. A technique for the evaluation of drought from rainfall Data. *Journal of Hydrology*. 4:264-272.

Hernández, O., 1997. Análisis de frecuencias regional de sequías. Tesis de maestría. División de estudios de Posgrado. Facultad de Ingeniería. UNAM. 155 p.

Hildebrandson, H. H., 1897. Quelque recherches sur les entres d'action de l'atmosphere. K. Sven. Vetenskaps akad. 29.1-33

Ichieve, T., y J. Petersen, 1963. The anomalous rainfall of the 1957-58 winter in the equatorial central Pacific arid area. *J Meteorol. Soc. Jpn.* 41:172-182.

INE, 1999. Inventario nacional de emisiones de gases de efecto Invernadero. Instituto Nacional de Ecología. México. http://www.ine.gob.mx

INE, 2000. Indicadores del desarrollo sustentable en México. Instituto Nacional de Ecología. México.

INEGI, 1992. Agenda Estadística 1992. Instituto Nacional de Estadística, Geografía e Informática. México. http://www.inegi.gob.mx

INEGI, 1998. Estadísticas del medio ambiente, México 1997/ Informe de la situación general en materia de equilibrio ecológico y protección al ambiente. Instituto Nacional de Estadística, Geografía e Informática. México. http://www.inegi.gob.mx

INEGI, 1999. Superficie Continental e Insular del Territorio Nacional. Instituto Nacional de Estadística, Geografía e Informática. México. http://www.inegi.gob.mx

INEGI, 2000. Anuario estadístico del estado de Aguascalientes. Ediciones 1984 a 2000. Instituto Nacional de Estadística, Geografía e Informática, México.

Jenkinson, A. F., 1955. The frequency distribution of the annual maximum (or minimum) values of metereological elements. *Quaterly Journal of the Royal Metereological Society*. 87: 158-171.

Jenkinson, A. F., 1969. *Estimation of maximum floods*. Chapter 5. World Meteorological Organization Technical. Note 98. pp. 183-227.

Johnson, K., 1993. Susceptibility of reservoirs to drought using Palmer index. *Journal of Water Resources Planning and Management*. 119(3):367-387. ASCE. USA.

Karl, T. R., y R. Knight, 1985. Atlas of monthly Palmer hydrological drought indices (1931-1983) for the contiguous United States. *Historical Climatological Series* 3-7, Nat. Climatic Data Ctr., Nat. Oceanic and Atmospheric Admin., Asheville, N.C.

King, J., Tharme R. & Brown C., 1999. *Definition and Implementation of Instream flows. Thematic Review II.1*. In: Dams, ecosystem functions and environmental restoration. World Commission on Dams. 87pp.

Kite, G.W., 1988. Frequency and risk analyses in hydrology. Water Resources Publications. USA. 257p.

Kuester, J. L. y J. H. Mize, 1973. Optimization techniques with fortran. McGraw-Hill Book Co. USA. pp. 386-398.

Linsley, R. y J. B. Franzini, 1979. Water Resources Engineering. 3d. edition. McGraw-Hill. Pp. 125-126.

Lockyer, N., y W. J. S Lockyer, 1902a. On some phenomena which suggest a short period of solar and meteorological changes. *Proc. R. Soc. London.* 70:500.

Lockyer, N., y W. J. S. Lockyer, 1902b. On the similarity of the short-period pressure variation over large areas. *Proc. R. Soc. London.* 71:134-135.

Lockyer, N., y W. J. S. Lockyer, 1904. The behavior of the short–period atmospheric pressure variation over the earth's surface. *Proc. R. Soc. London.* 73:457-470.

Mantua, N. J., Hare S.R., Zhang Y. Wallace J., y Francis R., 1997. A Pacific decadal climate oscillation with impacts on salmon. *Bull. Meteorol Clim.* 19:1399-1410

McKee, T. B., N. Doesken y J. Kleist., 1993. The relationship of drought frequency and duration to time scales. Preprints, 8th Conference on Applied Climatology, 17-22 January, Anaheim, Ca. pp. 179-184. USA.

Medina, A y J. Espinosa, 1998. Distribución de la seguía en México. Tlaloc. 12: Pag. 26.

Minobe, S., 1997. A 50-70 year climatic oscillation over the North Pacific and North America. *Geophysical Research Letters*. 24:683-686.

Mohan, S. y C, Rangacharga, 1991. A Modified Method for Drought Identification, *Hydrological Science Journal*, 36(1):11-21.

Nathan, R. J. y J. Mc Mahon, 1990. Identification of homogeneous regions for the purposes of regionalization. *Journal of Hydrology*. 121: 217-238.

NDMC, 1998. How to Reduce Drought Risk. National Drought Mitigation Center, Nebraska University, USA. http://www.enso.unl.edu.

NDMC, 2002. *Planning for Drought*. National Drought Mitigation Center, Nebraska University, USA. www.drought.unl.edu/handbook/.

ONU, 1997. Comprehensive assessment of the freshwater resources of the world. Commission on Sustainable Development. Report of Secretary General. New York, United Nations. 39p.

Ortiz, M. y J. Estrada, 1993. Evaluación y cartografía de la erosión eólica en la República Mexicana. Centro de Edafología. Colegio de Postgraduados en Ciencias Agrícolas, Montecillos, México.

Ortiz, M., M. Anaya y J. Estrada, 1994. Evaluación, cartografía y políticas preventivas de la degradación de la tierra. Colegio de Postgraduados, Universidad Autónoma Chapingo y Comisión Nacional de Zonas Áridas. México.

Palmer, W. C., 1965. Meteorological drought. Research paper No. 45. U.S. *Department of Commerce Weather Bureau*, Washington. D.C.

Palmer, W. C., 1968. Keeping track of crop moisture conditions, nationwide: the new Crop Moisture Index. *Weatherwise*. 2:156-161. USA.

Philander, S. G., 1990. El Niño, La Niña, and the Southern Oscillation. USA. Academic Press, Inc.

Quinn, W. H., Zopf, D.O. Short, K. S, y Kuo Yang, R. T. W., 1978. Historical trends and statistics of the Southern Oscillation, El Niño, and Indonesian droughts. *Fish. Bull.* 76:663-678.

Raynal, J., 1985. Bivariate extreme value distributions applied to flood frequency analysis. Ph. D. dissertation, Civil Engineering Department, Colorado State University. USA. 237 p.

Raynal, J., 1995. *Maximum likelihood parameter estimators for the general extreme value distribution for the minima*. Hydrological Science and Technology Journal. 11(1-4): 118-125. USA.

Raynal, J. y C. Escalante, 1996. On the use of exact variance-covariance matrix element coefficients for the GEV distribution (minima). Hydrological Science and Technology Journal. 12(1-4): 61-70. USA.

Raynal, J y J. Salas, 1987. A probabilistic model for flooding downstream of the junction of two rivers. Hydrological Frequency Modeling. Reidel Publishing Company. 1: 595-602.

Reyes, L. y C. Escalante, 1998. Análisis de frecuencias de gastos mínimos anuales con distribuciones mezcladas. XVIII Congreso Latinoamericano de Hidráulica. Oaxaca. México.

Richter BD, Baumgartner JV, Wigington R, Braun DP. 1997. How much water does a river need? Freshwater Biology. 37: 231-249.

Rosenbrock, H. H., 1960. An automatic method for finding the greatest or least value of a function. *Computer Journal*. 3: 175-184.

Rossi, F., Fiorentino, M. y P. Versace, 1984. Two Component extreme value distribution for flood frequency analysis. *Water Resources Research*. 20(7): 847-856.

Salas, J. D., J. W. Delleur, V. Yevjevich y W. L. Lane, 1988. *Applied modeling of hydrological time series*. Water Resources Publications. USA. 484 p.

Sánchez, J. 2000. Pronóstico (2000-2010) de la ocurrencia de fenómeno El Niño/Oscilación del Sur (ENOS), de huracanes y de sequías en México. *Memorias XVI Congreso Nacional de Hidráulica*. Morelia Michoacán, Noviembre .1:209-214.

Sancho, J., 1983. Drought characterization and impact mitigation measures in Mexico. Chapter 9:259-269 in *Coping with droughts*. USA: Water Resources Publications, Yevjevich, V., editor.

SARH, 1992. Inventario Nacional Forestal de Gran Visión, 1991-1992. Secretaría de Agricultura y Recursos Hidráulicos. Subsecretaría Forestal y de la Fauna Silvestre. México

SARH, 1994. *Inventario Nacional Forestal Periódico, 1991-1992.* Secretaría de Agricultura y Recursos Hidráulicos. Subsecretaría Forestal y de la Fauna Silvestre. México

Schulz, E. F., 1976. *Problems in Applied Hydrology*. Chapter 2. Applications of Elementary Statistics in Hydrology. USA: Water Resources Publications pp 31-73.

SEGOB, 2000. "Desastres Naturales: Sequías". Secretaría de Gobernación. México. http://www.gobernación.gob.mx.

SEMARNAP, 1999. Secretaría del Medio Ambiente, Recursos Naturales y Pesca. Subsecretaria de Recursos Naturales.

SEMARNAT, 2000. Anuario Estadístico de la Producción Forestal: Información para el año 1999. Secretaría del Medio Ambiente y Recursos Naturales. México.

SEMARNAT, 2001. Anuario Estadístico de la Producción Forestal: Información para el año 2000. Secretaría del Medio Ambiente y Recursos Naturales. México.

SEMARNAT, 2002a. *Diagnóstico de la deforestación en México*. Secretaría del Medio Ambiente y Recursos Naturales. México. http://www.semarnat.gob.mx.

SEMARNAT, 2002b. *Cifras sobre la deforestación en México*. Secretaría del Medio Ambiente y Recursos Naturales. México. http://www.semarnat.gob.mx.

SEMARNAT, 2002c. *Incendios forestales*. Secretaría del Medio Ambiente y Recursos Naturales. México. http://www.semarnat.gob.mx

SSA, 2000. Anuario estadístico de la secretaría de salud y los servicios de salud en los estados. Ediciones 1984 a 2000. Secretaria de Salubridad y Asistencia, México.

Terán, A., Rivera, F., y Medina A. 2000. Análisis de la oscilación decadal del Pacífico y la probabilidad de sequía en el norte de México. *Memorias XVI Congreso Nacional de Hidráulica*. Morelia Michoacán. Noviembre .1:1023-1028.

Tiago de Oliveira, J., 1958. Extremal distributions. *Revista Faculdade de Ciencias*. Universidad de Lisboa. Portugal. pp. 2 Serie A(7): 219-228.

Tiago de Oliveira, J., 1982. *Bivariate extremes: models and statistical decision*. Center for Stochastic Processes, Department of Statistics, University of North Carolina, at Chapel Hill. Technical Report No. 14.

UNESCO, 1979. Map of the World Distribution of Arid Regions, MAB Tech. (Notes 7).

Urquidi, V., 2002. La Globalización y el Desarrollo Sustentable: México ante un nuevo desafío. Centro de Estudios del Sector Privado para el Desarrollo Sustentable. (CESPEDES). Consejo Coordinador Empresarial. México. http://www.cce.org.mx/publicaciones/revista/revista 1/globaliza.htm

USGS, 2003. United States Geological Survey. www.usgs.gov

Vlachos, E., 1983. Social impacts of drought, published in coping with drought, editors V. Yevjevich, L. Cunha, E. Vlachos, Water Resources Publications, chapter 3, p.p. 44-73, WRP, Littleton, Colorado, USA.

Wiener, A., 1972. The Role of Water in Development, An Analysis of Principles of Comprehensive planning, USA, Mc Graw-Hill, Water Resources and Environmental Engineering Series, Chapter 32: 419-428.

Woodroofe, M., 1975. Probability with applications. McGraw-Hill. USA. pp. 179-190.

Yevjevich, V., 1972. Stochastic processes in hydrology. Water Resources Publications. USA. 302 p.

Yevjevich, V., 1983. Coping with droughts. USA: Water Resources Publications 417p.

Zelenhasic, E. y A., Salvai, 1987. A method of streamflow drought analysis. *Water Resources Research*. 23(1):156-168.

ANEXO A

VOLUMEN PER CÁPITA ESTIMADO PARA CADA MUNICIPIO DE LA REPÚBLICA MEXICANA

AGUASCALIENTES	Superficie	Joqsva - sib	(habita	antes)	astrialidad)	media - evapot.	SATHERIS	(m³/habita	nte/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Aguascalientes	1,762.50	655,274	779,901	889,019	980,169	143.3	385	324	284	258
Asientos	508.00	38,225	40,316	40,770	39,840	118.4	1,573	1,491	1,475	1,509
Calvillo	995.40	51,712	50,710	47,988	44,181	150.5	2,897	2,955	3,122	3,391
Cosio	152.60	12,798	14,033	14,773	15,039	102.9	1,227	1,119	1,063	1,044
Jesús María	493.10	65,505	82,890	99,353	114,075	137.3	1,033	817	681	593
Pabellón de Arteaga	310.80	34,827	39,286	42,662	44,950	133.2	1,189	1,054	970	921
Rincón de Romos	399.00	42,255	46,640	49,603	51,195	129.0	1,218	1,104	1,038	1,006
San José de Gracia	758.60	7,326	7,646	7,692	7,512	139.8	14,477	13,871	13,788	14,118
Tepezala	209.00	16,644	16,283	15,366	14,099	111.1	1,394	1,425	1,510	1,646
El Llano	551.33	15,519	16,442	16,808	16,704	126.0	4,478	4,226	4,134	4,160
San Francisco de los Rornos	102.80	20,419	23,927	26,887	29,204	123.4	621	530	472	435
Estatal	6,243.13	960,504	1,118,074	1,250,921	1,356,968	135.7	882	758	677	624

BAJA CALIFORNIA	Superficie		ensada (INE) (habit	اق) y estimac antes)	Ia (CONAPO)	Lámina anual media - evapot.	AP ADA	percápita pa (m³/habita		edia anua
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Ensenada	52,646.51	378,762	502,604	625,425	736,958	56.6	7,866	5,928	4,764	4,043
Mexicali	13,689.20	779,154	993,861	1,209,846	1,410,754	41.3	725	569	467	401
Rosarito	455.57	79,640	108,553	137,231	163,925	65.8	376	276	218	183
Tecate	3,536.48	1,238,057	1,653,777	2,055,851	2,422,071	70.0	200	150	120	102
Tijuana	1,281.50	64,906	87,862	110,212	130,568	70.4	1,390	1,027	818	691
Estalal	71,609.26	2,540,519	3,346,657	4,138,565	4,864,276	56.9	1,603	1,217	984	837

BAJA CALIFORNIA SUR	Superficie	Población censada (INEGI) y estimada (CONAPO) ie (habitantes)				Lámina anual media - evapot.	Volumen p	edia anua		
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Comondu	12,547.30	65,196	70,388	73,987	75,920	45.0	8,657	8,018	7,628	7,434
Mulege	33,092.20	47,283	58,039	67,945	76,318	33.2	23,224	18,920	16,162	14,388
La Paz	20,275.00	202,133	242,108	279,196	311,347	69.5	6,968	5,818	5,045	4,524
Los Cabos	3,451.51	110,510	179,496	249,685	315,811	80.4	2,511	1,546	1,111	879
Loreto	4,311.00	12,229	16,873	21,566	25,931	36.4	12,840	9,306	7,281	6,055
Estatal	73,677.01	437,351	566,904	692,379	805,327	55.4	9,324	7,193	5,890	5,064

САМРЕСНЕ	Superficie		mint for men	antes)	da (CONAPO)	Lámina anual media - evapot.	Volumen pe	ntelaño)	eula anua	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Calkini	1,966.57	48,097	55,398	61,904	67,112	272.5	11,142	9,674	8,657	7,985
Campeche	3,410.64	222,525	260,065	296,160	328,759	288.3	4,418	3,780	3,320	2,990
Carmen	9,720.09	177,106	215,924	251,870	282,897	351.4	19,288	15,820	13,562	12,075
Champotón	6,088,28	72,275	80,752	87,653	92,445	329.3	27,737	24,825	22,870	21,685
Hecelchakán	1,331.99	25,559	30,062	34,119	37,469	262.3	13,668	11,621	10,239	9,324
Hopelchén	7,460.27	32,124	38,772	44,506	48,954	271.6	63,067	52,253	45,521	41,385
Palizada	2,071.70	8,618	9,817	10,781	11,444	452.8	108,841	95,547	87,004	81,963
Tenabo	882.00	8,633	10,233	11,687	12,896	275.3	28,128	23,730	20,778	18,830
Escárcega	4,569.64	51,706	56,163	59,399	61,361	335.5	29,651	27,298	25,811	24,985
Calakmul	13,839,11	24.039	34,673	46,058	57,164	310.8	178,908	124,038	93,377	75,236
Candelaria	5,518.55	38,730	45,734	51,686	56,187	349.5	49,805	42,178	37,321	34,331
Estatal	56,858.84	709,412	837,593	955,823	1,056,688	326.6	26,174	22,168	19,426	17,572

Municipio Abasolo Acuña Allende Arteaga Candela Castaños Cualrociénegas Escobedo Francisco I. Madero Frontera General Cepeda Guerrero Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova Morelos	(km²) 645.90 11,487.70 198.70 1,818.60	2000 1,154	(habita 2010	-	tradition)	media - evapot.		(m³/habita	ante/año)	
Abasolo Acuña Allende Arteaga Candela Castaños Cuatrociénegas Escobedo Francisco I. Madero Frontera General Cepeda Guerrero Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova Morelos	645.90 11,487.70 198.70 1,818.60		2010							
Acuña Allende Arteaga Candela Castaños Cuatrociénegas Escobedo Francisco I. Madero Frontera General Cepeda Guerrero Hidalgo Jiménez Juarez Lamadrid Matamoros Monclova Morelos	11,487.70 198.70 1,818.60	1,154		2020	2030	Hp (mm)	2000	2010	2020	2030
Allende Arteaga Candela Castaños Cuatrociénegas Escobedo Francisco I. Madero Frontera General Cepeda Guerrero Hidalgo Jiménez Juarez Lamadrid Matamoros Monclova Morelos	198.70 1,818.60		1,129	1,084	1,029	96.4	53,935	55,129	57,418	60,487
Arteaga Candela Castaños Cuatrociénegas Escobedo Francisco I. Madero Frontera General Cepeda Guerrero Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova	1,818.60	116,022	170,235	222,216	269,301	49.1	4,860	3,312	2,538	2,094
Candela Castaños Cuatrociénegas Escobedo Francisco I. Madero Frontera General Cepeda Guerrero Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova		21,649	25,027	27,919	30,292	99.1	910	787	706	650
Castaños Cualrociénegas Escobedo Francisco I. Madero Frontera General Cepeda Guerrero Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova Morelos		20,033	23,012	25,324	26,840	122.9	11,157	9,713	8,826	8,328
Cuatrociénegas Escobedo Francisco I. Madero Frontera General Cepeda Guerrero Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova	2,305.50	1,721	1,716	1,656	1,547	97.1	130,067	130,446	135,172	144,697
Escobedo Francisco I. Madero Frontera General Cepeda Guerrero Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova Morelos	2,921.60	23,235	25,603	27,274	28,300	63.3	7,965	7,228	6,785	6,539
Francisco I. Madero Frontera Ganeral Cepeda Guerrero Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova Morelos	7,860.60	12,483	12,754	12,748	12,536	48.2	30,332	29,687	29,701	30,203
Frontera Ganeral Cepeda Guerrero Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova Morelos	973.90	2,847	2,669	2,432	2,171	97,1	33,213	35,428	38,881	43,555
Frontera Ganeral Cepeda Guerrero Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova Morelos	4,933.90	47,891	52,645	56,071	58,277	55.3	5,697	5.182	4,866	4,682
Guerrero Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova Morelos	506.80	68,791	78,754	86,958	93,338	81.5	601	525	475	443
Guerrero Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova Morelos	3,517.90	11,670	12,651	13,192	13,333	76.8	23,139	21,345	20,470	20,253
Hidalgo Jiménez Juárez Lamadrid Matamoros Monclova Morelos	3,219.70	2,127	2,534	2.873	3,127	100.3	151,794	127,413	112,379	103,251
Jiménez Juárez Lamadrid Matamoros Monclova Morelos	1,619.80	1,503	1,977	2,424	2,813	100.3	108,071	82,160	67,009	57,743
Juárez Lamadrid Matamoros Monclova Morelos	3,040.90	10,086	12,332	14,474	16,410	99.1	29,892	24,448	20,830	18,372
Lamadrid Matamoros Monclova Morelos	2,971.30	1,643	1,482	1,347	1,241	100.3	181,349	201.050	221,200	240,093
Malamoros Monclova Morelos	506.80	1,835	1,968	2,042	2,062	73.2	20,208	18,843	18,160	17,984
Monolova Morelos	1,003.70	94,989	106,540	115,339	121,435	67.7	716	638	590	560
Morelos	1,480.70	199,264	209.338	214,020	214,548	82.4	612	583	570	569
	606.20	7,508	8,616	9,534	10,263	99.1	8,005	6,976	6,304	5,856
	8,128.90	64,571	67,761	68,942	68,511	109.0	13,719	13.073	12,849	12,930
Nadadores	834.70	6,132	6,688	7.034	7,173	73.2	9,960	9.132	8,683	8,515
Nava	804.90	23,879	29,136	33,841	37,840	100.3	3,380	2,770	2,385	2,133
	26,433.60	12,406	12,946	13,053	12,823	72.7	154,984	148,519	147,302	149,944
	9,271.70	44,696	48,948	51,530	52,498	81.3	16,870	15,404	14,632	14,363
Piedras Negras	914.20	132,919	163,485	191,529	216,241	99.1	682	554	473	419
	1,858.30	3,704	3,680	3,530	3,306	95.3	47,831	48.143	50,188	53,589
V	5,306.60	41,466	53,435	65,060	75,781	65.0	8,313	6,451	5,299	4,549
	2,345.20	53,975	58,792	62,016	63,833	104.6	4,545	4,172	3,955	3,843
Sacramento	168.90	2,068	2,247	2,360	2,408	55.1	4,501	4,142	3,944	3,865
	6,837.00	598,086	702,984	795,093	871,953	80.5	920	783	692	631
	3,527.80	20,631	21,965	22,741	23,057	89.0	15,222	14,297	13,809	13,620
San Juan de Sabinas	735,40	41,330	44,536	46,501	47,396	109.4	1,946	1.806	1,729	1.697
	9,942.40	90,719	92,154	90,981	88,058	60.4	6,622	6,519	6,603	6,823
	6,966.20	6,186	6,281	6,278	6,203	97.3	109,581	107,923	107,975	109,281
	1,947.70	545,150	586,951	613,599	627,655	52.2	187	173	166	162
	4,203.50	19,585	22,009	23,808	24,950	54.1	11,602	10,324	9,544	9,107
	1,540.30	6,347	6,820	7,072	7,134	100.3	24,336	22,648	21,841	21,651
	8,183,50	12,879	11,246	10,279	9,737	96.1	61,042	69,905	76,482	80,739
Estatal 1		,								

	COLIMA	Superficie		censada (INEG (habita		da (CONAPO	Lámina anual media - evapot.	Volumen p	ercápita pa (m³/habit	ara lluvia m ante/año)	edia anua
Municipio		(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Armeria		341.60	29,062	30,431	31,234	31,249	214.6	2,522	2,409	2,347	2,346
Colima		668,20	132,012	136,888	141,127	143,499	221.9	1,123	1,083	1,051	1,033
Comala		254.09	19,731	21,093	22,153	22,720	186.6	2,403	2,248	2,140	2,087
Coquimatlán		320.19	19,100	20,516	21,587	22,130	210.9	3,535	3,291	3,128	3,051
Cuauhtémoc		373.16	27,251	29,062	30,407	31,035	278.7	3,816	3,578	3,420	3,351
xtlahuacan		468.71	5,590	6,188	6,659	6,934	219.1	18,369	16,594	15,420	14,809
Manzanille		1,578.42	127,933	147,116	163,961	176,650	218.2	2,692	2,341	2,100	1,950
Minatitlán		214.61	8,594	8,603	8,483	8,188	211.8	5,289	5,283	5,358	5,551
Tecoman		807.63	101,288	112,019	120,595	125,798	216.7	1,728	1,563	1,451	1,391
Villa de Álvare	ez	428.39	83,491	114,763	145,191	172,407	219.8	1,128	821	649	546
Estatal		5,455.00	554,052	626,679	691,397	740,610	228.4	2,249	1,988	1,802	1,682

CHIAPAS	Superficie	i .			ada (CONAPO)	Lámina anual media - evapot.	Volumen		ara lluvia m ante/año)	edia anua
Municipio	(km²)	production of the page 1			The state of the s		Aleman 24			own mile
	, ,	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Acacoyagua	191.30	14,859	17,536	19,953	22,033	691.1	8,898	7,539	6,626	6,001
Acala	295.60	25,872	29,679	32,922	35,484	217.0	2,480	2,162	1,949	1,808
Acepetahua	658.30	26,237	28,810	30,669	31,841	813.3	20,407	18,584	17,458	16,815
Altamirano	1,120.30	22,974	27,089	30,717	33,664	444.0	21,652	18,363	16,194	14,776
Arnatán	109.30	19,619	22,102	23,902	24,919		2,358	2,093	1,936	1,857
Amatenango de la Frontera	171.40	27,304	31,921	35,995	39,349	420.3	2,638	2,257	2,001	1,831
Arnetenango del Valle	236.00	6,847	7,715	8,339	8,688	290.3	10,007	8,881	8,217	7,887
Angel Albino Corzo	1,749.81	22,869	26,839	30,394	33,373	571.7	43,743	37,273	32,913	29,975
Arriaga	653.30	39,466	40,560	40,823	40,478	359.3	5,947	5,787	5,749	5,798
Bejucal de Ocampo	82.00	6,975	7,975	8,786	9,377	273.5	3,215	2,812	2,552	2,392
Bella Vista	114.30	18,984	20,835	22,146	22,936	496.9	2,992	2,726	2,565	2,476
Berriozábal	300.60	30,106	36,442	42,469	47,928	430.5	4,299	3,551	3,047	2,700
Bochil	362.70	23,775	27,892	31,646	34,828	258.8	3,948	3,366	2,966	2,695
Bosque, El	241.00	15,675	18,056	20,053	21,572	391.2	6,015	5,222	4,702	4,371
Cacahoatán	173.90	40,676	44,240	46,848	48,584	1068.8	4,569	4,201	3,967	3,826
Catazajá	621.00	16,423	18,725	20,621	22,049	709.2	26,815	23,519	21,356	19,973
Cintalapa	2,404.60	66,656	71,280	74,067	75,135	192.6	6,950	6,499	6,254	6,165
Ccapilla	106.80	7,549	8,755	9,809	10,645	258.8	3,662	3,157	2,818	2,597
Comitán de Domínguez	1,043.30	110,023	129,507	148,040	165,294	281.6	2,671	2,269	1,985	1,778
Concordia, La	1,112.90	41,607	48,163	53,756	58,100	371.2	9,929	8,577	7,685	7,110
Copainalá	330.40	20,154	22,763	24,938	26,656	253.2	4,151	3,675	3,354	3,138
Chalchihuitán	74.50	12,856	15,665	18,184	20,196	391.2	2,267	1,861	1,603	1,443
Chamula	82.00	61,695	72,243	81,146	87,941	326.2	434	370	330	304
Chanal	295.60	7,908	9,013	9,843	10,329	429.6	16,057	14,089	12,901	12,294
Chapultenango	161.50	7,283	8,450	9,455	10,263	1102.1	24,440	21,065	18,826	17,343
Chenalhó	112.53	28,601	33,424	37,413	40,296	504.3	1,984	1,698	1,517	1,408
Chiapa de Corzo	906.70	62,961	64,237	64,155	63,025	258.6	3,724	3,650	3,655	3,720
Chiapilla	86.90	5,474	6,103	6,587	6,921	318.6	5,058	4,537	4,204	4,001
Chicoasén	82.00	4,546	5,256	5,885	6,419	258.8	4,669	4,038	3,606	3,306
Chicomuselo	958.90	26,116	29,710	32,610	34,666	377.2	13,850	12,175	11,092	10,434
Chilón	241.00	81,370	97,081	110,976		521.3	1,544	1,294	1,132	1,030
Escuintla	206.20	29,273	32,421	34,835	36,405	848.1	5,974	5,394	5,020	4,804
Francisco León	114.30	5,486	6,545	7,466	8,183	1133.1	23,608	19,788	17,347	15,827
Frontera Comalapa	717.90	54,453	61,465	67,450	72,357	366.1	4,827	4,276	3,896	3,632
	106.80	11,382	12,478	13,264	13,749	534.9	5,019	4,578		4,155
Frontera Hidalgo	52.20	6,233		7,628					4,307	
Grandeza, La			7,015		8,064	496.9	4,162	3,698	3,401	3,217
Huehuetán	313.00	32,857	37,186	40,760	43,492	538.1	5,126	4,530	4,132	3,873
Huixtán	181.30	19,457	22,049	24,022	25,268	269.0	2,506	2,212	2,030	1,930
Huitiupán	360.20	20,973	24,497	27,423	29,558	1004.5	17,252	14,770	13,194	12,241
Huixtla	385.00	50,456	53,781	55,940	56,980	865.0	6,601	6,192	5,953	5,845
ndependencia, La	1,704.10	33,674	38,425	42,442	45,522	278.2	14,080	12,339	11,171	10,416
xhuatán	72.00	9,275	10,573	11,639	12,408	1345.7	10,446	9,164	8,324	7,808
xtacomitán	149.00	9,575	11,444	13,164	14,643	418.4	6,512	5,448	4,736	4,258
xtapa	313.00	19,297	20,581	21,243	21,322	367.0	5,953	5,581	5,407	5,387
xtapangajoya	201.20	4,919	5,630	6,205	6,623	1004.5	41,087	35,898	32,572	30,516
liquipilas	1,197.30	36,413	39,494	41,618	42,790	262.1	8,618	7,945	7,540	7,333
itotol	203.70	13,690	16,168	18,402	20,276	391.2	5,821	4,929	4,331	3,930
uárez	161.50	20,767	21,898	22,533	22,761	588.6	4,578	4,341	4,219	4,177
arrainzar	171.04	17,265	19,317	20,759	21,520	326.2	3,232	2,889	2,688	2,593
Libertad, La	1,964.90	5,512	6,037	6,424	6,665	709.2	252,797	230,813	216,908	209,065
Mapastepec	1,085.60	40,674	43,443	45,140	45,898	693.4	18,507	17,328	16,676	16,401
Margaritas, Las	5,307.08	90,354	104,582	116,639	125,778	853.5	50,130	43,310	38,833	36,011
Mazapa de Madero	116.80	7,474	7,930	8,156	8,181	218.5	3,415	3,219	3,130	3,120
Mazatán	382.60	25,187	29,180	32,471	34,841	538.1	8,175	7,056	6,341	5,909
Vletapa	101.80	5,017	5,910	6,701	7,357	869.0	17,633	14,969	13,202	12,025
Mitontic	82.00	7,951	9,317	10,455	11,285	504.3	5,201	4,439	3,956	3,665
Violozintia	782.50	62,521	70,351	76,749	81,415	218.5	2,735	2,431	2,228	2,100
Nicolás Ruíz	136.60	3,273	3,694	4,032	4,271	318.6	13,298	11,782	10,795	10,191

4	ed ustanto,		/* * * * * * * * * * * * * * * * * * *			1 1			4	
CHIAPAS	Superficie	tonsus - Bib	(habita	ntes)	imatidati)	media - evapot.	ger has a	(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Doosingo	8,616.71	153,632	182,613	208,828	230,865	505.5	28,351	23,852	20,858	18,867
cotepec	59.60	9,712	11,636	13,355	14,758	1102.1	6,764	5,645	4,919	4,451
Ccozocoautla de Espinosa	2,476.60	68,810	82,833	96,094	107,997	214.7	7,727	6,419	5,533	4,923
)stuacán	946.40	17,793	20,204	22,118	23,493	1133.1	60,269	53,077	48,484	45,647
)sumacinta	221.10	3,296	4,271	5,236	6,154	258.8	17,362	13,399	10,929	9,299
exchuc	72.00	39,618	45,631	50,353	53,482	521.3	947	823	745	702
alenque	1,122.80	89,251	100,858	110,222	117,008	709.2	8,921	7,895	7,224	6,805
antelhó	136.60	17,050	20,688	24,050	26,912	1004.5	8,048	6,633	5,705	5,099
antepec	47.20	8,970	10,623	12,058	13,179	1102.1	5,799	4,897	4,314	3,947
richucalco	1,078.10	30,640	34,185	37,049	39,227	1004.5	35,345	31,679	29,230	27,60
Pijijapan	2,223.30	48,868	51,718	53,205	53,524	744.3	33,861	31,995	31,101	30,91
Porvenir, El	121.70	12,153	13,586	14,680	15,372	218.5	2,188	1,958	1,812	1,730
filla Comaltitlán	606.10	27,871	30,914	33,164	34,511	813.3	17,687	15,946	14,864	14,28
	419.80				37,598	706.0	11,601	9,812		
Pueblo Nuevo Solistahuacan		25,546	30,205	34,299		1102.1	14,470	12,313	8,641 10,893	7,882 9,969
Rayón	94.40	7,190	8,450	9,551						
Reforma	399.90	36,395	41,934	46,749	50,805	588.6	6,468	5,613 2,604	5,035	4,633
Rosas, Las	233.50	22,083	26,030	29,617	32,626	290.3	3,070		2,289	2,078
Sabanilla	171.40	22,130	25,692	28,745	31,162	423.3	3,279	2,824	2,524	2,328
Salto de Agua	1,289.20	51,568	59,802	66,476	71,164	828.7	20,718	17,866	16,072	15,01
San Cristóbal de las Casas	484.40	138,487	163,221	186,639	208,034	269.0	941	798	698	626
San Fernando	258.30	27,682	32,744	37,400	41,456	258.8	2,415	2,042	1,788	1,613
Siltepec	685.60	33,933	38,762	42,706	45,526	496.9	10.040	8,790	7,978	7,48
Simojovel	446.99	33,058	38,262	42,602	45,818	423.3	5,724	4,946	4,442	4,130
Sitalá	233.50	8,375	10,194	11,827	13,137	504.9	14,077	11,565	9,968	8,97
Socoltenango	775.00	15,88()	18,680	21,200	23,291	269.1	13,132	11,164	9,837	8,954
So osuchiapa	362.70	8,158	9,820	11,357	12,690	418.4	18,604	15,455	13,364	11,96
Soyaló	178.90	8,113	9,133	9,939	10,504	258.8	5,707	5,070	4,659	4,408
Suchiaga	355.20	16,621	19,308	21,745	23,852	247.6	5,291	4,554	4,044	3,687
Suchiate	303.00	31,586	35,607	38,728	40,792	392.6	3,766	3,340	3,071	2,91
Sunuapa	178.90	2,029	2,426	2,772	3,039	1004.5	88,569	74,075	64,829	59,13
Tapachula	857.00	283,376	316,039	341,726	360,794	1041.2	3,149	2,823	2,611	2,473
Tapalapa	32.30	3,795	4,229	4,569	4,810	1102.1	9,381	8,418	7,791	7,40
	126.70	10,809	12,305	13,615	14,675	1102.1	12,919	11,348	10,256	9,516
Tapilula	770.10	39,972	42,767	44,460	45,172	651.6	12,554	11,734	11,287	11,10
Tecpatán	99.40		40,247	44,903	48,373	504.3	1,446	1,246	1,116	1,030
l'enejapa		34,673				269.0	1,655	1,389	1,211	1,09
Teopisca	173.90	28,262	33,673	38,630	42,881				3,614	3,32
Tila	390.00	60,848	71,167		86,842	741 3	4,751	4,062		
Tonalá	1,766.20	81,721	88,397	93,073	95,685		10,397	9,612	9,129	8,88
Totolapa	186.30	5,772	6,830	7,768	8,531	318.6	10,284	8,691	7,642	6,95
Trinidad, La	1,840.70	62,254	69,230	74,644	78,488	256.8	7,594	6,828	6,333	6,02
Tumbalá	705.50	28,117	33,131	37,436	40,750	926.8	23,254	19,735	17,466	16,04
Tuxlla Gutiérrez	412.40	454,252	540,362	624,140	702,871	257.3	234	196	170	151
Tuxtla Chico	64.60	34,922	38,839	41,780	43,684	1068.8	1,977	1,778	1,653	1,58
Tuzantán	268.30	24,266	28,578	32,313	35,337	865.0	9,564	8,121	7,182	6,56
Tzimol	32.30	12,494	15,050	17,497	19,751	252.9	654	543	467	414
Unión Juárez	72.00	14,560	16,674	18,529	20,097	1320.8	6,532	5,704	5,133	4,73
Venustiano Carranza	1,396.10	55,144	61,358	66,185	69,574	1068.8	27,058	24,318	22,544	21,4
VIIIa Corzo	4,026.70	71,951	85,854	98,745	109,848	367.6	20,571	17,240	14,989	13,4
Villallores	1,232.10	89,442	94,407	97,305	98,248	323.4	4,455	4,221	4,095	4,05
	109.30	27,283	32,843	38,077	42,699	922.2	3,694	3,069	2,647	2,36
Yajaión	154.00	5,945	7,136	8,225	9,142	318.6	8,254	6,876	5,966	5,36
San Lucas			37,507	43,248	47,987	367.0	2,019	1,677	1,454	1,31
Zinacantán	171.40	31,160				504.9	3,797	3,135	2,708	2,43
San Juan Cancuc	163.08	21,687	26,261	30,409	33,823	304.9	5,737	0,100	2,700	2,40

CHIHUAHUA		Superficie		(habita	antes)		media - evapot.		(m³/habit	ante/año)	
lunicipio		(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
humada	1	17,131.48	12,118	12,895	13,331	13,456	71.0	100,388	94,339	91,254	90,406
dama		9,835.93	19,781	22,310	24,350	25,843	84.7	42,129	37,354	34,224	32,247
lende		2,471.31	8,712				109.6		29,237	28,303	28,095
				9,268	9,574	9,645		31,103			
quiles Serdán		651.12	5,525	7,657	9,789	11,732	84.7	9,985	7,205	5,636	4,702
scensión		11,000.06	22,508	27,556	32,019	35,688	71.9	35,152	28,713	24,711	22,170
achiniva		1,691.94	6,464	5,907	5,371	4,886	114.5	29,965	32,790	36,063	39,643
alleza		7,073.58	17,116	18,941	19,890	19,916	122.9	50,793	45,899	43,709	43,65
atopilas		2,064.64	12,849	15,176	16,844	17,612	161.3	25,914	21,940	19,768	18,90
ocoyna		2,801.81	28,504	32,488	35,409	36,997	192.2	18,896	16,579	15,211	14,558
uenaventura		8,938.17	20,488	23,302	25,511	27,056	91.6	39,978	35,150	32,107	30,273
amargo		16,066.01	46,624	49,063	50,258	50,345	93.7	32,284	30,679	29,950	29,89
arichi		2,782.08	7,893	8,154	8,004	7,512	134.5	47,394	45,877	46,736	49,797
asas Grandes		3,719.30	10,099	9,206	8,366	7,633	85.8	31,611	34,677	38,159	41,823
cironado		1,756.06	2,235	2,164	2,057	1,928	132.6	104,204	107,623	113,221	120,79
Coyame		7,877.62	1,730	1,651	1,543	1,413	80.1	364,779	382,234	408,988	446,61
		1,035.88	3,846	4,105	4,249	4,288	94.1	25,358	23,758	22,953	22,74
ruz, La							115.7	2,761	2,593		2,476
Lauhtémoc		3,018.85	126,542		139,553	141,123				2,504	52,69
Usihuiriachi		1,810.32	5,853	5,496	5,024	4,493	130.8	40,452	43,080	47,127	
Chihuahua		9,219.33	685,118	766,354	832,677	882,933	110.8	1,491	1,333	1,227	1,157
Chinipas		2,278.94	6,896	7,357	7,485	7,277	188.8	62,406	58,495	57,495	59,138
Delicias		335.43	118,618	129,773	138,010	143,312	70.9	201	183	172	166
Octor Belisario Dominguez		636.33	3,893	3,592	3,263	2,942	118.1	19,308	20,926	23,036	25,549
Saleana		1,529.16	3,930	3,878	3,734	3,525	82.6	32,137	32,568	33,824	35,82
Santa Isabel		1,040.81	4,815	4,570	4,232	3,845	118.1	25,534	26.903	29,051	31,97
Sómez Farias		986.55	8,990	8,935	8,655	8,215	127.4	13,982	14,068	14,523	15,30
Gran Morelos		424.22	3,915	3,612	3,282	2,958	118.1	12,800	13,873	15,268	16,94
Guachochi		4,340.35	41,529	47,965	52,435	54,387	145.7	15,232	13,189	12,064	11,63
Guadalupe		6,200.48	10,303	12,885	15,308	17,445	63.7	38,364	30,676	25,821	22,65
		9,165.07	49,406	55,989	60,084	61,169	242.5	44,983	39,694	36,988	36,33
Guadalupe y Calvo			8,227	9,033	9,417	9,372	188.8	49,252	44,858	43,028	43,23
Guazapares		2,145.75					152.5	21,406	19,071	17,657	16,91
Guerrero		5,603.62	39,920	44,808	48,396	50,535					
Hidalgo del Parral		1,751.13	102,656	111,294	117,138	120,193	101.4	1,730	1,596	1,516	1,478
-tuejotitlán		458.75	1,180	1,090	990	892	84.9	33,023	35,750	39,361	43,685
gnacio Zaragoza		2,130.95	7,917	7,342	6,673	5,984	97.1	26,148	28,196	31,023	34,59
Janos		6,930.53	10,385	10,765	10,912	10,866	90.7	60,507	58,371	57,585	57,82
liménez		11,074.05	38,993	41,382	42,679	42,971	89.7	25,489	24,017	23,287	23,129
luárez		4,853.84	1,255,844	1,660,219	2,050,145	2,406,411	66.6	258	195	158	134
Julimes		2,767.28	5,258	5,604	5,778	5,795	85.8	45,145	42,358	41,082	40,96
_ópez		1,317.05	4,177	4,904	5,527	6,009	86.6	27,294	23,248	20,627	18,973
Vladera		8,158.79	34,587	35,070	34,446	32,946	237.4	56,010	55,238	56,239	58,79
		937.22	1,837	2,110	2,294	2,373	191.1	97,473	84,861	78,055	75,45
Maguarichi		3,191.49	1,768	1,663	1,513	1,337	92.1	166,297	176,797	194,324	219,90
Manuel Benavides						2,861	123.3	33,705	34,165	35,764	38,46
Valachi		892.84	3,265	3,221	3,077		138.6	35,172	35,948	37,834	40,80
Valamoros		1,139.47	4,490	4,393	4,174	3,870		744		582	540
Meoqui		369.96	40,891	47,040	52,255	56,341	82.2				
Morelos		1,336.79	9,716	11,592	12,973	13,707	242.8	33,408	28,001	25,020	23,68
Moris		2,219.74	5,323	5,804	6,050	6,062	220.3	91,875	84,261	80,835	80,67
Morelos		4,212.58	23,941	23,004	21,487	19,614	155.0	27,279	28,390	30,395	33,29
Voroava		2,693.29	3,002	3,171	3,159	2,986	122.8	110,193	104,320	104,716	110,7
Nuevo Casas Grandes		2,071.76	55,593	64,617	72,593	79,241	89.8	3,347	2,879	2,563	2,34
Ocampo		2,037.23	7,421	8,079	8,406	8,402	203.7	55,917	51,363	49,365	49,38
Ojinaga		9,500.50	24,875	29,236	32,985	35,975	79.2	30,235	25,725	22,801	20,90
Ojinaga Praxedis G. Guerrero		808.97	9,120	10,831	12,344	13,580	61.7	5,473	4,608	4,043	3,67
		2,417.05	10,210	11,031	11,510	11,655	118.1	27,964	25,883	24,806	24,49
Riva Palacio					17,985	18,617	78.8	8,859	8,021	7,520	7,26
Rosales		1,716.60	15,266	16,861					80,361	82,877	88,34
Rosario		1,785.66	2,613	2,635	2,555	2,397	118.6	81,037			74,97
San Francisco de Borja		1,124.67	2,363	2,307	2,184	2,017	134.5	63,996	65,550	69,241	14,91

CHIHUAHUA	Superficie		ensada (INEC habita)	ni ammininas	la (CONAPO)	Lámina anual media - evapot.	Volumen p		ara Iluvia m ante/año)	nedia anua
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
San Francisco del Oro	695.52	6,13.2	5,948	5,657	5,303	89.8	10,186	10,501	11,041	11,778
Santa Bárbara	424.23	11,738	11,280	10,657	9,952	99.9	3,612	3,758	3,978	4,260
Satevó	2,185.21	5,023	4,731	4,309	3,815	118.6	51,589	54,773	60,137	67,924
Saucillo	2,116.16	31,230	34,182	36,229	37,377	89.6	6,069	5,544	5,231	5,071
Temósachi	5,361.91	7,083	6,827	6,335	5,690	127.6	96,596	100,218	108,002	120,244
Tule, El	409.42	2,201	2,055	1,868	1,664	128.2	23,851	25,546	28,103	31,549
Urique	3,968.61	18,048	20,666	22,321	22,849	191.8	42,165	36.824	34.093	33,305
Uruáchi	3,058.31	8,442	9,092	9,300	9,075	227.1	82,281	76,399	74,690	76,542
Valle de Zaragoza	4,168.18	5,370	5,020	4,563	4,058	103.5	80,329	85,930	94,536	106,301
Estatal	247.087.00	3,125,292	3,716,854	4,244,089	4.685.156	127.4	10.073	8.470	7,418	6,720

DISTRITO FEDERAL	Superficie	1.00	ensada (INEG (habita	(1)(2)	(CONAPO		∟ámina anua! nedia - evapot.	Volumen p	. ,	ara Iluvia m tante/año)	edia anual
Municipio	(km²)	2000	2010	2020	2030	1	Hp (mm)	2000	2010	2020	2030
Azcapotzalco	34.51	449,022	402,819	365,281	332,261	-	180.3	14	15	17	19
Coyoacán	59.19	655,490	652,473	645,023	628,690		204.3	18	19	19	19
Cuajimalpa de Juárez	72.88	155,608	169,778	181,106	187,813		301.6	141	129	121	117
Gustavo A. Madero	91.46	1,260,006	1,156,772	1,065,627	978,138		173.0	13	14	15	16
Iztacalco	21.84	419,324	384,785	355,005	326,810		160.3	8	9	10	11
Iztapalapa	124.46	1,821,399	1,894,774	1,933,209	1,925,163		176.1	12	12	11	11 '
Magdalena Contreras	62.19	228,124	240,560	248,934	251,298		269.5	73	70	67	67
Milpa Alta	268.63	99,985	115,528	129,566	140,346		199.7	537	464	414	382
Álvaro Obregón	93.67	704,272	715,229	716,970	704,874		250.6	33	33	33	33
Tláhuac	88.41	313,546	374,799	424,076	457,143		200.1	56	47	42	39
Tlalpan	309.72	598,522	645,251	678,877	694,232		249.7	129	120	114	111
Xochimilco	134.58	381,904	437,399	483,893	515,972		183.9	65	57	51	48
Benito Juárez	26.28	368,169	361,141	354,186	344,280		193.4	14	14	14	15
Cuauhtémoc	32.09	526,915	499,024	474,518	448,475		190.6	12	12	13	14
Miguel Hidalgo	46.02	360,060	348,781	339,194	327,526		219.9	28	29	30	31
Venustiano Carranza	33.07	470,795	415,754	370,964	332,167		167.4	12	13	15	17
Estatal	1,499.00	8,813,141	8,814,867	8,766,429	8,595,188		195.9	33	33	34	34

DURANGO	Superficie	Población ce	nsada (INEGI) (habitan	1,527	(CONAPO)	Lámina anual media - evapot.	Volumen p		ara Iluvia m ante/año)	edia anual
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Canadán	4,133.10	32,654	30,768	28,278	25,536	141.5	17,904	19,002	20,675	22,895
Canelas	683.40	4,509	4,637	4,545	4,275	377.2	57,176	55,598	56,724	60,306
Conelo de Comonfort	1,324.90	4,748	4,433	4,021	3,565	114.0	31,817	34,078	37,569	42,375
Cuencamé	4,797.60	34,268	32,879	30,809	28,398	91.3	12,780	13,320	14,215	15,422
Durango	10,041.60	514,799	530,767	536,123	533,115	180.0	3,512	3,406	3,372	3,391
General Simón Bolivar	2,998.50	11,147	11,199	10,880	10,296	90.7	24,389	24,276	24,987	26,405
Gómez Palacio	990.20	287,735	322,620	351,100	373,143	76.7	264	235	216	203
Guadalupe Victoria	767.10	33,347	30,704	27,832	25,032	132 8	3,055	3,317	3,660	4,069
Guanacevi	5,243.90	11,302	11,190	10,671	9,870	154.7	71,795	72,513	76,040	82,211
Hidalgo	5,020.80	4,812	4,391	3,982	3,613	115.5	120,546	132,104	145,673	160,550
Indé	2,370.90	6,265	5,760	5,222	4,703	102.5	38,787	42,187	46,534	51,669
Lerdo	1,868.80	118,508	135,630	150,126	161,810	82.0	1,294	1,130	1,021	947
Mapimi	7,126.70	23,356	22,278	20,813	19,184	79.2	24,156	25,324	27,107	29,409

and all on the eray and a	189 - 7 (1885 7)	Población c	ensada (INE	GI) y estimad	a (CONAPO)	Lámina anual	Volumen	percápita j	oara Iluvia	nedia anua
DURANGO	Superficie		(habit	antes)	attacase de la company	media - evapot.	- and the	(m³/habi	itante/año)	nielninulit
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Mezquital	7,196.50	28,708	27,056	24,522	21,550	127.5	31,974	33,926	37,432	42,594
Nazas	2,412.80	13,034	12,743	12,171	11,435	74.0	13,700	14,013	14,671	15,616
Nombre de Dios	1,478.30	18,899	19,433	19,525	19,254	135.5	10,602	10,311	10,262	10,407
Ocampo	3,207.70	10,632	10,555	10,192	9,636	132.2	39,883	40,174	41,604	44,005
Oro, El	3,458.80	12,788	12,284	11,505	10,578	142.1	38,427	40,004	42,712	46,455
Otáez	906.50	5,354	5,779	5,979	5,965	340.1	57,591	53,356	51,571	51,692
Pánuco de Coronado	1,059.90	13,380	12,254	11,109	10,045	145.2	11,500	12,557	13,851	15,319
Peñón Blanco	1,827.00	10,990	11,113	10,856	10,319	105.8	17,586	17,391	17,803	18,730
Poanas	1,841.00	25,335	23,223	21,052	19,019	129.8	9,429	10,287	11,348	12,561
Pueblo Nuevo	6,178.30	47,475	50,314	51,497	51,100	313.8	40,844	38,539	37,654	37,946
Rodeo	1,854.90	13,017	11,975	10,856	9,772	103.2	14,701	15,980	17,628	19,583
San Bernardo	2,078.00	4,342	4,236	4,001	3,681	150.7	72,129	73,934	78,276	85,081
San Dimas	5,620.50	22,947	22,871	21,980	20,484	241.0	59,023	59,219	61,620	66,120
San Juan de Guadalupe	2,343.10	6,830	6,376	5,780	5,127	91.0	31,215	33,438	36,886	41,584
San Juan del Río	1,297.00	12,801	11,751	10,653	9,610	117.0	11,851	12,910	14,240	15,786
San Luis del Cordero	543.90	2,163	2,085	1,956	1,798	88.1	22,160	22,989	24,506	26,659
San Pedro del Gallo	2,008.30	1,953	1,779	1,613	1,466	74.0	76,103	83,546	92,144	101,384
Santa Clara	1,004.20	7,253	6,623	6,003	5,444	112.5	15,573	17,055	18,816	20,748
Santiago Papasquiaro	7,238.40	45,747	49,613	51,981	52,947	186.9	29,580	27,275	26,033	25,558
Súchil	822.90	7,700	8,296	8,607	8,654	113.3	12,110	11,240	10,834	10,775
Tamazula	5,188.10	28,509	29,788	30,008	29,298	324.3	59,016	56,482	56,068	57,427
Tepehuanes	6,401.50	13,559	13,884	13,631	12,926	150.5	71,053	69,390	70,678	74,533
Tlahualilo	3,709.80	20,765	19,333	17,855	16,474	76.4	13,656	14,667	15,8 2	17,213
Торіа	1,617.80	9,140	9,306	9,311	9,183	298.9	52,899	51,956	51,928	52,652
Vicente Guerrero	432.30	20,752	21,047	20,705	19,903	129.0	2,686	2,649	2,692	2,801
Nuevo Ideal	2,039.00	27,110	25,468	23,288	20,868	148.2	11,145	11,863	12,974	14,478
Estalal	121,134.00	1,518,633	1,576,441	1,601,038	1,599,076	150.1	11,970	11,531	11,354	11,368

constance Public II. IV	10/19/04	Población c	ensada (INE	31) y estima	ada (CONAPO)	Lámina anual	Volumen	percápita p	oara Iluvia r	nedia anua
GUANAJUATO	Superficie	Journa Sil	(habit	antes)	(seenesided)	media - evapot.	aluliyaquê	(m³/habi	itante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Abasolo	601.73	81,746	80,212	76,199	70,683	174.1	1,282	1,306	1,375	1,482
Acambaro	867.67	114,507	114,484	111,536	106,765	172.5	1,307	1,307	1,342	1,402
Allende	1,537.19	140,308	155,766	166,896	174,042	182.3	1,998	1,799	1,679	1,610
Apaseo el Alto	377.42	58,880	60,763	60,812	59,522	162.8	1,044	1,011	1,010	1,032
Apaseo el Grande	415.26	71,538	80,268	87,004	91,863	149.3	867	773	713	675
tarjea	313.80	5,408	5,999	6,393	6,597	135.8	7,880	7,104	6,666	6,460
Celaya	553.18	397,938	434,155	460,454	478,629	159.3	221	203	191	184
Manuel Doblado	810.43	39,540	37,884	35,217	32,047	207.7	4.257	4,443	4,780	5,253
Comonfort	485.90	69,960	69,707	67,262	63,390	163.7	1,137	1,141	1,182	1,255
Coroneo	122.90	10,746	11,606	12,083	12,237	188.5	2,156	1,996	1,917	1,893
Cortazar	331.80	84,288	86,773	86,860	85,232	155.3	611	594	593	604
Duerámaro	254.85	26,498	26,660	26,016	24,830	171.2	1,647	1,637	1,677	1,757
Poctor Mera	233.91	20,687	21,700	21,936	21,549	132.5	1,498	1,428	1,412	1,438
Dolores H dalgo	1,656.27	133,733	139,345	140,286	137,608	132.5	1,641	1,574	1,564	1,594
Guanajuato	996.74	145,947	143,237	137,697	130,720	154.1	1,053	1,073	1,116	1,175
luanimaro	130.57	20,328	19,622	18,383	16,863	153.0	983	1,018	1,087	1,185
rapuato	845.16	457,626	504,530	539,944	565,568	175.9	325	295	275	263
Paral del Progreso	174.37	32,869	32,416	31,145	29,396	174.9	928	941	979	1,037
Jerécuaro	877.25	57,406	60,702	61,753	60,953	188.5	2,881	2,724	2,678	2,713

			ensada (INE)	GI) y estimad	a (CONAPO)	Lámina anual	Volumen p	ercápita p	ara Iluvia m	iedia anua
GUANAJUATO	Superficie	launa animit	(habit	antes)	(16) TRUE ED 69	media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
León	1,219.67	1,181,926	1,338,543	1,472,765	1,587,467	194.7	201	177	161	150
Moroleón	156.97	48,877	51,634	53,105	53,609	157.2	505	478	465	460
Ccampo	1,019.49	21,692	21,307	20,203	18,656	125.5	5,899	6,006	6,334	6,859
Pėnjamo	1,554.82	150,102	164,436	173,753	178,566	176.7	1,831	1.671	1,582	1,539
Pueblo Nuevo	60.55	10,765	11,067	11,007	10,675	175.9	989	962	968	998
Purisima del Rincón	288.44	46,838	57,449	67,562	76,977	178.3	1.098	895	761	668
Romita	442.10	53,531	51,906	48,812	44,911	168.4	1,391	1.434	1,525	1,658
Salamanca	745.96	235,237	250,355	259,133	262,978	169.8	538	506	489	482
Salvatierra	581.82	97,771	97,349	94,290	89.582	182.1	1.084	1.088	1,124	1,183
San Diego de la Unión	990.17	35,295	35,786	34,917	33.058	114.5	3,212	3,168	3.246	3,429
San Felipe	2,969.79	98,765	100,726	99,014	94,614	125.2	3,765	3,692	3,756	3,931
San Francisco del Rincón	415.73	104,463	119,972	133,287	144,487	178.3	710	618	556	513
San José Iturbide	534.11	56,905	64,346	70.229	74,599	132,5	1,243	1,100	1,007	948
San Luis de la Paz	2,030.14	100,154	101,636	99,817	95.675	136.3	2,763	2,722	2,772	2.892
Santa Catarina	193.67	4,717	5,285	5,670	5,880	142.0	5,830	5,203	4.850	4,677
Santa Cruz de Juventino Rosas	424.64	67,969	72,322	74,343	74,426	159.4	996	936	911	910
Santiago Maravatio	91.03	7,381	7,135	6,708	6.180	173.1	2,134	2.208	2,349	2,549
Silao	531.41	139,824	156,168	168,752	177.875	168.4	640	573	530	503
Tarandacuao	117.39	12,034	13,129	13,854	14,256	188.5	1,839	1.686	1,597	1,552
Tarimoro	330.66	38,637	37,397	35,103	32,237	180.8	1,547	1,599	1,703	1.855
Tierra Blanca	391.65	15,092	16,554	17,445	17,798	132.5	3,437	3,134	2,974	2,915
Uriangato	113.80	55,135	63,014	69,456	74,519	155.8	321	281	255	238
Valle de Santiago	815.52	135,709	143,877	147,725	148,084	164.6	989	933	909	907
Victoria	1,042.55	18,481	20,623	22,069	22,840	178.2	10,053	9,009	8,418	8,134
Villagrán	125.44	47,715	51,545	53,997	55,295	162.1	426	394	377	368
Xichú	912.20	11,734	11,963	11,681	11,029	135.8	10,558	10,356	10,606	11,233
Yuriria	664.14	76,497	79,579	80,065	78,559	162.9	1,415	1,360	1,352	1,378
Estatal	30,350.26	4,843,199	5,230,932	5,492,638	5,653,326	160.4	1,005	931	886	861

GUERRERO		Superficie	Población cer	,		Taildan	Lámina anual media - evapot.	siphera i	percápita pa (m³/habita		leuia allua
Municipio		(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Acapulco de Juárez		1,882.60	744,202	747,940	747,086	744,164	298.4	755	751	752	755
Ahuacuotzingo		388.40	19,861	18,171	16,455	14,945	264.2	5,166	5,647	6,235	6,865
Ajuchitlán del Progreso		1,983.60	42,700	45,308	45,956	45,212	291.1	13,522	12,744	12,564	12,771
Alcozauca de Guerrero		551.60	16,278	15,434	14,055	12,499	217.3	7,364	7,767	8,529	9,591
Alpoyeca		155.40	6,333	7,148	6,993	6,252	197.4	4,844	4,291	4,387	4,907
Apaxtla		857.10	13,560	13,544	13,069	12,370	161.0	10,178	10,190	10,561	11,157
Arcelia		725.10	33,734	31,360	28,378	25,377	314.8	6,767	7,279	8,044	8,995
Atenango del Río		398.80	8,786	9,146	9,191	9,031	345.1	15,662	15,046	14,972	15,238
Atlamajalcingo del Monte		199.40	5,264	5,555	5,490	5,167	569.0	21,553	20,424	20,665	21,957
Atlixtac		694.00	22,105	22,279	21,259	19,494	267.1	8,385	8,320	8,719	9,508
Atoyac de Alvarez		1,688.40	63,821	65,591	64,639	62,159	328.9	8,701	8,467	8,591	8,934
Ayutla de los Libres		735.40	57,397	62,458	64,936	65,426	430.1	5,510	5,064	4,871	4,834
Azoyú		784.60	33,532	35,342	35,823	35,414	319.1	7,466	7,083	6,988	7,069
Benito Juárez		284.90	15,977	16,494	16,293	15,706	328.9	5,865	5,681	5,751	5,966
Buenavista de Cuéllar		284.90	13,020	13,097	12,834	12,424	273.8	5,991	5,956	6,078	6,279
Coahuayutla de José María	Izazaga	3,511.50	15,897	16,189	15,673	14,651	221.5	48,935	48,052	49,634	53,097
Cocula		339.20	16,084	14,872	13,462	12,101	282.0	5,946	6,431	7,105	7,904
Copala		344.40	13,491	13,880	13,874	13,632	323.2	8,251	8,020	8,023	8,166
Copalillo		898.60	13,094	12,414	11,242	9,874	224.2	15,387	16,230	17,921	20,404
Copanatoyac		388.40	16,282	16,705	16,239	15,180	239.2	5,705	5,561	5,720	6,119

GUERRERO		Superficie	Población ce	TP.	(agiv	(CONAPO)	100	volumen p		ara lluvia m	
Municipio			Assessment on the	(habita	0000	03.02	media - evapot.	()	(m³/habita	The second secon	- Cook
	-	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Coyuca de Benitez		1,602.90	71,415	74,757	75,488	74,545	215.7	4,841	4,625	4,580	4,638
Coyuca de Catalán		2,136.40	47,866	52,334	54,721	55,549	270.1	12,053	11,024	10,543	10,386
Cuajinicuilpa		857,10	26,520	27,389	26,962	25,749	313.4	10,128	9,806	9,962	10,431
Cualác		196.80	6,813	7,366	7,637	7,698	244.2	7,055	6,525	6,294	6,244
Cuautepec		414.30	15,707	16,716	17,046	16,898	323.2	8,525	8,011	7,856	7,925
Cuetzala del Progreso		499.80	10,187	10,456	10,441	10,245	282.0	13,834	13,478	13,497	13,755
Cutzamala de Pinzón		611.10	26,963	26,424	24,944	23,028	264.8	6,001	6,123	6,486	7,026
Chilapa (le Alvarez		556.80	105,968	103,778	97,197	88,198	237.7	1,249	1,276	1,362	1,501
Chilpano ngo de los Bravo		2,338.40	200,032	220,927	235,146	244,862	314.5	3,676	3,328	3,127	3,003
Florencic Villareal		372.90	19,661	19,331	18,284	16,893	386.0	7,322	7,447	7,873	8,522
General Canuto A. Nerí		300.40	7,901	7,393	6,691	5,944	312.7	11,891	12,708	14,041	15,805
General Heliodoro Castillo		1,613.30	36,890	38,929	39,310	38,503	327.2	14,309	13,559	13,428	13,709
-luamuxtillán		432.50	14,749	15,039	14,790	14,252	244.2	7,162	7,024	7,142	7,412
luitzuco de los Figueroa		921.90	36,719	35,577	33,391	30,829	314.3	7,891	8,145	8,678	9,399
guala de la Independencia		567.10	128,170	135,413	138,880	140,178	282.0	1,248	1,181	1,151	1,141
gualapa		266.70	10,563	11,440	11,858	11,935	319.1	8,056	7,438	7,176	7,130
xcateopan de Cuauhtémoc		310.70	7,345	7,476	7,314	6,984	272.3	11,521	11,319	11,569	12,116
losé Azueta		1,921.50	99,132	109,309	116,063	120,524	334.2	6,477	5,874	5,532	5,327
luan R. Escudero		652.60	22,702	22,941	22,327	21,252	299.6	8,612	8,522	8,757	9,200
eonardo Bravo		852.00	23.673	24,145	23,568	22,369	327.2	11,776	11,545	11,828	12,462
Valinaltepec		492.00	36,310	41,651	45,365	47,458	569.0	7,710	6,721	6,171	5,899
Vartir de Culiapan		499.80	14,231	14,150	13,473	12,476	200.4	7,040	7,080	7,436	8,030
Metlatónoc		1,367.30	30,855	28,714	25,990	23,214	217.6	9,645	10,364	11,450	12,819
Mochitlán		577.50	10,499	11,365	11,825	11,997	279.1	15,352	14,182	13,630	13,438
Dlinalá		1,028.10	23,388	23,663	22,808	21,262	266.7	11,725	11,589	12,023	12,898
		1.100.60	52,188	56,538	58,702	59,271	294.5	6,211	5,733	5,522	5,469
Ometepec		510.10	8,203	9,453	9,286	8,110	283.7	17,644	15,311	15,587	17,847
Pedro Ascencio Alquisiras					44,787	42,134	370.4	16,058	16,347	17,134	18,213
Petatlán		2,071.70	47,788	46,943		13,960	309.6	1,708	1,534	1,435	1,377
Pilcaya		62.10	11,256	12,531	13,398				1,439		1,344
Pungarabato		212.30	35,985	38,902	40,657	41,652	263.7	1,556		1,377	6,924
Quechultenango		929.70	33,693	36,000	36,813	36,534	272.1	7,508	7,026	6,871	
San Luis Acatlán		704.40	38,244	43,058	46,199	47,926	401.2	7,390	6,564	6,117	5,897
San Marcos		960.70	50,252	48,530	45,066	40,878	326.0	6,232	6,453	6,949	7,661
San Miguel Totolapan		2,649.10	30,053	32,642	33,782	33,800	327.2	28,841	26,553	25,657	25,643
Taxco de Alarcón		347.00	103,701	109,690	112,402	113,145	309.6	1,036	979	956	949
Tecoanapa		776.90	44,746	49,099	51,592	52,670	402.1	6,982	6,363	6,055	5,931
Tecpan de Galeana		2,537.80	62,308	63,040	61,460	58,657	263.6	10,735	10,611	10,883	11,404
Teloloapan		1,116.10	55,653	56,169	54,539	51,754	295.9	5,935	5,881	6,056	6,382
Tepecoacuilco de Trujano		984.00	31,871	33,508	33,957	33,635	203.2	6,275	5,968	5,889	5,946
Tetipac		269.30	13,803	14,950	15,556	15,768	309.6	6,040	5,577	5,359	5,287
Tixtla de Guerrero		290.00	34,501	31,716	28,719	25,959	257.8	2,167	2,357	2,603	2,880
Flacoachist ahuaca		450.60	16,222	16,593	16,097	15,024	294.5	8,181	7,998	8,244	8,833
Tlacoapa		326.30	9,504	9,980	10,030	9,774	569.0	19,534	18,603	18,510	18,99
Tlalchapa		414.30	13,356	13,672	13,652	13,427	264.8	8,213	8,023	8,035	8,169
Tlalixtaquila de Maldonado		331.50	6,875	6,337	5,737	5,173	195.1	9,406	10,205	11,272	12,50
Tlapa de Comonfort		1,054.00	59,116	58,166	55,328	51,650	214.2	3,818	3,881	4,080	4,370
Tlapehuala		266.70	23,531	26,376	28,113	28,989	273.9	3,105	2,770	2,599	2,520
Unión de Isidoro Montes de C	ca. La	1,142.00	28,574	29,723	29,895	29,471	261.3	10,443	10,040	9,982	10,12
Xalpatláhuac	,	393.60	12,026	11,484	10,447	9,191	217.6	7,123	7,460	8,200	9,32
Xochihuehuetlán		191.60	8,153	9,300	10,200	10,903	244.2	5,740	5,032	4,588	4,292
Xochistlahuaca		321.10	23,679	27,145	29,433	30,585	294.5	3,994	3,484	3,213	3,092
		820.90	10,675	12,219	13,263	13,810	239.2	18,392	16,068	14,803	14,21
Zapotitlán Tablas		2,475.60	24,474	27,205	28,700	29,211	205.6	20,792	18,705	17,730	17,42
Zirandaro			17,937	18,544	18,173	17,162	255.6	4,392	4,248	4,334	4,590
Zitlala		308.20	41,460	43,928	44,883	44,852	172.8	5,375	5,073	4,965	4,968
Eduardo Neri		1,289.60			35,368	38,240	439.2	10,079	8,412	7,439	6,880
Acatepec		599.00	26,104	31,278	35,300	30,240	403.2	10,013	0,412	1,400	0,000
			3,181,608	3,294,329	3,310,700	3,267,235	278.2	5,631	5,438	5,411	5,483

			ropiacion c	ensada (INEG	E GRAHIST A	(CUNAPO)	Lámina anual	Volumen	ercápita p	ara fluvia r	nedia ani
HIDALGO		Superficie	Apple - First	(habita	ntes)		media - evapot.	الاستعادات	(m³/habit	antelaño)	
Municipio		(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Acatlán 4588		174.70	18,926	18,329	17,338	16,073	158.4	1,462	1,510	1,596	1,722
leaxochitlán		226.10	37,850	41,905	44,786	46,338	162.2	969	875	819	791
etopan		280.10	46,891	48,424	48,912	48,444	420.0	2,509	2,429	2,405	2,428
gua Blanca de Iturbide		97.60	8,706	9,402	9,809	9,923	149.4	1,674	1,551	1,486	1,469
Ajacuba		192.70	14,767	14,944	14,940	14,778	120.3	1,570	1,551	1,551	1,568
Alfajayucan		467.70	17,289	16,545	15,506	14,280	115.3	3,120	3,261	3,479	3,778
Almoloya		282.70	10,538	11,713	12,611	13,200	150.7	4,042	3,637	3,378	3,227
pan		346.90	40,328	42,580	44,033	44,706	162.4	1,397	1,323	1,279	1,260
Arenal, El		125.90	14,497	14,891	14,935	14,662	110.5	960	934	931	949
Afitalaquia		64.20	22,245	26,607	30,611	34,084	133.0	384	321	279	251
Atlapexco		84.80	18,491	21,261	23,456	24,885	465.2	2,134	1,856	1,682	1,585
atotonilco el Grande		426.60	25,795	24,448	22,709	20,758	155.9	2,579	2,721	2,929	3,204
totonilco de Tula		30.80	25,541	30,488	35,167	39,370	133.0	160	134	116	104
Calnali		190.20	16,761	18,381	19,483	20,020	545.2	6,186	5,641	5,322	5,179
Cardonal		462.60	17,184	15,966	14,525	12,989	121.8	3,280	3,530	3,880	4,339
Cuautepec de Hinojosa		372.60	46,125	50,191	53,046	54,612	162.1	1,309	1,203	1,138	1,106
Chapantongo		298.10	11,537	12,942	13,995	14,659	115.3	2,980	2,656	2,456	2,34
Chapulhuacán		239.00	20,777	21,424	21,479	20,995	546.1	6,282	6,092	6,077	6,217
Chilcuautia		231.30	15,291	14,339	13,158	11,857	105.4	1,594	1,700	1,852	2,056
loxochitlán		200.40	3,091	2,942							
					2,737	2,496	121.0	7,842	8,239	8,857	9,712
miliano Zapata		36.00	12,581	14,207	15,618	16,763	178.3	510	452	411	383
pazoyucan		174.70	11,277	11,745	12,010	12,088	120.2	1,861	1,787	1,748	1,736
rancisco I. Madero		95.10	28,996	29,054	28,498	27,438	111.3	365	364	371	386
luasca de Ocampo		305.80	15,582	15,586	15,186	14,457	174.9	3,432	3,431	3,522	3,699
luautla		287.80	23,857	25,730	26,759	26,880	465.2	5,612	5,204	5,004	4,98
luazalingo		113.10	11,394	12,614	13,419	13,738	470.7	4,672	4,220	3,967	3,87
uehuetla		262.10	25,756	29,687	32,819	34,802	149.4	1,520	1,319	1,193	1,12
luejutla de Reyes		377.80	110,838	123,116	131,982	136,559	465.2	1,586	1,428	1,332	1,28
luichapan		668.10	38,754	39,454	39,276	38,338	133.6	2,303	2,262	2,273	2,328
rmiquilpan		565.30	76,981	73,644	69,204	64,082	100.4	737	771	820	886
acala de Ledezma		346.90	13,110	12,799	12,176	11,322	184.6	4,885	5,004	5,260	5,65
altocán		48.80	10,335	11,340	12,025	12,355	465.2	2,197	2,002	1,888	1,838
uárez Hidalgo		161.90	3,226	2,725	2,525	2,448	546.0	27,400	32,437	35,007	36,10
olotla		215.90	10,092	10,959	11,528	11,776	546.0	11,680	10,756	10,225	10,01
Metepec		192.70	10,395	10,668	10,693	10,493	156.9	2,909	2,835	2,828	2,882
San Agustín Metzcuititlán		814.70	8,982	9,440	9,635	9,578	119.4	10,827	10,302	10,093	10,15
/letz litlán		313.50	20,981	21,297	20,999	20,175	117.2	1,751	1,725	1,750	1,82
Mineral del Chico		118.20	7,159	7,524	7,674	7,615	331.6	5,476	5,210	5,108	5,148
Mineral del Monte		77.10	13,128	13,486	13,559	13,378	214.8	1,262	1,228	1,222	1,238
Aisión, La		179.90	11,223	10,557	9,673	8,667	435.5	6,981	7,421	-8,100	9,040
Aixquiahuala de Juárez		138.10	35,716	36,288	36,084	35,214	114.0	441	434	436	447
Aolango de Escamilla		246.70	11,005	11,732	12,155	12,271	546.0	12,239	11,481	11,081	10,97
Nicolás Flores		393.20	6,981	7,382	7,573	7,557	261.6	14,735	13,934	13,583	13,61
Nopala de Villagrár		334.10	15,088	16,180	16,857	17,111	115.3	2,554	2,381	2,286	2,25
Omitlán de Juárez		110.50	8,165	8,148	7,929	7,547	214.8	2,907	2,914	2,994	3,14
San Felipe Orizatlán		308.40	38,598	42,802	45,748	47,250	465.2	3,717	3,352	3,136	3,03
acula		133.60	5,663	5,303	4,827	4,281	184.6	4,356	4,651	5,110	5,76
achuca de Soto		195.30	251,242	285,613	314,923	338,300	350.3	272	240	217	202
Pisaflores		159.30	16,902	18,087	18,703	18,740	546.1	5,147	4,810	4,651	4,64
Progreso de Obregon		106.00	19,377	19,461	19,194	18,641	105.4	576	574	582	599
Mineral de la Reforma		92.50	43,859	62,614	81,994	101,133	126.1	266	186	142	115
San Agustín Tlaxiaca		354.60	24,849	28,086	30,824	32,934	109.0	1,555	1,376	1,254	1,17
San Bartolo Tutotepec		305.80	19,092	20,896 -	21,996	22,305	149.4	2,392	2,186	2,077	2,048
San Salvador		200.40	29,482	29,111	28,156	26,753	101.8	692	701	725	763
Santiago de Anaya		316.10	13,822	13,703	13,292	12,649	106.3	2,432	2,453	2,529	2,657
Santiago Tulantepec de Lug	o Guerrero		27,148	36,102	44,836	52,870	144.8	480	361	290	246
Singuilucan		334.10	13,493	13,090	12,406	11,526	146.9	3,636	3,748	3,955	4,25

HIDALGO	Superf			EGI) y		la (CONAPO)	Lámina anual media - evapot.	Volumen		ara Iluvia m ante/año)	iedia anua
Municipio	(km²	60 milymer risonerus ratio valuatelly dynami	2010	205.	2020	2030	Hp (mm)	2000	2010	2020	2030
lasquillo la	167.0	0 16,917	16,428	-	15,571	14,451	120.1	1,186	1,221	1,288	1,388
Tecozautta	575.6	0 31,448	29,989		27,959	25,580	117.3	2.147	2,251	2,415	2,639
enango de Doria	210.7	0 17,455	16,749		15,708	14,443	149.4	1.803	1.879	2.004	2,179
Tepeapulco	239.0	0 50,443	51,084		51,204	50.864		851	841	839	844
epehuacán de Guerrero	426.6		29,558		31,728	32,887	612.5	9,852	8.841	8.236	7.946
epeji del Río de Ocampo	393.2		81,672		92,701	102,254	147.2	831	709	624	566
Tepetitlán	179.9	0 8,693	9,495		10,071	10,408	139.9	2.896	2,651	2,500	2,419
Tetepango	56.50	9,143	10,065		10,802	11,332	133.0	822	747	696	663
/illa de Tezontepec	133.6	0 9,192	10,076		10,752	11,174	136.2	1,979	1,805	1,692	1,628
ezontepec de Aldama	120.8	0 39,639	43,907		47,280	49,639	132.7	404	365	339	323
ianguistengo	282.7	0 13,916	15,480		16,585	17,159	471.6	9.580	8,612	8.038	7,769
izayuca	92.50	47,870	61,669		74,453	85,540	136.2	263	204	169	147
Tahuelilpan	31.25	14,263	15,781		16,999	17,870	133.0	291	263	245	233
Tahuiltepa	467.7	0 10,670	11,729		12,482	12,892	121.8	5,340	4.858	4,565	4,420
lanalapa	156.7	0 10,065	11,049		11,828	12,384	136.9	2,131	1.941	1,813	1,732
lanchinol	380.3	0 33,026	36,414		38,763	39,950	545.2	6,278	5.694	5,348	5,190
laxcoapan	79.25	23,186	25,982		28,387	30,319	133.0	455	406	371	348
olcayuca	120.8	0 11,670	14,768		17,787	20,555	136,2	1,409	1,114	925	800
ula de Allende	305.8	0 88,597	92,538		94,788	95,456	137.8	475	455	444	441
ulancingo de Bravo	290.4	0 124,749	131,758		136,282	138,333	158.2	368	349	337	332
Cochiatipan	149.0	0 17,404	19,837		21,687	22,784	465.2	3,983	3,494	3,196	3,042
Kochicoatlan	159.3	0 7,691	8,357		8,773	8,913	471.6	9,768	8,989	8,563	8,428
'ahualica	164.5	0 21,254	24,259		26,569	27,921	465.2	3,601	3,155	2,880	2,741
acualtipári de Angeles	241.6	0 25,510	28,291		30,440	31,871	406.8	3,853	3,474	3,229	3,084
apotlán de Juárez	131.1	0 15,290	18,078		20,652	22,888	136.2	1,167	987	864	780
Yempoala	305.8	0 25,133	28,542		31,415	33,622	157.1	1,912	1,684	1,530	1,429
Zimapán	860.9	0 37,969	35,712		33,176	30,539	154.8	3,509	3,731	4,016	4,363
Estatal	20,691	50 2,285,148	2,477,219	2	2,620,833	2,711,191	202.3	1,832	1,690	1,597	1,544

Estatal		20,691.50	2,285,148	2,477,219	2,620,833	2,711,191	202.3	1,832	1,690	1,597	1,544
	F () E		Población ce	ensada (INE	GI) y estimad	a (CONAPO)	Lámina anual	Volumen	percápita p	ara Iluvia n	nedia anual
JALISCO		Superficie	245.5	(habit	antes)	958	media - evapot.	8.604	(m³/habit	ante/año)	1000000
Municipio		(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Acatic		362.39	19,803	20,742	21,024	20,700	238.5	4,364	4,167	4,111	4,175
Acatlán de Juárez		166.68	20,945	24,463	27,271	29,277	211.4	1,682	1,440	1,292	1,204
Ahualulco de Mercado		134.22	20,657	21,463	21,642	21,266	243.4	1,581	1,522	1,509	1,536
Amacueca		131.79	5,660	6,277	6,687	6,877	167.6	3,903	3,520	3,304	3,213
Amatitán		207.44	12,875	13,921	14,571	14,821	245.6	3,958	3,660	3,497	3,438
Ameca		685.73	58,151	59,503	59,154	57,376	218.8	2,580	2,522	2,536	2,615
San Juanito de Escobedo		104.94	8,845	9,207	9,279	9,093	249.4	2,959	2,843	2,821	2,879
Arandas		1,178.66	78,151	78,289	75,917	71,582	241.4	3,641	3,635	3,748	3,975
Arenal		181.81	14,920	15,740	16,101	16,037	249.7	3,042	2,884	2,819	2,830
Atemajac de Brizuela		191.57	6,130	6,536	6,682	6,584	192.4	6,012	5,639	5,515	5,597
Atengo		412.42	5,534	5,527	5,330	4,988	232.4	17,319	17,341	17,982	19,214
Atenguillo		662.55	4,429	4,527	4,487	4,327	284.1	42,503	41,583	41,953	43,505
Atotonilco el Alto		638.15	53,076	53,377	51,974	49,203	232.3	2,793	2,777	2,852	3,013
Atoyac		235.50	8,961	10,026	10,758	11,125	167.6	4,406	3,938	3,670	3,549
Autlán de Navarro		927.32	52,279	55,706	57,568	57,931	227.7	4,038	3,790	3,667	3,644
Ayotlán		518.57	36,424	38,953	40,149	40,060	224.7	3,199	2,991	2,902	2,909
Ayutla		884.62	13,480	13,778	13,610	13,052	220.8	14,489	14,175	14,350	14,964
Barca, La		379.48	60,266	55,894	50,830	45,559	232.3	1,463	1,577	1,734	1,935
Bolaños		1,134.75	5,540	6,093	6,385	6,413	169.5	34,720	31,569	30,125	29,993
Cabo Corrientes		2,001.06	9,444	10,807	11,835	12,465	314.8	66,706	58,293	53,230	50,539
Casimiro Castillo		455.13	22,230	24,434	25,906	26,614	305.7	6,260	5,695	5,372	5,229

JALISCO	Superficie	Oblacion c	(habit	3I) y estimada antes)	a (CONAL O		ámina anual edia - evapot.	al siments			edia anua
Municipio	(km²)	2000	2010	2020	2030		Hp (mm)	2000	2010	2020	2030
Cihuatlán	713.70	33,078	37,907	41,757	44,456	J.	252.0	5,438	4,745	4,308	4,046
Zapotlán el Grande	295.29	89,210	96,524	101,141	103,079		367.6	1,217	1,125	1,073	1,053
Cocula	431.94	27,138	27,859	27,645	26,629		226.0	3,597	3,504	3,531	3,666
Colotlán	505.15	18,011	18,525	18,414	17,773		172.3	4,833	4,699	4,727	4,898
	455.13	5,908	6,660	7,197	7,498		205.3			12,982	12,461
Concepción de Buenos Aires								15,814	14,028		
Cuautillán de Gracia Barrangán	1,178.67	16,553	17,208	17,109	16,340		447.0	31,826	30,615	30,792	32,241
Cuauta	255.02	2,531	2,434	2,273	2,069		298.5	30,075	31,273	33,489	36,791
Cuquío	880.96	17,963	17,520	16,462	14,973		221.5	10,865	11,139	11,855	13,034
Chapala	385.58	44,847	51,584	57,021	60,722		241.1	2,073	1,802	1,630	1,531
Chrmaltitán	970.03	4,035	4,229	4,248	4,109		169.5	40,750	38,881	38,707	40,016
Chiquilistlán	391.68	5,701	6,226	6,540	6,637		191.2	13,133	12,026	11,449	11,281
Degollado	305.05	21,522	20,973	19,818	18,241		224.7	3,185	3,268	3,459	3,758
Ejutla.	472.21	2,207	2,177	2,080	1,931		191.2	40,901	41,464	43,398	46,747
Encarnación de Díaz	1,220.16	47,609	49,002	48,751	47,079		151.7	3,889	3,778	3,798	3,933
Etzatlán	306.27	17,835	19,082	19,782	19,955		230.8	3,963	3,704	3,573	3,542
Grullo, El	143.99	23,157	25,057	26,166	26,496		227.7	1,416	1,308	1,253	1,237
Guachinango	483.19	4,868	4,467	4,060	3,680		256.2	25,428	27,710	30,488	33,636
	187.91	1,680,531	1,579,202	1,465,605	1,349,073		259.4	29	31	33	36
Guadalajara					9,463		235.8	18,468	17,429	17,110	17,391
fostotipaquillo	697.94	8,911	9,442	9,618	4,927				14,397	15,738	17,629
-luejúcar	532.00	6,403	6,033	5,519			163.3	13,565			
luejuquilla el Alto	672.31	9,261	9,239	8,900	8,319		154.4	11,206	11,233	11,660	12,475
łuerta, La	1,749.71	23,524	25,852	27,411	28,167		244.9	18,215	16,575	15,632	15,212
xtlahuacán de los Membrillos	184.25	22,213	23,720	24,647	25,007		220.6	1,830	1,713	1,649	1,625
xtlahuacán del Río	564.94	19,917	18,788	17,234	15,452		246.4	6,989	7,409	8,077	9,009
lalostotitlán	427.06	28,779	28,649	27,696	26,110		178.6	2,651	2,663	2,754	2,922
Jamay	174.49	21,811	24,296	26,094	27,151		232.3	1,858	1,668	1,553	1,493
Jesús María	489.29	20,326	20,791	20,776	20,341		220.4	5,305	5,186	5,190	5,301
Jilotlan de los Dolores	1,511.78	10,645	12,572	13,968	14,746		269.8	38,322	32,448	29,205	27,664
Jocotepec	384.36	36,811	41,050	44,204	46,155		206.8	2,159	1,936	1,798	1,722
Juanacatlán	89.08	12,134	13,059	13,720	14,114		227.6	1,671	1,552	1,478	1,436
Juchitlán	403.88	5,998	6,552	6,893	7,014		191.2	12,872	11,784	11 201	11,007
	2,761.21	131,289	132,103	128,998	122,767		149.3	3,140	3,121	3,196	3,358
Lagos de Moreno	130.57	6,164	5,902	5,518	5,063		191.2	4,049	4,229	4,523	4,930
Lirnón, El							245.5	5,854	5,569	5,467	5,514
Magdalena	445.36	18,674	19,629	19,995	19,824				37,246	37,841	39,993
Santa Maria del Oro	403.88	2,843	2,926	2,880	2,725		269.8	38,334			
Manzanilla de la Paz, La	129.35	3,904	3,903	3,776	3,553		205.3	6,802	6,803	7,032	7,473
Mascota	1,575.22	14,244	14,774	14,866	14,571		287.2	31,758	30,619	30,429	31,045
Mazamitla	178.15	11,240	10,679	9,856	8,877		251.7	3,989	4,199	4,549	5,051
Mexticacán	204.99	7,107	6,637	6,033	5,372		170.4	4,916	5,264	5,791	6,503
Mezquitic	3,151.66	15,025	15,980	16,154	15,591		184.5	38,699	36,386	35,994	37,294
Mixtlán	418.52	4,043	4,164	4,131	3,963		232.8	24,101	23,401	23,588	24,587
Ocotlán	247.70	86,654	94,235	99,274	101,756		213.5	610	561	533	520
Ojuelos de Jalisco	1,156.71	27,959	28,876	28,515	27,152		141.1	5,838	5,652	5,724	6,011
Pihuamo	1,007.85	14,392	13,169	11,974	10,880		250.2	17,522	19,149	21,060	23,178
	672.31	42,152	48,462	53,543	57,119		208.0	3,317	2,885	2,612	2,448
Poncitlán	1,300.69	191,939	243,928	291,532	332,178		314.8	2,133	1,679	1,405	1,233
Puerto Vallarta					14,049		169.4	25,804	24,035	23,286	23,359
Villa Purificación	1,937.61	12,718	13,654	14,093						16,501	18,620
Quitupan	616.19	11,767	11,040	10,038	8,896		268.8	14,077	15,004		56
Salto, El	41.50	87,048	117,704	146,993	173,133		232.9	111	82	66	
San Cristobal de la Earranca	636.93	4,458	4,483	4,378	4,165		230.4	32,917	32,733	33,518	35,232
San Diego de Alejandria	359.95	6,539	6,584	6,442	6,155		201.5	11,090	11,015	11,257	11,782
San Juan de los Lagos	832.15	56,772	59,107	59,613	58,465		177.5	2,601	2,499	2,477	2,526
San Julián	268.44	15,124	15,452	15,307	14,765		173.3	3,076	3,010	3,039	3,150
San Marcos	292.85	3,576	3,365	3,079	2,754		229.7	18,810	19,989	21,846	24,424
San Martin de Bolaños	991.99	4,118	4,892	5,518	5,930		187.0	45,054	37,925	33,623	31,287
San Martin Hidalgo	324.57	27,865	26,217	24,012	21,509		226.0	2,633	2,798	3,055	3,411
San Miguel el Alto	507.59	28,312	28,032	26,951	25,268		195.3	3,502	3,537	3,679	3,924

		Población ce	nsada (INEG	i) y estimada	(CONAPO)	Lámina anual	Volumen p	ercápita pa	ara Iluvia m	edia anu
JALISCO	Superficie	POSSOTO I EX	(habita	ntes)		media - evapot.		(m³/habit	ante/año)	
Aunicipio	(km ²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
ómez Farias	327.74	13,036	13,494	13,535	13,208	367.6	9,242	8,928	8,901	9,122
an Sebastián del Oeste	1,195.76	6,718	6,226	5,661	5,078	285.6	50,826	54,843	60,316	67,241
anta Maria de los Angeles	262.34	4,304	4,336	4,227	4,000	166.2	10,128	10,053	10,312	10,897
ayula	275.76	31,854	33,987	35,168	35,435	203.4	1,761	1,650	1,595	1,583
ala	389.24	55,100	58,085	59,414	59,208	255.9	1,807	1,715	1,676	1,682
alpa de Allende	2,258.51	14,187	14,951	15,214	15,011	329.6	52,469	49,788	48,927	49,589
amazula de Gordiano	1,303.13	42,155	43,136	43,113	42,209	281.5	8,703	8,505	8,509	8,692
apalpa	406.32	15,927	17,123	17,702	17,678	220.7	5,631	5,238	5,066	5,073
ecalitlán	1,301.91	18,520	18,978	18,805	18,094	246.2	17,306	16,889	17,044	17,714
ecolotlán	795.55	16,543	17,803	18,506	18,660	220.1	10.582	9.833	9.460	9,382
echaluta de Montenegro	87.86	3,281	3,250	3,116	2,907	250.0	6,696	6,760	7,050	7,557
enamaxtlán	337.99	7,383	7,890	8,132	8,124	191.2	8,751	8,189	7,945	7,953
eocaltiche	895.60	38,914	39,054	37,950	35,858	162.9	3,750	3,736	3,845	4,069
eocuitatian de Corona	409.98	12,092	11,862	11,269	10,411	226.4	7,675	7,824	8,236	8,914
epatitlán de Morelos	1,447.11	122,528	131,061	135,664	136,478	236.6	2.794	2,612	2,524	2,509
equila	1,364.14	36,532	39,325	40,952	41,440	237.8	8,881	8,251	7,923	7,829
euchitlán	285 53	8,541	8,125	7,520	6,801	230.0	7,689	8,083	8,733	9,657
izapán el Alto	273.32	20,237	19,925	19,039	17,733	199.7	2,697	2,740	2,867	3,078
lajomulco de Zúñiga	636.93	128,469	164,544	197,948	226,713	222.7	1,104	862	716	626
laquepaque	270.88	490,900	589,411	673,478	739,514	249.5	138	115	100	91
olimán	460.00	9,479	8.926	8.157	7,270	243.6	11,823	12.555	13,739	15,41
omatlán	2,657.50	35,323	37,286	38,080	37,799	214.4	16,133	15,283	14,965	15,076
onalá	119.58	352,180	483,118	603,717	707,260	232.9	79	58	46	39
onaya	463.67	6,050	5,618	5,108	4,574	204.6	15,681	16,887	18,573	20,74
onila	2.293.89	7,587	8,179	8,527	8,631	261.0	78,907	73,195	70,208	69,362
	542.98	5,191	4,797	4,362	3,924	178.9	18,710	20.247	22,266	24,75
otatiche	292.85	20,538	20,735	20,303	19,363	226.6	3,231	3,200	3,268	3,427
ototlán	257.46	4,127	4,113	3,954	3,685	276.8	17,265	17.324	18,020	19,33
uxcacuesco	298.94		6,407	6,340	6,100	227.3	10,845	10,606	10,718	11,14
uxcueca		6,266			36,550	239.3	3,806	3,609	3,529	3,547
Tuxpan	541.75	34,064	35,926	36,733		173.3	6,899	6,718	6,775	7,042
Jnión de San Antonio	639.36	16,063	16,496 13,946	16,359 13,209	15,739 12,259	220.8	4,968	5,119	5,404	5,823
Jnión de Tula	323.34	14,370		6,292	6,135	180.9	15,276	14,839	14,839	15,21
/alle de Guadalupe	516.12	6,112	6,292 5,590	5,170	4,677	230.7	3,110	3,273	3,539	3,912
/alle de Juárez	79.32	5,883		,	13,551	206.0	6,565	6,433	6,527	6,826
San Gabriel	449.01	14,090	14,379	14,171	12,855	211.4	2,330	2,463	2,668	2,950
/Ila Corona	179.37	16,276	15,398	14,212	4,582	169.5	30,540	32,791	36,069	40,39
/illa Guerrero	1,092.03	6,061	5,645	5,132			4,842	4,192	3,779	3,528
/Ila Hidalgo	496.60	15,876	18,339	20,343	21,790	154.8				
Cañadas de Obregón	453.90	4,524	4,767	4,850	4,783	162.5	16,300	15,469	15,204	15,41
fahualica de González Gallo	478.30	24,356	24,735	24,277	23,126	195.3	3,835	3,776	3,847	3,273
Zacoalco de Torres	488.06	26,470	26,581	25,876	24,521	164.5	3,032	3,020	3,102	
Zapopan	893.15	1,035,935	1,242,990	1,421,185	1,563,688	259.7	224	187	163	148
Zapotiltic	497.82	29,775	31,555	32,428	32,435	367.6	6,146	5,799	5,643	5,642
Zapotitlán de Vadillo	480.74	6,709	6,968	6,995	6,820	243.6	17,457	16,808	16,743	17,17
Zapotlán del Rey	320.90	15,931	17,285	18,096	18,352	218.9	4,409	4,064	3,882	3,82
Zapotlanejo	643.02	55,068	61,267	65,818	68,554	193.3	2,257	2,029	1,889	1,81
Estatal	80,137.00	6,504,688	7,067,743	7,479,485	7,733,119	218.0	2,686	2,472	2,336	2,25

ESTADO DE MÉXICO	Superficie	Población co	ensada (INE) (habit	GI) y estimada antes)	a (CONAPO)	Lámina anual media - evapot.	volumen p	percápita pa m³/habit		nedia ant
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Acambay	417.25	59,974	65,195	67,950	67,980	231.2	1,609	1,480	1,420	1,419
Acolman	52.47	63,274	76,409	88,231	97,816	164.9	137	113	98	88
Aculco	482.21	40,000	45,780	50,111	52,550	155.1				
							1,870	1,634	1,493	1,424
Almoloya de Alquisiras	152.41	15,970	16,640	16,614	15,912	237.8	2,747	2,636	2,640	2,757
Imoloya de Juárez	484.71	114,183	135,698	153,957	166,592	214.8	912	767	676	625
Almoloya del Rio	12.49	9,138	10,580	11,813	12,740	231.0	316	273	244	227
manaico	81.20	21,705	24,106	25,609	26,045	284.8	1,066	959	903	888
matepec	540.93	30,870	31,740	31,317	29,683	305.7	5,358	5,211	5,281	5,572
Amecameca	168.65	46,510	51,401	55,067	57,200	217.6	789	714	666	641
Apaxco	86.20	24,427	27,491	29,916	31,520	181.4	640	569	523	496
Atenco	139.67	35,921	50,928	66,451	81,063	145.3	565	398	305	250
Atizapán	28.73	8,269	7,094	6,531	6,270	231.0	803	936	1,016	1,059
Atizapán de Zaragoza	74.95	483,422	581,678	663,021	722,559	214.2	33	28	24	22
Atlacomulco	272.34	79,020	90,364	99,178	104,677	202.5	698	610	556	527
Atlautla	134.92	26,708	30,128	32,679	34,135	197.9	1,000	886	817	782
Axapusco	284.83	21,151	24,437	27,110	28,933	139.5	1,879	1,626	1,466	1,374
Ayapango	57.47	6,157	7,686	9,104	10,280	195.1	1,821	1,459	1,232	1,091
Calimaya	228.61	36,284	42,237	47,430	51,278	248.1	1,563	1,343	1,196	1,106
Capulhuac	37.48	29,663	33,742	37,143	39,599	243.6	308	271	246	231
Coacalco de Berriozábal	44.97	262,460	345,028	415,230	469,496	168.0	29	22	18	16
Coatepec Harinas	177.40	35,760	33,862	30,972	27,413	287.8	1,428	1,508	1,648	1,862
Cocotitlán	17.49	10,538	12,668	14,722	16,532	169.7	282	234	202	180
Coyntepec	44.97	36,619	46,164	55,441	63,557	188.4	231	184	153	133
Cuautitlán	37.39	78,234	91,417	101,884	109,228	167.2	80	68	61	57
	233.88		269,189	304,307	328,526	169.7	176	147	130	121
Chalco		225,192								
Chapa de Mota	299.82	23,506	26,590	28,818	29,866	187.5	2,391	2,114	1,951	1,882
Chapultepec	18.75	5,922	7,187	8,353	9,300	231.0	732	603	519	466
Chiautla	24.99	20,303	25,397	30,307	34,589	150.8	186	148	124	109
Chicoloapan	63.46	80,137	95,869	108,713	117,839	168.2	133	111	98	91
Chiconcuac	17.49	18,484	20,743	22,575	23,791	150.8	143	127	117	111
Chimalhuacán	33.68	511,220	695,139	858,163	987,808	153.1	10	7	6	5
Donato Guerra	301.07	28,844	32,615	35,187	36,250	262.8	2,743	2,426	2,249	2,183
Ecatépec	126.17	1,671,632	1,902,031	2,066,710	2,159,235	160.7	12	11	10	9
Ecatzingo	54.97	8,159	9,379	10,368	11,032	197.9	1,333	1,160	1,049	986
	148.66	39,954	52,135	63,527	73,150	194.6	724	555	455	395
Huehuetoca					47,806	172.9	1,357	1,170	1,049	976
Hueypoxlla	269.84	34,383	39,851	44,460		284.1	156	124	104	93
Huixquilucan	109.93	200,283	252,429	299,544	337,263					
sidro Fabela	58.72	8,458	10,587	12,623	14,389	244.5	1,698	1,356	1,138	998
xtapaluca	201.79	314,270	516,306	709,291	878,878	208.2	134	81	59	48
xtapan de la Sal	149.91	31,297	33,105	33,811	33,383	278.9	1,336	1,263	1,237	1,252
xtapan del Oro	48.72	6,601	7,108	7,350	7,306	246.4	1,819	1,689	1,633	1,643
xtlahuaca	326.06	118,449	132,589	142,468	147,017	194.5	536	478	445	431
Xalatlaco	81.20	19,768	22,882	25,505	27,417	243.6	1,001	865	776	722
Jallenco	38.73	33,044	47,553	61,902	75,047	162.3	190	132	102	84
	622.13	70,416	80,703	88,712	93,701	165.2	1,460	1,274	1,159	1,09
Jilotepec Jilotainae	143.66	15,657	20,369	24,885	28,733	237.8	2,182	1,677	1,373	1,189
lilotzingo					79,233	231.6	1,250	1,080	976	920
Jiquipilco	314.81	58,330	67,482	74,736			1,230	1,206	1,228	1,29
Jocotitlán	326.06	53,201	53,920	52,944	50,411	199.5				
Joquicingo	266.09	11,049	12,864	14,361	15,395	252.1	6,072	5,215	4,672	4,35
Juchitepec	66.21	19,539	22,390	24,749	26,363	207.6	704	614	555	521
Lerma	203.63	103,088	122,285	139,239	152,443	247.1	488	412	361	330
Malinalco	189.89	22,087	20,826	20,840	22,090	299.1	2,572	2,727	2,725	2,57
Melchor Ocampo	32.48	39,046	49,091	58,896	67,667	163.4	136	108	90	78
Metepec	61.21	200,976	245,809	286,900	320,439	234.5	71	58	50	45
	10.00	9,508	11,070	12,447	13,529	234.5	247	212	188	173
Mexicaltzingo	301.07	27,703	30,231	31,578	31,611	213.2	2,317	2,123	2,033	2,03
Morelos	301.07	21,103	00,201	911,706	898,474	229.9	41	39	39	40

FOTADO DE MÉVICO			ensada (INEC		IN (OUTAPO)	Lámina anual	volumen (nedia anua
ESTADO DE MÉXICO	Superficie		(habita		Eliteration)	media - evapot.	31,41	(m³/habit	ante/año)	10×7% - 0
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
lezahualcóyotl	62.00	1,251,323	1,212,239	1,156,907	1,088,928	145.3	7	7	8	8
lextlapan	49.97	20,385	29,187	38,391	47,132	163.4	400	280	213	173
licolás Romero	206.13	278,663	339,419	394,131	438,545	275.0	203	167	144	129
lopaltepec	32.50	7,768	9,441	10,947	12,157	163.1	683	5 2	484	436
Decoyoacae	71.21	51,217	60,558	69,017	75,691	292.9	407	344	302	276
Ocuilan	99.94	26,685	28,642	29,567	29,384	304.7	1,141	1,063	1,030	1,037
Oro, El	219.87	31,275	34,946	37,424	38,463	252.8	1,777	1,591	1,485	1,445
Otumba	204.88	30,030	35,442	40,015	43,357	148.6	1,014	859	761	702
Otzoloapan	74.96	5,340	5,769	5,978	5,945	217.5	3,053	2,826	2,727	2,743
Otzolotepec	77.45	59,454	71,246	81,818	89,941	261.2	340	284	247	225
Dzumba	52.47	24,267	27,255.	29,573	31,030	197.9	428	381	351	335
Papalotla	8.74	3,575	4,161	4,679	5,069	158.2	387	332	296	273
'az, La	36.65	221,045	290,677	351,074	398,120	153.1	25	19	16	14
Polotitlán	189.89	11,367	12,331	12,923	13,103	192.6	3,217	2,966	2,830	2,791
Rayón	26.23	9,308	10,925	12,362	13,461	231.0	651	555	490	450
San Antonio la Isla	22.49	10,652	12,665	14,523	16,030	231.0	488	410	358	324
San Felipe del Progreso	797.03	182,479	205,858	221,605	227,788	221.1	966	856	795	774
an Martin de las Pirámides	58.72	20,361	24,786	28,820	32,141	153.7	443 ~	364	313	281
San Mateo Atenco	31.23	61,597	73,957	85,193	94,135	211.6	107	89	78	70
an Simón de Guerrero	66.21	5,594	6,306	6,812	7,067	344.1	4,073	3,613	3,345	3,224
Santo Tornás	244.85	8,833	9,696	10,236		242.5				5,708
					10,404		6,723	6,125	5,802	
Soyaniquilpan de Juárez	116.18	10,320	11,984	13,327	14,226	165.2	1,860	1,602	1,441	1,349
Sultepec	507.20	28,369	31,320	33,016	33,252	349.0	6,240	5,652	5,362	5,324
ecámac	137.42	178,877	222,252	260,546	290,950	163.4	125	101	86	77
ejupilco	926.95	97,540	104,286	107,111	105,794	258.8	2,460	2,301	2,240	2,268
emamatla	48.72	9,222	12,923	16,469	19,509	169.7	897	640	502	424
emascalapa	144.91	30,404	39,279	47,870	55,417	153.7	732	567	465	402
emascalcingo	209.88	63,642	68,881	71,682	71,802	199.2	657	607	583	582
emascaltepec	649.61	31,990	33,402	33,517	32,353	292.9	5,948	5,697	5,677	5,882
emoaya	111.18	71,440	83,008	92,156	97,724	227.2	354	304	274	258
enancingo	127.42	79,702	88,050	93,832	96,554	299.0	478	433	406	395
Tenango del Aire	61.21	8,785	11,045	13,264	15,252	169.7	1,182	940	783	681
enango del Valle	181.14	67,055	76,581	84,254	89,393	294.8	796	697	634	597
eoloyucan	34.98	69,230	93,492	117,797	140,239	167.2	84	63	50	42
Teotihuacan	68.71	46,139	55,645	64,171	70,968	153.7	229	190	165	149
epetlaoxioc	234.86	23,505	28,855	33,867	38,120	154.3	1,542	1,256	1,070	951
epetlixpa	103.69	17,379	20,047	22,261	23,827	197.9	1,180	1,023	922	861
epotzotlán	208.88	64,316	77,066	88,401	97,468	182.0	591	493	430	390
equixquiac	127.42	28,996	34,969	40,481	45,000	172.9	760	630	544	489
excaltitlán	218.62	16,787	17,684	17,881	17,380	335.2	4,365	4,143	4,098	4,216
excalyacac	13.75	4,129	4,996	5,802	6,475	231.0	769	636	548	491
	503.53	210,678	248,693	281,071	305,525	158.1	378	320	283	261
excoco	17.49	19,589	25,902	31,940	37,216	150.8	135	102	83	71
ezoyuca		60,185			85,103	231.0	441	379	337	312
lanquistenco	114.93		70,141	78,684						
imilpan	187.39	14,949	17,117	18,773	19,761	244.9	3,069	2,681	2,444	2,322
lalmanalco	162.40	43,793	50,525	56,358	60,850	236.1	875	759	680	630
lalnepantla de Baz	82.45	739,067	767,318	777,156	769,389	185.7	21		20	20
latlaya	693.34	36,942	37,254		33,555	307.1	5,763	5,715	5,904	6,345
oluca	377.28	684,840	752,767	803,173		248.1	137	124	117	112
onatico	48. 2	11,822	13,099	13,998	14,444	262.9	1,083	978	915	887
ultepec	22.49	97,216	134,777	170,693	202,144	168.0	39	28	22	19
ultitlán	55.99	449,777	605,943	744,965	857,611	168.0	21	16	13	11
/alle de Bravo	453.48	58,961	64,450	68,016	69,355	240.4	1,849	1,692	1,603	1,572
'illa de Al'ende	202.38	41,348	46,500	49,998	51,429	260.8	1,277	1,135	1,056	1,026
/illa del Carbón	93.69	39,200	45,802	51,168	54,757	231.9	554	474	425	397
Villa Guerrero	239.86	52,158	55,533	56,929	56,230	283.1	1,302	1,223	1,193	1,208
filla Victoria	504.70	76,303	87,237	95,100	98,894	202.1	1,337	1,169	1,073	1,031

ESTADO DE MÉXICO	Superficie		HELL KINGE	GI) y estimad antes)	a (CONAPO)	Lámina anual media - evapot.	Volumen p		ara lluvia m ante/año)	nedia anua
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	20 30
Xonacatlán	179.89	42,720	50,491	57,373	62,795	217.0	914	773	680	622
Zacazonapan	92.45	3,938	4,992	5,911	6,608	257.6	6,047	4,770	4,029	3,604
Zacualpan	198.63	16,482	16,861	16,535	15,568	313.2	3,774	3,689	3,762	3,996
Zinacantepec	306.07	125,823	150,790	173,734	192,663	271.5	660	551	478	431
Zumpahuacán	334.80	15,783	17,109	17,755	17,653	262.9	5,577	5,145	4,957	4,986
Zumpango	208.63	102,855	119,445	133,719	144,593	172.9	351	302	270	249
Cuautitlán Izcalli	109.99	467,985	556,863	632,078	689,085	182.0	43	36	32	29
Valle de Chalco Solidaridad	44.57	336,854	459,909	577,159	679,292	158.0	21	15	12	10
Estatal	21,461.02	13,504,347	15,744,553	17,601,504	18,939,803	216.2	344	295	264	245

			Población co	ensada (INEG	l) y estimada	(CONAPO)	Lámina anual	Volumen p	ercápita pa	ara Iluvia m	edia anua
MICI	HOACAN	Superficie	3 00	(habita	ntes)	198	media - evapot	100,100	(m³/habit	ante/año)	
Municipio		(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Acuitzio		180.13	10,320	10,799	11,024	11,010	275.9	4,815	4,601	4,507	4,513
Aguililla		1,406.39	20,423	21,218	21,481	21,258	260.2	17,916	17,245	17,034	17,212
Alvaro Obregón		162.64	20,167	19,383	18,216	16,801	175.6	1,416	1,473	1,567	1,699
Angamacutiro		230.26	15,591	14,403	13,087	11,751	199.2	2,942	3,185	3,505	3,904
Angangueo		85.64	10,678	10,962	11,022	10,880	236.4	1,896	1,847	1,837	1,861
Apatzingán		1,656.67	122,384	123,177	121,400	117,534	196.9	2,666	2,648	2,687	2,776
Olody		55.22	2,922	2,769	2,575	2,363	211.5	3,998	4,219	4,537	4,944
Aquila		2,311.69	23,058	24,284	24,733	24,435	274.6	27,526	26,137	25,662	25,975
Ario		694.60	31,694	31,329	30,261	28,659	267.6	5,864	5,932	6,142	6,485
Arteaga		3,454.71	24,295	24,708	24,352	23,339	246.3	35,019	34,433	34,937	36,453
Briseñas		67.46	10,041	10,939	11,512	11,767	215.1	1,445	1,327	1,261	1,233
Buenavista		918.73	39,658	40,723	40,948	40,419	166.2	3,849	3,749	3,728	3,777
Carácuaro		981.11	10,675	9,644	8,763	8,048	280.4	25,775	28,531	31,399	34,189
Coahuayana		362.34	14,534	15,150	15,458	15,477	307.0	7,653	7,342	7,195	7,186
	ázguez Pallares	2,881.57	22,577	23,685	24,164	24,058	405.7	51,781	49,359	48,380	48,593
Coeneo		393.16	23,946	22,167	20,144	18,050	220.2	3,616	3,906	4,299	4,797
Contepec		404.89	31,286	32,357	32,637	32,199	210.2	2,721	2,631	2,608	2,644
Copándaro		173.52	9,443	8,715	7,919	7,119	166.2	3,054	3,309	3,642	4,051
Cotija		504.05	21,849	20,197	18,356	16,470 =	201.0	4,637	5,017	5,520	6,152
Cuitzeo		257.87	27,142	25,509	23,446	21,150	166.1	1,578	1,679	1,827	2,025
Charapan		233.16	11,285	11,061	10,515	9,724	241.0	4,980	5,081	5,345	5,779
Charo		322.50	20,119	24,539	28,504	31,835	171.5	2,748	2,253	1,940	1,737
Chavinda		150.78	11,359	11,223	10,843		204.0	2,708	2,741	2,837	2,992
Cherán		221.88	16.880	17,809	18,332	18,465	316.9	4.165	3,948	3,835	3,808
Chilchota		305.13	31,979	34,878	36,983	38,242	316.9	3,023	2,772	2,614	2,528
Chiniquila		928.64	7,100	6,514	5,918	5,352	405.7	53,064	57,837	63.662	70,394
Chucándiro		192.29	7,698	7,130	6,479	5,802	177.3	4,429	4,782	5,262	5.876
Churintzio		230.71	7,296	6.746	6,131	5,501	193.9	6,130	6,630	7,295	8,130
Chururnuco		1.119.44	15,397	14,822	13,796	12,461	164,5	11,961	12,425	13,349	14,779
		307.02	15,385	14,328	13,081	11,754	210.8	4,206	4,517	4,947	5,506
Ecuandureo		424.65	16,555	17,345	17,697	17,639	211.0	5,411	5,165	5,062	5,079
Epitacio Huerta		245.34	13,630	13,282	12,653	11,827	217.5	3,915	4,017	4,217	4,512
Erongaricuaro Gabriel Zamora		426.98	20,906	23,701	26.004	27,729	228.7	4,670	4,119	3,755	3.521
		1,063.06	110,301	109,546	106,314	101,152	261.7	2,522	2,539	2,617	2.750
Hidalgo		1,952.60	35,523	35.359	34,174	32,180	194.4	10,686	10,735	11,107	11,796
Huacana, La		95.11	12,179	11,246	10,222	9,181	166.2	1,298	1,406	1,547	1,722
Huandacareo			10,473	9,700		7.895	220.2	4,230	4,567	5,024	5,611
Huanicueo		2,062.51	47,168	47,978	47,366	45,550	216.8	9,482	9,322	9,442	9,818
Huetarno		79.34	6,935	6,515	5,989	5,408	264.4	3,024	3,219	3,502	3,878
Huiramba		176.75	16,950	17,048	16,724	16,058	171.5	1,788	1,778	1,812	1,887
Indaparapeo						12,664	219.9	2,004	2,010	2,068	2,175
Irimbo		125.23	13,744	13,702	10,017	12,004	213.0	2,004	2,010	2,000	2,170

		oblación c		31) y estimada	(CUNAPO)	Lámina anual	Volumen p	percápita pa		iedia anua
MICHOACAN	Superficie		(habit			media - evapot.	200111	(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Ixtlán	123.51	14,951	15,614	15,927	15,909	204.8	1,692	1,620	1,589	1,590
Jacona	118.14	56,467	63,577	69,692	74,654	215.2	450	400	365	341
Jiménez	195.68	14,897	13,868	12,641	11,330	218.6	2,872	3,085	3,385	3,776
Jiquilpan	242.13	37,736	38,204	37,816	36,725	211.9	1,359	1,343	1,357	1,397
Juárez	141.21	12,091	12,261	12,129	11,734	228.9	2,674	2,637	2,665	2,755
Jungapeo	265.98	19,570	22,465	22,266	19,398	201.6	2,740	2,387	2,409	2,765
Lagunillas	83.23	5,316	5,154	4,903	4,593	264.4	4,139	4,269	4,488	4,790
Madero	1,019 09	17,165	15,832	14,383	12,938	300.3	17,827	19,328	21,275	23,651
Maravatio	691.55	72,116	75,719	77,458	77,436	220.5	2,115	2,014	1,969	1,969
Marcos Castellanos	234.98	11,599	10,784	9,906	9,019	211.9	4,292	4,617	5,026	5,520
Lázaro Cárdenas	1,160.24	178,449	196,220	209,699	218,792	245.2	1,595	1,450	1,357	1,300
Morelia	1,199.02	646,470	711,614	764,687	805,104	202.6	376	341	318	302
Morelos	186.43	11,250	10,333	9,387	8,480	219.0	3,629	3,951	4,349	4,815
Múgica	378.18	44,503	44,855	44,149	42,581	174.3	1,481	1,469	1,493	1,548
Nahuatzen	304.48	24,099	24,719	24,796	24,386	217.5	2,748	2,679	2,671	2,715
Nocupétaro	549.12	9,080	9,607	9,821	9,731	280.4	16,960	16,030	15,681	15,826
Nuevo Parangaricutiro	234.31	15,871	16,519	16,816	16,787	404.1	5,966	5,732	5,630	5,640
Nuevo Urecho	330.66	9,182	9,698	9,951	9,950	266.8	9,609	9,098	8,867	8,868
Numarár	76.32	10,089	10,752	11,175	11,365	193.9	1,466	1,376	1,324	1,302
Ocampo	145.21	19,566	20,675	21,261	21,343	234.0	1,737	1,644	1,598	1,592
Pajacuaran	174.06	20,381	20,002	19,211	18,119	193.3	1,651	1,683	1,752	1,857
Panindícuaro	295.44	19,192	19,530	19,308	18,615	218.6	3,366	3,308	3,346	3,470
Parácuaro	369.88	24,819	25,837	26,224	26,034	267.1	3,980	3,823	3,767	3,794
Paracho	244.22	32,215	32,084	31,197	29,721	316.9	2,402	2,412	2,481	2,604
Pátzcuaro	435.96	80,943	85,557	88,462	89,726	340.1	1,832	1,733	1,676	1,653
Penjamillo	375.04	20,732	19,231	17,478	15,627	193.9	3,507	3,781	4,160	4,653
Peribán	331.87	21,074	22,414	23,287	23,706	274.6	4,325	4,066	3,914	3,844
Piedad, La	284.11	88,004	87,571	85,766	82,904	193.4	624	628	641	663
Purépero	192.21	16,246	16,377	16,156	15,650	223.9	2,649	2,628	2,664	2,750
Puruándiro	722.37	74,016	68,220	61,993	55,787	203.3	1,984	2,152	2,368	2,632
Queréndaro	234.43	13,873	12,778	11,612	10,457	171.5	2,897	3,145	3,461	3,844
Quiroga	211.52	24,768	24,765	24,158	23,067	211.5	1,806	1,806	1,852	1,939
Cojumatlán de Régules	129.86	10,270	10,334	10,148	9,761	211.9	2,679	2,662	2,711	2,819
Reyes, Los	480,09	59,152	60,452	60,698	60,026	284.2	2,307	2,257	2,248	2,273
Sahuayo	128.05	63,218	65,146	65,855	65,493	211.9	429	416	412	414
San Lucas	474.41	20,294	21,593	22,311	22,461	208.4	4,873	4,580	4,432	4,403
Santa Ana Maya	102.25	14,454	14,412	14,026	13,372	166.1	1,175	1,178	1,211	1,270
Salvador Escalante	487.98	39,743	39,591	38,401	36,386	267.6	3,285	3,298	3,400	3,588
Senguio	253.87	17,884	19,211	20,046	20,383	211.5	3,003	2,796	2,679	2,635
Susupualo	273.33	9,404	8,977	8,325	7,527	259.6	7,544	7,903	8,522	9,425
Tacambaro	787.15	61,441	62,230	61,312	58,974	319.6	4,094	4,042	4,103	4,265
Tancitaro	717.65	26,668	27,238	26,968	25,987	242.8	6,533	6,396	6,460	6,704
Tangamandapio	315.68	27,234	27,876	27,962	27,559	203.0	2,353	2,299	2,292	2,325
Tangancicuaro	387.95	34,066	35,058	35,325	34,944	228.0	2,597	2,523	2,504	2,531
Tanhuato	226.23	14,946	15,050	14,842	14,384	208.5	3,155	3,134	3,178	3,279
Taretan	185 23	13,749	13,117	12,271	11,298	280.2	3,775	3,957	4,230	4,594
Tarimbaro	258.57	40,901	41,943	42,186	41,727	168.2	1,063	1,037	1,031	1,042
Tepalcatepec	786.25	25,053	25,261	24,901	24,064	195.7	6,142	6,091	6,179	6,394
Tingambato	188.77	12,230	13,438	14,382	15,042	217.5	3,357	3,055	2,855	2,729
Tinguindin	174.24	13,283	13,027	12,522	11,840	232.1	3,045	3,105	3,230	3,416
Tiquicheo de Nicolás Romero	1,429.65	17,421	19,183	19,020	17,265	264.1	21,674	19,684	19,852	21,870
Tlalpujahua	190.86	26,354	27,108	27,254	26,858	211.5	1,532	1,489	1,481	1,503
Tlazazalca	201.83	9,113	8,436	7,667	6,869	226.3	5,013	5,415	5,958	6,651
Tocumbo	506.85	11,678	11,332	11,343	11,665	254.3	11,037	11,374	11,363	11,049
Tumbiscatío	2,069.48	10,541	10,542	10,187	9,543	251,2	49,308	49,304	51,022	54,465
Turicato	1,543.27	37,333	35,759	33,270	30,181	285.5	11,801	12,320	13,242	14,597
Tuxpan	243.04	24,867	25,455	25,557	25,231	249.5	2,439	2,382	2,373	2,403

	le Illustra		ensada (INEG		ia (CUNAPO)	Lámina anual	volumen	percápita p		iedia anua
MICHOACAN	Superficie		(habita	antes)		media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Tuzantla	1,018.49	18,723	17,682	16,215	14,503	264.4	14,378	15,229	16,606	18,567
Tzintzuntzan	165.15	12,923	14,149	15,083	15,700	211.5	2,702	2,468	2,315	2,224
Tzitzio	941.60	11,535	11,297	10,694	9,822	207.4	16,927	17.283	18,258	19,879
Uruapan	954.17	276,410	295,019	308,052	315,625	415.6	1,435	1,344	1,287	1,256
Venustiano Carranza	226.89	23,352	23,642	23,372	22,645	190.1	1,847	1,824	1,845	1,904
Villamar	352.39	21,236	19,643	17,851	16,006	213.2	3,537	3,824	4,208	4,693
Vista Hermosa	146.53	18,343	18,573	18,590	18,426	206.4	1,648	1,628	1,627	1,641
Yurécuaro	173.88	27,666	27,936	27,952	27,754	214.9	1,351	1,338	1,337	1,346
Zacapu	455.96	72,330	74,096	74,729	74,395	217.6	1,372	1,339	1,328	1,334
Zamora	330.97	168,066	172,757	174,673	174,179	200.7	395	385	380	381
Zináparo	112.13	4,212	3,892	3,538	3,175	193.9	5,161	5,585	6,144	6,846
Zinapécuaro	580.08	50,529	47,258	43,382	39,233	212.7	2,442	2,611	2,844	3,145
Ziracuaretiro	159.60	13,423	14,791	15,827	16,497	331.0	3,936	3,572	3,338	3,202
Zitácuaro	498.00	143,423	149,406	152,305	152,338	239.0	830	796	781	781
Jose Sixto Verduzco	226.97	27,336	25,308	22,999	20,603	184.0	1,528	1,650	1,816	2,027
Estatal	58,482.83	4,139,084	4,276,644	4,327,113	4,300,893	231.1	3,265	3,160	3,123	3,142

		Población ce	ensada (INEC	SI) y estimada	a (CONAPO)	Lámina anual	Volumen p	percápita p	ara Iluvia m	edia anua
MORELOS	Superficie		(habita	antes)		media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Amaguzac	125.03	17,070	17,735	17,957	17,740	268.1	1,964	1,890	1,867	1,890
Atlatlahuacan	47.07	15,424	19,892	24,103	27,762	257.8	787	610	503	437
Axochiapan	172.93	31,548	33,234	34,024	33,884	220.4	1,208	1,147	1,120	1,125
Ayala	345.69	72,124	80,044	85,910	89,360	231.9	1,112	1,002	933	897
Coatlán del Río	102.60	9,632	8,911	8,115	7,289	254.6	2,712	2,932	3,219	3,584
Cuaulla	153.65	159,219	175,275	187,556	195,435	239.5	231	210	196	188
Cuernavaca	151.20	350,665	367,098	378,001	382,836	320.2	138	132	128	126
Emiliano Zapata	64.98	60,525	80,005	98,555	114,949	220.1	236	179	145	124
Huitzilac	200.66	15,870	19,114	22,006	24,350	368.0	4,653	3,863	3,356	3,033
Jantetelco	80.82	14,292	15,972	17,236	18,000	236.5	1,337	1,197	1,109	1,062
Jiutepec	70.45	178,525	223,500	264,000	297,775	255.4	101	81	63	60
Jojutla	142.63	55,206	56,558	56,723	55,734	223.0	576	562	561	571
Jonacatepec	97.79	14,120	14,925	15,340	15,354	236.5	1,638	1,550	1,508	1,506
Mazatepec	45.92	9,132	9,407	9,463	9,308	254.6	1,280	1,243	1,236	1,256
Miacatlán	233.64	24,898	26,784	27,950	28,329	300.1	2,816	2,617	2,508	2,475
Ocuituço	80.71	15,639	16,241	16,383	16,076	260.2	1,343	1,293	1,282	1,306
Puente de Ixtla	299.00	56,254	61,561	65,360	67,421	232.5	1,236	1,129	1,063	1,031
Temixco	87.86	96,377	104,329	109,985	113,074	230.6	210	194	184	179
Tepalcingo	349.71	24,966	25,209	24,805	23,810	232.5	3,257	3,225	3,278	3,415
Tepoztlán	242.64	34,586	45,989	57,304	67,770	334.9	2,350	1,767	1,418	1,199
Telecala	53.25	7,170	7,458	7,541	7,425	254.6	1,891	1,818	1,798	1,826
Tetela del Volcán	98.50	17,022	17,676	17,844	17,535	260.2	1,506	1,450	1,436	1,462
Tlalnepantla	124.09	5,858	6,615	7,221	7,627	257.8	5,461	4,836	4,430	4,194
Tlaltizapán	227.68	47,034	51,578	54,773	56,441	224.6	1,087	992	934	906
Tlaquiltenango	581.77	31,062	31,464	31,097	30,022	248.5	4,654	4,594	4,649	4,815
Tlayacapan	52.13	14,488	17,781	20,885	23,566	257.8	928	756	643	570
Totolapan	67.79	9,109	10,462	11,621	12,500	257.8	1,919	1,670	1,504	1,398
Xochitepec	99.13	47,792	59,809	70,820	80,064	224.6	466	372	314	278
Yautepec	203.00	87,839	99,601	109,296	116,364	252.6	584	515	469	441
Yecapixila	192.33	38,134	44,212	49,387	53,299	257.8	1,300	1,121	1,004	930
Zacatepec de Hidalgo	28.53	34,512	36,000	36,742	36,721	221.6	183	176	172	172
Zacualpan de Amilpas	63.52	8,239	8,342	8,235	7,934	260.2	2,006	1,981	2,007	2,083
Temoac	45.86	12,538	13,837	14,780	15,288	260.2	952	862	807	781
Estatal	4,932.56	1,616,869	1,806,618	1,961,018	2,071,042	280.9	857	767	707	669

	694	icha — — — — — — — — — — — — — — — — — — —	Población ·	censada (I	NEG	6l) y estima	da (CONAPO	Lámina anual	Volumen ,	percápita p	ara Iluvia n	edia anua
	NAYARIT	Superficie	ijegavs - s	(ha	bita	antes)	(astronous)	media - evapot.	slothequi	(m³/habit	ante/año)	J.H
Municipio		(km²)	2000	2010		2020	2030	Hp (mm)	2000	2010	2020	2030
Acaponeta		1,667.70	38,063	38,317		37,920	36,881	331.7	14,534	14,438	14,589	15,000
Ahuacadán		466.60	15,997	15,594		14,979	14,176	253.7	7,400	7,591	7,903	8,350
Amatlán de (Cañas	765.00	12,614	12,817		12,697	12,275	222.0	13,463	13,250	13,375	13,835
Compositela		1,847.60	69,033	75,364		80,208	83,229	323.4	8,656	7,929	7,450	7,179
Huajicori		2,603.50	10,772	11,530		11,922	11,911	347.8	84,064	78,537	75,955	76,025
Ixtian del Rio		581.40	26,506	27,942		28,843	29,145	226.1	4,960	4,705	4,558	4,511
Jala		364.60	16,836	16,584		15,994	15,102	242.8	5,258	5,338	5,535	5,862
Xalisco		290.60	39,565	46,219		52,146	56,954	284.6	2,091	1,790	1,586	1,452
Nayar, El		5,100.00	27,926	30,868		32,668	33,094	214.8	39,225	35,487	33,531	33,100
Rosamorada		2,073.10	36,263	38,408		39,667	39,943	337.3	19,284	18,207	17,629	17,507
Ruíz		900.10	22,671	23,183		23,268	22,909	346.5	13,757	13,453	13,404	13,614
San Blas		823.60	44,831	49,387		52,928	55,228	358.5	6,586	5,978	5,578	5,346
San Pedro La	agunillas	520.20	8,104	8,539		8,758	8,745	328.3	21,075	20,001	19,501	19,530
Santa Maria	del Oro	912.90	21,720	21,379		20,612	19,474	324.8	13,650	13,867	14,383	15,224
Santiago Ixci	uintla	1,831.90	99,013	99,157		97,477	94,061	347.2	6,425	6,415	6,526	6,763
Tecuala		1,137.30	43,965	42,751		40,886	38,472	332.9	8,610	8,855	9,259	9,840
Tepic		1,983.80	319,146	345,479		366,095	379,671	351.5	2,185	2,019	1,905	1,837
Tuxpan		474.30	32,396	30,259		27,996	25,688	332.4	4,866	5,210	5,631	6,137
Yesca, l.a		2,218.50	13,499	13,657		13,404	12,761	238.5	39,199	38,746	39,477	41,466
Bahia de Bai	nderas	773.30	63,153	79,722		95,700	109,978	262.9	3,219	2,550	2,124	1,848
Estatal		27,336.00	962,073	1,027,156		1,074,168	1,099,697	281.6	8,000	7,493	7,165	6,999

			Población c	ensada (l	NEG) y estin	nada	(CONAPC) Lámina anual	Volumen	percápita pa	ara Iluvia	media anua
NUE	VO LEÓN	Superficie		(ha	abita	ntes)		1000	media - evapot		(m³/habit	ante/año)	
Municipio		(km²)	2000	2010		2020		2030	Hp (mm)	2000	2010	2020	2030
Abasolo		76.90	2,582	3,421		4,252		5,030	95.1	2,831	2,137	1,719	1,453
Agualeguas		917.60	4,451	4,634		4,666		4,571	148.6	30,631	29,421	29,219	29,827
Aldamas, Los		778.70	2,510	2,851		3,096		3,231	166.4	51,616	45,442	41,846	40,098
Allende		156.20	28,301	32,599		36,181		38,956	295.4	1,631	1,416	1,275	1,185
Anáhuac:		4,121.60	18,813	20,332		21,252		21,640	115.2	25,234	23,349	22,338	21,938
Apodaca		183.50	294,096	447,542		598,500		738,608	152.8	95	63	47	38
Aramberri		2,839.50	15,064	15,957		16,170		15,785	94.8	17,869	16,869	16,647	17,053
Bustamante		558.00	3,554	3,859		4,040		4,110	86.4	13,561	12,489	11,930	11,727
Cadereyta Jimé	nez	1,004.40	77,251	103,983		129,445		152,379	195.8	2,546	1,891	1,519	1,291
Carmen		131.40	6,790	8,267		9,646		10,869	95.1	1,840	1,511	1,295	1,149
Cerralvo		949.80	9,540	11,392		12,988		14,217	154.6	15,392	12,890	11,306	10,329
Ciénega de Flor	res	156,20	11,527	15,630		19,720		23,579	178.4	2,418	1,783	1,413	1,182
China		3,940.60	11,733	12,905		13,679		14,072	146.4	49,158	44,694	42,165	40,987
Doctor Arroyo		5,106.20	34,093	33,608		31,804		29,107	128.7	19,273	19,551	20,660	22,575
Doctor Coss		664.60	2,288	2,613		2,861		3,028	156.8	45,559	39,892	36,434	34,425
Doctor Gonzále	Z	701.80	3,260	4,047		4,762		5,346	159.5	34,334	27,657	23,505	20,937
Galeana		7,154.60	40,009	40,381		39,168		36,774	97.4	17,420	17,260	17,794	18,953
García		853.20	30,022	45,526		61,854		77,759	85.5	2,429	1,602	1,179	938
San Pedro Gara	za García	69.40	128,437	151,568		170,948		186,295	138.0	75	63	56	51
General Bravo		2.073.20	5.913	6,816		7,530		8,038	143.5	50,325	43,658	39,518	37,020
General Escobe	edo	191.00	241,608	355,775		466,761		568,334	85.5	68	46	35	29
General Terán		2,465.00	15,665	15,908		15,646		15,010	198.7	31,266	30,788	31,304	32,630
General Treviño	1	391.80	1.738	2,146		2,532		2,879	162.1	36,550	29,601	25,089	22,065
General Zarago		1.108.50	5,654	5,832		5,735		5,420	126.9	24,879	24,120	24,528	25,954
General Zuazua		124.00	6,169	7,570		8,878		10,039	169.5	3,407	2,777	2,368	2,094
Guadalupe		151.30	681,876	767,547		836,598		889,027	152.8	34	30	28	26
Herrerasi, Los		421.60	2.847	3,252		3,564		3,778	165.1	24,454	21,408	19,534	18,428
Higueras		600.20	1,406	1,804		2,170		2,474	148.1	63,243	49,290	40,977	35,941
Hualahuises		243.00	6,484	6,498		6,315		5,994	185.0	6,931	6,916	7,117	7,498
Iturbide		719.20	3,536	3,771		3,849		3,780	181.3	36,876	34,578	33,878	34,496

NUEVO LEÓN	Superficie	1 100001111	ensada (INEC		a (CONAPO		Lámina anual ^a Jedia - evapot.	Volumen percápita para Iluvia media anual			
Municipio	(km²)	2000	2010	2020	2030		Hp (mm)	2000	2010	2020	2030
Juarez	277.80	69,784	123,866	180,346	235,387	-	176.0	700	395	271	208
Lampazos de Naranjo	4,020.00	5,383	5,723	5,882	5,882		115.9	86,542	81,400	79,200	79.200
Linares	2,445.20	70,334	77,324	81,878	84,070		185.0	6,430	5.849	5.523	5.379
Marin	129.00	4,865	6,823	8,808	10,705		146.0	3.871	2,760	2,138	1.759
Melchor Ocampo	223.20	1,248	1,659	2,077	2,461		166.4	29.755	22.384	17.879	15,089
Mier y Noriega	1,168.00	7,175	7,424	7,336	6.967		139.0	22,627	21,868	22,130	23,302
Mina	3,915.80	5,153	6,040	6.746	7.245		81.2	61,737	52,671	47,159	43,910
Monternorelos	1,706.20	53,697	60,947	66,540	70,390		193.0	6,132	5,402	4,948	4.677
Monterrey	451.30	1,124,339	1,145,424	1,142,471	1,122,816		138.0	55	54	55	55
Perás	992.00	1,251	1,476	1,666	4.000			100,906	85,524	75.770	69,819
Pesquería	307.50	11,622	15,283	19,035	22,608			3,863	2.937	2.358	1,986
Ramones, Los	1,378.80	6,284	5,837	5,317	4,795		165.6	36,333	39,115	42,941	47,616
Rayones	905.20	2,656	2,883	2,995	2,993		114.2	38,933	35,868	34,527	34,550
Sabinas Hidalgo	1,661.60	32,851	36.018	38,195	39,442		128.3	6,490	5,919	5.582	5.405
Salinas Victoria	1,334.20	19,650	28,447	37,764	46,993		139.4	9,467	6,539	4,926	3,959
San Nicolás de los Garza	86.80	504,370	544,657	574,805	596,091		152.8	26	24	23	22
Hidalgo	208.00	14,501	15,825	16,751	17,309		95.1	1,364	1,250	1,180	1,142
Santa Catarina	984.50	231,839	278,640	321,125	357,713		148.3	630	524	455	408
Santiago	763.80	37,487	42,665	46,773	49,744		209.2	4,262	3,745	3,416	3,212
Vallecillo	1,859.90	2,217	2,693	3,100	3,414		127.3	106,754	87,885	76,346	69,325
Villaldama	870.50	4,315	4,716	4,963	5,061		86.4	17,425	15,943	15,150	14,856
Estalal	64,542.30	3,908,238	4,552,404	5,119,183	5,594,023		145.5	2,403	2,063	1,834	1,679

			Población ce	nsada (INEG) y estim	ada	CONAPC) L	ámina anual	Volumen pe	ercápita pa	ra Iluvia m	edia anu
OAXACA		Superficie	(may) qh	(habita	ntes)	1505	-	m	edia - evapot.	[Paros)	(m³/habita	nte/año)	010131311
Municipio		(km²)	2000	2010	2020	905.0 406.40	2030	3,12	Hp (mm)	2000	2010	2020	2030
Abejones		122.48	1,593	1,476	1,341	au) 91000000	1,202		236.2	18,160	19,600	21,573	24,068
Acatlán de Pérez Figueroa		933.90	46,436	48,603	49,272		48,670		477.3	9,599	9,171	9,046	9,158
Ánimas Trujano		6.70	3,035	3,839	4,593		5,273		178.8	395	312	261	227
Asunción Cacalotepec		108.45	2,674	2,835	2,897		2,857		559.1	22,676	21,388	20,931	21,224
Asunción Cuyotepeji		76.55	920	998	1,045		1,062		189.9	15,802	14,567	13,912	13,689
Asunción Ixtaltepec		547.33	14,884	16,479	17,664		18,397		291.2	10,707	9,671	9,022	8,663
Asunción Nochixtlán		820.35	14,180	12,786	11,628		10,689		236.3	13,668	15,158	16,667	18,132
Asunción Ocotlán		12.76	3,794	3,841	3,748		3,545		179.4	603	596	611	646
Asunción Tlacolulita		244.96	955	1,002	1,019		1,011		284.3	72,912	69,492	68,333	68,874
Avoguezco de Aldama		58.69	5,818	5,940°	5,861		5,624		179.4	1,810	1,772	1,796	1,872
Ayotzintepec		169.69	5,914	6,528	6,959		7,202		937.1	26,889	24,360	22,852	22,081
Barrio de la Soledad, El		233.48	13,780	15,435	16,714		17,564		380.3	6,444	5,753	5,313	5,056
Calihualà		132.69	1,361	1,252	1,139		1,027		255.8	24,942	27,113	29,803	33,053
Candelaria Loxicha		86.76	9,986	10,864	11,355		11,463		251.8	2,188	2,011	1,924	1,906
Capulalpam de Méndez		19.14	1,450	1,611	1,740		1,834		360.8	4,763	4,287	3,969	3,766
Ciénega de Zimatlán		25.52	3,039	2,805	2,548		2,291		169.4	1,423	1,541	1,697	1,887
Ciudad Ixtepec		229.65	23,634	25,485	26,788		27,608		278.0	2,701	2,505	2,383	2,313
Coatecas Altas		125.03	6,000	5,492	4,983		4,522		177.4	3,697	4,039	4,452	4,905
Coicoyán de las Flores		105.89	5,957	5,930	5,629		5,121		406.8	7,231	7,264	7,653	8,412
Compañía, La		93.13	4,163	4,391	4,484		4,452		177.4	3,969	3,763	3,685	3,711
Concepción Buenavista		357.23	977	892	810		737		139.5	51,000	55,860	61,515	67,608
Concepción Pápalo		94.41	3,215	3,533	3,755		3,861		175.6	5,158	4,693	4,416	4,295
Constancia del Rosario		298.54	3,435	3,751	3,948		4,025		620.4	53,918	49,376	46,912	46,014
Cosolopa		149.27	15,123	16,899	18,057		18,629		343.4	3,389	3,033	2,838	2,751
Cosaltepec		81.65	962	894	815		726		130.7	11,096	11,940	13,097	14,703
Cuilapam de Guerrero		49.75	13,390	15,177	16,744		18,077		178.8	665	586	531	492
Cuyamecalco Villa de Zaragoz	a.	81.65	4,496	5,098	5,540		5,791		175.6	3,190	2,813	2,589	2,476
Chahuitas		160.75	10,195	10,506	10,565		10,417		442.3	6,974	6,767	6,730	6,825

			ensada (INEC	i) y estimad	a (CONAPO	Lámina anual	volumen p			edia anua
OAXACA	Superficie	9 100 100 100	(habita	antes)	1 1 2 2 2 2	media - evapot.		(m³/habita	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Chalcatongo de Hidalgo	111.00	8,138	8,463	8,597	8,567	249.2	3,400	3,269	3,218	3,229
Chiquihuitlán de Benito Juaréz	38.27	2,608	2,870	3,032	3,091	372.5	5,467	4,968	4,702	4,613
Eloxochitlán de Flores Magón	28.07	4,342	5,032	5,573	5,917	897.5	5,802	5,006	4,520	4,257
Espinal, El	82.93	8,035	8,676	9,108	9,340	273.3	2,821	2,612	2,488	2,427
Fresnillo de Trujano	98.24	1,176	1,099	1,004	903	226.7	18,937	20,264	22,181	24,662
Guadalupe de Ramirez	59.96	1,447	1,341	1,219	1,091	255.8	10,601	11,439	12,583	14,060
Guadalupe Etla	17.86	2,079	2,112	2,112	2,089	193.6	1,663	1,637	1,637	1,655
Guelatao de Juárez	22.96	781	722	656	590	224.3	6,595	7,134	7,852	8,730
Guevea de Humbold:	515.43	5,867	6,579	7,111	7,432	333.9	29,337	26,162	24,205	23,159
Heroica Ciudad de Ejutla de Crespo	283.23	18,138	16,518	14,999	13,670	177.4	2,770	3,042	3,350	3,676
Heroica Ciudad de Huajuapan de León	361.06	55,344	57,759	58,939	59,127	195.1	1,273	1,219	1,195	1,191
Heroica Ciudad de T axiaco	343.20	30,042	28,450	26,536	24,519	229.3	2,619	2,766	2,965	3,209
Huautepec	35.72	6,872	7,936	8,767	9,289	713.8	3,710	3,213	2,908	2,745
Huautla de Jiménez	71.45	32,325	34,287	35,022	34,606	713.8	1,578	1,487	1,456	1,474
Ixpantenec Nieves	93.14	1,893	1,732	1,571	1,427	255.7	12,582	13,751	15,161	16,691
Ixtlán de Juárez	548.60	7,538	6,949	6,309	5,681	582.2	42,369	45,961	50,523	56,219
Juchitán de Zaragoza	414.64	81,653	83,558	82,700	79,572	273.3	1,388	1,356	1,370	1,424
Loma Bonita	588.15	42,448	42,545	41,625	40,020	675.2	9,355	9,334	9,540	9,923
Magdalena Apasco	29.34	4,124	4,729	5,238	5,652	193.6	1,377	1,201	1,085	1,005
Magdalena Jaltepec	184.99	3,871	4,106	4,227	4,246	236.3	11,290	10,644	10,339	10,293
Magdalena Mixtepec	11.48	983	985	951	887	174.6	2,039	2,035	2,108	2,260
Magdalena Ocotlán	24.24	1,069	1,115	1,127	1,108	179.4	4,068	3,900	3,858	3,925
Magdalena Peñasco	75.27	3,614	3,786	3,828	3,758	351.7	7,325	6,992	6,916	7,044
Magdalena Teitipac	48.48	3,759	4,103	4,308	4,376	165.3	2,132	1,953	1,860	1,832
Magdalena Tequisistlán	599.64	6,264	6,582	6,710	6,669	177.2	16,963	16,144	15,836	15,933
Magdalena Tlacotepec	234.75	1,164	1,287	1,377	1,444	236.3	47,662	43,107	40,290	38,420
Magdalena Yodocono de Porfirio Díaz	28.07	1,363	1,534	1,661	1,740	210.1	4,327	3,845	3,551	3,390
Magdalena Zahuatlah	70.17	454	527	577	608	210.1	32,475	27,977	25,552	24,250
Mariscala de Juárez	72.72	3,510	3,468	3.350	3,181	226.7	4,697	4,753	4,921	5,182
Mártires de Tacubaya	89.31	1,340	1,656	1,939	2,170	528.7	35,238	28,514	24,352	21,760
Matías Romero	1,459.54	42,116	39,262	36,044	32,792	680.1	23,569	25,282	27,540	30,271
Mazatlan Viila de Flores	137.79	14,574	16,014	16,889	17,168	713.8	6,749	6,142	5,824	5,729
Mesones Hidalgo	353.40	4,361	4,598	4,567	4,315	620.4	50,273	47,682	48,006	50,809
	326.61	33,697	31,794	29,550	27,219	175.3	1,699	1,801	1,938	2,104
Miahuatlán de Porfirio Díaz	191.37	2,771	2,849	2,852	2,790	210.2	14,520	14,123	14,108	14,421
Mixistlán de la Reforma	85.48	2,477	2,375	2,196	1,971	167.3	5,772	6,020	6,511	7,254
Monjas	28.07	599	580	560	535	360.8	16,909	17,463	18,087	18,932
Natividad			3,596	3,571	3,454	193.9	918	895	901	931
Nazareno Etla	16.59	3,503		7,651	7,210	254.2	11,894	11,895	12,290	13,042
Nejapa de Madero	369.99	7,906	7,905		1,402	198.8	8,093	8,569	9,377	10,494
Nuevo Zoquiapam	74.00	1,818	1,717	1,569	192,161	181.6	59	66	74	81
Oaxaca de Juárez	85.48	263,970	234,211	210,526			1,178	1,223	1,300	1,409
Ocotlán de Morelos	123.76	18,842	18,160	17,073	15,756	179.4	2,243	2,054	1,953	1,914
Pe, La	26.79	2,119	2,314	2,434	2,483	177.4			3,954	4,360
Pinotepa de Don Luis	51.03	6,437	5,893	5,349	4,851	414.5	3,286	3,589 10,913	10,838	11,098
Pluma Hidalgo	179.89	3,986	4,151	4,180	4,082	251.8	11,365			22,915
Putla Villa de Guerrero	884.15	27,383	26,854	25,626	23,937	620.4	20,031	20,426	21 404	
Reforma de Pineda	193.92	2,801	3,251	3,629	3,912	344.8	23,873	20,568	18 426	17,093
Reforma, La	496,30	3,682	3,646	3.495	3,256	517.3	69,726	70,415	73.457	78,849
Reyes Etla	24.24	2,520	2,607	2,627	2,589	193.9	1,865	1,803	1,789	1,816
Rojas de Cuauhtémoc	25.52	1,102	1,139	1,152	1,143	177.3	4,106	3,973	3,928	3,959
Salinas Cruz	113.55	79,325	78,266	75,958	72,925	222.4	318	323	332	346
San Agustin Amaterigo	58.69	1,873	2,067	2,205	2,292	204.1	6,396	5,796	5,433	5,227
San Agustin Atenango	82.93	2,399	2,342	2,252	2,149	255.7	8,840	9,055	9,417	9,868
San Agustín Chayuco	107.17	4,798	5,328	5,702	5,918	412.5	9,214	8,297	7,753	7,470
San Agustin De las Juntas	12.76	5,288	7,836	10,189	12,254	178.8	432	291	224	186
San Agustin Etla	81.65	3,343	3,602	3,781	3,889	193.6	4,729	4,389	4,181	4,065
San Agustín Loxicha	389.13	23,518	26,373	28,295	29,158	325.1	5,378	4,796	4,470	4,338

		Población ce	ensada (INEC	31) y estimad	a (CONAPO)	Lámina anual	Volumen p	ercápita pa	ıra Iluvia m	edia anua
OAXACA	Superficie	Additional description of the second	(habita	antes)		media - evapot.	Gal	(m³/habita	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
San Agustín Tlacotepec	79.10	785	908	1,008	1,076	351.7	35,439	30,638	27,599	25,855
San Agustin Yatareni	33.17	3,545	3,930	4,223	4,430	181.6	1,699	1,533	1,427	1,360
San Andrés Cabecera Nueva	223.27	3,216	3,149	2,980	2,745	470 4	32,655	33,350	35,241	38,258
San Andrés Dinicuiti	121.20	2,219	2,269	2,271	2,237	179.1	9,785	9,569	9,561	9,706
San Andrés Huaxpaltepec	67.62	5,877	6,280	6,475	6,482	414.5	4,769	4,463	4,329	4,324
San Andrés Huayapam	14.03	4,120	5,377	6,518	7,514	181.6	619	474	391	339
San andrés Ixtlahuaca	33.17	1,420	1,289	1,172	1,071	193.9	4,530	4,990	5,488	6,006
San Andrés Lagunas	100.79	580	516	471	438	155.8	27,068	30,425	33,332	35,843
San Andrés Nuxiño	84.20	2,159	2,414	2,599	2,698	236.3	9,214	8,240	7,654	7,373
San Andrés Paxtlán	77.83	3,891	4,350	4,664	4,818	434.2	8,685	7,768	7,245	7,014
San Andrés Sinaxt a	34.45	708	828	931	1,011	260.0	12,652	10,818	9,621	8,860
San Andrés Solaga	38.27	1,744	1,773	1,743	1,664	228.9	5,022	4,940	5,025	5,263
San Andrés Teotilalpam	102.07	4,494	5,148	5,666	6,015	974.8	22,140	19,327	17,560	16,541
San Andrés Tepetlapa	76,55	570	594	599	589	255.8	34,357	32,969	32,693	33,249
San Andrés Yaá	33.17	556	536	497	457	414.7	24,740	25,663	27,677	30,099
San Andrés Zabache	35.72	946	883	802	714	177.4	6,699	7,177	7,902	8,876
San Andrés Zautla	21.69	3,216	3,693	4 093	4,414	193.9	1,308	1,139	1,028	953
San Antonino Casti lo Velasco	33.17	5,032	5,833	6,509	7,012	185.0	1,219	1,052	943	875
San Antonino El Alto	65.07	2,007	2,056	2,024	1,927	545.2	17,676	17,254	17,527	18,410
San Antonino Monteverde	178.62	6,457	6,866	7,070	7,088	293.9	8,132	7,647	7,426	7,408
San Antonio Acutla	20.41	350	322	293	264	144.1	8,401	9,132	10,036	11,138
San Antonio De la Cal	10.21	16,110	21,537	26,638	31,234	178.8	113	85	69	58
San Antonio Huitepec	199.04	4,460	4,161	3,778	3,362	545.2	24,330	26,079	28,722	32,276
San Antonio Nanahuatipam	127.58	1,373	1,573	1,745	1,883	99.8	9,278	8,098	7,300	6,765
San Antonio Sinicahua	48.48	1,425	1,707	1,965	2,178	318.9	10,849	9,057	7,868	7,098
San Antonio Tepetlapa	65.07	3,992	4,529	4,931	5,188	528.7	8,618	7,596	6,977	6,631
San Baltazar Chichicapam	100.79	3,001	3,185	3,285	3,318	143.0	4,803	4,526	4,388	4,344
San Baltazar Loxicha	58.69	3,001	3,362	3,627	3,777	265.0	5,182	4,625	4,287	4,117
San Baltazar Yatzachi el Bajo	48.48	823	940	1,037	1,106	222.0	13,078	11,451	10,380	9,732
San Bartolé Ayautla	45.93	5,000	6,503	7,893	9,121	958.9	8,809	6,773	5,580	4,829
San Bartolo Coyotepec	70.17	852	773	703	643	169.4	13,954	15,380	16,911	18,489
San Bartolo Soyaltepec	196.48	781	760	721	667	173.9	43,757	44,967	47,399	51,236
San Bartolo Yautepec	118.65	4,022	4,898	5,685	6,305	284.3	8,386	6,886	5,933	5,349
San Bartolomé Loxicha	191.37	2,622	2,886	3,052	3,111	265.0	19,338	17,569	16,613	16,298
San Bartolomé Quialana	49.76	2,822	2,648	2,404	2,127	162.4	2,863	3,051	3,361	3,799
San Bartolomé Yucuañe	65,07	547	643	720	778	289.7	34,457	29,312	26,178	24,226
San Bartolomé Zoogocho	22.96	666	694	702	692	228.9	7,890	7,571	7,485	7,593
San Bernardo Mixtepec	67.62	2,821	2,636	2,392	2,126	358.9	8,602	9,206	10,145	11,414
San Blas Atempa	148.00	16,579	17,986	18,771	18,927	226.2	2,019	1,861	1,783	1,768
San Carlos Yautepec	2,491.68	11,323	11,528	11,299	10,717	219.5	48,304	47,445	48,407	51,036
San Cristobal Amatlán	96.96	4,429	5,125	5,708	6,128	203.5	4,454	3,849	3,456	3,219
San Cristobal Amoltepec	31.90	1,226	1,242	1,205	1,129	351.7	9,151	9,033	9,311	9,937
San Cristobál Lachirioag	24.24	1,308	1,469	1,583	1,644	228.9	4,241	3,776	3,504	3,374
San Cristóbal Suchixtlahuaca	44.65	357	364	364	364	144.2	18,036	17,689	17,689	17,689
San Dicnisio del Mar	237.30	5,148	5,601	5,881	5,992	263.3	12,138	11,157	10,625	10,429
San Dicnisio Ocotepec	225.82	10,165	10,155	9,756	9,063	115.2	2,559	2,562	2,667	2,871
San Dionisio Ocotlán	20.41	1,085	1,140	1,168	1,166	179.4	3,374	3,212	3,135	3,140
San Esteban Atatlahuca	61.24	3,562	4,033	4,393	4,626	388.7	6,683	5,902	5,419	5,146
San Fel pe Jalapa de Diaz	154.38	24,306	27,695	30,223	31,734	958.9	6,091	5,345	4,898	4,665
San Felipe Tejalapam	76.55	6,420	7,047	7,470	7,689	193.9	2,312	2,106	1,987	1,931 1 6,409
San Felipe Usila	255.17	12,201	13,595	14,598	15,158	974.8	20,386	18,296	17,039	
San Francisco Cahuacuá	169.68	3,470	3,793	3,989	4,057	303.1	14,823	13,560	12,894	12,678
San Francisco Cajonos	25.52	490	494	478	460	166.8	8,686	8,616	8,904	9,253 2,965
San Francisco Chapulapa	19.14	1,999	2,216	2,351	2,405	372.5	3,567	3,218	3,033	
San Francisco Chindúa	28.07	818	894	945	970	260.0	8,922	8,164	7,723	7,524
San Francisco Del Mar	400.61	6,052	6,802	7,370	7,721	305.2	20,200	17,972	16,587	15,833
San Francisco Huehuetlán	15.31	1,436	1,539	1,587	1,585	897.5	9,568	8,928	8,658	8,669

OAXACA	Superficie		(habita	, ,	. 100111110	Lámina anual media - evapot.		(m³/habita		
Municipio	(km²)	2000	2010	2020	2030		2000	2010	2020	2030
San Francisco Ixhuatári	406.99	9,702	10,099	10,219	10,106	Hp (mm) 249.9	10,484	10,071	9,953	10,064
San Francisco Jaltepetongo	71.45	1,231	1,266	1,269	1,250	210.1	12,195	11,858	11,830	12,010
San Francisco Lachigoló	31.90	1,888	2,515	3,120	3,671	177.3	2,996	2,249	1,813	1,541
San Francisco Loqueche	76.55	1,953	2,206	2,393	2,509	203.5	7,975	7,061	6,509	6,208
San Francisco Nuxaño	21.69	432	491	531	557	210.1	10,549	9,282	8,583	8.182
San Francisco Ozolotepec	251.34	2,082	2,327	2,501	2,594	335.8	40,538	36,270	33,746	32,537
San Francisco Sola	71.45	1,304	1,433	1,511	1,545	204.1	11,184	10,178	9,652	9,440
San Francisco Telixtlahuaca	79.10	10,114	11,085	11,815	12,317	158.5	1,239	1,131	1,061	1,018
	45.93	472	512	536	551	178.1	17,330	15,976	15,261	14,845
San Francisco Teopan	114.82	2,136	2,015	1,831	1,610	255.8	13,752	14,578	16,043	18,245
San Francisco Tlapano ngo San Gabriel Mixtepec	482.26	4,133	4,564	4,858	5,017	265.0	30,916	27,996	26,302	25,468
San lidefonso Amatlán	91.86	2,025	2,273	2,456	2,569	434.2	19,696	17,547	16,240	15,525
San lidefonso Sola	52.31	888	1,023	1,133	1,209	361.3	21,283	18,474	16,680	15,632
San lidefonso Villa Alta	136.52	3,400	3,094	2,810	2,564	414.7	16,651	18,298	20,147	22,080
	12.76	8,815	11,814	14,429	16,625	201.0	291	217	178	154
San Jacinto Amilpas	233.48	2,455	2,635	2,719	2,711	545.2	51,849	48,307	46,815	46,953
San Jacinto Tlacotepec	338.10	5,467	6,228	6,845	7,273	222.6	13,764	12,082	10,993	10,346
San Jerónimo Coatlán	30.62	1,970	2,010	2,014	1,984	198.4	3,083	3,022	3,016	3,062
San Jerónimo Silacayoapilla	140.34	2,829	3,005	3,080	3,061	185.3	9,194	8,655	8,444	8,497
San Jerónimo Sosola	213.06	1,599	1,852	2,065	2,223	143.0	19,057	16,453	14,756	13,707
San Jerónimo Taviche	17.86	1,781	2,075	2,313	2,488	897.5	9,000	7,725	6,930	6,442
San Jerónimo Tecoatl	47.20	4,918	5,240	5,418	5,475	125.8	1,208	1,133	1,096	1,085
San Jerónimo Tlacochahuaya	67.62	3,485	3,571	3,532	3,398	222.1	4,310	4,206	4,253	4,420
San Jorge Nuchita		1,328	1,491	1,620	1,710	198.5	5,340	4,756	4,377	4,147
San José Ayuquila	35.72			11,665	11,850	794.3	15,752	14,537	13,900	13,683
San José Chiltepec	204.13	10,294	11,154 2,169	2,295	2,357	434.2	16,539	15,067	14,240	13,866
San José del Peñasco	75.27 66.34	1,976 5,898		6,442	6,410	177.4	1,996	1,875	1,827	1,836
San José del Progreso		959	6,276 1,116	1,244	1,336	528.7	56,973	48,958	43,921	40,896
San José Estancia Grande	103.34	4,742	5,289	5,636	5,764	1216.3	15,054	13,497	12,666	12,385
San José Independencia	58.69		3,268	3,135	2,900	203.5	8,254	8,262	8,612	9,310
San José Lachiguirí	132.69	3,271		26,618	28,105	1080.7	7,452	6,450	5,853	5,544
San José Tenango	144.17 49.76	20,908 555	24,154 631	691	735	176.0	15,783	13,882	12,677	11,918
San Juan Achiutla		1,632	1,606	1,538	1,445	236.2	12,740	12,947	13,519	14,389
San Juan Atepec	88.03	1,844	1,841	1,776	1,660	124.0	13,211	13,232	13,716	14,675
San Juan Bautista Atatlahuca	196.48	3,340	3,209	3,012	2,776	133.5	690	718	765	830
San Juan Bautista Coixtlahuaca	17.26 543.50	9,608	8,778	7,971	7,241	134.5	7,611	8,330	9,174	10,098
San Juar Bautista Cuicatlán	70.17	3,655	4,131	4,507	4,778	193.6	3,717	3,289	3,014	2,843
San Juar Bautista Guelache		1,294	1,483	1,638	1,751	180.8	24,249	21,159	19,157	17,920
San Juar Bautista Jayacatlán	173.51 63.79	2,380	2,452	2,429	2,335	528.7	14,171	13,755	13,885	14,444
San Juan Bautista lo de Soto	38.28	456	444	449	457	158.7	13,321	13,681	13,528	13,292
San Juar Bautista Suchitepec			2,684	2,961	3,150	974.8	76,370	66,724	60,482	56,853
San Juar Bautista Tlacoatzintepec	183.72	2,345	1,726	1,825	1,870	255.8	18,846	17,208	16,275	15,883
San Juar Bautista Tlachichilco	116.10	1,576 139,287	143,976	145,076	143,346	631.1	4,231	4,093	4,062	4,111
San Juar Bautista Tuxlepec	933.90	23,786	24,273	24,284	23,900	969.7	16,071	15,749	15,741	15,994
San Juan Bautista Valle Nacional	394.23	7,837	8,517	8,955	9,160	528.7	10,329	9,504	9,039	8,837
San Juan Cacahuatepec	153.10	690	666	624	569	255.8	61,965	64,198	68,519	75,142
San Juan Cieneguilla	167.13	2,589	2,887	3,108	3,247	893.3	22,010	19,738	18,335	17,550
San Juan Coatzospam	63.79		9,812	10,277	10,429	412.5	3,904	3,594	3,431	3,381
San Juan Colorado	85.48	9,032	2,780	3,036	3,190	703.3	46,974	41,313	37,830	36,003
San Juan Comaltepec	163.31	2,445	24,497	25,567	25,880	506.0	21,148	19,527	18,710	18,483
San Juan Cotzocón	945.39	22,619	401	404	399	224.3	44,261	42,827	42,509	43,041
San Juan Chicomezuchil	76.55	388		1,737	1,841	185.0	4,221	3,714	3,397	3,205
San Juan Chilateca	31.90	1,398	1,589			398.6	18,006	17,075	16,688	16,736
San Juan De los Cues	116.10	2,570	2,710	2,773	2,765	198.5	7,905	7,829	7,832	7,888
San Juan Del Estado	94.42	2,371	2,394	2,393	2,376		43,556	47,703	52,494	57,743
San Juan Del Río	108.44	1,392	1,271	1,155	1,050	559.1 289.7	18,344	17,455	17,586	18,538
San Juan Diuxi	96.96	1,531	1,609	1,597	1,515	289.7				19,203
San Juan Evangelista Analco	33.17	437	436	421	408	236.2	17,928	17,969	18,610	19,20

		Población c	ensada (INEG	il) y estimad	a (CONAPO)		Volumen p	ercápita pa	ıra Iluvia m	edia anua
OAXACA	Superficie		(habita	intes)		media - evapot.		(m³/habita	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
San Juan Guelavía	17.86	3,040	3,335	3,543	3,668	150.7	885	807	760	734
San Juan Guichicovi	563.91	28,625	32,178	34,683	36,023	671.1	13,221	11,762	10,912	10,506
San Juan Ihualte;sec	146.72	884	949	987	999	255.8	42,460	39,552	38,029	37,572
San Juan Juquila Mixes	227.10	3,737	3,976	4,076	4,048	677.9	41,197	38,721	37,771	38,032
San Juan Juquila Vijanos	37.00	1,914	2,183	2,401	2,562	432.9	8,368	7,337	6,671	6,252
Sarı Juan Lachao	190,10	4,508	5,321	6,021	6,567	318.8	13,444	11,390	10,066	9,229
Sarı Juan Lachıgalla	136.51	3,336	3,614	3,762	3,783	171.1	7,000	6,462	6,208	6,173
Sarı Juan Lajarcia	160.75	700	707	694	666	186.2	42,764	42,340	43,134	44,947
San Juan Lalana	454.19	17,543	19,790	21,459	22,452	726.5	18,808	16,673	15,376	14,696
San Juan Mazatlán	1,990.28	17,831	19,084	19,632	19,526	656.2	73,245	68,436	66,526	66.887
San Juan Mixtepec	209.24	9,918	10,268	10,382	10,313	325.4	6,864	6,630	6,558	6,602
San Juan Mixtepec	53.59	970	1,054	1,101	1,114	159.9	8,832	8,128	7,781	7,691
San Juan Numi	43.38	7,018	7,166	7,052	6,732	153.3	947	928	943	988
San Juan Ozolotepec	117.38	3,261	3,560	3,745	3,811	325.4	11,712	10,728	10,198	10,022
San Juan Petlapa	253.89	2,670	3,106	3,457	3,689	194.0	18,447	15,857	14,247	13,351
San Juan Quiahije	91.86	4,025	3,789	3,441	3,034	374.0	8,536	9,068	9,985	11,324
San Juan Quiotepec	325.34	2,592	2,757	2,831	2,820	349.2	43,829	41,206	40,129	40,286
San Juan Sayultepec	16.59	694	741	768	775	260.0	6,216	5,821	5,617	5,566
San Juan Tabaá	26.79	1,195	1,243	1,251	1,229	228.9	5,130	4,932	4,901	4,989
San Juan Tamazola	156.93	3,602	3,907	4,077	4,118	289.7	12,620	11,634	11,149	11,038
San Juan Teita	77.82	594	592	568	529	309.9	40,597	40,734	42,456	45,586
San Juan Teitipac	11.48	2,924	2,920	2,818	2,645	165.3	649	650	673	718
San Juan Tepeuxila	366.16	3,107	3,422	3,643	3,755	202.4	23,858	21,662	20,348	19,741
San Juan Teposcolula	57.41	1,494	1,351	1,230	1,127	168.2	6,465	7,149	7,852	8,570
San Juan Yaeé	93.14	1,672	1,818	1,897	1,907	567.5	31,614	29,075	27 864	27,718
San Luan Yatzona	38.27	519	601	668	721	567.5	41,847	36,138	32,513	30,123
San Juan Yucuita	75.27	748	780	789	777	260.0	26,164	25,091	24,805	25,188
San Lorenzo	89.31	5,602	5,883	5,956	5,839	414.5	6,608	6,293	6,215	6,340
San Lorenzo Albarradas	61.24	2,702	3,003	3,218	3,354	199.7	4,526	4,072	3,800	3,646
San Lorenzo Cacaotepec	12.76	10,461	12,706	14,635	16,227	201.0	245	202	175	158
San Lorenzo Cuaunecuititla	12.76	771	890	993	1,068	897.5	14,853	12,867	11,532	10,722
San Lorenzo Texmelucan	303.65	5,943	6,956	7,790	8,375	545.2	27,855	23,799	21,251	19,767
San Lorenzo Victoria	30.62	1,242	1,154	1,051	940	222.1	5,476	5,894	6,472	7,236
San Lucas Camotlán	127.58	3,292	3,787	4,178	4,438	450.1	17,444	15,164	13,745	12,940
San Lucas Ojitlán	595.81	21,004	23,185	24,569	25,081	999.9	28,365	25,697	24,249	23,754
San Lucas Quiaviní	58.69	2,006	1,891	1,719	1,513	162.4	4,751	5,040	5,544	6,299
San Lucas Zoquiapam	38.27	7,572	8,886	9,979	10,768	713.8	3,608	3,074	2,737	2,537
San Luis Amatlán	170.96	3,765	4,029	4,162	4,176	161.8	7,347	6,866	6,647	6,624
San Marcial Ozolotepec	53.58	1,816	1,977	2,066	2,081	325.9	9,615	8,832	8,452	8,391
San Marcos Arteaga	1.33.96	2,395	2,512	2,566	2,567	282.0	15,771	15,036	14,720	14,714
San Martin de los Cansecos	45.93	789	844	877	886	177.4	10,328	9,655	9,292	9,197
San Martin Huamelu pam	29.34	1,123	1,236	1,315	1,369	176.0	4,599	4,179	3,928	3,773
San Martin Itunyoso	82.93	2,729	3,117	3,403	3,580	159.9	4,858	4,253	3,896	3,703
San Martín Lachilá	49.76	1,243	1,208	1,167	1,115	177.4	7,102	7,308	7,565	7,918
San Martin Peras	237.31	9,229	9,322	9,103	8,655	255.7	6,575	6,510	6,666	7,011
San Martin Tilcajete	26.79	1,853	2,035	2,159	2,232	185.0	2,674	2,435	2,295	2,220
San Martin Toxpalan	62.52	3,412	4,051	4,619	5,075	398.6	7,303	6,151	5,395	4,910
San Martin Zacatepec	76.55	1,414	1,295	1,176	1,066	185.1	10,023	10,944	12,051	13,295
San Mateo Cajonos	25.52	668	704	717	709	196.9	7,522	7,137	7,008	7,087
San Maleo del Mar	75.27	11,159	12,738	13,936	14,672	249.9	1,686	1,477	1,350	1,282
San Mateo Etlatongo	24.40	1,157	1,303	1,410	1,490	210.1	4,431	3,935	3,636	3,441
San Mateo Nejapam	28.07	1,194	1,213	1,188	1,124	255.8	6,014	5,920	6,045	6,389
San Mateo Peñasco	155.65	1,922	2,236	2,489	2,673	309.9	25,095	21,571	19,378	18,044
San Mateo Piñas	211.79	4,332	4,704	4,917	4,979	361.4	17,671	16,274	15,569	15,375
San Mateo Río Hondo	91.86	3,642	3,875	3,975	3,952	434.2	10,951	10,293	10,034	10,092
San Maleo Sindihui	181.17	2,037	2,387	2,689	2,928	303.8	27,018	23,056	20,467	18,796
San Maleo Tlapiltepec	37.00	260	262	261	250	159.6	22,712	22,539	22,625	23,620

OAXACA	Superficie	10	ensada (INE) (habit		a (CONAPO		Volumen		ara Iluvia r	nedia ant
Municipio			and a second contract of the contract of			media - evapot.			tante/año)	-
	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Ban Mateo Yoloxochitlán	15.31	3,055	3,655	4,168	4,573	897.5	4,498	3,759	3,297	3,005
San Melchor Betaza	37.00	1,173	1,344	1,482	1,587	414.7	13,081	11,416	10,353	9,668
San Miguel Achiutla	59.97	916	959	973	958	176.	11,525	11,008	10,850	11,020
an Miguel Ahuehuetitláin	94.41	2,351	2,424	2,431	2,389	255.8	10,273	9,964	9,935	10,110
San Miguel Aloápam	133.96	2,712	2,543	2,309	2,045	201.5	9,952	10,613	11,689	13,198
San Miguel Amatitlán	198.48	6,408	6,901	7,150	7,158	226.7	7,022	6,520	6,293	6,286
San Miguel Amatlán	15.31	1,132	1,161	1,171	1,160	268.9	3,636	3,546	3,515	3,549
San Miguel Coatlán	165.86	3,272	3,587	3,775	3,818	434.2	22,009	20,076	19,077	18,862
San Miguel Chicahua	94.41	2,368	2,551	2,653	2,674	129.7	5,172	4,801	4,617	4,581
San Miguel Chimalapa	1,593.50	6,213	6,858	7,299	7,509	266.8	68,418	61,983	58.238	56,610
San Miguel Del Puerto	488.64	8,978	10,082	10,889	11,372	364.0	19,810	17,641	16,334	15,640
San Miguel Del Río	40.83	318	321	314	299	207.5	26,645	26,396	26,984	28,338
San Miguel Ejutla	40.83	915	874	818	755	177.4	7,917	8,288	8,856	9,595
San Miguel El Grande	4.71	3,753	3,450	3,131	2,830	256.3	321	350	385	426
San Miguel Huautla	111.00	1,773	1,858	1,848	1,747	113.4	7,099	6,775	6,811	7,205
San Miguel Mixtepec	48.48	2,167				545.2	12,197	13,222		
	264.10		1,999	1,814	1,634		13,444		14,570	16,175
San Miguel Panixtlahuaca		6,978	7,252	7,286	7,108	355.2		12,936	12,876	13,198
San Miguel Peras	121.20	3,337	3,465	3,424	3,235	174.6	6,343	6,108	6,182	6,543
San Miguel Piedras	108.45	1,240	1,276	1,262	1,217	289.7	25,333	24,618	24,892	25,812
San Miguel Quetzaltepec	199.03	5,578	6,327	6,899	7,260	559.5	19,964	17,601	16,142	15,339
San Miguel Santa Flor	38.27	913	1,007	1,065	1,082	372.5	15,616	14,158	13,387	13,177
San Miguel Soyaltepec	579.22	37,663	42,115	45,218	46,844	750.1	11,535	10,316	9,608	9,274
San Miguel Suchixtepec	107 17	2,731	2,984	3,138	3,197	325.9	12,789	11,704	11,130	10,925
San Miguel Tecomatlán	31.90	285	434	583	719	210.1	23,518	15,444	11,497	9,322
San Miguel Tenango	326.61	854	864	842	791	255.6	97,767	96,636	99,161	105,55
San Miguel Tequixtepec	146.72	1,079	1,090	1,090	1,081	135.6	18,434	18,248	18,248	18,400
San Miguel Tilquiapam	39.55	3,303	3,752	4,089	4,297	143.0	1,713	1,508	1,383	1,316
San Miguel Tlacamama	108.44	3,261	3,773	4,189	4,490	414.5	13,784	11,913	10,730	10,01
San Miguel Tlacotepec	112.27	3,679	4,131	4,513	4,814	159.9	4,879	4,345	3,977	3,728
San Miguel Tulancingo	53.59	447	445	427	403	151,8	18,202	18,283	19,054	20,189
San Miguel Yotao	58.69	630	735	821	885	360.8	33,614	28,812	25,794	23,929
San Nico ás	29.34	1,179	1,313	1,401	1,452	175.3	4,363	3,917	3,671	3,542
	56.14	1,027	986	920	838	222.1	12,142	12,647	13,555	14,881
San Nicolás Hidalgo	195.20	4,243	4,581	4,779	4,843	222.6	10,239	9,483	9,091	8,970
San Pablo Coatlán					1,214	174.6				8,625
San Pablo Cuatro Venados	59.96	1,343	1,348	1,299			7,797 853	7,768	8,061	406
San Pablo Etla	33.17	7,525	10,456	13,244	15,807	193.6		614	485	
San Pablo Huitzo	63.79	5,277	5,531	5,641	5,631	198.5	2,400	2,289	2,245	2,249
San Pablo Huixtepec	17.86	8,811	9,160	9,277	9,201	169.4	343	330	326	329
San Pablo Macuiltianquis	162.03	1,180	1,214	1,217	1,195	258.9	35,547	34,552	34,466	35,10
San Pablo Tijaltepec	63.79	2,595	2,875	3,061	3,155	249.2	6,127	5,530	5,194	5,039
San Pablo Villa de Mitla	82.93	10,893	11,260	11,369	11,268	360.2	2,742	2,653	2,627	2,651
San Pablo Yaganiza	34.45	1,119	1,216	1,278	1,306	196.9	6,061	5,578	5,307	5,193
San Pedro Amuzgos	74.00	5,545	5,718	5,732	5,609	528.7	7,056	6,842	6,826	6,975
San Pedro Apóstol	22.97	1,529	1,593	1,614	1,599	179.4	2,695	2,587	2,553	2,577
San Pedro Atoyac	94.41	3,934	4,424	4,771	4,961	419.9	10,077	8,961	8,309	7,991
San Pedro Cajonos	76.55	1,242	1,155	1,050	938	166.8	10,279	11,054	12,159	13,61
San Pedro Comitancillo	165.86	3,793	4,232	4,575	4,816	236.3	10,334	9,262	8,568	8,139
San Pedro Coxcaltepec Cántaros	63.79	1,093	1,142	1,154	1,131	144.9	8,454	8,091	8,007	8,170
San Pedro El Alto	127.58	4,948	5,483	5,839	5,992	325.1	8,381	7,563	7,102	6,92
San Pedro Huamelula	505.23	10,320	11,681	12,739	13,471	255.6	12,515	11,057	10,139	9,588
	103.06	2,713	3,211	3,645	3,985	222.4	8,448	7,138	6,288	5,752
San Pedro Huilotepec					14,249	847.8	27,921	24,819	23,040	22,24
San Pedro Ixcatlán	373.82	11,351	12,770	13,756						1,78
San Pedro Ixtlahuaca	40.83	3,762	4,159	4,435	4,598	201.0	2,181	1,973	1,850	
San Pedro Jaltepetongo	44.66	707	792	856	891	138.5	8,751	7,812	7,228	6,944
San Pedro Jicaván	65.07	10,213	11,374	12,173	12,588	419.9	2,675	2,402	2,245	2,171
San Pedro Jocotipac	40.83	1,055	1,191	1,294	1,356	134.7	5,214	4,619	4,251	4,057
San Pedro Juchatengo	108.44	1,613	1,725	1,788	1,802	318.8	21,434	20,042	19,336	19,18

0.000	<u> </u>				a (CONAPO)		volumen p	ercápita pa		edia anu
OAXACA	Superficie	-	(habita			media - evapot.		(m³/habita		
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
San Pedro Mártir	14.03	1,971	1,972	1,972	1,971	179.4	1,277	1,276	1,276	1,277
San Pedro Mártir Quiechapa	63.79	857	943	1,000	1,026	186.2	13,861	12,597	11,879	11,578
San Pedro Mártir Yucuxaco	51.03	1,625	1,835	1,993	2,084	293.9	9,231	8,175	7,526	7,198
San Pedro Mixtepec (Juquila)	331.71	33,864	36,541	38,089	38,588	265.0	2,595	2,405	2,307	2,278
San Pedro Mixtepec (Miahuatlán)	108.45	1,289	1,247	1,157	1,032	325.4	27,376	28,298	30,499	34,193
San Pedro Molinos	25.52	675	647	606	565	249.2	9,423	9,831	10,496	11,258
San Pedro Nopala	20.41	958	894	813	722	150.0	3,195	3,424	3,765	4,240
San Pedro Ocopetatillo	11.48	915	1,025	1,100	1,131	897.5	11,260	10,051	9,366	9,109
Sarı Pedro Ocotepec	136.51	1,860	2,054	2,179	2,235	559.5	41,065	37,186	35,053	34,175
Sarı Pedro Pochutla	421.02	38,423	38,076	36,701	34,622	251.8	2,759	2,785	2,889	3,062
Sar Pedro Quiatoni	537.12	9,999	11,223	12,106	12,578	199.7	10,727	9,557	8,860	8,527
San Pedro Sochiapam	193.93	4,738	5,270	5,626	5,788	271.6	11,117	9,994	9,362	9,100
San Pedro Tapanatepec	544.78	13,960	15,076	15,755	16,044	442.3	17,260	15,982	15,294	15,018
San Pedro Taviche	75.27	1,103	1,303	1,464	1,581	171.1	11,674	9,882	8,795	8,145
San Pedro Teozacoalco	108.45	1,491	1,662	1,781	1,842	249.2	18,129	16,263	15,177	14,674
San Pedro Teutila	43.38	4,356	4,768	5,032	5,150	958.9	9,550	8,725	8,267	8,077
San Pedro Tidaá	15.31	888	1,004	1,096	1,156	210.1	3,623	3,204	2,935	2,783
San Pedro Topiletepec	45.93	437	447	447	445	210.1	22,084	21,590	21,590	21,687
San Pedro Totolapa	391.68	2,774	2,556	2,320	2,091	115.2	16,267	17,655	19,450	21,581
	108.45	5,739	6,213	6,436	6,414	360.2	6,806	6,287	6,069	6,090
San Pedro y San Pablo Ayutla						168.2	7,549	7,863	8,329	8,917
San Pedro y San Pablo Teposcolula	162.03	3,611	3,467	3,273	3,057	130.7	16,718	15,424	14,667	14,287
San Pedro y San Pablo Tequixtepec	274.30	2,145	2,325	2,445	2,510			39,974	37,227	35,892
San Pedro Yaneri	79.10	1,035	1,152	1,237	1,283	582.2	44,493			18,990
San Pedro Yólox	127.58	2,643	2,634	2,526	2,346	349.2	16,856	16,913	17,636	
San Pedro Yucunama	30.62	256	286	305	320	155.8	18,631	16,676	15,638	14,90
San Raymundo Jalpan	19.14	1,650	1,796	1,903	1,968	169.4	1,965	1,806	1,704	1,648
San Sebastián Abasolo	16.58	2,114	2,269	2,360	2,401	177.3	1,391	1,296	1,246	1,224
San Sebastián Coatlán	177.34	2,474	2,829	3,111	3,316	222.6	15,954	13,952	12,687	11,903
San Sebastián Ixcapa	104.62	3,882	4,215	4,419	4,498	528.7	14,249	13,123	12,517	12,29
San Sebastián Nicananduta	30.62	1,695	1,749	1,764	1,744	293.9	5,310	5,146	5,102	5,161
San Sebastián Río Hondo	81.65	3,439	3,912	4,275	4,508	434.2	10,309	9,062	8,293	7,864
San Sebastián Teccmaxtlahuaca	369.99	8,974	8,475	7,883	7,277	290.7	11,985	12,690	13,643	14,779
San Sebastián Teitipac	30.62	2,133	2,011	1,836	1,629	177.3	2,545	2,700	2,957	3,333
San Sebastián Tutla	8.93	16,706	25,340	33,689	41,558	181.6	97	64	48	39
San Simón Almolongas	38.27	2,573	2,797	2,941	3,006	175.3	2,608	2,399	2,281	2,232
San S món Zahuatlán	35.72	2,334	2,753	3,099	3,348	226.7	3,469	2,941	2,613	2,419
San Vicente Coatlán	135.24	4,360	4,931	5,353	5,605	204.1	6,331	5,598	5,157	4,925
San Vicente Lachixío	93.13	3,544	4,048	4,457	4,753	361.3	9,494	8,312	7,549	7,079
San Vicente Nuñu	100.79	541	576	593	596	210.1	39,145	36,766	35,712	35,53
Santa Ana	51.03	1,937	1,906	1,815	1,677	175.3	4,619	4,694	4,929	5,335
Santa Ana Ateixtlahuaca	19.14	544	555	539	508	897.5	31,576	30,950	31,869	33,81
Santa Ana Cuauhtémoc	24.24	900	941	936	889	372.5	10,034	9,597	9,648	10,15
Santa Ana Del Valle	34.45	2,213	2,077	1,887	1,668	219.3	3,413	3,637	4,003	4,529
Santa Ana Tavela	81.65	1,030	1,012	961	886	186.2	14,762	15,024	15,822	17,16
	116.10	2,066	2,093	2,048	1,951	358.9	20,166	19,906	20,343	21,35
Santa Ana Tlapacoyan	43.38	1,185	1,091	990	894	231.6	8,477	9,207	10,146	11,23
Santa Ana Yareni	26.79	3,553	3,754	3,827	3,786	185.0	1,395	1,320	1,295	1,309
Santa Ana Zegache		1,011	957	871	763	186.2	8,696	9,186	10,093	11,52
Santa Catalina Quieri	47.21				1,891	175.3	13,623	12,511	11,867	11,59
Santa Catarina Cuixtla	125.03	1,609	1,752	1,847		194.5	14,465	13,293	12,634	12,32
Santa Catarina Ixtepeji	196.48	2,642	2,875	3,025	3,100				18,922	18,93
Santa Catarina Juquila	811.42	14,631	15,588	16,043	16,035	374.1	20,748	19,474		44,74
Santa Catarina Lachatao	276.85	1,604	1,641	1,627	1,574	254.4	43,904	42,914	43,283	
Santa Catarina Loxicha	70.17	4,640	5,167	5,519	5,680	265.0	4.007	3,598	3,369	3,27
Santa Catarina Mechoacán	61.24	4,426	5,060	5,544	5,839	412.5	5,708	4,992	4,557	4,32
Santa Catarina Minas	25.52	1,676	1,880	2,034	2,131	143.0	2,178	1,941	1,794	1,713
santa Catarina Quiané	24.24	1,820	1,757	1,665	1,557	169.4	2,257	2,337	2,467	2,63
Santa Catarina Quioquitani	45.93	443	492	529	556	186.2	19,307	17,384	16,168	15,38

0.00/4.00					da (CONAPO)	Lámina anual				iedia anu
OAXACA	Superficie		(hab	itantes)		media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Santa Catarina Tayata	47.20	762	957	1,131	1,273	176.0	10,904	8,682	7,347	6,527
Santa Catarina Ticuá	15.31	901	1,157	1,388	1,587	249.2	4,235	3,298	2,749	2,404
Santa Catarina Yosonotti	71.45	1,926	2,139	2,287	2,373	388.7	14,420	12,984	12,143	11,703
Santa Catarina Zapoquila	112.27	595	583	552	512	158.7	29,941	30,557	32,273	34,795
Santa Cruz Acatepec	14.03	1,317	1,421	1,471	1,473	897.5	9,561	8,861	8,560	8,548
Santa Cruz Amilpas	10.21	6,775	8,309	9,757	11,088	181.6	274	223	190	167
Santa Cruz de Bravo	112.27	424	399	366	326	255.8	67,739	71,984	78,474	88,103
Santa Cruz Itundujia	211.78	11,156	12,221	12,880	13,135	341.4	6,481	5,916	5,613	5,504
Santa Cruz Mixtepec	66.34	3,442	3,506	3,445	3,284	358.9	6,916	6,790	6,910	7,249
Santa Cruz Nundaco	159.48	2,788	3,106	3,330	3,461	258.5	14,788	13,274	12,381	11,913
Santa Cruz Papalutla	11.48	1,909	2,026	2,090	2,105	150.7	906	854	828	822
Santa Cruz Tacache de Mina	33.17	2,719	2,615	2,472	2,314	222.1	2,710	2,818	2,981	3,184
anta Cruz Tacahua	98.24	1,207	1,327	1,399	1,430	336.4	27,384	24,908	23,626	23,114
anta Cruz Tayata	42.10	595	718	825	910	176.0	12,456	10,322	8,983	8,144
Santa Cruz Xitla	38.27	4,233	4,587	4,785	4,834	175.3	1,585	1,463	1,402	1,388
Santa Cruz Xoxocotlán	76.55	56,024	80,191	102,344	121,855	181.6	248	173	136	114
Santa Cruz, Zenzontepec	361.06	15,765	18,150	19,977	21,136	356.4	8,162	7,090	6,441	6,088
Santa Gertrudis	21.69	3,661	3,496	3,506	3,659	169.4	1,004	1,051	1,048	1,004
Santa Inés de Zaragoza	61.24	2,050	2,374	2,642	2,837	236.3	7,058	6,094	5,476	5,100
Santa Inés del Monte	34.45	2,304	2,447	2,502	2,479	169.4	2,533	2,385	2,333	2,354
Santa Inés Yatzeche	11.48	1,216	1,151	1,048	923	169.4	1,600	1,690	1,856	2,107
Santa Lucia Del Camino	7.65	46,801	61,150	73,650	84,076	181.6	30	23	19	17
Santa Lucía Miahuatlán	109.72	2,940	3,387	3,727	3,923	434.2	16,204	14,065	12,782	12,144
Santa Lucía Monteverde	74.00	6,958	7,742	8,259	8,498	488.4	5,194	4,668	4,376	4,253
Santa Lucia Ocotlán	12.76	3,609	4,061	4,394	4,596	179.4	634	564	521	498
Santa Magdalena Jicotlán	48.48	112	102	91	86	167.7	72,589	79,705	89,340	94,534
Santa María Alotepec	149.27	2,777	3,076	3,278	3,388	559.1	30,054	27,132	25,460	24,634
Santa Mana Apazco	68.89	2,648	3,036	3,304	3,445	158.9	4,134	3,606	3,314	3,178
Santa Maria Atzompa	22.96	16,758	25,066	33,009	40,261	201.0	275	184	140	115
Santa Maria Camotlán	90.58	1,620	1,579	1,502	1,410	189.9	10,619	10,895	11,453	12,201
Santa Maria Colotepec	663.43	19,014	22,873	26,387	29,370	265.0	9,245	7,685	6,661	5,985
Santa María Cortijo	88.03	1,062	1,199	1,295	1,351	528.7	43,826	38,818	35,940	34,451
Santa Maria Coyotepec	10.21	1,739	2,072	2,328	2,519	178.8	1,050	881	784	725
Santa María Chachoapam	25.52	841	891	919	926	173.9	5,278	4,982	4,830	4,794
Santa Maria Chilchotla	347.02	22,436	25,562	27,834	29,092	1009.9	15,620	13,710	12,591	12,047
Santa Maria Chimalapa	3,572.31	7,408	7,792	7,895	7,747	545.4	263,018	250,056	246,793	251,508
Santa Maria del Rosario	2.57	428	389	355	324	176.0	1,058	1,164	1,275	1,397
Santa Maria Del Tule	25.52	7,623	9,194	10,549	11,687	181.6	608	504	439	397
Santa Maria Ecatepec	719.56	3,513	3,742	3,851	3,845	284.3	58,224	54,660	53,113	53,196
Santa María Guelacé	21.69	791	882	957	1,012	177.3	4,862	4,360	4,019	3,800
Santa Maria Guienagati	211.79	3,162	3,608	3,943	4,147	333.9	22,367	19,602	17,937	17,054
Santa Maria Huatulco	57 9 .22	29,658	34,230	37,826	40,421	361.4	7,059	6,116	5,535	5,179
Santa María Huazolotitlán	322.78	10,579	11,963	12,994	13,650	412.5	12,586	11,130	10,247	9,754
Santa Maria Ipalapa	109.72	5,120	5,538	5,796	5,900	528.7	11,330	10,475	10,009	9,832
	201.58	617	621	603	567	194.4	63,504	63,095	64,978	69,104
Santa María Ixcatlán Santa Maria Jacatepec	429.95	10,215	11,280	12,016	12,418	717.7	30,209	27,356	25,681	24,850
Santa María Jacatepec Santa María Jalapa del Marques	562.64	10,215	11,424	11,638	11,604	169.0	8,709	8,322	8,169	8,193
		624	674	707	721					
Santa María Jaltianguis	45.93					231.6	17,044	15,779	15,043	14,75
Santa María La Asunción	33.17	3,480	4,008	4,392	4,610	713.8	6,804	5,907	5,391	5,136
Santa María Lachixío	113.55	1,117	1,260	1,361	1,426	361.3	36,727	32,559	30,143	28,769
Santa María Mixtequilla	186.27	4,210	4,466	4,602	4,634	236.3	10,456	9,857	9,566	9,500
Santa María Nativitas	127.58	801	840	852	840	157.2	25,037	23,875	23,539	23,87
Santa María Nduayaco	100.79	636	761	878	978	159.6	25,296	21,141	18,324	16,45
Santa Maria Ozolotepec	95.69	4,339	4,784	5,077	5,212	325.9	7,187	6,518	6,142	5,983
Santa María Pápalo	57.69	2,173	2,415	2,580	2,660	255.7	6,789	6,109	5,718	5,546
Santa Maria Peñoles	181.17	7,215	7,853	8,219	8,291	212.2	5,330	4,897	4,679	4,638
Santa María Petapa	145.44	14,306	17,014	19,402	21,390	380.3	3,866	3,251	2,851	2,586

OAXACA	Superficie	OAL INDIAN BE		a cold mater	la (CONAPO)		Volumen p			edia anual
Municipio	(km²)		annia an	tantes)	2020	media - evapot.		(m³/habita		
Sarita Maria Quiegolani	122.48	2000	2010 1,791	2020 1,954	2030	Hp (mm)	2000	2010	2020	2030
Santa Maria Sola	125.03	1,745	1,850		2,051	199.4	15,498	13,638	12,500	11,909
Santa Maria Tataltepec	42.10	284		1,895	1,882	545.2	39,063	36,846	35,971	36,219
Santa Maria Tecomavaca	221.99	1,901	300	300	281	238.3	35,326	33,442	33,442	35,703
Santa María Temaxcalapa	56.05	998	1,923	1,923	1,906	164.5	19,205	18,985	18,985	19,154
Santa Maria Temaxcaltepec	86.76	2,324	1,079 2,698	1,132	1,156	432.9	24,312	22,487	21,434	20,989
Santa Maria Teopoxco	25.52	5,061	5,674	2,992	3,181	396.8	14,815	12,761	11,507	10,824
Santa Maria Tepantlali	119.93	2,881	3,342	6,100 3,706	6,319 3,942	635.7 559.1	3,205	2,859	2,659	2,567
Santa María Texcatitlán	44.66	1,257	1,380	1,457	1,495	139.1	23,275 4,943	20,064	18,094	17,010
Santa Maria Tlahuitoltepec	75.27	8,788	9,899	10,688	11,101	559.1	4,789	4,503 4,251	4,265	4,156
Santa Maria Tlalixtac	63.79	1,635	1,878	2,060	2,164	372.5	14,535	12,654	3,938 11,536	3,791
Santa María Tonarneca	454.19	21,069	22,025	22,234	21,787	238.6	5,143	4,920	4,873	10,982 4,973
Santa Maria Totolapilla	267.92	1,059	1,141	1,193	1,215	254.2	64,299	59,678	57,076	56,043
Santa Maria Xadani	89.31	5,925	6,034	5,924	5,629	239.6	3,612	3,546	3,612	
Santa María Yalina	28.07	394	424	440	455	228.9	16,304	15,151	14,600	3,801 14,118
Santa Maria Yavesia	38.27	478	491	491	490	273.7	21,915	21,335	21,335	21,379
Santa Maria Yolotepec	42.10	487	503	505	505	279.0	24,116	23,349	23,256	23,256
Santa Maria Yosoyua	71.45	1,270	1,302	1,306	1,296	309.9	17,434	17,005	16,953	17,084
Santa María Yucuh ti	72.72	6,842	7,327	7,598	7,667	388.7	4,131	3,858	3,720	3,687
Santa Maria Zacatepec	524.36	16,043	16,569	16,416	15,700	572.0	18,697	18,104	18,272	19,106
Santa Maria Zaniza	153.10	1,710	1,964	2,167	2,301	477.5	42,756	37,226	33,739	31,774
Santa María Zoquitlán	306.20	3,568	3,321	3,014	2,690	117.4	10,072	10,822	11,924	13,360
Santiago Amoltepec	142.89	9,979	11,368	12,328	12,770	477.5	6,838	6,003	5,535	5,344
Santiago Apoala	57.41	1,428	1,639	1,803	1,913	113.4	4,559	3,972	3,611	3,403
Santiago Apóstol	21.69	4,824	5,140	5,283	5,268	185.0	832	781	759	762
Santiago Astata	446.54	2,687	2,859	2,937	2,926	255.6	42,483	39,927	38.867	39,013
Santiago Atitlán	82.93	2,881	3,269	3,554	3,719	559.1	16,094	14,184	13,047	12,468
Santiago Ayuquililla	48.48	2,504	2,746	2,915	3,002	226.7	4,389	4,002	3,770	3,661
Santiago Cacaloxterec	51.03	1,406	1,694	1,961	2,189	179.1	6,502	5,397	4,662	4,176
Santiago Camotlán	332.99	3,186	3,351	3,397	3,339	657.5	68,723	65,339	64,454	65,574
Santiago Comaltepec	65.07	1,597	1,493	1,357	1,214	349.2	14,228	15,219	16,744	18,717
Santiago Chazumba	280.68	4,500	4,982	5,354	5,605	130.7	8,154	7,365	6,854	6,547
Santiago Choapam	247.51	5,029	5,183	5,190	5,071	703.3	34,612	33,584	33,539	34,326
Santiago Del Río	82.93	754	776	780	764	242.4	26,658	25,903	25,770	26,310
Santiago Huajolotitlán	173.51	4,142	4,226	4,182	4,039	195.7	8,199	8,036	8,120	8,408
Santiago Huauclilla	89.31	971	1,023	1,040	1,026	144.9	13,323	12,646	12,439	12,609
Santiago Ihuitlán Plumas	137.79	628	716	787	836	178.1	39,075	34,273	31,181	29,353
Santiago Ixcuintepec	102.07	1,254	1,402	1,509	1,574	450.1	36,638	32,770	30,446	29,189
Santiago Ixtayutla	367.44	11,186	13,141	14,763	15,901	416.9	13,696	11,658	10,377	9,635
Santiago Jamiltepec	622.60	18,549	17,261	15,674	13,979	311.4	10,451	11,231	12,368	13,868
Santiago Jocotepec	732.32	13,265	15,107	16,512	17,419	684.7	37,803	33,193	30,369	28,788
Santiago Juxtlahuaca	583.05	29,256	30,666	31,135	30,702	481.5	9,596	9,155	9,017	9,144
Santiago Lachiguirí	673.63	6,625	7,443	8,061	8,428	254.2	25,842	23,002	21,239	20,314
Santiago Lalopa	112.27	544	638	712	761	567.5	117,123	99,866	89,487	83,725
Santiago Laollaga	506.50	2,911	3,203	3,402	3,509	184.3	32,072	29,148	27,443	26,607
Santiago Laxopa	118.65	1,491	1,586	1,632	1,633	166.8	13,272	12,477	12,125	12,118
Santiago Llano Grande	114.82	3,427	3,635	3,728	3,719	528.7	17,714	16,701	16,284	16,323
Santiago Matatlán	126.31	9,099	9,215	8,975	8,461	162.4	2,254	2,226	2,285	2,424
Santiago Miltepec	82.93	408	363	331	308	158.7	32,253	36,251	39,756	42,725
Santiago Minas	389.13	1,746	1,877	1,940	1,931	362.2	80,718	75,085	72,647	72,985
Santiago Nacaltepec	213.06	2,516	2,563	2,564	2,527	129.9	11,002	10,800	10,796	10,954
Santiago Nejapilla	38.27	278	309	329	338	210.1	28,925	26 023	24,441	23,790
Santiago Niltepec	680.01	5,518	5,534	5,379	5,095	266.8	32,874	32,779	33,724	35,603
Santiagc Nundiche	94.41	1,073	1,172	1,239	1,268	173.6	15,278	13,987	13,231	12,928
Santiago Nuyoó	48.48	2,997	3,258	3,429	3,520	388.7	6,288	5,784	5,495	5,353
Santiago Pinotepa Nacional	719.56	46,003	47,936	48,537	48,018	414.5	6,484	6,222	6,145	6,211
Santiago Suchilquitongo	44.65	8,293	9,330	10,172	10,809	232.2	1,250	1,111	1,019	959

OAXACA	Superficie		ensada (INEC habit)		a (OUNAFO) Lámina anual media - evapot.	· Juillell J	ercápita pa m³/habit)		vuia aiiua
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Santiago Tamazola	204.13	4,638	4,721	4,722	4,658	255.8	11,259	11,062	11,059	11,211
Santiago Tapextla	187.55	3,382	3,774	4,031	4,155	528.7	29,320	26,275	24,599	23,865
Santiago Tenango	196.48	1,801	2,059	2,259	2,403	185.3	20,218	17,685	16,119	15,153
Santiago Tepetlapa	24.24	144	135	125	115	151.8	25,557	27,260	29,441	32,001
Santiago Tetepec	380.20	5,214	5,624	5,845	5,889	311.4	22,704	21,049	20,253	20,102
Santiago Texcalcingo	25.52	2,832	3,157	3,372	3,471	897.5	8,087	7,255	6,792	6,598
Santiago Textitlán	192.65	3,458	3,782	3,991	4,093	428.9	23,897	21,850	20,706	20,190
Santiago Tilantongo	116.10	4,051	4,369	4,540	4,562	289.7	8,301	7,697	7,407	7,372
Santiago Tillo	22.96	529	598	644	672	260.0	11,285	9,983	9,270	8,884
Santiago Tlazoyaltepec	93.13	4,506	4,782	4,885	4,833	212.2	4,387	4,134	4,046	4,090
Santiago Xanica	187.55	3,412	3,771	3,990	4,065	335.8	18,458	16,701	15,784	15,493
Santiago Xiacui	67.62	1,840	2.053	2,220	2,350	273.7	10,059	9,016	8,338	7,876
Santiago Yaitepec	53.58	3,264	3,539	3,690	3,712	396.8	6,514	6,008	5,762	5,728
Santiago Yaveo	1,315.37	6,908	7,879	8,605	9,067	702.0	133,664	117,192	107,304	101,837
Santiago Yolomécatl	63.79	1,799	1,986	2,120		159.6	5,660	5,127	4,803	4,639
Santiago Yosondúa	215.61	7,874	8,707	9,305	9,647	275.0	7,532	6,811	6,373	6,147
Santiago Yucuyachi	90.58	1,222	1,334	1,412	1,468	255.8	18,963	17,371	16,411	15,785
Santiago Zacatepec	142.89	5,172	5,447	5,511	5,381	754.3	20,839	19,787	19,557	20,029
Santiago Zoochila	24.24	482	464	429	389	222.0	11,166	11,599	12,545	13,835
Santo Domingo Albarradas	140.34	783	773	741	692	360.2	64,556	65,392	68,215	73,046
Santo Domingo Armenta	125.03	3,502	3,967	4,311	4,529	528.7	18,876	16,664	15,334	14,596
Santo Domingo Chihuitán	67.62	1,555	1,723	1,849	1,928	184.3	8,016	7,234	6,741	6,465
Santo Domingo de Morelos	107.17	9,132	10,430	11,415	12,030	238.6	2,800	2,451	2,240	2,125
Santo Domingo Ingenio	354.68	7,625	8,507	9,169	9,604	245.3	11,410	10,227	9,489	9,059
Santo Domingo Ixcatlán	21.69	915	994	1,042	1,058	275.0	6,520	6,002	5,725	5,639
Santo Domingo Nuxaá	68.89	3,584	4,009	4,310	4,465	236.3	4,541	4,060	3,776	3,645
Santo Domingo Ozolotepec	68.89	1,174	1,290	1,361	1,395	325.4	19,093	17,376	16,470	16,068
Santo Domingo Petapa	232.20	7,726	8,873	9,822	10,510	380.3	11,430	9,953	8,991	8,403
Santo Domingo Roayaga	74.00	995	1,183	1,341	1,466	414.7	30,841	25,940	22,884	20,933
Santo Domingo Tehuar tepec	965.80	55,189	53,342	50,454	46,938	224.0	3,920	4,056	4,288	4,609
Santo Domingo Teojomulco	145.44	4,505	4,583	4,508	4,312	545.2	17,601	17,301	17,589	18,389
Santo Domingo Tepuxtepec	66.34	4,179	4,589	4,812	4,841	199.7	3,170	2,887	2,753	2,737
Santo Domingo Tlatayapam	12.76	167	190	209	219	210.1	16,054	14,111	12,828	12,242
Santo Domingo Tomaltepec	49.76	2,944	2,943	2,854	2,707	181.6	3,070	3,071	3,167	3,339
Santo Domingo Tonalá	126,31	7,627	8 466	9,107	9,545	222.1	3,679	3,314	3,081	2,939
Santo Domingo Tonaltepec	20.41	342	413	469	517	168.1	10,034	8,309	7,317	6,637
Santo Domingo Xagacia	38.27	1,088	1,254	1,382	1,478	166.8	5,866	5,090	4,618	4,318
Santo Demingo Yanhuitlán	22.96	1,627	1,692	1,708	1,683	234.8	3,314	3,187	3,157	3,204
Santo Demingo Yodohino	56.14	527	484	439	398	307.0	32,700	35,605	39,255	43,299
Santo Domingo Zanatepec	1,024.49	10,910	11,700	12,167	12,342	364.6	34,236	31,924	30,699	30,263
Santo Tomás Jalieza	51.03	3,228	3,501	3,666	3,729	185.0	2,924	2,696	2,575	2,531
Santo Tomás Mazaltepec	51.03	2,022	2,214	2,349	2,435	193.9	4,894	4,469	4,213	4,064
Santo Tomás Ocotepec	72.72	4,324	4,901	5,334	5,594	258.5	4,348	3,836	3,525	3,361
Santo Tomás Tamazulapam	66.34	1,766	2,153	2,507	2,808	434.2	16,310	13,379	11,489	10,258
Santos Reyes Nopala	196.48	14,696	16,417	17,633	18,312	394.7	5,277	4,724	4,398	4,235
Santos Reyes Pápalo	25.52	2,682	2,968	3,159	3,262	260.3	2,476	2,238	2,102	2,036
Santos Reyes Tepejillo	89.31	1,525	1,688	1,816	1,905	159.9	9,362	8,458	7,862	7,495
Santos Reyes Yucuná	16.59	1,525	1,774	1,973	2,101	185.1	2,014	1,731	1,557	1,462
Silacayoáparn	417.20	8,075	7.988	7,688	7,243	255.8	13,217	13,361	13,883	14,736
Sitio de Xitlapehua	66.34	663	724	768	791	161.8	16,191	14,827	13,977	13,571
Soledad Etla	34.45	4,068	4,374	4,575	4,677	193.6	1,640	1,525	1,458	1,426
Tamazulapam del Esp ritu Santo	63.79	6,967	7,075	6,908	6,526	559.1	5,119	5,041	5,163	5,465
Tanetze de Zaragoza	58.69	1,933	2,059	2,128	2,145	432.9	13,143	12,339	11,939	11,844
Taniche	22.97	903	849	773	684	177.4	4,513	4,800	5,272	5,958
Tataltepec de Valdés	369.99	5,534	5,927	6,105	6,080	311.4	20,817	19,437	18,870	18,948
Teococuilco de Marcos Pérez	113.55	1,808	1,673	1,517	1,363	201.5	12,653	13,674	15,081	16,785
Teotitlán de Flores Magón	95.69	7,797	8,480	8,967	9,251	129.0	1.584	1,456	1,377	1,335

		Población c	ensada (INE	3I) y estimad	a (CONAPO)	Lámina anual	Volumen	percápita p	ara Iluvia m	nedia anua
OAXACA	Superficie		(habit	antes)	1177700	media - evapot.	H	(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Teotitlán del Valle	81.65	5,798	6,243	6,512	6,622	245.1	3,452	3,206	3,074	3,023
Teolongo	39.55	986	984	965	937	156.8	6,291	6.304	6,428	6,620
Tepelmeme Villa de Morelos	495.02	1,631	1,607	1,544	1,458	153.0	46,448	47,141	49,065	51,959
Tezoatlán de Segura y Luna	334.27	12,838	13,284	13,178	12,624	180.2	4,691	4,534	4,570	4,771
Tlacolula de Matamoros	244.96	13,989	13,540	12,836	11,991	125.8	2,203	2.276	2,401	2,570
Tlacotepec Plumas	37.00	530	477	435	401	178.1	12.433	13,814	15,148	16,432
Tlalixtac de Cabrera	61.24	7,111	8,651	10,072	11.328	194.0	1,670	1.373	1,179	1,049
Totontepec Villa de Morelos	318.95	5,873	6,470	6,876	7,085	457.7	24,857	22,563	21,231	20,605
Trinidad Vista Hermosa, La	31.90	325	297	269	245	156.8	15,395	16,846	18,600	20,422
Trinidad Zaachila	34.45	2,933	3,221	3,413	3,513	169.4	1,990	1.812	1,710	1.661
Unión Hidalgo	132.69	12,634	13,305	13,648	13,679	245.3	2,576	2,446	2.385	2,379
Valerio Trujano	53.58	1,572	1,718	1.822	1.882	140.5	4,790	4,383	4,133	4,001
Villa de Chilapa de Díaz	234.75	1,777	1,848	1.870	1.846	429.2	56,705	54,527	53,885	54,586
Vi la de Etia	17.86	8,139	8,490	8,628	8,603	193.6	425	407	401	402
Villa de Tamazulápam del Progreso	102.60	6,392	8,025	9,532	10,857	210.1	3,373	2,686	2.262	1,986
Villa de Tututepec de Melchor Ocampo		44,364	45.307	44,613	42,634	355.9	10,021	9,813	9.965	10,428
Villa de Zaachila	54.86	20,223	25,186	29,524	33,130	169.4	460	369	315	281
Villa Díaz Ordaz	209.23	5,795	5,553	5,139	4.626	257.0	9.280	9.684	10,464	11.624
Villa Hidaloo	35.72	2,214	2,228	2.164	2.043	210.2	3.392	3,371	3.470	3,676
Vilia Sola de Vega	680.01	13,112	12,239	11,112	9.881	309.2	16,036	17,180	18,922	21,279
Villa Talea de Castro	54.86	2,779	2,836	2,808	2,715	432.9	8,546	8,374	8.457	8,747
Villa Tejupam de la Unión	71.45	2,408	2,709	2,942	3.098	144.2	4,279	3,803	3,502	3,326
Yaxe	65.07	2,359	2,668	2,908	3,065	115.2	3,178	2,810	2,578	2,446
Yogana	91.86	1,476	1,686	1.845	1,941	204.1	12,704	11,121	10,163	9,660
Yutanduchi de Guerrero	223.27	1,313	1,430	1,497	1,518	289.7	49.255	45,225	43,201	42,603
Zapotitlán Del Río	492.47	3,333	3,860	4,280	4,566	428.9	63,380	54,727	49,356	46,265
Zapotitlán Lagunas	112.27	3,567	3,638	3,572	3,390	255.8	8,052	7,895	8,041	8,472
Zapotillán Palmas	59.96	1,623	1,627	1,578	1,491	198.5	7,333	7,314	7,542	7,982
Zimatlán de Alvarez	255.16	17,462	17,834	17,626	16,978	169.4	2,476	2,424	2,453	2,546
Estata	95,312.37	3,582,180	3.816,870	3,962,397	4,022,105	379.0	10.084	9.464	9,117	8,981

		Población c	ensada (INE)	GI) y estimad	a (CONAPO)	Lámina anual	Volumen	percápita pa	ara Iluvia m	nedia anua
PUEBLA	Superficie		(habit	antes)	TO ARREST OF THE REAL PROPERTY OF THE PROPERTY	media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Acajete	173.49	50,871	53,973	55,701	56,009	197.6	674	635	616	612
Acateno	227.07	9,503	10,683	11,538	12,013	1074.7	25,679	22,843	21,150	20,314
Acatlán	483.48	35,724	37,882	39,208	39,660	209.0	2,828	2,667	2,577	2,548
Acatzingo	125.02	41,716	46,377	50,027	52,455	163.2	489	440	408	389
Acteopan	39.55	3,147	3,057	2,854	2,565	209.8	2,636	2,714	2,907	3,234
Ahuacatlán	94.40	13,486	15,400	16,880	17,762	440.0	3,080	2,697	2,461	2,338
Ahuatlán	193.90	3,896	3,986	3,938	3,769	205.0	10,201	9,970	10,092	10,544
Ahuazolepec	110.99	9,378	10,512	11,415	12,012	118.1	1,398	1,247	1,148	1,091
Ahuehuetitla	108.44	2,697	3,086	3,421	3,678	209.0	8,403	7,343	6,624	6,161
Ajalpan	325.30	50,308	58,915	66,328	71,808	499.7	3,231	2,759	2,451	2,264
Albino Zertuche	58.68	2,052	2,027	1,961	1,867	233.0	6,663	6,745	6,972	7,324
Aljojuca	130.12	6,797	6,802	6,622	6,283	167.2	3,200	3,198	3,285	3,462
Altepexi	63.78	16,366	19,540	22,565	25,193	86.1	335	281	243	218
Amixtlári	33 17	4,858	5,554	6,106	6,446	440.0	3,004	2,628	2,390	2,264
Amozoc	183.70	66,756	83,309	99,866	115,550	217.8	599	480	401	346
Aguixtla	190.09	7,909	8,794	9,442	9,810	179.4	4,312	3,878	3,612	3,476
Atempari	34.45	19,170	21,817	23,939	25,345	331.6	596	524	477	451
Atexcal	395.46	3,856	4,419	4,876	5,208	131.8	13,513	11,791	10,686	10,005
Atlixco	229.22	120,093	121,727	120,655	117,173	209.8	400	395	399	410
Atoyatempan	21.69	5,951	6,440	6,778	6,949	159.0	579	535	509	496
Atzala	34.45	1,339	1,253	1,144	1,018	209.5	5,390	5,760	6.309	7,089

	i.	rupración c			da (CONAPO)					edia anua
PUEBLA	Superficie		(habi	tantes)		media - evapot.		(m³/habit	ante/año)	
Municípie	(km²)	2000	2010	20:20	2030	Hp (mm)	2000	2010	2020	2030
Atzitzihuacan	127.57	12,195	11,457	10,434	9,224	209.8	2,194	2,336	2,565	2,901
Atzizintla	94.40	8,329	8,575	8,534	8,227	191.6	2,171	2,109	2,119	2,198
Axutla	146.70	1,329	1,227	1,116	1,005	253.3	27,965	30,289	33,302	36,980
Ayotoxco de Guerrero	130.12	7,956	8,897	9,592	9,999	570.2	9,326	8,340	7,736	7,421
Calpan	53.59	13,930	14,196	14,052	13,541	215.9	831	815	8.24	855
Caltepec	473.28	5,259	5,846	6,278	6,524	128.4	11,554	10,394	9,679	9,314
Camocuaut!a	21.69	2,237	2,662	3,032	3,303	440.0	4,266	3,585	3,148	2,889
Caxhuacan	20.41	4,075	4,908	5,663	6,261	649.9	3,255	2,702	2,342	2,118
Coatepec	10.22	901	811	738	682	752.8	8,539	9,487	10,426	11,282
Coatzingo	68.89	3,681	4,232	4,682	5,009	562.5	10,528	9,157	8,277	7,736
Cohetzala	344.44	1,929	1,941	1,888	1,775	210.0	37,503	37,271	38,318	40,757
Cohuecan	51.03	4,745	5,408	5,954	6,344	209.8	2,256	1,979	1,798	1,687
Coronango	37.00	28,420	31,184	33,279	34,595	227.2	296	270	253	243
Coxcatlán	304.89	19,287	21,624	23,500	24,808	96.5	1,526	1,361	1,252	1,186
Coyorneapan	229.62	13,086	14,995	16,448	17,270	337.0	5,914	5,161	4,705	4,481
Coyotepec	103.33	2,596	2,771	2,889	2,942	562.5	22,390	20,976	20,119	19,757
Cuapiaxtla de Madero	25.52	6,815	8,109	9,297	10,302	163.2	611	514	448	404
Cuautempan	85.47	9,268	10,282	10,994	11,346	377.1	3,478	3,135	2,932	2,841
Cuautnchán	136.50	7,324	8,447	9,416	10,163	194.8	3,630	3,147	2,823	2,616
Cuautlacingo	33.17	48,518	60,947	73,481	85,514	227.2	155	124	103	88
Cuayuca de Andrade	160.75	4,104	4,445	4,665	4,758	179.2	7,019	6,481	6,175	6,054
Cuetzalan del Progreso	135.22	46,535	53,588	59,260	62,965	570.2	1,657	1,439	1,301	1,225
Cuyoaco	294.68	14,907	16,975	18,709	19,997	125.6	2,482	2,180	1,978	1,851
Chalchicomula de Sesma	364.85	39,781	41,354	41,905	41,471	185.7	1,703	1,638	1,617	1,634
Chapulco	146.70	5,748	7,082	8,318	9,359	112.6	2,874	2,332	1,986	1,765
Chiautla	685.05	21,782	24,004	25,651	26,636	216.5	6,810	6,180	5,783	5,569
Chiautzingo	44.66	18,297	19,464	20,161	20,373	215.9	527	495	478	473
Chiconcuautla	113.55	13,274	14,931	16,086	16,603	584.3	4,998	4,443	4,124	3,996
Chichiquila	100.78	20,910	23,459	25,244	26,059	445.9	2,149	1,915	1,780	1,724
Chietla	276,82	37,540	37,675	36,879	35,279	216.2	1,594	1,588	1,623	1,696
Chigmecatitlán	28.06	1,350	1,720	2,086	2,416	562.5	11,692	9,177	7,567	6,533
Chignahuapan	591.92	50,761	54,940	57,697	58,898	183.5	2,140	1,977	1,883	1,844
Chignautla	104.61	22,375	27,534	32,463	36,747	360.9	1,687	1,371	1,163	1,027
Chila	126.29	5,185	5,492	5,642	5,628	209.0	5,090	4,806	4,678	4,689
Chila de la Sal	199.01	2,009	2,008	1,945	1,836	253.3	25,096	25,108	25,922	27,460
	93.12	7,486	7,915	8,102	8,040	517.2	6,434	6,085	5,945	5,991
Honey Chi.chotla	94.40	18,383	19,872	20,656	20,648	343.7	1,765	1,633	1,571	1,572
	67.62	2,880	2,920	2,882	2,770	209.0	4,907	4,839	4.903	5,102
Chinaritla	10.22	5,744	6,116	6,334	6,390	215.9	384	361	348	345
Domingo Arenas		11,193	13,236	14,923	16,046	499.7	4,898	4,142	3,674	3,417
Eloxochitlán	109.71		4,846	4,612	4,285	205.0	3,004	3,076	3,232	3,478
Epatlán	72.72	4,962				191.6	1,600	1,442	1,339	1,280
Esperanza	116.09	13,895	15,424	16,607	17,375		16,082	14,343	13,290	12,801
Francisco Z. Mena	535.79	16,862	18,906	20,404	21,184	506.1	831	758	715	698
General Felipe Angeles	73.99	15,551	17,050	18,070	18,515 6,774	174.7 209.0	1,748	1,788	1,887	2,047
Guadalupe	66.35	7,932	7,754	7,350						1,645
Guadalupe Victoria	239.83	15,266	16,369	17,037	17,214	118.0	1,854	1,730	1,662	
Hermenegildo Galeana	43.37	8,484	9,964	11,224	12,112	829.1	4,238	3,609	3,204	2,969
Huaquechula	223.25	29,438	30,953	31,508	31,114	209.8	1,591	1,513	1,486	1,505
Huatlallauca	126.29	8,272	9,359	10,216	10,783	562.5	8,588	7,591	6,954	6,588
Huauchinango	160.75	86,012	93,290	98,395	101,096	522.3	976	900	853	830
Huehuetla	59.96	16,696	19,610	22,044	23,691	1023.0	3,674	3,128	2,783	2,589
Huehuetlán en Chico	275.55	9,932	10,645	11,058	11,149	216.5	6,008	5,605	5,396	5,352
Huejotzingo	188.81	52,439	57,892	62,250	65,304	215.9	778	704	655	624
Hueyapan	75.27	10,548	12,069	13,331	14,202	898.6	6,412	5,604	5,073	4,762
Hueytamalco	242.38	29,356	34,638	39,196	42,672	696.4	5,750	4,873	4,307	3,956
Hueytlalpan	15.31	5,667	6,829	7,843	8,578	649.9	1,756	1,457	1,269	1,160
Huitzilan de Serdán	44.66	12,074	14,015	15,602	16,651	548.6	2,029	1,748	1,570	1,471

PUEBLA	Superficie	ngno-ab		GI) y estimad antes)		media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Huitziltepec	52.30	4,731	5,171	5,489	5,668	562.5	6,218	5,689	5,360	5,190
Allequizayan	28.08	2,854	3,326	3,714	3,978	649.9	6,394	5,487	4,913	4,587
xcamilpa de Guerrero	243.66	4,756	5,268	5,636	5,830	210.0	10,760	9,715	9,080	8,778
xcaquixtla	173.49	7,136	7,891	8,462	8,817	562.5	13,676	12,367	11,533	11,069
xtacamaxtitlán	614.88									
		29,205	31,063	31,960	31,865	200.5	4,222	3,969	3,858	3,869
xtepec	10.22	6,820	8,038	9,050	9,740	649.9	974	826	734	682
zúcar de Matamoros	514.11	72,692	76,442	78,475	78,772	217.9	1,541	1,466	1,428	1,422
Jalpan	199.01	13,726	16,131	18,147	19,549	506.1	7,338	6,244	5,550	5,152
Jola pan	423.53	12,851	12,425	11,677	10,694	216.5	7,137	7,381	7,854	8,576
lonotla	73.99	5,116	6,014	6,774	7,314	544.2	7,870	6,695	5,944	5,505
Jopala	165.35	13,958	16,344	18,343	19,729	829.1	9,822	8,388	7,474	6,949
Juan C. Bonilla	53.58	14,936	16,670	18,103	19,160	227.2	815	730	673	635
luan Galindo	44.66	9,563	10,164	10,541	10,671	575.7	2,688	2,529	2,439	2,409
luan N. Méndez	242.38	5,389	5,651	5,738	5,655	562.5	25,300	24,127	23,761	24,110
.afragua	128.85	9,418	8,800	8,018	7,125	118.0	1,615	1,728	1,897	2,135
ibres	304.89	26,444	27,709	28,301	28,218	122.4	1,411	1,347	1,319	1,322
Magdalena Tlatlauquitepec, La	35.72	731	620	573	554	562.5	27,487	32,408	35,067	36,269
Vazapiltepec de Juárez	44.66	2,463	2,569	2,604	2,568	175.0	3,174	3,043	3,002	3,044
Mixtla	16.58	2,100	2,197	2,242	2,231	185.8	1,467	1,402	1,374	1,381
Volcaxac	133.95	6,372	6,117	5,716		562.5				
					5,208		11,825	12,318	13,182	14,468
Cañada Morelos	119.91	18,324	20,026	21,129	21,567	122.1	799	731	693	679
Vaupan	96.96	9,928	11,461	12,701	13,522	517.2	5,052	4,376	3,949	3,709
Vauzontla	47.20	3,729	4,120	4,387	4,510	548.6	6,944	6,285	5,902	5,741
Nealtican	62.52	10,921	11,031	10,880	10,497	215.9	1,236	1,224	1,241	1,286
Vicolás Bravo	234.72	5,541	6,101	6,500	6,709	147.0	6,228	5,656	5,309	5,143
Vopalucan	176.05	19,644	22,020	23,960	25,351	197.6	1,771	1,580	1,452	1,373
Ocotepec	80.38	5,091	5,453	5,659	5,701	125.6	1,983	1,851	1,784	1,771
Ocoyucan	68.89	24,307	26,189	27,268	27,486	234.3	664	616	592	587
Olintla	66.35	13,058	15,578	17,750	19,326	1023.0	5,198	4,357	3,824	3,512
Oriental	298.52	14,185	15,471	16,431	17,015	420.8	8,855	8,119	7,645	7,382
Pahuatlán	80.37	18,816	19,378	19,372	18,836	517.2	2,209	2,145	2,146	2,207
Palmar de Bravo	341.88	36,997	42,373	46,883	50,206	108.5	1,003	876	791	739
Pantepec	216.88	20,062	23,307	25,932	27,641	506.1	5,471	4,710	4,233	3,971
Petlalcingo	155.63	9,909	9,665	9,166	8,469	209.0	3,282	3,365	3,548	3,840
Piaxtla	275.55	6,117	6,486	6,680	6,693	209.0	9,414	8,878	8,620	8,604
							83	76	71	67
Puebla	524.31	1,387,324	1,520,101	1,629,601	1,712,262	220.3				
Quecholac	163.29	39,882	44,742	48,575	51,119	146.3	599	534	492	467
Quimixtlán	114.81	19,840	21,697	22,863	23,254	445.9	2,580	2,359	2,239	2,201
Rafael Lara Grajales	15.31	15,251	17,531	19,540	21,123	197.6	198	173	155	143
Reyes de Juárez, Los	30,62	21,453	22,852	23,686	23,925	184.7	264	247	239	236
San Andrés Cholula	68.89	58,218	73,323	88,232	102,131	236.0	279	222	184	159
San Antonio Cañada	84.19	4,639	5,308	5,848	6,202	215.1	3,903	3,411	3,096	2,920
San Diego la Mesa Tochimilzingo	91.85	1,140	1,047	952	862	205.0	16,513	17,980	19,774	21,83
San Felipe Teotlalcingo	54.85	8,926	10,431	11,825	13,031	215.9	1,327	1,136	1,002	909
San Felipe Tepatlán	37.00	4,581	5,379	6,047	6,509	440.0	3,554	3,027	2,692	2,501
San Gabriel Chilac	104.61	14,030	16,730	19,178	21,205	86.1	642	538	470	425
San Gregorio Atzompa	15.31	7,168	8,385	9,511	10,475	234.3	500	428	377	342
San Jerónimo Tecuanipan	30.62	5,441	6,288	7,009	7,558	234.3	1,318	1,141	1,023	949
San Jerénimo Xayacat'án	229.62	4,440	4,770	4,966	5,026	209.0	10,808	10,060	9,663	9,548
	144.15	6,969	7,992	8,885	9,585	420.8	8,703	7,589	6,827	6,328
San José Chiapa										3,690
San José Miahuatlán	335.51	12,067	13,630	14,903	15,799	173.8	4,832	4,277	3,912	
San Juan Atenco	188.81	3,802	3,804	3,713	3,536	167.2	8,301	8,297	8,500	8,926
San Juán Atzompa	25.52	840	903	945	963	562.5	17,090	15,898	15,191	14,90
San Martin Texmelucan	71.45	125,024	143,154	159,633	173,243	215.9	123	108	97	89
San Mart n Totoltepec	12.77	973	926	860	782	205.0	2,690	2,826	3,043	3,347
San matias Tialancaleca	52.30	16,880	18,854	20,492	21,706	215.9	669	599	551	520
San Miguel Ixtitlán	25.52	748	784	794	778	209.0	7,130	6,803	6,717	6,855

			ensaga (INEC	y esumad	a (CUNAPO)	Lámina anual	Volumen			edia anu
PUEBLA	Superficie		(habit	antes)		media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
San Miguel Xoxtla	29.35	9,648	10,843	11,887	12,734	215.9	657	585	533	498
San Nicolás Buenos Aires	195.19	8,605	9,724	10,592	11,139	420.8	9,544	8,446	7,754	7,373
San Nicolás de los Ranchos	195.19	10,336	11,169	11,143	10,316	215.9	4,078	3,774	3,783	4,086
San Pablo Anciano	81.64	3,520	3,375	3,145	2,856	209.0	4,847	5,055	5,425	5,974
San Pedro Cholula	51.03	102,918	115,136	125,510	133,603	227.2	113	101	92	87
San Pedro Yeloixtlahuaca	164.59	3,813	3,969	4,036	4,012	209.0	9,021	8,666	8,522	8,573
San Salvador el Seco	193.91	24,020	25,520	26,391	26,606	167.2	1,349	1,270	1,228	1,218
San Salvador el Verde	150.53	23,408	26,998	30,217	32,886	215.9	1,389	1,204	1,076	988
San Salvador Huixcolotla	33 18	10,996	12,885	14,613	16,078	163.2	493	420	371	337
San Sebastian Tlacotepec	241 11	13,671	15,816	17,493	18,505	499.7	8,814	7,618	6,888	6,511
Santa Catarina Tlalternpan	42.11	909	905	883	848	562.5	26,059	26,174	26,826	27,934
Santa Iriès Ahuatempan	289.58	6,277	6,442	6,397	6,160	166.2	7,668	7,472	7,524	7,814
Santa Isabel Cholula	67.61	9,063	9,583	9,792	9,689	234.3	1,748	1,653	1,617	1,635
Santiago Miahuatlán	79.09	14,842	19,835	25,112	30,347	106.8	569	426	336	278
Huehuetlán el Grande	264.08	6,943	7,681	8,198	8,461	213.8	8,133	7,352	6,888	6,674
Santo Tomás Huevotlipan	34.45	7,285	7,744	8,016	8,093	185.8	878	826	798	791
Soltepec	139.05	11,389	12,049	12,409	12,464	175.0	2,137	2,020	1,961	1,953
fecali de Herrera	184.97	17,349	18,805	19,800	20,290	185.8	1,981	1,827	1,735	1,693
Fecamachalco	218.15	60,960	66,448	70,426	72,707	149.3	534	490	463	448
Fecomatián	181.15	7,074	8,410	9,511	10,295	209.0	5,352	4,501	3,980	3,677
Tehuacán	390.36	233,934	274,150	309,699	338,723	106.8	178	152	135	123
Fehuitzingo	473.28	12,997	13,541	13,719	13,539	231.1	8,417	8,079	7,974	8,080
Tenampulco	108.44	7,283	8,028	8,537	8,779	538.3	8,015	7,271	6,838	6,649
l'eogantán	214.31	4,965	5,099	5,051	4,836	562.5	24,281	23,643	23,867	24,928
Feotlaico	167.11	3,645	3,719	3,708	3,605	216.5	9,928	9,730	9,759	10,038
	207.95	17,250	19,545	21,461	22,880	106.8	1,288	1,137	1,035	971
Cepando de López	207.33	4,134	4,701	5,118	5,347	440.0	2,173	1.911	1,755	1,680
Cepango de Rodriguez	51.03	14,384	13,910	13,192	12,297	197.6	701	725	765	820
「epatlaxco de Hidalgo	179.88	64,491	69,427	72,749	74,329	184.7	515	478	457	447
Tepeaca	30.62	1,304	1,278	1,208	1,100	205.0	4,813	4,911	5,195	5,705
Tepemaxalco	121.19	8,905	9,312	9,456	9,340	205.0	2,789	2,667	2,627	2,659
Tepeojuma		9,756	10,940	11,790	12,224	257.7	3,370	3,005	2,789	2,690
Tepetzintla	127.57			7,679	7,862	204.4	3,761	3,419	3,225	3,150
Терехоо	121.19	6,586	7,243		18,797	562.5	12,436	12,075	12,049	12,33
Tepexi de Rodríguez	412.05	18,639	19,195	19,237	20,450	149.8	4,047	3,580	3,284	3,120
Tepeyahualco	426.08	15,770	17,827	19,434	3,170	137.1	892	847	826	828
Tepeyahualce de Cuauhtémoc	19.15	2,944	3,101	3,180		219.2	2,509	2,317	2,216	2,189
Tetela de Ocampo	304,89	26,638	28,845	30,167	30,537	898.6	1,387	1,024	816	691
Teteles de Avila Castillo	8.93	5,785	7,838	9,836	11,614	543.8	547	483	439	412
Teziutlán	84.20	83,736	94,795	104,189	111,123	234.3		2,684	2,729	2,852
Tianguismanalco	114.81	9,888	10,019	9,855	9,430	204.4	2,720 2,440	2,421	2,729	2,570
Tilapa	102.05	8,546	8,615	8,463	8,114					
Tlacotepec de Benito Juárez	340.61	43,633	48,829	52,829	55,360	131.4	1,026	917	847	809
Tlacuilotepec	153.08	18,360	20,932	22,942	24,225	506.1	4,220	3,701	3,377	3,198
Tlachichuca	459.25	26,396	27,393	27,630	27,130	184.6	3,212	3,095	3,068	3,128 1,549
Tlahuapan	298.51	32,687	36,489	39,526	41,626	215.9	1,972	1,767	1,631	
Tlaltenango	37.00	5,542	6,190	6,724	7,115	215.9	1,442	1,291	1,188	1,123
Tlanepantla	14.04	4,306	4,348	4.279	4,114	185.8	606	600	610	634
Tlaola	108.44	18,851	21,759	24,144	25,784	489.6	2,817	2,440	2,199	2,059
Tlapacoya	80.38	6,720	7,673	8,419	8,898	523.8	6,265	5,487	5,001	4,73
Tlapanalá	80.38	8,884	8,570	8,029	7,326	205.0	1,854	1,922	2,052	2,24
Tlatlauquitepec	246.22	48,641	55,421	61,002	64,910	271.9	1,377	1,208	1,098	1,03
Tiaxco	90.57	6,487	7,510	8,335	8,869	506.1	7,066	6,104	5,500	5,16
Tochimilco	233.45	17,580	17,018	15,954	14,507	209.8	2,786	2,877	3,069	3,37
Tochtepec	44.66	17,808	20,065	21,897	23,195	149.3	375	332	305	288
Totoltepec de Guerrero	164.56	1,195	1,291	1,352	1,379	166.2	22,889	21,187	20,231	19,83
Tulcingo	223.25	11,332	11,968	12,267	12,222	209.0	4,117	3,898	3,803	3,81
Tuzamapan de Galeana	45.92	6,385	7,373	8,199	8,786	485.3	3,490	3,022	2,718	2,53

		Población c	ensada (INE	GI) y estimad	da (CONAPO)	Lámina anual	Volumen p	ercápita p	ara Iluvia m	nedia anual
PUEBLA	Superficie		(habit	antes)	. melyla	media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Tzicatlacoyan	174.77	6,346	6,343	6,124	5,719	166.6	4,589	4,591	4,755	5,092
Venustiano Carranza	308.71	25,874	28,336	30,089	31,040	506.1	6,039	5,514	5,193	5,034
Vicente Guerrero	234.73	21,878	25,109	27,610	29,135	235.5	2,527	2,202	2,002	1,897
Xayacatlán de Bravo	70.16	1,749	1,901	2,017	2,091	166.2	6,667	6,134	5,782	5,577
Xicotepec	283.20	72,414	81,636	89,029	93,837	493.6	1,931	1,712	1,570	1,490
Xicotlán	145.44	1,475	1,579	1,632	1,638	233.0	22,976	21,462	20,765	20,689
Xiutetelco	93.12	31,500	37,484	42,938	47,360	360.9	1,067	897	783	710
Xochiapulco	110.99	4,443	4,961	5,368	5,634	371.1	9,269	8,302	7,672	7,310
Chochiltepec	75.26	3,359	3,342	3,221	3.010	205.0	4.592	4.616	4.789	5,125
Xocnitlán de Vicente Suárez	45.92	12,180	14,503	16,568	18.158	548.6	2,068	1,737	1.520	1,387
Xochitlán Todos Santos	141.61	5,243	5,552	5,708	5,702	137.1	3,704	3,498	3,402	3.406
Yaonáhuac	54.85	6,876	8,001	8,986	9,731	898.6	7,168	6,160	5.485	5,065
Yehualtepec	170.95	19,988	22.440	24,429	25,832	137.1	1,173	1,045	960	908
Zacapala	392.92	4,521	4,574	4,486	4,276	562.5	48.888	48.322	49,270	51.690
Zacapoxtla	188.81	50,727	55,057	57.849	58,765	742.4	2.763	2.546	2 423	2,385
Zacatlán	512.82	71,759	77,474	81,291	82,993	263.8	1.885	1.746	1,664	1,630
Zapctitlán	484.77	9,140	9,525	9,668	9,573	106.9	5,669	5,440	5,360	5,413
Zapolitlán de Méndez	35.72	5,468	6,796	8,081	9,214	649.9	4,245	3.416	2.873	2,519
Zaragoza	51.03	14,194	14,845	15,259	15,412	485.8	1,747	1,670	1,625	1,609
Zautla	274.27	20,024	21,707	22,705	22,957	176.8	2,422	2.234	2,136	2,112
Zihuateutla	177.33	13,984	15,843	17,274	18,133	493.6	6,260	5,525	5,068	4,828
Zinacatepec	86.76	14,083	16,125	17,885	19,255	96.5	595	519	468	435
Zongozotla	19.15	4,542	5,281	5,942	6,465	515.0	2,171	1,868	1,660	1,526
Zoquiapan	22.96	3,054	3,649	4,138	4,467	544.2	4,091	3,424	3,019	2,797
Zoquillán	311.27	20,382	23,679	26,276	27,880	499.7	7,632	6,569	5,920	5,579
Estatal	33,919.00	5,233,525	5,797,351	6,246,605	6,554,882	315.7	2,046	1,847	1,714	1,634

		Población c	ensada (INEC	GI) y estimad	a (CONAPO)	Lámina anual	Volumen	percápita p	ara Iluvia m	edia anua
QUERÉTARO	Superficie	h	(habit	antes) :		media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Amealco de Bonfil	682.10	56,247	60,922	63,459	63,594	158.3	1,920	1,773	1,702	1,698
Pinal de Amoles	611.90	28,150	31,068	32,826	33,211	264.1	5,740	5,201	4,923	4,866
Arroyo Seco	717.20	13,013	13,434	13,408	12,945	190.1	10,478	10,149	10,159	10,533
Cadereyta de Montes	1,131.59	53,182	54,644	54,252	52,073	221.8	4,716	4,590	4,623	4,817
Colón	764.96	48,498	56,228	62,887	67,843	156.7	2,471	2,131	1,906	1,766
Corregidora	245.80	77,862	107,515	138,560	169,014	152.9	483	350	271	222
Ezequiel Montes	278.40	28,538	33,604	38,127	41,714	154.1	1,503	1,277	1,125	1,029
Huimilpan	396.20	30,046	33,147	35,246	36,117	173.9	2,293	2,078	1,954	1,907
Jalpan de Serra	1,121.00	23,538	25,795	27,258	27,788	228_2	10,868	9,917	9,385	9,206
Landa de Matamoros	840.10	20,084	21,591	22,330	22,231	236.9	9,908	9,217	8,912	8,951
Marques, El	787.40	73,819	84,512	93,632	100,365	154.7	1,651	1,442	1,301	1,214
Pedro Escobedo	290.90	51,172	57,562	62,712	66,173	166.5	947	842	773	732
Peñamiller	795.00	16,987	16,927	16,276	15,108	235.8	11,035	11,074	11,517	12,408
Querétaro	759.90	665,476	821,868	971,054	1,103,429	154.7	177	143	121	107
San Joaquín	499.00	7,894	8,562	8,933	8,973	255.6	16,158	14,897	14,278	14,215
San Juan del Río	779.00	186,234	225,310	261,108	290,928	159.9	669	553	477	428
Tequisquiapan	343.60	51,707	60,793	68,972	75,604	154.1	1,024	871	768	700
Tolimán	724.70	21,981	25,439	28,353	30,435	191.0	6,296	5,440	4,881	4,547
Estatal	11,768.16	1,454,428	1,738,921	1,999,393	2,217,545	170.7	1,381	1,155	1,005	906

QUINTANA ROO	Superficie		censada (INI (hab	itantes)) Lámina anual media - evapot.			ante/año)	10010 01101
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Cozumel	647.33	61,739	87,862	114,060	137,938	315.8	3,311	2,326	1,792	1,482
Felipe Carrillo Puerto	13,806.00	61,499	76,397	89,733	100,033	325.0	72,959	58,732	50,003	44,855
Isla Mujeres	1,100.00	11,592	15,741	19,714	23,138	325.6	30,897	22,753	18,167	15,479
Othón P. Blanco	18,760.00	211,306	245,743	273,197	292,283	339.5	30,143	25,919	23,315	21,792
Benito Juárez	1,664.00	433,134	647,871	854,201	1,037,357	346.2	1,330	889	674	555
José María Morelos	6,739.00	31,590	38,081	43,475	47,254	311.2	66,388	55,072	48,239	44,381
Lázaro Cárdenas	3,881.00	20,812	26,195	31,101	34,993	327.0	60,978	48,447	40,805	36,267
Estatal	50,843.00	899,312	1,283,883	1,663,733	2,008,755	326.7	18,472	12,939	9,985	8,270

		Población (censada (INE	GI) y estimad	la (CONAPO	Lámina anual	Volumen p	ercápita pa	ara Iluvia m	edia anua
SAN LUIS POTOSÍ	Superficie		(habi	tantes)		media - evapot.	MANAGED TO THE STREET WITH STREET STREET	(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Ahualulco	775.17	19,472	19,478	18,898	17,877	91.9	3,660	3,659	3,771	3,986
Alaquines	569.04	8,881	8,263	7,507	6,697	158.0	10,126	10,883	11,979	13,428
Aguismón	785.91	43,542	45,605	46,161	45,351	552.1	9,965	9,514	9,399	9,567
Armadillo de los Infante	610.51	4,961	4,935	4,774	4,509	151.3	18,620	18,718	19,350	20,487
Cárdenas	384.26	19,125	19,763	19,995	19,894	158.0	3,175	3,073	3,037	3,052
Catorde	1,865.99	10,041	10,026	9,763	9,317	98.9	18,379	18,407	18,903	19,808
Cedral	1,185.06	16,403	16,731	16,763	16,555	107.9	7,799	7,646	7,631	7,727
Cerritos	947.11	20,979	20,554	19.783	18,794	148.4	6,700	6,839	7,106	7,479
Cerro de San Pedro	127.48	3,480	4,020	4,503	4,927	151.3	5,543	4,798	4,284	3,915
Ciudad del Maiz	3.114.10	31,123	32.392	32.860	32.631	388.4	38,859	37,337	36,805	37,063
Ciudad Fernández	449.99	40,540	40,654	39,868	38,409	151.8	1,685	1,680	1,714	1,779
Tancanhuitz de Santos	134.05	20,311	22,481	24,033	24,926	516.4	3,408	3,079	2,880	2,777
Ciudad Valles	2.396.50	148.843	151,842	152,529	151,387	333.5	5,370	5.264	5,240	5,279
Coaxcatlán	88.82	17,713	19,730	21,253	22,175	533.4	2,675	2,401	2,229	2,137
Charcas	2,164.66	21,397	21,616	21,321	20.637	120.3	12.174	12.051	12.218	12.623
Ebano	694.68	40,224	39,317	37,839	36,007	352.3	6,085	6,225	6,468	6,797
Guadalcázar	3,783.95	25,630	23,709	21,533	19,328	84.3	12,445	13,453	14,813	16,503
Huehuetlán	66.93	14,566	15,828	16.639	16,998	569.8	2,618	2.410	2,292	2,244
	539.54	6,616	6,218	5,688	5,088	185.4	15,118	16.086	17,585	19,658
Lagunillas	1,286.66	79,569	84,643	88,189	90,359	127.2	2,056	1.933	1,855	1.811
Matehuala	882.36	48,891	45,303	41,155	36,871	99.1	1,788	1,930	2,124	2,371
Mexquitic de Carmona		20,203	20,267	19,740	18,765	: 92.7	5,822	5,803	5,958	6,268
Moctezuma	1,268.53	15.960		13,437	12,035	219.7	10,448	11,276	12.410	13,856
Rayón	758.92		14,789	86,963	83.064	131.0	4,512	4,547	4,683	4,902
Rioverde	3,109.71	90,260	89,549		, ,	96.3	6,275	6,254	6,378	6,623
Salinas	1,745.31	26,794	26,885	26,363	25,387		5,577	4,950	4,561	4.350
San Antonio	101.90	9,566	10,778	11,697	12,264	523.6				13,013
San Ciro de Acosta	614.73	10,609	9,903	9,055	8,149	172.5	9 996	10,708	11,711	185
San Luis Potosi	1,443.14	682,075	722,789	753,917	776,967	99.4	210	198	190	
San Martin Chalchicuautla	411.52	22,799	24,539	25,533	25,762	303.1	5,471	5,083	4,885	4,842
San Nicolás Tolentino	689.36	6,868	6,455	5,940	5,381	151.3	15,187	16,159	17,560	19,384
Santa Catarina	620.25	11,002	11,092	10,728	9,998	377.5	21,281	21,109	21,825	23,418
Santa Maria del Río	1,655.55	39,482	36,629	33,274	29,771	120.4	5,051	5,444	5,993	6,698
Santo Domingo	4,446.94	12,888	11,876	10,790	9,719	70.4	24,287	26,357	29,010	32,207
San Vicente Tancuayalab	510.50	14,399	15,932	17,024	17,664	312.5	11,080	10,014	9,372	9,032
Soledad de Graciano Sánchez	280.95	184,798	224,194	262,320	298,532	99.4	151	125	106	94
Tamasopo	1,328.73	27,746	26,555	24,794	22,709	401.9	19,249	20,112	21,541	23,519
Tamazunchale	349.58	90,790	98,481	103,680	106,403	512.8	1,974	1,820	1,729	1,685
Tampacán	183.20	16,316	17,561	18,300	18,498	602.7	6,768	6,288	6,034	5,969
Tampamolón Corona	257.58	13,981	14,952	15,462	15,530	516.4	9,513	8,896	8,602	8,565
Tamuín	1,842.66	35,644	36,536	36,695	36,249	256.6	13,264	12,940	12,884	13,043
Tanlajás	366.77	18,505	20,302	21,505	22,028	406.6	8,059	7,345	6,934	6,770
Tanquián de Escobedo	140.26	13,551	13,508	13,177	12,639	347.8	3,600	3,611	3,702	3,860

		Población co	ensada (INEC	3I) y estimad	a (CONAPO	Lámina anual	Volumen p	ercápita pa	ara Iluvia m	iedia anua
SAN LUIS POTOSÍ	Superficie	30.32.3.3	(habit	antes)		media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Tierranueva	505.46	9,682	8,994	8,182	7,330	92.9	4,849	5,220	5,738	6,405
Vanegas	2,543.10	7,628	7,246	6,716	6,103	98.7	32,901	34,635	37,368	41,122
Venado	1,218.20	14,426	14,544	14,257	13,658	111.4	9,410	9,333	9,521	9,939
Villa de Arriaga	860.50	14,862	15,149	14,957	14,376	81.2	4,702	4,613	4,672	4,861
Villa de Guadalupe	1,863.94	10,526	10,303	9,821	9,162	104.7	18,537	18,938	19,867	21,296
Villa de la Paz	131.33	5,228	5,570	5,800	5,933	113.0	2,839	2,665	2,559	2,502
Villa de Ramos	2,495.68	35,027	36,806	37,623	37,574	101 0	7,195	6,847	6,698	6,707
Villa de Reyes	1,041.09	41,251	41,920	41,375	39,866	90.2	2,277	2,240	2,270	2,356
√illa Hidalgo	1,558.65	15,148	13,981	12,700	11,424	83.4	8,585	9,301	10,239	11,383
Villa Juárez	613.12	11,073	10,267	9,327	8,350	148.4	8,218	8,863	9,756	10.898
Axtla de Terrazas	187,98	31,981	34,013	35,144	35,329	602.7	3,543	3,331	3,224	3,207
Xilitla	414.95	50,649	57,144	62,369	66,140	768.0	6,292	5,577	5,110	4,819
Zaragoza	625.33	22,340	23,382	23,815	23,707	120.4	3,371	3,221	3,163	3,177
Villa de Arista	564.22	13,948	14,114	14,109	13,965	90.9	3,679	3,635	3,637	3,674
Matlapa	110.28	28,952	33,114	36,603	39,148	575.2	2,191	1,915	1,733	1,620
Naranjo, El	834 07	19,172	18,971	18,434	17,663	279.9	12,176	12,305	12,664	13,216
Estatal	60,546.76	2,338,436	2,452,198	2,522,680	2,555,979	176.8	4,578	4,366	4,244	4,189

		Población co	ensada (INEC	31) y estimad	a (CONAPO)	Lámina anual	Volumen į	percápita pa	ara Iluvia m	edia anua
SINALOA	Superficie		(habita	antes)		media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Ahome	4,342.89	373,233	393,439	406,486	412,608	92.6	1,077	1,022	989	974
Angostura	1,447.63	45,439	45,431	44,456	42,705	132.1	4,207	4,208	4,300	4,477
Badiraguato	5,864.75	39,228	40,095	39,481	37,568	254.6	38,069	37,246	37,825	39,751
Concordia	1,524.34	28,981	31,637	33,492	34,418	271.2	14,264	13,066	12,343	12,011
Cosalá	2,665.12	17,961	18,905	19,330	19,246	256.1	37,996	36,099	35,305	35,459
Culiacán	4,758.90	776,743	858,974	924,248	970,851	184.0	1,128	1,020	948	902
Choix	4,512.40	30,292	27,723	25,199	22,859	205.3	30,583	33,417	36,765	40,528
Elota	1,518.15	52,987	87,344	120,674	150,034	192.5	5,514	3,345	2,421	1,947
Escuinapa	1,633.22	52,498	56,486	59,261	60,784	254.6	7,921	7,362	7,017	6,841
Fuerte, El	3,843.02	93,033	95,960	95,533	92,169	147.9	6,110	5,923	5,950	6,167
Guasave	3,464.41	288,060	297,930	301,170	298,430	111.3	1,338	1,294	1,280	1,292
Mazatlán	3,068.48	396,058	431,101	459,912	481,952	213.3	1,652	1,518	1,423	1,358
Mocor to	2,566.00	52,109	54,995	56,369	56,288	175.6	8,645	8,191	7,991	8,003
Rosario	2,723.28	49,776	50,767	50,399	48,861	254.6	13,930	13,658	13,758	14,191
Salvador Alvarado	1,197.50	75,911	75,188	73,517	71,118	175.1	2,763	2,789	2,853	2,949
San Ignacio	4,650.97	27,918	30,798	32,911	34,181	217.8	36,281	32,888	30,777	29,633
Sinaloa	6,186.45	87,908	81,503	74,085	66,335	197.3	13,886	14,977	16,477	18,402
Navolato	2,285.00	153,402	201,414	245,114	281,930	178.8	2,663	2,028	1,667	1,449
Estatal	58,252.51	2,641,537	2,879,690	3,061,637	3,182,337	191.5	4,224	3,875	3,644	3,506

SONORA	Superficie		,	tantes)	. (00)	Lámina anual media - evapot.	Volumen p		ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Aconchi	358.74	2,479	2,488	2,445	2,360	109.9	15,902	15,845	16,123	16,704
Agua Prieta	3,631.63	64,433	85,541	105,971	124,984	83.8	4,724	3,558	2,872	2,435
Alamos	6,947.47	25,831	27,101	27,426	26,959	164.6	44,276	42,201	41,701	42,423
Altar	3,944.90	7,482	8,557	9,396	9,999	111.3	58,708	51,333	46,749	43,930
Arivechi	723.80	1,528	1,684	1,803	1,889	143.2	67,849	61,564	57,501	54,883
Arizpe	2,806.78	3,495	3,852	4,144	4,367	130.8	105,055	95,319	88,603	84,078
Atil	400.43	735	739	729	717	111.3	60,663	60,334	61,162	62,186
Bacadéhuachi	1,530.97	1,389	1,566	1,722	1,856	107.2	118,205	104,845	95,347	88,463
Bacanora	903.17	960	860	783	727	139.9	131,657	146,966	161,418	173,852

	ACIONA ACIONA		Población ce	a Franciscus	il) y estimada	(CONAPO)		Volumen p			edia anua
	SONORA	Superficie		(habita	intes)		media - evapot.		(m³/habita	ante/ano)	
Municipio		(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Bacerac		1,275.81	1,397	1,367	1,334	1,304	108.5	99,124	101,300	103,805	106,194
Bacoachi		1,260.65	1,537	1,642	1,717	1,769	134.4	110,262	103,211	98,703	95,802
Bacum		1,409.70	21,910	23,452	24,300	24,544	99.1	6,377	5,958	5,750	5,693
Banámichi		773.06	1,518	1,509	1,481	1,449	111.7	56,884	57,223	58,305	59,593
Baviácora		858.96	3,833	4,202	4,484	4,683	109.9	24,626	22,463	21,051	20,156
Bavispe		2,475.82	1,406	1,317	1,199	1,072	89.8	158,084	168,767	185,377	207,338
Benjamin Hill		857.70	5,870	5,917	5,927	5,925	127.9	18,619	18,471	18,440	18,446
Caborca		10,721.84	71,657	81,435	89,410	95,603	64.3	9,623	8,468	7,712	7,213
Cajeme		4,037.11	365,867	391,141	408,182	418,380	99.1	897	839	804	785
Cananea		3,041.73	33,083	38,696	44,025	48,871	109.6	13,725	11,734	10,314	9,291
Carbó		1,692.66	5,152	6,077	6,842	7,434	89.2	33,984	28,811	25,590	23,552
Colorada, La		4,701.54	2,378	2,670	2,905	3,083	114.9	227,129	202,290	185,925	175,191
Cucurpe		1,778.55	972	1,197	1,403	1,586	129.0	236,004	191,642	163,504	144,638
Cumpas		2,013.50	6,377	6,898	7,287	7,554	111.7	35,268	32,605	30,864	29,773
Divisaderos		617.69	850	961	1,057	1,135	124.1	90,177	79,761	72,517	67,533
Espalme		5,426.60	51,494	58,236	63,775	68,108	101.4	1,395	1,234	1,127	1,055
Etchojoa		1,220.23	57,715	62,539	65,409	66,476	76.3	1,613	1,488	1,423	1,400
Fronteras		2,839.62	8,106	10,483	12,648	14,528	134.4	47,093	36,415	30,182	26,276
Granados		361.27	1,275	1,447	1,563	1,630	107.2 101.4	30,387	26,775 8,587	24,788 8,164	23,769 7,896
Guaymas		7,488.11	133,895	144,170	151,653	156,802		9,246			910
Hermosillo		14,880.21	629,882	749,013	858,998	955,129	58.4	1,380	1,161	1,012	
Huachinera		1,184.86	1,174	1,156	1,097	1,008	103.9 107.2	104,884	106,517	112,246 54,478	122,157 49,237
Huásabas		711.17	1,000	1,213	1,400	1,549		76,269	62,876	966	933
Huatabampo		1,669.92	78,517	86,625	92,389	95,601 1,423	76.3 111.7	1,137 30,170	1,030 27,481	25,857	24,912
Huépac		371.37	1,175	1,290	1,371 15,943	18,447	124.9	20,622	16,186	13,399	11,580
Imuris		1,710.34 1,460.23	10,359	13,198 29,076	32,626	35,825	124.9	7,408	6,422	5,723	5,212
Magdalena		649.27	25,204 1,632	1,804	1,931	2,013	142.3	56,630	51,230	47,861	45,911
Mazatlan		1,763.39	4,339	5,438	6,499	7,456	112.5	45,724	36,483	30,527	26,609
Moctezuma		651.80	5,561	6,907	8,213	9,398	109.6	12,852	10,347	8,702	7,605
Nacori Chico		2,748.67	2,282	2,111	1,916	1,726	143.3	172,592	186,572	205,561	228,189
	Caraía	3,069.52	14,805	16,611	17,994	19,001	134.4	27,872	24,842	22,932	21,717
Nacozari de C	Salula	4,380.69	144,706	159,630	169,985	175,986	113.7	3,442	3,120	2,930	2,830
Navojoa		1,654.76	166,198	220,039	271,663	319,180	124.9	1,244	939	761	648
Nogales Onavas		372.64	496	601	688	757	139.8	149,214	123,145	107,573	97,768
Opodepe		2,804.25	2,909	3,089	3,187	3,217		123,267	116,085	112,515	111,466
Oquitoa		636.64	409	371	337	310	103.9	161,764	178,333	196,325	213,424
Pitiquito		11,979.96	9,554	11,499	13,263	14,763	64.3	80,645	67,004	58,092	52,190
Puerto Peñas	200	9,774.50	32,374	42,402	52,273	61,413	56.3	16,989	12,971	10,522	8,956
Quiriego	100	2,705.72	3,438	3,838	4,105	4,219	174.3	137,142	122,849	114,858	111,755
Rayón		1,106.54	1,642	1,892	2,101	2,266	124.1	83,607	72,560	65,342	60,584
Rosario		3,301.94	5,597	6,244	6,674	6,881	139.8	82,461	73,917	69,154	67,074
Sahuaripa		5,694.40	6,581	7,111	7,468	7,665	140.9	121,882	112,798	107,406	104,645
San Felipe de	e lesús	152.85	431	522	602	667	109.7	38,882	32,104	27,838	25,125
San Javier	7 00000	793.27	284	263	239	215	186.8	521,656	563,309	619,876	689,071
San Luis Rio	Colorado	8,412.75	150,732	199,874	249,786	297,564	19.7	1,100	830	664	557
San Miguel de		1,768.45	5,909	8,916	11,840	14,470	82.4	24,662	16,344	12,308	10,071
San Pedro de		1,926.36	1,752	1,866	1,915	1,908	131.2	144,309	135,492	132,026	132,510
Santa Ana	710 00070	1,620.65	13,920	15,503	16,845	17,954	75.8	8,821	7,920	7,289	6,839
Santa Cruz		880.43	1,684	2,012	2,321	2,598	124.9	6,559	5,490	4,759	4,251
Sáric Sáric		1,676.23	2,330	2,689	2,990	3,227	111.3	80,105	69,411	62,423	57,839
Soyopa		846.33	1,701	1,916	2,095	2,241	158.4	78,789	69,948	63,972	59,804
Suaqui Grand	de	889.28	1,204	1,202	1,167	1,109	139.8	103,241	103,413	106,515	112,085
Tepache		752.85	1,571	1,486	1,389	1,298	141.3	67,735	71,609	76,610	81,981
Trincheras		3,764.26	1,808	1,975	2,092	2,164	82.2	171,172	156,698	147,934	143,012
Tubutama		1,351.60	1,848	1,974	2,048	2,078	111.3	81,438	76,240	73,485	72,424
Ures		2,618.56	9,831	10,539	10,928	11,034	122.4	32,593	30,403	29,321	29,039
Villa Hidalgo		951.17	2,044	2,231	2,379	2,484	103.9	48,360	44,307	41,550	39,794
Villa Pesquei		1,834.13	1,637	1,797	1,907	1,970	142.3	159,485	145,285	136,905	132,527
Yécora		3,312.05	6,271	7,377	8,255	8,863	243.9	128,798	109,488	97,842	91,131
	arco Elías Calles	4,121.20	11,685	14,538	17,196	19,524	56.3	19,845	15,951	13,485	11,877
Estatal		189,055.25	2,287,867	2,670,917	3,012,160	3,301,830	120.9	9,958	8,530	7,563	6,900

TABASCO	Superficie	1300 LV2 - E	ensada (INEC habita)		a (CONAPO)	Lámina anual media - evapot.			ara lluvia m ante/año)	nedia anual
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Balancán	3,626.10	55,628	59,031	61,177	61.696	477.5	31,124	29.329	28,301	28,063
Cardenas	2,112.00	222,938	242,396	257,061	265,184	477.2	4,520	4,158	3,920	3.800
Centla	3,093.00	90,854	105,168	118,007	127,946	455.4	15,503	13,393	11,936	11,009
Centro	1,612.00	535,150	612,987	683,467	740,429	538.8	1,623	1,417	1,271	1,173
Comalcalco	723.00	169,012	185,298	197,890	205,117	467,3	1,999	1.823	1,707	1,647
Cunduacán	623.90	107,314	121,335	133,357	142,079	493.9	2,871	2,540	2,311	2,169
Emiliano Zapata	437.40	27,703	31,197	34,212	36,435	511.5	8,075	7,171	6,539	6,140
Huimanguillo	3,757.59	162,903	180,094	192,935	200,203	584.7	13,487	12,200	11,388	10,974
Jalapa	642.91	33,774	38,121	41,841	44,514	518.5	9,870	8,744	7,967	7,488
Jalapa de Méndez	472.36	70,732	80,705	89,418	95,994	495.2	3,307	2.898	2,616	2.437
Jonuta	1,575.64	28,423	28,235	27,326	25,735	475.0	26,329	26.505	27,386	29,080
Macuspana	2,551.70	137,603	151,864	162,927	169,487	664.7	12,326	11,169	10,410	10,008
Nacajuca	488.37	83,018	104,282	126,018	146,521	465.2	2,736	2,178	1,803	1,550
Paraiso	577.55	72,731	81,663	89,205	94,670	483.2	3,837	3,417	3,129	2,948
Tacotalpa	738.52	42,489	48,255	53,113	56,514	851.9	14,807	13,038	11,845	11,132
Теара	679.78	47,112	52,765	57,439	60,657	930.9	13,432	11,993	11,017	10,432
Tenosique	2,098.10	57,114	60,954	63,627	64,893	586.2	21,535	20,178	19,331	18,954
Estatal	25,809.92	1,944,503	2,184,350	2,389,020	2,538,074	561.0	7,446	6,628	6,061	5,705

		Población censada (INEGI) y estimada (CONAPO)			Lámina anual					
TAMAULIPAS	Superficie	(habitantes)								
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Abasolo	1,960.46	13,762	14,154	14,167	13,860	169.9	24,201	23,531	23,509	24,030
Aldama	3,671.78	28,943	29,438	28,992	27,790	262.8	33,342	32,781	33,285	34,725
Altamira	1,666.53	133,874	176,578	216,042	249,933	251.1	3,126	2,370	1,937	1,674
Antiguo Morelos	561.30	9,215	9,429	9,304	8,900	286.9	17,474	17,077	17,307	18,092
Burges	1,922.72	5,357	5,414	5,282	5,002	198.3	71,169	70,420	72,180	76,220
Bustamante	1,300.76	7,806	8,489	8,835	8,841	139.3	23,216	21,348	20,512	20,498
Camargo	937.15	17,565	22,362	26,918	30,989	153.4	8,184	6,428	5,340	4,639
Casas	4,085.20	4,722	5,327	5,733	5,926	240.5	208,080	184,448	171,386	165,804
Ciudad Madero	62.86	190,020	229,808	264,638	293,239	267.0	88	73	63	57
Cruillas	1,847.12	2,426	2,740	2,978	3,127	197.7	150,521	133,272	122,621	116,778
Gómez Farías	432.57	8,883	9,457	9,694	9,616	412.0	20,065	18,847	18,387	18,536
González	3,491.41	42,758	41,955	39,989	37,233	219.1	17,893	18,236	19,132	20,548
Guémez	1,365.26	15,083	17,140	18,679	19,596	201.3	18,224	16,037	14,716	14,027
Guerrero	2,406.85	4,579	5,989	7,317	8,490	164.1	86,244	65,940	53,972	46,515
Gustavo Díaz Ordaz	394.86	16,941	20,466	23.751	26,637	124.6	2,905	2,405	2,072	1,848
Hidalgo	2,142.43	25,144	26,280	26,541	26,023	239.3	20,390	19,509	19,317	19,701
Jaumave	2,737.59	13,694	15,297	16,440	17,026	153.6	30,712	27,494	25,582	24,702
Jiménez	1,714.90	8,816	9,333	9,582	9,584	169.9	33,057	31,225	30,414	30,408
Llera	2,283.53	18,246	19,093	19,315	18,980	202.7	25,367	24,242	23,963	24,386
Mainero	462.07	2,938	3,221	3,404	3,482	262.9	41,351	37,718	35,690	34,891
Mante, El	1,699.98	116,134	115,053	111,333	105,749	287.6	4,210	4,250	4,392	4,623
Matamoros	4,045.62	437,412	559,295	674,817	778,182	139.0	1,286	1,005	833	723
Méndez	2,456.17	5,535	5,980	6,268	6,396	170.2	75,518	69,899	66,687	65,352
Mier	888.35	7,088	8,720	10,234	11,524	164.1	20,564	16,716	14,243	12,648
Miguel Alemán	660.49	26,905	34,436	41,543	47,867	164.1	4,028	3,147	2,609	2,264
Miquihuana	1,055.88	3,290	3,423	3,428	3,308	101.6	32,599	31,332	31.286	32,421
Nuevo Laredo	1,334.02	325,494	420,513	511,492	592,303	139.9	573	444	365	315
Nuevo Morelos	287.53	3,167	3,112	2,984	2,804	304.1	27,607	28,095	29,300	31,181
Ocampo	1,761.89	13,755	14,023	13,804	13,188	337.9	43,286	42,459	43,132	45,147
Padilla	1,351.26	14,157	14,722	14,832	14,540	190.0	18,138	17,442	17,312	17,660
Palmillas	484.71	1,886	1,984	2,022	2,002	177.2	45,534	43,285	42,472	42,896
Reynosa	3,156.34	441,567	597,200	744,214	875,149	123.0	879	650	521	443
Rio Bravo	1,562.94	108,486	126,756	142,645	155,462	139.0	2.002	1.714	1,523	1.397

TAMAULIPAS Municipio	Superficie (km²)	Población ce	ensada (INEC habita)	, ,	a (CONAPO	Lámina anual media - evapot.	165 Harris & C. 185 185 185 185 185 185 185 185 185 185				
		2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030	
San Carlos	2,912.40	9,914	10,280	10,255	9,886	181,1	53,206	51,312	51,437	53,356	
San Fernando	6,091.36	59,653	66,997	72,438	75,798	179.9	18,370	16,357	15,128	14,457	
San Nicolás	457.56	1,100	1,307	1,472	1,581	208.8	86,838	73,085	64,893	60,419	
Soto la Marina	6.422.14	25,155	27,400	28,672	29,008	249.9	63,810	58,582	55,983	55,335	
Tampico	92.73	305,032	311,456	311,869	307,553	267.0	81	79	79	81	
Tula	3,062.33	27,901	27,210	25,641	23,474	179.6	19,710	20,210	21,447	23,427	
Valle Hermoso	916.43	60,934	70,894	79,634	86,773	139.0	2,090	1,797	1,600	1,468	
Victoria	1,634.08	273,520	316,139	352,552	381,340	142.4	851	736	660	610	
Villagrán	1,435.06	7,245	7,368	7,230	6,878	229.2	45,400	44,642	45,494	47,822	
Xicoténcatl	833.68	23,298	25,332	26,569	27,019	252.2	9,026	8,301	7,915	7,783	
Estatal	80,050.30	2,869,400	3,441,570	3,953,549	4,382,058	202.4	5,648	4,709	4,099	3,698	

		Población c	ensada (INEC	31) y estimad	a (CONAPO)	Lámina anual Volumen percápita para Iluvia medi					
TLAXCALA	Superficie		(habita	antes)		media - evapot.	t. (m³/habitante/año)				
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030	
Amaxac de Guerrero	12.87	7,890	9,625	11,304	12,788	202.9	331	271	231	204	
Apetatitlán de Antonio Carvajal	7.27	12,138	15,154	18,087	20,738	213.8	128	103	86	75	
Atlangatepec	124.06	5,592	6,595	7,497	8,217	172.4	3,824	3,242	2,852	2,602	
Altzayanca	141.52	13,452	15,534	17,302	18,587	163.3	1,718	1,488	1,336	1,243	
Apizaco	56.83	69,126	75,841	81,436	85,517	202.9	167	152	142	135	
Calpulalpan	274.75	38,060	43,420	48,008	51,482	177.7	1,283	1,124	1,017	948	
Carmen Tequexquitla, El	45.48	12,715	14,539	16,061	17,156	137.3	491	430	389	364	
Cuapiaxtla	136.97	11,265	13,580	15,745	17,531	163.3	1,985	1,647	1,421	1,276	
Cuaxemulco	15.64	4,372	5,280	6,140	6,884	202.9	726	601	517	461	
Chiautempan	66.21	58,950	68,914	78,053	85,745	221.9	249	213	188	171	
Muñoz de Domingo Arenas	68.28	4,189	4,984	5,746	6,416	189.7	3,093	2,599	2,255	2,019	
Españita	139.76	7,379	8,123	8,644	8,900	228.3	4,325	3,929	3,692	3,586	
Huamantla	354.34	68,157	77,786	85,975	92,037	163.3	849	744	673	629	
Hueyotlipan	173.44	12,921	13,657	14,043	14,053	197.6	2,652	2,509	2,440	2,438	
Ixtacuixtla de Mariano Matamoros	165.84	31,029	35,482	39,318	42,245	184.6	987	863	779	725	
xtenco	46.61	5,990	7,079	8,062	8,841	163.3	1,271	1,075	944	861	
Mazatecochco de J. M. Morelos	15.47	8,576	10,179	11,684	12,978	216.5	390	329	287	258	
Contla de Juan Cuamatzi	21.27	29,551	34,049	38,088	41,357	213.8	154	134	119	110	
Tepetitla de Lardizábal	28.71	14,724	18,356	21,923	25,175	184.6	360	289	242	211	
Sanctórum de Lázaro Cárdenas	110.35	7,106	8,102	8,940	9,555	200.3	3,110	2,728	2,472	2,313	
Nanacamilpa de Mariano Arista	97.86	14,925	16,341	17,384	17,983	197.1	1,293	1,181	1,110	1,073	
Acuamana a de Miguel Hidalgo	22.48	4,467	5,162	5,768	6,238	216.5	1,089	943	844	780	
Nativitas a	61.99	21,474	23,574	25,159	26,104	211.4	610	556	521	502	
Panotla	59.74	24.138	31,175	38,047	44,248	200.3	496	384	315	270	
San Pablo del Monte	63.76	55,838	66,822	77,263	86,140	216.5	247	207	179	160	
Santa Cruz Tlaxcala	29.09	13,174	15,968	18,650	20,974	202.9	448	370	317	281	
Tenancingo	17.34	10,359	11,327	12,054	12,487	216.5	362	331	311	301	
Teolocholco	80.53	17,483	20,165	22,558	24,490	216.5	997	864	773	712	
Tepeyanco	20.92	9,198	10,074	10,733	11,124	211.4	481	439	412	397	
Terrenate	213.67	11,503	13,141	14,485	15,408	187.9	3,490	3,055	2,771	2,605	
Tetla de la Solidaridad	145.48	22,426	28,833	35,266	41,153	165.6	1,075	836	683	586	
Tetlatlahuca	19.23	11,062	12,606	13,945	14,982	214.0	372	326	295	275	
Tlaxcala	41.61	74,923	84,790	93,445	100,268	214.0	119	105	95	89	
Tlaxco	556.91	34,888	43,390	51,389	58,238	176.8	2,822	2,269	1,916	1,691	
Tocatlán	10.94	4,847	5,490	6.039	6,451	187.9	424	374	340	319	
Totolac	24.27	17,115	20,347	23,419	26,052	221.9	315	265	230	207	
Zitlaltepec de Trinidad S. S.	65.95	8,121	8,680	9,001	9.068	183.1	1,487	1,391	1,342	1,332	
Tzompantepec	23.24	9,621	13,246	17,020	20,681	202.9	490	356	277	228	
Xaloztoc a/	49.03	17,257	19,425	21,237	22,554	187.9	534	474	434	408	
Xaltocan	78.71	7,603	8,777	9,774	10,509	174.1	1,802	1,561	1.402	1,304	

		Población	censada (INE	GI) y estimad	la (CONAPO)	Lámina anual	Volumen p	ercápita p	ara Iluvia m	nedia anual	
TLAXCALA Municipio	Superficie	(habitantes)				media - evapot.	(m³/habitante/año)				
	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030	
Papalotla de Xicohténcat!	18.90	22,892	27,737	32,328	36,351	216.5	179	147	127	113	
Xicohtzinco	9.79	10,480	12,242	13,863	15,231	211.4	197	169	149	136	
Yauhquemecan	30.59	22,564	36,500	51,509	66,395	202.9	275	170	121	93	
Zacatelco	14.44	32,653	36,898	40,499	43,211	211.4	93	83	75	71	
Benito Juárez	26.55	4,861	5,895	6,834	7,590	161.0	879	725	625	563	
Emiliano Zapata	50.23	3,482	4,175	4,809	5,310	164.0	2,366	1,973	1,713	1,552	
Láz aro Cárdenas	25.44	2,382	2,290	2,168	2,021	164.0	1,752	1,822	1,925	2,065	
Magdalena Tlalte ulco, La	14.23	14,068	17,057	19,950	22,538	213.8	216	178	153	135	
San Damián Texoloc	10.46	4,452	4,818	5,076	5,207	211.4	497	459	436	425	
Sar Francisco Tetlanohcan	50.30	9,284	10,325	11,145	11,683	200.1	1.084	975	903	861	
San Jerónimo Zacualpan	7.60	3,309	3,778	4,190	4,507	211.4	485	425	383	356	
San José Teacalco	37.20	4,694	5,323	5,832	6,180	202.9	1,608	1,418	1,294	1,222	
San Juan Huactzinco	4.44	5,665	6,217	6,640	6,908	211.4	166	151	141	136	
San Lorenzo axocomanitla	4.34	4,458	4,805	5,044	5,159	211.4	206	191	182	178	
San Lucas Tecopilco	30.06	3,005	3,331	3,575	3,722	176.8	1,769	1,595	1,487	1,428	
Santa Ana Nopalucan	9 37	5,954	6,019	5,942	5,735	184.6	291	287	291	302	
Santa Apolonia Teacalco	7.91	3,743	3,867	3,878	3,780	211.4	447	432	431	442	
Santa Catarina Ayometla	9.76	7,121	7,299	7,330	7,208	211.4	290	283	281	286	
Santa Cruz Quilehtla	5.40	5,004	5,775	6,448	6,974	211.4	228	198	177	164	
Santa Isabel Xiloxoxtla	5.45	3,257	3,646	3,957	4,170	211.4	354	316	291	276	
Estatal	4,060.88	986,932	1,153,609	1,305,709	1,431,234	184.0	757	648	572	522	

VERACRUZ Municipio		Población (ensada (INE	Lámina anual	Volumen p	ercápita pa	ara Iluvia m	edia anu			
	Superficie	(habitantes)				media - evapot.	. (m³/habitante/año)				
	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030	
Acajele	90.48	7,838	8,721	9,390	9,793	302.5	3,492	3,139	2,915	2,795	
Acatlán	20.56	2,739	2,520	2,295	2,071	410.5	3,081	3,349	3,678	4,075	
Acayucan	724.65	80,839	77,341	72,635	67,108	437.5	3,922	4,100	4,365	4,725	
ctopan	822.54	40,688	39,113	36,876	34,170	242.6	4,904	5,102	5,411	5,840	
cula	192.47	5,214	5,622	5,874	5,964	359.0	13,252	12,290	11,763	11,585	
cultzingo	166.97	18,529	20,635	22,260	23,269	225.5	2,032	1,825	1,691	1,618	
Camaron de Tejeda	74.38	5,836	6,190	6,379	6,396	409.3	5,217	4,918	4,773	4,760	
Alpatláhuac	75.67	8,898	9,215	9,265	9,056	511.8	4,353	4,203	4,180	4,277	
Alto Lucero de Gutiérrez Barrios	725.48	28,160	27,732	26,661	25,075	395.4	10,188	10,345	10,760	11,441	
Altotonga	375.08	55,367	59,715	62,549	63,621	418.1	2,833	2,626	2,507	2,465	
dvarado	840.63	51,455	54,509	56,652	57,834	462.4	7,554	7,131	6,861	6,721	
matitlán	169.44	7,495	7,598	7,503	7,225	359.0	8,116	8,006	8,107	8,419	
laranjos Amatlán a/	200.70	27,229	25,978	24,463	22,752	416.8	3,072	3,220	3,420	3,677	
matlán de Los Reyes	148.88	38,319	41,976	44,580	46,018	443.3	1,722	1,572	1,480	1,434	
ingel R. Cabada	497.63	33,139	30,789	28,092	25,237	647.6	9,724	10,466	11,471	12,769	
Intigua, La	106.93	24,231	24,497	24,350	23,836	312.1	1,377	1,363	1,371	1,400	
Apazapan	65.80	3,748	3,878	3,926	3,897	267.0	4,688	4,531	4,475	4,509	
Aquila	35.37	1,847	2,010	2,115	2,157	184.8	3,539	3,252	3,091	3,031	
stancinga	69.09	5,588	5,860	5,936	5,814	184.8	2,285	2,179	2,151	2,196	
Atlahuilgo	64.98	8,394	9,453	10,253	10,704	184.8	1,431	1,270	1,171	1,122	
toyac	171.09	23,458	24,002	23,946	23,339	443.3	3,233	3,160	3,167	3,250	
Atzacan	80.61	17,729	20,013	21,901	23,240	522.7	2,377	2,106	1,924	1,813	
tzalan	543.70	50,162	54,319	56,972	57,987	445.0	4,823	4,454	4,247	4,172	
laltetela	266.50	13,930	15,976	17,705	18,987	409.7	7,838	6,834	6,167	5,750	
yahualulco	148.06	21,050	22,678	23,667	23,893	560.6	3,943	3,660	3,507	3,474	
Banderilla	22.21	17,203	21,016	24,471	27,406	311.2	402	329	282	252	
Benito Juárez	217.15	16,893	18,349	19,321	19,690	421.0	5,412	4,983	4,732	4,643	
Roca del Río	42.77	141,547	162,184	179,769	193,782	371.9	112	98	88	82	
Calcahualco	164.51	11,528	12,476	13,020	13,111	511.8	7,304	6,749	6,467	6,422	
Camerino Z. Mendoza	37.84	40,757	42,239	42,957	42,934	197.7	184	177	174	174	

					a (CONAPO)					
VERACRUZ	Superficie		(habit	antes)	r rise	media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Carrillo Puerto	246.76	15,115	14,329	13,147	11,699	502.2	8,198	8,648	9,425	10,592
Catemaco	710.67	46,945	45,699	43,563	40,755	726.7	11,000	11,300	11,854	12,671
Cazones de Herrera	106.11	24,728	25,341	25,226	24,451	348.5	1,496	1,459	1,466	1,512
Cerro Azul	92.50	25,474	23,418	21,574	19,879	416.8	1,513	1,646	1,787	1,939
Citlaltépec	111.04	11,717	12,543	13,052	13,207	416.8	3,950	3,690	3,546	3,504
Coacoatzintla	51.00	7,603	8,374	8,940	9,272	357.8	2,400	2,179	2,041	1,968
Coahuitlán	95.41	7.164	7,862	8,325	8,504	652.0	8,683	7,912	7,472	7,315
Coatepec	255,81	76,552	84,779	91,495	96,429	389,7	1,302	1,176	1,090	1,034
Coatzacoalcos	471.16	277,062	284,696	287,666	286,272	651.2	1,107	1,078	1,067	1,072
Coalzintla	235.25	41,083	51,106	59,786	66,782	335.2	1,919	1,543	1,319	1,181
Coetzala	26.32	1,910	2,138	2,313	2,418	676.2	9,318	8,325	7,695	7,361
Colipa	143 94	6,415	6,292	6,030	5,656	362.8	8,140	8,299	8,660	9,232
Comapa	319.97	17,802	19,257	20,164	20,432	409.3	7,357	6,801	6,495	6,410
Córdoba	139.01	183,169	182,192	182,212	183,153	456.1	346	348	348	346
Cosamaloapan	581.30	55,956	53,268	50,028	46,440	448.6	4,660	4,896	5,213	5,615
Cosautlán de Carvajal	72.38	15,971	18,241	20,165	21,604	474.0	2,148	1,881	1,701	1,588
Coscomatepec	130.78	43,722	47,688	50,404	51,719	511.8	1,531	1,404	1,328	1,294
Cosoleacaque	234.42	101,725	118,148	131,846	142,216	651.2	1,501	1,292	1,158	1,073
Cotlaxtla	659.68	19,678	21,145	22,047	22,344	308.6	10,346	9,628	9,234	9,111
Coxquihui	86.37	15,030	16,684	17,812	18,305	479.0	2,752	2,479	2,322	2,260
Coyutla	312.56	21,945	23,566	24,497	24,668	652.0	9,286	8,648	8,319	8,261
Cuichapa	69.92	11,185	10,343	9,414	8,456	402.0	2,513	2,718	2,986	3,324
Cuitlahuac	129.96	24,022	23,257	22,111	20,683	502,2	2,717	2,806	2,952	3,155
Chacaltianguis	557.68	12,181	12,746	12,986	12,909	382.6	17,517	16,741	16,431	16,529
Chalma	199.05	13,419	14,396	14,951	15,034	372.6	5,527	5,151	4,960	4,933
Chiconantel Chiconantel	133.25	6,918	7,450	7,730	7,730	381.2	7,342	6,818	6,571	6,571
Chiconquiaco	68.27	13,513	14,589	15,244	15,441	410.5	2,074	1,921	1,838	1,815
Chicontepec	978.00	60,877	61,416	60,223	57,342	485.6	7,802	7,734	7,887	8,283
Chinameca	157.10	14,619	14,776	14,583	14,046	474.7	5,101	5,047	5,114	5,309
Chinampa de Gorostiza	152.99	14,592	15,627	16,216	16,291	416.8	4,370	4,081	3,932	3,914
Choapas, Las	2,851.20	75,418	70,385	64,771	58,931	701.1	26,507	28,402	30,864	33,922
Chocoman	41.13	15,724	16,726	17,326	17,500	499.0	1,305	1,227	1,184	1,173
Chontla	361.09	15,646	16,061	15,974	15,378	416.8	9,619	9,371	9,422	9,787
Chumatlán	36.19	3,583	4,040	4,381	4,571	378.9	3,827	3,394	3,130	3,000
Emiliano Zapata	394.82	46,553	53,988	60,451	65,612	245.1	2,078	1,792	1,600	1,475
Espinal	307.63	24,818	26,263	26,947	26,862	378.9	4,696	4,438	4,325	4,339
Filomeno Mata	62.51	11,308	13,203	14,812	15,972	652.0	3,604	3,087	2,752	2,552
Fortin	73.21	48,014	54,989	60,710	64,954	456.1	695	607	550	514
Gutiérrez Zamora	233.60	27,288	26,307	24,880	23,130	344.5	2,949	3,059	3,235	3,479
Hidalgotitlán	1,668.93	18,858	18,528	17,698	16,478	662.4	58,624	59,668	62,466	67,091
Huatusco	212.21	48,337	52,409	55,284	56,838	516.1	2,266	2,090	1,981	1,927
Huayacocotla	571.79	18,786	19,602	19,900	19,692	371.8	11,316	10,845	10,683	10,796
Hueyepari de Ocampo	824.18	41,257	41,835	41,198	39,479	400.0	7,990	7,880	8,002	8,350
Huiloapan de Cuauhtémoc	23.85	5,985	6,926	7,713	8,305	588.8	2,346	2,027	1,821	1,691
Ignacio de la Llave	481.18	18,388	18,288	17,676	16,644	363.2	9,504	9,556	9,887	10,500
lamat án	188.36	13,498	15,200	16,455	17,137	371.8	5,188	4,607	4,256	4,087
sla	714.80	40,386	43,078	44,579	44,890	326.7	5,782	5,421	5,238	5,202
xcatepec	229.49	13,397	14,789	15,795	16,301	416.8	7,140	6,468	6,056	5,868
xhuacán de los Reyes	114.33	9,914	10,898	11,591	11,925	560.6	6,465	5,881	5,529	5,374
khuatlán del Café	134.07	20,864	24,882	28,545	31,544	516.1	3,316	2,781	2,424	2,193
xhuatlancillo	39.48	12,627	18,616	24,366	29,468	511.8	1,600	1,085	829	686
xhuatlán del Sureste	276.37	13,902	16,469	18,733	20,570	651.2	12,947	10,929	9,608	8,750
xhuatlán de Madero	598.81	51,329	58,144	63,437	66,705	408.5	4,765	4,207	3,856	3,667
lxmatlahu:3can	335.59	6,293	6,778	7,065	7,146	372.0	19,838	18,419	17,670	17,470
lxtaczoquitlán	114.33	59,614	73,654	86,557	97,696	522.7	1,003	811	690	612
Jalacingo	287.95	34,851	39,773	43,942	47,041	376.4	3,110	2,725	2,466	2,304
Xalapa	118.45	405,477	433,495	453,673	465,712	354.0	103	97	92	90

VEDACDUZ	1	Población c	ensada (INEC		a (CONAPO)		Volumen p	ercápita p		nedia anua
VERACRUZ	Superficie		(habit			media - evapot.			ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Jalcomulco	58.40	4,604	5,088	5,457	5,673	267.0	3,387	3,065	2,858	2,749
Jáltipan	331.48	39,016	37,587	35,627	33,296	572.1	4,860	5,045	5,323	5,695
Jamapa	163.80	10,360	10,927	11,208	11,205	371.9	5,880	5,575	5,435	5,437
Jesús Carranza	486.32	26,310	25,722	24,533	22,887	601.9	11,126	11,381	11,932	12,790
Xico	176.85	29,972	33,535	36,474	38,530	436.0	2,573	2,299	2,114	2,001
Jilotepec	72.38	13,526	14,313	14,783	14,928	387.7	2,074	1,960	1,898	1,880
Juan Rodriguez Cara	934.20	34,703	34,580	33,660	32,073	333.0	8,964	8,996	9,242	9,699
Juchique de Ferrer	259.10	19,681	20,003	19,832	19,213	454.9	5,989	5,893	5,943	6,135
Landero y Coss	21.39	1,473	1,355	1,237	1,114	410.5	5,961	6,480	7,098	7,882
Lerdo de Tejeda	135.72	20,815	19,919	18,882	17,749	647.6	4,222	4,412	4,655	4,952
Magdalena	28.79	2,428	2,778	3,079	3,296	676.2	8,018	7,008	6,323	5,907
Maltrata	132.43	15,276	16,146	16,617	16,678	184.8	1,602	1,516	1,473	1,468
Manlio Fabio Altamirano	224.55	21,410	23,054	24,138	24,626	295.5	3,100	2,879	2,749	2,695
Mariano Escobedo	103.64	29,922	35,505	40,180	43,751	511.8	1,773	1,494	1,320	1,212
Martinez de la Torre	815.13	123,678	129,175	132,038	132,282	392.6	2,588	2,477	2,424	2,419
Mecatlán	48.53	10,797	12,355	13,556	14,277	643.6	2,893	2,528	2,304	2,188
Mecayapan	523.96	15,764	15,633	14,936	13,764	474.7	15,778	15,910	16,652	18,070
Medellín	370.14	36,636	40,790	44,022	46,203	408.6	4,129	3,708	3,436	3,274
Miahuatlan	20.56	3,944	3,952	0.000	3,702	327.4	1,707	1,703	1,740	1,818
Minas, Las	58.40	2,686	2,859	2,947	2,939	318.4	6,923	6,504	6,310	6,327
Minatitlán	4,123.91	157,580	142,429	127,706	113,904	613.8	16,064	17,773	19,822	22,223
Misantla	537.94	62,902	61,667	59,245	55,892	473.3	4,047	4,128	4,297	4,555
Mixtla de Altamirano	60.87	8,735	9,977	10,924	11,457	424.3	2,957	2,589	2,364	2,254
Moloacán	261.57	17,388	18,006	18,157	17,877	651.2	9,797	9,460	9,382	9,529
Naolinco	123.38	18,824	20,282	21,301	21,847	201.4	1,320	1,225	1,166	1,137
Naranjal	26.32	4,208	4,679	5,041	5,250	676.2	4,230	3,804	3,531	3,390
Nautla	358.63	10,131	9,789	9,263	8,607	348.5	12,336	12,767	13,492	14,521
Nogales	77.32	32,125	33,912	34,988	35,357	184.8	445	421	408	404
Oluta	90.48	13,785	14,453	14,729	14,630	572.1	3,755	3,581	3,514	3,538
Omealca	225.37	22,917	23,770	23,997	23,626	502.2	4,938	4,761	4,716	4,790
Orizaba	27.97	122,270	115,073	108,232	101,769	588.8	135	143	152	162
Otatitlán	53.46	5.408	5,194	4,900	4,554	515.2	5,093	5,303	5,621	6,048
	27.97	12,600	13,180	13,389		488.8	1,085			1,035
Oteapan					13,210			1,037	1,021	
Ozuluarna	2,357,39	25,252	24,300	22,848	21,040	272.9	25,473	26,471	28,153	30,572
Pajapan	305.98	14,659	16,149	17,134	17,515	474.7	9,908	8,994	8,477	8,293
Pánucc	3,277.81	94,003	95,277	94,669	92,363	267.1	9,314	9,189	9,248	9,479
Papantla	1,199.26	176,628	181,676	182,302	178,800	343.1	2,330	2,265	2,257	2,302
Paso del Macho	323.26	27,626	29,488	30,606	30,950	508.8	5,954	5,578	5,374	5,315
Paso de Ovejas	384.95	31,952	32,793	32,924	32,392	285.9	3,445	3,356	3,343	3,398
Perla, La	199.88	18,738	29,732	22,184	22,990	511.8	5,460	4,934	4,611	4,450
Perote	735.35	56,515	60,264	62,726	63,836	436.0	5,673	5,320	5,112	5,023
Platón Sanchez	227.84	18,138	17,925	17,275	16,271	372.6	4,680	4,736	4,914	5,217
Playa Vicente	2,122.14	50,941	47,148	42,902	38,515	513.5	21,390	23,111	25,398	28,291
Poza Rica de Hidalgo	230.31	157,160	140,578	126,242	113,987	335.2	491	549	611	677
Vigas de Ramirez, Las	108.57	14,726	15,841	16,579	16,860	318.4	2,348	2,182	2,085	2,050
Pueblo Viejo	286.24	52,489	59,308	65,165	69,630	359.3	1,959	1,734	1,578	1,477
Puente Nacional	133,13	19,802	22,186	24,058	25,342	270.3	1,817	1,622	1,496	1,420
Rafael Delgado	39.48	15,350	17,147	18,536	19,404	411.6	1,059	948	877	837
Rafael Lucio	24.68	5,586	6,687	7,736	8,650	387.7	1,713	1,431	1,237	1,106
Reyes, Los	33.72	4,378	4,981	5,455	5,743	184.8	1,423	1,251	1,142	1,085
Río Blanco	24.68	40,850	43,721	45,741	46,902	588.8	356	332	318	310
Saltabarranca	91.30	5,890	5,963	5,880	5,661	647.6	10,038	9,915	10,055	10,444
San Andrés Tenejapan	24.68	2,300	2,432	2,497	2,482	676.2	7,256	6,862	6,684	6,724
San Andrés Tuxtla	918.77	147,965	158,824	165,581	168,013	720.8	4,476	4,170	4,000	3,942
San Juan Evangelista	968.94	33,793	33,156	31,637	29,415	439.3	12,596	12,838	13,454	14,470
Santiago Tuxtla	621.84	56,615	59,140	59,969	58,989	750.5	8,243	7,891	7,782	7,912
Saluya de Alemán	640.76	28,977	29,135	28,512	27,219	662.4	14,648	14,568	14,887	15,594

		roblacion c		GI) y estimad	a (CONAPO)	Lámina anual	Volumen	percápita pa	ara Iluvia n	iedia anua
VERACRUZ	Superficie		(habit	antes)		media - evapot.	t. (m³/habitante/año)			
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Soconusco	94.59	11,975	13,929	15,509	16,635	474.7	3,750	3,224	2,895	2,699
Sochiana	21.39	3,236	3,579	3,836	3,978	516.1	3,411	3,084	2,878	2,775
Soledad Atzompa	65.80	17,084	19,084	20,522 =	21,254	184.8	712	637	593	572
Soledad de Doblado	370.96	28,239	29,233	29,507	29,092	294.7	3,871	3,739	3,704	3,757
Soteapan	528.07	28,634	31,608	33,539	34,228	726.7	13,401	12,140	11,441	11,211
Tamalin	417.85	12,035	12,494	12,611	12,368	266.5	9,253	8,913	8,831	9,004
Tam ahua	985.40	27,264	27,074	26,223	24,823	385.1	13,919	14,016	14,471	15,287
Tampico Alto	1,027.35	13,113	13,045	12,680	12,066	266.5	20,881	20,989	21,594	22,692
Tancoco	145.59	6,496	6,820	6,949	6,885	416.8	9,341	8,898	8,732	8,814
Tantima	267.32	13,978	14,535	14,679	14,382	425.4	8,135	7,823	7,747	7,907
Tantoyuca	1,205.84	98,527	103,163	104,702	102,887	303.0	3,708	3,542	3,490	3,551
Tatatila	82.25	5,086	5,522	5,798	5,886	318.4	5,149	4,743	4,517	4,449
Castillo de Teayo	447.46	20,296	20,818	20,757	20,157	332.9	7,339	7,155	7,176	7,390
Tecolutla	471.31	26,605	26,394	25,580	24,279	344.5	6,103	6,152	6,348	6,688
Tehuipango	111.04	18,405	20,999	22,930	23,966	424.3	2,560	2,244	2,055	1,966
Temapache	1,137.57	106,590	104,973	100,992	95,119	333.7	3,561	3,616	3,758	3,990
Tempoal	1,487.15	37,633	36,498	34,526	31,931	301.1	11,898	12,268	12,968	14,022
Tenampa	69.92	6,147	6,812	7,298	7,575	474.0	5,391	4,865	4,541	4,375
Tenochtitlán	82.25	5,822	6,149	6,305	6,285	418.1	5,907	5,593	5,455	5,472
Teocelo	54.29	15,516	17,117	18,371	19,226	546.8	1,913	1,734	1,616	1,544
Tepatlaxco	99.53	8,198	9,407	10,399	11,070	692.5	8,408	7,327	6,628	6,226
Tepetlän	83.90	8,776	8,876	8,736	8,380	201.4	1,925	1,903	1,934	2,016
Tepetzintla	245.56	14,268	14,627	14,646	14,321	416.8	7,173	6,997	6,988	7,147
Tequila	74.85	12,465	13,914	14,954	15,462	184.8	1,110	994	925	895
José Azueta	585.63	25,332	24,282	22,753	20,893	408.1	9,435	9,843	10,504	11,439
Texcatepec	153.61	9,427	10,233	10,700	10,791	371.8	6,058	5,581	5,337	5,292
Texhuacán	32.90	4,833	5,270	5,558	5,678	424.3	2,888	2,649	2,512	2,459
Texistepac	615.26	19,779	20,191	20,000	19,202	572.1	17,795	17,432	17,599	18,330
Tezonapa	351.00	52,771	51,091	48,227	44,491	551.1	3,666	3,786	4.011	4,348
Tierra Blanca	1,363.76	92,139	84,914	77,281	69,666	355.1	5,256	5,704	6,267	6,952
Tihuatlar	828.29	84,160	87,253	88,173	87,034	348.5	3,430	3,308	3,274	3,317
Tlacojalpan	91,30	4,837	5,271	5,557	5,691	475.0	8,965	8,227	7,804	7,620
Tlacolulan	137.36	9,257	9,890	10,237	10,254	277.7	4,121	3,858	3,727	3,721
	646.51	15,437	14,619	13,542	12,299	443.3	18,566	19,605	21,164	23,303
Tlacotalpan	9048	3,782	4,306	4,741	5,057	440.6	10,540	9,257		7,882
Tlacotepec de Mejia			12,321			468.9			8,408	
Tlachichilco	291.18	11,512		12,744	12,758		11,860	11,082	10,714	10,702
Tlalixcoyan	974.71	37,950	38,337	37,683	36,124	362.5	9,310	9,216	9,376	9,780
Tlalnelhuayocan	29.61	12,047	15,244	18,341	21,141	387.7	953	753	626	543
Tlapacoyan	192.30	53,882	56,947	58,832	59,491	445.0	1,588	1,503	1,454	1,438
Tlaquilpan	58.40	6,507	6,921	7,121	7,101	184.8	1,659	1,559	1,516	1,520
Tilapan	23.85	4,154	5,316	6,425	7,390	676.2	3,882	3,034	2,510	2,182
Tomatlán	31.26	6,322	6,502	6,527	6,404	511.8	2,531	2,461	2,451	2,498
Tonayán	74.03	5,024	5,123	5,067	4,875	327.4	4,824	4,731	4,783	4,972
Totutla	80.61	15,574	17,138	18,292	18,967	474.0	2,453	2,229	2,089	2,014
Tuxpa:n	1,051.89	131,181	132,666	131,668	128,487	386.4	3,098	3,064	3,087	3,163
Tuxtilla	168.62	2,297	2,457	2,564	2,613	475.0	34,868	32,597	31,237	30,651
Jrsulo Galván	149.70	28,647	28,341	27,600	26,506	248.0	1,296	1,310	1,345	1,400
Vega de Alatorre	310.92	19,470	20,072	20,257	20,047	362.8	5,793	5,619	5,568	5,626
Veracruz	241.00	470,421	420,989	379,844	345,738	280.8	144	161	178	196
Villa Aldama	78.96	8,315	9,013	9,481	9,683	318.4	3,024	2,789	2,652	2,596
Xoxocotla	63.34	4,586	5,015	5,289	5,378	184.8	2,553	2,334	2,213	2,177
Yanga	102.82	16,890	15,692	14,394	13,066	443.3	2,699	2,905	3,167	3,489
Yecuatla	135.72	12,915	12,252	11,361	10,324	415.4	4,365	4,601	4,962	5,461
Zacualpan	219.62	7,244	7,182	6,920	6,491	371.8	11,272	11,369	11,799	12,579
Zaragoza	41.83	9,318	10,399	11,226	11,714	651.2	2,924	2,620	2,427	2,326
Zentla	241.00	12,840	13,765	14,320	14,485	513.5	9,639	8,991	8,643	8,544
Zongolica	347.33	41,467	45,331	47,835	48,817	502.2	4,206	3,848	3,646	3,573

VERACRUZ	Superficie	0.11.			Lámina anual N media - evapot.	Volumen percápita para Iluvia media anua (m³/habitante/año)				
Município	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Zontecomatlán	216.33	12,860	14,286	15,295	15,756	371.8	6,254	5,630	5,259	5,105
Zczocolco de Hidalgo	106.11	13,146	14,810	16,038	16,706	446.6	3,605	3,200	2,955	2,837
Agua Dulce	259.25	45,534	43,284	40,775	38,129	651.2	3,708	3,901	4.141	4,428
Higo, El	356.94	19,100	18,832	18,217	17,321	269.5	5,036	5,107	5,280	5,553
Nanchital de Lázaro Cárdenas	63.99	28,222	28,980	29,246	29,044	651.2	1.477	1.438	1.425	1,435
Tres Valles	378.10	45,593	41,952	38,186	34,474	382.9	3,175	3,451	3,791	4,199
Estatal	72,991.06	7,164,716	7,378,261	7,467,895	7,427,933	407.8	4.155	4.034	3.986	4,007

		Población c	ensada (INE)	3I) y estimad	a (CONAPO)	Lámina anual	Volumen percápita para lluvia media anua				
YUCATÁN	Superficie	TO THE PROPERTY OF THE PROPERT	(habit	antes)		media - evapot.		(m³/habit	ante/año)		
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030	
Abala	301.45	5,321	5,828	6,213	6,421	257.7	14,597	13,327	12,502	12,097	
Acanceh	153.29	13,403	14,994	16,440	17,552	307.9	3,522	3,148	2,871	2,689	
Akil	48.54	9,576	10,599	11,488	12,151	287.1	1,455	1,315	1,213	1,147	
Заса	118,78	5,186	5,817	6,425	6,938	261.4	5,988	5,338	4,833	4,476	
Bokoba	48.54	2,007	2,166	2,301	2,392	273.8	6,623	6,137	5,777	5,557	
Buctzotz	543.45	8,090	8,793	9,417	9,896	235.0	15,789	14,526	13,564	12,907	
Cacalchen	76.64	6,397	7,080	7,676	8,107	273.8	3,281	2,964	2,734	2,589	
Caloimul	361.50	3,982	4,368	4,738	5,036	286.5	26,009	23,711	21,859	20,566	
Cansahcab	146.90	4,813	5,099	5,350	5,536	195.9	5,979	5,643	5,379	5,198	
Cantamayec	502.02	2,122	2,331	2,487	2,564	296.1	70.040	63.760	59,761	57,966	
Celestun	868.63	6,195	7,304	8,347	9,227	225.1	31,566	26,773	23,428	21,193	
Cenotillo	614.43	3,493	3,680	3,828	3,918	328.1	57,705	54,773	52,655	51,446	
Conkal	57.48	7,779	9,144	10,476	11,649	261.4	1,932	1,643	1,434	1,290	
Cuncunul	315.52	1,341	1,562	1,780	1.972	328.1	77,186	66.265	58,150	52,488	
Cuzama	150.73	4,462	4,892	5,225	5,406	307.9	10,402	9,488	8,883	8,586	
Chacsinkin	158.40	2.418	2,802	3,146	3,406	276.0	18,080	15,602	13,896	12,835	
Chankom	137.95	4.080	4.355	4,510	4.503	328.1	11,092	10.391	10,034	10,050	
Chapab	168.62	2,850	3,151	3,391	3,537	281.3	16,644	15,054	13,988	13,411	
Chemax	1,098.60	25,537	28,512	30,979	32,616	298.2	12,829	11,491	10,576	10,045	
Chicxulub Pueblo	196.72	3,563	3,896	4,173	4,352	206.4	11,395	10,421	9,729	9,329	
Chichimila	358.59	6,676	7,403	7,985	8,344	306.4	16,459	14,843	13,761	13,169	
Chikindzonot	352.56	3,575	3,981	4,306	4,493	281.9	27,801	24,966	23,082	22,121	
Chechola	99.64	4,128	4,571	4,943	5,191	280.9	6,781	6,124	5,663	5,392	
Chumayel	45.99	2,910	3,035	3,083	3,042	304.5	4,812	4,614	4,542	4,603	
Dzan	61.31	4,388	4,786	5,101	5,298	304.5	4,254	3,900	3,660	3,524	
	123.91	3,206	3,521	3,776	3,940	207.1	8.006	7,290	6.797	6,515	
Dzemul Dzidzantun	198.00	8,023	9,035	10,004	10,836	195.9	4,834	4,293	3,877	3,579	
Dzilam de Bravo	241.43	2,462	2,824	3,169	3,473	235.0	23.048	20.094	17,906	16,339	
	545.45	5,960	6,617	7,183	7,588	235.0	21,510	19,374	17,848	16,895	
Dzilam Gonzalez	456.03	3,470	3,769	4,016	4,176	328.1	43,113	39.692	37,251	35,824	
Dzitas		2,759	2,797	2,791	2,735	328.1	42,224	41,651	41,740	42,595	
Dzoncauich	355.12	12,847	13,389			286.5	11,081	10,633	10,402	10,432	
Espita	496.91			13,686	13,647	282.1			9.648	9.401	
Halachc	671.91	17,143	18,584	19,646	20,161	276.7	11,057	10,199	3,762	3,738	
Hocaba	81.75	5,399	5,782	6,013	6,051	276.7	4,190 6,169	3,912 5,851	5,652	5,577	
Hoctun	123.91	5,558	5,860	6,066	6,148		,	,			
Homun	192.89	6,209	6,611	6,873	6,940	307.9	9,566	8,985	8,642	8,559	
Huhi	191.61	4,286	4,413	4,453	4,391	300.0	13,413	13,027	12,910	13,092	
Hunucma	599.10	26,461	29,871	32,924	35,283	211.3	4,784	4,238	3,845	3,588	
lxil	134.13	3,295	3,907	4,510	5,043	187.0	7,612	6,420	5,562	4,974	
Izamal	275.92	23,335	24,405	25,103	25,246	300.0	3,548	3,392	3,298	3,279	
Kanasin	72.81	40,437	57,437	76,441	96,115	269.1	485	341	256	204	
Kantunil	153.29	5,201	5,378	5,475	5,464	300.0	8,843	8,552	8,400	8,417	
Kaua	214.60	2,300	2,790	3,273	3,700	328.1	30,608	25,233	21,509	19,027	
Kinchil	160.95	5,635	6,304	6,871	7,273	220.1	6,288	5,620_	5,156	4,871	

14 2 8 9 2 6 5 6		Población c	ensada (INE	GI) y estim	ada (CONAPO)	Lámina anual	Volumen p	ercápita pa	ra Iluvia m	e <mark>dia a</mark> nual
YUCATÁN	Superficie		(habi	itantes)		media - evapot.	1			
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Kopoma	260.59	2,224	2,466	2,663	2,790	280.9	32,918	29,687	27,491	26,240
Mama	117.52	2,762	2,944	3,059	3,089	304.5	12,955	12,154	11,697	11,584
Mani	85.59	4,707	4,485	4,189	3,830	304.5	5,537	5,811	6,221	6,804
Maxcanu	1,320.82	19,125	20,895	22,281	23,093	280.9	19,402	17,759	16,654	16,068
Mayapan	103.47	2,528	2,805	3,010	3,110	279.2	11,428	10,299	9,598	9,289
Merida	858.41	718,738	834,904	950,731	1,055,328	269.1	321	277	243	219
Mococha	57.48	2,732	3,057	3,357	3,603	261.4	5,501	4,916	4,477	4,171
Motul	297.63	30,004	33,452	36,706	39,451	273.8	2,716	2,436	2,220	2,066
Muna	270.81	11,616	12,190	12,600	12,786	280.2	6,531	6,224	6,021	5,934
Muxupip	54.93	2,581	2,859	3,107	3,298	273.8	5,828	5,261	4,841	4,561
Opichen	268.25	5,376	5,989	6,489	6,815	282.1	14,076	12,635	11,662	11,104
Oxkutzcab	512.23	25,828	26,767	27,268	27,220	272.4	5,403	5,213	5,118	5,127
Panaba	788.15	7,917	8,290	8,584	8,760	276.6	27,537	26,298	25,398	24,887
Peto	3,136.00	21,545	21,671	21,540	21,108	276.0	40,173	39,939	40,182	41,004
Progreso	270.10	49,845	59,448	69,038	77,793	206.4	1,118	938	807	717
Quintana Roo	139.24	1,000	898	818	757	328.1	45,678	50,866	55,841	60,340
Río Lagartos	249.09	3,131	3,766	4,379	4,916	318.5	25,338	21,066	18,117	16,138
Sacalum	205.66	3,979	4,386	4,713	4,912	281.3	14,540	13,191	12,276	11,778
Samahil	185.22	4,439	5,065	5,619	6,032	220.1	9,185	8,050	7,256	6,759
Sanahcal.	54.93	1,478	1,636	1,761	1,835	300.0	11,150	10,074	9,358	8,981
San Felipe	680.85	1,880	2,243	2,591	2,888	276.6	100,177	83,965	72,688	65,212
Santa Elena	694.90	3,553	3,981	4,344	4,586	275.9	53,963	48,162	44,137	41,808
Seye	186.50	8,414	9,109	9,626	9,899	276.7	6,133	5,665	5,361	5,213
Sinache	131.57	3,094	3,446	3,783	4,073	195.9	8,330	7,479	6.813	6,328
Sotuta	613.15	7,744	8,078	8,294	8,361	309.4	24,495	23,482	22,870	22,687
Sucila	256.76	3,951	4,542	5,124	5,640	286.5	18,618	16,196	14,356	13,043
Sudzal	436.87	1,554	1,716	1,845	1,924	272.6	76,648	69,412	64,559	61,908
Suma	39.60	1,876	1,978	2,038	2,043	280.3	5,918	5,612	5,447	5,434
Tahdziu	53.65	3,257	3,766	4,211	4,541	276.0	4,546	3,932	3,516	3,261
Tahmek	139.24	3,566	3,920	4,230	4,464	276.7	10,804	9,828	9,108	8,631
Teabo	261.87	4,952	5,538	6,016	6,345	300.6	15,897	14,215	13,086	12,407
Tecoh	452.20	14,636	16,226	17,521	18,342	281.3	8,692	7,840	7,260	6,935
Tekal de Venegas	95.80	2,344	2,451	2,524	2,547	280.3	11,458	10,957	10,641	10,544
Tekanto	47.25	3,942	4,091	4,193	4,226	280.3	3,360	3,238	3,159	3,134
Tekax	3,819 61	35,426	39,523	43,245	46,222	280.2	30,206	27,075	24,744	23,151
Tekit	219.71	8,625	9,782	10,790	11,534	304.5	7,756	6,839	6,200	5,800
Tekom	201.83	2,708	2,999	3,228	3.364	328.1	24,450	22,077	20,511	19,682
Telchac Pueblo	81.75	3,365	3,846	4,331	4,762	207.1	5,032	4,403	3,910	3,556
Telchac Puerto	173.73	1,634	2,066	2,515	2,940	207.1	22,024	17,419	14,309	12,241
Temax	329.52	6,489	6,749	6,869	6,819	195.9	9,947	9,564	9,397	9,466
Temozon	1,087.06	12,491	13,813	14,876	15,536	298.2	25,953	23,469	21,792	20,866
	134.13	2,152	2,126	2,053	1,936	280.3	17,473	17,687	18,316	19,423
Tepakan Tetiz	180.11	4,264	4,482	4,591	4,565	220.1	9,298	8,846	8,636	8,685
	65.15	1,951	1,979	1,968	1,915	280.3	9,361	9,229	9,281	9,537
Teya	355.12	33,356	37,200	40,719	43,461	304.5	3,242	2,907	2,655	2,483
Ticul	63.15	5,997	6,771	7,409	7,836	269.1	2,834	2,510	2,033	2,460
Timucuy					13,242	330.0				9,805
Tinum	393.44	9,715	11,033	12,254			13,364	11,768	10,595	
Tixcacalcupul	1,164.98	5,393	6,181	6,872	7,384	281.9	60,897	53,133	47,790	44,477
Tixkokob	159.67	15,556	17,392	19,042	20,335	261.4	2,683	2,400	2,192	2,053
Tixmehuac	251.65	4,090	4,660	5,188	5,612	276.0	16,981	14,904	13,387	12,376
Tixpehual	68.98	4,930	5,554	6,095	6,493	269.1	3,766	3,343	3,046	2,859
Tizîmîn	4,394.32	65,113	69,978	74,250	77,337	231.4	15,620	14,534	13,697	13,151
Tunkas	514.79	3,569	3,544	3,487	3,393	328.1	47,318	47,651	48,430	49,772
Tzucacab	1,289.00	12,779	13,809	14,780	15,590	276.0	27,839	25,763	24,070	22,820
Uayma	196.72	3,037	3,499	3,906	4,207	330.0	21,375	18,553	16,620	15,431
Ucu	192.89	2,967	3,416	3,820	4,130	202.3	13,153	11,424	10,216	9,449
Uman	234.30	50,251	61,080	72,180	82,505	273.0	1,273	1,047	886	775

YUCATÁN	Superficie		ensada (INE) (habit	GI) y estimad antes)	a (CONAPO)	Lámina anual media - evapot.			ara Ituvia m ante/año)	nedia anual
Nlunicipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Valladolid	945.22	57,853	66,414	74,888	82,418	306.4	5,006	4,361	3,868	3,514
Xocchel	53.65	2,864	2,953	2,972	2,911	276.7	5,183	5,027	4,995	5,100
Yaxcaba	1,079.00	13,488	15,111	16,509	17,485	309.4	24,748	22,090	20,220	19,091
Yaxkukul	43.43	2,417	2,752	3,072	3,348	261.4	4,698	4,126	3.696	3,391
Yobain	81.75	2,104	2,317	2,502	2,638	195.9	7,611	6,911	6,400	6,070
Estatal	43,376.99	1,689,180	1,923,530	2,148,744	2,342,080	267.2	6,861	6,025	5,394	4,949

		Población c	ensada (!NE	GI) y estimad	a (CONAPO) Lámina anual	Volumen p	percápita pa	ara Iluvia m	edia anua
ZACATECAS	Superficie		(habit	antes)		media - evapot.		(m³/habit	ante/año)	
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Apozol	311.53	7,593	6,928	6,284	5,696	186.1	7,635	8,368	9,225	10,177
Apulco	202.40	5,163	5,324	5,258	5,032	183.8	7,204	6,986	7,074	7,392
Atolinga	268.73	3,305	3,174	2,992	2,781	177.0	14,391	14,985	15,896	17,102
Benito Juárez	331.67	4,528	4,665	4,746	4,785	184.7	13,528	13,130	12,906	12,801
Calera	393.18	33,353	39,776	45,673	51,031	112.5	1,327	1,112	969	867
Cañitas de Felipe Pescador	502.12	8,796	8,305	7,804	7,340	96,2	5,490	5,815	6,188	6,579
Concepción del Oro	2,508.18	12,117	11,523	10,874	10,239	100.4	20,780	21,851	23,155	24,591
Cuauhtémoc	297.12	11,173	10,875	10,901	11,144	107.5	2,859	2,937	2,930	2,867
Chalchihuites	814.85	12,286	11,211	10,166	9,215	147.8	9,801	10,740	11,844	13,067
resnillo	4.995.52	190,109	198,459	204,480	208,780	106.7	2,802	2,685	2,605	2,552
Trinidad García de la Cadena	306,17	3,680	3,841	3,947	4,009	190.0	15,805	15,143	14,736	14,508
Genaro Codina	811.11	8,256	8,323	8,347	8,334	102.4	10,061	9,980	9,952	9,967
General Enrique Estrada	196.24	5,703	6,159	6,557	6,906	112.5	3,872	3,586	3,368	3,198
General Francisco R. Murguia	5,108.99	23,809	21,717	19,698	- 17,861	94.8	20,348	22,308	24,594	27,124
Plateado de Joaquin Amaro, El	354.53	2,079	1,904	1,726	1,559	132.7	22,625	24,705	27,253	30,172
General Pánfilo Natera	402.49	22,362	20,595	18,676	16,774	105,4	1,896	2,059	2,270	2,528
Guadalupe	962.78	113,749	130,621	146,197	160,678	103.6	877	764	682	621
Huanusco	365.16	5,425	5,176	4.843	4.469	154.0	10,366	10.865	11,612	12,584
Jalpa	719.45	24,269	23,739	22,897	21,896	173.6	5,145	5,260	5,453	5,703
Jerez	1,541.50	58,300	74,541	71,964	57,211	108.6	2,872	2,246	2,327	2,927
Jiménez del Teul	1,198.32	5,406	5,098	4,692	4,236	127.7	28,315	30,025	32,624	36,135
Juan Aldama	586.16	19,993	18,556	17,096	15,729	104.8	3,072	3,310	3,593	3,905
	340.19	13,104	12,910	12,509	11,991	186.1	4,831	4,903	5,061	5,279
Juchipila	419.73	41,456	43,813	45,521	46,714	108.4	1,098	1,039	1,000	974
Loreto	180.84	11,779	10,991		9,396	112.6		1,853	2,002	2,167
Luis Moya	12,190.08	18,439		10,173 15,691		88.9	1,729 58,761	63,322	69,053	75,685
Mazapil			17,111		14,316	94.3				
Melchor Ocampo	1,927.84	2,813	2,685	2,499	2,279		64,653	67,735	72,777	79,802
Mezquital del Oro	477.73	3,092	2,795	2,536	2,320	190.0	29,351	32,470	35,786	39,118
Miguel Auza	1,108.80	22,425	22,100	21,411	20,516	118.8	5,873	5,959	6,151	6,419
Momax	164.54	3,014	2,912	2,767	2,595	132.7	7,243	7,497	7,890	8,413
Monte Escobedo	1,611.97	10,061	10,299	10,184	9,821	177.7	28,473	27,815	28,129	29,169
Morelos	174.28	10,143	11,002	11,758	12,434	112.5	1,934	1,783	1,668	1,577
Moyahua de Estrada	539.72	5,876	5,400	4,898	4,409	177.6	16,316	17,754	19,574	21,744
Nochis lán de Mejía	881.61	30,140	27,378	24,832	22,609	173.6	5,077	5,589	6,162	6,768
Noria de Ángeles	398.14	14,244	13,090	11,902	10,773	108.4	3,030	3,297	3,626	4,006
Ojocaliente	685.78	39,518	38,453	36,932	35,217	105.4	1,828	1,879	1,956	2,052
Pánuco	560.30	14,486	14,468	14,128	13,572	110.3	4,265	4,270	4,373	4,552
Pinos	3,076.42	66,691	66,307	64,292	61,168	125.7	5,799	5,833	6,015	6,323
Rio Grande	1,831.69	61,097	55,577	50,403	45,830	98.6	2,955	3,249	3,58.2	3,940
Sain Alto	1,461.71	21,484	20,980	20,049	18,864	126.1	8,577	8,783	9,191	9,768
Salvador, El	508.41	3,209	3,147	3,034	2,894	90.5	14,330	14,613	15,157	15,890
Sombrerete	3,627.05	63,722	61,479	58,489	55,194	118.8	6,761	7,007	7,365	7,805
Susticacán	200.73	1,389	1,309	1,203	1,091	146.5	21,168	22,461	24,440	26,949
Tabasco	401.91	16,247	16,383	16,112	15,572	154.0	3,810	3,778	3,842	3,975
Tepechitlán	600.70	9,257	8,707	8,118	7,549	184.7	11,984	12,741	13,666	14,696

ZACATECAS	Superficie	(habitantes)) Lámina anual media - evapot.				
Municipio	(km²)	2000	2010	2020	2030	Hp (mm)	2000	2010	2020	2030
Tepetongo	724.44	8,696	7,935	7,198	6,524	140.5	11,708	12,830	14,144	15,605
Teul de González Orlega	896.99	9,458	8,709	7,953	7,249	177.6	16,847	18,296	20,035	21,980
Tlaltenango de Sánchez Román	747.08	24,322	25,102	25,518	25,659	179.1	5,502	5,331	5,244	5,215
Valparaíso	5,742.24	36,306	36,547	35,859	34,517	136.5	21,591	21,449	21,860	22,710
Vetagrande	147.66	7,461	6,996	6,454	5,885	110.7	2,191	2,337	2,533	2.778
Villa de Cos	6,225.09	33,253	33,339	33,405	33,439	99.5	18,636	18,588	18,551	18,532
Villa García	332.72	14,865	13,322	12,090	11,152	112.1	2,509	2,800	3,085	3,345
Villa González Ortega	412.13	12,237	11,325	10,379	9,475	97.8	3,293	3,558	3,882	4,253
Villa Hidalgo	371.26	16,217	14,733	13,360	12,165	91.1	2,086	2,296	2,532	2,781
Villanueva	2,162.50	33,302	34,140	34,569	34,686	128.4	8,335	8,130	8,030	8,002
Zacatecas	447.88	127,915	122,016	116,479	111,767	113.9	399	418	438	456
Trancoso	220.94	13,601	14,703	15,628	16,401	103.6	1,683	1,557	1,465	1,396
Estatal	74,979.31	1,402,773	1,418,673	1,404,151	1,371,748	121.0	6,465	6,393	6,459	6,612

ANEXO B

CLASIFICACIÓN DE LA SEQUÍA METEOROLÓGICA DE ACUERDO CON SU INTENSIDAD Y DURACIÓN PARA CADA MUNICIPIO DE LA REPÚBLICA MEXICANA

Tabla Guía

Clasificación de la Sequía Meteorológica de acuerdo con su intensidad y duración.

% i(mm/año)	Du	ración (año	s)
respecto a la Hp media anual	1 ≤ D < 2	2 ≤ D < 3	3 ≤ D ≤ 4
0 < % i ≤ 10	Normal	Moderada	Extraordinaria
10 < % i ≤ 20	Severa	Muy Severa	Ext. Severa
20 < % i ≤ 30	Vasta	Muy Vasta	Ext. Vasta
30 < % i ≤ 40	Critica	Muy Critica	Catastrófica

Figura B.1. Simbología para clasificar a las sequías meteorológicas.

BAJA CALIFORNIA

Figura B.2. Clasificación y distribución de la sequía meteorológica en el estado de Baja California

BAJA CALIFORNIA SUR

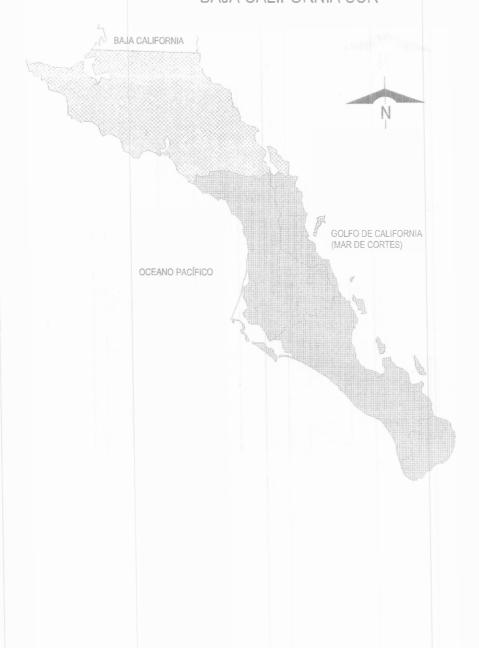


Figura B.3. Clasificación y distribución de la sequía meteorológica en el estado de Baja California Sur.

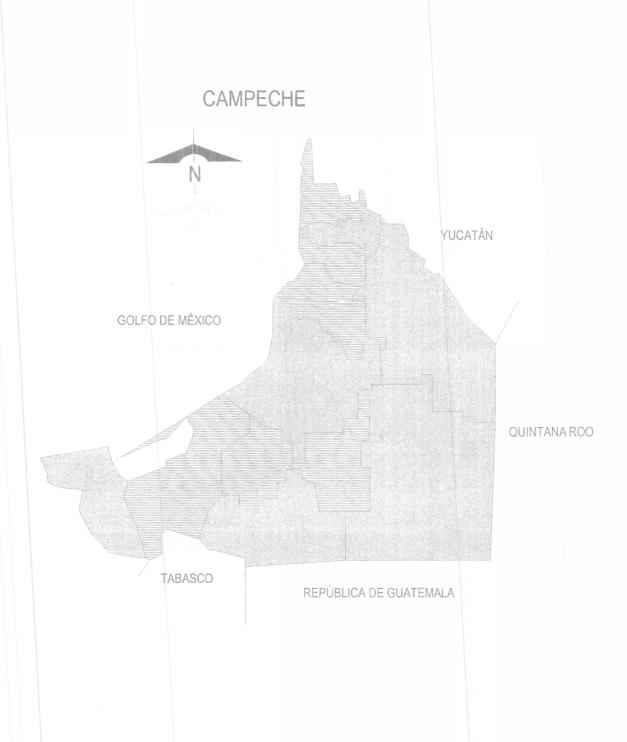


Figura B 4. Clasificación y distribución de la sequía meteorológica en el estado de Campeche.

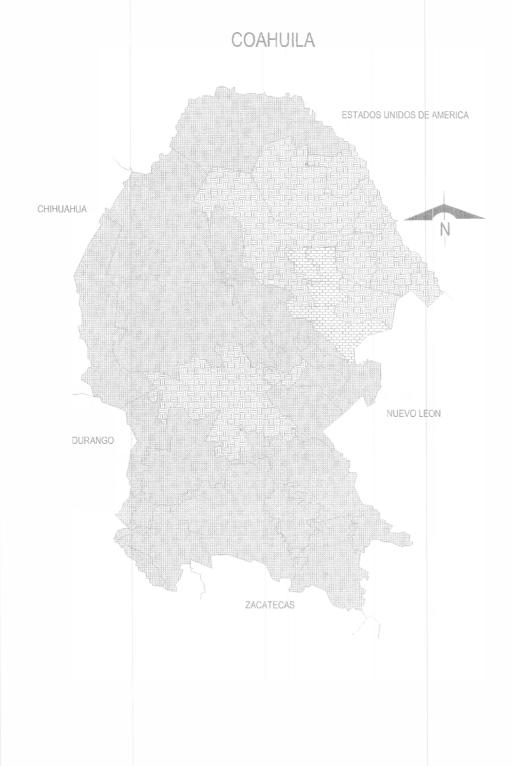


Figura B.5. Clasificación y distribución de la sequía meteorológica en el estado de Coahuila.

Colima

Figura B.6. Clasificación y distribución de la sequía meteorológica en el estado de Colima.

CHIHUAHUA

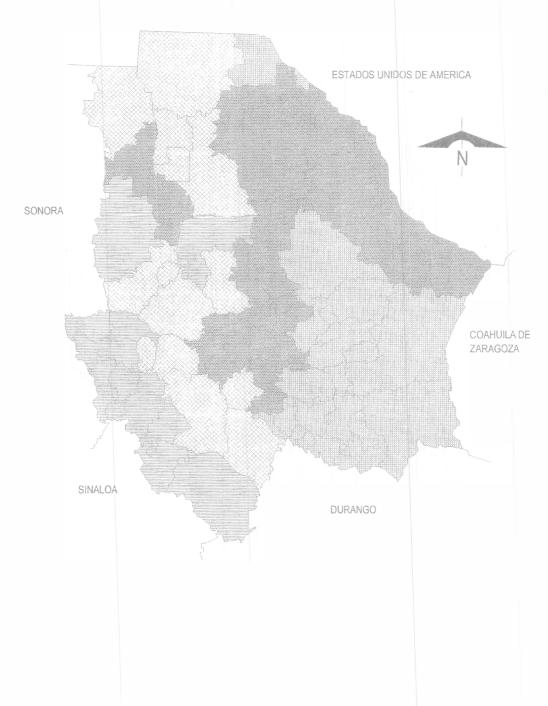


Figura B.8. Clasificación y distribución de la sequía meteorológica en el estado de Chihuahua.

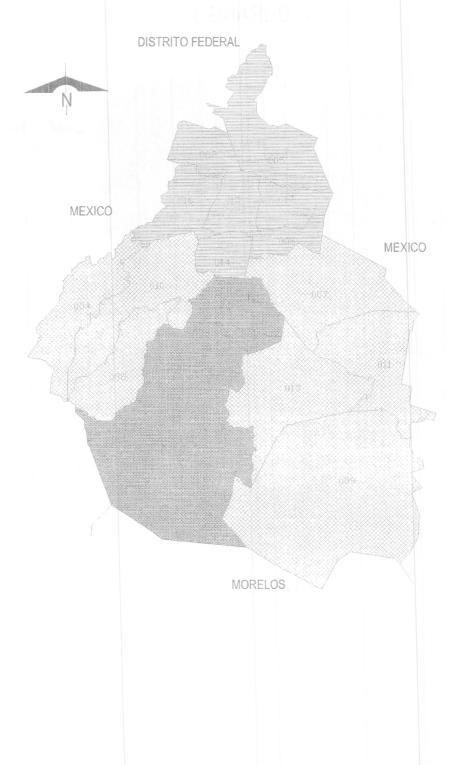


Figura B.9. Clasificación y distribución de la sequía meteorológica en el Distrito Federal.

DURANGO CHIHUAHUA COAHUILA DE ZARAGOZA SINALOA ZACATECAS NAYARIT

Figura B.10. Clasificación y distribución de la sequía meteorológica en el estado de Durango.

GUANAJUATO SAN LUIS POTOSI JALISCO QUERETARO DE ARTEAGA MICHOACAN DE OCAMPO

Figura B.11. Clasificación y distribución de la sequía meteorológica en el estado de Guanajuato.

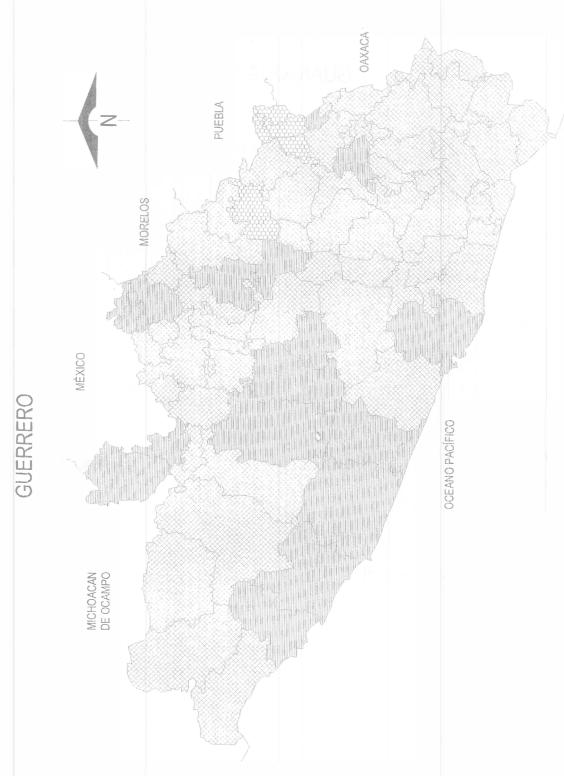


Figura B.12. Clasificación y distribución de la sequía meteorológica en el estado de Guerrero.

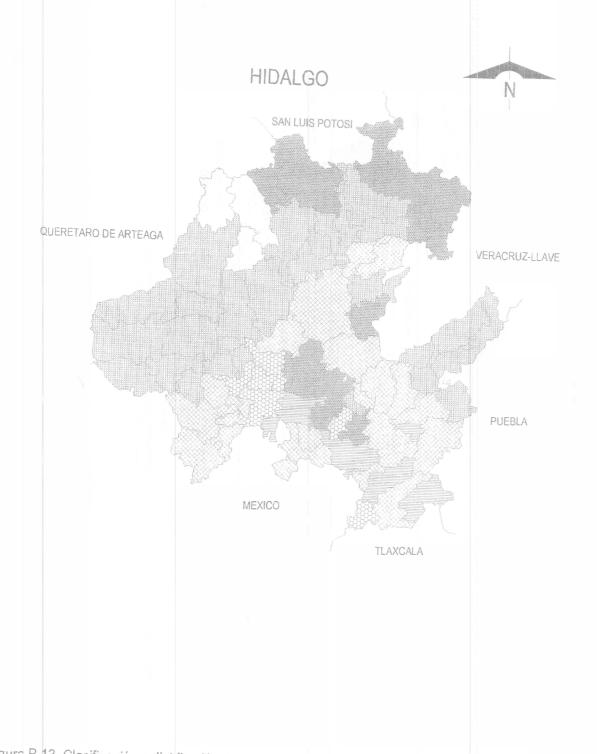


Figura B. 13. Clasificación y distribución de la sequía meteorológica en el estado de Hidalgo.

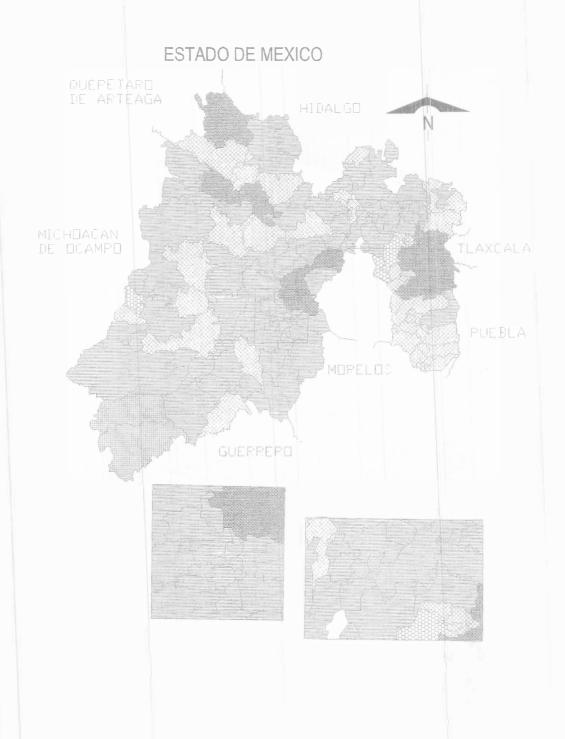


Figura B.15. Clasificación y distribución de la sequía meteorológica en el estado de México.

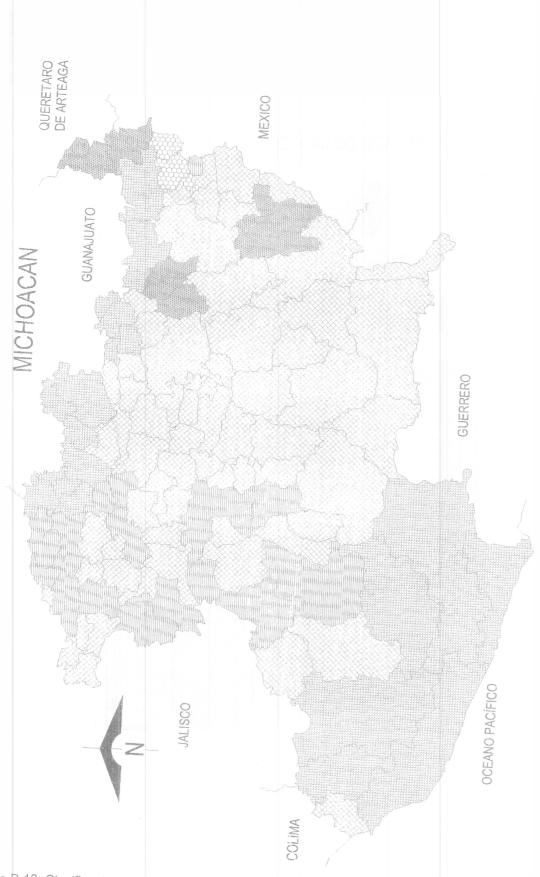


Figura B.16. Clasificación y distribución de la sequía meteorológica en el estado de Michoacán.

Figura B.17. Clasificación y distribución de la sequía meteorológica en el estado de Morelos.

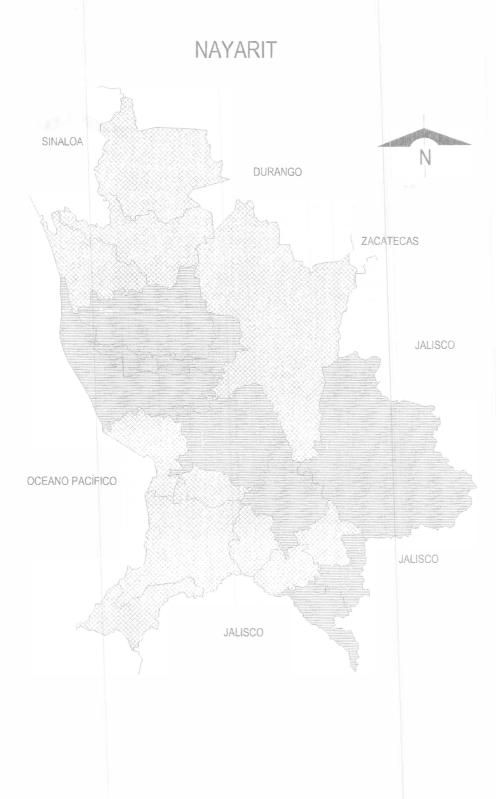


Figura B.18. Clasificación y distribución de la sequía meteorológica en el estado de Nayarit.

NUEVO LEÓN

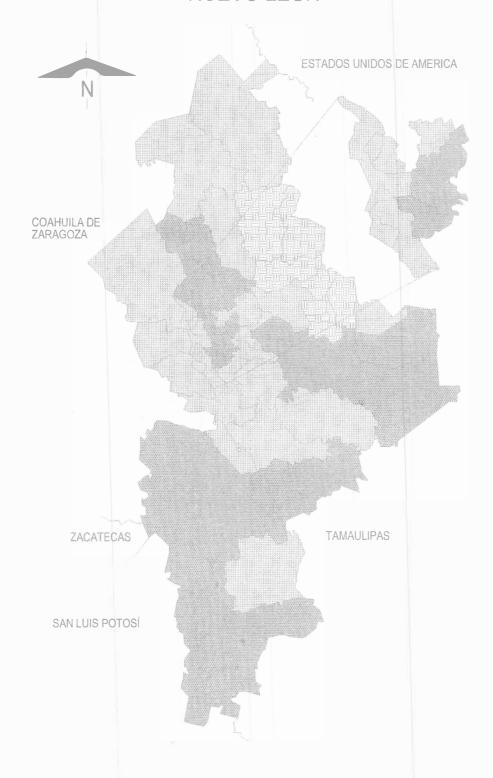


Figura B.19. Clasificación y distribución de la sequía meteorológica en el estado de Nuevo León.

Regiones geográficas

Figura B.20. Distribución de las regiones geográficas del estado de Oaxaca.

Figura B.21. Clasificación y distribución de la sequía meteorológica en el estado de Oaxaca (Región Cañada).

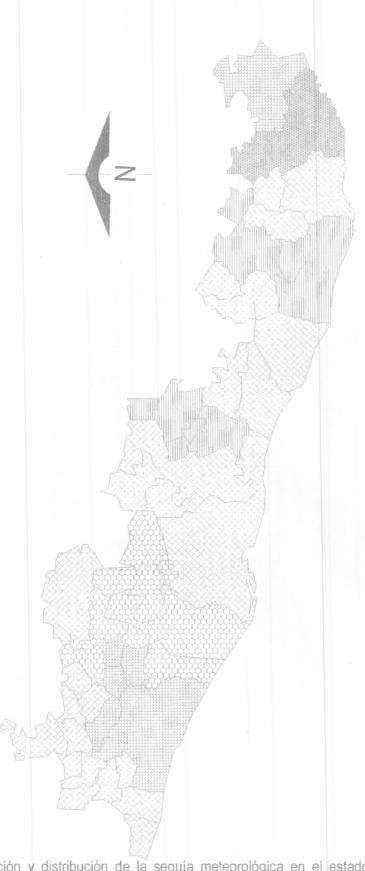


Figura B.22. Clasificación y distribución de la sequía meteorológica en el estado de Oaxaca (Región Costa).

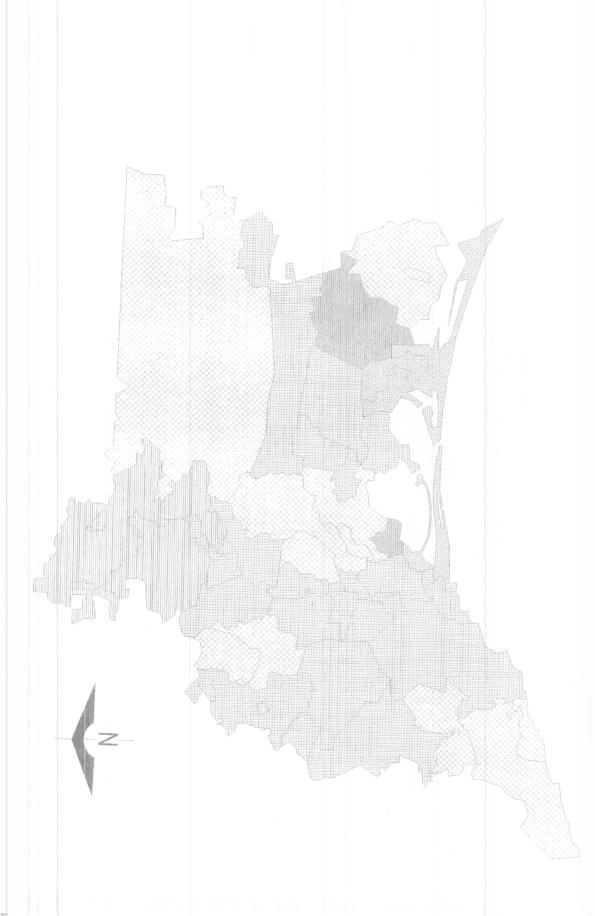


Figura B.23. Clasificación y distribución de la sequía meteorológica en el estado de Oaxaca (Región Istmo).

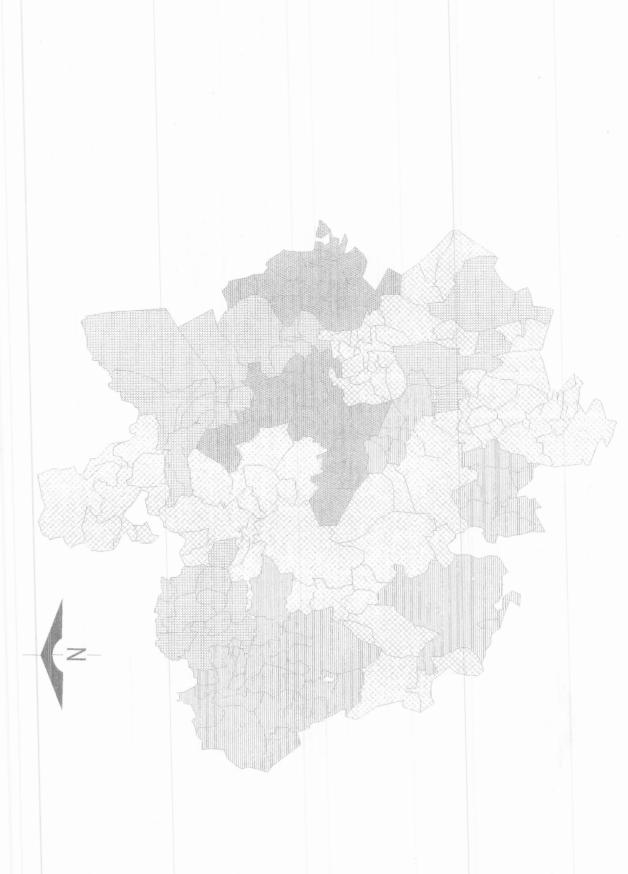


Figura B.24. Clasificación y distribución de la sequía meteorológica en el estado de Oaxaca (Región Mixteca).

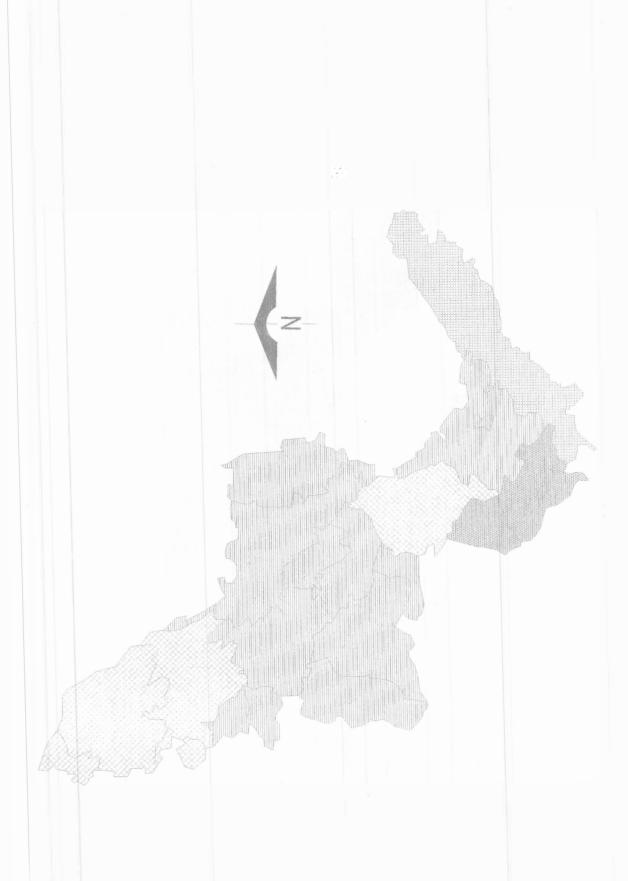


Figura B.25. Clasificación y distribución de la sequía meteorológica en el estado de Oaxaca (Región Papaloapan).

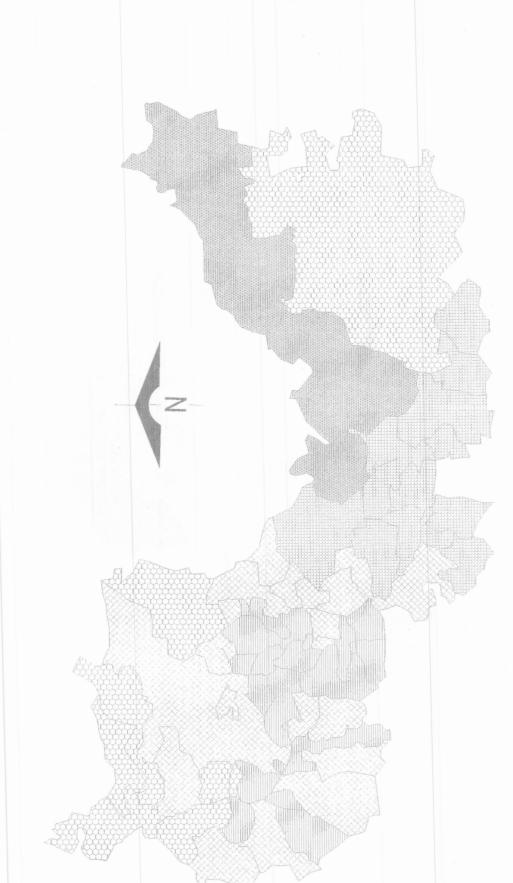


Figura B.26. Clasificación y distribución de la sequía meteorológica en el estado de Oaxaca (Región Sierra Norte).

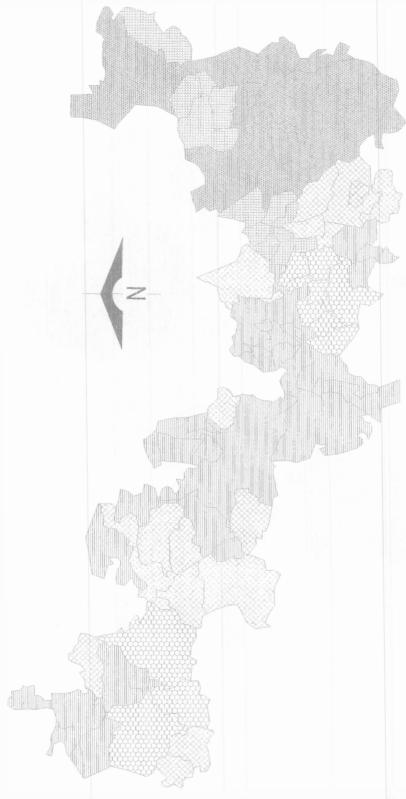


Figura B.27. Clasificación y distribución de la sequía meteorológica en el estado de Oaxaca (Región Sierra Sur).

Figura B.28. Clasificación y distribución de la sequía meteorológica en el estado de Oaxaca (Región Valles Centrales).

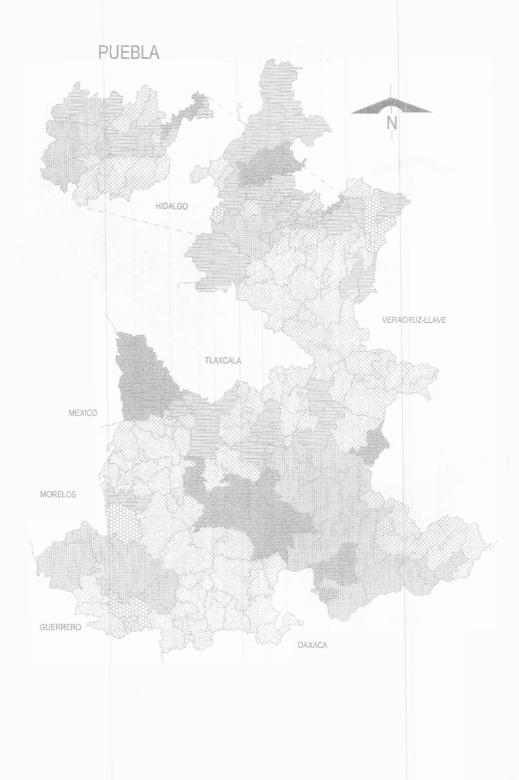


Figura B 29. Clasificación y distribución de la sequía meteorológica en el estado de Puebla.

QUERETARO SAN LUIS POTOSÍ GUANAJUATO HIDALGO GUANAJUATO MICHOACAN DE OCAMPO MEXICO

Figura B.30. Clasificación y distribución de la sequía meteorológica en el estado de Querétaro.

Figura B.31. Clasificación y distribución de la sequía meteorológica en el Quintana Roo.

Figura B.32. Clasificación y distribución de la sequía meteorológica en el estado de San Luis Potosí.

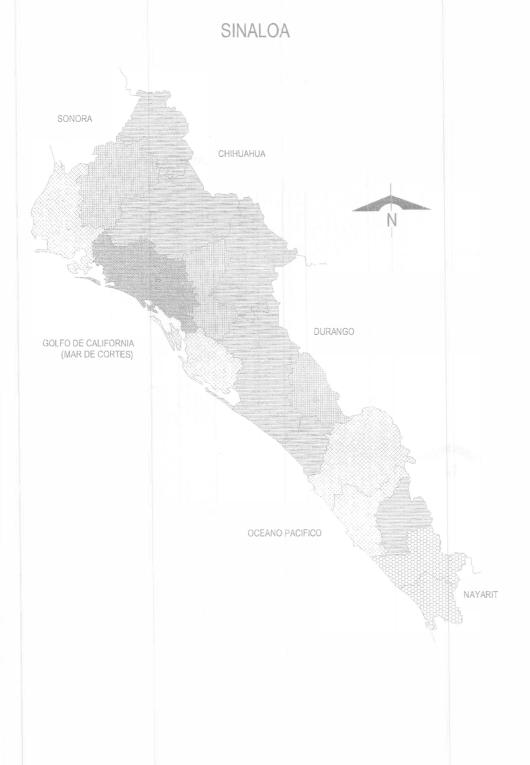


Figura B.33. Clasificación y distribución de la sequía meteorológica en el estado de Sinaloa.



Figura B.34. Clasificación y distribución de la sequía meteorológica en el estado de Sonora.

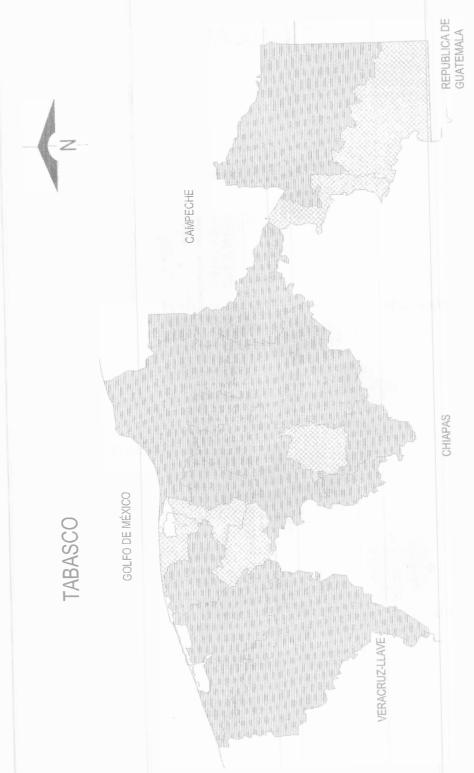


Figura B.35. Clasificación y distribución de la sequía meteorológica en el estado de Tabasco.

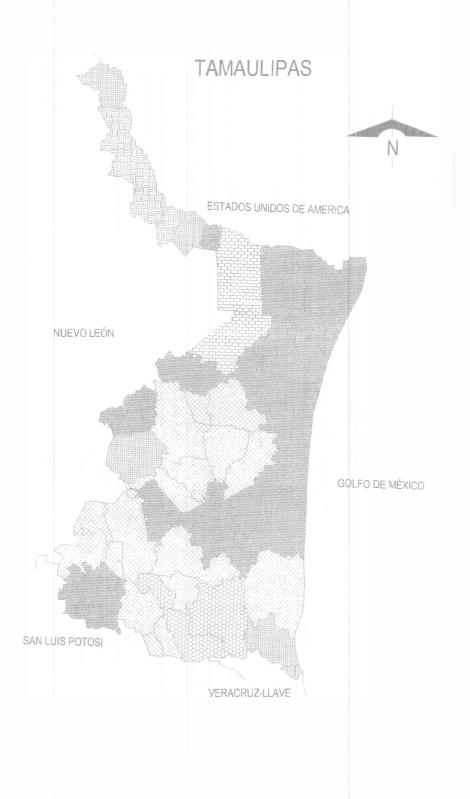


Figura B.36. Clasificación y distribución de la sequía meteorológica en el estado de Tamaulipas.

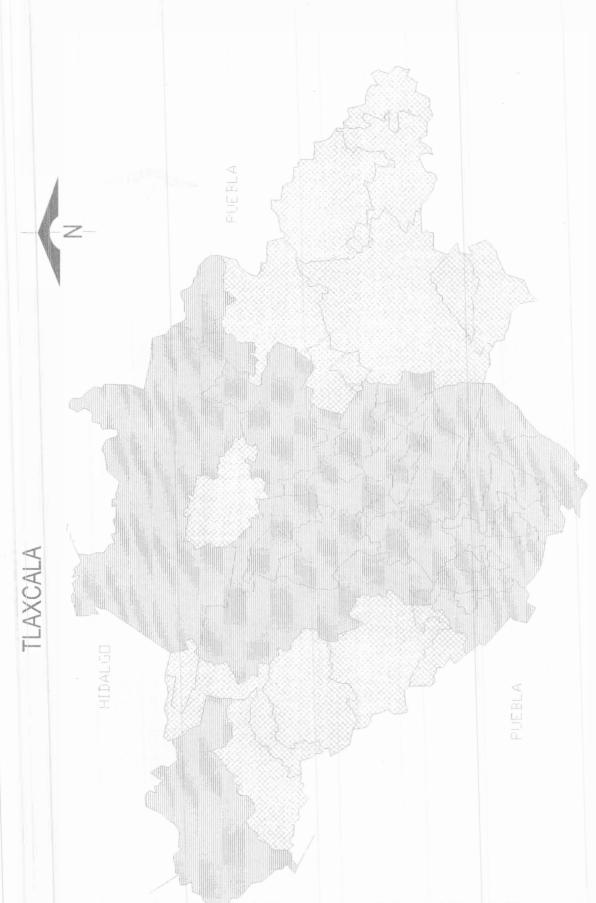


Figura B.37. Clasificación y distribución de la sequía meteorológica en el estado de Tlaxcala.

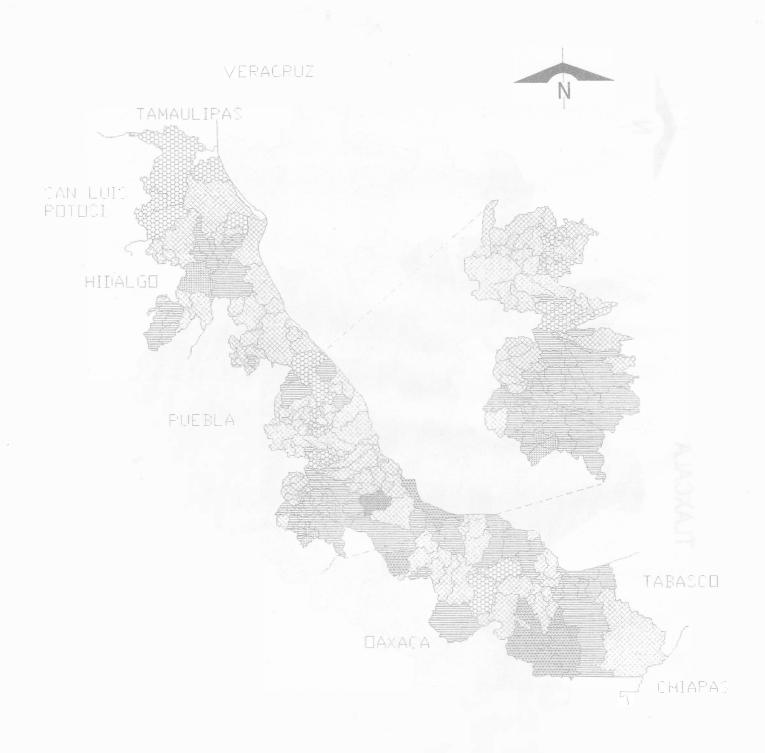


Figura B.38. Clasificación y distribución de la sequía meteorológica en el estado de Veracruz.

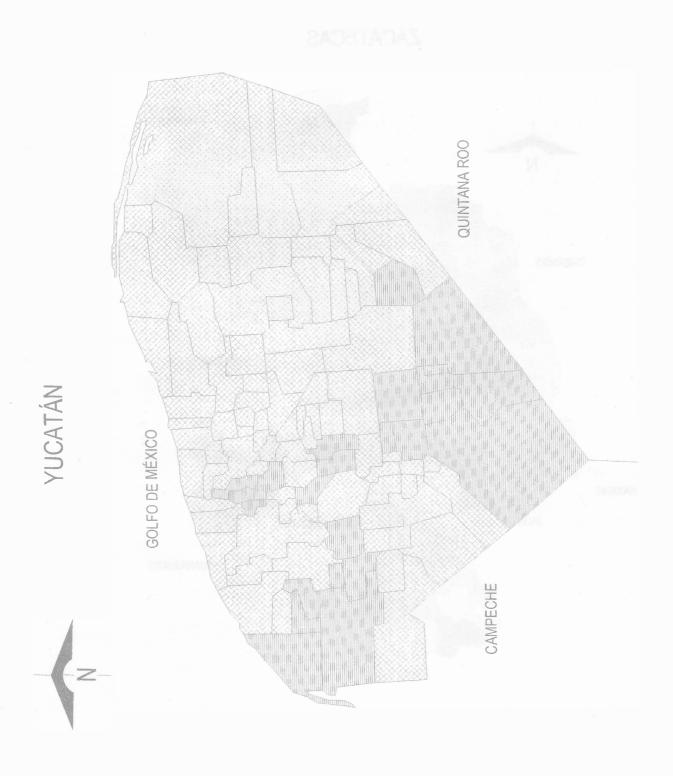


Figura B.39. Clasificación y distribución de la sequía meteorológica en el estado de Yucatán.

ZACATECAS

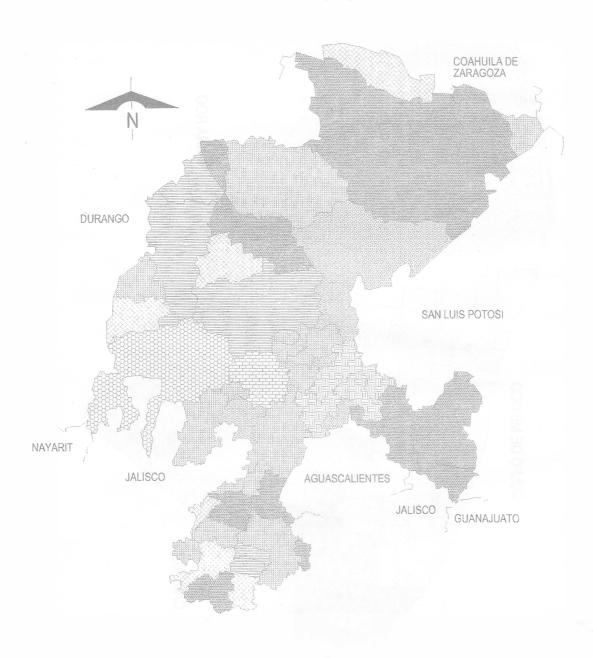


Figura B.40. Clasificación y distribución de la sequía meteorológica en el estado de Zacatecas.

APUNTE 11-BB V.1

G.- 613237

FACULTAD DE INGENIERIA UNAM

613237

61323

FACE

Esta obra se terminó de imprimir en septiembre de 2004 en el taller de imprenta del Departamento de Publicaciones de la Facultad de Ingeniería, Ciudad Universitaria, México, D.F. C.P. 04510

Secretaría de Servicios Académicos

El tiraje consta de 100 ejemplares