

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRIA Y DOCTORADO EN INGENIERÍA INGENIERÍA CIVIL – OBRAS HIDRÁULICAS

PROPUESTA DE TANQUE AMORTIGUADOR Y PRUEBAS DE LABORATORIO EN MODELO A ESCALA DEL VERTEDOR DE SERVICIO DE LA C.H. MALPASO, CHIAPAS.

TESIS

QUE PARA OPTAR POR EL GRADO DE MAESTRO EN INGENIERÍA

PRESENTA: CRISTHIAN BALMACEDA RODRÍGUEZ

TUTOR PRINCIPAL Dr. RAMÓN DOMINGUEZ MORA, INSTITUTO DE INGENIERIA

CIUDAD UNIVERSITARIA, CD. MX., DICIEMBRE 2016

JURADO ASIGNADO:

Presidente: Dr. Gracia Sánchez Jesús

Secretario: Dr. Fuentes Mariles Oscar Arturo

Vocal: Dr. Domínguez Mora Ramón

1 er. Suplente: M.I. Franco Víctor

2 d o. Suplente: Dra. Arganis Juárez Maritza Liliana

Ciudad Universitaria CD. MX; Cuernavaca Morelos, México.

TUTOR DE TESIS:

NOMBRE

Dr. Ramón Domínguez Mora

FIRMA

CONTENIDO

١N	INTRODUCCIÓN2		
1	AN	TECEDENTES	3
	1.1	Marco hidrológico	
	1.2	Breve marco histórico	
	1.3	Características geológicas – geoté	cnicas de la obra7
	1.4	Descripción general de las obras	
1.5 Aspectos relevantes de diseño, construcción y funcionami		Aspectos relevantes de diseño, co	nstrucción y funcionamiento 15
1.6 Descripción detallada del vertedor de servicio			de servicio 17
	1.7	Daños en el vertedor de servicio el	n 1970 19
	1.8	Daños en el vertedor de servicio el	1972
	1.9	Daños en el vertedor de servicio el	n 1973 23
	1.10	Sobreelevación del vertedor de ser	vicio en 1979 25
	1.11	Año de 1999	
	1.12	Caído en Juan de Grijalva, Noviem	bre de 2007 27
2	TEC	ORÍAS DEL DISEÑO	
	2.1	Tanques amortiguadores	
	2.1.	.1 Tanque rectangular tipo St. Ar	thony Falls (SAF) 46
	2.1.	.2 Tanque rectangular tipo USBF	R (I)
	2.1.	.3 Tanque rectangular tipo USBF	R (II)
	2.1.	.4 Tanque rectangular tipo USBF	R (III)
	2.1.	.5 Tanque rectangular USBR IV.	
	2.1.	.6 Tanque rectangular tipo USBF	8 V 55
	2.2	Erosión aguas debajo de los tanqu	es amortiguadores 59
3	MO	DELO FÍSICO	
	3.1	Contexto y descripción general	

3	.2 Descripción del modelo físico		
3	3.3 De	sarrollo de las pruebas	
	3.3.1	Proyecto original (prototipo)90	
	3.3.2	Salto de esquí con 5°93	
	3.3.3	Salto de esquí de -10°95	
3.4 Estudio de las losas de concreto en el modelo del tanque de amortiguamie		tudio de las losas de concreto en el modelo del tanque de amortiguamiento100	
	3.4.1	Comportamiento de losas en arreglo: similar al prototipo 102	
	3.4.2	Comportamiento de losas en arreglo: salto de esquí ∡-10° en la rápida 104	
	3.4.3	Comportamiento de losas en arreglo: salto de esquí recortado 4-10° 106	
	3.4.4	Comportamiento de losas con: esquí corto y dentellón sobre elevado 2m. 109	
4	PROPL	JESTA DE DISEÑO 114	
5	CONCLUSIÓNES		
6	BIBLIOGRAFÍA		

ÍNDICE DE TABLAS

Tabla 1.1 Características de la región hidrológica3
Tabla 1.2 Propiedades de la cuenca4
Tabla 1.3 Datos originales del proyecto en el año de 1964 14
Tabla 1.4 Comparativa del vertedor de servicio 29
Tabla 1.5 Datos actuales de la C.H. Malpaso 30
Tabla 3.1 Resultados de pruebas a escala lineal de 60 73
Tabla 3.2 Resultados de pruebas en modelo físico similar al prototipo 103
Tabla 3.3 Resultados en prototipo modificado con salto de esquí ∡-10° en la rápida 105
Tabla 3.4 Resultados de pruebas en modelo con salto de esquí recortado y ∡-10° 108
Tabla 3.5 Resultados de pruebas, salto de esquí corto y dentellón sobre elevado 2 m 110
Tabla 3.6 Resumen de conclusiones en el estudio de comportamiento de las losas 112

ÍNDICE DE FIGURAS

Figura 1.1 Regiones hidrológicas de México5
Figura 1.2 Ríos principales del centro y sureste de México
Figura 1.3 Vertedor de servicio en funcionamiento de la C.H. Malpaso
Figura 1.4 Perfil geológico de la zona de la boquilla8
Figura 1.5 Esquema de estructuras de control originales de las obras de excedencias 11
Figura 1.6 Alzado de las estructuras de control originales12
Figura 1.7 Planta general de las obras de la C.H. Malpaso
Figura 1.8 Vertedor de servicio a la izquierda y auxiliar a la derecha
Figura 1.9 Sección longitudinal del vertedor de servicio
Figura 1.10 Planta de los daños ocurridos en el vertedor de servicio en 1970 20
Figura 1.11 Corte longitudinal de los daños ocurridos en el vertedor de servicio en 1970 20
Figura 1.12 Vista aguas arriba del vertedor dañado de servicio21
Figura 1.13 Vista en la elevación 70 del tanque de amortiguamiento dañado 22
Figura 1.14 Vista superior del tanque de amortiguamiento dañado
Figura 1.15 Losas dañadas apiladas en la parte final del tanque de amortiguamiento 23
Figura 1.16 Obturadores utilizados de pantalla en la emergencia de 1999 26
Figura 1.17 Obturadores cerrando el vertedor de servicio
Figura 1.18 Tapón en el Rio Grijalva del año 2007 27
Figura 1.19 Sobreelevación de las compuertas del vertedor de emergencia
Figura 1.20 Esquema del vertedor de servicio con los obturadores colocados
Figura 2.1 Esquema de un tanque de amortiguación de resalto hidráulico
Figura 2.2 Esquema de definición para las cinco fases de disipación de energía
Figura 2.3 Comparación de la variación longitudinal de las fluctuaciones de presión en
resaltos libres y sumergidos para Fr=5 44
Figura 2.4 Longitud en términos de la profundidad secuente y de resaltos en canales
horizontales
Figura 2.5 Tanque tipo Saint Antony Falls
Figura 2.6 Elevación, vista aguas abajo 49
Figura 2.7 Tanque tipo SAF
Figura 2.8 Tanque amortiguador tipo USBR I 50
Figura 2.9 Tanque amortiguador tipo USBR II

Figura 2.10 Dimensiones del tanque tipo USBR III	53
Figura 2.11 Tanque amortiguador tipo USBR III	53
Figura 2.12 Resalto oscilante	54
Figura 2.13 Dimensiones del cuenco USBR IV	55
Figura 2.14 Cubeta curva lisa	56
Figura 2.15 Cubeta curva ranurada	56
Figura 2.16 Tanque de resalto hidráulico espacial, cambio en la profundidad	57
Figura 2.17 Tanque de resalto hidráulico espacial, cambio en el ancho	57
Figura 2.18 Tanque de resalto hidráulico espacial, flujo desde canales laterales	58
Figura 2.19 Intervalo de uso preferido para los principales tipos de disipadores	59
Figura 3.1 Fenómeno descrito	66
Figura 3.2 Vista de los daño en el tanque amortiguador	67
Figura 3.3 Esquema general	68
Figura 3.4 Otra vista de los daños	69
Figura 3.5 Condiciones de prueba	74
Figura 3.6 Vista aguas abajo del daño en el revestimiento	74
Figura 3.7 Bosquejo del transductor	77
Figura 3.8 Lectura de Frecuencias	77
Figura 3.9 Vista del modelo físico	78
Figura 3.10 Frecuencias filtradas y resonancia eliminada	79
Figura 3.11 Esquema de medición de presiones	80
Figura 3.12 Momento en el que comienza el alzado de la losa en el modelo	81
Figura 3.13 Después de lo anterior, un alzamiento casi vertical se presenta	81
Figura 3.14 Después de lo anterior, un alzamiento casi vertical se presenta	82
Figura 3.15 Modelo 3D del tanque amortiguador de la C.H. Malpaso, Chiapas	85
Figura 3.16 Vista aguas arriba hacia aguas abajo del tanque amortiguador	86
Figura 3.17 Vista desde el piso del tanque amortiguador a la Elev.70, 00 m.s.n.m	87
Figura 3.18 Ubicación de celdas de presión en la plantilla del tanque amortiguador	88
Figura 3.19 Geometría de deflectores laterales a partir de la plantilla del canal	89
Figura 3.20 Vista desde margen derecha del tanque amortiguador	89
Figura 3.21 Geometría del proyecto original	90
Figura 3.22 Distribución de presiones máximas en prototipo Q=1000 m³/s	97

Figura 3.23 Distribución de presiones máximas en prototipo Q= 7000 m³/s
Figura 3.24 Distribución de presiones máximas, salto de esquí de 5° Q=1000 m³/s 98
Figura 3.25 Distribución de presiones máximas, salto de esquí de 5° Q=7000 m³/s 98
Figura 3.26 Distribución de presiones máximas, salto de esquí de -10° Q=1000 m³/s 99
Figura 3.27 Distribución de presiones máximas, salto de esquí de -10° Q=700099
Figura 3.28 Losas en tanque amortiguador de 12.2x10.20x2.9m, en modelo 100
Figura 3.29 Perfil de la ubicación de losas del tanque amortiguador en el modelo 101
Figura 3.30 Acomodo de las losas escaladas en el modelo 102
Figura 3.31 Perfil del salto de esquí ∡-10° 105
Figura 3.32 Perfil del salto de esquí corto 107
Figura 3.33 Salto de esquí corto con deflectores laterales 107
Figura 3.34 Sobrelevación del dentellón 2m 109
Figura 3.35 Perfil del salto de esquí con ángulo de 5° corto4 110
Figura 4.1 Plano geométrico definitivo 1-2 120
Figura 4.2 Plano geométrico definitivo 2-2 121

CAPÍTULO I

INTRODUCCIÓN

Los seres humanos han utilizado el agua para realizar trabajo por miles de años. Los griegos usaban ruedas de agua para moler el trigo y convertirlo en harina, hace más de 2000 años. Esta fuente de energía tuvo un rápido crecimiento debido al desarrollo técnico experimentado a finales del siglo XIX y principios del XX.

La mezcla de la utilización de la fuerza del agua, con la del almacenamiento proveniente de los cuerpos de agua corriente, dio lugar a las actuales hidroeléctricas, las cuales tienen ciertas ventajas, como son:

- La hidroenergía se genera por medio del agua, por lo tanto es una fuente limpia eso significa que no contamina el aire como las plantas eléctricas que queman combustibles fósiles como carbón o gas natural.
- La energía hidroeléctrica es una fuente local, permitiendo que los estados que tienen ríos puedan producir suficiente energía para abastecer sus necesidades y en su caso específico transmitirla a las zonas aledañas para su consumo sin depender de la compra de energía a otros países.
- La energía que se produce en estas centrales se basa en la conversión de la energía potencial del agua, haciéndola una fuente de energía renovable en la que se puede confiar y se economiza más que en las que se basan en la quema de combustibles fósiles que son rápidamente agotados.
- Los embalses de las hidroeléctricas son grandes reservas de agua que ofrecen una amplia variedad de actividades recreacionales como la pesca y el canotaje.
- Algunas plantas hidroeléctricas pueden pasar rápidamente de estar en reposo total a generar a su capacidad máxima e incorporar la energía a la red de transmisión, ya que estas proveen respaldo esencial durante los cortes, interrupciones o demandas pico.
- Además de ser una fuente renovable no contaminante de energía, las hidroeléctricas proveen otros beneficios como el control de inundaciones, irrigación y suministro de agua

En los últimos años el calentamiento global y las emisiones contaminantes que se despiden hacia la atmosfera generadas por las actividades humanas, han hecho que los países y en

especial los primer mundistas tomen no solo conciencia del problema, sino lleven a cabo actividades y acuerdos concretos para mitigar el impacto ambiental o la huella ecológica que la especie humana está dejando en el planeta.

Dentro de este marco, las energías renovables no contaminantes jugarán un papel crucial en el desarrollo de la civilización ya que se tiene claro que el avance de la especie está basado íntegramente en la energía y sin esta, no podría existir el desarrollo ni la evolución de la tecnología que es creada para y por el hombre.

1 ANTECEDENTES

1.1 Marco hidrológico

El río Grijalva se forma con corrientes que nacen en la sierra norte del estado de Chiapas en la República Mexicana, y que ya en Tabasco reciben los nombres de Pichucalco, Teapa, Oxolotán, Amatán y Tacotalpa, los cuales al unirse forman el río La Sierra, este río atraviesa la parte central del estado de Tabasco de sur a norte, y posteriormente recibe las aguas del llamado río Viejo Mezcalapa, y es desde esta intersección que recibe el nombre de Grijalva, luego atraviesa la ciudad de Villahermosa y finalmente desemboca en el golfo de México en la barra de Frontera, en el municipio de Centla, este pertenece a la región hidrológica del "Grijalva-Usumacinta", en la tabla 1.1 se observan los datos más relevantes de esta:

(001110011,2017)	
Clave	30
Extensión territorial continental (km²)	102 465
Precipitación normal anual 1971-2000 (mm)	1 709
Escurrimiento natural medio superficial interno	59 279
(hm³/año)	
Importaciones(+) o exportaciones(-) de otros países	44 080
(hm³/año) 2013	
Escurrimiento natural medio superficial total (hm³/año)	103 378
2013	
Numero de cuencas hidrológicas	83

 Tabla 1.1 Características de la región hidrológica
 (CONAGUA, 2014)

Región hidrológico-administrativa	Frontera sur

Las cuencas son unidades de terreno definidas por la división natural de las aguas debida a la conformación del relieve, en la tabla 1.2 se resumen las características de la del Grijalva.

Escurrimiento natural medio superficial ¹ (millones de m ³ /año)	101 517
Área de la cuenca (km ²)	83 553
Longitud del río (km)	1 521
Orden máximo	7
Vertiente	Golfo de México y Mar Caribe

Tabla 1.2 Propiedades de la cuenca (CONAGUA 2014)

El 27 de julio de 1951 se creó la Comisión del Río Grijalva de la Secretaría de Recursos Hidráulicos, para el estudio y desarrollo integral de la cuenca de dicho río, en la figura 1.1 se pueden observar las regiones hidrológicas en las que la CONAGUA divide a la República Mexicana para su estudio.

¹ Los datos del escurrimiento natural medio superficial representan el valor medio anual de su registro histórico e incluyen los escurrimientos de las cuencas transfronterizas

Figura 1.1 Regiones hidrológicas de México (CONAGUA, 2014)

Figura 1.2 Ríos principales del centro y sureste de México (CONAGUA, 2014)

1.2 Breve marco histórico

En 1955 de acuerdo con los estudios hidrológicos, topográficos y geológicos preliminares, la Comisión del Río Grijalva que se muestra en la figura 1.2, llego a la conclusión de que la primera presa por construirse fuera la de Netzahualcóyotl, conocida también con el nombre de Malpaso, en la boquilla denominada Raudales de Malpaso sobre el río Grijalva en el estado de Chiapas, habiendo iniciado en 1958 la construcción del camino de acceso a la obra desde la Estación Chontalpa en el kilómetro 333 de Ferrocarril Sureste. En 1960 se disponía de los planos estructurales definitivos para iniciar la construcción de la presa, en la cual la Comisión del Río Grijalva coordinó sus actividades con la Comisión Federal de Electricidad, que planeó todo lo referente a su aprovechamiento para la generación de energía eléctrica, la obra se concluyó en 1964.

Esta presa constituyó la primera etapa del plan integral del Grijalva. La etapa comprendió este rio y del de la Venta que es uno de sus principales afluentes, sus objetivos entre otros eran los de controlar avenidas y evitar inundaciones en los campos y poblaciones de la región de la Chontlapa así como en la propia ciudad de Villahermosa, capital del estado de Tabasco, generar energía eléctrica, proporcionar riego complementario a 350 000 ha en la Chontlapa, mantener los niveles adecuados para la navegación y facilitar otros usos secundarios.

Figura 1.3 Vertedor de servicio en funcionamiento de la C.H. Malpaso

1.3 Características geológicas – geotécnicas de la obra

La obra se localiza sobre la vertiente del Golfo de México de la Sierra de Chiapas, prolongación sur de la Sierra Madre Oriental. En la región aparecen sedimentos marinos plegados del Cretácico y del Cenozoico pertenecientes al Geosinclinal Mexicano, que tienen una orientación general bien definida de NW a SE. Están afectados por fallas normales y de empuje, generalmente orientadas paralelamente a las sierras. De acuerdo con su orden de mayor edad, están presentes formaciones de calizas, Lutitas con intercalaciones de calizas, conglomerados, areniscas y materiales de aluvión reciente. Las formaciones marinas han estado sujetas al intemperismo intensivo ocasionando por un clima tropical húmedo, que ha dado origen a suelos residuales parcialmente lateríticos con espesor hasta de 30 m.

En el vaso, que es de forma alargada, coincidiendo con la orientación de los ejes de plegamiento de la sierra, aparecen principalmente Lutitas de Ecoceno. En las cercanías de la presa se encuentran areniscas, conglomerado y Lutitas del Oligoceno, separadas de las del Ecoceno por una falla maestra de empuje. Hacia la cola del vaso, sobre el río de La Venta, aparecen calizas del Cretácico Medio. Todas las formaciones han sido afectadas por el intemperismo, por lo que están cubiertas por suelos residuales con espesor variable, en las partes bajas de los valles se encuentran materiales de acarreo, gravas y arenas.

La boquilla es angosta en la parte baja y se amplía en la superior. Está labrada exclusivamente en una serie denominada "Conglomerado Malpaso" como se muestra en la figura 1.4, formada por gruesos bancos de conglomerados muy bien cementados, en una matriz areno-arcillosa insoluble e impermeable entre los cuales hay intercalaciones lenticulares de areniscas muy compactas de grano fino hasta 6 mm de espesor y también ocasionalmente, capas lenticulares de Lutitas compactas. La estratificación es casi horizontal y está afectada por dos fallas escalonadas del tipo normal, transversal al eje de la presa e inclinado hacia la margen izquierda, una dentro del cauce y la otra a media ladera en la margen izquierda. Las fallas se encuentran bien empacadas con materiales arcillosos e impermeables. En la parte alta, en ambas márgenes y cubriendo el conglomerado alterado, se encuentra una capa de suelo residual de espesor variable de 3 a 18 m. En el cauce los acarreos de arena tienen espesor variable, hasta de 30 m.

Figura 1.4 Perfil geológico de la zona de la boquilla (SECRETARIA DE RECURSOS HIDRÁULICOS, 1974)

Las condiciones geológicas de los tres puertos en la margen izquierda del vaso son diferentes. El puerto No. 1 está formado por conglomerado y cubierto por una capa importante de suelo residual. El puerto No.2 está constituido por Lutitas del Ecoceno en la margen izquierda y Lutitas del Oligoceno en la derecha, separadas por una falla de empuje que ha provocado una franja de trituración y alteración transversal al eje del puerto No. 3, el cual está formado por Lutitas del Ecoceno compactas e impermeables con una capa de alteración menos profunda que en los otros sitios. La obra se localiza en la zona sísmica de la República Mexicana y cerca de ella se encuentran cinco epifocos importantes.

Para seleccionar el tipo de presa que se construiría en la boquilla de Raudales Malpaso se estudiaron diseños alternativos de presas de concreto y de enrocamiento y tomando en cuenta los importantes volúmenes de materiales de excavación de las estructuras de excedencias, toma y obra de desvío, así como las condiciones climáticas, se escogió una presa de núcleo impermeable central, angosto y simétrico.

1.4 Descripción general de las obras

Para seleccionar el tipo de presa que se construiría en la boquilla de Raudales Malpaso se estudiaron diseños alternativos de presas de concreto y de enrocamiento y tomando en cuenta los importantes volúmenes de materiales de excavación de las estructuras de excedencias, toma y obra de desvío, así como las condiciones climáticas, se escogió una presa de núcleo impermeable central, angosto y simétrico.

La presa Netzahualcoyotl es del tipo de roca, como ya se mencionó posee un delgado núcleo de arcilla, provista en la ladera izquierda de dos obras de excedencias, una de servicio y otra de emergencia, y en la margen derecha se encuentra la obra de toma para la planta hidroeléctrica construida por la Comisión Federal de Electricidad y cuyas descargas se aprovecharían en riego, para cerrar el vaso se construyeron tres importantes diques.

La presa, de 138 m de altura y 478 m de longitud de corona, está constituida por un núcleo impermeable central con taludes 0.2:1 formado por un suelo limoso compresible compactado con seis pasadas de rodillo liso vibratorio en capas de 0.20 m de espesor, colocadas con una humedad promedio de 7% arriba de la óptima debido a las condiciones climáticas. El núcleo se desplantó en toda la boquilla sobre conglomerado sano y compacto después de remover la arena del lecho del río con espesor hasta de 18 m, de retirar la cubierta de suelo residual que en las parte superiores de la boquilla tuvo espesores entre 3 y 20 m y de remover el conglomerado alterado. En la superficie de desplante del núcleo se formó una carpeta de inyecciones con perforaciones de 5 m de profundidad en cuadricula de 5 m sin que hubiera consumos importantes de lechada.

En la falla de la margen izquierda se hizo la limpia removiendo los materiales arcillosos poco compactos, se rellenó con concreto simple y se selló mediante inyecciones a diferentes profundidades con perforaciones inclinadas.

Hacia aguas abajo del núcleo se colocó un filtro formado por grava y arena con tamaño máximo de 75 mm de espesor constante de 4 m y compactado con cuatro pasadas de rodillo vibratorio. Las zonas de transición quedaron formadas por arena y grava de 100 mm de tamaño máximo, y se colocaron aguas arriba del núcleo y aguas abajo del filtro, con espesor variable de 10 m al nivel del río a 4 m de la corona. Los respaldos permeables están formados con el producto de las excavaciones de las obras de excedencias y de desvío compactado con el tránsito de vehículos y tractores en capas de 0.5 a 1.0 m. de espesor. Están limitadas por taludes de 2:1 y cubiertas con capas de enrocamiento selecto para protección contra el oleaje y la erosión de 3 m de espesor en el talud mojado y 2 m en el paramento de aguas abajo.

Con objeto de observar el comportamiento de la presa se instalaron equipos de medición consistentes en piezómetros tipo Casagrande, inclinómetros, testigos de nivel en la corona y talud de aguas abajo.

De los tres diques, el de mayor volumen es el primero con altura de 57 m y corona de 887 m. de longitud, su sección es semejante a la de la presa con la salvedad de que el núcleo es menos angosto, con taludes 0.5:1 y los taludes exteriores más tendidos. El dique No. 3 se construyó con una sección igual a la de la presa, tiene una altura de 40m y 500 m de longitud de corona.

Debido a lo desfavorable de sus condiciones geológicas, el dique No. 2 de 30 m de altura máxima y 204 m de corona se construyó con sección homogénea de material impermeable con filtro central vertical de 1 m de ancho, formado con arena selecta prolongándolo en forma de delantal de 1.5 m de espesor hacia aguas abajo y para evitar condiciones de saturación, se construyó una galería de drenaje paralela al eje y a 34 m aguas abajo, prolongándola dentro de ambas laderas, La galería se utilizó para la construcción de la pantalla de inyecciones. Los parámetros exteriores, de taludes muy tendidos de aprox. 3.5:1 se protegieron con una capa de rezaga y el de aguas arriba, además con enrocamiento. Con objeto de observar su comportamiento se instalaron piezómetros de los tipos neumáticos y Casagrande; inclinómetros, extensómetros y testigos de nivel.

La obra de control y excedencias se ubicó en la margen izquierda, cerca del empotramiento de la presa y está formada por dos vertedores con compuertas, uno de emergencia y otro de servicio, alojados en dos estructuras contiguas cuyos ejes forman un ángulo de 17° y tienen un canal de acceso común. El vertedor de servicio tiene tres compuertas radiales de 15 x 16.9 m, con cimacio de 45 m de longitud de cresta a la elevación 167.64 m.s.n.m., descarga en una rápida de sección trapecial y de eje recto que termina en un tanque amortiguador con un canal de descarga al río.

Figura 1.5 Esquema de estructuras de control originales de las obras de excedencias (CFE, SUBDIRECCION DE GENERACIÓN, 2011)

El vertedor de emergencia está provisto de cuatro compuertas de 15 m. de ancho por 17.80 de altura estructura que se muestra en las figuras 1.5 y 1.6, su cimacio en un principio se encontraba 4.01 m más abajo que el vertedor de servicio pero actualmente se encuentra a la misma cota, la 167.64 y tiene una longitud de cresta de 60 m, descargando en un canal de eje curvo con pendiente variable que termina en una cubeta deflectora tipo salto de esquí rematada en un dentellón profundo.

Figura 1.6 Alzado de las estructuras de control originales (CFE, SUBDIRECCION DE GENERACIÓN, 2011)

La obra de toma y la planta hidroeléctrica, construidas por la Comisión Federal de Electricidad se localizan en la margen derecha. La toma está constituida por un canal de acceso de planta curva y ancho variable, seis estructuras de entrada, una para cada unidad, provistas de rejillas y de compuertas rodantes de cierre en vanos de 4.80 x 8.20 m de altura. Después de una transición de cada estructura de entrada, se inicia un túnel de fuerte pendiente de 7 m de diámetro y forrado con de acero que alimenta a la turbina. Las seis turbinas y sus generadores están alojados en la casa de máquinas subterránea, de 20 m de ancho, 161 m de largo y 30 m de altura, provista de seis lumbreras para ventilación y salida de los cables de conducción eléctrica. La descarga de cada par de turbinas se colecta en una galería de desagüe, de sección de portal, que conecta con uno de los túneles usados para el desvío.

Para la derivación del río durante la construcción se perforaron cinco túneles de 16 m. de diámetro, tres en la margen derecha y dos en la izquierda, que se revistieron de concreto únicamente en los tramos en que la roca no era suficientemente sana. Se construyeron dos ataguías, la de aguas arriba con una altura de 36 m y de 20 m la de aguas abajo. La construcción de la presa se hizo en varias etapas. Una vez construidos los túneles, el río se desvió por ellos mediante las ataguías y se hicieron los trabajos de excavación, limpia y el tratamiento de la cimentación en el lecho del río colocando terracerías. Aprovechando el estiaje a principios de 1964 se cerraron dos de los túneles uno en cada margen, por medio de un tapón central de concreto.

Terminada la construcción de la presa, los diques y las estructuras de los vertedores de servicio y de emergencia, en el estiaje de 1965 se cerraron los dos túneles de la margen derecha mediante los obturadores previamente construidos en las entradas y se construyeron los tapones centrales de concreto. Por último, en mayo de 1966 se cerró el último túnel en la margen izquierda, iniciándose el almacenamiento.

Figura 1.7 Planta general de las obras de la C.H. Malpaso (SECRETARIA DE RECURSOS HIDRÁULICOS, 1974)

A manera de resumen en la tabla 1.3 se mencionan las características generales de la Central Hidroeléctrica Malpaso (BRIBIESCA, 1979) ya que años más adelante después de su construcción esta sería sujeta a cambios, en mayor parte por situaciones extraordinarias que se detallaran en los posteriores temas del presente documento.

(SECRETTINIT DE RECORDOS TID	KAULICOS, 192	(+)
ESTRUCTURA	CANTIDAD	UNIDAD
CUENCA		
Superficie	33 740	km²
Precipitación media anual	2 180	mm
Escurrimiento medio anual	19 000x10 ⁶	m³
Avenida máxima registrada	7 200	m³/s
VASO		1
Capacidad total	12 960 x 10 ⁶	m³
Capacidad para azolves	1 000 x 10 ⁶	m³
Capacidad Útil	7 300 x 10 ⁶	m³
Capacidad para control de avenidas	3 800 x 10 ⁶	m³
Capacidad para súper almacenamiento	860 x 10 ⁶	m³
Área inundada	30 000	ha
PRESA		
Altura máxima	138	m
Longitud de corona	478	m
Bordo Libre	4	m
Volumen total, presa	5.08x10 ⁶	m³
Volumen total, diques	3.38x10 ⁶	m³
NÚCLEO IMPERMEABLE		
Volumen presa	0.68 x 10 ⁶	m³
Volumen diques	1.38 x 10 ⁶	m³
Limite líquido	61	%
Índice de plasticidad	24	%
Peso volumétrico en terraplén	1 438	kg/m³
Humedad en terraplén	31.2	%
Grado de compactación	94	%
Cohesión, prueba (1)	0.58	kg/cm ²
Angulo de fricción, prueba (1)	1.7	0
Cohesión prueba (2)	0	kg/cm ²
Angulo de fricción, prueba (2)	22	0
FILTROS Y TRANSICIÓN	Т	1
Grava y arena		
Angulo de fricción	35	0
Volumen filtro, presa	0.12x10 ⁶	m³
Volumen filtro, diques	0.16 x 10 ⁶	m³
Volumen transición, presa	0.33 x 10 ⁶	m ³

Tabla 1.3 Datos originales del proyecto en el año de 1964(SECRETARIA DE RECURSOS HIDRÁULICOS, 1974)

ESTRUCTURA	CANTIDAD	UNIDAD
Volumen transición, diques	0.53 x 10 ⁶	m³
MATERIALES PERMEABLES		
Grava, arena, rezaga del conglomerado		
Angulo de fricción	36	0
Volumen, presa	3.62 x10 ⁶	m³
Volumen, diques	1.05 x 10 ⁶	m³
CAPA DE ENROCAMIENTO		
Conglomerado Malpaso		
Volumen, presa	0.34 x10 ⁶	m³
Volumen, diques	0.27 x 10 ⁶	m³
VERTEDOR DE EXCEDENCIAS		
Avenida de diseño	20 000	m³∕s
Caudal máximo	20 000	m³∕s
Vertedor de servicio		
Caudal de control	3 500	m³∕s
Caudal máximo de descarga	11 100	m³∕s
Carga	24.37	m
Vertedor de emergencia		
Caudal máximo de descarga	10 650	m³∕s
Carga	20.36	m
Volumen de concreto	161 x 10 ³	m³
OBRA DE TOMA		
Caudal de diseño	1 530	m³∕s
PLANTA HIDROELÉCTRICA		
Número de unidades	6	
Capacidad instalada	1 080	mw
Caudal de diseño	95.5	m
Caída de diseño	1 530	m³∕s
SUPERFICIE REGABLE	350 000	ha
GENERACIÓN MEDIA ANUAL	2 754	Gwh

1.5 Aspectos relevantes de diseño, construcción y funcionamiento

Durante los cuatro años que duró la construcción, las precipitaciones tuvieron un promedio de 2 180 mm anuales, siendo necesario utilizar frecuentemente telas de polietileno para proteger las terrecerías en las épocas de lluvia.

En los túneles de desvío debido a la buena calidad de la roca únicamente se revistió un 45% de su longitud total. El caudal máximo descargado por ellos durante la construcción fue de 7 500 m³/s.

Debido a que el volumen anual de escurrimiento del río es mucho mayor que la capacidad de almacenamiento, los derrames serían muy frecuentes mientras no se construyera otra presa aguas arriba, por lo que se decidió construir dos estructuras separadas que dan más flexibilidad de operación y mantenimiento. Durante la pruebas de los vertedores se descargó por ambos un caudal máximo de 3 400 m³/s. Se estimó que durante los primeros tres años de operación de la presa se descargaron por el vertedor de servicio un volumen de unos 50 000 millones de m³.

La buena calidad del conglomerado Malpaso permitió que para el canal de descarga del vertedor, se hicieran cortes de 120 m de altura con taludes de 0.25:1 sin problemas de estabilidad y conservación. Para estas excavaciones se usó con muy buenos resultados el sistema de pre corte.

Uno de los principales problemas fue el diseño especial del dique No.2 por las condiciones de inestabilidad de los materiales de la cimentación que se encuentran intemperados y fisurados, esto último, debido a la gran falla maestra Malpaso.

No se observaron pérdidas importantes en el vaso. El desplazamiento horizontal máximo de la presa después de cuatro meses de estar llena fue de 0.11 m hacia aguas abajo en el tercio inferior del núcleo y de 0.01 m hacia aguas abajo en la parte superior y después de años estos valores fueron de 0.09 y 0.05 respectivamente.

Los desplazamientos horizontales cerca de los empotramientos después de cuatro meses de máximo embalse fueron hacia el cauce, siendo mayores en las cercanías de la corona con un máximo de 0.06 m. Estos desplazamientos no han variado sustancialmente tendiendo a estabilizarse. Se observaron tensiones en los empotramientos hacia el cauce y compresiones en la parte central, pero no se presentaron indicios en los empotramientos de separación del núcleo. Los desplazamientos de los respaldos fueron insignificantes.

El asentamiento vertical observado durante la construcción fue de 1.53 m que en un periodo de dos años se incrementó en 0.50 m y tendió a estabilizarse. En el dique No. 2 el desplazamiento máximo que fue de 0.04 m. al llenarse la presa tuvo un retroceso de 0.03

m. El asentamiento vertical fue de 0.04 m con tendencia a estabilizarse. Los extensómetros acusan pequeñas extensiones de unos milímetros.

Figura 1.8 Vertedor de servicio a la izquierda y auxiliar a la derecha (CFE, SUBDIRECCION DE GENERACIÓN, 2011)

1.6 Descripción detallada del vertedor de servicio

Se encuentra alojado entre el empotramiento izquierdo de la cortina y el vertedor de emergencia. Es una estructura de concreto, formada por un cimacio vertedor, con 3 compuertas radiales que se apoyan, estando cerradas, sobre el cimacio y quedan alojadas entre pilas y muros extremos desplantados sobre el mismo. Descarga a una rápida de sección trapecial con eje recto, que termina en un tanque amortiguador y al no tener un gasto mínimo de despegue permite una gran versatilidad en el manejo de avenidas, sobre las pilas y muros se apoyan los puentes de operación y acceso.

Avenida de diseño. La estructura de servicio o control se diseñó para regular la avenida máxima ordinaria, estimada en 8 500 m³/s, a un gasto de 3,500 m³/s.

Longitud de cresta: 45 m.

Capacidad máxima de descarga originalmente: 11 100 m³/s.

Capacidad máxima de descarga actual:

7,050 m³/s

Estructura de compuertas: Constituida por 2 pilas de concreto reforzado de 3.0 m de espesor, 30.5 m de longitud y 32 m de altura, aproximadamente, y 2 muros extremos de la misma altura e igual espesor. En los vanos entre pilas y pilas y muros se alojan 3 compuertas radiales de 15 m de ancho por 16.15 m de alto con las cuales se hace el control de extracciones. Las compuertas se apoyan en su parte inferior, estando cerradas, sobre un cimacio de concreto y el empuje de los brazos es soportado por chumaceras que se apoyan en bloques de concreto pre esforzado, localizados en el extremo de aguas abajo de pilas y muros; los bloques están anclados en el cuerpo de pilas y muros por cables pre esforzados de 220 toneladas de capacidad, habiéndose requerido 20 cables en cada pila y 15 en cada muro.

Aguas arriba de las compuertas se dispone de muescas para obturadores de emergencia y conservación.

Compuertas: 3 compuertas radiales de 15 x 16.90 m, operadas con mecanismos eléctricos desde el puente de operaciones.

Peso por unidad, incluyendo accesorios: 105 Ton. Fabricante: Alessandro Calzoni, Bologna, Italia. Peso, por unidad, de los mecanismos de operación: 15 Ton. Fabricante: Officine Elettro Meccaniche, Galileo, Italia.

Puente de operación y acceso: Constituidos por tres tramos de losas sobre trabes pre coladas de concreto reforzado que se apoyan en las pilas y muros. En la losa se alojan las vías para la grúa de pórtico y se dispone de un hueco a lo largo de toda la losa, para operación de obturadores.

Grúa de pórtico:	Para operación de obturadores:	
Capacidad:	40 Ton.	
Peso:	35 Ton.	
Fabricante:	Eisenbau Wyhlen, Alemania.	

Cimacio: De 7.64 m (3.70 m originalmente) de altura sobre el acceso que se encuentra a la elevación 160.00, con su cresta a la elevación 167.64 actualmente (elev.163.69 originalmente), y perfil Creager; construido de concreto y provisto de dentellones amplios, para empotramiento en la roca de desplante.

Canal de descarga: De sección trapecial, con ancho en la base de 51 m, taludes 0.25:1 y pendiente s = 0.34, revestido en su totalidad de concreto reforzado. Su eje es recto en planta y fue excavado, en la mayor parte de su longitud, en roca, con cortes hasta de 110 m, en talud de 0.25:1, dejándose banquetas a las elevaciones 125.00, 150.00 y 175.00. Dispone de un profuso sistema de drenaje.

Tanque amortiguador: Alojado al pie de la rápida o canal de descarga tiene una longitud, en el fondo de 120 m, con ancho de plantilla de 51 m a la elevación 70.00 y profundidad de colchón de 26 m, estando revestido de concreto en su totalidad. Descarga al río por un canal revestido en un tramo de 50 m, rematado con un dentellón de 13 m de profundidad.

Figura 1.9 Sección longitudinal del vertedor de servicio (BRIBIESCA, 1979)

1.7 Daños en el vertedor de servicio en 1970

El vertedor de servicio se operó en el periodo de 1967 a 1969 con descargas menores de 2 500 m³/s aproximadamente durante dos meses cada año sin interrupción, observándose pequeñas erosiones en algunas de las losas del piso del tanque amortiguador. En 1970, el vertedor descargó 3 000 m³/s durante dos semanas lo que causó graves daños en las losas del piso. Las losas de la parte media del fondo del tanque al pie de la rápida, de 12.00 x

12.00 m y 2.00 m de espesor y de 720 ton de peso, la falla se extendió a partir del pie de la rápida hasta unos 75 m a lo largo, y a lo ancho abarcó desde el pie del talud derecho hasta la última junta entre losas, además de la losa se erosionó la roca sobre la que esta descansaba, dicha erosión fue de unos 8 m a partir del nivel del piso del tanque como se muestra en las figuras 1.10 a la 1.15.

Figura 1.10 Planta de los daños ocurridos en el vertedor de servicio en 1970 (BRIBIESCA, 1979)

Lo anterior obligó a aumentar el espesor de las losas y el anclaje de sujeción, con un costo aproximado de 20 millones de pesos de aquella época. Las losas miden 30.60 m x 24.40 m x 2.6 m y pesan aproximadamente 5 200 ton y se rellenó con concreto simple la zona erosionada del fondo.

Figura 1.11 Corte longitudinal de los daños ocurridos en el vertedor de servicio en 1970 (BRIBIESCA, 1979)

El conjunto de losa y relleno quedó sujeto a la roca de cimentación por medio de varillas de anclaje de 38 mm de diámetro espaciadas a 2.5 m en ambas direcciones. La operación posterior del vertedor de servicio ha causado todavía algunos daños en las nuevas losas, requiriendo reparaciones sencillas.

Figura 1.12 Vista aguas arriba del vertedor dañado de servicio (BRIBIESCA, 1979)

Figura 1.13 Vista en la elevación 70 del tanque de amortiguamiento dañado (BRIBIESCA, 1979)

Figura 1.14 Vista superior del tanque de amortiguamiento dañado (BRIBIESCA, 1979)

Figura 1.15 Losas dañadas apiladas en la parte final del tanque de amortiguamiento (CFE, SUBDIRECCION DE GENERACIÓN, 2011)

1.8 Daños en el vertedor de servicio en 1972

En el año de 1972 se vació el tanque amortiguador para observar cualquier posible daño, pero debido a que la operación se efectuó rápidamente, no pudo liberarse toda la supresión bajo las losas por lo tanto, se produjo la falla en una zona específica. La falla o "tronada" ocurrió exactamente durante una visita que efectuó personal del Consultivo y de la Dirección de Irrigación y Control de Ríos. Esa segunda falla se reparó sin dificultad, la parrilla se formó con varillas de ½" de diámetro.

1.9 Daños en el vertedor de servicio en 1973

En el año de 1973 después de cada época de avenidas y cuando se dejó de utilizar la obra de control de la presa Netzahualcóyotl, se realizó una inspección subacuática del fondo del tanque amortiguador, en la cual se observaron daños en el piso por lo cual este fue vaciado, se pudieron inspeccionar con detalle todos los daños mediante varias visitas por parte del personal de la Secretaria de Recursos Hidráulicos como de la Comisión Federal de electricidad y sus respectivos consultores.

Como rasgos generales de los daños se describió una destrucción del piso de concreto en una superficie de 30 x 30 m, que abarcaba la parte central del tanque, cuyo espesor era de aproximadamente 50 cm y donde se había arrancado la parrilla de acero de refuerzo

formada por barrillas de acero de 1 ¼" de diámetro, a los lados de la zona erosionada se encontraban trozos de la losa de concreto; todos ellos con su armado correspondiente. El piso del tanque fuera de la zona erosionada mostraba algunas grietas en una franja de unos 10 m alrededor de la falla. El resto se encontraba aparentemente en buenas condiciones.

El piso dentro de la zona dañada, no presentaba ningún tipo de erosión o cavitación incipiente, la zona dañada se encontraba limpia puesto que ya se habían iniciado los trabajos de corte de las varillas, "moneo" de los trozos de concreto y recolección de los fragmentos de concreto que habían quedado en el piso del tanque.

Con base a lo anterior las recomendaciones que se hicieron en esa ocasión fueron las siguientes:

- Retirar el concreto a todo lo ancho del tanque en una franja cuya longitud abarcó toda la zona dañada.
- Efectuar un colado que no tenga juntas y que quede adherido a la masa de concreto sobre la que se apoya.
- Diseñar una mezcla de concreto de alta densidad, con mínimo de arena.
- Evitar la segregación y no utilizar canalones para colocar concreto.
- Con el objeto de asegurar la liga entre el concreto antiguo y el nuevo, tratar la superficie limitante de concreto antiguo con un producto de resina epóxica debidamente probado.
- Clocar una parrilla para control de esfuerzos por temperatura aproximadamente a medio espesor del concreto nuevo, amarrada a los anclajes.
- Instalar anclajes de ¾" de diámetro de acero de refuerzo a equidistancias de 1.50 m en ambos sentidos, embebidos 1.80 m dentro del concreto viejo como mínimo.
- Tomar las medidas necesarias para mantener una temperatura de 20 ° C como máximo, para el concreto fresco cuando llegue a su sitio de colocación.
- Compactar con vibradores de inmersión y completarlo con regla vibratoria pesada.
- Acabar y pulir la superficie horizontal con discos giratorios mecánicos.
- Tan pronto como fuera posible proceder a curar y proteger el concreto fresco contra desecación, exposición solar e impacto térmico de acuerdo a las siguientes etapas:
 - 1. Aplicar una membrana de curado.
 - Colocar una cubierta de polietileno que se apoye en soportes metálicos y la separen 1.50 m del piso. Esto se mantuvo durante 8 horas.

3. Quitar la cubierta anterior y colocar una capa de arena de 10 cm, que estará sumergida en agua. Esto durante 2 o 3 semanas.

1.10 Sobreelevación del vertedor de servicio en 1979

En el año de 1979 se sobre elevó la cresta del vertedor de servicio en 3.95 m, pasando de la cota 163.69 m.s.n.m. a la 167.64 m.s.n.m., igualando la cresta del vertedor de emergencia. Esta modificación obedeció a que en el año de 1974 se efectuó el cierre de la presa La Angostura, aumentando notablemente la capacidad de regulación del río Grijalva con lo que se ganó en capacidad útil del embalse y en consecuencia disminuir los derrames por vertedor y aumentar la producción de energía hidroeléctrica.

El estudio fue realizado en 1978 por la compañía IPESA Consultores para la Gerencia de Estudios e Ingeniería Preliminar de la CFE.

El gasto de diseño original del vertedor de servicio era de 11,100 m³/s, y al sobre elevar el cimacio se perdió una carga de 3.95 m, por lo que la capacidad teórica de descarga actual de esta estructura es de 8,250 m³/s, es decir, la capacidad del vertedor se redujo en 2,850 m³/s.

El volumen de almacenamiento en 2.56 m de diferencia en altura de los labios superiores de compuertas quedó de la siguiente manera:

Capacidad a la elev. 183.55 (LSC Servicio):	9 630.71 Mm ³
Capacidad a la elev. 186.11 (LSC Emergencia):	10 410.15 Mm ³
Volumen entre los labios superiores de compuertas:	779.44 Mm ³

1.11 Año de 1999

El día 12 de octubre de 1999 se suspendió la operación de la central Angostura y se efectuó el cierre del vertedor de la presa Chicoasén, este período fue aprovechado para colocar temporalmente una pantalla a base de obturadores (figura 1.16) por encima del labio superior de las compuertas del vertedor de servicio con lo que fue posible igualar los labios de los vertedores de servicio y emergencia (elevación ±186.30).

Los niveles evolucionaron hasta la cota 184.66 el día 29 de octubre, ya por encima del labio superior de compuertas original y utilizando la pantalla de emergencia que se habilitó de

manera emergente; estos niveles empezaron a decrecer a partir de esa fecha manteniendo la generación a plena carga en la central hidroeléctrica.

Figura 1.16 Obturadores utilizados de pantalla en la emergencia de 1999 (CFE, SUBDIRECCION DE GENERACIÓN, 2011)

Esta condición crítica obligó a que la CFE construyera durante el año 2000, obturadores, de media y baja carga (figura 1.17). Con estos 36 obturadores se pueden cerrar totalmente los tres vanos del vertedor de servicio en una condición crítica, hasta la elevación 189.83, es decir, 1.83 m por arriba del N.A.M.E., por lo que solamente se contaría con la disponibilidad del vertedor de emergencia.

Figura 1.17 Obturadores cerrando el vertedor de servicio (CFE, SUBDIRECCION DE GENERACIÓN, 2011)

1.12 Caído en Juan de Grijalva, Noviembre de 2007

Durante los días 28 de octubre y 3 de noviembre, se registraron 1 192.5 mm de altura de precipitación en la estación climatológica Ocotepec, Chiapas, que aunados a las lluvias de los meses de Septiembre y Octubre, provocaron daños e inundaciones en la zona de la planicie tabasqueña.

Los eventos meteorológicos de esta temporada, escurrimientos muy importantes tanto en la cuenca propia de Peñitas como en la planicie, así como la precipitación acumulada para los meses de septiembre, octubre y noviembre en las estaciones climatológicas que opera la CFE en los vasos de Peñitas y Malpaso, se pudo apreciar que prácticamente en todas las estaciones los valores medios de precipitación fueron, por mucho excedidos y en algunos casos y principalmente en el mes de Octubre se superaron los máximos históricos.

Estas condiciones provocaron un importante deslizamiento de tierra en el vaso de la presa Peñitas, el día 4 de noviembre del año 2007 a las 20:30 hrs (figura 1.18). En el poblado conocido como Juan de Grijalva, el cual, con su volumen estimado de 55 Mm³, bloqueó totalmente el cauce del río.

Figura 1.18 Tapón en el Rio Grijalva del año 2007

A fin de restablecer el flujo del río Grijalva, se procedió a excavar un canal que cruzara el caído. Estos trabajos se dividieron en tres etapas

Ante la imposibilidad de realizar extracciones de la presa Malpaso durante las etapas I y III de esta construcción, se decidió sobre elevar como parte de la contingencia las compuertas del vertedor de emergencia en un metro (fig1.18), para alcanzar la cota 187.10 m.s.n.m. Esta condición obligada de almacenar agua, prevaleció hasta el día 11 de marzo, y el nivel máximo alcanzado se registró el día 13 de marzo del 2008, en la elevación 184.88 m.s.n.m., es decir 1.33 m por arriba del labio superior de compuertas del vertedor de servicio, utilizando los 36 obturadores (12 por vano) y a solo 1.23 m del labio original de las compuertas de emergencia (186.11 m.s.n.m.).

Figura 1.19 Sobreelevación de las compuertas del vertedor de emergencia (CFE, SUBDIRECCION DE GENERACIÓN, 2011)

Figura 1.20 Esquema del vertedor de servicio con los obturadores colocados (CFE, SUBDIRECCION DE GENERACIÓN, 2011)

A continuación se presenta la tabla 1.4 en la cual fácilmente se pueden observar los cambios que ha tenido el vertedor de servicio desde su construcción hasta fechas más recientes debido a las circunstancias ya mencionadas.

	Origi	nal	Actual	
Gasto de diseño	11 100	m³/s	10 500	m³/s
Elevación de cimacio	163.69	msnm	167.64	msnm
Elevación del labio superior			183.55	msnm
de compuertas radiales	183 55	menm	189.83(utilizando los 36	
cerradas	100.00	11131111	obturadores en los 3	msnm
			vanos)	

Se anexa la tabla 1.5 que contiene los datos más importantes y característicos y actualizados de la C.H. Malpaso, la cual se desprende del informe "Resumen de operación de vertedores" realizado por la Residencia de la C.H. Malpaso.

Tubia 1.5 Daios actuales de la C.II. Malpuso	
(CFE, 2013)	

ESTRUCTURA	CANTIDAD	UNIDAD
HIDROLOGÍA.		
Área de la cuenca propia	9,952.19	km ²
Área de la cuenca hasta Malpaso	32,540	km²
Avenida máxima registrada (24-sep-80)	14,261	m³/s
Avenida de diseño original	20,000	m³/s
Escurrimiento medio anual (cuenca propia) (1952-2012)	5,560.33 x 10 ⁶	m ³
Gasto medio anual (1952-2013)	176.31	m³/s
Gasto de la Avenida de Diseño revisada (IIUNAM, Sept. 2000)	18,023	m³/s
Volumen de la Avenida de Diseño revisada	11,794 x10 ⁶	m ³
Duración de la Avenida de Diseño revisada	60	días
ESTUDIO IIUNAM 2006 (CON RESTRICCIÓN):		
Gasto máximo de Avenida revisada	18,691	m³/s
Duración de la Avenida revisada	60	días
Volumen de la Avenida revisada	21,372.05	Mm ³
Gasto máximo de descarga	106,50	Hm³/s
Elevación máxima del embalse	189.67	msnm
		1
ESTUDIO IIUNAM 2006 (SIN RESTRICCIÓN):		
Gasto máximo de Avenida revisada	18,691	m³/s
Duración de la Avenida revisada	60	días
Volumen de la Avenida revisada	21,372.05	Mm ³
Gasto máximo de descarga	14,509.00	m³/s
Elevación máxima del embalse	188.16	msnm
		1
EMBALSE.		
NAME	188	msnm
NAMO Actual	182.5	msnm
NAMINO Actual	144	msnm
Capacidad para Azolves (Hasta el umbral de la obra de toma)	1,000	Mm ³

ESTRUCTURA	CANTIDAD	UNIDAD
Capacidad Muerta (Hasta el NAMINO)	3,055.71	Mm ³
Capacidad Útil (Del NAMINO al NAMO)	9,317.39 Mm ³	
Capacidad para Control de Avenidas (Del NAMO al NAME)	1,683.20	Mm ³
Capacidad total al NAME	14,056.10	Mm ³
Área total inundada al NAME	300	km ²
Nivel Mínimo Histórico (10-jul-1975)	144.43	msnm
Nivel Máximo Histórico (13-mar-2008)	184.88	msnm
Fecha del cierre del desvío (Túnel 1)	30 de mayo de 1966	
	Enrocamiento	
Tine	con corazón	
Про	impermeable	
	de arcilla	
	138	m
Elevacion de corona	192	msnm
Ancho de corona	10	m
Longitud de corona	478	m
Ancho de la base	485	m
Bordo libre	4	m
Volumen total de la cortina	5 077 280	m ³
Elevación del desplante	54.5	msnm
DIQUES.		
	I	1
DIQUE 1		
	Enrocamiento	
Тіро	con corazón	
	de arcilla	
	A 1.50 km de	
Libicación	la cortina, en	
Obicación	margen	
	izquierda	
	5/	m
Longitud de la corona	887	m
Ancho de corona	10	m
Ancho máximo en la base	270	m

ESTRUCTURA	CANTIDAD	UNIDAD
Elevación del desplante	135.6	msnm
Elevación de la corona	192.6	msnm
Bordo libre	4.6	m
Volumen total	2 324 000	m ³
	1	
DIQUE 2		
Тіро	Enrocamiento con corazón impermeable de arcilla	
Ubicación	A 27.00 km de la boquilla, en margen izquierda del embalse	
Altura total	30	m
Longitud de la corona	204	m
Ancho de corona	10	m
Ancho máximo en la base	410	m
Elevación del desplante	162.9	msnm
Elevación de la corona	192.6	msnm
Bordo libre	4.6	m
Volumen total	575 250	m ³
	1	
DIQUE 3		
Тіро	Enrocamiento con corazón impermeable de arcilla	
Ubicación	A 2 km del Dique 2	
Altura total	40	m
Longitud de la corona	500	m
Ancho de corona	10	m
Ancho máximo en la base	159	m
Elevación del desplante	152	msnm
Elevación de la corona	192	msnm
Bordo libre	4	m
Volumen total	484 100	m ³

ESTRUCTURA	CANTIDAD	UNIDAD	
OBRA DE EXCEDENCIAS.			
VERTEDOR DE SERVICIO (CONTROL).			
Тіро	Canal a cielo abierto con tanque amortiguador		
Elevación de la cresta	167.64	msnm	
Capacidad máxima de descarga	8 250	m³/s	
No. de compuertas	3		
Dimensiones (Ancho X Alto)	15.00 x 16.00	m	
Peso de cada compuerta	105	Ton.	
Labio superior de compuertas cerradas (Medido en campo)	183.55	msnm	
Elevación del piso del canal de llamada	160	msnm	
Dimensiones del tanque amortiguador	Longitud = 120.00 Ancho de	m	
	Plantilla = 51.00	m	
	Profundidad = 26.00	m	
Elevación del piso del tanque amortiguador	70	msnm	
VERTEDOR DE EMERGENCIA.			
Тіро	Canal a cielo abierto con cubeta deflectora		
Elevación de la cresta	167.64	msnm	
Capacidad máxima de descarga	10 650	m³/s	
No. de compuertas	4		
Dimensiones de las Compuertas (Ancho X Alto)	15.00 x 18.70	m	
Peso de cada Compuerta	133	Ton.	
Labio Superior de Compuertas	187.54	msnm	
Gasto Mínimo de Despegue *	3 880	m³/s	
Angulo de Lanzamiento de la Cubeta Deflectora	45	0	
Elevación del Piso del Canal de Llamada	160	msnm	
OBTURADORES			
No. de piezas	36		
Dimensiones	Ancho: 1.905	m	

ESTRUCTURA	CANTIDAD	UNIDAD
	Largo: 15.59	m
	Altura: 1.88	m
Peso por elemento	13.783 Ton.	Ton.
Nota: Para cada vano del vertedor de servicio (3 compuertas)	se dispone de 12	piezas; 4
piezas para la parte baja, 4 piezas para la parte media, 3 piezas	s para la parte su	perior y
una pieza de repuesto.		
OBRA DE TOMA.	2	
Numero de tomas	6	
Gasto máximo por cada una de las tomas	240	m³/s
Compuertas rodantes	6	
Vanos	4.80 x 8.20	m
Elevación del umbral de la obra de toma	127.7	Msnm
CONDUCCIÓN.		
Número de conductos	6	
Tine	Tubería a	
про	telescópica	
Dimensiones:		
Diámetro	7.00 a 6.00	m
Longitud total de túneles	677.52	m
Inclinación	36	0
CASA DE MÁQUINAS.		
Тіро	Subterránea	
Dimensiones	Ancho = 20.00	m
	Largo = 161.40	m
	Altura = 39.00	m
Grúas Viajeras (2), con 2 ganchos	140/30	Ton.
DESFOGUE.		
Compuertas Deslizantes	10	
Dimensiones de las compuertas	11.80 x 5.30	m
Nivel medio de desfogue original (antes del caído)	84.5	msnm
Elevación media de diseño (Nivel Medio del vaso Peñitas	86.5	
antes del caido)		msnm

ESTRUCTURA	CANTIDAD	UNIDAD
Elevación. Máxima del desfogue después del caído en el vaso Peñitas y antes de la construcción de los túneles	89.9	msnm
Nivel medio de desfogue actual (después de la construcción del canal y túneles en el sitio Juan de Grijalva).	87	msnm
POTENCIA Y GENERACIÓN.		
Potencia instalada por unidad	180.00	Mw
Potencia total instalada	1,080.00	Mw
Factor de planta (2008-2012)	46.18	%
Generación media anual (2008-2012)	4,374.82	GWh
Eficiencia combinada de la Central	85.30	%
TURBINAS.		
Número de unidades	6	Tipo Francis
Potencia máxima	240,000	HP
Gasto de diseño por unidad	240	m³/s
Carga neta de diseño	85	m
Velocidad de rotación	128.57	rpm
Gasto total de extracción	1,440	m³/s
Potencia nominal por unidad	180	Mw c/u
Consumo específico medio de diseño(para el Nivel medio del vaso Peñitas)	el Nivel medio del 5.05 m³/k²	
Consumo específico medio de diseño	4.644	m³/kWh
(Después del Caído de Juan de Grijalva)		S/D
Elevación del Eje del Distribuidor	77.50	msnm
FECHA DE ENTRADA EN OPERACIÓN:		
U-1	26/01/1969	
U-2	06/02/1969	
U-3	27/04/1969	
U-4	24/07/1969	
U-5	01/02/1978	
U-6	14/10/1977	
GENERADORES.		
Número de Unidades	6	
Capacidad Nominal	225.00	Μ\/Δ
Tensión Nominal	15	kV

ESTRUCTURA	CANTIDAD	UNIDAD
Frecuencia	60	Hz.

Es así que el vertedor desde la finalización de su construcción e inicio de su vida de servicio, ha presentado modificaciones debido a problemas de diseño reflejados en el alzamiento de las losas del cuenco amortiguador, esto último debido a las altas velocidades de llegada al fondo del tanque así como una sección longitudinal corta y como resultado un volumen de agua insuficiente para la disipación de energía.

El problema descrito anterior es base fundamental para el desarrollo del presente trabajo en el cual el objetivo es el documentar el estudio de la solución implementada a los problemas que surgieron en el funcionamiento del vertedor de servicio de la C.H. Malpaso en el estado de Chiapas, en base a los modelos físico y numéricos que se realizaron por las respectivas áreas pertinentes así como plantear una solución alternativa.

CAPÍTULO II

2 TEORÍAS DEL DISEÑO

2.1 Tanques amortiguadores

La función de los tanques amortiguadores es disipar la energía del flujo supercrítico al pie de la rápida de descarga.

El funcionamiento de estas estructuras se basa en el principio de del resalto hidráulico, es decir convertir las altas velocidades del flujo supercrítico en velocidades que no dañen a las estructuras o cauce aguas abajo, provocando una pérdida de energía.

La idea general del diseño de los tanques amortiguadores es que a partir del gasto de diseño Q_0 , se puede conocer el tirante normal en el río aguas debajo de la presa, esta será la elevación del agua a la salida del tanque amortiguador. También con el gasto Q_0 y un ancho supuesto en el tanque, es posible conocer el tirante hidráulico en la sección 1 (t₁) y la velocidad del agua (V₁). Además se puede calcular el tirante conjugado del resalto hidráulico t₂. Si se resta a (t₂) el tirante t del río, se obtiene la elevación del piso del tanque amortiguador.

Sin embargo el tanque funcionará para una serie de gastos $0 \le Q \le Q_0$, esto hará que el resalto se corra hacia aguas abajo; cuando los tirantes conjugados sean mayores que los normales en el río, y en caso contrario, el resalto se corre hacia aguas arriba ahogando a la rápida, perdiendo eficiencia en la disipación de energía.

Esto hace necesario encontrar una combinación adecuada de las dimensiones del tanque amortiguador, que es en lo que consiste precisamente el diseño hidráulico de estas estructuras.

Existen diferentes tipos de tanques amortiguadores, los cuales son recomendados para ciertas características de la presa por lo cual, se debe de tener la precaución de conocer las solicitaciones de esta y así poder tomar la decisión correcta.

El método más común y a menudo el mejor para lograr la transición del flujo consiste en un simple resalto sumergido, formado en un tanque de amortiguación de sección rectangular. Los resaltos hidráulicos han sido estudiados por muchos investigadores, recientemente por Rajaratnam (1967) y Hager, Bremen y Kawagoshi (1990), quienes además extendieron su investigación a resaltos con un umbral de control (HAGER & LI, 1992). Novak (1955) y Hager

(1990) han estudiado las implicaciones de la hidráulica del resultado para el tanque de amortiguación de resalto sumergido.

Se puede escribir en base a lo mostrado en la figura 2.1:

$$E = y_1 + \frac{\alpha q^2}{2g\varphi^2 y_1^2}$$
 (1)

$$y_2 = \frac{y_1}{2} \left[-1 + \left(1 + 8 \frac{q^2}{g y_1^3} \right)^{\frac{1}{2}} \right]$$
(2)

Figura 2.1 Esquema de un tanque de amortiguación de resalto hidráulico (P, A.I.B., & C. NALLURI, 2001)

La profundidad del tanque de amortiguación está dada entonces por:

$$y' = y_2 - y_0 = \sigma' y_2 - y_0$$
 (3)

Y la longitud por:

$$L = K(y_2 - y_1)$$
 (4)

Donde:

 $\sigma' y k$ Son coeficientes (obtenidos en el laboratorio y de experimentos de campo)

Cuando se aplican las ecuaciones 1 a 4 se comienza con un caudal conocido q y la correspondiente profundidad y_0 aguas abajo. Para un φ seleccionado de manera adecuada y un valor de E correspondiente a la energía total disponible sobe el fondo del tanque de amortiguación, y_1 se puede calcular de la ecuación 1, y_2 de la ecuación 2 y y'de la ecuación 3 (a partir de un valor definido del factor de seguridad). E Es al principio desconocido, de modo que lo mejor es aplicar el procedimiento anterior por iteraciones, suponiendo inicialmente a y' = 0, es decir, tomando el nivel de referencia de la energía en el fondo del lecho del río aguas abajo. Este cálculo, llevado a cabo para varios caudales puede producir cinco alternativas:

1	<i>y</i> ₂ >	y_0 en todo el rango de q
2	<i>y</i> ₂ =	y_0 en todo el rango de q
3	<i>y</i> ₂ <	y_0 en todo el rango de q
4	<i>y</i> ₂ >	y_0 solo para caudales altos
5	<i>y</i> ₂ >	y_0 solo para caudales bajos

El caso 1 es el más frecuente, y muestra que el tanque de amortiguación es necesario para producir un resalto sumergido en todos los caudales. Por seguridad, el tanque también se requiere en el caso 2 (que es en realidad solo una posibilidad teórica). Para $y_2 < y_0$ no es necesario el tanque de amortiguación y es suficiente una placa (faldón) horizontal de protección del lecho del río aguas debajo de la presa, ya que se presenta un resalto sumergido. El diseño del tanque de amortiguación para el caso 4 tiene que realizarse para el caudal máximo (como en el caso 1) y, para el caso 5, en aquel caudal que produzca la

máxima diferencia entre y_2 y y_0 (con $Q_d < Q_{max}$), lo cual puede dar como resultado un pequeño tanque de amortiguación en el pie de la presa seguido de una placa horizontal de protección (o viceversa), o el diseño de una placa de protección inclinada.

Donde el resultado del primer cálculo muestre que el tanque de amortiguación es necesario, el procedimiento se repite para un nuevo valor de E (en la ecuación 1) el cual tiene en cuenta la disminución en el nivel de referencia de energía en una cantidad suficiente.

Los valores de los coeficientes $\sigma' y k$ en las ecuaciones 3 y 4 pueden tomarse (Novak y Cábelka, 1981) como $1.1 < \sigma' < 1.25 y 4.5 < K < 5.5$ donde el valor más bajo de *K* se aplica para $Fr_1 > 10$ y el más alto para $Fr_1 \leq 3$

Las ecuaciones 2 y 4 así como los aspectos de diseño hasta ahora estudiados, son válidos únicamente para tanques de fondo horizontal. En canales inclinados, el valor y_2/y_1 se incrementa con la pendiente; para una pendiente $S_0 = 0.2, y_2/y_1$ es de dos veces el valor para un canal horizontal, con el mismo número de Froude.

Los valores citados de *K*, y en particular de σ' , son bastante bajos (como indica la economía) y dependen de una buena valoración del coeficiente φ , y en especial de la profundidad aguas abajo y_0 , que, a su vez, depende en general de un valor supuesto del *n* de Manning para el río. Si se suponen los valores conservadores de *n* y φ (es decir un *n* bajo y un φ alto) entonces un valor pequeño de σ' (como 1.1) es suficiente; de otra manera debe seleccionarse un valor más alto. También es muy importante estimar la posible degradación a largo plazo del lecho del río aguas debajo de la presa, lo que podría ocasionar la reducción de los niveles (del agua) aguas abajo y de y_0 .

Un umbral de salida simple, con una pendiente de 1 a 3 es ordinario y tan efectivo como umbrales más complejos.

Es evidente a partir de las ecuaciones 1 a 4 que cuanto más abajo sea el valor de φ (más alto el valor de ε) más pequeño será el tanque de amortiguación requerido; φ en la ecuación 1 se refiere a las pérdidas totales entre la cresta del vertedero y la entrada al taque de amortiguación, es decir a $\varphi_{1-3} = f(S'/S, q, geometría)$ donde *S*' es la altura del punto de despegue de la lámina de agua sobre el nivel de referencia.

Las pérdidas de energía en las fases cuarta y quinta de la disipación de energía se pueden expresar como:

$$e_{4.5} = (y_2 - y_1)^3 / 4y_2 y^1 \tag{5}$$

Figura 2.2 Esquema de definición para las cinco fases de disipación de energía (P, A.I.B., & C. NALLURI, 2001)

Aguas abajo del resalto en el efluente del tanque subsiste todavía una proporción importante de exceso de energía, principalmente debido a la alta turbulencia del flujo, la cual puede expresarse (NOVAK & CÁBELKA, 1981) como:

$$e_{5} = (\alpha' - \alpha)V_{0}^{2}/2g$$
 (6)

Donde α' es el valor aumentado del coeficiente de Coriolis que refleja el alto grado de turbulencia y la distribución no uniforme de la velocidad; $2 < \alpha' < 5 para 3 < Fr_1 < 10$, mientras que $\alpha \simeq 1$

De las ecuaciones 5 y 6 se obtiene:

$$\frac{e_4}{e_{4.5}} = 1 - \frac{e_5}{e_{4.5}} \simeq 1 - 4(\alpha' - 1) \frac{1 + (1 + 8Fr_1^2)^{1/2}}{[-3 + (1 + 8Fr_1^2)^{1/2}]^3}$$
(7)

La ecuación 7 muestra que la eficiencia de la disipación de energía en el propio resalto dentro del tanque de amortiguación decrece con el número de Froude, dejando hasta 50% de la energía para que sea disipada aguas abajo del tanque para números bajos de Froude

El resalto hidráulico introduce una cantidad importante de aire adicional a cualquier flujo aireado de llegada. Una concentración constante de aire a lo largo del resalto ($\bar{C}_1 = \bar{C}_2$) da como resultado un resalto de menor altura en comparación con el caso sin aire, mientras que para $\bar{C}_1 > 0 \ y \ \bar{C}_2 \simeq 0$ (que es una suposición más realista) es necesaria una altura un poco mayor de y_2 respecto al caso de no tener aire (NAUDASCHER, 1987). Entonces, lo más relevante de la presencia de aire en la zona del resalto, es el requerimiento de paredes con mayor altura en el tanque de amortiguación debido a la profundidad del flujo. El efecto de la entrada de aire debido a los resaltos hidráulicos en la concentración de oxígeno en el flujo ha sido estudiado por Avery y Novak (1978).

La naturaleza de la alta turbulencia del flujo en el resalto hidráulico induce grandes fluctuaciones de presión en las paredes laterales y en particular en el piso del tanque, lo cual, a su vez, podría ocasionar cavitación. Utilizando un número de cavitación σ' , en la forma $(\overline{\rho'^2})/(1/2\rho V_2^1)$, donde ρ' es la desviación de la presión instantánea ρ con respecto a la presión $\bar{\rho}[\rho =$ promedio en el tiempo f(t) puede obtenerse de los registros de transductores de presión], la relación entre $\sigma y x/y_1$ (donde x es la distancia desde el pie del resalto) para resaltos libres y sumergidos con $Fr_1 \simeq 5$, se muestra en la figura 2.3 (NARAYANAN, 1980), (LOCHER & HSU, 1984). Suponiendo que la longitud de del resalto sea de aproximadamente $6(y_2 - y_1)$ la presión hidrostática en el punto de máxima fluctuación de la presión, es decir en un resalto libre, en $x/y_1 = 12$, será $\rho g \overline{y}$, con:

$$\bar{y} = y_1 + \frac{y_2 - y_1}{6(y_2 - y_1)} 12y_1 = 3y_1$$
(8)

Para $\sigma = 0.05$ ocurrirá cavitación si:

$$p_0 + \rho g \bar{y} - 0.05 k \rho \frac{V_1^2}{2} = \rho_v \simeq 0 \tag{9}$$

Donde $k = \rho' / \overline{(\rho'^2)}^{1/2} > 1(1 < k < 5).$

El valor de *k* puede calcularse de la ecuación 9 y suponiendo, por ejemplo, una distribución normal de las fluctuaciones de presión, el factor de intermitencia es decir, la proporción de tiempo para la cual *k* es excedido (la probabilidad de que ocurra cavitación) puede calcularse para k > 5 en la práctica no hay peligro de cavitación; para k = 3.5 hay 2% de probabilidad de ocurrencia de cavitación durante el tiempo de operación del tanque (para tanques bien construidos).

Figura 2.3 Comparación de la variación longitudinal de las fluctuaciones de presión en resaltos libres y sumergidos para Fr=5 (P, A.I.B., & C. NALLURI, 2001)

En realidad esta probabilidad de cavitación podría ser más alta porque el comienzo de la cavitación ocurrirá a presiones mayores que ρ_v , las irregularidades en el piso del tanque causarán reducción de la presión local y el flujo que viene de aguas arriba del resalto puede tener un grado sustancial de turbulencia (NARAYANAN, 1980).

Los modelos físicos proporcionan, con ciertas salvaguardias, una herramienta conveniente para evaluar las características de amplitud y frecuencia de las fluctuaciones macro turbulentas de presión y para estimar la tendencia a la cavitación, con cavitación intermitente en el prototipo (LOPRADO, 1988).

Los daños potenciales debidos a la cavitación no son el único peligro en los tanques de amortiguación de resalto hidráulico (así como en otros tipos de tanques). Probablemente, el problema estructural más serio es el efecto del empuje causado por el Sistema de drenaje de la presa o por el nivel del cauce aguas abajo o en el fondo del tanque. Este exceso de presión por encima de la presión hidrostática en el tanque se agrava por las fluctuaciones macro turbulentas de la presión por debajo (y el lado) del resalto. Aunque las fluctuaciones de la presión negativa tienen una distribución espacial desigual (que Alivia esta parte del problema) ésta es solo visible para diseñar la placa de piso para la más severa de las dos situaciones: el empuje aguas abajo aplicado sobre toda el área del piso con el tanque vacío o la cabeza de empuje igual a la raíz cuadrada media (rms en inglés) del valor de las fluctuaciones de presión que es el orden de $0.12V_1^2/2g$ (V_1 es la velocidad supercritica de entrada) aplicada para la totalidad del tanque lleno. Además, todas las juntas de contracción deben sellarse, no debe hacerse ninguna apertura de drenaje y las placas del piso deben ser tan grandes como sea posible, conectadas con pernos y refuerzo (ICOLD, 1986).

Farhoudi y Narayanan (1991) investigaron la acción de las fuerzas en losas con diferentes longitudes y anchos bajo un resalto hidráulico, dando detalles adicionales sobre los efectos del tamaño de la losa, de la posición y de la relación ancho-largo. Pinheiro, Quintela y Ramos (1994) presentaron un resumen y un análisis comparativo de metodologías para calcular las fuerzas hidrodinámicas que actúan sobre las losas de los tanques de amortiguación de resalto hidráulico.

La prevención de la vibración de los elementos del tanque (debido a la turbulencia del flujo) requiere también placas macizas, conectadas en lo posible a la cimentación.

La abrasión del concreto en el tanque puede ocurrir si este se utiliza también para desagües de fondo, que transporten sedimentos abrasivos (aunque esto es improbable que ocurra para velocidades inferiores a 10 m/s), o por sedimentos llevados dentro del tanque desde aguas abajo ya sea por mal diseño o por mala operación. El tanque debe auto limpiarse para lavar cualquier sedimento atrapado en él.

El empuje, la abrasión y la cavitación están, desde luego, fuertemente relacionados, y la previsión para mantenimiento y reparaciones debe considerarse en el diseño del tanque.

El caudal usado en el diseño de los tanques de amortiguación es, en la mayoría de los casos, el caudal (máximo) de diseño del vertedero (en los casos 1,2 y 4 anteriores). Este, sin embargo, no es siempre necesariamente el caso. Algunas veces puede resultar más económico tomar algún riesgo calculado y diseñar el tanque para un caudal más pequeño y de mayor frecuencia de ocurrencia (como Q_{1000} o menor, en lugar de la CMP) y realizar las preparaciones necesarias cuando se exceda dicho Q. Se necesita tener mucho cuidado y experiencia cuando se opta por esta alternativa.

Aunque los tanques de amortiguación diseñados con base en un simple resalto hidráulico funcionan bien y con relativa eficiencia, en ciertas condiciones otros tipos de tanques pueden producir ahorros en los costos de construcción. Se han desarrollado tanques estándares con bloques de impacto, bloques de caída y umbrales de salida especiales por el USBR (United States Bureau of Reclamation

2.1.1 Tanque rectangular tipo St. Anthony Falls (SAF)

Este fue estudiado en el SAF Hydraulics Laboratory, Minnesota University, se recomienda para obras de excedencias menores, como presas derivadores o caídas en canales donde el número de Froude oscila entre 1.70 y 17.00 (figura 2.5)

El procedimiento de cálculo es:

Determinar el tirante con la longitud L_B , el cual se obtiene con la ecuación:

$$L_B = 4.5 \left(y_d / F_{r1}^{0.76} \right) \tag{10}$$

Donde:

 y_d = Tirante después del salto hidráulico(m)

 $F_{r1} =$ Numero de Froude

La altura de los dientes de la rápida es la misma que la del tirante de llegada y_a y su ancho y separación igual a 0.75 y_a

La altura del umbral de salida h_u debe ser:

$$h_u = 0.07 y_d \tag{11}$$

La profundidad de la plantilla del tanque respecto al nivel de descarga $y_d^{'}$ es:

$$y'_d = \left(1.10 - \frac{F_{r1}^2}{120}\right) y_d \ para \ 1.70 \le F_{r1} < 5.50$$
 (12)

$$y'_d = 0.85 y_d \ para \ 5.50 \le F_{r1} < 11.00$$
 (13)

$$y'_d = (1.00 - F_{r1}^2/800.00)y_d \text{ para } 11.00 \le F_{r1} \le 17.00$$
 (14)

La altura de los muros laterales debe ser $h_m = \frac{y_d}{3}$ sobre el nivel máximo del agua descargada.

Figura 2.4 Longitud en términos de la profundidad secuente y de resaltos en canales horizontales (ARREGUÍN CORTÉS & ALCOCER YAMANAKA, 2011)

Figura 2.5 Tanque tipo Saint Antony Falls. (ARREGUÍN CORTÉS & ALCOCER YAMANAKA, 2011)

Donde:

 $L_s =$ Longitud del resalto hidráulico (m).

- $n_1 =$ Distancia entre los bloques extremos del muro (m).
- $B_1 =$ Distancia entre los bloques extremos (m).
- B_2 = Ancho total para la ubicación de los dientes del tanque (m).
- $n_2 =$ Distancia entre los dientes extremos del tanque (m).
- $B_3 =$ Ancho total del tanque (m).

Para mejorar su eficiencia se recomienda construir los dientes del tanque más angosto que los indicados en la Figura 2.8, ancho= $0.75 y_1$ y fijar el nivel de la plantilla a una profundidad respecto al nivel de descarga de 5 a 10% mayor que el conjugado teórico.

Figura 2.6 Elevación, vista aguas abajo (CFE, 1970)

Figura 2.7 Tanque tipo SAF (CFE, 1970)

2.1.2 Tanque rectangular tipo USBR (I)

Se recomiendan para grandes caídas en canales o presas derivadoras (figura 2.8), cuando los números de *Froude* varían entre 2.50 y 4.50. Es útil para eliminar ondas en la superficie del agua, esto lo logra mediante los chorros que son deflactados con los dientes colocados en el tanque. El diseño de este tipo de tanque se hace utilizando la Fig.2.8 a partir del número de *Froude* calculado.

Figura 2.8 Tanque amortiguador tipo USBR I (U.S., BUREAU OF RECLAMATION, 1960)

2.1.3 Tanque rectangular tipo USBR (II)

Son recomendados para números de *Froude* Mayores de 4.50 y velocidades de llegada menores de 15.25 m/s (figura 2.9). Su diseño puede hacerse siguiendo la Fig. 2.9. La profundidad de la plantilla está dada por el conjugado mayor d_2

Figura 2.9 Tanque amortiguador tipo USBR II (U.S., BUREAU OF RECLAMATION, 1960)

Donde:

- $d_1 =$ Tirante conjugado menor (m).
- $d_2 =$ Tirante conjugado mayor (m).
- $L_1 =$ Longitud del estanque tipo I (m).
- L_H = Longitud del estanque tipo II (m).
- $h_3 =$ Altura del diente del tanque (m).
- w = Ancho máximo del diente (m).

2.1.4 Tanque rectangular tipo USBR (III)

Recomendable para $F_{r1} > 4.50$ y velocidades mayores de 15.25 m/s. Se utilizan en presas altas con velocidades de llegada mayores de 15.00 m/s, caídas de hasta 60.00 m y gastos unitarios de 50.00 m²/s (figura 2.11).

Su dimensionamiento se hace con la ayuda de la Figura 2.10 y 2.11. La plantilla del tanque debe diseñarse de tal manera que se obtenga un ahogamiento del 5.00% del conjugado mayor teórico, con un ahogamiento menor el resalto hidráulico tiende a salirse del tanque. Debido a que este tanque es más corto que otros, existe la tentación de utilizarlos por fuera de esos límites; sin embargo, en este caso es muy grande el peligro de que ocurran daños por cavitación, debiéndose tener mucho cuidado durante el diseño y en el posicionamiento de los bloques. Basco (1969) llevó a cabo, en particular, una investigación detallada de la tendencia en el diseño de tanques con bloques de impacto y de las fuerzas de arrastre, las fluctuaciones de presión y de la geometría óptima; toda el área de tanques con bloques de impacto ha sido también estudiada por Locher y Hsu (1984).

Figura 2.11 Tanque amortiguador tipo USBR III (U.S., BUREAU OF RECLAMATION, 1960)

Donde:

- $L_m =$ Longitud del estanque tipo III (m).
- TW = Tirante de agua (m).

2.1.5 Tanque rectangular USBR IV

Cuando $F_1 = 2.5 a 4.5$, se producirá un resalto oscilante en el cuenco disipador, el cual genera una onda que es difícil de atenuar. El cuenco USBR IV (figura 2.13) se diseña para combatir este problema eliminando la onda en su frente. Esto se lleva acabo intensificando el remolino, que aparece en la parte superior del resalto (figura 2.12), con los chorros direccionales deflectados utilizando grandes bloques en la rápida cuyo número mínimo requerido para este propósito se muestra en la figura 2.12. Para un comportamiento hidráulico mejor, es conveniente construir estos bloques más angostos que lo indicado, preferiblemente con ancho igual a $0.75D_1$, y fijar la profundidad de salida, de tal manera que sea un 5% a 10% mayor que la profundidad secuente del resalto. La longitud del cuenco se hace igual a la del resalto en un cuenco disipador horizontal sin accesorios y, por consiguiente, puede determinarse mediante la curva de la figura 2.4(es decir, también igual a la longitud del cuenco USBR I) El cuenco IV solo se utiliza en las secciones transversales rectangulares

Figura 2.12 Resalto oscilante

Figura 2.13 Dimensiones del cuenco USBR IV (U.S. BUREAU OF RECLAMATION,, 1955)

2.1.6 Tanque rectangular tipo USBR V

El cuenco **USBR V** se utiliza cuando la economía estructural implica el uso de un canal de aproximación inclinado, el cual es usual en vertederos de presas altas.

Los disipadores de cubetas curvas, lisas y ranuradas, desarrollados principalmente en Estados Unidos (PETERKA, 1963) (figuras 2.14 y 2.15) requieren niveles del cauce aguas abajo en esencia mayores que los tanques convencionales de resalto hidráulico y, en caso de vertederos con compuertas, es necesaria una operación simétrica de estas (para prevenir corrientes laterales que pueden llevar sedimentos dentro de la cubeta, lo cual a su vez, puede dañar el disipador)

Figura 2.14 Cubeta curva lisa (U.S. BUREAU OR RECLAMATION, 1987)

Figura 2.15 Cubeta curva ranurada (U.S. BUREAU OR RECLAMATION, 1987)

Los tanques de amortiguación con un régimen superficial de resalto hidráulico utilizan una cubeta escalonada poco profunda (Figura 2.16), la teoría y su aplicación para pequeñas presas fue desarrollada en especial en la URSS (SKLADNEV, 1956) y fue revisada por Novak y Cabelka (1981). Este tipo de tanque es en realidad solo un ejemplo de los tanques de resalto hidráulico espacial. Otros emplean un cambio brusco en el ancho (Figura 2.17) o un resalto combinado con entradas de flujo laterales desde rápidas (Figura 2.18) o cascadas; esta última alternativa es en particular útil en valles relativamente angostos.

Figura 2.16 Tanque de resalto hidráulico espacial, cambio en la profundidad (P, A.I.B., & C. NALLURI, 2001)

Figura 2.17 Tanque de resalto hidráulico espacial, cambio en el ancho (P, A.I.B., & C. NALLURI, 2001)

Figura 2.18 Tanque de resalto hidráulico espacial, flujo desde canales laterales (P, A.I.B., & C. NALLURI, 2001)

Bremen y Hager (1993) investigaron los resaltos en canales que se expanden con brusquedad llegando a la conclusión de que los resaltos con el pie justo en el canal de aguas arriba son más eficientes que los resaltos clásicos, aunque en la construcción del tanque de amortiguación esta ventaja debe contrastarse con el hecho de que estos pueden volverse asimétricos para relaciones de expansión superiores a 1.4 y para valores más altos requieren mayores volúmenes de excavación que los tanques diseñados con base en el resalto clásico.

Todos estos y otros tipos de tanques de amortiguación y disipadores de energía se desarrollan mejor con la ayuda de estudios sobre modelos a escala (NOVAK & CÁBELKA, 1981)

Mason (1982) llevó a cabo un estudio estadístico con 370 disipadores construidos desde 1950; el estudio incluyó tanques en roca (sin protección en el fondo con cubetas curvas sumergidas), tanques de resalto simple, tanques con bloques de impacto y varios tipos de disipadores con chorros de trayectoria libre. Los resultados de las mediciones se encuentran resumidos en la siguiente figura y confirman que para operar con éxito tanques con bloques

de impacto es necesario una cierta velocidad mínima de entrada (cabeza), pero su rango está limitado por problemas de cavitación para H>30 m. Resaltos hidráulicos simples se han utilizado para cabezas mayores que las indicadas para H>50 m pero es necesario tener mucho cuidado en el diseño y la construcción. Varios tipos de disipadores de chorro necesitan un cabeza mínima (H>10 m) para trabajar de manera apropiada.

Figura 2.19 Intervalo de uso preferido para los principales tipos de disipadores (MASON, 1982)

2.2 Erosión aguas debajo de los tanques amortiguadores

Está comprobado que en el afluente del tanque se mantiene cierta proporción de energía que debe ser disipada. Debido a esto y a la distribución no uniforme de velocidades, siempre ocurrirá alguna erosión local aguas abajo del tanque. Eliminar esta situación es casi imposible y, sobre todo, muy costoso. El principal propósito del tanque es reducir y localizar la socavación (en un sitio donde esta pueda controlarse y no sea dañina para la presa), más no eliminarla. El umbral de salida del tanque debe protegerse contra la erosión regresiva y/o diseñarse de forma que propicie la acumulación de sedimentos contra el umbral en lugar de la erosión

La extensión y profundidad de la socavación local depende de los parámetros hidráulicos, de la geología (índice de erodibilidad) (ANNANDALE, 1994) y de la geometría del tanque. Varios métodos se utilizan para su cálculo, incluidos estudios sobre modelo, pero quizá lo más simple es estimar la profundidad de socavación como porcentaje de la profundidad que ocurrirá en el pie de cada una caída libre sin tanque, la cual, a su vez, puede calcularse a partir de varias ecuaciones (Schoklitsch, Varonese, Jaeger, entre otros.) Utilizando la forma de Jaeger, Novak (1955) expresa la profundidad de socavación (aguas abajo de tanques de resalto hidráulico determinada a partir de experimentos en modelos de estructuras de, relativamente, baja cabeza con arena gruesa y limitadas observaciones de campo) como:

$$y_s = 0.55 \left[6H^{0.25} q^{0.5} \left(\frac{y_0}{d_{90}} \right)^{1/3} - y_0 \right]$$
(15)

Donde:

- $y_s =$ es la profundidad de socavación debajo del lecho del río (m)
- *H* = Diferencia entre los niveles aguas arriba y aguas abajo(m)
- q = Caudal especifico (m²s⁻¹)
- d_{90} = Tamaño de 90% del grano del sedimento que conforma el lecho del río (mm)

La ecuación anterior indica, entonces que el tanque de amortiguación reduce la socavación potencial entre 45 y 50%

CAPITULO III

3 MODELO FÍSICO

3.1 Contexto y descripción general

En el marco del Congreso Internacional de Grandes Presas, Madrid 1973, se realizó la presentación del artículo de investigación realizado por el Ing. José L. Sánchez Bribiesca y el Ing. Antonio Capella Viscaíno sobre el deterioro de las losas de recubrimiento del tanque amortiguador de la presa Malpaso el cual se presenta a continuación:

"Efectos de la turbulencia en el recubrimiento de los tanques disipadores de energía".

I. Prefacio

"Actualmente nadie duda de que la seguridad de las grandes presas depende en alto grado de un adecuado diseño de las obras de excedencias. Se ha enfatizado mucho con respecto a las avenidas de diseño, pero poco se ha hecho para la elección del tipo de vertedor, particularmente en la parte final de dicha estructura, donde la disipación de una cantidad importante de energía se debe de llevar a cabo sin ocasionar grandes daños.

El tiempo ha transcurrido y los mejores sitios para la construcción de presas se han utilizado y el problema se ha vuelto más crítico, hoy en día, nadie se sorprende por presas de 100 m. de alto

Hay dos maneras de resolver este problema, uno consiste en proyectar el chorro a través de un salto de esquí tan lejos de las estructuras como sea posible, donde el agua excave su propio tanque amortiguador en la roca, la otra es construir un tanque amortiguador del tamaño adecuado para poder lograr una disipación de energía controlada. El propósito de ese documento es proporcionar un criterio de diseño el cual, de acuerdo a la experiencia adquirida en México, pueda ayudar en el diseño de tanques amortiguadores, para que una disipación efectiva de energía ocurra.

El vertedor de la presa Netzahualcóyotl (Presa Malpaso) en México está hecha de dos estructuras: Una para control y otra para excedencias, el primero está constituido por un vertedor amplio con descarga controlada por medio de tres compuertas, aguas abajo hay una rampa que termina en un tanque

amortiguador de 100 m. de longitud, 50 m. de ancho y 26 m. de profundidad, con un cabeza máxima de 118 m.

Aguas abajo del tanque amortiguador, existe un canal de salida con talud 2:1 el cual descarga al río. Este vertedor fue diseñado para disminuir inundaciones ordinarias con descargas pico de hasta 8 500 m³/s a 3, 500 m³/s; pero es capaz de descargar hasta 6 000 m³/s cuando la inundación máxima probable ocurra con una descarga pico de 21 000 m³/s. Si es necesario, la estructura de control es capaz de soportar, en condiciones seguras 11 000 m³/s

Todo lo anterior fue cuidadosamente calculado y probado en el laboratorio de hidráulica con modelos a escala 1:100. El piso del tanque amortiguador fue protegido con losas de concreto de dimensiones de aproximadamente 12 x 12 m. de lado y 2 m. de ancho, ancladas con doce barras de acero de ϕ 1 ¹/₄", estas losas fueron coladas en el sitio y las juntas de expansión fueron cuidadosamente rellenadas con material bituminoso.

La estructura de control en la presa Malpaso funcionó de 1967 a 1969 con descargas por debajo de los 2,500 m³/s, y de acuerdo con inspecciones realizadas por buzos, pequeñas erosiones fueron detectadas en algunas losas. Esta estructura diseñada para aun trabajo continuo, estuvo en servicio aproximadamente dos meses cada año sin interrupciones.

En 1970 la descarga durante dos semanas fue de alrededor de 3 000 m³/s y cuando la revisión periódica de los buzos se llevó a cabo, un daño mayor fue reportado. Cuando el tanque amortiguador fue vaciado, se pudo observar que muchas de las losas de la parte media en la cima de la rampa fueron arrancadas completamente rompiendo el anclaje las cuales algunas partes mostraban falla por tensión. Las losas fueron depositadas en la pendiente de salida, donde se podía ver que estaban volteadas. A falta del revestimiento la roca de cimentación fue seriamente dañada como se muestra en la 3.13.

La estructura de excedencias en la presa Malpaso consiste en un vertedor de cresta ancha controlada por cuatro compuertas, aguas abajo la rápida termina en un salto de ski diseñado para 10 500 m³/s.

Hasta la fecha ha descargado alrededor de 3 000 m³/s durante una hora, y el daño en la orilla del río justifican la decisión de utilizarlo solo en emergencias.

II. Análisis preliminar del fenómeno.

Es de sorprender que una losa de 720 toneladas pueda ser removida tan făcilmente. Si fuera solo cuestión de alzamiento debido a la saturación completa de la roca de cimentación, que conduzca a una diferencia de presiones entre el fondo y superficie de la losa, no se puede explicar por qué en los años precedentes después de que los meses húmedos terminaron y el tanque amortiguador se calmó, esta supresión no levantó las losas. Observando el criterio de diseño del Bureau of Reclamación, se puede ver que hubieron siempre saltos hidráulicos sumergidos debido a que el nivel de energía es controlado por el talud de sello de salida, y tomando en cuenta que el tanque amortiguador tiene 26 m. de profundidad como mínimo, la alta profundidad conjugada siempre estaba muy por debajo de dicho nivel de energía. Adicionalmente el alineamiento y terminado cuidadoso de las losas, excluye completamente la posibilidad de un golpe violento contra una losa causando su remoción, finalmente, la posibilidad de una mala construcción fue rechazada tomando en cuenta que las losas estaban completas cuando estas fueron removidas y sufrieron ligero daño durante su remoción, así que el fenómeno incluye un fenómeno más complicado.

La zona con flujo supercrítico en un salto sumergido presenta algunas afinidades con una descarga de chorro turbulenta en un líquido en reposo. Debido a la fricción, fluctuaciones turbulentas se presentan en los linderos del chorro, rompiendo el flujo en la dirección opuesta, estas fluctuaciones, de acuerdo a la teoría de turbulencia son capaces de producir otra clase de fluctuaciones turbulentas verticales normales a la dirección del chorro. Por otro lado de acuerdo al principio de continuidad, estas velocidades fluctuantes turbulentas deben ser compensadas en toda la longitud del salto excepto con distribución estocástica. Ese hecho significa dos efectos; el primero será un estado de vibración con cierta intensidad capaz de separar las losas de la roca de cimentación dejando entrar agua entre ellas

como una película delgada, la cual de acuerdo a la ley de vasos comunicantes, se tiene la presión hidrostática, probablemente, esta presión no se esparce en toda la superficie de contacto, o quizás, no con toda su intensidad, pero las dimensiones de la losa y la magnitud de la presión nos da una idea de la fuerza involucrada. El segundo efecto causado por la acción vertical de la turbulencia es la existencia de chorros verticales intensos los cuales causaron la apariencia de rugosidad en la superficie del agua y puede ser observado a simple vista en el tanque amortiguador.

Es posible imaginar un sistema que explique el alzamiento de una losa y posteriormente las fallas siguientes. De hecho, mientras el agua entra entre la roca y la losa, se desarrollará un alzamiento el cual no fluctuará tan rápido como las variaciones en la cara superior, el cual es causado por el desplazamiento de la columna de agua, cuando las corrientes ascendentes se presentan. Esto significa que bajo ciertas circunstancias la fuerza de flotación es mayor que el peso de las losas y la resistencia de las anclas por lo tanto la falla ocurre.

III. Estudios experimentales

Con el objetivo de comprobar esta primera hipótesis, dos series de pruebas fueron realizadas.

Para la primera se utilizó un modelo a escala 1:100. El fondo del tanque amortiguador fue hecho de losas de cemento que representaban las losas del prototipo. Estas losas se apoyaban sobre una superficie horizontal sin ninguna adherencia entre la superficie y las losas. Cuando el modelo funcionó, la falla se presentó en condiciones muy similares como las que sucedieron durante la falla del prototipo. Posteriormente todas las juntas entre las losas fueron selladas cuidadosamente con cera y su resistencia al levantamiento se incrementó considerablemente, sin embargo, con un mayor gasto se produjo la falla, Más tarde se realizaron pruebas con losas más gruesas y el resultado siempre fue el mismo, pero entre más gruesas eran las losas, mayor era el gasto necesario para producir el alzamiento.

Para la segunda ronda de pruebas, un dispositivo fue realizado imitando el tanque amortiguador de la Presa Malpaso, el cual permitía variar la carga total, el gasto o la profundidad de la superficie libre del

líquido. Las losas fueron colocadas en una estructura metálica cuidadosamente nivelada, de manera tal que la cara superior de las losas estuviera nivelada perfectamente horizontal. El agua que fluía a través de las juntas se pudo eliminar fácilmente de manera tal que no existía levantamiento debajo de las losas, obteniendo un drenaje perfecto. Con estas condiciones la falla no ocurrió bajo cualquier gasto o colchón de agua. Estas dos pruebas demostraron que la hipótesis era razonablemente confiable.

IV. Primer tentativa de solución

La figura 3.1 muestra esquemáticamente el fenómeno descrito previamente. La figura 3.3 muestra los símbolos que se utilizarán. Las losas son cuadradas y el espesor del tanque amortiguador es "B"

Figura 3.1 Fenómeno descrito (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Donde:

- (A) Velocidades V' presionando hacia arriba, algunas partes de la columna sombreada
- (B) Agua filtrada debajo de la losa
- (C) Velocidades opuestas actuando en contra del flujo principal.
- (D) Chorro Expansivo
- (E) Superficie irregular del agua

Figura 3.2 Vista de los daño en el tanque amortiguador (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Si el peso volumétrico de la losa y el agua son γ_c y γ_a respectivamente, el peso sumergido de una losa será $(\gamma_c - \gamma_a)a^2e$, esta fuerza hacia abajo debe ser corregida por un factor que se toma en cuenta donde la subpresión no se presenta en toda la superficie y eso quizá no sigue la ley de la hidrostática. Este factor es $K_1\gamma_a(T + e)a^2$, donde $k_1 = f(a/e)$, depende de las dimensiones de la losa, la suma de estas dos fuerzas estabilizadoras podría ser escrita como:

$$a^{2}e(\gamma_{c}-\gamma_{a})\left[1+\frac{\gamma_{a}}{\gamma_{c}-\gamma_{a}}K_{1}\left(1+\frac{T}{e}\right)\right]$$
(16)

o también

$$a^2 e(\gamma_c - \gamma_a) K_2 \tag{17}$$

Donde K_2 es función de ambas (a/e) y (T/e).

Para poder levantar la losa, una fuerza mayor que la estabilizadora debe estar presente, para reducir el peso del agua sobre la losa y provocar la falla.

Se puede pensar que en un instante, un porcentaje de K_3 del flujo total sobre la losa Q_a/B , fluirá hacia arriba con un incremento de velocidad "V" proporcional a la velocidad del flujo alcanzando la losa, i.e. $\Delta V = K_4 V$., K_3 así como K_4 depende de la energía total disponible "H" y en el modo que la expansión del chorro ocurrirá, que a su vez depende de "T". Tomando en cuenta la ecuación del momento, es posible pensar en una fuerza subiendo con un valor de $K_3 K_4 \frac{\gamma_a}{g} q a V$, donde q es la velocidad unitaria del flujo, Q/B.

El coeficiente K_3K_4 depende de la proporción H/T, si adicionalmente, aceptando que $V = \sqrt{gH}$, la fuerza se puede expresar como $K_5 \frac{\gamma_a}{g^{1/2}} q \ a\sqrt{H}$ donde $K_5 = K_3K_4$

Figura 3.3 Esquema general (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Las losas serán levantadas si

$$a^2 e(\gamma_c - \gamma_a) K_2 = K_5 \frac{\gamma_a}{g^{1/2}} q a \sqrt{H}$$
(18)

De la cual se puede concluir que

$$K_0 = F(a/e, T/e, H/T) = \frac{ae}{q} \sqrt{\frac{g}{H}}$$
(19)

Donde K_0 incluye las constantes "g", " γ_0 " y " γ_a ", la misma expresión puede ser obtenida con el teorema de π , así que el razonamiento de observa aceptable al menos desde el punto de vista de análisis dimensional. Una posible forma simple para K_0 es:

$$K_0 = a_0 + a_1 \frac{a}{e} + a_2 \frac{T}{e} + a_5 \frac{H}{T} + \epsilon$$
 (20)

Esto lleva a la necesidad del diseño de un experimento rotatorio compuesto central de segundo orden, con cuatro variables (PENG, 1967), para poder estimar la influencia de cada uno de los parámetros y sus combinaciones así como la importancia de los errores experimentales.

Figura 3.4 Otra vista de los daños (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

V. Planeación de las pruebas y primeros resultados

Como se mencionó antes, se construyó un dispositivo cuyas características son descritas (SÁNCHEZ, J. L. BRIBIESCA & ECHÁVEZ, G.). Este dispositivo mostrado esquemáticamente en la figura 3.3, permitió el cambio de tamaño de las losas, la profundidad T, la elevación del borde de la cresta P, la carga H y la velocidad del flujo Q independientemente de cada uno.

Las pruebas consistieron en seleccionar valores fijos para "H", "T", "a" y "e" y una pequeña velocidad del flujo Q que no removiera las losas. La velocidad del flujo fue incrementada y después de dos horas se realizó un nuevo incremento, hasta obtener un valor de Q que levantara las losas.

Por medio de este procedimiento, se obtuvieron combinaciones de valores en las que no era posible alzar las losas. Esto advirtió la importancia del parámetro P, la altura de la cresta, y la conveniencia de incluir un factor nuevo de variación, el cual fue definido como:

$$C = \frac{H - T}{P} \tag{21}$$

Este parámetro fue seleccionado después de varios análisis y parece indicar la importancia de las perdidas por fricción en el vertedor. Es de notar que para valores de C, menores que 0.5, el alzamiento de las losas no se podía obtener. Esto corresponde a saltos muy sumergidos.

La decisión no fue abandonar el plan original de pruebas aunque la concepción de K_0 fue modificada para tomar en cuenta el nuevo parámetro *C*.

Estas pruebas fueron realizadas como se describe en (SÁNCHEZ, J. L. BRIBIESCA & ECHÁVEZ, G.) y los resultados son mostrados en la tabla 3.1. Con la nueva concepción, las ventajas de un diseño rotatorio se perdieron, pero fue posible usar toda la información disponible.

La nueva expresión para K_0 fue:

$$K_0 = b_0 + b_1 \frac{a}{e} + b_2 \frac{T}{e} + b_3 \frac{H}{T} + b_4 \frac{H - T}{P} + \epsilon$$
(22)

Después de que los cálculos correspondientes han sido hechos, los valores obtenidos para b_i fueron:

$$b_0 = 0,234$$

 $b_1 = 0,069$
 $b_2 = -0,07$
 $b_3 = 0,095$
 $b_4 = -0.543$

El coeficiente general de regresión fue 0,83 el cual muestra la consistencia de los resultados. "H", "P", "T", "a" y "e" Se miden en metros, "g" en m/s^2 y "q" en m^3/s .

Usando estos resultados para el tanque amortiguador de la presa Malpaso, se mostró que una velocidad del flujo de 3 000 m^3/s . Producirá la falla, las anclas son tomadas en cuenta como el espesor equivalente de la losa

$$e = \frac{N * A_s * f_s}{a^2(\gamma_c - \gamma_a)} \tag{23}$$

Donde "N" es el número de barras de sección transversal "A" y una resistencia la falla f_s . Como consecuencia, para determinar K_0 , el valor e + e' puede ser utilizado en lugar de e

Esta velocidad del flujo de 3 000 m^3/s . Fue muy cercana a la que causó la falla en Malpaso.

A pesar de que el tanque de amortiguamiento de Malpaso tiene una sección trapezoidal y algunas corrientes laterales deben de existir, los resultados se asemejan bastante bien con lo sucedido en el prototipo. La reparación del tanque de amortiguamiento ya fue realizado con este criterio, utilizando

un factor de seguridad de 1,7. El tanque amortiguador se supone funcionará con una velocidad máxima del flujo de 6 000 m^3/s .

Eso significa que la velocidad del flujo que pudiera ocasionar daños a las nuevas losas, es superior a los 10 $000m^3/s$.

Resumiendo, el método propuesto consiste en determinar los valores de H, T, P, B y la longitud del tanque para obtener un comportamiento hidráulico optimo, después se selecciona la geometría para las losas ("*a*" *y* "*e*" *o* "*e*" + "*e*'"), de acuerdo al tamaño del tanque y la capacidad de colocar el concreto. La velocidad del flujo que producirá la falla es calculado por:

$$QL = \frac{ae\sqrt{gB}}{\sqrt{H}} * \frac{1}{0,234 + 0,069\frac{a}{\rho} - 0,007\frac{T}{\rho} + 0,095\frac{H}{T} - 0,543\frac{H - T}{P}}$$
(24)

			Resulta	dos de pruebo	ts y dimensio	nes de protot	ipo, asumiend	lo una escalc	t lineal de 60			
1	2	3	4	5	9	7	8	6	10	11	12	13
			Dimensiones	característico	as en metros				Parai	netros adime	nsionales	
Pruebas	pruebas	а	в	Н	Р	Т	rescarga ue falla m3/s	$\frac{a}{e}$	$\frac{T}{e}$	$\frac{H}{T}$	$C = \frac{H - T}{p}$	K_0
_	5	12,00	6,00	95,87	75,00	47,74	123,45	2,00	7,96	2,01	0,641	0,187
=	4	12,00	3,00	48,00	35,00	24,00	66,26	4,00	8,00	2,00	0,687	0,245
≡	9	12,00	6,00	119,75	00'66	59,12	136,94	2,00	9,85	2,03	0,609	0,150
N	3	12,00	3,00	60,00	35,00	30,00	71,12	4,00	10,00	2,00	0,859	0,205
~	9	12,00	6,00	143,75	129,12	47,08	104,57	2,00	7,85	3,05	0,749	0,180
٨I	5	12,00	3,00	70,76	60,00	23,95	38,57	4,00	7,98	2,95	0,780	0,347
VII	9	12,00	6,00	179,92	150,00	58,64	119,51	2,00	9,77	3,07	0,808	0,141
VIII	9	12,00	3,00	86,98	75,00	30,38	43,22	4,00	10,13	2,96	0,795	0,275
×	S	96'6	7,56	171,94	150,00	65,52	175,93	1,32	8,67	2,62	602'0	0,102
X	9	10,00	2,14	48,06	35,80	19,26	43,32	4,68	9,01	2,49	0,828	0,223
XI	5	15,00	5,00	91,11	75,00	36,50	96,63	3,00	7,30	2,50	0,728	0,255
XII	6	15,00	5,00	133,38	09 '66	53,34	110,30	3,00	10,67	2,50	0,804	0,184
XII	4	15,00	5,00	79,00	60,00	44,24	160,34	3,00	8,85	1,78	0,579	0,164
XIV	5	15,00	5,00	150,21	129,60	45,34	82,75	3,00	9,07	3,31	0,809	0,231
X۷	4	15,00	5,00	112,71	99,60	45,25	84,08	3,00	9,05	2,49	0,677	0,263
XVI			Prueba	anulada					Resultado	s no confiable	S	
XVII	3	15,00	5,00	112,01	99,60	45,49	74,92	3,00	9,10	2,46	0,677	0,296
XVIII	3	15,00	5,00	112,34	99,60	45,31	78,40	3,00	9,06	2,48	0,673	0,282
XIX	3	15,00	5,00	112,62	99,60	44,80	85,76	3,00	8,89	2,51	0,680	0,258
XX	3	15,00	5,00	111,71	99,60	45,37	72,08	3,00	9,08	2,46	0,666	0,308
Las cifras n	iostradas en la	a columna 8, J	para descarg: las c	a de falla por l Jiferencias er	unidad, son v itre los valore	alores medic <u>ss máximos y</u>	obtenidos d minimos fuer	le pruebas h ran mayores	echas de acué del 15%	erdo a la colur	nna 2. No hubo c	asos donde

Tabla 3.1 Resultados de pruebas a escala lineal de 60 (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Figura 3.5 Condiciones de prueba (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Donde:

$y_2 = 38 \ cm$
$T_2 = 40 \ cm$
$x = 35 \ cm$
(T)Transductor de presión

Figura 3.6 Vista aguas abajo del daño en el revestimiento (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Si la velocidad de diseño del flujo es Qd, es recomendable tener $Q_l/Q_d = 1,5 a 1,7$, si no, la geometría y la resistencia de la losa deberá de ser cambiada.

Se debe de hacer notar que para obtener buenos resultados las losas deben de ser monolíticas, o el concreto debe ser colocado dando el mayor espesor posible de forma continua y revisando la resistencia de la anclas. Es posible que la resistencia de las losas puede incrementarse acuñándolas a las losas adyacentes.

Se debe mencionar que para efectos de hacer la inspección final del fondo reconstruido del tanque amortiguador de Malpaso, fue vaciado de nuevo.

El levantamiento estático observado fue pequeño. Esto apoya la teoría que el alzamiento relacionado con la falla fue debido al agua que pasó a través de las juntas durante la operación del tanque y no debido a la Subpresión de toda el área, Esto es afortunado ya que si no fuera así, un sistema de drenaje costoso tuviera que haber sido construido.

VI. Un nuevo enfoque al problema

El método propuesto es un procedimiento simple, pero con serias limitaciones. Solo da información acerca de la magnitud de la velocidad del flujo que causa la falla, pero sin referencia a algunos factores importantes, como la forma y localización de las losas (solo losas cuadradas fueron probadas), y tampoco las características estocásticas del proceso son consideradas.

Se debe aclarar si es posible dar normas generales para el diseño o no, considerando esos factores, o si es necesario estudiar cada caso particular.

Algunos autores han hecho medidas puntuales (LIATJER, 1968) y (TSTAL, 1969), similares a lo descrito en la parte 7. Con el fin de obtener información del problema, se pretende obtener medidas en toda la parte del fondo del tanque amortiguador para poder calcular la probabilidad de diferentes fuerzas de levantamiento sobre diferentes áreas y en diferentes lugares para cualquier combinación de

parámetros. Los primeros resultados y el equipamiento electrónico requerido son descritos a continuación.

VII. Estudios de prueba con instrumentación electrónica

El equipamiento seleccionado tiene 3 canales, cada uno consiste en un transductor de presión (del tipo puente con cuatro resistencias activas), un amplificador y una fuente de voltaje constante. Este amplificador tiene un filtro con frecuencias seleccionables para corte y un supresor de entrada, de tal manera que si la señal tiene un alto voltaje en promedio y variaciones pequeñas relativamente, las promedio pueden ser descontadas y las variaciones de interés pueden ser amplificadas lo mayormente posible.

La señal filtrada y amplificada es grabada en una cinta magnética con varios canales. Estas grabaciones son posteriormente transformadas por un convertidor análogo-digital, para poder procesar la información en una computadora digital. Para probar el equipo y tener una primera idea de las fluctuaciones de presión las grabaciones han sido realizadas en un tanque bajo las condiciones mostradas en la figura 3.5. La figura 3.8 muestra las grabaciones obtenidas. Un análisis con filtros electrónicos de esas grabaciones muestra que la mayor parte de la energía se presenta en las frecuencias menores a 10 cps. Esto concuerda con resultados publicados (VASILEV, O. F. & BUKREYEV, V. I. , 1967). Para confirmar esto, un espectro de potencia será obtenido. En la 3.8 un componente con una frecuencia alrededor de 90 cps puede ser observado. Esta es la frecuencia natural del transductor y de los tubos de conexión. Sería conveniente obtener una frecuencia natural mayor para que pueda ser eliminada por un filtro sin modificar las frecuencias menores de interés.

Figura 3.7 Bosquejo del transductor (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Donde:

 $d = 0,60 \ cm$ (D) = Diafragma

 $L = 3,00 \ cm$

El transductor es mostrado de forma esquemática en la figura 3.7. Su frecuencia natural está dada por (DOOBOLIN)

$$\omega_n = \sqrt{\frac{3\pi d^2}{16\rho LC'}} \tag{25}$$

Figura 3.8 Lectura de Frecuencias (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Figura 3.9 Vista del modelo físico (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Donde *d* es el diámetro del tubo de conexión, *L* es la longitud y *C* es la variación de volumen de la cámara para un cambio unitario de presión. No es posible incrementar *d*, pero *L* puede ser acortado a 0,6 de su longitud actual y un valor menor para *C* puede ser obtenido cambiando el diafragma por uno más rígido. Las características de mejora, sonido, estabilidad, etc. del equipamiento permitirán usar un diafragma cinco veces más rígido, manteniendo una precisión de medición de $\pm 2 mm$ de carga de

agua. Se puede suponer que *C* varia aproximadamente en una proporción de 5, a la frecuencia natural que pudiera ser alcanzada es:

$$\omega_n = 90 \frac{\sqrt{5}}{\sqrt{0.60}} = 260 \ cps \tag{26}$$

La figura 3.10 muestra una grabación filtrada con una frecuencia anulada de 10 cps por un segundo filtro y donde la frecuencia de resonancia del equipo ha sido eliminada. Las fluctuaciones pueden ser vistas más claramente, aunque están algo deformadas por el filtro. Esta grabación permite observar que las fluctuaciones de presión son lo suficientemente grandes para sostener la hipótesis que esta es la causa de la falla, Esta grabación muestrea cambios de presión de 35 cm de agua, con una presión promedio de 20 cm.

Figura 3.10 Frecuencias filtradas y resonancia eliminada (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

VIII. Planeación para futuras pruebas

Las próximas pruebas consistirán en la medición de presión como se muestra en la figura 3.11

Figura 3.11 Esquema de medición de presiones (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Donde:

$$(A) = Puntos de medición$$

El propósito es confirmar la suposición que las presiones en la zona 1 de la figura 3.11, i.e. la cara superior de las losas, están mayormente relacionadas cuando la velocidad del flujo aumenta y es mayor la probabilidad de una baja presión en una losa completa. Mientras todas las presiones que actúan en las juntas de las losas se transmitirán a la zona 2, pero se supone que las juntas actúan como

Figura 3.12 Momento en el que comienza el alzado de la losa en el modelo (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Figura 3.13 Después de lo anterior, un alzamiento casi vertical se presenta (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Un filtro y que las supresiones en la zona 2 no varían demasiado, resultando una gran probabilidad de diferencias de presión entre 2 y 1, la cual sería la causa de la falla.

Esa suposición es confirmada, el próximo paso consistirá en medir las características de la fluctuación de presiones en todo el fondo del salto. Se pretende establecer relaciones funcionales entre las características y las del salto, .i.e. el número de Froude, sumersión, forma de la rampa, espesor, longitud del tanque, etc.

Figura 3.14 Después de lo anterior, un alzamiento casi vertical se presenta (SÁNCHEZ BRIBIESCA & CAPELLA VISCAÍNO, 1973)

Donde:

- (1) Losas originales
- (2) Daños por erosión
- (3) Planta del vertedor
- (4) Sección longitudinal del vertedor
- (5) *Nuevs barras de anclaje*

- (6) Seccion trnasversal del vertedor mos
- (7) Seccion longitudinal del vertedor mo:
- (8) Planta del cuenco amortiguador, mos

IX. Conclusión

De la experiencia adquirida en México, debido a la destrucción parcial del recubrimiento del tanque amortiguador de Malpaso, fue posible detectar la existencia de un fenómeno que ha sido estudiado antes, este es el peligro del levantamiento de las losas del fondo del tanque de amortiguamiento debido a la acción de la macro turbulencia. Una teoría ha sido perfilada para explicar este fenómeno. Esta teoría parece ser confirmada desde varios puntos de vista.

De acuerdo con ello y con pruebas sistemáticas una primera solución ha sido propuesta, sin ser completamente satisfactoria, la cual permite al diseñador utilizar un procedimiento simple. Finalmente, hoy en día instrumentaciones más adecuadas son utilizadas y es de esperar que dentro de pocos meses los procesos de diseño serán mejorados considerablemente.

*Reconocimientos*²

Las pruebas fueron realizadas en el laboratorio de hidráulica del Instituto de Ingeniería de la Universidad Nacional Autónoma de México. La primer parte del estudio experimental fue bajo la supervisión del Dr. Gabriel Echavez y el material fotográfico fue provisto por M. en I. José Antonio Maza.

Resumen

La disipación de energía requerida por vertedores con grandes cargas generalmente lleva a dos tipos de soluciones, i.e. un salto de ski o un tanque amortiguador, para la segunda solución, el revestimiento

² Este estudio fue realizado en el Instituto de Ingeniería de la UNAM de México, bajo el patrocinio de la Secretaría de Recursos Hidráulicos y la Comisión Federal de Electricidad.

del fondo del tanque está bajo los efectos de la macro turbulencia, en la cual, en el caso de la presa Netzahualcoyotl en México, causó daños considerables a pesar de las precauciones hechas para el diseño y construcción de esta estructura.

En este documento, un análisis de este fenómeno es realizado y una teoría se perfila basada en las observaciones del prototipo y de un modelo. Un procedimiento simple es propuesto para diseñar el revestimiento de los tanques amortiguadores. El estudio experimental tiene dos etapas. La primera ya terminada evaluó la influencia de diferentes parámetros en un modelo con un diseño experimental, la segunda, ahora en proceso, trata de tener una mirada más cercana al fenómeno y requiere equipamiento electrónico sofisticado y un análisis más complejo" (SÁNCHEZ, J. L. BRIBIESCA & ECHÁVEZ, G; 39-56)

Posteriormente y de manera adicional se siguieron realizando estudios y pruebas en modelos físicos, específicamente en el año 2012 se estudió en el Laboratorio de Hidráulica de la CFE, la primera parte del funcionamiento de los vertedores de servicio y emergencia de la C.H. Malpaso. En virtud de que dicho estudio se desarrolló de forma conjunta con el Instituto de Ingeniería de la UNAM (II-UNAM) para la Coordinación de Generación de la CFE, en el informe de resultados solo se emitieron comentarios y conclusiones de tipo general.

Figura 3.15 Modelo 3D del tanque amortiguador de la C.H. Malpaso, Chiapas.

En el 2013 se estudió la segunda parte con objeto de concluir algunos ensayes pendientes, emitir conclusiones del funcionamiento general de las estructuras y las recomendaciones necesarias, esto también se desarrolló de manera conjunta con el II-UNAM, quien definió las alternativas a representar en el modelo físico, producto de la revisión en el modelo numérico. Después de un análisis por parte de la Subgerencia de Diseños Hidroeléctricos (SDH) de las alternativas estudiadas en el Laboratorio, definieron que estas propuestas deberían ser analizadas con otros puntos de vistas. Por lo anterior, la SDH solicitó al Laboratorio de Hidráulica la rehabilitación del modelo físico existente a escala Le = 65 de la C.H. Malpaso,

para estudiar el funcionamiento hidráulico de los vertedores con nuevas alternativas de solución para el desarrollo del proyecto ejecutivo; readaptando algunas de las propuestas anteriores y afinando geometrías.

Figura 3.16 Vista aguas arriba hacia aguas abajo del tanque amortiguador

Para la realización del modelo, el Laboratorio se basó en la siguiente información:

- I. Plano general, Departamento de Proyectos, oficinas de proyectos civiles, Sistema Hidroeléctrico del Río Grijalva. Planta Malpaso, Estado de Chiapas.
- II. Levantamiento topo-batimétrico, Levantamiento topográfico y batimétrico del desfogue de la C.H. Malpaso, Proyecto Raudales Malpaso, Chis. Curvas de nivel 001, rev. 0, marzo 2012.
- III. Memoria de cálculo del estudio 0001, Laboratorio de hidráulica, CFE.DPIF/503.2.2.2/L121A/02.0001.01.00, 2/3 y 3/3.
- IV. Planos LI MAL 42 13 DES OE 001 1 de1 con fecha 11/03/14, LI MAL 42 13 DES OE 002 1 de 3, 2 de 3 y 3 de 3 con fecha 24/03/14.

3.2 Descripción del modelo físico

Se rehabilitó el modelo físico existente a escala Le = 65, el cual se construyó tomando en cuenta para los ensayes y el costo y tiempo de construcción del mismo. De acuerdo con la similitud de Froude, se obtuvieron los valores de las escalas siguientes:

VALOR	ESCALA
Líneas	Le = 65
Velocidades	$Ve = Le^{0.5} = 8.06$
Gastos	$Qe = Le^{2.5} = 34\ 063.04$
Rugosidad	$n_e = Le^{1/6} = 2.01$

Para este modelo se presentaron 3 distintas propuestas para el salto de esquí que se encuentra sobre la rápida, estos son un ángulo de salida de -10°, 0° y 5°; en el caso del ángulo de -10° este fue propuesto gracias a los resultados del estudio del modelo numérico realizado por el Instituto de Ingeniería de la UNAM.

Figura 3.17 Vista desde el piso del tanque amortiguador a la Elev.70, 00 m.s.n.m

Se colocaron celdas de presión en el tanque de amortiguamiento con el objetivo de conocer las presiones que se desarrollan en la plantilla en esta zona, de la misma forma se tomaron los registros de las velocidades en la parte inicial y final del salto de esquí, los cuales se ubican en los cadenamientos 0+125 y 0+162.5 respectivamente.

Figura 3.18 Ubicación de celdas de presión en la plantilla del tanque amortiguador (CFE, 2014)

3.3 Desarrollo de las pruebas

Uno de los fenómenos que se observó en el modelo fue que en los muros laterales del tanque amortiguador el flujo impacta claramente, es por esto que se propuso la colocación de deflectores laterales para concentrar al centro del tanque el flujo y evitar daños o cualquier situación que se desprenda debido a esta acción indeseada; gracias a las pruebas realizadas se definió que la geometría optima es de 10.66 m de largo, 9.58 m de alto y 3.05 m de ancho en la parte final del deflector, esto se puede observar en la siguiente figura.

Figura 3.19 Geometría de deflectores laterales a partir de la plantilla del canal (CFE, 2014).

Figura 3.20 Vista desde margen derecha del tanque amortiguador

3.3.1 Proyecto original (prototipo)

En el proyecto original no se tiene salto de esquí ni contracciones laterales, el flujo sigue el perfil de la rápida hasta llegar a la plantilla del tanque amortiguador, este arreglo ha sido el que desde el comienzo, como resultado de la operación de la obra de excedencias generó los múltiples daños a las losas de concreto.

Figura 3.21 Geometría del proyecto original (CFE, 2014)

A continuación se presentan los resultados de manera gráfica que arrojaron las celdas de presión de las pruebas en el prototipo, así como la comparación entre las distintas zonas de la losa del tanque.

Gráfica 3-1 Prototipo Q=1000 m³/s

Gráfica 3-2 Comparación Prototipo Q=1000 m³/s

Gráfica 3-3 Prototipo Q=7000 m³/s

Gráfica 3-4 Comparación Prototipo Q=7000 m³/s

3.3.2 Salto de esquí con 5°

A continuación se presentan de manera gráfica los resultados que arrojaron las celdas de presión de las pruebas, así como la comparación entre las distintas zonas de la losa del tanque

Gráfica 3-5 Salto de esquí con 5° $Q=1000 \text{ m}^{3/s}$

Gráfica 3-6 Comparación de salto de esquí con 5°, Q=1000 m³/s

Gráfica 3-7 Salto de esquí con 5° Q=7000 m³/s

Gráfica 3-8 Comparación de salto de esquí con 5°, Q=7000 m³/s

3.3.3 Salto de esquí de -10°

A continuación se presentan de manera gráfica los resultados que arrojaron las celdas de presión de las pruebas, así como la comparación entre las distintas zonas de la losa del tanque

Gráfica 3-9 Salto de esquí con -10°, $Q=1000 \text{ m}^3/\text{s}$

Gráfica 3-10 Comparación de salto de esquí con -10°, Q=1000 m³/s

Gráfica 3-11 Salto de esquí con -10°, Q=7000 m³/s

Gráfica 3-12 Comparación de salto de esquí con -10°, Q=7000 m³/s

De forma resumida y en distintos esquemas en 3 dimensiones, se muestran los valores de cada prueba con una distribución semejante a la que fueron colocados los sensores de presión

Figura 3.22 Distribución de presiones máximas en prototipo Q=1000 m³/s

Figura 3.23 Distribución de presiones máximas en prototipo $Q = 7000 \text{ m}^{3/s}$

Figura 3.24 Distribución de presiones máximas, salto de esquí de 5° Q=1000 m³/s

Figura 3.25 Distribución de presiones máximas, salto de esquí de 5° Q=7000 m³/s

Figura 3.26 Distribución de presiones máximas, salto de esquí de -10° Q=1000 m³/s

Figura 3.27 Distribución de presiones máximas, salto de esquí de -10° Q=7000

3.4 Estudio de las losas de concreto en el modelo del tanque de amortiguamiento

En el laboratorio de hidráulica de la CFE se realizó una simulación de manera similar al estudio del comportamiento hidráulico del tanque amortiguador con saltos de esquí a diferentes ángulos, un modelo físico a escala Le=65 con el objetivo de tener una aproximación, sobre el comportamiento de las losas que forman el piso del tanque de amortiguamiento (figura 3.28), esto ante el efecto de presiones negativas presentadas debidas a la descarga del vertedor.

Figura 3.28 Losas en tanque amortiguador de 12.2x10.20x2.9m, en modelo (CFE, 2014)

Entre las características de este modelo y sus diferentes arreglos para su análisis, es importante mencionar que las losas no se encontraban ancladas al fondo del tanque, solo fueron sobrepuestas, así como que el tanque no contaba con drenaje, lo cual representa una condición más desfavorable que la que se encuentra actualmente en el prototipo.

Figura 3.29 Perfil de la ubicación de losas del tanque amortiguador en el modelo. (CFE, 2014)

Como consecuencia de que no se contaba con un plano de las losas del tanque amortiguador como se encuentran en la realidad, se tomaron las dimensiones de las losas originales del informe elaborado por el I. I. UNAM (1974) y del artículo del Ing. José Luis Sánchez Bribiesca (BRIBIESCA, 1979); que son de 12.20 x 10.20 x 2.90 m. de concreto armado(figura 3.30); la densidad del concreto armado es 2400 kg/m3, esto significa que cada losa tenía un peso de 866 ton, al escalarlas a modelo se representaron losas de 18.8 x 15.7 x 4.5 cm, con un peso de 3.15 Kg cada una.

Figura 3.30 Acomodo de las losas escaladas en el modelo (CFE, 2014)

3.4.1 Comportamiento de losas en arreglo: similar al prototipo

Cabe destacar que el estudio se realizó configurando el modelo físico para que fuera similar y coincidiera con las características del prototipo, la principal es que no tiene salto de esquí, es decir este estudio no toma en cuenta la solución que se está buscando para la socavación en el tanque amortiguador.

Para tener una rápida comparación de los resultados obtenidos en las pruebas, se muestran en las tablas 3.1, 3.2, 3.3 y 3.4, organizados con una imagen de la prueba, observaciones y el gasto utilizado.

GASTO (m³/s)	OBSERVACIONES	FOTOGRAFÍAS (CFE, 2014)
1 000	Se mantienen las losas en su posición.	
2 000	Se presenta movimiento de las losas	Movimiento de losas

Tabla 3.2 Resultados de pruebas en modelo físico similar al prototipo

GASTO (m³/s)	OBSERVACIONES	FOTOGRAFÍAS (CFE, 2014)
3 000	Es claro el próximo levantamiento de las losas, por tal razón el ensaye se suspendió para ese gasto	Levantamiento de losas
3 000	Después de dejar operando el modelo a lo equivalente a 1 hr de prototipo	

Se pudo concluir que con gastos bajos, las presiones negativas que se generan dentro del tanque de amortiguamiento son grandes y desestabilizan las losas de fondo levantándolas y desplazándolas de su lugar de origen.

3.4.2 Comportamiento de losas en arreglo: salto de esquí 4-10° en la rápida

A continuación se muestran los registros para la alternativa de salto de esquí en la rápida con ángulo de -10° el cual termina en el cadenamiento 0+162.5

Figura 3.31 Perfil del salto de esquí 4-10° (CFE)

Tabla 3.3 Resultados er	1 prototipo modificado	con salto de esquí ≰-10°	en la rápida
-------------------------	------------------------	--------------------------	--------------

GASTO (m³/s)	OBSERVACIONES	FOTOGRAFÍA (CFE, 2014)
1 000 – 6 000	No se presentó movimiento en las losas	

GASTO (m³/s)	OBSERVACIONES	FOTOGRAFÍA (CFE, 2014)
7 000	Se presentó levantamiento de las losas	Levantamiento de losas
7 000	Después de operar el modelo durante una hora equivalente a prototipo y desfogar el tanque	

Como se puede observar, el comportamiento de las losas es mejor cuando se le agrega el salto de esquí a la rápida con un ángulo de despegue de -10°, con este estudio se puede vaticinar que el tanque amortiguador será capaz de funcionar con un gasto mayor al que actualmente se está operando, aprovechando de mejor manera la capacidad de este; con este análisis se complementan los resultado obtenidos en la primera parte del estudio

3.4.3 Comportamiento de losas en arreglo: salto de esquí recortado 4-10°

A continuación se muestran los registros para la alternativa de salto de esquí en la rápida con ángulo de -10° recortado 10 m aguas arriba (figura 3.31 y 3.32), esto significa que inicia en el cadenamiento 0+125 y termina en el cadenamiento 0+152.5, a diferencia del salto de

esquí largo que termina en el cadenamiento 0+162.5, los resultados se muestran en la tabla 3.4

Figura 3.32 Perfil del salto de esquí corto (CFE)

Figura 3.33 Salto de esquí corto con deflectores laterales (CFE, 2014)

GASTO (m ³ /s)	OBSERVACIONES	FOTOGRAFÍAS (CFE, 2014)
1 000	No se presenta levantamiento de las losas	
5 000 - 6 000	Se presenta levantamiento de losas	
7 000	Funcionamiento del tanque amortiguador con mayor levantamiento de losas y el flujo se derrama sobre los muros laterales	

Tabla 3.4 Resultados de pruebas en modelo con salto de esquí recortado y \measuredangle -10°

GASTO (m³/s)	OBSERVACIONES	FOTOGRAFÍAS (CFE, 2014)
7 000	Acomodo de las losas después de la operación	

Se concluye que para esta alternativa se registra una mayor fluctuación en el tanque y por ende se presenta el levantamiento de las losas para un gasto entre 5000 y 6000 m³/s.

3.4.4 Comportamiento de losas con: esquí corto y dentellón sobre elevado 2m.

En esta alternativa se representó el salto de esquí con ángulo de 5° en la rápida y 2 m de sobre elevación en el dentellón a la salida del tanque amortiguador, esto con el fin de dar un mayor colchón de agua, en las figuras 3.33 y 3.34 se observan los arreglos mencionados.

Figura 3.35 Perfil del salto de esquí con ángulo de 5° corto4 (CFE)

De la misma forma que los escenarios anteriores, se realizó el ensaye cualitativo con la finalidad de observar el comportamiento de las losas colocadas en la plantilla del tanque para los diferentes gastos, el modelo se operó para cada gasto durante 7.5 minutos lo equivalente a 1 hora en prototipo, los resultados se muestran en la tabla 3.5.

GASTO (m³/s)	OBSERVACIONES	FOTOGRAFÍAS (CFE, 2014)
1 000	No se presenta levantamientos de losas	

Tabla 3.5 Resultados de pruebas, salto de esquí corto y dentellón sobre elevado 2 m

GASTO (m³/s)	OBSERVACIONES	FOTOGRAFÍAS (CFE, 2014)
7 000	Se observa levantamiento de losas y el derramamiento sobre los muros laterales	
7 000	Acomodo de las losas después de la operación con el gasto de 7 000 m ³ /s	

Del estudio cualitativo se puede comentar que para este caso el levantamiento de las losas se presenta después de 3 minutos de operación, lo que equivale a 24 min de prototipo con el gasto de 7000 m³/s.

En las imágenes de la tabla 3.4 se aprecia el fenómeno para gastos de 1000 y 7000 m³/s, se pudo observar el acomodo de las losas después de concluir la prueba, la cual muestra el depósito de las losas fuera del tanque.

La fuerza de impacto del agua fue la causante del movimiento de las losas y no la supresión, ya que al ser el modelo de acrílico, el material no permite saturaciones que puedan dar origen a este fenómeno.

La observación de este fenómeno nos indica que al tener el dentellón una sobreelevación de 2 m, el flujo se acelera a la salida del tanque.

A manera de resumen y para facilidad de consulta del lector, se agrega la tabla 3.6 con las conclusiones obtenidas en los estudios correspondientes:

Tabla 3.6 Re	sumen de concl	usiones en e	l estudio de	comportamiento	de las l	losas
				1		

ARREGLO	CONCLUSIÓN
	Con gastos bajos, las presiones negativas que se generan dentro
Similar al prototipo	del tanque de amortiguamiento son grandes y desestabilizan las
	losas de fondo, levantándolas y desplazándolas de su lugar de
	origen.
	El comportamiento de las losas es mejor cuando se le agrega el salto
Salto de esquí ∡-	de esquí a la rápida con un ángulo de despegue de -10°, se puede
10° en la rápida	anticipar que el tanque amortiguador será capaz de funcionar con
	un gasto mayor al que actualmente se está operando, aprovechando
	de mejor manera la capacidad de este.
Salto de esquí	En este arreglo se registra una mayor fluctuación en el tanque y por
$\propto 10^{\circ}$ recortado	ende, se presenta el levantamiento de las losas para un gasto entre
4-10 Tecollado	5 000 y 6 000 m³/s.
Salto de esquí	Levantamiento de las losas se presentó después de 3 minutos de
corto y dentellón	operación, lo equivalente a 24 min de prototipo con el gasto de 7 000
sobre elevado 2m.	m³/s.

CAPITULO IV

4 PROPUESTA DE DISEÑO

Desde un punto de vista práctico, el resalto hidráulico es un medio útil para disipar el exceso de energía en un flujo supercrítico. Su mérito está en prevenir la posible erosión aguas debajo de vertederos de rebose, rápidas y compuertas deslizantes, debido a que reduce rápidamente la velocidad del flujo sobre un piso protegido hasta un punto donde el flujo pierde su capacidad de socavar el lecho del canal natural aguas abajo.

El resalto hidráulico utilizado para la disipación de energía a menudo se confina parcial o totalmente en un tramo del canal que se conoce como *cuenco de disipación* o cuenco de aquietamiento, cuyo fondo se recubre para resistir la socavación. En la práctica, el cuenco disipador rara vez se diseña para confinar toda la longitud de un resalto hidráulico libre sobre la zona revestida, debido a que sería muy costoso. En consecuencia, a menudo se instalan accesorios para controlar el resalto dentro del cuenco. El principal propósito de este control es acortar el rango dentro del cual el resalto ocurrirá y por consiguiente reducir el tamaño y el costo del cuenco disipador. El control tiene ventajas adicionales, debido a que mejora la función de disipación del cuenco, estabiliza la acción del resalto y, en algunos casos incrementa el factor de seguridad

A continuación se realiza una propuesta de cuenco amortiguador para el vertedor de servicio de la C.H. Malpaso con base en las teorías abordadas en el capítulo No.3, las cuales de acuerdo a experimentos de laboratorio así como la experiencia adquirida a lo largo de décadas de construir cuencos disipadores, arrojan una guía que actualmente es adoptada en todo el del mundo para el diseño y operación de este tipo de estructuras.

Datos:

$$Q = 7\ 000\ m^3/s$$

L = 45 m

 $h_1 = 188 \ msnm$

 $h_2 = 108.50 \ msnm$

Donde:

- Q Es el caudal de diseño
- L Es la longitud de la cresta del vertedor
- $h_1 Es$ la elevación del espejo del agua, aguas arriba del cimacio
- $h_2 Es$ la elevación del espejo del agua, a la salida del tanque amortiguador

Calculando el gasto unitario el cual está dado por:

$$q = \frac{Q}{L} \tag{27}$$

Susitituyendo valores

$$q = \frac{7\ 000\ m^3/s}{45\ m}$$

Obtenemos:

$$q = 155.55 \, m^2/s$$

Calculamos la velocidad al pie del vertedor, la cual está dada por:

$$Vi = \sqrt{2gh_t} \tag{28}$$

Donde:

- g-Es la aceleración de la gravedad la cual se toma como 9.80066 m/s^2
- $h_t Es$ la altura total medida desde la elevación del espejo del agua, aguas arriba

de la estructura de control y a la salida del tanque amortiguador

Sustituyendo valores:

$$V_1 = \sqrt{2 * 9.80665 \, m/s^2 * 79.5 \, m}$$

Obtenemos

$$V_1 = 39.48 \ m/s$$

Con los valores obtenidos se calcula el tirante de salida, el cual esta dado por la ecuación

$$Y_x = \frac{q}{V_1} \tag{29}$$

Sustituyendo valores:

$$Y_x = \frac{155.55 \, m^3/s}{32.25 \, m/s}$$

Obtenemos:

$$Y_x = 4.82 \ m$$

Se procede a calcular el número de Froude en la misma sección con la ecuación:

$$Fr = \frac{V_1}{\sqrt{gY_x}} \tag{30}$$

Sustituyendo valores:

$$Fr = \frac{39.48 \ m/s}{9.80665 \ m/s^2 * 4.82 \ m}$$

Obtenemos:

$$Fr = 5.74$$

El conjugado mayor se obtiene mediante la ecuación dada por: (U.S. BUREAU OF RECLAMATION, 1987)

$$\frac{Y_2}{Y_1} = \frac{1}{2} \left(\sqrt{1 + 8Fr^2} - 1 \right) \tag{31}$$

 $Despejando \ Y_2:$

$$Y_2 = \frac{Y_1}{2} \left(\sqrt{1 + 8Fr^2} - 1 \right) \tag{32}$$

Sustituyendo valores:

$$Y_2 = \frac{4.82 \ m}{2} \left(\sqrt{1 + 8 * (5.74)^2} - 1 \right)$$

Obtenemos:

El cálculo de la elevación de la plantilla estará dada por:

 $ELEV. PLANTILLA = Elev. del río - Y_2$

Sustituyendo valores:

$$ELEV. PLANTILLA = 108.50 msnm - 36.79 m$$

Obtenemos:

71.70 msnm

Se tomará para diseño, el cuenco amortigüador que se recomienda para las caracteristicas obtenidas en el análisis anterior

Para un número de Froude mayor a 4.5 y una velocidad de 39.48 m/s, se recomienda un USBR, Tipo III, de tablas relizadas por investigaciones y pruebas, podemos obtener la longitúd del tanque amortiguador, de la figura 2.11 tenemos:

$$\frac{Lm}{d^2} = 4$$

Donde:

Lm – Longitud del tanque amortiguador

Sustituyendo valores y despejando Lm tenemos:

Lm = 4 * 36.79 m

Realizando la operación:

$$Lm = 147.16 m$$

Para un grado mayor de seguridad, se aumenta un 5% la longitúd del tanque, entonces:

Lm = (147.16 m) * 1.05

Longitud final del tanque amortiguador:

 $Lm = 154.51 \ m \cong 155 \ m$

Figura 4.1 Plano geométrico definitivo 1-2

Figura 4.2 Plano geométrico definitivo 2-2

5 CONCLUSIÓNES

Las estructuras disipadoras se analizan en el diseño de plantas hidroeléctricas, ya que en caso de requerirse garantizan una restitución eficiente y segura del agua al cauce natural del río, tomando en cuenta las afectaciones que puede tener en la topografía del terreno natural. Una descarga descontrolada puede generar importantes socavaciones que pueden poner en riesgo, en su caso específico, la estabilidad de estructuras mayores como por ejemplo la cortina.

Existen distintos métodos de diseño de tanques amortiguadores, estos han sido el resultado de décadas de experiencia en la construcción de estructuras disipadores de energía. La observación de los resultados de las variaciones de las geometrías, elementos de disipación, ángulos de entrada y velocidad final entre otras.

El estudio en laboratorios hidráulicos especializados alrededor del mundo, principalmente en países como Estados Unidos de Norte América, Rusia, Francia, Holanda, por mencionar algunos de los más importantes, han sido base sustancial para la evolución de los diseños y teorías de disipación de energía, esto en el conocimiento confirmado de las ventajas de la generación de electricidad por medio de plantas hidroeléctricas, las cuales además tienen utilidad en el control de inundaciones frecuentes, reservas importantes de agua para las épocas de estiaje y su utilización para riego, obligan la búsqueda de nuevo conocimiento y desarrollo tecnológico.

Los laboratorios hidráulicos son fundamentales para el pronóstico del comportamiento del agua en las distintas estructuras que manejarán este elemento como vertedores, canales y túneles de grandes dimensiones, los fenómenos hidráulicos que no son siempre visibles en el diseño realizado con cálculos de forma manual tienen una mayor aproximación en los modelos numéricos que presentan tendencias importantes en el comportamiento de las estructuras, pero aun dejan incertidumbres a criterio de los expertos y es así que los modelos físicos terminan por disipar dudas o apuntalar hipótesis de comportamiento.

Los resultados obtenidos en el laboratorio de hidráulica de la CFE fueron determinantes para encontrar una solución eficiente y económicamente viable para los problemas del alzamiento de las losas, el experimentar diferentes propuestas a un costo relativamente bajo, si se compara

con el costo que tendría cada prototipo de solución apuntala el valor del trabajo que un laboratorio hidráulico realiza.

Es importante mencionar que la acción de la supresión sí que existe en este tipo de estructuras debe de ser contemplada en los análisis estructurales, de no hacerlo así, los elementos estarán sometidos a esfuerzos para los que no fueron diseñados. En adición, es necesario desarrollar y aplicar una política de operación adecuada ya que la supresión puede generar daños en las estructuras en un escenario de vaciado rápido.

La solución óptima desarrollada en el laboratorio de hidráulica de la CFE fue incorporar un salto de esquí de -10° en la rápida el cual comienza en el cadenamiento 0+140.57 y termina en el cadenamiento 0+162.5 esto complementado con un deflector lateral, lo cual en conjunto mostró un mejor comportamiento del chorro en donde con un gasto de hasta 6 000 m3 no se presentó movimiento de las losas en el tanque amortiguador y fue con los 7 000 m3 que las losas comenzaron a levantarse.

En el presente trabajo es posible comprobar una vez más la utilidad y validez de los datos que arrojan este tipo de modelos físicos, aún con el paso del tiempo sigue siendo una técnica vigente que durará décadas antes de ser desplazada por nuevas formas de modelación más confiables, económicas y rápidas.

Después de aplicar el método del United States Bureau of Reclamation para un tanque disipador de energía (USBR, Tipo III) el cual por las características de Número de Froude mayor a 4.50 y una velocidad de 39.48 m/s, se propuso una estructura de disipación alternativa de una longitud de 155 m. a la elevación 71.70 m.s.n.m., lo cual al comparar las características geométricas del prototipo, que son 120 m. de longitud a la elevación 70.00 m.s.n.m; se observa que la propuesta es 35 m más larga, lo cual puede contribuir a mitigar el problema de recirculación del agua en el tanque amortiguador que se presentaba en el prototipo antes de las adecuaciones que se finalizaron en el año 2015.

Es importante tener presente esta idea de solución aplicando el método del United States Bureau of Reclamation, en un futuro puede ser retomada para problemas similares en estructuras de disipación de energía, si bien esta solución puede usarse en obras ya construidas de igual manera se puede tomar en futuros proyectos cuando estén en la etapa de diseño y complementarse con un modelo real a escala.

6 BIBLIOGRAFÍA

- ANNANDALE, G. W. (1994). TAKING THE SCOUR OUT OF WATER POWER. *INTERNATIONAL WATER* POWER AND DAM CONSTRUCTION, 46-9.
- ARREGUÍN CORTÉS, F., & ALCOCER YAMANAKA, V. (2011). *DISEÑO HIDRÁULICO DE VERTEDORES.* JIUTEPEC, MOR.: IMTA.
- AVERY, S., & NOVAK, P. (1978). *OXIGEN TRANSFER AT HYDRAULIC STRUCTURES*. JOURNAL OF THE HYDRAULICS DIVISION, AMERICAN SOCIETY OF CIVIL ENGINEERS.
- BRIBIESCA, J. L. (1979). BEHAVIOR OF SPILLWAYS IN MEXICAN DAMS. *13° CONGRESO INTERNACIONAL DE GRANDES PRESAS*.
- CFE. (1970). MANUAL DE DISEÑO DE OBRAS CIVILES.

```
CFE. (2013). C.H. MALPASO 2013 RESUMEN DE OPERACIÓN DE VERTEDORES. CUERNAVACA, MORELOS.
```

- CFE. (2014). C.H. MALPASO, FUNCIONAMIENTO DE LOS VERTEDORES DEL PROYECTO EJECUTIVO EN MODELO FÍSICO, INFORME PRELIMINAR. LABORATORIO DE HIDRÁULICA.
- CFE. (2014). FUNCIONAMIENTO HIDRÁULICO DE LOS VERTEDORES DEL PROYECTO EJECUTIVO, EN MODELO FÍSICO, Nota informativa 9. Cuernavaca, Morelos.
- CFE, SUBDIRECCION DE GENERACIÓN. (2011). MODIFICACIONES AL VERTEDOR DE LA PRESA MALPASO.
- CHOW, V. T. (2004). HIDRAULICA DE CANALES ABIERTOS. COLOMBIA: MCGRAW-HILL.
- CONAGUA. (2014). ATLAS DEL AGUA EN MEXICO 2014. MEXICO D.F.
- DOOBOLIN. (s.f.). MEASUREMENT SYSTEMS: APPLICATION AND DESIGN. ED. MC GRAW HILL.
- HAGER, W. H., & LI, D. (1992). SILL-CONTROLLED ENERGY DISSIPATOR. *JOURNAL OF HYRAULIC RESEARCH*, 165-81.
- ICOLD. (1986). *SPILLWAYS FOR DAMS.* PARIS: BULLETIN 58, INTERNATIONAL COMMISION OF LARGE DAMS.

LIATJER. (1968). TURBULIENTNOST Y GUIDROSOORUYENIA. ENERGÍA MOSCÚ.

- LOCHER, F., & HSU, S. T. (1984). *ENERGY DISSIPATION AT HIGH DAMS*. LONDRES: ELSEVIER APPLIED SCIENCE.
- LOPRADO, R. (1988). *STILLING BASIN PRESSURE FLUCTUATIONS*. NUEVA YORK: AMERICAN COCIETY OF CIVIL ENGINEERS.
- MASON, P. J. (1982). THE CHOICE OF HYDRAULIC ENERGY DISSIPATORS FOR DAM OUTLET WORKS BASED ON A SURVEY OF PROTOTYPE USAGE. En *PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS, PART 1* (págs. 209-19).

NARAYANAN, R. (1980). *CAVITATION INDUCED BY TURBULENCE IN STILLINGBASINS*. JOURNAL OF THE HYDRAULICS DIVISION, AMERICAN SOCIETY OF CIVIL ENGINEERS.

NAUDASCHER, E. (1987). HYDRAULIK DER GERINNE UND GERINNEBAUWEREKE. VIENA: SPRINGER.

NOVAK, P., & CÁBELKA, J. (1981). *MODELS IN HYDRAUILIC ENGINEERING-PHYSICAL PRINCIPLES AND DESIGN APPLICATIONS*. LONDRES: PITMAN.

P, N., A.I.B., M., & C. NALLURI. (2001). ESTRUCTURAS HIDRÁULICAS. COLOMBIA: Mc Graw Hill.

PENG, K. (1967). THE DESIGN AND ANÁLYSIS OF SCIENTIFIC EXPERIMENTS. ADDISON WESLEY.

- PETERKA, A. J. (1963). *HYDRAULIC DESIGN OF STILLING BASINS AND ENERGY DISSIPATORS, ENGINEERING MONOGRAPH 25.* US BUREAU OF RECLAMATION,CO.
- SÁNCHEZ BRIBIESCA, J., & CAPELLA VISCAÍNO, A. (1973). TURBULENCE EFECTS ON THE LINING OF STILLING BASINS. *COMMISION INTERNATIONALE DES GRANDS BARRAGES*. MADRID, ESPAÑA.
- SÁNCHEZ, J. L. BRIBIESCA, & ECHÁVEZ, G. (s.f.). CRITERIO PRELIMINAR PARA EL DISEÑO DE LOSAS DE PISO DE UN TANQUE AMORTIGUADOR, V CONGRESO LATINOAMERICANO DE HIDRÁULICA.
- SECRETARIA DE RECURSOS HIDRÁULICOS. (1974). PRESA NETZAHUALCÓYOTL, CHIS. REPARACIÓN DE TANQUE AMORTIGUADOR.
- SKLADNEV, M. F. (1956). *LIMITS OF BOTTOM AND SURFACE HYDRAULIC JUMPS*. IZVESTIYA VSESOYUZNOGO NAUCHNO-ISSLEDOVATEL´SKOGO INSTITUTA GIDROTEKHNIKI.

TSTAL, B. A. (1969). FLUCTUATING PRESSURES IN SPILLWAY STILLING BASINS. PROCE A.S.C.E.

- U.S. BUREAU OF RECLAMATION,. (1955). RESEARCH STUDIES ON STILLING BASINS, ENERGY DISSIPATORS, AND ASSOCIATED APURTENANCES. *HYDRAULIC LABORATORY REPORT No. HYD-399*.
- U.S. BUREAU OR RECLAMATION. (1987). *DESIGN OF SMALL DAMS, 3RD EDN*. WASHINGTON, DC.: U.S. DEPARTMENT OF THE INTERIOR.
- U.S., BUREAU OF RECLAMATION. (1960). DESIGN OF SMALL DAMS. WASHINGTON D.C.

VASILEV, O. F., & BUKREYEV, V. I. . (1967). *STATISTICAL CHARACTERISTICS OF PRESSURE FLUCTUATIONS IN THE REGION OF HYDRAUKIC JUMO, 12° CONGRESO.* A.I.R.H. FORT COLLINS COLO.