

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

GEOCRONOLOGÍA U-Pb E ISOTOPÍA DE HF EN GRANITOS DEL PALEOZOICO INFERIOR: IMPLICACIONES TECTÓNICAS PARA LA EVOLUCIÓN DEL OCÉANO RHEICO

TESIS

Que para obtener el título de

Ingeniero Geólogo

PRESENTA

Sandra Juárez Zúñiga

DIRECTOR DE TESIS

Luigi A. Solari

Ciudad Universitaria, Cd. Mx., 2016

 $\checkmark\,$ Para mi familia, con todo mi amor.

CONTENIDO

RESUMENi		
INTRODUCCIÓN1		
1. MA	ARCO TEÓRICO	3
1.1	Zircón	3
1.2	Método de fechamiento U-Pb	3
1.3	Isotopía de Hafnio	7
1.3.	.1 Edades modelo de Hf	
1.3.	.2 Épsilon Hf	10
1.4	Tipología del zircón en la génesis de granitoides	11
1.5	Diagrama de clasificación HfO2 vs Y2O3	13
1.6	Diagrama EHf vs Yb/Hf	14
2. EV	OLUCIÓN DEL OCÉANO RHEICO	15
2.1	Apertura del océano y deriva de los microcontinentes	15
2.2	Colisión final y cierre del océano	17
2.3	El océano Rheico en América	
2.3.	.1 El océano Rheico en México	
2.3.	.2 El océano Rheico en América Central	
3. ME	TODOLOGÍA ANALÍTICA	24
3.1	Catodoluminiscencia	
3.2	Geocronología U-Pb y elementos traza	
3.3	Isótopos de Hf	
4. RE	ESULTADOS	31
4.1.	Morfología cristalina de los zircones	31
4.2	Química de elementos traza	33
4.3	Geocronología U-Pb	35
4.4	Isotopía de Hf	41
4.5	Diagrama εHf vs Yb/Hf	42
4.6	Diagrama HfO ₂ vs Y ₂ O ₃	43
5. DIS	SCUSIÓN Y CONCLUSIONES	65
6. REFERENCIAS		

RESUMEN

El océano Rheico, desarrollado durante el Paleozoico, separó a los dos supercontinentes Laurusia y Gondwana. Su apertura inició en el Ordovícico con la separación de diversos terrenos perigondwánicos de la margen norte de Gondwana, alcanzó su máxima extensión en el Silúrico y finalmente se cerró en el Devónico-Carbonífero. Las reconstrucciones paleogeográficas del sur de México y Guatemala proponen que los terrenos Mixteco y Maya formaban parte de los terrenos perigondwánicos que constituían el flanco norte del océano Rheico y en los cuales se preservan indicios de su evolución. Particularmente el cinturón granítico del Paleozoico inferior emplazado en estos terrenos se considera como la expresión del magmatismo asociado a rift durante la apertura del océano Rheico en el Ordovícico. En esta tesis se quiere testar el comportamiento geoquímico de los cuerpos graníticos catalogados hasta ahora como "anorogénicos", emplazados en un ambiente de rift, que se desarrollaron a lo largo de la margen rheica durante el Ordovícico-Silúrico. Se utilizaron parámetros cuales la morfología cristalina, el análisis de elementos traza, edades U-Pb y composición isotópica de Hf en los zircones magmáticos de algunos granitoides del Paleozoico inferior del Complejo Acatlán, Complejo Chuacús y Rabinal-Salamá. Las edades U-Pb entre 480 y 427 Ma confirman el cinturón magmático peri-gondwánico del Paleozoico inferior, la morfología cristalina de los zircones y los diagramas de HfO₂ ys Y₂O₃ indican fuentes híbridas de los magmas (orogénico + anorogénico), mientras que la química de elementos traza y EHf vs Yb/Hf indican que el proceso de cristalización fraccionada tuvo un papel importante en la generación de los magmas. Los valores de EHf (entre -6.4 y 1.0), negativos en su mayoría, y las edades modelo calculadas en dos pasos, entre 1.1 y 1.5 Ga (usando la relación ¹⁷⁶Lu/¹⁷⁷Hf=0.0083 de la corteza continental superior), indican que la fuente de los magmas tuvo contribución de diferentes fuentes corticales o bien, contaminación cortical por la fusión del basamento mesoneo-proterozoico. La integración de información de las cinco muestras analizadas indica que la génesis de los magmas, derivados principalmente de fuentes corticales, no corresponde necesariamente a un ambiente extensional de rift, en donde típicamente se observaría una firma isotópica mantélica, lo cual se contrapone al contexto geodinámico del Paleozoico en donde el emplazamiento de los granitos se asocia al periodo de rifting durante la apertura del océano Rheico. Alternativamente en este trabajo proponemos que la génesis de los granitoides es compatible con un ambiente convergente, de arco volcánico o colisión continental; sin embargo, los datos obtenidos no son suficientes para confirmar o modificar la paleogeografía de esta era y más que ser concluyentes, permiten plantear una hipótesis alternativa de la génesis de los granitoides, además de mostrar la utilidad de la isotopía de Hf para el modelado petrogenético de la fuente de los magmas.

INTRODUCCIÓN

El océano Rheico, que separó a los dos supercontinentes Laurusia y Gondwana, fue un importante océano desarrollado durante el Paleozoico cuya sutura ensambló gran parte de Pangea con la formación de la orogenia Variscana-Alleghaniana-Ouachita (Nance et al., 2009), de modo que el estudio y entendimiento de este océano resulta fundamental para las reconstrucciones paleogeográficas de esta era.

La apertura del océano Rheico inicia en el Cámbrico con un prolongado periodo de rifting a lo largo de una línea de sutura neoproterozoica en la margen norte de Gondwana, seguido por la separación de diversos microcontinentes en esta margen durante el Ordovícico (Nance et al., 2009). La rápida tasa de expansión favorecida por el *slab pull* de la placa subducida en la margen sur de Laurencia, permitió que el océano alcanzara su máxima extensión en el Silúrico y se cerrara en el Devónico-Mississípico facilitado por subducción en las dos márgenes del océano (Nance et al., 2009).

En Norteamérica, la zona de sutura del océano Rheico no está totalmente expuesta porque se encuentra bajo los sedimentos de la planicie costera o fue removida con la apertura del océano Atlántico y Golfo de México (Nance et al., 2009) y eso ha llevado a diversas interpretaciones de la evolución de dicho océano en este continente. Particularmente, en el terreno Mixteco en el sur de México y en el complejo Chuacús en Guatemala, se han encontrado vestigios de la margen sur del océano Rheico. En el terreno Mixteco del sur de México (Sedlock et al., 1993) el complejo Acatlán preserva indicios del rifting ordovícico, deriva (i.e., drifting) durante el Silúrico, subducción, metamorfismo y exhumación en el Devónico-Mississípico y, finalmente, establecimiento de un arco en el Pérmico (Keppie et al., 2008).

Dentro de las evidencias del periodo de rifting ordovícico se encuentran los granitoides Esperanza de edad 440-480 Ma (Ortega-Gutiérrez et al., 1999; Sánchez-Zavala et al., 2004; Talavera-Mendoza et al., 2005; Keppie et al., 2010) que se encuentran intrusionando secuencias metasedimentarias cambro-ordovícicas y que se han catalogado como parte del magmatismo bimodal asociado a rift durante la etapa de extensión que dio paso a la separación de los terrenos perigondwánicos del margen norte de Gondwana (Nance et al., 2009). Adicionalmente, en el complejo Chuacús en Guatemala, la suite del Granito Rabinal se ha correlacionado con los cuerpos graníticos del complejo Acatlán por las edades y firma geoquímica similares (Ortega-Obregón et al., 2008) y del mismo modo los granitos que afloran en los Altos Cuchumatanes del oeste de Guatemala y que tienen edades U-Pb semejantes, se han referido al mismo evento magmático, considerando que forman parte de un cinturón de actividad ígnea, más o menos continuo, desarrollado durante el Paleozoico inferior (Solari et al., 2009).

A pesar de que los granitos ordovícicos tienen una firma calco-alcalina típica de arco magmático (Miller et al., 2007; Ortega-Obregón et al., 2008), ésta se ha interpretado como una firma geoquímica "heredada" producida por la fusión parcial de la corteza; no obstante, el ambiente tectónico de emplazamiento de los granitos se mantiene incierto (Ortega-Obregón et al., 2008).

Tomando como base las interpretaciones previas y considerando que los estudios geoquímicos en estos cuerpos graníticos son escasos, el objetivo de esta tesis es evaluar los modelos de evolución paleogeográfica que conllevan a la abertura y cierre del océano Rheico con un enfoque a la isotopía de Hf en los granitoides ordovícicos catalogados hasta ahora de origen anorogénico.

La motivación para utilizar isotopía de Hf en zircones, a pesar de ser una técnica novedosa y poco utilizada, es porque ofrece información más certera que la isotopía de la roca total sobre la evolución de los magmas y la naturaleza de la roca fuente (Hawkesworth & Kemp, 2006), lo que posibilita esclarecer la génesis, hasta ahora dudosa, de los cuerpos graníticos emplazados en las márgenes del océano Rheico desde una perspectiva distinta. Las edades modelo de Hf permiten estimar el tiempo promedio desde que la fuente de los magmas se separó de un reservorio específico del manto, comúnmente el manto empobrecido (Hawkesworth & Kemp, 2006) y el valor de $\varepsilon_{\rm Hf}$ sirve para identificar aporte de material mantélico o cortical al magma parental. Adicionalmente, empleamos la morfología del zircón y química de elementos traza en el zircón porque en conjunto con la isotopía de Hf proveen de información petrogenética importante (Belousova et al., 2006).

En conjunto la información servirá para evaluar la paleogeografía del océano Rheico durante el Ordovícico-Silúrico. Considerando la edad de emplazamiento de los granitos, lo que se espera observar es que la isotopía corrobore el origen anorogénico de los magmas, dado que el periodo de rifting y apertura del océano ocurre en el Paleozoico inferior. Si por el contrario, la isotopía indicase un origen distinto, entonces las interpretaciones previas de este magmatismo deberían ser reevaluadas y sujetas a discusión en términos de los modelos aceptados para el desarrollo del océano Rheico.

El primer capítulo de esta tesis describe las bases teóricas del fechamiento U-Pb, los usos de la isotopía de Hf en los estudios de la evolución de la corteza y la explicación de algunos diagramas utilizados. En el segundo capítulo se exponen los modelos aceptados de la evolución del océano Rheico con énfasis en las interpretaciones hechas para el sur de México y Centroamérica, y el papel de los granitos paleozoicos en las reconstrucciones paleogeográficas. El tercer capítulo contiene la metodología analítica seguida en el Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias de la UNAM para el fechamiento U-Pb e isotopía de Hf. Posteriormente, en el capítulo cuatro se presentan los resultados de las mediciones, las edades obtenidas y los diagramas utilizados. Finalmente, en el último capítulo, se hace la discusión de nuestros resultados con base en los modelos aceptados del océano Rheico, incluyendo algunas observaciones generales y se presentan las conclusiones finales con los alcances de este trabajo.

1. MARCO TEÓRICO

El estudio petrogenético de rocas ígneas comúnmente lleva a distintas interpretaciones dada la compleja evolución de los magmas. Recientemente los análisis de isotopía de Hf en conjunto con estudios de la morfología de los cristales en zircones magmáticos, firma geoquímica de los elementos traza y geocronología U-Pb, ofrecen información invaluable sobre la evolución de las cámaras magmáticas (Belousova et al., 2006).

1.1 Zircón

El zircón es el mineral más usado en la geocronología e isotopía de rocas ígneas. La importancia de este mineral accesorio se debe a que por su resistencia físico-química bajo la mayoría de procesos corticales, como metamorfismo y reciclaje sedimentario, mantiene su integridad isotópica (Hawkesworth & Kemp, 2006) por lo que provee información más representativa de la evolución de los magmas que cualquier roca. Aunque los análisis de roca total son fundamentales ya que mucha información de la química del magma se encuentra en los elementos mayores, los análisis in situ en zircones ofrecen resultados más creíbles y fáciles de interpretar que un análisis de roca total, pues en tales casos los resultados suelen verse distorsionados por los diversos eventos geológicos por los que pasa el material.

Aunque su abundancia es relativamente baja, el zircón afecta el comportamiento de algunos elementos traza durante la cristalización del magma, por lo que el entendimiento de su química es fundamental para los modelados petrológicos de la fuente (Belousova et al., 2006). Este mineral tiende a incorporar altas concentraciones de elementos traza, incluyendo los de dos sistemas geocronológicos importantes, U-Th-Pb, que permite obtener con una alta precisión la edad de cristalización, y Lu-Hf, que es un trazador importante de los procesos de evolución de la corteza y manto (Belousova et al., 2006; Hawkesworth et al., 2010). Además de controlar la distribución de zirconio y hafnio, el zircón también tiene una importante influencia en el comportamiento de las tierras raras, Y, Th, U, Nb y Ta. Estos elementos, por su radio iónico grande y/o alta carga, son generalmente incompatibles con los minerales silicatados formadores de roca por lo que tienden a incorporarse en la estructura cristalina del zircón en distintas proporciones, de modo que la abundancia y relaciones de estos elementos permiten distinguir zircones de distintas fuentes (Belousova et al., 2002).

1.2 Método de fechamiento U-Pb

Como resultado de un refinamiento continuo de las técnicas analíticas e instrumentación, los métodos de fechamiento por U -Pb y Th-Pb han llegado a ser los geocronómetros más precisos y exactos para determinar la edad de las rocas (Faure & Mensing, 2005).

Las concentraciones de U y Th en los minerales silicatados formadores de roca son relativamente bajas, del orden de decenas o centenares de partes por millón; sin embargo, estos dos elementos ocurren principalmente en minerales accesorios que, por sus características, los hacen constituyentes muy importantes como describo a continuación.

El método U-Pb se puede aplicar en diversos minerales mientras cumpla con tener abundante isótopo padre (uranio) y no contener isótopo hijo de manera natural (plomo) y tener una estructura cristalina fuerte y poco sensible a procesos de disolución, alteración, etc. Dadas las condiciones anteriores, el método se emplea por lo general en zircones, ya que este mineral posee altas concentraciones de U y Th, de cientos a miles de ppm, debido al reemplazo en la estructura cristalina de Zr^{4+} por U⁴⁺ y Th⁴⁺ por la poca diferencia de sus radios iónicos y carga idéntica y al mismo tiempo, el Pb²⁺ es excluido por su carga menor y radio iónico mayor permitiendo que durante la cristalización el zircón incorpore poco Pb y tenga altas relaciones iniciales de U/Pb y Th/Pb.

Cadenas de decaimiento

El uranio tiene tres isótopos en la naturaleza, ²³⁸U, ²³⁵U y ²³⁴U, todos radioactivos y el plomo tiene cuatro isótopos estables, ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb y ²⁰⁸Pb, los últimos tres radiogénicos, producidos por el decaimiento de ²³⁸U, ²³⁵U y ²³²Th, respectivamente.

La cadena de decaimiento del isótopo ²³⁸U da lugar a la serie de uranio que incluye a ²³⁴U como isótopo hijo intermedio y termina con el isótopo estable de ²⁰⁶Pb. De manera simplificada se puede expresar como

$${}^{238}_{92}U \rightarrow {}^{206}_{82}Pb + 8{}^{4}_{2}He + 6\beta^{-} + Q (1)$$

donde cada isótopo de ²³⁸U que decae produce un isótopo de ²⁰⁶Pb por emisión de 8 partículas α y 6 partículas β y el parámetro Q representa la suma de energía de decaimiento de la serie entera en unidades de millones de electrovolts (Q= 47.4 MeV/átomo o 0.71 Cal/g) (Faure y Mensing, 2005).

Por otro lado, el decaimiento del isótopo ²³⁵U da lugar a la serie de los actínidos que termina con el isótopo estable ²⁰⁷Pb por emisión de 7 partículas α y 4 partículas β y se expresa como

$$^{235}_{92}U \rightarrow ^{207}_{82}Pb + 7^4_2He + 4\beta^- + Q (2)$$

donde Q= 45.2 MeV/átomo o 4.3 cal/g.

La cadena de decaimiento radioactivo en ambos casos no es directamente del isótopo padre de U a Pb, ocurre que hay una serie de decaimientos alfa y beta que crean isótopos hijos intermedios, algunos con un tiempo de vida muy corto (Figura 1).

Figura 1. Cadenas de decaimiento de U-Th-Pb (Schoene, 2014).

Las mediciones de las concentraciones de U y de Pb radiogénico, ²⁰⁶Pb y ²⁰⁷Pb, permite calcular las dos edades de U-Pb, ²³⁸U-²⁰⁶Pb y ²³⁵U-²⁰⁷Pb de manera independiente. Las ecuaciones de edad se expresan como

$$\frac{{}^{206}Pb}{{}^{204}Pb} = \left(\frac{{}^{206}Pb}{{}^{204}Pb}\right)_i + \frac{{}^{238}U}{{}^{204}Pb} \left(e^{\lambda_1 t} - 1\right) (3)$$
$$\frac{{}^{207}Pb}{{}^{204}Pb} = \left(\frac{{}^{207}Pb}{{}^{204}Pb}\right)_i + \frac{{}^{235}U}{{}^{204}Pb} \left(e^{\lambda_2 t} - 1\right) (4)$$

Donde λ_1 y λ_2 son las constantes de decaimiento de ²³⁸U y ²³⁵U respectivamente, ²³⁸U/²⁰⁴Pb y ²³⁵U/²⁰⁴Pb son las relaciones isotópicas calculadas a partir de las concentraciones medidas de U, Th y Pb mediante alguna técnica analítica y el índice *i* hace referencia a la composición isotópica inicial de plomo, es decir, desde que se cerró el sistema (cuando cristalizó el mineral).

Las ecuaciones (3) y (4), como en la mayoría de los sistemas de fechamiento, se normalizan con respecto a un isótopo estable y en este caso quedan expresadas en términos de ²⁰⁴Pb porque es el único isótopo de Pb estable no radiogénico.

El plomo inicial también es llamado plomo común y se utiliza como blanco en las mediciones por la contaminación de plomo no radiogénico en las muestras.

En algunos sistemas minerales, como es el caso del zircón, el contenido de Pb inicial es insignificante comparado con el componente radiogénico, de modo que las ecuaciones (3) y (4) quedan expresadas como

$$\frac{206_{Pb*}}{238_{U}} = \left(e^{\lambda_{1}t} - 1\right) (5)$$
$$\frac{207_{Pb*}}{235_{U}} = \left(e^{\lambda_{2}t} - 1\right) (6)$$

donde * hace referencia al Pb radiogénico.

Las ventajas de medir los distintos isótopos de U y Pb es que se pueden obtener las dos edades de manera independiente y éstas deben coincidir. Sin embargo, en la naturaleza el sistema mineral no se mantiene cerrado por lo que se han desarrollado diversos métodos numéricos y gráficos para cuantificar el comportamiento del mineral como sistema abierto causado por la pérdida o ganancia de U y/o Pb.

Una de las representaciones gráficas más utilizadas para visualizar tal efecto se presenta a continuación.

Diagramas de concordia de Wetherill

Los efectos del comportamiento del sistema como un sistema abierto puede ser ilustrado mediante los diagramas de concordia de Wetherill (1956, 1963) (Figura 2). Las coordenadas del gráfico son en el eje de las ordenadas la relación isotópica de 206 Pb*/ 238 U y en las abscisas 207 Pb*/ 235 U. La curva de concordia se traza a partir de las ecuaciones (5) y (6) para la misma fecha, es decir, el mismo valor de *t*, y tiene un comportamiento no lineal porque el tiempo de vida media de 238 U y 235 U son distintos (Schoene, 2014).

Figura 2. Diagrama de concordia de Wetherill (1956). Se muestran edades discordantes por la pérdida de plomo radiogénico (Tomada de Faure & Mensing, 2005).

Cuando las dos edades ²³⁸U-²⁰⁶Pb y ²³⁵U-²⁰⁷Pb son iguales se dice que las edades son 'concordantes' y corresponde a la edad real de cristalización del mineral; en caso contrario, si no son iguales, son edades 'discordantes' (Wetherill, 1956) y son causadas por pérdida y/o ganancia de Pb o U en el sistema, desequilibrio de isótopos hijo intermedios, Pb inicial o mezcla de dominios de diferente edad.

Para que las edades U-Pb sean concordantes, Faure & Mensing (2005) establecen las siguientes condiciones:

- 1. El mineral se ha mantenido como un sistema cerrado para U, Th y Pb y los isótopos hijos intermedios, es decir, no ha habido pérdida o ganancia de estos elementos desde la formación del sistema.
- 2. Se usan valores corregidos para las relaciones isotópicas de Pb iniciales.
- 3. Las constantes de decaimiento son conocidas con precisión.
- 4. La composición isotópica de U es normal y no ha sufrido fraccionamiento isotópico o ha tenido reacciones basadas en la fisión inducida de ²³⁵U.
- 5. Los resultados analíticos son precisos y no tienen errores sistemáticos.

Si un sistema mineral cristaliza y se mantiene cerrado empieza a acumular Pb* y evoluciona sobre la curva de concordia; si ocurre algún evento que abra el sistema y lo cierre después, el sistema evoluciona por la curva de discordia y tiene dos intersecciones en la curva de concordia (Figura 2), las cuales reflejan por un lado la posible edad de cristalización y por otro, la edad de algún evento geológico que provocó que el sistema se abriera.

1.3 Isotopía de Hafnio

El sistema isotópico de Lu-Hf se utiliza actualmente como una herramienta para conocer la historia evolutiva de la Tierra, es decir, los procesos de diferenciación química entre la corteza y manto (Hawkesworth & Kemp, 2006) producidos por el fraccionamiento de Lu y Hf durante la generación de los magmas. Esto ha permitido entender la naturaleza de la roca fuente y el papel que juegan los procesos de mezcla de magmas en la génesis de granitoides (Yang et al., 2007).

Aunque el sistema de Lu-Hf es análogo al de Sm-Nd es más conveniente usar isótopos de Hf para el estudio de la fuente de los magmas porque el fraccionamiento de Lu/Hf durante la fusión del manto es casi el doble de Sm/Nd y además, la vida media de ¹⁷⁶Lu es mucho más corta que de ¹⁴⁷Sm por lo que el sistema ofrece mayor resolución (Hawkesworth & Kemp, 2006).

El Hf tiene seis isótopos en la naturaleza de los cuales ¹⁷⁶Hf es radiogénico y es producido por el decaimiento β^- de ¹⁷⁶Lu, mientras que ¹⁷⁷Hf es un isótopo no radiogénico (estable) que se utiliza comúnmente como cociente de las relaciones de Hf. Debido a que el Hf se particiona más fuertemente dentro la fase líquida que el Lu, durante la diferenciación química de la corteza-manto la corteza se enriqueció en Hf y el manto en Lu. Consecuentemente, con el paso del tiempo, el manto empobrecido está relativamente enriquecido de ¹⁷⁶Hf/¹⁷⁷Hf radiogénico respecto a la corteza continental; en otras palabras, la relación de $^{176}\mathrm{Hf}/^{177}\mathrm{Hf}$ tiene valores más altos en el manto que en las rocas corticales (Belousova et al., 2006).

Dado que el Hf se incorpora en la estructura cristalina de minerales portadores de Zr, el zircón es el principal mineral utilizado en la isotopía de Hf por tener las mayores concentraciones de este elemento. Además, la composición isotópica de Hf del magma se preserva mejor en el zircón que en el sistema isotópico de la roca total (Belousova et al., 2010) ya que éste puede ser perturbado por diversos procesos geológicos, como metamorfismo por ejemplo, mientras que el zircón se mantiene estable. Por las altas concentraciones de Hf y la baja relación Lu/Hf (generalmente, <0.001) en el zircón, el Hf radiogénico originado in situ es despreciable, lo que significa que 176 Hf/ 177 Hf en el zircón es similar a la concentración inicial 176 Hf/ 177 Hf del magma parental en el momento de la cristalización (Hawkesworth et al., 2010).

Con las relaciones de ¹⁷⁶Hf/¹⁷⁷Hf medidas en los zircones se pueden calcular las edades modelo de Hf y el valor EHf. Las edades modelo establecen el tiempo de residencia cortical del magma parental o el tiempo promedio desde que la fuente se separó de un reservorio específico del manto, comúnmente el manto empobrecido (Hawkesworth & Kemp, 2006) y el valor EHf es un indicador de qué tan "enriquecida" isotópicamente es la fuente de los magmas.

1.3.1 Edades modelo de Hf

Las edades modelo de Hf, que representan el tiempo de residencia cortical, pueden ser calculadas en uno o dos pasos.

Para calcular las edades modelo de Hf en un paso (T_{DM}), basadas en el reservorio del manto empobrecido [depleted mantle (DM)], asumimos que este reservorio se extrajo de un manto condrítico inicial y es complementario de la corteza (Belousova et al., 2010).

La relación $^{176}\mathrm{Hf}/^{177}\mathrm{Hf}$ del manto emp
obrecido para cualquier tiempo en el pasado está dada por

$$\left(\frac{{}^{176}Hf}{{}^{177}Hf}\right)_{DM}^{t} = \left(\frac{{}^{176}Hf}{{}^{177}Hf}\right)_{DM}^{0} - \left(\frac{{}^{176}Lu}{{}^{177}Hf}\right)_{DM}^{0} \left(e^{\lambda T} - 1\right) (7)$$

donde son conocidos los valores de $\left(\frac{^{176}Hf}{^{177}Hf}\right)_{DM}^{0} = 0.28325, \ \left(\frac{^{176}Lu}{^{177}Hf}\right)_{DM}^{0} = 0.0384$ (Blichert-Toft & Albarède, 1997) y $\lambda=1.87 \times 10^{-11}$ (Söderlund et al., 2004).

Similar a la ecuación (7), para cualquier cristal de zircón (Z) se tiene

$$\left(\frac{{}^{176}Hf}{{}^{177}Hf}\right)_{Z}^{t} = \left(\frac{{}^{176}Hf}{{}^{177}Hf}\right)_{Z}^{0} - \left(\frac{{}^{176}Lu}{{}^{177}Hf}\right)_{Z}^{0} \left(e^{\lambda T} - 1\right) (8)$$

Igualando (7) y (8)

$$\left(\frac{{}^{176}Hf}{{}^{177}Hf}\right)_{DM}^{t} = \left(\frac{{}^{176}Hf}{{}^{177}Hf}\right)_{Z}^{t} (9)$$

Con la igualdad anterior podemos despejar T:

$$T = \frac{1}{\lambda} \ln \left[\frac{\left(\frac{1^{76}Hf}{1^{77}Hf}\right)^{0} - \left(\frac{1^{76}Hf}{1^{77}Hf}\right)^{0}}{\left(\frac{1^{76}Lu}{1^{77}Hf}\right)^{0} - \left(\frac{1^{76}Lu}{1^{77}Hf}\right)^{0}} + 1 \right] (10)$$

Sustituyendo valores

$$T_{DM} = \frac{1}{\lambda} \ln \left[\frac{\left(\frac{1^{76}Hf}{1^{77}Hf}\right)_{Z}^{0} - 0.28325}{\left(\frac{1^{76}Lu}{1^{77}Hf}\right)_{Z}^{0} - 0.0384} + 1 \right] (11)$$

El valor de T_{DM} en la ecuación (11) representa el tiempo para cuando el Hf fue separado del manto empobrecido y entró al zircón donde residió hasta el presente (t=0). Dado que las relaciones de ¹⁷⁶Hf/¹⁷⁷Hf y ¹⁷⁶Lu/¹⁷⁷Hf utilizadas son las que medimos en la actualidad (t=0), se denominan edades modelo en un paso o sencillas.

Las edades modelo en un paso (T_{DM}) calculadas con la relación de ¹⁷⁶Lu/¹⁷⁷Hf medida en el zircón únicamente dan la edad mínima del material fuente del magma parental del zircón (Belousova et al., 2010). Por ello, adicionalmente se calculan las edades modelo en dos pasos o corticales (T_{DM}^C), las cuales nos dan una estimación del tiempo de separación del magma parental del zircón, o de su reservorio cortical, de un reservorio hipotético inicial del manto empobrecido (Weber et al., 2012). Se denominan en dos pasos porque primero se calcula la relación inicial de ¹⁷⁶Hf/¹⁷⁷Hf en el zircón, es decir, en el tiempo en que cristalizó (t), a partir de las relaciones de ¹⁷⁶Hf/¹⁷⁷Hf y ¹⁷⁶Lu/¹⁷⁷Hf medidas (t=0) utilizando la ecuación (8):

$$\left(\frac{{}^{176}Hf}{{}^{177}Hf}\right)_{Z}^{t} = \left(\frac{{}^{176}Hf}{{}^{177}Hf}\right)_{Z}^{0} - \left(\frac{{}^{176}Lu}{{}^{177}Hf}\right)_{Z}^{0} \left(e^{\lambda T} - 1\right) (8)$$

donde T es la edad de cristalización obtenida mediante el método de U-Pb.

Posteriormente, utilizando la ecuación anterior, se calculan las edades modelo corticales $(T_{DM}{}^{C})$ como

$$T_{DM}^{C*} = \frac{1}{\lambda} \ln \left\{ \frac{\left(\frac{176}{177}Hf\right)_{DM}^{0} - \left[\left(\frac{176}{177}Hf\right)_{z}^{t} + \left(\frac{176}{177}Hf\right)_{CC}^{0}(e^{\lambda T} - 1)\right]}{\left(\frac{176}{177}Hf\right)_{DM}^{0} - \left(\frac{176}{177}Hf\right)_{CC}^{0} - \left(\frac{176}{177}Hf\right)_{CC}^{0}} + 1 \right\}$$
(12)

donde la relación $(^{176}Lu/^{177}Hf)^{0}cc$ varía de acuerdo al reservorio cortical utilizado, es decir, si se trata de un volumen de corteza continental promedio, superior o inferior, etc.

En nuestro caso, utilizamos el valor de la corteza continental superior promedio de $(^{176}Lu/^{177}Hf)_c=0.0083$ (Rudnick & Gao, 2003).

1.3.2 Épsilon Hf

Durante la generación de rocas graníticas, los valores altos de 176 Hf/ 177 Hf, expresados en términos de ϵ Hf positivos, indican una fuente derivada directamente del manto; en cambio, los valores bajos de 176 Hf/ 177 Hf revelan un aporte cortical (Belousova et al., 2006).

EHf es la comparación entre ¹⁷⁶Hf/¹⁷⁷Hf del magma a partir del cual cristalizó una roca y el reservorio condrítico uniforme (CHUR) y se expresa de la siguiente manera para t=0 (en el presente)

$$\varepsilon^{0} \mathrm{Hf} = \begin{bmatrix} \left(\frac{1^{176} \mathrm{Hf}}{1^{77} \mathrm{Hf}}\right)^{0} \\ \frac{1^{176} \mathrm{Hf}}{\left(\frac{1^{176} \mathrm{Hf}}{1^{77} \mathrm{Hf}}\right)^{0} - 1} \end{bmatrix} x 10^{4} (13)$$

O para cualquier tiempo en el pasado

$$\varepsilon^{t} \mathrm{Hf} = \begin{bmatrix} \left(\frac{176}{177} Hf}\right)^{t} \\ \frac{176}{\left(\frac{176}{177} Hf}\right)^{t}} \\ \frac{176}{\left(\frac{176}{177} Hf}\right)^{t}} \\ \frac{1}{CHUR} \end{bmatrix} x 10^{4} (14)$$

donde $({}^{176}Hf/{}^{177}Hf)^{t}_{muestra}$ es el valor calculado para el zircón en la ecuación (8) y de manera similar para $({}^{176}Hf/{}^{177}Hf)^{t}_{CHUR}$ se tiene

$$\left(\frac{{}^{176}Hf}{{}^{177}Hf}\right)_{CHUR}^{t} = \left(\frac{{}^{176}Hf}{{}^{177}Hf}\right)_{CHUR}^{0} - \left(\frac{{}^{176}Lu}{{}^{177}Hf}\right)_{CHUR}^{0} \left(e^{\lambda t} - 1\right) (15)$$

donde $\left(\frac{17^{6}Hf}{17^{7}Hf}\right)_{CHUR}^{0} = 0.282785$, $\left(\frac{17^{6}Lu}{17^{7}Hf}\right)_{CHUR}^{0} = 0.0336$ (Bouvier et al., 2008) y λ =1.87x10⁻¹¹ (Söderlund et al., 2004).

Los valores positivos de EHf indican que la muestra está enriquecida en ¹⁷⁶Hf comparada con el reservorio condrítico superior (CHUR) y que su relación Lu/Hf es mayor que las condritas por lo que el magma fue generado directamente del manto empobrecido y no ha sufrido procesos de contaminación. Del mismo modo, valores negativos de EHf denotan que la muestra está empobrecida en ¹⁷⁶Hf respecto al CHUR y con baja relación Lu/Hf, lo que implica que el magma ha sufrido procesos de contaminación y/o asimilación cortical antigua o deriva directamente de anatexis cortical.

1.4 Tipología del zircón en la génesis de granitoides

Comunmente los magmas graníticos tienen zircones heredados de rocas más antiguas. Estos cristales, o bien núcleos, usualmente presentan sobrecrecimientos de las fases magmáticas posteriores con desarrollo de formas euedrales. Debido a las diferentes etapas de crecimiento de los cristales, la morfología del zircón refleja la historia evolutiva de los magmas en función de la temperatura y composición del magma (Pupin, 1988) y el zoneamiento sirve como un registro cualitativo de la dirección de cambio de estos parámetros (Belousova et al., 2006).

Pupin (1988) propuso una clasificación tipológica para zircones con base en el desarrollo de sus caras cristalinas (Figura 3), donde las formas prismáticas están moderadas por la temperatura, y las características químicas del magma parental controlan el desarrollo de las formas piramidales. En conjunto, estos dos parámetros ofrecen información directa del medio de cristalización.

Figura 3. Clasificación tipológica de zircones y escala geotermométrica propuesta por Pupin (1988). Índice A se refiere a la relación Al/(Na+K), que controla el desarrollo de las pirámides, y el índice T sirve como una escala geotermométrica que controla el desarrollo de los prismas (modificado por Belousova et al., 2006).

El índice T se correlaciona directamente con la temperatura de cristalización del zircón y sirve como una escala geotermométrica y el índice A está controlado por la química del magma, con desarrollo preferente de caras $\{2 - 1 \ 1\}$ en medios peraluminosos y $\{1 \ 0 \ 1\}$ en medios alcalinos o peralcalinos.

Con la tipología de los zircones, Pupin (1988) propuso una clasificación genética para rocas graníticas que facilitara determinar el ambiente de formación de los magmas identificando su origen cortical, mantélico o una combinación de ambos. La Figura 4 muestra la distribución de los principales campos en el diagrama tipológico; los magmas de alta temperatura, generalmente tipo I, y los de baja temperatura, tipo S, son derivados del manto y corteza, respectivamente.

Figura 4. Diagrama tipológico propuesto por Pupin (1980) y modificado por Belousova et al. (2006): (1), (2) y (3) son granitos de origen cortical; (4) y (5) son granitos de origen híbrido (corteza y manto) y (6) y (7) provienen directamente del manto. (Belousova et al., 2006).

1.5 Diagrama de clasificación HfO₂ vs Y₂O₃

Los sobrecrecimientos alrededor de un núcleo de un zircón corresponden a la última fase magmática de cristalización por lo que dicha etapa está usualmente enriquecida en elementos incompatibles como U, Hf e Y (Pupin, 2000).

Como se mencionó previamente, existe un intercambio catiónico de Hf por Zr en el zircón por su carga idéntica y radio iónico similar favoreciendo así el enriquecimiento de Hf en la estructura del cristal. Debido a que en la mayoría de las rocas ígneas enriquecidas en sílice el zircón se puede considerar como el único mineral que contiene Hf, su relación de Zr/Hf se asume como la del magma.

Por otro lado, el Itrio Y es el segundo elemento menor que se incorpora al zircón por sustitución catiónica con Zr. Debido a que sus diferencias de radio iónico y carga son mayores, el intercambio de cationes es más limitado y en consecuencia la concentración de Y es menor que Hf.

El contraste en el contenido de Hf e Y en el zircón permite utilizar estos elementos para caracterizar la génesis de los zircones magmáticos. Pupin (2000) propuso un diagrama de clasificación y caracterización de rocas ígneas con base en el contenido de HfO₂ y Y₂O₃ en los zircones (Figura 5).

Figura 5. Diagrama de HfO₂vs Y₂O₃que muestra los ambientes petrográficos para la clasificación de zircones (*Pupin*, 2000)

Las divisiones de los campos van de 1a a 6b y describen la distribución de grupos genéticos de la siguiente manera:

- Plagiogranitos toleíticos: 1a
- Granitos/riolitas alcalinos (as) hipersolubles: 1b-c-d-e
- Sienitas/traquitas alcalinas/peralcalinas sub-/sobre-saturada en sílice: 1c-d-e
- Zircón gema en hawaiitas y basaltos alcalinos: 1c
- Granitos/riolitas alcalinos (as) subsolvus: 1e, 2, 3a-b-c, 4a-b-c

- Rocas calco- alcalinas básicas a intermedias (gabros, dioritas, tonalitas, cuarzodioritas y andesitas-dacitas): 4a-b-c, 5a-b-c, 6a-b
- Granitos/riolitas calco-alcalinos (as): 5a-b-c
- Granitos/riolitas calco-alcalinos (as) enriquecidos en K o granitos Mg-K : 4a-b, • 5a-b-c
- Granitos/riolitas Fe-K o subalcalinos (as): 4c, 5a-b-c
- Granitos/riolitas porfiríticos peraluminosos (as): 3b-c, 4b-c, 5b-c, 6a-b
- Leucogranitos peraluminosos: 3c, 4c, 5c, 6a
- Granitos autóctonos peraluminosos y migmatitas: 3c, 4c, 5c, 6a

En términos generales, los dominios de granitos anorogénicos (ANOR) son 1-2 y de orogénicos (OR) son 5-6 mientras que el campo intermedio es 3-4 (ANOR+OR).

1.6 Diagrama EHf vs Yb/Hf

El diagrama eff vs Yb/Hf es de utilidad para conocer la transición geoquímica que ha tenido el magma parental de los zircones durante las últimas fases de colisión hasta las diferentes etapas de colisión continental. Se emplea la relación de Yb/Hf como indicador porque los coeficientes de partición de Yb y Hf en el zircón son lo suficientemente diferentes como para mostrar un fraccionamiento diferencial durante los procesos de cristalización fraccionada, asimilación cortical y rejuvenecimiento de la cámara magmática (Spencer et al., 2015).

Figura 6. Diagrama EHf vs Yb/Hf (Spencer et al., 2015).

Durante el proceso de cristalización fraccionada, el Hf tiende a concentrarse en el zircón, por lo que la relación Yb/Hf en el magma parental incrementa sin afectar el valor de εHf. En el caso en el que hay asimilación de material cortical más antiguo, la relación isotópica de Hf es menor y, por consiguiente el valor de EHf también decrece pero no se modifica la relación Yb/Hf. Finalmente, cuando la cámara magmática tiene una entrada de material del manto empobrecido, entonces experimenta un incremento del valor EHf afectando poco o nada la relación Yb/Hf (Figura 6).

2. EVOLUCIÓN DEL OCÉANO RHEICO

Durante la era Paleozoica, la distribución de los continentes de Laurencia, Báltica y Gondwana estuvo controlada por dos grandes océanos, Iapetus y Rheico. De estos dos océanos, el más importante de ésta fue el océano Rheico, ya que el cierre de éste culminó con la formación del supercontinente Pangea y con la creación de la orogenia Variscana-Alleghaniana-Ouachita (Nance et al., 2012)

La línea de sutura del océano Rheico se extiende desde México hasta Turquía y cubre cerca de 10000 km (Nance et al., 2009). En Europa, la zona de sutura, registrada en la orogenia Variscana (también conocida como hercínica), ha sido bien documentada y diferenciada de la orogenia Caledoniana, ubicada al norte y producida por el cierre de Iapetus. En Norteamérica, sin embargo, la sutura no ha sido bien reconocida, pues a pesar de seguir un patrón similar que en Europa, no está completamente expuesta porque se encuentra enterrada bajo los sedimentos de la planicie costera o fue removida con la apertura del océano Atlántico y Golfo de México (Nance et al., 2009).

Aunque la evolución del océano Rheico en Norteamérica no ha sido totalmente esclarecida, el modelo propuesto por Nance et al. (2009), que se describe a continuación, es ampliamente aceptado.

2.1 Apertura del océano y deriva de los microcontinentes

Previo a la formación del océano Rheico, durante la abertura del océano Iapetus, la margen norte de Gondwana pasó por diversos procesos de subducción y acreción continental, seguidos por el cese del magmatismo de arco y desarrollo de un margen transformante en el Neoproterozoico tardío-Cámbrico temprano (Nance & Linnemann, 2008).

Posterior a los procesos orogénicos de acreción, durante el Cámbrico medio-tardío, comenzó un prolongado periodo de rifting continental a lo largo de la línea de sutura neoproterozoica (Figura 7) (Murphy et al., 2006), tiempo en el que Iapetus era un amplio océano ubicado al norte (Figura 9a).

Figura 7. Zona de sutura del océano Rheico asociada a la sutura neorpterozoica preexistente de los terrenos acrecionados en la margen norte de Gondwana. Ch-Chortís, Oax-Oaxaquia, Y-Yucatán, Fl-Florida, C-Carolinia, A-Avalonia, OM-Ossa Morena, NW-I—Noroeste de Iberia, ARM-Armónica, BM-Macizo Bohemio (Murphy et al., 2006).

Posterior al desarrollo del rift, diversos terrenos neoproterozoicos (Avalonia, Ganderia, Carolina y Meguma) se separaron de la margen norte de Gondwana iniciando la apertura del océano Rheico en el Ordovícico temprano (Nance et al., 2009), favorecido posiblemente por procesos de slab pull de la placa subducida en la margen norte de Iapetus puesto que coincide con el inicio de la subducción bajo Laurentia (Figura 9b).

Figura 8. Reconstrucción del océano Rheico en el Silúrico temprano previo al cierre del océano Iapetus por el desplazamiento de los terrenos perigondwánicos Avalonia-Carolinia hacia Laurencia (Nance et al., 2009).

Durante el Ordovícico, mientras que Cadomia se mantenía en el norte de Gondwana formando la margen sur del océano Rheico, los procesos de slab pull o roll back de las placas favorecieron la deriva de Avalonia-Carolinia (flanco norte del océano Rheico) hacia Laurentia y Báltica (Figura 8) con una rápida tasa de movimiento estimada entre 8 y 10 cm/año (Nance et al., 2009). Esto permitió que durante el Silúrico el océano alcanzara su máxima extensión, de aproximadamente 4000 km, una vez que Laurentia había colisionado con Báltica y Avalonia-Carolinia, durante el cierre del océano Iapetus que formó la orogenia Appalachiana-Caledoniana (Nance et al., 2009).

2.2 Colisión final y cierre del océano

El cierre del océano Rheico inició en el Devónico temprano por subducción en ambas márgenes del océano (Figura 9c). Por un lado, la subducción hacia el norte bajo el sur de Báltica formó la orogenia Variscana por el acoplamiento del norte de África con el sur de Europa y, por otro lado, subducción hacia el sur bajo el margen noroeste de Gondwana formando la orogenia Alleghaniana-Ouachita con la colisión del oeste de África y Sudamérica con el este y sur de Laurentia. Finalmente, el océano se cerró completamente en el Mississípico y culminó la formación de Pangea y la colisión entre Gondwana y Laurusia en el Pérmico (Figura 9d).

Figura 9. Reconstrucción del océano Rheico en el Paleozoico. A-C-Avalonia-Carolinia (Nance et al., 2009).

2.3 El océano Rheico en América

En el continente americano, la evolución del océano Rheico está registrada en diversos terrenos perigondwánicos; en Norteamérica, el cinturón orogénico Apalachiano conserva evidencias de la sutura de este océano en los terrenos Ganderia, Avalonia y Meguma en el norte, y Carolinia y Suwanee en el sur; en el sur de México el terreno Mixteco y en Centroamérica a lo largo de la margen sur del Bloque Maya.

La posición de los terrenos tectonoestratigráficos que actualmente conforman el sur de México, América Central y el norte de Sudamérica no ha sido bien determinada y se mantiene controversial la génesis y localización de éstos durante el Paleozoico. Sin embargo, estos terrenos parecen registrar el ciclo de evolución de un océano, desde su apertura hasta su cierre, de tal manera que han surgido distintos modelos de evolución, por un lado asociados a la apertura y cierre del océano Iapetus (Talavera-Mendoza et al., 2005; Vega-Granillo et al., 2007; Vega-Granillo et al., 2009) y por otro a la evolución del océano Rheico (Murphy et al., 2006; Nance et al., 2006; Keppie et al., 2008; Nance et al., 2009).

Las bases para estos modelos evolutivos se encuentran esencialmente en el registro paleozoico que aflora en el Complejo Acatlán en el Terreno Mixteco y a lo largo de la margen sur del Bloque Maya.

2.3.1 El océano Rheico en México

En el sur de México se han encontrado vestigios del océano Rheico en los terrenos Mixteco y Oaxaquia (Keppie et al., 2008). De acuerdo con los autores, estos terrenos preservan evidencia de: i) rifting ordovícico en la margen sur del océano Rheico; ii) deriva continental pasiva en el Silúrico; iii) subducción Devónico-Pérmica bajo el sur de México, que produjo un arco volcánico que fue removido posteriormente por erosión por subducción, seguido por metamorfismo de alta presión (HP) y exhumado a la placa superior en el Missisípico; y, finalmente, iv) el restablecimiento del arco magmático en el Pérmico (Figura 10) (Keppie et al., 2008).

El basamento mesoproterozoico del terreno Oaxaquia, el complejo Oaxaqueño, está sobreyacido por secuencias de plataforma con afinidad gondwánica del Cámbrico-Ordovícico inferior de la formación Tiñú (Figura 10A), a la cual le sobreyacen secuencias sedimentarias continentales marinas someras del Carbonífero que contienen fauna de afinidad con Laurentia, dando indicios de su proximidad con este supercontinente en este periodo durante las primeras etapas de acreción de Pangea (Keppie et al., 2008).

Por otro lado, el Complejo Acatlán, considerado como el basamento del Terreno Mixteco, consiste de dos secuencias metamórficas, de bajo y alto grado (Keppie et al., 2008). La primera es una secuencia conformada por: (1) una secuencia siliciclástica Cámbrico-Ordovícica de las unidades Las Minas, Otate, Calaveras, Epazote, Amate y Huerta (Figura 10A,B), que se encuentran intrusionadas por magmatismo bimodal asociado a

rift, que incluye una suite de granitoides, denominados granitoides Esperanza, fechados entre 480-440 Ma (Ortega-Gutiérrez et al., 1999; Sánchez-Zavala et al., 2004; Talavera-Mendoza et al., 2005; Miller et al., 2007; Keppie et al., 2010), sobreyacidos por (2) una secuencia clástica y marino somera de edad Devónico-Pérmico del Grupo Patlanoaya y de las formaciones Tecomate y Olinalá, metapsammitas, metapelitas y rocas máficas toleíticas de la unidad Cosoltepec y depósitos de abanico aluvial de la formación Matzitzi. La segunda secuencia es una suite metamórfica de alta presión (HP) denominada Suite Piaxtla que está compuesta por: (1) estratos de plataforma de rift Cámbrico-Ordovícicos de la unidad Asis formados en la región de antearco, que se encuentran intrusionados por magmatismo bimodal similar a la secuencia de bajo grado (Murphy et al., 2006) formados en la margen sur del océano (Figura 10C), que incluye granitoides de edad 470-420 Ma (Murphy et al., 2006) y toleiitas de rift continental fechadas en 442±2 Ma (Elías-Herrera et al., 2004), con (2) rocas ultramáficas de periarco y (3) rocas de arco y MORB.

Figura 10. Paleogeografía del sur de México durante el Paleozoico (Keppie et al., 2008; modificado por Nance et al., 2009).

La historia evolutiva del complejo Acatlán es fundamental para las reconstrucciones paleogeográficas del sur de México durante el Paleozoico. Particular interés tienen la secuencia metamórfica de alta presión y el conjunto de granitoides ordovícicos que afloran en todo el complejo, ya que su génesis se mantiene controversial y se asocian a distintos ambientes tectónicos.

La secuencia metamórfica de alta presión (Suite Piaxtla) se atribuye, por un lado, a la sutura oceánica entre Laurentia y Gondwana (Talavera-Mendoza et al., 2005) y por otro, a un proceso de exhumación sobre la placa superior durante el proceso de subducción (Ortega-Obregón et al., 2008; Keppie et al., 2008; Keppie et al., 2012).

De acuerdo a la primera idea, Talavera-Mendoza et al. (2005) proponen que las rocas de alto grado metamórfico se asocian a la sutura oceánica entre Laurentia y Gondwana siguiendo la postura original planteada por Ortega-Gutiérrez et al. (1999) (ver más adelante). Adicionalmente, Vega-Granillo et al. (2009) interpretan que estas rocas están relacionadas a la subducción de un arco magmático continental que refleja condiciones de metamorfismo similares a las observadas en el norte de los Apalaches, por lo que se puede correlacionar con el evento Salínico del Ordovícico tardío-Silúrico temprano, atribuido a la colisión entre dos bloques continentales perigondwánicos, y finalmente, exhumación de las rocas por procesos isostáticos y fuerzas compresivas (Vega-Granillo et al., 2009). Dentro de este contexto, los autores ubican al complejo Acatlán como una extensión al sur de la cadena Appalachiana durante el Paleozoico, asociado a la evolución de los océanos Iapetus y Rheico.

Por otro lado, Keppie et al. (2008, 2012) sugieren que la secuencia de la Suite Piaxtla se depositó en un ambiente de rift continental, ya que las rocas máficas poseen una firma geoquímica toleítica de intraplaca (Murphy et al., 2006; Keppie et al., 2008), algunas de ellas indicando contaminación cortical. Posteriormente, fueron removidas por erosión por subducción, llevadas a profundidad por el canal de subducción y extruidas sobre la placa superior en el terreno Mixteco (Figura 10D). En este ensamble de rocas de alta presión, las rocas de arco sugieren que el arco magmático también fue removido mientras que las rocas de MORB tuvieron que provenir de la placa subducida. Posteriormente, en el Pérmico se restableció el arco magmático en la Mixteca y Oaxaquia (Figura 10E) por el inicio de la subducción en el Paleopacífico siguiendo el cierre del océano Rheico (Nance et al., 2006) y acompañado por deformación transtensional derecha que produjo la falla Caltepec (Elías-Herrera & Ortega-Gutiérrez, 2002) y separó a estos dos terrenos. Al mismo tiempo comenzó el depósito de secuencias clásticas y carbonatadas que contienen zircones detríticos pérmicos en cuencas de peri-arco y pull apart. La asociación de actividad magmática de arco con la deformación lateral derecha sugiere convergencia oblicua (Keppie et al., 2008).

En cuanto a la génesis de los granitos ordovícicos que afloran en el Complejo Acatlán, inicialmente se asociaron al desarrollo de un arco volcánico por subducción en la margen norte de Gondwana, justificado por su afinidad geoquímica calco-alcalina típica de arco magmático y que llevó a interpretar que el emplazamiento de estos cuerpos plutónicos fue durante el proceso de colisión que formó la orogenia Acateca en el Ordovícico tardío-Silúrico temprano (Ortega-Gutiérrez et al., 1999; Talavera-Mendoza et al., 2005) durante el cierre del océano Iapetus. Posteriormente, Keppie et al. (2008, 2012) sugieren que por la química de las rocas y las edades concordantes de U-Pb similares, los granitoides pertenecen al mismo episodio de magmatismo bimodal ordovícico (toleíticoalcalino) que originó las unidades máficas de la suite Piaxtla durante el desarrollo del rift continental que separó a Avalonia de Oaxaquia en la margen sur del océano Rheico en el Ordovícico Superior (ca. 452 Ma) (Miller et al., 2007; Nance et al., 2009; Keppie et al., 2012). Y aunque los plutones tienen una firma geoquímica principalmente calcoalcalina y ubicada entre los campos de arco volcánico e intraplaca en los diagramas de Pearce et al. (1984) (Murphy et al., 2006; Miller et al., 2007; Nance et al., 2007), se interpreta como una firma heredada por los procesos de contaminación, ya que los granitos contienen zircones heredados de edad mesoproterozoica atribuidos a la fusión parcial del basamento, es decir, del Complejo Oaxaqueño (Miller et al., 2007; Keppie et al., 2012).

2.3.2 El océano Rheico en América Central

El Bloque Maya es uno de los terrenos perigondwánicos que contiene registro del Paleozoico inferior. Éste comprende la Península de Yucatán, el extremo sureste de México, parte de Guatemala y Belice y limita al sur por la zona de cizalla Baja Verapaz (Solari et al., 2011). Las rocas expuestas a lo largo de la margen sur del Bloque Maya son de particular interés en las reconstrucciones paleozoicas de América Central, desde el Macizo de Chiapas, los afloramientos en el centro y oeste de Guatemala (Rabinal-Salamá y los Altos Cuchumatanes, respectivamente) y hasta las montañas Mayas de Belice.

En el extremo sur de Bloque Maya, justo entre las fallas de Polochic y Baja Verapaz en el centro de Guatemala, aflora una secuencia de rocas paleozoicas en el área de Rabinal-Salamá (Figura 11), que consiste de: (1) rocas metasedimentarias siliciclásticas de bajo grado de la unidad San Gabriel (pre-silúricas), que se encuentran intrusionadas por (2) la suite del Granito Rabinal de edad ca. 462-453 Ma, que por sus abundantes zircones heredados y valores de ENd negativos (Solari et al., 2011) se interpreta como originado por la fusión parcial de una fuente metasedimentaria, posiblemente alguna secuencia similar a la unidad San Gabriel (Solari et al., 2013); y finalmente, sobreyace discordantemente (3) el Grupo Santa Rosa, compuesto por rocas metasedimentarias de muy bajo grado, calcáreas y clásticas, del Mississípico (Ortega-Obregón et al., 2008).

Figura 11. (A) Configuración tectónica del sur de México y América Central en bloques continentales. N-Terreno Náhuatl-Guerrero; TMVB-Faja Volcánica Trasnmexicana; M-Terreno Mixteco; CH-Terreno Chatino; Z-Terreno Zapoteco; CU-Terrreno Cuicateco; MAYA-Bloque Maya; CHORTÍS-Bloque Chortís. (B) Mapa geológico del extremo sureste de México y centro de Guatemala y noroeste de Honduras. PFZ-Zona de falla Polochic; MFZ-Zona de falla Motagua; BVFZ-Zona de falla Baja Verapaz; JChFZ-Zona de falla Jocotán-Chamelocón; LCF- Falla La Ceiba (Ortega-Obregón et al., 2008).

Las rocas de Rabinal-Salamá se correlacionan con las secuencias paleozoicas continental-marino somero que afloran cerca de Cuidad Victoria en el noreste de México y con las rocas del Complejo Acatlán en el Terreno Mixteco (Ortega-Obregón et al., 2008). Debido a que el Granito Rabinal forma parte del extremo sur del Bloque Maya, entonces el Terreno Maya estuvo unido a otros terrenos como Oaxaquia, Mixteco, Chortís y Florida durante el Neoproterozoico-Paleozoico inferior, formando la margen norte de Gondwana (Ortega-Obregón et al., 2008; Solari et al., 2011). En este contexto, la suite del Granito Rabinal se emplazó en un ambiente de rift continental por el proceso de extensión a lo largo de la margen norte de Gondwana durante la apertura del océano Rheico en el Ordovícico temprano. El carácter peraluminoso del Granito Rabinal se interpreta como heredado de la fuente durante la fusión parcial de la corteza continental (Ortega-Obregón et al., 2008).

Las rocas de Rabinal-Salamá también se correlacionan, dentro del mismo Bloque Maya, con el cinturón magmático expuesto en Motozintla, Chiapas (Estrada-Carmona et al., 2012), donde diques máficos y graníticos de edad 480-470 Ma, con una firma geoquímica similar al Granito Rabinal, intrusionan secuencias metasedimentarias pre-ordovícicas. Los Altos Cuchumatanes del oeste de Guatemala (Solari et al., 2009) y las montañas Maya de Belice (Martens et al., 2010) también se correlacionan con las unidades que afloran en Rabinal-Salamá. En los Altos Cuchumatanes afloran rocas de alto y bajo grado metamórfico donde las secuencias de bajo grado se encuentran intrusionadas por cuerpos graníticos del Ordovícico medio (461 Ma) y Pensilvánico (312-317 Ma) (Solari et al., 2010) y están cubiertas por las rocas metasedimentarias del grupo Santa Rosa (Ratschbacher et al., 2009). Por otro lado, en las montañas Maya afloran secuencias metasedimentarias de bajo grado que se encuentran intrusionadas por granitoides del Paleozoico inferior (principalmente Silúrico [~410 Ma]; Martens et al., 2010) y tienen una cubierta sedimentaria del Paleozoico superior que es análoga, por el contenido fósil y litología, al Grupo Santa Rosa (Ratschbacher et al., 2009).

A su vez, las secuencias del extremo sur del Bloque Maya se correlacionan con el Complejo Metamórfico Chuacús, ya que las rocas ígneas y metamórficas son comparables en edad y grado metamórfico con las rocas que afloran en el sur de México y en el centro-oeste de Guatemala (Solari et al., 2011) por lo que se infiere la proximidad del Complejo Chuacús con el Bloque Maya en el Paleozoico inferior. Actualmente el Complejo Chuacús es considerado como un bloque continental independiente de los bloques Maya y Chortís (Solari et al., 2011) que limita al norte con las unidades de Rabinal-Salamá mediante la zona de cizalla de Baja Verapaz de edad Cretácico tardío (Ortega-Obregón et al., 2008). En el complejo Chuacús se han identificado tres episodios de metamorfismo (Solari et al., 2011); el primero consta de metamorfismo en facies de eclogita que está ligado a magmatismo ordovícico ubicado en el norte del complejo y alrededor de la suite del granito Rabinal, el segundo corresponde a magmatismo de arco volcánico y migmatización del Triásico superior y, finalmente, un evento de alto grado metamórfico del Cretácico tardío. La historia evolutiva del complejo comenzó en el Paleozoico inferior con el depósito de material proveniente del Bloque Maya, el Complejo Acatlán y el sur de México dentro de una cuenca del océano Rheico. Posteriormente, en el Paleozoico medio y superior, el complejo evolucionó a un margen activo y subdujo bajo condiciones de alta presión; finalmente fue exhumado e involucrado en dos eventos tectonotermales durante el Triásico superior y Cretácico tardío. Finalmente fue acrecionado con el sur del Bloque Maya en el Cretácico tardío.

Figura 12. Localización del cinturón magmático del Paleozoico inferior (Estrada-Carmona et al., 2012).

Todas las relaciones anteriores sugieren que la margen sur del Bloque Maya, es decir, Altos Cuchumatanes, Macizo de Chiapas, Rabinal-Salamá y montañas Maya, e incluso el Complejo Chortís, experimentó un prolongado episodio de magmatismo en el Ordovícico-Devónico temprano (Ratschbacher et al., 2009) formando un cinturón de actividad ígnea a lo largo de esta margen en el Paleozoico inferior (Solari et al., 2009), con migración del magmatismo en el Silúrico desde Chiapas-Guatemala hacia las montañas Maya (Figura 12) (Estrada-Carmona et al., 2012). La convergencia oblicua entre Laurentia y Gondwana desde el Pensylvánico hasta el Pérmico provocó la formación de una nueva fase de magmatismo sobre el cinturón magmático anterior (Solari et al., 2011).

Todo el magmatismo ordovícico (quizá mejor referido como del Paleozoico inferior por las edades silúricas) se ha vinculado al proceso de rifting en la margen de Gondwana durante la apertura del océano Rheico. Sin embargo, Solari et al. (2013) sugieren que la depositación de los protolitos sedimentarios en las márgenes del océano Rheico estuvieron involucrados en un evento de metamorfismo, fusión parcial y producción de granitos tipo S durante el Ordovícico donde el patrón de P-T es compatible con un ambiente convergente y con la posterior exhumación de los granitos y rocas asociadas en el Paleozico medio, formando el basamento de una cuenca mesozoica después de la separación de Pangea para pasar finalmente por un evento de subducción en el Cretácico Tardío.

3. METODOLOGÍA ANALÍTICA

De los cuerpos plutónicos emplazados en las márgenes del océano Rheico, se seleccionaron cinco muestras con diferente ubicación, una correspondiente a la suite de granitoides Esperanza del Complejo Acatlán en el Terreno Mixteco, referida como granito Palo Liso, y en el extremo sur del bloque Maya se seleccionaron una granodiorita de los Altos Cuchumatanes, dos granitos de la Suite Rabinal y una migmatita del Complejo Chuacús.

Para cada una de las muestras se separaron manualmente entre 60 y 90 cristales del concentrado de zircones. Con un microscopio estereoscópico se seleccionaron cristales euhedrales que fueran representativos de la población total, considerando tamaño, color y forma. Por conveniencia se eligieron cristales con ancho superior a ~60 µm ya que se requiere un tamaño de spot de 44 µm para el análisis de hafnio (ver más adelante) además de que los cristales más grandes son menos susceptibles a la pérdida de plomo por su relación volumen/área superficial.

Para prevenir irregularidades en las mediciones y obtener datos confiables, se evitaron cristales con núcleos heredados visibles o que tuvieran algún tipo de daño o alteración, como granos metamícticos, cristales fracturados, con inclusiones, etc.

Posteriormente, los cristales se montaron en posición horizontal en un anillo de 1 pulgada de diámetro con resina epóxica y se dejó reposar más de 8 horas para que la resina solidificara. Una vez que la resina endureció, la preparación se desbastó con lijas de distinta rugosidad (#800, #1500, #2500 y #3000) para exponer el interior de los cristales hasta la mitad de su espesor y, finalmente, se hizo un doble pulido con un componente de diamante de 6 μ m y 1 μ m.

3.1 Catodoluminiscencia

Una vez montados y pulidos los zircones, para cada muestra se realizaron análisis de catodoluminiscencia con un luminoscopio ELM 3R acoplado a una cámara digital (Figura 13).

Figura 13. Luminoscopio ELM 3R en el Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias de la UNAM, Campus Juriquilla.

La luminiscencia es un fenómeno común que ocurre en los sólidos como resultado de una transición emisiva en aniones, moléculas o un cristal de un estado excitado de electrones hacia un estado de menor energía. Particularmente, la catodoluminiscencia consiste en irradiar una superficie sólida con un haz de electrones (Figura 14).

La catodoluminiscencia es un método ampliamente utilizado en geociencias para estudios mineralógicos y petrológicos porque permite una clara diferenciación de las distintas fases minerales. En los zircones, es un método utilizado como complemento de otras técnicas analíticas ya que las características de luminiscencia de este mineral sirven para identificar las texturas internas del cristal, el crecimiento de zonas y la distribución de elementos traza dentro de la fase sólida, lo cual provee información de las condiciones durante el crecimiento de la fase cristalina, densidad de defectos, incorporación de ciertos elementos traza, núcleos heredados, etc (Götze & Kempe, 2009).

Primary electron beam

Figura 14. Ilustración esquemática de la interacción de un haz de electrones con una superficie sólida (Götze & Kempe, 2009).

Las imágenes de catodoluminiscencia se utilizaron para reconocer la estructura interna del zircón. En general los cristales presentan dominios de distinta composición (zoneamiento composicional intragrano), fracturas y núcleos heredados que son el resultado de los distintos eventos de crecimiento ígneo y/o metamórfico. Con la finalidad de obtener la edad de cristalización real, es decir, evitar herencia o mezcla de edades, optamos por un punto de análisis en el borde del zircón dentro de un dominio composicional bien definido (Figura 15). Bajo este criterio de selección quedaron entre "30 y "50 cristales de cada muestra para el fechamiento.

Adicionalmente, las imágenes de CL se utilizarán para la interpretación de las edades.

Figura 15. Ejemplo de puntos de análisis en muestra CH0403. Los dominios a analizarse principalmente se ubicaron en los bordes de los cristales para evitar núcleos heredados, mezcla de dominios y/o fracturas.

3.2 Geocronología U-Pb y elementos traza

Para cada una de las muestras se midieron las concentraciones de elementos traza, incluyendo los isótopos del sistema geocronológico U-Pb para calcular la edad de cristalización de la última fase magmática.

Los análisis se hicieron con la técnica analítica de Ablación láser acoplada con espectrometría de masa cuadrupolar en plasma de Ar (LA-ICPMS, por sus siglas en inglés) en el Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias de la UNAM, siguiendo la metodología de Solari et al. (2010).

El equipo del sistema de ablación láser Resolution M-50 fabricado por *Resonetics LLC* cuenta con un láser de excímeros de 193 nm de longitud de onda que utiliza una mezcla de ArF para generar el pulso de 23 ns. El haz es enfocado al blanco mediante un sistema óptico de lentes de baja apertura que provee largas distancias de trabajo (hasta \approx 125 mm) y una profundidad de foco de 50-200 µm. Dependiendo de la desmagnificación, el rango de fluencia puede ser de 2 a 30 J cm⁻² y un cráter de 10-380 µm de diámetro; en nuestro caso el diámetro de perforación fue de 23 µm, con 8 µm de profundidad y 6 J cm⁻² de fluencia.

Figura 16. Celda de ablación Laurin Technic.

La ablación se realiza en una celda de doble volumen *Laurin Technic* (Figura 16) que por su configuración permite una resolución espacial elevada debido a la rápida extracción del material ablacionado y la detección instantánea de la señal. Previo al análisis, la celda se purifica con una bomba de vacío y se llena con gas He para tener las condiciones adecuadas para la ablación. El gas acarreador He que lleva el material ablacionado al ICPMS tiene una tasa de flujo de 350 ml min⁻¹ y se mezcla con gas Ar (\approx 800 ml) y una pequeña cantidad de N₂ (4.5 ml min⁻¹) para aumentar la temperatura del plasma y mejorar la intensidad de la señal. El sistema de ablación láser está conectado a un espectrómetro de masas de fuente de plasma inductivamente acoplada (ICPMS) de cuadrupolo Thermo Icap Qc (Figura 17), equipado con conos e inserto de alta sensibilidad y antorcha de cuarzo dedicados exclusivamente a los análisis isotópicos de U-Pb.

Figura 17. Espectrómetro de masas Thermo Icap Qc.

En cada sesión analítica previo a las mediciones, el equipo de ICPMS se optimiza utilizando un estándar de referencia con un escaneo ráster a 0.5 mm min⁻¹ con tasa de repetición de 10 Hz y diámetro de perforación de 80 µm. En este caso utilizamos el vidrio NIST RSM 612 como estándar para monitorear y calibrar el equipo hasta que cumpla con los parámetros de detección de ²³⁸U (\approx -1x10⁶ cps [counts per second]), ²⁰⁸Pb (\approx 50,000 cps), ²³⁸U/²³²Th (\approx 1.05) y ThO+/Th± (\leq 0.01).

La secuencia del análisis comienza con 2 puntos en el estándar del vidrio NIST 610, 5 puntos del zircón 91500 y 3 del zircón Plešovice (estándar secundario). Posteriormente se analizan un grupo de 10 zircones de edad desconocida, seguidos de 2 estándar 91500 y 1 Plešovice y se repite esta serie hasta terminar todos los zircones desconocidos. Para finalizar la secuencia se analizan 2 Plešovice, 2 de 91500 y 1 del NIST 610.

El tiempo total de análisis por cristal es de 60 [s], donde 15 [s] corresponden al tiempo de monitoreo de blanco o background, 30 [s] son de ablación y 15 [s] de lavado (washout) y reposicionamiento.

Durante el análisis se registran las señales de los isótopos ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, ²³⁵U y ²³⁸U que son necesarias para determinar las relaciones isotópicas y calcular la edad. Al mismo tiempo, gracias a la capacidad de escaneo rápido del cuadrupolo, se colectan las señales de elementos traza como P, Ti, Y, Nb, tierras raras (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu) y Hf; cuyas concentraciones se utilizarán para los distintos

diagramas de clasificación (ver más adelante) y como indicadores petrogenéticos de la fuente. Durante el tiempo de análisis, la contaminación por inclusiones, fracturas o zonas de diferente composición se detectan por el monitoreo de varios elementos, como P, Ti e Y, que sirven para identificar inclusiones dentro de los cristales, como fosfatos o silicatos, que pudieran alterar las concentraciones isotópicas medidas. Las concentraciones elementales se recalcularon utilizando el vidrio NIST 610, empleando ²⁹Si como estándar interno.

La concentración del isótopo ²⁰⁴Pb no se registra dado que su señal se ve interferida por la señal de ²⁰⁴Hg presente en el gas acarreador y debido a que el Pb común que se incorpora al zircón durante la cristalización es muy bajo, la intensidad de la señal medida es similar al ruido instrumental del background, por lo que no se puede hacer la corrección directa por este método; no obstante, la pequeña cantidad de Pb común no tiene un efecto significativo en el cálculo de las edades al menos que se trate de zircones jóvenes, en las cuales la corrección por Pb común se hace utilizando los diagramas de concordia de Tera-Wasserburg o con el método algebraico de Andersen (2002).

El tratamiento de los datos se realiza usando el software Iolite (Paton et al., 2011) y el esquema de reducción de datos para UPb de Petrus y Kamber (2012), haciendo las pertinentes correcciones por deriva instrumental y fraccionamiento por profundidad, además de realizar la propagación de errores analíticos. Una serie de macros para Excel permite ordenar los datos exportados de Iolite. Los diagramas de concordia y el cálculo de las edades promedio se realizaron usando el software libre Isoplot v. 4.15 (Ludwig, 2008).

3.3 Isótopos de Hf

Para la isotopía de Hf se utilizó la técnica de Ablación láser acoplado con el sistema de espectrometría de multicolección en plasma de Ar (LA-MC-ICPMS)) dado que su resolución es mucho mayor que LA-ICPMS. Para el análisis, las muestras no requieren una preparación extra, tan sólo se vuelven a limpiar las probetas usando HNO3 1M para eliminar cualquier fuente de contaminación en la superficie que pudiera afectar las mediciones.

El equipo utilizado es el Neptune Plus MC-ICPMS de alta resolución (Figura 18) acoplado al mismo sistema de ablación láser Resolution M-50 ubicado en el Laboratorio de Estudios Isotópicos (LEI), siguiendo la metodología descrita por Ortega-Obregón et al. (2013), la cual explico brevemente a continuación.

El proceso comienza con la ablación láser, en la celda de doble volumen *Laurin Technic*, sobre un vidrio estándar para optimizar el flujo de gases y las condiciones del equipo. Una vez optimizado el equipo, se ablaciona la muestra sobre el mismo punto de análisis de U-Pb, con una tasa de repetición de 5 Hz, tasa de fluencia o densidad de energía de 6 J cm⁻² y por un período de 60 [s], esto con la finalidad de minimizar la profundidad del

hoyo de ablación. El diámetro del spot es de 44 µm y ~12 µm de profundidad, con lo que se obtiene cerca de 200 ng de material ablacionado. Posteriormente, el material ablacionado es llevado al espectrómetro de masas mediante el gas acarreador, el cual está compuesto por He (350 ml/min) y N₂ (ca. 10 ml/min) mezclado con una cantidad de Ar de ca. 1,000 ml/min. En el espectrómetro de masas se colectan las señales de los isótopos ¹⁷²Yb, ¹⁷³H, ¹⁷⁶Lu, ¹⁷⁶Hf, ¹⁷⁶Hf, ¹⁷⁶Hf, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁷⁹Hf y ¹⁸⁰Hf.

Figura 18. Espectrómetro de masas de multicolección Neptune Plus en el LEI.

Para los análisis de Hf el fraccionamiento por profundidad es nulo, por lo que la manera de hacer las correcciones consiste en analizar una serie de zircones sintéticos llamados MUN (Fisher et al., 2011), que contienen diferentes cantidades conocidas de tierras raras, alternados con los zircones desconocidos para monitorear y, si es el caso, corregir el drift o deriva instrumental y, adicionalmente, se analizan estándares secundarios que sirven como control de calidad. Por consiguiente, la secuencia de análisis inicia con 2 puntos de control en el estándar 91500 seguido por 4 en el zircón artificial MUN; a continuación se analizan 15 zircones desconocidos seguidos por 1 del 91500 y los 4 MUN, y así sucesivamente hasta terminar las muestras.

Adicionalmente, se hacen las pertinentes correcciones por interferencia de masas, es decir, por los isóbaros, ya que ¹⁷⁶Hf se ve interferido por las masas ¹⁷⁶Lu y ¹⁷⁶Yb, ambos presentes de manera natural en el zircón. El modo de corregir la interferencia de Lu, consiste en medir ¹⁷⁵Lu y usar la relación de ¹⁷⁵Lu/¹⁷⁶Lu=0.02656 (Blichert-Toft et al., 1997) junto con el factor de corrección por fraccionamiento isotópico de Yb (β Yb) asumiendo que el Lu se fracciona del mismo modo que el Yb. La corrección para ¹⁷⁶Yb consiste en medir los isótopos ¹⁷²Yb y ¹⁷³Yb para hacer un balance de masas de Yb y hacer una estimación de los isótopos de Hf.

Las señales isotópicas se adquieren con el software del equipo Neptune Plus y se exportan al software Iolite donde se hacen la reducción de datos, los cálculos de las relaciones isotópicas y las correcciones. Después, la información se procesa y grafica en hojas de cálculo de Excel desarrolladas en el LEI, en las cuales se obtiene la relación de ¹⁷⁶Hf/¹⁷⁷Hf, recalculada a la edad de cristalización con las edades obtenidas por el fechamiento U-Pb, y el parámetro de Épsilon Hf; lo anterior con el desarrollo matemático explicado en el capítulo anterior.

4. RESULTADOS

4.1. Morfología cristalina de los zircones

En la muestra CM13-3 se distingue un sólo tipo de morfología donde la pirámide {2 1 1} tiene un desarrollo preferencial sobre {1 0 1}. Los prismas de primer y segundo orden están bien desarrollados y definen los subtipos S12 y S17 (Figura 19a) con una relación largo-ancho de 3:1. Estas morfologías se asocian a la serie de granitos calco-alcalinos indicando una fuente híbrida entre corteza y manto, típica de granitos orogénicos (Figura 4.)

Los zircones de la muestra CH0403 se pueden agrupar en dos tipos de morfologías (Figura 19b). La primera incluye los subtipos S12 y S13 donde los prismas de primer y segundo muestran caras bien desarrolladas y con dos pirámides {1 0 1} y {2 1 1}. El segundo conjunto incluye las tipologías S18, S22, S24 y S25, donde las caras de los prismas de primer orden {1 0 1} están bien desarrolladas y predominan sobre las de segundo orden {1 1 0}, la mayoría tiene la pirámide {1 0 1} mejor desarrollada y la {2 1 1} poco desarrollada, de modo que los subtipos S24 y S25 son los más abundantes y escasea el subtipo S22. En general los cristales tienen relación 2:1 de largo/ancho. Estas tipologías, aunque diversas, se pueden asociar a series de granodioritas calco-alcalinas y granitoides subalcalinos que se atribuyen a un origen híbrido (Figura 4).

En la muestra Gt0405 se reconocen dos tipos principales de zircones y un grupo secundario conformado por una minoría de cristales (Figura 19c). El primero es la tipología G1 con pirámides $\{1 \ 0 \ 1\}$ y prismas de segundo orden $\{1 \ 1 \ 0\}$ bien desarrollados. El segundo grupo incluye las tipologías S25 y D, donde se observan las pirámides $\{2 \ 1 \ 1\}$ y $\{1 \ 0 \ 1\}$, siendo ésta última la dominante y de igual modo los prismas $\{1 \ 0 \ 0\}$ están bien desarrollados y los de caras $\{1 \ 1 \ 0\}$ están débilmente desarrollados. El último subtipo es el menos abundante donde los zircones tienen las caras de los prismas de primer y segundo orden bien desarrollados ($\{1 \ 0 \ 0\}=\{1 \ 1 \ 0\}$) y dos pirámides, las de cara $\{1 \ 0 \ 1\}$ menos desarrolladas que $\{2 \ 01 \ 1\}$, ubicándose en el tipo S12. La relación de largo/ancho es ~2:1. Tomando en cuenta sólo los dos tipos principales, los zircones se atribuyen a la serie alcalina de origen mantélico, es decir, granitoides anorogénicos (tipo I en la figura 4).

Figura 19. Morfologías cristalinas de los zircones (Pupin, 1988): a) CM13-3, b) CH0403, c) Gt0405, d) Gt0457b y e) Gt0340.
Los zircones de Gt0457b se agrupan en dos tipos (Figura 19d). La tipología G1 es que la que tiene la mayor concentración de zircones con prismas {1 1 0} bien desarrollados que conservan una relación de largo-ancho 3:1 y con una pirámide {1 0 1}. El segundo grupo incluye las tipologías S11, S12, S17, S18 y S19 con prismas con relación 2:1 de largo-ancho. En este segundo tipo la tipología más abundante es S12. La fuente del magma para esta muestra tiene una aportación mantélica y continental (híbrida) de la serie de granitos calco-alcalinos (Figura 4).

En la muestra Gt0340 los zircones se pueden agrupar en dos tipos (Figura 19e). El primero, que es el más abundante, tiene prismas de primer y segundo orden donde las formas {1 0 0} muestran un desarrollo preferente respecto a las formas {1 1 0} y con dos pirámides {1 0 1} y {2 1 1}, en su mayoría menos desarrollada esta última, de modo que ocupan los subtipos S18, S19, S23, S24 y S25. El segundo tipo, con una concentración ligeramente inferior, tiene las tipologías S12, S13 y S14 con las caras de los prismas {1 0 0} igualmente desarrolladas que las caras {1 1 0} y con las dos pirámides {2 1 1} y {1 0 1}. La relación largo/ancho de los prismas es 2:1. La tendencia de esta muestra es más parecida a la serie de granitoides calco-alcalinos típica de origen mantélico+cortical (Figura 4).

4.2 Química de elementos traza

Las concentraciones de elementos traza para los zircones de cada muestra se reportan en la tabla IV.A. En los diagramas de tierras raras (REE, por sus siglas en inglés) normalizados con respecto a condritas CI (McDonough & Sun, 1995) (Figura 20) se observan patrones similares para todas las muestras, con un enriquecimiento relativo de tierras raras pesadas (HREE) respecto a las tierras raras ligeras (LREE); además, en todas se aprecia una anomalía positiva de Ce y una anomalía negativa de Eu, que se asocia típicamente al proceso de cristalización fraccionada de la plagioclasa.

En las muestras CH0403, Gt0405 y Gt0457b se aprecia que algunos zircones están más enriquecidos en LREE y desarrollan un patrón plano de La a Sm. Estos patrones de comportamiento no se asocian a zircones de determinada edad, pues en algunos casos pertenecen al evento de cristalización del Paleozoico inferior, en otros corresponden a los cristales heredados y en el caso de Gt0405 corresponden a los zircones del evento geológico del Triásico.

Debido a que la química de tierras raras en zircones de un amplio rango de rocas corticales, y distinto ambiente tectónico, muestran en general un comportamiento similar, la química del zircón no es tan útil como indicador de la procedencia de la fuente (Hoskin & Ireland, 2000); sin embargo, permite identificar a grandes rasgos si es mantélica o cortical, ya que en las rocas con afinidad mantélica tienen un patrón normalizado casi plano de tierras raras pesadas comparado con los zircones de origen cortical y con una anomalía de Eu no significativa (Hoskin & Schaltegger, 2003). Adicionalmente, la anomalía negativa de Eu es típica de rocas continentales, principalmente en la corteza superior, así como de sedimentos y agua de mar (White, 2013) y refleja procesos de cristalización fraccionada mediante el cual el Eu sustituye al Ca en la estructura cristalina de la plagioclasa y, cuando ésta se fracciona, empobrece el Eu en el magma antes o durante la cristalización del zircón (Hoskin y Schaltegger, 2003). Con lo anterior se puede interpretar que para todas las muestras la fuente tiene afinidad cortical.

Figura 20. Diagramas de tierras raras normalizados con respecto a los valores de Condrita CI de McDonough & Sun (1995).

4.3 Geocronología U-Pb

A continuación se describen los datos obtenidos en el análisis de U-Pb. En la tabla IV.B se reportan las relaciones isotópicas y las edades U-Pb corregidas para cada una de las cinco unidades magmáticas analizadas y la localización de las muestras se señala en las figuras 21 y 22.

Granito Palo Liso, Complejo Acatlán-Muestra CM13-3

Los zircones derivan del granito Palo Liso, considerado parte de los granitoides Esperanza que afloran en el Complejo Acatlán en el Terreno Mixteco (Figura 21). Se realizaron 51 análisis para esta muestra y se obtuvo un amplio rango de edades concordantes entre ~400 y ~1400 Ma (Figura 23a). Dentro de estos valores se tomaron en cuenta únicamente 25 análisis para obtener la edad de la intrusión de 467.8±3.1 Ma ya que el resto de las edades pertenecen a cristales heredados.

Figura 21. Mapa geológico del Complejo Acatlán y localización del granito Palo Liso (Tomado de Keppie et al., 2010).

Granodiorita de los Altos Cuchumatanes-Muestra CH0403

Los zircones proceden de una granodiorita ubicada en los Altos Cuchumatanes (Figura 22) que aflora al ESE de Barillas, cerca del río Amelco en Guatemala (Solari et al., 2009). Para esta muestra se hicieron 35 análisis en total, de los cuales se descartaron 3 por tener un error demasiado grande (Tabla IV.B). En el diagrama de concordia de Wetherill se distinguen dos poblaciones de datos, una entre ~440-480 Ma y otra alrededor de 1000 Ma (Figura 23b). Se consideraron 26 granos para obtener la edad de cristalización de 456.2±2.5 Ma, en tanto que el resto de edades corresponden a zircones heredados ya que la granodiorita no se encuentra deformada ni metamorfoseada (Solari et al., 2009).

Migmatita de la Sierra de las Minas en el balneario Pasabien- Muestra Gt0405

Los zircones pertenecen a un gneiss migmatítico que aflora en la parte sur de la Sierra de las Minas (Figura 22) y se considera como la continuación al este del Complejo Metamórfico Chuacús en Guatemala (Solari et al., 2011). Se realizaron en total 34 análisis, de los cuales uno se descartó por tener un porcentaje de discordancia muy elevado (Tabla IV.B). El resto de los análisis definen dos grupos de edades en la curva de concordia de Wetherill (Figura 23c); el primer conjunto de datos define una edad promedio de 446.1±4.8 Ma y el segundo de 237.9±3.3 Ma, ambos valores coherentes con los valores reportados por Solari et al. (2011) de 450+2/-4 Ma y 243±3 Ma. La edad más antigua, obtenida de 20 análisis, se asume como un evento magmático mientras que el grupo de las 13 edades más jóvenes se asocia a un evento migmatítico que pudo ocasionar recristalización y la pérdida de Pb en algunos cristales.

Granito Rabinal-Muestras Gt0457b y Gt0340

Las muestras corresponden a la Suite del granito Rabinal, que aflora al norte del pueblo de Rabinal, BajaVerapaz y limita por el sur con la zona de cizalla Baja Verapaz en el centro de Guatemala (Figura 22). Estos granitos se encuentran intrusionando a la unidad metasedimentaria San Gabriel y muestran una afinidad peraluminosa calcoalcalina perteneciente a un arco volcánico, de acuerdo con Ortega-Obregón et al. (2008).

Para la muestra Gt0457b se realizaron 35 análisis de los cuales se descartaron dos por tener un porcentaje de discordancia mayor a 10% (Tabla IV.B). La distribución de valores tiene un rango extenso de edades concordantes en el diagrama de Wetherill, que va de ~400 Ma a ~1600 Ma (Figura 23d). En el grupo de zircones más jóvenes, se distingue una mezcla de dos componentes. El primer grupo, define una edad promedio de 456.8±4.9 Ma a partir de 10 datos y se considera como la edad de cristalización, mientras que el segundo grupo da una edad heredada más antigua de 480.6±3.9 Ma, obtenida de una población de 15 datos. El resto son edades de xenocristales heredados.

En la muestra Gt0340 se realizaron 55 análisis y se descartaron dos valores discordantes (Tabla IV.B). En el diagrama de concordia de Wetherill se observa una distribución bimodal de los datos entre 400-480 Ma (Figura 23e).

A partir de 34 análisis, que conforman el grupo de zircones más jóvenes, se obtuvo la edad de cristalización de 427.6±1.8 Ma; mientras que la segunda población, compuesta por 10 zircones, da una edad de 452.7±3.1 Ma que se asume como heredada.

Figura 22. A) División de los principales bloques corticales en el sur de México y América Central: N-Terreno Náhuatl-Guerrero, TMVB-Cinturón Volcánico Transmexicano, M-Terreno Mixteco, CH-Terreno Chatino, Z-Terreno Zapoteco, CU-Terreno Cuicateco, MAYA-Bloque Maya y CHORTÍS-Bloque Chortís; B) Mapa geológico del sureste de México, parte de Guatemala y Honduras. PFZ-Zona de falla Polochic, MFZ-Zona de falla Motagua, BVFZ-Zona de falla Baja Verapaz, JChFZ-Zona de falla Jocotán-Chamelecón, LCF- Falla La Ceiba. Las estrellas rojas indican la localización aproximada de las muestras (Modificada de Ortega-Obregón et al., 2008).

Figura 23. Diagramas de concordia de Wetherill (1956) y edades promedio de los distintos cuerpos graníticos obtenidos con el software libre Isoplot (Ludwig, 2008); a) Granito Palo Liso, b) Granodiorita Altos Cuchumatanes, c) Migmatita Complejo Chuacús, d) y e) Granito Rabinal. Las letras primas indican una apliación del recuadro rojo señalado.

Figura 23. Continuación

Figura 23. Continuación.

4.4 Isotopía de Hf

Las relaciones isotópicas de Hf, así como las edades modelo y los valores de épsilon Hf ($\epsilon_{\rm Hf}$) se muestran en la tabla IV.C. Debido a que el análisis de Hf se realizó sobre el mismo punto de U-Pb, las edades modelo se calculan utilizando la edad de cristalización obtenida anteriormente. Para cada una de las muestras se hizo el análisis en 20 cristales que tuvieran edades concordantes y con el mínimo error de acuerdo a la tabla IV.B y los diagramas de la Figura 23.

Granito Palo Liso, Complejo Acatlán-Muestra CM13-3

La relación de $^{176}Hf/^{177}Hf_t$ se encuentra en un intervalo entre 0.282314 y 0.282450 y $\epsilon Hf_{(t)}$ va de -6.1 a -1.4 (Figura 24). Las edades modelo calculadas en dos etapas ($T_{DM}{}^{\rm C}$) varían en un intervalo entre 1278 y 1513 Ma.

Granodiorita de los Altos Cuchumatanes-Muestra CH0403

La relación $^{176}Hf/^{177}Hf_t$ calculada está entre 0.282320 y 0.282420. Los valores de $\epsilon Hf_{(t)}$ son negativos, entre -6.4 y -2.6 (Figura 24). Las edades modelo de dos etapas $T_{DM}{}^{C}$ cubren un rango entre 1332 y 1508 Ma.

Migmatita del Complejo Chuacús- Muestra Gt0405

La relación de Hf calculada para el tiempo de cristalización del zircón (176 Hf/ 177 Hf_t) tiene un rango entre 0.282404 y 0.282526. La característica más distintiva de este conjunto es que tiene seis valores positivos de ϵ Hf_(t) dentro del intervalo que va de -3.7 a 1.0 (Figura 24). Las edades modelo en dos pasos (T_{DM}^C) están entre 1150 y 1367 Ma.

Granito Rabinal-Muestras Gt0457b y Gt0340

En la muestra Gt0340, la relación de $^{176}\mathrm{Hf}/^{177}\mathrm{Hf}_{t}$ va de 0.282473 a 0.282516. $\epsilon\mathrm{Hf}_{(t)}$ tiene un intervalo entre -1.5 y 0.3 (Figura 24), donde sólo tres valores son positivos. Las edades modelo $T_{DM}{}^{\rm C}$ están en un intervalo de 1174 a 1250 Ma.

En la muestra Gt0457b, la variación de la relación $^{176}\mathrm{Hf}/^{177}\mathrm{Hf}_{t}$ es entre 0.282305 y 0.282499. El rango de valores $\epsilon\mathrm{Hf}_{(t)}$ es de cerca de seis unidades, en un intervalo de -6.2 a 0.1 (Figura 24), donde cabe señalar que únicamente se tiene el valor positivo de 0.1 en éste. Las edades modelo en dos etapas $T_{DM}{}^{C}$ se encuentran en un intervalo entre 1197 y 1526 Ma.

En general, las relaciones isotópicas de todas las muestras tienen poca variabilidad y los valores de ϵ Hf_(t) son en su mayoría negativos y tan sólo diez positivos, donde el valor mínimo es -6.4 y el máximo es 1.0. De igual modo, las edades modelo calculadas en dos pasos T_{DM}^C en conjunto tienen un rango entre 1.1 y 1.5 Ga (Figura 24), donde se utiliza la relación de ¹⁷⁶Lu/¹⁷⁷Hf de 0.0083, correspondiente a la composición promedio de la corteza continental superior (Rudnick y Gao, 2003).

Figura 24. Diagrama ɛHf vs edad. La intersección de la curva de evolución de ɛHf[®] con la curva del manto empobrecido (DM) define las edades modelo corticales, basándose en la relación ¹⁷⁶Lu/¹⁷⁷Hf= 0.0083 de la corteza continental superior (Rudnick y Gao, 2003).

4.5 Diagrama εHf vs Yb/Hf

En la figura 25 se muestran los datos de ɛHf vs Yb/Hf de las cinco muestras analizadas, empleando como referencia los campos definidos para las diferentes etapas del magmatismo de colisión de acuerdo con Spencer et al. (2015). Esto por la afinidad diferente de Yb y Hf con el magma residual, durante la cristalización de los zircones, en los cuales el Hf entra de manera preferente.

Los puntos de la muestra CM13-3 mantienen un intervalo limitado de ϵ Hf y tienen gran variación de la relación Yb/Hf, por lo que su distribución paralela al eje horizontal es mayor, ocupando parcialmente el campo de magmatismo de colisión en las etapas intermedia y tardía y hacia la derecha de éste. Las muestras Gt0405 y Gt0340 presentan la menor variación de datos y se ubican, en ambos casos, en el dominio de magmatismo de colisión temprana, donde se aprecia que los valores de ϵ Hf se mantienen constantes y con variaciones en la relación de Yb/Hf. Por otro lado, todos los puntos de la muestra CH0403 están dentro del campo de magmatismo de colisión en las etapas intermedia y tardía, sin variaciones importantes de ϵ Hf y muy poco de Yb/Hf. Finalmente, los valores

de la muestra Gt0457b tienen un comportamiento similar a la muestra CM13-3, tiene la mayor dispersión de datos respecto a las anteriores al tener la mayor variación de Yb/Hf y valores de ɛHf con pocas variaciones entre sí; los puntos se encuentran distribuidos, en su mayoría, en el campo de magmatismo de colisión intermedio a tardío y se desplazados a la derecha de éste.

La importancia del diagrama, más que los campos definidos para las diferentes etapas de colisión de acuerdo con los autores, es en los patrones que siguen los datos, dependiendo de los procesos involucrados durante la formación de los zircones, i. e., cristalización fraccionada, entrada de material mantélico y/o contaminación cortical. En general, se distinguen patrones consistentes con el proceso de cristalización fraccionada, ya que durante este proceso el Hf tiende a incorporarse al zircón dejando que la relación de Yb/Hf aumente en el magma parental sin afectar los valores de ɛHf (Spencer et al., 2015), formando una tendencia subhorizontal. De acuerdo a este diagrama, dado que no se aprecia algún patrón sub-vertical, se descartan los procesos de asimilación cortical y/o entrada de material mantélico durante la evolución del magma parental, mientras que la cristalización fraccionada parece ser el proceso dominante.

4.6 Diagrama HfO₂ vs Y₂O₃

La muestra CM-13-3 se ubica en los campos 3a-b-c, 4a-b-c, 5a-b-c y 6a y se extiende parcialmente hacia 1e y parte del 2 (Figura 26A); esto implica que su dominio es principalmente orogénico a intermedio. Su contenido de HfO₂ es superior a 8000 ppm e inferior a 20000 ppm mientras que el Y_2O_3 supera las 5000 ppm pero no pasa de 10000 ppm; en este punto es importante mencionar que es la única muestra que tiene más de 5000 ppm de Y_2O_3 .

La muestra CH0403 tiene una distribución más limitada que la anterior, pues cae en los campos 4c, 5a-b-c y 6a (Figura 26B), lo cual indica claramente dominio orogénico y parcialmente intermedio. La concentración de HfO_2 es entre 11000 y 17000 aproximadamente y de Y_2O_3 menor de 4000 ppm.

La muestra de migmatita Gt0405 tiene una concentración de HfO_2 más variable respecto al resto de las muestras, lo cual se refleja en su mayor extensión a lo largo del eje horizontal, que es superior a 11000 ppm, mientras que el contenido de Y₂O₃ no supera las 5000 ppm. Su distribución es característica de granitos orogénicos ya que se encuentra sobre los campos 5b-c y 6a-b (Figura 26C); además tiene una ligera extensión hacia el campo 2 que no es significativa comparada con la mayor concentración de valores.

La muestra Gt0457b tiene concentraciones medias de HfO_2 (de 7000 a 21000 ppm aproximadamente) y de Y_2O_3 por debajo de 5000 ppm). Abarca en su totalidad los dominios 1e, 3c, 4a-b-c y 5a-b-c (Figura 26D), correspondientes a granitos orogénicos

(OR) y mezcla (ANOR+OR); adicionalmente, muestra dos extremidades que cubren parcialmente los campos 1d y 6a-b por algunos valores dispersos hacia esos campos.

La muestra Gt0340 ocupa parcialmente los campos 3b-c, 4b-c, 5c, 6a-b (Figura 26E) por lo que está claramente limitada a los dominios intermedio y completamente orogénico. La concentración de HfO₂ es entre 12000 y 22000 ppm aproximadamente y el contenido de Y_2O_3 no pasa de 5000 ppm.

(ppm)	Р	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	\mathbf{Er}	Yb	Lu	Hf	Pb	Th	U
Zircon_125	-420	26.2	2061	1.29	0	9.07	0.177	3.35	8.86	1.54	46.6	17.18	197.6	70.3	307.9	531	107.2	11390	6.4275	70.6	82.8
Zircon_126	-1090	15.3	4160	5.56	2.27	15.2	1.18	12.1	22.5	3.59	120.7	39.4	421	147.8	602	926	182	8970	28.1	348	358
Zircon_127	-180	8	704	4.13	0	21.34	0.047	1.02	3.63	0.349	17.7	6.34	65.4	24	102.1	185.2	35.84	10940	40.025	67	211.4
Zircon_128	-1180	8	3680	1.71	0	3.17	0.04	1.56	6.4	0.58	47	22.3	297	121	559	994	197	13980	17.45	44.3	201
Zircon_129	-1390	7	5900	4.45	0	9.7	0.147	2.74	10.2	0.99	76.7	36.3	477	197.1	930	1861	368	12630	59.375	159.9	746
Zircon_130	-680	4.1	5030	27.4	0	53.5	0.132	2.53	10.1	3.73	86.4	35	448	185.1	834	1547	306.7	13370	60.55	591	886
Zircon_131	260	4.1	3430	4.62	0.02	20.2	0.313	7.7	15.7	1.47	85.6	29.3	335	119.4	512	862	165.5	11780	33.15	372	440
Zircon_132	-200	18.8	3616	2.33	0.049	16.12	0.513	9.45	16.8	2.03	83.1	28.71	336.2	126.2	547	914	183.5	11180	23.325	265.4	297
Zircon_133	-330	1.1	2010	9.22	0	19.9	0.093	1.53	4.47	0.175	37.8	14	177	70.5	303	553	109.1	15710	32.125	190	396
Zircon_134	160	13.7	1880	2.03	0	5.11	0.236	3.2	8.5	1.19	49	16.3	184	67	287	466	94	9940	10.725	115	140
Zircon_135	-290	7.7	1860	9.75	0	25.47	0	0.47	2.53	0.89	25	10.61	138.7	60.1	301.9	662	140.8	14680	39	262.2	506
Zircon_136	-980	5.1	4420	1.59	0	6.89	0.3	5.8	11.8	1.35	79.9	31	387	149.6	688	1261	253.1	13060	26.125	146	326.2
Zircon_137	-1240	-0.00073	2953	2.33	0	1.21	0	0.32	1.91	0.25	20.8	12.94	208.6	99.2	511	1261	262	14690	29.125	32.5	369.7
Zircon_138	-810	2.1	2923	1.91	0	3.65	0.033	1.08	3.53	0.39	29.7	14.49	216.2	95.7	486.6	1061	221.5	13500	22.15	50.7	286.4
Zircon_139	-590	7.8	1487	1.14	0	4.71	0.101	1.57	4.68	0.57	30.6	10.95	132.8	51.5	231.3	411	82.6	11750	9.35	63.6	119.8
Zircon_140	-730	5.6	2802	4.75	0.031	22.3	0.052	1.22	4.63	0.76	32.9	15.51	220.3	93	457	968	201.9	12960	34.275	188.6	433
Zircon_141	-570	3.1	2072	1.87	0	2.47	0.024	0.41	1.87	0.34	19.3	9.92	161.5	69.62	359.4	830	176.6	13650	18.75	29.31	239.2
Zircon_142	-630	5.4	1168	2.19	0	7.85	0.029	0.51	2.2	0.276	16.4	6.4	95.8	39.6	193.1	406.7	84.9	13110	15.35	64.68	194.6
Zircon_143	-500	3.7	1958	2.88	0	3.78	0	0.25	1.5	0.388	18.2	9.76	146.6	64.7	342.6	910	196.1	14340	33.775	27.81	411.5
Zircon_144	-390	9.3	1260	3.62	0	22.9	0.04	1.53	3.51	1.04	24.2	9	106.6	42.8	202.9	400	85.71	11150	8.9125	78.9	110.3
$Zircon_{145}$	-680	9.2	1907	2.28	0	10.79	0.048	1.05	3.15	0.4	25.9	10.97	152.2	64.3	306	603	125.4	12930	13.6	60.1	164.3
Zircon_146	-790	14.3	3572	2.07	0.142	4.51	0.103	1.7	5.55	0.384	44.6	20.08	285.3	118.5	568.4	1085	218.1	12550	18.275	56.3	226.7
Zircon_147	-710	2	2810	1.79	0	3.16	0	0.97	3.25	0.3	28.8	14.97	214	93	458	943	191.2	13050	26.025	39.3	330.6
Zircon_148	-450	2	1745	2.37	0	1.87	0.041	0.15	1.59	0.21	14.9	8.25	123.2	57.6	298.1	735	156.8	13850	30.475	22.36	327.4
Zircon_149	-620	4.7	2490	2.25	0	5.98	0	0.94	2.71	0.207	21.2	12.62	181.1	80.4	411	895	188	13150	25.625	42.3	293.4
Zircon_150	-260	11	1085	2.39	0	12.49	0.066	1.82	3.07	0.73	23.3	8.21	97.9	36.9	164.8	309.5	64.2	11360	11.505	100.7	150.9
Zircon_151	270	4.4	928	7.35	56	113	8.1	29	6.5	0.62	23	6.57	79.5	30.8	143	303.7	63.3	11780	53.3	271.9	331.2
$Zircon_{152}$	-30	6.1	1971	11.75	0.009	44.1	0.079	2.13	5.05	1.56	29.5	11.95	153.9	63.8	310	668	143.7	12730	37.45	310.1	525.9
$Zircon_{153}$	-530	-0.000688	2240	8.21	0	11.37	0.041	0.56	1.79	0.52	21.2	11.36	166	73.5	370.8	848	182.8	14140	48.725	108.5	626.9
$Zircon_{154}$	120	4.2	507.5	4.76	0	8.21	0	0.71	1.29	0.029	9.12	3.54	44.2	17.13	78.8	161.5	33.7	14560	44.75	40.24	283
$Zircon_{155}$	-60	9.6	574	3.34	1.05	13.1	0.47	2.8	2.61	0.228	11.91	4.29	53	19.38	89.9	175.3	37.3	11570	15.75	26.94	97.2
Zircon_156	220	4.8	842	2.91	0	11.59	0.026	0.88	2.51	0.08	13.5	5.44	68.5	27.1	124.8	251.2	50.2	14120	116.175	147.7	579.4
Zircon_157	-180	6.9	3210	1.88	0	6.6	0.122	1.97	6.7	0.5	45.8	19.24	259	107.1	507	999	201.4	12270	20.375	58.5	215.1

Tabla IV.A. Elementos traza en los zircones de las cinco muestras magmáticas

Zircon_158	80	8.6	1144	2.58	0	27.95	0.266	4.26	5.81	2.03	26.4	8.38	93.7	36.11	167.7	363.7	81.8	12130	14	235.8	181
Zircon_159	-130	17.8	668	2.27	0	7.31	0.049	1.02	2.72	0.235	14.79	5.37	61.2	22.3	97	178.3	35.28	11340	8.6775	18.98	54.37
Zircon_160	-560	8.4	1578	2.04	0	2.07	0.021	0.38	1.59	0.259	15.6	7.61	116.9	52.2	275	682	148.6	13420	17.15	17.51	217.1
Zircon_161	-650	3.4	3140	1.68	0	2.5	0.055	0.6	3.3	0.33	32.2	16.07	236	102.7	509	1070	221.2	13200	19.875	36.1	236.9
Zircon_162	-270	4.5	1915	1.63	0	1.69	0	0.31	1.77	0.19	14.46	8.98	139.6	64	331.6	832	180	14020	16.3	15.1	227.4
Zircon_163	300	9.2	442.5	2.22	0	7.2	0.013	0.36	0.97	0.069	7.66	2.89	37.6	14.91	71.5	149.3	31.56	13790	24.55	63.3	122
Zircon_164	-200	5	1511	1.51	0	2.38	0.013	0.45	1.31	0.315	14.7	7.61	116.6	50.2	251.1	618	134.7	13790	19.15	16.2	234.8
$Zircon_{165}$	-340	3.2	2152	4.25	0.063	12.03	0.094	0.81	4.25	0.58	27.2	12.13	171.1	72.3	355	751	157	12560	28.525	143	357
Zircon_166	110	6.5	1228	1.63	0	3.07	0	0.16	1.49	0.149	11.9	6.27	90.5	40.18	209	460	96.6	13330	14.1	16.93	133.5
Zircon_167	-90	3.5	1891	1.41	0	1.76	0	0.26	1.18	0.151	15.2	8.56	133.8	61.1	315.9	717	148.7	13990	17.7	20.21	209.1
Zircon_168	-110	10.3	1095	2.14	0	8.45	0.022	0.42	1.87	0.32	13.89	6.38	86.2	36.3	175.5	377	82.2	12230	18.375	46.1	176.6
Zircon_169	210	7.4	1818	3.71	0.041	41.21	0.055	1.92	3.56	2.68	26.8	11.01	138.5	57.92	268.1	578	130.3	10650	76.075	185	328.4
Zircon_170	-600	-0.000756	1962	1.36	0	1.57	0.016	0.48	1.25	0.083	14.6	8.49	136.7	63.5	336.1	809	174.3	14100	20.025	20.84	244.4
Zircon_171	-600	7.1	2047	1.55	0	1.92	0	0.23	1.61	0.162	17.6	9.62	147.5	67.2	345	782	160.9	13620	15.8	22.76	209.2
Zircon_172	-150	10.1	223.6	0.6	0	4.48	0.0036	0.37	0.49	0.302	3.32	1.24	16.94	6.76	34.1	90.6	22.53	7960	14.025	26.12	56.31
Zircon_173	-470	-0.000529	2782	2.57	0	1.82	0.026	0.29	2.15	0.16	21.5	12.6	197.9	88.4	476.7	1089	229.9	14290	23.8	28.96	328
Zircon_174	-730	2.9	2307	1.63	0	1.47	0.01	0.38	1.34	0.082	17	10.08	166.6	75.6	406.7	1005	209.3	14760	28.45	29.87	381.8
$Zircon_175$	-730	7.9	2174	1.28	0	2.51	0.011	0.44	2.69	0.254	20.7	11.14	167.5	72.4	359.3	752	156.2	13470	11.3	21.67	141.2

(ppm)	Р	Ti	Y	Nb	La	Ce	\mathbf{Pr}	Nd	Sm	Eu	Gd	Tb	Dy	Ho	\mathbf{Er}	Yb	Lu	Hf	Pb	Th	U
CH0403 Zircon_01	5900	-0.001233	1996	9.15	0.31	34.8	0.198	2.4	3.33	0.68	25.8	11.07	149.9	65.8	324.8	796	172.8	13990	57.8	277	740
Zircon_02	500	3.8	1550	2.77	0	0.994	0.022	0.21	1.5	0.084	11.6	6.81	112.4	50.2	255.6	535	102.1	13650	24.075	12.78	338.9
Zircon_03	6400	0.39	918	5.86	1.99	20.3	0.9	4.4	1.84	0.423	11.08	4.73	64.8	28.67	145.4	363.1	81.6	13840	44	188.6	566
Zircon_04	6200	-0.001096	1441	5.76	0	14.41	0.026	0.46	2.3	0.315	16.15	7.41	104.8	46.5	242.4	571	123.7	13550	47.15	214.6	632
Zircon_05	-1900	-0.001136	987	6.27	0	16.85	0	0.23	1.55	0.343	12.87	5.3	71.3	31.35	159.5	385.9	84.4	13730	50.25	240.3	652.9
Zircon_06	100	-0.00112	920	7.42	2.57	22.2	1.28	6.8	2.42	0.52	10.6	4.47	63.1	28.9	153.8	408	93.7	13840	35.425	142.8	453
Zircon_07	-2100	2.9	425	2	0	7.49	0.011	0.72	0.88	0.129	8.04	2.94	36	13.6	66.8	157.3	35.1	13070	117.75	164.2	646
Zircon_08	-400	3.6	814	1.83	0	7.35	0.03	0.75	1.97	0.54	14.5	5.26	71.9	26.29	113.6	219	41	11910	12.35	31.9	164
Zircon_09	19400	-0.001234	1331	9.89	21.9	83	9.2	47.7	14.4	1.52	23.8	7.61	97.6	41.5	215.5	545	123.9	13930	52.45	211.2	668
Zircon_10	6000	44	949	1.51	0	17.25	0.334	7.55	11.49	3.43	40.6	11.14	107.9	33.94	134.6	212.5	40.21	9720	8.2825	50.82	45.68
Zircon_11	900	-0.001132	721	1.66	0.81	5.2	0.48	2.2	2.09	0.209	13.1	6.04	72.5	22.12	78	116.9	21.5	14130	25.4	19.2	321.8
Zircon_12	-3000	1.3	1156	7.17	0	18.49	0.0025	0.53	1.36	0.3	13.38	5.96	81.5	35.85	190.6	468.7	103.5	13510	43.85	206.9	564.8
Zircon_13	-1300	15.6	486.2	1.29	0	5.75	0.031	0.75	1.54	0.125	10.22	3.65	44.9	16.15	74.6	138.6	29.15	11610	26.4	56.7	144
Zircon_14	8100	3.5	1167	8.64	1.47	20.4	0.76	3.1	2.48	0.45	13.3	5.74	80.7	36.97	195.4	502	115.1	13800	43.85	177.9	591.2
Zircon_15	5900	2	953	5.37	1.84	24.8	1.03	5.9	2.35	0.505	13.2	5.08	71.3	30.36	154.5	377.2	84	13400	44.35	208.2	583.1

Zircon_16	8100	1.9	1321	10.82	0	19.8	0	0.35	1.56	0.343	14.4	6.29	89.2	41.4	219	560	126.7	13360	51.75	212	652
Zircon_17	-10000	1.9	777	4.9	0	13.91	0.045	0.33	1.31	0.242	9	4.18	58.2	24	126.9	319.2	70.6	14040	32.15	148.3	441.9
Zircon_18	38000	-0.001127	1027	7.02	11.1	52	4.7	22.3	5.6	0.76	16.8	5.75	74.2	32.9	169.3	416	92.6	13690	46.925	199.1	599.7
Zircon_19	40000	5.6	2061	3.75	0	20.96	0.109	2.97	7.33	1.47	43.1	15.34	186.3	71.2	320.5	602	120.3	12890	28.7	196.6	361
Zircon_20	60000	2.5	897	3.18	0	10.69	0	0.51	1.82	0.32	12	4.85	67.1	29.06	142.8	337	73.2	13940	75.025	129.2	481.5
Zircon_21	1000	6.5	1674	6.7	0	15.43	0	0.83	2.48	0.285	20.1	8.49	130.3	55.5	286.6	681.7	142.9	14520	36.275	128.4	510
Zircon_22	15000	4.1	877	4.27	0.021	15.08	0.027	0.56	1.29	0.137	11.7	4.86	68.1	28.7	145.2	328	71.4	13390	87.25	148.1	541
Zircon_23	20000	-0.001169	766	3.06	0	15.04	0	0.6	1.18	0.314	11.1	4.3	59.1	25.26	123.8	287.3	62.8	12670	15.4	76.5	187.8
Zircon_24	0	4.3	585	2.13	0	15.94	0.0064	0.41	1.3	0.489	8.2	3.18	44.6	19.37	101.1	246	55	10490	22.25	39.7	142
Zircon_25	40000	7	2180	8.4	0.068	19.2	0.048	1.34	4.53	0.63	32.5	13.47	179	74.1	342	665	131.9	11930	58.25	322	728
Zircon_26	-6900	0.46	983	5.39	0.19	16.2	0.163	0.86	2.08	0.383	12.46	5.36	72.4	31.6	161.3	384	83.4	13520	36.5	167.7	4.73E+02
Zircon_27	30000	-0.000851	1296	3.56	0	18.9	0	0.42	2.52	0.76	18.3	7.23	101.5	42.5	207.9	497	105.9	13880	35.475	214	521
Zircon_28	1800	-0.000859	1316	5.9	0	21.78	0.035	0.74	2.55	0.38	18.7	7.28	100.5	42.9	211.8	478.3	101.6	13630	48.1	285.6	691
Zircon_29	600	5.1	898	8	0	13.09	0	0.111	1.11	0.281	10.15	4.15	60.6	27.3	146.5	392	87.8	14210	36.65	138.9	494
Zircon_30	-1900	1.1	1148	7.32	2.3	24.8	1.17	6.6	3.12	0.64	15.3	5.78	83.1	36.3	190.9	465.5	103.3	13580	48.925	248.1	658
Zircon_31	5000	9.3	1234	6.86	0	19.91	0.027	1.25	2.72	0.365	16.1	6.79	95.8	40.37	202	445.6	94	13670	40.6	210.1	553.7
Zircon_32	2000	-0.000992	1306	6.56	0	18.91	0.0032	0.62	1.87	0.337	16.7	6.83	96.5	41.51	216.2	498.1	109.8	13740	36.275	172.9	485.7
Zircon_33	-300	3	678	4.17	0	13.62	0.02	0.24	0.82	0.208	8.33	3.5	50.5	22.32	114.4	275.4	60.5	14360	28.6	121.1	371.4
Zircon_34	-4800	4.7	1394	4.98	0	11.24	0	0.41	2.03	0.39	17.4	7.02	101.4	46.3	232.8	556	117	12670	36.225	103.1	455.8
Zircon_35	-700	2	1096	6.29	0.047	23.9	0.059	1.24	2.52	0.46	16.3	6.34	85.1	36.1	178.9	424	90.6	13350	48.025	316	663
(ppm)	Р	Ti	Y	Nb	La	Ce	\Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	\mathbf{Er}	Yb	Lu	Hf	Pb	Th	U
Zircon_91	-770	0.39	1794	6.45	0	1.27	0	0.031	0.95	0.043	12.53	7.22	126.1	58.9	310.5	727	158.6	18320	196.5	73.6	4840
Zircon_92	240	6.6	946	2.59	0	10.5	0.02	0.81	2.67	0.113	16.82	6.59	83.3	32.53	149.8	292.6	59.7	12330	23.9	127.4	338.1
Zircon_93	580	9.6	632	1.8	0	9.76	0.032	0.48	1.8	0.3	9.93	3.99	53.7	20.43	102.4	215.8	46.9	11530	15.025	86.8	193.1
Zircon_94	-750	-0.00079	1887	4.87	0	0.492	0	0.048	0.98	0.089	12.65	8.49	139.7	60.4	331.2	1145	267.3	20260	180.25	41.31	4745
Zircon_95	-540	-0.000728	1145	6.1	0.099	12.08	0.046	0.61	1.78	0.027	16.2	6.63	94.9	38.67	182.6	378.8	79.2	13450	57.925	219.4	779
Zircon_96	-560	2.6	3250	18.5	0	13.12	0.029	0.94	3.93	0.252	47.7	19.9	282	114.2	524	982	201.6	14780	198	705	2731
Zircon_97	-20	-0.000715	1311	2.78	0	0.339	0	0.23	0.4	0.054	7.98	5.16	89.7	41.1	218.6	639	147.6	19290	112.675	19.76	2883
Zircon_98	-900	9.2	662	1.75	13.58	42.6	4.97	24.9	7.5	0.65	17	5.47	61.3	23.13	100.9	189.9	40.2	10490	8.95	43.14	102.9
Zircon_99	-210	8.2	1215	3.47	0	22.96	0.163	3.84	6.6	0.98	31.1	10.25	109	40.43	178.7	324.9	66.1	11100	28.325	370.2	686
Zircon_100	250	5.1	830	3.66	1.11	14.54	0.321	3.07	2.65	0.311	14	5.51	72	28.99	135.9	278.3	59.5	12320	29.825	181.4	415.3
Zircon_101	250	-0.000747	921	4.36	0	14.47	0.021	0.79	1.93	0.069	14.9	5.93	76.4	32.21	149.5	297.7	61.5	12400	41.2	191.4	560.4
Zircon_102	-420	5.8	983	2.75	1.89	22.57	0.76	4.51	3.31	0.234	20.7	7.06	86.8	34.31	153.6	296.2	59.7	10970	27.375	163.6	344.2
Zircon_103	800	47	854	3.76	0	15.49	0.063	1.08	2.25	0.111	15.5	5.89	73	29.03	135.2	268.9	55.1	11780	26.75	142.5	348.6

Zircon_104	-130	1.2	1077	3.83	0.88	19.48	0.51	4.59	4.59	0.25	21.6	7.61	97.8	36	168.8	322.7	65.7	11410	39.625	212.4	479
Zircon_105	-990	-0.000689	2650	10.87	0.038	2.11	0.008	0.35	1.46	0.171	18.9	11.12	186.2	87.1	464.2	1175	258.5	18180	271.5	132.8	7180
Zircon_106	-540	-0.000848	907	1.86	0	0.268	0	0	0.28	0	4.23	3.22	57.6	27.88	146.6	312.3	64.8	17030	57.875	8.67	1417
Zircon_107	-620	-0.000809	2271	8.66	0.031	2.44	0.01	0.48	1.06	0.169	17.15	10.21	164	74.4	369.5	691	140.5	16060	172.75	96.4	4380
Zircon_108	-490	1.6	1144	6.36	0	10.25	0.033	0.64	2.51	0.05	17.2	6.95	91.5	38.2	188	380.1	81.4	13020	67.475	254.8	864
Zircon_109	90	0.49	1003	4.05	0	13.75	0.0086	0.77	2.44	0.096	16.9	6.74	85.7	34.1	160.5	311	64.2	12240	39.35	182.8	511
Zircon_110	-470	2	930	2.8	0	16.62	0.059	0.87	3.26	0.221	17.8	6.56	81.4	31.5	144.8	277	57	11760	28.85	151.7	359.8
Zircon_111	670	5.8	1015	3.65	0	18.39	0.026	1.06	3.1	0.15	18.8	7.13	86	34.6	159.3	303.5	62.6	11210	35.05	185.2	439.2
Zircon_112	-1020	6.6	946	3.52	8.71	41	3.1	15.5	5.96	1.02	22.6	7.18	82.5	30.93	141.8	282.7	60.87	11170	15.35	156.8	359.7
Zircon_113	-5210	-0.00085	1909	10.57	99	330	50.1	268	73.9	3.19	95	20.3	194.3	65.3	295.3	568	117.7	14030	114	412.3	1525
Zircon_114	-60	3.4	1066	4.37	0	18.35	0.033	1.41	3.42	0.145	19.2	7.38	91.7	36.82	164.3	320.6	64.8	11420	38.975	212	507
Zircon_115	70	5.8	880	2.49	0.42	16.9	0.2	1.87	2.64	0.18	17.57	6.25	76.8	30.91	137.9	269.6	56.19	10940	21.325	129	287.8
Zircon_116	-220	-0.000615	2172	8.26	0.038	2.32	0.038	0.28	1.4	0.168	16.8	9.71	153.2	70.3	366.2	767	162.8	17420	186.5	102.3	5090
Zircon_117	-180	2	1649	10.67	0.064	9.87	0.047	0.71	2.6	0.067	21.3	9.8	135.5	55.6	265.8	530	107.8	14600	119.2	433	1631
Zircon_118	-930	6.7	971	1.91	8	29	3.4	14.1	5.8	0.17	21.9	7.16	85.1	32.17	149	279.5	57.6	11720	17.75	86	234.8
Zircon_119	-510	-0.000742	2283	8.61	0	2.21	0	0.19	1.19	0.108	16.7	10.06	165.4	75.46	370	692	140.6	16290	170.25	101.6	4392
Zircon_120	-950	-0.000703	1422	4.14	0	0.35	0	0	0.93	0.097	8.9	6.94	107.4	45.1	245.3	1018	246.7	23550	135.25	25.11	3668
Zircon_121	-560	2.8	2065	22.76	0.051	12.85	0.0065	0.75	2.62	0.006	26	11.61	163.8	69.7	338.4	696	142.5	14600	169.5	489	2325
Zircon_122	-960	9.4	946	1.2	0.023	13.64	0.231	3.93	6.14	1.41	31.5	9.09	95.4	32.7	132.8	234.7	48.7	10100	7.2875	140	178.8
Zircon_123	-1350	1.9	2958	11.1	0.321	3.64	0.133	1.16	2.16	0.341	23.5	12.94	204.3	96.7	511.1	1324	295.1	18410	322.75	134.6	8350
Zircon_124	-340	-0.000709	1188	13.13	0	6.81	0	0.066	1.13	0.042	11	5.61	83.3	36.9	200.3	486	105	16560	116.75	176.3	1559
(ppm)	Р	Ti	Y	Nb	La	Ce	\Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	\mathbf{Er}	Yb	Lu	Hf	Pb	Th	U
Gt-0457b Zircon 106	134	0 5.1	224	0 9.4	0.009	38.6	0.13	2.08	6.22	2.28	39.9	15.45	198	77.3	358	734	153	9950	38.9	359	517
_ Zircon_107	0	9.9	249	0 6.25	0.016	35.4	0.09	2.29	5.8	2.73	45.3	17	220	85.6	397	775	159.9	8350	27.625	336	338
Zircon_108	128	0 4.2	147	3 1.7	0.0028	0.76	0.024	0.43	2.08	0.06	19.8	9.39	130.2	48.8	214	377	70.3	12640	85.5	24.8	300
Zircon_109	115	0 3.2	782	2 2.4	0	12.73	0.0018	0.43	1.31	0.336	9.7	4.16	62.5	27	141	385	84.4	11820	29.475	45.4	399
Zircon_110	640) 10.3	108	6 3.63	0	33.2	0.135	2.21	4.51	1.51	25.5	8.15	95.7	36.7	161	316	65	8590	9	117	131
Zircon 111	-89	0 8.1	355	5 1.63	0	18.9	0.031	0.57	1.04	0.308	5.8	1.97	27.9	11.6	57.1	144	34.2	9090	14.725	123	178
Zircon_112	213	0 1.5	344	0 29.7	0.117	51.8	0.16	1.76	6.42	1.53	50.6	22.1	315	120.6	540	1057	202	12460	175.5	1254	2180
Zircon_113	60	9.8	204	8 6.51	0	41.1	0.153	3.21	7.29	2.22	41.3	15.39	190.9	72.1	327	623	126	9730	19.125	222	236
Zircon_114	30	3.6	112	1 3.12	0	28.1	0.167	2.75	5.57	1.95	27.4	8.62	103.4	37.1	172	366	77.4	10230	27.675	237	341
Zircon_115	103	0 5.3	149	7 3.02	0	18.5	0.152	2.29	4.5	1.58	26.1	9.85	126.8	52.4	256	594	124.6	10830	15.45	104.2	203
Zircon_116	770	0 4.6	385	5 1.58	25.9	91	10.5	50.7	14.3	1.86	19.8	4.31	36.6	12.7	61.4	147	34.2	10100	19.45	59.6	221
Zircon_117	610) 2	117	9 10.87	0	44	0.029	0.73	1.79	0.54	12.6	5.03	78.8	34.6	190	521	120.4	10650	69.5	477	833

Zircon_118	600	5.3	1010	5.65	0.007	19.8	0.072	0.61	3.15	0.67	18.6	6.74	88	33.7	151	309	63.6	12200	64.75	143	520
Zircon_119	-100	6.5	321	2.08	0.043	3.76	0.007	0.18	0.15	0.121	3.51	1.57	20.9	9.78	58.2	179	42.3	11750	58.5	55.6	360
Zircon_120	620	31.2	1780	4.33	1.7	30.6	0.37	2.69	4	2.02	34.4	11.88	159	60.3	280	551	116.7	6790	15.8	217	198
Zircon_121	-880	6.6	768	2.2	0.039	30.1	0.12	2.33	3.74	1.16	17.6	5.23	65	25	118.2	268	58.8	10100	19.35	203.9	259
Zircon_122	1050	7	816	3.59	0.086	7.45	0.172	1.66	2.67	0.44	13.8	5.42	69.9	27.2	130.3	281	59.5	10840	67.5	48.9	390
Zircon_123	-580	1.1	287	2.43	0	17.2	0	0.13	0.44	0.09	3.61	1.25	19.7	8.44	46.6	141	34.6	12360	32.025	127.5	424
Zircon_124	6800	3.5	490	2.66	26.1	80	6.3	24.3	4.35	1.11	9.72	3.04	36.3	14.7	74.9	207	49.7	11400	22.025	136	275
Zircon_125	70	0.3	347	1.78	0	8.88	0	0.153	0.84	0.335	5.29	1.6	24.6	10.51	55.4	159.9	39.8	14460	28.275	94	359
Zircon_126	1040	3.8	1070	9.2	0	24.3	0.013	0.39	1.28	0.48	14.4	5.77	85.8	36.5	180	409	87.2	11910	32.75	162	392
Zircon_127	8300	5	3780	4.91	240	600	76	374	141	13.1	291	68	570	146	500	621	101	11350	45.5	155	298
Zircon_128	250	7.7	739	2.24	0	12.3	0.062	0.64	1.74	0.78	13.6	4.91	66.5	25.5	125	295	63.6	10040	15.975	108	204
Zircon_129	1140	0.81	2104	18.78	0	23.5	0.026	0.54	2.8	0.63	25.3	11.94	169	72.5	364	783	159.3	11460	93	342	1193
Zircon_130	250	4.3	653	2.65	0	9.84	0.023	0.79	1.57	0.313	11.1	4.32	57.8	22.6	109.1	233	48.2	10950	31.825	58.6	246
Zircon_131	-1080	3.2	444	3.87	0	7.94	0.04	0.34	0.94	0.061	7.52	2.72	34.4	15.1	76.1	163	35.1	11950	82.25	94.1	334
Zircon_132	980	3.3	1220	11.47	0	12.47	0.0046	0.21	0.94	0.319	11.59	5.48	88.2	40.3	232	647	144	16960	75.25	82.2	951
Zircon_133	270	2.5	1225	12.66	0	17.7	0	0.224	1.52	0.449	13.2	6.85	95.2	41.5	212	505	105	13110	56.25	172	713
Zircon_134	520	3.3	1980	24.7	0	30.3	0.0112	0.73	2.52	0.8	23.8	9.67	141.6	61.5	317	770	167.4	13110	111.25	512	1412
Zircon_135	1740	-0.00239	3000	23	0	9.7	0	0.55	2.74	0.391	27.2	14	224	99	522	1310	274	13360	149.5	216	1940
Zircon_136	460	9.7	2370	5.91	0.055	38	0.147	2.29	6.63	3.12	48.2	18.1	213	81.9	367	711	150	8240	23.65	367	294
Zircon_137	-280	7.5	697	12.95	0	15.4	0.046	0.96	1.59	0.066	11.4	4.46	56.5	23.3	115.3	263	55.1	12650	156.5	205	865
Zircon_138	1480	3.7	3270	25.1	0.022	51.9	0.063	1.6	5.84	1.54	47	20.3	281	113.1	526	1050	204	13530	136.5	929	1800
Zircon_139	140	4.5	405	3	0	8.59	0.0083	0.28	0.87	0.119	5.63	2.13	31.6	13.05	66.9	168.7	37.1	10700	43.4	56.5	210
Zircon_140	1670	1.4	1850	6.67	0	8.4	0.0069	0.37	1.61	0.4	17.1	8.71	136.9	60.3	335	876	191	13720	58.75	121.5	763

(ppm)	Р	Ti	Y	Nb	La	Ce	\mathbf{Pr}	Nd	Sm	Eu	Gd	Tb	Dy	Ho	\mathbf{Er}	Yb	Lu	$_{\rm Hf}$	Pb	Th	U
Gt0340																					
Zircon_36	-3100	3.5	1211	8.36	0	31	0.021	0.72	2.52	0.67	16.7	6.59	93	38.6	196.8	470.8	101.1	13340	61.725	394	814
Zircon_37	0	0.47	1148	15.82	0.33	66	0.125	1.15	1.91	0.352	11.44	4.69	68.9	31.9	183.6	537.2	126.7	13380	40.525	522	559.3
Zircon_38	100	2.1	843	14.88	2.52	55.2	0.45	2.62	1.29	0.266	6.67	2.94	43.7	21.75	136.2	471.4	117.9	14130	50.15	536.6	700
Zircon_39	1500	4.7	2132	61.3	0.219	87.9	0.199	1.77	2.58	0.451	23	9.9	141.8	63.2	345.6	907	201.3	13660	108.35	1109	1528
Zircon_40	-5500	2.7	817	13.8	30.2	110	6.2	20.3	3.7	0.49	10.2	3.33	49.3	23.2	133.3	447	112.4	14140	39.45	459	598
Zircon_41	700	5.6	873	14.96	0	52.18	0.028	0.87	1.02	0.233	8.04	3.12	49.4	23.35	140	458.2	113.7	13920	45.975	551.6	641.9
$Zircon_{42}$	2100	8.8	1047	10.99	1.69	39.4	1.12	9	6.8	1.21	16.9	5.38	63.2	25.68	139.2	393.1	94	13890	28.1	301	405
Zircon_43	200	4.2	2710	33.4	0.52	156.3	0.449	4.07	7.18	1.06	41.3	15.41	206	85.2	422	945	195.9	12490	72.75	1576	1020
Zircon_44	-700	2.4	1138	22.63	0.74	64.7	0.099	1.08	1.53	0.33	10.05	4.24	62.4	30.57	187.1	569	134.2	14020	64.125	985	915
Zircon_45	1100	4.5	903	11.74	0	48.4	0.0043	0.37	1.07	0.188	9.3	3.89	56.1	26.66	147.1	403	90.4	13880	25.775	306.8	346.4

Zircon_46	300	3.9	525	3.86	0	15.51	0.018	0.64	1.29	0.246	8.94	3.61	45.6	17.4	84.8	196.2	41.28	13250	93.95	191.5	569.5
Zircon_47	600	2.9	866	13.21	0.27	50.8	0.105	0.98	0.95	0.299	7.94	3.5	51	24.91	141.2	417.7	98.5	13440	38.95	438	504
Zircon_48	200	-0.000942	2140	105.8	0.016	96	0.037	0.67	1.2	0.24	10.71	5.15	88.3	50	349.9	1375	347.1	17500	139.625	972	1952
Zircon_49	0	2	778	11.21	0.058	39.35	0.016	0.66	1	0.211	7.08	2.98	45.9	21.84	127.8	371.4	86.2	13650	23.325	219.3	321
Zircon_50	600	-0.000759	1081	15.66	0.85	59.8	0.2	1.51	1.71	0.49	11.7	4.45	63.7	31	171.5	501	114.2	13560	38.425	496	559
Zircon_51	1800	4.6	884	19.33	0	50.6	0	0.35	0.63	0.23	5.16	2.63	42.8	22.12	144.8	540	141.7	14840	74	634	963
$Zircon_52$	-600	5.9	2001	27.97	0	79.5	0.051	1.24	3.32	0.323	24.1	10.16	148.3	63.99	315.3	686	137.2	13790	45.25	682	631
Zircon_53	-200	-0.001078	874	11.8	0	48.1	0.007	0.35	1.28	0.147	8.6	3.67	54.8	25.18	139.8	396.8	94.8	13580	31.925	384	422.4
$Zircon_54$	200	3.9	1419	16	0.008	74.4	0.103	1.41	3.2	0.59	19.9	7.54	104.9	43.97	227.9	563.2	122.9	13260	32.55	450.1	446.4
Zircon_55	-200	4.8	1541	25.8	0	69.8	0.064	1.1	2.6	0.43	16.9	7.14	102.6	46.4	247.6	638	139.3	13430	49.5	605	676
Zircon_56	300	0.5	871	12.8	0.96	47.6	0.201	1.31	1.62	0.265	8.19	3.43	53	25.09	142.7	413.2	96.8	13530	32.25	334.8	423.7
Zircon_57	-4300	1.6	775	13.73	66	178	12.4	41	5.1	0.7	10.2	3.08	40.2	20.31	124	423.6	109.5	14080	49	482.1	617.7
Zircon_58	-3100	0.4	881	15.93	48	143	8.5	33	4.8	0.54	10.2	3.33	47.1	23.27	142.3	490.3	122.2	14150	47.65	488.7	675.2
Zircon_59	-2300	9.1	3199	27.3	7	130.4	1.33	9.3	9.6	1.68	54.8	21.22	269.6	107.2	508	984	188.4	10430	32.375	594	457.4
Zircon_60	-900	8	1372	28.4	6.9	88.6	1.33	5.8	2.9	0.52	13.2	5.1	72.8	34.65	210.4	708	184.9	14230	91.225	1130	1292
Zircon_61	680	3.9	870	15.66	0	55.81	0.024	0.65	0.9	0.223	7.01	2.65	43.1	22.11	142	515.9	133.6	14410	65.725	830	918
Zircon_62	-2000	-0.000844	1083	18.1	13.8	92.2	3.52	13.9	4.16	0.56	12	4.38	63.5	30.2	173.5	527	129	13620	55.95	672	741
Zircon_63	0	3.8	1800	41	0.25	91.1	0.089	1.16	1.81	0.491	16.5	6.66	103.1	49.3	289.6	891	211.1	14270	84.2	943	1195
Zircon_64	220	-0.000797	946	14.85	0	59.9	0.024	0.67	1.31	0.344	8.67	3.42	52.2	25.2	150.2	505	127.1	13940	45.9	504	648
$Zircon_{65}$	-610	3.2	1375	39.2	9.5	81.8	1.65	7	2.58	0.337	10.76	4.48	69.9	34.87	217.9	745	186.8	15080	113.5	1109	1609
Zircon_66	-910	4.1	859	15.81	0	53.8	0.023	0.59	1.12	0.241	7.12	2.92	46.6	23.18	139.3	470.3	116.2	14010	50.85	588	708
Zircon_67	-600	-0.000845	769	12.38	0	43.98	0.0064	0.28	0.77	0.162	5.32	2.48	38.6	19.91	123.6	429.1	108.9	13720	36.55	347.1	487
Zircon_68	-340	-0.00093	956	14.53	0	48.2	0.026	0.47	1.2	0.182	9.45	3.89	57.6	27.1	154	427.9	97.8	13710	36.75	413.8	495.6
Zircon_69	-600	2.6	1552	27.2	3.6	88.9	1.02	4	2.48	0.51	16.5	6.1	92.1	43.8	253	785	188.8	13870	89.25	1026	1260
Zircon_70	-300	7	1252	23.18	0	55.4	0.016	0.53	1.08	0.269	11.43	4.66	74.3	35.76	203.6	616	145.1	13520	40.075	396	565
Zircon_71	-340	-0.000836	952	14.06	0	42.7	0.013	0.44	1.02	0.124	10.59	4.22	62.4	28.96	155.9	408.5	91	13040	22.725	203.3	292.4
$Zircon_72$	-760	4.4	1093	19.7	0.078	53.2	0.069	0.55	0.94	0.205	10.7	4.17	64.1	30.5	174.7	540	131.2	13390	49.45	488	672
Zircon_73	-1540	1.2	872	14.36	11.6	73	1.99	6.9	2	0.288	7.82	3.11	45.1	22.85	140.9	483	120.6	14000	46.9	496.3	652.9
$Zircon_74$	-500	2.4	1158	19.3	0.041	58.8	0.037	0.76	1.72	0.344	11.59	4.63	73	33.17	185.9	508	116	13530	42.2	512.6	597
$Zircon_75$	-680	3	895	14.68	0	48.7	0.0049	0.29	1.13	0.16	7.71	3.16	51.9	24.57	144.1	466.2	116.9	14180	43.525	414.8	577.2
Zircon_76	-120	2.2	1281	22.73	7.2	66	1.89	6.8	2.69	0.439	12.9	5.25	76.5	36.3	204.6	620	147.9	12980	47.05	433.8	607
Zircon_77	630	-0.000948	825	13.93	0.27	54.3	0.052	0.35	0.99	0.3	7.6	2.97	44.4	22.4	133.1	433.4	109	13570	44.525	487.9	587.6
Zircon_78	-500	7.1	2463	36.17	0.68	134.6	0.202	2.86	5.25	1.23	37.5	14.53	188.1	77	391.3	927	202.2	11490	73.825	1151	1000
Zircon_79	-570	4.9	998	16.58	31	111	6	19.7	3.81	0.61	12.51	4.25	60.6	28.3	157.8	467	112.9	13520	36.475	395	498
Zircon_80	-230	3.2	938	13.95	5	63.5	1.06	4.7	1.8	0.282	8.74	3.56	52.7	25.85	152.1	463.6	111.3	13590	40.8	473.6	555.3
Zircon_81	-150	1.7	1153	13.9	0	51.6	0.036	0.8	2.63	0.32	14.5	5.89	84	35.7	188.6	416.3	86.9	13110	22.275	227.8	280.9

Zircon_82	190	2.1	1023	19.03	0.109	64.17	0.033	0.67	1.12	0.317	7.46	3.25	51.5	25.9	165.2	596	154.5	14140	64.15	745	891
Zircon_83	-260	9.2	1908	55.2	7.7	110.8	1.59	7.4	2.24	0.44	14.2	5.38	91.5	47.43	306.6	1138	296.3	14370	108.25	1041	1586
Zircon_84	810	4.2	1012	16.08	0.263	57.9	0.105	0.93	1.44	0.283	10.55	4.11	61.1	28.98	163	493	117.1	13330	48.1	525	622
Zircon_85	590	4	1453	38.4	0.97	75.9	0.132	0.99	1.48	0.25	10.63	4.55	70.6	37	232.7	829	208.3	15130	84.7	772	1253
Zircon_86	-60	2.1	970	21.51	1.92	60.8	0.31	1.81	1.75	0.3	9.7	4.04	57.4	26.1	153.3	497	123.7	14190	59.75	767	867
Zircon_87	10	2.7	1016	15.54	0	59.3	0.033	0.73	1.36	0.319	9.74	4.01	59	28.51	161.2	497.1	118.4	13840	46	559	635
Zircon_88	240	2.5	1695	38.1	2.4	89.9	0.518	2.86	3.08	0.52	18.8	7.39	109	48.1	268.7	745	169	13650	75.85	1150	1132
Zircon_89	180	0.42	978	21.11	0.02	58.7	0.027	0.66	1.19	0.204	8.61	3.71	53.9	25.84	155.2	512.4	127.1	14350	74.45	1048	1028
Zircon_90	-530	1.4	653	10.6	0	34.8	0.014	0.23	0.79	0.165	5.56	2.67	38.1	18.68	105.1	317.5	74.1	14350	26.05	213.4	327.4

		CORRECTED RATIOS ²														CO A	ORRECTE AGES (Ma	D)			
CM13-3	U (ppm)1	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ P b	±2□ abs	²⁰⁷ Pb/ ²³⁵ U	±2□ abs	²⁰⁶ Pb/ ²³⁸ U	±2□ abs	²⁰⁸ Pb/ ²³² Th	±2□ abs	Rho	²⁰⁶ Pb/238U	±2□	²⁰⁷ Pb/ ²³⁵ U	±2 🗆	²⁰⁷ Pb/ ²⁰⁶ Pb	±2□	Best age (Ma)	±2□	Disc %
Zircon_125_ CM13-3a	82.8	70.6	0.85	0.0686	0.0056	0.7260	0.0700	0.0756	0.0029	0.0249	0.0027	0.47	470	17	548	39	950	100	470.0	17.0	14.23
Zircon_126	358	348	0.97	0.0593	0.0033	0.5990	0.0270	0.0739	0.0016	0.0226	0.0016	-0.05	459.3	9.6	482	17	581	76	459.3	9.6	4.71
Zircon_127	211.4	67	0.32	0.0775	0.0033	1.8740	0.0630	0.1795	0.0038	0.0563	0.0042	0.45	1064	21	1075	22	1130	48	1064.0	21.0	1.02
Zircon_128	201	44.3	0.22	0.0598	0.0037	0.6310	0.0320	0.0780	0.0018	0.0276	0.0019	-0.08	484	11	495	20	633	61	484.0	11.0	2.22
Zircon_129	746	159.9	0.21	0.0600	0.0030	0.5880	0.0250	0.0717	0.0015	0.0249	0.0020	0.58	446.3	9.2	469	16	610	70	446.3	9.2	4.84
Zircon_130	886	591	0.67	0.0611	0.0040	0.5800	0.0420	0.0691	0.0020	0.0218	0.0018	0.33	431	12	464	25	653	99	431.0	12.0	7.11
Zircon_131	440	372	0.85	0.0610	0.0035	0.5840	0.0340	0.0710	0.0019	0.0222	0.0023	0.29	442	11	466	21	635	86	442.0	11.0	5.15
Zircon_132	297	265.4	0.89	0.0570	0.0029	0.5760	0.0260	0.0746	0.0016	0.0221	0.0015	0.03	463.9	9.4	461	17	471	63	463.9	9.4	-0.63
Zircon_133	396	190	0.48	0.0569	0.0035	0.6040	0.0300	0.0764	0.0017	0.0240	0.0018	0.15	474	10	478	18	533	74	474.0	10.0	0.84
Zircon_134	140	115	0.82	0.0598	0.0050	0.5980	0.0590	0.0755	0.0021	0.0238	0.0020	0.25	469	13	473	35	520	140	469.0	13.0	0.85
Zircon_135	506	262.2	0.52	0.0582	0.0027	0.5950	0.0220	0.0757	0.0016	0.0236	0.0017	-0.64	470.2	9.8	474	13	551	55	470.2	9.8	0.80
Zircon_136	326.2	146	0.45	0.0584	0.0030	0.5990	0.0290	0.0756	0.0017	0.0227	0.0017	0.05	470.0	10.0	486.0	18.0	558.0	64.0	470.0	10.0	3.29
Zircon_137	369.7	32.5	0.09	0.0597	0.0029	0.5980	0.0250	0.0744	0.0016	0.0314	0.0032	0.05	462.7	9.4	481.0	16.0	594.0	65.0	462.7	9.4	3.80
Zircon_138	286.4	50.7	0.18	0.0577	0.0030	0.5720	0.0240	0.0730	0.0017	0.0243	0.0021	0.08	454.0	10.0	458.0	15.0	531.0	48.0	454.0	10.0	0.87
Zircon_139_ CM13-3a	119.8	63.6	0.53	0.0571	0.0040	0.5950	0.0370	0.0763	0.0024	0.0230	0.0020	0.18	474.0	14.0	475.0	23.0	591.0	82.0	474.0	14.0	0.21
Zircon_140_ CM13-3b	433	188.6	0.44	0.0571	0.0027	0.6020	0.0220	0.0776	0.0017	0.0236	0.0020	0.12	482.0	10.0	480.0	14.0	472.0	76.0	482.0	10.0	-0.42
Zircon_141	239.2	29.31	0.12	0.0557	0.0031	0.5830	0.0270	0.0758	0.0018	0.0215	0.0025	-0.03	471.0	11.0	465.0	18.0	437.0	74.0	471.0	11.0	-1.29
Zircon_142	194.6	64.68	0.33	0.0575	0.0033	0.6240	0.0310	0.0794	0.0027	0.0249	0.0021	0.26	493.0	16.0	491.0	19.0	554.0	67.0	493.0	16.0	-0.41
Zircon_143	411.5	27.81	0.07	0.0621	0.0029	0.7450	0.0540	0.0867	0.0045	0.0407	0.0039	0.33	536.0	26.0	564.0	29.0	688.0	61.0	536.0	26.0	4.96
Zircon_144	110.3	78.9	0.72	0.0572	0.0049	0.5890	0.0470	0.0761	0.0021	0.0224	0.0019	-0.08	473.0	13.0	471.0	30.0	534.0	86.0	473.0	13.0	-0.42
Zircon_145	164.3	60.1	0.37	0.0592	0.0037	0.6160	0.0340	0.0769	0.0019	0.0225	0.0019	0.12	478.0	11.0	490.0	21.0	534.0	73.0	478.0	11.0	2.45
Zircon_146	226.7	56.3	0.25	0.0570	0.0038	0.5980	0.0340	0.0772	0.0019	0.0239	0.0020	0.00	479.0	11.0	477.0	22.0	522.0	73.0	479.0	11.0	-0.42
Zircon_147	330.6	39.3	0.12	0.0590	0.0033	0.6460	0.0350	0.0803	0.0024	0.0245	0.0025	-0.24	498.0	14.0	510.0	21.0	602.0	59.0	498.0	14.0	2.35
Zircon_148	327.4	22.36	0.07	0.0624	0.0029	0.7470	0.0280	0.0886	0.0019	0.0311	0.0029	0.27	547.0	11.0	565.0	17.0	666.0	51.0	547.0	11.0	3.19

Tabla IV.B. Análisis U-Pb en zircones mediante LA-ICPMS

293.4	42.3	0.14	0.0589	0.0029	0.7300	0.0330	0.0900	0.0026	0.0369 0.0030	0.23	556.0	15.0	561.0	18.0	549.0	59.0	556.0	15.0	0.89
150.9	100.7	0.67	0.0574	0.0044	0.5860	0.0340	0.0746	0.0020	$0.0235 \ 0.0018$	-0.17	464.0	12.0	467.0	21.0	521.0	85.0	464.0	12.0	0.64
331.2	271.9	0.82	0.0690	0.0032	1.4070	0.0670	0.1480	0.0051	$0.0432 \ 0.0029$	-0.29	890.0	29.0	890.0	30.0	910.0	62.0	890.0	29.0	0.00
525.9	310.1	0.59	0.0583	0.0027	0.5740	0.0210	0.0708	0.0014	$0.0224 \ 0.0015$	0.08	440.7	8.5	460.0	14.0	519.0	60.0	440.7	8.5	4.20
626.9	108.5	0.17	0.0570	0.0026	0.5770	0.0210	0.0732	0.0014	$0.0231 \ 0.0017$	0.03	455.2	8.6	462.0	14.0	485.0	52.0	455.2	8.6	1.47
283	40.24	0.14	0.0699	0.0031	1.4880	0.0580	0.1534	0.0038	$0.0446 \ 0.0034$	0.48	920.0	21.0	924.0	23.0	923.0	54.0	920.0	21.0	0.43
97.2	26.94	0.28	0.0681	0.0038	1.4640	0.0720	0.1535	0.0040	$0.0437 \ 0.0037$	0.15	921.0	22.0	916.0	31.0	929.0	59.0	921.0	22.0	-0.55
579.4	147.7	0.25	0.0769	0.0031	2.0060	0.0580	0.1887	0.0038	$0.0562 \ 0.0039$	0.14	1114.0	21.0	1117.0	21.0	1128.0	41.0	1114.0	21.0	0.27
215.1	58.5	0.27	0.0718	0.0038	0.9560	0.0820	0.0976	0.0058	$0.0308 \ 0.0028$	0.69	600.0	33.0	686.0	36.0	970.0	59.0	600.0	33.0	12.54
181	235.8	1.30	0.0558	0.0035	0.5790	0.0310	0.0751	0.0019	$0.0228 \ 0.0016$	-0.11	467.0	11.0	465.0	19.0	478.0	73.0	467.0	11.0	-0.43
54.37	18.98	0.35	0.0689	0.0045	1.4490	0.0870	0.1500	0.0044	$0.0423 \ 0.0049$	0.28	900.0	25.0	915.0	38.0	930.0	66.0	900.0	25.0	1.64
217.1	17.51	0.08	0.0572	0.0035	0.6070	0.0320	0.0763	0.0019	0.0311 0.0031	-0.12	474.0	11.0	480.0	20.0	520.0	60.0	474.0	11.0	1.25
236.9	36.1	0.15	0.0591	0.0032	0.6210	0.0300	0.0782	0.0020	$0.0235 \ 0.0025$	0.01	485.0	12.0	489.0	19.0	558.0	54.0	485.0	12.0	0.82
227.4	15.1	0.07	0.0567	0.0031	0.5660	0.0290	0.0736	0.0017	0.0224 0.0028	0.29	458.0	10.0	454.0	19.0	410.0	62.0	458.0	10.0	-0.88
122	63.3	0.52	0.0764	0.0037	2.0210	0.0830	0.1919	0.0043	$0.0548 \ 0.0039$	0.11	1131.0	23.0	1120.0	28.0	1119.0	53.0	1131.0	23.0	-0.98
234.8	16.2	0.07	0.0570	0.0031	0.6120	0.0300	0.0782	0.0017	$0.0231 \ 0.0034$	0.06	485.0	10.0	483.0	19.0	455.0	64.0	485.0	10.0	-0.41
357	143	0.40	0.0564	0.0029	0.5880	0.0260	0.0761	0.0016	$0.0230 \ 0.0017$	-0.05	473.0	9.4	473.0	16.0	483.0	68.0	473.0	9.4	0.00
133.5	16.93	0.13	0.0627	0.0042	0.8410	0.0440	0.0994	0.0024	$0.0388 \ 0.0041$	-0.23	611.0	14.0	622.0	24.0	717.0	88.0	611.0	14.0	1.77
209.1	20.21	0.10	0.0579	0.0031	0.6370	0.0320	0.0807	0.0019	$0.0223 \ 0.0024$	0.26	500.0	12.0	499.0	20.0	522.0	62.0	500.0	12.0	-0.20
176.6	46.1	0.26	0.0646	0.0033	0.8570	0.0410	0.0980	0.0031	$0.0293 \ 0.0025$	0.23	602.0	18.0	627.0	24.0	769.0	57.0	602.0	18.0	3.99
328.4	185	0.56	0.0823	0.0033	2.4890	0.0750	0.2204	0.0045	$0.0634 \ 0.0043$	0.03	1284.0	24.0	1268.0	23.0	1258.0	52.0	1284.0	24.0	-1.26
244.4	20.84	0.09	0.0573	0.0035	0.6000	0.0290	0.0758	0.0017	$0.0258 \ 0.0028$	-0.17	471.0	10.0	476.0	18.0	565.0	61.0	471.0	10.0	1.05
209.2	22.76	0.11	0.0568	0.0030	0.5740	0.0260	0.0749	0.0019	$0.0257 \ 0.0025$	0.25	466.0	11.0	462.0	17.0	484.0	56.0	466.0	11.0	-0.87
56.31	26.12	0.46	0.0950	0.0048	2.9900	0.1300	0.2356	0.0064	$0.0718 \ 0.0056$	0.39	1363.0	34.0	1411.0	33.0	1522.0	60.0	1522.0	34.0	3.40
328	28.96	0.09	0.0542	0.0028	0.5630	0.0240	0.0745	0.0019	$0.0246 \ 0.0023$	-0.24	463.0	11.0	453.0	15.0	448.0	68.0	463.0	11.0	-2.21
381.8	29.87	0.08	0.0563	0.0029	0.5920	0.0250	0.0767	0.0017	$0.0276 \ 0.0025$	0.08	477.0	10.0	472.0	16.0	459.0	61.0	477.0	10.0	-1.06
141.2	21.67	0.15	0.0570	0.0042	0.5930	0.0390	0.0771	0.0020	0.0238 0.0024	-0.08	478.0	12.0	470.0	25.0	511.0	88.0	478.0	12.0	-1.70
	293.4 150.9 331.2 525.9 626.9 283 97.2 579.4 215.1 181 54.37 217.1 236.9 227.4 122 234.8 357 133.5 209.1 176.6 328.4 244.4 209.2 56.31 328 381.8 141.2	293.442.3150.9100.7331.2271.9525.9310.1626.9108.528340.2497.226.94579.4147.7215.158.5181235.854.3718.98217.117.51236.936.1227.415.112263.3234.816.2357143133.516.93209.120.21176.646.1328.4185244.420.84209.222.7656.3126.1232828.96381.829.87141.221.67	293.442.30.14150.9100.70.67331.2271.90.82525.9310.10.59626.9108.50.1728340.240.1497.226.940.28579.4147.70.25215.158.50.27181235.81.3054.3718.980.35217.117.510.08236.936.10.15227.415.10.0712263.30.52234.816.20.073571430.40133.516.930.13209.120.210.10176.646.10.26328.41850.56244.420.840.09209.222.760.1156.3126.120.4632828.960.09381.829.870.88141.221.670.15	293.442.30.140.0589150.9100.70.670.0574331.2271.90.820.0690525.9310.10.590.0583626.9108.50.170.057028340.240.140.069997.226.940.280.0681579.4147.70.250.0769215.158.50.270.0718181235.81.300.0572236.936.10.150.0689217.117.510.080.0572236.936.10.150.057112263.30.520.0764234.816.20.070.05673571430.400.056435316.930.130.0627209.120.210.100.0573209.222.760.110.056856.3126.120.460.095032828.960.090.0542381.829.870.080.0563141.221.670.150.0570	293.442.30.140.05890.0029150.9100.70.670.05740.0044331.2271.90.820.06900.0032525.9310.10.590.05830.0027626.9108.50.170.05700.002628340.240.140.06990.003197.226.940.280.06810.0038579.4147.70.250.07690.0031215.158.50.270.07180.003554.3718.980.350.06890.0045217.117.510.080.05720.0031227.415.10.070.05670.003112263.30.520.07640.0037234.816.20.070.05700.00313571430.400.05640.0029133.516.930.130.06270.003129.120.210.100.05790.0031328.41850.560.08230.0033244.420.840.090.05730.0035209.222.760.110.05680.0033328.28.960.090.05420.0028381.829.870.080.05630.0028	293.442.30.140.05890.00290.7300150.9100.70.670.05740.00440.5860331.2271.90.820.06900.00321.4070525.9310.10.590.05830.00270.5740626.9108.50.170.05700.00260.577028340.240.140.06990.00311.488097.226.940.280.07690.00312.0060215.158.50.270.07180.00380.579054.3718.980.350.06890.00451.4490217.117.510.080.05720.00350.6070236.936.10.150.05910.00320.6210227.415.10.070.05670.00310.566012263.30.520.07640.00372.0210234.816.20.070.05700.00310.61203571430.400.05640.00290.5880133.516.930.130.06270.00310.637028.41850.560.08230.00332.4890244.420.840.090.05730.00350.600029.222.760.110.05680.00300.574032828.960.090.05420.00280.5630381.829.870.080.05630.00290.5920341.421.670.150.0570	293.442.30.140.05890.00290.73000.0330150.9100.70.670.05740.00440.58600.0340331.2271.90.820.06900.00321.40700.0670525.9310.10.590.05830.00270.57400.0210626.9108.50.170.05700.00260.57700.021028340.240.140.06990.00311.48800.058097.226.940.280.06810.00381.46400.0720579.4147.70.250.07690.00312.00600.0820181235.81.300.05580.00350.57900.031054.3718.980.350.05720.00350.60700.0320236.936.10.150.05710.00310.56600.029012263.30.520.07640.00372.02100.030012363.30.520.07640.00310.61200.030012415.10.070.05700.00310.61200.03001251430.400.05700.00310.61200.030012663.30.520.07640.00310.61200.030013571430.400.05790.00310.63700.0410133.516.930.130.62710.00330.85700.0410133.516.930.560.08230.03332.489	293.442.30.140.05890.00290.73000.03300.0900150.9100.70.670.05740.00440.58600.03400.0746331.2271.90.820.06900.00321.40700.06700.1480525.9310.10.590.05830.00270.57400.02100.0732626.9108.50.170.05700.00260.57700.02100.073228340.240.140.06990.00311.48800.05800.153497.226.940.280.06810.00381.46400.07200.1535579.4147.70.250.07690.00312.06600.08200.0976181235.81.300.05580.00350.57900.03100.075154.3718.980.350.06890.00451.44900.08700.1500217.117.510.080.05720.00350.60700.03200.0763227.415.10.070.05670.00310.56600.02900.073612263.30.520.07640.00372.02100.03000.0782234.816.20.070.05700.02100.58800.02600.0761133.516.930.130.66270.00310.63700.03200.0761133.516.930.130.66270.00310.63700.02400.074114420.840.090.	293.442.30.140.05890.00290.73000.03300.09000.0026150.9100.70.670.05740.00440.58600.03400.07460.0020331.2271.90.820.06900.00321.40700.06700.14800.0011525.9310.10.590.05830.00270.57400.02100.07320.0014626.9108.50.140.06990.00311.48800.05800.15340.003897.226.940.280.06810.00381.46400.07200.15350.004057.94147.70.250.07690.00312.06600.08200.09760.0058181235.81.300.05580.00350.57900.03100.07510.0014217.117.510.080.05720.00350.60700.03200.07630.0014236.936.10.150.05910.00311.44900.03000.07820.001712263.30.520.07610.00310.66700.03000.07820.0017124.1430.400.05640.00310.61200.30000.07820.0017125.36.10.150.05700.0310.62600.02000.07610.0017124.15.10.070.05670.00310.62600.02000.07610.0017125.36.10.150.05700.02100.36000.	293.442.30.140.05890.00290.73000.03300.09000.00260.03690.00369150.9100.70.670.05740.00440.58600.03400.07460.00200.02350.0018331.2271.90.820.06900.00321.40700.06700.14800.00140.02240.0015525.9310.10.590.05830.00260.57700.02100.07320.00140.02310.0017263.910.40.06990.00311.48800.05800.15340.00380.04660.033797.226.940.280.06810.00381.46400.07200.15350.00400.04370.0073579.4147.70.250.07690.00312.06000.08200.97660.00580.03080.02280.001654.3718.980.350.05890.00451.44900.03200.07510.00190.02130.001921.117.510.080.05720.00350.66700.03200.07630.00190.02130.004921.117.510.080.05700.00310.66700.03000.7820.00190.02130.001921.117.510.080.05700.0310.66700.03000.7820.00170.02240.024621.117.510.080.05700.0310.56000.03000.7820.00170.02460.0303 <td< td=""><td>293.442.30.140.05890.00290.73000.03000.09000.00260.03690.00300.23150.9100.70.670.05740.00440.58600.03400.07460.00210.03250.00180.013311.2271.90.820.06900.00321.40700.06700.14800.00140.02240.00150.0363525.9310.10.590.05830.00270.5700.02100.07320.00140.02310.00170.036626.9108.50.170.05700.00260.5700.02100.07320.00140.02310.00170.036525.9310.40.140.06990.00311.48600.07200.15350.00400.44370.00370.15525.440.240.0760.07690.03810.00380.0280.00380.0380.0280.0390.1457.9147.70.250.07690.0312.00600.18870.03880.03080.0280.0390.1457.14147.70.250.07690.0310.0510.00160.03180.03090.0310.0110.0240.00390.1457.14147.70.250.07690.0311.44900.80700.16300.01400.04330.00180.14154.3718.380.330.05910.03120.02510.02510.0230.0260.0110.12154.43</td><td>233.4 42.3 0.14 0.0589 0.0029 0.7300 0.0330 0.0020 0.0326 0.0369 0.0303 0.0216 0.0326 0.0330 0.0216 0.0326 0.0318 0.011 46.0 331.2 271.9 0.82 0.0690 0.032 1.4070 0.0670 0.1480 0.0011 0.0432 0.0029 0.298 890.0 525.9 310.1 0.59 0.0570 0.0210 0.0703 0.014 0.0211 0.031 0.452 0.033 0.446 0.033 455.2 286.4 0.14 0.0699 0.031 1.480 0.0580 0.1534 0.0038 0.446 0.033 0.45 920.0 57.4 147.7 0.25 0.0769 0.031 2.0600 0.580 0.1887 0.0038 0.0628 0.0619 0.0328 0.061 0.11 111.0 15.5 8.79 0.0718 0.035 0.0570 0.031 0.057 0.031 0.057 0.031 0.057 0.031 0.057 0.031 0.059 0.0763 0.011 0.0</td><td>233.4 42.3 0.14 0.0589 0.0029 0.7300 0.0330 0.0900 0.0026 0.0369 0.0301 0.235 0.0101 0.17 44.0 1.0 150.9 100.7 0.67 0.6754 0.0032 1.470 0.0670 0.1480 0.001 0.0323 0.001 0.432 0.002 0.29 890.0 2.90 525.9 310.1 0.59 0.053 0.0026 0.577 0.010 0.0712 0.0101 0.0231 0.03 440.7 8.5 626.9 108.5 0.14 0.0699 0.0011 1.4880 0.0580 0.013 0.0014 0.0231 0.013 9.20 2.0 71.4 147.7 0.25 0.0769 0.031 1.4640 0.702 0.1537 0.0038 0.0463 0.040 1.140 2.0 71.4 147.7 0.25 0.0769 0.031 0.071 0.016 0.0328 0.016 0.011 0.147 1.10</td><td>283. 42.3 0.14 0.0589 0.0029 0.7300 0.0300 0.0026 0.0369 0.0030 0.235 0.003 1.50 151.0 150.9 100.7 0.67 0.0574 0.0444 0.580 0.016 0.0120 0.0235 0.0018 0.011 0.442 0.001 0.442 0.001 0.442 0.001 0.013 4.60 3.0 4.60 3.0 4.60 3.0 4.60 3.0 4.60 3.0 4.60 4.</td><td>233.4 42.3 0.14 0.0589 0.0029 0.7300 0.0330 0.0900 0.0026 0.0369 0.0030 0.23 556.0 15.0 56.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.</td><td>283. 42.3 0.14 0.0689 0.0029 0.0300 0.026 0.0369 0.023 0.021 15.0</td><td>293.4 42.3 0.14 0.0589 0.0029 0.0380 0.0030 0.038 0.003 0.033 55.0 15.0 16.0 16.0 16.0 16.0 0.0574 0.0044 0.8680 0.0764 0.0040 0.0235 0.011 0.420 0.201 0.401 0.20 80.0 2.0 80.0 1.0 1.0 1.0 6.0 321.2 271.9 0.85 0.0690 0.0032 1.070 0.014 0.021 0.015 0.800 40.4 8.5 46.0 1.4 4.0 4.0 0.0026 0.070 0.014 0.0231 0.015 4.0 4</td><td>233.4 41.3 0.144 0.0589 0.0084 0.0080 0.0010</td><td>233.4 42.3 0.14 0.0589 0.0059 0.0026 0.0026 0.00260 0.0030 0.003 0.0030 0.003 0.0030 0.0030 0.0030 0.0030 0.013 0.011 0.011</td></td<>	293.442.30.140.05890.00290.73000.03000.09000.00260.03690.00300.23150.9100.70.670.05740.00440.58600.03400.07460.00210.03250.00180.013311.2271.90.820.06900.00321.40700.06700.14800.00140.02240.00150.0363525.9310.10.590.05830.00270.5700.02100.07320.00140.02310.00170.036626.9108.50.170.05700.00260.5700.02100.07320.00140.02310.00170.036525.9310.40.140.06990.00311.48600.07200.15350.00400.44370.00370.15525.440.240.0760.07690.03810.00380.0280.00380.0380.0280.0390.1457.9147.70.250.07690.0312.00600.18870.03880.03080.0280.0390.1457.14147.70.250.07690.0310.0510.00160.03180.03090.0310.0110.0240.00390.1457.14147.70.250.07690.0311.44900.80700.16300.01400.04330.00180.14154.3718.380.330.05910.03120.02510.02510.0230.0260.0110.12154.43	233.4 42.3 0.14 0.0589 0.0029 0.7300 0.0330 0.0020 0.0326 0.0369 0.0303 0.0216 0.0326 0.0330 0.0216 0.0326 0.0318 0.011 46.0 331.2 271.9 0.82 0.0690 0.032 1.4070 0.0670 0.1480 0.0011 0.0432 0.0029 0.298 890.0 525.9 310.1 0.59 0.0570 0.0210 0.0703 0.014 0.0211 0.031 0.452 0.033 0.446 0.033 455.2 286.4 0.14 0.0699 0.031 1.480 0.0580 0.1534 0.0038 0.446 0.033 0.45 920.0 57.4 147.7 0.25 0.0769 0.031 2.0600 0.580 0.1887 0.0038 0.0628 0.0619 0.0328 0.061 0.11 111.0 15.5 8.79 0.0718 0.035 0.0570 0.031 0.057 0.031 0.057 0.031 0.057 0.031 0.057 0.031 0.059 0.0763 0.011 0.0	233.4 42.3 0.14 0.0589 0.0029 0.7300 0.0330 0.0900 0.0026 0.0369 0.0301 0.235 0.0101 0.17 44.0 1.0 150.9 100.7 0.67 0.6754 0.0032 1.470 0.0670 0.1480 0.001 0.0323 0.001 0.432 0.002 0.29 890.0 2.90 525.9 310.1 0.59 0.053 0.0026 0.577 0.010 0.0712 0.0101 0.0231 0.03 440.7 8.5 626.9 108.5 0.14 0.0699 0.0011 1.4880 0.0580 0.013 0.0014 0.0231 0.013 9.20 2.0 71.4 147.7 0.25 0.0769 0.031 1.4640 0.702 0.1537 0.0038 0.0463 0.040 1.140 2.0 71.4 147.7 0.25 0.0769 0.031 0.071 0.016 0.0328 0.016 0.011 0.147 1.10	283. 42.3 0.14 0.0589 0.0029 0.7300 0.0300 0.0026 0.0369 0.0030 0.235 0.003 1.50 151.0 150.9 100.7 0.67 0.0574 0.0444 0.580 0.016 0.0120 0.0235 0.0018 0.011 0.442 0.001 0.442 0.001 0.442 0.001 0.013 4.60 3.0 4.60 3.0 4.60 3.0 4.60 3.0 4.60 3.0 4.60 4.	233.4 42.3 0.14 0.0589 0.0029 0.7300 0.0330 0.0900 0.0026 0.0369 0.0030 0.23 556.0 15.0 56.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.	283. 42.3 0.14 0.0689 0.0029 0.0300 0.026 0.0369 0.023 0.021 15.0	293.4 42.3 0.14 0.0589 0.0029 0.0380 0.0030 0.038 0.003 0.033 55.0 15.0 16.0 16.0 16.0 16.0 0.0574 0.0044 0.8680 0.0764 0.0040 0.0235 0.011 0.420 0.201 0.401 0.20 80.0 2.0 80.0 1.0 1.0 1.0 6.0 321.2 271.9 0.85 0.0690 0.0032 1.070 0.014 0.021 0.015 0.800 40.4 8.5 46.0 1.4 4.0 4.0 0.0026 0.070 0.014 0.0231 0.015 4.0 4	233.4 41.3 0.144 0.0589 0.0084 0.0080 0.0010	233.4 42.3 0.14 0.0589 0.0059 0.0026 0.0026 0.00260 0.0030 0.003 0.0030 0.003 0.0030 0.0030 0.0030 0.0030 0.013 0.011 0.011

							CORR	ECTED YOS ²								CORR	ECTED . (Ma)	AGES			
-	U	m ()1	an au	907DI /902DI	10-1	907DL /025LL		2007DL (02911	- 2 - 1	908 DI (929 /TI		DI	²⁰⁶ Pb/ ²³	10-	²⁰⁷ Pb/ ²³⁵		²⁰⁷ Pb/ ²⁰⁶	10-	Best age	- 2 -	D: 4/
_	(ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2∐ abs	²⁰⁷ Pb/235U	±2⊔ abs	²⁰⁶ Pb/ ²³⁸ U	$\pm 2 \square$ abs	²⁰⁸ Pb/ ²³² Th	±2∐ abs	Rho	⁸ U	±2 🗆	U	±2	Pb	±2 🗆	(Ma)	±2 🗆	Disc %
Zircon_01 _CH0403	740	277	0.37	0.0573	0.0027	0.5730	0.0210	0.0730	0.0015	0.0226	0.0016	0.12	454.4	8.7	461	13	497	57	454.4	8.7	1.43
Zircon_02	338.9	$\frac{12.78}{12.78}$	0.04	0.0577	0.0033	0.5840	0.0700	0.0733	0.0059	0.0306	0.0040	0.04	456	$\overline{35}$	470	$\frac{38}{38}$	$\frac{507}{507}$	66	456.0	$\frac{35.0}{35.0}$	$\frac{2.98}{2}$
Zircon_03	566	188.6	0.33	0.0571	0.0027	0.5750	0.0200	0.0731	0.0015	0.0226	0.0016	0.00	454.5	8.8	461	13	486	56	454.5	8.8	1.41
Zircon_04	632	214.6	0.34	0.0603	0.0028	0.5930	0.0220	0.0716	0.0016	0.0239	0.0017	0.12	445.7	9.8	472	14	637	56	445.7	9.8	5.57
Zircon_05	652.9	240.3	0.37	0.0565	0.0025	0.5690	0.0210	0.0732	0.0015	0.0230	0.0016	0.20	455.4	9.2	457	13	454	63	455.4	9.2	0.35
Zircon_06	453	142.8	0.32	0.0568	0.0026	0.5900	0.0240	0.0750	0.0016	0.0242	0.0018	0.41	466.2	9.5	470	15	485	70	466.2	9.5	0.81
Zircon_07	646	164.2	0.25	0.0732	0.0029	1.6270	0.0560	0.1631	0.0039	0.0502	0.0035	0.45	974	22	980	22	1020	52	974.0	22.0	0.61
Zircon_08	164	31.9	0.19	0.0579	0.0030	0.6100	0.0380	0.0750	0.0030	0.0228	0.0038	0.22	466	18	482	22	525	61	466.0	18.0	3.32
Zircon_09	668	211.2	0.32	0.0579	0.0025	0.5700	0.0220	0.0724	0.0015	0.0226	0.0017	0.48	450.3	8.8	461	14	511	63	450.3	8.8	2.32
Zircon_10	45.68	50.82	1.11	0.0742	0.0056	1.7400	0.1200	0.1674	0.0046	0.0495	0.0040	0.04	998	25	1024	42	1093	75	998.0	25.0	2.54
Zircon_11	321.8	19.2	0.06	0.0566	0.0028	0.5840	0.0240	0.0742	0.0017	0.0289	0.0035	0.06	461	10	466	15	498	60	461.0	10.0	1.07
$Zircon_{12}$	564.8	206.9	0.37	0.0561	0.0026	0.5660	0.0210	0.0737	0.0015	0.0227	0.0016	0.01	458.2	9.1	455	14	454	57	458.2	9.1	-0.70
Zircon_13	144	56.7	0.39	0.0745	0.0039	1.7630	0.0770	0.1728	0.0039	0.0532	0.0040	-0.12	1028	21	1033	28	1044	70	1028.0	21.0	0.48
$Zircon_{14}$	591.2	177.9	0.30	0.0569	0.0027	0.5720	0.0230	0.0724	0.0015	0.0217	0.0015	0.25	450.4	8.8	459	15	486	53	450.4	8.8	1.87
$Zircon_{15}$	583.1	208.2	0.36	0.0562	0.0027	0.5770	0.0220	0.0739	0.0015	0.0233	0.0016	-0.31	460.2	9.3	462	14	465	70	460.2	9.3	0.39
Zircon_16	652	212	0.33	0.0561	0.0026	0.5830	0.0200	0.0745	0.0016	0.0242	0.0018	0.13	463.1	9.5	466	13	481	59	463.1	9.5	0.62
Zircon_17	441.9	148.3	0.34	0.0750	0.0042	0.7610	0.0360	0.0728	0.0016	0.0324	0.0026	0.19	452.7	9.3	574	19	1055	73	452.7	9.3	21.13
Zircon_18	599.7	199.1	0.33	0.0560	0.0026	0.5780	0.0210	0.0737	0.0016	0.0232	0.0016	0.01	458.5	9.8	462	14	460	55	458.5	9.8	0.76
Zircon_19	361	196.6	0.54	0.0560	0.0028	0.5820	0.0250	0.0756	0.0016	0.0225	0.0017	0.13	469.6	9.6	467	16	446	46	469.6	9.6	-0.56
Zircon_20	481.5	129.2	0.27	0.0755	0.0029	1.4260	0.0430	0.1390	0.0031	0.0386	0.0026	0.44	839	18	899	19	1051	43	839.0	18.0	6.67
Zircon_21	510	128.4	0.25	0.0560	0.0025	0.5600	0.0270	0.0719	0.0025	0.0222	0.0022	0.05	448	15	451	16	433	61	448.0	15.0	0.67
$Zircon_{22}$	541	148.1	0.27	0.0764	0.0032	1.5350	0.0660	0.1462	0.0052	0.0433	0.0032	0.18	880	30	944	28	1126	49	880.0	30.0	6.78
Zircon_23	$\frac{187.8}{1}$	$\frac{76.5}{100}$	0.41	0.1096	0.0061	1.1440	0.0570	0.0753	0.0018	0.0468	0.0042	-0.05	468	11	$\frac{773}{773}$	$\frac{25}{25}$	$\frac{1805}{1}$	$\overline{78}$	468.0	$\frac{11.0}{11.0}$	39.46
$Zircon_24$	142	39.7	0.28	0.0757	0.0049	1.7700	0.1100	0.1719	0.0074	0.0563	0.0056	0.12	1021	40	1031	40	1029	75	1021.0	40.0	0.97
$Zircon_25$	728	322	0.44	0.0581	0.0027	0.5780	0.0220	0.0737	0.0019	0.0235	0.0017	0.02	458	11	463	14	511	68	458.0	11.0	1.08
Zircon_26	473	167.7	0.35	0.0559	0.0028	0.5660	0.0230	0.0735	0.0017	0.0226	0.0016	0.16	457	10	457	15	415	64	457.0	10.0	0.00

Zircon_27	521	$\frac{214}{214}$	0.41	0.0589	0.0036	0.6000	0.1400	0.0730	0.0110	0.0246	0.0044	0.39	456	65	476	66	567	89	456.0	65.0	4.20
Zircon_28	691	285.6	0.41	0.0589	0.0026	0.5910	0.0270	0.0722	0.0026	0.0222	0.0017	0.02	449	15	471	16	557	54	449.0	15.0	4.67
Zircon_29	494	138.9	0.28	0.0602	0.0029	0.6110	0.0240	0.0739	0.0016	0.0261	0.0019	-0.19	459.6	9.8	491	14	615	50	459.6	9.8	6.40
Zircon_30	658	248.1	0.38	0.0560	0.0025	0.5710	0.0210	0.0729	0.0016	0.0228	0.0017	0.21	453.8	9.7	458	14	460	49	453.8	9.7	0.92
Zircon_31	553.7	210.1	0.38	0.0555	0.0026	0.5520	0.0200	0.0722	0.0016	0.0220	0.0015	0.14	449.1	9.5	446	13	431	46	449.1	9.5	-0.70
Zircon_32	485.7	172.9	0.36	0.0567	0.0027	0.5590	0.0210	0.0720	0.0015	0.0221	0.0016	0.08	448.3	9	450	14	482	51	448.3	9.0	0.38
Zircon_33	371.4	121.1	0.33	0.0569	0.0029	0.5810	0.0260	0.0742	0.0015	0.0242	0.0017	0.03	461.1	9.2	464	16	488	59	461.1	9.2	0.62
Zircon_34	455.8	103.1	0.23	0.0619	0.0032	0.6430	0.0280	0.0753	0.0018	0.0279	0.0020	-0.02	468	11	504	17	679	62	468.0	11.0	7.14
Zircon_35 _CH0403	663	316	0.48	0.0646	0.0057	0.6660	0.0650	0.0746	0.0019	0.0265	0.0037	0.16	464	11	518	34	770	130	464.0	11.0	10.42

		CORRECTED RATIOS ²													CORI	RECTED A (Ma)	GES			
Gt0405	U (ppm)1	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2□ abs	²⁰⁷ Pb/ ²³⁵ U	±20 abs	²⁰⁶ Pb/ ²³⁸ U	±2□ abs	²⁰⁸ Pb/ ²³² Th	±2□ abs Rho	²⁰⁶ Pb/238U	J ± 2□	²⁰⁷ Pb/ ²³⁵ U	±2 🗆	²⁰⁷ Pb/ ²⁰⁶ Pb	±2□	Best age (Ma)	±2□	Disc %
Zircon_91	4840	73.6	0.02	0.0509	0.0020	0.2657	0.0079	0.0376	0.0008	0.0141	$0.0013 \ 0.40$	238.1	4.7	239.2	6.2	223	56	238.1	4.7	0.46
$Zircon_{92}$	338.1	127.4	0.38	0.0553	0.0029	0.5290	0.0230	0.0686	0.0015	0.0211	$0.0016 \ 0.04$	427.4	8.9	431	15	405	78	427.4	8.9	0.84
$Zircon_{93}$	193.1	86.8	0.45	0.0645	0.0040	0.6360	0.0420	0.0709	0.0020	0.0268	$0.0022 \ 0.17$	441	12	499	24	781	80	441.0	12.0	11.62
Zircon_94	4745	41.31	0.01	0.0502	0.0020	0.2541	0.0077	0.0362	0.0007	0.0124	0.0013 -0.01	229.1	4.4	229.9	6.2	204	46	229.1	4.4	0.35
Zircon_95	779	219.4	0.28	0.0690	0.0035	0.6900	0.0290	0.0720	0.0014	0.0317	0.0026 -0.02	448	8.6	532	17	896	76	448.0	8.6	15.79
Zircon_96	2731	705	0.26	0.0552	0.0021	0.5400	0.0150	0.0700	0.0013	0.0217	$0.0015 \ 0.28$	436.4	8	438	10	418	49	436.4	8.0	0.37
Zircon_97	2883	19.76	0.01	0.0511	0.0022	0.2683	0.0088	0.0376	0.0008	0.0307	0.0033 -0.18	237.8	4.7	241.3	7	251	60	237.8	4.7	1.45
Zircon_98	$\frac{102.9}{102.9}$	43.14	0.42	0.1266	0.0092	1.4000	0.1100	0.0784	0.0025	0.0562	0.0066 0.32	486	$\overline{15}$	881	45	$\frac{2101}{2101}$	98	486.0	15.0	44.84
Zircon_99	686	370.2	0.54	0.0609	0.0037	0.3190	0.0170	0.0384	0.0008	0.0129	0.0011 0.10	243.1	5	284	14	618	94	243.1	5.0	14.40
Zircon_100	415.3	181.4	0.44	0.0569	0.0031	0.5510	0.0280	0.0711	0.0015	0.0224	0.0017 0.30	442.9	9.2	445	18	477	84	442.9	9.2	0.47
Zircon_101	560.4	191.4	0.34	0.0551	0.0025	0.5470	0.0200	0.0712	0.0016	0.0220	0.0016 -0.10	443.3	9.5	443	13	421	64	443.3	9.5	-0.07
Zircon_102	344.2	163.6	0.48	0.0573	0.0033	0.5820	0.0280	0.0725	0.0015	0.0234	0.0018 -0.19	451.1	9.3	465	18	538	63	451.1	9.3	2.99
Zircon_103	348.6	142.5	0.41	0.0688	0.0036	0.6550	0.0300	0.0699	0.0016	0.0260	$0.0019 \ 0.26$	435.5	9.9	513	19	857	70	435.5	9.9	15.11
Zircon_104	479	212.4	0.44	0.0683	0.0033	0.7110	0.0270	0.0750	0.0015	0.0297	0.0022 -0.11	466.5	9.2	545	16	854	76	466.5	9.2	14.40
Zircon_105	7180	132.8	0.02	0.0510	0.0020	0.2664	0.0078	0.0375	0.0007	0.0154	0.0013 0.31	237.5	4.5	239.7	6.2	256	46	237.5	4.5	0.92
Zircon_106	1417	8.67	0.01	0.0510	0.0022	0.2654	0.0093	0.0375	0.0008	0.0188	$0.0030 \ 0.25$	237.3	4.7	238.9	7.2	257	52	237.3	4.7	0.67

Zircon_107	4380	96.4	0.02	0.0507	0.0020	0.2649	0.0077	0.0376	0.0007	0.0138	$0.0012 \ 0.23$	238.2	4.5	238.5	6.1	228	44	238.2	4.5	0.13
Zircon_108	864	254.8	0.29	0.0589	0.0027	0.5800	0.0200	0.0711	0.0014	0.0249	0.0019 -0.18	443	8.4	466	12	590	53	443.0	8.4	4.94
Zircon_109	511	182.8	0.36	0.0564	0.0025	0.5660	0.0200	0.0728	0.0017	0.0226	$0.0016 \ 0.02$	453	10	455	13	444	53	453.0	10.0	0.44
Zircon_110	359.8	151.7	0.42	0.0583	0.0031	0.5880	0.0270	0.0731	0.0016	0.0254	$0.0018 \ 0.31$	454.7	9.5	469	17	541	71	454.7	9.5	3.05
Zircon_111	439.2	185.2	0.42	0.0637	0.0030	0.6400	0.0250	0.0742	0.0015	0.0251	$0.0019 \ 0.01$	461.2	8.9	502	16	735	58	461.2	8.9	8.13
Zircon_112	359.7	156.8	0.44	0.0505	0.0035	0.2870	0.0150	0.0401	0.0011	0.0128	0.0010 -0.02	253.5	6.9	256	12	327	55	253.5	6.9	0.98
Zircon_113	1525	412.3	0.27	0.0566	0.0023	0.5420	0.0170	0.0701	0.0014	0.0215	0.0015 - 0.01	436.5	8.4	439	11	463	49	436.5	8.4	0.57
Zircon_114	507	212	0.42	0.0566	0.0026	0.5780	0.0230	0.0732	0.0015	0.0233	$0.0017 \ 0.24$	455.4	9	462	15	503	62	455.4	9.0	1.43
Zircon_115	287.8	129	0.45	0.0552	0.0030	0.5450	0.0260	0.0709	0.0016	0.0220	$0.0016 \ 0.08$	441.8	9.6	443	16	427	56	441.8	9.6	0.27
Zircon_116	5090	102.3	0.02	0.0518	0.0034	0.2670	0.0170	0.0375	0.0008	0.0170	$0.0140 \ 0.27$	237.1	4.9	240	13	250	110	237.1	4.9	1.21
Zircon_117	1631	433	0.27	0.0564	0.0022	0.5510	0.0180	0.0715	0.0014	0.0221	$0.0015 \ 0.30$	445.4	8.4	447	12	443	46	445.4	8.4	0.36
Zircon_118	234.8	86	0.37	0.0589	0.0030	0.5710	0.0250	0.0720	0.0016	0.0248	$0.0020 \ 0.27$	447.9	9.5	464	16	567	60	447.9	9.5	3.47
Zircon_119	4392	101.6	0.02	0.0510	0.0020	0.2600	0.0076	0.0374	0.0007	0.0121	$0.0010 \ 0.19$	236.5	4.5	234.6	6.1	228	49	236.5	4.5	-0.81
$Zircon_{120}$	3668	25.11	0.01	0.0520	0.0190	0.2600	0.1100	0.0364	0.0009	0.0400	$0.3200 \ 0.14$	230.3	5.6	233	66	280	350	230.3	5.6	1.16
Zircon_121	2325	489	0.21	0.0554	0.0021	0.5310	0.0160	0.0697	0.0014	0.0228	$0.0015 \ 0.46$	434.1	8.6	432	10	428	59	434.1	8.6	-0.49
$Zircon_{122}$	178.8	140	0.78	0.0583	0.0048	0.3150	0.0250	0.0391	0.0012	0.0134	0.0011 - 0.14	247.5	7.5	277	19	610	100	247.5	7.5	10.65
$Zircon_{123}$	8350	134.6	0.02	0.0508	0.0019	0.2665	0.0070	0.0381	0.0008	0.0169	$0.0015 \ 0.04$	241.1	4.7	239.9	5.6	245	58	241.1	4.7	-0.50
Zircon_124	1559	176.3	0.11	0.0565	0.0023	0.5710	0.0170	0.0739	0.0014	0.0231	$0.0017 \ 0.19$	459.5	8.6	459	12	472	47	459.5	8.6	-0.11

							CORRE RATI	CTED OS^2								CORF	RECTED (Ma)	AGES			
Gt-0457b	U (ppm)1	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ P b	±2□ abs	²⁰⁷ Pb/ ²³⁵ U	±2□ abs	²⁰⁶ Pb/238 U	±2□ abs	²⁰⁸ Pb/ ²³² T h	±2□ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2□	²⁰⁷ Pb/ ²³⁵ U	±2□	²⁰⁷ Pb/ ²⁰⁶ Pb	±2□	Best age (Ma)	±2□	Disc %
Zircon_106	517	359	0.69	0.0560	0.0033	0.5550	0.0280	0.0718	0.0018	0.0220	0.0014	0.12	447	11	448	18	474	89	447.0	11.0	0.22
Zircon_107	338	336	0.99	0.0563	0.0035	0.6120	0.0360	0.0791	0.0021	0.0233	0.0015	0.24	491	12	489	23	491	90	491.0	12.0	-0.41
Zircon_108	300	24.8	0.08	0.0972	0.0052	3.7700	0.1700	0.2789	0.0071	0.0773	0.0058	0.52	1586	36	1585	37	1580	59	1580.0	36.0	-0.06
Zircon_109	399	45.4	0.11	0.0566	0.0036	0.6030	0.0350	0.0759	0.0025	0.0253	0.0018	0.32	472	15	478	22	511	56	472.0	15.0	1.26
Zircon_110	131	117	0.89	0.0549	0.0039	0.5410	0.0370	0.0724	0.0020	0.0217	0.0014	0.26	451	12	450	24	546	95	451.0	12.0	-0.22
Zircon_111	178	123	0.69	0.0580	0.0038	0.6090	0.0380	0.0761	0.0023	0.0231	0.0017	-0.20	473	14	486	22	582	86	473.0	14.0	2.67
Zircon_112	2180	1254	0.58	0.0566	0.0030	0.6100	0.0280	0.0781	0.0019	0.0216	0.0014	0.55	485	11	483	17	486	66	485.0	11.0	-0.41

Zircon_113	236	222	0.94	0.0563	0.0038	0.6060	0.0370	0.0782	0.0021	0.0225	0.0015	0.19	485	13	482	24	458	69	485.0	13.0	-0.62
Zircon_114	341	237	0.70	0.0587	0.0037	0.6300	0.0330	0.0775	0.0020	0.0232	0.0016	-0.10	481	12	498	21	554	82	481.0	12.0	3.41
Zircon_115	$\frac{203}{203}$	$\frac{104.2}{104.2}$	0.51	0.0830	0.0058	0.8980	0.0570	0.0769	0.0021	0.032 4	0.0028	<u>0.22</u>	4 78	$\frac{13}{13}$	649	$\frac{31}{31}$	$\frac{1300}{1300}$	100	478.0	$\frac{13.0}{13.0}$	$\frac{26.35}{2}$
Zircon_116	$\frac{221}{2}$	59.6	0.27	0.0725	0.0054	0.8000	0.0630	0.0801	0.0024	0.0485	0.0038	-0.08	4 96	$\overline{15}$	$\frac{595}{100}$	$\frac{32}{32}$	967	87	496.0	15.0	16.64
Zircon_117	833	477	0.57	0.0573	0.0032	0.6170	0.0310	0.0776	0.0019	0.0219	0.0014	0.34	482	12	487	19	521	75	482.0	12.0	1.03
Zircon_118	520	143	0.28	0.0652	0.0038	1.0750	0.0750	0.1198	0.0058	0.0341	0.0029	0.17	729	33	741	35	781	73	729.0	33.0	1.62
Zircon_119	360	55.6	0.15	0.0727	0.0042	1.6870	0.0910	0.1659	0.0049	0.0453	0.0033	0.38	989	27	1003	32	1039	54	989.0	27.0	1.40
Zircon_120	198	217	1.10	0.0640	0.0044	0.6490	0.0400	0.0748	0.0021	0.0231	0.0016	-0.09	465	12	515	25	760	110	465.0	12.0	9.71
Zircon_121	259	203.9	0.79	0.0575	0.0038	0.5830	0.0340	0.0734	0.0019	0.0208	0.0013	-0.09	457	11	465	22	523	74	457.0	11.0	1.72
Zircon_122	390	48.9	0.13	0.0841	0.0049	1.9600	0.1300	0.1680	0.0068	0.0647	0.0046	0.14	1001	37	1105	43	1325	72	1001.0	37.0	9.41
Zircon_123	424	127.5	0.30	0.0603	0.0037	0.6110	0.0330	0.0735	0.0018	0.0257	0.0017	0.11	457	11	487	21	640	75	457.0	11.0	6.16
$Zircon_{124}$	275	136	0.49	0.0564	0.0036	0.6060	0.0340	0.0771	0.0021	0.0234	0.0016	0.25	479	13	480	21	495	88	479.0	13.0	0.21
$Zircon_{125}$	359	94	0.26	0.0574	0.0037	0.6070	0.0330	0.0770	0.0020	0.0265	0.0019	-0.04	478	12	484	22	497	81	478.0	12.0	1.24
Zircon_126	392	162	0.41	0.0591	0.0037	0.6310	0.0400	0.0775	0.0023	0.0235	0.0080	0.30	481	13	496	24	575	94	481.0	13.0	3.02
Zircon_127	298	155	0.52	0.0721	0.0047	1.6400	0.1300	0.1609	0.0061	0.0438	0.0066	0.48	962	33	984	44	1000	96	962.0	33.0	2.24
Zircon_128	204	108	0.53	0.0594	0.0043	0.6380	0.0440	0.0775	0.0022	0.0261	0.0019	0.05	481	13	503	26	562	87	481.0	13.0	4.37
Zircon_129	1193	342	0.29	0.0564	0.0031	0.5760	0.0270	0.0740	0.0018	0.0219	0.0014	0.06	460	11	462	17	459	71	460.0	11.0	0.43
Zircon_130	246	58.6	0.24	0.0663	0.0039	1.1560	0.0660	0.1247	0.0039	0.0406	0.0031	0.54	758	22	778	31	835	62	758.0	22.0	2.57
Zircon_131	334	94.1	0.28	0.0881	0.0048	2.7800	0.1300	0.2309	0.0055	0.0669	0.0047	0.28	1339	29	1349	35	1379	70	1339.0	29.0	0.74
Zircon_132	951	82.2	0.09	0.0554	0.0031	0.5860	0.0280	0.0758	0.0020	0.0228	0.0018	0.27	471.0	12.0	469.0	17.0	441.0	64.0	471.0	12.0	-0.43
Zircon_133	713	172	0.24	0.0557	0.0031	0.5920	0.0290	0.0762	0.0019	0.0242	0.0016	0.07	473.0	11.0	473.0	19.0	457.0	73.0	473.0	11.0	0.00
Zircon_134	1412	512	0.36	0.0555	0.0030	0.5790	0.0270	0.0750	0.0018	0.0250	0.0016	0.08	466.0	11.0	464.0	17.0	434.0	71.0	466.0	11.0	-0.43
Zircon_135	1940	216	0.11	0.0571	0.0033	0.6280	0.0550	0.0793	0.0045	0.0268	0.0032	0.68	492.0	26.0	495.0	31.0	495.0	86.0	492.0	26.0	0.61
Zircon_136	294	367	1.25	0.0593	0.0037	0.6050	0.0360	0.0743	0.0019	0.0239	0.0015	0.44	462.0	11.0	479.0	22.0	561.0	98.0	462.0	11.0	3.55
Zircon_137	865	205	0.24	0.0727	0.0039	1.7140	0.0770	0.1706	0.0040	0.0516	0.0033	0.30	1015.0	22.0	1014.0	29.0	1018.0	63.0	1015.0	22.0	-0.10
Zircon_138	1800	929	0.52	0.0558	0.0030	0.5660	0.0260	0.0736	0.0018	0.0227	0.0014	0.21	458.0	11.0	455.0	17.0	435.0	70.0	458.0	11.0	-0.66
Zircon_139	210	56.5	0.27	0.0773	0.0043	2.1030	0.0980	0.1956	0.0049	0.0582	0.0041	0.15	1153.0	26.0	1149.0	32.0	1117.0	70.0	1153.0	26.0	-0.35
Zircon_140	763	121.5	0.16	0.0551	0.0031	0.5490	0.0270	0.0718	0.0017	0.0232	0.0017	0.34	447.0	10.0	444.0	17.0	417.0	64.0	447.0	10.0	-0.68

							CORRE RAT	CTED OS^2								CO A	RRECT	ED a)			
Gt0340	U (ppm)1	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2□ abs	²⁰⁷ Pb/ ²³⁵ U	±2 abs	²⁰⁶ Pb/ ²³⁸ U	±20 abs	²⁰⁸ Pb/ ²³² Th	±2□ abs	Rho	²⁰⁶ Pb/238U	±2□	²⁰⁷ Pb/ ²³⁵ U	±2□	²⁰⁷ Pb/ ²⁰⁶ Pb	±2□	Best age (Ma)	±2□	Disc %
Zircon_36	814	394	0.48	0.0547	0.0023	0.5620	0.0190	0.0735	0.0015	0.0227	0.0015	0.16	457.4	8.8	452	12	428	57	457.4	8.8	-1.19
Zircon_37	559.3	522	0.93	0.0560	0.0026	0.5270	0.0200	0.0686	0.0014	0.0209	0.0014	0.08	427.8	8.7	429	13	424	53	427.8	8.7	0.28
Zircon_38	700	536.6	0.77	0.0560	0.0025	0.5300	0.0180	0.0688	0.0014	0.0211	0.0015	0.02	429.1	8.5	433	11	457	45	429.1	8.5	0.90
Zircon_39	1528	1109	0.73	0.0556	0.0023	0.5140	0.0160	0.0670	0.0013	0.0210	0.0014	0.07	418.2	7.8	421	11	434	53	418.2	7.8	0.67
Zircon_40	598	459	0.77	0.0574	0.0025	0.5380	0.0210	0.0688	0.0019	0.0215	0.0016	0.50	429	11	436	14	484	55	429.0	11.0	1.61
Zircon_41	641.9	551.6	0.86	0.0547	0.0024	0.5220	0.0180	0.0692	0.0016	0.0219	0.0015	0.15	431.2	9.4	426	12	403	59	431.2	9.4	-1.22
$Zircon_42$	405	301	0.74	0.0566	0.0029	0.5260	0.0230	0.0676	0.0015	0.0218	0.0016	-0.08	421.6	8.8	429	15	511	61	421.6	8.8	1.72
Zircon_43	1020	1576	1.55	0.0560	0.0024	0.5290	0.0190	0.0690	0.0014	0.0207	0.0014	0.05	430.2	8.6	432	12	457	44	430.2	8.6	0.42
Zircon_44	915	985	1.08	0.0555	0.0024	0.5100	0.0170	0.0666	0.0013	0.0199	0.0013	0.38	415.8	7.9	418	12	434	59	415.8	7.9	0.53
$Zircon_{45}$	346.4	306.8	0.89	0.0566	0.0029	0.5390	0.0240	0.0701	0.0015	0.0220	0.0015	0.05	436.6	9.1	440	16	500	60	436.6	9.1	0.77
Zircon_46	569.5	191.5	0.34	0.0711	0.0029	1.5350	0.0420	0.1581	0.0034	0.0483	0.0033	-0.02	946	19	944	17	965	44	946.0	19.0	-0.21
Zircon_47	504	438	0.87	0.0573	0.0026	0.5650	0.0200	0.0729	0.0015	0.0229	0.0016	0.12	453.5	9	454	13	487	58	453.5	9.0	0.11
Zircon_48	1952	972	0.50	0.0558	0.0022	0.5350	0.0150	0.0700	0.0014	0.0215	0.0014	0.36	436.2	8.4	435	10	439	53	436.2	8.4	-0.28
Zircon_49	321	219.3	0.68	0.0563	0.0030	0.5440	0.0250	0.0709	0.0015	0.0221	0.0016	-0.18	441.3	9.2	443	17	465	67	441.3	9.2	0.38
Zircon_50	559	496	0.89	0.0580	0.0150	0.5800	0.1900	0.0709	0.0024	0.0220	0.0046	-0.13	442	14	463	90	530	280	442.0	14.0	4.54
Zircon_51	963	634	0.66	0.0550	0.0024	0.5300	0.0200	0.0705	0.0015	0.0217	0.0015	0.25	438.9	9	433	13	432	58	438.9	9.0	-1.36
Zircon_52	631	682	1.08	0.0549	0.0024	0.5220	0.0180	0.0684	0.0014	0.0211	0.0014	0.07	426.4	8.2	426	12	420	54	426.4	8.2	-0.09
Zircon_53	422.4	384	0.91	0.0575	0.0028	0.5390	0.0230	0.0689	0.0015	0.0207	0.0016	0.11	429.3	8.9	437	15	512	50	429.3	8.9	1.76
Zircon_54	446.4	450.1	1.01	0.0547	0.0025	0.5200	0.0190	0.0692	0.0015	0.0213	0.0015	-0.01	431.5	9.1	425	12	401	48	431.5	9.1	-1.53
Zircon_55	676	605	0.89	0.0558	0.0025	0.5260	0.0210	0.0681	0.0014	0.0208	0.0014	0.32	424.5	8.6	431	14	474	61	424.5	8.6	1.51
Zircon_56	423.7	334.8	0.79	0.0565	0.0026	0.5610	0.0210	0.0725	0.0016	0.0221	0.0015	-0.01	451.4	9.6	453	15	453	64	451.4	9.6	0.35
Zircon_57	617.7	482.1	0.78	0.0566	0.0027	0.6030	0.0230	0.0766	0.0018	0.0248	0.0017	-0.04	476	11	479	14	487	57	476.0	11.0	0.63
Zircon_58	675.2	488.7	0.72	0.0555	0.0026	0.5180	0.0210	0.0678	0.0014	0.0208	0.0014	0.15	422.7	8.3	423	14	431	63	422.7	8.3	0.07
Zircon_59	457.4	$\frac{594}{594}$	$\frac{1.30}{1.30}$	0.0660	0.0180	0.6600	0.2000	0.0719	0.0019	0.0236	0.0020	0.23	448	11	511	89	810	280	448.0	11.0	$\frac{12.33}{12.33}$
Zircon_60	1292	1130	0.87	0.0564	0.0023	0.5200	0.0170	0.0670	0.0013	0.0202	0.0014	0.29	417.9	8.1	425	11	483	47	417.9	8.1	1.67
Zircon_61	918	830	0.90	0.0548	0.0023	0.5180	0.0160	0.0681	0.0014	0.0207	0.0014	-0.16	424.5	8.2	423	11	415	53	424.5	8.2	-0.35
Zircon_62	741	672	0.91	0.0560	0.0025	0.5670	0.0200	0.0731	0.0015	0.0225	0.0015	0.20	454.5	9	456	12	480	57	454.5	9.0	0.33

Zircon_63	1195	943	0.79	0.0559	0.0024	0.5210	0.0180	0.0675	0.0014	0.0205	0.0014	0.40	420.8	8.2	425	12	440	63	420.8	8.2	0.99
Zircon_64	648	504	0.78	0.0553	0.0023	0.5330	0.0180	0.0696	0.0014	0.0209	0.0014	0.16	433.9	8.5	434	11	403	64	433.9	8.5	0.02
Zircon_65	1609	1109	0.69	0.0555	0.0022	0.5250	0.0160	0.0684	0.0014	0.0208	0.0014	0.47	426.3	8.8	428	11	447	54	426.3	8.8	0.40
Zircon_66	708	588	0.83	0.0555	0.0024	0.5230	0.0170	0.0681	0.0014	0.0209	0.0014	-0.04	424.8	8.6	428	11	454	48	424.8	8.6	0.75
Zircon_67	487	347.1	0.71	0.0564	0.0025	0.5570	0.0210	0.0722	0.0016	0.0223	0.0015	0.24	449.4	9.6	449	14	447	65	449.4	9.6	-0.09
Zircon_68	495.6	413.8	0.83	0.0558	0.0025	0.5290	0.0200	0.0689	0.0015	0.0214	0.0015	0.25	429.4	9.1	433	13	473	64	429.4	9.1	0.83
Zircon_69	1260	1026	0.81	0.0547	0.0022	0.5250	0.0160	0.0689	0.0014	0.0215	0.0015	-0.16	429.8	8.2	428	11	402	63	429.8	8.2	-0.42
Zircon_70	565	396	0.70	0.0542	0.0025	0.5190	0.0180	0.0679	0.0014	0.0212	0.0014	-0.17	423.7	8.5	424	12	384	60	423.7	8.5	0.07
Zircon_71	292.4	203.3	0.70	0.0558	0.0034	0.5700	0.0310	0.0738	0.0016	0.0231	0.0016	-0.03	459.1	9.4	457	20	429	73	459.1	9.4	-0.46
Zircon_72	672	488	0.73	0.0556	0.0027	0.5300	0.0200	0.0685	0.0015	0.0211	0.0014	-0.08	427.2	9.2	431	13	460	62	427.2	9.2	0.88
Zircon_73	652.9	496.3	0.76	0.0552	0.0026	0.5250	0.0200	0.0686	0.0015	0.0213	0.0014	0.14	428	8.8	428	13	446	54	428.0	8.8	0.00
Zircon_74	597	512.6	0.86	0.0552	0.0027	0.5180	0.0200	0.0679	0.0015	0.0214	0.0014	-0.02	423.7	9.1	425	14	437	58	423.7	9.1	0.31
Zircon_75	577.2	414.8	0.72	0.0558	0.0026	0.5350	0.0190	0.0693	0.0015	0.0216	0.0015	0.03	431.8	8.8	437	13	471	60	431.8	8.8	1.19
Zircon_76	607	433.8	0.71	0.0556	0.0026	0.5660	0.0210	0.0733	0.0017	0.0228	0.0015	-0.04	456	10	455	13	451	67	456.0	10.0	-0.22
Zircon_77	587.6	487.9	0.83	0.0561	0.0026	0.5390	0.0200	0.0688	0.0014	0.0214	0.0014	-0.21	428.7	8.6	438	13	469	47	428.7	8.6	2.12
Zircon_78	1000	1151	1.15	0.0559	0.0024	0.5270	0.0180	0.0683	0.0015	0.0221	0.0014	0.16	426.1	9	431	12	452	65	426.1	9.0	1.14
Zircon_79	498	395	0.79	0.0547	0.0027	0.5310	0.0200	0.0692	0.0016	0.0209	0.0014	-0.07	431.3	9.4	432	13	363	66	431.3	9.4	0.16
Zircon_80	555.3	473.6	0.85	0.0554	0.0027	0.5370	0.0210	0.0692	0.0014	0.0211	0.0015	-0.06	431.2	8.6	436	14	437	63	431.2	8.6	1.10
Zircon_81	280.9	227.8	0.81	0.0575	0.0030	0.5650	0.0240	0.0710	0.0016	0.0225	0.0016	0.03	442.1	9.7	454	16	542	68	442.1	9.7	2.62
Zircon_82	891	745	0.84	0.0554	0.0024	0.5260	0.0180	0.0681	0.0015	0.0212	0.0014	0.24	424.7	8.8	429	12	435	49	424.7	8.8	1.00
Zircon_83	1586	1041	0.66	0.0579	0.0024	0.5370	0.0170	0.0669	0.0013	0.0213	0.0014	-0.04	417.6	7.8	439	11	513	55	417.6	7.8	4.87
Zircon_84	622	525	0.84	0.0551	0.0023	0.5680	0.0210	0.0737	0.0018	0.0237	0.0017	0.58	458	11	456	14	443	74	458.0	11.0	-0.44
Zircon_85	1253	772	0.62	0.0554	0.0023	0.5260	0.0160	0.0681	0.0014	0.0213	0.0014	0.04	424.7	8.3	429	10	462	49	424.7	8.3	1.00
Zircon_86	867	767	0.88	0.0554	0.0023	0.5230	0.0170	0.0668	0.0013	0.0205	0.0014	0.28	416.6	7.9	427	12	426	61	416.6	7.9	2.44
Zircon_87	635	559	0.88	0.0565	0.0025	0.5430	0.0190	0.0695	0.0015	0.0222	0.0015	0.14	433.4	8.9	440	13	480	59	433.4	8.9	1.50
Zircon_88	1132	1150	1.02	0.0569	0.0024	0.5050	0.0170	0.0639	0.0013	0.0194	0.0014	0.12	399.1	8.1	415	12	498	48	399.1	8.1	3.83
Zircon_89	1028	1048	1.02	0.0556	0.0024	0.5250	0.0180	0.0677	0.0014	0.0208	0.0014	0.06	422.6	8.3	428	12	421	48	422.6	8.3	1.26
Zircon_90	327.4	213.4	0.65	0.0558	0.0028	0.5710	0.0250	0.0723	0.0016	0.0243	0.0017	0.03	449.9	9.4	457	15	475	61	449.9	9.4	1.55

Tabla IV.C. Relaciones isotópicas de Hf en la población de zircones de las cinco muestras mediante MC-LA-ICPMS, valores de ɛHf y edades modelo en uno y dos pasos.

	Hf176_ 177_stn	Hf176_177_st n_Int2SE	Lu176_Hf177 _Corr	Lu176_Hf177 _Corr_Int2SE	Yb176_Hf177 _Corr	Yb176_Hf177 _Corr_Int2SE	Hf178_177	$\begin{array}{c} \mathrm{Hf178_177_In} \\ \mathrm{t2SE} \end{array}$	$176 Hf/177 Hf_t$	t (age, Ma)	εHf ₍₀₎	±	$\epsilon H f_{(t)}$	$T_{\rm DM}$	T _{DM} C*	FotalHfB eam (V)
CM13-3a	0.282387	0.000034	0.00172	0.00009	0.0465	0.003	1.467217	0.000035	0.282372	470	-14.1	1.20	-4.1	1246	1414	26.65
hf_1	0.282371	0.000024	0.002249	0.000062	0.0609	0.0016	1.467227	0.000024	0.282352	459.3	-14.6	0.85	-5.1	1287	1452	25.51
hf_2	0.282386	0.000039	0.002808	0.000085	0.0748	0.0024	1.467245	0.000032	0.282362	463.9	-14.1	1.38	-4.6	1285	1433	24.7
hf_3	0.282405	0.000035	0.00222	0.00013	0.06	0.0037	1.467205	0.000029	0.282385	474	-13.4	1.24	-3.6	1237	1389	28.3
hf_4	0.282465	0.000025	0.001692	0.000062	0.0447	0.0017	1.4672	0.000021	0.282450	469	-11.3	0.88	-1.4	1133	1278	20.9
hf_5	0.282379	0.000017	0.001408	0.000056	0.0348	0.0014	1.467223	0.000022	0.282367	470.2	-14.4	0.60	-4.3	1247	1423	30.8
hf_6	0.282418	0.000031	0.003264	0.000056	0.0845	0.0013	1.467175	0.000028	0.282389	470	-13.0	1.10	-3.5	1254	1384	31.8
hf_7	0.282365	0.000034	0.00301	0.000042	0.07536	0.00088	1.467199	0.000029	0.282339	462.7	-14.9	1.20	-5.5	1323	1473	26
CM13-3a	0.282418	0.000024	0.001759	0.000055	0.0463	0.0013	1.467205	0.000028	0.282402	474	-13.0	0.85	-3.0	1203	1360	24.2
CM13-3b	0.282423	0.00002	0.002177	0.000019	0.05456	0.00067	1.467229	0.00002	0.282404	471	-12.8	0.71	-3.0	1209	1358	29.83
hf_8	0.282324	0.00002	0.001116	0.00001	0.02775	0.00021	1.467204	0.000024	0.282314	473	-16.3	0.71	-6.1	1314	1513	23.72
hf_9	0.282412	0.000019	0.001964	0.000099	0.0495	0.0024	1.467212	0.000023	0.282395	464	-13.2	0.67	-3.5	1218	1375	22.6
hf_10	0.282371	0.000017	0.001127	0.00002	0.02661	0.00058	1.467203	0.000022	0.282361	467	-14.6	0.60	-4.6	1248	1433	26.03
CM13-3b	0.282388	0.000019	0.001999	0.000025	0.05	0.00051	1.467227	0.000021	0.282370	474	-14.0	0.67	-4.1	1254	1415	29.1
CM13-3c	0.282375	0.000018	0.002261	0.000075	0.0567	0.0018	1.467237	0.000018	0.282356	458	-14.5	0.64	-5.0	1281	1445	28
hf_11	0.282401	0.000019	0.001914	0.000021	0.04829	0.00044	1.467248	0.000024	0.282384	473	-13.6	0.67	-3.6	1232	1392	27
hf_{12}	0.282383	0.000021	0.002195	0.000012	0.05467	0.00018	1.467211	0.000027	0.282364	471	-14.2	0.74	-4.4	1268	1428	21.2
hf_13	0.282389	0.000021	0.001973	0.000051	0.0497	0.0012	1.467224	0.000021	0.282372	466	-14.0	0.74	-4.2	1251	1415	28.6
hf_14	0.282439	0.000022	0.002836	0.000022	0.07195	0.00038	1.467224	0.000017	0.282414	463	-12.2	0.78	-2.8	1208	1342	32.5
CM13-3c	0.28242	0.000023	0.00305	0.000041	0.0763	0.001	1.467227	0.000024	0.282393	477	-12.9	0.81	-3.2	1243	1376	25.9
CH0403	0.282385	0.000016	0.00123	0.000019	0.02905	0.00038	1.467197	0.000022	0.282375	454.4	-14.1	0.57	-4.4	1232	1413	25.7
hf_52	0.282408	0.000014	0.000742	0.000012	0.0172	0.00032	1.467172	0.000022	0.282402	454.5	-13.3	0.50	-3.4	1184	1366	27.9
hf_53	0.282417	0.000015	0.0009293	0.0000046	0.021876	0.000096	1.467195	0.00002	0.282409	455.4	-13.0	0.53	-3.2	1178	1353	27.6

hf_54	0.282404	0.000017	0.001435	0.000014	0.03471	0.00022	1.467172	0.000026	0.282392	450.3	-13.5	0.60	-3.9	1212	1384	22.1
hf_{55}	0.282425	0.000015	0.000545	0.000021	0.01336	0.00051	1.467183	0.000022	0.282420	461	-12.7	0.53	-2.6	1155	1332	26.3
hf_56	0.282412	0.000017	0.001069	0.000011	0.02498	0.00026	1.467168	0.000024	0.282403	458.2	-13.2	0.60	-3.3	1189	1363	24.71
hf_57	0.282426	0.000017	0.0013407	0.0000097	0.03114	0.00027	1.467172	0.000023	0.282415	450.4	-12.7	0.60	-3.1	1178	1345	25.94
hf_{58}	0.282399	0.000016	0.001039	0.0000056	0.02441	0.00012	1.467143	0.000025	0.282390	460.2	-13.6	0.57	-3.7	1206	1385	25.86
hf_{59}	0.28242	0.000019	0.001132	0.000024	0.02649	0.00056	1.467179	0.00002	0.282410	463.1	-12.9	0.67	-2.9	1180	1349	25.33
hf_60	0.282415	0.00002	0.000952	0.0000067	0.02233	0.00015	1.467212	0.000024	0.282407	452.7	-13.1	0.71	-3.3	1181	1358	17.79
hf_61	0.282407	0.000017	0.000982	0.000011	0.02267	0.00024	1.467174	0.000021	0.282399	458.5	-13.4	0.60	-3.5	1193	1370	26.7
hf_{62}	0.282361	0.000019	0.001239	0.000012	0.03041	0.00025	1.467169	0.000024	0.282351	448	-15.0	0.67	-5.4	1266	1456	21.8
hf_63	0.2824	0.000021	0.001513	0.00003	0.03818	0.00082	1.467169	0.000025	0.282387	458	-13.6	0.74	-3.9	1220	1391	23.48
hf_64	0.282341	0.000026	0.0008501	0.0000037	0.020135	0.000065	1.467136	0.000033	0.282334	457	-15.7	0.92	-5.8	1281	1483	27.85
hf_{65}	0.282328	0.000018	0.000891	0.000012	0.02115	0.00033	1.46715	0.000022	0.282320	449	-16.2	0.64	-6.4	1301	1508	24.13
hf_66	0.282403	0.000016	0.000843	0.000033	0.01933	0.00079	1.467161	0.000025	0.282396	459.6	-13.5	0.57	-3.5	1195	1375	25.86
hf_67	0.282416	0.000018	0.0010822	0.0000027	0.025334	0.000067	1.467142	0.000019	0.282407	453.8	-13.0	0.64	-3.3	1184	1357	25.76
hf_68	0.282396	0.000017	0.0010693	0.0000037	0.026205	0.00007	1.467145	0.000022	0.282387	449.1	-13.8	0.60	-4.1	1212	1393	25.41
hf_69	0.282372	0.00002	0.001458	0.000046	0.0368	0.0013	1.467156	0.000023	0.282360	448.3	-14.6	0.71	-5.1	1258	1440	22.97
CH0403	0.282417	0.000016	0.000782	0.00002	0.01859	0.00054	1.467125	0.000023	0.282410	461.1	-13.0	0.57	-3.0	1173	1349	24.62
$\operatorname{Gt} 0405$	0.282486	0.000014	0.0007081	0.0000073	0.01791	0.00025	1.467232	0.000024	0.282480	427.4	-10.6	0.50	-1.3	1075	1237	24.91
hf_15	0.282463	0.000014	0.000673	0.000014	0.0163	0.00039	1.467232	0.000022	0.282457	441	-11.4	0.50	-1.8	1106	1273	25.55
hf_16	0.282468	0.000017	0.0007881	0.0000063	0.01988	0.00018	1.467227	0.000021	0.282461	448	-11.2	0.60	-1.5	1102	1264	25.5
hf_17	0.282417	0.000016	0.001555	0.00001	0.03774	0.00022	1.467211	0.000017	0.282404	436.4	-13.0	0.57	-3.7	1197	1367	32.8
hf_18	0.282463	0.000016	0.0006614	0.0000079	0.0162	0.00026	1.467212	0.000024	0.282458	442.9	-11.4	0.57	-1.7	1105	1272	23.86
hf_19	0.282483	0.000016	0.0007256	0.0000037	0.018238	0.000068	1.467213	0.000022	0.282477	443.3	-10.7	0.57	-1.0	1079	1238	24.77
hf_20	0.282499	0.00002	0.0008495	0.000006	0.02149	0.00016	1.467206	0.000022	0.282492	451.1	-10.1	0.71	-0.3	1061	1210	23.42
hf_21	0.282511	0.000015	0.0006231	0.0000041	0.0156	0.00014	1.467232	0.000023	0.282506	435.5	-9.7	0.53	-0.2	1038	1190	24.21
hf_22	0.282505	0.000019	0.0009187	0.0000044	0.02284	0.00012	1.467222	0.000023	0.282497	466.5	-9.9	0.67	0.2	1054	1197	23.92

62

0.02228

 $0.00026 \quad 1.467211 \quad 0.000024 \quad 0.282480$

-10.5

443

 $0.57 \ -0.9 \ 1078 \ 1232 \ 26.36$

0.282488 0.000016 0.000904 0.00001

hf_23

hf_{24}	0.28247	0.000017	0.0008264	0.0000061	0.02095	0.0001	1.467237	0.000021	0.282463	453	-11.1	0.60	-1.3	1101	1260	26.2
hf_{25}	0.282534	0.000017	0.0009487	0.0000021	0.02343	0.00014	1.467209	0.000021	0.282526	454.7	-8.9	0.60	1.0	1014	1150	26.24
hf_26	0.282516	0.000015	0.0007845	0.0000035	0.019483	0.000078	1.467233	0.000021	0.282509	461.2	-9.5	0.53	0.5	1035	1177	26.64
hf_27	0.282482	0.000015	0.000944	0.000026	0.02358	0.00075	1.46722	0.000021	0.282474	436.5	-10.7	0.53	-1.3	1087	1245	26.3
hf_28	0.282505	0.000016	0.0007396	0.0000076	0.01858	0.00025	1.467244	0.000021	0.282499	455.4	-9.9	0.57	0.0	1049	1197	24.06
hf_29	0.282518	0.000017	0.0007392	0.0000013	0.018511	0.000044	1.467219	0.000021	0.282512	441.8	-9.4	0.60	0.2	1031	1178	23.08
hf_30	0.282479	0.000019	0.001106	0.000011	0.02782	0.00018	1.467208	0.00002	0.282470	445.4	-10.8	0.67	-1.2	1096	1250	28.3
hf_31	0.282496	0.000015	0.0007997	0.0000062	0.02	0.00015	1.467226	0.000021	0.282489	447.9	-10.2	0.53	-0.5	1063	1216	25.39
hf_32	0.282527	0.000019	0.001225	0.000014	0.03141	0.00035	1.46722	0.000025	0.282517	434.1	-9.1	0.67	0.2	1032	1171	26.4
Gt0405	0.282446	0.000015	0.00096	0.000038	0.02336	0.0009	1.467208	0.000018	0.282438	459.5	-12.0	0.53	-2.0	1138	1302	31
Gt0457b	0.282438	0.000035	0.003893	0.000098	0.0996	0.0028	1.467163	0.000028	0.282402	491	-12.3	1.24	-2.6	1246	1355	26.5
Hf_{70}	0.282361	0.00003	0.002315	0.000069	0.0581	0.0018	1.467135	0.000027	0.282341	472	-15.0	1.06	-5.2	1304	1467	20.2
Hf_71	0.282399	0.000033	0.001343	0.000031	0.03194	0.00075	1.467136	0.000034	0.282388	451	-13.6	1.17	-4.0	1216	1391	17.31
hf_72	0.282416	0.00002	0.0006658	0.0000036	0.01441	0.00013	1.467156	0.000027	0.282410	473	-13.0	0.71	-2.7	1171	1347	24.21
hf_73	0.28242	0.000024	0.00303	0.000031	0.0766	0.001	1.467175	0.000022	0.282392	485	-12.9	0.85	-3.1	1242	1374	31.6
hf_74	0.28232	0.000025	0.001699	0.000015	0.04157	0.00038	1.467137	0.000027	0.282305	485	-16.4	0.88	-6.2	1340	1526	16.37
hf_75	0.282463	0.000027	0.0012957	0.0000098	0.03006	0.00021	1.467127	0.000032	0.282451	481	-11.4	0.95	-1.1	1124	1273	20.6
hf_76	0.28243	0.000017	0.002082	0.000024	0.04841	0.00058	1.467139	0.000022	0.282411	482	-12.6	0.60	-2.5	1196	1342	24.8
hf_77	0.282507	0.000019	0.000986	0.000013	0.02262	0.00027	1.467135	0.00002	0.282499	457	-9.8	0.67	0.1	1053	1197	21.97
hf_78	0.282451	0.000016	0.001029	0.000069	0.0237	0.0018	1.467121	0.000024	0.282442	479	-11.8	0.57	-1.5	1133	1290	24.65
hf_79	0.282473	0.000016	0.001013	0.000021	0.02426	0.00051	1.467156	0.000021	0.282464	478	-11.0	0.57	-0.7	1102	1252	27
hf_80	0.282393	0.000018	0.001301	0.000011	0.03194	0.0003	1.46713	0.00002	0.282381	481	-13.9	0.64	-3.6	1223	1394	25.5
hf_81	0.282418	0.00002	0.002548	0.000053	0.0636	0.0015	1.467099	0.000023	0.282395	481	-13.0	0.71	-3.1	1229	1370	22.73
hf_82	0.282363	0.000023	0.002197	0.000027	0.05379	0.00055	1.467088	0.000023	0.282344	460	-14.9	0.81	-5.4	1296	1465	22.86
hf_83	0.28237	0.000017	0.001669	0.000013	0.03919	0.00026	1.467108	0.00002	0.282355	471	-14.7	0.60	-4.7	1268	1442	28.4
hf_84	0.282393	0.000026	0.002426	0.000046	0.062	0.0013	1.467109	0.000029	0.282371	473	-13.9	0.92	-4.1	1261	1413	18.2
hf_85	0.282457	0.000028	0.002789	0.000048	0.0699	0.0014	1.467108	0.000027	0.282433	466	-11.6	0.99	-2.1	1180	1309	16.79

hf_86	0.282412	0.00002	0.002308	0.000032	0.05777	0.0008	1.467095	0.000018	0.282391	492	-13.2	0.71	-3.0	1229	1375	29.9
hf_87	0.282394	0.000029	0.002325	0.000047	0.0565	0.0011	1.467116	0.000024	0.282374	462	-13.8	1.03	-4.3	1256	1412	19.96
Gt0457b	0.282428	0.000031	0.002427	0.000049	0.0621	0.0014	1.467093	0.000026	0.282407	458	-12.6	1.10	-3.2	1210	1356	17.87
Gt0340 hf	0.282517	0.000016	0.001259	0.000011	0.02847	0.00026	1.467226	0.000023	0.282506	457.4	-9.5	0.57	0.3	1047	1184	26.3
hf_33	0.282504	0.000016	0.0012235	0.0000067	0.02476	0.00012	1.467233	0.000021	0.282494	427.8	-9.9	0.57	-0.8	1064	1213	29.1
hf_34	0.282505	0.000018	0.001933	0.000017	0.04326	0.00042	1.467228	0.000019	0.282489	429.1	-9.9	0.64	-0.9	1083	1221	27.13
hf_{35}	0.282485	0.000018	0.0015186	0.0000066	0.03197	0.00016	1.467229	0.000019	0.282473	429	-10.6	0.64	-1.5	1100	1250	29
hf_36	0.282499	0.000018	0.001923	0.000089	0.0407	0.0018	1.467206	0.000021	0.282483	453.5	-10.1	0.64	-0.6	1092	1226	30.2
hf_37	0.282504	0.000014	0.001213	0.00002	0.02658	0.00048	1.467213	0.000021	0.282494	426.4	-9.9	0.50	-0.8	1064	1213	26.04
hf_38	0.282528	0.000021	0.0014561	0.0000067	0.03523	0.00025	1.467214	0.000022	0.282516	429.3	-9.1	0.74	0.1	1037	1174	23.33
hf_39	0.282497	0.000017	0.0015989	0.000007	0.03276	0.00017	1.4672	0.000022	0.282483	451.4	-10.2	0.60	-0.6	1085	1225	28.9
hf_40	0.282507	0.000017	0.001715	0.000023	0.03755	0.00054	1.467214	0.000023	0.282492	454.5	-9.8	0.60	-0.2	1074	1209	27.4
hf_41	0.282497	0.000013	0.0011956	0.0000027	0.024329	0.000063	1.467227	0.000022	0.282487	426.3	-10.2	0.46	-1.0	1073	1225	28.3
hf_42	0.282502	0.000017	0.001221	0.000019	0.02715	0.0005	1.467202	0.000022	0.282492	449.4	-10.0	0.60	-0.4	1067	1211	26.9
hf_43	0.282508	0.000017	0.001515	0.000022	0.03108	0.0006	1.467218	0.00002	0.282496	429.4	-9.8	0.60	-0.7	1067	1209	27.33
hf_44	0.282508	0.000019	0.001647	0.0000081	0.03464	0.00023	1.467199	0.000022	0.282495	429.8	-9.8	0.67	-0.7	1071	1211	28.73
hf_{45}	0.282496	0.000016	0.001386	0.000011	0.02968	0.0003	1.467215	0.000023	0.282484	459.1	-10.2	0.57	-0.4	1080	1222	26.1
hf_46	0.282508	0.000014	0.0012492	0.0000039	0.026574	0.000088	1.46721	0.00002	0.282498	427.2	-9.8	0.50	-0.6	1059	1206	27
hf_47	0.2825	0.000017	0.001456	0.000013	0.03102	0.00028	1.467186	0.00002	0.282488	428	-10.1	0.60	-1.0	1076	1223	26.3
hf_48	0.282512	0.000016	0.001407	0.0000042	0.02869	0.00013	1.467199	0.000023	0.282500	456	-9.7	0.57	0.1	1058	1195	29.1
hf_49	0.282488	0.000023	0.00175	0.000027	0.04163	0.00075	1.46721	0.000018	0.282474	428.7	-10.5	0.81	-1.5	1102	1248	23.9
hf_{50}	0.282506	0.000015	0.001194	0.000019	0.02653	0.00049	1.467205	0.000021	0.282496	426.1	-9.9	0.53	-0.7	1060	1209	25.7
hf_51	0.282498	0.000019	0.001704	0.000042	0.03552	0.00072	1.467201	0.000023	0.282483	458	-10.1	0.67	-0.5	1087	1223	26.5
Gt0340h hf	0.282495	0.000018	0.0011134	0.000007	0.02385	0.0002	1.467187	0.000019	0.282486	449.9	-10.3	0.64	-0.6	1074	1222	27.2

5. DISCUSIÓN Y CONCLUSIONES

Primeramente, los cuerpos graníticos fechados en este trabajo corroboran el magmatismo del Paleozoico inferior en el complejo Acatlán y en el oeste y centro de Guatemala.

La edad U-Pb del granito Palo Liso (467.8±3.1 Ma) coincide con la obtenida por Miller et al. (2011) para el mismo granito (461.0±2.1 Ma; ID-TIMS) que forma parte de la suite de los granitoides Esperanza cuya edad de cristalización es del Ordovícico-Silúrico temprano, entre 480 y 440 Ma (Ortega-Gutiérrez et al., 1999; Talavera-Mendoza et al., 2005; Murphy et al., 2006; Miller et al., 2007; Keppie et al., 2010; Sánchez-Zavala et al., 2010); además, los numerosos cristales heredados confirman que el magma tiene una fuente de contaminación mesoproterozoica (entre 1 y 1.4 Ga), atribuida esencialmente a la fusión del complejo Oaxaqueño que forma su basamento.

Por otro lado, distintos cuerpos graníticos en los Altos Cuchumatanes (Bloque Maya) fueron previamente fechados por Solari et al. (2009) y Solari et al. (2010) obteniendo edades devono-silúricas. En este trabajo, la edad de la granodiorita de los Altos Cuchumatanes (CH0403) que se obtuvo es del Ordovícico Superior (456.2±2.5 Ma), que coincide con la obtenida por Solari et al. (2010) de 461 +6/-3 Ma.

Las edades U-Pb de la migmatita del complejo Chuacús (Gt0405) obtenidas en este trabajo, 446.1±4.8 Ma y 237.9±3.3 Ma, coinciden con las edades reportadas por Solari et al. (2011) de 450+2/-4 Ma y 243±3 Ma, comprobando así el evento magmático ordovícico en el complejo y un evento metamórfico de alto grado del Triásico (edades jóvenes) que provocó recristalización en algunos zircones y que corresponde a la edad de migmatización (Solari et al., 2011). A pesar de que se han identificado eventos magmáticos en el Ordovícico similares en el Complejo Chuacús y Bloque Maya y Terreno Mixteco, es difícil establecer una relación entre éstos ya que la ausencia de zircones heredados en la migmatita no indica aporte de una fuente cortical más antigua, así que no se puede determinar ciertamente la cercanía de estos terrenos únicamente con las edades de cristalización.

En el caso del Granito Rabinal, el intervalo de la edad de cristalización en el Ordovícico superior, entre 462 y 453 Ma, propuesto inicialmente por Ortega-Obregón et al. (2008), es ampliado levemente considerando las edades obtenidas en este trabajo, de 468.6±5.7 Ma para Gt0457b y de 452.7±3.1 Ma y 427.6±1.8 Ma para Gt0340. Esto implica que el magmatismo en la suite Rabinal llegó incluso hasta el Silúrico. En el granito Rabinal, sólo la muestra Gt0457b presenta edades concordantes heredadas que llegan hasta el Mesoproterozoico, mientras que la muestra Gt0340 sólo presenta un cristal de edad neoproterozoica.

La presencia de múltiples zircones heredados meso-neo-proterozoicos en los granitos del Bloque Maya indica que la fuente podría ser la misma que en el Complejo Acatlán, es decir, el Complejo Oaxaqueño. Esto indica que el Bloque Maya estuvo adyacente a Oaxaquia durante el Paleozoico inferior (Ortega-Obregón et al., 2008) e indica también que estos granitos estuvieron asimilando una componente más antigua, durante su cristalización.

Por otro lado, los datos isotópicos de Hf aportan nueva información respecto a la génesis de los granitos que forman en cinturón magmático peri-gondwánico del Paleozoico inferior (Estrada-Carmona et al., 2012).

En primera instancia, los valores negativos de épsilon Hf ($\epsilon_{Hf}<0$) reflejan que los granitoides no se originaron por la fusión de una fuente derivada directamente del manto; por el contrario, los zircones tienen en su mayoría valores épsilon Hf negativos ($\epsilon_{Hf}<0$), lo que sugiere una fuente del magma isotópicamente enriquecida, es decir, el magma parental proviene de material que ha tenido el tiempo suficiente para evolucionar de manera distinta a la curva del manto empobrecido, con una relación de Hf menor comparada con el CHUR, lo que demuestra que tiene una historia progresivamente más compleja que involucra procesos de fusión de corteza continental antigua.

Aunado a lo anterior, las edades modelo T_{DM}, entre 1.0 y 1.3 Ga (Tabla IV.B), indican que la fuente de los magmas se separó del manto empobrecido en el Mesoproterozoico como mínimo. Con la proyección hacia la curva del manto empobrecido sobre las líneas de evolución de Hf en los zircones, obtenemos que el tiempo de residencia de la fuente en la corteza continental superior es entre 1.1 y 1.5 Ga (Figura 24); es decir, los magmas se generaron a partir de una fuente de dicha edad, en donde el Complejo Oaxaqueño representa el principal componente cortical involucrado en la formación de los granitos.

La isotopía de Hf indica que los granitos se originaron por la fusión de corteza continental mesoproterozoica esencialmente y descarta la posibilidad de que se hayan formado únicamente a partir del fraccionamiento de magmas derivados del manto, en donde se verían típicamente valores de \mathcal{E} Hf positivos y cercanos a la curva de evolución del manto empobrecido y con edades modelo similares a las edades de cristalización, lo cual no sucede en este caso.

El hecho de que la fuente de los magmas en todas las muestras se hayan producido por fusión parcial de corteza preexistente, sugiere que la génesis de los granitoides no corresponde a un régimen extensional de rift necesariamente, ya que los granitos formados en estos ambientes (anorogénicos) muestran composiciones isotópicas mantélicas, atribuidas a las fuentes máficas derivadas de la fusión parcial del manto, con tendencias hacia valores más evolucionados implicando asimilación o mezcla con componentes corticales más antiguas (Kemp & Hawkesworth, 2003). Esta idea se contrapone al modelo petrogenético de Nance et al. (2009), donde se propone que los granitos se formaron en un ambiente anorogénico, i. e., de rift continental como parte del magmatismo bimodal durante la apertura del océano Rheico. En este punto es importante mencionar que el magmatismo bimodal se asocia no sólo a ambientes de rift, sino a diversos contextos geodinámicos, por lo que el hecho de tener rocas graníticas coexistiendo con rocas máficas formando una suite bimodal no implica obligadamente que se trate de un ambiente extensional, sobre todo si la componente máfica es escasa y/o no es contemporánea, como se observa en las localidades estudiadas.

Dicho lo anterior, y desde la perspectiva que ofrece este estudio piloto empleando la isotopía de Hf, podemos sugerir alternativamente que los granitos se formaron en un ambiente tectónico convergente, de formación de orógenos por colisión continentecontinente o en un arco magmático activo. En el primer escenario, durante la colisión de dos bloques continentales, la generación de magmas graníticos se atribuye a la fusión de la corteza post-orogénica, en donde el engrosamiento cortical facilita la producción de calor permitiendo fundir la corteza continental engrosada, por lo que los magmas producidos reciclan la firma isotópica de los orógenos antiguos. Bajo estas condiciones, no hay contribución de material mantélico, ni evidencia geoquímica de algún arco magmático, en un modelo análogo a los granitos anorogénicos de 1.4 Ga en el sur de Laurencia (Goodge y Vervoort, 2006) y donde típicamente se observarían los granitos tipo S (Ortega-Obregón et al., 2008).

En el segundo escenario, los granitos pudieron formarse en un ambiente de subducción donde la fuente primaria es el manto empobrecido que durante su ascenso asimila porciones de la corteza continental y adquiere su firma isotópica. Este segundo escenario sería compatible con los datos que indican que los granitos son calci-alcalinos y con afinidad peraluminosa (Miller et al., 2007; Ortega-Obregón et al., 2008; Keppie et al., 2012; este estudio), características típicamente observables en arcos continentales.

Además de usar isotopía de Hf en los zircones, y debido a que la firma geoquímica calcialcalina de los granitos se había interpretado previamente como heredada por los múltiples núcleos heredados mesoproterozoicos, empleamos diversos diagramas que apoyaran los datos isotópicos de Hf para discernir el ambiente de emplazamiento. Es importante considerar que los diagramas de discriminación de ambientes tectónicos utilizando elementos traza pueden ser ambiguos, por lo que deben tratarse con cautela, ya que la composición de elementos traza de los magmas parentales depende directamente de la fuente que se funde y no es necesariamente indicativa del ambiente tectónico de formación; sin embargo, son bastante útiles como complemento de la información isotópica para la interpretación.

El comportamiento de las tierras raras en los diagramas spider (Figura 20) no muestra patrones similares a los granitos tipo A, en donde se aprecia un patrón plano con una anomalía negativa de Eu alta o incluso un enriquecimiento de LREE tierras raras ligeras con una anomalía negativa de Eu poco marcada. En todas las muestras, la anomalía de Eu marcada sugiere procesos de cristalización fraccionada a partir de una fuente primaria o bajos grados de fusión cortical y el patrón de enriquecimiento de tierras raras pesadas es más compatible con materiales corticales, principalmente de la corteza superior (White, 2013).

Utilizando las relaciones de Hf e Y (Figura 26), observamos que los granitos ocupan los campos orogénico y mezcla orogénico+anorogénico, que corresponden a rocas calcialcalinas y peraluminosas en general. Además, es evidente que los campos 1 y 2, que representan los granitos toleíticos, alcalinos/peralcalinos no están ocupados. La morfología de los zircones como un indicador petrogenético (Pupin, 1980) indica fuentes provenientes del manto y corticales, con una importante concentración de datos en la línea de tendencia de los granitos calci-alcalinos y aluminosos (Figura 19). Los diagramas de \mathcal{E} Hf vs Yb/Hf sugieren que los magmas parentales de los granitos se originaron durante la colisión de dos bloques continentales (Figura 25), desde las etapas iniciales hasta finales y no reflejan que haya habido entrada de material mantélico para su formación; sin embargo este diagrama no permite descartar otros tipos de ambientes geodinámicos ya que se desconoce el comportamiento de las líneas de evolución de otros contextos tectónicos.

La geoquímica de elementos traza corrobora la información isotópica de Hf en los zircones, por lo que proponemos como hipótesis alternativa que los granitos se generaron en un ambiente convergente contrario a la configuración intraplaca como propone el modelo de Nance et al. (2009), donde la configuración de arco continental y colisión continental son factibles ya que no se es posible descartar alguno de éstos con nuestros datos.

Considerando que es poco probable que el cinturón magmático se haya formado durante la apertura del océano Rheico, nuestra hipótesis contrasta el ambiente geodinámico y la posición paleogeográfica de los terrenos peri-gondwánicos del sur de México y Guatemala (Oaxaquia, Bloque Maya y Chuacús) durante el Ordovícico-Silúrico. Alternativamente a la hipótesis de que el magmatismo representa la apertura y deriva del océano Rheico (Miller et al., 2007; Nance et al., 2009; Keppie et al., 2012; Ortega-Obregón et al., 2008) durante el Paleozoico inferior, éste podría estar asociado al cierre del océano Iapetus (Ortega-Gutiérrez et al., 1999; Talavera-Mendoza et al., 2005; Vega-Granillo, 2009) si efectivamente se confirmara un ambiente de arco continental activo, o bien, podría tratarse de un ambiente completamente distinto, donde estos bloques estuvieron involucrados en una colisión continental.

Los posibles escenarios de emplazamiento de los granitos del cinturón magmático paleozoico, más que ser concluyentes, se proponen como hipótesis alternativas debido a que este estudio se limitó únicamente a cinco muestras por tratarse de un trabajo piloto. La densidad de datos no es suficiente para probar a ciencia cierta determinado ambiente tectónico y tampoco para modificar o rechazar la paleogeografía de los terrenos perigondwánicos en el contexto evolutivo del océano Rheico, pues se requiere una base de datos mucho más extensa e incluyente de todos los cuerpos ígneos que forman el
cinturón magmático peri-gondwánico, incluyendo los dos extremos del magmatismo bimodal.

Los alcances de este estudio fue mostrar la utilidad de usar la isotopía de Hf en los zircones para obtener información adicional de la evolución de la corteza y en la petrogénesis de las rocas ígneas. Al obtener los primero datos isotópicos de Hf en algunos de los granitos paleozoicos, fue posible interpretar una génesis distinta para los granitos del cinturón magmático paleozoico desde un enfoque distinto que deja un campo de investigación abierto para probar o negar tal propuesta.

6. REFERENCIAS

Belousova, E. A.; Kostitsyn, Y. A.; Griffin, W. L.; Begg, G. C.; O'Reilly, S. Y.; Pearson, N. J., 2010. The growth of continental crust: Constraints from zircon Hf-isotope data. *Lithos*, 119, pp.457-66.

Belousova, E.A., Griffin, W.L. & O'Reilly, S.Y., 2006. Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. *Journal of Petrology*, 47(2), pp.329-53.

Belousova, E.A., Griffin, W.L., O'Reilly, S.Y. & Fisher, N.I., 2002. Igneous zircon: trace element composition as an indicator of source rock type. *Contributions to Mineralogy and Petrology*, 143(5), pp.602-22.

Blichert-Toft, J. & Albarède, F., 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. *Earth and Planetary Science*, Letters 148, pp.243-58.

Bouvier, A., Vervoort, J.D. & Patchett, P.J., 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. *Earth and Planetary Science Letters*, 273, pp.48-57.

Elías-Herrera, M. & Ortega-Gutiérrez, F., 2002. Caltepec fault zone: An Early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán Complexes, southern Mexico, and regional tectonic implications. *Tectonic*, 21(3).

Estrada-Carmona, J., Weber, B., Martens, U. & López-Martínez, M., 2012. Petrogenesis of Ordovician magmatic rocks in the southern Chiapas Massif Complex: relations with the early Paleozoic magmatic belts of northwestern Gondwana. *International Geology Review*, 54(16), pp.1918-43.

Faure, G. & Mensing, T.M., 2005. *Isotopes: principles and applications*. Tercera ed. New Jersey: John Wiley & Sons.

Götze, J. & Kempe, U., 2009. Physical Principles of Cathodoluminescence (CL) and its Applications in Geoscience. In A. Gucsik, ed. *Cathodoluminescence and its Applications in the Planetary Sciences*. Primera ed. Springer. pp.1-22.

Hawkesworth, C.J. et al., 2010. The generation and evolution of the continental crust. *Journal of the Geological Society, London*, 167, pp.229-48.

Hawkesworth, C.J. & Kemp, A.I., 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. *Chemical Geology*, (226), pp.144-62.

Hoskin, P.W.O. & Ireland, T.R., 2000. Rare earth element chemistry of zircon and its use as a provenance indicator. *Geology*, 28(7), pp.627-30.

Hoskin, P.W.O. & Schaltegger, U., 2003. The composition of Zircon and Igneous and Metamorphic Petrogenesis. *Reviews in Mineralogy and Geochemistry*, 53(1), pp.27-62.

Kemp, A..I. & Hawkesworth, C..J., 2003. Granitic perspectives on the generation and secular evolution of the continental crust. *Teatrise on Geochemistry*, 3, pp.349-410.

Keppie, J.D., Dostal, J., Murphy, J.B. & Nance, R.D., 2008. Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: From rifted Rheic margin to active Pacific margin. *Tectonophysics*, 461, pp.277-90.

Keppie, J.D. et al., 2012. Constraints on the subduction erosion/extrusion cycle in the Paleozoic Acatlán Complex of southern Mexico: Geochemistry and geochronology of the type Piaxtla Suite. *Gondwana Research*, 21, pp.1050-65.

Keppie, J.D. et al., 2010. Late Paleozoic subduction and exhumation of Cambro-Ordovician passive margin and arc rocks in the northern Acatlán Complex, southern Mexico: Geochronological constraints. *Tectonophysics*, 495, pp.213-29.

Keppie, J.D. et al., 2010. Late Paleozoic subduction and exhumation of Cambro-Ordovician passive margin and arc rocks in the northern Acatlán Complex, southern Mexico: Geochronological constraints. *Tectonophysics*, 495, pp.213-29.

Martens, U., Weber, B. & Valencia, V.A., 2010. U/Pb geochronology of Devonian and older Paleozoic beds in the southwestern Maya Block, Central America: its affinity with Peri-Gondwanan terranes. *Geological Society of America Bulletin*, 122, pp.815-29.

McDonough, W.F. & Sun, S.-s., 1995. The composition of the Earth. *Chemical Geology*, 120, pp.223-53.

Miller, B.V. et al., 2007. Ordovician calc-alkaline granitoids in the Acatlán Complex, southern Mexico: Geochemical and geochronologic data and implications for the tectonics of the Gondwanan margin of the Rheic Ocean. *Geological Society of America*, Special paper(423), pp.465-75.

Murphy, J.B. et al., 2006. Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? *Geology*, 34, pp.325-28.

Nance, R.D. et al., 2009. Evolution of the Rheic Ocean. *Gondwana Research*, 17, pp.194-222.

Nance, R.D. et al., 2012. A brief history of the Rheic Ocean. *Geoscience Frontiers*, 3(2), pp.125-35.

Nance, R.D. & Linnemann, U., 2008. The Rheic Ocean: Origin, Evolution, and Significance. *GSA Today*, 18(12), pp.4-12.

Nance, R.D. et al., 2006. Acatlán Complex, southern Mexico: Record spanning the assembly and breakup of Pangea. *Geology*, 34(10), pp.857-60.

Nance, R.D. et al., 2007. Vestige of the Rheic Ocean in North America: The Acatlán Complex of southern Mexico. *Geological Society of America*, Special paper 423.

Ortega-Gutiérrez, F. et al., 1999. Late Ordovician-Early Silurian continental collisional orogeny in southern Mexico and its bearing on Gondwana-Laurentia connections. *Geology*, 27(8), pp.719-22.

Ortega-Obregón, C. et al., 2008. Middle-Late Ordovician magmatism and Late Cretaceous collision in the southern Maya Block, Rabinal-Salamá area, central Guatemala: Implications for North America-Caribbean plate tectonics. *GSA Bulletin*, 120(5/6), pp.556-70.

Pupin, J., 1988. Granites as indicators in paleogeodynamics. *Rendiconti della Societa italiana di mineralogia e petrologia*, 43(2), pp.237-62.

Pupin, J., 2000. Granite genesis related to geodynamics from Hf-Y in zircon. *Transactions of the Royal Society of Edinburgh: Earth Sciences*, 91(1-2), pp.245-56.

Ratschbacher, L. et al., 2009. The North American-Caribbean Plate boundary in Mexico-Guatemala-Honduras. *Geological Society of London*, Special Publications(328), pp.219-93.

Rudnick, R.L. & Gao, S., 2003. Composition of Continental Crust. *Treatise on Geochemistry*, 3, pp.1-64.

Sánchez-Zavala, J.L. et al., 2004. Ordovician and Mesoproterozoic Zircons from the Tecomate Formation and Esperanza Granitoids, Acatlán Complex, Southern Mexico: Local Provenance in the Acatlán and Oaxacan Complexes. *International Geology Review*, 46(11), pp.1005-21.

Schoene, B., 2014. U-Th-Pb Geochronology. *Treatment of geochemical data*, (4), pp.341-78.

Sedlock, R.L., Ortega-Gutiérrez, F. & Speed, R.C., 1993. Tectonostratigraphic Terranes and Tectonic Evolution of Mexico. *Geological Society of America*, Special Paper 278, p.153.

Söderlund, U., Patchett, P.J., Vervoort, J.D. & Isachsen, C.E., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. *Earth and Planetary Science*, 219(3-4), pp.311-24.

Solari, L.A. et al., 2013. Late Cretaceous subduction of the continental basement of the Maya block (Rabinal Granite, central Guatemala): Tectonic implications for the geodynamic evolution of Central America. *Geological Society of America Bulletin*, 125(3-4), pp.625-39.

Solari, L.A., Gómez-Tuena, A., Ortega-Gutiérrez, F. & Ortega-Obregón, C., 2011. The Chuacús Metamorphic Complex, central Guatemala: geochronological and geochemical constraints on its Paleozoic-Mesozoic evolution. *Geological Acta*, 9(3-4), pp.1-21.

Solari, L.A. et al., 2010. Refining the age of magmatism in the Altos Cuchumatanes, western Guatemala, by LA-ICPMS, and tectonic implications. *International Geology Review*, 52(9), pp.977-98.

Solari, L.A. et al., 2009. U-Pb zircon geochronology of Paleozoic units in Western and Central Guatemala: insights into the tectonic evolution of Middle America. *Geological Society of London*, 328, pp.293-311.

Spencer, C.J. et al., 2015. Generation and preservation of the continental crust in the Grenville Orogeny. *Geoscience Frontiers*, 6, pp.357-72.

Talavera-Mendoza, O. et al., 2005. U-Pb geochronology of the Acatlán Complex and implications for the Paleozoic paleogeography and tectonic evolution of southern Mexico. *Earth and Planetary Science*, 235, pp.682-99.

Vega-Granillo, R. et al., 2009. Structural and tectonic evolution of the Acatlán Complex, southern Mexico: Its role in the collisional history of Laurentia and Gondwana. *Tectonics*, 28.

Vega-Granillo, R. et al., 2007. P-T-t evolution of Paleozoic high-P rocks of the Acatlán Complex (southern Mexico): Implications for the evolution of the Iapetus and Rheic oceans. *Geological Society of America Bulletin*, 119(9), pp.1249-64.

Weber, B., Scherer, E.E., Martes, U.K. & Mezger, K., 2012. Where did the lower Paleozoic rocks of Yucatan come from? A U-Pb, Lu-Hf, and Sm-Nd isotope study. *Chemical Geology*, 312-313, pp.1-17.

Wetherill, G.W., 1956. Discordant Uranium-Lead Ages. *Transactions, American Geophysical Union*, 37(3), pp.320-26.

White, W.M., 2013. Trace Elements in Igneous Processes. In *Geochemistry*. Wiley-Blackwell. pp.259-313.

Yang, J.H. et al., 2007. Tracing magma mixing in granite genesis: in situ U-Pb dating and Hf-isotope analysis of zircon. *Contributions to Mineralogy and Petrology*, 153(2), pp.177-90.