

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Programa de Maestría y Doctorado en Ingeniería Ingeniería Civil – Hidráulica

ANÁLISIS MEDIANTE MODELACIÓN TRIDIMENSIONAL SSIIM DEL COMPORTAMIENTO DE SEDIMENTOS EN UNA PRESA PARA LA PROTECCIÓN DE LAS OBRAS DE TOMA.

MODALIDAD DE GRADUACIÓN PARA OPTAR POR EL GRADO DE MAESTRO EN INGENIERÍA:

TESIS

PRESENTA:

ING. CRISTIAN ARTURO VINTIMILLA ULLOA

TUTOR:

Dr. Jesús Gracia Sánchez

MÉXICO, D. F. JUNIO 2016

JURADO ASIGNADO:

Presidente: Dr. Oscar Fuentes Mariles

Secretario: Dr. Ramón Domínguez Mora

1er. Vocal: Dr. Jesús Gracia Sánchez

2 d o. Vocal: M. I. Víctor Franco

3er. Vocal: Dr. Oscar Pozos Estrada

Lugar o lugares donde se realizó la tesis: POSGRADO DE INGENIERÍA, UNAM

TUTOR DE TESIS:

Dr. Jesús Gracia Sánchez

AGRADECIMIENTOS

El presente trabajo de investigación es el resultado del apoyo académico y personal de todos los profesores, familiares y amigos que me acompañaron durante estos dos años de estudio y especialización en el campo de la Ingeniería Hidráulica, y que dejan como resultado no solo un logro profesional tan importante, sino el profundo sentimiento de felicidad por contar con el apoyo incondicional y amistad sincera, sin fronteras ni nacionalidades.

Debo hacer una mención especial para mi tutor de tesis, el Dr. Jesús Gracia Sánchez, quien planteó el reto que deja como resultado este trabajo académico, y en el cual se encentran plasmadas sus experiencias y consejos profesionales.

Agradecer a la vida por darme la oportunidad de estudiar la maestría en la Universidad Nacional Autónoma de México (UNAM), institución élite a nivel mundial y desde el día que me aceptó, me ha llenado de orgullo.

A mi familia quienes son el pilar fundamental de mi vida, y que sin su apoyo moral y compañía, no tuviera la fuerza para estar tanto tiempo lejos de mi hogar. A mi papá Arturo, por su bondad; a mi mamá Edith, por su sabiduría; y a mis hermanos Carlos y Jorge, por quienes encuentro la fortaleza para vencer todo reto en mi camino.

El agradecimiento especial y dedicatoria de todo lo que representa esta tesis y mi título de maestría, se lo debo a la mujer que desde que inició esta aventura en México, ha estado a mi lado a pesar de la distancia, para llenarme de apoyo, paciencia y amor; Tania Palacios C.

ÍNDICE DE CONTENIDOS

AC	GRAD	DECIMIENTOS	i
ÍNI	DICE	DE CONTENIDOS	ii
ÍNI	DICE	DE TABLAS	iv
ÍNI	DICE	DE FIGURAS	V
RE	SUM	EN	. viii
1	IN	TRODUCCIÓN	1
	1.1	Objetivos	2
	1.2	Alcance	2
	1.3	Planteamiento del Problema	2
2	SEI	DIMENTACIÓN EN EMBALSES	5
	2.1	Origen y Propiedades de los Sedimentos	5
	2.2	Depósito de sedimentos en un embalse	8
	2.3	Estimación del Aporte de Sedimentos	11
	2.4	Control de sedimentación	12
	2.5	Desgaste de Turbinas por Sedimentos	16
3	MC	DDELO TRIDIMENSIONAL SSIIM	19
	3.1	Ecuaciones de Navier-Stokes	20
	3.2	Aproximación de Bussinesq	20
	3.3	Modelo de turbulencia "k- ϵ " y "k- ω "	21
	3.4	Ecuaciones de calidad de agua	21
	3.5	Calculo de transporte de sedimentos	22
	3.6	Calculo de temperatura	22
4	MC	DDELACIÓN SSIIM Y ANÁLISIS DE RESULTADOS	24
	4.1	Pre-procesamiento de Información	24
	4.1.	1 Localización del Proyecto	25
	4.1.	2 Información Hidrológica	26
	4.1.	3 Análisis Granulométrico	29
	4.1.	4 Malla Estructurada	30

	4.1.5	Geometría de Estructuras en la Cortina de la Presa	.32
	4.1.6	Escenarios de modelación SSIIM	.33
	4.1.7	Gasto sólido total	.34
		Procesamiento de Información, Modelo SSIIM y Análisis Resultados	
	4.2.1	Escenario 1	.39
	4.2.2	Escenario 2	.48
	4.2.3	Escenario 3	.56
	4.2.4	Escenario 4	. 64
	4.2.5	Escenario 5	.72
	4.2.6	Comparación de Escenarios	.80
5	CON	CLUSIONES Y RECOMENDACIONES	.81
6	REFE	RENCIAS	.84
AN	EXO N	J°1	a
AN	FXO N	I° ን	k

ÍNDICE DE TABLAS

Tabla 2.1 Tipos de transporte de material	7
Tabla 3.1 Variables de modelación SSIIM	23
Tabla 4.1 Cálculos Hidráulicos básicos	28
Tabla 4.2 Diámetros Característicos	30
Tabla 4.3 Características Material de fondo proyecto Ocoña	30
Tabla 4.4 Niveles de operación del vaso	32
Tabla 4.5 Escenarios de modelación numérica tridimensional SSIIM	34
Tabla 4.6 Gasto Líquido y Sólido Total	37
Tabla 4.7 Velocidad de caída (m/s) y Gasto Sólido Total (kg/s)	38
Tabla 4.8 Concentraciones en la obra de Captación.	80

ÍNDICE DE FIGURAS

Figura 1.1 Sedimentos a lo largo del eje del embalse	´ć
Figura 1.2 Malla de modelación numérica tridimensional SSIIM	4
Figura 1.3 Desgaste de turbinas por sedimentos.	
Figura 2.1 Métodos de Transporte de sedimentos.	8
Figura 2.2 Depósito de sedimentos en embalse.	9
Figura 2.3 Geometría de zonas de depósito longitudinal	11
Figura 2.4 Dragado por hidrosucción de corte (USACE, 1983)	15
Figura 2.5 Remoción hidráulica de sedimento durante la extracción	16
Figura 2.6 Erosión por sedimentos, Turbinas Francis	17
Figura 2.7 Erosión por sedimentos, Turbina Pelton	17
Figura 2.8 Erosión por sedimentos en turbina planta hidroeléctrica	Cahua
Perú.	18
Figura 2.9 Erosión por sedimentos en planta Hidroeléctrica Jhumruk,	_
Figura 4.1 Ubicación del vaso - Presa río Ocoña	25
Figura 4.2 Topografía y secciones transversales del proyecto Ocoña	26
Figura 4.3 Gastos promedios mensuales Ocoña.	
Figura 4.4 Gastos de diseño río Ocoña, distribución Gumbel	27
Figura 4.5 Curva Elevaciones – Gasto líquido	
Figura 4.6 Curva Granulométrica material de fondo	
Figura 4.7 Sección transversal número uno, archivo koordina	
Figura 4.8 Malla estructura en vista 2D.	
Figura 4.9 Malla estructurada vista 3D	
Figura 4.10 Perfil de fondo y superficie libre del agua	
Figura 4.11 Estructuras de la cortina proyecto.	
Figura 4.12 Gasto Líquido y Gasto Sólido Total	38
Figura 4.13 Velocidades escenario 1 y nivel 890 msnm	
Figura 4.14 Líneas de corriente - Escenario 1	
Figura 4.15 Velocidad en la cercania a la cortina - Escenario 1	
Figura 4.16 Número de Froude - Escenario 1	42
Figura 4.17 Niveles de Superficie Libre de agua - Escenario 1	4 3
Figura 4.18 Cambio del fondo del cauce- Escenario 1	4 3
Figura 4.19 Concentración de sedimentos - Escenario 1	45
Figura 4.20 Concentración 0.35mm – Escenario 1 Cortina	46
Figura 4.21 Concentración 0.2mm - Escenario 1 Cortina	46
Figura 4.22 Concentración en cortina – Escenario 1	47

Figura 4.23 Velocidades Escenario 2	48
Figura 4.24 Líneas de corriente - Escenario 2	49
Figura 4.25 Velocidades en la cercanía de la cortina - Escenario 2	50
Figura 4.26 Número de Froude - Escenario 2.	50
Figura 4.27 Elevación de superficie libre de agua – Escenario 2	51
Figura 4.28 Cambios en el fondo del cauce - Escenario 2.	52
Figura 4.29 Concentración de Sedimentos - Escenario 2	52
Figura 4.30 Concentración de sedimentos - Escenario 2	53
Figura 4.31 Concentración 0.35 mm – Escenario 2	54
Figura 4.32 Concentración 0.2mm – Escenario 2	54
Figura 4.33 Concentración Sedimentos en Cortina - Escenario 2	55
Figura 4.34 Distribución de velocidades - Escenario 3	56
Figura 4.35 Líneas de corriente - Escenario 3	57
Figura 4.36 Velocidades cerca de la cortina - Escenario 3	58
Figura 4.37 Número de Froude - Escenario 3	58
Figura 4.38 Elevación superficie de agua - Escenario 3	59
Figura 4.39 Cambio de fondo - Escenario 3	
Figura 4.40 Concentración de sedimentos - Escenario 3	61
Figura 4.41 Concentración diámetro 0.35mm – Escenario 3	62
Figura 4.42 Concentración diámetro 0.2mm – Escenario 3	62
Figura 4.43 Concentracion sedimentos en cortina - Escenario 3	63
Figura 4.44 Distribución de velocidades - Escenario 4	64
Figura 4.45 Líneas de corriente - Escenario 4	65
Figura 4.46 Velocidades cerca de la cortina – Escenario 4	66
Figura 4.47 Número de Froude - Escenario 4	66
Figura 4.48 Elevación superficie de agua - Escenario 4	67
Figura 4.49 Cambio de fondo - Escenario 4	68
Figura 4.50 Concentración de sedimentos - Escenario 4	69
Figura 4.51 Concentración diámetro 0.35mm – Escenario 4	70
Figura 4.52 Concentración diámetro 0.2mm – Escenario 4	70
Figura 4.53 Concentracion sedimentos en cortina – Escenario 4	
Figura 4.54 Distribución de velocidades - Escenario 5	72
Figura 4.55 Líneas de corriente – Escenario 5	
Figura 4.56 Velocidades cerca de la cortina – Escenario 5	
Figura 4.57 Número de Froude - Escenario 5	
Figura 4.58 Elevación superficie de agua – Escenario 5	
Figura 4.59 Cambio de fondo - Escenario 5	
Figura 4.60 Concentración de sedimentos – Escenario 5	

Figura 4.61 Concentración diámetro 0.35mm - Escenario 5	78
Figura 4.62 Concentración diámetro 0.2mm - Escenario 5	78
Figura 4.63 Concentracion sedimentos en cortina - Escenario 5	79
Figura 4.64 Concentraciones en la obra de Captación	80

RESUMEN

El estudio de transporte y manejo de los sedimentos en las obras Hidráulicas es de vital importancia para garantizar la capacidad de almacenamiento de los embalses, y prevenir la seguridad de los equipos electromecánicos cuando se trata de presas de generación hidroeléctrica.

El depósito de sedimentos en las presas repercute en la pérdida de la capacidad del embalse para almacenar agua, debido al depósito del sedimento en el interior del vaso. En estas obras se debe considerar un volumen para el almacenamiento de los sedimentos, que en la mayoría de las ocasiones es rápidamente superado, teniendo que tomar medidas para su remoción, si no se desea que la presa pierda su capacidad total de funcionamiento.

La aplicación de los modelos matemáticos es de gran importancia para conocer el comportamiento de los sedimentos. Mediante la determinación de fronteras físicas y temporales, se parte de condiciones iniciales y se resuelven las ecuaciones que rigen los comportamientos hidrodinámicos y de transporte de sedimentos, mediante el uso de métodos numéricos avanzados y la inclusión de rutinas que realizan un número de iteraciones necesarias hasta satisfacer un criterio de tolerancia establecido. Conocido los parámetros hidráulicos y el comportamiento de los sedimentos se pueden tomar las medidas necesarias para la correcta selección del sitio de emplazamiento de estructuras, así como las medidas de operación y control requeridas para asegurar la vida útil de la obra.

El modelo tridimensional SSIIM (Simulation of Sediment movements In water Intakes with Multiblock option) desarrollado por la División de Ingeniería Hidráulica del Instituto Noruego de Tecnología, desde los años 1990-1991; cuya principal motivación de desarrollo es la simulación numérica de sedimentos finos (por debajo de 0.2mm), ya que son importantes en el desgaste de turbinas; y de igual manera para el llenado de sedimentos en embalses y canales.

1 INTRODUCCIÓN

La presencia de sedimentos en embalses de proyectos Hidroeléctricos es un aspecto importante que los ingenieros diseñadores deben considerar; entre las posibles complicaciones que podrían causar, se destacan: la pérdida de la capacidad del embalse debido al depósito del sedimento en el interior del vaso; la disminución de vida útil del proyecto por azolve del lecho; la reducción significativa de la capacidad de regulación del vaso; la erosión de las estructuras y el daño de los equipos mecánicos.

Como base para la modelación del transporte de sedimentos, se proponen sus conceptos básicos y de este modo comprender su aleatoriedad; la cual está influenciada por factores como: el tamaño y forma de partículas, gravedad específica del sedimento, la velocidad del flujo y profundidad del río.

La determinación del comportamiento del sedimento en embalses se puede realizar mediante la aplicación de modelos matemáticos tridimensionales, que resuelven las ecuaciones generales y no realizan promedios en ninguna de sus dimensiones, con un costo de modelación computacional alto.

El modelo SSIIM incorpora un sistema Multibloque de solución aplicado a una malla estructurada, dándole una capacidad general de solución de posibilidades. También incorpora cálculo de transitorios de flujo de agua, superficie libre y transporte de sedimentos, calidad de agua y un modelo bidimensional de escurrimiento de agua.

Este modelo es conveniente por su confiabilidad, precisión y facilidad de adquisición; esto se debe a que el software es de libre distribución, brindando la ventaja de que los usuarios aporten codificación mediante la inclusión de subrutinas al modelo, y realizando la difusión a la comunidad de usuarios. Ofrece la posibilidad de modelar variables para análisis de comportamiento de sedimentos, velocidades verticales y horizontales, número de Froude y patrones de depósito y erosión.

1.1 OBJETIVOS

El objetivo principal es determinar la concentración de partículas entre 0.2 mm y 0.35 mm que llegan al embalse de una presa hidroeléctrica con base en la modelación matemática de sedimentos, utilizando el modelo tridimensional SSIIM-1. Para lograr alcanzar el objetivo se propone llevar a cabo estas acciones:

- Determinar las características hidrodinámicas del vaso y caracterización de las partículas de sedimentos que conforman el fondo del cauce, observando como diámetro principal el correspondiente a 0.2 mm.
- Definir las fronteras espaciales y temporales necesarias para la adecuada modelación numérica.
- Obtener la malla estructurada tridimensional adecuada para la modelación.
- Definir escenarios y avenidas de diseño para la interpretación del comportamiento de respuesta del vaso.
- Determinar concentraciones en las estructuras hidráulicas de captación y descara de fondo en la cortina.

1.2 ALCANCE

La aplicación del modelo matemático tridimensional SSIIM en el embalse de una presa hidroeléctrica, para representar el comportamiento del sedimento que transporta el río, basado en su granulometría, características hidrodinámicas y evolución del fondo; identificando la concentración de partículas entre los diámetros 0.2mm y 0.35mm presentes en las estructuras hidráulicas de captación y descarga de fondo.

1.3 PLANTEAMIENTO DEL PROBLEMA

Para los proyectos de embalses hidroeléctricos uno de los problemas más frecuentes resulta el control de sedimentos, este material presenta una problemática muy diversa ya que afecta tanto al vaso del embalse como a las estructuras que conforman el proyecto de generación eléctrica. El vaso se ve afectado por la reducción de la capacidad de almacenamiento, que para casos extremos puede llegar a inutilizar totalmente la presa, motivo por el cual estos proyectos son diseñados con una capacidad de almacenamiento de material sedimentario. Mientras el material fino que no se sedimenta, tiende a pasar en suspensión hasta las obras de excedencia

y toma, donde no solo afectas a estas estructuras por abrasión, sino también a las turbinas donde causan daños muy perjudiciales. Para el caso cuando el vaso se ve inutilizado por el azolve, normalmente resulta más económico construir una nueva presa que dragarla o cualquier otro método para retirar esos sedimentos, que incluso llegan a consolidarse, haciendo más difícil esta tarea (*GRACIA*, 1997). La Figura 1.1 muestra la distribución de los sedimentos a lo largo del eje de un embalse.

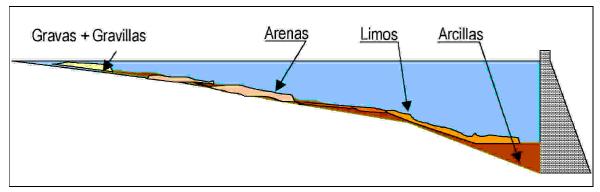


Figura 1.1 Sedimentos a lo largo del eje del embalse.

FUENTE: La Sedimentación en Embalses, Antonio Palau (2004).

El objetivo principal del modelo SSIIM, es simular el transporte de sedimentos en ríos, embalses y alrededor de estructuras hidráulicas; como por ejemplo: modelo de salto de sky, pérdidas de carga en túneles, relaciones de nivel – caudal en ríos y corrientes de turbidez.

La principal fortaleza del SSIIM, en comparación con otros métodos, es la capacidad de modelar el transporte de sedimentos con fondo deslizante en una geometría compleja. Esto incluye una serie de algoritmos para diferentes procesos de tamaño de sedimentos y su clasificación, carga de fondo y carga suspendida, formas de fondo y efectos de fondos inclinados. Los últimos módulos de mojado secado son exclusivos de una malla no estructurada, además permite el modelado geomorfológico completo (*NILS*, 2014). La Figura 1.2 muestra un ejemplo de malla para la modelación tridimensional con SSIIM.

El desgaste de las turbinas producto del paso de sedimentos de diámetro superior a 0.2 mm se puede observar en la Figura 1.3 mostrada a continuación; este problema se presenta por la abrasión que origina el paso de partículas de material de un cierto diámetro, presente en el flujo de agua que ingresa con cierta velocidad y que afectan directamente a los materiales de equipos para generación de energía

Universidad Nacional Autónoma de México

eléctrica a partir del movimiento de las turbinas impulsadas por el paso del agua a presión.

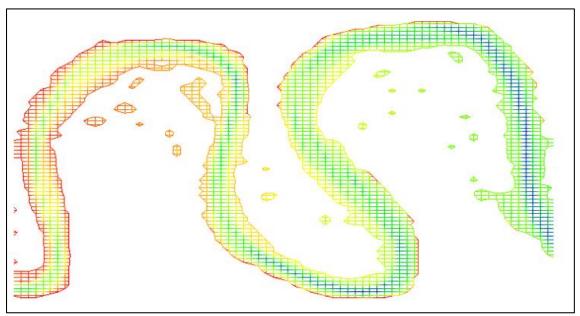


Figura 1.2 Malla de modelación numérica tridimensional SSIIM.

FUENTE: http://www.ntnu.edu/ivm/cfd

Figura 1.3 Desgaste de turbinas por sedimentos.

FUENTE: Sediment Erosion in Hydro Turbines, Hari Prasad (2010).

2 SEDIMENTACIÓN EN EMBALSES

Cuando se construye una presa, se produce un estancamiento del flujo natural de agua llamado también "embalse". Entonces el sedimento que transporta el flujo de agua se comportara de la siguiente manera: al entrar la corriente al embalse, el material grueso se depositara por efecto de la disminución de la velocidad del agua por efecto de la ampliación del cauce y aumento del tirante, formado en la cola del embalse una acumulación de material grueso, llamado delta. El sedimento más fino continuara hacia adentro del vaso como una corriente de densidad, para posteriormente detenerse y depositarse en el fondo. En el caso que la corriente no llegue a formarse, se produce en el vaso una turbidez generalizada (*GRACIA*, 1997). Este mecanismo depende de muchos factores, entre ellos: la estratificación del embalse, la radiación solar, la profundidad, la forma, las dimensiones y operación del vaso, también influyen de las características físico-químicas del sedimento y la avenida de ingreso.

El delta se puede mover hacia adentro del vaso, según las características de las avenidas y la variación de los niveles del embalse. En grandes embalses, la formación de deltas tiene mucha importancia por el efecto que causa hacia agua arriba del río y por el volumen que ocupa en el mismo. Así el remanso que causa la formación de los deltas, inunda áreas que no se encontraban previstas para su evacuación; si el delta penetra en el embalse, puede poner en peligro las instalaciones de la cortina. En presas no muy grandes y con extracciones frecuentes, el material grueso es el principal causante de la disminución de la capacidad del vaso.

El material depositado en el fondo del embalse, está sometido a una compactación continua a lo largo del tiempo, este efecto repercute en la sensibilidad de los niveles del vaso, haciendo que se produzca un alternado entre secado y saturación del material sedimentado. Se produce entonces dos problemas a los cuales se debe enfrentar el embalse: cambio del volumen depositado a través del tiempo y que repercute en la cantidad de agua almacena; y la dificultad de remover el sedimento que se encuentra con diferentes grados de compactación.

2.1 ORIGEN Y PROPIEDADES DE LOS SEDIMENTOS.

El nombre de sedimento se da las partículas procedentes de rocas o suelos, que son acarreadas por las aguas que escurren a través de las pendientes y por los vientos

a los cuales están sometidos. Todos estos materiales acarreados, finalmente son depositados a lo largo de sus propios cauces, lagos, lagunas, en el mar; en definitiva en las partes bajas de la cuenca. El sedimento que se deposita en un gran cuerpo de agua, recibe de esta su estructura y carácter final (*GARCÍA Y MAZA, 1998*). No es posible indicar todas las fuentes que producen sedimentos que llegan a un río y que son arrastrados por su corriente hasta un embalse, sin embargo la fuente principal la constituyen las rocas y suelo de la propia cuenca; mientras el agua y el viento son los principales agentes de erosión y transporte.

Dada la actividad humana en el medio que lo rodea, las fuentes de sedimentos pueden clasificarse en naturales y artificiales (*GARCÍA Y MAZA, 1998*). Entre las fuentes naturales tenemos: erosión de la superficie del terreno; erosión del cauce principal y sus tributarios; y movimientos naturales del terreno. Las fuentes artificiales son: destrucción de la vegetación; obras de ingeniería; explotación de minas y canteras; y desechos urbanos e industriales. Los problemas de ingeniería pueden dividirse en tres grupos: sedimentos que se originan en la superficie de la cuenca; sedimentos que provienen del fondo y orillas de los ríos; y sedimentos que provienen de los desechos industriales y urbanos.

Las propiedades de los sedimentos son un indicador del tipo de procesos de erosión y transporte a los que fue sometido el suelo de la cuenca aportante. La densidad, el tamaño y la forma de las partículas de suelo influyen directamente en varias de las etapas del transporte de sedimentos; representa uno de los principales indicadores para el diseño de obras hidráulicas para embalses debiendo tener en cuenta el volumen de almacenamiento y el posible azolve del mismo, (*ALDAMA ET AL 2000*). Desde el punto de vista de la resistencia al arrastre y del comportamiento durante el transporte, se pueden distinguir tres tipos de materiales sedimentarios: no cohesivo o granular, cohesivo y rocoso (*MAZA, 1987*).

Las propiedades de las partículas de un suelo granular son: peso específico, forma, tamaño y velocidad de caída. Los sedimentos naturales están constituidos por una gran variedad de partículas que principalmente difieren unas de otras por el tamaño y forma. Las partículas se comportan de diferente manera cuando están asiladas de cuando se encuentran formando un conjunto de partículas, frente a los procesos de erosión y transporte. Las principales propiedades de un conjunto de partículas sedimentarias son: distribución granulométrica, peso volumétrico,

concentración de partículas en suspensión, viscosidad y peso específico de un líquido con material suspendido (MAZA, 1987).

Un flujo de una corriente de agua puede transportar los sedimentos contenidos en él, cuando el esfuerzo cortante promedio sobre el fondo del cauce supera el esfuerzo tractivo con el que el material se fija al fondo firme del cauce. El material que se desprende del fondo puede ser transportado por diferentes maneras, las principales se presentan a continuación: rodamiento o deslizamiento sobre el fondo; saltos dentro del flujo; y suspensión o soporte del material por efecto del flujo. El proceso de transporte de material sedimentario es tan complejo que lo más común es que sea el resultado de varias combinaciones aleatorias de los procesos descritos anteriormente. La Tabla 2.1 presenta los tipos de transporte de material sedimentario.

Tabla 2.1 Tipos de transporte de material

Tipo de transporte	Descripción		
Transporte en la capa de	Material del fondo del cauce que rueda, salta o es arrastrado por la corriente dentro		
fondo	de la capa de fondo.		
Transporte de fondo en	Material del fondo del cauce que es transportado en suspensión debido a la velocidad		
suspensión	y turbulencia de la corriente.		
Transporte total de fondo	Material de fondo transportado por la corriente tanto dentro de la capa de fondo como		
Transporte total de londo	en suspensión.		
	Material generalmente fino (limo y arcillas) transportado en suspensión, el cual es		
Transporte de lavado	originado en la superficie de la cuenca al ser erosionada por las gotas y el		
	escurrimiento de la lluvia.		
	Es constituido por el material de fondo, así como por material de lavado arrastrado de		
Transporte en suspensión	la cuenca por el escurrimiento, los cuales son transportados en suspensión debido a		
	la turbulencia de la corriente y su reducción de peso.		
Then shouts total	El total del material que es transportado por el río, considera las diferentes fuentes del		
Transporte total	material y las diferentes formas de transporte.		

FUENTE: Protección y Control de Cauces, Aldama et al (2000).

En función del tipo de transporte de los sedimentos en un flujo, se clasifican en carga de fondo y material en suspensión. El material más grueso compuesto por arenas, gravas y bolos, generalmente se transportan por una combinación de saltos, deslizamientos y ruedos sobre el fondo del cauce; y constituyen la carga de fondo de los sedimentos. Las partículas del fondo, que por la velocidad del flujo, son levantadas y viajas sin tocar ni la superficie del fondo ni las paredes, se mezclan con el material fino menor a 0.062 mm, constituidos por limos y arcillas provenientes del escurrimiento pluvial, conformando el sedimento en suspensión (*MAZA*, 1987). La Figura 2.1 muestra la composición de cargas y fenómenos para el transporte de sedimentos.

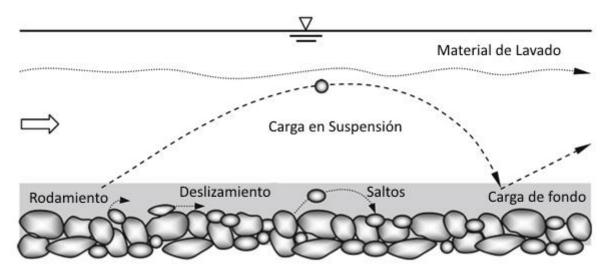


Figura 2.1 Métodos de Transporte de sedimentos.

FUENTE: Fluvial Hydrodynamics, Subhasish Dey (2014).

2.2 DEPÓSITO DE SEDIMENTOS EN UN EMBALSE

Frente a la presencia de una cortina, en el cauce de un río, se produce un estancamiento y una disminución considerable en la velocidad de la corriente, los cual toma el nombre de vaso. Los sedimentos transportados tanto en suspensión como en carga de fondo, al verse sometidos a esta disminución de velocidad, tienen a estabilizar su transporte y a depositarse en el fondo del vaso del embalse. La carga de fondo y la masa de fondo transportada en suspensión se deposita casi inmediatamente dando origen a los deltas. Los deltas son los responsables de provocar la disminución del volumen de almacenamiento en el embalse. El material fino en suspensión, al tener una velocidad de depósito mucho menor, se transporta lo más cerca de la cortina como sea posible hasta que finalmente se depositan formando en el fondo cúmulos de lodos. En el caso de que los sedimentos finos no lleguen a depositarse completamente, por efecto de maniobras del embalse, es posible que sean arrastrados hacia las estructuras, pudiendo dañar los equipos electromecánicos.

Un embalse formado por una sola corriente, con pocos tributarios y operando con un nivel constante presenta un esquema de depósito simple. Debido a las condiciones morfológicas (hidrológicas, tamaño de las partículas y la geometría) los embalses pueden presentar esquemas de depósito variados. En embalses cuya operación se vea reflejada por niveles fluctuantes o bien en los que presenten

vaciados durante ciertos periodos de tiempo, los sedimentos pueden compactarse debido a los cambios constantes de regímenes de humedad a los que son sometidos; o bien se puede presentar una erosión diferencial producto del movimiento del agua frente a grandes extracciones para luego secarse, presentando cambios fuertes en las pendientes del cauce.

Los sedimentos son transportados hacia las zonas de depósito siguiendo cualquiera de los siguientes procesos: a) transporte del material grueso en forma de carga de fondo a lo largo de la zona alta del delta; b) transporte del material fino en forma de corrientes de densidad; y c) transporte de material fino en forma de corrientes no estratificadas. Las zonas longitudinales donde se depositan los sedimentos transportados a lo largo del cauce de una cuenca en el vaso de un embalse, se pueden clasificar en tres: la zona alta o depósito en delta; la zona baja o de depósito de lodos y una zona media. La Figura 2.2 muestra la ubicación de estas zonas de depósito de material sedimentario en un embalse.

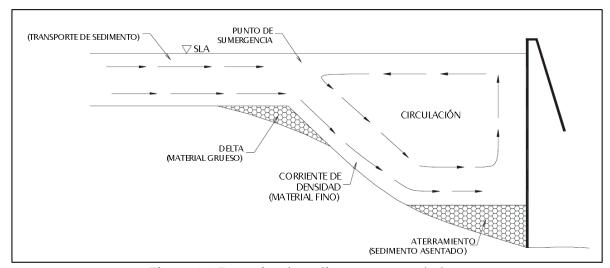


Figura 2.2 Depósito de sedimentos en embalse.

FUENTE: Optimización de la Succión de Sólidos Sumergidos, Moreno Avalos (2012).

La zona alta es donde se deposita rápidamente el material más grueso, correspondiente a la carga de fondo y que da lugar a la formación de deltas. La parte media es donde se depositan las partículas sedimentarias que por efectos de la velocidad de la corriente se transporta en suspensión, pero que al verse sometida a la disminución drástica de la velocidad se depositan en tiempos relativamente cortos, esta zona media avanza a lo largo del embalse, posee pendientes fuertes y un decremento en el tamaño de partículas conforme se avanza hacia la cortina. La parte

baja es la zona donde se depositan con el paso del tiempo, los materiales finos conformados por los limos y arcillas, formados principalmente por corrientes de densidad o de flujo no estratificado.

La geometría de cada zona de depósito es muy variable, ya que depende de factores no menos variables como: la geometría del vaso, el gasto, el tamaño de las partículas sedimentables, las características de la carga de entrada y la operación del embalse. Se pueden agrupar en cuatro esquemas básicos, los depósitos en delta, depósitos en cuña, depósitos adelgazados y depósito uniforme (MORRIS Y FAN 2010). La Figura 2.3 presenta las cuatro geometrías de las zonas de depósito. Los depósitos en deltas están formados por material grueso depositado al inicio del vaso, los diámetros son mayores a 0.062 mm. Los depósitos en cuña son muy gruesos al pie de la cortina y se van haciendo más delgados hacia aguas arriba del cauce principal, es típico de sedimentos transportados por corrientes de densidad, son muy usuales en embalses pequeños donde la captación de sedimentos es grande o en embalses grandes donde el nivel de operación es pequeño en avenidas. Los depósitos adelgazados se presentan cuando el depósito se adelgaza progresivamente conforme se va acercando a la cortina, es muy común en embalses que mantiene altos niveles de operación. Los depósitos uniformes son poco usuales que se presenten, normalmente se dan en geometría encañonadas con variaciones constantes de los niveles de operación.

De igual forma los sedimentos al llegar a un embalse, se depositan de diferentes formas en el sentido lateral. Inicialmente se depositan en la parte baja, llenando las depresiones en forma de capas que presentan una superficie casi horizontal. Existen tres procesos que contribuyen a la acumulación de sedimentos en las partes bajas de la sección transversal (MORRIS Y FAN 2010), estos procesos son: a) el transporte y depósito de sedimentos a lo largo del cauce producido por erosión aguas arriba; b) el perfil vertical de concentraciones logarítmicas dentro de la columna de agua que puede concentrar los sedimentos suspendidos en las partes bajas de la sección transversal; c) una distribución uniforme de sedimentos suspendidos a lo largo de la sección transversal y su asentamiento en el sentido vertical, el depósito de sedimentos será proporcional al tirante en la sección.

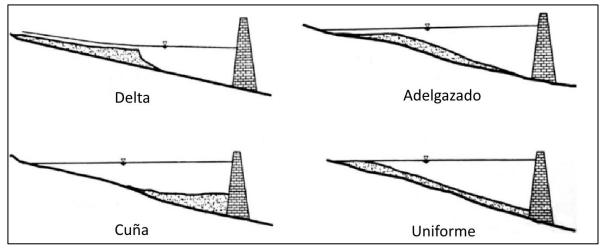


Figura 2.3 Geometría de zonas de depósito longitudinal

FUENTE: Reservoir Sedimentation Handbook, Morris y Fan (2010).

2.3 ESTIMACIÓN DEL APORTE DE SEDIMENTOS

La determinación de la cantidad de sedimento que entra al vaso de un embalse es sin duda uno de los objetivos más importantes al momento de realizar un estudio de sedimentación; pero también es el aspecto más difícil de determinar de manera definitiva y con un alto grado de confiabilidad. Para determinar la cantidad de sedimento que entra en un embalse existen diferentes criterios, en función de la cantidad de información de la que se disponga y del nivel de precisión requerido para el proyecto a desarrollar (*GRACIA*, 1997). Entre los principales se citan: a) Medición directa dentro del embalse; b) Aforo del transporte de sedimentos en la corriente de entrada; y c) Métodos teóricos.

La medición directa dentro del embalse generalmente es bastante costosa y requiere de instrumentos y técnicas especiales como: fotografía aérea, levantamientos topográficos con el vaso vacío, levantamientos batimétricos con el vaso lleno. La frecuencia con la que se deben hacer las mediciones de sedimentos depositados dependerá del tipo de embalse y la disponibilidad técnico-económica con la que cuente el proyecto. Gracia (1997) recomienda realizar mediciones cuando se estime que exista una disminución del volumen de almacenamiento del 5% y si el caso lo amerita, antes y después de cada época de avenidas.

El aforo del transporte de sedimentos en la corriente de entrada se puede realizar con cierta regularidad, dependiendo del tipo de sedimentos presentes en el proyecto, y según una revisión del material sólido que transporta la corriente de entrada durante cada año, o por lo menos en época de avenidas. El material transportado cerca del fondo es complicado de medir en campo. Gracia (1997) establece que hay una relación fija entre el sedimento en suspensión y la carga de fondo, pero que puede variar por factores geológicos y climáticos Los métodos anteriores son exclusivamente para llevar un registro del comportamiento de los sedimentos en los embalses construidos, pero no se puede evaluar los escenarios si existen cambios en la erosión presente en la cuenca aportante o en el caso de diseño de nuevos proyectos, o por la dificultad de mediciones directas en ciertos casos extremos.

Esto motiva a varios autores a plantear métodos de cuantificación para el transporte de sedimentos, entre ellos tenemos: Meller – Peter & Muller, Frijlink, Bagnold, Van Rijn, Engelund, Einstein, Brooks, etc. Los métodos ofrecen diversas ventajas y desventajas, debiendo tener cuidado en su aplicación y escogiendo el más apto, en función de los datos disponibles y los objetivos a los que se desee llegar.

2.4 CONTROL DE SEDIMENTACIÓN

Es importante indicar los principales criterios para prevenir, mitigar y solucionar los problemas de sedimentación en embalse, esto brinda una idea más clara de la problemática a enfrentar, así como las principales características a ser tomadas en cuenta al momento de realizar un estudio de aporte de sedimentos en un vaso. Muchas veces la solución no depende de una sola medida, sino de la combinación y aplicación sistemática de varias alternativas, que según el caso de estudio conlleven a los mejores resultados. Se pueden dividir en métodos indirectos, métodos de diseño, y métodos directos.

Los métodos indirectos de solución frente a la presencia de sedimentos en los embalses se refieren principalmente a la prevención de la erosión en las cuencas aportantes, mediante prácticas de conservación de suelos y agua. Detener la erosión de los suelos no solo implica atenuar el aporte de sedimentos hacia los embalses, sino preservar el suelo útil para actividades agropecuarias, y que desde el punto de vista práctico, no es un recurso renovable.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Los métodos de diseño no solo se refieren a la planificación de una nueva obra para su construcción, sino también al diseño de nuevas estructuras y medidas que contribuyan en los embalses en funcionamiento para evitar que los procesos de sedimentación, o que estos sigan afectando de manera considerable. Las principales medidas son:

- a) Selección adecuada del sitio para la ubicación del embalse. Buscando sitios donde el aporte de sedimentos no sea alto, esta solución es bastante relativa y está más enfocada a la etapa de diseño.
- b) Determinación adecuada de la capacidad de reserva para azolves. En la etapa del diseño es importante la modelación del comportamiento de los sedimentos y la ubicación de los sitios de azolve, con lo cual se reservara el espacio necesario y se conocerá la verdadera capacidad de la obra. En casos extremos una de las medidas en embalses en operación y con problemas de azolve, es la construcción de nuevas presas que tenga una gran capacidad para almacenar sedimentos, esto desde el punto de vista económico no es muy viable pero dependerá de la importancia de la obra en operación.
- c) Reducción de la capacidad de retención de azolve. Esta alternativa pretende no darle el tiempo necesario al sedimento para que se deposite y posteriormente azolve el embalse, entonces esto se puede lograr mediante el estudio cuidadoso del comportamiento de las corrientes de densidad, permitiendo que salgan del vaso, una vez cumplida su función pero sin dejar tiempo para la sedimentación, entonces es necesario tener en cuenta de que la corriente de densidad se forme y logre llegar hasta la cortina, que la obra de desfogue sea capaz de extraer la mayor parte de la corriente de densidad y que la concentración de la corriente sea lo suficientemente alta, como para que se justifique su extracción.
- d) Intercepción del sedimento antes del embalse. Esto principalmente cuando se conoce o considera que el sedimento grueso o carga de fondo, será el generador del azolve en el vaso del embalse, una alternativa es la construcción de pequeñas represas aguas arriba para permitir su sedimentación y posterior remoción sin mayores costos económicos.

Los métodos de solución directa son aquellas en las que en los embalses en operación y con problemas de azolve, se hace una remoción de este material sedimentado y depositado dentro del vaso. Se pueden considerar tres tipos de técnicas utilizadas: dragado del sedimento; remoción hidráulica; y remoción por sifón a flujo crítico.

El método de dragado permite la remoción de sedimentos en embalses, comúnmente son de dos tipos: Dragado hidráulico o hidrosucción; y Dragado mecánico, la Figura 2.4 muestra el esquema del dragado por hidrosucción. El método de remoción por bombas Venturi, neumáticas y remoción por aire requieren una gran cantidad de energía y son usadas para profundidades considerables, también ocupan cierta cantidad de agua y su eficiencia decrece con el incremento de la cohesión de los depósitos de sedimentos. Remoción hidráulica de sedimentos, consiste en la remoción de los sedimentos de un embalse utilizando la fuerza erosiva del agua para socavar los depósitos sedimentarios y pasar la carga de estos, junto con el agua a través del embalse por las estructuras de lavado de la cortina.

La erosión de los sedimentos en un embalse puede ocurrir de dos formas, por erosión progresiva y retrogresiva. La forma progresiva empieza al final de un tramo aguas arriba y va avanzando sucesivamente hacia agua abajo, mientras va socavando la superficie de los depósitos sedimentarios. La forma retrogresiva sucede en dirección opuesta, es decir desde aguas abajo hacia aguas arriba, la socavación de los depósitos sedimentarios es más fuerte que la progresiva, y genera un canal de flujo que corta estos depósitos. En embalses pequeños con depósitos acumulados en la vecindad de la descarga de fondo, la remoción hidráulica puede darse al abrir las válvulas por periodos de tiempo corto, formando un embudo en forma de cráter conocido como cono de remoción. Este cono de remoción es importante, ya que si el nivel del embalse es lo suficientemente pequeño, de tal manera que se puede generar un flujo de velocidad alta, el agua erosionara el borde del cono provocando una erosión retrogresiva.

Según Fan y Morris (2010) los métodos de remoción hidráulica pueden clasificarse como: a) Remoción de sedimentos durante avenidas; b) Extracción por chorro de agua; c) Vaciado del embalse y extracción por chorros de agua; y d) Desfogue de corrientes de densidad. La Figura 2.5 muestra el esquema de una remoción hidráulica de sedimentos durante la extracción.

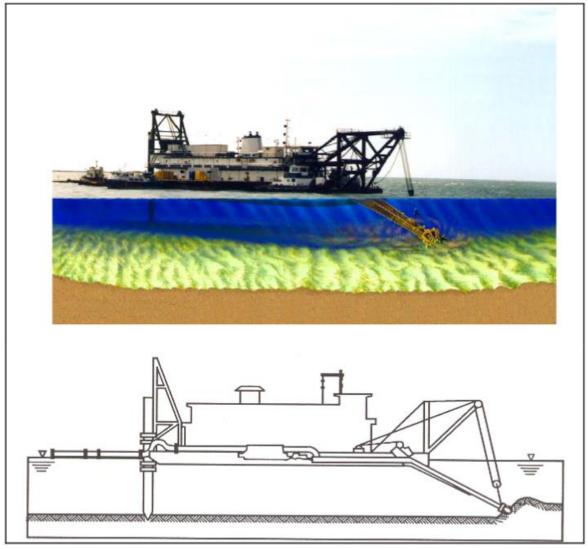


Figura 2.4 Dragado por hidrosucción de corte (USACE, 1983)

FUENTE: Dredging and Dredged Material Management, UACE (2015).

El método de remoción por medio de un sifón a flujo crítico remueve sedimentos no cohesivos desde el fondo del embalse usando un sifón que succiona el sedimento y lo lleva hacia el río aguas abajo de la presa por encima de la cortina. La ventaja de este método es que el sifón puede ser instalado en cualquier parte del embalse y retirado en caso necesario. La capacidad del sifón la determinan la carga disponible y el diámetro del tubo o mangueras a ser utilizadas.

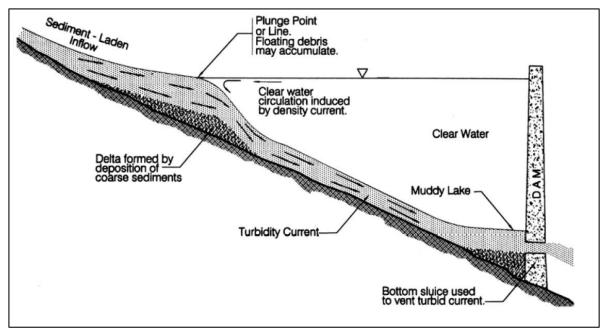


Figura 2.5 Remoción hidráulica de sedimento durante la extracción.

FUENTE: Reservoir Sedimentation Handbook, Morris y Fan (2010).

2.5 DESGASTE DE TURBINAS POR SEDIMENTOS

Los sedimentos en suspensión pueden desgastar gravemente los equipos mecánicos de todo tipo, causando la disminución la eficiencia en turbinas, bombas, válvulas de compuertas y sellos. En casos extremos los sedimentos pueden inutilizar las máquinas hidráulicas en cuestión de semanas (*BOUVARD*, 1992). Tamaños de grano mayores 0.1 mm deben ser excluidos de cargas superiores a 50 m, y para las cabezas superiores a 200m, se debe excluir también los limos (*RAUDKIVI*, 1993). Partículas angulares de cuarzo son particularmente abrasivas y generalmente abundantes en arroyos de deshielo glacial, lo que plantea un problema particular para equipos hidráulicos de este entorno.

Turbinas Francis son muy sensibles al desgaste, a medida a partir del laberinto donde causan mayor fuga y requieren desmontaje para la reparación. En turbinas Pelton la abrasión se centra en la punta de la aguja y la boquilla, ambos de los cuales pueden ser sustituidos fácilmente, un factor que favorece su uso en instalaciones cuando la abrasión es muy posible. Sin embargo, la abrasión se incrementa rápidamente en función de la carga, especialmente sobre los 400 m, y turbinas Pelton de alta carga pueden ser dañados por granos 0.05 mm de cuarzo en suspensión (BOUVARD, 1992).

En la Figura 2.6 se puede observar el daño causado por el desgaste por sedimentos en Turbinas Francis en diferentes obras para generación. En la Figura 2.7 se presenta la erosión causada por sedimentos presentes en el flujo de agua para turbinas tipo Pelton.

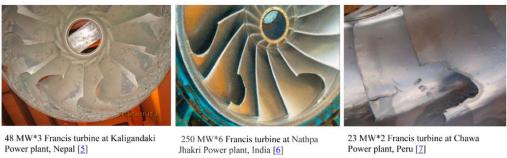


Figura 2.6 Erosión por sedimentos, Turbinas Francis.

FUENTE: Sediment Erosion in Hydro Turbines, Hari Prasad (2010).

Figura 2.7 Erosión por sedimentos, Turbina Pelton.

FUENTE: Sediment Erosion in Hydro Turbines, Hari Prasad (2010).

La erosión por sedimentos provocados en las turbinas Francis en el proyecto hidroeléctrico Cahua, Perú se observan en la Figura 2.8 y en el proyecto hidroeléctrico Jhumruk, Nepal en la Figura 2.9; mostrando de forma gráfica el gran problema que la presencia de material sedimentario superior a diámetros de 0.2 mm provocan en estos equipo que tienen un alto costo económico y cuyo mantenimiento y remplazo es muy complejo por el tiempo, tiempo y mano de obra calificada que conlleva.

(a) Guide vanes

(b) Turbine runner

Figura 2.8 Erosión por sedimentos en turbina planta hidroeléctrica Cahua, Perú.

FUENTE: Sediment Erosion in Hydro Turbines, Hari Prasad (2010).

(a) Guide vanes

(b) Turbine runner

Figura 2.9 Erosión por sedimentos en planta Hidroeléctrica Jhumruk, Nepal.

FUENTE: Sediment Erosion in Hydro Turbines, Hari Prasad (2010).

3 MODELO TRIDIMENSIONAL SSIIM

El programa SSIIM fue hecho para fines docentes y de investigación, no se encuentra bien probado para fines comerciales, lo que significa que tendría más errores y sería menos fiable, motivo por el cual es importante saber la forma correcta de aplicarlo al caso de estudio requerido y la adecuada interpretación de sus resultados. El SSIIM calcula las velocidades de agua y el transporte de sedimentos en los ríos, canales y embalses, mediante la resolución de las ecuaciones de Navier-Stokes mediante una discretización con el método de volumen de finito y del esquema de Ley de potencia (Power Law). Se basa en el método SIMPLE (Semi Implicit Method for Pressure Linked Equations) para la corrección del termino de presión. Para el campo de las velocidades usa un esquema Implícito y que se usaran para las ecuaciones de convección difusión.

Utiliza el modelo κ-ε de turbulencia para considerar la viscosidad turbulenta en la estimación de los esfuerzos cortantes turbulentos contemplados en las ecuaciones de Navier-Stokes sobre una malla no ortogonal tridimensional. Las velocidades intervienen en las ecuaciones de convección difusión para tamaños diferentes de sedimentos. Esto da la eficiencia al patrón de depósito de sedimentos. Cambios del fondo con el tiempo son calculados junto con el movimiento de la superficie libre del agua (*NILS*, 2014).

Las simulaciones dentro del modelo SSIIM se realiza en tres etapas: preprocesamiento de información, solución de sistemas de ecuaciones, y posprocesamiento de datos. El pre-procesamiento de datos incluye la generación de datos de entrada y la malla tridimensional. La solución interna de las ecuaciones y demás parámetros se realiza sin intervención del usuario. A pesar de que los datos mostrados se presentan gráficamente en 2 dimensiones dentro de la interface gráfica del SSIIM, es posible exportar los resultados a diferentes programas para el posprocesamiento y presentación de resultados (*NILS*, 2014).

Existen dos versiones del SSIIM, el SSIIM 1 que usa una malla estructurada y el SSIIM 2 que usa una malla no estructurada, ambos tipos de malla son tridimensionales. En la malla estructurada 3D usada por la versión SSIIM 1, cada celda usa 3 índices para hacer más fácil la localización en la malla y el ingreso de datos en cada punto de la misma, tanto para las superficies de entrada y salida de flujo; además el editor de esta malla 3D estructurada solo trabaja en un bloque a la vez. La velocidad de resolución de cálculos es mejor en este tipo de malla

estructurada, el principal motivo es que usas menor memoria computacional. Para el SSIIM 2, el cual usa una malla no estructurada 3D, se ocupa solo un índice en cada celda que se genera casi aleatoriamente, esto provoca que haya la necesidad de que el usuario deba especificar cuáles son las superficies de entrada y salida de flujo, mediante un editor de gráfico de descarga, que además de la posibilidad de generar y conectar múltiples bloques. Otra ventaja del SSIIM 2 con malla no estructurada en la disponibilidad de algoritmos de calidad de agua y transporte de sedimentos que no posee la otra versión. Las principales ventajas del SSIIM 2 son: la capacidad de modelar complicadas geometría, disponibilidad de algoritmos de secado-mojado de la superficie y la simulación de movimientos laterales del río (*NILS*, 2014).

3.1 ECUACIONES DE NAVIER-STOKES

Las ecuaciones de Navier-Stokes son las más generales en la mecánica de fluidos, siendo un conjunto de ecuaciones en derivadas parciales no lineales que describen el movimiento de un fluido Newtoniano. Son el producto de la aplicación de los principios de la mecánica de fluidos y la termodinámica a un volumen de un fluido. Para flujo turbulento general en tres dimensiones se resuelve para obtener la velocidad. Se debe ocupar un modelo de turbulencia para poder evaluar la viscosidad producida y su correspondiente tensión. Tomando un flujo no compresible y de densidad constante, la ecuación de Navier-Stokes resultante es la siguiente.

$$\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_i} = \frac{1}{\rho} \frac{\partial}{\partial x_i} (-P \delta_{ij} - \rho \overline{u_i u_j})$$

En esta ecuación podemos identificar los siguiente términos de izquierda a derecha, el primer término es llamado de término transitorio, segundo es el termino convectivo, el primer término después del signo de igualdad es el de presión y el último termino corresponde al estrés de Reynolds (*NILS*, 2014).

3.2 APROXIMACIÓN DE BUSSINESO

Presenta una aproximación para evaluar el término de tensiones de Reynolds, a continuación se presenta esta aproximación.

$$-\overline{u_i}\overline{u_j} = v_T\left(\frac{\partial U_j}{\partial x_i} + \frac{\partial U_i}{\partial x_j}\right) + \frac{2}{3}k\delta_{ij}$$

En esta ecuación el término de la izquierda del signo de igualdad es el que representa las tensiones de Reynolds, del lado derecho tenemos en primer lugar el término difusivo, luego un término denominado de aproximación turbulenta y el tercer término corresponde a la presión. Importante indicar que en esta aproximación se debe evaluar la viscosidad turbulenta V_T , esto se logra mediante diferentes modelos, el SSIIM, utiliza el más completo hasta el momento llamado k- ϵ (NILS, 2014).

3.3 MODELO DE TURBULENCIA "K-E" Y "K- Ω "

Este modelo de turbulencia define la viscosidad turbulenta como se muestra en la siguiente ecuación.

$$v_T = c_\mu \frac{k}{\epsilon^2}$$

Donde k es la turbulencia para la energía cinética y ϵ expresa la disipación de la turbulencia k. estos dos términos se evalúan mediante un conjunto de ecuaciones diferenciales que se detallan más en el capítulo 6 del manual del usuario del modelo SSIIM. El modelo k- ω (*WILSON*, 2000), a menudo da difusión menos turbulenta que el modelo k- ϵ , lo que significa que sobreestima el tamaño de la zona de recirculación, mientras el modelo k- ϵ subestima la longitud de esta zona. En SSIIM, las leyes de pared para el modelo k- ϵ se utilizan también para el modelo k- ω . Esto es debido a la inclusión más fácil de la pared de la rugosidad y la exactitud de la predicción de la tensión de cizallamiento cama (*NILS*, 2014). La siguiente ecuación presenta el modelo k- ω .

$$v_T = \frac{k}{\omega}$$

3.4 ECUACIONES DE CALIDAD DE AGUA

La calidad de agua en SSIIM, se calcula mediante la ecuación de conveccióndifusión para la concentración. La diferencia de cálculo de la concentración de sedimentos es la adición de fuente extra y un término de lavado, esto debido a los

flujos superficiales y a los químicos y reacciones biológicas que se desarrollan. El modelo SSIIM permite una flexibilidad muy amplia, frente a otros modelos, ya que el usuario debe realizar un preproceso donde define el número de variables a tomar en cuenta para la calidad del agua, así como nuevas consideraciones en función del fenómeno que desee analizar (*NILS*, 2014). La ecuación básica para calidad del agua se presenta a continuación.

$$\frac{\partial c}{\partial t} + U_j \frac{\partial c}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\Gamma_T \frac{\partial c}{\partial x_j} \right)$$

3.5 CALCULO DE TRANSPORTE DE SEDIMENTOS

El modelo SSIIM calculo el transporte de sedimentos de acuerdo al tamaño de partículas. La carga en suspensión se calcula con la ecuación de convección-difusión para la concentración de sedimentos, esta expresión se muestra a continuación.

$$\frac{\partial c}{\partial t} + U_j \frac{\partial c}{\partial x_j} + w \frac{\partial c}{\partial z} = \frac{\partial}{\partial x_j} \left(\Gamma_T \frac{\partial c}{\partial x_j} \right)$$

Para esta carga en suspensión (VAN RIJN, 1987) presentó una fórmula para la concentración del sedimento en equilibrio cerca del fondo (NILS, 2014).

$$c_{bed} = 0.015 \frac{d^{0.3}}{a} \frac{\left[\frac{\tau - \tau_c}{\tau_c}\right]^{1.5}}{\left[\frac{(\rho_s - \rho_w)g}{\rho_w v^2}\right]^{0.1}}$$

3.6 CALCULO DE TEMPERATURA

La temperatura se calcula como los otros parámetros de calidad. La modelación de la temperatura estratificada solo es posible en el SSIIM 2, y lo hace mediante la siguiente ecuación de convección-difusión para la temperatura.

$$\frac{\partial T}{\partial t} + U_j \frac{\partial T}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\Gamma_T \frac{\partial T}{\partial x_j} \right)$$

Los resultados de la simulación utilizando el modelo tridimensional SSIIM se muestran en la Tabla 3.1.

Tabla 3.1 Variables de modelación SSIIM.

VARIABLES
Cambios en el lecho
Concentración de sedimento (por diámetro)
Energía cinemática turbulenta
Epsilon
Esfuerzos Cortantes en el lecho
Esfuerzos de Reynolds
Espesor de capa activa de sedimentos
Espesor sedimentos en el lecho
Niveles de agua
Número de Froude
Parámetros de calidad de agua
Presión
Profundidad
Promedio velocidad - profundidad
Rugosidad
Vectores de Velocidad
Velocidad horizontal y vertical
Viscosidad turbulenta horizontal y vertical

4 MODELACIÓN SSIIM Y ANÁLISIS DE RESULTADOS

La modelación numérica requiere un conocimiento previo básico sobre el comportamiento Hidráulico, Mecánica de fluidos, transporte de sedimentos y modelación numérica. El modelo SSIIM se desarrolla en tres etapas: preprocesamiento de datos; modelación numérica de procesos hidráulicos y transporte de sedimentos; y pos-procesamiento de resultados.

4.1 Pre-procesamiento de Información

El primer paso para la modelación tridimensional SSIIM es la preparación de los datos de entrada al modelo, llamado etapa de pre-procesamiento de información básica. Es indispensable definir el lugar donde se realice el estudio y para obtener la siguiente información:

- Localización georreferenciada el proyecto
- Topografía detallada del cauce
 - o Curvas de nivel
 - o Batimetrías
- Información hidrológica
 - Gastos medios
 - Avenidas de diseño
 - Tiempo base
- Análisis granulométrico del material de fondo del cauce
 - Curva granulométrica
 - Diámetros característicos
 - Peso específico del material
 - Porosidad

SSIIM ofrece la posibilidad de resolver complicadas configuraciones de cauces y estructuras hidráulica; de los datos topográficos se obtienen secciones transversales, con el detalle deseado, para formar la malla estructurada a resolverse, es indispensable que no existan coordenadas erradas dentro de esta malla, ni que las secciones se crucen entre sí.

También se requiere de condiciones iniciales y de fronteras, que deben tener la mayor precisión para que la solución no presente inestabilidad al momento de llegar a resolver las ecuaciones en cada iteración, así se corren los escenarios establecidos para las fronteras temporales deseadas.

4.1.1 Localización del Proyecto

Mediante el programa geográfico digital *GOOGLE EARTH* se localizó el vaso de la presa para generación Hidroeléctrica sobre el río Ocoña, en el departamento de Arequipa al sur del Perú, proyecto próximo a ser construido y que esta principalmente alimentado por el río Marán, conocido también como río Ocoña. La Figura 4.1 muestra la ubicación del proyecto y el área de influencia para obtener la topografía necesaria para crear la malla tridimensional para la modelación.

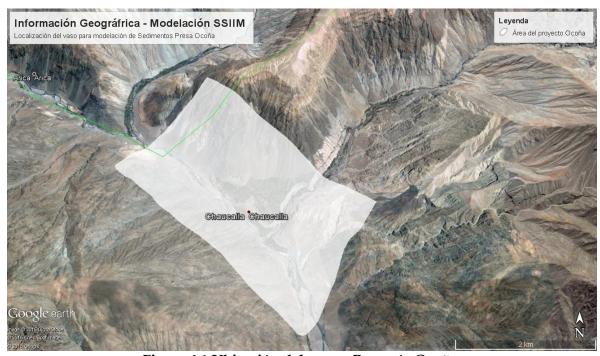


Figura 4.1 Ubicación del vaso - Presa río Ocoña.

La obtención de la topografía se representa mediante curvas de nivel; usando el programa *GLOBAL MAPPER* se generan estas curvas de nivel en la ubicación de área de influencia del proyecto. El programa genera las curvas de nivel georreferenciadas utilizando las imágenes satelitales del sitio web *ASTER-GDEM*, interpolando los modelos de elevación digital de la zona de estudio y que se exporta en formato vectorial para ser usado en *AUTOCAD CIVIL 3D*, la Figura 4.2 se puede observar la topografía mediante curvas de nivel y las secciones transversales necesarias para representar la configuración del cauce del río Ocoña.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

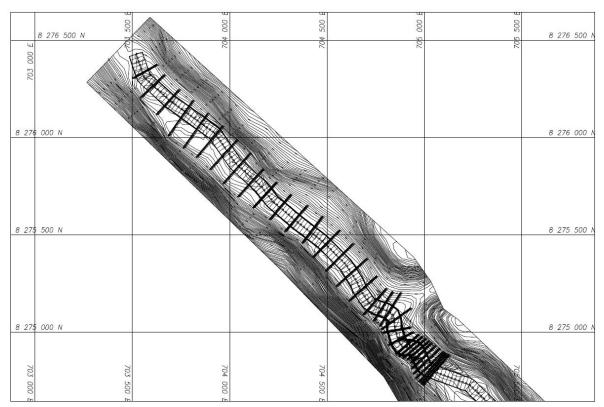


Figura 4.2 Topografía y secciones transversales del proyecto Ocoña.

4.1.2 Información Hidrológica

La obra se encuentra en el desierto de Atacama donde la temperatura no permite congelación. La disponibilidad de los recursos hídricos varía fuertemente, concentrándose en los meses de enero hasta abril, la Figura 4.3 muestra la variación de los gastos promedios mensuales en la cuenca del río Ocoña.

La estimación de los gastos picos para diferentes periodos de diseño determinados mediante un análisis estadístico, encontrando que la mejor distribución de probabilidades es la dada por la Gumbel se presenta en la Figura 4.4, se observa que en esta figura no se presentan los periodos de diseño mayores a 20 años por motivo que no serán de utilidad en el presente trabajo, esto se debe a que ellos representan gastos de avenidas extraordinarias, muy grandes y en respuesta a ellos se prevé una operación donde no se realiza generación, cerrando la entrada de agua hacia las turbinas lo que en consecuencia impide el paso de sedimentos a esta zona. Los diseños toman en cuenta la forma triangular de Hidrograma en avenidas con un tiempo base de 48 horas.

Universidad Nacional Autónoma de México

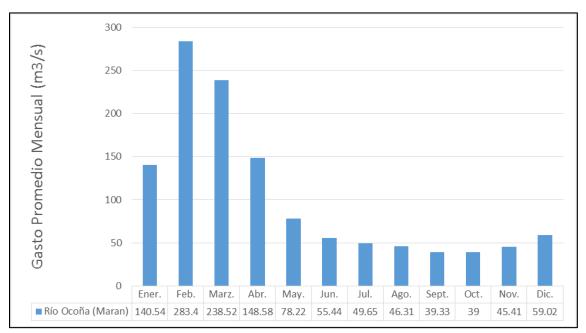


Figura 4.3 Gastos promedios mensuales Ocoña.

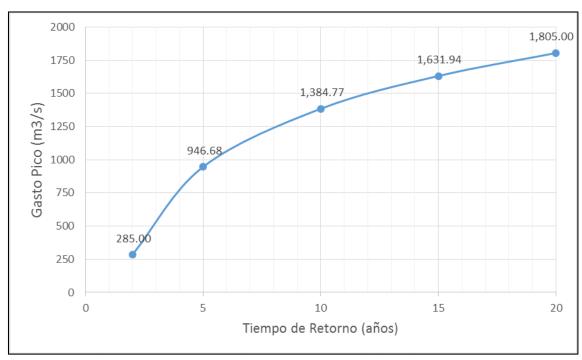


Figura 4.4 Gastos de diseño río Ocoña, distribución Gumbel.

Estimando los parámetros físicos del cauce: pendiente 0.001, ancho del cauce 150 m, y de estudios en la zona se toma el coeficiente de rugosidad de Manning de 0.04, obteniendo mediante la formulación de Manning los tirantes medios en condiciones normales, presentados en la Tabla 4.1 se presenta el resumen de los cálculos hidráulicos básicos y en la Figura 4.5 la curva Elevaciones – Gasto Líquido correspondiente.

Gastos **Tirante** Velocidad Reynolds Froude Tr (m3/s) (m) Media (m/s) 2 285.00 1.69 1.90 E+6 0.28 1.12 947.00 3.48 6.31 E+6 0.31 5 1.81 10 1,385.00 4.37 2.11 9.23 E+6 0.32 4.82 15 1,632.00 2.26 10.88 E+6 0.33 20 1,805.00 5.12 2.35 12.03 E+6 0.33

Tabla 4.1 Cálculos Hidráulicos básicos

Figura 4.5 Curva Elevaciones - Gasto líquido

4.1.3 Análisis Granulométrico

En la Figura 4.6 se muestra la curva granulométrica del material de fondo del cauce del río Ocoña, relacionando el porcentaje de material que pasa en cada abertura de tamiz, esto en escala normal para el porcentaje de material pasante y el escala logarítmica para el diámetro de abertura de tamiz, es decir en papel semilogarítmico.

En la curva granulométrica se muestran los diámetros característicos que se estima son los necesarios para poder representar adecuadamente el comportamiento del sedimentos, en la Tabla 4.2 se presenta los diámetros característicos a usados en la modelación y su abertura en milímetros, mientras en la Tabla 4.3 se presentan las características del material de fondo del cauce en el río Ocoña.

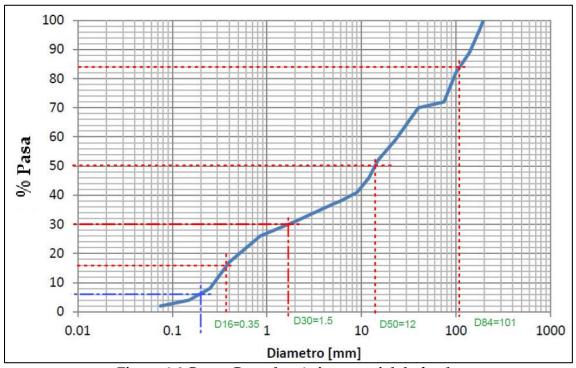


Figura 4.6 Curva Granulométrica material de fondo

Tabla 4.2 Diámetros Característicos

Diámetro Característico	D (mm)	
D84	101.00	
D50	12.00	
D30	1.50	
D16	0.35	
D6	0.20	
D2	0.10	

Tabla 4.3 Características Material de fondo proyecto Ocoña.

Ubicación	Tramo	Densidad gr/cm3	Diámetro	Angulo de reposo	Esfuerzo cortante
	1000 m. aguas arriba	2.125	1/4" a 8"	35°	0.05 Kg/cm2
Rio Ocoña	Eje de Presa	2.141	1/4" a 5"	40°	0.22 Kg/cm2
	500 m. aguas abajo	2.134	1/4" a 8"	33°	0.10 Kg/cm2

4.1.4 Malla Estructurada

Utilizando la superficie conformada por las curvas de nivel y con ayuda del programa *AutoCad Civil 3D* se identifica el eje del río, y se definen las secciones transversales necesarias para la modelación numérica. El archivo *koordina* requiere el ingreso de cada sección transversal, conformada por los puntos longitudinales y las coordenadas en las direcciones X, Y y Z. Se usaron 34 secciones transversales, cada sección se encuentra conformada por 26 puntos longitudinales, Figura 4.7 presente la primera sección transversal del archivo *koordina* utilizado y la Figura 4.8 muestra la vista 2D, o en planta de la malla con las secciones transversales y los puntos longitudinales. Definiendo en el archivo *control* 9 niveles, dirección Z, requeridos por cálculo y para definir las estructuras hidráulicas, se conforma la malla tridimensional mostrada en la Figura 4.9. Se hace notar que las secciones transversales 32, 33 y 34 están muy cercanas debido a que entre ellas se definirán las estructuras que conforman la cortina de la presa del proyecto. El *ANEXO 1* muestra el detalle de todo el archivo *koordina* del proyecto.

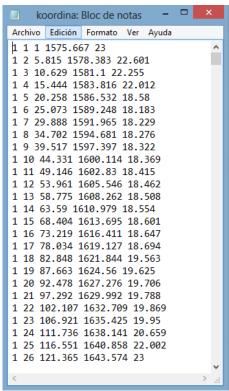


Figura 4.7 Sección transversal número uno, archivo koordina.

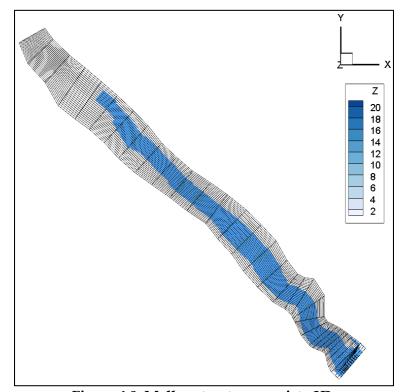


Figura 4.8 Malla estructura en vista 2D.

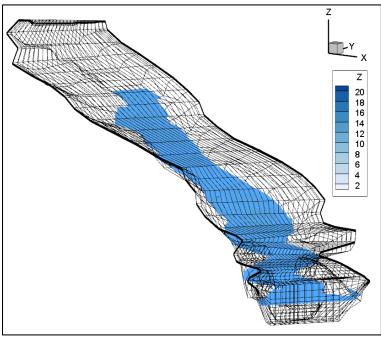


Figura 4.9 Malla estructurada vista 3D

4.1.5 Geometría de Estructuras en la Cortina de la Presa

En la Figura 4.11 se muestran la cortina de la Presa del proyecto hidroeléctrico donde se pueden observar de derecha a izquierda: las 2 bocatomas de la captación; los 4 descargadores de fondo; y los 6 vertederos de excesos. Los niveles de operación se presentan en la Tabla 4.4 incluyendo el nivel de operación normal NAMO y el nivel del cauce que coincide con la base de los descargadores de fondo.

Tabla 4.4 Niveles de operación del vaso

NIVELES DE OPERACI	COTA (msnm)	
Nivel Máximo Excedencias	NAME	892.50
Nivel Normal de Generación	NAMO	890.00
Nivel Mínimo de Operación	NAMINO	880.00

El perfil del fondo y la superficie libre de agua de la presa se muestra en ala Figura 4.10 en condiciones normales de operación con una cota del agua de 890 msnm.

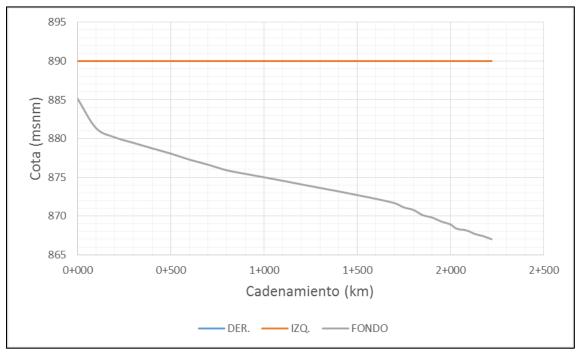


Figura 4.10 Perfil de fondo y superficie libre del agua.

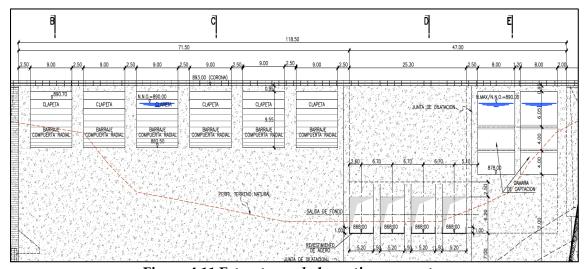


Figura 4.11 Estructuras de la cortina proyecto.

4.1.6 Escenarios de modelación SSIIM

Los escenarios de modelación para el comportamiento de los sedimentos en el vaso de la Presa se muestran en la Tabla 4.5. El escenario 1 obedece a las condiciones normales de operación con un tiempo de modelación de 30 días, equivalente al gasto

máximo promedio que se presenta en el mes de febrero; los demás escenarios de toma como avenidas extremas, con la forma de Hidrogramas triangulares y tiempos base de 48 horas cada uno.

Según las políticas de operación del proyecto los niveles se mantendrán siempre en el NAMO mediante el uso de 3 estaciones hidrométricas que activaran los sistemas automáticos de los descargadores de fondo y vertedores de excedencias para estabilizar el nivel de la presa automáticamente, en cada caso se revisara el comportamiento de los niveles de la superficie libre del agua.

ESCENARIO	Tr (años)	GASTO (m3/s)	NIVEL DE OPERACIÓN (msnm)	ESTRUCTURAS DE CAPTACION	DESCARGADORES DE FONDO	TIEMPO DE MODELO (dias)
Escenario 1	2	285.00	890.00	2	1	30
Escenario 2	5	947.00	890.00	2	2	2
Escenario 3	10	1,385.00	890.00	2	3	2
Escenario 4	15	1,632.00	890.00	2	4	2
Escenario 5	20	1,805.00	890.00	2	4	2

Tabla 4.5 Escenarios de modelación numérica tridimensional SSIIM.

4.1.7 Gasto sólido total

El gasto sólido total es la suma del transporte de sedimentos de fondo y en suspensión; se puede usar enfoque empíricos mediante análisis por regresiones para correlacionar los parámetros dimensionales involucrados para estimar el gasto sólido total sin tomar en cuenta algunos detalles físicos involucrados.

Yang (1973) usando análisis dimensional y el concepto fundamental de corriente de potencia unitaria dada por el producto del flujo medio, velocidad y pendiente del cauce, presentó una relación que estima la concentración total de sedimentos, mediante análisis de regresión múltiple en el laboratorio de flujos de datos (*GARCÍA*, 2008). Las expresiones de Yang son las siguientes:

Universidad Nacional Autónoma de México

$$a1 = 5.435 - 0.286 \cdot \log \left(\frac{v_s \cdot D_{50}}{\nu} \right) - 0.457 \cdot \log \left(\frac{U \times}{v_s} \right) \qquad \text{parametro de cálculo}$$

$$a2 = 1.799 - 0.409 \cdot \log \left(\frac{v_s \cdot D_{50}}{\nu} \right) - 0.314 \cdot \log \left(\frac{U \times}{v_s} \right) \qquad \text{parametro de cálculo}$$

$$logC = a1 + a2 \cdot \log \left(\frac{U \cdot S_0}{v_s} - \frac{U_c \cdot S_0}{v_s} \right) \qquad \text{logaritmo de la concentración total de sedimentos}$$

$$C = 10^{logC} \qquad \text{concentración total de sedimentos}$$

Donde:

- ν Viscosidad cinemática del agua a 20° C (m2/s)
- v_s Velocidad de caída (m/s)
- S_0 Pendiente media del cauce (m/m)
- D_{50} Diámetro Característico 50 (m)
- U* Velocidad al cortante (m/s)
- U Velocidad media (m/s)
- U_c Velocidad crítica (m/s)

La concentración total de sedimentos está dada en partes por millón en peso (ppm) y es necesario pasarlo a gasto mediante las siguientes relaciones, tomando en cuenta que las partículas de sedimento se encuentran sumergidas.

$$Q_s = \frac{\rho \cdot Q}{\rho_s \cdot \left(\frac{10^6}{C} - 1\right)}$$

Gasto total de sedimentos (m3/s)

$$G_{BT} = Q_s \cdot \langle \rho_s - \rho \rangle \qquad \qquad \text{Gasto total de sedimentos} \\ \text{(kg/s)}$$

Yang define el concento de velocidad crítica para el inicio del movimiento, en función de la velocidad de caída de las partículas, y tomando en cuenta dos rangos, que dependen del Reynolds crítico que relaciona la velocidad al cortante, el D50 y la viscosidad cinemática, las siguientes expresiones definen estos criterios planteados.

$$\frac{U \!\!\!\! \times \cdot D_{50}}{\nu} \! > \! 70 \qquad \text{Velocidad crítica (m/s)} \qquad U_c \! = \! 2.05 \cdot v_s$$

$$1.2 \! < \! \frac{U \!\!\! \times \cdot D_{50}}{\nu} \! < \! 70 \qquad \text{Velocidad crítica (m/s)} \qquad U_c \! = \! \frac{2.5}{log \! \left(\frac{U \!\!\! \times \cdot D_{50}}{\nu} \right) \! - 0.06} \! \cdot v_s$$

Para la aplicación de este criterio es necesario determinar la velocidad de caída de las partículas de sedimento. En el artículo *FALL VELOCITY OF SEDIMENT PARTICLES*, publicado por los autores S.M Sadat – Helbar & E. Amiri – Tokaldany en 2009, muestra la dificultad para seleccionar entre los diferentes criterios para estimar la velocidad de caída de una partícula sedimentaria, se presenta en el artículo un método de cálculo que se desprende del análisis de varios criterios y que se puede aplicar en todos los casos con un porcentaje de error menor al 12%.

$$D_{gr} = D \cdot \left(\frac{g \cdot \left(\frac{\rho_s - \rho}{\rho} \right)}{\nu^2} \right)^{\frac{1}{3}}$$
 Diámetro efectivo
$$v_s = 0.51 \cdot \frac{\nu}{D} \cdot \left(\frac{D^3 \cdot g \cdot \left(\frac{\rho_s - \rho}{\rho} \right)}{\nu^2} \right)^{0.553}$$

$$D_{gr} \leq 10$$
 Velocidad de caída (m/s)
$$v_s = 0.033 \cdot \frac{\nu}{D} \cdot \left(\frac{D^3 \cdot g \cdot \left(\frac{\rho_s - \rho}{\rho} \right)}{\nu^2} \right)^{0.963}$$

El movimiento del agua dentro de un conducto produce una tensión de corte tangencial sobre las paredes del cauce, este es el responsable directo del arrastre de sedimentos, expresada mediante la ecuacion de DuBoys. La velocidad al cortante es un parametro que relaciona la tensión de corte pero expresado en unidades de velocidad.

$$\tau_0 = \rho \cdot g \cdot R_h \cdot S_0 \qquad \qquad \text{Ecuación de DuBoys (N/m2),} \\ \text{esfuerzo cortante en el fondo} \\ U *= \sqrt{\frac{\tau_0}{\rho}} \qquad \qquad \text{Velocidad de corte (m/s)}$$

La Tabla 4.6 presenta los resultados de gasto líquido y gasto sólido total para cada periodo de retorno y la Figura 4.12 las curvas de gasto líquido y sólido en volúmenes.

Tabla 4.6 Gasto Líquido y Sólido Total

Tr	GASTO	GASTO SÓLIDO				
(años)	LIQUIDO (m3/s)	m3/s	kg/s	x10^6 m3/año	x10^6 Tn/año	
2	285.00	0.1805	203.10	5.69	6.41	
5	947.00	1.3478	1,516.24	42.50	47.82	
10	1,385.00	2.3005	2,588.07	72.55	81.62	
15	1,632.00	2.8782	3,237.95	90.77	102.11	
20	1,805.00	3.2969	3,709.07	103.97	116.97	

La Tabla 4.7 muestra el resumen de los cálculos realizados para los gastos de los diferentes escenarios, correspondientes a los periodos de retorno establecidos y los tamaños de partículas obtenidos de la curva granulométrica, se puede observar para cada diámetro la velocidad de caída y el gasto sólido total.

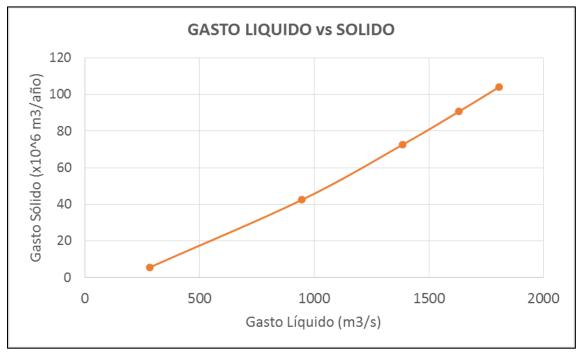


Figura 4.12 Gasto Líquido y Gasto Sólido Total

Tabla 4.7 Velocidad de calda (1179) y Gasto Solido Total (kg/s).							
D (mm)	Vs (m/s)	GASTO SÓLIDO (kg/s) - PERIODO DE RETORNO (años)					
D (IIIIII)	V3 (111/3)	2	5	10	15	20	
101.00	1.8370	32.50	242.60	414.09	518.07	593.45	
12.00	0.4513	69.06	515.52	879.94	1,100.90	1,261.08	
1.50	0.1146	40.62	303.25	517.61	647.59	741.81	
0.35	0.0355	28.43	212.27	362.33	453.31	519.27	
0.20	0.0123	20.31	151.62	258.81	323.79	370.91	
0.10	0.0033	6.09	45.49	77.64	97.14	111.27	
TOTAL 197.01 1.4		1.470.75	2.510.43	3.140.81	3.597.79		

Tabla 4.7 Velocidad de caída (m/s) y Gasto Sólido Total (kg/s).

4.2 PROCESAMIENTO DE INFORMACIÓN, MODELO SSIIM Y ANÁLISIS DE RESULTADOS

Los escenarios de modelación se establecieron en el capítulo 4.1.6 en función de las políticas de operación de la Presa y con las condiciones de avenidas de diseño y estructuras en funcionamiento, se señala que el gasto captado para generación eléctrica es de 100 m³/s y el nivel del agua en la cercanía de la cortina es de 22 m. El Comportamiento de los sedimentos se obtiene de la Tabla 4.7 para cada escenario en particular.

Los archivos de entrada principales para el modelo SSIIM son: el archivo *koordina* y el archivo *control*. En todos los escenarios de modelación se usa el mismo archivo *koordina*, que contiene la malla tridimensional de modelación. El archivo *control* contiene las instrucciones particulares de cada escenario como instrucciones especiales usadas para indicarle el funcionamiento hidráulico, transporte de sedimentos, estructuras sólidas, tiempos de modelación y criterios de convergencia. Los archivos *control* de cada escenario de modelación se presentan en el Anexo 2.

4.2.1 Escenario 1

El primer escenario de estudio considera las condiciones normales de operación, el gasto de diseño es de $285 \, \text{m}^3/\text{s}$, correspondiente a un tiempo de retorno de $2 \, \text{años}$. El tiempo de modelación es de $30 \, \text{días}$, número de iteraciones igual a 3000, con un tiempo de paso de $900 \, \text{s}$ (Δt), y un máximo de iteraciones de 3100; se capta $100 \, \text{m}^3/\text{s}$ para generación y está en operación un solo descargador de fondo.

Luego de modelar la hidrodinámica, transporte de sedimentos y evolución de fondo se obtiene los resultados a ser analizados. La Figura 4.13 muestra las velocidades desarrolladas en todo el vaso, a nivel del NAMO 890 msnm, donde se puede observar un máximo de 8.60 m/s y un mínimo de 0.004 m/s, en escala logarítmica, se identifican lugares de velocidades muy bajas que se suponen zonas de recirculación, en la Figura 4.14 se grafican las líneas de corriente en el vaso y se identifican claramente 5 zonas de recirculación. Las dos más grandes zonas de recirculación están en el margen derecho con una longitud aproximada de 200 m. y un ancho de 30 m. En la margen izquierda se encuentra una zona de recirculación importante cerca de la cortina, con un ancho de 400 m. y una longitud de 50m.

La Figura 4.15 muestra las velocidades en la cercanía de la cortina en un nivel medio de funcionamiento de la obra de toma, 889 msnm, las dos estructuras de captación con velocidades cercanas a los 8.6 m/s; también se muestra un corte horizontal, a una elevación de 874 msnm, para observar las velocidades cercanas al fondo y el trabajo del descargador de fondo, con velocidad de hasta 4.9 m/s.

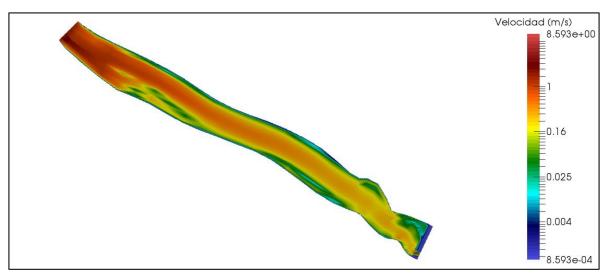


Figura 4.13 Velocidades escenario 1 y nivel 890 msnm

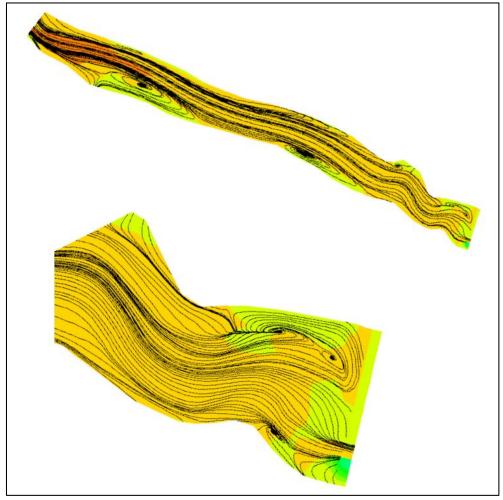


Figura 4.14 Líneas de corriente - Escenario 1

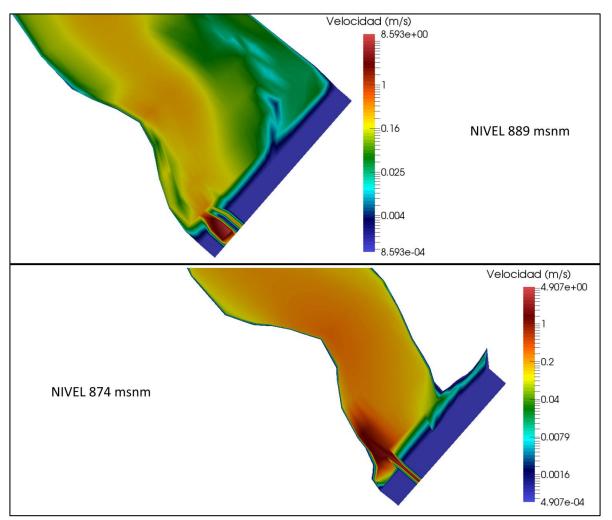


Figura 4.15 Velocidad en la cercania a la cortina - Escenario 1

La Figura 4.16 presenta la distribución del número de Froude en este escenario, con un rango que va desde 0.012 hasta 0.21, indicando un comportamiento subcrítico en todo el dominio, este comportamiento es el esperado cuando se produce un remanso en el embalse por una presa. La zona inicial de modelación presenta los valores más altos de número de Froude productos de tener una pendiente más pronunciada.

En la zona cercana a la cortina se observa que el número de Froude aumenta en la margen derecha mientras más cerca se encuentra de la captación y del descargador de fondo, sin embargo se mantiene la condición de flujo subcrítico en el vaso en condiciones normales de operación. No se analiza el comportamiento dentro de las estructuras porque la resolución de los resultados no permite apreciar.

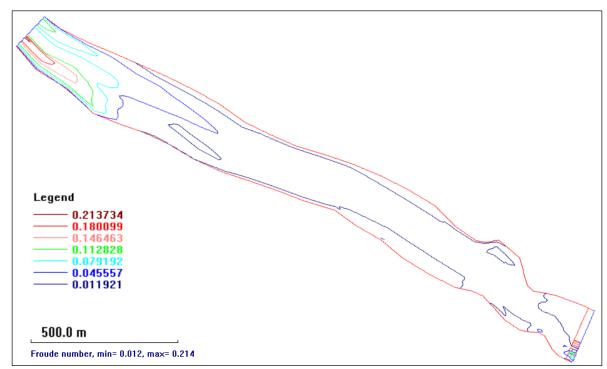


Figura 4.16 Número de Froude - Escenario 1

En la Figura 4.17 se muestran los resultados de elevación de superficie libre del agua, modelados con referencia al nivel de fondo en la cercanía a la cortina (868.00 msnm), se observa que la topografía utilizada representa bien la condición de flujo del cauce normal y todo el estancamiento de agua que forma el embalse del proyecto. El área del embalse tiene una cota aproximada de 890.51 msnm mostrando un incremento del nivel esperado del NAMO.

Los cambios en las paredes rígidas del cauce se muestran en la Figura 4.18, los valores positivos indican sedimentación del material, mientras los negativos la erosión del cauce. Se observa en la entrada al vaso una sedimentación fuerte y la formación del delta producto de la disminución de las velocidades. En la cercanía a la cortina se puede observar la erosión producto de las corrientes producidas por el único descargador de fondo en funcionamiento, también el depósito de material sedimentario en las zonas de recirculación observadas en las líneas de corriente de la Figura 4.14 .

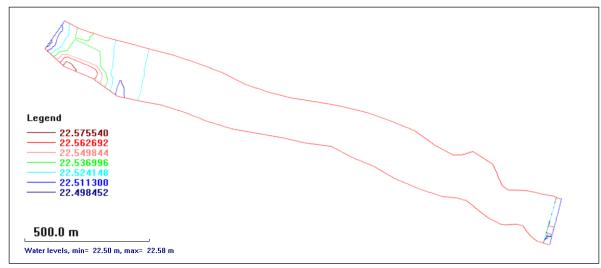


Figura 4.17 Niveles de Superficie Libre de agua - Escenario 1

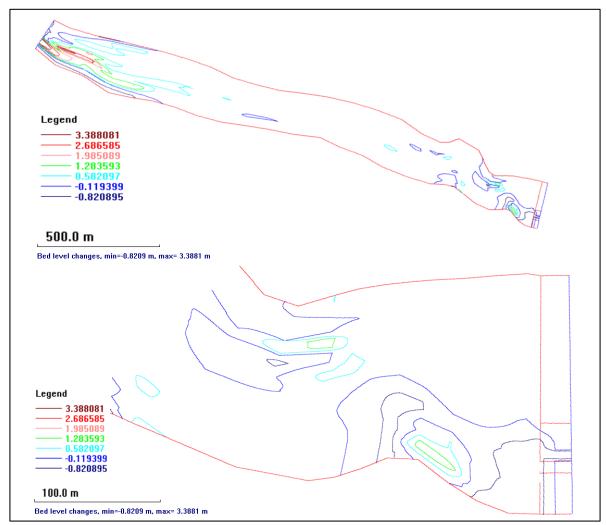


Figura 4.18 Cambio del fondo del cauce- Escenario 1.

Para identificar las partículas de sedimentos en suspensión, SSIIM muestra la concentración de cada partícula en el nivel indicado, en la Figura 4.19 se observa la concentración de las partículas de diámetro 0.35 mm, 0.2 mm y 0.1 mm a nivel intermedio de las estructuras de captación (888 msnm).

Las partículas de diámetro 0.35 mm presentan una concentración muy alta a la entrada el vaso observado en la Figura 4.19, en la cercanía a la cortina, mostrado en la Figura 4.20, se observa que a nivel de las estructuras de captación (888 msnm) existe una concentración considerable, lo que es completamente perjudicial para efectos de generación eléctrica. Mientras en la misma Figura 4.20, a nivel de funcionamiento de los descargadores de fondo (874 msnm) se observa que la mayor concentración de material de este diámetro está saliendo por el único descargador en funcionamiento, indicando un correcto trabajo de esta estructura.

Las partículas de diámetro 0.2 mm presentan concentraciones altas al ingreso al vaso y van disminuyendo paulatinamente conforme avanza, en la Figura 4.19 se observa una zona central donde no existe concentración de partículas de este diámetro, sin embargo se puede decir que presencia cerca de la cortina es mayor que el diámetro anterior. En la Figura 4.20 se observa la zona cerca de la cortina, a un nivel 888 msnm se ve que existe un importante concentración de partículas de 0.2mm entrando a las estructuras de captación confirmando el alto porcentaje de ingreso de partículas entre estos dos diámetros. Para el nivel 874 msnm, un solo descargador de fondo si deja pasar partículas de este diámetro.

La Figura 4.22 presenta un corte vertical a lo lago de la cortina mostrándonos las concentraciones de sedimentos para los diámetros 0.35 mm y 0.2 mm aquí podemos observar el paso de este material por el único descargador de fondo en funcionamiento como se esperaba por el diseño. Mientras la concertación de material por las estructuras de captación preocupa mucho para efectos de generación de electricidad, ya que todo este material entra a las turbina y producirá desgaste en los álabes y demás mecanismos.

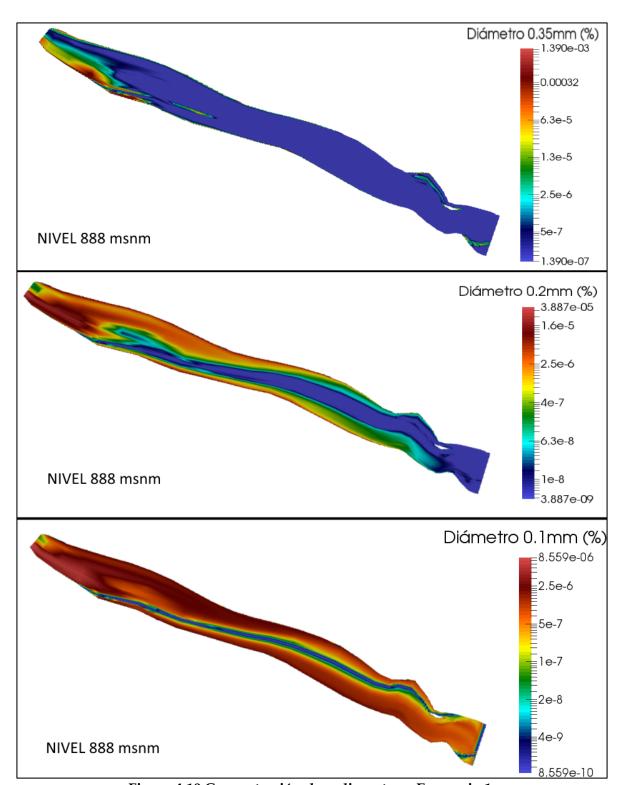


Figura 4.19 Concentración de sedimentos - Escenario 1

Universidad Nacional Autónoma de México

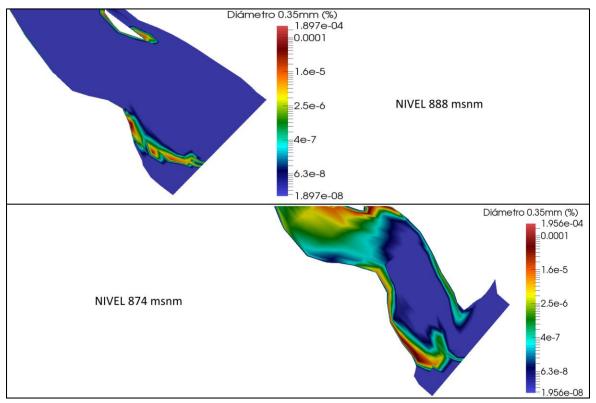


Figura 4.20 Concentración 0.35mm - Escenario 1 Cortina

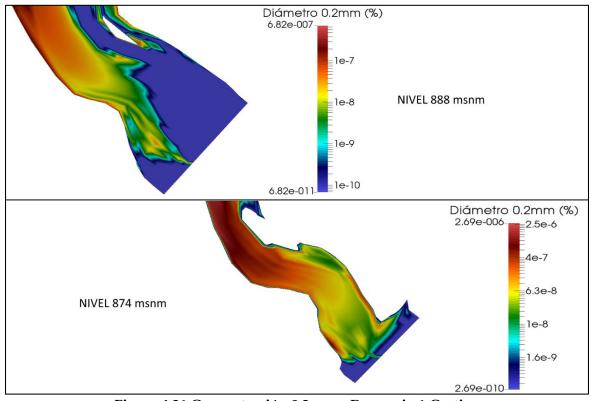


Figura 4.21 Concentración 0.2mm - Escenario 1 Cortina

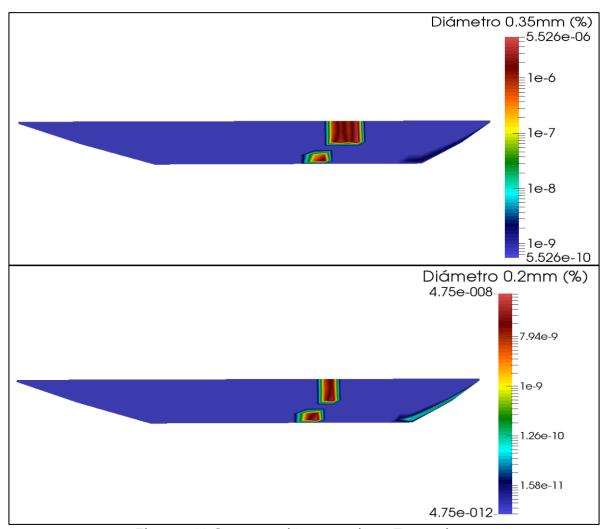


Figura 4.22 Concentración en cortina - Escenario 1

4.2.2 Escenario 2

Este escenario corresponde a un periodo de retorno de 5 años con un gasto de diseño de 947 m³/s, las dos estructuras de captación en funcionamiento (100 m³/s) y dos descargadores de fondo abiertos completamente. Se modela sobre la configuración de fondo del escenario 1 (koordina.new), el tiempo de modelación para este escenario es de 50 horas, un tiempo de paso de 900 s y un número de 200 iteraciones. Después de correr el modelo se revisa su convergencia y los resultados se presentan a continuación. En la Figura 4.23 se presenta la distribución de velocidades en el vaso del proyecto con un valor mínimo de 0.000308 m/s y un máximo de 3.08 m/s en escala logarítmica para poderlas observar.

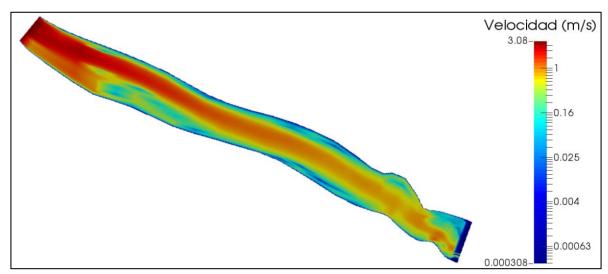


Figura 4.23 Velocidades Escenario 2

En la distribución de velocidades se observa en la margen derecha la formación de dos zonas de recirculación pero menores que en el escenario 1. En la margen izquierda se mantienen las 3 zonas de recirculación casi de la misma magnitud. En la Figura 4.24 se muestran las líneas de corriente en todo el cauce identificándose las zonas de recirculación.

Cerca de la cortina las zonas de recirculación formadas en ambas márgenes son mayores en este escenario que en el escenario 1. En la Figura 4.25 se muestra la distribución de velocidades en la zona próxima a la cortina en los niveles 889 msnm distinguiéndose claramente las captaciones y en el nivel 874 msnm donde se aprecia el funcionamiento de los dos descargadores de fondo.

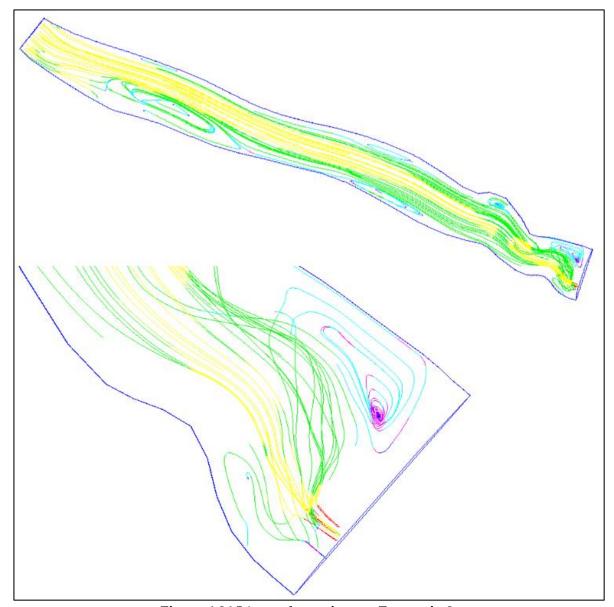


Figura 4.24 Líneas de corriente - Escenario 2

La distribución del número de Froude en el cauce se presente en la Figura 4.26, donde se observa que el flujo está en régimen subcrítico aunque los valores más altos se presentan en la cercanía de la cortina a la entrada de las estructuras tanto de captación como descargadores de fondo. Se observa que el número de Froude presenta un aumento en todo el vaso a causa del tránsito de la avenida.

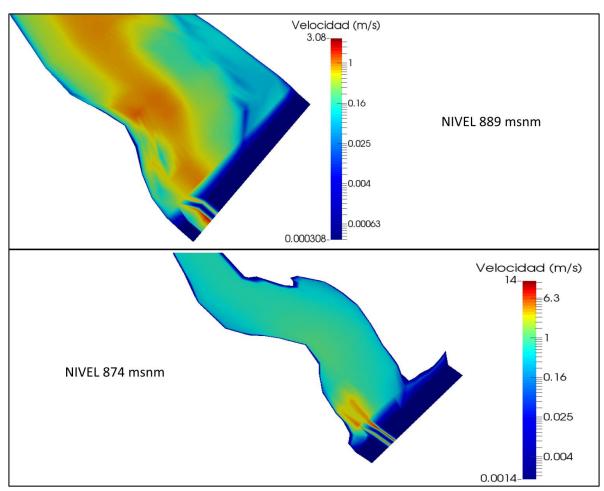


Figura 4.25 Velocidades en la cercanía de la cortina - Escenario 2

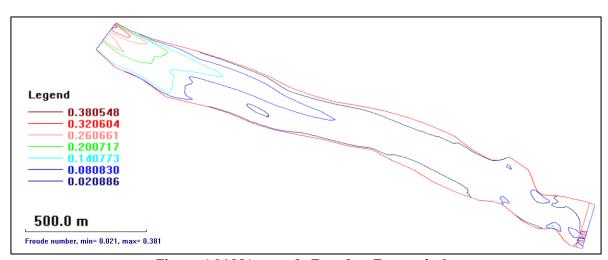


Figura 4.26 Número de Froude - Escenario 2.

En la Figura 4.27 se muestra la altura de la superficie libre de agua al transitar el gasto de diseño de 947 m³/s en un tiempo base de 50 horas, se presentan variaciones muy pequeñas con respecto del nivel normal de operación, entre 890.13 msnm y 889.94 msnm.

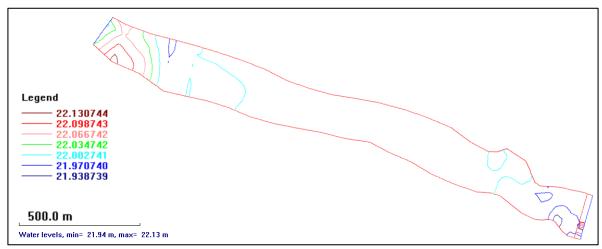


Figura 4.27 Elevación de superficie libre de agua - Escenario 2.

El transito del gasto de diseño genera cambios en el fondo del cauce, respecto al fondo obtenido de la modelación del escenario 1, en la Figura 4.28 se observa que el mayor cambio se presenta a la entrada al vaso, donde hay depósito de material en la margen izquierda. En la proximidad a la cortina se puede observar un incremento en la erosión producida por el flujo a través de los dos descargadores de fondo y cerca de las estructuras de captación el incremento del depósito de material.

En las Figura 4.30 se muestra la concentración de sedimentos en suspensión para el diámetro de partícula de 0.35 mm con la mayor presencia del material a la entrada del vaso, sin embargo se puede observar que en la zona cercana a las estructuras de la cortina, también existe presencia de este material. El diámetro de partícula de 0.2 mm y 0.1 mm se presentan en la Figura 4.30 donde las concentraciones de sedimentos son importantes en todo el vaso, habiendo una presencia muy importante en la zona próxima a la zona de emplazamiento de la cortina.

Universidad Nacional Autónoma de México

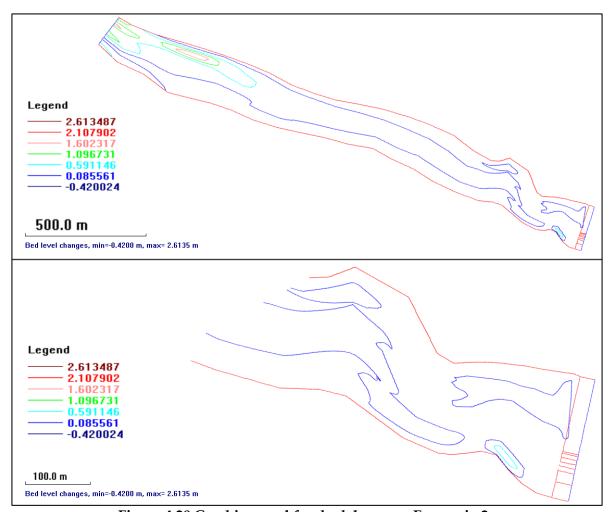


Figura 4.28 Cambios en el fondo del cauce - Escenario 2.

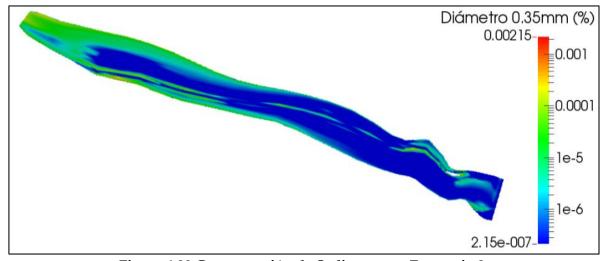


Figura 4.29 Concentración de Sedimentos - Escenario 2

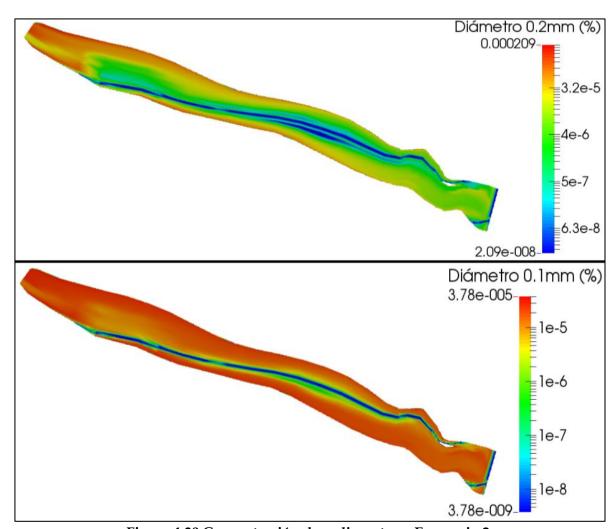


Figura 4.30 Concentración de sedimentos - Escenario 2

En la Figura 4.31 se muestra la concentración de sedimentos en suspensión, para el diámetro de partícula 0.35mm, a nivel 888 msnm donde se ve el ingreso del material por las estructuras de captación; y a nivel 874 msnm con el funcionamiento correcto de los dos descargadores de fondo. En la Figura 4.32 se presenta la concentración de partículas de sedimentos en suspensión para el diámetro 0.2 mm, a nivel 888 msnm observando el ingreso de estas partículas a las estructuras de captación y a nivel 874 msnm mostrando el funcionamiento de los dos descargadores de fondo.

Universidad Nacional Autónoma de México

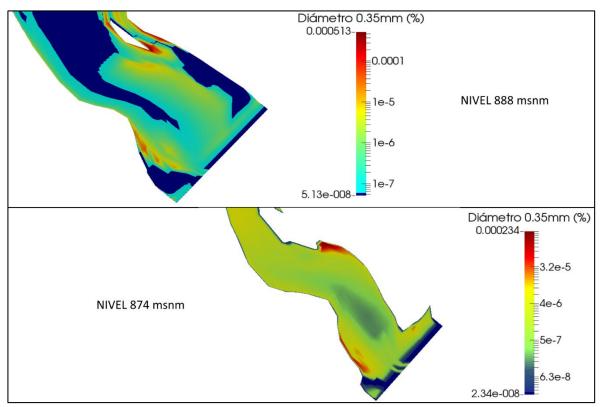


Figura 4.31 Concentración 0.35 mm - Escenario 2

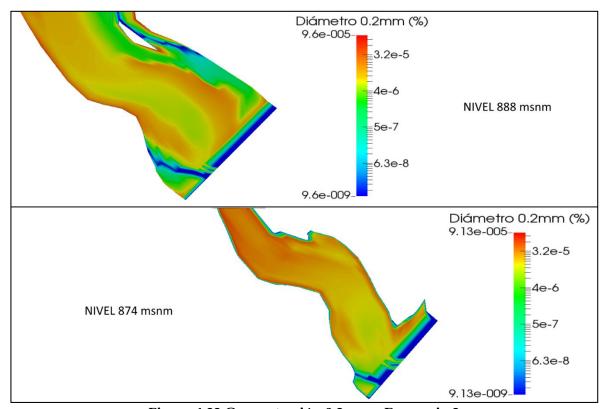


Figura 4.32 Concentración 0.2mm - Escenario 2

En la Figura 4.33 se muestra la concentración vertical de sedimentos en la zona de las estructuras de la cortina, para las partículas de diámetro 0.35 mm y 0.2 mm, observándose como en ambos casa ingresan tanto por los descargadores de fondo como por las estructuras de captación, este último es un efecto no deseado para la generación de electricidad por motivo de daños en las turbinas por desgaste de los álabes.

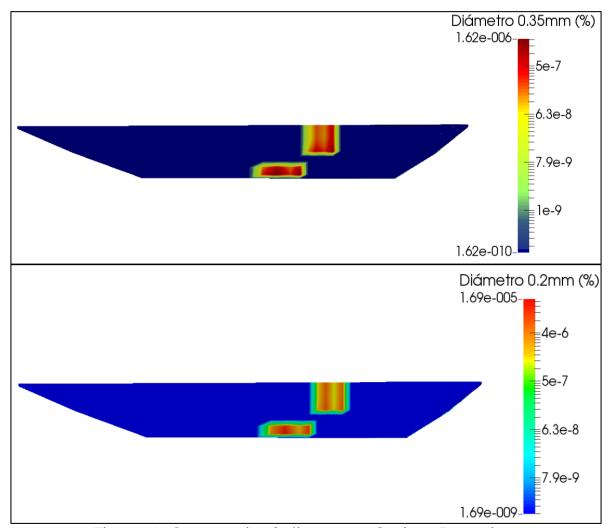


Figura 4.33 Concentración Sedimentos en Cortina - Escenario 2

4.2.3 Escenario 3

Este escenario corresponde al periodo de retorno de 10 años, una avenida de diseño con un gasto pico de diseño de 1385 m³/s y un tiempo base de 50 horas; se usa un paso de tiempo de 900 s, un número de iteraciones de 200. Se considera las dos captaciones funcionando captando 100 m³/s y los 3 descargadores de fondo abiertos. Después de comprobar la convergencia del modelo y revisar los resultados, estos se presentan a continuación.

En la Figura 4.34 se presenta la distribución de velocidades en el vaso del proyecto, se observa un aumento en las velocidades producto del tránsito de la avenida de diseño, con un máximo de 4.48 m/s. Se identifican que las zonas de recirculación de flujo aumentan de tamaño en comparación a las condiciones normales de operación de la presa.

En la Figura 4.35 se muestran las líneas de corriente en todo el vaso ratificándose el aumento de las zonas de recirculación apreciadas por las velocidades y que cerca de la cortina de la presa forman grandes remolinos de turbulencia en ambos márgenes del cauce, con mayor tamaño al margen izquierdo.

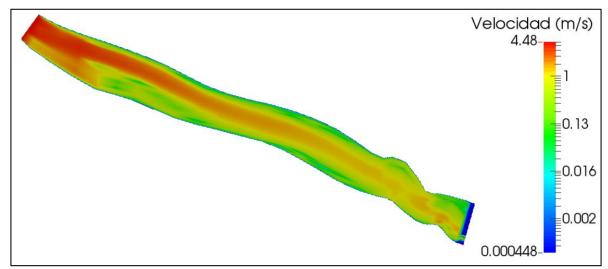


Figura 4.34 Distribución de velocidades - Escenario 3

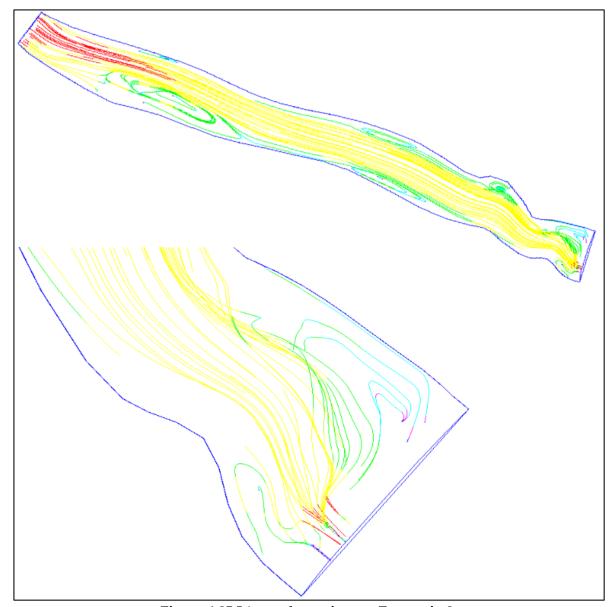


Figura 4.35 Líneas de corriente - Escenario 3

Una comparación entre las distribuciones de velocidades cerca a la cortina en la elevación 889 msnm y 874 msnm se presenta en la Figura 4.36, en la primera se puede ver la operación de las dos estructuras de captación y en la segunda los tres descargadores de fondo en funcionamiento. En la Figura 4.37 observa la distribución del número de Froude en todo el vaso del proyecto ratificando la condición de régimen subcrítico dado por el estancamiento del agua por la cortina.

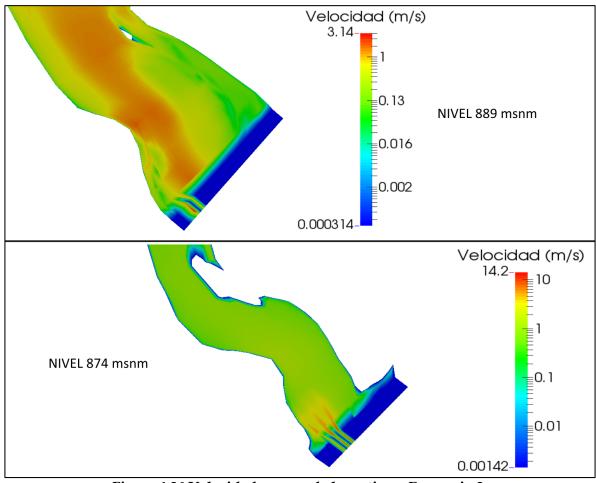


Figura 4.36 Velocidades cerca de la cortina - Escenario 3

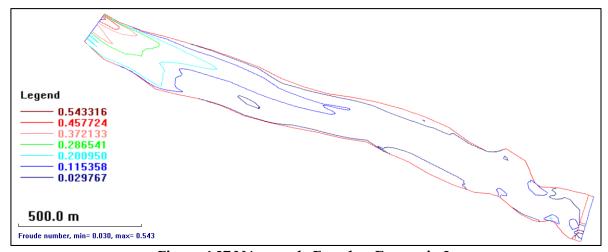


Figura 4.37 Número de Froude - Escenario 3

El tránsito de la avenida de diseño con un gasto de 1385 m³/s en un tiempo base de 50 horas genera una modificación en el nivel de operación de la presa, mostrado en la Figura 4.38, el nivel máximo se encuentra en 890.29 msnm que no es representativo para la operación de las estructuras hidráulica ni para fines de generación hidroeléctrica, representando la capacidad de respuesta del vaso frente a esta avenida de diseño. En la cercanía de la cortina se presentan disminuciones normales del nivel conforme las corrientes de flujo se acercan a las estructuras de captación y descargadores de fondo.

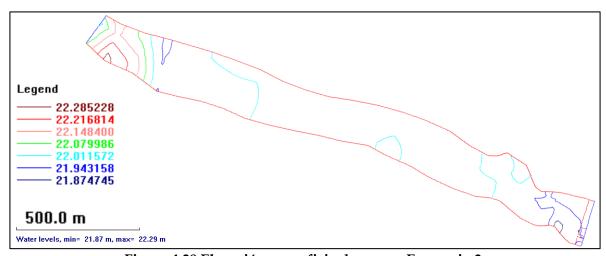


Figura 4.38 Elevación superficie de agua - Escenario 3

La Figura 4.39 muestra la variación del fondo del cauce al transitar la avenida de diseño, se observa el avance del depósito de material formando el delta al ingreso del vaso y el aumento de material depositado en la zona de recirculación cercana a las obras de captación de la presa. La erosión del fondo del cauce solo se puede apreciar en la cercanía de los descargadores de fondo, pero que comparado con las escala del depósito no son muy apreciables para este escenario de modelación.

La concentración de sedimentos en suspensión al transitar la avenida de 1385 m³/s se presenta en la Figura 4.40. Las partículas de diámetro de 0.35 mm muestran un incremento de material con gran presencia en la cercanía de la cortina; las partículas de diámetro 0.2 mm se muestran más uniformes y también en gran concentración en todo el vaso; las partículas de diámetro 0.1 mm en suspensión se dispersan casi uniformemente por el vaso y su presencia cerca de la captación es muy grande.

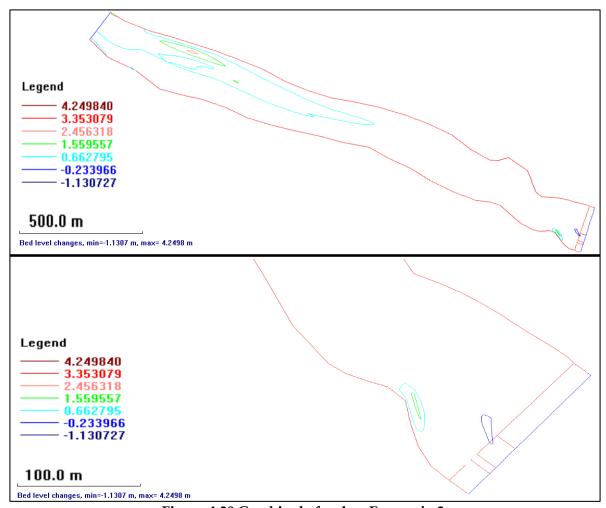


Figura 4.39 Cambio de fondo - Escenario 3

En la Figura 4.41 se observa la concentración de sedimentos en suspensión a nivel estructuras de captación, 888 msnm, donde se ve que las partículas de este diámetro efectivamente están ingresando pudiendo causar daños a las turbinas cuando se esté generando electricidad; a nivel de trabajo de las estructuras de descarga de fondo, 874 msnm, se observa que el material de este diámetro pasas por los 3 descargadores al transitar esta avenida.

En la Figura 4.42 se observa la concentración de sedimentos en suspensión para el diámetro 0.2mm, a nivel de trabajo de las estructuras de captación (888 msnm) en la cercanía a la cortina se observa una gran concentración y que estas partículas entran en la captación; a nivel de descargas de fondo (874 msnm) la concentración de partículas es mayor y adecuadamente transita por los 3 descargadores de fondo como se esperaba por diseño.

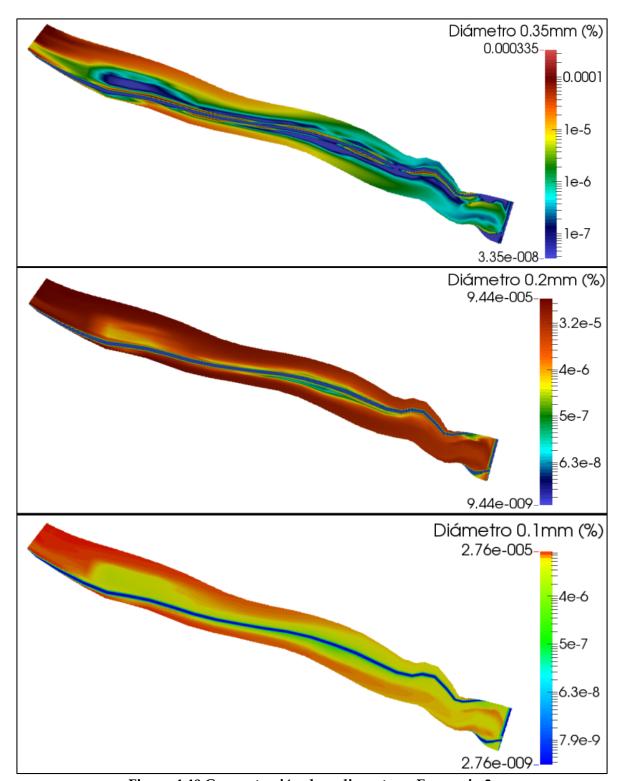


Figura 4.40 Concentración de sedimentos - Escenario 3

Universidad Nacional Autónoma de México

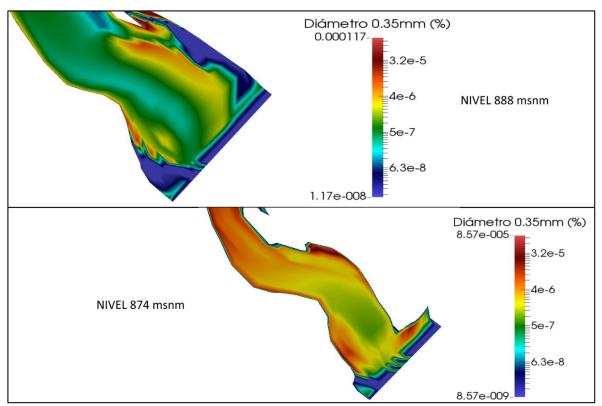


Figura 4.41 Concentración diámetro 0.35mm - Escenario 3

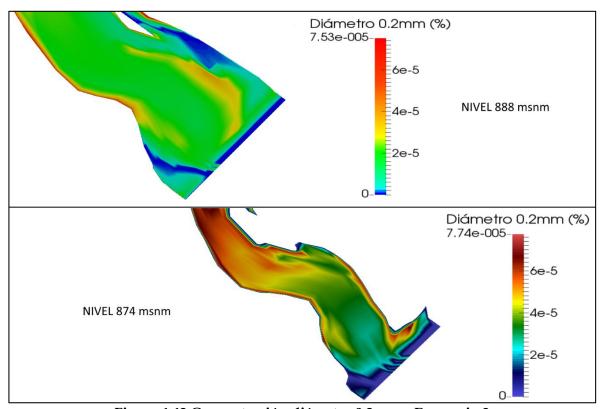


Figura 4.42 Concentración diámetro 0.2mm - Escenario 3

Es muy preocupante que las partículas comprendidas entre los diámetros 0.35mm y 0.2mm entren por las estructuras de captación, como lo muestra la Figura 4.43 mediante el corte en la sección de la cortina, ya que partículas de diámetro superior a 0.2mm en contacto con los equipos de generación eléctrica crean desgaste de sus componentes.

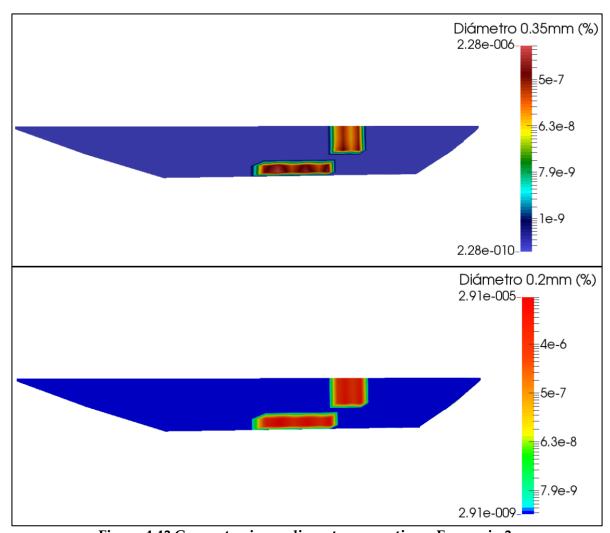


Figura 4.43 Concentracion sedimentos en cortina - Escenario 3

4.2.4 Escenario 4

Este escenario corresponde al periodo de retorno de 15 años, una avenida de diseño con un gasto pico de diseño de 1632 m³/s y un tiempo base de 50 horas; se usa un paso de tiempo de 900 s, un número de iteraciones de 200. Se considera las dos captaciones funcionando captando 100 m³/s y los 4 descargadores de fondo abiertos. Después de comprobar la convergencia del modelo y revisar los resultados, estos se presentan a continuación.

En la Figura 4.44 se presenta la distribución de velocidades en el vaso del proyecto, se observa un aumento en las velocidades producto del tránsito de la avenida de diseño, con un máximo de 5.29 m/s. Se identifican que las zonas de recirculación de flujo aumentan de tamaño en comparación a las condiciones normales de operación de la presa.

En la Figura 4.45 se muestran las líneas de corriente en todo el vaso ratificándose el aumento de las zonas de recirculación apreciadas por las velocidades y que cerca de la cortina de la presa forman grandes remolinos de turbulencia en ambos márgenes del cauce, con mayor tamaño al margen izquierdo.

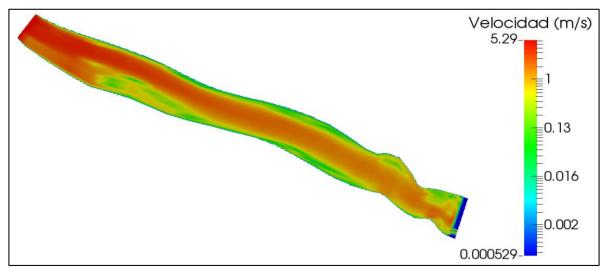


Figura 4.44 Distribución de velocidades - Escenario 4

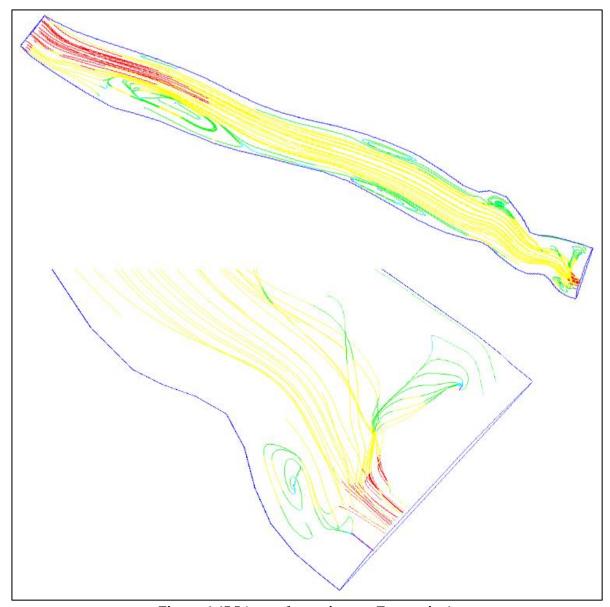


Figura 4.45 Líneas de corriente - Escenario 4

Una comparación entre las distribuciones de velocidades cerca a la cortina en la elevación 889 msnm y 874 msnm se presenta en la Figura 4.46, en la primera se puede ver la operación de las dos estructuras de captación y en la segunda los cuatro descargadores de fondo en funcionamiento. En la Figura 4.47 observa la distribución del número de Froude en todo el vaso del proyecto ratificando la condición de régimen subcrítico dado por el estancamiento del agua por la cortina.

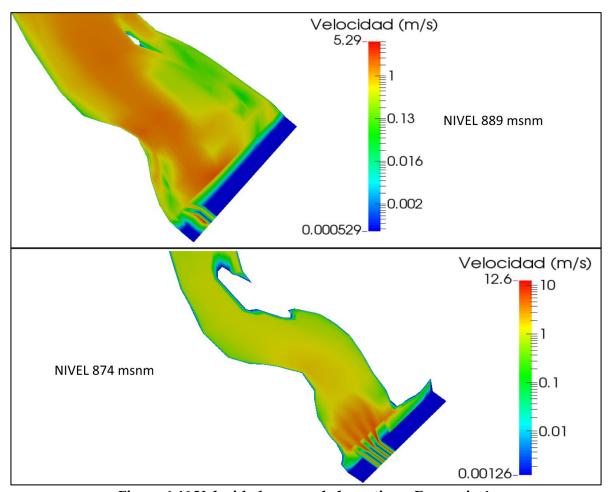


Figura 4.46 Velocidades cerca de la cortina - Escenario 4

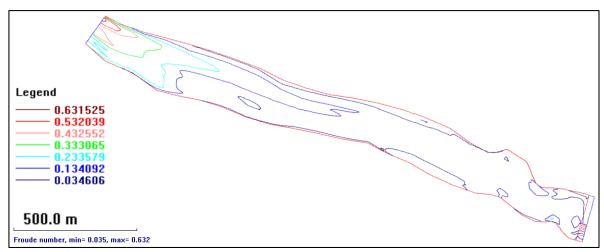


Figura 4.47 Número de Froude - Escenario 4

El tránsito de la avenida de diseño con un gasto de 1632 m³/s en un tiempo base de 50 horas genera una modificación en el nivel de operación de la presa, mostrado en la Figura 4.48, el nivel máximo se encuentra en 890.39 msnm que no es representativo para la operación de las estructuras hidráulica ni para fines de generación hidroeléctrica, representando la capacidad de respuesta del vaso frente a esta avenida de diseño. En la cercanía de la cortina se presentan disminuciones normales del nivel conforme las corrientes de flujo se acercan a las estructuras de captación y descargadores de fondo.

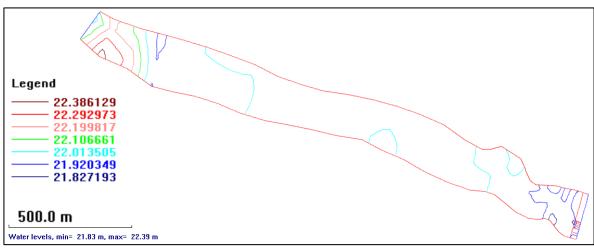


Figura 4.48 Elevación superficie de agua - Escenario 4

La Figura 4.49 muestra la variación del fondo del cauce al transitar la avenida de diseño, se observa el avance del depósito de material formando el delta al ingreso del vaso y el aumento de material depositado en la zona de recirculación cercana a las obras de captación de la presa. La erosión del fondo del cauce es casi imperceptible en este escenario de modelación por efectos de las escalas, y su presencia obedece al gran gasto que los descargadores de fondo tienen que desalojar, presentándose la erosión exclusivamente en esta zona.

La concentración de sedimentos en suspensión al transitar la avenida de 1632 m³/s se presenta en la Figura 4.50. Las partículas de diámetro de 0.35 mm muestran un incremento de material con gran presencia en la cercanía de la cortina; las partículas de diámetro 0.2 mm se muestran más uniformes y también en gran concentración en todo el vaso; las partículas de diámetro 0.1 mm en suspensión se dispersan casi uniformemente por el vaso y su presencia cerca de la captación es muy grande.

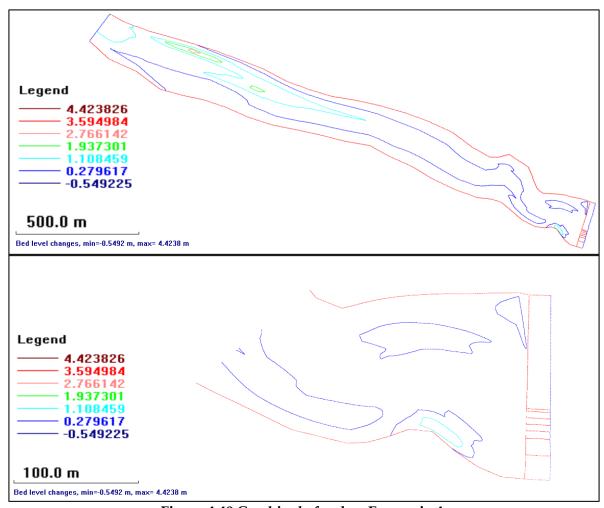


Figura 4.49 Cambio de fondo - Escenario 4

En la Figura 4.51 se observa la concentración de sedimentos en suspensión a nivel estructuras de captación, 888 msnm, donde se ve que las partículas de este diámetro efectivamente están ingresando pudiendo causar daños a las turbinas cuando se esté generando electricidad; a nivel de trabajo de las estructuras de descarga de fondo, 874 msnm, se observa que el material de este diámetro pasas por los 4 descargadores al transitar esta avenida.

En la Figura 4.52 se observa la concentración de sedimentos en suspensión para el diámetro 0.2mm, a nivel de trabajo de las estructuras de captación (888 msnm) en la cercanía a la cortina se observa una gran concentración y que estas partículas entran en la captación; a nivel de descargas de fondo (874 msnm) la concentración de partículas es mayor y adecuadamente transita por los 4 descargadores de fondo como se esperaba por diseño.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

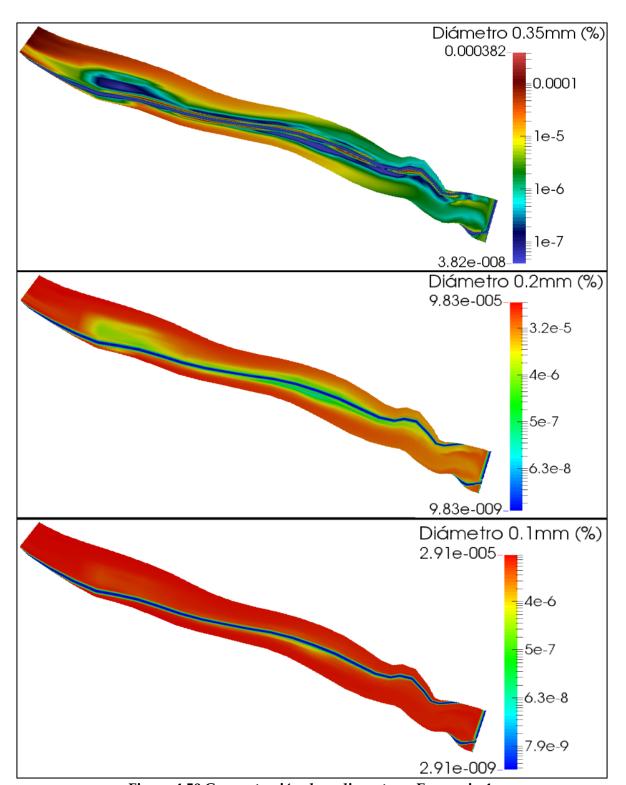


Figura 4.50 Concentración de sedimentos - Escenario 4

Universidad Nacional Autónoma de México

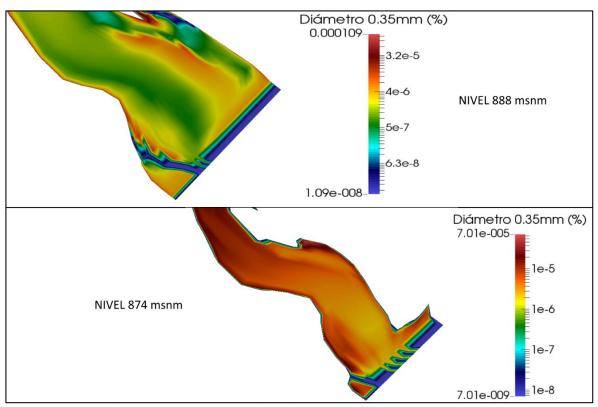


Figura 4.51 Concentración diámetro 0.35mm - Escenario 4

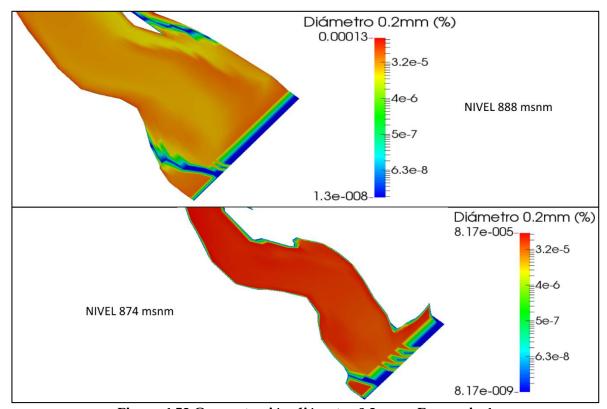


Figura 4.52 Concentración diámetro 0.2mm - Escenario 4

Es muy preocupante que las partículas comprendidas entre los diámetros 0.35mm y 0.2mm entren por las estructuras de captación, como lo muestra la Figura 4.53 mediante el corte en la sección de la cortina, ya que partículas de diámetro superior a 0.2mm en contacto con los equipos de generación eléctrica crean desgaste de sus componentes.

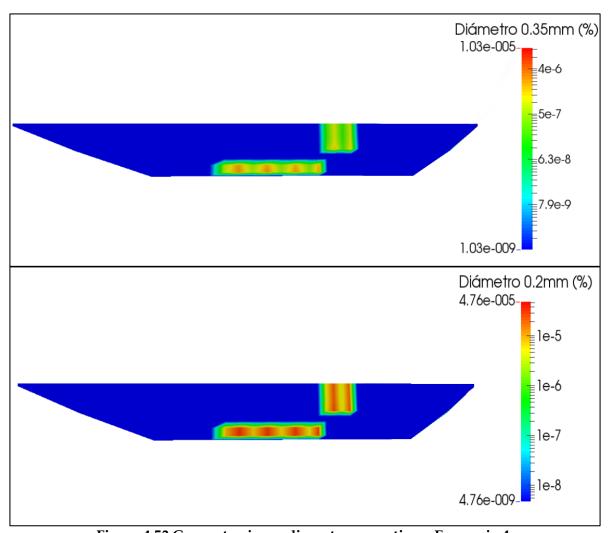


Figura 4.53 Concentracion sedimentos en cortina - Escenario 4

4.2.5 Escenario 5

Este escenario corresponde al periodo de retorno de 20 años, una avenida de diseño con un gasto pico de diseño de 1805 m³/s y un tiempo base de 50 horas; se usa un paso de tiempo de 900 s, un número de iteraciones de 200. Se considera las dos captaciones funcionando captando 100 m³/s y los 4 descargadores de fondo abiertos. Después de comprobar la convergencia del modelo y revisar los resultados, estos se presentan a continuación.

En la Figura 4.54 se presenta la distribución de velocidades en el vaso del proyecto, se observa un aumento en las velocidades producto del tránsito de la avenida de diseño, con un máximo de 15.5 m/s. Se identifican que las zonas de recirculación de flujo aumentan de tamaño en comparación a las condiciones normales de operación de la presa.

En la Figura 4.55 se muestran las líneas de corriente en todo el vaso ratificándose el aumento de las zonas de recirculación apreciadas por las velocidades y que cerca de la cortina de la presa forman grandes remolinos de turbulencia en ambos márgenes del cauce, con mayor tamaño al margen izquierdo.

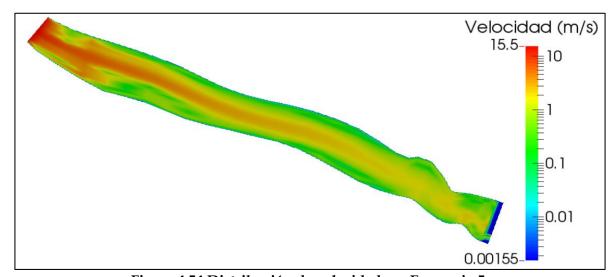


Figura 4.54 Distribución de velocidades - Escenario 5

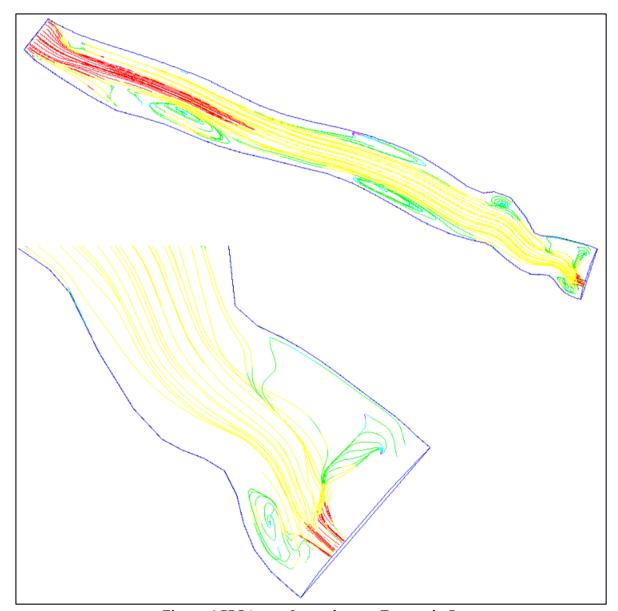


Figura 4.55 Líneas de corriente - Escenario 5

Una comparación entre las distribuciones de velocidades cerca a la cortina en la elevación 889 msnm y 874 msnm se presenta en la Figura 4.56, en la primera se puede ver la operación de las dos estructuras de captación y en la segunda los cuatro descargadores de fondo en funcionamiento. En la Figura 4.57 observa la distribución del número de Froude para la entrada al vaso velocidades que alcanzan el régimen supercrítico pero al producirse el remanso rápidamente regresa a régimen subcrítico.

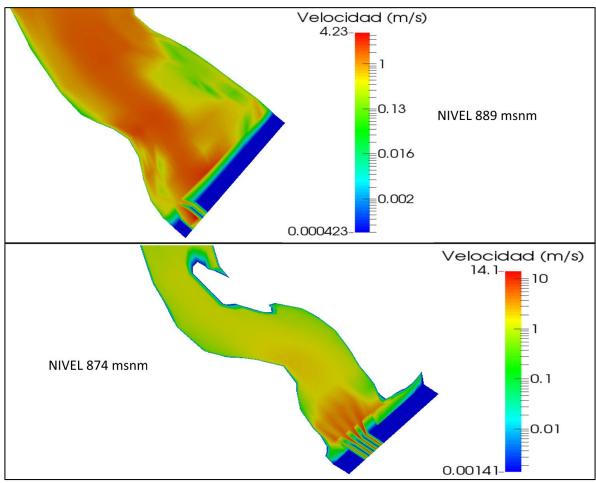


Figura 4.56 Velocidades cerca de la cortina - Escenario 5

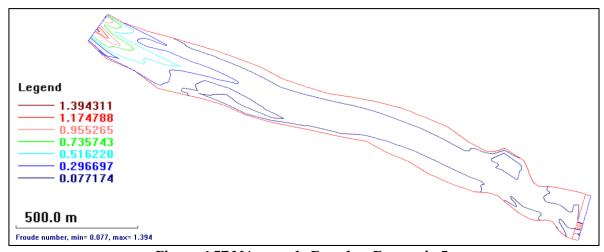


Figura 4.57 Número de Froude - Escenario 5

El tránsito de la avenida de diseño con un gasto de 1805 m³/s en un tiempo base de 50 horas genera una modificación en el nivel de operación de la presa, mostrado en la Figura 4.58, el nivel máximo se encuentra en 890.9 msnm que no es representativo para la operación de las estructuras hidráulica ni para fines de generación hidroeléctrica, representando la capacidad de respuesta del vaso frente a esta avenida de diseño. En la cercanía de la cortina se presentan disminuciones normales del nivel conforme las corrientes de flujo se acercan a las estructuras de captación y descargadores de fondo.

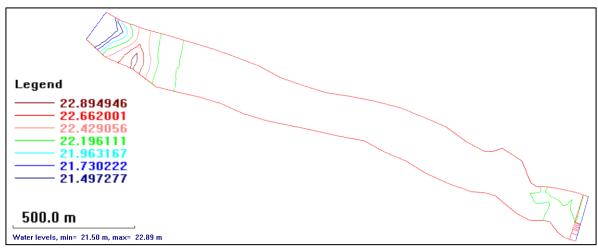


Figura 4.58 Elevación superficie de agua - Escenario 5

La Figura 4.59 muestra la variación del fondo del cauce al transitar la avenida de diseño, se observa el avance del depósito de material formando el delta al ingreso del vaso y el aumento de material depositado en la zona de recirculación cercana a las obras de captación de la presa. La erosión del fondo del cauce es casi imperceptible en este escenario de modelación por efectos de las escalas, y su presencia obedece al gran gasto que los descargadores de fondo tienen que desalojar, presentándose la erosión exclusivamente en esta zona.

La concentración de sedimentos en suspensión al transitar la avenida de 1805 m³/s se presenta en la Figura 4.60. Las partículas de diámetro de 0.35 mm muestran un incremento de material con gran presencia en la cercanía de la cortina; las partículas de diámetro 0.2 mm se muestran más uniformes y también en gran concentración en todo el vaso; las partículas de diámetro 0.1 mm en suspensión se dispersan casi uniformemente por el vaso y su presencia cerca de la captación es muy grande.

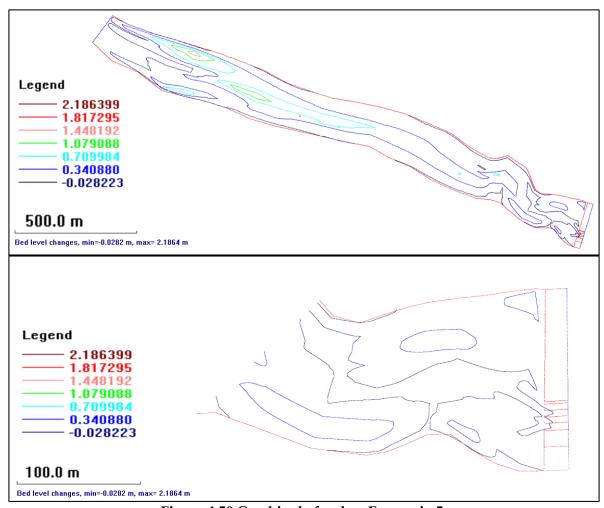


Figura 4.59 Cambio de fondo - Escenario 5

En la Figura 4.61 se observa la concentración de sedimentos en suspensión a nivel estructuras de captación, 888 msnm, donde se ve que las partículas de este diámetro efectivamente están ingresando pudiendo causar daños a las turbinas cuando se esté generando electricidad; a nivel de trabajo de las estructuras de descarga de fondo, 874 msnm, se observa que el material de este diámetro pasas por los 4 descargadores al transitar esta avenida.

En la Figura 4.62 se observa la concentración de sedimentos en suspensión para el diámetro 0.2mm, a nivel de trabajo de las estructuras de captación (888 msnm) en la cercanía a la cortina se observa una gran concentración y que estas partículas entran en la captación; a nivel de descargas de fondo (874 msnm) la concentración de partículas es mayor y adecuadamente transita por los 4 descargadores de fondo como se esperaba por diseño.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

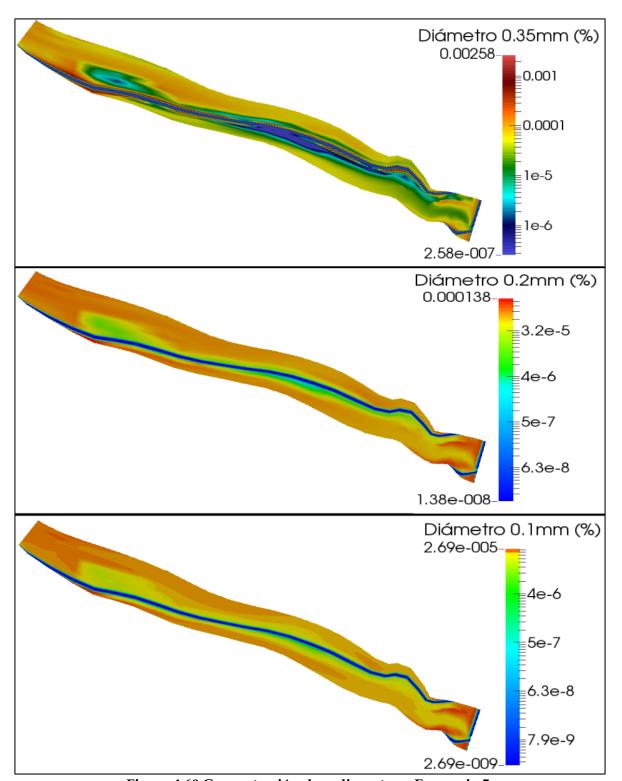


Figura 4.60 Concentración de sedimentos - Escenario 5

Universidad Nacional Autónoma de México

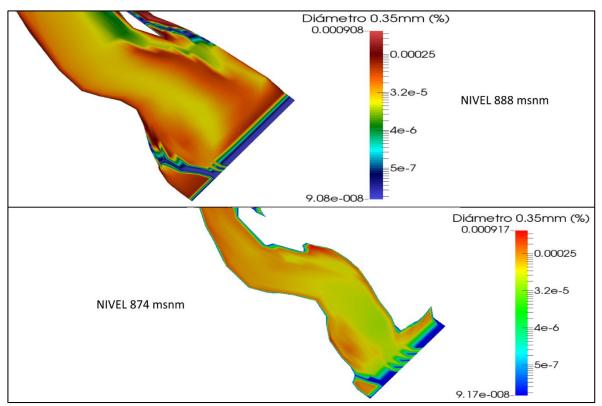


Figura 4.61 Concentración diámetro 0.35mm - Escenario 5

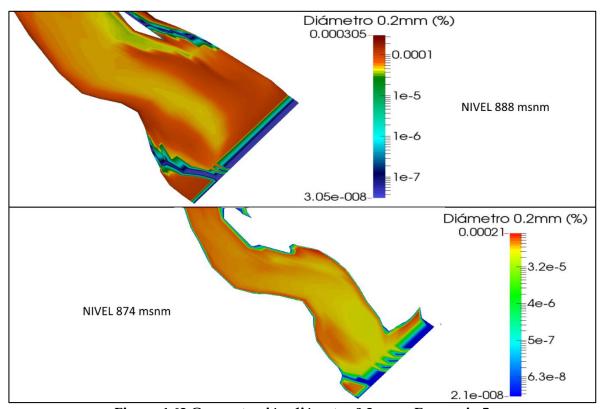


Figura 4.62 Concentración diámetro 0.2mm - Escenario 5

Es muy preocupante que las partículas comprendidas entre los diámetros 0.35mm y 0.2mm entren por las estructuras de captación, como lo muestra la Figura 4.63 mediante el corte en la sección de la cortina, ya que partículas de diámetro superior a 0.2mm en contacto con los equipos de generación eléctrica crean desgaste de sus componentes.

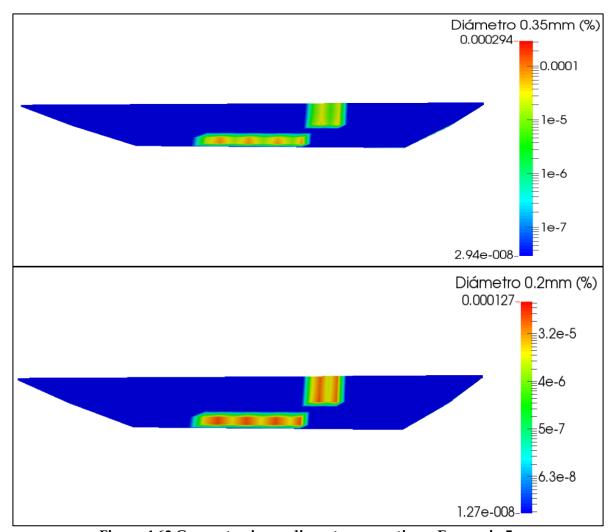


Figura 4.63 Concentracion sedimentos en cortina - Escenario 5

4.2.6 Comparación de Escenarios

Realizando un resumen de las concentraciones de los sedimentos presentes en las estructuras de captación, modeladas en los 5 escenarios, comprendidos entre los diámetros 0.2 mm y 0.35 mm se presenta la Tabla 4.8 y la correspondiente gráfica en la Figura 4.64 donde se aprecia en el eje vertical en escala logarítmica la tendencia de las concentraciones modeladas en cada escenario correspondiente a las condiciones hidráulicas y de transporte de sedimentos.

ESCENARIO	Tr (años)	GASTO (m3/s)	CONCENTRACION SEDIMENTOS (%)	
	, ,	,	0.2mm	0.35mm
Escenario 1	2	285.00	2.00E-06	3.00E-07
Escenario 2	5	947.00	3.00E-06	4.00E-07
Escenario 3	10	1,385.00	5.00E-06	5.00E-07
Escenario 4	15	1,632.00	2.00E-05	1.00E-06
Escenario 5	20	1,805.00	5.00E-04	2.00E-05

Tabla 4.8 Concentraciones en la obra de Captación

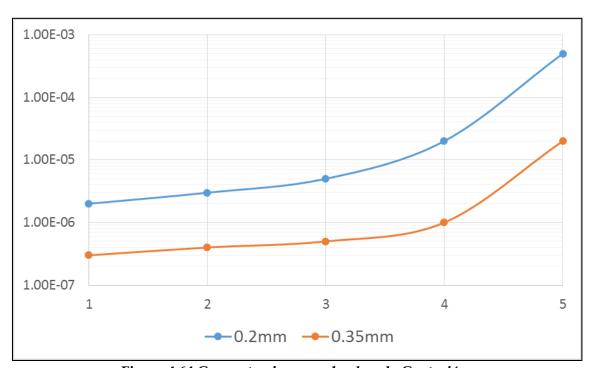


Figura 4.64 Concentraciones en la obra de Captación.

5 CONCLUSIONES Y RECOMENDACIONES

El presente trabajo, aplicando la modelación tridimensional SSIIM-1 a un proyecto de generación de energía eléctrica, encontrando los siguientes resultados generales:

- Es de vital importancia la modelación física y matemática que permita entender los aspectos físicos a los cuales obras de tanta importancia y costo, debe tomar en cuenta al ponerse en funcionamiento, y tratar de anticipar posibles medidas de mitigación de los efectos negativos que se produzcan.
- El presencia de sedimentos en proyectos de embalses para la generación de energía eléctricas podrían ser muy importantes tanto por la reducción del volumen de almacenamiento en el vaso y el control de sedimentos que ingresen a las obras de captación, los que en ocasiones generan daños en los equipos de generación de energía eléctrica.
- La interacción del vaso con las obras hidráulicas, especialmente en la cercanía a la cortina, genera efectos tridimensionales hidrodinámicos muy importantes que afectan el transporte de sedimentos y la forma como estos se depositan por la formación de vórtices y zonas de recirculación; o como son llevados en suspensión hasta las obras de captación.
- La estructura hidráulica de mayor importancia para la generación eléctrica, desde el punto de vista de afectación por sedimentos en condiciones normales de operación, es la obra de captación; donde diámetros de partículas superiores a 0.2mm causan grandes daños a los equipos mecánicos (turbinas). Normalmente se toma muy a la ligera el control de estas partículas ya que los modelos matemáticos tridimensionales requieren un alto costo computacional.

De la aplicación del modelo numérico tridimensional SSIIM-1 para el ejemplo académico de estudio, con la interacción de 3km de vaso, la operación en condiciones normales de funcionamiento y avenidas ordinarias de hasta 20 años periodo de retorno, con estructuras de descarga de fondo y captación de gasto para generación hidroeléctrica, se plantean las siguientes conclusiones:

- La modelación tridimensional SSIIM-1 ofrece una gran capacidad para representar topografías complicadas utilizando mallas tridimensionales estructuradas no ortogonales, permitiendo obtener diferentes resoluciones de mallado en función de la definición requerida en cada zona del proyecto.
- El modelo SSIIM-1 ofrece facilidad para incorporar la operación de estructuras hidráulicas dentro de la modelación, mediante la inclusión de instrucciones en el archivo de control, esto permite conocer la interacción del agua y los sedimentos con estas estructuras en diferentes condiciones de funcionamiento y operación.
- Los tiempos de modelación y consumo de recursos computaciones son buenos, comparado con modelos tridimensionales que no permiten observar el desarrollo de procesos hidráulicos y transporte de sedimentos. El tiempo de cálculo del modelo SSIIM es del orden de un programa de modelación bidimensional, con la ventaja de que el SSIIM no hace ninguna simplificación en los procesos hidráulicos en las 3 dimensiones.
- Las características de topográfica, de flujo y de sedimentos utilizadas en el presente caso de estudio, dan como resultado la presencia de material en suspensión de partículas de diámetro de 0.2mm y superiores en las estructuras de captación de agua para generación eléctrica, tanto en condiciones normales de operación (escenario 1) como para avenidas ordinarias de hasta 20 años periodo de retorno, que en caso de ser un proyecto real de construcción preocuparía el funcionamiento, debiendo tomar medidas para mitigar estos problemas.

 Se comprueba que los descargadores de fondo, en todos los escenarios de modelación, trabajan de forma adecuada desalojando el gasto líquido y sólido para el cual se previó su funcionamiento.

Producto del desarrollo del presente trabajo, se desprenden como resultado las siguientes recomendaciones sobre la modelación tridimensional SSIIM y la importancia de la presencia de los sedimentos finos en obras de captación:

- Complementar los resultados obtenidos en la modelación numérica tridimensional mediante el apoyo en modelos físicos que permitan realizar mediciones para la calibración del comportamiento hidráulico y sedimentos; en obras nuevas no es posible realizar las mediciones en campo, ya que las obras no se construyen todavía, los modelos físicos son muy costosos, pero muestran una buena aproximación de los procesos, permitiendo tener una idea para realizar los modelos computacionales; y al complementarse estos dos enfoques llegar a soluciones que posean un mayor criterio de seguridad.
- Promover una mayor investigación sobre las obras hidráulicas que trabajan con flujos de agua con altas concentraciones de sedimentos, desde los más finos hasta los más gruesos posibles, ya que el alto riesgo de desgaste, erosión o daños afectaran de manera muy drástica el comportamiento adecuado de estas estructuras y aumentaran los costos de operación y mantenimiento.
- Fomentar mayor conocimiento y una inversión importante en materia de transporte de sedimentos y su interacción con las estructuras para embalses. En especial en países como Perú, donde existen topografías muy diversas que alimentan sedimentos gruesos a los cauces fluviales donde se pueden realizar diversos aprovechamientos hidráulicos.

6 REFERENCIAS

Aldama R., Álvaro A. (et al, 2000), *PROTECCIÓN Y CONTROL DE CAUCES*, CNA-IMTA, Capítulo 3 Propiedades de los sedimentos, México D.F.

García M. y Maza J. (1998). ORIGEN Y PROPIEDADES DE LOS SEDIMENTOS, CAPÍTULO 7 DEL MANUAL DE INGENIERÍA DE RÍOS. Instituto de Ingeniería UNAM, CONAGUA, México D.F.

García M. y Maza J. (1998). TRANSPORTE DE SEDIMENTOS, CAPÍTULO 10 DEL MANUAL DE INGENIERÍA DE RÍOS. Instituto de Ingeniería UNAM, CONAGUA, México D.F.

García Marcelo Ph.D. (2008). SEDIMENTATION ENGINEERING, PROCESSES, MEASUREMENTS, MODELING AND PRACTICE. American Society of Civil Engineers, Virginia.

Gracia Sánchez J. (1997). SEDIMENTACIÓN EN EMBALSES. CAPÍTULO 18 DEL MANUAL DE INGENIERÍA DE RÍOS, Instituto de Ingeniería UNAM, CONAGUA, México D.F.

Maza Álvarez, José Antonio (1987). *Introduction to river engineering*, División de Estudios de Posgrado, Facultad de Ingeniería, UNAM, México D.F.

Moreno Avalos y Martínez Marín (2012). OPTIMIZACIÓN DE LA SUCCIÓN DE SÓLIDOS SUMERGIDOS UTILIZANDO BOMBAS CENTRÍFUGAS CON VELOCIDAD VARIABLE, TESIS DE DOCTORADO. Universidad Politécnica de Madrid, E. T. S. de Ingenieros de Caminos, Canales y Puertos, Madrid 2012.

Morris y Fan (2010), Reservoir Sedimentation Handbook, Design and Management of Dams, Reservoirs and Watersheds for Sustainable use. McGraw-Hill Book Co, New York 2010.

Nils Reidar B. Olsen, (2014). A THREE DIMENSIONAL NUMERICAL MODEL FOR SIMULATION OF SEDIMENT MOVEMENTS IN WATER INTAKES WITH MULTIBLOCK OPTION, USER'S MANUAL. Department of Hydraulic and Environmental Engineering The Norwegian University of Science and Technology.

Palau Ybars Antonio (2004). *La Sedimentación en Embalses, Medidas Preventivas y Correctoras*. Dirección de medioambiente y calidad. Endesa Servicios, Madrid, España.

S.M Sadat – Helbar & E. Amiri – Tokaldany (2009). FALL VELOCITY OF SEDIMENT PARTICLES. Water Resources, Hydraulics & Hydrology. Iran.

Subhasish Dey (2014). FLUVIAL HYDRODYNAMICS, HYDRODYNAMIC AND SEDIMENT TRANSPORT PHENOMENA. Geoplanet: Earth and Planetary Sciences, Springer – Verlag, Berlin Heidelberg, New York Dordrecht London.

US Army Corps of Engineers (2015), DREDGING AND DREDGED MATERIAL MANAGEMENT. Department of Army, Washington, D.C.

Van Rijn, L. C. (1982) "EQUIVALENT ROUGHNESS OF ALLUVIAL BED", ASCE Journal of Hydraulic Engineering.

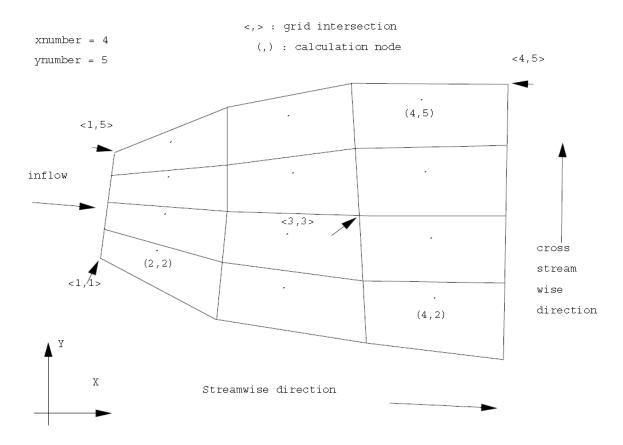
Van Rijn, L. C. (1987) "MATHEMATICAL MODELING OF MORPHOLOGICAL PROCESSES IN THE CASE OF SUSPENDED SEDIMENT TRANSPORT", Ph.D Thesis, Delft University of Technology.

Wilson, C. A. M. E., Olsen, N. R. B., Boxall, J. B. and Guymer, I. (2003) "THREE-DIMENSIONAL NUMERICAL SIMULATION OF SOLUTE TRANSPORT IN A MEANDERING CHANNEL" XXX IAHR Congress, Thessaloniki, Greece.

Wilson C. A. M. E., Stoesser T., Olsen N. R. B. and Bates P. D. (2003) "APPLICATION AND VALIDATION OF NUMERICAL CODES IN THE PREDICTION OF COMPOUND CHANNEL FLOWS", Proceedings of ICE, Water, Maritime and Energy 153 pp. 117-128.

Wilson C. A. M. E., Boxall J. B., Guymer I. and Olsen N. R. B. (2003) "VALIDATION OF A 3D NUMERICAL CODE IN THE SIMULATION OF PSEUDO-NATURAL MEANDERING FLOWS" ASCE Journal of Hydraulic Engineering, Vol. 129, No. 10, October.

Wilson, C. A. M. E., Yagci, O., Rauch, H.-P. and Olsen, N. R. B. (2006) "3D NUMERICAL MODELLING OF A WILLOW VEGETATED RIVER/FLOODPLAIN SYSTEM", Journal of Hydrology.



Universidad Nacional Autónoma de México

Wilson, C. A. M. E., Guymer, I., Boxall, J. B. and Olsen, N. R. B. (2007) "THREE-DIMENSIONAL NUMERICAL SIMULATION OF SOLUTE TRANSPORT IN A MEANDERING SELF-FORMED RIVER CHANNEL", Journal of Hydraulic Research, October.

ANEXO N°1

El archivo *koordina* describe la geometría, para el programa SSIIM 1 mediante una malla estructurada (NILS, 2014). A continuación se presenta la figura tomada del manual de usuario NILS (2014) que muestra una malla estructurada con la ubicación de los puntos de la malla.

Se ingresa las coordenadas X, Y y Z de cada punto de las secciones transversales necesarias que describan de manera suficiente las condiciones físicas, cada sección transversal debe poseer el mismo número de puntos para el programa SSIIM 1 forme la malla estructurada no ortogonal. Dentro de un archivo de datos, sin extensión, se ingresan los datos de cada sección en cada línea, empezando con la identificación del número de la sección transversal, desde aguas arriba hacia abajo, luego el número del punto de derecha a izquierda, luego las coordenadas X, Y y Z respectivamente. A continuación se presenta los datos del archivo *koordina* utilizado en el presente tema de investigación para el modelado.

SECCION	PUNTO	Х	Υ	Z
1	1	1	1575.667	21.534439
1	2	5.815	1578.383	21.532987
1	3	10.629	1581.1	21.529831
1	4	15.444	1583.816	21.526765
1	5	20.258	1586.532	20.590865
1	6	25.073	1589.248	21.526015
1	7	29.888	1591.965	21.525645
1	8	34.702	1594.681	21.525264
1	9	39.517	1597.397	21.528659
1	10	44.331	1600.114	20.150245
1	11	49.146	1602.83	18.006886
1	12	53.961	1605.546	18.046476
1	13	58.775	1608.262	
1	14			18.07817
		63.59	1610.979	18.128749
1	15	68.404	1613.695	18.190544
1	16	73.219	1616.411	18.266372
1	17	78.034	1619.127	18.343995
1	18	82.848	1621.844	19.250105
	19	87.663	1624.56	19.520892
1	20	92.478	1627.276	19.574709
1	21	97.292	1629.992	19.464354
1	22	102.107	1632.709	19.577871
1	23	106.921	1635.425	19.673385
1	24	111.736	1638.141	20.3984
1	25	116.551	1640.858	21.546513
1	26	121.365	1643.574	21.547797
2	1	42.113	1478.541	21.612213
2	2	46.833	1483.034	20.663822
2	3	51.552	1487.528	18.879385
2	4	56.271	1492.022	17.222822
2	5	60.991	1496.515	17.062822
2	6	65.71	1501.009	17.985991
2	7	70.429	1505.503	17.971573
2	8	75.149	1509.997	17.803112
2	9	79.868	1514.49	17.620214
2	10	84.587	1518.984	16.445248
2	11	89.307	1523.478	17.577217
2	12	94.026	1527.971	18.720913
2	13	98.745	1532.465	16.756769
2	14	103.465	1536.959	16.118098
2	15	108.184	1541.452	16.016154
2	16	112.904	1545.946	15.183356
2	17	117.623	1550.44	14.645675
2	18	122.342	1554.933	15.126525
2	19	127.062	1559.427	15.338783
2	20	131.781	1563.921	19.007297
2	21	136.5	1568.415	19.347456
2	22	141.22	1572.908	19.43216
2	23	145.939	1577.402	20.149369
2	24	150.659	1581.896	20.933622
2	25	155.378	1586.389	21.571604
2	26	160.097	1590.883	21.57224

SECCION	PUNTO	X	Υ	Z
3	1	122.701	1389.775	21.600397
3	2	127.263	1394.817	21.370527
3	3	131.826	1399.859	21.019617
3	4	136.389	1404.901	20.791868
3	5	140.951	1409.942	21.527346
3	6	145.514	1414.984	21.599436
3	7	150.077	1420.026	21.593889
3	8	154.639	1425.067	21.58668
3	9	159.202	1430.109	21.081232
3	10	163.765	1435.151	19.972687
3	11	168.327	1440.193	16.903943
3	12	172.89	1445.234	17.118318
3	13	177.453	1450.276	15.415804
3	14	182.015	1455.318	15.644429
3	15	186.578	1460.36	15.933925
3	16	191.14	1465.401	14.492429
3	17	195.703	1470.443	13.750695
3	18	200.266	1475.485	14.058405
3	19	204.828	1480.527	14.676006
3	20	209.391	1485.568	14.914922
3	21	213.954	1490.61	19.215578
3	22	218.517	1495.652	19.626594
3	23	223.079	1500.694	20.325688
3	24	227.642	1505.735	21.061676
3	25	232.204	1510.777	21.566138
3	26	236.767	1515.819	21.566147
4	1	183.935	1280.689	21.537101
4	2	188.88	1287.795	20.073672
4	3	193.826	1294.901	18.827235
4	4	198.772	1302.007	18.129865
4	5	203.718	1309.113	18.40639
4	6	208.664	1316.219	19.48506
4	7	213.61	1323.325	19.576423
4	8	218.556	1330.431	19.437531
4	9	223.501	1337.537	19.467551
4	10	228.447	1344.643	20.196169
4	11	233.393	1351.749	20.189547
4	12	238.339	1358.855	19.899069
4	13	243.285	1365.961	19.730962
4	14	248.23	1373.067	18.092538
4	15	253.176	1380.173	14.130967
4	16	258.122	1387.279	13.438354
4	17	263.068	1394.385	13.025867
4 4	18 19	268.014 272.96	1401.491 1408.597	12.979023 13.56745
4	20	277.905	1408.597	13.932118
4	20	282.851	1415.703	13.663041
4	22	287.797	1422.809	13.642652
4	23	292.743	1429.915	18.732589
4	24	297.689	1444.127	19.981833
4	25	302.635	1451.233	21.059075
4	26	307.581	1451.233	21.546004
т	-0	337.301	1 130.333	21.570004

SECCION	PUNTO	Х	Υ	Z
5	1	261.46	1218.958	21.559103
5	2	266.377	1225.917	19.572556
5	3	271.293	1232.876	17.767416
5	4	276.21	1239.836	16.111115
5	5	281.127	1246.795	16.00929
5	6	286.043	1253.755	16.519663
5	7	290.96	1260.714	16.507765
5	8	295.877	1267.674	15.606666
5	9	300.793	1274.633	15.227369
5	10	305.71	1281.592	16.641046
5	11	310.626	1288.552	17.823923
5	12	315.543	1295.511	17.948638
5	13	320.46	1302.471	18.008437
5	14	325.376	1309.43	18.048977
5	15	330.293	1316.39	12.513627
<u>5</u>	16	335.209	1323.349	12.505972
<u>5</u>	17	340.126	1330.308	12.350203
5		345.043		
5	18 19	349.959	1337.268 1344.227	12.342672
		354.876		12.500594
5 5	20	359.793	1351.187 1358.146	12.761242 12.622271
	21			
5	22	364.709	1365.105	12.69215
5	23	369.626	1372.065	13.01989
5	24	374.542	1379.024	20.737882
5	25	379.459	1385.984	21.556636
5	26	384.376	1392.943	21.55662
6	1	328.422	1170.616	21.556412
6	2	333.688	1176.888	21.436547
6	3	338.955	1183.16	19.20299
6	4	344.221	1189.432	18.082665
6	5	349.488	1195.704	16.594807
6	6	354.754	1201.976	15.960749
6	7	360.021	1208.248	15.169415
6	8	365.287	1214.52	15.040564
6	9	370.554	1220.792	15.186763
6	10	375.821	1227.063	15.407639
6	11	381.087	1233.335	15.290893
6	12	386.354	1239.607	14.683698
6	13	391.62	1245.879	14.50409
6	14	396.887	1252.151	14.497674
6	15	402.154	1258.423	14.528175
6	16	407.42	1264.695	11.956193
6	17	412.687	1270.967	11.975512
6	18	417.953	1277.239	11.891148
6	19	423.22	1283.511	11.87253
6	20	428.486	1289.782	12.049167
6	21	433.753	1296.054	11.92216
6	22	439.02	1302.326	11.795907
6	23	444.286	1308.598	11.819446
6	24	449.553	1314.87	12.712897
	25	454.010	1321.142	10 641107
6	25	454.819	1321.142	19.641187

SECCION	PUNTO	Х	Υ	Z
7	1	397.933	1107.714	21.557495
7	2	403.389	1113.661	21.450252
7	3	408.845	1119.607	19.673017
7	4	414.301	1125.553	18.723989
7	5	419.757	1131.499	17.515365
7	6	425.213	1137.446	16.41383
7	7	430.669	1143.392	15.452189
7	8	436.125	1149.338	14.583
7	9	441.582	1155.285	14.210985
7	10	447.038	1161.231	13.504819
7	11	452.494	1167.177	12.849537
7	12	457.95	1173.124	12.682023
7	13	463.406	1179.07	11.479851
7	14	468.862	1185.016	11.084437
7	15	474.318	1190.962	10.848749
7	16	479.774	1196.909	10.994143
7	17	485.23	1202.855	11.160079
7	18	490.687	1208.801	11.376522
7	19	496.143	1214.748	11.360013
7	20	501.599	1220.694	11.253148
7	21	507.055	1226.64	11.075925
7	22	512.511	1232.587	14.005065
7	23	517.967	1238.533	15.413696
7	24	523.423	1244.479	17.056827
7	25	528.88	1250.425	19.518123
7	26	534.336	1256.372	21.559313
8	1	465.054	1034.858	21.559304
8	2	470.512	1040.979	20.268464
8	3	475.971	1047.1	18.035617
8	4	481.43	1053.221	16.65066
8	5	486.889	1059.342	15.532805
8	6	492.348	1065.463	14.516512
8	7	497.806	1071.584	13.799954
8	8	503.265	1077.705	13.165059
8	9	508.724	1083.826	12.675007
8	10	514.182	1089.947	12.059284
8	11	519.641	1096.068	11.286684
8	12	525.1	1102.188	10.347546
8	13	530.559	1108.309	10.786234
8	14	536.017	1114.43	10.75358
8	15	541.476	1120.551	10.349915
8	16	546.935	1126.672	10.137021
8	17	552.394	1132.793	10.181074
8	18	557.853	1138.914	10.464265
8	19	563.311	1145.035	10.438552
8	20	568.77	1151.156	12.636326
8	21	574.229	1157.277	13.582899
8	22	579.688	1163.398	14.507887
8	23	585.146	1169.519	16.345817
8	24	590.605	1175.64	
8	25			18.358023 19.874565
8	26	596.064 601.522	1181.76 1187.881	21.559898
0	20	001.322	1107.001	41.333030

SECCION	PUNTO	Х	Υ	Z
9	1	541.067	967.355	21.562291
9	2	546.067	972.857	21.562285
9	3	551.068	978.358	20.649275
9	4	556.068	983.86	19.601067
9	5	561.069	989.361	18.576712
9		566.069	994.863	17.947272
9	6 7			17.269395
	8	571.069	1000.365	
9	9	576.07	1005.866	16.560495
9	10	581.07	1011.368	15.878127
9	11	586.071	1016.87	15.08075
		591.071	1022.371	14.164227
9	12	596.071	1027.873	13.590798
9	13	601.072	1033.374	10.048523
9	14	606.072	1038.876	10.118373
9	15	611.072	1044.377	9.850118
9	16	616.073	1049.879	9.652615
9	17	621.073	1055.381	9.593928
9	18	626.074	1060.882	9.564757
9	19	631.074	1066.384	9.534204
9	20	636.074	1071.885	9.580359
9	21	641.075	1077.387	9.670165
9	22	646.075	1082.889	12.50187
9	23	651.076	1088.39	14.180318
9	24	656.076	1093.892	17.427981
9	25	661.076	1099.393	20.475082
9	26	666.077	1104.895	21.56139
10	1	619.114	911.447	21.56276
10	2	623.759	916.537	21.56276
10	3	628.405	921.627	19.504884
10	4	633.05	926.718	18.287174
10	5	637.695	931.808	17.299701
10	6	642.341	936.898	16.54339
10	7	646.986	941.989	16.079648
10	8	651.632	947.079	15.918361
10	9	656.277	952.17	15.572522
10	10	660.922	957.26	15.137743
10	11	665.568	962.35	9.232486
10	12	670.213	967.441	9.427356
10	13	674.858	972.531	9.430627
10	14	679.504	977.622	9.381318
10	15	684.149	982.712	9.265183
10	16	688.794	987.802	9.365521
10	17	693.44	992.893	9.358704
10	18	698.085	997.983	9.202426
10	19	702.73	1003.073	9.186508
10	20	707.376	1008.164	9.015583
10	21	712.021	1013.254	11.724382
10	22	716.667	1018.345	17.581621
10	23	721.312	1023.435	18.740283
10	24	725.957	1028.525	19.982109
10	25	730.603	1033.616	21.561648
10	26	735.248	1038.706	21.561649

SECCION	PUNTO	X	Υ	Z
11	1	704.629	850.803	21.562459
11	2	708.809	855.78	21.182674
11	3	712.989	860.756	19.391689
11	4	717.169	865.733	17.927091
11	5	721.349	870.71	15.956772
11	6	725.529	875.687	14.942178
11	7	729.709	880.664	14.159403
11	8	733.889	885.641	8.485536
11	9	738.069	890.618	8.774371
11	10	742.249	895.595	8.707313
11	11	746.429	900.572	8.684363
11	12	750.609	905.549	8.806567
11	13	754.789	910.526	8.657825
11	14	758.969	915.503	8.68363
11	15	763.149	920.479	8.712173
11	16	767.329	925.456	8.815323
11	17	771.509	930.433	8.960519
11	18	775.689	935.41	8.819173
11	19	779.869	940.387	11.732502
11	20	784.049	945.364	16.32377
11	21	788.229	950.341	17.181811
11	22	792.409	955.318	18.415168
11	23	796.589	960.295	19.506547
11	24	800.769	965.272	20.709229
11	25	804.949	970.249	21.561481
11	26	809.129	975.226	21.561484
12	1	782.459	789.733	21.562908
12	2	786.904	794.922	20.827049
12	3	791.349	800.11	18.069208
12	4	795.794	805.299	16.863494
12	5	800.239	810.487	16.33553
12	6	804.683	815.676	16.025024
12	7	809.128	820.864	10.421296
12	8	813.573	826.053	8.137098
12	9	818.018	831.241	8.119729
12	10	822.463	836.43	8.169713
12	11	826.908	841.618	8.198825
12	12	831.352	846.807	8.226393
12	13	835.797	851.996	8.124694
12	14	840.242	857.184	8.21034
12	15	844.687	862.373	8.420392
12	16	849.132	867.561	8.375765
12	17	853.576	872.75	8.418727
12	18	858.021	877.938	15.802684
12	19	862.466	883.127	16.468247
12	20	866.911	888.315	17.171316
12	21	871.356	893.504	17.825682
12	22	875.801	898.692	18.675522
12	23	880.245	903.881	19.563927
12	24	884.69	909.069	20.658943
12	25	889.135	914.258	21.561855
12	26	893.58	919.446	21.561858

SECCION	PUNTO	Х	Υ	Z
13	1	871.181	730.302	21.562133
13	2	875.241	735.62	21.562134
13	3	879.301	740.938	19.741121
13	4	883.361	746.255	17.807087
13	5	887.422	751.573	16.373521
13	6	891.482	756.89	9.512238
13	7	895.542	762.208	7.622215
13	8	899.603	767.526	7.682299
13	9	903.663	772.843	7.867636
13	10	907.723	772.843	7.742149
13	11	911.783	783.479	7.742143
13	12	915.844	788.796	7.743338
13	13		794.114	
		919.904		7.919275
13	14	923.964	799.432	7.942115
13	15	928.025	804.749	8.052134
13	16	932.085	810.067	8.009441
13	17	936.145	815.385	13.41701
13	18	940.205	820.702	16.107323
13	19	944.266	826.02	16.461561
13	20	948.326	831.338	16.982842
13	21	952.386	836.655	17.861102
13	22	956.447	841.973	18.650976
13	23	960.507	847.291	19.590644
13	24	964.567	852.608	20.76034
13	25	968.627	857.926	21.562129
13	26	972.688	863.244	21.562131
14	1	926.887	657.076	21.561653
14	2	932.2	662.472	17.742142
14	3	937.512	667.869	15.749763
14	4	942.825	673.265	13.389675
14	5	948.137	678.662	12.409981
14	6	953.45	684.058	11.952586
14	7	958.762	689.455	11.731407
14	8	964.075	694.852	12.639778
14	9	969.387	700.248	7.75697
14	10	974.7	705.645	7.568622
14	11	980.012	711.041	7.355885
14	12	985.325	716.438	7.316076
14	13	990.637	721.835	7.358044
14	14	995.95	727.231	7.332798
14	15	1001.262	732.628	7.344495
14	16	1006.575	738.024	7.465473
14	17	1011.887	743.421	7.515774
14	18	1017.2	748.818	11.158495
14	19	1022.512	754.214	14.228542
14	20	1027.825	759.611	15.465524
14	21	1033.137	765.007	16.500199
14	22	1033.137	770.404	17.468131
14	23	1036.43	775.801	18.545304
14	23			
		1049.075	781.197	20.178073
14	25	1054.387	786.594	21.562434
14	26	1059.7	791.99	21.562438

SECCION	PUNTO	Х	Υ	Z
15	1	992.054	586.454	21.562474
15	2	997.552	591.934	17.785955
15	3	1003.05	597.414	15.390061
15	4	1008.547	602.895	14.1687
15	5	1014.045	608.375	12.590165
15	6	1019.542	613.855	10.754081
15	7	1025.04	619.335	10.79925
15	8	1030.538	624.816	10.501379
15	9	1036.035	630.296	7.308012
15	10	1041.533	635.776	7.31929
15	11	1047.031	641.256	7.257892
15	12	1052.528	646.737	7.104316
15	13	1058.026	652.217	6.952425
15	14	1063.524	657.697	6.88312
15	15	1069.021	663.177	6.910782
15	16	1074.519	668.658	7.033984
15	17	1080.017	674.138	7.077551
15	18	1085.514	679.618	9.607784
15	19	1091.012	685.098	13.161312
15	20	1096.509	690.579	13.975147
15	21	1102.007	696.059	14.739438
15	22	1107.505	701.539	15.818113
15	23	1113.002	707.019	17.647681
15	24	1118.5	712.5	19.419577
15	25	1123.998	717.98	21.40619
15	26	1129.495	723.46	21.563183
16	1	1046.176	507.124	21.562975
16	2	1052.316	512.68	19.951153
16	3	1058.456	518.235	17.396608
16	4	1064.596	523.791	15.581241
16	5	1070.736	529.346	14.226683
16	6	1076.877	534.901	13.731242
16	7	1083.017	540.457	12.683744
16	8	1089.157	546.012	11.146976
16	9	1095.297	551.567	10.680433
16	10	1101.437	557.123	6.857574
16	11	1107.577	562.678	6.977018
16	12	1113.718	568.233	6.892294
16	13	1119.858	573.789	6.746155
16	14	1125.998		6.62434
16	15	1132.138	584.899	6.565549
16	16	1138.278	590.455	6.551661
16	17	1144.418	596.01	6.44614
16	18	1150.559	601.565	9.314367
16	19	1156.699	607.121	11.89257
16	20	1162.839	612.676	12.507794
16	21	1168.979	618.231	13.603811
16	22	1175.119	623.787	15.677998
16	23	1181.259	629.342	17.023855
16	24	1187.4	634.897	19.110135
16	25	1193.54	640.453	21.339817
16	26	1199.68	646.008	21.563683

SECCION	PUNTO	Х	Υ	Z
17		1111.669	432.445	21.563831
17	2			
		1117.198	437.389	19.819214
17	3	1122.728	442.333	17.082829
17	4	1128.257	447.278	15.096742
17	5	1133.786	452.222	12.418904
17	6	1139.315	457.166	11.189941
17	7	1144.845	462.11	6.7957
17	8	1150.374	467.054	5.959734
17	9	1155.903	471.998	6.058973
17	10	1161.432	476.942	6.188879
17	11	1166.961	481.886	6.293212
17	12	1172.49	486.83	6.296399
17	13	1178.02	491.774	6.239061
17	14	1183.549	496.719	6.163693
17	15	1189.078	501.663	6.126789
17	16	1194.607	506.607	5.90423
17	17	1200.136	511.551	7.283685
17	18	1205.666	516.495	11.378115
17	19	1211.195	521.439	11.73421
17	20	1216.724	526.383	11.902856
17	21	1222.253	531.327	12.750089
17	22	1227.782	536.271	16.731555
17	23	1233.311	541.215	18.467255
17	24	1238.841	546.16	20.212085
17	25	1244.37	551.104	21.563961
17	26	1249.899	556.048	21.563968
18	1	1184.863	361.445	21.564338
18	2	1189.428	366.656	20.250185
18	3	1193.993	371.867	17.286624
18	4	1198.558	377.078	14.994746
18	5	1203.123	382.29	12.858711
18	6	1207.688	387.501	5.324292
18	7	1212.253	392.712	5.350868
18	8	1216.818	397.923	5.390856
18	9	1221.383	403.134	5.421771
18	10	1225.948	408.345	5.447682
18	11	1230.512	413.556	5.482721
18	12	1235.077	418.767	5.530317
18	13	1239.642	423.978	5.513032
18	14	1244.207	429.19	5.472484
18	15	1248.772	434.401	5.580603
18	16	1253.337	439.612	11.925419
18	17	1257.902	444.823	12.896723
18	18	1262.467	450.034	12.663898
18	19	1267.032	455.245	13.68592
18	20	1271.597	460.456	13.650208
18	21	1271.397	465.667	13.822092
18	22	1280.727	470.878	13.644739
18	23	1285.292	476.09	19.711531
18	24	1289.856	481.301	21.058446
18	25	1289.836	486.512	21.563092
18	26	1298.986	491.723	21.563097

SECCION	PUNTO	Х	Υ	Z
19	1	1238.519	330.887	21.564203
19	2	1242.267	336.666	14.803532
19	3	1246.015	342.445	16.26726
19	4	1249.763	348.224	17.56974
19	5	1253.51	354.003	18.030897
19	6	1257.258	359.782	6.820324
19	7	1261.006	365.561	4.639745
19	8	1264.754	371.34	4.743907
19	9	1268.502	377.119	4.723115
19	10	1272.25	382.898	4.739111
19	11	1275.998	388.677	4.80917
19	12	1279.745	394.456	4.889941
19	13	1283.493	400.235	4.946415
19	14	1287.241	406.014	4.944869
19	15	1290.989	411.793	5.09108
19	16	1294.737	417.572	5.368321
19	17	1298.485	423.351	9.918123
19	18	1302.232	429.13	15.525391
19	19	1305.98	434.909	14.664249
19	20	1309.728	440.688	14.280134
19	21	1313.476	446.467	18.399327
19	22	1317.224	452.246	19.652373
19	23	1320.972	458.025	20.763359
19	24	1324.72	463.804	21.425722
19	25	1328.467	469.583	21.56279
19	26	1332.215	475.362	21.562831
20	1	1269.287	303.279	21.562597
20	2	1273.497	309.96	16.870201
20	3	1277.707	316.642	17.573614
20	4	1281.917	323.323	17.645891
20	5	1286.128	330.005	17.951863
20	6	1290.338	336.687	18.023648
20	7	1294.548	343.368	14.286202
20	8	1298.758	350.05	4.392527
20	9	1302.969	356.732	4.270528
20	10	1307.179	363.413	4.371487
20	11	1311.389	370.095	4.514951
20	12	1315.6	376.777	4.571591
20	13	1319.81	383.458	4.639859
20	14	1324.02	390.14	4.675743
20	15	1328.23	396.822	4.670568
20	16	1332.441	403.503	4.629334
20	17	1336.651	410.185	15.040586
20	18	1340.861	416.867	15.216159
20	19	1345.071	423.548	15.573347
20	20	1349.282	430.23	16.632513
20	21	1353.492	436.911	17.674794
20	22	1357.702	443.593	18.615711
20	23	1361.912	450.275	19.672598
20	24	1366.123	456.956	20.826925
20	25	1370.333	463.638	21.563725
20	26	1374.543	470.32	21.563768
20	20	13/4.343	+10.32	21.303700

SECCION	PUNTO	Х	Υ	Z
21	1	1277.23	285.892	21.561763
21	2	1283.133	290.108	16.657255
21	3	1289.036	294.325	17.996885
21	4	1294.939	298.541	18.142205
21	5	1300.841	302.757	18.421086
21	6	1306.744	306.973	14.119319
21	7	1312.647	311.189	4.127788
21	8	1318.549	315.405	4.001552
21	9	1324.452	319.622	7.84996
21	10	1330.355	323.838	5.895964
21	11	1336.258	328.054	4.136157
21	12	1342.16	332.27	4.06965
21	13	1348.063	336.486	4.058667
21	14	1353.966	340.703	4.084682
	15			
21		1359.869	344.919	4.100281
21	16	1365.771	349.135	4.098532
21	17	1371.674	353.351	4.058158
21	18	1377.577	357.567	12.547709
21	19	1383.48	361.783	15.467999
21	20	1389.382	366	13.764127
21	21	1395.285	370.216	15.776063
21	22	1401.188	374.432	16.119129
21	23	1407.09	378.648	16.448004
21	24	1412.993	382.864	16.796654
21	25	1418.896	387.081	17.175309
21	26	1424.799	391.297	21.564569
22	1	1286.159	268.167	21.56276
22	2	1291.641	269.209	17.43426
22	3	1297.123	270.25	16.888726
22	4	1302.605	271.292	17.744104
22	5	1308.087	272.333	18.151805
22	6	1313.569	273.375	8.29634
22	7	1319.051	274.416	3.739808
22	8	1324.533	275.457	3.719974
22	9	1330.015	276.499	3.706267
22	10	1335.497	277.54	3.667263
22	11	1340.978	278.582	3.659016
22	12	1346.46	279.623	3.453483
22	13	1351.942	280.665	3.109682
22	14	1357.424	281.706	3.019017
22	15	1362.906	282.748	3.048674
22	16	1368.388	283.789	3.072936
22	17	1373.87	284.831	3.081951
22	18	1379.352	285.872	3.29675
22	19	1384.834	286.914	5.39409
22	20	1390.316	287.955	16.603595
22	21	1395.798	288.997	19.697096
22	22	1401.28	290.038	19.164524
22	23	1406.762	291.079	18.479453
22	24	1412.244	292.121	18.125944
22				
	25	1417.726	293.162	17.873816
22	26	1423.208	294.204	21.563608

SECCION	PUNTO	Х	Υ	Z
23	1	1315.742	206.101	21.56305
23	2	1320.622	208.631	21.563053
23	3	1325.501	211.162	19.881559
23	4	1330.38	213.692	11.888665
23	5	1335.259	216.223	2.976279
23	6	1340.138	218.753	3.023842
23	7	1345.018	221.284	3.065121
23	8	1349.897	223.814	3.079237
23	9	1354.776	226.344	3.085275
23	10	1359.655	228.875	3.086431
23	11	1364.534	231.405	3.142149
23	12	1369.414	233.936	5.550602
23	13	1374.293	236.466	8.773988
23	14	1379.172	238.997	10.66431
23	15	1384.051	241.527	9.941814
23	16	1388.93	244.058	8.739063
23	17	1393.81	246.588	7.432806
23	18	1398.689	249.119	5.23236
23	19	1403.568	251.649	17.956904
23	20	1408.447	254.179	21.561616
23	21	1413.326	256.71	19.984313
23	22	1418.206	259.24	20.004604
23	23	1423.085	261.771	19.337268
23	24	1427.964	264.301	19.137511
23	25	1432.843	266.832	19.039951
23	26	1437.722	269.362	21.561617
24	1	1352.306	159.698	21.563038
24	2	1356.83	163.578	21.563047
24	3	1361.354	167.458	9.396224
24	4	1365.878	171.337	2.547637
24	5	1370.402	175.217	2.559804
24	6	1374.926	179.097	2.574801
24	7	1379.45	182.977	2.591691
24	8	1383.974	186.856	2.605187
24	9	1388.498	190.736	2.606648
24	10	1393.022	194.616	2.58101
24	11	1397.546	198.496	2.57575
24	12	1402.07	202.376	2.66224
24	13	1406.594	206.255	2.81391
24	14	1411.118	210.135	3.000647
24	15	1415.642	214.015	3.360602
24	16	1420.166	217.894	11.774238
24	17	1424.69	221.774	10.389223
24	18	1429.214	225.654	7.274588
24	19	1433.738	229.534	10.982378
24	20	1438.262	233.413	20.731413
24	21	1442.787	237.293	20.222689
24	22	1447.311	241.173	19.675602
24	23	1451.835	245.053	19.458732
24	24	1456.359	248.932	19.549979
24	25	1460.883	252.812	18.696843
24	26	1465.407	256.692	21.561297
		3337	_30.032	

SECCION	PUNTO	Х	Υ	Z
25	1	1369.522	147.834	21.563221
25	2	1374.121	151.792	21.433049
25	3	1374.121	155.749	16.337436
25	4	1383.318	159.707	3.925514
25	5	1387.917	163.665	2.536962
25		1392.515	167.623	2.530902
25	6 7			2.458451
25	8	1397.114	171.581 175.539	
25	9	1401.712 1406.311	179.497	2.32894
25	10	1410.909	183.455	2.20262 2.12741
25	11	1415.508	187.413	2.12741
25	12	1420.106	191.371	2.176353
25	13	1424.705	195.329	2.333336
25	14	1429.304	199.287	2.467425
25	15	1433.902	203.245	2.881916
25	16	1438.501	207.203	2.996233
25	17	1443.099	211.16	2.754868
25	18	1447.698	215.118	2.566455
25	19	1452.296	219.076	2.287371
25	20	1456.895	223.034	10.500293
25	21	1461.493	226.992	20.376471
25	22	1466.092	230.95	19.702535
25	23	1470.691	234.908	19.092775
25	24	1475.289	238.866	17.637415
25	25	1479.888	242.824	16.202613
25	26	1484.486	246.782	21.561685
26	1	1390.004	139.118	21.563213
26	2	1394.5	142.982	21.168331
26	3	1398.997	146.845	21.07211
26	4	1403.494	150.708	13.468678
26	5	1407.991	154.572	5.86216
26	6	1412.488	158.435	1.816294
26	7	1416.985	162.299	1.658901
26	8	1421.482	166.162	1.534209
26	9	1425.979	170.025	1.471246
26	10	1430.476	173.889	1.474576
26	11	1434.973	177.752	1.40639
26	12	1439.469	181.616	1.585885
26	13	1443.966	185.479	1.785569
26	14	1448.463	189.342	1.981107
26	15	1452.96	193.206	2.217463
26	16	1457.457	197.069	2.269143
26	17	1461.954	200.933	2.146023
26	18	1466.451	204.796	2.045246
26	19	1470.948	208.659	1.948497
26	20	1475.444	212.523	4.564265
26	21	1479.941	216.386	17.741034
26	22	1484.438	220.25	18.837463
26	23	1488.935	224.113	17.422027
26	24	1493.432	227.976	16.021894
26	25	1497.929	231.84	14.620785
26	26	1502.426	235.703	21.561603

SECCION	PUNTO	Х	Υ	Z
27	1	1411.64	131.543	21.560977
27	2	1415.94	135.233	20.529757
27	3	1420.24	138.922	19.771156
27	4	1424.54	142.611	19.347505
27	5	1428.841	146.3	18.712304
27	6	1433.141	149.99	9.801268
27	7	1437.441	153.679	0.91165
27	8	1441.741	157.368	0.923216
27	9	1446.041	161.057	0.915114
27	10	1450.341	164.747	0.940573
27	11	1454.641	168.436	1.124638
27	12	1458.941	172.125	1.473949
27	13	1463.241	175.814	1.746485
27	14	1467.542	179.504	1.935781
27	15	1471.842	183.193	2.060602
27	16	1476.142	186.882	2.068368
27	17	1480.442	190.571	1.980649
27	18	1484.742	194.261	1.903246
27	19	1489.042	197.95	5.15531
27	20	1493.342	201.639	17.377566
27	21	1497.642	205.328	18.481183
27	22	1501.943	209.018	17.376665
27	23	1506.243	212.707	16.036381
27	24	1510.543	216.396	14.697457
27	25	1514.843	220.085	13.358892
27	26	1519.143	223.775	21.561644
28	1	1429.051	114.863	21.557997
28	2	1433.154	118.85	21.558029
28	3	1437.257	122.838	21.557938
28	4	1441.361	126.825	13.191034
28	5	1445.464	130.813	11.603072
28	6	1449.568	134.8	14.105956
28	7	1453.671	138.788	13.64155
28	8	1457.775	142.775	2.900804
28	9	1461.878	146.763	0.865432
28	10	1465.981	150.75	1.092181
28	11	1470.085	154.737	1.449212
28	12	1474.188	158.725	1.734828
28	13	1478.292	162.712	1.887964
28	14	1482.395	166.7	1.939045
28	15	1486.499	170.687	1.965788
28	16	1490.602	174.675	1.928871
28	17	1494.706	178.662	1.840916
28	18	1498.809	182.65	2.057788
28	19	1502.912	186.637	12.829362
28	20	1507.016	190.625	17.550695
28	21	1511.119	194.612	17.416725
28	22	1515.223	198.6	16.568383
28	23	1519.326	202.587	15.217602
28	24	1523.429	206.575	13.868161
28	25	1527.533	210.562	12.518971
28	26	1531.636	214.549	21.561731

SECCION	PUNTO	Х	Υ	Z
29	1	1434.608	85.427	21.558723
29	2	1439.28	89.964	21.55859
29	3	1443.953	94.501	17.709604
29	4	1448.625	99.037	19.487165
29	5	1453.297	103.574	11.653762
29	6	1457.97	103.374	1.919933
29	7	1462.642	112.648	1.32279
29	8	1467.315	117.184	1.058165
29	9	1471.987	121.721	1.119406
29	10	1476.66	126.258	1.458979
29	11	1481.332	130.795	1.714009
29	12	1486.005	135.331	1.770333
29	13	1490.677	139.868	1.738442
29	14		144.405	
		1495.35		1.710342
29	15	1500.022	148.942	1.681698
29	16	1504.694	153.478	1.632311
29	17	1509.367	158.015	1.580495
29	18	1514.039	162.552	12.774895
29	19	1518.712	167.089	15.466942
29	20	1523.384	171.625	15.11662
29	21	1528.057	176.162	15.934779
29	22	1532.729	180.699	15.830457
29	23	1537.402	185.235	14.59702
29	24	1542.074	189.772	13.062531
29	25	1546.747	194.309	11.526124
29	26	1551.419	198.846	21.561804
30	1	1442.502	58.796	21.560458
30	2	1447.681	63.8	20.425735
30	3	1452.859	68.805	18.256634
30	4	1458.037	73.809	16.330898
30	5	1463.215	78.814	14.398231
30	6	1468.393	83.818	1.942558
30	7	1473.571	88.823	0.430944
30	8	1478.749	93.827	0.664107
30	9	1483.927	98.832	1.023939
30	10	1489.106	103.836	1.473221
30	11	1494.284	108.841	1.488359
30	12	1499.462	113.845	1.433704
30	13	1504.64	118.85	1.381351
30	14	1509.818	123.854	1.372312
30	15	1514.996	128.859	1.356524
30	16	1520.174	133.863	1.349166
30	17	1525.353	138.868	12.050956
30	18	1530.531	143.872	12.655205
30	19	1535.709	148.877	13.049271
30	20	1540.887	153.881	12.639731
30	21	1546.065	158.886	14.269986
30	22	1551.243	163.89	14.269319
30	23	1556.421	168.895	13.653547
30	24	1561.599	173.899	11.957511
30	25	1566.778	178.904	10.258487
30	26	1571.956	183.908	21.561857

SECCION	PUNTO	Х	Υ	Z
31	1	1455.111	35.303	21.563361
31	2	1460.583	40.63	19.249579
31	3	1466.056	45.957	15.454677
31	4	1471.529	51.285	13.025682
31	5	1477.001	56.612	9.922643
31	6	1482.474	61.94	4.160614
31	7	1487.946	67.267	-0.036025
31	8	1493.419	72.595	-0.030027
31	9	1498.891	77.922	0.362009
31	10	1504.364	83.25	0.799311
31	11	1509.836	88.577	0.971697
31	12	1515.309	93.904	1.161703
31	13	1520.782	99.232	1.148878
31	14	1526.254	104.559	1.137613
31	15	1531.727	109.887	1.136318
31	16	1537.199	115.214	5.943361
31	17	1542.672	120.542	9.221239
31	18	1548.144	125.869	9.85989
31	19	1553.617	131.197	10.545052
31	20	1559.089	136.524	10.231764
31	21	1564.562	141.851	12.036634
31	22	1570.034	147.179	12.741795
31	23	1575.507	152.506	12.710406
31	24	1580.98	157.834	10.911406
31	25	1586.452	163.161	9.107953
31	26	1591.925	168.489	21.561904
32	1	1473.174	17.993	21.565951
32	2	1489.717	36.737	0.545181
32	3	1495.011	42.735	0.546067
32	4	1495.805	43.635	0.546994
32	5	1501.099	49.633	0.547082
32	6	1502.753	51.507	0.532273
32	7	1506.194	55.406	0.532657
32	8	1507.187	56.53	0.550724
32	9	1510.628	60.429	0.560193
32	10	1511.62	61.553	0.652578
32	11	1515.061	65.452	1.098858
32	12	1516.054	66.577	1.644618
32	13	1519.495	70.475	1.640993
32	14	1521.149	72.35	1.631627
32	15	1527.105	79.098	1.626079
32	16	1528.759	80.972	1.62249
32	17	1534.714	87.72	1.620749
32	18	1536.369	89.594	1.619144
32	19	1542.324	96.342	1.618762
32	20	1543.979	98.216	1.61842
32	21	1549.934	104.964	1.618009
32	22	1551.588	106.838	1.616884
32	23	1557.544	113.586	1.61617
32	24	1559.198	115.46	1.6144
32	25	1565.154	122.208	1.604523
32	26	1598.902	160.445	21.561917

SECCION	PUNTO	Х	Υ	Z
33	1	1483.608	8.875	21.03169
33	2	1499.809	27.915	1.587
33	3	1504.994	34.008	1.587
33	4	1505.772	34.921	1.587
33	5	1510.956	41.014	1.587
33	6	1512.576	42.918	0.51195
33	7	1515.946	46.879	0.51195
33	8	1516.918	48.021	1.587
33	9	1520.288	51.981	1.587
33	10	1521.26	53.124	1.587
33	11	1524.63	57.084	1.587
33	12	1525.602	58.226	1.587
33	13	1528.972	62.187	1.587
33	14	1530.592	64.091	1.587
33	15	1536.424	70.945	1.587
33	16	1538.045	72.849	1.587
33	17	1543.877	79.703	1.587
33	18	1545.497	81.607	1.587
33	19	1551.33	88.462	1.587
33	20	1552.95	90.366	1.587
33	21	1558.782 1560.402	97.22	1.587
33	22		99.124	1.587
33	23	1566.235	105.978	1.587
33	24	1567.855	107.882	1.587
33	25	1573.687	114.737	1.587
33	26	1606.738	153.578	21.03169
34	1	1492.665	1	21.03169
34	2	1508.866	20.04	1.587
34	3	1514.05	26.133	1.587
34	4	1514.828	27.047	1.587
34	5	1520.012	33.14	1.587
34	6	1521.632	35.044	0.548841
34	7	1525.002	39.005	0.548841
34	8	1525.974	40.147	1.587
34	9	1529.344	44.108	1.587
34	10	1530.316	45.25	1.587
34	11	1533.685	49.21	1.587
34	12	1534.657	50.353	1.587
34	13	1538.027	54.313	1.587
34	14	1539.647	56.217	1.587
34	15	1545.479	63.072	1.587
34	16	1547.099	64.976	1.587
34	17	1552.932	71.83	1.587
34	18	1554.552	73.734	1.587
34	19	1560.384	80.589	1.587
34	20	1562.004	82.493	1.587
34	21	1567.836	89.348	1.587
34	22	1569.456	91.252	1.587
34	23	1575.289	98.106	1.587
34	24	1576.909	100.01	1.587
34	25	1582.741	106.865	1.587
34	26	1615.79	145.707	21.03169

ANEXO N°2

El archivo *control* posee la mayoría de los parámetros que utiliza el programa SSIIM para realizar las modelaciones requeridas; en el manual de usuario del programa SSIIM, escrito por *NILS* (2014) se puede observar el detalle del uso de todos y cada uno de las opciones posibles a utilizarse dentro del archivo de *control*.

Las principales comando usados para la modelación SSIIM 1, en el presente trabajo de investigación son: identificación del modelo a desarrollarse; cálculos automáticos al iniciarse el programa; criterios de relajación, iteraciones y convergencia en cálculos de concentraciones; densidad de sedimentos y Shields crítico; tiempo de paso y número de iteraciones internas; criterio de cálculo de la superficie libre del agua en función de la presión; computo de transporte de sedimentos; calidad del agua en función del tiempo; sedimentos en el fondo afectan al cálculo del flujo de agua; criterio de cálculo para transporte de sedimentos.

Se deben identificar las propiedades de la malla, en función del archivo *koordina* a ser utilizado: número de secciones transversales; número de divisiones transversales correspondiente a los puntos de cada sección transversal; número de divisiones verticales de cálculos; y número de diámetros de sedimentos a ser modelados.

Las condiciones iniciales y de frontera de flujo, aguas arriba y aguas abajo; y las estructuras sólidas que representan las estructuras hidráulicas con la que el flujo de agua se puede encontrar y que son representados por bloques donde no se permite el flujo de agua. Las características del flujo del agua, indicando el coeficiente de rugosidad de Manning – Strikcler; el gasto total de agua; y el nivel inicial aguas abajo de la frontera de modelación. Identificación de las secciones iniciales de interpolación.

De cada diámetro de sedimentos, identificado desde los más grandes a los más pequeños, a ser modelado se indicará el respectivo gasto de entrada, el diámetro y velocidad de caída calculada con el método más adecuado por el usuario. Y el número de iteraciones y en el caso necesario las iteraciones máximas al que se llegaran cuando el criterio de convergencia no se alcanza.

El escenario 1 considera las condiciones normales de operación con un gasto de 285 m3/s, correspondiente a un tiempo de retorno de 2 años. Un tiempo de modelación de 30 días, con el funcionamiento de dos estructuras de captación y un descargador de fondo; el resultado de cambio de fondo de este escenario se usa para modelar los escenarios siguientes. A continuación se muestra la captura del correspondiente archivo de *control*.

```
T TESIS_SSIIM_ESCENARIO_1
TF 2 RXIS
                                               calculo automatico agua_entrada sedimentos_transporte sedimentos
F 4 0.5 20 0.1
                                                (concentraciones) relajacion _ iteraciones max _ convergencia
F 11 2.125 -0.047
                                               densidad de sedimentos _ shields critico
                                               tiempo de paso _ iteraciones internas (cada iteracion)
F 33 900 20
F 36 2
                                               superficie de agua actualizada en base a la presion
F 37 1
                                               computo de transporte de sedimentos
F 62 1
                                               calculo de calidad de agua depende del tiempo
F 68 0
                                               sedimentos de fondo recalcula flujo de agua
F 84 2
                                               van rijin transporte de sedimentos suspension y de fondo
propiedades de grilla
G 1 34 26 9 3
                                                               secciones x_y_z_numero sediemntos
G 3 0 14.09 28.18 36.82 45.45 55.68 65.91 82.96 100
                                                               distribucion de grilla vertical
entrada de agua
G 7 0 1 5 10 2 9 0 0 285 0.0 0.0 0.0
                                               entrada_aguas arriba_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
G 7 1 -1 3 3 6 9 1 0 50 0.0 0.0 0.0
                                               salida_aguas abajo_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
G 7 1 -1 5 5 6 9 1 0 50 0.0 0.0 0.0
                                               salida_aguas abajo_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
G 7 1 -1 7 7 2 3 1 0 185 0.0 0.0 0.0
                                               salida aguas abajo Xdir Ydir Zini Zfin normal no actualiza descarga x y z
cortina
                                               3 dire_Xini_Xfin_Yini_Yfin_Zini_Zfin
G 13 3 33 34 2 2 2 9
                                               n1 talud derecho
G 13 3 33 34 3 5 2 5
                                               n2 base captacion
G 13 3 33 34 4 4 6 9
                                               n3 entre captacion
G 13 3 33 34 6 14 4 9
                                               n4 sobre descargas
G 13 3 33 34 6 6 2 3
                                              n5 entre captacion y descarga1
G 13 3 33 34 8 9 2 3
                                               n6 entre descarga1 y descarga2
G 13 3 33 34 10 11 2 3
                                               n7 entre descarga2 y descarga3
G 13 3 33 34 12 13 2 3
                                               n8 entre descarga3 y descarga4
G 13 3 33 34 14 14 2 3
                                               n9 entre descarga4 y vertedores
G 13 3 33 34 15 26 2 9
                                               n10 vertedores cerrados
características del agua
W 1 25 285 22.00
                                               rugosigad strikcler gasto nivel aguas abajo
11 12 13 14 15 16 17 18 19 20
       21 22 23 24 25 26 27 28 29 30
        31 32 33 34
                                               secciones transversales iniciales de interpolacion
sedimentos
I 1 28.43
                                               gasto de entrada kg/s
I 2 20.31
                                               gasto de entrada kg/s
                                               gasto de entrada kg/s
I 3 6.09
5 1 0.00035 0.0355
                                               diametro m _ velocidad de caida m/s
5 2 0.0002 0.0123
                                               diametro m \_ velocidad de caida m/s
5 3 0.0001 0.0033
                                               diametro m _ velocidad de caida m/s
N 0 1 1.0
B 0 0 0 0 0 0
K 1 3000 3100
                                               \hbox{\it numero de iteraciones} \ \_ \ \hbox{\it minimo numero de iteraciones}
K 2 0 1
                                               leyes de pared inicial
K 3 0.5 0.5 0.5 0.05 0.1 0.1
                                               coeficientes de relajacion
```

El escenario 2 corresponde a un periodo de retorno de 5 años con un gasto de 947 m3/s, con dos estructuras de captación y dos descargadores de fondo en funcionamiento. Un tiempo de modelación de 50 horas, un tiempo de paso de 900 segundos y un número de iteraciones de 200. A continuación se presenta la captura del archivo de *control* del escenario 2.

```
T TESIS SSIIM_CAVU ESCENARIO_2
TF 2 RX
                                                calculo automatico agua_entrada sedimentos_transporte sedimentos
F 4 0.5 50 0.1
                                                (concentraciones) relajacion _ iteraciones max _ convergencia
F 11 2.125 -0.047
                                                densidad de sedimentos shields critico
F 33 900 50
                                               tiempo de paso _ iteraciones internas (cada iteracion)
F 36 2
                                               superficie de agua actualizada en base a la presion
F 37 1
                                               computo de transporte de sedimentos
F 68 2
                                               sedimentos de fondo no recalcula flujo de agua
F 84 2
                                               van rijin transporte de sedimentos suspension y de fondo
propiedades de grilla
G 1 34 26 9 3
                                                                secciones x_y_z_numero sediemntos
G 3 0 14.09 28.18 36.82 45.45 55.68 65.91 82.96 100
                                                               distribucion de grilla vertical
entrada de agua
G 7 0 1 2 26 2 9 0 0 947 0.0 0.0 0.0
                                                entrada_aguas arriba_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
G 7 1 -1 3 3 6 9 1 1 50 0.0 0.0 0.0
                                               salida aguas abajo Xdir Ydir Zini Zfin normal no actualiza descarga x y z
G 7 1 -1 5 5 6 9 1 1 50 0.0 0.0 0.0
                                               salida_aguas abajo_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
G 7 1 -1 7 7 2 3 1 1 424 0.0 0.0 0.0
                                               salida_aguas abajo_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
G 7 1 -1 9 9 2 3 1 1 423 0.0 0.0 0.0
                                               salida_aguas abajo_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
cortina
                                               3 dire Xini Xfin Yini Yfin Zini Zfin
G 13 3 33 34 2 2 2 9
                                               n1 talud derecho
G 13 3 33 34 3 5 2 5
                                               n2 base captacion
G 13 3 33 34 4 4 6 9
                                               n3 entre captacion
                                               n4 sobre descargas
G 13 3 33 34 6 14 4 9
G 13 3 33 34 6 6 2 3
                                               n5 entre captacion y descarga1
G 13 3 33 34 8 8 2 3
                                              n6 entre descarga1 y descarga2
G 13 3 33 34 10 11 2 3
                                              n7 entre descarga2 y descarga3
G 13 3 33 34 12 13 2 3
                                              n8 entre descarga3 y descarga4
G 13 3 33 34 14 14 2 3
                                               n9 entre descarga4 y vertedores
G 13 3 33 34 15 26 2 9
                                               n10 vertedores cerrados
características del agua
                                                       rugosigad strikcler_ gasto _ nivel aguas abajo
W 1 25 947 22.00
W 2 11 1 5 10 15 20 25 30 31 32 33 34
                                                       secciones transversales iniciales de interpolacion
sedimentos
I 1 212.27
                                                gasto de entrada kg/s
I 2 151.62
                                               gasto de entrada kg/s
I 3 45.49
                                               gasto de entrada kg/s
5 1 0.00035 0.0355
                                                diametro m _ velocidad de caida m/s
5 2 0.0002 0.0123
                                                diametro m _ velocidad de caida m/s
5 3 0.0001 0.0033
                                                diametro m _ velocidad de caida m/s
N 0 1 1.0
B 0 0 0 0 0 0
K 1 200 250
                                                numero de iteraciones minimo numero de iteraciones
K 2 0 1
                                                leyes de pared inicial
K 3 0.5 0.5 0.5 0.05 0.1 0.1
                                                coeficientes de relajacion
```

El escenario 3 corresponde al periodo de retorno de 10 años, con un gasto líquido de 1385 m3/s; las dos estructuras de captación están trabajando y en funcionamiento 3 descargadores de fondo, el tiempo de modelación de la avenida es de 50 horas, un tiempo de paso de cada iteración de 900 segundos y un número total de iteraciones de 200. A continuación se presenta la captura del archivo de *control* del escenario 3.

```
T TESIS SSIIM CAVU ESCENARIO 3
TF 2 RX
                                               calculo automatico agua_entrada sedimentos_transporte sedimentos
F 4 0.5 50 0.1
                                               (concentraciones) relajacion _ iteraciones max _ convergencia
F 11 2.125 -0.047
                                               densidad de sedimentos \_ shields critico
F 33 900 50
                                               tiempo de paso _ iteraciones internas (cada iteracion)
F 36 2
                                               superficie de agua actualizada en base a la presion
F 37 1
                                               computo de transporte de sedimentos
F 68 2
                                               sedimentos de fondo no recalcula flujo de agua
F 84 2
                                               van rijin transporte de sedimentos suspension y de fondo
propiedades de grilla
G 1 34 26 9 3
                                                               secciones x_y_z_numero sediemntos
G 3 0 14.09 28.18 36.82 45.45 55.68 65.91 82.96 100
                                                               distribucion de grilla vertical
entrada de agua
G 7 0 1 2 26 2 9 0 0 1385 0.0 0.0 0.0
                                               entrada aguas arriba Xdir Ydir Zini Zfin normal no actualiza descarga x y z
G 7 1 -1 3 3 6 9 1 0 50 0.0 0.0 0.0
                                               salida\_aguas\ abajo\_Xdir\_Ydir\_Zini\_Zfin\_normal\_no\ actualiza\_descarga\_x\_y\_z
G 7 1 -1 5 5 6 9 1 0 50 0.0 0.0 0.0
                                               salida_aguas abajo_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
G 7 1 -1 7 7 2 3 1 0 429 0.0 0.0 0.0
                                               salida_aguas abajo_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
G 7 1 -1 9 9 2 3 1 0 428 0.0 0.0 0.0
                                               salida_aguas abajo_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
G 7 1 -1 11 11 2 3 1 0 428 0.0 0.0 0.0
                                               salida_aguas abajo_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
cortina
                                               3 dire_Xini_Xfin_Yini_Yfin_Zini_Zfin
G 13 3 33 34 2 2 2 9
                                               n1 talud derecho
G 13 3 33 34 3 5 2 5
                                               n2 base captacion
G 13 3 33 34 4 4 6 9
                                               n3 entre captacion
G 13 3 33 34 6 14 4 9
                                              n4 sobre descargas
G 13 3 33 34 6 6 2 3
                                              n5 entre captacion y descarga1
G 13 3 33 34 8 8 2 3
                                               n6 entre descargal y descarga2
G 13 3 33 34 10 10 2 3
                                              n7 entre descarga2 y descarga3
G 13 3 33 34 12 13 2 3
                                               n8 entre descarga3 y descarga4
G 13 3 33 34 14 14 2 3
                                               n9 entre descarga4 y vertedores
G 13 3 33 34 15 26 2 9
                                               n10 vertedores cerrados
características del agua
W 1 25 1385 22.00
                                                       rugosigad strikcler_ gasto _ nivel aguas abajo
11 12 13 14 15 16 17 18 19 20
        21 22 23 24 25 26 27 28 29 30
        31 32 33 34
                                                       secciones transversales iniciales de interpolacion
sedimentos
I 1 362.33
                                                gasto de entrada kg/s
I 2 258.81
                                                gasto de entrada kg/s
I 3 77.64
                                                gasto de entrada kg/s
5 1 0.00035 0.0355
                                                diametro m _ velocidad de caida m/s
                                                diametro m \_ velocidad de caida m/s
5 2 0.0002 0.0123
5 3 0.0001 0.0033
                                                diametro m _ velocidad de caida m/s
N 0 1 1.0
B 0 0 0 0 0 0
K 1 200 210
                                                numero de iteraciones _ minimo numero de iteraciones
K 2 0 1
                                                leyes de pared inicial
K 3 0.5 0.5 0.5 0.05 0.1 0.1
                                                coeficientes de relajacion
```

El escenario 4 corresponde a un periodo de retorno de 15 años, con un gasto líquido de 1632 m3/s; se encuentran en funcionamiento las dos estructuras de captación con un gasto de 100 m3/s y 4 descargadores de fondo en funcionamiento. El tiempo de paso es de 900 segundos y un número de iteraciones de 200. A continuación se presenta la captura del archivo de *control* del escenario 4.

```
T TESIS SSIIM_CAVU ESCENARIO_4
TF 2 RX
                                               calculo automatico agua entrada sedimentos transporte sedimentos
F 4 0.5 50 0.1
                                               (concentraciones) relajacion _ iteraciones max _ convergencia
F 11 2.125 -0.047
                                               densidad de sedimentos _ shields critico
F 33 900 50
                                               tiempo de paso _ iteraciones internas (cada iteracion)
F 36 2
                                               superficie de agua actualizada en base a la presion
F 37 1
                                               computo de transporte de sedimentos
F 68 2
                                               sedimentos de fondo no recalcula flujo de agua
F 84 2
                                               van rijin transporte de sedimentos suspension y de fondo
propiedades de grilla
G 1 34 26 9 3
                                                               secciones x_y_z_numero sediemntos
G 3 0 14.09 28.18 36.82 45.45 55.68 65.91 82.96 100
                                                               distribucion de grilla vertical
entrada de agua
                                               entrada_aguas arriba_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
G 7 0 1 2 26 2 9 0 0 1632 0.0 0.0 0.0
                                              entrada
G 7 1 -1 3 3 6 9 1 0 50 0.0 0.0 0.0
                                              captacion1
G 7 1 -1 5 5 6 9 1 0 50 0.0 0.0 0.0
                                              captacion2
G 7 1 -1 7 7 2 3 1 0 383 0.0 0.0 0.0
                                              descargador de fondo1
G 7 1 -1 9 9 2 3 1 0 383 0.0 0.0 0.0
                                              descargador de fondo2
G 7 1 -1 11 11 2 3 1 0 383 0.0 0.0 0.0
                                               descargador de fondo3
G 7 1 -1 13 13 2 3 1 0 383 0.0 0.0 0.0
                                               descargador de fondo4
                                               3 dire_Xini_Xfin_Yini_Yfin_Zini_Zfin
G 13 3 33 34 2 2 2 9
                                               n1 talud derecho
G 13 3 33 34 3 5 2 5
                                               n2 base captacion
G 13 3 33 34 4 4 6 9
                                               n3 entre captacion
G 13 3 33 34 6 14 4 9
                                               n4 sobre descargas
G 13 3 33 34 6 6 2 3
                                              n5 entre captacion y descarga1
G 13 3 33 34 8 8 2 3
                                               n6 entre descarga1 y descarga2
G 13 3 33 34 10 10 2 3
                                              n7 entre descarga2 y descarga3
G 13 3 33 34 12 12 2 3
                                              n8 entre descarga3 y descarga4
G 13 3 33 34 14 14 2 3
                                               n9 entre descarga4 y vertedores
G 13 3 33 34 15 26 2 9
                                               n10 vertedores cerrados
características del agua
W 1 25 1632 22.00
                                                       rugosigad strikcler_ gasto _ nivel aguas abajo
11 12 13 14 15 16 17 18 19 20
        21 22 23 24 25 26 27 28 29 30
        31 32 33 34
                                                       secciones transversales iniciales de interpolacion
sedimentos
I 1 453.31
                                               gasto de entrada kg/s
I 2 323.79
                                               gasto de entrada kg/s
I 3 97.14
                                               gasto de entrada kg/s
5 1 0.00035 0.0355
                                               diametro m _ velocidad de caida m/s
5 2 0.0002 0.0123
                                               diametro m _ velocidad de caida m/s
5 3 0.0001 0.0033
                                               diametro m _ velocidad de caida m/s
N 0 1 1.0
B 0 0 0 0 0 0
K 1 200 210
                                               numero de iteraciones _ minimo numero de iteraciones
K 2 0 1
                                              leyes de pared inicial
K 3 0.5 0.5 0.5 0.05 0.1 0.1
                                              coeficientes de relajacion
```

El escenario 5 corresponde a un periodo de retorno de 20 años, con una avenida cuyo gasto líquido es de 1805 m3/s. se encuentra en funcionamiento las dos estructuras de captación con un gasto de 100 m3/s y los 4 descargadores de fondo en funcionamiento. El tiempo de paso es de 900 segundos con un número total de iteraciones de 200. A continuación se presenta la captura del archivo de *control* utilizado en el escenario 5.

```
T TESIS_SSIIM_CAVU ESCENARIO_5
TF 2 RXIS
                                               calculo automatico agua entrada sedimentos transporte sedimentos
F 4 0.5 50 0.1
                                                (concentraciones) relajacion _ iteraciones max _ convergencia
F 11 2.125 -0.047
                                               densidad de sedimentos _ shields critico
F 33 900 50
                                               tiempo de paso _ iteraciones internas (cada iteracion)
F 36 2
                                               superficie de agua actualizada en base a la presion
F 37 1
                                               computo de transporte de sedimentos
F 68 2
                                               sedimentos de fondo no recalcula flujo de agua
F 84 2
                                               van rijin transporte de sedimentos suspension y de fondo
propiedades de grilla
G 1 34 26 9 3
                                                               secciones x_y_z_numero sediemntos
G 3 0 14.09 28.18 36.82 45.45 55.68 65.91 82.96 100
                                                               distribucion de grilla vertical
entrada de agua
                                               entrada_aguas arriba_Xdir_Ydir_Zini_Zfin_normal_no actualiza_descarga_x_y_z
G 7 0 1 5 20 2 9 0 0 1805 0.0 0.0 0.0
                                               entrada
G 7 1 -1 3 3 6 9 1 0 50 0.0 0.0 0.0
                                                       captacion1
G 7 1 -1 5 5 6 9 1 0 50 0.0 0.0 0.0 G 7 1 -1 7 7 2 3 1 0 427 0.0 0.0 0.0
                                                       captacion2
                                                       descargador de fondo1
G 7 1 -1 9 9 2 3 1 0 426 0.0 0.0 0.0
                                                      descargador de fondo2
G 7 1 -1 11 11 2 3 1 0 426 0.0 0.0 0.0
                                                       descargador de fondo3
G 7 1 -1 13 13 2 3 1 0 426 0.0 0.0 0.0
                                                       descargador de fondo4
                                               3 dire_Xini_Xfin_Yini_Yfin_Zini_Zfin
cortina
G 13 3 33 34 2 2 2 9
                                               n1 talud derecho
G 13 3 33 34 3 5 2 5
                                               n2 base captacion
G 13 3 33 34 4 4 6 9
                                               n3 entre captacion
G 13 3 33 34 6 14 4 9
                                               n4 sobre descargas
6 13 3 33 34 6 6 2 3
                                               n5 entre captacion y descarga1
G 13 3 33 34 8 8 2 3
                                               n6 entre descarga1 y descarga2
G 13 3 33 34 10 10 2 3
                                               n7 entre descarga2 y descarga3
G 13 3 33 34 12 12 2 3
                                               n8 entre descarga3 y descarga4
G 13 3 33 34 14 14 2 3
                                               n9 entre descarga4 y vertedores
G 13 3 33 34 15 26 2 9
                                               n10 vertedores cerrados
características del agua
                                                       rugosigad strikcler_ gasto _ nivel aguas abajo
W 1 25 1805 22.00
11 12 13 14 15 16 17 18 19 20
        21 22 23 24 25 26 27 28 29 30
        31 32 33 34
                                                       secciones transversales iniciales de interpolacion
sedimentos
I 1 519.27
                                               gasto de entrada kg/s
                                               gasto de entrada kg/s
I 2 370.91
I 3 111.27
                                               gasto de entrada kg/s
5 1 0.00035 0.0355
                                               diametro m _ velocidad de caida m/s
                                               diametro m \_ velocidad de caida m/s
5 2 0.0002 0.0123
5 3 0.0001 0.0033
                                               diametro m _ velocidad de caida m/s
N 0 1 1.0
B 0 0 0 0 0 0
K 1 200 210
                                               numero de iteraciones _ minimo numero de iteraciones
K 2 0 1
                                               leyes de pared inicial
K 3 0.5 0.5 0.5 0.05 0.1 0.1
                                               coeficientes de relajacion
```