

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA INGENIERÍA CIVIL – ESTRUCTURAS

ESTUDIO PARAMÉTRICO DE LOS EFECTOS DEL VIENTO EN UNA TENSO-ESTRUCTURA

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: LUIS ERNESTO PECH LUGO

TUTOR PRINCIPAL DR. ADRIÁN POZOS ESTRADA, INSTITUTO DE INGENIERÍA COMITÉ TUTOR DR. JOSÉ ALBERTO ESCOBAR SÁNCHEZ, INSTITUTO DE INGENIERÍA DR. ÓSCAR ALBERTO LÓPEZ BÁTIZ, CENAPRED DR. ROBERTO GÓMEZ MARTÍNEZ, INSTITUTO DE INGENIERÍA DR. ORLANDO JAVIER DÍAZ LÓPEZ, INSTITUTO DE INGENIERÍA

MÉXICO, D.F. MAYO 2016

JURADO ASIGNADO:

Presidente:	DR. JOSÉ ALBERTO ESCOBAR SÁNCHEZ		
Secretario:	DR. OSCAR ALBERTO LÓPEZ BÁTIZ		
Vocal:	DR. ADRIÁN POZOS ESTRADA		
1 er. Suplente:	DR. ROBERTO GÓMEZ MARTÍNEZ		
2 do. Suplente:	DR. ORLANDO JAVIER DÍAZ LÓPEZ		

Lugar donde se realizó la tesis: INSTITUTO DE INGENIERÍA, UNAM.

TUTOR DE TESIS:

DR. ADRIÁN POZOS ESTRADA

FIRMA

AGRADECIMIENTOS

A mis **padres** y **hermanos** que han estado presentes en todo momento de mi vida, alentándome a ser mejor y apoyándome siempre que lo he necesitado. Gracias por sus palabras de aliento y su amor.

A mis abuelos que me han llenado de cariño desde antes que tenga memoria.

A todos mis **amigos**, **amigas** y **hermanos** de vida, que me han apoyado, me han hecho reír y que han compartido momentos agradables e inolvidables conmigo.

Al **Dr. Adrián Pozos Estr**ada, sin su paciencia, apoyo y motivación este trabajo no hubiera sido posible.

A la Universidad Nacional Autónoma de México (UNAM) y la División de Estudios de Posgrado en Ingeniería, por contribuir a mi formación profesional.

Al **Consejo Nacional de Ciencia y Tecnología** (CONACYT), por el apoyo económico facilitado para realizar mis estudios de maestría.

Al **Instituto de Ingeniería** (IINGEN) de la UNAM, por el espacio y equipo de trabajo brindado.

El viento va y viene, aparentemente no lleva rumbo ni dirección, pareciera que no quiere decir de donde viene y tampoco a donde va; pero, definitivamente parece querer llevarnos con él.

Anónimo

Contenido

SUMEN		1
BSTRACT	·	1
INTR	ODUCCIÓN	2
1.1 1.2 <i>1.2.1</i> <i>1.2.2</i> 1.3	PREFACIO	2 4 4 4 4
1.4 GENE	ALCANCE Y LIMITANTES	4
2.1		г. Г
2.1		5
2.2	ELEMENTOS ESENCIALES	6
2.3	CLASIFICACION	6
2.3.1	Niembranas tensadas a traves de los bordes	6
2.3.2	Estructuras neumaticas	/
2.3.3	Redes y vigas de cables pretensados	8
2.4		11
2.4.1	Superficies sinclásticas y anticlásticas	11
2.5	NO LINEALIDAD	13
2.6	FORMAS BÁSICAS	13
2.7	MATERIALES	14
2.7.1	Membranas	14
2.7.2	Cables	18
2.7.3	Uniones	18
2.8	PROCESO DE DISEÑO	20
FUER	ZAS INDUCIDAS POR EL VIENTO	21
3.1	CONSIDERACIONES Y PARÁMETROS PARA LA DETERMINACIÓN DE LAS FUERZAS DEL VIENTO DE ACUERDO A LAS NTCD	v
3.2	21 Consideraciones y parámetros para la simulación de las fuerzas del viento	24
MOD	ELO DE UNA TENSO-ESTRUCTURA	28
4.1	INTRODUCCIÓN DE LA GEOMETRÍA	28
4.2	ELEMENTOS	28
4.2.1	Membrana	28
4.2.2	Cables	29
4.3	REPLICA DE UN MODELO VALIDADO	29
4.3.1	Rectángulo plano con bordes restringidos	29
4.3.2	Membrana en forma de cono	34
4.4	MODELO DE ANÁLISIS: PARABOLOIDE HIPERBÓLICO	38
4.4.1	Geometría	38
4.4.2	Análisis de sensibilidad	3.9
4.4.3	Forma v tamaño de la malla	43
4.4.4	Análisis modal	44
	SUMEN STRACT INTR 1.1 1.2 1.2.1 1.2.2 1.3 1.4 GENE 2.1 2.3 2.3.1 2.3.2 2.3.1 2.3.2 2.3.1 2.3.2 2.3.1 2.3.2 2.3.1 2.3.2 2.3.1 2.3.2 2.3.1 2.3.2 2.3.1 2.3.2 2.3.1 2.5 2.6 2.7 2.7.1 2.7.2 2.7.3 2.8 FUER 3.1 3.2 MOD 4.1 4.2 4.3 4.3.1 4.3.2 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4	SUMEN INTRODUCCIÓN 1.1 PREFACIO 1.2 Objetivo General 1.2.1 Objetivo Sepecíficos 1.3 JUSTFICACIÓN 1.4 ALCANCE Y LIMITANTES GENERALIDADES Y ASPECTOS BÁSICOS DE LAS TENSO-ESTRUCTURAS 2.1 ANTECEDENTES 2.2 ELEMENTOS ESENCIALES 2.3.1 Membranas tensadas a través de los bordes 2.3.2 Estructuras neumáticas 2.3.3 Redes y vigas de cobles pretensados 2.4.1 Superficies sinclásticas y anticlásticas 2.5 NO LINEALIDAD 2.6 PRINCIPIO DE EQUIUBRIO. 2.4.1 Superficies sinclásticas y anticlásticas 2.5 NO LINEALIDAD 2.6 Preficies Sinclásticas y anticlásticas 2.7 MATERIALES 2.7.1 Membranas 2.7.2 Cables 2.7.3 Uniones. 2.8 PROCESO DE DISENO. FUERZAS INDUCIDAS POR EL VIENTO 3.1 Consideraciones Y PARÁMETROS PARA LA SIMULACIÓN DE LAS FUERZAS DEL VIENTO de Acuerdo A LAS NTCD 2.1 MODELO DE UNAN TENSO-ESTRU

	4.4.5	Amortiguamiento para el análisis dinámico 4	4
5	DESC	RIPCIÓN DE ANÁLISIS Y RESULTADOS	5
5	.1	PROCEDIMIENTO DE ANÁLISIS	5
5	.2	RESULTADOS DE LOS ANÁLISIS ESTÁTICOS	8
	5.2.1	Viento con dirección 0° 4	8
	5.2.2	Viento con dirección 90°	!9
5	.3	RESULTADOS DEL ANÁLISIS DINÁMICO	0
	5.3.1	Viento con dirección 0°5	0
	5.3.2	Viento con dirección 90°5	2
5	.4	COMPARACIÓN DE RESULTADOS	5
6	CON	CLUSIONES Y RECOMENDACIONES	7
REF	RENC	IAS BIBLIOGRÁFICAS	8
ANE	XO A.	θ	0
ANE	XOB.		3
ANE	xo c .		8

ÍNDICE DE TABLAS

Tabla 3.1 Coeficientes de presión (CP) para paraboloides hiperbólicos libres en su parte inferior	. 23
Tabla 3.2 Valores de c y d en función del fipo de terreno (ASCE 7, 2010)	. 25
Tabla 4.1. Propiedades de la membrana Mehler Valmex FR1000 tipo III	. 31
Tabla 4.2 Comparación de respuestas entre mallado rectangular y triangular	. 33
Tabla 4.3 Comparación entre el análisis lineal efectuado y el de Shibo (2008)	. 35
Tabla 4.4 Comparación entre el análisis no lineal efectuado y el de Shibo (2008)	. 37
Tabla 4.5 Propiedades del cable empleado en los análisis	. 39
Tabla 5.1 Parámetros de las NTCDV (2004) utilizados para los análisis	. 45
Tabla 5.2 Parámetros empleados para la simulación del viento	. 46
Tabla 5.3 Modos de vibrar, frecuencias y periodos	. 47
Tabla 5.4 Valores máximos de la respuesta estática con dirección del viento 0°	. 49
Tabla 5.5 Valores máximos de la respuesta estática con dirección del viento 0°	. 49
Tabla 5.6 Valores máximos de la respuesta dinámica con dirección del viento 0°	. 52
Tabla 5.7 Valores máximos de la respuesta dinámica con dirección del viento 0	. 55

ÍNDICE DE FIGURAS

Figura 1.1 Tenso-estructura con forma de paraboloide hiperbólico	2
Figura 1.2 Modelos a escala de tenso-estructuras: (a) lámina de jabón; (b) alambres y tela	3
Figura 2.1 Tienda "negra" o beduina (Huntington, 2013)	5
Figura 2.2 Estadio Olímpico de Munich, 1972 (Olympiapark, sitio web)	6
Figura 2.3 Centro Universitario de Teatro, Ciudad Universitaria, UNAM	7
Figura 2.4 Cafetería Facultad de Contaduría, Ciudad Universitaria, UNAM	7
Figura 2.5 Estructura neumática en Cuicuilco, D.F. (Seman Baker, sitio web)	8
Figura 2.6 Instituto Federal Electoral, D.F. (Seman Baker, sitio web)	8
Figura 2.7 Redes de cables pretensados: (a) soporte rígido, aro de compresión; (b) soporte flexible	э,
cables de borde; (c) con cubierta pesada. (Lewis, 2003)	9
Figura 2.8 Vigas de cables pretensados: (a) montantes inclinados, (b) montantes verticales, (c)	
estructura de un puente suspendido (Lewis, 2003)	10
Figura 2.9 Trabe de cables pretensados (Lewis, 2003)	10
Figura 2.10 Combinación de armadura y trabes de cables pretensados (Lewis, 2003)	11
Figura 2.11 Principio de equilibrio (Huntington, 2013)	11
Figura 2.12 Superficies: (a) sinclástica, (b) anticlástica	12
Figura 2.13 Fuerzas en una superficie sinclásticar	12
Figura 2.14 Fuerzas en una superficie anticlástica.	13
Figura 2.15 Una caña de pescar ejemplificando la no linealidad geométrica (Ansys, 2013)	13
Figura 2.16 Formas básicas de tenso-estructuras: (a) Silla de montar, (b) cono, (c) cresta y valle	14
Figura 2.17 Arreglo de los hilos de la capa central de la membrana: (a) tejido con direcciones de	
urdimbre y trama indicadas, (b) sobrepuesto	14
Figura 2.18 (a) Tejido panamá, (b) efecto de rizado (Henrysson, 2012), (c) rollo de membrana	
indicando las direcciones de la urdimbre y la trama	15
Figura 2.19 Capas de una membrana de fibra de vidrio cubierta por PTFE	17
Figura 2.20 Tipos de cables empleados en las tenso-estructuras	18
Figura 2.21 Uniones: (a) costurada, (b) soldadas, (c) entrelazada	19
Figura 2.22 Conexiones de borde: (a) flexible, (b) rígida	20
Figura 2.23 Etapas del proceso de diseño de una tenso-estructura	20
Figura 3.1 Cuadro conceptual del proceso de análisis dinámico para cargas del viento	22
Figura 3.2 Geometría para determinar el CP de paraboloides hiperbólicos	23
Figura 3.3 Comparación de <i>luz</i> para diferentes tipos de terreno	26
Figura 3.4 Comparación de <i>Iwz</i> para diferentes tipos de terreno	26
Figura 3.5 (a) Velocidad turbulenta simulada, (b) Comparación de espectros simulado y teórico	27
Figura 4.1 Geometría, ubicación de nodos y sistema de coordenadas para el elemento SHELL181	29
Figura 4.2 Geometría, ubicación de nodos y sistema de coordenadas para el elemento Link180	29
Figura 4.3 Geometría de la membrana rectangular de 10x2m	30
Figura 4.4 Sección transversal de la membrana, simplificación a un cable	30
Figura 4.5 Presfuerzo en dirección X (izquierda) e Y (derecha)	31
Figura 4.6 Membrana utilizada para la comparación de resultados obtenidos con Ansys y a mano,	
los colores representan los esfuerzos en la dirección principal (Z) de la membrana	32
Figura 4.7 Esfuerzos en la dirección Z de la membrana, con la trama en la dirección de los 2m	33
Figura 4.8 Esfuerzos en la dirección Z de la membrana, con malla triangular	34

Figura 4.9 Geometría de la tenso-estructura con forma de cono	34
Figura 4.10 Distribución de esfuerzos principales (a) y deformaciones principales (b)	35
Figura 4.11 Dirección de las cargas antes y después de la deformación	36
Figura 4.12 Distribución de esfuerzos principales (a) y deformaciones principales (b), obtenidos	
mediante un análisis no lineal, considerando cargas de presfuerzo y viento.	37
Figura 4.13 Geometría del paraboloide hiperbólico utilizados para los análisis	38
Figura 4.14 Malla con geometría triangular	39
Figura 4.15 Distribución de esfuerzos (a) y desplazamientos (b) para la membrana con presfuerz	zo 40
Figura 4.16 Distribución de esfuerzos (a) y desplazamientos (b) considerando presfuerzo y grave	edad
	40
Figura 4.17 Distribución de esfuerzos (a) y desplazamientos (b) considerando presfuerzo, graveo	lad
y presión en sentido descendente	41
Figura 4.18 Distribución de esfuerzos (a) y desplazamientos (b) considerando presfuerzo, graved	lad
y presión en sentido ascendente, (c) dirección de la malla	41
Figura 4.19 Efecto del presfuerzo en la membrana en la forma	42
Figura 4.20 Efecto del presfuerzo en los cables en la forma	42
Figura 4.21 Forma de malla adoptada para los análisis	43
Figura 4.22 Esfuerzos (izquierda) y desplazamientos (derecha) en función del número de element	itos
por lado en la malla	43
Figura 5.1 (a) Direcciones de análisis, fuerzas de viento en los nodos para: (b) 0° y (c) 90°	45
Figura 5.2 Áreas tributarias en la tenso-estructura	46
Figura 5.3 Modos de vibrar 1, 2, 3 y 8 (incisos a, b, c y d, respectivamente)	47
Figura 5.4 Amortiguamiento de Rayleigh	48
Figura 5.5 Respuesta estática de la estructura para viento con dirección 0°	48
Figura 5.6 Respuesta estática de la estructura para viento con dirección 90°	49
Figura 5.7 Historias de velocidades y fuerzas en el tiempo para el viento en dirección 0°	51
Figura 5.8 Historias de desplazamientos y esfuerzos en el tiempo para el viento en dirección 0° .	51
Figura 5.9 Respuesta dinámicaa de la estructura para viento con dirección 0°	52
Figura 5.10 Historias de velocidades y fuerzas en el tiempo para el viento en dirección 90°	53
Figura 5.11 Historias de desplazamientos y esfuerzos en el tiempo para el viento en dirección 90)° 54
Figura 5.12 Respuesta dinámicaa de la estructura para viento con dirección 90°	54
Figura 5.13 Comparación de las respuestas de la estructura obtenidas en los diferentes análisis	55
Figura A.1 Pantalla de inicio del programa Tensiledraw LT.	63
Figura A.2 Menú Project settings	63
Figura A.3 Menú Style Manager	64
Figura A.4 Geometría de contorno en planta para generar la tenso-estructura	64
Figura A.5 Menú Mesh border and type (arriba) y Uniform mesh parameters (abajo)	65
Figura A.6 Geometría en 2D generada por el programa Tensiledraw LT	65
Figura A.7 Menú Fix Node (izquierda) y simbología generada en los nodos elegidos como apoyo	os
	66
Figura A.8 Nodos colocados a su elevación correspondiente de acuerdo al proyecto	66
Figura A.9 Menu Form Calculation	67
Figura A.10 Geometría en equlibrio después del análisis	67

NOMENCLATURA

Α	área tributaria.
C_L	coeficiente de levantamiento.
C_p	coeficiente local de presión, depende de la forma de la estructura.
$C_y \ y \ C_y$	coeficientes que toman en cuenta el decaimiento exponencial con la altura.
Ε	módulo de elasticidad.
F _{TR}	factor correctivo que toma en cuenta las condiciones locales relativas a la topografía y a la rugosidad del terreno.
F_{\propto}	factor que toma en cuenta la variación de la velocidad con la altura z .
F_L	fuerza de levantamiento.
Р	Presión en el cable.
p	orden de la autorregresión.
p_z	presión que ejerce un fluido sobre una construcción determinada.
$p_{ij}(t)$	correlación cruzada entre la $n - \acute{esima}$ y $m - \acute{esima}$ posición en el espacio en el tiempo s y $s + t$, respectivamente para $i, j = 1, 2, 3n$.
q	orden de la media móvil.
R	radio del segmento del círculo.
Т	Tensión en el cable.
$S_i(n)$	FDPE, en la posición <i>i</i> .
t	tiempo.
$v_n(z,t)$	vector de velocidades normalizadas para una altura z , en cualquier tiempo t , con varianza unitaria y media cero.
V_D	velocidad de diseño.
V_R	velocidad regional según la zona donde que le corresponde al sitio que se construirá.
V(z)	variación media del viento con la altura.
Ζ	altura por encima del terreno natural.
∝	exponente que determina la forma de la variación de la velocidad con la altura.
\propto_i	coeficiente de media móvil.
β_i	coeficiente de autorregresión.
δ	altura gradiente, mediad a partir del nivel del terreno de desplante, por encima de la cual la variación del viento no es importante.
ε_i	vector de ruido blanco Gaussiano.
σ_v^2	varianza del viento turbulento
ρ	densidad del aire.
$\psi(t)$	vector de ruido blanco en un tiempo t

Resumen

En la actualidad, existe un gran número de cubiertas ligeras, elaboradas a base de membranas y cables a tensión, que permiten cubrir grandes áreas. Estas estructuras son conocidas como tenso-estructuras y por sus características dinámicas y geométricas son particularmente susceptibles a los efectos dinámicos del viento. En zonas de fuertes vientos de la República Mexicana, año con año se presentan fallas estructurales de este tipo de cubiertas, incluso, se han presentado fallas en ciudades en donde los vientos son moderados. En México, no existe un código o reglamentación que presente un procedimiento de diseño bajo la acción de cargas dinámicas para este tipo de estructuras flexibles. La presente investigación busca coadyuvar al mejor entendimiento del comportamiento dinámico de las tenso-estructuras ante los efectos del viento turbulento.

Para los análisis, se modeló una tenso-estructura con forma típica (paraboloide hiperbólico) en un programa comercial y se sometió a fuerzas dinámicas del viento. Estas fuerzas consideran la correlación espacio-temporal. El modelo matemático considera fuerzas de pretensado en la membrana. Los análisis mostraron que la respuesta de la estructura es altamente sensible a la magnitud y a la variación en el espacio de las fuerzas del viento.

Abstract

At present, there is a large number of lightweight roofs fabricated with membranes and tension cables, which allow to cover large spans. This type of structures are known as tensile structures and they are particularly susceptible to turbulent wind effects due to their dynamic and geometric characteristics. Structural failures of this type of roofing are taking place year after year in strong wind areas in the Mexican Republic, even in zones with moderated winds. In Mexico, there is no code or regulation with a design procedure under the action of dynamic wind loads for flexible structures. The present research is aim at contributing to better understand the dynamic response of tensile structures under the effects of turbulent winds.

A typical geometry of tensile structure (hyperbolic paraboloid) under the action of dynamic wind forces was modeled for the analysis. These forces take in account the spatio-temporal correlation. The mathematical model considers the pretension forces in the membrane. The analyses show that the structural response is greatly sensible to the magnitude and space variation of wind forces.

1.1 PREFACIO

En la actualidad, existe un gran número de estructuras de cubierta ligera fabricadas a partir de membranas y cables a tensión, cuyo uso se ha popularizado debido a que pueden cubrir grandes claros y al mismo tiempo, satisfacen la estética de los proyectos. Este tipo de estructuras son conocidas como tenso-estructuras, velarias, lonarias, o cubiertas tensadas y por sus características dinámicas y geometrías son susceptibles a los efectos dinámicos del viento.

Las estructuras convencionales dependen de la rigidez de sus elementos para lograr la estabilidad y soportar las cargas a las que son sometidas; las tenso-estructuras son construidas a partir de elementos que tienen poca o nula rigidez a la flexión y al cortante (cables y membranas) por lo que dependen de su forma y de la fuerza de tensión interna para soportar las cargas. Su diseño, a comparación de las estructuras convencionales, involucra un comportamiento altamente no lineal. La siguiente figura muestra un conjunto de tenso-estructuras con forma de paraboloide hiperbólico.

Figura 1.1 Tenso-estructura con forma de paraboloide hiperbólico

En los años 60's, surgieron los primeros estudios de tenso-estructuras a partir de modelos y cálculos simples realizados a mano, con la finalidad de poder determinar sus formas óptimas y evaluar su estabilidad estructural. El alemán Frei Otto y su equipo inter-disciplinario desarrollaron el uso de modelos físicos en el diseño de tenso-estructuras, sus modelos más conocidos fueron los hechos con burbujas de jabón (Figura 1.2a); posteriormente, emplearon alambres finos y pequeños anclajes combinados con telas para representar las estructuras (Figura 1.2b). En décadas recientes, con el desarrollo de programas de computadora, los modelos físicos de tenso-estructuras se sustituyeron por modelos numéricos, que facilitan el proceso de análisis y diseño de este tipo de estructuras.

Actualmente, no se cuenta con una reglamentación para el diseño de tenso-estructuras en México. En el Manual de Diseño de Obras Civiles por Viento (MDV) (2008) de la Comisión Federal de Electricidad (CFE), se menciona acerca de las tenso-estructuras: "Su diseño geométrico y su

comportamiento estático, se pueden encontrar en diversas referencias [...] Sin embargo, su comportamiento dinámico es complejo. Para este tipo de estructuras se sugiere realizar un análisis dinámico no lineal geométrico, paso a paso en el tiempo, con historias de velocidades de ráfagas simuladas.". También, se recomienda que los efectos dinámicos se cuantifiquen mediante pruebas experimentales en túnel de viento bajo la supervisión de expertos en la materia.

En este trabajo, como una alternativa a los estudios de túnel de viento, los efectos dinámicos del viento se consideran mediante fuerzas generadas a través de una simulación con un modelo autoregresivo de media móvil (ARMA, por sus siglas en inglés).

Figura 1.2 Modelos a escala de tenso-estructuras: (a) lámina de jabón; (b) alambres y tela

El objetivo principal de esta investigación es estudiar la respuesta de una tenso-estructuras ante los efectos del viento turbulento. Para ello, se realiza el análisis dinámico no lineal de una tenso-estructura con geometría regular, sometida a fuerzas del viento turbulento, en un programa comercial de elementos finitos.

En el capítulo 2 se presenta una breve historia de las tenso-estructuras, su clasificación, sus características, los elementos que las componen y los materiales más utilizados

En el capítulo 3 contiene el procedimiento para obtener las fuerzas estáticas inducidas por el viento y el procedimiento de la simulación para generar las fuerzas dinámicas del viento.

En el capítulo 4 se describe el modelo matemático de la tenso-estructura utilizada para este trabajo, se replica un análisis de un modelo encontrado en la literatura y se realiza un análisis de sensibilidad de un paraboloide hiperbólico para conocer su comportamiento ante distintas cargas.

El procedimiento para los análisis, sus resultados y comparaciones entre estos se presentan en el capítulo 5.

Las conclusiones y recomendaciones obtenidas después del desarrollo de este trabajo se presentan en el capítulo 6.

Finalmente, el Anexo A presenta el procedimiento del método ARMA, el Anexo B contiene una guía para utilizar el programa Tensiledraw LT y el Anexo C contiene los códigos de ANSYS utilizados para los análisis principales.

1.2 Objetivos

1.2.1 Objetivo General

Estudiar la respuesta dinámica de un modelo analítico de una tenso-estructura con geometría regular, sometida a cargas simuladas de viento turbulento.

1.2.2 Objetivos específicos

- Determinar las fuerzas de viento turbulento a partir de simulaciones con un modelo autoregresivo de media móvil, en un programa en MATLAB.
- Estudiar el comportamiento de una tenso-estructura con forma de paraboloide hiperbólico ante distintas cargas.
- Desarrollar un modelo de tenso-estructura para su análisis con ayuda de un programa comercial de elementos finitos (ANSYS).

1.3 JUSTIFICACIÓN

En México no existe un código o reglamentación que presente un procedimiento de diseño para tensoestructuras. En zonas de fuertes vientos de la República Mexicana, año con año se presentan fallas en este tipo de estructuras flexibles, incluso en ciudades en donde los vientos son moderados. En pocas ocasiones, se realiza un cálculo estático de las cargas de viento y en mucho menos, se realiza un análisis dinámico.

Se estudia la respuesta dinámica de tenso-estructuras ante los efectos del viento turbulento para comprender su comportamiento y obtener elementos técnicos de utilidad para su diseño. Al igual, se busca que los conceptos y datos presentados en esta investigación puedan contribuir en un futuro a la creación de un código de diseño para tenso-estructuras.

1.4 ALCANCE Y LIMITANTES

Es común que las tenso-estructuras presenten formas irregulares y caprichosas, no obstante, de acuerdo a los objetivos, los análisis realizados en esta investigación se limitan a formas sencillas con geometrías regulares, donde se considera la no linealidad geométrica de las estructuras y se asume que los materiales permanecen dentro del rango elástico bajo las solicitaciones a las cuales se ven sometidas.

Para el análisis de las tenso-estructuras se parte de la forma en equilibrio, por lo que no se realizará la etapa de diseño de determinación de forma (conocida en inglés como formfinding), la base teórica y procedimiento para esta etapa puede ser encontrada en una gran cantidad de referencias bibliográficas (Huntington, 2013; Lewis, 2003).

Para el modelo utilizado en los análisis dinámicos se consideró el material de la membrana como isotrópico lineal. Esta simplificación puede ser asumida para ciertas membranas que por su proceso de fabricación aseguran una estabilidad dimensional similar en ambos sentidos (urdimbre y trama).

La coherencia utilizada en el modelo ARMA para la simulación de las fuerzas del viento turbulento es utilizada para la componente longitudinal del viento. En este trabajo, se emplea como una aproximación al no encontrarse en la literatura una función de coherencia para la componente vertical turbulenta del viento.

2 GENERALIDADES Y ASPECTOS BÁSICOS DE LAS TENSO-ESTRUCTURAS

2.1 ANTECEDENTES

Las tiendas nómadas, las tiendas de circo o las tiendas militares pueden considerarse precedentes directos de las tenso-estructuras, estaban generalmente asociadas a estructuras temporales, baratas e inflamables. La tienda "negra¹" o tienda beduina² que se muestra en la Figura 2.1, es desde el punto de vista estructural, el antecedente más antiguo de las estructuras de membrana, debido a que la cantidad de presfuerzo proporcionado a la cubierta determina su forma y provee estabilidad a los elementos de soporte.

Figura 2.1 Tienda "negra" o beduina (Huntington, 2013)

El desarrollo de nuevos materiales con tejidos sintéticos, ligeros y de gran resistencia, conocidos como membranas, brindó la capacidad de cubrir grandes claros con eficiencia estructural, por lo que las tenso-estructuras se convirtieron en oportunidades de diseño muy versátiles y vistosas.

Una de las primeras personas en estudiar formalmente las tenso-estructuras fue Frei Otto, quien propuso una definición y clasificación de las mismas (Otto, 1958). Dirigió un grupo inter-disciplinario de investigación en el Instituto de Estructuras Ligeras de la Universidad de Sttutgart, Alemania (1984-1995), donde el objeto de estudio fueron las superficies con energía mínima partiendo de formas que se encuentran en la naturaleza (Lewis, 2003). En estos estudios, se encontró que colocando una lámina delgada de jabón entre cualquier configuración de bordes deseada se podía replicar la forma que debe tomar una membrana para ser estable y tener un esfuerzo uniforme.

El proyecto del Estadio Olímpico de Munich (Figura 2.2), es uno de los ejemplos más antiguos de cubiertas a tensión de gran escala, la estructura que cubre un área de 75 000 m² representó un logro arquitectónico y estructural extraordinario para la época. Este proyecto, marcó un cambio significativo en el proceso de diseño de tenso-estructuras, de mediciones en modelos físicos se pasó a métodos computacionales para la determinación de la geometría y el comportamiento estructural.

¹ La tienda negra toma su nombre del pelo de cabra utilizado para tejer la cubierta. Se cree que este tipo de tienda tiene su origen en el año 2000 A.C., aproximadamente.

² Se da el nombre de beduinos a los árabes nómadas que viven en los desiertos de Arabia Saudita, Siria, Jordania, Irak e Israel. Son originarios de la península Arábiga. En el siglo VII, con las conquistas árabes, se extendieron por el norte de África (Egipto, Argelia, Libia, Malí, Túnez).

Figura 2.2 Estadio Olímpico de Munich, 1972 (Olympiapark, sitio web)

2.2 ELEMENTOS ESENCIALES

De acuerdo con Lewis (2003), existen tres elementos esenciales en una tenso-estructura:

- *Membrana*. Es altamente flexible y está sometida a tensión con la finalidad de generar rigidez en la superficie. El presfuerzo en las membranas se puede conseguir al aplicar fuerzas en los bordes o mediante presión del aire contenido en el lugar.
- *Elementos flexibles unidimensionales, cables.* Sirven para crear crestas, valles y límites de borde.
- *Miembros de soporte rígidos*. Se encuentran sometidos a compresión y flexión.

2.3 CLASIFICACIÓN

Existen diversas formas de clasificar las tenso-estructuras, en este trabajo se presenta la propuesta por Lewis (2003):

2.3.1 Membranas tensadas a través de los bordes

Las membranas tensadas a través de los bordes son aquellas en las que el esfuerzo se logra al estirar la superficie para hacerla coincidir con los bordes flexibles, p.e., cables, o rígidos, p.e., marcos y vigas, estas estructuras se ejemplifican en las Figuras 2.3 y 2.4. La diferencia principal entre este tipo de membranas y una estructura neumática es el método empleado para transmitir el presfuerzo a la superficie. Además, las membranas tensadas a través de los bordes no presentan una diferencia de presión entre el interior y el exterior de la superficie como las estructuras neumáticas.

Los niveles de presfuerzo en la superficie de este tipo de estructuras deben ser adecuados para asegurar, por un lado, un adecuado comportamiento de la estructura ante una posible pérdida de tensión durante su vida útil y por otro lado, permitir que el material permanezca en su rango elástico durante las deformaciones. Bajo la acción de cargas como viento y nieve, el esfuerzo en la superficie se puede incrementar hasta 10 veces, por esta razón en el diseño de las membranas se suele considerar un presfuerzo inicial de aproximadamente 1/20 del esfuerzo de ruptura de la membrana.

Figura 2.3 Centro Universitario de Teatro, Ciudad Universitaria, UNAM

Figura 2.4 Cafetería Facultad de Contaduría, Ciudad Universitaria, UNAM

2.3.2 Estructuras neumáticas

Las estructuras neumáticas, como las que se muestran en la Figuras 2.5 y Figura 2.6, proveen una alternativa rápida y económica a las estructuras permanentes, están hechas de membranas delgadas sometidas a esfuerzos provocados por la presión del aire en el interior del edificio, comúnmente generado por ventiladores. La forma de las estructuras neumáticas se ve afectada en gran medida por la diferencia entre la presión interior y exterior, que cambia continuamente debido a variaciones en la temperatura o en las condiciones de carga (viento y nieve).

Una de las desventajas de este tipo de estructuras es que es difícil asegurar una presión interna adecuada durante toda su vida útil, debido a la naturaleza impredecible de los factores ambientales o a una posible falla del sistema que controla la presión interna. Las estructuras neumáticas se diseñan comúnmente para mantener una presión interna menor que los valores típicos de diseño para cargas

de nieve, por lo que se recomienda calentar el aire interior para derretir la nieve y evitar la posible inversión de la curvatura de la membrana.

Figura 2.5 Estructura neumática en Cuicuilco, D.F. (Seman Baker, sitio web)

Figura 2.6 Instituto Federal Electoral, D.F. (Seman Baker, sitio web)

Otro problema que puede presentarse es la inestabilidad de la estructura debido a la excitación del viento que activa la masa de aire en el interior de la membrana. El desempeño de la estructura depende en gran medida de la calidad de la membrana utilizada, se debe seleccionar una calidad de membrana con un factor de seguridad adecuado para evitar la propagación de cortes, rasgaduras, o defectos constructivos que pudieran presentarse en el material. Se recomienda que el factor de seguridad sea igual o mayor que 6, lo que implica que el esfuerzo en la membrana, en cualquier momento, debe ser al menos 6 veces menor que el esfuerzo de resistencia mínimo a la ruptura. Adicionalmente, se recomienda incrementar las cargas con un factor de 1.5.

2.3.3 Redes y vigas de cables pretensados

Una red de cables, es una cubierta formada por cables que está sometida a esfuerzos de tensión en sus direcciones principales (Puerto, 2008). Existen fuertes similitudes entre las membranas tensadas a través de los bordes y las redes de cables; por lo que, una membrana se puede discretizar en un sistema de cables o elementos lineales para su análisis. En la figura 2.7 se presentan ejemplos de redes de cables pretensados.

Figura 2.7 Redes de cables pretensados: (a) soporte rígido, aro de compresión; (b) soporte flexible, cables de borde; (c) con cubierta pesada. (Lewis, 2003)

Las vigas de cables pretensados son versiones bidimensionales de las redes de cables, se usan principalmente en edificaciones industriales. Se pueden clasificar en armaduras de cables y trabes de cables.

Las armaduras de cable, ilustradas en la Figura 2.8, poseen cables inferiores y superiores, así como sus miembros internos trabajando todos a tensión. Los elementos cargadores principales tienen una sección transversal mucho mayor que los elementos internos. La forma y el nivel de presfuerzo inicial deben ser diseñados para prevenir que se presente compresión en los miembros internos bajo la acción de las cargas impuestas. Las armaduras de cable pueden ser utilizadas como estructuras suspendidas estabilizadas por revestimientos pesados o elementos sólidos, por ejemplo, un puente colgante.

Figura 2.8 Vigas de cables pretensados: (a) montantes inclinados, (b) montantes verticales, (c) estructura de un puente suspendido (Lewis, 2003)

Las trabes de cable (Figura 2.9), incorporan montantes como miembros trabajando a compresión, las formas resultantes de este tipo de estructuras son menos flexibles que las armaduras de cable y en principio son iguales a los sistemas de tensegridad, que consisten en elementos cable en tensión y elementos barra en compresión, donde las barras no se tocan entre sí y sólo están conectadas a los cables. Es posible combinar una armadura de cable con una trabe de cable (Figura 2.10).

Figura 2.9 Trabe de cables pretensados (Lewis, 2003)

Figura 2.10 Combinación de armadura y trabes de cables pretensados (Lewis, 2003)

2.4 PRINCIPIO DE EQUILIBRIO

Debido que las tenso-estructuras son muy flexibles y no pueden desarrollar esfuerzos fuera del plano, las cargas externas deben ser resistidas por fuerzas axiales en el plano. Cuando no se tienen cargas externas, las fuerzas de tensión debidas al presfuerzo deben estar en equilibrio en cada punto de la superficie. Esta condición obliga a que la membrana adopte la forma de una superficie de doble curvatura. Al aplicar una carga de presión en cualquier punto, la presión se incrementa en una dirección y decrece en la dirección contraria, lo que obliga a que la superficie se deforme hasta que las fuerzas axiales de esta se equilibren con la carga aplicada (Huntington, 2013).

Figura 2.11 Principio de equilibrio (Huntington, 2013)

2.4.1 Superficies sinclásticas y anticlásticas

Geométricamente las superficies se suelen clasificar de acuerdo a su curvatura. Cuando las curvaturas principales en un punto se encuentran del mismo lado de una superficie, como en un domo, la superficie es sinclástica. Cuando en un punto las curvaturas principales se encuentran en lados opuestos de la superficie, como en una silla de montar, la superficie es anticlástica. En la figura 2.12, se puede observar un ejemplo de una superficie sinclástica y una anticlástica.

Figura 2.12 Superficies: (a) sinclástica, (b) anticlástica

En una tenso-estructura sinclástica, las fuerzas de succión son resistidas mediante el incremento de la tensión en la membrana (Figura 2.13a), mientras que las cargas de gravedad son resistidas por la presión interna del aire encerrado en la estructura (Figura 2.13b).

Figura 2.13 Fuerzas en una superficie sinclástica: (a) cargas ascendentes resistidas por un incremento en la tensión de la membrana en ambas direcciones, (b) cargas de gravedad neutralizadas por la presión del aire interior

Para no depender del aire con una presión interna controlada, comúnmente las tenso-estructuras se estabilizan proveyendo una doble curvatura opuesta en cada punto de la superficie, esto se logra curvando la membrana de una manera cóncava a lo largo de un eje y de una manera convexa a lo largo del otro eje, generándose una forma anticlástica (Figura 2.14). Debido a que la forma predominante en las tenso-estructuras es la anticlástica, se analizará una estructura de este tipo en esta investigación.

Figura 2.14 Fuerzas en una superficie anticlástica. Las fibras con curvatura convexa, A, incrementan su tensión para resistir las cargas ascendentes, las fibras con curvatura cóncava, B, incrementan su tensión para resistir las cargas descendentes

2.5 NO LINEALIDAD

Las tenso-estructuras resisten las cargas a través de cambios en las tensiones de sus superficies y de grandes desplazamientos, produciendo un comportamiento no lineal. Aun cuando las cargas de trabajo se mantienen dentro del límite elástico, las deflexiones son de tal magnitud que los cambios resultantes en la geometría deben ser considerados en el análisis. Este tipo de no linealidad se conoce como no linealidad geométrica, se presenta un ejemplo en la Figura 2.15.

Figura 2.15 Una caña de pescar ejemplificando la no linealidad geométrica (Ansys, 2013)

Existe otra fuente de no linealidad en las tenso estructuras que se debe al comportamiento no lineal de los materiales de las membranas, el cual está relacionado con su proceso de fabricación, como se explicará más a detalle en el apartado 2.7.1.1.

2.6 FORMAS BÁSICAS

Existen tres formas básicas de tenso-estructura de uso común: la silla de montar, el cono y la llamada "cresta y valle"; las cuales se ejemplifican en la Figura 2.16. Mediante la combinación de estas tres formas se pueden logran formas más complejas.

Figura 2.16 Formas básicas de tenso-estructuras: (a) Silla de montar, (b) cono, (c) cresta y valle

2.7 MATERIALES

A continuación, se describen los materiales más comúnmente utilizados en la fabricación de tensoestructuras.

2.7.1 Membranas

Las membranas arquitectónicas utilizadas típicamente en la construcción de tenso-estructuras son materiales compuestos. Un material compuesto se define como aquel que está hecho de fibras de un tipo de material embebido en una matriz de otro tipo de material, formando una capa o lámina, que a su vez puede juntarse con más láminas. Cuando la orientación de las fibras o láminas influye en el comportamiento estructural del material compuesto se dice que es anisotrópico, si la orientación es a 90 grados una con respecto a la otra, el material es ortotrópico.

2.7.1.1 Capa resistente

La mayoría de las membranas arquitectónicas poseen una capa central de hilos ortotrópicos entretejidos o sobrepuestos (Figura 2.17) y otras capas adicionales que sirven como revestimiento.

Figura 2.17 Arreglo de los hilos de la capa central de la membrana: (a) tejido con direcciones de urdimbre y trama indicadas, (b) sobrepuesto

Los hilos, que son los encargados de proporcionar resistencia estructural en las membranas, están formados por fibras acomodadas de forma paralela o giradas entre sí. Las fibras más comúnmente utilizadas son de nylon, poliéster, aramid, polyolefin o fibra de vidrio (ASCE 55, 2010).

Las formas de arreglo de hilos más utilizadas actualmente son el tejido canasta (Figura 2.17a) y el tejido panamá (Figura 2.18a). En la fabricación del tejido canasta se mantienen estirados largos hilos llamados urdimbre, mientras que hilos perpendiculares llamados trama son entretejidos por arriba y por debajo de la urdimbre. El tejido panamá es similar, con la diferencia que los hilos de la trama se acomodan en pareja. Como resultado del proceso de fabricación, las membranas se pueden encontrar en rollos de 30 m o más de largo y de 1.4 m a 4 m de ancho, donde la urdimbre se encuentra en el sentido longitudinal y la trama en el sentido transversal (Figura 2.18c).

Una fuente de no linealidad se presenta al tensar ambas direcciones de la membrana tejida, ya que, la trama se deforma más que la urdimbre y tiende a enderezarse, empujando la urdimbre hacia arriba y hacia abajo, produciendo un efecto de rizado en ésta última, conocido en inglés como "crimp interchange" (Figura 2.18b). Este efecto no se incluye normalmente en el análisis por su dificultad para modelarse, la mayoría de los programas empleados para el análisis de tenso-estructuras considera la no linealidad geométrica, pero consideran los materiales como elásticos y lineales.

Figura 2.18 (a) Tejido panamá, (b) efecto de rizado (Henrysson, 2012), (c) rollo de membrana indicando las direcciones de la urdimbre y la trama

Para minimizar el efecto de rizado y obtener un comportamiento más uniforme en ambas direcciones, algunas membranas utilizan el arreglo sobrepuesto. Con la misma finalidad, algunos fabricantes que utilizan el tejido como capa central, aplican presfuerzo a los hilos manteniéndolos estirados antes de aplicar el revestimiento, logrando que tanto la urdimbre como la trama se encuentren rizados uno alrededor de otro, consiguiendo rigideces similares en ambas direcciones, lo que ayuda a mantener distribuciones de esfuerzos relativamente uniformes durante la vida útil de la estructura.

2.7.1.2 Revestimientos

Las propiedades de una membrana, con la excepción del comportamiento mecánico, dependen principalmente de los materiales usados como revestimientos. Estos se colocan por arriba y por debajo de la capa central para incrementar la resistencia contra el fuego, contra el agua, los rayos UV, proporcionar protección contra ataques químicos y biológicos, mejorar la durabilidad, manejabilidad, facilidad de limpieza, traslucidez y la estética. La Figura 2.19 ilustra las diversas capas que posee una membrana comúnmente.

Los materiales más utilizados como revestimientos son el cloruro de polivinilo (PVC), politetrafluoroetileno (PTFE), fluoruro de polivinilideno (PVDF), poliolefinas y silicón.

2.7.1.3 Membranas más utilizadas

Las membranas más comúnmente utilizadas en las tenso-estructuras son:

- Poliéster cubierto por PVC. Son relativamente económicas, tienen buena flexibilidad, resistencia a rasgaduras y son fáciles de manejar, tienen una vida útil de más de 15 años, por lo que son ideales para estructuras de corta a media duración y estructuras que se requieren montar y desmontar repetitivamente. Sus principales limitantes son la traslucidez reducida con colores oscuros y resistencia a la suciedad y al fuego menor que en otras membranas. Tiene una resistencia a la tensión de 62 kN/m a 116 kN/m.
- Fibra de vidrio cubierta por PTFE. Es considerado uno de los materiales para membranas más durables, tiene una vida útil de más de 25 años, posee buena transmisibilidad de luz, resistencia a la suciedad y a los rayos UV, es incombustible. Tienen menor deformación por fluencia. Tiene una resistencia a la tensión y rigidez superior a las membranas de PVC que permiten lograr estructuras con grandes claros y con poca curvatura. Sus desventajas son que es poco flexible por lo que no es recomendable para geometrías con alto grado de curvatura, es susceptible de dañarse con el manejo y traslado, tiene baja resistencia ante rasgaduras y costo elevado en comparación de la membrana poliéster-PVC. Tiene una resistencia a la tensión de 32 kN/m a 176 kN/m.
- *Fibra de vidrio cubierta por silicón.* El silicón presenta una excelente transmisión de luz, es flexible y resistente a las grietas, resiste ataques químicos y la radiación UV sin volverse quebradizo. Una desventaja es que su superficie se carga estáticamente y atrae la suciedad. Otra desventaja es su alto costo y su complejo proceso de manufactura, así como la dificultad para garantizar una buena resistencia en el sellado de las uniones, que se realizan mediante adhesivos.
- *Poliéster cubierto por PVDF*. El PVDF es un material similar al PTFE, pero dispone de una rigidez y resistencia mayores, posee un bajo coeficiente de fricción y una elevada estabilidad dimensional. Su comportamiento al deslizamiento y aislamiento eléctrico no son tan buenos como el PTFE. Además, es auto-extinguible y ofrece una buena resistencia a la abrasión química.

Figura 2.19 Capas de una membrana de fibra de vidrio cubierta por PTFE

2.7.1.4 Pruebas mecánicas

Las tres propiedades mecánicas críticas de las membranas son la resistencia a la tensión, resistencia al desgarre y la rigidez (Huntington, 2003). La prueba de resistencia a tensión mide el nivel de fuerza que es requerido para romper las fibras, por tanto, proporciona la capacidad de la membrana para resistir las fuerzas de tensión resultantes del presfuerzo combinadas con las cargas externas.

La resistencia al desgarre proporciona una medida de la resistencia que tiene una membrana que ha sido cortada a la propagación de la rasgadura. Indirectamente, mide la habilidad de prevenir esfuerzos locales excesivos o daños resultantes de rasgaduras más anchas. Existe poca correlación entre la resistencia a la tensión y a la resistencia al desgarre de una membrana.

El comportamiento a la rigidez de una membrana es un fenómeno complejo que no se puede reducir a una sola variable, entre los factores que intervienen se encuentran el módulo de elasticidad, el tipo de tejido, el proceso de fabricación, los materiales del revestimiento y el efecto de rizado. Entender este comportamiento puede ser muy útil para el diseño y construcción de estructuras confiables.

Se describen las pruebas más comunes que han sido desarrolladas para las tres propiedades mencionadas anteriormente.

- *Prueba de tensión uniaxial.* Se realiza mediante una tira de membrana de 25 mm de ancho sostenida por dos abrazaderas en los extremos siguiendo las especificaciones de la norma ASTM D4851. Esta prueba proporciona una capacidad de resistencia superior de la membrana a la que presenta en condiciones reales debido al tamaño reducido de la muestra y a la ortogonalidad de las fibras.
- *Prueba biaxial.* Es el método más común para medir las propiedades de una membrana, se realiza con una muestra cortada en forma de cruz, de esta forma, el comportamiento de esfuerzo y deformación son medidos en las dos direcciones ortogonales de la urdimbre y la trama bajo diferentes relaciones de carga.
- *Prueba trapezoidal de rasgadura*. Es el método tradicional empleado para determinar la resistencia a la propagación de rasgaduras. Se realiza un corte en uno de los bordes del espécimen, en dirección perpendicular a la fuerza aplicada.

2.7.2 Cables

En general, los cables empleados para tenso-estructuras se pueden dividir en tres categorías (Lewis, 2003).

- Cables de alambres en espiral. Se utilizan para las redes de cables, su módulo de elasticidad es típicamente 170 kN/mm² ± 5 kN/mm². El número de cordones en el cable puede variar entre 7 y 91, que corresponde a un diámetro de 6 a 71 mm, respectivamente. El esfuerzo de ruptura de este tipo de cables se encuentra entre 1770 N/mm² y 1860 N/mm² (Figura 2.20a).
- Cable con torones con centro de fibra o acero. Se emplean como cables de borde, tienen un módulo de elasticidad más bajo que los cordones en espiral, alrededor de los 100 kN/mm². La configuración usada típicamente es de 6x19 alambres, y el diámetro nominal del cable puede variar de 6 a 40 mm para un cable con centro de fibra y de 6 a 45 mm con centro de acero (Figura 2.20b).
- Cables de alambres helicoidales encerrados. Este tipo de cables se utiliza mayormente para sostener cubiertas o en puentes suspendidos. El diámetro nominal varía de 20 mm a 124 mm cuando sirven para sostener cubiertas, y su módulo de elasticidad es de 160 kN/mm². Para puentes el módulo de elasticidad es aproximadamente 180 kN/mm² (Figura 2.20c).

Se recomienda un factor de seguridad entre 6 y 7 para cables de tenso-estructuras, para evitar pérdida de resistencia debido a la fatiga o vandalismo.

En la figura 2.20 se ilustran las configuraciones de los tres tipos de cables mencionados.

Figura 2.20 Tipos de cables empleados en las tenso-estructuras

2.7.3 Uniones

En este apartado se describen los tipos de unión que se utilizan con mayor frecuencia en la construcción de tenso-estructuras.

2.7.3.1 Intermedias

Para lograr las formas geométricas de las tenso-estructuras, los rollos de membrana deben ser cortados y unidos por traslape o fusión del material mediante termosellado (soldadura), pegamento, entrelazado o costura. Los esfuerzos en la membrana deben ser transmitidos a través de la unión sin que se produzca separación, rasgado o deformación excesiva del material. La resistencia de la unión es función de la adherencia de la capa del material (para uniones soldadas y pegadas) y del ancho de la unión. Los anchos típicos de unión van de 25 mm a 50 mm para membranas con recubrimiento de PVC y de 50 mm a 75 mm para membranas de silicón recubierto de PTFE.

Las partes que conformarán una membrana deben ser diseñadas para minimizar el número de uniones y las áreas con posibilidad de concentración de esfuerzos deben reforzarse con parches de membrana.

A continuación, se describen las principales formas de uniones intermedias.

- *Costuradas*. Se usan cuando no hay otra solución disponible como en el caso de membranas sin recubrimiento o que no puedan ser soldadas, se realizan con una máquina de costura cuyo uso requiere experiencia, requieren ser cubiertas o impregnadas para volverse impermeables y son adecuadas para bajos niveles de esfuerzo. En general, resulta ser un método costoso. Se puede ver un ejemplo de unión costurada en la Figura 2.21a.
- Soldadas. En este proceso se fusionan los recubrimientos de dos piezas sobrepuestas de membrana. Es el tipo de unión más utilizado, al ser impermeable y tener un proceso de producción controlado. Para membranas con recubrimiento de PVC se puede emplear soldadura por alta frecuencia o por cuña caliente en fábrica y soldadura con pistola de aire caliente en el sitio. Para membranas cubiertas de PTFE, se puede emplear soldadura por calor en fábrica y mediante planchas de calor manuales para reparaciones en sitio. Se observan uniones soldadas típicas en la Figura 2.21b.
- *Pegadas*. No son utilizadas comúnmente para tenso-estructuras, excepto para reparaciones en membranas con recubrimiento de PVC, requieren mucho trabajo y suelen ser caras.
- *Entrelazadas*. Son empleadas para conectar dos membranas de una forma fácil y desmontable (Figura 2.21c). Su resistencia es función del cordón que se utiliza y del refuerzo de los agujeros en la membrana.
- *Sujetadores*. Se realizan a partir de una serie de placas traslapadas y sujetas junto con la membrana mediante tornillos. Este tipo de conexión se instala en sitio, tiene una fuerte apariencia fuerte visual y se usa para unir paneles prefabricados de membrana de gran longitud. Las placas pueden ser de madera, acero, aluminio, entre otros materiales. Tienen como ventaja que se puede lograr una conexión directo a un elemento externo, por ejemplo una viga. La conexión depende de los cordones que recorren los bordes de la membrana en la unión, los cuales previenen que la membrana se deslice entre las placas conectadas.

Figura 2.21 Uniones: (a) costurada, (b) soldadas, (c) entrelazada

2.7.3.2 Bordes

Existen dos tipos de conexiones de borde, rígidas y flexibles (Figura 2.22), en ambos casos los esfuerzos se deben transmitir a un elemento perimetral.

- *Flexibles.* Uno de los métodos más comunes es pasar un cable por un bolsillo que se forma en la borde de la membrana soldando esta misma de manera continua. Otra forma usual es colocar el cable de borde por fuera de la membrana y unirlo mediante ganchos y placas de sujeción.
- *Rígidos*. Se utilizan cunado la estructura de soporte es mucho más rígida en comparación de la membrana. Se puede utilizar un tubo en lugar de un cable en el borde para lograr este tipo de conexión, otra unión común es emplear ganchos unidos al perfil rígido y cordones entrelazados para conectar la membrana. También, se emplean sujetadores unidos a los perfiles de borde, que actúan de forma similar a los descritos en las uniones intermedias.

Figura 2.22 Conexiones de borde: (a) flexible, (b) rígida

2.8 PROCESO DE DISEÑO

El proceso de diseño de una tenso-estructura sigue tres etapas:

- *Búsqueda de la forma en equilibrio*. Consiste en encontrar la geometría para la cual la membrana se encuentra en equilibrio bajo cargas de presfuerzo únicamente (Figuras 2.23a y 2.23b).
- *Patrones de corte*. Permite pasar de una geometría tridimensional a un patrón de corte bidimensional, para poder fabricar la membrana (Figura 2.23d).
- *Análisis.* Se calculan los esfuerzos y deformaciones considerando las cargas externas a las que estará sometida la estructura durante su vida útil (Figura 2.23c). El análisis puede ser estático y dinámico, aunque comúnmente sólo se realiza el análisis estático.

Figura 2.23 Etapas del proceso de diseño de una tenso-estructura

La respuesta de una estructura ante fuerzas del viento se compone de dos partes, la primera toma en cuenta los efectos de la parte estática del viento (respuesta media) y la segunda toma en cuenta la parte dinámica del viento (respuesta pico). Para determinar la respuesta se considera la siguiente ecuación:

$$F_L(t) = \frac{1}{2}\rho A C_L \left(\bar{V} + v(t)\right)^2$$
 Ecuación 3.1

donde:

 ρ es la densidad del aire, A es el área expuesta, C_L es el coeficiente de levantamiento, \overline{V} es la velocidad media del viento y v(t) es la velocidad turbulenta del viento.

Si la velocidad turbulenta es conocida, la fuerza de arrastre del viento se obtiene de la Ecuación 3.1. Si la parte turbulenta del viento es desconocida, en la práctica se recurre comúnmente a alguno de los siguientes procedimientos:

- a) Análisis probabilístico en el dominio de la frecuencia
- b) Métodos probabilistas de simulación

El primero supone a la estructura como un oscilador de 1 grado de libertad y mediante la relación entre la Función de Densidad de Potencia Espectral (FDPE) de la respuesta con la fuerza se obtiene la varianza de la primera, que junto con el factor de respuesta pico, se puede utilizar para obtener una respuesta máxima promedio. Este procedimiento requiere del conocimiento de varios parámetros que en algunos casos son difíciles de definir, por lo que se recurre a los métodos de simulación probabilista.

La simulación es una herramienta que se utiliza para reproducir numéricamente las fuerzas o efectos que producen fenómenos como los vientos intensos. Consiste en generar historias en el tiempo de una variable, en este caso velocidades de viento, a partir de una FDPE. Un método tradicional de simulación, que ha sido ampliamente utilizado por su sencillez (Shinozuka, 1972) consiste en la superposición de funciones trigonométricas (historias) con ángulos de fase (frecuencias) aleatorios. Este método es útil cuando se desea simular viento turbulento en un punto. Para tomar en cuenta la variación espacio-temporal se cuenta con técnicas de auto regresión y media móvil (ARMA, por sus siglas en inglés), cuyo procedimiento es descrito más adelante, este método es el que se utiliza en el presente estudio.

La Figura 3.1 presenta un cuadro conceptual de los procedimientos empleados para la determinación de las fuerzas del viento utilizadas para realizar análisis dinámicos.

3.1 CONSIDERACIONES Y PARÁMETROS PARA LA DETERMINACIÓN DE LAS FUERZAS DEL VIENTO DE ACUERDO A L**AS N**TCDV (2004)

De acuerdo a las NTCDV(2004) los efectos estáticos sobre una estructura se determinan con base en la velocidad de diseño V_D :

$$V_D = F_{TR} F_{\alpha} V_R$$
 Ecuación 3.2

Figura 3.1 Cuadro conceptual del proceso de análisis dinámico para cargas del viento

donde:

- F_{TR} factor correctivo que toma en cuenta las condiciones relativas a la topografía y a la rugosidad del terreno en los alrededores del sitio.
- F_{α} factor que toma en cuenta la variación de la velocidad con la altura z.
- V_R velocidad regional según la zona del sitio donde se construirá la estructura.

El factor de variación con la altura se puede calcular de la siguiente manera:

$$F_{\alpha} = 1$$
 si $z \le 10m$ Ecuación 3.3

$$F_{\alpha} = (z/10)^{\alpha}$$
 si $10m < z < \delta$ Ecuación 3.4

$$F_{\alpha} = (\delta/10)^{\alpha}$$
 si $z \ge \delta$ Ecuación 3.5

donde:

- *z* altura por encima del terreno natural a la cual se desea conocer la velocidad del viento, medida en metros.
- δ altura gradiente, mediad a partir del nivel del terreno de desplante, por encima de la cual la variación del viento no es importante, está dada en metros.
- \propto exponente que determina la forma de variación de la velocidad del viento con la altura.

La presión p_z (Pa) que ejerce un fluido sobre una construcción determinada, se obtiene tomando en cuenta su forma y está dada de manera general por la siguiente expresión:

donde:

 V_D velocidad de diseño a la altura z.

 C_p coeficiente local de presión, que depende de la forma de la estructura.

Para el caso particular de un paraboloide hiperbólico, las NTCDV (2004) y el MOCDV (2008) no cuentan con factores de presión C_p para el método estático. La norma Australiana de acciones de viento (AS-NZS, 2011) contiene coeficientes de presión para cubiertas con forma de paraboloide hiperbólico, cuya parte inferior está libre o abierta. Los diferentes C_p en función de las características geométricas de la estructura (Figura 3.2) se presentan en la Tabla 3.1.

Tabla 3.1 Coeficientes de presión (C_P) para paraboloides hiperbólicos libres en su parte inferior (AS-NZS, 2011)

Condiciones	intelos	**8, 2011) Z:	1i
	9 , grad	Cp,w	Cp,1
Libre en la parte inferior	0	+0.45	+0.25
$10.575 < 1.4 \le 0.5$	0	-0.45	-0.25
$ \mathbf{a} \leq c/a < \mathbf{a} , y$	00	+0.45	+0.25
8 13 < b/2 < 1 5	90	-0.45	-0.25

Nota: $C_{p,n}$ está definido como positivo hacia abajo y sólo combinaciones de valores del mismo signo deben considerarse.

Figura 3.2 Geometría para determinar el CP de paraboloides hiperbólicos

Las normas Australianas (AS-NZS,2011), no presentan un procedimiento para poder amplificar las cargas estáticas y considerar la parte dinámica del viento para el caso de un paraboloide hiperbólico.

Las fuerzas generadas por la componente estática del viento se determinan con la siguiente expresión:

$$F_z = p_z A$$
 Ecuación 3.7

donde:

 p_z presión de diseño.

A área tributaria.

3.2 CONSIDERACIONES Y PARÁMETROS PARA LA SIMULACIÓN DE LAS FUERZAS DEL VIENTO

El método ARMA utilizado para la simulación considera los efectos espacio-temporales del campo del viento turbulento, mediante la combinación de un vector de ruido blanco Gaussiano, ψ , con los coeficientes de autorregresión y media móvil denotados por $\{A_i\}$ y $\{B_i\}$ respectivamente, con la finalidad de simular una muestra del proceso estocástico. Con base en los coeficientes y el vector de ruido blanco del método ARMA, la siguiente ecuación se empleó para simular historias de velocidades del viento turbulento:

$$v_n(z,t) = \prod_{i=1}^p A_i K(t - i\Delta t) + \prod_{i=1}^q B_i \psi(t - i\Delta t)$$
 Ecuación 3.8

donde $v_n(z,t)$ es un vector de velocidades normalizadas para cualquier tiempo t a diferente altura z, con media cero y varianza unitaria. El orden de autorregresión y media móvil están denotados por p y q, respectivamente.

Para estimar los coeficientes A_i y B_i es necesario definir una FDPE, así como una función de coherencia del viento turbulento. La FDPE empleada para la simulación (Lumley y Panofsky, 1964) que proporciona la componente vertical del viento turbulento y la función de coherencia (Davenport, 1967) se presentan respectivamente, como:

$$\frac{fS(f,z)}{\sigma_w^2} = \frac{3.36\frac{fz}{\bar{V}(z)}}{1.5\left[1+10\left(\frac{fz}{\bar{V}(z)}\right)^{5/3}\right]}$$
Ecuación 3.9
$$Coh(y_i, z_i, y_j, z_j, n) = exp\left[-\frac{f\left[C_z^2(z_i - z_j)^2 + C_y^2(y_i - y_j)^2\right]^{1/2}}{\frac{1}{2}[\bar{V}(z_i) + \bar{V}(z_j)]}\right]$$
Ecuación 3.10

donde σ_w^2 es la varianza del viento turbulento en dirección vertical, $\overline{V}(z)$ es la variación de la velocidad media del viento con respecto a la altura, y C_y y C_z son coeficientes que toman en cuenta el decaimiento exponencial con la altura. La metodología para determinar los coeficientes de regresión A_i y B_i , se presentan en el Anexo A.

La coherencia de la Ecuación 3.10, sirve para correlacionar fuerzas para la componente longitudinal del viento turbulento. En este trabajo se emplea como una aproximación, ya que no se encontró una coherencia para la componente vertical del viento turbulento en la literatura.

Las muestras simuladas $v_n(z, t)$ con las Ecuaciones 3.8 a 3.10, se consideran para estimar las fuerzas inducidas por el viento turbulento con la ecuación:

$$F_L(z,t) = \rho \overline{V} v(z,t) A C_L + \frac{1}{2} \rho v^2(z,t) A C_L \qquad \text{Ecuación 3.11}$$

donde ρ es la densidad del aire, C_L es el coeficiente de levantamiento, A es el área expuesta, \overline{V} es la velocidad media del viento y v(z,t) es la velocidad del viento turbulento como función de la varianza σ_v^2 .

Las fuerzas del viento simuladas están asociadas a una varianza unitaria de la velocidad turbulenta del viento. Para estimar las fuerzas turbulentas del viento, la velocidad turbulenta es escalada con una varianza de la velocidad turbulenta del viento. Este procedimiento requiere proponer la intensidad de turbulencia. De acuerdo con Zhou et al. (2002), es posible estimar el perfil de la intensidad de turbulencia longitudinal para diferentes tipos de terreno con la siguiente ecuación:

$$l_{\nu}(z) = c \left(\frac{z}{10}\right)^{-d}$$
 Ecuación 3.12

donde los parámetros c y d se obtienen del ASCE 7 (2010), ya que el intervalo de promediación es igual al empleado en México (3s). La Tabla 3.2 presenta los valores de c y d en función del tipo de terreno.

Terreno	С	d
А	0.450	0.167
В	0.300	0.167
С	0.200	0.167
D	0.150	0.167

Tabla 3.2 Valores de c y d en función del tipo de terreno (ASCE 7, 2010)

En la tabla anterior el terreno tipo A corresponde al centro de grandes ciudades y el tipo D se puede asociar con terrenos de baja turbulencia. La varianza de la velocidad longitudinal turbulenta del viento a diferentes niveles se determina con la siguiente ecuación:

$$\sigma_u^2 = l_u^2(z) \cdot \overline{V}^2 \qquad \qquad \text{Ecuación 3.13}$$

Con la finalidad de comparar diferentes niveles de turbulencia, en términos de la intensidad de turbulencia, la Figura 3.3 muestra los perfiles de turbulencia obtenidos con la Ecuación 3.13 para los diferentes terrenos presentados en la Tabla 3.2.

Para obtener la intensidad de turbulencia de la componente vertical del viento, la desviación estándar es aproximadamente igual a (Armitt y Counihan, 1968):

$$\sigma_w \approx 0.5 \cdot \sigma_u$$
 Ecuación 3.14

por lo que, la intensidad de turbulencia para la dirección w es igual a:

$$I_w(z) = \frac{\sigma_w}{\overline{v}(z)} = \frac{0.5 \cdot \sigma_u}{\overline{v}(z)} = 0.5 \cdot I_u(z)$$
 Ecuación 3.15

Figura 3.3 Comparación de $I_u(z)$ para diferentes tipos de terreno

y sustituyendo en la Ecuación 3.13 se obtiene:

$$\sigma_w^2 = I_w(z) \cdot \overline{V}^2 \qquad \text{Ecuación 3.16}$$

La Figura 3.4 muestra los perfiles de turbulencia en la dirección vertical (w) del viento.

Figura 3.4 Comparación de $I_w(z)$ para diferentes tipos de terreno

La Figura 3.5 ilustra las velocidades turbulentas del viento simuladas con varianza unitaria y el espectro teórico y simulado sobrepuestos para un nodo ubicado a 4.60, se observa que en el rango de interés de las frecuencias de la estructura (se indican en la figura las frecuencias de los modos de vibrar 1 y 8) existe una buena concordancia entre las funciones. El procedimiento para utilizar el programa de simulación de fuerzas del viento turbulento desde MATLAB, puede ser consultado en el Apéndice B en Orozco (2015).

Figura 3.5 (a) Velocidad turbulenta simulada, (b) Comparación de espectros simulado y teórico

Para realizar el análisis geométrico no lineal de una tenso-estructura, se implementó un código en lenguaje APDL de ANSYS, donde se vinculan las fuerzas del viento obtenidas de un programa realizado en MATLAB para simular viento turbulento (Banik, 2008) con las propiedades de la membrana. En los siguientes apartados se describe el modelo y sus características, con la intención de verificar que se ha creado un modelo adecuado, que se ha escogido el tipo de material correcto y que las consideraciones empleadas son apropiadas.

4.1 INTRODUCCIÓN DE LA GEOMETRÍA

Con el fin de tener una mayor versatilidad, la geometría de la estructura se importa al programa ANSYS por medio de un archivo con extensión IGES³, que puede ser generado en programas comerciales, p.e., AUTOCAD o SOLIDWORKS. Estos programas poseen herramientas que facilitan la creación de la geometría en tres dimensiones, no convencional, que se requiere para las tenso-estructuras. Abajo, se presenta el código empleado para la importación de un archivo IGES a ANSYS.

*****	*********************
! Importar geometría desde un	archivo .iges
***************************************	***************************************
/AUX15	! Inicia el proceso de transferencia de archivos IGES
IOPTN,IGES,SMOOTH	! Selección de opción SMOOTH para importar IGES
IOPTN,MERGE,YES	! Fusionar objetos duplicados o sobrepuestos
IOPTN,SOLID,NO	! No se crean sólidos automáticamente
IGESIN, GEOMETRIA, IGES	! Transfiere los datos del archivo GEOMETRIA.iges a ANSYS
FINISH	! Termina el proceso /AUX15
! ************************************	*******

4.2 ELEMENTOS

4.2.1 Membrana

Los elementos Shell son típicamente utilizados cuando el espesor de un elemento es despreciable en comparación con su largo y ancho. A pesar que un modelo de placa con un elemento sólido produciría resultados similares, la desventaja recae en el tiempo de cómputo.

ANSYS posee los elementos membrana SHELL41 y SHELL181 que pueden emplearse para el análisis estructural de estructuras de membrana (Oliveira, 2003; Shibo, 2008; Strano, 2011; Castellanos, 2012). SHELL41, es un elemento en 3-D con rigidez en el plano pero sin rigidez a flexión, cuenta con 4 nodos con tres grados de libertad de traslación en cada nodo, este tipo de elemento es adecuado para modelar membranas que presentan un comportamiento elástico lineal, sin embargo, ANSYS recomienda el uso del elemento SHELL181 por poseer una tecnología más actual. SHELL 181 es un elemento 3-D con cuatro nodos con seis grados de libertad en cada nodo, donde la rigidez a flexión puede ser activada o desactivada. Este elemento admite un comportamiento no lineal del material. La figura 4.1 presenta un esquema del elemento SHELL181 que se empleará para los análisis de este trabajo.

³ IGES.- archivo de Especificación de Intercambio Inicial de Gráficos, por sus siglas en inglés, es un formato neutral de datos que permite el intercambio digital de información entre sistemas de diseño asistido por computadora CAD.

Figura 4.1 Geometría, ubicación de nodos y sistema de coordenadas para el elemento SHELL181

4.2.2 Cables

Los elementos Link8 y Link180 son barras en 3-D con características similares, que son utilizados comúnmente para la modelación de cables en ANSYS. Para el modelo se utilizará el elemento Link180, el cual es más reciente y presenta mejoras en sus capacidades no lineales, es un elemento con tensión-compresión uniaxial con tres grados de libertad de traslación en cada nodo, cuenta con las opciones de trabajar sólo a tensión o sólo a compresión y bajo grandes deformaciones. En la figura 4.2 se presenta un esquema del elemento Link180.

Figura 4.2 Geometría, ubicación de nodos y sistema de coordenadas para el elemento Link180

4.3 REPLICA DE UN MODELO VALIDADO

4.3.1 Rectángulo plano con bordes restringidos.

Para verificar que el elemento Shell181 genera resultados razonables, se efectuó una prueba simple, en la cual una membrana rectangular con cargas aplicadas en su superficie puede ser verificada con cálculos sencillos realizados a mano.

Se emplea una membrana de dimensiones 10 m x 2 m restringida en los bordes, Figura 4.3. Se puede asumir que la parte de en medio de la superficie no se encuentra afectada por las restricciones en los bordes. Entonces, esta zona se comportará teóricamente como un cable con presión aplicada (Figura 4.4).

Figura 4.3 Geometría de la membrana rectangular de 10 m x 2 m

Figura 4.4 Sección transversal de la membrana, simplificación a un cable

La tensión en el cable se calcula con las siguientes fórmulas:

$$T = PR$$
 Ecuación 4.1

donde,

$$R = \frac{d}{2} + \frac{w^2}{8d}$$
 Ecuación 4.2

donde, T es la tensión en el cable, P es la presión aplicada al cable o en este caso a la membrana y R es el radio del segmento de círculo, w es el ancho de la membrana y d es el desplazamiento al centro del claro.

Para este análisis, se escogió una membrana de la marca Mehler modelo Valmex FR 1000 Tipo III, con tejido Panamá de Poliéster y cubierta de PVDF (Polifluorruro de Vinilideno), cuyas propiedades se resumen en la siguiente tabla.

Peso (Kg/m ²)	Espesor (mm)	Resistencia a la tensión urdimbre/trama (kN/m)	Módulo de elasticidad urdimbre/trama (kN/m)	Coeficiente de Poisson urdimbre/trama
1.05	0.9	120/110	1400/1010	0.66/0.48

Tabla 4.1. Propiedades de la membrana Mehler Valmex FR1000 tipo III

4.3.1.1 Verificación del presfuerzo

Se comprueba que la forma elegida para introducir el presfuerzo en ANSYS es correcta. En la tabla siguiente se presentan los comandos en APDL empleados para el presfuerzo.

!**************************************	***************************************
! Comandos para introducir presfuerzo en A !************************************	\NSYS ****************
/PREP7	! Inicia el proceso de creación del modelo
ASEL,S,,,1,,,1	Se selecciona el área a mallar!
INISTATE, DEFINE, ,,,, 1.111E6, 2.222E6	!Se definen los presfuerzos en dirección X e Y local
ALLSEL,ALL	!Se mallan las áreas seleccionadas
FINISH	! Termina el proceso /PREP7
*****	******

Se introduce un presfuerzo de 1 kN/m a lo largo de los 10 m y 2 kN/m a lo largo de los 2 m y se obtiene la gráfica de los esfuerzos en dichos sentidos. Como se puede observar en la Figura 4.5, en el inciso (a) el esfuerzo en dirección X es $0.111 \times 10^7 N/m^2$ que multiplicado por el espesor de la membrana 0.0009 m da como resultado un presfuerzo de 1 kN/m y en el inciso (b) se tiene un esfuerzo en dirección Z de $0.222 \times 107 N/m^2$ con el que se obtiene un presfuerzo de 2 kN/m.

Figura 4.5 Presfuerzo en dirección X (izquierda) e Y (derecha)

Con base en lo anterior, se puede concluir que la forma en que se introduce el presfuerzo en la membrana es correcta. En la Figura 4.5 y las demás Figuras obtenidas del programa ANSYS que se presentan en este documento (excepto donde se indican otras unidades) las unidades de esfuerzos son pascales (Pa) y las de desplazamiento metros (m).

4.3.1.2 Esfuerzos en la membrana

Para verificar la tensión en la membrana, se aplicó una carga de presfuerzo de 0.1 kN/m y una presión en sentido descendente de $1 kN/m^2$. Se empleó una malla de 10x30 elementos rectangulares y se utiliza el módulo de elasticidad mayor en la dirección corta de la membrana (en el sentido de los 2 m). En la Figura 4.6, se puede observar que es correcta la suposición hecha sobre la parte media de la membrana sin afectación.

Figura 4.6 Membrana utilizada para la comparación de resultados obtenidos con Ansys y a mano, los colores representan los esfuerzos en la dirección principal (Z) de la membrana.

El desplazamiento obtenido en el centro de la membrana es de d = 0.072876 m, como puede observarse en la Figura 4.6. Se procede a calcular el valor del radio y de la tensión en la membrana sustituyendo en las Ecuaciones 4.2 y 4.1, respectivamente.

$$R = \frac{0.072876m}{2} + \frac{2m^2}{8 \times 0.072876m} = 6.897 m$$
$$T = PR = 1\frac{kN}{m^2} \times 6.8971m + 0.1\frac{kN}{m} = 6.997\frac{kN}{m}$$

Lo anterior, es una simplificación del problema, dado que la longitud de la membrana/cable es la longitud con el presfuerzo aplicado. Entonces, el esfuerzo calculado debería ser ligeramente superior al valor real. No obstante, debido a que el presfuerzo es bajo en comparación de la presión aplicada, diez veces menor, el resultado puede asumirse como suficientemente preciso.

El valor del esfuerzo en la membrana obtenido en Ansys es de $7.74 \times 10^6 N/m^2$ como puede observarse en la imagen anterior, multiplicando por el espesor de 0.9 mm obtenemos un esfuerzo de tensión en la membrana de 6.966 kN/m y representa una diferencia de 0.5% aproximadamente con respecto al valor calculado, se concluye que los resultados obtenidos con ANSYS son razonables.

Se realizó, un segundo análisis cambiando de dirección la urdimbre y la trama, es decir, girando 90° los módulos de elasticidad en la membrana, para que el módulo de elasticidad menor coincida con la dirección corta de la membrana. En la Figura 4.7 se puede observar que se obtiene un desplazamiento ligeramente mayor y esfuerzos menores en comparación con el caso anterior como era de esperarse.

Figura 4.7 Esfuerzos en la dirección Z de la membrana, con la trama en la dirección de los 2 m

4.3.1.3 Forma de los elementos de la malla

Se realizó un análisis cambiando la malla rectangular por una malla triangular, se obtuvieron resultados similares a los obtenidos en el primer análisis. La distribución de esfuerzos presenta un patrón menos uniforme al usar una malla triangular, debido a la orientación de los ejes locales de los elementos de la malla.

También, para el análisis con malla triangular se obtuvieron desplazamientos y deformaciones menores a los obtenidos con la malla rectangular, como era de esperarse. En la Tabla 4.2, se presentan los esfuerzos en la dirección principal de la membrana, el desplazamiento máximo y la deformación máxima obtenidos con ambos tipos de malla.

Malla 10x30	Esfuerzo máximo 1 en la dirección principal (kN/m)	Deformación máxima 1	Desplazamiento Máximo (m)
Rectangular	6966	0.003472	0.072876
Triangular	7029	0.003416	0.072460
Diferencia %	0.9	1.6	0.6

Tabla 4.2 Comparación de respuestas entre mallado rectangular y triangular	Tabla 4.2 Com	paración de 1	espuestas	entre mallado	rectangular	y triangular
--	---------------	---------------	-----------	---------------	-------------	--------------

La Figura 4.8 ilustra los esfuerzos en la dirección Z de la membrana, con malla triangular.

Figura 4.8 Esfuerzos en la dirección Z de la membrana, con malla triangular

4.3.2 Membrana en forma de cono

En Shibo (2008) se analiza un tenso-estructura con forma de cono sometida a un presfuerzo por temperatura y a cargas de viento. Las propiedades usadas para el modelo en ANSYS, se obtienen de un estudio experimental realizado por Van Asselt (2007).

4.3.2.1 Análisis estático

El material de la membrana se considera isotrópico lineal, y el análisis estático lineal. Para efectos de poder comprobar que los materiales y la forma de introducir el presfuerzo, utilizados en los análisis de la membrana rectangular, siguen produciendo resultados razonables para estructuras tridimensionales, se replica el análisis de la tenso-estructura mencionada.

En la Figura 4.9 se observa la geometría de la tenso-estructura en forma de cono. Sus dimensiones son, diámetro D = 20 m y altura H = 10 m, el área se malla mediante triángulos con un tamaño de 1m, el modelo consta de 1536 elementos. Se restringen los desplazamientos en el nodo superior del cono, y en todos los nodos de la base. Se restringen los desplazamientos en los seis grados de libertad para cada nodo.

Figura 4.9 Geometría de la tenso-estructura con forma de cono

Se utiliza el elemento membrana SHELL181, con un espesor de 1.5 mm. Se considera una carga de viento de levantamiento de $2 kN/m^2$. En el estudio de Shibo (2008), el presfuerzo inicial de tensión se produce por medio de una carga por temperatura. La fuerza de presfuerzo inicial, el módulo de elasticidad y el coeficiente de Poisson son:

$$P = 2.7778 \frac{N}{mr}$$
 $E = 289.7073 MF$ $\nu = 0.49$

Se calculan el esfuerzo por temperatura requerido para obtener el presfuerzo P:

$$\sigma = \frac{P}{espesor} = \frac{2.778}{1.5} = 1.8519 MF$$
 Ecuación 4.3

La deformación por temperatura es:

$$\varepsilon = \frac{\sigma}{E} = \alpha (T_{referencia} - T)$$
 Ecuación 4.4

Así, el presfuerzo por temperatura puede ser calculado por:

$$T = -\frac{\sigma}{E\alpha} + T_{referencia} = -\frac{1.8519}{(1.0x10^{-5})(289.7073)} = -639.23 \,^{\circ}C \qquad \text{Ecuación 4.5}$$

donde, $\alpha = 1.0x 10^{-5} \frac{1}{c}$ es el coeficiente de expansión térmica, y $T_{referencia} = 0^{\circ}C$ es la temperatura de referencia.

En este trabajo, el presfuerzo es introducido de la forma presentada en el apartado 4.3.1.1. En la tabla 4.3 se comparan los resultados del análisis con los resultados obtenidos por Shibo (2008).

Tabla 4.3 Comparación entre el análisis lineal efectuado y el de Shibo (2008)

	Análisis efectuado	(Shibo, 2008)	Error relativo
Esfuerzo principal 1 máximo (MPa)	16.926	17.365	2.59%
Deformación principal 1 máxima	0.046761	0.046103	1.43%

En la Figura 4.10 se observan la distribución de esfuerzos y la deformación en la dirección principal.

Figura 4.10 Distribución de esfuerzos principales en MPa (a) y deformaciones principales (b)

Se tiene una pequeña diferencia en los resultados con respecto a los obtenidos por Shibo (2008), esto podría deberse a la precisión de los valores de entrada utilizados, o a cambios en los elementos entre el ANSYS 11.0 utilizado por Shibo (2008) y la versión de ANSYS 15.0, empleado en este trabajo.

4.3.2.2 Análisis no lineal

ANSYS utiliza el método de Newton-Raphson para resolver problemas no lineales, donde la carga se subdivide en una serie de incrementos, que se pueden aplicar durante varias etapas de carga. El comando que usado en ANSYS para el análisis no lineal es NLGEOM, cuando se activa, el análisis incluye efectos de grandes deformaciones y la dirección de aplicación de la carga cambia siguiendo la deformación del elemento, como se ilustra en la Figura 4.11.

Figura 4.11 Dirección de las cargas antes y después de la deformación

Se realizó el análisis no lineal de la estructura en forma de cono, considerando el presfuerzo y la carga de viento establecidas previamente. Los comandos empleados para el análisis no lineal se muestran abajo.

!*************************************	***************************************
/SOLU	! Inicia solución
NLGEOM, ON	! Activa el análisis geométrico no lineal
AUTOTS, ON	! Escalonamiento de tiempo automático
NSUBST, 5, 1000	! Tamaño de la primera sub-etapa=1/5 de la carga total,
	máx. # de sub-etapa=1000, mín. # sub-etapa=1
OUTRES, ALL, ALL	! Almacena los resultados de todas las iteraciones
FINISH	! Termina el proceso
***************	***************************************

En la tabla 4.4 se comparan los resultados obtenidos en el análisis no lineal, con los obtenidos con Shibo (2008).

	Análisis efectuado	(Shibo, 2008)	Error relativo
Esfuerzo principal 1 máximo (MPa)	12.7915	12.485	2.45%
Deformación principal 1 máxima	0.031306	0.031389	0.26%

Tabla 4.4 Comparación entre el análisis no lineal efectuado y el de Shibo (2008)

En la Figura 4.12, se observa que el esfuerzo principal σ 1 máximo disminuyó de 16.926 *MP* en el análisis lineal a 12.485 *MP* en el análisis no lineal; de la misma manera, disminuyó la deformación máxima ε 1, de 0.0468 a 0.0313, lo cual es coherente y era esperado.

Figura 4.12 Distribución de esfuerzos principales en MPa (a) y deformaciones principales (b), obtenidos mediante un análisis no lineal, considerando cargas de presfuerzo y viento

Se concluye que el material empleado para la membrana y la forma de introducir el presfuerzo es correcta y puede utilizarse para modelar la tenso-estructura principal de este estudio.

En el Anexo C, se pueden consultar los códigos empleados para los análisis estático lineal y no lineal de los conos estudiados en esta sección.

4.4 MODELO DE ANÁLISIS: PARABOLOIDE HIPERBÓLICO

4.4.1 Geometría

Para el modelo y análisis de este estudio, se selecciona la forma del paraboloide hiperbólico, por ser una de las geometrías regulares más utilizadas en las tenso-estructuras. La geometría y dimensiones se presentan en la Figura 4.13. Los puntos elevados de la membrana se denotan con la letra H y los puntos bajos con la letra L.

Figura 4.13 Geometría del paraboloide hiperbólico utilizados para los análisis

Todos los análisis efectuados con membranas en forma de paraboloide hiperbólico en este trabajo parten de una geometría en equilibrio, que considera el presfuerzo inicial en la membrana. Esta forma

estable se obtiene con ayuda del programa TensiledrawLT, desarrollado por el fabricante de membranas Mehler, siguiendo el procedimiento descrito en el Anexo B.

4.4.2 Análisis de sensibilidad

Se realiza un análisis de sensibilidad con la finalidad de comprender mejor el comportamiento de la estructura de membrana con forma de paraboloide hiperbólico, al estar sometida a distintos tipos de carga.

4.4.2.1 Esfuerzos y desplazamientos en función de la carga

Se elige utilizar una malla con elementos con geometría triangular como se observa en la Figura 4.14, ya que estos presentan un comportamiento más robusto en comparación con los elementos de forma rectangular, al ser usados en elementos SHELL que están sometidos a grandes deformaciones (Ansys, 2015). Se empleó la misma membrana Mehler Valmex FR1000 Tipo III del apartado 4.1, cuyas características se presentan en la Tabla 1, con la simplificación de considerarla isotrópica y utilizando el módulo de elasticidad menor de forma conservadora. En la tabla 4.5 se presentan las propiedades del cable utilizado para los análisis, el cual es un cable de acero de 37 alambres en espiral.

Diámetro	Carga de	Límite de	Área de la sección	Módulo de	Peso
nominal	ruptura	tensión	transversal	elasticidad	
17.0 mm	260	156	168	160 ~~ /	1.32

Figura 4.14 Malla con geometría triangular

Se realiza un análisis considerando únicamente la carga por presfuerzo, la Figura 4.15a presenta la distribución de los esfuerzos principales, la cual es ligeramente asimétrica debido a la orientación de la membrana. En la Figura 4.15b, se puede observar que los desplazamientos inducidos por el presfuerzo en las esquinas bajas (L) de la membrana son negativos en el eje Y (hacia abajo) y los desplazamientos en las esquinas altas (H) de la membrana son positivos (hacia arriba).

Figura 4.15 Distribución de esfuerzos (a) y desplazamientos (b) para la membrana con presfuerzo

En un segundo análisis, se añade la carga por gravedad a la carga de presfuerzo y los desplazamientos en las esquinas bajas (L) se incrementan, mientras que los desplazamientos en las esquinas altas (H) se reducen, se empieza a observar una dirección de esfuerzos dominantes entre los puntos altos de la membrana, como se observa en la Figura 4.16.

Figura 4.16 Distribución de esfuerzos (a) y desplazamientos (b) considerando presfuerzo y gravedad

Al agregar una carga de presión descendente uniforme de $1 kN/m^2$, la dirección principal de esfuerzos entre los puntos elevados de la membrana se distingue con claridad, Figura 4.17a. En la Figura 4.17b se observa la distribución de desplazamientos.

Figura 4.17 Distribución de esfuerzos (a) y desplazamientos (b) considerando presfuerzo, gravedad y presión en sentido descendente

Se cambia la carga de presión descendente por una carga ascendente uniforme de $1 kN/m^2$ y se puede ver como la dirección principal de los esfuerzos se invierte, ahora se presenta entre los puntos bajos (L) de la membrana (Figura 4.18a). Es importante resaltar que la dirección de la malla tiene que ser invertida para evitar problemas de convergencia en el modelo. Para esta geometría en particular, la dirección de la malla (Figura 4.18c), debe ser contraria a la dirección de los esfuerzos principales para que no se presenten problemas de convergencia

Figura 4.18 Distribución de esfuerzos (a) y desplazamientos (b) considerando presfuerzo, gravedad y presión en sentido ascendente, (c) dirección de la malla

4.4.2.2 Efecto del presfuerzo en la forma de la tenso-estructura

Con la finalidad de observar el cambio en la forma de la membrana al variar la magnitud del presfuerzo, se efectuaron una serie de análisis variando el presfuerzo en el software Tensiledraw LT. En la Figura 4.19, se presenta la forma que adquiere la membrana para una relación de presfuerzo urdimbre/trama de 1:1, 2:1, 4:1 y 1:4 (Figuras 4.19 a, b, c y d, respectivamente), manteniendo constante el presfuerzo en los cables con una tensión de 15 kN.

Al incrementar el presfuerzo en la urdimbre (orientada en la dirección que une los puntos más bajos de la membrana) el punto medio de la membrana se desplaza hacia abajo, Figura 4.19 b y c. Mientras que, al incrementar el presfuerzo en la trama el punto medio de la membrana se desplaza hacia arriba (Figura 4.19d). La línea azul punteada indica la altura del punto medio de la membrana cuando el presfuerzo es el mismo en la urdimbre y la trama.

Figura 4.19 Efecto del presfuerzo en la membrana en la forma

Se realiza otro análisis, variando el presfuerzo en los cables de borde de la membrana. En la figura 4.20, se observa el cambio en la curvatura de los cables de borde, siendo inversamente proporcional al presfuerzo aplicado, se tiene un presfuerzo de 5 kN, 15 kN y 30 kN en los cables de las figuras a, b y c, respectivamente. El presfuerzo en la membrana se mantuvo constante en 1 kN para ambas direcciones

Figura 4.20 Efecto del presfuerzo en los cables en la forma

4.4.3 Forma y tamaño de la malla

Para evitar problemas de convergencia debido a la dirección de la malla, se decide emplear un mallado simétrico como el de la Figura 4.21 para los análisis subsecuentes.

Figura 4.21 Forma de malla adoptada para los análisis

Para definir el tamaño de malla adecuado para el modelo, se realizaron una serie de análisis variando el tamaño y cantidad de los elementos de la malla, considerando una presión ascendente sobre la membrana de $1kN/m^2$ y un presfuerzo de 4kN/m.

Figura 4.22 Esfuerzos (izquierda) y desplazamientos (derecha) en función del número de elementos por lado en la malla

En las gráficas superiores se puede observar que los resultados que se obtienen con una malla de 18 elementos son similares a los obtenidos con una malla de 16 elementos. Se considera que con una malla de 16 elementos por lado se obtienen resultados suficientemente precisos para el modelo sometido a fuerzas dinámicas del viento.

4.4.4 Análisis modal

Se realiza un análisis modal para encontrar los modos de vibrar y las frecuencias que contribuyen en mayor medida a la respuesta de la estructura. Las líneas de código para el análisis en ANSYS se presentan abajo.

*****	******
! Comandos para efectuar el anál	isis modal en ANSYS
***************************************	******
/SOLU	! Inicia el proceso solución
ANTYPE,MODAL	! Análisis modal
MODOPT,LANB,100,,,,OFF	! Se extraen 100 modos
MXPAND,100	! Se expanden los modos
SOLVE	! Inicia la soulación
FINISH	! Termina el proceso /SOLU
!*************	***************************************

4.4.5 Amortiguamiento para el análisis dinámico

De acuerdo a la Guía Europea de Diseño (Tensinet, 2004), en experimentos de túnel de viento para la estimación de factores de amplificación dinámica en tenso-estructuras se han usado valores de amortiguamiento entre 1.5% y 3%. Sin embargo, en la industria de estructuras de membrana se han considerado valores de amortiguamiento más grandes como apropiados, debido a la naturaleza del material compuesto y al efecto de rizado que causan un incremento en el amortiguamiento por la fricción entre las fibras.

5.1 PROCEDIMIENTO DE ANÁLISIS

En esta sección se estudia la tenso-estructura con forma de paraboloide hiperbólico, descrita en el capítulo anterior, para determinar su respuesta ante fuerzas turbulentas del viento. Para los análisis, se consideró que la estructura se ubica en la delegación Coyoacán, de la Ciudad de México. La tabla 5.1 resume los parámetros de las NTCDV (2004) empleados en para el cálculo de las presiones del viento.

Zona	Importancia de	Perido de	Velocidad	Tipo de	Tipo de
	la construcción	retorno	Regional	terreno	topografía
Ι	В	50 años	36 m/s	R3	T3

Tabla 5.1 Parámetros de las NTCDV (2004) utilizados para los análisis

El tipo de terreno *R*3 corresponde a una zona típica urbana y suburbana, donde el sitio está rodeado predominantemente por construcciones de mediana y baja altura o por áreas arboladas. El tipo de topografía T3 corresponde a un terreno prácticamente plano, campo abierto, sin cambios topográficos importantes y pendientes menores al 5%. Para este tipo de terreno y topografía, el factor de topografía F_{TR} tiene un valor de 0.88. Al ubicarse la estructura a una altura menor a 10 m el factor F_{α} es igual a 1. Por lo que la velocidad de diseño, de acuerdo a la ecuación 3.2, es:

$$V_D = (0.88)(1.0)(36) = 31.68 m/s$$

Se realizan cuatro análisis, dos estáticos y dos dinámicos con direcciones de incidencia del viento de 0° y 90 (Figura 5.1a). Las cargas utilizadas para los análisis con dirección del viento 0° y 90° se muestran respectivamente en la Figura 5b y 5c; también, se observa que las cargas del lado de barlovento tienen una magnitud mayor que las cargas de sotavento de acuerdo a los C_p utilizados.

Figura 5.1 (a) Direcciones de análisis, fuerzas de viento en los nodos para: (b) 0° y (c) 90°

Para el análisis estático, se utilizan fuerzas obtenidas mediante el NTCDV (2004) con ayuda de la Ecuación 3.3 y empleando los coeficientes de presión de las normas de viento de Australia. Se obtienen respectivamente las siguientes presiones para $C_p = 0.45$ y $C_p = 0.25$, con la Ecuación 3.6:

$$p_{z (0.45)} = 212.27 Pa$$

 $p_{z (0.25)} = 117.92 Pa$

Los parámetros empleados para la simulación de las fuerzas del viento turbulento son los siguientes:

Parámetro	Notación	Valor
Tiempo de observación	acton T	600 (s)
Incremento de tiempo		0.1 (s)
Frecuencia de Nyquist	20	5 (Hz)
Frecuencias límite	here.	0.001, 5.000 (Hz)
Incremento de frecuencia	1	0.001 (Hz)
Orden del método ARMA	1.02	5, 5
Parámetros para caracterizar la coherencia	F. 2.	10, 16
Varianza del viento turbulento		Variable

Tabla 5.2 Parámetros empleados para la simulación del viento

Para calcular la intensidad de turbulencia longitudinal y escalar las velocidades turbulentas del viento se empleó el tipo de terreno B, el cual corresponde a un terreno tipo suburbano y que considera la existencia de construcciones de baja altura y zonas de construcciones altas. Por lo que, los parámetros c y d para utilizar en la Ecuación 3.9 son respectivamente iguales a 0.300 y 0.167.

Para obtener las fuerzas del viento, la tenso-estructura se divide en las áreas tributarias mostradas en la Figura 5.2, donde los puntos en color rojo representan los puntos de aplicación de las fuerzas del viento.

Figura 5.2 Áreas tributarias en la tenso-estructura

En la Tabla 5.3, se presentan los resultados del análisis modal efectuado: valores de frecuencias, periodos y participación modal en las direcciones relevantes de la estructura, para los primeros 8 modos de vibrar.

Modo	Frecuencia	Periodo	Participaci	ón modal a	cumulada (%)
			UY	RotX	RotZ
1	2.51056	0.39832	0.00	24.39	0.00
2	2.51264	0.39799	0.00	24.67	24.66
3	3.04382	0.32853	55.86	66.03	66.02
4	3.42856	0.29167	55.86	66.03	66.02
5	3.88908	0.25713	55.86	66.03	66.02
6	4.547600	0.21990	55.86	66.04	66.03
7	4.54860	0.21985	55.86	66.05	66.05
8	4.87003	0.20534	88.59	90.29	90.29

Tabla 5.3 Modos de vibrar, frecuencias y periodos

En la Figura 5.3, se observan los modos 1, 2, 3 y 8 que son los que tienen más contribución a la respuesta de la estructura.

Figura 5.3 Modos de vibrar 1, 2, 3 y 8 (incisos a, b, c y d, respectivamente)

El amortiguamiento inherente de la estructura se modeló empleando el amortiguamiento de Rayleigh, suponiendo $\xi = 1.5\%$ y las frecuencias del primero y octavo modo, cuyos valores son respectivamente iguales a 2.51 y 4.87 Hz (Figura 5.4).

Figura 5.4 Amortiguamiento de Rayleigh

5.2 RESULTADOS DE LOS ANÁLISIS ESTÁTICOS

5.2.1 Viento con dirección 0°

La Figura 5.5, muestra la distribución de los desplazamientos (a), esfuerzos (b), deformaciones en la membrana (c) y los esfuerzos en los cables (d). La Tabla 5.4 resume los valores máximos obtenidos en el análisis para las respuestas mencionadas.

Figura 5.5 Respuesta estática de la estructura para viento con dirección 0•

Desplazamiento en la	Esfuerzo en la	Deformación en la	Esfuerzo en cables
dirección vertical	dirección principal	dirección principal	
0.334 (~)	8.76 × 10° (""""""""""""""""""""""""""""""""""""	0.0061	2.92 × 10, , //m, , 49.056 , , , , , , , , , , , , , , , , , , ,

Tabla 5.4 Valores máximos de la respuesta estática con dirección del viento 0°

5.2.2 Viento con dirección 90°

Se presentan la distribución y los valores máximos de la respuesta, ahora para cuando el viento tiene dirección de incidencia de 90°, en la Figura 5.6 y la Tabla 5.5.

Figura 5.6 Respuesta estática de la estructura para viento con dirección 90°

Tabla 5.5	Valores	máximos d	de la	respuesta	estática con	ı dirección	del viento () •
	1 4101 05	maximos	uc m	respuesta	control con			

Desplazamiento en la	Esfuerzo en la	Deformación en la	Esfuerzo en cables
dirección vertical	dirección principal	dirección principal	
	8.17 × 10° ("	0.0054	2.41 × 10 crJ/m., 40.488 \$\$<****

Al comparar los análisis estáticos, se nota que se presentan menores esfuerzos y desplazamientos cuando la dirección del viento es a 90°. Esto es coherente, ya que las fuerzas del viento empleadas son de levantamiento, por lo que la membrana trabaja de una forma más eficiente cuando las cargas máximas están cerca de los puntos bajos (L).

5.3 RESULTADOS DEL ANÁLISIS DINÁMICO

5.3.1 Viento con dirección 0°

Se muestran los resultados de la simulación para dos de los nodos ubicados a 4.35 m de altura, el primero de ellos con un $C_P = 0.45$ y el segundo con $C_P = 0.25$. La línea punteada representa la parte media o estática del viento, tanto en las velocidades como en las fuerzas. También, se indican los valores máximos para cada uno de los casos.

Figura 5.7 Historias de velocidades y fuerzas en el tiempo para el viento en dirección 0°

Se muestran los desplazamientos y los esfuerzos en el tiempo para los nodos con el máximo desplazamiento y esfuerzo respectivamente, ambos ubicados a 4.68 m de altura.

Figura 5.8 Historias de desplazamientos y esfuerzos en el tiempo para el viento en dirección 0°

En la Figura 5.9, se ilustra la respuesta máxima de la estructura para (a) desplazamientos, (b) esfuerzos, (c) deformaciones y (d) esfuerzos en los cables, en los respectivos tiempos en los que se alcanza esta respuesta. Estos valores máximos se resumen en la Tabla 5.6.

Figura 5.9 Respuesta dinámicaa de la estructura para viento con dirección 0°

Tabla 5.6 Valores máximos de la 🛛	respuesta dinámica con	dirección del viento 0•
-----------------------------------	------------------------	-------------------------

Desplazamiento en la	Esfuerzo en la	Deformación en la	Esfuerzo en cables
dirección vertical	dirección principal	dirección principal	
es ellan verricar D. 674 (ms	2.367 × 10 [*] (^{**********************************}	0.0148	5.00 × 10, crl/m., 84.000 \$\$\construction

5.3.2 Viento con dirección 90°

Se muestran los resultados de la simulación para dos de los nodos ubicados a 4.31 m y 4.56 m de altura, el primero de ellos con un $C_P = 0.45$ y el segundo con $C_P = 0.25$ (Figura 5.10). La línea punteada representa la parte media o estática del viento, tanto en las velocidades como en las fuerzas. Se resaltan los valores máximos obtenidos para cada uno de los casos. En la figura 5.11 se muestran los desplazamientos y los esfuerzos en el tiempo para los nodos con el máximo desplazamiento y esfuerzo. En la figura 5.12 se ilustra la distribución de las respuestas máximas de la estructura (desplazamientos, esfuerzos, deformaciones y esfuerzos en los cables) y en la Tabla 5.7 se resumen estos mismos valores.

Figura 5.10 Historias de velocidades y fuerzas en el tiempo para el viento en dirección 90°

Figura 5.11 Historias de desplazamientos y esfuerzos en el tiempo para el viento en dirección 90°

Figura 5.12 Respuesta dinámica de la estructura para viento con dirección 90°

Desplazamiento en la	Esfuerzo en la	Deformación en la	Esfuerzo en cables
dirección vertical	dirección principal	dirección principal	
	2.205 × 10 ⁺ (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.0122	4.26 × 10, , J/m, , 71.568

Tabla 5.7 Valores máximos de la respuesta dinámica con dirección del viento 0

Al comparar las respuestas de los análisis dinámicos en ambas direcciones de viento, se observa que de nuevo el viento en dirección 0° produce mayores esfuerzos y desplazamientos.

5.4 COMPARACIÓN DE RESULTADOS

En las gráficas siguientes se comparan los resultados obtenidos en los análisis efectuados.

Figura 5.13 Comparación de las respuestas de la estructura obtenidas en los diferentes análisis

Al analizar los resultados, los valores de los desplazamientos se incrementaron aproximadamente al doble al considerar las cargas dinámicas del viento. Los valores de los esfuerzos en la membrana también subieron y son aproximadamente 2.7 mayores que los obtenidos con un análisis estático; mientras que las deformaciones son mayores por un factor de 2.4 en el análisis dinámico. La fuerza axial en los cables se incrementó cerca de un 70% al considerar las cargas del viento turbulento.

La membrana, al estar sometida a las fuerzas turbulentas del viento, alcanzó un esfuerzo máximo de $21.303 \ kN/m$, comparando este valor con la resistencia a la tensión menor (en el sentido de la trama) de la membrana de $110 \ kN/m$ (Tabla 4.1), se obtiene un factor de seguridad próximo a 5, la membrana no falla por tensión y al revisar las historias en el tiempo de esfuerzos se observa que no se tienen esfuerzos negativos en la membrana, por lo que el presfuerzo inicial es adecuado para asegurar que la membrana trabaje todo el tiempo a tensión al estar sometida a las cargas del viento.

Los cables alcanzaron un esfuerzo axial máximo de 84kN contra su límite de tensión de 156kN (que a la vez representa el 60% de su carga de ruptura 260kN, valor recomendado en la literatura) por lo que se encuentra trabajando aproximadamente al 50% de su capacidad recomendada. Por tanto, se considera que el cable utilizado en el análisis es adecuado.

A partir de estos resultados, se puede afirmar que el modelo de paraboloide hiperbólico analizado es altamente sensible a la parte turbulenta del viento y por tanto, la parte dinámica del viento debe ser considerada durante el análisis y diseño de este tipo de estructuras para asegurar un comportamiento confiable y seguro durante toda su vida útil.

Los códigos utilizados en ANSYS para el análisis modal y los análisis estático y dinámico en la dirección del viento 0° pueden consultarse en el Anexo C. Los códigos para los análisis con dirección del viento a 90° son similares a los presentados en el anexo C y no se presentan en este trabajo, tienen como diferencia los nodos de aplicación de las fuerzas.

6 CONCLUSIONES Y RECOMENDACIONES

Se modeló una tenso-estructura con forma típica (paraboloide hiperbólico) y se sometió a fuerzas dinámicas del viento que consideran la correlación espacio-temporal. El modelo matemático considera las fuerzas de pretensado en la membrana. Para obtener las fuerzas estáticas del viento se emplearon los parámetros de las NTCDV (2004) y se utilizaron coeficientes de presión de las normas Australianas de viento (AS-NZS, 2011). Para la simulación de las fuerzas de viento turbulento se empleó un modelo de autorregresión y media móvil (ARMA). Con base en los modelos analizados se concluye lo siguiente:

- En México, no existe un código o reglamentación que presente un procedimiento de diseño bajo la acción de cargas dinámicas del viento para tenso-estructuras.
- Las tenso-estructuras presentan un comportamiento altamente no lineal debido a su geometría poco convencional y a los materiales flexibles con las que se fabrican.
- La respuesta del paraboloide hiperbólico analizado es altamente sensible a las fuerzas dinámicas del viento. Los desplazamientos, los esfuerzos y las deformaciones en la membrana, así como los esfuerzos en los cables se incrementaron por un factor de entre 1.7 y 2.7 veces con respecto al caso estático. Se concluye que la parte dinámica del viento debe ser incluida en el análisis y diseño de una tenso-estructura.
- La orientación de la membrana durante el diseño y montaje de una tenso-estructura tiene una gran repercusión en la eficiencia (mayores o menores desplazamiento y esfuerzos) con la que ésta trabajará, al estar sometida a las cargas de servicio durante su vida útil.
- Es necesario proporcionar un presfuerzo inicial que asegure que la membrana y los cables trabajen siempre a tensión durante la vida útil de la estructura.

Se emiten las siguientes recomendaciones:

- Se recomienda realizar una mayor cantidad de análisis del modelo en ANSYS para poder verificar que los factores de incremento en la respuesta de la tenso-estructura ante fuerzas turbulentas del viento se repiten dentro del mismo rango y son confiables.
- Para futuros análisis dinámicos, se sugiere implementar un modelo de material ortogonal de membrana y que considere la no linealidad del material.
- Es recomendable, en el modelo matemático, orientar el sentido más resistente de la membrana (urdimbre) en dirección de los esfuerzos principales, de esta manera la membrana y la estructura en general trabajan de una forma más eficiente.
- Se recomienda realizar estudios experimentales en túnel de viento del modelo analizado en este trabajo, para poder comparar los resultados y obtener pautas que ayuden al diseño de este tipo de estructuras.
- Se sugiere revisar la literatura para futuros análisis, con la finalidad de encontrar una función de coherencia espacial bidimensional para la componente vertical del viento turbulento.

Referencias bibliográficas

- 1. American Society of Civil Engineers, (2010), "ASCE 55-10 Tensile Membrane Structures", Virginia, Estados Unidos.
- 2. Armitt J. y Counihan J., (1968), "The simulation of the atmospheric boundary layer in wind tunnel. Atmospheric Environment".
- 3. Banik Sudhan, (2008), "Tornado hazard assessment", PhD Thesis, The University of Western Ontario, London, Ontario, Canadá.
- 4. Buchholdt H. A., (1999), "An introduction to cable roof structures", Thomas Telford.
- 5. Burton J. y Gosling P., (2004), "Wind loading pressure coefficients on a conic shaped fabric roof, Experimental and computational methods", IASS 2004, Shell Spatial Structures from Models to realization, Montpellier, Francia.
- 6. Castellanos E., (2012), "Estudio analítico-experimental de una lonario sujeta a efectos dinámicos por viento", Tesis de maestría, Universidad Autónoma de Querétaro, México.
- 7. Chay M., Albermani F., Wilson R., (2005), "Numerical and analytical simulation of downburst wind loads", University of Queensland, St Lucia Queensland 4072, Australia.
- 8. Chen B., Wu Y., Shen S., "Wind-induced response analysis of conical membrane structures", Journal Harbin Institute Technology, Vol.12, No. 5, 2005.
- 9. Comisión Federal de electricidad, (2008), "Manual de Diseño de Obras Civiles. Diseño por Viento", Instituto de Investigaciones Eléctricas, México, D.F.
- Davenport A., (1967), "Gust Loading Factors", Journal of Structural Engeenering, ASCE, 93 (ST3).
- 11. Escobar A., Espinosa J., Gómez M., Pozos A., Meli R., (2012), "Revisión Técnica de la Respuesta Ante Viento y Sismo del Monumento Conmemorativo del Bicentenario de la Independencia", I.I.I Servicios, UNAM, México.
- 12. Harris R., (1970), "The Nature of the Wind. The Modern Design of Wind-Sensitive Structures, C.R.I.A. Londres, G.B.
- Hernández H., Valdés G., Hernández A., "Procedimiento simplificado de diseño eólico de tenso estructuras", XVII Congreso Nacional de Ingeniería Estructural; León, Guanajuato, 2010.
- 14. Huntington C. G. (2003), "The Tensioned Fabric Roof", ASCE Press, ISBN 078-44-0428-3.
- 15. Huntington C. G., (2013), "Tensile Fabric Structures Design Analysis and Construction", American Society of Civil Engineers, ISBN 978-0-7844-7792.
- 16. Joint Standards Australia/New Zealand Committee, (2011), "AS/NZS1170.2 Australian/New Zealand Standard, Structural design actions, Part 2: Wind Actions". Sydney, Australia.
- 17. Kaimal J., Wyngaard J., Izumi Y., Coté O., (1972), "Spectral Characteristics of Surface-Layer Turbulence", Journal of the Royal Meteorological Society 98563-589.
- 18. Lewis W. J., (2003), "Tension Structures, form and behavior", Thomas Telford, ISBN 0-7277-3236-6, London, Inglaterra.
- 19. Lumley J., Panofsky H., (1964), "The Structure of Atmospheric Turbulence, Wiley, Nueva York.
- Mendis P., Ngo T., Haritos N., Hira A., Salami B., Cheung J., (2007), "Wind Loading on Tall Buildings", Electronic Journal of Structural Engineeringm Special Issue: 41-54.
- 21. Normas Técnicas Complementarias para Diseño por Viento, (2004), Reglamento de Construcciones del Distrito Federal, México.
- 22. Oliveira M. P., y Brasil R., (2003), "Design and analysis of tension structures using general purpose finite element program", Textile composite and Inflatable Structures, Oñate y Kroplin (Eds), CIMNE, Barcelona.

- 23. Orozco M., (2015), "Comparación de la respuesta structural de edificios altos ante viento turbulento y desprendimiento de vórtices", Tesis de maestría, UNAM, México.
- 24. Otto F. (1958), "Cubiertas colgantes", Labor, Barcelona, 170p.
- 25. Puerto A. D., (2008), "Acción del viento sobre una velaria de gran claro", Tesis de Maestría, Programa de Maestría y Doctorado en Estructuras, UNAM.
- 26. Pasqual T., (2011), "Um estudo sobre ação do vento nas estructuras de membrana", tesis de maestría, Escola Politécnica de Universidade de São Paulo, Brasil.
- 27. Pozos Estrada, (2009), "Reliability of wind-sensitive buildings: a serviceability design consideration", PhD Thesis, The University of Western Ontario, London, Ontario, Canadá.
- Pozos Estrada, García Soto, Gómez R., Sánchez R., Escobar J., (2011), "Use of TMDs to mitigate the vibration of a curved Steel bridge", 8th International Conference on Structural Dynamics, Leuven, Bélgica, Julio 4-6.
- 29. Samaras E., (1983). "Time Series Generation Using the Auto-Regresive Moving-Average Model", PhD Thesis, Columbia University, Nueva York.
- 30. Samaras E., Shinozuka M.m Tsurui A., (1985), "ARMA Representation of Random Processes", Journal of Engeneering Mechanics, Vol.111, No.3, March.
- 31. Sánchez de Colacelli M. (2005), "La forma de las cubiertas de membranas. Parte 1: De las tiendas a las membranas pretensadas", revista de ciencias exactas e ingeniería, Universidad Nacional de Tucumán, Argentina, año 14 Nº 26, julio de 2005, pp. 50 54.
- 32. Shibo Ren (2008), "Analysis of tent structures", Tesis de maestría adicional, Facultad de Ingeniería y Geociencias, Universidad Tecnológica Delf, Países Bajos.
- 33. Shinozuka M., (1972), "Monte Carlo solution of structural dynamics", Technical report No.19, Columbia University, Nueva York.
- 34. Sivaprasad Neha, (2006), "Wind design of fabric structures determination of gust factors for fabric structures", Tesis de maestría, University of Southern California.
- 35. Tensinet, 2004, "European Design Guide for tensile Surface Structures", Bruselas, Bélgica.
- 36. Van Asselt P., Analysis of stressed membrane structures, Master of Science report, Delft University of Technology, Dec. 2007.
- 37. Wu Y., Sun X., y Shen S., (2008), "Computation of wind structure interaction on tension structure", Journal of wind Engineering and Industrial Aerodynamic, 96, 2019-2032.
- 38. Yousun, L., Kareem A., (1990), "ARMA systems in Wind Engineering", Probabilistic Engineering Mechanics, Vol.5, No.2, pp.50-59.
- Zhou Y., Kijewski T., Kareem A., (2002), "Along-Wind Load Effects on Tall Buildings: Comparative Study of Major International Codes and Standardas", Journal of Structural Engineering, ASCE, Vol.128, No.6, pp.788-796

Anexo A

A continuación, se describe el procedimiento del método ARMA para la generación del viento turbulento. La turbulencia aleatoria de viento puede modelarse usando un proceso estocástico Gaussiano, k(x, y, z) sobre el espacio (x, y, z) y el tiempo (t); k(x, y, z) tiene media cero, varianza unitaria y es estacionario en el tiempo. Una manera de representar k(x, y, z) se logra discretizando espacio y tiempo para modelar k(x, y, z, t) como un vector. En un modelo auto-regresivo de media móvil sobre el tiempo, los componentes del vector son los procesos para las posiciones en el espacio. Por conveniencia, se denota al proceso vectorial como $K(t) = \{k(x, y, z, t)\}_{x,y,z}$. Asumiendo que el orden de AR y MA son iguales (q), se tiene:

$$K(t) = {}^{q}_{i=1} A_i K(t - i\Delta t) + \sum_{i=0}^{q} B_i \psi(t - i\Delta t)$$
 Ecuación A.1

donde, ψ es un vector de ruido blanco en el tiempo t, donde t toma valores $i\Delta t$, siendo i un entero.

Dado que $\psi(t)$ es un vector de un proceso Gaussiano, estacionario a través del tiempo, sólo la media se asume cero y la estructura de la varianza necesita ser especificada. El primer paso es elegir un modelo de matriz de correlación cruzada $C_{K(t)}$ entre K(s) y K(s + t). La matriz de correlación cruzada depende del tiempo t, pero no del espacio s, debido a que el proceso es estacionario en el tiempo, por lo que las correlaciones cruzadas se modelarán asumiendo que el tiempo t es continuo.

La matriz de correlación cruzada resultante $\{K(i\Delta t)\}_i$, p.e., para el proceso discretizado, se utilizará para determinar las matrices de coeficientes A_i y B_i del vector K(t). Si K(t) tiene l componentes, p.e. si hay l ubicaciones espaciales, la matriz de correlación cruzada está dada por:

$$C_{K}(t) = \begin{bmatrix} P_{11}(t) & P_{12}(t) & \cdots & P_{1l}(t) \\ P_{21}(t) & P_{22}(t) & \cdots & P_{2l}(t) \\ \cdots & \cdots & \cdots & \cdots \\ P_{l1}(t) & P_{l2}(t) & \cdots & P_{ll}(t) \end{bmatrix}$$
 Ecuación A.2

donde, $P_{ij}(t)$ es la correlación cruzada entre la posición espacial *i*-ésima y *j*-ésima en el tiempo s y s + t, respectivamente, para $i, j = 1, 2, \dots, l$. Si (x_i, y_i, z_i) denotan la *i*-ésima posición espacial, entonces se asume que $P_{ij}(t)$ es:

$$P_{ij}(t) = \int_{0}^{\infty} \sqrt{S_i(n)S_j(n)} \cdot coh(y_i, z_i, y_j, z_j, n) \cdot cos(2\pi nt) dn \qquad \text{Ecuación A.3}$$

Donde, $S_i(n)$ es la función de densidad de potencia espectral en la ubicación *i* y $coh(y_i, z_i, y_j, z_j, n)$ es la coherencia en la frecuencia *n*. Las correlaciones $P_{ij}(t)$ se calculan mediante integración numérica con la regla de Simpson.

El espectro utilizado como base para la generación de las fluctuaciones de turbulencia es:

$$\frac{fS(f,z)}{\sigma_{W}^{2}} = \frac{3.36\frac{J^{2}}{\bar{V}(z)}}{1.5\left[1+10\left(\frac{fz}{\bar{V}(z)}\right)^{5/3}\right]}$$
Ecuación A.4

La coherencia espacial se puede modelar con la aproximación de Davenport:

$$coh(y_i, z_i, y_j, z_j, n) = exp[-\hat{f}(y_i, z_i, y_j, z_j, n)]$$
 Ecuación A.5

donde:

$$\hat{f}(y_i, z_i, y_j, z_j, n) = \frac{n \left[C_z^2 (z_i - z_j)^2 + C_y^2 (y_i - y_j)^2 \right]^{1/2}}{\frac{1}{2} [U_{trans}(z_i) + U_{trans}(z_j)]}$$
Ecuación A.6

donde, las constantes C_y y C_z describen el efecto relativo de la separación en las direcciones lateral (y) y en la altura (z), respectivamente.

Las matrices de correlación cruzada para cada uno de los tiempos son combinadas para formar una matriz de correlación completa C para el proceso K(t):

$$C = \begin{bmatrix} C_{K}^{T}(0) & C_{K}^{T}(\Delta t) & C_{K}^{T}(2\Delta t) & \cdots & C_{K}^{T}((p-1) \ t) \\ C_{K}(\Delta t) & C_{K}(0) & C_{K}^{T}(\Delta t) & \cdots & C_{K}^{T}((p-2) \ t) \\ C_{K}(2\Delta t) & C_{K}^{T}(\Delta t)(\Delta t) & C_{K}(0) & \cdots & C_{K}^{T}((p-3) \ t) \\ \cdots & \cdots & \cdots & \cdots \\ C_{K}((p-1) \ t) & C_{K}((p-2)\Delta t) & C_{K}((p-3) \ t) & \cdots & C_{K}(0) \end{bmatrix}$$
Ecuación A.7

donde, t toma los valores { Δt , $2\Delta t$, ..., p. t} y p denota el número de puntos de tiempo.

Para calcular las matrices de coeficientes en K(t), se utiliza C. Primero, se calcula un conjunto de matrices \tilde{A}_i para $i = 1, \dots, p$, mediante:

$$\left[\tilde{A}_{1}\,\tilde{A}_{2}\,\cdots\,\tilde{A}_{p}\right] = -\left[C_{YY}^{T}(\Delta t)\,C_{YY}^{T}(2\Delta t)\,\cdots\,C_{YY}^{T}(p\Delta t)\right]C^{-1} \qquad \text{Ecuación A.8}$$

Posteriormente, se obtiene una matriz triangular inferior B_0 mediante la aplicación de la descomposición de Cholesky a la solución de:

$$B_0 B_0^T = \sum_{i=0}^{\infty} \tilde{A}_i C_K(i\Delta t)$$
 Ecuación A.9

entonces, una matriz D, es construida:

$$D = \begin{bmatrix} I & \cdots & 0 & -C_{\psi K}^{T}(0) & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & I & -C_{\psi K}^{T}((1-q)\Delta t) & \cdots & -C_{\psi K}^{T}(0) \\ -C_{\psi K}(0) & \cdots & -C_{\psi K}((1-q)\Delta t) & C_{K}(0) & \cdots & C_{K}^{T}((q-1)/t) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -C_{\psi K}(0) & C_{K}((1-q)\Delta t) & \cdots & C_{K}(0) \end{bmatrix}$$
Ec. A.10

en donde las matrices $C_{\Psi K}$ son calculadas a partir de la relación:

$$C_{\psi K}(0) = B_0$$
 Ecuación A.11

у

$$C_{\psi K}(-k\Delta t) + \sum_{i=1}^{k} \left(\tilde{A}_1 C_{\psi K}((i-k)\Delta t) \right) = 0 \qquad \text{Ecuación A.12}$$

Para $k = 1, 2, \dots, q$, notando que $C_{\Psi K} = 0$ para un intervalo de promediación positivo.

Finalmente, se calculan las matrices de coeficientes empleados en la ecuación A.1 mediante:
$$B_1 B_2 \cdots B_q A_1 A_2 \cdots A_q] = \begin{bmatrix} C_{\psi K}(-\iota t) \cdots C_{\psi K}(-q\Delta t) & -C_K^T(\Delta t) \cdots -C_K^T(q\Delta t) \end{bmatrix} D^{-1} \quad \text{Ec. A.13}$$

Se puede generar una historia en el tiempo de longitud indefinida a partir de la ecuación A.1. La historia en el tiempo generada tiene una desviación estándar unitaria para cada tiempo y ubicación. La variancia deseada es obtenida después utilizando una modulación de amplitud, por ejemplo:

$$u'(x, y, z, t) = a(x, y, z, t)k(x, y, z, t)$$

Anexo B

En este apartado se describe el procedimiento seguido en el programa TensileDrawLT de Mehler Texnologies, el programa se puede descargar gratuitamente después de crear un usuario y contraseña, desde la siguiente liga: http://www.mehler-texnologies.com/mta/The-MAC/Tensile-Draw.php

El programa es un complemento que se instala en el programa Autocad 2013. En la figura de abajo se muestra el menú de inicio al abrir el programa desde el acceso directo que se instala en el escritorio.

Figura A.1 Pantalla de inicio del programa Tensiledraw LT.

Primero, se configura el menú Project Settings a cuyo ícono en la barra de menú es la carpeta con el martillo. Se ingresa el nombre del proyecto, la descripción, el usuario y se escogen las unidades de fuerza y longitud.

Project settin	gs		
Project data			
Project name:	HYPAR 15x15x3		
Description:	Paraboloide hiperbólico		
Customer:	Luis		
Model Units		Cut text settings	
Length: m	•	Titles text height:	10
Force: KN	•	Measures text height:	4

Figura A.2 Menú Project settings

Se configura la pestaña de Style Manager, a cuyo ícono son las carpetas de colores, en este menú se ingresa el presfuerzo de los cables en la dirección de la urdimbre y la trama de la membrana, la

curvatura de los bordes en caso que sean borde fijos y la longitud fija para cables en caso de que existan este tipo de cables.

yles			Style propertie	18	
ityle name	Туре	Data	Lauer	Fixed	•
Forder Cable	Border Cable	phi = 1, E = 0.01	Color:	Green	•
ïxed	Fixed Lengt	Len = 1	Туре:	Fixed Length cable	•
Varp	Mehler Mem	sigma =	Cable length	1	m

Figura A.3 Menú Style Manager

Es necesario dibujar el contorno que va a contener a la tenso-estructura, en este caso un rectángulo de 15x15m.

Figura A.4 Geometría de contorno en planta para generar la tenso-estructura

En el menú Mesh Border and Type en el apartado de Select Mesh Border se selecciona el cuadrado dibujado y en el apartado Style se seleccina Border del menú desplegable. En el menú desplegable mesh type se selecciona el tipo de malla (recatangular, radial o uniforme). Al hacer click en siguiente se desplega una segunda pantalla con título Uniform mesh parameters, donde se ingresa el número de divisiones que se requieren en dirección de la urdimbre y la trama.

Entity Select Mesh Border	Styles Assigns style to each border side	
	Side Style	
Preview:	1 Border	
J J	2 Border	
	3 Border	
4 2	4 Border	
	۲ <u>ا</u>	•
1	Mesh type	
	Uniform	
< Atrá	ás Siguiente > Cancelar A	yuda
rm mesh parameters Preview	ás Siguiente > Cancelar A	vuda
rm mesh parameters Preview	ás Siguiente > Cancelar A	yuda
< Atra orm mesh parameters Preview	ás Siguiente > Cancelar A	yuda
rm mesh parameters Preview F F F F F F	ás Siguiente > Cancelar A Orientation Rotate Warp and Fill Number of subdivisions Warp: 10	yuda
rm mesh parameters Preview F F F	ás Siguiente > Cancelar A Orientation Rotate Warp and Fill Number of subdivisions Warp: 10 Fill: 10	yuda
rm mesh parameters Preview F F W F W F W W	ás Siguiente > Cancelar A Orientation Rotate Warp and Fill Number of subdivisions Warp: 10 Fill: 10 Styles	yuda
rm mesh parameters Preview F F W W W	ás Siguiente > Cancelar A Orientation Orientation Orientation Orientation Orientation Indicate Warp and Fill Number of subdivisions Warp: 10 Fill: 10 Styles Warp: Warp Warp	yuda
<pre>rm mesh parameters Preview F F W W W V V V V V V V V V V V V V V V</pre>	ás Siguiente > Cancelar A Orientation Orientation Orientation Orientation Orientation Indicate Warp and Fill Number of subdivisions Warp: 10 Fill: 10 Styles Warp: Warp Eilt. Weft	yuda
<pre>rm mesh parameters Preview F F W W W W </pre>	ás Siguiente > Cancelar An Orientation Rotate Warp and Fill Number of subdivisions Warp: 10 Fill: 10 Styles Warp: Warp Fill: Weft	vuda

Figura A.5 Menú Mesh border and type (arriba) y Uniform mesh parameters (abajo)

Al hacer click en finalizar se crea una geometría en 2D como se aprecia en la figura.

Figura A.6 Geometría en 2D generada por el programa Tensiledraw LT

Con el menú Fix Node se eligen los grados de libertad que se quieren restringir en los apoyos. Se elige ok, y se seleccionan los nodos que servirán como apoyo, en este caso los cuatro de los extremos. Se agrega un símbolo de ejes en los puntos que se seleccionaron como paoyos.

Figura A.7 Menú Fix Node (izquierda) y simbología generada en los nodos elegidos como apoyos

Es necesario acomodar los apoyos a la elevación que les corresponda según el proyecto, esto se hace mediante los comando propios del Autocad, como el Move. En la imagen inferior se observan dos de los nodos que ya se han desplazado 3m hacia arriba del eje z.

Figura A.8 Nodos colocados a su elevación correspondiente de acuerdo al proyecto

Por último, para obtener la forma en equilibrio sujeta a presfuerzo, se guarda el proyecto desde el menú de autocad guardar como, y se hace click en el botón Form calculation \Re donde puede agregarse una presión uniforme a la membrana si se desea. En nuestro ejemplo dejamos los valores por default y se presiona ok.

Calculation paran	neters	Calculation limits
Pressure:		 All
Corner factor:	0	C Selection
		🔿 Area 📃 👻
Jote:		

Figura A.9 Menu Form Calculation

Se obtiene la forma en equilibrio para la geometría ingresada.

Figura A.10 Geometría en equlibrio después del análisis

Para crear el archivo IGES para importar la geometría al ANSYS. Es necesario seguir los siguientes pasos.

- 1. Se crean polilíneas (comando 3DPOLY de autocad) en los bordes de la membrana, una por cada borde.
- 2. Se utiliza el comando SURFNETWORK de autocad para crear la superficie.
- 3. Se utiliza el comando EXPORT, se seleccciona la dirección donde se quiere guardar el archivo exportado y se selecciona la superficie creada para exportar.

Anexo C

Este apartado contiene los códigos empleados para los análisis principales de este trabajo.

Cono - Análisis lineal !Programa para el análisis lineal de un cono /CLEAR, NOSTART /TITLE, CONO /UNITS, MPA /UNITS, MPA /PREP7 D=20000 !Diámetro (mm) H=10000 !Altura (mm) T=1.5 !Espesor membrana (mm) !----- Propiedades del elemento -----ET, 1, SHELL181 !Elemento 1 - shell !Bending and membrane stiffness KEYOPT, 1, 1, 0 !Método de control de Hourglass para membranas y modos de flexión. KEYOPT, 1, 3, 2 TYPE,1 SECTYPE, SHELL SECDATA.T.1 !----- Generación de geometría -----K, 1, 0, H, 0 !Vértice del cono K, 2, D/2, 0, 0 !Punto en X en la base del cono L, 1, 2 !Línea uniendo los Keypoints 1 y 2 K, 1000, 0, 0, 0 !Keypoint en 0,0,0 AROTAT, 1, , , , , 1, 1000, 360, !Genera un área rotando la Línea 1 alrededor del eje formado por lo !Keypoints 1 y 1000, longitud del arco 360°, forma un segmento de ! área por cada 90° (4 areas) !----- Propiedades del material -----MEXM=289.7073 !Módulo de elasticidad direcc X MPOI=0.49 Módulo de Poisson MP,EX,1,MEXM !Se asigna Mód elastacidad a Elemento 1 !Se asigna Mód Poissson a Elemento 1 MP,PRXY,1,MPOI !----- Control de mallado -----Asocia los atributos del material con las areas sin mallar seleccionadas. AATT,1,1,1,0 !#AATT,MAT,REAL,TYPE,ESYS !Tamaño del elemento para mallar (1000mm). #AESIZE, Área_a_mallar, AESIZE, ALL, 1000 !Tamaño_elemento !Elemento triángulo en 2D MSHAPE, 1, 2D MSHKEY.1 !Mapped meshing AMESH, ALL !Genera nodos y elementos área dentro de las areas

INISTATE, DEFINE,,,,,-1.851866667 !Presufuerzo

FINISH

/SOLU !Inicia solución !----- Condiciones de frontera -----NSEL, S, LOC, Y, -0.1, 0.1 !Selecciona un subconjunto de nodos, entre las coordenadas -0.1 y 0.1 len dirección Y (Los puntos de la base del cono). NSEL, A, NODE, , 0.5, 1.5 !Adicionalmente se selecciona el nodo entre el número 0.5 y 1.5. !Se restringen todos los grados de liberta en los apoyos seleccionados D, all,0, , , , , all !----- Tipo de análisis ------!Análisis estático ANTYPE,0 !----- Cargas -----NSEL, S, LOC, Y, -0.1, 10000.1 ALLSEL SFE, all, 1, PRES, ,0.002 NSEL,ALL SOLVE FINISH Cono – Análisis no lineal • !Programa para el análisis lineal de un cono /CLEAR, NOSTART /TITLE, CONO /UNITS, MPA /UNITS, MPA /PREP7 D=20000 !Diámetro (mm) H=10000 !Altura (mm) T=1.5 !Espesor membrana (mm) !----- Propiedades del elemento ------ET, 1, SHELL181 !Elemento 1 - shell KEYOPT, 1, 1, 0 !Bending and membrane stiffness KEYOPT, 1, 3, 2 !Método de control de Hourglass para membranas y modos de flexión. TYPE,1 SECTYPE, SHELL SECDATA,T,1 !----- Generación de geometría -----K, 1, 0, H, 0 !Vértice del cono K, 2, D/2, 0, 0 !Punto en X en la base del cono L, 1, 2 !Línea uniendo los Keypoints 1 y 2

!Keypoint en 0,0,0 K, 1000, 0, 0, 0 AROTAT, 1, , , , , 1, 1000, 360, !Genera un área rotando la Línea 1 alrededor del eje formado por lo !Keypoints 1 y 1000, longitud del arco 360°, forma un segmento de ! área por cada 90° (4 areas) !----- Propiedades del material -----MEXM=289.7073 !Módulo de elasticidad direcc X MPOI=0.49 Módulo de Poisson MP,EX,1,MEXM !Se asigna Mód elastacidad a Elemento 1 !Se asigna Mód Poissson a Elemento 1 MP,PRXY,1,MPOI !----- Control de mallado -----!Asocia los atributos del material con las areas sin mallar seleccionadas. AATT,1,1,1,0 !#AATT,MAT,REAL,TYPE,ESYS AESIZE, ALL, 1000 !Tamaño del elemento para mallar (1000mm). #AESIZE, Área_a_mallar, !Tamaño_elemento !Elemento triángulo en 2D MSHAPE, 1, 2D !Mapped meshing MSHKEY, 1 AMESH, ALL !Genera nodos y elementos área dentro de las areas INISTATE, DEFINE, ..., 1.851866667 !Presufuerzo FINISH /SOLU !Inicia solución !----- Condiciones de frontera -----NSEL, S, LOC, Y, -0.1, 0.1 !Selecciona un subconjunto de nodos, entre las coordenadas -0.1 y 0.1 !en dirección Y (Los puntos de la base del cono). NSEL, A, NODE, , 0.5, 1.5 !Adicionalmente se selecciona el nodo entre el número 0.5 y 1.5. !Se restringen todos los grados de liberta en los apoyos seleccionados D, all,0, , , , , all !----- Tipo de análisis ------!Análisis estático ANTYPE,0 NLGEOM,ON NROPT, FULL, ON ! turn on non-linear geometry analysis AUTOTS,ON ! auto time stepping NSUBST.10.1000.1 !Size of first substep=1/5 of the total load, max # substeps, min # substeps OUTRES, ALL, ALL ! save results of all iterations !----- Cargas -----NSEL, S, LOC, Y, -0.1, 10000.1 ALLSEL SFE, all, 1, PRES, ,0.002 NSEL,ALL SOLVE FINISH

• Paraboloide hiperbólico - Análisis modal, estático y dinámico

!Análisis modal, estático y dinámico de tenso-estructura con forma de Paraboloide hiperbólico

! /CLEAR, NOSTART /TITLE, PARABOLOIDE HIPERBOLICO

/AUX15	!Inicia el proceso de transferencia de archivos IGES
IOPTN,IGES,SMOOTH IOPTN,MERGE,YES IOPTN,SOLID,NO IGESIN,HYPAR15X15,IGES	 !Selección de opción SMOOTH para importar IGES !Fusiona objetos duplicados o sobrepuestos !No se crean sólidos automáticamente !Transfiere los datos del archivo IGES a ANSYS
FINISH	!Termina el proceso
!*************************************	***********************
/PREP 7	Abre el el menú de preprocesamiento!
LOCAL,11,0,0,0,0,0,0,0	Acomoda ejes locales de los elementos de la malla!
! Definición de variabl	es y constantes
MEXM=1.222E9	!Módulo de elasticidad membrana direcc ppal (N/m2) (1400 kN/m)
MEXC=1.6E11	Módulo de elasticidad cable direcc ppal (N/m2) (160 kN/mm2) Coated Spiral strands 1x37 Pfeifer
MPOIM=0.48	Módulo de Poisson membrana
MPOIC=0.3	!Módulo de Poisson cable
DENM=1166.67	!Densidad de la membrana (kg/m3) (1.05 kg/m2)
DENC=7850	!Densidad del cable (kg/m3)
AREC=1.68E-04	!Área del cable (Diámetro nominal 5/8")
! Propiedades del ele	mento
FT 1 SHELI 181	
KEYOPT 1 1 1	IKO #mat #KO 1_rigidez de membrana únicamente
KEYOPT 1 3 2	IKO #mat #KO 2-Integración completa con modos incompatibles
1121011,1,3,2	into, and a second complete continuous incompanyies
ET,2,LINK180 R,2,AREC,,1	!R,#mat,área(m2),masa/long(kg/m)adicional,1-sólo tensión
! Propiedades del ma	terial
!!!Membrana!!!	
MP,EX,1,MEXM MP,NUXY,1,MPOIM MP,DENS,1,DENM	!Asigna módulo de elasticidad al elemnto 1 !Asigna módulo de Poisson al elemnto 1 !Asigna densidad al elemento 1
!!!Cable!!!	
MP,EX,2,MEXC MP,NUXY,2,MPOIC MP,DENS,2,DENC	
! Mallado de elemente	DS

!!!Membrana!!!

TYPE,1 SECTYPE,,SHELL SECDATA,0.0009,1,0	!SECDATA,espesor(m),#material
AATT,1,1,1,11	Asocia los atributos del material con las areas sin mallar seleccionadas.
MSHAPE,1,2D	!0-cuadrado, 1-Triángulo
MSHKEY,2	1-Mapped meshing, 2-de ser posible mapped meshing, sino free meshing
AESIZE,ALL,1	AESIZE, área a mallar, tamaño del elemento (m)
AMESH,ALL	Mallar todos los elementos área

!xxxxxx Presfuerzo en membrana xxxxxxxxxx

ASEL,S,,,2,,,1 INISTATE,DEFINE,,,,,4.444E6,4.444E6 !Presufuerzo en ambas direcciones (N/m2) (4 kN/m) ALLSEL,ALL

ESYS,0 CSYS,0

!!!Cables!!!

LATT,2,2,2 TYPE,2 SECTYPE,,LINK MAT,2 REAL,2

LMESH,5 !Malla una línea, generando elementos nodo y línea LMESH,6 LMESH,7 LMESH,8

!----- Condiciones de frontera -----

D,1,UX,0,,,,,UY,UZ D,2,UX,0,,,,UY,UZ D,18,UX,0,,,,UY,UZ D,34,UX,0,,,,UY,UZ

/OUTPUT,resultado.txt

/SOLU

!Comienza solución

ANTYPE,MODAL!Análisis modalMODOPT,LANB,100,,,,OFF!Se obtendrán los 100 primeros modosMXPAND,100!Expandir 100 modos

SOLVE FINISH

!******* Análisis estático no lineal - dirección del viento 0° *********

/OUTPUT,resultadomallado.txt

/SOLU	Inicia solución
ANTYPE,STATIC	!Análisis estático
nlgeom,on	
nropt,full,,on	! turn on non-linear geometry analysis
autots,on	! auto time stepping
nsubst,10,1000,1	
outres,all,all	
! Cargas	

TIME,0 ACEL,0,9.81 TIME,1

!Aceleración de la gravedad

!Fuerzas en los nodos

F,79,FY,1132.44 F,139,FY,1098.48 F,107,FY,1132.44 F,75,FY,1098.48 F,199,FY,1098.48 F,167,FY,1098.48 F,135,FY,1093.17 F,103,FY,1098.48 F,71,FY,1098.48 F,259,FY,1132.44 F,227,FY,1098.48 F,195,FY,1092.11 F,163,FY,1093.17 F,131,FY,1092.11 F,99,FY,1098.48 F,67,FY,1132.44 F,287,FY,629.13 F,255,FY,610.26 F,223,FY,606.73 F,191,FY,607.32 F,159,FY,606.73 F,127,FY,610.26 F,95,FY,629.13 F,283,FY,610.26 F,251,FY,610.26 F,219,FY,607.32 F,187,FY,610.26 F,155,FY,610.26 F,279,FY,610.26 F,247,FY,629.13 F,215,FY,610.26 F,275,FY,629.13

SOLVE

FINISH

!****** Análisis dinámico no lineal - dirección del viento 0° *********

!----- Configuración de datos -----

FINI /CONFIG,NRES,6500

Incrementa el número de resultados en un archivo de 1000 a 6500

!----- Lee archivos de fuerzas ------

*DIM,vector1,,6000 *VLEN,6000,1 *VREAD,vector1,fuerza1,txt (1f16.2)

*DIM,vector2,,6000 *VLEN,6000,1 *VREAD,vector2,fuerza2,txt (1f16.2)

*DIM,vector3,,6000 *VLEN,6000,1 *VREAD,vector3,fuerza3,txt (1f16.2)

*DIM,vector4,,6000 *VLEN,6000,1 *VREAD,vector4,fuerza4,txt (1f16.2)

*DIM,vector5,,6000 *VLEN,6000,1 *VREAD,vector5,fuerza5,txt (1f16.2)

*DIM,vector6,,6000 *VLEN,6000,1 *VREAD,vector6,fuerza6,txt (1f16.2)

*DIM,vector7,,6000 *VLEN,6000,1 *VREAD,vector7,fuerza7,txt (1f16.2)

*DIM,vector8,,6000 *VLEN,6000,1 *VREAD,vector8,fuerza8,txt (1f16.2)

*DIM,vector9,,6000 *VLEN,6000,1 *VREAD,vector9,fuerza9,txt (1f16.2)

*DIM,vector10,,6000 *VLEN,6000,1 *VREAD,vector10,fuerza10,txt (1f16.2)

*DIM,vector11,,6000 *VLEN,6000,1 *VREAD,vector11,fuerza11,txt (1f16.2) *DIM,vector12,,6000 *VLEN,6000,1 *VREAD,vector12,fuerza12,txt (1f16.2)

*DIM,vector13,,6000 *VLEN,6000,1 *VREAD,vector13,fuerza13,txt (1f16.2)

*DIM,vector14,,6000 *VLEN,6000,1 *VREAD,vector14,fuerza14,txt (1f16.2)

*DIM,vector15,,6000 *VLEN,6000,1 *VREAD,vector15,fuerza15,txt (1f16.2)

*DIM,vector16,,6000 *VLEN,6000,1 *VREAD,vector16,fuerza16,txt (1f16.2)

*DIM,vector17,,6000 *VLEN,6000,1 *VREAD,vector17,fuerza17,txt (1f16.2)

*DIM,vector18,,6000 *VLEN,6000,1 *VREAD,vector18,fuerza18,txt (1f16.2)

*DIM,vector19,,6000 *VLEN,6000,1 *VREAD,vector19,fuerza19,txt (1f16.2)

*DIM,vector20,,6000 *VLEN,6000,1 *VREAD,vector20,fuerza20,txt (1f16.2)

*DIM,vector21,,6000 *VLEN,6000,1 *VREAD,vector21,fuerza21,txt (1f16.2)

*DIM,vector22,,6000 *VLEN,6000,1 *VREAD,vector22,fuerza22,txt (1f16.2)

*DIM,vector23,,6000 *VLEN,6000,1 *VREAD,vector23,fuerza23,txt (1f16.2)

*DIM,vector24,,6000

*VLEN,6000,1 *VREAD,vector24,fuerza24,txt (1f16.2) *DIM,vector25,,6000 *VLEN,6000,1 *VREAD,vector25,fuerza25,txt (1f16.2) *DIM,vector26,,6000 *VLEN,6000,1 *VREAD,vector26,fuerza26,txt (1f16.2) *DIM,vector27,,6000 *VLEN,6000,1 *VREAD,vector27,fuerza27,txt (1f16.2) *DIM,vector28,,6000 *VLEN,6000,1 *VREAD,vector28,fuerza28,txt (1f16.2) *DIM,vector29,,6000 *VLEN,6000,1 *VREAD,vector29,fuerza29,txt (1f16.2)

*DIM,vector30,,6000 *VLEN,6000,1 *VREAD,vector30,fuerza30,txt (1f16.2)

*DIM,vector31,,6000 *VLEN,6000,1 *VREAD,vector31,fuerza31,txt (1f16.2)

*DIM,vector32,,6000 *VLEN,6000,1 *VREAD,vector32,fuerza32,txt (1f16.2)

!----- Análisis dinámico transitorio -----

/OUTPUT,resultado.txt

/SOLU

SSTIF,ON	Activa efectos de esfuerzo-rigidez en un análisis NL!
ANTYPE,TRANS	Análisis dinámio transitorio
TRNOPT,FULL	!Método completo
ALPHAD,0.3123	!Multiplicador de la matriz de masa para amortiguamiento
BETAD,6.4692e-04	Multiplicador de la matriz de rigidez para amortiguamiento
NLGEOM,ON	Análisis geométrico no lineal (Newton-Raphson)
NSUBST,5,1000,1	!Tamaño del 1er substep=1/5 de la carga total,máx substeps,mín substeps
NEQIT,1000	Máx # de iteraciones de equilibrio para cada substep
AUTOTS,ON	!Auto time stepping
LNSRCH,ON	!Usar line searchen Newton-Raphson

TIME,0

ACEL,0,9.81

escala=1.0

*DO,I,1,6000,1

F,79,FY,escala*vector1(I)*0.45 F,139,FY,escala*vector2(I)*0.45 F,107,FY,escala*vector3(I)*0.45 F,75,FY,escala*vector4(I)*0.45 F,199,FY,escala*vector5(I)*0.45 F,167,FY,escala*vector6(I)*0.45 F,135,FY,escala*vector7(I)*0.45 F,103,FY,escala*vector8(I)*0.45 F,71,FY,escala*vector9(I)*0.45 F,259,FY,escala*vector10(I)*0.45 F,227,FY,escala*vector11(I)*0.45 F,195,FY,escala*vector12(I)*0.45 F,163,FY,escala*vector13(I)*0.45 F,131,FY,escala*vector14(I)*0.45 F,99,FY,escala*vector15(I)*0.45 F,67,FY,escala*vector16(I)*0.45 F,287,FY,escala*vector17(I)*0.25 F,255,FY,escala*vector18(I)*0.25 F,223,FY,escala*vector19(I)*0.25 F,191,FY,escala*vector20(I)*0.25 F,159,FY,escala*vector21(I)*0.25 F,127,FY,escala*vector22(I)*0.25 F,95,FY,escala*vector23(I)*0.25 F,283,FY,escala*vector24(I)*0.25 F,251,FY,escala*vector25(I)*0.25 F,219,FY,escala*vector26(I)*0.25 F,187,FY,escala*vector27(I)*0.25 F,155,FY,escala*vector28(I)*0.25 F,279,FY,escala*vector29(I)*0.25 F,247,FY,escala*vector30(I)*0.25 F,215,FY,escala*vector31(I)*0.25 F,275,FY,escala*vector32(I)*0.25

KBC,1 TIME,0.1*i DELTIM,0.01

SOLVE

*get,dis209y,node,209,u,y *cfopen,DesplazaY,txt,,append *vwrite,dis209y (1e12.5,3X) *CFCLOS

*ENDDO

FINISH
