

. . . .

.. . .

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

A LOS ASISTENTES A LOS CURSOS

Las autoridades de la Facultad de Ingeniería, por conducto del jefe de la División de Educación Continua, otorgan una constancia de asistencia a quienes cumplan con los requisitos establecidos para cada curso.

El control de asistencia se llevará a cabo a través de la persona que le entregó Las inasistencias serán computadas por las autoridades de la las notas. División, con el fin de entregarle constancia solamente a los alumnos que tengan un mínimo de 80% de asistencias.

in all Pedimos a los asistentes recoger su constancia el día de la clausura. Estas se retendrán por el periodo de un año, pasado este tiempo la DECFI no se hará responsable de este documento.

Se recomienda a los asistentes participar; activamente con sus ideas y experiencias, pues los cursos que ofrece la División están planeados para que los profesores expongan una tesis, pero sobre todo, para que coordinen las opiniones de todos los interesados, constituyendo verdaderos seminarios.

Es muy importante que todos los asistentes ileñen y entreguer eguën su hoja de inscripción al inicio del curso, información que servirá para integrar un directorio de asistentes, que se entregará oportunamente.

24

Con el objeto de mejorar los servicios que la División de Educación Continua ofrece, al final del curso 'deberán entregar la evaluación a través de un cuestionario diseñado para emitir juicios anónimos.

Se recomienda llenar dicha evaluación conforme los profesores impartan sus clases, a efecto de no llenar en la última sesión las evaluaciones y con esto sean más fehacientes sus apreciaciones.

Atentamente División de Educación Continua.

7. ENTREGA DE MATERIAL Y CONTROL DE ASISTENCIA

8. SALA DE DESCANSO

6. OFICINAS GENERALES

2. BIBLIOTECA HISTÓRICA

"ING. BRUNO MASCANZONI"

3. LIBRERÍA UNAM

1. ACCESO

SANITARIOS

GUÍA DE LOCALIZACIÓN

4. CENTRO DE INFORMACIÓN Y DOCUMENTACIÓN

5. PROGRAMA DE APOYO A LA TITULACIÓN

AULAS

Ier. PISO

CALLE FILOMENO MATA

£...

PLANTA BAJA

MEZZANINNE

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSO DE APLICACIÓN DE NORMAS Y ESPECIFICACIONES DE USO EN MÉXICO PARA EL DISEÑO DE ESTRUCTURAS DE ACERO

TEMAS:

DISEÑO DE MIEMBROS EN TENSIÓN.
 DISEÑO DE MIEMBROS EN COMPRESIÓN.

DR. RODOLFO E. VALLES MATTOX DICIEMBRE 1999

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg, Cuauhtémoc 06000 México, D.F. APDO Postal M-2285 Teléfonos: 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

DISEÑO DE ESTRUCTURAS DE ACERO

MIEMBROS EN TENSIÓN

Oscar de Buen López de Heredia

PRESENTACIÓN.

En 1980 publiqué el libro "Estructuras de acero. Comportamiento y diseño", que ha sido utilizado como texto en escuelas y facultades de ingeniería de México y de otros países de habla hispana, y como obra de consulta por ingenieros dedicados al diseño de estructuras de acero.

Algunos de los temas tratados en el libro, especialmente los relativos a la teoría básica, han cambiado poco en los casi veinte años que han transcurrido desde entonces, pero otros, que se refieren a la aplicación de esa teoría a la solución de problemas reales de diseño, se han transformado por completo. Los cambios se han debido a las numerosísimas investigaciones, teóricas y experimentales, realizadas en ese tiempo, y al estudio del comportamiento, no siempre satisfactorio, de edificaciones sujetas a condiciones de carga extremas, ocasionadas, casi siempre, por temblores de tierra intensos.

También se han transformado, de manera muy importante, las normas y reglamentos de diseño, pues se han incorporado en ellos los estudios mencionados y, además, ha cambiado la filosofía en la que se basan, al pasar del tradicional diseño por esfuerzos permisibles al diseño por estados límite o, como suele llamar en estructuras de acero, por factores de carga y resistencia.

Por todas estas razones, parte del contenido del libro no es ya aplicable, por lo que conviene actualizarlo. A esa tarea, que no está terminada todavía, he dedicado buen número de horas de trabajo en los últimos dos o tres años.

No pretendo, sin embargo, hacer una segunda edición, sino una obra nueva, que tendrá, inevitablemente, muchos aspectos comunes con la primera, pero en la que se le quitará importancia a la teoría pues, como mencione arriba, en muchos aspectos no ha cambiado, y se dará mayor énfasis a las aplicaciones, basadas, principalmente, en el diseño por factores de carga y resistencia.

En conversaciones con el Ing. Oscar de la Torre, actual Presidente de la Sociedad Mexicana de Ingeniería Estructural (SMIE), surgió la posibilidad de publicar el libro por capítulos, sin esperar a que esté totalmente terminado, con lo que se obtienen las ventajas de una publicación más rápida y de una forma de adquisición más fácil, para las personas interesadas en la obra. Se vuelve, además, a una tradición, la de las novelas por entregas que aparecían en los periódicos del siglo pasado ¡Que bueno sería que mis capítulos fuesen esperados, por los ingenieros estructurales, con un pequeñisimo porcentaje del interés que despertaban los Pérez Galdós, Balzac o Dickens en el público en general!.

La publicación está siendo posible gracias al interés de la Fundación ICA en producir y distribuir material útil para la enseñanza de la ingeniería, la investigación y la práctica profesional, interés que quiero reconocer y agredecer; también agradezco el cuidadoso trabajo del Dr. Rodolfo Valles Mattox, vocal de la SMIE, quien ha coordinado la elaboración de las figuras y la escritura de mis manuscritos en su forma final.

Espero que la confianza que han depositado en mí la SMIE y la Fundación ICA se vea recompensada con una abundante venta de mi trabajo, lo que redundará en un incremento del patrimonio de la sociedad, a la que he cedido mis derechos de autor en lo que se refiere a la publicación y venta de los capítulos que irán apareciendo periódicamente.

--- --

Ing. Oscar de Buen López de Heredia

AGRADECIMIENTO.

Es indudable el aporte hecho por el profesor Emérito Ing. Oscar de Buen López de Heredia, a todos los estudiosos e interesados en el análisis y diseño de estructuras de acero, ya sea en sus cátedras de la Facultad de Ingeniería de la Universidad Nacional Autónoma de México, en sus numerosas participaciones como conferencista, en cursos, en seminarios tanto nacionales como internacionales.

Adicionalmente, en un número importante de publicaciones, nos ha dejado enseñanzas fáciles de entender y aplicar, siempre dispuesto a compartir sus múltiples experiencias profesionales, dejando aportaciones que se conocen en el ámbito nacional.

Su valiosisima participación en la elaboración de normas y especificaciones, nos proporciona a todos los interesados en la matería, la magnifica oportunidad de conocer sus actualizaciones en los temas que muy pocos dominan como el Maestro Oscar de Buen.

Además de todas sus aportaciones señaladas antes, no pocos de sus alumnos, hemos recibido su ejemplar trato como amigo y profesionista.

A partir de esta publicación y las que vendrán, la Sociedad Mexicana de Ingeniería Estructural, A.C. recibe la generosa aportación de los derechos del autor, por lo cual el gremio de estructuristas queda profunda y sinceramente agradecido al Maestro Oscar de Buen. Igualmente queremos dejar constancia de nuestro agradecimiento a la Fundación ICA por su disposición, pronta acción y facilidades, para realizar esta edición, que pretendemos todos los involucrados, sea de utilización inmediata y fácil, a estudiantes, profesores, minvestigadores y profesionistas.

.

Ing. Oscar de la Torre Rangel Presidente Décima Mesa Directiva Sociedad Mexicana de Ingeniería Estructural, A.C.

CAPÍTULO 1. MIEMBROS EN TENSIÓN.

ÍNDICE:

- 1.1 Introducción.
- 1.2 Uso de miembros en tensión.
- 1.3 Secciones.
- 1.4 Comportamiento de elementos en tensión.
- 1.5 Estados límite.
- 1.6 Resistencia de diseño.
- 1.7 Relaciones de esbeltez.
- 1.8 Áreas de las secciones transversales.
 - 1.8.1 Área neta.
 - 1.8.2 Área neta efectiva.
- 1.9 Resistencia a la ruptura por cortante y tensión combinadas ("block shear rupture strength").

_

- 1.10 Placas de nudo.
- 1.11 Resistencia de diseño de elementos de conexión.

4

- 1.12 Ángulos aislados en tensión.
- 1.13 Elementos de lámina delgada.
- 1.14 Referencias.

.

CAPÍTULO 1. MIEMBROS EN TENSIÓN.

1.1 INTRODUCCIÓN.

Un miembro que transmite una fuerza de tensión entre dos puntos de una estructura es el elemento estructural más eficiente y de diseño más sencillo. Su eficiencia se debe a que la fuerza axial produce esfuerzos constantes en todo el material que lo compone, de manera que todo puede trabajar al esfuerzo máximo permisible y, además, que las barras en tensión no se pandean, por lo que no hay fenómenos de inestabilidad que son críticos, con frecuencia, en elementos estructurales de acero con otras condiciones de carga. El diseño consiste en comparar el esfuerzo, igual al cociente de la fuerza de trabajo entre el área, constante, de las secciones transversales, con el permisible, o la resistencia, producto del área por el esfuerzo de fluencia o de ruptura, con la acción factorizada de diseño.

A las barras que trabajan en tensión se les da el nombre de tirantes.

El diseño se complica, sin embargo, en buena parte de los casos de interés práctico, porque las conexiones con el resto de la estructura suelen introducir excentricidades en las cargas, de manera que los tirantes trabajan, realmente, en flexotensión, y porque los elementos estructurales reales tienen imperfecciones geométricas, esfuerzos residuales, agujeros, que hacen que las fuerzas interiores no se distribuyan de manera uniforme en las secciones transversales.

La elección de las conexiones constituye uno de los aspectos más importantes en el diseño de estructuras de acero, puesto que definen cómo se transmitirán las acciones de unos miembros a otros, lo que influye c'e manera decisiva en su forma de trabajo y en las dimensiones que se requieren para acomodar los elementos de unión, soldaduras o tornillos. Los detalles de las conexiones gobiernan, con frecuencia, el diseño de los miembros en tensión, por lo que son uno de los criterios más importantes en la elección del tipo de sección adecuada.

Las conexiones entre miembros, y entre los elementos que componen a algunos de ellos, se escogen en las primeras etapas del diseño, para evitar uniones difíciles de realizar, caras y poco eficientes, o modificaciones en el diseño, que pueden ser de mucha importancia.

El párrafo anterior no se refiere sólo a los miembros en tensión sino, en general a estructuras de acero de todos los tipos.

1.2 USO DE MIEMBROS EN TENSIÓN.

Los elementos en tensión se utilizan en bodegas y estructuras industriales como parte del contraventeo de las vigas y columnas de la cubierta y las paredes, con el doble, ----

objeto de dar soporte lateral a secciones transversales escogidas y de resistir las fuerzas horizontales producidas por viento o sismo (Fig. 1.1), y como tirantes de largueros, que ayudan a alinearlos durante el montaje, y resisten la componente de la carga vertical paralela a la cubierta o la carga vertical total en las paredes, transmitiéndola a miembros horizontales de resistencia adecuada, al mismo tiempo que proporcionan soporte lateral a los largueros (Figs. 1.2 y 1.3). En estructuras ligeras se emplean barras de sección transversal circular maciza que, por su gran esbeltez, no tienen resistencia en compresión, por lo que cuando las fuerzas en los contraventeos pueden cambiar de sentido se colocan dos tirantes cruzados, de manera .que siempre haya uno que trabaje en tensión.

- (1). Marcos rígidos.
- (2). Armadura "horizontal": da soporte lateral a los cabezales de los marcos rígidos; resiste el empuje de viento en la fachada y lo transmite a las armaduras verticales.
- (3). Armaduras verticales: transmiten el viento a la cimentación y dan soporte lateral a las columnas de los marcos rigidos.
- (4). Columnas de fachada.
- (5). Contraventeo lateral de las columnas de fachada.

Fig. 1.1 Contraventeo de una estructura industrial.

Fig. 1.2 Empleo de tirantes en los techos inclinados de edificios industriales.

Fig. 1.3 Empleo de tirantes en las fachadas de edificios industriales.

En edificios urbanos se emplean también, con frecuencia, contraventeos verticales, para evitar posibles problemas de pandeo de entrepiso o de la estructura completa, y para resistir fuerzas horizontales. Si la construcción tiene cierta altura y, sobre todo, si está situada en una zona sísmica, no conviene que sólo trabajen las diagonales que están en tensión, por lo que, si el contraventeo es en "X" o en "V", los dos elementos que lo componen se diseñan para que resistan, entre los dos, la fuerza horizontal: Es decir, trabajan en tensión y compresión alternadas. En esas condiciones las diagonales resultan bastante robustas, y su diseño queda regido por la fuerza de compresión (Fig. 1.4). Lo mismo sucede cuando se usan diagonales sencillas.

Fig. 1.4 Ejemplos de contraventeos verticales en edificios de varios pisos.

Las barras en tensión se emplean también en cuerdas, diagonales y montantes de armaduras para puentes, techos de bodegas y fábricas, y vigas de alma abierta en

edificios urbanos (Fig. 1.5), así como en torres de transmisión de energía eléctrica (Fig. 1.6). En armaduras ligeras es común el uso de ángulos, generalmente en pares, pero en estructuras robustas se emplean barras de cualquier sección transversal.

Fig. 1.5 Armaduras para puentes y edificios urbanos o industriales.

Fig. 1.6 Torres de transmisión de energía eléctrica y de comunicaciones.

También se usan elementos en tensión, con frecuencia cables, en puentes colgantes y atirantados, en cubiertas colgantes, y para resistir los coceos de arcos y marcos rígidos (Fig. 1.7).

Fig. 1.7 Puentes colgantes y atirantados.

1.3 SECCIONES.

Para un acero dado, la resistencia de una barra en tensión axial depende sólo del área de sus secciones transversales; las propiedades geométricas restantes carecen de

importancia. Los criterios que determinan la elección del perfil son la magnitud de las fuerzas que ha de resistir y la mayor o menor facilidad con que pueda unirse al resto de la estructura.

Casi todos los perfiles existentes se usan como tirantes (Fig. 1.8): varillas en contraventeos de estructuras ligeras y largueros de techo o pared, ángulos sencillos o dobles, tés, canales aisladas o en pares, secciones H, laminadas o formadas por placas, en armaduras de distintos tipos, cables en puentes colgantes y atirantados y en cubiertas colgantes, perfiles de lámina delgada de diversas características geométricas.

Fig. 1.8 Secciones transversales de miembros en tensión.

También se emplean secciones circulares, cuadradas o rectangulares huecas, laminadas o hechas con placas, y miembros formados por dos o más perfiles unidos entre si; los elementos en cajón y los compuestos suelen ser difíciles de conectar (Fig. 1.8).

1.4 COMPORTAMIENTO DE ELEMENTOS EN TENSIÓN.

El comportamiento de una barra en tensión se describe con una gráfica accióndeformación, que relaciona la acción más significativa con un parámetro representativo de las deformaciones; la gráfica se traza para cargas crecientes, hasta la falla. La curva de interés relaciona los esfuerzos (o las fuerzas) con los alargamientos.

La gráfica esfuerzo (o fuerza)-alargamiento de un miembro en tensión es parecida a la de una probeta; sin embargo, hay diferencias importantes entre las dos. En la Fig. 1.9 se muestra la gráfica de una probeta y la parte inicial, agrandada, de la curva correspondiente a un miembro. La parte inicial muestra que, para solicitaciones pequeñas, la respuesta es elástica: si el miembro se descarga recupera la forma y dimensiones iniciales. El flujo plástico en zonas localizadas se inicia antes de que se alcance el límite de fluencia determinado con la probeta, debido a excentricidades inevitables en las cargas, variaciones en las dimensiones de las secciones transversales, agujeros o defectos que ocasionan concentraciones de esfuerzos, y esfuerzos residuales de laminación o creados durante la fabricación de la estructura;

comienza una zona de "flujo plástico restringido", que termina cuando todo el material fluye plásticamente. A partir de aquí, los alargamientos crecen bajo carga constante, hasta que las fibras empiezan a endurecerse por deformación, y la resistencia vuelve a aumentar. La región de "flujo plástico no restringido" define un límite de utilidad estructural del miembro, pero éste tiene una capacidad adicional de carga considerable. El otro estado límite de carga corresponde a la resistencia máxima.

Fig. 1.9 Gráfica fuerza-deformación de una probeta y un miembro en tensión.

Un miembro en tensión sin agujeros alcanza el límite de utilidad estructural cuando entra en la región de flujo plástico no restringido, pues experimenta alargamientos inadmisibles, al deformarse plásticamente todo el material que lo compone. Éste modo de falla es dúctil.

Si la barra está atornillada al resto de la estructura, los agujeros para los tornillos producen concentraciones de esfuerzos, pero la ductilidad de los aceros estructurales comunes es tal que, bajo carga estática y a temperaturas ordinarias, las concentraciones desaparecen, por redistribución plástica de esfuerzos, antes de que se alcance la resistencia última; el efecto de los agujeros se reduce a la pérdida de área que ocasionan en algunas secciones transversales.

Cuando la carga excede la que produce el flujo plástico en la sección neta (descontados los agujeros), el material fluye plásticamente, pero en una longitud muy pequeña, por lo que se llega al endurecimiento por deformación sin que el alargamiento de la barra sea excesivo. A menos que el miembro falle antes por flujo plástico en la sección total, la resistencia se agota cuando se rompe la sección neta crítica, bajo esfuerzos cercanos a la resistencia última en tensión del material. La falla es frágil.

1.5 ESTADOS LÍMITE.

De acuerdo con la filosofía del diseño elástico, la aparición del esfuerzo de fluencia en un punto cualquiera de una sección transversal constituye el límite de utilidad estructural de una barra en tensión. Sin embargo, si el comportamiento es dúctil, la iniciación del flujo plástico en una zona de concentración de esfuerzos ocasionada, por ejemplo, por un agujero, tiene poco significado en la resistencia real del miembro, mientras que la fuerza que produce su plastificación total sí constituye un límite de utilidad estructural, pues ocasiona elongaciones grandes e incontrolables que, además, pueden precipitar la falla del sistema del que forma parte la barra. Así, aunque la resistencia a la ruptura suele ser mayor que el producto del área de la sección transversal por el esfuerzo de fluencia del material, a causa principalmente del endurecimiento por deformación que precede a la ruptura, el flujo plástico general del miembro constituye un estado limite de falla.

Por otro lado, si la barra en tensión se une al resto de la estructura con remaches o tornillos, sus extremos se debilitan por los agujeros que se requieren para colocarlos y, dependiendo de la reducción de área ocasionada y de las características mecánicas del acero, el miembro puede fallar por fractura en el área neta bajo una fuerza menor que la que ocasionaría el flujo plástico de la sección total. La fractura en la sección neta constituye un segundo estado límite de falla. Se presenta una situación semejante cuando el miembro en tensión está conectado al resto de la estructura a través de algunas de las partes que lo componen, pero no de todas, aunque la conexión sea soldada.

Los agujeros no se tienen en cuenta cuando se revisa el flujo plástico generalizado porque, por las pequeñas dimensiones de la parte del miembro en la que están situados, influyen poco en él. Además, en esa zona se llega pronto al endurecimiento por deformación, por lo que el flujo plástico del área neta no constituye tampoco un estado límite de interés.

1.6 RESISTENCIA DE DISEÑO (refs. 1.1, 1.3).

La resistencia de diseño R_t de un elemento estructural en tensión es el menor de los valores que corresponden a los estados límite de flujo plástico en la sección total y de fractura en el área neta.

a) Estado límite de flujo plástico en la sección total:

$$F_R = 0.90$$

$$R_t = A_t F_y F_R$$
(1.1)

b) Estado límite de fractura en la sección neta:

$$F_R = 0.75$$

$$R_t = A_e F_u F_R$$
(1.2)

 A_t es el área total de la sección transversal del miembro, A_e el área neta efectiva, F_y el esfuerzo de fluencia mínimo garantizado del material y F_u su esfuerzo mínimo de ruptura en tensión. Tomando A_t y A_e en cm², y F_y y F_u en kg/cm², R_t se obtiene en kg.

La diferencia entre los factores de resistencia F_R especificados para las dos formas de falla refleja la tendencia general, en el diseño de estructuras, de contar con factores de seguridad mayores contra las fallas de tipo frágil que contra las dúctiles.

El modo de falla depende de la relación entre el área neta efectiva y el área total y de las propiedades mecánicas del acero. La frontera entre los modos queda definida por la condición $0.90A_rF_v = 0.75A_eF_u$ (los miembros de la igualdad son las resistencias correspondientes a los dos estados límite, ecs. 1.1 y 1.2). Cuando $A_e/A_r \ge 1.2F_v/F_u$, la falla es por flujo plástico general, mientras que si $A_e/A_r < 1.2F_v/F_u$ el estado límite es el de fractura en la sección neta.

Los dos estados límite mencionados corresponden a barras que tienen un comportamiento dúctil hasta la falla; la situación cambia por completo cuando se pierde la ductilidad, lo que puede suceder si el miembro trabaja a temperaturas muy bajas, bajo cargas que producen impacto, o queda sometido a un número muy elevado de ciclos de carga y descarga que ocasionan una falla por fatiga.

En diseño por esfuerzos permisibles, el esfuerzo permisible no debe exceder de $0.60F_y$ en el área total ni de $0.50F_y$ en el área neta efectiva (ref. 1.2).

EJEMPLO 1.1 Determine la resistencia de diseño de la placa de 20 cm x 2.5 cm de la Fig. E1.1-1. Los esfuerzos de fluencia y de ruptura en tensión del acero son 2530 y 4100 Kg/cm², respectivamente. Los tornillos tienen un diámetro de 2.22 cm (7/8"), y los agujeros son punzonados.

Area total: $A_r = 20 \times 2.5 = 50.0 \,\mathrm{cm}^2$ Área neta: $A_n = 50.0 - 2(2.22 + 0.3)2.5 = 37.4 \,\mathrm{cm}^2$

En el cálculo del área neta se considera que los agujeros tienen un diámetro 3 mm mayor que el de los tornillos (sec. 1.8.1).

El área neta efectiva A_e es igual a A_n en este caso (sec. 1.8.2).

a) Estado límite de flujo plástico en la sección total (ec. 1.1):

 $R_{i} = A_{i}F_{y}F_{p} = 50.0 \times 2530 \times 0.9 \times 10^{-3} = 113.9$ Ton

b) Estado límite de fractura en la sección neta (ec. 1.2):

 $R_t = A_e F_u F_R = 37.4 \times 4100 \times 0.75 \times 10^{-3} = 115.0$ Ton

La resistencia de diseño es de 11.3.9 Ton; es crítico el estado límite de flujo plástico en la sección total.

Como primer paso en la solución del problema podría determinarse el modo de falla, y después se utilizaría sólo la ecuación correspondiente:

 $A_e/A_i = 37.4/50.0 = 0.75$; $1.20 F_v/F_u = 1.2 \times 2530/4100 = 0.74$

Como $A_{\mu}/A_{\mu} > 1.20 F_{\mu}/F_{\mu}$ el estado límite es el de flujo plástico en la sección total.

En problemas de diseño se suelen calcular las dos resistencias, y se toma la menor como resistencia de diseño.

1.7 RELACIONES DE ESBELTEZ.

La esbeltez no influye en la resistencia de los miembros en tensión por lo que, desde ese punto de vista, no es necesario imponer ningún límite; si el elemento es una varilla o un cable, puede tener una esbeltez cualquiera. En miembros de otros tipos conviene no exceder un límite superior, para obtener cierta rigidez, que facilite su manejo y

٩ż,

ayude a evitar movimientos laterales o vibraciones indeseables bajo solicitaciones variables, como las inducidas por viento, sismo o, en estructuras industriales, por el movimiento de grúas u otros equipos.

En la ref. 1.1 se indica que la relación de esbeltez L/r de miembros en tensión puede tener cualquier valor, pero conviene que no pase de 240 en miembros principales ni de 300 en contraventeos y otros miembros secundarios, especialmente cuando estén sometidos a cargas que puedan ocasionar vibraciones. Las tres referencias 1.2, 1.3 y 1.4 fijan el mismo límite, 300, pero en las dos primeras se proporciona únicamente como una recomendación, mientras que de acuerdo con la última es obligatorio, a menos que se utilicen otros medios para controlar la flexibilidad, las vibraciones y las deformaciones transversales de una manera compatible con las condiciones de servicio, o se demuestre que esos factores no influyen en el comportamiento de la estructura o del conjunto del que forma parte el miembro en consideración.

A los cables y a las varillas se les suele dar una pretensión, para evitar vibraciones y deflexiones excesivas.

En miembros cuyo diseño está regido por solicitaciones sísmicas pueden ser necesarias restricciones más severas en las relaciones de esbeltez, que dependerán de los requisitos de ductilidad que deba cumplir el sistema estructural que resista las fuerzas horizontales.

1.8 ÁREAS DE LAS SECCIONES TRANSVERSALES.

El área total de un miembro, A_t , es el área completa de su sección transversal, igual a la suma de los productos del grueso por el ancho de todos los elementos (patines, almas, alas, placas) que componen la sección, medidos en un plano perpendicular al eje del miembro. En ángulos, el ancho se toma igual a la suma de los anchos de las dos alas, menos el grueso.

Aunque la definición anterior es la que se usa en las refs. 1.1 a 1.4, no es del todo correcta cuando se aplica a perfiles laminados (a diferencia de los formados por placas soldadas), pues ignora el grueso variable de algunos elementos planos, las zonas curvas entre ellos, y sus bordes redondeados.

1.8.1 Área neta.

La presencia de un agujero, aunque esté ocupado por un remache o tornillo, incrementa los esfuerzos en un elemento en tensión, pues disminuye el área en la que se distribuye la carga, y ocasiona concentraciones de esfuerzos en sus bordes (Las uniones con tornillos de alta resistencia diseñadas por fricción son una excepción). Este efecto no-se manifiesta en elementos comprimidos, en los que la fuerza se transmite por contacto directo con los remaches o tornillos.

El incremento de esfuerzos en los bordes del agujero, en el intervalo elástico, puede ser varias veces mayor que el esfuerzo medio; sin embargo, se supone que en la cercanía de la falla la fuerza se distribuye uniformemente en el área neta (es decir, en la que queda cuando se descuenta la que se pierde por el agujero), lo que es correcto en materiales dúctiles, como los aceros estructurales, por la redistribución de esfuerzos que precede a la ruptura.

La discusión anterior sólo es válida para miembros sujetos a cargas casi estáticas. Bajo condiciones que propicien fallas por fatiga, o cuando las cargas se aplican casi instantáneamente, como sucede durante un evento sísmico, el elemento puede romperse sin redistribución de esfuerzos; en esos casos han de tomarse todas las medidas posibles para minimizar las concentraciones de esfuerzos, además de disminuir los esfuerzos de diseño o la amplitud de sus variaciones; sin embargo, tampoco se calculan los incrementos de los esfuerzos en la cercanía del agujero.

El área neta de la sección transversal de un elemento en tensión, o, simplemente, el "área neta", es igual al área total de la sección menos la que se pierde por los agujeros. --Se obtiene sumando los productos del grueso de cada una de las partes por su ancho neto, que se determina como sigue:

- a) El ancho de los agujeros para remaches o tornillos se toma 1.5 mm mayor que el tamaño nominal del agujero, medido normalmente a la dirección de los esfuerzos.
- b) Cuando hay varios agujeros en una normal al eje de la pieza, el ancho neto de cada parte de la sección se obtiene restando al ancho total la suma de los anchos de los agujeros.
- c) Cuando los agujeros están dispuestos en una línea diagonal respecto al eje de la pieza, o en zigzag, deben estudiarse todas las trayectorias de falla posibles, para determinar a cuál le corresponde el ancho neto menor, que es el que se utiliza para calcular el área neta. El ancho neto de cada parte, correspondiente a cada trayectoria, se obtiene restando del ancho total la suma de los anchos de todos los agujeros que se encuentran en la trayectoria escogida, y sumando, para cada espacio entre agujeros consecutivos, la cantidad $s^2/4g$, donde *s* es la separación longitudinal, centro a centro, entre los dos-agujeros considerados (paso) y *g* es la separación transversal, centro a centro, entre ellos (gramil).

El ancho total de ángulos se toma igual a la suma de los anchos de las dos alas menos el grueso. La distancia transversal entre agujeros situados en alas opuestas es igual a la suma de los dos gramiles, medidos desde los bordes exteriores del ángulo, menos el grueso.

Al determinar el área neta a través de soldaduras de tapón o de ranura no se tiene en cuenta el metal de aportación.

Cuando los agujeros están colocados sobre rectas normales al eje de la pieza la sección neta crítica es la que pasa a través de ellos; por ejemplo, en la placa de la Fig. 1.10a es la sección AB.

Fig. 1.10 Posibles trayectorias de falla en una placa agujerada en tensión.

En cambio, cuando están dispuestos en diagonal o en zigzag hay varias líneas de falla posibles y, en general, a simple vista no se sabe cual es la crítica, por lo que se determina el ancho neto correspondiente a cada una de ellas y se utiliza el menor para calcular el área neta.

En la Fig. 1.10b se muestran todas las trayectorias de falla posibles de una placa con cinco agujeros; basta estudiar dos, la ABCD, normal a la línea de acción de las fuerzas de tensión, y la ABECD, en zigzag, pues todas las demás se reducen a alguna de ellas.

Los métodos prácticos que se utilizan para incluir el efecto de agujeros en zigzag en el diseño de piezas en tensión son empíricos; el que se recomienda en el párrafo 1.8.1c, propuesto en 1922 y revisado en varias ocasiones posteriores (ref. 1.5), es un procedimiento sencillo cuyos resultados concuerdan aceptablemente con los obtenidos en pruebas de laboratorio. Se recomienda en las refs. 1.1 a 1.4.

Por las razones mencionadas arriba, suelen despreciarse las concentraciones de esfuerzos que se originan en la vecindad de los agujeros.

El procedimiento empleado para hacer las perforaciones constituye uno de los aspectos críticos de las estructuras remachadas o atornilladas; el material que rodea a los agujeros punzonados pierde ductilidad y puede contener grietas diminutas, que constituyen puntos potenciales de iniciación de fallas; ese material endurecido debe eliminarse cuando puedan presentarse fracturas de tipo frágil o por fatiga bajo cargas de servicio.

Cuando las cargas son predominantemente estáticas, el efecto mencionado en el párrafo anterior se toma en cuenta calculando el área neta de las piezas en tensión con la suposición de que el ancho de los agujeros es 1.5 mm mayor que el nominal, medido normalmente a la dirección de los esfuerzos. Por consiguiente, en el cálculo de áreas netas se supone que los agujeros estándar tienen un diámetro 3 mm mayor que el de los remaches o tornillos, puesto que el diámetro real de los agujeros es 1.5 mm más grande que el del sujetador.

Si el grueso del material es mucho mayor que el diámetro del tornillo, es difícil punzonar agujeros del tamaño necesario sin deformar excesivamente el acero que los rodea, por lo que suelen subpunzonarse, con un diámetro 5 mm menor que el requerido, y taladrarse después al tamaño final, con las piezas que van a unirse ensambladas. En estos casos, así como cuando los agujeros se taladran desde un principio, es muy poco el material que se daña, por lo que no es necesario sustraer los 1.5 mm correspondientes a deterioro de los bordes.

EJEMPLO 1.2 Determine el área neta crítica de la placa de la Fig. E1.2-1. La placa es de 2.0 cm de grueso, y los tornillos de 1.9 cm (3/4") de diámetro. Los agujeros son punzonados.

Hay tres posibles trayectorias de falla: ABCD, ABCEF y ABEF.

Los agujeros deben considerarse de un diámetro igual a 1.9+0.3 = 2.2 cm.

Los anchos netos correspondientes a los tres casos son: ABCD: $35-2\times2.2 =$ 30.60 cmABCEF: $35-3\times2.2+12^2/(4\times10) =$ 32.00 cmABEF: $35-2\times2.2+12^2/(4\times20) =$ 32.40 cm

La trayectoria critica es la ABCD, luego:

 $A_n = 30.60 \times 2.0 = 61.2 \text{ cm}^2$

Por simple inspección se advierte que la trayectoria ABEF no es crítica en este caso, pues es más larga que la ABCD, y en las dos se restan dos agujeros.

EJEMPLO 1.3 El ángulo de la Fig. E1.3-1 es de 15.2 x 2.2 cm (6" x 7/8"), y los tornillos son de 2.2 cm (7/8") de diámetro, colocados en agujeros punzonados. Determine el área neta crítica.

Las posibles trayectorias de falla son ABCD, EFBCD y EFBGCD. EFBGH no puede ser crítica, porque en ella se descuentan tres agujeros, y es más larga que la EFBCD, en la que también se descuentan tres agujeros.

El ancho del ángulo desarrollado es: $15.2 \times 2 - 2.2 = 28.2 \text{ cm}$. El diámetro de cada agujero se toma igual a 2.2 + 0.3 = 2.5 cm.

Anchos netos:		
ABCD:	$28.2 - 2 \times 2.5 =$	23.20 cm
EFBCD:	$28.2 - 3 \times 2.5 + 5^2 / 4 \times 6.0 =$	21.74 cm
EFBGCD:	$28.2 - 4 \times 2.5 + 2 \times 5^2 / 4 \times 6.0 + 5^2 / 4 \times 9.8$	= 20.92 cm

La trayectoria crítica es la EFBGCD: $A_n = 20.92 \times 2.2 = 46.03 \text{ cm}^2$

1.8.2 Área neta efectiva.

No todos los miembros que trabajan en tensión pueden desarrollar un esfuerzo medio en la sección neta igual a la resistencia a la ruptura del acero. Las reducciones en resistencia pueden expresarse en términos de la eficiencia de la sección neta, definida como la relación entre el esfuerzo medio en el instante de la fractura y el esfuerzo de ruptura obtenido ensayando una probeta del material.

Los factores principales de los que depende la eficiencia de la sección neta son la ductilidad del metal, el método que se emplee para hacer los agujeros, el cociente del gramil, g, entre el diámetro, d, del tornillo o remache, la relación entre el área neta y el área de apoyo sobre el sujetador y, sobre todo, la distribución del material de la sección transversal de la barra, con respecto a las placas de unión, u otros elementos que se utilicen para conectarla (ref. 1.5).

La mayor parte de los aspectos anteriores se tienen en cuenta de una manera implícita; por ejemplo, los aceros que se emplean en construcción son suficientemente dúctiles para que su eficiencia, respecto a esta propiedad, sea del 100 por ciento, y los esfuerzos permisibles de contacto entre el material y los sujetadores se escogen de manera que ese fenómeno tampoco influya en la eficiencia de la sección neta.

El último factor, que es el más importante, sí se considera explícitamente en las especificaciones para diseño (refs. 1.1 a 1.4); la posición de los planos de corte de los tornillos o remaches respecto a la sección transversal del miembro influye significativamente en la eficiencia.

La importancia de este factor se ha demostrado experimentalmente ensayando miembros de acero en tensión, del tipo de los que se usan en diagonales y montantes de armaduras, como el que se muestra en la Fig. 1.11 (refs. 1.6 y 1.7; la ref. 1.5 contiene un resumen de las investigaciones reportadas en ellas). La sección "H" está unida al resto de la estructura a través de los patines.

Fig. 1.11 Distribución de esfuerzos en una sección "H" conectada por los patines.

A una cierta distancia de la conexión los esfuerzos son uniformes, pero como no todas las partes del miembro están unidas a las placas, a las que llega, eventualmente, la fuerza total, se originan concentraciones de esfuerzos en las partes conectadas (los patines, en la Fig. 1.11) y disminuciones de los mismos en las que no están unidas directamente (los esfuerzos en el alma disminuyen, hasta anularse en el extremo).

La distribución no uniforme de esfuerzos puede ocasionar una disminución en la eficiencia de la sección neta, ya que algunas de las partes que componen el miembro (las conectadas directamente) tienden a alcanzar su resistencia última antes de que se desarrolle la de la sección completa; la importancia de este fenómeno depende de la geometría de la junta y de las características del material.

Un fenómeno semejante se presenta en ángulos atornillados a una placa (Fig. 1.12).

Hasta ahora sólo se han mencionado conexiones remachadas o atornilladas; sin embargo, también en uniones soldadas los esfuerzos están distribuidos de manera no uniforme cuando la transmisión de fuerzas se efectúa a través de algunas de las partes que componen la barra; la diferencia entre los dos tipos de conexiones está en los agujeros, que no existen en las soldadas.

La pérdida de eficiencia en la sección neta está relacionada con el cociente de la longitud L de la conexión entre la distancia \bar{x} del centro de gravedad de la sección transversal de la barra conectada a la cara en contacto con la placa de unión (Fig. 1.12) (refs. 1.6 y 1.7). En secciones simétricas unidas a dos placas \bar{x} se determina como si estuviesen formadas por dos partes iguales, conectadas a cada placa (Fig. 1.11).

Fig. 1.12 Angulo conectado en una sola ala.

En las refs. 1.6 y 1.7 se recomienda que la pérdida de eficiencia de la sección neta se tenga en cuenta reduciéndola a una sección neta efectiva, cuya área se determina con la expresión empírica:

Área neta efectiva = $A_e = A_n \left(1 - \frac{x}{L}\right)$

 A_n es el área neta del miembro, L la longitud de la junta y \overline{x} la distancia entre el plano de cortante y el eje centroidal del elemento conectado.

El factor de reducción del área neta es:

$$U = 1 - \frac{\bar{x}}{L} \le 0.9 \tag{1.3}$$

La eficiencia aumenta cuando disminuye la excentricidad \bar{x} o crece la longitud de la conexión L.

En las especificaciones AISC de 1986 (ref. 1.8) esta fórmula aparecía en el Comentario, y no incluía el límite superior de 0.9; en 1993 (ref. 1.3) la ec. 1.3 está en el cuerpo de la norma. El límite superior se propone en la ref. 1.9, en vista de que en los estudios experimentales que se han realizado (refs. 1.6 y 1.7) pocas veces se han observado eficiencias mayores de 0.9.

De acuerdo con lo anterior, el área neta efectiva, A_e , de los miembros en tensión se calcula como sigue:

1. Cuando los remaches, tornillos o soldaduras transmiten la fuerza de tensión a cada uno de los elementos que constituyen la sección transversal del miembro, proporcionalmente a sus áreas respectivas, el área neta efectiva A_e es igual al área neta A_n .

2. Cuando los remaches, tornillos o soldaduras transmiten la fuerza de tensión a través de algunos de los elementos que constituyen la sección transversal del miembro, pero no de todos, el área neta efectiva *A_e* es:

(1.4)

$$A_{e} = AU$$

En esta expresión,

A = Area que se define más adelante.

 $U = \text{Coeficiente} \text{ de reducción } = 1 - (\bar{x}/L) \le 0.9$, o como se indica en c ó d.

 \overline{x} = Excentricidad de la conexión.

L = Longitud de la conexión en la dirección de la carga.

Se pueden utilizar valores mayores de U si se justifican experimentalmente o con otro criterio racional.

a) Cuando la fuerza de tensión se transmite con remaches o tornillos:

 $A = A_n =$ área neta del miembro.

 b) Cuando la fuerza de tensión se transmite con soldaduras longitudinales a un elemento estructural que no sea una placa, o con soldaduras longitudinales y transversales combinadas:

 $A = A_t =$ área total del miembro.

- c) Cuando la transmisión se hace sólo con soldaduras transversales:
 - A =área de los elementos conectados directamente.

U = 1.0

Esta condición sólo es aplicable cuando se usan soldaduras de penetración completa o parcial, pues si son de filete rige su resistencia al corte, aunque se empleen filetes del mayor tamaño posible (el grueso de la placa), cualquiera que sea el tipo de acero o la resistencia del electrodo (ref. 1.9).

d) Cuando la fuerza de tensión se transmite a una placa por medio de soldaduras longitudinales colocadas a lo largo de los dos bordes y del extremo de la placa, si $L \ge w$:

A = área de la placa.

- Si $L \ge 2w$ U = 1.00
- Si $2w > L \ge 1.5w$ U = 0.87
- Si $1.5w > L \ge w$ U = 0.75

L es la longitud de la soldadura y w el ancho de la placa (distancia entre cordones de soldadura).

En un perfil dado, conectado de una manera determinada, \bar{x} es una propiedad geométrica; es igual a la distancia entre el plano de conexión, que es una cara del miembro, y el centroide de éste (Fig. 1.13); en casos particulares, el "miembro" puede ser una porción de la sección transversal. La longitud de la conexión, L, depende del número de sujetadores mecánicos, o de la longitud de la soldadura, que se requieran para transmitir la fuerza de tensión. En uniones remachadas o atornilladas L es la distancia, paralela a la línea de acción de la fuerza, entre el primero y el último de los sujetadores colocados en la hilera que tenga el número mayor de remaches o tornillos; cuando estén en tresbolillo, se toma la dimensión exterior (Fig. 1.14). En conexiones

soldadas *L* es la longitud del miembro que esté soldado, medida paralelamente a la línea de acción de la fuerza; su valor no cambia si se coloca una soldadura transversal además de las longitudinales, pues la resistencia a la ruptura no se modifica substancialmente (Fig. 1.15).

Fig. 1.14 Ángulo con agujeros en tresbolillo.

En conexiones remachadas o atornilladas de secciones "H" o "I", y de tés obtenidas de ellas, se han propuesto valores aproximados del coeficiente U, que pueden utilizarse en lugar de los calculados con la ec. 1.3 (refs. 1.1, 1.3 y 1.8):

a) Secciones laminadas o soldadas "H" o "I", con patines de ancho no menor que 2/3 del peralte, y tés estructurales obtenidas de ellas o formadas por dos placas

soldadas, conectadas por los patines, con tres o más conectores en cada línea en la dirección de la fuerza: U = 0.90.

- b) Secciones laminadas o soldadas "H" o "l" que no cumplan las condiciones del párrafo anterior, tés estructurales obtenidas de ellas o formadas por dos placas soldadas, y todas las secciones restantes, incluidas las hechas con varias placas, con tres o más conectores en cada línea en la dirección de la fuerza: U = 0.85.
- c) Todos los miembros que tengan sólo dos sujetadores en la dirección de la fuerza: U = 0.75.

No se tiene información suficiente para proponer un valor de U cuando todas las líneas tienen un solo tornillo o remache, pero es probablemente conservador tomar A_e igual al área neta del elemento conectado (ref. 1.3).

1.9 RESISTENCIA A LA RUPTURA POR CORTANTE Y TENSIÓN COMBINADAS ("Block shear rupture strength").

Esta posible forma de falla debe revisarse cuando se diseñan conexiones de miembros en tensión, placas de nudo de armaduras que reciben diagonales o montantes en tensión, y otros elementos estructurales en los que puede presentarse este estado límite.

El fenómeno se identificó por primera vez a mediados de la década de los 70, al estudiar experimentalmente el comportamiento de vigas despatinadas, conectadas, para transmitir fuerza cortante, por medio de tornillos y ángulos adosados al alma (ref. 1.10); en la Fig. 1.16a se muestra el extremo de una viga de ese tipo. La resistencia de la conexión proviene de una combinación de la capacidad para resistir tensión en un plano y cortante en otro, perpendicular al primero.

El modo de falla mencionado se ha vuelto más crítico desde 1978, pues en sus especificaciones de ese año el AISC incrementó considerablemente los valores permisibles de los esfuerzos de aplastamiento entre tornillos y placas, con lo que disminuye el número de tornillos y la longitud del alma a través de la que se transmite la fuerza cortante, a menos que se aumente la distancia entre centros de tornillos.

El problema no se limita a las vigas mencionadas arriba; el ángulo en tensión de la Fig. 1.16b, por ejemplo, o la placa a la que está conectado, también pueden fallar por cortante y tensión combinadas, lo mismo que cualquier miembro en tensión de una armadura y el elemento al que esté unido, sea una de las cuerdas o una placa de nudo.

Fig. 1.16 Superficies de ruptura por cortante y tensión combinadas.

Al determinar la resistencia no debe suponerse que los dos planos se fracturan al mismo tiempo, uno en cortante y el otro en tensión, pues esto sucede sólo en casos excepcionales. Se obtiene un modelo analítico más conservador, y que concuerda de manera muy aceptable con resultados experimentales, sumando la resistencia al flujo en un plano con la de ruptura en el otro (refs. 1.3, 1.11 y 1.12); se calculan dos resistencias, una igual a la suma de las resistencias a la ruptura en el área neta en tensión y al flujo plástico por cortante en ei área total del plano o planos en cortante, y la otra sumando las resistencias a la ruptura en el área netas en cortante y al flujo plástico en el área total en tensión.

La resistencia de diseño a la ruptura por cortante y tensión combinadas, se determina con las expresiones (ref. 1.3):

a) Cuando $F_u A_{nt} \ge 0.6F_u A_{nc}$: $F_R \left(0.6F_y A_{Tc} + F_u A_{nt} \right)$ (1.5) b) Cuando $0.6F_u A_{nc} > F_u A_{nt}$: $F_R \left(0.6F_u A_{nc} + F_y A_{Tt} \right)$ (1.6)

 $F_{R} = 0.75$

 A_{Tc} = Área total que trabaja en cortante = bt (Fig. 1.16b).

 A_{TI} = Área total que trabaja en tensión = st (Fig. 1.16b).

 $A_{nc} =$ Área neta en cortante.

 $A_{nt} =$ Área neta en tensión.

21

20 10 - 1 $0.6F_y$ es el esfuerzo de flujo en cortante; proviene de la teoría de Henky-Von Mises: $\tau_y = F_y/\sqrt{3} = 0.58F_y \approx 0.6F_y$. Se supone, además, que el esfuerzo de ruptura en cortante es aproximadamente igual a $0.60F_y$.

El estado límite de ruptura por cortante y tensión combinadas debe revisarse también en la periferia de las uniones soldadas; la resistencia se determina utilizando $F_R = 0.75$ y las áreas de los planos de fractura y flujo plástico.

Las expresiones 1.5 y 1.6 satisfacen la filosofía del diseño de miembros en tensión, en el que se emplea la sección total para revisar el estado límite de flujo plástico y la neta para el estado límite de fractura.

b y *s* son las longitudes que trabajan en cortante y tensión, respectivamente (Fig. 1.16b) y *t* es el grueso de la placa. Para calcular las áreas netas de la Fig. 1.16b deben descontarse 2.5 agujeros en la longitud de cortante y 0.5 en la de tensión. De acuerdo con la sección 1.8.1, se utiliza el diámetro nominal mas 1.5 mm.

La expresión que controla el diseño es la que proporciona la resistencia <u>más elevada</u> como se ve estudiando los dos casos extremos de la Fig. 1.17. En el caso (a) la fuerza P es resistida principalmente por cortante; debe considerarse la resistencia a la fractura en los planos de corte, por lo que se utiliza la expresión 1.6. En el caso (b), en cambio, la falla se presenta cuando se fractura el área en tensión, condición descrita por 1.5; si se emplease 1.6, que correspondería a fractura por cortante en el área pequeña y flujo plástico por tensión en la grande, se obtendría un valor menor de la resistencia, y algo semejante sucedería si se aplicase la expresión 1.5 al primer caso.

Fig. 1.17 Resistencia a la ruptura.

De hecho, cuando el área de cortante de la Fig. 1.17b tiende a cero, la ec. 1.6 proporciona una resistencia basada únicamente en el flujo plástico del área total en tensión. Sin embargo, la falla por cortante y tensión combinadas es un fenómeno de fractura, no un estado límite de flujo plástico, por lo que en cada caso debe emplearse la fórmula que tiene el término más grande correspondiente a la fractura.

EJEMPLO 1.4 Determine la resistencia de diseño en tensión del ángulo de la Fig. E1.4-1. Los esfuerzos de fluencia y de ruptura en tensión del acero son 2530 y 4100 Kg/cm², respectivamente. El ángulo es de 15.2 cm x 10.2 cm x 0.95 cm (6" x 4" x 3/8"), y los tornillos tienen un diámetro de 2.22 cm (7/8"). Los agujeros son punzonados.

Fig. E.1.4-1 Ángulo en tensión del ejemplo 1.4.

Área total: $A_{i} = 23.29 \text{ cm}^{2}$

Cálculo del área neta efectiva: $A_{n} = UA_{n}^{---}$

Ec. 1.4

De la ec. 1.3: $U = 1 - \overline{x}/L = 1 - 2.39/24.0 = 0.90$

En la ref. 1.1 se indica que U es igual a 0.85, y en la ref. 1.18 se proporciona la ec. 1.4 para mejorar su valor. De acuerdo con el Comentario de la ref. 1.3, puede tomarse U = 0.85 en vez de calcularlo con la ec. 1.4.

Ancho de los agujeros = $2.22 + 0.15 \times 2 = 2.52$ cm

El diámetro del agujero necesario para colocar un tornillo de 2.22 cm es 2.22 + 0.15; para calcular el área neta, ese diámetro se aumenta en 0.15 cm adicionales.

Trayectoria ABC: Ancho neto= (15.24 + 10.16 - 0.95) - 2.52 = 24.45 - 2.52
= 21.93 cmTrayectoria ABDE: Ancho neto= $24.45 - 2.52 \times 2 + 6.0^2/(4 \times 6.0) = 20.91$ cm
La trayectoria crítica es la ABDE. Área neta: $A_n = 20.91 \times 0.95 = 19.86$ cm²

Área neta efectiva:
$$A_{e} = 0.90 \times 19.86 = 17.87 \text{ cm}^{2}$$
 Ec. 1.4

Resistencia de diseño

Estado límite de flujo plástico en la sección total: $R_t = 0.9 \times 23.29 \times 2.53 = 53.03$ ton Ec. 1.1

Estado límite de fractura en la sección neta: $R_r = 0.75 \times 17.87 \times 4.10 = 54.95$ ton Ec. 1.2

Cortante y tensión combinados

Haciendo la suposición usual de que la tensión se reparte de manera uniforme entre todos los tornillos, cada uno transmite 1/5 de la fuerza total.

Deben revisarse los tres casos que se muestran en la Fig. E1.4-2.

En el caso c) la fuerza que puede ocasionar la falla es 4/5 de la total.

Caso a. $A_{nl} = (6.0+3.2-0.5\times2.52)0.95 = 7.54 \text{ cm}^2$. Este caso no es crítico, pues el área neta en tensión es mayor que en el caso b, y las áreas restantes son iguales.

Caso b. $A_{nt} = (6.0 + 3.2 - 1.5 \times 2.52 + 6.0^2 / (4 \times 6.0)) 0.95 = 6.57 \text{ cm}^2$ $A_{nc} = (28.0 - 2.5 \times 2.52) 0.95 = 20.62 \text{ cm}^2$ $A_{Tt} = (6.0 + 3.2 + 6.0^2 / (4 \times 6.0)) 0.95 = 10.17 \text{ cm}^2$ $A_{Tc} = 28.0 \times 0.95 = 26.60 \text{ cm}^2$ $F_u A_{nt} = 4.1 \times 6.57 = 26.94 \text{ Ton} < 0.6F_u A_{nc} = 0.6 \times 4.1 \times 20.62 = 50.73 \text{ Ton}$ Se aplica la ec. 1.6.

 $F_R(0.6F_\mu A_{nc} + F_\nu A_{Tt}) = 0.75(0.6 \times 4.1 \times 20.62 + 2.53 \times 10.17) = 57.34$ Ton

Caso c. $A_{nt} = 6.57 \text{ cm}^2$ $A_{nc} = (16.0 - 1.5 \times 2.52)0.95 = 11.61 \text{ cm}^2$ $A_{7t} = 10.17 \text{ cm}^2$ $A_{7c} = 16.0 \times 0.95 = 15.20 \text{ cm}^2$

 $F_u A_{nt} = 4.1 \times 6.57 = 26.94 \text{ cm}^2 < 0.6 F_u A_{nc} = 0.6 \times 4.1 \times 11.61 = 28.56 \text{ cm}^2$ Rige la ec. 1.6. $F_R (0.6 F_u A_{nc} + F_y A_{Tt}) = 0.75 (0.6 \times 4.1 \times 11.61 + 2.53 \times 10.17) = 40.72 \text{ Ton}$ Para comparat esta resistencia con las de los casos a) y b) debe m

Para comparar esta resistencia con las de los casos a) y b) debe multiplicarse por 5/4: $40.72 \times 5/4 = 50.90$ Ton.

La resistencia es R_i = 50.90 Ton; queda regida por el caso c) de falla por cortante y tensión combinadas. Cuando esto sucede en un problema real, puede incrementarse la resistencia aumentando la separación entre agujeros o la distancia al borde del primero.

EJEMPLO 1.5 Escoja una sección "H", soldada únicamente en los patines, con cordones de soldadura longitudinales de 20 cm, que resista las fuerzas de tensión siguientes:

Por cargas muertas y vivas: 100 ton. Por sismo: 30 ton. Los esfuerzos de fluencia y de ruptura en tensión del acero, F_y y F_u , son 2530 Kg/cm² y 4100 Kg/cm², respectivamente. El miembro en estudio forma parte de la estructura de un edificio de departamentos. Utilice los factores de carga de la ref. 1.19.

Fig. E.1.5-1 Elemento en tensión del ejemplo 1.5.

<u>Acciones de diseño.</u> $P_{u1} = 1.4 \times 100 = 140.0 \text{ Ton}$ $P_{u2} = 1.1(100 + 30) = 143.0 \text{ Ton}$

Rige la combinación de cargas que incluye los efectos del sismo.

Se ensayará un perfil W12" x 35 lb/ft (30.5 cm x 52.1 Kg/m), tomado de la ref. 1.16, Vol. I, cuya sección transversal tiene un área total:

$$A_{t} = 66.5 \,\mathrm{cm}^{2}$$

<u>Area neta efectiva.</u> Como la sección es soldada, $A_e = UA_t$ Para determinar \bar{x} , la sección se trata como dos tés (Fig. E1.5-1): $\bar{x} = 3.3$ cm.

De la ec. 1.3: $U = 1 - \bar{x}/L = 1 - 3.3/20 = 0.84 < 0.9$ $A_z = 0.84 \times 66.5 = 55.53 \text{ cm}^2$

<u>Resistencia de diseño.</u> (Sec. 1.6) Estado límite de flujo plástico en la sección total (Ec. 1.1): $R_{i} = 0.9 \times 66.5 \times 2.53 = 151.4$ ton

Estado límite de fractura en la sección neta(Ec. 1.2): $R_{\rm r} = 0.75 \times 55.53 \times 4.10 = 170.8$ ton

La resistencia de diseño es la menor de las dos: $R_r = 151.4$ ton

 $R_r = 151.4 \text{ ton} > P_u = 143.0 \text{ ton}$ \therefore El perfil ensayado es correcto (Está sobrado en 5.9%).

<u>Revisión de la esbeltez.</u> Supóngase que el elemento en estudio tiene 6 m de longitud y que es un miembro principal.

 $L/r_{min} = 600/3.93 = 152.7 < 240$. De acuerdo con la ref. 1.1, la esbeltez es correcta.

1.10 PLACAS DE NUDO.

Las placas de nudo se emplean para conectar entre sí elementos estructurales que trabajan principalmente en tensión o compresión axial, como en los nudos de armaduras, remachadas, atornilladas o soldadas, cuando las dimensiones de los miembros impiden las uniones directas entre ellos, o en conexiones entre vigas, columnas y diagonales en edificios provistos de contraventeo vertical (Figs. 1.18 y 1.19).

Fig. 1.18 Placa de nudo: secciones críticas.

Las dimensiones laterales de las placas son las necesarias para que puedan colocarse los tornillos o soldaduras que les transmiten las fuerzas de las barras, cumpliendo requisitos de separaciones entre agujeros, distancia al borde, holguras para colocar tornillos o soldaduras; en general, sólo el grueso se basa en consideraciones de resistencia. En armaduras ordinarias suele fijarse por experiencia; conviene que no sea menor que el de la placa conectada de mayor espesor.

Se cuenta con relativamente pocos estudios, analíticos o experimentales, sobre el comportamiento de las placas de nudo. El método de diseño empírico tradicional, que sigue empleándose en la actualidad, se basa en calcular los esfuerzos en todas las secciones de la placa que puedan ser críticas, sometidas a fuerzas normales y cortantes y a momentos flexionantes, utilizando la teoría ordinaria de la flexión de vigas, y en compararlos con esfuerzos permisibles (ref. 1.5 y Fig. 1.18); los resultados son de valor cuestionable, pues las placas de nudo no cumplen las condiciones necesarias para que esa teoría sea aplicable. Se obtienen soluciones que parecen ser conservadoras, pues no se ha reportado ninguna falla de placas diseñadas con este método; sin embargo, el factor de seguridad respecto a la ruptura es variable y desconocido.
Algunos estudios experimentales y numéricos recientes han permitido desarrollar un método semiempírico que se adapta mejor a la filosofía de diseño por estados límite (refs. 1.12, 1.13, 1.14); es aplicable, sobre todo, a placas de nudo que reciben piezas en tensión, atornilladas o soldadas; se tiene poca información cuando la fuerza es compresión.

Fig. 1.20 Ancho efectivo, Le; hipótesis de Whitmore.

El grueso de la placa de nudo se determina efectuando tres verificaciones:

Aplastamiento de la placa contra los tornillos.

Esfuerzos máximos en la sección de Whitmore.

Falla por cortante y tensión combinadas.

Si la fuerza que se aplica a la placa es compresión, debe revisarse además la posible falla por pandeo.

En los cálculos se admite que las fuerzas se distribuyen de manera uniforme entre todos los tornillos o remaches que conectan a cada barra con la placa.

Para verificar los esfuerzos en la placa, en el extremo de una barra en tensión, se utiliza la hipótesis de Whitmore (ref. 1.15), según la cual los esfuerzos normales máximos en la placa de nudo se obtienen suponiendo que la fuerza en la pieza unida con ella se distribuye uniformemente en una superficie igual al producto del grueso de la placa, t, por un ancho efectivo, L_e , perpendicular al eje de la pieza, que se obtiene trazando dos rectas inclinadas 30° respecto a ese eje, que se inician en los agujeros extremos de la primera hilera de tornillos, o en los extremos de los cordones de soldadura, y terminan al cortar una normal al eje, que pase por el centro de los tornillos de la última hilera o por el extremo de la barra, si es soldada, suponiendo, como es usual, que los cordones llegan hasta él (Fig. 1.20).

La falla por cortante y tensión combinadas se estudia en la sección 1.9.

EJEMPLO 1.6. En la Fig. E1.6-1 se muestra una barra en tensión formada por dos ángulos de 10.2 x 10.2 x 1.27 cm (4" x 4" x $\frac{1}{2}$ ") conectada, mediante soldadura, a una placa. Obtenga la resistencia de diseño en tensión de la barra y determine el espesor mínimo de la placa necesario para transmitir esa fuerza; revise la posible falla por cortante y tensión combinadas y la tensión en la sección de Whitmore. $F_y = 3515 \text{ kg/cm}^2$, $F_u = 4900 \text{ kg/cm}^2$, para los ángulos, y 2530 y 4100 kg/cm², para la placa.

Area total: $A_{i} = 2 \times 24.19 = 48.38 \text{ cm}^{2}$

Area neta efectiva:

Ec. 1.3: U = 1 - x/L = 1 - 2.99/11.2 = 0.73

Se ha tornado como L el promedio de las longitudes de los dos cordones longitudinales de soldadura.

 $A_e = UA_t = 0.73 \times 48.38 = 35.3 \text{ cm}^2$

Resistencia de diseño de los ángulos.

 Flujo plástico en la sección total:
 $R_i = 0.9 \times 48.38 \times 3.515 = 153.05$ ton
 Ec. 1.1

 Fractura en la sección neta:
 $R_r = 0.75 \times 35.3 \times 4.9 = 129.73$ ton
 Ec. 1.2

Fig. E.1.6-1 Barra en tensión del ejemplo 1.6.

La resistencia de diseño de los ángulos es $R_i = 129.73 \text{ ton}$; queda regida por fractura en la sección neta.

<u>Cortante y tensión combinadas.</u> Puede considerarse que el bloque de falla está limitado por el borde exterior de los cordones de soldadura. Se escogerá el grueso r de la placa de manera que la resistencia por cortante y tensión combinadas no sea menor de 129.73 ton.

$$F_{\mu}A_{\mu\nu} = 4.1 \times 12.4t = 50.8t < 0.6F_{\mu}A_{\mu\nu} = 0.6 \times 4.1(18.0 + 4.5)t \approx 55.4t$$

Ec. 1.6: $F_R(0.6F_vA_{nc} + F_yA_{7t}) = 0.75(0.6 \times 4.1(18.0 + 4.5)t + 2.53 \times 12.4t) = 65.04t$ El valor mínimo de t necesario para que la placa no falle por cortante y tensión combinadas se obtiene de la igualdad 129.73 = 65.04t $\therefore t = 1.99 \text{ cm}$. Se utilizaría una placa de 2.22 cm (7/8").

<u>Tensión en la sección de Whitmore.</u> La resistencia en la sección de Whitmore, igual al producto de su área por el esfuerzo de fluencia de la placa, no debe ser menor que la resistencia de diseño de los ángulos.

$$0.9 \times 2.53 \times 25.4t = 129.73$$
 : $t = 2.24$ cm

Este grueso es mayor que el requerido por cortante y tensión combinadas, de manera que el diseño de la placa queda regido por flujo plástico en la sección de

Whitmore. Sin embargo, sigue siendo aceptable la placa de 2.22 cm de grueso escogida arriba.

1.11 RESISTENCIA DE DISEÑO DE ELEMENTOS DE CONEXIÓN.

En la ref. 1.3 se dan recomendaciones para el diseño de elementos de conexión del tipo de placas, placas de nudo, ángulos, ménsulas, y zonas comunes a viga y columna en uniones de marcos rígidos.

- a) <u>Conexiones excéntricas</u>. Los ejes de gravedad de los miembros- cargados axialmente deben intersectarse en un punto; de no ser así, en el diseño han de incluirse los efectos de los momentos flexionantes y las fuerzas cortantes debidas a la excentricidad.
- b) <u>Resistencia de diseño de elementos de conexión en tensión</u>. La resistencia de diseño, $R_r = F_R R_n$, de elementos de conexión soldados, remachados o atornillados, sometidos a cargas estáticas de tensión (placas de conexión y de nudo, por ejemplo), es igual al más pequeño de los valores correspondientes a los estados límite de flujo plástico, ruptura y ruptura por cortante y tensión combinados.
 - 1. Flujo plástico en tensión del elemento de conexión:

$$F_R = 0.9$$

$$R_n = A_i F_y \tag{1.7}$$

En el diseño de placas de nudo, A_i , se toma igual al área de la sección de Whitmore. Este aspecto se ilustra en el ejemplo 1.6.

2. Ruptura en tensión del elemento de conexión.

$$F_R = 0.75$$

$$R_n = A_n F_n \tag{1.8}$$

El valor máximo del área neta A_n que se utiliza en diseño es $0.85A_r$. Se reconoce así la capacidad limitada de deformación inelástica del elemento, y se proporciona una reserva de resistencia.

- 3. Ruptura del elemento de conexión en cortante y tensión combinadas: véase la sec. 1.9.
- c) <u>Otros elementos de conexión</u>. En todos los elementos de conexión restantes se evaluará la resistencia de diseño, $F_R R_n$, correspondiente al estado límite aplicable, para asegurarse de que es igual o mayor que la resistencia requerida; R_n es la resistencia nominal que corresponde a la geometría y tipo de carga del elemento de conexión. Para flujo plástico por cortante,

$$F_R = 0.9$$

 $R_n = 0.60A_r F_y$ (1.9)

Si el elemento está en compresión debe estudiarse el estado límite correspondiente, lo que puede hacerse, de manera aproximada, como se indica en las refs. 1.14 y 1.17. El esfuerzo crítico de pandeo de la placa de nudo es el de una faja de placa de ancho unitario y longitud igual al promedio de l_1 , l_2 y l_3 (Fig. 1.21), que se pandea en el plano perpendicular a la placa, y la resistencia se encuentra multiplicando ese esfuerzo por el área de la sección de Whitmore. Se recomienda que en el cálculo del esfuerzo crítico se tome un factor de longitud efectiva k comprendido entre 0.5 y 0.65.

Fig. 1.21 Dimensiones para determinar la resistencia al pandeo de una placa de nudo.

1.12 ÁNGULOS AISLADOS EN TENSIÓN.

El AISC (ref. 1.20 y 1.21) ha publicado recomendaciones para miembros formados por un solo ángulo laminado, de alas iguales o desiguales, sometidos a solicitaciones de diversos tipos; su objeto es refinar el diseño de los ángulos sencillos, suprimiendo algunas simplificaciones y aproximaciones conservadoras incluidas en las especificaciones generales (refs. 1.2 y 1.3). Cuando hay diferencias entre ellos, los requisitos de las refs. 1.20 y 1.21 sustituyen a los de las refs. 1.2 y 1.3; éstos se conservan en todos los casos restantes.

En el diseño de ángulos en tensión se conservan, en general, las recomendaciones de las refs. 1.2 y 1.3, y se aclaran algunos aspectos relativos al cálculo de las áreas netas, como sigue:

Cuando la carga se transmite por medio de soldaduras longitudinales, o longitudinales y transversales, colocadas en una sola ala del ángulo, el área neta es:

 Ref. 1.20:
 $A_e = 0.85A_i$

 Ref. 1.21:
 $A_e = UA_i$

Donde:

 A_i = área total del ángulo.

 $U = 1 - \bar{x}/L \le 0.9$

Esta es la ec. 1.3.

 \ddot{x} = excentricidad de la conexión (ver sec. 1.8.2).

L = longitud de la conexión en la dirección de la carga.

Cuando la transmisión se hace con soldaduras transversales colocadas en una sola ala:

Ref. 1.20: A_e es el área del ala conectada.Ref. 1.21: A_e es el área del ala conectada y U = 1.0.

1.13 ELEMENTOS DE LÁMINA DELGADA.

Las diferencias entre el diseño de miembros de paredes relativamente gruesas y los de lámina delgada doblados en frío se deben, principalmente, a que éstos se pandean localmente bajo solicitaciones reducidas, y tienen una resistencia posterior al pandeo importante, que se utiliza en el diseño.

Como en elementos en tensión pura no se presenta ninguna forma de pandeo, los métodos de diseño son semejantes. Sin embargo, conviene consultar las refs. 1.22 y 1.23 cuando la barra en tensión es de lámina delgada.

1.14 REFERENCIAS.

- 1.1 "Normas Técnicas Complementarias para Diseño y Construcción de Estructuras Metálicas", Reglamento de Construcciones para el Distrito Federal, Gaceta Oficial del Departamento del Distrito Federal, México, D.F., diciembre de 1987.
- 1.2 "Specification for Structural Steel Buildings-Allowable Stress Design and Plastic Design" (incluye comentario), American Institute of Steel Construction, Chicago, IL., junio de 1989.
- 1.3 "Load and Resistance Factor Design Specification for Structural Steel Buildings" (incluye comentario), American Institute of Steel Construction, Chicago IL., diciembre de 1993.
- "Limit States Design of Steel Structures" (incluye comentario), CAN/CSA-S16.1-94, Canadian Standards Association, Rexdale, Ontario, Canadá, diciembre de 1994.
- 1.5 Gaylord, E.H., Jr., C.N. Gaylord y J.E. Stallmeyer, "Design of Steel Structures", 3a. Ed., McGraw-Hill, Inc., Nueva York, 1992.
- 1.6 Munse, W.H., y E. Chesson, Jr., "Riveted and Bolted Joints: Net Section Design", J. Struct. Div., ASCE, febrero de 1963.
- 1.7 Chesson, E., y W.H. Munse, "Riveted and Bolted Joints: Truss-type Tensile Connections", J. Struct. Div., ASCE, febrero de 1963.

- 1.8 "Load and Resistance Factor Design Specification for Structural Steel Buildings" (incluye comentario), American Institute of Steel Construction, Chicago, IL., septiembre de 1986.
- 1.9 Easterling, W.S., y L. González G., "Shear Lag Effects in Steel Tension Members", Eng. J., Vol. 30, No. 3, American Institute of Steel Construction, Chicago, IL., 3^{er} cuarto de 1993.
- 1.10 Birkemoe, P.C., y M.I. Gilmore, "Behavior of Bearing Critical Double-angle Beam Connections", Eng. J., Vol. 15, No. 4, American Institute of Steel Construction, Chicago, IL., 4^{to} cuarto de 1978.
- 1.11 Ricles, J.H., y J.A. Yura, "Strength of Double-row Bolted Web Connections", J. Struct. Div., Vol. 109, No. ST1, ASCE, Nueva York, enero de 1983.
- 1.12 Hardash, S.G., y R. Bjorhovde, "New Design Criteria for Gusset Plates in Tension", Eng. J., Vol. 22, No. 2, American Institute of Steel Construction, Chicago, IL., 2° cuarto de 1985.
- 1.13 Kulak, G.L., J.W. Fisher, y J.H.A. Struik, "Guide to Design Criteria for Bolted and Riveted Joints", 2^a ed., John Wiley & Sons, Nueva York, 1987.
- 1.14 Gross, J.L., "Experimental Study of Gusseted Connections", Eng. J., Vol. 27, No.
 3, American Institute of Steel Construction, Chicago, IL., 3^{er} cuarto de 1990.
- 1.15 Whitmore, R.E., "Experimental Investigation of Stresses in Gusset Plates", University of Tennessee, Eng. Exp. Station, Boletin 16, 1952.
- 1.16 "Manual of Steel Construction", American Institute of Steel Construction, Chicago, IL., 1984.
- 1.17 "Engineering for Steel Construction", American Institute of Steel Construction, Chicago, IL., 1984.
- 1.18 De Buen, O., "Comentarios, ayudas de diseño y ejemplos de las Normas Técnicas Complementarias para Diseño y Construcción de Estructuras Metálicas", Reglamento de Construcciones para el Distrito Federal, No. ES-3, Instituto de Ingeniería, U.N.A.M., México, D.F., julio de 1993.
- 1.19 "Reglamento de Construcciones para el Distrito Federal", Gaceta Oficial del Departamento del Distrito Federal, México, D.F., agosto de 1993.
- 1.20 "Specifications for Allowable Stress Design of Simple-angle Members" (incluye comentario), Manual of Steel Construction "Allowable Stress Design", 9^a ed., AISC, Chicago, IL., 1989.

. .

- 1.21 "Specifications for Load and Resistance Factor Design of Single-angle Members" (incluye comentario), AISC, Chicago, IL., diciembre de 1993 (está incluida en la ref. 1.16).
- 1.22 "Specification for the Design of Cold-Formed Steel Structural Elements", edición de 1986 (con suplemento de 1989), American Iron and Steel Institute, Washington, D.C., enero de 1991.
- 1.23 "Load and Resistance Factor Design Specifications for Cold-Formed Steel Structural Members", edición de 1991, American Iron and Steel Institute, Washington, D.C., marzo de 1991.

Fundación ICA es una Asociación Civil constituida conforme a las leyes mexicanas el 26 de octubre de 1986, como se hace constar en la escritura pública número 21,127 pasada ante la fe del Lic. Eduardo Flores Castro Altamirano, Notario Público número 33 del Distrito Federal, inscrita en el Registro Público de la Propiedad en la sección de Personas Morales Civiles bajo folio 12,847. A fin de adecuar a las disposiciones legales vigentes los estatutos sociales, estos fueron modificados el 17 de octubre de 1994, como se hace constar en la escritura pública número 52,025 pasada ante la fe del Lic. Jorge A. Domínguez Martínez, Notario Público número 140 del Distrito Federal.

Fundación ICA es una institución científica y tecnológica inscrita en el Registro Nacional de Instituciones Científicas y Tecnológicas del Consejo Nacional de Ciencia y Tecnología, con el número 97/213 del 20 de junio de 1997.

Consejo Directivo de Fundación ICA.

Presidente. Ing. Bernardo Quintana.

Vicepresidentes. Dr. José Sarukhán Kérmez Dr. Guillermo Soberón Acevedo Ing. Guillermo Guerrero Villalobos Ing. Raúl López Roldán

Director Ejecutivo. Ing. Fernando O. Luna Rojas

Cuerpos Colegiados de los Programas Operativos.

Comité de Becas. Ing. José Manuel Covarrubias Solís Dr. Francisco Yeomans Reyna Ing. Miguel Angel Parra Mena

Comité de Premios. Dr. Luis Esteva Maraboto M.I. Mario Ignacio Gómez Mejía Ing. Gregorio Farias Longoria

Comité de Publicaciones. Ing. José Iber Rojas Martínez Dr. Oscar González Cuevas Dr. Horacio Ramírez de Alba M.I. Gabriel Moreno Pecero Ing. Santiago Martínez Hernández

Comité de Investigación. Dr. José Luis Fernández Zayas Dr. Bonifacio Peña Pardo Dr. Ramón Padilla Mora Dr. Roberto Meli Piralla Décima Mesa Directiva de la Sociedad Mexicana de Ingenieria Estructural

Presidente Ing. Oscar de la Torre Rangel

Vicepresidente Ing. Alfredo López Gutiérrez

Vicepresidente Técnico Dr. Eduardo Miranda Mijares

Secretario Dr. Emilio Sordo Zabay

Tesorero Ing. Pablo Cortina Ortega

Vocales C.E. Jaime Antoniano y Mateos M. en I. Francisco J. Ribé Martínez de Velasco Dr. Rodolfo E. Valles Mattox Ing. Dario Vasconcelos Martínez

Secretario Ejecutivo Ing. Héctor Soto Rodríguez

DISEÑO DE ESTRUCTURAS DE ACERO

MIEMBROS EN COMPRESIÓN (LA COLUMNA AISLADA)

Oscar de Buen López de Heredia

Miembros en compresión (la columna aislada)

۰٠,

.

CAPITULO 2. MIEMBROS EN COMPRESION (LA COLUMNA AISLADA)

.

.

2.1	Intro	oducción					
2.2	Uso	de miembros en compresión					
2.3	Eler	mentos que se emplean para trabajar en compresión					
2.4	2.4 Comportamiento de barras comprimidas						
	2.4.1	Comportamiento de columnas de diferentes longitudes que fallan por pandeo por flexión					
2.5	Pan	ndeo elástico					
	2.5.1	Caso general					
	2.5.2	Secciones con un eje de simetría					
	2.5.3	Secciones con dos ejes de simetría					
2.6	Pan	ndeo por flexión					
	2.6.1	Pandeo	elástico	23			
		2.6.1.1	Determinación de la carga crítica	26			
		2.6.1.2	Esfuerzo crítico	28			
		2.6.1.3	Longitud efectiva	28			
	2.6.2	Pandeo inelástico					
		2.6.2.1	Teoría del módulo tangente	33			
		2.6.2.2	Teoría del módulo reducido	34			
		2.6.2.3	La contribución de Shanley	36			
	2.6.3	Esfuerzos residuales					
		2.6.3.1	Influencia de los esfuerzos residuales en la resistencia de las columnas de acero estructural	40			
		2.6.3.2	Esfuerzo crítico de columnas con esfuerzos residuales	41			
	2.6.4	Curvas múltiples.					
	2.6.5	Resistencia de diseño					
	2.6.6	Pandeo en el intervalo de endurecimiento por deformación 54					
	2.6.7	Fórmulas para diseño					

- -

		2.6.7.1	Normas Técnicas Complementarias para Diseño y Construcción de Estructuras Metálicas	57		
		2.6.7.2	Especificaciones AISC para diseño por factores de carga y resistencia	58		
		2.6.7.3	Especificaciones AISC para diseño por esfuerzos permisibles	59		
		2.6.7.4	Normas Canadienses	60		
		2.6.7.5	Tablas de esfuerzos de diseño	61		
2.7	2.7 Pandeo por flexotorsión					
	2.7.1	Resister	ncia de diseño	78		
		2.7.1.1	Especificaciones AISC para diseño por factores de carga y resistencia.	78		
2.8	Dise	eño de co	lumnas de paredes delgadas	80		
	2.8.1	3.1 Normas técnicas complementarias para diseño y construcción de estructuras metálicas				
		2.8.1.1	Cálculo del coeficiente Q	81		
	2.8.2	Especifi	caciones AISC	84		
	2.8.3	Especifi	caciones AISI	85		
		2.8.3.1	Diseño por factores de carga y resistencia	85		
2.9 Angulos aislados comprimidos						
2.10	Refe	erencias		98		

.

.

.

.....

CAPÍTULO 2. MIEMBROS EN COMPRESIÓN (LA COLUMNA AISLADA)

2.1 INTRODUCCIÓN

Para los fines de este capítulo, una columna puede definirse como una pieza recta -en la que actúa una fuerza axial que produce compresión pura.

Para que una barra de sección transversal constante trabaje en compresión pura, debe ser perfectamente recta, las fuerzas que obran sobre ella tienen que estar aplicadas en los centros de gravedad de las secciones extremas, y sus líneas de acción han de coincidir con el eje de la barra. En esas condiciones, mientras la carga es menor que la crítica, no hay flexión de ningún tipo.

Las secciones transversales de las columnas que se usan en estructuras suelen tener dos ejes de simetría; cuando es así, para que no haya flexión el material ha de ser homogéneo e isótropo y, si no lo es, por la existencia de esfuerzos residuales, éstos tienen que ser, también, simétricos respecto a los dos ejes.

Las columnas reales no están casi nunca aisladas, sino ligadas a otros elementos estructurales, de manera que su comportamiento depende, en gran parte, del de la estructura en conjunto; tampoco están sometidas a compresión pura, pues las condiciones anteriores no se cumplen, nunca, por completo. Sin embargo, un estudio de la columna aislada cargada axialmente constituye un antecedente necesario para resolver el problema, mucho más complejo, de la columna como parte de una estructura, por lo que en todos los códigos modernos la columna aislada es la base del diseño de las piezas comprimidas y flexocomprimidas. Además, si los momentos flexionantes son pequeños, se ignoran, y la pieza se dimensiona en compresión pura, como suele hacerse al diseñar los elementos comprimidos de las armaduras.

Para el ingeniero estructural, una columna es un miembro que transmite una fuerza de compresión de un punto a otro; las excentricidades en la aplicación de las cargas y los inevitables defectos geométricos, que deben estar dentro de límites admisibles, no se incluyen explícitamente en el dimensionamiento, sino se toman en cuenta con las fórmulas de diseño o con los factores de seguridad asociados a ellas.

En muchos problemas de diseño estructural, el equilibrio entre las fuerzas interiores y exteriores es estable para cualquier valor de las cargas, mientras no haya fracturas; pequeños incrementos en las solicitaciones no ocasionan aumentos desproporcionados de las deformaciones, los cálculos se basan en la forma y dimensiones iniciales, y es aplicable el principio de superposición de causas y efectos. El diseño consiste en dimensionar los miembros que componen la estructura de manera que la resistencia de sus secciones transversales no sea menor que las acciones factorizadas; si se utilizan métodos elásticos, los esfuerzos

máximos no sobrepasarán un cierto valor, generalmente un porcentaje del esfuerzo de fluencia.

No es este el caso cuando el elemento estructural es una columna esbelta; el diseño ya no se basa en el cálculo de esfuerzos, sino en la investigación de su estado de equilibrio, que puede llegar a ser inestable, para valores quizá reducidos de las cargas. La resistencia de una barra comprimida no depende de la magnitud de los esfuerzos, sino de las condiciones que originan el equilibrio inestable, caracterizado porque pequeños incrementos de las cargas producen aumentos muy grandes de las deformaciones. (El pandeo puede definirse como la pérdida repentina y total de rigidez de un elemento estructural, o de una estructura completa, que acompaña el paso del equilibrio estable al inestable; se caracteriza por la pérdida de resistencia y la aparición de fuertes deformaciones, de naturaleza diferente de las que existían antes de que se iniciase el fenómeno).

El estudio de las columnas se inició hace varios siglos. Los aspectos principales del cálculo de la resistencia de piezas comprimidas aisladas, que se pandean en el intervalo elástico, fueron resueltos por Euler, en 1744; sin embargo, a pesar de que su solución es correcta cuando las columnas fallan por pandeo, por flexión en un plano principal de inercia, bajo esfuerzos de compresión menores que el límite de proporcionalidad del material, sus resultados no fueron aceptados de inmediato, pues las columnas de aquella época, de madera o piedra, eran muy robustas, por lo que fallaban por aplastamiento, bajo cargas mucho menores que las predichas por la teoría.

La aparente discrepancia entre los resultados teóricos y los experimentales fue aclarada por Lamarle, en 1845, al establecer el límite de proporcionalidad como límite de aplicación de la fórmula de Euler.

Engesser, Considère y von Karman extendieron la teoría al intervalo inelástico, en trabajos realizados a fines del siglo XIX y principios del XX, y los últimos puntos dudosos fueron aclarados por Shanley, en 1947. En la actualidad, después de 250 años de estudio, el problema teórico de la columna aislada perfecta está resuelto en forma definitiva, pero quedan todavía muchos aspectos por resolver, relativos a columnas reales que forman parte de estructuras.

El empleo de aceros de altas resistencias y de otros materiales, como el aluminio, y la utilización de nuevas formas y sistemas constructivos, han hecho que las estructuras modernas sean, en general, esbeltas, por lo que los fenómenos de inestabilidad adquieren una enorme importancia que hace aumentar la trascendencia del problema del pandeo de columnas, que puede considerarse la base del estudio de todos los casos de inestabilidad.

2.2 USO DE MIEMBROS EN COMPRESIÓN

Las barras comprimidas axialmente no existén en las estructuras reales; sin embargo, se tratan como tales algunas piezas flexocomprimidas en las que la flexión es poco significativa.

Entre los elementos que suelen diseñarse como si trabajasen en compresión pura están las cuerdas, diagonales y montantes de armaduras, cuando no hay cargas exteriores aplicadas fuera de los nudos (Fig. 1.5); excepto en armaduras muy robustas, en las que puede ser significativa, se ignora la flexión producida por la continuidad en los nudos y por el peso propio de los elementos.

También se diseñan en compresión axial los puntales de contraventeo de techos y paredes de bodegas y estructuras industriales (Fig. 1.1) y, a veces, las diagonales de los contraventeos verticales de edificios (Fig. 2.1a), cuando se unen con el resto de la estructura de manera que la transmisión de momentos sea minima.

Fig. 2.1 Miembros en compresión.

Otros casos frecuentes son las plumas de gruas y las torres atirantadas para transmisión de energía eléctrica, que suelen hacerse con ángulos o tubos (Fig. 1.6); además de que, en conjunto, trabajan como columnas, muchos de los elementos que las forman son piezas comprimidas. También hay barras comprimidas en las torres de transmisión autosoportadas (Fig. 1.6).

 Algunas columnas de edificios se diseñan para resistir sólo cargas verticales; tienen una rigidez mucho menor que la del resto, o están ligadas a la estructura con uniones que no transmiten momento; pueden considerarse en compresión axial (Fig. 2.1b).

Son comunes las columnas que, bajo carga vertical, trabajan en compresión pura, porque los momentos que les transmiten las vigas se equilibran entre sí; sin embargo, la flexión aparece tan pronto como actúan sobre el edificio fuerzas horizontales, de viento o sismo, por lo que esas columnas han de diseñarse, en general, como elementos flexocomprimidos.

2.3 ELEMENTOS QUE SE EMPLEAN PARA TRABAJAR EN COMPRESIÓN

La resistencia de una columna de material y condiciones de apoyo definidos depende del área de las secciones transversales y de la esbeltez, cociente de la longitud libre de pandeo entre el radio de giro correspondiente de la sección transversal. Son una excepción las columnas muy cortas, en las que la capacidad de carga es función, sólo, del área y de las propiedades del acero.

En las columnas largas debe alejarse el material de los ejes de flexión para obtener, con un área dada, un radio de giro grande; además, en general conviene que los momentos de inercia que corresponden a los dos posibles ejes de flexión sean iguales, o tengan valores cercanos, puesto que el pandeo se presenta en el plano de menor rigidez. Teniendo en cuenta estos aspectos, la sección transversal ideal sería la circular hueca (tubular), de paredes delgadas, recordando que si el grueso se reduce demasiado, puede volverse crítico el pandeo local de las paredes.

Las secciones tubulares tienen el inconveniente de que las conexiones son difíciles de realizar, por lo que su uso no era frecuente hasta hace pocos años; hasta la fecha, no suelen emplearse para columnas de edificios. Sin embargo, gracias a desarrollos recientes en los procedimientos de fabricación, cortes y soldaduras, y en los métodos de diseño, en la actualidad se utilizan cada vez más, tanto en estructuras especiales, como las plataformas marítimas para explotación petrolera, como en otras más comunes, torres de transmisión y armaduras para cubiertas, muchas veces tridimensionales, en las que se obtienen ventajas adicionales, estéticas, de poca resistencia al flujo del agua o el aire, y facilidad para pintarlas y mantenerlas limpias.

En la Fig. 2.2 se muestra la gran variedad de secciones que se utilizan como columnas; no todas tienen las características mencionadas arriba, pero tienen alguna otra que las hace adecuadas para usos específicos.

Fig. 2.2 Secciones transversales de miembros comprimidos.

Las secciones huecas, circulares, cuadradas o rectangulares, laminadas o hechas con placas soldadas, son muy eficientes, pero difíciles de conectar (Fig. 2.2a); las H, de patines de ancho semejante al peralte de la sección, para que el radio de giro mínimo no sea demasiado pequeño, son las que más se usan en columnas de edificios (Fig. 2.2b).

Los ángulos se emplean principalmente en armaduras y puntales: sencillos en diagonales o montantes con fuerzas pequeñas, espalda con espalda, o en cajón, para compresiones mayores y para cuerdas, en estrella para puntales de contraventeo en techos y paredes (Fig. 2.2c).

También se utilizan secciones T en cuerdas de armaduras (Fig. 2.2e), pues se facilita la unión de diagonales y montantes, soldándolos al alma, y una gran variedad de secciones compuestas, formadas por dos o más perfiles unidos entre sí con soldadura o tornillos; algunas de estas secciones se muestran en la Fig. 2.2f.

2.4 COMPORTAMIENTO DE BARRAS COMPRIMIDAS

El comportamiento de las columnas depende, en buena medida, de su esbeltez, es decir, de la relación entre su longitud y las dimensiones de las secciones transversales. Desde este punto de vista pueden clasificarse en cortas, intermedias y largas. (Se está suponiendo, por ahora, que el pandeo local no es crítico).

Las columnas cortas resisten la fuerza que ocasiona su plastificación completa, $P_y = A_i F_y$; su capacidad de carga no es afectada por ninguna forma de inestabilidad; la resistencia máxima depende sólo del área total, A_r , de sus secciones transversales, y del esfuerzo de fluencia F_y del acero; la falla es por aplastamiento.

El colapso de columnas más largas se presenta acompañado por un rápido aumento de las deflexiones laterales o torsionales, o por una combinación de ambas; es una -- falla por inestabilidad.

La inestabilidad de las columnas largas se inicia en el intervalo elástico; los esfuerzos totales, incluyendo los residuales de compresión, no llegan todavía al límite de proporcionalidad, en ningún punto, en el instante en que empieza el pandeo. La resistencia máxima es función de las rigideces en flexión, EI_x y EI_y , y en torsión, EC_a y GJ; no depende del esfuerzo de fluencia del material.

Las columnas intermedias, las más comunes en las estructuras, tienen un comportamiento más complejo que las anteriores. Fallan también por inestabilidad, pero su rigidez es suficiente para posponer la iniciación del fenómeno hasta que parte del material que las compone está plastificado; la falla es por inestabilidad inelástica. La resistencia depende tanto de la rigidez del miembro como del esfuerzo de fluencia del material, así como de la forma y dimensiones de sus secciones transversales y de la magnitud y distribución de los esfuerzos residuales.

2.4.1 Comportamiento de columnas de diferentes longitudes que fallan por pandeo por flexión

El comportamiento de las columnas se describe con las curvas fuerza axialdeformación longitudinal y fuerza axial-deflexión lateral (Ref. 2.1). El comportamiento y las curvas correspondientes, que se muestran esquemáticamente en la Fig. 2.3, varían cuando cambia la longitud de la columna. (Las curvas son para pandeo por flexión en uno de los planos principales; la discusión que sigue está limitada a ese caso).

La Fig. 2.3a es de una columna muy corta, en la que no hay pandeo, que falla por aplastamiento cuando la carga alcanza el valor de fluencia $P_y = A_r F_y$. (Bajo ciertas

÷

Miembros en compresión (la columna aislada)

condiciones el material puede endurecerse por deformación; la carga de aplastamiento sobrepasa en esos casos a $A_i F_y$). Los desplazamientos laterales de los puntos del eje son nulos durante todo el proceso, y la curva P - w es la gráfica carga axial-deformación longitudinal de un perfil completo, en la que se refleja la influencia de los esfuerzos residuales y de la variación del límite de fluencia en los _distintos puntos del perfil.

Fig. 2.3 Comportamiento de columnas de diferentes longitudes.

Las curvas de la Fig. 2.3b corresponden a una columna de longitud intermedia: el pandeo se inicia cuando los esfuerzos normales máximos han sobrepasado el límite de proporcionalidad, pero antes de que lleguen al punto de fluencia, es decir, en el intervalo inelástico. Como se verá más adelante, el pandeo comienza cuando la carga alcanza el valor predicho por la teoría del módulo tangente, *P*, y la columna

puede soportar un incremento adicional de carga, generalmente pequeño, sin llegar a P_{v} .

Por último, las columnas largas se pandean en el intervalo elástico; el fenómeno empieza bajo esfuerzos menores que el límite de proporcionalidad, y la carga crítica P_{CE} es menor que P_y (Fig. 2.3c). Si la columna es muy larga, la carga crítica de pandeo puede ser una fracción reducida de la fuerza que ocasionaría la plastificación total.

Tanto las columnas intermedias como las largas pueden, en teoría, permanecer rectas o deformarse lateralmente cuando la carga llega al valor crítico; en el primer caso los desplazamientos longitudinales w se deben al acortamiento de la barra, y no hay deflexiones laterales (curvas I, Figs. 2.3b y 2.3c); en el segundo (curvas II), la columna se deforma lateralmente, lo que ocasiona un rápido aumento de los desplazamientos w. La carga de colapso, P_M , es muy poco mayor que la de pandeo.

En las Figs. 2.3b y 2.3c, para columnas intermedias y largas, se han dibujado con línea punteada las curvas carga axial-deflexión que se obtendrían si hubiese imperfecciones iniciales (las curvas trazadas con línea llena describen el comportamiento de columnas perfectas); en ese caso no hay pandeo propiamente dicho, sino las deformaciones laterales que existen desde que se inicia el proceso de carga, crecen primero lentamente y después en forma rápida, hasta que se produce la falla de la pieza.

En la Fig. 2.4 se muestran, cualitativamente, las cargas de falla de columnas rectas perfectas, que fallan por aplastamiento o por pandeo por flexión, en función de sus relaciones de esbeltez.

El tramo AB representa la falla por aplastamiento; su amplitud se determina con métodos experimentales (para el acero A36, el punto B corresponde a una relación L/r de alrededor de 20).

Las columnas muy cortas pueden resistir cargas mayores que P_y pues es posible que se endurezcan por deformación antes de fallar (curva BE, Fig. 2.4), pero esa sobrerresistencia no se considera nunca en el diseño.

El tramo CD describe el comportamiento de columnas esbeltas, que se pandean en el intervalo elástico; su resistencia se determina con la fórmula de Euler.

La ordenada del punto C depende, principalmente, de la amplitud de los esfuerzos residuales existentes en la columna.

Por último, el tramo BC representa el comportamiento de columnas intermedias, que fallan por pandeo inelástico.

Fig. 2.4 Relación entre la carga de falla y la esbeltez de las columnas. Pandeo por flexión.

La determinación de la carga crítica de pandeo elástico es un problema resuelto, si se conocen las condiciones de apoyo de la columna; se cuenta con fórmulas "exactas" para determinarla; la posición del punto B se conoce también con buena precisión.

Los métodos para determinar la carga crítica de pandeo inelástico son, en cambio, laboriosos y poco precisos; sin embargo, la curva que relaciona esas cargas con la esbeltez de la columna tiene que pasar por los puntos B y C: el diseño de las columnas que fallan por pandeo inelástico se basa en una curva semiempírica que une esos dos puntos; en algunos casos se utiliza la curva más sencilla, que es la recta BC.

Una de las ecuaciones de la ref. 2.2 es la de una parábola tangente a la hipérbola de Euler en el punto C, de ordenada $P_y/2$, que proporciona una carga de falla igual a P_y cuando la esbeltez de la columna es nula; no aparece el tramo horizontal AB, pero la curva coincide prácticamente con él.

En la ref. 2.3 se emplean ecuaciones análogas, escritas en términos de esfuerzos permisibles en vez de resistencias últimas.

2.5 PANDEO ELÁSTICO

2.5.1 Caso general

Las ecuaciones diferenciales de equilibrio de segundo orden de una columna prismática con secciones transversales asimétricas (Fig. 2.5), que se encuentra en una configuración ligeramente deformada lateralmente y retorcida, correspondiente a un estado de equilibrio indiferente, y en la cual los esfuerzos no sobrepasan, en ningún punto, el límite de proporcionalidad del material, son (refs. 2.1, 2.4 y 2.5):

$$EI_{x}v'' + Pv'' - Px_{0}\phi'' = 0 \tag{2.1}$$

$$EI_{v}u'' + Pu'' + Py_{0}\phi'' = 0$$
(2.2)

$$EC_{a}\phi^{TV} - \left(GJ - Pr_{0}^{2}\right)\phi'' + Py_{0}u'' - Px_{0}v'' = 0$$
(2.3)

Fig. 2.5 Desplazamiento de secciones transversales de columnas que no tienen ningún eje de simetría.

P es la fuerza de compresión en la columna, y los demás símbolos tienen los significados siguientes:

- EI_x , EI_y : rigideces por flexión alrededor de los ejes centroidales y principales de las secciones transversales, constantes, de la columna.
- *GJ* : rigidez por torsión de Saint Venant.
- EC_a : rigidez a la torsión por alabeo.
- u, v: desplazamientos del centro de torsión de las secciones transversales, paralelos a los ejes centroidales y principales x, y (Fig. 2.5).
- ϕ : rotación alrededor del eje longitudinal z (Fig. 2.5).

 x_0 , y_0 : distancia entre los centros de gravedad y de torsión de la sección medidas paralelamente a los ejes correspondientes (Fig. 2.5).

$$r_0^2 = x_0^2 + y_0^2 + (I_x + I_y)/A = x_0^2 + y_0^2 + r_x^2 + r_y^2$$

 T_x, T_y, A : momentos centroidales y principales y área de la sección.
 r_x, r_y : radios de giro respecto a los ejes centroidales y principales.
 r_0 : radio polar de giro, respecto al centro de torsión.
 E : módulo de elasticidad.
 G : módulo de elasticidad al esfuerzo cortante.

Todas las derivadas son respecto a z, que se mide a lo largo del eje longitudinal.

Teniendo en cuenta las condiciones de frontera, las ecuaciones 2.1 a 2.3 llevan a la ecuación característica siguiente, cuyas raíces son las cargas críticas de pandeo elástico (ref. 2.1):

$$r_0^2 (P_E - P_{crx}) (P_E - P_{cry}) (P_E - P_{crz}) - y_0^2 P_E^2 (P_E - P_{crx}) - x_0^2 P_E^2 (P_E - P_{cry}) = 0$$
(2.4)

donde:

 $P_{crx} = \frac{\pi^{2} EI_{x}}{(K_{x}L_{x})^{2}}: \quad \text{carga crítica de Euler para pandeo por} \\ \text{flexión alrededor de x.} \quad (2.5) \\ P_{cry} = \frac{\pi^{2} EI_{y}}{(K_{y}L_{y})^{2}}: \quad \text{carga crítica de Euler para pandeo por} \\ \text{flexión alrededor de y.} \quad (2.6) \\ P_{crz} = \left[\frac{\pi^{2} EC_{a}}{(K_{t}L_{t})^{2}} + GJ\right] \frac{1}{r_{0}^{2}}: \text{ carga crítica de pandeo elástico por} \\ \text{torsión (alrededor del eje z).} \\ \text{KL}: \quad \text{Longitud efectiva de la columna.} \quad (2.7) \\ \end{array}$

Cada uno de los tres valores de P_E que se obtienen al resolver la ec. 2.4 es una función de P_{crx} , P_{crv} y P_{crz} , lo que indica que las columnas con secciones transversales asimétricas, no se pandean por flexión o torsión puras; cualquiera de los tres modos posibles es por flexión y torsión combinadas. El pandeo por flexotorsión es una combinación de tres modos de pandeo, que sólo podrían presentarse por separado si las condiciones fuesen adecuadas, es decir, si en cada caso se impidiesen los otros dos modos.

Puede demostrarse que la menor de las tres cargas críticas obtenidas al resolver la ec. 2.4, que corresponde a una interacción de los tres modos de pandeo, y es la que realmente ocasiona la falla de la columna, es siempre menor que la más pequeña de las cargas críticas individuales P_{crx} , P_{cry} y P_{cra} .

Las columnas con secciones transversales asimétricas son poco comunes en las estructuras; sin embargo, de la solución general obtenida para ellas pueden deducirse resultados aplicables a las secciones usuales, que tienen uno o dos ejes de simetría.

2.5.2 Secciones con un eje de simetría

Son frecuentes en las estructuras fabricadas con perfiles laminados, con placas soldadas y en las hechas con perfiles de lámina delgada; entre ellas se cuentan las canales, las tés, los ángulos espalda con espalda, y una gran variedad de secciones de lámina delgada (Fig. 2.6).

Fig. 2.6 Secciones con un eje de simetría.

Fig. 2.7 Sección con un eje de simetría.

Si el eje de simetría es el x (Fig. 2.7), $y_0 = 0$, y la ecuación característica se reduce a:

$$r_{0}^{2} \left(P_{E} - P_{crx} \right) \left(P_{E} - P_{cry} \right) \left(P_{E} - P_{crz} \right) - x_{0}^{2} P_{E}^{2} \left(P_{E} - P_{cry} \right) = 0$$

que puede escribirse en la forma:

$$\left(P_{E} - P_{cry}\right)\left[r_{0}^{2}\left(P_{E} - P_{crx}\right)\left(P_{E} - Pcrz\right) - P_{E}^{2}x_{0}^{2}\right] = 0$$
(2.8)

Esta ecuación tiene tres soluciones; la primera, $P_E = P_{cy}$, corresponde a flexión alrededor del eje normal al de simetría, que en este caso es el y, lo que indica que una de las formas de pandeo es por flexión, sin que la columna se salga del plano de simetría, ni se retuerza (este es el problema resuelto por Euler). Si los extremos están articulados, la carga crítica se calcula con la fórmula de Euler para pandeo por flexión alrededor del eje y (Ec. 2.6):

$$P_{ery} = \frac{\pi^2 EI_y}{\left(K_y L_y\right)^2}$$

Las otras dos soluciones son las raíces de la ecuación de segundo grado que se obtiene el igualar a cero la expresión contenida en el paréntesis rectangular; son dos cargas críticas de pandeo por flexotorsión; la menor de ellas, que es siempre más pequeña que P_{crx} y P_{crx} , pero puede ser mayor o menor que P_{cry} , se calcula con la ec. (2.9):

$$P_{FT} = \frac{1}{2H} \left[\left(P_{crs} + P_{crs} \right) - \sqrt{\left(P_{crs} + P_{crs} \right)^2 - 4HP_{crs} P_{crs}} \right]$$
(2.9)

donde $H = 1 - (x_0/r_0)^2$ y P_{FT} es la menor de las cargas críticas de pandeo por flexotorsión.

Una columna con secciones transversales con un solo eje de simetría puede pandearse por flexión alrededor del eje normal al de simetría, o por flexotorsión, flexionándose alrededor del otro eje centroidal y principal, y retorciéndose; que sea crítica una u otra forma de pandeo depende de las dimensiones y forma de las secciones transversales y de la longitud y condiciones de apoyo de la columna.

EJEMPLO 2.1 Calcule las cargas críticas de pandeo elástico de tres columnas, de 3.00 m, 6.00 m y 1.50 m de longitud, articuladas en los extremos; las tres tienen la sección transversal que se muestra en la Fig. E2.1-1¹. Suponga, sin demostrarlo, que el pandeo local no es crítico.

<u>Propiedades geométricas</u> $A = (a + 2B')t = (28.0 + 2 \times 10)1.0 = 48 \text{ cm}^2$

¹ Las esquinas de los perfiles hechos con lámina doblada en frío, que constituyen una buena parte de las columnas en las que debe revisarse la posible falla por pandeo por flexotorsión, son siempre redondeadas, lo que ha de tenerse en cuenta en el cálculo de las propiedades geométricas. En este ejemplo se han considerado en ángulo recto para simplificar los cálculos numéricos.

Distancia entre el centro de gravedad y el eje del alma: $2 \times 10 \times 4.5 = 48.0\overline{x}$ $\therefore \overline{X} = 1.88 \text{ cm}$

Distancia entre el eje del alma y el centro de torsión:

$$m = \frac{3B'^2}{6B' + \bar{a}} = \frac{3 \times 10^2}{6 \times 10 + 29.0} = 3.37 \ cm$$

Distancia entre los centros de gravedad y torsión: $X_0 = \overline{X} + m = 5.25 \text{ cm}$

Momentos de inercia:

$$I_x = \frac{1 \times 28^3}{12} + 2 \times 10.0 \times 14.5^2 = 6034 \text{ cm}^4$$

$$I_y = 28.0 \times 1.0 \times 1.88^2 + 2 \left[1.0 \times \frac{10.0^3}{12} + 1 \times 10.0(4.5 - 1.88)^2 \right] = 402.9 \text{ cm}^4$$

No se han incluido los términos $B't^3/12$ y $at^3/12$ porque su contribución es siempre muy pequeña en secciones de paredes delgadas.

Constante de torsión de Saint Venant:

$$J = \frac{t^3}{3} (2B' + a) = \frac{1.0^3}{3} (2 \times 10.0 + 28.0) = 16.0 \text{ cm}^4$$

Constante de torsión por alabeo:

Miembros en compresión (la columna aislada)

$$C_a = \frac{tB'^3 \overline{a}^2}{12} \frac{3B' + 2\overline{a}}{6B' + \overline{a}} = \frac{1.0 \times 10.0^3 \times 29.0^2}{12} \frac{3 \times 10.0 + 2 \times 29.0}{6 \times 10.0 + 29.0} = 69,296 \,\mathrm{cm}^4$$

Las expresiones para m, J y C_a se han tomado de la ref. 2.2.

Radios de giro:

$$r_x = \sqrt{I_x/A} = \sqrt{6034/48.0} = 11.21 \text{ cm}$$

 $r_y = \sqrt{I_y/A} = \sqrt{402.9/48.0} = 2.90 \text{ cm}$
 $r_0^2 = x_0^2 + y_0^2 + \frac{I_x + I_y}{A} = 5.25^2 + 0^2 + \frac{6034 + 402.9}{48.0} = 161.7 \text{ cm}^2$
 $H = 1 - (x_0/r_0)^2 = 1 - 5.25^2/161.7 = 0.83$

Cargas críticas. Como sus secciones transversales tienen un eje de simetría, la columna puede pandearse por flexión, alrededor del otro eje, o por flexotorsión.

<u>L=3.0 m</u>

Carga crítica de pandeo por flexión (alrededor del eje y).

$$P_{cry} = \pi^2 E I_y / (K_y L_y)^2 = (402.9\pi^2 E / (1 \times 300)^2) 10^{-3} = 90.1 \text{ ton}$$

Ec. 2.6

Carga crítica de pandeo por flexotorsión.

$$P_{crx} = \pi^{2} EI_{x} / (K_{x}L_{x})^{2} = (6034\pi^{2} E / (1.0 \times 300)^{2}) 10^{-3} = 1349.2 \text{ ton}$$

Ec. 2.5

$$P_{crx} = \left[\frac{\pi^{2} EC_{a}}{(K_{r}L_{r})^{2}} + GJ\right] \frac{1}{r_{0}^{2}} = \left[\frac{69296\pi^{2} E}{(1 \times 300)^{2}} + 787500 \times 16.0\right] \frac{10^{-3}}{161.7} = 173.8 \text{ ton}$$

Ec. 2.7

$$P_{FI} = \frac{1}{2H} \left[\left(P_{crx} + P_{crx}\right) - \sqrt{\left(P_{crx} + P_{crx}\right)^{2} - 4HP_{crx}P_{cry}} \right]$$

$$= \frac{1}{2 \times 0.83} \left[(1349.2 + 173.8) - \sqrt{(1349.2 + 173.8)^{2} - 4 \times 0.83 \times 1349.2 \times 173.8} \right]$$

= 169.7 ton
Ec. 2.9

Esta fuerza es mayor que P_{cry} , lo que indica que el pandeo por flexotorsión no es crítico; la columna falla por pandeo de Euler alrededor del eje y.

<u>L=6.0 m</u>

$$P_{cry} = 22.5 \text{ ton}$$

 $P_{crx} = 337.3 \text{ ton}; P_{crx} = 101.9 \text{ ton}; P_{FT} = 97.3 \text{ ton}$

También en este caso es crítico el pandeo por flexión alrededor de y.

<u>L=1.5 m</u>

$$P_{cry} = 360.4 \text{ ton}$$

 $P_{crx} = 5396.8 \text{ ton}; P_{crz} = 461.2 \text{ Ton}; P_{FT} = 454.1 \text{ ton}$

Sigue siendo crítico el pandeo por flexión-alrededor de y. Cuando la longitud disminuye, P_{FT} se acerca a P_{cry} ; las barras muy cortas fallan por pandeo por flexotorsión. Sin embargo, esa condición no tiene importancia práctica en columnas como la de este ejemplo, pues es poco probable que una sección como la de la Fig. E2.1-1 se utilice en miembros de longitud bastante menor que 1.50 m.

La carga crítica calculada para la columna de 6.00 m es, seguramente, la real, pues dada su esbeltez, fallaría en el intervalo elástico. Sin embargo, los resultados obtenidos para las columnas más cortas deben corregirse por inelasticidad, para obtener su resistencia real. (La esbeltez que separa el comportamiento elástico del ineláctico depende del tipo de acero, que no se conoce en este ejemplo).

2.5.3 Secciones con dos ejes de simetría

Son las más utilizadas en estructuras: secciones I, H, en cajón, tubulares (Fig. 2.2), y muchas de lámina delgada (Fig. 2.8).

Fig. 2.8 Secciones de lámina delgada con dos ejes de simetría.

Los centros de gravedad y de torsión coinciden, $x_0 = y_0 = 0$, y como r_0 es diferente de cero, la ec. 2.4 se reduce a:

$$(P_{E} - P_{crx})(P_{E} - P_{crx})(P_{E} - P_{crx}) = 0$$
(2.10)

Las tres cargas críticas son $P_{cr1} = P_{crx}$, $P_{cr2} = P_{cry}$ y $P_{cr3} = P_{crz}$; el modo de pandeo queda determinado por la menor de ellas. No hay interacción; la columna falla por pandeo por flexión o torsión puras.

El uso casi exclusivo de la fórmula de Euler (con la que se determinan P_{erx} y P_{ery} , pero no P_{erx}) para columnas de acero laminado en caliente, de sección I o H, o en cajón, laminadas o formados por placas soldadas, proviene de que en ellas P_{erx} y P_{ery} son casi siempre menores que P_{erx} y, en el peor de los casos, la menor de las dos está muy cerca de ella (ref. 2.6). Sin embargo, el pandeo por torsión puede controlar la resistencia de columnas de baja resistencia a la torsión, como las secciones en cruz, o de paredes muy delgadas; por este motivo, las especificaciones del Instituto Americano del Hierro y el Acero (AISI, por sus iniciales en inglés), que se refieren al diseño de estructuras hechas con lámina delgada han incluido, desde 1968, la revisión de esos dos modos (ref. 2.7), mientras que las del Instituto Americano de la Construcción en Acero (AISC), que cubren, principalmente, el diseño de estructuras de acero laminado en caliente, no han tenido en cuenta el problema hasta 1986 (ref. 2.8).

EJEMPLO 2.2 Calcule las cargas críticas de pandeo elástico de des columnas, de 4.00 y 7.00 m de longitud, articuladas en los extremos, que tienen la sección transversal que se muestra en la Fig. E2.2-1. Suponga que el pandeo local no es crítico.

Fig. E2.2-1 Sección transversal de las columnas.

Propiedades geométricas.

$$A = 65.0 \text{ cm}^2; \quad I_x = I_y = 2997.4 \text{ cm}^4; \quad r_x = r_y = 6.79 \text{ cm}$$

$$x_0 = y_0 = 0 \quad (Coinciden \text{ los centros de gravedad y de torsión}).$$

$$r_0^2 = (I_x + I_y)/A = 2 \times 2997.4/65 = 92.2 \text{ cm}^2$$

$$J = \frac{1}{3}(33.0 \times 1^3 + 2 \times 16.0 \times 1^3) = 21.7 \text{ cm}^4$$

$$C_x = 0 \quad (\text{La rigidez al alabeo de las secciones cruciformes es despreciable}).$$

<u>Cargas críticas.</u> Como las secciones transversales tienen dos ejes de simetría, la columna falla por pandeo por flexión o torsión puras. Puesto que $(KL)_x = (KL)_y$, e $I_x = I_y$, las dos cargas críticas de pandeo por flexión son iguales.

L=4.00 m (L/r = 58.9).

Pandeo por flexión:
$$P_{crx} = P_{cry} = \frac{2997.4\pi^2 E}{400^2} \times 10^{-3} = 377.0 \text{ ton}.$$
Pandeo por torsión:
$$P_{crx} = \frac{GJ}{r_0^2} = \frac{787500 \times 21.7}{92.2} \times 10^{-3} = 185.3 \text{ ton}.$$

En la ecuación para calcular P_{crr} desaparece el término correspondiente al efecto de alabeo. La falla es por pandeo por torsión; la carga crítica de pandeo elástico es P_{crr} = 185.3 ton.

L = 7.00 m (L/r = 103.1).

Pandeo por flexión: $P_{crx} = P_{cry} = 123.1 \text{ ton.}$ Pandeo por torsión: $P_{crz} = 185.3 \text{ ton.}$ Como $C_a = 0$, P_{crz} es independiente de la longitud de la columna.

Ahora la falla es por pandeo por flexión: $P_{cr} = P_{crx} = P_{cry} = 123.1 \text{ ton}$.

Los resultados de este ejemplo muestran que debe considerarse la posibilidad de falla por pandeo por torsión en columnas de secciones transversales especiales, sobre todo cuando su resistencia a la torsión por alabeo es baja y están formadas por placas de paredes delgadas; en este ejemplo, una columna con esbeltez L/r = 59 falla por torsión (en la ref. 2.6 se muestra que para la sección estudiada el pandeo por torsión es crítico para $0 \le L/r \le 82$, aproximadamente).

2.6 PANDEO POR FLEXIÓN

El pandeo por flexión, alrededor de uno de los ejes centroidales y principales, de columnas de sección transversal con dos ejes de simetría, es el que reviste mayor interés en el diseño de estructuras.

_

2.6.1 Pandeo elástico

Se tiene una columna esbelta de sección transversal constante doblemente simétrica, articulada en un extremo y con un apoyo guiado que permite rotaciones y desplazamientos lineales a lo largo de su eje en el otro, sujeta a la acción de fuerzas axiales de compresión P. Se supone que la columna es perfectamente recta, que el material de que está compuesta es homogéneo y elástico, y que en las articulaciones no hay ninguna fricción (Fig. 2.9a).

Fig. 2.9 Columna esbelta doblemente articulada.

En esas condiciones la forma recta corresponde a un estado de equilibrio entre las fuerzas exteriores e interiores, puesto que en cualquier sección transversal hay un conjunto de fuerzas interiores, uniformemente distribuidas, cuya resultante tiene la misma intensidad y línea de acción que P.

Para averiguar si el equilibrio es estable, inestable o indiferente, se aplica en la sección central de la columna una fuerza lateral pequeña que la coloca en una posición ligeramente deformada, y se observa si al quitarla recupera la forma recta, aumenta la deflexión lateral del eje, o se conserva la configuración deformada, sin modificarse.

En la discusión que sigue, la columna se flexiona en el plano "yoz".

La Fig. 2.9b muestra la columna con una configuración ligeramente flexionada; la fuerza exterior P, cuya línea de acción no pasa ya por los centros de gravedad de las secciones transversales, ocasiona momentos flexionantes, de magnitud Pv, que tienden a aumentar la curvatura del eje.

En cada sección transversal aparecen fuerzas interiores equivalentes a un par, que se superponen con las uniformes iniciales, y tratan de hacer que la columna vuelva a la forma recta original. El par interior EI/R es función de la curvatura 1/R del eje de la pieza en la sección, o sea de la magnitud de la deformación de la columna, pero no depende de la intensidad de la fuerza P.

En cada sección transversal hay dos momentos, uno exterior, Pv, función de la geometría del eje deformado y de la fuerza P, y otro interior, EI/R, que depende sólo de la configuración del eje de la pieza, de manera que al llevarla a una posición flexionada infinitamente cercana a la recta original puede presentarse cualquiera de los tres casos siguientes, según la magnitud de la fuerza exterior:

Si P es pequeña,	$P\nu < EI/R$
Si P es grande,	Pv > EI/R
Para un cierto valor intermedio de P,	Pv = EI/R

En el primer caso, el momento que trata que la columna regrese a la forma recta es mayor que el que tiende a deformarla, y al suprimir la fuerza lateral la pieza se endereza: el equilibrio es estable; en el segundo se invierte la relación entre los momentos, lo que indica que la curvatura crece aún después de quitar la fuerza lateral, condición característica de un estado de equilibrio inestable; en el tercero los dos momentos son iguales: el equilibrio es indiferente, y son posibles configuraciones equilibradas curvas de flecha indeterminada, pero siempre muy pequeña, además de la forma recta; la fuerza axial que ocasiona la condición de equilibrio indiferente es lá carga crítica P_{cr} .

Interesa, precisamente, el equilibrio indiferente, porque marca la terminación de un estado deseable y la iniciación de un fenómeno que debe evitarse siempre: la flexión espontánea, o pandeo de la pieza.

El pandeo de las piezas rectas comprimidas no se debe a imperfecciones en la columna y en la aplicación de la carga (las que, si existen, hacen que la flexión empiece a manifestarse para valores pequeños de P y aumente con ella); se presenta cuando no hay ninguna imperfección, ya que al alcanzar la carga el valor crítico la forma recta de equilibrio se vuelve inestable. (Para que haya pandeo la columna ha de ser inicialmente recta y la fuerza de compresión perfectamente axial, de manera que se mantenga recta en las primeras etapas, hasta que P alcance el

valor crítico; si hay deformaciones iniciales o excentricidades en la aplicación de la carga la columna no se pandea, sino empieza a flexionarse desde un principio y llega eventualmente a un estado de equilibrio inestable, en forma gradual, a diferencia del pandeo, que es un fenómeno instantáneo). Esto no quiere decir que la columna se flexione necesariamente, pero a semejanza de lo que sucede en todos los casos de equilibrio inestable es improbable que permanezca recta; en la práctica, además, las imperfecciones inevitables, aún siendo muy pequeñas, hacen que la flexión se inicie bajo cargas de poca intensidad.

Cuando empieza la flexión bastan incrementos muy pequeños de la fuerza axial para que las deformaciones crezcan rápidamente, con el consiguiente rápido aumento de los esfuerzos, que alcanzan pronto los valores de falla, por la que la iniciación del fenómeno de inestabilidad equivale a la desaparición completa de la resistencia, o sea al colapso de la columna.

Mientras el equilibrio es estable los incrementos de la carga P ocasionan sólo deformaciones longitudinales de la columna, que está sujeta a esfuerzos uniformes e de compresión; el pandeo se manifiesta al aparecer una nueva deformación, la flexión, que provoca otra solicitación, el momento flexionante.

En la Fig. 2.3c se muestran las curvas P-v (fuerza axial-deflexión) de dos columnas, una recta y cargada axialmente (representada con línea llena), la otra con imperfecciones iniciales (línea interrumpida). La primera es una recta vertical, que coincide con el eje de las ordenadas; cuando la fuerza P llega al valor crítico se presentan dos posibilidades: que P siga creciendo sin que la columna se flexione (la gráfica sigue coincidiendo con el eje de las ordenadas), o que se inicien las deformaciones laterales, que aumentan rápidamente con incrementos pequeños de P hasta llegar, poco después, a la carga máxima que puede soportar la columna, P_{M} . En la segunda curva las deformaciones laterales crecen desde un principio, en forma gradual, hasta que la carga alcanza el valor de colapso. La curva trazada con línea llena representa una falla por pandeo, mientras que la interrumpida corresponde a colapso por inestabilidad ocasionada por exceso de deformación, sin que haya pandeo propiamente dicho: la compresión alcanza su intensidad máxima sin pasar por un valor crítico, que se caracteriza (curva con línea llena) por una "bifurcación del equilibrio". (Cuando la carga alcanza el valor crítico se llega a un punto de bifurcación del equilibrio; a partir de él, la barra perfecta puede mantenerse recta, deformándose sólo por compresión, o adoptar otras configuraciones en equilibrio, cercanas a la recta, que se caracterizan por la aparición de una nueva deformación, la flexión. Un hecho análogo caracteriza todos los fenómenos de pandeo).

2.6.1.1 Determinación de la carga crítica

La carga crítica se calcula igualando el momento exterior en una sección transversal cualquiera de la columna deformada, ocasionado por la fuerza P, con el momento resistente interior en esa misma sección, y resolviendo la ecuación diferencial correspondiente; por ejemplo, si la columna se flexiona en el plano yoz (alrededor de los ejes x) se tiene $Pv = EI_x/R$, y si se supone que los desplazamientos del eje son suficientemente pequeños para que la curvatura 1/R pueda considerarse igual a $d^2v/dz^2 = v^*$, se llega a:

$$EI_{\nu}v'' + Pv = 0$$

que es la ecuación de equilibrio de la columna ligeramente deformada; su solución proporciona los valores de las cargas que pueden mantenerla en equilibrio en esas condiciones, es decir, las cargas críticas de pandeo elástico:

$$P_{crx} = \frac{n^2 \pi^2 E I_x}{L^2}$$

n es un número positivo cualquiera.

El eje de la columna deformada es una senoide; el número de ondas queda definido por n. Si n = 1, la columna se pandea en una semionda, en dos si n = 2, etc.; a cada modo superior de pandeo le corresponde una carga crítica más elevada.

La carga crítica más pequeña es la única que tiene interés práctico (a menos que se obligue a la columna a pandearse en alguno de los modos superiores, evitando el desplazamiento lateral de una o más de sus secciones transversales, por medio de restricciones exteriores), de manera que puede escribirse:

$$P_{crx} = \frac{\pi^2 E I_x}{L^2}$$

 P_{crx} es la carga crítica de Euler para pandeo alrededor del eje x.

Como la columna se pandea siempre en el plano de menor resistencia a la flexión, si no hay restricciones exteriores que lo impidan, la ecuación anterior puede escribirse en una forma más general:

$$P_{cr} = \frac{\pi^2 EI}{L^2}$$
(2.11)

donde *I* es el momento de inercia mínimo de la sección transversal constante de la columna.

La carga crítica de Euler marca el punto en que la columna elástica perfecta se vuelve inestable; no se alcanza nunca en columnas reales, que no son absolutamente rectas, ni con cargas aplicadas exactamente a lo largo de su eje centroidal, como se supone en la teoría. Sin embargo, en ensayos cuidadosos con especímenes pequeños, en los que se eliminan al máximo las excentricidades y las
Miembros en compresión (la columna aislada)

curvaturas, se han observado cargas tan cercanas a las teóricas que el error experimental resulta insignificante.

La ecuación del eje de la columna deformada, en el instante en que se inicia el pandeo, es (ref. 2.6):

$$v = C_1 sen\lambda_r z = C_1 sen \frac{n\pi}{L} z$$

donde

$$\lambda_r = \sqrt{P_{cr}/EI} = \sqrt{\left(n^2 \pi^2 EI/L\right)/EI} = n\pi/L$$

Haciendo n = 1 y tomando z = L/2 se obtiene la flecha máxima, en el centro de la columna:

$$v_{max} = C_1 sen \frac{\pi}{L} \frac{L}{2} = C_1 sen \frac{\pi}{2} = C_1$$

La deflexión lateral es indeterminada, pues C_1 es una constante arbitraria, lo que indica que la teoría desarrollada hasta ahora permite obtener la carga para la que se inicia el pandeo, pero no predice el comportamiento posterior, ya que con ella no se pueden calcular los desplazamientos laterales del eje, que permanecen indeterminados.

La limitación anterior se origina en el empleo de la fórmula $1/R = d^2 y/dz^2$, que es suficientemente precisa para desplazamientos pequeños, pero deja de serlo cuando aumentan; si se desea ampliar la teoría del pandeo elástico de columnas, para que tenga en cuenta desplazamientos laterales grandes, es preciso emplear la expresión matemática exacta de la curvatura.

Los dos caminos conducen a resultados análogos pues el segundo, basado en la expresión correcta de la curvatura, indica que el equilibrio sigue siendo estable para cargas mayores que la crítica, pero sólo para incrementos muy pequeños, después de los cuales se produce la falla por pandeo inelástico.

La falla se presenta, en todos los casos, cuando se forman en la columna articulaciones plásticas suficientes para que se convierta en un mecanismo; en la barra articulada en los dos extremos basta con una sola, que aparece en la sección de⁻ momento máximo (la sección central) cuando se agota su resistencia bajo la acción combinada de la fuerza axial y del momento ocasionado por el desplazamiento lateral que caracteriza al pandeo, o sea cuando $M_{max} = Pv_{max} = M_{pc}$, donde M_{pc} es el momento plástico resistente de la sección transversal, reducido por efecto de la fuerza axial. La carga de colapso es muy poco mayor que la crítica, pues el rápido crecimiento de los esfuerzos hace que la sección central se plastifique inmediatamente después de iniciarse el pandeo. (El colapso tiene lugar siempre en el intervalo plástico, independientemente de que el pandeo se inicie abajo o arriba del límite de proporcionalidad).

Una vez formada la articulación plástica el momento interno en la sección central es constante, y para que se conserve el equilibrio mientras aumentan los desplazamientos laterales ha de disminuir la carga que obra sobre la columna.

2.6.1.2 Esfuerzo crítico

Dividiendo los dos miembros de la ec. 2.11 entre el área A de la sección transversal, teniendo en cuenta que P_{cr}/A es el esfuerzo correspondiente a la iniciación del pandeo, sustituyendo el momento de inercia I por Ar^2 y efectuando simplificaciones, se obtiene la expresión:

$$\sigma_{cr} = \frac{\pi^2 E}{(L/r)^2} \tag{2.12}$$

en la que σ_{cr} es el esfuerzo crítico de Euler para pandeo elástico; el cociente L/r recibe el nombre de *relación de esbeltez* de la columna. r es el radio de giro de las secciones transversales respecto al eje de flexión.

2.6.1.3 Longitud efectiva

Como la fórmula de Euler se deduce suponiendo que los dos extremos de la columna están articulados, sólo proporciona la carga o el esfuerzo crítico de columnas con esas condiciones de apoyo; si cambian las restricciones en los extremos, se modifica su capacidad para resistir fuerza axial.

La columna doblemente articulada no existe en las estructuras reales y sólo se obtiene en experimentos de laboratorio muy cuidadosos; su importancia estriba en que a partir de los resultados obtenidos para ella pueden deducirse las cargas o esfuerzos críticos correspondientes a cualquier otra condición de apoyo, por lo que se le da el nombre de *caso fundamental*.

Si la columna está aislada y tiene condiciones de apoyo bien definidas, su carga crítica, y la configuración del eje deformado, pueden determinarse utilizando la ecuación de equilibrio de segundo orden, en la que se introducen las condiciones de frontera propias del tipo de apoyo.

Por ejemplo, si los dos extremos están empotrados (las rotaciones y los desplazamientos laterales están impedidos, pero un extremo puede acercarse al otro), aparecen momentos en ellos, cuando se inicia el pandeo. La solución matemática del problema (ver, por ejemplo, la ref. 2.9) demuestra que hay dos cargas críticas, que corresponden a los dos modos de pandeo de la Fig. 2.10: $P_{cr} = 4\pi^2 EI/L^2$, para el modo simétrico, y $P_{cr} = 80.766 EI/L^2$, para el antisimétrico. Puesto que la carga crítica del primer modo es menor que la del segundo, la

columna se pandea en la forma simétrica, a menos que se impida el desplazamiento lateral de su punto medio, y puede escribirse:

$$P_{cr} = \frac{4\pi^2 EI}{L^2}$$

Los momentos en los extremos y las fuerzas axiales equivalen a las cargas P _aplicadas excéntricamente (Fig. 2.10a). Los puntos de inflexión, de momento nulo, localizados en las intersecciones de la línea de acción de P con el eje deformado, dividen la barra en tres secciones; la central, comprendida entre ellos, de longitud L/2 (ref. 2.9), se encuentra en las mismas condiciones que el caso fundamental.

Fig. 2.10 Pandeo de una columna empotrada en los dos extremos.

La carga critica de pandeo de la columna doblemente empotrada se puede determinar utilizando la fórmula deducida para la articulada en ambos extremos, pero empleando al aplicarla la longitud del tramo que se encuentra en las mismas condiciones que el caso fundamental, en vez de la longitud real:

$$P_{cr} = \frac{\pi^2 EI}{(L/2)^2} = \frac{4\pi^2 EI}{L^2}$$

Utilizando directamente la ecuación de equilibrio de la columna deformada se llega a este mismo resultado.

De manera análoga, la fórmula de Euler puede emplearse para calcular la carga o el esfuerzo crítico de pandeo de columnas con otras condiciones de apoyo, por lo que conviene escribirla en la forma general siguiente:

$$P_{cr} = \frac{\pi^{2} EI}{(KL)^{2}}$$
(2.13)
$$\sigma_{cr} = \frac{\pi^{2} E}{(KL/r)^{2}}$$
(2.14)

1

KL es la *longitud efectiva* de la columna, que se define como la longitud de una columna equivalente, articulada en los dos extremos, que tiene la misma carga crítica que la columna restringida real; es igual a la distancia entre los dos puntos de inflexión, reales o imaginarios, del eje deformado. Vale 1.0 para extremos articulados y $\frac{1}{2}$ para extremos empotrados, y tiene valores intermedios para restricciones elásticas comprendidas entre esos límites; si un extremo de la columna puede desplazarse linealmente respecto al otro, en dirección perpendicular al eje original, *K* puede crecer indefinidamente.

En la Fig. 2.11 se dan los valores de K para varias condiciones de apoyo idealizadas, en las que las restricciones que impiden las rotaciones y traslaciones de los extremos son nulas o cien por ciento efectivas.

La línea punteada indica la forma de la columna pandeada	(a)	(b)	(C)	(d)	(e)	(f)	
Valor teórico de K	0.5	0.7	1.0	1.0	2.0	2.0	
Valores de diseño recomendados cuando se tienen condiciones cercanas a las ideales	0.65	0.80	1.2	1.0	2.1	2.0	
Condiciones en los extremos	<i>щи</i> 1977 1975 1975 1975	Rotación impedida y traslación impedida Rotación libre y traslación impedida Rotación impedida y traslación libre Rotación libre y traslación libre					

Fig. 2.11 Valores del coeficiente K para columnas aisladas con diversas condiciones de apoyo.

Puede suponerse que se presenta una condición de empotramiento perfecto en la base (casos a, b, c y e, Fig. 2.11) cuando la columna está ligada a una cimentación rígida, cuyas rotaciones son despreciables, por medio de una conexión diseñada

para resistir el momento de empotramiento, obtenida con una placa de base y anclas, o ahogando la columna en el cimiento una longitud adecuada; si el comportamiento del extremo inferior es incierto, respecto a la existencia de rotaciones, debe suponerse articulado (casos d y f).

Las rotaciones del extremo superior se consideran impedidas cuando la columna se une rígidamente a una trabe de gran peralte, de rigidez muchas veces mayor que la suya propia; si se impiden los desplazamientos lineales de la trabe, por medio de contraventeos o muros de rigidez, la columna se encuentra en el caso a, y cuando pueden presentarse esos desplazamientos está en el c o f.

La suposición de que hay articulaciones en los extremos superiores (casos b y d), puede deberse a que las trabes tengan una rigidez muy reducida o a la forma en que estén conectadas con las columnas.

Los valores de K recomendados para diseño son una modificación de los teóricos, que tiene en cuenta que tanto las articulaciones perfectas como los empotramientos absolutos son irrealizables.

Se requiere un cierto grado de juicio, por parte del ingeniero proyectista, para determinar cuál de los casos de la Fig. 2.11 se acerca más al problema que está resolviendo; si se tienen dudas, usará una aproximación que sobrestime la esbeltez de la columna y, por consiguiente, subestime su resistencia.

Cuando la columna es parte de una estructura más compleja, y el grado de restricción en los apoyos no está claramente definido, su longitud efectiva se determina con métodos más elaborados.

La ec. 2.13 puede escribirse en la forma:

$$P_{cr} = \frac{\pi^2 EI}{(KL)^2} = \frac{P_E}{K^2},$$

donde P_E es la carga crítica de Euler de una columna, articulada en los dos extremos, de longitud igual a la de la columna restringida real.

El factor de longitud efectiva K de una columna con condiciones de apoyo diferentes de las del caso fundamental se evalúa directamente con la expresión:

$$K = \sqrt{\frac{P_E}{P_{cr}}}$$

2.6.2 Pandeo inelástico

La fórmula de Euler, con la que se calcula la carga crítica de piezas rectas comprimidas axialmente, se basa en la suposición de que la pieza se comporta

elásticamente hasta la iniciación del pandeo, por lo que en la ecuación de equilibrio aparece el módulo de elasticidad E, que se conserva en las fórmulas finales; como una consecuencia, la teoría de Euler, y las ecuaciones obtenidas con ella (ecs. 2.13 y 2.14), no son aplicables a columnas cortas o de longitud intermedia, en las que se alcanza el límite de proporcionalidad antes que el esfuerzo crítico de pandeo elástico.

La fórmula $\sigma_{cr} = \pi^2 E/(L/r)^2$ es válida para los valores de la relación de esbeltez a los que corresponden esfuerzos críticos no mayores que el límite de proporcionalidad ($\sigma_{cr} \le \sigma_{LP}$) o sea hasta que:

$$\sigma_{cr} = \frac{\pi^2 E}{(L/r)^2} = \sigma_{LP}$$

Despejando L/r se obtiene:

$$\frac{L}{r} = \pi \sqrt{\frac{E}{\sigma_{LP}}}$$
(2.15)

 σ_{LP} es el esfuerzo en el límite de proporcionalidad.

Con la ecuación 2.15 se calcula la relación de esbeltez mínima para la que es aplicable la fórmula de Euler; no lo es para esbelteces menores, puesto que para ellas $\sigma_{cr} > \sigma_{LP}$, el límite de proporcionalidad se sobrepasa antes de iniciarse el pandeo, y éste se inicia en el intervalo inelástico.

Durante varias décadas se consideró que la teoría de Euler era incorrecta, pues arrojaba resultados que no concordaban con los que se obtenían experimentalmente; esto se debía a que las columnas que se utilizaban entonces eran de esbeltez muy reducida y fallaban en el intervalo inelástico, bajo cargas mucho menores que las predichas por la fórmula de Euler. Por este motivo las columnas se diseñaron, durante largo tiempo, utilizando fórmulas empíricas, deducidas de información proporcionada por pruebas de laboratorio. Transcurrieron cien años hasta que Lamarle, en 1845, advirtió que el error no estaba en la fórmula, sino en su aplicación a casos para los que no es válida.

La teoría del pandeo elástico de columnas estaba bien establecida desde entonces, pero no se contaba con ningún procedimiento para predecir la carga crítica fuera de ese intervalo, por lo que se siguieron empleando fórmulas empíricas.

Engesser y Considère fueron los primeros en advertir la posibilidad de modificar la fórmula de Euler para calcular la carga crítica de pandeo inelástico, introduciendo en ella un módulo variable, función del esfuerzo crítico.

Engesser presentó su teoría del módulo tangente en 1889; de acuerdo con ella, la resistencia máxima de una columna que empieza a pandearse en el intervalo inelástico se obtiene sustituyendo en la fórmula de Euler el módulo de elasticidad *E*

por el módulo tangente E_r . En el mismo año, Considère hizo notar que al comenzar la flexión de una columna cargada más allá del límite de proporcionalidad los esfuerzos en el lado cóncavo se incrementan, de acuerdo con el diagrama esfuerzodeformación, pero los del lado convexo disminuyen, siguiendo la ley de Hooke, de manera que su resistencia máxima no es función ni del módulo de elasticidad E ni del tangente E_r , sino de un módulo \overline{E} comprendido entre los dos. Considère observó que \overline{E} es función del esfuerzo medio P/A, pero no propuso ningún procedimiento para calcularlo.

En 1895 Engesser reconoció el error que existía en su teoría original y presentó una nueva solución del problema, conocida con el nombre de teoría del módulo reducido o del módulo doble.

A partir de entonces se aceptó la teoría del módulo reducido como la solución correcta del problema del pandeo inelástico de columnas; desde el punto de vista del concepto clásico de inestabilidad es efectivamente correcta, puesto que proporciona la carga para la que una columna perfecta, recta y cargada axialmente, puede tener, además, otras configuraciones en equilibrio cercanas a la recta. Sin embargo, más adelante aparecieron dudas sobre ella, pues resultados experimentales cuidadosos, obtenidos con especímenes de secciones transversales de diversas formas, indicaron que las cargas de pandeo reales se encuentran entre las predichas por las dos teorías, del módulo tangente y del módulo reducido, más cerca casi siempre de las primeras que de las segundas.

El verdadero significado de las dos teorías fue aclarado finalmente por Shanley, en 1947.

En la discusión que se presenta en seguida se admiten las hipótesis siguientes:

- 1. Los desplazamientos laterales del eje de la columna son pequeños en comparación con las dimensiones de sus secciones transversales.
- Las secciones transversales planas permanecen planas y normales al eje deformado, después de la flexión.
- El diagrama esfuerzo-deformación del material de la columna proporciona la relación entre esfuerzo y deformación en cualquiera de sus fibras
 longitudinales.
- El plano de flexión es un plano de simetría de todas las secciones transversales.

2.6.2.1 Teoría del módulo tangente

Se basa en la suposición de que cuando la columna tiene una relación de esbeltez tal que el esfuerzo crítico de pandeo $\sigma_i = P_i/A$ es mayor que el límite de

proporcionalidad, son posibles configuraciones deformadas en equilibrio indiferente para las que la deformación es controlada por el módulo de elasticidad tangente E_t , que es igual a la pendiente de la curva esfuerzo de compresión-deformación del material de la columna en el punto que corresponde al esfuerzo crítico (Refs. 2.4, 2.5, 2.6 y 2.10) (Fig. 2.12).

Fig. 2.12 Teoría del módulo tangente.

La ecuación diferencial del eje deformado es:

$$v'' + \frac{P_t}{E_t I} v = 0,$$

y, para una columna con extremos articulados, la carga y el esfuerzo crítico valen:

$$P_{i} = \frac{\pi^{2} E_{i} I}{L^{2}}$$
(2.16)
$$\sigma_{i} = \frac{\pi^{2} E_{i}}{(L/r)^{2}}$$
(2.17)

2.6.2.2 Teoría del módulo reducido

De acuerdo con esta teoría, la carga crítica de una columna de longitud intermedia, sobre la que obra una fuerza de compresión P_r , tal que $\sigma_r = P_r/A$ excede el límite de proporcionalidad, es:

$$P_r = \frac{\pi^2 E_r I}{L^2}$$
(2.18)

El esfuerzo crítico correspondiente es:

$$\sigma_r = \frac{\pi^2 E_r}{(L/r)^2}$$
(2.19)

Cuando la columna se flexiona, al iniciarse el pandeo, aparecen en sus secciones transversales momentos que incrementan los esfuerzos en el lado cóncavo, donde la compresión por flexión se suma con la directa, y los disminuyen en el convexo, en el que la flexión produce tensiones.

Si la curva OBC de la Fig. 2.13 representa el diagrama esfuerzo de compresióndeformación del material de la columna, y el punto C corresponde al esfuerzo crítico, los esfuerzos y deformaciones en el lado cóncavo están relacionados entre sí, durante pequeñas deformaciones, por el módulo tangente E_r (pendiente de la tangente CC'), y en el lado convexo, por el módulo de elasticidad ordinario, E, que es la pendiente de la recta CC", paralela al tramo inicial, elástico, de la curva. El momento resistente es proporcional al módulo reducido E_r , que es función de E, E_r , y de la geometría de la sección transversal (refs. 2.4 y 2.6):

Fig. 2.13 Teoría del módulo reducido.

Las ecs. 2.18 y 2.19 se obtienen planteando la ecuación de equilibrio de la columna ligeramente deformada, y siguiendo el mismo camino que para deducir la fórmula de Euler.

Como E_r es siempre mayor que E_r , la teoría del módulo reducido proporciona cargas críticas algo más altas que la del módulo tangente.

Durante bastantes años se consideró que la teoría del módulo reducido era la más precisa, pues tiene en cuenta la reducción de esfuerzos en el lado convexo, producida por la flexión; sin embargo, las cargas críticas obtenidas experimentalmente se encuentran entre las predichas por las dos teorías, más

cerca, en general, de las que corresponden al módulo tangente que al reducido; por este motivo, se utilizó cada vez más la teoría del módulo tangente, a pesar de ser aparentemente incorrecta; tiene, además, las ventajas de proporcionar resultados del lado de la seguridad y ser más fácil de aplicar, pues E_r , no depende de la forma de las secciones transversales.

Esta situación, aparentemente ilógica, existió hasta que Shanley aclaró el comportamiento de las columnas cargadas axialmente que se pandean en el intervalo inelástico.

2.6.2.3 La contribución de Shanley

Según la teoría del módulo tangente, la columna empieza a flexionarse cuando la carga vale $P_t = \pi^2 E_t I/L^2$, y son posibles configuraciones deformadas, en equilibrio indiferente, en las que esfuerzos y deformaciones están relacionados por el módulo E_t , en todos los puntos.

Para que esto sea cierto, el paso de la configuración recta a una deformada adyacente ha de presentarse sin que disminuyan los esfuerzos en ningún punto de la sección, lo que sólo es posible si los desplazamientos laterales se inician cuando la carga axial aumenta todavía, de manera que la tendencia a que disminuyan los esfuerzos en el lado convexo se compensa por el incremento ocasionado por la fuerza axial adicional.

La carga P_i predicha por la teoría del módulo tangente no es la fuerza axial máxima que resiste la columna, puesto que las mismas suposiciones que llevan a su obtención implican un aumento en la capacidad de carga.

En resumen, la carga que corresponde al módulo tangente es un límite inferior de la resistencia de una columna; al alcanzarla, la barra recta se flexiona, mientras crece la fuerza que obra sobre ella. La predicha por la teoría del módulo reducido es el límite superior, pues es la compresión máxima que resistiría la columna si permaneciese recta hasta entonces. La resistencia máxima se encuentra entre los límites correspondientes a las dos teorías (Fig. 2.14).

2.6.3 Esfuerzos residuales

En los miembros de acero estructural laminados en caliente aparecen esfuerzos residuales, debidos a las deformaciones permanentes que se originan por el enfriamiento irregular desde la temperatura de laminación hasta la ambiente.

Los extremos de los patines y la parte central del alma de un perfil H se enfrian con mayor rapidez que las zonas de unión de alma y patines, por estar más expuestas que éstas a la temperatura ambiente (refs. 2.6, 2.11; en cualquiera de ellas hay una extensa lista de referencias adicionales). Cuando se enfrían las fibras longitudinales de las regiones mencionadas primero se contraen y pasan al estado elástico, mientras el material de las porciones centrales de los patines y de las zonas contiguas del alma está aún a una temperatura que le permite seguir esas contracciones sin ninguna restricción; cuando, posteriormente, se enfrían las porciones centrales, tratan de contraerse más, pero están restringidas por el metal que se encuentra ya en estado elástico, que no puede acortarse sustancialmente, e impide que las fibras que se enfrían al final se contraigan todo lo que requiere el descenso de temperatura. (El proceso de enfriamiento es continuo, aunque aquí se ha descrito, por simplicidad, como si se presentase por etapas).

Fig. 2.14 Comparación de los resultados de las teorías del módulo tangente y del módulo reducido con la resistencia máxima de una columna.

Como una consecuencia de los fenómenos mencionados, cuando el perfil laminado llega a la temperatura ambiente, el material que ocupa la zona central de los patines y el alma adyacente queda sometido a fuerzas interiores de tensión, que ejercen sobre él los extremos de los patines y la zona central del alma que, a su vez, soportan compresiones a lo largo de los bordes; hay en el perfil esfuerzos iniciales, antes de que actúen las cargas exteriores, que generan un sistema de fuerzas interiores en equilibrio.

También producen esfuerzos residuales las deformaciones plásticas ocasionadas por operaciones efectuadas durante la fabricación de la estructura, como el enderezado de los perfiles, en frío o en caliente, y la soldadura, que genera esfuerzos residuales muy importantes, por el calentamiento y enfriamiento irregulares de los metales base y de aportación, desde la temperatura ambiente hasta la de fusión; los cortes con soplete oxiacetilénico producen efectos semejantes a los de la soldadura.

Tanto en perfiles laminados en caliente como en miembros soldados, las partes que tardan más en enfriarse quedan, en general, en tensión, pues su longitud final es mayor que la que tendrían si se enfriasen libremente, y las que se enfrían primero, en compresión (Fig. 2.15a).

Fig. 2.15 Esfuerzos residuales en perfiles laminados.

En las secciones I y H los esfuerzos residuales máximos aparecen en los extremos de los patines; en perfiles laminados, su valor medio en esos puntos es de unos 900 Kg/cm², prácticamente independiente del esfuerzo de fluencia del acero, por lo que influyen menos en la capacidad de carga de columnas de acero de alta resistencia, pues constituyen un porcentaje menor de su esfuerzo de fluencia (Fig. 2.15b). En secciones I y H hechas con placas soldadas son, en general, más elevados; su magnitud y distribución dependen del tipo de placas que forman el alma y los

patines. Pueden eliminarse, casi por completo, por medio de tratamientos térmicos (Fig. 2.15b).

Los esfuerzos residuales de tensión en las soldaduras y en zonas angostas adyacentes a los bordes de placas cortadas con soplete exceden, con frecuencia, el límite de fluencia de las placas, pues aunque el metal base no resiste, inicialmente, esfuerzos mayores que F_y , los ciclos térmicos producidos por la soldadura y los cortes modifican sus propiedades, y elevan su resistencia (Fig. 2.16).

Fig. 2.16 Esfuerzos residuales en placas, antes y después de depositar un cordón de soldadura en su eje longitudinal. (a) Placas laminadas. (b) Placas cortadas con soplete.

La soldadura modifica los esfuerzos previos producidos por el enfriamiento o por los cortes con soplete. Las placas laminadas tienen esfuerzos residuales de compresión en los bordes, mientras que en placas cortadas con soplete esos esfuerzos son tensiones (Fig. 2.16). En secciones H soldadas, hechas con placas laminadas, la soldadura incrementa la compresión en los bordes de los patines y agranda la región comprimida, lo que afecta desfavorablemente la resistencia de la columna; en cambio, si las placas han sido cortadas con soplete, se forman esfuerzos residuales de tensión en los extremos de los patines, y aumenta la resistencia (Fig. 2.17).

Los esfuerzos residuales tienen distribuciones muy parecidas en todas las secciones en cajón, fabricadas con placas laminadas o cortadas con soplete, porque los que producen las soldaduras son mucho mayores que los que había antes (Fig. 2.18).

Fig. 2.17 Esfuerzos residuales en una sección H soldada, hecha con placas cortadas con soplete.

2.6.3.1 Influencia de los esfuerzos residuales en la resistencia de las columnas de acero estructural

Su efecto principal es hacer que descienda el límite de proporcionalidad del acero, a partir del cual su diagrama esfuerzo-deformación deja de ser recto; se llega a ese límite tan pronto como la suma de los esfuerzos residuales más los producidos por las cargas iguala a σ_y en algún punto de la sección. Si la barra está en tensión, el esfuerzo de fluencia aparece primero en el punto donde las tensiones residuales eran máximas; si está en compresión, se alcanza, por primera vez, en la zona de esfuerzos residuales de compresión de mayor intensidad.

Como las fuerzas residuales interiores están en equilibrio, los volúmenes de esfuerzos de tensión y compresión en cada sección transversal son iguales entre sí,

y están distribuidos de manera que las fuerzas interiores se equilibran mutuamente, por lo que no influyen en la resistencia última de las barras en tensión (en las zonas en que hay tensiones residuales se llega a σ_y antes que si no las hubiera, pero la plastificación se retrasa donde los esfuerzos residuales son compresiones) ni, por razones análogas, en la de barras comprimidas muy cortas, que fallan por aplastamiento.

Fig. 2.18 Esfuerzos residuales en secciones cajón soldadas.

En la ref. 2.6 se ilustra el efecto de los esfuerzos residuales en el diagrama esfuerzo de compresión-deformación, estudiando el comportamiento de una columna corta, de sección transversal rectangular, con esfuerzos residuales idealizados (Fig. 2.19); se obtiene la gráfica de la Fig. 2.20. Para llegar a ella se utiliza la ley de Hooke, durante todo el proceso de carga, pero se tiene en cuenta que el área efectiva, en cualquier etapa, es sólo la de la porción de la sección que permanece en el intervalo elástico, pues el resto se deforma plásticamente bajo esfuerzo constante. Así, toda la sección es efectiva hasta que el esfuerzo producido por la carga exterior, P/A, alcanza el valor $\sigma_y - \sigma_{rc}$; a partir de ese instante, las dos porciones laterales de la columna se plastifican, y la resistencia adicional proviene, sólo, de la parte central, que sigue en el intervalo elástico.

2.6.3.2 Esfuerzo crítico de columnas con esfuerzos residuales

Cada fibra deja de contribuir a la rigidez de la columna cuando aparece en ella el esfuerzo σ_y , pues en esas condiciones se deforma libremente, bajo carga constante; por consiguiente, una vez que se han plastificado algunas porciones de la columna, al superponerse los esfuerzos producidos por las cargas exteriores con los residuales, se puede seguir utilizando la fórmula de Euler, pero debe considerarse sólo la porción de las secciones transversales que está aún en el intervalo elástico (refs. 2.12 y 2.13):

$$P_{cr} = \frac{\pi^2 E I_e}{L^2} = \frac{I_e}{I} P_E$$
(2.20)

 I_e es el momento de inercia de la parte de la sección transversal que está en el intervalo elástico cuando se inicia el pandeo, y P_E es la carga crítica de Euler. Se supone que los esfuerzos residuales son iguales en todas las secciones transversales de la columna, de manera que I_e es constante.

Fig. 2.20 Gráfica esfuerzo-deformación de la columna de la Fig. 2.19.

El esfuerzo crítico se obtiene dividiendo entre el área total A los dos miembros de la ecuación anterior:

$$\sigma_{cr} = \frac{P_{cr}}{A} = \frac{\pi^2 E I_e}{A L^2} = \frac{\pi^2 E I_e}{(I/r^2) L^2} = \frac{\pi^2 E (I_e/I)}{(L/r)^2}$$
(2.21)

 σ_{cr} se calcula con la fórmula de Euler, sustituyendo E por el producto $E(I_e/I)$.

Sin la contribución de Shanley a la teoría del pandeo inelástico no se habría podido llegar a este resultado, pues se está tomando como carga crítica la que ocasiona la iniciación de la flexión lateral de la columna, y admitiendo que ésta empieza sin que se descargue ninguna fibra; de no ser así, volverían a intervenir en el momento de inercia efectivo las zonas plastificadas del lado convexo, que regresarían al campo elástico. Se acepta que la flexión se inicia acompañada por un incremento de la carga, que produce aumentos de las deformaciones sin que disminuyan los esfuerzos en ningún punto; se utiliza, pues, la teoría del módulo tangente corregida

por Shanley, modificada porque las secciones transversales de las columnas con esfuerzos residuales dejan de ser homogéneas cuando se plastifican parcialmente.

De acuerdo con las ecs. 2.20 y 2.21, la distribución de los esfuerzos residuales con respecto al eje de flexión influye muy significativamente en la magnitud de σ_{cr} , ya que I_e depende de ella, por lo que se obtienen resultados diferentes, para una misma sección, e igual esbeltez, cuando se pandea alrededor de uno u otro de los ejes centroidales y principales.

Si las dos porciones laterales de amplitud *a* de la Fig. 2.19b, en las que había una compresión residual, están plastificadas cuando se inicia el pandeo de una columna que tiene esa sección transversal, utilizando la gráfica de la Fig. 2.20 para evaluar el módulo tangente de la sección completa se llega a los resultados siguientes (ref. 2.6):

Flexión alrededor del eje x:

$$\frac{I_{ex}}{I_x} = \frac{E_t}{E} \quad \therefore \sigma_{crx} = \frac{\pi^2 E}{(L/r_x)^2} \frac{E_t}{E}$$
(2.22)

Flexión alrededor del eje y:

$$\frac{I_{ey}}{I_y} = \left(\frac{E_t}{E}\right)^3 \quad \therefore \sigma_{ery} = \frac{\pi^2 E}{\left(L/r_y\right)^2} \left(\frac{E_t}{E}\right)^3 \tag{2.23}$$

Si se conoce E_r para fuerzas de compresión crecientes, con las ecuaciones 2.22 y 2.23 pueden obtenerse gráficas para diseño de columnas de sección transversal rectangular, que se pandean alrededor de cualquiera de los ejes centroidales y principales, con las que se determina σ_{cr} , en función de la relación de esbeltez y teniendo en cuenta los esfuerzos residuales.

 σ_{crx} se calcula aplicando directamente la teoría del módulo tangente (ec. 2.22), pero no sucede lo mismo con σ_{cry} , que no depende directamente de E_r , sino de una función del cociente E_r/E (ec. 2.23).

El módulo tangente de la sección transversal completa, E_r , puede determinarse analíticamente, partiendo de una distribución conocida de esfuerzos residuales, o experimentalmente, por medio de ensayes de compresión de perfiles completos, de poca longitud (ref. 2.11).

Las ecs. 2.22 y 2.23 son válidas también para columnas de sección H o I idealizadas como dos placas paralelas entre sí, despreciando el efecto del alma sobre la rigidez

(refs. 2.6, 2.14); corresponden, respectivamente, a pandeo por flexión alrededor de los ejes x y y.

En la Fig. 2.21 se han trazado las curvas esfuerzo medio-relación de esbeltez que se obtienen aplicando las dos ecuaciones a una columna de sección H pandeada por flexión alrededor de los ejes de mayor y menor momento de inercia, suponiendo que tiene los esfuerzos residuales idealizados que se muestran, con valores máximos de $0.30 \sigma_y$, en los extremos de los patines, y despreciando el efecto del alma $(0.30 \sigma_y)$

es un valor experimental promedio, determinado para secciones H laminadas, de tamaño pequeño o mediano).

Fig. 2.21 Curvas esfuerzo crítico-relación de esbeltez para una columna I con esfuerzos residuales.

Cuando se obtuvieron las curvas anteriores, se pensó que para simplificar el diseño convenía sustituirlas por una sola, válida para pandeo en x o en y.

La resistencia de columnas que se pandean en el intervalo inelástico, por flexión alrededor del eje de mayor momento de inercia, puede aproximarse con una curva de ecuación (ref. 2.5):

$$\sigma_{cr} = \sigma_y - \frac{\sigma_{LP}}{\pi^2 E} \left(\sigma_y - \sigma_{LP} \left(\frac{L}{r} \right)^2 \right)$$
(2.24)

Como la gráfica esfuerzo-deformación deja de ser una línea recta cuando el esfuerzo total (residual de compresión más el debido a la carga exterior) llega a σ_y en algún punto, el límite de proporcionalidad σ_{IP} se substituye por:

$$\sigma_{LP} = \sigma_v - \sigma_{rc} \tag{2.25}$$

La ec. 2.24 se transforma en:

$$\sigma_{cr} = \sigma_y - \frac{\sigma_{rc}}{\pi^2 E} \left(\sigma_y - \sigma_{rc} \left(\frac{L}{r} \right)^2 \right)$$
(2.26)

Si los esfuerzos residuales máximos de compresión se toman, arbitrariamente, iguales a $\sigma_y/2$, la ec. 2.26 se reduce a la 2.27, que proporciona resultados intermedios entre los de las ecs. 2.22 y 2.23, aceptables para flexión en cualquiera de los planos principales; su representación gráfica es una curva tangente a la de Euler en el punto en que $\sigma_{cr} = \sigma_y/2$.

$$\sigma_{cr} = \sigma_y - \frac{\sigma_y^2}{4\pi^2 E} \left(\frac{L}{r}\right)^2$$
(2.27)

 $\sigma_v/2$ es un valor cercano al máximo que se ha medido en perfiles H laminados.

La ecuación 2.27 puede escribirse en la forma

$$\sigma_{cr} = \sigma_{y} \left(1 - \frac{\sigma_{y}}{4\pi^{2} E/(L/r)^{2}} \right) = \sigma_{y} \left(1 - \frac{\sigma_{y}}{4\sigma_{cre}} \right)$$
(2.28)

 σ_{cre} es la carga crítica de pandeo elástico de la columna; con la ec. 2.28 se corrige ese valor, cuando el pandeo se inicia fuera del intervalo elástico.

Al suponer que $\sigma_{rc} = \sigma_y/2$, de la ec. 2.25 se obtiene, $\sigma_{LP} = \sigma_y/2$, de manera que la ec. 2.27 (o la 2.28) es aplicable a columnas de relación de esbeltez para la que el esfuerzo crítico de pandeo es mayor que la mitad del de fluencia; en caso contrario, el pandeo se inicia en el intervalo elástico, y se utiliza la fórmula de Euler.

La ec. 2.27 (Fig. 2.21) fue recomendada en 1960 (ref. 2.14) como adecuada para obtener la resistencia al pandeo inelástico de columnas de acero estructural, y sirvió de base para las fórmulas contenidas en las especificaciones del AISC de 1961, que siguen en vigor, después de varias revisiones, en las normas para diseño por

esfuerzos permisibles (ref. 2.3); se utiliza también en el Reglamento de Construcciones para el D.F. (ref. 2.2), para algunos tipos de columnas. Es particularmente aplicable a perfiles H o I de acero estructural, laminados en caliente, pero pierde exactitud cuando se emplea para diseñar columnas hechas con placas soldadas, en las que el efecto de los esfuerzos residuales suele ser mayor que en las laminadas, o para columnas de acero de alta resistencia en las que, en cambio, los esfuerzos residuales son de menor importancia. Tampoco es muy precisa cuando se aplica a columnas de otros perfiles, como ángulos, canales, tubos o secciones en cajón.

En la Fig. 2.22 se muestran resultados experimentales obtenidos ensayando columnas de distintas formas, con esfuerzos de fluencia diferentes y fabricadas por procedimientos diversos, sometidas a compresión axial. Las abscisas son las relaciones de esbeltez escritas en forma adimensional, $\lambda = KL/(KL)_{\sigma_{\varepsilon}=\sigma_{y}} = (KL/r)\sqrt{\sigma_{y}/\pi^{2}E}$, y las ordenadas los esfuerzos críticos, divididos entre σ_{y} para reducirlos también a una forma adimensional, que permita comparar los resultados. $(KL)_{\sigma_{\varepsilon}=\sigma_{y}}$ es la relación de esbeltez para la que el esfuerzo crítico elástico es igual a σ_{y} .

Fig. 2.22 Comparación de resultados experimentales con la ecuación 2.27.

Todos los especímenes se ensayaron en la condición en que se encontraban al terminar la fabricación, sin someterlos a ninguna operación de enderezado.

46

Con fines comparativos, aparece también en la figura la curva básica para diseño de columnas cargadas axialmente propuesta por el "Column Research Council" (CRC) en 1960 (ref. 2.14), ec. 2.27.

La mayoría de los puntos que representan perfiles H laminados, ensayados en su estado normal, se encuentra cerca de la curva, mientras que los de esos mismos perfiles tratados térmicamente, y de secciones en cajón laminadas, están en la curva o por encima de ella. En cambio, todas las columnas compuestas por placas soldadas están debajo, lo que indica que tienen resistencias menores que las predichas.

Estos resultados comprueban la importancia de los esfuerzos residuales en la resistencia de las columnas, tanto desde el punto de vista de su magnitud como de la manera en que están distribuidos en la sección. La resistencia aumenta cuando crece el esfuerzo de fluencia del acero y cuando se eliminan los esfuerzos residuales por medio de tratamientos térmicos, y las secciones en cajón laminadas, en las que los esfuerzos son reducidos, tienen también una capacidad de carga elevada. En cambio, las columnas formadas por placas soldadas resisten menos que los perfiles laminados de igual geometría, y la resistencia de las secciones en cajón de esfuerzos residuales más favorable.

La considerable dispersión de los resultados experimentales refleja la influencia de la forma de las secciones transversales, de las distribuciones de esfuerzos residuales, y de la variación de los esfuerzos de fluencia; también influyen las imperfecciones geométricas iniciales de las columnas.

Es discutible si deben especificarse curvas de diseño diferentes para situaciones diferentes (columnas laminadas, soldadas, de alta resistencia, etc.), o utilizar una curva única; en este caso, el grado de seguridad varía de unas columnas a otras, pues la curva es conservadora en algunas ocasiones y arroja resultados inseguros en otras.

2.6.4 Curvas múltiples

La gran dispersión de las resistencias máximas de las columnas, para valores dados de la esbeltez, se muestra en la Fig. 2.23, en la que se han trazado las curvas que limitan el espacio que contiene las gráficas resistencia-esbeltez determinadas analíticamente para 112 columnas, de perfiles y tipos muy variados (ref. 2.15, 2.20).

Cada curva se basa en una distribución real de esfuerzos residuales, medida experimentalmente, y en una deformación inicial supuesta del eje de la columna, $\delta_0 = 0.001L$, en la sección media. Las resistencias no se han determinado resolviendo un problema de valores característicos, método que sólo es aplicable a

columnas perfectamente rectas, sino trazando la gráfica acción-deflexión de todo el proceso de carga, hasta el colapso. La resistencia máxima es la ordenada del punto más alto de la gráfica.

En la fig. 2.23 se muestran las envolventes superior e inferior y la curva media aritmética; el ancho de la banda, es decir, la dispersión de resistencias, es máximo para relaciones de esbeltez intermedias, y disminuye hacia los extremos.

Fig. 2.23 Límites de las curvas de resistencia máxima de columnas (112 curvas).

Es evidente que una sola curva no representa adecuadamente la resistencia de todos los tipos de columnas.

Las incertidumbres pueden reducirse definiendo subgrupos, y representando cada uno con una curva media única, con lo que se obtiene un grupo de curvas múltiples para diseño.

Curvas europeas. Debido a la dispersión en las propiedades del material y en las imperfecciones de las columnas reales, las cargas de colapso obtenidas experimentalmente para una relación de esbeltez dada están repartidas en una faja de un cierto ancho. Conociendo un número suficiente de resultados experimentales, puede determinarse el valor probable de la carga de falla cuyo límite estadístico de tolerancia sea igual a una cifra dada. Adoptando este criterio, y utilizando los resultados de alrededor de 1100 ensayos llevados a cabo en siete países de Europa occidental, la Convención Europea de la Construcción Metálica (ref. 2.16) obtuvo una curva experimental, sin ecuación determinada, definida por parejas de valores $\sigma_{cr} - L/r$. Las piezas ensayadas, de diferentes relaciones de esbeltez, estaban hechas con perfiles de varios tipos, laminados en distintos países, y se probaron en seis laboratorios diferentes.

Pronto se hizo evidente que el empleo de una sola curva de pandeo es en detrimento de algunos perfiles usuales, por lo que se decidió establecer varias curvas de diseño, y referir a cada una de ellas las secciones correspondientes. Para obtenerlas se hicieron estudios de simulación, basados en valores supuestos de las imperfecciones de las columnas, y en los estudios experimentales previos. Se obtuvieron así las curvas a, b y c de la Fig. 2.27, en la que se indican los tipos de columnas a los que son aplicables. Se muestran también dos curvas tentativas, a^o y d.

Para facilitar el dimensionamiento de las columnas, la Convención Europea elaboró tablas $L/r - \sigma_u$ para los perfiles más utilizados y los aceros comunes en Europa (ref. 2.17), teniendo en cuenta los valores característicos del límite de elasticidad, en función del grueso del material. (Desde el punto de vista del pandeo de piezas comprimidas, la característica más importante es el límite de elasticidad de la parte más gruesa del perfil, que disminuye al aumentar el espesor). Posteriormente se han utilizado expresiones analíticas que aproximan los resultados proporcionados por las curvas (ref. 2.18).

2.6.5 Resistencia de diseño

Como las columnas reales tienen imperfecciones iniciales, aparecen, desde un principio, deflexiones laterales y momentos flexionantes, que crecen con más rapidez que la carga y ocasionan, eventualmente, la falla del miembro por la acción combinada de compresión y flexión. Sin embargo, durante muchos años el problema se trató como si las columnas fuesen perfectas y fallasen por pandeo, conservándose rectas hasta que se agota su rigidez lateral (ref. 2.12). Las especificaciones del AISC para el diseño por esfuerzos permisibles de columnas en compresión axial siguen basadas, hasta la fecha, en este criterio (ref. 2.3).

En la actualidad se cuenta con dos métodos para determinar la resistencia máxima de las columnas que fallan por pandeo por flexión (ref. 2.15 y 2.19); de acuerdo con uno, es la menor de las cargas críticas de pandeo, elástico o inelástico, de la columna perfecta; según el otro, es igual a la resistencia última de columnas con imperfecciones iniciales, que se introducen en el problema suponiendo que su eje no es recto inicialmente. Cuando se utiliza el primer criterio se calcula la carga crítica, que corresponde a un estado de bifurcación del equilibrio; debe resolverse un problema de valores característicos; si se emplea el segundo, se tiene un problema de inestabilidad, que se resuelve trazando una curva acción-desplazamiento y determinando la carga correspondiente a su punto más alto.

Los dos métodos son aplicables, en teoría, a cualquier forma de falla, pero sólo se cuenta con la información necesaria para utilizar el segundo, más preciso, en el caso más común, la falla por flexión alrededor de alguno de los ejes centroidales y principales de columnas con secciones transversales de simetría doble.

Ante la imposibilidad de considerar, de manera explícita, todos los factores que influyen en la resistencia de las columnas, sólo se incluyen en cada método los más importantes, y los restantes se tienen en cuenta introduciendo en el diseño un factor de seguridad adecuado, en forma de factores de carga y resistencia apropiados, cuando el diseño se hace por estados límite.

En los dos métodos se incluyen los efectos de los esfuerzos residuales que se originan durante la laminación y la fabricación de la estructura.

La resistencia de las columnas y la forma de la curva que la relaciona con la esbeltez son función de factores geométricos (forma y tamaño de las secciones transversales, desviaciones del eje respecto a la línea recta que une los centroides de las secciones extremas, excentricidades en la aplicación de la carga, eje de las secciones transversales alrededor del que se presenta la flexión durante el pandeo), de factores que dependen del material (tipo de acero, caracterizado por el esfuerzo de fluencia y la gráfica esfuerzo-deformación, magnitud y distribución de los esfuerzos residuales) y del proceso de fabricación (columnas laminadas en caliente, fabricadas con placas soldadas, o formadas en frío, métodos empleados para enderezarlas). Todos estos factores se tienen en cuenta cuando la curva de diseño se determina experimentalmente, puesto que se ensayan columnas reales, pero es difícil incluirlos en modelos analíticos por lo que, como se mencionó arriba, sólo los más importantes se consideran de manera explícita.

El número y la variedad de los factores que intervienen en el problema hacen que no sea conveniente utilizar una sola curva resistencia-esbeltez para todas las columnas, pues al hacerlo se penalizan las secciones más eficientes, o se diseñan las menos eficientes con una seguridad inadecuada. Para obtener un nivel de seguridad uniforme han de utilizarse varias curvas de diseño, que correspondan a grupos de columnas de características similares; se llega así al concepto de las *curvas múltiples* (refs. 2.11, 2.15, 2.19, 2.20).

Se han determinado analíticamente las curvas para columnas de diversos tipos; en su obtención se han tenido en cuenta la forma de la sección transversal, las propiedades mecánicas del acero, el procedimiento de fabricación, el tamaño de los perfiles, y el eje de flexión; además, se han considerado esfuerzos residuales con valores y distribuciones medidos experimentalmente, y curvaturas iniciales definidas por la forma del eje de la columna y la deflexión máxima, en el centro.

El eje de las columnas reales se representa convenientemente con una senoide, pero hay diferentes opiniones acerca del valor más adecuado de la deflexión e en el centro de la barra.

La magnitud de e está limitada por los requisitos que deben satisfacer, por especificación, los elementos de acero que se utilizan en las estructuras; de acuerdo con la práctica estadounidense, el eje de los miembros de sección H no puede separarse de la recta teórica que une sus extremos más de 1/8" por cada 10 pies de

longitud, o sea un novecientos sesentavo de la longitud L del miembro, lo que se considera, en general, como L/1000.

Sin embargo, como las bases de la teoría de confiabilidad utilizada para el desarrollo de los métodos de diseño basados en factores de carga y resistencia son los valores medios y las desviaciones estándar de los parámetros que intervienen en el problema, parece razonable usar el valor medio de *e*, y su variabilidad, para evaluar la resistencia de las columnas, lo que lleva a tomar e igual a L/1470, que es el valor medio, obtenido estadísticamente, para perfiles H (refs. 2.11, 2.20).

Para reducir a límites aceptables las incertidumbres propias del uso de una sola curva de diseño, pero sin complicar demasiado la solución del problema, como sucedería si se utilizase un número excesivo de curvas, el Consejo de Investigación sobre Estabilidad Estructural ("Structural Stability Research Council", SSRC) ha propuesto el uso de tres curvas (refs. 2.11, 2.15), que corresponden a grupos que incluyen columnas de sección H laminadas en caliente y enderezadas en frío, barras de sección transversal circular, maciza o hueca, y miembros hechos con placas soldadas, de sección H y en cajón. Para las curvas originales (Fig. 2.24 a 2.26) se consideró e = L/1000, mientras que en la deducción de las designadas con la letra P + (de "probabilístico") se tomó el valor medio, L/1470; cada una de las curvas P está, siempre, ligeramente arriba de la curva "determinística" correspondiente (Fig. 2.28).

Fig. 2.24 Curva No. 1 para columnas de acero estructural.

Las ecuaciones que reproducen analíticamente los resultados de las curvas múltiples son bastante complejas (refs. 2.11, 2.15, 2.19); por ello, se ha propuesto el uso de expresiones simplificadas, con las que se obtienen, de manera mucho más sencilla, resultados suficientemente cercanos a los proporcionados por las curvas (refs. 2.9, 2.21, 2.22); de este tipo son las ecuaciones de las Normas Técnicas

Complementarias del Reglamento de Construcciones para el D.F. (ref. 2.2), y de las especificaciones Canadienses (ref. 2.23), para el diseño de columnas de sección transversal H o en cajón. Aunque de poca utilidad para tabular la resistencia de las columnas en función de su esbeltez, las ecuaciones simplificadas son convenientes cuando se emplean directamente en los cálculos y cuando se incluyen en programas de computadora.

Fig. 2.26 Curva No. 3 para columnas de acero estructural.

Las ecuaciones recomendadas en la ref. 2.24 corresponden a la curva 2P (refs. 2.11, 2.20). A pesar de que esta curva es, en teoría, aplicable solamente a las secciones para las que fue deducida, de acuerdo con la ref. 2.24 se utiliza para columnas con secciones transversales de cualquier forma, incluyendo ángulos sencillos o dobles.

Fig. 2.27 Curvas múltiples europeas.

Cuando se emplean varias curvas de diseño, con la tabla 2.1 se determina la que debe usarse en cada caso (refs. 2.4 y 2.20).

2.6.6 Pandeo en el intervalo de endurecimiento por deformación

En la mayor parte de la literatura sobre pandeo inelástico de columnas en compresión axial, se acepta que se pandean cuando el esfuerzo llega al límite de fluencia, y el módulo de elasticidad tangente se reduce a cero. Esto se refleja en las curvas y fórmulas para diseño, con las que se obtiene un esfuerzo crítico máximo (o un esfuerzo último, si se tienen en cuenta las imperfecciones iniciales), correspondiente a longitudes nulas, igual a σ_v (Figs. 2.21 y 2.24 a 2.26, ec. 2.27).

Aparentemente sería imposible llevar los elementos comprimidos de acero estructural al intervalo de comportamiento plástico, en el que las deformaciones unitarias son mayores que ε_y , sin que se pandeasen, lo que invalidaría la hipótesis principal del análisis y diseño plástico, pues los patines de las barras en flexión se pandearían localmente cuando la compresión fuese en ellos $A_p\sigma_y$, y no podría plastificarse la sección completa, ni formarse articulaciones plásticas.

Proceso de fabricación		Eje de	Esfuerzo de fluencia mínimo (Kg/cm				
		flexión					
ł				2600	3500	4200	
		1		а	a	а	P6300
		<u> </u>	<2530	3450	4150	6250	
Perfiles H	Perfiles H ligeros y medios	Mayor					
laminados en		momento	_	_		1	
caliente		de inercia	2	2	1	1	1
		Menor					
		momento					
	·	de inercia	2	2	2	1	1
	Perfiles H pesados (Patines	Mayor	3	2	2	2	2
	<u>de más de 5 cm de grueso)</u>	Menor	3	3	2	2	2
Secciones H	Placas cortadas con soplete	Mayor	2	2	2	[–] 1	1
hechas con placas		Menor	2	2	2	2	1
soldadas	Placas laminadas	Mayor	3	3	2	2	2
		Menor	3	3	3	2	2
Secciones en	Placas cortadas con soplete	Mayor	2	2	2	1	- 1
cajón soldadas	o laminadas	Menor	2	2	2	1	1
	Formadas en frío	Mayor	N/A	2	2	2	2
		Menor	N/A	2	2	2	2
Tubos cuadrados	Formados en caliente o	Mayor	1	1	1	1	1
o rectangulares	formados en frío y tratados	[-			
	térmicamente	Menor	1	1	1	1	1
Tubos circulares	Formados en frio		2	2	2	2	2
	Formados en caliente		1	1	1	1	1
Todos los perfiles c	Mayor o						
esfuerzos	Menor	1	1	1	1	1	

Tabla 2.1 Selección de curvas para el diseño de columnas*

Notas:

* Para uso con las curvas 1, 2 y 3 del SSRC (Cap. 3, ref. 2.11).

** Aceros tratados térmicamente.

La conclusión anterior no concuerda ni con los resultados de gran número de pruebas de laboratorio ni con el comportamiento de las estructuras reales, pues piezas pequeñas y robustas de acero, comprimidas axialmente, admiten deformaciones mayores que ε_y sin pandearse e incluso, si su relación de esbeltez es menor que un cierto límite, el pandeo se pospone hasta que todo el material está endurecido por deformación, y se inicia bajo esfuerzos mayores que el de fluencia (refs. 2.26 a 2.28). Las teorías clásicas describen correctamente el fenómeno en el intervalo elástico y en el inelástico entre el límite de proporcionalidad y el esfuerzo de fluencia, hasta que la deformación unitaria vale ε_y , pero son inaplicables más allá de este punto.

En la Fig. 2.29 se muestra, en forma ligeramente simplificada, la primera parte de la curva esfuerzo-deformación unitaria de una probeta de acero A36, en tensión o compresión.

Al llegar el esfuerzo a σ_y se inicia el flujo plástico, de manera brusca, sin la curva de transición de los perfiles completos, pues ésta se debe a los esfuerzos residuales que desaparecen en las probetas; las deformaciones crecen bajo esfuerzo constante, y el módulo tangente E_t parece reducirse a cero. Sin embargo, ε es una deformación media, obtenida midiendo el alargamiento o el acortamiento total de la probeta y, en realidad, no hay ningún material cuya deformación unitaria esté comprendida entre la iniciación del flujo plástico ε_y y el comienzo del endurecimiento por deformación ε_{ed} , pues el acero fluye de manera discontinua en pequeñas fajas inclinadas, orientadas según los planos de esfuerzo cortante máximo, en las que la deformación local pasa instantáneamente de ε_y a ε_{ed} (refs. 2.26, 2.27, 2.29). E_t no se anula nunca porque cuando parte del material está aún en el intervalo elástico, el resto ha entrado ya en el endurecimiento por deformación.

Fig. 2.29 Curva esfuerzo-deformación unitaria de una probeta de acero A 36.

 ε_{ed} es unas 12 veces mayor que ε_v (Fig. 2.29).

Se ha demostrado experimentalmente que los esfuerzos de pandeo de piezas comprimidas de acero A7 o A36, en relación con esbeltez menor de 20, exceden el límite de fluencia y entran en el endurecimiento por deformación; los valores experimentales están entre los predichos por las teorías del módulo tangente y del módulo reducido (refs. 2.6, 2.30).

2.6.7 Fórmulas para diseño

A continuación se presentan las ecuaciones para diseño de columnas en compresión axial recomendadas en el Reglamento de Construcciones para el Distrito Federal, en las dos especificaciones del Instituto Americano de la Construcción en Acero, y en las normas canadienses.

2.6.7.1 Normas Técnicas Complementarias para Diseño y Construcción de Estructuras Metálicas (ref. 2.2)

La resistencia de diseño R_c de un elemento estructural de eje recto y de sección transversal constante sometido a compresión axial, que falla por pandeo por flexión, y en el que el pandeo local no es crítico, se determina con alguna de las ecs. 2.29 a 2.31. Tomando A_t en cm² y F_y en kg/cm², R_c se obtiene en kg.

a) Miembros de sección transversal H, I, o rectangular hueca.

$$F_{R} = 0.9$$

$$R_{c} = \frac{F_{y}}{\left(1 + \lambda^{2n} - 0.15^{2n}\right)^{1/n}} A_{t}F_{R} \le F_{y}A_{t}F_{R}$$
(2.29)

A, es el área total de la sección transversal de la columna.

 $\lambda = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E}}$, donde KL/r es la relación de esbeltez efectiva máxima de la

columna.

n es un coeficiente adimensional, que tiene alguno de los valores siguientes:

- Columnas de sección transversal H o I, laminadas o hechas con tres placas soldadas, obtenidas cortándolas con oxígeno de placas más anchas, y columnas de sección transversal rectangular hueca, laminadas o hechas con cuatro placas soldadas: n = 1.4.
- Columnas de sección transversal H o I, hechas con tres placas laminadas soldadas entre sí: *n* = 1.0.

La ec. 2.29 es una representación analítica simplificada de las curvas múltiples del SSRC; los valores de n, 2.0, 1.4 y 1.0, corresponden, respectivamente, a las curvas 1, 2 y 3 (ref. 2.22).

En las Normas Técnicas se utilizan sólo las curvas 2 y 3, es decir, n igual a 1.4 y 1.0, para aceros con límite de fluencia no mayor de 2530 Kg/cm², pero se permiten otros valores de n si se demuestra que su empleo está justificado.

La tendencia actual es hacia el uso de aceros de resistencias más elevadas que los tradicionales; así, en Estados Unidos se emplean cada vez más, aceros con esfuerzo de fluencia de 50 Kips/pulg² (3515 kg/cm²), sustituyendo al acero A36 (F_y = 2530 kg/cm²); en Canadá y en Europa la situación es semejante.

En México es ya muy común el uso de materiales con $F_y = 3515 \text{ kg/cm}^2$; cuando es así, puede emplearse la ec. 2.29, con n = 2.0, en los casos en que la Tabla 2.1 señala que debe utilizarse la curva 1.

b) Miembros cuya sección transversal tiene una forma cualquiera, no incluida en a)
 F_n = 0.85

Si
$$KL/r \ge (KL/r)_c$$
, $R_c = \frac{20,120,000}{(KL/r)^2} A_r F_R$ (2.30)

Si
$$KL/r \le (KL/r)_c$$
, $R_c = A_t F_y \left[1 - \frac{(KL/r)^2}{2(KL/r)_c^2} \right] F_R$ (2.31)
 $(KL/r)_c = 6340 / \sqrt{F_y}$

KL/r es la relación de esbeltez efectiva máxima de la columna, y $(KL/r)_c = \sqrt{2\pi^2 E/F_y} \approx 6340/\sqrt{F_y}$ es la esbeltez que separa el pandeo elástico del inelástico. Se obtiene igualando a $F_y/2$ el esfuerzo crítico elástico, dado por la fórmula de Euler y despejando KL/r.

Las ecs. 2.30 y 2.31 proporcionan la carga crítica de la columna, de pandeo elástico (la fórmula de Euler, ec. 2.30) o inelástico (la ec. 2.31 es la 2.28, en la que se ha introducido $(KL/r)_c$, multiplicada por A_iF_R). Estas ecuaciones, que se conservan de normas anteriores, se aplican a ángulos, canales y tes en compresión y, en general, a todos los tipos de columnas que no han sido objeto de investigaciones especiales, como las que llevaron a la obtención de las curvas múltiples. Por este motivo, para su diseño se recomienda un factor de resistencia menor.

2.6.7.2 Especificaciones AISC para diseño por factores de carga y resistencia (ref. 2.24)

De acuerdo con las especificaciones del AISC para edificios de acero estructural basadas en diseño por factores de carga y resistencia (ref. 2.24), la resistencia de diseño en compresión de columnas cargadas axialmente que no fallan por pandeo local ni por pandeo por torsión a flexotorsión, es igual a $F_R P_n$, donde:

$$F_{R} = 0.85$$

$$P_n$$
 = resistencia nominal en compresión axial = $A_r F_{cr}$ (2.32)

Para
$$\lambda_c \le 1.5$$
, $F_{cr} = (0.658^{\frac{2^2}{c}})F_{3}$ (2.33)

Para
$$\lambda_c > 1.5$$
, $F_{cr} = \left(\frac{0.877}{\lambda_c^2}\right) F_y$ (2.34)

 F_{cr} es el esfuerzo crítico de pandeo en compresión; λ_c es el parámetro λ definido en el artículo 2.6.7.1, donde también se ha definido A_c .

Las fórmulas 2.33 y 2.34 pueden expresarse en términos de la relación de esbeltez KL/r (Comentario de la ref. 2.8); para ello, se escribe la fórmula 2.33 en forma exponencial:

$$F_{cr} = \left(\exp\left(-0.419\lambda_c^2\right) \right) F_y$$

y se sustituye λ_c por su valor, con lo que se obtiene:

Para
$$\frac{KL}{r} \le 4.71 \sqrt{\frac{E}{F_y}}, \quad F_{cr} = \left[\exp\left[-0.424 \frac{F_y}{E} \left(\frac{KL}{r} \right)^2 \right] \right] F_y$$
 (2.35)

Para
$$\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}}, \quad F_{cr} = \frac{0.877 \pi^2 E}{(KL/r)^2}$$
 (2.36)

exp(x) tiene el mismo significado que e^x , donde e es la base de los logaritmos naturales.

Las ecs. 2.33 y 2.34 (o 2.35 y 2.36) son una representación analítica de la curva 2P. Es decir, el AISC utiliza una sola curva, la intermedia, para el diseño de todos los miembros en compresión axial, cualquiera que sea la forma de su sección transversal o el procedimiento de fabricación.

La ec. 2.34 (o la 2.36) es la fórmula de Euler multiplicada por 0.877, lo que indica que para esbelteces grandes (mayores que 133.7, si el acero es A36) la resistencia de las columnas con imperfecciones iniciales (e = L/1470) es aproximadamente igual al 88 por ciento de la predicha por la fórmula de Euler (F_{cr} , calculado con cualquiera de las ecuaciones anteriores, no es realmente un esfuerzo crítico de pandeo, puesto que las curvas múltiples, de una de las cuales provienen esas ecuaciones, no proporcionan esfuerzos críticos, sino resistencias máximas de columnas con imperfecciones iniciales).

2.6.7.3 Especificaciones AISC para diseño por esfuerzos permisibles (ref. 2.3)

En las normas de 1989 para diseño basado en esfuerzos permisibles (ref. 2.3), el AISC conserva las fórmulas para miembros comprimidos axialmente que han

formado parte de sus especificaciones desde 1961. Las recomendaciones de diseño son las siguientes:

El esfuerzo permisible en la sección transversal total de miembros comprimidos axialmente que no fallan prematuramente por pandeo local, en los que la relación de esbeltez máxima del tramo en estudio, KL/r, no excede de C_c , es:

$$F_{a} = \frac{\left(1 - \frac{(KL/r)^{2}}{2C_{c}^{2}}\right)F_{y}}{\frac{5}{3} + \frac{3KL/r}{8C_{c}} - \frac{(KL/r)^{3}}{8C_{c}^{3}}}$$
(2.37)

donde:

$$C_c = \sqrt{\frac{2\pi^2 E}{F_y}}$$

Cuando KL/r excede de C_c , el esfuerzo permisible es:

$$F_a = \frac{12\pi^2 E}{23(KL/r)^2}$$
(2.38)

 C_c es la relación de esbeltez que separa las dos formas de pandeo, elástico e inelástico; corresponde a la relación de esbeltez *KL/r* de la ref. 2.2 (art. 2.6.7.1).

La ec. 2.38 es la fórmula de Euler con un coeficiente de seguridad de 23/12 = 1.92; proporciona el esfuerzo crítico de las columnas esbeltas, que fallan por pandeo elástico. El numerador de la ec. 2.37 es el esfuerzo crítico de pandeo inelástico de columnas cortas e intermedias (es la ec. 2.27, en la que se ha introducido el coeficiente C_c), y el denominador el factor de seguridad, que varía de 1.67 para columnas de esbeltez nula a 1.92 cuando $KL/r = (KL/r)_c$.

2.6.7.4 Normas Canadienses (ref. 2.23)

La resistencia factorizada (o resistencia de diseño), C_r , de un miembro de sección transversal clase 1, 2 o 3 (que no falla por pandeo local), en compresión axial, se calcula con la expresión:

$$C_r = \phi A F_y \left(1 + \lambda^{2n} \right)^{-1/n}$$
(2.39)

que puede escribirse en la forma:

$$C_r = \frac{F_y}{\left(1 + \lambda^{2n}\right)^{1/n}} \phi A$$

n vale 2.24, 1.34 o 0.98, dependiendo de las características de la columna; cada valor corresponde a una de las tres curvas propuestas.

$$\lambda = \frac{KL}{r} \sqrt{\frac{F_{y}}{\pi^{2}E}}$$

 ϕ = factor de resistencia = 0.9.

Las secciones que tengan sólo un eje de simetría, o ninguno, y las cruciformes, deben satisfacer requisitos adicionales.

En el cuerpo de la norma aparecen únicamente los dos primeros valores de n; el tercero (0.98) se recomienda, en el Comentario, para secciones laminadas pesadas y secciones soldadas fabricadas con placas laminadas.

La ec. 2.39 es muy parecida a la 2.29; también son muy semejantes los valores del exponente n. Esto no es de extrañar puesto que ambas provienen de las mismas curvas.

2.6.7.5 Tablas de esfuerzos de diseño

En las hojas siguientes se presentan varias tablas que proporcionan los esfuerzos de diseño en función de las relaciones de esbeltez de las columnas; corresponden a las refs. 2.2 y 2.24. En la Fig. 2.30 se comparan algunas curvas esfuerzo de diseño-relación de esbeltez para aceros Grado 50 (F_y =3515 Kg/cm²); la del Reglamento del D.F., con *n*=1.4, coincide casi con la del AISC, pues ambas provienen de la segunda curva del SSRC; la diferencia para relaciones *L/r* pequeñas, se debe a gue los factores de resistencia no son iguales.

Fig. 2.30 Curvas esfuerzo de diseño – relación de esbeltez (R_c/A – KL/r).

TABLA 2.2 Miembros en Compresion Axial, NTC del RDFEsfuerzo de Diseño R./A, $F_R=0.9$, n=1.0, $F_y=2530$ kg/cm²

KI ID	R /A			1/1/0	R /Δ.	KI /P	R/A
	1	NUK.	line 1		10/10/2		ka/am ²
<u> </u>	kg/cm ⁻¹	ļ	Kg/cm ²		kg/cm	<u> </u>	
	2277	51	1746	101	1008	151	592
	2277	52	1/28	102	996	152	58/
3	2277	53		103	985	153	
4	2277	54	1694	104	9/4	154	5/5
	22//	55		105	963	155	5/0
	22//		1000	100	953	156	564
	22//	5/	1043	107	942	15/	559
	22//	50	1020	108	932	158	553
	44/1	<u> </u>	1609	109	921	159	548
	22//	0U	1592	110	911	100	543
	22//	60	15/5		901	101	537
12	22//	62	1009	112	091	162	532
13	22//	63	1542	113	002	103	527
14	22/2	<u>04</u>	1520	174	0/2	104	522
10	2204	60	1402		952	100	512
10	2200	67	1493	110	003	100	513
10	2226	<u> </u>	14//	117	044 925	10/	503
10	2230	00	1401	110	876	160	409
19	2245	70	1440	119	947	170	490
20	2213	70	1429	120	809	174	494
21	2102	70	1209	121	700	172	403
22	2193		1200	122	701	172	400
23	2160	74	1267	123	782	174	476
25	2109	75	1252	124	77/	176	472
25	2143	76	1332	125	766	176	<u></u>
27	2130	77	1322	120	758	177	463
28	2116	78	1307	128	750	178	459
29	2102	79	1292	129	742	179	455
30	2088	80	1278	130	7:34	180	451
31	2073	81	1263	131	726	181	447
32	2058	82	1249	132	719	182	443
33	2043	83	1235	133	711	183	439
34	2028	84	1221	134	704	184	435
35	2012	85	1207	135	697	185	431
36	1997	86	1194	136	689	186	427
37	1981	87	1180	137	682	187	424
38	1965	88	1167	138	675	188	420
39	1948	89	1154	139	668	189	416
40	1932	90	1141	140	662	190	413
41	1915	91	1128	141	655	191	409
42	1899	92	1115	142	648	192	406
43	1882	93	1103	143	642	193	402
44	1865	94	1090	144	635	194	399
45	1848	95	1078	145	629	195	395
46	1831	96	1066	146	623	196	392
47	1814	97	1054	147	616	197	389
48	1797	98	1042	148	610	198	386
49	1780	99	1030	149	604	199	382
50	1763	100	1019	150	598	200	379

--
TABLA 2.3 Miembros en Compresion Axial, NTC del RDFEsfuerzo de Diseño R_c/A_t F_R =0.9, n=1.4, F_y =2530 kg/cm²

KL/R	R _c /A _t	KL/R	R _c /A	KL/R	R _c /A _t	KL/R	R _c /A
	kg/cm ²		kg/cm ²		kg/cm ²		kg/cm ²
1	2277	51	1994	101	1214	151	686
2	2277	52	1980	102	1200	152	679
3	2277	53	1966	103	1186	153	671
4	2277	54	1952	104	1172	154	664
5	2277	55	1938	105	1159	155	657
6	2277	56	1923	106	1145	156	650
7	227 7	57	1908	107	1132	157	643
8	2277	58	1893	108	1119	158	637
9	2277	59	1878	109	1106	159	630
10	2277	60	1863	110	1093	160	623
11	2277	61	1847	111	1080	161	617
12	2277	62	1832	112	1068	162	611
13	2277	63	1816	113	1055	163	604
14	2276	64	1800	114	1043	164	598
15	2274	65	1784	115	1031	165	592
16	2272	66	1768	116	1019	166	586
17	2269	67	1751	117	1007	167	580
18	2267	68	1735	118	995	168	574
19	2264	69	1719	119	984	169	568
20	2260 ·	70	1702	120	972	170	562
21	2257	71	1686	121	961	171	557
22	2253	72	1669	122	950	172	551
23	2249	73	1653	123	939	173	546
24	2244	74	1636	124	928	174	540
25	2240	75	1620	125	918	175	535
26	2234	76	1603	126	907	176	530
27	2229	77	1587	127	897	177	524
28	2223	78	1570	128	887	178	519
29	2217		1554	129	877	179	514
30	2210	80	1538	130	867	180	509
31	2204	81	1521	131	857	181	504
32	2196	82	1505	132	847	182	499
33	2189	83	1489	133	837	183	495
34	2181	84	14/3	134	828	184	490
35	2173	85	1457	135	819	185	485
36	2164	86	1441	136	810	166	481
3/	2155	87	1425	13/	700	10/	4/6
30	2140	80	1202	130	792	100	4/2
39	2130	89	1393	139	103	169	40/
40	2120		13/8	140	705	190	403
41	2105	91	1247	141	767	191	400
42	2100	92	1322	142	740	192	404
43	2094	33	1240		749	193	400
<u>44</u> <u>AE</u>	2002	- 54	1310	144	720	194	440
40	20/1	20	1301	140	704	195	442
40	2000	67	1270	140	746	190	430
4/	2040	3/	12/2	14/	700	19/	434
40	2034	90	120/	140	- 709	198	430
	2021	100	1243	150	101	199	420
50	2001		1420	100	093	200	+22

TABLA 2.4 Miembros en Compresion Axial, NTC del RDF,Esfuerzo de Diseño R_c/A, $F_R=0.9$, n=1.4, $F_y=3515$ kg/cm²

KL/R	R.A.	 κυ/R	R./A	KL/R	R/A	KL/R	R,A
,	kg/cm ²		kg/cm ²		kg/cm ²		kg/cm ²
1	3164	51	2585	101	1366	151	722
2	3164	52	2560	102	1348	152	713
3	3164	53	2534	103	1329	153	705
4	3164	54	2508	104	1311	154	697
5	3164	55	2482	105	1293	155	689
6	3164	56	2456	106	1276	156	681
7	3164	57	2429	107	1259	157	674
8	3164	58	2402	108	1242	158	666
9	3164	59	2376	109	1225	159	659
10	3164	60	2349	110	1209	160	652
11	3164	61	2322	111	1192	161	644
12	3162	62	2295	112	1177	162	637
13	3158	63	2268	113	1161	163	630
14	3155	64	2241	114	1146	164	623
15	3150	65	2214	115	1130	165	617
16	3146	66	2187	116	1115	166	610
17	3140	67	2160	117	1101	167	603
18	3134	68	2133	118	1086	168	597
19	3128	69	2106	119	1072	169	591
20	3121	70	2079	120	1058	170	584
21	3113	71	2053	121	1045	171	578
22	3105	72	2027	122	1031	172	572
23	3096	73	2000	123	1018	173	566
24	3086	74	1974	124	1005	174	560
25	3076	75	1949	125	992	175	554
26	3065	76	1923	126	979	176	548
27	3053	77	1898	127	967	177	543
28	3041	78	1872	128	954	178	537
29	3028	79	1847	129	942	179	532
30	3014	80	1823	130	931	180	526
31	3000	81	1798	131	919	181	521
32	2985	82	1774	132	907	182	516
	2969	83	1750	133	896	183	511
34	2952	84	1/26	134	885	184	505
35	2935	85	1/03	135	8/4	185	500
- 30	2917	- 86	1680	136	863	186	495
3/	2899	8/	105/	137	853	18/	491
38	2680	88	1634	138	000	188	486
39	2860	- 69	1612	139	832	189	481
40	2640		1590	140		190	4/0
41	2019	91	1000	141	012	191	472
42	2798		1546	142		192	407
43	27.0	93	1525	143	793	193	403
44	2/04	- 94	1504	144	/84	194	458
40	2/31	90	1484	145	7/4	195	454
40	2/08		1463	146	/65	196	449
41	2004	9/	1443	14/	/ 50	19/	445
40	2000		1424	148		198	441
49	2035		1404		/39	199	437
50	2611	100	1385	150	730	200	433

•--

.

TABLA 2.5 Miembros en Compresion Axial, NTC del RDF-Esfuerzo de Diseño R./A.F_R=0.9, n=2.0, F_y=3515 kg/cm²

KL/R	R _c /A	KL/R	R/A	KL/R	R _c /A	KL/R	R _c /A _t
	kg/cm ²		kg/cm ²		kg/cm ²		kg/cm ²
1	3164	51	2881	101	1548	151	770
2	3164	52	2861	102	1525	152	761
3	3164	53	2841	103	1502	153	752
4	3164	54	2819	104	1480	154	742
5	3164	55	2798	105	1458	155	733
6	3164	56	2775	106	1436	156	724
7	3164	57	2752	107	1415	157	716
8	3164	58	2728	108	1394	158	707
9	3164	59	2704	109	1373	159	699
10	3164	60	2679	110	1353	160	690
11	3164	61	2653	111	1333	161	682
12	3163	62	2627	112	1314	162	674
13	3163	63	2600	113	1294	163	666
14	3162	64	2573	114	1275	164	659
15	3162	65	2546	115	1257	165	651
16	3161	66	2518	116	1239	166	644
17	3160	67	2490	117	1221	167	636
18	3159	68	2461	118	1203	168	629
19	3158	69	2433	119	1186	169	622
20	3157	70	2404	120	1169	170	615
21	3155	71	2375	121	1152	171	608
22	3153	72	2345	122	1136	172	601
23	3151	73	2316	123	1120	173	594
24	3148	74	2286	124	1104	174	588
25	3146	75	2257	125	1088	175	581
26	3142	76	2227	126	1073	176	575
27	3139	77	2198	127	1058	177	569
28	3135	78	2168	128	1044	178	563
29	3131	79	2139	129	1029	179	556
30	3126	80	2109	130	1015	180	550
31	3121	<u>81</u>	2080	131	1001	181	545
32	3115	82	2051	132	988	182	539
33	3109	83	2022	133	974	183	533
34	3102	84	1993	134	961	184	527·
35	3094	85	1965	135	948	185	522
36	3086	86	1937	136	935	186	516
37	3077	87	1909	137	923	187	511
38	3068	88	1881	138	911	188	506
39	3058	89	1853	139	899	189	501
40	3047	90	1826	140	887	190	496
41	3036	91	1799	141	875	191	490
42	3024	92	1773	142	864	192	485
43	3011	93	1746	143	853	193	481
44	2997	94	1720	144	842	194	476
45	2983	95	1695	145	831	195	471
46	2968	96	1669	146	821	196	466
47	2952	97	1645	147	810	197	462
48	2935	98	1620	148	800	198	457
49	2918	99	1596	149	790	199	453
50	2900	i 100	1572	150	780	200	448

TABLA 2.6 Miembros en Compresion Axial, LRFD-AISC93Esfuerzo de Diseño R₀/A₁

 $F_R=0.85$, $F_y=2530$ kg/cm²

KL/R	R _c /A,	KL/R	R _c /A	KL/R	R _c /A _t	KL/R	R _c /A _t
	kg/cm ²		kg/cm ²		kg/cm ²		kg/cm ²
1	2150	51	1875	101	1257	151	658
2	2150	52	1865	102	1244	152	649
3	2149	53	1855	103	1231	153	641
4	2149	54	1845	104	1217	154	633
5	2148	55	1834	105	1204	155	624
6	2146	56	1823	106	1191	156	616
7	2145	57	1813	107	1177	157	609
8	2143	58	1802	108	1164	158	601
9	2141	59	1791	109	1151	159	593
10		60	1779	110	1138	160	586
11	2137	61	1768	111	1125	161	579
12	2134	62	1757	112	1111	162	572
13	2131	63	1745	113	1098	163	565
14	2128	64	1734	114	1085	164	558
15	2125	65	1722	115	1072	165	551
16	2122	66	1710	116	1059	166	544
	2118	67	1698	117	1046	167	538
18	2114	68	1686	118	1034	168	532
19	2110	69	1674	119	1021	169	525
20	2106	70	1662	120	1008	170	519
21	2101	71	1649	121	995	171	513
22	2096	72	1637	122	983	172	507
23	2091	73	1625	123	970	1/3	501
24	2086	75	1612	124	958	1/4	495
20	2001	75	1500	120	945	1/0	490
20	2075	70	150/	120	933	170	404
20	2010	79	15/4	127	920		473
20	2004	70	15/0	120	806	170	4/5
30	2001	80	1536	129	884	180	400
31	2001	81	1523	131	872	181	458
32	2038	82	1510	132	860	182	453
33	2031	83	1497	133	848	183	448
34	2024	84	1484	134	835	184	443
35	2016	85	1470	135	823	185	438
36	2009	86	1457	+ 136	811	186	434
37	2001	87	1444	137	799	187	429
38	1993	88	1431	138	788	188	424
39	1985	89	1418	139	776	189	420
40	1977	90	1404	140	765	190	416
41	1968	91	1391	141	755	191	411
42	1960	92	1378	142	744	192	407
43	1951	93	1364	143	734	193	403
44	1942	94	1351	144	723	194	399
45	1933	95	1338	145	714	195	395
46	1924	96	1324	146	704	196	391
47	1915	97	1311	147	694	197	387
48	1905	98	1297	148	685	198	383
49	1895	99	1284	149	676	199	379
50	1885	100	1271	150	667	200	375

TABLA 2.7Miembros en Compresion Axial, LRFD-AISC93Esfuerzo de Diseño R_c/A_t

F_R=0.85, F_y=3515 kg/cm²

.

KL/R	R _c /A _t	KL/R	R _c /A _t	KL/R	R,/A	KL/R	R _c /A
	kg/cm ²		kg/cm ²		kg/cm ²		kg/cm ²
1	2988	51	2470	101	1417	151	658
2	2987	52	2452	102	1396	152	649
3	2986	53	2433	103	1376	153	641
4	2984	54	2414	104	1355	154	633
5	2982	55	2395	105	1334	155	624
6	2980	56	2376	106	1314	156	616
7	2977	57	2356	107	1294	157	609
8	2974	58	2336	108	1274	158	601
9	2970	59	2316	109	1254	159	593
10	2966	60	2296	110	1234	160	586
11	2961	61	2276	111	1214	161	579
12	2956	62	2256	112	1194	162	572
13	2951	63	2235	113	1175	163	565
14	2945	64	2215	114	1154	164	558
15	2939	65	2194	115	1134	165	551
16	2932	66	2173	116	1115	166	544
17	2925	67	2152	117	1096	167	538
18	2918	68	2131	118	1077	168	532
19	2910	69	2110	119	1059	169	525
20	2902	70	2088	120	1042	170	519
21	2893	71	2067	121	1025	171	513
22	2884	72	2045	122	1008	172	507
23	2874	73	2024	123	992	173	501
24	2865	74	2002	124	976	174	495
25	2854	75	1980	125	960	175	490
26	2844	76	1959	126	945	176	484
27	2833	77	1937	127	930	177	479
28	2821	78	1915	126	916	178	473
29	2810	79	1893	129	901	179	468
30	2797	80	1871	130	888	180	463
31	2785	81	1849	131	874	181	458
32	2772	82	1828	132	861	182	453
33	2759	83	1806	133	848	183	448
34	2746	84	1784	134	835	184	443
35	2732	85	1762	135	823	185	438
36	2718	86	1740	136	811	186	434
37	2703	87	1718	137	799	187	429
38	2688	88	1696	138	788	188	424
39	2673	89	1674	139	776	189	420
40	2658	90	1653	140	765	190	416
41	2642	91	1631	141	755	191	411
42	2626	92	1609	142	744	192	407
43	2610	93	1588	143	734	193	403
44	2593	94	1566	144	723	194	399
45	2577	95	1545	145	714	195	395
46	2560	96	1523	146	704	196	391
47	2542	97	1502	147	694	197	387
48	2525	98	1481	148	685	198	383
49	2507	99	1459	149	676	199	379
50	2489	100	1438	150	667	200	375

EJEMPLO 2.3² Una columna de 5 m de longitud, con extremos articulados (K = 1.0), debe resistir una compresión, producida por cargas muertas y vivas de trabajo, de 130 ton. La columna forma parte de una construcción del grupo B (ref. 2.37). Escoja una sección H formada por tres placas soldadas. El acero tiene un límite de fluencia F_v =2530 kg/cm².

Fig. E2.3-1 Columna del ejemplo 2.3.

Se ensayará una sección H de 25.4 cm x 25.4 cm x 95 Kg/m, que tiene las dimensiones que se muestran en la fig. E.2.3-1, y las propiedades geométricas siguientes: $A_r = 120.77 \text{ cm}^2$, $r_{\min} = r_y = 6.57 \text{ cm}$.

Acción de diseño: P_u = 130 x 1.4 = 182.0 ton.

1.4 es el factor de carga que se especifica en la ref. 2.37 para construcciones del grupo B, bajo cargas muertas y vivas combinadas.

Normas técnicas complementarias del Reglamento de Construcciones para el D.F. (ref. 2.2).

Clasificación de la sección (tabla 2.3.1, ref. 2.2).

Patines: $b/2t_{pc} = 25.4/(2 \times 1.91) = 6.65 < 830/\sqrt{2530} = 16.5$

Alma: $h/t_c = 21.58/1.11 = 19.44 < 2100/\sqrt{2530} = 41.8$

La sección es tipo 1, 2 o 3. El pandeo local no es crítico.

² En este ejemplo, y en los que siguen, al estudiar columnas de paredes delgadas se hace referencia a tablas y ecuaciones de la ref. 2.2. Su origen se estudia en el capítulo 3.

Resistencia de diseño

El estado límite es de inestabilidad por flexión, y como la sección transversal de la columna es H, la resistencia de diseño se evalúa con la ec. 2.29:

$$\lambda = \frac{KL}{r} \sqrt{\frac{F_y}{\pi^2 E}} = \frac{1.0 \times 500}{6.57} \sqrt{\frac{2530}{2039000\pi^2}} = 0.853$$

a) Las placas que componen la columna se obtienen cortándolas con oxígeno de placas más anchas: el coeficiente n de la ec. 2.29 vale 1.4.

$$R_{c} = \frac{F_{y}A_{t}F_{R}}{\left(1 + \lambda^{2n} - 0.15^{2n}\right)^{1/n}} = \frac{2530 \times 120.77 \times 0.90 \times 10^{-3}}{\left(1 + 0.853^{2.8} - 0.15^{2.8}\right)^{1/1.4}} = 193.5 \text{ ton}$$

$$F_{y}A_{t}F_{R} = 2530 \times 120.77 \times 0.9 \times 10^{-3} = 275.0 \text{ ton} > 193.5$$

Por consiguiente:

 $R_c = 193.5 \ ton > P_u = 182.0 \ ton$

La resistencia de diseño, R_c , es 6.3 por ciento mayor que la acción de diseño P_u ; la sección ensayada es correcta ($R_c/P_u = 193.5/182.0 = 1.063$).

 R_c puede obtenerse también con la tabla 2.3, que proporciona las resistencias de diseño por unidad de área, R_c/A_r , para relaciones de esbeltez comprendidas entre 1 y 200, con F_R =0.9, para acero con F_y =2530 kg/cm² y n=1.4.

$$KL/r = 1.0 \times 500/6.57 = 76$$

 $\frac{R_c}{A_t} = 1.603 \text{ ton/cm}^2, R_c = 1.603 \times 120.77 = 193.6 \text{ ton}$

La pequeña diferencia en los dos valores de la resistencia de diseño se debe a que se entró en la tabla con KL/r = 76, y la esbeltez real es 76.1.

b) La columna está formada por tres placas laminadas: n = 1.0.

$$R_c = \frac{2530}{1 + 0.853 - 0.15} \times 120.77 \times 0.90 \times 10^{-3} = 161.5 \text{ ton}$$

(De la tabla 2,2, para KL/r = 76, $R_c/A_r = 1337 \text{ kg/cm}^2$, $R_c = 1337 \times 120.77 \times 10^{-3} = 161.5 \text{ ton}$).

En este caso, $R_c = 161.5 \text{ ton } < P_u = 182.0 \text{ ton}$.

La sección no es adecuada (161.5/182.0 = 0.887).

La resistencia de la columna hecha con placas laminadas es 16.5 por ciento menor que la de la compuesta por placas cortadas con soplete (161.5/193.5 0.835).

Normas AISC-LRFD 93 (ref. 2.24).

Clasificación de la sección.

Patines: $b/2t_{pc} = 6.65 < \lambda_r = 797/\sqrt{2530} = 15.8$

Alma: $h/t_c = 19.44 < \lambda_r = 2121/\sqrt{2530} = 42.2$

La sección es "no compacta"; no hay pandeo local prematuro.

Resistencia de diseño.

 $\lambda_c = 0.853 < 1.5$ $\therefore R_c = \phi_c A_r (0.658^{\lambda_c^2}) F_y = 0.85 \times 120.77 \times 0.658^{0.853^2} \times 2.53$ = 191.5 ton > $P_u = 182.0$ ton

La sección ensayada es correcta.

 $\phi_c = 0.85$ es el factor de resistencia.

La resistencia de diseño es casi igual a la que se obtiene con las normas de la ref. 2.2 en el caso a, que corresponde a placas cortadas con oxígeno. Esto es así porque la ecuación de la ref. 2.2 con n = 1.4 proviene de la curva 2 del SSRC, y las ecuaciones de la ref. 2.24 de la 2P, que es muy parecida.

El problema puede resolverse también utilizando la tabla 2.6.

En la ref. 2.24 se tratan igual las columnas hechas con placas cortadas con oxígeno que las formadas por placas laminadas.

Normas AISC-ASD 89 (ref. 2.3).

Con estas normas se obtiene la capacidad de carga de la columna en condiciones de trabajo, no su resistencia de diseño. También se tratan igual los dos tipos de columnas de este ejemplo.

 $(KL/r)_{max} = 76$ (se obtuvo arriba).

Relación de esbeltez que separa el pandeo elástico del inelástico:

$$C_c = \sqrt{\frac{2\pi^2 E}{F_s}} = \sqrt{\frac{2\pi^2 E}{2530}} = 126.1$$

Como KL/r = 76 < 126.1, el pandeo se inicia en el intervalo inelástico, y el esfuerzo permisible se determina con la ec. 2.37:

$$F_{er} = \left[1 - \frac{(KL/r)^2}{2C_e^2}\right] F_y = \left[1 - \frac{76^2}{2 \times 126.1^2}\right] 2530 = 2070 \text{ kg/cm}^2$$
$$CS = \frac{5}{3} + \frac{3(KL/r)}{8C_e} - \frac{(KL/r)^3}{8C_e^3} = \frac{5}{3} + \frac{3 \times 76}{8 \times 126.1} - \frac{76^3}{8 \times 126.1^3} = 1.87$$

 $F_a = 2070/1.87 = 1107 \text{ kg/cm}^2$. Este valor puede obtenerse directamente de una tabla $F_a - L/r$ (ref. 2.3).

Resistencia de la columna, en condiciones de trabajo = AF_a = 120.77 x 1.11 = 134.1 ton.

Para comparar las normas AISC-ASD (ref. 2.3) con las dos que se emplearon antes, se determina la carga crítica, con el esfuerzo crítico calculado arriba (sin coeficiente de seguridad):

 $P_{cr} = AF_{cr} = 120.77 \times 2.07 = 250.0$ ton

Esta carga crítica es bastante mayor que las resistencias de diseño determinadas con los otros dos métodos, porque la curva correspondiente a la ec. 2.37, sin coeficiente de seguridad, se acerca a la curva 1 del SSRC.

Aplicando la ec. 2.29 (ref. 2.2) con n = 2, con lo que se obtiene la curva 1 del SSRC, se llega a $R_c = 222.4$ ton, que se aproxima a las 250 ton determinadas arriba, pero sigue siendo menor (222.4/250.0 = 0.890).

Este es un ejemplo de cómo la curva única de las normas AISC para diseño por esfuerzos permisibles puede llevar a resultados que están claramente del lado de la inseguridad.

EJEMPLO 2.4 Determine la resistencia en compresión de las columnas de la Fig. E2.4-1, utilizando las especificaciones de las refs. 2.2 y 2.24. Todas las columnas tienen la misma sección transversal y carecen de soportes laterales intermedios. Considere dos aceros, A 36 (F, = 2530 kg/cm²) y grado 50 (F, = 3515 kg/cm²), y dos tipos de perfiles, laminados y soldados, hechos con placas laminadas. Suponga, sin demostrarlo, que el pandeo local no es crítico en ningún caso.

Fig. E2.4-1 Sección transversal y condiciones de apoyo de las columnas del ejemplo 2.4.

Como $r_y < r_x$ y la longitud libre es la misma en las dos direcciones, el pandeo se presenta, siempre, por flexión alrededor del eje y.

En la Fig. E2.4-1 se han anotado los coeficientes de longitud efectiva *K* teóricos y recomendados para diseño (Fig. 2.11), y las relaciones de esbeltez críticas, calculadas con los valores recomendados.

La tabla siguiente contiene las resistencias de diseño calculadas, en ton.

		Ref	Ref. 2.24			
Caso	A36		Gr. 50		A36	Gr. 50
	Lam. ¹	Sold. ²	Lam. [†]	Sold. ²		
1	104.3	86.9	124.7	111.3	103.5	127.3
2	120.4	102.5	150.9	124.6	115.5	148.3
3	40.2	35.0	41.9	69.5	37.6	37.6
4	132 0	115.9	171.6	137.6	124.0	163.6

Notas:

1 Perfil laminado.

2 Perfil hecho con tres placas soldadas.

En las Normas Técnicas Complementarias del Reglamento del D. F. (ref. 2.2) se proporcionan ecuaciones diferentes para los dos tipos de columnas; en la ref. 2.24 se emplea una sola fórmula para todas las columnas, cualquiera que sea la forma de sus secciones transversales y el método que se haya seguido para fabricarlas.

Las dos referencias arrojan resultados muy parecidos cuando se aplican a perfiles laminados, para los dos aceros; esto es natural porque las ecuaciones de ambas provienen de la curva 2 del SSRC. En cambio, la ref. 2.32 sobrestima de manera importante la resistencia de las columnas hechas con placas soldadas.

EJEMPLO 2.5 Determinar la resistencia de diseño en compresión axial de una columna de 6.00 m de longitud, cuya sección transversal se muestra en la fig. E2.5-1. Los extremos de la columna pueden considerarse articulados para flexión alrededor del eje "y" y empotrados respecto al eje "x". El esfuerzo de fluencia del acero es F_v = 3500 kg/cm².

 — a) Diseño con las Normas Técnicas Complementarias del Reglamento del D.F. (ref. 2.2)

Clasificación de la sección (Tabla 2.3.1, ref. 2.2)

Placas horizontales: $h_2/t = 28.1/0.95 = 29.6 < 2100/\sqrt{F_y} = 35.5$ Placas verticales: $h_1/t = 58.1/0.95 = 61.2 > 35.5$ Como no se sabe cómo es la soldadura utilizada para formar la sección, los anchos de las placas se han tomado, de manera conservadora, iguales a las dimensiones libres teóricas.

Puesto que las relaciones ancho/grueso de las placas verticales exceden el límite correspondiente a las secciones tipo 3, la columna es tipo 4. Como todos los elementos planos están apoyados en sus dos bordes (son atiesados) el diseño debe hacerse teniendo en cuenta las recomendaciones del art. 2.3.6.2 de la ref. 2.2.

Las características geométricas de la sección transversal total son:

 $A_t = 167.39 \text{ cm}^2$, $I_x = 80,745 \text{ cm}^4$, $I_y = 27,573 \text{ cm}^4$, $r_x = 22.0 \text{ cm}$, $r_y = 12.8 \text{ cm}$

<u>Modo de pandeo.</u> El pandeo es por flexión o torsión puras; no hay interacción (art. 2.5.3).

Como la sección transversal de la columna es en cajón, de paredes no muy delgadas, es casi seguro que su forma crítica de pandeo es por flexión, alrededor del eje centroidal y principal al que corresponde la mayor relación de esbeltez; sin embargo, con fines ilustrativos se estudia la posibilidad de que el pandeo sea por torsión (este caso no está incluido en la ref. 2.2).

$$J = \frac{4A_i^2 t}{S} = \frac{4(29.05 \times 59.05)^2 (0.95)}{2(29.05 + 59.05)} = 63,460 \text{ cm}^4$$

La contribución de la resistencia al alabeo es despreciable en secciones en cajón.

Ec. 2.5:
$$P_{crx} = \frac{\pi^2 E I_{\tau}}{(K_{\tau} L_{\tau})^2} = \frac{80745\pi^2 E}{(0.5 \times 600)^2} \times 10^{-3} = 18,055 \text{ ton}$$

Ec. 2.6:
$$P_{cr} = \frac{\pi^2 E I_v}{(K_v L_v)^2} = \frac{27573\pi^2 E}{(1 \times 600)^2} \times 10^{-3} = 1541 \text{ ton} > \frac{P_v}{2} = \frac{167.39 \times 3500}{2}$$

$$\times 10^{-3} = 292.9$$
 ton

Ec. 2.7:
$$P_{cr=} = \left[\frac{\pi^2 E C_a}{(K_r L_r)^2} + GJ\right] \frac{1}{r_a^2} \approx \frac{GJ}{(I_r + I_r)/A} = \frac{63460 \times G \times 167.39 \times 10^{-3}}{80745 + 27573}$$
$$= 76908 \text{ ton}$$

Es crítico el pandeo por flexión alrededor del eje y. Como se esperaba, P_{crr} es mucho mayor que P_{crr} y P_{crr} .

Las cargas críticas calculadas son de pandeo elástico.

Relación de esbeltez crítica

 K_x =0.5 (extremos empotrados), K_y =1.0 (extremos articulados). Se han tomado los valores teóricos de los factores de longitud efectiva.

 $(KL/r)_{x} = 0.5 \times 600/22.0 = 14$ $(KL/r)_{y} = 1.0 \times 600/12.8 = 47$

Es crítica la esbeltez alrededor del eje y. Esto se sabía desde que se determinó que la columna se pandea por flexión alrededor de ese eje.

DETERMINACIÓN DE LA RESISTENCIA DE DISEÑO

La sección transversal de la columna es tipo 4; en la determinación de su resistencia deben tenerse en cuenta los estados límite de inestabilidad por flexión y por flexión y pandeo local.

<u>Obtención del factor de pandeo local Q.</u> La sección está compuesta exclusivamente por elementos planos atiesados; por consiguiente, $Q_s = 1.0 \text{ y}$ $Q = Q_a$, que se calcula de acuerdo con el art. 2.8.1.1.

Anchos efectivos

Placas horizontales. Su relación ancho/grueso no excede de la correspondiente a las secciones tipo 3, de manera que $b_c = b = 28.1 \text{ cm}$.

Placas verticales.
$$b_e = \frac{2734t}{\sqrt{f}} \left(1 - \frac{544}{(b/t)\sqrt{f}} \right) \le b$$

En la ref. 2.2 aparece esta misma ecuación, con los coeficientes ligeramente redondeados; en ella se indica que es aplicable a patines de secciones cuadradas o rectangulares huecas, pero, en realidad, lo es a cualquier placa atiesada uniformemente comprimida.

Al calcular el ancho efectivo de placas que forman parte de columnas en compresión axial, para revisar el estado límite de pandeo local y pandeo por flexión combinados, el esfuerzo f de la ecuación anterior se sustituye por el esfuerzo de fluencia F, del material.

$$b_{e} = \frac{2734 \times 0.95}{\sqrt{3500}} \left(1 - \frac{544}{61.2\sqrt{3500}} \right) = 37.3 \text{ cm} < 58.1$$

$$A_{ef} = A_{t} - \sum (b - b_{e})t = 167.3 - 2(58.1 - 37.3) \times 0.95 = 127.87 \text{ cm}^{2}$$

$$Q_{a} = A_{ef} / A_{t} = 127.87/167.39 = 0.764, \quad Q = Q_{a} = 0.764$$

$$(KL/r)_{e}^{*} = 6340 / \sqrt{QF_{y}} = 6340 / \sqrt{0.764 \times 3500} = 122.6$$

 $(KL/r)_{max} = 47 < (KL/r)_{c}^{*} = 122.6$:: La resistencia de diseño se determina con la ec. 2.47, art. 2.8.1:

$$R_{c} = QA_{r}F_{y}\left[1 - \frac{(KL/r)^{2}}{2(KL/r)^{*2}_{c}}\right]F_{R}$$
$$= 0.764 \times 167.39 \times 3500\left[1 - \frac{47^{2}}{2 \times 122.6^{2}}\right] \times 0.75 \times 10^{-3}$$

= 311.0 ton

La resistencia de diseño en compresión axial de la columna es R_c =311.0 ton.

b) Diseño con las especificaciones AISI 91 (ref. 2.31 y art. 2.8.3).

La sección no está sujeta a pandeo por torsión o flexotorsión:

$$F_{e} = \frac{\pi^{2} E}{(KL/r)_{u}^{2}} = \frac{\pi^{2} E}{47^{2}} = 9110 \ Kg/cm^{2} > \frac{F_{v}}{2}$$

Este valor es igual al que se obtiene dividiendo P_{ex} , calculada arriba, entre el área de la sección transversal de la columna.

$$F_{ev} = \frac{P_{en}}{A} = \frac{1541 \times 10^3}{167.39} = 9206 \text{ kg/cm}^2$$

La diferencia proviene del redondeo de los resultados³.

 $F_n = F_y (1 - F_y / 4F_e) = 3500(1 - 3500 / 4 \times 9110) = 3164 \text{ Kg} / \text{cm}^2$

El área efectiva es la correspondiente a una compresión $f = 3164 \text{ kg/cm}^2$.

³ En las normas AISI de 1996 (ref. 2.39) la ecuación siguiente ha sido sustituída por la ec. 2.33, art. 2.6.7.2.

Placas horizontales:
$$\lambda = \frac{1.052}{\sqrt{k}} \left(\frac{b}{t}\right) \sqrt{\frac{f}{E}} = \frac{1.052}{\sqrt{4.0}} \times 29.6 \sqrt{\frac{3164}{E}} = 0.613 < 0.673.$$

Las placas horizontales son completamente efectivas.

Placas verticales:
$$\lambda = \frac{1.052}{\sqrt{4.0}} \times 61.2 \sqrt{\frac{3164}{E}} = 1.268 > 0.673$$
.

$$\rho = \frac{1 - 0.22/\lambda}{\lambda} = \frac{1 - 0.22/1.268}{1.268} = 0.652$$
$$b_e = \rho b = 0.652 \times 58.1 = 37.87 \text{ cm}$$
$$A_e = 167.39 - 2(58.1 - 37.87)0.95 = 128.95 \text{ cm}^2$$

Este valor es muy parecido al que se obtuvo arriba.

Las expresiones para calcular el ancho efectivo b_e se estudian en el Capítulo 3.

 $P_n = A_c F_n = 128.95 \times 3164 \times 10^{-3} = 408.0$ Ton $R_c = F_R P_n = 0.75 \times 408.0 = 306.0$ ton

Se ha tomado F_R =0.75 para comparar los resultados con el obtenido con la ref. 2.2 (en la ref. 2.27 se especifica un factor de resistencia ϕ =0.85).

Los dos procedimientos llevan a valores de la resistencia de diseño muy parecidos (306/311=0.984).

2.7 PANDEO POR FLEXOTORSIÓN

2.7.1 Resistencia de Diseño

Las columnas de sección transversal asimétrica o con un eje de simetría, como los ángulos y las secciones T, y las columnas con dos ejes de simetría, pero baja resistencia a torsión, como las secciones en cruz, pueden fallar por pandeo por torsión o flexotorsión (art. 2.5).

Estos estados límite no se tratan en la ref. 2.2; en las refs. 2.23 y 2.24 se cubren en sendos apéndices.

2.7.1.1 Especificaciones AISC para diseño por factores de carga y resistencia (ref. 2.24)

La resistencia de miembros comprimidos determinada por los estados límite de pandeo por torsión o flexotorsión es $\phi_c P_n$, donde:

 ϕ_c = factor de reducción de la resistencia = 0.85.

$$P_n = \text{resistencia nominal en compresión} = A_r F_{cr}$$
 (2.40)

 A_i = área total de la sección transversal.

El esfuerzo crítico nominal F_{cr} se determina como sigue:

a) Para
$$\lambda_e \sqrt{Q} \le 1.5$$
, $F_{cr} = Q(0.658^{Q\lambda_e^2})F_y$ (2.41)

b) Para
$$\lambda_e \sqrt{Q} > 1.5$$
, $F_{er} = \left(\frac{0.877}{\lambda_e^2}\right) F_y$ (2.42)

En las expresiones anteriores,

$$\lambda_e = \sqrt{F_v / F_e} \tag{2.43}$$

Q es igual a 1.0 en secciones cuyos elementos planos son tipo 1 a 3 (ref. 2.24), y se calcula como se indica en el inciso 2.8.1.1 cuando alguno, o algunos, de ellos, son tipo 4.

El esfuerzo crítico de pandeo elástico por torsión o flexotorsión, F_e , se determina con las ecuaciones:

- a) Secciones con dos ejes de simetría: Ec. 2.63.
- b) Secciones con un eje de simetría (se ha supuesto que es el x): Ec. 2.60.
- c) Secciones asimétricas: el esfuerzo crítico de pandeo elástico por flexotorsión, *F_a*, es igual a la menor de las raíces de la ecuación cúbica:

.

$$(F_{e} - F_{ex})(F_{e} - F_{ey})(F_{e} - F_{ez}) - F_{e}^{2}(F_{e} - F_{ey})\left(\frac{x_{0}}{r_{0}}\right)^{2} - F_{e}^{2}(F_{e} - F_{ex})\left(\frac{y_{0}}{r_{0}}\right)^{2} = 0 \qquad (2.44)$$

Esta es la ec. 2.4 escrita en términos de esfuerzos.

- -

En el art. 2.8.3.1 se dan los significados de todas las literales que aparecen en estas ecuaciones. F y σ se han utilizado indistintamente para representar los esfuerzos.

.

2.8 DISEÑO DE COLUMNAS DE PAREDES DELGADAS⁴

Cuando uno o varios de los elementos planos que forman una columna tienen una relación ancho/grueso elevada (es del tipo 4, Cap. 3), no es razonable basar el diseño en la iniciación del pandeo local que se presenta, en general, bajo cargas menores que la crítica de la columna y la de colapso de las placas, por lo que para obtener diseños económicos ha de tenerse en cuenta la resistencia posterior al pandeo de los elementos planos esbeltos. La interacción del pandeo local de las placas y el de conjunto de la columna ocasiona una reducción de la resistencia de la barra comprimida.

Uno de los procedimientos para resolver el problema se basa en las ecs. 2.12 y 2.27, para pandeo elástico e inelástico, respectivamente.

De acuerdo con la ec. 2.27, el esfuerzo crítico de conjunto tiende hacia σ_y cuando disminuye la relación de esbeltez, y para L/r = 0, σ_{cr} es igual a σ_y . Sin embargo, el pandeo local hace que las columnas muy cortas, compuestas por placas delgadas, fallen bajo esfuerzos medios menores que σ_y ; su esfuerzo medio crítico, para una relación de esbeltez muy pequeña, puede expresarse como $Q\sigma_y$, donde Q es un coeficiente menor que 1.0, que representa la influencia desfavorable del pandeo local; depende del esfuerzo de fluencia del material, de las relaciones b/t de las placas que componen el perfil, y de sus condiciones de apoyo.

Siguiendo el mismo camino que con los perfiles laminados, el pandeo inelástico se representa con una curva de transición parabólica que se inicia en $\sigma_{cr} = Q\sigma_y$, para L/r = 0, y es tangente a la hipérbola de Euler en el punto cuya ordenada es la mitad de ese esfuerzo; la ec. 2.27 se transforma en:

$$\sigma_{cr} = Q\sigma_v - \frac{(Q\sigma_v)^2}{4\pi^2 E} \left(\frac{L}{r}\right)^2$$
(2.45)

El esfuerzo de fluencia σ_v se ha sustituido por $Q\sigma_v$.

Haciendo σ_{cr} igual a $Q\sigma_{y}/2$ y despejando la relación de esbeltez, se obtiene la abscisa del punto de tangencia con la curva de pandeo elástico:

$$\frac{L}{r} = \left(\frac{L}{r}\right)_{c} = \sqrt{\frac{2\pi^{2}E}{Q\sigma_{y}}} \approx \frac{6340}{\sqrt{Q\sigma_{y}}}$$
(2.46)

⁴ Algunos aspectos de este artículo requiren información contenida en el Capítulo 3, en el que se trata el diseño de placas esbeltas comprimidas basado en la resistencia posterior a la iniciación del pandeo.

La ec. 2.12 no se modifica, pues es aplicable a columnas de esbeltez elevada, que se pandean en el intervalo elástico bajo esfuerzos suficientemente pequeños para que no haya inestabilidad local prematura, aunque estén hechas con lámina delgada.

2.8.1 Normas Técnicas Complementarias para Diseño y Construcción de Estructuras Metálicas (ref. 2.2)

Cuando el pandeo de conjunto se inicia en el intervalo elástico, el esfuerzo crítico se calcula con la ec. 2.30; en el intervalo inelástico, la ec. 2.47 sustituye a la 2.31. Por consiguiente, la resistencia de diseño que corresponde al estado límite de flexión y pandeo local combinados (ref. 2.2) se determina con las ecuaciones:

Si
$$KL/r \ge (KL/r)_c^*$$
, $R_c = \frac{20,120,000}{(KL/r)^2} A_r F_R$ (2.30)

Si
$$KL/r < (KL/r)_{c}^{*}$$
, $R_{c} = QA_{t}F_{y}\left[1 - \frac{(KL/r)^{2}}{2(KL/r)_{c}^{*2}}\right]F_{R}$ (2.47)
 $(KL/r)_{c}^{*} = 6340/\sqrt{QF_{y}}$; $F_{R} = 0.75$.

El área
$$A_r$$
, y el radio de giro, r, de las ecuaciones anteriores, son los de la sección transversal completa de la columna: $(KL/r)^*$ es la relación de espeltez que separa el

transversal completa de la columna; $(KL/r)_c^*$ es la relación de esbeltez que separa el $\frac{1}{2}$ pandeo elástico del inelástico (ec. 2.46).

2.8.1.1 Cálculo del coeficiente Q

La determinación de *Q* depende de la manera en que las placas que constituyen la columna estén apoyadas en sus bordes longitudinales; se utilizan tres procedimientos diferentes, según que todas estén atiesadas, es decir, soportadas en los dos bordes, que no lo esté ninguna, o que la sección esté formada por placas de los dos tipos, unas atiesados y otras no.

(a) Todas las placas son atiesadas

En la Fig. 2.31a se muestra la sección transversal de una columna en cajón, formada exclusivamente por elementos planos apoyados en los dos bordes.

Una pieza muy corta formada por placas compactas, comprimida axialmente, falla cuando el esfuerzo uniforme en sus secciones transversales llega al punto de fluencia, σ_{u} ; su capacidad máxima de carga es:

$$P_{max} = A\sigma_y$$

Fig. 2.31 Ejemplos de secciones transversales de paredes delgadas

En cambio, una columna corta de paredes delgadas puede fallar por pandeo local bajo esfuerzos menores que el de fluencia; introduciendo el factor Q, su resistencia máxima se expresa como⁵:

$$P_{max} = QA\sigma_{y} \tag{2.48}$$

Por otro lado, la carga de colapso de una placa atiesada corta es igual al producto del esfuerzo de fluencia por el área efectiva correspondiente a ese esfuerzo, de manera que la carga total que puede soportar una columna corta formada exclusivamente por elementos planos atiesados es:

$$P_{max} = A_{ef}\sigma_y \tag{2.49}$$

donde A_{ef} es la suma de las áreas efectivas de todas las placas que componen la sección.

Igualando los segundos miembros de las ecuaciones 2.48 y 2.49 se obtiene:

$$QA\sigma_{y} = A_{ef}\sigma_{y} \qquad \therefore Q = Q_{a} = \frac{A_{ef}}{A}$$
(2.50)

 Q_a depende de las características geométricas de la sección de paredes delgadas, por lo que recibe el nombre de *factor de forma*.

⁵ La ecuación 2.48 es válida para cualquier columna corta de paredes delgadas, independientemente de que los elementos planos que la forman estén atiesados o no; lo que varía de un caso a otro es la manera como se calcula el factor Q.

(b) Ninguna placa es atiesada

La falla por pandeo local de columnas cortas formadas únicamente por elementos planos no atiesados (secciones transversales en ángulo o en T, Fig. 2.31b) se presenta bajo una carga axial de intensidad:

$$P_{max} = \sigma_{cr} A$$

donde σ_{cr} es el esfuerzo de pandeo del elemento de relación ancho/grueso más elevada.

Igualando el segundo miembro de la ecuación anterior con el de la 2.48 se llega a:

$$A\sigma_{cr} = QA\sigma_{y} \quad \therefore Q = Q_s = \frac{\sigma_{cr}}{\sigma_{y}}$$
 (2.51)

 σ_{cr} se calcula con las ecuaciones correspondientes del Capítulo 3.

(c) Unas placas están atiesadas y otras no

La capacidad máxima de carga de un miembro de este tipo, comprimido axialmente (ver ejemplos en la Fig. 2.31c y d) se alcanza cuando se pandea la placa no atiesada más débil, bajo un esfuerzo σ_{cr} . En ese instante, el área efectiva A_{cf} es la suma de las áreas totales de todos los elementos no atiesados, más las áreas efectivas (reducidas) de los atiesados, calculadas con el esfuerzo de pandeo de la placa no atiesada más débil, es decir, con σ_{cr} .

La carga máxima que pueden soportar las columnas de este tipo es:

$$P_{max} = \sigma_{cr} A_{ef}$$

Dividiendo sus dos miembros entre el área total *A*, y multiplicando y dividiendo el segundo por σ_y , la ecuación anterior toma la forma:

$$\frac{P_{max}}{A} = \frac{A_{ef}}{A} \sigma_{cr} \frac{\sigma_{y}}{\sigma_{y}} = \frac{A_{ef}}{A} \frac{\sigma_{cr}}{\sigma_{y}} \sigma_{y}$$

Introduciendo Q_a y Q_s (ecs. 2.50 y 2.51) se obtiene, finalmente,

$$P_{max} = Q_a Q_s A \sigma_y = Q A \sigma_y$$

donde

$$Q = Q_a Q_s \tag{2.52}$$

En resumen, el coeficiente Q se determina de alguna de las maneras siguientes:

1. En miembros compuestos exclusivamente por elementos planos atiesados, *Q* se obtiene dividiendo el área efectiva de diseño, determinada con los anchos

efectivos de diseño de esos elementos, entre el área de la sección transversal. El área efectiva es la que corresponde al esfuerzo de fluencia σ_y . Los anchos efectivos se calculan como se indica en el Capítulo 3. Q se designa, en este caso, Q_a .

- 2. En miembros compuestos exclusivamente por elementos planos no atiesados, Q se calcula dividiendo el esfuerzo crítico en compresión, σ_{cr} , del elemento más débil de la sección transversal (el que tiene la relación ancho/grueso mayor), entre el esfuerzo de fluencia σ_y . Los cálculos se hacen de acuerdo con el Capítulo 3. Al coeficiente Q se le llama Q_s . (En el art. 2.9 se presentan expresiones de Q_s para el diseño de ángulos aislados comprimidos).
- 3. En miembros que contienen algunos elementos planos atiesados y otros no atiesados, el coeficiente Q es el producto de un factor de esfuerzo, Q_s , calculado como se indica en 2, multiplicado por un factor de área, Q_a , obtenido como en 1, pero utilizando, en lugar de σ_y , el esfuerzo con el que se determinó Q_s e incluyendo en el área efectiva el área total de todos los elementos no atiesados.

2.8.2 Especificaciones AISC (refs. 2.3 y 2.24)

Tanto si se emplean esfuerzos permisibles (ref. 2.3) como factores de carga y resistencia (ref. 2.24), las columnas de paredes delgadas se dimensionan con los criterios del artículo anterior. En la ref. 2.24 cambian las expresiones para pandeo de las columnas.

Las ecuaciones que se recomiendan en la ref. 2.24 para calcular los esfuerzos críticos son:

(a) Para
$$\lambda_c \sqrt{Q} \le 1.5$$
: $F_{cr} = Q(0.658^{Q\lambda_r^2})F_y$ (2.53)

(b) Para
$$\lambda_c \sqrt{Q} > 1.5$$
: $F_{cr} = \left(\frac{0.877}{\lambda_c^2}\right) F_v$ (2.54)

La ec. 2.53, para pandeo inelástico, proviene de la ec. 2.33, en la que se ha introducido el factor Q; la segunda, que proporciona el esfuerzo crítico de pandeo elástico, es la ec. 2.34 sin cambio. Se modifica, también, el valor del parámetro λ , que separa las dos formas de pandeo.

Para determinar la resistencia de diseño se utilizan el área total de la sección transversal de la columna y las propiedades geométricas correspondientes a ella.

Las recomendaciones de las refs. 2.2, 2.3 y 2.24 son adecuadas para diseñar columnas de paredes delgadas que fallan por pandeo por flexión; sin embargo, cuando el estado límite es el de pandeo por torsión o por flexotorsión (columnas con dos ejes de simetría de paredes muy delgadas, o columnas con un solo o ningún eje de simetría) es preferible emplear las especificaciones del AISI que se reproducen, en sus aspectos principales, en el artículo siguiente. También es aplicable el método del art. 2.7.

2.8.3 Especificaciones AISI (ref. 2.39)

Aunque el método basado en el factor Q se ha utilizado con éxito para diseñar miembros comprimidos de paredes delgadas, investigaciones recientes han mostrado que puede sustituirse por un procedimiento más preciso (ref. 2.34). Partiendo de resultados analíticos y experimentales, se ha demostrado que el empleo de Q puede proporcionar resultados inseguros para miembros formados por elementos planos atiesados, sobre todo cuando la relación de esbeltez de la columna está cerca de 100, mientras que es muy conservador para secciones I con patines no atiesados, en columnas de relación de esbeltez pequeña. Esto ha hecho que, a partir de 1986, el método haya desaparecido de las normas del AISI.

Para tener en cuenta la interacción pandeo de conjunto-pandeo local en el diseño de miembros en compresión axial, en la ref. 2.39 se procede como sigue:

- 1. Se determina el esfuerzo crítico de conjunto de la columna, con las dimensiones de su sección transversal completa.
- 2. Se calcula el área neta efectiva de la sección, utilizando el esfuerzo obtenido en 1.
- 3. Se determina la resistencia de diseño multiplicando el esfuerzo del paso 1 por el área neta calculada en 2.

Cuando el diseño se hace por esfuerzos permisibles se sigue un camino análogo.

2.8.3.1 Diseño por factores de carga y resistencia (ref. 2.39)

A continuación se reproducen, con algunos comentarios, los aspectos principales del diseño de columnas de lámina delgada comprimidas axialmente, hecho de acuerdo con la ref. 2.39; son aplicables a miembros en los que la resultante de todas las acciones es una fuerza de compresión axial que pasa por el centroide de la sección efectiva, determinada con el esfuerzo F_n que se define más adelante.

La resistencia de diseño en compresión axial, $\phi_c P_n$, se calcula como sigue:

$$\phi_c = 0.85$$
$$P_n = A_e F_n$$

(2.55)

donde:

 ϕ_c = factor de disminución de la resistencia.

 A_e = área efectiva correspondiente al esfuerzo F_n .

 F_n es igual a⁶:

Si
$$\lambda_c \le 1.5$$
, $F_n = (0.658^{\lambda_c^2}) F_y$ (2.56)

Si
$$\lambda_c > 1.5$$
, $F_n = \left[\frac{0.877}{\lambda_c^2}\right] F_y$ (2.57)

$$\lambda_c = \sqrt{\frac{F_y}{F_e}} \tag{2.58}$$

 F_e es el menor de los esfuerzos críticos de pandeo elástico por flexión, torsión o flexotorsión, determinados como se indica más adelante.

Columnas que no pueden fallar por pandeo por torsión o flexotorsión

En columnas de sección transversal cerrada, o con dos ejes de simetría, o con otra forma cualquiera para la que pueda demostrarse que no están sujetas a pandeo por torsión o flexotorsión, el esfuerzo crítico de pandeo elástico, F_e , se calcula con la expresión:

$$F_{e} = \frac{\pi^{2} E}{(KL/r)^{2}}$$
(2.59)

Esta es la fórmula de Euler escrita en términos de esfuerzos (ec. 2.12).

Columnas de sección transversal con dos o un eje de simetría, sujetas a pandeo por torsión o flexotorsión

En este caso, F_e es igual al menor de los valores dados por las ecs. 2.59 y 2.60.

$$F_{e} = \frac{1}{2H} \left[\left(\sigma_{ex} + \sigma_{t} \right) - \sqrt{\left(\sigma_{ex} + \sigma_{t} \right)^{2} - 4H\sigma_{ex}\sigma_{t}} \right]$$
(2.60)

Alternativamente, puede obtenerse una estimación conservadora de F_e con la ecuación:

$$F_e = \frac{\sigma_{ex}\sigma_t}{\sigma_{ex} + \sigma_t} \tag{2.61}$$

⁶ En sus especificaciones de 1996 (ref. 2.39) el AISI adoptó las fórmulas del AISC (ref. 2.24) para calcular los esfuerzos críticos de pandeo de columnas.

En las ecuaciones anteriores:

$$r_0^2$$
 = radio polar de giro de la sección transversal alrededor del centro de

torsión, elevado al cuadrado = $r_x^2 + r_y^2 + x_0^2 = \frac{I_x + I_y}{A} + x_0^2$

- x_0 = distancia entre los centros de gravedad y de torsión, medida a lo largo

$$H = 1 - (x_0/r_0)^2$$

$$\sigma_{ex} = \frac{\pi^2 E}{(E - I - (r_0)^2)}$$
(2.62)

$$\sigma_{t} = \frac{1}{Ar_{0}^{2}} \left(GJ + \frac{\pi^{2}EC_{a}}{(K_{t}L_{t})^{2}} \right)$$
(2.63)

En secciones con un solo eje de simetría, en las ecuaciones anteriores se ha supuesto que es el x.

Todas las propiedades anteriores corresponden a la sección transversal completa de la columna.

Si la sección tiene dos ejes de simetría el pandeo es por flexión alrededor de alguno de los ejes centroidales y principales, o por torsión. En ese caso, $x_0=0$, H=1, y la ec. 2.60 se reduce a la 2.63, que proporciona el esfuerzo crítico de pandeo por torsión.

Las ecuaciones anteriores (excepto la 2.61) son las del artículo 2.5, escritas en términos de esfuerzos críticos, en lugar de cargas críticas.

En el inciso 3.10.1.2.3 del Capítulo 3, se indica cómo calcular las áreas netas efectivas.

2.9 ÁNGULOS AISLADOS COMPRIMIDOS

En las refs. 2.35 y 2.36⁷ se dan recomendaciones para el diseño de ángulos aislados en compresión. Aquí se reproducen las de la segunda referencia.

La resistencia de diseño es $\phi_c P_n$, donde:

$$\phi_c = 0.90$$
$$P_n = A_t F_{cr}$$

a) Para $\lambda_c \sqrt{Q} \leq 1.5$:

$$F_{cr} = Q\left(0.658^{\mathcal{Q}\lambda_c^2}\right) F_y \tag{2.64}$$

b) Para
$$\lambda_c \sqrt{Q} > 1.5$$
:

$$F_{cr} = \left[\frac{0.877}{\lambda_c^2}\right] F_y$$

$$\lambda_c = \frac{KL}{r\pi} \sqrt{\frac{F_y}{E}}$$
(2.65)

 F_y es el esfuerzo de fluencia mínimo especificado del acero, y Q el factor de reducción por pandeo local, que tiene alguno de los valores siguientes:

Si
$$\frac{b}{t} \le 0.446 \sqrt{\frac{E}{F_y}}$$
: $Q = 1.0$ (2.66)

Si
$$0.446\sqrt{\frac{E}{F_y}} < \frac{b}{t} \le 0.910\sqrt{\frac{E}{F_y}}$$
: $Q = 1.340 - 0.761\frac{b}{t}\sqrt{\frac{F_y}{E}}$ (2.67)

Si
$$\frac{b}{t} > 0.910 \sqrt{\frac{E}{F_y}}$$
: $Q = \frac{0.534E}{F_y(b/t)^2}$ (2.68)

b es el ancho total del ala más grande del ángulo y t su grueso.

Con las expresiones anteriores para el cálculo del esfuerzo crítico de compresión se revisan los tres estados límite que pueden regir el diseño de ángulos comprimidos: pandeo por flexión general de la columna, pandeo local de alas delgadas o pandeo general por flexotorsión.

El factor Q tiene en cuenta el posible pandeo local; el origen de las expresiones para calcularlo (ecs. 2.66 a 2.68) se explica en el Capítulo 3. Aquí se han escrito en forma adimensional.

⁷ En el art. 1.12, Capítulo 1, se hace referencia a las normas para diseño de ángulos aislados.

En ángulos de alas esbeltas, el estado límite de pandeo por flexotorsión se aproxima con el factor de reducción Q, y aunque en columnas relativamente cortas de sección no esbelta, en las que Q=1.0, ese estado límite puede ser crítico, se ha demostrado que el error que se comete al ignorarlo no es significativo, por lo que ese efecto no se incluye en las recomendaciones para diseño de ángulos sencillos.

El criterio para diseñar ángulos aislados comprimidos de paredes delgadas es el mismo que recomienda el AISC en sus especificaciones generales (ref. 2.24) para columnas de paredes delgadas; de hecho las ecs. 2.64 y 2.65 son la 2.41 y 2.42, y también son iguales las expresiones para calcular el factor Q.

EJEMPLO 2.6 Calcule la resistencia de diseño en compresión del ángulo de 10.2 x 0.95 cm (4" x 3/8"), que se muestra en la Fig. E2.6.1, para dos longitudes, 4 m y 2 m. Suponga que las fuerzas están aplicadas en los centros de gravedad de las secciones extremas. El acero es A36 (F_y = 2530 kg/cm²). La barra está articulada en los dos extremos.

Fig. E2.6-1 Sección transversal y propiedades geométricas de la columna del ejemplo 2.6.

<u>Clasificación de la sección</u> $b/t = 10.16/0.95 = 10.7 < 640/\sqrt{F_y} = 12.7$ La sección es tipo 3; no hay problemas de pandeo local. **a)** $L_x = L_y = L_z = 4.00 m$

Como la sección tiene un solo eje de simetría (el x), el esfuerzo crítico de pandeo elástico, F_e , es el menor de los esfuerzos críticos de pandeo por flexión alrededor del eje y, y de pandeo por flexotorsión.

$$r_{0} = \sqrt{x_{0}^{2} + r_{x}^{2} + r_{y}^{2}} = \sqrt{3.42^{2} + 3.95^{2} + 2.01^{2}} = 5.60 \text{ cm}$$

$$H = 1 - \left(\frac{x_{0}}{r_{0}}\right)^{2} = 1 - \left(\frac{3.42}{5.60}\right)^{2} = 0.627$$

$$KL/r_{x} = 400/3.95 = 101; \quad KL/r_{y} = 400/2.01 = 199$$

Ec. 2.62:
$$\sigma_{ex} = \frac{\pi^2 E}{(KL/r_x)^2} = \frac{\pi^2 E}{101^2} = 1973 \text{ kg/cm}^2$$
$$\sigma_{ey} = \frac{\pi^2 E}{(KL/r_y)^2} = 508 \text{ kg/cm}^2$$
Ec. 2.63:
$$\sigma_i = \frac{1}{Ar_0^2} \left[GJ + \frac{\pi^2 EC_a}{(K_i L_i)^2} \right] = \frac{1}{18.45 \times 5.60^2} \left[784200 \times 5.87 + \frac{43.5\pi^2 E}{(1 \times 400)^2} \right]$$
$$= 7965 \text{ kg/cm}^2$$

La contribución de la resistencia a la torsión por alabeo es muy pequeña; si no se tuviese en cuenta, se obtendría σ_t = 7956 kg/cm².

Ec. 2.60:

$$\sigma_{e} = \frac{1}{2H} \left[(\sigma_{ex} + \sigma_{r}) - \sqrt{(\sigma_{ex} + \sigma_{r})^{2} - 4H\sigma_{ex}\sigma_{r}} \right]$$

= $\frac{1}{2 \times 0.627} \left[(1973 + 7965) - \sqrt{(1973 + 7965)^{2} - 4 \times 0.627 \times 1973 \times 7965)^{2}} \right]$
= 1782 kg/cm^{2}

Es crítico el pandeo por flexión alrededor del eje y.

$$\frac{Ref. \ 2.24}{\lambda_c} = \frac{KL}{\pi r_y} \sqrt{\frac{F_v}{E}} = \frac{1.0 \times 400}{2.01\pi} \sqrt{\frac{2530}{E}} = 2.231 > 1.5$$
$$F_{cr} = \left(\frac{0.877}{\lambda_c^2}\right) F_y = \left(\frac{0.877}{2.231^2}\right) 2530 = 446 \text{ kg/cm}^2 \qquad \text{Ec. } 2.34$$

Resistencia de diseño = $\phi_c AF_{cr} = 0.85 \times 18.45 \times 446 \times 10^{-3} = 6.99$ ton

<u>Ref. 2.2:</u>

$$(KL/r)_{c} = 6340/\sqrt{F_{y}} = 126 < KL/r_{y} = 199$$

Resistencia de diseño (ec. 2.30):

$$R_{c} = \frac{20,120,000}{(KL/r_{s})^{2}} AF_{R} = \frac{20,120,000}{199^{2}} \times 18.45 \times 0.85 \times 10^{-3} = 7.97 Ton$$

b) $L_x = L_y = L_z = 2.00 m$

$$KL/r_{x} = 200/3.95 = 51; \quad KL/r_{y} = 200/2.01 = 100$$

$$\sigma_{ex} = \frac{\pi^{2}E}{51^{2}} = 7737 \text{ kg/cm}^{2}$$

$$\sigma_{ey} = \frac{\pi^{2}E}{100^{2}} = 2012 \text{ kg/cm}^{2}$$

$$\sigma_{i} = \frac{1}{18.45 \times 5.60^{2}} \left(784200 \times 5.87 + \frac{\pi^{2}E \times 43.5}{200^{2}} \right) = 7994 \text{ kg/cm}^{2}$$

$$\sigma_{e} = \frac{1}{2 \times 0.627} \left[(7737 + 7994) - \sqrt{(7737 + 7994)^{2} - 4 \times 0.627 \times 7737 \times 7994} \right]$$

$$= 4881 \text{ kg/cm}^{2}$$

Sigue siendo crítico el pandeo por flexión alrededor de y.

Al disminuir la longitud de la columna de 4 m a 2 m, el esfuerzo σ_{ev} se multiplica por cuatro, y σ_e por 2.7; el incremento en resistencia al pandeo por flexotorsión es menor que al pandeo por flexión.

 $\frac{Ref. \ 2.24:}{\lambda_c} = \frac{100}{\pi} \sqrt{\frac{F_y}{E}} = 1.121 < 1.5$ $F_{cr} = (0.658^{\frac{2}{2}})F_y = (0.658^{\frac{1.121}{2}})2530 = 1495 \text{ kg/cm}^2 \qquad Ec. \ 2.33$ $\phi_c AF_{cr} = 0.85 \times 18.45 \times 1495 \times 10^{-3} = 23.45 \text{ ton}$

$$\frac{Ref. 2.2:}{KL/r_{y} = 100} < (KL/r)_{c} = 126$$

$$\therefore R_{c} = AF_{y} \left[1 - \frac{(KL/r)^{2}}{2(KL/r)_{c}^{2}} \right] F_{R}$$

$$= 18.45 \times 2530 \left[1 - \frac{100^{2}}{2 \times 126^{2}} \right] 0.85 \times 10^{-3} = 27.18 \text{ ton} \qquad Ec. 2.31$$

1.

El pandeo por flexotorsión puede ser crítico en columnas de ángulo muy cortas, pero aún en esos casos no es significativo el error que se comete al ignorarlo. Por esta razón, en las especificaciones de diseño de ángulos en compresión, que no sean de paredes delgadas, no se considera explícitamente ese efecto (ref. 2.36).

EJEMPLO 2.7 Calcule la resistencia de diseño de una columna biarticulada $(K_x = K_y = 1.0)$ de 2 m de longitud, cuya sección transversal se muestra en la Fig. E2.7.1. El límite de fluencia del acero es de 3515 kg/cm². Utilice las especificaciones AISI para diseño por factores de carga y resistencia (ref. 2.39) y las del AISC para diseño de ángulos aislados (ref 2.36).

Fig. E2.7-1 Sección transversal y propiedades geométricas de la columna del ejemplo 2.7.

<u>Ref. 2.39:</u>

Determinación de F.

Como la sección tiene un solo eje de simetría (el x), F_e es el menor de los esfuerzos críticos de pandeo por flexión alrededor de y o de pandeo por flexotorsión, que se calculan, respectivamente, con la fórmula de Euler y con la ec. 2.60.

$$r_{0} = \sqrt{x_{0}^{2} + r_{x}^{2} + r_{y}^{2}} = \sqrt{2.443^{2} + 3.08^{2} + 1.50^{2}} = 4.21 \text{ cm}$$

$$H = 1 - (x_{0}/r_{0})^{2} = 1 - (2.443/4.21)^{2} = 0.663$$

$$KL/r_{x} = 200/3.08 = 65; KL/r_{y} = 100/1.5 = 133$$

$$\sigma_{ex} = \frac{\pi^2 E}{(KL/r_x)^2} = \frac{\pi^2 E}{65^2} = 4763 \text{ kg/cm}^2$$
Ec. 2.62
$$\sigma_{ey} = \frac{\pi^2 E}{(KL/r_y)^2} = \frac{\pi^2 E}{133^2} = 1138 \text{ kg/cm}^2$$

$$\sigma_r = \frac{GJ}{Ar_0^2} = \frac{0.093E}{2.6 \times 3.92 \times 4.21^2} = 1050 \text{ Kg/cm}^2$$
Ec. 2.63

La ec. 2.63 se simplifica porque $C_a = 0$.

$$\sigma_{e} = \frac{1}{2H} \left[(\sigma_{ex} + \sigma_{r}) - \sqrt{(\sigma_{ex} + \sigma_{r})^{2} - 4H\sigma_{ex}\sigma_{r}} \right]$$

= $\frac{1}{2 \times 0.663} \left[(4763 + 1050) - \sqrt{(4763 + 1050)^{2} - 4 \times 0.663 \times 4763 \times 1050)} \right]$
= 967 kg/cm² Ec. 2.60

Puesto que σ_e (ec. 2.60) es menor que σ_{ey} , la forma crítica de pandeo es por flexotorsión, y F_e =967 kg/cm².

$$\lambda_{c} = \sqrt{\frac{F_{y}}{F_{e}}} = \sqrt{\frac{3515}{967}} = 1.907 > 1.5$$

$$\therefore F_{\pi} = \left(\frac{0.877}{\lambda_{c}^{2}}\right) F_{y} = \left(\frac{0.877}{1.907^{2}}\right) 3515 = 848 \text{ kg/cm}^{2} \qquad \text{Ec. 2.57}$$

Área efectiva. Es la que corresponde a $F_n = 848 \text{ kg/cm}^2$.

$$\lambda = \frac{1.052}{\sqrt{k}} \left(\frac{b}{t}\right) \sqrt{\frac{f}{E}} = \frac{1.052}{\sqrt{0.43}} \left(\frac{6.87}{0.27}\right) \sqrt{\frac{848}{E}} = 0.832 > 0.673; \quad \therefore b_e = \rho b$$

$$\rho = (1 - 0.22/\lambda)/\lambda = (1 - 0.22/0.832)/0.832 = 0.884$$

Ancho efectivo de cada ala: $b_e = 0.884 \times 6.87 = 6.07 \text{ cm}$.

Área efectiva:

$$A_e = A_r - \sum (b - b_e)t = 3.92 - 2(6.87 - 6.07)0.27 = 3.49 \text{ cm}^2$$

Resistencia nominal.

$$P_{n1} = A_e F_n = 3.49 \times 848 \times 10^{-3} = 2.96 \text{ ton}$$
 Ec. 2.56

Resistencia de diseño: $\phi_c P_n = 0.85 \times 2.96 = 2.52$ ton.

Ref. 2.36:

$$\frac{b}{t} = \frac{6.87}{0.27} = 25.4 > 0.910 \sqrt{\frac{E}{F_y}} = 21.9$$

Q se determina con la ec. 2.68:

$$Q = \frac{0.534E}{F_v (b/t)^2} = \frac{0.534E}{3515 \times 25.4^2} = 0.480$$

$$\lambda_c = \frac{KL}{r\pi} \sqrt{\frac{F_y}{E}} = \frac{200}{1.50\pi} \sqrt{\frac{3515}{E}} = 1.762$$

r es el radio de giro mínimo del ángulo (Fig. E2.6.1).

$$\lambda_c \sqrt{Q} = 1.221 < 1.5$$

$$\therefore F_{cr} = Q \left(0.658^{Q\lambda_c^2} \right) F_y = 0.480 \left(0.658^{(0.480 \times 1.762^2)} \right) B515$$

$$= 904 \text{ kg/cm}^2 \qquad Ec. 2.64$$

Resistencia de diseño: $\phi_c A_t F_{cr} = 0.90 \times 3.92 \times 904 \times 10^{-3} = 3.19 \text{ ton}$.

La resistencia es 27% mayor que la obtenida con la ref. 2.39 (3.19/2.52=1.27).

EJEMPLO 2.8 Calcular la resistencia de diseño de la columna de la Fig. E2.8.1⁸. El acero tiene un límite de fluencia $F_y = 3515 \text{ kg/cm}^2$. La columna puede considerarse articulada en los dos extremos, para flexión alrededor de los ejes x, y, y para torsión.

Fig. E2.8-1 Sección transversal y propiedades geométricas de la columna del ejemplo 2.8.

⁸ En estructuras reales no se utilizan secciones como la de la figura para trabajar en compresión; se emplea aquí para ilustrar algunos aspectos del diseño de columnas de paredes delgadas.

Clasificación de la sección (tabla 2.3.1, ref. 2.2)

Patines: $b/t = 4.69/0.152 = 30.86 > 830/\sqrt{F_y} = 14.0$ Alma: $h_c/t = 19.54/0.152 = 128.55 > 2100/\sqrt{F_y} = 35.42$

La sección es tipo 4; tanto en los patines como en el alma se excede la relación ancho/grueso correspondiente a las tipo 3.

a) <u>Especificaciones AISI para diseño por factores de carga y resistencia</u> (ref. 2.39)

Determinación de F_n . La relación de esbeltez crítica para pandeo por flexión es:

$$\frac{K_y L_y}{r_y} = \frac{1 \times 150}{1.709} = 87.8$$

Como las secciones transversales de la columna tienen dos ejes de simetría, el esfuerzo crítico de pandeo elástico es el menor de los valores dados por las ecs. 2.59, con $KL/r = K_v L_v/r_v$, y 2.63.

Pandeo por flexión:

$$F_{ey} = \frac{\pi^2 E}{(KL/r_y)^2} = \frac{\pi^2 E}{87.8^2} = 2611 \text{ kg/cm}^2 \qquad \text{Ec. 2.59}$$

Pandeo por torsión:

$$F_{ez} = \left[GJ + \frac{\pi^2 EC_a}{(K_z L_z)^2} \right] \frac{1}{I_x + I_y}$$

= $\left[748000 \times 0.071 + \frac{2589\pi^2 E}{(1 \times 150)^2} \right] \frac{1}{510.1 + 26.68}$
= 4418 kg/cm^2 Ec. 2.63

El pandeo por torsión no es crítico.

$$F_e = F_{ey} = 2611 \text{ kg/cm}^2$$

$$\lambda_e = \sqrt{\frac{F_y}{F_e}} = \sqrt{\frac{3515}{2611}} = 1.160 < 1.5$$

$$\therefore F_n = \left(0.658^{\frac{3}{2}}\right)F_y = \left(0.658^{\frac{1.16^2}{2}}\right)B515 = 2001 \text{ kg/cm}^2$$

Ec. 2.56

Anchos efectivos

Los anchos efectivos de almas y patines se determinan como se indica en el Capítulo 3.

<u>Almas</u>

Se tratan como dos placas independientes, pues sólo están unidas entre sí en los bordes superior e inferior.

$$\lambda = \frac{1.052}{\sqrt{k}} \left(\frac{b}{t}\right) \sqrt{\frac{f}{E}} = \frac{1.052}{\sqrt{4.0}} \left(\frac{19.54}{0.152}\right) \sqrt{\frac{2001}{E}} = 2.118$$

Se toma k = 4.0, para placas apoyadas en los dos bordes, y se sustituye f por $F_{-} = 2001 \text{ kg/cm}^{2}$.

Como
$$\lambda = 2.118 > 0.673$$
, $b_e = \rho b$.
 $\rho = (1 - 0.22/\lambda)/\lambda = (1 - 0.22/2.218)/2.218 = 0.423$
 $b_e = 0.423 \times 19.54 = 8.27$ cm

<u>Patines</u>

$$\lambda = \frac{1.052}{\sqrt{0.43}} \left(\frac{4.69}{0.152}\right) \sqrt{\frac{2001}{E}} = 1.551 > 0.673$$

Ahora k es igual a 0.43, para placas apoyadas en un borde.

$$\rho = (1 - 0.22/1.551)/1.551 = 0.553$$

 $b_a = 0.553 \times 4.69 = 2.60 \text{ cm}$

Área efectiva

$$A_e = A_t - \sum (b - b_e)t$$

= 9.12 - [2(19.54 - 8.27) + 4(4.69 - 2.60)]0.152
= 9.12 - 4.42 = 4.70 cm²

Resistencia nominal:

$$P_{n1} = A_{p}F_{n} = 4.70 \times 2001 \times 10^{-3} = 9.40$$
 ton Ec. 2.55

Esta resistencia corresponde a pandeo por flexión de la columna.

Resistencia de diseño: $\phi_c P_n = 0.85 \times 9.40 = 7.99$ ton

b) Normas Técnicas Complementarias del Reglamento del D.F. (ref. 2.2)

Como la falla es por pandeo por flexión y pandeo local combinados (no hay pandeo por torsión) la resistencia de diseño puede determinarse también siguiendo las indicaciones de la ref. 2.2 (art. 2.8.1), como se hace a continuación.

Factor de pandeo local Q

Se utilizan las ecuaciones del art. 2.3.6 de la ref. 2.2.

 Q_s . Se determina para los patines, que son elementos planos no atiesados. $b/t = 4.69/0.152 = 30.86 > 1470/\sqrt{F_s} = 24.79$ $\therefore Q_s = \frac{1,400,000}{F_s(b/t)^2} = \frac{1,400,000}{3515 \times 30.86^2} = 0.418$

 Q_a . El esfuerzo f que se utiliza para calcular el ancho efectivo del alma es el esfuerzo crítico de pandeo local de los patines, $F_{cr} = Q_s F_y = 0.418 \times 3515 = 1470 \text{ kg/cm}^2$.

$$b_e = \frac{2730 \times 0.152}{\sqrt{1470}} \left(1 - \frac{480}{128.55\sqrt{1470}} \right) = 9.77 \text{ cm}$$

$$A_e = 9.12 - 2(19.54 - 9.77)0.152 = 6.15 \text{ cm}^2$$

$$Q_e = 6.15/9.12 = 0.674$$

$$Q = Q_s Q_a = 0.418 \times 0.674 = 0.282$$

$$(KL/r)_c^* = 6340 / \sqrt{QF_y} = 6340 / \sqrt{0.282 \times 3515} = 201.4$$

$$(KL/r)_y = 87.8 < 201.4$$

$$\therefore R_c = QA_r F_y \left(1 - \frac{(KL/r)^2}{2(KL/r)_c^{*2}} \right) F_R$$

$$= 0.282 \times 9.12 \times 3515 \left(1 - \frac{87.8^2}{2 \times 201.4^2} \right) 0.75$$

$$= 6136 \text{ kg} \approx 6.14 \text{ ton}$$

Ec.

Este resultado es menor que el obtenido con las especificaciones AISC (6.14/7.99=0.769); si se utilizase el mismo factor de resistencia, 0.85, el método de la ref. 2.2 arrojaría un valor sólo 13 por ciento menor que el de la ref. 2.39 (6.14x0.85/(0.75x7.99)=5.22/5.99=0.87).

2.47

2.10 REFERENCIAS

- 2.1 Galambos, T.V., "Structural Members and Frames", Prentice Hall Inc., Englewood Cliffs, N.J., 1968.
- 2.2 "Normas Técnicas Complementarias para Diseño y Construcción de Estructuras Metálicas", Reglamento de Construcciones para el Distrito Federal, Gaceta Oficial del Departamento del D.F., México D.F., diciembre de 1987.
- 2.3 "Specification for Structural Steel Buildings. Allowable Stress Design and Plastic Design" (incluye comentario), American Institute of Steel Construction, Chicago, III., junio de 1989.
- 2.4 Timoshenko, S.P., y J.M. Gere, "Theory of Elastic Stability", McGraw-Hill Book Company, Nueva York, 1961.
- 2.5 Bleich, F., "Buckling Strength of Metal Structures", McGraw-Hill Book Company, Nueva York, 1952.
- 2.6 De Buen, O., "Estructuras de Acero, Comportamiento y Diseño", Limusa, México, D.F., enero de 1980.
- 2.7 "Specification for the Design of Light Gage Cold-Formed Structural Members", Light Gage Cold-Formed Steel Design Manual, American Iron and Steel Institute, Washington, D.C., 1968.
- 2.8 "Load and Resistance Factor Design Specification for Structural Steel Buildings" (incluye comentario), American Institute of Steel Construction, Chicago, III., septiembre de 1986.
- 2.9 Chen, W.F., y E.M. Lui, "Structural Stability. Theory and Implementation", Elsevier Science Publishing Co., Inc., Nueva York, 1987.
- 2.10 Shanley, F.R., "Strength of Materials", McGraw-Hill Book Co. Inc., Nueva York, 1957.
- 2.11 Galambos, T.V., Editor, "Guide to Stability Design Criteria for Metal Structures", 4a. ed., John Wiley & Sons, Nueva York, 1988.
- 2.12 Johnston, B.G., Editor, "Guide to Design Criteria for Metal Compression Members", 2a. ed., John Wiley & Sons, Nueva York, 1966.
- 2.13 Beedle, L.S., y L. Tall, "Basic Column Strength", J. Str. Div., Proc. ASCE, Vol. 86, ST7, julio de 1960.
- 2.14 "Guide to Design Criteria for Metal Compression Members", 1a. ed., Column Research Council, Engineering Foundation, 1960.
- 2.15 Johnston, B.G., Editor, "Guide to Stability Design Criteria for Metal Structures",
 3a. ed., John Wiley & Sons, Nueva York, 1976.
- 2.16 "European Recommendations for Steel Construction", European Convention for Constructional Steelwork (ECCS), 1978.
 - 2.17 Beedle, L.S., Editor, "Stability of Metal Structures. A World View", 2a. Ed., Structural Stability Research Council, 1991.
 - 2.18 "Recommandations pour l'etude el l'execution des constructions métalliques", Convention Européenne de la Construction Métallique, enero de 1977.
- 2.19 Chen, W.F., y T. Atsuta, "Theory of Beam-Columns, Vol. 1: In-plane Behavior and Design", McGraw-Hill Book Co., Nueva York, 1976.
- 2.20 Bjorhovde, R., "Columns: From Theory to Practice", Engineering Journal, Vol. 25, No. 1, AISC, Chicago, Ill., 1988.
- 2.21 Rondal, J., y R. Maquoi, "Single Equation for SSRC Column-Strength Curves", J. Str. Div., ASCE, Vol. 105, No. ST1, enero de 1979.
- 2.22 Allen, D., "Merchant-Rankine Approach to Member Stability", J. Str. Div., ASCE, Vol. 104, No. ST12, diciembre de 1978 (ver también la discusión de este artículo por R. Maquoi y J. Rondal, J. Str. Div., ASCE, noviembre de 1979).
- 2.23 "Limit States Design of Steel Structures" (incluye comentario), Canadian Standards Association, CAN/CSA-S16.1-M94, Rexdale, Ontario, Canadá, diciembre de 1994.
- 2.24 "Load and Resistance Factor Design Specification for Structural Steel Buildings" (incluye comentario), AISC, Chicago, III., diciembre de 1993.
- 2.25 Chen, W.F., "End Restraint and Column Stability", J. Str. Div., Proc. ASCE, Vol. 106, ST11, noviembre de 1980.
- 2.26 Thürlimann, B., "New Aspects Concerning Inelastic Instability of Steel Structures", J. Str. Div., Proc. ASCE, Vol. 86, ST1, enero de 1960.
- 2.27 Haaijer, G., "Plate Buckling in Strain-Hardening Range", Trans. ASCE, Vol. 124, 1959.
- 2.28 De Buen, O., "Pandeo de Placas Comprimidas", Ingeniería, Vol. XXXIV, No. 8, México D.F., 1964.

- 2.29 Lay, M.G., "Yielding of Uniformly Loaded Steel Members", J. Str. Div., Proc. ASCE, Vol. 91, ST6, diciembre de 1965.
- 2.30 Haaijer, G., y B. Thürlimann, "Inelastic Buckling in Steel", Trans. ASCE, Vol. 125, Parte I, 1960.
- 2.31 "Specification for the Design of Cold-Formed Steel Structural Members", Edición de agosto de 1986, con suplemento de diciembre de 1989, American Iron and Steel Institute, Washington, D.C., enero de 1991.
- 2.32 "Load and Resistance Factor Design Specification for Cold-Formed Steel Structural Members", American Iron and Steel Institute, Washington, D.C., marzo de 1991.
- 2.33 "ASD/LRFD Design Specification for Cold-Formed Steel Structural Members", versión preliminar, American Iron and Steel Institute, Washington, D.C., julio de 1995.
- 2.34 Yu, W.W., "Cold-Formed Steel Design", 2a. ed., John Wiley, Nueva York, 1991.
- 2.35 "Specification for Allowable Stress Design of Single-Angle Members" (incluye comentario), Manual of Steel Construction "Allowable Stress Design", 9a. ed., Chicago, III, 1989.
- 2.36 "Specification for Load and Resistance Factor Design of Single-Angle Members" (incluye comentario), AISC, Chicago, Ill., diciembre de 1993.
- 2.37 "Reglamento de Construcciones para el Distrito Federal", Gaceta Oficial del Distrito Federal, México, D.F., agosto de 1993.
- 2.38 "Manual para Constructores", Compañía Fundidora de Fierro y Acero de Monterrey, S.A., México, D.F., 1965.
- 2.39 "Specification for the Design of Cold-Formed Steel Structural Members", Edición de 1996, American Iron and Steel Institute, Washington, D.C., junio de 1997.

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSO APLICACIÓN DE NORMAS Y ESPECIFICACIONES DE USO EN MÉXICO PARA EL DISEÑO DE ESTRUCTURAS DE ACERO

TEMA:

ANÁLISIS Y DISEÑO DE CONEXIONES

ING. OCTAVIO BARÓN LUNA DICIEMBRE 1999

ANALISIS Y DISEÑO DE

CONEXIONES

INDICE:

CAPITULO 6.- ANALISIS Y DISEÑO DE PLACAS BASE PARA COLUMNAS

CAPITULO 7.- ANALISIS Y DISEÑO DE CONEXIONES ATORNILLADAS Y SOLDADAS

CAPITULO 8.- ANALISIS Y DISEÑO DE CONEXIONES TRABE COLUMNA

CAPITULO 6

-

.

-

.

•

-

.

•

-

.

.

6. DISEÑO DE PLACAS BASE PARA COLUMNAS

6.1 PLACAS BASE SUJETAS A CARGA AXIAL.

La función de las placas base es similar a la de las zapatas y se puede ilustrar en la figura siguiente, en la que :

Como puede observarse, en los dos casos se presenta una transición entre dos materiales de resistencia distinta (concreto y acero en la parte superior, y concreto y terreno en la parte inferior), por lo que se requiere de una ampliación en la superficie de contacto, de tal forma que los esfuerzos en el material de menor resistencia, no rebasen un valor permisible, en éste caso las especificaciones del A.I.S.C. recomiendan que no se excedan los valores siguientes :

$F_p = 0.35 f_c'$	sobre el área total de un apoyo de concreto	
$F_p = 0.35 f_c' \sqrt{A_1/A_2} \le 0.7 f_c'$	sobre menos del área total de un apoyo de concreto.	

En las ecuaciones anteriores :

 f_c' = Resistencia a la compresión del concreto.

 A_1 = Area de contacto de la placa con el concreto.

 A_2 = Area de la sección transversal del apoyo de concreto.

El espesor de la placa base, al igual que en las zapatas, debe ser tal, que no se flexione al actuar la reacción del concreto, ya que de ésta forma se reducirá la zona de contacto de la placa y los esfuerzos de apiastamiento podrian rebasar a los permisibles del concreto, en general se acostumbra analizar el efecto de una longitud unitaria (1cm) de placa, con lo que la sección transversal que resiste la flexión sería de base 1 cm y de peraite "t", siendo su módulo de sección :

Con ésta última ecuación se puede obtener el espesor de la placa necesaria para proporcionarle la rigidez adecuada, y el esfuerzo de 0.75 F_y , corresponde al permisible de elementos rectangulares macizos, flexionados con respecto a su eje débil. En los ejemplos siguientes se ilustra la aplicación de las fórmulas anteriores.

ია

EJEMPLO 6.1 :

Determinar la placa base necesaria para la columna siguiente, si el concreto de su dado será de $f'_c = 200 \text{ kg}/cm^2$

Determinación de la carga máxima que soporta la columna ·

... Se diseñará la placa base para resistir una carga axial de 72.3 Ton; con una resistencia máxima del concreto de :

$$F_p = 0.35(200) = 70 \text{ kg/cm}^2$$

 $A_{\min} = \frac{72300}{70} = 1033 \text{ cm}^2$
 $b = \sqrt{1033} = 32 \text{ cm} \approx 35 \text{ cm}$

Con ésta dimensión la placa tendría el arreglo siguiente :

El espesor se encontraría por medio del momento flexionante de la zona en voladizo que quedaría en la placa, que será el siguiente :

 $f_p = \frac{72300}{35 \times 35} = 59$ kg/cm² (esfuerzo de aplastamiento en el concreto). $M_F = \frac{59(9.9)^2}{2} = 2891$ kg·cm $t = \sqrt{\frac{6 \times 2891}{1900}} = 3.02$ cm

con t = 31.8 mm $(1 \ 1/4)''$ > 30 mm bien.

Quedando una placa de $350 \ge 350 \ge 31.8$ mm; en éste caso se colocarán 4 anclas o = 12.7 mm (anclas mínimas), con el arreglo mostrado, que intenta quitarle rigidez a la base para tener el comportamiento de articulación, (liberar los momentos), en la base de la columna, de acuerdo al tipo de apoyo considerado inicialmente

EJEMPLO 6.2:

Resolver el problema 6.1 pero con una columna IR - 305 x 59.8. Propiedades de la sección (obtenidas del manual):

A = 76.1 cm² d = 303 mm b_f = 203 mm r_y = 4.9 cm $\left|\frac{KL}{r}\right|_{min} = \frac{1.0 \times 300}{4.9} = 61 \rightarrow F_a = 1218 \text{ kg/cm}^2$ $P_{max} = 1218 \times 76.1 = 92690 \text{ kg} \approx -92.7 \text{ Ton}$ $F_p = 0.35(200) = 70 \text{ kg/cm}^2$ $A_{min} = \frac{92700}{70} = 1325 \text{ cm}^2$ $b = \sqrt{1325} = 36.4 \text{ cm}$

En éste caso, por ser una sección rectangular, conviene que la placa también lo sea, para que la zona en voladizo no se incremente y resulte un espesor mayor, por lo tanto el valor anterior es sólo indicativo; y nos sirve para proponer las dimensiones tentativas, usando en éste caso una sección de 450x300 mm.

$$A = 45 \times 30 = 1350 \text{ cm}^2$$
 > 1325 cm² bion.
 $f_p = \frac{92700}{1350} = 69 \text{ kg/cm}^2$ < 70 kg/cm²

Quedando la placa base de la forma siguiente :

En este caso, al tratar de encontrar el espesor de la placa se tendría el problema de la longitud que deberá tomarse para el cálculo del momento flexionante, debido a que se trata de una sección abierta: para estos casos, el A.I.S.C. permite sustituir a la sección original, por una equivalente, con dimensiones de 0.95d por 0.8b, la cual ha sido identificada con la zona sombreada en la figura, de esta manera el volado crítico sería :

$$m = \frac{450 - (0.95 \times 303)}{2} = 81 \text{ mm} = 8.1 \text{ cm} \quad \leftarrow \text{Rige}$$

$$n = \frac{300 - (0.8 \times 203)}{2} = 69 \text{ mm} = 6.9 \text{ cm}$$

$$M_F = \frac{69(8.1)^2}{2} = 2264 \text{ kg} \cdot \text{ cm}$$

$$t = \sqrt{\frac{6 \times 2264}{1900}} = 2.67 \text{ cm}$$

$$\text{con } t = 28.6 \text{ mm} (1 \ 1/8'') \quad > 26.7 \text{ mm}$$

Quedando el arreglo mostrado a continuación :

w/+ -

6.2 PLACAS BASE SUJETAS A CARGA AXIAL Y FLEXION.

En estos casos, dependiendo de la magnitud de los elementos mecánicos, se pueden presentar las siguientes combinaciones de esfuerzos bajo la placa base :

En la figura del inciso 1) se han separado los esfuerzos axiales de los que genera la flexión, las cuales al sumarse, pueden dar origen a alguno de los diagramas de esfuerzos marcados en el inciso 2), dependiendo de la magnitud de la carga axial y del momento flexionante, en estos casos, se puede sustituir la carga axial y el momento por la misma carga colocada a una excentricidad e=M/P. El caso en donde los esfuerzos se igualan (inciso b), es de particular importancia y se analizará con los siguientes pasos :

$$\frac{P}{A} = \frac{M}{S} \quad \text{como} \quad M = P \cdot e \quad \text{y} \quad S = \frac{BD^2}{6} \quad A = BD$$
$$\frac{P}{BD} = \frac{6P \cdot e}{BD^2} \quad \therefore \quad e = \frac{D}{6} \quad \text{recuerde que} \quad e = \frac{M}{P}$$

Con éste valor de la excentricidad, se puede inferir el tipo de diagrama de esfuerzos que se tendría bajo la placa, siendo como el inciso a) si e< D/6, como b) si e = D/6 y como c) si e>D/6. La aplicación de éstos conceptos será ilustrada en los ejemplos siguientes.

EJEMPLO 6.3 :

Determinar la placa base necesaria para la columna siguiente, si el concreto de su dado será de $f'_c = 250 \text{ kg/cm}^2$.

El diagrama de esfuerzos es del tipo c) mostrado en la página anterior, suponiendo que la resultante de los esfuerzos de compresión coincide con la carga axial aplicada con la excentricidad calculada, se tendría el diagrama de cuerpo libre siguiente :

En donde :

 $\frac{D}{2} - e = 18 - 7 = 11$ cm = y/3 \therefore y = 33 cm

Por equilibrio : $R = \left| \frac{f_P(y)}{2} \right| B = P$

$$\left|\frac{33f_p}{2}\right| 25 = 50000 \text{ kg} \qquad \therefore \qquad f_p = 121.2 \text{ kg/cm}^2 \rightarrow 88 \text{ kg/cm}^2 \therefore \text{ No pasa.}$$

Donde :

$$F_p = 0.35 f_c' = 0.35 \times 250 = 87.5 \text{ kg/cm}^2 \approx 88 \text{ kg/cm}^2$$

Proponiendo una placa de 400 x 300 mm se tendría :

$$\frac{D}{2} = \frac{40}{2} = 20 \text{ cm}$$

$$\frac{D}{2} - e = 20 - 7 = 13 \text{ cm} = y/3 \qquad \therefore \qquad y = 39 \text{ cm}$$

$$\frac{39f_p}{2} |_{30} = 50000 \text{ kg} \qquad \therefore \qquad f_p = 85.5 \text{ kg/cm}^2 \quad \langle 88 \text{ kg/cm}^2 \text{ bien}$$

Con esta placa, no se rebasa la capacidad al aplastamiento del concreto, y sería la adecuadá, para calcular el espesor se debe considerar la distancia mayor de las siguientes :

En éste caso como "n" se encuentra en la dirección perpendicular a la de aplicación del momento flexionante, será constante a lo largo de toda la zona en voladizo de la placa; como se puede observar en la figura anterior.

Debido a que tenemos dos casos diferentes para la obtención del momento flexionante, ya que el volado n = 9.2 cm es el mayor, pero su esfuerzo es menor; y por el contrario el volado m = 7.8 cm es el menor pero con un esfuerzo mayor que el volado n; se hará el cálculo de ambos casos.

Por lo tanto, el momento flexionante para el cálculo del espesor de la placa será el que resulte mayor de los dos volados.

Tenemos por relación de triángulos lo siguiente :

$$\frac{f_{p1}}{y} = \frac{f_{p2}}{y - m} \implies \frac{85.5}{39} = \frac{f_{p2}}{31.2}$$
$$f_{p2} = \frac{85.5 \times 31.2}{39} = 68.4 \text{ kg/cm}^2$$

Se tendrán los siguientes diagramas :

En éste caso para la obtención del momento flexionante se pueden dividir las presiones actuantes en el concreto en dos, un diagrama de carga uniforme y otro triangular, quedando el momento flexionante como se muestra a continuación :

 $M_{F2} = \frac{7.8 \times 17.1}{2} \left| \frac{12}{13} \times 7.8 \right| = 347 \text{ kg} \cdot \text{cm}.$

$$M_F = \frac{68.4 \times 9.2^2}{2} = 2895$$
 kg · cm

El espesor requerido para éste volado es:

$$t = \sqrt{\frac{6 \times 2895}{1900}} = 3.02$$
 cm

Placa requerida para éste volado es :

31.7 mm (1 1/4").

$$M_F = M_{F1} + M_{F2} = 2423 \qquad \text{kg} + \text{cm}$$

 $M_{F1} = \frac{68.4 \times 7.8^2}{2} = 2081$ kg· cm.

El espesor para éste volado es:

$$t = \sqrt{\frac{6 \times 2428}{1900}} = 2.77$$
 cm

Placa de 31.7 mm (1 1/4").

Con placa de 31.7 mm (1 1/4") se cumple: debido a que el concreto soporta los efectos de la flexión y la carga axial por completo, no se diseñan las anclas, pero es recomendable que su diámetro sea por lo menos de la mitad del espesor de la placa, quedando el resultado final :

Obsérvese que la disposición de las anclas intenta restringir el giro de la placa, para darle capacidad de absorver momentos.

EJEMPLO 6.4 :

Determinar la placa base necesaria para la columna siguiente, si el concreto de su dado será de $f'_c = 250 \text{ kg/cm}^2$.

Froponiendo una sección para la placa de 40 x 30 cm como en el caso anterior :

 $\frac{D}{6} = \frac{40}{6} = 6.7 \text{ cm} \langle 17.14 \text{ cm} \text{ Diagrama incise c} \rangle.$ $\frac{y}{3} = 20 - 17.14 = 2.86 \text{ cm} \qquad \therefore \qquad y = 3 \times 2.86 = 8.58 \text{ cm}$

Obsérvese que en este caso se tiene un valor de "y" muy pequeño, indicando con ésto que la zona trabajando al aplastamiento del concreto es muy reducida y por tanto su esfuerzo se ve incrementado, como se puede calcular aquí :

$$R = \frac{f_p(8.58)}{2} \times 30 = 35000$$
$$f_p = \frac{35000 \times 2}{30 \times 8.58} = 272 \text{ kg/cm}^2 \text{ } 87.5 \text{ kg/cm}^2$$

Donde :

$$F_p = 0.35 f'_c = 0.35 \times 250 = 87.5 \text{ kg/cm}^2$$

Para poder incrementar la zona a compresión en la placa, será necesario colocar anclas que disminuyan los efectos del momento flexionante, (la alternativa de aumentar el tamaño de la placa, incrementaría también su espesor, y resultaria menos económica) analizando el diagrama de cuerpo libre siguiente:

Del equilibrio de fuerzas verticales :

Del equilibrio de momentos, tomando el punto "9" como origen (para eliminar a la incógnita "T" de la ecuación).

$$\sum M_{o} = (35000)(33.14) - R \left| 30 - \frac{v}{3} \right| = 0$$

1159900 - 1312.5 $y \left| 36 - \frac{y}{3} \right| = 0$
1159900 - 47250 y + 437.5 $y^{2} = 0$
 $v^{2} - 108 y + 2651.2 = 0$

$$y = \frac{108 \pm \sqrt{11664 - 10604.8}}{2}$$

 $y_1 = 70.3 \text{ cm}$
 $y_2 = 37.7 \text{ cm} \leftarrow \text{Rige}$

- Obsérvese que las anclas hacen que trabaje una proporción mayor de la placa,(sin anclas, sólo trabajaban 8.58 cm en lugar de 37.7 cm).

Si y = 37.7 cm T = 49431 - 35000 = 14481 kg

como :

$$f_t = \frac{r}{A} = 1345 \text{ kg/cm}^2$$
 $F_t = 0.33F_u$ (barras roscadas)

$$F_t = 0.33 \times 4080 = 1345 \text{ kg/cm}^2$$

$$A_{min} = \frac{14481}{1345} = 10.8 \text{ cm}^2$$
colocando 3 anclas $A_i = \frac{10.8}{2} = 3.6 \text{ cm}^2$

con anclas $\sigma = 22.2 \text{ mm} (7/8")$ A = 3.87 cm² > 3.6 cm² Bien Distancia mínima al borde para anclas $\sigma = 22.2 \text{ mm}$ (de acuerdo a la tabla 2.5): $d_{min} = 38 \text{ mm} < 40 \text{ mm}$ Bien

Separación mínima entre anclas $3o = 3 \ge 22.2 = 66.7 \approx 70$ mm

Separación con el ancho de 300 mm $sep = \frac{300 - 2(40)}{2} = 110$ > 70 Bien.

Se dejarán entonces 3 anclas ø = 22.2 mm.

Se calculará el espesor con el momento flexionante mayor que se presente en cualquiera de los dos volados.

Por relación de triángulos :

$$\frac{f_{p1}}{37.7} = \frac{f_{p2}}{29.9} \qquad \therefore \qquad \frac{87.5}{37.7} = \frac{f_{p2}}{29.9}$$
$$f_{p2} = \frac{87.5 \times 29.9}{37.7} = 69.4 \text{ kg/cm}^2 \cdot \text{cm}$$

Tenemos los diagramas de esfuerzos siguientes :

Se colocará placa de 31.7 mm (1 1/4") que cumple con lo anterior, por lo tanto la placa base será de 400 x 300 x 31.7 mm; la longitud del ancla se puede calcular con la expresión (extraída de las Normas Técnicas Complementarias de Concreto, Capítulo 3 inciso 3.1.1c.).

$$L_{db} = 0.06 \frac{a_s f_y}{\sqrt{f_c'}} \ge 0.006 d_b f_y$$
 (longitud de desarrollo básica)

 $(L_d)_{\min} = 30$ cm $L_d = 1.0(L_{db})$ (para anclas en concreto normal)

Para barras lisas $L_t = 2 L_d$, la longitud del gancho será igual a 12 db (donde db es el diámetro del ancla); quedando en este caso :

$$L_{db} = 0.06 \frac{3.87 \times 2530}{\sqrt{250}} = 37.2 \text{ cm} \quad \leftarrow \quad \text{Rige}$$

 $0.006 \ge 2.22 \ge 2530 = 33.7 \text{ cm}$

 $L_t = 37.2 \times 2 = 74.4 \approx 75$ cm (longitud mínima de anclaje)

Para el gancho se tendría :

 $L_G = 12 \times 2.22 = 26.64 \approx 27$ cm (gancho mínimo)

Diámetro de doblez = 6 db (sí db \leq 25.4 mm)

Diámetro de doblez = $6 \ge 2.22 = 13.3$ cm

Zona roscada = $22.2 \times 3 = 67 \approx 70 \text{ mm}$ (minimo).

106

Quedando finalmente el detalle de la placa :

.

.

EJEMPLO 6.5:

Determinar la placa base necesaria para la columna siguiente, si el concreto de su dado es de $f'_c = 250 \text{ kg/cm}^2$.

Del diagrama de cuerpo libre :

P = 30 Ton.

$$M = 8 T . m$$

Sección IR-254 x 32.9 (b_f =146mm; d=258mm)

$$e = \frac{M}{P} = \frac{800}{30} = 26.7 \text{ cm}$$

Proponiendo una placa de 40 x 30 cm.

$$R = \frac{(87.5)y}{2} \times 30 = 1312.5y$$

$$\Sigma M_o = (30000 \times 42.7) - 1312.5y |36 - \frac{y}{3}| = 0$$

$$1281000 - 47250y + 437.5y^2 = 0$$

$$y^2 - 108y + 2928 = 0$$

$$y = \frac{108 \pm \sqrt{11664 - 11712}}{2} = \frac{108 \pm \sqrt{-48}}{2}$$

_ Sin solución en los reales.

Cambiando a una placa de 45 x 35 cm.

$$R = \frac{(87.5)y}{2} \times 35 = 1531.3y$$

$$\Sigma M_o = (30000 \times 44.2) - 1531.3y(40 - y/3) = 0$$

$$1326000 - 61252y + 510.43y^2 = 0$$

$$y^2 - 120y + 2597.8 = 0$$

$$y = \frac{120 \pm \sqrt{14400 - 10391.2}}{2}$$

$$y_1 = 91.7 \text{ cm} \qquad y_2 = 28.3 \text{ cm}$$

Con y = 28.3 cm :

R = 1531.3 x 28.3 = 43336 kg. T = 43336 - 30000 = 13336 kg. F_t = 0.33 F_u = 0.33 x 4080 = 1345 kg/cm² (tensión permisible en elementos roscados) $A_s = \frac{13336}{1345} = 9.92$ cm² con 3 anclas. $a_t = \frac{9.92}{3} = 3.31$ cm² con o = 22.2 mm $A_s = 3.87$ cm² > 3.31 cm². Bien

Se colocarán 3 ancias o = 22.2 mm

Distancia mínima al borde = $38 \text{ mm} \approx 40 < 50$ (propuesta) bien

Sep. mínima de anclas = $3\sigma = 3 \ge 22.2 = 66.6 \text{ mm} \approx 70 \text{ mm}$

Sep. con el ancho de 350 mm = $\frac{350 - 2(50)}{2}$ = 125 mm > 70 mm bien.

Cálculo del espesor de la placa :

$$\frac{f_{p1}}{18} = \frac{f_{p2}}{18}$$

$$f_{p2} = \frac{87.5}{28.3} \times 18 = 55.6 \text{ kg/cm}^2 \cdot \text{cm.}$$

$$\frac{f_{p1}}{18} = \frac{f_{p2}}{18}$$

$$f_{p2} = \frac{87.5}{28.3} \times 18 = 55.6 \text{ kg/cm}^2 \cdot \text{cm.}$$

$$M_F = \frac{55.6(10.3)^2}{2} + \frac{31.9(10.3)^2}{3}$$

$$M_F = \frac{55.6(11.7)^2}{2}$$

$$M_F = 4077 \text{ kg} \cdot \text{cm.} \leftarrow \text{Rige}$$

$$M_F = 3805 \text{ kg} \cdot \text{cm.}$$

$$t = \sqrt{\frac{6 \times 4077}{1900}} = 3.59 \text{ cm.}$$

Se requiere placa de 38.1 mm (1 1/2"), pero por ser demasiado gruesa se reducirá usando atiesadores que impidan la flexión.

$$t = \frac{T}{2} = \frac{38.1}{2} \approx 19.05$$
 mm

y atiesadores (2 por lado) de :

-

$$t' = \frac{t}{2} = \frac{19.05}{2} = 9.5 \text{ mm}$$

.

.

....

Considerando $\alpha = 50^{\circ}$ (resultado de ensayes de placas).

$$\rho = (g^{-1} \frac{150}{(96 - 13)} = 61^{\circ}$$
$$\gamma = 180 - (61 + 50) = 69^{\circ}$$

Y por la ley de los senos :

$$\frac{h'}{Sen \ \beta} = \frac{96}{Sen \ \gamma} \qquad h' = 96 \frac{Sen \ \beta}{Sen \ \gamma} = 96 \frac{Sen \ 61^{\circ}}{Sen \ 69^{\circ}} = 90 \quad \text{mm}$$

Y la altura efectiva sería h = 90 Sen $\alpha = 69$ mm. ≈ 7 cm quedando entonces la sección a revisar por momento flexionante de la manera siguiente :

Cálculo del eje centroidal :

.

$$Y = \frac{(1.9 \times 35)0.95 + (7 \times 0.95)2 \times 5.4}{(1.9 \times 35) + (7 \times 0.95)2} = \frac{134.995}{79.8} = 1.69 \text{ cm}.$$

Inercia centroidal de atiesadores $I_x = \frac{0.95(7)^3}{12} = 27$ cm⁴

$$Ad^2$$
 de atiesadores $Ad^2 = (7 \times 0.95)(3.71)^2 = 91.5$ cm⁴ (c/u)

Inercia centroidal de placa base $I_x = \frac{35(1.9)^3}{12} = 20$ cm⁴

$$Ad^2$$
 de la placa base $Ad^2 = (1.9 \times 35)(0.74)^2 = 36.4$ cm⁴

Inercia total de la placa (en el sentido X) :

$$I_x = 56.4 + (2 \times 118.5) = 293.4$$
 cm⁴

Distancia a la fibra donde se decean los esfuerzos (a la placa base) :

$$C_x = 1.69$$
 cm $S_x = \frac{293.4}{1.69} = 173.6$ cm³

Esfuerzo en esa sección :

 $M_{\text{max}} = M_{(\text{unitario})} \times \text{ ancho (ver cálculo del espesor)}$

$$M_{\text{max}} = 4077 \times 35 = 142695 \quad \text{kg} \cdot \text{cm}$$
$$f_b = \frac{142695}{173.6} = 822 \quad \text{kg/cm}^2$$
$$F_b = 0.6F_y = 0.6 \times 2530 = 1520 \quad \text{kg/cm}^2 \quad \rangle \quad 822 \quad \text{kg/cm}^2$$

Por lo tanto nuestro arreglo es correcto, ya que el esfuerzo permisible es mayor que el actuante. El cálculo de la longitud de anclaje y detallado de las anclas, debido a que resultarón del mismo diámetro a las del problema anterior. sería el mismo, y por lo tanto el detalle de la placa sería el siguiente

CAPITULO 7

....

.

.

.

.

-

-

•

.

i

-

7. CONEXIONES

En los capítulos anteriores se ha estudiado la manera de diseñar a los distintos elementos de una estructura de manera aislada, sin embargo, para que estos elementos cumplan con su función, es necesario que sean unidos de manera adecuada. Por otro lado, si un elemento es de dimensiones tan grandes que impidan su transporte en una sola pieza, se debe transportar en varias secciones, diseñando los empalmes de campo necesarios, estos empalmes deben ser el menor número posible para no encarecer a la estructura, ya que las conexiones efectuadas en campo resultarán más costosas.

En éste capitulo se estudiarán las conexiones efectuadas con tornillos y soldadura, por ser éstos los más usados en la actualidad, de hecho, muchas veces se usan de manera combinada, con una fabricación en taller por medio de soldadura y usando tornillos de alta resistencia en las conexiones de campo, de ésta manera se aprovechan las ventajas de ambos, ya que la soldadura se realiza en taller, bajo condiciones controladas, lo cual proporciona soldaduras de buena calidad, a un costo económico. Los tornillos de alta resistencia dan la ventaja de un ensamble rápido en campo.

7.1.- CONEXIONES ATORNILLADAS.

Las características principales de los tornillos y el diseño de conexiones a cortante simple se vio en el Capitulo 2(Diseño de miembros a tensión), por lo tanto, se tratarán aquí sólo las conexiones atornilladas sujetas a carga excéntrica.

7.1.a).- Tornillos sujetos solo a fuerza cortante.

Cuando la excentricidad de la carga sólo genera fuerzas de cortante en los tornillos, sin variar su tensión inicial, se hace la hipótesis de sustituir la carga excéntrica por una fuerza y un momento equivalente, actuando en el centroide del grupo de tornillos, de ésta forma el problema consiste solamente en determinar la fuerza cortante resultante máxima en el tornillo más crítico, el cual se puede localizar fácilmente, por simple observación, la figura siguiente nos auxiliará a comprender el procedimiento anterior.

En la figura a) se muestra un arreglo de 8 tornillos que conectan a una placa que sirve como ménsula para soportar una carga "P" con una excentricidad "e", con respecto al centroide del arreglo de tornillos propuesto, éste sistema se puede sustituir por una carga "P" y un momento M = Pe aplicados en el centroide del arreglo, como se observa en la figura b).

De ésta forma podemos separar los efectos de la fuerza cortante en cada tornillo, para la carga "P", en los efectos de un cortante directo, $V_p = \frac{P}{N}$, siendo "N" el número de tornillos, y los del momento torsionante, este efecto es mayor en los tornillos más alejados del centroide; de ellos los tornillos en las posiciones A y B suman sus efectos con el producido por la carga "P" y serían los más críticos en éste caso. Las componentes "V_{MX}" y "V_{MY}", se pueden calcular con las expresiones :

$$V_{Mx} = \frac{Mx}{\Sigma r_1^2}$$
 y $V_{My} = \frac{Mx}{\Sigma r_1^2}$

En donde :

"y" y "x" son las coordenadas del tornillo más crítico.

 Σr_i^2 sumatoria de las distancias de cada tornillo al centroide, elevadas al cuadrado, las cuales se pueden poner en función de sus coordenadas, quedando :

$$\Sigma r_i^2 = \Sigma x_i^2 + \Sigma y_i^2$$

A las componentes " V_{MX} " y " V_{MY} ", se les sumará el efecto del cortante directo producido por "P", pudiéndose determinar finalmente la fuerza cortante actuante en el tornillo crítico por medio de la expressión :

$$R = \sqrt{V_{Mx}^{2} + (V_{My} + V_{p})^{2}}$$

V se selecciona el tornillo que cubra ésta resistencia, ya que para el análisis sólo se requiere proponer el arreglo de tornillos, y no su diámetro. En caso de que "P" se aplique con alguna inclinación, se descompone en sus proyecciones " V_{px} " y " V_{py} ", sumándose a sus componentes respectivas para calcular la resultante descrita anteriormente.

Para el cálculo de la placa se debe considerar el momento flexionante en el eje Z-7 (primera línea de tornillos), y comprobar que los esfuerzos no rebasen los permisibles de $0.6F_y$ en el área total y $0.5F_u$ en el área neta, adicionalmente se deben cumplir los límites siguientes en sus dimensiones "a", "b" y "t".

EJEMPLO 7.1.

Calcular la placa y tornillos (A-325, con la cuerda dentro de la zona de corte), necesarios para la ménsula de la figura anterior, si P=15 Ton. y e=30 cm, las separaciones de los tornillos se dan en la figura y son los típicos para éste tipo de conexiones, tomar b=35 cm.

Elementos mecánicos aplicados en el centroide del arreglo de tornillos :

$$P = 15000 \text{ kg}.$$

$$M = P$$
, $e = 15000 \times 30 = 450000 \text{ kg.cm}$

N = 12 (número de tornillos)

Cortante directo por tornillo :

 $V_p = \frac{15000}{12} = 1250$ kg.

 $\Sigma r_i^2 = \Sigma x_i^2 + \Sigma y_i^2$

Cálculo de :

$$\Sigma x_i^2 = 12(7)^2 = 588 \text{ cm}^2$$

$$\Sigma y_i^2 = 4 |(20)^2 + (12)^2 + (4)^2| = 2240 \text{ cm}^2$$

$$\Sigma r_i^2 = 588 + 2240 = 2828 \text{ cm}^2$$

Componente en "x" del cortante generado por el momento :

$$V_{Mx} = \frac{My}{\Sigma r_i^2} = \frac{450000 \times 20}{2828} = 3182$$
 kg

Componente en "y" del cortante generado por el momento :

$$V_{My} = \frac{Mx}{\Sigma r_i^2} = \frac{450000 \times 7}{2828} = 1114$$
 kg

En donde x = 20 cm, y = 7 cm, son las coordenadas del tornillo más esforzado, (superior derecho) del arreglo, graticamente estos resultados se verian de la siguiente manera :

De tal suerte que la resultante, que es la fuerza actuante en el tornillo más crítico, se calcularía como sigue :

$$R = \sqrt{(3182)^2 + (1250 + 1114)^2} = 3964 \text{ kg}$$

Si queremos calcular el área que deberá tener el tornillo, para resistir ésta fuerza, deberemos dividirla entre el esfuerzo permisible del material, en éste caso $F_v=1480 \text{ kg/cm}^2$ (para tornillos A-325 trabajando al aplastamiento con la cuerda dentro del plano de corte), quedando :

$$A_{req} = \frac{3964}{1480} = 2.68 \text{ cm}^2$$

. El tornillo de :

$$\sigma = 19.0 (3/4")$$
 A = 2.85 cm² > 2.68 cm² bien.

Se colocarán 12 tornillos $\theta = 19.0$ mm en la conexión.

-Cálculo del espesor de la placa :

Momento en la sección crítica (primera línea de tornillos).

$$M = P (e-7)$$
 $M = 15000 (30-7.0) = 345000 \text{ kg} \cdot \text{cm}$

Esfuerzos permisibles a flexión en la placa.

$$F_b = 0.6 F_y = 0.6 x 2530 = 1520 \text{ kg/cm}^2$$
 (en el área total)
 $F_b = 0.5 F_u = 0.5 x 4080 = 2040 \text{ kg/cm}^2$ (en el área neta)

Por lo tanto, los módulos de sección necesarios para cumplir con éstos esfuerzos, serían :

$$S = \frac{345000}{1520} = 227 \text{ cm}^3$$
 (en el érea total)

$$S = \frac{345000}{2040} = 169 \text{ cm}^3$$
 (en el área neta)

Para el área total $I = \frac{th^3}{12}$ $S = \frac{I}{c} = \frac{\frac{th^3}{12}}{\frac{h}{2}} = \frac{2th^3}{12h} = \frac{th^2}{6}$

como h = 40 + 2(4) = 48 cm.

$$t = \frac{227 \times 6}{(48)^2} = 0.59$$
 cm

Con t = 6.3 mm ($1/4^{\circ}$), se cubre éste requisito, verificando las relaciones de aspecto de la placa :

 $\frac{b}{a} = \frac{350}{480} = 0.73$ 0.5 $\langle 0.73 \langle 1.0 \rangle$ Bien.

Lo cual se cubre con placa de 9.5 mm (3/8")

$$\phi = 19.05 + 3.2 = 22.2 \text{ mm}$$

Y el área del agujero sería :

$$A_{agro} = 2.22 \times 0.95 = 2.1 \text{ cm}^2$$

Y sus distancias al eje neutro serían :

$$d_1 = 4 \text{ cm}$$
 $d_2 = 12 \text{ cm}$ $d_3 = 20 \text{ cm}$

Calculando el módulo de sección del área neta :

20 + = - X

Momento de inercia de la sección total:

$$l_x = \frac{0.95(48)^3}{12} = 8755$$
 cm⁴

Momento de inercia de los agujeros (Ad²)

$$I_{x(-)} = 2 \left| 2.1(4^2 + 12^2 + 20^2) \right| = 2352 \text{ cm}^4$$

Momento de inercia de la sección neta (de la sección descontando los agujeros)

$$I_{\rm r} = 8755 - 2352 = 6403 \ {\rm cm}^4$$

Distancia a la fibra más alejada $C_x = \frac{48}{2} = 24$ cm Módulo de sección del área neta $S_x = \frac{6403}{24} = 267$ cm³ > 169 cm³

Módulo de sección del área total $S_x = \frac{8755}{24} = 365 \text{ cm}^3$ \rangle 227 cm³

b) TORNILLOS SUJETOS A CORTANTE Y TENSION

7.1b) Tornillos sujetos a cortante y tensión.

Los efectos de cortante y tensión actuando de manera simultánea sobre los tornillos. ocurren frecuentemente en conexiones de elementos diagonales y ménsulas (ejemplos 7.2 y 7.3).

Las especificaciones del A.I.S.C. en su sección J3 proporcionan las siguientes ecuaciones de interacción, que cubren estos casos para los distintos tipos de tornillos usados comúnmente en conexiones por aplastamiento.

TIPO DE TORNILLO	ROSCA DENTRO DEL	ROSCA FUERA DEL
	PLANO DE CORTE:	PLANO DE CORTE.
Barras roscadas y tornillos A-	$0.43F_{u} - 1.8f_{v} \le 0.33F_{u}$	$0.43F_{u} - 1.4f_{v} \le 0.33F_{u}$
449 de más de 38 mm de		
diámetro		
Tomillos A -325	$\sqrt{(3090)^2 - 4.39 f_{\nu}^2}$	$\sqrt{(3090)^2 - 2.15 f_v^2}$
Tornillos A = 490	$\sqrt{(3800)^2 - 3.75 f_y^2}$	$\sqrt{(3800)^2 - 1.82 f_v^2}$
Tornillos A - 307	$830 - 1.8 f_{y} \le 1410$	

TABLA 7.1

Donde f_v es el esfuerzo cortante actuante en el tornillo, sin exceder su valor permisible dado en el Capitulo 2. Para tornillos A-325 y A-490 trabajando a fricción, éste cortante permisible debe multiplicarse por el factor de reducción $(1 - f_t A_b / T_b)$, en el que f_t es el esfuerzo promedio de tensión debido a una carga directa aplicada en todos los tornillos de la conexión, y T_b es la carga de tensión inicial dada en la tabla siguiente, en donde los valores corresponden aproximadamente al 70% de la resistencia mínima a tensión especificada para el tornillo.

DIAMETRO DEL TORNILLO (MM).	TORNILLOS A-325	TORNILLOS A-490
TE: 137 A	5400	6800
16	8600	10900
19	12700	15900
22	17700	22200
25	23100	29000
29	25400	36300
32	32200	47300
35	38600	54900
38	467()()	67100

TABLA 7.2

La información anterior se empleará en los ejemplos siguientes.

: ·...*>

- 1
EJEMPLO 7.2.

Revisar, la siguiente conexión usando tornillos de 19.0 mm A-325 trabajando a). al aplastamiento \hat{y} b) a la fricción.

a). Conexión trabajando al aplastamiento.

.....

Como el eje de la diagonal coincide con el centro de gravedad del arreglo de tornillos, los etecuos de tensión y cortante sobre la conexión serían :

 $T = 54 \ Cos \ 30^\circ = 46.8 \ Ton$ $V = 54 \ Sen \ 30^\circ = 27 \ Ton.$

La fuerza cortante y de tensión que será resistida por cada tornillo será :

$$T_i = \frac{46800}{8} = 5850 \text{ kg}$$

 $V_i = \frac{27000}{8} = 3375 \text{ kg}$

Y los esfuerzos generacios en los tornillos $\phi = 19.0$ con área A = 2.85 cm² serán :

$$f_t = \frac{5850}{2.85} = 2053 \text{ kg/cm}^2$$
$$f_v = \frac{3375}{2.85} = 1184 \text{ kg/cm}^2$$

Sustituyendo el valor del esfuerzo cortante actuante en la ecuación de interacción de los tornillos A-325, (suponiendo que la cuerda de los tornillos, no coincide con el área de corte) quedaría :

$$F_t = \sqrt{(3090)^2 - 2.15(1184)^2} = 2556 \text{ kg/cm}^2 \Rightarrow 2053 \text{ kg/cm}^2$$

:. Se aceptan 8 tornillos ø = 19.0 mm A-325 para la conexión.

b). Conexión trabajando a la fricción.

Usando tornillos o = 19.0 mm A-325 :

$$A_b=2.85 \text{ cm}^2$$
 $f_t=2053 \text{ kg/cm}^2$ $f_v=1184 \text{ kg/cm}^2$ $T_b=12700 \text{ kg.(ver tabla)}$

Calculando el factor de reducción al cortante :

Factor =
$$\left|1 - \frac{2053 \times 2.85}{12700}\right| = 0.54$$

Para los tornillos A-325, con agujeros estándar, el cortante permisible es (ver tabla en Capitulo 2).

$$F_{\rm V} = 1200 \text{ kg/cm}^2$$

Y el cortante permisible reducido sería :

$$F_{\nu} = 0.54 \times 1200 = 647 \text{ kg/cm}^2 \langle 1184 \text{ kg/cm}^2 \text{ No pasa.}$$

Proponiendo tornillos o = 22.2 mm $A_b = 3.87 \text{ cm}^2$

$$f_t = \frac{5850}{3.87} = 1512 \text{ kg/cm}^2$$

 $T_{\rm b} = 17700 \ \rm kg.$

Factor =
$$\left|1 - \frac{1512 \times 3.87}{17700}\right| = 0.67$$

Cortante permisible reducido : $F_v = 1200 \ge 0.67 = 803 \text{ kg/cm}^2$.

$$f_v = \frac{3375}{3.85} = 876 \text{ kg/cm}^2$$
 > 803 kg/cm² No pasa.

Proponiendo tornillos $\sigma = 25.4 \text{ mm}$ $A_b = 5.07 \text{ cm}^2$.

Factor = |1|

$$f_t = \frac{5850}{5.07} = 1154 \text{ kg/cm}^2$$
$$T_b = 23100 \text{ kg.}$$
$$-\frac{1154 \times 5.07}{23100} = 0.75$$

ς,

Cortante permisible reducido : $F_v = 1200 \ge 0.75 = 896 \text{ kg/cm}^2$.

$$f_v = \frac{3375}{5.07} = 665 \text{ kg/cm}^2 \langle 896 \text{ kg/cm}^2 \text{ Bien.}$$

 \therefore Se emplearán 8 tornillos $\sigma = 25.4$ mm trabajando a la fricción, la conexión del ángulo a la ménsula y la revisión del bloque de cortante se vio en el Capitulo 2 y por eso se omite aquí.

Otro caso en el que se generan fuerzas de tensión y cortante simultáneamente en los tornillos, son las ménsulas del tipo indicado en el ejemplo 7.3 en donde una zona, (la parte superior) de la conexión se encuentra a tensión y otra, (la inferior) se encuentra a compresión. Una forma de solucionar el problema es suponiendo que el eje neutro de la conexión, se ubica abajo del centro de gravedad del grupo de conectores y los torn¹¹los abajo del eje neutro se supene que sóle resisten cortante

EJEMPLO 7.3.

Revisar los tornillos propuestos en la ménsula definida en la figura siguiente, usando tornillos A-325 de $\sigma = 22.2$ mm con sus roscas fuera del plano de corte, trabajando al aplastamiento.

Suponiendo que el eje neutro queda a 1/6 de la altura de la ménsula (8 cm) y considerando un ancho efectivo de $8t_f$ (19 cm), tendríamos :

Cortante por tornillo :

 $V_i = \frac{36000}{12} = 3000$ kg.

Esfuerzo cortante por tornillo : $f_{\nu} = \frac{3000}{3.87} = 775 \text{ kg/cm}^2$

Cortante permisible para los tornillos :

$$F_v = 2100 \text{ kg/cm}^2$$
 > 775 kg/cm² Bien.

Localización del eje neutro (con las suposiciones anteriores).

(19 x 8) (8/2) = 608 cm^3 (momento de la zona de aplastamiento)

Ubicación del centroide de los 10 tornillos trabajando a tensión, con respecto al eje neutro supuesto :

$$\bar{y} = 4 + 2 \times 8 = 20$$
 cm.

Area total de tornillos a tensión : $10 \times 3.87 = 38.7 \text{ cm}^2$

Momento 38.7 x $20 = 774 \neq 608$ \therefore No coincide.

-Incrementando la posición del eje neutro a 9 cm de la base, tendríamos :

Area y momento de aplastamiento : $(19 \times 9) \left| \frac{9}{2} \right| = 770 \text{ cm}^3$ Area y momento de los tornillos $38.7(19) = 735 \text{ cm}^3$ La diferencia entre estos resultados es menor al 5% (35/735), por lo que se considera adecuada.

Momento de inercia y módulo de sección del arreglo.

Para los tornillos a tensión $I_x = \Sigma A_b d^2 = A_b \Sigma d_i^2$

$$\Sigma d_i^2 = 2 \left| (3)^2 + (11)^2 + (19)^2 + (27)^2 + (35)^2 \right| = 4890 \text{ cm}^2$$

$$A_b \Sigma d_i^2 = 3.87 \times 4890 = 18924 \text{ cm}^4$$

Momento de inercia de la zona a compresión : $I_o + Ad^2$ $I_o = \frac{19 \times 9^3}{12} = 1154 \text{ cm}^4$ $Ad^2 = (19 \times 9) \left| \frac{9}{2} \right|^2 = 3463 \text{ cm}^4$ $I_o + Ad^2 = 1154 + 3463 = 4617 \text{ cm}^4$

Inercia total = $4617 + 18924 = 23541 \text{ cm}^4$

$$S_r = \frac{23541}{35} = 672.6 \text{ cm}^3$$

$$S_c = \frac{23541}{9} = 2615.7 \text{ cm}^3$$

Momento con respecto a la conexión = $36000 \times 45 = 1620000 \text{ kg}$. cm.

Esfuerzo de tensión =
$$\frac{1620000}{672.6}$$
 = 2409 kg/cm²

Esfuerzo permisible a tensión de acuerdo a la fórmula de interacción correspondiente :

$$F_t = \sqrt{(3090)^2 - 2.15(775)^2} = 2873 \text{ kg/cm}^2$$
 > 2409 kg/cm² Bien.

- Verificación del aplastamiento.

Esfuerzo máximo de aplastamiento $=\frac{1620000}{2615.7}=619$ kg/cm² Esfuerzo permisible :

$$F_p = 0.9F_y = 2275 \text{ kg/cm}^2 \Rightarrow 619 \text{ kg/cm}^2$$
 Bien.

... Se dejará el arreglo de tornillos propuesto.

7.2. CONEXIONES SOLDADAS

Las conexiones soldadas se realizan normalmente por el proceso llamado de "arco eléctrico con electrodo protegido", cuando se realizan de manera manual y por el proceso de "arco eléctrico con electrodo sumergido", cuando se realizan de manera automática en taller. En ambos procesos el calor que se genera por el arco eléctrico, funde simultáneamente el electrodo con el que se realiza, y el acero adyacente a las partes que se unen.

En la figura siguiente se ilustra el proceso de arco eléctrico con electrodo protegido, y como se observa, el recubrimiento del electrodo forma un escudo gaseoso que protege contra la atmósfera al metal de aportación. En el proceso de arco sumergido, el arco eléctrico se genera bajo la protección del fundente pulverizado, que se deposita automáticamente sobre el electrodo desnudo que se presenta en forma de carrete. El recubrimiento una vez fundido forma una "costra" protectora, llamada escona, que evita el enfriamiento rápido del metal de aportación, esta escoria debe retirarse de las soldaduras, una vez enfriadas, antes de aplicar el primario y pintura protectora.

Las principales ventajas que ofrecen las conexiones soldadas son las siguientes :

l'.- Como la soldadura proporciona la transferencia más directa de los elementos mecánicos de un miembro a otro, se obtienen detalles más sencillos, eficientes y de menor peso que los atornillados.

2.- Los costos de fabricación se reducen debido a que se manejan menos componentes, y los trabajos de perforado, punzonado y rimado, se eliminan.

3.- Hay un ahorro en peso de los elementos a tensión, ya que no se reduce el área por la presencia de agujeros.

4.- La soldadura es ideal para las uniones de los tanques de almacenamiento de líquidos o barcos, ya que se sellan las juntas.

5.- La soldadura mejora la apariencia arquitectónica de las estructuras y reduce las concentraciones de esfuerzos que se generan por la presencia de agujeros.

6.- Permite las conexiones simples en miembros con superficies curvas o con pendiente, como cuando se unen elementos tubulares.

7.- Se simplifica la reparación o reforzamiento de las estructuras existentes.

Los dos tipos más comunes de soldadura se conocen como de chaflán o filete y de preparación, las primeras se utilizan para conectar dos placas o elementos que se traslapan o forman una posición de "T". Las soldaduras de preparación, se usan comúnmente en conexiones a tope y algunas veces requieren de un biselado o preparación de sus bordes antes de la colocación de la soldadura. Cuando la soldadura abarca al espesor completo de la placa, para lo cual se requiere algunas veces soldar por ambos lados, a colocar placas de respaldo, se dice que alcanzan la "penetración completa"; en caso contrario, se les e llama de penetración parcial. En la figura siguiente se ilustran estos casos de soldaduras.

Las soldaduras de filete son las que se realizan con mayor facilidad, y por ésta razón, son también las más utilizadas, las capacidades de los distintos espesores y tipos de electrodos se dierón en una tabla de la Unidad 2, se prefiere utilizar los espesores do seldadura de 5, 6 y 8 mm, porque se pueden realizar con una sola pasada del electrodo, debe considerarse que la cantidad de metal de aportación se incrementa con el cuadro del tamaño de la soldadura, por lo que los incrementos en el tamaño y costo de la soldadura crecen cnormemente cuando se uprementa el tamaño de la misma.

Debido a que una soldadura pequeña en el borde de una placa gruesa se enfría con mucha rapidez produciendo fragilidad y agrietamientos, cuando el material de aportación se contrae al enfriarse mientras la placa gruesa se lo impide, los tamaños mínimos que se permiten en las soldaduras de filete en función de la placa más gruesa de la unión se dan en la tabla siguiente :

ESPESOR MAS GRUESO DE LAS PARTE UNIDAS EN MM.	ESPESOR MINIMO DE LA SOLDADURA.
Hasta 6 mm inclusive	3 mm
Más de 6 a 13 mm	5 mm
Más de 13 a 19 mm	6 mm
Más de 19 a 38 mm	8 mm
Más de 38 a 57 mm	10 mm
Más de 57 a 152 mm	13 mm
Más de 152 mm	16 mm ·

TABLA 7.3

También se limita el tamaño máximo de la soldadura de filete a no más del espesor de la placa menos 1.6.mm, cuando ésta excede de 6 mm, y al espesor de la placa, cuando es menor de 6 mm.

JUNTAS SOLDADAS A TOPE CON PREPARACION

Cuando se utiliza el proceso de soldadura eléctrica manual con electrodo protegido, la garganta efectiva es igual a la dimensión t de la figura siguiente. Cuando se utiliza el proceso de electrodo sumergido, la cantidad mayor de calor que se genera, produce una penetración más profunda y se permite una dimensión de garganta efectiva mayor, llamada Te, igual al tamaño de la soldadura ω , si $\omega \le 10$ mm, y Te se toma igual a $\omega + 3$ mm cuando $\omega > 10$ mm, esta situación se representa en la figura siguiente.

Los principales símbolos que se utilizan en las soldaduras son los siguientes:

FILETE POR UN SOLO LADO

<u>Soldadura deseada</u>

B)

634

<u>Simbolo</u>

黔 ____

130

....

BISEL DOBLE EN UNA SOLA PLACA

DOBLE BISEL CON ANGULO DISTINTO

DOBLE BISEL EN AMBAS PLACAS

SOLDADURA DE FILETE A TODO ALREDEDOR

Soldadura a todo alrededor hecha en el talter. ----

EJEMPLO 7.4:

En la figura se muestra una ménsula cargada excentricamente. Calcular el espesor de soldadura de filete requerida.

Notas : Material ASTM A-36 Electrodo E-70XX P = 9100 kg e = 30 cm. L = 38 cm.Momento sobre la soldadura P·e $M = 9100 \text{ x } 30 = 273000 \text{ kg} \cdot \text{ cm}.$

a). Determinar el modulo de sección del grupo de soldadura

$$S = \frac{I}{c} = \frac{(L^3 / 12)}{(L / 2)} = \frac{L^2}{6}$$

La fuerza cortante máxima por centímetro de longitud de soldadura debido al momento es :

$$f_m = M/S = \frac{3M}{L^2} = \frac{3 \times 9100 \times 30}{38^2} = 1134$$
 kg / cm

Dado que tenemos 2 líneas de soldadura, el esfuerzo a soportar por cada línea será:

$$f_m = 1134/2 = 567$$
 kg / cm

b). El cortante debido a la carga directa es calculada suponiendo que la línea de soldadura a cada lado de la placa toma la mitad de la carga total.

 $f_v = P/2L = 9100/(2x38) = 120 \text{ kg/cm}$

c). La resultante de las dos fuerzas es

$$f_R = \sqrt{f_m^2 + f_v^2} = \sqrt{567^2 + 120^2} = 580 \text{ kg/cm}$$

Para soldadura E-70XX con espesor de t = 6 mm la resistencia será 625 kg/cm.

R = 625 kg/cm > 580 kg/cm \therefore se colocará soldadura de filete de t = 6 mm.

EJEMPLO 7.5 :

Determinar el tamaño de la soldadura de filete de la ménsula del ejemplo 7.1. Los electrodos a emplearse serán E-70XX.

Obtención del centroide del cordón de soldadura propuesto :

$$\overline{x} = \frac{\sum M_c}{L} = \frac{[20(10)]2}{20x2 + 48} = 4.55$$
 cm

Calculo del momento torsionante:

Brazo de palanca = (30+11-2-4.55) = 34.45 cm

$$M_T = 15000 \text{ x } 34.45 = 516750 \text{ kg} \cdot \text{cm}.$$

Longitud total de soldadura :

$$I_x = \left[20(24)^2 \right] 2 + \frac{(48)^3}{12} = 32256 \text{ cm}^3$$

$$I_y = \left| \frac{(20)^3}{12} + 20(5.45)^2 \right| 2 + 48(4.55)^2 = 3515 \text{ cm}^3$$

 $\mathbf{J} = \mathbf{I}_{\mathbf{X}} + \mathbf{I}_{\mathbf{V}}$

Los puntos críticos son A y B; en la figura (b) se muestran las fuerzas por unidad de longitud en el primero de ellos.

$$f_1 = \frac{T}{L} = \frac{15000}{88} = 170 \quad \text{kg/cm}$$

$$f_2 = \frac{M_T}{J} x = \frac{516750}{35771} (15.45) = 223 \quad \text{kg/cm}$$

$$f_3 = \frac{M_T}{J} y = \frac{516750}{35771} (24) = 347 \quad \text{kg/cm}$$

$$f_{\text{max}} = \sqrt{(170 + 223)^2 + 347^2} = 524 \quad \text{kg/cm}$$

De la tabla de espesores de soldadu/a obtenemos que para el espesor t = 6mn con electrodo E-70XX tenemos una capacidad de 625 kg/cm.

espeser minimo t = 6 mm

espesor máximo t = 12.7 - 1.6 = 11.1 mm

: Se acepta la soldadura, quedando el croquis de la manera siguiente :

EJEMPLO 7.6 :

Diseñar las soldaduras de filete necesarias para la junta traslapada mostrada en la figura, considerando que se emplearán electrodos E-70XX. El diseño debe realizarse para desarrollar la capacidad total de las placas mostradas.

Sabiendo que el esfuerzo a tension permisible es $F_t = 1520 \text{ kg/cm}^2$

La tensión máxima que soporta la placa es de -

 $T = A F_t = (8x1.27)1520 = 15443 \text{ kg}$

Cálculo del espesor de la soldadura: teniendo un cordón de L = $8x^2 = 16$ cm espesor requerido $t = \frac{T}{L} = \frac{15443}{16} = 965$ kg / cm

De la tabla observamos que el espesor que se aproxima a esa capacidad es :

t = 10 mm con una capacidad de 1040 kg/cm > 965 kg/cm

verificando espesores mínimos y máximos de soldadura, tenemos :

Para placa de 12.7 mm

 $t_{min} = 5 \text{ mm} < 10 \text{ mm}.$

 $t_{max} = 12.7 - 1.6 = 11 \text{ mm} > 10 \text{ mm}$

: se acepta la soldadura.

ANALISIS Y DISEÑO DE

CONEXIONES

CAPITULO 8.-

ANALISIS Y DISEÑO DE CONEXIONES TRABE COLUMNA

CONEXIONES VIGA-COLUMNA EN MARCOS RIGIDOS DE EDIFICIOS

<u>INTRODUCCION</u>: Las hipótesis relativas al comportamiento de las conexiones constituyen uno de los aspectos más importantes del análisis estructural.

Las conexiones transmiten los momentos flexionantes, fuerzas cortantes y fuerzas normales entre vigas y columnas, con lo que se logra que todos los elementos de la estructura trabaien en conjunto.

El análisis de los marcos rígidos se basa en la suposición de que hay continuidad completa en las inntas entre vigas y columnas las que transmiten los elementos mecánicos íntegros, sin desplazamientos lineales o angulares relativos entre los extremos de las barras que concurren en cada nudo; para que el comportamiento de la estructura real corresponda al supuesto, no basta con analizar y diseñar vigas y columnas con gran exactitud, sino se requiere también que las uniones entre ellas se diseñen y construyan de manera que se satisfaga esa suposición.

Hasta hace pocos años las conexiones se trataban, en general, como si no tuviesen dimensiones, como si fuesen el punto de intersección de los ejes de las barras que concurren en ellas; si se consideraban las dimensiones, se suponía que eran indeformables. La realidad es otra: las conexiones son elementos estructurales deformables de dimensiones finitas; sus deformaciones, sobre todo las producidas por las fuerzas cortantes en el tablero limitado por los bordes interiores de los patines de vigas y columnas, pueden influir de manera significativa en la respuesta bajo carga de la estructura, lo que obliga a proporcionarles una rigidez suficiente para que las deformaciones no afecten el comportamiento de la estructura, o a tenerlas en cuenta en el análisis cuando sean significativas.

El comportamiento de los marcos rígidos depende en buena medida del de sus juntas; si su rigidez es insuficiente pueden permitir rotaciones elásticas y comportarse como uniones semirígidas, lo que hace que los momentos en otras zonas de la estructura sean mayores que los determinados en el análisis (por ejemplo, aumentan los momentos positivos que producen las cargas verticales en la parte central de las vigas); si su resistencia es baja, pueden ser incapaces de resistir las solicitaciones que obran sobre ellas, o de alcanzar y mantener, durante rotaciones importantes, los momentos necesarios para que se forme el mecanismo de colapso, lo que ocasiona una disminución de la resistencia del marco.

Como el diseño correcto de un marco rígido requiere un conocimiento completo del comportamiento de sus conexiones, en los intervalos elástico e inelástico, se han realizado muchos estudios, analíticos y experimentales, para determinarlo; la mayor parte de ellos, sobre todo los recientes se refiere a juntas soldadas, con tornillos de alta resistencia, o con una combinación de ambos.

Buena parte de los estudios se ha encaminado a conocer el comportamiento bajo carga estática, pero en los últimos años se han investigado también las conexiones cargadas cíclicamente, para obtener métodos de diseño aplicables a marcos rígidos de edificios construidos en zonas sísmicas.

Las cuatro conexiones viga-columna que se emplean mas comúnmente en marcos de edificios se muestran en la Fig. 8.1; las dos primeras corresponden al nivel superior y las otras dos a uno intermedio; en cada caso se ha dibujado una columna extrema y una intermedia.

Como es usual en estructuras reales. la columna pasa a través de la junta, y las vigas se unen a sus patines.*

Fig 8.1 Conexiones viga-columna de marcos rígidos

* Este no es un requisito indispensable; ya que puede haber ocasiones en que convenga que los elementos que se interrumpan en la conexión sean las columnas por facilidad de conexión. Sin embargo, es la situación más común, pues se facilita el montaje de la estructura y se obtienen conexiones más resistentes, en vista de que los perfiles usados como columnas suelen ser mayores que las vigas y su alma es, en general, más gruesa. Casi todos los estudios realizados hasta ahora han correspondido a marcos planos, con una o dos vigas unidas a los patines de la columna: sin embargo, en estructuras reales, hay casi siempre tres o cuatro vigas en cada conexión, pues en cada columna se cruzan dos marcos: las vigas llegan a uno o a los dos patines y a uno o ambos lados del alma.

Cuando la columna pasa a través de la junta, el diseño de la conexión consiste en:

- 1.- Dimensionamiento de los medios de unión entre trabes y columna, necesarios para transmitir a esta los elementos mecánicos de las secciones extremas de aquellas, utilizando soldadura, remaches* o tornillos de alta resistencia. En juntas soldadas la unión puede ser directa o por medio de placas en los patines, ángulos o placas en el alma, o ménsulas; en juntas atornilladas siempre se utilizan placas, ángulos u otros elementos de unión (tés, por ejemplo).
- 2.- Revisión de la columna para determinar si tiene resistencia y rigidez adecuadas a fin de soportar las solicitaciones que recibe de las vigas, al mismo tiempo que actúa sobre ella la compresión que proviene de los niveles superiores.
- 3.- Diseño, en su caso, de los refuerzos necesarios: atiesadores entre los patines-de la columna, placas adosadas o paralelas al alma.

Bajo carga vertical las juntas más críticas suelen ser las laterales (fig. 8.1, a y c), porque los momentos que recibe una columna central de las dos vigas son, en general, de signos contrarios, por lo que tienden a equilibrarse; la situación cambia cuando obran sobre la estructura fuerzas horizontales ocasionadas por viento o sismo.

<u>CARACTERISTICAS DE LAS CONEXIONES</u>: Para que el comportamiento de una junta sea satisfactorio, han de satisfacerse los requisitos siguientes:

<u>RESISTENCIA:</u> Las conexiones deben ser capaces de resistir las acciones que les transmiten los miembros de la estructura que llegan a ellas. En diseño elástico, el límite de utilidad estructural debería ser la aparición del esfuerzo de fluencia en la junta o en el extremo de alguna de las vigas o columnas *. En diseño plástico, el estado limite lo constituye la formación de una articulación plástica necesarias para que la estructura se convierta en un mecanismo.

<u>RIGIDEZ</u>: La rigidez. en el intervalo elástico, de las conexiones viga-columna, debe ser suficiente para que las posiciones relativas de todos los elementos estructurales se conserven fijas bajo cargas de trabajo.

* Los remaches casi no se usan en estructuras modernas; no se trataran aquí, aunque su diseño s similar al de los tornillos y debe considerarse cuando se revisan edificaciones antiguas. **<u>CAPACIDAD DE ROTACION</u>**: Las conexiones deben admitir rotaciones inelásticas importantes conservando la resistencia a la flexión correspondiente a la formación, en ellas, de una articulación plástica, o tener resistencia y rigidez suficientes para que se formen articulaciones plásticas en el extremo contiguo a ellas de alguno o algunos de los miembros, y que giren, bajo momento M_p constante. los ángulos necesarios para las redistribuciones de momentos que preceden la formación del mecanismo de colapso.

Esta característica es indispensable para que la estructura alcance la carga de colapso teórica, pues para ello tienen que formarse todas las articulaciones requeridas para el mecanismo sin que disminuya el momento resistente de ninguna, lo que solo sucede cuando su capacidad de rotación bajo momento M_p constante es suficiente.

Las juntas de estructuras diseñadas elásticamente no requieren, en teoría, capacidad de rotación, va que el limite de utilidad estructural corresponde a la aparición del esfuerzo de fluencia en alguna zona crítica: sin embargo, la ductilidad es deseable como ana protección contra fallas frágiles y para obtener un comportamiento aceptable bajo solicitaciones sísmicas. (Los esfuerzos evaluados con métodos elásticos aplicados a estructuras de cierta complejidad tienen poco que ver con los que realmente existen en ellas; su utilidad estriba en que permiten comparar el comportamiento previsto de la estructura que se esta diseñando con el de otras ya construidas, diseñadas con los mismos métodos, que se han comportado satisfactoriamente. Las incertidumbres en el calculo de los esfuerzos provienen de dificultadas en la evaluación de las solicitaciones, sobre todo sísmicas, de la complejidad de las estructuras y su interacción con muros, contravientos verticales, sistemas de piso y rampas de escaleras, de la existencia de esfuerzos residuales v concentraciones de esfuerzos, así como de las interacciones suelo estructura que pude ocasionar, entre otros fenómenos, hundimientos diferenciales de los apoyos; por todo esto, las juntas deben diseñarse para que permitan un comportamiento dúctil de las estructuras bajo solicitaciones mayores que las calculadas, pues en caso contrario la falla puede presentarse mucho antes de que se alcance la resistencia máxima teórica. Por las razones expuestas, las juntas de los marcos diseñados elásticamente deben dimensionarse y construirse de manera que posean una capacidad de rotación suficiente).

* El estado de esfuerzos en las conexiones es muy complejo, pues los esfuerzos producidos por los momentos flexionantes, fuerzas normales y fuerzas cortantes que les transmiten las vigas y columnas, ya de por sí complicados y difíciles de evaluar, se superponen con los residuales que hay siempre en los perfiles de acero y con los que ocasiona la soldadura; esto hace que bajo cargas de trabajo (y, seguramente, antes de aplicar esas cargas) haya ya zonas localizadas en estado plástico. La imposibilidad de determinar los esfuerzos reales en condiciones de servicio, y el hecho de que la aparición del esfuerzo de fluencia en algún punto no constituye un estado limite de resistencia, hacen que en la practica actual las conexiones se diseñen con métodos plásticos simplificados, aunque el diseño de la estructura en general se efectúe utilizando esfuerzos permisibles. **ECONOMIA:** La resistencia, rigidez y capacidad de rotación de una junta pueden incrementarse siempre aumentando la cantidad de material utilizada en ella; sin embargo, como una parte importante del costo de fabricación de los marcos rígidos corresponde a las conexiones, estas han de diseñarse de manera que tengan propiedades satisfactorias con el menor incremento posible de material y mano de obra. Además, han de proyectarse para que permitan un montaje sencillo y rápido.

DISEÑO DE CONEXIONES CARGADAS ESTATICAMENTE: De acuerdo a los resultados obtenidos al ensayar conexiones de dos tipos, unas con dos vigas, saldadas a los patines y a los dos lados del alma; las vigas se soldaron directamente a la columna en todos los casos, con penetracion completa en los patines y filetes en las almas, pero las formulas desarrolladas partiendo de los resultados de estas investigaciones pueden utilizarse también cuando las fuerzas nonnales en los patines de las vigas, y las cortantes en el alma, se transmiten por medio de plaças

Con fecha posterior se han estudiado juntas en las que las vigas se unen a las columnas de otras maneras.

En los trece especímenes ensayados en la forma descrita anteriormente se utilizó el mismo perfil para las vigas, pero el tamaño de las columnas se varió, simulando conexiones de los niveles superiores, intermedios e inferiores de un marco alto. Tres especímenes se hicieron con cuatro vigas, conectadas a los patines y al alma de la columna.

Las cargas, que se aplicaron en todos los casos como se muestra en la Fig. 8.2, se incrementaron lentamente hasta la falla, para estudiar el comportamiento de juntas interiores bajo carga estática vertical, en las que los momentos en los extremos de las vigas son sensiblemente iguales y de sentidos contrarios. En todos los especímenes se aplicó una carga axial considerable en la columna, para reproducir las condiciones en que se encuentran las conexiones de edificios reales.

Fig 8.2 Cargas de los especimenes de la ref 8.4

Uno de los problemas principales que trató de resolverse es el de determinar si el alma de la columna requiere algún tipo de refuerzo, o si puede comportarse de manera adecuada por sí sola.

La magnitud de la compresión en la columna influyo poco en el comportamiento de las conexiones; las columnas no mostraron ningún indicio de falla baja cargas 1.65 veces mayores que las de trabajo, ni tampoco cuando al final de cada prueba se aumentaron el doble de las de trabajo, conservando las fuerzas finales en las vigas.

Los tres especimenes de cuatro vigas se comportaron mejor que los correspondientes de dos.

Los ensayes que se han descrito se complementaron con las pruebas de la Fig. 8.3, con las que se estudió el comportamiento de las columnas en las zonas opuestas a los patines de las vigas que están en tensión y en compresión, y la efectividad de atiesadores excéntricos.*

Fig 8.3 Simulación del efecto de los patines de las vigas en la columna

* Los atiesadores de la columna que reciben cuatro vigas suelen ser los patines o las placas de conexión de las trabes que se apoyan en el alma; si el peralte de estas es diferente del de las vigas conectadas a los patines los atiesadores resultan excéntricos, y su efectividad es dudosa. Este es el problema que se trató de aclarar con las pruebas de la Fig. 8.3b. Posteriormente se han hecho estudios adicionales para comprobar si las reglas de diseño deducidas en los ensayes anteriores, siguen siendo aplicables a conexiones con carga vertical simétrica estática cuando en los extremos de las vigas actúan, al mismo tiempo, el momento plástico y una fuerza cortante muy cercana a la que ocasiona la plastificación del alma, así como para saber si pueden utilizarse cuando el alma de la columna, en la zona de la conexión, soporta fuerzas cortantes elevadas, producidas por momentos asimétricos.

Las conexiones suelen estar sometidas a condiciones de carga muy severas, puesto que en los extremos de las vigas los momentos flexionantes son máximos y las fuerzas cortantes elevadas. El diseño ha de hacerse de manera que el comportamiento real se acerque razonablemente al supuesto, lo que implica que los extremos de las vigas desarrollen su momento plástico teórico. y lo mantengan durante rotaciones importantes, al mismo tiempo que obran en ellos las fuerzas cortantes; las columnas, a su vez, deben resistir los elementos mecánicos correspondientes junto con las compresiones que reciben de los niveles superiores

El comportamiento de conexiones en las condiciones mencionadas se ha estudiado ensayando especímienes como el de la Fig. 8.4; las distancias L se escogieron de manera que en la unión entre cada viga y la columna se presenten, al mismo tiempo, el momento plástico de la viga y el 95 por ciento de la fuerza de plastificación del alma por cortante.

Fig 8.4 Conexiones con fuerzas cortantes elevadas en las vigas

En otros ensayes se ha investigado el comportamiento de conexiones con una sola viga, unida a uno de los patines de la columna; en el alma de esta aparecen importantes fuerzas cortantes, en la zona comprendida entre los patines de la viga. Se estudia la deformación por cortante de la junta y su influencia en el comportamiento de la estructura. Estas conexiones aparecen en las columnas extremas de marcos con carga vertical (Fig. 8.1c).*

* Cuando las fuerzas horizontales, de viento o sismo, producen momentos importantes, en todas las conexiones hay fuerzas cortantes significativas; este problema se estudia en los artículos 8.3.2 y 8.4) Una conexión es satisfactoria cuando puede resistir los momentos plásticos de las vigas o viga que llegan a ella, mientras obra sobre la columna la compresión producida por las cargas de la viga y de la parte del edificio que esta encima, y tiene capacidad de rotación suficiente para que se forme una segunda articulación plástica en la zona central de las vigas, sin que disminuya su resistencia. También es satisfactoria cuando su resistencia es adecuada para soportar las acciones que le transmiten las vigas cuando se forman articulaciones plásticas en sus extremos mientras giran los ángulos necesarios para que aparezca la segunda articulación, en el otro extremo o en la zona central.

El segundo comportamiento es el que suele buscarse en las estructuras reales

Para determinar si el comportamiento de una junta es satisfactorio se investigan los puntos siguientes:

- 1.- Resistencia de la región de la columna adyacente a los patines en compresión de las vigas, cuando no se colocan atiesadores horizontales. El alma de la columna puede fallar por flujo plástico excesivo, por pandeo o por aplastamiento.
- 2.- Resistencia de la región de la columna adyacente a los patines en tensión de las vigas, cuando no se colocan atiesadores horizontales. El patín de la columna puede deformarse en exceso, y el alma fallar por flujo plástico.
 - 3.- Aumento de la resistencia de la junta cuando se colocan atiesadores horizontales, o placas adosadas al alma de la columna.
- 4.- Posibilidad de falla de la columna ocasionada por una combinación de esfuerzos normales y cortantes.
- 5.- Efecto de la viga o vigas ligadas al alma de la columna.
- 6.- Resistencia y rigidez de la zona del alma de la columna comprendida entre los patines de las vigas cuando hay una sola viga, cuando los momentos en las dos vigas unidas a los patines de la columna no son iguales, o cuando esos momentos tienen el mismo sentido.
- 7.- Rotación requerida en las conexiones y capacidad de giro de las mismas.

Deben investigarse también los elementos que ligan a las vigas con la columna: soldaduras, tornillos, ángulos ý placas.

Del estudio de los resultados experimentales se concluye que el efecto de la carga axial que actúa en la columna puede, en general, ignorarse, y que se obtienen resultados conservadores tratando las uniones de tres o cuatro vigas como si no existiesen las que llegan al alma, pues estas proporcionan una acción benéfica mayor que lo que la debilitan los esfuerzos triaxiales introducidos en ella. El punto 7 se ha investigado de manera analítica y experimental, y aunque la rotación requerida varía con la geometría de la estructura y las condiciones de carga, se ha calculado una rotación tipo, más grande que la necesaria en la mayoría de los casos: todas las juntas ensayadas admiten rotaciones mayores, bajo momento casi constante. Además, como ya se ha mencionado, si se le da a la junta la resistencia adecuada, las rotaciones necesarias para que se forme el mecanismo de colapso se presentan en los extremos de las vigas, y no en ella.

<u>CONEXIONES CON CARGA ESTATICA SIMETRICA:</u> En la Fig 8.5 se muestran esquemáticamente las solicitaciones existentes en una conexión interior viga-columna con carga vertical simétrica; en la columna no Lay flexión, pues los momentos que le transmiten las vigas se equilibran entre sí.

Fig 8.5 Conexión viga-columna con carga vertical simetrica. Acciones sobre la columna.

En la Fig. 8.5b se ha dibujado el diagrama de cuerpo liebre de la columna, — sustituyendo las vigas por sus efectos; no se incluyen las fuerzas cortantes, que son de importancia secundaria, y los momentos se sustituyen por fuerzas aplicadas por los patines.

En la Fig. 8.6 se muestran las deformaciones de una columna que no tiene atiesadores, exageradas para mayor claridad.

Fig 8.6 Deformaciones de una columna sin atiesadores

Debe investigarse el comportamiento del alma de la columna en las zonas frente a los dos patines de las vigas, en tensión y en compresión, y el de los patines de la columna en la zona en tensión. El alma puede ser critica en cualquiera de las dos zonas, ya que puede fallar por flujo plástico, acompañado o seguido inmediatamente por pandeo en la zona comprimida, o por fractura en la tensión: si el alma es delgada, el pandeo de la zona comprimida puede iniciarse antes de que los esfaerzos lleguen al limite de fluencia.

En la zona en tensión pueden ser críticos los patines de la columna, que se flexionan y contribuyen a la fractura de las soldaduras que los unen con los de las vigas; por su poca rigidez, los extremos se flexionan hacia fuera, siguiendo el desplazamiento de la viga, pero la deformación de la zona central esta restringida por el alma de la columna, y es probable que ahí se inicie una falla de la soldadura cuando se agote su capacidad de deformación y no pueda seguir, sin fracturarse. los desplazamientos de los extremos (Fig. 8.6b).

La zona del aima afectada por las fuerzas concentradas que recibe de los patines de las vigas se extiende al penetrar en la columna; si la ampliación de esta zona es insuficiente para reducir a F_{yc} los esfuerzos en la base de la curva de unión de patines y alma (o sea a la distancia k_c del paño exterior de la columna, Fig. 8.5b). la resistencia del alma es insuficiente. Este efecto debe revisarse frente a los dos patines de la viga, en las regiones en compresión y en tensión. Cuando la columna esta formada por tres placas soldadas la fuerza de tensión puede hacer que falle la soldadura que une patines y alma, además, la distancia k_c se reduce a la suma del grueso del patín y el tamaño de la soldadura. Por todo esto, muchas vèces es necesario aumentar las dimensiones de las soldaduras en la zona de la conexión. Es difícil determinar analíticamente como se distribuyen las fuerzas que recibe la columna, por lo que se suele suponer una distribución lineal, basada en investigaciones experimentales; se obtienen buenos resultados con una pendiente de 2.5:1 desde el punto de contacto hastă la distancia k_c (Fig .8.5b). En diseño elástico se utilizaba una pendiente de 1:1, correspondiente a una distribucion de esfuerzos según rectas a 45° trazadas a partir del punto de aplicación de la carga. Las dos suposiciones están basadas en resultados experimentales; la discrepancia entre ellas se debe probablemente a que los especímenes se cargan hasta el colapso para obtener resultados aplicables a diseño plástico, mientas que en diseño elástico los estudios se suspenden cuando las solicitaciones alcanzan intensidades poco mayores que las de trabajo. Sin embargo, para hacer compatibles sus dos especificaciones, el AISC recomienda ahora la pendiente 2.5:1 también en sus normas para diseño por esfuerzos permisibles.

La suposición anterior implica que la fuerza de cada uno de los patines tiene que ser resistida, a la distancia k_c de la cara exterior de la columna por una porción de alma de longitud $t_v + 5k_c$, donde t_v es el grueso del patín de la viga.

<u>ANALISIS DE LA ZONA COMPRIMIDA DE LA CONEXIÓN:</u> La viga se sustituye por una placa de dimensiones iguales a las de uno de sus patines, que aplica una fuerza de compresión en la columna (Fig 8.7)

Fig 8.7 Zona comprimida de la junta

Si el alma no se pandea prematuramente se obtiene una estimación conservadora de la resistencia. máxima de la región comprimida suponiendo que el esfuerzo en la terminación de la curva de unión es igual a F_{yc} , de manera que la fuerza total conque la columna puede resistir los efectos de la viga es $F_{yc}t_c$ ($t_v + 5k_c$); t_c es el grueso del alma de la columna y f_{yc} el esfuerzo de fluencia del material utilizado en ella.

Si el momento en el extremo de la viga es el plástico resistente, M_p , la fuerza en cada patín es A_pF_{yv} , donde A_p es el área y F_{yv} el esfuerzo de fluencia del patín, de manera que el espesor mínimo necesario en el alma de la columna se obtiene de la igualdad

$$A_{y}F_{yy} = F_{yz}t_{y}(t_{y} + 5k_{z})$$
(3.1)

de donde

$$t_{c} = \frac{A_{p}F_{yv}}{(t_{v} + 5k_{c})F_{yc}} = \frac{C_{1}A_{p}}{t_{v} + 5k_{c}}$$
(8.2)

 C_1 es el cociente F_{yv}/F_{yc} ; se reduce a la unidad si, como es frecuente, se utiliza el mismo acero en las vigas y en la columna.

Si $t_c \ge C_1 A_p/(t_v + 5k_c)$ y el alma no falla por inestabilidad, su resistencia es suficiente; en caso contrario, cuando el grueso es menor que el obtenido con la ec 8.2, debe reforzarse con atiesadores o con placas adosadas o paralelas a ella.

En los extremos de las vigas de los marcos rígidos suele haber, al mismo tiempo, momentos y fuerzas cortantes elevados. Cuando la fuerza cortante se acerca a la que ocasiona la plastificación del alma se anula su capacidad para resistir momento, el que debe ser soportado por completo, y transmitido a la columna, por los patines. En esas condiciones la fuerza máxima en cada patín es aproximadamente igual a M_{pv}/d_v , donde M_{pv} es el momento plástico resistente de la viga y d_v su peralte total; esta fuerza es mayor que la utilizada en las ecs 8.1 y 8.2, A_pF_{yv} . (Se ha demostrado experimentalmente que los patines de las vigas pueden desarrollar por sí solos el momento plástico completo de la sección, gracias al endurecimiento por deformación). La ec (8.2 no debe utilizarse cuando la fuerza cortante en la viga excede del 60 por ciento de la de plastificación del alma; si es mayor que ese limite, el grueso t_c se calcula con la fuerza incrementada M_{pv}/d_v . Se obtiene así

$$\frac{M_{pv}}{d_{v}} = F_{vc}t_{c}(t_{v} + 5k_{c})$$
(8.3)

$$t_{c} = \frac{M_{pv}}{F_{yc}(t_{v} + 5k_{c})d_{v}}$$
(8.4)

Las ecs 8.1 a 8.4 son validas cuando la relación peralte/grueso del alma de la columna es suficientemente pequeña para evitar inestabilidad antes de que el material fluya plásticamente; para ello debe satisfacerse la condición:

$$\frac{h_c}{t_c} \le \frac{1510}{\sqrt{F_{vc}}}$$
(8.5)

 h_c es el peralte libre del alma, medido entre los bordes de las curvas de unión con los patines cuando el perfil es laminado, o entre los extremos de las soldaduras cuando esta hecho con tres placas soldadas.

La ec 8.5 se obtiene considerando el alma como una placa larga comprimida, libremente apoyada; comparándola con resultados experimentales se encuentra que es, en general, conservadora.

La carga critica de una placa rectangular de relación de aspecto a/h_c grande, con apoyos libres, se calcula con la expresión

$$P_{\rm cr} = \frac{4\pi^2}{12(1-\mu^2)} \frac{t_{\rm c} 3}{h_{\rm c}} = \frac{2\,346\,400\,t_{\rm c}^3}{h_{\rm c}}$$
(8.6)

 $t_c y h_c$ deben estar en cm, con lo que P_{cr} se obtiene en kg.

En columnas de acero A36 puede considerarse que los patines no proporcionan ninguna restricción angular en los bordes del alma, a causa del flujo plástico que se presenta en la unión entre ambos; en cambio, si el acero es de alta resistencia no hay flujo plástico antes de que la carga alcance el valor crítico, y los patines proporcionan más restricción al alma, que puede considerarse empotrada en ellos. (En pruebas de laboratorio con acero con limite de fluencia de 7000 kg/cm² se encontró que la resistencia al pandeo del alma era, de acuerdo con la teoría, del orden del doble de la obtenida con la ec 8.6).

Como un resultado de los estudios que han llevado a las observaciones anteriores se ha propuesto que el incremento de rigidez angular en los bordes del alma se tenga en cuenta, para fines de diseño, aumentando la resistencia proporcionalmente a la raíz cuadrada del cociente del esfuerzo de fluencia del acero de la columna y el del acero A36. Así,

$$P_{cr} = \frac{2346400 t_c^3}{h_c} + \frac{\overline{F_{yc}}}{2530} = \frac{46650 t_c^3}{h_c} + \frac{\overline{F_{cy}}}{h_c}$$
(8.7)

Haciendo P_{cr} igual a $A_{pv}F_{yv}$, suponiendo que $F_{yv} = F_{yc}$, y despejando h_c/t_c se obtiene el valor máximo de este cociente para el que la columna puede resistir la compresión correspondiente a la plastificación de los patines de las vigas, sin que el alma se pandee en forma prematura:

$$\frac{h_{z}}{t_{c}} = \frac{46650 t_{z}^{2}}{A_{pv} \sqrt{F_{y}}} = \frac{46650}{(A_{pv}/t_{c}^{2})} \frac{1}{\sqrt{F_{y}}}$$
(8.8)

Tomando $A_{pv}/t_{c^2} = 30.9$ se llega a la ec 8.5, que es conservadora cuando se aplica a los especímenes de los que se dedujo; debe tenerse en cuenta, sin embargo, que puede proporcionar resultados inseguros al utilizarla para diseñar conexiones entre vigas y columnas con otras características geométricas o hechas con aceros de limite de fluencia diferente.

El coeficiente semirracional de la ec 8.7, 46650, se ha disminuido a 34400, valor que representa un limite inferior de todos los resultados experimentales obtenidos hasta ahora; se llega así a la ec 8.9, que proporciona la carga concentrada máxima que resiste la columna sin que el alma se pandee.

$$P_{\rm cr} = \frac{34\,400\,t_{\rm c}^3\,\sqrt{F_{\rm yc}}}{h_{\rm c}}$$
(8.9)

Con t_c y h_c en cm y F_{vc} en kg/cm², P_{cr} se obtiene en kg.

Si el grueso t_c del alma de la columna es igual o mayor que el obtenido con la ec 8.2 o con la 8.4 y se satisface, además, la ec 8.5 (o, aunque no se cumpla ésta, la fuerza que aplica el patín de la viga es menor que la calculada con la ec 8.9), no se necesita reforzar el alma en la zona comprimida de la conexion. Si no se cumple alguna de las condiciones anteriores, deben colocarse placas de refuerzo que resistan la parte de la fuerza que está en exceso de la que puede soportar el alma; cuando es así, las ecs 8.1 y 8.3 se modifican para incluir en ellas la resistencia de esas placas.

Cuando se emplean atiesadores horizontales alineados con los patines comprimidos de las vigas, la ec 8.1 se transforma en

$$A_{p}F_{yv} = F_{vc}t_{c}(t_{v} + 5k_{c}) + F_{vat}A_{at}$$

 F_{yv} , F_{yc} y F_{yat} son los esfuerzos de fluencia de los aceros utilizados en viga, columna y atiesadores, y A_{at} es el área de la sección transversal de estos últimos. El segundo miembro, que representa la resistencia de la columna reforzada, incluye la contribución de los atiesadores, que es la fuerza que ocasionaría su plastificación.

De la ecuación anterior.

$$A_{at} = \frac{A_{p}F_{yt}}{F_{yt}} - \frac{t_{c}F_{yc}}{F_{yal}} (t_{y} + 5k_{c}) = C_{1}A_{p} - t_{c}(t_{y} + 5k_{c})C_{2}$$
(8.10)

 C_1 tiene el mismo significado que en la ec 8.1, y C2 es el esfuerzo de fluencia del acero de la columna dividido entre el del atlesador. Fyc/Fvat.

El efecto de los atiesadores horizontales se tiene en cuenta de la misma manera cuando la fuerza cortante en el alma de la viga es elevada y se emplea la ec 8.3 en vez de la-8.1.

Para evitar pandeo local, la relación ancho/grueso de los atiesadores no debe exceder de 800/. $\overline{F_{yat}}$ (15.9. sí son de acero A36). Si se satisface la ec 8.2 o la .8.4, pero no la 8.9, los atiesadores se requieren solo para evitar el pandeo del alma de la columna, por lo que basta conque el ancho de cada uno de ellos sea cercano a la mitad del ancho del patin de la columna y que su relación ancho/grueso no sobrepase el limite que se acaba de mencionar.

En otros ensayes reportados, se encontró que las placas de refuerzo verticales paralelas al alma de la columna, colocadas en los extremos de sus patines, están sometidas a esfuerzos del orden de la mitad de los que aparecen en el alma; llevando esa condición a la ec 8.1 se obtiene

$$A_{p}F_{yy} = F_{yc}t_{c}(t_{y} + 5k_{c}) + \frac{F_{ypy}}{2}2t_{py}(t_{y} + 5k_{c})$$

de manera que

$$\overline{t}_{pv} = \frac{F_{yv}}{F_{ypv_1}} \frac{A_p}{t_v + 5k_e} - \frac{F_{ye}}{F_{ypv}} t_e = (\frac{C_1 A_p}{t_v + 5k_e} - t_e) C_2 \quad (8.11)$$

 t_{pv} es el grueso de cada una de las placas verticales (se colocan en pares, en los extremos de los dos patines), y C₂ es ahora igual a F_{yc}/F_{ypv} .

La resistencia de las placas verticales se ha determinado con la expresión usada para el alma, a pesar de que entre ellas y los patines no hay curva de unión; sin embargo, el procedimiento se justifica al emplear el esfuerzo Fypv/2, medido experimentalmente en juntas reales.

Para que las placas no se pandeen localmente, h_{pv}/t_{pv} debe ser menor o igual que 2100/ $\overline{F_{ypv}}$ (41.8 si el acero es A36); h_{pv} es la dimensión horizontal de la placa, entre los patines de la columna. (El limite anterior es conservador, puesto que el esfuerzo máximo no excede de alrededor de $F_{vpv}/2$).

Si los patines de la columna son más anchos que los de las vigas disminuye la efectividad de las placas verticales colocadas en sus extremos, y si el grueso del alma es mucho menor que el dado por la ec 8.2 no es recomendable confiar en ellas. Su eficiencia mejora acercándolas at alma, y liega al cien por ciento cuando se colocan adosadas a elta.

Los atiesadores horizontales deben colocarse en pares situados simétricamente con respecto al alma de la columna, soldados a ella y a los patines con filete o con soldaduras de penetración. Las soldaduras entre atiesadores y patines pueden suprimirse si se ajustan perfectamente, de manera que la compresión se transmita por contacto directo. Las placas verticales se colocan también en pares simétricos, de longitud suficiente para que la fuerza que reciben del patín de la viga se distribuya en ellas de la misma manera en que se supone que lo hace en el alma.

Se han realizado pruebas de laboratorio muy limitadas con atiesadores horizontales excéntricos, que no permiten llegar a conclusiones definitivas respecto a su eficiencia; sin embargo, si puede afirmarse que se obtiene un diseño conservador despreciándolos cuando la excentricidad excede de 5 cm, y suponiendo que su efectividad es del 50 por ciento cuando las excentricidades son menores.

<u>ANALISIS DE LA ZONA SOMETIDA A TENSION:</u> El patín de la columna puede considerarse formado por dos placas empotradas en tres bordes y libres en el otro, en las que actúa la fuerza que transmite el patín en tensión de la viga; los bordes que se suponen empotrados son el vertical correspondiente a la unión con el alma y los dos horizontales, que se consideran empotrados a distancias p/2 del patín de la viga (Fig. 8.9).

La carga se reparte de manera más o menos uniforme hasta que las placas alcanzan su resistencia ultima; en ese instante sus bordes exteriores se curvan hacia fuera (Fig. 8.6), lo que ocasiona deformaciones grandes en la perción central de la soldadura, en el patín de la columna adyacente a ella y en la unión de alma y patín; la falla se presenta eventualmente por agrietamiento de alguna de esas regiones, cuando se agota su capacidad de fluir plásticamente.

El modelo que se acaba de describir, basado en los resultados de las experiencias de laboratorio reportadas en una investigación indica que una parte de la fuerza de tensión llega al alma de la columna, a la distancia k_c de su paño exterior, repartida en una zona de
longitud del orden de $p + 5k_c$, y el resto se transmite a los atines arriba y abajo del tramo de largo p, y llega al alma fuera de la zona mencionada (Fig 8.9)

La resistencia total del patín de la columna se obtiene sumando las resistencias de las dos placas descritas arriba más la de la zona central de ancho m (Fig 8.9)

Fig 8.9 Modelo del patín de la columna en la zona de tensión

En la Fig 8.10 se representa, de manera esquemática, una de las placas; la longitud p es aproximadamente igual a 14 t_c, y se considera que la placa está empotrada en los extremos de esa longitud y en el extremo de la curva de unión con el alma. Actúa sobre ella una carga de línea, correspondiente a la tensión en el patín de la trabe. La resistencia última de la placa, determinada por medio de la teoría de las líneas de flujo, es:

$$P_u = C_1 F_{yc} t_c^2 \tag{8.12}$$

Donde

$$C_1 = (4/\beta + \beta/\eta) / 2 - \eta/\lambda, \quad \eta = \beta(-\beta^2 + 8\lambda - \beta)/4, \quad \beta = p/q, \quad \lambda = h/q \quad (Fig 8.10)_{-1}$$

Fig 8.10 Representación esquemática de una placa del patín de la columna y de la fuerza que actúa sobre ella

Con los perfiles H laminados que se emplean usualmente en columnas, y suponiendo vigas de los tamaños que se utilizan en estructuras reales, se obtienen valores del coeficiente C_1 que varían entre 3.5 y 10, de manera que 3.5 $F_{yc}t_c^2$ es una estimación conservadora de la capacidad de carga ultima de cada una de las placas. (Suponiendo que la columna es una W14" x 426 lb/pie, que es de los perfiles H más robustos tabulados en los manuales de diseño y que el patín de la viga es de 30.5 x 1.9 cm (12" x ³/₄"), se obtiene $C_1 = 8.99$, valor bastante mayor que los mencionados; en cambio, si la columna es una W14 x 82 lb/pie, de alma y patines mucho más delgados, y se conservan las dimensiones del patín de la viga, C_1 es igual a 3.45).

Se considera que la parte central de ancho m (Fig 8.9) puede desarrollar el esfuerzo de fluencia σ_{yv} , de manera que resiste una fuerza igual al producto de su área por σ_{yv}^* . Por consiguiente, la resistencia total del patín de la columna es

$$Q_{\rm T} = F_{\rm vv} t_{\rm v} m + 2 (3.5 F_{\rm vc} t_{\rm c}^2)$$
(8.13)

Cuando el momento en el extremo de la viga es M_p , el patín en tensión aplica una fuerza $A_p F_{yv}$ a la columna; si su resistencia se reduce en 20 por ciento, para obtener en la zona de tensión una fórmula que será aproximadamente igual de conservadora que la deducida para la región comprimida, con lo que se llega a

 $A_{p}F_{yv} = b_{v}t_{v}F_{yv} = 0.8(F_{yv}t_{v}m + 7F_{yc}t_{c}^{2})$ (8.14)

* En realidad el esfuerzo de fluencia que se desarrolla en esa zona es el menor de los correspondientes a los patines de viga y columna, F_{VV} y F_{VC}

De esta expresión se despeja t_{c}^{2} :

$$t_c^2 = \frac{b_v t_v}{7} (1.25 - \frac{m}{b_v}) c_1$$
 (8.15)

 t_c es el grueso que ha de tener el patín de la columna para que falle, en teoría, cuando el momento en la sección extrema de la viga es M_p. C₁ = F_y / F_{yc}; se reduce a la unidad cuando viga y columna están hechas con el mismo acero.

Si las columnas y vigas son de las tabuladas en el manual IMCA, el cociente m/b_v oscila entre 0.15 y 0.20, haciendo conservadoramente, m/b_v = 0.15. la ec 8.15 se reduce a

$$t_{v} = 0.4, \overline{C_{1}A_{p}}$$

$$(8.16)$$

En los casos mencionados arriba, en los que se consideraron columnas W14 x 426 y W14 x 82 y una viga con patín de 30.5 cm de ancho, el cociente m/b_v vale, respectivamente, 0.25 y 0.17; en el primer caso la ec 8.16 es un poco mas conservadora de los que se había supuesto, y en el segundo se encuentra entre los limites considerados al deducirla.

Cuando $t_c \ge 0.4 \overline{C_1 A_p}$ no se necesitan atiesadores en la zona de tensión de la conexión para evitar la falla por deformación excesiva del patín de la columna; si $t_c < 0.4 \overline{C_1 A_p}$ deben colocarse atiesadores o placas paralelas o adosadas al alma, con lo que se obtienen configuraciones de equilibrio iguales a las de la región comprimida; en uno y otro caso debe revisarse la posible plastificación del alma de la columna en la zona adyacente a los patines de las vigas, para lo que se emplean las mismas ecuaciones que en la zona en compresión.

En vista de las simplificaciones que se han hecho para obtenerla, la ec 8.16 no es valida en general cuando la columna esta formada por tres placas soldadas; en ese caso debe calcularse la constante C1 para cada problema particular y llevar su valor a la ec 8.13, en lugar del 3.5 que aparece en ella.

Cuando la fuerza cortante en la viga se acerca a la que ocasionaría la plastificación del alma, teóricamente debe sustituirse A_pF_{yy} por M_p/d_v en la ec 8.14. sin embargo, las hipótesis introducidas en la obtención de la ec. 8.16 hacen que sea conservadora en general, - aun con fuerzas cortantes elevadas.

Como ya se ha mencionado, también en la zona en tensión debe revisarse la condición 8.2, y colocarse los atiesadores necesarios cuando no se cumpla.

CONEXIONES CON CARGA ESTATICA ASIMETRICA: Hasta ahora se han estudiado conexiones con dos vigas que aplican momentos iguales y de sentidos contrarios: no hay flexión en las columnas y la fuerza cortante en la junta es nula. Esta condición, que corresponde a columnas interiores de marcos rígidos con vigas de claros iguales y cargas verticales también iguales, no se cumple cuando claros o cargas son diferentes, cuando la columna es extrema o cuando sobre la estructura actúan fuerzas horizontales. de sismo o viento, además de las cargas verticales. (las acciones producidas por el viento pueden tratarse como si fuesen estáticas; más adelante se estudian los efectos de las solicitaciones sísmicas)

En la Fig 8.11a se muestran las vigas y columnas que concurren en una junta central de un marco bajo cargas verticales y horizontales y los momentos en sus extremos. En la Fig 8.11b se ha dibujado la conexión y las fuerzas horizontales en los patines de las vigas, que ocasionan cortantes en el alma de la columna, se ha supuesto que las fuerzas en los patines se obtienen con precisión suficiente dividiendo el momento en la sección extrema entre el 95 por ciento del peralte total, que es, aproximadamente, la distancia entre los centroides de los patines.*

La Fig 8.11c es el diagrama de fuerzas cortantes en la columna, trazado sin considerar las fuerzas normales en las vigas, que suelen tener poco importancia.

Fig 8.11 Junta de un marco rígido en el que obran cargas Verticales y horizontales

* Los momentos M_{VI} y M_{VD} , son las sumas algebraicas de los producidos por viento y por carga vertical; en el caso mostrado en la Fig 8.11, en el que el viento actúa de izquierda a derecha, los dos momentos se suman en la viga de la izquierda y se restan en la de la derecha.

Una situación análoga se presenta en juntas de columnas extremas (Fig 8.12), con la diferencia de que tienen solo una viga, y en conexiones centrales bajo carga vertical asimétrica.

Fig 8.12 Junta viga-columna lateral

El esfuerzo cortante medio que ocasiona el flujo plástico del tablero de alma de la conexión puede expresarse como $F_y/-3$, de acuerdo con el criterio de Von Mises, y que la fuerza cortante correspondiente se obtiene con la expresión $V_y = 0.95 d_c t_c F_{yc}/\sqrt{3}$, donde 0.95 d_c es el peralte efectivo de la columna, aproximadamente igual a la distancia entre los centroides de los patines. Por otro lado, la-fuerza cortante que transmiten las vigas a la junta es $T = \Sigma M/0.95 d_V$, donde ΣM es la suma algebraica de los momentos en las dos vigas, o el de la única, si la conexión es de borde. (Se esta suponiendo que las dos vigas tienen el mismo peralte; en caso contrario el denominador 0.95 d_V no sería igual para ambas).

Además, obra también sobre la junta la fuerza cortante de la columna superior, V_{CS} , que tiene sentido contrario al de las fuerzas en los patines de las vigas.

El flujo por cortante del tablero de alma se inicia cuando la suma algebraica de las fuerzas exteriores es igual a la resistencia:

$$\frac{\sum_{v=0}^{M} M}{0.95 d_{v}} - V_{cv} = \frac{0.95 d_{c} t_{c} F_{vc}}{3}$$

El alma no necesita refuerzo por cortante si

$$t_{v} \ge \frac{1}{0.55 \, \mathrm{F}_{vc} d_{c}} \left[\frac{\sum M}{0.95 \, \mathrm{d}_{v}} - V_{cv} \right]$$
(8.17)

Si no se cumple esta condición la columna debe reforzarse con un par de atiesadores en diagonal, o con una o dos placas adosadas al alma, soldadas en todo el perimetro a los patines y a los atiesadores horizontales.*

Las dimensiones de las almas de columnas hechas con perfiles H laminados sueten ser tales que no se pandean por cortante bajo fuerzas menores que las que ocasionan su plastificación; para ello, basta que se cumpla la condición (NTC, art 5.3.3b)

h /t_c \leq 3580/ $\overline{F_{s}}$ (h_z /t_z \leq 71. para acero A36)

 h_c es el peralte libre del alma y t_c su grueso, incluyendo el de las placas de refuerzo adosadas, si están unidas a ella de manera que se pandeen en conjunto. La condición anterior debe revisarse siempre en columnas hechas con placas soldadas.

Al deducir la ec 8.17 no se ha tenido en cuenta la influencia de la compresión existente en la columna sobre su resistencia al cortante, por lo que proporciona resultados inseguros cuando esa compresión es importante.

De acuerdo con el criterio de Von Mises, el flujo plástico en un punto cualquiera del tablero de alma de la conexión, que esta en un estado biaxial de esfuerzos, se inicia cuando los esfuerzos en ese punto satisfacen la igualdad.

$$\sigma_a^2 \sigma_a \sigma_b + \sigma_b^2 + \Im_{ab}^2 = \sigma_V^2$$
(8.18)

Se ha encontrado experimentalmente que el primer miembro de la ec 8.18 es prácticamente igual en todos los puntos del tablero. En el centro (Fig 8.13) σ b se anula y σ a puede tomarse igual a P_{CS}/A_c, donde A_c es el área de la sección transversal completa de la columna. Pero A_c $\sigma_v = P_v$, A_c = P_y// σ_v , luego

$$\sigma_a = \frac{P_{cs}}{A_c} = \frac{P_{cs}}{P_y} \sigma_y$$
(8.19)

* Aunque son menos eficientes, el refuerzo puede hacerse también con placas paralelas al alma pero no adosadas a ella, que se soldan a los patines de la columna $P_y = A_c \sigma_y$ es la carga axial que produce el flujo plástico, en compresión, de la columna.

Fig 8.13 Esfurzos en el alma de la columna en una junta

Sustituyendo σ_a (ec 8.19) en la ec 8.18, y recordando que en el centro del tablero σb = 0, se obtiene, en ese punto.

 $\left(\frac{P_{cs}}{P_{y}}\right)^{2}\sigma_{y}^{2}\tau_{ab}^{2} = \sigma_{y}^{2}, \left(\frac{P_{cs}}{P_{y}}\right)^{2} + \frac{3\tau_{ab}^{2}}{\sigma_{y}^{2}} = 1$ (8.20)

De aquí se despeja ab = a'y, que es un esfuerzo cortante de flujo reducido por la fuerza de compresión que actúa en la columna:

 $\tau_{ab} = \tau_{ab} = \frac{\sigma_{v}}{3} \left[1 - (\frac{P}{P_{y}})^{2}\right]$ (8.21)

Cuando el esfuerzo cortante iguala a $\iota'y$, el alma de la columna fluye a causa del efecto combinado de las fuerzas cortantes y normales.

Para determinar si se necesitan atiesadores, teniendo en cuenta la compresión en la columna, se iguala la fuerza cortante en el tablero con la resistencia de éste, disminuida por el efecto mencionado:

$$\frac{\sum M}{0.95d_v} - V_{cs} = \frac{0.95d_c t_c F_{yc}}{\sqrt{3}} \left[1 - (\frac{P}{P_y})^2 \therefore t_c \ge \frac{1}{0.55F_{vc}d_c} \left[\frac{\sum M}{0.95d_v} - V_{cs} \right] - \frac{1}{1 - (Pp/P_y)^2} \right]$$

Esta expresión es semejante a la 8.17 y, como ella, permite determinar el grueso del alma de la columna para el que no se necesita-refuerzo por cortante, incluyendo el efecto de la fuerza normal.

En la mayoría de los casos no se requiere el factor $1-(Pp/P_y)^2$, pues experimentalmente se ha encontrado que casi toda la fuerza normal de la columna se transfiere a sus patines, en la zona de la junta, cuando el alma fluye por cortante. Esto solo es cierto, sin embargo, en columnas con patines de capacidad suficiente para resistin la fuerza normal completa más los esfuerzos eventuales de flexión producidos en la zona de la conexión. De este modo, el factor $1-(Pp/P_y)^2$ solo es significativo cuando P/P_y excede de 0.5.

Cuando el tablero de alma de la columna comprendido entre los atiesadores horizontales fluye plásticamente, debido a fuerzas cortantes y de compresión elevadas, la rigidez de la junta disminuye, pero el modo de falla es estable, es decir, no hay disminución brusca de resistencia. El comportamiento es semejante a la del alma de vigas I o H, que después de fluir plásticamente por cortante siguen soportando cargas adicionales, hasta que las deformaciones tangenciales se hacen excesivas. De hecho, la capacidad al cortante de las conexiones no attesadas debe basarse en un valor admisible de los desplazamientos de entrepiso del marco del que forman parte, y no en una carga ultima que es hasta cierto punto imaginaria. Si las consecuencias de las deformaciones de las conexiones son tolerables no hace falta rigidizarlas, aun cuando no se satisfaga la ec 8.22, pues tienen una importante resistencia posterior a la plastificación por cortante, debida principalmente a la rigidez de los patines y los atiesadores que las rodean, que actúan como un marco rígido, y al endurecimiento por deformación.

Cuando se necesiten atiesadores sus características deben basarse en consideraciones de rigidez, más que en el criterio que define la iniciación del flujo plástico.*

Las deformaciones unitarias de los atiesadores horizontales de conexiones con una sola viga disminuyen desde un máximo en el extremo que queda frente a la viga hasta cero en el extremo opuesto, lo que indica que la fuerza se trasmite de los atiesadores al alma de la columna. El esfuerzo en el primer extremo llega al limite de fluencia, de manera que la soldadura entre atiesadores y alma ha de dimensionarse para transmitir la fuerza de plastificación de los primeros.

* Estas observaciones son validas para conexiones con carga estática asimétrica o con fuerzas de viento; pueden no serlo cuando las acciones de diseño incluyen efectos sísmicos importantes. <u>CONEXIONES CON VIGAS EN EL ALMA DE LA COLUMNA:</u> La mayor parte de los estudios efectuados hasta ahora se ha referido a juntas en las que las vigas llegan a los patines de la columna; sin embargo, también se han investigado las conexiones formadas por una viga unida rígidamente con el alma de la columna, de manera que el momento que transmite la primera hace que la segunda se flexione alrededor de su eje de menor momento de inercia. Los especímenes ensayados han sido del tipo mostrado en la Fig 8.14; en la columna actúa una fuerza de compresión, aplicada en el extremo superior, que reproduce los efectos de los niveles del edificio situados encima de ella.

El análisis y diseño de estas conexiones es más difícil que el de las que tienen las vigas unidas a los patines de la columna, por las razones siguientes:

- 1.- La resistencia máxima de la conexión corresponde, en teoria, a la formación de articulaciones plásticas en la columna o en la viga. Sin embargo, hay otros factores que limitan esa resistencia: por ejemplo, si los patines de la viga son mucho más angostos que el alma de la columna, puede formarse en ésta un mecanismo con líneas de flujo antes de que aparezcan las articulaciones plásticas. Otros factores que pueden impedir que se alcance la resistencia máxima predicha por la teoría plástica simple son el pandeo local de los patines o el alma de la columna y la fractura de material del conjunto. La posible formación de un mecanismo con líneas de flujo o el pandeo local pueden obligar a rigidizar la columna.
- 2.- El montaje en campo puede ser difícil, aunque la conexión se haya diseñado y detallado adecuadamente, a causa de las restricciones de espacio que crean los patines de la columna.

El objetivo de los estudios reportados en esa investigación es examinar las conexiones por alma desde los puntos de vista de resistencia, rigidez y ductilidad, así como considerar los efectos que producen los atiesadores, cuando son necesarios para alcanzar la resistencia o rigidez deseadas, su mira final es formular recomendaciones para diseño.

El comportamiento de las conexiones es adecuado, en general, cuando se emplean atiesadores que evitan que el alma de la columna se deforme (Fig 8.14, b y c), pero puede no serlo si el ancho del patín de la viga es menor que el peralte del alma de la columna y la unión se hace en forma directa, sin atiesadores (Fig 8.14d), ya que puede formarse un mecanismo de falla con líneas de flujo en el alma de la columna, antes de que aparezca un articulación plástica en la viga. Además, aunque no se forme ese mecanismo, lo que depende del ancho del patín y del peralte de la viga, así como del peralte y grueso del alma de la columna, es posible que no se alcance la carga máxima predicha por la teoría plástica simple porque la unión mencionada ocasiona elevadas concentraciones de esfuerzos y perdida de ductilidad, que pueden producir la fractura del material.

La mayor parte de las conexiones ensayadas fallo por fractura cuando-la carga alcanzó el valor predicho por la teoría plástica simple, o estaba cerca de él, sin que se presenten deformaciones plásticas significativas. Las grietas que ocasionaron la falla se iniciaron en la unión del patín en tensión de la viga y el alma de la columna en las conexiones como la mostrada en la Fig 8.14d. y en el punto en que se unen la placa de conexión y el patín de la columna en las del tipo de la Fig. 8.14b; estas ultimas grietas se debieron, probablemente, al estado triaxial de esfuerzos que se crea en el punto mencionado

Fig 8.14 Viga conectada al alma de la columna

Las juntas que no tienen capacidad de rotación bajo carga máxima no son satisfactorias, puesto que impiden la redistribución de momentos que es necesaria tanto en diseño plástico como en estructuras construidas en zonas de alta sísmicidad.

Algunos autores sugieren medidas para mejorar el comportamiento de las conexior.es, sobre todo desde el punto de vista de su capacidad de rotación (Fig. 8.18):

- 1.- Empleo de placas para transmitir el momento de grueso mayor que el del patín de la viga (Fig. 8.15a), con lo que se reducen las concentraciones de esfuerzos en las zonas de las placas adyacentes a los extremos de los patines de la columna.
- 2.- Empleo de atiesadores en la columna del lado opuesto al que recibe la viga (Fig. 8.15b). Algunos análisis realizados con elemento finito han indicado que las concentraciones de esfuerzos en las zonas indicadas en el punto 1 se reducen cuando menos en un tercio al colocar esos atiesadores.
- 3.- Alargamiento de las placas de conexión para separar las soldaduras entre ellas y el patín de la viga y los de la columna, evitando la intersección de soldaduras y los elevados esfuerzos residuales asociados con ella (Fig 8.15c).
- 4.- Uso de placas de ancho variable para reducir la concentración de esfuerzos en la sección critica (Fig 8.15d).

5.- Reducción de la placa de conexión entre su unión con los patines de la viga y los de la columna, a cierta distancia de ambas uniones (Fig 8.15e).

Fig 8.15 Medidas para mejorar el comportamiento de juntas con Vigas unidas al alma de la columna .

CONEXIONES VIGA-COLUMNA CARGADAS ESTATICAMENTE.

RESUMEN DE RESULTADOS: Los resultados que se resumen aquí corresponden a juntas en las que la columna recibe vigas en uno o en los dos patines y en una o en las dos caras del alma.

<u>COLUMNAS NO ATIESADAS</u>: No se necesitan atiesadores frente a los patines comprimidos de las vigas si

$$t_{c} \geq \frac{C_{1}A_{p}}{t_{v} + 5k_{c}}$$

$$(8.2)$$

y, simultáneamente,

$$t_{c} \ge \frac{h_{c} - F_{yc}^{-}}{1510}$$
 (8.5)

o la fuerza aplicada por el patín de la viga no excede de

$$P_{\rm erc} = \frac{34400 \, t_{\rm c}^{-3} \, \overline{F_{\rm yc}}}{h_{\rm c}}$$
(8.9)

Cuando la fuerza cortante en la viga es mayor que el 60 por ciento de la que ocasionaría la plastificación del alma, la ec 8.2 se sustituye por

$$t_{c} \geq \frac{M_{pvc}}{F_{vc}(t_{v} + 5k_{c})d_{v}}$$
(8.4)

No se necesitan atiesadores frente a los patines en tensión si se satisface la ec 8.2 (o la 8.4), y, además,

$$t_c \ge 0.4 \ C_1 A_p$$
 (8.16)

ATIESADORES: Cuando no se satisface alguna de las condiciones anteriores deben colocarse atiesadores horizontales frente a los patines de la viga en la zona o zonas donde no se cumplen. Los atiesadores se dimensionan para soportar la parte de la fuerza aplicada por los patines de la viga que no puede ser resistida por la columna. Su área se calcula con la ec 8.10:

$$A_{at} = (C_1 A_p - t_c (t_v + 5k_c)C_2$$
(8.10)

En lugar de utilizar atiesadores horizontales, el alma puede reforzarse con una o dos placas adosadas o paralelas a ella. Las placas adosadas al alma son 100 por ciento efectivas: las paralelas, colocadas en los extremos de los patines, se dimensionan con la ec 8.11).

Tanto en los atiesadores horizontales como en las placas adosadas al alma o paralelas a ella debe evitarse una falla prematura por pandeo local; para ello, han de cumplirse las condiciones siguientes:

Atiesadores horizontales. $b/t \le 800/\overline{F_{yat}}$ Placas adosadas o paralelas al alma. $h_{pve}/t_{pv} \le 2100\overline{F_{ypv}}$

REFUERZOS DEL ALMA POR CORTANTE: Cuando los momentos que recibe la columna no se equilibran entre si y producen una fuerza cortante mayor que la que ocasionaría la plastificación del alma, esta se refuerza con placas adosadas a ella. (También puede reforzarse con atiesadores en diagonal, pero su empleo en edificios urbanos es limitado, porque dificultan la conexión de las vigas que llegan al alma de la columna).

El grueso mínimo del alma para el que no se requiere refuerzo por cortante se determina con alguna de las ecuaciones siguientes:

$$t_{c} = \frac{1}{0.55} \frac{1}{F_{yc} d_{c}} \left[\frac{\sum M}{0.95 d_{v}} - V_{cs} \right]$$
(8.17)

$$t_{e} = \frac{1}{0.55 F_{ye} d_{e}} \left[\frac{\sum M}{0.95 d_{y}} - V_{ey} \right] \frac{1}{1 - (P/P_{y})^{2}}$$
(8.22)

Se utiliza la segunda ecuación cuando la fuerza normal en la columna es elevada $(P/P_V > 0.5)$.

Además, debe satisfacerse la condición

$$h_{c}/t_{c} \le 3580/{-F_{c}}$$

DISEÑO DE CONEXIONES CARGADAS DINAMICAMENTE: El análisis sísmico de las estructuras se realiza en la actualidad, en la gran mayoría de los casos, con métodos elásticos: sin embargo, en el diseño de las conexiones ha de seguirse un enfoque inelástico modificado, puesto que los miembros que componen la estructura realizarán, durante temblores intensos, excursiones fuera del dominio elástico: esto es una consecuencia de la filosofía actual, que permite hacer el diseño sísmico con fuerzas mucho menores que las que corresponderían a una respuesta elástica ilimitada. Durante temblores de gran intensidad se consideran tolerables deformaciones permanentes en zonas localizadas, ocasionadas por comportamiento inelástico, por medio de las cuales se absorbe y disipa parte de la energía recibida del terreno, se amortiguan los movimientos y la estructura sobrevive.

El comportamiento descrito impone requisitos de ductilidad en todos los elementos de la estructura en que haya deformaciones inelásticas severas.

Por las razones anteriores, los miembros y las conexiones deben diseñarse, detallarse y construirse de manera que puedan admitir deformaciones inelásticas importantes sin fallar y sin provocar fenómenos de inestabilidad de conjunto. Los marcos que satisfacen estos requisitos son los llamados marcos dúctiles; se emplean en construcciones en zonas de alta sísmicidad.

Se cuenta con varios enfoques. En uno de ellos las juntas se diseñan de manera que tengan la rigidez y resistencia necesarias para que las articulaciones plásticas se formen en los extremos de las vigas, junto a las columnas; en otro, que puede ser apropiado para edificios bajos, de uno o dos niveles, se busca que las deformaciones plásticas ocurran, esencialmente, dentro de la conexión: en el tercero se intenta repartir las acciones inelásticas entre las vigas y las juntas, con objeto de disminuir la demanda de ductilidad en las primeras.

UNIONES ENTRE LOS PATINES DE LAS VIGAS Y LAS COLUMNAS: Los

estudios realizados en laboratorio para determinar el comportamiento de juntas bajo cargas cíclicas que las llevan un numero elevado de veces al intervalo plástico, tratando de reproducir las solicitaciones a que quedan sometidas las juntas de marcos rígidos durante temblores de tierra intensos, han demostrado que los requisitos relativos al refuerzo de la

columna en las zonas frente a los patines de las vigas, en tensión o compresión, deducidos para juntas rígidas bajo carga estática, siguen siendo básicamente validos cuando las cargas son cíclicas, producen deformaciones inelásticas y hacen que cada uno de los patines trabaje, alternadamente, en tensión y compresión. En la Fig 8.16a se muestran las deformaciones producidas por las fuerzas en los patines y corresponde a la Fig 8.6

a) Deformaciones por flexión

b) Deformaciones 'por cortante

Fig 8.16 Deformación de juntas con momentos asimétricos en las vigas

<u>EFECTOS DE LA FUERZA CORTANTE EN LAS CONEXIONES</u>: Como se vio anteriormente, cuando los momentos que las vigas aplican a las columnas no se equilibran entre sí, aparecen en la junta fuerzas cortantes, que pueden jugar un papel muy importante en su comportamiento.

Como ya se ha estudiado el problema para solicitaciones producidas por cargas verticales o por la combinación de estas y viento; aquí se tratan las conexiones bajo excitaciones sísmicas severas: es en este caso cuando el diseño por cortante de las juntas viga-columna adquiere particular importancia.

La Fig 8.16b muestra como se deforma la junta cuando el alma fluye plásticamente y en la Fig 8.17 se indican las fuerzas que actúan en la columna y en la junta. Esta figura es semejante a las Figs 8.11 y 8.12.

Fig 8.17 Fuerzas en las columnas y en la junta

La fuerza cortante máxima que puede transmitirse a través de la junta es:

NTC - RDF 87 -
$$V_r = F_R V_N = 0.9 \times 0.66 F_v d_e t_e$$
, para h/t ≤ 1400 , $k/F_y = 3130/F_y$
(8.23)

AISC – LRDF 86 (ref 5.8.2) - $V_r = F_R V_N = 0.9 \times 0.6 F_y d_e t_e$, para h/t $\leq 1568 \quad \overline{k/F_y} = 3510/\sqrt{F_y}$ (8.24)

Los valores finales de la relación h/t corresponden a almas sin atiesadores, en las que K = 5.0.

La diferencia entre las expresiones 8.23 y 8.24 se debe a que en las Normas Técnicas se tiene en cuenta el incremento de la resistencia ocasionando por el endurecimiento por deformación.

VR tiene que ser igual o mayor que la fuerza cortante de diseño en la junta, que vale

$$V = \frac{\sum M}{0.95 d_{\chi}} - V_{es}$$
(8.25)

o, si las dos vigas tienen peraltes diferentes,

$$V = \frac{M_{VI}}{0.95d_{VI}} + \frac{M_{VD}}{0.95d_{VD}} - V_{cs}$$
(8.26)

Los momentos y la fuerza cortante están multiplicados por el factor de carga para solicitaciones gravitacionales y sísmicas combinadas.

Sin embargo, se ha recomendado que las juntas de marcos dúctiles se diseñen para que resistan las fuerzas cortantes máximas que pueden aparecer en ellas, correspondientes a la formación de articulaciones plásticas en los extremos adyacentes a la columna de la viga o vigas; en esas condiciones, la ec 8.26 se transforma en

$$V = \frac{(M_{p})VI}{0.95d_{v_{1}}} + \frac{(M_{p})VD}{0.95d_{v_{2}}} - \frac{(M_{p})VI + (M_{p})VD}{h_{c}}$$
(8.27)

 $(M_p)_{VI}$ y $(M_p)_{VD}$ sen los momentos plásticos resistentes de las dos vigas, izquierda y derecha, y d_{VI} y d_{VD}, sus peraltes; el ultimo termino es la fuerza cortante en la columna. V_{cs}, obtenida suponiendo que se forma un punto de inflexión en su succión media.

La evidencia experimental demuestra que la resistencia ultima en cortante de las juntas viga-columna es mucho mayor que la dada por la ec 8.23 o 8.24); se suele alcanzar después de que la junta experimenta distorsiones inelásticas grandes, pero que tienen poca importancia si no afectan negativamente los requisitos de resistencia y rigidez de los marcos.

Las gráficas carga-deformación de las juntas no corresponden a una respuesta élastica-casi plástica. sino exhiben una rigidez que decrece gradualmente, por lo que es apropiado asociar su resistencia ultima con la fuerza cortante que pueden transmitir con deformaciones inelásticas controladas.

En la Fig 8.18 se muestra el modelo utilizado en otra investigación para estudiar la resistencia y rigidez del conjunto formado por el tablero del alma de la columna, los patines de ésta y los dos atiesadores horizontales alineados con los patines de las vigas.

El modelo consiste en una placa de comportamiento elastoplástico perfecto, bajo fuerza cortante, rodeada por bordes rígidos con resortes en las cuatro esquinas, que simulan la resistencia de los elementos que rodean el tablero del alma, especialmente la resistencia a la flexión de lo, patines de la columna; las características de los resortes se escogen de manera que el modelo reproduzca los resultados experimentales con precisión adecuada. La placa resiste las fuerzas cortantes hasta que fluye plásticamente: la resistencia adicional es proporcionada por los elementos situados alrededor de ella.

Aceptando que la resistencia ultima de la junta corresponde a una distorsión cuatro veces mayor que la de plastificación del alma en cortante, se llega a la expresión:

$$V_{u} = 0.55 F_{y} d_{c} t \left(1 + \frac{3.45 b_{c} t^{2} pc}{d_{y} d_{c} t}\right)$$
(8.28)

t es el grueso total del alma en la junta.

El segundo termino del paréntesis representa el incremento en resistencia por encima de la fuerza cortante que ocasiona la plastificación del alma.

El modelo que se acaba de describir proporciona buenos resultados para juntas interiores en las que el cociente de la fuerza normal de diseño en la columna, P, entre P_y , no excede de 0.50 y, además, la acción combinada de fuerza axial y momento flexionante no ocasiona flujo plástico en la columna fuera de la conexión pues si ese fenómeno se presenta en forma prematura hace que disminuya la resistencia de los elementos que rodean a la junta, principalmente los patines de la columna. El modelo no debe aplicarse a juntas de esquina, que carecen de elementos adyacentes en dos lados.

Si las vigas que llegan a los patines de la columna tienen peraltes diferentes, es conservador utilizar el mayor de los dos en la ec 8.28.

Cuando su resistencia es inadecuada, el alma de las columnas suele reforzarse con placas adosadas, que son completamente efectivas si están en contacto con el alma y ligadas a ella y a los patines con soldadura colocada en todo su perímetro.

La resistencia ultima en cortante de juntas con placas adosadas al alma de la columna esta dada por

$$V_u = (V_u)_{col} + 0.9 \times 0.66 F_v (d_c + t_p c)t$$
 (8.29)

Donde $(V_u)_{co}$ l es la resistencia de la junta sin reforzar, dada por la ec 8.28

La investigación se recomienda que la resistencia al cortante de una junta se calcule con la ecuación

$$V = 0.55 F_{y} d_{c} t (1 + \frac{3b_{c} t^{2}_{pc}}{d_{y} d_{c} t})$$
(8.30)

En la que t es el grueso total del tablero de alma de la junta, incluyendo placas adosadas, cuando las haya.

Los párrafos siguientes están tomados de esa investigación:

"En temblores severos debe esperarse que los marcos experimenten deformaciones vanas veces mayores que las calculadas bajo cargas de trabajo; la magnitud y distribución de esas deformaciones, inelásticas en su mayor parte, dependen de las resistencias y rigideces relativas de los elementos que componen la estructura. Idealmente, los marcos deben diseñarse de manera que la respuesta inelástica se concentre en los elementos que puedan proporcionar mayor ductilidad. Al mismo tiempo, debe prestarse mucha atención a los requisitos de rigidez en todos los niveles de deformación, para límitar los desplazamientos de entrepiso con objeto de controlar los daños en elementos no estructurales y reducir la posibilidad de problemas de inestabilidad de conjunto.

Las juntas suelen ser elementos muy dúctiles, pero de rigidez reducida cuando se someten a esfuerzos cortantes mayores que los de trabajo. Por este motivo, la rigidez de un marco con juntas diseñadas para que resistan los momentos en los extremos de las vigas producidos por las fuerzas sísmicas estipuladas en los códigos disminuye considerablemente en cuanto se exceden esos momentos, pues la resistencia máxima de las juntas es, con frecuencia, insuficiente para que aparezcan articulaciones plásticas en las vigas. Ademas, la baja rigidez postelástica del marco hará que crezcan los desplazamientos de entrepiso y que se amplifique el efecto $p\Delta$.

En el caso anterior pierde importancia la ductilidad de las vigas pero, en cambio, debe prestarse mucha atención al diseño y a la fabricación de las juntas.

La resistencia y rigidez máximas de los marcos se obtienen diseñando sus juntas para la fuerza cortante de mayor intensidad posible, que corresponde a la formación de articulaciones plásticas en las vigas que llegan a ellas. Si. en esas condiciones, la resistencia de la junta se toma igual a 0.55 f_yd_ct , que es la recomendada para diseño plástico, las conexiones se conservan esencialmente elásticas durante temblores intensos, y las deformaciones inelásticas se concentran en las vigas y, posiblemente, en algunas columnas, lo que puede imponer requisitos de ductilidad muy severos en ellas mientras que las juntas, que son dúctiles por naturaleza, no participan en la disipación de energía; el diseño suele ser demasiado conservador, pero puede resultar inadecuado si las demandas de ductilidad en vigas y columnas resultan excesivas.

Por los motivos anteriores, siempre que se juzgue necesario diseñar las juntas para la resistencia máxima de los miembros que llegan a ellas, conviene utilizar su máxima capacidad al cortante, que esta asociada a deformaciones inelásticas controladas, y se calcula con las ecs 8.28 o 8.29. Se logra así desarrollar la resistencia máxima de los elementos conectados sin afectar significativamente la rigidez de conjunto del marco, mientras que las juntas participan en la disipación de energía y se reducen las demandas de ductilidad en las regiones inelásticas de vigas y columnas".

COLUMNAS EN CAJON. Las conexiones de vigas con columnas en cajón son semejantes a las que se emplean cuando las vigas llegan a los patines de secciones H. Como en estos casos dos de las placas que forman el cajón son paralelas al alma de las vigas, no suele haber problemas de cortante en la junta: sin embargo, es frecuente que se necesiten atiesadores interiores frente a los dos patines de las vigas. lo que suele complicar la fabricación, ante la imposibilidad de soldarlos a las caras interiores de las cuatro placas.

En la Fig 8.19 se ilustra una posible solucion del problema.

Fig 8.19 Colocación de atiesadores horizontales en una columna en cajón

<u>CONEXIONES POR ALMA:</u> Cuando las vigas se conectan en el alma de columnas de sección H no suele haber problemas de cortante, puesto que la fuerza cortante es resistida por los dos patines de la sección, paralelos al alma de la viga.

La situación es análoga a la que se tiene en las columnas en cajón mencionadas arriba.

JUNTAS VIGA-COLUMNA TIPICAS: En la Fig 8.20 se muestran varios tipos de juntas rígidas viga-columna que se han utilizado con éxito en la practica. En algunas de ellas se usan tornillos de alta resistencia, pero en juntas de marcos dúctiles que se construirán en zonas de alta sísmicidad son preferibles las conexiones soldadas, al menos en los patines; pueden emplearse juntas con los patines de las vigas soldados a las columnas y el alma unidas por medio de una o dos placas verticales con tornillos de alta resistencia, pero no se recomienda que los patines se conecten con tornillos.

a) Conexión soldada en patines y alma.

El alma puede soldarse a tope a la columna (1) o con soldadura de filete a la piaca (2). Los tornillos son de montaje

b) Patines soldados, alma atornillada.

La conexión de los patines se hace por medio de plaças

 c) Conexión atornillada en patines y alma

- Se colocarán placas de relleno, de ser necesarias
- 21 Familias para fuerza cortante

 d) Conexión soldada por alma de la columna

Fig 8.20 Diversos tipos de conexiones viga-columna

Se han dibujado atiesadores en el alma de las columnas en todas las juntas en que las vigas llegan a sus patines, aunque no siempre son necesarios.

DEFINICIONES: En la mayor parte de la literatura se emplean las palabras "juntas" y "conexiones", indistintamente, para designar el conjunto constituido por partes de los miembros estructurales y por los elementos que los unen entre sí, soldadura, remaches o tornillos y, en muchos casos, placas y ángulos que transmiten todas, o algunas, de las solicitaciones. Así se han empleado los dos términos en la sección 8 que antecede a esta.

Sin embargo, en el inciso 8.1 se indica el significado concreto que debe darse a cada una de las dos palabras, con lo que se obtiene una mayor claridad en las normas.

RESISTENCIA DE LA CONEXIÓN: En este inciso se mencionan los requisitos que deben cumplirse para que la conexión rigida de una viga con una columna sea satisfactoria; se refiere, por consiguiente, a los tornillos, remaches o soldaduras que se utilizan en la conexión y a las placas o ángulos, por patines o alma, cuando los haya.

Siguiendo la práctica usual, que busca obtener conexiones más resistentes que los miembros conectados, se especifica que los elementos de conexión han de ser capaces de transmitir, como mínimo. las acciones en los extremos de las vigas incrementadas en 25 por ciento, sin que sea necesario sobrepasar la resistencia de la viga ni la de la junta; en la evaluación de ésta se ha incluido, aproximadamente, el incremento en la fuerza cortante ocasionado por el endurecimiento por deformación y la influencia de los patines de la columna.

Las conexiones señaladas en a) y b), que han de cumplirse para que una conexión entre viga y columna desarrolle la resistencia de la primera, están basadas en resultados de laboratorio obtenidos mediante ensayes bajo cargas estáticas y dinámicas. Cuando la resistencia en flexión de los patines de la viga es un porcentaje elevado de la resistencia de la sección completa los primeros pueden transmitir el momento plástico total por si solos, gracias al endurecimiento por deformación, por lo que la conexión del alma se diseña por fuerza cortante exclusivamente. En cambio, en secciones en las que el alma contribuye significativamente a la resistencia a la flexión debe conectarse para que se transmita, a través de ella, la fuerza cortante completa y el porcentaje del momento que le corresponde, con lo que se evita un endurecimiento por deformación excesivo en los patines.

Cuando se emplean aceros poco dúctiles no se permiten reducciones de área en los patines de las vigas en zonas de formación de articulaciones plásticas porque esas reducciones, debidas, por ejemplo, a agujeros para tornillos, ocasionan concentraciones de esfuerzos que tienden a reducir, aun más, la ductilidad del material.

El ultimo párrafo de este inciso se refiere a los refuerzos que deben colocarse cuando las vigas se conectan al alma de la columna.

DISEÑO DE ATIESADORES: Aquí se indica como debe revisarse la columna, en las zonas que quedan frente a los patines de las vigas, en tensión o compresión, para evitar la falla del alma por flujo plástico frente a cualquiera de ellos, la falla por pandeo en la zona de los patines en compresión y la flexión excesiva del patín de la columna, que puede ocasionar la fractura de las soldaduras, en la zona en tensión. Estas recomendaciones corresponden al caso en que las vigas, uno o dos, se conectan con los patines de la columna.

La ec 8.1 proporciona el área requerida de atiesadores frente a los patines superior e inferior de la viga; si el resultado es negativo, el alma de la columna resiste por si sola las fuerzas que le aplican las vigas, sin necesidad de atiesadores.

La ec 8.1 es la 810, en la que se ha sustituido $A_p F_{yy}$ por P_{py} , fuerza que sea aplicada a la columna, a través del patín de la viga o de la placa horizontal.

Cuando el diseño queda regido por las cargas permanentes, o por la combinación de éstas y viento, P_{pv} se toma igual a 1:25 veces la fuerza transmitida por el patín; con el incremento se busca obtener una junta más resistente que los miembros que concurren en ella.

No se pide que P_{pv} sea igual a A_pF_{yv} porque esto podría llevar a diseños demasiado conservadores, sobre todo en los casos, bastantes frecuentes, en que los tamaños de las vigas se auméntan para controlar los desplazamientos horizontales producidos por el viento, de manera que quedan sobradas por resistencia.

En cambio, en diseños en zonas sísmicas los extremos de las vigas deben ser capaces de desarrollar su momento plástico, puesto que en ellos se formarán, casi siempre, articulaciones plásticas asociadas con el mecanismo de colapso, por lo que P_{pv} es igual a la fuerza que transmite un patín al formarse la articulación, multiplicada por 1.25 para incluir el efecto del endurecimiento por deformación.

Si se cumple la condición expresada por 8.2 el alma no se pandea en la zona de compresión bajo la acción de la fuerza P_{pv} , definida arriba. 8.2 es la ec de la que se ha despejado el peralte del alma de la columna, h_c , se ha sustituido P_{cr} por P_{pv} y se ha introducido el factor de resistencia F_R .

Por ultimo, la condición 8.3 proviene de la ec 8.16, en la que se ha sustituido C1 por F_{yv}/F_{yc} , el producto A_pF_{yv} por la fuerza en el patín de la viga, P_{pv} , y se ha multiplicado el esfuerzo de flujo nominal de la columna por el factor de reducción F_R .

TABLERO DEL ALMA DE LA COLUMNA: La resistencia ante fuerza cortante del tablero de alma de la columna se revisa con la ec 8.3, que aparece aquí como ec 8.4 la fuerza cortante V se obtiene con los momentos flexionantes en los extremos de las vigas, producidos por las cargas verticales de diseño más 1.3 veces las fuerzas de viento o 1.7 veces las fuerzas sísmicas, ambas de diseño, sin que sea necesario que excedan de 1.25

veces el producto del área del patín por el esfuerzo de fluencia del material con el que está hecho.

El factor 1.7 que multiplica los efectos de sismo se debe a las muchas incertidumbres que hay en la determinación de los momentos de diseño, sobre todo cuando el análisis sísmico se efectúa con métodos elásticos.

Cuando la resistencia del alma de la columna, calculada con la ec 8.4, es menor que la fuerza cortante que actúa en ella, debe cambiarse de perfil, o incrementar su resistencia por medio de una o dos placas adosadas al alma; en el párrafo c) se indican los requisitos que han de satisfacer las placas de refuerzo.

<u>REQUISITOS ADICIONALES</u>: Las condiciones que se señaian en a) buscan que las secciones extremas de las vigas puedan desarrollar su momento plástico y lo mantengan durante las rotaciones inelásticas necesarias para que se forme el mecanismo de colapso.

En b) se indica una condición que ha de satisfacerse para que las columnas sean más resistentes que las vigas, de manera que las articulaciones plásticas se formen en los extremos de estas, donde se tiene más ductilidad y capacidad de rotación. Este requisito esadecuado para marcos rígidos de edificios que se construirán en zonas de alta sísmicidad, cuando se hayan diseñado con fuerzas horizontales reducidas apreciablemente por la capacidad de la estructura de disipar energía en el intervalo inelástico. De acuerdo con varias investigaciones y con el capítulo 11 de estas Normas Técnicas, la condición 8.5 debe cumplirse siempre que el diseño de los marcos se haga con un factor de comportamiento sísmico de 3.0 o 4.0 **EJEMPLO 8.1:** Diseñar la junta viga-columna de una columna interior de un edificio a la que llegan cuatro vigas, dos conectadas al alma y las otras dos a los patines. El acero es A36. Los dementos mecánicos de diseño y los perfiles de vigas y columna se muestran en la Fig 8.21². Supóngase que el análisis sísmico se hizo con Q = 3.0

Fig 8.21 Ejemplo 8.1

El sistema de piso esta formado por elementos precolados apoyados en las vigas V1 y en las paralelas a ellas, por lo que en las vigas V2 no hay cargas verticales.

<u>REQUISITOS ADICIONALES</u>: Como el análisis sísmico se hizo con Q = 3.0, debe satisfacerse la condición dada por la expresión 8.5 en los dos planos de deflexión.

 $Fa = 320 \times 103 \times 1.1/656.5 = 536 \text{ kg/cm}^2$. 1.1 es el factor de carga para la combinación carga gravitacional + sismo.

$$F_{yc} - f_a = 2530 - 536 = 1994 \text{ kg/cm}^2$$

 $f_a/F_{yc} = 536/2530 = 0.21 < 0.4$. No es necesario revisar la condición dada por la ec 8.5; sin embargo, se hará la revisión con fines ilustrativos. Art 8.5b)1 FLEXION ALREDEDOR DEL EJE X DE LA COLUMNA: Se supone que las dos columnas que llegan al nudo son iguales.

FLEXION ALREDEDOR DE Y:

$$\Sigma Z_{c}(F_{yz} - f_{z}) = 5718 \text{ x } 2 \text{ x } 1994 \text{ x } 10^{-5} = 228.0 \text{ Tm}$$

 $\Sigma Z_{v}F_{yv} = \Sigma M_{pv} = 2 \text{ x } 76.6 \text{ x } 153.2 \text{ Tm} < 228.0 \text{ correcto}$ Ec8 5

El requisito de "vigas débiles, columnas resistentes", expresado por la ec 8.5, se a cumple para flexión en los dos planos principales de la columna.

DISEÑO DE LA JUNTA:

a) <u>VIGAS CONECTADAS A LOS PATINES DE LA COLUMNA</u>

RESISTENCIA DE LA CONEXION

Módulos de sección plásticos de los patines de las vigas (Z_p).

Vigas V1 $Z_p = 2 \times 32.0 \times 2.86 \times 26.57 = 4863 \text{ cm}^3$

 $Z_p/Z_x = 4863/6071 = 0.80 > 0.70$

Se obtiene una conexión de resistencia adecuada uniendo los patines de las vigas con los de las columnas por medio de soldaduras de penetración completa, y conectando el alma de las vigas con soldaduras o tornillos de alta resistencia diseñados para transmitir la fuerza cortante total.

Art 8.2, inciso b

REVISION DEL TABLERO DE ALMA DE LA COLUMNA Conviene hacer esta revisión antes de estudiar si se requieren atiesadores horizontales frente a los patines de la viga porque la necesidad de estos y, en su caso, su grueso, se ve afectada si se refuerza el alma de la columna con placas adosadas

Art 8.4

Art 8.4a

Ec 8.4

<u>RESISTENCIA AL CORTANTE DE LA JUNTA</u>

$$V = 0.55 F_y d_c t (1 + \frac{3b_c t^2_{pc}}{d_v d_c t}) = 0.55 x 2.53 x 45 x 3.81 x (1 + \frac{3 x 42.0 x 6.35^2}{56.0 x 42.0 x 3.81})$$

= 238.6(1 + 0.567) = 373.9 ton

<u>FUERZA CORTANTE EN LA JUNTA</u> Es igual a la suma de las fuerzas cortantes producidas por las vigas, correspondientes a 1.01 x C Vert. + 1.7 x 1.1 x Sismo, sin exceder de 1.25 $A_{py}F_{yv}$, menos la fuerza cortante en la columna superior. Los momentos de sismo de las vigas se toman con los signos que ocasionen la fuerza horizontal máxima en la junta.

Viga izquierda. $M = -1.1 \times 26.7 - 1.7 \times 1.1 \times 89.7 = -197.1 \text{ Tm}$

Fuerza en cada patín = M/0.95d = $197.1/(0.95 \times 0.56) = 370.5$ Ton > 1.25 A_{pv}F_{yv} = 289.4 Ton

Viga derecha. $M = 1.1 \times 26.7 - 1.7 \times 1.1 \times 898.7 = -138.4 \text{ Tm}$

Fuerza en cada patín = $138.4/(0.95 \times 0.56) = 260.2$ Ton < 289.4

La suma de fuerzas en los patines de las vigas es igual a 2 x 1.25 $A_{pv}F_{yv} = 578.8$ ton, porque pueden formarse articulaciones plásticas en las dos vigas.

Columna. La fuerza cortante en la columna superior, en el instante en que el marco se convierte en un mecanismo, es aproximadamente igual a

$$\frac{(M_p)VI + (M_p)Vd}{h} = \frac{2 \times 153.6}{3.5} = 87.8 \text{ ton} \qquad \text{Ec } 8.27$$

- ۲۰ ۲۰۰۰ - ۲۰۰۰ - h = 3.5 m es la altura de la columna.

Fuerza cortante en la junta = 578.8 - 873.8 = 491.0 ton

Puesto que esta fuerza es mayor que-la resistencia de la junta (491.0 > .373.9) es necesario reforzar el alma de la columna.

Aumentando el grueso del alma a 6.35 cm (2 $\frac{1}{2}$ ") la resistencia al cortante de la junta sube a

$$V = 0.55 \times 2.53 \times 45.0 \times 6.35 \left(1 + \frac{3 \times 42.0 \times 6.35^2}{56.0 \times 45.0 \times 6.35}\right) = 397.6(1 + 0.318) = 524.0100 \text{ } 491.0$$

Ec 8.4

El refuerzo del alma puede hacerse con una o dos placas adosadas a ella o, como se trata de una sección hecha con tres placas soldadas, utilizando una placa de alma del grueso adecuado en el tramo de la junta.

Grueso del alma en la junta. 6.35 cm (2 ¹/₂")

(56.0 + 45.0) / 3.81 = 26.5 < 90. Esta condición se cumple aunque no se refuerce el alma.

Art 8.4b

DISEÑO DE ATIESADORES

<u>REVISION DEL ALMA POR FLUJO PLASTICO</u> (frente a los patines de las vigas en tensión y compresión)

P_{pv} es igual al menor de los valores siguientes: Inciso 8.3b

 $1.25 \text{ M}_{\text{DV}}/\text{d}_{\text{V}} = 1.25 \text{ x} 153.6/0.56 = 342.9 \text{ ton}$

$$1.25 \text{ A}_{pv}F_{vv} = 289.4 \text{ ton} < 342.9 \therefore P_{pv} = 289.4 \text{ ton}$$

Si se supone que el alma y los patines están unidos entre si con soldaduras de filete de 1.27 cm $(1/2^{"})$, k vale 6.35 + 1.27 cm -

$$A_{at} = \frac{P_{pv} - F_{yc}t_{c}(t_{v} + 5k)}{F_{yat}} = \frac{289.4 - 2.53 \times 6.35(2.86 + 5 \times 7.62)}{2.53}$$
$$= \frac{289.4 - 658.0}{2.53} \langle 0$$
 Ec 8.1

Por este concepto no se necesitan atiesadores.

REVISION DEL PANDEO DEL ALMA EN LA ZONA DE COMPRESION

$$\frac{34400 t_{c}^{3} \quad \overline{F_{yx}}}{P_{py}} F_{R} = \frac{24400 \times 6.25^{3} \cdot 2530}{289400} \times 0.85 =$$

$$1301 \text{ cm} \rangle h_{c} = 32.3 - 1.27 \times 2 = 29.8 \text{ cm} \qquad \text{Ec 8.2}$$

Tomando t_c en cm, F_{vc} en kg/cm y P_{pv} en kg, el resultado se obtiene en cm.

El alma no se pandea por compresión.

REVISION DE LOS PATINES DE LA COLUMNA EN LA ZONA DE TENSION

$$0.4 \frac{p_{pv}}{F_{yc}F_{R}} = 0.4 \frac{289.4 \times 10^{3}}{2530 \times 0.9} = 4.51 \text{ cm} \langle t_{pc} = 6.35 \text{ cm}$$
 Ec 8.3

No se necesitan atiesadores.

En resumen, el tablero de alma necesita refuerzo para resistir la fuerza cortante, pero no se necesitan atiesadores horizontales frente a ninguno de los patines de las vigas.

Este ejemplo es típico de las conexiones viga-columna de los niveles inferiores de marcos rígidos de cierta altura, donde los perfiles de las columnas son mucho más robustos que los de las vigas.

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSO DE APLICACIÓN DE NORMAS Y ESPECIFICACIONES DE USO EN MÉXICO PARA EL DISEÑO DE ESTRUCTURAS DE ACERO

TEMA:

PROGRAMA DE ANÁLISIS SÍSMICO Y DE DISEÑO DE ESTRUCTURAS DE ACERO

ING. LUIS FERNANDO CASTRELLÓN TERÁN DICIEMBRE 1999

Palacio de Minería Calle de Tacuba 5 Primer piso Deleg. Cuauhtémoc 06000 México, D.F. APDO. Postal M-2285 Teléfonos. 512-8955 512-5121 521-7335 521-1987 Fax 510-0573 521-4020 AL 26

ā 6 0 M S A Construcciones S. A. de C.V. Tels, 593-4419 # 593-2811 # Edij cio A-12 Desp. 404 Col. Torres de Mixcoac 593-3161 E H Fax. 593-4419 | CP 01490 Maico D.F. ANALISIS ESTRUCTURAL DE MARCOS PLANDS Provecto : CURSO SEFTIEMBRE 1999 0=3 : EDIF1 EJES 1 v 6 Marco : 10-27-1999 hora : 15:35:29 Fecha 35 24 Barras Nudos Condiciones de caroa 4 Combinaciones de caroa 4 Ton Fuerzas en Lonoitudes en Æ +++++ DATOS DE LOS NUDOS Coord. en X Coord. en Y Restr. (giro, en X, en Y) Nudo Coord. en X Coord. en Y Restr. (giro, en X, en Y) Nudo **G**i n n. £. 0.000 0.000 0.000 9.000 1 1 2 1 1 1 16.000 0.000 4 25,000 0.000 1 ...1 1 1 1 1 57.0 0.000 4.000 0 0 0 6 9.000 4,000 Û, Û. 0 16.000 25.000 9.000 ē 4.000 4.000 0 0 0 Ô. Û. Æ 7.500 7.500 0.000 Û 0 0 10 7.500 0 0 0 0 25.000 9.000 7.500 11 16.000 0 - Û 12 Û Û Ú 14 Û 0 15 0.000 11.000 0 0 11.000 Ð Û 15 17 25.000 9.000 16.000 11.000 0 0 0 11.000 Δ Ű 0 16 Ŏ O O 18 0.000 Ō 14.500 0 Q 14.500 ñ 0 16.000 20 22 24 19 14.500 Û 0 25.000 14.500 Û () Ô 2i 23 9.000 18,000 0 0 0.000 Δ 18.000 Ð, Ð 16.00018,000 Û. 25.000 18,000 Û A +++++ DATOS DE LAS BARRAS Lonoitud C(Cortante) Barra Orioen Destino Tipo Longitud C(Cortante) Barra Origen Desting Tipo ៣ n $0.025 \\ 0.025$ 2 4 57 0.041 9.000 7.000 í 0 6 6 Ó 0.025 8 9.000 9 10 0 9.000 357 Û, 12 15 10 Ù 7.000 0.041 0 9.000 11 6 11 0.025 0.041 13 14 0 9.000 8 14 0 7.000 9 18 20 23 5 7 15 Û 9.000 16 10 17 0 9.000 18 19 22 24 0.041 0 11 7.000 17 ŧ) 0.025 ×12 9.000 13 21 23 23 Q 9.000 0.014 14 22 0 7.000 0.023 15 Ō 9.000 4.000 0.204 0.014 1 0 16 3579 17 6 0 4.000 0.204 18 Û 4.000 0.204 4 20 22 24 $3.500 \\ 3.500$ 19 21 23 25 27 31 8 0 4,000 0.204 9 0 0.267 4.000 3.500 3.500 3.500 3.500 3.500 3.500 Ò 6 10 0.267 11 0 0.267 3.500 8 12 Q, 0.267 13 0 0.267 0.267 0.267 0.236 26 28 14 0 15 10 11 0 0.267 3.500 3.500 0.236 12 15 0 13 17 0 14 18 30 32 34 15 17 19 6 Ó 21 23 20 22 24 3,500 0.236 00.236 16 0 3.500 0.236 33 35 18 Û 3,500 19 0,236 0 3.500 20 Ð +++++ DATOS DE LAS BARRAS Area Mod. Elas. Nu F. F. Barra Inerc ^2 Ton /m ^2 Area Mod. Elas. Nu F.F. m ^2 Ton /m ^2 Barra Inercia Inercia A ^4 17 2.039E+07 2.90 2.90 2.90 0.0162 $0.30 \\ 0.30$ 0.00145 2 0.00145 0.0162 13 Ā 0.00145 0.00145 0.0162 5 7 0.0162 0.0162 0.0162 0.00145 0,0162 6 0.00145 0.30 2.90 2.90 2.90 2.90 0.00145 8 0.00145 2.90 0.0162 0.30 9 0.00145 0.0162 ü.30 10 0.00145 0.00145 2.90 11 0.00145 0.0162 0.30 12 0.0162 0.30 13 15 17 0.00082 14 1.89 0.0106 0.00082 0.0106 0.300.30 1.87 0.00082 0-00939 0.30 0.0105 0.301.89 16 0.0807 3.60 0.30 0.00939 0.0807 3.60 18 0.00939 0.0807 3.60 0.0807 2.039E+07 0.30 3.60 19 0.00939 0.00939 0.0807 3.60 200.303.60 2.039E+07 2.039E+07 2.039E+07 2.039E+07 22 24 26 21 0.00939 3.60 0.00739 0.30 0.0807 3.60 23 25 0,00939 3.60 0.00939 0.0807 0.30 0.00939 0.00939 0.0807 0.30

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Provecto : CURSO SEPTIEMBRE 1997 Q=3 Marco : EDIF1 EJES 1 y 6 Fecha : 10-27-1999 ,hora : 15:36:06

Barra	Inercia m ^4	Area Mod. Elas. m ^2 Ton /m ^2	++++ Nu F.F.	+ DATOS DE Barra	LAS BARRAS Inercia a ^4	Area (a ^2	Mod. Elas. Nu Ton Zæ ^2	1 F.F.
27 29 31 33 35	0.00939 0.00741 0.00741 0.00741 0.00741 0.00741	0.0807 2.039E+07 0.0637 2.039E+07 0.0637 2.039E+07 0.0637 2.039E+07 0.0637 2.039E+07 0.0637 2.039E+07	$\begin{array}{ccccc} 0.30 & 3.60 \\ 0.30 & 3.19 \\ 0.30 & 3.19 \\ 0.30 & 3.19 \\ 0.30 & 3.19 \\ 0.30 & 3.19 \end{array}$	28 30 32 34	0.00741 0.00741 0.00741 0.00741 0.00741	0.0637 0.0637 0.0637 0.0637 0.0637	2.039E+07 0. 2.039E+07 0. 2.039E+07 0. 2.039E+07 0.	.30 3.19 .30 3.19 .30 3.19 .30 3.19 .30 3.19
		+++++ CARAU Fuerzas uni Momentos co	CTERISICAS DE iformes en ba oncentrados e	LAS FUERZ Irras In barras	AS. Condicion 1 0. fuerzas cond 0. fuerzas y ma	:entradas el Smentos en l	n barras () nudos 5	

Fuerza 🛊	Nudo	Momento en Z Ton -m	Fuer Fuerza en Y Ton	zas y momentos Fuerza en X Ton	en los nudos Fuerza # Ton m	condi Nudo	cion de carga Momento en Z Ton	1 Fuerza en Y Ton	Fuerza en X
155	21 13 5	$0.00 \\ 0.00 \\ 0.00 \\ 0.00$	0.00 0.00 0.00	28.11 22.81 8.29	2 4	17 7	0.00 0.00	0.00 0.00	30.06 15.55

+++++ CARACTERISICAS DE LAS FUERZAS, Condición 2 Fuerzas uniformes en barras 15, fuerzas concentradas en barras 30 Momentos concentrados en barras 0, fuerzas y momentos en nudos 20

Fuerza #	Barra	Magnitud Ton /m	Distancia A m	Fuerzas unif Distancia B m	ormes er ANGULO orados	a las barr Fuerza #	as, co Barra	ndicion de Naonitud Ton /m	carga 2 Distancia A M	Distancia B @	ANGULO grados
135791135	1 5 7 9 11 13	-1.35 -1.35 -1.35 -1.35 -1.35 -1.35 -1.35 -0.08	6.00 0.00 0.00 0.00 0.00 0.00 0.00	7.00 9.00 7.00 9.00 9.00 9.00 7.00 7.00	90.0 90.0 90.0 90.0 90.0 90.0 90.0	2 4 8 10 12 14	2 4 8 10 12 14	-1.35 -1.35 -1.35 -1.35 -1.35 -1.35 -1.35 -0.08	0.00 0.00 0.00 0.00 0.00 0.00 0.00	7.00 9.00 7.00 7.00 9.00 9.00 7.00	90.0 90.0 90.0 90.0 90.0 90.0 90.0

Fuerza	# Ba	rra l	Magnitud Ton	Fuerzas Distancia A m	concentradas Angulo orados	s en las barra • Fuerza	as condicion # Barra	de caroa Maonitud Ton	2 Distancia A m	i Angulo grados
1 3 7 9 11 13 15 17 21 22 27 29		13579113524680 112524680 1121	-12.51 -12.51 -9.91 -12.51 -12.51 -12.51 -12.51 -10.35 -9.91 -12.51 -12.51 -12.51 -12.51 -12.51 -12.51 -12.51 -12.51	3.00 3.00 2.333 3.00 2.333 3.00 2.333 3.00 3.00	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	2 4 6 10 12 14 16 18 20 22 24 24 26 30	2 4 8 10 12 14 1 5 7 9 11 13 15	$\begin{array}{r} -9.91\\ -12.51\\ -12.51\\ -9.91\\ -12.51\\ -12.51\\ -8.23\\ -12.51\\ -12.51\\ -12.51\\ -12.51\\ -9.91\\ -12.51\\ -9.91\\ -10.35\\ -10.35\end{array}$	$\begin{array}{c} 2.33\\ 3.00\\ 2.33\\ 3.00\\ 2.33\\ 3.00\\ 2.33\\ 4.00\\ 4.66\\ 4.66\\ 4.66\\ 4.66\\ 4.66\\ 4.00\\ 4.66\\ 4.00\\ 4.66\\ 6.00\\ 4.66\\ 6.00\\ 4.66\\ 6.00\\ 4.66\\ 6.00\\$	$\begin{array}{c} & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ & 90.00\\ \end{array}$
Fuerza #	Nudo	Momento Ton	oenZ ∽n¢	Fuerza: Fuerza en Y Fi Ton	s y momentos Jerza en X Ton	en los nudos Fuerza # Ton a	condicion d Nudo Momen	e caroa 2 to en 2 l Ton	uerza en Y Ton	Fuerza en X
1 5 7 9 11 13 15	1 5 7 9 11 13 15		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-2.57 -2.57 -2.24 -2.24 -2.24 -2.24 -2.24 -1.77 -1.77	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	2 4 8 10 12 14 16	2 4 8 10 12 14 16	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00 \end{array}$	-2.57 -2.57 -2.24 -2.24 -2.24 -2.24 -2.24 -1.77 -1.77	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

					ANALISIS E Proye Marco Fecha	STRUCTURAL E ecto : CURSO : EDIF1 : : 10-27-	E MARCOS PL SEPTIEMBRE EJES 1 y 6 1999 tora	ANDS 1999 0=3 : 15:37:16		
Fuerza #	Nudo	Momento (Ton -	en Z Fi	Fuerza uerza en Y F Ton	uerza en X Ton	en los nudos Fuerza # Ton a	condicion Nudo Mome	de carga 2 nto en 2 F Ton	2 Fuerza en Y l Ton	Fuerza en X
17 19	17 19	i i	0.00 0.00	-1.77 -1.77	0.00 0.00	1 8 20	18 20	$0.00 \\ 0.00$	-1.77 -1.77	0.00 0.00
				+++++ CARA Fuerzas un Momentos c	CTERISICAS DE iformes en ba concentrados e	E LAS FUERZAS Inras 15 In barras 0 N	, Condición , fuerzas , fuerzas	3 concentrada y momentos	as en barras en nudos	30 20
Fuerza # E) <u>a</u> rra T	Magnitud on /m	Distan ®	Fuerza cia A Distan f	is uniformes e icia B ANGULO i grados	en las barras]Fuerza # E 5	arra Magni Ton /m	de carga tud Distan (3 ncia A Distan n I	ncia 8 ANGULO n grados
135791135	1 5 7 7 11 15	-1.35 -1.35 -1.35 -1.35 -1.35 -1.35 -0.08 -0.08		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9.00 90.0 9.00 90.0 7.00 90.0 7.00 90.0 9.00 90.0 7.00 90.0 7.00 90.0 9.00 90.0 9.00 90.0 9.00 90.0 9.00 90.0	$\begin{array}{c} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 10 \\ 12 \\ 0 \\ 14 \\ 0 \\ \end{array}$	2 -1 4 -1 6 -1 8 -1 10 -1 12 -1 14 -0	.35 .35 .35 .35 .35 .35 .35 .08	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	7.00 90.0 9.00 90.0 9.00 90.0 9.00 90.0 7.00 90.0 9.00 90.0 9.00 90.0 9.00 90.0 9.00 90.0 9.00 90.0 9.00 90.0
Fuerza	a # Ba	erra Ma	onitud Ton	Fuerzas Distancia A m	a concentradas Angulo grados	a en las barr Fuerza	ras condicio 1 # Barra	n de caroa Maonitud Ton	3 Distancia A M	Angulo grados
1 3 5 7 9 11 13 15 17 21 23 27 29		1 5 7 9 11 13 5 2 4 6 8 10 2 14	-11.25 -11.25 -8.93 -11.25 -9.93 -9.81 -9.81 -9.81 -9.89 -11.25 -11.25 -11.25 -11.25 -7.80	3.00 3.00 2.33 3.00 2.33 3.00 3.00 4.66 6.00 4.66 6.00 4.66	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	2 4 8 10 12 14 16 20 22 24 26 + 30	2 4 8 10 12 14 1 3 5 7 9 11 13 15	-8.93 -11.25 -11.25 -8.93 -11.25 -7.80 -11.25 -7.80 -11.25 -8.93 -11.25 -8.93 -11.25 -8.93 -9.81 -9.81	2.33 3.00 2.33 3.00 2.33 4.00 4.66 4.66 4.00 4.66 4.00 4.66 4.00	90.00 5 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00
Fuerza #	Nudo	Momento Ton -	en ZF na	Fuerza Tuerza en Y F Ton	as y momentos Fuerza en X Ton	en los nudos Fuerza e Ton a	condicion Nudo Mome	de caroa ento en Z Ton	3 Fuerza en Y Ton	Fuerza en X
1 5 7 9 11 13 15 17 19	1 5 7 9 11 13 15 17		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-2.57 -2.57 -2.24 -2.24 -2.24 -2.24 -1.77 -1.77 -1.77 -1.77	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2 4 6 8 10 12 14 16 18 20	2 4 8 10 12 14 16 18 20	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	-2.57 -2.57 -2.24 -2.24 -2.24 -2.24 -1.77 -1.77 -1.77 -1.77	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
				+++++ CAR Fuerzas un Momentos (ACTERISICAS D niformes en ba concentrados a	E LAS FUERZA arras (en barras (GCondición), fuerzas), fuerzas	a 4 concentrad y momentos	as en barras en nudos	0 20
Fuerza #	Nudo	Momento Ton -	en ZF ma	Fuerza Tuerza en Y I Ton	as y momentos Fuerza en X Ton	en los nudos Fuerza # Ton m	s condicion Nuda Mome	de caroa ento en Z Ton	4 Fuerza en Y Ton	Fuerz a en X
1 3 5 7	21 23 17 19		0.00 0.00 0.00 0.00	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00$	8.77 8.77 8.54 8.54	2 4 6 8	22 24 18 20	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	8.77 8.77 8.54 8.54

.

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Provecto : CURSO SEFTIEMBRE 1999 0=3 Marco : EDIF1 EJES 1 y 6 Fecha : 10-27-1999 ,hora : 15:38:22

Fuerza #	Nudo	Momento en Z Ton -m	Fuerza en Y Ton	zas y momentos Fuerza en X Ton	en los nudo Fuerza # Ton #	s condi Nudo	cion de carga Momento en Z Ton	4 Fuerza en Y Ton	Fuerza en X
9 11 13 15 17 19	13 15 9 11 5 7	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 6.00 0.00	0.65 5.65 4.41 4.41 2.14 2.14	10 12 14 16 18 20	14 16 10 12 6 8	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	6.65 6.65 4.41 4.41 2.14 2.14

¢

.

• -

• —

+++++ DATOS DE LAS COMBINACIONES DE CARGA

---- Combinación de carga # 1 , formada por :

1 de la condición 1 0 de la condición 2 0 de la condición 3 0 de la condición 4 Combinación de carga #	2, formada por :
0 de la condición 1 1.4 de la condición 2 0 de la condición 3 0 de la condición 4 Combinación de carga #	3 , formada por :
0 de la condición 1 0 de la condición 2 1.1 de la condición 3 1.1 de la condición 4 Combinación de carga #	4 , formada por :
0 de la condición 1 0 de la condición 2 1.1 de la condición 3 -1.1 de la condición 4	

6 0 M S A Construcciones S. A. de C.V. Edi¹ cio A-12 Desp. 404 Col. Torres de Mixcoac CF 01490 Mxico D.F. Fax. 593-4419

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Provecto : CURSO SEPTIEMBRE 1999 Q=3 Marco : EDIF1 EJES 1 y 6 Fecha : 10-27-1999 ,hora : 15:40:22

Entrepiso	K 1 Q 1 Fuerza Ton	ceces Cortante Ton	o e Despl. R	total	r e p 1 s o Despl. rel.	Rioidez Ton /m
5 4 3 2 1	28.11 30.06 22.81 15.55 8.29	28.11 58.17 80.98 96.53 104.82	7 } }	0.0302 0.0250 0.0185 0.0112 0.0044	0.0052 0.0065 0.0073 0.0069 0.0069	5,371.7 8,966.2 11,145.5 14,029.8 24,094.1

GOMSA	Construcciones S. A. de C.V.	Tels	. 593-4419	F07 0011	ß
Col. Torres CP 01490 Mx	de Nixcoac ico D.F.	Fax.	593-3161 593-4419	070-2011 (ģ

5

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 0=3 Marco : EDIF1 EJES 1 y 6 Fecha : 10-27-1999 ,hora : 15:40:32

.

Desplazamie Condición De carga	entos 61ro en Z (MAX) Rads.	Nudo	Giro en Rads	Z (MIN)	Nudo	
12345678	0.00000 0.00025 0.00024 0.00000 0.00000 0.00035 0.00000 0.00264	1 24 24 1 24 1 24 1	-0. -0. -0. -0. -0. -0. -0. 0.	00200 00025 00024 00231 00200 00035 00264 .00000	9 21 21 12 9 21 7 1	
Condición De carga	Despl. en Y (NAX) m	Nudo	Despl. e	en Y (MIN)	Nudo	
1 23 4 5 6 7 8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	21 1 21 21 1 1 1		-0.000 -0.001 -0.001 -0.000 -0.000 -0.000 -0.001 -0.001 -0.001	24 22 24 24 24 22 23 23 22	
Condicion De carça	Despl. en X (MAX) m	Nudo	Despl. a	en X (MIN)	Nudo	
1 2 3 4 5 6 7 8	$\begin{array}{c} 0.031 \\ 0.000 \\ 0.000 \\ 0.036 \\ 0.031 \\ 0.001 \\ 0.040 \\ 0.000 \end{array}$	21 21 24 24 21 21 21 21 1		0.000 -0.000 -0.000 0.000 -0.000 -0.001 0.000 -0.040	1 24 24 1 24 1 24 -	
Elementos Condición De carga	Necanicos Mom. Flexionante Ton-m	(Max)	Barra Mo	om. Flexio To	nante (MIN) n-œ	Barra
1 2 	49.11 18.30 17.08 57.36 49.11 25.62 69.45 165.45		25 31 25 25 31 25 18	-	127.90 -29.29 -27.25 149.33 127.90 -41.00 165.46 -74.21	17 1 18 17 1 17 17 4
Condición De carga	Fza. Cortante (1 Ton	1AX)	Barra	Fza. Cort T	ante (MIN) on	Barra
1 23 45 6 7 8	29.14 18.67 17.41 34.11 29.14 26.14 41.25 29.62		21 12 21 21 12 21 12 21 5		-11.18 -18.67 -17.41 -13.24 -11.18 -26.14 -29.59 -41.25	5 10 10 5 5 10 5 22

• ٦,

. .

.

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Provecto : CURSO SEPTIEMBRE 1999 Q=3 Marco : EDIF1 EJES 1 y 6 Fecha : 10-27-1999 ,hora : 15:40:53

				1 4 4 1 4 4	10 LI
Condicion \ carga	Fza. Axial Ton	(MAX) Barra	Fza. Axia To	al (MIN) N	Barra
12345478	30.2 2.4 35.2 30.2 3.6 5.5	21 16 39 3 22 16 21 16 21 16 21 16 21 16 31 3 32 1 33 3 34 35 35 35 35 35 35 35 35 35 35 35 35 35	-1 -1 -1 -2 -2 -1	29.22 50.57 50.63 35.23 29.22 24.80 84.54 84.71	19 17 17 19 19 17 18 17
+++++ REACCION	ES. CONDICION Nudo	DE CARGA 1 Momento en Z Ton-m	Fuerza en Y Ton	Fuerza en Ton	X
	1 2 3 4	126.64 127.90 125.74 118.90	-30,21 -13,86 14,86 29,22	-24.74 -28.93 -28.34 -22.81	
+++++ REACCION	ES, CONDICION Nudo	DE CARGA 2 Momento en Z Ton-m	Fuerza en Y Ton	Fuerza en Ton	X
	1 2 3 4	-6.03 1.18 -1.17 6.05	95.53 163.14 162.97 95.53	5.34 -1.67 1.67 -5.35	
+++++ REACCION	IES, CONDICION Nudo	l DE CARGA J Momento en Z Ton-m	Fuerza e n Y T o n	Fuerza en Ton	X
	1 2 3 4	-5.61 1.08 -1.08 5.63	87.96 153.20 153.05 87.96	4.97 -1.54 1.54 ~4.97	
+++++ REACCION	ES. CONDICION Nudo	IDE CARGA 4 Momento en Z Ton-ma	Fuerza en Y Ton	Fuerza en Ton	X
	1 2 3 4	142.72 149.33 149.33 142.72	-35,23 -17,28 17,28 35,23	-27.40 -33.62 -33.62 -27.40	
+++++ REACCION	ES, CONDICION Nudo	IDE CARGA 5 Momento en Z Ton-m	Fuerca en Y Ton	Fuerza en Ton	X
	1234	126.64 127.90 125.74 118.90	-30,21 -13,85 14,86 29,22	-24.74 -28.93 -28.34 -22.81	
+++++ REACCION	ES. CONDICION Nudo	lDECARGA 6 Momento en Z Ton-m	Fuerza en Y Ton	Fuerza en Ton	X
	1 2 3 4	-8.45 1.65 -1.63 8.46	133, 74 228, 39 228, 16 133, 74	7.48 -2.34 2.34 -7.48	
+++++ REACCION	ES, CONDICION Nudo	l DE CARGA 7 Momento en Z Ton-m	Fuerza en Y Ton	Fuerza en Ton	X
	1 2 3	150,81 165,46 163,08	60.20 149.50 187.36	-24.67 -38.68 -35.28	

- -

. -

-

,

.....

.

.

-- --

٠
ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 Q=3 Marco : EDIF1 EJES 1 y 6 Fecha : 10-27-1999 ,hora : 15:41:59

•

.

.....

.

.

**+	REACCIONES, CONDICION Nudo	DE CARGA 7 Momento en Z Ton-m	Fuerza en Y Ton	Fuerza en X Ton
	4	163,18	137.71	-35.61
**+ *	REACCIONES. CONDICION Nudo	DE CARGA 8 Momento en Z Ton-m	Fuerza en Y Ton	Fuerza en X Ton
	1 2 3 4	-163.16 -163.07 -165.45 -150.80	137.71 187.53 149.34 60.20	35.61 35.28 38.58 24.67

.

•

.

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Provecto : CURSO SEPTIENBRE 1999 Q=3 Marco : EDIFI EJES 1 y 6 Fecha : 10-27-1999 ,hora : 15:42:05

RESTRICCIONES DEL NUDO : 0 si el nudo SI puede desplazarse 1 si el nudo NO puede desplazarse.
TIPO DE BARRA : O momentos en A y B no nulos 1 extremo A articulado, momento en B no nulo 2 extremo b articulado, momento en A no nulo 3 ambos extremos articulados.

- --LAS FUERZAS EXTERNAS Y LOS ELEMENTOS MECANICOS, ESTAN REFERENCIADOS AL SISTEMA LOCAL DE LA BAFRA.
- --LAS FUERIAS EXTERNAS. LOS DESPLAZAMIENTOS Y LA COMPROBACIÓN DEL EQUILIBRIO NODAL, ESTA REFERENCIADO AL SISTEMA BLOBAL.
- --EN LOS NUDOS DONDE LA SUMATORIA DE FUERZAS NO ES NULA. EXISTE UNA REACCION CON LAS MISMAS CARACTERISTICAS QUE AHI SE INDICAN (REFERENCIADA AL SISTEMA GLOBAL).
- -- CONVENCION DE SIGNOS PARA EL SISTEMA GLOBAL :

· ·

--CONVENCION DE SIGNOS PARA EL SISTEMA LOCAL :

6 0 M S A Construcciones S. A. de C.V. Tels. 593-4419 593-2811 # Edi¹ cio A-1. Col. Torres de Mixcoac cio A-12 Desp. 404 593-3161 CP 01490 Mxico D.F. Fax. 593-4419 ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 Q=3 Marco : EDIF1 EJES 2,3,4 y 5 Fecha : 10-27-1999 ,hora : 15:43:41 35 24 Barras Nudos 4 Condiciones de carga Combinaciones de carga 4 Fuerzas en Ton Longitudes en a +++++ DATOS DE LOS NUDOS Nudo Coord. en X Coord. en Y Restr. (giro, en X, en Y) Nudo Coord. en X Coord. en Y Restr. (giro, en X, en Y) Ø ۵ Ð æ 24 0.000 0.000 9.000 0,000 13579 1 1 1 1 0.000 25.000 0.000 ī ĩ 16.000 1 1 1 1 4.000 Ō Ō 9.000 4.000 Û Û 0.000 0 6 Ū 25.000 4.000 7.500 Ò 0 16.000 0 0 0 8 4.000 0 . 9.000 25.000 7.500 0.000 0 0 0 10 Q 0 Q 7.500 Û 0 16.000 7.500 0 0 0 Û 11 12 13 15 0 0 11.000 14 9.000 0.000Q 0 0 11.000 Q 25.000 9.000 11,000 0 Û Û. 11,000 Û 0 0 16.000 16 0 0 0 14.500 14.500 Ô 0 0 17 14.500 0 18 20 22 24 0.000 Q. 19 21 23 14.500 0 0 25.000 Û, Û Û 16.0009.000 Ó 0 18.000 0 0 0 0 0.000 18.000 25.000 16.000 18,000 0 18.000 +++++ DATOS DE LAS BARRAS Barra Origen Destino Tipo Longitud C(Cortante) Barra Origen Destino Tipo Longitud C(Cortante) đi. ø 0.025 0.025 0.041 9.000 2 7.000 5 Û -0 1 6 9 9.000 4 0.025 9.000 7 100 3 8 Q. 0.041 0.025 0.025 0.025 7.000 12 0 9.000 579 10 0 6 11 11 9.000 7.000 0.041 8 14 15 Q Ũ 13 14 0.025 15 16 0 9,000 10 17 18 0 9.000 17 19 22 1 3 5 7 19 22 24 Ō 0 7.000 0.041 +12 20 23 5 7 9 9.000 18 11 0.023 9.000 14 0 7.000 13 21 23 2 4 Ò. 0.014 15 17 0 9.000 0.014 Ø 4.000 0.204 16 4.000 0.202 18 20 22 24 26 Û 0.202 6 0 4.000 0.267 19 21 22 25 27 29 31 33 5 8 0 4.000 Ō 0.264 Ū. 3.500 11 0 0.264 6 10 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 3.500 9 ŏ 0.267 8 12 0 0.267 13 11 13 15 15 17 10 12 14 Ü 0.264 Ó 0.264 14 0.236 28 Ó Ũ 0.267 16 3.500 3.500 3.500 3.500 19 21 23 30 32 34 18 Ũ 0.264 0 20 22 24 0.236 Ō 0.236 17 0 16 19 3.500 0.264 0.264 Ó 18 Û 20 Ũ 3.500 +++++ DATOS DE LAS BARRAS Area Mod. Elas. Nu F.F. Barra Inerci ^2 Ton /a ^2 Area Mod. Elas. Nu F.F. a ^2 Ton /a ^2 Inercia Barra Inercia ល ^4 R 0.0162 2.039E+07 0.30 0.0106 2.039E+07 0.30 0.0106 2.039E+07 0.30 0.0706 2.039E+07 0.30 0.0706 2.039E+07 0.30 0.0807 2.039E+07 0.30 0.0807 2.039E+07 0.30 2.039E+07 $\begin{array}{cccccc} 0.30 & 2.90 \\ 0.30 & 2.90 \\ 0.30 & 2.90 \\ 0.30 & 2.90 \\ 0.30 & 2.90 \\ 0.30 & 2.90 \\ 0.30 & 2.90 \\ 0.30 & 2.90 \\ \end{array}$ $\begin{array}{ccc} 0.30 & 2.90 \\ 0.30 & 2.90 \end{array}$ 0.00145 0.00145 0.0162 2 1 2.90 ã 0.0162 0.00145 0.00145 3579 0.00145 0.00145 0.00145 0.30 0.30 0.0162 6 0.0162 0.0162 0.0162 0.0162 0.00145 2.90 8 2.90 2.90 0.00145 0.30 10 0.00145 0.30 0.30 11 15 17 19 21 25 0.00145 12 0.00145 0.00082 1.89 0.00082 1.87 14 0.0106 0.30 0.30 0.30 0.00082 1.89 0.0807 16 3.60 18 20 22 0.00830 0.0706 3.53 0.00830 3.53 3.60 3.53 3.60 0.00939 0.00939 0.0807 3.60 0.30 0.00830 3.53 0.00830 0.0706 2.039E+07 2.039E+07 24 0.0807 0.00939 0.00939 0.30 3.60 0.00830 3.53 26 0.00830 0.0706 0.30 3.53

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 D=3 Marco : EDIF1 EJES 2.3,4 y 5 Fecha : 10-27-1999 ,hora : 15:44:15

arra	Inercia m ^4	Area Mod. Elas. m ^2 Ton /m ^2	*+++ Nu F.F.	+ DATOS DE L Barra	AS BARRAS Inercia nº ^4	Area a ^2	Mod. Elas. Ton /m ^2	NU F.F.
27 29 31 33 35	0.00939 0.00830 0.00741 0.00830 0.00830 0.00741	0.0807 2.039E+07 0.0706 2.039E+07 0.0637 2.039E+07 0.0706 2.039E+07 0.0637 2.039E+07	0.30 3.60 0.30 3.53 0.30 3.19 0.30 3.53 0.30 3.53 0.30 3.19	28 30 32 34	0.00741 0.00830 0.00741 0.00830	0.0637 0.0706 0.0637 0.0706	2.039E+07 2.039E+07 2.039E+07 2.039E+07 2.039E+07	$\begin{array}{cccc} 0.30 & 3.19 \\ 0.30 & 3.53 \\ 0.30 & 3.19 \\ 0.30 & 3.53 \end{array}$

.

-.

...

· •.

.

+++++ CARACTERISICAS DE LAS FUERZAS. Condición 1 Fuerzas uniformes en barras 0, fuerzas concentradas en barras Momentos concentrados en barras 0, fuerzas y comentos en nudos Û 5

Fuerza #	Nudo	Momento en Z Ton -m	Fuer Fuerza en Y Ton	zas y momentos Fuerza en X Ton	en los nudos Fuerza # Ton m	s condi Nudo	cion de caroa Momento en Z Ton	1 Fuerza en Y Ton	Fuerza en X
135	21 13 5	0.00 0.00 0.00	0.00 0.00 0.00	28.11 22.81 8.29	24	17 9	$0.00 \\ 0.00$	$0.00 \\ 0.00$	30.06 15.55

+++++ CARACTERISICAS DE LAS FUERZAS, Condición 2 Fuerzas uniformes en barras 15, fuerzas concentradas en barras 30 Momentos concentrados en barras 0, fuerzas y momentos en nudos 20

Fuerza #	Barra	Magnitud Ton /m	Distancia A	Fuerzas unif Distancia B M	ormes en ANGULO grados	i las barr Fuerza #	as, com Barra	ndicion de Magnitud Ton /m	carga 2 Distancia A m	Distancia B M	ANGULO grados
1 3 5 7 9 11 13	1 3 5 7 9 11 13	-0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.08 -0.08	0.00 0.00 0.00 0.00 0.00 0.00 0.00	9.00 9.00 7.00 9.00 9.00 7.00 9.00	90.0 90.0 90.0 90.0 90.0 90.0 90.0	2 4 10 12 14	2 4 8 10 12 14	-0.30 -0.30 -0.30 -0.30 -0.30	0.00 0.00 0.00 0.00 0.00 0.00 0.00	7.00 9.00 7.00 7.00 9.00 9.00 7.00	90.0 90.0 90.0 90.0 90.0 90.0 90.0

Fuerza	# Bar	ra Magnitud Ton	Fuerzas Bistancia A ©	concentradas Angulo grados	s en las barra + Fuerza	as condici # Barra	on de carga Magnitud Ton	2 Distancia A m	Angulo grados
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29	1111	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.00 3.00 2.33 3.00 2.33 3.00 3.00 4.66 6.00 4.60 6.00 4.66	90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00	2 4 	2 4 6 8 10 12 14 13 5 7 9 11 13 15	$\begin{array}{r} -19.81\\ -25.01\\ -25.01\\ -25.01\\ -25.01\\ -25.01\\ -25.01\\ -25.01\\ -25.01\\ -25.01\\ -25.01\\ -25.01\\ -25.01\\ -25.01\\ -25.01\\ -25.04\\ -20.69\\ -20.69\end{array}$	2.33 3.00 2.33 3.00 2.33 4.00 4.00 4.00 4.00 4.00 4.00 6.00 6.00	90.00 90.00
Fuerza #	Nudo	Momento en Z Ton -m	Fuerza Fuerza en Y F Ton	s y aomentos uerza en X Ton	en los nudos Fuerza # Ton a	condicion Nudo Mom	de carga ento en Z Ton	2 Fuerza en Y Ton	Fuerza en X
1 5 7 9 11 13 15	1357 911 15	0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00	-2.56 -2.24 -2.24 -1.96 -2.24 -1.96 -1.77 -1.96	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	2 4 8 10 12 14 16	2 4 8 10 12 14 16	$\begin{array}{c} 6.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	-2.24 -2.56 -1.96 -2.24 -1.96 -2.24 -1.96 -1.77	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

								anal	ISIS E Proye Marco	STRU cto	CTURAL CURSD EDIF1	DE MAR SEPTI EJES	CDS PLA EMBRE 19 2,3,4 y	¥05 799 Q=3 15•45•23	,			
	Fuerza	L #	Nudo	Momento Ton	en ZF	F uerza en Ton	uerza: Y Fi	s y mon Jerza e Tor	necha Ientos In X	en li Fi Ton	os nudo uerza #	s cond Nudo	icion d Moment	e Carga to en Z Ton	2 Fuerza en Ton	Y Fi	uerza (en X
	17 . 19		17 19		0.00	-1. -1.	77 96	().00).00		18 20	18 20		0.00	-1,9	6 7		0.00 0.00
					-	+++++ Fuerz Momen	CARAI as un tos ci	CTERISI iformes oncentr	CAS DE en ba ados e	LAS rras n ba	FUERZA 1 rras	S. Con 5 fu 0 , fu	dición erzas ci erzas y	3 oncentrad Gom entos	las en barr a en nudos	as	3 0 20	
Fu	ierza †	t Ba	irra T	Magnitud on /m	Distan	F Cla A D	uerza: 1stan R	s unifo cia B	rnes e ANGULO grados	n la Fue	s barra rza #	s, con Barra	dicion Naonit Ton /m	de carga ud Dista	3 Incia A Di M	stan M	cia B	ANGULO grados
	1 5 7 9 11 13 15		1 5 7 9 11 13 15	-0.30 -0.30 -0.30 -0.30 -0.30 -0.08 -0.08		0.00 6.00 6.00 0.00 6.00 0.00 0.00 0.00		9.00 9.00 7.00 9.00 9.00 7.00 9.00 9.00	90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0		2 4 8 10 12 14	2 4 6 8 10 12 14	-0. -0. -0. -0. -0. -0.	30 30 30 30 30 30 08	0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00		7.00 9.00 9.00 7.00 9.00 9.00 7.00	90.0 90.0 90.0 90.0 90.0 90.0 90.0
	Fu	≘rza	# B	arra M	laonitud Ton	Fu Distanc M	erzas ia A	conce Angu grad	ntradas lo DS	i en	las bar Fuerz	ras co a # I	ondicion Jarra	de caro Magnitu Ton	a 3 d Distanci m	аA	Angu grad	10 05
	<i></i>	13579113157911325729		1 3 5 7 9 11 13 5 2 4 8 0 2 4 12 2 4 12 2 4 12 2 4 12 2 12 12 12 12 12 12 12 12 12 12 12 1	-22.49 -22.49 -17.85 -22.49 -17.85 -19.61 -17.85 -22.49 -22.49 -22.49 -22.49 -22.49 -22.49 -15.61		3.00 2.33 3.00 2.33 3.00 2.33 3.00 4.66 4.60 4.66 4.66 4.66	90. 90. 90. 90. 90. 90. 90. 90. 90. 90.	00 00 00 00 00 00 00 00 00 00 00 00 00		4 8 8 10 12 14 16 20 22 24 24 24 24 24 24 24 24 24 30		24 6 80 12 14 13 5 7 9 11 13 5	-17.8 -22.4 -22.4 -22.4 -22.4 -22.4 -15.6 -22.4 -15.6 -22.4 -17.8 -22.4 -17.8 -17.8 -17.8 -19.6	599591995511	- 33 - 00 - 00 - 00 - 00 - 00 - 66 - 00 - 00	90. 90. 90. 90. 90. 90. 90. 90. 90. 90.	00 00 00 00 00 00 00 00 00 00 00 00 00
•.	Fuerz	a #	Nudo	Momento Ton	jenZi −na	Fuerza er Ton	uerza Y F	is v ao uerza To	nentos en X N	en (Ton	los nude Tuerza (¢	os cona 1 Nuda 1	dicion d Momen	e carga to en Z Ton	3 Fuerza en Ton	ΥF	uerza	en X ·
	1 3 7 7 11 13 15 17		1 3 5 7 9 11 13 15 17 19		$\begin{array}{c} 0.66\\ 0.00\\$	-2. -2. -1. -1. -1. -1. -1.	56 24 24 96 24 96 77 96 77 96		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		2 4 8 10 12 14 16 18 20		2 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-2. -2. -1. -2. -1. -2. -1. -2. -1. -1. -1. -1.	24 16 24 24 24 27 77 77		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
						+++++ Fuer: Momer	- CARA as un itos c	CTERIS iforme concent	ICAS Dé s en ba rados e	E LAI Innas Innas	5 FUERZA s arras	15, Con 0 , fi 0 , fi	ndición uerzas c uerzas y	4 oncentra momento	das en bari s en nudos	as	0 20	
	Fuerz	a #	Nudo	Momento Ton	oenZl −ar	Fuerza er Ton	uerza Y F	is y n o Verza To	mentos en X n	en Ton	los nudo Fuerza (r	os cona E Nuda R	dicion d D Momer	le carga Ito en Z Ton	4 Fuerza en Ton	ΥF	ⁱ uerza	en X
	1 3 5 7		21 23 17 19		0.00 0.00 0.00 0.00	0. 0. 0. 0.	00 00 00 00		7.71 7.71 7.53 7.53		2 4 8	2) 2- 11 2-	2 4 8 0	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00$	0.(0.(0.(0.()0)0)0)0		7.71 7.71 7.53 7.53

-

-

.

.. .

. ..

ANALISIS ESTRU	C1	rural	DE MA	RCOS	PLA	inds	
Provecto	:	CURSO	SEP1	IEMB	RE 1	999 6)=3
Marco	;	EDIF1	EJES	2.3.	4 v	15	
Fecha	:	10-27	-1999	hoi hoi	ĥa î	15:4	6:33

Fuerza #	Nudo	Momento en Z Ton -m	Fuerza en Y Ton	zas y momentos Fuerza en X Ton	en los nudos Fuerza # Ton m	condi Nudo	cion de carga Momento en Z Ton	4 Fuerza en Y Ton	Fuerza en X
9	13	0.00	0.00	5.50	10	14	0.00	0.00	5.50
11	15	0.00	0.00	5.50	12	16	0.00	0,00	5.50
15	11	0.00	0.00	3.57	14	12	0.00	0.00	3.37
17	5	0.00	0.00	1.53	18	6	0.00	0.00	1.53
19	7	0.00	6.00	1,53	20	. 8	0.00	0.00	1.53

.

- .

+++++ DATOS DE LAS COMBINACIONES DE CARGA

---- Combinación de carga # 1 , formada por :

1 de la condición 1 0 de la condición 2 0 de la condición 3 0 de la condición 4 ----- Combinación de carga # 2 , formada por : 0 de la condición 2 0 de la condición 3 0 de la condición 4 ----- Combinación de carga # 3 , formada por : 0 de la condición 1 0 de la condición 2 1.1 de la condición 3 1.1 de la condición 4 ----- Combinación de carga # 4 , formada por : ---0 de la condición 3 1.1 de la condición 3 -1.1 de la condición 4

.....

 6 0 M S A
 Construcciones S. A. de C.V.
 Tels. 593-4419

 Edi1
 cic A-12 Desp. 404
 593-2811 #

 Col. Torres de Mixcoac
 593-3161 #

 CP 01490 Mxico D.F.
 Fax. 593-4419 #

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 Q=3 Marco : EDIF1 EJES 2.3.4 y 5 Fecha : 10-27-1999 ,hora : 15:47:57

Entreoiso	Rigi Fuerza Ton	deces Cortante Ton	de Despl. 0	Entr total	vepiso Despl.rel. n	Rigidez Ton /a
5	28.11	26.1	L	0.0307	0.0053	5.337.4
4	30.06	58.1	7	0.0255	0.0045	8,952.7
3	22.81	80.9	3	0.0190	0.0074	10.950.3
2	15.55	76.5	3	0.0116	0.0071	13.666.2
1	8.29	104.8	2	0.0045	0.0045	23.237.9

GONSA	Construcciones S. A. de C.V.	Tole	503_4419		
Edij Col Tonres	cio A-12 Desp. 404	1612	507_7121	⁸ 593-2811	-
CP 01490 M	nco D.F.	Fax.	593-4419	E _5	

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 0=3 Marco : EDIF1 EJES 2,3.4 y 5 Fecha : 10-27-1999 ,hora : 15:48:07

•

Desolazami Condición De carga	entos Giro en Z (MAX) Rads.	Nudo	Giro en S Rads	Z (MIN)	Nudo	
1 23 4 5 6 7 8	0.00660 0.60056 0.00047 0.06000 0.00000 0.00076 0.00076 0.00000 0.00238	1 24 24 1 24 1 24 12).).).).).).	00205 00050 00047 00203 00205 00070 00238 00000	9 21 21 9 21 21 21 1	
Condición De carga	Despl. en Y (MAX) ø	Nudo	Despl. e	n Y (MIN)	Nudo	
1 234 5 6 7 8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	21 1 21 21 1 1		-0.600 -0.002 -0.002 -0.000 -0.000 -0.002 -0.002 -0.002 -0.002	24 22 24 24 22 23 22 23	
Condicion carga	Despl. en X (MAX) m	Nudo	Despl. e	n X (MIN)	Nudo	
12345678	$\begin{array}{c} 0.032\\ 0.001\\ 0.001\\ 0.032\\ 0.032\\ 0.032\\ 0.001\\ 0.035\\ 0.000\\ \end{array}$	21 21 21 21 21 21 21 21 21		0,000 -0.001 -6.001 0.000 -0.000 -0.001 0.000 -0.035	1 24 24 1 24 24 24	Ŧ
Elementos Condición De carga	Mecanicos Mom. Flexionante Ton-m	(Max)	Barra Mo	wa. Flexio To	nante (MIN) O-m	Barra
1 2 3 4 5 6 7 8	49, 15 35, 30 33, 46 49, 94 49, 15 49, 42 62, 75 147, 60	:	29 35 35 29 29 35 29 35 29 10	-	131.20 -42.92 -36.83 126.24 131.20 -60.08 147.63 -81.43	16 9 16 16 9 19 4
Condición De carga	Fza. Cortante (Ton	Max)	Barra	Fza. Cort T	ante (MIN) on	Barra
12345678	28.51 26.51 23.98 28.62 28.51 37.12 36.85 34.96		21 7 21 21 21 21 21 4		-11.26 -26.51 -23.99 -11.50 -11.26 -37.12 -34.86 -36.85	59955962 22

.

.

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEFTIEMBRE 1999 0=3 Marco : EDIF1 EJES 2.3,4 y 5 Fecha : 10-27-1999 ,hora : 15:48:26

.

Condición De carga	Fza.	Axial (M Ton	AX) Barra	Fza. f	akial (MIN) Ton	Barra
1 2 3 4 5 6 7 8		30.60 3.76 3.40 30.90 30.60 5.26 6.76 6.76	163 33 164 31 163 163 163 163 163 163 163 163 163		-29.61 -234.90 -215.05 -30.90 -29.61 -328.86 -252.64 -252.97	19 17 19 19 19 17 18 17
+++++ REACCIO	NES, C Nudo	ONDICION	DE CARGA 1 Momento en Z Ton-m	Fuerza en Ton	Y Fuerza Ton	en X
	1234	-	131.20 118.47 116.54 123.45	-30.6 -13.8 14.8 29.6	$ \begin{array}{cccc} 0 & -25, \\ 3 & -27, \\ 2 & -27, \\ 1 & -23, \\ \end{array} $.86 .79 .25 .92
+++++ REACCIO	NES, C Nudo	ONDICION	DE CARGA 2 Momento en 2 Ton-m	Fuerza en Ton	Y Fuerza Ton	en X
			-8.78 1.80 -1.79 8.81	137.0 237.1 236.8 137.1	9 7 4 -2 2 2 0 -7	. 78 . 50 . 50 . 78
++++ REACCIO	NES, (Nudo	CONDICION	DE CARGA 3 Momento en 7 Ton-m	Z Fuerza en Ton	Y Fuerza Ton	en X
	1 2 3 4		-7.94 1.62 -1.61 7.96	125.9 217.2 216.9 125.9	3 7 9 -2 9 2 4 -7	.03 .25 .25 .04
+++++ REACCIC	NES. (Nudo	CONDICION	DE CARBA 4 Momento en Ton~a	Z Fuerza en Ton	Y Fuerza Ton	en X
	1 2 3 4		126.24 117.98 117.98 117.98 126.24	-30.9 -14.9 14.9 30.9	20 -24 22 -27 22 -27 20 -24	. 28 . 40 . 40 . 28
+++++ REACCIO	NES. I Nudo	CONDICION	DE CARGA 5 Momento en Ton-m	Z Fuerza er Ton	Y Fuerza Ton	en X
	1 2 3 4		131.20 118.47 116.54 123.45	-30.8 ~13.8 14.8 29.8	90 -25 13 -27 12 -27 51 -23	.86 .79 .25 .92
+++++ REACCIO	INES, Nudo	CONDICION	DE CARGA 6 Momento en Ton~m	Z Fuerza er Ton	i Y Fuerza Ton	i en X
	1 2 3 4		-12,30 2,53 -2,50 12,34	191.9 332.0 331.5 191.9	23 10 00 -3 55 3 25 -10	. 89 . 50 . 50 . 90
++++ REACCI	INES, Nuda	CONDICION	DE CARGA 7 Momento en Ton-n	Z Fuerza er Ton	n Y Fuerza Ton	i en X
	1 2 3		130.14 131.57 128.02	104.5 222.7 255.	54 -18 50 -32 11 -27	1.98 2.61 7.66

•

.

ANALISIS ESTRU	ICTURAL	DE MARCOS	PLANOS
Proyecto	: CURSE) SEPTIEMBR	E 1999 0=3
Marco	: EDIF1	EJES 2,3.	4 y 5
Fecha	: 10-27	7–1999 hor	va i 15:49:38

· ...

۰. ۰. ۲

.

4

.

				Marco Fecha	:	EDIF1 EJES 2,3,4 y 5 10-27-1999 ,hora : 15:49:38
+++++ REACCIO	NES. CONDICION Nudo	DE CARGA 7 Momento en Z Ton-m	Fuerza en Y Ton	Fuerza Ton	en	X
	4	147.63	172,53	-34.	45	
+++++ REACCIO	NES, CONDICION Nuda	DE CARGA 8 Momento en Z Ton-m	Fuerza en Y Ton	Fuerza Ton	en	X
	1 2 3 4	-147.60 -128.00 -131.55 -130.11	172.52 255.43 222.28 104.55	34. 27. 32. 18.	45 66 62 97	

.

ц. I

.

.

•• •

.

• •

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 0=3 Marco : EDIF1 EJES 2.3,4 y 5 Fecha : 10-27-1999 ,hora : 15:50:37

RESTRICCIONES DEL NUDO : O si el nudo SI puede desplazarse 1 si el nudo NO puede desplazarse.
TIPO DE BARRA : O momentos en A y B no nulos 1 extremo A articulado, momento en B no nulo 2 extremo b articulado, momento en A no nulo 3 ambos extremos articulados.
LAS FUERZAS EXTERNAS Y LOS ELEMENTOS MECANICOS, ESTAN REFERENCIADOS AL SISTEMA LOCAL DE LA BARRA.

- --LAS FUERZAS EXTERNAS. LOS DESPLAZAMIENTOS Y LA COMPROBACION DEL EQUILIBRIO NODAL, ESTA REFERENCIADO AL SISTEMA GLOBAL.
- --EN LOS NUDOS DONDE LA SUMATORIA DE FUERZAS NO ES NULA. EXISTE UNA REACCION CON LAS MISMAS CARACTERISTICAS QUE AHI SE INDICAN (REFERENCIADA AL SISTEMA GLOBAL).
- -- CONVENCION DE SIGNOS PARA EL SISTEMA GLOBAL :

.....

--CONVENCION DE SIGNOS PARA EL SISTEMA LOCAL :

6 0 M S A Construcciones S. A. de C.V. Tels. 593-4419 593-2811 # cio A-12 Desp. 404 Edi Col. Torres de Mixcoac 593-3161 II CF 01490 Mxico D.F. Fax. 593-4419 ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 Q=3 Marco : EDIF 1 EJES A y D : 10-27-1999 ,hora : 15:51:48 Fecha 55 36 Barras Nudos Condiciones de carga 4 Combinaciones de carga 4 Fuerzas en Ton Longitudes en æ +++++ DATOS DE LOS NUDOS Nudo Coord, en X Coord, en Y Restr. (giro, en X, en Y) Nudo Coord, en X Coord, en Y Restr. (giro, en X, en Y) ñ ß £. A 0.0000.000 2 12,000 0.000 1 1 1 1 1 24.000 0.000 3579 0.000 4 36.000 1 .1 1 1 1 1 48.000 0.000 1 60.000 0.000 1 1 1 1 6 1 0.0004,000 Û 0 0 θ 12.000 4,000 Û 0 Û 24.000 Ô Ò Ò 4.000 0 Û 36.000 4.000 Û 10 11 48,000 4.000 6 Û 12 Ó 0 Û Ŷ, 60.000 4.000 13 15 0.000 24.000 7.500 7 500 7 500 0 14 12,000 0 0 0 Û Û ò Ō Ò 0 Û, 16 36.000 6 17 48.000 7.500 0 0 0 18 60.000 7.500 Û Q Û 11.000 0 0 19 21 22 22 27 27 33 35 0.000 12,000 Û 0 20224280233333 0 0 0 11.000 24.000 0 Û 11.000 Q Q 36.000 11.000 Q 48.000 11.000 0 0 Û 0 0 60,000 11.000 0 Õ Ō Ò Ô Ő 0.000 14.500 0 12.000 14.500 14.500 14.500 24,000 14.500 Q, Q 0 36.000 0 Û, 0 48,000 14.500 Q. 0 60,000 0 0 0 Ô 0 (0.00)18.000 Ū, 6 0 12,000 18.000 0 Û 24.000 18.000 36.000 Û 0 Û Ū. 18,000 Û 0 48.000 0 18.000 ñ Ô 18.000 ß 60.000 Û ŵ +++++ DATOS DE LAS BARRAS Longitud C(Cortante) Barra Oricen Destino Tipo Barra Orioen Destino Tipo Longitud C(Cortante) តា m $12,000 \\ 12,000$ 0.016 0.016 2 12.000 12.000 12.000 7 8 Ű, 8 9 0.016 0 1357 ā 9 Q 0.016 10 10 11 0 12.000 12.000 12.000 12.000 12.000 12 15 17 0.016 11 Ú. 0.015 13 6 14 0 12.000 14 0 8 0.016 15 16 0 0.016 9 16 6 0.015 10 17 18 0 0.016 . 12.000 19 21 23 26 28 31 33 12 $\frac{1131579}{1222222333379435}$ 20 22 27 27 27 27 27 27 37 36 8 0 0.016 20 22 25 27 27 32 34 21 23 26 20 30 30 30 7 Ó 0.016 12.000 12.000 12.000 Ō 14 0,016 0 12,000 0.016 0.016 12.000 12.000 Û Ō 0.015 16 18 Û 6,016 0 0.016 12.000 12.000 Ú, 0.016 20 Û 0.016 12.000 12.000 12.000 0.008 12.000 0.008 Ô. 22468023334680 Ô Õ 0.005 0 0.008 35 2 0.008 0 0.018 0 4.000 1757 0.018 ġ () 0 4,000 4.000 0.018 4 Û 10 4,000 0.018 11 Û 4.000 0.018 13 0.018 12 Û 4.000 Ó 3.500 0.023 6 3.500 3.500 3.500 9 14 Ŵ 3.500 3.500 3.500 8 0.023 0.023 15 0.023 Ū 10 16 0 11 17 0,023 0 19 21 0.023 12 Q 0,023 13 0 3.500 3.500 3.500 Q 0.023 14 15 0 3.500 0.023 3.500 3.500 3.500 0.023 Q 0.023 42 17 19 21 23 25 27 23 25 27 27 31 33 Ō 16 Ó 0.023 18 44 0,023 Û 3,500 3,500 3,500 3,500 3,500 20 Ø 0.023 46 0.023 0 22 24 3.500 3.500 3.500 47 Û 0.023 48 Û 0,023 49 Q 0.023 0.023 50 Ò $\bar{2}\bar{6}$ 0 0 0.023 51 0.023 52 0 53 55 29 28 30 3.500 0.023 54 35 0.023 0 3,500 Û 0.023

ANALISIS ESTRUCTURAL DE MARCOS FLANOS Provecto : CURSO SEPTIEMBRE 1999 0=3 Marco : EDIF 1 EJES A y D Fecha : 10-27-1999 .hora : 15:52:22

.

•••

Barra	Inercia m ~4	Area Mod. E. m ^2 Ton /m	tas. Nu F.F. ^2	++ DATOS DE Barra	LAS BARRAS Inercia n ^4	Area Mod. El. • ^2 Ton /•	as. Nu F.F.
13579113579132279133579135579135555	0.00171 0.00171 0.00171 0.00171 0.00171 0.00171 0.00171 0.00171 0.00171 0.00171 0.00182 0.00082 0.00082 0.00082 0.00184 0.00137 0.00137 0.00137	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 4 6 8 10 12 4 6 8 10 12 4 6 8 10 20 22 4 6 8 10 20 20 20 10 20 10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	0.00171 0.00171 0.00171 0.00171 0.00171 0.00171 0.00171 0.00171 0.00171 0.00171 0.00171 0.00184 0.00137 0.00137 0.00137 0.00137	0.0184 2.037E 0.0184 2.037E 0.0166 2.037E 0.0166 2.037E 0.0807 2.037E 0.0637 2.037E 0.0657 2.037E 0.0657 2.057E 0.0657 2.057E 0.0657 2.057E 0.0657	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	·	++++ Fuerza Moment Fu	CARACTERISICAS s uniformes en os concentrados erzas v momento	DE LAS FUERIA barras en barras s en los nudo	S. Condición 1 0 , fuerzas conc 0 , fuerzas y mo os condición de c	entradas en barra mentos en nudos aroa 1	s 0 5
Fuerza #	Nudo Momento Ton ·	en 2 Fuerza en -m Ton	Y Fuerza en X Ton	Fuerza I Ton a	Nudo Momento Ton	en Z Fuerza en Y Ton	Fuerza en X
100	31 19 7	0.00 0.0 0.00 0.0 0.00 0.0	0 42.17 0 34.21 0 12.44	· 2 4	25 13	0.00 0.00 0.00 0.00	45. 10 23 . 33
		+++++ Fuerza Moment	CARACTERISICAS s uniformes en os concentrados	DE LAS FUERZA barras 2 en barras	NS, Condición 2 25 . fuerzas conc 0 . fuerzas y mo	entradas en barra mentos en nudos	is 0 30
Fuerza # 1	Barra Magnitud Ton /m	Fu Distancía A Di a	erzas uniformes stancia 8 ANGU m grad	en las barra LO Fuerza # OS	is, condicion de Barra Magnitud Ton /m	caroa 2 Distancia A Dis M	tancia B ANGULO m grados
1 5 7 9 11 13 15 17 21 22 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.00\\$	12.00 90 12.00 90	.0 2 .0 4 .0 6 .0 8 .0 10 .0 12 .0 14 .0 16 .0 20 .0 22 .0 24 .0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.00\\$	$\begin{array}{ccccccc} 12.00 & 90.0 \\ 12.00 & $

•

-

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 0=3 Marco : EDIF 1 EJES A y D Fecha : 10-27-1999 ,hora : 15:53:52

.

. ·

Fuerza #	Nudo	Momento en Z Ton -m	Fuer: Fuerza en Y Ton	as y momentos a Fuerza en X Ton T	en los nudos Fuerza ‡ Ton a	condic Nudo	zion de carga Momento en Z Ton	2 Fuerza en Y Ton	Fuerza en X
1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 9 1 1 3 5 7 7 9 1 1 3 5 7 7 9 1 2 3 5 7 7 9 1 2 3 5 7 7 9 1 2 3 5 7 7 9 1 2 3 5 7 7 9 1 2 3 5 7 7 9 1 2 3 5 7 7 9 2 2 7 9 2 2 2 7 9 2 2 2 7 9 2 2 2 7 9 2 2 2 2	1 3 5 7 9 11 13 15 17 21 225 27 29	$\begin{array}{c} 0.00\\$	-2.57 -2.57 -2.57 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -1.77 -1.77 -1.77 -1.77 -1.77	$\begin{array}{c} 0.00\\$	2 4 8 10 12 14 16 18 20 22 24 26 28 30	2 4 8 10 12 14 16 20 22 24 26 30	$\begin{array}{c} 0,00\\$	-2.57 -2.57 -2.57 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -1.77 -1.77 -1.77 -1.77 -1.77	$\begin{array}{c} 0.00\\$
	-		+++++ CAF Fuerzas u Momentos	ACTERISICAS DE iniformes en bar concentracos en	LAS FUERZAS Pras 25 barras 0	Condi , fuer , fuer	ción 3 vas concentra vas y momento	das en barras s en nudos	0 30
Fuerza # I	Barra T	Magnitud Dist on/m	ancia A Dista A	ncia B ANGULO n grados	Fuerza # B	arra M To	lagnitud Dist Man /m	ancia A Dist m	ancia B ANGULO m grados
135791135179 1135179 1235	1357911 135791 135792 2325	-2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -0.83 -0.83	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 4 8 10 12 14 16 18 20 22 24	2 4 8 10 12 14 16 18 20 22 24	-2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -0.83 -0.83	$\begin{array}{c} 0.00\\$	12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0 12.00 90.0
Fuerza #	Nudo	Momento en Z Ton -m	Fuer: Fuerza en Y Ton	as y momentos e Fuerza en X Ton T	n los nudos - Fuerza # On p	condic Nudo	tion de carga Momento en Z Ton	3 Fuerza en Y Ton	Fuerza e n X
1 3 5 7 9 11 13 15 17 21 22 27 29	13579 1115 15719 21225 2729	$\begin{array}{c} 0,00\\$	-2.57 -2.57 -2.57 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -1.77 -1.77 -1.77 -1.77 -1.77 -1.77	0,00 0,00	2 4 6 8 10 12 14 16 18 20 22 22 24 26 28 30	2 4 6 8 10 12 14 16 20 22 24 26 30	$\begin{array}{c} 0.00\\$	-2.57 -2.57 -2.57 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -2.24 -1.77 -1.77 -1.77 -1.77 -1.77	$\begin{array}{c} 0.00\\$
			Fuerzas u Nomentos	ACTERISICAS DE Iniformes en bar Concentrados en	LAS FUERZAS ras () barras ()	, Condi , fuer , fuer	ción 4 rzas concentra rzas y momento	das en barras Is en nudos	0 30
~uerza #	Nudo	Momento en Z Ton ~m	Fuera Fuerza en Y Ton	as y momentos e Fuerza en X Ton T	n los nudos Fuerza # on m	Condic Nudo	tion de carga Momento en Z Ton	4 Fuerza en Y Ton	Fuerza en X
1	31	0.00	0.00	6.45	2	32	0.00	0.00	6.45

٠

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Provecto : CURSO SEPTIEMBRE 1999 9=3 Marco : EDIF 1 EJES A y D Fecha : 10-27-1999 ,hora : 15:54:49

Fuerza	# Nudo	Momento en Z Ton -m	Fuer Fuerza en Y Ton	zas y <i>momentos</i> Fuerza en X Ton	en los nudos Fuerza # Ton e	condi Nudo	cion de carga Momento en Z Ton	4 Fuerza en Y Ton	Fuerza en X
3 5 7 9 11 13 15 17 19 21 25 27 29	33 25 27 29 19 21 21 15 17 7 9	$\begin{array}{c} 0.00\\$	$\begin{array}{c} 0.00\\$	6.45 6.54 6.54 6.54 5.59 5.59 3.61 3.61 1.72 1.72 1.72	4 8 10 12 14 14 16 20 22 24 26 28 30	34 36 28 30 20 22 24 14 16 18 8 10 12	$\begin{array}{c} 0.00\\$	$\begin{array}{c} 0.06\\ 0.00\\$	6.45 6.45 6.54 6.54 5.59 5.59 5.61 3.61 1.72 1.72
				++++ Datos	DE LAS COMBI	NACION	es de carga		
	-			Combi	nación de car	ga #	1 , formada po	r :	
				1 de lac 0 de lac 0 de lac 0 de lac Combi	ondición 1 ondición 2 ondición 3 ondición 4 nación de car	 ga # :	2 , formada po	r :	
				0 de la c 1,4 de la 0 de la c 0 de la c Combi	ondición 1 condición 2 ondición 3 ondición 4 nación de car	<u>o</u> a # ∶	3 , formada po	r :	
				0 de la c 0 de la c 1.1 de la i.1 de la Combi	ondición 1 ondición 2 condición 3 condición 4 nación de car	ga # 4	4 , formada po	r :	
				0 de la c 0 de la c 1.1 de la -1.1 de la	ondición 1 ondición 2 condición 3 condición 4				

• -

.

-

.

-

6 D M S A Construcciones S. A. de C.V. Tels. 593-4419 Edij cio A-12 Desp. 404 Col. Torres de Mixcoac CP 01490 Mxico D.F. Fax. 593-4419

١

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 Q=3 Marco : EDIF 1 EJES A y D Fecha : 10-27-1999 ,hora : 15:56:13

Entrepiso	R 1 g 1 Fuerza Ton	deces (Cortante De Ton	spl. total	repiso Despl.rel. M	Rigidez Ton /m
54321	42.17	42.17	0.0464	0.0057	7.354.6
	45.10	87.27	0.0407	0.0087	10.051.5
	34.21	121.48	0.0320	0.0108	11,240.3
	23.33	144.81	0.0212	0.0119	12,166.3
	12.44	157.25	0.0093	0.0093	16,908.6

. .

an.

 6 D M S A
 Construcciones S. A. de C.V.
 Tels. 593-4419

 Edij
 cio A-12 Desp. 404
 593-2811 #

 Col. Torres de Mixcoac
 593-3161 #

 CF 01490 Mxico D.F.
 Fax. 593-4419 #

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 Q=3 Marco : EDIF 1 EJES A y D Fecha : 10-27-1999 ,hora : 15:56:31

Desplazamie Condicion De carga	entos Giro en Z (MAX) Rads.	Nudo	Giro en 2 Kads.	(MIN)	Nudo	
1 2 3 4 5 6 7 8	0.00000 0.00040 0.00038 0.00000 0.00000 0.00056 0.00000 0.00024	$1 \\ 30 \\ 30 \\ 1 \\ 30 \\ 1 \\ 30 \\ 1 \\ 12$	-0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	0309 0040 0038 0270 0309 0056 0324 0000	13 25 13 13 25 7 1	
Condición De carga	Despl. en Y (MAX) m	Nudo	Despl. en	Y (MIN)	Nudo	
1 2 3 4 5 6 7 8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	31 1 31 31 1 1		0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.001	36 355 36 36 35 32 35	
Condicion De carga	Despl. en X (MAX) 4	Nudo	Despl. en	X (MIN)	Nudo	
1 2 3 4 5 6 7 8	0.050 0.001 0.001 0.042 0.050 0.001 0.047 0.000	31 31 36 31 31 31 31 31	-	0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.007	1 36 36 1 36 - 36 -	
Elementos Condición De carga	Mecanicos Mom. Flexionante Ton-m	(Max)	Barra Mom	. Flexio To	nante (MIN) n-m	Barra
1 23 4 5 6 7 8	49.98 13.93 13.30 44.80 49.98 19.50 50.07 81.26		33 49 33 33 49 33 27		-82.22 -30.00 -28.65 -73.33 -82.22 -42.00 -81.26 -74.94	27 16 29 27 16 30 10
Condición De caroa	Fza. Cortante (Ton	MAX)	Barra F	za. Cort Ti	ante (MIN) on	Barra
1 2 3 4 5 5 7 8	29.11 14.57 13.91 26.10 29.11 20.40 29.33 22.64		27 20 20 33 27 20 33 10		-7.78 -14.57 -13.91 -6.87 -7.78 -20.40 -22.64 -29.33	6 16 16 6 16 36

....

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 Q=3 Marco : EDIF 1 EJES A y D Fecha : 10-27-1999 ,hora : 15:56:45

.

•

,

,

Condición • carga	Fza. Axial (Ton	(MAX) Barra	Fza. Axia Tor	I (MIN)	Barra
1 2 3 4 5 6 7 8	28.4 2.7 24.5 24.5 28.4 3.7 6.5	14 26 70 1 78 1 79 26 14 26 14 26 15 1 37 1 37 5	-4 -13 -12 -12 -14 -14 -14	10.47 52.70 27.01 24.59 10.47 15.79 11.56 11.56	16 27 27 31 16 27 27 30
+++++ REACCION	NES, CONDICION Nudo	IDE CARGA 1 Momento en Z Ton∹n	Fuerza en Y Ton	Fuerza en Ton	X
	1 2 3 4 5 6	75.77 82.22 80.35 78.86 77.65 68.77	-28.44 2.90 0.63 0.50 -1.48 . 25.89	-23.41 -29.11 -28.36 -27.81 -27.43 -21.12	
+++++ REACCION	NES, CONDICIO⊁ Nudo	IDE CARGA 2 Momento en Z Ton-na	Fuerza en Y Ton	Fuerza en Ton	X
	1 2 3 4 5 4	-6.86 -0.79 -0.31 0.31 0.79 6.86	70.61 135.27 133.92 133.92 135.27 70.61	4.72 0.32 0.15 -0.15 -0.32 -4.72	
+++++ REACCIO	WES, CONDICION Nudo	IDE CARGA 3 Momento en 2 Ton-m	Fuerza en Y Ton	Fuerza en Ton	X
	1 2 3 4 5 6	-6.55 -0.76 -0.30 0.30 0.76 6.55	67.87 129.57 128.28 128.28 129.57 67.87	4.51 0.30 0.14 -0.14 -0.30 -4.51	
+++++ REACCION	VES, CONDICIO∺ Nudo	l DE CARGA 4 Momento en Z Ton-æ	Fuerza en Y Ton	Fuerza en Ton	X
	12 23 4 5 6	65.16 73.12 73.33 73.33 73.12 65.16	-24.59 1.68 -0.03 0.03 -1.68 24.59	-20.03 -25.84 -25.86 -25.86 -25.86 -25.84 -20.03	
+++++ Reaccion	VES, CONDICION Nudo	IDE CARGA 5 Momento en Z Ton-m	Fuerza en Y Ton	Fuerza en Ton	X
	1 2 3 4 5 6	75.77 82.22 80.35 78.86 77.65 68.77	-28.44 2.90 0.63 0.50 -1.48 25.89	-23.41 -29.11 -28.36 -27.81 -27.43 -21.12	
+++++ REACCION	VES. CONDICION Nudo	ECARGA 6 Monaento en Z Ton-na	Fuerza en Y Ton	Fuerza en Ton	¥
	1 2	-9.61 -1.11	98.85 189.38	6.61 0.44	

÷

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 0=3 Marco : EDIF 1 EJES A y D Fecha : 10-27-1999 ,hora : 15:57:23

......

+++++ REACCIONES, CONDICION Nudo	DE CARGA & Momento en Z Ton-m	Fuerza en Y Ton	Fuerza en X Ton
3	-0.44	187.48	0.21
4	0.44	187.48	-0.21
5	1.11	189.38	-0.44
6	7.61	98.85	-6.61
+++++ REACCIONES, CONDICION Nudo	DE CARGA 7 Momento en Z Ton-m	Fuerza en Y Ton	Fuerza en X Ton
123456	64.47	47.61	-17.07
	79.60	144.38	-28.09
	80.34	141.07	-28.29
	80.97	141.15	-28.60
	81.26	140.68	-28.75
	78.89	101.70	-26.99
+++++ REACCIONES, CONDICION Nudo	DE CARGA 8 Momento en Z Ton-m	Fuerza en Y Ton	Fuerza en X Ton
1	-78.89	101.70	26.99
2	-81.26	140.68	28.75
3	-80.99	141.15	28.60
4	-80.34	141.07	28.29
5	-79.60	144.38	28.09
6	-64.47	47.61	17.07

.

٠

•

ANALISIS ESTRUCTURAL DE MARCOS FLANOS Provecto : CURSO SEPTIEMBRE 1999 Q=3 Marco : EDIF 1 EJES A y D Fecha : 10-27-1999 ,hora : 15:58:55

RESTRICCIONES DEL NUDO : O si el nudo SI puede desplazarse 1 si el nudo NO puede desplazarse.
TIPO DE BARRA : O momentos en A y B no nulos 1 extremo A articulado, momento en B no nulo 2 extremo b articulado, momento en A no nulo 3 ambos extremos articulados.
- AS FLERTAR EXTERMAR VIOR FLEMENTOS MECANICOS ESTAN RECERENCIADOS AL

- --LAS FUERZAS EXTERNAS Y LOS ELEMENTOS MECANICOS, ESTAN REFERENCIADOS AL SISTEMA LOCAL DE LA BARRA.
- --LAS FUERZAS EXTERNAS, LOS DESPLAZAMIENTOS Y LA COMPROBACION DEL EQUILIBRIO NODAL, ESTA REFERENCIADO AL SISTEMA GLOBAL.
- --EN LOS NUDOS DONDE LA SUMATORIA DE FUERZAS NO ES NULA. EXISTE UNA REACCION CON LAS MISMAS CARACTERISTICAS QUE AHI SE INDICAN (REFERENCIADA AL SISTEMA GLOBAL).
- -- CONVENCION DE SIGNOS PARA EL SISTEMA GLOBAL :

ī

--- CONVENCION DE SIGNOS PARA EL SISTEMA LOCAL :

. -

6 8 M S A Construcciones S. A. de C.V. Tels. 593-4419 593-2811 || cio A-12 Desp. 404 Edil Col. Torres de Mixcoac 593-3161 | CP 01490 Mkico D.F. 593-4419 # Fax. ANALISIS ESTRUCTURAL DE MARCOS PLANDS Provecto : CURSO SEPTIEMBRE 1999 Q=3 : EDIF 1 EJES B v C Marco : 10-27-1999 ,hora : 16:00:22 Fecha Barras 55 36 Nudos ۵ Condiciones de caroa Combinaciones de carga 4 Fuerzas en Ton Longitudes en A +++++ DATOS DE LOS NUDOS Nudo Coord, en X Coord, en Y Restr. (giro, en X, en Y) Nudo Coord, en X Coord, en Y Restr. (giro, en X, en Y) 8 æ ø Ø. 0,000 0.000 24 12,000 0.000 1 1357 1 1 24.000 0.000 36.000 0.000 ١ 1 1 1 1 1 0.000 60.000 12.000 1 0.000 1 48,000 1 6 1 1 1 Õ 4.000 Û Ô 0.000 4,000 0 Û 8 Ô Û 9 Q 36.000 4.000 Û 24,000 4,000 Ó Ũ 0 10 60.000 4.000 11 13 15 Û Û 0 4.000 Ó ñ £ 12 48.000 7,500 0 ΰ Q 0.000 14 12,000 0 Û 0 Ō Ô 0 7,500 0 0 0 36.000 24.000 16 60.000 Ō 0 0 7.500 17 48,000 7.500 Ũ 0 0 18 20 22 24 Ō Ó Ō 19 21 23 25 27 29 31 0.000 11,000 Ó Û 0 12.000 11.000 36.000 0 Ō 0 24.000 11,000 0 Ũ a 11.000 Ó 11,000 Ō 0 11.000 48.000 · 0 Q Ò. 60.000 26 28 30 14.500 14.500 14.500 14.500 Ō Ō 0.000 Û 0 0 0 12.000 Ò Ó Ó 24.000 Ŭ, Û Û 36.000 Ō Ō Õ 48,000 14.500 0 0 0 60.000 14.500 32 34 36 ΰ Ũ Û 0.000 18.000 Û Û 0 12.000 18.000 0 Ó Ō 24.000 33 18.000 Û Ū 0 36.000 18.000 35 18,000 ñ Û 18.000 Ô Û 60.000 â 48,000 Ú +++++ DATOS DE LAS BARRAS Longitud C(Cortante) Longitud C(Cortante) Barra Origen Destino Tipo Barra Origen Destino Tipo ጠ 65 2 4 12.000 0.016 7 8 0 12.000 0.016 8 Ŭ 13579 12.000 12.000 12.000 9 Ō 12.000 0.016 0 0.016 10 10 11 12.000 12.000 12.000 12.000 12.000 12.000 12.000 12.000 6 0.016 12 Ō 13 14 Ô 0.016 11 15 17 Ū 0.016 8 15 16 0 0.016 14 17 20 22 22 27 27 23 24 12.000 Ō 18 21 22 22 20 33 35 7 9 0 0.016 0.016 10 16 12.000 12.000 12.000 20 22 22 27 27 27 27 27 27 23 24 26 8 Û 0.016 12 Ū 0.016 11315791222223333344444 47 19 21 22 28 31 33 52 4 Ō 14 Ó 0.016 0.016 Û 0.016 16 Ô 0.016 12.000 12.000 12.000 18 Û 0.016 Û 0.016 12.000 12.000 12.000 0.016 Ō Ō 20 22 24 26 28 0.016 0.008 Û Û 0.008 0.008 Ó 12.000 0.008 Ü 4.000 Û 12.000 0.008 $\frac{1}{5}$ Ô 0.018 0 4.000 0.018 0 4.000 0.018 11 30 32 34 36 38 Ō 4.000 0.018 10 0 4,000 0.018 3.500 3.500 3.500 0.023 8 7 12 Ú 4.000 0.018 13 Q 0.023 3.500 15 17 9 14 Ō Ō 10 12 Ū 11 0 0.023 16 3.500 0.023 18 13 19 0 Ů 3.500 3.500 3.500 15 17 0.023 3.500 3.500 3.500 0.023 40 14 20224268032436 Ō 21 23 25 27 29 31 Ō 0.023 0.023 0.023 0.023 0.023 0.023 16 18 42 Ù Ū 44 19 0.023 Ô 0 3,500 3,500 3,500 21 23 25 27 29 20 22 24 26 0 46 3.500 0.023 Ū, 3.500 3.500 Û 48 Û 0.023 49 50 0.023 0 Û 33 35 0.023 52 51 0 3.500 Û 3.500 0.023 53 55 28 30 3,500 0.023 54 0.023 0 Ō 3.500 Ū. 0.023

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 0=3

					Marco Fecha	: EDIF : 10-2	1 EJES B v 7~1999 ,hor	C a: 16:00:56			
urra	Inercia n 4	Area ത ^2	Mod. Elas. Ton /m ^2	Nu	++++ F. F.	+ DATOS DE Barra	LAS BARRAS Inerc	1a Area ^4 n, ^2	Mod. Elas. Ton /m	. Νu `2	F. F.
1 3 5 7 9 11 13 15 7 9 11 13 15 7 9 11 13 15 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 9 11 13 5 7 7 9 11 13 5 7 7 9 11 3 5 5 7 9 11 3 5 5 7 9 11 3 5 5 7 9 11 3 5 5 7 9 11 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 1 3 5 5 7 9 1 3 5 5 7 9 1 3 5 5 7 9 1 3 5 5 7 9 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.00170 0.00170 0.00170 0.00170 0.00170 0.00170 0.00170 0.00170 0.00170 0.00170 0.00170 0.00170 0.00082 0.00082 0.00082 0.00082 0.00158	0.0184 0.0184 0.0184 0.0184 0.0184 0.0184 0.0184 0.0184 0.0184 0.0184 0.0106 0.0106 0.0106 0.0706	2.039E+07 2.039E+07	$\begin{array}{c} 0.30\\$	3.2299999999999999999999999999999999999	2 4 6 8 10 12 14 16 80 22 4 6 80 22 4 6 80 22 4 6 80 22 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.001 0.001	70 0.0184 70 0.0706 758 0.0706 758 0.0706 758 0.0706 758 0.0706 758 0.0706 758<	2.039E+07 2.039E	7 0.30 7 0	3.2299999999999999999999999999999999999
			+++++ CARAC Fuerzas uni Momentos co	TERIS formes ncenti	ICAS DE 5 en bai °ados er	LAS FUERZ rras barras	AS. Condici 0. fuerza 0, fuerza	ón 1 s concentradas s y momentos en	en barras nudos	0 5	
Fuerza	# Nudo Momenti Ton	oen Z Fue −a	Fuerzas rza en Y Fu Ton	y eor erza (Tor	nentos (en X N	en los nud Fuerza Ton	os condicio # Nudo Mo #	n de caroa 1 mento en Z Fue Ton	rzaen Yf Ton	^s uerza (en X
1 3 5	31 19 7	0.00 0.00 0.00	0.00 0.00 0.00	4) 34 1)	2.17 1.21 2.44	r 2 4	25 13	0.00 0.00	0.00 0.00	4 2	5.10 3.33
			+++++ CARAC Fuerzas uni Momentos co	TERIS forme: ncenti	ICAS DE 5 en bai °ados er	LAS FUERZ rras barras	AS, Condici 25 , fuerza 0 , fuerza	on 2 s concentradas s y momentos en	en barras nudos	0 30	
Fuerza #	Barra Magnitu Ton /m) Distanci a	Fuerzas a A Distanc M	unife ia B	ormes er ANGULO grados	n las barr Fuerza #	as, condici Barra Magi Ton	on de carga 2 hitud Distanci /m m	a A Distar (ncia B N	ANGULO grados
1 5 7 11 13 15 17 21 23 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0	2 4 8 10 12 14 16 18 20 22 24	22 24 5 7 9 11 13 15 17 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Provecto : CURSO SEPTIEMBRE 1999 D=3 Marco : EDIF 1 EJES B y C Fecha : 10-27-1999 .hora : 16:04:48

·

•

.

-

			_								
Fuerza I	₩ Nudo	Momento en Z Ton -m	Fuerz Fuerza en Y Ton	as y mone Fuerza er Ton	ntos en X To	i los nudos Fuerza # an a	condic Nudo	ion de caroa Momento en Z Ton	2 Fuerza en Y Ton	Fuerza	en X
13579113579122222	135791121791222229	$\begin{array}{c} 0.60\\ 0.00\\$	-2.57 -2.24 -2.24 -1.96 -1.96 -1.96 -1.96 -1.96 -1.96 -1.77 -1.96 -1.77 -1.96	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	00 00 00 00 00 00 00 00 00 00 00 00 00	2 4 8 10 12 14 16 18 20 22 24 26 28 30	2 4 8 10 12 14 16 18 20 22 24 26 30	$\begin{array}{c} 0.00\\$	-2.24 -2.24 -2.57 -1.96 -2.24 -1.96 -2.24 -1.96 -2.24 -1.96 -1.96 -1.96 -1.77 -1.96 -1.77		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
		,	+++++ CAF Fuerzas u Momentos	ACTERISI Iniformes concentr	CAS DE L en barn ados en	AS FUERZAS ras 25 barras (5, Condi 5, fuer), fuer	ción 3 zas concentra zas y momento	das en barras s en nudos	0 20	
Fuerza #	Barra I	Magnitud Dist on /m	ancia A Dista n	ncia B N	ANGULO I orados	Tuerza # [Barra M To	lagnitud Dist m /m	ancia A Dist	ancia B M	ANGULO grados
1357912552912	1557912575105	-1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.42 -1.42	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00	90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0	2 4 8 10 12 14 16 20 22 24	2 4 6 8 10 12 14 16 20 22 24	-1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.87 -1.42 -1.42	$\begin{array}{c} 0,00\\ \end{array}$	$\begin{array}{c} 12.00\\ 12$	$\begin{array}{c} 90.0\\$
Fuerza	# N⊔do	Momento en Z Ton -m	Fuerza en Y Ton	tas y mom Fuerta e Ton	entos el n X Ti	n los nudo: Fuerza # on A	s condic Nudo	ion de caroa Momento en Z Ton	3 Fuerza en Y Ton	Fuerza	en X
12579113579 113575122357 29	1357911357791131577911315779 1131577922227 29	$\begin{array}{c} 0,00\\$	-2.57 -2.24 -2.24 -1.96 -1.96 -1.96 -1.96 -1.96 -1.77 -1.96 -1.77 -1.96 -1.77 -1.96	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	2 4 8 10 12 14 16 18 20 22 24 28 30	2 4 8 10 12 14 16 19 20 22 24 26 30	$\begin{array}{c} 0.00\\$	-2.24 -2.24 -2.57 -1.96 -2.24 -1.96 -2.24 -1.96 -2.24 -1.96 -1.96 -1.96 -1.96 -1.96 -1.77 -1.96 -1.77		$\begin{array}{c} 0.00\\$
			+++++ CA Fuerzas (Momentos	RACTERISI uniformes concentr	CAS DE en bar ados en	LAS FUERZA ras barras	S, Condi 0 , fuer 0 , fuer	ición 4 rzas concentra rzas y momento	idas en barras os en nudos	0 30	
^c uerza	∉ Nudo	Momento en Z Ton -m	Fuer Fuerza en Y Tor	zas y mor Fuerza e Ton	entos e n X T	n los nudo Fuerza # on m	s condia Nudo	cion de carça Momento en Z Ton	4 Fuerza en Y Ton	Fuerza	en X
1	31	0.00	0.00	6	. 11	2	32	0.00	0.00		6.11

•

ANALISIS ESTRUCTURAL DE MARCOS FLANOS Proyecto : CURSO SEPTIEMBRE 1999 0=3 Marco : EDIF 1 EJES B y C Fecha : 10-27-1999 ,hora : 16:05:45

- Fuerza #	Nudo	Momento en 1 Ton -m	Fuer Fuerza en Y Ton	zas y momentos Fuerza en X Ton	en los nudos Fuerza # Ton @	condi Nudo	cion de carga Momento en Z Ton	4 Fuerza en Y Ton	Fuerza en X
3 5 7 9 11 13 15 17 21 25 27 29	3355279 217 217 217 217 217 217 217 217 217 217	$\begin{array}{c} (.0)\\$	$\begin{array}{c} 0.00\\$	$\begin{array}{c} 5.11 \\ 6.11 \\ 6.48 \\ 6.48 \\ 6.48 \\ 4.56 \\ 4.56 \\ 4.56 \\ 3.24 \\ 3.24 \\ 3.24 \\ 1.322 \\ 1.322 \\ 1.322 \end{array}$	4 8 10 12 14 16 18 20 22 24 28 30	34 55 268 20 202 224 146 18 10 10 10	$\begin{array}{c} 0.00\\$	$\begin{array}{c} 6.00\\ (.00)\\ (.00)\\ 0.00\\ 0.0$	6.11 6.48 6.48 6.48 4.56 4.56 1.32 1.32 1.32
				++++ DATOS	DE LAS COMBI	NACION	ies de carga		
				Combı	nación de car	oa #	1 , formada po	er i	
				1 de la c 0 de la c 0 de la c 0 de la c Combi	condición 1 condición 2 condición 3 condición 4 Ración de car	ga #	2 , formada po	r :	
				0 de la c 1.4 de la 0 de la c 0 de la c Combi	condición 1 condición 2 condición 3 condición 4 mación de car	ga #	3, formada po	ır :	-
				0 de la c 0 de la c 1.1 de la 1.1 de la Combi	condición 1 condición 2 a condición 3 a condición 4 mación de car	ga #	4 , formada po	r:	
				0 de la d 0 de la d 1.1 de la -1.1 de la	condición 1 condición 2 a condición 3 a condición 4				

-

.

 6 0 M S A
 Construcciones S. A. de C.V.
 Tels. 593-4419 #

 Ed1¹
 c10 A-12 Des0. 404
 593-2811 #

 Col. Torres de Mixcoac
 593-3161 #

 CF 01490 Mxico D.F.
 Fax. 593-4419 #

ANALISIS ESTRUCTURAL DE MARCOS PLANDS Provecto : CURSO SEPTIEMBRE 1999 Q=3 Marco : EDIF 1 EJES B v C Fecha : 10-27-1999 .hora : 16:07:29

Entrepiso	Rigi Fuerza Ton	deces de Cortante Despl Ton n	Entrep . total Despl M	150 . rel.	- Rigidez Ton ∕n
1 	42.17 45.10 34.21 23.33 11.44	42.17 87.27 121.48 144.81 157.25	0.0475 0.0419 0.0334 0.0223 0.0099	0.0057 0.0085 0.0111 0.0124 0.0099	7,461.7 10,321.3 10,921.2 11,683.5 15,915.7

- GOMSA Construcciones S. A. de C.V. Tels, 573-4419 Edij cio A-12 Desp. 404 Col. Torres de Mixcoac CP 01490 Mixco D.F. 593-2211 | 593-3161 | Fax. 593-4419 |
 - ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEFTIEMBRE 1999 Q=3 Marco : EDIF 1 EJES B y C Fecha : 10-27-1999 ,hora : 10:07:42

Desclazami Condicion De carga	entos Giro en Z (MAX) Rads.	Nude Giro R	en Z (MIN) ads.	Nudo	
101345678	0,06600 0,00063 6,00000 0,00000 6,00092 6,00000 0,00309	$ \begin{array}{c} 1 \\ 36 \\ 36 \\ 1 \\ 36 \\ 1 \\ 36 \\ 1 \\ 12 \\ \end{array} $	-0.00325 -0.00066 -0.00063 -0.00259 -0.00325 -0.00092 -0.00092 -0.00009	7 31 13 7 31 7 31 7	
Condición De carga	Despl. en Y (MAX) @	Nudo Despl	en Y (MIN)	Nudo	
127345678	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	31 1 31 31 31 1 1	-0.000 -0.001 -0.001 -0.000 -0.000 -0.001 -0.001 -0.001	36 355 36 35 35 35 35	
Condicion De carga	Despl. en X (MAX) @	Nudo Despl	. en X (MIN)	Nudo	
10171457-07-08	0.051 0.001 0.040 0.051 0.001 0.045 0.045	31 31 36 31 36 31 31 31 31	0.000 -0.001 -0.001 0.000 -0.001 -0.001 0.000 -0.045	1 36 36 1 36 1 36	
Elementos Condición De carga	Mecanicos Mom. Flexionante Ton-m	(MAX) Barra	Mom. Flexion Tor	ante (MIN) -m	Barra
1 23 4 5 6 7 8	50.12 14.58 13.77 41.16 50.12 20.41 45.90 75.43	33 55 55 33 55 33 55 33 26		-80.31 -26.24 -23.85 -63.07 -80.31 -36.73 -75.43 -66.66	26 16 31 26 16 31 10
Condición De carga	Fza, Cortante (I Ton	MAX) Barra	Fza. Corta To	ante (MIN) M	Barra
12345678	28.99 12.74 11.58 23.90 28.99 17.83 26.78 19.65	33 20 23 23 20 33 20 33 20 33 20 33	-	-7.90 -12.74 -11.58 -6.44 -7.90 -17.83 -19.65 -26.78	6 16 16 6 16 5 36

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Provecto : CURSO SEFTIEMBRE 1999 Q=3 Marco : EDIF 1 EJES B y C Fecha : 10-27-1999 .hora : 16:07:58

Conduction	F	A: . 1	/MOVA	D			2 bal T b 1 b	10 27
'e carga	<i>₹∠</i> ₫.	Ton	UTHA /	Barra	rza.	Ton	(111)	Barra
1 345678		25. 213. 228. 3.6. 6.	73 36 14 12 73 30 64 64	26 1 26 26 1 5		-41 -125 -115 -23 -41 -176 -129 -129	. 38 .95 .12 .38 .33 .41 .41	10 27 30 31 27 30
++++ REACCID	IES, C Nudo	ONDICI	N DE C Mone Ton-	ARGA 1 nto en Z m	Fuerza e Ton	n Y I	Fuerza en Ton	X
	105406			80.31 77.39 75.75 74.42 73.33 73.29	-28. 5. 0. -1. 26.	73 13 62 51 72 19	-24.93 -28.29 -27.57 -27.07 -26.76 -22.63	
+++++ REACCION	√ES. C Nudo	ONDICI	JN DE C Mome Ton-	ARGA 2 nto en Z m	Fuerza e Ton	ηY	Fuerza en Ton	X
	123456			-6.06 -0.62 -0.25 0.25 0.62 6.06	67. 128. 126. 126. 128. 67.	44 20 98 98 20 44	4.16 0.25 0.12 -0.12 -0.25 -4.16	
+++++ REACCIO	ÆS. C Nudo	ONDICI)N DE C Mome Ton-	ARGA 3 nto en 2 M	Fuerza e Ton	ηŸ	Fuerza en Ton	X
				-5.51 -0.57 -0.23 0.23 0.57 5.51	62. 118. 117. 117. 118. 62.	57 13 02 02 13 59	3.78 0.23 0.11 -0.11 -6.21 -3.78	
+++++ REACCION	IES. C Nudo	ONDICI)N DE C Mome Ton-	ARGA 4 nto en 2 an	Fuerza e Ton	nY.	Fuerza en Ton	X
	123455			63.07 62.76 62.95 62.95 62.76 63.07	-23. 1. -0. 0. -1. 23.	12 75 04 04 76 12	-19.42 -22.85 -22.85 -22.85 -22.85 -22.84 -19.42	
+++++ REACCIO	ÆS. C Nudo	ONDICI	IN DE C Mome Ton-	ARGA 5 nto en Z m	Fuerza e Ton	nΥ	Fuerza en Ton	X
				80.31 77.39 75.75 74.42 73.33 73.29	-28. 3. 0. -1. 26.	73 13 62 51 72 19	-24.93 -28.29 -27.57 -27.07 -25.76 -22.63	
+++++ REACCION	IES, CI Nudo	DNDICIO -	N DE C Mone Ton-	ARGA 6 nto en Z m	Fuerza e Ton	n Y	Fuerza en Ton	X
	1			-8.48 -0.87	94. 179.	42 47	5.83 0.35	

.

--

.

- • •*

ANALISIS ESTRUCTURAL DE MARCOS PLANOS Proyecto : CURSO SEPTIEMBRE 1999 0=3 Marco : EDIF 1 EJES & y C Fecha : 10-27-1999 .hora : 16:09:22

.

- -

****	REACCIONES, CONDICION Nudo	DE CARGA & Momento en Z Ton-m	Fuerza en Y Ton	Fuerza en X Ton
	3	-0.35	177.77	0.17
	4	0.35	177.77	-0.17
	5	0.87	179.47	-0.35
	6	8.48	94.42	-5.83
*+**	REACCIONES, CONDICION Nudo	DE CARGA 7 Momento en I Ton-m	Fuerza en Y Ton	Fuerza en X Ton
	1	63,32	43.42	-17,20
	2	68,41	131.88	-24,89
	3	69,00	128.68	-25,01
	4	69,49	128.76	-25,26
	5	69,55	128.01	-25,39
	6	75,43	74.29	-25,52
++++ +	REACCIONES, CONDICION Nudo	DE CARGA 8 Momento en Z Ton-m	Fuerza en Y Ton	Fuerza en X Ton
	1	-75,43	94.29	25.52
	2	-69,66	128.01	25.39
	3	-69,49	128.76	25.26
	4	-69,00	128.68	25.01
	5	-68,41	131.88	24.89
	6	~63,32	43.42	17.20

.

ANALISIS ESTRUCTURAL DE MARCOS FLANOS Provecto : CURSO SEPTIEMBRE 1999 Q=3 Marco : EDIF 1 EJES B y C Fecha : 10-27-1999 ,hora : 16:10:21

RESTRICCIONES DEL NUDO : O si el nudo SI puede desplazarse i si el nudo NO puede desplazarse.
TIPO DE BARRA : O momentos en A y B no nulos 1 extremo A articulado. momento en B no nulo 2 extremo b articulado, momento en A no nulo 3 ambos extremos articulados.
LAS FUERZAS EXTERNAS Y LOS ELEMENTOS MECANICOS.ESTAN REFERENCIADOS AL SISTEMA LOCAL DE LA BARRA.

- --LAS FUERZAS EXTERNAS, LOS DESPLAZAMIENTOS Y LA COMPROBACION DEL EQUILIBRIO NODAL, ESTA REFERENCIADO AL SISTEMA GLOBAL.
- --EN LOS NUDOS DONDE LA SUMATORIA DE FUERZAS NO ES NULA. EXISTE UNA REACCION CON LAS MISMAS CARACTERISTICAS DUE AHI SE INDICAN (REFERENCIADA AL SISTEMA GLOBAL).

-- CONVENCION DE SIGNOS PARA EL SISTEMA GLOBAL :

. . .

•

,

.-

--CONVENCION DE SIGNOS PARA EL SISTEMA LOCAL :

DISTRIBUCION POR TORSION Ing. Alberto Guzmán Fuentes hoja 1 EDIFICIO 1 CURSO SEPTIEMBRE DE 1999 CON ANALISIS ESTATICO

.

•

_ .---

~

CARACTE	R	ISTICAS GENERALE	S -				-				
Nombre de la obra	ł	EDIFICID 1 CURS	09	SEF	TI	IMBR	e de	1999	CON	ANALISIS	ESTATICO
Ubicación	;	MEXICO D.F.									
Fecha	;	SEPTIEMBRE DE 1	999	9							
Fuerzas en	:	TON									
Longitudes en	:	M									
Numero de niveles						5					
Grupo al que perte	eni	208				ρ					
Zona donde esta ul	210	cada				2	(Terr	renō (ie t	ransición.)
Factor de comporta	an	iento sismico (Q) (en	X	3					
			6	eR	Ņ	3					
Estructura regula	n					Si					
Número de marcos (20	X				4					
Número de marcos (en	Y				6					

----- CARACTERISTICAS DE LOS NIVELES ------

Nivel	Peso	Altura	Centro de	cargas	Máxima dink	ensión	Cortan	tes	
	TON	М	en X M	en Y M	en X (M l	en Y M	en X TON	en Y TON	
5	954,50	18.00	30.00	12.50	60.00	25.00	0.00	0.00	
4	1,240,50	14.5Ů	3 0. 00	12.50	60.00	25.00	0.00	0.00	
2	1.240.50	11.00	30.00	12.50	60.00	25,00	0.00	0.00	
2	1,240,50	7.50	20,00	12.50	60.00	25.00	0.00	0.00	
1	1.240.50	4.ÛŬ	30.00	12,50	60. 00	25.00	0.00	0.00	

----- CARACTERISTICAS DE LOS MARCOS ------

	Dirección X	(Dirección	Υ
Marco	Identificación	Posición M	Identificación	Posición M
123456	Marco A Marco B Marco C Marco D	0.000 9.000 16.000 25.000	Marco 1 Marco 2 Marco 3 Marco 4 Marco 5 Marco 6	0.000 12.000 24.000 35.000 48.000 48.000

Marco Marco A		Marco M	arco B	Marco M	larco C	Marco Marco D		
Entrepiso	Rigidez TON /M	Entrepiso	Rioidez TON 7M	Entrepiso	Rigidez TON 7M	Entrepiso	Riqidez TON /M	
54321	7.354.90 10.051.30 11.240.40 12.166.30 16,908.60	5 4 3 2	7,462,10 10,321,00 10,921,30 11,683,40 15,915,70	' 5 4 3 2 1	$\begin{array}{c} 7,462,10\\ 10.321,00\\ 10.921,30\\ 11,687,40\\ 15,915,70 \end{array}$	5 4 3 2 1	7,354.90 10.051.30 11,240.40 12.166.30 16,908.60	

DISTRIBUCIÓN POR TORSIÓN Ing. Alberto Guzmán Fuentes hoja 2 EDIFICIÓ 1 CURSO SEPTIEMBRE DE 1999 CON ANALISIS ESTATICO

.

.

•

.

Marco Ma Entrediso	rco 1 Rioidez TON /M	Marco I Entrepiso	Marco 2 Rigi TON 7M	idez 1	Marco Entrepiso	Marco Ri TON	3 01dez 7M	Marco M Entrepiso	arco 4 Ríoidez TON 7M
514	5.371.70 8,966.60 11.145.20 14.029.70 24,094.40	54321	5.3 9.9 10.9 13.6 23.2	337.40 953.10 950.00 956.20 238.20	547321	5 8 10 13 23	.337,40 .953,10 .950,00 .666,20 .238,20	5 4 3 2 1	5,337,40 8,953,10 10,950,00 13,666,20 23,238,20
Marco Ma Entrepiso	rco 5 Rigidez TON 7M	Marco Entrepiso	Marco 6 Rio: TON 71	ide: M					
-54524	5,337,40 8,953,10 10,950,00 13,666,20 23,238,20	5 4 3 2 1	5. 8, 11. 14, 24,	371.70 766.60 145.20 027.70 094.40					
RE	SULTADOS DE	L ANALISIS E	STATICO						
Reglamento ut	ilizado		I	RCDF-198	7				
Coeficiente s	ismico		=	.32					
Coeficiente s	iísmico redu	icido (C/Q),	en x =	.106666	7				
Feen total de	: la estruci	ura	= :	5896.5	TON				
fortante en l	la hase.		enx≂	628.96	TON				
			en v =	628.96	TON				
***** Se ana)	iiza en la d	lirección X c	on los	cortante	s obtenic	os con	el regla	nento	
**** Se ana)	liza en la c	lirección Y c	on los	cortante	s obtenio	os con	el regla	nento	
Nivel (entrebiso)	Fuerza (en X TON	Cortante Fu en X e TON 1	ierza in Y 'ON	Cortante en Y TON	Posici er M	on de l X	la cortani en Y M	te	
5	168.68	168.68 16	8.68	168.68	30	,00	12.50		
4	180.38	349.06 18	30.38	349,06	30	.00	12.50		
3	136.84	485.90 13	\$6.84	485.90	30	.00	12.50		
2	93.30	579.20	73.30	579,20	3(.00	12.50		
1	49.76	628.96	19.76	628.96	3(). (1)	12.50		
Ri	ESULTADOS DI	EL ANALISIS F	OR TORS	ION					

DISTRIBUCION POR TORSION ing. Alberto Guzmán Fuentes hoja 3 EDIFICIO 1 CURSO SEPTIEMBRE DE 1999 CON ANALISIS ESTATICO

DISTRIBUCION DE CORTANTES PARA EL ENTREPISO # 5 rigidez torsional 1.599322E+07

.

r

Dir.	Rigidez	Cort	tante	Centro de	Fosición de	Excentr.	Máx. Dim.	Excentric	idades de d	iseño Mom	en to s de t	orsión
X Y	TDN /M 29,634.00 32,093.00))	DN 168.68 168.68	N 30.00 12.50	ia cortante M 30.00 12.50	teorica M 0,00 -0,00	en planta M 60.00 25.00	1.50e +0.1 M 6.(-2.5	1.00e- - M)0 50	0.106 TON -6.00 2.50	-M -421.7 1.012.1	421.7 -1,012.1
Mar	co rig TON	idez /M	Y jt M	Torsión en X	Torsion en Y	Torsión en X	Torsion en Y	Directo TON	Directo +tor en X	0.30+torsion en Y	Total TON	
Marco	A 7,3	\$54.90	-12,50	2.42	5.82	2.42	5.82	41.87	44.29	1.75	46.04	
Marco	B 7,4	62.10	-3,50	-2.42	-1.65	0.69	1,65	42.48	43.16	0.5 0	43.66	
Marco	L 7,4	162.10	3.50	-0.69	1.65	0.69	1.65	42.48	4 3.16	0 .5 0	43.66	
Marco	0 7,3	354.90	12,50	-2.42 -2.42 2.42	-1.65 5.82 -5.82	2.42	5.82	41.87	44.29	1.75	46.04	
Mar	co ric TON	jidez ∕M	X jt M	Torsión en Y	Torsión en X	Torsión en Y	Torsión en X	Directo TON	Directo +tor en Y	0.30*torsion en X	Total TON	
Marco	1 5,1	571.70	-30.00	-10.20	4.25	10.20	4,25	28.23	38.43	1.27	39.71	
Marco	2 5,3	337.40	-18,00	-6.08	2.53	6.08	2.53	28.05	34.13	0.76	34.89	
Marco	i 3 - 5. 3	337.40	-5.00	-2.03	-2.53 0.84	2.03	0.84	28.05	30.08	0.25	30.33	
Marco	4 5,3	337.40	o. 00	2.03	-0.84	2.03	0.84	28.05	30.08	0,25	30.33	
Marco	5 5,3	337.40	18,00	-2.03	-2.53	6.08	2.53	28,05	34.13	0.76	34.89	
Marco	6 5.3	371.7 0	30.00	-6.08 10.20 -16.20	-4.25 4.25	10.20	4,25	28.23	38.43	1.27	39.71	
DISTR	IBUCION DE	CORTAN	tes para	EL ENTREPI	50 # 4 rigi	dec torsion	ial 2.59800	1E+07				
6.:	5 daa	6 .	1		n	- I	M. 5	-		· • •		• .

Dir.	h1010ez	Co	rtante	Centro de	Posición de	Excentr.	Max, Dim.	Excentric:	idades de d LON 1 Oùs-	iseño Monae Albe	entos de	torsion
X Y	TON /M 40.744. 53,745.	.60 .60	TON 349.06 349.06	N 30.00 12.50	M 30.00 12.50	N 0.00 -0.00	M 60.00 25.00	1,002 701 M -2.5	NUD 1.002- M DO 50	-6.00 2.50 2	-M -872.7 2.094.4	872.7 -2.094.4
Mar	co r T(riolde: N /M	Y jt M	Torsion en X	Torsión en Y	Torsion en X	'Torsiòn en Y	Directo TON	Directo +tor en X	0.30*torsión en Y	Total TON	
Marco	A 10).051.30	-12,50	4.22	-10.13	4.22	10,13	86.11	90.33	3.04	93.37	
Marco	B 10),321.00	-3,50	1.21	-2.91	1.21	2.91	88.42	89.63	0.87	90.51	
Marco	C 1(),321.00	3,50	-1.21	2.91	1.21	2,91	88.42	89.63	0.87	90.51	
Marco	D 10	0,051.30	12.50	-4.22 4.22	10.13 -10.13	4.22	10.13	86.11	90.33	3.04	93.37	
Han	t 60 T(ngidez N /M	λ jt M	Torsión en Y	Torsión en X	Torsion en Y	Torsión en X	Directo TON	Directo +tor en Y	0.30+torsion en X	Total TON	
Marco	1 8	3,966.60	-30.00	-21.69	9.04 -9.04	21.69	9.04	58.24	79.92	2.71	82.63	•
Marco	2 8	3,953.10	-18,00	-12.99	5.41 -5.41	12.99	5.41	58.15	71.14	1.62	72.76	ŀ
Marco	3 8	8.953.10	-6,00	-4.33	1.80	4.33	1.80	58.15	62.48	0.54	63.02	•
Marco	4 6	8,953,10	6.00	4.33 -4.33	-1.80 -1.80 1.80	4.33	1.80	58.15	62.48	0.54	63.02	•

-

DISTRIBUCION	POR TORSI	ON lng. A EDIFICIO	lberto Guzmán L CURSO SEPTI	Fuentes hoj EMBRE DE 199	a 4 19 con Anal	ISIS ESTATIO	;0	م یر ب		
Marco 5	8,953.10	18.00	12.99	-5.41	12.99	5.41	58.15	71.14	1.62	72.76
Marco 6	8,966.60	30.00	21.69 -21.69	-9.04 9.04	21.69	9.04	58.24	79,92	2,71	82.63

STRIBUCION DE CORTANTES PARA EL ENTREFISO # 3 rigidez torsional 3.172556E+07

Dir.	Rigidez	Corta	ante	Centro de Torsión	Posición de la cortante	Excentr. teorica	Max. Dim. en planta	Excentrici	dades de d Ob 1.00e-	iseño Mome	entos de t	orsion
X Y	TON /M 44.323.40 66.090.40	TON	1 185.90 185.90	M 30.00 12.50	M 30.00 12.50	N 0.00 0.00	M 60.00 25.00	Н 6.0 2.5	0 0	-6.00 -2.50	-M 1.214.8 2.915.4	-1.214.8 -2.915.4
Mar	co rio: TON	idez /M	Y jt M	Torsion en X	Torsión en Y	Torsión en X	Torsión en Y	Directo TON	Directo +tor en X	0.30*torsion en Y	Total TON	
Marco	A 11,24	40.40	-12,50	-5.38	-12.91	5.38	12.91	123,22	128.60	3.87	172.48	
Marco	B 10,92	21.30	-3.50	-1.46	-3.51	1.46	3.51	119.73	,121.19	1.05	122.24	
Marco	C 10,92	21.30	3,50	1.40	3.51	1.40	3.51	119.73	121.19	1.05	122.24	
Marco) D 11,24	40.40	12.50	-1,48 5,38 -5,38	-3.51 12.91 -12.91	5.38	12.91	123.22	128.60	3.87	132.48	
Mar	co rio TON	idez /M	λ jt M	Torsión en Y	Torsion en X	Torsiòn en Y	Torsion en X	Directo TON	Directo +tor en Y	0.30*torsión en X	Total TON	
Marco	0 1 11,1	45.20	-30,00	-30.73	-12.80	30.73	12,80	81.94	112.67	3.84	116.51	
Marco	2 10,9	50.00	-18.00	-18.11	-7.55	18.11	7,55	80.51	98.62	2,25	100.88	
Marco	0.3 10,9	50.00	-6.00	-6.04	-2.52	6.04	2.52	80.51	86.54	0.75	87.30	
Marco	4 10,9	50.00	6.00	6.04 6.04	2.52	6.04	2.52	80.51	86.54	0.75	87.30	
Marco	5 10.9	50.00	18.00		7.55	18.11	7.55	80.51	98.62	2.26	100.88	بر هر بر ه
CC	o 6 11,1	45.20	36.00	-18.11 30.73 -30.73	-7.55 12.80 -12.80	30.73	12.80	81.94	112.67	3.84	116.51	

DISTRIBUCIÓN DE CORTANTES PARA EL ENTREPISO # 2 rigidez torsional 3.918134E+07

Bır,	Rigidez	Cortante	Centro de Torsión	Posicion de la cortante	Excentr. teorica	Max. Dím. en planta	Excentric:	dades de d: Ob 1.00e-	iseño Mome 0.10b	ntos de	torsión ·
χ Y	TON /M 47,699.40 82,724.20	TON 579.20 579.20	N 30.00 12.50	M 30.00 12.50	M -0.00 -0.00	N 60.00 25.00	M -6.(-2.5	M 10 50	TON 6.00 -1 2.50 -3	-M .448.0 .475.2	1,448.0 3,475.2
Mar	co rigid TON /	ez Yjt M M	Torsian en X	Torsión en Y	Torsión en X	Torsión en Y	Directo TON	Directo +tor en X	0.30#torsion en Y	Total TON	
Marco	A 12.166	.30 -12.50	5.62	13.49	5.62	13.49	147.73	153.35	4.05	157.4 0	
Marco	8 11,683	.40 -3,50	1.51	-13.47	1.51	3.63	141.87	143.38	1.09	144.47	
Marco	C 11,683	.40 3,50	-1.51	-3.63	1.51	3.63	141.87	143.38	1.09	144.47	
Marco	D 12,166	.30 12.50	-5.62 5.62	-13,49 13,49	5.62	13,49	147.73	153.35	4.05	157.40	
Man	co rigid TON /	ez Xjt M M	Torsión en Y	Torsión en X	Torsión en Y	Torsión en X	Directo TON	Directo +tor en Y	0.30*torsión en X	Total TON	
Marco	1 14,029	.70 -30.00	37.33	15.55	37.33	15.55	98.23	135.56	4.67	140.23	
Marco	2 13.666	.20 -18.00	21.82	-10,00 9.05 -9.09	21.82	9.09	95.69	117.50	2.73	120.23	

DISTRIBUCION POR TORSION ing. Alberto Guzmán Fuentes hoja 5 EDIFICIO i CURSO SEPTIEMBRE DE 1999 CON ANALISIS ESTATICO

Marco 3	13,666.20	-6.00	7.27	3.03	7.27	3.03	95.69	102.98	0.71	103 .87
Marco 4	13,666.20	6.00	-7.27	-3.03	7.27	3.03	95.69	102.96.	0.71	103.87
Marco 5	13,666.20	18.00	-21.82	-9.09	21.82	9.09	95.6 9	117.50	2,73	120.23
Marco 6	14,029.70	30.00	-37.33 37.33	-15.55 15.55	37.33	15.55	98.23	135.56	4.67	140.23

DISTRIBUCION DE CORTANTES FARA EL ENTREPISO # 1 rigidez torsional 6.57753E+07

Dir.	<u> Riçidez</u>	C	ortante	Centro de	Posición de	Excentr.	Max. Dim.	Excentric:	idades de d	iseño Mode	ntos de	torsión
¥ Y	TON /M 65.648. 141,141.	60 61	TON 628.96 628.96	M 30.00 12.50	M 30.00 12.50	M -0.00 0.00	M 60.00 25.00	M -6.(2.5	M 10 50	6.00 TON 6.00 1 -2.50 -3	-M 572.4 773.8	-1,572.4 3,773.8
Mar	rco r TO	ngidez N /M	Y jt M	Torsión en X	Torsión en Y	Torsión en X	Torsión en Y	Directo TON	Directo +tor en X	0.30*torsion en Y	Total TON	
Marco) A 16	.,908.6	0 -12,50	-5.05	12.13	5.05	12, 13	162.00	167.05	3.64	170.69	
Marco	o B 15	5.915.7	0 -3.50	-1.33	-12.13 3.20	1.33	3.20	152.48	153.82	0,96	154,77	
Marco	o C 15	5.915.7	0 3.50	1.33	-3.20	1.33	3.20	152.48	153.62	0.96	154.77	
Marco	5 D 15	.908.6	0 12.50	-1.33 5.05 -5.05	-12.13 12.13	5.05	12.13	162.00	167.05	3.64	170.69	
flar	rco r	noidez	X it	Torsion	Torsion	Torsion	Torsion	Directo	Directo	0.20*torsion	Total	

	TON' /M	M	en Y	en X	en Y	en X	TON	+tor en Y	en X	TON
Marco i	24,094,40	-30.00	41.47	-17.28	41,47	17.28	107.37	148.84	5.18	154. 03
Marco 2	23.238.20	-18.00	24.00	-10.00	24.00	10.00	103.55	127.55	3,00	130.55
Marco 3	23,238,20	-6.00	8.00	-3.33	8,00	3.33	103.55	111.55	1.00	112,55
Marco 4	23,238,20	6.00	-8.00	3.33	8,00	3.33	103.55	111.55	1.00	112.55
Marco 5	23,238.20	18.00	-24.00	10.00 -10.00	24.00	10.00	103.55	127.55	3.00	130.55
Marco 6	24,094.40	30.00	-41.47 41.47	17.28 -17.28	41.47	17.28	107.37	148.84	5.18	154.03

----- DESPLAZAMIENTOS DE TODA LA ESTRUCTURA -----

Direction λ

Nivel Entrep. 5 4 3 2 1	Altura M 16.00 14.50 11.00 7.50 4.00	Altura de entreciso M 3,50 3,50 3,50 4,00	Cortante TON 168.68 349.06 485.90 579.20 628.96	Rigidez TON /M 29.634.00 40.744.60 44.323.40 47.699.40 65.648.60	Desplazamiento Relativo M 0.01 0.01 0.01 0.01 0.01	Desplazamiento Total M 0.05 0.04 0.63 0.02 0.01	8 * Despl. Relativo M 0.017 0.026 0.033 0.035 0.035 0.029	Q * Desol. Total M 0.141 0.098 0.065 0.029	0 * D/H Relativo 0.005 0.007 0.009 0.010 0.007
Direcci	on Y								
Nivel Entrep.	Altura M	Altura de entrepiso M	Cortante TON	Rigidez TON /M	Desplazamiento Kelativo M	Desplazamiento Total M	Q * Despl. Relativo M	Q * Despl. Total M	0 * D/H Relativo

DISTRIBUCION POR TORSION ing. Alberto Guzmán Fuentes hoja 6 EDIFICIO 1 CURSO SEPTIEMBRE DE 1999 CON ANALISIS ESTATICO

5	18,00	3,50	168.68 32.093.00	0.01	0.03	0.016	0.092	0.05
4	14,50	3.50	349.06 53,745.60	0.01	0.03	0.019	0.076	Ŭ.(406
31	11.00	3.50	485.90 66.090.40	0.01	0.02	0.022	0.056	0.00s
2	7.50	3.50	579.20 82,724,20	0.01	0.01	0.021	0.034	0.006
1	4.00	4.00	628.96 141,141,61	0.0)	0.00	0.013	0.013	0.003

----- RESUMEN DE RESULTADOS EN LOS MARCOS -----

--- Marco : Narco A (direction X)

.

Nivel	Altura	H entrep	Fuerza	Cortante Rioidez	Des. rel.	Des. tot.	Q≠D rel.	Q#D tot.	©∗0/H (rel.)
(Entrepiso)	ň	M	TON	ton ton 7m	M	M	M	H	
5	18.00	3.50	46.04	46.04 7,354.90	0.006	0.050	0.019	0.151	0.0054
ų	14.50	3.50	47.33	93.37 10.051.30	0.009	0.044	0.028	0.132	0.0080
3	11.00	3.50	39.11	132.48 11,240.40	0.012	0.035	0,035	0.104	0.0101
2	7.50	3.50	24.92	157.40 12,166.30	0.013	0.023	0.039	0.069	0.0111
1	4.00	4.00	10.29	170.69 16,908.60	0.010	0.010	0.030	0.030	0.0076

--- Marco : Marco B (dirección X)

Nivel (Entrepiso)	Altura M	H entrep	Fuerza TON	Cortante Rigidez TON TON 7M	Des. rel. M	Des. tot.	Q*D rel. M	Q*D tot.	Q+D/H (rel.)
5	18.00	. 3,50	43.66	43.66 7.462.10	0.006	0.048	0.018	Ŭ.144	0,0050
4	14.50	3.50	46.85	90.51 10.321.00	0.009	0.042	0.026	0.126	0.0075
3	11.00	3.50	31,74	122.24 10,921.30	0.011	0.033	0.034	0.100	0.0096
2	7.50	3.50	22.22	144.47 11.6B3.40	0.012	0.022	0.037	0.066	0.0106
1	4.00	4,00	10.31	154.77 15.915.70	0.010	0.010	0.027	0.029	0.0073

--- Marco : Marco C (direction X)

- Marco : Marco D (direction X)

•

٠

Nivel (Entrepiso)	Altura M	H entrep	Fuerza TON	Cortante Rigidez TON TON 7M	Des. rel. M	Des. tot.	Q*D rel. M	Q*D tot.	Q*D/H (rel.)
1 3	18,00	3.50	43.66	43.66 7.462.10	0.005	0.048	0.018	0.144	- 0.0050
4	14,50	3.50	46.85	90.51 10.321.00	0.009	0.042	0.026	0.126	0.0075
7	11,00	3.50	31.74	122.24 10.921.30	0.011	0.033	0.034	0.100	0.0096
2	7.50	3.50	22.22	144.47 11.683.40	0.012	0.022	0.037	0.066	0.0106
1	4.00	4.00	10.31	154.77 15,915.70	0.010	0.010	0.029	0.029	0.0073

÷

Nivel (Entrebiso) 5 4 3	Altura M 18.00 14.50 11.00	H entrep M 3.50 3.50 3.50	Fuerza TON 46.04 47.33 39.11	Cortante Rigidez TON TON 7M 46.04 7.354.90 93.37 10.051.30 132.48 11.240.40	Des. rel. M 0.006 0.009 0.012	Des. tot. M 0.050 0.044 0.035	9*D rel. M 0.019 0.028 0.035	G*D tot. M 0.151 0.132 0.104	Q*D/H (rel.) 0.0054 0.0080 0.0101
1 Marco : Mar	7.50 4.00 coi(di	3.50 4.00 rección Y)	24.92 13.25	157.40 12,166.30 170.69 16,908.60	0.013 0.010	0.023 0.010	0.039 0.030	0.069 0.030	0.0111 0.0076

Nivel (Entreoiso) 5 4 3	Altura M 18.00 14.50 11.00 7.50	H entrep M 3.50 3.50 3.50 7.50	Fuerza TON 39.71 42.92 33.88 23.72	Cortante Rigidez TON TON 7M 39.71 5.371.70 82.63 8.966.60 116.51 11.145.20 140.22 14 028 70	Des. rel. M 0.007 0.007 0.010	Des. tot. M 0.043 0.036 0.027 0.014	9*D rel. M 0.022 0.028 0.031	0*D tot. M 0.130 0.081 0.081 0.048	Q*D/H (rel.) 0.0063 0.0079 0.0090 0.0090
i	4,00	4.00	13.80	154.63 24,094.40	0.006	0.006	0.019	0.019	0.0048
Marco : Mar	rco 2 (di	rección Y)							
Nivel (Fotreniso)	Altura M	H e⊓trep M	Fuerza TON	Contante Rioidez	Des. rel.	Des. tot. M	Q*D rel. M	Q*D tot. M	Q+D/H (rel.)
5-	18.00	3.50	34.89	74.85 5,337.40	0.007	0.038	0.020	0.115	0.0056

DISTRIBUCION POR TORSION Ing. Alberto Guzaán Fuentes hoja 7

4 - 2 1	$ \begin{array}{r} 14.50 \\ 11.00 \\ 7.50 \\ 4.00 \end{array} $	3.50 3.50 7.50 4.00	37.87 28.12 19.35 10.32	72.76 8.953.10 100.88 10.950.00 120.23 13.666.20 130.55 23.238.20	0.008 0.009 0.009 0.006	0.032 0.024 0.014 0.006	0.024 0.028 0.026 0.017	0.095 0.071 0.043 0.017	0.0070 0.0079 0.0075 0.0042
Marco : Mar	co 3 (di	rección Y)							
Nivel (Entrepiso) 4 3 2 1	Altura M 18.00 14.50 11.00 7.50 4.00	H entrep M 3.50 3.50 3.50 3.50 4.00	Fuerza TON 30.33 32.69 24.28 16.57 8.69	Cortante Rigidez TON TON /M 30.33 5.337.40 63.02 8.953.10 87.30 10.950.00 103.87 13.665.20 112.55 23.238.20	Des. rel. M 0.006 0.007 0.008 0.002 0.002	Des. tot. M 0.033 0.027 0.020 0.012 0.005	0*D rel. M 0.017 0.021 0.024 6.023 0.015	B*D tot. M 0.099 0.082 0.061 0.037 0.015	Q*D/H (rel.) 0.0049 0.0060 0.0068 0.0068 0.0065 0.0036
Marco : Mar	co 4 (di	rección Y)							
Nivel (Entreoiso) 4 3 2 1	Altura M 18.00 14.50 11.60 7.50 4.00	H entrep M 3.50 3.50 3.50 3.50 4.00	Fuerza TON 30.33 32.69 24.28 16.57 8.69	Cortante Rigidez TON TON 7M 30.33 5.337.40 63.02 8.953.16 87.30 10,950.00 103.87 13.666.20 112.55 23,238.20	Des. rel. M 0.006 0.007 0.008 0.008 0.008 0.005	Des. tot. M 0.033 0.027 0.020 0.012 0.005	0*D rel. M 0.017 0.021 0.024 0.023 0.015	0*D tot. M 0.099 0.082 0.061 0.037 0.015	Q+D/H (rel.) 0.0049 0.0060 0.0068 0.0065 0.0036
Marco : Mar	co 5 (di	rессіо́п У /							
Nivel (Entrepiso) 5 4 3 2 1	Altura M 18.00 14.50 11.00 7.50 4.00	H entrep K 3.50 3.50 3.50 3.50 4.00	Fuerza TON 34.87 37.87 28.12 19.35 10.32	Cortante Rioidez TON TON 7M 34.89 5,337.40 72.76 8,953.10 100.88 10,950.00 120.23 13,666.20 130.55 23,238.20	Des. rel. M 0.007 0.008 0.009 0.009 0.009 0.006	Des. tot. M 0.03E 0.032 0.024 0.014 0.006	0*D rel. M 0.020 0.024 0.028 0.026 0.017	0*D tot. M 0.115 0.075 0.071 0.043 0.017	Q+D/H (rel.) 0.0056 0.0070 0.0079 0.0075 - 0.0042
Marco : Mar	co 6 (di	rección Y)							
Nivel (Entreoiso) 4 3 2 1	Altura M 15.00 14.50 11.00 7.50 4.00	H entrep M 3.50 3.50 3.50 3.50 4.00	Fuerza TON 39.71 42.92 33.88 23.72 13.80	Cortante Rioidez TON TON 7M 37.71 5.371.70 82.63 8.966.60 116.51 11.145.20 140.23 14.029.70 154.03 24.094.40	Des. rel. M 0.007 0.009 0.010 0.010 0.006	Des. tot. M 0.043 0.036 0.027 0.016 0.006	Q*D rel. M 0.022 0.028 0.031 0.030 0.019	Q*D tot. M 0.130 0.108 0.081 0.047 0.019	Q*D/H (rel.) 0.0063 0.0079 0.0070 0.0086 0.0086 0.0048

- -

,

.

-

•
DISTRIBUCION POR TORSION ing. Alberto Guzmán Fuentes hoja 1 EDIFICIO 1 CURSO SEPTIEMBRE DE 1999 CON ANALISIS DINAMICO

.-

•

-- -

.

. ---

.

CARACTI	ERISTICAS GENERALES			•		
omore de la obra	: EDIFICIO 1 CURSO	SEPTIEME	RE DE 19	79 C ON	ANALISIS	DINAMICO
Ubicación	: MEXICO D.F.					
Fecha	: SEPTIEMBRE DE 199	77				
Fuerzas en	: TON					
Longitudes en	: M					
Número de niveles		5				
Grupo al que pert	enece	Ь				
Zona donde está u	bicada	2	(Terren	o de ta	ransıción)
Factor de comport	amiento sismico (Q)	en x 3				
		en y 3				
Estructura regula	ŕ	S				
Número de marcos	en X		L			
Numero de marcos	en Y		3			

----- CARACTERISTICAS DE LOS NIVELES -----

Nivel	Peso	Altura	Centro de	cargas	Máxima di	mension	. Contar	ntes , , , , , , , , , , , , , , , , , , ,
	TON	M	en X M	en Y M	en X M	en Y M	en X TON	TON
5	934.50	18.00	30.00	12.50	b0.00	25.00	141.53	149.27
4	1,240,50	14.50	30.00	12.50	60.0ù	25.00	291,23	292.52
5	1,240,50	11.00	30.00	12.50	60.00	25.00	40 7.0 6	399.44
2	1,240.50	7.50	30.00	12,50	60.00	25.00	490,48	467.96
1	1,240,50	4.00	30,00	12,50	60.00	25.00	529.38	497.16

----- CARACTERISTICAS DE LOS MARCOS ------

Marco	Direcc Identificac	ión X ión Posic M	ion Iden	Direction tification	Y Posición M		
1 2 3 4 5 6	Marco A Marco B Marco C Marco D	0 9 16 25	.000 Marc .000 Marc .000 Marc .000 Marc Narc Narc Narc	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.000 12.000 24.000 35.000 48.006 60.000		
Marco M. Entrepiso	ar⊂o A Rigidez TDN 7M	Marco M Entrepiso	larco B Ricidez TON 7M	Marco M Entrediso	larco C Ricidez TON 7M	Marco M Entrepiso	arco D Rioidez TON 7M
5 4 3 2 1	7,354.90 10.051.30 11,240.40 12,166.30 16,908.60	54701	7,462.10 10,321.00 10,921.30 11.683.40 15,915.70	54324	$\begin{array}{c} 7,462,10\\ 10,321,00\\ 10,921,30\\ 11,683,40\\ 15,915,70 \end{array}$	5 4 2 1	7.354.90 10.051.30 11.240.40 12,166.30 16,902.60

DISTRIBUCION POR TORSION ing. Alberto Guzmán Fuentes hoja 2 EDIFICIO 1 CURSO SEPTIEMBRE DE 1999 CON ANALISIS DINAMICO

Marco Ma Entrepiso	arco 1 Figidez TON /M	Mar Entrep	co Marco (iso Rig TON (2 91dez 7M	Mar Entrep	co Marco 150 R TOM) 3 ligioez 17M	Marco M Entrepiso	arco 4 Rigioez TON 7M
5 4 3 2 1	5.371.7 8.966.0 11.145.7 14.029.7 24,094.0	70 5 50 4 20 3 70 2 40 1	5. 8. 10. 13. 25.	.337.40 .953.10 .950.00 .666.20 .238.20	5 4 3 2 1	1	5.337.40 8,953.10 0.950.00 3.665.20 3.238.20	ال ها الم	5.337.40 8.953.10 10.950.00 13.665.20 23.233.20
Marco M Entrepiso	arco 5 figioez TON 7M	Mar Entrep	co Marco (iso Rid TON (6 31dez 7M					
-54521	5,337.4 8,953.1 10,950.0 13.666.1 23.238.1	40 5 10 4 20 3 20 2 20 1	5. 8. 11 14 24.	.371.70 .966.60 .145.20 .029.70 .094.40					
RI	ESULTADOS I	DEL ANALISI	s estatic	0					
Reglamento u	tilızado			RCDF-198	17				
Coeficiente	sismico		æ	.32					
Coeficiente	sismico re	ducido (C/Q), en x =	.106666	57				
.			en y =	.105666	»7 ———				
Peso total de	e la estruc	tura	z	5896.5	TON				
lortante en	ia base,		en x =	628.96	IUN				
	•••••		eny=	628.96	IUN				
***** 5e ana	112a en la	direction	X CON LOS	cortante	es propo	rcionado	26		
**** 59 ana	liza en la	airection	Y CON 105	cortante	es propo	rcionage	35	1 -	
(entrepiso)	en X TON	en X TON	ruerza en Y TON	en Y TON	e Posi	cion de en λ M	ia contani en Y M	Ce	
5			140.07	1/0 77		30.00	12.50		
	141.53	141.53	147.4/	1774		00100			
4	141.53 149.70	141.53 291.23	147.27	292.52		30.00	12.50		
4 3	141.53 149.70 -117.83	141.53 291.23 409.06	147.27 143.25 106.92	292.52 399.44		30.00 30.00	12.50 12.50		
4 3 2	141.53 149.70 117.83 81.42	141.53 291.23 409.06 490.48	143.25 106.92 68.52	292.52 399.44 467.96		30.00 30.00 30.00	12.50 12.50 12.50		

----- RESULTADOS DEL ANALISIS POR TORSION -----

DISTRIBUCION POR TORSION ing. Alberto Guzmán Fuentes hoja 3 EDIFICIO 1 CURSO SEPTIEMBRE DE 1999 CON ANALISIS DINAMICO

DISTRIBUCION DE CORTANTES PARA EL ENTREPISO # 5 rigidez torsional 1.599322E+07

⁵ 1r.	Rigidez	Cortante	Centro de Torsión	Posición de La contante	Excentr.	Máx. Dim. en planta	Excentrici	dades de d	iseño Mome ປີ 10ສ	ntos de to	r5100
¥ Ý	TON /M 29.634.00 32.093.00	TON 141.5 149.2	M 3 30.00 7 12.50	M 30.00 12.50	M 0.00 0.00	M 60.00 25.00	1:000 (0:1 M 2:5	100 1002- H 10 -	-6.00 -2.50	-M 353.2 895.6	-353.8 -895.6
Mar	co rigi TON	dez Yj /M M	t Torsión en X	Tarsiôn en Y	Torsion en X	Torsión en Y	Directo TON	Directo +tor en X	0.30*torsión en Y	Total TON	
Marco	À 7,35	4,90 -12.	50 -2.03	-5.15	2.03	5.15	35.13	37.16	1,54	38.70	
Marco	5 7,45	2.10 -3.	50 -0.5E		0.58	1.45	35.64	36.21	0.44	36.66	
Marco	DC 7,46	2.10 3.	50 0.58		0.58	1.46	35.64	36.22	0.44	36.66	
Marco	; D 7,35	4.90 12.	50 2.00 -2.00	5.15 5.15 5.15	2.03	5.15	35.13	37.16	1.54	38,70	
Mar	rco rigi TON	dez X; /M M	t Torsion en Y	Torsión en X	Torsion en Y	Torsion en X	Directo TON	Directo +tor en Y	0.30⊁torsión en X	Total TON	
Marco	o 1 5,37	1.70 -30.	00 -9.02	2 -3.57	9.02	3.57	24.98	34.01	1.07	35.08	
Marco	o 2 - 5,33	7.40 -18	00 -5.30	-2.13	5.38	2,13	24.83	30,21	0.64	30.84	
Marc:	o 3 5.33	7.40 -6.	00 -1.7	6 2.13 9 -0.71	1.79	0.71	24.83	20.62	0,21	26,83	
Marco	o 4 5.33	7.40 6.	$ \begin{array}{c} 1.7 \\ 1.7 \\ -1.7 \end{array} $	7 0.71 7 0.71	1.79	0.71	24.83	26.62	0.21	26.83	
Marci	5 5,33	7.40 18	$.00 \qquad 5.30 \qquad -1.7$	$ \begin{array}{cccc} 7 & -0.71 \\ 8 & 2.13 \\ 9 & -0.17 \end{array} $	5.38	2.13	24.83	30.21	Ú.64	30.84	
Marci	5,37	1.70 30	.00 9.0 -9.0	2 3.57 2 -3.57 2 -3.57	9.02	3.57	24.98	34.01	1,07	35.08	

PISTRIBUCION DE CORTANTES PARA EL ENTREPISO # 4 rigidez torsional 2.598001E+07

. Ri	gidez	Cortante	Centro de Torsion	Posición de la cortante	Excentr. teorica	Max. Dim. en clasta	Excentric: 1.50e +0.1	idades de d 105 - 1.00e-	iseño Mome ປ.10b	ntos de l	consión
TON X 4 Y 5	l /M 10.744.60 13.745.60	TON 291.2 292.5	M 3 30.00 2 12.50	M 30.00 12.50	M 0.00 -0.00	M 60.00 25.00	M 6.0 -2.5	M 30 50	TDN -6.00 2.50 1	-M -728.1 .755.1	728.1 -1.755.1
ñarco	rigid TON /	ez Y; M M	it Torsión en X	Torsion en Y	Torsión en X	Torsión en Y	Directo TON	Directo +tor en X	0.30*torsion en Y	Total TON	
Marco A	10.051	.30 -12.	50 3.52	-8.49	3,52	8.49	71.84	75.36	2.55	77.91	
Marco B	10,321	,00 -3,	50 1.01	-2.44	1.01	2.44	73.77	74.78	0.73	75.52	
Marco C	10.321	.00 3.	50 -1.01	2.44	1.01	2.44	73.77	74.78	0.73	75.52	
Marco D	10,051	.30 12.	50 -3.52 3.52	8.49 8.49 -8.49	3.52	8,49	71.84	75.36	2.55	77.91	
Marco	rigid TON /	ez X; M M	it Torsión en Y	Torsión en X	Torsion en Y	Torsión en X	Directo TON	Directo +tor en Y	0.30*torsion en X	Total TON	
Marco 1	8,966	. 60 - 30.	00 -18.17	7.54	18.17	7.54	48.80	65.97	2,26	69.24	
Marco 2	8.953	.10 -18.	00 -10.89	4.52	10.89	4,52	48.73	59.62	1.35	60.97	
Marco J	8.953	.10 -6.	00 -3,63	1.51	3,63	1.51	48.73	52.36	0.45	52.81	
Marco 4	8.953	.10 6.	00 3.63 -3.63	-1.51	3,63	1.51	48.73	52.36	0.45	52,81	

DISTRIBUCION POR TORSION ing. Alberto Guzmán Fuentes hoja 4 EDIFICIO 1 CURSO SEPTIEMBRE DE 1999 CON ANALISIS DINANICO

Marco 5	8,953.10	18.00	10.89	-4.52	10.89	4.52	48.73	59.62	1.35	60 . 77
Marco 6	8,966.60	30.00	18.17	-7.54 7.54	18.17	7.54	48.80	66.97	2.26	69.24

DISTRIBUCION DE CORTANTES PARA EL ENTREFISO # 3 rigidez torsional 3.172556E+07

				-							
Dir.	ƙiqıdez	Cortante	Centro de Torsión	Fosición de la cortante	Excentr. teorica	Max. Dim. en planta	Excentric: 1.50e +6.1	dades de d Ob 1.00e-	iseño Mome 0.105	ntos de t	orsion
X Y	TON /M 44.323.40 65,095.40	TDN 407.06 399.44	M 30.00 12.50	M 30.00 12.50	M 0.00 0.00	M 60.00 25.00	M 5.0 2.5	M 30 30	-6.00 1 -2.50 2	-M .022.7 .396.6	-1,022.7 -2.396.6
Mar	co rigio TON d	iez Yit /M M	Torsión en X	Torsion en Y	Torsión en X	Torsion en Y	Directo TON	Directo +tor en X	0.30*torsion en Y	Total TON	
Marco	A 11,240).40 -12.50) -4.53	-10.61	4.53	10.61	103.74	108.27	3.19	111.45	
Marco	B 10.92	1.30 -3.50	-1.23	-2.89	1.23	2.89	100,79	102.02	0.87	102.89	
Marco	C 10,92	1.30 3.50) 1.23	2.87	1.23	2.87	100.79	102.02	0.87	102.89	
Marco	D 11,24).40 12.50) 4.53 -4.53	-2.87 10.61 -10.61	4.53	10.61	103.74	108.27	3,18	111.45	
flar	co rigi TON	je: Xjt /M M	Tor⊆i o n en Y	Torsión en X	Torsion en Y	Torsión en X	Directo TON	Directo +tor en Y	0.30*torsion en X	Total TON	
Marco	1 11,14	5.29 -30.90) -25.26	-10.78	25.26	10.78	67.36	92.62	3.23	?5.8 5	
Marco	2 10,95	0.00 -18.00	25.26) -14.89	10.78	14.89	6.35	66.18	81.07	1,91	82.98	
Marco	3 10.95	0.00 -5.00) -4.95	6.35 -2.12	4.95	2.12	66.18	71.14	0,64	71.78	
Marco	4 10.95	6.00 6.0 0	4.96 4.96	2.12	4.96	2.12	56.18	71.14	0.64	71.78	
Marco	5 10,95	0.00 18.00	-4.96 0 14.89	-2.12 6.35	14.89	55.ه	65.18	81.07	1.91	82 . 7 8	
Marco	6 11,14	5.20 30.00	-14.89 25.26 -25.26	-6,05 10,78 -10,78	25.26	10.78	67.36	92.62	3.23	95.85	

DISTRIBUCION DE CORTANTES PARA EL ENTREPISD # 2 rigidez torsional 3.918134E+07

Dir.	Rigidez	Cortante TON	Centro de Torsión M	Posición de la cortante M	Excentr. teorica M	Max. Dim. en olanta M	Excentric 1.50e +0.3 M	idades de d 105 1.00e- M	15eño Mome 0.105 TON	entos de	torsion
Ý	4 .677.40 81,724.20	490.48 457.95	30.00 12.50	12.50	40.00 +0.00	25.00	-2.1	50 50	2.50 -2	. 20. 2 . 807. 8	2,807.8
Mart	to rigio TON /	lez Yjt M M	Torsión en X	Torsión en Y	Torsion en X	Torsión en Y	Directo TON	Directo +tor en X	0.30*torsión en Y	Total TDN	
Marco	A 12,166	.30 -12.50	4.78 -4.74	10.90 -10.96	4.75	10.90	125.10	129,86	5.27	133,13	
Marco	B 11.683	.4 0 -3 .5 0	1.28	2.95	1.28	2,93	120,14	121.42	0.88	122.30	
Marco	C 11.683	5,40 3,50	-1.28	-2.93	1.28	2.93	120.14	121,42	0.88	122.30	
Marco	D 12,166	.30 12.50	-4.76 4.76	-10.90 10.90	4.75	10 .9 0	125.10	129.86	3.27	133.13	
Haro	to rigio TON /	lez Xjt M M	Torsión en Y	Torsión en Χ	Torsion en Y	Torsión en X	Directo TON	Directo +tor en Y	0.30*torsion en %	Total TON	
Marco	1 14,029	7.70 -30.00	30.1o	13.17	30 . 1a	13,17	79.36	109,53	3.95	113.48	
Marco	2 13,666	.20 -18.00	17.63 -17.63	7.70 -7.75	17.63	7.70	77.31	94.94	2.31	97.25	

DISTRIBUCION POR TORSION ing. Alberto Guzmán Fuentes hoja 5 EDIFICIO 1 CURSO SEPTIENBRE DE 1999 CON ANALISIS DINAMICO

.

Marco 3	13.606.20	-6.00	5.88 -5.88	2.57 -2.57	5.88	2.57	77.31	83.18	0.77	87.95
Marco 4	13,666.20	6.00	-5.88	-2.57	5.88	2.57	77.31	83.18	0.77	81.95
arco 5	13,666.20	18.00	-17.63	-7.70 7.70	17.63	7.70	77.31	94.94	2.31	97.15
Marco 6	14,029.70	30.00	-30.16 30.16	-13,17 13,17	30,16	13.17	79.36	109.53	3.95	113.48

DISTRIBUCION DE CORTANTES PARA EL ENTREPISO # 1 rigidez torsional 6.57753E+07

bir.	Rıqidez	Cor	tante	Centro de Tongión	Posición de	Excentr.	Max. Dim.	Excentrici	dades de d	iseño Mome	ntos de te	orsion
X Y	TON /M 65.548.60 141.141.61	, T(DN 529.38 497.16	M 30.00 12.50	M 30.00 12.50	M -0.00 0.00	M 60.00 25.00	-6.(2.5	M 1.002 M 50	6.00 TON 6.00 1 -2.50 -2	-M .323.4 .983.0	-1,323.4 2,983.0
Mar	co rio TON	idez /M	Y jt M	Torsión en X	Torsion en Y	Torsion en X	Torsión en Y	Directo TON	Directo +tor en X	0.30*torsión en Y	Total TON	
Marco	A 16,7	08.40	-12.50	-4.25	9.59	4,25	9.59	136.35	140.60	2.68	143.48	
Marco	B 15,9	15.7 0	-3.50	4.25	-7.57	1,12	2.53	128.34	129.46	0.76	130.22	
Marco	C 15,9	715.70	3.50	1.12	-2.53	1.12	2.53	128.34	129.46	0.76	130.22	
Marco	D 16,9	708.60	12.50	-1.12 4.25 -4.25	2.53 -9.59 9.59	4,25	9.59	136.35	140.60	2.89	143.48	
Mar	rco rig TON	jidez ∕M	X jt M	Torsion en Y	Torsión en X	Torsión en Y	Torsion en X	Directo TON	Directo +tor en Y	0.30+torsion en_X	Total TON	
Marco	0 1 24,0	094.40	-30.00	32.78	-14.54	32.78	14.54	84.87	117.65	4.36	122.01	
Marco	2 23,2	238.20	-18.00	-32.78	14.54	18.97	8.42	81.85	100,82	2.52	103.35	
Marco	3 23.2	238.20	-6.00	-18.97 6.32	6.42 -2.81	6.32	2.81	81.85	88.18	0.8 4	89.02	
"CC	4 23,2	238.20	6.00	-6.32 -6.32	2.81 2.81	6.32	2.81	81.85	88.18	0.84	89.02	
Marco	5 23.2	238.20	18.00	6.32 -18.97	-2.81 8.42	18.97	8.42	81.85	100,82	2,52	103.35	

nartu u	20,200,20	10.00	-10.7/	0.44	10.7/	0.42	01.00	100.02	يدق و تم	170.00
			18.97	-8.42						
Marco 6	24.094.40	30.00	-32.78	14.54	32.78	14.54	84.87	117.65	4.36	122.01
			32.78	-14.54		• • • • • •				 .4
			VEN U							•

.

----- DESFLAZAMIENTOS DE TODA LA ESTRUCTURA ------

Direction X

Nivel Entrep. 5 4 3 2 1	Altura M 18.00 14.50 11.00 7.50 4.00	Altura de entreciso 3.50 3.50 3.50 4.00	Contante TON 141.53 291.23 409.06 490.48 529.38	R191dez TDN /M 27,634.00 40,744.60 44.323.40 47,699.40 65,648.60	Desplazamiento Relativo N 0.00 0.01 0.01 0.01 0.01	Desplazamiento Total M 0.04 0.03 0.03 0.02 0.01	0 * Despl. Relativo 0.014 0.021 0.028 0.031 0.024	Q * Desol. Total M 0.118 0.104 0.083 0.055 0.024	Q * D/H Relativo 0.004 0.006 0.008 0.007 0.006
Direcci	on Y								
Nivel Entrep.	Altura —M	Altura de entrepiso M	Cortante TON	Rıqidez TON /M	Desplazamiento Relativo M'	Desplazamiento Total M	0 * Despl. Relativo M	Q * Despl. Total M	Q * D/H Relativo

DISTRIBUCION PO	R TORSION ED	ling. Albert IFICIO 1 CUR	to Guzmán RSO SEPTI	EMBRE DE 1	noja 6 1999 CON AN	ALISIS DINA	MICO			
5 18.00 4 14.50 2 11.00 2 7.50 1 4.00	3.55 3.55 3.5 4.0	i0 149.27 0 292.55 0 395.44 10 467.98 10 497.18	7 32.093 2 53,745 4 66,090 5 82,724 5 141,141	5.00 5.60 5.40 5.20 5.61	0.00 0.01 0.01 0.01 0.01	0.0 0.0 0.0 0.0 0.0	03 0.0 02 0.0 02 0.0 01 0.0 00 0.0	014 () 016 () 018 () 017 () 011 ()	2.076 2.062 2.046 2.028 2.028 2.011	6.004 6.005 0.005 0.005 0.005 0.005
RESU	MEN DE RE	SULTADOS EN	LOS MARC	:05						
Marco : Mar	coA(di	rection X)								
Nivel (Entreoiso) 4 3 2 1	Altura M 18.00 14.50 11.00 7.50 4.00	H entrep M 3.50 3.50 3.50 3.50 4.00	Fuerza TON 38.70 37.21 33.54 21.68 10.34	Cortante TON 38.70 77.91 111.45 103.13 143.48	Rigidez TON 7M 7,354.90 10.051.30 11,240.40 12,166.30 16,908.60	Des. rel. M 0.005 0.008 0.010 0.011 0.008	Des. tot. M 0.042 0.037 0.029 0.019 0.008	0*D rel. M 0.016 0.023 0.030 0.033 0.025	G*D tot. M 0.127 0.085 0.658 0.658	9*D/H (rel.) 0.0045 0.0066 0.0085 0.0094 0.0054
Marco : Mar	co B (di	.rección X)								
Nivel (Entrepiso) 5 4 3 2 1	Altura M 18.60 14.50 11.60 7.50 4.00	H entrep M 3.50 3.50 3.50 3.50 4.00	Fuerza TON 36.66 38.86 27.38 19.41 7.92	Cortante TON 36.66 75.52 102.89 122.30 130.22	R191dez TDN 7M 7,462,10 10,321,00 10,921,30 11,683,40 15,915,70	Des, rel. M 0.005 0.007 0.007 0.010 0.008	Des. tot. M 0.040 0.035 0.028 6.019 0.008	0*D rel. M 0.015 0.022 0.028 0.031 0.025	B*D tst. M 0.121 0.084 0.054 0.025	Q*D/H (rel.) 0.0042 0.0063 0.0081 0.0090 0.0061
Marco : Mar	co C (dı	rección X)								
Nivel (Entrepiso) 5 4 3 2 1	Altura M 18.00 14.50 11.00 7.50 4.00	H entrep M 3.50 3.50 3.50 3.50 4.00	Fuerza TON 36.66 38.86 27.38 19.41 7.92	Cortante TON 36.66 75.52 102.89 122.30 130.22	R1aidez TON 7M 7,462.10 10,321.00 10,921.30 11,483.40 15,915.70	Des. rel. M 0.005 0.007 0.009 0.010 0.008	Des. tot. N 0.040 0.035 0.028 0.019 0.008	Q+D rel. M 0.015 0.022 0.028 0.031 0.025	0*D tot. M 0.121 0.106 0.084 0.056 0.025	Q*D/H (rel.) - 0.0042 0.0063 0.0081 0.0090 0.0061
Marco : Mar	co D i di	rección X)								
Nivel (Entrepiso) 4 3 2 1	Altura M 18.00 14.50 11.00 7.50 4.00	H entrep M 3.50 3.50 3.50 7.50 4.00	Fuerza TON 38.70 37.21 33.54 21.68 10.34	Cortante TON 38.70 77.91 111.45 133.13 143.48	Rig1dez TON 7M 7,354,90 10,051,30 11,240,40 12,166,30 16,908,60	Des. rel. M 0.005 0.008 0.010 0.011 0.008	Des. tot. M 0.042 0.037 0.029 0.019 0.008	0*D rel. M 0.016 0.023 0.030 0.633 0.025	0*D tot. M 0.127 0.111 0.088 0.058 0.025	S*D/H (rel.) 0.0045 0.0066 0.0085 0.0094 0.0064
Marco : Mar	co 1 (di	rección Y)								
Nivel (Entrepiso) 5 4 3 1	Altura M 18.00 14.50 11.00 7.50 4.00	H entrep M 3.50 3.50 3.50 4.00	Fuerza TON 35.08 34.16 26:61 17.63 8.54	Cortante TON 35.08 69.24 95.85 113.48 122.01	Figidez TON 7M 5.371.70 8.966.60 11.145.20 14.029.70 24.094.40	Des. rel. M 0.007 0.008 0.009 0.008 0.005	Des. tot. M 0.036 0.029 0.022 0.013 0.005	Q*D rel. M 0.020 0.023 0.026 0.024 0.024 0.015	0+D tot. M 0.108 0.088 0.025 0.039 0.015	0*D/H (rel.) 0.0056 0.0066 0.0074 0.0069 0.0038
Marco : Mar	co 2 (di	rección Y)								
Nivel (Ent <u>rep</u> iso) 5	Altura M 18.00	H entrep M 3.50	Fuerza TON 30.94	Cortante TON 30.841	R101dez TON 7M 5,337.40	Des. rel. M 0.006	Des. tot. M 0.032	Q*D rel. M 0.017	Q*D tot. M 0.095	0*D/H (rel.) 0.0050

,

-

1

DISTRIBUCION POR TORSION Ing. Alberto Guzmán Fuentes hoja 7

.

4 3 2 1	$14.50 \\ 11.00 \\ 7.50 \\ 4.00$	3.50 3.50 3.50 4.00	30.13 22.00 14.27 6.10	60.97 8,953.10 82.98 10.950.00 97.25 13.666.20 103.35 23.238.20	0.007 0.008 0.007 0.004	0.026 0.019 0.012 0.604	0.020 0.023 0.021 0.013	0.078 0.057 0.035 0.013	0.0055 0.0055 0.0061 0.0035
Marco : Mar	co 3 (di	rección Y)					<i>a</i> -		
Nivel (Entrepiso) 5 4 3 2 1	Altura M 15.00 14.50 11.00 7.50 4.00	H entrep M 3.50 3.50 3.50 3.50 4.00	Fuerza TON 25.83 25.98 18.97 12.18 5.07	Cortante Rioldez TON TON 7M 26.83 5,337.40 52.81 8,953.10 71.78 10,950.00 83.95 13.666.20 89.02 23,238.20	Des. rel. M 0.005 0.006 0.007 0.006 0.004	Des. tot. M 0.027 0.017 0.010 0.010 0.004	Ø*D rel. M 0.015 0.018 0.020 6.018 0.011	Q*D tot. M 0.082 0.067 0.050 0.030 0.030 0.011	Ø*D/H (rel.) 0.0043 0.0051 0.0056 0.0053 0.0053 0.0629
Marco : Mar	co4(di	rection Y i							
Nivel (Entrepiso) 5 4 3 2 1	Altura M 18.00 14.50 11.00 7.50 4.00	H entrep M 3.50 3.50 3.50 3.50 4.00	Fuerza TON 26.83 25.98 18.97 12.18 5.07	Contante Rioidez TON TON 7M 26.83 5,337.40 52.81 8.953.10 71.78 10,950.00 83.95 13.665.20 89.02 23,238.20	Des. rel. M 0.005 0.006 0.007 0.006 0.004	Des. tot. M 0.027 0.017 6.010 0.004	Q*D rel. M 0.015 0.018 0.020 0.018 0.011	Q*D tot. M 0.082 0.067 0.050 0.030 0.011	Q*D/H (rel.) 0.0043 0.0051 0.0055 0.0053 0.0053 0.0029
Marco : Mar	rco 5 (di	rección Y)							
Nivel (Entrepiso) 5 4 3 2 1	Altura M 18.00 14.50 11.00 7.50 4.00	H entrep M 3.50 J.50 J.50 J.50 4.00	Fuerza TON 30.84 30.13 22.00 14.27 6.10	Cortante Rigidez TON TON 7M 30.84 5.337.40 60.97 8,953.10 82.98 10,950.00 97.25 13,666.20 103.35 23,238.20	Des. rel. M 0.006 0.007 0.008 0.007 0.004	Des. tot. M 0.032 0.026 0.019 0.012 0.004	Q*D rel. N 0.017 0.020 0.023 0.021 0.013	Q*D tot. M 0.095 0.057 0.055 0.035 0.013	Q+D/H (rel.) 0.0050 0.005B 0.0065 0.0065 0.0061 0.0033
Marco : Mar	ro 6 (di	rección Y)							
Nivel (Entrepiso) 4 3 2 1	Altura M 18.00 14.50 11.00 7.50 4.00	H entrep M 3.50 3.50 3.50 3.50 4.00	Fuerza TON 35.08 34.16 26.61 17.63 8.54	Cortante Rigidez TON TON 7M 35.08 5,371.70 69.24 8.966.60 95.85 11,145.20 113.48 14,029.70 122.01 24,094.40	Des. rel. M 0.007 0.008 0.009 0.008 0.005	Des. tot. M 0.036 0.029 0.022 0.013 0.005	0*D rel. M 0.020 0.023 0.024 0.024 0.015	Q*D tot. M 0.108 0.088 0.065 0.039 0.015	Q*D/H (rel.) 0.0056 0.0066 0.0074 0.0069 0.0038

.

·.

_

Análisis Sismico Dinámico RCDF-87 Oct 27-99, 16:43, hoja 1

Ing. Alberto Guzmán Fuentes

Estructura	Edificio 1
Ubicación	Mxico D.
- Dirección de analís	515 - X
Numero de niveles -	5

_

----- Datos Generales -----

.

—

.

.

Proyecto			Ed	ificio 1		
Ubicación			Mac	ico D.F.		
Fecha			Sep	otiembra	195	20
Numero de ni	veles		Ľ			
Zona			2	(Terreno	de	transicion)
Grupo			b			
Factor de co -miento sísm	noorta- ico	-	 '			
Estructura r	əgular		s 5	1		
Dirección de	analis	515	ж			
	Datos	de i	los	Niveles	÷	
Nivel	Altura (m)		P) (T)	eso on)	Ri (Te	lgidez pn/cm)
5	18.00	c	734	.50	4	296.34
4	14.50	1,7	240	.50	4	107.45
3	11.00	1,1	240	.50	Z	143.23
2	7.50	1.1	24Q	.50	4	176.99
1	4.00	1,2	240	.50	é	556.49

Peso total de la estructura 5,895.50 Ton

Ing. Alberto Guzmán Fuentes

.

Estructura ----- Edificio 1 Ubicación ----- Mxico D.F. Dirección de analisis - x Número de niveles ---- 5 •

.

Reglamento utilizado : Reglamento de Construcciones del D.F. 1987

.

Zona 2 Terreno de transición

Ta = .7 = 1.5 ΤЬ = .6666667 r = .32 C сí = .J2 = 3 Q Q' = 3 c'/Q' = .1066667

----- Características modales -----

Modo	periodo (seg)	Frecuencia (rad/seg)	Coef. part.	Coef. part. /w ²	⊂ (1/g)	Q´	c/Q′ (1/g).(a cm/seg²)
5	0,17519	Je.28	0.130849	0.000079	0.2185	2.1546	0.1014	99.51
4	0,20255	31.02	0.186109	0.000173	0.2420	2.3503	0.1030	101.02
3	0.25858	24.30	0.196591	0.0000033	0.2869	2.7239	0.1053	103.31
22	0.38751	16.13	0.236198	3 0.000908	0.3200	Z.0000	0.1067	104.64
1	1.05655	5,95	0.270252	0.007643	0.3200	3.0000	0.1067	104.64

----- Formas, desplazamientos y cortantes modales -----

Modo	Nivel	Forma	Desplazamiento	Desplazamiento	Cortante
(entrepiso)	Modal	total	relativo	
5			(cm)	(cm)	(ton)
	57	0.11500	0.001138	0.004813	1.43
	4	-0.37156	-0.003676	-0.011514	-4.69
	÷.	0.79232	0.007838	0.018848	8,35
	2	-1.11295	-0.011010	-0.020903	-9.97
	i	1.00000	0.009893	0.009893	6.49
Modo	Nivel	Forma	Desplazamiento	Desplazamiento	Cortante
		2007 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
(entrepiso)	Modal	total	relativo	
(4	entrepiso)	Modal	total (cm)	relativo (cm)	(ton)
(4	entrepiso) S	Modal -0.50261	total (cm) -0.008765	relativo (cm) -0.627112	(ton) -8.03
(4	entrepiso) 5 4	Modal -0.50261 1.05211	total (cm) -0.008765 0.018348	relativo (cm) -0.627112 0.035075	(ton) -8.03 14.29
4 4	entrepiso) S 4 3	Modal -0.50261 1.05211 -0.95923	total (cm) -0.008765 0.018348 -0.016728	relativo (cm) -0.027112 0.035075 -0.013681	(ton) -8.03 14.29 -6.06
4 4	entrepiso) S 4 3 2	Modal -0.50261 1.05211 -0.95920 -0.17474	total (cm) -0.008765 0.018348 -0.016728 -0.003047	relativo (cm) -0.627112 0.035075 -0.013681 -0.020486	(ton) -8.03 14.29 -6.06 -9.77

•

Ing. Alberto Guzmán Fuentes

--

			Estructura	Edific:
			Ubicación	Mxico D.r.
			Dirección de anal	lisis - x
			Número de níveles	; 5
Mado Nivel	Forma	Desplazamiento	Desplazamiento	Cortante
(entrepiso)	Modal	total	relativo	
		(cm)	(cm)	(ton)
5	1.19832	0.041222	0.078238	23.18
4	-1.07607	-0.037016	-0.010924	-4.45
5	-0.75846	-0.026091	-0.053992	-23.95
2	<u>0.81106</u>	0.027901	-0.006499	-3.10
1	1.00000	0,034400	0.034400	22.58
Modo Nivel	Forma 🕔	Desplaramiento	Desplazamiento	Cortante
(entrepiso)	Modal	total	relativo	
2		(\sub{m})	(cm)	(ton)
5	-2.03366	-0.193163	-0.161574	-47.88
4	-0.33257	-0.031586	-0.14Z025	-58.27
	1.17523	0.111436	-0.048749	-21.61
2	1.68647	0.160185	0,065202	31.10
1	1.00000	0.094983	0.094983	. 62.35
Moda Nivel	Forma	Desplazamiento	Desplazamiento	Cortante
(entrepiso)	Model	total	relativo	
1		$(\subset m)$	(cm)	(ton)
5	4.85718	◯.885278	0.441722	10.5
4	4,30588	3.444556	0.699267	284.91
3	7.47256	2.745289	0.919742	407.60
۶۰۰۰ همه	2.28256	1.825547	1.025767	489.28
1	1.00000	0.799780	0.799780	525.04

----- RESPUESTAS MODALES, desplazamientos -----

Nivel (entrepiso)	Desplazamientos Dinàmico Es (cm)	Relativos statico (cm)	Desplazamientos Dinamico Es (cm)	Totales stático (cm)
5	0.4776	0.5092	3.8913	4.6945
4	0.7148	0.8567	3.4450	4.1253
3	0.9229	1.0963	2.7477	3.2686
2	1.0283	1.2143	1.8328	2.1723
1	U.8 064	0.9581	0.8064	0.9581

Análisis Sísmico Dinámico RCDF-87

Ing. Alberto Guzmán Fuentes

.

, --

Oct 27-99, 16:44, hoja 4

Estructura ----- Edificio 1 Ubicación ----- Mxico D.F. Dirección de análisis - x Número de niveles ----- 5

----- RESPUESTAS TOTALES, fuerzas y cortantes -----

Nivel	Corta	inte	Fuer	za
entre- -piso	Estático (Ton)	Dinámico (Ton)	Estatıca (Ton)	Dinamica (lon)
5	168.68	141.53	168.68	141.50
4	349.06	291.23	180.38	149.70
3	485.90	409.06	136.84	117.SC
	579.20	490.48	93.30	81.42
1	628.96	529.38	49.76	38.90

.

. .

ł.

- (,

An lisis S smico Din mico RCDF-87, Autor : F. Monroy M., v-2.0 Ago. 92

An lisis S smico Din mico RCDT-87, Autor : F. Monroy M., v-2.0 Ago. 92

5

Análísis Sísmico Dinámico RCDF-87

Mxico

5

Ь

З

Ing. Alberto Guzmán Fuentes

Estructura ----- Edific Ubicación ----- MXICO Dirección de analísis - v Numero de niveles ----- 5 ----- Datos Generales --------Edificio 1 Septiembre de 1999

Número de niveles

Proyecto

Fecha

Zona

Ubicación

2 (Terreno de transición)

նոսըս

Factor de comporta--miento sísmico

Estructura regular sSi

Dirección de analisis y

----- Datos de los Niveles -----

Rigidez (Ton/cm)	Peso (Ton)	Altura (m)	Nivel
320.93	934.50	18.00	5
537.46	1.240.50	14.50	4
660.90	1,240,50	11.00	3
827.24	1.240.50	7.50	2
1.411.42	1,240.50	4. 00	1

Peso total de la estructura 5,896.50 Ton

Análisis Sísmico Dinámico RCDF-87 Oct 27-99, 16:54, hoga 1

Ing. Alberto Guzmán Fuentes

Estructura ----- Edificio 1 Ubicación ----- Mxico Dirección de analisis - y Numero de niveles ----- 5

Reglamento utilizado : Reglamento de Construcciones del D.F. 1987

Zona 2 Terreno de transición

- .3 Ta ТЪ = 1.5 57 = .66666667 = .32 C <u>c</u> ' = <u> </u>72 = 3 Q Ö. = 3 c'/Q' = .1066667

.

----- Características modales -----

Modo	periodo (seg)	Frecuencia (rad/seg)	Coet. part.	Coef. part. /w ²	с (1/g)	۵´	د/Q′ (1/g)	a (cm/seg²)
5	0.13198	47.61	0.290938	3 0.000128	0.1856	1.8778	0.0987	96.85
4	0.16712	37 . 60	0.173233	5 0.000123	0.2137	2.1141	0.1011	99.16
3	0.22680	28,46	0.170680	0.000211	0.2566	2.4720	0.1038	101.85
2	0.02995	19.04	0.172185	5 0.000475	0,3200	3.0000	0.1067	104.64
1	0,82442	7.62	0.192964	4 0.003322	0.3200	J.0000	0.1067	104.64

----- Formas, desplazamientos y cortantes modales -----

Modo	Nivel	Forma	Desplazamiento	Desplazamiento	Cortante
(6	entreoiso)	Modal	total	relativo	
5			(cm)	(cm)	(ton)
	5	0.01586	0.000197	0.001326	0.40
	4	-0,09083	-0.001129	-0.005230	-2.81
	Ξ.	0.32986	0.004101	0.013530	8.94
	Z	-0.75853	-0.009429	-0.0218a1	-18.08
	1	1.00000	0.012431	0.012431	17.55
Modo	N1vel	Forme	Desplazemiento	Desplazamiento	Cortante
λ θ	entrepiso)	Modal	total	relativo	
4			(cm)	(c m)	(ton)
	<u>E</u> ,	-0.30416	-0.003696	-0.015509	-4.98
	4	0.97204	0.011812	0.030025	16.14
	 1	-1,49870	-0.018212	-0.024840	-16.42
	2	0.54542	0,006628	-0.005524	-4.57
	. 1	1.00000	0.012152	0.012152	17.15

Ing. Alberto Guzmán Fuentes

.

Estructura	Eaific.
Ubicación	MX1CO
Dirección de anàlisis -	У.
Numero de niveles	5

Modo (e	Nivel entreciso)	Forma Modal	Desplazamiento total	Desplazamiento relativo	Cortante
3			(cm)	(cm)	(ton)
	5	1.33744	0.028711	¢.049009	22.15
	4	-1.87716	-0.040297	-0,035567	-19.12
		-0.22035	-0.004730	-0.036252	-23.96
	<u> </u>	1.46838	0.031522	0.010055	8.72
	1	1.00000	0.021467	0.021467	30.30
Modo	Nivel	Forma	Desplazamiento	Desplazamiento	Cortante
((entrepiso)	Modal	total	relativo	
2			(c m)	(cm)	(ton)
	ľ	-3.21217	-0.159598	-0.171787	-55.13
	4	0,24533	0.012187	-0.09217*	-49.54
	Z –	2.10059	0.104368	-0.002547	-1.68
	<u>.</u>	2.15185	0.106916	0.057230	47.34
	1	1.00000	0.049685	0.049685	- 70.13
Modo	Nivel	Forma	Desplazamiento	Desplazamiento	Cortante
((entrepiso/	Mod <i>a</i> l	total	relativo	
1			(cm)	(cm)	(ton)
	5	7.11474	2.473272	0.426415	136.85
	4	5.83809	2.046856	0.534351	287.19
	.3	4,35095	1.512505	0.602634	398.28
	<u>~~</u>	2.61738	0.909871	0.562245	465.11
	1	1.00000	0.347628	0.347626	490.65

----- RESPUESTAS MODALES, desplazamientos -----

Nivel (entrebiso)	Desplazamiento Dinamico (cm)	os Relativos Estatico (cm)	Desplazamiento Dinamico (cm/	os Totales Estático (cm)
5	0.4651	0.5256	2.4786	3.0561
-	0.5440	0.6495	2.0473	2.5305
<u> </u>	0.6044	0.7352	1.5162	1.8810
2	0.5657	0.7002	0.9167	1.1458
1	0.3522	0.4456	0.3522	0.4456

Análisis Sísmico Dinámico RCDF-87 Oct 27-99, 16:54, hoja 4

.

Estructura ----- Edificio 1 Ubicación ----- Mxico Dirección de analisis - y Número de niveles ----- 5

----- RESPUESTAS TOTALES, fuerzas y cortantes -----

Nive]	Conta	ante	Fuer	za
entre-	Estatico	Dinámico	Estatica	Dinamica
-Diso	(Ton)	(Ton)	(Ton)	(Ton /
5	168.68	149.27	168.68	149.27
4	349.06	292.52	180.38	143.24
ā	485.90	399.44	136.84	106.93
2	579.20	467.96	93.30	68.52
1.	628.96	497.16	45.76	29.20

.

An lisis S smico Din mico RCDP-87, Autor : F. Monroy M., v-2.0 Ago. 晃

CONTENIDO

.- PLANTA TIPO

.- PERSPECTIVA EN RENDER SOLIDO

.- PERSPECTIVA EN MODO ALAMBRE

.- GEOMETRIA DE MARCOS

- GRAFICA DE DESPLAZAMIENTOS

.- GRAFICAS DE MOMENTOS

.- GRAFICAS DE CORTANTES

.- LISTADO DE DESPLAZAMIENTOS

.- LISTADO DE ELEMENTOS MECANICOS

.- LISTADO DE DISEÑO

	ELANG UT#20105
FEOYECTO : (CURSO) ESTRUCTURA: (EST~H)	
he	
	▼!

1

t

	ELANO UDWODIOS	
ECRO : (CURRO) LUCTURA: (EST-11)		
		Í
,	and the second	
Ĩ		
· ·		

•

MARCO TRANSVERSAL EJE 2

.

.

•

•

.

եր նշերչ չուրտ հայտնությունները հայտնությունը ներականությունը ներակությունը պատեսպությունը պատեսպությունը պատես

MARCO MODE

•

NI Tipo CO	DND Ex (cm)	Dy (cm)	Do (cm)	Ga(sau;	3;(zac)	Gz(zad)
	0 -0.000 1 -0.000 2 -0.000 5 -0.039 6 -0.004 7 -0.035 8 -0.040 MH -0.040 MH -0.040	-0.500 -0.139 -0.008 -0.003 -0.045 +0.045 +0.004 +0.000 -0.991	+0.000 +0.000 +0.000 -0.003 +0.042 -0.029 +0.043 -0.043	-0.0035 -0.3061 -0.0002 -0.0001 -3.0011 -3.0016 +3.0016 +3.0016 -0.0029	+0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 +0.0000 +0.0000 +0.0000	-0.0001 -0.0000 -0.0000 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017
	C -0.000 1 -0.000 C -0.030 E -0.037 C -0.001 7 +0.036 8 -1.001 M- +0.028 M0.038	-0.369 -0.110 -0.162 -0.000 +0.035 +0.003 +0.030 -0.030 -0.000 -0.641	+0.000 -0.000 -0.000 -0.005 +0.042 +0.042 +0.029 +0.042 -0.043	-0.6000 +0.0000 -0.6000 +0.6014 +0.0001 +0.6011 -0.0015 +0.0015	+0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 +0.0000 +0.0000 +0.0000	-0.0000 -0.0000 -0.0000 -0.0011 -0.0010 -0.0011 -0.0000 -0.0011 -0.0011
	$\begin{array}{cccc} 0 & -6.500 \\ 1 & -6.600 \\ 2 & -6.600 \\ 3 & +0.001 \\ 7 & +0.637 \\ 6 & -0.001 \\ M^+ & +0.638 \\ M^+ & -6.538 \end{array}$	-0.417 -0.123 -0.183 +0.003 -0.041 -0.060 -0.035 +0.000 -0.724	+0.000 +0.000 -0.003 +0.642 +0.003 +0.029 +0.043 -0.043	-0.0060 -0.0060 -0.0061 +0.0010 +0.0010 +0.0012 +0.0016 -0.0016	-6.0300 +1.3035 +6.0000 -0.0003 +5.0000 +5.0000 -6.0000 +0.0000 +0.0303 +0.0303	-0.0600 -0.0000 -0.0000 -0.0012 -0.0012 +0.0012 +0.0012 +0.0012 -0.0012
5	0 -0.000 1 +0.000 2 -0.000 5 +0.005 6 +0.005 6 +0.039 8 -0.004 M+ +0.040 M+ +0.040	-0.549 -0.150 -0.002 -0.014 -0.245 -0.003 -0.205 -0.000 -1.064	+0.000 +0.000 -0.003 -0.042 +0.033 +0.029 +0.042 -0.043	+0.0005 +0.0001 +0.0002 -0.0001 +0.0022 -0.0001 +0.0016 -0.0025 -0.0025	+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 -0.0000 +0.0000 +0.0000 +0.0000 +0.0000	-0.0600 -0.0000 -0.0000 -0.0017 -0.0015 -0.0015 +0.0001 +0.0018 -0.0018
рарана 	0 +0.000 1 +0.000 2 +0.000 5 +1.055 5 -0.060 7 +1.190 5 +0.066 M1.275 M1.275	-0,525 -0.143 -0.220 -0.000 +0.253 -0.016 +0.211 +0.000 -1.046	+0.000 +0.000 -0.038 -0.925 +0.945 +0.734 +0.907 -7 936	+0.0002 +0.6001 +0.6001 -0.6001 +0.6002 +0.6001 +0.0016 +0.0025 -0.0011	-6.0000 -0.0000 -0.0000 -6.0000 -6.0000 -6.0000 -6.0000 -0.0001 -0.0001 -0.0001	+0.0000 +0.0000 +0.0000 -0.0025 +0.0001 -0.0624 +0.0001 +0.0020 -0.0025
8 8 8 8 8 8 8	0 +0.000 1 +0.000 2 +0.000 5 +1.249 6 -0.350 7 +1.206 8 -0.350 M- +1.264 M1.064	-C.780 -0.229 -0.360 +0.004 +0.052 +0.005 +0.048 +0.000 -1.380	+0.000 +0.000 -0.000 +0.000 +0.905 +0.045 +0.045 +0.734 +0.927 -0.935	-0.0007 +0.0003 +0.6004 -0.6004 -0.6004 -0.6004 -0.6006 +0.0006 +0.0016 +0.0006	-0 0000 -0.0000 -0.0000 -0.0000 -0.0001 +0.0000 +0.0001 +0.0001 -0.0001	+0.0000 +0.0000 +0.0000 -0.0025 +0.0001 -0.0021 +0.0001 +0.0026 -0.0025
	0 +0.000 1 -0.000 2 -0.000 5 -1.142 5 -0.034 7 -1.213 8 +0.034 N# +1.053 N= -1.053	-0.723 -0.227 -0.345 -0.006 +0.245 -6.013 +0.201 +0.201 +5.000 -1.365	+0.000 +0.000 +0.000 +0.925 +0.925 +0.645 +7.734 +0.936	-0.0010 -0.0003 -0.0005 -0.0000 -0.0004 +0.0000 -0.0003 -0.0002 -0.0021	-0.0000 -2.0006 -0.0006 -0.0000 -0.0000 -0.0000 -0.0001 -6.0001 +0.0001	+0.0600 +0.0600 +0.0000 -0.0025 +0.0000 -0.6024 +0.0001 +0.0025 -0.0025
10 10 10 10 10 10 10 10 10 10	0 -0.000 1 -0.000 2 -0.000 5 11.236 6 -0.015 7 +1.221 8 -0.518 M+ +1.240 M1.241	-0.435 -9.128 -0.191 -0.000 -0.041 +0.003 +0.030 -0.000 -0.754	$\begin{array}{c} +0.000\\ +0.000\\ +0.000\\ +0.026\\ +0.905\\ +0.945\\ +0.945\\ +0.945\\ +0.937\\ -0.935\end{array}$	-0.0000 -0.0000 -0.0000 -0.0000 +0.0002 +0.0001 +0.0018 -0.0022 -0.0022 -0.0022	-0.6006 -0.0000 -0.0000 -0.0006 +0.0001 +0.0001 -0.6000 -0.6001 -0.0001	+0.0000 +0.0000 +0.0000 -0.0025 +0.0000 -0.0024 -0.0000 -0.0025 -0.0024
	0 -0.000 1 -0.000 2 +0.000 5 +1.231	-0 531 -0.162 -0 242 -0.006	+0.000 +0.000 +0.000 -0.033	+0.0005 +0.0001 +0.0002 +0.0000	-0.0000 -0.0000 -0.0000 -0.0000	+0.0000 +0.0000 +0.0000 -0.0024

.

**

+0.925 -0.0008 +0.0001 +0.0000 € -0.005 -0.598 11 -0.043 -0.0000 -0.0000 -0.0024 7 -1.227 -0.003 11 ____ +0.734 -0.0064 +0.0061 -0.0006 +0.937 +0.0013 +0.0001 +0.0025 -0.079 ë -0.005 ------ 1 M+ -1.233 -0.000 M- -1,233 -0.034 --0.934 -0.0000 -0.0001 -0.0024 -0.000 -0.551 -0.500 -0.0003 -0.0000 -0.0000 Û -0.000 -0.168 -0.000 -0.251 -1.216 -0.000 +0.000 -0.0001 -0.0000 -0.0000 1 _ +0.000 -0.0002 -0.0000 -0.0000 -0.025 -0.0000 -0.0000 -0.0024 10 +0.925 -0.0008 +0.0001 -0.0000 +6.067 +0.085 5 7 +3.043 -0.0000 +3.0000 -0.0024 -1,233 +0.007 _ -0.734 -0.0004 -0.0001 +0.0000 -0.227 -0.0002 +0.0001 -0.0005 8 -0.007 +0.070 ____ M- -1.235 -C 000 -0.936 -0.0011 -0.0001 -0.0024 M- -1.005 -0.372 -0.462 -0.000 -+0.000 +0.0001 -0 0000 +0.0000 24 е _____ +0.141 -0.210 +0 000 +0.0000 -0.0000 +0.0000 14 -0.000 ------+0.000 +0.0000 +0.0000 +0.0000 -0.000 +1.222 14 -0.028 -0.0001 -0.0008 -0.0024 +0.925 -0.0002 +0.0001 +0.0000 -0.045 +0.0001 +0.0000 -0.0024 -0.003 -0.547 11 Ξ +0.019 έ. -C.980 14 -1.238 +0.734 +0.0016 +0.0001 +0.0000 +0.937 +0.0023 +0.0001 +0.0025 8 -0.019 -0.040 14 _____. M- +1.244 +6.000 14 _____ H- -1.244 -0.835 -0.936 ~0.0022 -0.0001 ~0.0024 -0.000 -0.770 +0.000 +0.0010 +0.0000 +0.0000 15 Û -0.000 -0.240 +0.000 +0.0003 -0.0000 +0.0000 ____ 15 2 -0.000 -0.381 -0.060 +0.6605 -0.0300 +0.0060 -0.038 +0.0000 -0.0000 -0.0024 1.5 5 +1.215 +0.012 +0.925 -0.0364 +0.0001 -0.0000 +0.045 -0.0000 +0.0000 -0.0025 ő -0.035 -0.243 15 7 +1,240 -0.007 -0.002 1.5 8 -0.035 -0.002 +0.734 -0.0003 +0.0002 +0.0001 M- -1.255 -0.006 +0.937 -0.0002 -0.0001 -0.0025 M- -1.256 -1.439 -0.936 -0.0006 -0.0001 -0.0024 15 - 5 0 -0.000 -0.825 -0.251 -+0.000 -0.0007 -0.0000 +0.0000 16+0.000 -0.0003 -0 0000 +0.0000 -0.000 1 10 _____ -0.379 +0.000 -0.0004 -0.0000 +0.0000 1δ -0.000 5 +1.209 -0.033 -0.0000 -0.0000 -0.0034 -0.005 16 -0.052 +0.925 +0.0004 +0.0001 +0.0001 1€ 6 +0.051-----7 -1.253 +0.005 +0.045 -0.0000 +0.0000 -0.0025 16 +0.734 -0.0003 -0.0001 +0.0001 +0.937 +0.0000 +0.0001 +0.0026 -0.936 -0.0016 -0.0001 -0.0025 1ć 8 -0.051 -6.049____ M+ -1.269 +0 606 16 N- -1 269 -1.,50 C -0.000 -0.582 +0.000 -0.0002 -0.0000 +0.0000 _____ 17 +0.000 -0.0001 -0.0000 -0.0000 -0.000 -6.151 12111 -6.242 -0.000 -0.000 -0.0001 -0.0000 -0.0000 -----0 036 -0.0001 -0.0000 -0.0024 +1.203 +0.015 ċ +0.067 -0.253 +0.925 +0.0022 +0.0001 -0.0001 -+1.261 -0.003 +0.045 +0.0001 +0.0000 -0.0025 _____ +0.734 +0.0018 -0.0001 +0.0001 +0.937 -0.0021 +0.0001 -0.0026 9 -0.067 -0.212 17 -----M- -1.281 -0.000 17 M- -1,281 -1.121 -0.935 -0.0025 -0.0001 -0.0025 ~0 558 18 Û +0.000 +0.004 +0.0000 +0.0000 +0.0000 +0.001 +0.0000 +0.0000 +0.0000 +0.001 +0.0000 -0.0000 +0.0000 +0.002 +0.0000 -0.0002,+0.0000 +0.007 +0.0001 -0.0005 -0.0002 +1.705 +0.0001 +0.0001 +0.0001 18 -0.000 -0.154 1010 1.6+0 000 -0.232 -2.313 -0.215 -0.002 -0.058 12 £ 1 ¢ +0.016 -0.077 -0.0001 -0.0000 -0.0021 -2,21418 6 -0.115 M- -2.347 -6.215 -1.272 -0.0017 -0.0001 -0.0001 16 +0.000 +1.732 -0.0021 -0.0001 +0.0023 10 _____ -1 347 М--1.016 -1.721 -0.0021 -0.0001 -0.0022 +0.004 +0.0007 -0 0000 +0.0000 ē. +0 000 -6 784 14200 _____ 1 +0.000 -0.240 +0.001 +0.0003 -0.0000 +0.0000 +0.002 -0.0004 -0.0000 +0.0000 51 13 +6.000 -0.301 -0.067 -0.0000 -0.0000 -0.0022 -2.302 -0.087 +0 003 +0.057 1.01 +1.705 -0.6503 +0.0001 +0.0001 7 40 226 8 40.087 +0.007 +0.077 -0.0000 +0.0000 -0.0021 л¢ +1.272 -9.0000 -0.0001 -0.0001 +1.732 +0.0015 +0.0001 +0.0022 -0.04° 2.0 ____ ₩+ +2.328 +0.000 20 -1.384 -1.721 +0.6060 -0.0001 -0.0022 M- -2.328 21 0 +0.000 -0.745 +6.004 -0.0009 -0.0000 +0.0000 -0.233 21 +0.060 +0.001 -0.0003 -0.0006 +0.0000 _____ +0.002 -0.0005 -0.0000 +0.0000 -0.067 +0.0000 -0.0000 -0.0021 22 2 +0,000 -0.350 202200 E, -2.290 -0.005 ς 7 -6.059 +0.223 -1.705 -0 0064 +0.0001 +0.0000 +2.239 +0.077 -0.0006 +0.0000 -0.0021 -0.011 +0.187 +1.272 -0.0003 -0.0001 -0.0001 +1.732 -0.0003 -0.0001 -0.0001 +1.732 -0.0000 -0.0001 +0.0022 S -0.059 11- -2.308 M- -2.308 +0.000 _____ -1.721 -0.0019 -0.0001 -0.0021 -1.378 0 -0.000 -0.480 +0.004 -0.0000 -0.0000 +0.0000 1 -0.000 -0.141 +0.001 -0.0000 -0.0000 +0.0000

- -

	22 2 -0.000 23 5 -2.279 24 5 -0.031 25 7 -2.252 22 8 -3.031 21 M- +2.269 22 X- -2.239	-0.011 +0.000 +0.045 -0.003 +0.039 +0.039 +0.000 -0.032	+0.002 -C.0003 -0.0000 -0.067 -0.0001 -0.0003 +1.765 -0.0020 -0.0001 -0.077 +0.0001 -0.0000 -1.072 +0.6016 -0.0003 +1.732 -0.0020 -0.0001 -1.721 -0.0020 -0.0001	-0.0000 -0.0001 -0.0000 -0.0003 -0.0003 -0.0001 -0.0001
	23 C -0.000 23 1 -0.000 23 5 -0.000 23 5 -0.010 23 6 -0.010 23 6 -0.010 23 8 0.010 23 8 -0.010 23 8 -0.010 23 8 -0.010 23 8 -0.010 23 8 -0.224	-0.551 -0.175 -0.203 -0.005 -0.051 -0.003 +0.000 +0.000 -1.019	$\begin{array}{c} -0.034 & -3.0005 & -0.0031 \\ +0.001 & +0.0002 & -0.0000 \\ +0.007 & +0.0000 & +0.0000 \\ +0.007 & +0.0000 & +0.0000 \\ +1.705 & -0.0005 & +0.0001 \\ +0.077 & +0.0005 & +0.0001 \\ +1.772 & +0.0004 & +0.0001 \\ +1.772 & +0.0012 & +0.0001 \\ +1.772 & +0.0001 & +0.0001 \\ +1.772 & +0.0001 & +0.0001 \end{array}$	+5.0000 +0.0000 +0.0000 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001
	24 0 -0.000 24 1 -0.000 24 2 -0.000 34 5 +2.262 24 6 -0.012 24 7 -2.222 24 9 -0.012 24 4 -0.222 24 8 -0.012 24 8 -0.2276 24 8 -0.2272 24 8 -0.2272 24 8 -0.2272 24 8 -0.2272 24 8 -0.2272 24 8 -0.2272	-0.(01 -0.181 -0.272 -0.001 +0.005 +0.005 +0.005 +0.000 -1.055	-0.004 -0.0003 -0.0000 +0.001 -0.0001 -0.0000 +0.002 -0.0002 -0.0003 -0.007 -0.0000 -0.0000 -1.705 -0.0005 -0.0001 +0.077 -0.0005 -0.0001 +1.732 -0.0002 +0.0001 +1.732 -0.0002 +0.0001	-0 1000 -0.0000 -0.0001 -0.0000 -0.0000 -0.0000 +0.0001 -0.0001
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.526 -0.154 -0.231 +0.003 -0.651 40.000 -0.044 -0.000 -0.911	+0.05++0.0000 -0.0000 +0.001+0.0000 -0.0000 +0.002+0.0000 -0.0000 -0.067-0.0001-0.0000 +1.705+0.0001+0.0000 +1.772+0.0010+0.0001 +1.732+0.0010-0.0001 +1.732+0.0010+0.0001	+0.0000 +0.0000 -0.0000 -0.0001 -0.0000 +0.0001 -0.0000 -0.0001 -0.0001
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.794 -0.246 +0.371 +0.011 -0.226 -0.192 +0.005 -0.192 +0.000 -1.453	-0.004 +0.0009 -0.0000 -0.001 +0.0003 +0.0000 -0.002 +0.0005 -0.0000 -0.067 +0.0000 -0.0000 +1.705 -0.0004 +0.0001 +0.077 -0.0000 +0.0000 +1.732 +0.0019 +0.0001 -1.721 +0.0019 +0.0001	+0.0000 -0.0000 -0.0020 -0.0021 -0.0000 -0.0001 +0.0001 +0.0001 -0.0001 -0.0022
-	25 C -0.000 26 1 -3.000 25 2 -0.000 28 5 -2.231 28 7 +0.008 28 7 +2.008 28 7 +2.008 28 7 +2.008 28 8 4 28 1 -0.069 28 1 -0.334	-0.829 -0.350 -0.350 -0.007 -0.003 -0.003 -0.050 -0.050 -0.451	-0.004 -0.0007 -0.0000 -0.001 -0.0003 -0.0009 -0.002 -0.0004 -0.0000 -0.007 -0.0000 -0.0000 -1.725 -0.0003 -0.0001 -0.007 -0.0000 -0.0001 -1.722 -0.0003 -0.0001 +1.732 +0.0006 +0.0001 -1.721 -0.0013 -0.0001	-3.6000 -0.0000 -0.0000 -0.0001 -0.0001 -0.0002 +0.0001 +0.0002 -0.0022
	29 0 -0.000 1 -0.000 29 29 1 -0.000 29 5 +2.200 29 7 -0.117 29 7 -0.221 29 8 -0.117 29 7 -2.221 29 8 -0.1356 29 5 -0.356	-0.005 -0.167 -0.251 +0.015 -0.255 +0.003 -0.210 +0.000 +1.159	+0.064 +0.0000 +0.0000 -0.001 +0.0000 +0.0000 -0.002 +0.0000 +0.0000 -0.067 +0.0001 +0.0000 -1.705 +0.0001 +0.0000 +1.722 +0.0017 +0.0001 +1.732 +0.0021 +0.0001 +1.721 +0.0021 +0.0001	-3.0000 -0.0000 -0.0000 -0.0001 -0.0001 -0.0001 +0.0001 +0.0001 -0.0003
	30 0 +0.006 30 1 +0.006 30 2 +0.006 30 5 -7.189 30 6 -6.149 30 7 -3.060 30 6 -0.143 30 7 -3.023 30 8 -0.143 30 8 -3.234 30 4-3.234	-0.575 -0.153 -6.218 -0.002 +0.251 -0.016 -0.016 -0.218 -0.000 -1.113	+0.010 +0.0001 -0.0000 +0.003 +0.0000 -0.0000 +0.004 +0.0000 -0.0000 -0.003 +0.0000 +0.0000 -2.390 +0.0007 +0.0001 +0.022 +0.0000 +0.0001 +1.357 +0.0515 +0.0001 -2.431 +0.0619 +0.0001 -2.408 +0.0017 +0.0001	+0.0000 +0.0000 +0.0000 -0.0017 -0.0007 -0.0017 -0.0003 +0.0017 -0.0017
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.615 -0.247 +0.373 +0.002 +0.025 +0.010 +0.060 +0.060 +0.060	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+0.0000 +0.0000 +0.0000 -0.0017 +0.0000 -6.0017 -0.0001 +0.00017 -0.0017

-

,

.

.

,

.

.

..

33 35 33 33 33 33 33 33 33 33	0 +0.000 1 -0.000 5 +0.000 5 +0.000 5 -0.077 7 -1.093 8 +0.077 M- +3.103 X3.103	$\begin{array}{c} -0.751 \\ -0.241 \\ -0.364 \\ -0.003 \\ \pm 0.209 \\ +0.209 \\ +0.004 \\ +0.181 \\ -0.006 \\ -1.413 \end{array}$	-0.010 -0.0004 +0.003 -0.0003 +0.004 -0.0005 -0.028 -0.0003 -0.020 -0.0003 -0.020 +0.0003 +0.020 +0.0003 +0.957 -0.0002 +0.431 +0.0000 +0.405 -0.001	-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0001 -0.0000 -0.0001 -0.0000 -0.0001 -0.0000 -0.0001 -0.0000 -0.0001 -0.0000
34 35 36	$\begin{array}{rrrr} 0 & -0.500\\ 1 & -0.000\\ 2 & -0.000\\ 5 & -2.145\\ 6 & -0.041\\ 7 & +3.110\\ 8 & -0.041\\ M^{-} & +3.156\\ M^{-} & -3.153 \end{array}$	-3.515 -0.149 -5.223 +0.001 +0.048 +0.003 +0.003 +0.040 -0.833	+0.010 -0.0000 +0.003 -0.0000 +0.004 -0.0000 +0.066 -0.0000 +2.300 -0.0010 +0.029 -0.0010 +1.957 +0.0015 +2.431 +0.0017 -2.403 -0.0017	-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0007 -0.0000 -0.0007 -0.0001 -0.0007 -0.0001 -0.0017 -0.0001 -0.0017 -0.0001 -0.0017
35 35 35 36 36 37 38 35 35 35 35 35 35 35	$\begin{array}{rrrr} 0 & -0.005 \\ 1 & -0.000 \\ 2 & -0.005 \\ 5 & +3.134 \\ 6 & -0.013 \\ 7 & +3.123 \\ 8 & +0.013 \\ M^+ & +3.138 \\ M^- & -3.136 \end{array}$	-0.613 -6.183 -0.177 +0.003 -0.055 +0.000 +0.000 -1.074	-0.010 +0.0005 +0.003 +0.0002 +0.004 +0.0002 -0.093 +0.0002 +0.093 +0.0004 +0.099 +0.0000 +1.957 +0.0003 +2.431 +0.0011 +2.406 +0.0000	-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0017 -0.0001 -0.0007 -0.0001 -0.0007 +0.0001 +0.0017 +0.0001 +0.0017 -0.0001 -0.0017
36 36 36 36 36 36 36 36 36 36 36 36 36 3	0 -0.005 1 -0.005 2 -0.550 5 -3.123 6 +0.515 7 -3 136 8 -0.013 M+ +3.140 M3.140	-0.633 -0.169 -0.280 +0.001 -0.059 +0.003 +0.053 +0.000 -1.108	-0.010 -0.0003 -0.003 -0.0001 -0.004 -0.0662 -0.085 -0.6060 +0.099 -0.0004 +0.099 -0.0003 +2.431 -0.0001 -2.408 -0.6009	-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0005 -0.0000 -0.0005 -0.0001 -0.0000 -0.0001 -0.0017 -0.0001 +0.0001 +0.0001 -0.0017 -0.0001 -0.0017
36	$\begin{array}{cccc} & -0.000 \\ 1 & -0.000 \\ 2 & -0.000 \\ 5 & -3.111 \\ 6 & +0.043 \\ 7 & 43.149 \\ 8 & -0.043 \\ 8 & -0.043 \\ M^+ & 43.161 \\ M^- & -2.161 \end{array}$	-0.560 -0.162 -0.245 +0.004 -0.053 +0.000 +0.046 +0.046 +0.000 -0.967	$\begin{array}{c} -0.010 + 6.0000\\ +0.003 + 0.0000\\ +0.004 + 0.0000\\ -0.096 - 0.0000\\ -2.390 - 0.0017\\ +0.093 + 0.0017\\ +0.093 + 0.0015\\ +2.431 + 0.0017\\ -2.408 - 0.0016\end{array}$	$\begin{array}{c} -0.0000 \ +0.0000 \\ -0.0000 \ +0.0000 \\ -0.0000 \ +0.0000 \\ -0.0000 \ -0.0017 \\ +0.0001 \ +0.0000 \\ +0.0001 \ +0.0000 \\ +0.0001 \ -0.0017 \\ -0.0001 \ +0.0017 \\ -0.0001 \ +0.0017 \\ -0.0001 \ -0.0017 \end{array}$
39 39 34 39 39 39 39 39 39 39 39 39 39	$\begin{array}{ccccc} 0 & -0.060\\ 1 & -0.000\\ 2 & -0.000\\ 5 & +3.097\\ 6 & +0.073\\ 7 & -2.167\\ 8 & +0.073\\ 10 & +3.189\\ 11 & +3.189\\ 11 & +3.189\\ 11 & +3.183 \end{array}$	-0.829 -0.055 -1.305 +0.009 -0.210 -0.003 -0.184 +0.000 -1.490	+0.016 -0.0009 -0.003 -0.0003 -0.004 -0.0005 -0.066 -0.0000 -2.370 -0.0003 +0.099 -0.0000 -1.957 -0.0003 -2.431 +0.0017 -2.408 +0.0003	-0.0000 +0.0000 -0.0000 +0.0000 -0.0000 -0.0017 -0.0001 -0.0017 +0.0001 -0.0017 -0.0001 +0.0000 +0.0001 +0.0017 -0.0001 -0.0017
46 40 40 40 40 40 40 40 40 40 40 40 40	0 -0.000 2 -0.000 5 +7.082 6 +0.115 7 +3.182 8 -0.115 M4 43.216 X3.216	-0.859 -0.259 -0.391 +0.009 -0.095 +0.001 +0.068 +0.000 -1.510	-0.010 -0.0007 -0.003 -0.0004 -0.082 -0.0004 -0.082 -0.0000 12.390 -0.0000 -0.099 -0.0000 11.957 -0.0000 12.431 +0.0000 -2.406 -0.0015	-0.0000 +0.0000 -0.0000 +0.0000 -0.0000 +0.0000 -0.0000 -0.0000 -0.0001 -0.0000 +0.0001 -0.0017 -0.0001 +0.0001 +0.0001 +0.0017
41 42 41 41 41 42 41 42 41 42 41	0 -0.500 1 -0.000 2 -0.600 5 +3 066 6 +0.151 7 +5 198 8 -0.151 N+ +3.244 M3.244	-0.622 -0.171 -0.259 -0.155 -0.251 -0.003 -0.219 -0.000 -1.187	-0.016 -0.0301 -0.003 -5.0300 -0.004 -0.0000 -2.330 -0.0017 -0.029 40 0000 -1.957 +0.0015 +2.131 +0.0017 -2.408 -5.0018	-0.0000 +0.0000 -0.0000 +0.0000 -0.0000 +0.0007 -0.0001 -0.0017 -0.0001 -0.0017 -0.0001 +0.0017 -0.0001 +0.0017 -0.0001 +0.0017 -0.0001 -0.0017
42 42 42 42 42 42 42 42 42 42 42 42 42 4	0 -0.000 1 -0.000 2 +0.000 5 +3.835 5 -0.165 7 +3.837 8 +0.165 N+ +3 888	$\begin{array}{c} -0.583 \\ -0.161 \\ -0.043 \\ -0.002 \\ \pm 0.253 \\ \pm 0.010 \\ \pm 0.220 \\ \pm 0.060 \end{array}$	-0.915 +0.900 +0.005 +0 000 +0.007 +0.9000 -0.097 -0.0060 -2.937 -0.0013 -0.109 -0.0013 +2.990 +0 0014	-0.0000 +0.0000 -0.0000 +0.0000 -0.0000 +0.0000 -0.0001 -0.0011 +0.0001 -0.0001 +0.0001 -0.0001 +0.0001 -0.0000 +0.0001 +0.0011

.

•
42 _____ M- -3.000 ~1.135 -2.952 -0.0010 -0.0002 -0.0011 +0.000 -0.825 +0.016 -0.0007 -0.0000 -0.0000 44 0.40 -0.000 -0.251 -0.000 -0.251 -0.000 -0.379 +0.004 +0.0003 +0.0000 +0.0000 $\frac{44}{44}$ _____ -0.000 -3.823 +0.627 +0.6604 -0.0000 +0.0262 -0.001 -0.117 Ξ -0.097 -0.0060 -0.0001 -0.0011 44 -2,937 -0.0001 -0.0001 -0.0000 44 -1.115 10.17 +3.715 -5.012 +0.109 +6.0000 +0.0001 -0.0011 44 +2.400 -0.0001 -0.0001 -0.0000 +2.990 -0.0014 +0.0002 +0.0011 8 -7 125 -0 087 44 M+ +3 +60 -6 000 44 -1.455 -2.952 +0.0000 -0.0002 +0.0001 N- -2.987 +0.000 +0.000 +0.000 45 45 -0.793 -0.246 +0.010 -0.0009 -0.0000 +0.0000 +0.004 -0.0003 -0.0000 +0.0000 +0.007 -0.0005 -0.0000 -0.0000 01080 -6 372 15 -0.097 -0.0000 -0.0001 -0.0001 24 -3.806 -0.001 -0.197 -C.085 -3.733 +2.937 -0.0001 +0.0001 -0.0000 48 +0.10: +2.937 +0.0001 +0.0001 +0.000 +0.008 +0.109 +0.0000 +0.0001 +0.000 +0.108 +2.460 +0.0002 +0.0001 +0.000 +0.000 +0.990 +0.0000 +0.0002 +0.001 +1.415 +2.952 +0.0017 +0.0002 +0.001 45 7 45 9 +0.085 -0.169 M- -3.832 45 40 0 +0.000 -6 537 +0.016 +0.0000 -0.0000 +0.0000 -----∔ဂ် -0.000 -0.154 +0.004 -0.0000 -0.0000 +0.0000 -1019 ____ 46 -6.000 -0 203 →0.007 ~0.0000 -0.0000 +0.0000 -0.037 -0.0000 -0.0003 -0.0011 :6 +3.790 -0.001 ÷ 7 +2.937 -0.0013 +0.0001 -0.0000 40 -0.045 -0.049 C = 0.0420 + 0.049 + 0.053 + 0.0012 + 0.0001 + 0.0011 C = 0.043 + 0.049 + 0.090 + 0.0001 + 0.0011 C = 0.045 + 0.042 + 0.460 + 0.0012 + 0.0001 + 0.0012 M = 3.864 + 0.024 + 0.924 + 0.0512 + 0.0013 + 0.0002 + 0.0011 M = 3.864 + 0.924 + 0.952 + 0.0013 + 0.0002 + 0.0011 46 ·········· - -43 40 -0.001 +0.010 +0.0005 -0 0000 +0.0000 С, -0 639 +0.004 +0.0002 +0.0000 +0.0000 +0.007 +0.0002 +0.0000 +0.0000 47 4 4 -0.000 -0.188 ____ 2 5 -0.000 -0.205 ____ 47 -3 7 A +0.002 -0.097 -0.0000 -0.0001 -0 0611 Ċ 7 -0.015 -0.044 -2.937 -0.0001 -0.0001 -0.0008 47 -0.765 +6.109 +0.0000 +0.0001 -0.0011 +0.0CC 17 8 -0.015 -0.044 +2.460 +0.0002 +0.0001 +0.0000 +2.995 +0.0010 -0.0002 +0.0011 47 M- -3.782 +0.000 -1.111 -2.952 +0.0000 -0.0002 -0.0011 11- -3.732 -0.058 -0.194 -0.093 +0.016 -3.6003 +0.0000 +0.0000 49 ç -0.000 +0.004 -0.0001 -0 0000 +0.0000 +0.007 -0.0002 +0.0000 +0.0000 11110 - 6 ____ -0.000 -0 500 +3 765 43 -0.097 -0.0000 -0.0001 -0.0011 -0.002 48 -0.016 -3 779 +2.937 -0.6062 +0.0001 +0.0000 48 -6.039 1 i i +0.109 +0.0000 -0.0001 -0.0011 48 -0.001 _____ -2.460 -0 6662 -0.6001 +0.0066 -2.996 -0.6000 -0.0002 -0.0311 8 -0.018 -1.040 ֐ M- -3.754 -0.000 46 ÷Ξ M- -9.784 -1.145 -2.952 -0.0007 -0.0002 -0.0011 -0.000 -0.00 -0.000 50 50 ទាញ 52 _____ 50 Ē -0.109 +0.000 -0.0001 -0.0011 +1.460 -0.0011 -0.0001 +0.0000 -2.990 -0.0012 -0.0002 +0.0001 50 _____ € =0.047 50 ____ Ξ'n M- -1.608 +6.600 -1 002 ____ :-_- eca -2.952 -0.0011 -0.0002 -0.0011 -0.000 -0.845 -0.000 -0.059 -0.000 -0.093 -3.730 -0.007 01 E 1 . +0.016 +0.0000 +0.0000 +0.0000 -5.254 +6.064 -5.0063 -0.0000 +0.0000 -1.093 +0.007 +0.0005 +0.0000 +0.0000 _____ 51 -0.001 -0.0000 -0.0001 -0.0011 51 -0.097 -0.191 2 40.087 7 43.612 8 40.087 -2.937 -2.0001 -0.0001 +0.0000 51 7 -1 512 -0.051 -0.109 -0.0520 -0.0001 -0 0011 8 -5.0s7 -1.171 -2 405 -3 0002 -0.0001 -0.0006 10 -5.838 -0.006 -2.990 -0 0017 -0.0062 +0.0011 81 51 51 ____ _____ -2.952 -0 0050 -0 0000 -0.0011 52 52 53 _____ 50 ____ Ē. -----52

-0.734 -0.016 -0.0000 -0.0000 -0.0000 -7.134 -0.004 -0.0000 -0.0000 +0.0000 -1.233 -0.007 -0.0000 -0.0000 -0.0000 53 57 11111 -----_____ 53 -6.130 ·------3.704 -3.015 -0.097 -0.0002--0.0001 -0.0011 -5.367 -3.204 -2.937 +0.6013 -0.0001 +0.0000 -5.848 -5.003 -0.109 -3.6062 -0.0001 -0.0011 - 1 1, (n 5,5 52

~ .

53	8 -0.167 M- +3 596 M3.898	-0.221 -0.000 -1.209	-2.466 -0.0013 -0.0001 -0.0000 -2.990 -0.0013 -0.0000 -0.0011 -2.952 -0.0014 -0.0002 -0.0011
54 54	6 -7.000 1 +0.000 2 +0.000 5 -4.057 6 -0.167 7 -4.115 5 +0.164 M- +4.306 M- +4.306	-0.596 -0.162 -0.245 -0.002 -0.263 -0.263 -0.016 +0.005 -1.144	-3.022 +0.0002 -0.0004 -0.0000 -0.005 +0.0000 -0.0006 +0.0000 +0.010 +0.0005 -0.0001 +0.0003 -3.360 +0.0002 -0.0001 -0.0003 -3.360 -0.0011 -0.0001 -0.0006 -0.102 -0.0003 -0.0001 -0.0006 -3.423 -0.0013 -0.0002 -0.0009 -2.369 -0.0010 -0.0002 -0.0007
55 56 56 57 56 57 56 56 56 56 55 57	0 +0.000 1 +0.000 0 -0.000 5 -4.041 6 -0.104 7 +4.134 8 +0.104 N+ -4.078 M+ -4.078	-1.070 -0.195 -0.340 -0.002 +0.131 +0.014 +0.095 +0.000 -1.603	+0.022 +0.0015 +0.0006 +0.0000 +0.006 +0.0001 +0.0000 +0.0000 +0.010 +0.0000 +0.0000 +0.0000 +0.096 +0.0000 +0.0006 +0.0000 +0.096 +0.0000 +0.0001 +0.0009 +0.108 +0.0000 +0.0001 +0.0000 +2.895 +0.0001 +0.0002 +0.0009 +3.365 +0.0000 +0.0002 +0.0009 +3.365 +0.0000 +0.0002 +0.0008
57 57 57 57 57 57 57 57 57 57 57 57	0 -0.000 1 -0.000 2 -0.000 5 -4.225 6 -0.085 7 -4.250 M4.250	-1.027 -0.194 -0.234 +0.000 +0.173 +0.007 +0.158 +0.000 -1.579	+0.022 -0.0017 -0.0000 -0.0000 -0.006 -0.0001 -0.0000 +0.0000 -0.010 -0.0003 -0.0000 +0.0000 -0.095 -0.0000 -0.0001 -0.0009 -3.360 -0.0001 -0.0001 -0.0009 -0.106 +0.0000 +0.0001 -0.0009 +0.865 -0.0001 -0.0001 -0.0000 +0.3423 +0.0000 +0.0002 +0.0009 -0.369 -0.0021 -0.0002 +0.0009
38 52 58 58 58 58 58 58 58 58	0 -0.000 1 -0.000 2 -0.000 5 -4.209 6 -0.045 7 44.170 8 -0.045 M- 44.222 M4.222	-0.549 -0.155 -6.035 +0.001 +6.049 +0.004 +0.043 +0.000 -0.935	-0.622 -0.6000 -0.9000 +0.0000 +0.006 +0.0000 -0.0000 +0.0000 -0.016 +0.0000 -0.0000 +0.0000 -0.096 +0.0006 -0.0001 -0.0009 -0.356 +0.0001 +0.0001 -0.0000 -0.108 -0.0000 +0.0001 -0.0000 +2.423 +0.0011 -0.0002 +0.0009 -3.369 -0.0011 -0.0002 -0.0003
59 59 59 59 59 59 59 59 59 59 59 59 59	0 -0.000 1 -0.000 2 -0.000 5 +4.196 C -0.015 7 +4.184 6 +0.015 N+ -4.201 K4.201	-0.701 -0.171 -0.074 +0.001 -0.033 -0.033 -0.037 +0.000 -1.167	+0.022 +0.0008 -0.6000 +0.6000 +0.006 +0.0001 -0.6000 +0.0000 +0.010 +0.0002 -0.6000 +0.0000 -0.093 -0.0000 -0.6001 -0.0004 -3.360 -0.0002 +0.0001 -0.6009 +0.6000 -0.6001 -0.6009 +0.685 -0.0062 -0.0001 -0.0009 +2.423 +0.0012 +0.0002 +0.0009 -3.369 -0.0006 -0.6002 -0.0008
60 60 60 60 60 60 60 60 60 60	0 -0.000 1 -0.000 2 -0.600 5 +4.184 6 -0.016 7 +4.103 8 -0.016 M4.203 M4.203	-0.741 -0.178 -0.280 +0.003 -0.027 +0.001 -0.032 +0.000 -1.201	+0.022 -0.0005 -0.0006 +0.0000 40.006 -0.0000 -0.0000 +0.0000 -0.016 -0.0001 -0.0000 +0.0000 -0.990 -0.0003 -0.0001 -0.0009 +0.350 -0.0000 +0.0001 +0.0009 +0.055 -0.0002 -0.0001 +0.0000 -2.423 +0.0000 +0.0002 +0.0009 -3.369 -0.0009 -0.0002 -0.0008
62 62 62 62 62 62 62 62 62 62	C -0.000 1 -0 000 2 -0.000 5 -4 171 7 -0.047 7 -0.047 8 -0.047 M+ -4.026 M0.220	-0.594 -0.167 -0.255 +0.00- -0.055 -0.001 -0.048 +0.006 +1.010	+C.022 +0.0001 -0.0000 +0.0000 +0.006 +0.0000 -0.0000 +0.0000 +0.010 +0.0000 -0.0000 +0.0000 -0.090 +0.0000 -0.0001 +0.0000 -3.360 +0.0001 +0.6001 +0.0009 +2.665 +0.0011 -0.0001 +0.0009 -3.423 +0.0012 -0.0002 +0.0009 -1.369 -0.0010 -0.0002 -0.0000
63 63 63 63 63 63 63 63 63 63 63 63 63 6	0 -0.000 2 -0.000 5 +4.155 6 -0.007 7 +4.256 8 -0.037 M+ -4.256 M- +4.256	-1.080 -0.008 -0.355 -0.006 -0.177 +0.000 -0.182 +0.009 -1.658	-0.022 -0.0016 -0.0000 +0.0000 +0.006 +0.0001 -0.0000 -0.0000 -0.016 +0.0003 -0.0006 +0.0066 -0.096 -0.0006 -0.0001 -0.0009 +3.360 -0.0001 -0.0001 +0.0000 -0.108 +0.0000 -0.0001 +0.0000 +2.885 -0.0001 -0.0001 +0.0000 +3.423 +0.0021 +0.0002 +0.0009 -3.369 +0.0006 -0.0002 -0.0009
64 64 64	0 -0.660 1 -0.600 2 -0.600 5 +4.139	-1,114 -0,210 -0,359 -0,013	-9.022 -0.0015 -0.0000 +0.0000 -0.006 -0.0001 -0.0000 +0.0000 +0.010 -0.0003 -0.0000 +0.0000 -0.096 -0.0000 -0.0001 -0.0009

.

.

--

64 54 54	E -0.126 7 +4.248 8 -0.126 M4.286	-0.133 -0.002 -0.098 +0.000	-3.350 -0.0000 +0.0001 +0.0000 ' -0.108 +0.0000 +0.0001 -0.000% +1.685 -0.0000 -0.0001 -0.0000 +3.403 +0.0000 -0.0003 +0.0003
64 65 65 65 65 65 65 65	0 -0.000 1 -0.000 0 -0.000 0 -0.000 0 -0.000 0 -0.166 8 -0.166 8 -0.166 M4.316	-0.643 -0.174 -0.264 +0.015 -0.263 -0.203 -0.222 +0.206 -1.218	-3.335 -0.0019 -0.0000 -0.0000 +0.006 -0.0000 -0.0000 +0.0000 +0.010 -0.0000 -0.0000 +0.0000 -0.010 -0.0000 -0.0001 -0.0000 +3.336 -0.0000 -0.0001 -0.0000 +2.335 -0.0011 -0.0001 -0.0000 +2.535 -0.0011 -0.0001 -0.0000 -3.403 -0.0010 +0.0001 -0.0009 -3.559 -0.0013 -0.0001 -1.0008
901 991 991 991 991 991	0 + (.000 1 + 0.000 2 + 0.005 5 + 0.035 6 + 0.035 8 - 0.039 8 - 0.034 M 0.046 M 0.046	-0.303 -0.080 -0.125 -0.004 -0.049 -0.003 -0.003 -0.044 +0.050 -0.515	-0.000 -0.0018 +0.0030 -0.0000 +0.000 +0.0008 +0.0030 +0.0000 -0.000 -0.0008 +0.0000 -0.0000 -0.003 -0.0000 -0.0000 -0.0003 +0.042 -0.0005 +0.0036 -0.0000 +0.003 -0.0000 -0.0000 -0.0003 +0.029 -0.0004 +0.0000 +0.0000 +0.043 -0.0032 +0.0000 +0.0003 -0.043 -0.0000 +0.0000 -0.0003
397 997	0 -0.260 1 -0.000 0 +0.030 5 -0.035 6 -0.035 8 -0.035 8 -0.039 M- +0.039	-0.163 -0.022 +0.041 +0.003 +0.003 +0.002 +0.002 +0.000 +0.000 +0.175	+0.000 -0.0007 +0.0000 -2.0000 +0.000 +0.0001 +0.0000 +0.0000 +0.000 +0.0003 +0.0000 -0.0000 +0.003 -0.0000 -0.0000 -0.0000 +0.042 -0.0001 +0.0000 -0.0000 +0.029 -0.0001 -0.0000 +0.0000 +0.029 -0.0001 -0.0000 +0.0000 +0.029 -0.0001 -0.0000 +0.0000 +0.029 -0.0001 -0.0000 +0.0000
1603 1003 1003 1002 1002 1003 1003 1003 1003 1003 1003 1003 1003 1003 1003 1003 1003	5 +0.000 1 +0.000 2 -0.000 5 +0.036 6 +0.038 6 -0.038 8 -0.003 M0.039	-0.047 -0.019 +0.019 +0.001 -0.008 +0.000 -0.007 +0.000 -0.085	$\begin{array}{c} +0.000 & -0.0000 & +0.0000 & +0.0000 \\ +0.000 & -0.0000 & +0.0000 & +0.0000 \\ +0.000 & +0.0000 & +0.0000 & +0.0000 \\ +0.003 & +0.0000 & +0.0000 & +0.0000 \\ +0.003 & +0.0000 & +0.0000 & +0.0000 \\ +0.003 & +0.0000 & +0.0000 & +0.0000 \\ +0.029 & +0.0001 & +0.0000 & +0.0000 \\ +0.043 & +0.0001 & +0.0000 & +0.0000 \\ +0.043 & +0.0001 & +0.0000 & +0.0000 \\ +0.043 & +0.0001 & +0.0000 & +0.0000 \\ \end{array}$
1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009 1009	0 - 0.000 1 +0.000 2 +0.000 5 +0.036 3 +0.036 8 +0.039 8 +0.039 № + +0.039 № + -0.039	-0.098 -0.024 -0.042 +0.002 -0.038 -0.001 -0.031 +0.000 -0.190	-0.600 -0.0005 -0.0000 +0.0000 +0.000 -0.0002 +0.0000 +0.0000 +0.000 -0.0003 +0.0000 -0.0000 -0.003 +0.0000 -0.0000 -0.0000 +0.622 -0.0005 +0.0000 -0.0000 +0.624 -0.0002 -0.0000 +0.000 +0.024 +0.0000 +0.0000 +0.0001 -0.043 -0.0012 +0.0000 +0.0001
1611 1615 1615 1615 1615 1615 1615 1615 1615 1615	6 +1.600 1 -0.000 5 -0.034 6 +0.003 7 -0.033 8 -0.001 M- +0.033 M0.036	-0.257 -0.078 -0.111 +0.005 -0.003 -0.003 -0.077 +0.000 -0.466	<pre>>0.666 -0.0013 +0.6666 +0.0000 >0.666 -0.0013 +0.6660 +0.0000 +6.060 +0.0006 +0.0000 +0.0000 -0.003 +0.0000 -0.0006 -0.0600 +0.642 -0.0004 +0.0006 -0.0000 +0.669 -0.0003 +0.0000 -0.0000 +0.643 +0.0000 +0.0000 +0.0000 +0.643 -0.0004 +0.0000 +0.0002</pre>
1021 1021 1021 1021 1021 1021 1021 1021	0 -0.100 1 -0.000 2 +0.003 5 +0.007 3 +0.001 7 -0.037 8 -0.001 M- +0.037 M0.637	-0.273 -0.063 -0.119 -0.001 +0.001 +0.004 +0.004 +0.000 +0.475	+0.360 +0.0012 +0.0000 +0.0000 +0.000 +0.0003 +0.0000 +0.0000 +0.600 +0.0005 +0.0000 +0.0000 +0.003 +0.0000 +0.0000 +0.0002 +0.642 +0.0000 +0.0000 +0.0002 +0.603 +0.0002 +0.0000 +0.0002 +0.625 +0.0002 +0.0000 +0.0002 +0.043 +0.0020 +0.0000 +0.0002
1027 1027 1627 1627 1627 1627 1627 1627 1627 1627 1627 1627 1627 1627	0 +0.000 1 +0.000 2 +0.007 5 +0.007 6 +0.007 7 +0.007 8 -0.000 M- +0.007 M0.027	-0.154 -0.049 -0.067 40.000 +0.007 -0.001 -0.001 -0.005 -0.000 -0.270	+0.000 +0.0003 +0.0000 +0.0000 -0.000 +0.0001 +0.0000 +0.0000 +0.000 -0.0001 +0.0000 +0.0000 -0.003 -0.0000 -0.0000 -0.0001 +0.042 -0.0002 +0.0000 -0.0001 +0.029 -0.0001 -0.0000 -0.0001 +0.043 +0.0000 +0.0000 +0.0001 -0.043 +0.0000 +0.0000 -0.0001
1032 1023	C -0.60) 1 -0.000	-0.175 -0.055	+0.000 -0.0005 +0.0000 +0.0000 +0.000 -0.0002 +0.0000 +0.0000

-0.060 -0.076 +0.000 -0.0002 +0.0000 +0.0000 1033 C1 10 -0.003 -0.0000 -0.0000 -0.0001 1033 +0.037 -0.002 ____ -6.542 -0.0002 -0.0000 -0.000 1033 ; 7 -0.000 -0.028 +0.003 -0.0005 +0 0000 -0.0001 1033 +0.037 -0.001 +0.029 -0.0002 -0.0000 -0.0000 +0.042 +0.0000 +0.0000 +0.0001 1033 -0.020 8 -0.000 n+ →0.037 +0.000 1033 _____ -0.043 -0.0010 -0.0000 -0.0001 M- -0.03 -0.307 1013 1041 -0.323 -0.091 -0.000 -0.0010 +0.0000 -0.0000 -0.501 5.111 ____ -0.000 -0.000 -0 0000 -0.0000 -0.0000 ------0.142 1041 -0.000 +0.000 -0.0004 +0.0000 -0.0000 _____ 5 +6.027 +0.603 -0.0000 -0.0000 -0.0003 +0.004 1041 +0.042 +0.0001 +0.0000 +0.0000 -0.054 1641 ¢ -0.001 _____ 1041 7 +0.037 -0.002 +0 003 +0 0000 +0.0000 -0.0003 9 +0_001 +0.029 -0.0601 -0.0000 -0.0000 1041 ___ +0.043 -0.0000 -0.0000 +0.0000 -0.043 -0.0017 +0.0000 -0.0003 H- 0.028 1041 M- -0.035 -0.561 1041 -0.000 -0.000 -0.000 +0.000 +0.000; +0.0000 +0.0000 +0.000 +0.000; +0.0000 +1.0000 -0.363 1057 ê 1057 -0.109 1 1527 -0.161 +0.000 -0.0002 +0.0000 +0.0000 5 -2.002 5 -0.026 -0.003 -0.0000 -0.0000 -0.0004 1057 -0.042 -0.0000 -0.0000 -0.0000 1057 ÷ -0.001 -0.105 _____ +0 063 -0 0000 +0.0000 -0.0004 7 +0.036 +0.006 1057 ____ 5 +0.085 +0.029 -0.0007 -0.0000 -0.0000 1057 +6.001 -----+0.043 -0.0015 +0.0000 +0.0004 1:- +0.035 +0.000 1657 ____ M- -0.023 -0.500 -0.043 -0.0008 -0.0000 -0.0004 105 -0.000 -0.000 -0.000 +0.000 +0.0010 +0.0000 +0.0000 1071 Û -0.166 +0.000 +0.0003 +0.0000 +0.0000 1671-3.058 -----100 +0.606 -0.0004 +0.0060 +0.0060 -0.081 1071 1071 -0.003 +0.0000 -0.0000 -0.0001 +0.038 -0.0021071 ٢, -0.001 +0.078 +0.042 -0.0004 +0.0000 +0 0000 _____ 7 1071 -0.036 +0.001 +0.003 -0.0000 +0.00000 -0.0001 _____ 1071 9 +0.002 -0.063 -0.019 -0.0003 -0.0000 -0.0000 ._____ 1671 М÷ +0.039 -0.000 +0.043 +0.0019 +0.0000 +0.0001 _____ -2.036 -0.361 -0.043 +0.0000 +0.0000 -0.0001 1071 У.-1077 -0.000 -0.070 +0.000 +0.0004 +0.0000 +0.0000 Û ·-----1077 1 -0.000 -0.026 +5.000 +0.0001 +0.0000 +0.0000 1077 -0.000 -0.030 +0.000 +0.0002 +0.0000 +0.0000 5 1077 +0.039 -0.001 -0.003 -0.0000 -0.0000 -0.0000 -0.042 -0.0002 +0.0000 -0.00001077 ຕ່ 7 -0.005 +5.029 -0.003 -3.0000 +0.0000 -0.0000 -0.125 -0.0002 -0.0000 -0.0000 -0.041 -0.0009 +0.0000 -0.0000 1077 -0.000 -0.036 1077 -____ 8 +0.000 -0.000 H+ +0.009 -0.000 _____ 1077 ____ -0.043 -0.0000 +0.0000 -0.0000 V 0.619 -0.138 1077 1003 Ū. -0.000 -0.050 +0.000.0+ 0.000.0+ 2000.0+ 0.0000 1033 -0.007 -0.020 +0.000 -0.0001 +0.0000 +0.0000 ____ 1083 -0.000 -0.011 +5 000 -0.0001 +0.0000 -0.0000 6.038 +0.001 -0 003 +0.0000 -0.0000 +0.0000 1083 ____ ŝ -0.003 -1.704 -7.001 -0.042 -0.0001 -0.0000 -0.0000 1083 +0.000 -0.0000 -0.0000 -0.0000 1623 0.535 ____ +0.004 +0.000 -3 029 -0.0000 -0.0000 -0.0000 -0 043 -0.0000 +0.0001 +0.0000 ĉ 1063 +0.003 11- -0.035 11- -0.039 1023 _____ -0 043 -0.0004 -0.0000 +0.0000 -0.095 1033 -0.010 -0.147 +0 006 +0.0010 +0.0000 +0.0000 1089 _ ------31000 -71205 -71036 1059 -0.045 +0 006 -5.0003 +0.0000 +0.0000 ____ -1.000 -0 005 -0.0001 -0.0000 +0.0000 1089 _._.. +0.00_ -0 003 -0.0000 -0.0000 -0.0001 1089 ---t na s -5.003 -0.017 +0.042 -0.0000 +0.0000 -0.0000 _____ -5.0.6-5,505 +0.003 -0.0000 +0.0000 -0.0001 1059 _____ -0.025 +0.0002 +0.0000 +0.0000 +0.041 +0.0000 +0.0000 +0.0001 1095 3 -8.103 Mi in hea +0 012 1089 -0 COC -0 043 -0.0017 -0.0000 -0.0003 1079 N- -0.632 -0.252 ------1.000 -0.000 -0.000 1007 -0.359 -5.000 -0 0018 -6.0000 -0.0000 1037 -____ ------0.000 -0.0005 +0.0000 +0.0000 1097 1097 -0 16: +0.000 -0.0007 +0.0000 -0.0000 ----C C T -0.000 -0.003 -0.0000 -0.0000 -0.0005 1611 Ċ -0.061 -0.642 -0.0000 -0.0000 +0.0000 -5.004 ____. 023 104 097 • : +0 000 +0 0001 +0 0000 -0.0005 5 -0.071 1697 1697 - Ç +0.00% -0.0007 -0.0000 -0.0000 н. . К- -1 ភូរិត -0.043 -) 0000 +0.0000 -0.0005 -0.000 _____ 1057 0.1 -0 360 +0.043 =1.0033 +0.0000 -0.0005 1113 -0.000 -0.0005 -0.0000 -0.0000 -0.000 -0.0005 -0.0000 -0.0000 -0.001 -0.0002 -0.0000 -0.0000 -0.005 -0.0002 -0.0000 -0.0017 -0.002 -0.0011 -0.0000 +0.0001 -3.900-(181 -0.001 -0.000 -0.019 -0.133 1110 -0.194 1116 ____ Ē -0.000 1110 ____- $-\varphi_{1}(\theta) =$ 1111 7 -0.15: ____ +0.011 -0.025 1110 +0.003 +1 0011 +0.0000 -0.9016 3 +0.02- +0.0015 -0.0000 -0.0001 1115 _____ -01000 -01877 • :--5-540 +0.041 +0.0016=+0 0000 +0.0017 -0 -0.043 -0.0009 +0.0000 -0.0017

1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111	0 -0.000 1 -0.000 2 -0.000 5 -0.036 6 -0.036 7 -0.036 8 -0.038 M0.038	-0.322 -0.096 -0.140 -0.003 -0.103 -0.007 -0.007 -0.007 -0.000 -0.600 -0.612	+0.000 +0.000 +0.000 +0.003 +0.042 +0.029 +0.043 +0.043 +0.043	+0.0013 +0.0004 +0.0006 -0.0000 -0.0001 -0.0001 -0.0001 -0.0001 +0.0002 +0.0000	0000.0- 2000.9- 2000.0- 0000.0- 0000.0- 0000.0- 0000.0- 0000.0- 0000.0-	-0.0000 +0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0003 -0.0003	ı	· _
1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112 1112	0 -3.300 1 -0.000 2 -0.000 5 -0.038 5 -0.038 8 -0.031 8 -0.036 M+ -0.038 M0.038	-0.363 -0.109 -0.161 -0.000 +0.053 +0.005 +0.075 -0.000 -0.652	-0.000 +0.000 -0.003 -0.042 -0.042 -0.043 -0.043 -0.043	+0.6800 +0.9900 +0.0000 +0.6001 +0.6014 +0.6011 +0.6015 +0.6015	+0.0000 +0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 +0.0000 +0.0000 -0.0000	-0.0000 -0.0000 -0.0000 -0.0001 -0.0001 -0.0001 -0.0000 +0.0001 -0.0001 -0.0001		
1171 1171 1171 1171 1171 1171 1171 1171 1171 1171 1171 1171 1171	0 -0.000 1 -0.000 2 -0.000 5 -0.001 5 -0.001 7 -0.037 € -0.001 110 038 M0.038	-0.371 -0.110 -0.163 +0.003 -0.623 -0.620 -0.016 +0.000 -0.543	-0.000 +0.000 +0.000 -0.003 +0.003 +0.003 +0.003 +0.003 +0.019 +0.043 -0.043	+6.0000 +0.0000 +0.0000 -0.0001 +0.0011 +0.00011 +0.0011 +0.0015 -0.0014	-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 +0.0000 +0.0000 +0.0000	-0.0000 -0.0000 -0.0000 -0.0011 +0.0000 -0.0011 -0.0001 +0.0011 -0.0011		
1172 1172 1172 1172 1172 1172 1172 1172 1172	0 -0.100 1 -0.000 2 -0.007 2 -0.007 2 -0.001 7 +0.001 0 -0.001 M+ -0.008 M0.003	-0.353 -0.105 +0.155 -0.001 +0.056 +0.065 +0.042 +0.000 -0.613	+0.000 +0.000 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.043 -0.043	-0.0017 +0.0005 +0.0003 +0.0003 -0.0000 -0.0000 +0.0000 +0.0001 +0.0000 +0.0000	+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000	-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 +0.0000 +0.0007 -0.0007		
1173 1173 1173 1173 1173 1173 1173 1173 1173 1173 1173 1173 1173 1173	$\begin{array}{cccc} 0 & -0.000\\ 1 & -0.000\\ 2 & -0.000\\ 5 & +0.037\\ 0 & -0.001\\ 7 & -0.037\\ 6 & -0.001\\ M- & -3.038\\ M- & -0.026 \end{array}$	-0.419 -0.124 -0.184 +0.000 -0.027 -0.003 +0.015 +0.000 -0.726	$\begin{array}{c} +0.000\\ +0.000\\ +0.000\\ -0.003\\ +0.042\\ +0.042\\ +0.029\\ +0.043\\ +0.043\\ +0.043\\ +0.043\end{array}$	-0.0000 -0.0000 -0.0000 -0.0001 +0.0010 +0.0001 +0.0010 -0.0016 -0.0016	+6.0000 +0.0000 -0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000	-0.0000 +0.0000 -0.0012 -0.0012 -0.0012 +0.0012 +0.0012 -0.0012		
1279 1176 1178 1178 1178 1178 1178 1178 1178 1178 1178 1178	$\begin{array}{cccc} & -0.633 \\ 1 & -3.000 \\ 2 & -0.030 \\ 5 & -0.036 \\ 6 & +0.001 \\ 7 & 40.000 \\ 8 & -0.001 \\ 11+ \ 7 & 0.00 \\ 11+ \ 7 & 0.00 \\ 11+ \ 7 & 0.00 \end{array}$	-0.416 -0.123 -0.193 +0.005 -0.104 -0.003 -0.083 +0.000 -0.735	-0.000 -5.000 -0.003 -0.03 -0.042 +5.053 -3.024 -0.043 -5.043 -5.3-3	-5.0000 -3.0000 -5.0000 -0.0001 +0.0010 +0.0011 +0.0011 +0.0012 +0.0012 +0.0016 -0.0016	-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000	-0.0000 -0.0000 -0.0012 -0.0000 -0.0012 -0.0012 -0.0002 +0.0012 -0.0012		
1172 1179 1	C -0.000 1 +0.000 2 +0.000 C 40.000 C 40.000 7 -0.000 8 -0.000 MH -0.000 MH -0.000 MH -1.009	-0.344 -0.103 -0.151 -0.006 -0.104 -0.004 -0.004 -0.000 -0.648	+0.000 +0.000 +0.003 +0.042 +0.003 +0.029 +0.029 +0.043 -0.043	-0.0019 -0.0005 -0.0506 +0.6050 -0.0600 -0.0564 -0.0564 +0.6600 -0.0533	+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 -0.0000 +0.0000 +0.0000	-0.0000 -0.0000 -0.0007 -0.0007 -0.0007 +0.0007 +0.0007 -0.0007		
1130 1150 1130 1180 1180 1180 1180 1180 1180 1180 1180	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-6.420 -5.118 -0.173 -6.007 -0.079 +6.003 -0.071 +0.000 -0.711	+0.000 +0.000 +0.000 -0.000 -0.022 +0.003 -0.029 +0.042 -0.042 -0.043	+0.0025 +0.0007 -0.0011 -0.0001 -0.0009 -0.0009 -0.6007 -0.0007 +0.0006	+C.0000 +0.0000 +0.0000 -C.0000 +0.0000 +0.0000 +0.0000 +0.0000 +5.0000	$\begin{array}{c} -0.0000\\ -0.0000\\ -0.0000\\ -0.0009\\ -0.0001\\ -0.0010\\ +0.0010\\ +0.0010\\ +0.0010\\ -0.0010\end{array}$		
118: 118: 118: 118: 118: 118: 118: 118:	0 +/ 006 1 +0.000 2 +0.005 5 -0.005 6 +0.004 7 -0.039 6 -0.039 6 -0.040	-0.509 -0.140 -0.220 +0.011 -0.163 -0.001 +0.139 +0.000	+1.600 +0.060 -0.003 +0.042 +6.603 +0.029 +0.043	+0.0005 +0.0001 +0.0002 -0.0001 +0.0001 +0.0001 +0.0016 +0.0008	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 +0.0000	-0.0000 -0.0000 -0.0017 -0.0017 -0.0018 +0.0018 +0.0018		

.

••

.

--

MARCO LONGITUDINAL EJE C

-

.

.

-

.

IAFMI C	IARM-T-3	IARtsC	IARIA-T 3	ARM	IARM-T-3	IAP34C	IARNET 3	MRMC	IARM-T-3	HEMO	
V3 INTER	UARIM I-1	2 INSAIC	VARMA T- T	17 IAMAN C	WRNA I-1	12 INRIAC	IARM-T-1	2 MANA	IARNI T-1		
3 INTRACT	IAR44-7-1	INRUC 2	TARM-T-1	2 INTOMO	UARM-7-1	2 14440 0.2	IARM T-1	2 MARA CO	IARN+7-1		
MANCI	IARN-T-T	INIGAC2	IARN T-1	NANC2	ARM T-1	MALC 3	ARM T-1	ANN C 2	IARM-T-1	HAN CI	
MRM CI	IARM-1-1	IARM.C.2	IARN-1-1	TARAN C 2	¥RN-T-1	INRU C2	VARM-1-1	INITIAN C 2	IARM T-1	1.5 Mew	
- <u>+</u>	CONC-20x80	Ţ	CONC 20160		CONC 20+60	1	CONC 20160	.	CONC 20x60		

- -

.

. .

• •

-

.

· ..

ø

¥.,

MARCO MOC2

.

.

NI Tibe JONE	Dx (cn.)	Eg (em)	DE (cm)	$G_{\rm A}({\rm rad})$	Gy(rad)	G2(tad)
	-0.000 -0.000 -0.000 -0.007 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000	-0.369 -0.100 +0.000 -0.003 -0.003 -0.003 -0.000 -0.000 -0.000	+0.000 +0.000 +0.000 +0.003 +0.003 +0.003 +0.029 +0.043 +0.043 -0.043	-0.0000 -3.0000 -0.0000 -0.0001 +0.0011 -2.0001 -2.0011 -0.0015 -0.0015	+C.CCC0 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 -0.0000 +0.0000 +0.0000 +0.0000	-C.ECCC -D.000C -D.000C -D.0011 -G.0000 -C.0011 -S.0000 -C.0011 -S.0000 -S.0000 -0.6311
7 0 7 1 7 5 7 5 7 6 7 6 7 6 7 6 7 6 7 6 7 7 7 6 7 7 7 6 7 7 7 7 7 6 7 7 7	-0.000 -0.000 -0.000 -0.007 -0.001 -0.000 +1.001 +0.036 -0.038	-2.540 -0.147 -3.221 -0.205 -0.082 +0.212 -0.059 +0.000 -1.031	+3.000 +0.000 +3.600 -0.004 -0.046 +0.025 +0.04 -0.047	-0.0000 +0.0000 -0.0000 -0.0001 -0.0010 +0.0010 +0.0010 -0.0010 -0.0010	-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 +0.0000 +0.0000 +0.0000	+0.0013 +0.0003 +0.0005 -0.0005 -0.0001 -0.0001 +0.00010 +0.00010 -0.0009
10 0 10 1 10 2 10 5 10 7 10 7 10 8 10 8 10 8 10 8 10 8	-0.000 -5.000 -1.236 -1.236 +1.201 +1.201 +0.018 -1.242 -1.242	-0.435 -0.128 -0.191 +0.000 +0.041 +0.003 +0.030 -0.000 -0.754	+0.000 +0.000 +0.000 +0.038 +0.925 +0.045 +0.734 +0.937 +0.937 +0.936	-0.6000 -6.3000 -0.0000 -0.6001 -0.6022 +0.0001 -0.0018 +0.0022 -0.0023	-0.0000 -0.0000 -0.0000 -0.0000 -0.0001 -0.0000 -0.0001 -0.0001 -0.0001	-0.0000 +0.0000 +0.0005 +0.0005 +0.0002 -0.0024 -0.0000 +0.0025 -0.0024
22 1 22 5 22 6 22 7 22 7 22 7 22 7 22 7 22 7 22 7 22 7 22 7 22 7 22 7 22 7	-0.000 -0.000 +1.279 +0.031 +2.250 +0.031 +2.289 -0.289	-0.480 -0.141 -0.211 +0.000 +0.045 +0.003 -0.539 +0.000 -0.832	+0.004 +0.001 +0.002 -0.067 +1.705 +0.077 +1.372 +1.732 -1.711	-0.0000 -0.0000 -0.0000 -0.0001 +0.0020 +0.0016 +0.0020 -0.0020	-0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 +0.0001 -0.0001	-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 +0.0000 +0.0000 -0.0000
34 0 34 1 34 2 34 5 34 6 34 6 34 8 34 8	-0.000 -0.000 -0.000 +3.145 -0.041 +3.110 +0.041 +3.158 -3.158	-0.515 -0.149 -0.225 +0.001 +0.049 +0.003 +0.041 +0.000 -0.389	+0.010 +0.003 +0.004 -0.098 +2.390 +0.099 +1.957 +2.431 +2.408	-0.0000 -0.0000 -0.0000 +0.0000 +0.0017 +0.0000 +0.0015 +0.0017 -0.0017	-0.6000 +0.6006 -0.0000 +0.0000 +0.0001 +0.0001 +0.0001 +0.0001 -0.0001	-0.0000 -0.0000 -0.0017 -0.0000 -0.0017 -0.0000 +0.0017 -0.0017
423 0 1 2 5 7 6 7 8 7 423 2 5 7 6 7 8 7 423 2 5 7 6 7 8 7 42 7 7 7 7 4 7 7 7 7 4 7 7 7 4 7 7 4 7 7 4 7 4	-0.000 -5.000 -0.000 -1.235 -0.018 -1.021 +0.018 +1.240 +1.240 -1.041	-0.570 -0.155 -0.234 +0.211 -0.087 -0.215 -0.215 -0.073 +0.000 -1.082	+0.000 +0.000 +0.005 +0.989 +0.075 +0.675 +1.000 -3.008	-0 0000 -0.0000 -0.0000 +0.0001 +0.0023 -0.0002 +0.0023 -0.0023 -0.0024	-0.0000 -0.0000 -0.0000 +0.0000 +0.0000 -0.0001 +0.0001 -0.0001	-0.0004 -0.0001 -0.0002 +0.0028 +0.0001 -0.0028 -0.0056 +0.0055 -0.0034
	-0.007 -0.000 -0.000 -3.790 -0.045 +1.701 +0.045 -0.804 -2.804	-0.537 -0.154 -0.235 +0.001 -0.003 +0.003 +0.004 +0.000 -0.924	-0.015 -0.007 -0.097 +2.937 +0.104 +2.460 +2.460 -2.950	-0.0000 -0.0000 -0.0000 -0.0000 -0.0013 -0.0011 +0.0013 -0.0013	-0.6000 +0.0006 -0.0000 +0.0001 +0.0001 +0.0001 +0.0001 +0.0002 +0.0002	+0.0000 +0.0000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0000 +0.0012 *0.0011
50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0 50 0	-0 000 -0.000 -0.000 +1.009 -0 043 +4.170 +0.045 +4.210 -4.020	-0.54% -0.155 -f.233 +0.001 +0.04% +0.904 +0.939 +0.939	+0.022 +0.006 +0.616 -0.096 +3.360 +0.109 +2.885 +3.423 +3.369	-0.0000 -5.0000 -0.0000 -0.0011 -5.0000 -3.0011 +0.0010 -5.0010 -5.0011	-0.0000 -0.0000 -0.0000 +0.0001 +0.0001 +0.0001 +0.0001 +0.0001 +0.0002 -0.0002	-0.000.0+ 0.000.0+ 0.0003.0+ 0.0003.0+ 0.0003.0+ 0.0003.0+ 0.0009.0+ 0.0009.0+ 0.0009.0+
68 0 68 1 68 2 69 3	-0 000 -0.000 -0.000 +0.000	-0.365 -0.109 -0.160 -(.000	+0.000 +0.000 +0.000 -0.000	+0.0000 +0.0000 +0.0000 +0.0000	+0.0000 +0.0000 +0.0000 -0.0000	-0.0000 -0.0000 -0.0000 -0.0011

€£ -0.001 +0.093 +0.000 С 7 -C.000 +0.001 +0.0000 +0.0000 -0.0011 +5.033 +0.034 +0.0012 -0.0000 -0.0000 +0.000 +0.038 -0.0014 +0.0000 +0 0011 62 +0.036 68 â +0.001 11- -0.038 63 -0.634 -0.038 -0.0013 +0.0000 -0.0013 ee. M- -0.038 -6.436 -0.000 -0.0000 -0.6000 -0.0000 -6.127 -0.000 -0.0006 -0.0000 -0.0000 -5.154 -0.000 -0.0000 -0.0000 -0.0000 75 0.12 -0.690 75 -0.000 ____ 75 -0.000 _____ 75 -0.000 2 -1.236 +0.038 75 -0.019 5 75 7 +1.201 75 8 -0.018 -0.037 _____ 75 M- -1.242 -0.000 75 11- -1.242 -0.746 -0.475 -0.139 -1.209 67 Û -0.000 97 120 -0.000 -0.000 87 87 .5.074 -0.001 Ē -0.042 R. -0.031 _____ 87 7 -2.252 -0.000 ____ M - 2.229 +0.000 +1.607 +0.0017 -0.0001 +0.0021 87 ------87 67 1:- -2.289 -0 823 -1.597 -0.0019 -0.0001 -0.0001 -0.000 -0.509 -0.000 -0.149 94 ē. 99 1 _____ 94 2 -0.000 -0.232 26 Ξ +2.145 -0.001 64 ő -0.041 -3.110 +6.044 G G 7 +0.000 8 +0.041 H+ +3.156 +0.042 -2.102 +0.0615 -0.0001 -0.001 +0.000 +2.269 +0.0016 +0.0001 +0.0017 -0.0001 -0.0001 -0.0001 Q Q ____ a a M- -3.153 -0.872 39 1.55 û -0.005 -0.591 +0.004 +0.0000 +0.0000 -0.0000 _____ -5.161 :03 - 1 - 21 -0.000 ____ 103 -0.000 103 5 +2.279 103 r, -0 031 :03 7

+0.001 +0.0003 -0.0000 -0.0000 -0.242 +0.002 +0.0000 -0.0000 -0.0000 +0.215 -0.111 -0.0001 -0.0000 -0.0025 -0.096 +1 815 +0.0021 +0.0001 +0.0000 +0.222 +0.075 +2.252 +0.128 +0.0001 +0 0000 -0.0024 +1 261 +0.0016 -0.0001 -0.0000 +1.956 +0.0622 +0.0001 +0.0025 8 +0 031 11+ +2.289 103 _____ +0.000 103 -1.640 -0.0021 -0.0001 -0.0005 M+ +2.289 -1.117 102 -0.000 -0.531 +0.016 +0.0000 -0.0000 +0.0000 -0.000 -0.153 +0.004 -0.0000 -0.0000 -0.0000 -0.000 -0.030 +0.007 -0.0006 -0.0000 -0.0000 ____ 5 -3.790 -0.001 -0.032 -0.0000 -0.0001 -0.0011 111 ____ -0.040 -0.048 +2 773 -0.0013 +0.0001 +0.0000 : 111 7 -3,751 -0.000 +0.036 +0.0000 +0.0001 -0.0011 ____ +C.619 -0.0012 -0.0001 -0.0000 +2.812 -0.0013 -0.0002 +0.0011 -2.773 -0.0012 -0.0002 -0.0011 +0.045 -0.044 ð ------111 11- +3.804 -0.000 _____ M- -3.804 -0.915 111 -0.000 -0.543 -0.000 -0.153 -0.000 -0.233 -0.600 -6.020 -6 0000 -0.0000 -0.0000 123 -0.006 -0.0000 -0.0000 -0.0000 -0.013 -0.0000 -0.0000 +0.0000 123 123 -4 204 -0.001 -3.032 +0.0000 -0.0001 -0.0000 +3.202 +0.0011 -0.0001 -0.0000 123 123 123 123 -0.542 -0.542 N = 1045 T -4.170 E -11745 M- -4.222 N- -4.222 -0.036 -0.0000 -0.0001 -0.0008 -----+3.043 +0.0011 -0.0001 +0.0000 +5.044 _____ 111 +0.000 +3.245 -0.0010 +0.0002 +0.0008 +0 929 100 -3.191 -0 0011 -0.0002 -0.0000 -112 -0.000 -C.305 -0.000 +0.0000 +0.0000 -0.0000 132 132 132 ÷ -0.000 -0.103 -0.000 +1 6000 -0.0000 -0.0000 -0.000 -0.007 -0.001 - . . . ê . -0.000 -0.0000 +0.0000 -0.0000 +0.001 +0.0000 +0.0000 +0.0000 +0.001 +0.0000 +0.0000 +0.0000 +0.001 +1.0000 +0.0000 +0.0000 +0.003 +0.0013 +0.0000 +0.0011 +0.035 +0.0014 +0.0000 +0.0011 ¢ ·) 005 132 e -0.001 +0.031 7 +5.036 +0.000 8 +0.001 +0.033 ---------_____ 1- -0.078 -0.000 -0.039 -0 (C1: -0.0000 -0.0011 1- -0.013 -0.351 -0.000 -0.430 -0.000 -0.127 -0.000 -1.149 140 +0.000 +0.0000 +0.0000 +0.0000 0.111.0 -0.000 -0.000 -0.0000 +0.0000 -0.000 -0.0000 -0.0000 +0.0000 -0.001 -0.0000 -0.0000 -0.0000 -0.013 -0.0000 -0.0000 -0.0000 -0.013 -0.0010 +0.0001 -0.0000 ____ 140 _____ 140 -5.660 140 -1 23m 145 \$ -0.018 -0.027 -0.0015 -0.0015 +0.00012 +0.0000 -0.015 -0.0000 -0.0000 -0.0024 +0.561 +0.0021 -0.0001 -0.0000 +0.267 +0.0020 +0.0001 +0.0025 -(.665 -0.0021 -0.0001 -0.0025 140 ------140 140 140 152 0 -5.000 -0.475 -0.004 -0.0000 -0.0000 -0.0000 152 1 -5.000 -0.129 -0.001 -0.0000 -0.0000 -0.0000

+0.038 +0.0013 +0.0050 +0.0000

-0 013 -0.0000 +0.0000 +0.0004

-0.862 -0.0021 -0.0001 -0.0000

+0.015 +0.0000 +0.0000 -0.0024 +0.798 +0.0012 -0.0001 -0.0000

+0.866 +0.0020 +0.0001 +0.0023

-0.065 -0.0001 -0.0001 -0.0005

+6.004 +8.0000 +0.0000 +0.0000 -0.001 -0.0000 -0.0003 -0.0000

+0.002 -0.0000 -0.0000 +0.0000 -0.002 -0.0000 -0.0000 +0.0000

-1.594 +6.0012 +0.0001 +0.0000

+0.026 +0.0000 +0.0000 -0.0001

+0.010 -0.0000 -0.0000 -0.0000

-0.003 -0.0000 -0.0000 -0.0000 -0.004 -0.0000 -0.0000 -0.0000

-0.029 -0.0000 -5.0000 -0.0017

+2.246 +0.6010 +0.0001 +0.0000 +0.033 +0.0000 +0.0001 -0.0016

-2.102 +0.0615 -0.0601 -0.0600

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.209 +0.002 -0.0000 +0.001 +0.012 +0.0000 +0.040 +1.483 -0.0017 +0.040 -0.026 +0.0000 +0.022 -1.594 +0.0019 +0.000 +1.608 +0.0019 -0.023 -1.538 -0.0019	-0.0030 -0.0001 -0.0000 -0.0001 -0.0000 -0.0000 -0.0000 -0.0001 -0.0000 -0.0001 -0.0001 -0.0005 -0.0001 -0.0001 -0.0001 -0.0001	
163 0 -0.000 163 1 -0.000 163 2 -0.000 163 5 -3.15 163 6 -0.041 163 7 -3.159 163 8 -0.041 163 M- -3.159 163 M- -3.159	-0.607 -0.010 -0.0000 -0.164 -0.003 -0.0000 -0.248 -0.004 -0.0000 -0.217 -0.146 -0.0001 -0.920 -2.535 40.0017 -0.221 -0.165 -0.0017 -0.077 -1.613 +0.0014 +0.000 -2.593 +0.0018 -1.141 -2.570 -0.0018	-0.0000 -0.0001 -0.0000 -0.0001 -0.0000 -0.0011 -0.0000 -0.0019 -0.0001 -0.0019 -0.0001 -0.0019 -0.0001 -0.0019 -0.0001 -0.0019 -0.0001 -0.0019	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.809 -0.010 -0.0300 -0.146 -0.003 -0.6000 -0.022 -0.034 -0.6060 -0.021 -0.029 -0.0605 -0.020 -0.122 -0.0015 -0.000 -0.933 -0.0006 -0.044 +2.246 -0.016 -0.000 +2.071 +0.0016 -0.879 -0.247 -0.0015	-0.0030 -0.0003 -0.0000 -0.0000 -0.0000 -0.0017 -0.0001 -0.0000 -0.0001 -0.0000 -0.0001 -0.0000 -0.0001 -0.0000 -0.0001 -0.0017 -0.0001 -0.0017	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.931 +0.016 +0.0000 -0.153 -0.004 -0.0000 -0.031 +0.032 +0.0000 -0.031 -0.032 +0.0000 -0.044 +2.619 +0.0110 -0.000 -0.036 +0.0000 +0.046 +2.778 +0.0013 +0.006 +2.813 +0.0613 -0.913 -2.775 -0.0012	-0.0000 -0.0000 +0.0000 -0.0000 -0.0000 -0.0000 -0.0001 -0.0011 +0.0001 +0.0000 +0.0001 -0.0011 -0.0001 -0.0001 -0.0002 +0.0011 -0.0002 -0.0011	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-0.0006 -0.0005 -0.0000 -0.0000 -0.0000 -0.0006 -0.0001 -0.0008 -0.0001 -0.0008 -0.0001 -0.0008 -0.0001 -0.0008 -0.0001 -0.0008 -0.0002 -0.0009 -0.0002 -0.0008	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.369 -0.000 +0.0000 -0.110 -0.000 +0.0000 -0.162 -0.000 +0.0000 -0.000 +0.003 +0.0001 -0.026 +0.029 -0.0011 +0.035 -0.042 -0.0014 +0.035 -0.042 -0.0014 +0.066 -0.043 +0.0015 -0.041 -0.043 -0.0014	+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0001 +0.0000 +0.0011 +0.0000 +0.0001 +0.0000 +0.0011 -0.0000 +0.0011 +0.0000 +0.0011 +0.0000 +0.0011	
104 0 -0 060 204 1 -0 060 204 2 -0.300 204 5 -1.236 204 6 -0.018 204 7 +1.021 204 3 -0.012 204 11 -1.240 204 M- -1.242	-0.435 -0.000 -0.0000 -0.126 -0.000 -0.0000 -0.191 -0 000 -0.0000 -0.036 -0.734 -0.0001 -0.036 -0.734 -0.0013 -0.041 -0.925 -0 0002 -0.041 -0.925 -0 0002 -0.000 -0.940 -0.0002 -0.754 -0.939 -0 000	-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0005 +0.0000 -0.0005 +0.0001 -0.0000 -0.0000 -0.0004 -0.0001 -0.0006 -0.0001 -0.0024 -0.0001 -0.0024	
216 (1 - 0.007) 216 1 - 0.060 216 2 - 0.000 216 5 - 2.179 215 6 - 0.021 216 7 - 5.252 217 6 - 0.031 218 8 - 0.031 219 10 - 1.289 216 M2.289	-0.400 -0.004 -0.0000 -0.441 -0.001 -0.0000 -0.441 -0.001 -0.0000 -0.400 -0.007 -0.0000 -0.400 -0.007 -0.0001 -0.400 -0.007 -0.0001 -0.400 -0.077 -0.0001 -0.400 -1.735 -0.0020 -0.000 -1.735 +0.0020	-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0001 +0.0001 -0.0001 +0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0000 -0.0001 -0.0001 -0.0001 -0.0001	
0.23 0 -6.000 203 1 -0.000 203 0 -6.600 203 0 -6.600 203 0 -6.600 203 0 -6.600 203 0 -6.600 203 0 -7.3790 203 -7.3751 -7.3804 203 M3.804 -3.804	-0.014 -0.017 -0.000 -0.157 +0.004 -0.000 -0.252 -0.007 -0.7064 +0.219 -0.162 -0.0006 +0.023 -0.2017 +0.0014 +0.223 -0.221 -0.0012 +0.000 -3.169 +0.0012 -0.000 -3.169 +0.0013 -1.101 -3.131 -0.0013	-0.3000 -0.0001 -0.0000 -0.0001 -0.0000 -0.0001 -0.0001 -0.0013 +0.0001 -0.0003 -0.0001 -0.0013 -0.0001 -0.0000 +0.0002 -0.0012 -0.0002 -0.0014	

.

· -

..

228 225 225 226 228 228 228 228 228 228 228 228 228 228 228 228	0 -0.000 1 -0.000 2 -0.000 5 -3.145 6 -0.041 7 -3.110 8 -0.041 M+ -7.158 M7.156	-0.515 -0.149 -0.225 -0.001 +0.003 +0.003 +0.048 +0.600 -0.859	-0.010 -0.0000 -0.0000 -0.0000 -0.003 -0.0000 -0.0001 -0.0000 +0.003 +0.0000 -0.0000 -0.0000 +0.003 +0.0000 -0.0000 -0.0000 +1.957 -0.0015 +0.0001 +0.0000 -0.009 -0.0001 -0.0001 -0.0000 +2.435 -0.0017 -0.0001 -0.0017 -2.411 -0.0017 -0.0001 -0.0017
240 240 240 243 245 245 245 245 245 245 246 246	0 -0.000 1 -0.000 2 -0.000 5 +3.790 6 -0.043 7 +3.751 8 +0.048 N3.904	-0.537 -0.154 -0.233 +0.001 +0.042 -0.003 +0.049 +0.000 -0.924	-0.616 -0.6000 -0.0000 -0.0000 -0.004 -0.6000 -0.0000 -0.0000 -0.007 -0.6000 -0.0000 -0.0000 +0.097 -0.6000 -0.6000 -0.0011 +1.460 -0.0010 -0.0001 -0.0010 -0.109 -0.6000 +0.6001 -0.0013 +2.937 -0.6013 -0.0001 +0.6001 +2.994 +0.0013 +0.0002 -0.0011 -2.956 -0.6013 -0.0002 -0.0011
252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252 252	0 -C.090 1 -0.000 2 -0.000 5 +4.209 C -0.045 7 +4.170 8 +0.045 M+ +4.220 M4.220	-0.549 -0.155 -0.235 -0.001 +0.043 -0.004 +0.049 +0.000 -0.939	-0.022 -0.0000 -0.0000 -0.0000 +0.000 -0.0000 -0.0000 -0.0000 +0.010 -0.0000 -0.0001 -0.0000 +0.000 -0.0000 -0.0001 -0.0009 +2.885 +0.0011 +0.0001 -0.0009 +0.100 +0.0000 +0.0001 -0.0009 +3.360 +0.0011 -0.0001 +0.0000 +3.426 -0.0010 +0.0002 +0.0000 -3.373 -0.0011 -0.0002 -0.0009
262 262 265 265 262 262 262 262	$\begin{array}{rrrr} 0 & -3.013 \\ -6.000 \\ 2 & -0.035 \\ 5 & +0.037 \\ 6 & -0.010 \\ 7 & +0.036 \\ 8 & +0.036 \\ 8 & +0.038 \\ M_{\pm} & +0.038 \end{array}$	-0.540 -0.147 -6.221 -0.206 +0.069 -0.210 +0.082 +0.080 -1.035	-0.300 -0.0000 -0.0000 -0.0013 -5.005 -0.0000 -0.0000 -0.0003 -0.000 -0.0000 +0.0000 -0.0003 +0.004 +0.0001 -0.0000 -0.0000 +0.325 -0.0013 +0.0000 -0.0002 +0.004 -0.0019 -0.0000 -0.0002 +0.045 +0.0019 -0.0000 +0.0009 +0.047 +0.0020 +0.0000 -0.0009 +0.047 -0.0019 +0.0000 -0.0009
269 239 269 269 269 269 269 269 269 269 269	0 -0.000 1 -0.000 5 -1.036 6 -0.016 7 +1.021 5 +0.016 M- +1.045 M1.042	-0.570 -0.155 -0.234 +0.212 -0.073 -0.218 +0.087 +0.000 -1.066	+0.000 -0.0000 -0.0000 -0.0004 +0.000 -0.0000 -0.0000 +0.0001 +0.000 -0.0000 -0.0000 +0.0002 +0.063 +0.0001 -0.0000 -0.0029 +0.670 -0.0012 +0.0001 +0.0000 -0.075 -0.0002 +0.0001 -0.0003 +0.969 -0.0023 -0.0001 -0.0003 +1.012 +0.0024 -0.0001 +0.0024
281 281 282 282 281 282 281 283 283 281	0 -0.000 1 -5.000 2 -0.000 5 -2.279 5 -0.031 7 -0.031 8 -0.031 8 -0.031 M+ -1.289 M2.289	-0.591 -0.161 -0.242 -0.215 +0.075 -0.202 -0.090 +0.000 -1.121	-0.0014 +0.0000 +0.0000 +0.0000 +0.001 +0.0000 +0.0000 +0.0000 +0.002 +0.0005 +0.0000 +0.0000 +0.111 +0.0001 +0.0000 +0.0025 +1.261 +0.0011 +0.0001 +0.0000 +0.112 +0.0011 +0.0001 +0.0005 +1.814 +0.0021 +0.0001 +0.0025 +1.951 +0.0021 +0.0001 +0.0025
265 283	0 -0.000 1 -0.000 2 -0.000 5 +4.004 6 -0.045 7 +4.170 8 +0.045 M- +4.002	-0.625 -0.167 -0.354 +0.219 +0.225 +0.225 +0.205 +0.076 +0.600 -1.159	+0.002 -0.0000 -0.0000 -0.0004 +0.006 +0.0000 -0.0000 -0.0000 +0.010 -0.0000 -0.0001 -0.0000 +0.166 -0.0000 -0.0001 -0.0010 +3.519 +0.0011 +0.0001 -0.0010 +0.121 -0.0000 -0.0001 -0.0010 +2.727 -0.0011 -0.0001 -0.0000 +3.600 +0.0011 +0.0002 +0.0004 -3.547 -0.0011 -0.0002 -0.0014
293 293 293 293 293 293 293 294 295 293 294 293 293 293 293 293	0 -0.000 1 -6.000 2 -0 300 5 -3 145 6 -0.041 7 -3.110 8 -0.041 N+ -3 156 N3.153	-0.606 -0.154 -0.248 -0.217 -5.677 -0.224 -0.092 +6.000 -1.146	+0.016 +0.0066 -0.0000 +0.0001 +0.003 +0.0060 +0.0000 +0.0000 +0.004 +0.0066 -0.0000 +0.0051 +0.146 +0.0001 +0.0000 +0.0015 +1.013 +0.0014 +0.0001 +0.0000 +0.165 +0.0001 +0.0001 +0.0000 +2.535 +0.0017 +0.0001 +0.0000 +2.559 ±0.0018 +0.0001 +0.0022 +2.575 +0.0018 +0.0001 +0.0013
305 305 305 305 305 305 305 305 305 305 305	0 -0.000 1 -0.000 2 -0.000 5 -3.797 6 -0.045 7 +3.751 8 -0.045 M- +3.504	-0.619 -0.167 -0.252 -0.219 -0.078 -0.225 +0.093 -0.000	-0.015 +0.0000 +0.0000 +0.0001 +0.004 -0.0000 -0.0000 +0.0001 +0.007 -0.0000 -0.0000 -0.0001 -0.163 -0.0000 -0.0001 -0.0013 -0.301 +0.0012 +0.0001 -0.0013 +0.006 -0.0001 -0.0001 +0.0000 +0.00013 -0.0001 +0.0000 +0.0013 +0.0002 +0.0014

•

.

305	M3.604	-1.165	-3.137 -0.0012 -0.0000 -0.0012
317 317 317 317 317 317 317 317 317 317 317 317 317 317 317 317	0 -0.000 1 -0.000 2 -0.003 5 +4.209 6 -0.045 7 +4.270 8 +0.045 M+ -4.202 M+ -4.202 M+ -4.202	-0.005 -0.167 -0.254 -0.219 -0.078 -0.025 -0.025 -0.030 -1.274	-0.022 -0.0000 -0.0000 -0.0004 -0.006 -0.0000 -0.0000 +0.0000 +0.010 -0.0000 -0.0000 -0.0000 -0.100 -0.0001 -0.0001 +0.0000 -2.727 -0.0011 -0.0001 +0.0000 -5.181 -0.0000 -0.0091 -0.0010 -3.519 -0.0011 -0.0001 -0.0000 -3.519 -0.0011 -0.0002 +0.0014 -3.553 -0.0011 +0.0002 -0.0004
336 336 336 336 336 336 336 336 336 336 336 336 336 336 336 336	0 -0.000 1 -0.000 2 -0.000 5 -0.000 7 -0.001 7 -0.035 8 -0.051 M+ -0.038 M0.038	-0.257 -0.073 -0.105 +0.040 +0.040 +0.040 +0.043 -0.032 +0.050 -0.435	+0.000 +0.0000 +0.0000 +0.0007 -0.000 +0.0000 +0.0000 +0.0007 -0.000 +0.0000 +0.0000 +0.0007 -0.004 -0.0001 +0.0000 +0.0000 -0.045 +0.0005 +0.0000 +0.0003 -0.004 +0.0000 +0.0000 +0.047 +0.0005 +0.0000 +0.0003 -0.047 +0.0004 +0.0000 +0.0003
255 355 355 355 355 355 355 355	2 +0.000 1 -0.000 2 -0.000 5 +0.007 5 -0.007 7 +0.036 8 +0.001 M- +0.038 M- +0.038	-0 005 -0.023 -0.026 -0.010 +0.011 -0.009 -0.008 +0.000 +0.114	-0.000 -0.0000 +0.0000 +0.0000 -0.000 +0.0000 +0.0000 +0.0000 -0.000 -0.0000 +0.0000 +0.0000 -0.000 -0.0000 +0.0000 -0.0002 +0.045 -0.0001 +0.0000 -0.0001 +0.004 -0.0000 +0.0000 -0.0001 +0.046 +0.0001 +0.0000 +0.0014 -0.046 -0.0001 +0.0000 +0.0004
374 374 374 374 374 374 374 374 374	0 -0.000 1 -0.000 2 -0.000 0 +0 037 0 -0.001 7 +0 036 6 +0 031 M0.038 M0.038	-0.012 -0.003 +0.005 -0.017 -0.001 -1.017 -0.003 -0.032 -0.039	+C.00C -C.0000 +0.0000 +0.0007 +C.00C -C.0000 +0.0000 -C.0001 +D.000 -0.0000 +0.0000 -C.0001 -5.004 -C.000C -0.0000 +0.0000 +C.044 -0.0000 +0.0000 +0.0000 +0.027 -0.0000 +0.0000 -0.0000 +0.027 -0.0000 +0.0000 +0.0004 +C.045 +0.0000 +0.0000 -0.0000
393 393 393 395 395 393 393 393 393 393	0 -0.000 2 -0.000 5 -0.037 6 -0.001 7 -0.035 8 -9.001 M0.038 M0.038	+0 002 +0.010 -0 003 -0 003 -0.003 -0.003 -0.038 -0.038 -0.000	-C.006 -3.0000 +0.0000 -0.0001 -0.006 -0.0000 +0.0000 -0.0000 -0.004 -0.0000 +0.0000 +0.0001 +0.004 -0.0000 +0.0000 +0.0000 +0.004 -0.0000 +0.0000 -0.0000 +0.027 -0.0000 +0.0000 -0.0000 +0.045 -0.0000 +0.0000 -0.0000 -0.045 -0.0000 +0.0000 -0.0002
412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412 412	C +0 000 1 -r 000 C -0.000 1 -0.000 1 -0.001 -0.001 -0.001 -1.001 -0.005 V- 0.038 M0.038	-0.013 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 +0.000 +0.000	+0.000 +0.0000 +0.0000 -0.0004 +0.000 +0.0000 +0.0000 -0.0001 +0.000 +0.0000 +0.0000 -0.0000 +0.002 -0.0000 +0.0000 +0.0001 +0.002 +0.0000 +0.0000 +0.0001 +0.002 +0.0000 +0.0000 +0.0000 +0.004 +0.0000 +0.0000 +0.0000 +0.044 +0.0000 +0.0000 +0.0000
452 451 451 451 451 452 451 431	0.000 1 -1.007 2 -0.007 1 -0.007 0.001 0.000 10.000 0.000 0.000 0.000	-f.100 -0.03; -1.043 +0.022 +0.021 +0.021 +f.008 -f.000 -f.1700 -f.176	-0.000 -1.0000 +0.0000 -0.0008 -0.000 -1.0000 +0.0000 -0.0002 -0.000 -1.0000 -0.0000 -0.0003 -0.003 -0.0000 -0.0000 +0.0001 -0.003 -0.0001 +0.0000 +0.0001 +0.005 -0.0001 +0.0000 +0.0001 -0.044 +0.0001 +0.0000 +0.0001 -0.044 -0.0001 +0.0000 +0.0001
450 450 450 450 450 450 450 450 450 450	C -0.100 1 -0.007 2 -1.000 1 -0.027 7 -0.001 7 -0.001 5 -0.001 8 -0.001 8 -0.001 1 -0.036	-6.200 -0.077 -0.111 +0.007 +0.000 +0.000 -0.46	-0.000 -0.0000 -0.0000 -0.0011 -0.000 -0.0000 +0.0000 -0.0000 -0.000 -0.0000 -0.0000 -0.0000 -0.000 -0.0000 -0.0000 +0.0001 -0.000 -0.0000 +0.0001 -0.000 -0.0000 +0.0001 -0.000 -0.0000 +0.0001 -0.000 -0.0000 +0.0000 -0.040 -0.0000 +0.0000 -0.040 -0.0000 +0.0000
463 469 469 409 409 409 409 409 409	0.000 1 -0.000 0 -0.000 0 -0.001 0 -0.001 1 -0.001 0 -0.001	-0.251 -r.077 -0.110 -1.037 -0.027 -1.035 -2.021	-0.007 -0.0005 -0.0000 -0.0011 -0.005 -0.0000 +0.0005 -0.005 -0.0000 +0.0005 -0.002 -0.0005 -0.0000 +0.0005 -0.001 -0.0005 -0.0000 -0.0001 -0.002 -0.0000 +0.0000 -0.0001 -0.005 -0.0000 +0.0000 -0.0001

-

-

.

~-

•

•

469	M- +0.038 M0.038	+0.000 -0.439	+0.042 +0.0005 +0.042 -0.0004	+0.0000 +0.0000 +0.0000 +0.0000
4 9 8 4 9 8 4 9 8 4 8 8 4 8 8 4 8 8 4 8 8 4 8 8 4 8 8 4 8 8 4 8 8 4 8 8 4 8 8	0 -0.000 1 -0.000 2 -0.000 5 -0.007 6 -0.007 7 -0.005 8 +0.001 M- +0.035 M0.036	-0.100 -0.034 -0.043 -0.023 +0.009 -0.023 -0.007 -0.000 -0.181	+0.300 -0.0000 -0.003 +0.0000 -0.000 -0.0005 -0.002 -0.0005 -0.041 -0.0001 -0.021 -0.0001 -0.030 +0.0301 +0.041 -0.0001	+0.6600 +0.0068 +0.6000 +0.0000 +0.6000 +0.6000 -0.6000 +0.6000 -0.6000 +0.6000 +0.6600 +0.0000 +0.6000 +0.0000 +0.6000 +0.6000
507 537 507 507 507 507 507 507 507 507	6 -0.000 1 -0.000 2 -0.000 5 -0.007 6 -0.001 7 -0.036 8 +0.001 M+ +6.038 N0.036	-0.018 -0.011 -0.007 -0.010 +0.000 +0.016 +0.001 -0.041	+0.000 +0.6660 +0.000 +0.0000 +0.000 +0.0000 +0.040 +0.6660 +0.040 +0.6660 +0.022 +0.6660 +0.021 +0.6060 +0.041 +0.6060 +0.041 +0.0000	+0.0000 -0.0003 -0.0000 -0.0001 -0.0000 -0.0001 -0.0000 -0.0001 -5.0000 -0.0000 -0.0000 -0.0001 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
526 526 526 526 526 526 526 526 526 526	0 -0.000 1 -0.000 2 -0.006 5 -0.037 5 -0.037 7 -0.036 8 -0 061 M0.038 M0.038	+0.006 -0.004 -0.004 -0.000 -0.000 -0.000 -0.001 +0.010 +0.000	-0.000 +0.0000 +0.000 +0.0000 -0.000 +0.0000 -0.000 -0.0000 -0.040 -0.0000 +0.002 -0.0000 +0.002 -0.0000 +0.040 -0.0000 -0.040 +0.0000	-0.0001 +0.0000 +0.0000 +0.0000 -0.0000 -0.0000 -0.0000 -0.0001 -0.0000 -0.0001 -0.0000 -0.0001 -0.0000 +0.0001 +0.0000 +0.0001 +0.0000 -0.0001
5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	0 -0.000 1 -0.000 2 -0.005 5 +0.037 6 -0.001 7 +0.026 8 +5.001 M+ -0.038 M+ -0.038	-0.018 -0.011 -0.007 -0.010 -6.061 +0.010 +0.001 +0.000 -0.040	+0.000 -0.0000 +0.000 +0.0000 -0.000 -0.0000 -0.002 -0.0000 -0.002 -0.0000 -0.002 -0.0000 -0.002 -0.0000 -0.040 -0.0000	+0.0000 -0.0003 -0.0000 -0.0001 +0.0000 -0.0001 -0.0000 +0.0001 -0.0000 +0.0001 +0.0000 +0.0001 -0.0000 +0.0000 -0.0000 -0.0000 -0.0000 -0.0000
564 564 564 564 564 564 564 564 564 564	$\begin{array}{ccccc} & -0.000\\ 1 & -0.000\\ 2 & -0.000\\ 5 & +0.037\\ 0 & -0.001\\ 7 & +0.026\\ 9 & +0.001\\ M^{-} & +0.038\\ M^{-} & -0.023\\ \end{array}$	-0.029 +0.034 +0.043 +0.024 +0.023 +0.023 +0.009 +0.000 +0.000 -0.179	+0.000 +0.0000 +0.000 +0.0000 +0.000 +0.0000 +0.001 -0.0000 +0.003 +0.0000 +0.001 -0 0000 +0.003 +0.0001 +0.039 +0.0001 -0.039 -0.0001	-0.0003 -0.0007 +0.0003 -0.0002 40.0000 +0.0003 -0.0000 +0.0001 +0.0000 +0.0001 +0.0000 +0.0001 -0.0000 +0.0001 +0.0000 +0.0000 +0.0000 +0.0000
553 563 563 563 563 563 563 563 563 563	0 -0.000 1 -3.000 2 -0.000 5 -0.037 6 -0.601 7 -0.037 8 -0.001 M- +0.038 M0.038	-0.249 -0.076 -0.109 +0.037 -5.023 +0.037 +0.037 -0.023 -0.000 -0.434	-0.000 +0.0000 +0.000 +0.0000 +0.000 +0.0000 -0.001 -0.0000 +0.025 +0.0000 +0.001 -0.0000 -0.033 +0.0005 -0.038 +0.0005	+0.0000 -0.0011 +0.0000 -0.0003 -0.0000 -0.0005 -0.0000 -0.0001 +0.0000 +0.0001 -0.0000 +0.0001 -0.0000 +0.0001 -0.0000 +0.0001 +0.0000 +0.0001
602 603 603 603 605 605 602 602	<pre>C =0.006 1 =0.006 2 =0.006 5 =0.077 6 =0.001 7 =0.076 8 =0.001 M= =0.038 M~ ≈C.038</pre>	-0.249 -0.076 -0.109 -0.038 +0.024 -0.097 +0.020 +0.000 -0.434	-0.0000.0000 -0.000 +0.0000 -0.000 -0.0000 -0.001 -0.0000 -0.001 +0.0000 -0.001 +0.0000 +0.001 +0.0005 -0.037 +0.0005 -0.037 -0.0004	$\begin{array}{c} +0.6060 & -0.0011 \\ +0.0050 & +0.0003 \\ +0.0006 & +0.6005 \\ -6.6000 & +0.0001 \\ -0.0000 & +0.0001 \\ +0.0000 & +0.0011 \\ +0.0000 & +0.0014 \\ +0.0000 & +0.0014 \\ +0.0000 & +0.0004 \end{array}$
621 521 621 621 621 621 621 621	6 -0.000 1 -0.000 2 -0.000 5 -0.007 6 -0.001 - +0.008 8 -0.001 M0.038 M0.038	-0.099 -0.034 -0.043 -0.024 +0.025 +0.025 +0.006 +0.006 -0.179	+0.000 +0.0000 +0.000 +0.0000 +0.000 +0.0000 +0.000 +0.0000 +0.037 +0.0000 +0.035 +0.0000 +0.035 +0.0001 +0.037 +0.0001	+0.0000 -6.0007 -0.0000 +0.0002 +0.0000 +0.0003 -0.0000 -0.0001 +0.0000 -6.0001 +0.0000 -6.0001 -0.0000 -0.0003 -0.0000 +0.0012 +0.0000 +0.0000
6+0 6+0 640 640 640	6 -6.060 1 -0.000 2 -6.000 5 -0.037 6 -0.001	-0.018 -0.011 -0.007 -0.010 +0.002	+0.000 +0.0000 +0.000 +0.0000 +0.000 +0.0000 -0.000 +0.0000 -0.000 +0.0000	+0.0003 +0.0003 +0.0000 +0.0001 +0.0000 +0.0001 -0.0000 +0.0001 +0.0000 +0.0000

.

.

· -

--

.

-

+0.036 -0.010 +0.000 +0.0000 +0.0000 +0.0001 7 640 _____ +0.001 +0.035 +0.0000 -0.0000 -0.0000 +0.000 +0.036 +0.0000 -0.0000 +0.0000 ε -0.001 640 <u>M</u>+ +0.039 640 -0.036 -0.0650 -0.0000 -0.0660 11--0.038 -0.041 €40 012 -0.000 -0.006 +0.000 +0.0000 +0.0000 -0.0000 659 -----0.000 -0.000 -0.0000 -0.0000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 669 -0.000 -0.004 -0.000 -0.000 550 -0.304 +0.000 +0.0000 -0.0000 +0.0000 +0.000 +0.0000 -0.0000 +0.0000 +0.0000 -0.0000 -0.0000 -0.0000 Ξ 659 -0.000 -0.001 -0.001 65.2 ŝ -0.036 +0.000 -0.000 -0.0000 -0.0000 -0.0001 654 ____ +0.036 +0.0000 +0.0000 +0.0000 +0.036 +0.0000 +0.0000 +0.0000 6 +0.001 -0.001 650 2+ -1.038 -0.010 654 ____ N~ -0 036 +0.000 -0.038 -0.0000 -5.0000 -0.0001 659 -0.018 -0.000 +0.0000 -0.0000 -0.0003 -0.011 -0.000 +0.0000 +0.0000 +0.0001 678 Û -0.000 -0.000 678 1 _____ ž -0.000 -0.007 -0.000 +0.0000 -0.0000 -0.0001 678 Ε +9.037 +0.010 +0.000 -0.0000 -0.0000 +0.0001 676 ----+0 025 +0.0000 +0.0000 +0.0000 €73 ċ ~0.001 +0.601 -0.000 -0.0000 +0.0000 +0.0001 -2.010 676 -0.030 _____ -0.036 +0.0000 -0.0000 +0.0000 a -0.001 -5.001 673 M- -5.038 +0.000 -0.032 +0.0000 +0.0000 +0.0000 676 -0.036 -0.0600 -0.6000 -0.0000 M- -0.038 -0.041 €78 -0.000 +0.0000 -5.0005 -0.0007 647 0 -0.001 -0.099 ------0.000 +0.0000 +0 0000 -0.0002 -0.000 +0.0000 -0.0000 -0.0003 1 -5.960 -0.034 697 -0.043 697 -0.000 -----697 5 -0.037 +0.024 +0.000 -0.0000 -0.0000 -0.0001 697 Е -0.001 +0.008 +0.035 +0.0001 -0.0000 +0.0001 -0.000 -0.0000 +0.0000 +0.0001 _____ 697 7 +6.036 +0 023 +0.037 +0.0001 -0.0000 +0.0001 +0.037 +0.0661 +0.0600 +0.0000 697 ç +0 001 +0.009 _____ м+ +0.038 +0.000 -0.179 697 ____ -6,027 -6,0001 -0.0000 -0.0013 M- -0.036 697 0 -0.006 -0.000 +0:0000 +0.0000 -0.0011 716 -0.249 ____ -0.076 -0.000 -0.0000 -0.0000 -0.0003 -0.000 -0.000 716 : _____ 2 -0 109 -0.000 -0.0000 +0.0000 -0.0000 716 +0.035 5 -0.037 +0.001 -0.0000 -0.0000 +0.0001 716 +0.034 +0.0604 +0.0006 +0.0001 716 6 -0.001+6.022 7 -0.037 -0.001 -0.0000 +0.0000 +0.0001 716 -0.026 ____ 8 +0.024 +0.027 +0.6004 -0.6000 +0.0001 716 +0.001 M- -2.038 +0.000 +0.637 +0.0005 +0.0000 +0.0000 716 -----716 M- -0.038 +0.434 -0.037 -0.0004 +0.0060 -0.0019 -0.249 -0.076 -0.000 +0.0000 +0.0000 +0.0011 735 û -0-000 -0.000 +0.0000 +0.0000 +0.0000 735 -0.000 -0.000 +0.0000 +0.0000 +0.0005 -1.000 -0.109735 5 +0.037 -0.037 +0.001 +0.0000 +0.0000 +0.0001 775 +0.023 +0.023 +0.0064 +0.0000 -0 0001 735 ć -0.000 _____ -0.036 -0.037 -0.001 -0.0000 +0.0000 +0.0001 735 ____ ę +9 001 -0.038 -0.0004 -0.0000 -0.0001 735 -0.023 _ --ý-+6.038 +0.000 +0.038 +0.0005 +0.0000 +0.0019 735 M- -0.035 -0.434 -0.038 -0.0004 -0.0000 +0.0000 735 73-Û, -0.000 -0.099 -0.000 +0.0000 -0.0000 +0.0007 754 --0.000 -0.034 -6.000 -0.0000 -0.0000 +0.0002 +6.643 +0.000 +0.0000 +0.00000 +0.00003 734 -0.000 +0.001 +0.0000 -0.0000 +0.0001 Ξ -0.521 -0.021 754 -0.033 -0.0601 -0.0000 -0.0001 -0.068 754 ċ -0.001 -0.026 -0.023 -0.001 -0.0000 -0.0000 -0.0001 753 ____ 9 ·0.037 -0.0001 -0.0000 -0.0001 +0.001 +0.008 754 _____ +0.000 75: 11-+0 025 -0 029 -0.0001 +0.0000 +0.0013 754 id--0.000 -0.179 -0.039 -0.0001 +0.0000 +0.0000 77? 77? Q -0.000 -0.015 -0.000 +0.0000 +0 0000 +0 0003 1 -0.000-0.011 -0.000 -0.0000 -0.0000 +0.0001 _____ 773 -h.000 -0.007 -0.000 +0.0000 +0.0000 +0 0001 ٤. +0.037 +0.002 +0.0000 +0.0000 +0.0001 +0.020 +0.0000 +0.0000 +0.0000 773 -0.010 775 ć -0 001 -1.036 +0.001 -0.002 +0.0000 +0.0000 +0.0001 -0.010772 _____ e -0.001 +0.039 +0.0090 -0.0000 -0.0000 +0.001 773 M- +0.038 M- -0.038 -0.040 -0.0000 -0.0000 +0.0000 773 -0.000 ·_____ -0.040 -0.0000 +0.0000 +0.0000 +0 641 79. 6 -0.000 +0.000 -0.000 -0.0600 -0.6000 -0.6000 ____ -0.000 -0.004 -0.000 -0.0000 -0 0000 -0 0000 792 1 76--0.00u +0 604 -0.000 +0.0000 +0.0000 -0.0000 3 792 5 ~0.037 +0.00(+0.002 +0.0000 -0.0000 +0.0001 790 ь -0.001-0.001 +0.031 -0.0000 -0.0000 -0.0000 -0.002 +0.0000 +0.0000 +0 0001 792 7 +0.016 +0.000 792 792 Ē -0.001 -0.001 +0.040 -0.0000 -0.0000 +0.0000 ___0.038 +0.010 +0.040 +0.0000 +0.0000 +0.0001 34→ -0.019 -0.040 +0.0000 +0.0000 -0.0001 М-+0.000 792 -0.000 -0 016 2010 -0.000 +0.0000 -0.0000 -0.0003 811 811 -6.000 -0.011 -0.000 -0.0000 +0.0000 -0.0001 -6.000 -0.007 -0.000 -0.0000 -0.0000 -0.0001

_

6051 0066 0066 0066	8000 1000 1000 1000 1000 1000 1000 1000			.000 .000 .000 .000 .000 .000 .000 .00		.0001 .0001 .0001 .0001 .0001 .0001 .0000	000010000000000000000000000000000000000	.0008 .0002 .0002 .0002 .0002 .0001 .0001 .0001	.0005
999999 666666						\$ \$ \$ \$\$			00 1 1 0 0
-0-400 -0-600 -0-6000 -0-6000 -0-6000 	00000000000000000000000000000000000000			0000 0000 0000 0000 0000 0000 0000 0000 0000					+0.0000
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000		+0.000 +0.0000 +0.0000 +10.00000 +10.00000 +10.000000 +10.00000 +10.00000 +10.0000 +	1000 100 100 100 100 100 100 100 100 10	-6.3605 -9.050	-6.0000 -0.00000 -0.0000 -00000 -0.0000 -0.0000 -00000 -0.00000 -00000 -00000 -000000 -0000000		-4 6003 -0.00000 -0.00000 -0.0000 -0.0000 -0.000000 -0.0000000 -0.00000000	<pre>childrenge</pre>	+0.0000 +0.0000
+ C, C 03 + C, C 03 + C, O 03 + C, O 4 + C, O 1 + C, O 1	00000000000000000000000000000000000000	-10^{-1}				$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	600703700 80028463737 80028363636 800283636 800283636 8002836 80028 8003 80028 8003 8003 8003 8003 80		-0-00 -0-000
	$\begin{array}{c} 0 & y \\ 0 & y \\ 0 & y \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \\$		00000000 00000000 00000000 000000000 0000		00000000000000000000000000000000000000				515-5- 515-5-
-0.037 -0.001 -0.005 -0.005 -0.005 -0.005			66666666666 6666666666 6666666666 666666		00000000000000000000000000000000000000				-0.000 -0.000
ちょう きかがい	\circ o o o la value o \circ o \sim	បកព្រម្កស្រួន	odanose e X Z	onanara 21	0.000 21 20 21 2	cercier a EL	ta a ché sa ang 21 gi	na en a la tella de la de la	
11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		61 0, 51 37 51 51 51 51 31 51 17 17 17 17 17 17 17 17 17 15 13 12 13 10 13 13 12 13 15	ແມ່ນ ແລະ		600 600 600 600 600 600 600 600 600 600	្រាស់សំណាក់សំណាល លុលក្រាស់លុកសំណាល ភ្លាភាភាភាភាភាស់សំណា	97 - 3 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	,	1100 1000 1000

1

.

.

				• -
	962 2 -0.600 932 5 +0.027 962 6 -0.601 642 7 +0.026 982 5 +0.001 982 5 +0.001 982 5 +0.001 982 5 +0.038 982 5 +0.038	-0.105 -0.000 +0.000 -0.042 +0.004 +0.000 -0.032 +0.026 +0.000 -0.045 -0.004 +0.000 -0.045 -0.004 +0.000 -0.040 -0.045 +0.000 -0.020 +0.047 +0.000 -0.437 -0.047 -0.000	0 -0.0005 -0.0007 1 -0.0005 -0.0005 3 -0.0005 -0.0005 0 -0.0001 -0.0001 5 -0.0005 -0.0003 5 -0.0005 -0.0003 5 -0.0005 -0.0000 4 -0.0000 -0.0035	
	1111 0 -0.000 1113 1 -0.000 1112 2 -0.000 1113 5 +0.037 1113 6 -0.001 1113 7 +0.036 1113 8 +0.036 1113 8 -0.031 1113 8 -0.033 1113 8 -0.033	-0.373 -0.060 +0.660 -0.113 +0.000 +0.660 -0.162 +0.600 +0.600 -0.022 +0.603 +0.600 -0.025 +0.642 +0.600 -0.029 +0.003 +0.600 -0.030 +0.030 +0.601 -0.605 +0.642 +0.601 -0.641 +0.642 +0.601	$\begin{array}{l} \mathbf{c} & -0.0300 & -3.0300 \\ \mathbf{c} & -0.9200 & -3.0300 \\ \mathbf{c} & -0.9200 & -3.0000 \\ \mathbf{c} & -0.9201 & -0.0013 \\ \mathbf{c} & +0.0000 & +0.0000 \\ \mathbf{c} & -0.0000 & -3.0011 \\ \mathbf{c} & -0.0300 & -3.0000 \\ \mathbf{c} & -0.0000 & +7.0001 \\ \mathbf{c} & +0.0000 & +7.0001 \\ \mathbf{c} & +3.0000 & -0.0011 \end{array}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.315 +0.000 +0.000 -0.093 +0.000 +0.000 -0.139 +0.000 +0.000 -0.050 +0.003 +0.000 -0.021 +0.041 +0.000 -0.047 +0.003 +0.000 +0.026 +0.030 +0.000 +0.0548 +0.042 +0.000	0 +0.0000 +0.0013 0 +0.0000 +0.0004 0 +0.0000 +0.0000 9 +0.0000 +0.0000 0 +0.0000 +0.0000 0 +0.0000 +0.0000 17 +0.0000 +0.0000 12 +0.0000 +0.0000	
	1115 0 -0.020 1135 1 -0.000 1115 2 -0.060 1115 5 -0.037 1115 6 -0.001 1125 7 -0.036 1115 6 -0.036 1115 6 -0.036 1115 M- -0.036	-0.311 +0.000 +0.000 -0.034 +0.000 +0.000 +0.137 +0.000 -0.000 +0.055 +0.035 +0.000 +0.025 +0.035 +0.000 +0.023 +0.031 +0.000 -0.002 +0.038 +0.000 -0.542 -0.038 -0.000	5 -0.0000 -0.0012 10 -0.0000 -0.0003 0 -0.0000 -0.0005 10 -0.0000 -0.0002 10 -0.0000 -0.0001 10 -0.0000 -0.0001 10 -0.0000 -0.0001 10 +0.0000 -0.0000 13 +0.0000 -0.0021	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.365 +0.000 +0.000 -0.109 +0.000 +0.000 -0.160 +0.000 +0.000 -0.022 -0.001 -0.000 +0.022 +0.028 +0.001 -0.022 +0.033 +0.001 -0.022 +0.033 +0.001 +0.020 +0.038 +0.001 -0.634 -0.038 +0.001	0 +0.0000 +0.0000 0 +0.0000 +0.0000 10 +0.0000 +0.0000 10 -0.0000 -0.0011 1 +0.0000 +0.0001 1 -0.0000 +0.0011 2 -0.0000 -0.0000 4 +0.0000 +0.0011 3 +0.0000 -0.0011	
· ·	1123 0 -0.030 1123 1 -0.000 1123 2 -0.003 1123 5 +0.037 1123 6 -0.001 1123 7 -0.026 1123 8 +0.601 1123 8 +0.601 1123 M- -0.038	-0.363 -0.000 -0.000 -0.109 -0.000 +0.000 -0.200 -0.000 -0.000 -0.021 +0.001 +0.000 -0.032 +0.033 +0.001 -0.021 -0.033 +0.001 +0.002 -0.038 +0.001 -0.034 -0.038 +0.001	$\begin{array}{l} 0 & -0.0000 & -0.0000 \\ 0 & -0.0000 & -0.0000 \\ 0 & -0.0000 & -0.0001 \\ 0 & -0.0000 & -0.0011 \\ 0 & -0.0000 & -0.0000 \\ 0 & -0.0000 & -0.0011 \\ 3 & -0.0000 & -0.0000 \\ 4 & -0.0000 & +0.0011 \\ 3 & -0.0000 & +0.0011 \\ 3 & -0.0000 & +0.0011 \\ \end{array}$	
· .	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-0.311 -0.600 +0.000 -0.624 -0.605 +0.000 -0.127 -0.600 +0.000 -0.050 +0.001 +0.000 -0.036 +0.033 +0.000 -0.036 -0.001 -0.000 +0.623 +0.038 +0.000 +0.606 +0.058 +0.600 -0.541 -0.038 +0.000	0 +0.0000 +0.0012 0 +0.0000 -0.0003 0 -0.0000 -0.0005 0 -0.0000 -0.0002 8 +0.0000 +0.0002 8 -0.0000 +0.0002 8 -0.0000 -0.0001 9 +0.0000 +0.0002 9 +0.0000 +0.0000	
	1125 0 -0.600 1125 1 -0.000 1125 2 -6.600 1125 5 -6.000 1125 6 -6.000 1125 7 -0.030 1125 7 -0.036 1125 8 -0.001 1125 8 -0.036 1125 8 -0.038 1125 M- -0.038	-0.313 -0.000 -0.000 -0.095 -0.000 -0.000 -0.138 -0.000 -0.000 -0.126 -0.003 -0.000 -0.126 -0.003 -0.000 -0.026 -0.003 -0.000 -0.047 -0.003 -0.000 -0.030 +0.041 +0.000 -0.548 -0.042 -0.000	5 +3.6000 -0.0013 0 +0.0000 -0.0004 0 +0.0000 -0.0003 0 -0.0000 +0.0002 7 -0.0000 +0.0001 0 -0.0000 +0.0002 9 -0.0000 +0.0001 5 +0 0000 +0.0000 9 -0.0000 -5.0022	
	1128 0 -0.000 1126 1 -0.000 1125 2 -0.000 1126 5 -0.000 1126 6 -0.000 1126 7 -0.000 1126 7 -0.000 1126 7 -0.036 1126 11-0.032 5 1126 11-0.033 11-0.038	-0.370 -0.600 +0.000 -0.110 -0.000 +0.000 -0.122 -0.600 +0.000 +0.612 -0.003 +0.000 +0.022 -0.003 -0.000 +0.022 -0.003 -0.000 +0.022 -0.003 -0.000 +0.022 -0.042 +0.001 +0.009 +0.042 -0.601	$\begin{array}{l} 6 +0.0000 + 6 0000 \\ 0 +0.0000 + 6.0000 \\ 0 -0.0000 + 0.0000 \\ 1 -0.0000 + 0.0000 \\ 1 +0.0000 + 0.0000 \\ 1 +0.0000 - 0.0011 \\ 4 -0.0000 - 0.0011 \\ 4 +0.0000 + 0.0011 \\ 4 +0.0000 + 0.0011 \\ 4 +0.0000 + 0.0011 \\ \end{array}$	

• -

· .

.

...

	159 (159 (159) (159) (159 (159) (15	0 -0.000 -0.000 0 -0.000 0 +0.007 6 -0.001 7 +0.002 8 -0.001 4+ +0.003 4+ +0.003 5 -0.003	-0.363 -0.109 -0.100 +0.032 +0.033 -0.021 -0.031 -0.031 -0.030 -0.034	+0.020 + +0.000 + +0.000 + +0.001 + +0.038 + +0.001 + +0.034 + +0.038 + +0.038 +	-0.00C0 +0.0000 -0.0000 +0.0000 +0.0013 +0.0000 -0.0012 +0.0014 -0.0014 -0.0014	+0.0300 +0.0200 +(.3000 -0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000	-0.0000 +0.0000 -0.0000 -0.0011 +0.0000 -0.0011 +0.0000 +0.0011 -0.0011 -0.0011	
	160 0 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1	C -0.000 -0.000 5 -0.000 5 -0.001 5 -0.001 5 -0.001 5 +0.001 4 -0.038 4 -0.038	$\begin{array}{c} -0.311\\ -0.024\\ -0.137\\ -0.051\\ +0.030\\ -0.049\\ +0.027\\ +0.000\\ +0.542\end{array}$	-0.600 +0.600 +0.000 +0.001 +0.001 +0.001 +0.001 +0.031 +0.038 -0.638	-0.0000 -0.0000 -0.0000 -0.0000 -0.0008 -0.0008 -0.0008 -0.0008 -0.0008	+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000	+0.0012 +0.0003 +0.0005 +0.0003 -0.0002 -0.0002 -0.0002 -0.0002 +0.0022 +0.0020	
1 1 1 1 1 1 1 1 1	161 0 161 1 161 1 161 1 161 1 161 1 161 1 161 1 161 1 161 1	0 -0.000 1 -0.005 0 -0.600 5 -0.037 5 -0.001 7 -0.035 6 -0.035 4 -0.035 4 -0.038	$\begin{array}{c} -0.311\\ -0.094\\ -0.137\\ -0.051\\ +0.027\\ +0.049\\ +0.030\\ +0.000\\ -0.542\end{array}$	-0.000 -0.000 +0.000 +0.001 +0.03; -0.001 +0.037 +0.037 +0.038 -0.038	-0.0000 -0.0000 -0.0000 -0.0000 -0.0009 -0.0009 -0.0009 -0.0009 -0.0009	+0.0300 +0.0306 +0.0000 -0.0000 +0.0300 +0.0300 -0.3000 +0.3000 +0.0000 +0.0000	-0.0012 -0.0003 -0.0003 +0.0003 -0.0001 +0.0001 -0.0001 -0.0000 -0.0021	
1 1 1 1 1 1 1 1 1	162 1 162 1 162 1 162 1 162 1 162 1 162 1 162 1 162 1 162 1 162 1 162 1 162 1	$\begin{array}{rrrr} & -0.006 \\ & -6.006 \\ & -0.007 \\ & -0.037 \\ & -0.026 \\ & -0.026 \\ & -0.001 \\ & + -0.038 \\ & -6.038 \\ & -6.038 \end{array}$	$\begin{array}{c} -0.365\\ -0.109\\ +0.150\\ +0.022\\ +0.031\\ +0.031\\ +0.023\\ +0.000\\ -0.634 \end{array}$	-0.000 -0.000 -0.000 +0.001 +0.031 -0.001 +0.036 +0.038 -0.036	+0.0000 +0.0000 +0.0000 +0.0000 -0.0012 -0.0012 +0.0013 +0.0013	+0.0000 +0.0000 +0.0000 -0.0000 +0.0000 +0.0000 -0.0000 +0.0000 +0.0000 +0.0000	-0.0000 -0.0000 -0.0000 -0.0000 -0.0011 -0.0000 +0.0000 +0.0011 -0.0011	
	174 0 174 1 174 2 174 2 174 2 174 2 174 2 174 2 174 2 174 2 174 2 174 2 174 2 174 2	0 -0.000 1 -0.000 2 -0.000 5 -0.007 5 -0.001 7 -0.036 8 -0.001 4 - 0.035 4 - 0.035 4 - 0.035	-0.369 -0.110 -0.162 +0.632 +0.635 -0.034 +0.631 +6.000 -0.641	+0.000 +0.000 +0.000 +0.003 +0.042 +0.003 +0.029 +0.043 -0.043	+0.0000 -0.0000 -0.0000 -0.0001 -0.0014 -0.0014 -0.0011 -0.0015 -0.0015 -0.0014	0.000 +0.0000 +0.0000 0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000	-0.0000 +0.0000 -0.0001 -0.0001 -0.0001 -0.0011 -0.0000 -0.0011 -0.0011	
- 1 - 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	175 175 175 1 175 1 175 1 175 1 175 1 175 1 175 1 175 1 175 1 175 1 175 1 175 1 175 1	-0.000 -0.000 -0.000 -0.000 -0.001 -0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +0.000 +-0.000 +-0.000 +-0.000 +-0.000	-0.315 -0.095 -0.135 +0.050 +0.031 +0.052 +0.028 +0.060 -0.545	+0.000 - +0.000 - +0.000 - +0.003 - +0.041 - +0.003 - +0.029 - -0.042 - -0.042 -	-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 +0.0009 +0.0007 -0.0007 -0.0009 -0.0009	+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000	-0.0013 -0.0004 -0.0005 +0.0003 +0.0001 +0.0001 +0.0002 +0.0000 -0.0022	
	176 0 176 1 176 1 176 1 176 1 176 1 176 1 176 1 176 1 176 1 176 1 176 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-0.362 -0.101 -0.148 +0.063 +0.055 +0.068 +0.045 +0.500 -0.618	+0 000 + +0.000 + +0.000 + +0.004 + +0.045 + +0.001 + +0.026 + +0.047 + -0.047 +	+0.0003 +0.0000 +0.0001 +0.0011 +0.0011 +0.0001 -0.0007 +3.0011 -0.0011	0000,0+ 0,000,0+ 0,000,0+ 0,000,0+ 0,000,0+ 0,000,0+ 0,000,0+ 0,000,0+ 0,000,0+	+0.0023 +0.0006 +0.0009 -0.9006 -0.0003 -0.0003 -0.0003 +0.0003 +0.0041 +0.0000	
	177 1 177 1 177 2 177 2 177 2 177 2 177 2 177 2 177 2 177 2 177 2 177 2 177 2 177 2	$\begin{array}{rrrrr} 0 & -0.000 \\ -0.000 \\ 0 & -0.000 \\ 0 & -0.000 \\ 0 & -0.000 \\ 0 & -0.000 \\ 0 & -0.000 \\ 0 & -0.000 \\ 1 & -0.000 \\ 1 & -0.000 \\ -0.000 \\ \end{array}$	-0 501 -0.137 -0.205 +0.145 +0.076 +0.151 +0.063 +0.000 -0.210	+0.000 +0.000 +0.000 -0.004 +0.046 +0.046 +0.025 +0.025 +0.047 -0.047	+0.0000 +0.0000 +0.0001 +0.0019 +0.0019 +0.0019 +0.0013 +0.0019 -0.0019	+0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 -0.0000	+0.0013 +0.0003 +0.0005 -0.0020 +0.0020 -0.0020 -0.0020 +0.0040 -0.0000	
	186 0 186 2 186 2 186 6 186 6 186 6 186 6 186 6	7 -0.000 1 -0.005 2 -0.000 5 -0.037 5 -0.037 5 -0.037 6 -0.038 4 -0.038	-0.369 -0.110 -0.022 +0.031 -0.034 +0.035 +0.000	-0.000 -0.000 +0.000 +0.003 +0.023 -0.003 +0.042 +0.042	+0.0000 +0.0000 +0.0000 +0.0001 +0.0011 -0.0001 +0.0014 +0.0015	+0.0000 +0.0009 +0.0009 +0.0009 +0.0000 +0.0000 -0.0000 +0.0000	+0.0000 +0.0000 -0.0001 -0.0000 -0.0011 -0.0000 +0.0001	

•

1100	_ M= -0.038 -0.54	11 -0.04× -0.0014 +0.0030 -0.0011	
1187	9 -0.000 -0.33	5 -0.000 +0.0000 +0.0000 +5.0017	
1187	1 -0.000 -0.09	E -0.000 -0.0060 -0.0000 -5.0004	
1187	2 -0.000 -0.13	8 -0.000 +0.0000 +0.0000 +0.0000	
1127	_ 5 +0.017 +0 h5		
1187		S +0.000 +0.0007 +6.0000 +6.0001	
1197		2 _0 002 =0 0000 +0 0000 +0 0000	
1137		2 +0.003 -0.0000 -0.0000 -0.0000 2 +0.011 -0.0005 -0.0000 -0.000	
1121		2 +0.041 -0.0003 -0.0000 -0.00001	
	_ 11 -0.036 -0.00	0 013 0 005 0 0000 3 0000	
	= =0.030 =0.04	6 Fordes Fordola Firence Fordout	
1198	0 -0.000 -r 34	2 +6 066 +1 6661 +3 6566 +6 6655	
1169		1 -8 966 +0 0000 +1 0000 -2 0000	
1188		2 =0.000 =0.0000 =0.0000 =0.0000	
1186		3 +0 00/ +0 00/1 -0 0000 -0 000/	
		5	
1166	7 -0.036 -0.05	5 - 46.026 -0.0001 -0.0008 -0.0002 5 - 46.001 -0.0001 -0.0008 -0.0002	
1129		6 -40 015 -0 0311 -0 0000 -0.0000	
1156	_ V 0.001 0.00 _ M6 038 _6 60	0 -0.040 F0.0011 -0 0000 F0.0003	
1725		0 -0.047 -0.0011 -0.0000 -0.0000	
·····	0.036 -0.02	1 -0.04/ -0.0011 +0.0000 -0.0041	
1169	0 -0.000 -0.50	1 -0.000 +0.0000 +0.0000 -0.0012	
1189	1 -0.000 -0.13	7 -0.000 -0.0000 +0.0000 -0.0002	
1139	2 -0.000 +0.19	5 -0.000 +2.0000 +0.0000 -0.0000	
1189	5 -6 837 -5.14	5 -0.004 +0.0001 -0.0000 -0.0000	
1189	- 2 -0.001 +0.00	5 +0.025 +0.0013 +0.0016 +0.0002	
1189	- +0.034 -0.15	1 -0.004 -0.0001 +0.0006 -0.00002	•
1139	6 +0.001 +0.07	5 +0.046 +0.0019 -0.0000 +0.0000	
1129	M0.038 +0.00	C +0.047 +C 0020 +0 0001 +0 0009	
1189	X0.038 -0.91	4 -0 047 -0 0019 -0 0000 -0 0040	
		· ····· ······ ········ ·········	

·• •

.

-

.

.

-

-

DISEÑO DE COLUMNA

MIEMBRCS	131	x (cm) COb	i Ma (mT)	\mathbb{M}_{2}	Me	$\operatorname{Fx}(\mathbb{T})$	25	1.2
74	14	0.0	-0.00	-1.69	-10.47	-196.78	-5.44	+(74
74		70 G	-0.00	-1.16	+ c . c .	-190.35	-5.44	7
74		140 0	-0.00	-0.25	+2.86	-199.92	-5.44	+3.7-
7:		210 0	-0.00	-0.13	-0.94	-189.60	-5.44	-0.74
7.4		250 2	+0.00	-0.39	-4.75	-189.01	+5.44	-0.74
7 . 7		250.0	-0.00	G_	55	-185 51	- 22	
/4		220 0	-0.00	-0.91		-101101		
74		<u> </u>	~2.00	*0.5	+2.04	-21.22	-1.50	- 10
74		70 1	-6.00	+0.29	+	-934	*	+0.10
74		140 1	-0.00	-0.26	+0.94	-51 39	~	-(
74		216 1	~0.00	-0.0	-0.35	-51.38	+1.85	-C.18
74		280 I	-0.00	-0.02	-1.65	-51 39	-1.85	-0.13
74		350 i	~0.00	-0.21	-2.95	-51.39		-0.18
74		0.2	-0.60	-0.6	+5.39	-81.54	-2.32	-0.27
74		20 0	-0.00	+0.45	-3.42	-81.64	+2.02	·C.27
7		145 5	-0.00	-0.25	+1.45	-81.54	-1.60	-0.27
74		210 2	-0.00	+0.07	-0 50	-81 71	-2.82	-0.01
		290 2	-3.00	-0.10	- 50	-81 6.1	-0.20	-0.07
7 4		200 2	-0.00	- 2. 12		-01.04		
7.7		100 -	-0.00	-0.3	-4.47	-01.04	-1.01	
15		0.5	-0.00	/ - 05			-1.02	
74		70.5	-6.00	+20.34	-0.31	*1.02	-1.62	*27.00
74		140 5	-0.00	-4.83	-0.45	-1.63	-1.0-	-23.02
74		210 5	-0.00	-11.29	-1.22	+1.03	-1.09	-23.02
74		200 B	-0.00	-17.40	-1.96	-1.07	-1.03	+13 01
74		350 5	-0.00	-13.52	-2.74	+1.03	+1.03	-23.00
74		0 8	+0.00	+0.9C	-34.37	-15.82	-25.30	+0.58
74		70 6	+0.00	-0.53	-16.71	-15.59	-25.80	-0.53
74		140 e	-6.00	-C.16	-1.75	-15.69	-25.80	-0.53
7.;		210 E	+0.00	-0.21	-19.81	-15.39	-13.30	-0.52
74		280 G	+0.00	-0 59	-37.87	-15.82	-25.80	-0.50
74		350 5	+0.05	-0.55	+55.93	-15.89	-25.80	-0.5J
7.		0.7	-0.60	-37 56	-0.57	+0.22	-1.05	-12.31
7:		70 7	+0.00	+ 21 19	+0.16	+0.08	-1.05	-73 31
		107	+0.00	-1 35	+390	+6 22	-1 05	
74		210 -	-0.00	-4.00	11 23	-0.20	1 25	. 23. 33
· · ·		210 7	+0.00	-11,60	-1.02	-0.25		
/ '		200 -	+0.00	-27 76		-0.20	-1.00	
14		326 /	+0.00		-1.10	-0.2		
14		63	-0.00	-0.14	-30.35	-14-10		-0.13
74		70 8	-0.00	-0.03	-15.50	-14.15	-20.84	-0.15
74		140 8	-0.05	-0.02	7	-14.15	-20.84	-0.15
74		210 e	-0.00	+0.19	-13.22	-14.15	-20.84	~0.15
74		280 P	-0.00	+0.29	+27.81	-14.15	-20.84	-0.15
74		350 8	~0.00	-0.40	-42.40	-14.15	-20.84	-0.15
74	14	0 K-	-0.00	+45.43	-45.17	+0.00	+31.50	+26.55
74		76 M+	+0.00	+24.59	+23.07	÷0 00	+31.50	-26.57
74		140 M-	-0.00	tê.30	-5.54	+0.00	+31.56	+26.55
74		212 N-	+9.00	-12.69	-19.23	+0.00	+31.5d	+26.55
74		280 11-	-6.00	+29.92	+33.70	+0.00	-31.56	-20.55
74	28	350 M-	+0,00	+47.00	+48.20	+0.00	+31.5r	+26.55
74	12	0 V-	-0.00	-39.01	-24.00	- 12 3 . 79	-73.6v	-74.69
74		70 2-	-0.00	_ 71 G	-6.71	-303.20	-20-69	-21.69
7.1		1.0 .	-0.00	- 3 - 2 F	+0.00	_ 373 0		-21 69
77		210 N	-0.00	-12 1	_11 10	- 2 2 2 4 2 2		-24102
· · · · · · · · · · · · · · · · · · ·		110 PF	-0.00	-12.25	-47 01			
· · ·		150 M-	-0.00	-30.8		-202-24	0.09	-29,09
14		기 하지 말하는 것이 좋아.	-0.00		- t D (i)			

-

.

.

.

COLUMN 74 (IARM-C-2) 1/1b:350cm/350cm Lamoda X,y:(9, 20) KX,Ky,K:(0.692,0.865,1.000) COMPINACIONES FRINCIPALES n TIPO $\mathcal{A}(\mathcal{O}n)$ FX(T) MX(nT) My(nT) MD(nT) VY(T) VD(T) ÷. 1 15--> 37.0% 2.72 19 40 (Co 0 -323.79 -0.00 10.10 0 00 0.00 -9.71 -20 25 i Tr 9.06 +15.72 0.00--> 0.08 0.00 30 0 0 2 Ma -0.41--1 29 78 0 -204.99 -0.00 -0.00 -49.45 -34.96 -0.00 12.11 -65.30 -0.00 13.11 -65.30 -0.00 -49.45 -34.96 3 My 350 -074-50 4 Mz 350 -172.63 5 V 350 -172.63 3 My 19.24 26.55--> 62.0% 31.56 -8.70--> 38.1s 31.56 -8 70++> 38.1% 6 Sm 350 -274.50 18 26 26.55--> 62.0% AFROVECHAMIENTC 0.62 (62.0%) Th. MALTE MARLE VI 0 1766.89 1750.00 1202.48 585.34 585.34 585.34 585.34 585.34 931.81 200.57 105.57 200.57 303.72 16.21 N+F : V-F : 0.36 V+F : 0.00 N+F+V+T: 0.37 PhT PhCE PhCTE Mn(C/Y) MpY Malte Mafib Maxib Va Τ. E. 1 1786.89 1750.00 1202.46 595.34 585.34 585.34 585.34 585.34 801.82 200.57 200.57 303.72 10.21 8+F : 0.60 V-F . 0.00 N+F+V+T: 0.00 V-F FRCE FRCTE Mr (Z/U) Mr.Y FnT MALTE MAFLE MAWLE VO Τn Γ. 2 1766.89 1750.00 1202.45 585 34 505.34 585.34 585.34 505.24 801.82 200.37 200.57 200.57 302.70 16.21 11+F : V+F : 0 25 . : : N+E+V+T: Рот 0.00 0.30 PhT PhCP EnCTB Mn(2/1) MnY MnLTB MnFLP MnWLB Vn n Τn 3 1786.89 1750.00 1262.48 685.34 585.34 585.34 585.34 585.34 601.82 200.57 200.57 200.57 303.72 18.21 N+F : V-F . 0.57
 V-F
 0.00

 N+F+V-T:
 0.60

 PnT
 PnCB
 FnCTF
 NnxC/CV Mark
 MALTE MAFLE MAWLE Vr Tu 4 1786.89 1750.00 1201.46 565 34 565.34 585.24 585.34 585.34 801.82 200.57 200.57 200.57 200.57 18.21 N-F : 0.29 V-F : 0.60 N-F+V-T: 0.33 Pat FacB FacTH Max(2/1) Max MALTE MAFLE MAMLE VA Τn n 5 1786.89 1750.00 1202.48 585.94 580.84 595.34 585.94 585.94 901.82 200 57 200 57 200.57 303.70 16.21 N+F - 0.23 V+F - 0.11 N+F-V-T - 0.38 FNT FNCE FrCTE Mr. DALY MLT \mathbf{p} MANTE MAFLE MAWLE VA тn 6 1766.69 1750.00 1070 45 1401.84 585 34 505 34 565.34 555.34 801.62 000.57 000.57 000.57 000.57 000.57 16.21 11-F . V-F :

.

1-+ F- V- T 2.52

DISEÑO DE TRABE

MIEMBROS	5N	ж (ася) - Соз	(T.a.) x24 ($M_{\rm Y}$	¥2	Fx (T)	∇f	No.
284	75	3.0	-0.00	-0.00	-15.15	+0.00	-7.58	-0.00
274		240 0	+0.00	-0.00	-0.59	-0.60	-4.55	-0.00
264		480 ē	÷0 00	-0.00	-5.69	-0.00	-1.52	-0.00
204		710 6	-0.00	-0.00	+:.:9	+0.00	-1.51	-5.85-
254		900 0	+0.05	-0.00	+0.59	-0.00	τ4.55	-0.00
	140	1000	-0.00	5.00	-15,15	-0.00	+7.59	· 5. 00
1.5		AL 0- 1		+0.05	_=	+3 05	-7 51	+5.00
2019		2.0	+0.00	+0.00	-0.01	+0.00	_1 52	+1 05
2017		200 1	-0.00	-0.00	3	-0.00	_ 51	-7 00
264		775 1	-0.00	+3.00		-0.00	- 1 - 5 - 5	-6.60
204		100 0	+0.00	-0.00		-0.00		- 2 00
204		1200 1		0.00		-0.00		
201		1200 -	-0.00	+0.00	-0.17	+0.00	*2.04	
204		0 <u>-</u>	+0.00	+0.00	-1.25	-0.00	-9.00	-0.00
204		245 -	-0.00	+0.00		-0.00	-2.40 A AA	
204		460 2	+1.00	+0.0.	+	+0.00	-0 30	+ () (
264		120 2	-0.00	-0.00	+2.J_	-0.00	+c.30	1
254		960 2	+0.00	+0.06	-2-3-2	40.0J	2.10	+0.00
264		1205 2	+0.00	+0.00	-7.65	+0.00	+4 GC	-0.00
264		0.5	+0.60	+0.00	+43.84	+0,00	+7.31	-0.00
264		240 5	+0.00	+0.00	+28.31	-C.QO	+7.31	-0.00
264		490 5	-0.00	-0.00	+5.77	+6.00	+7.31	+\$.20
264		720 5	+0.00	+0.00	-9.77	-0.00	+7.31	-0.09
264		960 5	-0.Oü	-0.00	-16.31	+0.00	-7.31	-0.03
264		1200 5	÷0.00	-0.00	-43.84	+6.00	+7.31	+0.00
264		ΰē	~9.00	+0,00	-0.ć2	+0.00	-0.10	+0.00
264		246 ϵ	-0.00	+0.00	-0.37	·0.00	-0.10	+0.00
264		480 ē	-0.00	-0.00	-0.13	+0.00	-0 10	+0.00
264		720 E	-0.00	-0.00	+6.12	-0.00	-0.10	+0.00
264		960 6	~0.60	-0.00	+0.37	+6.60	-0.10	+0.00
264		1260 J	-0.00	-0.00	+0.c1	•0.00	-0.10	+0.05
234		0.7	-0.00	-0.00	+43.31	+0.0C	+7.22	-6-60
264		240 T	-0.00	-0.00	+23.99	÷0.00	-7.22	-0.00
264		480 7	-0.00	+0.00	+***66	+0.00	+7.22	-0.00
254		726 7	-6.00	-0.00	-8.00	-0.00	-7.22	-3.00
264		960 7	-0.00	-0.00	+25.99	±0.00	-7.22	-0.00
26-		1200 7	-0.00	-0.00	-40.01	+0.00	+7.22	-0.00
264		S 0	± 0.00	+0.00	+0.01	-0 00	+0.10	-0.00
264		240 8	+0.00	+0.00	+0.37	+0.00	+0.10	+0.00
204		480 8	+0.00	+0.00	+0.12	+0.00	+0.10	+0.00
264		720 8	+0.00	-0.00	-0.13	+0.00	+0.10	+0.00
264		960 8	+6.60	-0.00	-0.37	+0.00	+0.16	-0.00
264		1200 8	+0.00	-0.00	-0.02	+0.00	+9.10	+C.CO
254	75	0 M+	-0.00	+0.00	-31.76	+0.00	-0.00	+6.00
254		240 M+	-0.00	+0.00	+28.41	+0.00	+3.07	+0.00
264		430 M-	-0.00	+0.00	+20.25	-0.00	+6.40	+5.00
264		720 M+	-0.00	-0.00	-20.26	+0.00	+10.47	+0.00
264		980 M+	+0.00	+0.00	+28.41	+0.00	-15.27	÷€,00
26;	140	1200 M-	+0.00	+0.00	+31 76	+0.00	+33.06	+0.00
264	75	0 II-	~0.00	-0.00	-72.39	+0.00	-20.00	-0.06
264		240 M-	-0.00	-0.00	-30 90	+0.00	-13.27	-0.06
264		480 M-	+0.00	-0.00	-2.33	-0.00	-10.47	-0.00
264		720 M-	-0.60	-0.00	-2 23	+0 00	-6.40	-0.00
264		960 M-	-0.00	-6.00	-29.99	-0.00	-3 07	-0.00
264	140	1200 M-	-0.06	-0.00	-72.39	+0.00	+0.00	-0.00
						-		

-

\IGA 264 (IARM-T-1) 1/1b:1200cm/1200cm Lamoua N.y: (28, 104) K&, Ky, KI* (0.719,0.633,1.000) Deflexion Yp/2p(+0.540,-0.211) / (+0.000,+0.300)

- -

-.

СС ::	MEINATIC TIPO x(:	DNES FRIN om) Fr(T)	CIFALES MaimTi	My (n:T)	ME (mT)	$V_{\mathcal{T}}(\mathbb{T})$	V= (†)	,		
01411110	Co 0 Tr C Mx 0 My 0 Mz 0 V 1200 ST 0	0000 0000 0000 0000 0000 0000	0.00 0.00 0.00 0.00 -0.00 0.00 -0.00	0.00 0.00 0.00 0.00 -0.00 0.00 -0.00	0.00 -1.55 -1.55 -72.39 -72.39 -72.39	5.00 3.00 -5.32 -5.32 +23.06 20.02 -30.03	0 00 0.00 0.00 0.00 0.00 0.00 0.00	-> 0.08 0.08 -> 0.08 -> 6.98 -> 66.48 -> 66.48		
H.	ROVECHAN	(IENTO 6	.55 (66.	.44,						
ES n	FUER DOS P.: I	ULTIMOS Ente	- COEFICI EnCTB	ENTES (T Ma(C/T) (mT)) (nY	MrLTB	Mafle	Mawib	Va	7:
6	466.92	458.92	38,17	135.04	135.04 25.6e	135.04	195.04	135.04	200.46	1.65
	N+F V-F D+F-	: : •V-T:	0.00 6.00 0.00							
	En7	Ence	FROTE	Ya (2,1)) Mr.Y	MnLTE	MAFL5	AnW18 	<u>۲</u>	
1	466.92	436.92	36.17	135 64 25.06	135.04 25.06	135.04 25.06	135.04	135.04	200.40 05 C4	1.65
'n	N+F V+F N-F1 PnT	: : -V-T: FnCP	0.00 0.00 0.00 EnCTP	Mir (27 Y) MnY	>nLTB	MnFLB	I'nWLE	Va	75.
2	486.91	466.92	38.17	195.04	135.04	135.04	125.04	135.64	206.46	1.65
	11+17 17+17 10+17- 10-17	: 	0.01 0.00 0.02	25.00	25.0e	20.00		MINUT D	93.04 Vo	100 12
	FL1	FRCE		MF (17.) /ml			10005		
3	466.92 N+E V+E	466.93 : : : :	36 17 0.01 0.00 0.00	135.04 25.04	135.04 21.06	135.04 25.06	135.04	135.04	200.46 65.04	1.35
	F7	EnCB	FNCTE	Mt.0/1) MnY	"hLTB	MnFLF	MAWLS	Vu	
4	466.92 N-F	468.92	32.17 0.40	133.04 25.38	135-04 25.00	138 04 25 06	195.64	135.04	200 46 85.04	1.65
ā	V-F N+F- PrT	V-D: EnCE	0.00 0.66 FrCTF	Mp (0/1) t'n:	MALTE	MnFLE	MOWLE	Vn	T1.
Ę	406 91	406.92	39.57	131 04	195.04	131 0:	135.04	133.04	200.46	1.65
	14-5 17-5 17-5-	: - V+T:	0.00 0.01 0.40	11 QK	0e	_t 06			65.04	
r.	PLT	FaCE	E.:178	PAC 2) Mt.Y	MALTE	MnFLE	MNWLE	Vn	Ta
6	460.91 H-F V-F	466.92		131 64 17,95	195.04 23.00	135 A4 25.08	135.04	135.04	200 46 85.04	1.65
	iF-	V+T:	6.00							

-

_----

.

-

						•
NODO	W(rad/s)	T (s)	f(Hz)	a(m/s2)	M.Ef (1)	Sun . M(%)
: :: 2	12.175	0.516	1.936	3.136 3.138	\$1.226 0.900	91.226 0.000
C X Z	27.53A	0 108	4.369	1,572 2,572	C.000 88.376	91.225 88.376
? % Z	20.430	0 203	4.643	2.404 2.404	5.969 3.005	91.231 91.365
4 X 2	34.E7E	6,151	5,519	2.206 2.206	6.997 8.000	98.228 91.365
5 X Z	56.365	0.111	6.971	1.659 1.659	1.394 C.000	99.623 91.763
G X C	71,751	C.088	11.420	1 473 1.472	0.274 0.060	99.897 91.365
7 K Z	79.029	0.080	11.578	1.408 1.408	0.000 6.186	99.697 97.652
6 X Z	83.415	6.075	13.276	1.375 1.375	0.103 0.000	100.000 97.052
9 X 2	86.023	0.073	13.700	1.257 1.357	0.000 0.425	100.000 98.276
10 X 2	127.700	6.049	20.324	1 171 1.171	0.000	100.000 99.520
11 X 2	139.482	0.045	22.199	1.138 1.136	6.000 0.113	100.000
12 X Z	162.840	6.039	25.916	1.067 1.087	0.COC 0.237	100.000 99.678
13 X Z	177.091	0.035	26.185	1.063 1.063	0.000 0.031	100.000 99.910
14 X 2	167.855	6.033	29.698	1 047 1.047	0.000 0.062	100.000
15 X 2	205.706	0.031	32.739	1.024 1.024	0.000	100.000 100.000

.

-

.

ĩ

.

-

.

México D.F. Nov.-Dic. 99

"Aplicación de Normas y Especificaciones de uso en México Para el diseño de estructuras de Acero"

A continuación presentamos los resultados obtenidos de una corrida con el programa METAL 3D de CYPE Ingenieros.

Datos Generales Normativas Seleccionadas Acero :NTCDF 97 Sismo: NTCDF 97 Terreno: Tipo II Grupo: B C: 0.32 Coeficiente de comportamiento sísmico: 3 No. De Modos: 5

La geometría y materiales seleccionados en el modelo cumplen con los datos específicos del ejemplo del curso, así como las cargas en nuestros elementos. Se anexa esquemas de cargas por tipo en los diferentes niveles del edificio ya que es más sencillo verlas gráficamente que en listado, además se especifican anteriormente en los datos generales los patrones de cargas a aplicar,

CYPE México, S.A. DE C.V. Av. Insurgentes Sur. 527 Despectio 302. Col. Hipódromo Condese 06170 México, D.F. Tel.: (5) 272 72 33 Fax: (5) 272 80 63 http://www.cype.com

and the second second

CARACTERISTICAS MECANICAS DE LAS BARRAS								
Inerc.Tor cm4	Inerc y cm4	Inerc.z cm4	Sección cm2					
5816 790	939007.331	183727 687	807 440	Acero, C-1, Perfil simple (CURSO)				
3778 193	830476.053	158492.708	706.000	Acero, C-2, Perfil simple (CURSO)				
2571.963	741546 093	136894.271	637.000	Acero, C-3, Perfil simple (CURSO)				
224 156	170568.988	9902,799	184.480	Acero, T-1, Perfil simple (CURSO)				
153,169	119986 001	2936 132	140 480	Acero, T-2, Perfil simple (CURSO)				
40,796	81775 428	1736 209	105.920	Acero, T-3, Perfil simple (CURSO)				
40 796	81775.428	1736.209	105.920	Acero, T-S, Perfil simple (CURSO)				
MA	TERIALES U	TILIZADOS						

(Kg/cm2) (Kg/cm2) 2100000 00 807692.31 (Kg/cm2) (m/m°C) (Kg/dm3) 2548.42 1.2e-005 7 85 Acero (A36)

Co. Pandeo en Ambos sentidos = 1 en todos los elementos

Curso "Aplicación de Normas y especificaciones En México para el Diseño en Acero" **MARCO B**

Diseño Columna B-2 Tipo C-2

- 1

Cargas muertas en el nivel de azotea, calculadas a partir de los patrones de carga ya establecidos

Cargas vivas en el nivel de azotea, calculadas a partir de los patrones de cargas ya establecidos

Cargas muertas en los niveles de entrepiso calculadas a partir de los patrones de carga ya establecidos

Cargas vivas en los niveles de entrepiso calculadas a partir de los patrones de carga ya estab ec⁻dos

Diseño de Columna

Ubicada en los ejes B y 2 Entre Nivel 1 y Nivel 2, Resultados de las envolventes del Programa (Datos para el Diseño).

•

BARRAS				ESFUERZOS (EJES LOCALES) (Tn)(Tn·m)							
·····	Ň		ту	T z	2		Mt		Му		Ma
00/20:									·	<u> </u>	-
ENVOLVENTE	(Acero Lamina	ido)						_			
0 L -3	99.0448 -177.7	726 -21.8624	22 4763	3 1850	7.8294	-0.0866	0 0869	5.0155	14.5300	-40.3324	4:.747
1/2 L -3	97.6870 -176 8	997 -21.8624	22.4763	3.1850	7.8294	→0.08 66	0 0869	0.2418	0.8285	-2.0732	2 413
1 L -3	96 3291 -176.(260 -21.9008	22.5147	3.1849	7 6294	-0.0866	0.0869	-12.8730	-5.3310	-36 9858	36.252
BARRAS FLECHA MAXIMA ABSOLUTA y		FLECHA MA	FLECHA MAXIMA ABSOLUTA 2		FLECHA	ACTIVA AB	SOLUTA Y	FLECHA	ACTIVA A	SOLUTA 2	
	FLECHA MAXIM	A RELATIVA y	FLECHA MA	XIMA RELAT	IVA z	FLECHA	ACTIVA RE	LATIVA y	FLECHA	ACTIVA R	ELATIVA 2
	POS. (m)	Flecha (mm)	POS. (m)	Fleck	aimm)	P05. (m) Fl	echa(mm)	POS (m) F	lecha(mm)
200/201	0 875	0.28	0,875	·····	0.02	0,87	5	0.54	0.8	75	0 01
		L/(>1000)		L/(>1	000)		- L/	(>1000)		L,	/(>10001
BARRAS		ES	FUERZO MAX	KIMO DE	DISEŇ	O EN COI	JUMNA B	-2			_
	ESF.()	APROV.(%) £	POS.(m)	N(Tn)	Ty(Tn)	Tz (Tn)	Mt(T	n·m) My	(Tn·m)	Mz (Tn·ı	n)
200 (201	0 2007	20 87 0	000 360	5 200	22 470	2 5 0 4		0426 0	2969	A3 7 474	

.

NUDOS	DESPLAZAMIENTOS (EJES GENERALES)								
	DX (m)	DY (m)	DZ (m)	Gλ(rad)	GŸ (1 ad)	GZ(rad)			
200									
COMBINACION 1 (Desplazam.)	0.0000	-0.0001	-0.0007	0.0000	0.0001	0.0000			
COMBINACION 2 (Desplazam)	0.0000	-0.0001	-0 0010	0.0000	0.0001	0.0000			
COMBINACION 3 (Desplazam.)	0.0000	-0.0001	-0.0007	0.0000	0.0001	0 0000			
	0.0000	0.0000	-0.0007	0.0000	0.0001	0.0000			
COMBINACION 4 (Desplazam.)	0.0000	-0.0001	-0.0010	0.0000	0.0001	0.0000			
	0 0000	-0.0001	-0.0010	0.0000	0,0001	0.0000			
COMBINACION 5 (Desplazam.)	0.0000	-0.0001	-0.0007	0.0000	0.0001	0.0000			
	0.0000	-0.0001	-0 0007	0 0000	0.0001	0 0000			
COMBINACION 6 (Desplazam)	0.0000	-0.0001	-0.0010	0.0000	0 0001	0 0000			
	0.0000	-0.0001	-0.0010	0.0000	0 0001	0.0000			
COMBINACION 7 (Desplazam.)	0.0000	-0.0079	-0 0007	0 0022	0.0000	-0.0011			
	0 0000	-0 0075	-0.0007	0 0023	0,0001	-0.0007			
COMBINACION 8 (Desplazam)	0.0000	-0 0080	-0.0010	0.0022	0,0001	-0.0011			
	0.0000	-0 0075	-0 0010	0.0023	0.0001	-0.0007			
COMBINACION 9 (Desplazam.)	0.0000	0.0074	-0 0007	-0 0023	0.0001	0.0007			
· · · · · ·	0,0000	0.0078	-0.0007	-0.0022	0.0001	0 0010			
COMBINACION 10 (Desplazam.)	0 0000	0.0074	-0.0010	-0.0023	0 0001	0 0007			
	0.0000	0.0076	-0 0010	-0 0022	0.0001	0.0010			
ENVOLVENTE (Desplazam.)	0.0000	-0.0080	-0.0010	-0.0023	0.0000	-0.0011			
	0 0000	0.0070	-0.0007	0.0023	0.0001	0 0010			
201									
COMBINACION 1 (Desplazam.)	0.0000	0.0000	-0.0011	0.0000	0.0000	0 0000			
COMBINACION 2 (Desplazam)	0 0000	0 0000	-0.0016	0.0000	0.0001	0.000 0			
COMBINACION 3 (Desplazam)	0 0000	0 0000	-0.0011	0.0000	0 0000	0.0000			
	0.0000	0 0000	-0.0011	0.0000	0 0000	0 0000			
COMBINACION 4 (Desplazam)	0 0000	-0.0001	~0.0016	0.0000	0.0001	0.0000			
	0 0000	0 0000	-0.0016	0.0000	0 0001	0 0000			
COMBINACION 5 (Desplazam.)	0.0000	0 0000	-0.0011	0.0000	0.0000	0.0000			
	0.0000	0 0000	-0 0011	0.0000	0.0000	0,0000			
COMBINACION 6 (Desplazam.)	0.0000	-0.0001	-0.0016	0.0000	0,0001	0 0000			
	0.0000	0 0000	-0.0016	0.0000	0 0001	0.0000			
COMBINACION 7 (Desplazam.)	0.0000	-0 0186	-0.0011	0.0012	0.0000	-0.0019			
• •	0.0000	-0.0091	-0.0011	0 0025	0.0000	-0.0012			
COMBINACION 8 (Desplazam.)	0 0000	-0.0186	-0.0016	0.0012	0,0001	-0 0019			
·····	0.0000	-0 0091	-0.0016	0.0025	0,0001	-0.0012			
COMBINACION 9 (Desplazam)	0.0000	0 0091	-0 0011	-0.0025	0.0001	0.0012			
• ·	0.0001	0.0185	-0.0011	-0 0012	0,0001	0.0019			
COMBINACION 10 (Desplazam.)	0.0000	0.0090	-0.0016	-0.0025	0,0001	0.0012			
• • • • • •	0.0001	0 0185	-0.0016	-0.0012	0 0001	0.0019			
ENVOLVENTE (Desplazam.)	0.0000	-0 0186	-0.0016	-0 0025	0.0000	-0.0019			
•	0 0001	0.0185	-0.0011	0.0025	0,0001	0 0019			

Según N.T.C. (México, D.F.)

NO SE realiza análisis de los efectos de 2° orden Acción sísmica según X Acción sísmica según Y

Grupo B (grado de seguridad intermedio) Zona sísmica: Tipo II: Terreno intermedio Factor de comportamiento sísmico: 3.00

		T	Lx	Ly	Mx	My	Hipótesis X(1)	Hipótesis Y(l)
Modo	1	1.381	0.0002	1	0 %	80.72 %	R = 3 A = 0.981 m/s2 D = 47.413 mm	R = 3 A = 0.981 m/s2 D = 47.413 mm
Modo	2	1.369	0.0084	1	0 %	1.81 %	R = 3 A = 0.981 m/s2 D = 46.599 mm	R = 3 A = 0.981 m/s2 D = 46.599 mm
Modo	3	1.127	0.0006	1	0 %	8.47 %	R = 3 A = 0.981 m/s2 D = 31.5568 mm	R = 3 A = 0.981 m/s2 D = 31.5568 mm
Modo	4	1.043	0.1014	0.9948	0	0.03 %	R = 3A = 0.981 m/s2D = 27.0317 mm	R = 3 A = 0.981 m/s2; D = 27.0317 mm
Modo	5	0.989	0.0068	1	0 %	1.42 %	R = 3 A = 0.981 m/s2 D = 24.2938 mm	R = 3A = 0.981 m/s2D = 24.2938 mm

..

.. •

- T = Periodo de vibración en segundos.

 Lx, Ly = Coeficientes de participación normalizados en cada dirección del análisis.

- Mx, My = Porcentaje de masa desplazada por cada modo en cada dirección del análisis.
- R = Factor reductor por ductilidad, divide a la aceleración de cálculo.
- A = Aceleración de cálculo, incluyendo la ductilidad.
- D = Coeficiente del modo, equivale al desplazamiento máximo del grado de libertad dinámico.

		Masa	total	desplazada
Masa	х		0	8
Masa	Y		92.4	14 %

COEFS. DE PARTICIPACION SISMICOS

				,	
		T (seg)	Sismo X	Sismo Y	
Modo	1	1.381320	0.000235	1.000000	
Modo	2	1.369411	0.008396	0.999965	
Modo	3	1.126917	0.000633	1.000000	
Modo	4	1.042994	0.101408	0.994845	
Modo	5	0.988766	0.006761	0.999977	

VAccion sismica seg	in y Tipo II:	Terreno intermed	INFO
Clasificación de cons	trucciones 'segun	su destino:	
Grupo B (grado de se	guridad intermedi	0) - INFO	
Periodo dominante i	nas l'argo del ter	reno:	
exponente pi	-0-67 c:-0-32	Ta: 0.3 Tb: 1.5	
Factor de comportanie	nto sismico: 3	INFO	
- Estructura irregul:	INFO .	- An Ash Cents	
. Parte de Carga viva a	considerar: 0.7	INFO	
Numero de modos :	5	INFO	
	Fracción de la		
	Carl Coles X of the second	in the second second second	
			ariodo

CYPE México, S.A. DE C.V. Av. Insurgentes Sur 527 Despicho 302 Col: Hipódromo Condeña 06170 México, D.F. Tel.: (5) 272 72 33 Fax: (5) 272 80 63 http://www.cype.com

206/212 0.6472 64.72

Diseño de viga de Viga central entre los ejes 3-4 del Nivel 1 Tipo T-2

	CA	RACTERIST	TICAS MECAI	ICAS DE LAS	S BARRAS							
Inerc Tor Ine cm4 cr	ercy Ine n4 cm	rcz Seco 4 сл12	aón									
153 169 119	986 001	2936 132	140.480 Ac	ero, T-2, Perfi	I simple (CUR	(SÓ)						
		MATERIA		oos		<u>_</u>			<u></u>			
Mód Elást Mo (Kg/cm2) (d El Trans Kg/cm2)	Lim Elás (F (Kg/cm2)	ric Co Dilat (m/m°C)	Peso Espec (Kg/dm3)	Material							
2100000 00	807692 31	2548 4	2 1 2e-005	785 Ad	cero (A36)		, ,					
ARRAS		DES	CRIPCION							-		
Peso (Kg)	Volumen (m3)	Longitud (m)	Co Pand xy	Co Pand xz (m) (r	Dist Arr Sup n)	Dist Arr.Inf						
06/212 Acero 1323 32	(A36), T-2 (0 169	(CURSO) 12 00	1 00 1					·				
BARRAS				<u>-</u>		ESFUERZOS	(EJES LOCA	LES) (Tn)	(Tn·m)			
		N	<u> </u>	Ту		Tz		Mt	<u></u>	Му		Ma
6/212												
ENVOLVENTE 0 L	(Acero I 0.5638	Caminado) 1,7207	-0,0619	0.0619	-17.4239	-2.4599	0 0000	0.0000	-54.0535	15.6200	-0 3699	0 3702
172 L 1 L	0.5638	1.7207	-0.0619	0 0619	2.4599	17.4239	0.0000	0.0000	-54.0383	15.6050	-0.3728	0 373
					<u></u>							
BARKAS							ESFU.	ERZU MA				
	ESF. () APR	OV.(%)	POS.(m)	N(Tn)	Ty(Tr) T2(Tn) M	t(Tn·m)	My (Tn·r	n) <u>M</u> 2	:(Tn·m)

BARRAS	FLECHA MAXIMA FLECHA MAXIN	ABSOLUTA y IA RELATIVA y	FLECHA MAXIN FLECHA MAXIN	MA ABSOLUTA Z MA RELATIVA Z	FLECHA ACTIV FLECHA ACT	/A ABSOLUTA y IVA RELATIVA y	FLECHA ACTIN FLECHA ACTIN	VA ABSOLUTA Z VA RELATIVA Z
	POS (m)	Flecha(mm)	POS (m)	Flecha(mm)	POS (m)	Flecha(mm)	POS.(m)	Fleche(mm)
206/212	9.600	1.29 L/(>1000)	4.200	6 36 L/(>1000)	9.600	2.57 L/(>1000)	3.000	5.96 L/(>1000)

0.000

.

0.3700

-53.5508

CYPE México, S.A. DE C.V. Av. Insurgentes Sur 527 Despacho 302. Col. Hipódromo Condesa 06170 México, D.F. Tel. (5) 272 72 33 Fax. (5) 272 80 63 http://www.cype.com

1.2754 0.0619 -16.6684 0.0000

CYPE MÉXICO

NUDOS		DES	PLAZAMIENTOS	(EJES GENERA	LES)	
	DX (m)	DY (m)	DZ (m)	GX(rad)	GY(rad)	GZ(rad)
206						·
COMBINACION 1 (Desplazam)	0 0000	0.0000	-0.0007	0.0000	0 000:	0,0000
COMBINACION 2 (Desplazam)	0 0000	0 0000	-0.0010	0 0000	0 0001	0 0000
COMBINACION 3 (Desplazam.)	0.0000	0.0000	~0.0007	0.0000	0.0001	0.0000
· · · · · · · · · · · · · · · · · · ·	0.0000	0 0000	-0.0007	0.0000	0.0001	0.0000
COMBINACION 4 (Desplazam.)	0,0000	0.0000	-0,0010	0,0000	0.0001	0.0000
	0.0000	0,0000	-0.0010	0.0000	0.0001	0.0000
COMBINACION 5 (Desplazam.)	0 0000	0.0000	-0.0007	0 0000	0.0001	0 0000
·	0,0000	0.0000	-0 0007	0 0000	0 0001	0.0000
COMBINACION 6 (Desplazam.)	0,0000	0.0000	-0,0010	0 0000	0 0001	0 0000
	0.0000	0.0000	-0.0010	0.0000	0 0001	0.0000
COMBINACION 7 (Desplazam.)	0.0000	-0 0081	-0.0007	0.0018	0.0001	-0.0011
-	0.0000	-0.0053	-0.0007	0.0024	0.0001	-0.0007
COMBINACION 8 (Desplazam)	0 0000	-0.0081	-0.0010	0 0016	0 0001	-0 0011
	0.0000	~0.0063	+0.0010	0.0024	0.0001	-0.0007
COMBINACION 9 (Desplazam.)	0.0000	0.0063	-0.0007	-0.0023	0.0001	0.0007
	0.0000	0.0080	-0 0007	-0.0018	0.0001	0.0011
COMBINACION 10 (Desplazam.)	0.0000	0.0063	-0.0010	-0.0023	0 0001	0.0007
	0.0000	0 0080	-0.0010	-0.0019	0.0001	0.0011
ENVOLVENTE (Desplazam.)	0,0000	-0 0081	-0.0010	-0.0023	0.0001	-0.0011
·	0.0000	0.0080	-0 0007	0.0024	0.0001	0 0011
212						
COMBINACION 1 (Desplazam)	0 0000	0.0000	-0.0007	0.0000	0 0001	0 0000
COMBINACION 2 (Desplazam.)	0.0000	0 0000	-0.0010	0.0000	0.0001	0.0000
COMBINACION 3 (Desplazam.)	0 0000	0 0000	-0.0007	0.0000	0.0001	0.0000
-	0.0000	0,0000	-0.0007	0.0000	0 0001	0 0000
COMBINACION 4 (Desplazam.)	0.0000	0.0000	-0.0010	0.0000	0 0001	0 0000
	0.0000	0.0000	-0.0010	0.0000	0.0001	0.0000
COMBINACION 5 (Desplazam.)	0.0000	0.0000	-0.0007	0.0000	0.0001	0.0000
	0.0000	0.0000	-0.0007	0.0000	0.0001	0.0000
COMBINACION 6 (Desplazam)	0.0000	0.0000	-0.0010	0.0000	0.0001	0.0000
	0.0000	0.0000	-0.0010	0.0000	0.0001	0.0000
COMBINACION 7 (Desplazam.)	0.0000	-0.0080	-0.0007	0.0022	0.0001	-0.0011
·	0.0000	~0.0077	-0.0007	0.0023	0.0001	-0.0007
COMBINACION 8 (Desplazam.)	0.0000	-0 0080	-0.0010	0.0022	0.0001	-0.0011
-	0 0000	-0.0077	-0.0010	0 0023	0.0001	-0.0007
CCMBINACION 9 (Desplazam.)	0 0000	0.0077	-0.0007	-0 0024	0 0001	6000.0
	0.0000	0.0081	-0.0007	-0.0023	0.0001	0.0011
COMBINACION 10 (Desplazam.)	0.0000	0.0077	-0.0010	-0.0024	0.0001	0.0008
·	0 0000	0 0081	-0.0010	-0.0023	0.0001	0 0011
ENVOLVENTE (Desplazam.)	0,0000	-0 0080	-0.0010	-0.0024	0.0001	-0 0011
	0 0000	0 0081	-0 0007	0 0023	0,0001	0 0011

COEFS. DE PARTICIPACION

	T (seg) Sis	smo X Sis	imo Y		 	
Modo 1	1 381320	0.000235	1 000000	·	 	
Modo 2	1.369411	0.008396	0 999965			
Modo 3	1.126917	0.000633	1.000000			
Modo 4	1.042994	0.101408	0.994845			
Modo 5	0.988766	0.006761	0 999977			

CYPE México, S.A. DE C.V. Av. Insurgentes Sur 527 Despection 302 Coll. Hipódromo Condesa 06170 México, D.F. Tel.: (5) 272.72 33 Fax: (5) 272 80 63 http://www.cype.com

Deformada por sismo en Marco 2

;

Columna de diseño B-2 Nivel 1-2

Diagrama de Momentos

Vista en 3D perfil Real

CYPE Máxico, S.A. DE C.V. Av. Insurgentes Sur 527 Despacho 302 Col. Hipódromo Condesa 06170 México, D.F. Tel. (5) 272 72 33 Fax. (5) 272 80 63 http://www.cype.com

FACULTAD DE INGENIERIA U.N.A.M. DIVISION DE EDUCACION CONTINUA

CURSO APLICACIÓN DE NORMAS Y ESPECIFICACIONES DE USO EN MÉXICO PARA EL DISEÑO DE ESTRUCTURAS DE ACERO

TEMA:

EJEMPLOS DE DISEÑO

ING. HÉCTOR SOTO RODRÍGUEZ DICIEMBRE 1999

PRESENTACIÓN

Varias normas vigentes en México para el diseño y construcción de estructuras de acero para edificios, proceden de las Especificaciones en uso en los Estados Unidos de América, particularmente del American Institute of Steel Construction (AISC). Esta práctica desde hace varios años continúa en vigor en nuestro medio, debido a numerosas razones, entre las que se encuentran principalmente, la gran influencia tecnológica del país referido en el diseño de estructuras de todo tipo.

El AISC adopta tres métodos de diseño. Diseño Elástico o Diseño por Esfuerzos Permisibles (Allowable Stress Design), Diseño Plástico (Plastic Design) y Diseño por Factores de Carga y Resistencia (Load Factor Resistance and Design). Desde luego, que la tendencia futura mundial estribará en el diseño basado en factores de carga y resistencia o diseño por estados límite, por lo que parece ser que el diseño elástico pronto pasará a la historia.

El objetivo fundamental del curso es presentar a los asistentes los principios fundamentales, conceptos generales y aplicaciones prácticas de las Especificaciones referidas y por considerarlo de especial interés, las Normas para Diseño y Construcción para Estructuras Metálicas del Reglamento de Construcciones para el Distrito Federal, consideradas como la secuela de diseño más económica y racional de estructuras de acero para edificios. Este método es similar al de Diseño por Factores de Carga y Resistencia del AISC, sin embargo, las normas mexicanas incorporan las lecciones derivadas sobre el comportamiento de estructuras de acero tras los sismos de la Ciudad de México de 1985, los resultados de cerca de quince años de estudios, analíticos y experimentales, relacionados con el diseño y cmportamiento de elementos y estructuras de acero y las aportaciones personales de un grupo de profesionales que intervinieron en su elaboración.

En este curso se incluyen ejemplos de diseño de miembros aislados y conexiones estructurales de un edificio de acero para oficinas de cinco niveles, ubicado en la zona II de la Ciudad de México, en el que se analizan y diseñan sus elementos constituvos: columnas, vigas principales y secundarias, armaduras, joist, sistemas de piso compuestos acero-concreto.Por considerarlo de interés para los asistentes, también se cubre el comportamiento sísmico de las conexiones soldadas, presentando las fallas de éstas como consecuencia de los sismos de Nortdrige, Cal, 1994.

Como parte complementaria del curso, se han organizado tres sesiones de aplicación de programas de computadora de análisis sísmico y diseño de estructuras de acero del edificio de cinco niveles, con varias estructuraciones. El objetvo de este taller es comparar los resultados de los cálculos efectuados a mano con los obtenidos mediante la utilización de varios programas disponibles en el medio.

Consideramos que este curso de actualizacion profesional, presenta la oportunidad para que los asistentes actualicen sus conocimientos en el diseño de este tipo de estructuras y contribuirá al mejoramiento de nuestra práctica profesional, por lo que deseamos que las notas y las exposiciones de los profesores sean de utilidad para los asistentes.

Ing. Héctor Soto Rodríguez, Coordinador Académico

MÉTODOS DE DISEÑO EN ESTRUCTURAS DE ACERO

 DISEÑO ELÁSTICO O DISEÑO POR ESFUERZOS PERMISIBLES (ALLOWABLE STRESS DESIGN, Manual AISC-ASD-1989)

2 DISEÑO POR <u>F</u>ACTORES DE CARGA Y RESISTENCIA (LOAD AND RESISTANCE FACTOR DESIGN, MANUAL AISC-LRFD-1993)

3. DISEÑO POR ESTADOS LIMITE (NORMAS TÉCNICAS COMPLEMENTARIAS PARA DISEÑO Y CONSTRUCCIÓN DE ESTRUCTURAS METÁLICAS-REGLAMENTO DE CONSTRUCCIONES PARA EL DISTRITO FEDERAL)

Efecto de acciones ≤ Resistencia de diseño

$$CM - CV \leftarrow \square \rightarrow CM - CV$$

$$FC(CM+CV) = R$$

$$R_t = A_t F_y F_R \qquad (F_R = 0.90)$$

$$R_{e} = A_{e}F_{u}F_{R} \qquad (F_{R} = 0.75)$$

Estado límite de flujo plástico en la sección total Estado límite de fractura en en la sección neta

FC = 1.4 (para carga muerta y viva)

Cargas Factorizadas

Diagrama de momentos y mecanismo de colapso

.....

$$\frac{W_{u}L^{2}}{16} = M_{p} = Z \sigma_{y}$$

: $Z = \frac{W_{u}L^{2}}{16\sigma_{y}} = \frac{F_{c}W_{T}L^{2}}{16\sigma_{y}}$

Con este método se determina la seguridad "real" contra el colapso, pero no se obtiene información sobre el comportamiento de la estructura en condiciones de servicio. No es aplicable cuando la falla se presenta sin las deformaciones plásticas necesarias para que se forme el mecanismo de colapso: por ejemplo, en estructuras sometidas a un número muy elevado de ciclos de carga o cuando la falla es por alguna forma de inestabilidad

3. Diseño basado en Estados Límite (Diseño por Factores de Carga y Resistencia)

El enfoque más racional del problema de seguridad estructural requiere una evaluación estadística de la naturaleza aleatoria de las variables que determinan la resistencia de las estructuras, por un lado, y de las que pueden ocasionar su falla (las más importantes son las cargas) por el otro. Después, utilizando la teoría de probabilidad de que esta ocurra a un nivel aceptablemente bajo, que depende, entre otros factores, de la importancia de la estructura y del riesgo de que su falla ocasiones la pérdida de vidas

MÉTODOS DE DISEÑO

El objetivo del diseño estructural es obtener estructuras que tengan una probabilidad aceptable, que debe ser uniforme para todas las construcciones del mismo tipo, de no volverse inservibles durante cierto período de tiempo especificado, denominado vida útil de la estructura, teniendo en cuenta, al mismo tiempo, la operación de la edificación, la estética y la economía relacionada con el costo total que debe incluir costos de diseño, construcción, mantenimiento y reparación. Para obtener una seguridad adecuada en las estructuras se requiere una combinación correcta de métodos de diseño, calidad de matenales y procedimientos de fabricación y montaje. En las etapas de diseño se obtiene la seguridad buscada tomando como las medidas necesarias para que no se alcance ningún límite de utilidad estructural

1. Método elástico (Diseño por Esfuerzos Permisibles o Diseño Elástico)

Este método que se ha utilizado desde principios del presente siglo, en México, sigue siendo utilizado en la actualidad. Consiste en calcular mediante un análisis elástico, las acciones internas que producen las solicitaciones de servicio (o de trabajo) en los diversos elementos estructurales, y en comparar los esfuerzos máximos ocasionados por esas acciones, determinados también por métodos elásticos, con los permisibles o de trabajo que se obtienen dividiendo ciertos esfuerzos característicos (de fluencia, de falla por inestabilidad) entre un coeficiente de seguridad.

Este método es útil para predecir el comportamiento de las estructuras en condiciones de servicio, pero en muchos casos no permite estudiarlas en las cercanías cel colapso, que se presenta fuera del intervalo elástico, cuando la ley de Hooke ya no rige las relaciones entre esfuerzos y deformaciones Cuando esto ocurre, no puede determinarse la seguridad de la estructura respecto a la falla

2. Método Plástico

Cuando las acciones que obran en una sección transversal producen la plastificación completa del material de que está compuesta se forma una articulación plástica, que puede admitir rotaciones importantes bajo momento constante. Cuando aumenta la carga se produce una redistribución de momentos y la falla se presenta cuando aparecen articulaciones pláticas suficientes para que la estructura completa, o una parte de ella, se convierta en un mecanismo. Cuando se utiliza el diseño plastico, los elementos que componen la estructura se dimensionan de manera que ésta falle cuando obren sobre ella las cargas de trabajo multiplicadas por un número mayor que la unidad, al que se liama *factor de carga*.

 DISEÑO DE ESTRUCTURAS METÁLICAS Hector Soto Rodríguez

INVOLUCRADOS EN UNA OBRA DE ACERO

PROPIETARIO (P)

PROYECTISTA ARQUITECTONICO O ARQUITECTO (A)

PROYECTISTA ESTRUCTURAL, DISEÑADOR O CALCULISTA (PE)

GEOTECNISTA (G)

PROYECTISTA DE INSTALACIONES (PI)

SUPERVISOR (S)

DIRECTOR RESPONSABLE DE OBRA (DRO)

CORRESPONSABLES (C) CORRESPONSABLE EN SEGURIDAD ESTRUCTURAL (CSE) CORRESPONSABLE EN INSTALACIONES (CI) CORRESPONSABLE EN DESARROLLO URBANO Y ARQUITECTÓNICO (CDUA)

PRODUCTORES DE ACERO (PA)

FABRICANTE DE ESTRUCTURAS METÁLICAS (FEM)

MONTADOR (M)

AUTORIDAD (LICENCIA, REGLAMENTOS, NORMAS Y ESPECIFICACIONES DE DISEÑO)

COMPORTAMIENTO SISMICO-ESTRUCTURAL DE EDIFICIOS DE ACERO DURANTE SISMOS FUERTES

Ciudad de México, Septiembre de 1985

EST.ADISTICA:

• 6 colapsos totales de 130 edificios existentes.

COMPORTAMIENTO:

• Satisfactorio

Northridge, California, Enero de 1994

ESTADISTICA:

• En más de 100 edificios el 90% de las conexiones soldadas presentaron fallas de tipo frágil

COMPORTAMIENTO:

• Inadecuado

Kobe, Japón, Enero de 1995.

ESTADISTICA:

- Daños severos en varios edificios de acero
- Mismas causas que en Northridge
- Deficiencias en supervision

COMPORTAMIENTO:

• Insatisfactorio

FALLAS OCURRIDAS EN CONEXIONES SOLDADAS DURANTE EL SISMO DE NORTHRIDGE, CAL., 1994

EJECUCIÓN INCORRECTA DE LAS SOLDADURAS

GRIETAS PREEXISTENTES EN LAS SOLDADURAS O EN EL METAL BASE ADYACENTE

ESFUERZOS RESIDUALES EN LAS JUNTAS, GENERADOS DURANTE LA CONSTRUCCION DE LA ESTRUCTURA, INCLUYENDO LA EJECUCION DE LAS SOLDADURAS

FALLA DEL PATIN DE LA COLUMNA, OCASIONADA POR TENSIONES EN LA DIRECCION DEL GRUESO

INCREMENTO DE LOS ESFUERZOS DE TENSION EN EL PATIN INFERIOR, DEBIDO A LA PRESENCIA DE LA LOSA EN EL PATIN SUPERIOR, QUE LEVANTA LA POSICION DEL EJE NEUTRO

PRESENCIA DE ESTADOS TRIAXIALES DE ESFUERZOS QUE PROPICIAN UN COMPORTAMIENTO FRAGIL

CONCENTRACION EN POCOS LUGARES DE LAS UNIONES RIGIDAS PARA SOPORTAR ACCIONES SISMICAS

PROCESO DE FABRICACION DE ESTRUCTURAS DE ACERO

ETAPAS PREVIAS:

DISEÑO ESTRUCTURAL ELABORACION DE PLANOS ESTRUCTURALES PREPARACION DE PLANOS DE FABRICACION

OPERACIONES DE TALLER:

ENDEREZADO TRAZO CORTE HABILITADO ARMADO SOLDADURA PINTURA ALMACEN EMBARQUE

FACTORES QUE INFLUYEN EN EL DISEÑO Y CONSTRUCCION DE ESTRUCTURAS DE ACERO DE UN PAIS A OTRO

Costo del acero (materia prima) e insumos (tornillería, soldadura, arandelas, pintura, etc.)

Ubicación del país en zona sísmica o asísmica

Disponibilidad de perfiles laminados (placa, perfiles estructurales y perfiles formados en frío)

Costo de mano de obra

Disponibilidad de mano de obra calificada (obreros especializados

Existencia en el país de talleres de fabricación de estructuras metálicas especializados

Normas y especificaciones disponibles para diseño en acero

Experiencia en diseño y construcción de estructuras de acero

Promoción del uso del acero en la construcción

Iniciativa de los arquitectos para proyectar con acero

RECOMENDACIONES GENERALES SOBRE LA ESTRUCTURACION DE EDIFICIOS

POCO PESO

SENCILLEZ, SIMETÍA Y REGULARIDAD EN PLANTA

PLANTAS POCO ALARGADAS

SENCILLEZ, SIMETRIA Y REGULARIDAD EN ELEVACION

UNIFORMIDAD EN LA DISTRIBUCION DE RESISTENCIA, RIGIDEZ, DUCTILIDAD, HIPERESTATICIDAD Y LINEAS ESCALONADAS DE DEFENSA ESTRUCTURAL

FORMACION DE ARTICULÁCIONES PLASTICAS EN ELEMENTOS HORIZONTALES ANTES QUE EN LOS VERTICALES EN CASO DE SISMOS EXCEPCIONALES

PROPIEDADES DINAMICAS DE LA ESTRUCTURA ADECUADAS AL TERRENO

CONGRUENCIA ENTRE LO PROYECTADO Y LO CONSTRUIDO

VENTAJAS Y DESVENTAJAS DEL ACERO ESTRUCTURAL COMO MATERIAL DE CONSTRUCCIÓN

VENTAJAS

- 1. MATERIAL HOMOGÉNEO
- 2. UNIFORMIDAD DE LAS PROPIEDADES MECÁNICAS Y FÍSICAS CON RESPECTO AL TIEMPO
- 3. FACILIDAD DE TRANSPORTE
- 4. DUCTILIDAD
- 5. FATIGA
- 6. GRAN CAPACIDAD DE ABSORCIÓN DE ENERGÍA
- 7. MENOR PESO
- 8. COMPORTAMIENTO SÍSMICO SATISFACTORIO
- 9. FUERZAS SÍSMICAS PROPORCIONALMENTE MENORES
- 10. GRAN EFICIENCIA CONSTRUCTIVA
- 11. RAPIDEZ CONSTRUCTIVA
- 12. MAYOR ESPACIO ÚTIL
- 13. ECONOMÍA EN LOS ACABADOS
- 14. MÉTODOS DE REESTRUCTURACIÓN RÁPIDOS EN ESTRUCTURAS DAÑADAS POR SISMO

 \mathbf{F}

Ū.

- 15. LIMPIEZA EN OBRA:
- 16. PREFABRICACIÓN
- 17. DIMENSIONES MENORES DE LOS MIEMBROS ESTRUCTURALES DE ACERO RESPECTO A LAS SECCIONES DE_CONCRETO
- 18. RECUPERACIÓN DE LA ESTRUCTURA

- 19. FACILIDAD DE AMPLIACIÓN O MODIFICACIÓN DE LA ESTRUCTURA
- 20. MENOR PESO Y POR CONSIGUIENTE ECONOMÍA EN LA CIMENTACIÓN
- 21. GRAN RAPIDEZ EN LA ETAPA DE MONTAJE
- 22. ÁREAS RENTABLES MAYORES
- 23. INVERSIÓN MÁS RÁPIDAMENTE REDITUABLE
- 24. MENOR COSTO DE MATERIALES COMPLEMENTARIOS Y ACABADOS
- 25. REDUCCIÓN DEL TIEMPO DE CONSTRUCCIÓN
- 26. LA ESTRUCTURA DE ACERO ES COMPATIBLE CON UNA GRAN VARIEDAD DE MATERIALES COMPLEMENTARIOS
- 27. GRAN RESISTENCIA A CONDICIONES SEVERAS DE SERVICIO
- 28. REESTRUCTURACIÓN EFICIENTE Y ECONÓMICA DE EDIFICIOS
- 29. FACILIDAD PARA APOYAR EQUIPO O MAQUINARIA
- 30. MAYOR DISPONIBILIDAD DE ACEROS ESTRUCTURALES
- 31. INGENIERÍA ESTRUCTURAL, SÍSMICA Y MECÁNICA DE SUELOS DE VANGUARDIA

 \mathcal{X}

2.

DESVENTAJAS

- 1. EL ACERO ESTRUCTURAL EN MÉXICO ES CARO
- 2. TEMPERATURA
- 3. CORROSIÓN
- 4. VIBRACIÓN
- 5. FLEXIBILIDAD
- 6. ESBELTEZ DE LAS SECCIONES
- 7. MAYOR CALIDAD DE SUPERVISIÓN
- 8. PLAZOS DE ENTREGA DEL ACERO DEMASIADO LARGOS

ŝ

. 1

- 9. FABRICACIÓN PRECISA
- 10. FALTA DE CONTROL DE CALIDAD EN PERFILES COMERCIALES
- 11. FALTA DE CONOCIMIENTO EN EL DISEÑO EN ACERO DE LOS PROGRAMAS DE ESTUDIO DE LAS ESCUELAS DE INGENIERÍA CIVIL

14

; ;

FACTORES QUE INFLUYEN EN EL COMPORTAMIENTO DUCTIL DEL ACERO ESTRUCTURAL

ALTO CONTENIDO DE CARBONO

Al aumentar el contenido de carbono aumenta la resistencia y disminuye la ductilidad (contenido normal, del orden del 0.25%)

BAJAS TEMPERATURAS

Las propiedades mecánicas y físicas de la mayor parte de los aceros estructurales usuales se conservan sin cambio sólo en un intervalo de temperaturas relativamente pequeño.

ESTADOS TRIXIALES DE ESFUERZOS

La *falla dúctil* es una *falla por cortante*, la frágil, por esfuerzo normal

VELOCIDAD DE APLICACION DE LA CARGA (IMPACTO)

FATIGA

La falla por fatiga consiste en la fractura del material, bajo esfuerzo relativamente reducidos, después de un número suficientemente grande de aplicaciones de la carga, que pueden o no incluir cambios de signo en los esfuerzos

FALLA FRÁGIL

Rúptura sin deformaciones plásticas previas, suele estar asociada con temperaturas bajas. También influyen en ella el estado de esfuerzos a que esté sométida la pieza, la existencia de muescas o ranuras y la velocidad de aplicación de la carga

FACTORES QUE PUEDEN HACERO QUE UNA ESTRUCTURA DE ACERO TENGA UN COMPORTAMIENTO NO DÚCTIL

PANDEO LOCAL

Fenómeno de inestabilidad en el estado elástico o inelástico que afecta los elementos que forman la sección transversal de un miembro estructural (placas), comprimidos en sus planos. El pandeo produce deformaciones importantes que tienen el aspecto de un torcimiento o formas de ondulaciones según el elemento solicitado.

PANDEO LATERAL O PANDEO LATERAL POR FLEXOTORSION Pandeo de un miembro estructural sometido a flexión que incluye deflexión lateral y torsión.

i

PANDEO DE CONJUNTO Pandeo general de la estructura

PROCESO DE FABRICACION DE ESTRUCTURAS DE ACERO

1

ETAPAS PREVIAS:

DISEÑO ESTRUCTURAL ELABORACION DE PLANOS ESTRUCTURALES PREPARACION DE PLANOS DE FABRICACION

OPERACIONES DE TALLER:

ENDEREZADO TRAZO CORTE HABILITADO ARMADO SOLDADURA PINTURA ALMACEN EMBARQUE

REQUISITOS QUE DEBEN CUMPLIR LAS CONEXIONES ESTRUCTURALES DE ACERO

ECONOMIA

El costo de los materiales que forman la junta (placas, perfiles, tornillos, arandelas soldadura, etc.) y procesos de fabricación deben ser razonables

PRECISION GEOMETRICA ACEPTABLE DENTRO DE TOLERANCIAS

Permitir la unión de los elementos prefabricados que forman la estructura, sin necesidad de hacer ajustes.

ESTABILIDAD DURANTE EL MONTAJE

Las juntas deben presentar cierto grado de sujección durante el montaje.

SENCILLEZ

Cuanto más sencilla sea la conexión menos probabilidades hay de que ésta tenga puntos críticos que atenten contra la estabilidad de la estructura durante sismos fuertes.

CONTINUIDAD

El empleo de juntas que aseguren un grado de continuidad supone siempre un ahorro del acero debido a la posibilidad de diseñar la estructura como continua.

PROTECCION CONTRA EL INTEMPERISMO E INCENDIO

Las juntas deben protegerse contra la acción de la corrosión y los efectos de un incendio. La corrosión de los elementos de acero puede ser un problema grave en regiones litorales donde es necesario tomar precauciones especiales, evitando que los elementos de acero queden expuestos al medio ambiente.

VENTAJAS Y DESVENTAJAS DE LAS CONEXIONES ESTRUCTURALES DE ACERO

1. CONEXIONES REMACHADAS EN DESUSO ACTUALMENTE

2. CONEXIONES ATORNILLADAS

2.1 VENTAJAS: Rápidez en el atornillado Proceso en frío Requiere mano de obra menos especializada Facilidad en la inspección visual Facilidad para sustituir los elementos de la conexión 2.2 DESVENTAJA: Mayor trabajo en taller

3. CONEXIONES SOLDADAS

3.1 VENTAJAS:

Sencillez y economía en la conexión (se eliminan elementos de union)

Se obtienen estructuras más rígidas y continuas

Menor trabajo de taller

3.2 DESVENTAJAS:

Mayor supervisión en obra

Se induce calor durante la aplicación de la soldadura

Requiere mano de obra calificada y más equipo para la aplicación de soldaduras

Dificultad en la inspección visual

4. CONEXIONES SOLDADAS ATORNILLADAS

Convenientes. La mayor parte de la soldadura se efectúa en taller y el atornillado se hace en campo.

VENTAJAS Y DESVENTAJAS DE LAS CONEXIONES ESTRUCTURALES DE ACERO

1. CONEXIONES REMACHADAS EN DESUSO ACTUALMENTE

2. CONEXIONES ATORNILLADAS

2.1 VENTAJAS:
Rápidez en el atornillado
Proceso en frío
Requiere mano de obra menos especializada
Facilidad en la inspección visual
Facilidad para sustituir los elementos de la conexión
2.2 DESVENTAJA:
Mayor trabajo en taller

3. CONEXIONES SOLDADAS

3.1 VENTAJAS:

Sencillez y economía en la conexión (se eliminan elementos de union)

Se obtienen estructuras más rígidas y continuas

Menor trabajo de taller

3.2 DESVENTAJAS:

Mayor supervisión en obra

Se induce calor durante la aplicación de la soldadura

Requiere mano de obra calificada y más equipo para la aplicación de soldaduras

Dificultad en la inspección visual

4. CONEXIONES SOLDADAS ATORNILLADAS

Convenientes. La mayor parte de la soldadura se efectúa en taller y el atornillado se hace en campo.

Marco rígido con núcleo de concreto

Marco con contraventeos concéntricos y muros de mamposterí.

CONEXIONES USUALES EN MÉXICO, ESTADOS UNIDOS DE AMÉRICA Y JAPÓN

1.- Conexión viga columna utilizada en México

Columna en cajón fabricada con cuatro placas soldadas y viga laminada o hecha con 3 placas. La conexión requiere de 3 placas: 2 horizontales y una vertical. La placa horizontal inferior se suelda en taller mediante soldadura de penetración completa y sirve de asiento para apoyar la viga durante el montaje. Una vez que se coloca la viga en su posición definitiva, esta placa se une al patín inferior de la viga con soldaduras de filete. La placa superior se suelda en campo al patín de la columna con soldadura de penetración completa y contra los patines de la viga con soldadura de filete. Para evitar soldaduras en posición sobre cabeza, la placa superior es más angosta que el patín de la viga y la placa inferior es más ancha que éstos.

2.- Conexión viga columna común en los Estados Unidos de América

Conexión soldada viga columna resistente a momento, muy sencilla desde el punto de vista de fabricación. Los perfiles utilizados como vigas y columnas son tipo jumbo (secciones W pesadas y de patines gruesos). Los patines superior e inferior de la viga se sueldan directamente al patír de la columna mediante soldaduras de penetración completa. El alma de la viga se atornilla o se suelda en campo a la placa de cortante, que a su vez viene soldada de taller al patín de la columna.

3.- Conexión viga columna ordinaria en Japón

Conexión tipo arbol. Columna fabricada con perfiles estructurales laminados huecos (secciones HSS de grandes dimensiones y espesores) y vigas tipo I. Las columnas se envían de taller en tramos de uno o dos niveles con preparaciones (segmentos de vigas para recibir las trabes principales. La conexión se termina en campo, 100% atornillada con tornillos de alta resistencia. La única soldadura que se aplica en campo, con robots automatizados, es la del empalme de columnas.

Conexiones típicas viga-columna utilizadas comunmente en paises localizados en zonas de alta sismicidad

- 1.- conexión usual en México
- 2.- conexión frecuente en Estados Unidos de América
- 3.-conexión ordinaria en Japón

Conexión tipo arbol usada en Japón

Conexión típica utilizada en México

Conexión atornillada usual en México

Conexión con placa de extremo

Conexión tipo arbol con segmento de viga y placas de extremo

Puntos críticos en conexiones viga-columna utilizadas en paises localizados en zonas de alta sismicidad

NORMAS OFICIALES MEXICANAS (NOM) Y ESPECIFICACIONES ASTM PARA MATERIALES UTILIZADOS EN LA CONSTRUCCIÓN EN ACERO

MATERIAL	NORI	MAS	TITULO DE LAS NORMAS				
	NOM.	ASTM	DGN-NOM	ASTM			
	B 254	A36	Acero estructural.	Structural Steel.			
	B 177 Grado B	A53 Gr. B	Tubos de acero con o sin costura, negros o galvanizados por inmersión en caliente.	Pipe, Steel, Black and Hot-dipped, Zinc- coated Welded and Seamless Steel Pipe.			
	B 282	A242	Acero estructural de baja aleación y alta resistencia.	High-strength Low-alloy Structural Steel.			
	B 284	A441	Acero estructural de alta resistencia y baja aleación al manganeso-vanadio.	High-strength Low-alloy Structural Man- ganese Vanadium Steel.			
	B 199	A500	Tubos de acero al carbono, sin costura o soldados, formados en frío, para usos es- tructurales.	Cold-formed Welded and seamless Carbon Steel Structural Tubing in Rou- nds and Shapes.			
	В 200	A501	Tubos de acero al carbono, sin costura o soldados conformados en caliente, para usos estructurales.	Hot-formed Welded and Seamless Carbon Steel Structural Tubing.			
		A514	Placa de acero aleada de alta resistencia, templada y revenida, adecuada para sol- dar.	High-yield Strength, Quenched and tempered Alloy-Steel Plate, Suitable for Welding			
	B 99	A5,29	Acero estructural, limite de fluencia mInimo de 42 ksi.	Structural Steel with 42 ksi minimum Yield Point.			
Acero Estructural	B 347	A570 Gr.40, 45 y 50	Acero lámina y tira de acero al carbono laminados en caliente, de calidad estru- ctural.	Steel, Sheet and Strip, Carbon, Hot-rolled, Structural Quality.			
		A572	Acero de alta resistencia y baja aleación al columbio-vanadio, de calidad estructu- ral.	High-strength, Low-alloy Columbium-Va- nadium Steels of Structural Quality.			
		A588	Acero estructural de alta resistencia y baja aleación, con límite de fluencia míni- mo de 50 ksi y con un espesor de 4 pulg.	High-strength Low-alloy Structural Steel with 50 ksi Minimum Yield Point to 4 in Thick.			
	B 277	A606	Acero, lámina y tira de baja aleación y alta resistencia, laminada en caliente y en frio, con resistencia a la corrosión atmosférica mejorada.	Steel, Sheet and Strip, High-strength, Low-alloy, Hot-rolled and Cold-rolled, with. Improved Atmospheric Corrosion Resistance.			
		A607	Acero, lámina y tira de baja aleación y alta resistencia, al columbio o vanadio, o am- bos, laminados en caliente y en frío.	Steel, Sheet and Strip, High-strength, Low-alloy, Columbium or Vanadium, or both, Hot-rolled and Cold-rolled.			
-		A618	Tubo estructural con o sin costura de alta resistencia y baja aleación laminado en caliente.	Hot-formed Welded and Seamless High- strength Low-alloy Structural Tubing.			
		A709	Acero estructural para puentes,	Structural Steel for Bridges.			
i.		A852	Placa de acero estructural de baja aleación, templada y endurecida con lími- te de fluencia mínimo, de 70 ksi y con un espesor de 4 pulg.	Quenched and Tempered Low-alloy Structural Steel Plate with 70 ksi Minimum Yield Strength to 4 in. thick.			
·	<u> </u>	<u> </u>	l	l			

Nota.

NOM Norma Oficial Mexicana ASTM American Society of Testing Materials (Sociedad Americana para Ensayes y Materiales) Para aceros fabricados según las normas del Comité de Registro Naval LLOYD'S, Bufete Naval Americano (ABS), Instituto Americano del Petróleo (API), Sociedad de Ingenieros de la Industria Automotriz (SAE), Instituto Americano del Hierro y el Acero. (AISI), y Estándar Británico (BS), se recomienda consultar a Altos Hornos de México (AHMSA). Véase Manual AHMSA para construcción con acero. (Manual AHMSA-1996).

NORMAS OFICIALES MEXICANAS (NOM) Y ESPECIFICACIONES ASTM PARA MATERIALES UTILIZADOS EN LA CONSTRUCCIÓN EN ACERO

MATERIAL	NOR	IMAS	TITULODE U	AS NORMAS
	NOM	ASTM	DGN-NOM	ASTM
Aceros	B 352 Gr. 65-35	A27 Gr. 65-35	Piezas coladas de acero al carbono de baja y mediana resistencia para aplicación general.	Mild-to-medium-strength Carbon-steel Castings for General Applications.
Futuros	B 353 Gr. 80-50	A148 Gr. 80-50	Piezas coladas de acero de alta resis- tencia para uso estructural	High-strength Steel Castings for Structu- ral Purposes.
Aceros forjados 1		A668	Aceros forjados al carbono y de aleación para uso industrial general.	Steel Forgings Carbon and Alloy for General Industrial Use.
Remaches		A502	Remaches de acero estructural.	Steel Structural Rivets.
	H-118**	A307	Tornillos y espárragos de acero al carbono con resistencia a la tensión de 60 ksi.	Carbon Steel Bolts and Studs, 60 ksi Tensile Strength.
	H-124**	A325	Tornillos de alta resistencia para uniones de acero estructural.	High-strength Bolts for Structural Steel Joints.
Tornillos, arandelas y Tuercas		A449	Tornillos y espárragos de acero templado y endurecido	Quenched and Tempered Steel Bolts and Studs.
	H-123**	A490	Tornillos de acero estructural con tratamiento térmico, con resistencia mínima a la tensión de 150 ksi.	Heat-treated Steel Structural Bolts, 150 ksi Min. tensile Strength.
		A563	Tuercas de acero de aleación, y al carbono.	Carbon and Alloy Steel Nuts,
		F436	Arandelas de acero endurecidas.	Hardened Steel Washers,
		A36	Acero estructural.	Structural Steel.
		A194 Gr 7	Tuercas de acero al carbono de aleación y al carbono para tornillos de alta presión y elevada temperatura de servicio	Carbon and Ailoy Steel Nuts for Bolts for High-pressure and High-temperature Service.
Pernos de anclaje y barras roscadas		A354	Tornillos de acero de aleación, templados y revenidos, espárragos y otros sujetadores, roscados externamente	Quenched and Tempered Alloy Steel Bol- ts, Studs and other Externally Threaded Fasteners.
		A449	Tornillos y espárragos de acero templado y endurecido.	Quenched and tempered Steel Bolts and Studs.
		A588	Acero estructural de alta resistencia y baja aleación con límite de fluencia mínimo de 350 ksi y con un espesor máximo de 4 pulg	High-strength Low-alloy Structural Steel with 50 ksi minimum Yield Point to 4 in. Thick
		A687	Torpillos y espárragos de acero de alta	High-strength Non-headed Steel Bolls and
τ		7007	resistencia, sin cabeza.	Studs.
Nota	L		1	I

NOM Norma Oficial Mexicana.

ASTM American Society of Testing Materials (Sociedad Americana para Ensayes y Materiales) Para aceros fabricados según las normas del Comité de Registro Naval LLOYD'S, Bufete Naval Americano (ABS), Instituto Americano Petróleo (API), Sociedad de Ingenieros de la Industría Automotriz (SAE), Instituto Americano del Hierro y el Acero, (AISI), y Estándar Bríu. (BS), se recomienda consultar a Altos Hornos de México (AHMSA). Véase Manual AHMSA para construcción con acero, (Manual AHMSA-1996).

• :
NORMAS OFICIALES MEXICANAS (NOM) Y ESPECIFICACIONES ASTM PARA MATERIALES UTILIZADOS EN LA CONSTRUCCIÓN EN ACERO

MATERIAL	NC	RMAS	TITULO DE LA	AS NORMAS
	NOM	ASTM	DGN-NOM	ASTM
	H 77	AWS A5 1	Electrodos de acero al carbono, recubiertos, para soldadura por arco eléctrico	Specification for Covered Carbon Steel Arc Welding Electrodes
	H 86	AWS A5.5	Electrodos de acero de baja aleación, recu- biertos, para soldadura por arco eléctrico.	Specification for Low-alloy Steel Covered Arc Welding Electrodes.
	H 97	AWS A5.17	Electrodos desnudos de acero al bajo carbono y fundentes para soldadura de arco sumergido.	Specification for Carbon Steel Electrodes and Fluxes for Submerged-Arc Welding
	H 99	AWS A5.18	Metales de aporte de acero al carbono para soldadura por arco protegido con gas.	Specification for Carbon Steel Filler Metals for Gas-Shielded Arc Welding.
Metales de Aportacion v		AWS A5.20	Electrodos de acero al carbono para soldadura por arco con electrodo tubular continuo.	Specification for Carbon Steel Electrodes for Flux-Cored Arc Welding.
Fundentes para Soldadura		AWS A5.23	Electrodos desnudos de acero de baja aleación y fundentes para soldadura de arco sumergido.	Specification for Low-alloy Steel Electrodes and Fluxes for Submerged arc Welding.
		AWS A5.28	Metales de aporte de acero de baja aleación para soldadura por arco protegido con gas.	Specification for Low-alloy Steel Filler Me- tals for Gas-shielded Arc Welding
		AWS-A5 29	Electrodos de acero de baja aleacion para soldadura por arco con electrodo lubular continuo.	Specification for Low-alloy Steel Electrodes for Flux-cored Arc Welding.

Notas.

NOM Norma Oficial Mexicana

ASTM American Society of Testing Materials (Sociedad Americana para Ensayes'y Materiales)

AWS Sociedad Americana de la Soldadura,

Para aceros fabricados según las normas del Comité de Registro Navat LLOYD'S, Bufete Naval Americano (ABS), Instituto Americano del Petróleo (API), Sociedad de Ingenieros de la Industria Automotriz (SAE), Instituto Americano del Hierro y el Acero. (AISI), y Estándar Británico (BS), se recomienda consultar a Altos Hornos de México (AHMSA). Véase Manual AHMSA para construccion con acero, (Manual AHMSA-1996).

PROPIEDADES MECANICAS, USOS Y COMPOSICION QUIMICA DE LOS ACEROS ESTRUCTURALES

		Propiedades mecánicas							Compos	ición quím	iica (%)		
NORMA	Esfuerzo de fluencia (kg/cm²)	Esfuerzo mínimo de ruptura en tensión (kg/cm ²)	Porciento de alargamiento mínimo en probeta de 2 Pulg. (%)	Fornia del material	Usos principales	Grupo por espesor	C Máx.	Mn Máx	P Máx.	S Máx	Si	Cu Mín.	V Mín.
				Perfiles			0.26		0.04	0.05		0.20*	
						Hasta 3/4" incl.	0.25		0 04	0.05		0.20*	
					12	Más de 3/4" a 1-1/2" incl.	0.25	0.80- 1 20	0.04	0 05		0.20*	
				Placa		Más de 1-1/2" a 2-1/2" incl.	0.26	0 80- 1.20	0 04	0.05	0.15- 0.40	0.20*	
NOM-B-254 (ASTM A36)	2530	4080 a 5625	23		Construcción soldada, atornillada y remachada, fines estructurales en general	Más de 2-1/2" a 4" incl.	0.27	0.85- 1.20	0.04	0.05	0.15- 0.40	0.20*	
						De 4" a 8" incl.	0.29	0.85- 1.20	0.04	0.05	0.15- 0.40	0.20*	
				······································		Hasta 3/4" incl	0.26		0.04	0.05		0.20 *	
				Placas y barras		Más de 3/4" a 1-1/2" incl.	0.27	0.60- 0.90	0.04	0.05		0.20*	
						Más de 1-1/2" a 4" incl.	0.28	0.60- 0.90	0.04	0 05		0.20*	
NOM-B-177, Grado B (A53, Gr.B)	4220	2460	** ÷	Tubos	Similar al acero A-36 (NOM B-254) para aplicaciones en estructuras a base de tubos.	В			**				

.

.

Cuando se especifica
** Véase la norma para más detalles

PROPIEDADES MECANICAS, USOS Y COMPOSICION QUIMICA DE LOS ACEROS ESTRUCTURALES

		Propiedades mecánicas		-					Compos	sición quín	nica (%)		
NORMA	Esfuerzo de fluencia (kg/cm²)	Esfuerzo mínimo de ruptura en tensión (kg/em²)	Porciento de alargamiento mínimo en probeta de 2 Pulg. (%)	Forma del material	Usos principales	Grupo por espesor	C Máx.	Mn Máx.	P Máx.	S Máx.	St	Cu Mín.	V Mín.
	4920	3520	**	Placas		hasta 3/4" incl.	0 20	1.35	0.04	0 05		0 20	
	4710	3235	21	y barras	Fines estructurales en	más de 3/4 a 1-1/2" incl.	0.20	1.35	0.04	0.05		0.20	
NOM-B-282 (A242)	4430	2950	21	i,	general, construcción soldada, atornillada y rauschada	más de 1-1/2" a 4" incl.	0 20	1.35	0.04	0 05		0.20	
	4920	3520	**		Temachada	Ι	0.20	1.35	0.04	0.05		0 20	
	4710	3235	**	Perfiles estructurales	, P	II	0 20	1 35	0.04	0.05		0.20	
	4430	2950	21			III	0.20	1.35	0.04	0.05		0.20	
	4920	3520	**			hasta 3/4" incl.	0.22	0.85- 1.25	0.04	0.05	0.4	0.20	0.02
	4710	3235	**	Placas '		más de 3/4" 1-1/2" incl.	0.22	0.85- 1.25	0.04	0.05	0.4	0.20	0.02
	4430	2950	24	barras	Uso estructural en general:	más de 1-1/2" a 4" incl.	0 22	0.85- 1.25	0.04	0.05	0.4	0.20	0.02
NOM-B-284 (A441)	4220	2810	24		construcción soldada, atomilada y remachada	más de 4" a 8" incl.	0.22	0.85- 1.25	0.04	0.05	0.4	0.20	0.02
	4920	3520	**			I	0.22	0.85- 1.25	0.04	0.05	0.4	0.20	0.02
	4710	3235	**	Perfiles estructurales		II	0.22	0.85- 1.25	0.04	0.05	0.4	0.20	0.02
	4430	2950	24			III	0.22	0.85- 1.25	0 04	0.05	0.4	0.20	0 02

.

-

** Véase la norma para más detalles

.

•

.

PERFILES DEL DISKETTE BASE DE DATOS DEL MANUAL DE LA INDUSTRIA SIDERURGICA PARA LA CONSTRUCCION CON ACERO

1

i

.

Tubo de sección circular 📑 Tubo de sección cuadrada 🦾 Tubo de sección rectangular

Tubos Estructurales

Dos ángulos de lados Dos ángulos de alas Dos ángulos de lados Dos ángulos de alas iguales en cajón iguales en espalda desiguales en espalda. desiguales en espalda. Ala mayor horizontal Ala mayor vertical

1

Secciones Compuestas

Dos canales soldadas en cajón

Dos canales soldadas en espalda

1

Secciones compuestas

Polín estructural Tens-hyl

ŧ

-

Perfil z

,

1

;

Perfiles formados en frío

	Non	ıbre	Desig	nación		Usos más
Pertil	AHMSA	IMCA	AHMSA	IMCA	Disponibilidad	inconvenientes
x	Angulo perfil estándar	Angulo de lados iguales	APS ala × espesor	LI tamaño × espesor	Perfiles comerciales: 1, 1¼, 1¼, 2, 2½, y 3 pulg de ala. Perfiles estructurales: 4, 5 y 6 pulg de ala	Se usa mucho en cuerdas diagonales y montantes de armaduras de techo o d e p i s o, contraventeos, columnas de celosía y en cajón, clementos de conexión, etc.
	Angulo perfil estándar	Angulo de lados desiguales	APS alas x espesor	LD tamaño × espesor	4 × 3 y 6 × 4 pułg de ala	Mismos usos que el anterior
$X - \begin{bmatrix} Y \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	Canales perfil estándar	Perfil C estándar	CPS peralte × peso	CE peralte x peso	3, 4, 6, 8, 10 y 12 pulg de peralte	Trabajando como viga es pésima, en c a m b i o c o m o sección compuesta (columna) trabaja en condiciones ideales
$\begin{array}{c} \begin{array}{c} & \mathbf{y} \\ \\ \mathbf{x} \int_{\mathbf{y}}^{\mathbf{y}} \\ \\ \\ \vdots \\ \\ \\ \\ \mathbf{y} \end{array}$	Vigas I perfił estándar	Perfil I estándar	IPS peralte × peso	IE peralte × peso	3, 4, 5, 6, 7 y 8 pulg de peralte	Como viga trabaja en forma adecuada, n o o b s t a n t e presenta problemas a 1 h a c e r 1 a s conexiones. En Guadalajara ti e n e m u c h a demanda, ya que se usa profusamente en los sistemas de piso a base de vigueta y bovedilla
AHMSA Altos Horn IMCA Instituto M	os de México exicano de l	o, S.A. de C a Construcci	.V. ón en Acere	, A.C.		

PERFILES ESTRUCTURALES MEXICANOS

Continuación

PERFILES ESTRUCTURALES MEXICANOS

D off	Nom	ıbre	Design	ación	Diana 11111 Ind	Usos más
Perm	AHMSA	IMCA	AHMSA	IMCA	Disponibilidad	inconvenientes
$X \rightarrow -$	Perfil IPR	Perfil I rectangular	IPR peralte × ancho de patín × peso	IR peralte × peso	6, 8, 10, 12, 14, 16 y 18 pulg de paralte (22 tamaños disponibles)	Se ha popularizado su uso como viga. No es una sección ideal para columna pero si es mejor que el perfil IPS. La forma de la sección facilita las conexiones con otros elementos
	2 Perfil TPR	Perfil T rectangular	TPR peralte × ancho de patín × peso	TR peralte × peso	Se obtienen cortando los perfiles anteriores a la mitad de su peralte. Disponibilidad condicionada a la fabricación de los perfiles IPR.	Su uso principal es en cuerdas de armaduras
	Tubo circular	Tubo circular	Diámetro exterior × espesor de pared	OC diámetro exterior × espesor de pared	¹ / ₂ , ¹ / ₄ , 1, 1 ¹ / ₄ , 2, 2 ¹ / ₂ , 3, 3 ¹ / ₂ , 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 24, 30, 36, 42, 48, 56 y 60 pulg de diámetro	S c u s a profusamente en estructuras espèciales
$\begin{array}{ c c } \hline & & & & & \\ \hline & & & & \\ \hline \\ \hline$	Perfii Estructural Rectangular o Perfil Tubular Rectangular	Tubo cuadrado o rectangular	PER o PTR lado × lado × espesor (Designación HYLSA)	OR tamaños × espesor	Tubo cuadrado: I, 1½, 1¾, 2½, 3 y 3½ de lado Tubo rectangular: 3 × 2, 4 × 2 y 4 × 3 de lados	Cuerdas, diagonales y montantes de a r m a d u r a s , e s t r u c t u r a s especiales, postes, etc. Tiene ciertos problemas en la a plicación d e soldaduras por sus e s p e s o r e s t a n delgados
AHMSA Altos Horno `4CA Instituto Me	os de México exicano de la	, S.A. de C. Construcció	V. n en Acero A	A.C.		

s. 1

Continuación

.

PERFILES ESTRUCTURALES MEXICANOS

Dfil	Non	ıbre	Desig	nación	D'	Usos más
PCIII	AHMSA	IMCA	AHMSA	IMCA	Disponiolidad	inconvenientes
xx	Canal perfil ligero dos patines atiesados	Perfil C formado en frío	CPL2 peralte	CF peralte × caiibre	4, 5, 6, 7, 8, 9, 10 y 12 pulg de peralte	Laigueios de techo y de pared (elementos secundarios de una estructura ligera en instalaciones industriales). Tiene problemas cuando se suelda
xx	Z perfil ligero dos patines atiesados	Perfil Z formado en frío	ZPL2 peralte	ZF peralte × calibre	Mismos peraites que el perfil anterior	Mismos usos y observación que el anterior, aunque en los últimos años su e m p l e o h a d i s m i n u i d o considerablemente
	Plancha o placa	Placa	₹ Ancho × largo × espesor	Ancho × largo × cspcsor	5 × 20 y 6 × 20 pies de ancho y largo. Los espesores van de 3/16 a 2 pulg	Múltiples usos: M i e m b r o s compuestos (vigas, columnas), placas de base para columnas, placas de conexión, celosfas, atiesadores, diafragmas, etc.
	Acero redondo	Redondo sólido liso	Diámetro	OS diámetro	¹ ⁄4 de pulg de diámetro	Anclas en placas de base para columnas, eclosías de armaduras, tirantes, contraventeos, etc.
AHMSA Altos Horno IMCA Instituto Me	s de México xicano de la	, S.A. de C. Construcció	V. n cn Acero,	л.с.	I	1

.

.

El entrepiso metálico de Galvak

MONTERREY, N. L. Oficinas Generales y Planta Ave. de la Juventiud #340 Nte. Col Cuauhtémoc C. P 66450 San Nicolás de los Garza, N. L Tels.: (8) 369-01-00, 353-01-00 Fax (8) 350-56-13

Oficina Técnica Tels. (8) 353-93-57 (8) 350-94-14 Fax. (8) 330-68-51 MEXICO IZTAPALAPA Cercales # 19 Esq con Calz. Ermita Izlapalapa Col. Granjas Esmeralda C. P. 09810 Tels.: (5) 581-63-22, 581-65-30, 581-07-25, 670-43-13

Fax. (5) 582-77-51

GUADALAJARA, JAL. Ave. Washington # 440-444 Zona Industrial Sector Reforma C P 44460 * Tels.: (3) 619-17-17, 619-39-65, 619-18-77 Fax, (3) 619-60-60

CONSTRUYA CON LO MEJOR, CONSTRUYA CON PRODUCTOS Y CALIDAD

Ejemplo 1. Calcular las propiedades geométricas (propiedades de diseño) de la columna de sección transversal I, hecha con tres placas soldadas acero NOM-B-254 (ASTM A36), que se muestra en la figura.

Solución

Area de la sección transversal, A

 $A = 2b_f t_f + (d-2t_f) t_{W} = 60 \times 4.4 + (80-2\times 4.4)2.5 = 706 \text{ cm}^2$ (Peso = 0.785A = 0.785 × 706 = 554.2 kg/m)

Momento de inercia con respecto al eje X-X (eje de mayor resistencia), I_X

$$I_x = \frac{1}{12} \left[h_f d^3 - (b_f - t_w)(d - 2t_f)^3 \right] = \frac{1}{12} \left[60x80^3 - (60 - 2.5)(80 - 2x4.4)^3 \right] = 830.476 \text{ cm}^2$$

o bien aplicando el teorema de los ejes paralelos

$$I_{x} = \sum I_{0} - \sum Ad^{2} = 2 \left(\frac{60x4.4^{3}}{12} \right) + \left(\frac{71.2^{3}x2.5}{12} \right) + 2 \left[4.4x60x37.8^{2} \right] = 830 \ 476 \ cm^{4}$$

Módulo de sección elástico S_X

$$S_{\chi} = \frac{21}{cl} = \frac{2x830\,476}{80} = 20\,762\,cm^3$$

Radio de giro r_X

$$r_x = \sqrt{\frac{l_x}{4}} = \sqrt{\frac{830 \ 476}{706}} = 343 \ cm$$

Momento de inercia alrededor del eje Y-Y (eje de menor resistencia), I_V

$$I_{v} = \frac{1}{12} \left[2b_{f}^{3} t_{f} + (d - 2t_{f})t_{vv}^{3} \right] = \frac{1}{12} \left[2x60^{3} x 4.4 + (80 - 2x4 + 2)2.5^{3} \right] = 158.493 \text{ cm}^{4}$$

usando el teorema de los ejes paralelos.

$$I_{1} = 2\left(\frac{44x60^{3}}{12}\right) + \left(\frac{71.2x2.5^{3}}{12}\right) = 158493 \ cm^{4}$$

Coefficientes de flexión, B_{μ} y B_{μ}

$$B_{yz} = \frac{A}{S_{yy}} = \frac{706}{20\,762} = 0\,034 \quad cm^{-1}$$
$$B_{y} = \frac{A}{S_{yy}} = \frac{706}{5\,283} = 0.134 \quad cm^{-1}$$

Modulo de sección elástico S_y

$$S_{1} = \frac{2I_{1}}{h_{j}} = \frac{2x158493}{60} = 5283 \, \text{cm}^{3}$$

Radio de giro n 1

$$r_1 = \frac{l_1}{l} = \frac{158493}{706} = 1570\,\overline{cm}$$

Constante de torsión de Sain Venant J

$$J = \sum_{n=1}^{\infty} \frac{l}{3} bt^{3} = \left[2b_{f}t_{f}^{3} + (d - 2t_{f})t_{w}^{3} \right] = \frac{l}{3} \left[2x60x4.4^{3} + (80 - 2x44)2.5^{3} \right] = 3778 \, cm^{4}$$

Constante de torsión por alabeo C_{W}

$$C_{w} = \frac{t_{f} h^{2} b_{f}^{3}}{24} = \frac{t_{y} h'}{4} = \frac{t_{y} (d - t_{f})^{2}}{4} = \frac{158493(80 - 4.4)^{2}}{4} = 226461140 \text{ cm}^{6}$$

Radio de giro Pr

Radio de giro de la sección que comprende el patín de compresión y un sexto del área del alma en compresion, tomando con respecto a un eje en el plano del alma.

1

1/6 Área del alma compresión

$$r_{i} = \frac{l_{i}}{d_{i} + \frac{d_{i}}{6}} = \frac{\frac{l_{i}}{12}}{b_{i}t_{i} - \frac{1}{6}t_{u}(d - 2t_{i})} = \frac{\frac{60^{3}x + 4}{l^{2}}}{60x + 4 - \frac{1}{6}2.5(80 - 2x + 4)} = 164 \text{ cm}$$

Momento de Inercia polar respecto al centro de cortante, I_D

$$l_P = l_N - l_V = 830.476 \pm 158.493 = 988.969 \, cm^2$$

$$L_{u} = \frac{\sqrt{2\pi}}{X_{u}} \sqrt{\frac{EC_{u}}{G_{v}}} \sqrt{1 - \sqrt{1 - X_{r}^{2}}} = \frac{\sqrt{2\pi}}{1.0} \sqrt{\frac{2.040 \times 10^{3} \times 226.461.140}{784.000 \times 3.778}} \sqrt{1 \div \sqrt{1 \div 1.0^{2}}} = 1.755 \text{ cm}$$

En secciones laminadas solidadas de sección transversal I, también pueden utilizarse las ecuaciones simplificadas siguientes:

$$L_{n} = \frac{6.55}{X_{n}} \frac{dr_{y}}{t_{1}} = \frac{1 + 1 + \chi_{1}^{2}}{1 + 1 + \chi_{1}^{2}} = \frac{6.55x80x15}{1.0x4.4} \cdot \frac{1 + (1 + 3.21^{2})}{1 + 3.21^{2}} = 1.162 \text{ cm}$$

$$L_{n} = \frac{6.55}{X_{n}} \frac{dr_{y}}{t_{1}} = \frac{1 + 1 + \chi_{1}^{2}}{1 + \chi_{1}^{2}} = \frac{6.55x80x15}{1.0x4.4} \cdot \frac{1 + (1 + 1.0)^{2}}{1 + (1 + 1.0)^{2}} = 1.786 \text{ cm}$$

Los resultados obtenidos con las ecuaciones referidas son casi iguales.

En la figura sigurente se indican los resultados. El M-DEM-VII contiene tablas de dimensiones y propiedades de perfiles estructurales soldados en las que-aparecen sus propiedades de acuerdo de determinadas de acuerdo con el procedimiento presentado en este ejemplo.

Resultados

En la notación de las especificaciones AISC, la constante de alabeo se denota con los símbolos C_w y en las normas NTC-1995 con las letras C_a .

Ejemplo 2 Calcular las propiedades de la sección en cajón de acero NOM-B-254 (ASTM A36) que se muestra en la figura

Solución

$$A = 2t(b - d_w) = 2x1.59(25 + 22) = 149.5 cm^2$$

$$(Peso = 0.785A = 0.785x149.5 = 117.4 kg/m)$$

$$I_x = \frac{t}{2} \left[\frac{1}{3} (ht^2 + d_w^3) + b(d_w + t)^2 \right] = \frac{1.59}{2} \left[\frac{1}{3} (25x1.59^2 + 22^3) + 25(22 + 1.59)^2 \right] = 13.899 cm^4$$

utilizando el teorema de los ejes paralelos

$$I_{x} = \sum I_{0} - \sum Ad^{2} = 2\left(\frac{25x1.59^{3}}{12}\right) \div 2\left(\frac{1.59x22^{3}}{12}\right) \div 2\left[25x1.59x11.795^{2}\right] = 13\,899\,cm^{4}$$

$$S_{x} = \frac{2I_{x}}{d_{y} - 2t} = \frac{2x13.899}{22 + 2x1.59} = 1104\,cm^{3}$$

$$r_{x} = \sqrt{\frac{I_{x}}{A}} = \sqrt{\frac{I3.899}{149.5}} = 9.6\,cm$$

$$I_{x} = \frac{t}{2}\left[\frac{1}{3}(b^{3} + d_{y}t^{2}) + d_{y}(b - t - 2c)^{2}\right] = \frac{1.59}{2}\left[\frac{1}{3}(25^{3} + 22x1.59^{2}) + 22(25 - 1.59 - 2x1.0)^{2}\right] = 12.173\,cm^{4}$$

con el teorema de los ejes paralelos

$$I_{1} = 2\left(\frac{1.59x25^{3}}{12}\right) + 2\left(\frac{22x1.59^{3}}{12}\right) - 2(22x1.59x10\ 705^{2}) = 12\ 173\ cm^{4}$$
$$S_{1} = \frac{2I_{1}}{b} = \frac{2x12\ 173}{25} = 974\ cm^{3}$$
$$I_{2} = \sqrt{\frac{I_{2}}{A}} = \sqrt{\frac{12\ 173}{149.5}} = 9\ 0\ cm$$

$$J = \frac{2d_{w}^{2}b^{2}t}{d_{w} - b} = \frac{2x22^{2}x25^{2}x1.59}{22 + 25} = 20.467 \ cm^{4}$$

$$Z_{x} = t \left[b(d_{w} + t) + \frac{d_{w}^{2}}{2} \right] = 1.59 \left[25(22 + 1.59) + \frac{22^{2}}{2} \right] = 1.322 \ cm^{3}$$

$$Z_{v} = t \left[\frac{b^{2}}{2} + d_{w}(b - t - 2c) \right] = 1.59 \left[\frac{25^{2}}{2} + 22(25 - 1.59x1) \right] = 1.246 \ cm^{3}$$

Longitud entre soportes laterales del patín en compresión, especificaciones AISC-ASD-1989, sección F3.1

$$L_c = 84400(b/F_y) = \frac{84400b}{2530} = 334b = 334x25 = 835 cm$$

Cálculo de las longitudes L_u y L_r , normas NTC-RDF-1995 Longitud maxima no soportada lateralmente pará la que el miembro puede desariollar el momento plástico, y la longitud que separa los intervalos de aplicación de las ecuaciones 3.37 y 3.3 8.

$$L_u = 0.91 \frac{\mathcal{E}}{CZF_y} \sqrt{I_y J}$$
(3.3.17)

$$L_r = 2.92 \frac{\mathcal{E}}{CZF_y} + \frac{1}{\sqrt{I_y J}} = 3.22L_y$$
(3.3.18)

E es el módulo de elasticidad del acero, en kg/cm², *C* es un coefficiente adimensional que depende de la ley de variación del momento flexionante a lo largo del eje de la barra de flexión o en flexocompresion y puede tomarse conservadoramente igual a la unidad, *Z* el módulo de sección plástico, en cm³, *F_y* es el esfuerzo de fluencia del acero en kg/cm², *l_i* es el momento de inercia de la sección alrededor del eje de menor momento de inercia, en cm⁴ y *J* es la constante de torsión de Saint Venant, en cm⁴.

$$L_{u} = 0.91 \frac{2.039 \times 10^{6}}{1 \times 1322 \times 2530} = 12173 \times 20476 = 8758 \ cm$$

$$L_r = 3.22x8758 = 28201 \, cm$$

Cálculo de *L*₁, especificaciones AISC-LRFD-1993 Para secciones en cajon

$$L_r = \frac{4.007100r_v \cdot J.4}{M_r}$$
(F1-10)

donde

$$M_r = F_{yf} S_y \tag{F1-11}$$

$$J = \frac{2d_w^2 b^2 t}{d_w + b} = \frac{2x22^2 x25^2 x1.59}{22 + 25} = 20.467 \ cm^4$$
$$Z_x = t \left[b(d_w + t) - \frac{d_w^2}{2} \right] = 1.59 \left[25(22 + 1.59) + \frac{22^2}{2} \right] = 1.322 \ cm^3$$
$$Z_y = t \left[\frac{h^2}{2} - d_w(b - t - 2c) \right] = 1.59 \left[\frac{25^2}{2} + 22(25 - 1.59x1) \right] = 1.246 \ cm^3$$

Longitud entre soportes laterales del patín en compresión, especificaciones AISC-ASD-1989, sección F3.1

$$L_c = 84\ 400(b/F_y) = \frac{84\ 400b}{2\ 530} = 33.4b = 33.4x25 = 835\ cm$$

Cálculo de las longitudes L_u y L_r , normas NTC-RDF-1995 Longitud maxima no soportada lateralmente pará la que el miembro puede desartollar el momento plástico, y la longitud que separa los intervalos de aplicación de las ecuaciones 3.37 y 3.3.8.

$$L_u = 0.91 \frac{E}{CZF_y} \sqrt{I_y J}$$
(3.3.17)

$$L_r = 2.92 \frac{E}{CZF_y} \sqrt{I_y J} = 3.22L_y$$
(3.3.18)

E es el módulo de elasticidad del acero, en kg/cm², *C* es un coeficiente adimensional que depende de la ley de variacion del momento flexionante a lo largo del eje de la barra de flexión o en flexocompresion y puede tomarse conservadoramente igual a la unidad. *Z* el módulo de sección plástico, en cm³, F_3 es el esfuerzo de fluencia del acero en kg'cm², *I*, es el momento de inercia de la sección alrededor del eje de menor momento de inercia, en cm⁴ y *J* es la constante de torsión de Saint Venant, en cm⁴

 $L_{\mu} = 0.91 \frac{2.039 \times 10^6}{1 \times 1322 \times 2.530} \quad \overline{12173 \times 20.476} = 8.758 \ cm$

$$L_{t} = 3.22x8758 = 28201 \, cm$$

Cálculo de L, especificaciones AISC-LRFD-1993 Para secciones en cajon

$$L_r = \frac{-1}{2} \frac{007100r_j}{M_r} \frac{J.1}{M_r}$$
(F1-10)

donde

$$M_r = F_{yf}S_x \tag{F1-11}$$

Luego

$$L_r = \frac{4\ 0071\ 00x9.0,\ \overline{20\ 461x149.5}}{2\ 530x1\ 104} = 22\ 582\ cm$$

Resultados

n '

.. . -

Ejemplo c1. Seleccionar y comparar de acuerdo con las Especificaciones AISC-ASD-1989, la sección de acero más ligera, adecuada y disponible para una columna con los siguientes tipos de perfiles : IPR, IR, ó W, IPS ó IE, tubo cuadrado HSS (Hollow Structural Section), tubo circular OC, ángulos de lados iguales en espalda APS o LI, ángulos de lados desiguales en espalda LD o APS, con las alas mayores horizontales, ángulos de lados desiguales LD o APS, con los lados mayores verticales, perfil TPR o TR, si la carga de trabajo es 90 ton. La longitud de la columna es 6 m y sus extremos, supenor e inferior están impedidos de girar (columna con giros restangidos en los extremos). Las dimensiones extenores de los perfiles (peraite y patín) no deben ser mayores de 320 mm. Utilizar para todos los perfiles acero con esfuerzos de fluencia $F_y = 2530$ kg/cm² (acero NOM-B-254 o ASTM A36), excepto para el tubo HSS, el cual tiene un esfuerzo $F_y = 3515$ kg/cm² (acero NOM-B-199). Se pueden utilizar las ayudas de diseño del M-AISC-ASD-1989, sin embargo este ejemplo se ha preparado para illustrar el procedimiento de diseño de miembros en compresión utilizando los perfiles estructurales laminados:compues.

Perfiles laminados utilizados como columnas del ejemplo

Solución:

1.Factor de longitud efectiva K.

El valor de diseño del factor de longitud efectiva para columnas con extremos restringidos (rotación y traslación fijas), recomendado en las Ayudas de Diseño, del MDEM-VII, M-AHMSA y M-IMCA-1994-VII, es:

K= 0 65

(El valor teónco es K = 0 5)

2. Longitud efectiva.

3. Coeficientes Cc

Las secciones transversales cunplen con las disposiciones de la sección, Véase tabla 85'-1, M-AISC-ASD-1989

MANUAL PARA DISEÑO DE ESTRUCTURAS METALICAS Héctor Soto Rodríguez

$$C_{c} = \sqrt{\frac{2\pi^{2}}{F_{v}}} = \sqrt{\frac{2\pi^{2} \times 2.039 \times 10^{6}}{2.530}} = 126.1$$
$$C_{c} = \sqrt{\frac{2\pi^{2} \times 2.039 \times 10^{6}}{3.515}} = 107$$

(Acero NOM-B-254 ó A36)

(Acero NOM-B-199, Grado C ó A50)

4 Esfuerzo de compresión axial permisible Fa

El esfuerzo F_a se determina con las ecuaciones (E2-1) ó (E2-2) de las Especificaciones AISC-ASD-1989, la que sea aplicable, sí la relación ancho-grueso de los perfiles cumplen con los valores estipulados en la Tabla B5-1, especificaciones AISC-ASD- 1989. El valor de F_a se encuentra tabulado en las ayudas de diseño del MDEM-VII, M-AHMSA y M-IMCA-VII.

5. Carga axial permisible

$$P = F_{2} A \times 10^{-3}$$

P se obtiene en Ton, si F_a está en kg/cm² y A en cm².

6 Perfil IPR, IR ó W

Designación	A (cm²)	Peso (kg/m)	r _y (cm)	KL/r _y	(kg/cm ²⁾	(Ton)
254 X 67.4 (10 X 45)	85.8	67.4	5,1	77	[°] 1 103	94 6>90
305 X 66.9 (12 X 45)	85.2	66.9	49	80	1 080	92>90

7 Perfil IPS, IE ó S

•

Designación	A (cm²)	Peso (kg/m)	r _y . (cm)	KL/r _v	F. (kg/cm ²⁾	. Р , (Ton))
305x60 7 (12x40.8)	77.4	60 7	2.69	145	499	38.6<<90
305x74.4.(12x50)	94.8	74.4	2.62	149	473	44.8<<90

Ningún perfil IPS ó IE es adecuado

Tubo cuadrado HSS

Para estos perfiles $r_x = r_y$

Designación	A (cm²)	Pëso (kg/m)	$r_x = r_y$ (cm)	KL/ry	F., (kg/cm ²⁾	(Ton)
178x178x13(7x7x1/2)	80	62 58	6 65	59	1 609	128 7>90
203x203x8(8x8x5/16)	60.39	47.38	7 92	49.1	1 723	104>90
254x254x8(10x10x5/16)	76.77	60.D	9.98	39.1	1 826	140>90

 MANUAL PARA DISEÑO DE ESTRUCTURAS METALICAS Héctor Soto Rodríguez

9. Tubo circular OC (diámetro nominal 254 mm, 10 in)

Designación	A (cm²)	Pesa (kg/m)	(cm)	KLITy	-F . (kg/cm ²⁾	р (Топ)
273x10(10 75x3/8)	76.83	60.31	9.33	42	1 338	102.8>90

10 Ángulos de lados iguales en espalda, APS ó LI.

Como en estos miembros el radio de giro r_y es mayor que r_x , se usará el radio de giro con respecto al eje X-X, ya que:

$(KL/r)_{\sim} > (KL/r)$	(L/r)	>	(KL	1r	}
--------------------------	-------	---	-----	----	---

Désignación	A (cm ²)	Peso (kg/m)	(cm)	KL/r _x	(kgrcm ²⁾	Р, (Ton)
127x19(5x5x3/4)	89.54	70.24	3.84	102	894	80.1<90
152x16(6x6x5/8)	91.74	72.1	4.67	84	1 047	96.1>90

11. Ángulos de lados desiguales en espaida, APS o LD, ala mayor honzontal, separados 10 mm (3/8 in) Se utilizarán los valores menores de las propiedades de diseño de los ángulos.

Designación	(cm²)	Peso (kg/m)	(cm)	(cm)	(KL/r)*	F. (kg/cm ²) 	P(Ton)
203x152x13(8x6x1/2)	87.1	68.37	4.55	9.37	86	1 031	90
203x152x19(8x6x3/4)	128 38	100.78	4.47	9.5	87	1 024	131 5>90

12. Ángulos de lados desiguales en espalda APS ó LD, alas mayores en espalda (alas mayores verticales), separadas 10 mm (3/8 in)

Designación	(cm²)	Peso (kg/m)	[x .(cm)	'(cm)	(KL/r ´`)y	F . (kg/cm ²) y-y	P(Ton): y-y,
203x102x19(8x4x3/4)	109.03	85.6	6.48	3.94	99	921	100.4>90
203x152x13(8x6x1/2)	87.10	68.37	6.5	6,2	63	1 206	105>90

- MANUAL PARA DISEÑO DE ESTRUCTURAS METALICAS Héctor Soto Rodríguez
- . .

13. Perfil TPR ó TR

Designación	A:	Peso	· Tx	Гу (стр)	(KL/t) _Y	Follow -	: P(Ton)
	-(<i>un</i> ,)	(Kg/11)	(C///) 	(((1))		(kg/cm²)	· · · ·
			· · · .			у-у	у-у
203x69 26(10x46.5)	88.38	69 26	8.25	4.67	84 .	1 047	92.5 >90

14.Resúmen de resultados. El perfit más liviano debe soportar una carga de compresión axial un poco mayor que 90 Ton

Perfil	Designación **	Peso (kg/m)	Carga permisible
			(ton)
IPR, IR ó W 🖌	254 X 67.4 (10 X 45)	, _67.4	94.6
	305 X 66.9 (12 X 45)	66 9	92
, _`			۰. ۱
IPS ó IE o S*	305x60.7 (12x40.8)	60.7	[.] 38.6<<90
	305 x 74.4 (12x50)	74.4	44.8<<90
	• .		
HSS	178 x 13 (7 x 1/2)	62.58	129
	203 x 8 (8 x 5/16)	47.38	104
	254 x 8 (10 x 5/16)	60.0	140
		Ì	
Tubo circular OC	273 x8 (10.75x5/16)	60.31	102.8
	107 × 10 (5 × 24)	70.04	20.1
2 APS 0 2LI lados iguales	127 × 19 (5 × 5/4)	70.24	00.1
en espaida	132 × 10 (0 × 500)	12.1	90.1
2APS ó 2LD lados	203x152x13 (8x6x1/2)	68.37	89.8
desiguales en espalda, lado	203x152x19 (8x6x3/4)	100.78	131.5
mayor horizontal, C=10mm			
2APS ó 2LD lados	203x102x19 (8x4x3/4)	85.6	- 100.4
desiguales en espalda, lado	203x152x13 (8x6x1/2)	68.37	105
mayor vertical			
TPR ó TR	254x69 26 (10x46.5)	69.26	92.5

• Ninguno de los dos perfiles cumple con el criterio de diseño • Conforme al M'IMCA'I.

MANUAL PARA DISEÑO DE ESTRUCTURAS METALICAS Héctor Soto Rodríguez

Ejemplo .Revisar la armadura honzontal de cuerdas paralelas tipo Hylsa (armadura Warren) que se muestra en la figura. Tanto los perfiles de las cuerdas, superior e inferior, como las diagonales, son PER, PR u OR. Las cuerdas están formadas por perfiles dobles, las diagonales y montantes por uno solo. El acero con el que se fabrican los perfiles señalados está regido por la norma NOM-B-199, Grado B (ASTM A500) y el esfuerzo de fluencia es $F_y = 3515 \text{ kg/cm}^2$ (50 ksi o 50 000 lb/in²). Las dimensiones y propiedades para el diseño de los elementos que forman la armadura, se han tomado de los catálogos de Hylsa. El perfil armado de la cuerda superioe está unido entre sí en todos los nudos y en los puntos medios de los tableros de la armadura. Las secciones extremas y media de la armadura están soportadas lateralmente. Las características geométricas de los túbos se han tomado del catálogo PER Hylsa. La separación entre armaduras es de 6 m. Utilizar las especificaciones AISC-ASD-1989

 CI = cuerda inferior
 P = Peso de la armadura en kg

 D = diagonal
 LP = Longitud de pandeo de la cuerda superior

En nuestro caso, la geometría y las dimensiones de la armadura que se revisará son:

2.1 - Carga muerta

Lámina galvanizada, cal. 22	8 kg/m²
Largueros y contraventeo (supuesto)	3
Armadura (supuesto)	25
Carga muerta total (CM)	36 kg/m²
2.2 - Carga viva (CV)	<u>60</u> .
Carga total gravitacional (CM + CV)	96 kg/m²

3. Determinación de las cargas en los nudos

Para nudos interiores	<i>P</i> = 96 x 2 x 6 = 1 152 kg
Para nudos extremos	P = 576 kg

La carga uniformemente repartida, igual a 96x6 = 576 kg/m, produce un momento flexionante máximo

$$M = \frac{wL^2}{8} = \frac{576 \times 12^2}{8} = 10\ 368\ kg - m$$

2.

4. Reacciones en los apoyos.

$$R_A = R_B = \frac{wL}{2} = \frac{576 \times 12}{2} = 3456 \text{ kg}$$

5. Fuerzas en las barras.

De acuerdo con la figura anterior:

$$T_{max} \circ C_{mdx} = \frac{M_{min}}{H}$$

Compresión en la cuerda superior y tensión en inferior.

$$F = \frac{T}{\sec \theta} = \frac{T}{\sec 45^{\circ}} = 1.41 T$$

5 1Fuerzas en las diagonales

La figura siguiente muestra los valores de la fuerza cortante a lo largo del ciaro de la armadura.

. .

Вагга	Τ	$F = \frac{T}{T} = \frac{T}{T} = I \mathcal{A} I T$
	,	$\sin\theta$ sen 45°
	(kg)	(kg)
1-2	2 880	+ 4 074
2-3	2 880	- 4 074
3-4	1 728	+ 2 444
4-5	1 728	- 2 444
5-6	576	+ 815
6-7	576	- 815

 $\theta = 45^{\circ} \text{ sen } 45^{\circ} = 0.707$

- El signo inegativo indica compresión

+ El signo positivo significa tensión.

5 2. Fuerzas máximas en las cuerdas

Barra 5-7 El momento máximo ocurre en el punto 7, centro del claro de la armadura y su valor es:

$$M_{max} = (3.456 - 576)6 - 1.152(4 - 2) = 10.368 \text{ kg} - m = \frac{wL^2}{8} = 10.368 \text{ kg} \text{ s}/m$$

Momento flexionante en el punto 6.

$$M = (3\ 456\ -\ 576)5\ -\ 1\ 152(3+1) = 9\ 792\ kg\ -\ m$$

Cuerda superior (barra 5-7)

$$F = \frac{M}{H} = \frac{9\ 792}{l} = 9\ 792\ kg\ (compression)$$

Cuerda inferior (barra 6-8)

$$F = \frac{M}{H} = \frac{10\ 368}{1} = 10\ 368\ kg\ (tension)$$

Revisión de los perfiles de las barras.

En el catálogo PER-Hylsa, página 11, se indica la solución de la armadura igual a ésta, con una carga uniforme de 700 kg/m; cuerda superior, cuerda inferior, diagonales y montantes, para las longitudes de pandeo de la cuerda superior de L/2 y L/3 (6 y 4 m, respectivamente). Para esta armadura se indica un peso de 288 kg (23.98 kg/m). De acuerdo con el análisis de cargas efectuado al principio del ejemplo, la carga uniformemente repartida es w = 576 kg/m y el peso supuesto de la armadura es 25 kg/m² En la tabla siguiente se indican los perfiles Hylsa de la armadura del ejemplo.

		S	(Cl				A
	Tamaño x		[~] Tamaño x		Tamaño x		Tamaño x espesor	
· J.16	esp	esor ·	esp	esor	espe	esor		
,	mm x	in x ın	mm x	in x in	mm x	in x in	mm x mm	in x in
			ՠՠ		mm			
	64x3 2	2.5x0.1	38x2.	1,5x0.1	51x2.8	2x0.1	51x2.8	2x0.11B
		25B	· 8	18		1B		

B es el color de identificación del perfil, en este caso todos son blancos.

6.1.- Cuerda superior.

La cuerda superior está formada por dos perfiles PER, PTR u OR 64 x 3.2 mm (2.5 x 0.125-pułg.), con las dimensiones y propiedades geométricas que se dan adelante. Deben analizarse tres posibilidades de pandeo, para determinar cuál es la crítica, en dos interviene la sección completa, formada por los dos perfiles PER, PTR U OR, y en la segunda uno sólo de ellos.

Pandeo alrededor del eje x de la sección completa	L= 2.0 m.
pandeo airededor del eje y de la sección completa	L= 6.0 m.
pandeo alrededor del eje y de un sólo tubo	 L= 1.0 m

Las tres longitudes libres de pandeo corresponden, respectivamente, a la distancia entre nudos de la armadura, la separación entre secciones soportadas lateralmente y la distancia entre puntos de unión de los tubos que forman las cuerdas de la armadura.

En el catalogo Hylsa están tabulados los radios de giro de un solo tubo alrededor de los ejes x y y.

El tramo crítico en el 5-7 (y el simétrico 7-9) en el que P=9 792 kg = 9.8 ton. (compresión); los perfiles de las cuerdas están unidos entre sí en los nudos.

Propiedades geométricas del perfil armado. de la cuerda superior.

$$A = 2 \times 7.40 = 14.8 \text{ cm}^2 \qquad r_x = 2.44 \text{ cm}$$
$$r_y = \sqrt{r_y^{-2} + \overline{x}^2} = \sqrt{2.44^2 + (2.54 + 3.175)^2} = 6.21 \text{ cm}$$

6 2.- Cálculo de las relaciones de esbeltez.

Los nudos 1,7 y 13 están impedidos de desplazarse lateralmente. Los perfiles de la cuerda superior están unidos entre sí en todos los nudos y en los puntos medios de los tableros de la armadura. Se tomará el factor de longitud efectiva K = 1, correspondiente a barras articuladas en ambos extremos.

$$\left(\frac{KL}{r}\right)_{r} = \frac{1 \times 200}{2.44} = 82 \qquad \qquad \frac{KL}{r}\right)_{r} = \frac{1 \times 600}{6.21} = 97 \qquad \qquad \frac{KL}{r}\right)_{r} = \frac{1 \times 100}{2.44} = 41$$

La relación de esbeltez crítica es . $\frac{KL}{r}\right)_{r} = 97$

6.3 - Revisión de la relación ancho grueso.

$$\frac{b}{t} < \frac{2000}{\sqrt{F_v}} = 33.7 \qquad \qquad \frac{b}{t} = \frac{635 - 3 \times 0.32}{0.318} = 17 < 337$$

El pandeo local no es crítico.

6.4 - Obtención del esfuerzo de compresión axial permisible, Fa.

$$C_c = \sqrt{\frac{2\pi^2 E}{F_y}} = \sqrt{\frac{2\pi^2 \times 2.039 \times 10^6}{3.515}} = 107$$
 (acero NOM-B-199 o ASTM A500, Fy = 3515 kg/cm²)

Acotaciones en mm

Relaciones de esbeltez

$$\frac{KL}{r} = \frac{1 \times 100}{1.93} = 52 \qquad \qquad F_a = 1.690 \text{ kg/cm}^2$$

Fuerza permisible

$$P_a = F_a A = 1.690 \times 5.11 \times 10-3 = 8.6 \text{ Jan} > R_A = 3.5 \text{ jon} (reacción en apoyos)$$

7 Determinación del peso de la armadura. Cuerda superior(CS) = $12 \times 2 \times 5.84 = -140.16 \text{ kg}$ Cuerda inferior (CI) = $12 \times 2 \times 2.95 = -70.80$ Diagonales (D) = $12 \times 1.41 \times 4.0 = -67.68$ Montantes (M) = $2 \times 1 \times 4 = -\frac{8.00}{-286.64 \text{ kg}}$

En el catálogo PER- Hylsa se indica un peso total de la armadura de 288 kg

8.- Peso de la armadura por metro cuadrado (P/M^2)

$$P = \frac{288}{12} = 24 \text{ kg} / m$$
$$P = \frac{288}{12x6} = 4 \text{ kg} / m^2$$

En el analisis de cargas se estimó un peso propio de la armadura de 25 kg/m². En las ayudas de diseño del M-DEM-VII, se presenta la solución de armaduras horizontales de cuerdas paralelas tipo Hylsa, para diferentes claros. En este ejemplo se han revisado perfiles determinados para una carga mayor, como es lógico, están sobrados

No se tomo en cuenta el peso de la soldadura, el cual se puede tomar conservadoramente igual al 3% del peso total de la armadura

Como la mayor relación de esbeltez $\left(\frac{KL}{r}\right)_{v} = 97$ es menor que C_c, el esfuerzo de compresión permisible

F_a se determina con la ecuación (E2-4) de la Especificaciones AISC-ASD-1989, o su valor se encuentra en las ayudas de diseño, M-DEM-VII ó M-IMCA-VII.

 $F_a = 1.081 \ kg/cm^2$

6 5. Carga permisible

$$P = F_a A \times 10^{-3} = 1081 \times 14.8 \times 10^{-3} = 16 \text{ ton} >> 9.8 T_{OA}$$

6.6. Cuerda inferior

La cuerda inferior está formada por dos perfiles PER, PTR o OR mm 38 x 2.8 (1.5 x 0.11B pp/g), con las dimensiones siguientes:

La condición que se debe cumplir es la siguiente:

$$F_{R} > F (juerza en la cueraa injerior)$$

$$f_{t} \le F_{t}$$

$$\frac{P_{R}}{A} \le 0.6 F_{y} = 2 \, 110 \, \text{kg} \, / \, \text{cm}^{2}$$

$$P_{R} = 0.6 \, F_{y} \, A > F = 10.4 \, \text{Ton}$$

$$P_{R} = 0.6 \, \times 7.48 \, \times 3 \, 515 \, \times 10^{-3} = 15.8 > F = 10.4 \, \text{Ton} \, \text{Sobrado}$$

6.7.- Diagonales.

Las diagonales son perfiles PER, PT u OR 51 x 2.8 (2 x 0.118). Por facilidad de fabricación todas las diagonales son iguales la fuerza máxima en condiciones de trabajo de estos elementos es de 4 074 kg (compresión). Sus propiedades para diseño son: $A = 5.11 \text{ cm}^2$, r = 1.93 cmLongitud

$$L = \sqrt{2} = 1.41 \ n$$

Relación de esbeltez:

$$\frac{KL}{r} = \frac{1 \times 141}{1.93} = 73$$

$$F_a = 1.432 \text{ kg/cm}^2$$

$$F_a = 1.432 \times 5.11 \times 10^3 = 7.3 \text{ J}^2 \times 4.07 \qquad \text{Sobrado}$$

Se acepta el perfil propuesto para todas las diagonales de la armadura

6.8 - Montantes

La armadura tiene únicamente dos montantes; se utilizan perfiles iguales que los de las diagonales. Sus longitudes son iguales al peralte de la armadura.

PER. PTR u OR \$1×2.8 mm (2×0 Acotaciones en mm *Ejemplo c5* Determinar, con las Especificaciones AISC-LRFD-1993, mediante tres métodos diferentes. la resistencia de diseño en compresión de una columna IPR, IR ó W 305x74.5 (12x50), de 4.5 m de longitud, y de acero NOM-B-254 (ASTM A36). La columna está articulada en los dos extremos y no tiene ningún soporte lateral a lo largo de ella.

Columna IPR, IR o W del ejemplo

SOLUCIÓN:

Método I.

Se utilizan las ecuaciones del Capítulo E, Especificaciones AISC-LRFD-1993. La relación de esbeltez de la columna, es:

$$(KL)_{x} = (KL)_{y} = 450 \text{ cm}$$

$$\left(\frac{KL}{r}\right)_r = \frac{450}{13.16} = 34.2$$

 $\left(\frac{KL}{r}\right)_{1} = \frac{450}{5} = 90.0$

Rige el pandeo alrededor del eje de menor resistencia

No era realmente necesario calcular $(KL/r)_x$, puesto que $(KL)_x = (KL)_y$, por lo tanto rige el radio r_y , que es menor que r_x .

Cálculo de λ_c (parámetro de esbeltez de la columna)

$$\lambda_{\rm c} = \frac{KL}{r\pi} \sqrt{\frac{F_{\rm c}}{E}} = \frac{90}{\pi} \sqrt{\frac{2.530}{2.039 \times 10^6 \times}} = 1.01$$

Como $\lambda_c = 1.01$ es menor que 1.5, la columna se encuentra en el intervalo de comportamiento inelástico, y el esfuerzo crítico F_{cr} se determina con la ecuación (E2-2).

$$F_{cr} = (0.658^{\lambda_c^2}) F_{\gamma}$$
(E2-2)
$$F_{cr} = 0.658^{1.01^2} \times 2\ 530 = 1\ 651\ kg/cm^2$$

 MANUAL PARA DISEÑO DE ESTRUCTURAS METALICAS Héctor Soto Rodríguez

Luego:

 $\phi P_n = \phi A_c F_{cr} = 0.85 \times 94.84 \times 1.651 \times 10^{-3} = 133$ Ton

Método II.

Se utiliza la tabla 3-36, M-AISC-LRFD-1993-VI, pág. 6-147, Esfuerzos de diseño para miembros en compresión de acero con esfuerzo de fluencia especificado $F_y = 36 \text{ Ksi} = 2 530 \text{ kg/cm}^2 \text{ y}$ $\phi_c=0.85$.

Para $(KL/r)_x = 90$. $\phi F_{cr} = 19.98 \text{ Ksi} = 1.405 \text{ kg/cm}^2$

Luego

 $\phi P_n = \phi A_g(F_{cr}) = 94.84 \times 1.405 \times 10^{-3} = 133$ Ton

Método III:

Se utilizan las tablas de columnas de la Parte 3, M-AISC-LRFD-1993-VI La resistencia de diseño en compresión de los perfiles de 305 mm (12 pulg.) se encuentra en la pág. 3-24 y 3-25 Estas tablás proporcionan los valores de ϕP_n , en función de la longitud efectiva KL y del esfuerzo de fluencia especificado F_y. De la pág. 3-25,

Para el perfil W12x50 (305x74.5), con (KL)_x = 15 ft.= 457 cm \approx 450 cm, ϕP_n = 289 Kips= 131.2 T.

NOTAS:

- Para usar directamente las tablas de columnas, debe entrarse con la relación de esbeltez máxima, que no siempre corresponde al pandeo alrededor del eje de menor momento de inercia (eje y).
- Las tablas de columnas no incluyen todos los perfiles laminados. Estas ayudas de diseño solamente contienen los perfiles tipo W utilizados comúnmente como columnas

Ejemplo MC-5. Calcular, de acuerdo con las Especificaciones AISC-ASD-1989, AISC-LRFD-1993 y normas NTC-1995, la capacidad de carga axial y las resistencias de diseño de una columna compuesta, cuadrada, de 55 cm de lado, longitud efectiva igual a 4.0 m, con un perfil IPR, IR ó W 356x122.1 (14x82) Utilizar concreto f'c=250 kg/cm² (f'c=3 5 ksi), de peso volumétrico 1 600 kg/m³ (100 lb/ft³) fabricado de acuerdo con la norma ASTM C33; cuando se utilicen las Normas NTC-1995, el concreto será clase I y el acero de refuerzo f_{yr}=4 200 kg/cm² (f_{yr}=60ksi), acero estructural NOM-B-254 (ASTM A36). El refuerzo longitudinal consiste en 4 barras No. 10, y los estibos son barras del No. 3 \oplus 35 cm centro a centro (c.a.c.). En este ejemplo no se diseñan las barras longitudinales ni los estibos de la columna.

Columna compuesta del ejemplo MC-5

SOLUCIÓN:

1) Especificaciones AISC-LRFD-1993:

El concreto que recubre el perfil de acero está reforzado con estribos y barras longitudinales. El área de la sección transversal de cada una de las barra que forman los refuerzos, longitudinal y transversal, no es menor de 0.09 cm² por cada 5 cm de separación entre barras.

$$A_{min} = 0.09 \times 43/5 = 0.77 \text{ cm}^2$$

Las barras de 32 mm, utilizadas para el refuerzo longitudinal de la columna, tienen un área de 7.94 cm². No es necesarioo que las barras longitudinales cumplan el requisito de que la separación entre ellas no exceda de 2/3 de la dimensión menor de la columna El recubrimiento del refuerzo es, cuando menos, de 40 mm, medidos al borde extenor de las barras colocadas por fuera

Área total del refuerzo longitudinal $A_r = 4$ barras No. 10 = 4x7.94=31 8 cm²

Área total de la columna = $55 \times 55 = 3.025$ cm²

Porcentaje de las barras de acero longitudinal: 31 8/3 025 = 0.0105 = 1.1%

Porcentaje del perfil de acero = $(155.5/3025) \times 100 = 5.1\% > 4\%$ correcto

Área neta de concreto = 3 025 - 155 5 - 31.8 = 2 838 cm²

propiedades modificadas Fmy y Em

$$F_{my} = F_y + c_l F_{yr} \left[\frac{A_r}{A_s} \right] + c_2 f_c \left[\frac{A_c}{A_s} \right]$$
(12-1)

$$E_m = E + c_s E_c \left[\frac{A_c}{A_s} \right]$$
(12-2)

En las ecuaciones anteriores,

- F_{my} valor modificado del esfuerzo de fluencia que se utiliza en el cálculo de la resistencia de la columna compuesta, kg/cm²
- F_{γ} esfuerzo de fluencia mínimo especificado del acero del perfil, kg/cm²
- F_{yr} esfuerzo de fluencia mínimo especificado de las barras de refuerzo longitudinal, kg/cm²
- Ar área de las barras de refuerzo longitudinales; cm²
- A_s área de acero, cm²
- A_c área de concreto, cm²
- f'c resistencia especificada del concreto en compresión, kg/cm²
- c_1 , c_2 , c_3 coeficientes numéricos; para perfiles ahogados en concreto, $c_1 = 0.7$, $c_2 = 0.6$ y $c_3 = 0.2$

Módulo de elasticidad del concreto

 $E_c = w^{1.5} \sqrt{f'_c}$; w en *lb/ft*³ y f'_c en ksi.

donde,

w peso volumétrico del concreto = 1 600 kg/m³ (100 lb/ft³)

$$E_{c} = 100^{13} \sqrt{3.5} \times 70.3 = 131520 \text{ kg/cm}^{2}$$

luego ,

 $F_{my} = 2.530 + 0.7 (4.200) (31.8/155.5) + 0.6 (250) (2.838/155.5) \approx 5.870 \text{ kg/cm}^2$

 $E_m = 2.039 \times 10^6 + 0.2 (131.520) (2.838/155.5) = 2.519070 \text{ kg/cm}^2$

Resistencia de Diseño

Se determina con las fórmulas E2-1 a E2-4 con $A_g = A_s$, r_m , $r_y \ge 0.3 d_{flex}$, $F_y = F_{ym}$ y $E = E_m$, $\phi_c = 0.85$. $r_m = 0.3 \times 55 = 16.5 > r_x = 15.4 \text{ cm}$ $r_m = 0.3 \times 55 = 16.5 > r_y = 6.3 \text{ cm}$ \therefore r = 16.5 cm

1.1 Cálculo del parámetro de esbeltez de la columna λ.

$$\lambda_{e} = \frac{KL}{r\pi} \sqrt{\frac{F_{y}}{E_{m}}} = \frac{400}{16.5\pi} \sqrt{\frac{5.870}{2.519.070}} = 0.37$$

1.2 Esfuerzo crítico.

Como $\lambda_c = 0.37 < 1.5$. se utiliza la ecuación (E2-2) para determinar el esfuerzo crítico F_{cr}

$$F_{cr} = \left(0.658^{i\frac{2}{4}}\right) F_{my}$$

$$F_{cr} = \left(0.658^{0.37^2}\right) 5\ 870 = 5\ 543\ kg/cm^2$$

$$\phi_c\ P_n = \phi_c\ A_g\ F_{cr} = \phi_c\ A_s\ F_{c\ 0}\ r0.85\times 155.5\times\ 5\ 543\times\ 10^3 = 732.8\ ton$$

$$\phi_c\ P_n = 733\ Ton$$

2) Especificaciones AISC-ASD-1989;

Esfuerzo de compresión axial permisible

 F_a se determina con las ecuaciones (E2-1) ó (E2-2), con $F_y = F_{my}$, $E = E_m$ y $r = r_m$ Coeficiente de pandeo y relaciones de esbeltez.

$$C_{n} = \sqrt{\frac{2\pi^{2} E_{m}}{F_{sm}}} = \sqrt{\frac{2\pi^{2} \times 2.519\ 070}{5\ 870}} = 92$$

$$\frac{KL}{r_{m}} = \frac{400}{16\ 5} = 24.2$$

Como $KL/r = 24.2 < C_c = 92$, se utiliza la ecuación (E2-1):

$$F_{a} = \frac{\left[1 - \frac{(KL/r)^{2}}{2C_{c}^{2}}\right]F_{y}}{\frac{5}{3} - \frac{3(KL/r)}{8C_{c}} - \frac{(KL/r)^{3}}{8C_{c}^{3}}} = \frac{\left[1 - \frac{(24.2)^{2}}{2 \times 92^{2}}\right]5\ 870}{\frac{5}{3} + \frac{3 \times 24.2}{8 \times 92} - \frac{24.2^{3}}{8 \times 92^{3}}}$$

$$P = F_{a}A = 3\ 214 \times 155\ 5 \times 10^{-3} = 499.8\ \text{Ton} \approx 500\ \text{Ton}$$

$$P = 500\ \text{Ton}$$

3) Normas NTC-1995

3.1 Módulo de elasticidad del concreto E_c

Concreto clase I

$$E_c = 14\ 000\sqrt{f_c'} = 14\ 000\ \sqrt{250} = 221\ 360\ \text{kg/cm}^2$$

3.2 Propiedades modificadas F_{my} y E_m:

Los coeficientes numéricos c_1 , c_2 y c_3 son los mismos de las Especificaciones AISC-LRFD-1993 3.3 Resistencia de diseño R_c :

$$E_m = E + c_3 E_c \frac{A_c}{A_i}$$

$$E_m = 2.039 \times 10^6 + 0.2 \times 221.360 \left[\frac{2.838}{135.5} \right] = 2.847.000 \text{ kg/cm}^2$$

Estas especificaciones no incluyen el diseño de columnas compuestas acero y concreto, Para determinar la capacidad de carga axial en condiciones de trabajo de la columna compuesta, se aplicará el mismo procedimiento que el de las normas AISC-LRFD-1993
1.3 Coeficientes numéricos:

 $c_1 = 0.70$, $c_2 = 0.60$ y $c_3 = 0.20$

Módulo de elasticidad del concreto:

$$E_{\rm c} = w^{1.3} \sqrt{f_{\rm c}'}$$
; w en lb/ft² y f'_c en ksi.

donde.

w peso volumétrico del concreto = 1 600 kg/m³ (100 /lb/ft³)

$$E_{c} = 100^{15} \sqrt{3.5 \times 70.3} = 131520 \text{ kg} \text{ cm}^{2}$$

$$F_{my} = 2530 + 0.7 (4\ 200) (31.8/155.5) + 0.6 (250)(2\ 838/155.5) \approx 5\ 870 \text{ kg/cm}^{2}$$

$$E_{m} = 2.039 \times 10^{6} + 0.2 (131\ 520) (2\ 838/155.5) = 2\ 519\ 070 \text{ kg/cm}^{2}$$

في ال

Resistencia de Diseño

Se determina con las fórmulas E2-1 a E2-4 con $A_g = A_z$, r_m , $r_y \ge 0.3 d_{flex}$, $F_y = F_{ym}$, $y \in E_m$, $\phi_c = 0.85$

 $r_m = 0.3 \times 55 = 16.5 > r_x = 15.4 \text{ cm}$ $r_m = 0.3 \times 55 = 16.5 > r_y = 6.3 \text{ cm} \therefore r = 16.5 \text{ cm}$

2.1 Cálculo del parámetro de esbeitez de la columna λ :

$$\lambda_{v} = \frac{KL}{r\pi} = \sqrt{\frac{F_{v}}{E_{m}}} = \frac{400}{16.5\pi} \sqrt{\frac{5.870}{2.519.070}} = 0.37$$

2.2 Esfuerzo crítico:

Como λ_c = 0.37 < 1.5, se utiliza la fórmula (E2-2) para determinar el esfuerzo crítico F_{cr}

$$F_{cr} = \left(0.658^{A^2}\right)F_{my}$$

$$F_{cr} = \left(0.658^{0.37^2}\right)5\ 870 = 5\ 543\ kg/cm^2$$

$$\phi_c\ P_n = \phi_c\ A_g\ F_{cr} = \phi_c\ A_s\ F_{cr}$$

$$0.85 \times 155.5 \times 5\ 543 \times 10^{-3} = 732.8\ Ton$$

 $\phi_c P_n = 733 Ton$

3) Normas NTC-1995:

3.1 Módulo de elasticidad del concreto Ec

Concreto clase I

$$F_{mv} = F_y + c_1 F_{yr} \frac{A_r}{A_t} + c_2 f_c^* \frac{A_c}{A_t}$$
(3.6.1)

$$F_{mn} = 2\ 530 \pm 0.7 \times 4\ 200\ \frac{31.8}{155.5} \pm 0.6 \times 0.7 \times 250\ \frac{2\ 838}{155.5} = 5\ 321\ \text{kg/cm}^2$$

 R_c se determina con las ecuaciones 3.2.1 a 3.2.5, con $A_t = A_s$, $F_R=0.85$, Q=1.0, $r=r_m$, $F_y=F_{my}$ y $E=E_{my}$, con n=1.4 (véase inciso 3.2.2.1)

3.4 Cálculo del parámetro de esbeltez λ :

. .

$$\lambda = \frac{KL}{r} \sqrt{\frac{F_{mv}}{\pi^2 E_m}} = \frac{400}{16.5} \sqrt{\frac{5.321}{\pi \times 2.847.000}} = 0.334$$

$$= \frac{F_v}{\left[1 - x^{2n} - 0.15^{2n}\right]^{1/n}} A_t F_R \le F_v A_t F_R \qquad (3.2.1)$$

$$R_c = \frac{5.321 \times 155.5 \times 0.85 \times 10^{-3}}{\left[1 - 0.334^{2.8} - 0.15^{2.8}\right]^{\frac{1}{1.4}}} = 683.2 \text{ ton}$$

$$F_v A_t F_R = 5.321 \times 155.5 \times 0.85 \times 10^{-3} = 703.3 \text{ ton} > 683.2$$

La reistencia de diseño de la columna es

Resultados

Especificación	Capacidad (Ton)	
AISC-ASD-1989	P = 500	
AISC-LRFD-1993	φ _c P _n = 733	
NTC-1995	R₀ = 683.2	

El primer método de diseño proporciona resistencia de "trabajo" y los otros dos, resistencias "últimas" Ejemplo Calcular con las Especificaciones AISC-ASD-1989 la carga permisible que puede soportar una viga armada hecha con tres placas soldadas de acero NOM-B-254 (ASTM A36) de Fy=2 530 kg/cm², libremente apoyada de 6 m de claro. La viga está soportada lateralmente en los apoyos y en el centro del claro.

Diagrama de momentos flexionantes

SOLUCIÓN.

Características geométricas de la sección transversal

$$I_{\tau} = 2 \left[\frac{30 \times 1.27^{5}}{12} + 30 \times 1.27 \times 19.365^{2} \right] + \frac{0.95 \times 37.46^{3}}{12} = 32.747 \text{ cm}^{4}$$
$$S_{\lambda} = \frac{I_{\tau}}{d_{\lambda}/2} = \frac{32.747}{40.2} = 1.637 \text{ cm}^{3}$$

2. Diseño por flexión.

La condición que debe cumplirse es la siguiente:

$$f_{\max} \leq F_b$$

$$f = \frac{M_{\max}}{S_x} = \frac{PL}{4S_x} = F_b \qquad M_{\max} = S'_x F_b$$

Es decir:

$$P = \frac{4M_{max}}{L} \qquad P = \frac{4S_x F_b}{L} = \frac{4M_R}{L}$$

Verificación de si el miembro es compacto y está contraventeado adecuadamente

a). Los patines están unidos con el alma, mediante soldadura continua de filete.

b). Las relaciones ancho-grueso de los elementos que componen la sección transversal del miembro no deben exceder las relaciones ancho-grueso de la Tabla B.5.1., Especificaciones AISC-ASD-1989, correspondientes a secciones compactas

patines:

$$\frac{b_f}{2t_f} = \frac{30}{2 \times 127} = 11.8 < \frac{b}{t} = \frac{545}{\sqrt{F_v}} = \frac{545}{\sqrt{2.530}} = 10.8$$
alma:

Perfil I soldado cimensiones, mm

$$\frac{d_w}{t_w} = \frac{40}{0.95} = 42.1 < \frac{b}{t} = \frac{5\,370}{\sqrt{F_y}} = \frac{5\,370}{\sqrt{2\,530}} = 107$$

c) La longitud no soportada lateralmente del patín en compresión, L_b=300 cm no debe exceder el valor de L_o, es decir-

$$L_{c} = \frac{L_{b} \leq L_{c}}{\sqrt{F_{y}}} = \frac{640 \times 30}{\sqrt{2530}} = 381 \text{ cm}$$

$$L_{c} = \frac{1410\,000}{(d \neq A_{f})F_{y}} = \frac{1410\,000}{(40 \times 30 \times 1.27)2\,530} = 531 \text{ cm}$$

Rige el valor menor, L_c =381 cm.

Esfuerzo de flexión permisible, F_b

Como $b_f \neq 2t_f$ es mayor que $545\sqrt{F_y}$ pero menor que $800\sqrt{F_y}$ el alma es compacta y L_b < L_c,el esfuerzo de flexión permisible F_b se calcula con la ecuación (F1:4) de las Especificaciones AISC-ASD-1989.

$$\ddot{F}_{b} = F_{v} \left[0.79 - 0.00024 \frac{b_{f}}{2t_{f}} \sqrt{\frac{F_{v}}{k_{e}}} \right]$$
 (F1-4)

donde:

$$k_{c} = \frac{4.05}{(h/t_{w})^{0.46}} \quad si \quad h/t_{w} > 70$$
$$K_{c} = 1.0$$

En caso contrano:

En este ejemplo:

$$h.'t_{w} = \frac{+40}{0.95} = 42.1 < 70$$
$$k_{c} = \frac{4.05}{(42.1)^{0.46}} = 0.72$$

Luego:

$$F_b = 2.530 \left[0.79 - 0.00024 \times 11.8 \sqrt{\frac{2.530}{0.72}} \right] = 1.638 \text{ kg} \cdot \text{cm}^2$$

Momento resistente

$$M_R = F_b S_x = 1.638 \times 1.637 \times 10^{-5} = 26.8 \ Tm$$

Carga permisible total

$$M_{max} = \frac{PL}{4} = M_{R}$$

diara : F. 290

Ejemplo .Determinar la carga uniformemente repartida que resiste en condiciones adecuadas de trabajo, un perfil. IPR, IR o W 305 x 32.8 (12 x 22) NOM-B-254 ó ASTM A-36 ($F_c = 2.530 \text{ kg/cm}^2$) utilizado como viga libremente apoyada de 6 m de claro, soportada lateralmente en toda su longitud mediante un sistema de piso estructural compuesto acero-concreto, tipo Galvadeck 25. Utilizar las Especificaciones AISC-ASD-1989 y las Normas NTC-1995 considerando que la viga forma parte de una construcción del grupo B. No tomar en cuenta el efecto del sistema de piso (sección compuesta).

 $M_R = F_5 S_r$

donde:

 F_b es el esfuerzo de flexión permisible y S_x , el módulo de sección elástico de la sección transversal, del purfet refendo al eje de mayor momento de inercia (eje x-x).

$$F_{b} = \begin{cases} 0.60 \ F_{y} \ (sección \ compacta) \end{cases}$$

3 Criterio de sección compacta.

De acuerdo con las Especificaciones AISC-ASD-1989, para que un miembro de sección transversal I, sea considerado compacto, debe cumplir los siguientes requisitos:

3.1 Los patines están unidos con el alma o almas en forma continua.

3.2 La relación ancho/espesor de los elementos no atiesados del patín en compresión, no es mayor de $\frac{5J5}{\sqrt{F_v}}$, de acuerdo con la Tabla B5.1 Relaciones ancho/grueso para elementos en compresión, $\sqrt{F_v}$

 $\frac{545}{\sqrt{F_y}} = 10.8$ $\frac{b_f}{2t_f} = \frac{10.2}{2 \times 1.08} = 4.7 < 10.8$

3 3 La relación peralte/grueso del alma no excede el valor correspondiente, que se determina con las ecuaciones de la Tabla B5 1, Especificaciones AISC-ASD-1989.

$$P = \frac{4M_R}{L} = \frac{4 \times 26.8}{6} = 17.9 \, Ton$$

u

La carga concentrada que se le puede aplicar a la viga soldada del ejemplo es 17.9 Ton.

$$\frac{d}{t} = \frac{5\,370}{\sqrt{F_y}} \left(1 - 3.74 \, \frac{f_a}{F_y} \right) \text{ cuando } \frac{f_a}{F_y} \le 0.16$$

$$\frac{d}{t} = 2\,150\sqrt{F_y} \text{ cuando } \frac{f_a}{F_y} \ge 0.16$$

En nuestro caso.

$$f_a = \frac{P}{A} = 0 \quad y \quad \frac{f_a}{F_y} = 0$$

Como $\frac{f_a}{F_y} = 0$, la ecuación aplicable se simplifica

$$\frac{d}{l} = \frac{5\,370}{\sqrt{F_y}} = \frac{5\,370}{\sqrt{2\,530}} = 107 \text{ y} \frac{d}{l_w} = \frac{31.3}{0.66} = 47.4 \times 107$$

Longitud entre soportes laterales del patín en compresión.

El patín superior del perfil está soportado lateralmente en toda su longitud. Como la sección es compacta, el esfuerzo de flexión permisible es:

$$F_b = 0.66 \ F_v = 0.66 \times 2.530 = 1.670 \ kg/cm^2$$

Se iguala el momento flexionante máximo con el momento resistente de la sección,

$$\frac{wl^{2}}{8} = F_{b} S_{x} \therefore \qquad w = \frac{8F_{b}S_{x}}{l^{2}}$$

$$w = \frac{8 \times 1670 \times 416 \times 10^{-1}}{600^{2}} = 154.7 \text{ m}$$

La carga total que resiste la viga, es:

$$W = wl = 1.54 \times 6 = 9.2$$
 Ton

 En el Manual AHMSA de Construcción en Acero, edición 1996, Capítulo IX, Capacidad de Carga de Perfiles Estructurales, Gráfica Nó⁵5, página 255, viga simplemente apoyada con carga uniformemente repartida, para un perfil IPR, IR o W 305 x 32.8 (12 x 22) de acero NOM-B-254 (ASTM A36) de 600 cm de claro, se obtiene una carga total de 9 2 Ton

2. Normas NTC-1995 Acciones de diseño

$$w_u = FC \times H$$

$$M_u(max) = -\frac{W}{8}$$

La condición que debe cumplirse es:

 $M_R \ge M_u$

Si la sección de la viga es tipo 1 ó 2, el momento resistente de diseño se determina con la ecuación 3.3.1 de las normas.

$$M_R = F_R Z F_y$$

Clasificación de la sección

De acuerdo con las Especificaciones AISC-ASD-1989, aquí se toma el peralte Tatal del profil.

Para que un perfit tipo I se califique como sección tipo 1, las relaciones ancho/grueso de patines y alma no deben exceder los valores de la tabla 2.3.1. Valores máximos admisibles de las relaciones ancho/grueso.

Descripción del elemento	Sección tipo 2 (diseño plástico)	
Patines de secciones I, H ó T, y de canales, en flexión	$\frac{540}{\sqrt{F_y}} = \frac{540}{\sqrt{2530}} = 107$	
Almas en flexión	$\frac{3\ 500}{\sqrt{F_y}} = \frac{5\ 300}{\sqrt{2\ 530}} = 105\ 4$	

Las relaciones ancho-grueso de patines y alma son

$$\frac{b_f}{2t_f} = 47 < 10.7 \qquad \qquad \frac{d}{t_w} = 40.8 < 105.4$$

La sección es tipo 2 y la equación 3.3.1 es válida

r

$$\frac{W_{L}}{8} = F_R Z_r F_r'$$

donde:

$$(W) = FC \times W = 1.4W$$

$$\frac{dU_{r}}{W} = \frac{8 F_R Z_s F_y}{1.4L^2}$$

Se sustituyen valores:

$$v = \frac{8 \times 0.9 \times 480 \times 2}{600^2} = 1.73 \text{ Fm}$$

Carga de diseño total que soporta la viga

Momento resistente

$$M_R = F_R Z_x F_y = 0.9 \times 480 \times 2530 \times 10^3 = 10.9 Tm$$

Resultados

Especificación o norma	carga total (Ton)
AISC-ASD-1989	9.2
NTC-1995	10.4

Ejemplo .Diseñar la viga continua de tres claros iguales de 6 m que se muestra en la figura, utilizando perfiles IPR. IR o W de acero NOM-B-254 (ASTM A36) y conforme a las Especificaciones AISC-LRFD-1993. La viga está soportada lateralmente sólo en los apoyos. La carga muerta es 1 Ton/m y la viva es 1.2 T/m; estas cargas son nominales (cargas de trabajo o de servicio)

Viga continua del ejemplo

SOLUCIÓN: Carga de diseño

 $W_{n} = 1.2DD - 1.6LL = 1.2 \times 1 + 1.6 \times 1.2 = 3.12 T m$

Diagrama de momentos flexionantes.

La solución de la viga continua de tres claros iguales y que soporta una carga uniformemente repartida es la siguiente:

Momento flexionante en el centro del claro

$$M_{max} = -0.1 \times 3 \ 12 \times 6^2 = 11 \ 23 \ T-m$$

Selección del perfil laminado IPR. IR o W

Se escoge un perfil laminado de sección I, de manera preliminar

$$\phi_b M_n = \phi_b M_p = \phi_b Z_x F_y$$

$$\phi_b M_n = M_u$$

$$M_u = \phi_b Z_x F_y$$

$$Z_x = \frac{M_u}{\phi_b F_y}$$

$$Z_{nec} = \frac{11.23 \times 10^5}{0.2 \times 2.530} = 493 \text{ cm}^3$$

De las tablas de dimensiones y propiedades de perfiles IPR, IR o W, se propone un perfil IPR, IR ó W. Se revisará un perfil IPR, IR o W 245 x 44.8 (10x30), que tiene un $Z_x = 531 \text{ cm}^3 + Zx_{nec} = 493 \text{ cm}^3$

$$M_n = C_b \left[M_p - \left(M_p - M_R \right) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \le M_p \tag{F1-2}$$

donde

$$M_p = F_y Z_x = 2.530 \times 331 \times 10^{-5} = 13.43 T - m$$

$$M_r = (F_y - F_r)S_x = (2\ 530 - 703)\ 531\ \times 10^{-5} = 9\ 7\ Tm$$

Coeficiente Cb

Para el primer tramo :

Para el segundo tramo :

$$M_{n} = 1.75 \left[13.43 - (13.43 - 9.7) \left(\frac{6 - 1.75}{6.23 - 1.75} \right) \right] = 17.3 \ T - m > M_{1}$$

 $\frac{M_1}{M_2} = 0$

 $\frac{M_1}{M_2} = I$

Como Mn es mayor que Mp, por lo tanto:

$$M_n = M_p = 13.43 \ Tm$$

 $C_o = 1.75$

 $C_{5} = 2.3$

Finalmente, el momento resistente es:

$$\phi M_n = 0.9 \times 13.43 = 12.1 \text{ Tm} > 11.23 \text{ Tm}$$
 (Momento de diseño)

Revisión por cortante

 $V_n = 0.6 F_y A_w = 0.6 \times 2.530 \times 26.6 \times 0.76 \times 10^3 = 30.7.T_{a}$ $\phi V_n = 0.9 \times 30.7 = 27.6 T \ge 0.6 \times 3.12 \times 6 = 11.2 Ton$

Revisión por deflexión

La carga de servicio(cxarga muerta y viva no factorizadas) es :

$$W_{sen,cio} = 100 - 1200 = 2200 \text{ kg/m}$$

$$\Delta = \frac{WL^4}{185EI} = \frac{-22 \times 600^4}{185 \times 2.039 \times 10^6 \times 7076} = 107 \text{ cm}$$

$$\Delta_p = \frac{L}{360} = \frac{600}{360} = 1.67 \text{ cm}$$

Deflexion permisible:

Como $\Delta = 1.07$ cm es menor que $\Delta_p = 1.67$ cm, el perfil propuesto es adecuedo

SOLUCIÓN: Utilizar un perfil; IPR, IR o W 254 x 44.8 (10x30)

Revisión del perfil según el criterio de compacidad.

Relaciones ancho/grueso

En la figura se indican las dimensiones del perfil propuesto, acotadas en mm

Patines:
$$\frac{b}{2t_f} = \frac{14.8}{2 \times 1.3} = 5.7 < \frac{545}{\sqrt{F_v}} = 10.8$$

Alma $\frac{h}{t_v} = \frac{26.6 - 2 \times 2.4}{0.76} = 28.7 < \frac{5.365}{\sqrt{F_v}} = 106.7$
La sección es compacta
Atoteoromes Aroma

Calculo de la resistencia nominal

La tongitud no soportada lateralmente es $L_b = 6 m y$ para el perfil seleccionado, la longitud máxima lateralmente para la cual $M_n = M_p$ se calcula con la ecuación siguiente:

$$L_p = \frac{2515r_v}{\sqrt{F_y}} = \frac{2515 \times 3.5}{\sqrt{2530}} = 175 \ cm \qquad (F1-4)$$

Cálculo de la longitud máxima no soportada lateralmente para la cual $M_n \ge M_r$

$$L_{r} = \frac{r_{v}x_{I}}{\left(F_{v} - F_{r}\right)} \sqrt{I - \sqrt{I + x_{2}\left(F_{v} - F_{r}\right)^{2}}}$$
(F1-6)

donde:

$$X_{1} = \frac{\pi}{S_{x}} \sqrt{\frac{EGJA}{2}} = \frac{\pi}{531} \sqrt{\frac{2039 \times 10^{6} \times 784 \times 10^{4} \times 258 \times 57.03}{2}} = 202\ 894\ kg\ .\ cm^{2}}$$
$$X_{2} = 4\frac{C_{w}}{I_{v}} \left(\frac{S_{v}}{GJ}\right)^{2} = \frac{4 \times 111\ 174}{695} \left(\frac{531}{784 \times 10^{4} \times 258}\right)^{2} = 44 \times 10^{-7}\ cm^{4}\ /\ kg^{2}$$
$$L_{i} = \frac{3.5 \times 202\ 894}{(2\ 530 - 703)} \sqrt{1 + \sqrt{1 + 4.4 \times 10^{-7}}(2\ 530 - 703)^{2}} = 623\ cm$$

Los valores L_P y L_r se encuentran tabulados en las ayudas de diseño.En la tabla Load Factor Design Selection Table(Selección de Diseño por Factores de Carga), para perfiles utilizados como vigas, pág 4-20, M-AISC-LRFD-I, para el perfil propuesto de acero Fy = 36 ksi se indican las longitudes Lp = 5.7 ft = 173.8 cm y L_r = 20.3 ft =618.7 cm

Como ·

$$L_p < L_b < L_i$$

175 cm < 600cm < 623cm (pandeo inelástico)

La resistencia nominal se determina con la ecuación (F1-2) de las especificaciones AISC-LRFD-1993

Ejemplo .Determinar la carga máxima de diseño w_u , uniformemente repartida de la viga libremente apoyada de la figura, de 7.5 m. de claro. La viga es un perfil IPR, IR ó W 457 x 74.5 (18 x 50) de acero NOM-B-254 o ASTM A36 y está soportada lateralmente exclusivamente en los apoyos. Suponer que la viga es adecuada por cortante.Utilice las Normas AISC-LRFD-1993.

$$X_{I} = \frac{\pi}{S_{\tau}} \sqrt{\frac{EGJA}{2}}$$
$$X_{2} = 4 \frac{C_{u}}{I_{v}} \left(\frac{S_{\tau}}{GJ}\right)^{2}$$

Para el perfil IPR, IR ó W 457 x 74.5 (18 x 50), los valores de X1 y X2 son

IPR. IR 6 157x715 (18x50)

$$\begin{split} X_{1} &= \frac{\pi}{1.457} \sqrt{\frac{2.039 \times 10^{6} \times 7.84 \times 10^{5} \times 516 \times 94.8}{2}} = 134.852 \text{ kg/cm} \\ X_{2} &= \frac{4 \times 816.349}{1.669} \left(\frac{1.457}{7.84 \times 10^{5} \times 51.6}\right)^{2} = 2.54 \times 10^{-6} \text{ kg/cm}^{-4} \\ M_{p} &= Z_{x} F_{y} = 1.655 \times 2.530 \times 10^{-5} = 41.9 \text{ Ton.m} \\ M_{r} &= S_{x} (F_{y} - F_{r}) = 1.457 (2.530 - 700) \times 10^{-3} = 26.6 \text{ Ton.m} \\ L_{p} &= \frac{2.515 r_{y}}{\sqrt{F_{y}}} = \frac{2.515 \times 4.2}{\sqrt{2.530}} = 210 \text{ cm.} \\ L_{r} &= \frac{r_{y} X_{1}}{F_{L}} \sqrt{1 + \sqrt{1 + X_{2} F_{L}^{-2}}} \quad \text{con} \quad F_{L} = F_{y} - F_{r} \\ L_{r} &= \frac{4.2 \times 134.852}{(2.530 - 700)} \sqrt{1 + \sqrt{1 + 2.54 \times 10^{-6} (2.530 - 700)^{2}}} = 626 \text{ cm} \end{split}$$

Los valores de L_p y L_r se encuentran en las tablas de selección para diseño por factores de carga, para perfiles utilizados como vigas, página 4-19, Manual AISC-LRFD, Volumen I.

Como $L_b=7.5 m. > L_r=6.26 m.$, el momento nominal está dado por la ecuación (F1-12)

$$M_n = M_{cr} \leq M_p$$

donde el momento crítico elástico se determina con la ecuación (F1-13)

$$M_{cr} = C_b \frac{\pi}{L_b} \sqrt{EI_y GJ} + \left(\frac{\pi E}{L_b}\right)^2 I_v C_w$$

La ecuación antenor puede escribirse en la forma -

$$M_{cr} = \frac{C_b S_1 N_1 \sqrt{2}}{L_b / r_v} \sqrt{1 + \frac{N_1^2 N_2}{2(L_b / r_y)^2}}$$

$$M_{cr} = \frac{1.14 \times 1.457 \times 134.852 \sqrt{2}}{750 / 4.2} \sqrt{1 + \frac{134.852^2 \times 2.54 \times 10^{-6}}{2(750 / 4.2)^2}} \times 10^{-5} = 23.3 \text{ Tor.} \text{ for}$$

$$M_{cr} = 24 \text{ Torn } m \ (\leq M_p = 41.9 \text{ Torn } m)$$

$$\phi N_n = 0.9 \times 23.3 = 21.0 \text{ Tor.} m$$

$$M_u \leq \phi M_n$$

$$\frac{W_u L^2}{8} \leq \phi M_n = 21.0 \text{ Torn } m$$

$$w_u = \frac{8 \phi M_n}{L^2} = \frac{8 \times 210}{7.5^2} = 3.0 \text{ Tor.} / m$$

Solución 2 (Ayudas de diseño)

MANUAL PARA DISENO DE ESTRUCTURAS METALICAS
 Héctor Soto Rodríguez

Se utiliza la gráfica de la pág 4-134, Momentos de diseño en vigas (ϕ =0.9, C_b =1.0 y F_y =36 Ksi), con L_b =25 ft (7.5 m). Con la longitud no arriostrada L_b =25 ft y leyendo en el eje vertical de la gráfica (momento de diseño ϕM_n), con la curva del perfil IPR, IR ó W 18 x 50, se obtiene ϕM_n =130 Kip-ft, el cual es igual a 18 Ton m

$$\phi M_n = C_b \phi M_n = 1.14 \times 18 = 20.5 \text{ Ton } m \le \phi M_p = 37.7$$

$$\delta C_b \phi M = 8 \times 20.5$$

$$W_u \le \frac{\delta C_b Q M_n}{L^2} = \frac{\delta \times 20.5}{7.5^2} = 2.9 \text{ Ton / } m$$

3.- Revisión de la sección

Patines

$$\frac{b_f}{2t_f} = \frac{19}{2 \times 1.45} = 6.6 < \frac{545}{\sqrt{F_v}} = 10.8$$
Alma

$$\frac{h_c}{t_v} = \frac{457 - 2 \times 3.2}{0.9} = 437 < \frac{5.635}{\sqrt{F_v}} = 107$$

Perfil IPR, IR o W 457x74.5 (18x50)

La sección es compacta solución: $w_{\mu} = 3.0$ Ton I m

 c_{β} 2 2

Ejemplo ligual que el ejemplo antenor, excepto que la viga, además de en los apoyos, está soportada lateralmente en el centro del claro.

Solución:_

1.- Procedimiento general

Coeficiente C_b

Como la viga está soportada lateralmente en los apoyos y en el centro del claro, se tienen dos segmentos no amostrados; para cada uno de ellos, el momento máximo es

Segmento 1-2

La ecuación de momento flexionante para una viga libremente apoyada, con carga uniformemente repartida es:

Para x=L/8

$$M(x) = \frac{wx}{2}(L-x)$$
Para x=L/8

$$M_{4} = \frac{wL}{16}\left(L - \frac{L}{8}\right) = \frac{7wL^{2}}{128} = 0.054 \ wL^{2} = 0.438 \ M_{max}$$
Para x=L/4

$$M_{B} = \frac{wL}{8}\left(L - \frac{L}{4}\right) = \frac{3wL^{2}}{32} = 0.09375 \ wL^{2} = 0.75 \ M_{max}$$
Para x=3L/8

$$M_{C} = \frac{3wL}{16}\left(L - \frac{3L}{8}\right) = \frac{15wL^{2}}{128} = 0.1172 \ wL^{2} = 0.9375 \ M_{max}$$

$$C_{b} = \frac{125 M_{max}}{2.5 M_{max} + 3 M_{A} + 4 M_{B} + 3 M_{C}}$$

$$C_{b} = \frac{12.5 M_{max}}{2.5 M_{max} + 3 \times 0.438 M_{max} + 4 \times 0.75 M_{max} + 3 \times 0.938 M_{max}} = 1.30$$

Del ejemplo antenor, L_p y L_r valen.

L_p=210 cm. L_r=626 cm.

Como $L_p < L_b < L_r$ (2.1 < 3.75 < 6.26 m), el momento nominal se determina con la ecuación (F1-2)

$$\mathcal{M}_{p} = C_{b} \left[\mathcal{M}_{p} - (\mathcal{M}_{p} - \mathcal{M}_{r}) \left(\frac{L_{b} - L_{p}}{L_{r} - L_{p}} \right) \right] \leq \mathcal{M}_{p}$$

donde.

· , .

$$M_{p} = 41.9 \text{ T m} \qquad M_{r} = 26.6 \text{ T m}$$
$$M_{n} = 1.3 \left[41.9 - (41.9 - 26.6) \left(\frac{3.75 - 2.1}{6.26 - 2.1} \right) \right] = 46.6 \text{ T m} > M$$

Como M_n es mayor que M_p :

$$M_n = M_p = 41.9 \text{ Tm}$$

 $dM_n = 0.9 \times 41.9 = 37.71 \text{ Tm}$

Finalmente

$$w_{u} = \frac{8\phi M_{n}}{L^{2}} = \frac{8 \times 37.71}{7.5^{2}} = 5.4 \text{ Ton}/m$$
$$w_{u} \le 5.4 \text{ Ton}/m$$

2.- Ayudas de diseño

Utilizando la gráfica de la página 4-130 (momentos de diseño en vigas, con $\phi=0.90$, $C_b=1.0$ y $F_y=36$ Ksi) del Manual AISC-LRFD-1993, Volumen I, con $L_b=12$ 3 (3.75 m.) y con la curva del perfil W 18 x 50, se obtiene un momento de diseño de ϕM_p de 232 Kip-ft (32.1 Ton m)

$$\dot{\phi} M_n = 32.1 \times 1.3 = 41.7 \quad Ton.m > \phi M_p = 37.8 \quad Ton.m = \phi M_p = 37.8 \quad Ton.m = 0$$

$$\dot{\phi} M_n = \phi M_p = 37.8 \quad Ton.m = 0$$

$$w_\mu = \frac{8 \phi M_n}{L^2} = \frac{8 \times 37.8}{L^2} = 5.4 \quad Ton/m$$

Nótese que la capacidad de carga del perfil IPR, IR ó W 457 x 74.5 (18 x 50), utilizado como viga libremente apoyada de 7.5 m de claro, con soporte lateral en el centro del claro, es casi el doble de la viga con soportes laterales exclusivamente en los apoyos. *Ejemplo* .Una viga continua con dos claros iguales de 9 m cada uno, soporta una carga uniformemente repartida de 4 5 Ton / m. Diseñar la viga utilizando perfiles IPR ó W de acero NOM-B-254 (ASTM A-36) y de acuerdo con el diseño elástico o diseño por esfuerzos permisibles (Especificaciones AISC-ASD-1989). Además de los apoyos, la viga tiene soportes laterales a distancias de 1) 2.25 m y 2) 4.5 m.

1. Viga con soportes laterales a cada 225 cm

Diagrama de cortantes, momentos flexionantes y deflexiones.

En la página 79 del Manual AHMSA para construcción en acero, edición 1996, se presentan los valores de los elementos mecánicos (momentos flexionantes y fuerza cortante) para una viga continua con dos claros iguales y sujeta a una carga uniformemente repartida. De acuerdo con esta información, los diagramas referidos son.

De acuerdo con los coeficientes de los diagramas antenores, los elementos mecánicos para la viga en estudio tienen las siguientes magnitudes.

Por otro lado, el capitulo F de las Especificaciones AISC-ASD-1989 indica que, los miembros que cumplan los requisitos de secciones compactas y que sean continuos sobre apoyos, pueden diseñarse para 9/10 de los momentos flexionantes producidos por las cargas gravitacionales, cuando estos momentos sean máximos en los puntos de apoyo, siempre que, en esos miembros, el momento positivo se incremente en 1/10 del promedio de los momentos negativos

Determinación del peralte de la viga.

El peralte del perfil se calcula de acuerdo con la regla práctica siguiente

Peralte de vigas fabricadas con perfiles laminados= claro/15

$$d = \frac{l}{20} = \frac{900}{20 \times 2.54} = 23.6 \text{ in}$$

Se propone un perfil IPR, IR o W de 610 mm (24 in) de peralte De las tablas de dimensiones teóricas y propiedades para diseño de vigas perfil rectangular IPR del catálogo de perfiles de acero, Altos Hornos de México 1994, se escoge el perfil más liviano del grupo de de 24 in de peralte.

> Perfil IPR , IR ó W (24 x 9)⁺, peso: 101 184 kg / m Designación IMCA IR 610x101.6 (24x68) Designación AISC. W24x68

3 Revisión de los requisitos de sección compacta.

Suponiendo que el perfil propuesto es compacto y está soportado adecuadamente. Cabe señalar que la mayor parte de los perfiles IPR, IR ó W que se producen en México y en los Estados Unidos de América cumplen los requisitos de secciones compactas. Por otro lado, el momento máximo negativo de 45.6 Tm debe ajustarse.

Estos numeros son el peralte y ancho de patines, de acuerdo con la designación AHMSA

3.1 Módulo de sección requerido.

donde:

M es el momento flexionante , en Tm

 F_{b} = Esfuerzo de flexión permisible, en kg/cm²

= $0.66 F_v = 0.66 \times 2.530 = 1.670 \text{ kg} / \text{cm}^2$, para secciones compactas.

$$S = \frac{41.04 \times 10^3}{1.670} = 2.457 \ cm^3$$

El perfil IPR 24(24 x 9) de peso 101.184 tiene un módulo de sección elástico $S_r = 2.524 \text{ cm}^3 > S_{nec} = 2.457$

3.3 Longitud entre soportes laterales

Enseguida se revisa si la viga está arriostrada lateralmente. La condición que se debe cumplir de acuerdo con las especificaciones AISC-ASD-1989, es.

$$l \leq \frac{640b_f}{\sqrt{F_y}} = \frac{640 \ b_f}{\sqrt{2 \ 530}} = 12.7 \ b_f = 12.7 \times 22.77 = 289 \ cm$$

$$l \leq \frac{1\ 410\ 000}{\left(\frac{d}{A_f}\right)F_y} = \frac{1\ 410\ 000}{\left(\frac{60.3}{22.77 \times 1.49}\right)2530} = 314 \ cm$$

Como la longitud no arriostrada / = 225 cm es menor que la menor de las longitudes calculadas anteriores, el perfil IPR, IR o W propuesto tiene sujeción lateral adecuada, por consiguiente el esfuerzo de flexión permisible supuesto para secciones compactas, utilizado en el cálculo del modulo de sección necesario, es correcto

El momento máximo positivo de 25.5 Tm deberá incrementarse en 1/10 del promedio de los momentos negativos, es decir:

$$M = M + \frac{I}{I0} \left(\frac{M_A + M_B}{2} \right) =$$

$$M = 25.5 + \frac{1}{10} \left(\frac{0 + 45.6}{2} \right) = 27.8 \ Tm$$

Como el valor absoluto de este momento incrementado es menor que el valor del momento negativo ajustado (41 04 Tm), no hace falta revisar los esfuerzos de flexión en esta sección de la viga.

Diseño por cortante

El esfuerzo cortante en el alma de secciones laminadas debido a la fuerza cortante máxima se calcula con la ecuación siguiente:

$$f_{v} = \frac{V}{A_{w}} = \frac{V}{dt_{w}} \frac{253 \times 10^{3}}{60.3 \times 1.05} = 400 \text{ kg}/\text{ cm}^{2}$$

$$f_{v} = 400 \text{ kg}/\text{ cm}^{2} < F_{v} = 0.4 F_{y} = 0.4 \times 2530 = 1.012 \text{ kg}/\text{ cm}^{2}$$
 bien

Correcto

Cálculo de los esfuerzos actuantes en la viga.

El esfuerzo de flexión se determina con el momento máximo negativo ajustado.

$$\frac{1}{f_b} = \frac{M}{S} = \frac{41.04 \times 10^2}{2.524} = 1.626 \text{ kg}/\text{ cm}^2$$

$$6 = 1.626 < F_b = 0.66 \text{ F}_c = 1.670 \text{ kg}/\text{ cm}^2$$

5. revisión por deflexión

La deflexión máxima se calcula con la expresión siguiente:

$$\Delta_{max} = \frac{0.0037 \times 45 \times 900^4}{2.039 \times 10^6 \times 76.170} = 1.08 \text{ cm}$$

La deformación permisible de acuerdo con el AISC es:

$$\Delta_{p} = \frac{L}{360} = \frac{900}{360} = 2.5 \text{ cm}$$

$$\Delta_{max} \approx 1.08 < \Delta_{p} = 3.0 \text{ cm} \qquad \text{Bien}$$

2. Viga con soportes laterales a cada 450 cm.

Como la longitud no arriostrada l = 450 cm es mayor que 314 cm (longitud calculada con las especificaciones AISC-ASD-1989), obviamente el perfil IPR, IR o W seleccionado en el punto anterior tiene soportes laterales insuficientes, aunque cumpla con los demás requisitos de sección compacta. En este caso no se permite reducir el momento flexionante negativo y el esfuerzo de flexión permisible se debe reducir. Suponiendo que el esfuerzo de flexión permisible sea $F_b = 0.8 \times 0.66 \times 2.530 = 1.350 \text{kg} \times cm^2$ (el 80% del esfuerzo de flexión permisible para secciones compactas), el modulo de sección requendo es

$$S_x = \frac{M}{F_b} = \frac{45.6 \times 10^3}{1.350} = 3.378 \text{ cm}^3$$

De las tablas de dimensiones y propiedades del Manual de Construcción en Acero, AISC-ASD-1989 se esoge un perfil W 686X125 6 (27 x 84)

$$S_x = 3.490 \text{ cm}^3 > S_{nec} = 3.378 \text{ cm}^3$$

Cálculo del esfuerzo de flexión actuante

$$f_b = \frac{M}{S_x} = \frac{45.6 \times 10^3}{3.490} = 1.307 \text{ kg/cm}^2$$

Para determinar el esfuerzo de compresión permisible en la viga, se deben considerar dos segmentos: segmentos 1y 2. En el 1, el momento flexionante no es un máximo absoluto, pero se presenta dentro de este, por consiguiente el coeficiente de flexión C_b se tomará igual a la unidad. El radio de giro r_7 para el perfil W 27 x 84 (686x125.6) es 6.32 cm y la relación de esbeltez $1/r_7$ es :

$$H = c \qquad \frac{H_{mex}}{4.5m} \qquad C_{5=1.0} \qquad \frac{1}{r_{T}} = \frac{450}{6.32} = 71.4$$

Esta relación se encuentra entre los valores límites establecidos en las especificaciones AISC-ASD

1989. Véase Sección F-3, pág.5-47, M-ÁISC-ASD-1989

$$\sqrt{\frac{717 \times 10^{4}C_{b}}{F_{y}}} = 53 \le \frac{l}{r_{T}} = 712 \le \sqrt{\frac{3.590 \times 10^{4}C_{b}}{F_{y}}} = 119$$

En las ecuaciones anteriores se tomó $C_b = 1.0 \text{ y} F_v = 2.530 \text{ kg} / \text{cm}^2$.

De acuerdo con lo antenor, el esfuerzo permisible será el valor mayor obtenido con las ecuaciones (F1-6) o (F1-8). La ecuación (F1-8) se utiliza siempre y cuando el valor obtenido no sea mayor de 0.60 F_y (0.60x 2.530 =1.518 kg / cm²)

$$F_{b} = \left[\frac{2}{3} \div \frac{F_{v}(l/r_{T})^{2}}{l\,080 \times 10^{5} \times C_{b}}\right] F_{jv}$$
(F1-6)
$$F_{b} = \left[\frac{2}{3} \div \frac{2\,530(71\,2)^{2}}{l\,080 \times 10^{5} \times l}\right] 2\,530 = l\,385\,kg/cm^{2}$$

$$F_{v} = \frac{844 \times 10^{3}C_{b}}{ld/A_{f}} = \frac{844 \times 10^{3} \times l}{450 \times 1.65} = l\,137\,kg/cm^{2}$$
(F1-8)

Como el mayor valor de 1 385 kg / cm², es menor que $F_b = 1.518 \text{ kg} / \text{cm}^2 (0.60 \text{ } F_y)$, se toma $F_b = 1.385 \text{ kg} / \text{cm}^2 \text{ para el segmento 1}$

El esfuerzo de flexión en este segmento es:

$$f_b = \frac{M}{S} = \frac{25.5 \times 10^3}{3.490} = 731 \text{ kg} \cdot \text{cm}^2 < 1.385 \text{ kg} \cdot \text{cm}^2$$
 Correcto

En el segmento 2, el momento extrerno se presenta en el apoyo B, por consiguiente el coeficiente de flexión vale:

$$C_{5} = 1.75 + 1.05(M_{1} / M_{2}) + 0.3(M_{1} / M_{2}) = 1.75 + 1.05(20 + 1.45.6) + 0.3(20 + 1.45.6) = 2.36$$

Como C_b = 2.36 es mayor que 2.3, se toma C_b =2.3

El valor ifmite inferior de la relación de esbeltez, $l \neq r_T$, de acuerdo con la ecuación (F1-6), es:

$$\sqrt{\frac{717 \times 10^4 C_b}{F_y}} = \sqrt{\frac{717 \times 10^4 \times 2.3}{2.530}} = 30.47 > \frac{1}{r_T} = \frac{450}{6.3} = 71.4$$

Por consiguiente, en el segmento 2, el esfuerzo permisible es -

$$F_b = 0.60 F_y = 0.60 \times 2530 = 1.518 \text{ kg/cm}^2$$

Esfuerzo de flexión actuante

$$f_b = \frac{M}{S} = \frac{45.6 \times 10^5}{3.490} = 1.307 \text{ kg}/\text{cm}^2$$

$$F_{b} = 1.307 < F_{b} = 1.518 \text{ kg} / \text{cm}^{2} (F_{b} = 0.60 \text{ }F_{y})$$
 correcto

Revisión de la deflexión

$$\Delta_{max} = \frac{0.0057WL^4}{EI} = \frac{0.0057 \times 45 \times 900^4}{2.07 \times 10^6 \times 118.626} = 0.70 \text{ cm} < \Delta_p = 2.5 \text{ cm} \qquad \text{bien}$$

15.

Por lo tanto, el perfil propuesta para la viga es adecuado.

ŝ

En la figura siguiente se muestra un edificio de 8 niveles que se utilizará como oficinas. Su estructuración es a base de columnas de sección en cajón rectangulares y vigas de s'ección transversal I (perfiles laminados IPR, IR ó W), formando marcos rígidos en dos direcciones ortogonales. Revisar de acuerdo con las Especificaciones AISC-ASD-1989 la columna B-2 comprendida entre los niveles 6 y 7. Tanto las columnas y vigas son de acero NOM-B-254 (ASTM A36). Los elementos mecánicos que se indican en la figura corresponden a solicitaciones de trabajo. En cada tramo de columna se han anotado los momentos en los extremos. Todos los momentos tanto de carga vertical, como de sismo flexionan a la columna en curvatura doble.

br Vigas Perfil IPR, IR 'o W

28

2.8

28

28

28

28

2.6

2.6

Solución:

Los elementos mecánicos en la columna corresponden a cargas de trabajo.

2. Características y propiedades de la sección transversal total

$$A_{1} = 2x1.59(22.0 + 25) = -149.46 \text{ cm}^{2}$$

$$I_{x} = 2\left[\frac{1}{12}x25x1.59^{3} + 25x1.59x11.795^{2}\right] - 2\left(\frac{1}{12}x1.59x23^{3}\right) = 13.899 \text{ cm}^{4}$$

$$I_{y} = 2\left[\frac{1}{12}x25^{3}x1.59 + 2\left(\frac{1}{12}1.599^{3}x22 + 1.59x22x10.705^{2}\right)\right] + 12.173 \text{ cm}^{4}$$

$$r_{x} = \sqrt{\frac{1}{14}} = \sqrt{\frac{13.899}{149.46}} = 9.66 \text{ cm}, \quad \dot{r}_{y} = \sqrt{\frac{1}{14}} = \sqrt{\frac{12.173}{149.46}} = 9.0 \text{ cm}$$

$$S_{x} = \frac{1}{\frac{d}{2}} = \frac{13.899}{25.18} = 1.104 \text{ cm}^{3}, \quad S_{y} = \frac{1}{\frac{b}{2}} = \frac{12.173}{25} = 974 \text{ cm}^{3}$$

Clasificación de la sección.

Relaciones ancho-grueso

Las Especificaciones AISC-ASD-1989 establecen que para elementos atiesados de secciones en cajón, las relaciones ancho-grueso máximas para que no se inicie el pandeo local, "de acuerdo con la Tabla B.5.1, son:

Elemento	Relación ancho/ grueso	Sección compacta	Sección no compacta
Patines de secciones huecas en cajón, cuadradas o rectangulares	$\frac{b}{t}$	$\frac{1\ 600}{\sqrt{F_{\rm W}}} = 32$	$\frac{2\ 000}{\sqrt{F_v}} = 40$
Almas en elementos sujetos a flexión y compresión axial combinadas	<u>.</u> 	Para: $\frac{f_{a}}{F_{y}} \leq 0.16$ $\frac{5.375}{\sqrt{F_{y}}} (1 - 3.74 F_{y})$	Para: $\frac{\int_{a}}{F_{y}} > 0.16$ $\frac{2.155}{\sqrt{F_{y}}} = 43$

Tabla B5.1 Relaciones máximas ancho/grueso de elementos en compresión

- Columne dimensionaly comp

 $\frac{Placas horizontales (patines)}{t} = \frac{20.23}{1.59} = 12.7 < 32.0$

Placas verticales (almas) $\frac{b}{t} = \frac{22.0}{1.59} = 13.8$

í

El ancho plano de los patines se tomo igual al ancho total de la sección menos tres veces el grueso. Relación máxima ancho-grueso para las almas

$$f_a = \frac{P_I}{A}$$

donde:

 P_T = (Para carga vertical + sismo X + 0.3 sismo Y) = 75 + 12 = 87 Ton

$$f_{a} = \frac{87 \times 10^{3}}{149.46} = 582 \text{ kg}/\text{cm}^{2}$$

$$\frac{f_{a}}{F_{y}} = \frac{582}{2.530} = 0.23 \implies 0.16$$

Como $f_s/F_s = 0.23$, es mayor que 0.16, la relación máxima ancho/grueso para las almas, es

$$\frac{h}{l_w} = \frac{2.155}{\sqrt{F_y}} = \frac{2.155}{2.530} = 43.0 > 13.8 \quad OK.$$

La sección es compacta, y el esfuerzo de flexión permisible, es :

$$F_b = 0.66 F_v = 0.66x2530 = 1.670 \text{ kg} \times \text{cm}^2$$

Verificación de los requisitos adicionales para clasificar la sección como compacta

Requisitos de secciones en cajon para ser clasificadas como compactas Los patines deben estar unidos continuamente a las almas. Se cumple.

La longitud no soportada lateralmente del patín en compresión (L_b), no debe exceder el valor de L_c , que es el menor de los siguientes:

$$L_{c} = (137\,100 + 84\,400\,\frac{M_{1}}{M_{2}})\frac{b}{F_{y}} \qquad \qquad L = 84\,400\,\left(\frac{b}{F_{y}}\right)$$

 $M_1 \neq M_2$ menor y mayor de los momentos en los extremos de la longitud no arriostrada, tomados con respecto al eje de mayor momento de inercia del miembro.

 M_IM_2 es positiva, cuando M_I y M_2 tienen el mismo signo (flexión en curvatura doble) M_IM_2 , es negativa, cuando M_I y M_2 tienen signos contrarios (flexión en curvatura simple). En nuestro caso:

$$M_1 = \pm 7.0 \text{ ton } m_1 y \ M_2 = \pm 7.5 \text{ ton} m_1 M_1 / M_2 = 0.933$$

 $L_{c} = \left[137\ 100 + 84\ 400_{\lambda}0\ 933\right] \frac{25}{2\ 530} = 2\ 133\ cm. \qquad -1. - 84\ 400\ \frac{25}{2\ 530} = 834\ cm$

La longitud menor $L_c = 834$ cm., es mucho mayor que la altura de la columna, 2.80 m.

La interacción de flexión y compresión está limitada por las ecuaciones (H1-1), (H1-2) y (H1-3) de las Especificaciones AISC-ASD-1989.

$$\frac{f_{ab}}{F_{ab}} = \frac{C_{mv} f_{bv}}{\left[1 - \frac{f_{ab}}{F_{vv}}\right] F_{mv}} + \frac{C_{mv} f_{bv}}{\left[1 - \frac{f_{ab}}{F_{vv}}\right] F_{bv}} \le 1.0$$
(H1-1)

$$\frac{f_{a}}{0.60 F_{v}} + \frac{f_{bv}}{F_{bv}} + \frac{f_{bv}}{F_{bv}} \le 1.0$$
(H1-2)

$$\frac{f_{a}}{F_{a}} \cdot \frac{f_{bx}}{F_{bx}} - \frac{f_{by}}{F_{by}} \le 1.0$$
(H1-3)

Las ecuaciones (H1-1) y (H1-2) se usan cuando $f_a/F_a > 0.15$ y la ecuación (H1-3) se permite utilizar en vez de las ecuaciones referidas, si $\frac{f_a}{F_a} \le 0.15$.

Relación j"F.,

 $f_{a} = 582 \text{ kg cm}^{2}$

Para el cálculo del esfuerzo de compresión axial permisible, F_a , es necesario determinar primeramente los factores de longitud efectiva K_x y K_y y posteriormente las relaciones de esbeltez.

Cálculo de las restricciones rotacionales.

Columna en estudio y estructura a base de inarcos rigidos de la que forma parte

Nudo superior A

Marco eje B

$$\psi_{A} = \frac{43.5 + 43.5}{29.5 + 34.1} = 1.4$$

Marco eje 2

Nudo superior

 $\Psi_{A} = \frac{49.6 - 49.6}{38.1} = 2.6$ $\Psi_{B} = \frac{49.6 + 49.6}{48.3} = 2.1$

Por tratarse de una estructura formada por marcos rígidos sin contraventeo en dos direcciones, se usará el nomograma de Jackson y Moreland, caso b (desplazamientos laterales permitidos).

 $\psi_B = \frac{43.5 + 43.5}{35.0 + 37.5} = 1.2$

Nudo inferior

Nudo inferior

Marco eje 2

Nudo superior

Nudo inferior

$$\Psi_{\pm} = \frac{49.6 \pm 49.6}{38.1} = 2.6$$
 $\Psi_{B} = \frac{49.6 \pm 49.6}{48.3} = 2.1$

Por tratarse de una estructura formada por marcos rígidos sin contraventeo en dos direcciones, se usará el nomograma de Jackson y Moreland, caso b (desplazamientos laterales permitidos).

Marco eje BMarco eje 2
$$y_A = 1.4$$
 $k_2 = 1.35$ $y_B = 1.2$ $y_A = 2.6$ $y_B = 1.2$ $K_x = 1.65$ Relaciones de esbeltez $y_B = 2.1$ Pandeo alrededor del eje X (Plano Y-Z)Pandeo alrededor de Y (Plano X-Z) $\left(\frac{KL}{r}\right)_x = \frac{1.65 \times 280}{9.6} = 48$ $\left(\frac{KL}{r}\right)_y = \frac{1.35 \times 280}{9.0} = 42$

Como $[KL/r]_x = 48$, es mayor que $[KL/r]_x = 42$, el plano de pandeo es el YZ, es decir la flexión por pandeo se presenta alrededor del eje X y para determinar el esfuerzo de compresión axial permisible F_a , se tomará el valor mayor de las relaciones de esbeltez (48). Coeficiente C

$$C_c = \sqrt{\frac{2\pi^2 E}{F_y}} = 126.1$$
 (acero NOM-B-254 ó ASTM A-36)

Puesto que $[KL/r]_{\tau}$ =48, es menor que C_c = 126 1, el pandeo ocumirá en el rango inelástico, y por lo tanto el esfuerzo de compresión axial permisible se calcula con la ecuación (E2-1) de las Especificaciones AISC-ASD-1989.

$$F_{a} = \frac{\left(I - \frac{(KL/r)^{2}}{2C_{c}^{2}}\right)F_{v}}{\frac{5}{3} - \frac{3\left(\frac{KL}{r}\right)}{8C_{c}^{-3}} - \frac{(KL/r)^{3}}{8C_{c}^{-3}}} = \frac{\left(I - \frac{48^{2}}{2 \times 126.1^{2}}\right)2.530}{\frac{5}{3} - \frac{3 \times 48}{8 \times 126.1^{-3}}} = 1.302 \text{ kg} \neq cm^{2}$$

Luego:

 $\frac{f_a}{F_a} = \frac{582}{7302} \approx 0.45 \qquad 0.15$, deberán usarse las ecuaciones (H1-1) y (H1-2).

Aplicando la ecuación (H1-1)

$$\frac{f_{a}}{F_{a}} = 0.44 \quad (adimensional) \qquad (f_{a} \neq 582 \text{ kg} \times \text{cm}^{2}) = 0.44 \quad (adimensional) \qquad (f_{a} \neq 582 \text{ kg} \times \text{cm}^{2}) = 0.44 \quad (adimensional) \qquad (f_{a} \neq 582 \text{ kg} \times \text{cm}^{2}) = 0.44 \quad (adimensional) = 0$$

 $C = 0.6 - 0.4(M_1/M_2) = 0.6 - 0.4(0/7.2) = 0.6$

$$P_e = \frac{\pi^2 E \mathbf{1}_g}{\left(\frac{KL}{r}\right)^2}$$

La relación de esbeltez KL/r involucrada en el momento magnificador es la referida al eje de flexión, en este caso eje X-X.

Eje de flexión $\frac{KL}{r} = \frac{KL}{r_{\rm V}} = 26.5$

$$P_{e} = \frac{\pi^{2} \times 2.039 \times 10^{6} \times 94.8 \times 10^{-3}}{26.5^{2}} = 271.7 \text{ Ton}$$

$$B_{I} = \frac{0.6}{1 - \frac{88}{271.7}} = 0.89$$

Como el factor de amplificación calculado es menor que la unidad, se usará $B_1 = 1.0$

$$M_{ux} = M_{m} = 7.2 T$$
 .m

Revisión de acuerdo con la ecuación (H1-1a)

$$\frac{P_u}{\phi_c P_u} + \frac{\vartheta}{\vartheta} \left(\frac{M_{ux}}{\phi_b M_{ux}} + \frac{M_{uy}}{\phi_b M_{uy}} \right) \le 1.0$$

 $M_{uy}=0$. Puesto que solamente hay flexocompresión en el plano Y-Z, se omite en la ecuación anterior el término de flexión alrededor del eje Y-Y.

$$\frac{P_{u}}{\phi_{c}P_{n}} + \frac{8}{9} \left(\frac{\epsilon M_{ux}}{\phi_{b} M_{uy}} \right) \leq 1.0$$

donde:

$$\frac{P_u}{\phi_c P_n} \approx 0.78 \qquad \qquad \frac{M_{uv}}{\phi_b M_{uv}} = \frac{7.2}{0.90 \times 38.2} = 0.21$$
$$\frac{P_u}{\phi_c P_n} + \frac{8}{9} \left(\frac{M_{uv}}{\phi_b M_{uv}}\right) = 0.78 + 0.21 = 0.99 < 1.0$$

La sección IPR, IR ó W 406 x 74.4 (16 x 50) utilizada como columna es adecuada, según las especificaciones AISC-LRFD-1993.

$$Como \frac{P_n}{\phi_n P_n} = \frac{383}{112.7} = 0.78 > 0.2, \text{ se usará la ecuación (H1 - 1a)}$$
Cálculo de L_p y L_r ($L_b = 450 \text{ cm.}$)

$$L_p = \frac{2515}{\sqrt{F_y}} r_y = \frac{2515 \times 4}{\sqrt{2530}} = 200 \text{ cm}$$

$$X_T = \frac{\pi}{S_x} \sqrt{\frac{P(G)/4}{2}} - \frac{\pi}{1327} \sqrt{\frac{2.039 \times 784.000 \times 63.3 \times 94.8}{2}} - 163.960 \text{ kg / cm}^2 \quad \text{donde.}$$

$$L_r = \frac{r_y X_T}{(F_{yye} - F_r)} \sqrt{1 + \sqrt{1 + X_2(F_y - F_r)}^2}$$

$$C_w = -\frac{I_y d'^2}{4} = -\frac{1548 (41.3 - 16)^2}{4} = 609.947 \text{ cm}^6$$

$$X_2 = 4 \frac{C_w}{I_y} \left(\frac{S_x}{GJ}\right)^2 = 4 \frac{609.947}{1548} \left(\frac{1.327}{784.000 \times 63.3}\right)^2 = 1.13x 10^{-6} \text{ cm}^4 / \text{kg}^2$$

$$L_r = \frac{4 \times 163.960}{(2.530 - 703)} \sqrt{1 + \sqrt{1 + 1.13 \times 10^{-6}(2.530 - 703)^2}} = 640 \text{ cm.}$$

Como $L_p = 200 < L_b = 450 < L_r = 640$, la resistencia nominal por flexión M_n , se determina con la ecuación (F1-3)

$$M_{n} = C_{b} \left[M_{p} - (M_{p} - M_{r})(\frac{L_{b} - L_{p}}{L_{r} - L_{p}}) \right] \le M_{p}$$

donde.

$$C_{b} = 1.75 + 1.05(M_{1} / M_{2}) + 0.3(M_{1} / M_{2})^{2} \le 2.3$$

$$Como \qquad M_{1} = 0 \qquad C_{b} = 1.75$$

$$M_{p} = F_{y}, Z_{x} = 2.530 \times 1.508 \times 10^{-3} = 38.2 \text{ Ton.m}$$

$$M_{r} = (F_{y} - F_{r}) S_{x} = (2.530 - 703)1.327 \times 10^{-5} = 24.2 \text{ Tm}$$

$$M_{n} = 1.75 \left[38.2 - (38.2 - 24.2)(\frac{4.5 - 2}{6.4 - 2}) \right] - 52.9 \text{ Tm}$$

Puesto que $M_n = 52.9$ ton-m no debe exceder M_p , $M_n = M_p = 38.2$ T mCálculo de M_{ux}

$$M_{uv} = B_T M_{ut}$$
$$B_T = \frac{C}{I - P_u + P_c} \ge 1.0$$

donde:

Calculo de la resistencia de diseño $\phi_c P_n$

Clasificación de la sección.

De acuerdo con LRFD-B5, las secciones de acero se clasifican en compactas, no compactas y secciones esbeltas. Para que una sección se califique como compacta, debe cumplir con los requisitos siguientes.

٠**.**.

- 1. Los patines deben estar conectados de manera continua al alma o almas.
- 2 Las relaciones ancho/grueso de sus elementos en compresión no deben exceder las relaciones máximas ancho/grueso (I_p) indicadas en la tabla B5.1 de las especificaciones señaladas.

 $\frac{b}{t} = \frac{18}{2 \times 1.6} = 5.6 < \lambda_{\mu} = \frac{545}{\sqrt{F_{\mu}}} = 10.8$ Alma $\frac{T}{t_{w}} = \frac{34.7 - 2 \times 3.3}{0.97} = 29 < \lambda_{\mu} = \frac{5.370}{\sqrt{F_{\mu}}} = 107$

La sección es compacta

Parámetro de esbeltez de la columna (λ_c).

Utilizando la ecuación (E2-4) de las Especificaciones AISC-LRFD-1993:

$$\lambda_c = \frac{KL}{r\pi} \sqrt{\frac{E_v}{E}}$$

Patines

· ; .

$$\left(\frac{KL}{r}\right)_{x} = \frac{1 \times 450}{17} = 26.5 \qquad \left(\frac{KL}{r}\right)_{y} = \frac{1 \times 450}{4} = 112.5$$

La mayor relación de esbeltez, es la que se utiliza para calcular le:

$$\lambda_c = \frac{112.5}{\pi} \sqrt{\frac{2530}{2039 \times 10^6}} = 1.26.$$

Como $l_c = 1.26$ es menor que 1.5, el esíuerzo crítico, se determina con la ecuación (E2-3)

$$F_{\rm er} = \left[\frac{0.877}{\lambda_{\rm c}^2}\right] F_{\rm y} = \left[\frac{0.877}{1.26^2}\right] 2530 = 1.398 \, \rm kg \, / \, \rm cm^2$$

De acuerdo con LRFD-E2, la resistencia de diseño $\phi_c P_n$, está dada por la ecuación (E2-1)

$$\tilde{\phi}_{c} \tilde{P}_{n} = \phi_{c} F_{cr} A_{g}$$

Δ.

$$= 0.85 \times 1.398 \times 94.8 \times 10^{-3} = 112.7$$
 Ton.

 $\mathbb{V} = \mathbb{O}$

Ejemplo Revisar con las Especificaciones AISC-LRFD-1993, si el perfil IPR, IR o W 406 x 74.4 (16 x 50) de acero NOM-B-254 (ASTM A36) de la columna de 4.5 m de altura, es adecuada para soportar las cargas que actúan sobre ella. Las cargas que se indican corresponden a solicitaciones de trabajo (cargas nominales)

SOLUCIÓN

Cargas factorizadas o de diseño

Las acciones de diseño se obtienen multiplicando las cargas nominales por los factores de carga correspondientes

$$P_{\mu} = 1.2 P_{D} + 1.6 P_{L} = 1.2 \times 20 + 1.6 \times 40 = 88 Ton$$

$$M_{tht} = 1.2 M_{D} + 1.6 M_{L} = 1.2 \times 2 + 1.6 \times 3 = 7.2 Tm$$

$$M_{u} = B_{L} M_{tht}$$

El Diseño por Factores de Carga y Resistencia (Especificaciones AISC-LRFD-H1), utiliza las ecuaciones (H1-1â) y (H1-1b) para miembros sometidos simultáneamente esfuerzos de compresión axial y momentos flexionantes.

$$\frac{P_{u}}{\phi P_{n}} + \left(\frac{M_{uv}}{\phi_{b}M_{nv}} + \frac{M_{uv}}{\phi_{b}M_{nv}}\right) \le 1.0 \qquad Para \frac{P_{u}}{\phi P_{n}} \ge 0.2 \qquad (H1-1a)$$

$$\frac{P_{u}}{2\phi P_{n}} + \left(\frac{M_{uv}}{\phi_{b}M_{nv}} + \frac{M_{uv}}{\phi_{b}M_{nv}}\right) \le 1.0 \qquad Para \frac{P_{u}}{\phi P_{n}} \le 0.2 \qquad (H1-1b)$$

Relación $\frac{P_u}{\phi P_i}$

$P_{\mu} = 88 Ton$

$$f_{bx} = \frac{M_v}{S_x} = \frac{(25+4)10^6}{1104} = 588.8 \text{ kg}/\text{cm}^2 \qquad f_{by} = \frac{M_v}{S_y} = \frac{12 \times 10^5}{974} = 1.232 \text{ kg}/\text{cm}^2$$

 $F_{ln} = 0.75F_{v} = 0.75 \times 2530 \approx 1.890 \text{ kg/cm}^2$

$$F_{ex} = \frac{12\pi^2 E}{23\left(\frac{KL}{r}\right)^2} = \frac{12\pi^2 x^2 0.39x 10^6}{23x 48^2} = 4.557 \text{ kg/cm}^2$$

$$F_{\text{eyv}} = \frac{12\pi^2 E}{23\left(\frac{KL}{r}\right)^2} = \frac{12\pi^2 x 2.039 x 10^6}{23 x 42^2} = 5.952 \text{ kg} \times \text{cm}^2$$

 $C_{nv} = C_{nv} = 0.85$ En los planos YZ y XZ no existen elementos que impidan el desplazamiento relativo entre los extremos.

Sustituyendo los valores anteriores en la ecuación (H1-1)

$$0.45 + \frac{.0.85 \times 588.8}{\left(1 - \frac{.582}{.4557}\right)/670} - \frac{.0.85 \times 1.232}{\left(1 - \frac{.582}{.5952}\right)/900} = 0.45 + 0.343 + 0.61 = 1.4 \approx 1.33$$

Aplicando la ecuación (H1-2)

 $\frac{582}{0.6 \times 2.530} + \frac{538.8}{1.670} + \frac{1.232}{1.900} = 0.383 + 0.353 + 0.648 = 1.38 \approx 1.33$

Como la combinación de carga que rige el diseño es carga muerta, carga viva y sismo, todos los esfuerzos permisibles de las ecuaciones de interacción F_{ac} F_{bc} y, F_{bc} , de acuerdo con la Sección 1.5.6, Esfuerzos causados por viento y sismo, del Manual de Construcción en Acero IMCA. Tomo I, pueden incrementarse en un tercio, de manera que la sección propuesta es adecuada de acuerdo con el diseño por esfuerzos permisibles (Especificaciones IMCA-1987 y AISC-ASD-1989).

$$a_{nec} = \frac{1}{0.9 \times 2.530} = 4.92 \text{ cm}$$

De las tablas de dimensiones y propiedades de perfiles IPR. IR o W, se propone un perfil IPR. IR o W Se revisará un perfil IPR, IR o W 245 x 44.8 (10x30), que tiene un $Z_x = 551 \text{ cm}^3 + Zx_{nex} = 493 \text{ cm}^3$